NASA Contractor Report 145328

ODIN SYSTEM TECHNOLOGY MODULE LIBRARY, 1972-73

```
MODULE LIERARY, 1972 - 1973 Eeport Stady,
Mar. 1971-Jun. }1972\mathrm{ (Aerophysics Research
Corp., Bellevue, Wash.) 738 F HC A99/MF A01
```

D. S. Hague, D. A. Watson,
C. R. Glatt, R. T. Jones,
J. Galipeau, Y, T, Phoa, and R. J, White

AEROPHYSICS RESEARCH CORPORATION

Bellevue, WA 98099
NASI-10692
March 1978

National Aeronautics and Space Administration
Langley Research Center Hampton Virgınıa 23665

PREFACE

This report was prepared under Contract NAS 1-10692, "Study to Develop a Computer Program for the Synthesis and Optımization of Reusable Launch Vehicles." The study was carried out in the period from March, 1971, to June, 1972. The study was funded by the National Aeronautics and Space Administration, Langley Research Center, and sponsored jointly by the Space System Division and the Flight Dynamics and Control Division. Mr. Jarrell R. Elliott and Mr. Timothy R. Rau of the Flight Dynamics and Control Division served as technical monitors for the study. Development of the ODIN concept was jointly supported not only by NASA but also by WrightPatterson Air Force Base (Air Force Flight Dynamics Laboratory).

The study resulted in a new, large-scale programning technique called ODIN, for Optimal Design Integration. The use of ODIN involves the linking of independent computer program modules and inter-communication of common information among the programs through an executive program, ODINEX.

This report describes the technology modules and the executive program now avalable in the ODIN concept.

The authors wish to express their gratitude to Mr. John Decker and his staff of the Space Systems Division for their invaluable contribution in the installation and evaluation of the ODIN system. The authors are also indebted to Mr. Bernard J. Spencer, Jr., of Langley Research Center, for his initial support of the ODIN concept as an aid to the design of reusable launch vehicles. As a result of their efforts, the ODIN system is becoming a working tool at the Langley Research Center computer complex.

ABSTRACT

ODIN/RLV is a digital computing system for the synthesis and optimization of reusable launch vehicle preliminary designs. The system consists of a library of technology modules in the form of independent computer programs and an executive program, QDINEX, which operates on the technology modules.

The technology module library contains programs for estimating all major military flight vehicle system characteristics, for example, geometry, aerodynamics, propulsion, inertia and volumetric properties, trajectory and missions, economics, steady-state aeroelasticity and flutter, and stability and control. In addition, a generalized system optimization module, a computer graphics module, and a program precompiler are available as user aids in the ODIN/RLV program technology module library.

The ODINEX executive program controls the design synthesis and optimization by operating on the technology module library under control of a userspecified data input stream. Synthesis procedures in any design simulation are established by the input data. Hence, any set of vehicle component matching and sizing loops can be defined. There is no effective limit on the design sequence "topology" which may be employed in an ODIN/RLV simulation since the sequence is controlled by input data.

The technology module program library has been established by an extensive survey of existing computer programs available to the general aerospace industry. Governmental, industrial, and academic sources for technology module programs were used in construction of the final program library. Individual credit for the program sources is acknowledged where possible in either the technical discussion or the list of references. In certain cases extensive modification of source programs were made. However, many source programs are employed in essentially unmodified form.

It should be noted that the ODIN/RLV program provides the designer with a "building block" approach to vehicle design. The design simulation parallels that now employed in industry; however, the ODIN/RLV permits all interdisciplinary data interchange to be performed within the computer rather than by hand outside the computer. This feature allows the designer to perform more iterations in the vehicle design.

Program operation effectively requires the use of a conventional design team approach. The design team defines all desired information transfers, matching loops and sizing required to achieve a satisfactory vehicle design.

The ODIN/RLV program provides the designer with a tool for automation of the vehicle design process which has the abılıty to retain the full technical depth assoclated with current preliminary design analyses.

TABLE OF CONTENTS
SECTION PAGE
1 INTRODUCTION 1-12 STRUCTURE AND OPERATION FOR THE OPTIMAL DESIGNINTEGRATION PROCEDURE FOR REUSABLE LAUNCHVEHICLES, ODIN/RLV
2.1 Structore of the ODIN/RLV System 2.1-1
2.2 The Basic ODIN/RLV Program Elements 2.2-1
2.3 Installation of the ODIN/RLV 2.3-1
2.4 Sequential Independent Program Execution 2.4-1
2.5 Sumnary of the ODIN/RLV System 2.5-1
GEOMETRY 3-1
3.1 Program PANEL: A Computer Code for Generating a Paneled Aerospace Vehicle Surface Definition 3.1-1
3.2 Program IMAGE: A Computer Code for Display of Three-Dimensional Objects 3.2-1
3.3 Program LRCACP: A Code for Producing Aırcraft Configuration Plots 3.3-1
AERODYNAMICS 4-1
4.1 Program HABACP: The Gentry Hypersonic Arbitrary Body Aerodynamics Computation Program 4.1-1
4.2 Program ART II: Rapid Supersonic Area Rule Aerodynamic Program 4.2-1
4.3 Program TREND: A Rapıd Subsonic/Supersonic/ Hypersonic Aerodynamic Trade-Off Code 4.3-1
PROPULSION 5-1
5.1 Program ENCYCL: Computer Program for Design Point Performance of Turbojet and Turbofan Engine Cycles 5.1-1
5.2 Program GENENG: Program for Calculating Desıgn and Off-Design Performance for Turbo- jet and Turbofan Engines 5.2-1
5.3 Program GENENG II: A Program for Calculating Design and Off-Design Performance of Two- and Three-Spool Turbofans with as Many as Three 5.3-1 Nozzles 5.3-1

TABLE OF CONTENTS
SECTION PAGE
6 MASS AND VOLUMETRIC PROPERTIES 6-1
6.1 Program VSAC: An Approximate Aircraft Mass Properties and Volume Analysis Code 6.1-1
6.2 Program VAMP: A Detailed Volume, Area, and Mass Properties Code 6.2-1
7 PERFORMANCE 7-1
7.1 Program TOLAND: A Simplified Take-Off and Landing Analysis Code 7.1-1
7.2 Program NSEGII: A Rapid Approximate Segmented Mission Performance Analysis Code 7.2-1
7.3 Program ATOP: Atmospheric Trajectory Optimı- zation Program 7.3-1
7.4 Program COAP: Combat Optimazation and Analysis Program 7.4-1
STRUCTURES 8-1
8.1 Program SSAM: Swept Strip Aeroelastic Mode1 8.1-1
ECONOMICS 9-1
9.1 Program PRICE: A Computer Program for Estimating Total Program Cost of Aircraft, Spacecraft, and Reusable Launch Vehicles 9.1-1
9.2 Program DAPCA: A Computer Program for Detex- mining Aircraft Development and Production Costs 9.2-1
OPTIMIZATION 10-1
10.1 The Variational Steepest Descent Method 10.1-1
10.2 Program AESOP: Computer Program for Multi- variable Search 10.2-1
11 PRECOMPILER TECHNIQUES 11-1
11.1 Macro Fortran Precompiler 11.1-1
GRAPHICS 12-1
12.1 Program PLOTTER: Independent Plot Program 12.1-1

TABLE OF CONTENTS
SECTION PAGE
13 IN LINE COMPILATION 13-1
13.1 Program MYPROGRAM: Compilation at Execution Tıme Capability 13.1-1
14 OVERLAY CONSTRUCTION 14-1
14.1 Program AUTOLAY: Automatic Overlay Construction for the CDC 6600 14.1-1
15 AEROELASTICITY 15-1
15.1 Program AFSP: A Program for Automated Flutter Solution 15.1-1
16 STABILITY AND CONTROL 16-1
16.1 Program ACMOTAN: Linear Alrcraft Motion Analysis 16.1-1
17 THERMODYNAMICS 17-1
17.1 Thermodynamic Analysis Options of Program ATOP 17.1-117.2 Program ABLATOR; One-Dimensional Analysis ofthe Transient Response of Thermal ProtectionSystems17.2-1
APPENDIX I: Introduction to ODINEX: A Design Integration and Analysis Language I-1

ODIN SYSTEM TECHNOLOGY MODULE LIBRARY, 1972-73

by D. S. Hague, D. A. Watson, C. R. Glatt, R. T. Jones,
J. Galipeau, Y. T. Phoa, and R. J. White

AEROPHYSICS RESEARCH CORPORATION,

SECTION 1: INTRODUCTION

Effacıent preliminary design of a reusable launch vehicle involves the sımultaneous satisfaction of all vehicle operational constraints and optimization of the vehicle's performance. Operational constraints and performance criteria include
a. Landing and take-off performance
b. Payload capability
c. Maximum acceleration and lift coefficient maneuver limits
d. Mach-altitude flight envelope limıts
e. Thermodynamic constraints
f. Economics

For vehicles which will operate near clvilian population centers, there exists an increasing requirement for satisfying environmental constraints, such as noise and engine pollution. Optamal design of reusable launch vehicles to these performance and constraint characteristics involves a complex system of nonlinear interdiscıplinary trade-offs. Technology areas to be considered include
a. Geometry
b. Aerodynamics
c. Propulsion
d. Material stress
e. Weights
f. Aeroelasticity
g. Stability and control
h. Cost

Reusable launch vehicle design teams must carefully integrate the requirements of these multiple disciplines in order to obtain the best vehicle configuration for a specified mission spectrum.

The aerospace industry has continually encountered increases in vehicle and mıssion complexity. In recent years increasing complexity has tended to force the practicing aerospace engineer into a relatively small area of specialization. Thus, the problem of antegrating all signmficant disciplines entering vehicle design has become a major obstacle to rapid and efficient vehicle design. Efforts to overcome the design antegration problem have resulted in increases in vehicle preliminary design staffs of from 20 to 30 working for several months on the earliest supersonic aurcraft to many hundred working for several years on more recent supersonic projects.

The increased effort required to integrate modern vehicles has been discussed in Reference 1. For example, Reference 1 indicates that wind tumnel test time required for advanced vehicles is rising exponentially with time, Figure 1-1. This exponential growth of effort is matched by other areas such as man hours and computational effort required. Examples are readily forthcoming. In strength analysis engineer's approximate theories are being replaced by finite element modeling. In aerodynamics and aeroelasticity, strip theory is replaced by the use of finite surface theories. In performance analysis the variational calculus formulation is used in place of conventional flight handbook calculations. In practice experimental effort, manpower, and computational effort to achieve a vehicle design are all rising simultaneously.

The use of more extensive experımental and theoretical analyses can be justified. Thus, when designing a supersonic aircraft the use of variational calculus techniques, Reference 2, will usually produce a performance estimate which improves on flight handbook performance estimates by 15 to 20 per cent, Reference 3. It is poanted out in Reference 4 that the greatly increased computational effort required to define this performance gain and to capitalıze upon it in the vehicle design is worthwhile when a significant vehicle production order is anticipated. Similarly, the increased sophistication of analysis in other areas can be justified in terms of ultimate system effectiveness.

However, a major obstacle to the use of more soph1sticated analysis emerges in practice. These analyses require increased specialization among the design team members and are generally more costly in terms of dollars and elapsed time. Finally, since each discipline becomes more compartmentalized as a result of increased specialızation, the design integration process itself becomes more complex.

The increase in design integration complexity is readily visualized in terms of the trajectory analysis. If the vehicle trajectory is fixed, other disciplines can examne the design independent of the trajectory analyst. If each time a vehicle configuration parameter is changed a significant change to the vehicle's optimal flight path results, then the integration problem becomes far more complex. In actuality, efficient modern vehıcle design requires the coupling of all major technologies.

The present study was addressed to the technology integration problem, and an optamal design integration procedure (ODIN) has been devised. This procedure is based on computer-aided design concepts. The approximate growth in computational capacities of several representative computers in solution of typical aerospace vehicle analyses is presented in Figure 2. Reference 1 has similarly outlined the total growth of 2 the United States computational power. The ODIN procedure for reusable launch vehicles developed during the present study period and the related study of Ref. 5 is based on the premise that the increased computational capacity which has made today's sophistucated analysis procedures feasible is also capable of greatly improving vehicle design integration procedures.

Achievement of this improvement in design integration procedures has required
a. Creation of a technology computer program library;
b. Construction of an executive program which allows the programs within the technology library to communicate with each other without the necessity for manual intervention in the design analysis;
c. A generalized method for specification of analysis sequence . including matching and sizing loops;
d. A method for systematically perturbing design variables to satisfy operating constraints while optimizing system capability.

The ODIN system developed under the present study and the Ref. 5 study contains all the above features. The system and its operation is described in Section 2. Description of the technology program library initially installed at Langley Research Center follow in Section 3 onwards.

This system has also been installed on the CDC CYBERNET system of interlocking computers through the San Francisco and Seattle Data Centers as shown in Fig. 1-3.

The ODIN system described in this report has been applied to a variety of reusable launch vehicle analysis and design integration problems during the study including
a. Orbiter matched subsonic/hypersonic wign design
b. Orbiter hot skin landing problem
c. Advanced transportation system studıes

The most comprehensive problem anvestigated was the synthesis of a matched subsonic/ hypersonic orbiter wing, Ref. 7; Fig. 1-4 presents views of this vehicle as produced by the ODIN system. Fig. 1-5 illustrates the complex system of technology modules executed to accomplish the synthesis. Fig. 1-6 presents a wind tunnel photograph of the final ODIN wing design. Lines for this model were produced automatically by the ODIN graphics module and supplied directly to the Langley model manufacturing shop. Fig. 1-7 1llustrates the close agreement between experiment and the ODIN aerodynamic estimation modules employed. Fig. 1-8 111ustrates the complete set of technology modules available in the ODIN/RLV system.

Development of the ODIN system is continuing with funding supplied by Langley Research Center, Contract NAS 1-12008 and Contract NAS 1-12977; Lyndon B. Johnson Space Center, Contract NAS 9-13584; and the Aix Force Flight Dynamics Laboratory, Contract F33615-73-C-3039. The latter reference is reported in Ref. 6. In addition, the ODIN system has been installed at Ames Research Center under Contract NAS 2-7627.

REFERENCES:

1. Harper, C. W., "Prospects in Aeronautics Research and Development," Journal of Aircraft, Volume V, Number 5, September-October 1968, , Page 417.
2. Hague, D. S.., Atmospheric and Near Planet Trajectory Optimization by the Variational Steepest-Descent Method, NASA CR-73365, 1969.
3. Landgraf, S. K., "Some Applıcations of Performance Optimization Techniques to Aircraft," Journal of Aircraft, March-April 1965.
4. Hague, D. S., Jones, R. T., and Glatt, C. R., Combat Optimization and Analysis Program--COAP, Volume I, AFFDL-TR-71-52, May 1971.
5. Hague, D. S. and Glatt, C. R., Optimal Design Integration of Military Flight Vehicles, ODIN/MFV, AFFDL-TR-72-132, December 1972.
6. Hague, D. S., Alr to Surface Missıle Performance and Design Sensıtivity, AFFDL-TR-74-76, July 1974
7. Phillips, W. Pelham; Decker, John P.; Rau, Timothy R.; and Glatt, C. R., Computer-Aided Space Shuttle Orbiter Wing Design Study, NASA TN D-7478, May 1974.

Figure 1-1. Wind Tunnel Hours for Vehicle Design

FIGURE 1-2. GROWTH OF AVAILABLE COMPUTATIONAL POWER

CONFIGURATION SELECTED

FIGURE 1-5. ODIN ORBITER WING DESIGN'STUDY

ORBITER SUBSONIC AERODYNAMICS

FIGURE 1-7.

OPTIMAL DESIGN INTEGRATION SYSTEM

$\stackrel{H}{1}$
$\stackrel{\sim}{N}$
ODIN

STRUCTURE AND OPERATION OF THE OPTIMAL DESIGN INTEGRATION PROCEDURE FOR REUSABLE LAUNCH VEHICLES, ODIN/RLV

This section describes the Optimal Design Integration Procedure for Reusable Launch Vehicles (ODIN/RLV) computational system, its structure, and its application. The ODIN/RLV computational system contains a library of many programs which are used as needed for a given problem. The resultant program run time and core requirements to solve a given problem is, therefore, variable depending upon the programs used. Many of the programs contained in the ODIN/RLV library were developed independently of the present study, several under previous Government funded studies. The ODIN/RLV executive control program which allows the independent programs of the ODIN/RLV library to communicate with each other was developed entirely within the context of the present study, and the related U. S. Air Force supported study of Reference 1.

In developing the ODIN/RLV a survey of existing technology programs and methodologies generally available to the aerospace industry was conducted. Programs surveyed are listed in Reference 1. The ODIN/RLV initial program library was limited to only a few of these programs due to the limited scope of the study effort. Other programs may readily be introduced into the ODIN/RLV by a minor program modification as described later in this section.

REFERENCES:

1. Hague, D. S. and Glatt, C. R., Optimal Design Integration of Military Flight Vehicles, ODIN/MFV, AFFDL-TR-72-132, December 1972.

2.1 STRUCTURE OF THE ODIN/RLV SYSTEM

The components of the ODIN/RLV system are illustrated in Figure 2.1-1; each system component exists in the form of one or more independent computer programs. The system consists of a variety of technology modules including. four design service modules plus an executive program. 'The preliminary design service elements in Figure 2.1-1 consist of

```
a. Design optimization
b. Plotter program
c. Macro Fortran
d. Report generator
```

These modules are described in detail in later sections of the report. Briefly, the design optimization element is used to perturb the vehicle design variables in optimization studies. The plotter program element provides the designer with a plot capability for output. The macro Fortran module is a Fortran based pre-compiler of general utility in the manipulation of ODIN/RLV program elements and is available mainly as a programming aid device. The report module enables the user to format his output in any manner he wishes under input data control without program modification.

Since the ODIN/RLV system comprises more than one quarter of a million Fortron source cards, some precautions must be taken to provide a usable system capable of interpretation by designer, engineer, and programmer. The major such precaution has been the creation of a system which is truly modular in the sense that it consists of many independent computer programs. Any one of these programs can be revised, extended, or replaced wathout affecting the other program elements of the ODIN/RLV in any way. In consequence, the specialist in a given technology area is able to phrase his analysis of the design without regard for the other technologies involved other than for the interfaces from and to his discipline and other disciplines entering the design.

The hey element in the ODIN system is the executive program ODINEX, of Reference 1. This program controls the execution of all technology modules, the design synthesis, and the interprogram data transfers.

The final element of the ODIN/RLV is the data base, Figure 2.1-1. This data base contains all information to be communcated between program elements. When combined with the nominal input data, it is sufficient to completely define the problem under study.

REFERENCES:

1. Glatt, C. R., Hague, D. S., and Watson, D. A., An Executive Computer Program for Linking Independent Programs, NASA CR-2296, Scptember 1973.

2.2 THE BASIC ODIN/RLV PROGRAM ELEMENTS

The independent program elements which form a basis for the ODIN/RLV system are written in Fortran; although this is not'asystem restriction. In fact, independent programs written in a variety of languages can be intermingled during an ODIN synthesis, for example, FORTRAN, COMPASS, and COBOL. Each program in the system has been assigned a four to six letter memonic for reference purposes and for operation in the ODIN/RLV system. Table 2.2-1 presents a list of the basic ODIN/RLV program libraxy and the memonics assigned. When constructing the sequence of analyses which lead to the synthesis and optimization of a reusable launch vehicle, each program must be referred to by its mnemonic code in the ODIN/RLV system. Mnemonic control of the elements in the ODIN/RLV program library is discussed in more detail in later sections and in NASA CR-2296 (see Reference 1, Page 2.1-1).

TABLE 2.2-1. MNEMONICS FOR THE BASIC ODIN/RLV INDEPENDENT PROGRAM LIBRARY

PROGRAM	MNEMONIC	TECHNOLOGY AREA
Executave Control Program	ODINEX	Executive
Geometric Paneling Program	PANEL	Geometry
Hypersonic Arbitrary Body Aerodynamic Computer Program	HABACP	Aerodynamics
Techniques to Evaluate Design Trade-Offs in Liftıng Reentry Vehicles	TREND	Aerodynamics
Skin Frıction Drag	LRCSF	Aerodynamics
Zero-Lift Wave Drag	LRCWDZ	Aerodynamics
Zero-Lıft Wave Drag	ARPII	Aerodynamics
Wave Drag at Lift	LRCWDL	Aerodynamucs
Wetted Areas	LRCINA	Aerodynamics
Configuratıon Plots	LRCACP	Aerodynamics
Vehacle Synthesis for Advanced Concepts	VSAC	Welghts
Atmospheric Trajectory Optimization Program (Version III)	ATOP III	Trajectory
Mission Segment Analysis Progran (Version II)	NSEG II	Mzssion Analysis
Stabılity and Control Includang Linear Control Systems	ACMOTAN	Stability \& Control
Development \& Production Costs of Alrcraft	DAPCA	Economics
Improved Cost Estimation	PRICE	Economics
Volume, Area \& Mass Properties	VAMP	Mass Properties
Swept Strip Aeroelastic Model	SSAM	Strructures
६ Off-Design Performance for single-spool engines	GENENG	Propulsion
Design \& Off-Design Performance for Two- and Three-Spool Turbofans with as Many as Three		
Nozzles	GENENG II	Propulsion
Turbojet Design Point Performance	ENCYCL	Propulsion
Automated Engineering and Analysis	AESOP	Optimization
One-Dimensional Analysis of Three-Layer Ablating Material	ABLATOR	Thermodynamics
Surface Temperature Calculawıl for Alrcraft-Like Vehicles	ATOP Thermodynames	Thermodynamics
Macro-Fortran Language for Development of Precompiless	MAC	Miscellaneous
Independent Plot Program	PLOTTER	Miscellaneous
Quadrilateral Panel Display	IMAGE	Misceilaneous

2.3 INSTALLATION OF THE ODIN/RLV

The ODIN/RLV can be installed on any CDC 6600 computer which has an operating system containing the Appendix l-b system utility routine CCLINK. Two versions of CCLINK are available in the basic ODIN/RLV libraxy: Since the ODIN/RLV consists of a library of independent programs, the basic program library must be installed on the computer before simulations can begin.

To install the ODIN/RLV program library the sequence of pperations depicted in Figure 2.3-1 must be completed. First, all Fortran source program card decks must be compiled. Each independently compiled program is then stored on a tape or disc unit. More than one program may be stored on a given disc or tape, but each such program must be stored as a separate file. When all programs including the executive program are stored in this manner, simulations can begin.

Simulations will involve sequential execution of technology elements in the ODIN/RLV program library. Basic data for each program element must be set up in the usual manner for that program operating independently of the ODIN/RLV. The analyst or team of analysts then defines the sequence of programs to be executed together with the effect of all design variables on the input for each program.

The simulation then commences using nominal design variable values. A common method of running the simulation is to use the optimization module as the final program element executed in the sequence (other than the executive program). This program receives the relevent system characteristics which have been evaluated and stored in the intexprogran data base. On the basis of multuvariable search algorithms contanned within the optimizer, a perturbed set of control variables are defined replacing those residing in the data base, and the complete simulation sequence is repeated. This second simulation defines perturbed system characteristics to predict another set of design variable perturbations for yet another simulation. This process is then repeated, Figure 2.3-2, until the optimum vehicle satisfying all operational constraints is evolved or untıl further gains in system performance are negligible in magnitude.

During the simulation all information required to fully define the problem at the level of analysis requested is stored in the data base. On problem completion the data base can be interrogated using a stylized report generator program to compose a user-oriented description of the final design. It should be noted that the data base contains all interprogram data and that the flow of all data to or from the data base-and the program elements is completely controlled by the executive program.

When a program element is being executed, there is no way that program is "aware" of the fact that it is performing one analysis function in an
overall vehicle simulation. This is a key element in the modular structure of the ODIN/RLV. It insures that the analyses function of each program element in the library can be examined independently of the other analysis programs. Without this feature examination of the complex anterconnections between analysis modules would become extremely complex and, in view of the ODIN/RLV's system size, of doubtful validity. It should be noted that the ODIN system thus provides much more capability than the simple OVERLAY system of building large scale computer codes. In fact, many of the programs in the ODIN system are themselves quate lengthy.

The manner in which the sequence of program elements to be executed is defined is outlined in Section 2.2. The manner in which interprogram information is passed between program elements and the data base via the ODIN/RLV executive program is outlined in Section 2.4.

FIGURE 2.3-1 ASSEMBLY OF THE ODIN/RLV PROGRAM SYSTEM

FINAL OPTIMUM DESIGN

FIGURE 2.3-2 SCHEMATIC OF A VEHICLE DESIGN OPTIMIZATION SIMULATION 2. 5-4

2.4 SEQUENTIAL INDEPENDENT PROGRAM EXECUTION

Usually the submission of a computation to a digital computer involves the execution of a single program with possible repetitive evaluation of successive data cases. In the ODIN/RLV system, submission of a computation may involve the sequential execution of many programs to obtain a complete vehicle design synthesis. The sequential execution of many loops through these programs may be required to obtain an optimal design.

2.4.1 Sequential Execution of More Than One Program

On any digital computer the execution of a single program is governed by a set of control cards which provide instructions to the computer system for compiling and/or loading the specified program. These control cards, the Job Control Language or JCL cards, are peculiar to each computer system and installation. The JCL cards for any computer or installation rarely employ a user-oriented format. For example, Table 2.4-1 presents typical JCL cards for an elementaxy Fortran complation and execution of the same program on the CDC 6000 series computer, the IBM 360 series computer, and the UNIVAC 1108. To the user, the JCL, unlike the higher level Fortran language, tends to be incomprehensible. In the remannder of this section details of the JCL cards will be omitted. Collectively, any group of JCL cards necessary to execute a given program (program X) will be referred to as "the JCL to execute program X," and "the JCL cards to comple program X " (JCL $\mathrm{X}_{\mathrm{X}}^{\mathrm{E}}$ and $J C L L_{X}^{C}$.

In actuality to compile and execute the application program X several independent programs must be executed in addition. These other independent programs are all part of the computer operating system. System programs of this type bear a similar relationship to the computer operating system as do the independent technology program elements to the ODIN/RLV executive program, Figure 2.4-1. This analogy forms the basis of the ODIN/RLV:
"The operating system employs independent system utility programs to compile and execute a given application program. The ODIN/ RLV' program system employs independent application programs to synthesize a vehicle design."

In this sense, the ODIN/RLV is a newly developed higher order operating system which carries out the analysis function rather than carrying out the program compile and execution function.

Now consider the problem of sequential execution of two applications programs. This can readily be achieved on almost any digital computer. Symbolically,

$$
J C L_{(A+B)}^{E}=J C L_{A}^{E}+J C L_{B}^{E}
$$

where the operator + indicates that the JCL for program B is simply placed behind that of program A and that the operating system operates on the combined JCL cards, JCLE ${ }_{(A+B)}$ •
In general using this notation

$$
J \mathrm{JLL}_{(\mathrm{A}+\mathrm{B}+\ldots+\mathrm{N})}^{\mathrm{E}}=\mathrm{JCL}_{\mathrm{A}}^{\mathrm{E}}+\mathrm{JCL}_{\mathrm{B}}^{\mathrm{E}}+\ldots+\mathrm{JCL}_{\mathrm{N}}^{\mathrm{E}}
$$

That is, an arbitraxy number of applications programs can be sequentially executed on practically any major digital computer.

This factor forms one basis of the ODIN/RLV; however, in the ODIN/RLV three additional capabilities are required:
a. The sequential JCL cards sets must be controlled by readily understood higher order commands in view of the close requirement for designer interaction. This is achieved by creating an ODIN/RLV Job Control Language which employs commands such as

$$
\mathrm{JCL}_{\mathrm{A}}^{\mathrm{E}} \equiv \text { EXECUTE } \mathrm{A}
$$

A readily understood command to the computer, therefore replaces commands such as those in Table 2.4-1.
b. The selected sequence of program JCL cards must be automatically capable of repetition and revision of the sequence as the problem progresses. Symbolically, the following operation must be performed:

$$
\begin{aligned}
\sum_{i=1, M}\left(J C L_{(A+B+\ldots+N)}^{E}\right)= & J C L_{A}^{E}+J C L_{B}^{E}+\ldots+J C L_{N}^{E} \\
+ & J C L_{A}^{E}+J C L_{B}^{E}+\ldots+J C L_{N}^{E} \\
& \cdot \cdots \cdot \cdots \cdot . \cdot \\
& +J C L_{A}^{E}+J C L_{B}^{E}+\ldots+J C L_{N}^{E}
\end{aligned}
$$

where M rows of JCL are to be represented on the right hand side. This capability has been achieved by creating the ability to loop through the ODIN/RLV JCL cards using additional user criented control commands as illustrated for a five program sequence repeated "twenty times in Table 2.4-2. The additional commands are

1. DESIGN POINT I
2. LOOP TO POINT I

IF \qquad . LT. \qquad
which defines Fortran-like instructions for control of the design simulation.
c. The ability to select alternative program execution sequences based on design dependent logic. For example, the symbolic operation

$$
\left.\begin{array}{l}
J C L_{A}^{E} ; M \leqslant \bar{M} \\
J C L \\
B
\end{array}\right] M \leqslant \bar{M}
$$

This type of operation can readily be carried out with commands of Table 2.4-2 as follows
-•••••••••
LOOP TO POINT MA
IF M.GT.MBAR
EXECUTE B
LOOP TO POINT MB
DESIGN POINT MA
EXECUTE A
DESIGN POINT MB

- •

In general, both M and MBAR may be defined in the JCL as in Table 2.4-2 or alternately either may be a variable computed by any of the application programs. In the latter case such variables must be defined in the data base as described in Section 2.5.

ORIGINAL PAGE IS OF POOR QUALITY

2.4.2 Topology of the General Design Synthesis Calculation

In general the synthesis of military flight vehicles involves a complicated system of analysis loops for satisfying a variety of aerodynamic and propulsive sizing and matching constraints. It is not possible or necessarily desirable to rigidly define the topology of the system of computational loops in the ODIN/RLV. Instead, the analysis sequence to be performed is defined by the ODIN/RLV job control language. This technique allows the vehicle designer complete freedom in specifying the computational sequence; no limit is placed on the complexity of the analysis.

Any number of loops can be created using the LOOP and conditional IF control cards and the associated DESIGN control card. Using the symbolic notation

$$
\mathrm{IF}_{\mathrm{T}}^{\mathrm{S}} \rightarrow \mathrm{~A}
$$

to indicate if the statement S is true go to A, it is apparent that series loops, nested iterative loops, and combined series and nested loops can be constructed. For example:

a. SINGLE LOOP

c. TWO NESTED LOOPS

d. TWO SERIES LOOPS AND
TWO NESTED LOOPS

Any number of DESIGN POINTS and IF statement ODIN/RLV control cards may be introduced into the computational sequence. Computational time will rise in proportion to the complexity of the computational

$2.4-4{ }^{\circ}$

sequence topology, however. The IF tests employed encompass the standard set of six tests in Fortran; although the form of the ODIN/RLV job control language test differs in form to that of Fortran. The six tests are

IF V1.LT.V2 ; \quad IF (V1 < V2)
IF V1.GT.V2 ; IF (V1 > V2)
IF V1.LE.V2 ; $\quad \mathrm{IF}(\mathrm{V} 1 \leqslant \mathrm{~V} 2)$
IF V1.GE.V2 ; $\quad \mathrm{IF}(\mathrm{V} 1 \geqslant \mathrm{~V} 2)$
IF V1.EQ.V2 ; $\quad \mathrm{IF}(\mathrm{V} 1=\mathrm{V} 2)$
IF V1.NE.V2 ; \quad IF (Vl $\neq \mathrm{V} 2)$

As noted previously V1 and V2 are two variables constructed in the ODIN/MFV job control language or constructed within any independent program in the synthesis and passed to the data base.

2.4.3 Communication with the Data Base

The data base is an organized system of variable names and the corresponding variable values which are maintained by the ODIN/RLV executive program. Nominally up to 5000 variable names and values may be stored in the data base. This number of variables may be modified by redefining the data base size and recompiling the executive program as discussed in Reference 1.

The data base file of information is dynamically constructed by the executive program as the ODIN/RLV simulation proceeds. The file is resident on disc or tape at the user's option. Construction of the data base involves the following tasks:
a. Search to see if each variable name encountered has been allocated a place in the data base
b. If not define the optimal location in the data base for the variable name and its value
c. Update the variable value
d. Retrieve the variable by name and the associated value.

For example, suppose the vehicle's exposed wing aspect ratio is stored under the name WEXPAR. Let WEXPAR be computed by program A and subsequently used by program B. Schematically, this is illustrated in Figure 2.4-2.

Any number of subsequent programs may access WEXPAR or alternately update this variable. In any given simulation the location of WEXPAR will not change within the data base. In actuality, the programs A, B, C, and D in Figure 2.4-2 do not access the data base directly. A1l access to and from the data base is controlled by the ODIN/RLV executive program, as in Figure 2.4-3.

2.4.4 Data Base Information Transfer System

Data base information transfer is based on a rapid by-name search. Search speed is obtained by the use of "hash" and"collision" methods, Appendix I-A. This approach is more efficient than the more usual linear sequential search which starts with the first name in the table and proceeds sequentially until the desired name is located and the corresponding value is retrieved.

The hash and collision data transfer systen operates in the following idealized manner:

1. Take the variable name, say WINGAR, and treat the binary representation of this word as an integer;
2. Find the remainder when the word integer representation is divided by the number of elements in the data base. This is equivalent to the Fortran MOD function which is a very rapid machine operation;
3. Use the remainder as the nominal location of the variable within the data base;
4. Check to see if the location is used since more than one variable name may reduce to this location. If this location has already been used for another variable name store the new variable in the next vacant location and note this location in the data base row originally searched. Figure 2.4-3, line A, illustrates this process with one collision. Line B illustrates a double collısion for a name which reduces (hashes) to the same location as B.
5. The retrieval process operates in the same manner. The name is hashed to a given nominal retrieval location. If that location contains the wrong name, the specified alternate location is searched for the desired name, etc. until the desired name is found and the variable value is retrieved.

In numerical experiments with a 2000 word data base filled approximately 75 per cent, it was found that the average name can be retrieved in less than two attempts (fetches). This would compare with 1000 fetches using a linear search for information retrieval. In practice using the ODIN/RLV approximately 9000 values per second are being retrieved on the CDC 6600.
It should be noted that the above description is idealized. Efficient use of core space within the computer requires a more sophisticated packing of information in the data base than the three colum diagram of Figure 2.4-4. This is particularly true for arrays which, by definition, have one name but many values. Details of the actual data base structure are provided in Referencel.

2.4.5 Modifying Program Input to Communicate with the Data Base

Development of the ODIN/RLV program system is based on the principle that independent technology programs without significant modification can be made to communicate with each other through a data base. By following this principle, a method of communcating data base information into each program has been devised. No modification to the program input data code is required by this method. The input data prepared by the design team, however, is modified to indicate data base inputs. The modified data input does not affect the technology program; for the ODIN/RLV executive program inspects the data input prior to execution of the technology program and combines the required data base information with the basic program inputs. The executive program then automatically prepares a file containing the modified input format for the technology program and executes that program in the nominal manner. This is illustrated schematically in Figure 2.4-5.

It should be noted that the technology program may still be executed in the normal manner as a stand-alone program independent of the ODIN/RLV system.

2.4.5.1 Data Base Communication through Input

Data base information is entered into the technology program input by means of the special delimiters " ". Any data base variable name may be entered between the delimiters. The executive program will replace the variable name by its value and rewrite a normal card image to replace the modified input cards. The value is placed within the closed region which includes the delimiters. Therefore, namelist-like inputs, rigid format input, and special input procedures can be accomodated by the general input modification.

Examples:
A. NAMELIST

B. RIGID FORMAT

C. SPECIAL INPUT (USED IN ATOP II AND NSEGII, SECTIONS 7.2 and 7.3)

AMASS $=$ "SUNMAS "
$\operatorname{ATABO1}(1)=" A E R O T B "$

2.4.5.2 Algebraic Operations in Data Base Input

The ODIN/RLV system permits the algebraic manipulation of data base information on the modified input cards. Complete details are presented in Appendix I. Some illustrative examples follow.

Examples:

A. CHANGE OF UNITS

AREA $=$ "AREAFT * 144.0"
VKNOTS $=$ "VFPS * 0.593"
This is useful when independent programs employ differing unit systems.
B. VARIABLE COMBINATION

AREA $={ }^{n}$ BREDTH $*$ WIDTH/2. $0^{\prime \prime}$
AMASS $=$ "VOLUME * RHO"
A general ability to perform arithmetic operations involving up to ten operations is available.

The Fortran arithmetic operation precedence convention is not followed. Details are contained in Appendix I, Section 3; basıcally the calculation proceeds strigtly from left to right. Calculations can be chained by operations such aśs

$$
\begin{aligned}
& A=" B / C+D-E " \\
& F=" A+F . ., \text { etc. } "
\end{aligned}
$$

Thus, an unlimited arithmetic manipulation capability is present in the ODIN/RLV input procedure.

2.4.5.3 Compiling at the Input Level

When extensive computations are required at the input level or computations involving higher order functions are required, they may be placed in a new program element and compiled at input time. A special ODIN/RLV control card provides this capability. The control card is

EXECUTE COMPILER
This card is followed by the new program which is any normal Fortran program. If desired, the program may include its own subroutine trees. The Fortran source decks present in the input stream are followed by the second ODIN/RLV control card

EXECUTE MYPROGRAM

MYPROGRAM is the file name of the compiled program. The methods of Section 2.3.1 can be used to create a design point structure which insures that the new program is only compiled once and that the compiled program is executed on successive passes through the input stream; for example

```
J=0
...........
...........
LOOP TO POINT COMPIL
IF J.NE.0
EXECUTE COMPILER
    Fortran Source Deck
J=1
DESIGN POINT COMPIL
EXECUTE MYPROGRAM
...........
............
```

etc.

2.4.6 Communicating Program Output to the Data Base

To communicate selected output of any program to the data base, one modification is required in the technology program. This occurs at the program exit point or points. The modification consists of writing out a Namelist file containing the information to be transferred to the data base. Output file unit is nominally unit 77. For example, to transfer the variables ANAME, BNAME, CNAME, I1, I2, JNAME and these variable values to the data base the following modification is required at the exit point.

NAMELIST/DBOUT/ANAME, BNAME, CNAME, I1, I2, JNAME
WRITE (77,DBOUT)

The ODIN/RLV executive program interrogates unit 77 after the execution of each technology program to find variable names and values to be entered into the data base. These names and values are entered into the data base as described in Section 2.4.5. A schematic of the output of information to the data base is presented in Figure 2.4-6.

REFERENCES:

1. Glatt, C. R., Hague, D. S., and Watson, D. A., ODINEX: An Executive Computer Program for Lonking Independent Programs, NASA CR-2296, September 1973.

TABLE 2．4－1．TYPICAL JCL TO COMPILE AND EXECUTE A SINGLE PROGRAM ON SEVERAL COMPUTERS

TABLE 2.4-2 USE OF THE ODIN/RLV JOB CONTROL LANGUAGE TO LOOP THROUGH TWENTY SUCCESSIVE EXECUTIONS OF FIVE SEQUENTIAL PROGRAMS

$\sum_{i=1,20}\left(\mathrm{JCL}_{\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}))_{i}^{E}}^{\mathrm{E}}=\begin{array}{l}\text { COUNT = } 0 \\ \text { DESIGN POINT 1 } \\ \text { COUNT = COUNT + } 1 \\ \text { EXECUTE A } \\ \text { EXECUTE B } \\ \text { EXECUTE C } \\ \text { EXECUTE D } \\ \text { EXECUTE E } \\ \text { LOOP TO POINT I } \\ \text { IF COUNT .LT. } 20 \\ \text { END } \\ \hline\end{array}\right.$

FIGURE 2 4 -1. ANALOGY BETWEEN OPERATING SYSTEM AND ODIN/RLV SYSTEM
2.4-16:

FIGURE 2.4-2. PROGRAM ACCESS TO DATA BASE

FIGURE 2.4-3. EXECUTIVE PROGRAM CONTROLS ACCESS TO DATA BASE

FIGURE 2.4-4. IDEALIZED DATA BASE INFORMATION RETRIEVAL SYSTEM

[^0]

- EXECUTIVE program READS UNIT 77

FIGURE 2.4-6. SCHEMATIC OF OUTPUT OF INFORMATION TO DATA BASE

2.5 SUMMARY OF THE ODIN/RLV SYSTEM

The ODIN/RLV System provides a design team with the following capabilities:

1. A basic program library of technology programs for analysis of reusable launch vehicle characteristics
2. The ability to rapidly include additional technology programs in the library
3. A means for automatically transferring and updating information between any technology programs in the library
4. The ability to define an arbitrary sequence of calculations for the analysis of reusable launch vehicle characteristics using the program library including computational loops
5. An automated reusable flight vehicle optimization capability

It follows that the ODIN/RLV has the ability to simulate entirely within the computer the reusable launch vehicle preliminary design procedures now employed in industry. This ability wall require the ODIN/RLV design team to have command of all disciplines entering into xeusable flight vehicle design.

Description of the ODIN/RLV program elements presented by technology area follow in the next sections. It should be noted that the ODIN system is not specifically limited to RLV simulations. Any computation involving more than one computer program can rapidly be simulated in the ODIN system.

SECTION 3
GEOMETRY

The ODIN/RLV geometry program modules provide three-view, orthographic, and perspective projection graphical descriptions of the vehicle for off-line or cathode ray tube plotting devices. The geometry modules also interface directly with several of the detailed aerodynamic programs of Section 4. Three programs provide the ODIN/RLV geometry capability:

> 1. PANEL - provides a simplified input for specifying a system of quadrilateral elements which cover the vehicle's surface
2. IMAGE - displays the panelled vehicle surface computed by PANEL on plotting devices
3. LRCACP - is an alternate aircraft configuration surface description and plot package

The first two geometry program modules are closely based on the Gentry hypersonic aerodynamics program, References 1 and 2, geometry package. The third program is a Langley Research Center developed plotting package which interfaces with aerodynamics programs also developed at Langley.

Construction of separate programs for the geometry definition and graphical displays provides a generalized vehicle geometric definition and graphical display available to all technologies. Considerable extension to the computer graphics capability is now being undertaken at Langley Research Center (Contract NAS 1-12977) and the Lyndon B. Johnson Space Center (Contract . i LS 9-13584).

TABLE OF CONTENTS FOR SECTION 3.1, PROGRAM PANEL

Section Page
3.1.1 Approach Employed in PANEL 3.1-2
3.1.2 The Surface Element Geometry Method 3.1-3
3.1.3 Parametric Cubic 3.1-6
3.1.4 Ellıptic Cross Section Method 3.1-9
References 3.1-9
Illustrations 3.1-10

3.1 PROGRAM PANEL: A COMPUTER CODE FOR GENERATING

A PANELED AEROSPACE VEHICLE SURFACE DEFINITTION

Program PANEL is a general purpose external geometry definition program
developed for use in large scale preliminary design simulations. The
PANEL program consists essentially of the geometry subroutines from the
Reference 1 hypersonic aerodynamics program converted to the form of an
independent program. Complete analytic details are available in Ref-
erence 1.
The independent PANEL program produces a vehicle surface definition in the form of a sequence of quadrilateral panels defined by their four corner points. The resulting corner point data is acceptable as input to the original arbitrary hypersonic aerodynamic program of Reference 1. Figure 3.1-1 illustrates the type of surface paneling which is employed in the progran. The data may be readily converted to the form required by other technology programs in the ODIN/RLV system. This will require the construction of appropriate interface routines. Alternately, parallel scaling of the PANEL geometry and other program geometric inputs may be employed through the data base.

The program accepts a variety of input data varying from detailed definition of induvidual panel corner points to a selection of generalized two- and three-dimensional shapes. The two-dimensional section data includes circular, elliptical, and arbitrary cross section definition. A bivariate cubic surface element is included which allows relatively large sections of the vehicle surface to be described by a small amount of input data. With the cubic surface element the input data for the vehicle section is mathematically fitted with boundary matched cubic functions. The cubic function is then reduced to smaller distrıbuted quadrilateral panels.

The unit outward normal vector to each quadrilateral panel is also computed. Since the quadrilateral corner points do not necessarily lie in a plane, a "mean unit normal" is computed. This mean normal is defined by the condition that it is normal to both diagonals of the quadrilateral element and is positioned at the centroid of the mean panel surface.

Some typical aerospace vehicles which have been reduced to quadratic element surface representations are presented in Figure 3.1-2. This figure is reproduced from Reference 1. The PANEL program 1s outlined below. A more detailed description of the progran is contained in Reference 2.

3.1:1 Approach Employed in Program PANEL

This section discuisses a collection of techniques suitable for the design of fairly arbitrary geometric solid shapes within the computer: The geometric definition of an aerospace vehicle fuselage, wings, and control surfaces requires the description of a series of surfaces of considerable subtlety and complexity. The geometric definition of such a vehicle is traditionally carried out by manual projective geometry procedures. These procedures are very laborious and entail a large number of graphical iterations in order to assure that the surfaces are
a. Completely described
b. Smooth
c. Satisfy the internal packaging constraints

These graphical iterations involve construction of consistant water lines, buttock lines, and sections by manual methods. The mathematical basis for the surfaces in program PANEL have been devised to automate the surface design process itself. From the designer's standpoint the surface definition process is natural and fairly easy to use. Yet, these definitions provide a geometric description which can be interfaced wath other ODIN/RLV technology programs in a unified manner by consistant scaling through the data base.

The surface defining mäthematics of Reference 1 are straightforward but time consuming for hand calculation. However, the required calculations are rapidly performed on a large scale digital computer.

3.1.2 The Surface Element Geometry Method

The basic geometry method used by the PANEL program is the surface element or quadrilateral method developed in Reference 1. The coordinate system employed is a right handed Cartesian system as shown in Figure 3.1-3. The vehicle is usually positioned with its nose at the coordinate system origin and with the length of the body stretching in the negative X direc'tion. The body surface is represented by a set of points on the body surface. A set of four related points define a quadrilateral panel which locally approximates the vehicle surface. If all such quadrilateral panels are drawn, the vehicle surface shape is revealed as in Figures 3.1-1 and 3.1-2.

It can be seen that different areas of a vehicle require a different organization and spacing of surface points for accurate representation. Each such area or organization of elements is called a section, and each section is independent of all other sections. The division of a vehicle into a given set of sections may also be influenced by another consideration; for example, aerodynamic calculations may obtain the force contributions of each section separately, possibly using different calculation methods.

The geometrical model employed in PANEL is outlined below; more complete details may be obtained from References 1 and 2.

The $i^{\text {th }}$ panel corner point coordinates in the reference coordinate system are given by

$$
\begin{equation*}
\mathrm{p}_{\mathrm{k}}^{\mathrm{i}}=(\mathrm{x}, y, z)_{k}^{\mathrm{i}} ; \mathrm{k}=1,2,3,4 \tag{3.1.1}
\end{equation*}
$$

The two diagonal vectors $\overrightarrow{\mathrm{T}}_{1}$ and $\overrightarrow{\mathrm{T}}_{2}$ components are given by

$$
\begin{array}{lll}
\mathrm{T}_{1}=x_{3}-x_{1}^{i} & T_{1_{y}}=y_{3}^{i}-y_{1}^{i} & T_{1_{z}}=z_{3}^{i}-z_{1}^{i} \tag{3.1.2}\\
T_{2 x}=x_{4}^{i}-x_{2}^{i} & T_{2 y}=y_{4}^{1}-y_{2}^{i} & T_{2}=z_{4}^{i}-z_{2}^{i}
\end{array}
$$

An "average" outward normal unit vector to the panel can be obtained from

$$
\begin{equation*}
\overrightarrow{\mathrm{n}}=\left(\vec{T}_{2} \times \overrightarrow{\mathrm{T}}_{1}\right) /|N| ;|N|=\left|\vec{T}_{2} \times \overrightarrow{\mathrm{T}}_{1}\right| \tag{3.1.3}
\end{equation*}
$$

The components of $\overrightarrow{\mathrm{n}}$ are

$$
\begin{align*}
& \left.n_{x}={\stackrel{:}{(} T_{2}} T_{1_{z}}-T_{1_{y}} T_{2_{z}}\right) /|N| \\
& n_{y}=\left(T_{1_{x}} T_{2_{z}}-T_{2_{x}} T_{1_{z}}\right) /|N| \\
& n_{z}=\left(T_{2_{x}} T_{1_{y}}-T_{1_{x}} T_{2_{y}}\right) /|N| \tag{3.1.4}
\end{align*}
$$

Specifying a point in the panel completely defines the panel plane. This point is taken as the point whose coordinates, $\bar{x}, \bar{y}, \bar{z}$ are the averages of the coordinates of the four input points.

$$
\begin{align*}
& \bar{x}=\frac{1}{4}\left(x_{1}^{i}+x_{2}^{i}+x_{3}^{i}+x_{4}^{i}\right) \\
& \bar{y}=\frac{1}{4}\left(y_{1}^{i}+y_{2}^{i}+y_{3}^{i}+y_{4}^{i}\right) \\
& \bar{z}=\frac{1}{4}\left(z_{1}^{i}+z_{2}^{i}+z_{3}^{i}+z_{4}^{i}\right) \tag{3.1.5}
\end{align*}
$$

The orıginal panel defining comer points are now projected parallel to \bar{n} onto the panel plane. The resulting quadrilateral completely defines the local vehicle surface representation. It can be shown that all original panel defining points are equidistant from the approximating panel.

Defining the magnitude of the common projection distance by d, the coordinates of the panel corner points in the reference coordinate system are given by

$$
\begin{align*}
& x_{k}^{\prime}=x_{k}^{i}+n_{x} d_{k} \\
& y_{k}^{\prime}=y_{k}^{i}+n_{y} d_{k} \ldots k=1,2,3,4 \\
& z_{k}^{\prime}=z_{k}^{1}+n_{z} d_{k} \tag{3.1.6}
\end{align*}
$$

A local panel element coordinate system is now constructed by defining three mutually perpendicular unit vectors. The unit outward normal vector is taken as one of the unit vectors. One remaining vector is taken as a unit vector \vec{E}_{1} rurallel to the original diagonal vector T_{1}. The third unit vector which must, by definition, be normal to \bar{n} and \vec{t} is defined by $\vec{t}_{2}=\vec{n} \times \vec{t}_{1}$. The vector $\vec{\xi}_{1}$ defines a. or ξ axis; $\vec{\epsilon}_{2}$ defines the y or η axis, and n defines the z or ζ axis of this coordinate system.

To transform the coordinates of points and the components of vectors between the reference coordinate system and the element coordinate system, a transformation matrix is required. The elements of this matrix are the components of the three basic unit vectors, $\overrightarrow{\mathfrak{t}}_{1}, \overrightarrow{\mathfrak{t}}_{2}$, and $\overrightarrow{\mathrm{n}}$. Define

$$
\begin{array}{lll}
a_{11}=t_{1} & a_{12}=t_{1} & a_{13}=t_{1} \\
a_{21}=t_{2 x} & a_{22}=t_{2 y} & a_{23}=t_{2} \\
a_{31}=n_{X} & a_{32}=n_{y} & a_{33}=n_{z} \tag{3.1.7}
\end{array}
$$

The transformation matrix is

$$
[A]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{3.1.8}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

To transform the coordinates of points from one system to the other, the coordinates of the origin of the element coordinate system in the reference coordinate system are required. Let these be noted x_{0}, y_{0}, z_{0}. Then, if a point has coordinates $x^{\prime}, y^{\prime}, z^{\prime}$ in the reference coordinate system and coordinates x, y, z in the element coordinate system,

$$
\left[\begin{array}{l}
x \tag{3.1.9}\\
y \\
z
\end{array}\right]=[A]\left[\begin{array}{l}
x^{\prime}-x_{0} \\
y^{\prime}-y_{0} \\
z^{\prime}-z_{0}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=[A]\left[\begin{array}{rr}
x & x_{0} \\
y & +y_{0} \\
z & z_{0}
\end{array}\right]
$$

The corner points can be transformed into the element coordinate system in the above manner. These points have coordinates $x_{k}^{k}, y_{k}^{\prime}, z_{k}^{\prime}$ in the reference coordinate system. Their coordinates in the element coordinate system are denoted by ξ_{k}^{*}, η_{k}^{*}, 0 . They have a zero, z, or ξ coordinate in the element coordinate system because they lie in the plane of the element. This is illustrated in the diagram below. The origin of the element coordinate system is now transferred to the centroid of the area of the quadrilateral.

3.1.3 Parametric Cubic

A second technique for describing three-dimensional curved surfaces is provided within the program. This is a mathematical surface-fit technique identified as the parametric cubic method or cubic patch method. The method is adopted from the formulation given by Coons of MIT, Reference 3. 'In' this method a vehicle shape is also divided into a number of sections or patches. The size and location of each patch depends upon the shape of the surface. Only the surface conditions at the patch comer points are required to completely describe the surface enclosed by the boundary curves of the patch. The basic problem is the determination of all the information required at these corner points, i.e., the surface equation requires corner point surface derivatives with respect to the parametric variables rather than the X, Y, Z coordinates. This has been solved by the use of additional points along the boundary curves.

The geometrical representation of a surface patch is illustrated below.

The basic surface-fit equations and thear derivatives are presented in Reference 1 and are outlined in the diagram above.

To summarize, each set of four points is converted into a plane-quadrilateral element. The normal to the quadrilateral is taken as the cross product of two diagonal vectors formed between opposite element points. The order of the input points and the manner of defining the diagonal vectors is used to insure that the cross product gives an outward nommal to the body surface. The next step is to define the plane of the element by determining the averages of the coordinates of the original four corner points. These points are then projected parallel to the normal vector into the plane of the element to give the corners of the plane quadrilateral. The corner points of the quadrilateral are equidistant from the four points used to form the element. Additional parameters which may be required for subsequent aerodynamic force calculations, quadrilateral area and centroid, are then calculated.

When using this method, the corner points of the panels are input individually for each panel or in groups of individual panels. This is illustrated in Figure 3.1-4. The points on the body surface are input in rows and columns. The number of panels in the whole section is defined by the number of rows of panels times the number of panels per row. The orientation of the geometric section is optional but two rules must be followed regardless of the orientation:

1. Points along a row are input sequentially upward
2. Rows of points are input sequentially to the right

These rules, illustrated in Figure $3.1-4$ apply whether the points are input streamwise, chordwise, or along cross section lines or any other arbitrary orientation.

The cubic patch geometry input option is provided as an alternate method for description of arbitrary shapes. It serves a similar purpose as the surface element input method. In the panel corner point input method, a vehicle's section is described by a large number of surface points organized in panel fashion. In the cubic patch method only points along the boundaries of a patch are input to the program, and the distributed surface points required for the subsequent panel calculations are determined by the program.

The basic features of the cubic patch method are that

1. fewer input points are required to describe a surface
2. the generated panel size is controlled by two input parameters which may be changed to meet the requirements of the problem.

The input consists of coordinate points along each of the four boundaries of a patch. The program calculates the coefficients for a mathematical surface fit equation developed in Reference 1 to provide a description of the interior surface of the patch. This surface is then converted into exactly the same form as the surface panel input data of Section 3.1.2. The panel data generated can be merged with other panel data generated before or after it by any available method.

Figure 3.1-5 illustrates how a section is described by this method. Each of the four boundaries is identified in this figure: two in the w direction and two in the u direction. The user orients the model of the vehicle so that the Number 1 boundary is to the left and the Number 2 boundary is to the right. The order of the points is from the bottom to the top of the patch. Note that a point must be included outside the patch at either end of the boundary to give proper slopes at the corner points. Boundaries 3 and 4 are loaded from left to right. A different number of points may be used to describe each boundary up to a maximum of 20 for each.

Each boundary curve must be extended by one point on each end to permit the computation of end point derivatives. The second point and the next to the last point on each curve must be common to the adjacent curves, as illustrated in Figure 3.1-5. The program generates equally spaced panels based on arbitrary numbers of rows and columns of panels selected by the user.

NPTS - number of points in each row
NSETS - number of rows or sets of points
XA - array of x points (usually negative) for the current row
YA. - array of y points for the current row
ZA - array of z points for current row

LAST - status flag for merging sections
$=0$, this section will be merged with the next to form
a single section
$=3$, this section will not be merged with the next
Note that namelist input parameters which are unchanged from previous values need not be input. Therefore, if the arrays of x points do not change from row to row, for example, they need not be input.

3.1.4 Elliptic Cross Section Method

This method allows the user to generate panel information for partially or completely elliptical cross sections. The surface of the section is described by an ellipse centered at some point off the reference axis and defined by the major and minor axis as shown in Figure 3.1-6. The portion of the reference ellipse used to define the body section is defined by the angular difference between θ_{0} and θ_{L} measured from the negative z axis. A sequence of two or more sections describe a surface. The PANEL program generates the panel geometry for an arbitrary number of sections. Each Section can be equally divided into an arbitrary number of diversions.

REFERENCES:

1. Hague, Donald S. and Glatt, C. R., Optımal Design Integration of Military Flight Vehicles, Section 4.1 'Hypersonic Arbitraxy Body Aerodynanic Computer Program," AFFDL-TR-72-132, December 1972.
2. Hague, D. S. and Glatt, C. R., Optimal Design Integration of Milıtary Flight Vehicles, Section 3.1, "A Computer Code for Generating Panelled terospace Vehicle Surfaces," AFFDL-TR-72-132, December 1972.
3. Coons, Steven A., Surfaces for Computer-Aided Design of Space Forms, MAC-TR-41, Massachusetts Instatute of Technology, June 1967.

FIGURE 3.1-1. TYPICAL QUADRILATERAL ELEMENT REPRESENTATION OF A VEHICLE SURFACE IN PROGRAM PANEL.

FIGURE 3.1-3. REFERENCE COORDINATE SYSTEM

1. points along a row are input SEQUENTIALLY UPWARD
2. ROWS ARE INPUT SEQUENTIALIY TO THE RIGHT

- Corner potints

FIGURE 3.1-4. RULES FOR CORNER POINT GEOMETRY INPUT

FIGURE 3.1-5. INPUT DESCRIPTION FOR THE CUBIC PATCH TECHNIQUE

$\varsigma \tau-\tau \cdot \varepsilon$
FIGURE 3.1-6. GEOMETRY DEFINITION FOR ELLIPTIC METHOD

TABLE OF CONTENTS EFOR PROGRAM IMAGE, SECTTION 3.2

Section Page
Introduction 3.2-1
3.2.1 Method for Obtaining an Image 3.2:1
References 3.2:4

3.2 PROGRAM IMAGE: A COMPUTER CODE FOR DISPLAY OF THREE-DIMENSIONAL OBJECTS

Program IMAGE employs the detailed panelled representation of a threedimensional object to provide an on-line or off-line display of the object's image. The detailed paneling of any three-dimensional object can be accomplished through the PANEL program of Section 3.1. Programs PANEL and IMAGE are completely compatible with each other. On-line displays are presented on cathode ray tube devices; off-line displays may be obtained on CALCOMP, COMPLOT, or SC4020 plotting devices. The three-dimensional image of an object may be rotated to any orientation relative to the viewer. By running a sequence of cases in which the viewing aspect changes the image may be rotated for inspection purposes. By forming the head on, side view, and planform views of the vehicle, a three-view is obtained.

The views displayed may include hidden lines which the viewer cannot see directly. Alternately, on convex objects the hidden lines may be deleted. On non-convex objects only those lines which represent panels whose unit normal faces away from the viewer may be omitted.

It should be noted that program IMAGE is based on the graphics package of the Reference 1 program and is compatible with the panelled geometry model of Reference 2. The program has been extended to incorporate display capability on CALCOMP, COMPLOT, and certain cathode ray tube displays at installations which have the necessary software and hardware for these devices during the ODIN study. The analytic program basis is unaltered by the type of display device being employed.

3.2.1 Method for Obtaining an Image

Each point on the surface is described by its coordinates in the body reference coordinate system.

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

The body reference coordinate system is assumed to be a conventional righ handed Cartesian system as defined in Section 3.1; for example

To create the image each surface point on the body must be rotated to the desired viewing angle and then transformed into a coordinate system in the plane of the paper. With zero rotation angles the body coordinate system is coincident with the fixed system in the plane of the paper.

The rotations of the body and its coordinate system to give a desired viewing angle are specified by a yaw-pıtch-roll sequence (ψ, θ, ϕ). This rotation is given by the following relationship:

$$
\left[\begin{array}{l}
X \tag{3.2.1}\\
Y \\
Z
\end{array}\right]=\left[\begin{array}{lll}
\phi] & {[\theta]} & {[\psi]}
\end{array}\left[\begin{array}{l}
X_{0} \\
Y_{0} \\
Z_{0}
\end{array}\right]\right.
$$

Where the rotation matrices are

$$
\begin{align*}
{[\psi] } & =\left[\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right] \tag{3.2.2}\\
{[\theta] } & =\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right] \tag{3.2.3}\\
{[\phi] } & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right] \tag{3.2,4}
\end{align*}
$$

or

$$
\left[\begin{array}{l}
X \tag{3.2.5}\\
Y \\
Z
\end{array}\right]=[E]\left[\begin{array}{l}
X_{0} \\
Y_{0} \\
Z_{0}
\end{array}\right]
$$

where

$$
\begin{equation*}
[E]=[\phi][\theta][\psi] \tag{3.2.6}
\end{equation*}
$$

Since each point on the surface is given by its coordinates in the X, Y, Z system, its position in the fixed coordinate system (X_{0}, Y_{0}, Z_{0}) may be found by inverting the above process.

$$
\left[\begin{array}{c}
X_{0} \tag{3.2.7}\\
Y_{0} \\
Z_{0}
\end{array}\right]=[E]^{-1}\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

Carrying out this operation

or

$$
\begin{align*}
& X_{0}=X(\cos \theta \cos \psi)+Y(-\sin \psi \cos \phi+\sin \theta \cos \psi \sin \phi)+Z(\sin \psi \sin \phi+\sin \theta \cos \psi \cos \phi) \\
& Y_{0}=X(\cos \theta \sin \psi)+Y(\cos \psi \cos \phi+\sin \theta \sin \psi \sin \phi)+Z(-\cos \psi \sin \phi+\sin \theta \sin \psi \cos \phi) \tag{3,2.11}\\
& Z_{0}=X(-\sin \theta)+Y(\cos \theta \sin \phi) \tag{3.2.10}
\end{align*}
$$

These last two equations are used to transform a given point on the body (X, Y, Z) with a specified set of rotation angles (ψ, ϕ, θ) into the plane of the paper (the Y_{0}, Z_{0} system). With the appropriate SC4020, CALCOMP, COMPLOT, or cathode ray tube library subroutines, these data can be plotted, and related points can be connected by straight lines.

In the PANEL program of Section 3.1 the actual surface of an object has been replaced by a set of surface approximating panels. The panel characteristics include the area, centroid, and the direction cosines of the surface unit normal. The surface unit normals may be transformed through the required rotation angles and the component of the unit normal in the X_{0} direction (out of the plane of the paper) may be found from the following equation.

$$
\begin{equation*}
n_{x_{0}}=n_{x}(\cos \theta \cos \psi)+n_{y}(-\sin \psi \cos \phi+\sin \theta \cos \psi \sin \phi)+n_{z}(\sin \psi \sin \phi+\sin \theta \cos \psi \cos \phi) \tag{3.2.12}
\end{equation*}
$$

where n_{x}, n_{y}, n_{z} are the components of the surface unit normal in the vehicle reference system.

If $n_{x_{0}}$ is positive, then the surface element is facing the viewer. If $n_{x_{0}}$ is negative, the element faces away from the plane of the paper. This result is used in the program to provide the capability of deleting most of those elements on a vehicle that normally could not be seen by a viewer. The resulting plcture is thus made more realistic, and confusing elements which are on the back side of the vehicle do not appear. No craterion is provided, however, for the deletion of those elements that face the viewer but are blocked by other body components. This may be accomplished by a proper selection of viewing angle or by a physical deletion of the offending section from the input data.

REFERENCES:

1. Hague, D. S. and Glatt, C. R., Optımal Design Integration of Military Flight Vehicles, ODIN/MFV, Section 4.1 "Hypersonic Arbitrary Body Aerodynamic Computer Program," AFFDL-TR-72-132, December 1972.
2. Hague, D. S. and Glatt, C. R., Optimal Design Integration of Milıtary Flight Vehicles, ODIN/MFV, Section 3.1, AFFDL-TR-132, December 1972.

TABLE OF CONTENTS FOR SECTION 3.3 PROGRAM LRCACP

Section Page
Introduction 3.3-1
3.3.1 Method of Producing Vehicle Images 3.3-1
References 3.3-3
IIlustrations 3.3-4

3.3 PROGRAM LRCACP: A CODE FOR PRODUCING

AIRCRAFT CONFIGURATION PLOTS

Program IRCACP is the NASA Langley Research Center developed aircraft configuration plot program of Reference 1 . The code has a wider range of image drawing options than the combination of programs PANEL and IMAGE. In particular it has the ability to produce views which incorporate true perspective, to produce stereoscopic pair views, and to automatically produce a well laid out three-view.

The LRCACP code interfaces directly to several well established subsonic and supersonic aerodynamic estimation programs. Hence, it complements the program PANEL which is limited to a hypersonic aerodynamic estimation program. The program description presented below is based on that of Reference 1. Since the geometrical methods are similar to the methods of Section 3.1, mathematical detail is omitted.

3.3.1 Method of Producing Vehicle Images

The LRCACP program contains the following types of plotting capability:

1. Three-views
2. Orthographic, from an arbitrary viewing angle
3. Perspective, from an arbitrary viewing angle
4. Stereoscopic, from an arbitrary viewing angle

The program interfaces through the CDC 6600 to the following types of equipment:

1. On-line cathode ray tube
2. CALCOMP plotter
3. Houston COMPLOT plotter, through an ODIN-developed module
4. Gerber plotter
5. Stereoscope

The numerical model of the aircraft configuration may include any combination of components: wing, body, pods, fins, and canards. The wing is made up of aurfoil sections; the body is defined by elther circular or arbitrary sections. The pods are defined similar to the fuselage, and fins and canards are defined similar to the wings. The vehicle geometric specification is converted into a set of quadrilateral panel elements in a manner similar to that described in Section 3.1

The configuration is usually positioned with its nose at the coordinate system origin and with the length of the body stretching in the positive X direction. The coordinate system used for this program is a right handed Cartesian system as illustrated below.

Related points in the plotted arrays are connected by straight lines; therefore, sufficient points must be gaven to approximate a desired curve.

Orthographic projections are created by rotating each point on the body surface to the desired viewing angle and then transforming the points into a coordinate system in the plane of the paper. The rotations of the body and its coordinate system to give a desired viewing angle are specified by angles of roll, pitch, and yaw (ϕ, θ, ψ) using the convention below.

3.3-2

The code computes the "average" unit normal vector to each pane1. The resulting set of vectors may be used to provide the capability of deleting most elements on the surface of the configuration which would not be seen by a viewer. By this device a user may remove many confusing panel elements. No provision is made for deleting components hidden by other components or for deleting portions of an element at the present time.

When three-views are requested, the plan, front, and side views are provided in a compact and pleasing to the eye arrangement. An option is provided for the orthographic projections of these three-views to be spaced one above the other. A typical three-view obtained in this manner has been presented in Figure 3.3-1.

The perspective views represent the projection of a given three-dimensional array. The two-dimensional view is constructed relative to a viewing point and a focal point specified by coordinate points in the data coordinate system. Data are scaled to the viewer page size automatically by the specification of the viewing field diameter and the viewing field distance. The coordnnates of the viewing point determine the position from which the data array will be viewed and the coordinate values of the focal point control the direction and focus. The size of the projection on the viewing plane reflects the distance between. the viewing point and the focal point. Data which are within the cone of the viewing plane but not in the immediate range of the focal point may be distorted. Perspective may be eliminated by specifying a large viewing field distance. A typzcal detailed orthographic projection of a modern fighter aircraft is presented in Figure 3.3-2.

The above explanation of the perspective plots also applies to the stereo views. The use of the stereo option causes the program to be executed twice in setting up two plots for the left and right frames. These frames are suitable for viewing in a stereoscope. A representative stereoscopic pair frame is presented in Figure 3.3-3.

REFERENCES:

1. Craidon, Charlotte B., Description of a Digital Computer Program (D2290) for Aircraft Configuration Plots, NASA TM X-2074, 1972.

n
$i n$
$i n$
$i n$

FIGURE 3.3-2. PERSPECTIVE VIEWS OF A REPRESENTATIVE AIRCRAFT CONFIGURATION

$9-\varepsilon \cdot \varepsilon$
FIGURE 3.3~3. EXAMPLES OF STEREO FRAMES FOR A THREE-DIMENSIONAL VIEW USING AN AIRCRAFT CONFIGURATION

SECTION 4

AERODYNAMICS

The ODIN/RLV program library contains seven well proven independent aerodynamic estimation programs covering flight in subsonic, supersonic, and hypersonic regimes. Program sources include past Air Force Flight Dynamics Laboratory studies, NASA developed programs, and Aerophysics Research Corporation. Programs are provided for

1. Hypersonic viscous and pressure forces
2. Rapid supersonic zero-lift wave drag
3. Detailed supersonic zero-lift wave drag

The ODIN/RLV system, as installed at Langley Research Center, also contains the Reference 1 programs for computing
4. Wave drag at lift
5. Wetted areas
6. Skin friction drag
7. Rapid subsonic, supersonic, and hypersonic aerodynamic trend analyses.

Programs 1 through 3 , now available in the ODIN/RLV, are outlined below; for complete details, reference should be made to the original source documents. Programs 4 through 7 are described in NASA internal documents and in Reference 1.

REFERENCES:

1. Harris, R. V., Jr., An Analysis and Correlatıon of Aircraft Wave Drag, NASA TM X-947, 1964.

TABLE OF CONTENTS FOR SECTION 4.1, PROGRAM HABACP
Section Page
Introduction 4.1-1
4.1.1 Structure of the HABACP Program 4.1-1
4.1.1.1 Control Surface Deflection Subprogram CONTRL 4.1-2
4.1.1.2 Force Calculation Subprogram FORCE 4.1-2
4.1.1.3 Shock Expansion Subprogram SHKEXP 4.1-2
4.1.1.4 Flow Separation Subprogram FLOSEP 4.1-2
4.1.1.5 Skin Friction Subprogram SKINFR 4.1-3
4.1.1.6 Blunt Body Skin Friction Subprogram BLUNT 4.1-3
4.1.1.7 Atmosphere Subprogram ATMOS 4.1-3
4.1.1.8 Expansion Subprogram EXPAND 4.1-3
4.1.1.9 Cone Subprogram CONE 4.1-4
4.1.1.10 Compression Subprogram COMPR 4.1-4
4.1.1.11 Blunt Body Newtonian plus Prandt1-Meyer Subprogram NEWTPM 4.1-4
4.1.1.12 Temperature Subprogram TEMP 4.1-4
4.1.1.13 Convective Heating Function Subprogram QC 4.1-4
4.1.1.14 Fluid Properties Function Subprogram ROMU 4.1-5
4.1.1.15 Plunge Derivative Subprogram PLUNGE 4.1-5
4.1.1.16 Thrust Vector Subprogram VECTOR 4.1-5
4.1.2 A Comparison of Search Hypersonic Force Estimation Methods 4.1-6
4.1.2.1 Analysis Method for Pointed Slender Configurations 4.1-6
4.1.2.2 Analysis Method for Blunt Configurations in Expansion Flow 4.1-6
4.1.2.3 Free Molecular Flow 4.1-6
4.1.3 Discussion of Modified Newtonian Pressure Methods 4.1-7
4.1.3.1 Blunt Bodies 4.1-7
4.1.3.2 Sharp Bodies 4.1-8
References 4.1-9
Illustrations 4.1-11

4.1 PROGRAM HABACP: THE GENTRY HYPERSONIC ARBITRARY

BODY AERODYNAMICS COMPUTATION PROGRAM

Vehicle hypersonic aerodynamic characteristics may be computed by means of the arbitrary hypersonic body program of Reference 1. The description below follows that originally given by Arvel Gentry of McDonnell-Douglas, Long Beach. The program of Reference 1 treats the vehicle surface as a collection of quadrilateral elements oriented tangentially to the local vehicle surface in the manner of Reference 2. Picture drawing capability is provided as in Reference 3. Each individual panel may have its local pressure coefficient specified by any of a varıety of pressure calculation methods ancluding modified Newtonian, blunt-body Newtonian, Prandtl-Meyer, tangent-wedge, tangent-cone, boundary layer-induced pressures, free molecular flow, and a number of empirical relationships.

Viscous forces are also calculated and include viscous-inviscid interaction effects. Skin friction options include the Reference Temperature and Reference Enthalpy methods for both lamanar and turbulent flow, the SpaldingChi method (turbulent), and a special blunt body skin friction method. Control surface deflection pressures, including separation effects that may be caused by the deflected surface, are also calculated.

In addition to the above aerodynamic capabilities, the program also contains several other specialized options. Using conventional methods, the program may be used to calculate the dynamic damping derivatıves, $\mathrm{C}_{\mathrm{m} \alpha}$ and $\mathrm{C}_{\mathrm{m} \dot{\beta}}$ for wing-body-tail configurations. Also, since some vehicles may be strongly influenced by other applied force-vector effects (such as those caused by air breathing propulsion systems), capabilıtıes are also provided for including these factors along with the conventionally calculated aerodynamic forces. The program output contains the following parameters as functions of angle of attack and sideslip angle: $C_{D}, C_{L}, C_{A}, C_{Y}, C_{N}, L / D, C_{m}, C_{\ell} C_{n}, C_{A_{\alpha}}, C_{L_{\alpha}}$, ${ }_{C_{N_{\alpha}}}, C_{m_{\alpha}}, C_{m_{q}}, C_{A_{g}}, C_{N_{q}}, C_{Y_{\beta}}, C_{n_{\beta}}, C_{\ell_{\beta}}, C_{Y_{r}}, C_{n_{r}}, C_{\ell r}, C_{m_{\delta}}, C_{\ell \delta}, C_{y \delta}, C_{n_{\delta}}$, $\mathrm{C}_{N_{\delta}}, \mathrm{C}_{\mathrm{m}_{\alpha}}, \mathrm{CY}_{\beta}$, and hinge moments.

The Gentry program was sponsored by the Air Force Flight Dynamics Laboratory. It has seen widespread acceptance throughout the aerospace industry. For the ODIN/RLV it represents a reasonable compromise between preliminary design requirements and the computational complexity of methods such as the threedimensional method of characteristics program (3DMOC) of References 4 to 6 .

4.1.1 Structure of the HABACP Program

The computational structure of the HABACP program is presented in Figure 4.1-1. The program employs a well organized tree of subroutines which follow functional lines. Prime interest in the ODIN/RLV system lies in the analysis method avallable. An outline of the subroutines which carry out the analysis function is presented below.

4.1.1.1 Control Surface Deflection Subprogram (CONTRL)

This subprogram converts input data for control-surface geometry in the undeflected position to any desired deflected position. The hinge line must be straight. The geometric characteristics of the control surface in the deflected position are stored together with necessary hinge-moment length parameters for subsequent hinge-moment calculations. The geometric characteristics of the control surface in the undeflected position are saved for subsequent calculations. The geometry data for the area in front of the control surface is computed once and saved.

4.1.1.2 Force Calculation Subprogram (FORCE)

FORCE calculates the pressure coefficient on each quadrilateral element, resolves the force in the required body axis system, and sums the contributions of each element to give the vehicle's six aerodynamic coefficients. Some of the force calculation methods require the use of another level of subprograms. The special subroutines provided include oblique-shock compression, Prandtl-Meyer expansion, Newtonian plus Prandtl-Meyer, and flow separation. Several of these subroutines serve a dual purpose since they are also used by the skin friction subprogram. The force subprogram is organized in such a way that it is very easy to modify to include additional force calculation methods.

4.1.1.3 Shock Expansion Subprogram (SHKEXP)

The shock expansion subprogram is capable of performing a shock expansion analysis along a streamwise strip of elements. The local surface pressure, local flow Mach number, and temperature are calculated for each element. The calculation of a shock expansion along a given streamwise strip of elements starts with the determination of the flow properties on the first element in the strip (the section leading edge element). The local properties on this leading edge element may be calculated either by oblique shock relationships, by tangent cone equations, by a delta wing empirical method or, in the case in which the leading element is in shadow flow, by a Prandt1Meyer expansion from free stream conditions. The calculation of the propertres on subsequent elements in a streamwise strip is based on a compression or Prandtl-Meyer expansion from the previous element in that strip.

4.1.1.4 F1Ow Separation Subprogram (FLOSEP)

Subprogram ${ }^{\text {rtoSEP }}$ has the task of determining the effect of flow separation caused by the deflection of a control surface. The subprogram has all the
necessary separation criteria built into it to provide the flow separation point on the surface, the flow reattachment position, and the change in vehicle surface pressures caused by the deflected flap and any resulting flow separation effects. The flow separation subroutine also makes use of data obtained from the shock expansion routine and the compression and temperature routines.

4.1.1.5 Skin Friction Subprogram (SKINFR)

SKINFR calculates the viscous forces with the option of using the Reference Temperature, Reference Enthalpy, or Spalding-Chi methods. The vehicle geometry is specified using the same methods as for the pressure calculation geometry model except that a smaller number of elements are used. The wall temperature may be input to the program or the radiation equilibrium value determined by the program. The local properties may be calculated by the tangent wedge, tangent cone, Prandtl-Meyer expansion, or the Newtonian plus Prandtl-Meyer method. The viscous-inviscid interaction effects are calculated by the method of White, Reference The user may specify either laminar or turbulent skin friction data to be added to the vehicle's inviscid forces.

4.1.1.6 Blunt Body Skin Friction Subprogram (BLUNT)

This subprogram calculates the vascous forces on a blunt faced body. The routine is used by the FORCE subprogram in a mode similar to the inviscid pressure calculation options. The vehicle forces calculated, however, account for only the blunt body skin friction shear forces and should be added to previously calculated forces using the data summation option.

4.1.1.7 Atmosphere Subprogram (ATMOS)

This subprogram calculates the atmospheric properties for a given altitude by using U. ©S. 1962 standard atmosphere. The- subprogram uses an inverse square gravitational field and gets results that agree with the COESA document within one per cent at all altitudes up to 700 kilometers. The program is also capable of using input wind tunnel conditions (stagnation pressure and temperature) to determine the properties of the free stream air about a wind tunnel model.

4.1.1.8 Expansion Subprogran (EXPAND)

EXPAND calculates the pressure on a surface by using Prandtl-Meyer relationships. The routine may be called by the FORCE subprogram, by the skin
friction subprogram, or by the Newtonian plus Prandti-Meyer subprogram.

4.1.1.9 Cone Subprogram (CONE)

CONE calculates the surface conditions for a cone using emplrical relationships. This routine is used by the force, flow separation, and skin friction routines when the tangent cone option is called for.

4.1.1.10 Compression Subprogram (COMPR)

COMPR calculates the pressure on a surface by using conventional oblique shock relationships (NACA TR 1135). For conditions in which no solution can be found for the oblique shock cubic relationship (for shock detachment conditions) the compression subroutine will then call the Newtonian plus Prandtl-Meyer routine in order to obtain a solution.

4.1.1.11 Blunt Body Newtonian plus Prandt1-Meyer
 Subprogram (NEWTPM)

This routine calculates the pressure coefficients on a surface by the blunt body Newtonian plus Prandtl-Meyer method. It is used by both the FORCE and the skin friction subprograms. Under oblique shock detachment conditions, it will also be used by the oblique shock compression routine.

This pressure calculation method requires matching the pressure distributions calculated by the modified Newtonian and Prandtl-Meyer expansion methods at the point where their slopes are equal. In the blunt part of the body before this matching point is reached, the pressure is calculated by modified Newtonian theory. When the surface slope has decreased beyond the matching point slope, the pressure is determined by Prandt1-Meyer relationships.

4.1.1.12 Temperature Subprogram (TEMP)

TEMP uses an iterative procedure to calculate the radiation-equilibrıum temperature on a surface for use in the skin friction calculations. Options also permit the use of an input wall temperature or the program determined adiabatic wall condition.

4.1.1.13 Convective Heating Function Subprogram (QC)

This routine calculates the aerodyname convective heating at a given wall temperature for laminar or turbulent flow and for either an ideal gas or a real gas. At the user's option, reference temperature or reference enthalpy
methods may be used for both laminar and turbulent flow and, in addition, the Spalding-Chi turbulent method may be selected using either temperature or enthalpy ratios.

4.1.1.14 Fluịd Properties Function Subprogram (ROMU)

This subprogram calculates the various fluid properties of equilibrium air required for the real gas viscous calculations. The program has three entries: the first calculates the density-viscosity product at an input pressure and enthalpy; the second calculates the enthalpy corresponding to an input temperature, and the third calculates the density at an input enthalpy and pressure.

4.1.1.15 Plunge Derivative Subprogram (PLUNGE)

PLUNGE is used to calculate the dynamic stability derivatives due to vertical acceleration ($\mathrm{C}_{\mathrm{m}_{\dot{\alpha}}}$) and horizontal acceleration ($\mathrm{CY}_{\dot{\dot{\beta}}}$). This is a subprogram used to calculate these derivatives by conventional analysis techniques, and the subprogram includes the calculation of the conventional interference factors for the effect of a wing in the presence of a body and the interference factor for the effect of a body in the presence of wing. The computations for $C_{\mathbb{m}_{\dot{\alpha}}}$ involve the application of slender body theory results to the value of $\mathrm{C}_{\mathfrak{m}_{\alpha}}$. This is also true of computations for the parameter $\mathrm{C}_{\dot{\beta}}^{\dot{\beta}}$ where the PLUNGE subprogram must make use of the parameter $C_{Y_{\beta}}$ as calculated by the Arbitrary Body Program for the vehicle component involved. Since a particular body may consist of several different components, each of which may have been analyzed separately, it is necessary to wait until the final values of these two parameters $\left(\mathrm{C}_{\mathrm{m}_{\alpha}}, \mathrm{C}_{\beta}\right)$ have been obtained.

For this reason, the plunge derivative subprogram should not be called until the user indicates that the necessary vehicle component computations have been completed.

4.1.1.16 Thrust Vector Subprogram (VECTOR)

VECTOR may be used to introduce propulsion system effects into the aerodynamic analysis. This subroutine reads in input data that give the magnitude of each applied force vector, its direction, and its point of application on the vehicle relative to the center of gravity. The subprogram will then convert this information into the required force and moment coefficients for summation with the basic vehicle characteristics. To make the solution more general, any number of input force vectors may be used to account for such things as ram drag, gross thrust, spillage, and other similar forces or moments.

4.1.2 A Comparison of Search Hypersonic Force Estimation Methods

Selection of reasonable force calculation methods in hypersonic flow requires a considerable degree of aerodynamic competence. The available hypersonic aerodynamic methods disagree significantly even on relatively simple shapes. This point is discussed in some detail by Gentry as reported in Reference 1. typical examples taken from the Gentry discussion are presented below.

4.1.2.1 Analysis Method for Poınted Slender Configurations

Figure 4.1-2 presents some typical pressure coefficient varlations wi.th impact angle for analysis techniques generally used on pointed slender components. Also presented for comparison purposes is the modified Newtonian theory with $\mathrm{K}=2.4$. This is the limiting value for wedge type flow as proposed by Lees in Reference 8. Figure 4.1-3 presents the same data over a smaller impact angle range. At $M=20$ the modified Newtonian and the tangent wedge empirical methods compare favorably with the "exact" oblique shock calculations for impact angles from 0 to over 30 degrees.

4.1.2.2 Analysis Method for Blunt Configurations in Expansion Flow

Figure 4.1-4 presents a comparison of various techniques for both pointed and blunt configurations in expansion flow. It should be noted that the VanDyke unified method for expansion flow has been modified such that if a pressure coofficient of less than $-1 / \mathrm{M}^{2}$ is calculated for a given expansion angle, the pressure coefficient is set equal to $-1 / M^{2}$. This lımiting value of ${ }^{-}$ pressure coefficient has been derived from analysis of experimental data (see References 9 and 10).

Blunt body pressure coefficient calculations are also compared in Figure 4.l-5. The pressure coefficient variation with impact angle is plotted in the form $\mathrm{CP}_{\mathrm{P}} / \mathrm{CP}_{\text {STAG }}$ as suggested by Lees in Reference. The calculations for Newtonlan, Prandtl-Meyer, and OSU empirical techniques utilized stagnation conditions behind a normal shock in an ideal gas.

4.1.2.3 Free Molecular Flow

Comparison of free molecular flow calculations by the program and data presented in Reference 11 are shown in Figure 4.1-6 to 4.1-8. Flat plate lift and drag coefficients are compared in Figure 4.1-6, assuming specular reflection. Figures 4.1-7 and 4.1-8 present the lift and drag of a flat plate for the more razlistic diffuse-reflection assumption. Finally, the drag coefficient for a sphere with both specular and diffuse reflection assumptions is shown in Figure 4.1-9.

4.1.3 Discussion of Modified Newtonian Pressure Methods

A brief review of the important features of some of the modified Newtonian pressure calculation methods in the program is presented in the following discussions. This is the most commonly used method in the Gentry program.

Modified Newtonian is used extensively in hypersonic flow analysis due to its ability to give reasonable answers for a great number of shapes with a very simple calculation technique. This capability depends on the use of the variable K as a function of angle of attack as shown in Figure 4.1-10. The modified Newtonian form permits application of tangent wedge cor tangent cone), an empirically defined equation for a given shape, or an effective K for a complete configuration at a given Mach number. The effect of a real gas may be introduced by variation of K for very blunt bodies. In general, the use of modified Newtonıan theory may be divided into two groups for discussion purposes: (1) aerodynamically blunt configurations and (2) aerodynamically sharp configurations.

4.1.3.1 Blunt Bodies

On aerodynamically blunt configurations the impact angle of the nose is greater than that for shock detachment, although the leading edge may be sharp and pointed. In true Newtonian flow ($M=\infty, \gamma=1$) the variable K becomes 2. The most commonly used form of modified Newtonian is to input for K the C_{P} stagnation derived from normal shock relations into the equation

$$
C_{P}=K \sin ^{2} \delta
$$

The effects of a real gas may also be approximated in this manner. A comparison of Newtonian and experimental data is presented in References 12 to 14 for blunt body shapes. In general, modified Newtonian ($\mathrm{CP}_{\mathrm{STAG}}=\mathrm{K}$) agrees with data for spheres if the Mach number is greater than 3. The pressure distribution on cylinders is not as good as on spheres. However, for impact angles of 90 degrees to approximately 60 degrees, the agreement is reasonable but deteriorates as zero impact angle is reached. Nevertheless; for preliminary calculations the induced error in C_{N} and C_{A} may be acceptable.

Examples of the comparison of modified Newtonian and experiment for spheres and cylinders are shown in Figure 4.1-11. For curved, shock detached bodies with sharp leading edges of elther two- or three-dimensional shape, References 15 and 16 show that $C_{P}=K \sin ^{2} \delta$ should be modified to the form

$$
\frac{C p}{C P_{\max }}=\frac{\sin ^{2} \delta}{\sin ^{2} \delta_{\max }}
$$

which is sometimes called the generalized Newtonian theory. Comparison with other bodies is shown in Reference 17.

4.1.3.2 Sharp Bodies

Many approxımations exist for sharp pointed bodies. Figures 4.1-6 and 4.1-9 include one form for the sharp wedge developed by Lees in Reference 8 for large Mach numbers.

$$
K=(\gamma+1)
$$

Also shown in the limiting form of the cone

$$
K=\frac{2(\gamma+1)(\gamma+7)}{(\gamma+3)^{2}}
$$

For large Mach numbers true Newtonian theory, therefore, closely approximates the limiting case for a cone rather than a wedge.

The main disadvantage of Newtonian theory is its inabilıty to predict the flow field, and, for some shapes, this effect can lead to predicted values which may be in serious disagreement with theory. Seiff in References 18 and 19 presents examples of these shapes and a method for obtainnng more realistic results from a Newtonian flow concept.

1. Hague, D. S. and Glatt, C. R., Optimal Design Integration of Military Flight Vehicles, ODIN/MFV, Section 4.1 "Hypersonic Arbitrary-Body Aerodynamic Computer Program," AFFDL-TR-72-132, December 1972.
2. Hague, D. S. and Glatt, C. R., Optimal Design Integration of Military Flight Vehicles, ODIN/MFV, Section 3.1, AFFDL-TR-72-132, December 1972.
3. Hague, D. S. and Glatt, C. R., Optimal Design Integration of Military Flight Vehicles, ODIN/MFV, Section 3.2., AFFDL-TR-72-132, December 1972.
4. Powers, S. A., et al., A Numerical Procedure for Determing the Combined Flow Fields over Generalized Three-Dimensional Bodies, Volume I; AFFDL-TR-67-124, December 1967.
5. Powers, S. A., et al., A Numerical Procedure for Determining the Combined Flow Field over Generalized Three-Dimensional Bodies, Volume II, AFFDL-TR-67-124, December 1967.
6. Powers, S. A. and Beeman, E. R., Flow Fields over Sharp Edged Delta Wings with Attached Shocks, NASA CR-1738, April 1971.
7. White, F.M.,Jr., Hypersonic Laminar Viscous Interactions on Inclined Flat Plates, ARS Journal, May 1962.
8. Lees, L., Hypersonic Flow, Fifth International Aeronautical Conference Proceedings, June 1955.
9. McLellan, C. H., Bertram, M. H., Moore, J. A., An Investigation of Four Wings of Square Planform at a Mach Number of 6.86 in the Langley 11 -Inch Hypersonic Tunnel, NACA RML51D17, June 1951.
10. Collingbourne, J. R., An Empirical Prediction Method for the Nonlinear Normal Force on Thin Wings at Supersonic Speeds, Aeronautical Research Council CP-662, (Great Britain), 1963.
11. Hayes, W. D., Probstein, R. F., Hypersonic Flow Theory, Volume 5, Academic Press, 1959.
12. Witcofski, R. D., Marcum, D. C., Jr., Effect of Thickness and Sweep Angle on the Longitudinal Aerodynamic Characteristics of Slab Delta Planforms at a Mach Number of 20, NASA TN D-3459, June 1966.
13. Henderson, A., Jr., Braswe11, D. O., Charts for Conical and Two-Dimensional Oblique Shock Flow Parameters in Helium at Mach Numbers from About 1 to 100, NASA TN D-819, June 1961.
14. Gregorek, G. M., Nark, T. C., Lee, J. D., An Experimental Investigation of the Surface Pressure and Laminar Boundary Layer on a Blunt Flat Plate in Hypersonic Flow, Volume I, ASD-TDR-62-792, March 1963.
15. Lee, J. D., Pressures on the Blunt Plate Wing at Supersonic and Hypersonic Speeds, FDL-TDR-64-102, July 1964.
16. Epstein, P. S., On the Air Resistance of Projectiles, Proceedings of the Național Academy of Sciences, USA, Volume 17, Pages 532-547, 1931.
17. Love, E. S., Generalized Newtonian Theory, Journal of Aerospace Sciences (Readers Forum), Volume 26, No. 5, May 1959, Pages 314-315.
18. Seiff, A., Secondary Flow Fields Embedded in Hypersonic Shock Layers, NASA TN D-1304, May 1962.
19. Seiff, A., Whiting, E. E., Calculation of Flow Fields from Bow Wave Profiles for the Downstream Region of Blunt Nosed Circular Cylinders in Axial Hypersonic Flight, NASA TN D-1147, 1961.

4.1-11

FIGURE 4.I-2. COMPARISON OF PRESSURE PREDICTION METHODS FOR SHARP BODIES IN COMPRESSION TYPE FLOW

FIGURE 4.1-3. COMPARISON OF PRESSURE PREDICTION METHODS FOR SHARP BODIES IN IN COMPRESSION TYPE FLOW

FIGURE 4.1-4. COMPARISON OF PRESSURE PREDICTION TECHNIQUES FOR EXPANSION TYPE FLOW

FIGURE 4.1-5. COMPARISON OF BLUNT BODY PRESSURE ESTIMATION TECHNIQUES

FIGURE 4.1-6. COMPARISON OF FREE MOLECULAR FLOW LIFT AND DRAG FOR A FLAT PLATE WITH SPECULAR REFLECTION

FIGURE 4.1-7. COMPARISON OF FREE MOLECULAR LIFT ON A FLAT PLATE WITH WITH DIFFUSE REFLECTION

FIGURE 4.1-8. COMPARISON OF FREE MOLECULAR DRAG ON A FLAT PLATE WITH DIFFUSE REFLECTION
4.1-18
$c-\partial$

FIGURE 4.1-9. COMPARISON OF FREE MOLECULAR DRAG ON A SPHERE WITH DIFFUSE REFLECTION

FIGURE 4.1-10. MODIFIED NEWTONIAN CORRELATION FACTORS

SPHERE

FIGURE 4.1-11. COMPARISON OF EXPERIMENTAL PRESSURES AND MODIFIED NEWTONIAN THEORY FOR SPHERES AND CYLINDERS

TABLE OF CONTENTS FOR SECTION 4.2, PROGRAM ARPII

Section		Page
	Introduction	4.2-1
4.2 .1	Sonic Area Rule	4.2-1
4.2 .2	Supersonic Area Rule	4.2-3
4.2 .3	Transfer Rule.	4.2-4
4.2.4	Other Methods	4.2-5
4.2 .5	Wave Drag in the General Case	4.2-5
4.2 .6	Evaluation of the Wave Drag Integral	4.2-6
	4.2.6.1 Fourier Series Method	4.2-6
	4.2.6.2 Emanton's Method	4.2-7
	4.2.6.3 Other Methods	4.2-8
4.2 .7	Applying the Supersonic Area Rule on a Digital Computer	4.2-8
	4.2.7.1 Outine	4.2-8
	4.2.7.2 Mach Plane Equations	4.2-8
	4.2.7.3 Wing Generator Lines	4.2-9
	4.2.7.4 Wing Contrıbution to Area Distrıbution	4.2-10
	4.2.7.5 Fuselage and Tank Contribution to the	
	Area Distribution	4.2-10
4.2 .8	Configuration Definitıon by Supersonıc Area Rule	4.2-11
	References	4.2-13
	Illustrations	4.2-15

4.2 PROGRAM ARPII: RAPID SUPERSONIC AREA RULE

AERODYNAMIC PROGRAM

The ARPII program is a Fortran version of a supersonic area rule program originally constructed at Avro Aircraft, Reference. 1. This program was subsequently updated at McDonnell-Douglas Corporation, St. Louis, Reference 2. Emphasis on the ARPII program lies in obtaining a rapid estimate of the zero lift wave drag component of a vehicle travelling at supersonic speeds. A user's manual for the ARPII program is available, Reference 3.

When considering the design of a supersonic flight vehicle, one of the more significant aerodynamic factors is the configuration drag at zero Iift. When the zero lift drag coefficient is plotted against the Mach number for a typical aircraft configuration, a curve similar to that illustrated in Figure 4.2-1 is obtained.

At subsonic speeds any body at zero lift passing through an ideal fluid experiences no net drag force (D'Alambert's Paradox) unless other bodies are also passing through the fluid. If more than one body is passing through the fluid, the net drag force on all the bodies is zero. The individual bodies in the group may have either a thrust or a drag acting on them, but when the thrust and drag are summed over all the bodies, the resulting force will be zero. The drag force which exists on an aircraft flying through a real fluid in subsonic flight must, therefore, have its origin entirely in viscous effects.

At supersonlc speeds, the picture changes; in this flight regime a body passing through an ideal fluid creates a system of compression and expansion waves attached to the body. The loss of energy to the wave system causes a drag force to act on a single body even at zero lift. This component force which is known as the wave drag at zero lift is responsible for the supersonic drag rise illustrated in Figure 4.2-1. In supersonic flight, then, the zero lift drag has two components: the viscous drag and the wave drag at zero lift. In order to design an efficient supersonic aircraft an adequate knowledge of both these components is required. The ARPII program presents a rapid method for obtalning the zero lift wave drag component of a wing-body-tail combination at supersonic speeds.

4.2.1 Sonic Area Rule

The method for calculating wave drag outlined in this report is based on the supersonic area rule theory; this theory relates the wave drag of a configuration at zero lift to the development of cross-sectional area of a set of bodies of revolution dexived from the basic configuration. The earliest report showing a connection of the above nature seems to be that of Wallace D. Hayes, Reference 4, 1947. This report notes that if the limiting form of the linearızed equation for the wave drag of a configuration is taken as $M \rightarrow 1.0$ from above, then the expression

$$
\begin{equation*}
\left(\frac{D_{W}}{q}\right)_{M=1.0}=-\frac{1}{2 \Pi} \int_{-L / 2}^{L / 2} \int_{-L / 2}^{L / 2} S^{\prime \prime}\left(x_{1}\right) S^{\prime \prime}\left(x_{2}\right) \log \left|x_{1}-x_{2}\right| \cdot d x_{1} d x_{2} \tag{4.2.1}
\end{equation*}
$$

is obtained. This result is identical with that obtained by Von Karman, Reference 5, for the wave drag of a slender body of revolution at $M=1.0$. Hayes result was ignored at the time, apparently because of the limitations of linearized theory in the transonic range.

In 1952 Richard T. Whitcomb's report, Reference 6, experimentally established the connection between the transonic drag rise of low aspect ratio thin wings mounted centrally on reasonably slender bodies and that of the body of revolution having the same distribution of cross-sectional area. To illustrate this point, Whitcomb's results for the four basic configurations are shown in Figure 4.2-2. Whitcomb's ideas appear to be based on the phenomenon of stream tube choking at transonic speeds. The invariance of stream tube crosssectional area to small velocity changes about $M=1.0$ means that the flux of fluid out of a radius greater than the wing semispan, described on a plane normal to the longitudinal axis, must be the same for both the wing-body combination or the body of revolution having the same distribution of crosssectional area. This is illustrated in Figure 4.2-3; for if the plane element has thickness δ_{x}, then the flux out of this disc in both cases will be

$$
\begin{equation*}
\delta Q=\frac{d S}{d x} \cdot \delta x \tag{4.2.2}
\end{equation*}
$$

Whitcomb argues that the flow field is such that any radial or circumferential deviations in the disturbances caused by the wing-body combination are rapidly reduced causing the field to tend towards the radially symmetric disturbance produced by a body of revolution. Examınation of the shock patterns about a configuration and its equivalent body of revolution provide support for this view of the similarity in the two disturbance fields and, hence, to the similarity in their drag rise characterıstics. Whitcomb further reasoned that if the drag of a wing-body combination is simllar to that of its equivalent body of revolution, then by indenting the body to account for the cross-sectional area of the wing, the wave drag could be made to approach that of the body alone. The reductions in drag that he obtained in this manner are reproduced from Reference 6 in Figure 4.2-4. In all three cases these tests reveal a considerable improvement in the drag rise characteristics; although, in general, the equivalent body of revolution had a lower drag rise than the indented wing-body combination.

4.2.2 Supersonic Area Rule

The success of Whitcomb's sonic area rule theory in providing a guide to estimating and a means of reducing the zero lift wave drag of a wing-body combination lead to a search for a similar method at supersonic speeds. A method for obtaining the supersonic zero lift wave drag of wings alone in terms of a set of area distributions derived from the basic wing distribution had already been given by Heaslet, Lomax, and Spreiter, Reference 7. In 1953 both R. T. Jones, Reference 8, and Richard T. Whitcomb wath T. L. Fischetti, Reference 9, produced reports showing that the supersonic zero lift wave drag of a wing-body combination could be estimated in a similar manner. These methods find the drag of the combinations as the average drag of a semies of equivalent bodies of revolution constructed in the following way.

Whth the aircraft rolled through an angle θ (to be definite, let the port wing be raised for positive θ), construct a set of $p l a n e s$ which are normal to the horizontal plane from which the roll angle is measured and inclined at the Mach angle μ to the aircraft longitudinal axis. These Mach planes will intersect the wing-body combination and each one in so doing will define an inclined cross-sectional area. The projection of these areas on the yz plane (i.e., the frontal areas of the cross-sections) are used to define the cross-sectional area distribution of the equivalent body of revolution for the particular roll angle θ. This arrangement of planes together with the coordanate system is shown in Figure 4.2-5. The drag of each individual equivalent body of revolution may then be found from Von Karman's formula and the mean taken to find the drag of the wing-body combination

$$
\begin{align*}
\therefore \frac{D_{W}}{q}= & -\frac{1}{4 \Pi^{2}} \int_{0}^{2 \pi} d \theta \int_{-L / 2}^{L / 2} \int_{-L / 2}^{L / 2} S^{\prime \prime}\left(x_{1}, \theta, M\right) S^{\prime \prime}\left(x_{2}, \theta, M\right) \\
& x \log \left|x_{1}-1{ }_{2}\right| d x_{1} d x_{2} \tag{4.2.3}
\end{align*}
$$

4.2.3 Transfer Rule

In Reference 10, G. N. Ward approaches the problem of the wave drag of wing-body combinations by considering the drag of general distributions of sources in space. He then shows that thin wings and slender bodies, at zero lift, either alone or in combination with each other, can be represented by distributions of sources in the surface of the body with surface density proportional to the local slope of the surface in the x direction. The drag in this particular case reduces to

$$
\begin{align*}
& \cdots \frac{1}{\alpha_{i 1}} \int_{-L_{12}}^{L_{12}} \int_{-L_{1}}^{i_{2}} A^{\prime \prime}\left(x_{1}\right) A^{\prime \prime}\left(x_{2}\right) \log \left|x_{1}-x_{2}\right| d x_{1} d x_{2} \\
& =\frac{1}{2 \pi} \int_{-L / 2}^{L / 2} \int_{-L / 2}^{L / 2}\left[S_{F}^{\prime \prime}\left(x_{i}\right)+A^{\prime \prime}\left(x_{1}\right)_{n}^{\pi r} S_{F}^{\prime \prime}\left(x_{2}\right)+A^{\prime}\left(x_{2}\right)\right] \\
& x \log _{1}\left|=-x_{2}\right| d x_{1} d x_{2} \tag{4.2.4}
\end{align*}
$$

where

$$
\begin{equation*}
\therefore \therefore \because \int \frac{T(\bar{F})}{d S}=\frac{1}{\pi} \int \frac{d!}{\Delta S_{w} V_{1}-\left(n-x_{1}\right)^{2}} \tag{4.2.5}
\end{equation*}
$$

Is the wing transferred area and $\mathrm{dS}_{1}, \quad \delta \mathrm{~S}_{2}=$ wing elements of area at the points (x_{1}, y_{1}, z_{1}) , x_{2}, y_{2}, z_{2}).
$\bar{R}_{1} \tilde{R}_{2} \quad=$ the vectors with components $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$
$T\left(R_{1}\right), T\left(R_{2}\right)=$ wing thickness at the points \bar{R}_{1}, \bar{R}_{2}
$\bar{r}_{1}, \bar{r}_{2}=$ the vectors with components $\left(0, y_{1}, z_{1}\right),\left(0, y_{2}, z_{2}\right)$
$\Delta S_{w} \quad=$ that portion of the wing in the zone of silence for the point ($x, 0,0$), see Figure 4:2-6.

The first term is the drag of the exposed wing panels alone; the second term is the drag of a body of revolution having an area distribution equal to the fuselage area combined with the wing transferred area. The last term is the drag of a body of revolution having an area distribution equal to the transfired area of the wing alone

$$
\begin{equation*}
D_{w ; \cdots-10: r}=D_{w i n g}-D\{A\}-D\left\{S_{F}+A\right\} \tag{4.2.6}
\end{equation*}
$$

This relationship will be of note in a later section where the problem of area ruling the fuselage is considered.

The transfer rule is of interest when the optimum fuselage for a given wing is required. It can be shown, Reference l, for example, that the transferred wing area is the mean wing area versus roll angle determined by the supersonic area rule Mach planes. Hence, the optimum fuselage for a given wing is obtained when the fuselage and mean wing at the Mach number or series of Mach numbers of interest has a minimum drag.

4.2.4 Other Methods

It should be noted that several other methods for computation of wing-body wave drag have been proposed, notably Baldwin and Dickey's moment of area rule, Reference 11, and Faget's method of hoops. The ARPII program, however, is limited to the supersonic area rule method.

4.2.5 Wave Drag in the General Case

The theories of Sections 4.2 .2 to 4.2 .4 apply to slender bodies and thin wings or their combination provided that no lift is carried over any portion of the planform. There are many configurations which may reasonably be analyzed by linearized theory and yet do not fall into the above class, for example, a cambered thin wing mounted centrally on a slender body. In Reference 12, a generalızed area rule correct to the limits of linearized theory for combinations of wings and bodies is obtained; this is
where $\ell(x, \theta)$ is the component of the force acting on the oblique section resolved in a plane normal to the free stream and resolved again in the θ direction, Figure 4.2-7. It may be noted that at $M=1.0$, Equation 4.2.7 reduces to 4.2 .1 and the sonic wave drag due to lift vanishes.

In order to use Equation 4.2 .7 the distribution of force over the configuration is needed. If this is known the drag can, of course, be found by integration of the force and slopes over the configuration. The ARPII program does not attempt to consider the effects of lift in any way.

4.2.6 Evaluation of the Wave Drag Integral

4.2.6.1 Fourier Series Method

A problem common to the sonic area rule, supersonic area rule and transfer rule is the evaluation of the integral which expresses the wave drag of a body of revolution in terms of its area distribution. This can be written

$$
\begin{equation*}
\frac{D}{q}=-\frac{1}{2 \pi L^{2}} \int_{0}^{1} \int_{0}^{1} S^{\prime \prime}\left(\xi_{1}\right) S^{\prime \prime}\left(\xi_{2}\right)\left|\log \xi_{1}-\xi_{2}\right| d \xi_{1} d \xi_{2} \tag{4.2.8}
\end{equation*}
$$

Several methods for evaluation of this integral have been suggested; the earliest method appears to be that of Sears, Reference 13. In Sears' method the transformation

$$
\begin{equation*}
x=\frac{1}{2}(1-\cos \theta) \tag{4.2.9}
\end{equation*}
$$

is made.
The slope of area $d S / d x$ is now approximated by a Fourier sine series

$$
\begin{equation*}
S^{\prime}(x)=\sum_{n=1}^{\infty} A_{n} \sin n \theta \tag{4.2.10}
\end{equation*}
$$

so that

$$
\begin{equation*}
A_{n}=\frac{2}{\pi} \int_{\zeta}^{\pi} S^{\prime}(x) \sin \cdot n \theta d \theta \tag{4.2.11}
\end{equation*}
$$

WIth these assumptions the drag becomes

$$
\begin{equation*}
\frac{D}{q}=\frac{\pi}{4} \sum_{n=1}^{x} n \cdot A_{n}^{2} \tag{4.2.12}
\end{equation*}
$$

corresponding to an area distribution of

$$
\begin{equation*}
S(x)=S(0)+\frac{A_{i}}{i} \theta+\frac{1}{4} \sum_{n-1}^{\infty} \frac{1}{n}\left(A_{n+1} A_{n-1}\right) \sin n \theta \tag{4.2.13}
\end{equation*}
$$

Evaluation of the drag by this method is a tedious process, mainly because of the difficulty of obtaining the slope of area curve from the actual area distribution.

4.2.6.2 Eminton's Method

A different approach is suggested by Emanton, Reference 14. Defining

$$
\begin{equation*}
S(0), S(1) \text { and } S\left(\xi_{\dot{1}}\right) \quad i=1,2, \ldots ., N \tag{4.2.14}
\end{equation*}
$$

Then, if the drag given Equation 4.2 .12 is minimized for the area distribution of Equation 4.2.13 subject to the restraints of 4.2 .14 , Eminton shows by the method of Lagrangean multipliers the minimum drag is given by

$$
\begin{equation*}
\left.\frac{B}{Q}=\frac{1}{L^{2}}\left[\frac{4}{1}: S(1)-3 i, i\right\}^{2}+\pi \sum_{i=1}^{i} \sum_{j=1}^{N} c_{1} c_{j} f_{i}\right] \tag{4.2.15}
\end{equation*}
$$

or in matrix form

$$
\begin{equation*}
\frac{D}{q}=\frac{1}{L^{2}}\left[\frac{4}{\pi}(S(1)-S(0))^{2}+\pi[c][f]\{c\}\right] \tag{4,2.16}
\end{equation*}
$$

where

$$
\begin{align*}
& c_{1}=S\left(\xi_{1}\right)-5(0)-\left(S\left(\zeta_{1}\right)-S(0)\right) u_{i} \tag{4.2.17}\\
& \text { - } u_{i}=\frac{1}{i}\left[\cos ^{-1}\left(1-2 \xi_{i}\right)-2\left(1-2 \xi_{i}\right) \sqrt{s_{i}\left(1-\xi_{i}\right)}\right] \tag{4,2.18}\\
& \begin{aligned}
{[\dot{f}]=[\mathrm{p}]^{-1} } & \text { ORIGINAL PAGE IS } \\
& \text { OF POOR QUALItY }
\end{aligned} \tag{4.2.19}
\end{align*}
$$

$$
\begin{align*}
& +2\left(5_{i}+\xi_{j}-2 \xi_{1} \xi_{j}\right) \sqrt{\xi_{i} \varepsilon_{j}\left(1-\xi_{i}\right)\left(1-\xi_{j}\right)} \tag{4.2.20}
\end{align*}
$$

and

The corresponding area distribution is given by

$$
S(x)=S_{0}+\left(S(\overline{1})-S(0) \cdot u(x)+\left\lfloor P_{x j}\right]\left[f_{1 j}\right]\left\{c_{j}\right\}\right.
$$

4.2.6.3 Other Methods

Two other methods of evaluating the wave drag integral have been suggested: that of Uahn and Olstad, reference 15, and that of Holdaway and Mersman, reference 16. The method of Cahn and Olstad uses a numerical technique for evaluating the integral and requires a knowledge of the second derivative of the area distrabution.

The remaining method, that of Holdaway and Mersman, also uses a numerical technique, this time in the form of Tchebichef polynomials. By this device it is possible to evaluate the Fourler coefficients of Equation (4.2.1) by working with the area distribution rather than one of its derivatives, a feature common to Eminton's method and the Tchebichef polynomial method. However, as noted in Section 4.2.6.2 the ARP II program uses the N station Eminton method with $N=19$ being the recommended number of areas as in Eminton's original report.

4.2.7 Applyang the Supersonic Area Rule on a Digital Computer

4.2.7.1 Cutline

In order to use the supersonic area rule as a prelımınary design tool, a rapid metnod of obtaining the area distributions required by the theory must be employed. For the purpose of determining the wing contribution to such a distribution, it is sufficient to note that to date most alrcraft wing surfaces have been generated by a set or sets of straight generator lines. Once tne equations of these lines and the equations of the Mach planes for a given Macil number and roll angle are known, it is a stralghtforward exercise in analytic geometry to fund the points at which a particular Mach plane will intersect the wing generator lines and, hence, by integration the wing area defined by that plane. Repeating this for each plane wall define the wing contribution to the area distribution for the particular value of Mach number and roll angle. To fand the contribution of tanks or the fuselage, sufficient accuracy should be obtained if the point at which a lach plane intersects their center of area locus is found and the normal cross-sectional area at that point is taken. Once an area distribution has been found, the drag of its equavalent body of revolution must be calculated. In the ARP II program, the method of Eminton is used.

4.2.7.2 lach P1ane Equations

The general equation of a plane $u s$ of the form

$$
\begin{equation*}
\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0 \tag{4.2.21}
\end{equation*}
$$

It can be shown that the equation of a Mach plane is

$$
\begin{equation*}
x-\cot \mu \cos \theta y-\cot \mu \sin \theta z-x^{\prime}=0 \tag{4.2.22}
\end{equation*}
$$

where
μ - Mach angle
θ - roll angle
x^{\prime} - plane intercepts on the x axis

4.2.7.3 Wing Generator Lines

In designing an aircraft wing it is customary to specify the section to be used at various spanwise locations, on an aerodynamic basis. When this wing is layed out in the design office the wing surface between any two sections is described by straight lines passing through corresponding percentage chord points on the section profiles. Any wing surface formed in this manner is therefore described by one or more sets of straight generator lines. The equations of these lines is of the form

$$
\begin{align*}
& x_{i}=a_{1} y+b_{1_{i}} \tag{4.2.23}\\
& z_{i}=a_{2} y+b_{2_{i}} \quad \text { where } i=1,2, \ldots N \text { say } \tag{4.2.24}
\end{align*}
$$

To find the equation of a generator line passing between any two sections, one need only know the coordinates of its end points. Let the inboard such end point have coordinates x_{1}, γ_{1}, z_{1} and the outboard end point coordinates $\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}$, then

$$
\begin{align*}
& a_{1}=\frac{x_{2}-x_{1}}{y_{2}-y_{1}} \tag{4.2.25}\\
& \mathrm{~b}_{1}=x_{1}-a_{1} y_{1} \tag{4.2.26}\\
& \mathrm{a}_{2}=\frac{z_{2}-z_{1}}{y_{2}-y_{1}} \tag{4.2.27}\\
& \mathrm{~b}_{2}=z_{1}-a_{2} y_{1} \tag{4.2.28}
\end{align*}
$$

When specifyong the generator lines, it may be necessary only to obtain the equation for one side of the wing if a plane of symmetry is present. Similarly, if the wing under consideration has a symmetric section only the equations for the upper surface need be stored in the computer.

4.2.7.4 Wing Contribution to Area Distribution

The first step in finding the wing area defined by a Mach plane is to find the points at which the ith Mach plane intercepts the starboard upper wing generator lines; i.e., where the plane

$$
\begin{equation*}
A x+B y+C z+D_{j}=0 \tag{4.2.29}
\end{equation*}
$$

intersects the generator lines

$$
\begin{align*}
& x_{i}=a_{1_{i}} y+b_{1_{i}} \tag{4.2.30}\\
& z_{i}=a_{2_{i}} y+b_{2_{i}} \tag{4.2.31}
\end{align*}
$$

Substatuting the generator equations into the Mach plane equations and solving for the value of the y intercept coordinate

$$
\begin{equation*}
\bar{y}_{i j}=\frac{\mathrm{Ab}_{1_{1}}+\mathrm{Cb}_{2_{i}}+\mathrm{D}_{j}}{\mathrm{Aa} 1_{\mathrm{i}}+\mathrm{B}+\mathrm{Ca} 2_{i}} \tag{4.2.32}
\end{equation*}
$$

The z coordinate of the intercept is

$$
\begin{equation*}
\bar{z}_{i j}=a_{2_{i}} \bar{y}_{i j}+b_{2_{i}} \tag{4.2.33}
\end{equation*}
$$

The required area, that is the frontal area of the wing section defined by the Mach plane in passing through the wing is

$$
\begin{equation*}
\Delta S_{j}=\int \bar{z}_{I J} d \bar{y}_{i j} \tag{4.2.34}
\end{equation*}
$$

where the integration extends between specified limits.

4.2.7.5 Fuselage and Tank Contribution to the Area Distribution

To find the fuselage contribution to the area distribution, the approximation is made that the frontal area of the fuselage section intercepted by a Mach plane is equal to the normal cross-sectional area at the point where the Mach plane intercepts the fuselage center of area locus.

It can be seen from Figure 4.2 .8 that for reasonably slender bodies that the approximation should be reasonable, the area being underestimated on one side of the axis and overestimated on the other. On purely theoretical grounds, it might be concluded that there are no grounds for using the true slant area through thr fuselage in any case. However, in Reference 17 the wave drag of bodies which were not so slender was calculated using both the normal area distribution and the frontal projection of the true slant area. It was concluded
that greater accuracy is obtained when the slant area method is used. The above approach is equally applicable to external pods mounted on the aircraft. In the case of a fuselage, the x axis is usually-placed at or near the locus of the fuselage center of area so that the Mach plane intercept x^{1} can be used directly to obtain the point at which the Mach plane intercepts the fuselage distribution. For a tank or pod this is no longer true and the point at which the Mach plane intercepts the tank locus of area (assumed to be represented with sufficient accuracy by a line parallel to the x axis) must be found. Let the y and z coordinates of the tank centroid of area be y_{T}, z_{Y} then substituting these values into the Mach plane equation gives the required intercept, i.e.,

$$
\begin{equation*}
x_{T}=x^{\prime}-\left(B_{y_{T}}+C_{z_{T}}\right) \tag{4.2.35}
\end{equation*}
$$

and the normal fuselage area at this point must be used for the tank or pod area contribution.

4.2.8 Configuration Definition by Supersonic Area Rule

Configuration definition involves a balance between internal and external confaguration requirements. For example, when laying out a supersonic fighter the forebody geometry involves a trade between aerodynamic drag and radar dish size. Aft of this the fuselage dimensions are determined by a trade between aerodynamic drag and crew mobility and vision constrants. Further aft again the front and rear face of the engines with clearance for other system components at these points tends to size the fuselage crosssection.

The fighter wing t / c is determined by a trade between aerodynamic drag, structural depth, and fuel requirements. The wing planform is determined by a trade between aerodynamic and structural efficiency. Placement of the wing on the body involves a trade between aerodynamic stability and control and supersonic area rule considerations. Supersonic area rule considerations will also tend to govern the longitudinal distribution of fuselage area between the radar dish, crew station, forward engine face, and aft engine face.

A typical configuration layout according to supersonic area rule principles is presented in Figures $4.2-9(a)$ and (b). These figures present non-area ruled aircraft and a similar design area ruled for Mach 1.4. Figures 4.2-10
(a) to (e) present successively the area distribution for the bassc aircraft and $M=1.0,1.2,1.4$, and the Mach number range 1.0 to 1.4. To obtain these distributions three steps were followed:

First, the minimum fuselage cross-sectional areas at five control points are determined on the basis of crew and subsystem clearances.

Second, the selected wing mean area distribution, averaged for all roll angles at the selected area rule Mach number, is obtained from the supersonic area rule program. In a
more sophisticated design study the mean wing area may be averaged against both roll angle and Mach number to insure Low zero líft wave drag over a specified Mach number range. Example designs of this type are presented in References 1 and 17.

Third, the wing mean area is added to the fuselage crosssectional area obtained from normal cuts to obtain the combined fuselage/mean wing distribution at selected control points. By Ward's transfer of area rule, the sum of the fuselage and mean wing area distribution at the selected Mach number should be a minimum wave drag shape. Minimum wave drag shapes having any number of specified area constraints are given by Eminton in Reference 14. These shapes are available in the supersonic area rule program. The difference between the optimum shape and the mean wing gives the required fuselage area distributions in Figure 4.2-9. The resulting fuselage area distribution is then checked against the minimum required area all along the longitudinal body axis to verify internal clearances. This process may reveal the necessity for additional constraints on the combined fuselage/mean wing distribution. In this case, the fuselage shaping process is repeated again with an additional constraint. The second iteration is usually sufficient to develop a satisfactory fuselage.

Some typical comparisons between area rule indented bodies, wave drag, and wave drag calculations are presented in Figures 4.2-11(a) and (b). The test results and the Tchebichef calculations are taken from Reference 19.

RETERENCES:

1. Hague, Donald S., Estimation of Wing-Body Wave Drag, GEN/THEO AERO/10, Part 1, Avro Aircraft, Ltd., July 1961. (availawle from Aeropinsics Research)
2. Hague, D. S., Engineering Instructions for Use of Supersonic Area Rule Program, Avro Aircraft (Canada) Report P470/THEOR.AERO/7., March 1961.
3. Galipeau, John, User's Manual for Program ARPII, Aerophysics Research Corporation TN-176, 1972.
4. Hayes, Wallace D., Linearized Supersonic Flow, Report No. AL-222, North American Aviation, Inc., June 1947.
5. Von Karman, Th., The Problem of Resistance in Compressible Fluids, Estratto Dugli Atti del V Convegno della Fondazione Allesando Volta, 1935, Rome, Reale A-cademia d'Italıa, 1936.
6. Whitcomb, Richard T., A Study of the Drag Rise Characteristics of WingBody Combinations near the Speed of Sound, NACA RML 52 H 08, September 1952. (superseded by NACA Rep. 1273, 1956).
7. Heaslet, Max. A, Lomax, Harvard, and Spreiter, John R., Linearized Compressible Flow Theory for Sonic Flight Speeds, NACA Rep. 956, 1950.
8. Jones, Robert T., Theory of Wing-Body Drag at Supersonic Speeds, NACA RM A 53H18a, September 1953. (superseded by NACA Rep. 1284, 1956).
9. Whitcomb, Richard T. and Fischetti, Thomas L., Development of a Supersonic Area Rule and an Application to the Design of a Wing-Body Combination Having High Lıft to Drag Ratios.
10. Ward, G. N., The Drag of Source Distributions in Linearized Supersonic Flow, College of Aeronautics, Rep. No. 88, February $£ 955$.
11. Baldwan, Barrett S., and Dickey, Robert R., Application of Wing-Body Theory to Drag Reduction at Low Supersonic Speeds, NACA RM A 54 J 19 , January 28, 1955.
12. Lomax, Harvard, The Wave Drag of Arbitrary Configurations in Linearized Flow as Determined by Areas and Forces in Oblique Planes, NACA RMA 55 Al8, 1955.
13. Sears, W. R., On Projectıles of Minımum Wave Drag, Quarterly of Applied Mathematics, Volume IV, No. 4, January 1947.
14. Eminton, E., On the Minimization and Numerical Evaluation of Wave Drag, R.A.E. Report Aero 2564, November 1955.
15. Cahn, Maurice S. and Olstad, Walter B., A Numerical Method for Evaluating Wave Drag, NACA TN 4258, June 1958.
16. Holdaway, George H. and Mersman, William A., Application of the Tchebichef Form of Harmonic Analysis to the Calculation of Zero Lift Wave Drag of Wing-Body-Tail Combinations, NACA RMA 55 J28, February 1956.
17. Nelson, Robert L. and Welsh, Clement J., Some Examples of the Applications of the Transonic and Supersonic Area Rules to the Prediction of Wave Drag, NASA TN D-446, September 1960.
18. Loving, Donald L., A Transonic Investigation of Changing Indentation Design Mach Number on the Aerodynamic Characteristics of a 45° Swept Back Wing-Body Combination Designed for High Performance, NACA RM L55 J07, January 1956.
19. Holdaway, George H. and Hatfield, Elaine, W., Investigation of Symmetrical Body Indentations Designed to Reduce the Transonic Zero Lift Wave Drag of a 45° Swept Wing with an NACA 64A006 Section and with a Thickened Leading Edge Section, NACA RM A56 K26, March 1957.

FIGURE 4.2-1. TYPICAL ZERO LIFT DRAG COEFFICIENT

FIGURE 4.2-2(a)
DRAG RISE VERSUS MACH NUMBER FOR CYLINDRICAL BODY, UNSWEPT WING-BODY COMBINATION AND COMPARABLE BODY OF

FIGURE 4.2-2 (b)
DRAG RISE VERSUS MACH NUMBER FOR CYLINDRICAL BODY, DELTA WING AND BODY COMBINATIONS, AND COMPARABLE BODY OF REVOLUTION

FIGURE 4.2-2 (c)

DRAG RISE VERSUS MACH NUMBER FOR CURVED BODY, SWEPT WING AND CYLINDRICAL BODY COMBINATION, AND COMPARABLE BODY OF REVOLUTION

FIGURE 4.2-2(d)
DRAG RISE VERSUS MACH NUMBER FOR CURVED BODY, SWEPT WING AND CURVED BODY Combination, and comparable body of revolution

FIGURE 4.2-3. INCOMPRESSIBLE NATURE OF TRANSONIC FLOW FIELD

FIGURE 4.2-4(a)

FIGURE 4.2-4(b)
THE EFFECTS.ON TRANSONIC DRAG OBTAINED BY INDENTING THE BODIES OF WING-BODY COMBINATIONS (DELTA WING)

FIGURE 4.2-4(c)
THE EFFECTS OF TRANSONIC DRAG OBTAINED BY INDENTING THE BODIES OF WING-BODY COMBINATIONS (SWEPT WING)

IIGURE 4.2-5. COORDINATE SYSTEM AND MACH PLANES

FIGURE 4.2-6. WING REGION FOR OBTAINING $A(x)$.

FIGURE 4.2-7. INCLUSION OF LIFT IN SUPERSONIC AREA RULE

FIGURE 4.2-8. FUSELAGE AREA CONTRIBUTION

FIGURE 4.2-9(a) LAYOUT OF BASIC EXAMPLE AIRCRAFT

FIGURE 4.2-9(b) LAYOUT OF $M=1.0$ AREA RULED EXAMPLE AIRCRAFT
ORIGINAL PAGE IS
OF POOR QUALIIIY

FIGURE 4.2-10(a). AREA DISTRIBUTION OF BASIC A/C

FIGURE 4.2-10(b). AREA DISTRIBUTION OF $M=1.0$ AIRCRAFT

FIGURE $4.2-10(\mathrm{c})$. AREA DISTRIBUTION OF $\mathrm{M}=1.2$ AIRCRAFT

FIGURE $4.2-10(\mathrm{~d})$. AREA DISTRIBUTION OF $\mathrm{M}=1.4$ AIRCRAFT

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 4.2-10(e). AREA DISTRIBUTION OF $\mathrm{M}=1.0 \mathrm{TO} \mathrm{M}=1.4$ AIRCRAFT

FIGURE 4.2-11(a). EXPERIMENTAL AND COMPUTED ZERO LIFT WAVE DRAG COEFFICIENTS 4.2-34

FIGURE 4.2-11(b) EXPERIMENTAL AND COMPUTED ZERO LIFT WAVE DRAG COEFFICIENTS FOR MODIFIED WING WITH VARIOUS BODIES

TABLE OF CONTENTS FOR SECTION 4.3, PROGRAM TREND

Section		Page
	Introduction	4.3-I
4.3.1	Basic Configuration Types and Lamitations	4.3-1
4.3 .2	Sensitivity Analysis Options	4.3-2
4.3.3	Subsonic Flight Regime	4.3-3
	4.3.3.1 Subsonic Lift	4.3-3
	4.3.3.1(a) Modified Body of Revolution	4.3-3
	4.3.3.1(b) Planar Body	4.3-4
	4.3.3.1(c) Wing	4.3-4
	4.3.3.1(d) Horızontal Tail	4.3-4
	4.3.3.1(e) Elevon	4.3-5
	4.3.3.1(f) Wing-Body Configuration	4.3-5
	4.3.3.2 Subsonic Drag	4.3-6
	4.3.3.2 (a) Minimum Drag	4.3-6
	4.3.3.2 (b) Body Friction and Pressure Drag	4.3-6
	4.3.3.2 (c) Exposed Surface Friction and	
	Pressure Drag	4.3-7
	4.3.3.2 (d) Base Drag	4.3-8
	4.3.3.3 Subsonic Drag Due to Lift	4.3-8
	4.3.3.3(a) Subsonic Lifting Body Configurations	4.3-8
	4.3.3.3(b) Subsonic Wing=Body Configurations	4.3-8
	4.3.3.4 Subsonic Trım Drag	4.3-10
	4.3.3.4(a) Subsonic Llfting-Body Configurations	4.3-10
	4.3.3.4(b) Subsonic Wing-Body Configurations	4.3-10
4.3.4	Supersonic Flight Regime	4.3-11
	4.3.4.1 Supersonac Lift	4.3-11
	4.3.4.1(a) Supersonic Bodies	4.3-11
	4.3.4.1(b) Supersonic Wing and Horizontal Taıl	4.3-11
	4.3.4.1(c) Supersonic Wing-Body Configurations	4.3-11
	4.3.4.2 Supersonic Drag	4.3-11
	4.3.4.2(a) Supersonic Minimum Drag	4.3-12
	4.3.4.2 (b) Supersonic Zero Lıft Wave Drag	4.3-12
	4.3.4.2(c) Supersonic Base Drag	4.3-13
	4.3.4.2(d) Supersonic Friction Drag	4.3-13
	4.3.4.3 Supersonic Drag Due to Lift	4.3-14
	4.3.4.3(a) Supersonic Lafting Body Configurations	4.3-14

4.3.4.3(b) Supersonic Wing-Body Configurations 4.3-14
4.3.4.4 Supersonic Trim Drag 4.3-15
4.3.4.5 Supersonic Maximum Lift to Drag Ratio 4.3-15
4.3.5 Hypersonic Flight Regime 4.3-16
4.3.5.1 Hypersonic Lift and Drag 4.3-16
4.3 .6 Stability and Control Sensitivity Analysis 4.3-19
4.3.7 Aerothermodynamic Technıques in Hypersonic Flight 4.3-20
References 4.3-21
Illustrations 4.3-22

4.3 PROGRAM TREND: A RAPID SUBSONIC/SUPERSONIC/HYPERSONIC aERODYNAMIC TRADE-OFF CODE

Program TREND provides rapid aerodynamic lift, drag and moment estimates in the subsonic, supersonic, and hypersonic flight regimes. The program is primarily designed to estimate high lift-drag reentry vehicle aerodynamic characteristics. The class of vehicles which may be analyzed with the program is of greater range than the primary class of reentry vehicle. However, some program modification may be required as the vehicle shapes diverge from the prime class of vehicles. Program modification may also become desirable where detalled wind tunnel results are available for a specific configuration. When the computed aerodynamic characteristics are matched to the experimental characteristics in this manner program TREND may be used to estimate aerodynamic trade-offs rapidly as the configuration geometry is perturbed.

In the hypersonic flight regime, the program contains an optional aerodynamic heating computation capability. It should be noted that the program does not possess a transonic aerodynamic characteristic estamation capabilıty. The original program TREND was prepared under a previous Air Force Flight Dynamics Laboratory contract. Original detailed program documentation is presented in Reference. 1: An example of the use of this program is given in Reference 2.

4.3.1 Basic Configuration Types and Limitations

The basic configuration types which may be analyzed by program TREND are summarized in Table 4.3-1. Typical configurations are illustrated in Figures 4.3-1 and 4.3-2. It should be noted that the Type I configuration may be extended to incorporate a horizontal tail.

Total vehicle lift and drag coefficients for all flight regimes are computed by a component buildup that allows the user to select the prediction techniques most applicable to his configuration. In the subsonic and supersonic flight regimes the lift of a composite configuration is computed as the sum of
a, body lift
b. exposed wing lift
c. exposed horizontal tail $l_{\text {I }} f t$
d. lift increment due to horizontal tail or elevon deflection

The total drag is computed as the sum of the following components:
a. minimum drag
b. drag due to lift
c. trim drag

Lift and drag at hypersonic speeds are obtained from the normal and axial force coefficients computed by the methods presented below.

The limitations imposed in the subsonic flight regime are that Mach critical is not reached and that the angle of attack is less than 18 degrees for the wing-body configurations. Methods are included to compute
a. lift above wing stall
b. drag due to lift above polar break up to these limitations for the winged configurations

In the supersonic regime the Mach number limits are 1.2 to 3.5 , and the angle of attack is limited to 12 degrees for all configurations. This angle of attack limit is well above the angle of attack for maximum lift to drag ratio.

The prediction techniques applicable to the hypersonic regime are limited to continuum flow, Mach number greater than 3.5, and an angle of attack range between 5 and 50 degrees.

4.3.2 Sensitivity Analysis Options

Program TREND can be used to obtain vehicle aerodynamic sensitivities to configuration and/or flight path perturbations.

The sensıtıvity factor analysis provides the partial derıvatives of specified aerodynamic performance parameters with respect to the input vehicle geometric or flight path parameters. Derivatives are calculated directly from the sensitivity factor equations or by finite differences. The latter method must be used where sensitivity factor equations are not available. The sensitivity analysis calculates incremental aerodynamic performance parameter values for increment values of geometric and flight path parameters. In general,

$$
\begin{align*}
\Delta \mathrm{P} & =\frac{\partial \mathrm{P}}{\partial \mathrm{~V}_{1}} \Delta \mathrm{VI}_{1}+\frac{\partial \mathrm{P}}{\partial V_{2}} \Delta V_{2}+\cdots \frac{\partial \mathrm{P}}{\partial V_{n}} \Delta V_{\mathrm{n}} \\
& +\frac{\partial \mathrm{P}}{\partial \mathrm{M}} \Delta \mathrm{M}+\frac{\partial \mathrm{P}}{\partial \mathrm{~h}} \Delta \mathrm{~h}+\frac{\partial \mathrm{P}}{\partial \delta_{e}} \Delta \delta \mathrm{e}+\frac{\partial \mathrm{P}}{\partial \alpha} \Delta \alpha \tag{4.3.1}
\end{align*}
$$

where $P=$ an aerodynamic performance parameter; L, D, or L / D
$V=$ vehicle geometric parameter such as wing sweep or leading edge radius
$\mathrm{M}=$ Mach number
$h=$ altıtude
$\delta \mathrm{e}=$ elevon deflection
$=\alpha=$ angle of attack
Partial derivatives may be computed at either constant angle of attack or constant 11 frt coefficient in Equation 4.3.1.

It should be noted that certain aerothermodynamic sensitivities must be computed by an integration along the vehicle flight path, for example, heat shīeld mass sensitivity with respect to vehicle geometric parameters and thermal protection system properties. The option to compute such sensitivities along the equilibrium glide path of the nominal vehicle is available in TREND.

4.3.3 Subsonic Flight Regime

4.3.3.1 Subsonic Lift

4.3.3.1(a) Modified Body of Revolution.

Subsonic lift of a body or modified body of revolution is based on the DATCOM of Reference 3, Section 4.2.1. The method combines slender-body potential flow predictions with a viscous crossflow force proportional to the square of the angle of attack and modifies the results for noncircular body sections, Reference 4.

$$
\begin{align*}
& C_{L_{B}}=C_{L_{p}}+C_{L_{V}} \tag{4.3.2}\\
& C_{L_{P}}=\left(C_{N_{\alpha}}\right){ }_{b}\left(k_{2}-k_{1}\right) F_{m^{\alpha}}, \frac{S_{b}}{S} \tag{4.3.3}\\
& C_{L_{V}}=C_{d_{c}} F_{m} \alpha^{2}, \frac{S_{p}}{S} \tag{4.3.4}
\end{align*}
$$

where
$\left(\mathrm{C}_{\mathrm{N}_{\alpha}}\right)_{\mathrm{b}}=2.0$
$\dot{k}_{2}-\mathrm{k}_{1}=$ reduced mass factor obtained from Figure (4.2.1.1-6a) of DATCOM
$\mathrm{F}_{\mathrm{m}} \quad=$ cross-sectional shape parameter, Reference 1
$\mathrm{C}_{\mathrm{d}_{\mathrm{c}}}=1+1.2\left(\mathrm{M} \alpha^{1}\right)^{3}$
$S_{b} \quad=$ base area
$S_{p} \quad=$ planform area
$\mathrm{S}=$ reference area
${ }^{\alpha}{ }_{L O_{B}}=$ body angle of attack, at zero lift
The term α^{\prime} is the effective angle of attack and is calculated from $\alpha^{\prime}=\alpha-\alpha_{\text {LOB }}$. Lift curve slope is a nonlinear function of angle of attack and is determined from

$$
\begin{equation*}
C_{L \alpha_{B}}=\left(C_{N_{\alpha}}\right)_{b}\left(k_{2}-k_{1}\right) F_{m} \frac{S b}{S}+2 C_{d_{c}} F_{m} \alpha^{\prime} \frac{S_{p}}{S} \tag{4.3.5}
\end{equation*}
$$

4.3.3.1(b) Pianar Body

This class of bodies is treated as a low aspect ratio wing possessing a linear lift curve slope. The method used to determine $C_{L_{\alpha}}$ is based on the expression for normal force curve slope at zero lift contained in the subsection 4.8.1 of DATCOM.

$$
\begin{align*}
& C_{L_{\alpha_{B}}}=\left[.54\left(R_{1 / 3 L E / b)^{-153}}\left(\pi A R / 2+2 A_{y z} / 5\right) \frac{4}{4+A R}\right] \frac{S_{P}}{5}\right. \tag{4.3.6}\\
& C_{L_{B}}=C_{L_{\alpha_{B}}} \alpha^{\prime} \tag{4.3.7}
\end{align*}
$$

The term $.54\left(R_{1 / 3 L E} / b\right)^{-.153}$ approximates the curve in Figure (4.8.1.2-11) of DATCOM.

4.3.3.1(c) Wing

The lift contribution of exposed wing panels is computed as wing-alone lift modified for wing-body carryover. The wing-alone lift-curve slope is computed and the carryover factors $K_{B}(\mathbb{W})$ and $K_{W(B)}$ are obtained by the method of Pitts, Nielsen, and Kaattari, Referente 5.

$$
\begin{align*}
C_{L_{\alpha_{W}}} & =C_{L_{\alpha_{W E}}}\left[K_{g_{(W)}}+K_{w(B)}\right] \tag{4.3.8}\\
C_{L_{\alpha}} & =\frac{\pi A R_{W E} G}{G+\sqrt{1+G^{2}\left|1-M^{2} A R_{W E}^{2} / 4\right|}} \frac{S_{W E}}{S} \tag{4.3.9}\\
G & =2 \cos \Lambda_{E / 2 W} / A R_{W E} \tag{4.3.10}\\
S_{W E} & =\frac{\left(b_{W}-W\right)}{2}\left(C_{R_{W E}}+C_{T W}\right) \tag{4.3.11}\\
A R_{W E} & =\left(b_{W}-W\right)^{2} / S_{W E} \tag{4.3.12}
\end{align*}
$$

where W is the average body width at the wing junction and the subscript WE pertains to the exposed wing.

4.3.3.1(d) Horizontal Tail

Lift contrioution of the exposed part of the horizontal tail is determined by the above exposed wing method modified for downash and dynamic pressure reduction at the tail.

$$
\begin{equation*}
C_{L_{\alpha_{H}}}=C_{L_{\alpha_{H E}}}\left[K_{B(w)}+K_{w(8)}\right](1-d \xi / d \alpha) g_{H} / g \tag{4.3.13}
\end{equation*}
$$

Increment of lift resulting from a horizontal tail deflection is obtained from the tail effectiveness parameter for lifting surface incidence and modified for dynamic pressure reduction at the tail, Reference 5,

$$
\begin{align*}
\Delta C_{L_{H}} & =C_{L} \delta_{H} \tag{4.3.14}\\
C_{L_{\delta_{H}}} & =C_{L_{\alpha_{H E}}}\left[\beta_{B_{(W)}}+{R_{W}(B)}\right] g_{H} / g \tag{4.3.15}
\end{align*}
$$

For a leading edge down deflection of the horizontal tail, δ is negative.
4.3.3.1 (e) Elevon

The elevon contribution to total vehicle lift at zero deflection is ignored. For large elevon deflections, the elevon lift contribution may become significant and is assumed to be given by

$$
\begin{equation*}
\Delta C_{L_{e}}=C_{L_{e}} \delta e \tag{4.3.16}
\end{equation*}
$$

where the elevon effectiveness term is obtained by the methods given in Section IV of Reference 1.
4.3.3.1(f) Wing-Body Configurations

The lift of a composite configuration below wing stall is calculated as the sum of the component lift contributions. For a wing-body-tail configuration

$$
\begin{align*}
C_{L_{W B}}^{\prime} & =C_{L_{\alpha}} \tag{4.3.17}\\
C_{L_{\alpha_{W B}}} & =C_{L_{\alpha} B}^{\prime}+C_{L_{\alpha_{W}}}+C_{L_{\alpha} H} \tag{4.3.18}\\
\alpha^{\prime} & =\alpha-\alpha_{L_{W B}} \tag{4.3.19}
\end{align*}
$$

At angles of attack above wing stall where the body and tail continue to lift, lift is calculated as the sum of the wing lift at stall plus body and horizontal tail lift. Based on test data for the vehicle class considered, the wing stall angle of attack is established at eight degrees. Lift above the stall coefficient is computed from

$$
\begin{equation*}
C_{L_{w B}}=\left|C_{L_{\alpha_{B}}}+C_{L_{\alpha_{H}}}\right| \alpha^{\prime}+C_{L_{\alpha_{w}}}\left(.13963-\alpha_{L_{w B}} \mid+\Delta C_{L_{H}}\right. \tag{4.3.20}
\end{equation*}
$$

4.3.3.2 Subsonic Drag

Subsonic total drag coefficient of a configuration is the sum of minimum drag, drag due to lift, and trim drag,

$$
\begin{equation*}
C_{D}=C_{D_{M I N}}+C_{D_{L}}+C_{D_{T}} \tag{4.3.21}
\end{equation*}
$$

4.3.3.2(a) Minimum Drag

Subsonic minimum drag of a configuration is computed as the sum of friction and pressure drag of each component plus body base drag,

$$
\begin{equation*}
C_{D_{M I N}}=\sum \Delta C_{D_{M I N}}+C_{D_{b}} \tag{4.3.22}
\end{equation*}
$$

4.3.2(b) Body Friction and Pressure Drag

Body friction and forebody pressure drag contribution to subsonic minimum drag is computed by the method discussed in subsection 4.2 .3 of DATCOM. Assuming the equivalent body fineness ratio is greater than four

$$
\begin{equation*}
\Delta C_{D_{M / N_{B}}}=1.02 C_{f} \frac{S_{W E r}}{S} \tag{4.3.23}
\end{equation*}
$$

Compressible mean flat plate friction coefficient, C_{f}, is given by

$$
\begin{align*}
& C_{f}=C_{f i}\left[C_{f} / C_{f_{i}}\right] \tag{4.3.24}\\
& C_{f i}=0.455 /(10910 R N)^{2.58} \tag{4.3.25}
\end{align*}
$$

Reynolds number to calculate $\mathrm{C}_{\mathrm{f}_{\mathrm{i}}}$ is either
(a) Reynolds number based on body length
(b) limiting Reynolds number based on admissible surface roughness

Both Reynolds numbers are computed, and the lowest value is used to determine $\mathrm{C}_{\mathrm{f}_{\mathrm{i}}}$. Reynolds number based on length is obtained from

$$
\begin{equation*}
R N=\frac{\partial}{r}\left(M \ell_{B}\right) \tag{4.3.26}
\end{equation*}
$$

where $a=$ speed of sound, a function of altitude
$v=$ kinematic viscosity, a function of altitude
$\mathrm{M}=$ free stream Mach number
$l_{B}=$ body length
The limiting Reynolds number is computed from

$$
\begin{equation*}
R N_{1 / m}=K_{1}\left(\frac{l_{B}}{\hbar}\right)^{1.0489} \tag{4.3.27}
\end{equation*}
$$

where K_{1} is a function of Mach number, Reference 6.

Mach No.	K1
0	37.587
1	49.320
2	91.692
3	189.640

and k is the average surface roughness height. For the surface of a.modern aircraft, a k of .0003 inches is a realistic value. For a body that has experienced the heat of reentry, k is much greater.

4.3.3.2(c) Exposed Surface Friction and Pressure Drag

Friction and pressure drag contribution of exposed surfaces is computed by the method contained in subsection 4.2 of the DATCOM.

$$
\begin{equation*}
\Delta C_{D_{\text {MIN }}}=2 C_{f}(1+2 t /) \frac{S_{t}}{S^{\prime}} \tag{4.3.28}
\end{equation*}
$$

where C_{f} is determined as above with length being replaced by the mean geometric chord in determining Reynolds number

$$
\begin{equation*}
\bar{C}=\frac{2}{3}\left[C_{R_{E}}+C_{T}-\frac{C_{R_{E}} \times C_{T}}{C_{R_{E}}+C_{T}}\right] \tag{4.3.29}
\end{equation*}
$$

4.3.3.2(d) Base Drag

The body base drag contribution to minimum drag is computed by the method reported in subsection 4.8.2 of DATCOM

$$
\begin{align*}
& C_{D_{b}}=-C_{P_{B_{0}}} \frac{S_{b}}{S} \tag{4.3.30}\\
& C_{P_{B_{0}}}=\left(\frac{Q}{2 \sqrt{\pi S_{b}}}\right)\left[C_{P_{B_{0}}} /\left(\Theta / 2 \sqrt{\pi S_{b}}\right)\right] \tag{4.3.31}
\end{align*}
$$

where S_{b} and the required base geometry are obtained from the input. The term $\mathrm{CPB}_{\mathrm{O}_{\mathrm{o}}} /$ ((P) $/ 2 \sqrt{\pi S_{b}}$) is obtained by table lookup of the information aresented in Figure (4.8.2.1-7) of DATCOM.

4.3.3.3 Subsonic Drag Due to Lift

4.3.3.3(a) Subsonic Lifting Body Configurations

The method presented in subsection 4.2.3.2 of DATCOM is used to calculate drag due to lift of modified bodies of revolution. Body suction forces are neglected by this method and

$$
\begin{equation*}
C_{D_{L}}=C_{L} \alpha^{\prime} \tag{4.3.32}
\end{equation*}
$$

According to test data a delta planform lifting body configuration possesses a linear lift-curve slope and a parabolic variation of drag with lift. The drag due to lift is expressed as

$$
\begin{equation*}
\left.C_{O_{L}}=K \mid C_{L}-\Delta C_{L}\right)^{2} \tag{4.3.33}
\end{equation*}
$$

where K is the drag due to lift factor calculated from

$$
\begin{equation*}
K=I / C_{L \alpha} \tag{4.3.34}
\end{equation*}
$$

and \dot{S}_{L} is the polar displacement.

4.3.3.(i) Subsonic Wing-Body Configurations

Test data indicates that the drag polar of wing-body configuration breaks at a lower lift than that at which wing stall occurs. This break in the polar is quite pronounced and occurs near an angle of attack of five degrees , for vain body types considered by TREND: " The C_{L} where drag polar break occurs is calculated by

$$
\begin{equation*}
C_{L_{B R}}=C_{L_{\alpha}}\left(.08727-\alpha_{L O_{w B}}\right) \tag{4.3.35}
\end{equation*}
$$

Drag due to lift depends on whether the operating C_{L} is above or below the polar break, C_{L}. At C_{L} 's below $\mathrm{C}_{\mathrm{L}_{\mathrm{BR}}}$

$$
\begin{equation*}
C_{D_{L}}=K\left(C_{L}-\Delta C_{L_{W B}}\right)^{2} \tag{4.3.36}
\end{equation*}
$$

The polar displacement parameter, $C_{L W B}$, is arrived at by engineering judgment of the effectiveness of body and wing camber. The drag polar shape factor, K, is obtained from

$$
\begin{align*}
& K=\left(1 / \pi A R_{T} e\right) \frac{S}{S_{T}} \tag{4.3.37}\\
& e=e_{W}\left[1.0-\left(1.18-.68 / C_{T} / C_{R_{T}}\right) \frac{W}{b}\right] \tag{4.3.38}\\
& e_{W}=\frac{C_{L_{\alpha}}}{A R_{T}}\left[\frac{1}{\pi-.85\left(\pi-C_{L_{\alpha}} / A R_{T}\right)}\right] \tag{4.3.39}
\end{align*}
$$

The span efficiency factor, e_{w}, is determined by the method reported in Reference 6. A leading edge suction factor of .85 is used. The configuration efficiency factor is obtained by modifying the wing alone factor for body effects, Reference 6. The theoretical wing aspect ratio is obtained by extending the wing to the centerline,

$$
\begin{equation*}
A R_{T}=\frac{b^{2}}{S_{T}} \tag{4.3.40}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{T}=\frac{b}{2}\left(C_{R T}+C_{T}\right) \tag{4.3.41}
\end{equation*}
$$

Drag due to lift at C_{L} 's above $C_{L_{B R}}$ is computed from an empirical expression derived from test data. The expression used to compute drag due to lift above polar break is

$$
\begin{align*}
& C_{D_{L}}=K_{B R}\left(C_{L}-\Delta C_{L}\right)^{2} \tag{4.3.42}\\
& K_{B R}=K+\left[1.26\left(\frac{S}{S_{T}}\right)^{1.5}\left(C_{L}-C_{L}\right)\right]^{2} \tag{4.3.43}
\end{align*}
$$

4.3.3.4 Subsonic Trim Drag

Due to the many possible combinations of pitch control surfaces that could be used, a simple method is employed to account for trim drag. This method relies on the user's knowledge of control surface effectiveness and static margin of the particular configuration being worked. The approach is to modify the polar shape factor by an input trim drag factor, FTD. Suggested values of F_{TD} as a function of static margin and moment arm are contained in Figure 4.3-3.

$$
\begin{align*}
& C_{D_{T}}=C_{D_{L}}\left(F_{T D}-1.0\right) \tag{4.3.44}\\
& K_{T}=K . F_{T D} \tag{4.3.45}
\end{align*}
$$

4.3.3.5 Subsonic Maximum Lift to Drag Ratio

4.3.3.5(a) Subsonic Lifting-Body Configurations

(L/D) max of the modified body of revolution configuration is computed by an iterative procedure. Total lift and drag at increasing angles of attack are sequentially computed until a maximum value is obtained.
(L/D $)_{\max }$ of the plonar lifting body configuration is computed using

$$
\begin{align*}
|L / D|_{M A X} & =\frac{1}{2 K_{T}} \frac{1}{C_{L}(H D)_{M A \lambda}-\Delta C_{L}} \tag{4.3.46}\\
C_{L(H))_{M A X}} & =\sqrt{\left|C_{D_{M I N}} / K_{T}\right|+\Delta C_{L}^{2}} \tag{4.3.47}
\end{align*}
$$

where K_{T} is the trimmed value. The C_{L} for polar break is much higher than C_{L} for (L/D) max for this type of configuration; therefore, polar break is not considered in calculating ($L / D)_{\max }$.

4.3.3.5(b) Subsonic Wing-Body Configurations

The method of determining ($L / D)_{\max }$ for the wing-body configurations combines the above two methods because C_{L} for (L / D) max is near the C_{L} for polar break. C_{L} for (L/D) max is computed and compared with the C_{L} for the polar break. If it 1 s less than the C_{L} for polar break, equation (4.3.46) is used to calculate ($\mathrm{L} / \mathrm{D})_{\max }$. If it is greater, then the iteration procedure is used above C_{L} for polar break.

4.3.4 Supersonic Flight Regime

4.3.4.1 Supersonic Lift

4.3.4.1(a) Supersonic Bodies

The lift generated by modified bodies of revolution is computed, by the methods presented in Section 4.3.3.1(a) of the subsonic discussion. The potential normal force curve slope, $\left(\mathrm{C}_{\mathrm{N}_{\alpha}}\right)_{\mathrm{b}}$, is obtained by table lookup of the information in Figure (4.2.1.1-7a) of DATCOM for basic ogive cylinder bodies of infinite fineness ratio and ($k_{2}-k_{1}$) is equal to unity because the supersonic values of $\left(\mathrm{C}_{\alpha}\right)_{b}$ are semiempirical.

The lift generated by planar lifting bodies is again assumed to vary linearly with angle of attack below C_{L} for (L/D) max. This linear lift curve slope is obtained from the wing linear theory calculation results reported in Figure III.A.1-1a of Reference 6 as a function to trailing edge cutout, leading edge sweep, taper ratio, and Mach number.

4.3.4.1(b) Supersonic Wing and Horızontal Taıl

The lift contributions of the wing and horizontal tail exposed panels are computed by the methods discussed in subsections 4.3.3.1 (c) and (d). The basic lift-curve slopes that are modified for carryover, dynamic pressure reduction and downwash are obtained from the linear theory calculation results reported in Figure III.A.l-1a of Reference 6 based on the surface area formed by joining the exposed panels.

4.3.4.1(c) Supersonic Wing-Body Configurations

Tests on wang-body configurations of the type analyzed by program TREND do not siow a reduction of lift-curve slope up to angles of attack of 12 degrees. Tins angle is considerably above the angle of attack for (L/D) max. For this reason lift above wing stall is not computed as in the subsonic case. At all angles of attack lift is computed by the method discussed in subsection 4.3.3.1(f) for the attached flow case.

4.3.4.2 Supersonic Drag

The supersonic drag of a configuration is computed as the sum of minimum drag, drag due to lift, and trim drag,

$$
\begin{equation*}
C_{D}=C_{D_{\operatorname{MIN}}}+C_{D_{L}}+C_{D_{T}} \tag{4.3.21}
\end{equation*}
$$

Drag due to lift beyond polar break is not accounted for in the supersonic flight regime because the polar break C_{L} is much greater than C_{L} for ($\mathrm{L} / \mathrm{D})_{\text {max }}{ }^{-}$

4.3.4.2(a) Supersonic Minimum Drag

The minimum drag of a supersonic configuration is calculated as the sum of the component zero lift wave drag, friction drag, and base drag. The friction and base drag of a component at supersonic Mach numbers are usually treated as isolated parts, but the problem of estimating the zero lift wave drag of a composite configuration is one of properly accounting for the mutual interferences that exist between its components. The supersonic area rule program described in Section 4.2 uses that approach. The approach of program TREND is to isolate the individual components and their interferences. In general, the determination of individual interferences has been unsuccessful. However, for the purpose of program TREND in which the sensitivity of drag to configuration changes is desired, simplicity is required, and the isolated component buildup method which neglects any interference used.

4.3.4.2(b) Supersonic Zero Lift Wave Drag

Body wave drag is computed using the empirical data contained in Figure III.B.'10-7 of Reference 6 for ogive bodies of revolution. A table lookup procedure is used to determine the forebody and afterbody contributions

$$
\begin{equation*}
C_{D_{W_{-B}}}=\left\{C_{D_{P_{N}}}+C_{D_{P_{B T}}}\right) \frac{A_{Y z}}{5} \tag{4.3.48}
\end{equation*}
$$

where
$C_{D P D_{N}}=$ function of nose fineness ratio and β
$\mathrm{C}_{\mathrm{DP}_{\mathrm{BT}}}=\begin{aligned} & \text { function of afterbody fineness ratio, } \\ & \text { maximum diameter to base diameter }\end{aligned}$
The required parameters are determined from an ogive body of revolution that approximates the cross section area distribution of the body to be analyzed. The input quantities needed are Mach number, maximum cross-sectional area, base area, distance from nose to maximum cross section, and distance from maximum cross section to base.

Zero Inft wave drag of a wing, horizontal tail, or vertical tail is computed by the methods reported in Reference 6 for round leading-edge airfoils provided that $\beta \cot (\lambda, 5 C)$ is less than or equal, to 3.5 .

$$
\begin{align*}
& C_{D_{w}}=\left[\beta C_{o_{w}} / f(a, \lambda \mid t / c)^{2}\right]\left[f(a, \lambda| | t c)^{2} / \beta\right] \frac{S_{p}}{S} \tag{4.3.49}
\end{align*}
$$

The term $f(a, \lambda)$ is obtained from Figure III.B. 10-1 of Reference 6 and the average thickness ratio (t / c) is obtained from the input. The wave drag computed by this method contains wing-alone plus body interference drag because the correlation was achieved by subtracting body-alone wave drag from wingbody wave drag test data.

In the case where the parameter, $\beta \cot \lambda .5 C$ exceeds 3.5 , an alternate method is included based upon the information contained in subsection 4.1.5.1-18 of DATCOM.

$$
\begin{equation*}
C_{D_{w}}=\left\{7.85 \cos ^{2} \Omega_{-25 c}-[2.05(M-1)]\left[1-T A N-\Lambda_{.25 c}\right]\right\}(t / C)^{2} \frac{S_{p}}{S} \tag{4.3.51}
\end{equation*}
$$

4.3.4.2(c) Supersonic Base Drag

Base drag of the bodies is calculated from

$$
\begin{align*}
& C_{D_{b}}=-C_{P_{b}} \frac{S_{b}}{S} \tag{4.3.52}\\
& C_{P_{b}}=-.475+.2 \mathrm{M}-.025 \mathrm{M}^{2} \tag{4.3.53}
\end{align*}
$$

The expression for the base pressure coefficient was derived from recent base pressure test data. This value is significantly higher thian values predicted by the methods reported in Reference 7.

4.3.4.2(d) Supersonic Friction Drag

The total vehicle friction drag is computed as the sum of the friction drag of each component

$$
\begin{align*}
C_{D_{F}} & =\sum \Delta C_{D_{F}} \tag{4.3.54}\\
\Delta C_{D_{F}} & =C_{f} \frac{S_{W E T}}{S} \tag{4.3.55}
\end{align*}
$$

where C_{f} is computed by the methods discussed in subsection 4.3.3.2(b) of this report, $S_{\text {wet }}$ for bodies is obtained from the input, and $S_{\text {wet }}$ for surfaces is computed by multiplying the exposed surface planform area by 2.03 .

4.3.4.3 Supersonic Drag Due to Lift

4.3.4.3(a) Supersonic Lifting Body Configurations

The drag due to lift of modified body of revolution types of configurations with control surfaces is calculated by the method presented in 4.3.3.3 of the subsonic section

$$
\begin{equation*}
C_{D_{L}}=C_{L} \alpha^{\prime} \tag{4.3.56}
\end{equation*}
$$

Drag due to lift of the planar lifting systems that possess linear lift curve slopes and parabolic drag polers is calculated from

$$
\begin{gather*}
\left.C_{D_{L}}=K \mid C_{L}-\Delta C_{L}\right)^{2} \tag{4.3.57}\\
K=1 / C_{L-\alpha} \tag{4.3.58}
\end{gather*}
$$

where $\Delta \mathrm{C}_{\mathrm{L}}$ is the drag polar lift coefficient displacement obtained from the input, and $\mathrm{C}_{\mathrm{L}_{\alpha}}$ is calculated as discussed in subsection 4.3.4.1(c). The drag due to lift factor corresponds to zero leading edge suction and is based on recent test data that showed that although some suction is obtained at low supersonic Mach numbers it is -quickly lost as Mach number increases.

4.3.4.3(b) Supersonic Wing-Body Configurations

Drag due to lift of bodies with variable sweep wings is computed using Equation 4.3.57. The polar displacement, $\overline{\Delta C}_{\mathrm{L}}$, is obtained from input, and K for subsonic leading edge conditions is calculated from an expression derived from the correlation of supersonic test data in the WINSTAN program of Reference 8. At Mach numbers where the outer wing panels have supersonic leading edges, the drag due to lift factor is equal to the reciprocal of the lift curve slope,

$$
\begin{gather*}
\beta \cot \Lambda \geq 1, \quad K=I / C_{L_{\alpha}} \tag{4.3.59}\\
\beta \cot \alpha<1, \quad K=\frac{p+1}{P(\pi+4) A R}\left[1+2 \beta^{2}\left(\frac{b / 2}{\ell_{\beta}}\right)^{2}\right] \tag{4.3.60}
\end{gather*}
$$

where

$$
\begin{align*}
P & =S_{k} / b l_{k} \tag{4.3.61}\\
A R & =b^{2} / S_{k} \tag{4.3.62}
\end{align*}
$$

S_{k} is the shaded area in the sketch below.

4.3.4.4 Supersonic Trim Drag

Trim drag is accounted for by modifying the untrimmed polar shape factor by a trim drag factor obtained from the input as described in subsection 4.3.3.4 of the subsonic discussion.

4.3.4.5 Supersonic Maxımum Lift to Drag Ratio

$(L / D)_{\max }$ for modified body of revolution configurations without wings is calculated by an iteration procedure discussed in subsection 4.3.3.5 of the subsonac discussion. (L/D) max for all other configurations is computed using equations 4.3.46 and 4.3.47. (L/D) max beyond polar break is not considered decause the C_{L} for polar break is larger than the C_{L} for ($\left.L / D\right)_{\max }$.

4.3.5 Hypersonic Flight Regime

The analytical expressions of Hankey and Alexander for normal and axial force are used. This permits analytic sensitivity derivatives (partial derivatives) to be included in the computer procedure. These techniques were selected because

1. They are applicable for a wide range of flight and geometric parameters
2. They are derived from simple theories that are modified by empirical relations to improve accuracy and applicability.

A vehicle to be analyzed is defined by the following generalized configuration components:

1. hemispherıcal nose cap
2. Iower flat surface
3. ramp lower flat surface
4. lower flat and ramp cylindrical leading edges
5. flat fin surface with a straight swept leading edge
6. fuselage composed of no more than two truncated cones (or a cone-cylinder combination
7. elevon.

4.3.5.1 Hypersonic Lift and Drag

The equations used in program TREND are listed below.

$$
\begin{align*}
& C_{L}=C_{N} \cos \alpha-C_{A} \sin \alpha \tag{4.3.63}\\
& C_{0}=C_{N} \sin \alpha+C_{A} \cos \alpha \tag{4.3.64}
\end{align*}
$$

$$
\begin{align*}
& C_{N}=C_{N_{N}}+C_{N_{L}}+C_{N_{L E}}+C_{N_{L_{R}}}+C_{N_{L E}}+C_{N_{e}}+C_{N_{L E_{F}}}+C_{N_{B_{1}}}+C_{N_{B_{2}}} \tag{4.3.65}\\
& C_{A}=C_{A_{N}}+C_{A_{L_{L}}}+C_{\text {lort }}+C_{A_{L E}}+C_{A_{L E}}+C_{A_{R}}+C_{A_{L E}}+C_{A_{B_{1}}}+C_{A_{B_{2}}} \tag{4.3.66}\\
& C_{N_{N}}=F_{N} K_{N} \sin \alpha(1+\cos \alpha) \tag{4.3.67}\\
& C_{N_{L}}=K_{L} S_{L} / S \sin ^{2} \alpha \tag{4.3.68}\\
& C_{N E E}=F_{L E} K_{L E} \operatorname{Sin} \alpha\left[\operatorname{Cos}\left(\Lambda_{L E}\right)_{E}+\operatorname{Cos} \Lambda_{L E} \operatorname{Cos} \alpha\right] \tag{4.3.69}\\
& C_{N_{R}}=K_{L_{R}} S_{R} / S \sin ^{2}\left(\alpha+\Delta_{R}\right) \cos \Delta_{R} \tag{4.3.70}\\
& C_{N_{L E_{R}}}=F_{E_{R}} K_{L \varepsilon} \operatorname{Sin}\left(\alpha+\Delta_{R}\right) \operatorname{Cos} \Delta_{R}\left[\operatorname{Cos}\left(\Lambda_{L E_{R}}\right)_{E}+\operatorname{Cos} \Lambda_{L E_{R}} \operatorname{Cos}\left(\alpha+\Delta_{R}\right)\right] \tag{4.3.71}\\
& c_{N_{e}}=K_{e} S_{e} / S \sin ^{2}\left(\alpha+\Delta_{e}\right) \cos \Delta_{e} \tag{4.3.72}\\
& C_{N_{L_{E} E}}=-F_{E_{E}} K_{L E} \sin ^{2}(\Gamma-\alpha) \cos \Gamma \tag{4.3.73}\\
& C_{N_{B_{1}}}=-0.125 F_{B}, \frac{A_{X X_{2}}}{S} \tag{4.3.74}\\
& C_{N_{B_{2}}}=-0.125 F_{B_{2}} \frac{A_{x y_{2}}}{S} \tag{4.3.75}\\
& C_{A_{N}}=1 / 2 F_{N} K_{N}(1+\cos \alpha)^{2} \tag{4.3.76}\\
& C_{A_{L}}=\frac{G_{l}}{\sqrt{R N}} \frac{S_{w N T}}{S}\left[0.45 \cos \alpha+4.65 \frac{V_{\infty}}{10,000} \sin \alpha \operatorname{Cos}^{2.2} \alpha\right] \tag{4.3.77}\\
& \left.C_{A_{L_{t}}}=\frac{G_{t}}{(R N)^{2}} \frac{S_{w m}\left[0.048 \sin (4.5 \alpha)+0.7 \frac{V_{0}}{10,000} \operatorname{Sin} \cdot \frac{15}{} \cos \alpha\right]}{2.25}\right] \tag{4.3.78}\\
& C_{A_{\perp} E}=1 / 2 F_{L E} K_{L E} \operatorname{Cos} \Lambda_{L E}\left[\operatorname{Cos}\left(\Lambda_{L E}\right)_{E}+\operatorname{Cos} \Lambda_{L E} \operatorname{Cos} \alpha\right]^{2} \tag{4.3.79}
\end{align*}
$$

$$
\begin{align*}
& C_{A_{L_{R}}}=K_{L_{R}} S_{R} / S \sin ^{2}\left(\alpha+\Delta_{R}\right) \sin \Delta_{R} \tag{4.3.80}\\
& C_{A_{L E}}=1 / 2 E_{E_{R}} K_{L E} \operatorname{Cos} \Lambda_{L E_{R}} \operatorname{Cos} \Delta_{R}\left[\operatorname{Cos}\left(\Lambda_{L E_{R}}\right)_{E}+\operatorname{Cos} \Lambda_{L E_{R}} \operatorname{Cos}(\alpha+\Delta R]^{2}\right. \tag{4.3.81}\\
& C_{A_{e}}=K_{e} \operatorname{Se} / S \sin ^{2}\left(\alpha+\Delta_{e}\right) \sin \Delta_{e} \tag{4.3.82}\\
& C_{A_{L E}}=F_{E E_{F}} K_{L E} \sin ^{2}(\Gamma-\alpha) \sin \Gamma \tag{4.3.83}\\
& C_{A_{B_{1}}}=0.196 F_{B_{3}} \frac{A_{x y}}{S} \operatorname{Tan} \Delta_{1} \tag{4.2.84a}\\
& C_{A_{B_{2}}}=0.196 F_{B_{4}} \frac{A_{x y_{2}}}{S} \operatorname{Tan} \Delta_{2} \tag{4.3.84~b}\\
& F_{N}=\pi R_{N}^{2} / 4 S \tag{4.3.86}\\
& F_{L E}=4 R_{L E} \ell_{L E} / 3 S \tag{4.3.87}\\
& F_{L E_{R}}=4 R_{L E_{R}} \ell_{L E_{R}} / 3 S \tag{4.3.88}\\
& F_{L E_{F}}=4 R_{L E_{F}} \ell_{F} / 3 S \tag{4.3.89}\\
& F_{B_{1}}=\eta_{c}(1+0.845 \Delta,-0.663 \alpha)^{5}-22.93 / \mathrm{M}^{2} \tag{4.3.90}\\
& F_{B_{2}}=n_{c}\left(1+0845 \Delta_{2}-0.663 \alpha\right)^{5}-22.93 / \mathrm{M}^{2} \tag{4.3.91}\\
& F_{B_{3}}=n_{c}\left(1+0.845 \Delta_{1}-0.537 \alpha\right)^{3}-22.93 / \mathrm{m}^{2} \tag{4.3.92}\\
& F_{B_{4}}=n_{c}\left(1+0.845 \Delta_{2}-0.537 \alpha\right)^{5}-22.93 / M^{2} \tag{4.3.93}\\
& R N=\frac{V_{\infty} l}{V} \tag{4.3.94}\\
& \operatorname{Cos}\left(\Lambda_{\mu}\right)_{\varepsilon}=\left[1+\sin ^{2} \Lambda_{\mu \varepsilon} \cos ^{2} \alpha\right]^{1 / 2} \tag{4.3.95}\\
& \operatorname{Cos}\left(\Lambda_{\Delta R}\right)_{E}=\left[1+\sin ^{2} \Lambda_{\Delta E_{R}} \operatorname{Cos}^{2}\left(\alpha+\Delta_{R}\right)\right] \tag{4.3.96}
\end{align*}
$$

The following factors are obtained from the input and can be varied: K_{N}, $K_{L E}, G_{\ell}, G_{t}$, and η_{c}.

4.3.6 Stability and Control Sensitivity Analysis

Program TREND provides an approximation to vehicle lift, drag, and aerodynamic center, and the sensitivity of lift, drag, and aerodynamic center to certain aerodynamic and geometric parameters. These sensitivities are obtained in the general form $\partial F / \partial V$ where F is lift, drag, or aerodynamic center or a component lift, drag, or aerodynamic center. The varıable V may be angle of attack or any of a variety of vehicle geometric characteristics.

At subsonic and supersonic speeds, the sensitivities are obtaned by numerical differentiation of the basic lift and drag equation presented in subsections 4.3.4 and 4.3.5 and related aerodynamic center equations. At hypersonic speeds the Hankey and Alexander formulation permits development of closed form sensitivities.

The aerodynamic characteristics and geometric parameters selected for sensitivity factors are summarızed in Tables 4.3-2, 4.3-3, and 4.3-4 for each speed regime. It may be anticipated that certain of the geometric parameters would have negligible influence on some of the stabitity and control derivatives for certain vehicle configurations. To insure scope of program coverage, however, most major geometric parameters have been included as sensativity factors. The program can be used, therefore, to determine which geometric changes have the greater influence on the stability and control derivatives and those which have little influence.

A complete discussion of the equations supporting the stability and control portion of program TREND are given in their entirety in the original TREND documentation for subsonic, supersonic, and hypersonic speed regimes. As noted previously, the prediction tecnniques at subsonic and supersonic speeds are based primarily on the DATCO:I while the technique at hupersonic speed is vased on the Hankey and Alexander method. In some anstances, alterations of the D.TCOM method or utilization of other reference material is necessary to adapt the prediction scheme to the intended class of configurations. These deliations are listed belon as follows:

1. The terms e_{I} and $e_{I I}$ were included in the body predictions of sideforce-at subsonic and supersonic speeds for configurations I and II, respectively, to provade latitude to correct for body cross-sectional shapes. Representative values of these parameters is discussed in subsection 4.2.1.2 of DATCOM.
2. Effect of vertical tail endplating on the aerodynamic center of configuration II is included at subsonic speeds. Necessary parameters for calculating this effect are obtained from the lift and drag section of the program.
3. Configuration II aerodynamic center characteristics are more indicative of a cranked wing configuration than a wing-body combination at subsonic speeds. Therefore, the technology obtained from the F-111 airplane and from the WINSTAN studies, Reference 8, is utilized for this prediction.
4. To reduce procedure complexity and, at the same time maintain an acceptable degree of accuracy, the center of pressure of the horizontal tail and of the elevon has been assumed to be located at the centroid of the surface at supersonic speeds.
5. Additional references required to support the DATCOM techniques for purposes of completeness and ease of handling include those of References 5, 6, and 9.
6. Subsonic elevon effectiveness for configuration II is based on the method of Reference 10.

4.3.7 Aerothermodynamic Techniques in Hypersonic Flight

The trend program contains a variety of aerothermodynamic analysis modules. Correlations have been developed which describe the aerodynamic heating to the five major regions of the vehicle listed below:

1. Nose cap stagnation point
2. Nose cap lower surface interaction point
3. Leading edge stagnation line
4. Leading edge lower surface interaction line
5. Lower surface centerline (fuselage)

The options available are described in detail in section on thermodynamics.

1. Fox, M. K., Barnes, K. H., Harrington, L. J., Mauzy, E. L., et al., Investigation of Techniques to Evaluate Design Trade-Offs in Lifting Reentry Vehicles, Volume I, AFFDL-TR-66-77, October 1966.
2. Phillips, W. Pelham; Decker, John P.; Rau, Timothy R.; and Glatt, C. R.: Computer-Aided Space Shuttle Orbiter Wing Desıgn Study, NASA TN D-7478, May 1974.
3. Hoak, D. E. and Carlson, J. W.: Air Force Project Engineers for U. S. Air Force Stabilıty and Control DATCOM, Section 4.4
4. Jorgensen, L. H., Inclined Bodies of Various Cross Sections at Supersonic Speeds," NASA Memo 10-3-58A, November 1958.
5. Pitts, W. C., Nielsen, J. N., and Kaattari, G. E., Lift and Center of Pressure of Wing-Body-Tail Combinations at Subsonic, Transonic, and Supersonic Speeds, NACA Report 1307, 1959.
6. Frost, R. C., Editor, GD/FW Aerospace Handbook, General Dynamics, Fort Worth Report FZA-381, November 1963.
7. Hargis, C. B., Jr., Davison, P. H., and Savage, S. B., Methods for Estimating Base Pressures on Alrcraft Configurations, WADC TN 57-28, Wright Air Development Center, Wright-Patterson Air Force Base, July 1957.
8. \quad. Aerodynamic Characteristics of Nonstraight-Taper Wings, Air Force Contract 33(615)-2520.
9. Kaattarı, G. E., Estimation of Directional Stabılity Derivatives at Moderate Angles and Supersonic Speeds, NASA Memo 12-1-58A, 1959.
10. Kouri, B. G., Estimation of Longitudinal Center of Pressure for Flap-Type Control Surfaces on Wings of Various Planforms, General Dynamics Convair Division, Report IAR 3.157, December 1959.

TABLE 4.3-1. CONFIGURATION TYPES

TYPE	FLIGHT REGIME
- Modified body of revolution with horizontal and vertical tails	Subsonic, supersonic, and hypersonic
IB - Type I with a wing	Subsonic and super- sonic
II - Planar lifting body with	
elevons and vertical tail	Subsonic, supersonic, and hypersonic
IIB - Type II with a wing	Subsonic and super- sonic

앙 CONFIGURATION I

Txivit														
	A.c.		$c_{\text {mes }}$		2			$\mathrm{EHA}_{\text {H }}$			18			
	3005	vinion Thll	D08\%	$\begin{aligned} & 4140 \\ & \text { yorr- } \\ & \text { Talk } \end{aligned}$	100\%	810	Triment	200\%	1097	Tzaficit	moti	$\begin{aligned} & \text { Yict } \\ & \text { noer } \end{aligned}$	$\left[\begin{array}{l} \text { vitical } \\ \text { nill } \end{array}\right.$	
$\begin{aligned} & v_{r} \\ & x_{r} \\ & v_{x} \end{aligned}$		$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$		2		\pm	\mathbf{I}		*	; 3		$\underline{1}$	$\boldsymbol{\Sigma}$	1
$\begin{aligned} & c_{x_{7}} \\ & c_{x y} \\ & c_{51} \end{aligned}$		x x		x		2	1		- 2	\mathbf{z}		*	x	I
$\begin{aligned} & f \\ & \mathbf{I}_{x} \end{aligned}$	2	\underline{x}	I	\pm		$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$		2	$\underline{1}$			x		
$\begin{aligned} & \lambda_{T} \\ & \lambda_{L T} \\ & \lambda_{Y} \end{aligned}$		$\underline{1}$		\%		1	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		x	$\begin{aligned} & x \\ & x \end{aligned}$		I	\mathbf{x} \mathbf{x}	
$\begin{aligned} & \lambda_{12 y} \\ & \lambda_{n} \\ & \lambda_{12} \end{aligned}$		\mathbf{x} \mathbf{x} \mathbf{X}		\mathbf{x}		\mathbf{z}			$\underline{1}$			\pm		1 \mathbf{x}
$\begin{aligned} & r_{y} \\ & w_{y} \\ & w_{x} \end{aligned}$		2		\%			1			\bar{x}		I	2	$\underline{1}$
24 e_{z} 4c/da		I		$\underline{1}$	\mathbf{x}	$\begin{aligned} & \mathrm{z} \\ & \mathrm{z} \end{aligned}$		\pm	I			1		-
*1/4		z		I										I

© CONEIGURATION II

$\underset{\substack{\text { tirgut } \\ \text { vancix }}}{ }$,			
	A.c.		C_{31}		51			tan^{\prime}			${ }_{5}$			$\mathrm{C}_{\text {- }}$
	3007	$\begin{aligned} & \text { yivic- } \\ & \text { poit } \end{aligned}$	200\%	$\begin{aligned} & 5106 \\ & 3007 \end{aligned}$	1807	$\begin{aligned} & \text { ync } \\ & 10 \pi \end{aligned}$	$\begin{gathered} \text { Thancel } \\ \text { naIL } \end{gathered}$	0008	$\begin{aligned} & 7 i m-1 \\ & 1007 \\ & \hline 102 \end{aligned}$	$\begin{gathered} \text { Farfld } \\ \text { zay } \\ \hline \end{gathered}$	1007	$\begin{aligned} & 10104 \\ & 1007 \end{aligned}$	$\begin{gathered} \text { Trincal } \\ \text { zalk } \\ \hline \end{gathered}$	
α ba ${ }^{7}$	I	2	I	x				-	\pm	z	\mathbf{z}	$\begin{aligned} & \mathbf{z} \\ & \mathbf{z} \end{aligned}$	\%	\mathbf{z}
$\begin{aligned} & v_{1} \\ & c_{68} \\ & c_{51} \end{aligned}$	x	$\begin{aligned} & \mathbf{y} \\ & \mathbf{y} \end{aligned}$	x	$\begin{aligned} & \mathrm{z} \\ & \mathrm{I} \end{aligned}$		z	2	I	$\begin{aligned} & x \\ & x \end{aligned}$	2	I	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	I	
$\begin{aligned} & c_{54} \\ & c_{54} \\ & c_{74} \end{aligned}$		1		I		2			I			I		$\begin{aligned} & x \\ & x \end{aligned}$
$\begin{aligned} & \varepsilon_{\varepsilon_{2}} \\ & r \\ & \mathbf{y} \end{aligned}$					\mathbf{x}	$\begin{aligned} & \mathrm{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$		I	z		${ }^{\mathbf{z}}$	$\begin{aligned} & x \\ & z \end{aligned}$		
$\begin{aligned} & \lambda_{1} \\ & \lambda_{180} \\ & \lambda_{y} \end{aligned}$	$\begin{aligned} & x \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	x	$\begin{aligned} & x \\ & x \end{aligned}$			I	$\begin{aligned} & \mathrm{y} \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	x	$\underline{1}$	$\begin{aligned} & \mathrm{z} \\ & \mathrm{y} \end{aligned}$	\mathbf{x}	\boldsymbol{x}
$\begin{aligned} & \boldsymbol{\Lambda}_{L D} \\ & \lambda_{Y} \\ & \lambda_{L I} \end{aligned}$		$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$		$\begin{aligned} & 2 \\ & \mathbf{x} \end{aligned}$		$\begin{aligned} & \mathbf{I} \\ & \mathbf{I} \end{aligned}$	2		x	x		$\begin{aligned} & \mathbf{z} \\ & \mathbf{x} \end{aligned}$	x	
$\begin{aligned} & z_{12 x} \\ & s_{24} / s_{300} \\ & z_{2 c_{4}} / t_{15} \end{aligned}$		*	-		$\begin{aligned} & \mathrm{I} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$		8	$\begin{aligned} & \mathrm{z} \\ & \mathrm{z} \end{aligned}$		I	2		
sux.						X								\%

TABLE 4.3-3. AVAILABLE SUPERSONIC SENSITIVITIES IN PROGRAM TREND

COMFIGURATION I

©CONFIGURATION II

TABLE 4.3-4. AVAILABLE HYPERSONIC INPUT SENSITIVITIES IN PROGRAM TREND

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
stasilitic \\
4 corrsor \\
DESKVATEF:
\end{tabular} \& varubly \& \(\alpha\) \& \(\mathrm{R}_{\mathrm{H}}\) \& X \& 8 \& 2 \& \(\Lambda_{12}\) \& \(\mathrm{R}_{L \varepsilon}\) \& \(\chi_{15}\) \& 8 \& \(\Delta\) \& \(\Gamma\) \& \(\lambda\) \& \(\phi\) \& \({ }^{122}\) \& \({ }^{\text {A }}\) X \\
\hline 46 \& \[
\begin{aligned}
\& 1 \\
\& 2
\end{aligned}
\] \& \& \(\mathbf{x}\) \& \[
x
\] \& \& \& \(x\) \& \(x\) \& x \& \& \& \& \& \& \& \\
\hline \& \[
3
\] \& \& \& x \& \& \& I \& \(x\) \& x \& I \& \& \& \& \& \& \\
\hline \& \[
\begin{aligned}
\& 5 \\
\& 6
\end{aligned}
\] \& \& \& \begin{tabular}{l}
x \\
x \\
\hline
\end{tabular} \& \& \& \& \(x\) \& I \& \(\mathbf{x}\) \& \& \(x\) \& \& \& \& \\
\hline - \& \[
\begin{aligned}
\& 7 \\
\& 8
\end{aligned}
\] \& \& \& X \& \& \& \& \& \& \& x \& \& \& \& \& I \\
\hline \multirow[t]{4}{*}{\(\mathrm{cmm}_{\text {m }}\)} \& \[
2
\] \& x
x \& \(x\) \& \begin{tabular}{l}
x \\
x \\
x \\
\hline
\end{tabular} \& \& \(x\) \& x \& \(x\) \& I \& \& \& \& \& \& \& \\
\hline \& 3 \& X \& \& \(x\)
\(x\) \& \& X \& \(x\) \& x \& I \& x \& \(x\) \& \& \& \& \& \\
\hline \& \[
\begin{aligned}
\& 3 \\
\& 6 \\
\& \hline
\end{aligned}
\] \& 文 \& \& \begin{tabular}{l}
x \\
\(\times\) \\
\\
\\
\hline
\end{tabular} \& \& \begin{tabular}{l}
x \\
x \\
\hline
\end{tabular} \& \& \(x\) \& x \& \(\mathbf{z}\) \& I \& \(\underline{1}\) \& \& \& \& \\
\hline \& \[
\begin{aligned}
\& 7 \\
\& 8 \\
\& \hline
\end{aligned}
\] \& I \& \& \begin{tabular}{l}
K \\
\(\mathbf{X}\) \\
\hline
\end{tabular} \& \& x \& \& \& \& \& \begin{tabular}{l}
x \\
\(\mathbf{x}\) \\
\hline
\end{tabular} \& \& \& \& \& \% \\
\hline \multirow[t]{4}{*}{\(c_{7}\)} \& \[
2
\] \& x \& I \& \& \& \& \(\mathbf{x}\) \& \(x\) \& x \& \& \& \& \& \& \& \\
\hline \& 3 \& x \& \& \& \& \& \(\underline{1}\) \& \(x\) \& X \& z \& \(x\) \& \& \& \& \& \\
\hline \& \[
\begin{aligned}
\& 3 \\
\& 6
\end{aligned}
\] \& \(x\) \& \& \& \& \& \& \& \& \[
\begin{aligned}
\& x \\
\& x
\end{aligned}
\] \& \(x\) \& \& \(\underline{x}\) \& \(\underline{ }\) \& \& \\
\hline \& \[
\begin{aligned}
\& 7 \\
\& 8
\end{aligned}
\] \& X \& \& \& \& \& \& \& \& \& I \& \& \& \& I \& \\
\hline \multirow[t]{4}{*}{\[
c_{\beta}
\]} \& \[
\begin{aligned}
\& 2 \\
\& 2 \\
\& \hline
\end{aligned}
\] \& x \& x \& \& \(\mathbf{x}\) \& \(x\)
\(x\) \& \(\underline{2}\) \& \(\underline{2}\) \& \(x\) \& \& \& \& \& \& \& \\
\hline \& 4 \& X \& \& \& z \& I \& \(\underline{1}\) \& \(x\) \& \(\underline{x}\) \& x \& 2 \& \& \& \& \& \\
\hline \& 5 \& X \& \& \& \(x\) \& x \& \& \& \& \(\underline{x}\) \& 2 \& \& I \& \(\underline{1}\) \& \& \\
\hline \& 7 \& I
2
2 \& \& \& \& x \& \& - \& \& \& \begin{tabular}{l}
1 \\
\\
\hline
\end{tabular} \& \& \& \& \(\begin{array}{r} \\ \times \\ \times \\ \hline\end{array}\) \& \\
\hline \multirow[t]{4}{*}{\(\mathrm{C}_{4}\)} \& \[
\begin{aligned}
\& 1 \\
\& 2
\end{aligned}
\] \& x \& I \& X \& \[
x
\] \& \& x \& \(x\) \& \(x\) \& \& \& \& \& \& \& \\
\hline \& 4 \& x \& \& \(x\)
\(x\)
\(x\) \& I \& \& x \& x \& I \& \(\times\) \& \(\pm\) \& \& \& \& \& \\
\hline \& \[
5
\] \& I \& \& \(x\)

\times \& \underline{x} \& \& \& \& \& x
x \& \% \& \& \pm \& x \& \&

\hline \& $$
\begin{aligned}
& 7 \\
& 8 \\
& \hline
\end{aligned}
$$ \& x

x \& \& | x |
| :--- |
| X |
| x | \& \& \& \& \& \& \& \underline{x} \& \& \& \& $\underline{\mathrm{I}}$ \&

\hline $\mathrm{Cran}^{\text {man }}$ \& - \& $\underline{1}$ \& \& \pm \& \& $\underline{2}$ \& \& \& \& \& \& \& \& \& \&

\hline Cman \& 10 \& \underline{x} \& \& \pm \& \& x \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

ALTERNATE BODY SECTIONS AVAILABLE

FIGURE 4.3-1. TYPICAL TYPE I CONFIGURATIONS

CONFIGURATION TYPE II - WING-BODY

FIGURE 4.3-2. TYPICAL TYPE II CONFIGURATIONS

FIGURE 4.3-3 TRIM DRAG CHARACTERISTICS

4.4 USAF STABILITY AND CONTROL DATCOM

The USAF DATCOM is a large scale Air Force Flight Dynamics Laboratory project aimed at the development of a unified and systematic method for predicting vehicle aerodynamic characterıstics. The AFFDL project officer is Mr. D. E. Hoak. Over most of DATCOM's development D. E. Ellison of McDonnell-Douglas has served as the contractor's principal investigator. Recently McDonnell-Douglas and TRW Systems have constructed computerized versions of the DATCOM, Reference 1.

Fundamentally, the purpose of the DATCOM (for data compendium) is to provide a systematic summary of methods for estimating basic stability and control derivatives. The DATCOM is organized in such a way that is is self sufficient. For any given flight condition and configuration the complete set of derivatives can be determined without resort to outside information. The book is intended to be used for preliminary design purposes before the acquisition of test data. The use of reliable test data in lieu of the DATCOM is always recommended; however, there are many cases where the DATCOM can be used to advantage in conjunction with test data. For instance, if the lift-curve slope of a wing-body combination is desired, the DATCOM recommends that the lift-curve slopes of the 1solated wing and body, respectively, be estumated by methods presented and that appropriate wing-body interference factors (also presented) be applied. If wing-alone test data are avallable, it is obvious that these test data should be substituted in place of the estimated wing-alone characteristics in determining the lift-curve slope of the combination. Also, if test data are available on a configuration simılar to a given configuration, the characteristics of the similar confaguration can be corrected to those for the given configuration by judiciously using the DATCOM materıa1.

The various sections of the DATCOM have been numbered wath a decimal system which provides the maxımum degree of flexibility. A "Section" as referred to in the DATCOM contains information on a single specific item, e.g., wing lift-curve slope. Sections can, in general, be deleted, added, or revised with a minimum disturbance to the remainder of the volume. The numberang system used throughout the DATCOM follows the scheme outlined below:

Section. An orderly decimal system is used consisting of numbers having no more than four digits (see Table of Contents). All sections are listed in the Table of Contents although some consist merely of titles. All sections began at the top of a right-hand page.

Page: The page number consists of the section number followed by a dash number. (For example, Page 4.1.3.2-4 is the fourth page of Section 4.1.3.2.)

Figures: Figure numbers are the same as the page number. This is a convenient system for referencing purposes. For pages with more than one figure, a lower case letter follows the figure number. Example: Fibure 4.1.3.243 b is the second figure on Page 4.1.3.2-43. Where a related series of figures appears on more than one page, the figure number is the same as the first page on which the series begins. Example: Figure 4.1.3.246d may be found on Page 4.1.3.2-47 and is the fourth in a series of charts. Figures are frequently referred to as "charts" in the text.

Tables: Table numbers consist of the section number followed by an upper case dashed letter. Example: Table 4.1.3.2-A is the first table to appear in Section 4.1.3.2.

Equations: Equation numbers consist of the section number followed by a lower case dashed letter. Example: 4.1.3.2-b is the second equation (of importance) appearing in Section 4.1.3.2. Repeated equations are numbered the same as for the first appearance of the equation but are called out as follows: Equation 4.1.3.2-b.

The major classification of sections in the DATCOM is according to type of stability and control parameter. This classification is summarized below:

Section 1. Guide to DATCOM and Methods Summary (present discussion including the Methods Summary)

Section 2. General information
Section 3. Reserved for future use
Section 4. Characteristics at angle of attack
Section 5. Characterıstics in sideslip
Section 6. Characterıstics of high-lift and control devices
Section 7. Dynamic derivatives
Section 8. Mass and Inertia
Section 9. Characteristics of VTOL-STOL aırcraft
The information in Section 2 consists of a complete listing of notation and definitions used in the DATCOM, including the sections in which each symbol is used. It should be noted that definitions are also frequently given in
each section where they appear. Insofar as possible, NASA notation has been used. Thus the notation from original source material has frequently been modified for purposes of consistency. Also included in Section 2 is general information used repeatedly by the engineer, such as geometric parameters, airfoil notation, wetted area charts, etc.

Sections 4 and 5 are for configurations with flaps and control surfaces neutral. Flap and control characteristics are given in Section 6 for both symmetric and asymmetric deflections. Sectıon 4 includes effects of engine power and ground plane on the angle of attack parameters.

The DATCOM presents less information on the dynamic dexivatives (Section 7) than on the static derivatives, primarily because of the relative scarcity of data, but partly because of the complexities of the theories. Furthermore, the dynamıc derivatives are frequently less important than the static derivatives and need not be determined to as great a degree of accuracy. However, the DATCOM does present test data, from over a hundred sources, for a great variety of configurations (Table 7-A).

If more than prelminary design information on mass and inertia (Section 8) is needed, a weights and balance engineer should be consulted.

Section 9 is a unified section covering aerodynamic characteristics of VTOL STOL alrcraft, with the exception of ground-effect machines and helicopters. The DATCOM presents less information in this area than that presented for conventional configurations because of the scarcity of data, the complexities of the theories, and the large number of variables involved. In most cases the DATCOM methods of this section are based on theory and/or experimental data such that their use is restricted to first approximations of the aerodynamic characteristics.

In view of the massive documentation required for complete DATCOM documentation, the present section is limıted to the above brief outline and the following list of sections available.

4.4.1 DATCOM Summary

Section 1 Guide to DATCOM and Methods Summary
Section 2 General Information
2.1 General Notation
2.2 Wing Parameters
2.2.1 Section Parameters
2.2.2 Planform Parameters
2.3 Body Parameters

Section 3 Reserved for Future Use

Section		Characteristics at Angle of Attack
	4.1	Wings at Angle of Attack
	4.1 .1	Section Lift
	4.1.1.1	Section Zero-Lift Angle of Attack
	4.1.1.2	Section Laft-Curve Slope
	4.1.1.3	Section Laft Varlation with Angle of Attack Near Maximum Lift
	4.1.1.4	Section Maximum Lift
	4.1 .2	Section Pitching Moment
	4.1.2.1	Section Zero-Lift Pitching Moment
	4.1.2.2	Section Pitching-Moment Variation with Lift
	4.1 .3	Wing Lift
	4.1.3.1	Wing Zero-Lift Angle of Attack
	4.1.3.2	Wing Lift-Curve Slope
	4.1.3.3	Wing Luft in the Nonlinear Angle of Attack Range
	4.1.3.4	Wing Maximum Lift
	4.1.4	Wing Pitching Moment
	4.1.4.1	Wing Zero-Lift Pıtching Moment
	4.1.4.2	Wing Pitching Moment Curve Slope
	4.1.4.3	Wing Pitching Moment in the Nonlinear Angle of Attack Range
	4.1 .5	Wing Drag
	4.1.5.1	Wing Zero Lift Drag
	4.1.5.2	Wing Drag at Angle of Attack
	4.2	Bodies at Angle of Attack .
	4.2 .1	Body Lift
	4.2.1.1	Body Lift-Curve Slope
	4.21 .2	Body Lift in the Nonlınear Angle of Attack Range
	4.2.1.3	*Effects of Asymmetries
	4.2 .2	Body Pistching Moment
	4.2.2.1	Body Pitching-Moment Curve Slope
	4.2.2.2	Body Pitching Moment in the Nonlinear Angle of Attack Range
	4.2.2.3	*Effects of Asymmetries
	4.2 .3	Body Drag
	4.2.3.1	Body Zero-Lıft Drag
	4.2.3.2	Body Drag at Angle of Attack
	4.5	Hing-Body, Taıl-Body Combınations at Angle of Attack
	4.3 .1	Wing-Body Lift
	4.3.1.1	*Wing-Body Zero-Laft Angle of Attack
	+.3.1.2	Wing-Body Ifft-Curve Slope
	4.3 .1 .3	Wing-Body Lift in the Nonlinear Angle of Attack Range
	4.3.1.4	Wing-Body Maximum Lift

[^1]```
 4.3.2 Wing-Body Pitching Moment
 4.3.2.1 Wing-Body Pitching-Moment-Curve Slope
 4.3.2.2 Wing-Body Pitching Moment in the Nonlinear Angle of
 Attack Range
 4.3.3 *Effects of Asymmetries
 4.3.3.1 Wing-Body Drag
 4.3.3.2 Wing-Body Zero-Lift Drag
4.4 Wing-Body Drag at Angle of Attack
 4.4.1 Wing-Wing Combinations at Angle of Attack (Wing
 Flow Fields)
4.5 Wing-Wing Combinations at Angle of Attack
 4.5.1 Wing-Body-Tail Combinations at Angle of Attack
 4.5.1.1 Wing-Body-Tail Lift
 4.5.1.2 Wing-Body-Tail Lift-Curve Slope
 4.5.2 Wing-Body-Tail Lift in the Nonlinear Angle of Attack
 Range
 4.5.2.1 Wing-Body-Tail Pitching Moment
 4.5.2.2 WIng-Body-Tail Pitching-Moment-Curve Slope
 4.5.3 *Wing-Body-Tail Pitching Moment in the Nonlinear
 Angle-of-Attack Range
 4.5.3.1 Wing-Body-Tail Drag
 4.5.3.2 Wing-Body-Tail Zero-Lift Drag
4.6 Wing-Body-Tail Drag at Angle of Attack
 4.6.1 Power Effects at Angle of Attack
 4.6.2 Power Effects on Lift Variation with Angle of Attack
 4.6.3 Power Effects on Lift Variation with Angle of Attack
 4.6.4 Power Effects on Maximum Lift
4.7 Power Effects on Pitching-Moment Variation with
 Angle of Attack
 4.7.1 Power Effects on Maxımum Lift
 4.7.2 Power Effects on Pitching-Moment Variation with
 Angle of Attack
 4.7.3 Power Effects on Drag at Angle of Attack
 4.7.4 Ground Effects at Angle of Attack
4.8 Ground Effects on Lift Variation with Angle of Attack
 4.8.1 *Ground Effects on Maxımum Lift
 4.8.1.1 Ground Effects on Pitching-Moment Variation with
 Angle of Attack
 4.8.1.2 Ground Effects on Drag at Angle of Attack
 4.8.2 Low-Aspect Ratio Wigns and Wing-Body Combinations
 at Angle of Attack
 4.8.2.1 Wing, Wing-Body Normal Force
 4.8.2.2 Wing, Wing-Body Zero-Normal-Force Angle of Attack
 Wing, Wlng-Body Normal-Force Varlation with Angle
 of Attack
 4.8.3 Wing, Wing-Body Axial Force
 4.8.3.1 Wing, Wing-Body Zero-Normal-Force Axial Force
 4.8.3.2 Wıng, Wing-Body Axial-Force Varıation with Angle
 of Attack
```

```
Section 5 Characteristics in Sideslip
 5.1 Wings in Sideslip
 5.1.1 Wing Sideslip Derivative Cy\beta
 5.1.1.1 Wing Sideslip Derivatrve }\mp@subsup{\textrm{Cy}}{\beta}{}\mathrm{ in the Linear Angle
 of Attack Range
 5.1.1.2 *Wing Side-Force Coeffıcient Cy at Angle of Attack
 5.1.2 Wing Sideslip Derivative }\mp@subsup{\textrm{C}}{1}{
 5.1.2.1 Wing Sideslip Derivative }\mp@subsup{\textrm{Cl}}{\beta}{}\mathrm{ in the Linear Angle
 of Attack Range
 5.1.2.2 Wing Rolling-Moment Coefficlent Cl at Angle of Attack
 5.1.3 Wing Sideslip Derivative C C
 5.1.3.1 Wing Sideslıp Derlvative }\mp@subsup{\textrm{C}}{\textrm{n}\beta}{}\mathrm{ in the Linear Angle
 of Attack Range
 5.1.3.2 *Wing Yawing-Moment Coefficient C C at Angle of Attack
5.2 Wing-Body Combinations in Sideslip
 5.2.1 Wing-Body Sideslıp Derıvative Cy
 5.2.1.1 Wing-Body Sideslip Derivative Cy }\mp@subsup{\beta}{\beta}{}\mathrm{ In the Linear
 Angle of Attack Range
 5.2.1.2 Wing-Body Side-Force Coefficient C C % at Angle of Attack
 5.2.2 Wing-Body Sideslip Derivative }\mp@subsup{C}{\mp@subsup{i}{\beta}{}}{
 5.2.2.1 Wing-Body Sideslip Derivative }\mp@subsup{C}{i\beta}{}\mathrm{ in the Linear
 Angle of Attack Range
 5.2.2.2 *Wing-Body Rolling-Moment Coefficlent C C at Angle
 of Attack
 5.2.3 Wing-Body Sideslip Derıvatıve Cn\beta
 5.2.3.1 Wing-Body Sideslip Derivatuve Cn\beta in the Linear Angle
 of Attack Range
 5.2.3.2 Wing-Body Yawing-Moment Coefficient C C at Angle of
 Attack
5.3 Taıl-Body Combinations in Sideslip
 5.3.1 Tazl-Body Sideslip Derıvative Cy
 5.3.1.1 Tail-Body Sideslip Derıvative Cy }\mp@subsup{\textrm{C}}{\beta}{}\mathrm{ in the Linear
 Angle-of-Attack Range
 5.3.1.2 Tail-Body Side-Force Coefficient Cy at Angle of
 Attack
 5.3.2 Tall-Body Sideslip Derivative ClB
 5.3.2.1 Tanl-Body Sideslıp Derivatuve }\mp@subsup{\textrm{C}}{1}{}\mp@subsup{}{\beta}{}\mathrm{ in the Linear
 Angle of Attack Range
 5.3.2.2 *Tarl-Body Rolling-Moment Coeffrcient C C at Angle of
 Attack
 5.3.3 Taıl-Body Sideslap Derivatuve Cn\beta
 5.3.3.1 Tal1-Body Sideslip Derıvative }\mp@subsup{C}{\mp@subsup{n}{\beta}{}}{}\mathrm{ in the Linear
 Angle of Attack Range
 5.3.3.2 Taıl-Body Yawang-Moment Coefficient Cn at Angle of
 Attack
5.4 Flow Fields in Sideslip
 5.4.1' Wing-Body Wake and Sidewash in Sideslip .
5.5 Low-Aspect-Ratio Wings and Wing-Body Combinations
 in Sideslip
 5.j.1 Wang, Wing-Body Sadeslip Derivatave Kyf
```

Section 6 Characteristics of High-Lift and Control Devices 6.1 Symmetrically Deflected Flaps and Control Devices on Wing-Body and Tail-Body Combinatıons
6.1.1 Section Lift with High-Lift and Control Devices
6.1.1.1 Section Derıvatives $c_{i_{\delta}}$ and $a_{\delta}$ of High-Lift and Control Devices
6.1.1.2 Section Lift-Curve Slope wath High-Lift and Control Devices
6.1.1.3 Section Maximum Lift with Hıgh-inft and Control Devices
6.1.2 Section Pitching Moment with High-Lift and Control Devices
6.1.2.1 Section Derıvative $\mathrm{c}_{\mathrm{m} \delta}$ of High-Lift and Control Devices
6.1.2.2 Section Derivative $\mathrm{c}_{\mathrm{m}_{\alpha}}$ with High-Lift and Control Devices
6.1.2.3 Section Pitching Moment Due to High-Lift and Control Devices Near Maxımum Lift
6.1.3 Section Hinge Moment of High-Lift and Control Devices

```
 6.1.3.1 Section Hinge-Moment Derivative chof
 and Control Devices
 6.1.3.2 Section Hınge-Moment Derıvative c}\mp@subsup{c}{\mp@subsup{h}{\delta}{\prime}}{}\mathrm{ of High-Lift
 and Control Devices
```



```
 6.1.4 Wing Lift with High-Lift and Contropt Devices
 6.1.4.1 Control Derivatıve }\mp@subsup{\textrm{C}}{\mp@subsup{L}{\delta}{}}{}\mathrm{ of High-Lift and Control
 Devices
 6.1.4.2 Wing Lift-Curve Slope with High-Laft and Control
 Devices
 6.1.4.3 Wing Maximum Lift with High-Lift and Control Devices
 6.1.5 Wing Pitching Moment with High-Lift and Control
 Devices
 6.1.5.1 Control Derivatave }\mp@subsup{\textrm{C}}{\mp@subsup{m}{\delta}{}}{}\mathrm{ of H1gh-Lift and Control Devices
 6.1.5.2 Wing Derivative }\mp@subsup{C}{\mp@subsup{m}{\alpha}{}}{}\mathrm{ with High-Lift and Control Devices
 6.1.6 Hinge Moments of High-Lıft and Control Devices
 6.1.6.1 Hinge-Moment Derivative }\mp@subsup{\textrm{C}}{\mp@subsup{h}{\alpha}{}}{}\mathrm{ of Hıgh-Lift and Control
 Devices
 6.1.6.2 Hinge-Moment Derivative }\mp@subsup{\textrm{C}}{\mp@subsup{\textrm{h}}{\delta}{}}{}\mathrm{ of High-Lıft and Control
 Devices
 6.1.7 Drag of Hygh-Laft and Control Devices
 6.2 Asymmetrically Deflected Controls on Wing-Body and
 Tall-Body Combinations
 6.2.1 Rolling Moment Due to Asymmetric Deflection of Control
 Devices
 6.2.1.1 Rolling Moment Due to Control Deflection
 6.2.1.2 Rolling Moment Due to a Differentlally Deflected
 Horizontal Stabılızer
 6.2.2 Yawing Moment Due to Asymmetric Deflection of Control
 Devices
 6.2.2.1 Yawing Moment Due to Control Deflection
 6.2.2.2 Yawing Moment Due to a Differentrally Deflected
 Horizontal Stabilizer
 6.2.3 Side Force Due to Asymmetric Deflection of Control
 Devices
 6.2.3.1 *Side Force Due to Control Deflection
6.3 Special Control Methods
 6.3.1 Aerodynamıc Control Effectiveness at Hypersonic Speeds
 6.3.2 Transverse-Jet Control Effectiveness
 6.3.3 *Inertial Controls
 6.3.4 *Spring Tabs and Simllar Devices
Section 7 Dynamic Derivatives
 7.1 Wing Dynamic Derıvatıves
 7.1.1 Wing Patching Derivatuves
 7.1.1 l Wing Pitchıng Derıvative }\mp@subsup{\textrm{C}}{\mp@subsup{L}{q}{}}{
 7.1.1.2 Wing Pitching Derivative }\mp@subsup{\textrm{C}}{\mp@subsup{\textrm{m}}{\textrm{q}}{}}{
```

```
 7.1.2 Wing Rolling Derivatives
 7.1.2.1 Wing Rolling Derivative Cy
 7.1.2.2 Wing Rolling Derivative }\mp@subsup{C}{\imathp}{p
 7.1.2.3 Wing Rolling Derivative C Crp
 7.1.3 Wing Yawing Derivatives
 7.1.3.1 Wing Yawing Derivative C Cyr
 7.1.3.2 Wing Yawing Derivative C Cir
 7.1.3.3 Wing Yawing Derıvatuve C Cnr
 7.1.4 Wing Acceleration Derıvatıves
 7.1.4.1 Wing Acceleration Derivative C C L\dot{\alpha}
 7.1.4.2 Wing Acceleration Derivative }\mp@subsup{\textrm{C}}{\mp@subsup{\textrm{m}}{\dot{\alpha}}{}}{
7.2 Body Dynamic Derivatives
 7.2.1 Body Pitching Derivatlves
 7.2.1.1 Body Pıtching Derivative }\mp@subsup{C}{L}{
 7.2.1.2 Body Pitching Derıvative C }\mp@subsup{\textrm{m}}{\textrm{q}}{q
 7.2.2 Body Acceleration Derivatives
 7.2.2.1 Body Acceleration Derivative C }\mp@subsup{\textrm{I}}{\dot{\alpha}}{
 7.2.2.2 Body Acceleration Derlvative C}\mp@subsup{\textrm{C}}{\dot{\alpha}}{\alpha
7.3
 7.3.1 Wing-Body Pitching Derivatives
 7.3.1.1 Wing-Body Pitching Derivative }\mp@subsup{\textrm{C}}{\textrm{L}}{q
 7.3.1.2 Wing-Body Pıtching Derivative
 7.3.2.1 Wing-Body Rolling Derlvative Cyp
 7.3.2.2 Wing-Body Rolling Derlvative }\mp@subsup{\textrm{C}}{1}{p
 7.3.3 Wing-Body Yawing Derıvatives
 7.3.3.1 Wing-Body Yawing Derivative CYr
 7.3.3.2 Wing-Body Yawing Derivative C Crr
 7.3.3.3 Wing-Body Yawing Derıvatuve C Cn
 7.3.4 Wing-Body Acceleration Derivative
 7.3.4.1 Wang-Body Acceleration-Derivative C C L
 7.3.4.2 Wing-Body Acceleration Derivative }\mp@subsup{\textrm{C}}{\mp@subsup{\textrm{m}}{\dot{\alpha}}{~}}{
7.4 Wing-Body-Tall Dynamic Derivatives
 7.4.1 Wing-Body-Taıl Pitchıng Derıvatıves
 7.4.1.1 Wing-Body-Tail Pitching Derıvative }\mp@subsup{C}{\mp@subsup{L}{Q}{}}{
 7.4.1.2 Wing-Body-Tail Pitchang Derıvative }\mp@subsup{\textrm{C}}{\textrm{m}}{q
 7.4.2 Wing-Body-Tail Rolling.Derıvatives
 7.4.2.1 W1ng-Body-Tail Rolling Derivative CYp
 7.4.2.2 Wang-Body-Tall Rolling Derıvative C C p
 7.4.2.3 Wing-Body-Tall Rolling Derivative C }\mp@subsup{\textrm{n}}{\textrm{p}}{
 7.4.3 Wing-Body-Tail Yawing Derıvatives
 7.4.3.1 Wing-Body-Tall Yawing Derivative CYY
 7.4.3.2 Wing-Body-Tail lawing Dorivatuve C1 C
 7.4.3.3 Wang-Body-Tail lawing Derivative C }\mp@subsup{\textrm{n}}{7}{
 7.4.4- Wing-Body-Tail`4ccelerat,on Deruvatives
 7.4.4.1 Wing-Body-Taıl Acceleration Derıvatuve C C L
 7.4.4.2 Wing-Body-Tail Acceleration Derıvative C Cod
7.5 *Control-Surface Angular-Vclocit! Derivatives
```

| Section |  | Mass and Inertia |
| :---: | :---: | :---: |
|  | 8.1 | Aircraft Mass and Inertia |
|  | 8.2 | Missile Mass and Inertia |
| Section | 9 | Characteristics of VTOL-STOL Alrcraft |
|  | 9.1 | Free Propeller Characteristics |
|  | 9.1 .1 | Propeller Thrust Variation with Angle of Attack |
|  | 9.1 .2 | Propeller Pitching-Moment Varlation with Power and Angle of Attack |
|  | 9.1 .3 | Propeller Normal-Force Variation with Power and Angle of Attack |
|  | 9.2 | Propeller-Wing Characteri'stics |
|  | 9.2.1 | Propeller-Wing-Flap Lift Variation with Power and Angle of Attack |
|  | 9.2 .2 | *Propeller-Wing-Flap Pitching-Moment Variation with Power and Angle of Attack |
|  | 9.2 .3 | Propeller-Wing-Flap Drag Variation with Power and Angle of Attack |
|  | 9.3 | Ducted-Propeller Characteristics |
|  | 9.3 .1 | Ducted-Propeller Lift Variation with Power and Angle of Attack |
|  | 9.3 .2 | Ducted-Propeller Pıtching-Moment Variation with Power and Angle of Attack |
|  | 9.3 .3 | Ducted-Propeller Drag Variation with Power and Angle of Attack |

When used in computer design simulations, the Reference 1 TRW Systems Program $1 s$ most applicable to reusable launch vehicles. For mılıtary aircraft systems, it is recommended that contact be made with the AFFDL Project Officer and the latest USAF computerized version of DATCOM be obtained.

## References:

1. ——_, Configuratıon Desıgn Analysis Program (DłTCOM), Project Technıcal Report 20029-H115-RO-00, TRW Systems Applied Mechanics Department and Applied Technology Laboratory, September 1974.

## TABLE OF CONTENTS FOR SECTION 5.1, PROGRAM ENCYCL

Section Page
5.1.1 Introduction ..... 5.1-1
5.1.2 Cycle Description ..... 5.1-1
5.1.3 Derivation of Equations ..... 5.1-2
5.1.3.1 Engine In1et 5.1-3
5.1.3.2 Diffuser ..... 5.1-4
5.1.3.3 Fan ..... 5.1-4
5.1.3.4 Compressor ..... 5.1-5
5.1.3.6 Turbine ..... 5.1-6
5.1.3.7 Coolant Mixing ..... 5.1-7
5.1.3.8 Afterburner ..... 5.1-8
5.1.3.9 Main Nozzle ..... 5.1-9
5.1.3.10 Duct Burner 5.1-9
5.1.3.11 Duct Nozzle5.1-10
5.1.3.12 Specific Thrust ..... 5.1-11
5.1.3.13 Specrfic Fuel Consumption ..... 5.1-12
5.1.3.14 Engine Efficiency ..... 5.1-12
5.1.4 Derivation of Combustion Gas Thermodynamic Property Equations ..... 5.1-13
5.1.4.1 Reaction Stolchiometry ..... 5.1-13
5.1.4.2 Specific Heat ..... 5.1-14
5.1.4.3 Enthalpy Change ..... 5.1-15
5.1.4.4 Entropy Function ..... 5.1-16
5.1.4.5 Molecular Weight ..... 5.1-16
5.1.5 Symbols for Description of Program ENCYCL ..... 5.1-17
References ..... 5.1-19
Illustrations ..... 5.1-20

PROPULSION

The ODIN/RLV program library contains three independent engine cycle analysis programs. These programs have a combined ability for analysis of single or multi-spool turbojet and turbofan engine cycles with or without afterburners. Two of the programs contain an approximate off-design point analysis capability. All three programs were written at NASA's Lewis Research Center; however, the multi-spool engine programs are derivatives of a U. S. Air Force Aero Propulsion Laboratory, Wright-Patterson Air Force Base engine cycle analysis called SMOTE. Programs are provided for

1. Design-point performance of single spool turbojet and turbofan engines
2. Design and off-design performance of one- and twospool and turbojet and turbofan engines
3. Design and off-design performance of two- and threespool turbofan engines

Each program is outlined in the following sections; for complete details, reference should be made to the original source documents.

REFERENCES:

1. Vanco, Michael R., Computer Program for Design-Point Performance of Turbojet and Turbofan Engines, NASA TM X-1340, February 1967.
2. Koenig, Robert W. and Fishback, Laurence H., GENENG - A Program for Calculating Design and Off-Design Performance for Turbojet and Turbofan Engines, NASA TN D-6552, February 1972.
3. Fishback, Laurence H. and Koenig, Robert W., GENENG II - A Program for Calculating Design and Off-Cesign Performance of Two- and ThreeSpool Turbofans with as Many as Three Nozzles, NASA TN D-6553, February 1972.

### 5.1 PROGRAM ENCYCL: COMPUTER PROGRAM FOR DESIGN-POINT PERFORMAVCE OF TURBOJET AND TURBOFAN ENGINE CYCLES

Program ENCYCL is a CDC 6600 computer version of the original Reference 1 Vanco program. The program description below is essentially that of the original Vanco document.

### 5.1.1 Introduction

Advanced alrcraft for supersonic flight, high-payload long-range subsonic flight and vertical flight requare the development of advanced propulsion systems. Study of these vehicles requires thermodynamec analyses for performance of turbojet and turbofan engine cycles. Program ENCYCL will compute a design point analysis of such ongines provided they employ a single spool.

The program requares the following input:

1. airplane Mach number
2. altitude-state condrtions
3. turbine-inlet tenperature
4. afterburner temperature
5. duct-burner temperature
6. bypass ratio
7. coolant flow
8. romponent efficiencies
9. component pressure ratios

The therrodynamic properties used are expressed as functions of tempzrature and fuel to air ratio. The fuel is assumed to be of the form $\left(\mathrm{Cl}_{2}\right)_{7}$. Results of the analysis include

1. specific thrust

2 specific fuel consumption
3. engine efficiency
$\therefore$. several corponent terperatures and pressures
The equations used in the EXCYCL malysis are presented below and follow banco's origanal report of Reference 1.

### 5.1.2 Cjcle Description

The general engune cycle is shom in Figur $51-1$ lit cnters the diffuser and th.e rajor portion of its velocity head 1 , hanged wto a prescure head. Thas loner velocaty ar then enters the fan and is comreisud the alr flow then dirides anto the mann flow and the dut 1 low fhern flow onters the compessor and is fuether compressed. The n:me purt wh of the main flow then enters the conrustor and mixes :ith fuel combstwon then occurs. The
small remaining portion of the main flow bypasses the combustor and is used to cool the turbine. Combustor exit gases are then expanded in the turbine, producing work to drive the compressor and fan. Turbine exit gases and the coolant flow then mix and enter the afterburner with fuel, and further combustion occurs. These hot gases are then expanded in the main nozzle to produce thrust. The duct flow enters the duct-burner with fuel, and combustion occurs. Hot duct gases are then expanded in a nozzle to produce additional thrust.

### 5.1.3 Derivation of Equations

The equations used in the analysis of the general engine are derıved in this section. The thermodynamic properties used for this analysis are functions of temperature and fuel to air ratio. The specific heat of the gas is expressed by a polynomal equation. Approprate integrations of this equation yicld the enthalpy change and the entropy function. The entropy function is herein defined as

$$
\begin{equation*}
\Delta \varphi=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{~T}} \mathrm{dT} \tag{5.1.1}
\end{equation*}
$$

(All symbols are defined in Section 5.1.5). The derivation of the equations for specific heat, enthalpy change, and entropy function are given in Section 5.1.4. Since the specific heat is a function of temperature and fuel to alr ratio, it is expressed as $C_{p}(T, f)$ in thas analysis. Since

$$
\begin{equation*}
\Delta \mathrm{h}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{C}_{\mathrm{p}}(\mathrm{~T}, \mathrm{f}) \mathrm{dT} \tag{5.1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \varphi=\int_{T_{1}}^{T_{1}^{\prime} \Gamma_{2} C_{p}\left(\mathrm{~T}^{\prime}, \mathrm{f}\right)} \mathrm{T}^{\prime} \mathrm{T} \tag{5.1.3}
\end{equation*}
$$

they are expressed as $f_{1}\left(T_{2}, T_{1}, f\right)$ and $\lambda_{s}\left(T_{2}, T_{1}, f\right)$, redpectively. then the fuel to all ratio 15 =ero, these quantities vill appear with tomperatures only. The fuel is assumed to be of the iorm $\left(\mathrm{CH}_{2}\right)_{n}$.

### 5.1.3.1 Engine Inlet

The static inlet conditions of the diffuser $T_{0}$ and $p_{0}$ are a function of the altitude. The inlet velocaty is

$$
\begin{equation*}
V_{0}=M_{0} \sqrt{8 R_{a} \gamma T_{0}} \tag{5.1.4}
\end{equation*}
$$

where $M$ is the Mach number at which the airplane is traveling. The specific heat ratio is

$$
\begin{equation*}
\gamma=\frac{1}{1-\frac{R_{a}}{C_{p}\left(T_{0}\right) J}} \tag{5.1.5}
\end{equation*}
$$

The total temperature at the inlet is

$$
\begin{equation*}
T_{0}^{\prime}=T_{0}+\frac{\mathrm{V}_{0}^{2}}{2 \mathrm{gJ} C_{\mathrm{p}}} \tag{5.1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{C}_{\mathrm{p}}=\frac{\Delta \mathrm{h}\left(\mathrm{~T}_{0}^{\prime}, \mathrm{T}_{0}\right)}{\mathrm{T}_{0}^{\prime}-\mathrm{T}_{0}} \tag{5.1.7}
\end{equation*}
$$

The correct total temperature is then obtained by an iterative procedure involving equations 5.1.4 to 5.1.7. The total pressure at the diffuser miet is cbtained from

$$
\begin{equation*}
\frac{R_{a}}{J} \ln \frac{P_{0}^{\prime}}{P_{0}}=\Delta \varphi\left(T_{0}^{\prime}, T_{0}\right) \tag{5.1.8}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
P_{0}^{\prime}=P_{0} e^{\Delta c_{i}^{\prime}\left(T_{0}^{\prime}, T_{0}\right) J / R_{a}} \tag{5.1.9}
\end{equation*}
$$

### 5.1.3.2 Diffuser

Since there is adiabatic flow in the diffuser,

$$
\begin{equation*}
\mathrm{T}_{1}^{\prime}=\mathrm{T}_{0}^{\prime} \tag{5.1.10}
\end{equation*}
$$

The pressure ratio across the diffuser $r_{1,0}$ is an input parameter which is a function of the Mach number. Therefore

$$
\begin{equation*}
\frac{P_{1}^{2}}{P_{0}^{\prime}}=r_{1,0} \tag{5.1.11}
\end{equation*}
$$

An example variation of this parameter is presented in Reference 2.

### 5.1.3.3 Fan

The fan pressure ratio $P_{1}^{\prime} / P_{1}^{\prime}$ is a variable. To determine the ideal fan exit temperature, the isentropic flow equation is used. Therefore

$$
\begin{equation*}
\Delta \varphi_{F}=\frac{R_{n}}{J} \ln \frac{P_{1}^{\prime}}{P_{1}^{\prime}} \tag{5.1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \varphi^{\prime}\left(T_{1^{\prime}}^{\prime}, \Delta \mathrm{a}^{\prime} \mathrm{T}_{1}^{\prime}\right)=\Delta \sigma_{\mathrm{P}} \tag{5.1.13}
\end{equation*}
$$

Therefore, $T_{1}^{\prime \prime}$, id can be determined from Equation 5.1.13. The fan work is

$$
\begin{equation*}
\Delta h_{T}=\frac{\Delta \cdot\left(T_{1}^{\prime}, 1 d^{\prime} T_{1}^{\prime}\right)}{\eta_{F}} \tag{5.1.14}
\end{equation*}
$$

here fan efficiency is a design parameter The fan exit tompoxatum if is determined from

$$
\begin{equation*}
\Delta h\left(T_{1}^{\prime}, T_{I^{\prime}}^{\prime}\right)=\operatorname{sil}_{F} \tag{5.1.15}
\end{equation*}
$$

The total airflow is

$$
\begin{equation*}
W_{101}=W_{a, D}: W_{a, m} \tag{51.16}
\end{equation*}
$$

$5.1-4$
where $W_{a, D}$ is the duct airflow and $W_{a, m}$ is the main airflow. The ratio of the duct airflow to the main airflow $W_{a, D} / W_{a, m}$ is called the bypass ratio $b$. Therefore,

$$
\begin{equation*}
W_{t o t}=(1+b) W_{a, m} \tag{5.1.17}
\end{equation*}
$$

### 5.1.3.4 Compressor

The overall pressure ratio of the fan and compressor is a variable. Thus, the compressor pressure ratio is

$$
\begin{equation*}
\frac{P_{2}^{\prime}}{P_{1}^{\prime}}=\frac{P_{2}^{\prime} / P_{1}^{\prime}}{P_{1}^{\prime} / P_{1}^{\prime}} \tag{5.1.18}
\end{equation*}
$$

The Ideal compressor exit temperature $T_{2}^{\prime}, 1 d$ is obtanned from

$$
\begin{equation*}
\Delta \varphi_{2}^{\prime}\left(M_{2}^{\prime}, T_{1^{\prime}}^{\prime}\right)=\frac{R_{a}}{J} \ln \frac{P_{2}^{\prime}}{P_{1^{\prime}}^{\prime}} \tag{5.1.19}
\end{equation*}
$$

The compressor work is

$$
\begin{equation*}
\Delta h_{C}=\frac{\Delta h\left(T_{2,1 d}^{\prime}, T_{1}^{\prime}\right)}{\eta_{C}} \tag{5.1.20}
\end{equation*}
$$

ahcre the temerature $\mathrm{T}_{2}^{\prime}$ is determned from

$$
\begin{equation*}
\Delta h\left(\Gamma_{2}^{\prime}, T_{1}^{\prime}\right)=\Delta h_{C} \tag{5.1.21}
\end{equation*}
$$

### 5.1.3.5 Combustor

tn energy balance for the combustor yields

$$
\begin{equation*}
W_{f, m} h_{f}+\eta_{B} W_{f} H V F+\left(W_{a, m}-W_{c}\right) h_{a}=\left(V_{a, m}-W_{c}+W_{i}\right) h_{g} \tag{5.1.22}
\end{equation*}
$$

For the eithalpy of the fuel to be equal to zero, the eatlalpy reforance temperature $T_{R}$ must be equal to the zonperature of the aracming fuch. Is tiasursed in Section 5.1.5, the entralpy change of the gas can be exressed as

$$
\begin{equation*}
\Delta h_{g}=\left(\Delta i_{a}+\Delta h_{b} f\right) \frac{1}{1+f} \tag{51.23}
\end{equation*}
$$

Therefore, substituting Equation 5.1.23 into Equation 5.1.22 and dividing by $\left(\operatorname{Him}_{a, \mathrm{E}}-\mathrm{H}_{\mathrm{c}}\right.$ ) yields

$$
\eta_{\mathrm{B}} \frac{\mathrm{~W}_{\mathrm{f}, \mathrm{~m}} \mathrm{HVF}}{\mathrm{~W}_{\mathrm{a} ; \mathrm{m}}-W_{\mathrm{c}}}+\Delta h\left(T_{2}^{\prime}, T_{R}\right)=\Delta h\left(T_{3}^{\prime}, T_{R}\right)+\frac{W_{f, m}}{W_{a, m}-W_{c}} \Delta h_{\mathrm{b}}\left(T_{3}^{\prime}, T_{R}\right)
$$

The fuel to air ratio based on combustor airflow is

$$
\begin{equation*}
\frac{W_{f, m}}{W_{a, m}-W_{c}}=\frac{\Delta h\left(T_{3}^{\prime}, T_{R}\right)-\Delta h\left(T_{2}^{\prime}, T_{R}\right)}{I I F \eta_{B}-\Delta h_{b}\left(T_{3}^{\prime}, T_{R}\right)} \tag{5.1.24}
\end{equation*}
$$

where the turbine inlet temperature $T_{3}$ and the combustor efficiency $\eta_{B}$ are design parameters. The fuel to air ratio based on main flow is

$$
\begin{equation*}
\frac{W_{f, m}}{W_{a, m}}=\frac{W_{f, m}}{W_{a, m}-W_{c}}\left(\frac{W_{a, m}-W_{c}}{W_{a, m}}\right)=\frac{W_{f, m}}{W_{a, m}-W_{c}}\left(1-\frac{W_{c}}{W_{a, m}}\right) \tag{5.1.25}
\end{equation*}
$$

where the coolant-flow ratio $W_{c} / \mathrm{N}_{\mathrm{a}}$, m is a design parareter. The combustor pressure ratio $r_{3,2}$ is an input parameter.

### 5.1.3.6 Turbine-

。
The turbine nork is equal to the fan tork plus the comessor work.

$$
\begin{equation*}
\left(w_{a, m}-w_{c}+w_{f, m}\right) \Delta h_{T}=w_{l o t} \Delta h_{F}+W_{a, m}{ }^{\Delta h_{C}} C \tag{5.1.26}
\end{equation*}
$$

Substituting Equation 5.1.25 into Equation 5.1.26 and solving for turbine enthalpy drop jzeld

$$
\begin{equation*}
\Delta h_{\mathrm{T}}=\frac{(1+b) \Delta h_{\mathrm{F}}+\Delta h_{\mathrm{C}}}{\left(1-\frac{W_{c}}{W_{a, m}}\right)\left(1+\frac{W_{\mathrm{f}, m}}{W_{a, m}-W_{c}}\right)} \tag{5,1,27}
\end{equation*}
$$

Since

$$
\Delta k\left(T_{3}^{\prime}, T_{4}^{\prime}, \frac{W_{f, m}}{W_{a, m}-W_{c}}\right)=\Delta h_{T}
$$

The turbine exit temperature $\mathrm{T}_{4}$ is determined from Equation 5.1.28. To determinc the turbine pressure ratio, the ideal turbine-exit temperature, $T_{4, i d}^{1 s}$ needed. Therefore, the ideal turbinc work is

$$
\begin{equation*}
\Delta h_{\mathrm{T}, \mathrm{id}}=\frac{\Delta h_{\mathrm{T}}}{\eta_{\mathrm{T}}} \tag{5.1.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta n\left(r_{3}^{\prime}, T_{4,1 d}^{\prime}, \frac{W_{f, m}}{W_{a, m}-W_{c}}\right)=\Delta h_{\mathrm{h}}, \mathrm{dd} \tag{5.1.30}
\end{equation*}
$$

where turbine efficiency is a design parameter. The ideal turbine-cxıt temperature $\mathrm{T}^{\prime}$, id is determined from Equation 5.1.30. Thus, the turbine pressure

$$
\begin{equation*}
\frac{P_{3}^{\prime}}{P_{4}^{\prime}}=\exp \left[\Delta \hat{S}\left(T_{3}, T_{4, i d}^{\prime} \cdot \frac{W_{f, m}}{W_{a, m}-V_{c}}\right)-i=\frac{J}{g_{l}}\right] \tag{5.1.31}
\end{equation*}
$$

where the equation for the molecular weight of the gas is given in Section 5.1.4.

### 5.1.3.7 Coolant Mixing

The turbine-exit gas and coolant flow mix just downstream of the turbine. This mixing is assuned to take place without any change in the mainstream total pressure. Hol ever, there is a change in total terperature. in energy balance for the mixing section 1.1 th $0^{\circ} \mathrm{R}$ as the reference temperature yields

$$
\begin{align*}
& W_{c} \Delta h\left(T_{2}^{\prime}, 0\right) \div\left(W_{0, m}-W_{c}+W_{f, m}\right) \Delta h\left(T_{4}^{\prime}, 0, \frac{W_{f, m}}{W_{a, m}-W_{c}}\right) \\
= & \left(W_{a, m}+W_{i, m}\right) \Delta h\left(T_{4 N i}^{\prime}, 0, \frac{W_{f}, m}{W_{a, m}}\right) \tag{5.1.32}
\end{align*}
$$

Dividing by $H_{a, m}$ yxelds

$$
\begin{align*}
& \frac{W_{c}}{W_{a, m}} \Delta n_{1}\left(i_{2}^{\prime}, 0\right)+\left(1-\frac{W_{c}}{W_{a, m}}\right)\left(1 \cdot \frac{W_{f, m}}{W_{a, m}-W_{c}}\right) \Delta h\left(T_{f, 0}^{\prime} 0, \frac{W_{f, m}}{W_{a, m}-W_{c}}\right) \\
& =\left(1+\frac{W_{f, m}^{\prime}}{W_{a}, m}\right) \Delta \ddot{h}^{\prime}\left(I_{i M i}^{\prime}, 0, \frac{W_{f, m}}{W_{a, m}}\right) \tag{5.1.53}
\end{align*}
$$

Solving for the exit enthalpy yields

$$
\Delta h\left(T_{\Delta M M^{\prime}}^{\prime}, 0, \frac{W_{f, m}}{W_{a, m}}\right)=\frac{\frac{W_{c}}{W_{a, m}} \Delta h\left(T_{2}^{\prime}, 0\right)+\left(1-\frac{W_{c}}{W_{a, m}}\right)\left(1+\frac{W_{f, m}}{W_{a, m}-W_{c}}\right) \Delta h\left(T_{4}^{\prime}, 0, \frac{W_{f, m}}{W_{a, m}-W_{c}}\right)}{1+\frac{W_{f, m}}{W_{a, m}}}
$$

Total exit temperature $T_{4 M}^{\prime}$ is determaned from Equation 5.1.34. The total pressure is

$$
\begin{equation*}
P_{4 M}^{\prime}=P_{4}^{\prime} \tag{5.1.35}
\end{equation*}
$$

### 5.1.3.8 Afterburner

Three cases are considered for the afterburner. For case I with no afterburner,

$$
\begin{equation*}
P_{5}^{\prime}=P_{4}^{\prime} \quad T_{5}^{\prime}=T_{4 M I}^{\prime} \quad \frac{W_{f, A B}}{W_{a, m}}=0 \tag{5.1.36}
\end{equation*}
$$

For case II with the afterburner not lishted,

$$
\begin{equation*}
\frac{P_{5}^{1}}{P_{4}^{\prime}}=r_{5,4, n} \quad T_{5}^{\prime}=T_{4 \times 1}^{\prime} \quad \frac{W_{f, \Lambda B}}{W_{a, m}}=0 \tag{5.1.37}
\end{equation*}
$$

where $\mathrm{r}_{5,4}$ is given. For case III with afterburning, an energy balance on the afterburner yields

$$
\begin{equation*}
\eta_{A B} \frac{W_{f, A B}}{W_{a, m}} M V F+\left(1+\frac{W_{f, m}}{W_{a, m}}\right) h_{A, I}^{\prime}=\left(1+\frac{W_{f, m}}{W_{a, m}}+\frac{W_{f, A B}}{W_{a, m}}\right) h_{5}^{\prime} \tag{5.1,38}
\end{equation*}
$$

Solvang Equation 5.1.38 for the afterbuaner fuel to anr ratıo yaelds

$$
\begin{equation*}
\frac{W_{f, A B}}{W_{a, m}}=\frac{\Delta h\left(T_{5}^{\prime}, T_{R}\right)+\Delta l_{b}\left(T_{5}^{\prime}, T_{R}\right) \frac{W_{f, m}}{W_{a, m}}-\left(1+\frac{W_{f, m}}{W_{a, m}}\right) \Delta h\left(T_{4, \Gamma}^{\prime} T_{R}, \frac{W_{i}}{W_{a, m}}\right)}{\eta_{\Delta B}^{I I V P^{\prime}-\Delta b_{D}\left(T_{5}^{\prime}, T_{I}\right)}} . \tag{5.1.39}
\end{equation*}
$$

where the afterbumer temperature $T_{5}^{2}$ is a design parameter. The total pressure ratio across the afterburner is

$$
\begin{equation*}
\frac{P_{5}^{2}}{P_{4}^{\prime}}=r_{5,4} \tag{5.1.40}
\end{equation*}
$$

which is a design parameter. Therefore, the total fuel to air ratio of the mainstream is

$$
\begin{equation*}
\frac{W_{f, t o t}}{W_{a, m}}=\frac{W_{f, A B}}{W_{a, m}}+\frac{W_{f, m}}{W_{a, m}} \tag{5.1.41}
\end{equation*}
$$

### 5.1.3.9 Nain Nozzle

Full expansion is assumed in the mainstream nozzle. Therefore,

$$
\begin{equation*}
\frac{P_{6}}{P_{5}^{1}}=\frac{P_{0}}{P_{5}^{3}} \tag{5.1.42}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \varphi_{\mathrm{NV}}=\frac{\mathbb{Q}}{J \mathrm{M}_{\mathrm{g}}} \ln \frac{\mathrm{P}_{6}}{\mathrm{P}_{5}^{2}} \tag{5.1.43}
\end{equation*}
$$

Since

$$
\begin{equation*}
\Delta \varphi\left(T_{6,1 d^{\prime}} T_{5}^{\prime}, \frac{W_{f, t o l}}{W_{a, m}}\right)=\Delta \varphi_{N} \tag{5.1.44}
\end{equation*}
$$

the.ideal nozzle exit tenperature $T_{6,1 d}$ can be determaned from Equation 5.1.44. The mann nozzle exit velocity is

$$
\begin{equation*}
V_{6}=v \sqrt{2 g J \Delta h\left(T_{5}^{\prime}, T_{6,1 d^{\prime}} \frac{\left.W_{\hat{\mathrm{I}}, \mathrm{tot}}^{\mathrm{V}_{\mathrm{a}, \mathrm{~m}}}\right)}{}\right. \text { )}} \tag{5.1.45}
\end{equation*}
$$

where is the velocity cocfficient and a iunction oi the aimplane Mach nurber, Rererance 2.

The equations derned thus far are for the man flow. The equations for the duct flow are now deraved.

### 5.1.3.10 Duct Eurner

Three cases are considered for the duct burner. Yor caso I with no duct burner

For case II with the duct burner not-lighted,

$$
\begin{equation*}
\frac{P_{7}^{\prime}}{P_{1^{\prime}}^{\prime}}=r_{7,1^{\prime}, \mathrm{n}} \quad \mathrm{~T}_{7}^{\prime}=\mathrm{T}_{1^{\prime}}^{\prime} \quad \frac{W_{\mathrm{f}, \mathrm{D}}}{W_{\mathrm{a}, \mathrm{D}}}=0 \tag{5.1.47}
\end{equation*}
$$

For case III with duct burning, an energy balance on the duct burner is

Dividing Equation 5.1 .48 by $\mathrm{W}_{\mathrm{a}, \mathrm{D}}$ and solving for the duct-burner fuel to air ratio yield

$$
\begin{equation*}
\frac{W_{f, D B}}{W_{a, D}}=\frac{\Delta h\left(T_{7}^{\prime}, T_{\mathrm{R}}\right)-\Delta h\left(T_{1}^{\prime}, T_{R}\right)}{\eta_{D B} H V F-\Delta h_{b}\left(T_{7}^{\prime}, T_{R}\right)} \tag{5.1.49}
\end{equation*}
$$

where the duct-burner temperature $T_{7}$ is a design parameter. The duct-burner fuel to air ratio based on the mann flow is

$$
\begin{equation*}
\frac{W_{f, D B}}{W_{a, m}}=\frac{W_{i, D B}}{W_{a, D}} \frac{W_{a, D}}{W_{a, m}}=\frac{W_{f, D B}}{W_{a, D}} \tag{5.1.50}
\end{equation*}
$$

Tre total pressure ratio is

$$
\begin{equation*}
\frac{\mathrm{P}_{7}^{\prime}}{\mathrm{P}_{1^{\prime}}^{\prime}}=\mathrm{r}_{7,1^{\prime}} \tag{5.1,51}
\end{equation*}
$$

. i: ci is a design parameter.

## 5.1.j.11 Duct Nozzle

F:- expansion is also assuned in the duct nozzle. Therefore,

$$
\begin{equation*}
\frac{P_{8}}{P_{7}^{\prime}}=\frac{P_{0}}{P_{7}^{1}} \tag{5.1.52}
\end{equation*}
$$

$2 . .2$

$$
\begin{equation*}
\Delta G_{D}, N=\frac{\therefore}{\operatorname{Sim}_{g}} \ln \frac{P_{8}}{P_{7}^{\prime}} \tag{5.15.3}
\end{equation*}
$$

Since

$$
\begin{equation*}
\Delta \varphi\left(T_{8,1 d}, T_{T}^{\prime}, \frac{W_{f, D B}}{W_{a, D}}\right)=\Delta \varphi_{D, N} \tag{5.1.54}
\end{equation*}
$$

the ideal exit temperature $\mathrm{T}_{8}$, id is deternaned from Equation 5.1.54. The duct nozzle exit velocity is

$$
\begin{equation*}
\left.\mathrm{V}_{8}=\psi \sqrt[6]{2 a \mathrm{~J} \Delta \mathrm{~b}\left(\mathrm{~T}_{7}^{\prime}, \mathrm{T}_{8, \mu}, \frac{\mathrm{~W}_{\mathrm{S}}, \mathrm{DB}}{}\right.} \frac{\mathrm{W}_{\mathrm{a}, \mathrm{D}}}{}\right) \tag{5.1.55}
\end{equation*}
$$

where $\psi$ is a function of $\mathrm{M}_{0}$, Reference 1 .

### 5.1.3.12 Specifac Thrust

The specific thrust of the engane is defined as the net thrust divided by the total airflow:

$$
\begin{equation*}
S T=\frac{\left(W_{8} V_{8}+W_{6} Y_{0}-V_{t o t} V_{0}\right)}{g W_{\text {tot }}} \tag{5.1.56}
\end{equation*}
$$

Suostituting the weigit-flo': relations yields
and rearrangang Equation 5.1 .57 yaclds

### 5.1.3.13 Specific Fuel Consumption

Specific fucl consumption is defined as the total fuel flow in pounds per hour divided by the net thrust in pounds:

$$
\begin{equation*}
S F C=\frac{\left(W_{f, t o t}+W_{f, D, 3}\right) 3600 g}{\left(W_{a, D}+W_{f, D B}\right) V_{8}+\left(W_{a, m}+W_{f, t o t}\right) V_{6}-(1+b) W_{a, m} V_{0}} \tag{5.1.59}
\end{equation*}
$$

Divıding Equatıon 5.1 .59 by $W_{a, m}$ yields

$$
\begin{equation*}
S \Gamma C=\frac{\left(\frac{W_{f, t o t}}{W_{a, m}}+\frac{W_{f, D B}}{W_{a, m}}\right) 3600 \mathrm{~B}}{\left(\mathrm{D}+\frac{W_{f, D B}}{W_{a, 11}}\right) V_{8}+\left(1+\frac{W_{f, t o t}}{W_{a, m}}\right) V_{6}-(1+b) V_{0}} \tag{5.1.60}
\end{equation*}
$$

### 5.1.3.14 Engine Efficiency

Another performance parameter that is offen used is engine efficiency:

$$
\begin{equation*}
\eta_{e}=\frac{\text { Thrust power }}{\text { Heat added }} \tag{5.1.61}
\end{equation*}
$$

The thrust power is equal to the net thrust multiplied by the inlet velocity. The heat added is

$$
\begin{equation*}
H_{f}(\mathrm{HVF}) \mathrm{J} \tag{5.1.62}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
n_{e}=\frac{3600 v_{0}}{(S F C)(H V F) J} \tag{5.1.63}
\end{equation*}
$$

The method presented for determining the performance of a general jet ergine applies to severil enganes. dry turbojet, afterburnang turbojet, dry tuanofan, and duct buming turbofan. The perforrance of any one of theso eng mes is obtanned by elumating the appropriate components of the general engrivimu the calculation procedure.

The analysis of a dry turbojet is obtamed by eliminating the duct equations, setting the fan pressure ratio ( $P_{1}^{1}, / P_{1}^{\prime}$ ) equal to 1 , the bypass ratıo (b) equal to 0 , the dan eificiency ( $n \vec{F}$ ) ecual to 1.0 , and taking vase $I$ for the afterburner section The analyses of tho afterburning turbojet are the same as the dry turbojet except that case II or III for the afterburner section is used. "The analyses of the turbofan engnes are obtaned by climanating the afterburner, that 15 , by setting $P_{5}^{\prime}=P_{11}^{\prime}$, and $T_{S}^{\prime}=T_{4 i 1}^{\prime}$
5.1-12

### 5.1.4 Derivation of Combustion Gas

Thermodynamic Property Equations

### 5.1.4.1 Reaction Stoichionetry

The fuel used was of the form $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2}$. Therefore, the general combustion equation is

$$
\begin{equation*}
\mathrm{C}_{\mathrm{n}} \mathrm{HI}_{2 \mathrm{n}}+\frac{3}{2} \mathrm{nO}_{2}-\mathrm{nCO}_{2}+\mathrm{nH}_{2} \mathrm{O} \tag{5.1.64}
\end{equation*}
$$

Eliminating $n$, the reaction and the formula welghts are

$$
\begin{equation*}
\underbrace{\mathrm{CH}_{2}}_{14.026}+\underbrace{\frac{3}{2} \mathrm{O}_{2}}_{48.00}-\underbrace{\mathrm{CO}_{2}}_{44.010}+\underbrace{\mathrm{H}_{2} \mathrm{O}}_{18.016} \tag{5.1.65}
\end{equation*}
$$

For $f$ pounds of fuel used, the amount of $\mathrm{O}_{2}$ used is

$$
\begin{equation*}
\frac{48003}{14.020} f=3.422 \mathrm{f} \tag{5.1.66}
\end{equation*}
$$

the amount of $\mathrm{CO}_{2}$ formed is

$$
\begin{equation*}
\frac{44.010}{14.026} \mathrm{f}=3.138 \mathrm{f} \tag{5.1.67}
\end{equation*}
$$

- and the amount of $\mathrm{H}_{2} \mathrm{O}$ formed is

$$
\begin{equation*}
\frac{18.016}{14.026} \mathrm{f}=1.284 \mathrm{f} \tag{5.1.68}
\end{equation*}
$$

The neights of the components of alr per pound of alr are oxygen, 0.2314; nitrogen, 0.7552 , argon, 0.0129 , and carion dioxide, 0.0005 . Therefore, the rat amounts of components left after the reaction of $f$ pounds of fuel with one pound of air are

$$
\begin{align*}
& \overline{\mathrm{W}}_{\mathrm{O}_{2}}=02314-3.422 \mathrm{f}  \tag{5.1.69}\\
& \overline{\mathrm{~W}}_{\mathrm{CO}_{2}}-0.0005+3.130 \mathrm{f}  \tag{5.1.70}\\
& \overline{\mathrm{~W}}_{\mathrm{H}_{2} \mathrm{O}}=1.294 \mathrm{f}  \tag{5.1.71}\\
& \overline{\mathrm{~W}}_{\mathrm{N}_{2}}=0.7552  \tag{array}\\
& \overline{\mathrm{~V}}_{\mathrm{Ax}}=0.0129 \tag{5.1.73}
\end{align*}
$$

and the keight of the gas is $1+f$ pounds por pound of air.

### 5.1.4.2 Specific Heat

The specrfic heat of the gas is

$$
\begin{equation*}
\left(\mathrm{C}_{\mathrm{p}}\right)_{\mathrm{g}}=\frac{\sum\left(\overline{\mathrm{W}} \mathrm{C}_{\mathrm{p}}\right)_{\text {components }}}{1+\mathrm{f}} \tag{5.1.74}
\end{equation*}
$$

The specific heat of each component is expressed in the form below, Reference 3.

$$
\begin{equation*}
C_{p}=A+B\left(T \times 10^{-3}\right)+C\left(T \times 10^{-3}\right)^{2}+D\left(T \times 10^{-3}\right)^{3}+E\left(T \times 10^{-3}\right)^{4} \tag{5.1.75}
\end{equation*}
$$

where $C_{p}$ is in Btu per pound mass per ${ }^{\circ} \mathrm{R}$ and $T$ is in ${ }^{\circ} \mathrm{R}$. The coeffacients $A, B, C, D$, and $E$ are obtained from Reference 3 . These coefficients and the molecular weight of each component are given in Table 5.1-2.

Therefore, the equation for the specific heat of the combustion products is obtained by substituting Equation 5.1.75 into Equation 5.1.74. The resulting equation is

$$
\begin{aligned}
&\left(\mathrm{C}_{\mathrm{p}}\right)_{\mathrm{g}}=\left(\frac{1}{1+1}\right)\left\{0.24062-0017724 \mathrm{~T} \times 10^{-3}+0.038056 \times\left(10^{-3} \mathrm{~T}\right)^{2}-0.012662 \times\left(10^{-3} \mathrm{~T}\right)^{3}\right. \\
&+0.0013012 \times\left(10^{-3} \mathrm{~T}\right)^{4}+\left[022091 \div 0.51822 \times 10^{-3} \mathrm{~T}\right. \\
&\left.\left.-0.19 .102 \times\left(10^{-3} \mathrm{~T}\right)^{2} \div 0.045080 \times\left(10^{-3} \mathrm{~T}\right)^{3}-0.00 \div 3275 \times\left(10^{-3} \mathrm{~T}\right)^{1 /}\right] \mathrm{f}\right\}
\end{aligned}
$$

$$
\begin{equation*}
C_{p}(T, f)=\left(C_{p}\right)_{g} \tag{5.1.76}
\end{equation*}
$$

### 5.1.4.3 Enthalpy Change

The enthalpy change can be expressed as

$$
\begin{equation*}
\Delta \mathrm{h}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{C}_{\mathrm{p}} \mathrm{dY} \tag{5.1.78}
\end{equation*}
$$

Subrtituting Equation 5.1.76 into Equation 5.1.78 and integrating yields

$$
\begin{align*}
& \Delta h_{g}=\frac{1}{1+1}\left\{0.24062\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)-\frac{0.017724 \times 10^{-3}}{2}\left(\mathrm{~T}_{2}^{2}-\mathrm{T}_{1}^{2}\right)+\frac{0038055 \cup 10^{-6}}{3}\left(\mathrm{~T}_{2}^{3}-\mathrm{T}_{1}^{3}\right)\right. \\
& -\frac{0.012662 \times 10^{-9}}{4}\left(\mathrm{~T}_{2}^{4}-\mathrm{T}_{1}^{4}\right)+\frac{0.0013012 \times 10^{-12}}{5}\left(\mathrm{~T}_{2}^{5}-\mathrm{T}_{1}^{5}\right)+\left[0.22091\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)\right. \\
& +\frac{0.51822 \times 10^{-3}}{2}\left(\mathrm{~T}_{2}^{2}-\mathrm{T}_{1}^{2}\right)-\frac{0.10 \leq 62 \times 10^{-6}}{3}\left(\mathrm{~T}_{2}^{3}-\mathrm{T}_{1}^{3}\right) \div \frac{0.045065 \times 10^{-9}}{4}\left(\mathrm{~T}_{2}^{4}-\mathrm{T}_{1}^{4}\right) \\
& \left.\left.-\frac{0.0043275 \times 10^{-12}}{5}\left(\mathrm{~F}_{2}^{5}-\mathrm{T}_{1}^{5}\right)\right] \mathrm{i}\right\}  \tag{5.1.79}\\
& \Delta h\left(T_{2}, T_{1}, f\right)=\Delta h_{5} \tag{5.1.80}
\end{align*}
$$

The onthalpy change of the gas can also be expressed as

$$
\begin{equation*}
\Delta h_{g}=\frac{1}{1+f}\left(\Delta h_{a}+\Delta h_{\mathrm{D}} f\right) \tag{array}
\end{equation*}
$$

$\therefore$ :.ene $t h_{a}$ is the enthalpy change of $o$ wound of air

$$
\begin{equation*}
\Delta l_{a}=\Delta h\left(T_{2}, T_{1}\right) \tag{5.1.82}
\end{equation*}
$$

an: $\because_{0}$ is the correction to the anr enthalpy due to comoustion and is exanessed as

### 5.1.4.4 Entropy Function

For isentropic flow,

$$
\begin{equation*}
\frac{\mathrm{R}}{\mathrm{~J}} \ln \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{~T}} \mathrm{dT} \tag{5.1.84}
\end{equation*}
$$

This equation is used in the evaluation of adcal processes in turbomachanes. For convenience the raght side of Equation 5.184 will be called the entropy function. The entropy function is

$$
\begin{equation*}
\Delta \varphi=\int_{T_{1}}^{T_{2} T_{2}} \frac{C_{p}}{T} d^{\top} \Gamma \tag{5.1.85}
\end{equation*}
$$

Substıtuting Equation 5.1.76 into Equation 5.1 .85 and integrating yzelds


$$
\begin{align*}
& -\frac{0012002 \times 10^{-9}}{3}\left(\mathrm{~T}_{2}^{3}-\mathrm{T}_{1}^{3}\right)+\frac{0.0010012 \times 10^{-12}}{4}\left(\mathrm{~T}_{2}^{4}-\mathrm{T}_{1}^{4}\right) \\
& +1\left\{0.22001 \ln \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}+021222 \times 10^{-3}\left(\mathrm{I}_{2}-\mathrm{T}_{1}\right)-\frac{0.19162 \times 10^{-6}}{2}\left(\mathrm{~T}_{2}^{2}-\mathrm{T}_{1}^{2}\right)\right. \\
& \left.\left.+\frac{0.0:=0 \cos 10^{-9}}{3}\left(T_{2}^{3}-T_{1}^{3}\right)-\frac{0.00 \leq 3275 \times 10^{-12}}{4}\left(T_{2}^{4}-T_{1}^{-4}\right)\right]\right\}  \tag{51.86}\\
& \Delta Q_{2}\left(T_{2}, I_{1}, f\right)=\Delta U_{g} \tag{3.1.87}
\end{align*}
$$

### 5.1.4 5 3:Necular Heaght

The rolecular wexght of the gas is equal to the renght of the gas dirided $2 y$ the total iumber of roles (sum of the roles of the comonents). Therezore, rolecular wozght can be expressed as

the resulting equation is
5.1-16

$$
\begin{equation*}
\overline{\mathrm{M}}_{\mathrm{g}}=\frac{1+\mathrm{f}}{0.06-522+0.6,0.058 \mathrm{f}} \tag{5.1.59}
\end{equation*}
$$

: : ; :

### 5.1.5 Symbols for Description of Program ENCYCL

b bypass ratio
$\mathrm{C}_{\mathrm{p}}$ specific heat, $\mathrm{Btu} /(1 \mathrm{~b})\left({ }^{\circ} \mathrm{R}\right)$
f fuel to 'air ratio, ( 1 l fucl)/(lb air)
g gravıtational constat, $32.17 \mathrm{ft} / \mathrm{sec}^{2}$
HVF heating value of fuel, Btu/lb
"
h enthalpy, Btu/lv
$\Delta h$ enthalpy change, Btu/lv
$\Delta h_{b}$ correction to alr enthalpy (Equation 5.1.83), Btu/1b
J mechandcal equivalent of heat, $778 \mathrm{ft}-\mathrm{lb} / \mathrm{Btu}$
M Mach number
y molecular weight
P pressure, psıa
$R$ gas constant, ft-lb/(1b)( $\left.{ }^{\circ} R\right)$
(R) universal gas constant, $\mathrm{ft}-\mathrm{ib} /\left(\mathrm{lb}\right.$ mole) $\left({ }^{\circ} \mathrm{R}\right)$
r pressure ratio
SFC specific fuel consumption, (1b fuel)/(10 thrust)(hr)
ST specific thrust, (lb thrust)/(lb air)
T $\pm$ eriperature, ${ }^{\circ} \mathrm{R}$
$V$ velocity, ft/sec
h nerght flow, lb/hr
$\bar{h} \quad$ beight of comporent per pound of aur, $1 b / 1 \mathrm{~b}$ alr
$\gamma \quad$ ratio of specific heats
$\eta$ efficiency
©3 entropy function
$\therefore$ veloçiz $t_{i}$ coeffacient

Subscripts:

| $A B$ | afterburnex | 1 | fan inlet |
| :---: | :---: | :---: | :---: |
| a | air | $1 '$ | fan outlet |
| B | combustor | 2 | compressor outlet, main burner inlet |
| C c | compressor coolant | 3 | maın burner outlet, turbine inlet |
|  |  | 4 | turbine outlet |
| D | duct | 4 M | mixing statior |
| DB | duct burner | 5 | afterburner outlet |
| e | engine | 6 | nozzle outlet |
| F | fan | 7 | duct burner outlet |
| f | fuel | 8 | duct nozzle outlet |
| g | gas |  |  |
| id | Ideal |  |  |
| m | main |  |  |
| N | nozzle |  |  |
| n | not lighted |  |  |
| R | reference |  |  |
| T | turbine |  |  |
| t | thrust |  |  |
| tot | total |  |  |
| 0 | diffuser inle |  |  |

Superscript
(1) total, as applied to state points

REFERENCES:

1. Vanco, Michael R., Computer Program for Design-Point Performance of Turbojet and Turbofan Engine Cycles, NASA TM X-1340.
2. Dugan, J. F., Jr., Koenig, R. W., Whitlow, J. B., Jr., and icAuliffe, T.B., Power for the Mach 3 SST, Astron. Aeron., Vol. 2, No. 9, September 1964, Pages 44-51.
3. McBrıde, Bonmie J., Heimel, Sheldon, Chlers; Janet G., and Gordon, Sanford, Thermodynamic Properties to $6000^{\circ} \mathrm{K}$ for 210 Subsiances Involvang the First 18 Elcments, NASA SP-3001, 1963.
[^2]TABLE 5.1-1. SCHEYATIC DIAGRAM OF GENERAL ENGIIIE


TABLE 5.1-2. COEFFICIENTS WD $\because$ OLECULUR WEIGHTS OF COMPONENTS


TABLE OF CONTENTS FOR SECTION 5.2, PROGRAM GENENG
Section Page
5.2.1 Introduction ..... 5.2-1
5.2.2 Thermodynamic Analysis of One- and Two-Spool Engine Types ..... 5.2-2
5.2.2.1 Two-Spool Afterburning Turbofan ..... 5.2-2
5.2.2.2 Two-Spool Turbojet ..... 5.2-5
5.2.2.3 One-Spool Turbojet ..... 5.2-5
5.2.3 Balancing Technique ..... 5.2-5
5.2.4 Choice of Component Maps- Scaling Laws ..... 5.2-7
5.2.4.1 Compressor Maps ..... 5.2-7
5.2.4.2 Combustor Maps ..... 5.2-8
5.2.4.3 Turbine Maps ..... 5.2-8
5.2.4.4 Afterburners ..... 5.2-8
5.2.4.5 Nozzles ..... 5.2-9
5.2.5 Means of Specifying Mode of Engine Operations ..... 5.2-9
5.2.6 GENENG Subroutine Functions and Descriptions ..... 5.2-10
References ..... 5.2-13
Illustrations ..... 5.2-14

### 5.2 PROGRAM GENENG: A PROGRAM FOR CALCULATING DESIGN AND OFF-DESTGN PERFORMANCE FOR TURBOJET AND TURBOFAN ENGINES

Progran GENENG was developed by Koenig and Fishback of NASA's Lewis Research Center. Documentation of the program is provided in'Reference 1. The dascussion of program GENENG presented below follows Reference 1.

The original version of the GENENG computer program entitled SiOTE (SiMulation Of Turbofan Engine) and was developed by the Turbine Engıne Divasion of the Air Force Aero Propulsion Laboratory, Wright-Patterson Air Force Base, Ohio. SMOTE is capable of calculating only turbofan design and off-design performance using specific component performance maps. GENENG calculates steadystate design and off-design turbofan and one- and two-spool turbojet engine performance. The Reference 1 version of GENENG was prepared for the IBM 7094 computer. The ODIN/RLV version of GENENG was converted to the CDC 6600 by Robert Leko of the Naval Air Development Center.

### 5.2.1 Introduction

For preliminary as well as in-depth studies it is necessary to study a broad range of engines operating at both design and off-design conditions in order to find an efficient airframe/engine combination. The spectrum of flight conditions through which an engine must operate will strongly affect the optimum design parameters for that engine.

The SNOTE code discussed in References 2 and 3 provided a computer program having off-design point calculation capabılıty for either existing engines or theoretical ones--a major advance. Theoretical engines are simulated by scaling component performances from existang engines to the design condıtions of the theoretical engines.

Program GENENG (GENeralized ENGine), a computer code derived from SNOTE, was written to improve the versatility of S:OTE. Among the changes made are

1. One- and two-spool turbojets can be calculated, as well as turbofans
2. Aftorburner performance maps can be used
3. Nozzle performance maps can be used
4. Fan and compressor pressure ratios are automatically redesigned for mixed-flow turbofans if the statis pressure losses are calculated.
5. Duct combustor pressure losses are calculated
6. A new method of entering data into the program is used

A derivative program from GENENG, called GENENG II, is reported in the next section, 5.3 ; for further detall see Reference 4. GENENG II calculates performance of two- or three-spool front or aft fan turbofan engines with as many as three nozzles (or airstreams).

### 5.2.2 Thermodynamic Analysis of One- and Two-Spool Engine Types

All thermodynamic properties of air and gas are calculated by considerang variable specific heats and no dissociation. Curve fitted air and gas property tables of Reference 5 are used. The ongine cycles that can be studied using GENENG are discussed below.

### 5.2.2.1 Two-Spool Afterburning Turbofan

The basic engine, a two-spool turbofan in shown in Figure 5.2-1. All other englne types are treated as variations of this basic engine. Free-stream conditions exist at Station 1 and are determined by using the U. S. Standard Atmosphere Table of 1962, Reference 6. The conditions at Station 2 are determined by flight speed and inlet recovery.

GENENG compressor maps work with corrected values of airflow. At the entrance to the fan the corrected alrflow WAF, $c$ is

$$
\begin{equation*}
W_{F, c}=\frac{W A_{F} \overbrace{2} / 518.668}{P_{2} / P_{S l S}} \tag{5.2.1}
\end{equation*}
$$

where $P_{2}$ and $P_{S L S}$ are in atmospheres and $P_{\text {SLS }}$ equals 1.0 . All symbols are defined in Table 5.2-1. Some symbols are formed as the combination of other symols; thus WA is airflow; $F$ is for fan; and $c$ when following a compound symbol means corrected. Station numbers are defined on the appropriate figure.

All the fan air $W A_{F}$ is compressed by the fan giving rise to conditions at station 21. The power required to do this is

$$
\begin{equation*}
\text { Fan power }=W A_{F} \times\left(\mathrm{H}_{21}-\mathrm{H}_{2}\right) \tag{5.2.2}
\end{equation*}
$$

Some fan air may be lost to the cycle as fan bleed $\mathrm{BI}_{\mathrm{F}}$, which is expressed as a fraction of the fan airflow

$$
\begin{equation*}
\mathrm{F1}_{\mathrm{F}}=\mathrm{PC}_{\mathrm{BI}, \mathrm{~F}} \times \mathrm{WA}_{\mathrm{F}} \tag{5.2.3}
\end{equation*}
$$

The corrected airflow into the core compressor is

$$
\begin{equation*}
W_{C, c}=\frac{W A_{C} / \sqrt{1 / 21 / 518.6 S 3}}{\mathrm{P}_{21} / 1.0} \tag{5.2.4}
\end{equation*}
$$

The remaining air goes through the fan duct where some laakage from the core air may also enter; see Equation 5.2.11

$$
\begin{equation*}
W A_{D}=W A_{F}-B 1_{F}-W A_{C}+B 1_{D U} \tag{5.2.5}
\end{equation*}
$$

The air which nay be heated by a duct burner to a temperature $\mathrm{T}_{24}$ undergoes a pressure drop

$$
\begin{equation*}
P_{25}=P_{24} \times\left[1-\left(\frac{\Delta \mathrm{P}}{\mathrm{P}}\right)_{\mathrm{DUCT}}\right] \tag{5.2.6}
\end{equation*}
$$

The air would have been heated by the addition of fuel which can be expressed as a fuel-air ratio so that

$$
\begin{equation*}
W G_{24}=W A_{23} \times\left[1+(f / a)_{23}\right] \tag{5.2.7}
\end{equation*}
$$

The gas is then either expanded through a nozzle (station 29) to produce thrust or is mixed with the core alr as shown in Figure 5.2-2 (mixed flow - turbofan). The bypass ratio of the engine is defined by

$$
\begin{equation*}
\text { BYPASS }=\frac{W A D}{I N A_{C}} \tag{5.2.8}
\end{equation*}
$$

The air continuing into the core is compressed to conditions at station 3 . The power required is

$$
\begin{equation*}
\text { Compressor power }=W A_{C} \times\left(\mathrm{H}_{3}-\mathrm{H}_{21}\right)=\mathrm{WA}_{3} \times\left(\mathrm{H}_{3}-\mathrm{H}_{21}\right) \tag{5.2.9}
\end{equation*}
$$

Some core bleed air $\mathrm{Bl}_{\mathrm{C}}$ may be used for turbine cooling. Some of the air is put back anto the cycle into each of the two turbines, and some is lost to the cycle as overboard bleed or leakage into the fan duct.

$$
\begin{align*}
\mathrm{B1}_{\mathrm{C}} & =P C_{B 1, C} \times \mathrm{WA}_{3}  \tag{5.2.10}\\
\mathrm{Bl}_{\mathrm{DU}} & =P C_{B 1, D U} \times{ }^{B 1} C  \tag{5.2.11}\\
{ }^{B 1}{ }_{O B} & =P C_{B 1, O B} \times{ }^{B 1} C  \tag{5.2.12}\\
B 1_{H P} & =P C_{B 1, H P} \times{ }^{B 1} C  \tag{5.2.13}\\
B 1_{L P} & =P C_{B 1, L P} \times{ }^{B 1} C \tag{5.2.14}
\end{align*}
$$

Since $B l_{D U}+B l_{O B}+B l_{H P}+B l_{L P}=B 1_{C}$, the sum of $P C_{B 1, D U}+P C_{B 1, O B}+P C_{B 1}, H P$ + $P C_{B 1, L P}$ must be equal to 1.0 . The remanning air is

$$
\begin{equation*}
W A_{4}=W A_{3}-B I_{C} \tag{5.2.15}
\end{equation*}
$$

and is heated to a turbine inlct temperature $T_{4}$ rhile undergolng a combustor pessure drop ( $\triangle P / P$ ) ComB. The fuel required to do this is expressed as a ruel-air ratio (f/a) 4 so that the weight of the gas entering the first (high) pressure) turbane $\mathrm{HG}_{4}$ can be expressed as

$$
\begin{equation*}
\mathrm{WG}_{4}=W \mathrm{~A}_{4} \times\left[1+(f / a)_{4}\right] \tag{5,2.16}
\end{equation*}
$$

This gas is then expanded through the turbine to conditions at Station 5 . The enthalpy at Station 5 is first calculated by making a pover balance since this turbine dxives the compressor and supplies any work extracted (HPEXT). By using Equation 5.2.9

$$
\begin{equation*}
\mathrm{WG}_{4} \times\left(\mathrm{H}_{4}-\mathrm{H}_{5}\right)=\mathrm{WA}_{3} \times\left(\mathrm{H}_{3}-\mathrm{H}_{21}\right)+\mathrm{HPTEXT} \tag{5.2.17}
\end{equation*}
$$

In addition, the physical speeds must match

$$
\begin{equation*}
\mathrm{N}_{\mathrm{HP}, \mathrm{TURBINE}}=\mathrm{N}_{\mathrm{COMP}} \tag{5.2.18}
\end{equation*}
$$

If high pressure turbine bleed air $\mathrm{Bl}_{\mathrm{HP}}$ is added into the cycle at this point, $\mathrm{H}_{5}$ must be readjusted

$$
\begin{equation*}
\mathrm{H}_{5}=\frac{\left(\mathrm{BI}_{\mathrm{HP}} \times \mathrm{H}_{3}\right)+\mathrm{WG}_{4} \mathrm{H}_{5}}{W G_{4}+{ }^{B 1}{ }_{H P}}=\frac{\left(\mathrm{Bl}_{\left.1 \mathrm{PP} \times \mathrm{H}_{3}\right)}+W \mathrm{WG}_{4} \mathrm{H}_{5}\right.}{W \mathrm{H}_{5}} \tag{5,2,19}
\end{equation*}
$$

Similarly,

$$
\begin{gather*}
\mathrm{WG}_{5} \times\left(\mathrm{H}_{5}-\mathrm{H}_{55}\right)=\mathrm{WA}_{\mathrm{F}} \times\left(\mathrm{H}_{21}-\mathrm{H}_{2}\right)  \tag{5.2.20}\\
\mathrm{N}_{\mathrm{LP}, \mathrm{TURBINE}}=\mathrm{N}_{\mathrm{FAN}}  \tag{5.2.21}\\
\mathrm{H}_{55}=\frac{\left(\mathrm{Bl}_{\mathrm{LP}} \times \mathrm{H}_{3}\right)+\mathrm{HG}_{5} \mathrm{H}_{55}}{\mathrm{HG}_{5}+\mathrm{BI} \mathrm{LP}}=\frac{\left(\mathrm{Bl}_{\mathrm{LP}} \times \mathrm{H}_{3}\right)+\mathrm{WG}_{5} \mathrm{H}_{55}}{W G_{55}} \tag{5.2.22}
\end{gather*}
$$

For non-mixed flow turbofans the gas flow at Station $6, \| G_{6}$, is identical with that at Station 55, WG55. For mixed-flow turbofans, the air in the fan duct is added.

$$
\begin{equation*}
W G_{6}=W G_{55}+W A_{D} \tag{5.2.23}
\end{equation*}
$$

Maxed-flon turbofans addıtionally require that the static pressures at Station 25 and at Station 55 (Figure 5.2-2) match.

$$
\begin{equation*}
\mathrm{PS}_{55}=\mathrm{PS}_{25} \tag{5.2.24}
\end{equation*}
$$

The gas flow $W_{G}$ then may be heated by an afterburner to a gas temperature $T_{7}$ and may undergo a pressuro drop.

$$
\begin{equation*}
P_{7}=P_{6}\left[1-(\Delta P / P)_{\text {AITLRBURNER }}\right] \tag{5.2.25}
\end{equation*}
$$

And the gas flow rate would be increased by any fuel burned

$$
\begin{equation*}
W G_{7}=W G_{55}+W F A \tag{5.2.26}
\end{equation*}
$$

The gas is then expanded through the nozzle (Station 9) to produce the remainder of the engine thrust.

### 5.2.2.2 Two-Spool Turbojet

The two-spool turbojet is equivalent to a two-spool turbofan with a BYPASS of zero. This engine is shown in Figure 5.2-3. In calculating this type of engine, there is no fan duct and the air entering the inner compressor is the sane as the air entering the inlet less any bleed.

$$
\begin{equation*}
W A_{C}=W A_{F}-B 1_{F} \tag{5.2.27}
\end{equation*}
$$

The thermodynamic calculations proceed identically to the previous case, the two-spool turbofan case, except that any equations referring to the fan duct are eliminated.

### 5.2.2.3 One-Spool Turbojet

The one-spool turbojet is shown in Figure 5.2-4. As can be seen, to simulate this engine the inner compressor and its driving turbine are eliminated. That is, Stations 21 and 3 become identical and Stations 4 and 5 become adentical.

The only calculation changes required therefore are (1) to eliminate any thermodynamac equations relating to the fan duct and the inner spool of the two-spool turbofan engine and (2) to add the horsepower extracted to the power requirements of the outer turbine.

### 5.2.3 Balancing Technıque

An off-design engine cycle calculation requixes satisfying varıous matching constraints (rotational speeds, alrflows, compressor and turbine work functions, and nozzle flow functions) at each specified operating condition. GENENG internally searches for compressor and turbine operating points that will satisfy the constraints. It does this by generating differential errors caused by small changes in the independent variables. The program then uses a matrix that is loaded with the differentidl errors to solve for the zero error condition using the Newton-Raphson iteration techmaque.

For the two-spool turbofan or turbojet engines a solution for a set of six simultaneous linear algebraic equations is obtaned; for the one-spool turbojet a set of three simultaneous linear ecuations as solved. The six andependent variables selccted are
(a) ZF - Ratio of pressure ratios of outer compressor (fan) along a speed line

(b) PCNF - Per cent fan speed or turbine inlet temperature or T4
(c) ZC - Ratio of pressure iutios of inner compressor along speed line; calculated same is ZF

$$
5.2-5
$$

(d) PCNC - Per cent compressor speed or turbine inlet temperature or T 4
(e) TFFHP - Inner (high pressure) turbine f1ow function,

$$
\mathrm{WG}_{4} \sqrt{T_{4}} / P_{4}
$$

(f) TFFLP - Outer (low pressure) turbine flow function,.

$$
W_{5} \sqrt[f]{T_{5}} / P_{5}
$$

ZC, PCNC, and TFFHP are not used for the one-spool turbojet.

The program initially selects new (perturbed) values for the variables based on the design values. It is then possible to proceed through the entire engine cycle where six (or three) errors are generated. The initial values of the six (or three) variables and six (or three) errors are base values.

From Reference 2, the partial differential equations for $E=f(v)$ are

$$
\begin{equation*}
d E_{i}+\sum_{j=1}^{j_{\max }} \frac{\partial E_{i j}}{\partial V_{j}} d V_{j} \tag{5.2.28}
\end{equation*}
$$

for $i$ goino from 1 to $j_{\max }$ where $j_{\max }$ is 6 for two-spool engines on 3 fer one spool turoojets, $E$ is an error; $V$ is a variable; and $\partial E_{1 j}$ is the change in $E_{i}$ caused by a change in $V_{j}$.

The assumption of a small change in the variable results in the following approximations (B refors to a base value):

$$
\begin{align*}
& \mathrm{dE}=\mathrm{E}-\mathrm{EB}  \tag{5.2.29}\\
& \mathrm{dV}=\mathrm{V}-\mathrm{VB}  \tag{5.2.30}\\
& \frac{\partial \mathrm{E}}{\partial V}=\frac{\mathrm{E}}{\mathrm{~V}} \tag{5.2.31}
\end{align*}
$$

With these dpproximations and the knowledge that $E$ should equal zero for the balanced engine, the set of partial dafferential equations (Equation 5.2.28) reduces to

$$
\begin{equation*}
E_{i}-E B_{i-}=\sum_{j=1}^{J_{\max }} \frac{\partial E_{1 j}}{\partial V_{j}} d V_{j}=E B_{i} \tag{5.2.32}
\end{equation*}
$$

for 1 going from 1 to $j_{\max }$.

Thus, the calculations made with the perturbed variables are used to compute $\Delta E / \Delta V$, and Equation 5.2 .32 is solved for $d V_{j}$. The variables $V$ are then given new values from

$$
\begin{equation*}
v_{J}=v_{j} B+d v_{j} \tag{5.2.33}
\end{equation*}
$$

If the engine cycle calculations were lanear functions, the engine would. balance with the new values of the variables. However, the calculations art nonlincar and it usually is necessary to repeat the process of changing each variable by a small amount for each pass. A change in each error because of the small change in the variable is calculated for each pass, where the new values become base values. This process occurs several times before a balance is obtained.

The most often used independent variable and the differential errors for four types of engines that can be run on GENENG are listed in Table 5.2-2.

### 5.2.4 Choice of Component Maps - Scaling Laws

Many of the engines that are studied using GENENG are theoretical. Therefore, actual component maps for these engines will be nonexistent. The program, however, does require component maps to do off-design calculations. To allevzate this problem, GENENG uses scaling laws to change data from one component map into a new component map. Hopefully, a component map can be found which could be expected to perform in a similar manner to the actual map for the engine type being studied. In fact, many maps are identified as to the range of pressure ratio and the onginc component design type for which they are valid (i.e , pressure ratio range, 4 to 8 ; subsonic compressor or inner compressor). However, it should be noted, for example, that a high bypass ratio, subsonic flight speed, low pressure ratio fan map for a CF6 engine would not properly samulate a low bypass ratio, high pressure ratio, supersonic multistage fan.

### 5.2.4.1 Compressor Maps

The scaling equations used for the compressor maps are

$$
\begin{align*}
& \mathrm{PR}=\frac{\mathrm{PR}}{\mathrm{design}-1} \quad\left(\mathrm{PR}_{\text {map }}-\text { design }-1 ~-1\right)+1  \tag{5.2.34}\\
& \text { WA }=\frac{W A \text { design }}{\text { IVA map, design }} \times W A_{\text {map }}  \tag{5.2.35}\\
& E T A=\frac{E T A \text { design }}{\text { ETA }} \times E T A \text { map design } \tag{5.2.36}
\end{align*}
$$

Similar equations are used for combustor and turbine map scaling. These equations are found in the approprıate GENENG subroutines, Section 5.2.6. The correction factors used in scaling the maps are printed in the GENENG output. The closer these values are to 1.0 (especially pressure ratio, a primary characterıstic of a given compressor map), the more reasonable are the simulated maps of the engine. Conversoly, however, not being close to 1.0 does not necessarily mean that the simulation is poor since many maps have been shown to be typical over quite a large range of variables.

A t;pical compressor map which may be employed in the program is presented in Figure 5.2-5. The method of entering such a map into the GENENG program is described in detail, Reference 1.

### 5.2.4.2 Combustor Maps

The combustor map is a plot of temperature xise across the combustor against efficiency for constant input pressure. Temperature rise and input pressure are the independent variables. Combustor efficiency is the dependent variable. A typical combustor map is presented in Figure 5.2-6. The method of entering a combustor map into GENENG is described in Reference 1.

### 5.2.4.3 Turbine Maps

Turbine maps are entered into GENENG in a similar manner to fan and compressor maps, Section 5.2.4.1. The parameters of a typical turbine map are illustrated in Figure 5.2-7. Detailed insizuctions for describing specafic turbine maps in the GENENG program are given in Reference 1.

### 5.2.4.4 Afterburners

Afterburner performance has been programned in a generalized form in GENENG. The afterburner performance map included on the program is shown in Figure 5.2-S(a). The performance map shows afterburner combustion efficiency ratio as a function of fuel-air ratio. The value of afterburner combustion efficiency correction factor during off-design operation is shown against design afterburner inlet hach number ratio, Figure 5.2-8(b) and design aiterburner inlet total pressure ratio, Figure 5.208(c). Other correction factors or performance maps can be added as desired The afterburner efficiency fuel-air ratio, inlet total pressure, and Mach number are generalized external to the program.

A specifac afterburner performance is generalized by divadang the specrfic ofr-design values by the design values. The generalized afterburner values are obtanned as follows:

$$
\text { Efficiency }=\frac{\text { Afterburner Efficiency Off-Design }}{\text { Afterburner Efficiency at Design Point }}
$$

# Fuel-air ratio $=\frac{\text { Fuel-Air Ratio Off-Design }}{\text { Fuel-Alr Ratio Design Point }}$ <br> Entrance total Pressure $=\frac{\text { Entrance Total Pressurc Off-Design }}{\text { Entrance Total Pressure at Design Point }}$ <br> Entrance Mach number $=\frac{\text { Entrance Mach Number Off-Design }}{\text { Entrance Mach Number Design Point }}$ 

To achieve a reasonable accuracy in cycle calculations when usıng any generalized component map, the usage of the map should be limited within a certain range of the original design values and configuration changes. Therefore, if an afterburner has a design task that differs significantly from an example used, a new generalized performance map should be used in'order to simulate the component more accurately.

### 5.2.4.5 Nozzles

SMOTE, the oraginal code, uses a single-point input for nozzle velocaty coefficients when calculating engine performance. GENENG, however, uses a conver-gent-divergent nozzle velocity coefficient shich is input in map form. The velocity coeffacaent is input as a function of nozzle total prossure ratio (P8/P1 or P28/P1). A typıcal nozzle performance map is illustrated an Figure 5.2-9. Detailed input routines for nozzle performance maps are presented in Reference 1.

### 5.2.5 freans of Specrifyng riode oí Engane Operations

Several methods are avallable for specifyang off-design operation poznts. The most common one is to select a lach number, altitude, and turbine inlet temperature other than design values. There are, however, several other possibilities which may be employed. For example, changing the following controls:

```
MODE = 0, Specify a nen turbine inlet temperature T4
MODE = 1, Specify a compressor rotational speed PCNC
MODE = 2, Specify a fuel flow rate WFB
MODE = 3, Specafr a fan rotational speed PCNF
```

If the engine has all its nozzles fixed, an input such as turbine inlet temperature, fuel flow, or speed ull set the thrust level. But other means of changing engine operation can be accomplished by varying such nozzlo thrust areas as

## A8 Man nozzle thrust area

こS Fan nozzle thrust area

For example, an off-design condition may exast where, in an attempt to satisfy continuity of mass flow (one of the component matching requircments), the fan operating point may lie outside the limıts of the data map that was input for the component map. A fan nozzle thrust area chango could be used to return the fan operating condation on the map such that a match would occur. This would indicate a possibility exists that variable fan nozzle would be required on this engine for operation at the desired condition.

It should be noted that the GENENG Huff input package is not available in the CDC 6600 program version. However, since the ODIN/RLV executive program permits any set of arithmetic and symbolic operations in the data input to a program, Section 2, the equivalent Huff input operations may be specified in ODIN/RLV simulations.

Input required for operation of the GENENG program is lısted in Table 5.2-3.

### 5.2.6 GENENG Subroutine Functions and Descrıptions

A flow chart of the computer program with the subroutines is shown in Figure 5.2-10. The functions of the subroutines are listed here and the purpose of each is described.

GENENG Dummy main program to inatrate the calculations and cause the input of the controlled output variables. Because of the looping bet:eon subroutinos, control is never cransferred back to this routine.

ENGBAL Main rautine. Controls all engine balancing loops; checks tolerances and number of loops and loads matrix, calls mput.

GUESS Determines initial values of independent variable (see Table 5.2-2) at each point.

MATRIX Solves error matrix.
PUTIN Calls input subroutine package. Controls loop on static pressures for mixed flow turbofan.

ZERO Zeros nearly all of common and certain controls.
COINLT Determines ram recovery and performs anlet calculations.
ATHOS 1962 U. S. Standard Atmosphere Table.
RNM Calculates ram recovery defined by MIL-E-5008B specifications.
RAN2 valculates special cases of input ram recovery as a function of flight Mach number.

COFAN Uses BLOCK DATA to perform outer compressor (tim) calculations.

COCOMP Uses BLOCK DATA to perform inner-conpressor calculations (two spools only).

COCOMB

COHPTB

COLPTB
CODUCT

COMIX

COAFBN

FrTosd
FASTBK
COANOZ
ERROR

SYG

PERF
OUTPUT

CONOUT
TILCOMP
PROCON

Uses BLOCK DATA to perform combustor calculations. May use either T4 or WFB as the main parameter.

Uses BLOCK DATA to perform inner turbine calculations (two spools only).

Uses BLOCK DATA to perform outer turbine calculations.
Performs duct and duct burning calculations for turbofans. May use either T24 or WFD as main parameters.

Performs gas mixing calculations if in mixed flow mode. At design points it calculates areas e1ther from an input static pressure PS55 or from an input Mach number A455 if PS55 $=9$. At off-design points it calculates static pressures and Mach numbers from the design areas. Rescales pressure ratios for mixed flow turbofans to match duct and core static pressures just prior to maxing. COMIX also calculates afterburner entrance area $A 6$ as a function of afterburner entrance Mach number AM6.

Performs the afterburning calculations. May use either T7 or WFA as the main parameters.

Dummy routine to transfer values from common FRONT to common SIDE. Dummy routane to transfer values from conmon SIDE to common BACK.

Controls the main nozzle.
Controls all printouts af an error occurs. Prints names of subroutine where error occurred and also prints the values of all variables in the main commons.

Controls printing from UNITO8. Throughout the program and particularly in ENGBAL, certain messages, variables, and matxix values are written on U\ITO8 as an aid in determining why an crrox occurred or why a point did not balance. These values are pranted out if subroutine ERROR is called and TDUMP is greater than zero, or after a good point if IDUSP $=2$.

Calculates porformance after the engine is balanced.
Prints output except for controlled output. Prints the main commons after the destgn point.

Controls and prints the controlled output variables.
Performs isentropıc calculations for compressors.
Calculates thermodynamic gas properties for exther alr or a fuclair mixture basod on JP-4 using curve fits of the tables of Reference 5.

SEARCH General table lookup and interpolation routine to obtain data from the BLOCK DATA subroutines.

MAPBAC Used when calculations result in values not on the turbine maps. Changes the map value and an independent varıable (PCNF, PCNC', or T4.) in an attempt to rectify the situation.

CONVRG Performs nozzle calculations for a convergent nozzle.
CONDIV Performs nozzle calculations for a convergent-divergent (C-D) nozzle.

THTURB Performs isentropac calculations for turbines.
THERMO Provides thermodynamic conditions using PROCOM.
AFQUIR General quadratic interpolation routine.
PARABO Parabolic curve-fit routine
BLKFAN Pexformance data for outer compressor (fan) map (BLOCK DATA).
BLKCMP Performance data for inner compressor map (BLOCK DATA; two-spool engines).

CMBDAT BLOCK DATA for combustor
HPTDAT Performance data for inner turbine map (BLOCK DATA; two-spool engines).
LPTDAT Performance data for outer turbine map (BLOCK DATA).
ETAAB Generalized afterburner performance BLOCK DATA as a function of fuelair ratio with correction factors for off-design aftexburner entrance pressure and Mach number.

FRATIO Convergent-divergent nozzle velocıty coofficient (BLOCK DATA input as a function of nozzle pressure ratio and area expansion ratio).

INPUT Package of Huff input subroutines.

REFERENCES:

1. Koenig, Robert W. and Fishbach, Laurence H., GENENG - A Program for Calculating Design and Off-Design Performance for Turbojet and Turbofan Engines, NASA TN D-6552, February 1972.
2. McKinney, John S., Simulation of Turbofan"Engine, Part I, Description of Method and Balancing Technique, Report AFAPL-TR-67-125, Air Force Systems Command, November 1967. (Available from DDC as AD-825197).
3. McKinney, John S., Simulation of Turbofan Engine, Part II, Usex's Manual and Computer Program Listing, Report AFAPL-TR-67-125, Alr Force Systems Command, November 1967. (Available from DDC as AD-825198).
4. Fishbach, Laurence H. and Koenig, Robert W., GENENG II - A Program for Calculating Design and Off-Design Pexformance of Two- and Three-Spool Turbofans with as Many as Three Nozzles, NASA TN D-6553, 1972.
5. Keenan, Joseph H., and Kaye, Joseph, Gas Tables, Jolm Wבley and Sons, Inc., 1948.
6. —., U. S. Standard Atmosphere, 1962. Prepared undex sponsorship of NASA, USAF, and USNB, 1962.
7. Turner, Don N. and Huff, Vearl N., An Input Routine Using Arıthmetıc Statements for the IBM 704 Digital Computer, NASA TN D-1092, 1961.

TABLE 5．2－1．SYMBOLS

## Therm cdynamic Propertles

| AM | Mach number |
| :---: | :---: |
| far | fuel－air ratio， $1 / 2$ |
| II | enthelpy， $\mathrm{Btu} / \mathrm{lbm}$ |
| p | total pressure，atm |
| PS | staice pressure，atm |
| S | entroiy， $\mathrm{Btu} /{ }^{\circ} \mathrm{R} / 1 \mathrm{bm}$ |
| T | total temperature，${ }^{0} \mathrm{n}$ |
| TS | static temperature，${ }^{\circ} \mathrm{R}$ |
| v | velocity，ft／sec |

## Station Numbers

Set Figures 5．2－1 to 5 2－4
for each type of enginc．

Component Symbols
afterburner
A，AFT
B
c
COM
D
F
I
M
Mans
nóz
OB
T
THP
TIP
TLP
wDuct
WING，WNG
Lurner
Inner compressor
combustor
fin duct
first or fan compressor
core nozzle
all but wang
nozzle
overboard
total
wing（third stre $: m$ ）duct
wine（third strem）
intormediate（middic）compressor
luluer（high pressure）turbine midule（interme liate pressure）turbine outer（low pres‘ure）turbine

## Englne Symbols

| BL | blecd， $1 \mathrm{bm} / \mathrm{sec}$ |
| :---: | :---: |
| CN | ratio of corrected speed to design corrected speed |
| DHT | turbine delta enthalpy，Btu／lbm |
| DHTC | turbine delta enthalpy（temperature corrected）， $\left(\mathrm{H}_{\text {in }}-\mathrm{H}_{\text {out }}\right) / \mathrm{T}_{\mathrm{in}}, \mathrm{Btu} / \mathrm{O}_{\Gamma} / \mathrm{lom}$ |
| DP | pressure drop，$\Delta \mathrm{P} / \mathrm{P}$ |
| DT | temperature change，${ }^{\circ} \mathrm{R}$ |
| ETA | efficiency |
| ETAR | ram recovery，$P_{2} / P_{1}$ |
| HPEXT | horsopower estracted |
| N | shaft spled |
| PCBL | fractronal bleed |
| PCN | percent of design shart speed |
| PR | pressure ratio |
| TFF | turbine fow function， $\mathrm{lbm} \sqrt{ } /{ }^{\circ} /(\operatorname{losia})(\mathrm{sec})$ |
| WA | arilow， $\mathrm{lbm} / \mathrm{sec}$ |
| wF | fuel flow， $\mathrm{lbm} / \mathrm{sec}$ |
| WG | gas flow， $\mathrm{lbm} / \mathrm{sec}$ |
| $z$ | ratio of pressure ratios |

TABLE 5:2-2. VARIABLES AND ERRORS

|  | Two-spool tur bofan | Mined-ilow tur bofan | Two-spool tur hojet | Cne-spool turlojet |
| :---: | :---: | :---: | :---: | :---: |
| Var mable 1 | ZF | ZF | 2 F | ZF |
| Varable 2 | PCNF | PCNF | PCNF | PCNF |
| Vaurable 3 | ZC | ZC | ZC | TFPLP |
| Vemable 4 | PCNC | PCNC | PCNC |  |
| Variable 5 | TFFHP | TFMHP | TYFHP | ----------------- |
| Variable 6 | TFFLP | TFELP | TFFLP |  |
| Errer 1 | $\frac{\text { TFHCAI - TPFIP }}{\text { TrHCAL }}$ | $\frac{\text { TEHCAL - TFFHP }}{\text { TFHCAL }}$ | $\frac{\text { TFHCAL - TFFHP }}{\text { TFHCAL }}$ | $\frac{\text { TFLCAI }- \text { TFPIP }}{\text { TFLCAL }}$ |
| El roil 2 | DHTCC-DHTCHP | DHECC-DIITCHP | DHTCC - DITTCIP | DHTCF - DHTCLP |
|  | DHTCC | DH'SCC | DHTCC | DifTCF |
|  | RFLCAL - TEFI, | TFJCAI-TFPIPP | TFLCAL - TrFip | P7R - P7 |
|  | TFYCAL | TILCAL | TILCAL | - P7R |
| Error 4 | DHTCK - DHICLP | DHTCF - IHTCCL | DITCF - DHTCLP |  |
|  | DIIFCE | DHTCF | DHTC |  |
| Lrior 5 | $\mathrm{P} 25 \mathrm{R}-\mathrm{P} 25$ | PS25-12555 | W $A F=W A C-B L F$ |  |
|  | P2Jir | - PS25 | WAC |  |
| Eisor 6 | $\mathrm{P} 7 \mathrm{R}-\mathrm{P} 7$ | P7R-P7 | PVR - Pl |  |
|  | Pid | P7R | I7R |  |
| Antmaste | $6 \times 6$ | $6 \times 6$ | 6\%6 | $3 \times 3$ |

تPBLE 5.2-3. INPUIS RLQUIRED FOR BASTC CYCLES

| Vaurable | Gims: | Betimition | $\begin{gathered} \text { Two-spool } \\ \text { tubotal } \end{gathered}$ | Aryed-flo, tur botan | $\begin{aligned} & \text { 1:o-spool } \\ & \text { turbojet } \end{aligned}$ | One-spuol turbojet |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRFDS | ---- --- - -- | Fan puessure 1 atuo | Ye, | Yes | Yes | Yes |
| Watrem's | (1) 4 ¢ | Fan conrected anflow |  |  |  |  |
| ETaris |  | Fan ifficiency |  |  |  |  |
| 7 FDS | ----- | resign $Z$ of fan |  |  |  |  |
| PCNEDS |  | Corrected speed of fan |  |  | $\cdot$ | 4 |
| PRCDS | -------- | Compressor pressure 1 atio |  |  | 7 | No |
| WACCDS | (1) $=1 \times$ | Compuessor coriceted arflow |  |  | No |  |
| EmACDS | -...-.- --- | Compressol efticiency |  |  | Yes |  |
| zCDS |  | Design $z$ of complessor |  |  |  |  |
| PCNCDS |  | Corrected speed of compi essor |  |  |  | 1 |
| ENADRS | - -- - | Curibustox efficiency |  |  |  | Yes |
| DPCOns |  | Combustor pressur diop, $\Delta P / P$ |  |  |  | Yes |
| Tld | -- | Turbone imlet temperature |  |  |  | Yes |
| TYHPD' | $\cdots$ | Hegh-pressurc-tur mine flow function |  |  |  | Vo |
|  | (䛧, $\therefore$...cs |  |  |  |  |  |
| CNIIPDS | -----.-.-- | Corrected spoed - hagh-pressure tubre |  |  |  | No) |
| ETIPDS | - | Linciency - high-p casure tur bine |  |  |  | No |
|  | 1,. $\mathrm{F}_{0}$ | İu-pressue e-tur bine floy function |  |  |  | Yes |
|  | (-90 $\because$ - :a) | Lum-pressture-tar bime flow Lunction |  |  |  | Yes |
| CNLPDS | ------.... | Con rected speed - 10 -pressure tar bine |  |  |  | Yes |
| ETLPDS | ------- | Lifictency - low-puespure turbine |  |  | 4 | Yes |
| DPDUDS | --------- | $\Delta \mathrm{i} / \mathrm{P}$ of fan duct | I |  | No | No |
| DPATDS | ----..... | $\Delta \mathrm{P} / \mathrm{P}$ of iftertuzner | 1 | 7 | Yes | kes |
| F.IN | ----- - | Lus, ical vatable | TRUE | TRUE | $\because \mathrm{ALSF}$ | FAL心E |
| ispoot | -----...- | Suntrer of spool, | 2 | 2 | 2 | 1 |



Figure 5.2-1. SCHEMATIC OF NON-MIXED FLOW DUCT BURNING AND/OR AFTERBURNING TURBOFAN


FIGURE 5.2-2. SCHELATIC OF MIXFD FLOW AFTERBURNING TURBOFAN


FIGURE 5.2-3. SCHEMATIC OF TWO-SPOOL TURBOJET


FIGURE 5.2-4. SCHIMIIC OF ONE-SPOOL TURBOJLT


FIGURE 5.2-5. EXAMPLE OF A SPECIFIC FAN-COMPRESSOR MAP



Figure 5.2-7. EXAMPLE OF SPECIFIC TURBINE MAP


FIGURE 5.2-8. EXAMPLE OF A GEVERALIZED AFTERBURNER COMBUSTION I FICIENCY PERFORMANCE MAP



FIGURE 5．2－10．FLOW CHART FOR GLNENT COMPUTER PROGRAM

TABLE OF CONTENTS FOR SECTION 5.3, PROGRAM GENENG II
Section Page
5.3.1 Introduction ..... 5.3-1
5.3.2 Engine Types ..... 5.3-2
5.3.2.1 Type a - Three-Spool, Three-Stream Turbofan ..... 5.3-2
5.3.2.2 Type b - Two-Spool, Three-Stream, Boosted Fan Turbofan ..... 5.3-6
5.3.2.3 Type c - Two-Spool, Three-Stream Supercharged Compressor Turbofan ..... 5.3-7
5.3.2.4 Type d - Three-Spool, Two-Stream Turbofan ..... 5.3-7
5.3.2.5 Type e - Two-Spoo1, Two-Stream Turbofan ..... 5.3-7
5.3.2.6 Type $f$ - Three-Spool, Three-Stream Aft Fan Turbofan ..... 5.3-8
5.3.2.7 Type g - Two-Spool, Three-Stream Aft Fan Turbofan ..... 5.3-8
5.3.2.8 Type $h$ - Two-Spool, Two-Stream Aft Fan Turbofan ..... 5.3-8
5.3.2.9 Type i - Three-Spool, Two-Stream Aft Fan Turbofan ..... 5.3-8
5.3.2.10 Other Engines ..... 5.3-8
5.3.3 Balancing Technique ..... 5.3-9
5.3.4 Choice of Component Maps - Scaling Laws ..... 5.3-10
5.3.5 Means of Specifying Mode of Engıne Operations ..... 5.3-10
5.3.6 GENENG II Subroutine Functions and Descriptions ..... 5.3-11
5.3.7 Symbols ..... 5.3-11
References ..... 5.3-12
Illustrations ..... 5.3-13

### 5.3 PROGRAM GENENG II: A PROGRAM FOR CALCULATING DESIGN AND OFF-DESIGN PERFORMANCE OF TWO- AND THREE-SPOOL TURBOFANS WITH AS MANY

AS THREE NOZZLES

Program GENENG II was developed by Fishoach and Koenig of NASA's Lewis Research Center. Orıginal program documentation of the program is provided in Reference 1. The discussion of program GENENG II presented below follows Reference 1. The GENENG II Program is a derivative of GENENG (GENeralized ENGine). GENENG, which is capable of calculating steady-state design and off-design performance of turbofan and turbojet engines was evolved from SMOTE (SiMulation Of Turbofan Engine) which was developed by the Turbine Engine Division of the Air Force Aero Propulsion Laboratory, Wright-Patterson Air Force Base, Ohio.

GENENG II calculates design and off-design jet engıne performance for existing or theoretical turbofan engines with two or three spools and with one, two, or three nozzles. In addution, aft fan engines can be calculated. Nine basic turbofan engines can be calculated without any programmang changes:

1. Three-spool, three-stream engine
2. Two-spool, three-stream boosted fan engine
3. Two-spool, three-stream, supercharged compressor engane
4. Three-spool, two-stream engine
5. Two-spool, two-stream engine
6. Three-spool, three-stream, aft fan engine
7. Two-spool, three-stream, aft fan engine
8. Two-spool, two-stream, aft fan engine
9. Three-spool, two-stream, aft fan engine

The first three of these engines are lakely candidates for a STOL alrcraft with internally blown flaps. By examining the methods used to sipulate these engines, other engine types may be simulated. As examples, a boosted aft fan engane with two streams would simulate a high bypass ratio engine where the core and tip portions of the fan have different component performance maps; a boosted fan, two-stream engane could be simulated (JT9D type); or supercharged compressor, two-stream engines could be studied The number of possibilities are too many to enumerate, being determined by the user's knoviledge of program GENENG and the eloments of engine design.

### 5.3.1 Introduction

Program GENENG II is a derivative of program GENENG descrabed in Section 5.2. Program GENENG, in turn, is a derıvatıve of the References 2 and 3 Air Force SMOTE program. GENENG satasfies a need for calculating the performance of two- or threc-spool turbofan engmes wath as many as three nozzles (or alrstreams). An example of this type of engine would be one in which a fan is used to compress all the alr, some of which is expanded through a scparate nozzle to produce thrust. The remanning arr passes through a compressor,
after which some air is put into a wing duct and expelled over the wing flaps (an internally blown flap). The remaining air passes through another compressor into a combustor; is heated and expanded through three turbines, each of which drıves one of the compressors; and is then expelled out the third (main) nozzle producing more thrust. This engine type is undex consideration for STOL alrcraft and until the development of GENENG II, off-design performance calculations were difficult to attain.

GENENG II was developed to provide the capability to study this engine type. Once this capability had been achneved, it was reallzed (Reference 1) that many other engine types could be simulated by building simple options into the code and modifying the input data to the program. As an example, the fan and first compressor in the engine just described could be physically attached and driven by one turbine (the so-called "boosted turbofan"), or the fan could be put at the rear of the engine (an aft fan). Thus, GENENG II has become a versatile program with many engine design options built in internally. These are described in the next section, Section 5.3.2. The original Fishbach and Koenig GENENG II program was written for the IBM 7094 computer. The GENENG II program contained in the ODIN/RLV' program library is a CDC 6600 version constructed at the Naval Air Development Center by Robert Leko.

### 5.3.2 Engine Types

All thermodynamic properties of air and gas are calculated by considering variable specific heats and no dissociation. Curve fitted air and gas property tables of Reference 5 are used.

### 5.3.2.1 Type a - Three-Spoo1, Three-Stream Turbofan

The basic engıne, a three-spool, three-stream turbofan, of which all other engine types are treated as variations, is shown in Figure 5.3-1. Free stream conditions exist at Station 1. The conditions at Station 2 are determined by flight conditions and inlet recovery. GLNENG compressor maps work with corrected values of airflow. At the entrance to the fan, the corrected airflow, WAF, $c$ is

$$
\begin{equation*}
\mathrm{WA}_{\mathrm{F}, \mathrm{c}}=\frac{\mathrm{WA}_{\mathrm{T}} \sqrt{\mathrm{~T}_{2} / \mathrm{T}_{518.668}}}{\mathrm{P}_{2} / \mathrm{P}_{\mathrm{SLS}}} \tag{5.3.1}
\end{equation*}
$$

where $P_{2}$ and PSLS are atmospheres and PSLS equals 1.0. A11 symbols are defined in Table 5.2-1 of Section 5.2. Some symbols are formed as the combinatıun of other symbols; thus WA is alrflow; $F$ is for fan, and $c$, when following a component symbol means corrected. Station numbers are defined on the appropriate figure.

All the fan air $W A_{F}$ is compressed by the fan giving rise to conditions at station 22 . The power required to do this is

$$
\begin{equation*}
\text { Fan power }=W A_{F} \times\left(\mathrm{H}_{22}-\mathrm{H}_{2}\right) \tag{5.3.2}
\end{equation*}
$$

Some fan air may be lost to the cycle as fan bleed $B 1_{F}$, which is expressed as a fraction of the fan airflow

$$
\begin{equation*}
{ }^{B 1} 1_{F}=P C_{B 1, F} \times W A_{F} \tag{5.3.3}
\end{equation*}
$$

The corrected airflow into the intermediate compressor is

$$
\begin{equation*}
\mathrm{WA}_{\mathrm{I}, \mathrm{c}}=\frac{\mathrm{WA}_{\mathrm{I}}^{\sqrt[3]{\mathrm{T}} 22} / \sqrt{\mathrm{S}_{518.663}}}{\mathrm{P}_{22} / 1.0} \tag{5,3,4}
\end{equation*}
$$

The remaining air goes through the fan duct where some leakage from the core air may also enter; see Equation 5.3.16.

$$
\begin{equation*}
W A_{D}=W A_{F}-B 1_{F}-W A_{I}+B 1_{D U} \tag{5.3.5}
\end{equation*}
$$

This air, which may be heated by a duct burner to a temperature $\mathrm{T}_{24}$, undergoes a pressure drop

$$
\begin{equation*}
P_{25}=P_{24} \times\left[1-\left(\frac{\Delta P}{P}\right)_{D U C T}\right] \tag{5.3.6}
\end{equation*}
$$

The alr would have been heated by the addition of fuel, which can be expressed as a fuel-air ratio so that

$$
\begin{equation*}
W G_{24}=W A_{23} \times\left[I+(f / a)_{23}\right] \tag{5,3.7}
\end{equation*}
$$

The gas is then expanded through a nozzle (Station 29) to produce thrust. The bypass ra+io is defined by

$$
\begin{equation*}
\text { BYPASS }=\frac{W A_{D}}{W A_{I}} \tag{5.3.8}
\end{equation*}
$$

To this point the analysis is similar to the GENENG discussion of Section 5.2. Now, however, the air going into the intermediate compressor is compressed to the conditions at Station 21 . The power required is

$$
\begin{equation*}
\text { Intermediate-compressor power }=\mathrm{WA}_{I} \times\left(\mathrm{H}_{21}-\mathrm{H}_{22}\right) \tag{5.3.9}
\end{equation*}
$$

The conditions at Station 21 are the sume as those at Station 32, which is the entrance to the wing duct as the third streampath is called. The aurflow entering this duct is called $\mathrm{Bl}_{\mathrm{I}}$, me, ming internediate bleed flow, and is expressed as a fraction $P C_{B 1, I}$ of the total airflow at Station 21.

$$
\begin{equation*}
B 1_{I}=P C_{B 1, I} \times W A_{I} \tag{5.3.10}
\end{equation*}
$$

The remainder of the air enters the core compressor

$$
\begin{equation*}
W_{C}=W A_{I}-{ }^{B I_{I}} \tag{5.3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{C, c}=\frac{W_{C} \times \sqrt{T_{21} / T_{518.668}}}{P_{21} / 1.0} \tag{5.3.12}
\end{equation*}
$$

The air entering the wing duct experiences a pressure drop

$$
\begin{equation*}
p_{36}=p_{32} \times\left[1-\left(\frac{\Delta P}{p}\right)_{\text {WING }}\right] \tag{5.3.13}
\end{equation*}
$$

and then passes through a nozzle (Station 39) to produce additional thrust. The air continuing on through the core is compressed to conditions at Station 3. The power required is

$$
\begin{equation*}
\text { Core compressor power }=W_{C} \times\left(\mathrm{H}_{3}-\mathrm{H}_{21}\right)=\mathrm{WA}_{3} \times\left(\mathrm{H}_{3}-\mathrm{H}_{21}\right) \tag{5.3.14}
\end{equation*}
$$

Some core bleed air B1C may be used for turbine cooling. Some of the air is put back into the cycle into each of the three turbines, and some is lost to the cycle as overboard bleed or leakage into the fan duct.

$$
\begin{align*}
& { }^{B 1} C_{C}=B C_{B 1, C} \times W_{3}  \tag{5.3.15}\\
& B 1_{D U}=P C_{B 1, D U} \times{ }^{B 1} C  \tag{array}\\
& \mathrm{B1}_{\mathrm{OB}}=\mathrm{PC}_{\mathrm{B} 1, O B} \times{ }^{\mathrm{B}} \mathrm{C}_{\mathrm{C}}  \tag{5.3.17}\\
& \mathrm{B1}_{\mathrm{HP}}=\mathrm{PC}_{\mathrm{B} 1, \mathrm{HP}} \times{ }^{\mathrm{B1}} \mathrm{C}  \tag{5.3.18}\\
& { }_{B 1}^{I P}=P C_{B 1, I P} \times{ }^{B 1} C  \tag{5.3.19}\\
& \mathrm{Bl}_{\mathrm{LP}}=P C_{B 1, L P} \times{ }^{B 1}{ }_{C} \tag{5.3.20}
\end{align*}
$$

Since $B I_{D U}+B I_{O B}+B I_{H P}+B 1_{I P}+B I_{L P}=B l_{C}$, the sum of $P C_{B 1, D U}, P C_{B I, O B}$, $P C_{B 1, H P},{ }^{P} C_{B 1, I P}$, and $P C_{B 1, L P}$ must be equal to 1 . The remaining air is

$$
\begin{equation*}
W A_{4}=W A_{3}-B_{C} \tag{5.3.21}
\end{equation*}
$$

and is heated to a turbine inlet temperature $\mathrm{T}_{4}$ and goes through a combustor pressure drop $(\triangle P / P)_{C O M B}$. The fuel required to do this is expressed as a fuel-air ratio (f/a) ${ }_{4}$ so that the gas entering the first turbine $W_{4}$ can be expressed as

$$
\begin{equation*}
W G_{4}=W A_{4} \times\left[1+(f / a)_{4}\right] \tag{5.3,22}
\end{equation*}
$$

This gas is then expanded through thas high pressure turbine to conditions at Station 50. The enthalpy at Station 50 is first calculated by making a power balance since this turbine drives the core compressor and supplies any work extracted (HPEXT). By using Equation 5.3.14

$$
\begin{equation*}
\mathrm{WG}_{4} \times\left(\mathrm{H}_{4}-\mathrm{H}_{50}\right)=\mathrm{WA}_{3} \times\left(\mathrm{H}_{3}-\mathrm{H}_{21}\right)+\mathrm{HPEXT} \tag{5.3.23}
\end{equation*}
$$

In addition, the physical speeds must match

$$
\begin{equation*}
\mathrm{N}_{\mathrm{HP}, \mathrm{TURBINE}}=\mathrm{N}_{\mathrm{COMP}} \tag{5.3.24}
\end{equation*}
$$

If high pressure turbine bleed anr $B 1_{H p}$ is added into the cycle at this point, $\mathrm{H}_{50}$ must be readjusted

$$
\begin{equation*}
\mathrm{H}_{50}=\frac{\left(\mathrm{B1}_{\mathrm{HP}} \times \mathrm{H}_{3}\right)+\mathrm{WG}_{4} \mathrm{H}_{50}}{\mathrm{WG}_{4}+\mathrm{B1}_{\mathrm{HP}}}=\frac{\left(\mathrm{B1}_{\mathrm{HP}} \times \mathrm{H}_{3}\right)+\mathrm{WG}_{4} \mathrm{H}_{50}}{\mathrm{WG}_{50}} \tag{5.3.25}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
& W_{50} \times\left(H_{50}-H_{5}\right)=W_{I} \times\left(\mathrm{H}_{21}-H_{22}\right)  \tag{5,3,26}\\
& N_{\text {IP, TURBINE }}=N_{\text {INT COMP }}  \tag{5.3.27}\\
& H_{5}=\frac{\left(\mathrm{Bl}_{I P} \times \mathrm{H}_{3}\right)+\mathrm{WG}_{5} \mathrm{H}_{55}}{W G_{5}+\mathrm{B1}{ }_{L P}}=\frac{\left(\mathrm{Bl}_{L \mathrm{P}} \times \mathrm{H}_{3}\right)+W \mathrm{~W}_{5} \mathrm{H}_{55}}{W G_{55}}  \tag{5.3.28}\\
& W_{5} \times\left(\mathrm{H}_{5}-\mathrm{H}_{55}\right)=\mathrm{WA} \times\left(\mathrm{H}_{22}-\mathrm{H}_{2}\right)  \tag{5,3.29}\\
& \mathrm{N}_{\text {LP }, \text { TURBINE }}=\mathrm{N}_{\text {FAN }}  \tag{5.3.30}\\
& H_{55}=\frac{\left(\mathrm{Bl}_{\mathrm{LP}} \times \mathrm{H}_{3}\right)+\mathrm{WG}_{5} \mathrm{H}_{55}}{W G_{5}+\mathrm{B1}_{\mathrm{LP}}}=\frac{\left(\mathrm{B1}_{\mathrm{LP}} \times \mathrm{H}_{3}\right)+\mathrm{WG}_{5} \mathrm{H}_{55}}{W G_{55}} \tag{5.3.31}
\end{align*}
$$

The gas flow $\mathrm{WG}_{55}$ then may be heated by an afterburner to a gas tomperature $T_{7}$ and may undergo a pressure drop.

$$
\begin{equation*}
P_{7}=P_{6}\left[1-\left(\frac{\Delta P}{P}\right)_{\text {AFTERBURNER }}\right] \tag{5.3.32}
\end{equation*}
$$

The gas flow would be increased by any fuel burned.

$$
\begin{equation*}
W G_{7}=W G_{55}+W F A \tag{5.3.33}
\end{equation*}
$$

The gas is then expanded through the nozzle (Station 9) to produce the remainder of the total engine thrust.

### 5.3.2.2 Type b - Two-Spool, Three-Stream, Boosted Fan Turbofan

From Figure 5.3-2 it is apparent why the three-spool, three-stream engine can be modified to represent the other types presented herein. The only difference between engine $b$ and engine $a$ is that the intermediate compressor is physically attached to the fan in terms of speed and the combination is driven by one turbine (the low pressure turbine). The thermodynamic (alculation changes are that the speeds are attached.

$$
\begin{equation*}
N_{I N T} \operatorname{COMP}=N_{F A N} \tag{5.3.34}
\end{equation*}
$$

The power of the low pressure turbine is now

$$
\begin{equation*}
W G_{50} \times\left(\mathrm{H}_{50}-\mathrm{H}_{55}\right)=W A_{F} \times\left(\mathrm{H}_{22}-\mathrm{H}_{2}\right)+W A_{\mathrm{I}} \times\left(\mathrm{H}_{21}-\mathrm{H}_{22}\right) \tag{5.3.35}
\end{equation*}
$$

PC B1, IP must be zero and $H_{55}$ is readjusted by

$$
\begin{equation*}
\mathrm{H}_{55}=\frac{\left(\mathrm{B1} \mathrm{LP}^{\times \mathrm{H}_{3}}\right)+\mathrm{WG}_{50} \mathrm{H}_{55}}{\mathrm{HG}_{50}+{ }^{\mathrm{B1}}{ }_{L P}} \tag{5.3.36}
\end{equation*}
$$

This type of engine is of interest because it might be created by adding a new boosted-fan turbine combinatıon to an existing core. If the third airstrean is deleted (see engine e) and ductburner and afterburner are removed, engine b becomes a two-spool, tio-stream turbofan of the type represented by the General Electric CF6 and Pratt and Hirtney JT9D turbofan, both of which have booster stages on the fan.

### 5.3.2.3 Type c-Two-Spoo1, Three-Stream <br> Supercharged Compressor Turbofan

Engine c is shown in Figure 5.3-3. Here, the intermediate and core compressors have been physically attached. For programning reasons, the combination is driven by the intermediate pressure turbine. The calculation procedure bypasses the routine which calculates high pressure turbine performance but transfers the turbine performance data from this rc.tine into that of the intermediate pressure turbine to represent the turbine performance. Since the intermediate pressure turbine speed is set by the speed of the internediate compressor which also sets the speed of the combination of the compressors, this procedure was necessary.

$$
\begin{equation*}
N_{\text {COMP }}=N_{\text {INT }} \text { COMP } \tag{5.3.37}
\end{equation*}
$$

$$
\begin{equation*}
W G_{50} \times\left(\mathrm{H}_{50}-\mathrm{H}_{5}\right)=W A_{I} \times\left(\mathrm{H}_{21}-\mathrm{H}_{22}\right)+W A_{C} \times\left(\mathrm{H}_{3}-\mathrm{H}_{21}\right)+\mathrm{HPEXT} \tag{5.3.38}
\end{equation*}
$$

$\mathrm{PC}_{\mathrm{B} 1, \mathrm{HP}}$ must be zero and $\mathrm{H}_{5}$ is readjusted by

$$
\begin{equation*}
\mathrm{H}_{5}=\frac{\left(\mathrm{B1}_{\mathrm{IP}} \times \mathrm{H}_{3}\right)+W \mathrm{G}_{50} \mathrm{H}_{5}}{W \mathrm{WG}_{50}+\mathrm{B1} \mathrm{IP}} \tag{5.3.39}
\end{equation*}
$$

### 5.3.2.4 Type d - Three-Spool, Two-Stream Turbofan

Engine d, shown in Figure 5.3-4, is presently in existence (Rolls Royce RB 211) and differs from the reference engine in that all the air entering the intermediate compressor also enters the inner compressor. For this reason, the only change necessary to run this engine is to set $P C_{B 1, I}$ equal to zero.

### 5.3.2.5 Type e - Two-Spoo1, Two-Strean Turbofan

Engine e is the typical turbofan and is shown in Figure 5.3-5. To simulate this engine, it is necessary to have the air go through the intermediate compressor at a pressure ratio of 1.0 and an efficiency of 1.0 and to bypass the intermediate pressure turbine calculations. \& logical control has been built into the progran to do this. At the same time, $\mathrm{PC}_{\mathrm{Bl}}$, I must be set equal to zero. By using this option, GENENG II can bo uscd to replace its original version GENENG, Reference 4, in calculating turbofan performance. It cannot, however, do turbojet calculatıons (tio-spool, one stream or one-spool, one stream engines). As mentioned earlier, boosted fan, two-spool, two stream engines can be calculated by setting $P C_{B 1, I}$ equal to zero in engane $b$.

### 5.3.2.6 Type $f$ - Three-Spool, Three-Stream Aft Fan Turbofan

The three-spool, three-stream aft fan engine is shown in Figure 5.3-6. Thermodynamically, the only difference between this and the reference engine is that the intermedrate compressor sees the same condations at its entrance as does the fan (conditions at Station 2; both inlets assumed to have the same performance). This is accomplished by setting a logical control variable AFTFAN to be true. The power of the intermediate pressure turbine would be

$$
\begin{equation*}
W G_{50} \times\left(H_{50}-H_{5}\right)=W A_{I} \times\left(H_{21}-H_{2}\right) \tag{5.3.40}
\end{equation*}
$$

Each of the aft fan engines has a counterpart in the front fan engines, the only difference being that the intermediate compressor (or in the case of engine $h$, a two-spool, two-stream aft fan engine, the compressor) sees freestream conditions. These engines and their counterparts are described in the following sections.

### 5.3.2.7 Type g - Two-Spool, Three-Stream Aft Fan Turbofan

Engine g, a counterpart of engine $c$ (Figure 5.3-3) is shr in Figure 5.3-7. The power balance would be

$$
\begin{equation*}
W_{50} \times\left(\mathrm{H}_{50}-\mathrm{H}_{5}\right)=W A_{I} \times\left(\mathrm{H}_{32}-\mathrm{H}_{2}\right)+\mathrm{WA}_{\mathrm{C}} \times\left(\mathrm{H}_{3}-\mathrm{H}_{32}\right) \tag{5.3.41}
\end{equation*}
$$

### 5.3.2.3 Type h - Two-Spool, Two-Stream Aft Fan Turbofan

Engane $h$, a counterpart of engine e, Figure 5.3-5, is shown in Figure 5.3-8. The poner balance would be

$$
\begin{equation*}
W_{50} \times\left(H_{50}-H_{5}\right)=W A_{C} \times\left(H_{3}-H_{2}\right) \tag{5,3.42}
\end{equation*}
$$

### 5.3.2.9 Type i - Three-Spool, Two-Stream Aft Fan Turbofan

Engine i, a counterpart of engine d, Figure 5.3-4, is shown in Fıgure 5.3-9. The power balance would be

$$
\begin{equation*}
W G_{50} \times\left(H_{50}-H_{5}\right)=W A_{I} \times\left(H_{21}-H_{2}\right) \tag{5.3.43}
\end{equation*}
$$

### 5.3.2.10 Other Enganes

By using imagination in conjunctron with the engines illustrated, the reader can determine other engine types whach can be samulated. an obvious onc is a supercharged compressor, tho-stroun turbofan which is a derivative of engane c. the only change necessary beang setting $P C_{B_{i}, ~} I=0$ In addition, all cngines illustrated could be run as maxed-flow engines olmanating the fan duct nozzle, Reference 4.

An interesting engine more difficult to be simulated is a high bypass ratio turbofan (two streams) where the outer and inner portions of the fan are represented by different performance maps. As can be seen by the following sketches, this engine can be simulated by a boosted aft fan engine. When AFTFAN is true, the second spool sees free-stream conditions. When the fan and intermediate spool are attached,. the physical rotational speeds of the aft fan (outer portion of fan) and the second spool (inner portion of fan) will be the same. Both are driven off the same turbine.

(a)

The high bypass ratio turbofan (sketch a) can be simulated by a boosted aft fan engine (sketch b).

(b)

### 5.3.3 Balancing Technique

An off-design engine cycle calculation requires satisfying varıous matching constraunts (rotatıonal speeds, airflows, comoressor and turbine work functions and nozzle flow functions) at each specafied operating condition. GLivLNG II internally searches for compressor and turbine operating points that will satisfy the constrants. It does this by generatıng differential errors caused by small changes in the independent varıables. The program then uses a matrix that is loaded with the differential errors to solve for the zero error condition. The procedure employed is the Newton-Raphson iteration techmique.

For a three-spool engine, a solution for a set of nine simultanecus innear equations is obtained, for other types, fewer equations are used. The nine indopendent variables selected are

1. ZF - Ratio of pressure ratios of fan compressor along a speed line,

2. PCNF - Per cent fan speed or turbine inlet temperature or T4
3. ZI - Ratio of Pressure ratios of intermediate compressor along a speed line (Calculated the same as ZF)
4. PCNI - Per cent intermediate compressor speed
5. ZC - Ratio of pressure ratios of inner compressor along a speed line (calculated same as ZF )
6. PCNC - Pex cent inner compressor speed or turbine inlet temperature or T4
7. TFFHP - High pressure turbine flow function $W_{4} \sqrt{\mathrm{~T}_{4} / \mathrm{P}_{4}}$
8. TFFIP - Intermediate pressure turbine flow function, $W_{50} \sqrt{\mathrm{~T}_{50} / \mathrm{P}_{50}}$
9. TFFLP - Low pressure turbine flow function, $\mathrm{WG}_{5} \sqrt{\mathrm{~T}_{5} / \mathrm{P}_{5}}$

The program mintıally selects new (perturbed) values for the variables, based on the design values. It is then possible to proceed through the enture engine cycle calculations, where up to nine errors are generated. The initial values of the nine (or less) variables and nine (or less) errors are base values: Solution method is outlined in Section 5.2. The most often used andeperident varıables and the differential errors for each of the nine engine types capable of beang run on GENENG II are listed in Table 5.3-1.

### 5.3.4 Choice of Component Maps - Scaling Laws

The component maps and scaling lows follow the techniques employed in GENENG, Section 5.2. A discussion of these techniques has been presented in Section 5.2.4.

### 5.3.5 Means of Specifying Node of Engane Operations

The methods for specifying mode of engine operations is similar to that described in Section 5.2.5 of the GENENG discussion. However, A38, the wing nozzle throat area is avalable as a parameter for changang ongme operation in GENENG II. Again as in GFNENG the Huff input routine is not available on the CDC 6600 program. the use of DIALOG, Section 2, does permit all arithmetic and symbolic input operations avallable in the Huff input package when - GENENG II is employed 1 H . an ODIN/RLV simulation.

Inputs for operating the GLNENG II program are summarized in Table 5.3-2.

### 5.3.6 GENENG II Subroutine Functions and Descriptions

A flow chart of the computer program with the subroutines is shown in Figure 5.3-10. The functions of the GENENG II subroutines have been mostly described in Section 5.2.6. Several additional subroutines are present in . the GENENG II program, as described below. .

GEN2 Dummy main program to indtiate the calculations and cause the input of the controlled output variables. Because of the looping between subroutines, control is never transferred back to this routine.

COTNTC Uses BLOCK DATA to perform intermediate compressor calculations.
INTDUM Makes intermediate compressor not change air conditions for engines $e$ and $h$.

WDUCT Performs third-stream (wing) duct calculations (not used in twostream engines).

COIPTB Uses BLOCK DATA to perform intermediate turbine calculations (not used in engines $b, e$, and $h$ ).

OVELAY DUMMY routine to restore working part of program to core when using overlay

IPTDAT Performance data for intermediate turbine map (BLOCK DATA)

### 5.3.7 Symbols

Symbols for the GENENG II discussion are the same as those symbols employed in the GENENG discussion, and are listed in Table 5.2-1 of Section 5.2.

## REFERENCES:

1. Fishbach, Laurence H. and Koenıg, Robert W., GENENG II - A Program for Calculating Design and Off-Design Performance of Two- and Three-Spool Turbofans with as Many as Three Nozzles,NASA TN D-6553, 1972.
2. McKinney, John S., Simulation of Turbofan Engine, Part I, Description of Method and Balancing Technique, Report AFAPL-TR-67-125, Air Force Systems Command, November 1967. (Available from DDC as AD-825197).
3. McKinney, John S., Simulation of Turbofan Engine, Part II, User's Manual and Computer Program Listing, Report AFAPL-TR-67-125, Air Force Systems Comnand, November 1967. (Available from DDC as AD-825198).
4. Koenig, Robert W. and Fishbach, Laurence H., GENENG - A Program for Calculating Design and Off-Design Performance for Turbojet and Turbofan Engines, NASA TN D-6552, February 1972.
5. Keenan, Joseph H. and Kaye, Joseph, Gas Tables, John Wiley and Sons, Inc., 1948.

TABLE 5.3-1. VARIABLES AND ERRORS

|  | Cupine dessmation |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | a | b | c | d | c | 1 | $g$ | h | 1 |
|  | Number of spools |  |  |  |  |  |  |  |  |
|  | 3 | 2 | 2 | 3 | 2 | 3 | 2 | 2 | 3 |
|  | Number of streams |  |  |  |  |  |  |  |  |
|  | 3 | 3 | 3 | 2 | 2 | 3 | 3 | 2 | 2 |
|  | Turbofan | boosted <br> fan | Supercharged compressor | Turbo |  | Aft fan | Supes charged compressor | Aft | fan |
| Varible 1 | 2 r | ZF | zF | ZF | 2 F | 2 F | zF | zF | ZF |
| Varable 2 | PCNF |
| Varuble 3 | zC | 2 C | zC |
| Variable 4 | PCNC | PCNC | PCNI | PCNC | PCNC | perc | PC.IT | PCNC | PCNC |
| Varıable 5 | TFIHP | TFTHP | TFFP | T FFilp | TFIHP | TFFHP | TFFIP | TFFHP | TFFHP |
| Vaurable 6 | TFFLP | TFFLp | TFFLP | trflp | TTFLP | TFFLP | TFFLP | TrFip | TFFIS |
| Varable 7 | ZI | 21 | - ZI | 21 | $\cdots$ | 21 | 21 | ------ | 21 |
| Variable 8 | PCNI | ------ | - | PCNI | ------ | PCNI | -- | ------ | PCMI |
| Varable 9 | TFFIP | -- | - | TFFip | ------ | TFFIP | -- | ------ | TFFPP |
| Error 1 | $\frac{\text { TFHCAL - TrFHP }}{\text { TFHCAL }}$ | (a) | $\frac{\text { TFICAL }- \text { TMFIP }}{\text { TMCLL }}$ | (a) | (1) | (a) | (b) | (\%) | (a) |
| Errus 2 | $\frac{\mathrm{DhTCC}-\text { DHTCHP }}{\text { DHTCC }}$ | (a) | $\frac{\text { DHIC - DHTCIP }}{\text { DHTIC }}$ | (a) | (a) | (a) | (b) | (a) | (a) |
| Errol 3 | $\frac{\text { TFLCAL - TFFLP }}{\text { TRLCAL }}$ | (a) |
| Errol 4 | $\frac{\text { DHTCF }}{\text { DHTCF }}$ | (a) |
| Error 5 | $\frac{\mathrm{P} 25 \mathrm{R}-\mathrm{P} 25}{\mathrm{p} 25 \mathrm{R}}$ | (d) | ( ${ }^{\text {a }}$ | (a) | (a) | (a) | (a) | (a) | (a) |
| Lrror 6 | $\frac{\mathrm{P}}{7 \mathrm{R}-\mathrm{P} \eta} \frac{\mathrm{P} 7 \mathrm{R}}{}$ | (a) |
| Eirer 7 | $\frac{\mathrm{P} 38 \mathrm{R}-\mathrm{i} 38}{\mathrm{p} 3 \mathrm{R}}$ | (a) | (3) | $\frac{w-W A l}{w A C}$ | - | (2) | (a) | ------ | (c) |
| Eiror 3 | $\frac{11 \mathrm{CaO}_{1}-9 \mathrm{rIT}}{\mathrm{TFICAL}}$ | ------ |  | (2) | ------ | (a) | --------- | ------ | (a) |
| Frror ${ }^{\text {a }}$ | $\frac{\text { DUTIC - DHICIP }}{\text { DIIRIC }}$ |  | .- | (1) | ------ | (a) | - | ------ | (.1) |
| Matm $2 \times 0$ | $9 \times 9$ | 7, 7 | 7.7 | 9, 9 | $6 \times 6$ | 8, 9 | $7 \times 7$ | $6 \times 6$ | $9 \times 9$ |


bsume is cun for engute c
${ }^{\text {c sime as elior to engred }}$

TABLE 5．3－2．INPUTS REQUIRED FOR BASIC CYCLES

| Vari．ble | Units or 13pe | Defimiton | Ename destiantwin |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | a | $b$ | c | d | 0 | 1 | g | h | 1 |
|  |  |  | Number or－pools |  |  |  |  |  |  |  |  |
|  |  |  | 3 | 2 | 2 | 3 | 2 | 3 | 2 | 2 | 3 |
|  |  |  | Number of stienms |  |  |  |  |  |  |  |  |
|  |  |  | 3 | 3 | 3 | 2 | 2 | 3 | 3 | 2 | 2 |
|  |  |  | $\begin{gathered} \text { Turbo- } \\ \text { fan } \end{gathered}$ | Boosted <br> fan | S．per－ <br> cherged <br> con：－ <br> pressor | 「ulu | un | 4 ft ！an | Super－ <br> charged com－ pressor | Aft | $\tan ^{-}$ |
| PRFDS | －－－－－－－－－－－－ | Fan pressure ratio | Yes | yes | Yes | les | Yes | Yes | Yes | les | Yes |
| Warces | $\mathrm{lb} / \mathrm{scc}$ | Fin corrected arfios |  |  |  |  | 1 |  |  | 1 | 1 |
| E1 ifos |  | Fan efficrency |  |  |  |  |  |  |  |  |  |
| $Z$ FDS |  | Design 2 of fin |  |  |  |  |  |  |  |  |  |
| PCivfd | －－－－－－－－－－－－ | Corrected specd of fan |  |  |  |  | 1 |  |  | 7 |  |
| prids | －－－－－－－－－－－－ | Intermeatate presejre ratio |  |  |  |  | no |  |  | No |  |
| WAICLS | 1b／sec | Intermediste corrected airllou |  |  |  |  | Yes |  |  | Yes |  |
| ETAJDS |  | Intermednate efficiency |  | I |  |  | No |  |  | No |  |
| zids | － | Design 2 of irtera ciale compressor |  | 1 |  |  | No |  |  | No |  |
| PCNIDS |  | Corrected speed of $\mathrm{ar}^{*}$ tramedate compressor |  | No |  |  | no |  |  | no |  |
| PRCDS | －－－－－－－－ | Compressor pressure ratio |  | Yes |  | $\dagger$ | Yes |  | ， | Yes | $\dagger$ |
| pcayrs |  |  |  | ! |  | zi．u | 7e．s |  | ， | zam | zrso |
| ET $4 C D S$ |  | Conpressar eifaciency |  |  |  | Yes | Yes |  |  | 1 Les | yes |
| 2 CDS |  | Design 2 of compressor |  |  | 1 |  | $1$ |  | 1 | $1$ |  |
| PC\CDS |  | Colrected speed of compressor |  |  | no |  |  |  | So |  |  |
| ET．3BES | －－－－－－－－－－－－ | Combus or efficiuncy |  |  | yes |  |  |  | Yes |  |  |
| DPCOnS |  | Combssior piesslre arop，$\Delta$ P，p |  |  | Yes |  |  |  | les |  |  |
| 54bs | ${ }^{\text {P }}$ | Turb me met tcapernase |  |  | Yes |  |  |  | Iis |  |  |
| TFHPDS | H1／20 | thrh－pressure－turb，re flos function |  |  | no |  |  |  |  |  |  |
| Pripes | $\overline{(\sec )} \overline{(p s i a)}$ | thrh－pressure－turbsre flow function |  |  | no |  |  |  | No |  |  |
| CUYPLS | －－－－－－－－－－－－－ | High－pressure－turbine corrected speed |  |  | no |  |  |  | no |  |  |
| ETHPDS | －－－－－－－－－－－－ | rinh－pressure－turbine efficicncs |  | $\dagger$ | No |  | \％ |  | no | 1 |  |
| 7 F1PD |  | Irtertsedate－turbine ，orn furction |  |  | Yes |  | vo |  |  |  |  |
| 1 FIPD | （sec）（0sta） | Irtertsentatemubine sork furstion |  | so | yes |  | \o |  | res | No |  |
| cmipns | －－－－－－－－－－－－－ | I．termediate－pressure－turbane correrted speed |  | No |  |  | \o |  |  | \o |  |
| Flipds |  | Intrrmatinte－gressure－turbme efficiencs |  | no |  |  | No |  |  | No |  |
| TFITios | $\frac{\operatorname{lin} 1 / \bar{x}_{\mathrm{n}}}{-(\sec )(\sin )}$ | Low－prassure－luz bive flow function |  | Yes |  |  | ices |  |  | yes |  |
| Colms | －－．－－－－－－－－－ | Interncotite－pressart－turbne corrceted speed |  |  |  |  | \| |  |  | 1 |  |
| FTLPIS | －－－－－－－－－－－－－ | Intermande－2ressure－turbine effucters |  |  |  |  |  |  |  | ， | ， |
| Diphtrs | －－－－．．．－－－－－－ | Fan prassile dros P $^{\text {P＇P }}$ |  |  |  | 1 | 1 |  |  | $\dagger$ | 1 |
| Drsurs |  |  |  |  |  | An | $\therefore$ |  |  | so | No |
| npatis | －－－－－－－．－－－－ | Alterateracs mearep SPp | 1 | 1 | 1 | yes | lis | $\dagger$ | f | ies | Ye， |
| F7： 1.76 MiPmL | ［ 0，．1c．al | vowle 1 itas | F | r | F | ＋ | t | F | F． | F | $F$ ． |
| 「iril si fucos： | Lexirgl | Epotere sd comprecemrs | $1$ | F | T | $1$ | 1 | F | $r$ | \％ | $r$ |
| いと $1 \times \mathrm{SNOL}$ | $\text { 1: } 1 \mathrm{cdl}$ | － 1 interr ediate spenl | ， | F | $F$ | ， | 1 | F | $\Gamma$ | T | \％ |
| A\＆TFい | logral | lit－fic eitces | 1 | F | F | $\dagger$ | 1 | 1 | T | 1 | T |



Figure 5.3-1. Three-Spool, Three-Stream Turbofan Engine (Type a)


Figure 5.3-2. Two-Spool, Throc-Stream Boosted Fan Engine (Type b)


Figure 5.3-3. Two-Spool, Three-Stream, Supercharged Compressor Engine (Type c)


Figure 5.3-4. Three-Spool, Two-Stream Engane (Type d)
$9 โ-5 \cdot$


Figure 5.3-5. Two-Spool, Two-Stream Turbofan Engine (Type e)


Figure 5.3-6. Three-Spoo1, Three-Stream, Aft Fan Engine (Type f)


Figure 5.3-7. Two-Spool, Three-Stream, Aft Fan Engine (Type g)


Figure 5.3-8. Two-Spool, Two-Stream, Aft Fan Engine (Type h)


Figure 5.3-9. Three-Spool, Two-Stream, Aft Fan Engine (Type i)


Figure 5.3-10. Flow Chart for GENENG II

## SECTION 6

MASS AND VOLUMETRIC PROPERTIES

The ODIN/RLV program library contains two independent programs for estimation of reusable launch vehicles' mass/volume properties.. These programs were developed under previous National Aeronautics and Space. Administration and Air Force Flight Dynamics Laboratory-funded studies. Programs are provided for

1. Approximate mass and volume properties based on statistical past flight vehicle designs
2. Detailed mass and volume properties based on component representations of flight vehicles

Both programs are outlined in the following sections. For complete details reference should be made to the original source documents, References 1 through 7.

The approximate volume and mass properties routine is taken from the Air Force Flight Dynamics Laboratory's vehicle synthesis for advanced concepts program, VSAC. This program provides a self-contained vehicle synthesis capability for certain classes of flight vehicle.

Complete program details including options for

1. aerodynamics
2. propulsion
3. performance
4. volume and mass properties
are given in References 1 and 2. ODIN/RLV usage to date has been limited to the volume and mass properties routines.

It should be noted that the weight equations of the VSAC program include the References 4 to 7 SSSP program's weight equations as options.

TABLE OF CONTENTS FOR SECTION 6.1, PROGRAM VSAC
Section Page
6.1-1
Introduction
6.1-2
6.1.1 Aerodynamic Surfaces
6.1-2
6.1.1.1 Wing
6.1.1.2 Vertical Fin
6.1.1.3 Horizontal Stabilizer
6.1.1.4 Fairings, Shrouds, and Associated Structure ..... 6.1-3
6.1.2 Aircraft Body Structure ..... 6.1-4
6.1.2.1 Basic Aircraft Body ..... 6.1-4
6.1.2.2 Aircraft Body Secondary Structure ..... 6.1-5
6.1.2.3 Aircraft Thrust Structure ..... 6.1-6
6.1.3 Booster Body Structure ..... 6.1-6
6.1.3.1 Booster Integral Fuel Tanks ..... 6.1-6
6.1.3.2 Booster Integral Oxıdizer Tanks ..... 6.1-7
6.1.3.3 Booster Basic Body Structure ..... 6.1-7
6.1.3.4 Booster Secondary Structure ..... 6.1-7
6.1.3.5 Booster Thrust Structure ..... 6.1-8
6.1.4 Aircraft Induced Environment Protection ..... 6.1-8
6.1.4.1 Aircraft Insulation ..... 6.1-9
6.1.4.2 Alrcraft Cover Panels ..... 6.1-9
6.1.5 Booster Induced Environment Protection ..... 6.1-10
6.1.5.1 Booster Insulation Weight ..... 6.1-10
6.1.6 Aircraft Launch and Recovery ..... 6.1-11
6.1.6.1 Launch Gear ..... 6.1-11
6.1.6.2 Landing Gear ..... 6.1-11
6.1.7 Aircraft Main Propulsion ..... 6.1-12
6.1.7.1 Aircraft Main Propulsion Engines, Turboramjet, Ramjet, and Rocket 6.1.7.1(a) Turboramjet 6.1-12 6.1.7.1(b) Ramjet ..... 6.1-13
6.1.7.1(c) Rocket ..... 6.1-14
6.1.7.2 Aircraft Engine Mounts ..... 6.1-14
6.1.7.3 Aircraft Fuel and Oxidizer Tanks ..... 6.1-14
6.1.7.3(a) JP-4 and JP-5 Type Fue1 ..... 6.1-15
6.1.7.3(b) Liquid Hydrogen Fuel and Rockets 6.1-15
6.1.7.4 Aircraft Fuel Tank Insulation ..... 6.1-16
6.1.7.5 Oxidizer Tank Insulation ..... 6.1-16
6.1.7.6 Aircraft Storable Propellant Fuel System ..... 6.1-16
6.1.7.6(a) Boost and Transfer Pumps ..... 6.1-17
6.1.7.6(b) Fuel Distribution, Reservoir to Engine

6.1-17
6.1.7.6(c) Fuel Distribution, Inter-Tank 6.1-17
6.1.7.6(d) Fuel System Controls ..... 6.1-18
6.1.7.6(e) Refueling System ..... 6.1-18
6.1.7.6(f) Dump and Drain System 6.1-186.1.7.6(g) Sealing6.1-18
6.1.7.7 Aircraft Cryogenic Propellant Fuel System ..... 6.1-19
6.1.7.8 Aircraft Cryogenic Propellant Oxidizer System ..... 6.1-19
6.1.7.9 Alrcraft Storable Propellant Pressurization System ..... 6.1-20
6.1.7.10 Aircraft Cryogenic Propellant Pressurization System ..... 6.1-20
6.1.7.11 Aircraft Inlet System ..... 6.1-21
6.1.7.11(a) Internal Duct 6.1-21
6.1.7.11(b) Ramp ..... $6.1-21$
6.1.8 Booster Main Propulsion ..... 6.1-23
6.1.8.1 Booster Main Engines 6.1-23
6.1.8.2 Booster Engine Mounts ..... 6.1-23
6.1.8.3 Booster Non-Structural Propellant Containers ..... 6.1-24
6.1.8.4 Booster Fuel Tank Insulation 6.1-24
6.1.8.5 Booster Oxidizer Tank Insulation ..... 6.1-25
6.1.8.6 Booster Cryogenic Propellant Fuel System ..... 6.1-25
6.1.8.7 Booster Cryogenic Propellant Oxidizer System ..... 6.1-26
6.1.8.8 Booster Cryogenic Propellant Pressurization System ..... 6.1-26
6.1.9 Alrcraft Orientation Controls and Separation ..... 6.1-27
6.1.9.1 Aircraft Gimbal System 6.1-27
6.1.9.2 Aircraft Spatial Attitude Control System ..... 6.1-28
6.1.9.3 Aircraft Attitude Control System Tankage ..... 6.1-29
6.1.9.4 Aircraft Aerodynamic Controls ..... 6.1-29
6.1.9.5 Aircraft Separation System ..... 6.1-29
6.1.10 Booster Orientation Controls and Separation ..... 6.1-30
6.1.10.1 Booster Gimbal System ..... 6.1-30
6.1.10.2 Booster Separation System ..... 6.1-30
6.1 .11 Aircraft Power Supply, Conversion and Distribution ..... 6.1-31
6.1.11.1 Aircraft Electrical System ..... 6.1-31
6.1.11.2 Aircraft Hydraulic/Pneumatic System ..... 6.1-32
6.1. 12 Booster Power Supply, Conversion and Distribution ..... 6.1-32
6.1.12.1 Booster Electrical System ..... 6.1-32
6.1.12.2 Booster Hydraulic/Pneumatic System ..... 6.1-33
6.1 .13 Aircraft Avionics ..... 6.1-33
6.1 .14 Aircraft Crew Systems ..... $6.1-34$
6.1 .15 Aircraft Design Reserve ..... 6.1-35
6.1 .16 Booster Design Reserve ..... 6.1-35
$6.1 . .17$ Aircraft Crew and Crew Lift Support ..... 6.1-36
6.1 .18 Payload ..... 6.1-36
6.1.18.1 Aircraft Payload 6.1-36
6.1.18.2 Booster Payload ..... 6.1-36
6.1 .19 Alrcraft Propellants ..... 6.1-36
6.1.19.1 Aircraft Trapped Propellants ..... 6.1-36
6.1.19.2 Aircraft Reserve Propellant ..... 6.1-37
6.1.19.3 Attitude Control System, ACS, Propellants (In-Flight Losses) ..... 6.1-37
6.1.19.4 Main Propellants ..... 6.1-38
6.1 .20 Alrcraft Weight Summary ..... 6.1-38
6.1.21 Booster Propellants ..... 6.1-39
6.1.21.1 Booster Trapped Propellant ..... 6.1-39
6.1.21.2 Booster Reserve Propellant ..... 6.1-39
6.1.21.3 Main Propellants ..... 6.1-40
6.1 .22 Booster Weight Summary ..... 6.1-40
6.1 .23 Volume and Geometry Calculations ..... 6.1-41
References ..... 6.1-41
Illustrations ..... 6.1-42

### 6.1 PROGRAM VSAC: APPROXIMATE AIRCRAFT MASS PROPERTIES

AND VOLUME ANALYSIS

This program computes approximate military flight vehicle mass and volumetric properties based on the statistics of past designs. This technique is based on (a) correlation of past vehicle mass and volume properties against physically significant parameters and (b) regression analysis of the correlations to provide an analytic model for military flight vehicle mass and volume properties.

The program operates at the subsystem and major component level. The subsystem breakdown employed is

1. aerodynamic surfaces
2. body structure
3. induced environment protection
4. launch and recovery
5. main propulsion
6. orientation controls and separation
7. power supply, conversion and distribution
8. avionics
9. crew systems
10. design reserve
11. personnel
12. payload
13. propellants

Each subsystem is broken down into major components. For example, aerodynamic surfaces is broken down into four components:

1. wings
2. vertical fin
3. horizontal stabilizer
4. fairings, shrouds, and associated structure

Each subsystem and subsystem component weight and volume weight estimation relationship used in program VSAC is presented below.

Weight analysis is based entirely on the weight and volume subroutines in the Air Force Flight Dynamics Laboratory VSAC program, References 1 and 2. For complete details regarding the analytic basis of the weight model, reference should be made to the original VSAC documentation. An outline of the VSAC program capability follows.

It should be noted that an extended weight analysis code which incorporates this analysis is now available in Reference 3. This code, WAATS, has eliminated all VSAC calculations which are extraneous to the weight analysis function. The resulting code fits into 20000 machine locations.

### 6.1.1 Aerodynamic Surfaces

The total weight of the aerodynamic surface group is given by

$$
\begin{equation*}
\text { WSURF }=\text { WWING }+ \text { WVERT + WHORZ + WFAIR } \tag{6.1.1}
\end{equation*}
$$

where
WWING $=$ wing weight . .
WVERT = vertical fin weight
WHORZ = horizontal tail weight
WFAIR = aerodynamic fairing weight
Expressions for each of these component weights are presented below.

### 6.1.1.1(a) wing

The wing weight equation calculates an installed structural wing weight including control surfaces and carry through. The weight is calculated as a function of load and geometry:

```
WWING = AC(1) * (WTO*XLF*STSPAN*SWING/TROOT)**AC(78)/1000
 + AC(2) * SWING + AC(3)
```

where

```
WWING = total structural wing weight, lbs.
WTO = gross weight, lbs.
XLF = ultimate load factor
STSPAN= structural span (along . }5\mathrm{ chord), ft.
SWING = gross wing area, ft. }\mp@subsup{}{}{2
TROOT = theoretacal root thickness, ft.
AC(1) = wing weight coefficient (Intercept)
AC(78)= wing weight coefficient (slope)
AC(2) = wing weight coefficient (f(gross area)), lbs/ft }\mp@subsup{}{}{2
AC(3) = fixed wing weight, lbs.
```

The data in Figures 6.1-1 and 6.1-2 represent wings that are basically constructed of aluminum and wings that are basically constructed of high temperature materials (steel and inconel), respectively. The latter data -is also representative of supersonic wings with $t / c$ values in the order of 3 to $3-1 / 2 \%$. For variable sweep wing designs the various wing input terms should be based on the fully swept position. The $\bar{C}(1)$ coefficient . should then be increased by 15 to 20 per cent to account for the structural penalty for sweeping the wing forward. The user has an option of adding or removing a wing weight penalty on the basic wing calculation. An example woulu be to add a fixed weight per square foot for thermal protection
'system structure or high temperature resistant coatings. The coeffictent $C(3)$ is to input a fixed weight to the wing calculation.

### 6.1.1.2 Vertical Fin

The vertical fin weight includes the weight of the control surface. The welght is calculated as a logarithmic function of surface area. The equation for vertical fin weight is

$$
\begin{equation*}
\text { WVERT }=\mathrm{AC}(4) * \text { SVERT } * * \operatorname{AC}(89)+\mathrm{AC}(5) \tag{6.1.3}
\end{equation*}
$$

where
WVERT = total vertical fin weight, lbs
SVERT $=$ vertical fin planform area, $\mathrm{ft}^{2}$
$\mathrm{AC}(4)=$ vertical fin weight coefficient
$\mathrm{AC}(89)=$ vertical fin weight coefficient (slope)
$A C(5)=$ fixed vertical fin weight, lbs.
The data of Figure 6.1-3 is based on Mach 2-type airplanes. They include aluminum, steel and inconel fin materials. Figure 6.1-3 is assumed to be representative of the best type construction for the Mach 0.6 to 2.0 range. The data, as shown, does not include allowances for thermal protection system weight.

## - 6.1.1.3 Horızontal Stabilizer

The horizontal stabilizer weight includes the welght of the control surface. The weight is calculated as a function of wing loading, stabilizer planform area and dynamic pressure. The equation for horizontal stabilizer weight is

$$
\begin{align*}
\text { WHORZ }=\operatorname{AC}(6) & *((W T O / \text { SWING }) * * .6 * \text { SHORZ ** } 1.2 * \text { QMAX **. } 8) \\
& * * \operatorname{AC}(90)+\operatorname{AC}(7) \tag{6.1.4}
\end{align*}
$$

where
WHORZ $=$ total horizontal stabilizer weight, lbs.
WTO $=$ gross weight, lbs.
SWING $=$ gross wing area, ft. ${ }^{2}$
SHORZ $=$ horizontal stabilizer planform area, ft. 2
QMAX = maximum dynamic pressure, lbs/ft. ${ }^{2}$
$\mathrm{AC}(6)=$ horizontal stabilizer weight coefficient (intercept)
$\mathrm{AC}(90)=$ horizontal stabilizer weight coefficient (slope)
$\mathrm{AC}(7)=$ fixed horızontal stabilizer weight, lbs.
The data includes aluminum and inconel stabilizer materials. The data, as shown, does not include allowances for thermal protection system weight Figure 6.1.4.

### 6.1.1.4 Falrings, Shrouds, and Associated Structure

The type of aerodynamic structures included in this section are aerodynamic shrouds, equipment, dorsal, landing gear, and canopy fairings. The canopy fairing is the structure aft of the canopy that is required to fair the canopy to the body. The weight of the canopy proper is included in Section 6.1.2.2. Wing to body fairings are included in the wing weights. Horizontal or vertical surface to body fairings are included in either the horizontal or vertical surface weight.

Fairing and shroud weight may be determined from their surface area and the operating environment and is given in the program as

$$
\begin{equation*}
\text { WFAIR }=\operatorname{AC}(8) * \text { SFAIR }+\operatorname{AC}(9) \tag{6.1.5}
\end{equation*}
$$

where
WFAIR = total weight of fairings or shrouds, lbs.
SFAIR $=$ total fairing or shroud surface area, ${ }^{\text {ft. }}{ }^{2}$
$\mathrm{AC}(8)=$ unit weight of fairing or shroud, lbs./ft. 2
$\mathrm{AC}(9)=$ fixed weight of fairing or shroud, lbs.
If the design loads and the fairing geometry is known, the weight in lbs:/ft. ${ }^{2}$ (1.e., the coefficient $A C(8)$ )can be found by calculation. In most cases, however, empirical or statistical data has to be used. The coefficient AC(8) can be found by multiplying an empirical unit weight WF by a factor to account for dynamic pressure and temperature differences.

$$
\begin{equation*}
\mathrm{AC}(8)=\mathrm{WF} \cdot \mathrm{KQ} \cdot \mathrm{KT} \tag{6.1.6}
\end{equation*}
$$

where
$\mathrm{WF}=$ fairing weight factor, Table 6.1-1
$K Q=$ fairing dynamic pressure coefficient, Figure 6.1-5
$\mathrm{KT}=$ fairing temperature coefficient, Figure 6.1-6
The factor $K Q$ is shown plotted against dynamic pressure in Figure 6.1-5. The factor KT is shown plotted versus temperature in Figure 6.1-6. The unit weight os typıcal fairings, WF, is shown in Table 6.1-1.

### 6.1.2 Aircraft Body Structure

The total weight of the aircraft body group_is given by

- WBODY $=$ WBASIC + WSECST + WTHRST
where
WBASIC = basic body weight
WSECST $=$ secondary structure weight
WTHRST $=$ thrust structure weight
Expressions for each component welght are given below. The weight of booster body structures is presented in Section 6.1.2.


### 6.1.2.1 Basic Aircraft Body

The vehicle body weight equation is based upon correlating the actual weight of existing hardware with sıgnıficant load, geométry, and environmental parameters. For vehicles of an advanced nature, modifying factors based upon design studies of cruise vehicles are applied to the basic data to account for the expected advances in technology and more severe environment. Equations inrived from existing data includes non-optimum factors which are difficult to justify by analytical procedures. These non-optimum factors are important weight items, as shown by the weight growth of many vehicles between the initial concept and the finished hardware.

The equation used for basic body weight is

```
WBASIC = AC(14) * SBODY + AC(15) ((ELBODY*XLF/HBODY) **.15 * QMAX ** . 16
 * SBODY ** AC (81) + AC(16)
where
WBASIC \(=\) total weight of basic body, lbs.
SBODY \(=\) total body wetted area, ft. \({ }^{2}\)
XLF \(=\) ultimate load factor
ELBODY = body length, ft.
QMAX = maximum dynamic pressure, lbs./ft. \({ }^{2}\)
HBODY = body height, ft.
\(\mathrm{AC}(14)=\) basic body unit weight, lbs./ft. \({ }^{2}\)
\(\mathrm{AC}(15)=\) basic body weight coefficient (intercept)
\(\mathrm{AC}(81)=\) basic body weight coefficient (slope)
\(\mathrm{AC}(16)=\) fixed basic body weight, lbs.
```

The primary function of the first part of the basic body equation, $\operatorname{AC}(14)$ * SBODY allows a weight penalty based upon a constant unit weight of structural area without involving the parameters used in the second part of the overall equation. The second part of the equation obtains the basic body weight using design and geometry parameters. The basic body weight data is shown in Figure 6.1-7. Since the data is for aluminum structure, operating at temperatures of $250^{\circ} \mathrm{F}$, a modifying factor must be used with AC(15) for other materials and temperatures. The modifying factor (MF) is obtained from Figure 6.1-8. The AC(15) obtained from Figure 6.1-7 is multiplied by the modifying factor (MF) to obtain the input for aluminum, titanium or Rene' 41 at elevated temperatures.

$$
\begin{equation*}
A C(15)_{\text {actual }}=A C(15)_{f 1 g} \cdot 6.1-7 \times M F \tag{6.1.9}
\end{equation*}
$$

### 6.1.2.2 Aircraft Body Secondary Structure

Secondary structure includes windshields, canopy, landing gear doors, flight opening doors and speed brakes. If a weight estimate based upon analysis is available, it should be used in lieu of the following data.

The equation for calculating secondary structure is

$$
\begin{equation*}
\text { WSECST }=\operatorname{AC}(17) * \text { SBODY }+\mathrm{AC}(18) \tag{6.1.10}
\end{equation*}
$$

where
WSECST = weight of body secondary structure, 1 bs .
SBODY $=$ total body wetted area, ft. ${ }^{2}$
$\mathrm{AC}(17)=$ secondary structure unit weight, $1 \mathrm{bs} . / \mathrm{ft} .{ }^{2}$
$\mathrm{AC}(18)=$ fixed secondary structure weight, lbs.
The body secondary weight coefficient $A C$ (17) varies from 0.58 to 1.38. If specific design detail is not available, an average value of 0.98 may be used for the $A C(17)$ coefficient. However, if any design detail is available, the coefficient should be tailored using the data shown in Table 6.1-2 as a guideline.

### 6.1.2.3 Aircraft Thrust Structure

The thrust structure weights are a function of the total vacuum thrust of the engines. The equation used for thrust structure weight is

$$
\begin{equation*}
\text { WTHRST }=\mathrm{AC}(19) * \mathrm{TTOT}+\mathrm{AC}(20) \tag{6.1.11}
\end{equation*}
$$

where
WTHRST $=$ weight of thrust structure, lbs.
TTOT = total stage vacuum thrust, lbs.
$\mathrm{AC}(19)=$ thrust structure weight coefficient
$\mathrm{AC}(20)=$ fixed thrust structure weight, lbs.
The aircraft thrust structures are required to mount airbreathing engines and rocket engines. The airbreathing thrust structure weight coefficients AC(19) and $A C(20)$ are obtained from Figure 6.1-9. The input for rocket engine thrust structure weight is obtained from Figure 6.1-10. The rocket engine thrust structure assumed for this data is a cone or barrel structure attached to a bulkhead.

### 6.1.3 Booster Body Structure

The total weight of the booster body group is given by

$$
\begin{equation*}
\text { BWBODY }=\text { BWINFT }+ \text { BWINOT + BWBASC + BNSSTR + BWTRST } \tag{6.1.12}
\end{equation*}
$$

where
BWINFT = integral fuel tank weight
BHINOT = integral oxidizer tank weight
BNBASC = basic body structure weight
BHSSTR $=$ secondary structure weight
BWTRST = thrust structure weight
Expressions for each component weight are given below. The weight of aircraft body structures has been presented in Section 6.1.2.

### 6.1.3.1 Booster Integral Fuel Tanks

The integral fuel tanks are sized as a function of total tank volume, including ullage and residual volume. The input coefficients are based on historical data from the Saturn family of $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ vehicles. The equation for integral fuel tank weight is

$$
\begin{equation*}
\text { BWINFT }=\mathrm{BC}(10) * \text { BVFUTK }+\mathrm{BC}(11) \tag{6.1:13}
\end{equation*}
$$

where
BWINFT = weight of integral fuel tank, 'lbs.
BVFUTK $=$ total volume of fuel tank, ft. ${ }^{3}$
$B C(10)=-$ _tegral fuel tank weight coefficient, $1 \mathrm{bs} . / \mathrm{ft} .^{3}$
$B C(11)=$ fixed integral fuel tank weight, lbs.
The integral fuel tank weight coefficients $\mathrm{BC}(10)$ and $\mathrm{BC}(11)$ are obtained from Figure 6.1-11. When a non-Saturn type tank configuration is utilized, the coefficient $\mathrm{BC}(10)$ should be multiplied by a configuration factor.
6.1-6

### 6.1.3.2 Booster Integral Oxidizer Tanks

The integral oxidizer tanks are sized as a function of total tank volume, including ullage and residual volume. The input coefficients are based on historical data from the Saturn family of $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ vehicles. The equation for integral oxidizer tank weight is

$$
\begin{equation*}
\text { BWINOT }=\mathrm{BC}(12) * B V O X T K+B C(13) \tag{6.1.14}
\end{equation*}
$$

where
BIWINOT = weight of integral oxidizer tank, lbs.
BVOXTK = total volume of oxidizer tank, ft. ${ }^{3}$
$\mathrm{BC}(12)=$ integral oxidizer tank weight coefficient, $1 \mathrm{bs} . / \mathrm{ft} .^{3}$
$\mathrm{BC}(13)=$ fixed integral oxidizer tank weight, lbs.
The integral oxidizer tank weight coefficients $\mathrm{BC}(12)$ and $\mathrm{BC}(13)$ are obtained from Figure 6.1-12. When a non-Saturn type tank configuration is utilized, the coefficient $\mathrm{BC}(12)$ should be multiplied by a configuration factor.

### 6.1.3.3 Booster Basic Body Structure

The basic body weight includes the structure forward, aft and in between the integral tanks but does not include the secondary structure or thrust structure. The equation for basic body structure weight is

$$
\mathrm{BWBASC}=\mathrm{BC}(14) * \mathrm{BSBODY}+\mathrm{BC}(15) * \operatorname{BVBODY}+\mathrm{BC}(16) \quad(6.1 .15)
$$

where
BWBASC = total weight of basic body, lbs.
BSBODY $=$ total body wetted area, ft. 2
BVBODY $=$ total body volume, ft. 3
$\mathrm{BC}(14)=$ basic body weight coefficient (F (area)), lbs./ft. ${ }^{2}$
$\mathrm{BC}(15)=$ basic body weight coefficient (f(volume)), lbs./ft. 3
$B C(16)=$ fixed basic body weight, lbs.
The equation is programmed to accept a coefficient input as a function of wetted area or volume. The coefficient $B C(14)$ is a function of area and is derived as follows.

$$
\mathrm{BC}(14)=4.0 * \frac{\text { Basic Body Wetted Area }}{\text { Total Body Wetted Area }}
$$

The coefficient $\mathrm{BC}(15)$ is a function of volume. Input data for this coefficient has not been derived in the original study of Reference 1 .

### 6.1.3.4 Booster Secondary Structure

The secondary structure includes access doors, non-structural fairings, etc. The secondary structure is minimal for the type of booster designs involved in the VSAC study of References 1 and 2. The equation for booster secondary structure weight is
where
BWSSTR $=$ total weight of body secondary structure, lbs.

BSBODY $=$ total body wetted area, ft. ${ }^{2}$
$\operatorname{BC}(17)=$ secondary structure weight coefficient, lbs./ft. ${ }^{2}$
$\mathrm{BC}(18)=$ fixed secondary structure weight, lbs.
The weight coefficient $\mathrm{BC}(17)$ is used to scale the secondary structure weight as a function of body wetted area. When possible, the coefficient should be derived from design data. However, during the early phase of a study, this is not always practical. A first cut value of 0.05 to 0.1 may be used for $B C(17)$ until design data is available.

### 6.1.3.5 Booster Thrust Structure

The weight of the rocket engine thrust structure is a function of total vacuum thrust and type of attachment utilized. However, for this study the type of attachment has been restricted to a cone or barrel structure attached to the aft bulkhead. With this design criteria, the effect of attachment geometry is built into the $\mathrm{BC}(19)$ coefficient. The equation for booster thrust structure is

$$
\begin{equation*}
\text { BWTRST }=\mathrm{BC}(19) * \mathrm{BTTOT}+\mathrm{BC}(20) \tag{6.1.17}
\end{equation*}
$$

where
BWTRST $=$ total weight of thrust structure, lbs.
BTTOT $=$ total stage vacuum thrust, lbs.
$\mathrm{BC}(19)=$ thrust structure weight coefficient
$B C(20)=$ fixed thrust structure weight, lbs.
The weight coefficient $\mathrm{BC}(19)$ is used to scale the thrust structure as a function of total stage vacuum thrust. When specific design data is not available, a typical preliminary design value of $\mathrm{BC}(19)=0.0025$ w1ll provide a realistic thrust structure welght for a cone or barrel design concept. This coefficient input value does not include the aft skirt weight.

### 6.1.4 Aircraft Induced Environment Protection

The total weight of the aircraft induced environment protection group is gaven by

$$
\begin{equation*}
\text { WTPS }=\text { WINSUL }+ \text { WCOVER } \tag{6.1.18}
\end{equation*}
$$

where
WINSUL = insulation weight
WCOVER = cover plate welght
The inputs for a specific design concept are normally obtained by a thermal analysis. This method should be used when'specific design conditions are known, as it yields the most accurate results accounting for all the features of a particular design. When detailed knowledge of a design is not available, generalized data is given based upon the results of prior design studies. $?^{\text {the }} \mathrm{e}$ data presented is simplified for use in genoralızed aircraft weight/sizing. The results do not replace a detailed thormal analysis.

A radiative protection system to hold structural temperatures within acceptable limits is the type of vehicle thermal protection system considered for this study. This system utilizes radiative cover panels with or without insulation.

### 6.1.4.1 Aircraft Insulation

When insulation is used, it assumes that the structural temperature is held to approximately $200^{\circ} \mathrm{F}$. The insulation must then be protected from the flight conditions by radiative cover panels. The equation for the insulation weight is

$$
\begin{equation*}
\text { WINSUL }=A C(21) * \operatorname{STPS}+\operatorname{AC}(76) \tag{6.1.19}
\end{equation*}
$$

where
WINSUL = total weight of TPS insulation, lbs.
STPS $=$ total TPS surface area, ft. ${ }^{2}$
$\mathrm{AC}(21)=$ insulation unit weight, lbs./ft. ${ }^{2}$
$\mathrm{AC}(76)=$ fixed insulation weight, lbs.
The coefficient $A C(21)$ is an insulation unit weight that may be obtained as a function of surface temperature from Figure 6.1-13. The user must estimate the surface temperature that will be encountered in order to input the coefficient AC(21). The data shown in Figure 6.1-13 is based on microquartz insulation for a 1.0 hour time duration. The three curves represent allowable heating rates of 100,400 , and $700 \mathrm{Btu} / \mathrm{ft} .{ }^{2}$ with the structural temperature being held to approximately $200^{\circ} \mathrm{F}$. The area of the aircraft which is to be covered by insulation is specified in the input data.

The coefficient $A C(76)$ is a fixed input weight to the insulation calculation. A typical example of the use of this coefficient would be to add a fixed insulation weight for localized hot spots.

### 6.1.4.2 Aircraft Cover Panels

When the design concept utilizes insulation panels to hold the structural temperature within acceptable limits, the insulation must be protected from flight conditions. This protection is provaded by cover panels. The equation for the cover panel weight is

$$
\begin{equation*}
\text { WCOVER }=\mathrm{AC}(22) * \mathrm{STPS}+\mathrm{AC}(77) \tag{6.1.20}
\end{equation*}
$$

where
WCOVER $=$ total weight of TPS cover panels, lbs.
STPS $=$ total TPS surface area, ft. ${ }^{2}$
$\mathrm{AC}(22)=$ cover panel unit weight, lbs./ft. ${ }^{2}$.
$(\mathrm{AC77})=$ fixed cover panel weight, lbs.
Cover panels used in recent studies have varied greatly in design features and materials. The generalized equation used in this program must be input from point design data if a specific design is to be properly represented. A range of input values are included to provide the user with a weight that will be representative of the cover panel designs used in recent studies.

The coefficient will vary from $\mathrm{AC}(22)=0.8$ to 1.5 if insulation is used in conjunction with the cover panels. If insulation panels are not utilized, the input will vary from $A C(22)=1.25$ to 2.0 . The lower values are representative of efficient attachment capability and the higher value requiring deep frame or standoff's for attachment. The values shown are average unit weights to be used with the total body wetted area.

### 6.1.5 Booster Induced Environment Protection

The total weight of the booster induced environment protection group is given by

$$
\begin{equation*}
\text { BWTPS }=\text { BWINSL }+ \text { BWCOVR } \tag{6.1.21}
\end{equation*}
$$

where
BWINSL = insulation weight
BWCOVER= cover plate weight
A radiative protection system is used to hold structural temperatures within acceptable limits in the VSAC study. The comments in Section 6.1.4 apply equally to boosters.

### 6.1.5.1 Booster Insulation Weight

The equation for the insulation weight is

$$
\begin{equation*}
\text { BWINSL }=\mathrm{BC}(21) * \mathrm{BSBODY}+\mathrm{BC}(76) \tag{6.1.22}
\end{equation*}
$$

where
BWINSL = total weight of TPS insulation, lbs.
BSBODY $=$ total body wetted area, ft. ${ }^{2}$
$\mathrm{BC}(21)=$ insulation unit weight, lbs./ft. 2
$B C(76)=$ fixed insulation weight, lbs.
The coefficient $\mathrm{BC}(21)$ is an insulation unit weight that may be obtained as a function of surface temperature from Figure 6.1-14. The user must estimate the surface temperature that will be encountered on the initial case in order to input the coefficient $\mathrm{BC}(21)$. The data shown in Figure 6.1-14 is based on mucroquartz insulation for a one-half hour time duration. The three curves represent allowable heating rates of 100,400 , and $700 \mathrm{Btu} / \mathrm{ft} .{ }^{2}$ with the structural temperature being held to approximately $200^{\circ} \mathrm{F}$.

The equation for booster stage insulation computes the weight as a function of total body wetted area. If only a percentage of the body is actually covered by insulation, the input coefficient $\mathrm{BC}(21)$ must be modified by that percentage value to account for the weight. The coefficient $B C(76)$ is a fixed . input weight to the insulation calculation. A typical example of the use of this coefficient would be to add a fixed insulation weight for localized hot spots.

When the design concept utilizes insulation panels to hold the structural temperature within acceptable limits, the insulation must be protected from flight conditions. This protection is provided by cover panels. The equation for cover panel weight is

$$
\begin{equation*}
B W C O V R=B C(22) * B S B O D Y+B C(77) \tag{6.1.23}
\end{equation*}
$$

where
BWCOVR = total weight of TPS cover panels, 1 bs .
BSBODY $=$ total body wetted area, ft. 2
$B C(22)=$ cover panel unit weight, lbs./ft. ${ }^{2}$
$B C(77)=$ fixed cover panel weight, lbs.
The cover panels that have been used in recent studies have varied greatly in design features and materials. The discussion regarding AC(22) in Section 6.1.4.2 also applies to values for $\mathrm{BC}(22)$ above.

### 6.1.6 Aircraft Launch and Recovery

The total weight of the aircraft launch and recovery gear is given by

$$
\begin{equation*}
\text { WGEAR }=\text { WLANCH + WLG } \tag{6.1.24}
\end{equation*}
$$

where
WLANCH = launch system weight (if any)
WLG = landing gear weight
Expressions for these component weights are given below.

### 6.1.6.1 Launch Gear

The launch gear equation is used for the support structure and devices associated with aircraft that are used to attach to a hover ship. This includes struts, pads, sequencing devices, controls, etc. The equation for launch gear is

$$
\begin{equation*}
\text { WLANCH }=A C(23) * W T O+A C(24) \tag{6.1.25}
\end{equation*}
$$

where
WLANCH $=$ total weight of launch gear, lbs.
WTO $=$ gross weight, lbs.
$A C(23)=$ launch gear weight coefficient
$\mathrm{AC}(24)=$ fixed launch gear weight, lbs.
The weight coefficient $\mathrm{AC}(23)$ is a proportion of the computed gross weight. A typical value for preliminary design purposes, would be $A C(23)=0.0025$.

### 6.1.6.2 Landing Gear

The landing gear equation has been developed from data correlation of existing aircraft. This data included the nose gear, main gear and controls. The equation for calculating landing gear (including controls) is

$$
\begin{equation*}
\text { WLG }=A C(25) * W T O * * A C(101)+A C(26) * \text { WLAND }+A C(27) \tag{6.1.26}
\end{equation*}
$$

where
WLG $=$ total weight of lañding gear and controls, lbs.
WTO = gross weight, lbs.
WLAND $=$ maximum landing weight, lbs.
$\mathrm{AC}(25)=$ landing gear weight coefficient (intercept $\mathrm{f}_{(\mathrm{WTO}}$ )
AC(101) = landing gear weight coefficient (slope $f$ (WTO)
$A C(26)=$ landing gear weight coefficient (f(WLAND))
$\mathrm{AC}(27)=$ fixed landing gear weight, lbs.
The landing gear weight coefficients are shown in Figure 6.1-15. These coefficients should be used when the landing gear is to be scaled as a function of gross weight. When the coefficients $\mathrm{AC}(25)$ and $\mathrm{AC}(101)$ are used, the coefficient $\mathrm{AC}(26)$ should be zero.

The weight coefficient $\mathrm{AC}(26)$ is used for vehicles whose gear is used only for landing. Gear weight will then vary with the landing weight instead of gross weight. For first estimates the coefficient $\mathrm{AC}(26)$ should range between 0.03 for 11 feet per second sink rate and 0.05 for 25 feet per second. When the coefficient $\mathrm{AC}(26)$ is used, the coefficient $\mathrm{AC}(25)$ should be set to zero.

### 6.1.7 Aircraft Main Propulsion

The total weight of the aircraft main propulsion group is given by

$$
\begin{align*}
\text { WPROPU }=\text { WABENG } & + \text { WRENGS }+ \text { WFUNCT }+ \text { WOXCNT }+ \text { WINSFT }+ \text { WINSOT }+ \text { WFUSYS } \\
& + \text { WOXSYS }+ \text { WPRSYS }+ \text { WINLET } \tag{6.1.27}
\end{align*}
$$

where
WABENG $=$ alrbreathing engine weight including engine mounts
WRENGS $=$ rocket engine weight, including engine mounts
WFUCTC = fuel tank weight
WOXCNT = oxidizer tank weight, rocket engines only
WINSFT = fuel tank insulation weight
WINSOT = oxidizer tank weight, rocket engines only
WFUSYS $=$ weight of storable propellant fuel system, less tanks
WOXSYS = crogenic propellant oxidizer system weight
WPRSYS = propellant pressurization system weight
WINLET = inlet system weight
Expressions for each component weight are presented below.
6.1.7.1 Alrcraft Main Propulsion Engines, Turboramjet, Ramjet, and Rocket .

The main engines are used to propel the vehicle. This includes elther airbreathing or rocket propulsion systems. The airbreathing engines considered in this stridy are the turboramjet and ramjet.

### 6.1.7.1(a) Turboramjet

The turboramjet data is for the GE $12 / J Z 8$ engine. The equation for turboramjet follows.

$$
\begin{align*}
\text { WABENG }=(\operatorname{AC}(32) & * e^{* *(A C(33) * W A) *((P T 2-P H I G H) /(\text { PLOW-PHIGH })} \\
& +\operatorname{AC}(34) * e^{* *(A C(35) * W A) *((P T 2-P L O W) /(P H I G H-P L O W))} \\
& * \text { ENGINS }+\operatorname{AC}(91) * \text { ENGINS }+ \text { WENGMT } \tag{6.1.28}
\end{align*}
$$

where
WABENG = total weight of airbreathing engines, 1 lbs .
WA $\quad=$ calculated turboramjet engine air flow rate, lbs./sec.
PT2 = calculated turboramjet engine inlet pressure, psi.
PHIGH = turboramjet engine inlet pressure (upper design curve), psi
PLOW = turboramjet engine inlet pressure (lower design curve), psi
ENGINS $=$ total number of engines per stage
WENGMT = weight of engine mounts, lbs.
$\mathrm{AC}(32)$ = turboramjet engine weight coefficient (lower design point)
$\mathrm{AC}(33)$ = turboramjet engine weight coefficient (lower design point)
$\mathrm{AC}(34)$ = turboramjet engine weight coefficient (upper design point)
$\mathrm{AC}(35)$ = turboramjet engine welght coefficient (upper design point)
$\mathrm{AC}(91)=$ fixed turboramjet engine weight, lbs.
The weight coefficients, $\mathrm{AC}(32), \mathrm{AC}(33), \mathrm{AC}(34)$ and $\mathrm{AC}(35)$ are used to scale the turboramjet engine weight as a function of engine air flow rate and pressure. The input values for these coefficients may be obtained from Figure 6.1-16. The data presented is for two design conditions of the GE 14/JZ8 engine. The data in the lower curve represents an engine for Mach 4.5 with a pressure of 46 psia at a cruise altitude of 90,000 feet. The data in the upper curve represents an engine for Mach 4.5 with a pressure of 176 psia at a cruise altitude of 61,600 feet. The ratio of calculated pressure (PT2) to the pressure for the upper curve (PHIGH $=176 \mathrm{psia}$ ) and the pressure for the lower curve ( $\mathrm{PLOW}=46$ psia) allows a scaling capability around the two design conditions.

### 6.1.7.1(b) Ramjet

The ramjet engine is sized as a function of thrust. The equation for ramjet engane weight is

$$
\begin{equation*}
\text { WABENG }=\mathrm{AC}(82) * \mathrm{TTOT}+\mathrm{AC}(83)+\text { WENGMT } \tag{6.1.29}
\end{equation*}
$$

where
NABENG $=$ total weight of airbreathing engines, lbs.
TTOT $=$ total stage vacuum thrust, lbs.
$\mathrm{AC}(82)=$ ramjet engine weight coefficient
$\mathrm{AC}(83)=$ fixed ramjet engine weight, lbs.
WENGMT = weight of engine mounts, lbs.; see Section 6.1.7.2.
An input value of $\mathrm{AC}(82)=0.01$ is representative of a low volume ramjet engine with a thrust to calculated weight ratio equal to 100:1. Figure $6.1-17$ shows ramjet engine weight versus thrust for an $\operatorname{AC}(82)$ value of 0.01 .

### 6.1.7.1(c) Rocket

The rocket engine data is based on the $\mathrm{LR}-129 \mathrm{LO}_{2} / \mathrm{LH}_{2}$ engine. The weight is scaled as a function of total stage vacuum thrust and area ratio. The equation for rocket engine weight is

$$
\begin{align*}
\text { WRENGS }=\mathrm{AC}(28) & * \operatorname{TTOT}+\mathrm{AC}(29) * \text { TTOT } * \text { ARATIO } * * \operatorname{AC}(30)+\mathrm{AC}(31) \\
& * \text { ENGINS }+ \text { WENGMT } \tag{6.1.30}
\end{align*}
$$

where
WRENGS = total weight of rocket engine installation, lbs.
TTOT $=$ total stage vacuum thrust, lbs.
ARATIO = rocket engine area ratio
ENGINS = total number of engines per stage
WENGMT $=$ weight of engine mounts, lbs.; see Section 6.1.7.2
$\mathrm{AC}(28)=$ rocket engine weight coefficient ( $\mathrm{f}_{\text {(Thrust) }}$ )
$\mathrm{AC}(29)=$ rocket engine weight coefficient ( $\mathrm{f}_{\text {(Thrust and area ratio) }) ~}^{\text {and }}$
$\mathrm{AC}(30)=$ rocket engine area ratio exponent
$\mathrm{AC}(31)$ = fixed rocket engine weight, lbs.
The weight coefficients $\mathrm{AC}(28), \mathrm{AC}(29)$, and $\mathrm{AC}(30)$ are obtained from Figure. 6.1-18. The engine data presented does not include allowances for PVC ducts or gimbal system. The gimbal system weight equation is presented in Section 6.1.9.1. The assumption has been made that PVC ducts are not required on the type vehicles used for this study.

### 6.1.7.2 Aircraft Engine Mounts

The weight equation for engine mounts is

$$
\begin{equation*}
\text { WENGMT }=\mathrm{AC}(102) * \mathrm{TTOT}+\mathrm{AC}(103) \tag{6.1.31}
\end{equation*}
$$

where
NENGMT = weight of engine mounts, lbs.
TTOT = total stage vacuum thrust, lbs.
$\mathrm{AC}(102)=$ engine mount weight coefficient
$\mathrm{AC}(103)=$ fixed engine mount, weight, lbs.
The expression $\mathrm{AC}(102)$ * TTOT is the penalty for engine mounts attached to the engine. The engine mounting penalty associated with the body is included in basic body structure. A typical value used in design studies is AC(102) = 0.004 for airbreathing engine installations and $\mathrm{AC}(102)=0.0001$ for rocket engines.

### 6.1.7.3 Aircraft Fuel and Oxidizer Tanks

The type of ruel and oxidizer tank construction include non self-sealing (bladder), self-sealing, and integral. The configuration concepts that
utilize airbreathing engines with JP-4 and JP-5 type fuel may use any one of the three type fuel tank constructions discussed. However, when airbreathing engines are used with liquid hydrogen fuel the tanks are assumed to be an integral design based on the $\mathrm{X}-15$ concept. The configuration concepts that utilize a rocket engine installation are assumed to have an integral tank design for both fuel and.oxidizer that is based on the X-15 design concept.

### 6.1.7.3(a) JP-4 and JP-5 Type Fuel

The non self-sealing and self-sealing fuel tank weights for JP-4 and JP-5 type fuel are derived by the equation

$$
\begin{equation*}
\text { WFUNCT }=\operatorname{AC}(36) *(\text { GAL/Tanks }) * * .6 * \text { TANKS }+\mathrm{AC}(37) \tag{6.1.32}
\end{equation*}
$$

where

```
WFUNCT = total weight of fuel tank, lbs.
GAS = total gallons of fuel
TANKS = number of fuselage fuel tanks
AC(36) = fuel tank weight coefficient (}=0\mathrm{ , for integral tanks)
AC(37) = fixed fuel tank weight, lbs. (}=0\mathrm{ , for integral tanks)
```

The weight coefficient $\mathrm{AC}(36)$ is obtained from Figure 6.1-19. The weight for these tanks include supports and backing boards. Existing airplanes that utilize integral fuel tank are the F-102, F-106, and F-111. The F-4 and A-7 also utilize this concept in the wings but not in the fuselage.

### 6.1.7.3(b) Liquid Hydrogen Fuel and Rockets

The alrcraft stages that use either airbreathing engines with liquid hydrogen fuel or rocket engines are assumed to have propellant tanks that are integral and based on the $\mathrm{X}-15$ design concept. The equation for fuel tank weight is

$$
\begin{equation*}
\text { WFUNCT }=A C(36) * \text { VFUTK }+A C(37) \tag{6.1.33}
\end{equation*}
$$

where
WFUNCT $=$ total weight of fuel tank, lbs.
VFUTK $=$ total volume of fuel tank, ft. 3
$\mathrm{AC}(36)=$ fuel tank weight coefficient, lbs./ft. 3
$\mathrm{AC}(37)=$ fixed fuel tank weight, lbs.
The weight coefficient $A C(36)$ is obtained from Figure 6.1-20. The equation for oxidizer tank weight is

$$
\begin{equation*}
\text { WOXCNT }=\mathrm{AC}(38) * \text { VOXTK }+\mathrm{AC}(39) \tag{6.1.34}
\end{equation*}
$$

where
WOXCNT = total weight of oxadizer tank, lbs $\dot{F}^{\prime}$
VOXTK $=$ total volume of oxidizer tank, ft .3
$\mathrm{AC}(38)=$ oxidizer tank weight coefficient, lbs./ft. ${ }^{3}$ ( $=0$, for airbreather)
$\mathrm{AC}(39)=$ fixed oxidizer tank welght, lbs. ( $=0$, for airbreather)
The weight coefficient $A C(38)$ is obtained from Figure 6.1-20.

### 6.1.7.4 Aircraft Fuel Tank Insulation

This section presents the data to obtain a weight penalty associated with protection required to prevent excessive boil-off from cryogenic propellant tanks. The insulation penalty is in terms of lbs./ft. ${ }^{2}$ of tank area.

The equation for fuel tank insulation weight is

$$
\begin{equation*}
\text { WINSFT }=\operatorname{AC}(40) * S F U T K+A C(41) \tag{6.1.35}
\end{equation*}
$$

where
WINSFT $=$ total weight of fuel tank insulation, lbs.
SFUTK $=$ total fuel tank wetted area, ft. ${ }^{2}$
$\mathrm{AC}(40)=$ fuel tank insulation unit welght, lbs./ft. 2
$\mathrm{AC}(41)=$ fixed fuel tank insulation weight, lbs.
The weight coefficient $\mathrm{AC}(40)$ is obtained from Figure 6.1-21. The fuel tank insulation unit weight is a function of radiating temperature. A typical radiating temperature of $500^{\circ} \mathrm{F}$ may be assumed for preliminary runs if other data is not available for making a specific selection.

The AC(40) value obtained from Figure 6.1-21 is for a total flight duration time of 5000 seconds. When other flight times are anticipated, the AC(40) value should be modified by multiplying it by the time correction factor (Tcorr.) obtained from Figure 6.1-22.

### 6.1.7.5 Oxidizer Tank Insulation

It is assumed that the cryogenic oxidizer may be based upon general data of Section 6.1.7.5 No requirement for the insulation of the main oxidizer tanks has been necessary in past design studies because storage times have been relatively low. However, an equation and input data is provided for cases where oxidizer tank insulation is required. The equation for oxidizer tank insulation weight is

$$
\begin{equation*}
\text { WINSOT }=\mathrm{AC}(42) * \text { SOXTK }+\mathrm{AC}(43) \tag{6.1.36}
\end{equation*}
$$

```
where
WINSOT = total weight of oxidizer tank insulation, lbs.
SOXTK}=\mathrm{ total oxidizer tank wetted area, ft. }\mp@subsup{}{}{2
AC(42) = oxidizer tank insulation unit weight, lbs/ft }\mp@subsup{}{}{2
AC(43) = fixed oxidizer tank insulation weight, lbs.
```

The weight coefficient $\mathrm{AC}(42)$ is obtained from Figures 6.1-21 and 6.1-22. The .selection criteria used to obtain AC(42)-iss the same as that used for AC(40).

### 6.1.7.0 Aircraft Storable Propellant Fuel System

The weight of the storable propellant fuel system is given by the following equation:

$$
\begin{equation*}
\text { WFUSYS }=\text { WBPUMP + WDIST1 + WDIST2 + WFCONT + WREFUL + WDRANS + WSEAL } \tag{6.1.37}
\end{equation*}
$$

```
where
WBPUMP \(=\) boost and transfer pump weight
WDISTI = weight of fuel lines, supports, fittings, etc from reservoir
 tank to engines
WDIST2 = weight of fuel lines, supports, fittings, etc. between tariks
WFCONT = fuel system control weight
WREFUL \(=\) tank refueling system weight
WDRANS = dump and drain system weight
WSEAL \(\quad=\) sealing weight
```

Expressions for each component weight are provided below.

### 6.1.7.6(a) Boost and Transfer Pumps

The weight of the boost and transfer pumps is a function of the engine thrust and the number of engines. The equation for boost and transfer pumps is

$$
\begin{equation*}
\text { WBPUMP }=\frac{\mathrm{TTOT}}{1000} *(1.75+0.266 * \text { ENGINS }) \tag{6.1.38}
\end{equation*}
$$

where
WBPUMP = total weight of boost and transfer pumps, lbs.
TTOT $=$ total stage vacuum thrust, lbs.
ENGINS $=$ total number of engines per stage

### 6.1.7.6(b) Fuel Distribution, Reservoir to Engine

The fuel distribution system, Part $I$, is the total of all fuel lines, supports, fittings, etc. to provide fuel flow from a reservoir tank to the engines. The equation for the fuel distribution Part I weight is

$$
\begin{equation*}
\text { WDIST1 }=\text { ENGINS } * \operatorname{AC}(104) *(T T O T / E N G I N S) * * .5 \tag{6.1.39}
\end{equation*}
$$

where
WDITS1 = total weight of fuel distribution system Part I, lbs.
ENGINS $=$ total number of engines per stage
TTOT $=$ total stage vacuum thrust, lbs.
$\mathrm{AC}(104)=$ weight coeffacient for fuel distribution system Part I
The weight coefficient $\mathrm{AC}(104)$ is used to differentiate between a non-afterburning and afterburning engine. The value of $\mathrm{AC}(104)$ is obtained from Figure 6.1-23.
6.1.7.6(c) Fuel Distribution, Inter-Tank

The fuel distribution system, Part II, is the total of all fuel lines, fittings, supports, etc. to provide flow between various tanks within the system. The
equation for the fuel distribution system Part II weight is

$$
\begin{equation*}
\text { WDIST2 }=0.255 * \text { GAL ** } .7 \text { * TANKS ** . } 25 \tag{6.1.40}
\end{equation*}
$$

where
WDIST2 = total weight of fuel distribution system Part II, lbs...
GAL $\quad=$ total gallons of fuel
TANKS $=$ number of fuselage fuel tanks

### 6.1.7.6 (d) Fuel System Controls

The fuel system controls is the total of all valves and valve operating equipment such as wiring, relays, cables, etc. The equation for the fuel system controls weight is

$$
\begin{equation*}
\text { WFCONT }=0.169 * \text { TANKS * GAL ** . } 5 \tag{6.1.41}
\end{equation*}
$$

```
where
WFCONT = total weight of fuel system controls, lbs.
TANKS = number of fuselage fuel tanks
GAL = total gallons of fuel
```


### 6.1.7.6(e) Refueling System

The fuel tank refueling system includes the ducts and valves necessary to fill the fuel tanks. The equation for fuel tank refueling system weight is

$$
\begin{equation*}
\text { WREFUL }=\text { TANKS } *(3.0+0.45 * \text { GAL } * * .333) \tag{6.1.42}
\end{equation*}
$$

where

| KREFUL | $=$ total weight of fuel tank refueling system, lbs. |
| :--- | :--- |
| TANKS | $=$ number of fuselage fuel tanks |
| GAL | $=$ total gallons of fuel |

### 6.1.7.6(f) Dump and Drain System

The fuel tank dump and drain system is the total valves and plumbing necessary to dump and drain the fuel system. The equation for fuel tank dump and drain system weight is

$$
\begin{equation*}
\text { WDRANS }=0.159 * \text { GAL **. } 65 \tag{6.1.43}
\end{equation*}
$$

where
KDRANS $=$ total weight of fuel tank dump and drain system, lbs. GAL $\quad=$ total gallons of fuel

### 6.1.7.6(g) Sealing

The fuel tank bay sealing is the total weight of sealing compound and structure required to provide a fuel tight compartment. This sealing is used with a bladder tank to prevent fuel leakage and it is used to seal off a structural
compartment to provide an integral tank concept. The equation for fuel tank bay sealing weight is

$$
\begin{equation*}
\text { WSEAL }=0.045 * \text { TANKS } 8(\text { GAL/TANKS }) * * .75 \tag{6.1.44}
\end{equation*}
$$

where
WSEAL $\quad$ 'total fuel tank bay sealing weight, ibs.
TANKS $=$ number of fuselage fuel tanks
GAL $\quad=$ total gallons of fuel

### 6.1.7.7 Aircraft Cryogenic Propellant Fuel System

The equation for cryogenic propellant fuel system weight is used for airbreathing engines that utilize liquid hydrogen fuel and with rocket engine installations. This system weight includes the pumps, lines, valves, supports, etc. associated with the cryogenic fuel system. It is divided into the components that are thrust dependent and the components that are primarily length dependent. The equation for the cryogenic fuel system weight is

$$
\begin{equation*}
\text { WFUSYS }=A C(44) * T T O T+A C(45) * E L B O D Y+A C(46) \tag{6.1.45}
\end{equation*}
$$

where
NFUSYS = total weight of fuel system, lbs.
TTOT $=$ total stage vacuum thrust, lbs.
ELBODY $=$ body length, ft.
$A C(44)=$ cryogenic fuel system weight coefficient (f (Thrust))
$\mathrm{AC}(45)=$ cryogenic fuel system weight coefficient' (f(Length)), lbs./ft.
$\mathrm{AC}(46)=\mathrm{fixed}$ cryogenic fuel system weight, 1 bs .
The thrust dependent weight coefficient $A C(44)$ is obtained from the upper curve in Figure 6.1-24 and the length dependent weight coefficient $A C(45)$ is obtained from the lower curve.

### 6.1.7.8 Aircraft Cryogenic Propellant Oxidizer System

The equation for cryogenic propellant oxidizer system weight is used with rocket engine installations. This system weight includes the pumps, lines, valves, supports, etc. associated with the cryogenic oxidizer system. It is divided into the components that are thrust dependent and the components that are primarily length dependent. The equation for the cryogenic oxidizer system weight is

$$
\begin{equation*}
\text { WOXSYS }=\mathrm{AC}(47) * \mathrm{TTOT}+\mathrm{AC}(48) * \text { ELBODY }+\mathrm{AC}(49) \tag{6.1.46}
\end{equation*}
$$

where
WOXSYS $=$ total weight of oxidizer system, lbs.
TTOT $=$ total stage vacuum thrust, lbs.
ELBODY $=$ body length, ft.
$A C(47)=$ cryogenic oxidizer system weight coefficient (forust))
$\mathrm{AC}(48)=$ cryogenic oxidizer system weight coefficient (f(length)),
$\mathrm{AC}(49)=$ fixed cryogenic oxidizer system weight, lbs.
The thrust dependent weight coefficient $A C$ (47) is obtained from the upper curve in Figure 6.1-25 and the length dependent weight coefficient AC(48) is obtained from the lower curve. When an airbreathing engine installation is used with liquid hydrogen fuel the coefficients $\mathrm{AC}(47), \mathrm{AC}(48)$, and $\mathrm{AC}(49)$ must be set to zero.

### 6.1.7.9 Aircraft Storable Propellant Pressurization System

The pressurization system for storable propellants includes the bottles, valves, plumbing and supports. This system is used on the aircraft stage with airbreathing engines. The equation for storable propellant pressurization system weight is

$$
\begin{equation*}
\text { WPRSYS }=0.0009 * \text { TTOT } * \text { TANKS } \tag{6.1.47}
\end{equation*}
$$

where
WPRSYS = weight of pressurization system, lbs.
TTOT $=$ total stage vacuum thrust, lbs.
TANKS $=$ number of fuselage fuel tanks

### 6.1.7.10 Aircraft Cryogenic Propellant Pressurization System

The cryogenic propellant pressurization system is based on the $\mathrm{X}-15$ concept. The system weight includes the storage bottles, stored gas, and system components. The weight equation inputs are based on the fuel and oxidizer tank volumes. The equation for cryogenic propellant pressurization system weight is

$$
\begin{equation*}
\text { WPRSYS }=A C(50) * \text { VFUTK }+A C(51) * \text { VOXTK }+A C(52) \tag{6.1.48}
\end{equation*}
$$

```
where
WPRSYS = welght of pressurization system, lbs.
VFUTK = total volume of fuel tank, ft. }\mp@subsup{}{}{3
VOXTK = total volume of oxidizer tank, ft.3
AC(50) = fuel tank pressure system welght coefficient, lbs./ft. }\mp@subsup{}{}{3
AC(51) = oxidizer tank pressure system weight coefficient, lbs./ft.,3
AC(52) = fixed pressurization system weight, lbs.
```

The coefficients $\mathrm{AC}(50)$ and $\mathrm{AC}(51)$ are fuel and oxidizer dependent, respectively, for the pressurization system weights. The input value for these coefficients are obtained from Figure 6.1-26. When an airbreathing engine is used with liquid hydrogen fuel, the coefficient $\mathrm{AC}(51)$ must be set to zero.

### 6.1.7.11 Aircraft Inlet System

The weight of the inlet system is given by

$$
\begin{equation*}
\text { WINLET }=\text { WIDUCT }+ \text { WVRAMP + WSPIKE } \tag{6.1.49}
\end{equation*}
$$

where
WIDUCT = internal duct weight
WVRAMP $=$ ramp and ramp control weight
WSPIKE = spike weight
Expressions for each component weight are given below.
6.1.7.11(a) Internal Duct

The equation for inlet internal duct weight is

```
WIDUCT = AC(53) * ((ELNLET*XINLET) ** .5 *(AICAPT/XINLET) ** . }333
 * PT2 **.6667 * GEOFCT * FCTMOK) ** AC(54) + AC(105)
```

where
WIDUCT = weight of inlet internal duct, lbs.
ELINLET $=$ length of duct (lip to engine face),ft.
XINLET $=$ number of inlets
AICAPT $=$ total inlet capture area, ft. ${ }^{2}$
PT2 $=$ calculated engine in1et pressure, psia
GEOFCT = geometrical out of round factor
1.0 for round or one flat side
1.33 for two or more flat sides
FCTMOK = Nach number factor
1.0 for Mach $\leqslant 1.4$
1.5 for Mach $>1.4$
$\mathrm{AC}(53) \quad=$ inlet internal duct weight coefficient (intercept)
$\mathrm{AC}(54)=$ inlet internal duct weight coefficient (slope)
$A C(105)=$ fixed internal duct weight, lbs.

The inlet internal duct weight coefficients $A C(53)$ and $A C(54)$ are available from Figure 6.1-27.

### 6.1.7.11(b) Ramp

The weight for variable ramps, actuators and controls is dependent on temperature as the design Mach number increases. The equation for the temperature correction factor follows.

$$
\text { TMPFCT }=\left\{\begin{array}{lr}
1.0, & \text { Mach number }<3.0  \tag{6.1.51}\\
0.203 * D M+0.4, & \text { Mach number } \geqslant 3.0
\end{array}\right.
$$

where
TMPFCT $=$ temperature correction factor
DM $\quad=$ design Mach number

The desjgn Mach number of 3.0 gives a temperature correction factor of 1.0 and should be considered as a minimum input.

The equation for variable ramps, actuators, and controls is


```
** \(\mathrm{AC}(107)+\mathrm{AC}(108)\)
```

where
WVRAMP = weight of inlet variable ramps, actuators and controls, lbs.
ELRAMP = total length of ramp, ft.
XINLET = number of inlets
AICAPT = total inlet capture area, ft. }
TMPFCT = temperature correction factor
AC(106) = varıable ramps, actuators and controls weight coefficient (intercept)
AC(107) = variable ramps, actuators and controls weight coefficient (slope)
AC(108) = fixed weight for variable ramps, actuators and controls, lbs.

```

The variable ramps, actuators, and controls weight coefficients, \(A C(106)\) and \(\mathrm{AC}(107)\) are given in Figure 6.1-28.

\subsection*{6.1.7.11(c) Spike}

The weight of the spike is a fixed input which depends on the type of spike used. The equation for total spike weight is
\[
\begin{equation*}
\text { WSPIKE }=A C(109) * \text { XINLET } \tag{6.1.53}
\end{equation*}
\]
where
h'SPIKE = total weight of spikes, lbs.
XinLET \(=\) number of inlets
\(A C(109)=\) spike weight coefficient, lbs.
The weight coefficient \(\mathrm{AC}(109)\) is obtained from Table 6.1-3.

\subsection*{6.1.8 Booster Main Propulsion}

The total weight of the booster main propulsion group is given by
\[
\begin{align*}
\text { BWPRPL }=\text { BWRENG } & + \text { BWFCNT }+ \text { BWOCNT }+ \text { BWINSF }+ \text { BWINSO }+ \text { BWFUSY } \\
& + \text { BWDXSY }+ \text { BWPRSY } \tag{6.1.54}
\end{align*}
\]
where
BWRENG = main engine weight including mounts
BWFCNT = non-structural fuel container weìght
BWOCNT = non-structural oxidizer container weight
BWINSF = fuel tank insulation weight
BWINSO = oxidizer tank insulation weight
BWFUSY = cryogenic fuel system weight
BWDXSY = cryogenic oxidizer system weight
BWPRSY = cryogenic propellant pressurization system weight
Expressions for each component weight are given below.

\subsection*{6.1.8.1 Booster Main Engines}

The rocket engine data is based on the \(\mathrm{LR}-129 \mathrm{LO}_{2} / \mathrm{LH}_{2}\) engine. The weight is scaled as a function of total stage vacuum thrust and area ratio. The equation for rocket engine weight is
\[
\begin{align*}
\text { BWRENG }=\mathrm{BC}(28) & * \text { BTTOT }+\mathrm{BC}(29) * \text { BTTOT * BARATO ** BC(30) }+\mathrm{BC}(31) \\
& * \text { ENGINS + WBENMT } \tag{6.1.55}
\end{align*}
\]
where
BHRENG = total weight of rocket engine installation, lbs.
BTTOT = total stage vacuum thrust, lbs.
BARATO = rocket engine area ratio
ENGINS \(=\) total number of engines per stage
WBENAT = weight of engine mounts, lbs; section 6.1.8.2
\(B C(28)=\) rocket engine weight coefficient (\(f\) (Thrust))
\(B C(29)\) = rocket engine weight coefficient (\(f\) (Thrust and Area Ratio)
\(\mathrm{BC}(30)=\) rocket engine area ratio exponent
\(\mathrm{BC}(31)\) fixed rocket engine weight, lbs.
The weight coefficients \(\mathrm{BC}(28), \mathrm{BC}(29)\), and \(\mathrm{BC}(30)\) are obtained from Figure 6.1-29. The area ratio is set by the user and its effect on engine weight is shown in Figure 6.1-29. The engine data presented does not include allowances for \(P V C\) ducts or gimbal system. The gimbal system weight equation is presented in Section 6.1.9.1. An assumption has been made that PVC ducts are not required on the type of vehicles used for this study so data has not been developed to account for them. The coefficient \(B C\) (31) is used to input the fixed engine weight that does not scale with size. This input is obtained from Figure 6.1-29.

\subsection*{6.1.8.2 Booster Engine Mounts}

The weight equation for engine mounts is
\[
\begin{equation*}
\text { WBENMT }=\mathrm{BC}(102) * \text { BTTOT }+\mathrm{BC}(103) \tag{6.1.56}
\end{equation*}
\]
where
WBENMT = weight of engine mounts, lbs. BTTOT = total stage vacuum thrust, lbs. \(\mathrm{BC}(102)=\) engine mount weight coefficient
\(\mathrm{BC}(103)=\) fixed engine mount weight, lbs.
The expression \(\mathrm{BC}(102) *\) BTTOT is the penalty for engine mounts attached to the engine. The engine mounting penalty associated with the body is included in the basic body structure. A typical value used in design studies is \(\mathrm{BC}(102)=\) 0.0001 .

\subsection*{6.1.8.3 Booster Non-Structural Propellant Containers}

The program contains scaling equations for non-structural fuel and oxidizer containers that are sized as a function of total fuel tank volume and total. oxidizer tank volume, respectively. The equation for non-structural fuel container weight is
\[
\begin{equation*}
B W F C N T=B C(36) * \text { BVFUTK }+B C(37) \tag{6.1.57}
\end{equation*}
\]
where
BWFCNT = weight of non-structural fuel tank, lbs.
BVFUTK = total volume of fuel tank, ft. 3
\(\mathrm{BC}(36)=\) fuel tank weight coefficient (non-structural), lbs./ft. 3
\(B C(37)=\) fixed fuel tank weight (non-structural), lbs.
The equation for non-structural oxidizer contaner weight is .
\[
\begin{equation*}
\mathrm{BWOCNT}=\mathrm{BC}(38) * B V O X T K+\mathrm{BC}(39) \tag{6.1.58}
\end{equation*}
\]
where
BWGCNT \(=\) weight of non-structural oxidizer tank. lbs.
BVOXTK = total volume of oxidizer tank, ft. 3
\(\mathrm{BC}(38)=\) oxidizer tank weight coefficient (non-structural), lbs./ft. \({ }^{3}\)
\(\mathrm{BC}(39)=\) fixed oxidizer tank weight (non-structural), lbs.

\subsection*{6.1.8.4 Booster Fuel Tank Insulation}

This section presents data to obtain a weight penalty associated with protection required to prevent excessive boiloff from cryogenic. propellant tanks. The insulation penalty is in terms of lbs./ft. 2 of tank area which varies in the sizing routine according to tank volume which, in turn, varies with a number of other design parameters. The equation for fuel tank insulation weight is
\[
\begin{equation*}
\text { BWINSF }=\mathrm{BC}(40) * \text { BSFUTK }+\mathrm{BC}(41) \tag{6.1.59}
\end{equation*}
\]
where
BWINSF \(=\) total weight of fuel tank insulation, lbs.
BSFUTK \(=\) total fuel tank wetted area, ft. 2
\(B C(40)=\) fuel tank insulation unit weight, lbs./ft. 2
\(B C(41)=\) fixed fuel tank insulation weight, lbs.
The weight coefficient \(\mathrm{BC}(40)\) is obtained from Figure 6.1-21 with \(\mathrm{BC}(40)\) and \(B C(41)\) replacing \(A C(40)\) and \(A C(41)\). The fuel tank insulation unit weight is a function of radiation temperature. A typical radiating temperature of \(500^{\circ} \mathrm{F}\) may be assumed for preliminary runs if other data is not available for making a specific selection. The \(B C(40)\) value obtained from Figure 6.1-21 is for a total flight duration time of 5,000 seconds. When other flight times are anticipated, the \(B C(40)\) value should be modified by multiplying it by the time correction factor (Tcorr.) obtained from Figure 6.1-22.

\subsection*{6.1.8.5 Booster Oxidizer Tank Insulation}

It is assumed that the cryogenic oxidizer may be based upon the general data of Section 6.1.8.4. No requirement for the insulation of the main oxidizer tanks has been necessary in past design studies because storage times have been relatively low. However, an equation and input data is provided for cases in which oxidizer tank insulation is required.-
\[
\begin{equation*}
\text { BWINSO }=\mathrm{BC}(42) * \text { BSOXTK }+\mathrm{BC}(43) \tag{6.1.60}
\end{equation*}
\]
where
BWINSO = total weight of oxidizer tank insulation, lbs.
BSOXTK \(=\) total oxidizer tank wetted area, ft. 2
\(\mathrm{BC}(42)=\) oxidizer tank insulation unit weight, lbs./ft. 2
\(\mathrm{BC}(43)=\) fixed oxidizer tank insulatıon weight, lbs.
The weight coefficient \(\mathrm{BC}(42)\) is obtained from Figure 6.1-21. The selection criteria used to obtain \(B C(42)\) is the same as that used for \(B C(40)\). The coefficient \(B C(42)\) obtained from Figure \(6.1-21\) is for a total flight time of 5000 seconds. When other flight times are anticipated, the \(B C(42)\) value should be modified by multiplying it by the time correction factor, Tcorr., obtained from Figure 6.1-22.

\subsection*{6.1.8.6 Booster Cryogenıc Propellant Fuel System}

The equation for cryogenic propellant fuel system weight includes the pumps, lines, valves, supports, etc. associated with the cryogenic fuel cryogenic fuel system. It is divided into the components that are thrust dependent and the components that are primarily length dependent. The equation for the cryogenic fuel system weight is
\[
\begin{equation*}
\text { BWFUSY }=\mathrm{BC}(44) * \mathrm{BTTOT}+\mathrm{BC}(45) * \mathrm{BLBODY}+\mathrm{BC}(46) \tag{6.1:61}
\end{equation*}
\]
where
BWFUSY \(\quad=\) total cryogenic fuel system weight, lbs.

BTTOT = total stage vacuum thrust, lbs.
BLBODY \(=\) body length, ft.
BC(44) = cryogenic fuel system weight coēfficient (\(f\) (Thrust))
\(\mathrm{BC}(45)=\) cryogenic fuel system weight coefficient (\(\mathrm{f}_{\text {(Length) }}\)), lbs./ft.
\(\mathrm{BC}(46)=\) fixed cryogenic fuel system weight, lbs.
The thrust dependent weight coefficient \(B C(44)\) is obtained from the upper curve in Figure 6.1-30 and the length dependent weigght coefficient BC(45) is obtained from the lower curve.

\subsection*{6.1.8.7 Booster Cryogenic Propellant Oxidizer System}

The equation for cryogenic propellant oxidizer system weight is used with rocket engine installations. This system weight includes the pumps, lines, valves, supports, etc. associated with the cryogenic oxidizer system. It is divided into the components that are thrust dependent and the components that are primarily length dependent. The equation for the cryogenic oxidizer system weight is
\[
\begin{equation*}
\text { BWOXSY }=\mathrm{BC}(47) * \mathrm{BTTOT}+\mathrm{BC}(48) * \mathrm{BLBODY}+\mathrm{BC}(49) \tag{6.1.62}
\end{equation*}
\]
where
BWOXSY \(=\) total cryogenic oxidizer system weight, lbs.
BTTOT \(=\) total stage vacuum thrust, lbs.
BiLBODY = body length, lbs.
\(\mathrm{BC}(47)=\) cryogenic oxidizer system weight coefficient (f (Thrust))
\(\mathrm{BC}(48)=\) cryogenic oxidizer system weight coefficient (f (Length)), lbs./ft.
\(\mathrm{BC}(49)=\) fixed cryogenic oxidizer system weight, lbs.
The thrust dependent weight coefficient \(\mathrm{BC}(47)\) is obtained from the upper curve in Figure 6.1-31 and the length dependent weight coefficient BC(48) is obtained from the lower curve.

\subsection*{6.1.8.8 Booster Cryogenic Propellant Pressurization System}

The cryogenic propellant pressurization system is representative of a stored high pressure helium system. The two major parameters used to obtain input are the mann tank pressure and the helium storage temperature. The system werght includes the storage bottles, stored gas, and system components. The weight equation inputs are based on the fuel and oxidizer tank volumes. The equation for cryogenic propellant pressurization system weight is
\[
\begin{equation*}
\text { BWPRSY }=\mathrm{BC}(50) * \text { BVFUTK }+\mathrm{BC}(51) * B V O X T K+B C(52) \tag{6.1.63}
\end{equation*}
\]
where .
BWPRSY = weight of pressurization system, lbs.
BVFUTK - total volume of fuel tank, ft. \({ }^{3}\)
BVOXTK = total volume of oxidizer tank, ft. 3
\(\mathrm{BC}(50)=\) fuel tank pressure system weight coefficient, lbs./ft. \({ }^{3}\)
\(\mathrm{BC}(51)=\) oxidizer tank pressure system weight coefficient, lbs./ft. \({ }^{3}\)
\(B C(52)=\) fixed pressurization system weight, lbs.

The coefficients \(B C(50)\) and \(B C(51)\) are fuel and oxidizer dependent, respectively, for the pressurization system weights. The input value for these coefficients are obtained from Figure 6.1-32.

\section*{6.1:9 Aircraft Orientation Controls and Separation}

The total weight of the aircraft orientation controls and separation group is given by
\[
\begin{equation*}
\text { WORNT }=\text { WGIMBL }+ \text { WACS + WACSTK + WAERO + WSEP } \tag{6.1.64}
\end{equation*}
\]
where
WGIMBL \(\quad=\) gimbal system weight
WACS \(\quad=\) attitude control system weight
WACSTK = attitude control system tank weight
WAERO = aerodynamic control system weight
WSEP \(=\) separation system weight
Expressions for each component weight are given below.

\subsection*{6.1.9.1 Aircraft Gimbal System}

The gimbal (thrust-vector-control) actuation system is utilized on the aircraft configuration when a rocket engine is used for main impulse. The data in Figures 6.1-33 and 6.1-34 is for an electrical system conslsting of a silver-zinc primary battery, a d.c. electric motor and a gear train, two magnetic partical clutches and ball-screw actuators. Reference 1 also discussed a pneumatic actuation system. Both systems were competitive from a weight standpoint with a slight advantage for electrical systems for the longer operating times (\(\sim 1200\) seconds) and for all torque levels greater than \(1000 \mathrm{lb}-\mathrm{in}\).

The system welght is expressed in parametric form as a function of delivered torque, maximum deflection rate of nozzle and operating time. The range of significant operational requirements and conditions for the data presented are given in Table 6.1-4. The system assumes pitch and yaw control for single engine and pitch, yaw and roll control for multiple engines. The equation for delivered torque is
\[
\begin{equation*}
\text { TDEL }=750 *(T T O T / E N G I N S / P C H A M) * * 1.25 \tag{6.1.65}
\end{equation*}
\]
where
TDEL \(\quad=\) gimbal system delivered torque, Ib -in
TTOT \(=\) total stage vacuum thrust, lbs.
ENGINS \(\quad=\) total number of engines per stage
PCHAM \(=\) rocket engine chamber pressure, psia
The delivered torque calculation assumes a maximum nozzle deflection of 10 degrees. The calculated delivered torque is then used in the gimbal system weight equation which is
\[
\begin{equation*}
\text { WGIMBL }=\mathrm{AC}(55) * \operatorname{TDEL} * * \mathrm{AC}(110)+\mathrm{AC}(56) \tag{6.1.66}
\end{equation*}
\]
where
WGIMBL = weight of engine gimbal system, lbs.
TDEL \(\quad=\) gimbal system delivered torque, \(1 b\)-in
\(\mathrm{AC}(55)=\) gimbal system weight coefficient (intercept)
\(\mathrm{AC}(110)=\) gimbal system weight coefficient (slope).
\(\mathrm{AC}(56)=\) fixed gimbal system weight, lbs.
The weight coefficients \(\mathrm{AC}(55)\) and \(\mathrm{AC}(110)\) are obtained from Figurees 6.1-33 and 6.1-34. The data in Figure 6.1-33 represents a gimbal system with a maximum nozzle deflection rate of 20 degrees per second and Figure 6.1-34 is for five degrees per second. Both figures are for maximum deflections of 10 degrees and operating times of 100 and 1200 seconds. When the airplane configuration utilizes airbreathing engines for main impulse, a gimbal system is not required. Directional control will be accomplished through the use of aerodynamic surfaces.

\subsection*{6.1.9.2 Aircraft Spatial Attitude Control System}

This subsystem includes the weight of the attıtude control system which includes engines, valves, pressurant and residual propellants. It does not \({ }^{*}\) include the propellants and their associated tankage.

The system includes 4-pitch, 4-yaw, and 4-roll engines with each of the pitch and yaw engines having identical thrust levels, the thrust of the roll engines being half that of a pitch or yaw engine. All the engines are radiation cooled with a pitch and yaw thrust range from 30 to 100 lbs . The equation for attitude control system weight is
\[
\begin{equation*}
\text { WACS }=\mathrm{AC}(57) * \text { WTO } * * \mathrm{AC}(58)+\mathrm{AC}(59) \tag{6.1.67}
\end{equation*}
\]
where
WACS \(=\) weight of attitude control system, lbs.
HTO = gross weight, lbs.
\(\mathrm{AC}(57)=\mathrm{ACS}\) system weight coefficient (intercept)
\(\mathrm{AC}(58)=\mathrm{ACS}\) system weight coefficient (slope)
AC(59) = fixed ACS system weight, lbs.
The weight coefficients \(\mathrm{AC}(57)\) and \(\mathrm{AC}(58)\) represents the intercept and slope, respectively, for the data shown in Figure 6.1-35. The curves in Figure 6.1-35 represent three different size systems with total ampulse ranges of 100,\(000 ; 200,000\); and \(300,000 \mathrm{lb}-\mathrm{sec}\). When design data is not avallable to base a total impulse estimate on, the user may input \(\mathrm{AC}(57)\) and \(\mathrm{AC}(58)\) on the \(200,000 \mathrm{lb}-\mathrm{sec}\). curve. The, \(\mathrm{X}-15 \mathrm{had} 235,000 \mathrm{lb}-\mathrm{sec}\) as, a comparative bases.

\subsection*{6.1.9.3 Aircraft Attitude Control System Tankage}

The attitude control system tankage weight includes the bladders, insulation, mounting, etc., but does not include the propellants. The tankage system assumes storable monopropellants, helium pressurization and titanium tank material. The equation for attitude control system tankage weight is
\[
\begin{equation*}
\text { WACSTK }=\operatorname{AC}(64) *(\text { WACSFU }+ \text { WACSOX })+A C(65) \tag{6.1.68}
\end{equation*}
\]
where
WACSTK = weight of attitude control system tankage, lbs.
WACSFU = weight of ACS fuel, lbs.
WACSOX = weight of ACS oxidizer, 1bs.
AC(64) = ACS tank weight coefficient
AC(65) \(=\) fixed ACS tank weight, lbs.
The weight coefficient \(\mathrm{AC}(64)\) is a ratio of tankage weight to propellant weight. A typical predesign value for \(\mathrm{AC}(64)\) is 0.10 .

\subsection*{6.1.9.4 Aircraft Aerodynamic Controls}

The weight of this subsystem includes the total weight of the aerodynamic control system. It includes all control levers, push-pull rods, cables, and actuators from the control station up to but not including the aerodynamic surfaces. It will also include the autopilot if it is not integral with the navigation system. This weight does not include the hydraulic/pneumatic system weight. The aerodynamic controls data for straight and swept wing aircraft has been separated from the delta wing aircraft data. The basic equation for aerodynamic controls system weight is
\[
\begin{equation*}
\text { WAERO }=\operatorname{AC}(60) *(W T 0 * * .666 *(E L B O D Y+G S P A N) * * .25) * * A C(111)+A C(61) \tag{6.1.69}
\end{equation*}
\]
where
WAERO = weight of aerodynamic controls, lbs.
WTO = gross weight, lbs.
ELBODY = body length, ft.
GSPAN \(\quad=\) geometric wing span, ft.
\(\mathrm{AC}(60)=\) aerodynamic control system weight coefficient (intercept)
\(\mathrm{AC}(111)=\) aerodynamic control system weight coefficient (slope)
\(\mathrm{AC}(61)=\) fixed aerodynamic control system weight, lbs.
The weight coefficients \(\mathrm{AC}(60)\) and \(\mathrm{AC}(111)\) are obtained from Figure 6.1-36.

\subsection*{6.1.9.5 Aircraft Separation System}

The separation system weight includes the system and attachments on the arrplane for separating the two stages from each other. The equation for the separation system weight is
\[
\begin{equation*}
W S E P=A C(62) * W T O+A C(63) \tag{6.1.70}
\end{equation*}
\]
where
WSEP = weight of separation system, Ibs:
WTO \(\quad=\) gross weight, lbs.
\(\mathrm{AC}(62)=\) separation system weight coefficient
\(\mathrm{AC}(63)=\) fixed separation system weight, lbs.
The coefficient \(A C(62)\) is a constant that will scale the separation system weight as a function of gross weight. If design data is not available, and it is assumed that the major loads are reacted by the booster, a preliminary design value of \(A C(62)=0.003\) may be used.

\subsection*{6.1.10 Booster Orientation Controls and Separation}

The total weight of the booster orientation controls and separation group is given by
\[
\begin{equation*}
\text { BWORNT }=\text { BWGIMB }+ \text { BWSEP } \tag{6.1.71}
\end{equation*}
\]
where
BWGIMB \(=\) gimbal system weight
BWSEP = separation system weight
Expressions for each component weight are given below.

\subsection*{6.1.10.1 Booster Gimbal System}

Tne booster gimbal (thrust-vector-control) actuation system data is identical to the aircraft gimbal system of Section 6.1.9.1. The gimbal system weight equation 15
\[
\begin{equation*}
\text { BWGIMB }=\mathrm{BC}(55) * \mathrm{BTDEL} * * \mathrm{BC}(110)+\mathrm{BC}(56) \tag{6.1.72}
\end{equation*}
\]
where
BHGIMB = weight of engine gimbal system, lbs.
BTDEL \(\quad=\) gimbal system delivered torque, \(1 b-1 n\). , Section 6.1.9.1
\(\mathrm{BC}(55)=\) gimbal system weight coefficient (intercept)
\(B C(110)=\) gimbal system weight coeffacient (slope)
\(B C(56)=\) fixed gimbal system weight, lbs.
The weight coefficients \(\mathrm{BC}(55)\) and \(\mathrm{BC}(110)\) are obtained from Figures 6.1-33 and 6.1-34 as the alrcraft system.

\subsection*{6.1.10.2 Booster Separation System}

The separation systen weight includes the system and attachments that are on the bonnter for separating the two stages from each other. The equation for the separation system weight is
\[
\begin{equation*}
B W S E P=B C(62) * B W T O+B C(63) \tag{6.1.73}
\end{equation*}
\]
where
BWSEP weight of separation system, lbs.
BWTO \(\quad=\) gross weight, lbs.
\(\mathrm{BC}(62)=\) separation system weight coefficient
BC(63) = fixed separation system weight, lbs.
The coefficient \(B C(62)\) is a constant that will scale the separation system weight as a function of gross weight. If design data is not available, and if it is assumed that the major loads are reacted by the booster, a preliminary design value of \(\mathrm{BC}(62)=0.0005\) may be used.

\subsection*{6.1.11 Aircraft Power Supply, Conversion and Distribution}

The total weight of the aircraft power supply, conversion and distribution group is given by

WPWRSY \(=\) WELECT + WHYPNU
where
WELECT = electrical system weight
WHYPNU = hydraulic/pneumatic system weight
Expressions for each component weight are given below.

\subsection*{6.1.11.1 Aircraft Electrical Systen}

This subsystem includes the weight for the items required to generate, convert and distribute electrical power required to operate the various vehicle subsystems. Subsystems requiring electrical power are mainly electronics equipment, life support, environmental control equipment, lights, heaters, and blower motors. The electrical load varies with flight conditions and flight phase depending upon the demands of each subsystem. The electrical system data presented provides a preliminary weight representative of high speed fighter aircraft.

Major components represented in the system weight are batteries and AC generators, transformer rectifier units, control equipment and power distribution system. The equation for electrical system weight is
\[
\begin{equation*}
\text { WELECT }=\mathrm{AC}(66) *(\mathrm{WTO} * * .5 * \text { ELBODY **.25) ** AC(112) }+\mathrm{AC}(67) \tag{6.1.75}
\end{equation*}
\]
where
WELECT = weight of electrical system, 1 bs .
WTO \(\quad=\) gross weight, lbs.
ELBODY = body length, ft.
\(\mathrm{AC}(66)=\) electrical system weight coefficient (intercept)
\(\mathrm{AC}(112)=\) electrical system weight coefficient (slope)
\(\mathrm{AC}(67)=\) fixed electrical system welght, lbs.
The weight coefficients \(A C(66)\) and \(A C(112)\) are obtained from Figure 6.1-37.

\subsection*{6.1.11.2 AIRCRAFT HYDRAULIC/PNEUMATIC SYSTEM}

The hydraulic/pneumatic system is comprised of the system components to produce fluid or pneumatic pressure, control equipment, storäge vessels, hydraulic fluid, and a distribution system up to but not including the various functional branches, actuators, etc. The equation for hydraulic/ pneumatic system weight is
\[
\begin{align*}
\text { WHYPNU } & =\operatorname{AC}(68)[((\text { SWING }+ \text { SHORZ }+ \text { SVERT }) * \text { QMAX/1000 }) * * 0.334 \\
& + \text { (ELBODY }+ \text { STSPAN }) * * 0.5 * \text { TYTAIL }] * * \operatorname{AC}(113)+\operatorname{AC}(69) \tag{6.1.76}
\end{align*}
\]
where
WHYPNU = weight of hydraulic/pneumatic system, lbs.
SWING \(=\) gross wing area, ft. 2
SHORZ \(=\) horizontal stabilizer planform area, ft. \({ }^{2}\)
SVERT = vertical fin planform area, ft. 2
QMAX = maximum dynamic pressure, lbs./ft. \({ }^{2}\)
ELBODY = body length, ft.
STSPAN \(=\) structural span (along .5 chord), ft. 2
TYTAIL = type tail coefficient
1.0 for conventional tail
1.25 for delta planform
1.5 for all moving horizontal and/or vertical
\(\mathrm{AC}(68)=\) hydraulic/pneumatic system weight coefficient (intercept)
AC(113) = hydraulic/pneumatic system weight coefficient (slope)
\(\mathrm{AC}(69)=\) fixed hydraulic/pneumatic system weight, lbs.
The weight coefficients \(\mathrm{AC}(68)\) and \(\mathrm{AC}(113)\) are obtained from 6.1-38.

\subsection*{6.1.12 Booster Power Supply, Conversion and Distribution}

Total weight of the booster power supply, conversion, and distribution system is given by
\[
\begin{equation*}
\text { BWPWSY }=\text { BWELEC }+ \text { BWHYPN } \tag{6.1.77}
\end{equation*}
\]
where
BWELEC = electrical system weaght
BWHYPN = hydraulic/pneumatic system weight
Expressions for each component weight are given below.

\subsection*{6.1.12.1 Booster Electrical System}

The electrical system consists of a distribution system only. The booster electrical system is assumed to be a function of body length and the scaling equation is
\[
\begin{equation*}
\text { BWELEC }=\mathrm{BC}(66) * \text { BLBODY }+\mathrm{BC}(67) \tag{6.1.78}
\end{equation*}
\]
where
BIVELEC = weight of electrical system; lbs.
BLBODY \(=\) body length, ft .
\(\mathrm{BC}(66)=\) electrical system weight coefficient, lbs./ft.
\(\mathrm{BC}(67)=\) fixed electrical system weight, lbs.
If design data is not available, a preliminary design value of \(\mathrm{BC}(66)=2.0\) may be used.

\subsection*{6.1.12.2 Booster Hydxaulic/Pneumatic System}

The hydraulic/pneumatic system for the booster consists of control valves and distribution system. The hydraulic/pneumatic power generation will be obtained from the aircraft system. The equation for booster hydraulic/pneumatic system weight is
\[
\begin{equation*}
\text { BWHYPN }=\mathrm{BC}(68) * \text { BLBODY }+\mathrm{BC}(69) \tag{6.1.79}
\end{equation*}
\]
where
BWHYPN = weight of hydraulic/pneumatic system, lbs.
BLBCDY \(=\) body length,ft.
\(\mathrm{BC}(68)=\) hydraulic/pneumatic system weight coefficient, lbs./ft.
BC(69) = fixed hydraulic/pneumatic system weight, lbs.
If design data is not available, a preliminary design value of \(\mathrm{BC}(68)=4.0\) may be used.

\subsection*{6.1.13 Aircraft Avionics}

The avionic system includes the guidance and navigation system, the instrumentation, and the communications system.

The guidance and navigation system includes those items necessary to insure that the vehicle position and its trajectory is known at all times. This system also generates commands for the flight control system for changing or correcting the vehicle heading.

The instrumentation system provides for a weight allocation assigned to the basic instruments normally required for sensing and readout of the normal flight parameters needed for monıtoring a flight program. In addıtion to this basic system there are many possible mission oriented nnstrumentation functions, that may be required. Weaght allocation for the instrumentation system is normally part of a design study for a particular vehicle design and mission requirement.

The communication system weight allocation is for all equipment necessary to provide for the communication between vehicle and air or ground stations including communication within the vehicle itself.

The equation for avionic system weight is
\[
\begin{equation*}
\text { WAVONC }=\mathrm{AC}(70) * \text { WTO } * * \mathrm{AC}(114)+\mathrm{AC}(71) \tag{6.1.80}
\end{equation*}
\]
where
WAVONC = weight of avionics system, lbs.
WTO \(\quad=\) gross weight, 1bs.
\(\mathrm{AC}(70)=\) avionic system weight coefficient (intercept)
AC(114) = avionic system weight coefficient (slope)
- \(\mathrm{AC}(71)\). \(=\) fixed avionic system weight, lbs.

The weight coefficients \(\mathrm{AC}(70)\) and \(\mathrm{AC}(114)\) are obtained from Figure 6.1-39. This data represents systems of advanced capability with significant fire control capability (\(F-111\) and \(B-58\) type).

\subsection*{6.1.14 Aircraft Crew Systems}

The crew provisions include the equipment and personnel environment control system, crew compartment insulation, personnel accommodations, fixed life support equipment, emergency equipment, crew station controls and panels.

The equipment environmental control system is used to maintain the correct operating conditions for vehicle system equipment. The function of the personnel environmental control system is to provide an acceptable environmental condition for the crew. This includes temperature, atmosphere and pressurlzation equipment and supports. The compartment insulation is required for controlling enviromment in conjunction with the overall active environmental system. The accommodations for personnel includes seats, supports, restrannts, shock absorbers, ejection mechanisms, etc. The fixed lift support system includes food containers, waste management, hygiene equapment, etc. The fixed emergency equipment includes a built-in fire extinguishing system, life rafts, etc. The crew station control and panels is for installation of crew station flight controls, instrument panels, control pedestals and stands.

The crew provisions are a combined function of gross weight, crew size, and fixed weights. Therefore, the weight penalty may be represented by one equation and the various inputs collected and summed from Table 6.1-5. The equation for crew provisions weight is
\[
\begin{equation*}
\mathrm{WCPROV}=\mathrm{AC}(74) * \mathrm{WTO}+\mathrm{AC}(80) * \mathrm{CREW}+\mathrm{AC}(75) \tag{6.1.81}
\end{equation*}
\]
where
WCPROV = weight of crew provisions, lbs.
WTO \(\quad=\) gross weight, lbs.
CREW \(\quad=\) number of crew members
\(\mathrm{AC}(74)=\) equipment ECS weight coefficient
\(\mathrm{AC}(80)=\) crew provisions weight coefficient
AC(75) \(=\) fixed crew provisions weight, lbs.

\subsection*{6.1.15 Aircraft Design Reserve}

The input for contingency and growth permits a proportion of dry weight and/or a fixed weight to be set aside for growth allowance, design unknowns, etc. The aircraft dry weight is summed by the equation:
\[
\begin{align*}
\text { WDRY } & =\text { WSURF + WBODY + WTPS + WGEAR + WPROPU + WORNT } \\
& + \text { WPWRSY + WAVONC + WCPROV } \tag{6.1.82}
\end{align*}
\]

This value for dry weight is then used in the equation for contingency and growth which is
\[
\begin{equation*}
W C O N T=A C(98) * W D R Y+A C(99) \tag{6.1.83}
\end{equation*}
\]
where
WCONT = weight of contingency and growth, lbs. WDRY = stage dry weight, lbs.
\(\mathrm{AC}(98)=\) contingency and growth coefficient
\(\mathrm{AC}(99)=\) fixed contingency and growth weight, lbs.
The aircraft weight empty is summed by the equation
WEMPTY = WDRY + WCONT

\subsection*{6.1.16 Booster Design Reserve}

The input for contingency and growth permits a proportion of dry weight and/or a fixed weight to be set aside for growth allowance, design unknowns, etc. The booster dry weight is summed by equation (6.1.85)
\[
\begin{equation*}
\text { BWDRY }=\text { BWBODY + BWTPS + BWPRPL + BWORNT + BWPWSY } \tag{6.1.85}
\end{equation*}
\]

This value for dry weight is then used in the equation for contingency and growth which is
\[
\begin{equation*}
\mathrm{BWCONT}=\mathrm{BC}(98) * \mathrm{BWDRY}+\mathrm{BC}(99) \tag{6.1.86}
\end{equation*}
\]
where
BWCONT = weight of contingency and growth, lbs.
BHDRY = stage dry weight, lbs.
\(\mathrm{BC}(98)=\) contingency and growth coefficient
\(\mathrm{BC}(99)\) = fixed contingency and growth weight, lbs.
The booster weight empty is summed by the equation
\[
\begin{equation*}
\text { BWEMTY }=\text { BWDRY }+ \text { BWCONT } \tag{6.1.87}
\end{equation*}
\]

\subsection*{6.1.17 Aircraft Crew and Crew Life Support}

This section includes the crew, gear and accessories as well as the crew life support. The crew, gear, and accessories includes crew, constant wear and protection garments, pressure suits, head gear, belt packs, personal parachutes, portable hygienic equipment, maps, manuals, log books; portable fire extinguishers, maintenance tools, etc. The crew life support includes food, water, portable containers, medical equipment, survival kits, etc. The equation for crew and crew life support weight is
\[
\begin{equation*}
\text { WCREW }=\mathrm{AC}(72) * \text { CREW }+\mathrm{AC}(73) \tag{6.1.88}
\end{equation*}
\]
```

where
WCREW = weight of crew, gear, and crew life support, lbs.
CREW = number of crew members
AC(72) = crew weight coefficient
AC(73) = fixed crew weight, lbs.

```

Typical values for the crew dependent weight is shown in Table 6.1-6. The input coefficient \(\mathrm{AC}(73)\) is used for fixed crew life support weight. A typical input for \(\mathrm{AC}(73)\) is shown in Table 6.1-6. This coefficient may also be used to input a fixed weight for crew and crew life support. When AC(73) is used for this purpose the coefficient \(\mathrm{AC}(72)\) must be set to zero.

\subsection*{6.1.18 Payload}

\subsection*{6.1.18.1 Alrcraft Payload}

The aircraft payload weight is input as WPAYLD. The value \(1 s\) determined by the user.

\subsection*{6.1.18.2 Booster Payload}

The booster payload consists of the upper stage

\subsection*{6.1.19 Aircraft Propellants}

\subsection*{6.1.19.1 Aircraft Trapped Prope1lants}

The equation for trapped fuel weight is
\[
\begin{equation*}
\text { WFTRAP }=\mathrm{AC}(92) * \text { WFUEL }+\mathrm{AC}(93) \tag{6.1.89}
\end{equation*}
\]
where
WFTRAP \(=\) welght of fuel trapped in tank and lines, 1 bs .
WFUEL \(=\) weight of main impulse plus reserve fuel, lbs.
\(\mathrm{AC}(92)=\) trapped fuel welght coefficient
\(\mathrm{AC}(93)=\) fixed trapped fuel weight, lbs.
A typical input value for \(\mathrm{AC}(92)\) will vary from 0.005 to 0.03 .
The equation for tropped oxidizer weight is
\[
\begin{equation*}
\text { WOTRAP }=\mathrm{AC}(94) * \text { WOXID }+\mathrm{AC}(95) \tag{6.1.90}
\end{equation*}
\]
where
WOTRAP = weight of oxidizer trapped in tank and lines, lbs.
WOXID = weight of main impulse plus reserve oxidizer, lbs.
\(\mathrm{AC}(94)=\) trapped oxidizer weight coefficient
\(\mathrm{AC}(95)=\) fixed trapped oxidizer weight, lbs.
A tppical input value for \(\mathrm{AC}(94)\) will vary from 0.005 to 0.03

\subsection*{6.1.19.2 Aircraft Reserve Propellant}

The equation for reserve fuel weight is
\[
\begin{equation*}
\text { WFRESV }=\mathrm{AC}(84) * \text { WFUELM }+\mathrm{AC}(85) \tag{6.1.91}
\end{equation*}
\]
where
\begin{tabular}{l}
WFRESV \\
WFUELM
\end{tabular} weight of fuel reserve, lbs.
AC(84) \(=\) reserve fuel weight coefficient
AC(85)

The equation for reserve oxidizer weight is
\[
\begin{equation*}
\text { WORESV }=A C(86) * \text { WOXIDM }+A C(87) \tag{6.1.92}
\end{equation*}
\]
```

where
WORESV = weight of oxidizer reserve, lbs.
WOXIDM = weight of main impulse oxidizer, lbs.
AC(86) = reserve oxidizer weight coefficient
AC(87) = fixed reserve oxidizer weight, lbs.

```

A typical input value for \(\mathrm{AC}(84)\) and \(\mathrm{AC}(86)\) will vary from 0.01 to 0.20 .
6.1.19.3 Attitude Control System (ACS) Propellants (In-Flight Losses)

The attitude control system is based on a monopropellant system. The equations for ACS fuel and oxidizer weight are
\[
\begin{equation*}
\mathrm{WACSFU}=\mathrm{AC}(96) * \mathrm{WTO}+\mathrm{AC}(97) \tag{6.1.93}
\end{equation*}
\]
and
\[
\begin{equation*}
\text { WACSOX }=\text { WACSFU * OFACS } \tag{6.1.94}
\end{equation*}
\]
```

where
WACSFU = weight of ACS fuel, lbs.
WTO = gross weight, lbs.
AC(96) = ACS fuel weight coefficient
AC(97) = fixed ACS fuel weight, lbs.
WACSOX = weight of ACS oxodizer, lbs.
OFACS = ACS oxidizer to fuel mixture ratio by weight

```

A predesign value for \(\mathrm{AC}(96)\) from 0.001 to 0.005 may be used.

\subsection*{6.1.19.4 Main Propellants}

The main impulse propellant equations are
\[
\begin{equation*}
\text { WFUELM }=\text { WPMAIN } /(1 .+O F) \tag{6.1.95}
\end{equation*}
\]
and
\[
\begin{equation*}
\text { WOXIDM }=\text { WFUELM } * \text { OF } \tag{6.1.96}
\end{equation*}
\]
where
WFUELM \(=\) weaght of main impulse fuel, lbs.
WPMAIN = weight of main impulse propellant, lbs.
\(\mathrm{OF} \quad=\) main oxidizer to fuel mixture ratio by weight
WOXIDM \(=\) weight of main impulse oxidizer, lbs.

\subsection*{6.1.20 Aırcraft Weight Summary}

The total weight of main impulse plus reserve fuel and the total weight of main impulse plus reserve oxidizer are summed-by the equations:
\[
\begin{align*}
& \text { WFUEL }=\text { WFUELM + WFRESV } \tag{6.1.97}\\
& \text { WOXID }=\text { WOXIDM + WORESV } \tag{6.1.98}
\end{align*}
\]

The total weight of fuel and oxidizer in the tanks are summed by the equations
\[
\begin{align*}
& \text { WFUTOT }=\text { WFUEL }+ \text { WFTRAP } \tag{6.1.99}\\
& \text { WOXTOT }=\text { WOXID }+ \text { WOTRAP } \tag{6.1.100}
\end{align*}
\]

The total weight of propellant tanked is summed by the equation
WP - WFUTOT + WOXTOT

The operating weight empty is summed by the equation
WOFMMITY = WEMPTY + WRESID + WCREW + WACSFU + WACSOX

The zero fuel weight is summed by the equation
\[
\begin{equation*}
\text { WZROFU }=\text { WOPMTY }+ \text { WPAYLD } \tag{6.1.103}
\end{equation*}
\]

The gross weight is summed by the equation
WTO = WZROFU + WPMAIN + WFRESV + WORESV

The landing weight is calculated by the equation
\[
\begin{equation*}
\text { WLAND }=\text { WTO }-\operatorname{AC}(100) * \text { WPMAIN } \tag{6.1.105}
\end{equation*}
\]

\subsection*{6.1.21 Booster Prope11ants}
6.1.21.1 Booster Trapped Propellant

The equation for tropped fuel weight is
\[
\begin{equation*}
\text { BWFTRP }=\mathrm{BC}(92) * \text { BWFUEL }+\mathrm{BC}(93) \tag{6.1.106}
\end{equation*}
\]
```

where
BWFTRP = weight of fuel trapped in tank and lines, lbs.
BWFUEL = weight of main mmpulse plus reserve fuel, lbs.
BC(92) = trapped fuel weight coefficient
BC(93) = fixed trapped fuel weight, lbs.

```

A typical input value for \(\mathrm{BC}(92)\) will vary from 0.005 to 0.3
The equation for trapped oxidizer weight is
\[
\begin{equation*}
\text { BWOTRP }=\mathrm{BC}(94) * \mathrm{BWOXID}+\mathrm{BC}(95) \tag{6.1.107}
\end{equation*}
\]
```

where
BWOTRP = weight of oxidizer trapped in tank and lines, lbs.
BWOXID = weight of main impulse plus reserve oxidizer, lbs.
BC(94) = trapped oxidizer weight coefficient
BC(95) = fixed trapped oxidizer weight, lbs.
A typical input value for $\mathrm{BC}(94)$ will vary from 0.005 to 0.03 .

```

\subsection*{6.1.21.2 Booster Reserve Propellant}

The boostex propellant residuals are summed by the equation
BWRESD = BWFTRP + BWOTRP

The equation for reserve fuel weaght is
\[
\begin{equation*}
\text { BWFRES }=\mathrm{BC}(84) * \text { BWFULM }+\mathrm{BC}(85) \tag{6.1.109}
\end{equation*}
\]
where
BWFRES = weight of fuel reserve, lbs.

BWFULM = main impu1se fuel weight, lbs.
\(\mathrm{BC}(84) \quad=\) reserve fuel weight coefficient
\(B C(85)=\) fixed resexve fuel weight, lbs.
A typical input value for \(\mathrm{BC}(84)\) will vary from 0.01 to \(0.20^{\text {. }}\)
The equation for reserve oxidizer weight is
\[
\begin{equation*}
\text { BWORES }=\mathrm{BC}(86) * \mathrm{BWOXM}+\mathrm{BC}(87) \tag{6.1.110}
\end{equation*}
\]
where
BWORES = weight of oxidizer reserve, Ibs.
BWOXM = main impulse oxidizer weight, lbs.
\(B C(86)=\) reserve oxidizer weight coefficient
\(B C(87)=\) fixed reserve oxidizer weight, lbs.
A typical input value for \(\mathrm{BC}(86)\) will vary from 0.01 to 0.20

\subsection*{6.1.21.3 Main Propellants}

If a mass ratio and mixture ratio are input, the propellants are calculatedby the following equations:
\[
\begin{align*}
& \text { BWPMAN }=\text { BWTO } *(\text { BMASRT }-1 .) / \text { BMASRT } \tag{6.1.111}\\
& \text { BWFULM }=\text { BWPMAN } /(\text { BMIXRT }+1 .) \tag{6.1.112}\\
& \text { BWOXM }=\text { BWPMAN }- \text { BWFULM } \tag{6.1.113}
\end{align*}
\]
where
BIWPMAN = weight of main impulse propellant, lbs.
BWTO \(=\) gross weight, lbs.
BMASRT = stage mass ratio
BWFULM \(=\) main impulse fuel, lbs.
BMIXRT = oxidizer to fuel mixture ratio by weight
BWOXM = main impulse oxidizer, lbs.
If the main impulse propellant is calculated and input as BWPMAN, the weight of main impulse fuel and oxidizer are then calculated by the other two equations.

\subsection*{6.1.22 Booster Weight Summary}

The werght of the main impulse and reserve fuel and oxidizer are summed by the equations
\[
\begin{align*}
& \text { BWFUEL }=\text { BWFULM }+ \text { BWFRES } \tag{6.1.114}\\
& \text { BWOXID }=\text { BWOXM + BWORES } \tag{6.1.115}
\end{align*}
\]
6.1-40

The total weight of the fuel and oxidizer in the tank are summed by the equations:
\[
\begin{align*}
& \text { BWFUTL }=\text { BWFUEL }+ \text { BWFTRP } \tag{6.1.116}\\
& \text { BWOXTL }=\text { BWOXID }+ \text { BWOTRP } \tag{6.1.117}
\end{align*}
\]

The booster operating weight empty is summed by the equation
\[
\begin{equation*}
\text { BWOPMT }=\text { BWEMPTY }+ \text { BWRESD } \tag{7.1.118}
\end{equation*}
\]

The booster zero fuel weight (or burnout) is summed by the equation
\[
\begin{equation*}
\text { BWZROF }=\text { BWOPMT }+ \text { WTO } \tag{6.1.119}
\end{equation*}
\]

The booster gross weight is summed by the equation
\[
\begin{equation*}
\text { BWTO }=\text { BWZROF + BWPMAN + BWFRES + BWORES } \tag{6.1.120}
\end{equation*}
\]

\subsection*{6.1.23 Volume and Geometry Calculations}

The References 1 and 2 VSAC program contans several geometric scaling options, all of which are based on straightforward magnification or diminution of the nominal configuration. These scaling options are generally inadequate for realistic' configuration perturbations. Hence, in the ODIN/RLV alternate sources of geometric perturbations must be employed such as the geometry programs of Section 3.

\section*{REFERENCES:}
1. Oman, B.: Vehicle Synthesis for High Speed Alrcraft, Volume I - Analysis Techniques and User Instructions, AFFDL-TR-71-40, June 1971.
2. Oman, B.: Vehicle Synthesis for High Speed Alrcraft, Vołume II - Weights and Geometry Analysis, AFFDL-TR-71-40, June 1971.
3. Hague, D. S.: Weight Analysis for Advanced Ae rospace Vehicle Systems and Users Guide to the Program WAAVS II, Aerophysics Research Corporation, to be issued as a high number NASA contractor report.
4. Anon.: Space Shuttle Synthesis Program (SSSP), Volume I, Part 1 Engineering and Programming Discussion, General Dynamics Report GDC-DB70-002, December 1970
5. Anon.: Space Shuttle Synthesis Program (SSSP), Volume I, Part 2 - Program Operating Instructions, General Dynamics Report GDC-DB70-002, December 1970.

TABLE 6.1-1 TYPICAL FAIRING WEIGHTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Nio. & Airplane & Nose Gear Door & Wirdishteld and Canopy & 21an Gcar Doors & Flight Openung Doors & Speed Brakes & \begin{tabular}{l}
Total \\
Sccondary \\
Structure
\end{tabular} & Body Wetted Area & AC(17) \\
\hline 1 & 2-33 & 20 & 366 & 42 & 0 & 53 & 481 & 533 & 0.90 \\
\hline 2 & \(\overline{\mathrm{x}}\)-10 2 A & 21 & 168 & 197 & 0 & 17 & 403 & 669 & 0.60 \\
\hline 3 & -3F-88 & 32 & 174 & 177 & 0 & 31 & 414 & 715 & 0.58 \\
\hline 4 & -1053 & 41 & 293 & 40 & 384 & 402 & 1160 & 1030 & 1.13 \\
\hline 5 & F-105D & 35 & 278 & 169 & 430 & 402 & 1364 & 991 & 1.38 \\
\hline \(\sigma\) & F-101C & 27 & 251 & 136 & 407 & 174 & 995 & 1036 & 0.96 \\
\hline 7 & F-101B & 28 & 376 & 127 & 272 & 150 & 953 & 827 & 1.15 \\
\hline \(\delta\) & F-102A & 30 & 302 & 166 & 536 & 35 & 1059 & 991 & 2.07 \\
\hline 9 & F-106A & 70 & 662 & 171 & 632 & 72 & 1607 & 1222 & 1.32 \\
\hline 10 & B-58A & 85 & 486 & 235 & 0 & 0 & 806 & 1373 & 0.59 \\
\hline
\end{tabular}

TABLE 6.1-2 SECONDARY STRUCTURE DATA
\begin{tabular}{|l|l|}
\hline Fairing Tme & \begin{tabular}{c}
WF at \(\mathrm{Q}=400 \mathrm{lbs} / \mathrm{fi}^{2}\) \\
and \(\mathrm{T}=400^{\circ} \mathrm{F}\)
\end{tabular} \\
\hline Aerodynamic Shroud & 4.80 \\
Canopy Fairing & 4.00 \\
Equipment Fairing & 1.50 \\
Dorsal Faring & 2.00 \\
Cable Fairmg & 1.50 \\
Landmg Gear Fairing & 2.00 \\
\hline
\end{tabular}

TABLE 6.1-3 TYPICAL SPIKE WEIGHTS
\begin{tabular}{|c|c|}
\hline TYPE OF SPIKE . & AC(109) \\
\hline I/2 ROUND - FIXED & 35 \\
FULL RONND - TRANSLATING & 70 \\
FULL TPANSLATANG AND EXPANDING & 290 \\
\hline
\end{tabular}

TABLE 6.1-4 AIRCRAFT SYSTEM GIMBAL PARAMETERS
\begin{tabular}{|l|l|}
\hline weluvered Torque & 6,000 to \(3,000,000 \mathrm{lb}\)-in \\
Nozzle Deflection & 21020 degrees \\
Nozzle Deflection Nate & 5 to 25 degrees/sccond \\
Operating Time & 50 to 1200 scconds \\
Thermal Enrironment & \(-42010 \div 100^{\circ} \mathrm{F}\) \\
Accelcration & 2.51015 g \\
\hline
\end{tabular}

TABLE 6.1-5 TYPICAL AIRCRAFT CREW PROVISION INPUTS
\begin{tabular}{|c|c|c|c|}
\hline SYSTLM DESCRIPTION & AC(7) & AC(80) & \(A C(75)\) \\
\hline Lefuipment Envirommental Control & 0.0005 & - & 100 \\
\hline Personncl Environmental Control & - & 10 & 250 \\
\hline Compartment Insulation & - & 50 & - \\
\hline \multicolumn{4}{|l|}{Accommodations for Personnel} \\
\hline B-70 1ype Encojssulated Seat & - & 570 & - \\
\hline X-15 Ljection Seat & - & 300 & - \\
\hline Gemini Ejection Seat & - & 220 & - \\
\hline Lightweignt Ejection Seat & - & 100 & - \\
\hline Conventional Clew Sual & - & 50-120 & - \\
\hline - & & & \\
\hline Fuxed Life Support & - & 10 & - \\
\hline Fuxd Emergency Efuupment & - & 50 & - \\
\hline Crew Station Controls and Panels & - & 40 & 50 \\
\hline
\end{tabular}

TABLE 6.1-6 TYPICAL INPUTS FOR CREW AND CREW LIFT SUPPORT
\begin{tabular}{|l|c|c|}
\hline DESCri2TION & AC(72) & AC(73) \\
\hline Crcw, Gcar and Accessories & \(220-290\) & - \\
Crc, Infc Sapiort & \(2-5\) & \(25-50\) \\
\hline
\end{tabular}

FIGURE 6．1－1．ALUMINUM WING WEIGHTS（NO VARIABLE SWEEP PENALTY INCLUDI：D）

FIGURE 6．1－2，HTGH TEMPERATURE AND THIN SUPERSONIC WING WEIGHTS

FIGURE 6.1-3. VERTICAL FIN WEIGHTS

FIGURE 6.1-4. HORIZONTAL STABILIZER WEIGHTS

FIGURE 6.1-5. FAIRING WEIGHT DYNAMIC PRESSURE FACTOR

FIGURE 6.1-6. FAIRING WEIGHT TEMPERATURE FACTOR

FIGURE 6．1－7．BASIC AIRCRAFT BODY WEIGHTS

FIGURE 6．1－8．BASIC AIRCRAFT BODY WEIGHT TEMPERATURE FACTOR

FIGURE 6.1-10 ROCKET ENGINE THRUST STRUCTURE

FIGURE 6.1-11. BOOSTER INTEGRAL FUEL TANK WEIGHTS

FIGURE 6.1-12. BOOSTER INTEGRAL OXIDIZER TANK WEIGHTS.

FIGURE 6.1r13. AIRCRAFT INSULATION WEIGHTS

FIGURE 6.1-14. BOOSTER INSULATION WEIGHT

\section*{ORIGINAL PAGE IS
OF POOR QUA'ity}

FIGURE 6.1-15. AIRCRAFT LANDING GEAR HEIGHT

FIGURE 6.1-16. AIRCRAFT TURBORAMJET ENGINE WEIGHT

FIGURE 6.1-17. AIRCRAFT RAMJET ENGINE WEIGHT

FIGURE 6.1-18. AIRCRAFT ROCKET ENGINE WEIGHT

FIGURE 6.1-19. AIRCRAFT FUEL TANK WEIGHT

FIGURE 6.1-20. X15 CONCEPT TANK WEIGHTS

FIGURE 6．1－21．AIRCRAITT AND BOOSTER TANK INSULATIION WEIGHTS

FIGURE 6．1－22．AIRCRAFT AND BOOSTER TANK INSULATION FLIGHT TIME CORRECTION FACTOR

\[
\begin{aligned}
& \text { ORIGINAL PAGE IS } \\
& \text { OF POOR QUALITY }
\end{aligned}
\]

FIGURE 6.1-25. AIRCRAFT CRYOGENIC PROPELLANT OXIDIZER SYSTEM WEIGHTS

FIGURE 6.1-26. AIRCRAFT CRYOGENIC PROPELLANT PRESSURIZATION SYSTEM WEIGHTS

FIGURE 6.1-27. AIRCRAFT INTERNAL DUCT WEIGHT

FIGURE 6.1-28. AIRCRAFT INLET VARIABLE RAMPS, ACTUATORS, AND CONTROL WEIGHTS

FIGURE 6.1-29. BOOSTER MAIN PROPULSION WEIGHTS

FIGURE 6.1-30. BOOSTER CRYOGENIC PROPELLANT FUEL SYSTEM WEIGHTS

FIGURE 6.1-32. BOOSTER CRYOGENIC PROPELLANT PRESSURIZATIŌN SYSTEM WEIGHTS

IGURE 6.1-33. AIRCRAFT AND BOOSTER GIMBAL SYSTEM WEYGHTS
(Twenty Degrees Per Second)

FIGURE 6.1-34. AIRCRAFT GIMBAT SYSTEM WEIGHT (Five Degrees Per Second)

FIGURE 6.1-35. AIRCRAFT ATTITUDE CONTROL SYSTEM WEIGHT

FIGURE 6.I-37. AIRCRAFT ELECTRICAL SYSTEM WEIGHT

TABLE OF CONTENTS FOR SECTION 6.2; PROGRAM VLAMP
Section Page
6.2.1 Introduction 6.2-2
6.2.2 The Surface Model 6.2-2
6.2.3 The Elemental Triangle 6.2-3
6:2:4 Center of Volume 6.2-5
References 6.2-6
Illustrations 6.2-7

\subsection*{6.2 PROGRAM VAMP: A DETAILED VOLUML,, ARI: \(\Lambda\), AND MASS \\ PROPERTIES CODC.}

VAMP is a general purpose program which estimates the volume, area, and mass properties of closed shell surfaces. It hat the abzlity to incorporate any number of point inertia sources into the propertses of the shell. By repetitive analysis, the combined properties of any number of shell surfaces and point inertias may be obtained.

Complex sholls are represented by a distribution of quadrilateral panel elements over the shell surface. Each such quadrılateral clement is decomposed into two triangular eloments. Thas paneling technique differs from that employed in the programs of Section 3.1 and 4.1. These programs employ a mean planar representation of each surface panel.

In the VAßP code a mass per unit area or volume is associated with each quadrilateral element. Thus, the mass properties of a complex shell structure such as a vehicle skin, tank, or duct surface can readily be computed. Volumetric properties of solid bodies can also be obtained by means of Gauss's divergence theorem applied over the solid's surface. This theorem relates an integral through a volume to an integral over a surface. The surface employed is the closed system of quadrilateral panels distributed on the solid's surface. If the volume of an open shell is required, a suitable closing surface must be defined for the volume calculation.

Program VAMP computes the following propertaes of a closed shell surface:
1. volumie enclosed
2. center of volume
3. volume of skin (from a finite thickness specafied over each quadrilateral element)
4. skin surface ared
5. planform area
6. total skin weight (from a surface density specified over each quadrılateral element)
7. Skın center of gravity locations
8. skin inertias

Program VAMP contains interfaces to the geometry program LRCACP described in Section 3.3 of the present report. This interface provides a general plot visualızation capability as discussed in Section 3.3.

In outline of program thap as provaded below This discussion is based on that provided by Norton in Reference 1. Detaled anformation regarding this program is contained in the orrginal NASA Langley Reseurch Center documentation of Reference 1. \({ }^{\wedge}\)

\subsection*{6.2.1 Introduction}

Program VAMP computes the mass properties, c.g. location, enclosed volume, wetted area, and planform area of aerospace vehicles. It 1 , applicable to any closed structure that has a plane of symmetry, e.g., fu, olage, stiffened fuel tank, etc. The progran may be applied to non-symmetric structures in the ODIN/RLV simulation by appropriate data base manipulatıons, Section 2.4.5.2. The vehicle is described to the program by ordered sets of \(X, Y, Z\) coordinates of points on its surface. These data are input in the form of cross sections normal to the longitudinal axis. \(Y=0\) is the planc of symmetry.

The surface is approximated by quadrilaterals generated between the ordered set of points. Since the four corners of a quadrilateral are not necessarily coplanar, each quadrilateral is analyzed as two truangles. The mass properties of each quadrilateral may be computed from
a. thickness and density input for each quadrilateral
b. weight per unit area input at each point
c. combination of both

The weight per unit area can be a composite of the shell structural will including skin, insulation, ribs, strıngers, standoffs, brackets, etc. Computed mass properties contain all contributions from the distributed mass in the vehicle surface wall. Additional point mass sources may be added by specifying each one's center of gravaty (c.g.) location and the mass properties about this c.g. These point masses may lie inside or outside the surface and do not have to be symmetrical with respect to \(Y=0\).

Program VAMP provides a means for combining detailed shape and mass data to produce the overall mass vehicle properties. The mass properties of well defined subsections are also produced; hence, the vehicle mass distribution can be obtaired. The progran is applicable to any closed structure that has a plane of symmetry; e.g., alrcraft fuselage, staffened fuel tank, etc. The program is only aware of the existance of the quadrilateral representation of the structure's surface and the mass in or near this surface. Mass contributions from b.lkheads, floors, cargo, tanks, fuel avionics, engines, etc. which lie within the surface may be added as point mass sources. The program may be used to compute the properties of such point sources in a separate calculation. The component mass, area, and volume properties may be merged through the ODIN/RLV data base. It should be noted that certan mass properties of a fuel tank may be computed by hidp. The results can be used as a point source input in a fuselage or wing analysis. Fuel tank output will contain the center of volume. This is also the fucl's center of gravity. The center of gravity travel of the fuel tank as the tank enpties may be obtained by an appropriate sequence of analyses.

\subsection*{6.2.2 The Surface Model}

The surfaces to be considered here can be of fairly arbitrary shape, for example, a noncircular aircraft fuselage including fins, and wings, Figure 6.2-1. The figure also illustrates the basic coordinate reference system.
employed in VAMP. The \(X\) axis is the body longltudenal axis, positivo aft. Positive \(Z\) is up and positive \(Y\) is starboard. An \(X=\) constant plane through the body is a station plane and the curve formed by the intersection of the surface and a station plane is a station contour. The body is divided into segments. Each segment is bounded by two station planes. Addutional station planes may lie within a segment. The surface points associated with a given segment £orm a separate group of points.

Successive station contours are specified for increasing values of \(X\). Each station contour is specified on the right hand half plane (\(Y \geqslant 0.0\)) from the bottom of the contour to the top of the contour, Figure \(6.2-2\). The number of points on all station contours within a given scgment must be the same. Analytically, the station contour on the \(i^{t h}\) segment is given by
\[
\begin{aligned}
X_{k} & =X^{i} \\
Y_{k} & =Y_{k}^{i}{ }_{k} \\
Z_{k} & =Z_{k}^{i}{ }_{k} \quad k=1,2, \ldots, N_{i}
\end{aligned}
\]
where \(N_{i}\) is the number of points on each contour in the \(i^{\text {th }}\) segment. This is illustrated in Figure 6.2-2.

A portion of the quadrilateral grid formed from the input points is illustrated in Figure 6.2-3. The quadrilaterals are the surface elenents used in the analysis. It has been previously noted that the four corners of these quadrilaterals are not necessarily coplanar and that each is analyzed as two triangular surface elements. The diagonals in Figure 6.2-3 show the triangles. The points \(P(X, Y, Z)\) define the shape and location of all triangles. The mass of each triangular surface element is based on
1. thickness and density which is specified for each quadrilateral
2. weight per unit area specified at each point in the mesh
3. from a combination of both

The thickness and density are assumed ぶ:stant coer wiy one f.admilateral. A different value may be input for each quadrilatcral. The contribution from the weight per unit area is assumed constant over any one triangle. A mean weight per unit area is obtanced for each trangle by linear interpolation between the anputs at the three points which define the triangle.

\subsection*{6.2.3 The Elemental Triangle}

An elemental traangle is 1 lustiat dedow The origin of the coordinate system is the lower left corner If the trimgle is of miform thichness and density and \(z=0\) is the triangle's midplame, then the following products of ancrtia and monent of area about \(z\) are zero.
\[
\begin{equation*}
I_{y z}=I_{x z}=S .-0.0 \tag{6.2.1}
\end{equation*}
\]

For a thin triangle of thıckness \(t\)
\[
\begin{gather*}
I_{x x}=\iiint \rho\left(y^{2}+z^{2}\right) d x d y d z \approx \rho t \iint y^{2} d x d y \tag{6.2.2}\\
I_{y y}=\rho t \iint x^{2} d x d y \tag{6.2.3}\\
I_{z z} \quad I_{x x}+I_{y y} \tag{6.2.4}
\end{gather*}
\]

It can be shown that the following relationships hold
\[
\begin{align*}
& \text { Area, } \quad S=\int_{\lambda L}^{A} \int_{R}^{x_{R}} d x d y=A B / 2 \tag{6.2.5}\\
& x \text { moment, } \quad S_{x}=\iint x d x d y=S(B+C) / 3 \tag{6.2.6}\\
& y \text { moment, } \quad S_{y}=\iint y d x d y=S A / 3 \tag{6.2.7}\\
& z \text { moment of inertia, } \quad I_{y y}=\iint x^{2} d x d y=S\left(B^{2}+B C+C^{2}\right) / 6 \tag{6.2.8}\\
& x \text { moment of inertia, } \quad I_{x x}=\iint y^{2} d x d y=S A^{2} / 6 \tag{6.2.9}\\
& x y \text { product of inertia, } \quad I_{x y}=\iint x y d x d y=S A(B+2 C) / 12 \tag{6.2.10}\\
& x \text { coordinate of centaid, } \quad \bar{x}=S_{x} / S=(B+C) / 3 \tag{6.2.11}\\
& y \text { coordinate of controid, } \quad \bar{y}=S_{y} / S=V / 3 \tag{6.2.12}
\end{align*}
\]

Let the c.g. be located at \((\bar{x}, \bar{y})\). The inertias and products of inertia about the (\(\bar{x}, \bar{y}\)) are
\[
\begin{align*}
& \overline{\mathrm{I}}_{x x}=S A^{2} / 18 \tag{6,2.13}\\
& \overline{\mathrm{I}}_{y y}=S\left(\mathrm{~B}^{2}-\mathrm{BC}+\mathrm{C}^{2}\right) / 18 \tag{6.2.14}\\
& \overline{\mathrm{I}}_{x y}=S A_{(}(2 C-B) / 36 \tag{6.2.15}\\
& \overline{\mathrm{I}}_{\mathrm{zz}}=\overline{\mathrm{I}}_{x x}+\overline{\mathrm{I}}_{y y} \tag{6.2.16}
\end{align*}
\]

These properties of area are multiplicd by the mass per unit area to obtain mass properties. The mass or weight per unit area, \(t\), is specified for each quadrilateral. Each quadrilateral is analyzed as two triangles, Section 6.2.2. An additional weight per unit area, \(V\) may be defined at erery point on the surface. These points establish the quadrilateral and triangle geometries. On any elemental triangle, the mean additional \(W\) from the three triangle vertices is employed.

\subsection*{6.2.4 Center of Volume}

The closed surface center of volume is computed by Guniss's disesgence theorem,
\[
\begin{equation*}
\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=\iint_{S} \vec{F} \cdot \overrightarrow{\mathrm{n}} \mathrm{~d} S \tag{6.2.17}
\end{equation*}
\]
where
\(\stackrel{W}{\vec{\nabla}}\) - the grad operator \(\frac{\partial}{\partial x} \cdot \vec{i}+\frac{\partial}{\partial y} \cdot \vec{j}+\frac{\partial}{\partial z} \cdot \vec{k}\), Reference?
\(\vec{F}\) - a vector function of position
\(\vec{n}\) - the unit outward normal to the surface \(S\)
The divergence theorem can also be expresised in temas of a scalar function of position, \(\phi\), where
\[
\begin{equation*}
\vec{F}=\nabla \phi \tag{6.2.18}
\end{equation*}
\]

Substituting Equation (6.2.18) into (6.2.17)
\[
\begin{equation*}
\iiint_{V^{\nabla^{2}}} \cdot \phi \mathrm{dV}=\iint_{S} \stackrel{V}{\mathrm{~V}} \phi \cdot \stackrel{\overrightarrow{\mathrm{n}} \mathrm{~d} S}{ } \tag{6.2.19}
\end{equation*}
\]

Selecting
\[
\begin{equation*}
\phi=x^{2} / 2 \tag{6.2.20}
\end{equation*}
\]
results in
\[
\begin{equation*}
\iiint_{V} \mathrm{dV}=\iint_{S} \times \overrightarrow{\mathrm{I}} \cdot \overrightarrow{\mathrm{n}} \mathrm{l} \tag{6.2.21}
\end{equation*}
\]
or
where
\[
\begin{array}{r}
V=\iint_{S} a x d S \\
\vec{n}=a \vec{i}+b \vec{j}+c \vec{k} \tag{6.2.23}
\end{array}
\]

Equation（6．2．22）defines the enclosed volune．The volume centroid may be found by substituting the generating function
\[
\begin{equation*}
\phi=\frac{x^{3}}{6} \tag{6.2.24}
\end{equation*}
\]

Into divergenge theorem，Equation（6．2．19）．Thus gives
\[
\begin{equation*}
\iiint_{V} x d V=\iint_{S}\left(x^{2} / 2\right) \stackrel{r}{1} \cdot \stackrel{\rightharpoonup}{n} d S=\iint_{S} a x^{2} / 2 \cdot d S \tag{6.2.25}
\end{equation*}
\]

By definition
\[
\begin{equation*}
\bar{x} \cdot v=\iiint_{V} x d V \tag{6.2,26}
\end{equation*}
\]
where \(\vec{x}\) is the volume centroid along the \(x\) axis．From equations（6．2．25）and （6．2．26）
\[
\begin{equation*}
\bar{x}=\frac{1}{2 V} \iint_{S} a x^{2} d S \tag{6.2.27}
\end{equation*}
\]

Equations（6．2．22）and（6．2．27）are integrated over each elemental surface triangle and summed over the surface to obtain the volume and center of volume，respectively．

ミコニEREICES：
1．Norton，Patrick J．，Volume，Area，and Nass Properties and Configurntion Plots of Aerospace Vehicles（Program VAMP），to be published as a NASA Contractor Report．
\(\therefore\) Hague，B．：An Introduction to Vector Analysis，Yetnuen＇s Monographs Ninsical Subjects，John Wiley，and Sons，Inc． 1961.

\(L-Z \cdot 9\)

FICURE 6.2-2. STATION CONTOUR DEFINTTION

FIGURE 6.2-3. TRIAGGLAR SHMACF ELEMTNTS FMPLOYED IN VOLUME, AREA, AND MASS PROPIRTITS ANALYSIS

\section*{SECTION 7}

PERFORMANCE

The ODIN/RLV program library contains four performance estimation programs. Program sources are previous Air Force Flight Dynamics Laboratory studies and in-house Air Force and NASA programming. Programs are provided for
1. Simplified take-off and landing analysis
2. Approximate segmented mission analysis
3. Three-degree-of-freedom flight path optimization
4. Combat performance optimization and analysis

Each program is outlined in the following sections. For complete details, reference should be made to the origanal source documentation. At the present time the simplified take-off and landing analysis code is an integral part of the approximate segmented mission analysis code.

TABLE OF CONTENTS FOR SECTION 7.1, PROGRAM TOLAND
\begin{tabular}{|c|c|c|}
\hline Section & & Page \\
\hline \multirow[t]{6}{*}{7.1.1} & Take-Off High Lift Aerodynamics & 7.1-1 \\
\hline & 7.1.1.1 Take-off Lift and Drag & 7.1-1 \\
\hline & 7.1.1.1(a) Maximum Lift and Drag & 7.1-1 \\
\hline & 7.1.1.1(b) Ground Roll Lift and Drag & 7.1-3 \\
\hline & 7.1.1.1(c) Rotation Lift and Drag & 7.1-3 \\
\hline & 7.1.1.1(d) Lift and Drag at 50 Foot Obstacle & 7.1-3 \\
\hline 7.1 .2 & Ground Roll and Rotation & 7.1-4 \\
\hline 7.1 .3 & Flight to Clear 50 Foot Obstacle & 7.1-4 \\
\hline 7.1 .4 & Landing High Lift Aerodynamics & 7.1-5 \\
\hline 7.1 .5 & Landing Lift and Drag & 7.1-6 \\
\hline 7.1 .6 & Flight from 50 Foot Obstacle to Touchdown & 7.1-6 \\
\hline & References & 7.1-7 \\
\hline & Illustrations & 7.1-8 \\
\hline
\end{tabular}

\subsection*{7.1 PROGRAM TOLAND: A SIMPLIFIED TAKE-OFF \\ AND LANDING ANALYSIS CODE}

Program TOLAND was originally constructed by Mr. Louis•J. Williams of -NASA's 'Advanced Concepts and Missions Division, OART. The program provides
1. Simplified high lift aerodynamics based on Reference 1
2. A ground roll analysis
3. Rotation logic
4. Climb out to clear a 50 foot obstacle

TOLAND, as presently installed in the ODIN/RLV does not exist as an independent code; rather it is an option in the Section \(7.2=\) ASEG II program.
7.1.1 Take-Off High Lift Aerodynamics

Program TOLAND uses a self-contained aerodynamics package based primarily on the Reference 1 DATCOM methods. Angle of attack in the ground run and rotation maneuvers is determined from the vehicle geometry. In the ground roll
\[
\begin{equation*}
\alpha_{G}=\alpha_{B G}+\alpha_{W B} \tag{7.1.1}
\end{equation*}
\]
where
\(\alpha_{G}=\) wing incidence in ground roll
\(\alpha_{B G}=\) body incidence in ground roll
\(\alpha{ }_{W B}=\) wing incidence relative to body
In the rotated attitude
\[
\begin{equation*}
\alpha_{R}=\alpha_{B_{M A X}}-1.0+\alpha_{W B} \tag{7.1.2}
\end{equation*}
\]

The additional symbols are
\(\alpha_{R} \quad=\) wing incidence following rotation
\(\alpha_{B_{M A X}}=\underset{\text { maximum body }}{ } \begin{gathered}\text { condition }\end{gathered}\)

> 7.1.1.1 Take-Off Lift and Drag
7.1.1.1(a) Maximum Lift and Drag

The wing maximum lift coefficient is given by
\[
\begin{equation*}
\mathrm{C}_{\mathrm{I}_{\mathrm{MAX}}}=\left(\mathrm{C}_{\mathrm{L}_{\mathrm{MAX}}}\right)_{\mathrm{BASE}}+\Delta \mathrm{C}_{\mathrm{I}_{\mathrm{MAX}}}+\Delta \mathrm{C}_{\mathrm{L}_{\mathrm{FLAP}}} \tag{7.1.3}
\end{equation*}
\]
with a corresponding angle of attack
\[
\begin{equation*}
\alpha^{\prime}=\left(\alpha_{\mathrm{L}_{\mathrm{MAX}}}\right)_{\text {BASE }} \tag{7.1.4a}
\end{equation*}
\]

During take-off the maximum angle of attack, \(\alpha_{\text {MAX }}\),is limited to
\[
\begin{equation*}
\alpha_{\operatorname{MAX}}=0.8 \cdot \alpha_{\mathrm{MAX}}^{\prime} \tag{7.1.4b}
\end{equation*}
\]

In these two expressions
\({ }^{C_{\text {LMAX }}} \quad=\) wing lift coefficient at the first peak; Figure 7.1-1
\(\left(\mathrm{C}_{\mathrm{L}_{\text {MAX }}}\right)_{\text {BASE }}=\) basic wing maximum lift coefficient
\(\mathrm{C}_{\text {LMAX }} \quad=\) maximum lift coefficient increment due to taper and sweep
\(\mathrm{C}_{\text {LfLAP }}=\) maximum lift coefficient increment from flap deflection
\(\left(\alpha_{M A X}\right)_{\text {BASE }}=\) basic wing angle of attack at maximum lift coefficient based on
The high lift aerodynamic model is a simplıfied DATCOM method for subsonic low aspect ratio, untwisted, symmetric section wings. Due to the low speeds encountered in take-off and landing, the DATCOM method is modified by the approximation
\[
\begin{equation*}
\beta=\sqrt{1-\mathrm{M}^{2}}=1.0 \tag{7.1.5}
\end{equation*}
\]

Cilean wing contributions to Equations (7.1.3) and (7.1.4) are obtanned from Figures 7.1-2 to 7.1-3. Figure 7.1-2 provides (CLMAX) BASE; Figure 7.1-3 gives \(\triangle C_{\text {LMAX }}\). The wing taper ratio correction factors Cl and C 2 of Figures 7.1-2 and 7.1-3 are obtained from Figure 7.1-4. In Figure 7.1-2, program TOLAND is limited to the lowest curve, and the curve for \(\mathrm{M} \leqslant 0.2\) is used in Figure 7.1-3. Angle of attack at maximum lift coefficient is obtained from Figure 7.1-5. (The charts employed are Figures 4.1.3.4-16b to 4.1.3.4-18a of the Reference 1 DATCOM).

Flap maxımum lift coefficient increment is based on the expression
where
\begin{tabular}{ll}
\(\left(C_{L_{A}}\right)_{\text {BASE }}\) & \(=\) linear lift coefficient slope/degrees \\
\(B_{F}\) & \(=\) flap span \\
\(B_{W E}\) & \(=\) exposed wing span \\
\(\bar{C}_{F}\) & - average flap chord \\
\(\bar{C}_{W E}\) & \(=\) average exposed wing chord \\
\(\int_{F}\) & \(=\) flap deflection
\end{tabular}

\subsection*{7.1.1.1(b) Ground Roll Lift and Drag}

During the ground roll, the lift coefficient is determined by
\[
\begin{align*}
C_{L_{G}} & =57.29 C_{L_{\alpha}} \cdot \sin \left(\alpha_{G}\right) \cos ^{2}\left(\alpha_{G}\right)+\left[\frac{C_{L_{M A X}}}{\cos \left(\alpha_{M A X}\right)}-\frac{57.29}{2} C_{L_{\alpha}} \sin \left(\alpha_{M A X}\right)\right] \\
& =F\left(\alpha_{G}\right) \quad \sin ^{2}\left(\alpha_{G}\right) \cos \left(\alpha_{G}\right) / \sin ^{2}\left(\alpha_{M A X}\right) \tag{7.1.7}
\end{align*}
\]
where \(C_{\text {L } \alpha}\) is the linear lift curve slope. The corresponding ground roll drag is taken as
\[
\begin{equation*}
\mathrm{C}_{\mathrm{D}}=\mathrm{C}_{\mathrm{D}_{\mathrm{O}}}+\mathrm{k} \cdot \mathrm{C}_{\mathrm{L}_{\mathrm{G}}}\left[\mathrm{C}_{\mathrm{L}_{\mathrm{G}}}-\mathrm{C}_{\mathrm{L}_{\mathrm{O}}}-\Delta \mathrm{C}_{\mathrm{L}_{\mathrm{FLAP}}}\right]+\mathrm{C}_{\mathrm{D}_{\mathrm{LG}}} \tag{7.1.8}
\end{equation*}
\]
where
\begin{tabular}{ll}
\(C_{D_{0}}\) & \(=\) zero lift drag coefficient \\
k & \(=\) induced drag factor \\
\(\mathrm{C}_{L_{O}}\) & \(=\) lift coefficient at zero wing incidence \\
\(\mathrm{C}_{\mathrm{D}}\) & \(=\) landing gear drag coefficient
\end{tabular}

\subsection*{7.1.1.(c) Rotation Lift and Drag}

The lift coefficient after rotation, \(C_{L_{R}}\), is given by Equation (7.1.7) with \(\alpha_{R}\) replacing \(\alpha_{G}\); that is,
\[
\begin{equation*}
C_{L_{R}}=F\left(\alpha_{G}\right) \tag{7.1.9}
\end{equation*}
\]

The lift coefficient is subject to the condition that
\[
\begin{equation*}
\mathrm{C}_{\mathrm{L}_{\mathrm{R}}} \leqslant\left(\mathrm{C}_{\mathrm{L}_{\mathrm{MAX}}}\right) /(1.1)^{2} \tag{7.1.10}
\end{equation*}
\]

This inequality constraint is imposed to prevent buffet or pitch-up problems. The drag coefficient after rotation is given by
\[
\begin{equation*}
C_{D_{R}}=C_{D_{0}}+k C_{L_{R}}\left[C_{L_{R}}-C_{L_{0}}-\Delta C_{L_{F L A P}}\right]+C_{D_{L G}} \tag{7.1.11}
\end{equation*}
\]

\subsection*{7.1.1.1(d) Lift and Drag at 50 Foot Obstacle}

The lift coefficient at a 50 foot obstacle is based on the rotation lift coefficient.
\[
\begin{equation*}
\mathrm{C}_{\mathrm{L}_{50}}=\mathrm{C}_{\mathrm{L}_{\mathrm{R}}} /(1.1)^{2} \tag{7.1.12}
\end{equation*}
\]

The corresponding drag is given by
\[
\begin{equation*}
C_{D_{50}}=C_{D_{0}}+k \cdot C_{L_{50}}\left[C_{L_{50}}-C_{L_{0}}-\Delta C_{L_{F L A P}}\right]+C_{D_{L G}} \tag{7.1.13}
\end{equation*}
\]

\subsection*{7.1.2 Ground Roll and Rotation}

The ground roll distance, \(X_{G}\), is based on the expression
\[
\begin{equation*}
X_{G}=\frac{13.07\left(\frac{W_{T O}}{\mathrm{~S} \cdot \mathrm{CLR}}\right)}{\frac{\mathrm{FTO}_{\mathrm{TO}}}{\mathrm{~W}_{\mathrm{TO}}}-\mu_{\mathrm{G}}-\frac{1}{2}\left(\frac{\mathrm{CD}_{\mathrm{GR}}}{\mathrm{C}_{\mathrm{L}_{\mathrm{R}}}}\right)} \tag{7.1.14}
\end{equation*}
\]
where
\[
\begin{equation*}
C_{D_{G R}}=\frac{1}{2}\left(C_{D_{G}}+C_{D_{R}}\right) \tag{7.1.15}
\end{equation*}
\]
and
\(\mathrm{F}_{\mathrm{TO}}=\) take-off thrust
\(\mathrm{W}_{\mathrm{TO}}=\) take-off weight
\(\mu_{G}=\) vehicle rolling friction coefficient
Time to reach the rotation point is given by
\[
\begin{equation*}
T_{G}=1.1842 X_{G} / V_{R} \tag{7.1.16}
\end{equation*}
\]
where the velocity at rotation, \(V_{R}\), is given by
\[
\begin{equation*}
V_{R}=17.16 \sqrt{\frac{W_{T O}}{\mathrm{SC}_{\mathrm{LR}}}} \tag{7.1.17}
\end{equation*}
\]

Rotation is assumed to occur instantaneously.

\subsection*{7.1.3 Flight to Clear 50 Foot Obstacle}

The average drag coefficient between rotation and 50 foot obstacle clearance points is assumed to be
\[
\begin{equation*}
C_{D_{R 50}}=\frac{1}{2}\left(C_{D_{R}}+C_{D_{50}}\right) \tag{7.1.18}
\end{equation*}
\]

The distance covered in clearing the obstacle is given by
\[
X_{50}=\frac{50.0+2.745\left(\frac{W_{T O}}{\mathrm{~S} \cdot \mathrm{C}_{\mathrm{LR}}}\right)}{\left(\frac{\mathrm{F}_{\mathrm{TO}}}{\mathrm{~W}_{\mathrm{TO}}}\right)-1.105\left(\frac{\mathrm{C}_{\mathrm{R} 50}}{\mathrm{C}_{\mathrm{L}_{\mathrm{R}}}}\right)}
\]

Time to clear the obstacle after rotation is
\[
\begin{equation*}
T_{50}=x_{50} /\left(1.6889 \times V_{R}\right) \tag{7.1.20}
\end{equation*}
\]

Thus, total distance for take-off over 50 foot obstacle is
\[
\begin{equation*}
X_{T O}=x_{G}+x_{50} \tag{7.1.21}
\end{equation*}
\]

The elapsed time is
\[
\begin{equation*}
\mathrm{T}_{\mathrm{TO}}=\mathrm{T}_{\mathrm{G}}+\mathrm{T}_{50} \tag{7.1.22}
\end{equation*}
\]

Total fuel used is
\[
\begin{equation*}
\mathrm{W}_{\mathrm{F}_{\mathrm{TO}}}=\mathrm{F}_{\mathrm{TO}} \cdot \mathrm{~T}_{\mathrm{TO}} /\left(\mathrm{I}_{\mathrm{SP}}^{\mathrm{TO}}\right. \tag{7.1.23}
\end{equation*}
\]

At the 50 foot obstacle the flight path angle is obtained from
\[
\begin{equation*}
\sin \left(\gamma_{50}\right)=\frac{\mathrm{F}_{\mathrm{TO}}}{W_{50}}-\frac{\mathrm{C}_{\mathrm{D} 50}}{\mathrm{C}_{\mathrm{L} 50}} \tag{7.1.24}
\end{equation*}
\]
where
\[
\begin{equation*}
W_{50}=W_{T O}-W_{F_{T O}} \tag{7.1.25}
\end{equation*}
\]

The corresponding rate of climb is given by
\[
\begin{equation*}
R C_{50}=1.6889 V_{50} \sin \left(\gamma_{50}\right) \tag{7.1.26}
\end{equation*}
\]

\subsection*{7.1.4 Landing High Lift Aerodynamics}

The landing analysis closely follows the take-off analysis but in reverse sequence starting from the 50 foot obstacle. The angle of attack at touch down is
\[
\begin{equation*}
\alpha_{\mathrm{TD}}=\alpha_{\mathrm{BTD}}-1.0+\alpha_{\mathrm{WB}} \tag{7.1.27}
\end{equation*}
\]
and in the subsequent ground roll
where \(\quad \alpha_{L R}=\alpha_{B L R}+\alpha_{W B}\)
\(\alpha_{T D}=\) wing incidence at touch down
\(\alpha_{B T D}=\) body incidence at touch down
\(\alpha_{\text {LR }}=\) wing incidence during landing ground roll
\(\alpha_{B L R}=\) body incidence in landing ground roll

\subsection*{7.1.5 Landing Lift and Drag}

The wing maximum lift coefficient during landing and the corresponding angle of attack are glven by Equations (7.1.3) and (7.1.4). Flap incremental lift is given by Equation (7.1.6). It should be noted that the landing configuration parameters such as flap angle and permissible body angle of attack will normally differ significantly between the take-off and landing configurations. At the 50 foot obstacle, configuration lift is assumed to be
\[
\begin{equation*}
\mathrm{C}_{\mathrm{L} 50}=\mathrm{C}_{\mathrm{L}} /(1.1)^{2} \tag{7.1.29}
\end{equation*}
\]

At touchdown, \(C_{\text {TD }}\), is based on Equation (7.1.7) using aTD; that is
\[
\begin{equation*}
\mathrm{C}_{\mathrm{L}_{\mathrm{TD}}}=\mathrm{F}\left(\alpha_{\mathrm{TD}}\right)+\Delta \mathrm{C}_{\mathrm{L}_{\mathrm{LAP}}} \tag{7.1.30}
\end{equation*}
\]
where \(\Delta C_{\text {IFIAP }}\) is given by Equation (7.1.6) using the landing flap setting. The inequality
\[
\begin{equation*}
\mathrm{C}_{\mathrm{L}}<C_{\mathrm{L}_{\mathrm{MAX}}} /(1.1)^{2} \tag{7.1.31}
\end{equation*}
\]
is used.

Similarly, during the subsequent landing ground roll,
\[
\begin{equation*}
C_{L_{L R}}=F\left(\alpha_{L R}\right) \tag{7.1.32}
\end{equation*}
\]

Drag coefficient at the 50 foot obstacle, \(C_{D}\), is , given by Equation (7.1.8) using appropriate landing coefficients. Drag at touchdown, \(\mathrm{CDTD}_{\mathrm{TD}}\), is given by Equation (7.1.8) using touchdown coefficients. Drag during the landing ground roll is given by
\[
\begin{equation*}
C_{D_{L R}}=C_{D_{0}}+k \cdot C_{L L R}\left(C_{L} C_{L R}-C_{L_{0}}\right)+C_{D G}+C_{D_{\mathrm{CHUT}}} \tag{7.1.33}
\end{equation*}
\]
where
\[
\mathrm{C}_{\mathrm{CHUT}}=\text { landing parachute drag }
\]

All other symbols are defined in Section 7.1.1.

\subsection*{7.1.6 Flight from 50 Foot Obstacle to Touchdown}

Velocity at touchdown is assumed to be
\[
\begin{equation*}
\mathrm{V}_{\mathrm{TD}}=17.16 \sqrt{\frac{\mathrm{~W}_{\mathrm{L}}}{\mathrm{~S} \cdot \mathrm{C}_{\mathrm{L}}}} \tag{7.1.34}
\end{equation*}
\]

The ground distance covered from 50 foot obstacle to touchdown is
\[
\begin{equation*}
\mathrm{C}_{\mathrm{L} 50}=\frac{50.0+2.745\left(\frac{\mathrm{~W}_{\mathrm{L}}}{\mathrm{~S} \cdot \mathrm{C}_{\mathrm{TD}}}\right)}{1.105\left(\frac{\mathrm{C}_{\mathrm{TD} 50}}{\mathrm{C}_{\mathrm{TD}}}\right)-\left(\frac{\mathrm{F}_{\mathrm{L}}}{W_{\mathrm{L}}}\right)} \tag{7.1.35}
\end{equation*}
\]
where
\(X_{\text {L50 }}=\) flight distance from 50 foot obstacle to touchdown
\(W_{\mathrm{L}} \quad=\) landing weight
\(C_{D_{\text {TD50 }}}=\frac{1}{2}\left(C_{D_{50}}+C_{D_{T D}}\right)\), the average drag coefficient
\(\mathrm{F}_{\mathrm{L}} \quad=\) approach thrust
Rate of sink at the 50 foot obstacle is
\[
\begin{equation*}
\mathrm{RS}_{50}=1.69 \mathrm{~V}_{50}\left[\left(\frac{\mathrm{C}_{\mathrm{C}_{\mathrm{L} 50}}}{\mathrm{C}_{\mathrm{L} 50}}\right)-\left(\frac{\mathrm{F}_{\mathrm{L} 50}}{\mathrm{~W}_{\mathrm{L}}}\right)\right] \tag{7.1.36}
\end{equation*}
\]

Flight path angle at the 50 foot obstacle is given by
\[
\begin{equation*}
\sin \left(\gamma_{L 50}\right)=\left(\frac{C_{D}}{C_{L 50}}\right)-\left(\frac{F_{L 50}}{W_{L}}\right) \tag{7.1.37}
\end{equation*}
\]

The ground roll distance is given by
\[
\begin{equation*}
x_{G L}=\frac{13.07\left(\mathrm{~S}_{\mathrm{L}} \cdot \mathrm{C}_{\mathrm{LTD}}\right)}{\mu+\frac{1}{2}\left(\mathrm{CD}_{\mathrm{LG}}-\mu \cdot \mathrm{C}_{\mathrm{L}_{\mathrm{LR}}}\right) / \mathrm{C}_{\mathrm{L}_{\mathrm{TD}}}} \tag{7.1.38}
\end{equation*}
\]

Total ianding distance is
\[
\begin{equation*}
x_{L}=x_{L 50}+x_{G L} \tag{7.1.39}
\end{equation*}
\]

REFERENCES:
1. Hague, D. S., Optimal Design Integration of Reusable Launch Vehicles, ODIN/RLV, Section 4.4, 'U. S. Aır Force Stabilaty and Control DATCOM,"

FIGURE 7.1-1. TYPICAL FIRST PEAKS IN LIFT COEFFICIENT VERSUS ANGLE OF ATTACK

FIGURE 7.1-2. SUBSONIC MAXIMUM LIFT OF WINGS WITH POSITION OF MAXIMLM THICKNESS BETWEEN 35 AND 50 PER CENT CHORD

FIGURE 7.1-3. SUBSONIC MAXIMUM LIFT INCREMENT FOR LOW ASPECT RATIO WINGS

\(\lambda\), taper fatio

\(\lambda\), taper ratio

FIGURE 7.1-4. TAPER RATIO CORRECTION FACTORS

Section Page
Introduction 7.2-1
7.2.1 Vehicle Aerodynamic Representation 7.2-3
7.2.1.1 Clean Aircraft 7.2-3
7.2.1.1(a) General Form 7.2-3
7.2.1.1(b) Polynomial Form 7.2-3
7.2.1.2 Store and Pylon Drag 7.2-4
7.2.2 Vehicle Propulsive Representation 7.2-5
7.2.3 Vehicle Mass Representation 7.2-5
7.2.3.1 Overall Weight Empty 7.2-5
7.2.3.2 Fuel Load 7.2-6
7.2.3.3 Fuel Load (Non-Payload) 7.2-7
7.2.3.4 Payload 7.2-7
7.2.4 Planetary Representation 7.2-8
7.2.5 Flight Path Analysis 7.2-8
7.2.5.1 Take-Off 7.2-8
7.2.5.2 Acceleration at Constant Altitude 7.2-8
7.2.5.3 Accelerating Climbs 7.2-10
7.2.5.4 Cruise Flight 7.2-13
7.2.5.5 Descent 7.2-15
7.2.5.6 Level Flight Acceleration 7.2-15
7.2.5.7 Landing 7.2-16
7.2.6 Mission Segments 7.2-16
7.2.6.1 Linear Clımb (Mıssion Option 1) 7.2-17
7.2.6.2 Climb at Specifled Dynamıc Pressure (Mission Option 2) 7.2-17
7.2.6.3 Rutowski Climb (Mission Option 1) 7.2-17
7.2.6.4 Maximum Rate of Climb (Mission Option 1) 7.2-19
7.2.6.5 Maximum Acceleration (Mission Optıon 1) 7.2-19
7.2.6.6 Minimum Fuel Paths (Mission Option 1) 7.2-19
7.2.6.7 Maxımum Range Glide (Mission Option 1) 7.2-20
7.2.6.8 Range Biased Ascents (Mission Option 1) 7.2-20
7.2.6.9 Range Biased Ascents Based on Range Factor (Mission Option 1) 7.2-21
7.2.6.10 Maximum Lift Coefficient \(\mathrm{Cl}_{1 \mathrm{mb}}\) or Descent (Mission Option 2) 7.2-21
7.2.6.11 Radius Adjustment (Mission Option 3) 7.2-22
7.2.6.12 Cruise Climb to Specified Weight (Mission Option (4) 7.2-22
7.2.6.13 Cruise Climb for Specıfied Distance or Time (Mission Option 5.) 7.2-22
7.2.6.14 Constant Altitude Cruise Between Two Weights (Mission Option 6) 7.2-22
7.2.6.15 Constant Altitude Cruise for Given Distance (Mission Option 7) 7.2-23
7.2.6.16 Constant Altitude Cruise for Given Time (Mission Option 8) 7.2-23
7.2.6.17 Buddy Refuel Cruise (Mission Option 9) 7.2-23
7.2.6.18 Mach-Altitude-Weight Transfer (Mission Option 10) 7.2-24
7.2.6.19 Alternate Mission Selection Option (Mission Option 11) 7.2-24
7.2.6.20 Instantaneous Weight Change (Mission Option 12) 7.2-25 7.2-25
7.2.6.21 Instantaneous Mach-Altitude Change (Mission Option 13) 7.2-25
7.2.6.22 General Purpose and Point Condition Calculation (Mission Option 14) 7.2-25
7.2.6.23 Iteration to Fly a Specified Distance (Missıon Option 15) 7.2-28
7.2.6.24 Climb or Accelerate (M1ssion Option 16) 7.2-28
7.2.6.25 Fuel Werght Change (Mission Option 17) 7.2-30
7.2.6.26 Fuel Allowance (Mission Option 20) 7.2-30
7.2.7 Thrust Specıfication in Mission Segment Options 7.2-31
7.2.8 Flight Envelope Calculations 7.2-31
7.2.8.1 Clımb Path Hıstory 7.2-31
7.2.8.2 Endurance versus Weight at Varıous Altıtudes 7.2-32
7.2.8.3 Optımum Cruise Climb at Varıous Mach Numbers 7.2-32
7.2.9 Contour Presentation Capabilities 7.2-33
7.2.9.1 Specıfic Energy Time Derıvatıye, E (INDMAP=1) 7.2-33
7.2.9.2 Specıfıc Energy/Fuel Flow, E/m, (INDMAP=2) 7.2-33
7.2.9.3 Lift/Drag, L/D (INDMAP=3) 7.2-34
7.2.9.4 Range Factor, \(\mathrm{RF}_{\mathrm{F}}\), (INDMAP=4) 7.2-34
7.2.9.5 Thrust (INDMAP=5) 7.2-34
7.2.9.6 Drag Map (INDMAP=6) 7.2-34
7.2.9.7 Specıfıc Fuel Consumption, SFC (INDMAP=7) 7.2-34
7.2.9.8 Fuel Flow Rate, \(\mathfrak{m}\) (INDMAP=8) 7.2-35
7.2.9.9 Specific Energy (INDMAP=9). 7.2-35
7.2.9.10 Lxft/(Thrust-Drag), L/(T-D) (INDMAP=10) 7.2-35
7:2.9.11 Turn Radius" (INDMAP=11) 7.2-35
7.2.9.12 Time to Turn (INDMAP=12) -7.2-36
References 7.2-36
I1lustrations 7.2-37

\subsection*{7.2 PROGRAM NSEG II: A RAPID APPROXIMATE SEGMENTED MISSION PERFORMANCE ANALYSIS CODE}

The NSEG II program is an extended version of the Air Force-developed NSEG program, Reference 1. The extended code was constructed under contract F33615-71-C-1480, the ODIN/MFV study. Major changes to NSEG incorporated in NSEG II are a complete code reorganization, more general vehicle specification, addition of energy maneuverability concepts, addition of plotting capability, and development of new data input procedures.

NSEG II provides a generalized mission performance analysis capability based on approximate equations of motion for the state components.
\[
\begin{equation*}
\left\{\dot{X}_{i}\right\}=\{V, h, \gamma, W, R, t\} \tag{7.2.1}
\end{equation*}
\]

In all flight modes the equations of motion
\[
\begin{equation*}
\left\{X_{i}\right\}=\left\{f_{i}\left(V, h, \gamma, w, R, t ; \alpha, B_{A}, N\right)\right\} \tag{7.2.2}
\end{equation*}
\]
are of an approximate nature. For example, in climbs, \(\dot{\gamma}\) is neglected.
Approximate equations of motion are available for
1. Take-off
2. Acceleration
3. Climb
4. Cruises and loiters
5. Descents
6. Deceleration
7. Landing

Any number of mission segments may be pieced together to form a complete mission. Segments may be flown in either forward or reverse direction in any sequence specified by the user.

A typical complete mission profile is illustrated in Figure 7.2-1. The program may also be used to generate performance contour plots of the type illustrated in Figure 7.2-2. NSEG II contains a variety of operating modes to aid in mission analysis which include
1. Point performance characteristic evaluation where given \(\{\bar{X}\}=\left\{X_{i}\right\}\), the function
\[
\begin{equation*}
\phi=\phi\left(X_{i}\right) . \tag{7.2.3}
\end{equation*}
\]
is evaluated.
2. Vector performance evaluation where given
\[
\begin{equation*}
\{\bar{x}\}=\left\{\ldots ., x_{i}, x_{j}, \ldots \ldots\right\} \quad j=1,2, \ldots, N_{j} \tag{7.2.4}
\end{equation*}
\]
the vector
\[
\{\phi\}=\left\{\phi_{j}\right\}=\left\{f \ldots, x_{i}, x_{j}, \ldots\right\}, j=1,2, \ldots, N_{j}, \quad \text { (7.2.5) }
\]
is evaluated and the maximum or minimum value of \(\phi\) in the region
\[
\begin{equation*}
x_{j_{L}}<x_{j}<x_{j_{H}} \tag{7.2.6}
\end{equation*}
\]
is found by interpolation. That is,
\[
\begin{equation*}
\phi_{j}^{*}=f\left(\ldots, x_{i}, x_{j}^{*}, \ldots\right) \tag{7.2.7}
\end{equation*}
\]
3. Map performance evaluation where given
\[
\begin{align*}
\left\{\bar{x}_{i j}=\left\{\ldots, x_{i}, x_{j}, \ldots\right\}\right.
\end{aligned} \quad \begin{aligned}
i & =1,2, \ldots, N_{i} \\
j & =1,2, \ldots, N_{j} \tag{7.2.8}
\end{align*}
\]
the performance array
\[
\begin{equation*}
\left[\phi_{i j}\right]=\left[f\left(\ldots, x_{i}, x_{j}, \ldots\right)\right] \tag{7.2.9}
\end{equation*}
\]
is evaluated over a rectangular mesh of points in the \(\left(X_{i}, X_{1}\right)\) plane and the resulting contours obtained in the manner of Figure 7.2-2.
4. Mission segment performonce where given a state \(\{\overline{\mathrm{X}}\}_{1}\), an approximate state equation, and a segment termination criteria, the state transformation
\[
\begin{equation*}
\{\mathrm{X}\}_{1} \rightarrow \mathrm{~T}_{12} \rightarrow\{\overline{\mathrm{X}}\}_{2} \tag{7.2.10}
\end{equation*}
\]
is accomplished.
5. Mission performance where given a sequence of mission segments, the successive state transformations
\[
\begin{equation*}
\{\bar{X}\}_{1} \rightarrow\{\bar{X}\}_{2} \rightarrow \cdots \cdot \rightarrow\left\{\bar{X}_{N-1}\right\} \rightarrow\left\{\bar{X}_{N}\right\} \tag{7.2.11}
\end{equation*}
\]
are completed.
The analytic basis of program NSEG II is presented below.

\subsection*{7.2.1 Vehicle Aerodynamic Representation}

All aerodynamic representations compute the vehicle drag given a flight condition and lift coefficient. Vehicle lift coefficient required is determined internally by NSEG II on the basis of instantaneous flight conditions.

\subsection*{7.2.1.1 Clean Aircraft}

Either of two aerodynamic representations may be employed for the clean aircraft as described below.
7.2.1.1(a) General Form

The clean aircraft drag is computed in the form
\[
\begin{equation*}
C_{D}=C_{D_{0}}+C_{D_{i}} \tag{7.2.12}
\end{equation*}
\]
where \(C_{D_{0}}\) is the zero lift drag, and \(C_{D_{i}}\) is the induced drag.
Both \(C_{D_{0}}\) and \(C_{D_{i}}\) may be computed by three component summation; that is,
\[
\begin{align*}
& C_{D_{0}}=C_{D_{0}}+C_{D_{02}}+C_{D_{03}} \tag{7.2.13}\\
& C_{D_{i}}=C_{D_{i 1}}+C_{D_{i}}+C_{D_{i 3}} \tag{7.2.14}
\end{align*}
\]

In Equation (7.2.13) each of the three component zero lift drags must be of the form
\[
\begin{equation*}
C_{D_{O_{j}}}=C_{D_{O_{j}}}(h, M) ; j=1,2,3 \tag{7.2.15}
\end{equation*}
\]

Simnlarly, in Equation (7.2.14) each induced drag component must be of the form
\[
\begin{equation*}
C_{D_{i j}}=C_{D_{i j}}\left(C_{L}, M\right) ; j=1,2,3 \tag{7.2.16}
\end{equation*}
\]

\subsection*{7.2.1.1(b) Polynomial Form}

In this aerodynamic option the drag is computed in the component summation form
\[
\begin{equation*}
C_{D}=C_{D_{1}}+C_{D_{2}}+C_{D_{3}} \tag{7.2.17}
\end{equation*}
\]
where
\[
\begin{gather*}
C_{D_{j}}=C_{D_{O_{j}}}+k_{l_{j}} \cdot C_{L}{ }^{2}+k 2_{j}\left(C_{L}-C_{L M I N}\right)^{2}+k_{3_{j}} C_{L}{ }^{3} \\
j=1,2,3 \tag{7.2.18}
\end{gather*}
\]
and
\[
\begin{align*}
C_{D_{O j}} & =C_{D_{O j}}(M) \tag{7.2.19}\\
k_{1_{j}} & =k_{I_{j}}(M) \tag{7.2.20}\\
k_{2_{j}} & =k_{Z_{j}}(M) \tag{7.2.21}\\
k_{3_{j}} & =k_{3_{j}}(M) \tag{7.2.22}\\
C_{L_{M I N}} & =C_{L_{M I N}}(M), \begin{array}{c}
\text { the minimum drag } \\
\text { coefficient }
\end{array} \tag{7.2.23}
\end{align*}
\]

\subsection*{7.2.1.2 Store and Pylon Drag}

Store and pylon drag is computed in the form
\[
\begin{equation*}
C_{D_{S}}=C_{D_{1}}+C_{D_{2}}+C_{D_{3}} \tag{7.2.24}
\end{equation*}
\]
where
\[
\begin{equation*}
C_{D_{j}}=C_{D_{S j}} \cdot N_{S_{j}}+C_{D_{S P}} \cdot N_{S P_{j}} \quad j=1,2,3 \tag{7.2.25}
\end{equation*}
\]

In Equation (7.2.25) the drag of a single type \(j\) store pair is
\[
\begin{equation*}
C_{D_{j}}=C_{D_{S}}(M) \tag{7.2.26}
\end{equation*}
\]

The number of type \(j\) store pairs is \(N_{S j}\). The drag of a single type \(j\) store pylon pair is
\[
\begin{equation*}
C_{D_{S P_{j}}}=C_{D_{S P}}(M) \tag{7.2.27}
\end{equation*}
\]

The number of type \(j\) store pylon pairs is \(N_{S P}{ }_{j}\)

\subsection*{7.2.1.3 Tank and Pylon Drag}

Tank and pylon drag is computed in the form
\[
\begin{equation*}
C_{D_{T}}=C_{D_{1}}+C_{D_{2}}+C_{D_{3}} \tag{7.2.28}
\end{equation*}
\]
where
\[
\begin{equation*}
C_{D_{j}}=C_{D_{T}} \cdot N_{T}+C_{D_{T P}} \cdot N_{T P_{j}} \quad j=1,2,3 \tag{7.2.29}
\end{equation*}
\]

In Equation (7.2.29) the drag of a single type \(j\) tank pair is
\[
\begin{equation*}
C_{D_{\mathrm{T}}}=C_{D_{\mathrm{T}}}(M) \tag{7.2.30}
\end{equation*}
\]

The number of type j tank pairs is \(\mathrm{NT}_{\mathrm{j}}\). The drag of a single type j tank
pylon pair is
\[
\begin{equation*}
\mathrm{C}_{\mathrm{DPP}_{j}}=\mathrm{C}_{\mathrm{D}_{\mathrm{TP}_{\mathrm{J}}}}(\mathrm{M}) \tag{7.2.31}
\end{equation*}
\]

The number of type \(j\) tank pylon pairs is \(\mathrm{NTP}_{\mathrm{j}}\).

\subsection*{7.2.2 Vehicle Propulsive Representation}

All propulsive representations compute the vehicle fuel flow rate given a flight condition and the required thrust. Vehicle required thrust is computed internally by NSEG II on the basis of instantaneous flight conditions.

The maximum thrust, \(\mathrm{T}_{\text {max }}\), is given by
\[
\begin{equation*}
T_{\max }=T_{\max 1}, T_{\max 2} \text {, or } \mathrm{T}_{\max 3} \tag{7.2.32}
\end{equation*}
\]
where
\[
\begin{equation*}
T_{\operatorname{maxj}}=T_{\max j}(M, h) \tag{7.2.33}
\end{equation*}
\]

A throttle parameter, \(N\), is determined by
\[
\begin{equation*}
N=T_{\text {reqd }} / T_{\operatorname{maxj}} \quad j=1,2,3 \tag{7.2.34}
\end{equation*}
\]
where \(T_{\text {reqd }}\) is the required thrust. Fuel flow is given by
\[
\begin{equation*}
\dot{W}_{1}=k \cdot \dot{W}_{1}(N, M, h) \tag{7.2.35}
\end{equation*}
\]
or
\[
\begin{equation*}
\dot{W}_{2}=k \cdot \dot{W}_{2}(N, M, h) \tag{7.2.36}
\end{equation*}
\]
or
\[
\begin{equation*}
\dot{W}_{3}=k \cdot \dot{W}_{3}(\mathrm{M}, \mathrm{~h}) \tag{7.2.37}
\end{equation*}
\]

The parameter \(k\) is a scalar for adjusting fuel flow to meet various specification requirements. Vehrcle thrust, \(T\), is determined by
\[
\begin{equation*}
\mathrm{T}=\mathrm{T}_{\mathrm{reqd}} \mathrm{~T}_{\max } \text {, or } \overline{\mathrm{N}} \cdot \mathrm{~T}_{\max } \tag{7.2.38}
\end{equation*}
\]
where \(N\) is a specified throttle setting.

\subsection*{7.2.3 Vehicle Mass Representation \\ 7.2:3.1 Overall Weight Empty}

The vehicle overall weight empty is given by the following equation:

ORIGINAL PAGE IS
OF POOR QUALITY
\[
w_{O W E}=w_{B A R E}+\sum_{i=1}^{3}\left(N_{S_{i}} \cdot W_{S_{i}}\right)_{\text {fixed }}+\sum_{i=1}^{3}\left(N_{S P_{i}} \cdot w_{S P_{i}}\right)_{\text {fixed }}
\]
where
\[
\begin{equation*}
+\sum_{i=1}^{3}\left(N_{T_{i}} \cdot W_{T_{i}}\right)_{\text {fixed }}+\sum_{I=1}^{3}\left(N_{T P_{i}} \cdot W_{T P_{i}}\right)_{\text {fixed }} \tag{7.2.39}
\end{equation*}
\]
\(W_{\text {ONE }}=\) overall weight empty
\(W_{\text {BARE }}=\) bare weight without stores, tanks, or pylons
\({ }^{N} S_{i}=\) number of store pairs type \(i\)
\(W_{i} \quad=\) weight of one store par type \(i\)
\(\mathrm{NSP}_{i}=\) number of store pylon pairs type \(i\)
\(W_{S P_{i}}=\) weight of one store pylon pair type \(i\)
\({ }^{N_{T}}{ }^{7} \quad=\) number of tank pairs type i
\({ }^{W} T_{i} \quad=\) weight of one tank pair type 1
\(\kappa_{\mathrm{TP}_{1}}=\) number of tank pylon pars type \(i\)
\(W_{\mathrm{TP}_{1}}=\) weight of a tank pylon pair type 1
The suffix fixed indicates that only fixed tanks, stores or pylons which are not included in the payload must be included in the summations.

\subsection*{7.2.3.2 Fuel Load}

The total vehicle fuel load is given by
\[
\begin{equation*}
W_{F U E L}=W_{F I N T}+\sum_{i=1}^{3}\left(N_{T_{i}} \cdot W_{F_{T_{i}}}\right)_{\text {usable }} \tag{7.2.40}
\end{equation*}
\]
where
\(W_{\text {FUEL }}=\) total useable fuel weight
\(W_{\text {FINT }}=\) weight of internal fuel
\(\mathrm{N}_{\mathrm{T}_{\mathrm{i}}}=\) number of tank pairs type 1
\(\mathrm{Wr}_{\mathrm{T}_{1}}=\) weight of fuel in one tank pair type \(i\)

The suffix usable indicates that the summation only extends over tank pairs which are not included in the payload.

\subsection*{7.2.3.3 Fuel Load}

The total non-payload fuel on board at mission initiation is given by
\[
\begin{equation*}
\mathrm{W}_{\mathrm{FT}_{\mathrm{o}}}=\mathrm{w}_{\mathrm{F}_{I N T-}}+\sum_{\mathrm{i}=1}^{3}\left(\mathrm{~N}_{\mathrm{T}_{\mathrm{i}}} \cdot \mathrm{w}_{\mathrm{FT}_{\mathrm{i}}}\right)_{\mathrm{NPL}} \tag{7.2.41}
\end{equation*}
\]
where
\(W_{F T_{O}}=\) initial fuel load
\(W_{\text {FNT }}=\) initlal internal fuel load
\(\mathrm{N}_{\mathrm{i}} \quad=\) number of tank pairs type \(i\)
\(\mathrm{WFT}_{i}=\) weight of fuel in one tank pair type \(i\)
and the suffix NPL indicates the summation extends only over tanks which are not assigned to payload. It should be noted that the total fuel is specified directly by data input, and the internal fuel load is a computed quantity.

\subsection*{7.2.3.4 Payload}

The total vehicle payload on board at mission initiation is given by
\[
\begin{align*}
W_{\mathrm{PL}}=W_{\mathrm{PL}_{\mathrm{int}}} & +\sum_{i=1}^{3}\left(\mathrm{~N}_{\mathrm{S}_{\mathrm{i}}} \cdot W_{S_{i}}\right)_{\mathrm{drop}}+\sum_{i=1}^{3}\left(\mathrm{NSP}_{i} \cdot W_{S P_{i}}\right)_{\mathrm{drop}} \\
& +\sum_{i=1}^{3}\left(\mathrm{NT}_{1} \cdot W_{\mathrm{T}_{1}}\right)_{\mathrm{drop}}+{ }_{i=1}^{3}\left(\mathrm{NST}_{\mathrm{i}} \cdot\left(W_{T P_{i}}\right)_{\mathrm{drop}}\right. \tag{7.2.42}
\end{align*}
\]
where
WPL \(=\) total payload
\(W_{P L_{i n t}}=\) total internal payload
and the remaining quantities in Equation (7.2.42) are defined in Section 7.2.3.1

\subsection*{7.2.4 Planetary Representation}

A flat earth planetary model is employed. The gravitational force is a simple inverse square field. A layered atmosphere providos the following options:
1. Tabular 1962 U. S. Standard Atmosphere
2. Analytic 1962 U. S. Standard Atmosphere
3. 1963 Patrick Air Force Base Atmosphere
4. 1959 U. S. Standard Atmosphere
5. January 1966 NASA Atmosphere, \(30^{\circ}\) North
6. July 1966, NASA Atmosphere, \(30^{\circ}\) North
7. Arbitrary Atmosphere Generated from Temperature and/or Pressure Variation with Altitude

The NSEG II program basically computes a planar flight path. However, time to turn calculations are available; hence, a three-dimensional path can be analyzed by "folding" the path into a plane, Figure 7.2-3.

\subsection*{7.2.5 Flight Path Analysis}

Flight path analysis for take-off, climb, cruise, descent, and landing are included in NSEG II. The analyses are all based on relatively rapid approxmate methods. Each flight path analysis model employed is described below.

\subsection*{7.2.5.1 Take-Off}

Tne take-off analysis of the independent program TOLAND, Section 7.1, is also avaılable within the NSEG II program. The take-off analysis performs the transfer
\[
\begin{equation*}
\{\mathrm{X}\}_{\mathrm{TO}} \rightarrow\{X\}_{50} \tag{7.2.43}
\end{equation*}
\]
ninexe the suffix \(T O\) indicates state at beginning of take-off, and the suffix 50 mndicates state at the 50 foot obstacle.

\subsection*{7.2.5.2 Acceleration at Constant Altitude}

The level flight acceleration segment performs the operation
\(!\)
\[
\begin{equation*}
\{X\}_{2}=\{X\}_{1}+\int_{M_{1}}^{M_{2}}\{\dot{X}\} d M \simeq\left\{X_{1}\right\}+\sum_{i}\{\Delta X\}_{i} \tag{7.2.44}
\end{equation*}
\]
where \(\{\Delta X\}_{1}\) is the state change in accelerating from \(M_{1}\) to \(M_{1}+\Delta M\)

Given \(\{X\}_{i}=\{V, h, \gamma, W, R, t\}_{i}, T_{i}\) and \(D_{i}\), then the velocity change is
\[
\begin{equation*}
V=a_{s} \Delta M \tag{7.2.45}
\end{equation*}
\]
where \(z_{s}\) is the speed of sound at the acceleration altitude and
\[
\begin{equation*}
\dot{V}_{i}=g_{0}\left[\frac{T-D}{W}\right] \tag{7.2.46}
\end{equation*}
\]

The approximate time to accelerate from \(M_{i}\) to \(M_{i}+\Delta M\) is
\[
\begin{equation*}
\Delta t^{\prime}=\Delta V / \dot{V}_{i} \tag{7.2.47}
\end{equation*}
\]

The corresponding approximate weight change is
\[
\begin{equation*}
\Delta W^{\prime}=\dot{W}_{i} \Delta t^{\prime} \tag{7.2.48}
\end{equation*}
\]
and
\[
\begin{equation*}
W_{i+1}=W_{i}-\Delta W^{\prime} \tag{7.2.49}
\end{equation*}
\]
and to the first order
\[
\begin{equation*}
\dot{V}_{i+1}=g_{0}\left[\frac{T-D}{W}\right]_{1+1} \tag{7.2.50}
\end{equation*}
\]
\(\dot{W}_{i+1}\) can be obtained at the new Mach number. The mean acceleration is now
\[
\begin{equation*}
\dot{\bar{v}}=\frac{1}{2}\left(\dot{v}_{i}+\dot{v}_{i+1}\right) \tag{7.2.51}
\end{equation*}
\]

The time to accelerate is
\[
\begin{equation*}
\Delta t=\Delta V / \dot{\bar{V}} \tag{7.2.52}
\end{equation*}
\]
which gives a weight change of
\[
\begin{equation*}
\Delta W=\frac{1}{2}\left(\dot{W}_{i}+\dot{W}_{i+1}\right) \Delta t \tag{7.2.53}
\end{equation*}
\]
and a range increment
\[
\begin{equation*}
\Delta R=\frac{1}{2}\left(V_{i}+V_{i+1}\right) \Delta t \tag{7.2.54}
\end{equation*}
\]

The state incremental vector \(\{\Delta X\}_{i}\) is therefore given by
\[
\left[\begin{array}{c}
\Delta V \tag{7.2.55}\\
\Delta h \\
\Delta \gamma \\
\Delta R \\
\Delta W \\
\Delta t
\end{array}\right]_{i}=\left[\begin{array}{l}
a_{s} \Delta M \\
0 \\
0 \\
\frac{1}{2}\left(\dot{W}_{i}+\dot{W}_{i+1}\right) \Delta t \\
\frac{1}{2}\left(V_{i}+V_{i+1}\right) \Delta t \\
\frac{2 \Delta V}{\left(\dot{V}_{i}+\dot{V}_{i+1}\right)}
\end{array}\right]_{i}
\]

\subsection*{7.2.5.3 Accelerating Climbs}

All accelerating climb paths are formed by a sequence of elemental straight line arcs in the Mach-altitude plane. On any arc the vehicle flies from \(\left(M_{i}, h_{i}\right)\) to \(\left(M_{i+1}, h_{i+1}\right)\). Since the vehicle is clambing
\[
\begin{equation*}
h_{i+1}>h_{i} \tag{-.2.56}
\end{equation*}
\]

The typical arc for a clizb path is shown below. The Mach-altitude plane

can be transformed into the velocity-altitude plane as follows:
\[
\begin{equation*}
V=V(h, M) \tag{7.2.57}
\end{equation*}
\]
so that
\[
\begin{equation*}
\Delta V=\frac{\partial V}{\partial h} \cdot \delta h+\frac{\partial V}{\partial M} \delta M \tag{7.2.58}
\end{equation*}
\]
or
\[
\begin{align*}
& \frac{d V}{d h}=\frac{\partial V}{\partial h}+\frac{\partial V}{\partial M} \cdot \frac{\partial M}{\partial h} \tag{7.2.59}\\
& =\quad \frac{\partial V}{\partial h}+a \frac{d M}{d h} \tag{7.2.60}
\end{align*}
\]
where a is the local speed of sound
\[
\begin{equation*}
V=a \dot{M} \tag{7.2.61}
\end{equation*}
\]

Now \(\partial V / \partial h\) as the change in velocity with altitude at constant Mach number, and from ruation (7.2.61) with \(M\) constant
\[
\begin{align*}
\frac{\partial V}{\partial h} & =M \frac{\partial a}{\partial h} . \tag{7.2.62}\\
& =M \frac{\partial a}{\partial T_{R}} \cdot \frac{\operatorname{dT}_{R}}{d h} \tag{7.2.63}
\end{align*}
\]
7.2-10
where \(T_{R}\) is temperature ratio, \(T / T_{S}\), so that
\[
\begin{equation*}
\frac{\partial V}{\partial h}=\left(\frac{V}{a}\right) \cdot \frac{\partial a}{\partial T_{R}} \cdot \frac{d T_{R}}{d h} \tag{7.2.64}
\end{equation*}
\]
and from the atmospheric model
\[
\begin{align*}
a & =1116.45\left(\mathrm{~T}_{\mathrm{R}}\right)^{1 / 2} \tag{7.2.65}\\
\frac{\partial \mathrm{a}}{\partial \mathrm{~T}_{\mathrm{R}}} & =\frac{a}{2 \mathrm{~T}_{\mathrm{R}}} \tag{7,2.66}
\end{align*}
\]

Substituting into Equation (7.2.64)
\[
\begin{equation*}
\frac{\partial V}{\partial h}=\frac{V}{2 T_{R}} \cdot \frac{d T_{R}}{d h} \tag{7.2.67}
\end{equation*}
\]

Substituting Equation (7.2.67) into Equation (7.2.60)
\[
\begin{equation*}
\frac{d V}{d h}=\frac{V}{2 T_{R}} \cdot \frac{d T_{R}}{d h}+a \frac{d M}{d h} \tag{7.2.68}
\end{equation*}
\]

Equation (7.2.68) is used to define the required variation of velocity with altitude over an elemental climbing arc.

Now the rate of climb is
\[
\begin{equation*}
\frac{d h}{d t}=R C \tag{7.2.69}
\end{equation*}
\]
or
\[
\begin{equation*}
\frac{\mathrm{dh}}{\mathrm{RC}}=\mathrm{dt} \tag{7.2.70}
\end{equation*}
\]
fossuming rate of climb varies linearly with altitude in the elemental arc
\[
\begin{equation*}
R C=a+b h \tag{7.2.71}
\end{equation*}
\]

Substituting into Equation (7.2.70) and integrating
\[
\begin{equation*}
\int_{h_{1}}^{h_{2}} \frac{d h}{(a+b h)}=t_{1} \int^{t_{2}} d t \tag{7.2.72}
\end{equation*}
\]
or
\[
\begin{equation*}
t_{i+1}-t_{i}=\left[\frac{h_{i+1}-h_{i}}{R C_{i+1}-R C_{i}}\right] \log \left(\frac{R C_{1+1}}{R C_{i}}\right) \tag{7.2.73}
\end{equation*}
\]
where
\[
\begin{align*}
& a=R C_{i} \tag{7.2.74}\\
& b=\frac{R C_{i+1}-R C_{i}}{h_{j+1}-h_{i}} \tag{7.2.75}
\end{align*}
\]

The vehicle rate of climb is computed under the assumption that thrust is aligned.along the velocity.vector as shown below.

Now
\[
\begin{equation*}
m \dot{V}=(T-D)-W \sin \gamma \tag{7.2.76}
\end{equation*}
\]
but
\[
\begin{equation*}
m \dot{v}=m \frac{d V}{d h} \cdot \frac{d h}{d t}=\frac{W}{g} \frac{d V}{d h} \cdot V \sin \gamma \tag{7.2.77}
\end{equation*}
\]

Combining Equations (7.2.76) and (7.2.77)
\[
\begin{equation*}
\sin \gamma=\frac{T-D}{-W\left[\frac{V}{g} \frac{d V}{d h}+1.0\right]} \tag{7.2.78}
\end{equation*}
\]
and
\[
\begin{equation*}
\cos \gamma=\sqrt{1-\sin ^{2} \gamma} \tag{7.2.79}
\end{equation*}
\]
so that
\[
\begin{equation*}
R C=V \sin \gamma=-\left[\frac{(T-D) V}{W}\right] \div\left[\frac{V}{g} \frac{d V}{d h}+1.0\right] \tag{7.2.80}
\end{equation*}
\]

Equation (7.2.80) can be evaluated at each end of the elemental arc to obtain \(R C_{j+1}\) and \(R C_{j}\). Hence, \(\Delta t\), the time to traverse the elemental arc, is given by Equation (7.2.73). Similarly, the flight path angle at each end of the arc can be obtained from Equation (7.2.78). It should be noted that if \(\sin \gamma\), Equation (7.2.79), is greater than 1.0 , the approximate climb analysis is invalid. If this condition occurs, the thrust is reduced to produce a climb along the elemental arc at 89.5 degrees.

Sumnarizing, the state incremental vector for an accelerating climb is given by
\[
\left[\begin{array}{c}
\Delta V \tag{7.2.81}\\
\Delta h \\
\Delta Y \\
\Delta R \\
\Delta W \\
\Delta t
\end{array}\right]=\left[\begin{array}{l}
V_{i+1}-V_{i} \\
h_{i+1}-h_{i} \\
\gamma_{i+1}-\gamma_{i} \\
\frac{1}{2}\left[V_{i+1} \cos \gamma_{i+1}+V_{i} \cos \gamma_{i}\right] \\
\frac{1}{2}\left[\dot{W}_{i+1}+\dot{W}_{i}\right] \Delta t \\
\frac{h_{i+1}-h_{i}}{R C_{i+1}-R C_{i}} \log \left[\frac{R C_{i+1}}{R C_{i}}\right]
\end{array}\right]
\]

\subsection*{7.2.5.4 Cruise Flight}

Cruise flight performance is computed by the Bruguet equation. With constant velocity the distance travelled in time \(\Delta t\) is
\[
\begin{equation*}
\Delta \mathrm{R}=\mathrm{V} \cdot \Delta \mathrm{t} \tag{7.2.82}
\end{equation*}
\]

Now
\[
\begin{equation*}
\mathrm{SFC}=\frac{\dot{\mathrm{W}}}{\mathrm{~T}} \tag{7.2.83}
\end{equation*}
\]
so that
\[
\begin{equation*}
\Delta t=\frac{\Delta W}{(\mathrm{SFC}) \cdot \mathrm{T}} \tag{7.2.84}
\end{equation*}
\]

Substıtuting in Equation (7.2.82)
\[
\begin{equation*}
\Delta \mathrm{R}=\frac{\mathrm{V}}{(\mathrm{SFC}) \cdot \mathrm{T}} \cdot \Delta W \tag{7.2.85}
\end{equation*}
\]

In cruise flight
\[
\begin{equation*}
\frac{L}{D} \simeq \frac{W}{T} \tag{7.2.86}
\end{equation*}
\]
and
\[
\begin{equation*}
-\quad \Delta R=\frac{V}{S F C}\left(\frac{L}{D}\right) \frac{\Delta W}{W} \tag{7.2.87}
\end{equation*}
\]

On integrating
\[
\begin{equation*}
R_{i+1}-R_{i}=\frac{V}{S F C}\left(\frac{L}{D}\right)^{\log }\left(\frac{W_{i+1}}{W_{i}}\right)=(R F) \log \left(\frac{W_{i+1}}{W_{i}}\right) \tag{7.2.88}
\end{equation*}
\]

Where the range factor RF is usually a slowly changing function of weight. NSEG II uses the inverse relationship to compute the weight change given a range increment
\[
\begin{equation*}
W_{i+1}=W_{i} e^{\left[\frac{R_{i+1}-R_{i}}{R F}\right]}=W_{1} e^{\left[\frac{\left(R_{i+1}-R_{i}\right) \cdot(S F C)}{V(L / D)}\right]} \tag{7.2.89}
\end{equation*}
\]

Alternatively, the program can be used with a time increment \(\Delta t\) by using the relationship
\[
W_{i+1}=W_{i} e^{\left[\frac{\Delta t \cdot \mathrm{SFC}}{(\mathrm{~L} / \mathrm{D})}\right]}
\]

Several cruise modes are contained in the program including
1. Constant altitude, constant Mach number cruise
2. Constant altitude, constant \(\mathrm{C}_{\mathrm{L}}\) cruise
3. Constant Mach number, constant \(C_{L}\)

Each 'of the three cruise modes may be performed in the manner
1. From \(R_{i}\) to \(R_{i+1}=\Delta R_{1}\)
2. From \(T_{1}\) to \(T_{i+1}=\Delta T_{1}\)
3. From \(W_{i}\) to \(W_{i+1}=\Delta W_{i}\)

A cruise flight is computed by summing over \(N_{i}\) steps. Thus,
or .
\[
\begin{aligned}
\Delta R_{\text {cruise }} & =\sum_{i} \Delta R_{1} \\
\Delta T_{\text {cruise }} & =\sum_{i} \Delta T_{1} \\
\Delta W_{\text {cruise }} & =\sum_{i} \Delta W_{i}
\end{aligned}
\]

In all cases the total state increments are summed in the manner
\[
\begin{equation*}
\{\Delta X\}_{\text {cruise }}=\sum_{i}\{\Delta X\}_{i} \tag{7.2.91}
\end{equation*}
\]

A mean range factor is used in all cruise calculations. The mean range factor, (\(R C_{i}\)), in each elemental arc bounded by \(\{X\}_{i}\) and \(\{X\}_{i+1}\) is determaned by an appropriate weighting of the range factors \(R C_{i}\) and \(R C_{i+1}\) which bound the arc.

\subsection*{7.2.5.5 Descent}

The climb analysis of Section 7.2.5.2 is also used for the descent analysis. If the size of the flight path angle becomes too small (\(\sin \gamma<-1\)), the engine is throttled back to maintain a realistic flight path approximation.

\subsection*{7.2.5.6 Level Flight Acceleration}

The approximate time to accelerate from \(M_{i}\) to \(M_{i}+1\) in level flight is
\[
\begin{equation*}
\Delta t_{i}^{\prime}=a_{s}\left(M_{i+1}-M_{i}\right) / \dot{v}_{i} \tag{7.2.92}
\end{equation*}
\]
with a corresponding weight change
\[
\begin{equation*}
\Delta W^{\prime}=\dot{W}_{1} \Delta t^{\prime} \tag{7.2.93}
\end{equation*}
\]
so that
\[
\begin{equation*}
W_{1+1}^{\prime}=W_{i}-\dot{W}_{1} \Delta t^{\prime} \tag{7.2.94}
\end{equation*}
\]

Therefore, to the first order
\[
\begin{equation*}
\dot{V}_{i+1}=g_{0}\left[\frac{T-D}{W}\right] \tag{7.2.95}
\end{equation*}
\]

The fuel flow at this point, \(\dot{H}_{i+1}\), can be obtained from the vehicle aerodynamic and propulsion representation.
\[
\begin{equation*}
\dot{\bar{v}}_{i}=\frac{1}{2}\left(\dot{v}_{i}+\dot{v}_{i+1}\right) \tag{7.2.96}
\end{equation*}
\]
and an improved estimate of the time to accelerate from \(M_{i}\) to \(M_{i+1}\) is
\[
\begin{equation*}
\Delta t_{i}=a_{s}\left(M_{i+1}-M_{i}\right) / \dot{\bar{v}}_{i} \tag{7.2.97}
\end{equation*}
\]

This gives an improved estimate of the weight change
\[
\begin{equation*}
\Delta W_{i}=\frac{1}{2}\left(\dot{W}_{i}+\dot{W}_{i+1}\right) \Delta t_{i} \tag{7.2.98}
\end{equation*}
\]
and the corresponding range change
\[
\begin{equation*}
\Delta R_{i}=\frac{1}{2}\left(V_{1}+V_{i+1}\right) \Delta t_{i} \tag{7.2.99}
\end{equation*}
\]

Sumarizing, the level acceleration state increment is
\[
\left[\begin{array}{c}
\Delta h \tag{7.2.100}\\
\Delta V \\
\Delta \gamma \\
\Delta W \\
\delta R \\
\Delta t_{i}
\end{array}\right]=\left[\begin{array}{l}
0.0 \\
a_{s}\left(M_{i+1}-M_{i}\right) \\
0.0 \\
\frac{1}{2}\left(\dot{W}_{i}+\dot{W}_{i+1}\right) \Delta t_{i} \\
\frac{a_{S}}{2}\left(M_{i+1}+M_{i}\right) \Delta t_{i} \\
\frac{a_{s}}{2 g_{o}}\left(M_{i+1}-M_{i}\right) /\left[\left(\frac{T-D}{W}\right)_{i}+\left(\frac{T-D}{W}\right)_{i+1}\right]
\end{array}\right]
\]

\subsection*{7.2.5.7 Landing}

The NSEG II landing analysis is that described in the independent take-off and landing program TOLAND of Section 7.1.

\subsection*{7.2.6 Mission Segments}

Tine state incremental methods of Section 7.2 .5 are used to create a variety of oprional mission segments in NSEG II. Each available mission segment option is briefly described below. All massion climbs, cruises, accelerations, and decelerations may be performed in forward or reverse direction. Each nission segment described below is performed as a distinct option in NSEG II. There is some degree of overlapping capability in the available mission options. The mission option within NSEG II is indicated for each mission segment for reference purposes.

\subsection*{7.2.6.1 Linear Climb (Mission Option 1)}

This option climbs linearily from (\(M_{i}, h_{1}\)) to (\(M_{2}, h_{2}\)) using a specified number of linear climb steps from (\(M_{i}, h_{i}^{1}\)) to (\(M_{i+1}, h_{i+1}\)). The path is 1llustrated in Figure 7.2-4.

\subsection*{7.2.6.2 Climb at Specified Dynamic Pressure (Mission Option I)}

This option climbs along a specified dynamic pressure line from (\(M_{1} h_{1}\)) to (\(M_{2} h_{2}\)) with appropriate terminal maneuvers. Along the constant dynamic pressure line a specified number of linear Mach-altitude segments are flown. Appropriate initial and final maneuvers are used when (\(\mathrm{M}_{1} \mathrm{~h}_{1}\)) or (\(M_{2} h_{2}\)) do not lie on the specified dynamic pressure line. The user may specify a climb at the terminal end point dynamic pressure. In this case, the final maneuver is not required. The various path types which may be generated by this climb mission segment option are illustrated in Figure 7.2-4.

\subsection*{7.2.6.3 Rutowski Climb (Mission Option 1)}

The Rutowski climb, Reference 2, flies from (\(M_{1} h_{1}\)) to (\(M_{2} h_{2}\)) along the path which most rapidly builds up specific energy. If either of the points \(\left(M_{1} h_{1}\right)\) and (\(M_{2} h_{2}\)) do not lie on this path, an appropriate terminal maneuver is employed. The Rutowski path is found by the following procedure.
1. Compute the initial point specific energy
\[
\begin{equation*}
E_{1}=V_{1}{ }^{2} / 2 g+h_{1} \tag{7.2.101}
\end{equation*}
\]
and find specific energy at end point
\[
\begin{equation*}
E_{2}=V_{2}^{2} / 2 g+h_{2} \tag{7.2.102}
\end{equation*}
\]
and divide the energy change (\(E_{2}-E_{1}\)) into \(N\) equal increments
2. Search at each incremental energy level
\[
\begin{equation*}
E_{i}=E_{1}+i \cdot \Delta E \quad 1=1,2, \ldots, N \tag{7.2.103}
\end{equation*}
\]
to find the point of maximum specific energy derivative, \(\left(M_{1}, h_{i}\right)\) where
\[
\begin{equation*}
\dot{E}_{i}=\left(T_{1}-D_{i}\right) V_{1} / W_{1} \tag{7.2.104}
\end{equation*}
\]

The \(\dot{E}\) calculation is carried out for specified weight and load factor.
3. Fly a sequence of linear Mach-altitude flight increments joining the point \(\left(M_{i} h_{1}\right)\) and (\(\left.M_{i+1} h_{i+1}\right)\)

A typical Rutowskl path obtained from the program is illustrated in Figure 7.2-5. The initial acquisition of the Rutowski path at
\[
\begin{equation*}
h=h_{1}+\Delta h \tag{7.2.105}
\end{equation*}
\]
takes a vehicle from its initial condition to the Rutowski path with a velocity loss if this is required. The final maneuver may be either a transfer along a constant energy line from the Rutowski point at the final energy to the point \(\mathrm{M}_{2} \mathrm{~h}_{2}\). Alternatively, an altitude limit may be placed on the path such that when a Rutowski point lies above the final point, a transfer to the final point \(\mathrm{M}_{2} \mathrm{~h}_{2}\) occurs. These terminal maneuvers are sketched below.

The Rutowski path will observe both \(\mathrm{C}_{\mathrm{L}_{\mathrm{max}}}\) and maximum dynamic pressure constraints at the user's option. The thrust levels, vehicle weight, and load factors employed in the E calculation are specified by the user. Further details of this mission segment option may be found in Reference 3.

\subsection*{7.2.6.4 Maximum Rate of Climb (Mission Option 1)}

A maximum rate of climb path between \(M_{1} h_{1}\) and \(M_{2} h_{2}\) is generated in a similar manner to the Rutowski path of Section 7.2:6.3. However, in the maximum rate of climb path the search for maximum \(E\) is carried out at the constant altitudes
\[
\begin{equation*}
h=h_{I}+i \cdot \Delta h \quad 1=1,2, \ldots, N \tag{7.2.106}
\end{equation*}
\]
where the altitude differential \(\left(h_{2}-h_{1}\right)\) has been divided into \(N\) equal increments. A typical maximum rate of climb path has been added to Figure 7.2-5.

\subsection*{7.2.6.5 Maximum Acceleration (Mission Option 1)}

A maximum acceleration path between \(M_{1} h_{1}\) and \(M_{2} h_{2}\) is generated in a similar manner to the Rutowski path of Section 7.2.6.3. However, in the maximum acceleration path the search for maximum \(\dot{E}\) is carried out at the constant Mach numbers.
\[
\begin{equation*}
M=M_{1}+i \cdot \Delta M \quad i=1,2, \ldots, N \tag{7.2.107}
\end{equation*}
\]
where the Mach number differential (\(M_{2}-M_{1}\)) has been divided into \(N\) equal increments. A typical maximum acceleration path has been added to Figure 7.2-5. The maximum acceleration path satisfies the \(\mathrm{C}_{\mathrm{L}_{\mathrm{max}}}\) and maximum dynamic pressure constraints of the Rutowski path. In addition, the condition
\[
\begin{equation*}
\Delta E_{i+1} \geqslant \Delta E_{i} \tag{7.2.108}
\end{equation*}
\]
is imposed. That is, the sequence of points, \(M_{i} h_{i}\) used in the acceleration will never produce a loss of specific energy. This is illustrated in Figure 7.2-6.

\subsection*{7.2.6.6 Minimum Fuel Paths (Mission Option 1)}

Mininum fuel path for given energy, altitude, and Mach number are obtained In a manner similar to Sections 7.2.6.3 through 7.2.6.5, respectively. However, the search optimization criteria on \(\dot{E}\) is replaced by the criteria
\[
\begin{equation*}
\varphi=\operatorname{Maximum}[E / N]=\operatorname{Max}\left[\frac{\mathrm{dE} / \mathrm{dt}}{\mathrm{dW} / \mathrm{dt}^{2}}\right]=\operatorname{Max}\left[\frac{\mathrm{dE}^{\mathrm{dW}}}{}\right\rceil \tag{7.2.109}
\end{equation*}
\]

Winen the search is carried out along lines of constant energy, the minimum fuel energy build up is found. When the search occurs at constant altitude, the minimum fuel climb is found. When the search occurs at constant Mach number the minimum fuel acceleration is found. All appropriate terminal maneuvers and constraints described in Sections 7.2.6.3 to 7.2.6.5 are included in the minimum fuel paths. Some typical paths obtained from the NSEG II , prograin are illustrated in Figure 7.27.

\subsection*{7.2.6.7 Maximum Range Glide (Mission Option 1)}

The maximum range glide path is obtained when the vehicle flies along the laws of the L/D contours tangency points to an appropriate path generating surface such as constant energy, constant altitude, or constant Mach number. The maneuvers are thus similar to those of Sections 7.2.6.3 to 7.2.6.5 using the optimization criteria.
\[
\begin{equation*}
\phi=\operatorname{Maximum}[L / D] \tag{7.2.110}
\end{equation*}
\]

When the search is carried out along lines of constant energy, the maximum range glide for a given energy loss is found, Reference 4. When the search occurs at constant altitude, the maximum range glide for a given altitude loss is found. When the search occurs at constant Mach number, the maximum range glide for a given velocity loss is found. Some typical paths obtained from the NSEG II program are illustrated in Figure 7.2-8.

\subsection*{7.2.6.8 Range Biased Ascents (Mission Option 1)}

Range biased ascents can be obtained when the vehicle flies along the locus of the \(T /(L-D)\) contours tangency points to an appropriate path generating surface. This can be seen as follows:
\[
\begin{equation*}
E=h+V^{2} / 2 g \tag{7.2.111}
\end{equation*}
\]
and
\[
\begin{equation*}
m\left(\frac{d v}{d t}\right)=T-D-W \sin \gamma \tag{7.2.112}
\end{equation*}
\]

Now
\[
\begin{equation*}
\mathrm{R}=\int \mathrm{dR}=\int \frac{\mathrm{dR}}{\mathrm{dE}} \mathrm{dE}=\int \frac{\mathrm{dR}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dE}} \cdot \mathrm{dE} \tag{7.2.113}
\end{equation*}
\]

There from Equation (7.2.111)
\[
\begin{align*}
R & =\int \frac{V \cos \gamma \cdot \frac{d E}{d h}}{\frac{d t}{d t}+\frac{V}{g} \cdot \frac{d V}{d t}} \\
& =\int \frac{\cos \gamma \cdot d E}{\sin \gamma+\frac{1}{g} \frac{d V}{d t}} \tag{7.2.114}
\end{align*}
\]

But from Equation (7.2.112)
\[
\begin{equation*}
\frac{1}{g} \cdot\left(\frac{d V}{d t}\right)=\frac{T-D}{W}-\sin \gamma \tag{7.2.115}
\end{equation*}
\]

So that
\[
R=\int \frac{W \cos \gamma \cdot d E}{T-D}
\]

Assuming that range biased ascents occur at small flight path angles with \(\mathrm{L} \simeq W\), Equation (7.2.116) becomes
\[
\begin{equation*}
R \simeq \int \frac{L}{T-D} d E \tag{7.2.117}
\end{equation*}
\]

Therefore, an energy-like approximation for a range biased ascent is to fly
is a maximum at each energy level. It should be noted that when \(T-D=0\), no energy gain is possible; therefore, this singular condition must be avoided. In NSEG II the per cent excess of thrust over drag which is acceptable is a program input.

In a manner similar to Sections 7.2 .6 .3 to 7.2 .6 .5 a range biased ascent between two energy levels occurs when the points of tangency between constant energy and \(T /(L-D)\) contours is flown. A range biased climb between two altitudes will fly the points of tangency between constant altitude and constant \(T /(L-D)\) contours. A range biased acceleration will fly the points of tangency between constant Mach number and constant-f(IL-D) contours.

\subsection*{7.2.6.9 Range Biased Ascents Based On \\ Range Factor (Mission Option 1)}

A second series of range biased ascents can be found on the basis of the range factor contours. These ascents are similar to those of Section 7.2.6.8 with range factor replacing \(T /(L-D)\).

\subsection*{7.2.6.10 Maximum Lift Coefficient Clizib or Descent (Mission Option 2)}

The naximum lift coefficient path climbs from \(M_{1} h_{1}\) to \(M_{2} h_{2}\) in \(N\) increments of aititude
\[
\begin{equation*}
h_{i}=h_{1}+i \cdot \Delta h \quad i=1,2, . . ., N \tag{7.2.118}
\end{equation*}
\]

At each altitude the Mach number for maximum rate of climb using the angle of attack for \(C_{L_{\text {MAX }}}\) is found
\[
\begin{equation*}
M_{i}=M_{i_{\text {MAX }}} R C \tag{7.2.119}
\end{equation*}
\]

The venicle uses the linear Mach-altitude path path-follower to climb between \(\mathrm{M}_{1} \mathrm{~h}_{\mathrm{i}}\) and \(\mathrm{Mi}_{\mathrm{i}+1} \mathrm{~h}_{1+1}\).

Descents follow the same procedure as climbs, but in reverse order.

\subsection*{7.2.6.11 Radius Adjustment (Mission Option 3)}

This mission segment option performs an iteration on the range of one cruise segment to make the total range over the combined mission segments \(S_{j} ; j=J_{1}, J_{2} . \ldots ., J_{N}\) equal to the total range over the combined mission segments \(\mathrm{S}_{\mathrm{k}} ; \mathrm{k}=\mathrm{K}_{1}, \mathrm{~K}_{2}, \ldots . ., \mathrm{K}_{\mathrm{N}}\). That is
\[
R=\sum_{j} R_{j}=\sum_{k} R_{k}
\]
where one of the \(\Delta R_{j}\), and only one, is being adjusted to satisfy the range equality.

\subsection*{7.2.6.12 Cruise Climb to Specified Weight (Mission Option 4)}

As an aircraft cruises at the Mach number and altitude for maximum range factor, Equation (7.2.88), the weight reduces. As the weight changes, the altitude for best range factor changes while the Mach number remains approximately constant. The altitude change results from the requirement to maintain the angle of attack for maximum lift coefficient. Thus, as the cruise progresses the altıtude increases.

The cruise may be performed in one step or it may be reduced to a sequence of five steps between latter case \(W=W_{1}\) and \(W=W_{2}\), Section 7.2.5.3. At the start of the \(i^{\text {th }}\) segment in this
\[
\begin{equation*}
W_{1}=W_{1}+i \cdot \Delta W \quad 1=I, 2, \ldots ., 5 \tag{7.2.121}
\end{equation*}
\]

Each segment is flown at constant Mach number and lift coefficient and, hence, involves a clambing cruise. At the beginning of each crunse step the weight is instantaneously adjusted to the best altitude for the current weight.

\subsection*{7.2.6.13 Cruise Clımb for Specıfied Distance or Time (Mission Option 5)}

This mission segment option performs a cruise climb, Section 7.2.5.3, for specifined distance or time. The cruise may be performed with or without range credit. This form of cruise flight is performed in one step.

\subsection*{7.2.6.14 Constant Altitude Cruise Between \\ Two Weights, (Mission Option 6)}

This mission segment performs either
1. Constant altitude, constant Mach number cruise
2. Constant altitude, constant lift coefficient cruase
between two weights \(W_{1}\) and \(W_{2}\). The cruise is performed in one step, see Section 7.2.5.3.

\subsection*{7.2.6.15 Constant Altıtude Cruise for Given Distance (Mission Option 7)}

This mission segment performs either
1. Constant altitude, constant Mach number cruise
2. Constant altitude, constant lift coefficient cruise
between two distances \(R_{1}\) and \(R_{2}\). The cruise is performed in one step, see Section 7.2.5.3.

\subsection*{7.2.6.16 Constant Altitude Cruise for Given Time (Mission Option 8)}

This mission segment performs either
1. Constant altitude, constant Mach number cruise
2. Constant altitude, constant lift coefficient cruise
between two times \(\mathrm{T}_{1}\) and \(\mathrm{T}_{2}\). The cruise is performed in one step, see Section7.2.5.3. This segment may be performed with or without range credit.

\subsection*{7.2.6.17 Buddy Refuel Cruase (Mission Option 9)}

This mission segment determines the optımum in-flight refuellang point and how much fuel will be transferred. The tanker fuel off load capability is specified at three range/fuel combinations and a parabolic variation in available fuel as a function of range is assumed. That is,
\[
\begin{equation*}
W_{f}=a+b R+c R^{2} \tag{7.2.122}
\end{equation*}
\]

Cruise flight is assumed in any one of the three forms
1. Constant Mach number, constant lift coefficient
2. Constant Mach number, constant altitude cruise
3. Constant lift coefficient, constant altitude cruise

A maximum range for refuelling may be specified. Refuelling will occur at any point on the segment where
1. Fuel receivable is greater than or equal to fuel available
\[
\begin{equation*}
W_{F R} \geqslant W_{F_{A}} \tag{7.2.123}
\end{equation*}
\]
2. Distance flow is equal to maximum refuelling range
3. Minimum in-flight weight of the vehicle receiving fuel is reached where
\[
\begin{equation*}
W_{M I N}=W_{O W E}+W_{P L}+W_{F} \cdot k_{F} \tag{7.2.124}
\end{equation*}
\]
where \(\mathrm{k}_{\mathrm{F}}\) is the unusable residual fuel in the non-payload fuel. For refuelling purposes the maximum weight is taken to be the take-off weight
\[
\begin{equation*}
W_{\mathrm{MAX}}=W_{\mathrm{TO}} \tag{7.2.125}
\end{equation*}
\]
7.2.6.18 Mach-Altitude-Weight Transfer (Mission Option 10)

This mission segment option retrieves state components at the end of flight segment \(i\) and makes them available as the initial conditions for flight segment 3 . The initial conditions for segment \(j\) are thus a linear transformation of the final condition of segment \(i\),
\[
\begin{equation*}
\{X\}_{j}=[P]_{i j}\{X\}_{i} \tag{7.2.126}
\end{equation*}
\]

Currently, the NSEG II program is limited to a simple state component transfer on any combination of the three components: Mach number, altitude, or weight.

\subsection*{7.2.6.19 Alternate Mission Selection Option \\ (Mission Option 11)}

This mission option retrieves either of two mission segments on the basis of terminal Mach number, altitude or weight. Retrieval criteria may be based on any one of six possibilities:
\[
\begin{align*}
\phi & =\operatorname{Min}\left[M_{1}, M_{2}\right] \tag{7.2.127}\\
\phi & =\operatorname{Max}\left[M_{1}, M_{2}\right] \tag{7.2.128}\\
\phi & =\operatorname{Min}\left[h_{1}, h_{2}\right] \tag{7.2.129}\\
\phi & =\operatorname{Max}\left[h_{1}, h_{2}\right] \tag{7.2.130}\\
\phi & =\operatorname{Min}\left[W_{1}, W_{2}\right] \\
\phi & =\operatorname{Max}\left[W_{1}, W_{2}\right] \tag{7.2.132}
\end{align*}
\]

The segment to be retained is the one which satisfies the selected performance criteria.

\subsection*{7.2.6.20 Instantaneous Weight Change (Mission Option 12)}

This mission segment option permits an instantaneous change in vehicle weight, \(\Delta W\). The operation
\[
\begin{equation*}
W_{i+1}=W_{i}-\Delta W \tag{7.2.133}
\end{equation*}
\]
is performed.
7.2.6.21 Instantaneous Mach/Altitude Change (Mission Option 13)

This mission segment option provides an instantaneous change in vehicle Mach number, \(\Delta M\), and an instantaneous altitude change, \(\Delta \mathrm{h}\). The new Mach number, \(M_{i+1}\), and altitude, \(h_{i+1}\), are specified directly; thus
\[
\begin{align*}
\Delta M & =M_{i+1}-M_{i} \tag{7.2.134}\\
\Delta h & =h_{i+1}-h_{i} \tag{7.2.135}
\end{align*}
\]
7.2.6.22 General Purpose and Point Condition Calculation (Massion Option 14)

This mission segment option provides any of a variety of calculations described below:
1. Best aruise altitude for given Mach number and weight based on range factor
\[
\begin{equation*}
\underset{h}{\operatorname{Max}}[R F ; M, W] \tag{7.2.136}
\end{equation*}
\]
2. Geiling for a specified rate of climb at given Mach number and weight
\[
\begin{equation*}
\operatorname{Max}_{\mathrm{h}}[\mathrm{RC} ; \mathrm{N}, \mathrm{~N}] \tag{7.2.137}
\end{equation*}
\]
3. Wach number for maximum lift cocfficient at given weight and altitude
\[
\begin{equation*}
\operatorname{Max}\left[\mathrm{C}_{\mathrm{L}} ; \mathrm{W}, \mathrm{~h}\right] \tag{7.2.138}
\end{equation*}
\]
4. Mach number for specified lift corfficient given weight and altitude
\[
\begin{equation*}
\underset{M}{\text { Find }\left[C_{L} ; W, h\right]} \tag{7.2.139}
\end{equation*}
\]
5. Maximum endurance Mach number given altitude, weight, and maximum lift coefficient
\[
\begin{equation*}
\underset{M}{\operatorname{Min}}\left[\mathfrak{W} ; W, h, C_{L_{\max }}\right] \tag{7.2.140}
\end{equation*}
\]
6. Maximum Mach number at given weight and altitude
\[
\begin{equation*}
\operatorname{Max}_{\mathrm{M}}[\mathrm{M} ; \mathrm{W}, \mathrm{~h}] \tag{7.2.141}
\end{equation*}
\]

7a. Mach number for maximum rate of climb at given weight and altitude
\[
\begin{equation*}
\operatorname{Max}_{M}[\mathrm{RC} ; \mathrm{W}, \mathrm{~h}] \tag{7.2.142}
\end{equation*}
\]

7i. Wach number for maximum rate of climb per pound of fuel at given weight and altitude
\[
\begin{equation*}
\underset{M}{\operatorname{Max}}[\mathrm{dh} / \mathrm{dW} ; \mathrm{W}, \mathrm{~h}] \tag{7.2.143}
\end{equation*}
\]
8. Approximate Mach number and altitude for maximum range factor given weight
\[
\begin{equation*}
\underset{(\mathrm{M}, \mathrm{~h})}{\operatorname{Max}[\mathrm{RF} ; \mathrm{W}]} \tag{7.2.144}
\end{equation*}
\]
9. Wach number for maximum range factor given altitude and weight
\[
\begin{equation*}
\operatorname{Max}_{M}(\mathrm{RF} ; h, W] \tag{7.2.145}
\end{equation*}
\]
10. Tarious energy maneuverability pasometers at specified load factor given Mach, altitude, and weight
a. The required lift coefficient
b. Specific excess power
\[
P_{S}=\dot{E}=(T-D) V / W
\]
c. Specific excess power divaded by fuel flow
\[
\begin{equation*}
\mathrm{P}_{\mathrm{S}} / \dot{\mathrm{W}}=\dot{\mathrm{E}} / \dot{\mathrm{W}}=(\mathrm{T}-\mathrm{D}) \mathrm{V} /(\mathrm{W} \quad \mathrm{~W}) \tag{7,2.146}
\end{equation*}
\]
d. Specific excess power divided by fuel flow and multiplied by fuel remaining (\(\Delta E\) capability) measure
\[
\begin{equation*}
P_{S} \frac{W_{F}}{\dot{W}}=\frac{\dot{E} W_{F}}{\dot{W}}=\frac{\mathrm{dE}}{\mathrm{dW}} \cdot W_{F} \simeq \Delta E \tag{7.2.147}
\end{equation*}
\]
e. Specific energy
\[
\begin{equation*}
E_{S}=h+V^{2} / 2 g \tag{7.2.148}
\end{equation*}
\]
f. Load factor at \(P_{S}=0.0\)
g. Steady state turn radius computed as follows:
\[
C_{L}=C_{L} \text {, for given load factor }
\]

Now for given bank angle, \(\mathrm{B}_{\mathrm{A}}\)
\[
\begin{equation*}
W=q S C_{L} \cdot \cos \left(B_{A}\right) \tag{7.2.149}
\end{equation*}
\]
and the centrifugal force is
\[
\begin{align*}
& L \sin \left(B_{A}\right)=\frac{R V^{2}}{R g}=\frac{L \cos \left(B_{A}\right) V^{2}}{R g} \tag{7,2.150}\\
& \therefore R=\frac{V^{2}}{g \tan \cdot B_{A}} \tag{7.2.151}
\end{align*}
\]
but from Equation (7.2.149)
\[
\begin{align*}
\cos B_{A} & =\frac{W}{g S C_{L}} \tag{7.2.152}\\
\therefore \quad \tan B_{A} & =\sqrt{\left(\frac{q S C_{L}}{W}\right)^{2}-1.0} \tag{7.2.153}
\end{align*}
\]

Substituting Equation (7.2.153) and (7.2.151)
\[
\begin{equation*}
R=\frac{V^{2}}{g} \sqrt{\frac{1.0}{\left(\frac{q S C}{K}\right)^{2}-1.0}} \tag{7.2.154}
\end{equation*}
\]

It should be noted that this mission segment option may employ directiy specified value of Mach number, altitude, and weight or these state components may be picked up from the previous massion, segment termination. The ability to reset Mach number, altitude, and weight from any previous segment termination is also available within the option.

This mission segment option perturbs the range increment in segment ito provide a specified total range (from mission initiation) in segment \(j\)

This is illustrated above where \(\Delta R_{i}\) is perturbed to satisfy the condition
\[
R_{j}=\bar{R}_{j}
\]
wathin an error of one nautical mile.

\subsection*{7.2.6.24 Climb or Accelerate (Mission Option 16)}

This mission segment option provides a climb or acceleration between two Mach number-altitude points (\(M_{1} h_{1}\)) and (\(M_{2} h_{2}\)). These two flight conditions must be defined in two mission segments, segment \(i\) and segment j. The climb or acceleration will then join the two points Climb or acceleration paths may be performed in either a forward-or reverse time direction. Descents are not permatted. The mission segment option may be performed with or without range credit.

Fuel burning decisions are made according to mil-C rules while going from, condition 1 to 2. Thus, fuel is burned if
\[
h_{2}>h_{1}
\]
or if
\[
M_{2}>M_{1} \quad \text { and } h_{2}=h_{1}
\]

This behavior is illustrated below.

ORIGINAL PAGE IS OF POOR QUALITM

\subsection*{7.2.6.25 Fuel Weight Change (Massion Option 17)}

A computed or specified fuel weight change is introduced through this mission segment option. The operation performed is
\[
\begin{align*}
& W_{i+1}=W_{i}-\Delta W \tag{7.2.155}\\
& T_{i+1}=T_{i}+\Delta T \tag{7.2.156}
\end{align*}
\]

The option can be used to compute
1. Loiter fuel requirements
2. Warm up and take-off fuel
3. Combat fuel

Take-off fuel when computed is carried out through program TOLAND of Section 7.1. If a detalled take-off analysis is not required the option of Section 7.2.6.26 is used. Warm up fuel calculation is computed for given power setting and time. Loiter fuel calculation is for flight at specified Mach number, altitude, weight, and a given time. Combat fuel calculation is for specified time or degrees of turn at a given load factor. If the degree of turn option is used, the following calculation is performed.
\[
\begin{equation*}
L=\bar{n} \cdot W \tag{7.2.157}
\end{equation*}
\]
where \(\bar{n}\) is the load factor. The centrifugal force is
\[
\begin{equation*}
F_{R}=\sqrt{L^{2}-W^{2}} \tag{7.2.158}
\end{equation*}
\]
and the turn radius is
\[
\begin{equation*}
R=\frac{W V^{2}}{g \sqrt{L^{2}-W^{2}}} \tag{7.2.159}
\end{equation*}
\]

The thrust force is set to drag at the turn \(C_{L}\)
\[
T=D
\]
7.2.6.26 Fuel Allowance (Massion Option 20)

This mission segment option computes the fuel allowance for a specified time at
1. riven power setting
2. Given thrust/weight

\subsection*{7.2.7 Thrust Specification in Mission Segment Options}

The vehicle propulsive representations have been discussed in Section 7.2.2. There are three available maximum thrust tables, \(\mathrm{T}_{\max j} ; j=1,2,3\). These tables are referenced as follows:
\[
\begin{aligned}
\mathrm{T}_{\max } & =\text { maximum dry thrust } \\
\mathrm{T}_{\max 2} & =\text { maxımum wet thrust } \\
\mathrm{T}_{\max 3} & =\text { maximum power }
\end{aligned}
\]

Throttling may only be used for \(\mathrm{T}_{\operatorname{maxl}}\) and \(\mathrm{T}_{\max 2}\). In using the various mission segment options an appropriate choice of thrust must be made. The options are
1. \(T=D\)
2. \(\quad\) T \(=\) maximum dry
3. \(\mathrm{T}=\) maximum wet
4. \(\quad\) T \(=\) maximum power
5. \(\quad T=\) thrust for given power setting; dry.

\subsection*{7.2.8 Flight Envelope Calculations}

Several gross flight envelope calculations may be performed. All flight envelope computations are subject to the conditions
\[
\begin{aligned}
& C_{L} \leqslant \mathcal{C}_{L_{1 i m}}, \text { lift coefficient limit } \\
& M \leqslant M_{l_{1 m}}, \text { Mach number limit } \\
& q \leqslant q_{1 i m}, \text { dynamIc pressure limit. }
\end{aligned}
\]

Propulsive and aerodynamic characteristics must be specified.

\subsection*{7.2.8.1 Climb Path History}

Given an mitial weight, warm up, and take-off fuel allowance, a maximum rate of climb path is performed from
\[
\begin{equation*}
P_{1}=P_{1}\left(M_{1}, 0.0\right) \tag{7.2.160}
\end{equation*}
\]
to
\[
\begin{equation*}
P_{2}=P_{2}\left(M_{2}, h_{M A X R F}\right) \tag{7.2.161}
\end{equation*}
\]
where
\[
h_{M A X R F}=\text { altitude for best range factor at } M_{2}
\]

Alternatively, \(P_{2}\) may be selected as
\[
P_{2}=P_{2}\left(M_{\mathrm{MAXRF}}, h_{\mathrm{MAX} \mathrm{RF}}\right)
\]

The calculation is performed in ten equal altitude increments from \(P_{1}\) to \(\mathrm{P}_{2}\). Climb paths are generated for N distinct weights
\[
\begin{equation*}
W_{i}=W_{0}+i \cdot \Delta W ; \quad i=0,1, \ldots N-1 \tag{7.2.163}
\end{equation*}
\]

\subsection*{7.2.8.2 Endurance versus Weight at Various Altitudes}

The endurance is calculated at a given altitude for the weights \(W_{i}=W_{0}{ }^{+1} \cdot \Delta W\); \(i=1,1, . . ., N-1\). Mach number selected is for best endurance.

The calculation may be repeated for any number of altitudes, \(h=h_{0}+i \cdot \Delta h\); i = 0, l,
7.2.8.3 Optımum Cruise Clımb at Various Mach lumbers

An optimum cruise climb between \(W_{1}\) and \(W_{2}\) in a specified number of weight increments. The path is repeated for an array of Mach numbers and altitudes
\[
\begin{array}{ll}
M_{i}=M_{0}+i \cdot \Delta M ; & i=0,1,2, \ldots \ldots \\
h_{j}=h_{0}+j \cdot \Delta h ; & j=0,1,2, \ldots \ldots \tag{7.2.165}
\end{array}
\]

\subsection*{7.2.9 Contour Presentation Capabilities}

A set of point calculations (vehicle capability at given flight conditıons) are carried out over a two-dimensional array of Mach-altıtudes, \(M_{i}, h_{j}\). The resulting matrix of capabilities, \(\mathrm{Fk}_{\mathrm{i}}\), is then supplaed automatically to the CONPLOT routine of Reference 5 , and the contours of the function \(F k\) in the Mach-altitude plane are obtanned in the form of CALCOMP, Houston plotter, or CRT display device output. At the present time twelve functions, Fl to Fl2, may be output in contour form. Each contour plot is described briefly below.

\subsection*{7.2.9.1 Specific Energy Time Derivative, \(\dot{E},(\) INDMAP \(=1\))}

The specific energy time derivative is computed according to the expression
\[
\begin{equation*}
\dot{E}(M, h)-(T-D) V / W \tag{7,2,166}
\end{equation*}
\]
where
\(\dot{E}=\) energy total time derivatıve
\(T=\) thrust obtained at a specified power setting or at \(T=D\); wet, dry, or maximum power options are available
\(D=\) drag computed for a specified load factor
\(V=f l i g h t\) velocity
\(W=\) aircraft weight
Some typical energy derivative contours for a large four-engone transport are presented in Figure 7.2-9. The manmmum contour shown is for the condition \(T-D=0\). Hence, the flight envelope is a by-product of the \(\dot{E}\) map when suitable constraints such as \(\mathrm{C}_{\mathrm{L}_{\max }}\), and dynamic pressure limits are added.

\subsection*{7.2.9.2 Specific Energy/Fuel Flow, \(\dot{\mathrm{E}} / \dot{\mathrm{m}}\), (INDMAP=2)}

The \(\dot{E} / \dot{m}\) contour presents the specific energy time derivative over the fuel flow map. Since
\[
\begin{equation*}
\dot{\mathrm{E}} / \dot{\mathrm{m}}=\frac{\mathrm{dF} / \mathrm{dt}}{\mathrm{dm} / \mathrm{d} t}=\frac{\mathrm{dE}}{\mathrm{dm}} \tag{7,2.167}
\end{equation*}
\]

The map illustrates an alrcraft's ability to convert fuel into energy at specified flight conditions.

The point calculation employed is
\[
\begin{equation*}
\dot{E} / \dot{m}=(T-D) V /(\dot{W} \dot{m}) \tag{7.2.168}
\end{equation*}
\]

\section*{ORIGINAL PAGE IS OF POOR QUALITY}
where \(\dot{m}\) is the fuel flow rate. The various thrust and drag options discussed in Sections 7.2.1 and 7.2.2 may be employed to produce a family of maps. A typical example for the large subsonic transport at maximum thrust and 1 g flight is shown in Figure 7.2-10.

\subsection*{7.2.9.3 Liftt/Drag, L/D, (INDMAP=3)}

Lift/drag contours present a measure of the airplane's aerodynamic efficiency. The L/D maps indicate its range capability in unpowered-ffight and partially reflect the cruise range capability. Mass can be produced for any specified load factor. A typical contour for the large subsonic transport in level flight is presented in Figure 7.2-11.

\subsection*{7.2.9.4 Range Factor, \(R_{F}\), (INDMAP \(=4\))}

Range factor contours present a measure of vehicle cruise range capability. Maps are produced for level flight with thrust equal to drag at a specified aircraft weight.
\[
\begin{equation*}
R_{F}=\left(\frac{V}{S F C}\right)\left(\frac{L}{D}\right) \tag{7.2.169}
\end{equation*}
\]
where SFC is the specific fuel consumption. The user may elect to construct maps for other than level unaccelerated flight. However, the interpretation of these charts is not clear. A typical unaccelerated flight range factor contour map for the large subsonic aircraft 15 presented in Figure 7.2-12.

\subsection*{7.2.9.5 Thrust (INDMAP=5)}

The thrust map is available as a device for examining thrust input data or the thrust component of other mapped functions. The map can be obtained for wet, dry, maximum, or throttled power setting. The maximum power thrust map for the large subsonic transport 15 presented in Figure 7.2-13.

> 7.2.9.6 Drag Map (IMDNAP=6)

The drag map provides a device for inspecting drag data input or the drag component of any other map. Drag maps are produced for a specified load Eactor. A lg drag map for the large subsonic transport is presented in Figure 7.2-14.

\subsection*{7.2.9.7 Specific Fuel Consumption, SFC , (INDMAP=7)}

Specific fuel consumption maps are provided as a data mput inspection device or as an aid to visualizing the specifac fuel consumption component of other
maps. Maps may be obtained for wet, dry, maximum, or throttled power settings. Maximum power specific fuel consumption of the large subsonic transport is presented in Figure 7.2-15.

\subsection*{7.2.9.8 Fuel Flow Rate, \(\dot{m}, \quad(\) INDMAP \(=8)\)}

The fuel flow maps are provided as a data input inspection device or as an aid to visualizing the fuel flow component of other maps. Maps may be obtained for wet, dry, maximum or throttled power settings. Maximum power fuel flow for the large subsonic transport in level unaccelerated flight is presented in Figure 7.2-16.

\subsection*{7.2.9.9 Specific Energy (INDMAP=9)}

The specific energy map
\[
E=h+v^{2} / 2 g
\]
is provided as a user's convenience in visualizing the trajectory points between constant energy lines and any other set of contours. An example is presented in Figure 7.2-17.
7.2.9.10 Luft/(Thrust - Drag), L/(T-D) (INDMAP=10)

The lift/(thrust - drag) contours are useful for determination of maximum range powered flight.

Assuming that maximum range flıght occurs at small flight path angles
\[
\begin{equation*}
R \simeq \int \frac{L}{T-D} d E \tag{7.2.171}
\end{equation*}
\]

Therefore, the energy-like approximation to maximum range flight occurs when \(L /(T-D)\) is a maximum at each energy level. It should be noted that when \(T-D=0\), no energy gain is possible, therefore, this singular condition must be avolded. In NSEG II the per cent excess of thrust over drag which is acceptable us a program input. A typical \(\mathrm{L} /(\mathrm{T}-\mathrm{D}\)) map for the large subsonic transport is presented in Figure 7.2-18.

\subsection*{7.2.9.11 Turn Radaus (INDMAP=11)}

Turn radius maps give a gross indication of aircraft's combat capability. Turn radius is computed by equating the alrcraft's lift capability in steady state of deceierating filght using the following expression
\[
\begin{equation*}
R=w\left(\frac{V^{2}}{g}\right)\left[\frac{1.0}{\left(q S C_{L}\right)^{2}-W^{2}}\right]^{1 / 2} \tag{7.2.172}
\end{equation*}
\]
where \(\mathrm{C}_{\mathrm{I}}\) is determined so that (a) thrust equals drag for steady state flight and (b) \(C_{L}\) equals \(C_{L}\) maximum for minimum instantaneous turn radius.

Typical radius of turn map for the subsonic. transport are presented in Figure 7.2-19.

\subsection*{7.2.9.12 Time to Turn (INDMAP=12)}

Time to turn through 180 degrees is presented as a supplement to the turn radius map. When the minimum instantaneous turn radius calculation is employed, the maps do not give a true time to turn. They merely indicate how long a time the aircraft would take to turn if it could maintain its current turn rate. When steady state turns are considered, true time to turn is obtained which will frequently be much longer than is required for a decelerating turn. Typical time to turn maps for the subsonic transport are illustrated in Figure 7.2-20.

\section*{REFEREIICES:}
1. Lèet, L. H., Contents and Capabilities of ASEG, Unpublished notes wratten at the Oiffice for Development Plannang, ASD, Wright-Patterson Aar Force Base, October 1968, (available from Aerophysics Research Corporation).
2. Rutowski, E. R., "Energy Approach to the 'General Alrcraft Performance Problem," Journal of the Aeronautical Sciences, March 1954.
3. Raybouid, B., "Approximate Trajectories for Maximum Range," Joumal of the Seronautical Society, June 1963.
4. Hague, D. S. and Jones, R. T, Energy Maneuverabılity Options for Massion Segment Analysis Program-NSEG, TN-149, Aerophysics Research Corporation, April 1972.
5. Hague, D. S., CONPLOT: A Rapad Code for Production of Three-Dimensional Contour Plots, TN-140, Aerophysics Research Corporation, March 1972.

\section*{Hi-Lo-Lo-Hi Radius Mission}

1. Take-off
2. Naximum rate of climb to best cruise altıtude given weight and Mach number
3. Constant \(\mathrm{C}_{\mathrm{L}}\) climb to best crulse altitude for new weight and Mach number
4. Breguet cruise to given range, \(R\)
5. Instantaneous state change to dash Mach number and altitude
6. Constant Mach number-altitude cruise to total range, \(R\)
7. Drop ordnance, instantaneous weight change
3. Constant Mach number-altitude return crulse to given weight
9. Maximum rate of climb to given Mach number-altitude
10. Breguet cruase to given weight
11. Instantaneous state change to best endurance Mach number for given altitude and weight
12. Lolter for given time

FIGURE 7.2-1. TYPICAL NSEG II MISSION PROFILE

ORIGINAL PAGE ID
OF POOR QUALIETY
7.2-38

FIGURE 7.2-2. TYPICAI FLIGHT POINT PERFORMANCE MAPS
(SPECIFIC ENERGY AT VARIOUS LOAD FACTORS, WEIGHTS, AND THRUSTS)

FIGURE 7.2-4 LINEAR MACH ALTITUDE MACH SEGMENT

figure 7.2-5 CONSTANT DYNAMIC PRESSURE SEGMENT

FIGURE 7．2－6．TYPICAL NSEG II ACCELERATION PATH
7.2-42

FIGURE 7 2-7 ENERGY CONSTRAINT IMPOSED ON MAXIMUM ACCELERATION PATH

MAX THRUSi
GLEVEL \(=: 5\)
\(W t=575000\) pounde

MAX THRUST
\(G L E V E L=1.0\)
\(W 亡=660000\) pounds

FIGURE 7.2-10

URIGINAL PAGE IS OF POOR QUALITY

FIGURE 7.2-12.

FIGURE 7.2-17 SPECTFIC ENERGY MAP

FIGURE 7.2-20 MAP OF TIME TO TURN 180 DEGREES

TABLE OF CONTENTS FOR SECTION 7.3, PROGRAM ATOP II
Section Page
Introduction 7.3-1
7.3.1 Point Mass Trajectory Equations 7.3-2
7.3.2 Control Variables 7.3-3
7.3.3 Coordinates and Coordinate Transformations 7.3-5
7.3.3.1 Local Geocentric-Horizon Coordinates 7.3-5
7.3.3.2 Wind Axis Coordinates 7.3-6
7.3.3.3 Body Axis Coordinates 7.3-8
7.3.3.4 Inertıal Coordinates 7.3-9
7.3.3.5 Local Geocentric to Geodetic Coordınates 7.3-9
7.3.4 Auxiliary Computatıons 7.3-10
7.3.4.1 Planet Surfaced Referenced Range 7.3-10
7.3.4.2 Great Circle Range 7.3-11
7.3.4.3 Down and Cross Range 7.3-11
7.3.4.4 Theoretical Bumout Velocity and Losses 7.3-11
7.3.4.5 Orbital Variables and Satellite Target 7.3-12
7.3.5 Vehicle Characteristics 7.3-14
7.3.5.1 Aerodynamic Forces 7.3-14
7.3.5.2 Thrust and Fuel Flow Data 7.3-15
7.3.5.3 Stages and Stagıng 7.3-16
7.3.6 Vehicle Environment 7.3-17
7.3.6.1 Atmosphere 7.3-17
7.3.6.2 Winds Aloft 7.3-18
7.3.6.3 Gravity 7.3-19
References 7.3-21
Illustrations 7.3-22

\subsection*{7.3 ATOP II: ATMOSPHERIC TRAJECTORY OPTIMIZATION PROGRAM}

Trajectory optimization by the steepest-descent method is now a routine performance estimation at several Government research establishments and majox aerospace concerns. The computer program utilazed for trajectory optimization studies in this report is capable of determanng optimal three-dimensional flight paths for a wide variety of vehicles in the vicinity of a single planet. Atmospheric effects may be included, if desared. Past program applications include flight path optimization of
a. high performance supersonic aircraft
b. spacecraft orbital transfer rendezvous and re-entry
c. multi-stage booster ascent trajectories
d. boost-glide re-entry vehicles
e. advanced hypersonic cruise aircraft
f. air-to-ground missiles

Optimal control can be determined for any combination of the time varying variables
a. angle of attack (or pitch angle)
b. bank angle
c. side slip
d. throttle
e. two thrust orientation angles

All the commonly employed terminal performance and constraint criteria may be specified. Inequality constrants may be imposed along the vehicle flight path.

Several options are available for specification of vehicle aerodynamic and propulsive options. Data and vehicle characteristics option can be modified at preselected stage points. An arbitrary number of stage points may be specified.

Planetary characteristics are nominally set to those of the earth. Up to four gravitational harmonics may be specified. Nominal planetary atmosphere employed is the 1959 ARDC. A variety of wand specification options are avallable. An ellipsoidal planetary shape may be specified.

The original trajectory optimization program is described in References 1 and 2. Equations of motion employed are described in References 3 and 4. Some past applications are described in References 5 and 6 . An extension of program capability is descrided in Reference 7. An extension to simultaneously determine both optimal time varying control and discrete stage points together with some applications are described in Reforences 8 and 9. A guidance and control application, the so called lambda guidance scheme, is reported in Reference 10.

The optimization program of References 1 and 2 employs a second-order prediction scheme and several control variable "weighting matrix" options to assist convergence of the steepest-descent algorithm. These two features have also been included in a recently developed trajectory optimization, Reference 11. They are also retained as convergence options in an extended version of the References 1 and 2 program which has multıple arc (branched trajectory) capability as reported in Reference 12.

The remainder of this section is devoted to an outline of the three-degree\(0 \approx\) Ereedom equations used in ATOP II. The variational optımization formu:azion employed in ATOP II is described in Section 10.1. It should be noted that the ATOP II program also contains a multivariable optimazation capability Eor applications in which the time varying control can be parameterized. Examples of this approach are contained. in Reference 13. The multivariable search capability is described in Section 10.2.

\subsection*{7.3.1 Point Mass Trajectory Equations}

Several suitable coordinate systems are available for point mass trajectory computations. The basic set of coordinates used in the present analysis is a rectangular set rotating with the earth, \(\left(X_{e}, Y_{e}, Z_{e}\right)\). This coordinate system is illustrated in Figure 7.3-1.

Tae \(X_{e}\) and \(Y_{e}\) axes lie in the equatorial plane, the positive \(X_{e}\) axis being inatially chosen as the intersection of this plane with the vehacle longiEutinal plane at \(t=t_{0}\). \(Y_{e}\) is 90 degrees to the west of \(X_{e}\), and \(Z_{e}\) is zositive through the South Pole. The radius vector magnitude from the こenter of the earth to the vehicle is gaven by
\[
\begin{equation*}
\left|e_{\|}\right|=\sqrt{x_{e}^{2}+x_{e}^{2}+z_{e}^{2}} \tag{7.3.1}
\end{equation*}
\]

The angle between 8 and the North pole is given by
\[
\begin{equation*}
\varphi^{\prime}=90-\phi_{I} \tag{7.3.2}
\end{equation*}
\]
\(\because \therefore\) そe of is the latıtude of the vehicle.
\(\therefore\) a result of the earth's rotation, an observer in the (\(X_{e}, Y_{e}, Z_{e}\)) system iould detect an apparent motion of the point mass. In the rotating system Nebton's law can be written in the vector form, References 1 and 2,
\[
\begin{equation*}
\frac{E}{m}=\left(\frac{\dot{c}^{2}}{d t^{2}}\right)_{0}+2 \omega_{p} \times\left(\frac{e^{2}}{2 t}\right)+\omega_{p}-\omega_{p} \times R \tag{7.3.3}
\end{equation*}
\]
neve \(f\) is the total force acting on the vehicle; m is the vehicle mass, and \(\pi\) is the planet's rotation rate. This vector equation can be expressed in component form using the relationships
\[
\begin{align*}
& \frac{F_{x_{e}}}{m}=\ddot{X}_{e}+2 \omega_{p} \dot{Y}_{e}-\omega_{p}^{\cdot 2} x_{e} \tag{7.3.4}\\
& \frac{F_{y_{e}}}{\omega}=\ddot{Y}_{e}-2 \omega_{p} \dot{x}_{e}-\omega_{p}^{2}{ }^{2} Y_{e} \tag{7.3.5}\\
& \frac{F_{z_{e}}}{w_{j}}=\ddot{z}_{e} \tag{7.3.6}
\end{align*}
\]

\section*{7.3-2}

Alternatively, by introducing the vehicle velocity components, Equations (7.3.4) to (7.3.6) can be reduced to the first order form
\[
\begin{align*}
& \dot{x}_{e}=u_{e} \tag{7.3.7}\\
& \dot{Y}_{e}=v_{e} \tag{7.3.8}\\
& \dot{z}_{e}=W_{\dot{e}} \tag{7.3.9}\\
& \dot{u}_{e}=\frac{F_{X_{e}}}{m}-2 \omega_{p} v_{e}+\omega_{p}^{2} X_{e} \tag{7.3.10}\\
& \dot{v}_{e}=\frac{F_{y_{e}}}{m}+2 \omega_{p} u_{e}+\omega_{p}^{2} Y_{e} \tag{7.3.11}\\
& \dot{w}_{e}=\frac{F_{z e}}{m} \tag{7.3.12}
\end{align*}
\]

The vehicle state equations are completed by adding the mass rate of change equation to the equations of motion. The mass rate of change is assumed to be of the general form
\[
\begin{equation*}
\dot{m}=\dot{m}\left(\bar{x}_{n}(t), \bar{\alpha}_{m}(t), t\right) \tag{7.3.13}
\end{equation*}
\]
where \(\bar{x}_{n}(t)\) is the time varying vehicle state vector having components \(X_{e}\), \(y_{e}, Z_{e}, u_{e}, v_{e}, w_{e}\), and \(m\); and \(\bar{\alpha}(t)\) is the time varying control vector having the components discussed in the following section.

\subsection*{7.3.2 Control Variables}

The total force acting on the vehicle has three distinct sources: aerodynamic force as a result of interaction between the vehicle surfaces and the planetary atmosphere; second, gravitational force as a result of vehicle and planetary mass interaction; and finally, thrust forces introduced by the vehicle propulsion system.

Aerodynamic force components in the basic (\(X_{e}, Y_{e}, Z_{e}\)) rotating coordinate system are functions of the vehicle orientation with respect to the velocity vector. Three angular control variables determine these force components as discussed below.

Angle of attack, \(\alpha\), is the angle between the velocity vector and the vehicle reference axis when viewed in the vehicle side elevation. That is, in a rectangular body axis coordanate system, \(x, y, z\) with \(x\) along the vehicle reference axis, positive forward, \(y\) perpendicular to the vehicle plane of symmetry, positive to starboard, and \(z\) completing a right hand system. A view normal to the \(x-z\) plane is considercd. If \(u, v, w\) are the components of the vehicle velocity with respect to the atmosphere in this body axis system
\[
\begin{equation*}
\alpha=\tan ^{-1}\left(\frac{\mathrm{w}}{\mathrm{u}}\right) \tag{7.3.14}
\end{equation*}
\]

Sideslip angle, \(\beta\), is the angle between the velocity vector and the reference axis when looking down on the vehicle planform, that is, along the \(z\) axis. In this case,
\[
\begin{equation*}
\beta=\tan ^{-1}\left(\frac{v}{u}\right) \tag{7.3.15}
\end{equation*}
\]

The third angle required to establish vehicle orientation in space is a rotation about the velocity vector. This angle, bank angle (\(\mathrm{B}_{\mathrm{A}}\)) is taken as zero when the vehicle plane of symmetry is vertical and when the vehicle is upright. Positive bank angle is a positive rotation about the velocity vector as in Figure 7.3-4. With the above three angles used to describe vehicle attitude, velocity vector known, and a given atmosphere, the aerodynamic forces are completely satisfied.

Thrust from the propulsion system involves the atmospheric properties either due to the atmospheric back pressure degrading the vacuum thrust or by virtue of the atmospheric fluid used in the combustion process which creates thrust. The propulsion unit efficiency may be affected by Mach number and, hence, velocity so that thrust forces depend on the state variable components of position and velocity. If the propulsion system force has a fixed orientation along the x body axis, the control variables introduced to describe aerodynamic forces suffice to describe thrust forces also. It may be, however, that the propulsion unit has a faxed or variable orientation within the vehicle. In this case, additional control variables describe the relative position of the propulsion unit force with respect to the body axes.

Two additional angles are sufficient to orient the thrust. These are the cone angle from the reference axis, \(\lambda_{T}\), and the inclination about the reference axis, \(\phi_{T}\). This latter angle is measured positively about the reference axis and is zero when the thrust force is perpendicular to the port side of the vehicle plane of symmetry, as illustrated in Figure 7.3-5.

One other control variable for thrust must be specified; this is the throtile setting, \(k i\), which serves to determane the propulsion unit power setting on variable thrust enganes.

In all, then, to specify the forces acting on a point mass vehicle with a single propulsion unit, six control variables, \(\alpha, \beta, B_{A}, \lambda_{T}\), \(\phi_{T}\), and \(N\) are required. If there is more than one independently controllable propulsion unit, additional control variables, \(\lambda_{T_{i}}, \phi_{T_{i}}\), and \(N_{i}\), are defined.

\subsection*{7.3.3 Coordinates and Coordinate Transformations}

\subsection*{7.3.3.1 Local Geocentric-Horizon Coordinates}

Components of the planet-referenced acceleration are integrated to obtain the planet-referenced velocity components (\(\left.\dot{X}_{e}, \dot{Y}_{e}, \dot{Z}_{e}\right)\). Vehicle position in this coordinate system is determined by integration of these velocities. Vehicle position in the planet-referenced spherical coordinate system will now be determined. The spherical coordinates are longitude, geocentric latitude, and distance from the center of the planet. Angle "C" represents the change in vehicle longitude and may be written
\[
\begin{equation*}
\mathrm{C}=\theta_{\mathrm{L}_{0}}-\theta_{\mathrm{L}} \tag{7.3,16}
\end{equation*}
\]

Angle \(C\) is related to the vehicle position by the expression
\[
\begin{equation*}
C=\operatorname{Tan}^{-1}\left(\frac{Y_{e}}{X_{e}}\right) \tag{7.3.17}
\end{equation*}
\]

The relationships are illustrated in Figure 7.3-6.
To describe body motion relative to the planet, a local-geocentric-horizon coordinate system is employed. The \(Z_{g}\) axis of this system is along a radial line passing through the body center of gravity and is positive toward the center planet. The \(\mathrm{X}_{\mathrm{g}}\) axis of this system is normal to the \(\mathrm{Z}_{\mathrm{g}}\) axis and is positive northward; \(\mathcal{Y}_{g}\) forms a right handed system. Figure 7.3-6 shows the relation of this coordinate system to the other systems employed.

To locate the \(X_{g}-Y_{g}-Z_{g}\) axes with respect to the \(X_{e}-Y_{e}-Z_{e}\) axes, rotate about \(Z_{\mathrm{e}}\) by an angle (\(180^{\circ}{ }^{\circ} \mathrm{C}\)), then rotate about \(Y_{g}\) through the angle (\(90^{\circ}\) - \(\mathrm{Q}_{\mathrm{L}}\)). The complete transformation can be reduced to the single transformation matrix
\[
\left|\begin{array}{l}
\bar{I}_{X_{E}} \tag{7.3.18}\\
\bar{I}_{Y_{g}} \\
\bar{I}_{Z_{\mathrm{E}}}
\end{array}\right|=\left|\begin{array}{lll}
-\sin \phi_{\mathrm{L}} & \cos c & -\sin \phi_{\mathrm{L}} \sin c \\
\sin c & -\cos \phi_{\mathrm{L}} \\
-\cos \phi_{\mathrm{L}} \cos c & -\cos \phi_{\mathrm{L}} \sin c & \sin \phi_{\mathrm{I}}
\end{array}\right|\left|\begin{array}{l}
\bar{I}_{\mathrm{X}_{\mathrm{e}}} \\
\bar{I}_{\mathrm{Y}_{\mathrm{e}}} \\
\bar{I}_{\mathrm{Z}_{\mathrm{e}}}
\end{array}\right|
\]
which defines a direction cosine set (i, \(J, k\)) by the equation
\[
\left|\begin{array}{l}
\bar{I}_{X_{g}} \tag{7.3.19}\\
\bar{I}_{Y_{g}} \\
\bar{I}_{Z_{g}}
\end{array}\right|=\left|\begin{array}{lll}
i_{1} & j_{1} & k_{1} \\
i_{2} & j_{2} & k_{2} \\
i_{3} & j_{3} & k_{3}
\end{array}\right|\left|\begin{array}{l}
\bar{I}_{X_{e}} \\
\bar{I}_{Y_{e}} \\
\bar{I}_{Z_{e}}
\end{array}\right|
\]

Planet referenced velocity in the local-geocentric coordinate system is given by
\[
\left|\begin{array}{l}
\dot{x}_{g} \tag{7.3.20}\\
\dot{y}_{g} \\
\dot{z}_{g}
\end{array}\right|=\left|\begin{array}{lll}
i_{1} & j_{1} & k_{1} \\
i_{2} & j_{2} & k_{2} \\
i_{3} & j_{3} & k_{3}
\end{array}\right| \quad\left|\begin{array}{l}
\dot{x}_{e} \\
\dot{y}_{e} \\
\dot{z}_{e}
\end{array}\right|
\]
and
\[
\begin{equation*}
V_{g}=\sqrt{\dot{X}_{g}^{2}+\dot{Y}_{g}^{2}+\dot{Z}_{g}^{2}} \tag{7.3.21}
\end{equation*}
\]

Flight path angles are computed by
\[
\begin{equation*}
\sigma=\tan ^{-1}\binom{\dot{Y}_{E}}{\dot{x}_{g}} \tag{7.3.22}
\end{equation*}
\]
and
\[
\begin{equation*}
\gamma=\sin ^{-1}\left(\frac{\dot{z}_{z}}{\frac{\bar{v}_{g}}{g_{g}}}\right) \tag{7.3.23}
\end{equation*}
\]

Here \(\sigma\) is the heading angle, and \(\lambda\) is the flight path angle.

\subsection*{7.3.3.2 Wind Axis Coordinates}

Aerodynamic and thrust forces for point mass problems are conveniently summed in a wind-axis coordinate system (\(X_{A}, Y_{A}, Z_{A}\)). The equations of motion are solved in (\(X_{e}, Y_{e}, Z_{e}\)) coordinate system; the wind-axis components of force must therefore be resolved into this basic coordinate system.
wiener hands are defined by atmospheric velocity components along the local geocentric axes, vehicle velocity relative to the atmosphere is the vector cıEEErence of vehicle geocentric velocity and wind velocity. The wind axis systen s then determined by the vehicle airspeed, \(\mathrm{V}_{\mathrm{A}}\), and the flight path angies relative to the atmosphere \(\lambda_{A}\) and \(\sigma_{A}\). If wind velocity is zero, \(V_{A}=V_{\mathrm{S}}, \lambda_{\mathrm{A}}=\lambda\) and \(\sigma_{\mathrm{A}}=\sigma\). If there is a wind, with velocity components \(\left(\lambda_{\text {gu }}, \hat{Y}_{\text {gw }}, Z_{\text {gw }}\right)\), then
\[
\begin{align*}
& V_{A}=\sqrt{\left(\dot{X}_{g}-\dot{X}_{g W}\right)^{2}+\left(\dot{Y}_{g}-\dot{Y}_{g:}\right)^{2}+\left(\dot{Z}_{g}-\dot{Z}_{g W}\right)^{2}} \tag{7.3.24}\\
& \gamma_{A}=\sin ^{-1}\left[-\left(\dot{X}_{g}-\dot{X}_{g W}\right) / V_{A}\right] \tag{7.3.25}\\
& \sigma_{A}=\tan ^{-1}\left[\left(\dot{Y}_{g}-\dot{Y}_{g W}\right) /\left(\dot{X}_{g}-\dot{X}_{g w}\right)\right] \tag{7.3.26}
\end{align*}
\]

Forces are first resolved from wind axes to the local geocentric coordinates. The wind axes are defined relative to the local geocentric axes by three angles: heading, oA; flight path attitude, \(\gamma_{A}\), (defined above); and bank angle, \(\mathrm{B}_{\mathrm{A}}\), Figure 7.3-9.

The complete transformation from local geocentric horizon coordinates to wand axes is
\[
\left\{\begin{array}{l}
X_{A} \tag{7.3.27}\\
Y_{A} \\
Z_{A}
\end{array}\left|=\left|\begin{array}{ccc}
\cos \gamma_{A} \cos \sigma_{A} & \cos \gamma_{A} \sin \sigma_{A} & -\sin \gamma_{A} \\
-\sin \sigma_{A} \cos B_{A} & \cos \sigma_{A} \cos B_{A} & \cos \gamma_{A} \sin B_{A} \\
+\sin \gamma_{A} \cos \sigma_{A} \sin B_{A} & +\sin \gamma_{A} \sin \sigma_{A} \sin B_{A} & \\
\sin \sigma_{A} \sin B_{A} & -\cos \sigma_{A} \sin B_{A} & \cos \gamma_{A} \cos B_{A} \\
+\sin \gamma_{A} \cos \sigma_{A} \cos B_{A} & +\sin \gamma_{A} \sin \sigma_{A} \cos B_{A} & Y_{g}
\end{array}\right| \begin{array}{c}
X_{B} \\
Y_{g}
\end{array}\right|\right.
\]
which defines a direction cosine set
\[
\left.\left|\begin{array}{l}
X_{A} \tag{7.3.28}\\
Y_{A} \\
Z_{A}
\end{array}\right|=\left|\begin{array}{lll}
r_{1} & s_{1} & t_{1} \\
r_{2} & s_{2} & t_{2} \\
r_{3} & s_{3} & t_{3}
\end{array}\right| \begin{aligned}
& X_{g} \\
& Y_{g} \\
& Z_{g}
\end{aligned} \right\rvert\,
\]

The resolution of forces from wind axes to local geocentric then becomes
\[
\left.\left|\begin{array}{l}
F_{X_{g}} \tag{7.3.29}\\
r_{I_{8}} \\
r_{g_{g}}
\end{array}\right|=\left|\begin{array}{lll:l}
r_{1} & r_{2} & r_{3} \\
s_{1} & r_{2} & s_{3} \\
t_{1} & t_{2} & t_{3}
\end{array}\right| \begin{array}{r}
r_{A} \\
r_{Z_{A}}
\end{array} \right\rvert\,
\]

For the rotating planet, the local geocentric components must be resolved into the \(X_{e}-Y_{e}-Z_{e}\) system. The required direction cosines are given by Equation (7.3.20)
\[
\left.\left|\begin{array}{l}
F_{x_{e}} \tag{7.3.30}\\
F_{e} \\
F_{Z_{e}}
\end{array}\right|=\left|\begin{array}{lll:|:}
i_{1} & i_{2} & i_{3} \\
j_{1} & j_{2} & j_{3} \\
k_{1} & k_{2} & k_{3}
\end{array}\right| \begin{array}{r}
Y_{g} \\
F_{Z_{g}}
\end{array} \right\rvert\,
\]

The combined transformation from wind axes to local geocentrac can be defined as a single matrix transformation \([0, p, q]\). Adding in the gravitational force component, the total force in the \(\left(X_{e}, Y_{e}, Z_{c}\right)\) coordinate system becomes
\[
\left|\begin{array}{l}
F_{X_{e}} \tag{7.3.31}\\
F_{Y_{e}} \\
F_{Z_{e}}
\end{array}\right|=\left|\begin{array}{ccc}
o_{1} & -o_{2} & o_{3} \\
p_{1} & p_{2} & p_{3} \\
q_{1} & q_{2} & q_{3}
\end{array}\right|\left|\begin{array}{l}
F_{X_{A}} \\
F_{Y_{A}} \\
F_{Z_{A}}
\end{array}\right|+\left|\begin{array}{c}
m_{X_{e}} \\
m_{Y_{e}} \\
m_{Z_{e}}
\end{array}\right|
\]

\subsection*{7.3.3.3 Body Axis Coordinates}

Origan of this system is the vehicle center of gravity with \(x\) axis along the geometric longitudınal axis of the body. Positive direction of the \(x\) axis is from center of gravity to the front of the body. The \(y\) axis \(1 s\) positıve to starboard extending from the center of gravity in a water line plane. The \(z\) axis forms a right handed orthogonal system. To permit the use of body (\(x, y, z\)) axes aerodynamic data and to convert the body axes components of thrust to the wind axes system, a coordinate transformation must be made. The coordinate transformation shown in Figure 7.3-7. involves rotation first through angle of attack, \(\alpha\), then through an auxiliary angle, \(\beta^{\prime}\).

The complete transformation is
\[
\left|\begin{array}{l}
X_{A} \tag{7.3.32}\\
Y_{A} \\
z_{A}
\end{array}\right|=\left|\begin{array}{ccc}
\cos \beta^{\prime} \cos \alpha & \sin \beta^{\prime} & \cos \beta^{\prime} \sin \alpha \\
-\sin \beta^{\prime} \cos \alpha & \cos \beta^{\prime} & -\sin \beta^{\prime} \sin \alpha \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right|\left|\begin{array}{l}
x \\
y \\
z
\end{array}\right|
\]
which defines the (\(u, v, w\)) direction cosines
\[
\left|\begin{array}{l}
x_{A} \tag{7.3.33}\\
x_{A} \\
z_{A}
\end{array}\right|=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|\left|\begin{array}{c}
x \\
y \\
z
\end{array}\right|
\]
and the force coefficient transformation
\[
\left|\begin{array}{c}
-c_{D} \tag{7.3.34}\\
c_{Y} \\
-c_{L}
\end{array}\right|=\left|\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & u_{2} & u_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|\left|\begin{array}{c}
-c_{A} \\
c_{y} \\
-c_{N}
\end{array}\right|
\]

The relationship between body and wind axes aerodynamic coefficients is now established.

\subsection*{7.3.3.4 Inertıal Coordinates}

The selected inertial coordinates coincide with the earth references (\(X_{e}, Y_{e}, Z_{e}\)) system at time zero. At a later time they differ by the rotation of the earth, \(\omega_{p} t\).

The transformation from planet referenced velocyties to inertial velocities is
\(\left|\begin{array}{c}\dot{X} \\ \dot{X} \\ \dot{Z}\end{array}\right|=\left|\begin{array}{ccc}\operatorname{Cos} \omega_{p} t & \operatorname{Sin} \omega_{p} t & 0 \\ -\operatorname{Sin} \omega_{p} t & \operatorname{Cos} \omega_{p} t & 0 \\ 0 & 0 & 1\end{array}\right|\left|\begin{array}{l}\dot{X}_{e}+\omega_{p} Y_{e} \\ \dot{Y}_{e}-\omega_{p} X_{e} \\ \dot{Z}_{e}\end{array}\right|\)

The components of mertial velocities are used to calculate the inertial speed of the body as
\[
\begin{equation*}
V_{I}=\sqrt{\dot{X}^{2}+\dot{Y}^{2}+\dot{z}^{2}} \tag{7.3.36}
\end{equation*}
\]

\subsection*{7.3.3.5 Local Geocentric to Geodetic Coordinates}

Positions on the planet are specified in terms of geodetic latitude and altitude (for a given longitude) while the motion of the body is computed in a planetocentric system which is independent of the surface. In the computer program flight path angle \(\gamma\) and heading angle \(\sigma\) are calculated with respect to the local geocentric coordanates. By definition \(\gamma_{D}\) and op are angles measured with respect to the local geodetic. Although the maximum difference that can exist between the two coordinate systems is 11 munutes of arc, it may be desirable to know \(\gamma_{D}\) and \(\sigma_{D}\) more accurately than is obtained when measured from the local geocentric.

It is necessary to resolve the geocentric latitude to geodetic latatude For an accurate determination of position. Figure 7.3-8 presents the geometry required for describing the position of a point in a meridian plane of a planet shaped in the form of an oblate spheroid
\[
\begin{equation*}
\left(\frac{X}{R_{e}}\right)^{2}+\left(\frac{Z}{R_{p}}\right)^{2}=1 \tag{7.3.37}
\end{equation*}
\]

It is apparent from Figure 7.3-8 that the most significant difference between the geocentric referenced position and the geodetic position is the distance \(\overrightarrow{A B}\) on the surface of the reference spherold. The distance can be defined by a knowledge of the angle \(\phi_{\mathrm{L}}\); the geocentric latitude, \(\phi_{\mathrm{g}}\); the geodetic latitude; the corresponding radii; and the distance \(\overrightarrow{O C} .{ }^{\prime}\)

The fligint path and heading angles corrected to the local geodetic latitude are computed by
\[
\gamma_{D}=\sin ^{-1}\left(\frac{-\dot{z}_{g}-\left\{\dot{x}_{g}\left(\phi_{g}-\phi_{L}\right)\right\}}{\mathrm{v}_{g}}\right)
\]
and
\[
\begin{equation*}
\sigma_{D}=\sin ^{-1}\left(\frac{\dot{Y}_{g}}{\sqrt{\left\{\dot{X}_{g}+\dot{Z}_{g}\left(\phi_{g}-\phi_{L}\right)\right\}^{2}+\dot{Y}_{g}^{2}}}\right) \tag{7.3.38}
\end{equation*}
\]
where \(\phi_{\mathrm{g}}\) is computed by an iterative scheme described in References 1 and 2 .

\subsection*{7.3.4 Auxiliary Computations}

In addition to the computations which can be made from the problem formulation as presented in preceding sections, several other quantities are available as optional calculations
a. Planet-surface referenced range, \(R_{D}\)
b. Great circle range, \(\dot{\mathrm{R}}_{\mathrm{g}}\)
c. Down- and cross-range, \(X_{D}\) and \(Y_{D}\)
d. Theoretical burnout velocity, \(V_{\text {theo }}\)
e. Velocity losses, \(V_{P}, V_{g r a v}, V_{D}\), and \(V_{M L}\)
f. Orbital variables and satellite target

\subsection*{7.3.4.1 Planet Surfaced Referenced Range}

The total distance traveled over the surface of the planet is computed as the integrated surface range. The curvilinear planet surface referenced range is
\[
\begin{equation*}
R_{D}=\int_{t_{1}}^{t_{2}} \frac{R_{\phi_{L}}}{R} V_{g} \cos \gamma d t \tag{7.3.40}
\end{equation*}
\]

The flight path angle, \(\gamma\), is referenced to local geocentric coordinates for this computation.

\subsection*{7.3.4.2 Great Circle Range}

Great circle distance from the launch point to the instantancous vehicle position, \(R_{g}\), may also be required, Figure 7.3-10. The surface referenced great carcle range from the launch point to the vehicle is approximated by
\[
\begin{equation*}
R_{g}=\left[\frac{R_{\phi_{\mathrm{L}}}+R_{\phi_{L_{O}}}}{2}\right] \cos ^{-1}\left[\sin \phi_{\mathrm{L}} \sin \phi_{\mathrm{L}_{O}}+\cos \phi_{\mathrm{L}} \cos \phi_{\mathrm{L}_{O}} \cos \left(\theta_{\mathrm{L}}-\theta_{\mathrm{L}_{O}}\right)\right] \tag{3}
\end{equation*}
\]

\subsection*{7.3.4.3 Down and Cross Range}

Down and cross range from the initial great circle can be determined. The initial great circle is determined from the input quantities, \(\sigma_{0}\), \(\phi_{0}\), and \(\theta_{L_{0}}\), Figure 7.3-11. Then the cross range of a particular trajectory point is defined as the perpendicular distance from the point to the anitial great circle. The downrange is then the distance along the initial great circle from the initial point to the point \(P\) at which the cross range is measured. From the spherical triangle, Figure 7.3-11, the great circle range \(L F\) to the point \(F\) is computed by Equation (7.3.41).

The right spherical triangle LPF is solved for the downrange, \(X_{D}\), and the cross range, \(Y_{D}\).
\[
\begin{align*}
& X_{D}=\left(\frac{R_{\phi_{L}}+R_{\rho_{L_{O}}}}{2}\right) \cdot \cos ^{-1}\left(\frac{\cos L F}{\cos \left(\sin ^{-1}(\sin L F \sin \xi)\right)}\right) \tag{7.3.42}\\
& Y_{D}=\left(\frac{R_{\phi L}+R_{\phi_{L_{O}}}}{2}\right) \sin ^{-1}(\sin L F \sin \xi) \tag{7.3.43}
\end{align*}
\]
where
\[
\begin{equation*}
\xi=\zeta-\sigma_{p} \tag{7.3.44}
\end{equation*}
\]

\subsection*{7.3.4.4 Theoretical Burnout Velocity and Losses}

For irajectory and performance optimizataon studies, it is convenient to know the theoretical bumout velocity jossible and the velocity losses due to gravity, aerodynamic drag, and atmospheric back pressure upon the engine nozzle. These quantities may be computed as follows:

Theoretical Velocity:
\[
\begin{equation*}
v_{\text {theo }}=\int_{t_{1}}^{t_{2}} \frac{T_{V A C}}{m} d t \tag{7.3.45}
\end{equation*}
\]

Speed Loss Dụe to Gravity:
\[
\begin{equation*}
\mathrm{v}_{\mathrm{grav}}=\int_{t_{1}}^{t_{2}^{2}}-\mathrm{g}_{\mathrm{Zg}} \sin \gamma d t \tag{7.3.46}
\end{equation*}
\]

Speed Loss Due to Aerodynamic Drag: -
\[
\begin{equation*}
v_{D}=\int_{t_{1}}^{t_{2}} \frac{D}{m} d t \tag{7.3.47}
\end{equation*}
\]

Speed Loss Due to Atmospher Back Pressure Upon the Engine Nozzle:

Maneuvering Losses:
\[
\begin{equation*}
v_{p}=\int_{t_{1}}^{t_{2}}\left(-\frac{P A}{m}\right) d t \tag{7.3.48}
\end{equation*}
\]
\[
\begin{equation*}
V_{M L}=\int_{t_{1}}^{t_{2}}\left(\frac{T_{V A C}-P A_{e} e}{m}\right)(\cos \alpha-1) d t \tag{7.3.49}
\end{equation*}
\]

The resultant velocity \(\mathrm{V}_{\mathrm{g}}^{\prime}\left(\mathrm{t}_{2}\right)\) is obtained by adding the components computed to the inltial value \(V_{g}^{1}\left(t_{l}\right)\)
\[
\begin{equation*}
V_{g}^{\prime}\left(t_{2}\right)=V_{g}^{\prime}\left(t_{1}\right)+V_{\text {theo }}+V_{\text {grav }}+V_{D}+V_{p} \tag{7.3.50}
\end{equation*}
\]

The maneuvering losses are valid only if \(\lambda_{T}\) is zero for the engine.

\subsection*{7.3.4.5 Orbital Variables and Satellite Target}

Orbital variable calculations follow the calculation of vehicle mertial velocity. Flight path angles in inertial space are computed from the expressions
\[
\begin{align*}
\sigma_{I}=\tan ^{-1} & \left(\frac{\dot{Y}_{G}+\omega_{g}|\Omega| \cos \phi_{L}}{\dot{x}_{Z}}\right) \tag{7.3.51}\\
\gamma_{I} & =\sin ^{-1}\left(\frac{\dot{z}_{E}}{\left|v_{I}\right|}\right) \tag{7.3.52}
\end{align*}
\]

The inclination angle, \(i\), is the angle between the plane containing the velocity vertor and the center of the earth, and the equatorial plane.

Applying spherical trigonometry to Figure 7.3-12, we obtain the relationship
\[
\begin{equation*}
\cos i=\cos \phi_{I} \sin \sigma_{I} \tag{7.3.53}
\end{equation*}
\]

The difference in longitude between the vehicle and the ascending node, \(v\), is given by
\[
\begin{equation*}
\tan \nu=\sin \phi_{L} \tan \sigma_{I} \tag{7.3.54}
\end{equation*}
\]

The inertial longitude is given by
\[
\begin{equation*}
\theta_{I}=\theta_{I}-\omega_{\mathrm{p}} \tau \tag{7.3.55}
\end{equation*}
\]
and the inertial longitude of the ascending node by
\[
\begin{equation*}
\Omega=\theta_{I}-\nu \tag{7.3.56}
\end{equation*}
\]

It is convenient to know the central angle, \(u\), in the orbital plane. Measuring from the ascending node,
\[
\begin{equation*}
\tan u=\frac{\tan \phi_{L}}{\cos \sigma_{I}} \tag{7.3.57}
\end{equation*}
\]

The orbatal variable calculation introduces positional and velocity information from a second body. This body is a satellite considered in a carcular orbit about the earth. Its orbital height, \(h_{S}\), is specified and remains constant. Posicion in the orbit is computed from an initial central angle, \(\phi_{0}\), by the expression
\[
\begin{equation*}
\phi_{S}=\phi_{S_{0}}+\omega_{s} t \tag{7.3.58}
\end{equation*}
\]

The satellite angular velocity is obtained from the satellate inertial velocity, \(\mathrm{V}_{\mathrm{c}_{5}}\), where
\[
\begin{equation*}
v_{c_{s}}=\sqrt{\frac{\tilde{\beta}_{\tilde{s}}}{\left(R_{\mathrm{e}}+n_{s}\right)}} \tag{7.3.59}
\end{equation*}
\]
where \(i_{g}\) is the gravitational potential constant and \(R_{e}\) is the earth's radius. It should be noted that Equation (7.3.59) assumes a spherical earth; for the eartn's radius is taken as constant, and none of the higher order gravitational harmonics are included. Knowing \(V_{c_{S}}\), it follows that
\[
\begin{equation*}
\omega_{s}=\frac{v_{c_{s}}}{R_{e}+h_{s}} \tag{7.3.60}
\end{equation*}
\]

\section*{7.3:5 Vehicle Characteristics}

Methods by which the aeródynamic, propulsive, and physical characteristics of a vehicle are introduced into the computer program are presented in thas section. Form and preparation of the input data are discussed together with methods by which stages and staging may be used to increase the effective data storage area allotted to a description of the vehicle's properties.

\subsection*{7.3.5.1 Aerodynamic Forces}

Aerodynamic forces are defined by three mutually perpendicular forces: lift (L), drag (D), and side force (Y). Lift force is perpendicular to the velocity vector in a vertical plane; drag force is measured along the velocity vector but in opposite direction; side force is measured in the horizontal plane, positive toward the right, provided the bank angle is zero. If the bank angle is not zero, \(L\) and \(Y\) will be rotated by \(-B_{A}\) about the velocity vector.

Aerodynamic forces are expressed in the form
\[
\begin{align*}
& L=q(V, h) S C_{L}(V, h, \alpha, \beta) \tag{7.3.61}\\
& D=q(V, h) S C_{D}(V, h, \alpha, \beta) \tag{7.3.62}\\
& Y=q(V, h) S C_{Y}(V, h, \alpha, B) \tag{7.3.63}
\end{align*}
\]
where \(q\) is the dynamic pressure and \(S\) is a convenient reference area. The aerodynamic coefficients \(C_{L}, C_{D}\), and \(C_{Y}\) may be expressed in terms of the aerodynamic derıvatives.
\[
\begin{align*}
C_{L}=C_{L_{O}} & +C_{L_{L_{\alpha}}} \alpha+C_{I_{\alpha}} \alpha|\alpha|+C_{L_{\beta}}|\beta| \\
& +C_{\bar{L}_{\beta}} 2 \beta^{2}+C_{L_{\alpha \beta}} \alpha|\beta| \tag{7.3.64}\\
C_{D}=C_{D_{O}} & +C_{D_{\alpha}}|\alpha|+C_{D_{\alpha}}{ }^{2} \alpha^{2}+C_{D_{\beta}}|\beta| \\
& +C_{D_{\beta}} \beta^{2}+C_{D_{\alpha \beta}}|\alpha||\beta| \tag{7.3.65}\\
C_{Y}=C_{Y_{O}} & +C_{Y_{\alpha}}|\alpha|+C_{Y_{\alpha}}{ }^{2} \alpha^{2}+C_{Y_{\beta}} \beta \\
& +C_{Y_{\beta}} 2 B|B|+C_{Y_{\alpha \beta}}|\alpha| \beta \tag{7.3.66}
\end{align*}
\]

Altematively, the aerodynamic derıvatives may be expressed as tabular variables of independent variables such as Mach number (\(M_{N}\)), altitude (\(h\)), \(\alpha\), and \(\beta\), tha \({ }^{+}\)is, functions of the state variables and the control variables.

It may be convenient to measure the aerodynamic forces in the body axis coordinate system introduced in Section 7.3.3.3.- In this case, normal force (\(n_{f}\)) is measured along the \(-z\) axis; side force (\(y\)) along the \(y\) axis, and axial force (a) along the \(-x\) axis. The specification of forces . in the body axis system is similar to that in the wind axis system.

\subsection*{7.3.5.2 Thrust and Fuel Flow Data}

The techniques employed to introduce thrust and fuel-flow data into the equations of motion are developed in an approach similar to that employed for aerodynamic data. An n-dimensional tabular listing and interpolation technique is used with the independent variables being defined by the type of propulsion unit being considered. The propulsion units are grouped into the following options: (1) rocket and (2) airbreathing engines.
7.3.5.2.1 Propulsion Option (1) Rocket. The thrust of a rocket motor is assumed variable with stage time, altitude, and, if the rocket is controllable, wath throttle setting. The altitude effect is determined by the exit area of the nozzle, \(A_{e}\), and the ambient atmospheric pressure, \(P\). If the thrust is specified for some constant ambient air pressure, the altitude correction can be calculated within the subprogram. If the rocket motor is uncontrolled, the vacuum thrust (in pounds) will be introduced by a tabular listing as a function of time (in seconds) and corrected as follows:
\[
\begin{equation*}
T=\operatorname{Max}\left[T_{\text {vac }}-P A_{e}, 0\right] \tag{7.3.67}
\end{equation*}
\]

The propellant consumption rate is specified by a tabular listing in slugs per second as a function of time (in seconds) for the single-engine options, or computed from the thrust and the engine specific impulse, \(I_{S P}\), for the multipie engine options.

If the rocket is controlled, the propellant mass flow rate \(\dot{m}_{f}\), is introduced by a tabular listing as a function of throttle setting. The thrust is then specıfied by a tabular listing as a function of mass flow rate.
7.3.5.2.2 Propulsion Option (2) Alrbreathing Engines. An airbreathing engine is strongly affected by the environmental conditions under which It is operating. Engines which would be grouped in this classification are turbojets, ramjets, pulsejets, turboprops, and reciprocating machines. The parameters considered significant in the program are
a. Altitude (\(\mathrm{h}-\mathrm{ft}\))
b. Mach number (M)
c. Angle of attack. (\(\alpha\)-degrees)
d. Throttle setting (N-units defined by problem)

Both the thrust and fuel flow are functions of these variables. In order to accommodate these variables, a.five-dimensional tabular listing and interpolation are used to obtain both thrust and fuel flow. The thrust has no further correction as the effects of all parameters are assumed included in the interpolated value.
7.3.5.2.3 Engine Perturbation Factors. The engine options include provision for two data scaling factors for use in parametric studies; these are in the form
\[
\begin{equation*}
T=\varepsilon_{13} T_{V A C}+\varepsilon_{14} \tag{7.3.68}
\end{equation*}
\]
7.3.5.2.4 Components of the Thrust Vector. The equations used to reduce the thrust vector to its components along the body axes are
\[
\begin{align*}
& T_{x}=T \cos \lambda_{T} \tag{7.3.69}\\
& T_{y}=-T \sin \lambda_{T} \cos \phi_{T} \tag{7.3.70}
\end{align*}
\]
and
\[
\begin{equation*}
T_{z}=-T \sin \lambda_{T} \sin \phi_{T} \tag{7.3.71}
\end{equation*}
\]
\(\lambda_{T}\) and \(\varphi T\) are defined in Section 7.3.2.
7.3.5.2.5 Reference Weight and Provellant Consumed. Rate of change of vehicle mass, \(m\), is set equal to the negative of the total mass flow rate, \(\dot{m}_{t}\). \(m\) is integrated to give variation of vehicle mass, \(m\). The instantaneous mass is used in the computation of the body motion.' The reference weight is obtained by an auxiliary calculation
\[
\begin{equation*}
W_{T}^{\prime}=32.174 \cdot \mathrm{~m} \tag{7.3.72}
\end{equation*}
\]

The propellant consumed is computed as
\[
\begin{equation*}
m_{f}=m_{0}-m \tag{7.3.73}
\end{equation*}
\]
where \(m_{0}\) is a reference mass input equal to the 1 nitial vehicle mass.

\subsection*{7.3.5.3 Stages and Staging'}

A problem common in missile performance analyses and encountered frequently in aurplane performance work is that of staging or the release of discrete masses Exrm the continuing airframe. The effect of dropping a booster rocket or fuel tanks is often great enough to require that the complete set of aerodynamac data be changed. Configuration changes at constant weight, such as extending drag braxes or turning on afterburners, may also require
revising the aerodynamic or physical characteristics of the vehicle. At each stage point the equation of motion integration is stopped on a given stage cut-off function with precision. The next stage integration is then restarted following specification of the revised vehicle configuration.

\subsection*{7.3.6 Vehicle Environment}

The models for simulating the environment in which a vehicle will operate are presented in this section. This environment includes the atmosphere properties, wind velocity, and the field associated with the planet over which the vehicle is moving. The shape of the planet and the conversion from geodetic to geocentric latitudes are also considered. In the discussions which follow, the descriptions of vehicle environment pertain to the planet Earth. The environmental simulation may be extended to any planet by replacing appropriate constants in the describing equations.

\subsection*{7.3.6.1 Atmosphere}

Two atmospheres are considered in this program: the 1959 ARDC Model Atmosphere and the 1962 ARDC Nodel Atmosphere. The 1959 ARDC Model Atmosphere is specified in layers assuming either isothermal or linear temperature lapserate sections. This construction makes it very convenzent to incorporate otner atmospheres either from specifications for design purposes or for other planets. The relations which mathematacally specify the 1959 ARDC Model Atmosphere are as follows: the 1959 ARDC Model Atmosphere is divided into 11 layers as noted in the table below.
\begin{tabular}{|c|c|c|}
\hline Layer & \[
\begin{gathered}
\frac{\mathrm{H}_{b} \text {-Lower Altitude }}{\text { (Geopotential }} \\
\text { Meters }
\end{gathered}
\] & Upper Altitude (Geopotential) Meters \\
\hline 1 & 0 & 11,000 \\
\hline 2 & 11,000 & 25,000 \\
\hline 3 & 25,000 & 47,000 \\
\hline \(\dot{+}\) & 47,000 & 53,000 \\
\hline 5 & 53,000 & 79,000 \\
\hline 6 & 79,000 & 90,000 \\
\hline 7 & 90,000 & 105,000 \\
\hline 8 & 105,000 & 160,000 \\
\hline 9 & 160,000 & 170,000 \\
\hline 10 & 170,000 & 200,000 \\
\hline 11 & 200,000 & 700,000. \\
\hline
\end{tabular}

For layers \(1,3,5,7,8,9,10\), and 11 a linear molecular scale temperature lapse rate is assumed and the following equations are used:
\[
\begin{array}{rl}
\mathrm{H}_{\mathrm{gp}}=\frac{.3048 \mathrm{~h}}{1+.3048 \mathrm{~h} / 6356766} & \text { Meters } \\
\mathrm{T}_{\mathrm{m}}=\left(\mathrm{T}_{\mathrm{M}}\right)_{\mathrm{b}}\left[1+\mathrm{K}_{1}\left(\mathrm{H}_{\mathrm{gp}}-\mathrm{H}_{\mathrm{b}}\right)\right] & { }^{\circ} \mathrm{R} \\
\mathrm{~T}=\mathrm{T}_{\mathrm{M}}\left[\mathrm{~A}-\mathrm{B} \tan ^{-1}\left(\frac{\mathrm{Hgp}-\mathrm{C}}{\mathrm{D}}\right)\right] & { }^{\circ} \mathrm{R} \\
\mathrm{P}=\mathrm{P}_{\mathrm{b}}\left[1+\mathrm{K}_{1}\left(\mathrm{H}_{\mathrm{gp}}-\mathrm{H}_{\mathrm{b}}\right)\right]^{-\mathrm{K}_{2}} & \mathrm{Lb} / \mathrm{Ft}^{2} \\
\rho=\rho_{\mathrm{b}}\left[1+\mathrm{K}_{1}\left(\mathrm{H}_{\mathrm{gp}}-\mathrm{H}_{\mathrm{b}}\right)\right]^{-\left(1+\mathrm{K}_{2}\right)} & \mathrm{Slugs} / \mathrm{Ft}^{3} \\
V_{\mathrm{S}}=49.021175\left(\mathrm{~T}_{\mathrm{M}}\right)^{1 / 2} & \mathrm{Ft} / \mathrm{sec} \\
\nu=2.269681 \times 10^{-8}\left[\frac{\mathrm{~T}^{3 / 2}}{(\mathrm{~T}+198.72) \rho}\right] & \mathrm{Ft} / \mathrm{sec} \tag{7.3.80}
\end{array}
\]

For the isothermal layers 2, 4, and 6, the following changes are made
\[
\begin{align*}
& p=P_{b} e^{-K_{3}\left(H_{g p}-H_{b}\right)} \tag{7.3.81}\\
& \rho=\rho_{b} e^{-K_{3}\left(H_{g p}-H_{b}\right)} \tag{7.3.82}
\end{align*}
\]

Values of the temperature, pressure, density, and altitude at the base of each altitude layer are listed together with the approprlate values \(K_{1}\), \(K_{2}\), and \(K_{3}\) in References 1 and 2.

\subsection*{7.3.6.2 Winds Aloft}

The winds aloft subprogram provides for three separate methods of introducing the wind vector: as a function of altitude, a function of range, and a function of time. This facilitates the investigation of wind effects for the conventional performance studies. The wind vector is approximated by a serles of straight line segments for each of the methods mentioned above.

Four options are used to define the wind vector in the computer program. The three components of the wind vector in a geodetic horizon coordinate system can be specified as tabular listings with linear interpolations (curve reads) in rne following options:

Wind options (0). In this option the wand vector is zero throughout the problem. This allows the analyst the option of evaluating performance without the effects of wind. This option causes the winds-aloft computations to be bypassed.

Wind option (1). In this option the components of the wind vector are specified as a function of time. Wind speeds are specified in feet per second and time in seconds.

Wind option (2). The three components of the wind vector are introduced as a function of altitude in this option. Wind speed is specified in feet per second and altitude in feet.

Wind option (3). In this option the components of the wind vector are introduced as a function of range. Wind speed is specified in feet per second and range in nautical miles. The range utilized in this computation is the great circle range.

By staging of the wind option, it is possible to switch from one method of reading wind data to another during the computer run.

\subsection*{7.3.6.3 Gravity}

Spherical harmonics are normally used to define the gravity potential field of the Earth, References 3 and 4. Each harmonic term in the potential is due to a deviation of the potential from that of a uniform sphere. In the present analysis the second-, third-, and fourth-order terms are considered. The first-order term, which would account for the error introduced by assiming that the mass center of the Earth is at the origin of the geocentric coordinate system is assumed to be zero. With this assumption
\[
\begin{equation*}
U=\frac{d}{R}\left[1+\frac{J}{3}\left(\frac{R_{e}}{R}\right)^{2} P_{2}+\frac{H}{5}\left(\frac{n_{e}}{\hbar}\right)^{3} P_{3}+\frac{K}{30}\left(\frac{R_{e}}{R}\right)^{4} P_{4}+\ldots\right] \tag{7.3.83}
\end{equation*}
\]
where \(P_{2}, P_{3}\), and \(P_{4}\) are Legendre functions of geocentric latitude \(\phi_{L}\) expressed as
\[
\begin{align*}
& P_{2}=1-3 \sin ^{2} \phi_{L} \\
& P_{3}=3 \sin \phi_{L}-5 \sin ^{3} \phi_{L} \\
& P_{4}=3-30 \sin ^{2} \phi_{L}+35 \sin ^{4} \phi_{L} \tag{7.3.84}
\end{align*}
\]

The gravitational acceleration along any line is the partial derivative of \(U\) along that line; in particular \({ }^{2}\)
\[
\begin{align*}
& g_{g}=\frac{\nu_{T}}{R^{2}}\left[1+J\left(\frac{R_{e}}{R}\right)^{2} P_{2}+\frac{4 H}{5}\left(\frac{R_{e}}{R}\right)^{3} P_{3}+\frac{K}{6}\left(\frac{R_{e}}{R}\right)^{4} P_{4}\right] \tag{7.3.85}\\
& g X_{g}=\frac{\mu_{g}}{R^{2}}\left[-2 J\left(\frac{R_{e}}{R}\right)^{2} P_{5}+\frac{3 H}{5}\left(\frac{R_{e}}{R}\right)^{3} P_{6}+\frac{2 K}{3}\left(\frac{R_{e}}{R}\right)^{4} P_{7}\right] \tag{7.3.86}
\end{align*}
\]
and
\[
\begin{equation*}
g Y_{g}=0.0 \tag{7.3.87}
\end{equation*}
\]
where
\[
\begin{align*}
& P_{5}=\sin \phi_{\mathrm{L}} \cos \phi_{\mathrm{L}} \\
& \mathrm{P}_{6}=\cos \phi_{\mathrm{L}}\left(1-5 \sin ^{2} \phi_{\mathrm{L}}\right) \\
& \mathrm{P}_{7}=\sin \phi_{\mathrm{L}} \cos \phi_{\mathrm{L}}\left(-3+7 \sin ^{2} \phi_{\mathrm{L}}\right) \tag{7.3.88}
\end{align*}
\]

Equations (7.3.85) and (7.3.86) are used in the gravity subroutine with the following values recommended for the constants.
\[
\begin{align*}
& \mu_{\mathrm{g}}=1.407698 \times 10^{16} \mathrm{ft} / \mathrm{sec} \\
& \mathrm{R}_{\mathrm{e}}=20,925,631 . \mathrm{ft} . \\
& \mathrm{J}=1623.41 \times 10^{-6} \\
& \mathrm{~K}=6.37 \times 10^{-6} \tag{7.3.89}
\end{align*}
\]

It should be noted that these constants and equations pertain to the planet Eartin; however, it is possible to use these same quations for any other planet once the appropriate constants from that planet are known.

\section*{REFERENCES:}
1. Hague, D. S. and G1att, C. R., Optimal Design Integration of Military Flight Vehicles, Section 7.3, "Atmospheric Trajectory Optimization Program," AFFDL-TR-72-132, 1972.
2. Mobley, R. L. and Vorwald, R. R., Three-Degree-of-Freedom Problem Optimization Formulation--User's Manual, Part 2, Volume III, FDL-TDR-64-1 October 1964.
3. Brown, Robert C., Brulle, R. V., Combs, A. E., and Griffin, G. D., Six Degree-of-Freedom Flight Path Study Generalized Computer Program, Part 1 Volume I, FDL-TDR-64-1, October 1964.
4. Seubert, F.W. and Usher, Newell E., Six Degree-of-Freedom Fiight Path Study Generalized Computer Program--User's Manual, Part 2, WADD Technical Report 60-781, McDonne11-Douglas Corporation, May 1961.
5. Landgraf, S. K., Some Practical Applications of Performance Optimızation Technıques to High Performance Aircraft, AIAA Paper 64-288, July 1964.
6. Hague, D. S., An Outline and Operating Instructions for the SteepestDescent Trajectory Optimization Program - STOP, Aerodynamics Methods Note l, McDonnell-Douglas Corporation, March 1963.
7. Hague, D. S., Geib, Ken, Ballew, L., and Witherspoon, J., Two Vehicle Optimization--Theoretical Outline and Program User's Manual, Report B983, McDonne11-Douglas Corporation, 1965.
8. Hague, D. S.,"The Optımization of Muitıple-Arc Trajectories by the Steepest-Descent Method,"Recent Advances in Optimization Techniques, Lavi and Vogl (editors), John Wiley and Sons, Inc., 1966, Pages 489-517.
9. Hague, D. S. and Glatt, C. R., Study of Navigation and Guidance of Launch Vehıcles Having Cruise Capability, Volune II, Boeing Document D2-113016-5, The Boeing Company, April 1967.
10. Recka, J., Harder, D., Hague, D. S., Glatt, C. R., Seavoy, T., and Minden, D., Study of Navigation and Guidance of Launch Vehicles Having Cruise Capabilıty, Volume IV, Boeing Document D2-113016-7, April 1967.
i1. Stein, L. H., Mathews, M. L., and Frenck, J. K., STOP: A Computer Program for Supersonic Transport Trajectory Optimızatıon, NASA CR-793, May 1967.
12. Rozendaal, H. L., A General Branched Trajectory Optimızation Algorithm with Applications to Space Shuttle Vehicle Mission Design, AAS/AAIA Astrodynamics Specialist Conference, August 17-19, 1971.
13. Hague, D. S., Glatt, C. R., and Jones, R. T., Integration of Aerospace Vehicle Performance and Desizn Optimization, AIAA Paper No. 72-948, Presented at AifA Second Atmospheric Flight Mechanics Conference, Palo Alto, Calıfornia, September 11-13, 1972.

FIGURE 7.3-1. BASIC COORDINATE SYSTEM

Figure 7.3-2. angle of attack

FIGURL 7.3-3. SIDESLIP ANGLE

FIGURE 7.3m4. BANK ANGLE

FIGURE 7.3-5. THRUST AIGLES

ORIGINAL PAGE IS OR POOR QUALITY

\(\tan \beta^{\prime}=\frac{v}{\Downarrow} \cos a=\tan \beta \cos a\)

FIGURE 7.3-7. RELATIONSHIP BETWEEN BODY AXES AND WIND AXES

FIGGRF 7.3-8. PLANET-OBLATENESS EFFECT ON LATITUDE AND ALTITUDE

FIGURE 7.3-9. RELATIONSHIP BETWEEN LOCAL-GEOCENTRIC AXES AND WIND AXES

FIGURE 7.3-10. GREAT-CIRCII. RINGE

FIGURE 7.3-11. DOWNRANGE AND CROSSRANGE GEOMETRY

\(\because\) FIGURE 7.3-12. ORBITAL PLAIE GEOMETRY

\section*{TABLE OF CONTENTS FOR SECTION 7.4, PROGRAM COAP}
Section Page
7.4.1 Introduction 7.4-1
7.4.2 Outline for the Combat Simulation 7.4-2
7.4.2.1 Equations of Motion 7.4-2
7.4.2.2 Vehicle and Planetary Characteristics 7.4-2
7.4.2.3 Operating Modes 7.4-2
7.4.3 Vehicle Roles and Tactics 7.4-4
7.4.3.1 Role Selection 7.4-4
7.4.3.2 Tactic Selection 7.4-4
7.4.3.3 Finite Control Rates 7.4-5
7.4.4 Combat Simulation 7.4-6
7.4.5 Combat Performance Rating 7.4-6
7.4.6 Optimization by Combat Guidance Parameters 7.4-8
7.4.7 Variational Optimızation Modes 7.4-9
7.4.7.1 The Maneuvering Target Option 7.4-10
7.4.7.2 The Reacting Opponent Option 7.4-10
7.4.8 Minı-Max Solutions with Finıte Number of Parameters 7.4-11
7.4.9 Conclusion 7.4-12
References 7.4-12
Illustrations 7.4-14

\subsection*{7.4 PROGRAM COAP: COMBAT OPTIMIZATION}

\section*{AND ANALYSIS PROGRAM}

This program was constructed by Aerophysics Research Corporation under Air Force contract F33615-70-C-1036, References 1 to 4 . It is an extension of the Section 7.3 ATOP program. The COAP program utilizes two complete threedimensional equations of motion sets to simulate a one-on-one combative encounter between two milatary flight vehicles. The flight vehicle aerodynamic and propulsion representations are sufficiently general to permit the simulation of both current and proposed vehicles by data input. The program is written for the CDC 6600 computer but will run on any modern large scale computer with minor modification. Generalized rotating planctary and atmospheric models permit simulation of either a1rcraft, missile, or spacecraft encounters. Combat roles for each vehicle (attacker, defender, etc.) are automatically defined on the basis of vehicle relative positions, headings, and velocities. Depending on the vehicle role selected, any one of a set of tascics designed to satısfy the role requirements is executed. These tactics vary in nature from straightforward stylized maneuvers, such as the split S or barrel roll, to three-dimensional lag or lead pursuit naths.

Combat optimization capability may be introduced by repetitive simulation using parameterızation of the combat guidance parameters and the application of multivariable search techniques. Alternately, the variatıonal calculus may be employed to define optimal contanuous control against a reacting opponent. In the parameter optimization mode, the option to determine a "nni-max" solution is available.
fir-to-alr combat imposes severe design requirements on fighter alrcraft. Pilot tactics in combat are inadequately treated by conventional flight handboohs or by segmented mission analysis, such as that described in Section 7.2. Historical evidence demonstrates that a high price in men and anrcraft will be pald by nations which pay insufficient attention to combat requirements in tia lesign of nilitary aircraft. Recognition of these points has lead to a gresing effort to provide improved combat analysis and simulation tools. These teals anclude self-contained digital computer codes, such as those of References 1 through 7, and the use of dual maneuvering simulators, such as that reported in Reference 8. In this section the Combat Optimization and Analysis Program, CuA?. of References 1 through 4, is described. The program was constructed uacer contract to the Air Force Flight Dynamics Laboratory. COAP simulates a ale-on-one combative encounter betwoen two aerospace vehicles. Repetitive sea.ential simulation of the resulting "dogfight" combined with perturbations of the parameters which defane each plot's course of action defines the owteral course of action for each pilot starting from given initial conditions.

\subsection*{7.4.1 Introduction}

Single vehicle optımal flıght paths presented may be obtaince by the variational stecpest-descent formulation program of Section 7.3. COAP is an evolutionary development from previous single vchicle trajectory analysis programs. The two-vehicle encounter is considerably more complex than the single vehicle problem. First, the flight paths involved are of a more complex nature. Second, there is often more than onc optimal solution to be found. Third, the optimal solution(s) may be of the mini-max type. For example, consider Figure 7.4-1. From the given initial conditions at least four varied types of optimization problems arise:
1. both vehicles may attack
2. vehicle A may flee while vehicle B attacks
3. vehicle B may flee while vehicle A attacks
4. both vehicles may flee

\subsection*{7.4.2 Out1ine of the Combat Simulation}

\subsection*{7.4.2.1 Equations of Motion}

A schematic of the COAP program is presented in Figure 7.4-2. The program contains two three-degree-of-freedom equation of motion systems. The two systems are simultaneously integrated in time and may be mutually coupled through a combative guidance logic block. This block defines an appropriate role for each vehicle, and on defining the roles it speczfies a suitable tactic to be followed. Vehicle angle-of-attack, bank-angle, and throttle settings for the selected tactic are automatically generated by the combat logic. Pitch, bank, and throttle rate constraints may be 1 mposed on the simulation.

\subsection*{7.4.2.2 Vehicle and Planetary Characteristics}
lehicle aerodynamic and propulsion representations permit the modelling of any two current military aircraft. The aircraft data is mput on punched cards and is not a fixed part of the program. Thus, opposing dircraft types may be rapıdly changed. Basic planetary characterıstics are represented by a rotating oblate planet having a multi-layered atmosphere. Irbitrary wind profiles and non-standard day atmospheres may be introduced at the user's option. The simulation is thus adequate for representation of arrcraft, rocket, or spacecraft encounters.

\subsection*{7.4.2 3 Operating Modes}

The cofmbativè encounter may be defincd at several levels oí complexity short of the differential game formulation uncluding:

Option A: Self-contained role and tactic selection based on relative vehicle states

> Option B: Parameterization of one vehicle's role and tactic selection rules followed by the application of multivariable search procedures to obtain the optimal parameter values. This option defines optimal parameters against a specified opponent employing fuxed combat logic parameters.

> Option C: Parameterization of both opponent's role and tactic selection rules followed by the application of a multivariable saddle point search technique. This option defines a "mini-max" optımal procedure for opponents cmploying variable combat logic parameters.

> Option D: Open loop, continuous control optimization by the variational calculus against an opponent performing a pre-specified maneuver, the "maneuvering target" option.

> Option E: Open loop, continuous control optimization by the variational calculus against a reacting opponent employing fixed parameters and self-contained combat tactics.

The formulation and program include as subcases two-vehicle cooperative problems. This leads to

Option F: Cooperative two-vehicle parametric control
Option G: Cooperative two-vehicle open loop continuous control
These last tho options permit the optimazation of two-vehicle rendezvous problems and are equally applicable to aircraft or spacecraft problems. Single vehicle problems may also be studied by means of the program.

In the Combat Cptimization and Analysis Program schematic of Figure 7.4-2, data input and initialazations are carried out in the MATN program link. Integration of the two-vehicle equations of motion occurs in the EXE link. Program EXE controls the equations of motion directly, employing the COMBAT routines for definition of combatave guidance logic. The baslc coordinate system employed in the equations of motion is illustrated by the inset in Figure 7.4-2. When an encounter is complete, a switch controls the program logacal flow. If an isolated combatave simulation has been requested, a return to the NAIN progran allows the next problem to be entered. When a parameter optimazation problem is being studied, the switch passes program control to the AESOP link. AESOP defines new combative parameters and generates a succession of mproving dogights through the parameter optinization loop. When a varıational optimization problem is studied, the switch passes program control to the TOP link. TOP defines new contanuous control histories through a variational stcepest-descent algorithr and sensitivities based on an adjoint equation solution obtained an the REV link. A sticcession of improving combative encounters is then generated through the variational optimization loop.

\subsection*{7.4.3 Vehicle Roles and Tactics}

Five roles are available in the COAP program. One or more tactics are available to each vehrcle for cach role. Role selection is on the basis of vehicle relative states. This state space \(1 s\) partitıoned in a manner which insures a unique role selection for all-relative-vchucle conditions encountered in a combat simulation. Figure 7.4-3 illustrates a combat simulation in schematic form.

In the schematic the thick solid line shows Vehicle A initally flying in a passive role using a prespecified continuous control history and Vehicle \(B\) attacking using his second tactic. As the maneuver develops (thin solid line), Vehicle A becomes aware of the attack and evades using tactic 1 while Vehicle \(B\) changes his plan of attack to tactic 3. Finally (dotted line) Vehicle A achieves an attacking situation; in response, Vehicle B evades.

The COAP program has the ability to automatically generate such a sequence of role and tactic decisions on the basis of relative state. Alternately, the analyst may override the program logic to force given roles and tactics during the course of an encounter.

\subsection*{7.4.3.1 Role Selection}

Role selection is based on a global partitioning of the state space using the physically oriented coordinates:
1. separation distance, \(\Delta \mathrm{R}\)
2. cone angle to target, \(\theta_{T}\)
3. target's angle-off, \(\phi_{o f f}\)

These coordinates are illustrated in Figure 7.4-4. The basic role selection logic tree employed in the combat simulation is illustrated in Figure 7.4-5. This role selection logic tree can readily be modified to incorporate addational logic. These additions may result from a general improvement in role selection logic or be tallored to a specified combat satuation; for example, provision of overshoot prevention or breakaway logic.

\subsection*{7.4.3.2 Tactic Selection}

Following role selection each vehicle selects a tactic appopriate to the chosen role. Defersive tactics may be stylized mancuvers such as the splat. S
. or Immelamn.. Alternately, they may involve instantancous mitimization of a specifred vector's rotation rate, such as line-of-sight or lad-pursuit vectors. Evasive tactics are limat control raneuvers. offinsive tactics operate on tracking vectors such as lag pursuit, line-of-sight, or leadpursuit. With these tactics the anstantaneous sum of the werodynamic and
propulsive force components projected onto the specified vector is maximazed at all times. Attacking is limited to a single tactic which simultaneously tracks the firing point and eliminates any pointing error. Passive maneuvers involve flight along a specified preset path. A list of the available tactics is presented in Figure 7.4-6.

Within a given role the program will select the available tactics in ordered fashion as specrfied by the analyst or, alternately, the tactics for a given role may be selected in a random sequence by internal program logic. Additional tactics can readily be added to the basic set described in Figure 7.4-6.

All available tactics may be overrıdden when prespecified limits are exceeded. Thus, if the control required in a given tactic exceeds the vehicle's acceleration or lift coefficient limits, control values may automatically be modified to maintain the constraints. Again, if lower limits on altıtude or Mach number are violated, an appropriate pull-out or nose-down maneuver may be automatically initiated by the COAP simulation.

\subsection*{7.4.3.3 Finite Control Rates}

Control motions required by the various tactics may be instantaneously applied to each vehicle, or, at the user's option, the maximum control xates to be employed in the simulation may be subject to practical maneuver constraints. With the imposition of such finite control rates, the instantaneous control specified by a given tactic becomes the desired control. The difference between desired and current control values defines the instantaneous control error. Actual control rates to be employed are then defined as functions of the control error as follows:
a. Use maximum rate for large control errors
b. Use a parabolic rate variation with control error for interrediate control error values
c. Use a linear rate variation with control error for small errors to insure elimination of the error in a given time

This is 111 ustrated in Figure \(7.4-7\). When the finite control rate options are employed, actual control values are obtained by timewise integration of the corputed control rates.

Neapon systems are introduced anto the combat samulation in the form of upper and lower inequality constraints. then all applicable boundary constraints for a given weapon are satisfied, the weapon can be activated. The total time in which a weapon system may be activated is integrated and used as a measure of a vehicle's combat ability. In the basic COTP program cach vehicle nay carry up to three weapon systems employing a total of nume fire control boundaries in arbitrarıly defined groupings.

\subsection*{7.4.4 Combat Simulation}

A typical combat simulation is presented in Figure 7.4-8. Initial condition is a head-on pass with lateral offset. The delta winged vehicle is a representative twin engine fighter; the unswept wing is a representative single engine fighter. Total flight duration is eighty seconds. Finate control rates are employed.

Initially, both vehicles bank towards each other in a reattack maneuver. After approximately \(270^{\circ}\) of turning flight, a near head-on pass occurs at approximately 35 seconds into the encounter. Neither vehicle achieves a firing opportunity in the near head-on pass; the single engine aircraft's steering error is approximately half that of the twin engine aircraft at this time. The encounter continues with the twin engine aircraft turming almost horizontally, and the single engine aircraft entering a near split S. At approximately 50 seconds into the encounter, the twan engine aircraft banks over, and the vehicles again approach each other in a near head-on situation at 60 seconds. Again, no firing opportunity occurs, and the single engine vehicle has the smaller steering error. The encounter continues with the single engine aircraft turning almost vertically and maintainang a superior steering error at the cost of both altitude and Mach number penalties. Both vehicles' Mach numbers have been reduced severely by the encounter as a result of the high "g" maneuvers. This is particularly true of the single engine fighter.

In combat simulations to-date the Mach number loss associated with high "g" maneuvers is a distinct characterıstic. Another characteristic of combat simulations starting from near equaility is that provided bolin vehicie concentrate on pulling hard at each other, the firing opportunities are very limited.

In Figure 7.4-8 both vehicles fly offensively throughout the encounter using line-of-sight force component maximization and perfect knol.ledge of the opponent's position. The simulation typifies the combat slmulation flaght paths. It is mmediately clear that there is little in common between such paths. It follows that the determination of combat maneuver capability for the military flight vehicles should anclude realistic combat maneuver samulations.

\subsection*{7.4.5 Combat Performance Rating}

Evaluation of a vehicle's combat maneuver capability requires establishong a performance measurement criteria or rating over a spectrum of encounters. This performance rating will clearly be dependent upon
a. The opposing aircraft
b. The anitial condition or conditions utilized in the encounter spectrum
c. the manner in which both vehicles are flown
d. The weapon system rating function employed

One possible combat maneuver performance criteria is the percent flight time that a vehicle satisfies its weapon system faring constramts. 「igure 7.4-9
presents the results of a study involving the representative twin engine (Vehicle A) and single engine (Vehicle B) fighters. The weapon system firing measure has been replaced by a simple vision rating in this study. Three boundaries are shown: the per cent time in which each vehicle keeps his opponent in \(10^{\circ}, 20^{\circ}\), and \(30^{\circ}\) cones, respectivcly. In Figure \(74-9\) Vchicle \(B\) flıes neutrally. That is, he maximizes his aerodynamic and propulsive force component along the line-of-sight vector at all times. When Vehicle A arso flies in this neutral manner, he is clearly at a disadvantage (oversteer factor \(=0\)); for Vehicle B kecps Vehicle A in a \(30^{\circ}\) cone for 25 per cent of the time. Conversely, Vehicle A is only capable of kcoping Vehicle B in a \(30^{\circ}\) cone 3 per cent of the time. Total encounter timc is 400 scconds commencing from the initial states discussed in the section on combat simulation, Section 7.4.4.

The effect of varying Vehicle A's flight tactics can be assessed readily using this steering factor approach. For example, a single combat tactic parameter can be established as follows:
\[
\begin{equation*}
\overline{\mathrm{V}}_{\mathrm{s}}=\overline{\mathrm{L}} \overline{\mathrm{O}} \overline{\mathrm{~S}}+\mathrm{k} \cdot(\overrightarrow{\mathrm{~L}} \overline{\mathrm{P}}-\overline{\mathrm{L}} \overline{\mathrm{O}} \overline{\mathrm{~S}} \tag{7.4.1}
\end{equation*}
\]
where
\(V_{S}=\) steexing vector along which the force component is maximized
\(\overline{\mathrm{L}} \overline{\mathrm{S}} \overline{\mathrm{S}}=\) line of sight vector
\(\overline{\mathrm{L}} \overline{\mathrm{P}}=1\) ead-pursuit vector
\(\mathrm{k}=\) scalar combat tactic parameter
When \(k=0\), a vehacle pulls to the line-of-sight vector (neutral). When \(k>0\), the vehicle leads the lane-of-sight vector. When \(k=1\), a lead-pursuit course is attempted. When \(k<0\), a lag-pursuit (understeer) course is attempted. It can be seen from Figure 7.4-9 that over the combat spectrum considered, Vehicle A should oversteer by approximately 50 per cent against a nettrally flown Vehicle B. In Figure 7.t-10 Vehicle \(t\) adopts the 50 per cent oversteer tactic, and the effect of understeer and oversteer on Vehacle B's combat maneuver performance is considered.

The difference in combat maneuver capability with flıght tactic is clearly apparent from Figures 7.4-9, and 7.4-10 In Figure 7.4-9 the thin engine aircraft is outclassed unless he adopts 50 per cent oversteer. In Figure 7.4-10 Vehicle \(B\) is slightly inferior in conbat mancuver capability over most of his understeer/oversteer range when Vehicle .1 adopts 50 per cent oversteer.

Results such as that illustrated are dependent upon the four factors listed at the beginnıng of this section. The coap program provides a tool for, rapidly evaluating the effect of these factors in a given aurcraft design situation.

\subsection*{7.4.6 Optimization by Combat Guidance Parameters}

Any specific combative tactic logic can be viewed as a transfer function which transforms the instantaneous relative state into vehicle control comands. Tactics logic can usually be phrased in terms of a set of combat guidance parameters; the resulting venicle control, and hence the flight path followed, is then dependent upon these parameter values. The scalar parameter \(k\) is then dependent upon these parameter values. The scalar parameter \(k\) of the previous section typifies such a parameter. As \(k\) varies from negative to positive values, the resulting flight paths vary from lag pursuit to line-of-sight pursuit to lead-pursuit paths.

When a tactic has been suitably parameterized, multivariable search techniques, References 4 and 14 , may be employed to determine the parameter values which produce the best combat outcome for one vehicle or the other. (The simultaneous optimization of both vehicles' parameters, which leads to a mini-max problem, is discussed later).

To demonstrate this technique the reattack from a head-on pass with lateral offset is considered. Two combat guidance parameters, \(\alpha_{1}\) and \(\alpha_{2}\), are employed. These parameters define the Vehicle B scalar parameter of \(k\) of Equation (7.4.1) as follows:
a. \(k=\alpha_{1}\), for Vehicle B when Vehicle A's angle-off exceeds \(45^{\circ}\)
b. \(k=\alpha_{2}\), for Vehicle \(B\) when Vehicle A's angle-off is less than \(45^{\circ}\)

The problem considered is
c. Minimize separation distance when Vehicle B first achieves a \(10^{\circ}\) steering error using the combat guidance parameters \(\alpha_{1}\) and \(\alpha_{2}\) :o generate a twofold famly of Vehicle B/Vehicle A combative encounters.

The resulting optimization problem can readily be solved by multivariable search procedu.es in the AESOP link of COAP, Figure 7.4-2. This link contains a variety of multivariable search techniques including one-parameter-at-a-time technsques, organized techniques such as steepest-descent or quadratic (NewtonRaphson), and randomized techniques. The techniques available are presented in Figure 7.4-11; the searches may be used either separately or in combination.

To colve the optimization problem by multivariable search, the combatave encomter is repetitavely simulated while the guadance parameters aro systematacally perturbed by the selected algorathms. This is illustrated for the present problem in Figure 7.4-12. In Figure 74-12(a) the termanal separation. distance, which is to be minnmized, is presented for each of thirteen sequential combat simulations: The terminal separation distance is roduced from the initial value of 6580 feet on the first trajectory to 5680 feet on the thirteent.. trajectory. Figure 7.4-12(b) dasplays the rorresponding terminal steering errors. Vehicle B retains a \(10^{\circ}\) error for all simulations for this is the termination criteria. Vehicle \(A\) 's terminal steering error is reduced from \(78^{\circ}\) to \(57^{\circ}\) (this function was not directly controlled) . Issociated with
the incidental reduction in Vehic1e A's steering error is an increase in terminal closing velocity, Figure 7.4-12(c). The behavior of the guidance parancters, 1 and 2, is presented in Figure 7.4-12(d). It can be seen that 1 has approached the upper bound permitted, and 2 is oscillating about unity. This corresponds to a hard turn in which Vehicle B leads the line-of-sight vector until Vehicle A is placed in a \(45^{\circ}\) angle-off condition followed by a terminal mancuver in which Vehicle \(B\) pulls to the line-ofsight vector.

In a sccond simple illustration of the parameter optimization mode, Figure 7.4-13, Vehicle A attempts to escape from Vehicle B using the best constant flight path angle escape. The flight path angle becomes a combat guidance problem, and a sequence of escapes are made typified by those of Figure 7.4-13. To each escape by Vehicle A, Vehicle B performs an appropriate reattacking turn. The object is for Vehicle A to maximize the terminal separation distance in given time (50 seconds). In the example shown, horizontal flight maximizes the terminal separation. Vehicle \(B\) closes the gap for both climbing and descending escapes.

If we now limit Vehicle A to a constant altitude flight, we can create a sequence of guidance parameters for Vehicle \(B\) and seek to minimize terminal separation distance through these parameters. In Figure 7.4-14 three such angle-of-attack parameters are introduced to improve the Vehicle B reattack against a horizontal escape by Vehicle A. The result is a descending turn followed by a slow climb. Terminal separation distance is now reduced to 27,000 feet as compared to 40,000 feet in Figure 7.4-13.

In the COAP parameter optimization mode up to 100 combat guidance parameters may be employed to minimaze or maximize any given conbative function while simultaneously constraining other combat functions to prescribed values.

\subsection*{7.4.7 Varıational Opilmızation Modes}

COAP contains an optimization capability based on the variational steepestdescent formulation. Varıational problems arise when we attempt to define the optimal control histories directly without introduction of combat tactic logic. Since we seek to define optamal control histories rather than optimal guidance parametens, the problem involves an infinite number of free variables-hence, the variational aspect of the problem. The method employed is that of Reference 1 which is similar to the Bryson formulation of Refercnce 15. Control history sensituvitues are determined from the adjoint equations as shown schematically in Figure 7.4-2. The variational steepest-descent technique was applied to the two-vehicle flight path optamization problem in Reference 16. 'ihere, the scond vehicle must fly a predetermined path, the maneuvering tareet option. This option is retained in COAP. A second variational option arailable in COAP involves optimization of a vehicle flight path with respect to an opponent employing fixed guidance parameters; this will be referred to as the reacting opponent option. Examples of each are prosented below.

\subsection*{7.4.7.1 The Naneuvering Target Option}

With the variational maneuvering target option, the second vehicle flies in the passive role along a prespecified flight path. The first vehicle's flight path is then optimazed with respect to the second vchicle's path. Optimuzation is accomplished by repeated application of the varrational steepest-descent algorithm. Typically, some fifteen to twonty applications of this algorithm are required to achieve an optimal solution using the second order convergence logic of Reference 9.

As an example of this approach, consider the Vehicle B reattack of Vehicle A in the previous section. Vehicle \(A\) is following a prespecıficd flight path in the form of an accelerating horizontal escape. Applying the variational steepest-descent maneuvering target option to the Vehicle B turn and chase, we obtain after 15 1terations the optimal pursuit path of Figure 7.4-15.

This variational solution defines the absolute minimum terminal separation distance possible against the Vehicle A horizontal accelerating escape. The minimum separation distance is 17,000 feet; this compares with a terminal separation of 27,000 feet using parameter optimization technıques in Figure 7.4-14. However, in this variational solution it is tacitly assumed that Vehicle A is rigidly committed to the horizontal escape. In consequence, Vehicle \(B\) is free to perform a split \(S\) at Vehicie \(A\) followed by a smooth pullup. In the optimum three-parameter solution of Figure 7.4-14, Vehacle B more conservatively performs a less steeply descending turn and at all times is prepared to instantaneously react to a change of tactic by his opponent.

\subsection*{7.4.7.2 The Reacting Opponent Option}

The most complex COAP operating mode involves the use of variational optimization for a vehicle flying against a non-passive reacting opponent which employs combat guidance logic. Solution of this class of problem involves at least 14 formal state variables in the variational formulation. These state variables are the two-vehicle masses, position components (three each), and velocaty components (three each).

An example of this option is presented in Figure 7.4-16. The action conmences from the previously employed head-on pass with lateral offset. In the solution Vehicle A attempts to find the absolute maximum terminal separation distance in fixed time from Vehicle B's reattack using combat gurdancs logic.

The solution is obtained from two nomanal starting points. a climb and a descent. End points achieved by each vehicle in the two nommal paths are andicated by the isolated arrowheads. The two fanal solutions obtained are in close agreement as indzcated by the matched pars of solnd and dotted lines. This close agreement serves to confirm optimality of the solution obtained.

The variational optimal escape for Vehicle \(A\) is a shallow dive and turn away from Vehicle B. The shallow turn lengthens the separation distance for a negligible performance loss over the planar escape. Vehicle A now achieves a final soparation distance of 45,000 feet, some 5,000 foet better than the best constant flight path angle escape obtained by parameter optimization, Figure 7.4-13. Vehicle B almost achieves a furing opportunity at 20 seconds coming out of the turn. Vehicle B's weapon system constraints on steering error and carget angle-off are satisfied (a heat seeker), however, the separation distance at this point is too great. Hence, Vchicle A can make good his escape; for at 50 seconds the gap continues to widen.

It should be noted that if Vehicle B carried a long range weapon, Vehicle A's escape would not be possible. In the converse situation where Vehicle B attempts to escape while Vehicle A reattacks, the escape is impossible for Vehicle A does carry a long range weapon. It follows that given initial conditions of this problem, Vehicle B must stay to fight while Vehicle A may select to flee or to fight at his own discretion. In the latter case, results such as those of Figure 7.4-10 assume significance.

\subsection*{7.4.8 Mini-Max Solutions with Finite Number of Parameters}

COAP contains a technique for the solution of mini-max problems when a finite number of parameters are used in optimization studies. The technique is based on gradient vector magnitude minimization, Reference 4. The basic gradient vector magnitude minmmzation method finds ordinary extrenals and mini-max points since at both classes of points the gradient vector magnitude is zero. Ordinary minma can be excluded by a sign-of-curvature correction, Reference 4, which transforms ordinary minima into singularities. The complete technique can, therefore, be used to locate selectuvely mini-max and/or ordinary extremals.

A simple mani-max problem is illustrated in Figure 7.4-17. Vehicle A pursues and seeks to minmize distance; Vehicle \(B\) escapes and sechs to maximize distance. Both vehicles are identical twin engine fighters. In the parameterızed optimization study illustrated both fly constant angle-of-attack flight paths resulting in a two-parameter mini-max problom. Terminal separation contours are illustrated in Figure 7.4-17(b). An ordinary minmum problem exists at low angles of attack. The point obtaned by nulutivariable search using the cxtended gradient vector magnitude minamization algorithm is at \(\alpha_{1}=4.34^{\circ}, \alpha_{2}=4.16^{\circ}\) and is confirmed by the contour plot on this basis it appoars that the gradient vector magnitude manamazation procedure with sign-of-curvature correction appears to be capable of solving low dimensioned mini-max problems by multıvariable search. It has yet to be applied to problems involving many parameters, however.

A final point regarding this solution should be made. The solution can be obtanned more simply by fitting a set of polynomals to both vehicles' terminal altatude and ranges. In this case, the soparation distance is a straightforward root square of the terminal altitude and range distance components
\[
\begin{equation*}
\mathrm{R}=\sqrt{\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right)+\left(\mathrm{R}_{2}-\mathrm{R}_{1}\right)} \tag{7.4.2}
\end{equation*}
\]
where \(H_{1}, H_{2}, R_{1}\), and \(R_{2}\) are polynomials in time. Locating the mini-max point of Equation (7.4.2) is a simple computation since no flight paths other than those required by the initial curve fits are to be integrated.

To verify this approach fourth-order polynomials were fitted to \(H_{1}, H_{2}, R_{1}\), and \(R_{2}\). The mini-max value of the resulting polynomial function was found to agree to three significant figures with that previously obtained using the full equations of motion throughout the computation. It is quite possible to extend this polynomial technique to more than two independent variables. However, to-date this approach has not been pursued further.

\subsection*{7.4.9 Conclusion}

The basic structure and capabilities of the Combat Optimization and Analysis Program, COAP, have been outlined. The use of alternative and complementary optimization options has been demonstrated by several examples. COAP is a practical tool for assessing the combat maneuvering capabılity of existing and proposed aircraft. It can be used on any large scale digatal computer. It requires no specıal hardware. In its more complex optimizatıon modes, the user does need some famaliarity with modern nonlinear optamization techniques. The program complements other approaches to the assessment of combat maneuverıng capaoılity. Promising directions of exploration for more time consuming and expensive techniques, such as flight checkout or the dual naneuvering simulator, may be defined. Clearly, the final assessment of an aircraft's effectiveness in combat and the associated tactics employed rest with the milatary pilot. It is hoped that COAP will be of some assistance to such pilots and will alleviate, to some extent, the high cost associated with assessing a vehıcle's combat capability in action.

\section*{PEFERENCES:}
1. Hague, D. S., Jones, R. T., and Glatt, C. R., Combat Optimization and and Analysis Program, COAP, Volume I, Problem Formulation, AFFDL-TR-71-52, May 1971.
2. Hague, D. S., Jones, R. T., and Glatt, C. R., Combat Optimization and Analysis Program, COAP, Volume II, Progam User's Manual, AFFDL-TR-71-52, May 1971.
3. Hague, D. S., Jones, R. T., and Glatt, C. R., Combat Optimization and Analysis Program, COAP, Volume III, Programmers Manual, AFFDL-TR-71-52, May 1971.
4. Hague, D. S., Jones, R. T., and Glatt, C. R., Combat Optimization and Analysis Program, COAP, Volume IV, Parameter Optimization Subprogram, AFFDL-TR-71-52, May 1971.
5. Hutcheson, J. H. and Segerbolm, R. L., TACTICS: A Three-Body ThreeDimensional Intercept Simulation, Rand Memo RM-5759-PR, October 1969.
-6. Harris, Terrell J., Jacobs, Barton J. and Strauss, Walter J., Fighter Versus Fighter Combat ATAC-2 Model, United States Air Force Contract AF33 (615) - 3707 .
7. Campbell, T. K., Gold, T. T., Andrews, R. H., Moore, W., Application of Performance Optimization Techniques to Tactical Aircraft Operations (U), Volume II, AFFDL-TR-70-41, August 1970.
8. Brown, David A., "Simulator Aids for Aircraft Design," Aviation Week, February 7, 1972.
9. Hague, D. S. and Glatt, C. R., Optımal Design Integration of Military Flight Vehicles, ODIN/MFV, Section 7.3, "Atmospheric Trajectory Optimization Program," AFFDL-72-132, 1972.
10. Rozendaal, Harvey L., A General Branched Trajectory Optimization Algorithm with Applications to Space Shuttle Vehicle Mission Design, AAS/AAIA Astrodynamics Specialist Conference, August 17-19, 1971.
11. Landgraf, S. K., "Some Applicatıons of Performance Optamization Techniques to Aircraft," Journal of Aırcraft, March-April 1965.
12. Hague, D. S., Application of the Varıational Steepest-Descent Method to High Performance Aircraft Trajectory Optimızation, NASA CR-73366, 1969.
13. Hague, D. S. and Glatt, C. R., Study of Navigatıon and Guıdance of Launch Vehicles Havıng Cruise Capabılity--Trajectory Parametrıc and Optimizatıon Studies, Boeıng Document D2-113016-5, 1967. (Tıtle Unclassified, Document classified secret)
14. Hague, D. S. and Glatt, C. R., in Introduction to Multivariable Search Technıques for Parameter Optimization, NASA CR-73200, April 1968.
15. Bryson, A. E. and Denham, W. F., A Steepest-Ascent Method for Solving Optimum Programming Problems, Raytheon Report B31303.
16. Hague, D. S., et al., "Two-Vehicle Optımization--Theoretical Outline and Computer Program User's Manual. Report B983, McDonnell-Douglas Corporation, August 1965.
17. Hague, D. S., Jones, R. T., and Glatt, C. R., Combat Optimization and Analysis Program, COAP, Presented at Air-to-Air Combat Analysis and Simulation Symposium, Kirtland Air Force Base, New Mexico, February 29 to March 2, 1972. (Unclassified paper)

ORIGINAL PAGE IS
OF POOR QUALITIK
FIGURE 7.4-1. OUTLINE OF THE COMBAT SIMULATION

FIGURE 7.4-2. OVERALL SCHEMATIC OF COAP PROGRAM

FIGURE 7.4-3. SCHEMATIC OF STATE-DEPENDENT COMBAT SIMULATION

FIGURE 7.4-5. ROLE SELECTION LOGIC

\section*{DEFENGIVE ROLE.}
1. Maximum Rate of Tum
2. Hard Tunn
3. Maximum Opponent's Lane-of-Signt Vector Rolation Rate
4. Maximum Opponent's Lead-Pursuit Vector Rotation Rate
5. Maxamum Opponent's Proportional Fursuit Vector Rotation Rate
6. Split \(S\) under Opponent
7. The Haximur \(\dot{E}\) Maneuver

EVASIVE ROLE:
1. Hard Pull-up and Immelmann or Fanceke
2. Random Weave
3. Split S
4. Hard Turn
5. Vertical Dive
б. Kरollang

OFFENSTVE ROLE:
1. Lag Pursuit
2. Lane-of-Sight Pursuit
3. Reference Vector Pursuit

ATPACKIHG ROLE: Sımultaneousl:" 'etch
1. Rotation Induced by Target's Pelatıve Velocıty
2. Pointing Disection to Flring Point

PASSIVE ROLE:
1. Any Prespecified haneuver

FIGURE 7.4-6. TACTIC SUAMARY

Control values at any instant os time, \(t\), are given by
\[
\begin{aligned}
& \alpha(t)=\alpha\left(t_{0}\right)+\int_{t_{0}}^{t} \dot{\alpha}(t) d t \\
& B_{A}(t)=B_{A}\left(t_{0}\right)+\int_{t_{0}}^{t} \dot{B}_{A}(t) d t \\
& M(t)=i\left(t_{0}\right)+\int_{t_{0}}^{t} i H(t) d t
\end{aligned}
\]

FIGURE 7.4-7. FINTTE CONTROL RATE OPTION

（c）．Looking West

ORIGINAL PAGE IS
OF POOR QUALIIY
FIGURE 7．4－8．TYPICAL COMBAT SIMULATION

FIGURE 7.4-9. STEERING CAPABILITIES
Vehicle B Uses Neutral Steering (Flight Time 400 Seconds)

VEMCl 4 (*) : STLIR

FIGURE 7.4-10. STEFRING CAPMBTLITIES
Vehicle A Uses \(50 \%\) Oversteer
(Flight Tine 400 Scconds)

FIGURE 7.4-11. SCIEMATIC OF OPTIMIZATION PROGRAM - AESOP

FIGURE 7.4-13. CONSTANT FLIGHT PATH ANGLE ESCAPES

FIGURE 7.4-14. THREE PARAMETER REATTACK

FIGURE 7.4-15. VARITTIONAL MANEUYERING TARGET SOLUTION AND COMPARISON WITH PARAMETERIZED SOLUTION

FIGURE 7.4-16(a). VARIATION REACTING OPPONENT SOLUTION--ELEVATION
(2) Vehicle \(\lambda\) Escapes Using Yarıational Opturizer
(1) vehrele E Uses hax. Force Niong Los

FIGURE 7.4-17(a) INITIAL CONDITIONS

FIGURE 7.4-17(b). CONTOURS OF TERMINAL SLPARITION

\section*{SECTION 8}

\section*{STRUCTURES}

The ODIN/RLV program as installed at Langley Research Center restricts the structural analysis to a steady-state swept wing aeroelastic analysis. Engineers bending and torsion analysis about a swept elastic axis is combined with the subsonic lifting line aerodynamic analysis. Fuselage lift and moment is accounted for as is the need for a balancing tail load. Finally, the required stiffness distributions are converted to a wing box structural weight assuming conventional wing structures.
Section Page
8.1.1 General Method of Analysis 8.1-1
8.1.2 Aerodynamic Representation of Flight Loads and Aeroelastic Analysis 8.1-1
8.1.3 Wing Dead Weights 8.1-4
8.1.4 Wing Load Calculations 8.1-4
8.1.5 Calculation of Wing Stresses 8.1-5
8.1.6 Program Cycling 8.1-7
8.1.7 Conclusion 8.1-8
References 8.1-8
Illustrations 8.1-9

\subsection*{8.1 PROGRAM SSAM: SWEPT STRIP AEROELASTIC MODEL}

\subsection*{8.1.1 General Method of Analysis}

Program SSAM performs an aeroelastic evaluation of the wing spanwise flight loads including the complete alrcraft balance for a specified set of steady state maneuvers and/or design gust conditions. Here, proper inclusion of the wing, body, and nacelles' aerodynamic and weight effects are included in order to compute the required baiancing tail load which is reflected in the wing load calculation. Figure 8-1 shows a schematic of the system of equations used which include as unknowns ten span loads along with the airplane root angle of attack and balancing tall load.

These flight loads including the aerodynamic and wing dead weight loads are then converted into the structural wing box bending and torsion loads to evaluate the resulting bending and torsional stresses. If the calculated wing stresses exceed the allowable wing stresses, a new set of values of king section stiffness values are selected to match the allowable stress distribution specified within the program data. The wing aeroelastıc load solution is then repeated until the calculated and allowable wing stresses are matched. This type of analysis is necessary for a swept elastic wing as the airfoll section angle of attack depends upon the wing bending and torsion deflections. The cycling process is fast and usually requires three to five cycles to converge depending upon the error margin set within the program. The program then computes the wing box weight based on the final set of stiffness values obtanned. The resulting wing will not exceed the allowable stress distributions for the specifaed set of load conditions. At the present tame this analysis is limited to subsonic flight conditions.

\subsection*{8.1.2 Aerodynamic Representation of Flight Loads and Aeroelastic Analysis}

The wing Einght loads are evaluated considering the wing as a finite number of panels of width 2 h . These panel strıps are taken parallel to the air stream. Using Weissinger's aerodynamic theory each panel contains a horseshce vortex representation as shown in Figure 8.1-2. The circulation strengtin \(\Gamma_{n}\) of each vortex is related to the unknown span loading \(\ell\) which is assumed constant over each element. For each wing panel the sum of all vortex downwash velocities must be summed such that
\[
\begin{equation*}
-\sum_{0}^{\mathrm{n}}\left(\frac{\mathrm{w}}{\mathrm{v}}\right)_{\mathrm{n}}=\alpha_{f_{n}} \tag{8.1.1}
\end{equation*}
\]
where \(w / v\) is the induced downwash angle of the three-quartex chord and \(\alpha_{f}\) is the section airfoil free alr angle of attack. In matrix notation
\[
\begin{equation*}
\left\{\frac{1}{v}\right\}_{3 c / 4}=\frac{1}{\operatorname{dav}}\left[S_{1}\right]\{1\} \tag{8.1.2}
\end{equation*}
\]
leading to the basic equation
\[
\begin{equation*}
\left[\frac{]^{\circ}}{4\left(q_{0}\right)}\right]\left[\rho_{j}\right]\{\ell\}=\left\{a_{y}\right\} \tag{8.1.3}
\end{equation*}
\]
where
\[
\left[\begin{array}{l}
r^{\infty} \\
\sqrt{-1 m o}
\end{array}\right]=\text { square matrix comaning only the diagonal terms shown }
\]
\(\left[S_{]}\right]=\)square matrix representang the vortex wing geonet xy
\(\{\ell\}=\) colum matrix of the unhnow span loadng
\[
\begin{aligned}
\left\{\alpha_{f}\right\}= & \text { collum matrix of the frec arfoul section angles of } \\
& \text { attack }
\end{aligned}
\]

The iree airstream angle of attack \(\alpha=\) is composed of several components winich must be introduced into (8.1.3). Here
\[
\begin{equation*}
\alpha_{f}=\alpha_{s}+u_{r}+a_{g} \tag{8.1.4}
\end{equation*}
\]
i.nere
```

as = change due to aeroelastic wing loads

```
\(a_{r}=A / p\) wing root, \(a\) defined by load factor and balancing \(A / p\) tail load
ing = goometric wang twist includes flight control deflection and wing dead weight effects

When a swopt wing deflects, wing bending along with the wing twist produced by the alr loads causes the streamwise alrfoll section angle of attack to change. A general expression for the section angle of attack change is given by tne integral relation,
\[
\begin{equation*}
\alpha_{s_{\sigma}}=\int_{0}^{\sigma} \frac{m M s}{\mathrm{~L} 1}+\int_{0}^{\sigma} \frac{i \mathrm{Tds}}{G J} \tag{8.1.5}
\end{equation*}
\]
where
```

n = jeam bending moment per unit pitchang moment
t = beam torsion moment per unit putching moment
\ = applied bending moment
T = app...d torsion moment
EI,GJ = beam section stiffness characteristics

```
8.1-2

Equation (8.1.5) may be integrated from the wing tip to each of the wing stations to produce the following equation for \(\alpha_{s}\) :
\[
\begin{equation*}
\left\{\alpha_{s}\right\}^{s}=\left[s_{2}\right]\{2\} \tag{8.1.6}
\end{equation*}
\]
where
\(\left[S_{2}\right]=\) wing aeroelastic deflection matrix containing wing geometry and section stiffness properties

The alrplane wang root angle of attack \(a_{r}\) is calculated by balancing the externai loads on the aircraft in terms of the alrcraft flight condition. For the case of maneuvering flight, the wing lift is the sum of \(n W+P_{T}\) where
\(\mathrm{n}=\) Eligit maneuver load factor
\(W\) = aircraft gross weight
\(P_{T}=\) aircraft balancing tail load
The wing lift is expressed as a number of section lift values \(\ell_{n}\) which so far are unkiovn quantıtıes. To balance, the aircraft body loads must be included. In the case of the alrcraft body, these effects are assumed to be known and are expressed as
\[
\begin{align*}
\mathrm{L}_{\text {FUSELAGE }} & =\mathrm{qS}\left[\mathrm{C}_{\mathrm{LF}_{0}}+\left(\mathrm{C}_{\mathrm{LF}}\right)_{\alpha} \alpha_{\mathrm{r}}\right] \\
M_{\text {FUSELAGE }} & =\mathrm{qS} \bar{c}\left[\mathrm{C}_{\mathrm{mF}}+\left(\mathrm{C}_{\mathrm{mF}}\right)_{\alpha} \alpha_{\mathrm{r}}\right] \tag{8.1.7}
\end{align*}
\]
where
\(C_{\mathrm{L}_{\mathrm{F}}}, C_{\mathrm{MiF}_{\mathrm{O}}}=\) aerodynamic \(C_{\mathrm{L}}\) and \(C_{\mathrm{m}}\) for \(\hat{u}_{\mathrm{r}}=0\)
\(\left(C_{L_{F}}\right),\left(C_{\mathrm{m}_{\mathrm{F}}}\right)=\) aerodynamic \(C_{L}\) and \(C_{\mathrm{m}}\) varıation with \(\alpha_{\mathrm{F}}\)
The iast wing angle of attack component is the wing geometric twist \(\alpha_{g}\). This incluies effects of
1. change in the airfozl zero luft angle of attack due to using different airfoil section
2. change in the airfoll zero lift angie of attack due to flight control deflection
3. bullt in wing twist
4. twast due to aircraft wing dead weights

From Ecuations (8.1.3), (8.1.4), (8.1.6) and (8.1.7), a system of \(\mathrm{N}+2\) 1ınear equations may be written which express as unknowns \(N\) values of the span lift along with the airplane root angle of attack \(\alpha_{r}\) and balancing taill load \(P_{T}\). It s.ould be noted that program SSAM allows the following airfoil section characteristics to be specified for each wing panel:
\(m_{0}=\) slope of lift coefficient
ac = airfonl aerodynamic center position
\(\alpha_{0}=\) section zero lift angle
\(C_{m_{a c}}=\) section pitching moment coefficient
The wang section combined effectuve allowable stress \(\sigma_{A}\) is also specified within the SSAM program. Knowing this value the desired wing box section rroperties may be calculated based upon the allowable bending stress for the front spar, rear spar, and maximum spar depth. These areas are then averaged with weighting factors, if desired, to produce the desired wing section properties. The program may be employed to define elastic aerodynamic rolling derivatives by appropriate data input.

\subsection*{8.1.3 Wing Dead Weights}

Tne wing dead weights are represented as a set of concentrated loads for each "ang panel. These weights and their position coordinates must be specified i. 1 th reference to the airframe. The arrcraft c.g. must also be specified niti raspect to the wing MAC. Extemal stores such as the nacelles must have their weight and c.g. locations defined. Wing fuel weaghts may be calculated within the program.

Given a set of 3 dead weights associated with each panel 1, the user may select which of the \(j\) dead weight sets are to be summed for each specified load condition by simple inputs. That is, for any load condition, \&
\[
\begin{equation*}
\left\{\Delta W_{i}\right\}_{\ell}=k_{1}\left\{\Delta W_{1}^{1}\right\}+k_{2}\left\{\Delta W_{1}^{2}\right\}+\ldots . k_{n}\left\{\Delta W_{i}^{n}\right\} \tag{8.1.8}
\end{equation*}
\]
where
\(k_{j}=0\) or 1.
Fins fearure permits the rapid assembly of load conditions at partial fuel Ioaus, Eor example, by assigning various partıal fuel load conditions as particular \(\left.\left\{\Delta W_{i}\right]\right\}\).

\section*{S.1.4 Wing Load Calculation}

Tne aerodynamic air loads are calculated based upon streamwise wing panei strips as shown in Figure 8.1-3. The program converts these anrloads along :iath the corresponding dead weaght loads into the required wing bending and torsion loads along the swept elastic axis.

The wing box torsion beam is defined by a front and rear spar location and an elastic axis position. This elastic axis may be arbitrarily selected and lis position defined by a wing sweep angie and chord location at the center of eaci wing panel. Usually, the elastic axis is selected as a fraction of the distance between the front and rear wing spars. For a swept hang a fairing of this axis is possible near the wing root as shown in Figure 8.1-3.

\subsection*{8.1.5 Calculation of Wing Stresses}

In the program SSAM the wing bending torsion box beam cross section is defined as shown in Figure 8.1-4. Here, a front and rear spar location is defined. The wing depths are then specified in the program input at each station. These deptins are input as a front spar depth, rear spar depth, and the maxirum. wing inickness depth. In addition, the distance between the front and rear spar is specified normal to the elastic axis.

The bing cross section is treated symetrically. The upper and lower beam bencins material are treated as equal areas. A factor \(K_{o}\) is estrmated, based upon the type of wing structure, to define the portion of the structural raterial area used as stranger axea and the portion to be treated as skin nateriai area. Other small correction dimensions are input into the program to aiios or the stringer centroid location and average box depth.

Figure S.l-5 shows a typical wing box cross section with the represented section aimensions, where
w = \(\dot{4}\) astance between front and rear wing spar

\(\dot{\epsilon}_{a}=\) Everage box depth
\(d_{\text {e }}^{a}\) e ė̇eciuve beam depth for benaing
\(\tau_{s}=\) average skin thickness
\(t_{0}=\) こoこai material area of one segment of bending material
\(\ddot{r}_{0}=\) siin. segnent area/total segment area \(=t_{s} w / A_{0}\).
Fae zenevai ecuation for representing the combined maximum wing stress in zen:s of zie naterial area \(A_{0}\) will be developed. In terms of the above \(\dot{E}\) Enasions, the wing section bending moment of inertia I and the torsion box area \(i_{s}\) maj be written as
\[
\begin{aligned}
I & =A_{0} d_{e}^{2} / 2.0 \\
A_{B} & =d_{a^{W}}
\end{aligned}
\]

Tae average sim thickness in terms of \({ }^{\circ} A_{0}\) is
\[
\begin{equation*}
t_{s}=k_{0} A_{0} / w \tag{8.1.9}
\end{equation*}
\]

The maximum wing bending and torsion stress in terms of the applied bending moment M and torsion moment T becomes
\[
\begin{align*}
& \sigma_{b}=\frac{M y}{I}=\frac{M_{d}}{A_{o} d_{c}^{2}} \tag{8.1.10}\\
& \sigma_{t}=\frac{T}{2 A_{B} t_{s}}=\frac{T}{2 A_{o} K_{o} d a} \tag{8.1.11}
\end{align*}
\]

The shear loads \(V\) also produce a shear stress, \(\sigma_{S W}\), in the spar webs, Here,
\[
\begin{equation*}
\sigma_{S w}=\frac{V}{i_{0} t_{s}}=\frac{V w}{d_{c} K_{0} A_{0}} \tag{8.1.12}
\end{equation*}
\]

The maximum combıned principal stress from basic structure considerations is expressed as
\[
\begin{equation*}
\sigma=\frac{\sigma_{b}}{2}+\sqrt{\left(\frac{\sigma_{b}}{2}\right)^{2}+\left(\sigma_{s w} \pm \sigma_{t}\right)^{2}} \tag{8.1.13}
\end{equation*}
\]
substitutang Equations (8.1.10) (8.1.11), and (8.1.12) into Equation (8.1.13) gives the following expression for the maximum wing stress in terms of the material segment area \(A_{0}\),
\[
\begin{equation*}
\sigma=\frac{1}{2 \lambda_{0}}\left[\frac{h_{1}}{u_{\mathrm{e}}^{2}}+\sqrt{\left(\frac{\hat{N}_{1} l}{u_{e}^{2}}\right)^{2}+\frac{v^{2}}{K_{0}^{2}}\left(\frac{V}{d} \pm \frac{T}{w d_{a}}\right)^{2}}\right] \tag{8.1.14}
\end{equation*}
\]

The unig section combined effectuve allo:iadue stress \(\sigma_{A}\) is specañed within the program and may be entered for each station element if desired. knowng this value the desired wing box section properties may be calculated in terms of \(A_{0}\) where
\[
\begin{equation*}
A_{0}=\frac{I}{2 \sigma_{A}}\left[\frac{M d}{d e^{2}}+\left(\frac{M d}{d e^{2}}\right)^{2}+\frac{w^{2}}{K_{0}^{2}}\left(\frac{V}{d} \pm \frac{T}{w d_{a}}\right)^{2}\right] \tag{8.1.15}
\end{equation*}
\]

Tne above general equation is used with the proper sign to calculate \(t_{0}\) based upon tie aliowable bending stress for the front spar, rear spar, and maximum spar cepzt. These areas are then averaged with weighting factors,if desired, to produce the desared wixe section properties.

Because the upper and lower skin and stiffener areas are considered equal, the ailonaule stress \(\sigma_{A}\) represents an average between the allowable compressior. stress and the allowable tension stress. The allowable tension stress Is generaily constant while țhe allowable compression stress depends upon the type of wing construction which may vary spanwise along the liang. For fixis reason the program allows, for specifying this stress at each wing panel. \(\ddot{A} s\) tine wing is designed for the ultimate load, the values of \(M, T\), and \(V\) used in Equation (8.1.14) are all increased by a factor of 1.50 within the prograin.

\section*{8．1．6 Program Cycling}

An aeroelastic solution implies that the wing twist affects the wing anrloads which，in turn，determines the wing section properties．The wing structural angie of attack change is defined by Equation（8．1．6）．Here，tine \(S_{2}\) matrix depends upon the wing geometry and wing flexibility as defined in Appendix B of Reference 2 giving
\[
\left[\mathrm{S}_{2}\right]=\underset{\text { geometry }}{f_{1} \text { (wing planform }} \underset{\mathrm{EI}}{\left[\frac{1}{E_{1}}\right]}+\underset{\text { geometry }}{\text { (wing planform) }}\left[\frac{1}{G J}\right]
\]

The program is first cycled by assuming a distribution of \(1 / E I\) and \(1 / G J\) values，if available．if approximate stiffness values are not available， zero values are used which correspond to having a rigid wing．

The program then computes alrloads for the first flight condition．From these Ioacs，the minimum wing section areas \(A_{0}\) given by Equation（8．1．i5）are caicuiated for each wing panel based upon the allowable stress \(\sigma_{A}\) ．This process is repeated for each of the other specified flight conditions．The prozran internally saves the maximum recuired value of \(A_{0}\) for each wing station． Taxs is a direct cycling following the normal procedure for the analysis of a \(42 \pi \mathrm{~g}\) ．

AEzcr ali the input flight conditions are cycled，the minimum bending material area \(\lambda_{0}\) to meet the design requirements for a zero margin of safety wing at eaci．wing station will be known．The airloads，however，were based upon dこえショュen：values of \(1 / E I\) and \(1 / G J\) and，hence，the cycling process must be repeated．

The ．．ang iteration process now begins by using the calculated \(A_{0}\) values to compute a new \(S_{2}\) matrix．Here
where
\[
\left[\frac{1}{E I}\right]=\frac{A_{\mathrm{o}} \mathrm{~d}_{\mathrm{e}}{ }^{2}}{2 \mathrm{~L}}
\]
\(\tau_{s}=\lambda_{0} t_{0} / \mathrm{w}\)
\(\tau_{. .}=i_{n} i_{s}\)
The ains aeroelastic properties affect perhaps twenty per cent of the air
 are necessary．After each iteration，the new required stiffness values are comared with the previous stiffness values at each station until they all agree within a specified margin；usually this margin is taken to be two per cent．

After the exror margin is reached，the final wing box weight is calculated， and loads for each of the flight conditions based upon the final wing stiffness are determined．A diagram of this cycling process is shown in Figure 8．1－6．

\section*{8．1．7 Conclusion}

An outline of Progran SSAM has been presented．More complete detalls of the Hizissinger aerodynamic analysis are given in Reference 1．The aeroelastic analysas is described in detail in Reference 2．A typical applacation of this program is proviked by Reîerence 3．Typical program output is presented in Tables 8．1－1（a）through 8．1－1（e）．It should be noted that a companion flutter program employing unsteady aerodynamics，Reference 4，is available for inclusion in ODIN simulations．

\section*{REFEREICES：}

1．Helssinger，J．，The Lift Distribution of Swept Back Wings，NACA TM－1120， 1547.

2．Giay，W．L．，Schenk，K．M．，Method for Calculating the Subsonic Steady State Loading on an Alrplane with a Wing of Arbitrary Planform and Stュュキミ1ess，NACA TN－3030， 1953.

3．Wizite，Roland J．，＂Improving the Airplane Efficiency by Use of Wing Naneuver Load Allevıation，＂Joumal of Aircraft，October 1971.

4．Pnoa，Y．T．，A Computerızed Flutter Solution Procedure，National Symposium on Computerized Structural Analysis and Design，George Washington Univer－ sity，Narch 28，1972．（avallable from Aerophysics Research Corporation）．
```

S S AM－SIEPT STRIP AEROFLASTIC MODEL AELROMYSICS ALSEARCH COKPORATION

```

THE ESTHMTLD \(\therefore\) ivg flexlisility for the first iteotilion is as follo．．s．
\begin{tabular}{|c|c|c|}
\hline ETh & Hflex & tflex \\
\hline ． 950.3 & ． 353280 & ． 523520 \\
\hline －85？\({ }^{\text {a }}\) & ．143iciu & ． 183256 \\
\hline ． 75 ¢ \({ }^{\text {c }}\) & 6．110s5＝－i\％ & G．53900uE－02 \\
\hline ．6596 & & 4．923000E－02 \\
\hline ． 55 C & 1．シ4らっち心ことき & 3．22600ur－02 \\
\hline －4590 & 1．147306＝－32 & 1．051000E－02 \\
\hline ． 356 & 7．420．05－03 & 1．051000E－02 \\
\hline － 35.30 & \(4.60600 \%\)－uj & 6．490000E－03 \\
\hline －150\％ & 2．bうcjuce－i3 & 3．270000E－03 \\
\hline 5．0ヶ， 06 E －î2 & & \\
\hline
\end{tabular}
```

V积年
Fta ajor station (safm fraction)

```

```

tflex Uing flfXIGILity I\ TORSIOV (10E9/IN-LB)

```

ThE FOLIOUTNO DEFINITIONS AR：PRNVIDED TO AID

\begin{tabular}{|c|c|}
\hline 1，15T & \\
\hline CL & creijus lift cbefricievi \\
\hline \(0^{14}\) & SFCTIGN PITChIig mir＝T COEFFJCIENT \\
\hline 4号－ & \\
\hline c！puc & \\
\hline Sictim & \\
\hline 30： & \\
\hline Tor & Tonctot hrolt The thistic Axis（ICEG IN－LB） \\
\hline DIFL． & drFloctioid of the flastic axis．lln \\
\hline
\end{tabular}

TABLE 8-1-1(b). FINAL DEFLECTED WING, LOAD CASE 1

S S A'U - Sifpt stidi hrrorlastic monel
page

FLIGuT LoAD COnsition i.

```

S S A M - SNEPT GTNIN AT ROEZLASTIC MODEL
IENGNHYSICS WESEARCH CORRORATION

```

\section*{FLIGMT LOAD COUVITION 3A}
\begin{tabular}{|c|c|}
\hline & 30000 \\
\hline ESH：VELFST ATRSOrES（KT） & 342.00 \\
\hline FAG－VIMRE？ & －95009 \\
\hline C： & 1.3000 \\
\hline & 751.00 \\
\hline & －0． \\
\hline & 71.900 \\
\hline GONSS＂EIGAT OF ATECRAFT（ISUG LR） & 301.90 \\
\hline LOAT，Firto？ & 2.5000 \\
\hline & ． 16200 \\
\hline LJR WE，जTTY DGTÍ & .37410 \\
\hline CENT＝Atite atrlotos（ONLY） & \\
\hline Sh－in）（190（ LF） & 413.83 \\
\hline リOSENT（10EE I＊！－Lm） & 133.97 \\
\hline TORSICA（10ER（Y－LK） & －22．495 \\
\hline CEVTFWLTME SFCTIM DATA & \\
\hline tir Pressine（pct） & 9.4200 \\
\hline Furt de：tsity（L＂／GAL） & 6.9060 \\
\hline CARGO PPESSIRE（DSI） & －42006 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline E－： & TIST & Ci & C＇； & ALP－F & 41．Pra & Siterar & HOM & TOR & DEFL \\
\hline cse： & ． 156 & ． 4.53 & ． 3153 & 3.407 & 2．くら7 & 5.44 & ． 12 & ． 04 & 89.90 \\
\hline －こ？ & .233 & ． 573 & －．ミうご & 4.154 & 「．S¢？ & 19.05 & 1.21 & ． 20 & 70.46 \\
\hline －フニi & ． 31 ． & ． 458 & －．1きらす & 4.097 & 2．474 & 36.90 & 3.83 & ． 36 & 52.58 \\
\hline －nキ．． & ． 373 & －6．9．7 & －．j5ic & 4．006 & 3．695 & 44.29 & 8.19 & \(-1.03\) & 37.19 \\
\hline － 5 こ & ． 432 & ．7ン4 & －．1373 & C．0．855 & 4．（4） & ก8．33 & 13.91 & －1． 24 & 24.40 \\
\hline － 6 & ． 514 & ． 15 & －．！¢ \％ & \(\% 353\) & 5．7－7 & 75.62 & 23.27 & －3．66 & 14.50 \\
\hline \(\therefore\)－ & －598 & ． 7.5 & －．175． & ＂．127 & 6．5］ 7 & 103.69 & 32.10 & －5．16 & 7.57 \\
\hline ．\(\because\) & ． 679 & ． 74.5 & －．ニッ～い & r．442 & 7．6ッ゙9 & 129．60 & 44.34 & \(-5.71\) & 3.32 \\
\hline －15才 & ． \(7+7\) & ． \(7+7\) & & 7.345 & と．？\({ }^{\text {c．}} 3\) & 149．8］ & 56.71 & \(-15.50\) & 1.05 \\
\hline \(\therefore 56\) & ． 78.3 & ．73． & －． 2543 & 10.431 & 8.747 & 173.88 & 67.79 & －32．14 & 0.00 \\
\hline ： 367 & SInt & \(C^{-}\)no & －L0：0 & & & 166.11 & 64.21 & \(-26.76\) & \\
\hline くiこ & STPI & ＋15 & LUAES & & & & 55.83 & －41．50 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & \(7.11 .554 L-02\)
-1.315 & \\
\hline & －0． & \\
\hline & ．01100 & \\
\hline & ．658\％ & \\
\hline 1：GUTEACATJOM FACTOR（FOR（UST） & －0． & \\
\hline & 2．5000 & 0. \\
\hline & 9．0．35 & －．76969 \\
\hline & －64 30 & －31 ب． 28 \\
\hline & ． 71644 & \\
\hline & －Y．7ア．）WhE－0？ & －7． \(711.31 \mathrm{E}-02\) \\
\hline
\end{tabular}

TABLE 8.1-1(d). FINAL WING, WEIGHT SUMMARY


```

MEFINITIG:S
ETA "Il: STATIOM (SOSN F゙N:CTION)

```

```

ID io S= LORSTIOA OF TN CRITICAL STRESS (IE, AREA)
CS CESTER Gr゙CTIUN
FS FRDINT SPAR
PS PEAN SHAN
Sn Slig isfly

```

```

            "f\lambda '{a>l'G U URDTM
    ASEG CER:..T AOEA (SO j, (%)
ASTR STE-N,JgE AETERTIL ANEA (SO IN)
TESTM c:- : TrOEKMESS (|,

```



```

|MLT "ATERIAL UFIGHT (IM/SIDE)

```

\title{
TABLE 8．1－1（e）FINAL WING FLEXIBILITIES
}
\[
\begin{aligned}
& \text { S S A A - Sippt Strip afhoelastic monel }
\end{aligned}
\]

PAGE 15

FINALSTIFFNFSS
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { FTA } \\
& \text { STA. }
\end{aligned}
\] & CI（1） \(\left.\mathrm{C}_{-}-c_{3}\right)\) & 6J（1）55－9） & \[
\begin{gathered}
E I(1 \cap E-g) \\
\text { ROX }
\end{gathered}
\] & \[
\begin{gathered}
G J(10 E-9) \\
B O X
\end{gathered}
\] \\
\hline ． 95 & 2．74515P5＋00 & 1．533305E＋09 & 2．749152E 00 & 1．533305E＋00 \\
\hline ． 85 & 8．3325ン「5＋（0） & 9．145732\％＋3！ & 7．0555ん7E＋ 00 & \(4.115586 \mathrm{~F}+60\) \\
\hline ． 75 & 2．04．344ct01 & 1．141455E＋01 & 1．406709E＋01 & 9．545919E＋00 \\
\hline ． 65 & 3． \(283 \mathrm{chse}+01\) & 2．1563） 8 E +31 & 2．720675E＋01 & 1．97458UE＋01 \\
\hline ． 55 & & 3．0nチ477\％＋－1 & 4．581095E＋01 & \(3.209517 \mathrm{E}+01\) \\
\hline ． 45 & & R．\(\therefore 35>365+01\) & \(7.643-2095+01\) & 5．571633F＋01 \\
\hline －35 & 1．2979：35＋ひ？ & 1． \(125615 E+32\) & \(1.2601005+02\) & \(9.006552 \mathrm{C}+01\) \\
\hline ． 25 & 2． 2560.45 c ＋ 22 & 1．60？510E＋06 & \(2.149951 E+02\) & 1．5699825＋0？ \\
\hline ． 15 & \(4.346154 E+02\) & \(3.7162415+02\) & 4．276ヶ54E +02 & \(3.276241 \mathrm{E}+62\) \\
\hline ． 45 & \(5.396115 E+02\) & \(3.854951 E+0 \cup 2\) & 5．279960E＋02 & \(3.884961 E+02\) \\
\hline \multicolumn{5}{|c|}{FLEXIHILITY} \\
\hline \multicolumn{3}{|r|}{FINAL IIERATIUN} & NEXT & LAST ITERATION \\
\hline \[
\begin{aligned}
& \text { ETA } \\
& \text { STA. }
\end{aligned}
\] & 1059／E1 & 10E9／GJ & 20R9／6I & 10E9／GJ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline ． 95 & \(3.637655 \pm-21\) & & \(3.6374855-01\) & 6．521858E－01 \\
\hline ． 25 & & & 1． \(36147-5-01\) & 1．445579E゙－01 \\
\hline －75 & 4．39\％～035－52 & \(9.3530465-31\) & 4．8979505－32 & 8．402457e－02 \\
\hline －55 & 3．245コンフミ－－2 & 4．05 475E－02 & 3．642672F－02 & \(4.655775 \mathrm{~F}-02\) \\
\hline ． 55 & 2．95351？ & 2．7ン5927E－U2 & 2．055693E－02 & 2．728801t－02 \\
\hline .45 & 1．736459－2？ & 1．25ワ945E－0） & 1．2310745－02 & 1．555561E－02 \\
\hline .35 & 7．7．4737ヶー03 & & 7．71473．3F－03 & 9．4854508－03 \\
\hline ． 25 & 4.4424 .73 －0才 & 1．0． 14 4 3 PE－ 4.3 & 4．44717．85－03 & 6．021005E－03 \\
\hline ． 15 & 2．773ッハフミーせ3 & 3．15ンク78E－0．3 & 2．2639295－03 & \(3.055046 t-03\) \\
\hline ． 05 & 1．95318：t－03 & E． 574 ¢RF－03 & 1．854769F－03 & 2．575536E－03 \\
\hline
\end{tabular}

THIS SMIVTION DCOUREO 3 ITFRATIONS．
 THE Piffyous Allonirate STE，ST MAS USED

PROERニン SOEVES EOR WING PANEL LOADS AND
BELENEES AERPLANE FOR EACH SPECIFIED
F䒑IGEM COMDIMION

FIGURE 8．1－1．PROGRAM MODEL AND BASIC EQUATIONS

FIGURE 8.I-2, WEISSIAGER SUBSOVIC STEADY STATE AERODYNAMIC MODEL

FIGURE 8.1-4. WING BOX SIZE DIMENSIONS

FIGURE 8.1-5. WING BOX SECTION GEOMETRY

3.1-is

\section*{SECTION 9}

ECONOMICS

Two cost estimation models are available in the ODIN/RLV System. Both programs were originally written for IBM computers but were converted to the CDC 6600 by Aerophysics Research Corporation during the ODIN studies. The two economics models used in the ODIN/RLV are
1. DAPCA: A computer program for determining aircraft development and production costs, Reference 1. This program was originally constructed at the Rand Corporation. The CDC 6600 version available in the ODIN/MFV study (for Wright-Patterson Air Force Base) was constructed by Aerophysics Research Corporation.
2. PRICE: A program for improved cost estimation for total program cost of alrcraft, spacecraft, and reusable launch vehicles. This program was constructed by Mr. Darrell E. Wilcox of NASA's Advanced Concepts and Mission Division, Ames Research Center.

The more recently developed program, PRICE, is the cost model most frequently employed. Description of DAPCA is limited to a presentation of the equations employed.

SEERENCES:
1. Boren, H. E., Jr., DAPCA: A Computer Program for Determining Aırcraft Development and Production Costs, The Rand Corporation, RM-5221-PR, February 1967.

2 Hague, D. S. and Glatt, C. R., Optimal Design Integration for Military Flight Vehicles, ODIN/MFV, AFFDL-TR-72-132, 1972.

\section*{TABLE OF CONTENTS FOR SECTION 9:1, PROGRAM PRICE}
Section Page
9.1.1 Introduction 9.1-1
9.1.2 Cost Model 9.1-2
9.1.3 First Unit Manufacturing Cost 9.1-3
9.1.4 Research, Development, Test and Evaluation (RDT\&E) 9.1-9
9.1.5 Acquisition 9.1-12
9.1.6 Recurring Operstions 9.1-13
9.1.7 Total Program Cost 9.1-15
9.1.8 Conclusion 9.1-15
References 9.1-16
Illustrations 9.1-18

\subsection*{9.1 PROGRAM PRICE: A PROGRAM FOR IMPROVED COST ESTIMATION OF TOTAL PROGRAM COSTS FOR AIRCRAFT AND REUSABLE LAUNCH SYSTEMS}

\subsection*{9.1.1 Introduction}

Program PRICE was constructed by NASA's Advanced Concepts and Mission Division and is reported in full in Reference 2 of Section 9. The discussion below is a synopsis from that report which is originally due to D. E. Wilcox.

Cost estimation has recerved much attention in recent years due to the growing size and complexity of aircraft and space vehicles and the increasing costawareness of those involved with planning future programs. An important part of any mission analysis is the estimate of the total program cost and its varıation with changes in design concept or study guidelines. A constant problem to the mission analyst is the lack of valid cost data in sufficient detail to allow the derivation of meaningful cost sensitivities as a function of design characteristics. This is particularly true of high speed/high performance vehicles where extrapolations beyond the existing data base usually are required to estimate costs.

There are a number of excellent cost models in existence; although none are entirely suitable to the present purpose. For example, Rand Corporation (Reference 1) and Planning Research Corporation (\(\mathrm{R}-547 \mathrm{a}\)) have published cost models for conventional aircraft. Both are based on statistical correlations of historical cost data for military aircraft. Neither includes data for aircraft capable of speeds above Mach 3, nor are the cost models intended for such use. Both models are applicable mainly to large production programs and cannot be used to estimate the costs of an experimental aircraft program or a space shuttle vehicle. Moreover, both models aggregate costs at a very gross level; the Rand model has nine equations, while the Planning Research Corporation model uses only three equations to describe the total development and procurement cost. This aggregation provides very little sensıtivaty to design detall and \(1 s\), therefore, of limited use in vehicle trade studres.

Other cost models, References 2 to 4,yield somewhat greater cost visibulity by providing more detailed breakdowns of the estimates. This is accomplished by estimating at the subsystem level and by more emphasis on the functional distribution of costs. All of these models are primarily applicable to spacecraft, however, and the first three were developed specifically to study space shuttle costs. There are many other cost models not referenced here, but most are limited to a specific class of vehicle.

The cost model used in PRICE was developed in an effort to eliminate some of the shortcomings of other models. It is applicable to aircraft of all speeds, launch vehicles (airbreathing or VTO rocket), and spacecraft. It
may be used for either large production programs or experimental vehicle programs. Moderate sensitivity to design characteristics is provided by estimating hardware costs at the subsystem level and all other costs at a functional level. Where possible, historical data for aircraft, spacecraft, and launch vehicles are correlated together.

The cost model is divided into three life cycle phases: RDT\&E, Acquisition, and Operations. The cost of each of these phases is determined by summing numerous cost elements which conform to specific program tasks or hardware elements. The cost element structure approximates level 5 of the NASA Work Breakdown Structure, Reference 5, although conformance is not exact because the cost model accommodates aircraft data which have not been reported to this WBS. Hardware costs are computed using cost elements roughly corresponding to level 6 of the WBS. The subsystem groupings are actually based on U.S. Air Force Specification MIL-M-38310A, Reference 6, because the vehicle weight statement generated by most synthesis prograns is based on this specification.

The estimating relationships used in all phases of the cost model are based on correlations of historical cost data with gross physical characteristics. This method is typical of conceptual design costing, and has the advantage of providing fairly good estimates from a minimum of design information. The method has two disadvantages. The first is the limited sensitivity to detailed vehicle design characterıstics, which is a result of the failure to report costs to the detail level in past programs and an over-reliance on weight in the cost model. The second disadvantage is the difficulty associated with estimating the cost of vehicles which advance the state of the art, since by defanition there is usually no historical data upon which to base the estimates. This is a problem with nearly all estimating techniques. Partial solutions can be achieved through the use of "complexity factors," but only when data exist to establish the value of such factors.

The computer program is described in detail in Reference 8 which identifies the input and output parameters, and gives a program listing. It also includes sample input and output for a lifting-body-reusable, space transportation system. It should be noted that the cost data base assocaated with PRICE includes proprietary data. Its contents can only be made avallable to qualified Government sources.

\subsection*{9.1.2 Cost Model}

The cost model was divaded into the cost elements shown in Figure 9.1-1. The cost elements fall into one of three major phases: RDT\&E, Acquisition, and Operations. RDT\&E as defined here includes both concept formulation and contract definition studies, plus vehicle design, development, and test, initıal tooling, flight test, and all other costs up to the establish ment of an initial operating capability except facilities. The acquisition
phase includes all capital expenditures required to support the operational phase, such as operational vehicles, facilities, training equipment, ground support equipment (AGE), spares, plus handbooks and other miscellaneous equipment. Operations includes all annually recurring labor and material costs required to support flight operations to program completion.

The cost of procuring flight test and operational vehicles is determined by computing the first unit manufacturing cost of the vehicle and applying a learning curve over the total number purchased. The first unit costs is the sum of the first unit costs of 31 major subsystems, each of which is described by one or more CER's based upon component weight or other input from the synthesis programs. Since the first unit cost is used in several of the cost elements of Figure 9.1-1, it is computed first by the computer program and will be discussed first in this section.

\subsection*{9.1.3 First Unit Manufacturing Cost}

The first unit cost is defined as the manufacturing cost of the first flight test arzicle, and it includes all labor, material, and overhead costs associated with the production of that component. Sustaining engineering and tooling are not included but are computed as separate items.

The major factors influencing manufacturing cost are the weight, size, and complexity of parts, the total number of parts, and the number of dissimilar parts. Also important are certain performance parameters such as power output of electronic equipment or thrust and specific impulse of propulsion systems. For structural components the material and type of construction is cratical. In the present cost model, however, most component costs were related to weight, with a complexity factor used to account for cost varlations due to material and type of construction. Although complexity factors vary from one source to another, the values of Reference 2, modified slightly, are used for all structural components in this cost model. The first unit cost is broken down according to the 31 subsystems of Figure 9.1-2.

The equations for first unit cost components are nearly all of the type
\[
C=a w^{b} C_{f}
\]
where \(a\) and \(b\) are correlation constants, \(W\) is the subsystem weight, and \(C_{f}\) is a complexity factor. For structural components the value of \(\mathrm{C}_{\mathrm{f}}\) can be taken from Table 9.1-1. For non-structural subsystems, \(C_{f}\) is nominally 1.0 but the user may supply a different value if the component complexity is expected to differ from that represented by the data included in the correlation.
1. Body Structure. The first unit manufacturing cost of the basic body " is related to the structural weight by CER's which vary with the type of vehicle as shown in Figure 9.1-3. The division of costs is based on the avallability of data to derive a CER for each of the components shown.
a. For VTO launch vehicles the following equations are used where all symbols are defined in Table 9.1-2.
\[
\begin{aligned}
& \text { CADAPT }=1730 \text { (WADAPT) } \cdot 678 \text { (CFADAP) } \\
& \text { CFWD }=1730(\text { WFWD }) .678 \text { (CFFMD) } \\
& \text { CAFT }=1730(\text { WAFT }) \cdot{ }^{.678} \text { (CFAFT) } \\
& \text { CINTK }=1730 \text { (WINTK). } 678 \text { (CFINTK) } \\
& \text { CTHRST }=3400 \text { (WTHRST). } 678 \text { (CFTHRS) } \\
& \text { COTANK }=7400 \text { (WOTANK). } 565 \text { (CFOXTK) } \\
& \text { CFTANK }=7400 \text { (WFTANK) } \cdot 565 \text { (CFFUTK) } \\
& \text { CFTANK }=5770 \text { (WFTANK) } \cdot 565 \text { (CFFUTK) } \\
& \text { CNOSE }=1730(\text { WNOSE }) .678 \text { (CFNOSE) } \\
& \text {, Adapters } \\
& \text {, Forward skirts } \\
& \text {, Aft skirts } \\
& \text {, Intertank structure } \\
& \text {, Thrust structure } \\
& \text {, Oxidizer tank } \\
& \text {, Hydrogen fuel tank } \\
& \text {, Storable fuel tank } \\
& \text {, Nose structure }
\end{aligned}
\]
b. For spacecraft

CCOMPT \(=20130(\) WCOMPT \() \cdot 631\)
(CFCOMPT)
and
\[
\begin{array}{ll}
\text { CSERV }=8800(\text { WSERV }) \cdot 631 \text { (CFSERV }) & \text {, Cargo compartment } \\
\text { CADAPT }=2100(\text { WADAPT }) \cdot 631 \text { (CFADAP) } & \text {, Adapter }
\end{array}
\]
, Crew compartment
c. For aircraft

CBODY \(=56100\) (WBODY). 451 (CFBODY) , Body structure
2. Aerodynamic Surfaces.
\[
\begin{array}{ll}
\text { CWING }=36000(\text { WWING })^{.451} \text { (CFWING) } & \text {, Aircraft wing } \\
\text { CEMP }=10230(\text { WWEMP }) \cdot 451 \text { (CFEMP) } & \text {, Aircraft empennage } \\
\text { CFAIR }=1730(\text { WFAIR })^{.678} \text { (CFFAIR) } & \begin{array}{l}
\text {, VTO launch vehicIe } \\
\text { fins and engane } \\
\text { fairings }
\end{array}
\end{array}
\]
3. Thermal protection system.

CTPS \(=(\text { UCABL }+ \text { UCCOV }+ \text { UCINS })_{i}(\text { NPANEL })_{i} \cdot{ }^{926}(\text { SPANEL })_{i}, \underset{\substack{\text { Thermal } \\ \text { systems }}}{ }\) protection
\[
\left(\text { NPANEL }_{i}=(S T P S)_{i} /(\text { SPANEL })_{i}\right.
\]
, Number of panels in TPS's
4. Subsystems. First unit cost data for the vehicle subsystems were more difficult to obtain than that for the main structure. One reason for this is that subsystems on many militaxy aircraft programs are Government furnished equipment (GFE), and the aircraft manufacturer is not responsible for their costs. Due to this lack of data, the confidence level attached to the CER's for these subsystems is lower than that for the structure or propulsion system CER's.
5. Landing gear.
\[
C L G=10430(W L G) \cdot 541 \text { (CFLG) , Landing gear }
\]
6. Launch, docking, and recovery gear.
\[
\begin{array}{ll}
\text { CLANCH }=500(\text { WLANCH })(\text { CFLNCH }) & \text {, Landing } \\
\text { CDOCK }=500(\text { WDOCK })(C F D O C K) & \text {, Docking } \\
\text { CDPLOY }=1340(\text { WDPLOY }) \cdot 766(\text { CFDPLY }) & \text {, Dep1oyable recovery } \\
\text { gear } \\
\text { CRECOV }=42100(\text { WRECOV } \cdot 7064 \text { (YFRFCV) } & \text {, Recovery aids }
\end{array}
\]

\section*{7. Engines.}
\[
\begin{array}{ll}
\text { CENGS }=\left[350000 .+475(T)^{.7}\right](E N)^{\text {zetap }} & \text {, pump-fed cryogenic } \\
\text { fueled engines } \\
\text { CENGS }=\left[270000+24(T)^{.8}\right](E N)^{\text {zetap }} & \text {, pump-fed, storable } \\
\text { fueled engines }
\end{array}
\]

For airbreathing engines, CER's were provided for turbojets based on thrust and ramjets or scramjets based on weight:
\[
\begin{aligned}
& C T J=\left[3270(T)^{.60}\right](\text { EN })^{\text {zetap }} \text { (CFENG) } \\
& C R J=27000(W R J) \cdot 523
\end{aligned}
\]
8. Inlets and nacelles.
\begin{tabular}{ll}
CINLET \(=56100(\) WINLET \() \cdot 451\) (CFINLT) & , inlets \\
CNACEL \(=56100(\) WNACEL \() \cdot 451\) (CFNAC) & , -nacelles
\end{tabular}
9. Tanks.
\[
\begin{array}{ll}
\text { CFUTK }=7400(\text { WFUTK }) \cdot 565 \text { (CFTK) } & \text {, cryogenic fuel tank } \\
\text { COXTK }=7400(\text { WOXTK }) \cdot 565 \text { (CFTK) } & \text {, cryogenic oxidizer tank } \\
\text { CFUTK }=6660(\text { WFUTK }) \cdot 565 \text { (CFTK) } & \text {, storables } \\
\text { COXTK }=6650(\text { WOXTK }) \cdot 565^{\text {t }} \text { (CFTK) } &
\end{array}
\]
, storables
CINSTK \(=(\) DPLBIN \()(\) WINSTK \()\)
CFUSYS \(=59000\) (WFUSYS) \(\cdot 43\) (CFFUEL)
COXSYS \(=59000(\text { WOXSYS })^{.43}\) (CFOX)
, tank insulation
, fuel systems
, oxidizer systems
CFUSYS \(=300\) (WFUSYS) (CFFUEL)

CPRSYS \(=59000(\text { WPRSYS })^{.43}\) (CFPRES)

CPUSYS \(=59000(\text { WPUSYS })^{.43}\) (CFPRES)
CLUBE \(=59000(\) WLUBE \() \cdot{ }^{43}\) CFLUBE)

CPRSYS \(=300\) (WPRSYS) (CFPRES)

CPUŞYS \(=300\) (WPUSYS) (CFPUSY)
CLUBE \(=300\) (WLUBE) (CFLUBE)
10. Orientation, Separation, and Ullage Control.
'CAERO \(=400\) (WAERO) (CFAERO) , conventional vehicles
a. For a spacecraft
\begin{tabular}{|c|c|}
\hline CAERO \(=63000(\text { WAERO })^{.504}\) (CFAERO) & , aerodynamic stabilization system \\
\hline CACS \(=61700(\text { WACS })^{.529}\) (CFACS \()\) & , reaction control system \\
\hline CACSTK \(=6660\) (WACSTK) \({ }^{565}\) (CFACTK) & , RCS tanks \\
\hline CAUXT \(=61700\) (WAUXT) \({ }^{529}\) (CFAUXT) & , auxiliary thrust (1ıquids) \\
\hline CAUXT \(=395(\) WAUXT \() \cdot 66(\) CFAUXT \()\) & , auxiliary thrust (solids) \\
\hline
\end{tabular}
11. Electrical power.
\[
\begin{aligned}
& \text { CPOWER }=20950(\text { WPOWER })^{.536}(\text { CFPON }) \\
& \text { CPOWER }=36096(\text { WPOWER })^{.536 ~}(\text { CFPOW }) \\
& \text { CELCAD }=16170(\text { WELCAD })^{.766 ~(C F E L C D) ~} \\
& \text { CELCAD }=1970(\text { WELCAD }) .536 \text { (CFELCD) }
\end{aligned}
\]
, spacecraft power supplies (battery)
, spacecraft power supplies (fuel cell)
, spacecraft electrical distribution
, launch vehicle/aircraft electrical distribution
12. Hydraulic system.
\[
\text { CHYCAD }=1970(\text { WHYCAD })^{.766} \text { (CFHYCD) } \text {, hydraulics }
\]
13. Guidance and navigation.
\[
\begin{array}{ll}
\text { CGNAV }=243,000(\text { WGNAV }) .485 \text { (CFGNAV) } & \text {, spacecraft } \\
\text { CGNAV }=22200(\text { WGNAV }) .786 \text { (CFGNAV) } & \text {, launch vehicle/aircraft }
\end{array}
\]
14. Communications.
\[
\begin{array}{ll}
\text { CCOMM }=7220(\text { WCOMM }) \cdot 5743(\text { CFCOMM }) & , \text { cruise and launch } \\
\text { vehicles } \\
\text { CCOMM }=82500(W C O M M) \cdot 5743(C F C O M M) & \text {, spacecraft }
\end{array}
\]
15. Instrumentation.
\[
\text { CINSTR }=12750 \text { (WINSTR) }{ }^{596} \text { (CFINST) , all vehicles }
\]
16. Environmental control.
\[
\begin{array}{ll}
\text { CEQECS }=10800(\text { WEQECS }) \cdot 5065 \text { (CFEQEC) } & \text {, unmanned vehicles } \\
\text { CPECS }=202500(\text { WPECS }) \cdot 373(\text { CFPECS }) & \text {, manned spacecraft } \\
\text { CPECS }=6430(\text { WPECS }) \cdot 5065(\text { CFPECS }) & \text {, other manned vehicles }
\end{array}
\]
17. Insulation.
```

CINCOM = (DPLBIN) (WINCOM) , crew compartments

```
18. Crew provisions.
\[
\begin{array}{ll}
\text { CPPROV }=1400(\text { WPPROV }) \cdot{ }^{7625} \text { (CFPROV) } & \text {, aircraft } \\
\text { CPPROV }=6540(\text { WPPROV }) \cdot 7625 \text { (CFPROV) } & \text {, spacecraft }
\end{array}
\]
19. Crew controls and display panels

CCANDP \(=26800(\) WCANDP \() \cdot 4926\) (CFREW)
20. Abort.
\[
\text { CABORT }=16960(\text { WABORT }) \cdot 556
\]
21. Final assembly and checkout.
\[
\text { CFASSY }=(X F A S S Y) \quad(C S T R U C)
\]

22 Propellants and gases.
\[
\begin{array}{ll}
\text { CFUEL }=\text { (DPLBFU) (WFUEL) } & \text {, fuel/launch } \\
\text { COXID }=(\text { DPLBOX }) \text { (WOXID) } & \text {, oxidızer/launch } \\
\text { CAUXP }=(\text { DPLBAU }) \text { (WAUXP) } & \text {, auxıliary/launch } \\
\text { CGASPR }=\text { (DPLBGS) (WGASPR) } & \text {, gases/1aunch }
\end{array}
\]
9.1-8

\subsection*{9.1.4 Research, Development, Test, and Evaluation (FRIGE)}

RDTGE consists of all costs required to design and develop ane vehicle and subsystems. Included are engineering, initial tooling, flijgt test, test hardware and spares, ground support equipment, and documertation. Although it would be instructive to detail RDTGE costs by component as was done with first unit manufacturing costs, there was not sufficient data in literature to do so. Attempts have been made for spacecraft, Refererces 2 to 4 . but for aircraft this type of data is very scarce. The breakdom employed for computing RDT\&E costs follows.
1. Concept formulation. This prelimnary study activity includes system description, cost and schedule estimates, and mission analyses. The cost is estimated by the product of user inputs for the number of contractors involved, NOCON, the number of engineers per contractor assigned to the program, NOENG, and the time span of the activity, NOYRS :
\[
C F=35000 \text { (NOCON) (NOENG) (NOYRS) }
\]

The indicated cost of \(\$ 35000\) per man-year reflects an engineering and support labor rate, including overhead, of about \(\$ 17 /\) hour.
2. Contract definition. The contract definition phase establishes preliminary design of the vehicle and detailed mussion analyses, leading to selection of one contractor for development of the vehicle. The cost of this activity is estimated with user inputs as above:
\(C D=35000\) (NOCONI) (NOENGI) (NOYRST)
3. Alrframe design and development.
\[
\begin{aligned}
& \text { DDEL }=3145 \text { (WA). } 5825 \text { (RE) (CONFIG) , subsonic prototypes } \\
& \text { DDEL }=23.85 \text { (WR) } .5825 \text { (VMAX). }{ }^{771} \text { (RE) (CONFIG), advanced aircraft } \\
& \text { DDEL }=207 \text { (WA) }{ }^{931} \text { (RE) (CONFIG) , subsonic production } \\
& \text { DDEL }=348(\text { WA })^{.931} \text { (RE) (CONFIG) } \\
& \text { DDEL }=115000 \text { (WA). }{ }^{.509} \text { (RE) (CONFIG) , spacecraft } \\
& \text {, expendable VTO } \\
& \text { launch vehicles } \\
& \text { DDEL }=\left[1930000(\text { WA }) \cdot 484+16.65(\text { NENG }) \cdot 26 \text { (TPEREN) }{ }^{-14}\right] \text { (CONFIG) }
\end{aligned}
\]
4. Subsystem development.
\[
\begin{aligned}
\text { SUBSYS }= & 35000(\text { WACS + WECS + WPOWER + WPOWCD + WDPLOY + } \\
& \text { WCANDP + WAERO + WRECOV + WPPROV) (XNEW) }
\end{aligned}
\]
5. Avionics development.
\[
\begin{aligned}
A D= & {\left[5.3 \times 10^{6} \text { (WGNAV) }\right)^{439}+2.19 \times 10^{6}\left(\text { WCOMM1) } .439+0.55 \times 10^{6}\right.} \\
& (\text { WINST }) .439] \text { (XAVD) }
\end{aligned}
\]
6. Propulsion development.
\[
\begin{aligned}
& \begin{aligned}
\text { PDTJ }=29.5 \times 10^{6}\left(\frac{T}{1000}\right)^{.55}(\mathrm{MACH}) \cdot 66[(N V+N F V) & (E N)(1 .+ \text { ENSPAR })]^{.1} \\
& , \text { turbine engines }
\end{aligned} \\
& \text { PDCSJ }=204 \times 10^{6}(\text { ASJMOD }) .47 \\
& \text {, ramjet and scramjet } \\
& \text { a. For liquid rocket engines the following equations are used. }
\end{aligned}
\]

For regenerative cooled, pump fed, oxygen/hydrogen engines,
\[
\text { PDROCK }=50 \times 10^{6}+1.405 \times 10^{6}(\mathrm{~T}) .422
\]
for regenerative cooled, pump fed, storable propellant engines,
\[
\text { PDROCK }=50 \times 10^{6}+8.65 \times 10^{5}(\mathrm{~T}) .422 ;
\]
for ablative cooled, pressure fed, storable propellant engines,
\[
\text { PDROCK }=10 \times 10^{6}+8.4 \times 10^{4}(\mathrm{~T})^{.678} ; \text { and }
\]
for radiation cooled, pressure fed, storable propellant engines,
\[
\text { PDROCK }=5 \times 10^{6}+4.86 \times 10^{4}(\mathrm{~T})^{.678} .
\]
7. Flight test hardware.
\(-F V=(A V+A M F G)(N F V)^{2 E T A}+(P R O P U)(N F V)^{\text {ZETAP }}\)
\[
I E T A=1+\frac{\ln [.01 \text { (LEARN) }]}{\ln 2}
\]
and
\[
\text { ZETAP }=1+\frac{\ln [.01 \text { (LEARNP) }]}{\ln 2}
\]
\[
\mathrm{FS}=.20(\mathrm{FV})
\]
8. Ground test hardware.
\[
\text { GTS }=.10(\text { GTV })
\]
9. Tooling and special test equipment.
\[
\begin{aligned}
T S T= & 6.19(R T)(\text { WA })^{1.062}(\text { TOOLC }) & &
\end{aligned}
\]
10. Flight test operations.
\[
\begin{aligned}
& F T O=0.75(\mathrm{NFV})^{1.1}(\mathrm{WG})^{.08}(\mathrm{VMAX})^{0.9} \\
& F T O=(\text { ROPF })(\text { NFTEST })^{Z E T A} \\
& \text {, typica: } m \text { :uraft }
\end{aligned}
\]
flight :
programs
11. Ground support equipment.
\[
\text { AGEP }=.05(\mathrm{ADDE})+.15(\mathrm{FV})
\]
12. Technical data.
\[
\mathrm{TDP}=.02(\mathrm{FV})
\]
13. Basic RDT\&E cost.
\[
\begin{aligned}
R D T E= & C F+C D+D D E L+A D+P D+S U B S Y S+F V+F S+G T V+G T S+ \\
& T S T+F T O+A G E P+T D T P
\end{aligned}
\]
14. Fee.
\[
\text { RDFEE }=(\text { RDTE })(F E E)
\]
15. Project management.
\[
\text { RDMGMT }=(\text { RDTE })(\text { PMGMT })
\]
16. Total RDTEE cost.
\[
\text { TRDTE }=\text { RDTE }+ \text { RDFEE }+ \text { RDMGMT }
\]

\subsection*{9.1.5 Acquisition}

The initial acquisition cost includes operational vehicles, ground support equipment, facilities, and all capital investment required before the operational phase can begin, such as spares, traning equipment and training initual stocks and miscellaneous equipment. The cost of all sustaining engineering and sustaining tooling costs associated with the operational vehicles must be included also. The following acquisition cost breakdown is used.
1. Operational vehicles.
\[
\begin{array}{rlr}
\text { CAF } & =(\text { AMFG })\left[(N V H F)^{Z E T A}-(N F V)^{\text {ZETA }}\right] & \\
\text { AVO } & =(A V)\left[(N V H F)^{\text {ZETA }}-(N F V)^{\text {ZETA }}\right] & \text { airframe } \\
P O & =(P R O P U)\left[(N V H F)^{\text {ZETAP }}-(N F V)^{Z E T A P}\right] & \text {, avionics } \\
C V O & =C A F+A V O+P O & \text {, engines } \\
& & \text {, total }
\end{array}
\]

The assumed value of the learning curve can be critical. For example, a five per cent error in the assumed rate of learning yilelds errors in total fleet cost of more than \(16 \%\) for 10 vehicles, and more than \(46 \%\) for 1000 vehicles. The effegt of learning curve on average cost versus quantity is shown in Figure 9.1-4.
2. Ground support equipment.
\[
A G E O=0.15(O \mathrm{~V})
\]
3. Spares.
\[
O S=0.13(O V)
\]
4. New facilities. The cost of new facılities depends on the Individual requirements of each program, the size and nature of the vehicle, the number of operational sites, and the type of facillties already in existence. The user must supply his own facility cost, FAC, by input. For most conventional aircraft existing facılities can be used; in that case, \(\mathrm{FAC}=0\).
5. Sustaining engineering.
\[
\mathrm{SE}=(\mathrm{DDEL})[(\mathrm{NV}) \cdot 20-1]
\]
6. Sustaining tooling.
\[
S T=(T S T)\left[\left(\frac{\mathrm{NV}}{\mathrm{NFV}} \cdot 1\right)^{i=-1]}\right.
\]
7. Miscellaneous equipment.
\[
M E Q=500(N P E R)
\]
8. Training equipment.
\[
\begin{array}{ll}
O T=.1442(O V)(N V)^{-.4525} & \text {, aircraft } \\
O T=0.2088(\text { CSTRUC })^{1.3822} & \text {, spacecraft }
\end{array}
\]
9. Initial training.
\[
I T=50000(\mathrm{NPL})
\]
10. Initial transportation.
\[
T R I=0.005(O V+O S+M E Q+O T+A G E O)
\]
11. Basic acquisition.
\[
I V=O V+A G E O+O S+F A C+S E+S T+M E Q+O T+I T+T R I
\]
12. Fee.
\[
A Q F E E=(I V)(F E E)
\]
13. Project management.
\[
A Q M G M T=0.01 \text { (IV) }
\]
14. Total acquisition cost.
\[
\cdots-\cdots Q=I V+A Q F E E+A Q M G M T
\]

\subsection*{9.1.6 Recurring Operations}

Recurring operations is the 10 year operating cost of the fleet of vehicles, including the following: salaries of launch personnel, support personnel, and pllots; maintenance of vehicles, facility, and ground support equipment; propellants; replacement training and transportation; vehicle retrieval from oceans (if applicable); miscellaneous expendables (including small rocket motors, adapters, etc.). Cost breakdown employed for recurring operations follows.
1. Wages, salaries, and allowances.

2. Vehicle maintenance.

ZETA
VMTPS \(=(X M T P S)(C T P S)[120(L P M)-N V] \quad\), TPS maintenance
\(\mathrm{VM}=\mathrm{VMTPS}+270,000\) (NMPR) , total maintenance
or
\(V_{M}=120\) (LPN) (XMRA) (CSTRUC)
3. Vehicle retrieval.

TR \(=1.98 \times 10^{7}(W E / 1000)^{.585}\) (LPM) , water retrieval
4. Propellants.

PF \(=120\) (LPN) (CRUEL + COXID + CAUXP + CGASPR)
5. Miscellaneous expendables.

MEL \(=120\) (LM) (EXPEND)
6. Facilities maintenance.
\(\mathrm{FM}=0.4\) (FAC)
7. GSE maintenance.

GEM \(=0.3\) (AGED)
8. Miscellaneous equipment maintenance.

MEM \(=550\) (NPR)
9.1-14
9. Training.
\(\mathrm{TO}=400,000(\mathrm{NPL})\)
10. Transportation.

TRO \(=0.15(\mathrm{PF}+\mathrm{MFL}+\mathrm{FM}+\mathrm{AGEM}+\mathrm{MEM})\)
11. Total operations.
\(R O=W S A+V M+W T R+P F+M F L+F M+A G E M+M E M+T O+T R O\)
12. Fee.

ROFEE \(=0.5\) (RO) (FEE)
13. Project management.

ROMGMT \(=0.057\) (RO)
14. Total operations.

ROTOT \(=\) RO + ROFEE + ROMGMT

\subsection*{9.1.7 Total Program Cost}

The total program cost is the sum of RDT\&E, acquisition, and operations:
TOTAL \(=\) TRDTE \(+A Q+\) ROTOT , total cost of program
9.1.8 Conclusion

It is again emphasized that the above description merely summarizes program PRICE; for complete details refer to Reference 8. For user convenience Tables 9.1-2 to 9.1-5 present the prime input and output parameters for the PRICE progran. A typical sample case is presented in Table 9.1-6.

\section*{REFERENCES}
1. Levenson, G. S. and Barro, J. M., "Cost-Estimation Relationships for Aircraft Airframes," Rand Corporation Memo RM-4845-:PR, 1966.
2. Anon., "Optimized Cost Performance Design Methodology," McDonnellDouglas Corporation, Report G975, April 1969.
3. Anon., "Research Study on Low Cost Earth Orbital Transportation System Synthesis by Economic Analysis," Final Report, Contract NAS 8-30522, The Boeing Company, December 1969.
4. Campbell, H. G. and Dreyfuss, D. J., "Manned Spacecraft Cost Estimating Relationshıps," Rand Corporation Memo RM-5317-NASA, June 1967.
5. NASA, Office of Advanced Manned Missions, "Specification for Contractor Presentation of Cost and Schedule Plans for New Space Projects," February 17, 1969.
6. Anon., "Mass Properties Control Requirements for Missıle and Space Vehicles," USAF Military Specification MLL-M-38310, December 15, 1964.
7. Wilcox, D. E. and Gregory, T. J., "A Fundamental Approach to Aircraft Manufacturing Cost Estimating in the Conceptual Design Phase," Presented at the 29 th Annual Conference of the Society of Aeronautical Weịght Engineers, Washington, D. C. May 1970.
8. Hague, D. S. and Glatt, C. R., Optımal Design Integration for Military Flight Vehicles, ODIN/MFV, AFFDL-TR-72-132, 1972.
9. Anon., "Influence of Structure and Material Research on Advanced Launch Systems," NASA Contractor Report CR-1116, July 1968.
10. Morris, R. E. and Williams, N. B., "Study of Advanced Air Breathing Launch Vehicles with Cruise Capability," Volume 5, NASA CR-73198, Lockheed Calıfornıa Company, February 1968.
11. Anon., "Integral Launch and Re-entry Vehicle," General Dynamics, (Convair) First Monthly Progress Report, Contract NAS 9-9207, 1969.
12. Large, J. P., "Estimatıng Aırcraft Turbine Engine Costs," Rand Corporation Memo RM-6384/1-PR, September 1970.
13. Anon., "Study of Navigation and Guidance of Launch Vehicles Having Cruise Capabılity," Final Report Contract NAS 2-23691, The Boeing Company, April 10, 1967.
14. 'Anon., "Gas Turbıne Engine Market 1970-1974," DMS Inc., April 1970.
15. Anon., " F aunch Vehxcle Companent Costs Study," Lockheed Missiles and Space Co., Report 895429. Contract NAS 8-11368, June 1965.
9.i-16
16. Johnson, D. R., "Design Considerations of Reusable Launch Vehicles," Volume VI, Final Report, Contract NAS 2-3191, Douglas Aircraft Co., October 1966.
17. Schlosser, K. P., "Cargo Aırcraft Cost Model," Directorate of Operations Research, Wright-Patterson Air Force Base, November 2, 1965.
18. Anon.; "Aircraft Systems Cost Factors," Comptroller Office, Aeronautical Systems Division, Wright-Patterson Air Force Base, December 1969.
19. Anon., "Supersonic Transport Development and Production Cost Analysis Program," Booz-A1len Applıed Research Inc., Final Report, Contract FA-SS-66-13, December 1966.
20. Anon., "U. S. Air Force Cost and Planning Factors," Air Force Manual 172-3 (Confidential)
21. Woolsey, J. P., "American Seeks F1ight Training Reductions," Aviation Week and Space Technology, July 13, 1970, p. 41.
22. Anon., "Optimized Cost Performance Desıgn Methodology," Final Oral Briefing, Contract NAS 2-5022, February 2, 1970.
23. Anon., "Supersonic Transport Development Program, Phase III Proposal," The Boeing Company, Report V6-B2707-2, September 6, 1966.
24. Anon., "Standard Method of Estimatıng Comparative Direct Operating Costs of Turbine Powered Transport Alrplanes," Air Transport tssoclation of America, December 1967.

Table 9.1-1.
Type of Material and Construction Complexity Factors
\begin{tabular}{|c|c|c|c|c|}
\hline Type Construction Type Material & Single Skin with Frames & Sheet Stringer with Frames & Single-Skin Corrugations with Frames & Honeycomb Sandwich \\
\hline A 7 uminum & . 9 & 1.0 & 1.2 & 1.6 \\
\hline Stainless Steel & 1.4 & 1.5 & 1.9 & 2.7 \\
\hline Magnesium & 7.5 & 1.7 & 2.1 & 2.7 \\
\hline Titanium & 2.0 & 2.2 & 2.8 & 4.2 \\
\hline Inconel-718 & 2.2 & 2.4 & 3.0 & 4.3 \\
\hline L-605 (Columbium base superalloy) & 2.2 & 2.4 & 3.0 & --- \\
\hline Rene' 41 & 2.6 & 2.9 & 3.6 & 4.3 \\
\hline TD~NiC & 3.2 & 3.5 & 4.5 & --- \\
\hline Coated columbium (TPS) & --- & --- & 10.0 & --- \\
\hline
\end{tabular}

TABLE 9.1-2.
INPUT PARAMETERS - CONTROL PROGRAM
\begin{tabular}{|c|c|c|}
\hline Parameter & Description & Units \\
\hline ICLASS & ```
Vehicle type. ICLASS = 1 Prototype aircraft .
 2 Horizontal takeoff launch
 vehicle (airbreathing)
 3 Horizontal takeoff launch
 vehicle (rocket)
 4 \text { Vertical takeoff launch vehicle}
 5 Spacecraft
``` & \\
\hline MACH & Maximum Mach number for which airbreathing engines are designed & \\
\hline NENG & Number of main engines & \\
\hline NCREW & Number of crew members & \\
\hline STPS & Thermal protection system surface area for each of 10 areas on the vehicle. Ten values must be specified, any of which may be zero. & sq. ft. \\
\hline TPEREN & Thrust per main engine & Ib. \\
\hline TOVERW & Thrust-to-weight ratio; \(\frac{\text { Total main thrust }}{\text { Takeoff weight }}\) & \\
\hline VMAX & Maximum vehicle velocity & knots \\
\hline WABORT & Weight of range safety and abort systems & 1b. \\
\hline WACCOM & Weight of passenger accommodations & 1b. \\
\hline WACS & Dry weight of attitude control system & 1 b . \\
\hline WACSTK & Weight of attitude control system tankage & Ib. \\
\hline WAERO & Weight of aerodynamic control system & 1b. \\
\hline WAFT & Aft skirt weight (for ICLASS = 4) & Ib. \\
\hline WAUXP & Weight of auxiliary propellants (if separate from main propellants) & lb. \\
\hline WAUXT & Weight of auxiliary propulsion or separation system & lb. \\
\hline WBODY & Weight of body structure (for ICLASS \(=1,2\), or 3 ) & 1 l . \\
\hline WCANDP & Weight of crew controls and panels & Ib. \\
\hline WCOMM & Weight of communications system & 1 b . \\
\hline WDOCK & Weight of docking structure & 1 b . \\
\hline WDPLOY & Weight of deployable aerodynamic devices & 1 b \\
\hline WDRY & Total dry weight of vehicle 9.1-19 & 1 b . \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Parameter & Description & Units \\
\hline WELCAD & Weight of electrical power conversion and distribution systems & 1b. \\
\hline WEMP & Empennage weight . & 1b. \\
\hline WENGS & Weight of all main engines and accessories, except scramjets & 1b. \\
\hline WENGS2 & Weight of all secondary and tertiary engines and accessories & 1b. \\
\hline WEQECS & Weight of environmental control system for equipment & Ib. \\
\hline WFAIR - & Weight of fairings & Ib. \\
\hline WFTANK & Weight of main fuel tank (structural) (for ICLASS = 4) & 1b. \\
\hline WFUSYS & Weight of fuel system & 1 l . \\
\hline WFUTK & Weight of main fuel tank (non-structural) & 16. \\
\hline WFUTK2 & Weight of secondary fuel tank (non-structurai) & 'Ib. \\
\hline WFUTOT & Weight of main fuel & 13. \\
\hline WFWD & Forward skirt weight (for ICLASS = 4) & 1b. \\
\hline WGASPR & Weight of pressurization gases & Ib. \\
\hline WGNAV & Weignt of guidance and navigation system & 13. \\
\hline WGROSS & Vehilcle gross takeoff weight & 13. \\
\hline WHYCAD & Weight of hydraulic power conversion and distribution system & 1b. \\
\hline WINCOM & Weight of crew compartment insulation & Ib. \\
\hline WINLET & Weight of air inlets and ramps & 18. \\
\hline WINST & Weight of instrumentation, telemetry, etc. & 1 b . \\
\hline WINSTK & Weight of propellant tank insulation & Ib. \\
\hline WINTK & Weight of intertank structure (for ICLASS = 4) & Ib . \\
\hline KLANTCH & Weight of launch gear and holddown devices & 1b. \\
\hline WLG & Weight of landing gear & Ib. \\
\hline WLUBE & Weight of lubrication system (turbojets) & 1b. \\
\hline WNACEL & Weight of engine nacelles, pods, pylons, etc. & Ib. \\
\hline hnose & - Nose structure weight (for ICLASS = 4) & 1b. . \\
\hline WOTANK & Weight of main oxidizer tank (structural) (for ICLASS = 4) & 1 b . \\
\hline WOXSYS & Weight of oxidizer system & 1b. \\
\hline WOXTK & Weight of main oxidizer tank (non-structural) & 1b. \\
\hline WOXTK2 & Weight of secondary oxidizer tank (non-structural) & Ib. \\
\hline
\end{tabular}

TABLE 9.1-2. (Continued)
\begin{tabular}{|c|c|c|}
\hline Parameter & Description & Units \\
\hline WOXTOT & Weight of main oxidizer & 1 b . \\
\hline WPAYL & Payload weight & 1 b . \\
\hline WPECS & Weight of environmental control system for personnel compartment & 1b. \\
\hline WPOWER & Weight of electrical power system & 1 l . \\
\hline WPPROV & Weight of crew provisions & Ib. \\
\hline WPRESS & Pressurized crew compartment weight (for ICLASS \(=4\) or 5) & Ib. \\
\hline WPRSYS & Weight of pressurization and purge systems & 1b. \\
\hline WPUSYS & Weight of propellant utilization system & Ib. \\
\hline WRECOV & Weight of vehicle recovery systems & 1b. \\
\hline WSCRAM & Weight of scramjets & 1b. \\
\hline WSERV & Weight of spacecraft service module structure (for ICLASS \(=5\) ) & 1 b . \\
\hline WSPAD & Adapter structure weight (for ICLASS \(=4\) or 5) & 1 b . \\
\hline WTHRST & Weight of thrust structure (for ICLASS \(=4\) or 5) & 16. \\
\hline WWING & Wing weight & \\
\hline
\end{tabular}

TABLE 9.1-3. INPUT PARAMETERS - COST PROGRAM
\begin{tabular}{|c|c|c|}
\hline Parameter & Description & Units \\
\hline ADI* & Input value of avionics development cost & M\$ \\
\hline AGEOI* & Input value of aerospace ground equipment costoperational program & M\$ \\
\hline AGEPI* & Input value of aerospace ground equipment costRDT\&E program & M \({ }^{\text {S }}\) \\
\hline ASJMOD & Scramjet capture area (total) & sq. ft. \\
\hline CONFIG & Engineering complexity factor (nominally 1.0) & \\
\hline DPLBAU & Auxiliary propellant cost & \$/1b \\
\hline DPLBFU & Main fuel cost (including boiloff factor) & \$/1b \\
\hline DPLBGS & Pressurization gas cost & \$/1b \\
\hline DPLBIN & Cost of insulation for personnel compartment & \$/1b \\
\hline DPLBOX & Main oxidizer cost (including boiloff factor) & \$/1b \\
\hline EnSPAR & Engine spares fraction & \\
\hline EXPEND & Cost per flight for other expendables (adapters, solid rocket motors, etc.) & M \\
\hline FAC & Facilities cost & M\$ \\
\hline FEE & Contractor fee, expressed as a fraction (of program \(\cos t)\) & \\
\hline FIOIN* & Input value of flight test operations cost & M\$ \\
\hline HRPFT2 & Unit labor cost per flight for thermal protection system maintenance & \(\mathrm{hr} / \mathrm{sq} . \mathrm{ft}\). \\
\hline IAERO & ```
Indicator for type flight control system:
    IAERO = 1 for automatic flight control system;
    IAERO = 0 otherwise
``` & \\
\hline ICONFIG & Indicator for vehicle type (normally same value as ICLASS) & \\
\hline IDATA & Indicator to select printout format & \\
\hline IENG & \begin{tabular}{l}
Indicator for type propulsion system (main): \\
IENG \(=1\) LOX/LH \({ }_{2}\) pump fed rocket \\
2 Storable pump fed rocket \\
3 Storable pressure fed rocket \\
4 Airbreathing propulsion \\
5 Ablative pressure fed rocket
\end{tabular} & \\
\hline
\end{tabular}

TABLE 9.1-3. (Continued)

IENG2 Indicator for type secondary propulsion system: TENG2 = 1, 2, 3, 4, or 5 (same as IENG)
IENG3 Indicator for type tertlary propulsion system: IENG3 = 1, 2, 3, 4, or 5 (same as IENG)

IOPS

IPOWER

IPROD

ISRM

ITANK

ITANK2

IWTR

LEARN

LEARNP

LPM
ndata

NENG2

Indicator for type operational program: IOPS = 1 for comercial airifne operation; IOPS \(=0\) otherwise

Indicator for type electrical power system: IPOWER = 0 for fuel cell; IPOWER = 1 for battery; IPOWER = 2 for aircraft APU

Indicator to select prototype or production tooling IPROD \(=1\) for production tooling;
IPROD \(=0\) for prototype tooling
Indicator for auxiliary thrust system: ISRM \(=1\) for solid rocket motors; ISRM \(=0\) otherwise
Indicator for type main fuel tank: ITANK = 1 for \(\mathrm{LH}_{2}\); ITANK \(=2\) for storable fuel
- Indicator, for type secondary fuel tank:

ITANK2 \(=1 \mathrm{~N}_{2} \mathrm{O}_{4} / \mathrm{N}_{2} \mathrm{H}_{4}\)
2 Cryogenic
3 JP
Indicator for water retrieval IWTR \(=1\) if water retrieval desired

Learning rate for airframe manufacturing, expressed as a percent (LEARN \(=90\). for \(90 \%\) learning curve)
Learning rate for engine manufacturing, expressed as a percent
Launch rate per month
Number of positions on learning curve for which manufacturing costs are desired (normally 1; maximum of 5)
Number of secondary engines

TABLE 9.1-3. (Continued)
Parameter
\begin{tabular}{|c|c|c|}
\hline NENG3 & Number of tertiary engines & \\
\hline NFTEST & Number of flights in flight test program & \\
\hline NFV & Number of flight test vehicles & \\
\hline NFVCO & Number of flight test vehicles converted. to opera-. tional vehicles & \\
\hline NG & Number of ground test vehicles & \\
\hline NMAINT & Number of vehicle maintenance personnel & \\
\hline NOCON & Number of contractors in concept formulation phase & \\
\hline NOCON1 & Number of contractors in contract definition phase & \\
\hline NOENG & Number of engineers per contractor in concept formulation phase & \\
\hline NOENGI & Number of engineers per contractor in contract definition phase & \\
\hline NOYRS & Duration of concept formulation phase & years \\
\hline NOYRS 1 & Duration of contract definition phase & years \\
\hline NSUPT & Number of base support personnel & \\
\hline NTRATN & Number of trainer sets required & \\
\hline NV & Number of operational vehicles & \\
\hline NVEH & Number of vehicles at each point on learning curve ' for which manufacturing costs are to be estimated. Up to 5 values of NVEH may be specified, 1 for each value of NDATA. NVEH \(=1\) for first. unit cost & \\
\hline PDEN2I* & Input value of secondary propulsion system development cost & M\$ \\
\hline PDRJI** & Input value of ramjet or scramjet development cost & M\$ \\
\hline PDROCI* & Input value of main rocket engine development cost & M \\
\hline PDTJI* & Input value of turbojet development cost & M \({ }^{\text {S }}\) \\
\hline PMGMT & NASA project office cost, expressed as a fraction of program cost & \\
\hline Rate & Vehicle production rate & Veh./mo. \\
\hline RE & Engineering labor rate, including overhead and G\&A & \$/hr \\
\hline RT & Tooling labor rate, including overhead and G\&A & \$/hr \\
\hline SPANEL & Size of thermal protection panels corresponding to the ten vehicle areas (STPS) & sq.ft. \\
\hline
\end{tabular}

TABLE 9.1-3. (Continued)
Parameter
\begin{tabular}{|c|c|c|}
\hline TOOLC & Tooling complexity factor & \\
\hline TPREN2 & Thrust per engine for secondary propulsion system & 1b. \\
\hline TPREN3 & Thrust per engine for textiary propulsion system & 1 b . \\
\hline TURNWK & Vehicle turnaround time in operational phase & weeks \\
\hline UCABL & Unit cost of ablative thermal protection system & \$/sq.ft. \\
\hline UCCOV & Unit cost of radiative cover panels & \$/sq.ft. \\
\hline UCINS & Unit cost of inaulation in thermal protection system & \$/8q.ft. \\
\hline XAVD & Complexity factor for avionics development cost (used to adjust up or down from the nominal \(100,000 \$ / 1 b\)) & \\
\hline XFASSY & Final assembly and checkout cost, expressed as a fraction of first unit manufacturing cost. & \\
\hline XMRA & Maintenance cost per flight, expressed as a fraction of vehicle first unit cost. \(X M R A=0\) except to override the computed value & \\
\hline XMTPS & Material cost per flight for thermal protection system maintenance, expressed as a fraction of first unit thermal protection system cost & \\
\hline XNEW & Fraction of miscellaneous spacecraft subsystems (including attitude control, environmental control, electrical power, power conversion and distribution, deployable aerodynamic devices, crew controls, aerodynamic controls, crew provisions; and recovery system) which require new development & \\
\hline XREPL & Fraction of thermal protection system replaced each flight & \\
\hline
\end{tabular}

\footnotetext{
* Used to override the value computed with CER's
}

TABLE 9.1-4. INPUT PARAMETERS - COST PROGRAM
\begin{tabular}{|c|c|c|}
\hline Parameter & Description & Units \\
\hline CFABRT & Abort system complexity factor (C.F.) & \\
\hline CFACOM & Passenger accommodations: \(\mathrm{C} \cdot \mathrm{F}\). & \\
\hline CFACS & Reaction control system C.F. & \\
\hline CFACTK* & Reaction control tankage C.F. & \\
\hline CFADAP* & Adapter structure C.F. & \\
\hline CFAERO & Aerodynamic control system C.F. & \\
\hline CFAFT* & Aft skirt C.F. & \\
\hline cFAUXT & Auxiliary thrust system C.F. & \\
\hline CFBODY* & Fuselage structure C.F. & \\
\hline CFCOMM & Communication system C.F. & \\
\hline CFCOMP* & Crew compartment C.F. & \\
\hline CFCREW & Crew controls and panels C.F. & \\
\hline CFDOCK* & Docking structure C.F. & \\
\hline CFDPLY & Deployable aerodynamic devices C.F. & \\
\hline CFELCD & Electrical distribution system C.F. & \\
\hline CFEMP* & Empennage structure C.F. & \\
\hline CFENG & Airbreathing engine C.F. (main) & \\
\hline CFENG2 & Airbreathing engine C.F. (secondary) & \\
\hline CFENG3 & Airbreathing engine (tertiary) & \\
\hline CFEQEC̈ & Equipment ECS C.F. & \\
\hline CFFAIR* & Aerodynamic fairing structure C.F. & \\
\hline CFFUEL & Fuel system C.F. & \\
\hline CFFlitk* & Structural fuel tank C.F. & \\
\hline CFFWD* & Forward skirt C.F. & \\
\hline CFGNaV & Guidance and navigation system C.F.. & \\
\hline CFHYCD & Hydraulic system C.F. & \\
\hline CFINLT* & Inlet structure C.F. & \\
\hline CFINST & Instrumentation system C.F. & \\
\hline CFINTK* & Intertank structure C.F. & \\
\hline CFIG & Landing gear C.F. & \\
\hline CFLNCH* & Launch structure C.F. & \\
\hline CFLUBE & Engine lubrication system C.F. & \\
\hline
\end{tabular}

TABLE 9.1-4. (Continued)
\begin{tabular}{ll}
CFNAC* & Engine nacelle C.F. \\
CFNOSE* & Nose structure C.F. \\
CFOX & Oxidizer system C.F. \\
CFOXTK* & Structural oxidizer tank C.F. \\
CFPECS & Personnel ECS C.F. \\
CFPOW & Electrical power system C.F. \\
CFPRES & Pressurization system C.F. \\
CFPROV & Crew provisions C.F. \\
CFPUSY & Propellant utilization system C.F. \\
CFRECV & Recovery system C.F. \\
CFSERV* & Spacecraft service module structure C.F. \\
CFTHRS* & Thrust structure C.F. \\
CFTK* & Non-structural propellant tank C.F. \\
CFTK2* & Non-structural propellant tank C.F. \\
& (secondary propulsion system) \\
CFWING* & Wing C.F.
\end{tabular}

ORIGINAL PAGE IS OF POOR QUALITY
* Value of complexity figure obtained from Table A.

TABLE A. . TYPE OF MATERIAL AND CONSTRUCTION COMPLEXITY FACTORS
\begin{tabular}{|l|c|c|c|c|}
\hline Type Material & \begin{tabular}{c}
Single Skin \\
With Frames
\end{tabular} & \begin{tabular}{c}
Sheet Stringer \\
With Frames
\end{tabular} & \begin{tabular}{c}
Single Skin \\
Corrugations \\
With Frames
\end{tabular} & \begin{tabular}{c}
Honeycomb \\
Sandwich
\end{tabular} \\
\hline Aluminum & .9 & 1.0 & 1.2 & 1.6 \\
Stainless Steel & 1.4 & 1.5 & 1.9 & 2.7 \\
Magnesium & 1.5 & 1.7 & 2.1 & 2.7 \\
Titanium & 2.0 & 2.2 & 2.8 & 4.2 \\
Inconel-718 & 2.2 & 2.4 & 3.0 & 4.3 \\
L-605 & 2.2 & 2.4 & 3.0 & - \\
Rene' 41 & 2.6 & 2.9 & 3.6 & 4.3 \\
TD-NiC & 3.2 & 3.5 & 4.5 & - \\
Coated Columbium & - & - & 10.0 & - \\
\hline
\end{tabular}

TABLE 9.1-5. OUTPUT PARAMETERS
The following output will appear, in the order shown, for each case unless IDATA is used to suppress printout of unless the particular costelement is not applicable to the vehicie under consideration. The abbrevịation f.u.m.c. designates first unit manufacturing cost. All cost output is in millions of dollars.
Parameter

Description
CSURF Aerodynamic surface f.u.m.c.
CBODY Body structure f.u.m.c.

CTPS
CLG
CLRD
CENGS
\(\mathrm{C}(6, \mathrm{~N})\)

CINLET
CNACEL

COXTK
CFUTK2
COXTK2
CINSTK
CFUSYS
COXSYS
CPRSYS
CPUSYS
CLUBE
CAERO
CORSUL

CPOWER
CPOWCD
CGNAV
CINST

Thermal protection system f.u.m.c.
Landing gear f.ü.m.c.
Launch, recovery, and docking gear f.u.m.c.
Main engines f.u.m.c. (total per vehicle)
Sum of secondary and tertiary engines f.u.m.c. (total per vehicie)

Air induction system f.u.m.c.
Naceiles Éu.m.c.
Main fuel tank f.u.m.c.
Main oxidizer tank f.u.m.c.
Secondary fuel tank f.u.m.c.
Secondary oxidizer tank f.u.m.c.
Tank insulation f.u.m.c.
Fuel system f.u.m.c.
Oxidizer system f.u.m.c.
Pressurization system f.u.m.c.
Propellant utilization system f.u.m.c.
Engine lubrication system f.u.m.c.
Aerodynamics control system f.u.m.c.
Orfentation, separation, and ullage control system f.u.m.c.

Electrical power system f.u.m.c.
Power conversion and distribution system f.u.m.c.
Guidance and navigation system f.u.m.c.
Instrumentation f.u.m.c.

CCOMM
CEQECS
CPECS
CINCOM
CPROV
CCANDP
CABORT
CFASSY
CV
CFUEL
COXID
CAUXP
CGASPR
TRDTE
ADDE

CF
CD
DDEL
SUBSYS
AD
PD
CV
AMFG
AVP
PROPU
NFV
FV
NG
GTV
GTS
FTS
TST

Communication system f.u.m.c.
Equipment environmental control system f.u.m.c.
Personnel environmental control system f.u.m.c.
Personnel compartment insulation f.u.m.c.
Personnel provisions f.u.m.c.
Crew controls and panels f.u.m.c.
Abort system f.u.m.c.
Final assembly and checkout cost
Total vehicle f.u.m.c.
Main fuel cost per launch
Main oxidizer cost per launch
Auxiliary propellants cost per launch
Pressurization gases cost per launch
Total RDT\&E cost
Total airframe design and development engineering cost, including concept formulation and contract definition

Concept formulation phase cost
Contract definition phase cost
Airframe design and development engineering cost
Miscellaneous subsystem development cost
Avionics development cost
Propulsion development cost
Total vehicle f.u.m.c.
Total airframe f.u.m.c.
Total avionics f.u.m.c.
Total engines f.u.m.c.
Number of flight vehicles
Flight vehicle cost
Number of ground test vehicles
Ground test vehicles cost
Ground test spares cost
Flight test spares cost
Tooling and special test equipment cost

TABLE 9.1-5. (Continued

Parameter
Description

FTO
AGEP
TDP
RDFEE
RDMGMT
AQ
NV
OV
OS
FAC
SE
ST
AGEO
MEQ
IT
01
TRI
AQFEE
AQMGMT
ROTOT
NPL
NMPR
NSPR
WSA

VM

WTR
PF
MFL
FM
AGEM
MEM
9.1-30

Flight test operations cost
Development program GSE Cost
Technical data cost - RDT\&E
Contractor fee - RDT\&E
Government project management cost - RDT\&E
Total acquisition cost
Number of operational vehicles
Operational vehicles cost
Operational vehicle spares cost
Facility investment cost
Sustaining engineering cost
Sustaining tooling cost
Operational GSE cost
Miscellaneous equipment cost
Initial training cost
Training equipment cost
Initial transportation cost
Contractor fee \(=\) acquisition phase
Government project management - acquisition phase
Total 10-year cost of recurring operations
Total number of flight crew personnel
Total number of maintenance personnel
Total number of support personnel
Total 10-year cost of flight crew and support personnel pay and allowances

Total 10-year cost of vehicle maintenance,
including maintenance personnel pay
Total 10-year cost of water retrieval
Total 10-year cost of propellants and gases
Total 10-year cost of miscellaneous expendables
Total 10-year cost of facility maintenance
Total 10-year cost of GSE maintenance
Total l0-year cost of miscellaneous equipment maintenance.

TABLE 9.1-5. (Continued)

Parameter
Description
T0 Training - recurring operations
TRO Transportation - recurring operations
ROFEE Contractor fee - recurring operations
ROMGMI
TOTAL
Government project office cost - recurring operations Total program cost, including RDT\&E, acquisition, and recurring operations
```

            MINI SHUTTLE ORBITER 002 (3-27-70)
    ICLASS=5, NENG=2., TPEREN=297000., WWING=1.3260., WPRESS=15260.,
WLG= +800., WDPLOY=0., WDOCK=550., WLANCH=0., WRECOV=0., WENGS=6875.,
WENGS2=3692., WINLET=0., WNACEL=1122., WFUTK=12890., WOXTK=0.,
WFUTK2=1727., WOXTK2=586., WINSTK=602., WFUSYS=1237., WOXSYS=1383.,
WPRSYS=4405., WPUSYS=323., WLUBE=0., WAERO=1095., WAUXT=0.,
WACS=2573., WACSTK=0.,WPOWER=649.,WELCAD=1465.,W WHYCAD=1644.,
WGNAV=790., WINST=885.% WCOMM=165., WENECS=0.,
WPECS=1123., WINCOM=0., WPPROV=200., WCANDP=460.,
WABORT=0., WFUTOT=47200., WOXTOT=282600., WAUXP=7012.,WGASPR=1170.,
WGROSS=439971., WDRY=92662., WPAYL=15400., NCREW=2.,
STPS=1690., 1510.,6533.,610., 900., 2180., 4X0.,
\&
NVEH=1., NFV=1., NG=1., NV=6., DPLBFU=.45, DPLBOX=.03, DPLBAU=.03,
DPLBGS=3.00, IENG=1, ITANK=1, DPLBIN=200., PUROCI=0., XMTPS=.0541,
FEE=.10, PMGMT=.10, IENG2=4, RE=18.50, RT=14.50,
FAC=0., I AERO=1, LPM=2.5, ICONFG=5, TOOLC=7.2,
IPOWER=0, XFASSY =.20, ITANK2=2, PDEN2I=121., HRPFT2=16.,
XREPL=.054,NFTEST=150., IENG3=1,NENG2=6., NENG3=2., TPREN2=6000.,
TPREN3=15000.,
UCABL=0., 0., 0., 2000., 6X0.,
UCCOV=4300., 1000., 2000., 7x0.,
UCINS=0., O., 0., 0., 200., 100., 4\times0.,
SPANEL=100., 100., 4., 7\times100.,
*
CFWING=2.2, CFCOMP=2.8, CFTK=1.5, *

```
\begin{tabular}{|c|c|}
\hline VUMBER OF VEHICLES & 1. \\
\hline AERODYNAMIC SURFACES & 5.7278 \\
\hline BUOY STRUCTURE & 24.5937 \\
\hline INDUCED ENVIRONMENTAL PROTECTION & 16.0736 \\
\hline LAUNCH, RECOVERY AND DOCKING & 1.2979 \\
\hline \multicolumn{2}{|l|}{MAIN PROPULSION} \\
\hline ENGINES AND ACCESSORIES & 6.4943 \\
\hline SECONOARY ENGINES AND ACCESSORIES & 4.2041 \\
\hline NACELLES, POOS, PYLONS, SUPPORTS & 1.3320 \\
\hline FUEL CONTAINERS AND SUPPORTS & 2.3314 \\
\hline SECONDARY FUEL TANKAGE AND SYSTEMS & 0.4453 \\
\hline SECONOARY OXIDIZER TANKAGE AND SYSTEMS & 0.2418 \\
\hline PROPELLANT INSULATION & 0.1204 \\
\hline FUEL SYSTEM - MAIN & 1.2606 \\
\hline OXIDIZER SYSTEM - MAIN & 1.3225 \\
\hline PRESSURIZATION AND PURGE SYSTEMS & 2.1764 \\
\hline PROPELLANT UTILIZATION SYSTEM & 0.7076 \\
\hline AERODYNAMIC CONTROLS & 2.2784 \\
\hline ORIENTATION, SEPARATION AND ULLAGE CONTREIL & 3.9301 \\
\hline PRIME POWER SOURCES & 1.1610 \\
\hline POWER CONVERSION AND DISTRIBUTION & 4.8753 \\
\hline GUIDANCE AND NAVIGATION & 6.1795 \\
\hline INSTRUMENTATION & 0.7276 \\
\hline COMMUNICATIUN & 1.5487 \\
\hline \multicolumn{2}{|l|}{ENVIRONMENTAL CONTROL} \\
\hline EOUIPMENT ECS & 0.0 \\
\hline PERSONNEL ECS & 2.7811 \\
\hline COMPARTMENT INSULATION & 0.0 \\
\hline PERSUNNEL PROVISIDNS & 0.1300 \\
\hline
\end{tabular}

TABLE 9.1-6. (Continued)
\begin{tabular}{lr}
CREW STATION CONTROLS AND PANELS & 0.5493 \\
FINAL ASSEMBLY ANO CHECKOUT & 18.2257 \\
ORY STRUCTURE TOTAL & 109.3545 \\
EXPENDABLES COST PER LAUNCH & \\
FUEL & 0.0212 \\
OXIDIZER & 0.0085 \\
AUXILIARY PROPELLANTS & 0.0002 \\
PRESSURIZATION GASES & 0.0035
\end{tabular}
```

EESEARCH,DEVELOPMENT,TEST,AND EVALUATION
AIRFRAME DESIGN AND DEVELOPMENT ENGINEERING
CONCEPT FORMULATION
CONTRACT DEFINITION
AIRFRAME ENGINEERING
MISCELLANEOUS SUBSYSTEM DEVELOPMENT
AVIONICS DEVELOPMENT
PROPULSION DEVELOPMENT
DEVELOPMENT SUPPORT
(MANUFACTURING--FIRST UNIT)
AIRFRAME
AVIONICS PROCUREMENT
PROPULSION PROCUREMENT
FLIGHT VEHICLES( 1.0)
GROUND TEST VEHICLES( 1.0)
GROUND TEST SPARES
FLIGHT TEST SPARES
TOOLING AND SPECIAL TEST EQUIPMENT
FLIGHT TEST OPERATIONS
AGE
TECHNICAL DATA
FEE
PROGRAM MANAGEMENT
INITIAL INVESTMENT
OPERATIONAL VEHICLES( 6.0)
SPARES
FACILITIES
SUSTAINING ENGINEERING
SUSTAINING TOOLING
AGE
TECHNICAL DATA
MISCELLANEOUS EQUIPMENT
TRAINING EQUIPMENT
INITIAL TRAINING
INITIAL TRANSPORTATION
FEE
PROGRAM MANAGEMENT
:ECURRING OPERATING(10 YEAR)
WAGES,SALARIES,ALLOWANCES(
24 PILOTS
488 MAINT.
VEHICLE MAINTENANCE
PRUPELLANTS
MISCELLANEOUS EXPENDABLES
COSTIMILLIONS OF DOLLAR;
0.24003E 0
0.68896E 03
0.11812E 02
0.35000E 02
0.64215E 03
0.32231E 03
0.13058E 03
0.12100E 03
0.73738E
(0.90200E 02)
0.10935E 03)
( 0.84558E 01)
(0.10698E 02)
01)
0.10935E 03
0.90200E 02
0.90200E 01
0.21871E O2
0.21871E 02
0.96444E 02
0.35745E 03
0.50851E 02
0.21871E O1
O.20002E 03
0.12237E 04
0.47806E 03
0.75455E 02
0.0
0.29692E O3
0.27497E 02
0.71710E 02
0.95613E 01
0.88900E 00
0.13734E 03
0.12000E O1
0.38173E 01
0.11025E 03
0.11025E 02
$0.72017 E 03$
WAGES, SALARIES,ALLOW ANCES(
24 PILOTS
488 MAINT.
1266 SUPPORT
382 F 03
MISCELLANEOUS EXPENDABLES

```
 TABLE 9.1-6. (Continued)

FACIlities maintenance
AGE MAINTENANCE
MISCELLANEDUS EQUIPMENT
TRAINING
TRANSPORTATION
FEE
PROGRAM MANAGEMENT
0.0
\(0.21513 E 02\)
0.97790 E 00
0.96000 E 01
0.48783 E 01
0.32528 E 02
0.37082 E 02

Figure 9 1-1. Total Program Cost Element Structure

Figure 9.1-2. First Unit Manufacturing Cost Element Structure

\section*{First Unit Manufacturing Cost}
```

Aerodynamic Surfaces
Wing
Empennage
Fairings
Body Structure
Thermal Protection System
Launch, Recovery, \& Docking
Landing Gear
Deployable Aerodynamic Devices
Docking Structure
Launch Gear
Recovery Gear
Main Engines
Secondary Engines
Air Induction System
Nacelles
Fuel Tank (Non-Structural)
Oxidizer Tank (Non-Structural)
Secondary Fuel Tank (Non-Structural)
Secondary Oxidizer Tank (Non-Structural)
Tank Insulation
Fuel System
Oxidizer System
Pressurization System
Propellant Utılization System
Engine Lubrication System
Aerodynamic Control System
Orientation, Separation, \& Ullage Control
Auxiliary Tnrust System
Reaction Control System
Reaction Control System Tankage
Electrical Power Source
Fower Distribution System
Electrical Distribution
Hydraulics \& Pneumatics
Navigation \& Guidance
Instrumentation
Communications
Environmental Control (Equipment)
Environmental Control (Personnel)
Crew Compartment Insulation
Crew Provisions
Controls \& Panels
Abc_= Sys tem
Final Assembly \& Checkout

```

Figure 9.1-3. Body Structure Cost Elements
\begin{tabular}{lll}
VTO Launch Vehicle & Spacecraft & Aircraft \\
\hline Crew Compartment & Crew Compartment : & Fuselage \\
Thrust Structure & Thrust Structure & \\
Forward Adapter & Service Module & \\
Forward Skirt & Adapter & \\
Intertank Structure & & \\
Aft Skirt & & \\
Fuel Tank & & \\
Oxidizer Tank & & \\
Nose Structure & &
\end{tabular}

EFFECT OF LEARNING RATE

TABLE OF CONTENTS FOR SECTION 9.2 , PROGRAM DAPCA
\begin{tabular}{|c|c|c|}
\hline Section & & Page \\
\hline \multirow[t]{12}{*}{9.2 .1} & Basic Equations & 9.2-1 \\
\hline & 9.2.1.1 RDT¢E Costs & 9.2-1 \\
\hline & (a) Airframes & 9.2-1 \\
\hline & (b) Engines & 9.2-2 \\
\hline & (c) Avionics & 9.2-2 \\
\hline & (d) Totals & 9.2-2 \\
\hline & 9.2.1.2 Production Costs & 9.2-3 \\
\hline & (a) Airframes & 9.2-3 \\
\hline & (b) Engines & 9.2-6 \\
\hline & (c) Avionics & 9.2-8 \\
\hline & (d) Totals & 9.2-8 \\
\hline & 9.2.1.3 Constants & 9.2-9 \\
\hline \multirow[t]{3}{*}{9.2 .2} & List of Symbols Used in Equations & 9.2-10 \\
\hline & 9.2.2.1 Inputs & 9.2-10 \\
\hline & 9.2.2.2 Outputs & 9.2-11 \\
\hline \multirow[t]{2}{*}{9.2 .3} & Typıcal Solution & 9.2-14 \\
\hline & References & 9.2-20 \\
\hline
\end{tabular}

\subsection*{9.2 PROGRAM DAPCA: DETERMINING AIRCRAFT DEVĖLOPMENT AND PRODUCTION COSTS}

Program DAPCA was originally developed by the Rand Corporation; complete program details are given in Reference. Analytic models are discussed. in References 1 through 3. The presentation below is limited to a listing of the equations employed, the program input, and the program output. The ODIN/RLV version of DAPCA is an Aerophysics Research Corporation conversion of the original IBM 7094 Rand program modified for the CDC 6600 . The converted program is identical in function to the original RAND program except for the use of NAMELIST input in place of a rigid format input.

\subsection*{9.2.1 Basic Equations}

This section presents the basic equations used in the DAPCA computer program. These equations are listed for each major category of cost (airframe components, engines, and avionics) and for the totals. All costs are calculated in millions of dollars. A listing of the constants and symbols is presented in Sections 9.2.1.3 and 9.2.2, respectively.

\subsection*{9.2.1.1 RDT\&̧ Costs}
(a) Airframes

Initıal Engineering Cost
\[
E I=10^{0.90462} \cdot \mathrm{~s}^{0.54716} \cdot \mathrm{TI}^{0.88} \cdot 12.25 \cdot \mathrm{DM} \cdot \mathrm{CRI}
\]

Development Support Cost
\[
D S=E I \cdot \frac{15.6}{12.25}
\]

Inıtial Tooling Cost
\[
\mathrm{TI}=10^{-0.91248} \cdot \mathrm{~s}^{1.07437} \cdot \mathrm{w}^{0.83913} \cdot 10.55 \cdot \mathrm{M} \cdot \mathrm{CR2}
\]

Flight Test Cost
\[
\mathrm{FTC}=0.58 \cdot T A^{1.1} \cdot \mathrm{H}^{0.80} \cdot \mathrm{~s}^{0.90} \cdot \text { (DNO) }
\]

Total Airframe Cost of Test Aircraft
\[
\begin{array}{cc}
C I=T A \cdot A F A & \left(A F A_{1}\right. \text { is calculated in the section } \\
\text { on production costs) }
\end{array}
\]

Total Airframe Cost of Test Aircraft Including Engınes and Avionics for Test Aircraft
```

CTE =CT + TCT + AVT

```

Total Airframe RDTgE Cost
\[
R D A=E I+T I+D S+E T C+C T E
\]
(b) Engines

Initial Development Cost (If Not Entered as Input)
\[
\mathrm{DEI}_{1}= \begin{cases}0.13937 \cdot \mathrm{~T}^{0.74356} \cdot \mathrm{CRS}, & \text { (turbojet or turbofan) } \\ 2.82917 \cdot E S H^{0.35497} \cdot \mathrm{CRS}, & \text { (turboprop) }\end{cases}
\]

Total Engine Development Cost
```

RDE = DEI
DEI = DEI_ + EDAC

```
(c) Avionics
```

RDAV = Input

```
(d) Totals

Total RDTGE Cost (Airframes, Engines, and Avionics)
\[
\mathrm{RDT}=\mathrm{RDA}+\mathrm{RDE}+\mathrm{RDAV}
\]

Grand Total Cost of Alrcraft for Alrframe Quantity QT (Airframes, Engines and Avionics)
\[
\mathrm{TCOST}_{I}=\mathrm{TC}_{I}+\operatorname{RDT}, \quad(I>1)
\]

\subsection*{9.2.1.2 Production Costs}
(a) Aırframes

Unit Labor for Airframe Number 1
PAL \(\cdot \mathbf{6 . 7 6 2} \cdot 10^{0.16314} \cdot \mathrm{w}^{0.73672} \cdot \mathrm{~s}^{0.43113} \cdot 9.50 \cdot 1.11\)
- \(1.14 \cdot \mathrm{DM} \cdot \mathrm{CR} 3\)

Unit Material for Airframe Number 1
\[
\operatorname{PAM}=2.169 \cdot 10^{-0.76558} \cdot \mathrm{w}^{0.77933} \cdot \mathrm{~s}^{0.856650} \cdot \mathrm{DM} \cdot \mathrm{CR}^{-0}
\]

Cumulative Average to Unit Ratio for Alrframe Labor
\[
B L A_{I}=\frac{(Q T+0.5)^{0.585}-0.5^{0.585}}{Q T^{0.585} \cdot 0.585}
\]

CumulativeAverage to Unit Ratio for Alrframe Material
\[
-B M A=\frac{(Q T+0.5)^{0.832}-0.5^{0.832}}{Q T^{0.832} \cdot 0.832}
\]

Unit Labor Cost at Quantity QT (Total Aircraft Including Test Alrcraft)
\[
\mathrm{ULA}_{I}=\mathrm{PAL} \cdot \mathrm{QT}^{-0.415}
\]

Total Labor Cost for Alrcraft Quantity QT
\[
\mathrm{CAI}, 4 \mathrm{C}=\mathrm{ULA}_{\mathrm{I}} \cdot \mathrm{BLA}_{\mathrm{I}} \cdot \mathrm{QT}
\]

Cumulative Average Labor Cost for Test Aircraft
\[
C_{A L A}=\frac{\text { CALAC }_{T A}}{Q T}, \quad(I=1, Q T=T A)
\]

Cumulative Average Labor Cost for Alrcraft Quantıty QT Less Test Aircraft
\[
C_{A L A}=\frac{C A L A C_{Q T}-C_{A L A C}^{T A}}{Q T-T A}, \quad(I>1, Q T>T A)
\]

Unit Material Cost at Aircraft Quāntity QT
\[
U M A_{I}=P A M \cdot Q^{-0.168}
\]

Total Material Cost for Aırcraft Quantıty QT
\[
\mathrm{CAMAC}=\mathrm{UMA}_{\mathrm{I}} \cdot \mathrm{BMA}_{\mathrm{I}} \cdot \mathrm{QT}^{T}
\]
- Cumulatıve Average Material Cost for Test Aircraft
\[
\mathrm{CAMA}_{\mathrm{I}}=\frac{\mathrm{CAMAC}_{\mathrm{TA}}}{\mathrm{QT}}, \quad(\mathrm{I}=1, \mathrm{QT}=\mathrm{TA})
\]

Cumulative Average Material Cost for Alrcraft Quantity QT Less Test Aircraft
\[
\mathrm{CAMA}_{\mathrm{I}}=\frac{\mathrm{CAMAC}_{\mathrm{OT}}-\mathrm{CAMAC}_{\mathrm{TA}}}{\mathrm{QT}-\mathrm{TA}}, \quad(\mathrm{I}>1, \mathrm{QT}>\mathrm{TA}
\]

Ai'rframe Production Ratè Calculation
\[
\begin{aligned}
& \mathrm{Q} 2=\mathrm{QT} \\
& \text { If } \mathrm{QT}>\mathrm{QM}, \mathrm{Q} 2 \text { is set equal to } \mathrm{QM} \\
& \mathrm{QTEMP}=\frac{\pi}{2 \cdot Q M} \cdot \mathrm{Q} 2 \\
& \mathrm{PR}_{\mathrm{I}}=\mathrm{PRM} \cdot \sin ^{2}\left(\mathrm{QTEMP},\left(P R_{I} \text { is rounded to nearest tenth }\right)\right. \\
& I f \mathrm{PR}_{\mathrm{I}}<1, \mathrm{PR}_{\mathrm{I}} \text { is set equal to } 1
\end{aligned}
\]

Total Sustaining Tooling Cost for Alrcraft Quantity QT
\[
\mathrm{STAC}=\left(\mathrm{PR}_{\mathrm{I}}^{0.4} \cdot \mathrm{QT}^{0138}-1\right) \cdot \mathrm{TI}
\]

Cumulatıve Average Sustaining Tooling Cost for Test Alrcraft
\[
\mathrm{STA}_{\mathrm{I}}=\frac{\mathrm{STAC}_{\mathrm{TA}}}{Q \mathrm{~T}}, \quad(\mathrm{I}=1, \mathrm{QT}=\mathrm{TA})
\]

Cumulative Average Sustaining Tooling Cost for Aircraft Quantity QT Less Test Aircraft
\[
S T A_{I}=\frac{S T A C_{Q T}-S T A C_{T A}}{Q T-T A}, \quad(I>1, Q T>T A)
\]

Total Sustaining Tooling Cost for Aircraft Quantity QT - 1 (Q1)
\[
\begin{aligned}
& \mathrm{Q} 1=\mathrm{QT}-1 \\
& \mathrm{STAI}=\left(\mathrm{PR}_{\mathrm{I}}^{0.4} \cdot \mathrm{Q1}^{0.138}-1\right) \cdot \mathrm{TI}, \quad\left(\mathrm{PR}_{\mathrm{I}} \text { is recalculated for } \mathrm{Q} 1\right)
\end{aligned}
\]

Unit Sustanning Tooling Cost at Aircraft Quantity QT
\[
\mathrm{STU}_{\mathrm{I}}=\mathrm{STAC}-\mathrm{STA1}
\]

Total Sustaining Engineering Cost for Alrcraft Quantity QT
\[
\mathrm{SEAC}=E I \cdot\left(Q T^{0.2}-1\right)
\]

Cumulatıve Average Sustaining Engineering Cost for Test Aircraft
\[
\mathrm{SEA}_{\mathrm{I}}=\frac{\mathrm{SEAC}_{\mathrm{TA}}}{\mathrm{QT}}, \quad(\mathrm{I}=1, \mathrm{QT}=\mathrm{TA})
\]

Cumulative Average Sustaining Engineering Cost for Aircraft Quantity QT Less Test Alrcraft
\[
S_{E A}=\frac{\mathrm{SEAC}_{Q T}-\mathrm{SEAC}_{\mathrm{TA}}}{Q T-T A}, \quad(I>1, \mathrm{QT}>\mathrm{TA})
\]

Total Sustaining Engineering Cost for Aircraft Quantity QT - 1
\[
\mathrm{SEA} 1=\mathrm{EI} \cdot\left(\mathrm{Q1}{ }^{0.2}-1\right)
\]

Unit Sustaining Engıneering Cost at Aırcraft Quantıty QT
\[
\mathrm{SEU}_{\mathrm{I}}=\mathrm{SEAC}-\mathrm{SEAI}
\]

Total Cumulative Average Cost for Test Alrcraft (I=1) or for Alrcraft Quantity QT less Test Aircraft (I > 1)
\[
\mathrm{AFA}_{I}=\mathrm{SEA}_{I}+\mathrm{STA}_{I}+\mathrm{CALA}_{I}+\mathrm{CAMA}_{I}
\]

Total Unit Cost at Alrcraft Quantity QT
\[
\mathrm{AFU}_{\mathrm{I}}=\mathrm{SEU}_{\mathrm{I}}+\mathrm{STU} \mathrm{I}_{\mathrm{I}}+\mathrm{ULA}_{\mathrm{I}}+\mathrm{UMA}_{\mathrm{I}}
\]

\section*{(b) Engines}

Quantaty of Engines Required for Aircraft Quantity QT
\[
S_{I}=V \cdot Q T
\]

Total Engıne Recurring Development Cost for Alrcraft Quantity QT
\[
\text { ENDAC }= \begin{cases}\text { DEI } \cdot\left(X_{I}^{0.07751}-1\right), & \text { (Turbojet or turbofan) } \\ \text { DEI } \cdot\left(X_{I}^{0.09334}-1\right), & \text { (Turboprop) }\end{cases}
\]

Production Cost of Engine Number 1 (If Not Entered as Input)
\[
\mathrm{CAPE}= \begin{cases}0.18700 \cdot \mathrm{~T}^{0.84845} \cdot \text { CR6, } & \text { (turbojet with afterburner) } \\ 0.31979 \cdot \mathrm{~T}^{0.81626} \cdot \mathrm{CR6} & \text { (turbojet with no afterburner) } \\ \left(\mathrm{TFW} \cdot 0.18700 \cdot \mathrm{~T}^{0.84845}+\mathrm{TFN} \cdot 0.31979 \cdot \mathrm{~T}^{0.81626} \text {) } \cdot\right. \text { CR6 } \\ \left(4.86224 \cdot \text { ESH }^{0.45873 \cdot \mathrm{CR} 6,}\right. & \text { (turboprop) }\end{cases}
\]

Total Engine Production Cost for Alrcraft Quantıty QT
\[
\text { PAC }= \begin{cases}\text { CAPE } \cdot X_{I}^{0.86745, ~}, & \text { (turbojet with afterburner) } \\ \text { CAPE } \cdot X_{I}^{0.87088,}, & \text { (turbojet with no afterburner) } \\ \text { CAPE } \cdot\left(T F W \cdot X_{I}^{0.86745 ~}\right. & + \text { TFN } \cdot X_{I}^{0.87088), ~(t u r b o f a n) ~} \\ \text { CAPE } \cdot X_{I}^{0.89055,} & \text { (turboprop) }\end{cases}
\]

Engine Cumulative Average Production Cost for Test Aircraft
\[
P A_{I}=\frac{P_{A C}}{X_{I A}}, \quad\left(I=1, X_{I}=V \cdot T A\right.
\]

Engine Cumulative Average Production Cost for Aircraft Quantity QT Less Test Aircraft
\[
\mathrm{PA}_{\mathrm{I}}=\frac{\mathrm{PAC}_{Q \mathrm{~T}}-\mathrm{PAC}_{\mathrm{TA}}}{\mathrm{~V} \cdot(\mathrm{QT}-\mathrm{TA})}, \quad(I>1, \mathrm{QT}>\mathrm{TA}
\]

Total of Engine Recurring Development and Production Cost for Test Aircraft
\[
T C T=E D A C
\]

Total Engine Production Cost for Engine Quantity \(X_{I}\) - 1 (XI)
\[
\begin{aligned}
& X I=X_{I}-1
\end{aligned}
\]

Engane Unit Production Cost at Engine Quantity \(X_{I}\)
\[
\mathrm{PU}_{\mathrm{I}}=\mathrm{PAC}-\mathrm{PAI}
\]

Total Engine Unıt Production Cost per Alrcraft at Aırcraft Quantity QT
\[
\begin{aligned}
& \text { UEA } \left.A_{I}=\left(P A C-P^{P A I} X_{X^{-1}}\right)+\text { PAI }_{X_{I}-1}-P^{P A 1} X_{X_{I}-2}\right) \\
& +\left(\mathrm{PAl}_{X_{\mathrm{I}}-2}-\mathrm{PAl}_{\mathrm{X}_{\mathrm{I}}-3}\right)^{\dot{+}}+\ldots\left(\mathrm{PAl}_{\left.\mathrm{X}_{\mathrm{I}}-\mathrm{V}-1\right)}-\mathrm{PAl}_{\mathrm{X}_{\mathrm{I}}-\mathrm{V}}\right) \\
& \mathrm{UEA}_{\mathrm{I}}=\mathrm{PAC}-\mathrm{PAl}_{\mathrm{X}_{\mathrm{I}}-V}
\end{aligned}
\]
(c) Avionics

Total Avionics Production Cost for Aircraft Quantity QT
\[
\mathrm{AVAC}=\mathrm{AVI} \cdot \text { QT }^{0.81558}
\]

Avionics Cumulative Average Production Cost for Test Airčraft
\[
\mathrm{AVC}_{\mathrm{I}}=\frac{\mathrm{AVAC}_{\mathrm{TA}}}{\mathrm{QT}} \quad(\mathrm{I}=1, \mathrm{QT}=\mathrm{TA})
\]

Avionıcs Cumulative Average Production Cost for Aircraft Quantity QT Less Test Aircraft
\[
A V C_{I}=\frac{\mathrm{AVAC}_{Q T}-\mathrm{AVAC}_{\mathrm{TA}}}{\mathrm{QT}-\mathrm{TA}}, \quad(I>1, \mathrm{QT}>\mathrm{TA})
\]

Total Avıonics Production Cost for Aircraft Quantity QT - 1 (Q1)
\[
\mathrm{AVAI}=\mathrm{AVI} \cdot{ }_{\mathrm{Q} 1} 0.81558, \quad(\mathrm{QT}>1)
\]

Avionics Unit Production Cost at Aircraft Quantity QT
\[
\mathrm{AVU}_{\mathrm{I}}=\mathrm{AVAC}-\mathrm{AVAl}
\]
(d) Totals

Total Unit Cost at Aırcraft Quantıty QT (Aırframes, Engines, and Avionics)
\[
\mathrm{TUN}_{\mathrm{I}}=\mathrm{AFU}_{\mathrm{I}}+\mathrm{UEA}_{\mathrm{I}}+\mathrm{AVU} \mathrm{I}_{\mathrm{I}}
\]

Total Cumulative Average Cost for Test Alrcraft (Aırframes, Engınes, and Avionics)
\[
\begin{array}{r}
\mathrm{TCA}_{\mathrm{I}}=\frac{(\mathrm{CALAC}+\mathrm{CAMAC}+\mathrm{STAC}+\mathrm{SEAC}+\mathrm{PAC}+\mathrm{AVAC}) \mathrm{TA}}{\mathrm{QT}} \\
(\mathrm{I}=1, \mathrm{QT}=\mathrm{TA})
\end{array}
\]

Total Cumulative Average Production Cost for Aircraft Quantıty QT Less Test Alrcraft (Alrframes, Engines, and Avionıcs)
\[
\mathrm{C}_{\mathrm{QT}}=(\mathrm{CALAC}+\mathrm{CAMAC}+\mathrm{STAC}+\mathrm{SEAC}+\mathrm{PAC}+\mathrm{AVAC})_{\mathrm{QT}}
\]
\[
\begin{aligned}
& \mathrm{C}_{\mathrm{TA}}=(\mathrm{CALAC}+\mathrm{CAMAC}+\mathrm{STAC}+\mathrm{SEAC}+\mathrm{PAC}+\mathrm{AVAC}) \mathrm{TA} \\
& \mathrm{TCA}_{\mathrm{I}}=\frac{\mathrm{C}_{\mathrm{QT}}-\mathrm{C}_{\mathrm{TA}}}{\mathrm{QT}-\mathrm{TA}}, \quad(\mathrm{I}>1, \mathrm{QT}>\mathrm{TA})
\end{aligned}
\]

Total Aırcraft Cumulative Average Cost Including RDTGE for Quantıty QT (Airframes, Engines, and Avionics)
\[
\mathrm{TCQ}=\frac{\mathrm{TCOST}}{\mathrm{I}}
\]

Total Production Cost for Test Aircraft
\[
\mathrm{TC}_{\mathrm{I}}=\mathrm{TCA}_{\mathrm{I}} \cdot \mathrm{QT}, \quad(\mathrm{I}=1, \mathrm{QT}=\mathrm{TA})
\]

Total Production Cost for Aircraft Quantıty QT Less Test Aircraft
\[
T C_{I}=T C A_{I} \cdot(Q T-T A), \quad(I>1, Q T>T A)
\]

\subsection*{9.2.1.3 Constants}
12.25 Engineering direct labor--overhead, G\&A, and miscellaneous direct charges in 1965 constant dollars
15.6 Dollars per engineering hour required for development support.

1055 Tooling direct labor -- overhead, G\&A, miscellaneous direct charges, and material in 1965 constant dollars
9.50 Production direct labor -- overhead, G定A, and miscellaneous direct charges

111 Engineering changes as a percentage of production costs
1.1f Quality control as a percentage of production costs
6.762 Conversion factor from und 100 to unit 1
2.169 Conversion factor from unit 100 to unit 1

\subsection*{9.2.2 List of Symbols Used in Equations}
\begin{tabular}{|c|c|}
\hline & 9.2.2.1 Inputs \\
\hline Symbol & Meaning \\
\hline AVI & Avionics production cost of unit number one \\
\hline CRI & Adjustment factor for airframe initial engineering cost \\
\hline CR2 & Adjustment factor for airframe initial tooling cost \\
\hline CR3 & Adjustment factor for airframe labor cost \\
\hline CR4 & Adjustment factor for airframe material cost \\
\hline CR5 & Adjustment factor for engine initial development cost \\
\hline CR6 & Adjustment factor for production cost of engine number one \\
\hline DM & \(10^{-6} \cdot(\mathrm{~L}+\mathrm{P})\). (For P, see below) \\
\hline ESH & Equavalent shaft horsepower per engine \\
\hline p & Alrframe profit factor \\
\hline PRM & Maximum airframe production rate (alrframes per month) \\
\hline QM & Quantity at which maxımum aırframe production rate is first achieved \\
\hline RDAV & Avıonics RDT信E cost (in millions of dollars) \\
\hline S & Maximum speed of aircraft at best altıtude (knots) \\
\hline T & Maxımum thrust (pounds) per engıne (cruise engıne, sea-level static) \\
\hline TA & Number of test aircraft \\
\hline TFW & Turbofan weighting factor, applied to cost of turbojet with afterburner \\
\hline V & Number of engines per alrcraft \\
\hline W & Gross take-off weight of aırcraft (pounds) \\
\hline
\end{tabular}

\subsection*{9.2.2.2 Outputs}

Meaning
\(A F A \quad\) Total airframe cumulative average cost
\(\mathrm{AFU}_{\mathrm{I}} \quad\) Total unit cost at aircraft quantity QT
AVAC Total avionics production cost for aircraft cuarmiy QT
\(\mathrm{AVC}_{\mathrm{I}} \quad\) Avionics cumulative average production cost
AVA1 Total avionics production cost for aircraft cua: \(\because=\) QT-1
AVT Total avionics production cost for test aurcrã=
\(\mathrm{AVU}_{\mathrm{I}} \quad\) Avionics unit production cost at alrcraft quañ:
\(B^{B L A} \quad\) Ratio of cumulative average cost to unit cost \(=2\) anframe labor
\(B_{I} \quad\) Ratio of cumulative average cost to unit cost \(£=\) infframe material

CALA \(_{I} \quad\) Alrframe cumulative average labor cost
CALAC Total airframe labor cost for quantity QT
CAMA \(\quad\) Alrframe cumulative average material cost
CAMAC Total airframe material cost for quantity QT
CAPE Production cost of engine number one
CT Total alrframe cost of test alrcraft
CTE Total aurframe cost of test alrcraft including cusines and avionics for test alrcraft
\(\mathrm{DEI}_{1} \quad\) Engine inıtıal development cost (may also be citcied as an input)
DEI Total engine development cost
DS Alrframe development support cost
EDAC Total engine recurring developinent cost
EI Airframe inıtial enganeering cost

Meaning
FTC Airframe flight test cost
I Used as subscript to some of the variables. (For test aircraft \(I=1\), for any aircraft quantıty \(Q T\) less test aurcraft, \(I>1\).)

PA Engine cumulative average production cost
PAC Total engine production cost for aircraft quantity \(Q T\)
PAl Total engine production cost for alrcraft quantity QT - 1 .
PAL Unit labor cost for airframe number one
PAM Unit material cost for airframe number one
\(\mathrm{PR}_{\mathrm{I}} \quad\) Alrframe production rate (airframes per month)
\(\mathrm{PU}_{\mathrm{I}} \quad\) Engine unit production cost at engine quantity \(\mathrm{X}_{\mathrm{I}}\)
QT Total aircraft quantity (for \(I=1, Q T=T A ;\) for \(I>1, Q T>T A\).

Set equal to QT. However, if \(Q T>Q M, Q 2\) is set equal to \(A M\)
QTEMP \(\quad \frac{\pi}{2 \cdot Q M} \cdot\) Q2
RDA Total ąrframe RDT\&E cost
RDE Total engine development cost (set equal to DEI)

RDT
SEA \(_{\text {I }}\)
SEAC Total airframe sustaining engineering cost for quantıty QT
SEA1 Total alrframe sustaining engıneering cost for quantity QT - 1
\(S E U_{I} \quad\) Alrframe unit sustaining engineering cost at quantity \(Q T\)
SIN Sine function
STA Airframe cumulative average sustainıng tooling cost

Symbol Meaning
STAC Total airframe sustaining tooling cost for quantity QT
STAI Total airframe sustaining tooling cost for quantity QT - 1
STU Alrframe unit sustanning tooling cost at quantity QT
TC \(\quad\) Total aircraft production cost (airframes, engines, and avionics)
TCA Total aircraft cumulatıve average cost (airframes, engines, and avionics)

TCOST \({ }^{\text {I }}\) Grand total cost of aircraft for quantity QT (RDTGE and production costs for airframes, engines, and avionics)

TCQ Total aircraft cumulative average cost including RDT\&̧E for quantity QT (airframes, engines, and avionics)

TCT Total of engine recurring development cost and production cost for test aircraft

TFN Turbofan weighting factor, applied to cost of turbojet with no afterburner (TFN = \(1.0-\mathrm{TFW}\)).

TI
Airframe nnitial tooling cost
TT Total maximum thrust (pounds) per aircraft (cruise engines, sea leve1 static) (V • T)
\(T_{I} \quad\) Total aircraft unit cost at quantity \(Q T\) (airframes, engines, and avionics)

ULA \(_{I} \quad\) Airframe unit labor cost at quantity \(Q T\)
UMA \(\quad\) Alrframe unit material cost at quantity QT
\(X_{I} \quad\) Quantity of enganes required for alrcraft quantity QT(V•QT)
ZPT Total engine unit production cost per aircraft at aircraft quantıty QT
PRINCIPAL INHUTS * ,
* GROSS TAKECFF hEIGHT CF AIRCRAFT IIN PCUNOS:
260000.
560.
10.

SPEED OF AIRCRAFY IIN KNOYSI
-
MAXIVUN PRCTUCTIGN RATE (PRM) X EXPCIEIT FCR PRT, UUEYICA RATE EIUUTION EXPCNE:T FCR PRCNUCYICN
NUPER UF TEST AGACRAFY NLMPER UF GESY AKACRAFY RGCYAF:
* thrust per etigine tia pcunosi -- turbofay
* Thrusi per eirgine fia peunosi - it rurbofay WEIGHTICC FACTOR FCR IUPFCJEI WITH AFFERGURNE AVIOMICS POTE COST IIN YILIIONS OF DOLLARSI
AVIURICS CCST FOR UNII I IIN MILLIDNS OF DOLLARSI AJRLRAME PAOFII FACYCR

\section*{SNPUT DAIA}

\section*{AIRFRANE ADJUSTMENY FACTCRS}

\section*{ENGINE ADJUSTVENT factors}

DEVELOPRENT
PRODUCTIGA

\section*{OESIGNATURS}

ENGINE PYPE (ACDRESS COT)
ENGINE THRLPUI (AONRESS 012)
AIRFRAWE OELEFE (ADDRESS 0:6) EAGINE CELETE (AODRESS OLTI AVIOVICS DELEJE (AOCRESS 018) AVICYICS DELEIE (AC
CLEAR (ACORESS G?T)
1.00
1.00
0.300
0.10
.

\section*{1. 60 \\ 1.CO}
1. Co
1. 60
0.
0.
0.
0.

TFST AIRCRAFY PRUNUCYIDV COSTS IIRCLUCING DROFIT (MILLIONS UF DULLARS)
```

VJMMER (IF
IEST A/C
3

```

```

4.397

```
\begin{tabular}{lr}
SUSTAINIVE & \\
FCOLIVS & LAAUR \\
1.725 & 12.278
\end{tabular}
MATERIAL
1.034

TUTAL DEA AluRL.
20.053
aIRFRAME PRUDUCTION COSTS IINCLUDING PROFITI
(MILLIONS OF. DOILARS)

ENTIINE RESEARCH AND CEVELOPMEHT CIIST IINCLUDING PRUFITI (MILLIONS OF OOLIARS)
307.988

ENGINE PAODUCTION CUSTS (INK, LUDITGG PRGHTT) IMILLIONS DF DOLEARS!
-- COST UF ENGINES FOR TEST AIHCRAFY EXCLUOED ...

\section*{AVIONSCS RESEARCM ANU DEVELOPMENY CEST IINCLUOING PROFIY} \{MILLICNS OF DOELARS

AYIONICS PRGDUCTION COSTS IINGLVDING PROFIT' (MILLIONS OF COLLARS:
- COST GF AVIONICS FUR TEST AIRCRAFt EYCLUDED - -

\section*{References:}
1. Boren, H. E., Jr., DAPCA: A Computer Program for Determining Aircraft Development and Production Costs, Rand Corporation Memorandum RM-5221PR, February 1967.
2. Watts, A. Frank, Aircraft Turbine Engines--Development and Procurement Cost, The Rand Corporation, RM-4670-PR (abridged), November 1965.
3. Teng, C., An Estimating Relationship for Fighter/Interceptor Avionic System Procurement Cost, The Rand Corporation, RM-5841-PR (abridged) May 1966.

\section*{OPTIMIZATION TECHNIQUES}

Two program modules are available for optımization studıes:
1. The variational optimization program option ATOP II, References 1 and 2. This option can be applied to any system of nonlinear ordinary differential equations by a slight program modification.
2. The multivariable search method contained in program AESOP, References 3, 4, and 5.

This program contains thirteen algorithms for solving nonlinear finite dimensioned optımization problems. AESOP as available as a separate program module in the ODIN/RLV and also as an integral part of the ATOP II program of Section 7.3.

REFERENCES:
1. Hague, D. S. and Glatt, C. R., Optimal Design Integration for Military Flight Vehicles, ODIN/MFV, Chapter 7.3, AFFDL-TR-72-132, December 1972.
2. Mobley, R. L. and Vorwald, R. R., Three Degree of Freedom Problem Opt1mization Formulation, Part 2, Volume III-User's Manual, FDL-TDR-64-1, McDonneIl-Douglas Corporation, October 1964.
3. Hague, D. S. and Glatt, C. R., An Introduction to Multivariable Search Techniques for Parameter Optimization (and Program AESOP), NASA CR73200, April 1968.
- Hague, D. S. and Glatt, C.R., Applıcation of Multivarıable Search Techniques to the Optimal Design of Hypersonic Crusse Vehicles, NASA. CR-73202, April 1968.
5. Hague, D. S. and Glatt, C. R., A Guide to the Automated Engineering and Scientıfic Optımızation Program, AESOP, NASA CR-73201, April 1968.

ORIGINAL PAGE IS
OF POOR QUALITY

\section*{TABLE OF CONTENTS FOR SEGTION 10.1,} THE VARIATIONAL STEEPEST DESCENT METHOD
Section Page
10.1.1 The Problem Statement 10.1-I
10.1.2 Single Stage Analysis 10.1-2
10.1.3 Combining Continuous Control and Finite Paxameter Optimization 10.1-11
10.1.4 Some Past ATOP II Applications 10.1-12
References 10 1-13
Illustrations 10.1-15

\subsection*{10.1 THE VARIATIONAL STEEPEST DESCENT METHOD}

\subsection*{10.1.1 The Problem Statement}

Point mass motion is governed by three secand order differential equations of position together with a first order differential equation governing the mass. By suitably defining additional state variables, it 25 possible to reduce these equations to a set of first order infferential equations. Point mass motion is, therefore, governed by a set of first order differentral equations. The form of these equations is
\[
\begin{align*}
\left\{\dot{x}_{n}(t)\right\} & =\left\{f\left(x_{n}(t), \alpha_{m}(t), t\right)\right\} \\
n & =1,2 \ldots \ldots N \\
m & =1,2 \ldots \ldots M \tag{I}
\end{align*}
\]

That is, there are \(N\) state variables whose Eerivatives . \(\dot{x}_{n}(t)\) are defined by \(N\) first order differential equations involving the state variables, together with \(M\) santrol variables, \(\alpha_{m}(t)\), and \(t\), the independent variable itself.

Constraints may be imposed on a set of func:ions of the state variables and time at the end of the trajez=ory. In this case, a set of constrannt functions of the Eorm
\[
\begin{align*}
\left\{\psi_{p}\right\} & =\left\{\psi_{p}\left(x_{n}(T), T\right)\right\}=0 \\
& =1,2 \ldots p \tag{2}
\end{align*}
\]
can be constructed which the final trajectory musc satisfy. Any one of the constraints may be used as a cut-uEf function which, when satisfied, will terminate a partıcular trajectory. The cut-off function can, therefore, be written in the form
\[
\begin{equation*}
\Omega=\Omega\left(x_{n}(T), T\right)=0 \tag{3}
\end{equation*}
\]
and determines the trajectory termination time T. In all, then, when the cut-off function is included, there are \((P+1)\) end constraints.

Finally, it may be that some other function of the state variables and time at the end of the trajectory is to be optimized. Hence, a pay-off function
\[
\begin{equation*}
\phi=\phi\left(x_{D}(T), T\right) \tag{4}
\end{equation*}
\]
which is to be maximized or minımized, can be constructed.

Now，suppose that a nominal trajectory is available．The requirements of this trajectory are modest；it must satisfy tne cut－off condition，Equation（3），but it need not optimize the pay－off function or satisfy the constraint equations．＇To generate this nominal trajectory by integrating Equations（1）， the vohicle characterıstics，the initial state variable values， and a nominal control variable history must be known．Once this nominal trajectory is available，the steepest descent process can be applied．To do this，the trajectory showing the greatest improvement in the pay－off function，while at the same time eliminating a given amount of the end point errors as measured by Equations（2）for a given size of control vari－ able perturbation，is obtained by application of the Variational Calculus．

Equations（2）provide an end point error measure，for they will only be satisfied if the end points have been achieved． Therefore，any non－zero \(\psi_{p}\) represents an end point error which must be corrected．A convenient measure of the control variable perturbation can be defined by the scalar quantity，
\[
\begin{equation*}
D P^{2}=\int_{t_{0}}^{T}[\delta \alpha(t)][W(t)]\{\delta \alpha(t)\} d t \tag{5}
\end{equation*}
\]
where \(W\) is any arbitrary symmetric matrix．In the case where all control variables have a similar ability to affect the trajectory，\(W\) is taken equal to the unit matrix，and \(D P^{2}\) be－ comes the integrated square of the control variable perturbations \(\hat{j} \hat{u}(\tau)\) ．It might be noted that if Equation 5 is to have meaning， \(2 t\) is essential that all control variables have the same dimen－ sions．To meet this condition，the control variables can be expressed in non－dimensional form．

The constraint on control variable perturbation size repre－ sentea by Equation（5）is an essential element of the steepest cescent process；for the optimum perturbation will be found by jocal linearization of the non－linear trajectory equations about tie nominal path．To insure validity of the linearized approx－ imation，the analysis must be limited to small control variable perturbations by means of Equation（5）which provides an integ－ rai measure of the local perturbation magnitudes．

\section*{10．1．2 Single Stage Analysis ：}

Tie sceepest descent process has been outlined above．To aniencme chis method，an analysis of all perturbations about चだ心 nomina．trajectory must be undertaken．In the present ごミここた，aill perテurbations will be linearized；only first oraex perturbations in the control and state variables will be coisidered．The objective of the linearized analysis is

20．2－2
determination of the optimum control variable perturbation in the sense discussed in the previous section.

Denoting variables on the nominal trajectory by a bar
\[
\begin{equation*}
\left\{\alpha_{m 1}(t)\right\} \text { nominal }=\left\{\bar{\alpha}_{m}(t)\right\} \tag{6}
\end{equation*}
\]
and
\[
\begin{equation*}
\left\{x_{n}(t)\right\} \text { nominal }=\left\{\bar{x}_{n}(t)\right\} \tag{7}
\end{equation*}
\]
where there are \(M\) control variables and \(N\) state variables.
Now consider a small perturbation to the control variable history, \(\delta \alpha(t)\); this in turn will cause a small perturbation in the state variable history, \(\delta x(t)\). The new values of the variables become
\[
\begin{equation*}
\{\alpha(t)\}=\{\bar{\alpha}(t)\}+\{\delta \alpha(t)\} \tag{8}
\end{equation*}
\]
and
\[
\begin{equation*}
\{x(t)\}=\{\bar{x}(t)\}+\{\delta x(t)\} \tag{9}
\end{equation*}
\]

The nominal state variable and perturbed state variable histories can also be written as
\[
\begin{align*}
& \{\bar{x}(t)\}=\left\{x\left(t_{0}\right)\right\}+\int_{t_{0}}^{t}\{f(\bar{x}(t), \bar{\alpha}(t), t)\} d t \tag{10}\\
& \{x(t)\}=\left\{x\left(t_{0}\right)\right\}+\int_{t_{0}}^{t}\{f(\bar{x}+\delta x, \bar{\alpha}+\delta \alpha, t)\} d t \tag{11}
\end{align*}
\]

Subtracting Equation (10) from Equation (11) and using Taylor's expansion to first order,
\[
\begin{equation*}
\{x(t)\}-\{\bar{x}(t)\}=\int_{t_{0}}^{t}\left\{\frac{\partial \bar{f}}{\partial x_{n}} \cdot \delta x^{n}+\frac{\partial \bar{f}}{\partial \alpha_{m}} \cdot \delta \alpha^{m}\right\} d t=\{\delta x(t)\} \tag{12}
\end{equation*}
\]
where
\[
\begin{equation*}
\overline{\mathrm{P}}=\mathrm{f}(\bar{x}(\mathrm{t}), \bar{\alpha}(\mathrm{t}), \mathrm{t}) \tag{13}
\end{equation*}
\]
and where the repeated index indicates a summation over all possibie values. Differentiation leads to
\[
\begin{equation*}
\frac{d}{d t}\{\delta x(t)\}=\left\{\frac{\partial \bar{f}}{\partial x_{n}} \delta x^{n}+\frac{\partial \bar{f}}{\partial a_{m}} \delta \alpha^{m}\right\} \tag{14a}
\end{equation*}
\]
or in matrix form
\[
\begin{equation*}
\frac{\dot{d}}{\alpha t}\{\delta x(t)\}=[F]\{\delta x\}+[G]\{\delta \alpha\} \tag{14b}
\end{equation*}
\]
where
\[
\begin{equation*}
F_{i j}=\frac{\partial \bar{F}_{i}}{\partial x_{j}} \text { and } G_{i j}=\frac{\partial \bar{F}_{i}}{\partial \alpha_{j}} \tag{15}
\end{equation*}
\]

Here the \((i, j)^{\text {th }}\) element lies in the \(i^{\text {th }}\) row and \(j^{\text {th }}\) column of the matrices; \(F\) is an \(N \times N\) matrix and \(G\) is an \(N \times M\) matrix.

The effect of these perturbations on pay-off, cut-off, and constraint functions must now be determined. A general method for obtaining these effects, known as the 'adjoint method,' Reference 13 ,is to define a new set of variables by the equations
\[
\begin{equation*}
[\dot{\lambda}(t)]=-[F(t)]^{\prime}[\lambda(t)] \tag{16}
\end{equation*}
\]

By specifying various boundary conditions on the \(\lambda\), the changes in all functions of interest can be found in turn. To show this pre-multiply Equation (14) by \(\lambda^{\prime}\) and Equation (16) by \(\delta x^{\prime}\), transpose the second of these equations and sum with the first giving
\[
\begin{align*}
& {[\lambda] \cdot\left\{\frac{d}{d t}(\delta x)\right\}+[\dot{\lambda}]^{\prime}\{\delta x\}=[\lambda]^{\prime}[F]\{\delta x\}+[\lambda]^{\prime}[G]\{\delta \alpha\} } \\
&-[\lambda]]^{\prime}[F]\{\delta \mathbf{x}\} \tag{17}
\end{align*}
\]
which may be written as
\[
\begin{equation*}
\left\{\frac{d}{d t}\left(\lambda^{\prime} \delta x\right)\right\}=[\lambda]^{\prime}[G]\{\delta \alpha\} \tag{18}
\end{equation*}
\]

Integrating Equation (18) over the trajectory
\[
\begin{equation*}
\left\{\lambda^{\prime} \delta x\right\}_{T}-\left\{\lambda^{\prime} \delta x\right\}_{t_{0}}=\int_{t}^{T}[\lambda] \cdot[G]\{\delta \alpha\} d t \tag{19}
\end{equation*}
\]

Now define three distinct sets of \(\lambda^{\prime}\) functions by applying the following boundary conditions at \(t=T:\)
10.1-4
\[
\begin{align*}
& \{\lambda(T)\}=\left\{\frac{\partial \phi}{\partial x_{1}}\right\}_{T}=\left\{\lambda_{\phi}(T)\right\}, \tag{20a}\\
& \{\lambda(T)\}=\left\{\frac{\partial \Omega}{\partial x_{i}}\right\}_{T}=\left\{\lambda_{\Omega}(T)\right\} \tag{20b}\\
& {[\lambda(T)]=\left[\frac{\partial \psi_{j}}{\partial x_{I}}\right]_{T}=\left[\lambda_{\psi}(T)\right]}
\end{align*}
\]

Equation (16) may now be integrated in the reverse direction (i.e. from \(T\) to \(t_{0}\)) to obtain the functions, \(\left\{\lambda_{\phi}(t)\right\},\left\{\lambda_{\Omega}(t)\right\}\), and \(\left\{\lambda_{\psi}(t)\right\}\).

Substituting each of these functions into Equation (19) in turn and noting that
\[
\begin{align*}
& {\left[\lambda_{\phi}(T)\right]\{\delta x\}=\left[\frac{\partial \phi}{\partial x}\right]\{\delta x\}=\delta \phi_{t=T}} \tag{21a}\\
& \left\{\lambda_{\Omega}(T)\right]\{\delta x\}=\left[\frac{\partial \Omega}{\partial x}\right]\{\delta x\}=\delta \Omega_{t=T} \tag{21b}\\
& {\left[\lambda_{\psi}(T)\right]\{\delta x\}=\left[\frac{\partial \psi_{2}}{\partial x_{j}}\right]\{\delta x\}=\left\{\delta \psi_{t=T}\right\}} \tag{2lc}
\end{align*}
\]

It follows that
\[
\begin{align*}
& \delta \phi_{t=T}=\int_{t_{0}}^{T}\left[\lambda_{\phi}\right][G]\{\delta \alpha\} d t+\left[\lambda_{\phi}\left(t_{0}\right)\right]\left\{\delta x\left(t_{0}\right)\right\} \tag{22a}\\
& \delta \Omega_{t=T}=\int_{t_{0}}^{T}\left[\lambda_{\Omega}\right][G]\{\delta \alpha\} d t+\left[\lambda_{\Omega}\left(t_{0}\right)\right]\left\{\delta x\left(t_{0}\right)\right\} \tag{22b}\\
& \{\delta \psi\}_{t=T}=\int_{t_{0}}^{T}\left[\lambda_{\psi}\right][G]\{\delta \alpha\} d t+\left[\lambda_{\psi}\left(t_{0}\right)\right]^{\prime}\left\{\delta x\left(t_{0}\right)\right\} \tag{22c}
\end{align*}
\]

Now, Equations (22) give the changes in pay-off function, cut-off function and constraint functions at the terminal time of the nominal trajectory; however, on the perturbed trajectory, the cut-off will usually occur at some perturbed time, \(T+\) C.T. In this case, the total change in the above quantities becomes
\[
\begin{align*}
d \phi & =\int_{t_{0}}^{T}\left[\lambda_{\phi}\right][G]\{\delta \alpha\} d t+\left[\lambda_{\phi}\left(t_{0}\right)\right]\left\{\delta x\left(t_{0}\right)\right\}^{\prime}+\dot{\phi}(T) \Delta T \tag{23a}\\
d \Omega & =\int_{t_{0}}^{T}\left[\lambda_{\Omega}\right][G]\{\delta \alpha\} d t+\left[\lambda_{\Omega}\left(t_{0}\right)\right]\left\{\delta x\left(t_{0}\right)\right\}+\dot{\Omega}(T) \Delta T \tag{23b}\\
\{\alpha \psi\} & =\int_{t_{0}}^{T}\left[\lambda_{\psi}\right][G]\{\delta \alpha\} d t+\left[\lambda_{\psi}\left(t_{0}\right)\right]^{\prime}\left\{\delta x\left(t_{0}\right)\right\}+\{\dot{\psi}(T)\} \Delta T \tag{23c}
\end{align*}
\]

Equations (23) supply the change in pay-off, cut-off, and constraint functions on the perturbed trajectory.

The time perturbation in Equations (23a) and (23c) may be elimınated by noting that, by definition of the cut-off function, Equation (23b) must be zero.
\[
\begin{equation*}
\therefore \Delta T=-\frac{2}{\Omega(T)}\left(\int_{t}^{T}\left[\lambda_{\Omega}\right][G]\{\delta \alpha\} d t+\left[\lambda_{\Omega}\left(t_{0}\right)\right]\left\{\delta x\left(t_{0}\right)\right\}\right) \tag{24}
\end{equation*}
\]

Substituting Equation R4) into Equations (23a) and (23c)
\[
\begin{align*}
& d \phi=\int_{t_{0}}^{M}\left[\lambda_{\phi \Omega}\right][G]\{\delta \alpha\} d t+\left[\lambda_{\phi \Omega}\left(t_{0}\right)\right]\left\{\delta x\left(t_{0}\right)\right\} \tag{25a}\\
& \{a \psi\}=\int_{t_{0}}^{T}\left[\lambda_{\psi \delta \Omega}\right]^{\prime}[G]\{\delta \alpha\} d t+\left[\lambda_{\psi \Omega}\left(t_{0}\right)\right]^{\prime}\left\{\delta x\left(t_{0}\right)\right\} \tag{25b}
\end{align*}
\]
where
\[
\begin{align*}
& \left\{\lambda_{\phi \Omega}\right\}=\left\{\lambda_{\phi}\right\}-\frac{\dot{\phi}(T)}{\Omega(\tilde{T})}\left\{\lambda_{\Omega}\right\} \tag{26a}\\
& \left.\left[\lambda_{\psi}\right]^{\prime}\right]^{\prime}=\left[\lambda_{\psi}\right]^{\prime}-\frac{\dot{\{ }(T)\}|\lambda \Omega|}{\dot{\Omega}(T)} \tag{26b}
\end{align*}
\]

Equations (25) reveal the significance of the \(\lambda\) functions, oraginaily definea by Equations (16) and (20). At time to, \(\lambda_{c}\) gives the sensltivaty of \(\phi(I)\) to small perturbations in the state variables at to. Similarly, \(\lambda_{\phi \Omega}(t)\) measures the sensitlvaEy of \(\phi(T)\) to small perturbations in the state variables at any time \(t\). The sensitivity of the constraints \(d \psi\) to small state variable perturbations at any time is likewise defined by each row of the function \(\lambda_{\psi \Omega}(t)\).

A measure of the sensativity of a trajectory to control varıable perturbations can be obtanned from the quantities \(\lambda_{\phi}{ }^{\prime} \Omega\) anci \(\lambda_{\dot{\prime}}{ }^{\prime} \Omega \mathrm{G}\). Consıder a pulse control variable perturbation at time \(t^{\prime}\), that is, \(\delta\left(t-t^{\prime}\right)\), where \(\delta\) is the Dirac delta function. With this type of control variable perturbation, it can be seen fiom Equations (25) -that the changes in pay-off and constraint flinctions will be \(\lambda_{\phi \Omega}\left(t^{\prime}\right)^{\prime} G\left(t^{\prime}\right)\) and \(\lambda_{\psi \Omega}\left(t^{\prime}\right)^{\prime} G\left(t^{\prime}\right)\), respectively, for fixed initial conditions.

In order to apply the steepest-descent process, the performance function change, Equation (20a), must be maximized; subject to specified changes in the constraints, Equation (25b); and a
given size perturbation to the control variables, Equation (5). This can be achieved by constructing an augmented function in the manner of Lagrange which is to be maximized instead of \(\mathrm{d} \phi\). For the present problem, the augmented function is
\[
\begin{align*}
& U=\int_{t_{0}}^{T}\left[\lambda_{\phi \Omega} \mid[G]\{\delta \alpha\} d t+\left[\lambda_{\phi \Omega}\left(t_{0}\right)\right]\left\{\delta x\left(t_{0}\right)\right\}\right. \\
& \quad+[\nu]\left\{\int_{t_{0}}^{T}\left[\lambda_{\psi \delta \Omega}\right]^{3}[G]\{\delta \alpha\} d t+\left[\lambda_{\psi \Omega \Omega}\left(t_{0}\right)\right]^{\prime}\left\{\delta x\left(t_{0}\right)\right\}\right\} \\
& \tag{27}\\
& \quad+\mu \int_{t_{0}}^{T}[\delta \alpha][W]\{\delta \alpha\} d t
\end{align*}
\]
where the \(\nu\) are \(P\) undetermined Lagrangian multipliers, and \(\mu\) is a single undetermined Lagrangian multiplier. The objective now is to find that variation of the control variable history which will maximize \(U\).

Consider a variation of \(\delta \alpha\), that is a \(\delta(\delta \alpha)\). Then, it is always possible to write any \(\delta \alpha\) distribution in the form
\[
\begin{equation*}
\{\delta \alpha\}=\{A(t)\} k, \text { or } \quad\lfloor\delta \alpha\rfloor=[A(t)] k \tag{28}
\end{equation*}
\]
where \(A(t)\) prescribes the perturbation shape; and \(k\), its magnitude. Now that part of Equation (27) which depends on \(\delta \alpha\), the perturbation in the control variable, can be written in the form
\[
\begin{align*}
\overline{\mathrm{U}}= & k \int_{t_{0}}^{T}\left[\lambda_{\phi \Omega}\right][G]\{A(t)\} d t+k[v] \int_{t_{0}}^{T}\left[\lambda_{\psi \Omega}\right][G]\{A(t)\} d t \\
& +k^{2} \int_{t_{0}}^{T}\lfloor A(t)][W]\{A(t)\} d t \tag{29}
\end{align*}
\]

So that
\[
\begin{align*}
\frac{\partial \bar{U}}{\partial x} & =\int_{t_{0}}^{T}\left[\lambda_{\phi \Omega}\right][G]\{A(t)\} d t+[v] \int_{t_{0}}^{T}\left[\lambda_{\psi \Omega}\right]^{\prime}[0]\{A(t)\} d t \\
& +2 k \mu \int_{t_{0}}^{T}\lfloor A(t)][w]\{A(t)\} d t \tag{30}
\end{align*}
\]
or
\[
\begin{align*}
\delta \bar{U} & =\int_{t_{0}}^{T}\left(\lambda_{\phi \Omega}\right][G]\{\delta k \cdot A(t)\}+[\nu]\left[\lambda_{\psi \Omega}\right]^{2}[G]\{\delta k \cdot A(t)\} \\
& +2 \mu[k \cdot A(t)][W]\{\delta k \cdot A(t)\}) d t \tag{31}\\
& =\int_{t_{0}}^{T}\left[\left\lfloor\lambda_{\phi \Omega}\right][G]+[\nu]\left[\lambda_{\psi \Omega}\right][G]+2 \mu[\delta \alpha][W]\{\delta(\delta \alpha)\} d t\right.
\end{align*}
\]
where it has been noted from Equation (28) that
\[
\begin{equation*}
\delta(\delta \alpha)=A(t) \delta k \tag{32}
\end{equation*}
\]

Now, since Equation (31) holds for any \(A(t)\) it follows that it is a general relationship. Further, for \(\bar{U}\) to be an extremal, \(\delta \hat{U}\) must be zero.

If \(\bar{U}\) has been maximized by means of a control variable perturbation \(\delta \alpha\), \(\delta \overline{\mathrm{U}}\) must be stationary for all small perturbatons to the \(\delta \alpha\), that is, for all \(\delta(\delta \alpha)\). The only way in which Equation (31) can be zero for all \(\delta(\delta \alpha)\) is for the coefficient of \(\delta(\delta, \alpha)\) to be identically zero. That this last statement is true follows from considering the case where, over some finite time interval between \(t_{0}\) and \(T\), the coefficient of \(\delta(\delta a)\) is, say, positive. If this were the case, we could choose a \(\delta(\delta \alpha)\) distribution that was also positive in this same interval and zero elsewhere between \(t_{0}\) and \(T\). It would follow that \(\bar{U}\) was also positive, and, hence, \(\bar{U}\) could not be maximum. A similar argument holds when \(\delta(\delta \alpha)\) is negative over any interval in \(t_{0}\) to \(T\). Hence, the coefficient of \(\delta(\delta \alpha)\) must be Identically zero in the whole interval \(t_{0} \leq t \leq T\). This argument is essentially based on that presented by Goldstein, Reference 14. It follows that.
\[
\begin{equation*}
\left\lfloor\left[\lambda_{\phi \Omega}\right]+[\nu]\left[\lambda_{\psi \Omega \Omega}\right][[\mathrm{G}]=-2 \mu[\delta \alpha][\mathrm{W}]\right. \tag{33}
\end{equation*}
\]

Transposing, noting that \(W\) is symmetric, and solving for \(\delta \alpha\),
\[
\begin{equation*}
\{\delta \alpha\}=-\frac{1}{2 \mu}[W]^{-1}[\sigma]^{\prime}\left\{\left\{\lambda_{\phi \Omega}\right\}+\left[\lambda_{\psi \Omega}\right]\{\nu\}\right\} \tag{34}
\end{equation*}
\]

Substituting Equation (34) into Equation (25b)
\[
\begin{equation*}
\{\mathrm{d} \beta\}=-\frac{1}{2 \mu}\left\{\left\{I_{\psi \phi}\right\}+\left[I_{\psi \psi}\right]\{\nu\}\right\} \tag{35a}
\end{equation*}
\]
where
\[
\begin{equation*}
\{d \beta\}=\{d \psi\}-\left[\lambda_{\psi \Omega}\left(t_{0}\right)\right]^{\prime}\left\{\delta x\left(t_{0}\right)\right\} \tag{35b}
\end{equation*}
\]
and
\[
\begin{align*}
& {\left[I_{\psi \psi}\right]=\int_{t_{0}}^{T}\left[\lambda_{\psi \Omega}\right]^{\prime}[G][W]^{-1}[G]^{\prime}\left[\lambda_{\psi \Omega}\right] d t} \tag{36a}\\
& \left\{I_{\psi \phi}\right\}=\int_{t_{0}}^{T}\left[\lambda_{\psi \Omega}\right]^{\prime}[G][W]^{-1}[G]^{t}\left\{\lambda_{\phi \Omega}\right\} d t \tag{36b}
\end{align*}
\]

For subsequent use define the integral
\[
\begin{equation*}
I_{\phi \phi}=\int_{t_{0}}^{T}\left[\lambda_{\phi \Omega 2}\right][G][W]^{-1}[G]^{\prime}\left\{\lambda_{\phi \Omega}\right\} d t \tag{36c}
\end{equation*}
\]

The multipliers \(\nu\) can be expressed in terms of the multipliers \(\mu\) by Equation (35a)
\[
\begin{equation*}
\{\nu\}=-\left[I_{\psi \psi}\right]^{-1}\left\{2 \mu\{d \beta\}+\left\{I_{\psi \phi}\right\}\right\} \tag{37}
\end{equation*}
\]

Substituting Equation (34) into Equation (5)
\[
\begin{equation*}
D P^{2}=\frac{1}{4 \mu^{2}}\left(I_{\phi \phi}+\left[I_{\psi \phi}\right]\{\nu\}+[\nu]\left\{I_{\psi \phi}\right\}+[\nu i]\left[I_{\psi \psi}\right]\{\nu\}\right) \tag{38}
\end{equation*}
\]

Transposing the second term in the right hand side bracket
\[
\begin{equation*}
D P^{2}=\frac{1}{4 \mu}\left(I_{\phi \phi}+2[\nu]\left\{I_{\psi \phi}\right\}+[\nu]\left[I_{\psi \psi}\right]\{\nu\}\right) \tag{39}
\end{equation*}
\]

Substituting Equation (37) in Equation (39)
and noring that \(\left[I_{\psi \psi}\right]^{-1}\) is symmetrical gives
\[
\begin{equation*}
4 \mu^{2} \mathrm{DP}{ }^{2}=I_{\phi \phi}-\left[I_{\psi \phi}\right]\left[I_{\psi \psi}\right]^{-1}\left\{I_{\psi \phi}\right\}+4 \mu^{2}\left[\mathrm{~d} \beta \int\left[I_{\psi \psi}\right]^{-1}\{\mathrm{~d} \beta\}\right. \tag{40}
\end{equation*}
\]

So that
\[
\begin{equation*}
2 \mu= \pm \sqrt{\frac{I_{\phi \phi}-\left[I_{\psi \phi}\right]\left[I_{\psi \psi}\right]^{-2}\left\{I_{\psi \phi}\right\}}{D P^{2}-[\mathcal{Z} \beta]\left[I_{\psi \psi}\right]^{-1}\{d \beta\}}} \tag{4I}
\end{equation*}
\]

Substituting Equation (41) into Equation (37), the remaining Lagrangian multipliers are obtained in the form
\[
\begin{equation*}
\{\nu\}=-\left[I_{\psi \psi}\right]^{-1}\left\{\left\{I_{\psi \phi}\right\} \pm \sqrt{\frac{I \phi \phi-[I \psi \phi][I \psi \psi]]^{-1}\{I \psi \phi\}}{D R^{2}-[\alpha \beta]\left[I_{\psi \psi}\right]^{-1}\{\alpha \beta\}}}\{\mathrm{d} \beta\}\right\} \tag{42}
\end{equation*}
\]

The optimum control perturbation is found by substituting Equations (41) and (42) back into Equation (34) and is
\[
\{\delta \alpha\}=\mp[W]^{-1}[G]^{\prime}\left\{\left\{\lambda_{\phi \Omega}\right\}-\left[\lambda_{\psi \Omega}\right]\left[I_{\psi \psi}\right]^{-1}\left\{I_{\psi \phi}\right\}\right\}
\]
\[
x \sqrt{\frac{\left.D^{2}-L \mathrm{~L} \beta\right\rfloor\left[I_{\psi \psi}\right]^{-1}\{\mathrm{~d} \beta\}}{I_{\phi \phi}-\left[I_{\psi \phi}\right]\left[I_{\psi \psi}\right]^{-1}\left\{I_{\psi \phi}\right\}}}
\]
\[
\begin{equation*}
+[\mathrm{W}]^{-1}[G]^{1}\left[\lambda_{\psi \Omega}\right]\left[I_{\psi \psi}\right]^{-1}\left\{d_{\beta}\right\} \tag{43}
\end{equation*}
\]

With this equation the steepest-descent control perturbation has been determined. Perturbing the control variables according to Equation (43) gives the optimum change in the Erajectory as discussed in the section entitled, "Problem saatement," with the added effect of changes in the initial
- value of the state variables included through the term in dß. Tne appropriate sign to use on the first term of equation (43) can be determined by evaluatang dø. Substituting the optimum control perturbation into Equation (25a) results in the equation shown on the following page.
\[
\begin{align*}
d \phi= & \sqrt{\left(I_{\phi \phi}-\left[I_{\psi \phi}\right]\left[I_{\psi \psi}\right]^{-1}\left\{I_{\psi \phi}\right\}\right)\left(D P^{2}-\lfloor d \beta]\left[I_{\psi \psi}\right]^{-2}\{d \beta\}\right)} \\
& +\left[I_{\psi \phi}\right]\left[I_{\psi \psi}\right]^{-1}\{\partial \beta\}+\left[\lambda_{\phi \Omega}\left(t_{0}\right)\right]\left\{\delta x\left(t_{0}\right)\right\} \tag{44}
\end{align*}
\]

As the quantity in the radical must be positive to assure the change in \(\phi\) is real, it follows that the negative sign must be taken when minimizing the payoff function and the positive sign when maximizing the payoff function.
10.1.3 Combining Continuous Control and Finite Parameter Optimization

Many vehicle flight path optimization problems involve continuous control and finite parameter optimization. For example, with a multi-stage system the optimal control and stage points \(T_{S}\) may be required. These problems may be solved in an analogous manner to that employed for continuous control alone optimization. A combined pexturbation stepsize parameter, \(D^{2}\), is defined by
\[
\begin{equation*}
D C^{2}=\int_{t_{0}}^{T}[\delta \alpha(t)][W(t)]\{\delta \alpha(t)\} d t+\sum_{\zeta=1}^{S} v_{s} \Delta T_{\bar{\delta}}^{2} \tag{45}
\end{equation*}
\]

Equations which are analogous to those of (39) and (35a) are obtained
\[
\begin{align*}
4 \mu^{2} \cdot D^{2}-\left(J_{\phi \phi}\right. & \left.+I_{\phi \phi}\right)-2\left[\left[J_{\psi \phi}\right]+\left[L_{\psi \phi}\right]\right]\{v\} \\
& -[v]\left[\left[J_{\psi \psi}\right]+\left[I_{\psi \psi}\right]\right]\{v\}=0 \tag{46}\\
& 2 \mu\{\delta r\}+\left\{\left\{J_{\psi \phi}\right\}+\left\{I_{\psi \phi}\right\}\right\}+\left[\left[J_{\psi \psi}\right]+\left[I_{\psi \psi}\right]\right]\{v\}=0 \tag{47}
\end{align*}
\]
where ine functions \(J_{\phi \phi}, J_{\psi \phi}, J_{\psi \psi}, I_{\phi \phi}, I_{\psi \psi \phi}, I_{\psi \psi \psi}\), and \(\delta \Gamma\) are defined in Reference 1. It can be shown, Reference 1, that the optimal stage point peririjations TS are given by
\[
\begin{align*}
\left\{s_{\bar{B}}\right\}= & \mp\left[V_{s}\right]^{-1}\left[B_{s}^{N}\right] \cdot\left\{\left\{\bar{\lambda}_{\phi \Omega N}\right\}-\left[\bar{\lambda}_{\psi \Omega_{N}}\right]\left[J_{\psi \psi}+I_{\psi \psi}\right]^{-1}\left\{J_{\psi \phi}+I_{\psi \phi}\right\}\right\} \\
& x \sqrt{\frac{D C^{2}-\lfloor\delta \Gamma]\left[J_{\psi \psi}+I_{\psi \psi}\right]^{-1}\{\delta \Gamma\}}{\left(J_{\phi \phi}+I_{\phi \phi}\right)-\left[J_{\psi \phi}+I_{\psi \phi}\right]\left[J_{\psi \psi}+I_{\psi \phi}\right]^{-1}\left\{J_{\psi \phi}+I_{\psi \phi}\right\}}} \\
& +\left[V_{s}\right]^{-1}\left[B_{B}^{N}\right]^{1}\left[\bar{\lambda}_{\psi \Omega N}\right]\left[J_{\psi \psi}+L_{\psi \psi}\right]^{-1}\{\delta \Gamma\} \tag{48}
\end{align*}
\]
with a similar expression for the optimal control perturbations. A more general formulation yet is provided by Petersen, Reference 12, where not only stage points but any finite set of parameters in a whole class can be incorporated into the variational steepest-descent formulation.

It is emphasized that Section 10.1 provides only an outline of the ATOP II variational formulation. Complete details including past applications can be obtained from References 1 to 15.

\subsection*{10.1.4 Some Past ATOP II Applications}

The success of the variational steepest-descent method in solution of aircraft performance optimization problems is evident from the strong support given to this technique by a series of contracts let by leading Government research centers concerned with this area. The reason for this support is clear when performance gains obtained are examined. Figure 10.1-1 presents the 1962 time to clinb record flights of the McDonnell F-4B aircraft. Figure 10.1-2 illustraces how closely these paths follow the minimum time ascent paths predicted by the References 1 and 2 program. Figure 10.1-3 provides a comparison between flight handbook performance estimates, a minimum time climb obtained by the References 1 and 2 program, and an attempt by Marine Col. Yunck to fly the predicted optimum.

The precicted optimal path and the path flown by Col. Yunck both produce a 23 per cent improvement in aircraft performance over the flight handbook. During the Cuban crisis of the early sixties results of this type were procuced routinely from the References 1 and 2 program to aid in an Air Force readiness studies. It should be noted that unlike optimization studies in other technology fields, these performance gains are obtained without vehicle mocinfication. To obtain these performance gains while retaining flight handbook methods would have required a 23 per cent increase in aircraft design capability, several years' effort and several billion dollars to replace an existing fleet of aircraft which could achieve this capability simply by being flown in the optumum manner. This one example serves as a lasting case of
1. the high cost associated with an over-simplified approach to performance optimization, and
2. the insignificant computational cost of adequate performance optimization studies for production aircraft when compared to the resulting payoff.

Further details of these \(\mathrm{F}-4 \mathrm{~B}\) performance optimzation studies may be obtained from Reference 5.

In general, the variational steepest-descent method will usually converge quickly and reliably for short duration airbreathing trajectories, for booster ascent problems, and for orbital maneuver problems. Figures 10.1-4 to 10.1-6 1 inustrate the behavior of the method on several short duration
airbreathing trajectory optimization problems. Each problem is solved from two nominal paths. In each case the two final optimal paths are in essential agreement. Figure 10.1-4(a) presents a maximum terminal velocity descent from 35,000 feet at 800 feet per second to 500 feet level flight in a fixed time of 75 seconds. Figure 10.1-4 (b) is a maximum altitude in fixed time (75 seconds) path to a level flight condrtion. Figure 10.1-5 is a minimum time intercept from the same initial conditions. A target is coming in from 80 nautical miles at constant altitude and Mach number. In this example, the intercept range and time are not known prior to solution. Once a solution is obtained, the result can readzly be verified; for it is the minimm time path to the then known interception point. In all examples the optimal paths obtained from each nominal are indistingurshable from each other. The corresponding control histories are also quite well defined, Figure 10.1-6. These examples are taken from those contained in Reference 15. The interception of Figure 10.1-5 is the simplest type of two-vehicle problem. For example, the target may accelerate as in the problem of Figure 10.1-7 which is taken from Reference 15. The figure again reveals no apparent difference between the optimal flight profiles obtained from each of the two nominal paths employed.

\section*{References:}
1. Hague, D. S. and Glatt, C. R., Optimal Design Integration of Military Flight Vehicles, ODIN/MFV, Section 7.3, AFFDL-TR-72-132, 1972.
2. Mobley, R. L. and Vorwald, R. R., Three-Degree-of-Freedom Optimization Formulation, Part 2, Volume III, FDL-TDR-64-1, October 1964.
3. Brown, Robert C., Brulle, R. V., Combs, A. E., And Griffin, G. D., Six-Degree-of-Freedom Flight Path Study Generalized Computer Program, Part 1 Volume I, FDL-TDR-64-1, October 1964.
4. Seubert, F. W. and Usher, Newell E., Six-Degree-of-Freedom Flight Path Study Generalized Computer Program, Part 2, WADD Technical Report 6 -781, McDonnell-Douglas Corporation, May 1961.
5. Landgraf, S. K., Some Practical Applications of Performance Optımization Techniques to High Performance Aircraft, AIAA Paper 64-288, July 1964.
6. Hague, D. S., An Outline and Operating Instructions for the SteepestDescent Trajectory Optımızation Program--STOP, Aerodynamics Methods Note No. 1, McDonnell-Douglas Corporation, March 1963.
7. Hague, D. S., Geib, Ken, Ballew, L., and Witherspoon, J., Two-Vehicle Optimization--Theoretical Outline and Program Users Manual, Report B983, McDonnell-Douglas, 1965.
8. Hague, D. S., "The Optimization of Multiple-Arc Trajectornes by the Steepest-Descent Method," Recent Advances in Optimızation Techniques, edited by Lavi and Vogl, John Wiley and Sons, Inc., 1966, PP 489-517.
9. Hague, D. S. and Glatt, C. R., Study of Navigation and Guidance of Launch Vehacles Having Cruise Capabılity, Volume II, Boeing Document D2-113016-5, The Boenng Company, April 1967.
10. Retka, J., et al., Study of Navigation and Guadance of Launch Vehicles Having Cruise Capabılity, Volume IV, Boenng Document D2-113016-7, 1967.
11. Stein, L. H., Mathews, M. L., and Frenck, J. W., STOP: A Computer Program for Supersonic Transport Trajectory Optimization, NASA CR-792, May 1967.
12. Rozendaal, H. L., A General Branched Trajectory Optimızation Algorithm with Applications to Space Shuttle Vehicle Mission Design, AAS/AAIA Astrodynamics Specialist Conference, August 17-19, 1971.
13. Hague, D. S., Atmospheric and Near Planet Trajectory Optimization by the Variational Steepest-Descent Method, NASA CR-73365, 1969.
14. Hague, D. S., Application of the Variational Steepest-Descent Method to High Performance Aircraft Trajectory Optımization, NASA CR-73366, 1969.
15. Hague, D. S., et al., Integration of Aerospace Vehicle Performance and Design Optımization, AIAA Paper No. 72-948, September 1972.
10.1-14

meh humaer
FIGURE 1. F-4B TIRL-TO-CLIMB RECORD FLIGHTS

FIGURE 2. COMPARISOY OF ACTUAL AND CALCULATED OPTIMMM FLIGTTP PAIIIS FOR TWO F-4B TIMF-TO-CLIMB RECORD FLIGIISS

Figure 4(b). maximem level flight altitude in fixed time

FIGURE 5. hinmua time (maximm rance) intercept

FIGURE 6 MAXIMUM VELOCITY DESCENT CONTROL HISTORY

\section*{TABLE OF CONTENTS FOR SECTION 10.2, PROGRAM AESOP}
Section Page
10.2.1 The Design Cycle 10.2-1
10.2.2 Multivariable Optimization 10.2-3
10.2.3 Subsystem Optimization 10.2-7
10.2.4 Aerospace Vehicle System Performance Design Optimization 10.2-8
10.2.4.1 Vehicle and Mission Characteristics 10.2-8
10.2.4.2 Vehicle Characteristics Optımızation 10.2-9
10.2.4.3 Vehicle Mission Optimzation 10.2-10
10.2.4.4 Combined Vehicle Design Parameter And Mission Optimization 10.2-11
10.2.5 Conclusion 10.2-11
References 10.2-13
Illustrations 10.2-15

ORIGINAL PAGE IS OF POOR QUALITY.

\subsection*{10.2.1 The Design Cycle}

During the early fifties the moderately-sized digital computer began to appear in quantity at aerospace industrial establishments. The impact of these machines on the aerospace-vehicle design process has grown steadily since that time, and it is now commonplace to encounter a variety of large-scale computers in the CDC 6600, UNIVAC 1108, and IBM 360 series at large governmental and industrial aerospace concerns. Initially, the use of the digital computer was limited to a few relatively complex elements of the vehicle design process. Problems typified by the flutter speed calculation which requires computation of unsteady flow about an oscillating three-dimensional airfoil surface, the calculation of vibration modes of a three-dimensional elastic structure, and the solution of largeorder matrix eigenvalue problems, taxed early machines to their full capacity. The structural dynamicist was rapidly joined by engineers in other disciplines with problems of comparable complexity, the aerodynamics specialist using more precise definition of the vehicle three-dimensional surface, the structures specialist employing extremely large matrices, the performance specialist employing the variational calculus, and so on. Business applications soon appeared in quantity, and in some establishments functions such as accounting, payroll, and inventory control began to utilize larger amounts of computer capacity than the design process itself. Finally, with the introduction of numerically controlled machine-tools, the manufacturing field began to establish a requirement for the digital computer.

The need for today's large-scale digital computer is, therefore, clearly established; many specialists in engineering disciplines find the capacity of coaly's large-scale computer the factor limiting further developments in their field. Three-dimensional real gas calculations, for example, are still by and large impractical for design purposes with today's computer speed-storage combination. Certain classes of atmospheric flight path optimization calculation require many hours of large-scale dightal computer time for solution, and other examples are easily forthcoming.

Throughout increasing use of the digatal computer, the essence of the design process in the aerospace industry, that of design selection and development, has remained relatively untouched. Typically, a nominal design is selected on the basis of experience, judgment, and gross level preliminary studies. The design is examined by various specialist groups. In the case of an aircraft design, these will include:
- AERODYANAMICS
- STRUCTURES
- PROPULSION
- StRUCTURAL DYNAMICS AND AEROELASTICITY
- performance

Each discrpline will engage in a critical assessment of the design from its particular speciallst aspect. Trade studies in which the specialist perturbs prime airplane design parameters, weight, wing area, wing sweep, fuselage size, etc., will be undertaken. A considerable degree of overlap.
exists in these trade studies. Thus, the structural engineer requires the afr-load distribution on the vehicle, essentially an aerodynamic problem. The aeroelastician requires vehicle deflections under specified types of loading, an aerodynamic and structural problem, etc. Traditionally, the disciplines have tended to work independently; when the structural engineer requires air-loads, he tends to compute them himself. In this he typlfies practically all the specialist disciplines. Primarily, the structural engineer is performing a vehicle structures trade; he does not wish to complicate the problem beyond that point.

Each discipline, therefore, performs its own trade studies, and it is left to the vehicle designer to perform the overall system analysis leading to an improved design. This is not a straightforward problem. The aerodynamicist sees a better design resulting from a thanner wing; the drag is less. The structural engineer sees a better design resulting from a thicker wing; the vehicle structural weight is less for given loads. On the first iteration, the structural dynamicist may not have finished his calculations, hence structural dynamics feed-back may not be available.

On the basis of the trades, the designer selects a new design, and the process is repeated. This is the traditional airplane design cycle. The weaknesses of the traditional design cycle have recently created considerable interest in a new approach to vehicle design based on simulation of the entire interdisciplinary design process within the computer. Initially, these attempts concentrated on achievement of a consistent interdisciplinary point design evaluation. References 1 and 2 typify NASA approaches to this problem. While these applications deal primarily with transports for the 1980's, other prograns are being developed for application to today's aircraft designs both by NASA-and in industry. Typical of this work is the General Dynamics program SYNAC of Reference 3.

Computerized airplane design simulatıons are illustrated schematically in Figure 1. Venicle parameters which determine gross characteristics of a particular design, wing-area, thickness-chord ratio, fuselage length, engine-size, etc., are supplied to a geometry program. Detazled geometrical characterıstics are computed and used to compute aerodynamic, propulsive, structural, and massion characteristics. From this data vehicle performance characteristics, such as payload, range, landang and take-off speed, time-to-climb, etc., can be computed. With computerized tools of this type, the designer can specify a selected set of values for the vehicle design paranciers, and the corresponding performance characteristics are computed auto atically within the computer. Internal computations are consistent, repeatable, and in-step with each other. Vehicle trade studies can be carried out by the designer directly wathout the necessity of calling upon the cignneering specialist. The speczalist has constructed a "black box" progran within the design simulation expressing his requirements. Prelaninary design and vehicle definition can proceed until the designer has evolved a satısfactory design. At this point, the specialist must reenter the picture, critically examinng the final design using a depth of analysis currently prohibitive in the repetitive design simulation itself.

Prelininary design and vehicle definition can be expedited by use of com-
puter aided design techniques such as multivariable optimization. The remainder of this paper discusses these techniques and there application to performance optimization at the complete system level.

\subsection*{10.2.2 Multivarıable Optimization}

The airplane design problem is essentially a large scale, non-linear multivariable optimization problem. Independent variables are the gross geometric and physical parameters defining the configuration in detail -- the vehicle design parameters. Dependent variables are the system performance characteristics -- range, payload, gross weight, landing and take-off speed, direct operating cost, etc. Corresponding to a given set of design parameters, \(\bar{\alpha}\), a unique set of performance characteristics \(\bar{F}\), are obtained.
\[
\begin{equation*}
\bar{F}=\bar{F}(\bar{\alpha}) \tag{10.2.1}
\end{equation*}
\]

In the design process one of these characteristics will be selected for minimization or maximization. This is the payoff function
\[
\begin{equation*}
\phi=\phi(\bar{\alpha}) \tag{10.2.2}
\end{equation*}
\]

In the case of cost, \(\phi\) will be minimized; in the case of range, \(\phi\) will be maximized. In some designs, the payoff criteria to employ will not be selfevident to the designer. In this case he may seek to define value function, \(V\), which involves some combination of the performance characteristics
\[
V=V(\bar{F})
\]

The vaiue function is then employed as the payoff function. An alternative approach and one more readily unterpreted is that of seeking constrained extremes. Constraint functions, \(\bar{\Psi}\), are selected from the performance characterlstics.

These constraints can always be defined such that
\[
\begin{equation*}
\bar{\psi}=\bar{\psi}(\bar{\alpha})=\overline{0} \tag{10.2.4}
\end{equation*}
\]

With this approach, for example, the designer seeks the maximum range venicle having a given take-off and landing speed. A general technique for incorpozatang constraints into the optamization formulation is the well-known "penal:y function" approach. Here, an augmented payoff function, \(\bar{\phi}\), is constructed, in the minimization case
\[
\begin{equation*}
\bar{\phi}=\phi+\sum_{i=1}^{M} W_{i} \quad \psi_{i}^{2} \tag{10.2.5}
\end{equation*}
\]

The \(W_{i}\) are a set of positive constraint weighting factors. Provided the \(W_{i}\) are sufficiently large in magnitude, manamization of Equation (5) corresponds to minimization \({ }_{\wedge}^{\text {E }}\) Equation (2) in the presence of the constraints Equation (4). In practice, the \(W_{i}\) may be determined in adaptive fashion on the basis of individual constraint behavior. Alternative approaches to the penalty function approach are avallable. For example, the steepestdescent method of Bryson, reference 21 , which permits explicit elimanation of constraint errors, and the methods proposed by Morrison, reference 26, and Kowalik, et al, reference 27 , both of which convert the constrained extremal problem into a séquence of unconstrained extremal problems.
ine designer may wish to impose inequality constraints on the design. For example, he may seek the maximum range vehicle whose take-off speed is fixed but whose landing speed does not exceed some specified value. Inequality constraints of this type can readily be transformed into the equality constraint form, Equation (4). Suppose the inequality is to be placed on the \(i{ }^{\text {th }}\) performance function; then define a constraint, \(\psi_{j}\), such that
\[
\begin{align*}
\psi_{j} & =F_{i}^{2} ; F_{i}>0 \\
& =0 ; F_{i} \leq 0 \tag{10.2.6}
\end{align*}
\]

Constraining \({ }_{j}\) to zero is now equivalent to the constraint \(F_{i} \leq 0\).
Frequently the designer imposes inequality constraints directly on the design paraneters. Thus, he may require the best fuselage length in the range 200 to 300 feet. These limits will be dictated by a"priori knowledge of the vehicle and its operating environment. Generally, then, the \({ }_{H}\) design parameters are subject to lower and upper limpting values, \(\alpha\) and \(\alpha\), such that
\[
\begin{equation*}
\bar{\alpha} \leq \bar{\alpha} \leq \bar{\alpha}^{H} \tag{10.2.7}
\end{equation*}
\]

The constraints limat the region of feasable designs to a hyper-rectangle Iyinj in the multi-dimensional design parameter space. Equations (1) through (7) Gefinne in symbolic fashion the aerospace vehicle design problem. Conceptually, they define most industrial design problems; for, in practice, the designer must always seek to express his problem in terms of a finite number of parameters.

Metnods for solution of non-linear multivarabble optimization problem have received considerable attention durnng the sinties. In general, solutions are obtained by the iterative search procejures which are collectively beconing known as "optimal seeking methods." 4 The ancreasing interest in these techaiques stems both from their ready upplication through the digital computer and the ease with which the designer can grasp their theoretical basis." Generally, the non-linear optimal seeking method has its basis in
logic rather than the higher branches of analytic mathematics. In essense, the technique corresponds quite closely to the designers traditional design cycle. Parameters are perturbed; the system is evaluated, and, on the basis of resulting performance characteristics, a new design is evolved. Figure 2 presents a schematic diagram of the optimal seecing approach. A nominal design, \(\bar{\alpha}_{0}\), is supplied to the optimi\%ation algoritim. The optimizer, in turn, supplies the design parameter values to a digital model of the system being designed. This system functions in "black oox" fashion and returns the corresponding performance characteristics, \(\vec{F}\), to the optimizer. Based on inspection of these characteristics, a zew design, \(\bar{\alpha}\), is supplied to the system, and the process repeats in iterative fashion until the optimal performance \(\phi=\phi^{*}\) for the constraint levels \(\overline{\bar{\psi}}=\overline{0}\) is attained.

It can be seen that the optimization process is largely \(\dot{c}\) ivorced from the system model. This fact permits construction of generalized optimization programs which can readily be coupled to digital system nojels. These models may be expressly constructed with this object in wind, or, equally, they may be existing digital system models constructed for conventional designer control and perturbation. An example of this type of generalized optinization program is AESOP \({ }^{\circ}\) (Automated Engineering and Scientific Optimization Program) recently constructed under contract to the National Aeronautics and Space Administration's Office of Advanced Research and Technology. This optimization program has been successfuily applied to a variety of engineering design optimization problems \(7,8,9,10\) some of which are listed in Figure 3.

The success of AESOP is largely due to the provision of several alternate seareh alocrithus within the prograw. These searches may ta amplojed either separately or in conjunction with each other. Technacues for search acceleration are incorporated as is a general method for location of more than one extremal. A schematic diagram of the optimization program is presented in Figure 4. The search algorithms include the following.

Sectioning search exhaustively searches the range of each parameter in turn for the one-dimensional optimum. The values of the parameters are fixed at the optima as they are achieved. The procedure is repeated until no further gain is possible. The parameter order can be chosen by the user or selected at random. This search can be used for evaluating non-optimum sensitivities about any point in the parameter space since each search essentially describes a one-dinensional cut through the multi-drmensional design parameter space.

Creeping search is similar to sectioning in that the parameters are perturbed in turn one at a time. 'In the creeping algorithm, however, the parameters inntially undergo only small incremental changes in the favorable performance direction. On repetitive cycles the step size is increased andependently an each parameter until further gain is impossible in either increasing or decreasing directions. An order of magnitude reduction in stepsize is then effected,
and the process is repeated．At any given moment some para－ meter stepsizes may be increasing while others are decreasing． Ultimately，all stepsizes are reduced to prespecified minimum values and the search is discontinued．

Randon point search is essentially a Monte Carlo technique which distributes points uniformly in the control parameter space． After a prespecified number of evaluations of the objective function，the control vector providing the best performance characteristics is retained．
－Magnify search scales all the control parameters uniformly in the favorable direction until the local optimum is achieved．

Steepest descent search relies on the numerical partial de－ rivatives of the objective function with respect to the control parameters to predict a favorable direction．In effect， a tangent plane is fitted to the objectave function surface at the starting point．Numerical derivatives are computed by two－sided perturbation of each design parameter and are thus correct to second order．In its simplest form the search proceeds in the gradient direction．Experience has shown that gradient direction search is often very inefficient． Ridge lines are rapidly located；from that point gradient search becomes a sequence of oscillatory perturbations along the ridge．Algorithm extensions have been incorporated in AESOP which allow the search to proceed in a weighted gradient むえュection．The weightiuy udrix empioyed as a perturbation measure is adaptially determined within the program by non－ dimensionalization of the search hyper－rectangle，local partial circularization of the payoff function contours，and， tost important，by an adaptive learning mechanism based on previous search behavior．

Quedratic search fits a second order surface to the payoff function at a nominal design point．The extremal of the approximating quadratic surface is predicted，and the search proceeds along the ray defined by（a）the initial point and （b）the predicted extremal point．This technique，although developed as a search procedure is also useful for predicting optinal second－order sensitivities about the optimal design point．

Davicion search or deflected gradient method essentially com－ bines features of steepest descent and quadratice searches． Ine procedure initially searches in the gradient direction． Recursive relationships permit development of approximate second order information from successive ray searches．This mannmation is used to develop a weightang matrix whach provides quadratic convergence．The method can become some－ what ill－conditioned if the payoff response surface does not exhibit almost quadratic form in the search region．

10．2－6

Pattern search can be applied after successive applications of any combination of other searches. It uses the starting point from the first search and the final point from the last search to define a new search ray. This ray is searched in the favorable direction for the local optimum. It is essentially an acceleration technique exploring gross directions revealed by other organized search algorithms.

Random ray search proceeds on the basis of small randomly selected design parameter perturbations. Perturbation magnitude is adaptively determined on basis of past performance characteristıc behavior. This can be very efficient when used in conjunction with pattern search when there are many interacting design parameters.

In addition to the nine searches which assume unimodality of the performance response surface, AESOP contains a method of locating more than one extremal. The program multiple extremal technique consists of design parameter space warping. A transformation is applied to the parameter space such that all the extremals of the performance response function are retained in the transformed space but the relative locations are altered in an inverse exponential manner about an arbitrary point in the original space. In practice the transformation is performed about some previously. discovered extremal point. Subsequent searches in the transformed space then have a reduced probability of finding the same extremal. This probability depends on the exponential order of the transformation selected by the user.

\subsection*{10.2.3 Sub-System Optimization}

Sub-system optimization, as defined in this paper, refers to the optimization \(O^{\overline{2}}\) the aerospace vehicle from the aspect of a single discipline. To-date applications of optimization theory to vehycle design in a single discipline have jeen abundantly reported.
In the field \({ }^{2}\) f supersonic aerodynamics, the results of Jones \({ }^{11}\), Lomax \({ }^{12}\), and ت̈easlett \({ }^{12}\) typify analytic approaches to this problem through the variational calculus. Woodward 13,14 has demonstrated the power of numerical approaches to optimal aerodynamıc shaping problems when payoff and constrants are related to vehicle surface slopes in a linear fashion. An excellent survey of recent developments in the general aerodynamic optiinzation problem is that of Miele \({ }^{15}\).

In the structural design area considerable progress has been made through the combination of specialized optimal seeking methods and large scale structural matrix analysis. This work is typified by that of Gellatliy \({ }^{16}\), Venkayyall, and others. A sumary of much of this activity 1 s provided by the recent Air Force sponsored Conference on Matrix Methods \({ }^{18}\).

Performance optimization studies for spacecraft have been reported extensively. State-of-the-art in this area can be assessed from the work of

Jezewski and Rozendaal \({ }^{19}\). In the past few years this area has produced a prolific number of papers in the AIAA Journai, the Journal of Optimization Theory and Application, and elsewhere. Atmospheric fiight path optimization has received considerably less attention. The state of optimization theory application in this area is summarized by the work of Rutowski \({ }^{20}\), Bryson \({ }^{21}\), Hague \({ }^{22}\), and Landgraf \({ }^{23}\). The dominant approach in all performance optimization work to-date has been the variational calculus.

The vehacle desagner confronted with the outpouring of special techniques for optimization in each area and the myriad of assumptions and approximations made to produce a tractable problem is understandably confused. Specialısts in optimization theory atself experience difficulty keeping abreast of developments in more than one area. The major objective of this paper is to demonstrate that, at the expense of some elegance in technique and resultant form of the solution, optimization problems involving combined aerospace vehicle design disciplines can be solved by the straightforward non-linear optimal seeking method.

\subsection*{10.2.4 Aerospace Vehicle System Performance Design Optimization}

It is apparent from Figures 1 and 2 that the total system performance design optimization problen can be considered as a large scale multivariable optamization problem. When the system designer examines the results of single discipline trade studies in an attempt to arrive at an improved vehicie design, he is applying the techniques of optimal seeking methods. The designer's approach to vehicle optimization does, however, depend on intunate knorledge of the vehicle perforrance trade study characteristics and past design experience for successful application. Hence, there has been a tendency to assume that vehacle system performance optimization would not be amenable to routine automation within the computer. The major intent of the present paper is to demonstrate that this 2 s not so; rather the venicle performance optimization problem differs only in the degree of corplexaty not in kind from the typical sub-system optimization problems discussed above.

ここ.2.i.I Vehicle and inssion Cnaracteristics.
The results presented below are obtained from a hypersonnc airplane design optinization program \({ }^{7}\), constructed under contract* to the National Aeronawics and Space Administration's Mission Analysis Division at Ames Research Center. The program has two major elements. A hypersonic air\(c r a \approx\) synthesis program constructed by NASA personnel 1,2 and the generalized muinivariable optimization program AESOP5,6 discussed in Section 2 of this paper. Typical designs studied to-date include a hypersonic transport (\(\ddagger S_{2}^{2}\)), Figure 5 and a hypersonic research alrcraft (HRA), Figure 6. Both azeraft presented illustrate configurations arrived at by application of the tultivariable search technıques presented previously. The HRA conEnzuration of Figure 6 was determined by in-house studies at NASA. The ap?lications described below are based on the HST concept of Figure 5 .

\footnotetext{
* Contract \(\operatorname{xAS} 2-4507\) NASA Headquarters OART Mission Analysis Division, tries Research Center
\(=0.2-8\)
}

The vehicle under study is a 500,000 pound liquid hydrogen fueled, subsonic burning turboramjet powered, delta winged hypersonic transport aircraft with a range of 5500 nautical miles. The objective of the study* was selection of the vehicle geometry, propulsion, and mission characteristics which maxanize the number of passengers carried over the design flight range subject to certain constraints such as vehicle takeoff distance, landing speed, and sonic boom ground overpressure.

The design synthesis developed by NASA is similar to that shown schematically in Figure I. The synthesis commences with basic geometry, propulsion and mission characteristics. This information is supplied to a detailed geometry package. Aerodynamic coefficlents are determined from the geometry description and stored as a function of Mach number and angle of attack. Engine data is determined from an engine design module based on data supplied by engine manufacturers. Mission performance is computed from preselected climb-cruise-descent profile. Structural and equipment weight is cietermined from historical data developed under a separate contract to NASA. The remaining mass, considered to be payload, is apportioned to passengers and passenger equipment. This design synthesis is the culmination of several years effort on the part of both NASA personnel and several NASA contractors.

\subsection*{10.2.4.2 Venicle Characteristics Ootimization.}

Initially, Zive primary design parameters are chosen for optimal selection on the jasis oif unconstrained maximum passenger capability. The parameters are wing loaĩing, aspect ratio, fuselage fineness ratio, an engıne sizing parameter, anc engine compressor pressure limat. A nominal design, Figure 5, procuced 220 passengers. After approximately 50 point design evaluations by \(A E S O P\) using the adaptive creeping search, the optimal design achievec 253 passengers over the specified range. Performance convergence of the opti=ization process is also shown (solid line) in Figure 7 in terms of number of passengers attained versus number of design evaluations. Confaience in the solution was obtained by an independent optimization calculatzon using a different nominal design. This design was arbitrarily chosen as tnat resulting from selection of the maximum allowable value for all fave cesign parameters being perturbed. Again, the payoff function converges to about 253 passengers, Figure 7. Nominal and final values of the cesign parameters are given in the table accompanyang Figure 7.

Convergence of the design parameters themselves is illustrated in Figures 8 anc 9. initially small perturbations are produced in the direction of favorasle perzormance. Perturbations are increased on successive cycles until further gain in either direction is impossible. The perturbation stepsize in that parameter reduces, and the process is repeated until convergence to the optisel design point is achzeved. It may be noted from Figures 8 and \(g\) the: cu:trol parameters do not converge to identical values from the two nominal designs; although payoff function values are practically identical. Sensitivaty of the objective function to changes in control parameters is low near the optimum. The "hill" is smooth. It may also be noted in Figure 9 that large perturbations occur in the engine pressure parameter even after convergence of the payoff function, an indication that engine
pressure is an insensitive parameter. This fact is also evidenced in Figure 10 which illustrates a one-dimensional cut in the engine pressurepayoff function plane produced by the sectioning search discussed in Section 2 of this paper. Similar cuts are presented for fuselage fineness ratio and aspect ratio in Figure 11 and 12. Fuselage fineness ratio is a sensıtive but apparently uncoupled dosign parameter. Cuts in the fuselage fineness ratio/payoff function-plane possess the same shape about. nominal and optimal design points. This is not true of wing aspect ratio. If the designer had the t'ask of determining optimal aspect ratio from sensitivitles about the nominal point design, he would choose the lower acceptable limit. When the desıgn is optimized, the aspect ratio lies in the middle of the acceptable range.

Solution of this five-parameter problem using several different nominals and search technaques provided confidence of the ability of multivariable search techniques in solution of vehzcle performance optimization problems. A more complex example is presented in Figure 13. Here the original five parameters are combined with five additional parameters: thrust deflection angle, wing and stabilizer thickness ratios, and aspect ratios of the horizontal and vertical stabilızer. The configuration which carried 220 passengers over 5500 nautical miles was used as a nominal point design. After approximately 75 perturbations of these ten design control parameters, the HST passenger carryzng capability was 260. The five additional design degrees of freedom resulted in seven additional passengers, a logical result of the expansion of the parameter space. . The computational requirements to achieve this result are signaficant. Although the problem required selection of ten design parameters, the number of evaluations to define the optimal design was only 50 percent more than that required in the five design parameter problem.

\subsection*{10.2.4.3 Teiticie lission Optrmizazion.}

Vehıcle mission or trajectory optamization problems traditionally have been solved by variational calculus; for optimal vehicle control must be established at all instants of time. Varıational optimization techniques involve large computer requirenents for time integration of the equations of motion in the atmosphere. While optimization in whach continuous control and a finite number of design parameters are simultaneously considered is feasiole, reference 25, this approach is both unwzeldy and not necessarily representative of the actual design optimization problem.

The mission analyst may, however, treat his problem by a more elemental means whth inttle loss in accuracy. Using a reduced set of motion equations, involving elimination of flight path angle rate terms, the analyst can uniquely describe the motion of the vehacle in the Mach-altitude plane and compute the massion tame history \({ }^{6}\). Tals technique is representative of the actuai performance and is well suited to parameter optimization. The array of altituce parameters at arbitrary Nach number points are taken as the problem paremoters. Performance criterıa selected in the present study is the same as that employed previously, payload at the mission end. Figure 14 presents a typical unconstramed optmal flight path obtained in the study. The resultant Mach-altitude profile has all the expected characteristics
for this type of vehicle. A subsonic climb is followed by a dive and zoom through the transonic region. The aircraft then climbs steadily before leveling out at Mach 3 where the turbojet engine performance efficiency begins to decrease. Climb performance improves again at about Mach 4 where the ramjet engine begins to operate efficiently. A 3 psf ground sonic boom overpressure constraint is displayed in Figure 14. Flight path optimization in the presence of this constralnt results in a path lying along the constraint boundary in the region \(1 \leq M \leq 3\).

\subsection*{10.2.4.4 Combined Vehicle Design Parameter and Mission Optimization.}

Combined design and trajectory optimization studies in this paper involve selection of the ten design parameters and the trajectory paraneters previously employed. The object remains that of maximizing passenger carrying capability over the 5500 nautical mile mission. Design constraints of sonic boom overpressure, take-off distance, and landing speed were sequentially applied. The results of these calculations are compared to earlıer results in Figure 15 and the nominal design which achieves 220 passengers. The five-variable solutions of Section 4.1 produce a payload of approximately 253 passengers independently of the search technaque employed. Introduction of five additional parameters, Section 4.2, permitted seven more or a 260 passenger payload capability. Trajectory optimization alone permitted no significant gain in performance over the nominal design when the sonic boom constraunt was applied. By pernitting penetration of the sonic boom boundary, a gain of nine passengers is possible. Based on results obtained to that point, the designer might assume that combining both trajectory and desıgn parameter optimization, approximately 269 passengers could be expected in the unconstrained case. Then suci a calculation is performed, hovever, a payioad of 2 ón passengers is achieved. This result indicates a strong coupling between design and trajectory parameters. This is quite slgaificant to the vehicle designer; for current aircraft design practice usually separates the selection of optamal design parameters and optimal massion profile.

The EEfect of adding vehicle operating constraints sequentially is tabulated in Figure 15. It can be seen that additzon of the sonac boom constraint reduces payload to 265 passengers, a loss of approximately 20 passengers. SatisEaction of a take-off constraint (clearance of a 50 feet nigh obstacle within 10,000 feet of ground roll comencement reduces payload capability to 24 passengers. a loss of twenty additional passengers from the sonic boon constrained solution. Finally, simultaneous satisfaction of sonic boom, take-off, and a landing approach speed constraint of 140 knots reduces the optimal payload to 222 passengers.

> 10.2.5 Conclusion

The aarospace vehicle performance optimization problem has been discussed in some cetail. It has been ponnted out that multivariable paraneter optimization, or op:imal seeking methods, are well-suited to solution of system optimization on a performance basis.

Multivariable parameter optimization techniques are discussed in some detail
as is a generalized parameter optimization digital computer program, AESOP. This program has seen extensive application both to aerospace subsystem and total system design from an engineering aspect. The program is capable of rapid coupling to either existing system models or to system models specifically created for this purpose. In the examples of system optimization presented designs appear reasonable from the engineering aspect.

It should be noted that true system performance must include the impact of economic factors in addition to the engineering design parameters. The combination of large scale aerospace vehicle design and cost synthesis when coupled to the optimal seeking methods hold the prospect of a true, quantitative systems analysis approach, free of the often unrealistic limitations imposed by linear and quadratic programming approaches.

\section*{REFERENCES}
1. Petersen, R. H., Gregory, T. J., and Smıth, C. L., "Some Comparisons of Turboramjet-Powered Hypersonic Aircraft for Cruise and Boost dissions," Journal of Aircraft, Vol. 3, No. 5, September- . October 1966.
2. Gregory, T. j., Petersen, R. H., and Wyss, J. A., "Performance Trade-Offs and' Research Problems for Hypersonic Transports," Journal of Aircraft, July-August, 1965.
3. Lee, Vernon A., et al., "Computerized Aircraft Synthesis," Journal of Aircraft, Vol. 4, Nัo. 5, September-October 1967.
4. Wilde, D. J., Optimal Seeking Methods, Prentice-Hall, Inc., 1964.
5. Hague, D. S. and Glatt, C. R., An Introduction to Multivariable Search Technicues for Parameter Optimization (and Program AESOP), NASA CR-73200, April 1968.
6. Hague, D. S. and Glatt, C. R., A Guide to the Automated Engineering and Screntific Optimızation Program (AESOP), NASA CR-73201,' April 1968.
7. Hague, D. S. and Glatt, C. R., Application of Multivariable Search Techniques to the Optimal Design of Hypersonic Cruise Vehicle, NASA CR-73202, April 1968.
 Shaping of Minmum Total Heat Re-entry Bodies at Hyperbolic Velocity, NASA CR-73203, April 1968.
9. Hague, D. S., Rozendall, H. L., and Voodward, F. A., "Application of Nultivarıable Search Techniques to Optımal Aerodynamic Snaping Problens," The Journal oi the Astronautical Sciences, Vo1. 15, No. 6, November-December 1968, pp. 283-296.
10. Sandran, W. A., Glait, C. R., and Hague, D. S., "Design of Arrays winh Uneçual Spacing and Partially Uniform Amplitude Taper," IEEE Transaction on Antennas and Propagation, September, 1969.
11. Jones, R. T., Theory of Wing-Body Wave Drag at Supersonic Speeds, NACA Report 1284, 1956.
12. Lomax, H. and Heaslett, M. A., "Recent Developments in the Theory of Wang-Body Wave Drag," Journal ō Aeronautical Scıences. December 1956.
13. 'roodnard, F. A., "Analysis and Design of Wing-Body Combınations at Subsonic and Supersonic Speeds," Journal of Aircraft, Vol. 5, No. 6, November-December 1968.
14. LaRowe, E. and Love, J. E., Analysis and Design of Supersonic WingBody Combinations, IncIuding Flow Properties in the Near Field, Part II - Digital Computer Program Description, NASA CR 73107, August 1967.
15. Miele, A., Theory of Optimum Aerodynamic Shapes, Academic Press, 1965.
16. Gellatily, Ronald A., Development of Procedures for Large-Scale Automated Minimum Weight Structural Design, AFFDL-TR-66-180, December 1966.'
17. Venkayya, V. B., An Iterative Method for the Analysis of Large Structural Systems, AFFDL-TR-67-194, April 1968.
18. United States Air Force, Conference on Matrix Methods, Dayton, Ohio.
19. Jezewskl, D. J.- and Rozendaal, H. L., An Efficient Method for Calculating Optimal Free Space \(N\)-Impulse Trajectories, NASA Manned Spacecraft Center Note 67-GM-170 (to be published in a forthcoming issue of the AIAA Journal).
20. Rutowski, E. R., "Energy Approach to the General Aircraft Performance Problem," Journal of the Aeronautical Sciences, March 1954.
21. Bryson, A. E. and Denham, W. F., A Steepest-Descent Method for Solving Optimal Programming Problems, Raytheon Report BR-1303.
22. Hague, D. S. and Glatt, C. R., Optimal Design Integration of Military Flight Vehicles, ODIN/MFV, Section 7.3, AFFDL-TR-72-132, 1972.
23. Landgraf, S. K., Some Practical Applications of Performance Optimization Technıques to High Performance Aircraft, AIAA Paper No. 64-288, Presented at the First AIAA Annual leering, June 1964.
24. Dolph, C. L., A Current Distrabution for Broadside Arrays Which Opthimes the Relationship Between Bean Width and Sidelobe Level, Proc. IRE, Vol. 34, June 1946, pg. 335.
25. Hague, D. S., "The Optimization of Multiple-Arc Trajectories by the Steepest-Descent Method," Recent Advances in Optimization Techmques, edịted by Lavi and Vogl, John Willey, 1966, pp. 489-517.
26. Morrison, D. D., Optimization by Least Squares, SIAM Journal Nunerical Analysis, (1968), p. 83.
27. Kowalik, J., Osborne, M. R., and Ryan, D. M., A New Method for Constrained - .-. Optimization Problems, (To Be Published in a Forthcoming Volume of the Journal of the Operations Research Society of America).

1-0.2-14

\section*{HYPERSONIC TRANSPORT SYNTHESIS}

BASIC GEOMETRY - Wing Area, Thickness-Chord
Ratio, Fuselage, Length,

PAYLOAD, RANGE, LANDING \& TAKE-OFF, SPEED, TIME-TO-CLIMB, etc.

FIGURE 10.2-1 HYPERSONIC TRANSPORT SYNTHESIS

\section*{OPTIMIZER SCHEMÂTIC}

FIGURE 10.2-2 OPTIMIZER SCHEMATIC

ESGMFEDMG PRODLEAS SOLVED BY \(A E S O P\)
- AERODYNMMIC AND AEROTHERMODYNAMIC SHAPING AICFOILS BODIES WINGS ROTOR BLADES
- GUIDANCE AND CONTROL

GRAVITY GRADIENT ATTITUDE CONTROL HYDRODYNAAC TRIM CONDITIONS AERODYTINAIC TRIM CONDITIONS
- MISSION PERFORIAANCE

LOW THRUST INTERPLANETARY SHAPING ImERPUBGTARY misSION PERFORMANCE AIR CRNFT PERFORAMNCE
- STRUCTURES

BORON FILMMENT STRUCTURES
STRUCTURES WITHI NATURAL FREQUENCY CONSTRAINTS
- COMMUNICATIDA AND Electronics

Ambenila Dis ion
hypersonic transport design afd perrohmance
INTERPLANETARY PROPULSION MODULE DESIGN
STOL VEHICIE DESIGN
FIGURE 10.2-3 ENGINEERING PROBLEMS SOLVED BY AESOP

\section*{ALGORTHMAS FOR OPTIMIZATION}

FIGURE 10.2-4 ALGORITHMS FOR OPTIMIZATION

\section*{NOMINAL VEHICLE CONFIGURATION}

FIGURE 10.2-5. NOMINAL VEHICLE CONFIGURATION

OPTIMIZED HRA GENERAL ARRANGEMENT

FIGURE 10.2-6 OPTIMIZED HRA GENERAL ARRANGEMENT

\section*{OBJECTIVE FUNCTION CONVERGENCE (NO. OF PASSENGERS)}

\begin{tabular}{|c|c|c|c|}
\hline PARAMETER & NOMINAL & FINAL 1 & FINAL 2 \\
\hline BING LOADING & 80 & 108.5 & 115.2 \\
ASPECT RATIO & 1.455 & 1.499 & 1.563 \\
FUSELAGE FINENESS & 14.0 & 15.80 & 15.46 \\
ENGINE SIZING PARAMETER & 4.0 & 3.30 & 3.36 \\
COMPRESSOR PRESSURE LIMIT & 200.0 & 149.96 & 150.4 \\
NUMEER OF PASSENGERS & 220.3 & 253.0 & 253.4 \\
\hline FIGURE \(10.2-7\) OBJECTIVE FUNCTION CONVERGENCE
\end{tabular}

FIGURE 10.2-8 AERODYNAMIC PARAMETER CONVERGENCE - FIVE VARIABLE PROBLEM
10.2-22

ORIGINAL PaGE IS
OF POOR QUALITY

\section*{ENGINE PARAMETER CONVERGENCE - FIVE VARIABLE PROBLEM}

FIGURE 10.2-9 ENGINE PARAMETER CONVIRGLLNCL - FIVE VARIABLE PROBLEA

\section*{NOMINAL AND OPTIMAL SENSITIVITIES ENGINE PRESSURELIMIT}

FIGURE 10.2-10 NOMINAL AND OPTIMAL SENSITIVITIES ENGINE PRESSURE LIMIT

\section*{NOMINAL AND OPTIMAL SENSITIVITIES FUSELAGE FINENESS RATIO}

FIGURE 10.2-11 'NOMINAL AND OPTIMA, SENSITIVITIES FUSELAGE FINENESS RATIO

\section*{NOMINAL AND OPTIMAL SENSITIVITIES WING ASPECT RATIO}

FIGURE 10 2-12 NOMINAL AND OP'IMAL, SENSITTVIIIES WING ASPECT RA110

FIGURE 10.2-14.

\section*{UNCONSTRAINED OPTIMAL HYPERSONIC CRUISE VEHICLE FLIGHT PATH \(\quad 0.4 \leq M \leq 6.0\)}

FIGURE 10.2-14 UNCONSTRAINED OPTIMAL HIPERSONIC CRUISE VEHICLE FLIGIII PATH \(0.4 \leqslant \mathrm{M} \leqslant 6.0\)

RESULTS OF MAJOR OPTIMIZATION CALCULATIONS
\begin{tabular}{|c|c|}
\hline DESCRIPTION & NUMBER OF PASSENGERS \\
\hline NOMINAL SUPPLIED BY AMES RESEARCH CENTER & 220.3 \\
\hline \begin{tabular}{l}
FIVE DESIGN-VARIABLE SOLUTIONS \\
- adaptive creeping search \\
FROM AMES NOMINAL \\
FROM UPPER BOUNDARY \\
- STEEPEST DESCENT SEARCH (EMPIRICAL METRIC) \\
- SECTIONING SEARCH \\
- QUADRATIC SEARCH
\end{tabular} & \[
\begin{aligned}
& 253.3 \\
& 253.4 \\
& 252.0 \\
& 253.1 \\
& 253.3
\end{aligned}
\] \\
\hline \begin{tabular}{l}
TEN DESIGN-VARIABLE SOLUTIONS \\
- ADAPTIVE CREEPING SEARCH FROM AMES NOMINAL FROM UPPER BOUNDARY \\
- STEEPEST-DESCENT SEARCH
\end{tabular} & \[
\begin{aligned}
& 260.0 \\
& 260.8 \\
& 257.0
\end{aligned}
\] \\
\hline \begin{tabular}{l}
TRAECTORY OPTIMIZATION \\
- eleven variable with sonic boom and MONOTONIC HEIGHT CONSTRAINT \\
- SEVENTEEN VARIABLE UNCONSTRAINED
\end{tabular} & \[
\begin{aligned}
& 220.4 \\
& 229.1
\end{aligned}
\] \\
\hline \begin{tabular}{l}
CONIINED DESIGN AND TRAECTORY OPTIMIZATION \\
- UNCONSTRAINED \\
- SONIC BOOM CONSTRAINT IMPOSED FROM AMES NOMINAL FROM UPPER BOUNDARY \\
- SONIC BOOM PLUS TAKE-OFF CONSTRAINT \\
- SONIC BOOM, TAKE-OFF AND LANDING CONSTRANT
\end{tabular} & \[
\begin{aligned}
& 286.1 \\
& 263.8 \\
& 265.2 \\
& 246.8 \\
& 222.5
\end{aligned}
\] \\
\hline
\end{tabular}

FIGURE 10.2-15 RESULTS OF MAJOR OPTIMIZATION CALCULATIONS

\section*{SECTION 11}

\section*{PRECOMPIL̆LER TËC̄HNÍQUES}

The ODIN system contains a generalızed precompiler program, MACRO FORTRAN. Thas string processor allows the user to construct his own programming language, for example, extended FORTRAN. The MACRO FORTRAN program was obtained undē Aerophysics Research Corporation funds from The Boeing Company.

\section*{table of contents for section 11.1, macro fortran precompiler}
\begin{tabular}{|c|c|c|}
\hline Section & & Page \\
\hline 11.1.1 & General Information & 11.1-1 \\
\hline & 11.1.1.1 Precompilation & 11.1-1 \\
\hline & 11.1.1.2 MAC Software & 11.1-1 \\
\hline & 11.1.1.3 MAC Precompilers & 11.1-2 \\
\hline & 11.1.1.4 Coding Conventions & 11.1-3 \\
\hline & 11.1.1.5 Restrictions & 11.1-3 \\
\hline & 11.1.1.6 Internal Data Format & 11.1-3 \\
\hline & 11.1.1.7 String References & 11.1-4 \\
\hline & 11.1.1.8 Explanation of Symbols & 11.1-4 \\
\hline & 11.1.1.9 General Statement Forms & 11.1-5 \\
\hline 11.1 .2 & Main Program Statements & 11.1-8 \\
\hline & 11.1.2.1 Introduction & 11.1-8 \\
\hline & 11.1.2.2 Control Block & 11.1-8 \\
\hline & 11.1.2.3 Use & 11.1-8 \\
\hline & 11.1.2.4 End & 11.1-8 \\
\hline & 11.1.2.5 Example & 11.1-9 \\
\hline 11.1 .3 & Analysis Block Statements & 11.1-10 \\
\hline & 11.1.3.1 Introduction & 11.1-10 \\
\hline & 11.1.3.2 Macro Block & 11.1-10 \\
\hline & 11.1.3.3 String Image & 11.1-11 \\
\hline & 11.1.3.4 Identify & 11.1-11 \\
\hline & 11.1.3.5 *, 1, \$ & 11.1-14 \\
\hline & 11.1.3.6 Build & 11.1-16 \\
\hline & 11.1.3.7 Substring & 11.1-16 \\
\hline & 11.1.3.8 Compare & 11.1-17 \\
\hline & 11.1.3.9 Move & 11.1-18 \\
\hline & 11.1.3.10 Compress & 11.1-19 \\
\hline & 11.1.3.11 Convert & 11.1-20 \\
\hline & 11.1.3.12 Defane Orıgın & 11.1-20 \\
\hline & 11.1.3.13 Statements & 11.1-21 \\
\hline & 11.1.3.14 Level & 11.1-22 \\
\hline Catis & 11.1.3.15 LINK TO & 11.1-23 \\
\hline poril & 11.1.3.16 DELIMIT & 11.1-23 \\
\hline & 11.1.3.17 REINIT MAC & 11.1-24 \\
\hline \(0 \mathrm{PO}^{2}\) & 11.1.3.18 FORMAT & 11.1-24 \\
\hline 0 O & 11.1.3.19 (PRINT) (READ) & 11.1-25 \\
\hline
\end{tabular}
11.1.4 Examples 11.1-28
11.1.4.1 Example 1. 11.1-28
11.1.4.2 Example 2. 11.1-29
11.1.4.3 Example 3. 11.1-30
11.1.4.4 Example 4. 11.1-31
11.1.4.5 Example 5. 11.1-31
11.1.5 Typical Control Cards 11.1~33
Illustrations 11.1-34

\section*{11．1．1 General Information}

\section*{12．1．亡．1 Precomplation．}

Precompilation is a process by which a source program is examined and transformed，by means of prescribed algorithms，into a resultant source progran．Normally，a precompler accepts input programs in which the problem solver is able to state procedures in a concise，problem－oriented mamner．The resultant program is then a language acceptable to an oporating system compiler．

Several broad areas of computing to which precompilation way be applied are 1）Creation of spectal－purpose languages for pro－ giemincrs and engineors，o． 0. ，character manipulation or plotting languases；2）Enrichaent of existing languages，e．g．，Forfand or COBOL；3）Sinulation of the lanmazes of other computers； 4）Cration of control languages binch provide a convenient weans of linking existing software routines together to perform some computing task．

ニ．ニ．ニ．2 YAC Software．
In ovier to assist programmers in developing special－purpose precompilers so that they may be used as additional computing tools whenever applicable，the following software has been implemented：

1．The basic fratuework for any pricompiler，e．E．，I／O provisions， operating sybtom interfaces，diagnostic facilitied，character manipulation routines，etc．

A2l that remains to be dono to make this a complete pre－ compiler oriented toward a specific task is to supply the transformation algorithis for the problem－oriented statemente desired and attach these to the franework．The reault will be a complete application－oriented procompiler．
2. A language processor which makes the task of coding transformation algorithms a relatively simple procedure.

The linkage of the coded algorithms to the precompiler framework is automatic when this language is used. This language is called the MAC language and it includes all FORTRAN IV statements plus a set of statements for identafying problemoriented statements, manipulating character strings, and communicating with the precompiler framework.

\section*{ii.i.I. 3 MAC Precompilers.}

To develop a special-purpose precompiler once the necessary transfornations have been formulated, the prozrammer need only code these transformations as individual MAC language subprourams and supply these to the computer whth appropriate control information. The precompiler produced, ray, be used to preprocess prozrama imnediately or it may be saved for use on subsequent computer runs.

A complete MAC language prozram definino a precompiler uill consist of several subprozransi, calleu macro block subprozrans, and one main program, called a control block. Each subprogram hill normally be devoted to identifying one specific kind of problem-oriented statement, determining which variatzon of that siatement is currently being processed, and constructing new statements for inclusion in the transforied progran. In a MAC language ciann progran the prosrammer sitiply specifies, in a prescribed format, the names of all macro block subprojrens which are to be a part of the user precompiler being constructed. After being processed by HAC, a control block main prozran becones the anterface between the operating system, the precompiler franewor:s, and the processed macro block subprozrams.

It may be noted that all precompilers created under this systen, regardess of their intended applacation, 'are built on the same basic precompiler iramevork. Any subprogran defining a problem-oriented statement may be attached to any precompiler. . In this sense preconpiler designers have, under the MAC system, the facility for exchanging worthmile ideas with little' or no re-jprogramming.

\subsection*{11.1.1. 4 Coding Conventions.}

Since the NAC language is an extension of FoMTRAil IV, the conventions are the same as for FORTRAN IV. The proframiner can manipulate variables, type names, assign common blocks, etc., in almost all cases. The exceptions are noted in the manual.

Input is 80-column card images that are put into complete statement form before analysis, i.e., columns l-72 of first card of statement plus columns 7-72 of all continuation cards. Columns 73-80 of all cards are lost during the precompiler generation.

All FORTRAN comment cards are sent directly to the transformed program file without analysis.

\subsection*{11.1.1.5 Restrictions.}
1) A NAC statement should not be used to end a DO Loop and should not appear at the right side of a logical IF.
2) Variable names JC000 throuth J9999, R0000 through R9999, and any name beginning with the combination QX are reserved for use by the MAC systea.
3) Statement laoels should not exceed 89999. Labels above this are reserved for use by the MAC systen.
11.2.2.6 Internal Data Format.

A progran must have some vay of identifying stored data so that it can be mandpulated. In FORTiNAN, of course, we use variables and arrays. All data winch is to be identified and ranipulated by "pure" (non-FORTRAM) :iC statements must be in MAC strings.

Each strine is identified by an anterer length variable and a name, the value of the length variable beins the number of uasble characters in the string startang with the character referred to by the name. Normally, MAC does not type string names as they are manipulated via subroutines.

Because the strings are stored in arrays of fixcd words and the length variables are FOKTRAN varinules, it is possible for the programmer to manipulate these words via FORTRAN statements.

It is the programmer's responsibility to not violate the MfC forust. One of the bis advantagos of strings is thet machine incopendence. Synce word size is rachine dependent, the progranmer should carefully labsl Ell fORTRMN ranz imations of string yords to allow easy conversion to cher machines. It is rocomanded that the equivalent IAC statements be ancluded as comments.

\subsection*{11.1.1. 7 String References.}

To allow MAC to identify string nemes in MAC statements, string names are delimited by periods (.) unless othervise declared by the programer. If \(S\) is a string
```

.S. references the entire string.
.S(I,J). references the partial string of
characters I through J of S.
references the Kth character string of S.
references the Ith substring of S if S is
in partitionod form. (Section 3.7).

```
11.2.1. 8 Explanation of Symbols.

Tre follotane sjabol corvertions are used in the folloring goneral statenent form \({ }^{\circ}\) (Section 1.9):
\begin{tabular}{|c|c|}
\hline \(\underline{2 x}\) & A MAC language vord that must be writen exactly as grven. \\
\hline XXXXX & A prostemmer-defined or FORTRAN language vord. \\
\hline name & any legal name in the FORman sezse excopting \(J 0000\) throush J9999, 30000 through R9999, and any nerac besinning with \(Q \mathrm{X}\). \\
\hline nameD & any nara followed by optional dimension information, e. \(8 ., \mathrm{XYZ}\) or SI ((34)). \\
\hline \(\beta\) & an optional 'blank-forcing' character \\
\hline & In all of the NAC statements actual blanks are ignored. If a coder desires to swecify meaningful blanks as part of soue literal teai in a MiC statemont, he may do so by placing sone character in the position in that statement and then using at to reprosent the character blank in a diters m thin that stato.nent. The coder should be carcful to voloct a character for this function that 26 not being used for anythang elso withan that MiC etntoment. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline . PaCS . & any one of the four forms (Entare, Character, Partial, or Substring) \\
\hline \(V\) & any positive or negative statement number \\
\hline & A positive number points to the statement which is to receive control if the desired test is successful. If the test is unsuccessful control passes to the next sequential statement. \\
\hline & In the case of a negative number, the alternatives are reversed. \\
\hline 5 d & A character position designator (card column designator if the character string is a statement image) \\
\hline & A designator of this type may be any integer constant, variabie, or expression surrounded by deliaiters. The delimiter will be che dollar sign (3) unless sose other character is declared for this purpose by the coder. \\
\hline prototype & A MAC language description of a character string or statement that is to be identified. \\
\hline & A prototype may contain any combination of iaentification text, entíre strin- names, and position designators provided no two strinén names appear adiavent to one another. Identification is made on the pasis of position desizn三tors and zeentification text alone. String names are the naines of character strings to be appropriately fillea if the 1 dentification match is successful. \\
\hline 293 & Transformed program file - the file of transformed statements. \\
\hline string expression & any combination of literal text, string references (any type), and position designators. \\
\hline ..\(^{\text {. }}\) & an entire string name \\
\hline .EPCSI. & any one of the four string reference forms or a literal \\
\hline \begin{tabular}{l}
A descripti \\
along with
\end{tabular} & ion of the individusl MAC statements will now be given examples of their use. \\
\hline
\end{tabular}
II.I.ニ.9 General Statement Forms.
in general, the Mic statements are as follows:
```

CONTROL BLOCK name
CONTROL BLOCK OVERLAV name
USE name
MACRO BLOCK name
IMAGE ( int var, name )
STRING ( int var, named $_{1}$ ),...., ( int var $n$, name $D_{n}$ )
IDENTIFY $\beta$.EPCS. $(V)$ ) $d S$ prototype
I $\beta$ id string expression

* $\beta$ § $\$$ string expression
$\$ \beta \$ d \$$ string expression
BUILD $\beta$.E. Was string expression
SUBSTRINGB. APES. INTO .E. ON .EPCSL.
COMPARES. $3 P C S$. ( $V$ ) .EPCSL.
YOVE int expression $\mathrm{FROM} \cdot \mathrm{E}_{1} \cdot \$ \mathrm{O} \$ \mathrm{INTO} \cdot \mathrm{E}_{2} \cdot \$ \mathrm{D}_{2} \$$
HOVE P. $\left\{\begin{array}{l}\mathrm{MO} \\ \frac{\mathrm{INTO}}{\mathrm{INO}}\end{array}\right\} \cdot P$.
COMPRESS .E.
CO'PRESS .E. ALL BUT integer
CONVERT int expression to . $E$.
CONVERT . 2. TO Integer variable

```

```

ORIGIN $\left\{\frac{\frac{\text { INTEGER }}{\text { REAL }}}{\text { LABEL }}\right\} \quad$ integer expression
limRNIIGS any appropriate diagnostic note
EPORS any appropriate diagnostic note
ABORTS any appropriate diagnostic note

```
HARNINES\$ \(\beta\) \$d strins exprossion
ERRORS \(\rho\) Sas string exprossion
ABORTSSB Sa\$ string expression
LEVEL CANCES
IINX TO namo
DELIMTI STRING any ono character (excluding blank)
SHITCH FIND integer variable
REINIT MAC
WD
FOMAS \(\beta\) (format statoment)
(PaIIT) \(\beta\) Sda string expression

SEP PAIIT) URTS integer exprocssion
SYe (RSN) intr intezer cepression
Symbole such as \(\beta_{1} V_{2}\) sàs, etc., are explained in Section 1.8.

\section*{11．1．2 Main Program Statements}

\section*{11．1．2．1 Introduction．}

The main program initializes various switches，calls the \(I / O\) section to input a statement，and then turns control over to the various analysis subprozramb．Upon return from each such sub－ progran，a check is made to determine if the statement was accepted and，if not，it is sent to the next analysis subprogrem．If no more subprograms exist，the statement is sent to the transformed progran file（TPF）．

Only the statements in this chapter and comment cards may appear in the main progran．A programer can circunvent this by writing his osin FORTRAN main program；however，this is not reconmended because the main program interfaces with the system I／O．
```

11.1.2.2 Control Block
- Control Block Overlay

```
 The first statement of the main profran, or control block, is the
 above plus a precompller rame ard ille nanes.
 CONTROL BEOCX OVERIAY allois the prograrmer to specify the main
 prograri be rade into a 6500 overlay. lid vill ouzla a (0,0) level
 and a (1,0) level overlay having the narse specisied by the
 programer. For precomilews not using the reamtraluze feature
 (section 3.17), the oniy function of the (0,0) level will
 be to call the (1,0) Level overlay.
 \(=.1 .2 .3\) üse.
 Tells MAC to senerate codiñ to transfer control to the nanod
 analysis subprosran.
 \(=2.2 .4\) Ena.
 Signals the end of the main progran.
 ミ..こー8
11.1.2.5 Example.

The filea Fl, F2,..., FN are best described by looking at the program card generated from the COITRZOL BLOCK card.
```

PROGRAM NAME(FI, NFIRST, L,F2, F3, F4, F5,···.., FN,
TAPE8, TAPEL3, TAPEL8, TAPE5=F2, TAPE6=F3,
TAPE77=F1)

```

The progran nane becomes NAME and as such is the name of the precompiler being built by the user. The files declared on the program card are described in the table on the next page.

Note: The following file names should not be declared by a user:

INPUT
OUTPUT
excon
TAPE 8
TAPE 13
TAPE 77
L
NFIRST
REINIT
TAPE 18

\subsection*{11.1.3 Analysis Block Statements}

\subsection*{11.1.3.1 Introduction.}

Analysis or macro blocke are witton to enalyze input otateracnts and, if noccosary, convert thon to scane output lansuago. It is
- in these blocks that the precorpilior language is dofined since only in those blocks will the programer be able to "soc" input and gonerate ostput. AIL FOZTRAN IV stateaents are pormissiblo in thoso blocks.

It is recomonded that each block bo written to accopt only ono type of input statowent. Theso wodulos can then be used by any othor MAC precompiler and the procompiler and language are easily. modifiod.

\subsection*{11.1.3.2 Macro Block.}

The first statemont in a macro block bubprozran should bo of tho form

MACRO EXOCX nang
Trise is simales in function to tho Sugnourine etatement in a FORTRAN subprogran but a ILAC lanjuago subprogran doss not rocelvo arguments through a callinz soquenco. (A calling boquence can be included if coanruai.)
"HACRO BLON R2ge" causes HAG to gonorato at least tho followins soquence of FORTAM statemonto
```

SUEROUTINE ramo
CORON/QMDHM/GMNALS
DATA QXHOH//~ H nawa/
QXHAHE=QNTO:

```

Theso last throo atatcanis can bo uood an a dobucising add cinco, if tho prosracier ember for a dump of that ons comon block thonever hic prozras has on abnoimal halt, ho an quicl-ly dotomino which macro block tias boins oxccutcd. Aitor choclout of noono bloolion
 nano" to olirinato compilor diasnoseice duo to data appoarins. aftor "QXidita a Qriain.
11.1.3.3 String Image.

AII MAC variables (etrings) must be dorinod with either of these two statenents. The strins declarations consiat of ordored pairs (II, I2) with II the name of the longth variablo associated kith tho string name I2. Il must be a FORMRAN integer variable or clso typod intogor. I2 does not have a type unlesa the programmor msnipulatos it via FORTRAN statements.

The maxiraun string length can bs declared or inplied. Tho statoment

STRING (LA, \(A((N)))\)
will resorve \(N\) character positions for the string \(A\). \(N\) cannot excoed 2326 and for \(N=2326\) the programaer neod not specify N, i.e.,

SIRING \((L A, A((1326))) \equiv \operatorname{STRING}(L A, A)\).
All input statements appear in a spocial string of esxinu size. The prograncer designatos the nans of this string by the IfAgE etatement. The particular nane used is lecal to each block, but tho actual area reserved in comon to all blocks having an IHGGE staterent. Only one inago atring is declared in each Eacro block. The iora of the IntGe atatement is

IFAGE (LA, A)
 can be put jato comon blochs by the progranmer. As etringa are manipulated in MAC statewonts, the length of the strings are autowatically upiated.

ニ....ふ.
Trus is one of the movo poweriul atateconts in liAC. The initial string is checked for the spocifica litoral pattern and if the pattern is iound, the reronining charactors aro placod in the nawed strings. The foria of the statcriont ic
IDEATIFY ̂. .S. (I) prototjpo
where. \(S\). is on EPCS otring, \(\sqrt{ } 28\) a statcaent labcl, and prototype \(2 \varepsilon\) any combination of litezals, colurm dolimitora, and strinjs that antiofy Rule 3 bolow. (\(-m\)) means transfor tomif unsuccoosfulo \((t \pi)\) or (\(x\)) coons transfer to fin if cuccossful. In gonorad, the prototyps will bezin thith a colum doliadtor and have otring narea ooparated by litcrais or colum doluaitoro.
11.1.11

Threo rulea aust be observod whon coding this statoment:
1) icading or intersparsod blanks are ignored, but trailing ones are not;
2) any successful IDMTIFY statement scts the, FIND switch (Saction 3.18) oni
3) two string nanos cannot be immediately adjacont.

Rule 1 doos not cause problems if the IDEMPIFY etatement always teralinates with a strins since thon all trailing characters are put in this string.

Rulo 2. neans that the programor does not have to eliminate the inage string to prevont it froa appoaring in the TPF. It also means tho procrammer ray loso an inage string if an IDEMTIFY is successful on any atring.

Rulo 3 is fairly obrious since if tyo stringe are adjacent, it is inpossible to detereane how many characters are to go into each string. If coluen dolimiters or literals are used betwoen the strings, no dagnostic will appoar.

As the folloring examples sho\%, this statenent is particularly useful in breaking input statements into component strings.

Encuplo 1 - Suppose the problcu-oricnted staterent being considered is of the Yow

Where optil is the no: 3 of tho plotting device to be usod,
 tho or:ays contoining tho data points to be plottod. Thon a wacro block subprogios to idontafy cuch a statenent and 2colato the optiomal inforation for furihos analysis could be written

MACSO DIOCK XPLOR
ITGGE (ISTS)
\(\operatorname{Sraing}(L L, L((6))),(1,4, A((24))),(L B, B((24))),(L C, C)\) IDEMTIT .S. (-100) 813 .L. \(\$ 7 \hat{\mathrm{E}}\) PLOT ON.A./.B./.C.
-
-
- (furthor analyoio)
-
100 REIURA:
EITD

If tho imase of the statonant being processed contoincd bbS42bbbPLOTbSONDDEVICEDA/OLINEAR/OY, bY, bXX, bYY
then identificatzon would be positive and strings \(I, A, B\), and \(C\) would be adjusted to the following:

I vould be filled with bbb42b
LL yould be set to six
\(A\) kould be filled trith
bDEVICEbA
LA vould be set to nine
\(B\) sould be filled vith
bLINEAR
IB yould be set to seven
C would bo filled with
\(b X, b Y, b X X, b Y Y\)
IC rould be eot to thirteon
Control woula then pase to the next sequential statowent.
Bocauso of the way the IDPMTIYY statement is written in this examplo, blarka in the leage statcanont do not affect the test for identification. If the originator of this problez-orionted statezent had desired, he could have specified that the words PLOM ON had to be separated by at least one blank. The IDEMTIRY line for this vould be
```

IDEMTIPI* .S. (-1\infty) \$I`.L.\$7ई PLOT * ON.A./.B./.C.

```

In thas case tho characiar * is trectca as a mearinfful blonk within the adorififeatzon text.
```

Bamplo 2 - IDENTIT ,ABC. (+80) {7% CLOSE PLOT
Frise inno says to lcok into string isO begrnning at
cteracter }7\mathrm{ fo: twe pattern CiOSEMLOT. Leading or
interveninj blenixs should be ignored. ANY CHADSCRERS
following the mwil cause tho identification test to
fail, e.g., the patterno
CLOSE PIOTTES
or CiOSE PLOT X
or CLOSEbPIOTO

```
pouid bo rojected by the identify test. Accoptable pattorno uighit be

CLOSEPLOT
or CLOSE PLOT
orCLOSE PLOT

This lins says to look into the Kth substring of \(T\) for tho words RETRIEVE and DATA．Theso vords must be ooparatod by at least one blank，as significd by the character 9．If found， properly update string CODE whth the remaining characters of the substring and transfer control to atatement 16.

Example 4 －IDEHPIFY \(\cdot R(J, J+6) \cdot(-50) 81\}^{* * * * * * * ~}\)
This line says to transfor control to statement 60 if the referenced seven characters aro not all blanss．

20 COMTINOS
This IDEMTEY will albays be succossful．Upon completion， \(. A .=. S(1,6) \cdot\) i \(\cdot B .=. S(7,29) \cdot, . C=. S(30,1 S)\) ．whore IS is the length variaislv for ．S．．

NOPR：Imadiately follo：ing the IDETAFI line in a aacro block， it is generally a good practice to rcmove the blanks froa thoso individual ch actor strings in winch blanks are not significant． Tris tocinicue rill sinplify the subsequent analysis to be perfomed on sucis strimes，Removal of blanks way be accomplichod convertently by uijing the CCipazSS statement with will bo doscribod in Section 3．10．

\section*{上．ニ．3．5 ニ，二，色}

The A，I，and I statanonts assist the haC languoze codicr in cominuctans statements and cause these to be included in tho transforad prowrim．The weannge of the three symbols is as follows．
－Include this line in the transioracd progran in place．
1 Incluco thin lino in the transomed procrad at tho toy．
The transforasd prosrad uill bo reemañed so that all linos of this typs appear iirst．This is usoful for including type statemonts，comin statements；etc．；in the progiad．

MOIE: Inwodately bofore resixanging the transformed prozran, the firat lins in that proçran fa checked to doternino whether It is a SUBROUTINE, FÜVCIION, or BLOCK DATA otatement. If
it is, that line will reaann firet in the rearranged.prosman.
S Includo thas line in the transformed program in place; but flac it as a statement requiring further analyais.

If any Ilagsed statements arc prosent in the transforyod prozan after tho initial precompilation paja, another paso will be eade so that those flacjed lincs cen bo eont through the macro blocks for mualysis as posaible problea-oỉcatcd statenents. If this analysis producos nod fläsこd lixis, anotiner precompilation pass \(k=11\) be made, and so fortin. It chould be noted that extra procozpilation pacses roqure extsca cozputer timoi howover, the additional tine is not cuch eruator than necdod to process tho sane nurber of input evatezonts as there are \(\$\) gtaterients.

The irciuded line would coxtain aix blanks in colume one through six followed by a coneatonation of the following:

The charactcre Cin
Mo characters in atring A
\(\therefore\) lest paruathojis
Tro gix charactore, I tironja It5, of gtring \(S\)
The charactors \(2 Z\)
Fne Jth charactex of:szring \(T\)

 in cosumas one throuza six. Thon, beoinnine in column eoven soine 00

GOETOS
Eolioned by the contents of stinn LON.

 FI二s :oild be iollowsd by the chesaciors fron the Kth substraily of S. Iris would finally bo follc ot by throo blank and tho charactens froz the Lth substrang of R.

\section*{İ.i.3.6 Build}

The FUJID statement is similar to the, 1 , and \(\mathbb{B}\) statemonits already discussed except that the string which is constructed in this case is not included in the transformed program. Instead, it is stored in a specified string whthin the macro block subprograne. As an examplo, consider the following:

BUIKD. .X. \$J\$ CALL .A. (.B(13,18).)
This line says to build into string \(X\) the following:
Blanks in columns one through \(\mathrm{J}-1\), the characters CALL, the characters from string \(A\), then a (, the characters 13-18 from string \(B\), and finally a).

The former contents of string \(X\) are erased.

\section*{-.i.3.7 Sübstring.}

The purpose of th: SUESTRJM statement is to separate a given pattern of cheracters into a set of substrangs. These bubotrings ney thon be referenced induvidzally by weing tie brecketed eubscript fom, As an exciple, conside: the following:

Assume that \(\operatorname{string} A\) contains the folloding character pattern:

\section*{XYAXYBXYO}

Then the tiatoments
\[
\begin{aligned}
& \text { STESTRIM . A. INTO .B. ON Y } \\
& \text { SUSSR2TiG .A. INTO .C. OMI XT }
\end{aligned}
\]
would proake tho 'partitionad' stringa \(B\) and \(C\) containing theso substrings
\begin{tabular}{ll}
\(B(4\) Bubstring3 \()\) & \(C(4\) oubstrinas) \\
\(X\) & erapty \\
\(A X\) & \(A\) \\
\(B X\) & \(B\) \\
\(C\) & \(C\)
\end{tabular}

In thas exanple the associated longth cells of strino3 \(B\) and \(C\) rould cach be sot wh iour. The length celle of partitioned atringa will contain the nuiber of substringa present rather than the number of characters presont.
```

As another example, assume string X contains
A,B(I,J),C
then the statements
LEVPL CANCEL
SURSTRTITC .X. INTO .G. ON ,
LEVEI RESTORE
SUBSTRING .X. INTO .R. ON ,
would produce
H(4 substrings) R ( 3 substrings)
A A
B(I
J) C
B(I,J) ,
C

```

This illustrates the effect of the LESEL statement. This statement is meaningful only in conjunction with the SURSTRIAG statement. When the level is in a 'restored' condition, the only separators valid are those which are not enclosed within parentheses (i.c., those which are at zero parerthesis level). When the level is in a 'cancelled' itatus, all separators are valid.

The level sotting for each macro block is indepondent of the sottirigs for the other blocks. The 'restored' or 'on' status is assured for each block at the besinning of grocompilation. Once altered, houever, level settinss are not resct autonatically. Thus, if control is given \(u\) ij \(\mathrm{b}_{\mathrm{j}}\) a tacro block at a tiua whon the level is in a cancalled status, this status will be retained at the next entry to that block.

\section*{}

The COYPARE statement is for testing two character patterns for equality. In order for tyo patterns to be equal they must bs identical in all respects includang number of characters. For example, suppose
- strins . A. Contsins AMGLEbOrbatick
and substring . \(B=3=\). contains ANGLDOFATTACK
thon the lino
COYPARE .A. (-20) . \(B=3=\).
would cause control to go to statemont 20 due to the inequality of the two patterns involved. Howovor, the line

COMPARE* A. (-20) ANGLE*OF•ATTACK
vould produce a valid equality and the next sequential statement would receive control.

\subsection*{11.1.3.9 Move.}

The MOVE statement provides for movement of characters within strings or from one string to another. For exaraple, the line

MOVE J-1 FROA •A. \$7\$ ITTO .B. SK\$
is interpreted as "move J-1 characters from string A bezinning with character seven into string \(B\) beginning at character position " K ". If stranss \(A\) and \(B\) containad the respective patterns

1234557890
and APCDEFGHIJKLYMOP
and \(J-1\) and \(K\) wer: two and six respectively, then the final pattern in \(B\) voula be

ABCDETBHIJKIMOP
and the associated lengith of string \(B\) would be unchanged.
As an exarile of joinins two atringe with the HOVE statement is the following:

STRING (LR,R), \((N X, X)\)
\(\square\)
-
MOVE LR FROM .R. \(\$ 1 \$\) INTO .X. \(\$ \mathrm{NX}+1 \$\)
-
-
-
END
In this exampe, all of the charactors in string \(R\) are movedinto string \(X\) follorinz the characiters which woro proviously there. After exccution of this statoment, NX is proporly adjuatod to tho new length of string \(X\).

An alternate form of the MOVE statement is the following:
MOVE .C. \(\frac{\text { TO }}{\text { INTO }}\).C.
Thins form is best explained by the following example:
MOVE \(A(I, J) \cdot T O\). \(B(K, I)\).
case a) \((J+1+1) \geqslant(L-K+1)\)
moves L-K +1 characters of string \(A\) beganning at position \(I\) into string \(B\) starting at position \(K\).
case b) \(\quad(J-I+I)<(I-K+I)\)
moves J-I +1 characters of string A beginning at position \(I\) into string \(B\) starting at position \(K\). In addition, (L-K) -(J-I) blanks are moved into string B starting at position \(K+(J-I+1)\)
11.1.3.10 Compress.

Tho COMPRESS atatーnint reavos blanks from an ontire strins and appropriately decreases its aesociated length. If, for example, string A had length seven and contained LINbLOG

COMPRESS A.
would reduce the length to six and string A sould then contain IINLCG.

A second form of the COMPRSSS statement removes all but a specifice number of consecutive blanks fron a string. Suppose string \(X\) had a lergth of 10 and contained PLOTbbbboN.

COIPRESS .X. ALI BUY 1
would reduce the length to seven and \(X\) would then contain PLOTbON. Siailarly,

COMPRESS .X. ALU BUT 3
would alter string \(X\) to the form PLOTbbbON with a lencth of nino. If tho integer follo, \(2 \mathrm{In}_{5}\) BJT is greator than the nuaber of consocutive blanks no compression is done. In the case whore tho integer is zoros this second form reduces to the first form of the compress statement.

ORIGINAL PAGE IS
OF POOR QUALITY

\subsection*{21.1.3.11 Convert.}

Tho CONYERT statement provides a convenient neams for converting FORTRAN integers into equivalent character strings and character strings of decimal integers into FORTRAN integers. For example, if \(J\) had the value 57 and \(K\) had the value 72 ,

CONVETT J+K-1 TO . 7 .
would produce the three characters 128 in string \(V\). The statement

CONVERT .V. TO I
would assign the value 128 to the variable 1 .
11.1.3.12. Define Origin.

The DGFINE statement enables the MAG language coder to 'make-up' unique statewent lajels, integer variable names, and real variable names so that they may be used as component parts of statements to be included \(i_{n}\) the transformed prozram.

For exarjple, the linos
STRTIT \((L \dot{k}, \hat{A}),(L B, B),(L C, C),(L D, D)\)
-
\(\cdot\)
DETIS P3SL A.
DAETE
\(\bar{D} \overline{1}=1,3\)
DETNE LABEI .C(I*8-7,I*8).
10 cominite
DRFINE REML . \(D(15,19)\).
-
-
would result in stringa \(A, B, C\), and \(D\) boing filled as follow:
A R0001
LA would have the palue fivo
B JOOOL
LB would havo the value five
```

    c 90001bbb90002bbb9000jbbb
    IC would have the value 24 or its previous value, whichever
is greater
D pppppppppppppppROOO2 (p represents previous character)
ID would have the value 19 or its previous value, whichever is greater

```

Each successive request, regardless of which macro block the request is from, results in the next available item of its type being defined and stored appropriately.

Storing of the requested item is done differently depending on whether the receiving string is in entire or partial form. If the entire form is used, the former string contents are erased and the length is adjusted to five. If the partial fora is used, the requested item is moved into the besinning of tho partial string and blanks are used to fill out the rest of the partial string ficld. The longth io adjusted only if the string is lengthened in this case.

The ORIGIN statement enables the MAC language coder to preset the initial value of the defined labels or variables to values other than 20001 . For example, if I has the value 50 and J , the value 17, the statements
\begin{tabular}{|c|c|}
\hline ORTETN LABET & I-2* \\
\hline ORIGIT PEAT & 32 \\
\hline ORIGII ITLEAE? & J+52 \\
\hline
\end{tabular}
will cause the first labol senerated to be 90016, the first variable gencrated to be R.0032, ard the first integer generated to be J0079.
```

11.1.3.13 WARTING\$
\#R2OR\$
~BORT\$
mpRIINGS\$
ZRRORS\$
mBCRT\$
Faese statements pomit the macro block coder to profido apyopriato
diagnostzes for users of his prccorpilor. The "plural" stateruents
are incluced to allow the progranmer to output dymmnic messeges,
=.c., to be written as a \#, l, or S line., Tho proper statoment to
ba used when a nistake or anbiguity is catected in a problenmoriented
staterent depends upon the degroo of oeriousnoss as follovs:

```


Normally, the most descrable statowent to use is ERRORS or \(\operatorname{ERORORS}\) sinco it will not allow an erronoous transformed prozren to be built but it will allou precompilation to continue so that any additional errors may be detectod.

An example use of the diasnostic facility is as follows:
IDENTIFY .S. (-100) \$7S ANALYZE .X. STRUCTURE
COMRPSS . \(X\).
COIPARE .X. (ju) UING
COPRDJ . \(X\). (40) PAII
COEPEE X. (50) FUSELLGE
E2RORSMNG, TAIL, OR FUSELAGE OPTION MISSING
スO2 MISS? LLLED
RETURA
30 CONTINUE
(include tring analyois lines in the transformed procras)
40 Conitinus
(include tail analysis lines in the transforaed proziam)
50 CONTINOE
(include fuselage analysis lines in the transformed progras)
100 RETURN

\section*{ニ.i.3.: 4 Level.}

Tre two forms of this otaterient, LEVEU CAMCSL and LEVYA RESTOPE have already bean discussed in conjunction with tho SUESTRING statoment (Soctzon 3.7).

Just as one FORTRAM subroutine may use another via CALU，one macro block may use another via IINK TO．An example of the use of this statepent might be

MACRO BLOCK COMP
IMAGE（LS，S）
STRING（IH，兄）（ \((I X, X)\) ：

C SAVE THE CURREAT IMAGE IN STRING X
BUILD ．X．SI§ ．S．
C SETUP INAGE WITH NET STATEMENT

C TRASSFER TO THE BLOCK VHICH CAN
C TRANSFOM A．STATETENT OF THIS TYPE
LITR TO XRLK
C RESTORE THE IMAGE
BUILD ．S．\(\$ 1 \$\) ．X．
－．．
－
END
The above teok could also havi beon accomplished roquiring an oxtra precompilation pess by using
\[
\cong \$ 73 \text { ANCLYZ } . \therefore
\]
irsicad of the link technique．In this caso the ANALYZE etatoment woud have deon included ju the transformed prouran during the first procompilation pass．Then a socond pass would occur，this tirso using the transforaca proeran \(\varepsilon\) g data，\(\varepsilon 0\) that any lincs of this type（i）could bo properiy procossed．On this pusz the AidilyZis lino vouid be dentified and transformod by macro block XBLK．

\section*{ニュ．ニ．ラ．ニ6 DBLTVIT．}

This statemont allo：／3 prognermers to declaro any non－blank chanactor to be a biring or columa dolzmiter．By uaing difforent delimitors， the period（．）or dollar sign（ \(丶\) ）nay be freed for yeo as norial texi charactera．For exemple，
```

DELIMIT STRITG +
COIPARE +ht (20) 1259.4
DELIMIT COLOM /
-/7/FORMAT1'(E2 2.4 ,5马今A B C\$)
DETIMIT STRING .
DELIMTT COLONT \$
－

```

```

（back to standard delimiters again）
NOTE：DEXIMIT is a＇pscudo－statement＇，not an executable stateraont． DEwIMIT â̂ects all statemonts following it（within one subprogran） until another DSIMIIT is encountered．

```

\section*{11．1．3．17 REINIT MAC．}

Occasionally，a prograinar is uneble to build his precompiler in ono rua basauso the control card buificr cannot hold all the required cards．By using the REIMIT MMC statozunt to signal the ond of tho separate blocks，the programer can batch the precoapiler through KACC with one MAC control card．HiAC will treat a REINITS MAC card as though it had read a 7－8－9 card and then continue on to process the next block．

HAC－built precongilers－can hava the above featurc by using the
 his own＂reanit＂statoment．The macro bleck where this is dono must also，upon successful icontifacation，set a．cell to allow the awixliany rouinnes to reintikinzo corabetly．Tnis is done by inszucina a laboled comion

CO：PON／QRIACH／II，I2
in the macro block，and setting I2 to non－zero when tho＂rointt＂ cera is found．It is recommended that the＂reinit＂statersent be a non－FORTMA statement．

ミi． \(2.3 .2 \bar{E}\) FORKAT．
NAC mil accout FORATf statemonto nith inplied Hollerith counte and convert thea to FORTRAN FORAAT statcaints．The Hollerith data is dollafted by a prorramier－dozignatod character that directly folloug FOAMST，The form is
\(\frac{\text { FOPiAT }}{\text { data }} f_{\text {conv．specs．etc．）}}\)（Hollerith data conversion specs．Hollorith
```

11.1.3.19 (PRINT)
(READ)
SETT (PRINT) UNIT
SET (READ) UNIT

```

The programmer can read card images or write fron the units specified. If SirT (PRINT) UNIT is not used 6 is assumed, and if SET (READ) UNIT is not used 5 is assumed. Note that the unit can bs changed during execution.

The (PRINT) outputs 120 characters per line with every. line except the first starting with a olank. The (READ)inputs 80 charactor card images and puts the specified characters into the specified strings starting in character position 1 of all the strings. The character designators and string names are matched up in order of occurrence. The forms are
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
\(\$ d \$\) string expression
\$ \(21 \$, \mathrm{~d} 2 \$\).E1. \(\{23, \mathrm{~d} 4 \$\).E2. etc.
integer variable
integer variable
```

11.1.3.20 S.ITMCK. -

```

This statement gives the MAC lancuage coder access to several internel ssitches or flas cells which are normally used only by the basic precompiler framenork. Two forms of this statement are currently available.

SUITCH FTiD intezer varlablo
SUTTCH TYPE integer variable 2

If ezther or both of these statements appoar in a macro block subprofram, the declared integer variables will be properly equivalonced to the appropriato flag cells in the framevork routines. For example, to equate the integer variable IJK to the internal FIND switch the followng MAC language statement would be used.

SHITCR FIND IJK
The functions of these tro switch cells will now be discussed.
The FITD SUITCH indicates whether or not a successful IDENTIFY has occurred within a macro block. Ench time a source statement is placed in the image string so that it may be examined by the various macro blocks, the find suntch is set to zero. The control
block program will nov transfer to each of the macro blocks in turn. Upon return from each macro block, the control block tests this cell to determine if it is stili' zero. If so, the process continues. If not, this indicates that the source line has been properly identified and does not need to be passed on to the remaining macro blocks. Any successful IDEMTIFY test in a macro block will cause the find siritch to be set non-zero. An unsuccessful test will not change the setting. This switch modification is done automatically by the routines which do the actual character testing. Thus, if a programmer obtains a successful IDENTIEY within a macro block, then decides, on the basis of certain analysis and testing, that the current image contents should ' be passed on to the remaining blocks, the programer should set the declared integer variable dack to zero before returning. (IJK = 0 for the above example)

Note: If a source statement is passed through all of the macro blocks and the find switch is still zero, that statement will-be included in the trarsformed progran unchanged.

The MYP swich will contain the integer value \(2,2,3,4\), or 5 depending on whecher the conventions to be assumed (continuations, coments, etc., in the source program and the transformed program) are NON-SARMDARD, FORTRAR, CCBOL, SLEUTH, or ASCENT. The basic precompiler franenor: is set up to expect FORTRAN conventions (type 2) in the source and transform prograns as beint the normal case. In view of this, cost prozrameis will not be concerned with the type switch.

Suppose, however, that the ABC precompler is to transform prograns which use conventions other than those of FORTRAN.

In this case, the first statement of program \(X\) must be one of the follorn ne:

\section*{NO: \(\mathrm{Sa}_{4}^{\prime 2} \mathrm{NHRD}\) 0030 SLETM EET?}
i stavement of this kind is a 'pseudo-statenent' which calises the basic precompiler framorork to change the type suitch setting from its assuned value of 2 (for FORTRAM) to a new value of \(1,3,4\), or 5 , respectively. This line is then discarded, and is not passed through. ASC's macro blocks. Each remaining line of program \(X\) will then be sent through the macro blocks as an 80 column cara imase rather than a state-. ge: : imsic as is done if FOMTAN continuations, etc., can be assumed.

Although the above declarations properly set the type switch value, COBOL, SLEUTH and IBMAP conventions are currently treated as though they wirc NON STANDARD. Proper considerations for these conventions may be included in the bascc framework at a later date. Thus; if a precompiler is being designed to preprocess probrams using conventions other than those of FORTRAN, the MAC language programer must provide for the treatment of continuations, comments, etc., himself.

Similarly, lines to be included in program \(Y\) are sent out as card imeges. If an output line is loss than 80 columns, the remainder is filled out appropriately with blanks.

Since the type switch is available for testing by the proframmer, a cacro block could be set up so that it identifies a given problemoriented lane, tests the type switch to determine which of sevoral languases is being pre-processed, then outputs the appropriate transformed lines in the language, (e.g., FORTRAN, COBOL, etc.)

The prodramer can change the input or outpit at any time during execution. This can be used to allos non-standard input with Forman output, etc. The progranmer should not change the stritch indiscriminately. Intermediate results are in a MAC format and only TPF output appears in the specified format at the end of the precompilation.

\subsection*{11.1.4 Examples}
11.1.4.1 Exampie1.

Several example macro blocks will now be illustrated. These are, admittediy, quite simple and are intended only to show the complete coding of some elementary transforms.

Identify and transform a statement of the type
42 REMIND TAPES 1, 3, KTAPE
into the following
42 CONTINUE
REVIND 1
REYITD 3
REMITD KTAPE
MACRO BLOCK QPAPE
IMAGE (IS,S)
STRIMG (LL, L((6))), (\(L X, X\)), (\(L Y, Y\))
IDETTIFY .S. (-10) 315 .L. \(\$ 7 \$\) REVIND TAPES .X.
- 515 .L. CONTINJE

SURSTRING .K. ATO Y. ON ,
DO \(5 I=1, L Y\)
\$73 RENTND. \(\mathrm{Y}=\mathrm{I}=\).
5 Convinue
10 RSMURN
END
11.1.4.2 Exampie 2.

Identify and transform a statement of the type
16 READ IMPUT PAPE JTAPE, FHI, \(A, B, C\)
into the following
16 READ (JTAPE, FHIP) A, B, C
YACRO BLOCK RD
ILIGGE (LS,S)
STRING, (LL, L((6))), (LT, T((12)))
STAIAG (LFTF((12))) (LLIST,LIST)
IDEMTEY :S. (-20) \$2\$.L. \$7\$ READ INPUT TAPE
\(x\) Tri., .r. . .LIST.
- 315 .L. \(\$ 75 \mathrm{READ}(. T ., . F\).\() .LIST.\)

20 Eiturn
END
21.1-28
```

11.1.4.3 Example 3.
Inentify and transform statements of the form
10 WRITE OUTPUT TAPE 6, 12
or 2O WRITE OUTPUT TAPE K; FMT, X, Y
into the following
10 WRITE ( 6, 12)
or 20 WRITE ( K, FMT) S,Y respoctively
MACRO BLOCK WRT
IMGGE (IS,S)
STRTNG (IT,T((12))),(IX,S):(IF,F((12)))
IDENTIFY .S. (-30)F7S WRITE OUTPUT TAPE .T. : .X.
IDEMTIFY .X. (20) SI\$ .F. , .X.
C MO LIST; FORILAT ONLY
* 313 .S (1,6). 37% VRITE (.T.,.X.)
RETURN
2O CONRINUS
C LIST PRESENT
* S1\$ .S (1,6), $7$ WRITE (.T.,.F.).X.
30 FETUNN
END
11.1.4.4 Example 4.
Consicier a statenent of the form
OUTPUT Iist
whach will cause the specified list of variables to be printed in a
standard format and also to be 'titled' so that it may be properly
identified. The resultant output is slmilar to the NAMEIIST
outpus in FORTRAN IV. A statement of this type could be ubeful as
a debugging tool for FORRRAN users or it could be used in lleu of
the formatted NRIPE statement by inexperienced programmers or by
students.
Macro block XOUN would transform a program buch as
SUBROUTINE GAVMA
-
OUTPUTT A, B, CALC
\bullet
12 OUPIMP(C(1), 1=1, 10)
11.1-29

## into the following:


-
-
This transformed program is set up to output and appropriately titlo. the desired items.

In addition to showing the complete transformation algorithn, macro block XOUT illustrates the use of ten of the MAC statements.

MACRO BLOCK XOUT
IMAGE (LS,S)

STNLn (LD, D( (12))), (LI'if, INT(6)))
DATA IMIT/23/
IDE:TIFY .S. (-100) 575 OUTPUT .LIST.
COMPRESS .LIST.
IF (INIT.EO.O) GO TO 10
INIT $=0$
DEFINE LABET .LA.
DEFINE LABEL .LB.
$C$ WATCH OUT FOR TRE DECIMAL POINT IN THE FORMAT
DhiluTt STRING +


* SlS +LA+ $\$ 75$ FORHAT( $1 \mathrm{HO}, 19 \mathrm{~A} 6$ )

DEIIMIT STRING .
10 CONVERT (ILTST+5)/6 TO .D. :
DEFINE INTEGER . INT.
$1+\$ 75$ DLIANSION + .INT. (.D.)
CONVERT Litist TO .D.
$1+$ S7S DATA + .INT./.D.H.LIST./


* 575 HRITE $(6, . L B$.$) .LIST.$

100 RETURN
LiND

### 11.1.4.5 Example 5.

This example provides a tool which makes the writing of complicated FORMAT statements less susceptible to coder and keypunch errors because of incorrect Hollerith counts: This is accomplished by Nacro Blook Fll which extends the flexibility of the existing FORMAT statement in that i't allows a FORTRAN programmer to define a Hollerith delimiter for any FORMAT in which one is desired. The delimiter may be any available character, and it changes dynaraically from FORMAT to FORMAT.

For example, the statements
10 FORMAT * (*1*, E12.4, *EXAMPIE FORHAT* A6, *TEST*)
20 FORIAT § ( 3 THIS ONE USES THE DOLLAR SIGN B)
30 FORMAT ALPHA (ALPHA COMPLEX PATIERN ALPHA)
would be transformed by the FifT algoritha into
10 FORMAT( $2 \mathrm{HI}, \mathrm{E} 2.4,14 \mathrm{HEXAMPLE}$ FORAAT, A6, 4 HTEST )
20 FORHAT (3LH TIIS ONE USES THE DOLLAR SIGN )
30 FORMAT(17H COMPIEX PATTERN)
respectively.
Any formats which do not have a deliniter pattern before the initial left parenthesis will remain unchanged by block FifP.

Forrats which have a delminter pattern but do not use it within the body of the FORilal will simply have the pattern removed by Firs.

If a delimiter pattern appears an oùd number of times within the body of the FORMAT, an error message will be given statins

ALPHA DELIMITELKS NOT PATKED CORRENMLY
and no erroneous transformed prozroni will be produced.

```
HACRO BLOCKN FMI
IMAGL: (LS,S)
STRING (LR,R),(LQ,Q),(IP,P((18))),(LL,L((12)))
IDEMTIFY .S. (-100 2 .L. $7% FORILAT .R. (.Q.
COMTRESS .R.
IF (LR.G'.0) GO TO 10
* $13 :S.
RETURN
```

```
 10 LEVEL CANCEL
 SUBSTRING .Q. INTO .S. ON .R.
 IF (LS.GT.1) GO TC 20
 * 1 .L. $73 FORMAT(.Q.
 RETURN
 20 IF (LS/2 + LS/2 .NE. LS) GO TO }3
 ERRORS ALPHA DELIMITEAS NOT PAIRED CORRECTLY
 RETURN
 30 BUILD .Q. 1 .L. `73 FORMAT(.S=1=.
 DO }40I=2,IS,
 BUILD .R. $IS .S=I=.
 CONVERT LR TO .P.
 BUILD .Q. I .Q. .P. H .R. . S=I+I=.
 4 0 ~ C O N T I N U E ~
 * 2.Q.
100 REIURN
 END
```


## 11．1．5 Typical Control Cards

```
CHFRGZ CARD
JOB CARD
```




```
二たL.3行の"。
r-\tilde{r}r=|(n+C'aC)
```





```
-\overline{r}
 ACE:,2.
```




```
*ッ(5...ryCri)
```





```
:ジ心䍃,
```











TABLDE I. TABLE OF FILE USAGE

FILE	POSITION   OS CONTROL   BLOCK	POSITION ON PROGRAM	USE ON PROGRAM
NAHE	CARD	CARD	CARD
F1	1	1	The name of the file containing the transformed program froa precompiler NAME.
NFIRST	not prosent	2	If this parancter is FIRST, all information on file Fl is ignored.
I	not prescnt	3	If this pararaeter is presont and is not L the MAC listing kill be suppressed.
F 2	2	4	Nare of the input file, norvaliy INPDI
F3	3	5	Name of the output file, norrally OUTPUT
F4	4	6	Uber declared files used by Naids
F5	5	7	User declared files used by NAME
-	-	-	
$\stackrel{\square}{*}$	-	-	
53	$N$	$\mathrm{N}+2$	User doclared files used by NAMS
TAPS 8	not present	$\mathrm{N}+3$	Scratch file usod by NAtE
TAPE 23	not present	N+4	Scratch file used by Naile
Th2e 18	not presont	$\mathrm{N}+5$	Scratch file used by NAME
TAPE 5	not present	$\mathrm{N}+6$	Equated to F2
TAPE 6	not present	N+7	Equated to F3
PAPE 77	not presont	$N+8$	Equatod to FI

1i. 1-34


FIGURE 11.1-1 LOGICAL NAP OF A MAC.
PRECOMPILER.

TABLE OF CONTENTS FOR SECTION 12.1, PROGRAM PLOTTER
Section Page
12.1.1 Program CONPLOT ..... 12.1-1
12.1.2 X-Y Plotter ..... 12.1-15
12.1.3 Data Summary ..... 12.1-23
12.1.4 Subroutane Descriptions ..... 12.1-29
12.1.5 Internal Variables Description ..... 12.1-46

## GRAPHICS

### 12.1 PROGRAM PLOTTER: INDEPENDENT PLOT PROGRAM

Program PLOTTER provides a generalized $x-y$ plotting and contour drawing capability in the ODIN system. Plot data may be stored in files created by other elements in the ODIN system and plotted output can be obtained on CALCOMP or COMPLOT printer devices by subsequent execution of PLOTTER. The PLOTTER progran may also be used as a stand-alone plot program by input of all data including plot arrays. The $x-y$ plotting program option was written by Watson and Glatt as part of the ODIN/RLV contract effort. The contour plotting option was written by Hague of Aerophysics Research Corporation as part of the related Air Force-sponsored ODIN/MFV contract. Both programs are now combined into the single PLOTTER program.

Section 7.2 contains several illustrations of the program's contour drawing ability. A typical plot obtained from the $x-y$ plot option is presented in Figure 12.1-1.

Data input is through NAMELIST PLOTIN. A description of all input variables follows in Section 12.2.2. The analytic basis of the contour plotting option is described in Section 12.1.1. This analysıs was origanally described in a limited distribution Aerophysics Research Corporation technical note TN-140, "CONPLOT: A Rapıd Code for Production of Three-Dimensional Contour Plots," by D. S. Hague.

### 12.1.1 Program CONPLOT

CONPLOT is a simple and rapid digital computer code for producing contour plots of three-dimensional functions. The function must be available in the form

$$
\begin{array}{ll}
z_{i j}=F\left(X_{i}, Y_{j}\right) ; \quad \begin{array}{r}
1 \\
j
\end{array}=1,2, \ldots . ., M  \tag{12.1-1}\\
j, \ldots, N
\end{array}
$$

That is, the function must be defined over a regular grid in the $\mathrm{X}-\mathrm{Y}$ plane. Contour plots are produced on CALCOMP or Houston plotters or any other device employing CALCOMP-compatible graphics calls. The program may readily be extended to other machines by virtue of its simplicity. Program CONPLOT in its stand-alone configuration consists of approximately 200 source cards plus CALCOMP Fortran-callable graphics subroutines. The analytic basis`for program CONPLOT is presented below.


FIGURE 12.1-1. ILLUSTRATION OF $X-Y$ PLOT

### 12.1.1.1 Analytic Basis of CONPLOT

Suppose a function of two independent variables is defined over the regular mesh $X, Y_{j}$. Then ( $\mathrm{M}-1$ ) $(\mathrm{N}-1)$ rectangular boxes can be selected from the adjacent points

$$
P=\left(X_{i}, Y_{j}\right),\left(X_{i}, Y_{j+1}\right),\left(X_{i+1}, Y_{j+1}\right),\left(X_{i+1}, Y_{j}\right) \quad \begin{aligned}
& i=1, M-1 \\
& j=1, N-1
\end{aligned}
$$

(12.1-2)

Let the corners of any such box be identified in a clockwise manner as in Figure 12.1-2


Figure 12.1-2. Rectangular Element Corner Identification

Given such a rectangle, the corner points and the function values at these corner points may also be uniquely defined by the notation of Figure 12.1-3.


Figure 12.1-3. Local Coordinate and Function Values
Now consider the possibility that a contour of value $z=z^{\prime}$ passes through a given elemental rectangle. First, transform the corner values of $Z$ by subtracting $Z$ ' to 'give the modified corner values

$$
\begin{align*}
& \bar{z}_{1}=Z_{1}-Z^{\prime} \\
& \bar{z}_{2}=Z_{2}-Z^{\prime} \\
& \bar{z}_{3}=Z_{3}-Z^{\prime}  \tag{12.1.3}\\
& \bar{Z}_{4}=Z_{4}-Z^{\prime}
\end{align*}
$$

Examining the topology of the contour line trace across the elemental rectangle, it follows that sixteen (16) possible types of contour trace exist; for each modified corner value gaven by (3) is either greater than or equal to zero, or less than zero, giving $2^{4}$ topological types of trace. These trace types may be uniquely identified by a four digit binary number whose elements sequentially correspond to the corner points in the clockwise sequence of Figure 12.1-2 where 1 signifies that $\bar{Z}_{k}>0$ and 0 signifies that $\bar{z}_{k} \leq 0$. These sixteen types of trace are illustrated in Figure 12.1-4 with their corresponding four-digit binary number and contour trace type.

It can be seen that only two of the sixteen possible element topologies result in no contour trace. Two of the element topologies result in two alternative possible contour traces across the element. (These contour traces may be of either form displayed in Figure 12.1-4 for $I=1010$ or $I=101$ ).

Assuming linear interpolation for $\vec{Z}$ along the elemental rectangle sides and local straight line contour traces wathin the element, the end points of the contour trace are readily found to be given by the expressions such as

$$
\begin{gather*}
\frac{I=1011}{X_{e_{1}}=X_{1}} \\
Y_{e_{1}}=Y_{1}+F\left(Y_{1}, Y_{2}, Z_{1}, Z_{2}\right) \\
X_{e_{2}}=X_{1}+F\left(X_{1}, X_{2}, Z_{3}, Z_{4}\right) \\
Y_{e_{2}}=Y_{2}
\end{gather*}
$$

and

$$
\begin{gather*}
\underline{I}=1110 \\
X_{e_{1}}=X_{1}+F\left(X_{1}, X_{2}, Z_{1}, Z_{4}\right) \\
Y_{e_{1}}=Y_{1} \\
X_{e_{2}}=X_{2} \\
Y_{e_{2}}=Y_{1}+F\left(Y_{1}, Y_{2}, Z_{4}, Z_{3}\right) \tag{12.1-5}
\end{gather*}
$$

where $\left(X_{e_{1}}, Y_{e_{1}}\right)$ and ( $\left.X_{e_{2}}, Y_{e_{2}}\right)$ are the contour trace end points and the function F 1s defined by :

$$
\begin{equation*}
F(A, B, C, D)=(B-A) \cdot\left|\frac{C}{D-C}\right| \tag{12.1-6}
\end{equation*}
$$



FIGURE 12.1-4. RECTANGULAR ELEMENT BINARY CODE AND CONTOUR ,TRACE TOPOLOGIES

Two ambiguous cases arise for $I=1010$ and $I=101$. The contours may then be of either the solid or dotted line type in Figure 12.1-4. The ambiguity is resolved when the "fold diagonal" is defined. Thus, when $I=0101$ if the principle diagonal is the fold diagonal, the dotted lines supply the correct contour types;if the other diagonal is the fold line, then the solid lines are the correct contour types. The converse is true when $I=1010$.

Definition of the fold line requires more information than is available within a single elemental rectangle. Consider the case $I=1010$ in Figure 12.1-5. In Figure 12.1-5 (a) the upper right and lower left high elemental rectangle regions indicate a principle diagonal fold. In Figure 12.1-5(b) the low upper left and lower right elemental rectangle regions illustrate a fold about the other diagonal.

12.1-5(a). Principle Diagonal Fold

12.1-5 (b) Other Diagonal Fold

CONPLOT contains logic for resolving the ambiguous cases using the above technique. A weighted assessment of the probability of each diagonal by the fold line is incorporated within the code. This logic covers the possibility of any adjacent elemental rectangle being absent due to edge or corner conditions in the $z_{i j}$ array.

### 12.1.1.3. Stand-Alone CONPLOT Program Input

The CONPLOT program accepts the following data:

AXLEN	Length of plot on $x$-axis
AYLEN	Length of plot on $y$-axis
NX	Number of $X_{1}$ values
XLC	Smallest value of $X_{1}$


XHIGH	Greatest value of $X_{i}$
NY	Number of $Y_{j}$ values
YLOW	Smallest value of $Y_{j}$
YHIGH	Greatest value of $X_{j}$
NZ	Number of $Z=Z$ contours desired
PLOTPC	Plot percentage, eliminate the lower and
	upper $P L O T P C$ of the region for the contour      plotting purposes

From this data the mesh $X_{1}, Y_{J}$ is created and the function $Z\left(X_{1}, Y_{j}\right)$ Is evaluated by a user-supplied subroutine. The NZ contours are then computed by means of 16 equations typified by (12.1-4) and (12.1-5) and the resulting contours are output on CALCOMP or Houston plotters. Typical plots obtained from CONPLOT are illustrated in Figures 12.1-6 through 12.1-11. Figure 12.1-6 illustrates a simple parabolic function with contours parallel to the $x$ axis. Figure 12.1-7 illustrates the contours of a parabolic function in the coordinate $x^{2}+y^{2}$. A more complex set of contours is presented in Figure 12.1-8; the contours are for a fourth-order function in $x$ and $y$. Results are presented at two resolutions using scales from 0 to 5 and 0 to 10 in the $x$ and $y$. Figure 12.1-9 presents contours of the well known Rozenbrock Valley function at three resolutions. Figures $12.1-10$ and $12.1-11$ illustrate the modulus contours of a fourth-order function of $x$ and $y$ having roots at the point

$$
\begin{aligned}
& z_{1}=(x, y)_{1}=(-1,1) \\
& z_{2}=(x, y)_{2}=(0, .75) \\
& z_{3}=(x, y)_{3}=(0,0) \\
& z_{4}=(x, y)_{4}=(.5, .5)
\end{aligned}
$$

At the most coarse resolution a single minima appears. At the next resolution irregularıties appear in the manimal contour profile. At the third and fourth resolutions two distinct minima appear. Finally, in Figure 12.1-11 all four minima appear in the contour plot. It may be noted that the contours of some functions of more interest have been presented in the discussion of Section 7.3.
12.1.l.4. Plotting Efficiency

Two alternative plotting procedures have been tested in constructing CONPLOT. These procedures are


FIGURE 12.1-6. A PARABOLIC VALLEY IN X
12.1-8


FIGURE 12.1-7. A PARABOLIC VALLEY IN $r=x^{2}+y^{2}$



FIGURE 12.1-8. A FOURTH-ORDER VALLEY AT TWO RESOLUTIONS


FIGURE 12.1-9. ROZENBROCKS'S VALLEY AT THREE RESOLUTTONS


FIGURE 12.1-10. A FUNCTION WITH FOUR MINIMA AT VARYING RESOLUTIONS AND NUMBER OF CONTOURS


FIGURE 12.1-11. DETAILED CONTOURS FOR THE FUNCTION HAVING FOUR MINIMA
a. plot by contour
b. plot by mesh

When plotting by contour each mesh box is systematically searched to locate and sequentially .plot the contour level being generated. Since the systematic mesh search is not formally related to the topology of the contour line, significant amounts of wasted plotting device pen movements are created as each contour line is developed. For example, a given contour line may exist in only the lowest ( $y=1$ ) and haghest ( $y=N$ ) set of mesh boxes. In this case since the systematic search employed fixes the $x$-mesh index i while varying the $y$-mesh index $j$, the plotter must hunt from bottom to top of the plot drawing each segment of the contour line. Of course, in this case were the order of variables in the systematic search be interchanged a fairly efficient plotter-pen motion would result. However, in general, the form of each contour line is not known a priori and wasted pen motion will result. Generally, on a typical contour plot the wasted pen motion in the plot by contour method creates very signıficant wasted plotter pen motions for the pen proceeds at the same rate in the down (line drawing) mode or the up (line skip) mode.

When plotting by mesh the procedure is to search for all contour levels drawn in one mesh box at a time. Thus, if $K$ contours are required the trace of all contours and the corresponding lines in a given box are found before proceeding to the next box. This approach almost minmizes pen movements;for all lines in one box are drawn sequentially. In addition, since boxes are then treated sequentially, very few up pen movements are wasted in proceeding from box to box. The plot by mesh method is now used exclusively in CONPLOT. The result can be witnessed by an observer at the plotting device. The CONPLOT routine proceeds from mesh box to mesh box shading in all contours within a given box as it does so. When all mesh boxes have been processed, the complete set of contours emerges.

### 12.1.2. X-Y Plotter

The independent plot program provides for the generation of $x-y$ plots and contour plots on a number of hardware display devices. Auxillary plot text and tabulations of plot data can also be obtained from the program.

The plot instructions are read from the input data file and the data to be plotted can be read from either the input file or from auxiliary data files. The input instructions are read using a single NAMELIST input list.
\$PLOTIN.....
Default values are preset for all input variables. The default values tend to minmize the amount of user input required to generate a plot. Generally the input specifications are patterned after the procedure one might follow in preparing plot by hand. The user can select such options as grid, axis generation, annotation, titles, auxiliary text, line type, symbol specifications, etc. Those options not specifically selected by the user are generally bypassed in the program.

### 12.1.2.1 Plot Data Input Option

The data to be plotted is read into the program in elther of two formats, array format or observation format. The data may come from the normal input or from a binary file in accordance with the following specifications:

$$
\begin{array}{ll}
\text { INPUT }=0 & \begin{array}{l}
\text { Data will be loaded directly into the OBSTH } \\
\text { array from the normal input unit. }
\end{array} \\
\text { INPUT }=\mathrm{n} & \begin{array}{l}
\text { n Specifies the logical unit number from which } \\
\text { the OBSTH array will be loaded. }
\end{array}
\end{array}
$$

Array Format. - Array fromat specifies the numerical values to be plotted are arranged in groups of similar observations such as time, attitude or velocity. Mathematically, array format is the sequence of numerical values:

$$
\mathrm{OBSTH}_{i j} ; \dot{I}_{,}=1, \text { NUMP; } j=1 \text {, NOBSER }
$$

where NUMP is the number of observations and NOBSER is the number of observation functions. The plot data is actually a single dimensional array $\mathrm{OBSTH}_{k}$ where $k$ is the array element defined as:

$$
k=1 j-1) \text { NUMP }+1
$$

The independent plot program normally reads data from the input £ile in array format but other options are also available.

Observation Format. - Observation format specifies the numerical values are arranged in groups called observations. Each observation represents a sequence of values defining one element in each plot array. Observation format may be expressed mathematically as:

$$
\text { DSTH }_{k(1, j)} ; i=1, \text { NOBSER; } j=1, \text { NUMP }
$$

where NOBSER is the number of observation functions and NUMP is the number of observations. $k$ Is the array element defined as:

$$
k(i, j)=(j-1) \text { NOBSER }+1
$$

The independent plot program has the capability of reading data as observation format when the alternate value variable:
ALTVAL = .TRUE.
option is specified. If specified, a transposition of the observation format to array format is performed and the array format ultımately overwrites the input values of OBSTH.

Alternate Data File. - In addition to the two formats which can be selected for reading from input, an alternate data file can be specified:

$$
\text { INPUT }=n
$$

When this option is specified, the plot data is read from the logical unit $n$ in observation format, transposed and placed into the OBSTH array in accordance with the specified values of NUMP on NOBSER. No file positioning is done by the program but the user can manipulate the file with the following input variables:

$$
\begin{array}{ll}
\text { REWIND }=\cdot \text { TRUE. } & \text { Rewinds } n . \\
\text { NSKIPF }=m & \text { Skips forward } m \text { Fortran files } . \\
\text { NSKIPR }=m & \text { Skips forward m Fortran records. }
\end{array}
$$

The alternate file format may include as the first record one word specifying the number of records on the file. If the one word record exists, the plot program can read it and store the value as הUMMP. This option is activated by the specification:

$$
\text { NUMP15 }=. \text { TRUE. }
$$

The CDC 6600 has a Fortran callable binary blocking feature. If the alternate file was generated as a "binary blocked" file, the variable:
BLOCK = .TRUE.
must be set to read the file properly.

### 12.1.2.2 Plot Output Control `

The output type specification can be $x-y$ plots, contour plots, plot text or a printed tabulation in accordance with the options illustrated in Figure 12.1-12. Some combination of options are permissible but others are not. Contour plots and $x-y$ plots are generated in different sections of the program and therefore, are mutually exclusive options. Multiple cases may be executed for as many plot cases as desired. Therefore, different options may be specified on successive cases. On the last case the parameter:

$$
\text { STOP }=. \text { TRUE }
$$

is set which causes program termination. No other plot instructions are executed in the last case.
12.1.2.3 X-Y Plots

The PLOTTR program provides for the display of numerical information of the form:

$$
Y_{i}=f_{j}\left(X_{i}\right) ; i=1, \text { NUMP; } j=1, \text { NPLOT }
$$

where $X$ and $Y$ are arrays of observations of known length, NUMP. Any array may be plotted with respect to any other array and any number of pairs may be presented on a single plot. NPLOT is the number of PLOTS desired.

Plotting is specified in accordance with the input variable array:


FIGURE 12.1-12. PLOT OPTIONS
12.1-18

$$
\text { OBSPLT }=K_{1}, K_{2} K_{3}---K_{n}
$$

Each $K$ is a packed integer which defines the array pair in the OBSTH array to be plotted:

$$
K_{i}=\underline{X X Y Y}
$$

where $X X$ represents a two-digit sequence defining the array to be plotted as the $x$-coordinate. YY represents a two-digit integer sequence defining the $y$-coordinate of the plotted line. Any number of $K$ values may be specified, each representing a line on the plot. A plot sequence is terminated by a value:

$$
k_{i}=0
$$

A second plot sequence may be specified by simply adding values of K :

$$
K_{i}+1=X X Y Y
$$

The last value of $K$ should be:

$$
k_{n}=7777
$$

which terminates the plotting and returns program control for new input data.

Plot Positioning. - The PLOTTR program has input parameters which control the defining of a new frame and the position of the plot within the frame. The parameters:

DXG and DYG
define the $X$ - and $Y$ - coordinates of the lower left corner of the plot in inches with respect to the lower left corner of the current frame. The parameters:

XMOVE and YMOVE
define the coordinates of the lower left corner of the next frame with respect to the lower left corner of the current frame. The frame includes all physical plotting which takes place as a re-, sult of a single set of plot instructions (defined by \$PLOTIN). Frames of data may be superimposed to accomplish certain analysis objectives.

Line Type and Symbols. - The parameters, LINTYP control the type of lines that are to be drawn between the data points. The magnitude determines the frequency of symbols and the sign determines the combination of lines and symbols.

LINTYP $=n$	Means a symbol is to be drawn every nth point.
If $n>0$,	Lines and symbols are drawn.
Tf $n<0$,	Only symbols are drawn.

The rameter INTEQ determines which symbol is to be used by the sper ication of an integer from 1 to 22. A value of 0 specifies no symbols.

Data Scaling. - Data arrays can be scaled absolutely in terms of the axis length on which they are plotted or the arrays can be scaled relative to one another. The parameters:

XSIZE and YSIZE
specify the $x-$ and $y$ - axis lengths in inches. The first curve specified (see OBSPLT) determines the scale factor and the relative starting position for all curves on the plot. The array:

SCALEF $_{i}$
specifies individual scale factors for each plot array. This allows meaningful comparisons of multiple curve plots where the range of the data array differs significantly.

Elimination of automatic scaling may be specified in either or both directions by the specification:

```
 MYX = .TRUE.
```

and/or
MYY = .TRUE.
If the MYX option is specified, the user must specify the scale factor and starting value the $X$-axis:

SCALEX = units/inch
STARTX = inches
If the MYY option is specified, the user must specify the scale factor and starting value of the $Y$-axis.

$$
\begin{aligned}
& \text { SCALEY }=\text { units } / \text { inch } \\
& \text { STARIY }=\text { inches }
\end{aligned}
$$

The scale factors and start values are set by the program each time automatic scaling (MYX and MYY = .FALSE.). is specified so the scaling from previous cases may be used by properly setting the option flags MYX and MYY.

Scale Annotation. - Under the automatic scaling option the program generates axes of the specified length with tick marks at one inch intervals. The tick marks are identified by numerical values below or to the left of the axis centered on the tick. The axes may be notated additionally by a 6 -character input name centered on the axis. One name may be input for each observation function as follows:

$$
\operatorname{OBSERV}_{i}=N_{i}, i=1, \text { NOBSER }
$$

where $N_{i}$ is a hollerith name of the form, nH name, and NOBSER is the ${ }^{\text {i }}$ number of observation functions.

Grid Generation. - A grid may be generated which represents vertical and horizontal lines at the tick marks by the input parameter:

$$
\text { GRID }=. \text { TRUE }
$$

Title Generation. - A title from the plot may be generated by setting the parameter:

$$
\mathrm{NREM}=\mathrm{n}
$$

where $n$ is the number of words of the title. The program will use the first $n$ words of the REM array.

$$
\operatorname{REM}=\mathrm{N}_{i} ; \mathbf{i}=1, \text { NREM }
$$

and place this title at the top of the plot. The height of the characters is in the title as specified by the parameter REMSIZ in inches.

Auxiliary Plot Text
The plotter program has the capability of generating auxiliary plot text by a separate case setup as follows:
\$PLOTIN TEXT = .TRUE. $\$$ (text cards)

The text cards immediately follow the case data. The character strings given on the text cards are reproduced exactly starting the first card at a location specified by:

DXG and DYG
in inches. The character height specification is given by HTEXT. Cards will be read and the characters plotted with line spacing of :

1. 5 * HTEXT
until a card is encountered with a numeric 2 in column 1. Control is then returned for a new case.

Virtual and Display Window
Virtual and display graphics deals with the translation of the user's data to a physical location on the display device. The virtual space may be of any dimension while the display space is limited by the physical size of the display device. The function of the virtual graphics package is to map the virtual space into the spccified display area. With an understanding of the relatıonshap between the virtual space and the display area, the user can freely manipulate the display to reflect his need. For example, he can plot three different sets of data in the same display area or he can display the same data to different scales to meet special needs.

### 12.1.3. Data Summary

Nam:	Default (s)	Dericrintion of Thput
ALTVAL	.FALSE.	Logical variable. If. .True. data wall be read as observation funclions. Othertise data will be road as plot. asrays.
BLOCK	. FAJSJE.	Logical variable. If .True., binary blocking of the observation unst will be eypected. (CDC 6600 only)
CALCOII	.TRUE.	Logical variable. If .True., $x-y$ plots will be generator, this vajiable is used to activate any device to which the program is linked such as Tektronics, SD4060 or Varian.
CONTOR	. FAJSE.	Logical variable. If . True., a contour plot wjll be gonerated from OBSTH data CALCOII must bo sot . Truc.
cory	Mrtale	Generate hard wpy (onlino devices).
DTAI,OG	$\therefore 1.3 \mathrm{E}$.	Logical varjabic. If. True., data busc output routine will be called.
DXG	1.0	x-axis origin Eor the current chart relativo to the current device origin specjficd by XMOVE.
DYG	1.0	Y-axis origin for the current chart ralative to the current dovice origin specificd by YMOVE.


Namer	WeFanle(s)	
GRT)	- FAIJSE	will be generided on $x-y$ plot $\because$.
HTEXI'	. 21	Height of tithe in inches.
IIJPU'S	0	Zoro for xe dinu fot data from cards . Git 0 for xeadina plot duta from anobler unit.
INTL:	1	Intcger from 0 Lo 22 undicating the jlot: symbol.
LINTYP	0	Control patameters when describes the type of line to be as an through the dote points. The mamitwhe wormine: the frecuency of plotzed eysiot.
		T.E. JINry:-4 hoans every fourth point.   LINTYp=0 straight lines vith receifjed symbol at the ond of the line (see INTla).   LINTYP $-t$ Tincs and symbols.   LINTYP.-- Symbols only.
MYX	- FALSE.	Logical vaxjable. Tf .TRUE., vscar may inyut STARIX and sCATEX.
MYY	- FALSE.	Logical varamole. Tf . TRUE., vere may input STAR'TV and SCALEY.
$\begin{aligned} & \text { NAMES } \\ & (100) \end{aligned}$	- FALSE.	Logical variable. If .TRUE., NOHSER sixcharacter namoss will be read. Those are the plot array totles.
NTXIS	1	Nunber of timer the beam or pen will trace the $x-$.י.. $y$ - $u$-es.
NDECP	2	Numinn if dresmaj. places used in scale ammiry in.
NOBSER	NONE	Number of observation functions for plot arrays).
NPACE	0	Page number of the plot (printer only).
NREM	0	Number of worde of title to be read. If hol zexo, MRFA 10 -character words will he rad immeduately after the seloris namelist.

12.1-24


N	1. $\operatorname{tanlt}$ (	
		value. Procyrim Joad size us ajliowd in darect relation to the number $n$.
PAGE	. FALSE.	Start a now fiame at XMOVE, YMOVE from previous origin.
PRINTR	. FALSE.	Logical variable. If .TRUE., tabulation will b" generated.
PRINTO	. FALSE.	Logical variablc. If .TRUE., the namelist input data wall be printed.
$\begin{aligned} & \text { REM } \\ & (30) \end{aligned}$		Titile to he placed at the top of the chart. lt is road in namelist format as:
		REM $=$ nH title of plot,
RLMET\%	0.21	Jroight of title in inchrs.
r $\quad \cdots \cdot \square$	. P7 LSE.	[rurcol varion]. If .TRUE., observotion w...t wiju hre romur before reading it.
SCAL	7.5	Sise of the plot device window in urches. Vistual plot spicified by the maxsumm of XSIZE and YSIZE will be scaled to this dimension.
$\begin{aligned} & \text { SCALEF } \\ & (100) \end{aligned}$	1.0	Scale factor array. One for each plot array or observation function. It is used to scale one plot array rejative to the others for plot purposes but does not affect the original data in OBSTH.
SCALEX	1.0	Units per inch for X .


Name	Default (s)	Dercriys ion of Imput
SCALEY	1.0	Units per inch for $\gamma$.
StARTX	0.0	Starting value for x-avis.
StARTY	0.0	Statting value fol Y -axis.
STOP	. Finlse.	rogical variable. If .Truc., prorrmm vill stoj without generating additional plot information.
TEXT	. FALse.	tugical variabue. If .Truc., card images will read and plotted scaling will be in accordance with the following formula:
		6*NRTMA HJEV'I/SCAL
$(100)$	None	Artay of points defining the X-axis of a contour plot.
XMOVE	8.5	X- djastance botr , rlet oriains. for onlane device., ": :cx $n$ erasure is affected.
XORIGA	1.0	$x$-axis oriqun for the current chart relative to the current device origin specified by XMOVE.
XSIEE	6.0	X-size length in inches for virtual plot. It also specifies number of scale (and grid) divisions whach will be emyloyed. Origin is moved before ploting if the IAGE option is involked.
$\begin{aligned} & \text { YMES } 11 \\ & (100) \end{aligned}$	None	Array of points dceming the $Y$-axis of a contour plot.
ynove,	0.0	Y-distance betwerer plot origins. For online devices, a screen erasure is affectnd.
YORIGN	1.0	Y-axis origin for the current chart relative to the current device origin specified by YMOVE.


Namo	Lut Eault (ri)	
Y: ${ }^{\text {\% }}$	8.0	
		is imenllod.
\%CUTS	None	Vatur of itio cmiornics.

### 12.1.4: Subroutine Descriptions

This section contains an alphabetically arranged list of descriptions for the Independent Plot Program Subroutines.

### 12.1.4.1 Program PLOTTR

PLOTTR is the main program for the Independent Plot Program. Written in Fortran, PLOTTR establishes nominal values for input variables, reads data, sets up program options, initializes the plot devices, establishes certain scaling parameters and controls the plotting of text and data. Figure 12-in- 3 shows a functional flow chart for PLOTTR. The flow logic begins with the reading of namelist data called \$PLOTIN. An input parameter PRINTR provides the user with the option of printing all the input data except the actual data to be plotted. If the target plot device requires initialization, the logic for initializing the device is called on the first case but not thereafter. A logical input variable, STOP, provides for a normal stop after the last case. Logic is included to obtain the actual data in threc differont rormats.

गי. the : iu may be read in $B C D$ format through the normal name$1:=1$, 'rul channels via an input variable called OBSTH. The date - ay be read in array format (the format used internally by the program) or it may be read in observation format. The latter requires that the data be reordered by the program before use. The reordering is done by a routine called WRITE15. WRITEI5 simply writes the data out in binary format on a user specified unit to be read back in array format.

A third option allows the data to be read in binary observation format from a file generated outside the independent plot program. In the latter case the data is converted to array format as it is read into the program. After all data is read in the plot size is established through a call to SCRENE and the main plot generation subroutine GENPLT is called. GENPLT controls the generation of contour and $x-y$ plot options. After return from GENPLT, the flow logic loops back to the beginning of PLOTTR to read more data.


FIGURE 12.1-13 FUNCTIONAL FLON CHART - PLOTTR

AXIS is a modified CALCOMP subroutine written in Fortran for generating annotated axes with tick marks at one inch intervals. The use of the subroutine is as follows:

Call AXIS (X,Y,BCD,NC,SIZE,THETA, XMIN,DY)
$\mathrm{X}, \mathrm{Y}$ Coordinates of the starting point of the axis with respect to the plotting area origin in inches.,

BCD Character label for the axis.
NC Number of characters in the label.
SIZE Length of the axis in inches.
THETA Angle of rotation measured clockwise from the $x$ axis in degrees.

YMIN Functional value to be assigned to the first position on the axis.

DY Change in the functional value for inch.
The AXIS routine is normally called after scale which determines the YMIN and DY values. AXIS calls PLOT and SYMBOL to generate the lines, tick marks and annotation on the axes. NUMBER and ROUND are used to convert binary numbers to characters which can be plotted as scale and annotation.

### 12.1.4.3 Subroutine CONPLT

CONPLT is the main subroutine for generating contour plots from an input mesh of data defined in the input array, OBSTH. The data is defined in equal increment mesh points in $x$ and equal increments of mesh points in $y$. The boundary of each incremental window is searched for intersections with specified contours. Fig. 12.?-14 is a functional flowchart of the subroutine CONPLT. Upon entering the subroutine, a title and scale are generated for the data. The $x$-limits, $y$-limits and $z$-level are set in a triple DO-LOOP. The type of intersection is determined from the values of $z$ at the four corners of the incremental window. Fig. $12.1=4^{\circ}$ illustratedt the types of intersections which can be accounted for. Each has a separate algorithm which is coded at the statement label identified in the figure. Once the boundary. points are computed, the subroutine LINE is used to generate the contour vector. Contour vectors are determined for each $z-$ level and for each incremental window. The result of all evaluations is the appearance of the continuous contour plot for the entire region specified by the $x$-mesh and $y$-mesh.
12.1.4.4 Subroutine DEF

DEF is a rortran subroutine for ejecting a page and placing a title on the new page.


FIGURE 12.1-14. FUNCTIONAL FLOW CHART, CONPLTT

GENPLT is a Fortran subroutine which controls the data acquisition from alternate files but also controls X-Y plot and contour plot options for the program. All data in this subroutine is passed through the common as follows:

Cali GENPLT (NADATA,OBSTH,NUMP, INPUT,CALCOM,OBSERV, NOBSER, YOBSTH, CONTOR)

NADATA Maximum size of the internal storage array OBSȚH.
OBSTH Internal storage array for plot data.
NUMP Number of points for plot array.
INPUT Logical unit for binary input data.
CALCOM Vector plot option flag.
OBSERV Names of the plot arrays.
NOBSER Number of observations for plot arrays.
XOBSTH An array containing a single observation.
CONTOR Contour plot option flag.
A detailed flow chart for subroutine GENPLT is shown in Fig. 12.1-15. Upon entry, GENPLT tests the parameter INPUT to determine the source of the data. If 0 , the data is assumed to be in core in the OBSTH array. Otherwise, the data will be read from the observation unit defined by the value of INPUT. The routine READI5 loads the data. Two tests are performed to determine the limits for the number of observation functions. If NOBSER is less than one, an error message is printed and the control is returned to the main program. If the number of observation functions, NOBSER is greater than NADATA/2, an error message is printed and the control is returned to the main program. The subroutine THROBS is then called to actually generate the $X, Y$ plot. THROBS contains logic which controls the generation of printer plots, tabulations and/or vector plots. The contour plot option flag CONTOR is then tested to determine whether a contour plot is being generated. If the flag is true, the subroutine CONPLT is used to generate the contour plot. Control is then returned to the main program, PLOTHR.


FIGURE 12.1-15. DETAILED FLOW CHART, GENPLT

ORIGINAL Page is . of POOR QUALITY

### 12.1.4.6 Subroutine ESCALE

The mbroutinc bSCALE is used in the generation of printer plots fo' ' $=C D C 6000$ version of the PLOTTR program. It scales the. d.ita lo the size of the standard $11 \times 16$ printer page size.
12.1.4.7 Subroutine FTNBIN

FTNBIN is an assembly language routine which establishes binary blocking for sequential files on CDC 6600 computer. The usage is as follows:

Call FTNBIN (I,J,K)
I Flag which determines whether blocking is to be on or off.
$I=1$ Binary blocking is to be turned on.
$I=0$ Binary blocking is to be turned off.
$J$ Number of files to be blocked or unblocked in accordance with the flag $I$.
$K \quad$ Name of the array containing the integer numbers of the file to be blocked or unblocked.

FTNBIN can be called to block a specified set of files or can be called to block or unblock all files by setting the parameters $J$ and $K$ equal to zero. FrNBIN is a dummy subroutine in this library but can be replaced with the system FTNBIN routine when the program is compzled on the CDC 6600. Binary blocking is automatically provided for on Univac Exec 8 Fortran.

This subroutine is used in the generation of paper plots for the 6600 version of the PLOTTR program. It scans a data array to determine the maximum value which can be placed on the paper plot.

### 12.1.4.9 Subroutine GRIDHP

GRIDHP is a Fortran subroutine used for generating for grids on a display device. The usage is as follows:

Call GRIDHP (XSIZE,ZSIZE)
XSIZE The length of the x-axis in inches.
YSIZE The length of the y-axis in inches.
The routine generates a rectangular grid pattern in one inch increments. The subroutine PLTT is used to draw the grid lines.
12.1.4.10 Subroutine GRIDXY

GRIDXY is a Fortran subroutine for generating the grid representation on printer plots. The usage of GRIDXY is as follows:

Call GRIDXY (XMIN, XMAX,YMIN,YMAX,BX,BY)
XMIN The manimum $X$ value.
XMAX The maximum $X$ value.
YMIN The minimum $Y$ value.
YMAX The maximum $Y$ value.
BX The X distance between grid lines.
BY The $Y$ distance between grid lines.
The routine generates the representation of grid lines by placing periods (.) appropriately into the plot buffer. It also simulates the coordinate axes of the plot'by placing the character $I$ appropriately to represent segments of the Y-axis and the character ( - ) to represent segments of the X-axis. The character ( + ) is used at the grid intersection point.

This subroutine is the main driver for generating $X, Y$ plots. It performs the data scaling, access generating, title generation and the drawing of the lines associated with the specifjer data arrays.
12.1.4.12 Subroutine LINE

This is a Fortran subroutine which makes the appropriate calls to generate a line on the output device. The subroutine has six calling arguments as follows:

CALL LINE ( $\mathrm{X}, \mathrm{Y}, \mathrm{N}, \mathrm{K}, \mathrm{J}, \mathrm{L}$ )
$X, Y \quad X$ and $Y$ are arrays containing the $X$ and $Y$ coordinates respectively for the $n$ points to be plotted.
$\mathrm{K} \quad$ The significance of K is two fold.
(1) The magnitude of $K$ specifies that the data is stored in every $K$ cell.
(2) If the sign of $K$ is positive, the pen will be moved to the first point. If the sign of $K$ is negative, the pen will be moved to the first point in a lowered position.
$J \quad$ The magnitude of $J$ is the number of points for every point to be plotted. Where $J$ equals 0 , a line plot only. Where $J$ equals 1, a point for every data point. Where $J$ equals 5 , a point will be plotted at every 5th. point. A minus sign of $J$ specifies a point plot without connecting points. A positive $J$ specifies a line connecting every data point.

I The value of $L$ specifies the type of symbol to be used. Integer numbers 1 through 22 may be specified. These symbols are different for different plot devices.

This subroutine is used to convert a floating point number to be $B C D$ and to draw the resulting alpha numeric characters on the plot. The calling sequence is:

Call NUMBER ( $\mathrm{X}, \mathrm{Y}, \mathrm{HGHT}, \mathrm{FPN}$, THETA $;$ N )
$X, Y \quad X$ and $Y$ specify the position of the first character in inches.

HGHT The height of the characters.
FPN The value of the floating point number.
THETA The angle at which the characters will be drawn, measured from the x-axis, positive in a counterclockwise direction.
$\mathrm{N} \quad$ This is the number of decimal places to be retained in the conversion. $N$ may be specified at any value from -1 to ll. If $N$ is -1 or 0 , no decimol places will be drawn. If $N$ is -1 , a decimal ponnt fill be suppressed. Any other value of $N$ specifies the number of decimal places to be drawn.
The integer portion of the number is restricted to a maximum of 6 characters. The decimal portion is restricted to 11 digits.
12.1.4.14 Subroutine PAPERP

Tis: ibrintune serves as a calling program for controlling the $X_{1}>$, t options. The two options are as follows:

If PRINTR is . TRUE., then a paper plot will be generated on the normal output ( 6600 only).

If CALCOI 15 . TRUE., then a vector plot will be generated on whatever device is interfaced to the PLOTTR program.

### 12.1.4.15. Subroutine PLCPTS

This subroutine is used in the generation of paper plots on the CDC 6600. It contains the logic for placing plot characters within a buffer region in the appropriate position to simulate a plot when the buffer is printed on the normal 11 x 16 printer output. It also flags and identifies the points which did not fall within the plot region.

### 12.1.4.16 Subroutine PLTEXT

This subroutine is used for generating auxiliary plot text associated with $X, Y$ plots or contour plots. The subroutine is called from the main program when the option TEXT is specified as .TRUE. Upon entering this subroutine, the plot window is established by input values of DXG, DYG and SCAL. Then cards are read from the input and the characters on the card are scaled and placed within the established window. Spacing between card images is automatically provided at 1.5 times the character height. The buffer is dumped at the completion of the plotting.

### 12.1.4.17 Subroutine PLOT

This subroutine performs all line drawing functions.

PPLNLN is a Fortran subroutine which generates $X, Y$ plots as part of the normal printed output. The subroutine is used as a utility zoutine as follows:

Call PPLNLN (X,Y,NPTS,XMAX,XMIN,YMAX,YMIN,NPLTS ,TT ,TB)
$X \quad$ Array of $X$ points to be plotted.
$Y \quad$ Array of $Y$ points to be plotted.
NPTS Number of points to be plotted.
XMAX Maximum X-value.
XMIN Minimum X-value.
YMAX Maximum Y-value.
YMIN Minimum Y-value.
NPLTS Number of points.
TT Title array at the top of the plot.
TB Annotation at the bottom of the plot.
Upon entry into the PPLNLN routine, a plot vector area is set up which will contain the characters representing the grid, scales and plotted information. Scale factors are determined based on the size of the paper (ll x 16). The plot area is hard coded to be r-ven moher on the $Y$-axis and ten inches on the $X$-axis. The ore ,he resolution is 100 units in the $x$ direction and 42 u'i. in $: Y$ direction. The subroutine GRIDXY is called to :i , a yrid in the plot buffer. Vertical grid lines are made up o. the character minus. The PLCPTS routine is called to place the plot points into the plot buffer. The plot data points are identified by characters in the following sequence:

$$
X, O,+, \$, /, 2,3,4,5, A, B, C, D, E, F, G, H, K, M, N, P, R, S, U, V, W, X, Y, Z,
$$

Thirty characters are supplied for up to thirty plots which may be specified for single chart. Plot points which fall within the same resolution area use the character asterisk to replace the normal plot character. The subroutine POPLOT is called to print out the plot buffer and place the title and annotation on the printed page. The maximum, minimum and scale factors for all of the data are printed at the bottom of the plot. The functional. flow chart for PPLNLN is given in Fig. 12.1-16.


FIGURE 12.1-16. FUNCTIONAL FLOW CHART - PPLNLN

### 12.1.4.18. Subroutine SCALE

The subroutine is used to find the minimum and maximum values for a given set of data and determines the reasonable scale values to be placed within the plot dimension. It also establishes scale factors for actually scaling the data to fit on the plot. The calling sequence is:

Call SCALE (X,S,N,K)
$X \quad$ An array containing $N$ data values which are to be scaled. The data being stored in every Kth. cell. That is, $X(1) X(1+k) X(1+2 k)$, etc.
$S \quad$ The length of the plot over which the data is to be plotted in inches.
$N \quad$ The number of points in the X -array.
$K \quad$ The repeat cycle for data elements in the X -array.
The routine scans all of the elements in the array to find the maximum and minimum. It adjusts these values to give reasonable scale values for the start value and the maximum value. The two values are saved in the last elements of the $X$-array for use by the line subroutine in scaling the data for plotting. The. $X$ array must be dimensioned two extra elements for every variable set in the array.

### 12.1.4.19 Subroutine READ15

This subroutine reads observation functions from the specified input unit and reorders the data into plot arrays. The subroutine contains an option to obtain the number of points as the first record on the observation function file.

### 12.1.4.21 Subroutine SYMBOL

Subroutine SYMBOL is the modified CALCOMP assembly language routine for converting a string (array) of alpha-numeric information into plot vector format. It works from a directory of stor-il plot vnctor sequences which represent the standard ch. , 'ter rol. The characters in the string are identified aln: 'reir blot vector representation is converted to the proper iosmot through calis to the subroutine PLTT. The user has the option of selecting the start position in terms of $X$ and $Y$, the size of the characters to be used, the angle to which the data is to be placed and the number of characters to be placed. SYMBOL is called as follows:

Call SYMBOL (X,Y,SIZE, FDATA, THETA,N)
$X$ The $X$-coordinate of the left most raster unit of the first character to be plotted, inches.
$Y$ The $Y$-coordinate of the lower most raster unit of the first character to be plotted, inches.

SIZE The height of the character, inches.
DATA The starting location of the array of characters to be plotted.

THETA The angle of inclination of the character string, degrees.

N The number of characters to be plotted by the SYMBOL routine.

The character height is a variable in the subroutine but the width-to-helght ratio is fixed at $4 / 7$. Since the characters are stored in a series of bi-octal offset pairs for a $4 \times 7$ matrix, the reference origin for the offset pairs, which define each character, is the lower left corner of the matrix. The $X$ and $Y$ values define the location of the lower left hand corner of the first character to be plotted for this entry. Subsequent characters to be plotted are spaced from the previous character origin by $6 / 7$ of the specified character heights.

This is the main control program for the generation of tabulated output and also serves some scaling functions for both printer plots and vector plots. The subroutine sorts the data which is stored in array format and prints it eight columns and 54 rows per page. The array title is printed at the top of each page.

### 12.1.5. Internal Variables Description

12.1.5.1 Common /COMON/ Description

Location	$\begin{aligned} & \text { Local } \\ & \text { Name } \end{aligned}$	Description
1.	NUMP	Number of points per plot array.
2	ONDAT	The logical unit number for the file containing observation functions in binary format. INDAT is set in accordance with the input variable INPUT. If INPUT is 0 , the observation file is not used. Otherwise, data is expected on the unit number specified in INPUT.
3	CALCOM	A logical variable. If true, vector plot file will be generated.
4	OBSERV (100)	Hollerith array containing the annotation names (left justified and blank filled) for the plot arrays.
104		Not used.
105	NOBSER	Number of observation functions for plot arrays.
106	OBSPLT (120)	An integer array containing the plotting instructions. See program input section for definition.
226		Not used.
227	REM (30)	An integer array containing the title of the plot in hollerith characters.
257		Not used.
258	XOBSTH (100)	A real array used for reading observations from the observation function file.
. 358		Not used. .
359	NPAGE	Integer page number used for printed plots.


Location	Local   Name	Description
360	SCALEF (100)	An array of scale factors used for scaling plot arrays relative to one another.
460		Not used.
461	XSIZE	The length of the X -axis in the virtual window in inches.
462	YSIZE	The length of the Y-axis in the virtual window in inches.
463	LINTYP	An integer variable defining the type of line used for the current plot. See program input for description.
464	INTEQ	An integer variable defining the plot symbol to be used.
465	STARTX	Starting location for the X -axis in the virtual window in inches.
466	STARTY	Starting location for the $Y$-axis in the virtual window in inches.
467	SCALEX	Scale factor of the X-axis data in the virtual window in data units per inch.
468	SCALEY	Scale factor of the $Y$-axis data in the virtual window in data units per inch.
469	MYX	A logical variable set by input. If true, no X -axis or scaling will be generated.
470	MYY	A logical variable set by input. If true, no $y$-axis or scaling will be generated.
471		Not used.
472	NREM	Number of words used for the title.
473	REMSIZ   HTEXT	Character height of the title in inches.
474	PRINTR	A logical variable set by input. If true, printer plot will be generated.


Location	Local   Name	Description
475	XMESH (100)	An array of mesh points in the $X$ direction for contour plots.
575	YMESH (100)	An array of mesh points in the $Y$ direction for contour plots.
676	YCUTS (25)	An array containing desired contour values.
701	NZCUTS	The number of contour lines requested.
702	CONTOR	A logical variable set by input. If true, contour plots will be generated.
703	XMOVE	A value describing the movement of the plot origin in the X -direction after plotting.
704	YMOVE	A movement of the plot origin in the $y$-direction after plotting.
705	EVRCAL	A logical variable set internally. If true, the plot device has been initialized.
706	NSKIPR	A number of records on the observation function file to be skipped before reading the data.
707	NSKIPF	A number of logical files to be skipped on the observation file before reading the data.
708	NAXIS	The number of lines incrementally displaced to be used to represent the plot axes.
709	GRID	A logical variable set by input. If true; a plot grid will be generated at one inch intervals in the virtual. window.
710		Not used.
711	REWIND	Logical variable set by input. . If true, the observation file will be rewound before reading the data.


Location	Local Name	Description
1	NADATA	The number of locations used for storing the data to be plotted. NADATA is set by a data statement in the main pro gram PLOTTR.
2	OBSTH (2000)	The real array containing the data being plotted 2000 locations are provided for internal storage of data. This number may be altered at compile time by the adjustment of dimension statements and data statements in the main program, PLOTTR, as follows:   COMMON/AESOPD/ADATA (N+1)
		REAL OBSTH (N)   DATA NADATA/N
		The value of $N$ is now 2000 but can be set to any value by the programmer. The size of the program is increased or decreased by the dimensions of this array.

TABLE OF CONTENTS FOR SECTION 13.1, PROGRAM MYPROGRAM
Section Page
13.1.1 Use of Data Base Names in Source Code ..... 13.1-1
13.1.2 Use of Overlays ..... 13.1-1
13.1.3 Separation of Compile and Execute Functions ..... 13.1-2
13.1.4 Redefining MYPROGRAM ..... 13.1-2
13.1.5 MultipIe MYPROGRAMs ..... 13.1-2
13.1.6 Other Languages ..... 13.1-3
13.1.7 MAIN PROGRAM Card ..... 13.1-3

IN LINE COMPILATION

### 13.1 PROGRAM MYPROGRAM: COMPILATION AT EXECUTION TIME CAPABILITY

The ODIN/MFV system has the ability to compile, store, and execute a userdesignated program at execution time. The program to be compiled and its associated data form part of the normal ODIN input stream. In actuality, two ODIN programs perform the compile and execute sequence. These are "COMPILER" and "MYPROGRAM." The input stream associated with the in-line comple and execute process is as follows:
'EXECUTE COMPILER'
(Insert program to be compiled here)
789 End of File Card
'EXECUTE MYPROGRAM'
(Insert data for compiled program at this point)

789 End of File Card

The compiled program is saved in the ODIN system as MYPROGRAM and the appropriate Job Control Language (JCL) cards to execute MYPROGRAM form part of the ODIN control card data base CCDATA. There are no limitations on the program to be compiled as MYPROGRAM other than those limitations smposed by the FORTRAN compiler itself.

### 13.1.1 Use of Data Base Names in Source Code

The ajılıty to compile at execution time allows programs to be generated hiscin use data base value in the code. This is a result of the source code being examaned by the DIALOG executive program prior to compilation. At this time any data base names contained in the source code are replaced by therr numeric values in the normal ODIN manner as explained in Section 2.

The program to be compiled may contain as many overlays as permitted by the CDC 6600 loading system.

### 13.1.3 Separation of Compile and Execute Functions

The compile and execute functions are separated to permit multiple execution of MYPROGRAM without the necessity of a recompilation, for example,

EXECUTE COMPILER
EXECUTE MYPROGRAM
'. EXECUTE MYPROGRAM
EXECUTE MYPROGRAM

### 13.1.4 Redefining MYPROGRAM

At any point in the ODIN input stream MYPROGRAM can be redefined by new source cards, that is, by inserting the additional ODIN job control language cards

EXECUTE COMPILER
EXECUTE MYPROGRAM
with the associated source and data input cards as discussed previously. This redefinition of MYPROGRAM can occur at any point in the ODIN input stream and be repeated as often as desired by the user; for example.

EXECUTE COMPILER
EXECUTE MYPROGRAM
EXECUTE COMPILER
EXECUTE MYPROGRAM

### 13.1.5 Multıple MYPROGRAMs

In the preliminary ODIN/MFV as installed at Wright-Patterson Alr Force Base three MYPROGRAMs can be employed simultaneously in the ODIN simulation. These programs are designated

MYPROGRAM
MYPROGRAM2
MPPROGRAM3
Each of the three programs may be redefined indepéndently or executed as discussed above.

### 13.1.6 Other Languages

The basic set of MYPROGRAMs are defined as FORTRAN source language statements. However, by a simple update of the ODIN control card data base, CCDATA, any or all programs could be written in any language available to the CDC' 6600 computer being employed. For example, COBOL or COMPASS source codes can be readily employed as the basis for any of the MYPROGRAM's. However, the type of source code used for a given MYPROGRAM cannot be alitered during an ODIN simulation at the present time.

### 13.1.7 MAIN PROGRAM Card

The MPRROGRAM MAIN PROGRAM cards employed must be in the form:
PROGRAM NAME (INPUT, OUTPUT, TAPE5=INPUT,TAPE6=0UTPUT,TAPE78)
Tape 78 is reserved for information which must be transferred into the ODIN data base from the compiled program by the usual NAMELIST write procedure of Section 2.

TABLE OF CONTENTS FOR SECTION 14.1, PROGRAM AUTOLAY
Section Page
14.1.1 AUTOLAY Control Card ..... 14:1~1
14.1.2 AUTOLAY Text Card ..... 14.1-1
14.1.3 AUTOLAY Details and Limitations ..... 14.1-2
14.1.4 AUTOLAY Examples ..... 14.1-3

### 14.1 PROGRAM AUTOLAY: AUTOMATIC OVERLAY CONSTRUCTION FOR CDC 6600 COMPUTER

In constructing a program overlay file, an Aerophysics Research Corporation developed utility program AUTOLAY is used. 'AUTOLAY is a user library simulation copy routine developed by Aerophysics Research Corporation to take most of the work out of building overlay or normal load files.

AUTOLAY is called by a control card and reads text cards.

### 14.1.1 AUTOLAY Control Card

The AUTOLAY control cards is
AUTOLAY (OUTFILE, LIB1, LIB2, . . ., LIBi)
where OUTFILE is the name of the disk or tape file upon which the output (the program overlay file) is to be written, and LIB1, LIB2, . . ., LIBi ( $1<\mathrm{i}$ < 6) are the names of the user supplied library files containing subprograms output from a CDC 6600 compiler or assembler in relocatable object form (odd parity).

### 14.1.2 AUTOLAY Text Card

The order and content of the text cards define the output file. They are free form in columns 1 through 72, blanks ignored. The text cards are listed below:

## ident

where ident is a subprogram name. The purpose of the ident card is to name the main program. Once the main program name is known, it and all the routines it calls or references, and all they call or reference that were available in the library files are copied onto the output file specified.

Usually only the one card naming the main program need be given except for certain cases such as Block Data routines that are necessary but not specifically called or referenced by any program. (In the case of an otherwise mnamed Block Data routine, the additional ident card would-contain only SLKD.ATA). Another instance might be one in which the order of loading was important to guarantee that the longest named COMMON reference would come first. The order would be forced by the insertion of additional cards containing the names of the routines in the order required.

$$
\text { OVERLAY }\left(f n, I_{1}, I_{2}\right)
$$

Qverlay text cards are necessary to properly define the structure of the Alle to be built for overlay loading. These cards cause an overlay loader directive record containing all the information on the text card to be written on the OUTFILE. The order and form of this text card must be exactly as defined in the Scope Reference Manual or the FORTRAN Reference Manual, with the exception of the starting column.

An ident text card containing the name of the main program in the overlay must follow each overlay text card.

Given correct overlay and ident text cards, AUTOLAY wili correctly build an overlay structure file; no routine needed or defined in a more fundamental overlay will be placed in a less fundamental level. If an ident card incorrectly attempts to call a routine that somehow has been placed in the more fundamental level either through a previous ident text card of through a call by a subroutine at that. level, the ident card is ignored, and an informative diagnostic is printed. . It is possible to have several 0,0 level overlay cards in the text stream if the purpose is to build different overlay structured programs.

## *WEOF*

This text card causes an end of file to be written on the OUTFILE after all the preceding text cards are processed. (A file mark might be between two separate overlay structured programs being output in a single run).

### 14.1.3 AUTOLAY Details and Limitations

For perhaps 98 per cent of all the times AUTOLAY is used, $50000_{8}$ will be sufficient field length. AUTOLAY will abort if the following internal tables overflow:

Name of Table	$\frac{\text { Size }}{768}$
Library Subprogram Name	
Subprogram Entry Points	1280
Subprogram External References	3840
Current Overlay Need Stack	383
Working Storage Buffer	variable (see below)

The working storage buffer size can be determined by subtracting 405008 from the field length. It is difficult to determine what the minimum size recuired will be unless the lengths of the relocatable binary records present on the user library files are known. The length of the longest record determines the minimum working storage buffer size. (Note: this length is not the amount of core required to load the subprogram for execution but the number of words output by the compiler or assembler). In other words, it is proportional to the number of binary cards that would be punched out, were the subprogram punched out, not necessarily related to the size. of any arrays dimensioned inside the subprogram. This length can be obtained exactiy, if necessary, from the information output by a "LIBLIST" of the library files, and should be rounded upward to the nearest 10008 when figuring the minimum field length necessary for AUTOLAY.

AUTOLAY rewinds each user library file starting with the first mentioned then transfers every routine contained in it to a random access file, rewinds the library file, and then repeats this process with the next user library file mentioned for every file given.

If during the transfer process a subprogram is found that has a name duplicating one found previously, the latter subprogram is skipped, an informative diagnostic printed, and the process continues. This is handily put to use when one wishes to use a newer version of a routine instead of the version contained in one of the user library files, e.g., by placing the name of the newer library file to the left of the older version, the user causes the duplicate routines on the later file to be ignored.

Entry points must be unique to one subprogram. If two or more have the same entry point names, AUTOLAY output may be scrambled. The responsibility for proper overlay text card sequence is entirely the user's. Incorrect sequencing as defined in the Scope and FORTRAN Reference manuals will not be flagged until an attempt is made to load the OUTFILE.

The OUTFILE is rewound at the beginning and end of AUTOLAY. It will be ended with one end of file mark unless more are forced through *WEOF* cards at the end of the text cards.

The random access file mentioned earlier is called RANSCR and must be a disk file; however, at the conclusion of AUTOLAY it can be rewound and copied by the normal control cards (REWIND and COPYBF) if the user wishes to save a new version of the user library. This file contains all of the routines found in the library files input to AUTOLAY minus any duplicate routines, overlay cards, and compiler or assembly error records.

The present version does not allow the use of INPUT (the card reader) as a library file.

### 14.1.4 AUTOLAY Examples

Example 1. The initial installation of AUTOLAY as a permanent file:
RFI, 60000 .
FTN.
LOAD (LGO)
NOGO. !
CATALG (AUTOLAY, AUTOLAY, ID=ARCEIBO1, $E X=A R C 1$,
$C N=A R C 1, M D=A R C 1, R P=999)$
end of record

AUTOLAY source deck

Example 2. The initial installation of the program overlay file
The following deck set up is used for the initial generation of the program overlay file NEWPGM on tape ARC01.

```
REQUEST NEWPGM,HI. (ARCO1/RING)
RFL,60000.
RUN(S,,,,,,77000)
AITACH(AUTOLAY,AUTOLAY)
AUTOLLAY(NEWPGM,IGO)
```

                                    FORTRAN source decks
    OVERLAY (PROGRAM, 0,0 )
MATN
OVERLAY (PROGRAM,1,0)
MATIII
OVERLAY (PROGRAM,2,0)
MATN2 +
OVERLAY (PROGRAM, 3,0)
KAIN3
OVERLAY (PROGRAM, 4,0)
VAIN4
OVERLAY(PROGRAM,5,0)
MAINS
OVERLAY (PROGRAM, 6,0)
NAING
OVERLAY (PROGRAM,7,0)
MAIN7
end of record
end of file

Example 3. Modification of the program overlay file.
The following deck set up is used when making modifications to the program:

```
REQUEST OLDPGM,HI. (ARCO1/NORING)
REQUEST NEWPGM,HI. (ARCO2/RING)
RFL,60000.
RUN(S,,,,,,77000)
ATTACH(AUTOLAY,AUTOLAY)
AUTOLAY(NEWPGM,LGO,OIDPGM)
end of record
 Modified source decks
end of record
OVERLAY(PROGRAM,O,0)
MAIN
OVERLAY(PROGRAM,1,0)
MAINI
OVERLAY(PROGRAM,2,0)
NAIN2
OVERLAY(PROGRAM, 3,0)
MALN3
OVERLAY(PROGRAM,4,0)
MAIN4
OVERLAY(PROGRAM,5,0)
MAINS
OVERLAY(PROGRAM,6,0)
MAIN6
OVERLAY (PROGRAM, 7,0)
MAIN7
end of record
end of file
```

TABLE OF CONTENTS FOR SECTION 15.1,
PROGRAM AFSP
Section Page
15.1.1 Normal Modes ..... 15.1-1
15.1.2 The V-g Technique ..... 15.1-3
15.1.3 Automated Flutter Solution Procedure ..... 15.1-4
Illustrations ..... 15.1-8

## SECTION 15

AEROELASTICITY

ODIN aeroelasticity computations are currently limited to use of the AFSP program. This program was constructed by Y. T. Phoa during the study effort. The AFSP program contains the following computational capability:

1. Normal modes using swept strips
2. Unsteady compressible subsonic aerodynamic strip theory
3. Flutter equation solution using either conventional V-g analysis or an automated Nyquist-like search for flutter speed.

An outline of the AFSP procedure is presented below. Additional details may be found in Reference l. It should be noted that more sophisticated flutter analysis technology modules are readaly avallable for anclusion in the ODIN system, for example, Reference 2.

REFERENCES:

1. Phoa, Y. T., A Computerized Flutter Solution Procedure, Paper presented at the National Symposium on Computerized Structural Analysıs and Design, Washington, D.C., 1972.
2. Albano, E., Perkinson, F., and Rodden, W. P., Subsonic Lifting Surface Theory Aerodymamics and Flutter Analysis of Interfering Wing/Horizontal Tail Configurations, Part 2, Wing-Tail Flutter Correlation Study, AFFDL-TR-70-59, 1970.

### 15.1 PROGRAM AFSP: A PROGRAM FOR AUTOMATED FLUTTER SOLUTION

### 15.1.1 Normal Modes

Normal modes for a multi-segment swept wing are computed within the AFSP code. Uncoupled bending and torsion modes are considered with the fuselage mass represented by concentrated mass and inertia terms. Modes may be obtained for any of the following boundary condition assumptions:

1. Cantilever wing
2. Free-free antisymmetric motion
3. Free-free symmetric motion

The wing idealization is presented in Figure 1. A series of streamwise oriented panels are attached to a swept elastic axis. The root point of the elastic axis lies on the center line of the airplane and coincides with the origin of the reference axes of the whole airplane.

Panel inertia is accounted for by means of the following data:
$\mathrm{m}=$ panel mass
$A=$ streamwise distance between the elastic axis attachment point and the center of gravity
$I_{1}=m o m e n t$ of inertia about axis 1
$I_{2}=m o m e n t$ of inertia about axis 2
Degrees of freedom associated with the inertia data are
$\mathrm{k}_{3}=$ vertical translation of the panel's center of gravity
$\bar{k}_{1}=$ panel torsion about axis 1
$\mathrm{k}_{2}=$ panel rotation about axis 2
Flexibility of the elastic axis is specified by EI (bending) and GJ (torsion) stiffness values at the successive reference points on the elastic axis. A value at reference point (i) is used as the constant stıffness distribution between (1) and (1-1). The length of the corresponding beam element is denoted by $\mathrm{L}(1)$; the root point of the elastic axis can be considered the zero point.

Variables that specify the elastic axis deformation at these reference points are
$h=$ vertical displacement due to bending
r = rotation (slope) due to bending
$t=$ rotation due to torsion

For the free-free airplane, mass matrices are required which include the inertla data of the whole airplane as well as the inertia coupling terms which relate the motions of the airplane reference axes to the motions of the respectuve panels relative to those axes. For anti-symmetric airplane motions only the roll degree of freedom needs to be considered for a meaningful wing flutter analysis. The symmetric aịplane motions are accounted for by the vertical translation $A$ and the pitch degree of freedom $\theta$. The aurplane data are specified in terms of

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{O}_{\mathrm{r}}}=\text { mass of airplane } \\
& \mathrm{S}_{\mathrm{r}}=\text { static moment of the airplane about the } Y \text { axis } \\
& \mathrm{I}_{1_{\mathrm{r}}}=\begin{array}{l}
\text { moment of inertia of the airplane with respect to } \\
\text { the } X \text { axis }
\end{array} \\
& \mathrm{I}_{2_{\mathrm{r}}}=\begin{array}{l}
\text { moment of inertia of the airplane with respect to } \\
\text { the } Y \text { axis }
\end{array}
\end{aligned}
$$

These quantities do not include the wing inertias. The wang contributions are computed from the panel inertias and the additional input data

$$
\begin{aligned}
x= & \text { distance from the panel's center of gravity to the } \\
& \text { airplane's } Y \text { axis } \\
y= & \text { distance from the panel's center of gravity to the } \\
& \text { airplane's } X \text { axis }
\end{aligned}
$$

Transformations convert . the input data into mass and stiffness matrices relevant to "uncoupled" bending and torsion vibration equations for the elastic axis. The general format of the vibration equations is

$$
\begin{equation*}
\left(-\omega^{2} M+K\right) q=0 \tag{15.1.1}
\end{equation*}
$$

Because of the simplicity of the mass matrices concerned, Equation (15.1.1) is rewritten

$$
K q=\lambda M q \quad \text { with } \quad \lambda=\omega^{2}
$$

or
or
or

$$
K\left(M^{-1 / 2}\right)\left(M^{1 / 2}\right) q=\lambda\left(M^{1 / 2}\right)\left(M^{1 / 2}\right) q
$$

$$
\left(M^{-1 / 2}\right) K\left(M^{-1 / 2}\right)\left(M^{1 / 2}\right) q=\lambda\left(M^{1 / 2}\right) q
$$

with

$$
\begin{equation*}
\bar{A} \bar{\xi}=\lambda \bar{\xi} \tag{151.2}
\end{equation*}
$$

and

$$
A=\left(M^{-1 / 2}\right) K\left(M^{-1 / 2}\right)=\text { symmetric axıs }
$$

.

$$
\xi=\left(M^{1 / 2}\right) q \quad \text { or } \quad Q=\left(M^{-1 / 2}\right) \dot{\xi}
$$

The eigenvalue problem then is solved by means of Jacobi's tterative algorithm which fully exploits the symmetry of the A matrix.

The flutter equations are formulated as follows:

$$
\begin{equation*}
\left\{-\omega^{2} M+S-\frac{1}{2} \rho V^{2} C\right\} X=0 \tag{15.1.3}
\end{equation*}
$$

with
$\mathrm{M}=$ mass matrix
$\mathrm{S}=$ stiffness matrix
$C=$ matrix of aerodynamic coefficients, evaluated for given Mach
number and $k=\omega b / V$
$\omega=$ vibration frequency
$V=$ speed of flight
$\rho=$ air density
$b=r e f e r e n c e ~ l e n g t h, ~ r e q u i r e d ~ t o ~ r e n d e r ~ k ~ d i m e n s i o n l e s s ~$
$X=$ system degrees of freedom
The solution of these equations consists of a set of ( $\omega, \rho, V$ ) values which satisfies the following conditions:
a. consistent with the k -value and Mach number for which the C-matrix has been evaluated
b. render the matrix of coefficients of (11.1.3) equal to zero.

### 15.1.2 The V-g Technique

The flutter equations of (ll.1.3) present an eigenvalue problem. When compressibility of air can be ignored or when the Mach number is fixed, the $\rho$-value is constant and the $C$ matrix depends only on $k$. Equation (15.1.1) can then be rewritten as follows:

$$
\begin{equation*}
\{A-\lambda K\} X=0 \tag{15.1.4}
\end{equation*}
$$

with

$$
\begin{aligned}
& A=M+\frac{1}{2} \rho(b / k)^{2} C \\
& \lambda=1 / \omega^{2}
\end{aligned}
$$

For selected $k$ values, the eigenvalues of Equation (15.1.4) are found. The corresponding flutter speed follows directly from

$$
\begin{equation*}
V_{F}=\omega b / k \tag{15.1.5}
\end{equation*}
$$

Due to the fact that the $C$ matrix is complex and non-Hermitian, however, arbitrarily assumed $k$ values, in general, lead to complex eigenvalues.

In this general case, the flutter equation is rearranged so that

$$
\begin{equation*}
\lambda=\left(\frac{1.0}{\omega}\right)^{2}(1+j g) \tag{15.1.6}
\end{equation*}
$$

Here $\lambda$ is the system frequency and $g$ is the artificial structural damping which maintains a simple harmonic motion.

$$
\begin{equation*}
\lambda=R+j I \tag{15.1.7}
\end{equation*}
$$

The system frequency corresponding to this eigenvalue is

$$
\begin{equation*}
\omega=\frac{1.0}{\sqrt{R}} \tag{15.1.8}
\end{equation*}
$$

and the corresponding velocity is

$$
\begin{equation*}
V=\frac{1.0}{\sqrt{R}} \mathrm{~b} / \mathrm{k} \tag{15.1.9}
\end{equation*}
$$

The artificial structural damping is given by

$$
\begin{equation*}
g=\omega^{2} I \tag{15.1,10}
\end{equation*}
$$

Plotting $V$ versus $g$ for varying $k$ points at which sustained harmonic motion is possible without artificial (negative) structural damping can be found. Figure 15.1-2 illustrates a typical result for a four degree of freedom system. At the flutter point a real eigenvalue is found. This eigenvalue satisfies Equation (15.1.4). In actuality, structural dampıng is a small positave quantıty, g $\simeq .02$.

### 15.1.3 Automated Flutter Solution Procedure .

Returning to the flutter equations of (15.1.4) a direct and fully automated search can be carried out for those values of $\omega, \rho$ and $V$ which satısfy all the flutter conditions. Such a search has been organized for the AFSP program. The objective 1 s to determine the flutter parameter values at a given Mach number. A $\rho$-value can be computed when a V-value is specified. When, in addition, an $\omega$-value is chosen, the $k$-value, the $C$ matrix and the complete flutter matrix can be evaluated. The search domain scanned by the AFSP can be depicted in a V- $\omega$ diagram as shown in Figure 3. The boundaries of this domain are established on the basis, of practical considerations as follows.

Because the Mach number is fixed, the lower speed limit is set by the highest altitude for which the airplane is designed. The upper limit has to correspond with an appropriate speed at sea level.

It is known from experience that flutter speeds of practical interest occur within a limated frequency interval and that bandwidth is usually determined during the early stages of the desi.gn effort.

The lines of constant $k$ value are straight lines in the $V-\omega$ diagram. The highest $k$-value is determined by the procedure that is used to compute oscillatory airforces. Those procedures are numerical and the obtainable accuracy decreases with increasing $k$-value; a ball park figure is

$$
k_{\max }=3
$$

It should be emphasized that the extent of the search can be reduced considerably when parameter studies are carried out and regions of particular interest have been determined from a few initial computations.

The objective of the search is to find those points within the search doman at which the flutter matrix has a zero determinant value. This leads to a direct link between the flutter analysis and the theory of linear control systems. To establish that link, the flutter equations are first rederived along the following lines. The mass and stiffness properties of the airplane structure can be represented by means of a transfer function relationship $X=G \varepsilon$ with
$G^{-1}=(j \omega)^{2} M+K$
$X=$ column-vector of alrplane degrees of freedom
$\varepsilon=$ column-vector comprising the forces acting in the respective alrplane degrees of freedom

Assuming a given flight speed, $V$, the $C$ matrix evaluated for a specıfied Nach number provides a similar relationship $F=H X$ with
$\mathrm{H}=\frac{1}{2} \rho \mathrm{~V}^{2} \mathrm{C}$
$\mathrm{F}=$ column-vector comprising aerodynamic forces due to motions and acting in the respective airplane degrees of freedom

Referring to Figure 15.1-4 block diagram algebra yields the transfer function relatıonship for the closed loop feedback system

$$
\begin{equation*}
\left(G^{-1}-H\right) X=Z X=Y \tag{15.1.11}
\end{equation*}
$$

By definntion, flutter vibrations occur without the presence of external excitations $Y ;$ i.e., $Y \equiv 0$.

Reference now 15 made to Nyquist's technique for determining relattve stability of a feedback system. To apply that technique, it is required to derlve the expression for the open loop frequency response. Open loop frequency responses for multivariable systems are derived from the general relation:

$$
\begin{equation*}
X=Z^{-1} Y \tag{15.1.12}
\end{equation*}
$$

in which the $X$ and $Y$ column vectors are related in such a manner that the $(k, j)$ element of the $Z^{-1}$ matrix represents the closed loop frequency response in degree of freedom (i) to excitation with unit amplitude in the $]^{\text {th }}$ degree of freedom. The elements of the $z^{-1}$ matrix are further related to those of the $Z$ matrix as follows

$$
\begin{equation*}
\left.t_{(i, j)}=z_{(1, j)}^{-1}=(-1)^{1+J_{\{\Delta}}{ }_{j i} / \Delta\right\} \tag{15.1.13}
\end{equation*}
$$

hith
$\Delta=$ determinant of the $Z$ matrix $s_{j i}=$ munor of the $(j, 1)$ element of the $Z$ matrix
Expansion of $\Delta$ as below:

$$
\begin{equation*}
\Delta=(-1)^{i+j} Z_{i j} \Delta_{i j}+\tau_{i j} \tag{array}
\end{equation*}
$$

then defines $\xi_{i j}$, and $t(1, j)$ can now be expressed as the closed loop transfer function of a single loop system as shown in Figure 11.1-5.

$$
\begin{equation*}
t(1, j)=\frac{(-1)^{i+j_{L_{11}} / \tau_{1 j}}}{1+(-1)^{7+j_{i}} L_{i, j} / \tau_{j j}} \tag{15.1.15}
\end{equation*}
$$

Referring to textbooks on control systems theory, the second term in the denominator is identıfied as an open loop frequency response or Nyquist function

$$
\begin{equation*}
N(i, j)=(-I)^{i+j^{2}}{ }_{j, 1 j} / r_{1]} \tag{15.1.16}
\end{equation*}
$$

The lyquist function computed in the $4 F S P$ is the direct, open loop frequency response in the $n^{\text {th }}$ degree of freedom such that

$$
N=Z_{n n} \Delta_{n n} / E_{n n}
$$

wath $n$ equal to the total number of degrees of freedom.

It is evident that the condition for $N$ to be equal to ( -1 ) applies to both the concept of neutral stability in control theory as well as to flutter considering that in the case

$$
\begin{equation*}
\Delta=z_{\mathrm{nn}} \Delta_{\mathrm{nn}}+\xi_{\mathrm{nn}}=0 \tag{15.1.18}
\end{equation*}
$$

The standard procedure in control theory for determining relative stability of a feedback system consists of a mapping of the so-called s plane onto another image plane. When the Nyquist function is used as the mapping function, the image of the ( $J$ ) axis of the $s$ plane occurs as a Nyquist locus and all characteristic roots of the system are mapped simultaneously onto the ( -1 ) point of the image plane. The AFSP search consists of frequency sweeps at constant V-value. Each sweep yields a Nyquist locus as shown in Figure 6. A logic has been built into the program to change $V$ values automatically in such a manner that the locus is forced to pass through (-1).


「IGHRE 15.1-1
15.1-8



FIGURE 15.1-3 AFSP SEARCH DOMAIN

$$
\begin{aligned}
G^{-1} & =(j \omega)^{2} M+K \\
H & =1 / 2 \rho V^{2} C
\end{aligned}
$$


$G(s)=$ metrif of sfruciural fransfor functions $\mathrm{H}(\mathrm{s})=\mathrm{mah}$ mi: of aerodynamic transfer fons $X=s \in t$ of gefierahted coordinaies
$Y=$ sei of̂gencralized, outerncl exciction foreos

$$
\left(G^{-1}-14\right) x=2 X=Y
$$

FIGURE 15.1-4 THE AEROELASTIC SYSTEM

ORIGINAL PAGE IS
OF POOR QUAIITY
15.1-11

$$
\begin{aligned}
& x_{i} / y_{j}=i(i, j)=\frac{g(s)}{1+g(s) \cdot h(s)} \\
& g=(-1)^{i+j} \Delta j i / \xi_{i j} \\
& h=Z i j \Delta i j / \Delta j i
\end{aligned}
$$


$x_{i}=$ i-thourput variable
ORICHILL
$y=j$-ih impur variche hulti-vailable
$f(i, j)=$ closect loop francter fon syster.f
FIGURE 15.1-5 SINGLE LOOP SUBSTITUTE SYSTEM
C. 8


[^3]FIGURE 15.1~6 N-LOCI USED IN AFSP

TABLE OF CONTENTS FOR SECTION 16.1, PROGRAM ACMOTAN
Section Page
16.1.1 General Description ..... 16.1-1
16.1.2 Equations of Motion ..... 16.1-3
16.1.2.1 Normal Load Factor at Specıfied Point ..... 16.1-5
16.1.2.2 Lateral Acceleration at Specified Point ..... 16.1-5
16.1.2.3 Altitude Perturbation ..... 16.1-5
16.1.2.4 Heading Perturbation Variable ..... 16.1-5
16.1.3 Filter Networks and Actuator Dynamics ..... 16.1-6
16.1.4 Program Definitions ..... 16.1-6
16.1.5 Input Cards ..... 16.1-8
Appendix A to Section 16.1 ..... 16.1-13
16.1.A.1 Frequency Response ..... 16.1-13
16.1.A. 2 Time Functions ..... 16.1-14
Illustrations ..... 16.1-15
ORIGINAL PAGE IS
OF POOR QUALITY

The ODIN system contains a closed loop stability and control analysis technology module, ACMOTAN, Reference 1. ACMOTAN is an acronym for linear aircraft motion analysis, and the program was constructed by - William B. Kemp and Charles H. Fox, Jr., of Langley Research Center.

It should be noted that if nonlinear analyses are required, the Air Force Flight Dynamics Laboratory's six degree of freedom program, References 2 and 3, can be readily introduced as a technology module. The six degree of freedom program has compatible input with the Section 7.3 ATOP II program.

## REFERENCES:

1. Kemp, William B. and Fox, Charles H. Jr., Users Guide to Program ACMOTAN for Linear Aircraft Motion Analysis, Program No. A2541
2. Brown, R. C., Brulle, R. V., Combs, A. E. and Griffin, G. D., Six Degree of Freedom Flight Path Study Generalized Computer Program, Part 1, Volume I, AFFDL-TDR-64-1, October 1964.
3. Vorwald, R. L., Six Degree of Freedom Flight Path Study Program
$\because \therefore$ Generalized Computer Program, Part 2, Volume I, AFFDL-TDR-64-1, October 1964.

### 16.1 PROGRAM ACMOTAN: LINEAR AIRCRAFT MOTION ANALYSIS

Program ACMOTAN was developed Kemp and Fox of Langley Research Center: The description below is taken directly from their internal Langley note. Since the original program documentation is not generally available, the description below includes program input description from the program authors.

### 16.1.1 General Description

Program ACMOTAN is a versatile program for linear aircraft motion analysis which allows the user to supplement standard airplane equations of motion with auxiliary equations written by the user to represent control laws or additional variables. The program prepares the system of linear differential equations using several optional forms of input data and then carries the solution to an extent determined by the output options selected. Minimum output includes the charactexistic polynomial and its roots. Addrtional outputs in the form of transfer functions, frequency responses and time histomies can be selected.

The basic equations operated on by the program represent a set of Laplace transformed linear differential equations and can be expressed in matrix form as

$$
\begin{equation*}
[A]\{x\}=[\gamma]\{d\} \tag{16.1.1}
\end{equation*}
$$

where
[A] is the coefficient matrix of size $n \times n$ having polynomial elements of degree $k$. Program limitations require $n \leqslant 12$ and $k \leqslant 2$; therefore each element of [A] is represented by up to three polynomial coefficients
$\{X\}$ is a vector of $n$ variables which can be supplemented by $n$ ' additional variables, each representing a linear combination of any of the $n$ basic variables; $n+n^{\prime}$ must not exceed 14 .
\{d\} is a disturbance vector of $m$ elements implied by the user. Each element of \{d\} defines an 1 mplied disturbance such as a set of initial conditions, a control deflection, an external gust, etc. $m \leqslant 10$.
$[\gamma]$ is the disturbance coefficient matrix having $n \times m$ polynomial elements of degree $\ell . \mathrm{n} \leqslant 14, \mathrm{~m} \leqslant 10$, $\ell \leqslant 2$.

The solution of Equation (16.1.1) can be expressed as follows:

$$
\begin{equation*}
\{x\}=[A]^{-1}[\gamma]\{a\}=\frac{[\tilde{A}][\gamma]\{a\}}{P}=\frac{[G]\{a\}}{P} \tag{16.1.2}
\end{equation*}
$$

[G] is the $\left(n+n^{\prime}\right) x$ m matrix of transfer function numerators having polynomial elements of maximum degree $k(n-1)+\ell$.

Inputs to the program consist of control codes and data from which the elements of [A] and [ $\gamma$ ] are generated. Either of two standard [A] submatrices can be generated by the program. These represent the longitudinal (variables $u, \alpha, q, \theta, \delta$ ) or lateral-directional (variables $\beta$, $p, x, \phi, \delta)$ equations of motion for unaugmented airplanes, linearized about a reference flight condition with arbitrary $V_{0}, \alpha_{0}, \theta_{0}$, and $q_{0}$. The use of either submatrix requires the following minima, $n \geqslant 5$, $\mathrm{k} \geqslant 1, \mathrm{~m} \geqslant 2, \ell \geqslant 0$. The standard submatrices are formulated on body axes as shown in Figure 16.1-1 and 16.1-2. The program will accept several optional forms of aerodynamic data for computing the standard submatrix elements. Auxiliary equations are input by reading in the $\mathrm{K}+1$ polynomial coefficients at an arbitrary number of [A] element locations. This process can also be used to modify the standard submatrix equations since the coefficients read in at this stage are added to those already existing in that element location. If the complete [A] matrix has a zere determinant, the program will terminate after printing zeros for the characteristic polynomial.

For each standard submatrix of [A], a standard submatrix of [ $\gamma$ ] is provided. The first column (corresponding to the first element of the implied \{d\} vector) represents a unit impulsive $\delta$ input. The second column represents initial conditions of the pertinent perturbation variables in the standard [A] submatrix. The [ $\gamma$ ] matrix can also be established or expanded by reading in the $\ell+1$ polynomial coefficients in ây specıfied [ $\gamma$ ] element location. The [ $\gamma$ ] matrix is filled only if transfer function or time history outputs are selected.

Any list of polynomial coefficients (eather input or output) is considered in order of increasing powers.

The basic output consists of the coefficients and roots of the characteristic polynomial. These computations are performed in double precision. Extremely large roots are ignored and extremely small real or imaginary parts of roots are set to zero. Roots are printed in both complex form and Bode form ( $\tau, \xi, \omega_{n}$ ).

If transfer function or time history outputs are selected, the variable list can be expanded to include any new variable that can be expressed as a linear combination of any previously establıshed varıables. The number of rows in [G] is thereby expanded to a maximum of 14 . The polynomial coefficients of each element of [G] (each transfer function numerator) are then printed, and the numerator roots are extracted and printed in complex and Bode form for all variables identified by an rndex list read in.

If time history output is selected, time histories are printed for all variables in the above index list. Values of total time duration and time increment between points must be supplied along with a list of factors by which the output variables are multiplied before testing or printing. The total duration can be broken into an arbitrary number of segments. The first segment gives the response to any linear combination of disturbances implied in the $\{d\}$ vector imposed at time zero. This segment terminates when the value of the variable identified by a test variable index (must be contained in the above index list) crosses a supplied test value. At this time, a new combination of disturbances is superimposed on those previously considered, and responses are calculated until the new test variable crosses the new test value. If for any segment, the test variable index is given as zero, that segment will continue for the remainder of the specified duration. Terminal times for each segment are determined by linear interpolation within the specified time interval. There is no assurance that all segments will be entered before the total time duration is reached. A program option provides the opportunity to check the [A] matrix for poor conditioning. Since

$$
[A]^{-1}=\frac{[\widetilde{A}]}{P},
$$

then

$$
[A]^{-1}[A]=[I]=\frac{[\tilde{A}][A]}{P}
$$

Thus, $[\tilde{A}][A]$ should equal $P$ times, the identity matrix. If the check option is selected, the product [ $\widetilde{A}][A]$ is formed, and the diagonal elements are printed just prior to the $P$ coefficients. The accuracy of the matrix inversion may then be judged by comparison.

### 16.1.2 Equations of Motion

The usefulness of program ACMOTAN depends to a large extent on the ability of the user to build up an effective system of equations of motion using the standard equations contained in the program as a basis. For this reason, a clear understanding of the standard equations is necessary.

The standard force and moment equations (see Figures $16.1-1$ and 16.1-2) are resolved on body axes so that control laws involving feedbacks from body-mounted accelerometers or gyros can be formulated more easily. The angular attitudes, $\theta$ and $\phi$, however, are Euler angles. In linearized form the Euler pitch attitude, $\theta$, is identical to the integral of the pitching velocity, $q$, and therefore should cause no confusion. The Euler bank angle, $\phi$, linearized about a level flight condition (i.e., $\alpha_{0}=\theta_{0}$ ) is less than the integral of the stability axis rolling velocity by the factor $\cos \theta_{0}$. Since $\theta_{0}$ is a constant, the poles and zeros of the transfer functions of $\phi$ are identical to those of the integral of stability
axis rolling velocity and therefore are directly applicable in handling qualities analysis. The generalized control deflection is introduced by including the control derivatives as coupling terms in the force and moment equations and introducing the equation, $\delta(s)=1$, to represent a unit impulsave control deflection input. Other anput forms require modifiçation of th1s equation; for example, a un1t step input is represented by $\delta(s)=1 / s$. To be compatible with the ACMOTAN requirement for polynomial matrix elements, this equation must be multiplied by $s$ yielding $s \delta(s)=1$. Thus, the standard [A] submatrix can be altered to provide a step input by adding $s-1$ to $A(5,5)$ where the -1 cancels the 1 already existing in $A(5,5)$. Similarly, a ramp input is provided by adding $s^{2}-1$ to $A(5,5)$.

The standard longitudinal and lateral directional submatrices each represent the Laplace transformation of the three degree of freedom perturbation equations obtained by subtracting the reference equations from the set of equations of motion linearized about a reference flight condition having arbitrary $V_{0}, \alpha_{0}, \theta_{0}$, and $q_{0}$. The reference equations obtained by setting all perturbation variables in the complete linearized equations to zero are given below.

$$
\begin{aligned}
& X_{0}=\frac{\left(T_{0} \cos \xi-\frac{1}{2} \rho V_{0}{ }^{2}{ }_{S C_{A_{0}}}\right)}{m V_{0}}=q_{0} \sin a_{0}+\frac{g}{V_{0}} \sin \theta_{0} \\
& Z_{0}=\frac{\left(-\mathrm{T}_{0} \sin \xi-\frac{1}{2} \rho V_{0}{ }^{2} \mathrm{SC}_{N \mathrm{~N}_{0}}\right)}{m V_{0}}=-q_{0} \cos \alpha_{0}-\frac{g}{V_{0}} \cos \theta_{0} \\
& M_{0}=\frac{\left(T_{0} Z_{T I} \cos \xi+\frac{1}{2} \rho V_{0}{ }^{2} \operatorname{se} C_{m_{0}}\right)}{I_{y}}=0 \\
& Y_{0}=\frac{\frac{1}{2} \rho V_{0}{ }^{2}{ }_{S C_{Y_{O}}}}{m V_{O}}=0 \\
& I_{0}=\frac{\frac{1}{2} \rho V_{0}{ }^{2} S b q_{0}}{-I_{x}}=0 \\
& N_{0}=\frac{\frac{I}{2} \rho V_{0}{ }^{2}{ }^{S b C_{n_{0}}}}{I_{z}}=0
\end{aligned}
$$

16.1-4

To insure a valid set of perturbation equations the input data to the program must be compatible with the reference equations.

The standard equations may be supplemented by auxiliary equations defining control laws or additional variables. The following equations express several commonly used perturbation variables in a linearized form compatible with the standard equations.
16.1.2.1 Normal Load Factor at Specified Point

Normal load factor at a point $x$ feet ahead of CG.

$$
\begin{aligned}
n_{z} & +\frac{V_{0}}{g}\left(s \sin \alpha_{0}-q_{0} \cos \alpha_{0}\right) u+\frac{V_{0}}{g}\left(s \cos \alpha_{0}+q_{0} \sin \alpha_{o}\right) \alpha \\
& -\left(\frac{s x}{g}+\frac{V_{0}}{g} \cos \alpha_{0}\right) q+\left(\sin \theta_{0}\right) \theta=u_{t_{0}} \frac{V_{0}}{g} \sin \alpha_{0}+\alpha_{t_{0}} \frac{V_{O}}{g} \cos \alpha_{0}-q_{t_{0}} \frac{x}{g}
\end{aligned}
$$

### 16.1.2.2 Lateral Acceleration at Specifıed Point

Lateral acceleration at a point $x$ feet ahead of and $z$ feet below CG, $g$ units

$$
\begin{aligned}
a_{y} & -\left(s \frac{V_{0}}{g}\right) \beta+\left(\frac{s z}{g}+\frac{V_{0}}{g} \sin \alpha_{o}\right) p-\left(\frac{s x}{g}+\frac{V_{0}}{g} \cos \alpha_{o}\right) r+\left(\cos \theta_{o}\right) \phi \\
& =-\beta_{t_{0}} \frac{V_{o}}{g}+p_{t_{0}} z-r_{t o^{x}}
\end{aligned}
$$

### 16.1.2.3 Altitude Perturbation

$$
\begin{aligned}
& \operatorname{sh}+V_{0}\left(\sin \alpha_{0} \cos \theta_{0}-\cos \alpha_{0} \sin \theta_{0}\right) u+V_{0}\left(\cos \alpha_{0} \cos \theta_{0}+\sin \alpha_{0} \sin \theta_{0}\right) \alpha \\
& \quad-V_{0}\left(\cos \alpha_{0} \cos \theta_{0}+\sin \alpha_{0} \sin \theta_{0}\right) \theta=h_{t_{0}}
\end{aligned}
$$

16.1.2.4 Heading Perturbation Varıable

Euler heading angle

$$
\left(s \cos \theta_{0}\right) \psi-r-q_{0} \phi=\psi_{t_{0}} \cos \theta_{0}
$$

### 16.1.3 Filter Networks and Actuator Dynamics

Control laws involving filter networks or actuator dynamics might require some manipulation to be compatible with the requirements of ACMOTAN. For example, a signal flow through a fourth order filter is represented by


An equivalent representation is

$$
x_{1} \rightarrow\left[\frac{c_{0}+c_{1} s+c_{2} s^{2}}{d_{0}+d_{1} s+d_{2} s^{2}}\right] \xrightarrow{x_{2}} \rightarrow \frac{e_{0}+e_{1} s+e_{2} s^{2}}{f_{0}+f_{1} s+f_{2} s^{2}} \rightarrow x_{3}
$$

The following equations describe this signal flow in a form suitable for use with ACMOTAN:

$$
\begin{aligned}
& \left(c_{0}+c_{1} s+c_{2} s^{2}\right) x_{1}-\left(d_{0}+d_{1} s+d_{2} s^{2}\right) x_{2}=0 \\
& \left(e_{0}+e_{1} s+e_{2} s^{2}\right) x_{2}-\left(f_{0}+f_{1} s+f_{2} s^{2}\right) x_{3}=0
\end{aligned}
$$

### 16.1.4 Program Definitions

MOVE A seven digit control code
YOVE (1) 1 for longıtudinal submatrices
2 for lateral directional submatrices
3 no standard submatrices
MOVE (2) ${ }^{\text {a }} 0$ for body axis data
1 for stability axis data
$\operatorname{MOIE}(3)^{\text {a }} 0$ for dimensional derivatives
1 for nondimensional derivatives
2 for primed dimensional derıvatives (used only with $\operatorname{MOVE}(1)=2)$

MOVE $(4)^{a} 0$ for $\alpha, \beta$, and $\delta$ derivatives pér radıan
1 for $\alpha, \beta$, and $\delta$ derivatives per degree
YOVE(5) 0 no check matrix
I computes check matrix
$\overline{\text { a Irrelevant if } \operatorname{MOVE}(1)=3}$
10.1-6

MOVE (6)	0 characteristic roots only   1 characteristic roots and transfer functions   2 characteristic roots, transfer functions and time histories
$\operatorname{MOVE}(7)^{\text {b }}$	0 no standard disturbance submatrix
	1 for standard disturbance submatrix
N	number of rows and colums in A and number of rows in $\gamma$. (number of equations) $\mathrm{N} \leqslant 12$; if $\operatorname{MOVE}(1)=1$ or $2, \mathrm{~N} \geqslant 5$.
K	maximum degree of polynomial elements in $A . \quad K \leqslant 2$; if MOVE(1) is equal to 1 or $2, K$ is equal to or greater than 1 .
NADD	number of $A$ elements into which added terms are to be read
M	number of columns in $\gamma$ (number of disturbances. $M \leqslant 10$; if $\operatorname{MOVE}(7)=1, M \geqslant 2$
L	Maximum degree of polynomial elements in $\gamma . L \leqslant 2$; if $\operatorname{MOVE}(7)$ $=1, L \geqslant 0$
NGADAD ${ }^{--}$	number of $\gamma$ elements into which added terms are to be read
NVCOMB	number of new variables formed from linear combinations of variables represented in A. (N + NVCOMB) $\leqslant 14$
b	reference span
$\bar{c}$	reference chord
$\mathrm{C}_{\text {A }}$	axial force coefficrent, positive aft
$\mathrm{C}_{\mathrm{N}}$	normal force coefficient, positive upward
g	acceleration due to gravity. The value read in does not affect conversion from weight to mass
$\begin{aligned} & I_{x}, I_{y}, \\ & I_{z}, \\ & I_{x_{z}} \end{aligned}$	moments and product of inertia about reference body axes
p,q,r	angular velocities, body axes unless used as a subscripts to form stability axis derivatives
S	reference wing area
T	thrust

[^4]$u$

V

W
${ }^{2} \mathrm{~T}$ intercept of thrust line wath $Z$ body axis, positive if below CG
$\alpha$
$\beta \quad$ angle of sideslip
$\rho \quad$ mass density of air
$\phi \quad$ Eulex bank angle
$\xi \quad$ thrust inclination above $X$ body axis

M partıal derivatıve with respect to Mach number
o total value in reference flight condition
to inıtıal value of perturbatıon variable

### 16.1.5 Input Cards

Card Group 1. Required for all cases
Card 1. Format 8Al0. 80 arbitrary characters to identify case Card 2. Format 7I1, 7I3. MOVE (1) through MOVE (7), N, K, NADD, M, L, NGADD, NVCOMB

Card Group 2A. Required $1 f$ MOVE (1) $=1$ and $\operatorname{MOVE}(3)=0$. Four cards in format 6F12.0. Data must conform to MOVE number indicated by superscript.
16.1-8

$\mathrm{x}_{\mathrm{u}} \quad 2$	$z_{u} \quad 2$	$\mathrm{M}_{12}$	$\mathrm{X}_{\dot{\alpha}} \quad 2$	$z_{\dot{\alpha}} \quad 2$	$M_{a}$
$x_{\alpha}$ 2,4	$z_{\alpha} \quad 2,4$	$M_{C} \quad 4$	$\mathrm{x}_{\mathrm{q}} \quad 2$	$z_{q} \quad 2$	$\mathrm{M}_{\mathrm{q}}$
$\mathrm{X}_{8} \quad 2,4$	$\mathrm{Z}_{8} \cdot 2,4$	M ${ }_{\text {S }} \quad 4$	$\mathrm{V}_{0} \mathrm{ft} / \mathrm{sec}$	$\alpha_{0}$ deg	$\mathrm{q}_{0} \mathrm{rad} / \mathrm{sec}$
$\theta_{0}$ deg	$\mathrm{g} \mathrm{ft} / \mathrm{sec}^{2}$	$u_{t_{0}}$	$\alpha_{t_{0}} \mathrm{rad}$	$\mathrm{q}_{\mathrm{t}_{0}} \mathrm{rad} / \mathrm{sec}$	$\theta_{\mathrm{t}_{0}} \mathrm{rad}$

Card Group 2B. Required if $\operatorname{MOVE}(1)=1$ and $\operatorname{MOVE}(3)=1$. Seven cards in format 6F12.0. Data must conform to MOVE number indicated by superscript.

$\mathrm{C}_{\mathrm{I}_{\mathrm{M}}}$ or $\mathrm{C}_{\mathrm{A}_{11}} 2$	$\mathrm{C}_{\mathrm{I}_{\mathrm{M}}}$ or $\mathrm{C}_{\mathrm{N}_{\mathrm{M}}}{ }^{2}$	$\mathrm{C}_{\mathrm{m}}$	$C_{D_{\alpha}}$ or $C_{A_{\alpha}}{ }^{2}$	$\mathrm{C}_{\mathrm{I}_{\dot{\alpha}}}$ or $\mathrm{C}_{\mathrm{F}} \dot{\alpha}^{2}$	$\mathrm{C}_{\mathrm{m}}^{\dot{\alpha}}$
$\mathrm{C}_{\mathrm{D}_{\alpha}}$ or $\mathrm{C}_{\mathrm{A}_{\alpha}} 2,4$	$\mathrm{C}_{\mathrm{L}_{\alpha}}$ or $\mathrm{C}_{\mathbb{N}_{\alpha}} 2,4$	$\mathrm{c}_{\mathrm{m}_{\alpha}}{ }^{4}$	$C_{D_{q}}$ or $C_{A_{q}}{ }^{2}$	$\mathrm{C}_{\mathrm{L}_{\mathrm{q}}}$ or $\mathrm{C}_{\mathrm{N}_{\mathrm{q}}}{ }^{2}$	$\mathrm{C}_{\mathrm{m}_{\mathrm{q}}}$
$C_{D_{S}}$ or $C_{A_{S}} 2,4$	$\mathrm{C}_{\mathrm{I}_{\delta}}$ or $\mathrm{CN}_{\mathrm{N} \delta}{ }^{2,4}$	$\mathrm{Cm}_{\mathrm{m}}{ }^{4}$	$\mathrm{V}_{\mathrm{o}} \mathrm{ft} / \mathrm{sec}$	$c_{0} \mathrm{deg}$	$9_{0} \mathrm{rad} / \mathrm{sec}$
$\vartheta^{\text {c }}$ des	$\mathrm{g} \mathrm{ft/} \mathrm{sec}^{2}$	$u_{t_{0}}$	$\alpha_{t_{0}}$ rad	$q_{t_{0}} \mathrm{rad} / \mathrm{sec}$	$\mathrm{e}_{\mathrm{t}_{0}} \mathrm{rad}$
$C^{3}$ or $C_{A_{0}}{ }^{2}$	$\mathrm{C}_{\mathrm{I}_{0}}$ or $\mathrm{C}_{\mathrm{IT}_{0}}{ }^{2}$	$\mathrm{C}_{\mathrm{m}}$	$\rho$ slug/ft ${ }^{3}$	S $5 t^{2}$	c ft
W 16	$I_{y}$ slug $\mathrm{ft}^{2}$	Mach	$\mathrm{z}_{\mathrm{T}} \mathrm{f}$ ¢	$\xi \mathrm{deg}$	$\mathrm{T}_{8} \mathrm{lb} / \mathrm{rad}$
Ti, 16					

Card Group 2C. Required if $\operatorname{MOVE}(1)=2$ and $\operatorname{MOVE}(3)=0$ or 2. Five cards in format 6F12.0. Data must conform to MOVE number indscated by superscript.

$\mathrm{Y}_{3} \quad 4$	$\mathrm{L}_{\beta} \quad 2,3,4$	$N_{\beta} \quad 2,3,4$	$\mathrm{Y}_{\beta}^{*}$	$L_{\dot{B}}: 2,3$	$\mathrm{N}_{\beta} \quad 2,3$
$x_{p} \quad 2$	Ip 2,3	$\mathrm{N}_{\mathrm{p}} \quad 2,3$	$\mathrm{Y}_{\mathrm{r}} \quad 2$	$\mathrm{I}_{\mathrm{r}} \quad 2,3$	$\mathrm{N}_{\mathrm{r}} \quad 2,3$
$\Psi_{\delta} \quad 4$	$\mathrm{I}_{8} \quad 2,3,4$	$\mathrm{N}_{\delta} \quad \cdot 2,3,4$	$\mathrm{V}_{\mathrm{o}} \mathrm{ft} / \mathrm{sec}$	$\alpha_{0}$ deg	$q_{0} \mathrm{rad} / \mathrm{sec}$
$\theta_{0}$ deg	$\mathrm{gft} / \mathrm{sec}^{2}$	$I_{x}$ slug $f t^{2}$	$I_{y}$ slug $f t^{2}$	$I_{z}$ slug $f t^{2}$	$I_{x_{z}} \operatorname{slug} / \mathrm{f}^{2}$
$\beta_{t_{0}} \mathrm{rad}$	$\mathrm{pt}_{\mathrm{t}_{0}} \mathrm{rad} / \mathrm{sec}$	$\mathrm{v}_{\mathrm{t}_{0}} \mathrm{rad} / \mathrm{sec}$	$\phi_{t_{o}} \mathrm{rad}$		

Card Group 2D. Required if $\operatorname{MOVE}(1)=2$ and $\operatorname{MOVE}(3)=1$. Six cards in format 6F12.0. Data must conform to MOVE number indicated by superscript.

$C_{\Sigma_{\beta}} \quad 4$	$c_{Z_{\beta}} \quad 2,4$	$C_{n_{\beta}} \quad 2,4$	$\mathrm{C}_{\mathrm{y} \dot{\beta}}$	$c_{l}^{\dot{\beta}}$ ( $\quad 2$	$C_{n \beta} \quad 2$
$\mathrm{CO}_{2} 2$	$C^{l_{p}} \quad 2$	$\mathrm{C}_{\mathrm{n}_{\mathrm{p}}} \quad 2$	$\mathrm{C}_{\mathrm{y}_{\mathrm{r}}} \quad 2$	$c_{l_{r}} \quad 2$	$\mathrm{C}_{\mathrm{n}_{r}} \quad 2$
$C_{y_{S}} \quad 4$	$\mathrm{C}_{28} \quad 2,4$	$\mathrm{C}_{\mathrm{n}_{8}} \quad 2,4$	$V_{0} \mathrm{ft} / \mathrm{sec}$	$\alpha_{0}$ deg	$\mathrm{q}_{0} \mathrm{rad} / \mathrm{sec}$
$\theta_{0}$ des	$\mathrm{g} \mathrm{ft} / \mathrm{sec}^{2}$	$I_{x}$ slug $f t^{2}$	$I_{y}$ slug $\mathrm{ft}^{2}$	$I_{z}$ slug $f t^{2}$	$\mathrm{I}_{\mathrm{X}_{\mathrm{L}}} \operatorname{slug} \mathrm{ft}^{2}$
$\beta_{t_{0}} \mathrm{rad}$	$\mathrm{p}_{\mathrm{t}_{\mathrm{o}}} \mathrm{rad} / \mathrm{sec}$	$\mathrm{V}_{\mathrm{t}_{0}} \mathrm{rad} / \mathrm{sec}$	$\phi_{\mathrm{t}_{0} \mathrm{rad}}$	-	
$\rho$ slug/ft ${ }^{3}$	$s f t^{2}$	b $\mathrm{f}^{\prime} \mathrm{t}$	W ib		

16.1-10

Card Group 3. Number of cards required equal to NADD. Format 2I2, 3F12.0. Columns 1-2: a matrix row number, right adjusted

3-4: a matrix column number, right adjusted 5-16: constant polynomial coefficients 17-28. first power 29-40: second power added in this A matrix element. (Only K+l coefficients are read.)

Card Group 4. Not required if $\operatorname{MOVE}(6)=0$. $N$-mber of cards required equal to zero. Number of cards required equal to NGADD. Format 2I2, 3F12.0.
Columns 1-2: $\quad \gamma$ matrix row number, right adjusted 3-4: $\quad \gamma$ matrix column number, right adjusted 5-16: constant polynomial coefficients added 17-28: first power in this $\gamma$ matrix element. (only 29-40: second power L+1 coefficients are read.)

Card Group 5. Not required if MOVE (6) $=0$. Number of basic cards equal to NVCOMB. Format I2, 9 (I2, F6.0).
Columns 1-2: number of old variables combined in new variable
$\left.\begin{array}{c}3-4 \\ 11-12\end{array}\right\}$ index of old varıables etc.
5-10
13-18 multiplying factor for old varıable idenetc. tified by index in previous field.

Any card containing an entry greater than nine in column 1-2 must be followed by a continuation card giving remaining indices and factors in format 9 (I2, F6.0).

Card Group 6. Not required if MOVE (6) $=0$. One card in format 36 I 2. Columns 1-2: number of variables for which factored transfer functions or tame histories are desired.
$\left.\begin{array}{l}\text { 3-4 } \\ \text { 5-6 } \\ \text { etc. }\end{array}\right\} \begin{aligned} & \text { list of indices identıfying above variables } \\ & \text { listed in ascending order }\end{aligned}$
See addendum for frequency response input
Card Group 7. Required if $\operatorname{MOVE}(6)=2$. One or more cards in format 6F12.0.
Columns 1-12: total duration of time history in seconds 13-24: tame increment between time history points in seconds.

## ORIGINAL PAGE IS OF POOR QUALITY

Card Group 7. (Continued)
list of factors by which variables are multiplied before time history output. Number and order of factors must conform to varıable index list in card group 6.

Card Group 8. Required if MOVE (6) $=2$. This group is repeated for each segment of time history.

Card 1. Format 2I2, F12.0.
Columns 1-2: number of disturbances ( $\gamma$ matrix columns) to be combined for this segment. Does not include disturbances carried over from previous segments.

To specify that this segment will end when one of the computed variables reaches a specified value, enter the test variable index in columns 3-4 and the specrfied value of the test variable in columns 5-16.

To specify a segment of given duration, enter 0 in column 4 and the duration of the segment in columns 5-16.

To specify that this segment will continue for the remainder of the time history duration, enter 0 in column 4 and a number greater than the remaining duration in columns 5-16.

To specify that this segment will continue for the remainder of the time history duration and that a new time history starting at time zero will follow, enter -1 in columns $3-4$; the entry in columns 5-16 is irrelevant. Then follow this card group 8 with one card giving the new duration and time increment as in columns 1-24 of card group 7 and follow with card groups 8 as needed for the new time history.

Card 2. Format 5(I2, F12.0)
Columns 1-2) Disturbance index ( matrix column number).
15-16
etc.
3-14 Multıplyıng factor for disturbance 1 den-17-28 tified by index in previous field. Disetc. turbances in excess of 5 are glven in succeeding cards having same format.
Card Group 9. Required for all cases. One card in format Al0. ANOTHER in columns $1-7$ with columns $8-10 \mathrm{blank}$ indicates another case to follow
THATS ALL in columns $1-9$, with column 10 blank indicates
1 the end of the job..

# APPENDIX A TO SECTION 16.1 <br> FREQUENCY RESPONSE AND TIME HISTORIES 

### 16.1.A. 1 Fréquency Response

Frequency response can be calculated for up to ten transfer functions whose numerators are contained in the [G] matrix. This feature is called by entering the [G] matrix row and column indices (variable and disturbance ndices) in format 10 (2I2) starting at column 31 in the input card of group 6. For example, the following entries will produce frequency response output for $G(2,1)$ and $G(13,2)$ :

Column $32 \quad 2$
Column 34 I
Columns 35-36 13
Column $38 \quad 2$
All variables called in the frequency response inputs must also be named in the variable list in columns $3-30$ of card group 6.

The frequency response output for each transfer function will be 11sted immediately following the root and Bode listing for that transfer function. Frequency response amplitude ( db ) and phase (deg) are given at the intervals of loglow of .I over a range from at least one decade below the minimum pole or zero frequency to at least one decade above the maximum pole or zero frequency. This list is in ten columns headed by the mantissa of $\log _{10^{\omega}}$ with the amplitude and phase in alternate rows identified by the characteristic of $\log 10^{\omega}$.

Note that frequency responses are calculated even though poles and/or zeros may lie in the right half complex plane. The results represent only the steady state portion of the oscillatory response to a sinusoidal input; the transient response is ignored. To avoid computer problems in the vicinity of unstable resonances, amplitudes having magnitudes greater than 200 db are truncated to + or -200 db . Phase angles in these regions, however, should be correct.

Note also that to obtain frequency response in the usual, or general form, the disturbance should be in the form of a unit impulsive input.

### 16.1.A. 2 Time Functions

If time history outputs are called for ( $\operatorname{MOVE}(6)=2$ ), the time history output listing will be preceded by a listing of time functions. These are algebraic expressions of the time variation of each variable named in the variable index list (columns 3-30 in card-group 6) in response to each disturbance in the \{d\} vector. The combined disturbances and delayed disturbances used in the tame history. calculations do not apply to the time functions. The variables, are, however, multiplied by the factors given in card group 7.

For each combination of variable and disturbance, the time function contains one term of the form $\mathrm{Ke}{ }^{\lambda t}$ for each real characteristic root, one term of the form $\mathrm{Ke}^{\sigma t} \cos (\omega t+\phi)$ for each conjugate pair of complex characteristic roots, and $n$ power series terms from $K$ to $K t(n-1)$ where $n$ is the number of characteristic roots at the origin. The time function terms are listed in the same order as the characteristic roots.

(a).- $[A]$ and $\{X\}$

FIGURE 16.1-1. THE LONGITUDINAL STANDARD SUBMATRICES

(b.) $[\gamma]$ and $\{d\}$

FIGURE 16.1-1. CONCLUDED


FIGURE 16.1-2. THE LATERAL-DIRECTIONAL STANDARD SUBMATRICES

(b). [ $\gamma]$ and $\{d\}$

FIGURE 16.1-2. CONCLUDED

TABLE OF CONTENTS FOR SECTION 17.1,
THERMODYNAMIC ANALYSIS OPTIONS OF PROGRAM ATOP
Section Page
17.1.1 General Heating Analysis ..... 17.161
17.1.2 Swept Wing Stagnation Line Formulation ..... 17.1-5
17.1.3 Hemispherical Nose Stagnation Point Formulation ..... 17.1-11
17.1.4 Chemıcal Property Subroutine, CHEMP ..... 1'7.1-15
17.1.5 Ideal Gas Properties ..... 17.1-23
17.1.6 Radiation Equilibrium Temperature ..... 17.1-23
References ..... 17.1-26

Section		Page
17.2 .1	Differential Equations	$17.2-2$
17.2 .2	Initial Conditions	$17.2-3$
17.2 .3	Surface Boundary Conditions	$17.2-3$
17.2 .4	Pyrolysis-Interface Boundary Condition	$17.2-8$
17.2 .5	Boundary Conditions at Back Surface of   Ablation Material	$17.2-9$
17.2 .6	Boundary Condition at Back Surface of   Insulating Material	$17.2-10$
	Transformation of Coordinates	$17.2-10$

## SECTION 17

THERMODYNAMICS

Two thermodynamic analysis technology modules are included in the ODIN technology module library:

1. The thermodynamic analysis options of program ATOP, Section 7.3. These options can only be employed in conjunction with an ATOP trajectory analysis.
2. A one-dimensional analysis of a charring ablator; this module was constructed by Swann, Pittman, and Smith of Langley Research Center.

### 17.1 THERMODYNAMIC ANALYSIS OPTIONS OF PROGRAM AFOP

The Six-Degree-of-Freedom Trajectory program and the earlier version of the trajectory optimization program (Reference 1) included a subprogram to calculate the structural temperature of a hemispherical stagnation point or an unswept wedge. The air properties used were those of calorically imperfect (vibration equilibrium) air. The structural temperature was determined by assuming a surface temperature, calculating the corrective and radiative heating rate, and iterating to find the equilibrium surface temperature at which the convective and radiative heating rates balanced. Experience with these programs has shown that the surface temperature iteration significantly increases the computing time and sometimes fails to converge properly. In addition, the calorically imperfect gas properties were good approximations to real air only at lower temperatures than those which occur at nearsatellite speeds on hypersonic lifting vehicles which are currently under study.

Steve Rinn of the Air Force Flight Dynamics Laboratory has developed an improved aerodynamic heating subroutine which is included in the present trajectory analysis program. The formulation outlined in this section is made up of two parts; one of which computes the transient skin temperature of a flat swept wing at angle of attack assuming an attached shock wave, and the second which computes the transient surface temperature at the stagnation point of a hemispherical nose. The transient temperature is obtained by integration of temperature rate, considering convective and radiative heating rates as well as the heat absorbed by the skin. This differential equation is then added to the trajectory equations defining the skin temperature as a state variable. The gas properties are those of air in chemical equilibrıum.

An option has been added by which ideal gas properties may be used instead of equilibrium air. A second option replaces transient temperature integration by calculation of the radiation equilibrium temperature, using an improved iteration technique. These two options permit a reduction in the amount of calculation at the cost of a loss of accuracy which may be acceptable for some applications.

The following discussion consists of the formulation provided by Steve Rinn, plus a description of the two options mentioned in the previous paragraph.

### 17.1.1 General Heating Analysis

The heat transfer at a surface element is a function of many energy sources. Many of these sources, however, are extremely small and are generally not even considered in more exact analyses. The predominant energy sources are aerodynamic heat transfer, surface radiation, surface heat absorption and conduction, shock layer radiation, and internal radiation. Conduction and internal radiation require a detailed knowledge of both the internal structure and composition of the structural materials and as such are beyond the scope of this program. In addition, these heating terms are
gmall, generally resulting in a heat loss at the two surfaces under consideration. Shock layer radiation represents the electromagnetic radiation from the high temperature gases in the shock layer and is of little significance in the flight regime of the presently envisioned reentry vehicles. Since lifting vehicles will largely be confined to the flight regime bounded by the equilibrium glide paths corresponding to W/CIA's of 10 and 1000 , only vehicles of extremely large nose radil will be adversely affected by shock layer radiation.

Ignoring the effects of conduction, internal and shock layer radiation, the general energy balance equation for a radiatively cooled surface element can be written as

$$
\begin{equation*}
q_{c}-q_{r}=q_{s} \tag{17.1.1}
\end{equation*}
$$

which states that the energy stored in the surface material is the difference between the convective aerodynamic heat input and the heat radiated to space. The basic definition of these quantities may be expressed as follows:

$$
\begin{align*}
& q_{s}=G d T_{w} / d t  \tag{17.1.2}\\
& q_{r}=4.758 \times 10^{-13} \varepsilon\left(T_{w}^{4}-T_{r}^{4}\right)  \tag{17.1.3}\\
& q_{c}=h\left(H_{a w}-H_{w}\right) \tag{17.1.4}
\end{align*}
$$

$q_{g}$ represents the net rate that heat is transferred into or out of the surface element. The heat absorption capacity of the surface material is defined as

$$
\begin{equation*}
G=\rho_{W} C_{P_{W}} \delta_{W} \tag{17.1,5}
\end{equation*}
$$

where $\rho_{W}$ and $C_{P_{W}}$ are properties of the material and $\delta_{W}$ is the skin thickness. The properties of some of the representative materials which are presently in use or have been proposed for reentry vehicles are presented in Table I and were obtained from Reference ( 2 ). These properties, although a function of the skin temperature, are input to the program as constants, in contrast to the tables which were required by the previous heating subprogram, for several reasons. First of all, over much of the reentry trajectory the skin temperatures are relatively constant in which case there is relatively little change in the material properties. Secondly, over much of the trajectory the temperatures are approaching equilibrium temperature values in which case the convective heat transfer is balanced by the radiative heat transfer and hence any drastic changes in the material properties, if they were to occur, would have only a very minor effect on the surface temperature. Finally most of the common and refractory materials suffer arastically from unsatisfactory oxidation resistance at much lower temperatures than those noted in Table I and hence are confined to temperatures at which these large property changes do not occur.
$q_{r}$ represents the heat radiated from the surface element to space, or in the case of atmospheric flight, to the freestream. The surface
17.1-2

## table I

sKin material propertites

emissivity is also input to the program as a constant. As noted in Table I the emissivities for the common and refractory metals are quite low and thus in order to obtain high radiation rates special coatings are required. Intermetallic silicon and camouflage paint coatings have been developed which possess emissivities between 0.6 and 0.75 . These coatings also serve as protection against severe oxidation damage possessing capabilities of $3000^{\circ} \mathrm{R}$ for long time durations and $3500^{\circ} \mathrm{R}$ for short periods.
$q_{C}$; the aerodynamic heat transfer, represents the heat energy transferred to the surface element through the boundary layer. The heat transfer coefficient, $h$, is a function of both the vehicle geometry and the local air properties and is thus dependent upon the location of the surface element on the vehicle.

Solving the general heating equation for the temperature derivative yields

$$
\begin{equation*}
\dot{T}_{W}=\frac{h}{G}\left(H_{a w}-H_{W}\right)-\frac{4.758 \times 10^{-13} \varepsilon_{( }}{G}\left(T_{w}^{4}-T_{r}^{4}\right) \tag{17.1.6}
\end{equation*}
$$

Wall temperatures are obtained from this equation by means of the numerical integration subroutine within the SDF and TOP programs. Let the subscript e refer to a hemispherical nose stagnation point, and subscript s refer to a point on the centerline of a swept wing with a hemispherical tip. The following differential equations are then obtained for these special cases.

$$
\begin{align*}
& \dot{T}_{s}=\frac{h}{G_{S}}\left(H_{a W}-H_{s}\right)-\frac{4.758 \times 10^{-13} \varepsilon_{S}}{G_{S}}\left(T_{s}^{4}-T_{r}^{4}\right)  \tag{17.1.7}\\
& G_{B}=\rho_{s} C_{P_{B}} \delta_{s}  \tag{17.1.8}\\
& \dot{T}_{e}=\frac{h}{G_{e}}\left(H_{a w}-H_{e}\right)-\frac{4.758 \times 10^{-13} \varepsilon_{e}}{G_{e}}\left(T_{e}^{4}-T_{r}^{4}\right)  \tag{17.1.9}\\
& G_{e}=\rho_{e} C_{P_{e}} \delta_{e} \tag{17.1.10}
\end{align*}
$$

The use of this heating subprogram in these computer programs increases the computation or run time by a factor of from 1 to 2 depending on the sensitivity of this temperature derivative. This sensitivity is largely controlled by the magnitude of $G$ or more aptly the skin thickness since the variation of the $\rho C_{p}$ product is relatively insensitive to both temperature and material composition as indicated in Table I. In an approximate program of this type it is not overly important that the wall thickness be realistic as long as it is neither excessively large nor excessively small. Experience with this program has indicated that the wall temperatures obtained swill consistently approximate equilibrium temperatures if the nose thickness is between .01 and .1 feet and the swept wing thickness is between .001 and . 01 feet.

### 17.1.2 Swept Wing Stagnation Line Formulation

(a) Heat Transfer - The heat transfer coefficient presented in the previous heating subprogram is only applicable to an unswept flat plate. Consequently various modifications are necessary in order to include high sweep effects.

At present there is no one method available which adequately describes the heat transfer to the stagnation line of a highly swept delta wing. As a consequence three flow regimes are frequently distinguished in order to provide adequate correlation throughout the angle of attack range of interest.

The first of these regimes occurs at low angles of attack and corresponds to the planar flow of an unswept flat plate in which the flow streamlines are essentially uniform and parallel to the wing centerline. The second regime is characterized by the divergence of the flow streamlines from the centerline towards the wing leading edges and, as the flow approximately parallels the ray lines emanating from the wing virtual apex, the streamines are considered conical in nature. This regime is applicable until the flow stagnates. The third regime is characterized by subsonic, stagnation flow which occurs after shock detachment. This regime is confined to angles of attack greater than the theoretical cone shock detachment angle and, since these angles do not normally occur in a lifting reentry, the heating formulation for this regime has been excluded.

In the first flow regime, the heat transfer coefficient is determined by the Reference Enthalpy Strip Theory for an unswept flat plate (Reference 3) as was used in the previous heating subprogram. For laminar flow this coefficient can be written as

$$
\begin{equation*}
h_{F P}=\left(\frac{0.332}{778.26}\right)\left(P_{r}^{*}\right)^{-2 / 3}\left(\frac{p^{*} \mu^{*} V_{2}}{I_{H}}\right)^{0.5} \tag{17.1.11}
\end{equation*}
$$

In the second flow regime the heat transfer coefficient is determined by applying a correction factor to nondivergent Strip Theory, a procedure frequently referred to as Outflow or Streamine Divergence Theory. This correction factor, for laminar flow, is given in Reference (4) as

$$
\begin{equation*}
\frac{h}{h_{F P}}=(2 n+1)^{0.5} \tag{17.1.12}
\end{equation*}
$$

where

$$
\begin{equation*}
n=.17 \tan \alpha \tan A \tag{17.1.13}
\end{equation*}
$$

If it is desirable to include the third flow regime then reference is made to References (5), (6), and (7).

Since it has long been noted that there is a marked increase in the heat transfer rate in turbulent flow as contrasted to laminar flow, information on boundary layer transition is of particular importance. Unfortunately the state-of-the-art of hypersonic transition theory is relatively
primitive and at present there are no reasonably accurate methods available which predict transition while taking into account all of the pertinent parameters. However, Reference (8) has presented an empirical equation which considers all of these parameters with the exception of angle of attack. In this procedure the transition Reynolds number at zero angle of attack was approximated by

$$
\begin{equation*}
\mathrm{R}_{\mathrm{N}_{\mathrm{T}}}=\left(\frac{\mathrm{R}_{\mathrm{N}_{\mathrm{H}}}}{1_{\mathrm{H}}}\right)^{0.4}\left[\frac{1 \times 10^{6}+0.36 \times 10^{6} \sqrt{\left|M_{1}-3\right|}}{1.552 \times 10^{2}}\right](\cos \Lambda)^{0.5} \tag{17.1.14}
\end{equation*}
$$

which is applicable for sweep angles greater than 25 degrees. In order to include the effects of angle of attack it is assumed that the transition Reynolds number is based on the local rather than the freestream properties noted previously, a fact which has some experimental justification. The form of the transition criterion used in the present program is then

$$
\mathrm{R}_{\mathrm{N}_{\mathrm{T}}}=\left(\frac{\mathrm{R}_{\mathrm{N}_{2 H}}}{1_{\mathrm{H}}}\right)^{0.4}\left[\frac{1 \times 10^{6}+0.36 \times 10^{6} \sqrt{\left|\mathrm{M}_{2}-3\right|}}{1.552 \times 10^{2}}\right](\cos \Lambda)^{(17.1 .15)}
$$

Because of the uncertalnties involved in the transition state it is often assumed that transition between laminar and turbulent flow is instantaneous at the point where the local Reynolds number exceeds this transition or critical Reynolds number. However, the step discontinuity is not compatible with cextain optimization procedures, since the partials give no indication of the jump in heating and wall temperature that will result from crossing a transition boundary. An exponential function is therefore used to give a continuous fairing from the laminar heat transfer coefficient, $h_{l}$ at the transition point to the turbulent value, $h_{t}$ at a slightly higher Reynolds number (or boundary layer length).

$$
\begin{align*}
& h=h_{1}+\left(h_{t}-h_{1}\right)\left(1-e^{\left[\begin{array}{l}
\left(R_{N_{2}}-R_{N_{T}}\right) \\
R_{N_{T}}
\end{array}\right.} \tau_{t r} \quad\left(R_{N_{2}}>R_{N_{T}}\right)\right.  \tag{17.1.16}\\
& h=h_{1} \quad\left(R_{N_{2}} \leq R_{N_{T}}\right)
\end{align*}
$$

The nominal value of 100. for $\tau_{\text {tr }}$ gives effectively a step change, a value of about 3. gives a gradual rantition which may help the optimization prom cess, and a value of 0 gives completely laminar heating.

In the first flow regime turbulent Reference Enthaipy Strip
$\therefore$ Theory is alsomapplicable. However, rather than using the more familiar Colburn relation applied in the previous heating subprogram, this program makes use of the heat transfer coefficient given in Reference (9) because of its increased accuracy over the entire flight regime. This coefficient is

1:.1-6

$$
\begin{equation*}
h_{F P}=\frac{0.181}{778.26}\left(P_{r}^{*}\right)^{-2 / 3}\left(\log _{10} R_{\mathbb{N}_{1_{H}}}\right)^{2.58} \tag{17.1.18}
\end{equation*}
$$

Whenever a flow discontinuity, such as a geometry change or transition from laminar to turbulent flow, occurs this heat transfer coefficient is no longer applicable. In order to use this equation in a region downstream of the discontinuity it is first necessary to relate the characteristics of the actual boundary layer to the characteristics of an effective boundary layer which has no discontinuity. This is accomplished through the use of an effective boundary layer length which is given in Reference (4) as

$$
\begin{equation*}
l_{\mathrm{He}}=l_{2}+l_{X_{2}} \tag{17.1.19}
\end{equation*}
$$

Where $\mathrm{lX}_{2}$ is the geometric distance fram the discortinuity to the point of interest and $l_{2}$ is the effective starting length. For transition from laminar to turbulent flow the effective starting length is given by

$$
\begin{equation*}
I_{2}=65.3\left(\frac{\mu^{*}}{\rho^{* v_{2}}}\right)^{\frac{3}{8}} 1_{t} \cdot \frac{5}{8} \tag{17.1.20}
\end{equation*}
$$

where $l_{t}$ is the distance from the stagnation point of the nose to the point at which transition occurs and, by definition,

$$
\begin{equation*}
I_{X_{2}}=I_{H}-I_{t} \tag{17.1.21}
\end{equation*}
$$

Thus the effective boundary layer length is

$$
\begin{equation*}
I_{H_{e}}=\left[1+65.3\left(\frac{\mu^{*}}{\rho^{*} V_{2} I_{H}}\right)^{\frac{3}{8}}\left(\frac{l_{t}}{I_{H}}\right)^{\frac{5}{8}}-\frac{l_{t}}{I_{H}}\right] 1_{H} \tag{17.1.22}
\end{equation*}
$$

in which case the effective Reynolds number becomes

$$
\begin{equation*}
\mathrm{R}_{\mathrm{N}_{\mathrm{He}}}^{*}=\mathrm{R}_{\mathrm{N}_{\mathrm{I}_{\mathrm{H}}}^{*}}^{*}+65.3\left(\frac{\text { 基 }_{\mathrm{I}_{\mathrm{H}}} \mathrm{R}_{\mathrm{N}_{\mathrm{T}}}}{\mathrm{R}_{\mathrm{N}_{2}}}\right)^{\frac{5}{8}}-\left(\frac{\mathrm{R}_{\mathrm{N}_{\mathrm{H}}}^{*} \mathrm{R}_{\mathrm{N}_{\mathrm{T}}}}{\mathrm{R}_{\mathrm{N}_{2}}}\right) \tag{17.1.23}
\end{equation*}
$$

It is this term which should be used in the turbulent heat transfer coefficient.

In the second flow regime the correction factor for including turbulent outflow effects is given in Reference (4) as

$$
\begin{equation*}
\frac{h}{h_{\mathrm{FP}}}=(1+1.25 n)^{0.2} \tag{17.1.24}
\end{equation*}
$$

where $n$ is as was given previously for laminar Outflow. Theory.

The preceding equations are only applicable for a continuta, equilibrium flow and, thus, at high altitudes and Mach numbers various "low Reynolds number" phenosena, such as viscous interaction and slip flow, are not accounted for. From Reference. (10), the combined effects of these nonclassical phenomena are approximated by

$$
\begin{equation*}
\frac{h^{h_{c}}}{}=\frac{h_{V} / h_{c}}{1+\frac{1}{M_{1}} \sqrt{\frac{H_{w}}{\mathrm{H}_{2}}} \sqrt{\mathrm{M}_{2}}+\frac{\mathrm{H}_{W}}{\mathrm{H}_{\mathrm{N} 2}}}\left(\frac{\mathrm{H}_{2}}{\sqrt{\mathrm{R}_{\mathrm{N} 2}}}\right)^{2} \tag{17.1.25}
\end{equation*}
$$

where $h_{c}$ is the continum heat transfer coefficien't given previously. In addition

$$
\begin{equation*}
\frac{h_{y}}{h_{c}}=1+\underline{a}^{\prime \bar{x}} \tag{17.1.26}
\end{equation*}
$$

when $a^{\prime} \bar{x} \leq 4$ and

$$
\begin{equation*}
\frac{h_{v}}{h_{c}}=\sqrt{a^{\prime} \bar{x}} \tag{17.1.27}
\end{equation*}
$$

when $a^{\prime} \bar{x}>4$. The term, $a^{\prime}$, as approximated by a least squares curve fit, is

$$
\begin{align*}
a^{\prime} & =0.040714+0.20829\left(H_{W} / H_{T}\right)+0.86713\left(H_{W} / H_{T}\right)^{2}-0.79738\left(H_{W} / H_{T}\right)^{3} \\
& +0.442979\left(H_{W} / H_{T}\right)^{4} \tag{17.1.28}
\end{align*}
$$

and the term, $\bar{x}$, is

$$
\begin{equation*}
\vec{x}=\frac{M_{2}^{3}}{\sqrt{R_{H_{2}}}} \sqrt{\frac{\rho_{W} \mu_{W}}{\rho_{2} \mu_{2}}} \tag{17.1.29}
\end{equation*}
$$

This equation approaches free molecular flow values at extremely high altitudes and as such can probably be applied throughout the entire flight regime.

The equations which define the chemical properties of air are coimon to all of the flow fields around a vehicle and as such the auxiliary Punctions defining the properties in the heat transfer equations have been subdivided into two parts; the formulation of the thermodynamic and trans-- port property equations which are contained in a separate subroutine CHEMPand presented in Subsection (4), and the formulation of the auxiliary functions which are peculiar to either the swept wing or stagnation point regions and are contained in the heating subprogram proper.
17.1-8
(a) Swept Hing Auxiliary Functions.- The chemical property equetions in Section (4) indicate that all of the therrodynamic and transport properties required are determined when the pressure and either the enthalpy or temperature of the particular flow field are known. Accordingly., bince the remaining auxiliary functions are also dependent upon these terms, these dynamic properties will be considered first.

At present there are no simple, theoretical techniques available which adequately predict the local pressure on a swept delta wing throughout the entire angle of attack regine. Oblique Shock and the Tsien Similarity Theory used in the previous heating subprogram generally overpredict the local pressure while Newtonian Theory, also frequently applied to a swept wing, generally underpredicts the pressure. Wedge-cone Theory is the rost applicable of the various techniques but the complexity of the conical equations makes their use extremely prohibitive in this program. A semi-empirical equation based on the Newtonian concept which is applicable in the angle of attack range of interest, is

$$
\begin{equation*}
C_{p}=1.95 \sin ^{2} \alpha+\frac{0.3925 \sin \alpha \cos \alpha}{M_{2} 0.3} \tag{17.1.30}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{P_{2}}{P_{1}}=1+0.7 \mathrm{M}_{1}^{2} c_{p} \tag{17.1.31}
\end{equation*}
$$

The unswept flat plate heat transfer coefficients were derived by solving the incompressible boundary layer equations and hence in order to include compressibility effects these coefficients must be computed using reference rather than local properties. Reference (3) has empirically derived an equation for the reference enthalpy, which is defined as follows:

$$
\begin{equation*}
\mathrm{H}^{4}=0.22 \mathrm{H}_{\mathrm{aw}}+0.28 \mathrm{H}_{2}+0.5 \mathrm{H}_{\mathrm{W}} \tag{17.1.32}
\end{equation*}
$$

The adiabatic wall or recovery enthalpy, $\mathrm{H}_{\mathrm{aw}}$, is the value that the enthalpy at the wall would attain if the heat transfer was zero and if defined as

$$
\begin{equation*}
H_{\mathrm{aw}}=r_{H} \mathrm{H}_{\mathrm{L}}+\left(1-r_{\mathrm{H}}\right) \mathrm{H}_{2} \tag{17.1.33}
\end{equation*}
$$

The recovery factor, $r_{H}$, is approximated by

$$
\begin{equation*}
r_{H}=\sqrt{P_{r}} \tag{17.1.34}
\end{equation*}
$$

for laminar flow and

$$
\begin{equation*}
r_{H}=\sqrt[3]{P_{r}} \tag{17.1.35}
\end{equation*}
$$

for turbulent flow in the suborbital flight regime (Reference (II)) where $P_{r}{ }^{*}$ is the Prandtl number based on the reference enthalpy. Since the reference enthalpy is a function of the reference. Prandtl number which in turn is a function of the reference enthalpy, an iterative procedure is required in order to determine the reference enthalpy. However, the variation of the Prandti number is small and hence can be assumed constant. Over the flight regime of greatest interest the average value of the Prandtl number is about 0.75 and hence this value was used whenever the Prandtl number was required.

The local enthalpy, $\mathrm{H}_{2}$, is defined by means of the conservation of energy accoss an oblique shock wave as

$$
\begin{equation*}
\mathrm{H}_{2}=\mathrm{H}_{\mathrm{T}}+0.5 \mathrm{~V}_{2}^{2} \tag{17.1.36}
\end{equation*}
$$

The local velocity, $V_{2}$, is determined from the conservation of mass and momentum across an oblique shock wave and in terms of the pressure coefficient is given by

$$
\begin{equation*}
\frac{V_{2}}{V_{1}}=\left(1-0.5 C_{p}\right) / \cos \alpha \tag{17.1.37}
\end{equation*}
$$

The stagnation or total enthalpy, $H_{T}$, is constant across the shock wave and can be expressed in terms of the freestream properties as

$$
\begin{equation*}
H_{T}=\frac{V_{1}^{2}}{2}\left(\frac{M_{1}^{2}+5}{M_{1}^{2}}\right) \tag{17.1.38}
\end{equation*}
$$

The wall enthalpy, $H_{w}$, is obtained directly from subroutine
CHEMP.
With the dynamic properties so defined all of the other chemical properties are detemined through subroutine CHEMP.

The other required auxiliary functions are the local Reynolds number and the local Mach number which are defined as

$$
\begin{equation*}
\mathrm{R}_{\mathrm{N}_{2}}=\frac{\rho_{2} \mathrm{~V}_{2} I_{H}}{\mu_{2}} \tag{17.1.39}
\end{equation*}
$$

where

$$
\begin{align*}
& I_{\mathrm{H}}=I_{\mathrm{H}_{1}}+\left(1.5708-\alpha_{\mathrm{s}}\right) r_{0}  \tag{17.1.40}\\
& a_{\mathrm{s}}=a+D_{7} \tag{17..1.41}
\end{align*}
$$

$\alpha_{s}$ is the surface siope relative to the free stream ( $x$ wind axis) at the point of interest. a is the vehicle angle of attack, and $D_{7}$ is the wedge angle relative to the $x$ body axis at the point of interest.
17.1-10
$\mathrm{l}_{\mathrm{H}}$ is the geometric distance along the wing centerline measured from the shoulaer of the nose to the point of interest and $r_{0}$ is the nose radius. The Mach number is defined as

$$
\begin{equation*}
M_{2}=\frac{V_{2}}{a_{2}} \tag{17.1.42}
\end{equation*}
$$

where $a_{2}$ is the local speed of sound and is obtained from subroutine CHEMP.

### 17.1.3 Hemispherical Nose Stagnation Point Formulation

(a) Heat Transfer - Of the many methods presently available for computing stagnation point heat transfer the technique presented by Fay and Riddeli in Reference (12) is probably the most highly regarded. In terms of the heat transfer coefficient the Fay and Riddell equation is
(17.1.43)

$$
h_{F R}=\frac{0.763}{778.26}\left(\operatorname{Pr}_{W}\right)^{-0.6}\left(\frac{\rho_{W} \mu_{W}}{\rho_{T} \mu_{T}}\right)^{0.1}\left(\rho_{\mathrm{T}} \mu_{T} \frac{d V}{d S}\right)^{0.5}\left[1+\left(\operatorname{Le}_{W}^{0.52}-1\right)^{H_{D}} H_{T}\right]
$$

The definition and formulation of each of these terms is contained in either Subsection (4) or in (6).

The previous heating subprogram employed the method of Detra, Kemp, and Riddell (Reference (13) to obtain the stagnation point heat transfer, which is an empirical equation based on the Fay and Riddell coefficient and experimental data. A comparison was made between these two methods by computing equilibrium temperature heat transfer rates which in the case of the Fay and Riddell coefficient were based on the formulation presented herein while for the Detra, Kemp, and R1ddell equation the previous formulation was utilized. Based on this comparison the Fay and Riddell coefficient was employed because of the increased accuracy afforded by it.

The Fay and Riddell heat transfer coefficient is only applicable in a continuum fluid flow in chemical equilibrium and since deviations from this classical flow do occur they should be noted.

Nonequilibrium phenomena result from the incomplete development of the chemical reactions in the flow and, like noncontinuum effects, are a low density phenomena. These effects are, at present, not clearly defined but they appear to be rather insignificant from a standpoint of heat transfer and as such'will be given no further consideration.

The deviations from the classical continuum stagnation point equations, termed "low Reynolds number" effects in the flight regime of interest in this program, are categorized as vorticity interaction, viscous layer, slip flow, and merged layer. A detailed explanation of these phenomena can be obtained from References (4) through (8) Although the first two flow regames have been fairly well documented there is very little literature available on the combined effects of all of these phenomena and,
as such, there are presently no closed form solutions for the "low Reynolds number ${ }^{\text {" }}$ regime. In this subprogram the combined effects of these deviations were obtained by curve fitting the numerical solutions, of. Reference which, in terms of the heat transfer ratio, are approximated by

$$
\begin{equation*}
\frac{h^{h_{\mathrm{FR}}}}{}=\left(\frac{0.04}{\mathrm{e}}\right)^{\mathrm{n}} \mathrm{R}^{\mathrm{m}} \tag{17.1.44}
\end{equation*}
$$

where

$$
\begin{align*}
& \underline{e}=\rho_{1} / \rho_{T}  \tag{17.1.45}\\
& R_{e_{s}}=\rho_{1} V_{1} r_{0} / \mu_{T}  \tag{17.1.46}\\
& \mathrm{R}=50 \mathrm{e}^{2} \mathrm{R}_{e_{s}}+A_{R}  \tag{17.1.47}\\
& A_{R}=.285,(x \leq-1)  \tag{17.1.48}\\
& A_{R}=0, \quad(x \geq 4)  \tag{17.1.49}\\
& A_{R}=.493+.272667 x+0.07 x^{2}  \tag{17.1.50}\\
& +0.0063 x^{3},(-1<x<4) \\
& m=0.6(\overline{\mathrm{R}})^{-0.51428}  \tag{17.1.51}\\
& x=2+\log _{10}\left(e^{2} \operatorname{Reg}_{g}\right)  \tag{17.1.52}\\
& n=0.51973-8.0762 \times 10^{-3} \times-0.21707 x^{2}-2.4891 \\
& x 10^{-2} x^{3}+6.2601 \times 10^{-2} x^{4}-1.2118 \times 10^{-2} x^{5} \\
& (0<x \leq 2.95)  \tag{17.1.53}\\
& =0 \quad(x>2.95)  \tag{17.1.54}\\
& =0.52(x<0) \tag{17.1.55}
\end{align*}
$$

The term, $h_{F R}$, represents the Fay and Riddell heat transfer. These equations are restricted to values of $e \geq .04$ and $e^{2} \operatorname{Re}_{s} \geq .01$ which in terms of altitude is between 300,000 and 350,000 feet depending on the nose radius.
(a) Auxiliary Functions - As was the case with the swept wing auxiliary functions, all of the terns in the stagnation heat transfer coefficient are related to the chemical properties. 'Accordingly the formulation of the, dynamic properties required to obtain these chemical properties will be considered first.

The local stagnation pressure behind a normal shock wave for an incompressible boundary layer is

$$
\begin{equation*}
\frac{P_{T}}{P_{1}}=1+\frac{P_{1} V_{1}^{2}}{P_{1}}\left(1-0.5 \frac{P_{1}}{P_{2}}\right) \tag{17.1.56}
\end{equation*}
$$

An exact real gas solution of this equation, requires a double iterative procedure because of the dependency on the density ratio. However, the real gas solution can be closely approximated by applying the normal shock density ratio for a perfect gas using a fictitious specific heat ratio of 1.2. Thus the real gas stagnation pressure is approximated by

$$
\begin{equation*}
\frac{P_{m}}{P_{1}}=1+1.4 \mathrm{M}_{1}^{2}\left(1-0.5 \frac{P_{1}}{\rho_{2}}\right) \tag{17.1.57}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\rho_{1}}{\rho_{2}}=\frac{M_{1} 2+10}{1 M_{1}} \tag{17.1.58}
\end{equation*}
$$

The second state variable required in computing the stagnation properties is the stagnation enthalpy which was given previously as

$$
\begin{equation*}
H_{T}=0.5 V_{1}^{2}\left(M_{1}^{2}+5\right) / M_{1}^{2} \tag{17.1.59}
\end{equation*}
$$

It should be noted that the atmosphere subroutines in the previous SDF and TOP programs cease to compute the free stream speed of sound for altitudes in excess of 300,000 feet in which case the Mach number becomes undefined and all of the equations given previously in terms of this parameter are no longer applicable. The 1959 ARDC atmosphere subroutine has been modified to calculate approximate values of speed of sound above 300,000 feet but the 1962 atmosphere option is limited to about 300,000 feet. This option could be used with HETS by adding an equation of the following form to the program.

$$
\begin{equation*}
M_{1}^{2}=0.71428 \quad \rho_{1} V_{1}^{2} / P_{1} \tag{17.1.60}
\end{equation*}
$$

With the stagnation pressure and enthalpy and an initial value of the wall temperature, the remaining chemical properties required by the heat transfer coefficient can be computed.

The velocity gradient at the stagnation point of a hemispherical nose can be determined through the use of a Modified Newtonian pressure distribution (References (76) and (35)) which yields

$$
\begin{equation*}
\frac{\mathrm{dV}}{\mathrm{dS}}=\frac{1}{r_{0}} \sqrt{\frac{2\left(\mathrm{P}_{T}-\mathrm{P}_{1}\right)}{\rho_{T}}} \tag{17.1.61}
\end{equation*}
$$

This equation is only applicable for Mach numbers in excess of 5 because of a like restriction on Modified Newtonian Theory. For Mach numbers less than this value the velocity gradient is approximated by an empirical equation in Reference (4) as

$$
\begin{equation*}
\frac{d V}{d S}=1.5 \frac{V_{2}}{r_{0}}\left(1-0.252 M_{2}^{2}-0.0175 M_{2}^{4}\right) \tag{17.1.62}
\end{equation*}
$$

where

$$
\begin{align*}
& \frac{v_{2}}{V_{1}}=\frac{M_{1}^{2}+5}{6 M_{1}^{2}}  \tag{17.1.63}\\
& M_{2}^{2}=\frac{M_{1}^{2}+5}{7 M_{1}^{2}-1} \tag{17.1.64}
\end{align*}
$$

for $M_{1}>1$ and

$$
\begin{align*}
& \mathrm{V}_{2}=\mathrm{v}_{1}  \tag{17.1.65}\\
& \mathrm{M}_{2}=\mathrm{M}_{1} \tag{17.1.66}
\end{align*}
$$

for $M_{1} \leq 1$.
The value of the Lewis number used in this program is

$$
\begin{equation*}
L e_{W}=1.4 \tag{17.1.67}
\end{equation*}
$$

which is commonly used in the Fay and Riddell equation because it is somewhat representative of its maximum value and additionally correlates well with experimental data. Although the Lewis number presented in Reference (14) varies significantly the effect on the heat transfer is small. Since the additional formulation required to incorporate the variable Lewis number is considerable, this effect will be neglected and the Lewis number parameter,

$$
1+\left(\operatorname{Le}_{\mathrm{W}} 0.52-1\right) \mathrm{H}_{\mathrm{D}} / \mathrm{H}_{T}
$$

can be rewritten as

$$
1+0.191 \mathrm{H}_{\mathrm{D}} / \mathrm{H}_{\mathrm{T}}
$$

The dissociation enthalpy, $H_{D}$, was obtained through an empirical equation in Reference (4) as

$$
\begin{equation*}
H_{D}=1.8219 \times 10^{8}(\mathrm{z}-1) \tag{17.1.68}
\end{equation*}
$$

for $Z<1.2$ and

$$
\begin{equation*}
n_{D}=3.6438 \times 10^{7}+3.4906 \times 10^{8}(\mathrm{z}-1.2) \tag{17.1.69}
\end{equation*}
$$

for $Z \geq 1.2$.
17.1-14

The Fay and Riddell heat transfer coefficient is a function of the wall Prandtl number. Since in a typical hypervelocity reentry the wall temperature will range between approximately $3500^{\circ} \mathrm{R}$ and $6000^{\circ} \mathrm{R}$ the average value of the Prandtl number will be approximately 0.75 as was the case Por the reference Prandtl number in the, swept wing formulation and thus this value was used in this progran.

### 17.1.4 Chemical Property Subroutine, CHEMP

The chemical properties associated with a gas describe its macroscopic and microscopic behavior or, in other words, the chemical state of a gas is described by its thermodynamic and transport properties. The transport properties are themselves defined in terms of the thermodynamic properties and hence the thermodynamic properties will be considered first.

The thermodynamic properties of a gas are categorized as either thermal or caloric state variables.

The thermal properties are those properties which are not explicitly involved with the energy of the system and, in this program, the significant thermal properties are pressure, temperature, and density. The relationship between these terms is expressed by the thermal equation of state,

$$
\begin{equation*}
P=\rho Z R T \tag{17.1.70}
\end{equation*}
$$

The compressibility factor, $Z$, is a measure of the number of moles of dissociated, ionized gas to the number of moles of undiミsociated, unionized gas. Under atmospheric conditions the compressibility factor for air is one, the perfect gas assumption. However, for real air, $Z$ can deviate from unity for two reasons: at low temperatures and high pressures the intermolecular forces between the air molecules, which account for the possibility of liquefying the gas, become important while at high temperatures and low pressures dissociation and ionization phenomena occur. Intermolecular phenomena, although important in high speed test facilities, are of little donsequence under free flight conditions and hence only dissociation and ionization need be considered.

Dissociation is a two-body chemical process in which a molecule breaks up into atoms when the internal vibrational energy is sufficiently increased, through collision with the other particle, to sever its intramolecular bond. In turn recombination is a three-body process in, which two atoms and a third particle collide, releasing energy to the third particle, and forming a molecule. In a gas in equilibrium a continuing process of molecular dissociation and atomic recombination occurs in such a manner that a statistical net degree of dissociation results. In a like manner ionization is much the same process with the exception that a particle colliding with a free atom releases enough energy to the atom to enable an electron to overcome the electrostatic force field of the atomic nucleus and escape from its shell.

The computational procedures required in solving for the compressibility factor are relatively complex, i.e. References (14) and (15) Consequently machine storage and computational time limitations involved in this program require that these procedures be left to more sophisticated programs. Fortunately, Reference (16) has empirically curve fitted the compressibility factor of air and the reaulting equation is

$$
\begin{equation*}
Z=2.5+0.1 \operatorname{Tanh}\left(A_{Z} / 900-7\right)+0.4 \operatorname{Tanh}\left(A_{Z} / 1800-7\right)+\operatorname{Tanh}\left(A_{Z} / 4500-5.8\right) \tag{17.1.71}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{A}_{\mathrm{Z}}=\mathrm{T}\left(1-.125 \log _{10}\left(\mathrm{P} / \mathrm{P}_{0}\right)\right) \tag{17.1.72}
\end{equation*}
$$

The caloric state variables are those properties which describe the energy or energy related state of the system and, as such, are functions of the thermal properties. The important caloric properties in this program are the enthalpy and the speed of sound. The relationship between the thermal and caloric variables is given through the definition of the enthalpy,

$$
\begin{equation*}
H=E+P / \rho \tag{17.1.73}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{H}=\mathrm{E}+\mathrm{ZRT} \tag{17.1.74}
\end{equation*}
$$

The energy of the system is the sum of the translational, rotational, vibrational, and electronic energies of the molecular and atomic species within the gas. When a mixture of gases is considered the equations associated with the various mol fractions and component energies are quite complex and thus machine storage and computational requirements are again prohibitive. However Reference (2) has also empirically curve fitted the statistical net energy of the system for air. When combined with the equation above, the enthalpy of air can be given as
$1<2<1.2$
$H / R T=Z+(2-Z)(2.5+(5400 / T) /(\exp (5400 / T)-1))+(Z-1)(3+106200 / T)$
$1.2<\mathrm{Z}<2$

$$
\begin{align*}
H / R T=Z & +(2-Z)(2.5+(5400 / T) /(\exp (5400 / T)-I)+0.2(3+106200 / \mathrm{T}) \\
& +(Z-1.2)(3+203400 / \mathrm{T}) \tag{17.1.76}
\end{align*}
$$

$2<Z<2.2$

$$
\begin{equation*}
H / R T=Z+(4-Z)(1.5+91800 / T)+(Z-2)(3+396000 / T) \tag{17.1.77}
\end{equation*}
$$

The speed of sound is defined as

17.12
which in terms of previously defined varlables can be expressed as

$$
\begin{equation*}
a^{2}=\frac{\gamma \operatorname{ZRT}}{1-\frac{P}{Z}\left(\frac{\partial Z}{\partial P}\right)_{T}} \tag{17.1.79}
\end{equation*}
$$

The specific heat ratio, $\gamma$, is defined as

$$
\begin{equation*}
\gamma=C_{P} / C_{V} \tag{17.1.80}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{P}=(\partial H / \partial T)_{P} \tag{17.1.81}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{V}=(\partial E / \partial T)_{V} \tag{17.1.82}
\end{equation*}
$$

and thus can be obtained through differentiation of the enthalpy equations. Since this requires double differentiation for both a constant pressure and a constant volume process, the specific heat ratio can be rewritten in terms of previously defined parameters and just one of the specific heats, in this case Cp which will be required by another section of subroutine CHEMP, as

$$
\begin{equation*}
I / \gamma=1-\frac{\left(Z+T(\partial Z / \partial \mathrm{T})_{\mathrm{P}}\right)^{2}}{\mathrm{Z}-\mathrm{P}(\partial Z / \partial \mathrm{P})_{\mathrm{T}}}\binom{\mathrm{R}}{\mathrm{C}_{\mathrm{P}}} \tag{17.1.83}
\end{equation*}
$$

The specific heat at constant pressure, from the above enthalpy definition, can be expressed as

$$
\begin{equation*}
C_{P}=H / T+R(T \partial(E / R T) / \partial T+T \partial Z / \partial T)_{P} \tag{17.1.84}
\end{equation*}
$$

where, from the enthalpy equations,
$1<2<1.2$

$$
\begin{align*}
T \partial(E / R T) / \partial T & =(2-Z)\left[\frac{5400 / T}{(\exp (5400 / T)-1)}\right]\left[\frac{5400 / T}{(\exp (5400 / T)-1)} \exp (5400 / T)-1\right] \\
& -(Z-1)(106200 / T)+\left[(3+106200 / T)-\left(2.5+\frac{5400 / T}{\exp (5400 / T)-1}\right)\right] \\
& T(\partial \mathrm{Z} / \partial T)_{P} \tag{17.1.85}
\end{align*}
$$

$1.2<2<2$

$$
\begin{align*}
T(E / R T) / \partial T & =(2-Z)\left[\frac{5400 / T}{\exp (5400 / T)-1}\right]\left[\frac{5400 / T}{\exp (5400 / T)-1} \exp (5400 / T)-1\right] \\
& -0.2(106200 / T)-(Z-1.2)(203400 / T)+[(3+203400 / T) \\
& \left.-\left(2.5+\frac{5400 / T}{\exp (5400 / T)-1}\right)\right] T(\partial Z / \partial T)_{P} \tag{17.1.86}
\end{align*}
$$

$2<Z<2.2$

$$
\begin{align*}
T \partial(E / R T) / \partial T= & -(4-Z)(91800 / T)-(Z-2)(396000 / T)+[(3+396000 / T)- \\
& (1.5+91800 / T)] T(\partial Z / \partial T)_{P} \tag{17.1.87}
\end{align*}
$$

Finally the compressibility derivatives are obtained through differentiation of the compressibility equation.

$$
\begin{align*}
& T(\partial Z / \partial T)_{P}=\frac{A_{Z}}{9000}\left[5-\operatorname{Tanh}^{2}\left(\frac{A_{Z}}{900}-7\right)-2\left(\operatorname{Tanh}^{2}\left(\frac{A_{Z}}{1800}-7\right)+T_{a n h}{ }^{2}\right.\right. \\
&\left.\left.\left(\frac{A_{Z}}{4500}-5.8\right)\right)\right] \tag{17.1.88}
\end{align*}
$$

where $A_{Z}$ is the term given previously for the compressibility factor.
These equations for the speed of sound appear, perhaps, unnecessarily complicated in that the local speed of sound, required in the swept wing computations, could be approximated by

$$
\begin{equation*}
a^{2}=1.3 \mathrm{P}_{2} / \rho_{2} \tag{17.1.90}
\end{equation*}
$$

without introducing a significantly large error into the program. However, as will be seen in a following section of CHEMP, the only additional formulation required for the speed of sound which is not required by the rest of the subroutine is the equations for $\gamma$ and $(\partial Z / \partial P)_{T}$. Accordingly the complexity of the speed of sound was retained simply because the equations are a requirement for another section of CHEMP.

The transport properties of a gas are those properties which determine the change in the internal dynamic flux due to collisions and reactions or, in other words, they define the transfer or transport of molecular mass, momentum, and energy. Mass transport is defined in terms of diffusion, momentum transport in terms of viscosity, and energy transport in terms of thermal conductivity. In terms of the heat transfer equations used in this
program, diffusion and thermal conductivity are only applied implicitly in that they define two important transport parameters, the Prandtl and Lewis numbers. Although these parameters were noted previously they, in conjunction with the viscosity, will be treated more thoroughly in this section.

The transport properties of low temperature air have been relatively well defined for a number of years but, in contrast to the fairly satisfactory state of development in regard to the thermodynamic properties, knowledge of high temperature transport properties is in a relatively elementary state. Of the many techniques presently available for computing these properties, those of Reference (15) are probably the most reliable. Because of the complexity of the equations given in Reference (15), however, this program has relied heavily upon the procedures of References (14) and (16) which do not differ greatly from those of Reference (15).

The viscosity of low temperature, undissociated air is given by Sutherland's equation as

$$
\begin{equation*}
\mu=2.27 \times 10^{-8} \frac{\mathrm{~T}^{1.5}}{\mathrm{~T}+198.6} \tag{17.1.91}
\end{equation*}
$$

which is used to determine the viscosity throughout this program. The viscosity of dissociated, ionized air was obtained from Reference (58) which approximated it by

$$
\begin{align*}
\frac{\mu}{\mu_{0}}= & \left\{1+.023 \frac{T}{1800}\left[1+\operatorname{Tanh}\left(\frac{\frac{T}{1800}\left[\left(1-.125 \log _{10}\left(P / P_{0}\right)\right]-6.5\right.}{1.5+.125 \log _{10}\left(\mathrm{P} / \mathrm{P}_{0}\right)}\right]\right)\right] / \\
& {\left[1+\exp \left(\frac{\frac{\mathrm{T}}{1800}-14.5-1.5 \log _{10}\left(\mathrm{P} / \mathrm{P}_{0}\right)}{0.9+0.1 \log _{10}\left(\mathrm{P} / \mathrm{P}_{0}\right)}\right)\right] } \tag{17.1.92}
\end{align*}
$$

where $\mu_{0}$ is Sutherland's equation above. This equation has not been programmed in this heating subprogram because of the other approximations made with the transport properties but it was used when making the comparison between the constant and variable Lewis numbers in the Fay and Riddell equa-, tion.

The Prandtl number, as used in the heat transfer equations, is defined as

$$
\begin{equation*}
\bar{P}_{r}=\frac{\overline{\mathrm{C}}_{\mathrm{P}}^{\mu}}{\overline{\mathrm{K}}} \tag{17.1.93}
\end{equation*}
$$

where $\overline{\mathrm{C}}_{\mathrm{p}}$ and $\overline{\mathrm{K}}$ symbolize the frozen specific heat and thermal conductivity. The frozen values result from the fact that in considering the definition of the heat transfer in its most basic form,

$$
\begin{equation*}
q=\frac{K \partial T}{\partial y} \tag{17.1.94}
\end{equation*}
$$

'the thermal conductivity, $K$, can be rewritten as

$$
\begin{equation*}
K=\bar{K}+K_{\mathbf{r}} \tag{17.1.95}
\end{equation*}
$$

where $\overline{\mathrm{K}}$ is the frozen thermal conductivity due to molecular collisions and $K_{r}$ is the reaction thermal conductivity due to mass and chemical diffusion. In solving the energy flux equations, the frozen and reactions terms are considered separately and the analytical equations resulting from these solutions are generally expressed in such a way that the transport properties are expressed in terms of the frozen chemical properties.

Since pressure obviously has little effect on the frozen Prandtl number, it was curve fitted as a function of enthalpy at a pressure ratio of approximately 0.01 atmospheres as given below.
$\mathrm{H} \leq 1.5$

$$
\begin{equation*}
\bar{P}_{r}=0.83854-0.615 \mathrm{H}_{1}+0.7544 \mathrm{H}_{1}^{2}-0.31888 \mathrm{H}_{1}{ }^{3}+0.04388 \mathrm{H}_{1}{ }^{4} \tag{17.1.96}
\end{equation*}
$$

$1.5<\mathrm{H}_{7} \leq 30$

$$
\begin{align*}
\bar{P}_{\mathrm{r}}= & 0.75858+9.2825 \times 10^{-3} \mathrm{H}_{1}-1.98875 \times 10^{-3} \mathrm{H}_{1}{ }^{2}+9.50557 \times 10^{-5} \mathrm{H}_{1}{ }^{3} \\
& 1.40088 \times 10^{-6} \mathrm{H}_{1} \tag{17.1.97}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{H}_{1}=\mathrm{H} / 10^{7} \tag{17.1.98}
\end{equation*}
$$

Because the variation of the Prandtl number is small, it was not programmed but again was used in the variable Lewis number comparison.

The Lewis number, noted in this program, is defined as

$$
\begin{equation*}
\mathrm{Le}_{\mathrm{W}}=\frac{\mathrm{D} \rho \overline{\mathrm{C}}_{\mathrm{P}}}{\overline{\mathrm{~K}}} \tag{17.1.99}
\end{equation*}
$$

where $D$ is the binary diffusion coefficient. From Reference (14) this coefficient can be approximated by

$$
\begin{equation*}
D \rho=1.46775 \frac{\mu_{0}}{Z S} \tag{17.1.100}
\end{equation*}
$$

and thus

$$
\begin{equation*}
L_{e_{w}}=1.46775 \frac{\bar{P}_{r} \mu_{0}}{Z S \mu} \tag{17.1.101}
\end{equation*}
$$

where

$$
\begin{align*}
\mathrm{S}= & 0.9245-5.9214 \times 10^{-2} \mathrm{~T}_{\mathrm{T}_{1}}+9.6307 \times 10^{-3} \mathrm{~T}_{1}{ }^{2}-1.1901 \times 10^{-3} \mathrm{~T}_{1}{ }^{3}+8.9775 \times 10^{-5} \mathrm{~T}_{1}{ }^{4} \\
& -3.5915 \times 10^{-6} \mathrm{~T}_{1}{ }^{5}+5.7939 \times 10^{-8} \mathrm{~T}_{1}{ }^{6} \tag{17.1.102}
\end{align*}
$$

and

$$
\begin{equation*}
T_{1}=T / 10^{3} \tag{17.1.103}
\end{equation*}
$$

$\bar{P}_{r}$ indicates that the Prandtl number is frozen. Again this parameter was not prograrmed but was onily used for the variable Lewis number comparison.

There are obviously significant differences between the real or imperfect gas properties and the calorically imperfect (those properties used in the previous heating subprogram) and perfect gas properties. Real gas effects on the heat transfer, however, are not nearly as pronounced because the discrepancies tend to have a compensating effect and the errors incurred are generally not excessive. The real gas equations were retained in this program, because of the increased accuracy afforded by them.

As long as the continum, chemical equilibrium restrictions on the real gas equations are satisfied, they may be used to obtain the properties of the freestream, inviscid shock layer, and boundary layer, the only flow fields of significance in this program. The freestream properties, however, are computed in the atmosphere subroutines within the SDF and TOP programs and hence will not be considered further.

The boundary layer properties are considered to be those properties at the inner edge of the boundary layer or at the surface. From the real gas equations all of the required thermodynamic and transport properties are determined when the pressure and temperature are know. The wall temperature is readily determined either as an initial input to the program or, being the variable of immediate importance, through the integration subroutines within the SDF and TOP programs proper. The wall or surface pressure is assumed to be the local pressure computed in the heating subprogram proper as the pressure gradients through the boundary layer are generally extremely small in a continuum flow.

The inviscid shock layer properties are considered to be those properties at the outer edge of the boundary layer and are referred to as the local properties. Again all of the chemical properties are determined whenever the pressure and temperature are known. The local pressure is obtained from the equations presented previously but it is the local enthalpy rather than the local temperature which is accessible from the subprogram proper. Thus, as a matter of convenience it would be more desirable to express the real gas equations as a function of enthalpy and pressure, in direct conflict with the boundary layer requirements. Various methods of obtaining the real gas equations as functions of enthalpy and pressure were examined, i.e. References (10) and (17), but in general these techniques either required considerable machine storage and/or afforded neither the
accuracy nor the reliability available with the equations presented in this program. In addition the use of two separate procedures was somewhat impractical considering the limitations already imposed on this subprogram. Consequently when pressure and enthalpy, as the independent variables, are used in conjunction with the real gas equations given previously, an iterative procedure is required to compute the chemical properties.

Although the SDF and TOP programs contain an iteration subroutine CONVRG, this subroutine was not used for the iteration required by the aforeemntioned equations. The technique used in CONVRG is not particularly fast and is susceptible to occasional divergence. The iteration procedure used in CHEMP is a numerical integration technique employing the Runge-Kutta second-order formula. Although this technique possibly requires slightly more machine storage than CONVRG, it has the added advantage of a rapid solution and, in the suborbital flight regime was always found to be convergent. In terms of the symbolism used previously in this program, the Runge-Kutta formula is

$$
\begin{equation*}
T_{n+1}=T_{n}+.5\left(K_{1}+K_{2}\right) \tag{17.1.104}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{1}=\frac{H_{n+1}-H_{n}}{d H_{n} / d T} \tag{17.1.105}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{2}=\frac{H_{n+1}-H_{n}}{D H_{n} / d T} \tag{17.1.106}
\end{equation*}
$$

This technique involves the use of the enthalpy derivative but, since the pressure is held constant while the iteration is performed, this derivative is actually $\mathrm{C}_{\mathrm{P}}$ which was defined previously in the speed of sound formulation. Most of the terms contained in the $C_{P}$ equations have been previously defined, for the enthalpy equations and thus the use of this derivative is not overly prohibitive.

The manner in which this procedure is utilized is as follows: Subprogram HETS enters subroutine CHEMP with a known value of $H$ and $P$ at the given flight condition and desires to find a value of $T$ corresponding to $H$ and P. Since HETS also enters CHEMP with a value of $T$ corresponding to the preceding flight condition, CHEMP designates $T$ as $T_{n}$ and proceeds to compute $H_{n}$ which it then compares with $H$. If the difference between $H_{n}$ and $H$ is within the set tolerance then CHEMP sets $T_{n+l}$ equal to $T_{n}$ and proceeds to compute the other chemical properties. If the difference is not within the required tolerance then CHEMP computes $\mathrm{dH}_{\mathrm{n}} / \mathrm{dr}$ and

$$
\begin{equation*}
\mathrm{K}_{I}=\frac{\mathrm{H}-\mathrm{H}_{\mathrm{n}}}{\mathrm{~d} \mathrm{H}_{\mathrm{n}} / \mathrm{d} T} \tag{17.1.107}
\end{equation*}
$$

and sets

$$
\begin{equation*}
T_{n+} K_{1}=T_{n}+K_{1} \tag{17.1:108}
\end{equation*}
$$

The value of $H_{n+K_{1}}$ is computed and again compared to $H$. If the required tolezance is met then CHEMP sets $\mathrm{T}_{\mathrm{n}+1}=\mathrm{T}_{\mathrm{n}}+K_{1}$ and proceeds as above. If not then $\mathrm{AH}_{n+K_{1}} / \mathrm{dT}$ and

$$
\begin{equation*}
\mathrm{K}_{2}=\frac{\mathrm{H}-\mathrm{H}_{\mathrm{n}}}{\partial \mathrm{H}_{\mathrm{n}}+\mathrm{K}_{2} / \mathrm{dT}} \tag{17.1.109}
\end{equation*}
$$

are computed and CHEMP sets

$$
\begin{equation*}
T_{n+1}=T_{n+} K_{1}+.5\left(K_{2}-K_{1}\right) \tag{17.1.110}
\end{equation*}
$$

If the required tolerance is still not met then CHEMP sets

$$
\begin{equation*}
T_{n}=T_{n+1} \tag{17.1.111}
\end{equation*}
$$

and the entire process is repeated.

### 17.1.5 Ideal Gas Properties

The calculation of real gas properties, especially the iteration for $T$ as a function of $H$, uses a significant part of the computing time required for heating calculations because it is repeated so often. It may sometimes be desirable to reduce the computing time by changing to the simpler but less exact ideal gas properties. This option has been added to the program, and will be used in heating calculations unless real gas properties are specified by input. The equations are

If temperature is given:

$$
\begin{equation*}
H=6008 . T \tag{17.1.112}
\end{equation*}
$$

If enthalpy is given

$$
\begin{align*}
& T=H / 6008  \tag{17.1.113}\\
& \rho=1.232819 \cdot \mathrm{P} / \mathrm{T}  \tag{17.1.114}\\
& \mu=2.27 \times 10^{-8} \mathrm{~T} .5 /(T+198.6)  \tag{17.1.115}\\
& a=49.022 \cdot \mathrm{~T}^{1 / 2} \tag{17.1.116}
\end{align*}
$$

### 17.1.6 Radiation Equalibrium Temperature

A vehicle designed for radiation cooling is likely to have a very thin wing skin, with small heat capacity. If the actual skin thickness is used in the transient skin temperature calculation, an integration step size smaller than that required by the trajectory integration may be required by the transient temperature integration, with a corresponding increase in the amount of calculation. This difficulty can be reduced by assuming a larger
skin thickness, with greater heat capacity. Another possibility is to assume zero heat capacity, and solve for the equilibrium temperature at which the convective and radiative heating rates balance. The integration of the transient temperature differential equation is replaced by an iterative solution of a nonlinear algebraic equation for net heat flux. This should save computing if too many iterations are not needed, and may be closer to the right answer than the transient temperature of a thicker skir would be.

The heating routine has been modified to calculate equilibrium temperature instead of transient temperature for the wing skin when the skin thickness is zero. As previously noted, the iteration for equilibrium temperature in the previous optimization program sometimes did not work very well. An improved iteration method is used in the present program. The method of false position is used with the Aitken $\delta^{2}$ process to improve convergence. The net heating rate equation

$$
\begin{equation*}
q_{\text {net }}\left(T_{s}\right)=q_{c}-q_{r} \tag{17.1.117}
\end{equation*}
$$

is solved with trial values of $T_{g}$ until $q_{\text {net }}$ is zero within a tolerance $\varepsilon_{q}$. The tolerance is the smaller of

$$
\begin{equation*}
\varepsilon_{q}=.001\left(\frac{q_{c}+q_{r}}{2}\right) \tag{17.1.118}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{q}=.01\left(4 \varepsilon \sigma \mathrm{~T}_{\mathrm{s}}{ }^{3}\right) \tag{17.1.119}
\end{equation*}
$$

The sequence of trial values is generated in the following way. An initial value of $T_{S_{1}}$ and a slightly perturbed value ( $T_{S_{2}}$ ) are used to calculate the corresponding values of $q_{n e t}$ and $q_{\text {net }}^{2}$. The method of false position

$$
\begin{equation*}
T_{s_{3}}=F\left(T_{s_{1}}, T_{s_{2}}\right) \tag{17.1.120}
\end{equation*}
$$

where

$$
\begin{equation*}
F(r, s)=\frac{r q_{n e t}(s)-s q_{n e t}(r)}{q_{n e t}(s)-q_{n e t}(r)} \tag{17.1.121}
\end{equation*}
$$

$T_{S_{3}}$ and one of the pair ( $T_{S_{1}}, T_{S_{2}}$ ) are then used to find a new trial value by the same method. Let the value of $\mathrm{T}_{\mathrm{s}_{1}}$ or $\mathrm{T}_{\mathrm{S}_{2}}$ which was used be called $\mathrm{T}_{\mathrm{s}_{4}}$, let the one not used be $\mathrm{T}_{\mathrm{s}_{2}}$, and cafl the new value $\mathrm{T}_{\mathrm{s}_{5}}$. Then

$$
\begin{equation*}
T_{S_{5}}=F\left(T_{S_{3}}, T_{s_{4}}\right) \tag{17.1.122}
\end{equation*}
$$

$T_{S_{2}}$ and the two values $T_{s 3}$ and $T_{S_{5}}$ which were generated by successive application of the method of false position then form a sequence from which an improved estimate $\mathrm{T}_{6}$ is generated by Aitikens $\delta^{2}$ process.
17.1-24

$$
\begin{equation*}
T_{B_{6}}=D\left(T_{B_{z}}, T_{B_{3}}, T_{B_{5}}\right) \tag{17.1.123}
\end{equation*}
$$

where

$$
\begin{equation*}
D(r, s, t)=t-\frac{(t-s)^{2}}{t-2 s+x} \tag{17.1.124}
\end{equation*}
$$

One of the set $\left(T_{s_{2}}, T_{s_{3}}, T_{s_{5}}\right)$ and the last trial $T_{86}$ are then used to make a new pair ( $\mathrm{T}_{\mathrm{SI}_{1}}, \mathrm{~T}_{\mathrm{s}_{2}}{ }^{\prime}$ ), and the sequence beging again at equation (120). This procedure is repeated until qnet is zero within the tolerance $\varepsilon_{q}$. The method has proven reliable and uses less computing time than the transient temperature calculation.

1. Hague, D. S., Three Degree of Freedom Problem Optimization Formulation, FDL-TDR-64-1, Part I, Vol. 3, 1964.
2. Goldsmith, Alexander, Herschorn, Harry, J., and Waterman, Thomas E., Thermophysical Properties of Solid Materials., WADC.TR 58-476.
3. Eckert, Ernst R. O., Survey on Heat Transfer at High Speeds, ALD-189.
4. , Aerodynamic Heat Transfer Handbook, Volume I, Boeing Report D2-9514.
5. Beckwith, I. W. and Gallagher, J. J., Local Heat Transfer and Recovery Temperatures on a Yawed Cylinder at Mach Number 4.15 and High Reynolds Numbers, NASA TR-104, 1961.
6. Bertram, M. H. and Everhard, P. E., An Experimental Study of the Pressure and Heat Transfer Distribution on a $70^{\circ}$ Sweep Slab Delta Wing in Hypersonic Flow, NASA TR-153, 1963.
7. Wittliff, C. E. and Curtiss, J. T., Normal Shock Wave Parameters in Equilibrium Alr, CALL-111, November 1961.
8. Deem, R. E., Erickson, C. R. and Murphy, J. S., Flat-P1ate BoundaryLayer Transition at Hypersonic Speeds, FDL-TDR-64-129, October 1964.
9. Sieron, Thomas R., Methods for Predicting Skin Friction Drag from Subsonic to Hypervelocity Speeds on a Flat Plate and Delta Wings, ASRMDF TM 62-45, 1962.
10. Sıeron, Thomas R. and Martinex, Conrad, Effects and Analysis of Mach Number and Reynolds Number on Laminar Skın Friction at Hypersonic Speeds, AFFDL-TR-65-5, Apri1 1965.
11. Cohen, Nathanıel B., Boundary-Layer Simılar Solutions and Correlation Equatıons for Laminar Heat Transfer Distrıbution in Equilıbrıum Aır at Velocities up to 41,100 Feet Per Second, NASA TR R-118, 1964
12. Fay, J A. and Rıddell, F. R., "Theory of Stagnation Point Heat Transfer in Dissociated Alr," Journal of the Aeronautical Sciences, February 1958.
13. Detra, R. W., Kemp, N. H., and Rıddell, F. R., Addendum to Heat Transfer to Satellite Vehicles Re-entering the Atmosphere, Jet Propulsion Laboratory, December 1957.
14. Hansen, C. Frederick, "Approximations for the Thermodynamic and Transport Properties of High Temperature Air," NASA TRR-50, 1959.
15. Peng, T. C. and Pindroh, A. I., An Improved Calculation of Gas Properties at High Temperatures: Air," Boeing Document D2-11722, February 1962.
16. Hansen, C. F. and Heims, S. F., A Review of the Thermodynamic Transport and Chemical Reaction Rate Properties of High Temperature Alr, NACA TN 4359, July 1958.
17. Morettı, G., San Lorenzo, E. E., Magnus, E. E., and Weilerstein, G., Supersonic Flow About General Three-Dimensional Blunt Bodies, Volume III, Flow Field Analysis of Re-Entry Configurations by a General Three-Dimensional Method of Character1stics, ASD TR 61-727, October 1962.

### 17.2 PROGRAM ABLATOR: ONE-DIMENSIONAL ANALYSIS OF <br> THE TRANSIENT RESPONSE OF THERMAL PROTECTION SYSTEMS

ABLATOR is a Langley Research Center program developed by Robert T. Swann, Claud M. Pattman, and James C. Smıth. The description provided below is taken directly from their orıginal report, NASA TN D-2976.

The original documentation provides additional information on program ABLATOR including

1. Finıte difference equation development
2. Results
3. Comparison with more simple models
4. Methods for reducing computer time required

This section presents the general method of analysis employed. For further details, reference should be made to the original source document referenced above.

The thersal protection system that is to be anaiyzed is shown schematically in figure 1 . Although this discussion is confined to a charring ablator system, all the concepts and equations apply equally as well to any other thermal protection system composed of not more than


Figure 1.- Schematic diagram of system employing charring ablator. three primary layers. For a charring ablator system, the outer (heated) layer is the char, the center layer contains the uncharred material, and the third layer consists of insulation. Heat sinks can be located at the back of the second or third layers or at both locations.

The outer (char) surface is subjected to aerodynamic heating. The char layer provides both insulation and a high-temperature outer surface for reradiation. The heat passing through this layer is partially absorbed by pyrolysis at the interface between the char layer and the uncharred material, and the remaining heat is conducted into the uncharred material. The gases generated by pyrolysis transpire through the char layer and are injected into the boundary layer. The gases are heated as they pass through the char, and this heat'removal from the char layer, reduces the quantity of heat conducted to the pyrolysis interface. When these gases are injected into the boundary layer, the convective heat transfer is reduced. This reduction in convective heating is the same effect as that obtained with simple subliming ablators. In addition to the gases produced by pyrolysis, the carbonaceous residue remaining at the interface adds to the thickness of the char layer. While the processes of pyrolysis, transpiration, and injection are underway, char removal may also be taking place as a result of thermal, chemical, or mechanical processes. Thus the total char thickness may increase or decrease depending on the relative rates of formation and removal of the char. The various processes discussed are related quantitatively in the following sections.

### 17.2.1 Differential Equations

It is assumed that thermal properties in a given layer or material are functions only of temperature, that all heat flow $1 s$ normai to the suriace, and that gases transpiring through the char are at the same temperature as the char. Then the governing differential equations (from ref: 9) for the char layer ( $\bar{x} \leqq y \leqq \bar{x}+x$ ) are as follows:

$$
\begin{equation*}
\frac{\partial}{\partial y}\left(\mathrm{k} \frac{\partial \theta}{\partial y}\right)+\dot{m}_{p} \bar{c}_{p} \frac{\partial \theta}{\partial y}+\quad=\quad=\rho c_{p} \frac{\partial \theta}{\partial t} \tag{17.2.1}
\end{equation*}
$$

Heat conducted Heat absorbed by Heat generated Heat stored transpiring gases
for the uncharred layer $\left(\bar{x}+x \leqq y \leqq x_{0}+x_{0}^{\prime}\right)$,

$$
\begin{equation*}
\frac{\partial}{\partial y}\left(k^{\prime} \frac{\partial \theta^{\prime}}{\partial y}\right)=\rho^{\prime} c_{p}^{\prime} \frac{\partial \theta^{\prime}}{\partial t} \tag{17.2.2}
\end{equation*}
$$

and for a layer of insulation $\left(x_{0}+x_{0}^{\prime} \leqq y \leqq x_{0}+x_{0}^{\prime}+x_{0}^{\prime \prime}\right)$,

$$
\begin{equation*}
\frac{\partial}{\partial y}\left(k^{\prime \prime} \frac{\partial \theta^{\prime \prime}}{\partial y}\right)=\rho^{"} c_{p}^{" \prime} \frac{\partial \theta^{\prime \prime}}{\partial t} \tag{17.2.3}
\end{equation*}
$$

The thicknesses of the layers to which the first two of these equations apply vary with time in a manner which is determined by the boundary conditions.

### 17.2.2 Initial Conditions

The initial temperature distribution is assumed to be given as a function of position:

$$
\begin{equation*}
\theta(y, 0)=g(y) \tag{17.2.4}
\end{equation*}
$$

The inıtial mass-transfer rates must also be specified. It should be noted that these values can be other than zero for some cases.

### 17.2.3 Surface Boundary Condıtions

Two conditions must be specified at the heated surface. One must determine either the rate of removal of material at the surface or the temperature of the surface; the other is provided by the energy balance.

Surface ablation.- In general, the relative importance of the mechanisms unvolved in char removal from specific materials is not well established at this time. It has been established, however, that oxidation of the char surface is one important mechanısm. Spalling of the char as a result of internal pressure is observed in some cases. Ablation at a given temperature (that is, sublimation) occurs if the heating rate is sufficiently high. Ablation of the surface may also occur as a result of aerodynamic shear stresses.

To provide maximum flexibility, provision is made for the following mechanisms of surface erosion:
(I) Ablation at a given temperature which may be a function of ablation rate (sublimation)
(2) Removal of char at a rate which is a given function of time (spalling, aerodynamic shear)
(3) Removal of char at such a rate that the char thickness is a given function of time (spalling, aerodynamic shear)
(4) Ablation as a result of a chemical process (oxidation)

For ablation at a given temperature, two cases are considered. In one case, ablation occurs at a fixed temperature. In the other case, the char mass loss roje is an exponential function of the surface temperature. For ablation at a fixed temperature, no surface erosion occurs if the calculated surface temperature is less than the specified ablation temperature. If the calculated surface temperature is higher than the ablation temperature, ablation occurs at a rate sufficient to reduce the temperature to the ablation temperature; that is, $\dot{\mathrm{m}}_{\mathrm{c}}$ is equal to zero for $\mathbb{T}_{1}<\bar{T}_{1}$, and $\dot{m}_{C}$ is calculated from an energy balance at the surface for $T_{1}=\bar{T}_{1}$. In the second case, char mass loss rate and surface temperature are related as follows:

$$
\begin{equation*}
\dot{\mathrm{m}}_{\mathrm{C}}=A e^{-B / \mathrm{T}_{1}} \tag{17.2.5}
\end{equation*}
$$

An equation of this form has some physical significance, because decomposition reactions proceed more rapidly at higher temperatures. By an appropriate selection of $A$ and $B$, equation (5) yields results similar to those obtained by specifying an ablation temperature.

If the rate of char removal is given function of time

$$
\begin{equation*}
\dot{\mathrm{m}}_{\mathrm{c}}=f(\mathrm{f}) \tag{17.2.6}
\end{equation*}
$$

then the rate of char removal is obtained from the input data and the surface temperature is calculated from an energy balance. Such a relation might be used to compare calculated and experimental results when a more basic quantitative relation for the experimental rate of char removal is not availabie.

If the char thickness is a given function of time

$$
\begin{equation*}
x=f(t) \tag{17.2.7}
\end{equation*}
$$

then the rate of char removal is calculated from this relation together with the rate of char formation which is calculated from the condicions at the pyrolysis interface. This condition can be used when it is desirable to perform calculations for applications in which the char thickness is known as a function of time even though mechanisms of char removal may be present whach cannot be expressed quantitatively.

It has been shown experimentally that oxidation is an amportant mechenism of char removal. (See ref. ll.) For a half-order reaction, the rate of oxidation of carbon can be determined from the following equation (ref. 14):

$$
\begin{equation*}
\dot{\mathrm{m}}_{\mathrm{C}}=A e^{-B / T_{1}} \sqrt{\mathrm{C}_{W} \mathrm{p}_{\mathrm{W}}} \tag{17.2.8}
\end{equation*}
$$

The pressure at the wall must be specified for subsonic and supersonic flow. However, in hypersonic flow, the pressure can be related to the stagnation heating rate and enthalpy. The stagnation pressure in hypersonic flow is approximateiy (see ref. 15):

$$
\begin{equation*}
p_{w, s}=\frac{11}{12} \rho_{\infty} v_{\infty}^{2} \tag{17.2.9a}
\end{equation*}
$$

Further (from ref. 16),

$$
\begin{equation*}
q \propto \sqrt{\frac{\rho_{\infty}}{R}} v_{\infty}^{3} \tag{17.2.9b}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{e} \propto v_{\infty}^{2} \tag{17.2.ec}
\end{equation*}
$$

Then, $p_{w, s}$ can be expressed by the relation

$$
\begin{equation*}
p_{\mathrm{w}, \mathrm{~s}}=G R\left(\frac{q_{\mathrm{s}}}{h_{\mathrm{e}_{\mathrm{s}}}}\right)^{2} \tag{17.2.9~d}
\end{equation*}
$$

where the constant of proportionality is

$$
G=410.72 \frac{\mathrm{ft}^{3}-\mathrm{sec}^{2}-\mathrm{atm}}{1 \mathrm{~b}^{2}}=56.2 \frac{\mathrm{~m}^{3}-\mathrm{sec}^{2}-\mathrm{atm}}{\mathrm{~kg}^{2}}
$$

The pressure at the wall is therefore given by

$$
\begin{equation*}
p_{W}=G \frac{p_{W}}{p_{W, S}} R\left(\frac{q_{S}}{h_{e_{S}}}\right)^{2} \tag{17.2.9e}
\end{equation*}
$$

where $\frac{p_{W}}{p_{W}, s}$ depends on vehicle attitude and body location. The rate at which char $1 s$ removed by oxygen must be proportional to the net rate at which oxygen diffuses to the surface. From reference 17 this rate is

$$
\begin{equation*}
\dot{m}_{0 x}=\frac{{ }_{N}^{0}{ }_{L e}^{0.6} q_{C, n e t}}{h_{e}-h_{w}}\left(c_{e}-c_{w}\right)=\frac{\dot{m}_{c}}{\lambda} \tag{17.2,10a}
\end{equation*}
$$

As shown in a subsequent section, ${ }^{q_{C}}$, net is the hot-wall convective heating rate corrected for transpiration (see eq. (13).); that is,

$$
\begin{align*}
q_{C, n e t}= & q_{C}\left(1-\frac{h_{w}}{h_{e}}\right)\left\{1-(1-\beta)\left[0.724 \frac{h_{e}}{q_{C}}\left(\alpha_{c} \dot{m}_{c}+\alpha_{p} \dot{m}_{p}\right)\right.\right. \\
& \left.\left.-0.13\left(\frac{h_{e}}{q_{C}}\right)^{2}\left(\alpha_{c} \dot{m}_{c}+\alpha_{p} \dot{m}_{p}\right)^{2}\right]-\beta \eta\left(\alpha_{c} \dot{m}_{c}+\alpha_{p} \dot{m}_{p}\right) \frac{h_{e}}{q_{C}}\right\} \tag{17.2.10~b}
\end{align*}
$$

By eliminating the concentration of oxygen at the wall $C_{W}$ in equa+ions (8) and (10a), the rate of removal of char by oxidation is found to be

$$
\dot{m}_{c}=\frac{1}{2}\left\{-\frac{\left(h_{e}-h_{W}\right) K^{2} p_{W}}{q_{C, n e t} \lambda N N_{L e}^{0.6}}+\sqrt{\left[\frac{\left(h_{e}-h_{W}\right) K^{2} p_{W}}{q_{C, n e t} \lambda N_{L e}^{0.6}}\right]^{2}+4 K^{2} \dot{p}_{W} c_{e}}\right\}_{(17.2 .10 \mathrm{c})}
$$

where $K=A e^{-B / T I}$.
The equation for a first-order oxidation reaction is obtained similarly. The resulting equation is

$$
\dot{\mathrm{m}}_{\mathrm{c}}=\frac{\mathrm{Kp}_{\mathrm{w}} \mathrm{C}_{\mathrm{e}}}{1+\frac{\mathrm{K}_{\mathrm{W}}\left(\mathrm{~h}_{\mathrm{e}}-\mathrm{h}_{\mathrm{W}}\right)}{\mathrm{q}_{\mathrm{C}, \mathrm{net}}{ }^{\lambda \pi J_{\mathrm{Le}}^{0.6}}}}
$$

Surface location.- When char removal occurs, the char surface moves with respect to a coordinate system fixed in the matexial. The distance between the surface of the char and the initial suriace location is given by

$$
\begin{equation*}
\bar{x}=\int_{0}^{t} \frac{\dot{m}_{c}}{\rho} d t \tag{17.2.11}
\end{equation*}
$$

The thickness of the char at any time is equal to the initial char thickness, plus the thlckness of char formed by pyrolysis, less the thickness of char removed; that is,

$$
\begin{equation*}
x=x_{0}+\int_{0}^{t} \frac{\dot{m}_{p}}{\rho^{\prime}-\rho} d t-\int_{0}^{t} \frac{\dot{m}_{c}}{\rho} d t \tag{17.2.12}
\end{equation*}
$$

Surface energy balance. - The heat input consists of convective and radiant heating. Thiz energy must be accommodated at the surface by a combination of four mechanisms:

$$
17.2-6
$$

(1) Blocking by mass transfer into the boundary layer
(2) Reradiation or reflection from the surface
(3) Conduction into the material
(4) Sublimation of the char

The effect of mass transfer on heat transfer has been studied extensively. With low-mass-transfer rates it is found that the reduction in heat-transfer rate is directly proportional to the product of the mass-transfer rate and the entnalpy difference across the boundary layer. With high-mass-transfer rates, whicn may occur when a large fraction of the heat input is radiant, the linear approximation is no longer adequate and it is necessary to use a higher order approximation. A second-degree approximation is derived in appendix A.

The surface energy balance, expressed in a form in which either approximation to the blocking effectiveness can be selected, is as follows:


Net convective neating rate


If transpiration theory (second-degree approximation, appendix A) is used, $\beta$ is equal to zero. For linear ablation theory, $\beta$ as equal to 1 . In either case, the heat absorbed by vaporization of the char $H_{c}$ and the heat of combustion of the char $\Delta h_{c}$ are considered separately. The coefficients $\alpha_{c}$ and $\alpha_{p}$ can be used to differentiate between the blocking effectiveness or the gases produced at the surface and at the pyrolysis interface. Evaluation of these coefficients is discussed briefly in appendax A.

The heat transfer to the outer surface is assumed to be a given function of time and consists of the cold-wall convectuve heating rate $q_{C}$ and the radiant heating rate $\mathrm{q}_{\mathrm{R}}$ incident on the suriace. These two components must be specified separately because mass transfer at the surface blocks part of the aerodynamic heating but, in general, has no effect on radiant heating. Additional terms can easily be included in equation (13) to account for other
phenomena which may affect the heat balance at the char surface. For example, reference 18 discusses a gas-phase combustion in the boundary layer involving the gases of pyrolysis. This effect has not been clearly identified at the Langley Research Center and is, therefore, not included in the equation. However, phenomena such as this may be important in some cases and their existence should certainly be considered.

Equation (13) is normally used in this analysis as the boundary condition on the temperature at the outer surface. However, when $\theta$ is equal to the sublimation temperature $\overline{\mathrm{T}}_{1}$, the specified sublimation temperature provides the . boundary condition on the temperature and equation (13) is used to calculate the rate of ablation $\dot{\mathrm{m}}_{\mathrm{C}}$.

### 17.2.4 Pyrolysis-Interface Boundary Condition

Energy balance.- The heat conducted to the pyrolysis interface must be eather absorbed by pyrolysis reactions or conducted into the uncharred material; that is, at $\mathrm{y}=\overline{\mathrm{x}}+\mathrm{x}$,

$$
\begin{equation*}
-k \frac{\partial \theta}{\partial y}=\dot{m}_{p} \Delta h_{p}-k^{\prime} \frac{\partial \theta^{\prime}}{\partial y} \tag{17.2.14}
\end{equation*}
$$

In addition, the temperatures in the char and in the uncharred material must be equal at the interface; that is, at $y=\bar{x}+x$,

$$
\begin{equation*}
\theta=\theta^{\prime} \tag{17.2.15}
\end{equation*}
$$

Pyrolysis rate.- Two approaches are available for calculating the rate of pyrolysis. In the first approach, it is assumed that pyrolysis occurs at a given temperature $\bar{T}_{i}$. If

$$
\begin{equation*}
\theta_{\bar{x}+x}<\bar{T}_{i} \tag{17.2.16a}
\end{equation*}
$$

then

$$
\begin{equation*}
\dot{m}_{p}=0 \tag{17.2.16b}
\end{equation*}
$$

II

$$
\theta_{\bar{x}+x}=\bar{T}_{i}
$$

the temperature is known and equation (14) is used to calculate the rate of pyrolysis.

In an alternate approach, it is assumed that the rate of pyrolysis is.a - known function-of temperature, for exampler .

$$
\begin{equation*}
\dot{\mathrm{m}}_{\mathrm{p}}=\mathrm{A}^{\prime} \mathrm{e}^{-\mathrm{B}^{\prime} / \theta_{\overline{\mathrm{x}}}+\mathrm{x}} \tag{17.2.17}
\end{equation*}
$$

when

$$
\theta_{\overline{\mathrm{x}}+\mathrm{x}}<\overline{\mathrm{T}}_{\dot{\mathrm{i}}}
$$

In this case, equations (14) and (17) are solved for both temperature and pyrolysis rate. The value of $\bar{T}_{i}$ is still specified, and if this temperature is reached, the pyrolysis rate is determined only from equation (14) so that this temperature is not exceeded.

Pyrolysis-interface location.- As pyrolysis occurs, the interface between the char layer and the uncharred material moves with respect to a fixed coordinate. Its distance from the initial char surface location is

$$
\begin{equation*}
\bar{x}+x=x_{0}+\int_{0}^{t} \frac{\dot{\dot{x}} p}{\rho^{i}-\rho} d t \tag{17.2.18}
\end{equation*}
$$

The instantaneous thickness of the uncharred material is

$$
\begin{equation*}
x^{\prime}=x_{0}^{s}-\int_{0}^{t} \frac{\dot{m}_{p}}{\rho^{r}-\rho} d t \tag{17.2.19}
\end{equation*}
$$

### 17.2.5 Boundary Conditions at Back Surface of Ablation Material

A number of conditions can be imposed at the back surface of the ablation material, depending on whether additional insulation is provaded or some provision is made for temperature control. Whether insulation as used or not, the ablation material may be attached to a thermally thin plate which functions as a concentrated heat sink.

Three-layer system.- If insulation is used, the temperature of the ablation material is equal to the temperature of the insulation at their interface.

$$
\begin{equation*}
\theta_{x_{0}}^{\prime}+x_{0}^{\prime}=\theta_{x_{0}}^{\prime \prime}+x_{0}^{\prime} \tag{17.2.20a}
\end{equation*}
$$

From an energy balance at the back surface of the ablation material,

$$
\begin{equation*}
-k^{\prime} \frac{\partial \theta^{\prime}}{\partial y}=c_{i+j} \frac{\partial \theta^{\prime}}{\partial t}-k^{\prime \prime} \frac{\partial \theta^{\prime \prime}}{\partial y} \tag{17.2.20b}
\end{equation*}
$$

Two-layer system.- Iir no insulating layer is used, the back surface can be assumed to be perfectly insulated, cooled at a given temperature, or may exchange radiation with a sink of known temperature in the interior of the structure. An energy balance yields the following equation:

$$
\begin{equation*}
-k^{\prime} \frac{\partial \theta^{\prime}}{\partial y}=C_{i+j} \frac{\partial \theta^{\prime}}{\partial y}+S\left(\theta^{\prime}-\stackrel{T}{T}_{i+j}\right) \Delta W_{f} \Delta h_{f}+\sigma \epsilon_{i+j}\left[\left(\theta^{\prime}\right)^{4}-T_{B}^{4}\right] \tag{17.2.21}
\end{equation*}
$$

The temperature at which the cooling system is activated is $\bar{T}_{i+j}$. The choice of conditions is accomplished by making the inapplicable terms equal to zero (that is, $C_{i+j}=0$ and/or $\bar{T}_{i+j}>\theta^{\prime}$ and/or $\epsilon_{i+j}=0$ ).

17.2.6 Boundary Condition at Back Surface<br>of Insulating Material

If an insulating material is used behind the ablating material, the boundary condition at the back surface $\left(y=x_{0}+x_{0}^{\prime}+x_{0}^{11}\right)$ is similar to equation (21); that is,

$$
\begin{equation*}
-k k^{\prime \prime} \frac{\partial \theta^{\prime \prime}}{\partial y}=C_{i+j+m} \frac{\partial \theta^{\prime \prime}}{\partial t}+s\left(\theta^{\prime \prime}-\bar{T}_{i+j+m}\right) \Delta W_{f} \Delta h_{f}+\sigma \epsilon_{i+j+m}\left[\left(\theta^{\prime \prime}\right)^{4}-T_{B}^{4}\right] \tag{17.2.22}
\end{equation*}
$$

### 17.2.7 Transformation of Coordinates

The equations derived in the preceding discussion are similar to those presented in reference 9. In reference 9, these equations are expressed in fanatedufference form and solved in a fixed coordinate system. To maintain a fixed number of stations in layers of varying thicknesses, at is necessary to change the locations of the stations and to interpolate to determine the temperatures at the new locations after each step in the calculation. This procedure not only increases the time required to periorm the computavions, but also introduces a small error in each step of the calculation. Tnis difficulty can be eliminated by transforming the equations to a coordinate system in which the finite-difference stations remain fixed, and the coordinates themselves move to accommodate the changes in the locations of the surfaces of the different materials.

The $y$-coordinate can be transformed to $\xi$ - and 5 -coordinates in the char and uncharred layers, respectively, by using the following equations:

$$
\begin{gather*}
\xi=\frac{y-\int_{0}^{t} \frac{\dot{m}_{c}}{\rho} d t}{x}  \tag{17.2.23a}\\
\zeta=\frac{y-x_{0}-\int_{0}^{t} \frac{\dot{m}_{p}}{\rho^{i}-\rho} d t}{x_{\underline{\prime}}} \tag{17.2,23b}
\end{gather*}
$$

In this coordinate system the outer surface remains fixed at $\xi=0$. The interm face is located at $\xi=1$ in the char and at $\zeta=0^{\circ}$ in the uncharred material. The back surface of the uncharred material is located at $\zeta=1$. A number of advantages result from the use of this double transformation. First, the char always extends from $\xi=0$ to $\xi=1$. Therefore, the temperatures tend to be more nearly steady state than would be the case with a coordinate system fixed at the surface only. A second advantage is the positive location of the pyrolysis interface. A similar transformation would also be very beneficial in locating the center of the reaction zone when the pyrolysis reactions are considered in detail. Because the reaction zone is typically very thin, a very fine finite-difference network is required to analyze it. With transformations similar to those here, the center of the reaction zone can be located, and the fine network can be restricted to this region rather than covering the entire range of possible reaction-zone locations.

In the transformed coordinate system, equations (1) and (2) are as follows (for the char layer and uncharred layer, respectively):

$$
\begin{gather*}
\frac{1}{x^{2}} \frac{\partial}{\partial \xi}\left(k \frac{\partial \theta}{\partial \xi}\right)+\frac{1}{x} \frac{\partial \theta}{\partial \xi}\left[\dot{m}_{c} c_{p}+\dot{m}_{p} \bar{c}_{p}+\xi\left(\frac{\dot{m}_{p} \rho}{\rho^{\prime}-\rho}-\dot{m}_{c}\right) c_{p}\right]+F=\rho c_{p} \frac{\partial \theta}{\partial t}  \tag{17.2.24a}\\
\frac{1}{\left(x^{\prime}\right)^{2}} \frac{\partial}{\partial \zeta}\left(k^{\prime} \frac{\partial \theta^{\prime}}{\partial \zeta}\right)+\frac{1}{x^{\prime}} \frac{\dot{m}_{p} \rho^{\prime} c_{p}^{\prime}}{\rho^{\prime}-\rho}(1-\zeta) \frac{\partial \theta^{\prime}}{\partial \zeta}=\rho^{\prime} c_{p}^{\prime} \frac{\partial \theta^{\prime}}{\partial t} \tag{17.2.24b}
\end{gather*}
$$

The boundary conditions are as follows:
At $\bar{s}=0$,

$$
q_{\mathrm{aero}}=\sigma \epsilon_{1} \theta^{4}-\frac{k}{x} \frac{\partial \theta}{\partial \xi}+\dot{\mathrm{m}}_{\mathrm{c}}\left[\mathrm{~S}\left(\theta-\overline{\mathrm{T}}_{1}\right)\left(\mathrm{H}_{\mathrm{c}}+\Delta h_{\mathrm{c}}\right)-\Delta h_{\mathrm{c}}\right]
$$

where

$$
\begin{align*}
q_{\text {aero }}= & \alpha_{q_{R}}+q_{C}\left(1-\frac{h_{W}}{h_{e}}\right)\left\{1-(1-\beta)\left[0.724 \frac{\dot{h}_{e}}{q_{C}}\left(\alpha_{c} \dot{m}_{c}+\alpha_{p} \dot{m}_{p}\right)\right.\right. \\
& \left.\left.-0.13\left(\frac{h_{e}}{q_{C}}\right)^{2}\left(\alpha_{c} \dot{m}_{c}+\alpha_{p} \dot{m}_{p}\right)^{2}\right]-\beta \eta\left(\alpha_{c} \dot{\dot{c}}_{c}+\alpha_{p} \dot{m}_{p}\right) \frac{\hat{h}_{e}}{q_{C}}\right\} \tag{17.2.25b}
\end{align*}
$$

at $\xi=1, \quad \zeta=0$,

$$
\begin{equation*}
\theta=\theta^{\circ} \tag{17.2.26a}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{k}{x} \frac{\partial \theta}{\partial \xi}=\dot{m}_{p} \Delta h_{p}-\frac{k^{\prime}}{x^{\prime}} \frac{\partial \theta^{\prime}}{\partial \zeta} \tag{17.2.26b}
\end{equation*}
$$

and at $\zeta=1$ for only two layers, the condition at the back surface ( $\mathrm{y}=\mathrm{x}_{0}+\mathrm{x}_{0}^{1}$ ) is

$$
\begin{equation*}
-\frac{k^{\prime}}{x^{\prime}} \frac{\partial \theta^{\prime}}{\partial \zeta}=C_{i+j} \frac{\partial \theta^{r}}{\partial t}+S\left(\theta^{\prime}-\bar{T}_{i+j}\right) \Delta W_{f} \Delta h_{p}+\sigma \epsilon_{i+j}\left[\left(\theta^{\prime}\right)^{4}-T_{B}^{4}\right] \tag{17.2.27}
\end{equation*}
$$

When three layers are used, the conditions at the back of the second layer are

$$
\begin{equation*}
\theta^{\prime}=\theta^{\prime \prime} \tag{17.2.28a}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{k^{\prime}}{x^{\prime}} \frac{\partial \theta^{\prime}}{\partial \zeta}=C_{i+j} \frac{\partial \theta^{\prime}}{\partial t}-k^{\prime \prime} \frac{\partial \theta^{\prime \prime}}{\partial y} \tag{17.2.28b}
\end{equation*}
$$

If three layers are used, the condition at the back surface ( $y=x_{0}+x_{0}^{1}+x_{0}^{\prime \prime}$ ) is

$$
-k^{\prime \prime} \frac{\partial \theta^{\prime \prime}}{\partial y}=C_{i+j+m} \frac{\partial \theta^{\prime \prime}}{\partial t}+S\left(\theta^{\prime \prime}-\overline{\mathrm{T}}_{i+j+m}\right) \Delta W_{f} \Delta h_{f}+\sigma \epsilon_{i+j+m}\left[\left(\theta^{\prime \prime}\right)^{4}-\mathrm{T}_{B}^{4}\right]
$$

(17.2.29)

REFERENCES:

1. Swann, Robert T.., Composite Thermal Protection Systems for Manned Re-entry Vehicles, American Rocket Society Journal, Vol. 32, No. 2, Februaxy 1962, Pp. 221-226.
2. Chapman, Andrew J., Effect of Weight, Density, and Heat Load on Thermal-Shielding Performance of Phenolic Nylon, NASA TN D-2196, 1964.
3. Farmer, Rex W., Ablative Behavior of Plastics in Subsonic and Supersonic Hyperthermal Flow, WADD Technical Report 60-648, U. S. Air Force, November 1960.
4. Schwartz, H. S. (compiler), Conference on Behavior of plastics in Advanced Flight Vehicle Environments, WADD Technical Report 60-101, U. S. A1r Force, September 1960.
5. Brooks, William A., Jr., Wadiin, Kenneth L., Swann, Robert T., and Peters, Roger W., An Evaluation of Thermal Protection for Apollo, NASA TM X-613, 1961.
6. Schmidt, Donald L., Behavior of Plastic Materials in Hyperthermal Environments, WADC Technical Report 59-574, U. S. Aır Force April 1960.
7. Munson, T. R., and Spindler, R. J., Transient Thermal Behavior of Decomposing Materials, Part I: General Theory and Application to Convectrve Heating, Paper No. 62-30, S.M.F. Publishing Fund, Institute of Aerospace Sciences, January 1962.
8. Kratsch, K. M., Hearne, L. F., and McChesney, H. R., Thermal Performance of Heat Shield Composites During Planetary Entry, Presented at AIAA-NASA Natıonal Meetıng, Palo Alto, Califormia, September 30October 1, 1963.
9. Swann, Robert T and Pıttman, Claud M., Numerical Analysis of the Transient Response of Advanced Thermal Protection Systems for Atmospheric Entry, NASA TN D-1370, 1962.
10. Beecher, Norman, and Rosenweig, Ronald E., Ablation Mechanisms in Plastics with Inorganıc Reınforcement, Americon Rocket Society Journal, Volume 31, No. 4, April 1961, pp. 532-539.
11. Dow, Marvin B. and Swann, Robert T., Determination of Effects of Oxidation on Performance of Charring Ablators, NASA TR R-196, 1964.
12. Scala, Sinclaire M. and Gilbert, Leon M., Thermal Degradation of a Char-Forming Plastic During Hypersonic Flight, American Rocket Society Journal, Volume 32, No. 6, June 1962, pp. 917-924.
13. Mechtly, E. A., The International System of Units - Physical Constants and Conversion Factors, NASA SP-7012, 1964.
14. Nolan, Edward J. and Scala, Sinclaire M., Aerothermodynamic Behavior of Pyrolytic Graphite During Sustained Hypersonic Flight; American Rocket Society Journal, Volume 32, No. 1, January 1962, pp. 26-35.
15. Truitt, Robert Wesley, Hypersonic Aerodynamics, The Ronald Press Co., c. 1959.
16. Chapman, Dean R., An Approximate Analytıcal Method for Studying Entry Into Planetary Atmospheres, NASA TR R-11, 1959. (Supersedes NACA TN4276)
17. Swann, Robert T., Approximate Analysis of the Performance of CharForming Ablators, NASA TR R-195, 1964.
18. Vojvodıch, Nick S. and Pope, Ronald B., Effect of Gas Composition on the Ablation Behavior of a Charring Material, AIAA Journal, Volume 2, No. 3, March 1964, pp. 536-542.
19. Brooks, Willıam A., Jr., Temperature and Thermal-Stress Distributions in Some Structural Elements Heated at a Constant Rate, NACA TN-4306, 1958.
20. Roberts, Leonard, Mass Transfer Cooling Near the Stagnation Point, NASA TR R-8, 1959, (Supersedes NACA TN 4391)
21. Roberts, Leonard, A Theoretical Study of Stagnation-Point Ablation, NASA TR R-9, 1959, (Supersedes NACA TN 4392)
22. Swann, Robert T. and South, Jerry., A Theoretical Analysis of Effects of Ablation on Heat Transfer to an Arbitrary Axisymmetric Body, NASA TN D-741, 1961.
23. Swann, Robert T., Effect of Thermal Radiation from a Hot Gas Layer on Heat of Ablation, Journal of Aerospace Sciences, Readers Forum, Volume 28, No. 7, July 1961, pp. 582-583.
24. Savin, Raymond C., Glorıa, Hermilo R., and Dahms, Rıchard G., Ablatıve Properties of Thermoplastics under Conditions Sımulating Atmosphere Entry of Ballistic Massıles, NASA TM X-397, 1960.
25. Dusinberre, G. M., Numerical Methods for Transient Heat Flow, Transactions of the American Society of Mechanical Engineers, Volume 67, No. 8, November 1945, pp. 703-712.

APPENDIX I
AN INTRCDUCTION TO ODINĖX:
A desigin integration aind analysis language

## ABSTRACT

A design integration and analysis language has been implemented in a CDC 6000 series computer code called ODINEX. It controls the sequence of execution and data management function for a community of interdependent design computer programs. The language includes a FORTRAN-like loop and bypass logic on groups of independent programs. Each individual program constitutes a single member of the design network. As a result of this development of DIALOG, any existing checked out computer program is immediately available for inclusion in the community. Each program can access a dynamically maintanned design data base which forms the common information link among the programs of the community.

TABLE OF CONTENTS
Page

1. SUMMARY ..... I-I
2. INTRODUCTION ..... I-6
3. GENERAL DESCRIPTION 'OF ODINEX ..... I-8
3.1 ODIN Concept ..... I-8
3.2 ODINEX Executive ..... I-8
3.3 Control Card Data Base ..... I-11
3.4 Design Data Base ..... I-12
3.5 Information Storage and Retrieval ..... I-I2
3.6 Units Conversion and Scaling ..... I-12
3.7 Report Generation ..... I-14
4. THE ODINEX LANGUAGE ..... I-15
4.1 Control Directives ..... I-17
4.2 Communication Commands ..... I-20
4.2.1 Replacement command ..... I-20
4.2.1.1 Simple replacement ..... I-21
4.2.1.2 Replacement with scaling ..... I-21
4.2.1.3 Arrayं replacement ..... I-22
4.2.2 Action Commands ..... I-22
4.2.2.1 ADD command ..... I-25
4.2.2.2 The DELETE command ..... I-26
4.2.2.3 The DEFINE command ..... I-26
4.2.2.4 Special ADD-like commanàs ..... I-26
4.2.2.5 The . (comment) command ..... I-27
4.2.3 Logic Commands ..... I-27
4.3 Report Generation and Graphics ..... I-29
4.3.1 Stylized reports ..... I- 30
4.3.2 Graphics ..... I- 30
5. ODINEX USAGE EXAMPIES ..... I- 36
6. REFERENCES ..... I-45

## TABLE OF CONTENTS

PageI-AI
I-AI

1. Data Base Size
I-A2.
2. Description of Direct Access Method
I-A2
2.1 Hash Coding. the Key
I-A3
2.2 Resolving CollisionsI-A4
APPENDIX B: MUITIPLE PROGRAM EXECUTION ..... I-Bl
3. Description of CCLINK ..... I-BI
4. Use of CCLINK ..... I-B2
5. System Interface Requirements for CCLINK ..... I-B3
APPENDIX C: ODIN SIMULATION EXAMPLE ..... I-CI
i. Summary ..... I-Cl
6. Introduction ..... I-C3
7. The ODIN/RLV Mission and Vehicle Model ..... I-C4
3.1 Trajectory Profile ..... I-CS
3.2 Vehicle Characteristics and Constraints ..... I-C6
3.3 Weights and Geometry ..... I-C7
3.4 Otner Limtations on the Simulations ..... I-C8
8. Payload Optimization ..... I-CII
4.1 Selection of Engine Vacuum Thrust ..... I-CII
4.2 Selection of Booster and Engine Size ..... I-Cl3
4.3 Cost Sensitıvity ..... I-Cl7
9. Data Intercommunication Between SSSP and AESOP ..... I-CI8
10. Sample Output from ODINEX ..... I-C21
11. Conclusions ..... I-C27
12. References ..... I-C28

## LIST OF FIGURES

Figure		Page
1	Schematic of the ODIN Concept	I－2
2	ODIN Control Iogic	I－4
3	ODINEX Executive Functions	I－9
4	ODIN／ODINEX Fiunctions	I－13
5	The ODINEX Schematic	1－16
6	Control Directives	I－ 1.8
7	ODIN／RLV Control Directives	I－19
8	Rules for Using Communication Commands	I－23
9	Action Commands	I－24
10	Output from Logical Command＇DBUMP＇	I－28
11	Ixample Input and Output for Report	I－31
12	Example Output from Printer Plot Option	I－32
13	Example Output from CALCOMP Plot Option	I－34
$\pm 4$	Example of CDC 250 Hard Copy Option	I－35
15	A Sample Optimization Using ODIN	I－3？
i6	Example of Construction and Storage of Control	
	Cara Data Base	I－38
$\because 7$	Graphical Presentation of Data from Any	
	Analysis Program	I－39
$=3$	Use of FORTRAN Language vo Augment Analysis	I－41
－9	Geometry Perturbation for the 040A Orbiter	I－42
20	Comparis on of Batch and Interactive Modes	I－43
$\cdots$	Composition of the Directory，FSL	I－A5
5	Exampie Use of CCLIM	I－B4
$0^{2}$	Scnematic of Sample ODIM／RLV Model	I－C2
Cこ	The IWo－Stage Space Shutile Concept	I－ $\mathrm{Cl}_{4}$
03	Shuttle Engıne Sizing Suudy	$\mathrm{I}-\mathrm{Cl2}$
－	Mass Dustribution and Englne Size Optimization	I－Cl4
こう	Booster Sizing Stuay ．	I－C15
Cos	Payload Contours Stage Mass Distribution and Engine＂Size Parameters	I－CI6
3	Data Base Configuration arter In土tialization	I－C22
03	Data Base Configuration after SSSP	I－C23
－y	Data Base Configuration after DAPCA（Booster）	I－ C 24
$0=0$	Data Base Configuration after DAPCA（Orbiter）	I－C25
INAL PAGE IS		
POOR QUALITY		

Figure
Cll Data Base Configuration after AESOP
Page
I-C26

# APPENDIX I <br> AN INTRODUCTION TO ODINEX: A DESIGN. INTEGRATION AND ANALYSIS LANGUAGE WITH OPEN-ENDED GROWIH CAPABILITY 

## 1. SUMMARY

A progrom community concept called ODIN has been implemented on the CDC 6600 computer which features
a. Mul亡iple computer program execution
b. Mutual data communication among programs

The concept, shown schematically in Figure 1 , allows interdepencent design programs to be sequentially executed in a single job stream while maintaining andividual program identity. Communication between programs is tirough a cynemically constructed design data base. Any subset of the total input or output from the individual programs may be communicated to tiae data base or from the data base to any of the other programs in the communty.

ODINEX is the control and communication executive computer program whicin implements a community of progroms concept; Figure $l$ shows the relaulonship between ODINEX and the ODIN library of independent technologr mocules. ODINEX draws on the ODIN community for design-elements and controls the computational sequence involved in synthesizing and optimizing a ǧven vehıcle design. All interdisciplinary data is stored in the design cata base of engineering information. Any design element may access and modify the data base through the ODINEX executive.


Figure 1. Schematic of the ODIN Concept

As a result of the development of lODINEX, any program can be included in the ODIN community onee its interface requirements are established. The program intercommunication techniques consist of

1. A language for controlling the execution of an arbltrary network of independent programs by simple commands, as shown in Figure 2.
2. A control card data base for storing information with regard to the execution of individual programs. These data base files can be updated either by a separate run or dynamically in the simulation.
3. A dynamically constructed data base containing all interprogram data. These data can be saved at user-selected points in the simulation. The data base size can be adjusted by the user.
4. A language for automatically retrieving data base information as input to any program in the synthesis. An advanced information access and retrieval system was developed and included as an integral part of ODINEX. The language requires no modification to the ODIN program.
5. A simple technique for allowing any program in the syathesis to update the data base. The technique does not influence the normal stand-alone operation of the program.
6. A user-oriented method for generating reduced slze/reauced scope modules from the parent programs.
7. A capability for generating one or more stylized reports as a part of the normal computer output.

CONTROL LOGIC


PROGRAM FLOW


Figure 2. ODIN Control Logic

## 8. The operational flexibility of batch or interactive modes of operation.

All elements of the program intercommuncation system are directly controlled by the independent executive program ODINEX. Significant advantages of this technique over a single design synthesis program are listed below.

1. Rapid response to ever changing design requirements. The user has the choice of design synthesis model complexity through replacement of independent functional modules or enrichment by inclusion of new or additional functional modules.
2. The data base reflectis the status of the current design. Individual programs such as aerodynamics, structures, or graphics, can be exercised by using data base information without need for execution of other functional modules.
3. The developer of new technological modules is unconstrained in the requirements of the synthesis. New computer programs are immediately avarlable for inclusion in the community of programs.
4. The elapsed time for design analysis is significantly reduced by performing the bulk of the information transfer in the computer. An improvement in data quality results from more accurate transfer of information.
5. The contributors to the design process place greater confidence in the results due to the use of proven independent technological modules.

## 2. INTRODUCTION

The design of an aerospace vehicle demands the involvement of specialists from all engineering disciplines. Many design iterations are usually required. Each discipline generally is constrained by the requirements of other disciplines, and much laborious data communication is required at each step. Automation of the individual dusciplines has played a key role in the design process for more than a decade. Structural analysis and system performance have led the way in computer applications. Nore recent attempts at merging the technologies into a single preliminary design tool are exemplified by Reference l. Here, a complete synthesis of the design and mission analysis is contained in a single computer program.

Concurrent with the development of integrated design computer programs were efforts at optimization of the designs themselves. A modular approach to optimization is reported in Reference 2. This approach was employed when the programs of Reference 1 and Reference 2 were coupled. The results reported in Reference 3 indicate that optimization of the design process is possible; in a mathematical sense it represents a much simpler optimization problem than many single discipline problems.

The conflidence gained in early slmulation attempts has led to the development of more detailed and complex modules. References 4 through 6 are examples of advanced simulation programs. However, most modern day programs tend to suffer from one or more of the following discrepancies:

1. Lack of depth in anaiysis
2. Insufficient data intercommunicatıon
3. Poor response to rapidly changing requirements

The practıcal value of a simulation technique is measured by hts useful life. That is, it shouid be open ended from the point of view of additions, deletions, substitutions, and improvements in engineering capabilıty.' The tecrrifques sinuld impose no constraints on development in new technology areas. Ore"recent development reported in Refexence 7 adaressed these lif f. ifucirfor
problems by retaining the functional identity of individual technologies but demanded a special'input-output format supplied by the executive. The ODIN concept implemented by the ODINEX' is an effort to overcome mast of the shortcomings inherent in its predecessors.

## 3. GENERAL DESCRIPTION OF ODINEX

An independent executive computer program called ODINEX has been developed for linking separately developed computer programs in an arbitrary network, the objective being to study complex engineering systems whose elements are represented by other computer programs. Any subset of the incoming or outgoing data of a member program may be communicated to the other members through ODINEX. The objective of the development is to implement the Optimal Design INTegration concept, ODIN.

### 3.1 ODIN Concept

The ODIN concept allows a comminity of interdependent design, mission and sizing programs to be sequentially executed in an arbitrary network while maintaining full individual program identity. Communication ${ }^{-}$ between programs is maintainea through a dynamically constructed design data base. Any subset of the total input or output from the individual programs may de communicated to the data base, and any subset of data may be cormunicated to any of the otner programs in the community. The Zanguage for controlling the execution of computer programs and the flow of engineering information is contained in the ODINEX executive computer program.

### 3.2 ODINEX Executive

The ODINEX functions are shown schematically in Figure 3. It preprocesses the program control durectives resulting in the creation or upataing of a control file. This file establishes the network oir computer program executions which will perform the intended design activity. As the computer processes the control file, ODINEX is repeatedly executed after each design program. At each successive execution ODINEX extracts selecțe information from the design program output and installs or updates the information in the data base. Additionally; ODINEX interrogates the icput surecm of the succeeding design program and merges data base information with it. In practice, the odiNEX program is essentially transparent


Figure 3. ODINEX Executive Functions
to the user, appearing only as an input language which áugments the input of existing design programs.

The design activities can include the performance of design integration function, creation of reduced size modules and special purpose programs, and data handling functions. Provisions have been made for stylized report generation including graphical data. The use of interactive graphics can be tied to any or all the design activities at the user's option.

The objective in the development of ODINEX was to provide a technique which would permit the simulation of the design process in an open-ended manner. Modules of varying complexity from all disciplines can be selected to suit the level of detail involved. Free flow of information from one module to the other is provided in a hands-off manner; yet manual overridecapability is provided at appropriate points.

The objectives of earlier developments are not entirely dissimilar, but the efforts to achieve these objectives have been directed toward a sirgle computer program containing all necessary modules and subroutines with a main executive program. The result is a software system which strains the core capacity of even the largest computers. They have relied heavily on the overlay feature available on most machines to solve the core limit problem. The overlay technique involves splitting the analysis into several separately executed links with a block of core reserved in the root for resident data required by two or more of the subordinate links. Tne resident data contains the engineering information referenced by location. As the complexity of the program increases, the resident đaĩ requirements limit the size of the links; the number of links increases until a point is reached where the overhead expense (peripheral processing cost) of overlay seriously detracts from the usefulness of the program. The resultant program is closed-ended; deletion and replacement of functional modules is difficult since there is an inevitable waste of core due, 't.

The ODIN concept essentially replaces the overlay structured program with a sequence of independently executed programs which perform the same functions. Instead of drawing on and replacing the resident data in, the root link, each program simply reads and writes data in the normal manner; i.e., card, tape, or disk. ODINEX is designed essentially to perform the root tink function in a,separate program execution. It extracts information and merges data base information with the input stream of other programs. Since the data base is dynamically constructed, it need only contain that Information of interest to the present simulation. The result is a concept that allows an indefinite number of program modules representing the design activity yet the core requirement is no larger than the largest module in the simulation.

The success of ODINEX is largely attributable to two ancillary developments, RANDAC and CCIINK. RANDAC is a Rapia and Accurate Name-Oriented Directory Access Code, described in Reference 8, which forms the basis for tie data base construction and intercommuncation capabılity'. Appendix A proviaes a description of the data jase construction and access techniques. CCIMK is a Control Card LTinage program which provides the multiple program execution capaijility on the GDC 6000 semes computers. This program is described in Appendix B. ODINEX combines the capabilities of RANDAC and CCIINK to form a unified approach to vehicle design synthesis.

### 3.3 Controi Card Data Base

ODINEX contains FORTRAN-Iike branchang logic for controlling the flow 0 : computer programs through the machine. It performs this function in the environment of a control card data base, assembling a sequence of mainlne instructions based on simple user commands. Each data base entry is a suioset of machine instructions for periormang some task such as execution of a computer program, saving some data or compiling some source coūe. The oranching capabllity permits conditional transfer to alternate seguences of program executions. Sizing and optimization loops are easily constructed using the ODINEX language.

### 3.4 Design Data Base

:ODINEX dynamically maintains a data base of engineering information from user supplied information as well as information from the community of ODIN programs. It is executed at the beginning of the sequence of design programs to initialize the data base then is executed repeatedry after each design program, as shown in Figure 4. At each successive execution ODINEX extracts selected information from the design program output and installs or updates the information in the data base. Additionally, ODINEX interrogates the input stream of the succeeding design program and merges data base information with it. In practice, the ODINEX program is essentially transparent to the user, appearing only as an input longuage which augments the input of existing design programs.

### 3.5 Information Storage and Retrieval

ODINEX contains an advanced computer code for storing and retrieving informaition by name. The primary objective of this method, called indirect access, is to reduce computer time required to locate information. In a directory of $n$ items, the commonly used method of linear probing techniques requires an average of $n / 2$ probes to locate a given item of information. The average number of probes required to locate an item in the äirectory is independent of directory size. This number is usually less than two and typically approaches one.

### 3.6 Units Conversion and Scaling

The ODINEX language contains a $\operatorname{FORTRAN-like~scaling~capability~for~}$ the convenience of the user. Any variable residing in the data base may be altered by any combination of arıthmetic operations before being passed to the user program. Alternately, the scaled variable may be restored in the data base. The operations may be addition, subtraction, multiplication, $\dot{\dot{c}} i r_{2} s i o r, c^{m}$ exponentiation. The operands may be constants or data base variables. In special cases, entire arrays may be scaled by a single staiement.

Ferurr 4 . ODIN/ODINEX FUNCIIONS


### 3.7 Report Generation

The ${ }^{i}$ ODINEX program contains a built-in report generation capability which permits the user to format stylized reports based on data base. information. Reports may be requested at any point in the simulation and may be merged with independently generated graphical output data.

## 4. THE ODINEX LANGUAGE

The ODINEX language consists of communication commands and control directives as shown schematically in Figure 5. It is designed to augment the normal input stream of the ODIN programs. As such, all information intended for interpretation by ODINEX must be delimited. Communication commands are generally imbedded in the ODIN program data. They control the flow of information from the design data base to the ODIN program modules. As such, they form the common information link among the ODIN community of programs. It will be shown that a special output file from each ODIN program is itself a communication command to ODINEX. It passes information from the ODIN program to the design data base. The special output file does not affect the normal operation of the ODIN program.

The control directives define the flow of ODIN program modules through the computer. The control directives pertaining to the individual programs generally precede the data for the program. A set of eight control directives have been coded which provide user oriented control and minimize the amount of usual control information required to execute an ODIN simulation. In the ODIN communty of programs, the user at Langley Research Center will need the following control cards to launch a simulation:

```
JOB,--.-.--
USER.-----
FEPCH(A3682,SPR__,BOTH,ODINRLV,CCDATA)
CCLINK(ODINRLV)
78
```

Fre execution of these control cards results in fetching and linking to tne ODIN system. AIl other ODIN module control will be defined by control directives, and all intercommuncation will be defined by communication commands.

ORIGINAL PAGE IS
OF POOR QUALITY

I- 15


Figure 5. The ODINEX Schematic

### 4.1 Control Directives

The control dipectives are a set of simple commands summarized in Figure 6. They are used to establish the network of programs which will be executed in the design simulation. They are placed sequentially prior to the data (if any) associated with the directive. Associated data is always followed by an end of record. Each record may be augmented by other durectives but must precede the directive which has data associated with It. Figure 7 is an example of a set of control directives representing the simulation of a space shuttle preliminary design cost optimization. In the example, a fresh copy of DBASE is specified, and control cards are temporarily updated. The input format follows the communication rules defined in Section 4.2 .

The nexu command initialazes the AESOP data base required outside the AESOP 20Op. DESIGN POTNTl iadentifies the beginning of the AESOP loop. The next four sets of data are straightforward EXECUTE instructions followed Dy tine appropriate data files. The LOOP durective specifies a branch to POINSI, specified earlier in the sequence.

The IF airective is a conaition on the LOOP airective; JJJ must be a cata base name. EXECUPS REPORT is a special ODINEX command which permits tine user to stylize a report in his own format. This report may include anformation as recuired from the data base. This is discussed in detall In Section 4.3. The 'ExD--- statement must be the last instruction in the similation.

In shmary, the user defines a sequence of EXECUPE directives for the ヘニIN proorams by name. Following each EXPCUTE directive ls the data for the proñam to be executea. Design loops may be defined by the DESIGN and LOOP Grrectives. The DESIGN directive defines a unlque point in the sequence where control may be reuumed. The LOOP directive may be conditional upon sđulsiying any numoer of If directuves.

The mital directive provides a fresh copy of the named file, for examgie,
'IMITAL DBASE'

$$
\text { I- } 17
$$



Figure 6. Control Directıves
'INITAL DBASE'
Data Base Inztıaljzation Data
789. . . . . . . . . . . . . . . . . . . . . . . End of Record
'UPDATE CCARDS'
Updates to Control. Card Data Base
789
End of Record
'INITAL AESOR'
'DESIGN POINTI'
'EXECUTE SSSP'
\{Data for SSSP
789. . . . . . . . . . . . . . . . . . . . . . End of Recorà
${ }^{1} \mathrm{BXECUT}$ DAPCA
(Data for DAPCA

${ }^{1}$ IXICUIE ADSOP
\{Data for ASSOP

'LOOP TO POTNTL'
1 Iア JJJ.IT.15'
'EXECJIE REPORI
〔Data for REPORT
789.............................End of Recorà.
' $\operatorname{END}$ ODIN'


Figure 7. ODIN/RLV Control Directives
blanks all information in the design data base and prepares to accept newly definned entries with the information which follows. The UPDATE directory loads the current file and prepares to accept updates. .

The END directive signifies the end of the input and the end of the simulation. This directive (must be present) is used to terminate reading of input and also to normally terminate execution of the simulation.

### 4.2 Communication Cormands

The communication commonds provide a means of dynamically maintaining a data base of englneering information pertaining to the design being simulated. They control all exchange of information within the program community. These commands can be freely interspersed within the ODIN program data. Tney are generally used for identifying, adding, modifying, scaling, and printing data base information, retrieving and replacing scaied information from the design data base for use by the ODIN programs in the ssmulation, anc identifying and printing ODIN program module input ãata.

Ine communication commands consist of three types: the replacement commanä in whlcin data base names placed on an input card are replaced with data base information, the action commonds whicn cause the alteration or mampulatior of data base variables, and the logic commands which alter the fiow ồ information in ODINEX.
4.2.I Feolacement command. Among the ODINEX functions is a passive replacemerit command which augments the normal input of any ODIM program rocune. The input stream of the individuai programs are read by ODINEX, and tire communacation commanas are interpreted. Based on the instructions ercourtere $\hat{A}, ~ O D I N E X$ builds, a modified anput stream which is acceptable to: Une ODİ program module and contans the desired data base information. Ire GDII: module is then executed in the normal batch mode with its normal =r.pü iormat anc is totally unaware that it forms an element of a design simulation.


#### Abstract

4.2.1.1 Simple replacement. The replacement commends consist of simple element replacement and array transfer. For element replacement, the user places the name of the desired data base varlable on the input data card enclosed with ODINEX delimiters; the delimiters define the field to be used. For example, suppose the normal card input were a series of six numbers in fields of ten columns each


1. 
2. 
3. 
4. 
5. 
6. 

If the user desired that the fifth number be taken from the data base and if the data base name were BErA, the card would read
1.
2. 3 .
4.
'BETA '
6.

ODINEX woula isclate the word BETA by identıfying the delimiters, '; locate the name BETA in the data base directory; retrieve the value associated with BiPA, and replace the name and delimiters by the most significant pari of the data base value within the field defined by the delimiters. There musu be no imbedded blonks beuween the first delimiter and the data base name. In the case of an integer, the number would be might adjusted In tinat field. Aach time the program is executed, the user program woula receive the current data base vaiue of BETA. Logical varlables, .TRUE. and . PAiSE, and hollerith information are also permitted. Further, an element oi an array such as $\mathrm{A}(3)$ may also be usea in the replacement function.
4.2.7.2 Replacement with scaling. In adaition to simple replacement, DIALOG hes tine capaiollity of scalıng data base values before replacement. Suppose tine previous example requared that BETA be scaled by a factor of two, then the input card would read
1.
2.
3.
4.
'BETA*2.' 6.

The scalins law in ODINEX conforms to simple arithmetic operations such as ac̄ciition, subtraction, multiplıcatıon, division, and exponentiation performed in a sequential monner. Miced mode arithmetic is not allowed.

A thorough knowledge of the arithmetic structure of data base information is expected of the user. The factors used for scaling can be constants or other data base variable names, i.e.,

## 'BETA+GAMMA'

and up vo ten operations can be performed before replacement. The rules for using communication commands are set forth in Figure 8. Each operation applies to the result of all previous operations. In the expression

## $.{ }^{\prime} A+B^{*} C+D^{\prime}$

$B$ is added to $A$, the result muluiplied by $C$, and that result added to $D$.
4.2.1.3 Array replacement. In addition to simple replacement, ODINEX nas the capability of transferring entire arrays from the data base to the user's inpui stream. This command is limited to namelist or other suitable free fielć input packages. Its usage is identical with simple replacement. The user places the data base array name in the input stream enclosed by ODINEX dei̇miters. ODINEX identifies the array and places all vaiues from the aata base into the input stream adding card records as required to perform this function.

The scaling rules of Figure 8 apply to array transfer as well as simple rep-acement. In the expression $A * B$ where $A$ is an array and where $B$ is a scaiar, each element ô̂ $A$ is multiplıed by the scalar $B$ before replacement. $\overline{-1} L$ and $B$ were arrays, the arrays would be multiplied together element by element until the array wath the least elements were exhausted; i.e., the resuitant array is limited to the lengith of the smallest array in the expression.
4.2.2 Action Commands. Action commands consist of five types ADD, DE゙』RE DEFINE, INITAL, ana . (comment). They permit the addition, deletion, céż̇nlizon, initíalization of data base information, and comments pertaining =o user $\dot{\mathrm{c}} \mathrm{a}^{\perp} \mathrm{Z}$ : they are itemizeā in Figure 9. In general, these commands are placed in the data stream with suitable delimiters. They are interpreted and executed by ODINEX, but not seen by the ODIN modules. All five commands

$$
\text { I- } 22
$$

1. Subscrìpts arc enclosed $j n$ parentheses.
2. Operators are applied to overythang which appears before the operator; i.e., $A=B+C \times D$ means ( $A+B$ ) $M$.
3. First word beyond equal $(\Rightarrow)$ musl be a name.
4. Card must end with a comma or data base delimıler; i.e., new card must start a new dialog.
5. Operations cannot exceed 20 characters not counting blank.
6. Mixed mode arithmetic is not permitted in scaling operations. Results from breaking this rule are ungredictable.
7. In simple replacement, first word beyond delamitor must be a data base name; '-A' is not allówed.
8. No imbedded blanks are allowed between first delimiter and the data base name.
9. ADD comnand allows initiallzation of integer or real scalars to any value or any expression as long as modes of tariables in the expression are not mixed; i.e., $A=4^{*} .5$ will yield 4 values equal to .5 ; $A=4 . * .5$ will waeld $A$ equal to $2 . ; A=4^{*} .5$ will yield 4 values equal to 0.
10. ADD command for array initcalization accepts only two forms:

$$
\begin{array}{ll}
\text { 1. } A=4 * 5 . & \text { yields } 4 \text { values of } 5 \\
\text { 2. } A=.5, .5, .5, .5 &
\end{array}
$$



Figure 8. Rules for Using Communication Commands


Figure 9. Action Commands
permit the same general format; a single command opens the way to any number of actions of the same type separated by commas.

## 'COMMAND action,action,action'

### 4.2.2.1 ADD command. The ADD command has the following format: <br> ' $\mathrm{ADD} \mathrm{A}=\mathrm{B}^{\prime}$

where $A$ is a new or existing data base variable. $B$ can be real, integer, logical hollerith, or another data base name. B can also be a combination of data base names and numbers such as C*D or C*12. or I*2+J. However, combinations cannot start with a number since $A=12 * B$ would imply that $A$ is an array of 12 values all equal to $B$. This array initialization ( $A=n * X$ ) is not considered mixed mode arithmetic and is interpreted correctly. Similar acceptable forms of the ADD command are

1. ' $\mathrm{ADD} \mathrm{A}=\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}^{\prime}$	A is an array of four elements whose values are the values of the data base variables $B, C, D, \mathbb{E}$, If they exist. If they do not exist in the data base, $B, C, D$, or $E$ are stored as elements of $A$.
2. ' $\mathrm{ADD} \mathrm{A}=\mathrm{B}, \mathrm{C}=\mathrm{D}$ '	A is a scalar or the first element of an existing array whose value will be the value of the data base B. C is a scalar or the first element of an array whose value will be the value of the data base variable $D$. In general, more than one variable may be added or modified with a single command. Continuation cards may be used.
3. ' $A D D A=B^{*} C, D^{*} E^{\prime}$	A is a two-element array whose elements are the combination, $B^{*} C$ and the combination $D^{*} E$. In general, all the scaling rules of Figure 8 apply to each element of an array.

4. ' $\mathrm{ADD} \mathrm{A}=12 * 5$. ' $^{\prime}$
$A$ is an array of twelve elements which will
be loaded with 5.0 . In general, this is
the only combination which permits a leading
number. All other combinations must have
leading names. For example, $A=-B$ or
$A=-1^{*} B$ would not be acceptable. The user
would have to use $A=B^{*}-l$.


#### Abstract

4.2.2.2 The DELETE command. The DEIETE command has the following format:


'DELeTE A'
$A$ is the name of a data base variable. This command deletes the name from the data base directory but does not delete the space allocated in the data base. Multiple variables may be deleted as follows:
'DELETE A,B,C,'
until a second delimiter is encountered.
4.2.2.3 The DEFINE command. This command is used for defining data base variables. The definitions are stored in the data base directory and are recalled when the data base information is recalled. The format of the DEFINE command is
'DEFINE A=n, FIRST LETTER'
where $A$ is the name of a new or existing variable, and $n$ is the number of elements if $A$ is a new array. It is ignored if $A$ is'an existing data base entry. If omitted, $n$ defaults to 1 . The information following the comma .. is a string of hollerith information. defining the data base variable $A$.
4.2.2.4 special ADD-like commands. The TNIT command is used to initialize the data base with information needed by the ODIN simulation
but not already existing in the data base. The format and rules are all the same as for the ADD comnand
${ }^{\prime}$ INIT $A=B$ '

In reality the word INIT is optional; any word up to ten characters may be used. All commands are stored in the data base directory as the first word of the description. This scheme is used to identify the origin of every piece of information in the data base. The output from every ODIN module is a special namelist file. ODINEX treats the namelist name as an ADD-like command based on the value of BUILD (see Section 4.2.3). The information added from this file is assigned the namelist name as part of the description. The namelist name can and should be descriptive of the originating module. In this manner, the user can easily identify the origin of a particular piece of data base information. Figure 20 is a snopshot of the data base during a sample simulation identifying the names, locations, lengths, values, origins, and descriptions of all entries in the data base.
4.2.2.5 The . (comment) command. This command is used to laentify user data. It represents information which will not be seen by the ODIN program nor passed to the-data base. ODINEX interprets it as a meanlngless data and simply replaces the information with blanks. The format for the command is

## '. THIS IS A COMMENT'

The comment is enclosed with data base delimiters. The (.) signifies the information which follows (including the command and delimiters) is to be lgnored, that is, replaced by blanks. The comment may be used on a data card or on a separate card. If a separate card is used, the entire card is ignored.
4.2.3 Logze Commends. Logic commands control the flow of information within the ODINEX program. They are in the form of data base entries or keywords which are interrogated at each pass through ODINEX. Depending on


FIGURE 10. OUTPUT FROM LOGICAL COMMAND 'DBDUMP'
its presence and/or its value, ODINEX performs some special function. The following keywords currently have significance in the DIALOG program.

1. BUIID=n Keyword providing disposition of previously undefined names in the special ODIN module output files. $\mathrm{n}=0$, Ignore undefined names $\mathrm{n}=1$, Add undefined names and values to data base
2. CRDSKP=n Controls the number'of cards or records to be skipped before looking for more data base information. This keyword facilitates a reduction in processing time for the ODIN module input data; always reset to zero.
3. DBDUMP Keyword providing for the printing of all names, values, origin, and definitions in the data base. Figure A3 is an example of this report.
4. ELTIME Prints the elapsed time after each ODIN module.
5. INDUMP Keyword providing for printing the modified input for the next ODIN module, just as the ODIN module will see it.
6. OUTDMP Keyword providing for printing the special output file from ODIN program modules. It contains the candidate information for the ODIN data base.
7. RUNID Hollerith identification given to the simulation.

### 4.3 Report Generation and Graphics

One of the primary functions of a good design-simulation is the communication of input and output information/to the design staff. Each member is interested in a specific subset of information and generally does not want to be burdened with unneeded data. Providing just the right
amount of data would seem an extremely difficult task for a simulation with the flexibility of the ODIN system. However, the unique feature of the ODINEX executive which permits the user to manipulate design programs at the input/output level also provides the basic capability required for automatic report generation.
4.3.1 Stylized reports. Puring the initial phase of coordinating the simulation requirements the design specialists staff selects subsets of the data base information to be communicated to each staff member for analysis. The format of the individual reports are tailored to the needs of the individuals receiving the information. Once the format is established, it is keypunched on data cards with data base information being identified by name in the manner described in Section 4.2.2. These data cards become a report file which can be fed to the ODINEX executive at any point in the simulation. The report is generated by the control direc- tive 'EXECUTE REPORT'. ODINEX interrogates the report file for data base names and replaces the name and delimiters with the appropriate data base information. The file is then printed resulting in a summary report on the current status of the design. Later modifications to the format are as simple as changing a data card.

A manl-report exemplifying this technique is shown in Figure 11. Many of the features of the ODINEX language including scaling and adding data base information are being used in a completely free field report format. The first column of each card is reserved for printer carriage control providing a convenient means of paging and spacing for report clarity. Figure 11 also shows the printed results of the report file as augmented by data base information.
4.3.2 Graphics. ODINEX contains no graphics within the program. Instead, two independent plot. programs, References 9 and 10, have been provided which can plot input information, information from the data dase, or information from special binary files. These programs have several plot levice options. There is a quick look printer plot which provides low resolution plotted information from the on-line printer. Figure 12 exemplifies the quality of information from this option.


Figure 11. Example Input and Output for-Report

ORY TURBOFAN ENGINE B=2. T3 $=3000$


Figure 12. Example Output from Printer Plot Option

A report quality CALCOMP plot may be generated and plotted off-line. This option permits scales and annotation on the graph. Figure 13 exemplifies this type of chart from the CALCOMP option.

The program may be used in an interactive mode on the CDC 250 display console. Plots which are generated and displayed can be scaled and regenerated to suit the user requirements. Hard copy may be obtained directly from the console. Figure 14 is an example output from the CDC 250 hard copy option.

Figure 13. Example Output from CAl.COMP Plot Option



Figure 14. Example of CDC 250 Hard Copy Option

## 5. ODINEX USAGE EXAMPLES

The ODIN simulation concept requires only five control cards to initiate regardless of the type of synthesis to be performed.

```
JOB-i_--
USER----
FETCH(A3682 ,SPR---,BOTH,ODINRLV ,CCDATA)
CCLINK(ODINRLV)
789 end of record
```

All program control is handled through the ODINEX control directives. All àata intercommunication is handled through ODINEX commanication commands. These ODINEX functions are discussed in Section 4.

Five sample cases using the ODINEX executive are discussed below.
-. A sample optimization problem involving the use of SSSP, DAPCA, ani $A \Xi S O P$. Two parameters, engine thrust and booster mass ratio, were seiected as the performance criteria. Figure 15 shows the ODINEX control airectives and flow diagram for this example. Results of this study are aiscussed in Appendix C.
2. An example of construction and storage of a control card data bese using ODINEX is shown in Figure 16. This setup is equally applicable to cosstruction and storage of a design data base. In the latter case mitialization data would be included for 'INITAL DBASE.'
3. A coupling of the ENCYCL and PLOTHR program, Figure 17, demonstrates the aijility to generate engine cycle analysis data and to plot the essential Enformation with no special programming provisions. PLOTTR is equally useful for obtaining plotted information from any analysis program.
4. The use of FORTRAN language to augment the existing synthesis capaibilities of the ODIN program community is accomplished by a user written FORTRAN program (it could be any language) which can be compiled and


Figure 15. A Sample Optanization Using ODIN


Figure 16. Example of Construction and Storage of Control Card Data Base


Figure 17. Graphical Presentation of Data from Any Analysis Program
executed during an ODIN simulation. Figure 18 shows the procedure in isolation. Note that the FORTRAN program itself can draw on data base information for array dimensions and data.
5. A coupling of the VAMP and HABACP computer programs to demonstrate the ability of ODINEX to handle geometry perturbations in a compatible manner for differing geometry input schemes. Figure 19 shows the geometry perturbations for VAMP. The exact same perturbations were made for HABACP although the panels are defined differently.

Both batch and on-line graphics capability are automatically available with ODIN due to the flexible coupling of independent programs through the ODINEX executive. The ODIN concept permnts any analysis program which has on-iine or batch graphics capability to be used in an ODIN simulation, for exampie, the HABACP program, the VAMP program, etc. Furthermore, two independent plot programs, IMAGE and PLOTTR, were developed specifically for ODIN batch and on-line graphics. The image program displays vehicle configuration 'pictures.' PLOTTR displays analysis-type plotted information. Each display may be manipulated with regard to location and magnification on the CRT. 'This is accomplished through a Langley Research Center-developed soffiware system available with any CDC 250 graphics program.

Finaily, the independent EDIT program developed at Langley permits the on-line edıting of any file of information avallable to the current job. This is particularly useful to the ODIN concept since multiple programs are being executed. The input, output, and program control files can be edited in an in-line manner or under abnormal termination conditions.

Batch and on-line graphics application for the same problem is shown in Figure 20 . Here, the basic analysis modules are augmented by the graphics capabilities of EDIT, PLOTTR, and IMAGE. The efficient use of the interactive mode depends on the use of the standard CDC utility, RFL. Typical core requirements are indicated in Figure 20. Although the maximum field length for the job is 140,000 octal, the majority of central processing


Figure 18. Use of FORTRAN Language to Augment Analysis


Figure 19. Geometry Perturbation for the 040A Orbiter


Figure 20 Comparison of Batch and Interactive Modes
time will be spent in the EDIT, PLOTTR, and IMAGE programs. These typically require less than 30,000 . The RFL utility permits adjustment of field length to accomodate the program currently in core.

## 6. REFERENCES , APPENDIX I

1. Gregory, T.J., Petersen, R.H., and Wyss, J.A.: "Performance Trade-Offs and Research Problems for Hypersonic Transports." Journal of Aircraft, July-August 1965.
2. Hague, D.S. and Glatt, C.R.: An Introduction to Multivariable Search Techniques for Parameter Optimization. NASA CR-T3200, April 1968.
3. Hague, D. S. and Glatt, C.R.: Application of Multivariable Search Techniques to the Optimal Design of a Hypersonic Cruise Vehicle. NASA CR-73202, April 1968.
4. Lee, V. A., Ball, H.G., Wadsworth, E.A., Moran, W.J. anci McIeod, J.D.: "Computerized Aircraft Synthesis". Joumal of Aircraft, Volume 4, Number 5, September-October 1967, Pages 402-408.
5. Herbst, W.B. and Ross, H.: Application of Computer-Aided Design Programs for the Management of Fighter Development Projects. Presented at the AIAA Fighter Aircraft Conference, St. Louis, Missouri, March 5-7,1970, AIAA Paper No. 70-364.
6. Wennagel, G.J., Mason, P.W., and Rosenbaum, J.D.: Ideas, Integrated Design and Analysis System. SAE Paper 68-0728, presented to SAE Aeronautics and Space Engineering Manufacturing Meeting, Los Angeies, Callformia, October 1968.
7. Gold, R. and Ross, S.: Automated Massion Analysis Using a Parametric Sensitivity Executive Program. AAS Paper No. 68-146, presented at AAS/AIAA Astrodynamics Specialist Conference, Jackson, Wyoming, September 3-5, 1968.
8. Glatt, C. R. and Watson, D. A.: RANDAC: A Rapid and Accurate NameOriented Directory Access Code. Aerophysics Research Corporation, Technical Note TN-134, January 1972.
9. Glatt, C. R. and Jones, R. T.: A Program for Generating Plotted Information from Digital Data. Aerophysics Research Corporation Technical Note TN-142, Februery 1972.
10. Glatt, C. R.: A Program for Generating Vehicle Geometry Pictures in Arbitrary Image Planes. Aerophysics Research Corporation Technical Note TN-143, February 1972.

## APPENDIX I-A

DATA BASE CONSTRUCTION

The data base consists of a free storage array where desired information is stored and a directory of unique name-oriented identifiers for the stored information. The directory acts as a table of contents and identifies the location of the data and the number of elements that reside in the free storage array. A brief description of the variable can also be stored in the directory. An advanced keyword access technique called RANDAC (Reliable and Accurate NameOriented Directory Access Code) has been developed for storing and accessing data in the data base through the use of the name-oriented directory. Approximately 10,000 variables per second can be located using this technique. ODINEX makes extensive use of RANDAC for communucating information to and from the data base.

## 1. DATA BASE-SIZE

The ODINEX program has been written such that both the design data base and the data base directory can be varied in length. Further, the data base durectory can be expanded to provide more definitive information. The nominal size of the design data base is 300 elements. This can be expanded to the limits of the computer or approximately 50,000 elements (on the CDC 6600) with the alteration of a single dimension in the ODINEX main program. In addition, more than one data base may be defined for any one simulation.

The nominal size of the data base directory is 70 entries including' four words of definitive information. Both the number of entries and the length of the definition can be expanded or contracted as simply as the design data base discussed above.

## 2. DESCRIPTION OF INDIRECT ACCESS METHOD

Indirect access techniques like RANDAC employ similar algorithms. Items ane entered into a directory using a pointer, or probe, which is computed from the name of the item by means of soine hash coding scheme. As long as no two inserted items have the same hash code, retrieval of the information can be performed in a single step regardless of the size of the directory.

However, when two items have the same hash code, a collision is said to exist. If a collision is encountered upon entering an item, an alternate directory location must be defined. This is accomplished by chaining the collision location to the alternate location in the directory. Upon retrieval of the colliding item, the collision must be resolved by following the chain until the item is found.

### 2.1 Hash Coding the Key

Every character used by the computer has a unique numerical representation. Combinations of characters which form words also display uniqueness characteristics. For example, the word GPAK does not have the same numerical representation as FPAK. This uniqueness characteristic is used by RANDAC in assigning a value to the directory probe, a candidate entry location in the directory.

If the directory were very large (say $2^{k}-1$, where $k$ is the computer wora length) then hash coding would not be necessary. The unique numerical representation would be used as the probe. For smaller directories, the minimum requirement for hash coding is to modify the numerical representation of the key with the length of the directory. This provides a probe value which is within the limits of the directory but may not point to a unique location in the directory.

The objective of hash coding is to spread the calculated. addresses uniformly over the available directory locations thereby reducing the number of collisions which may occur.

These methods are broadly subdivided into logical and arithmetic. Irogical methods seek to eliminate adverse characteristics, such as imbedded , blanks, which tend to group items with dominant numerical characteristics. Arithmetic methods seek to alter the numerical representation into a more unique form by performing some arithmetic operation on it.

The hash coding technique used in RANDAC pexforms no logical or arithmetic operation on the key. It has been shown in tests of many directories that operations performed on the key are a greater penalty in time than the resolution of the collisions hash coding seeks to avoid. The number of colllsions typically runs from 10 to 20 per cent for uncoded keys. This means that more than 80 per cent of the variables can be accessed with a single operation. If hash coding is used beyond the normal MOD function, 100 per cent of the variables require more than one operation. Further, there is no guarantee that the coded key will significantly reduce the collisions.

### 2.2 Resolving Collisions

After the initial entry has been made into a directory, the possibility exists for the computed addresses of new keys to duplicate existing entries causing a collision between the storage locations allocated to each. Alternate locations must be established for colliding entries. In general, when the table is nearly full, many collisions may occur while probing the table for an empty slot. Hence, some procedure is needed which generates additional calculated addresses until an empty slot is found, probing the entire table if necessary. Of course, the same procedure for generating additional calculated addresses must be used when the item is looked up later.

In practice, when the RANDAC routine is initially called, it is not necessary to specify whether an Item is being entered or being looked up. What is required of the routine is to determine the address at which the offered key belongs and to report whether the key was already entered. Then the calling routine can make the entry or extract the information, as
appropriate. The procedure then will be to generate successive hash addresses until encountering either the location that contains the deaired key or unused location. In the latter case the key can be entered in the unused Iocation.

### 2.3 Storage and. Retrieval Method

The RANDAC method of storage and retrieval involves a directory entry of four basic elements:

KEY
A unique literal representation which identifies the information being stored. It may be one or more words which are hash coded into an address called a probe.

VALUE One or more words of information associated with the KEY

HASH TABLE Table of directory entry locations addressed by the probe. This table is appended to and the same length as the directory.

COLLISION TABIE Table of alternate directory locations which chain directory entries with the same hash address or probe.

These four elements form the width of the directory which can be variable depending upon how many words are used for the KEY and VALUE. Figure AI shows a schematic of the directory layout. The length of the directory is also specified by the user.

When a FIND operation is requested, the key is converted into a hash address, KPROBE.

1. If the hash table at that address is empty, the logncal variable FOUND is returned as .FALSE. The user then has the option of installing a new direcurry entry with an INSTAL operation. In this case, the directory entry is made at the next available location, KFREE. That location is loaded


大⿹THOO YOOX HO
SI GDVd TVNOIYO
Figure Al. Composition of the Directory, FSL
in the hash table at the probe address, and the next available location, KFREE, is bumped by one entry.
2. If the hash table at the probe address is occupied, the directory entry associated with the hash table entry is compared with the key.

2a. If the key compares, then the logical variable FOUND is returned as .TRUE. The user has the option of installing new information at that location with INSTAL operation or deleting the entry with a DETETE operation.

2b. If the key does not compare, then the collision location, which is part of the directory entry, is checked for an alternate directory location.

2c. If the collision location is occupied, the directory entry associated with that address is compared with the key. Items 2a through $2 c$ are repeated until eqther the key is located in the directory or the collision location is empty.
3. If the collision location is empty, the variable FOUND is returned as . $\overrightarrow{F A L S E}$. The user has the option of installing the new directory entry. In thls case, the next avallable directory location is used, and the address of that entry is loaded into the collision location of the last entry in the chain. KFREE is bumped by one entry. In the event that a directory entry is deleted, the current value of KFREE is stored in the collision locations of the deleted entry, and the deleted entry location is used for KFREE.

## APPENDIX I-B <br> MULTIPLE PROGRAM EXECUTION

Multiple program execution is the key to success for the ODINEX concept. The objective is to provide a vehicle design synthesis made up of several individual design/mission programs. This is desirable from the designer's standpoint because it makes the synthesis highly modular and quite amenable to design concept changes. From the user's standpoint, it places little additional learning burden in excess of the knowledge required to use the individual programs. Further, the computer core requirements do not exceed the requirements of the individual programs.

The full benefit of the ODINEX program is realized when a control file is buitt and executed in the same job stream. The user can select by input the program stream he whshes to execute. Each program has a cataZogued procedure, a file containing the necessary control cards to execute the program. This procedure is stored in the control card data base. Further, the user can specify matching and/or optlmization loops within the program community. The use of catalogued procedures requires a system level utility program which allows the user to specify alternate files for job control (other than card input). A special utility program developed for ODINEX called CCLINK provides all the capability needed. Versions of this utility are operational on all Control Data Corporation CYBERNET computers and is in general use throughout the country. CCIINK has been designed to minimize the impact on the SCOPE system.

## 1. DESCRIPTION OF CCLINK

CCLINK is a program designed for the 6000 series computers which allows the user to transfer to an alternate control card file for fob control. Condrtional branching to selected files can be accomplished by testing an index register. The value in the index register is controlled by the ancillary program SETIDEX. CCLINK offers the user the ability to execute multiple program jobs with relatively few control cards. Further, it provides a looping capability useful in design matching and optimization
problems. Other advantages of CCLINK include

- Reduces card handling errors
- Reduces errors due to bad control cards
- Provides standard procedures for heavily used programs
- Maintains minimum core requirements for all catalogued programs

In general, CCLINK simplifies the use of the computer resulting in fewer errors. This is a benefit to all users.

## 2. USE OF CCLINK

CCLINK is a control card-callable program which reloads the control card buffer from a given file. The execution of CCLINK is dependent on the validity of the relation of the control card index register and the comparison integer with respect to one of the conditional operators.

The index register is nominally set to zero and can be incremented or decremented by the control card SETIDEX(i); where is positive or negative increment.

Call format:

$$
\operatorname{CCLINK}(1 \mathrm{fn}, \mathrm{xx}, \mathrm{n})
$$

where
Ifn $=$ the logical file name of the linkage file
$x x=$ a conditional operator (one of the following)
LT (less than); link if CCIR LT<n
LE (less, equal)
GT (greater than)
GE (greater, equal)
EQ (equal)
NE (not equal)
omitted (unconditional linkage implied)
n $=$ the comparison integer

Figure BI is an example of CCLINK including use of the indexing feature SETIDEX. The SETIDEX feature which is not essential to the DIALOG system does provide useful capability for controlling program execution loops.

Assume the user had a library of programs which he could execute sequentially to perform an interdasciplinary design function. Further, assume the sequence of the program required execution ten times in order to satisfy the scaling and matching requirements. Figure Bl shows a schematic of the sequence to be performed and the sequential execution of four programs followed by the incrementing of an index. The sequence of programs is iteratively executed until the value of the index reaches ten. At this value the simulation job is terminated. The control card set up for doing this job with CCLINK and SEIIDEX is shown in Figure Bl.

An additional capability of the CCLINK software package is the FORTRAN callable routine LINK. LINK is a run compiled program loaded whth the user library which permits the user to specify the next control carã file to be used following termination of the current program. The calling sequence is

CALL LINK (1fn)
where If is the logical file name from which the next control card will be obtained. This program gives the user complete logical control over the sequence of programs to be executed.

## 3. SYSTEM INTERFACE REQUIREMENTS FOR CCLINK

The CCLINK software package consists of four programs/subprograms. Tney basically allow the use of alternate control card files on the CDC 6000 series computers. These programs are listed below and are followed by a brief description of the scope system interface requirements.


1. CCL is a PPU program that handles setting or clearing the index and the actual linking of control cards. It must be loaded with the system.
2. CCLINK is a CPU program that calls CCL to return the index value, tests the index against conditions on the control card, and calls CCL to link the control card, if necessary.
3. SEIIDEX is a CPU program that calls CCL to alter the index.
4. LINK is a RUN FORTRAN-callable routine to call CCL to link the control card. It is stored with the user programs.

Almost all Scope 3 systems will accept these programs without modification. The theory of operation is that IAJ uses a one-word FSP entry to define the next record of the control card source. CCL re-establishes that word with a pointer to a user-provided file. A control feature is provided by the use of eighteen bits in the control point area which is referred to as the index. The cards establishing the location of these eighteen bits are marked in the source decks. They should be installed into the SCPTEXT. Index setting and testing need not be used, eliminating the need for control point area storage.

# APPENDIX I-C <br> ODIN SIMULATION EXAMPLE 

## 1. Summary

This report presents the results of a recent optimization study using ODINEX. The objective was to determine the optimal engine size and mass distribution of the stages of a two-stage, fully reusable launch system having common liquid rocket engines. The vehicle's mass calculation and trajectory simulation were synthesized by the SSSP computer program of Reference Cl. The optimal design solution was obtained by a straightforward multivariable search procedure available through the use of AESOP described in Reference C2.

A cost sensitivity analysis was performed at the end of the study using the program DAPCA described in Reference C3. These four programs are a part of the ODIN (Optimal Design INtegration) design program community constructed for Langley Research Center. They were linked as shown in Figure 1 to form the synthesis reported in this note.

A significant improvement in payload was achieved as illustrated by the results given below.

	Payload,   Pounds	Vacuum   Thrust Pounds	Mass Ratio   $W_{\text {STARTBURN }} / W_{\text {ENDBURN }}$
NOMINAL	28500	470000	$3.045\left(\mathrm{~V}_{\text {STG }}=10400 \mathrm{FPS}\right)$
OPTIMUM	31850	527000	$2.715\left(\mathrm{~V}_{\text {STG }}=9160 \mathrm{FPS}\right)$

The results indicate a twelve per cent change in both mass ratio and vacuum thrust of the engines from the nominal. The change in mass parameter had a significant effect on staging velocity as indicated in the table.


END
Figure 1. Schematic of Sample ODIN/RLV Model

## 2. Introduction

Recent study contracts with NASA Langley Research Center and the Air Force Flight Dynamics Laboratory have lead to the development of $a^{\text {. }}$ new concept in modular programming. One objective of the study efforts was to facilitate the formation of very large design synthesis programs. This report exemplifies the use of the concept.

It basically consists of multiple program execution where each program is a separately developed and documented computer progrom which performs a particular technological function. By selective stringing of several programs together an interdisciplinary design function can be performed. The difficulty associated with stringing programs arises in communicating information from one program to another in an efficient and reliable manner. This difficulty has led to the development of the ODINEX system described in Reference $C 4$.

ODINEX is a computer program which dynamically constructs and maintains a cata base of information. It is executed before and after each technology program forming the synthesis. Its function is to merge data from the preceding program with the data base and extract information from the data base needed by the next program. It has been successfully used for a number of synthesis applications.

This report presents an example of an ODIN/RLV synthesis using the ODINEX concept. In the synthesis, the mission and sizing is simulated by the SSSP program of Reference Cl, and the optimization of the selected design parameters is performed by the program, AESOP, of Reference C2. The test results are probably not significant in the overall shuttle design context but serve to exemplify the use of the ODINEX system for forming very large synthesis programs.
I- c3

## 3. The ODIN/RLV Mission and Vehicle Model

The two-stage space shuttle concept is shown in Figure 2. The two vehicles are mated and launched vertically with the orbiter attached in a piggy back fashion on the booster. A typical mission is logistics resupply of an orbital space station.

During the boost phase only the booster engines are operating. At staging, when the booster has depleted its main propellants, the stages separate, and the booster performs a glide/decelerate maneuver to subsonic velocity where the turbojet engines are started and cruiseback is initiated for a conventional airplane type landing at an airfield in the proximity of the launch site. Subsonic cruise range to the launch site is about 400 nautical miles. After staging the orbiter engines are ignited, and the stage accelerates to orbit, docks at the space station and transfers passengers and cargo to the station. A gliding/maneuvering entry into the earth's atmosphere is made so that the vehicle arrives over the landing site. Turbojet engines are ignited, and the vehicle makes a conventional airplane type landing.


Figure 2. The Two-Stage Space Shuttle Concept

### 3.1 Trajectory Profile.

A baseline ascent trajectory profile was established within the SSSP program. The terminal conditions for the ascent trajectory are perigee injection into an elliptic parking orbit ( 50 nautical miles perigee altitude with 100 nautical miles apogee altitude). This parking orbit provides a reasonable start for space station logistics and other missions. Insertion at this low altitude provides good performance and allows an efficient entry trajectory for the booster stage. The orbiter entry trajectory is initiated by retro from orbit and is, therefore, not dependent on the ascent trajectory and is not simulated in SSSP.

The ascent trajectory sequence is as follows:

1. Vertical rise for a specified time (14 seconds)
2. Pitchover ( 10 seconds)
3. Gravity turn ( $\alpha=0$ between thrust and velocity vector) maneuver to booster propellant depletion, stage separation (booster entry initıated).
4. Orbiter burn with linear cotangent steering ( $\cot \psi=A+B t$ ) to perigee insertion

A multiplier on the pitch rate during the inltial pitchover maneuver is iteratively determined to yield a specified dynamic pressure at stage separation. The separation dyname pressure of two psf was chosen to yield a near-optimal ascent trajectory, a "cool" booster entry trajectory with short cruise range requirements and an acceptable environment for stage separation if necessary.

The orbiter flight is then simulated with the two parameters $A$ and $B$ (the cotangent of the pitch attitude being linear in time) being determined to yield specifled injection altitude ( $h_{\rho}$ ) and injection fllght
path angle $\left(\gamma_{f}\right)$ at attainment of the specified injection velocity ( $V_{f}$ ). The weight iteration necessary to make propellant extended by the orbiter to achieve $V_{f}$ agree with the weight-sizing propellant computations is iteratively computed in SSSP. The simplified pitch control program yields near-optimal performance for a wide variety of vehicle parameters and yields good convergence properties for the trajectory iterations.

At stage separation the trajectory conditions ( $V_{S}, h_{S}, \gamma_{S}$, etc.) are stored for use in determining the crulse fuel requirements of the booster stage. This determination may be accomplished with a number of program options all of whlch are described in detail in Reference cl. and are based on the cruse range requirement for the mission and Breguet's equation for the fuel required for a constant $L / D$ cruise. Subsonic $L / D$ and specific fuel consumption are input constants. The option used for determination of the example booster cruise requirement was

Flyback range to the launch site as a function of the dynamic pressure at stage separation. Since dynamec pressure was constant as determined by the iteration above, the flyback range was also constant. Some error is involved in this assumption for the second part of the optimazation since the staging velocity varied considerably during the perturbations.

### 3.2 Yehıcle Characteristics and Constraints.

The fundamental concept of earlier space shuttle synthesis is the complete reusability of both stages with the maximum use of such common hardware items as the main rocket engines. The booster and oribiter engines are essentially the-same; although a larger number of engines will be installed on the booster than on the orbiter (e.g., elevea booster englnes and two orbiter engines) and an extendable skirt was added to the orbiter nozzle to improve vacuum performance. The computation sequence in the SSSP was chosen to best provide this propulsion

$$
I-C 6
$$

system commonality. SSSP input specifies the ratio of the booster to orbiter vacuum thrust, $T_{b} / T_{o}$, the number of engines per stage, and the thrust and the specific impulses (vacuum and sea level) of each type.

Man rating the vehicle for a wide variety of possible passenger types imposes a limit on loads of three $g^{\prime} s$. This requires throttling of the rocket engines during the main burn after a specified axial load is reached.

Structural, dynamic, and thermodynamic constraints (such as maximum $\alpha q$ loading, balance, heating, etc.) are not consldered in the SSSP. The effects of these constraints can be analyzed externally by monntoring and using SSSP trajectory, weights, and -geometry data. Alternately, the simulation can be augmented by program modules that adequately represent the effects of these constraints. The SSSP provides for a number of basic options as described in Reference 1 Which may be utilized to constrain the basic vehicle design or to investigate alternative approaches to the space shuttle concept. The option used in the present example was

> Fixed GLOW with an iteration for determination of the payload

Flued size common engines were assumed for both the booster and the orbiter stages.

### 3.3 Weights and Geometry.

The welght/volume portion of the SSSP is a library of weight and volume equations for the components of space shuttle vehicles. The subprogram accepts inputs in the form of coefficients to various weights and volume equations written in terms of the geometry of a particular vehicle type. It uses existing weight data plus inputs describing the thermal protection system, propulsion and other subsystems, as well as performance mass ratios and other mission requirements derived from the trajectory subprogram. The second generation weight breakdown
in MIL-M-38310 was used as a guide to determine the level of detail and order of weight output listings. Weight equations for each component or group of components were written by incorporating appropriate provisions for varying weights correctly as the vehicle weight and/or size changes. Volume equations for important volume components are also included. An iteration process is employed so that component weights/volumes and overall weights/volumes are mutually consistent.

The SSSP program solves the following basic problem: for a specified payload weight and mass ratio, find the stage gross weight and volume. This problem is solved separately for the orbiter and booster stages; then iterations are performed to satisfy the specified mission fixed GLOW constraint.

The weight equations used in SSSP rely heavily on a unit weight approach, with any sophistication based more on selection of proper weight coefficients for input rather than on the equations themselves. This method gives the user more latitude for judgment and permits the same equations to be used for a wide range of vehicles. To do this, however, a data library of vehıcle weight coefficients obtanned from detailed design studies must be available. The source for the example problem is the Weight/Volume Handbook, Volume II, of Reference 1. The Weight/Volume Handbook contains the compilation of all the welght/ sizing equations utilized in the SSSP subprogram and a procedure for obtaining the proper coefficients that are input for each equation.

### 3.4 Other Limitations on the Simulations.

The sample case involves a $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ fuelea Space Shuttle configuration which existed as an initial point design developed by personnel at the NASA Manned Spacecraft Center in early 1970. This configuration was converted to the SSSP input requirements for the example problem.

Each stage has a single vertical surface and wings with a fourteen degree leading edge sweep. The theoretical (gross) wing area is fixed, and the orbiter and booster wing loading is computed internally at the initial entry and initial flyback conditions, respectively. The thermal protection system assumes coverage of the total body wetted area excluding the aerodynamic surfaces. However, the corresponding weight coefficient is an average value that is representative of a combined insulation-cover panel weight less than $0.75 \mathrm{Ib} / \mathrm{ft}^{2}$ on the upper surface and greater than $1.75 \mathrm{Ib} / \mathrm{ft}^{2}$ on the lower surface.

The orbiter has two main engines and the booster has eleven. Both stages have fixed gimble system weights. The subsonic cruise engines for both stages operate with $\mathrm{LH}_{2}$ propeliant stored in main tanks. Each stage has a ten per cent contingency factor applied to the dry weight.

The system payload volume is fixed at $10,600 \mathrm{ft}^{3}$. The orbiter main propellant flight performance reserves are based on 225 fps total characteristic velocity ( $\because 0.75$ per cent of mission velocity to parking orbit insertion) with a 1500 fps incremental velocity requirement ( $0 / \mathrm{F}$ mixture ratio $=5$ ) reserved for the post-insertion or on-orbit maneuvers. The booster flight performance reserve is fixed at 1370 lbs. of propellants. For both stages the main impulse propellants (including reserves) utilıze an $0 / F$ mature ratıo $=6$ for the sizing basis. The booster sizing base includes fixing the main impulse mass ratio at a value of 3.045 for the nominal evaluation. This ratio was selected as a control parameter for the optimization runs.

The stage burn sequence selected was that of the sequential stage burns. The orbiter main engine unat thrust (vacuum) was fixed initially at 470 K lbs/engine and later varied as an AESOP parameter. The booster main engine unit thrust at vacuum conditions was set at 0.968556 of the orbiter thrust level to account for the difference in the nozzle configurations. The specific impulses values for each ascent flight phase were constant for each stage.

The booster gross weight was specified at an input value of $3,384,390$ pounds and the payload was used as the performance criteria by AESOP.

The booster reference range method selected was that based on the staging dynamic pressure with the cruise fuel method being the simplified single segment mode of operation.

The ascent trajectory mission profile includes the following bases:

1. Built-in atmosphere tables used from liftoff to parking orbit insertion.
2. Table input combined axial aerodynamic characteristics for boost phase only, no normal aerodynamic coefficients and no aerodynamics for orbiter ascent phase.
3. Launch pad at KSC coordinates, launch azimuth $=37.65$ degrees
4. Fourteen-second vertical rise from liftoff, ten-second pitchover, target to a two psf staging dynamic pressure, linear cotangent steering during orbiter burn.
5. Throttle booster engines at axial load of 2.5 g limit; orbiter engines at 3.0 g limıt.
6. Terminate simulation sections 01 on 2.5 g limit; ( 02 automatic on booster propellant depletion); 03 and 04 on three seconds and four seconds (relative), respectively; 05 on eighty seconds (relative); 06 on 3.0 g limit; 07 automatic on speaified insertion velocity.
7. Perigee parking orbit insertion at $51 / 100$ nautical miles in $55-$

- degree inclanation orbit.


## 4. Payload Optimization

The performance criteria for the example problem was chosen to be payload. The objective was to maximize payload while constraining the gross lift-off weight (GLOW) to 3384390 pounds. Two pptimization problems were posed. A one-parameter problem varying the vacuum thrust of the common engines from its nominal value of 470000 (which produced 28500 pound payload) resulted in an improvement in payload over 1000 pounds. A two-parameter problem was then posed which included vacuum thrust but added mass ratio of the booster to the AESOP parameter list. Mass ratio (MR) is defined as the ratio of mass at the start of the burn to the mass at the end of the burn. The SSSP program was set up to solve for the size of the orbiter which yields the fixed GLOW. Therefore, the variation in the mass ratio of the booster, in effect, varies the mass distribution between the stages and has a direct influence on the staging velocity. The two-parameter solution used the best one-parameter solution as a nominal. This yielded an additional 2300 pounds of payload over the one~parameter solution.

### 4.1 Selection of Engine Vacuum Thrust.

In the selection of vacuum thrust the function of SSSP was to evaluate the influence of vacuum thrust on payload. The function of AESOP was to perturb the value of thrust based on the value of payload generated by SSSP. Special considerations in communicating the information between programs is given in Section 5 .

The sectioning search in AESOF was used to maximize the payload. The result of this search is presented in Figure 3. The nominal and best performance are compared in the table 'below.

PERFORMANCE	VACUUM THRUST	PAYLOAD
Nominal	$470000 \mathrm{Ibs}$.	28500
Best	505000 Ibs.	29560

FIGURE 3.
SHUTTLE ENGINE SIZING STUDY


### 4.2 Selection of Booster and Engine Size.

In the second optimization study, the booster mass ratio was added to the AESOP parameter list, and payload was retained as the performance criteria. Mass ratio is the ratio of the initial mass to the mass at engine cutoff. For a fixed GLOW, this parameter is a measure of the booster size.

Figure 4 shows a chronological history of the payload as the values of thrust and mass ratio were perturbed. The first series of calculations using random ray search resulted in a spurious perturbation on the eighth evaluation (parameter driven to the boundaries) which yielded a significant increase in performance. This chance improvement was accepted as the nominal for the second series of calculations using the ereeping search. Upon widening the boundaries, further gains are produced as the creeping search was continued.

A sectioning search on booster mass ratio was performed at the twenty-sixth evaluation to determine the sensitivity on the parameters. The results are shown in Figure 5. Here, the vacuum thrust was fixed at 504000 pounds, and the mass ratio was allowed to vary over a wide range. The results indicated slightly more than 500 pounds to be gained by altering the mass ratio. In reality, a great deal of payload was gained by perturbing the mass ratio and thrust simuitaneously.

This can be easily seen in Figure 6, a contour map of payloads as a function of the two parameters: vacuum thrust and mass ratio. The section at evaluation twenty-six only located the ridge line shown dotted. The maximum payload is shown at a considerably higher thrust value.

FIGLRE 4. MASS DTSTRIBUTIDN AND ENGINE SJEE OPTIMIZATION



FIGURE 6.
PAYLOAD CONTOURS
ENGINE VACUUM THRUST ( 1000 lb. )
STAGE MASS DISTRIBUTION
AND ENGINE SIZE PARAMETERS
(
540

 1b.
2.6
2.7
2.8
2.9

STAGE 1 MASS RATIO

### 4.3 Cost Sensitivity.

A cost sensitivity analysis was performed at the optimum payload point using the program DAPCA, a computer program for determining aircraft development and production costs, described in Reference C3. The DAPCA computex program computes development and production costs for the major subsystems of flyaway aircraft, engines, airframes, etc. Avionics cost is input. The cost output generated by the program is in the form of cost-quantity, unit and cumulative average, improvement curves. Most of the input relates to aircraft and engine performance characteristics, such as gross weight, speed, engine type, engine thrust, etc.

The program was developed primarily for horizontal take-off azrcraft so the basic methodology underlying the program is not strictly applicable to the reusable launch vehicle. However, the costing principles are not unlike those used.in more applicable programs such as Reference 5. The latter program is also available for use in ODIN.

The coupling of DAPCA for the ODIN/RIV synthesis involved the execution of the program twice, once for the booster and once for the orbiter. The cost sensitivity was based on first unit cost. For the booster, the gross weight was the launch weight; the speed was staging velocity. The thrust for both the booster and orbiter was the rocket engine vacuum thrust (common engines). For the orbiter, the gross welght was the weight at staging; the speed was the difference between insertion and staging velocity. The results are shown in the following table.

TVAC   1000	MR	BOOSTER   COST   $\$ 1,000,000$	ORBITER   COST   $\$ 1,000,000$	TOTAL   COST   $\$ 1,000,000$	PAYLOAD   LB
527	2.715	39759	14850	54609	31847
527	2.725	39889	14801	54693	31846
527	2.705	39626	14896	54522	31844
529	2.715	39890	14878	54768	31846
525	2.715	39628	14821	54449	31846

## 5. Data Intercommunication

Between SSSP and AESOP

The data requirements are largely identical with the individual programs involved. The exceptions are associated with the data extracted from the data base. In these specific cases, the user replaces the value ordinarily input on the data card with a data base variable name isolated by special delimiters. In the normal sequence of calculations, ODINEX reads the input data prior to execution of the user program and buitds a new input stream modified by the values associated with the data base names identified.

The discussion that follows exemplifies the special considerations for the one-parameter selection of vacuum thrust. The simulation consisted basically of two functional programs, SSSP and AESOP. The input to these programs are modified by the user to extract selected data dase values. SSSP generates the payload for a fixed GLOW, and ODINEX merges at in the data base. AESOP extracts the payload and generates parameter perturbations, and ODINEX merges them into the data base.

In the sequence of calculations, the data base is initialized with the control parameter

$$
A L P H A=470000
$$

This name and value are placed in the data base by ODINEX, which also reads the entire SSSP input searching for key words denoted by the delimnters @name@. The vacuum thrust in the SSSP program is defined as $C(129)$ and the input card for the simúation is punched as follows:

$$
C(129)=\text { QАLРНАС },
$$

ODINEX identifies the word ALPHA as a data base variable and replaces it and the special delimiters with the data base value

$$
C(129)=470000 .
$$

For the one-parameter problem, the ODINEX function is complete. The SSSP input has been modified with the selected data base values (in this case, only vacuum thrust).

The SSSP program is then executed with the modified input stream. It doesn't know that a data base value is being used. The program executes as if it were the only job in the stream. All the normal output functions are available as well as a special name list output the only physical modification to the SSSP program. These data are used by the ODINEX program. One of the special namelist output variables is WPAYLO, the payload in orbit as determined by the SSSP program.

$$
\text { WPAYIO }=28500 .,
$$

This name and value are placed in the data base by ODINEX. This completes the SSSP function; the simulation continues to AESOP. AESOP is a separately executed program with the primary function of perturbing the control parameters (thrust, in this case) based on changes in performance (WPAYLO). This function is performed by reading the performance as input and writing the control parameter perturbations as output. Using the ODINEX system, both are data base variables. AESOP is unoware of the system which it is optimizing. It simply executes as an isolated program. The user of ODIN/RLV specifies the performance criteria,

$$
\operatorname{FUNCTN}(1)=@ W P A Y L O Q,
$$

as part of the card input along with the other AESOP inputs such as search procedures. ODINEX recognized the word WPAYLO as a data base
variable and replaces it and the delimiters e with the data base value

$$
\operatorname{FUNCTN}(I)=28500 .,
$$

In this manner AESOP obtains the current performance of the system from the data base. Upon execution AESOP perturbs the control parameter ALPHA(1), an AESOP array element which coincides with the data base name ALPHA. This array is written in the special namelist file to be interrogated by ODINEX. ODINEX alters the original value of ALPHA to the perturbed value as determined by AESOP.

This completes the SSSP/AESOP optimization nominal evaluation. The parameter has been perturbed, and the new value placed in the data base. The simulation is repetitively recycled in this manner until the optimization is terminated by AESOP.

## 6. Sample Output from ODINEX

Figures 7 through 11 show the design data base configuration during one evaluation of the synthesis.

```
Figure 7 - After Initialization
Figure 8 - After SSSP
Figure 9 - After DAPCA (booster)
Figure 10 - After DAPCA (orbiter)
Figure 11 - After AESOP
```

All variable names and definitions together with some initial values were created at initialization, Figure 7. Updates are indicated in Figures 8 through 11 by the name.

I- C21


Figure 7. Data Base Configuration After Initialization


Figure 8. Data Base Configuration After SSSP



易易

[^5]

Figure 11. Data Base Configuration After AESOP

## 7. Conclusions

The significant conclusion from this report is not the payload obtained from the calculations; although this is another of a long history of AESOP optimization examples where little additional effort was required to make an optimal design program out of a point design program. The signnficance is rather that a rapid method has been developed for doing design synthesis work which is a reliable, modular, and efficient alternative to other methods, which generally involve considerable reprogramming effort.

The ODINEX system allows the user to essentially build a synthesis through input selecting the model complexity from a library of programs representing literally hundreds of man-years of effort in both engineering and programming talent. This can be done in a short period of time. Often, results are obtained within a few hours of conceiving the problem. The speed is usually limited by the user's familiarity with the individual programs.

## 8. References for Appendix I-C

C1. ——. Space Shuttle Synthesis Program (SSSP), Volume I, Part 1, Report GDC-DBB70-002, General Dynamics Corporation, December 1970.

C2. Hague, D. S. and G1att, C. R., An Introduction to Multivarıable Search Techniques for Parameter Optimization (and Program AESOP), NASA CR-73200, April 1968.

C3. Boren, H. E., Jr., DAPCA: A Computex Program for Determining Aircraft Development and Production Costs, The Rand Corporation, RM-5221-PR, February 1967.

C4. Glatt, C. R., Hague, D. S., and Watson, D. A., ODINEX: An Executive Computer Program for Linking Independent Programs, NASA CR-2296, . 1973.

C5. Hague, D. S. and Glatt, C. R., Optımal Design Integration for Military Flight Vehicles, ODIN/MFV, Section 9.1, AFFDL-TR-72-132, December 1972.


[^0]:    '. .
    2. 4-18

[^1]:    + Subjects for Future Addıtions

[^2]:    $\because$ ! PaM li flen:
    

[^3]:    $\varepsilon \tau-\tau \cdot \varsigma \tau$

[^4]:    b Irrelevant if MOVE ( 6 ) $=0$

[^5]:    Figure 10. Data Base Configuration After DAPCA (Orbiter)

