General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Photomask and Pattern Programming Manual

(NASA-CR-156131) PHOTCMASK AND FATTEEN
N78-20805 progbamming manuat (Jet prcgulsion lab-) 96 p. HC A05/MF A01 CSCL 09E G3/61 \(\begin{array}{ll}Onc1as
11862\end{array}\)

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Photomask and Pattern Programming Manual

R. K. Kirschman

March 1, 1978

National Aeronautics and
Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

The work described herein was perfomed by the Applied Mechanics Division and the Earth and Space Sciences Division of the Jet Propulsion Laboratory.

ACKNOWLEDGMENTS

The mask program described in Chapters IV and VI was originally obtained from the Electronics Development Division of Marshall Space Elight Center. J. M. Gould, T. M. Edge, W. R. Feltner, E. C. Lentz and D. L. Bouldin of that group have been extremely helpful during the implementation of the program at JPL, and in many other phases of this work. D. E. Houth and D.-S. Woo (now at the Solid State Technology Center, RCA Corporation) wrote the original version of the program.

Persons at JPL contributing to this work include E. T. Bates and T. W. Griswold, who provided mask and circuit designs and contributed in óther ways; J. H. Hix, J. L. Miranda, and D. M. Engler, who provided digitizing and plotting expertise and facilities; C. W. Snyder, N. L. Nickle, and W. El, who made available expertise and facilities for flatbed plotting; and B. M. Cooper, J. Fuhrman, D. Germann, S. Gold, and J. H. Nicol of the General Purpose Computing Faoility who assisted with the programming and computer operations.

I am indebted to E. T. Bates, W. H. Causey, R. H. Cookrum, M. D. Donner, J. Maserjian, P. V. Mason, R. H. Nixon, D. E. Routh, C. H. Savage, and D.,S. Woo for giving the preliminary version of this manual a oritical reading and suggesting valuable revisions.

The photo for Figure 2-3 and the masks for Figures 1-1, 2-5 and $6-7$ were provided by the Electronics Development Division of Marshall Space Flight Center; the photo for Figure $2-6$ was provided by GCA/Burlington Division.

ABSTRACT

This document is a user's manual for a set of computer programs for the layout and generation of photomasks. Also included is a limited amount of related information on photomasks, their design and use. The programs and this manual would be most useful to persons having a moderate need for photomasks for prototype or research purposes.

The source language for the programs is extended FORTRAN. To use the programs, data describing the photomask design is input to the programs; provisions for scaling, repetition, complex geometries, etc., allow simplifications in the preparation of the input data. The possible outputs are plots of the layout and a magnetic tape for controlling generation of the photomask by a pattern generator.

NOTE
The computer programs described herein are available from Computer Software Management and Information Center (COSMIC), University of Georgia, Suite 112, Barrow Hall, Athens, Georgia 30602. Specify NPO-14419.
I. INIRODUCTION $1-1$
II. Photomask design, generation and use 2-1
A. OVERAll, process 2-1
B. MASK DESION 2-4
C. MASK GENEFAJION $2-5$
D. STEP-AND-REPEAT $2-8$
E. BORDER $2-10$
F. ALIGNMENI MAKKS 2-11
1II. NASK EXAMPLES 3-1
a. INTRODUCTION 3-1
B. EXAMPLE 1: POSITIVE PR, OXIDE WINDOWS 3-1
C. Example a: positive pr, hetallization mask 3-3
D. EXAMPLE 3: NEGATIVE PR, OXIDE WINDOWS 3-3
E. EXAMPLE 4: NEGATIVE PR, METALLI2AYTON MASK 3-4
F. EXAMPLE 5: NEGATIVE PR, OXIDE WINDOWS, CONTACI PRINT 3-4
g. SIMmary $3-5$
IV. preparing the input data 4-1
a. general data format 4-1
B. Cand FORMAT $14-2$
c. DATA GROUPS 4-5
D. RULES gOUERNING CARD FORMAT $4-16$
E. REMARKS 4-19
v. DIGITIZING PHOTOMASK DRAWINGS 5-1
A. PREPARING THE DRAWING 5-1
B. DIGITIZING THE DRAWING 5-1
C. CONVERTING DIGITIZER CARDS INTO C-GROUP CARDS 5-3
D. EXAMPLE OF THE PROCEDURE 5-5
VI. RUNNING THE MASK PROGRAM 6-1
A. SETUP AND INPUT 6-1
B. BIAS 6-2
c. HOW THE PROGRAM WORKS 6-2
D. ERRORS 6-3
E. PROGRAM OUTPUTS 6-4
F. EXPOSURE FIELD 6-6
G. EXAMPLE OF THE PROCEDURE 6-7
VII. PLOTTING PHOTOMASKS 7-1
A. INTRODUCTION 7-1
B. CALCOMP 11-in. DRUM PLOTTER 7-1
C. CALCOMP 34-in. DRUM PLOTTER $7-4$
D. CALCOMP FLAT BED PLOTTER 7-6
E. CALCOMP COM SYSTEM 7-6
F. TEKTRCNIX GRAPHICS TERMINAL 7-16
VIII. PREPARING DATA FOR THE MPG 8-1
A. TAPE FORMAT 8-1
B. Generating the mpg tape 8-2
C. COMPATIBILITY WITH OTHER MASK-GENERATING MACHINES 6-3
BIBLIOGRAPHY 9-1

APPENDIXES

A. TERMS AND ABBREVIATIONS A-1
B. CONVERSION FACTORS B-1
C. DESCRIPTION OF PROGRAMS AND SUBROUTINES C- 1
Figuces
1-1. Examples of Photomasks 1-2
2-1. Flowchart of Photomask Preparation 2-2
2-2. Fabrication Sequence Using Photomask and Positive Photoresist $2-4$
2-3. The Mann Model 1600 Pattern Generator at MSFC 2-6
2-4. Principle of Operation of Mann Pattern Generator 2-7
2-5. Step-and-Repeat 2-9
2-6. A Photorepeater or Step-and-Repeat Generator (Mann Model 1975) 2-10
2-7. Cross Alignment Mark for Opaque Fleld 2-11
3-1. Layout for Examples $3-2$
4-1. Definition of Center Coordinates XC and YC 4-7
4-2. Parameter Specification for a Single Rectangle 4-9
4-3. Parameter Specification for an Array of Rectangles --- 4-9
4-4. Example of Parameter Specifications for Right-Angle Strip 4-10
4-5. Example of Parameter Specifications for Strip $4-12$
4-6. Parameter Specifications for Circles and Arcs 4-13
4-7. E-Group Character Set $4-14$
4-8. Alphanumeric Examples Showing Effect of "A" Parameter 4-15
4-9. Border and Fiducial Mark Example, H600, W1000, S1300, T 1600 4-17
4-10. Border and Fiducial Mark Example, H 600 , W 1000 , S1600, T1600 4-17
4-11. Horder and Fiducial Mark Example, H600, H1000, S 1800 , T 1600 4-18
5-1. Digitizer Keypunch Drum Cards $5-2$
5-2. Moveable Cursor on Digitizer 5-2
5-3. Drawing for Example 5-6
5-4. Data Cards from Digitzer and Initialization Cards 5-7
5-5. Printed Output from Program 5-7
5-6. Punched C-Group Cards from Program 5-8
6-1. Example of Data in File 55 $6-5$
6-2. Plotting Path of Sorted Rectangles $6-5$
6-3. Example of Data in File 57 6-7
6-4. Example of Input Data and Program Execution 6.8
6-5. Plot of Reotangle Data (File 55) for Mask Example 6-17
6-6. Plot of Exposure Data (File 57) for Mask Example 6-18
6-7. Photographio Print or "Blowback" from Completed Mask Plate 6-19
7-1. Example of Plot Made on 11-1n. Caloomp Drum Plotter - $7-2$
7-2. Example of Printout for 34-in. Drum Plotter Programs '7-5
7-3. Example of Xerox Print, Made from Film Plotted by COM System (approx 11X) $7-8$
7-4. Example of Photographic Enlargement Nade from Film Plotted on COM System (approx 10X) $7-9$
7-5. Example of Plot from Tektronix Hard Copy Unit 7-12
7-6. Definitions of Parameters for Tektronix Plots 7-12
C-1. Mask Program Subroutine Linkages $\mathrm{C}-2$

SECTION I

INTRODUCTIUN

The fabrioation of many items of modern teohnology is accomplished by means of photomasks. A photomask is a photographio plate or fim which oarries a geometrioal pattern of transparent and opaque areas that represents a part of the design of the device to be fabricated. Fisure 1-i shows two examples. As one stop of the fabrication process the pattern on the photomnsk is transferred photographioally to the devide, where it determines in which areas modifiostions suoli as deposition or removal of material will take phace in subsequent steps. Thus, the photomask can be thought of as a link between design and fabrication.

The use of photomasks is partioularly suited to applications lnvolving rine detail, reproducibility, or repetition, and where fabriontion can be carred out on the planar surface of a material. Examples of items fabricated by means of photomasks inolude semioonduotor integrated olrouits, hybrid oirouits, printed olrouits, surfaco acoustido wave devioes, magnetic bubble devioes, integrated optios afrouits, and other devioes.

The purposes of this manusi are (i) to destaribe computer programs available at JPL which oan serve as adds in designing, verifying, and fabrioating photomasks or other graphic patterns, (2) to provide instructions enabling a person to use these programs, and (3) to provide the related information on the fabrication and use of photomasks that is neoded for effective use of the programs. Familiarity with use of the computer and peripheral equipment is assumed and is not dovered here.

The programs described in this manual provide the mask designor a means of converting drawings and designs into oomputor data whioh onn control maskmaking machines and graphics equipment. They provide for dooumentation, veririoation, alteration, and updating of designs. In regard to mask seometry, the programs allow simplified specifieations for soaling, repetition, shifting, image reversal, cortain domplex gometries, alphanumeric oharaoters, aligument marks, and othor fontures.

These prograns and this manual do not oover any aspoot of computeraided design, which is the design or simulation of eleotronio oiroults or devides by computer. What is covered here might be andled computermaided graphics or computer-aided layout. The alrouit design and initial geometrial layout must be provided by the user.

The information and data in this manual are for programs, procedures, and equipment at JPL and MSFC. Although some of the information may apply in a general way to other installations, it should not be assumed that the information given here is applicable to other installations.

Figure 1-1. Examples of Photomasks (3-in. x 3-in. on left, 2-in. x 2-in. on right; the details of the patterns are too small to be visible in the photograph)

SECTION II

PHOTOMASK DESIGN, GENERATION AND USE

A. OVERALL PROCESS

To use the photomask programs effectively, it is necessary to have an understariding of the overall process of photomask preparation. Thus, the purpose of this seotion is to describe the complete process, from design idea to completed photomask. There are many ways to prepare photomasks; the methods described here are those applicable to facilities at JPL and MSFC.

The various steps, shown in outline in Figure 2-1, are as follows:
(1) The process begins with a design idea.
(2) The design idea must be translated into data suitable for the computer programs. For these programs the input data must be in the form of punched cards (or their equivalent in a data file). Three ways of doing this are shown:
(a) If the design is fairly simple the data may be prepared directly. This is not the usual practice however.
(b) A drawing is made and data describing the pattern is taken from it by hand.
(c) A drawing is made and data desoribing the pattern is taken from it by a digitizer. The digitizer resembles a drafting board; it has a oursor which is aligned with various points on the drawing and automatically converts their positions to punched card data.
(3) The data cards are read into a file (file 53) and from there are processed by the MASK program. The program has three possible outputs. One is a printout; the other two are data placed in computer files (magnetic disc storage).
(a) One (file 55) contains data whioh may be used to plot the pattern for verification purposes. The pattern may be plotted in various ways: on paper, CRT screen, and film. Each method requires executing a small program to translate the file 55 data into a form appropriate for the particular plotting device.
(b) The other (file 57) contains data which may be used to control the actual fabrication of the photomask by a machine called a pattern generator. This also requires an additional program, MASKTRAN, to translate the data into a suitable form.

Figure 2-1. Flowchart of Photomask Preparation
(4) The photomask is generated by the pattern generator, an extremely accurate optical/mechanical machine for exposing a photoplate. Its motions are controlled by the rumerical data given to it.
(5) For some applications the photoplate will be used as is. For o^{+}then applications, such as integrated olrouit work, an additional step (6) is required.
(6) The photoplite produced by the pattern generator generally contains only one pattern. For many applications, a photomask with an array of patterns is required. It is made in a process called step-and-repeat in which the photoplate, made with the pattern at 10 times required size, is reproduced repeatedly on another plate at required size in an accurately spaced rectangular array. This is done by a step-and-repeat generator, a machine similar to the pattern generator.
(7) The photomask plate from the step-and-repeat generator (the master plate) may be used directly or may be duplicated onto other plates (the working plates), either direotly or by means of an intermediate plate (a sub-master plate).

Photomasks are usually used by photographically transferring the pattern they contain to a photoresist, a light-sensitive material which is coated onto the surface of an object. Their use is best explained by a typical sequence of fabrication steps such as the following (see Figure 2-2):
(1) Coat object with photoresist.
(2) Place photomask in contact with resist, emulsion toward resist.
(3) Expose to light (usually ultraviolet); resist $1 s$ altered where light strikes it.
(4) Develop resist, to leave resist in desired areas.
(5) Process resist-coated object: deposit, etch, etc. $=$ action is confined to areas not coated by resist.
(6) Remove resist.

There are two types of photoresist: positive and negative. This must be taken into aceount when designing the photomask.

Positive resist. Developing removes resist where it was exposed to light. Thus the resist pattern duplicates the opaque areas on the photomask.

Negative resist. Developing removes resist where it was not exposed to light. Thus the resist patiern duplicates the transparent areas on the photomask.

Figure 2-2. Fabrication Sequence Using Photomask and Positive Photoresist

B. MASK DESIGN

The design of photomasks is beyond the scope of this manual; however, a few general guidelines are given here.
(1) Keep the layout simple and organized -- right angle geometry, even spacing, uniformity, etc.
(2) The mask program has the capability of generating circles, rings, sectors, and arcs; however, they should be avoided except where necessary, since they require substantially more pattern generator time than rectangles.
(3) Try to incorporate symetry and similarity wherever feasible so that repetition oan be used as much as possible. Repetition is easily handled by the programs, and using it can save programming time.
(4) Incorporate identification to appear on the mask plates and also on the completed device.
(5) Put alignment and registration marks on the mask. These will be discussed later.

It is a good idea for everyone involved with the mask to get together and decide on the design during the drawing stage, before data processing rather than afterwards.

C. MASK GENERATION.

As indicated earlier, the actual mask is made from a blank photographic plate using a pattern generator, a type of high-accuracy machine for exposing photoplates. Specifically, the information in this manual applies to the Mann pattern generator (MPG) at MSFC shown in Figure 2-3. This type of machine is represented schematically in Figure 2-4. A flash tube serves as the light souroe. A rectangular opening, whose width, height, and angle are determined by input data, is 1maged by a system of high-quality lenses onto the plate. The plate is carried on a table which moves along two axes, as determined by input data. The rectangular exposures are made at various locations on the plate and the pattern is gradually built up. A rectangle is the only shape available, all other shapes must be made up from it; thus some shapes like a circle or triangle must be approximated. The MPG is operated in an ultra-olean, vibration-isolated, temperaturecontrolled area.

The model 1600 MPG at MSFC has the following characteristics:
(1) Motion of the plate along the X axis and along the Y axis is limited to $4,000 \mathrm{mils}$.
(2) The smallest increment in X and Y motion is 0.25 mil .
(3) The smallest increment in rectangle height and width is 0.5 mil .
(4) The angle increment is 1 degree.
(5) Rectangle height and width are each limited to 120 mils maximum.
(6) The angle must be between 0 and 89 degrees inclusive.

Figure 2-3. The Mann Model 1600 Pattern Generator at MSFC (the control unit and teletype are not shown)

Figure 2-4. Principle of Operation of Mann Pattern Generator

The mask designer need not be concerned with (5) and (6) as they are automatically taken care of by the mask program. If necessary, a rectangle can be made with a height or width having a 0.25 mil inorement (for example, 3.75 mils), by making two overlapping exposures, one shifted by 0.25 mil with respect to the other.

The MPG can accept the following plate sizes:

Nominal Size	Useable Pattern Area (approx)
$2 \mathrm{in}. \times 2 \mathrm{in}$.	$1.6 \mathrm{in} . \times 1.6 \mathrm{in}$.
$3 \mathrm{in}. \times 3 \mathrm{in}$.	$2.6 \mathrm{in} . \times 2.6 \mathrm{in}$.
$4 \mathrm{in}. \times 5 \mathrm{in}$.	$3.75 \mathrm{in} . \times 3.75 \mathrm{in}$.

Cannot be stepped-and-repeated at MSFC.

After exposure the plate is developed photograpinically. Depending on the intended use of the plate it may be developed by one of two prooesses:

Normal precessing -- areas exposed to light (reotangles) become opaque.

Reversal processing -- areas exposed to light become transparent.
The completed plate from the MPG is referred to as a retiode. The reticle may be used as is, printed onto other plates, or stepped-andrepeated.
D. STEP-AND-REPEAT

In the step-and-repeat process the pattern from the reticle is maged onto another plate at a 10 X reduction and exposed onto the plate repeatedly in a regularly-spaced, rectangular array (Figure 2-5). This is done in a photorepeater or step-and-repeat generator (Figure 2-6), a machine similar to the MPG. The step-and-repeat generator at MSFC can only accept reticles of 2 in . $x 2$ in. or $3 \mathrm{in} . \mathrm{x} 3 \mathrm{in}$. Step and repeat distances must be in whole mils. A minimum step-and-repeat separation of 50 mils in the X -direction is recommended to allow time for charging of the flash lamp supply on the step-and-repeat generator between exposures.

The 1 X plate from the step-and-repeat generator is developed photographically; reversal processing is not possible due to equipment ilmitations at MSFC. With normal processing, the images on the $1 X$ plate are the photographic negative of the image on the reticle. The

Figure 2-5. Step-and-Repeat (Top: 10X reticle pattern; two small crosses on the left are alignment marks. Bottom: 1 X mask made from above reticle pattern by step-and-repeat process; center pattern was omitted to aid in coarse alignment; identification added in lower left)

Figure 2-6. A Photorepeater or Step-and-Repeat Generator (Mann Model 1795)

1X mask has the opposite symmetry from the reticle; that is, its patterns are mirror images of the reticle pattern, with the emulsions on both plates facing the same way.

E. BORDER

If the reticle plate is developed normally (exposed areas become opaque), the plate area surrounding the pattern will be transparent. If one were to attempt to step-and-repeat such a reticle, each time a pattern was exposed onto the 1 X plate, the surrounding area would also be exposed completely, obliterating any neighboring patterns. To prevent this, a border is added to the reticle mask: the area surrounding the pattern is made opaque. The program automatically provides for a border as specified by the designer, as explained in Section IV. If reversal developing is used on the reticle the border must not be put on. Refer to Section III for further information.

F. ALIGNMENT MARKS

Frequently, during fabrioation of a deviee, the pattern on the mask must be aligned with other patterns or features on the device. This is usually true if more than one mask is used in the fabrioation. For this purpose, alienment marks are put on the mask. Nested crosses, squares, or combinations of the two are most common. The mask shown in Figure 2-5 uses two orosses. For masks that have an opaque field (the pattern is transparent), an alignment mark may be made by exposing around the desired shape as shown in Figure 2-7.

If there are special oiroumstances, for example, a large number of masks to be aligned to each other, optional masks, or close registration requirements, it may be desirable to put several alignment marks on each mask. Marks may also be put on to register the mask with the edges of a wafer or substrate, or to indicate centerilines, etc. In any case, alignment marks should be used generously.

Figure 2-7. Cross Alignment Mark for Opaque Field

SECTION III

MASK EXAMPLES

A. INTRODUCTION

In the previous section the basios of mask generation were discussed. Trying to understand all the processes and their interrelation in general terms is likely to result in complete oonfusion; a better approach is to consider each design case individually, step by step. Thus, in this section some concrete examples are given to help clarify some of the design steps.

The five examples given are all of masks for typical semiconductor integrated-circuit processing steps, requiring step-and-repeat of the reticle. No examples are given in which the reticle is used directly, since the mask design is relatively straightforward in that case. For all the examples it is assumed that normal processing will be used on the 1 X mask, as is the case at MSFC. If reversal processing is also available, the design may be changed to take advantage of this additionai degree of freedom. All dimensions given are final size for the device to be fabricated and thus for the 1 X mask. For the 10 X reticle they must be multiplied by 10. Figure 3-1 shows the layout used in the examples.
B. EXAMPLE 1: POSITIVE PR, OXIDE WINDOWS

The first example is a mask to be used with positive photoresist (PR) for etching windows in an oxide. Typical uses would be for diffusion, gate oxide, or contact windows.

Since the PR is positive type, the final $1 X$ mask will have an opaque background with transparent areas where the oxide windows will be. Consequently, the reticle will have a transparent background with opaque areas corresponding to the windows. In most cases, the window areas rather than the background will be made up of the rectangular MPG exposures. Thus, normal developing will be used on the reticle.

Since the reticle background is transparent, it needs a border. Suppose the pattern occupies a region of 80 mils by 60 mils (800 mils by 600 mils on the 10 X reticle) as shown in Figure 3-1. Allow 5 mils clearance all around the pattern and a 4 -mil dicing track; the step-andrepeat distances are then $80+5+5+4=94 \mathrm{mils}$ by $60+5+5+4=74 \mathrm{mils}$. The opening inside the border could be as large as $94+4+10=108$ mils by $74+4+10=88$ mils without causing obliteration of adjacent patterns during step-and-repeat. However, this would expose the diolng track region, resulting in oxide being left in the dicing track. Since this is usually undesirable, the opening inside the border should be smaller. An opening of 90 mils by 70 mils would give the desired 4 -mil dicing track, free of oxide. Regarding the size of the outside of the border, see IV-C-6, "I" Data Group.

Figure 3-1. Layout for Examples

Another matter to consider is symuetry, If the device is to be right-reading, the 1 X mask must be right-reading with the emulsion away from the viewer. Since stepand-repeat reverses the symmetry, the reticle must be reverse-reading with the emulsion away.

The MASK program provides tor reversal of symmetry, specified by a symmetry parameter, MR (see IV-C-2, "B" Data Group). Thus, for this mask example either of two methods may be used: (1) prepare the drawing or data for a reversed symmetry (opposite of the device) and use a positive value for the symmetry parameter (MR 2 1), or (2) prepare the drawing or data for normal symmetry (same as the device) and use a negative symuetry parameter ($M R \leq 1$).

The parameter MR also specifies whether or not a border is to be generated. To generate a border, $|M R| \geq 3$. Thus for this mask example, use MR ≥ 3 for method (1) or MR ≤ 3 for method (2) above.

C. EXAMPLE 2: POSITIVE PR, NETALLIZATION MASK

The second example is a mask to be used with positive resist for a metallization pattern. Assume that the metallization pattern will be produced by the normal procedure; namely, metal will first be deposited to cover the (tire surface of the device, photoresist will be applied, exposed and developed, and then the unwanted metal will be removed by etching.

In this case the 1 X mask will usually have opaque rectangles on a transparent background. The reticle will be the opposite: transparent rectangles on an opaque backgroind. Thus the reticle does not need to have a border specified; in fact, a border must not be specified for the reticle, or adjacent patterns would be obliterated during step-and-repeat. The reticle will require reversal processing to make the exposed areas transparent. With this arrangement the dicing track will be free of metal, which is normally the desired situation. Regarding symmetry, refer to example 1.

D. EXAMPLE 3: NEGATIVE PR, OXIDE WINDOWS

The third example is a mask to be used with negative photoresist (PR) for etching windows in an oxide. This is the same as example 1 except that in example 1 positive PR was used.

Since in this example the $P R$ is negative, the final $1 X$ mask will have a transparent background with opaque areas where the oxide windows will be. Consequently, the reticle will have an opaque background with transparent areas corresponding to the windows. In most cases the Window areas rather than the background will be made up of the rectangular MPG exposures. Thus, reversal developing will be used on the reticle.

The reticle background will be opaque so it will not need to have a border specified: in fact, a border must not be specified. However,
to keep the dioing traok free of oxide, as is usually desired, a transparent band or "moat" must surround the pattern. This is done by speoifying reotangular exposures in the proper locations, using either rectangles or right-angle strip, see IV-C-3, "C" Data Group.

Suppose the pattern occupies 80 mils by 60 mile, and allow 5 mlls olearance all around the pattern as shown in Figure 3-1. The inside of the moat would be $80+5+5=90$ mils by $60+5+5=70$ mils. Assume a dicing track of 4 mils and 94 mils by 74 mils stepmand-repeat spacing. Thus the outside adge of the moat could vary from 94 mils by 74 mils (no overlap between adjacent moats) to 98 wils by 78 mils (complete overlap). A reasonable overlap would be 1 mil , requiring outside dimensions of 95 mils by 75 mils for the moat. Regarding symutry, refer to example 1.

E. EXAMPLE 4: NEGATIVE PR, NETALLIZATION MASK

The fourth example is a mask to be used with negative photoresist (PR) for a metallization pattern. This is the same as example 2 except that in example 2 positive P was used.

Assume that the metallization pattern will be produced by the normal sequence of steps, as given in example 2. Normally, the iX mask will have transparent rectangles on an opaque background. The reticle will be opposite: opaque reotangles on a transparent baokground. Thus, normal processing will be used on the retiole and a border must be specified.

Suppose the pattern occupies a region of 80 mils by $60 \mathrm{mils} ;$ allow 5 mils clearance all around the pattern and a 4 -mil dioing track. The step and repeat distance would be 94 mils by 74 mils. To keep the dioing track free of metal, as is nomally desired, the inside opening of the border must be at least equal in size to the step-andrepeat spacing. On the other hand, the inside opening could be as large as 108 mils by 88 mils without obliterating adjacent patterns during step-and-repeat. A reasonable size might be 96 mils by 76 mils. Regarding symmetry, refer to example 1.
F. EXAMPLE 5: NEGATIVE PR, OXIDE WINDOWS, CONTACT PRINT

This example is the same as example 3 except that the working mask plates (those actually used to make the device) will be made by contact printing from the $1 x$ mask generated by step-and-repeat (the master mask plate).

The working plate will have a transparent baokground and opaque pattern areas, so the 1 X master w11 be the opposite: opaque background and transparent pattern areas. This is the same as the mask in example 1, so the procedure given there can be used. However, the reticle must have the opposite symmetry from that given in example 1 , since the contaat printing intiroduces an additional syametry reversal.
G. SUMNARY

To summarize some of the points illustrated by the prededing examples, when designing a mask first consider:
(1) The type of photoresist to be used, positive or negative.
(2) Whether the stepped-and-repeated mask will be used direotly, or whether working masks will be made from it, either direotly or by means of a sub-master plate.
(3) The separation between patterns, allowance for clearance, dioing track size, etc.

The above conditions will then determine:
(4) Whether the mask and reticle will have a olear or opaque background.
(5) Whether normal or reversal processing will be used to develop the retiale.
(6) Whether a border or moat is needed, and the size of the opening inside the border or the moat size.
(7) Step-and-repeat distances.

Finally, decide on:
(8) The size of the mask plate,
(9) The number of step-and-repeat patterns desired on the 9 X mask.
(10) The symmetries of the plates and drawing.

SECTION IV
PREPARING THE INPUT DATA
A. GENERAL DATA FORMAT

Photomask specifications and other data are input to the programs on punched computer data cards. The data may also be input in a form equivalent to cards, for example, using a data file; however, for the purposes of this manual the data will be treated as if it were on cards.

The data for each mask is divided into data groups, each of which may contain one or more cards. The following six data groups are available at JPL:

Data Group
Function
A To convey a message to the operator of the Mann pattern generator, and to initiate processing of data for each mask.

B To specify scale factor, location of pattern on the mask plate, whether or not a border is desired, and true or mirror image on the plate.

C To specify pattern data for rectangles and strip (a continuous trace whose direction can be changed at right angles).

D
To specify pattern data for strip at angles, circles, circle sectors, annuluses, and arcs.

To specify data for alphanumeric characters to appear on the mask plate.

I .
To specify fiducial marks and border to be put on the 10X reticle mask plate. These are needed for the step-and-repeat operation.

The following three data groups are available at MSFC, in addition to the six above:

F To specify a standard flare-out pattern to fit semiconductor chips.

G \quad To extract pattern cells from a library.
J To specify a beam-lead pattern.

Cards for each data group are placed together, and the data groups are arranged in alphabetical order to form the input deck. If a data group is not needed it may be omitted. Data groups A and B must always be present. There is no limit to the number of cards that may be in a data group, except groups B and I, which may contain only one card.

B. CARD FORMAT

Column i of every card except continuation cards must contain one of the six data group letters to identify to which group it beloniss, or a blank indicating that it is a comment card. Any other symbol will cause the card to be ignored.

Comment cards are allowed anywhere in the input data. The information on a comment card is printed out with the data cards, but is not processed by the program in any other way. Blank cards may be inserted freely into the input deck to separate data groups, masks, etc. In addition, any data card may contain comments. If two blank columns are left after the data on a card, additional characters to the right are not processed, except for printing on the data printout (this feature is not available at MSFC). Comments are useful for identifying and organizing the data and should be used liberally, as they can save a great deal of time during corrections or alterations. Comments data does not appear anywhere except in input file 53 and the computer printout. This is different from the A group data which is put into the Plot and Mann files and can appear on the plots and the MPG teletype.

Immediately following the data group character a card identification (ID) number may be punched. This can be any integer or decimal number of ≤ 5 columns excluding any decimal point. Examples: $0.0,23,1.5,186.42$. In excess of two digits to the right of the decimal point will not be printed out. This field is only for identification and is not processed by the program in any way. A comma is punched immediately following the ID number.

The remainder of the card is used to specify various input data by means of parameter fields. Each parameter field consists of a letter identifying the parameter, followed by a number indicating the value of that parameter. Examples:
H105.0

A88
X0. 113
Each parameter field is terminated by a comma, which also separates the fields from each other.

List of Parameters

Symbol	Unit	Desoription	Data Oroup
A	degrees	Angle	C, E
		Initial angle of seotor	D
B	degrees	Final anglo of sootor	D
D	DU	Downward extonsion of strip	c
H	Du	Reotangle height	c
		Border window height	I
I	degrees	Angle increment	D
L	DU	Leftward extension of strip	c
N	positive integar	Repetitions in X-direotion	C, D, E
N	positive integar	Hepetitions in Y-direation	C, D, E
R	DU	Rightward extension of strip	c
		Radius of olrole, seotor, annulus	D
S	DU	Soparation in X-direation for ropetition	C, D, E
	mals	Outiside dimension of border	I
T	DU	Soparation in Y-direotion for repetition	C, D, E
	mils	Soparation of fiduodal marka	I
0	DU	Upward extension of atrip	C
W	du	Width of rootangle	C
		Width of strip	C, D
		Width of amnulus	D
		Width of alphanumerio oharaoter	E
		Border window width	I
X, Y	DU	Looation of centor of reotangle	c
		Looation of beginning of strip or extension	C, D
M	Int.eger $\pm 1, \pm 3$	Mirror or true image and flag for border	B

L, 1st of Parimeters
(Continuation 1)

Symbol	Unit	Description	Data Group
SF	positive number	Scale factor	B
XC, yc	10	Looation or center or pattern	1

Notes: $\mathrm{NJ}=\mathrm{drawing}$ units
Width is in X-direction; heisht is in Y-direction.
Absles are measured counterclockize from positive $x-d$ neection.

Numerieal paramoter values are soverned by the following rules:
(1) All dimensions are in drawlug units (DO) as explatned later, exoent sand T on 1 kroup oards are in mils. The prostram will romd W and if to the nearest 0.5 mil and all rectankle lacattons to the nearest $0 . e^{3}$ mil for compatibility with the MPG .
(2) All angles are in degrees, weasured dounterclockise from the positive X-direction (horizontai). Any ansle - \& $<$ may be spedfied; however, the prostam will mund to the nearent demee ror conpat laility with the MPG.
(3) All numerleal mameter values are limited to 11 dard columm, exeludins any deeimal point.
(4) Any disits to the right of the decimal point on M and N will bo finored and M and N must be 21 .
(6) Blanks in the prameter fields should be avoided. Leadne and traidith zeros may be used to make subsequent ohanges easier.
(6) A dectmal point is optional for all parameters, For some pammeters (M, N, A, B, I) deoimal point 13 never neceasary, shoe only fole numbers are allowed.
(7) The patem must not exoced the maximum available area for the Mate alze betus used in the MPG (refer to table in 11-c). The proxram does not chook for this; 1 t dheoks the pattern valuea according to the limits given in 1I-c, (1) through (d).

All 80 oolumas of the oard may be used for oards to be processed at. JPL. For aards to bo processed at MSFC, columa 73-80 inolusive must bo left blank.

The last and In each data group must have a dollar sign (\$) punohed fumediately after the last oouma, indionting the ond of that data group.

c. Data groups

1. "A" Data Group

The A data group is used to put a message onto the Mann tape. The mesaago will be printed out for tho Mry operator on the teletype eommeted to the MPG. All identifiontion information and speotal instructiona should bo ineluded hore.

Following the fis fald and its termanating ooma, the mesage is pmohed. Thoro art no parameters on the A dard. On each oard the mesaage fleld ta tormianted by (, ;), exoept on the last oard where it: is terwinated with (, \$). On eavh eard a maxtmum of 68 colums is athowed for the message. The mesange may inolude any oharnoters proept (;) and (\$), alnoo thoso aro used to torminate the message.

The following aro suggostions of information whioh should be inoluded:
(1) Name of designer or user.
(a) Date.
(3) Identrieation and brier desordption of mask.
(4) Nask plate sizes.
(5) Whather or not mask is to be stapped-and-repeated.
(6) Step and ropeat separation In both X and Y drootions and number of pertorns, or to sovor plate acuplotely.
(7) Whother expesed areas are to bo opaque or transparent on (C mal) mask.
(8) Mumber of ooples of maska to be made.

Each the a group of A data vards appoars in the Input data, the program initiatos a now mask. All data oards following the A group data oards aro applitad to that mask, until the noxt A group oard or an end-of-tylo is encountored in the input data.

Example:

A01, CMOS INVERTER CI-05, J. JONES, 5/14/77,;
AO2, MASK 1, P-DIFFUSION,;
A03, USE 3×3 PLATE, STEP AND REPEAT $X=50$ MILS, $Y=65$ MILS;
A04, EXPOSED AREAS ON FINAL IX MASK TO BE TRANSPARENT; ;
A05, PLEASE PROVIDE FIVE COPIES, $\$$

2. "B" Data Group

Only one B group card is needed. It contains, in addition to the data group oharacter and ID field, the 4 fields given below. The parameter fields on the B card have these speoial features: (1) each parameter is identified by two letters; (2) the fields must be in the order given below (SF, XC, YC, MR).

SF (seale factor). This parameter soales the input data acoording to

$$
\left(\begin{array}{c}
\text { DESIRED SIZE OF } \\
\text { FEATURE AS } \\
\text { EXPOSED ON } \\
\text { PLATE, } \\
\text { mils }
\end{array}\right)=S F\left(\begin{array}{c}
\text { SIZE OF FEATURE } \\
\text { GIVEN AS } \\
\text { INPUT DATA TO } \\
\text { PROGRAM, } \\
\text { drawing units }
\end{array}\right)
$$

Example 1: Suppose a rectangle on the drawing is 100 drawing units wide. The input data would be $W 100$. If the same rectangle is to be 50 mils wide on the MPG reticle plate (5 mils on $1 X$ mask, if it is to be stepped-and-repeated), then $S F=50 / 100=0.5$.

Example 2: Suppose a reotangle on the drawing is 100 drawing units wide. The input data would be $W 100$. If the same rectangle is to be $100 \mu \mathrm{~m}$ wide on the retiale plate, then $S F=100 \mu \mathrm{~m} \times(0.039370079 \mathrm{mils} / \mu \mathrm{m}) / 100$ $=0.039370079$. See Appendix B for conversion fator's.

If the reticle is to be stepped-and-repeated, all input data must be 10 X final size, or SF must be multiplied by 10 .
$X C$ and $Y C$ (center coordinates)
Used to position the pattern on the photomask plate as shown in Figure 4-1. Generally XC and YC should be the coordinates of the center of the pattern. This will oenter the pattern in the MPG exposure area and thus on the retiole plate (approximately).

> Figure 4-1. Derimitan or Center Coordhates Xe and YC (for the sftuation Hlustrated abovo, Xe and yo aro both positive!

NC and Se are In drawlug undt., If the pattern is
 Whatover molat is opeotriad by xe, Ye, that point Will be put at the omter of the rotlola plate (approximataly, seo VI-F).

Mif tutrore and border:
If Mr >1, the pattem exposed onto the rettolo plate, with the emulaton away from the vewer, will read the same as the luput drawlug (true or right-readteg luske). If Alf >-1, the puttern axposed onto the rotlole plate, with the emblaton away rrow the viower, whll be the mirror smage of the input drawing (matror of reverser-reading lazes).

Remember that symutaty ta afreated by atop-and-repeat and onpylig reon ond plate to anothor (soe Sootlona if and 1111 .

If |ME| 2 3, the prosram will generate a border on the mask aoourding to speotifations on the I group data pards. Further intormation on this foature la given under "" data group.

Axample:

3. "C" Data Group

The C data group comprises two types of pattern data: rectangles and strip. Data must be arranged as follows: all reetangle data, subgroup separator (, ;), all strip data, C-group lerminator (,\$).

If there is no strip data, the rectangle data may be terminated by (, $\$$) and (;) omitted. If there is no rectangle data, (,i) must be punched after the ID number on the first C card.
a. Rectangle Data. This subgroup allows specification of rectangles and arrays of rectangles, For a single rectangle, specification is according to the following parameters and Figure 4-2:
$X, Y \quad$ coordinates of center of rectangle relative to drawing origin (DU).
$H \quad$ height of rectangle (DU).
W width of rectangle (DU).
A angle of rotation of rectangle counterclockwise from X-direction (horizontal) (degrees).

For an array of rectangles, specification is according to the following parameters and Figure 4-3.
X, Y coordinates of center of lower left rectangle (if S, T are both positive) (DU).
W, H same as for single rectangle.
A rotation angle of individual rectangles. Note that array as a whole is not rotated.
$\mathrm{M}, \mathrm{N} \quad$ number of repetitions in X-direction (integer ≥ 1) and Y-direction respectively.

S, T distances between centers of adjacent rectangles (DU) in X -direction and Y -direction respectively.

Example (without strip data):

$$
\begin{aligned}
& \mathrm{CO6}, \mathrm{X} 200, \mathrm{Y} 300, \mathrm{~A} 30, \mathrm{~W} 60, \mathrm{H} 100, \\
& \mathrm{C} 07, \mathrm{X} 200.00, \mathrm{Y} 305.78, \mathrm{~A} 0, \mathrm{~W} 0.51, \mathrm{H} 1.10, \\
& \mathrm{C} 08, \mathrm{M} 3, \mathrm{~N} 2, \mathrm{~S} 500, \mathrm{~T} 300, \mathrm{X} 200, \mathrm{Y} 600, \mathrm{~A} 45, \mathrm{~W} 60, \mathrm{H} 100, \$
\end{aligned}
$$

Figure 4-2. Parameter Speoifioation for a Single Rectangle

$M=3$
$N=2$

Figure 4-3. Parameter Specification for an Array of Rectangles

Cl ;
C2,W20,X100,Y100,R300, U200,X150,Y200,R150,

Figure 4-4. Example of Parameter Specifications for Right-Angle Strip
b. Strip Data. This subgroup allows specification of strips, usually used for interconnection. Cnly right angles are allowed. Specification is according to the following parameters and Figure 4-4.
X, Y first appearance of X and Y on a card is starting point of strip. Subsequent appearance of X or Y are points to which strip will be extended horizontally or vertically, respectively (DU).

W width of strip (DU).
U, D, L, R distance strip will be extended upward, downward, left or right, respectively, from previous poinc (DU).

Note that X and Y indicate absolute locations, whereas R, L, U, D indicate relative distances: $X 20$ means the strip will run horizontally from its last location to the point $X=20$, R20 means the strip will be extended 20 DU to the right. Note that the starting and ending points are
at the edges of the ends of the strip, whereas the intermediate points are at the centers of the right angle bends of the strip.
$\mathrm{M}, \mathrm{N}, \mathrm{S}, \mathrm{T}$ same as for rectangle data.
Each appearance of "C" (C-group identifier) indicates that a new strip is to be initiated.

4. "D" Data Group

The D data group comprises two types of pattern data: (a) strip at any angle, and (b) circles, sectors, annuluses, and arcs. Unusual shapes may be built up from these elements. The data in the two subgroups must be separated by (, ;) as for the C data group.
a. Strip at an Angle (see Figure 4-5).
X, first appearance of X and Y on a card is starting point of strip. Subsequent appearances of X and Y are point to which strip will be extended in a straight line (DU).

W width of strip (DU). W cannot be changed within a series of parameters.
$\mathrm{M}, \mathrm{N}, \mathrm{S}, \mathrm{T}$ same as for rectangle data.
X and Y may be any values; however, the direction angle of the strip will be rounded to the nearest degree by the program. When strips meet at an obtuse angle they are extended by the program as shown in Figure $4-5$. When strips meet at an acute angle a small rectangle is added as shown to suooth the elbow. Neither of these actions is taken for end points.
b. Circles and Ares. This data subgroup allows circular patterns to be approximated from rectangles, as shown in Figure 4-6.
$\mathrm{K} \quad$ distance from arc center (X, Y) to centerline of annulus (DU).

W width of annulus (DU).
A, B angles indicating beginning and end of annular sector (degrees). Annulus goes from A to B in a counterclockwise direction.

I angular increment of each rectangle (at its outer edge) used to create annulus (degrees). Default 5 degrees.
X, Y location of center of annulus (DU).
M, N, S, T same as for reotangle data.

> DI,W0. $2, X 2.0, Y 1,0, X 3.0, Y 1.0, X 1.5, Y 2.0, X 0.5$, $=2, Y 1.5, X 0.5, Y 2.5, X 1.5, Y 3,0$,

Figure 4-5. Example of Parameter Specifications for Strip (dots at elbows indicate positions speoified by paraneters X and Y)

Figure 4-6. Parameter Specifications for Circles and Arcs

Note that a cirole can be specified two ways: $X 30, Y 80, R 50, W 100, A 0, B 360$, or $\mathrm{X} 30, \mathrm{Y} 80, \mathrm{RO}, \mathrm{W} 200, \mathrm{AO}, \mathrm{B} 180$,. Both specify a circle at $\mathrm{X}=30, \mathrm{Y}=$ 80 with diameter 200 ; however, the second method requires half as many rectangles.

This subgroup should be used judiciously, since the figures require a number of exposures. For example, a circle with $I=5$ requires at least 36 exposures. Parameter I should not be made smaller than neoessary. To see how the figures are built up from rectangles, refer to the example at the end of Section VI.
5. "E" Data Group

Following the ID fleld, parameters M, N, S, T, W, A, X, Y may be specified. Following these parameters a colon (:) is punched, followed by the alphanumeric characters to be placed on the mask plate. The following characters are allowed:

か through 9
A through 2

$$
\ldots: ? 1+-* /=() \& \& \$ \text { (blank) }
$$

Any other characters in the input data will be ignored and will result in a blank on the mask. The actual appearance of the oharacters is shown in Figure 4-7. Note that 0 (letter) and \varnothing (number) give the same pattern.

Figure 4-7. E-Group Character Set, SF 1, W50.0 (approx ox)

The alphammerde field is terminated by (, $)^{\text {) }}$, except on the last data card, where it is terminated by (,).
w nominal width of a character, including the space between it and the following character (DU). Thus, W is approximately equal to the total message length divided by the mother of characters. Some characters deviate from the nominal width as follows:
$12 / 3$ nominal width . , : 12 nominal width

1113 nominal with
? 50 nominal width
Letter height lot or width: space between letters $=7: 5: 1$
angle of rotation of life ne of characters comterclockwise from horizontal (degrees). Rotation is about lower left sorer of first character, if A is zero or positive, characters will be right-reading; if A is negative, characters will be reverse reading (see Figure 4-8).
X, Y coordinates of the lower left corner of the first character (DU).

Figure 4-8. Alphanumerio Examples Showing
Effect of "A" Parameter
$\mathrm{M}, \mathrm{N}, \mathrm{S}, \mathrm{T}$ have the same meaning as for the C data group.
Examples (patterns are shown in Figure 4-8):

```
E3,N1,NI,SO,TO,AO,W50.0,XO.0,YO.O,'EXAMPLE O,;
E4,A090,X0.,Y0.,'EXAMPLE 90.;
E5,A240,X0.,10.,'EXAMPLE 240,$
E3,N1,N1,S0,T0,A-360,W50.0,X0.0,Y0.0,'EXANPLE - 360,;
E4,A-270,XO.,YO.,'EXAMELE -270,;
E5,A-120,X0.,Y0.,'EXANPLE - 120,*
```

6. "I" Data Group

This data group is used to specify fiducial marks and/or a border to be put on the mask plate. These are used in the step-and-repeat process. If the mask is to be stepped and repeated, fiducial marks are always neeessary and a border may or may not be necessary, fefer to Sections II and III for further information. If the mask is not to be stepped-and-repeated, then no fiducial marks or border are needed; they may be put on if the designer wishes. In order for a border to be generated, the B-group card must have $|M R| 23$. Only one I sard is necessary per mask.

W, H (if border used) width and height of opening inside the border (DU).

S

T
(if border used) both width and height of outside of border (mils). The outside of the border is square, with side of length S.
vertical separation of fiducial marks (mils).
The fiducial marks are located at $X=0, Y=+T / 2$ and $X=0, Y=-T / 2$ relative to XC, YC. The upper one consists of two squares, the lower of three rectangles. The outside of the border is always square, and the border is centered at XC, YC. Examples of fiducial marks and borders are given in Figures 4-9, 4-10, and 4-11; all figures are approximately 2 X .

The fiducial mark separation and outside dimension of the border depend on the plate size and step-and-repeat machine. For MSFC the following are standard:

2 in. $x 2$ in. plate	$S=1600 \mathrm{mils}$	$T=1600 \mathrm{mils}$
3 in. $x 3$ in. plate	$S=2600 \mathrm{mils}$	$T=2600 \mathrm{mils}$

Examples (patterns are shown in Figures 4-9, 4-10, and 4-11):
I201, H600, W1000, S $1300, \mathrm{~T} 1600$, \$ I98, H600,W1000,S 1600 , T 1600 , $\$$ I $12.50, \mathrm{H} 600, \mathrm{~W} 1000, \mathrm{~S} 1800, \mathrm{~T} 1600, \$$

D. FULES GOVERNING CARD FORMAT

(1) Parameters may be punched in any order, except for strip data. The conventional order is repetition data (M, N, S, T), angle data (A, B, I), size data (W, H, R), losation data (X,Y).
(2) Within a data group, a parameter retains its numerical value until changed. Thus, a parameter may be omitted if it does not change from its previous occurrence. For example:
$\mathrm{C} 01, \mathrm{M} 1, \mathrm{~N} 1, \mathrm{~A} 30, \mathrm{X} 35, \mathrm{Y} 10$, C02, X50,
is equivalent to
$\mathrm{C} 01, \mathrm{M} 1, \mathrm{~N} 1, \mathrm{~A} 30, \mathrm{X} 35, \mathrm{Y} 10$, C02,M1, N1, A30, X50, Y10,

Each will result in two rectangles.

Figure ll-9. Border and Fiducial Mark Example, H600, W1000, S 1300 , T1600

Figure 4-10. Border and Fiducial Mark Example, H600, W1000, S 1600 , T1600

(3) Each appearance of the data group identifier (C, D, or E) (excopt the initial appearanoe in the data group), or a terminator ($;$) or ($\$$), initiates the processing to oreate the speaifled mittern. Only the most recent value assigned to a paramoter is used. Thus
$\operatorname{CO1}, \mathrm{N1}, \mathrm{~N} 1, \mathrm{~A} 30, \times 35, \times 10, \times 55$, CO2, - -
is oquivalent to
$\mathrm{CO1}, \mathrm{M1}, \mathrm{~N} 1, \mathrm{~A} 30, \times 55, \mathrm{Y} 10$, CO2, - -
and will result in one reotangle. The data group identifier (C) on the coz eard initiates processing of the preceding speoifioations on the col oard. The last value of $X(X 55)$ is the one that is used.
(4) Nore than one set of data may be put on a single oard by interposing the data group identifier. For oxample:
$\mathrm{CO} 1, \mathrm{~N} 1, \mathrm{~N}, \mathrm{~A} 30, \times 35, Y 10, \mathrm{CO2}, \times 55$,
will rosult in two reotangles.
(5) A set of data may be oontinued from one ard to another by punching the continuation charaeter (*) in column 1 ,

COI, M1,N1
*01, 130, $\times 35,710$,
or by onitting the data group identifier,
COI,M1,N1,
A $30, \times 35, \mathrm{y} 10$,
Nole: Since parameters values may darry from one card to the next. it is important to remember to "roset:" parameters, partioularly N and N.

E. REMARKS

The pattorn is sonerated as a set or rootangles, if the reotangles are to connect, some overlap is desimble. Overlap ahould be indeated on drawings to aid in subseguent translation to mumerionl input data.

The order in which the reotangles and other patterns appen in the imput data is undmportant to the program, sinee they are sorted by the program. However, for ense of programing and data revision some form of organdzation is userul.

1. IPL/MSFC Compatibility

As stated alsewhere, the MASK program was obtalnod from MSbe. One of the ground rules in implementing the program at alle was to maintain conpatiblitty with MSFC. Thus, data oards may be used interohangeably, except for minor diferences indiosted in this section and sumarized here (rofer to MSFC manals).

	JPL.	MSF
Card format	all 80 colums may be used	oolumns 0-72 only may bo used
	continuation	continuation indi-
	indiented by*	oated by any
		charactor oxeopt data
		group or parameter
		Identiflers.
	comments may bo put	comments must not be
	on data oards	put on data eards

JPL MSFC
Punch oodes See following page

Data groups	F, G, J not available	F, G, J avallable
A-group	message limited to 68 colums	message length limited only by space on oard
E-group	quote (") not allowed	quote (") allowed
	(1) same width as other numbers	(1) narrower than other numbers
I-group	only W, H, S, T allowed	W, H, S, T and other parameters allowed

2. Punah Codes

The punch codes for data cards differ for the Univac (at JPL) and the XDS Sigma 5 (at MSFC) computer systems. This must be taken into account when sending data cards from one installation to the other, particularly for the A-group messages and the E-group alphanumeric specifications.

Fortunately, the alphabet, digits, and most of the data characters (. , ; -) are the same. The plus sign (+) is different; to simplify data preparation, do not use it since an unsigned number is always assumed to be positive. For the E-group alphanumerics flag the colon (:) is used at JPL and the apostrophe (1) at MSFC since this results in the same card code (5-8).

Card Punch Codes

SECTION V

DIGITIZING PHOTOMASK DRAWINGS

The input data for the pattern can be prepared and punched onto cards by hand according to the directions given in the preceding section. A faster and less error-prone method is to use a digitizer to take the data from a drawing. Directions for this method are given in this section. Only data for the C group (rectangles) can be accommodated by this method; the data for A, B, D, E, and I groups must still be prepared wholly or partially by hand. This is not a serious limitation, since most mask patterns can be made up of rectangles and right-angle strips. Contact J. H. Hix (JPL) regarding use of the digitizer.
A. PREPARING THE DRAWING
(1) Use paper having 10 grid lines to the inch.
(2) Check that grid lines on the paper are accurately spaced to within $1 / 4$ of a grid division over the area to be used for the drawing.
(3) Drawing should consist of rectangles whose edges lie on grid lines or half-way between grid lines (anything else, such as rectangles at an angle, curved lines, edges not on grid lines or half-way between, etc., will require additional work). Rectangles which are to be connected should have some overlap (equivalent to $1 / 2 \mathrm{mil}-1 \mathrm{mil}$ at final 1 X size). All lines need not be drawn in -- only two diagonally opposite corners are needed for each rectangle.
(4) Decide on an origin for the drawing ($X=0, Y=0$).
B. DIGITIZING THE DRAWING
(1) Load a drum card into the digitizer keypunch. Use one of the schemes shown in Figure 5-1.
(2) Place the drawing on the digitizer table and rotate it until it is aligned to the digitizer table X and Y axes within about ± 10 mils over the drawing area.
(3) Place the oursor at the drawing origin ($\mathrm{X}=0, \mathrm{Y}=0$) and inftialize the digitizer by pressing the extreme right (red) button on the cursor (see Figure 5-2). The X and Y indicators on the digitizer panel should then reset to 00000 .

$t+t+t+t+t+t-t+t+t+t+t+t-t+t+t+t+t+t-t+t+t+t+t+t-t+t+t+t+t+t-t+t+t+t+t+t)$ AR

000

Figure 5-1. Digitizer Keypunch Drum Cards (top: to duplicate label; bottom: for no label)

Figure 5-2. Moveable Cursor on Digitzer
(4) If tho first drum card shown in Figure $5-1$ is used, columns 78-80 of the data oards may contain a label (any charaoters) for identifieation. Before digitiaing each set of data, disengage the drum, punch the label in columns 78-80, and re-ongage the drum. Tho label will then be duplioated on the suoceedling data oards. A label should not be used if the cards will be input to the MSFC oomputer.
(5) Digitize the reotangles on the drawing (one mask at a time) by dolng the following: Align oursor over one corner of the reotangle, pross the middle (blue) button on the oursor, then align oursor over the diagonally opposite corner of the same roetangle and pross the button again. Either pair of diagonally opposite corners may be used, and in any order. However, a consistent soheme is recommended to make later editing easier. Six X-Y pairs, corresponding to three reotangles are punched onto each eard.

Although reotangles at an angle, olroles, ete., cannot be dorrectly handled by the digitizer program, they should be digitized anyway to get theif X, Y location and eliminate that part of the hand work.

Lifting the cursor off the table or moving it too fast. will "look" the digitizer. Repeat step (3) and resume.
(6) After all reotangles in the group (for example, one mask) are digitized, eject the last eard from the keypunoh by pressing the white button on the eursor.

The last data set (2 X,Y pairs) must contain blanks or zeros. This indicates the ond of a set of data. In some eases this will require a blank card as the last oard.

c. CONVERTING DIGITIZER GARDS INTO C-GROUP CARDS

The oards from the digitzer are oonverted into C-group oards whioh can be input to tho MASK prosram by assembling them into a deck as shown below. This program runs on the Univae 1108 at JPL. Be sure that the efill oard allows sufficient cards to be punohed.
eRUN
exgr FILE. DIGITTOCABS
--initialization card--
--data oards from digitizer, last oard must have 4 fields blank--

- indtialization oard--
- data eards ...
eto.
CFIN

Each set of data oards (a set might correspond to an individual mask) must be preoeded by an "initialization oard" containing the following:

Columns 1-4: The inftial value for the C group identification number. The C oards will be numbered consecutively starting with this number. It must be an integer (no decimal point).

11-16: An XSHIFT value. This number will be added by the program to all X values in the set of data cards following this card. It must be an integer and may be + or -.

21-26: A YSHIFT value, analogous to the XSHIFT value.
31-71: May contain a label. It will appear on the printed output.

All other columns may contain anything desired to identify, etc. Any or all of the columns may be left blank, in which case the numbers will be interpreted as equal to 0 . In any case an initialization card must precede every set of data cards.

The data cards are used as they come from the digitizer. Four consecutively blank or zero fields terminate the data set. The label in columns 78-80 will appear in the printed output and be punched in colums $73-75$ of the C-group cards generated from the digitizer card (C-group cards to be processed at MSFC must not contain a label.). Each digitizer card generates three C cards (except at the end of a data set).

To delete the data for a rectangle, punch any character in the blank column between the four data fields for tre rectangle.

The program first rounds the digitizer data values to the nearest 50 mils (nearest grid line or halfway point). The H, W, X, and Y values are then calculated. If H or W is zero, a WARNING is printed in the computer output. However, the corresponding C card is punched anyway.

The punched C group cards will have the following format:

where each * represents a digit. The digit fields will not contain any blanks; they will be zero filled on the left, since a blank following a parameter letter (W, H, X, Y, etc.) would caise the MASK program to ignore all the succeeding data on that card. \#\#i is the three character label from columns 78.80 of the corresponding digitizer data card.

When preparing the c-group cards to be input to the MASK program, any rectangle can be repeated by preceding its C-group card with a C-group oard containing the appropriate M, N, S, and T values. The card containing the W, H, X, and Y data should have the letter C in column 1 replaced with a " (continuation card indicator, see Section IV-D-5). To terminate the C-group cards, the last card may have a $\$$ added following the last comma, or a separate C eard (for example C9999,\$) may be added at the end.

D. EXAMPLE OF THE PROCEDURE

Figures 5-3 through 5-6 11lustrate an example of the procedure. On the drawing the solid rectangles are "P+ diffusion;" the dashed rectangles are "METAL." The second set of data (METAL) is shifted 1.0 inch to the left and 0.5 inch up. Two mistakes were made while digitizing: the first one was flagged for deletion by an X, the second was not deleted (a zero width rectangle), but was detected by the program.

Figure 5-3. Drawing for Example

Figure 5-4. Data Cards from Digitizer and Initialization Cards

Figure 5-5. Printed Output from Program

77-32

Figure 5-6. Punched C-Group Cards from Program

ORIGINAL Page IS
DR POOR QUALITY

SECTION VI
running the mask program

A. SETUP AND INPUT

The MASK program runs on the Univac 1108 at JPL. Prior to using the program, it is necessary to establish files 53, 55, and 57 for data and to have the programs residing in a program file, called FILE in this manual. It may be desirable to permanently catalog all these files. Consult the appropriate GPCF and Univac manuals. To execute the MASK program, set up the deck as follows:

```
erun
eASG,A 53.
edATA,IL 53.
    --Mask Specification data cards, Omit if data is
    data groups A through I--- already in file 53.
eEND
eASG,A 55. If plot data will be penerated
EERS 55.
eASG,A 57. If Mann data will be generated
EERS 57.
exQT FILE.MASKABS
-- initialization card (optional)--
eFIN
Data from more than one mask may be processed in one computer run by placing the sets of data cards for the masks one after the other.
The initialization card should contain the following:
Columns 1-10: Initial photomask number to be used, right justified, default: 1
11-20: XBIAS in mils, default: 0.0 (see B below)
21-30: YBIAS in mils, default: 0.0 (see B below)
31-40: If \(>0\), the plot data will be generated and put into file 55; if \(>2\), a cross (+) will be placed on the plot at the point XC,YC (see E-i below); default 2.
41-50: If > 0, the Mann data will be generated and put into file 57, default: 0 .
51: Flag for rectangle data printout in drawing units
52: Flag for rectangle data printout in mils
53: Flag for mann pattern generator printout in Mann format ( 0.1 mils ).
```

For columns 51, 52, 53, if number is 1, full printout of all data will occur; if 2, abridged printout of only one page of data will occur. If neither 1 nor 2, no printout will occur. Default is 0 in all cases. Usually these printouts are used for diagnostic purposes, and are not selected for normal runs.

54-80: Not used by program, may be used for identification or comments

Defaults apply only if entire initialization card is omitted.

B. BIAS

The parameters XBIAS and YBIAS specify a shift of the entire pattern of exposures on the photoplate. They are needed when it is necessary to use the maximum possible plate area for the pattern, usually for the 2 inch X 2 inch plate. The proper values of XBIAS and YBIAS center the image in the usable exposure area, which is determined by the opening in the clamping frame that holds the photoplate. The current values are given below. Since these values change from time to time, check with Don Routh at MSFC. See F below.

Nominal Plate Size

$$
2 \text { in. } x 2 \text { in. } \quad-43.5 \quad-29.5
$$

C. HOW THE PROGRAM WORKS

At execution, the MASK program scans each data card in turn. Processing of the card is directed to an appropriate subroutine, depending on the data group indicated (see Appendix C). The data is extracted and converted into specifications for rectangles, then stored. Repetitions (M, N, S, T) are taken care of at this time.

When the end of data for a mask is encountered (next A-groun, card or end-of-file), or if 1000 rectangles have been generated befors the end is encountered, the accumulated rectangle data is processed. The data is converted to mils, shifted, and angles are converted to Manncompatible angles. Some checking of sizes is done.

The data for the rectangles is sorted according to location, prepared for plotting purposes, and written into the plot file if the plot option was selected.

If the Mann option was selected, the data is further processed for the MPG. The size of the rectangles is checked and those larger than 120 mils are partitioned into smaller rectangles, referred to as exposures. The exposures are sorted for efficient MPG operation and the total MPG mask-exposing time is calculated. The exposure data is written into the Mann file in MPG format.

The prosram then returns to scanning the data cards. When the end of data for a mask is enoountered, the mask is closed out and summary data printed. lho process then repeats for any succeeding masks. At the end of all deta, the last mask is closed out, the Plot and Mann flles are closed and processing is terminated.

D. ERHORS

The MASK progran recognizes certain types of errors and prints a message when they are oncountered. "hese aan be distinguished from the computer operating systiem error messages by the fact that they all begin ERROR:- The program does not recognize all possible errors. The error messages are given below:

Message
Occurrence

ERROR: UNKNOWN DATA GROUP, CARD NOI PROCESSED	
ERROR: CANNOT INTERPRET CARD	any data group
ERROH: SEMICOLON (;) OR DOLLAR (\$) MISSING	A, E Groups
ERROR: MESSAGE TOO LONG, 68 chanacters maximum	A group
ERFOR: DOLLAR (\$) MISSING	B, I Eroups
ERROR: ILl. EGAL PARANETER ***	D, C, E, I groups
ERBOR: ILLEGAL Character **	E group
ERHOR: APOSTROPHE/COLON MISSING	E group
ERROR: $M=*, M=1$ ASSUMED	rectangle processing
ERROR: $N=*, N=1$ ASSUMED	rectangle processing
ERROR: W OR H NEGATIVE, 0.5 MIL IS ASSUMED	rectangle processing
ERROR: W OR H LESS THAN 0.5 MIL, 0.5 MIL ASSUMED	rectangle processing
ERROR: EXPOSURE OUTSIDE OF LIMIT, X < 0.0 MILS	exposure processing
ERROR: EXPOSURE OUTSIDE OF LIMIT, $X>4000.0 \mathrm{MILS}$	exposure processins
ERROR: EXPOSURE OUTSIDE OF LIMIT, Y	exposure processing
ERROR: EXPOSURE OUTSIDE OF LIMIT, Y > 4000.0 MILS	exposure prooessing

Detection of an error generally causes the parameter, card, or rectangle to be ignored. The program then proceeds to subsequent data. In some cases a default value is used, as indicated in the above list and elsewhere in this manual. Detection of an error does not cause termination of the program execution. Note: error detection and defaults differ at JPL and MSFC.

E. PROGRAM OUTPUTS

Execution of the program results in three outputs: (1) a printout, (2) a plot file, and (3) a Mann file. (1) is always produced and is described in the example at the end of this chapter. (2) and (3) are produced if selected on the initialization card, and are described below.

1. Plot Data

The plot data is written into file 55. Use of this data for plots is covered in Section VII. The file format is as follows:

Columns 1-4: Flag indicating type of data:

> AbbO - First line of A-group message
> B6B1 - Last line of A-group message, rectangle data follows
> X663 - "+" data
> Z

5-72: A-group message or rectangle data
73-80: Blank
If the A-group message is only one line, then card columns $1-4$ contain B6b. The rectangle data are in 4(1X,2F8.2) format and consist of $\mathrm{X} 1, \mathrm{Y} 1, \mathrm{X} 2, \mathrm{Y} 2$, $\mathrm{X}_{3}, \mathrm{Y} 3, \mathrm{X} 4, \mathrm{Y} 4$, where $\mathrm{X}, \mathrm{Y} 1$ are the coordinates of the first corner of the rectangle, etc. All data are in mils. An example is shown in Figure 6-1. The rectangles are sorted (for each mask, or groups of 1000) by the program according to the location of their center, and arranged in the file so that plotting takes place along a zigzag path as shown in Figure 6-2. If more than one mask is run the data are put into file 55 end-co-end.

If columns 31-40 on the initialization card are >2, the program adds two small rectangles, one with zero height, one with zero width, to the end of the plot data. When plotted, they form a cross at the center of the mask exposure area ($2000+$ XBIAS, $2000+$ YBIAS), which is also the point XC,YC, the center coordinates specified on the B-group data card (see F below).

$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	＋＋＋＋＊		$\begin{gathered} \text { IES } \\ 4-77 \end{gathered}$	AND DEHON	FfRAtION	PATTERNS		－4
		1100.00	1507．67	1409．45	1547， 07	1409，45	$2492 \cdot 12$	1100．00	2492．12
		1100．00	1175．00	1975：00	1 175.00	1975．00	1225．00	1100，00	1225．00
		1100．00	2775．00	＋975．00	2775000	1975．00	2025．00	1100.00	2825，00
		1645．67	2372．03	1685．04	2322．03	1685．04	7346．46	1645．67	2346．46
		1645．67	2244.09	1685．04	2244.09	1685，04	2267.72	1645.67	2267.72
		1654．21	2117.72	168日，31	2137．41	1674．50	2157．67	1642．40	2128.10
		1854．21	2030．98	168日．31	2056．67	1676．50	2079．13	1642．40	2059．44
		1681．29	1870．08	168日．79	1870＋08	1680．79	1748．82	1681.29	1940．82
		1681．30	1969.75	1689．78	1870.41	1681．91	1948.85	1674.44	1946.19
		1688．78	1869，75	1695．64	1948.19	1688＋17	1948．85	1681．30	1870．41
		1684．35	1869.43	1688.73	1870.73	1675．06	1948427	1667.67	1946.97
		1688，73	1969．4		194A．${ }^{\text {P }} 7$	1695．02	1748．17	1681． 35	1870.71
		1681．4\％				＋48．28	1947．11	1661.04	1945．17
		14＂				\rightarrow	1947．11	1681．42	1871．05
			4，45．12	2401.50	1843．14		$\cdots \mathrm{Ca} 35$	1654.59	1942.79
		12.08	1869.86	2383．28	1909，23	2381		1648．36	1939
		2317．11	1867．04	$2381+61$	1912.17	2377.31	17		
		2317．37	1067.21	2377.69	1917．82	2372．07	1723．3．		
		2317.61	1867.47	2373．29	1923．10	2367．99	1928．41	2.	1012．73
		2317.83	1867．67	2368.45	1927．99	－362，70	1832.01	2312.09	1972．49
		2381．89	1645．58	2405.51	1885．58	2405.51	1870．33	2381．89	1870．33
		2404．80	1857.95	2405.54	1866．42	2302．00	1848．48	2385．26	1840.01
		2403.40	1850.17	2404．87	1856．54	2301．61	1862＊ 64	2380， 13	1854.27
		2401.33	1842．54	2403．53	1850．75	2380.71	1854．86	2378.51	1848，65
		2381．89	1600.35	2405：51	1680．35	2405．51	1697．10	2381．89	1697＊10
		$\begin{aligned} & 2025.00 \\ & 2025,00 \end{aligned}$	$\begin{aligned} & 1+75.00 \\ & 2775.00 \end{aligned}$	$\begin{aligned} & 2900.00 \\ & 2900.00 \end{aligned}$	$\begin{aligned} & 1175.00 \\ & 2775.00 \end{aligned}$	$\begin{aligned} & 2700 * 00 \\ & 2900+00 \end{aligned}$	$\begin{aligned} & 1225 * 00 \\ & 2925.00 \end{aligned}$	$\begin{aligned} & 2025.00 \\ & 2025.00 \end{aligned}$	$\begin{aligned} & 1225.00 \\ & 2925.00 \end{aligned}$
		2590，55	1507.87	2900．00	1507．87	2900.00	2497．12	2590.55	2492．12
\boldsymbol{x}	3	1980．00	7000.00	2020．00	2000．00	7020.00	2000．00	1980，00	2000．00
＊	3	2000．00	1980.00	2000.00	1980．00	7000.00	2020．00	2000．00	2020．00
2	4								

Figure 6－1．Example of Data in File 55

Figure 6－2．Plotting Path of Sorted Rectangles

2. Mann Data

The Mann data is written into file 57. The details of converting this data into a tape to drive the MPG are presented in Section VIII. The format is as follows:
$\begin{aligned} \text { Columns } 1-4: & \text { Flag, same as for plot data, except there is no } \\ & \text { XB63, and there is } 2665 \text { flagging the summary } \\ & \text { data at the end of each mask }\end{aligned}$
5-72: A-group message
5-50: Exposure data
If there is only one A-group message then card columns $1-4$ contain BO61. The exposure data are in $4 I 10, I 6$ format and consist of X, Y, W, $H, A . X, Y$ are the coordinates of the center of the exposure in $0.1 \mathrm{~m} \pm 1$ units. The last digit may only be $0,2,5$ or 7 . A last digit of 2 indioates 0.25 mils and a last digit of 7 indicates 0.75 mjls , since X and Y increments are 0.25 mils . The minimum value of X or Y is 0 and the maximum is 40000 . W, H are the width and height of the exposure, also in 0.1 mil units. The last digit may only be 0 or 5 . The minimum vaiue is 0 and the maximum value is 1200 . A is the angle of the exposure in degrees; possible values are integers from 0 to 89.

The end of the exposure data is indicated by 99999 in columns 7-11. The next line contains summary data as shown in the example in Figure 6-3. The exposures are sorted by the program for efficient mask generation by the MPG. If more than one mask in run, the data are put into file 57 end-to-end.

F. EXPOSURE FIELD

As indicated above, the X and Y values in file 57 for the MPG range from 0 to 40000 . Accordingly, in this manual and the MASK program the exposure field is considered to occupy the region 0 to 4000 mils in X and Y. Thus, the center of the field is at 2000,2000 (mils). When a photoplate is mounted in the MPG its center is approximately at 2000,2000 (mils). The data input to the MASK program is translated (shifted) so that the point specified by XC,YC is placed at $2000+X B I A S, 2000+Y B I A S$ (mils) in the MPG exposure field. XBIAS and YBIAS allow for a slight correction in placing the pattern on the plate (see VI-B al $1 \mathrm{IV}-\mathrm{C}-2$ "B" Data Group).

This translation (shift) manifests itself in the data in file 57 and the printouts headed "THE MANN EXPOSURE DATA (0.1 MIL UNIT)", "RECTANGLE DATA (MIL UNIT, SHIFTED AND SCALED)" and "PATTERN LIMITS". In addition, it manifests itself ir ihe plot data in file 55 , and must be taken into account when plotting.

Figure 6-3. Example of Data in File 57

G. EXAMPLE OF THE PROCEDURE

Figures $6-4$ through 6-7 present examples of input data and proeram execution illustrating the procedure described in this section. The printout from the Univac 1108 system is shown. Various features are explained by notes on the printout.

ORIGNAL PAGE G
ne Poor quality

Figure 6-4(a). Example of Input Data and Program Execution

77-32

ERPLR: ILLEGG PARATETED 'A'

Figure 6-4(b). Example of Input Data and Program Execution

Figure 6-4(c). Example of Input Data and Program Execution

Figure 6-4(d). Example of Input Data and Program Exeoution

的
NNNNNNNNNNNN N M

Figure 6-4(e). Example of Input Data and Program Execution

为

以

Figure 6-4(f). Example of Input Data and Program Execution

Figure 6-4(g). Example of Input Data and Program Execution

Figure $6-4(h)$. Example of Input Data and Program Execution

END OF JOB

Figure 6-4(i). Example of Input Data and Program Execution

Figure 6-5. Plot of Rectangle Data (File 55) for Mask Example

Figure 6-6. Plot of Exposure Data (File 57) for Mask Example (note partitioning of large rectangles; also symmetry reversed from MR-3)

Figure 6-7. Photographic Print or "Blowback" from Completed Mask Plate (approx $3 X$; image tone is reversed from plate: patterns are opaque on the mask plate; image symmetry is the same as that of the plate if the emulsion on the plate is "oward the viewer; MR is -3 for this mask)

SECTION VII

PLOTTING PHOTOMASKS

A. INTRODUCTION

As discussed in the preceding section, executing the MASK program with the PLOT option generates plot data in file 55. This data can then be used to create various plots on paper, plastic, film, or cathode ray tube screen as explained in this seotion.

Except for plots on the Tektronix graphics display terminal, all plot programs are set up such that the allowed ploting area is larger in the X direction than it is in the Y direction. Thus, if the mask pattern is not square, it should be oriented so that the larger dimension is along the X axis, to allow for maximum enlargement. Plots made on drum plotters are plotted with the Y -axis parallel to the drum axis. All plots are right-reading regardless of the value of the mirror parameter, MR, in the MASK program.

Remember that the pattern has been translated: the point XC, YC has been translated to $2000+$ XBIAS, 2000+YBIAS in the plot data (see VI-F).
B. CALCOMP 11-in. DRUM PLOTTER

Figure 7-1 shows a sample plot made on an 11-1n. Calcomp drum plotter.

ACCESS

MAXIMUM SIZE - X Essentially unlimited
Y 10.5 -in. allowed (paper is 11 in . Wide between tear strips)

MEDIUM

RESOLUTION

COMMENTS
Plotter is on line to the 1108 computer, so the plot can be obtained more quiokly than by other methods. Plot is generated directly by executing the proper program (CC11ABS).

Ballpoint pen on paper, pen color usually black, other colors sometimes avallable.

10 mils - does not produce as nice a plot as larger plotters.

This method is good for rough cheaks or simple patterns; it does not produce as large or smooth a plot as other plotters. Overlay of one plot on another is possible, but not very effective. On complex patterns registration may be a problem due to enlargement of sprooket holes in paper as paper rolls baok and forth.

Figure 7-1. Example of Plot Made on 11-in. Calcomp Drum Plotter

The initialization card must contain the following:
Columns 1-10: XCEN the X coordinate of the center of the area to be plotted (mils), default: 2000.

11-10: YCEN analogous to XCEN, default: 2000.
21-30: XSIZE the size in the X direction of the area to be plotted (mils), default: 2000.

31-40: YSIZE analogous to XSIZE, default: 2000.
41-50: FACTOR the factor by which the plot data is to be multiplied to produce the plot, default: 5.0

All the above parameter values (except FACTOR) are in mils and refer to the mask dimensions, rather than plotted sizes. All parameter values must contain a decimal point. Defaults apply only if entire initialization card is omitted.

If the values on the initialization card are incompatible because YSIZE and FACTOR would require more than 10.5 inches, YSIZE is reduced accordingly and a warning message printed. For example if the values were
$X C E N=2000$. $Y C E N=2000$. $X S I Z E=1000$. $Y S I Z E=1000$. $F A C T O R=20$.
the plot area on the paper would have to be 20 in. in the X direction, which is allowed, and 20 in . in the Y direction, which is too large. Consequently, YSIZE would be reduced by the program to $525 . \mathrm{mils}$, and WARNING: PLOT TOO LARGE IN Y DIRECTION would be printed.

If any part of a rectangle lies outside the plot area defined by XSIZE and YSIZE, no part of the rectangle is plotied, even though part of the rectangle might lie inside the plot area. If rectangles lie outside the plot area and are rejected by the program, this warning is printed:

Where each * is the number of rectangles to the left of the allowed plot area, to the right of the allowed plot area, etc.

Any messages from A-group data cards are plotted to the left of each pattern. The paper advances for each new pattern (mask). Targets are plotted near the four corners of the plot area as shown in Figure 7-1. Their Y separation is 10.5 in. and their X separation is XSIZE x FACTOR. Their location is identical for all plots generated with one program execution.
C. CALCOMP 34-in. DRUM PLOTTER

Figure 7-2 shows an example of a printout for drum plotter programs.
ACCESS Executing the program CC34ABS writes a magnetic tape which may be taken to the plotter, which is off line. Contact J. H. Hix (JPL) regarding this equipment.

MAXIMUM SIZE - X Essentially unlimited. Y 32.5 in . allowed (paper is 34 in . Wide between tear strips).

MEDIUM

RESOLUTION
COMMENTS

USE
Ballpoint pen (6 colors available: black, blue, red, green, orange, brown) or liquid ink, on paper (translucent bond, rag, vellum). Plastic (mylar) may also be used. The plotter can accomodate three pens which are selected as explained below.
2.5 mils

This method has been the most useful since the plot can be made large enough for accurate checking and masks may be overlatd in different colors. Typical use has been ballpoint on paper. One problem is loss of close registration due to enlargement of sprocket holes in the paper as paper rolls back and forth.

Enter the following runstream:
QRUN - - -
QASG 55.

@MSG PLEASE MOUNT TAPE *** TO WRITE FOR RKK (for batch), or-
@MSG,W PLEASE MOUNT TAPE *** TO WRITE FOR HKK (for demand), where *ty is the identification of the tape to be used
exQT FILE.CC34ABS
---- data card (optional) --
QFIN
NOTE: Only one set of plot data (from one eXQT) may be written on a single tape.

```
******************* E&LEJMF 34 IVCt ORUN PLOT PY JOFA4
XCENE 2000.00 MIL, KSIZE= 15NC.GL NIL 45.0 IN. FACTOR= 30.00
YCEV= 2000.00 HIL. Y5IFE= 3000.00 HIL 90.0 IN
WAQVIMS: PLGT TOO _ARSE IN Y JIAECTION
- P-OT NUHBER 1 - PEN NUY3ET 1 SE.EETED -
    ** FIOUCIAL HARKS AND GDRDER TEST ***
```



```
- plet numger z = pen numeer i selected -
    *** FIDUEIAL 4*RKS ANJ 30RJER TEST ***
```



```
    *** fiOUciAl marks mNo gdrogr, test ***
```



```
- Plot number 4 - pen number 1 selected -
    ** FIDUCIAL MARKS MND 3GRJER TEST *O*
```



```
- Plot number 5 - Pen muneer i selected -
    ** mask charactea SET **.
- PLOT NUMBER 5 - PEN NUMGER 1 SELEGTEO -
        ***** TEST AND JEHONSTRATION OATTEZVS *****
        R. K. KIRSCHMAN, 1-76
** END OF JOE =- 6 PLOTS, GOS RECTAMGLES INPUT. 76S GECTANGLES PLCTIED **
```

Figure 7-2. Example of Printout for 34-in. Drum Plotter Programs (other programs give a similar printout)

The initialization card is identical to that for the Calcomp 11-in. drum plotter, except that (1) the maximum plot size is 32.5 in. in the Y direction, and (2) an additional field is available:

Columns 51-60; Pen selection: a sequence of digits indicating the order of the pens to be used for the masks. Three pen locations are available. For example, if pens 1, 2, and 3 are to be used for masks 1, 2 , and 3 , the data field would read 123 , beginning in column 51.

If any column is left blank, or contains any digit other than 1, 2, or 3, the corresponding plot will default to pen 1.
Since there are only 3 pen locations, $\pm f$ more than 3 colors are to be used, the pens must be changed by the plotter operator between masks.

Two targets at $X=0, Y=0$ and $X=0, Y=32.5$ in. are plotted prior to plotting of each mask. A search address is generated prior to and after plotting these targets. Thus if the plotter controller is in "single plot" mode, corrections for paper movement or pen changes can be made.

The masks are plotted directly over one another, in register. If this is not desired, the paper should be advanced between plots.

0. CALCOMP FLAT BED PLOTTER

ACCESS Executing the program CCFBABS writes a magnetic tape which may be taken to the plotter, which is off line.

MAXIMUM SIZE $=\mathrm{X} 81$ in. allowed
Y 47 in . allowed Roll of paper is approximately $5 \|-i n$. wide (Y direction).

MEDIUM Same as Calcomp 34-in. plotter. Refer to previous subsection.

RESOLUTION 0.2 mils
COMMENTS This method avoids the registration problem of the drum plotters. Plots can be made on mylar plastic (when plotting on mylar, a mirror image is recommended -- this allows the plot to be mounted with the inked side in to protect it). In most cases this plotter al.lows the largest size plot.

USE
Not implemented at this time, contact author,
E. CALCOMP COM SYSTEM

ACCESS The plotter is "on line" to the 1108 computer as far as the user is concerned. Executing the program COMABS generates a plot file which is transferred to the plotting system at intervals by computer personnel.

MAXIMUM SIZE On the film-X - $1.00 \mathrm{in} . \mathrm{Y}-0.75 \mathrm{in}$. (reduced by 15 X from 15 in . by 11.25 in . image area on cathode ray tube)

MEDIUM
35 mm film roll. Plotted lines which outiine rectangles are transparent on an opaque field (negative). The film image may be enlarged and printed by Xerox or photography (see Figures $7-3$ and $7-4$), or a microfilm reader may be used.

The data card is the same as for the Calcomp 11-1n. drum plotter, except that FACTOR will generally be smaller. Default values for XCEN, YCEN, XSIZE, YSIZE are the same as for the 11-in. plotter; default value for FACTOR is 0.333. Targets are plotted at the four corners: X separation is 1.0 in., Y separation is 0.75 in.

$$
\begin{aligned}
& \text { TESTM PATUETNS } \\
& \text { ロロロ } \triangle \Delta \Delta \\
& \square \square \square \Delta \Delta \Delta \\
& \Delta \triangleright \nabla
\end{aligned}
$$

Figure 7－3．Example of Xerox Print Made from Film Plotted by COM
System（approx 11 X ）

$$
48 \text { muxas }
$$

Figure 7-4. Example of Photographic Enlargement Made from Film Plotted on COM System (approx 10X)
F. TEKTRONI: GRAPHICS TERMINAL

ACCESS	Program is executed from terminal and plotting is immediate.
MAX SIZE	Depends on model, for 4002 or 4012: X - approx 5-1/2 in. allowed Y - approx 5-1/2 in. allowed
MEDIUM	Image is plotted on a memory cathode-ray tube screen. A paper copy may be made if a hard-copy unit is connected to the terminal (see Figure 7-5).
RESOLUTION	Approximately 0.1%, or approximately 10 mils on the screen.
COMMENTS	Thls method gives a rapid means of performing an overall check of the pattern. Overlays are possible, but not too effective. Small size of plot makes details and close registration difficult to observe. The user can plot any desired area of the pattern, enlarging or reducing the size of the pattern.
USE	Refer to Univac, GPCF, and Tektronix manuals regarding basio use of Tektronix terminals. The following runstream should be entered:

The program will respond with *** MASK PLOTTING PROGRAM *** and will wait for a command to be entered on the keyboard. The commands are:

XCEN"HF.". Specifies the center of the square area to be plotted, where ***. ** is the X coordinate of the center (mils), default: 2000.

YCEN"*..." Analogous to XCEN, default: 2000.
SIZE***. \#\# Specifies the size of the square area to be plotted, where "**"."\# is the size of the area for both X and Y directions (mils), default: 2000.

Refer to Figure 7-6. The values used by the program for XCEN, YCEN, and SIZE are always the most recent ones entered by the user. The numerical values must contain a decimal point and must be contained in the 10 spaces following the command name.
 responds with >. If anything else is entered, the program responds with * UNRECOGNIZABLE COMMAND '\#\#\#\#' ", where \#\#\#\# is the command; the unrecognizable command is ignored, and nothing is altered.

If the end of the plot file (55) is reached by use of the PLOT or SKIP commands, the program will respond with *"\# END OF FILE ENCOUNTERED IN MASK DATA ***. The file may be rewound (REW) or the program terminated (TERM). Entering PLOT or SKIP at this point will cause the program to terminate in error.

TEST PATTERNS

Figure 7－5．Example of Plot from Tektronix Hard Cony Unit

Figure 7－6．Definitions of Parameters for Tektronix Plots

SECTION VIII

PREPARING DATA FOR THE MPG

As mentioned previcusly, the Mann exposure data in file 57 may be converted into data on a magnetic tape to control the MPG. Unfortunately, the Univac 1108 system at JPL cannot conveniently write a tape in the required format. Consequently, another computer is used to convert the data, as explained in this section. Contact the author regarding these procedures.

A. TAPE FORMAT

The MPG at MSFC uses a 9 track tape written at 800 bpi. The tape must be in standard IBM format, unlabelled. The data must be in 512 character (byte) records. This is a special record length for MSFC; the standard is 1040 as stated in the MPG manual. The data code is EBCDIC. A maximum reel size of $81 / 2 \mathrm{in}$. (approximately 600 feet nf tape) can be accommodated. This is adequate for most sets of masks since 10,000 exposures requires about 70 feet of tape.

Each exposure must be written on the tape in the following format:

```
X*****Y****W****H***A**;
```

where each " represents a digit. As explained in VI-E-2, the last digit for X and Y is $0,2,5$ or 7 and for W and H is 0 or 5 . The semicolon (;) indicates that an exposure is to be made, using the preceding data values for X, Y, W, H, A. The data for each exposure is thus 26 characters (bytes) long. Each tape record can contain data for 19 exposures, with 18 bytes left over which are blank-filled.

The MPG data input format allows for simplification and has greater flexibility than indicated above. However, these features are not used for this scheme. For further information refer to the MPG manual.

Messages to be typed out on the MPG teletype are preceded by a quotation mark (I') and terminated by a carriage return (c / r). The following is an example:
"MESSAGE TEXTe/r.
This feature is used for A-group messages and additional data, For simplicity, each A-group message is limited to 68 characters in the JPL programs. If a message is shorter than 68 characters the remainder is blank filled. A tape record thus accommodates 6 A-group messages.

EBCDIC Codes

Character	Name	Code (hexadecimal)
A thru Z	letters	Cl thru c9
J thru R	letters	D1 thru D9
S thru Z	letters	E2 thru E9
\emptyset thru 9	digits	Ed thru 9
.	period/decimal point	4 B
,	comma	6 B
;	semicolon	5 E
\$	dollar sign	5B
*	asterisk	5A
/	slash	61
-	minus sign	60
+	plus sign	4 E
$=$	equal sign	7 E
<	less than	4 C
>	greater than	6 E
(left parenthesis	40
)	right parenthesis	5D
,	apostrophe	7 D
:	colon	7A
?	question mark	6 F
$!$	exclamation point	5A
"	quotation mark	7 F
\#	number sign	78
$\%$	percent sign	6 C
e	at sign	7 C
\&	ampersand	50
	blank	40
c / r	carriage return (non-printing)	15

B. GENERATING THE MPG TAPE

The procedure is as follows:
(1) The data in file 57 are punched onto data cards by executing the program FILETOCARD. Any characters in the A-group messages which have different punch codes for Univac and IBM must be changed by hand.
(2) The cards are taken to CIT, the data reformatted and written onto tape by the program MASKTRAN, running on the IBM 370/158.
(3) The tape is now ready to be used on the MPG at MSFC.

To check the tape the procedure is reversed:
(4) The tape is read and the data reformatted and punched onto cards by the program TAPETRAN, running on the IBM 370/158 at CIT.
(5) The cards are read and the data translated and put into the plot file 55 by the program CARDTOPLOT running on the Unfvac 1108 at JPL.

The pattern may then be plotted by the procedures given in Section VII. However, in this case the plot is of the actual exposures, so the partitioning of large rectangles will be plotted; also the plot will be "right reading" or "reverse reading" according to whether MA is positive or negative (see Fig. 6-6).

It would be preferable to eliminate the punch cards and to transfer the data betweon the computers by tape; however, this has not been implemented. The procedures outlined above should be considered provisional.

C. COMPATIBILITY WITH OTHER MASK-GENERATING MACHINES

The programs cescribed in this manual could be used with pattern generators other than the MSFC Mann 1600. There are a number of pattern generators which operate on the principles presented in this manual. Generating a data tape for one of these machines could be done with a minimum of modification to the programs. In many instances modification of the file 57 to MPG tape translation program (MASKTRAN) is all that would be required.

If it were desired to take advantage of the increased capabilities of some of the newer machines, some modification of the MASK program would also be necessary. The following characteristics of the machine in question should be considered:

1) Tape format for exposure data and messages.
2) Maximum available area for pattern.
3) Smallest increment in X, Y, W, M, A.
4) Maximum size for W and H,

Photoplotters such as the Gerber or similar machines have different operating principles from those for which the programs described in this manual were designed. However, the programs can be used with such machines. Regarding such use, contact D. E. Routh at MSFC, W. H. Causey at Mississippi State University, or the author.

BIBLIOGRAPHY

"Demand Terminal User's Guide," 1846-35.
Diller, S., "Saientific Computing Faoility EXEC-8 Operating System Programmer's Reference Manual," 1846-18, Rev. A.

Perrini, J., "Athena Fortran Compiler User's Guide," 1846-35.
"Programming Calcomp Model 1675 COM System."
"Programing Calcomp Pen Plotters," 1846-52.
"Tektronix T-4002 Graphics Subsystem", 1846-17.
"Univac 1100 Series Fortran V Programmer Reference", UP-4060, Rev. 2, update UP-4060, Rev. 2E.

Weisneth, J. G., "General Purpuse Computing Faoility Customer Information Manual", 1846-62.

Note: The above documents are JPL GPCF Library publications.
Extended Fortran IV Reference Manual for XDS Sigma 5/7 Computers, 9009 56D, Xerox Data Systems, 701 South Aviation Boulevard, El Segundo, Calif., Apr. 1970.

Instruction Manual for Mann Type 1600 and 1600 A Pattern Generators, David W. Mann Company, 174 Middlesex Turnpike, Burlington, Mass (now GCA/Burlington Division), Nov. 1969.

IBM System/360 Operating System: Job Control Language User's Guide, S350-36, GC28-6703-2, 1971.

IBM System/360 and System/370 FORTRAN IV Language, GC28-6515-10, 1974.
Ashby, G. P., and Heilman, R. L., Introduction to I/O Concepts and Job Control Language for the IBM Operating System 360, Dickenson Publishing Company, Inc., Encino and Belmont, Calif., 1971.

Routh, D. E., Maskmaking Facilities at the Marshall Space Elight Center, NASA TM X-64703, 1972.

Routh, D. E., Mask and Pattern Characteristios, NASA TM X-64688, 1972.
Routh, D., and Woo, Dae-Shik, Users.Manual for MSFC Mask and Display Program, NASA TM X-64696, 1972.

APPENDIX A
TERPMS AND ABBREVIATIONS
b
BORDER
c / r
CIT

COMMENT

DATA GROUP

DIGITIZER

DRAWING UNIT (DU)

DU
EXPOSURE

FIDUCIAL MARK

GPCF
ID NUMBER

IMAGE

JPL
ManN Pattern
GENERATOR (MPG)
blank
an opaque area on the reticle photoplate surrounding the pattern, used to block off unwanted light during step-and-repeat
carriage return
California Institute of Technology, Pasadena, California
alphanumerics inserted into the input data, but which are not processed by the program. For user reference
one of the groups of data input to the MAS: program, identified by one of the letters A, B, C, D, E or I. Each group is used to specify a certain type of data
a device resembling a drafting board, used to convert information on a drawing into computer data
the units in which drawing dimensions and input parameter data are expressed
drawing unit
a single exposed rectangular area on a mask plate created by the Mann pattern generator
a pattern of two or threc small rectangles near the edges of the reticle mask, used for ailgrment of the reticle mask for the step-and-repeat process

General Furpose Computing Facility (JPL)
a number placed after the data group letter on an input card for identification purposes. Not processed by the program
the pattern of transparent and opaque areas on a photoplate

Jet Propulsion Laboratory
an optical/mechanical machine used to generate a photomask from computer data

MESSAGE	alphenumerics which are part of the A group data and are placed into the Plot and Mann files and may appear on plots and the Mann pattern generator teletype
MIL	0.001 inch
MPG	Mann pattern generator
MSFC	NASA Marshall Space Flight Center, Huntaville, Alabama
0	letter 0
0	number 0
PATTERN	a set of rectangles or exposures
PaRameter	one of the items of input data identified by one of the letters $M, N, S, T, A, B, W, H, X, Y, I$, $\mathrm{U}, \mathrm{D}, \mathrm{R}, \mathrm{L}$
Parameter value	a numerical value associated with a parameter
PLOT	refers to data or procedures related to plotting a mask layout
PR	photoresist
RECTANGLE	a rectangle forming part of the input pattern. A single rectangle may have to be partitioned (broken down) into several exposures on the plate
RETICLE	10X photoplate oreated on the Mann pattern generator which may be stepped-and-repeated to make the final 1 X mask
SCALE FACTOR (SF)	a number relating size of a feature in the input data to size of the feature on the mask plate
STEP-AND-REPEAT	the process of reproducing a single pattern onto a photeplate repeatedly in a regular rectangular array
STRAP/STRIP	a rectangle or trace in the pattern which is specified by its endpoints rather than by its center. Generally narrow and used as an interconnection
TAPE BLOCK/ TAPE RECCRD	a unit of data written (recorded) onto a magnetic tape. For the MSFC MPG each record is 512 bytes long

APPENDIX B

CONVERSION FACTORS

$1 \mathrm{mil}=25.4 \mu \mathrm{~m}$
$1 \mathrm{mil}=0.0254 \mathrm{~mm}$
1 microinch $=0.0254 \mu \mathrm{~m}$
$1 \mathrm{~mm}=39.370079 \mathrm{mils}$
$1 \mathrm{~mm}=39370.079$ microinches
$1 \mu \mathrm{~m}=0.039370079 \mathrm{mils}$
$1 \mu \mathrm{~m}=39.370079$ microinches

APPENDIX C

DESCRIPTION OF PROGRAMS AND SUBROUTINES

MASK PROGRAMS (see Figure C-1)

MAINPROG (MP)

AGROUP

ALPHA 1

B

C

D

DATUM

DISPLA

E

EXTR

I

MAGTPE

SEGMNT

STORE
the master program which is called by the eXQT control statement. It initializes the data processing, calls appropriate subroutines to process data groups, and closes out processing
processes A group cards and writes the messages to Plot (55) and Mann (57) files
generates data for alphanumeric characters and punctuation marks according to specifications on E group cards, as tranislated by subroutine E
processes B group data cards
processes C group data cards
processes D group data cards
used by subroutines C and D to interpret C and D data cards and extract parameters and parameter values
translates pattern data from $C O W(I, J)$ array into data for plotting; sorts data according to location for more efficient plotting. Translated data is written into file 55
processes E group data cards, specifications are passed to subroutine ALPHA 1
extracts fixed or floating point field, containing a parameter value, from data cards
generates data for fiducial marks and border for reticle mask according to data on I group cards
takes data from $\operatorname{COW}(I, J)$ array and translates it into Mann data which is stored in MAN (I, J) array and written into file 57. Breaks large reotangles into smaller ones that can be accommodated by Mann pattern generator
generates data for a strip connecting two points at arbitrary locations
inserts rectangle data into $\operatorname{COW}(I, J)$ array; generates data for repetitions ($M, N>1$)

Figure C-1. Mask Program Subroutine Linkages

STRAP	processes strip data
STRAP 1	rounds angle to nearest degree for strip at an angle
STRAP2	similar to STRAP1
TAPES	takes data from $C O W(I, J)$ array, applies shift, scaling, angle manipulation for compatibility with Mann pattern generator, and puts manipulated data back into COW
TIMEX	calculates Mann pattern generator exposure time from data in MAN array, according to formulas given in Mann 1600 manual
ZIGZAG	sorts data in MAN array according to location for more efficient exposure
NOTES:	All above programs except EXTR require an extended FORTRAN compiler.
	MP indicates main program, all others are subroutines.

CC11 (MP)	used with Calcomp 11-in. drum plotter to plot data in file 55
CC34 (MP)	used with Calcomp 34-in. drum piotter (off line). Translates data from file 55 to tape for plotter
CCPLOT	calculates plotting points and detects out-ofrange values for CC11 and CC34 programs
COM (MP)	used with Calcomp COM plotter to plot data in file 55
COMTGT	generates targets for COM plotter. Used by COM program
DIGITTOC (MP)	converts data on cards from digitizer into C-group data
TARGET	generates targets for plotters. Used by CC11 and CC34
TEKPLOT (MP)	used with Tektronix graphies terminal to plot data in file 55

NOTE: MP indicates main programs, others are subroutines.

