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Section 1 

IITRODUCTION 

Corporate Research and Development (CRD) of the General Electric Company 
has since 1970 been involved in a series of fan design studies and a model fan test 
verification program in aiding the National Aeronautics and Space Administration to 
achieve optimum aero-acoustic performance on new variable pitch fans to be 
incorporated into the repowered drive section of the 40 x 80 foot wind tunnel at Moffett 
Field, California. The previous design studies (Refs. 1-5) established the basis for 
design, construction, and test program for the 1/7-scale model fan conducted by NASA-
Ames to verify the 40 foot full-scale fans to be incorporated in the repowered section 
of the 40 x 80 foot wind tunnel. 

This report describes the results of the several phases involved in the "40 x 80 
Foot Subsonic Wind Tunnel Fan Section Verification Program" employing 1/7-scale 
model fans, conducted by General Electric under Contract NAS2-8364. The objective 
and scope of this contract were to monitor the aerodynamic and acoustic performance 
of the two fan configurations under investigation (low-speed and high-speed variable 
pitch fan design), supply the necessary aero-acoustic data-reduction computer program 
logic, evaluate the results of the tests, and recommend the optimum configuration to be 
employed in the final 40 foot full-scale fan. 

The original design of the low-speed and high-speed fans and the test vehicle for 
the 1/7-scale model fan were previously reported on in Reference 5. The test program 
was therefore a continuation of that program, designed to verify how well the fans met 
the design objectives and also the ability of the fans to operate with large inlet 
boundary layer growth, such as is present in the wind tunnel power section of the full­
scale fans. 

The initial 1/7-scale model fan test results showed that the noise generated by 
the low-speed model fan configuration when scaled to its full-scale configuration would 
be 5 dBA quieter than the high-speed fan configuration. The aerodynamic test program 
became focused then on the low-speed fan model. As the low-speed model fan tests 
progressed, however, it became apparent that the low-speed fan design would have 
serious problems in meeting the wind tunnel airflow objectives, especially if a lower 
hub/tip ratio fan design were incorporated in the full-scale fans. 

The original contract was therefore expanded in scope to include a restudy effort 
on the low-speed fan model. General Electric's Aircraft Engine Business Group (AEBG) 
Compressor Aerodynamic Section was involved in this phase of the contract, evaluating 
the fan operating characteristics with a lower hub/tip- ratio and more severe inlet 
boundary layer condition. The results of the new fan study and recommendations 
leading to improved low-speed fan performance have also been 'incorporated in this 
report. 

WIND TUNNEL FAN OPERATING REQUIREMENTS 

In structuring the model fan test program, careful consideration had to be given 
to all the operating requirements imposed on the variable-pitch fans of the repowered 
wind -tunnel. The new power section described schematically in Figure 1 is designed to 
operate with both a closed and an open wind tunnel configuration. The previous GE 
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study (Ref. 4) evolved the fan design operating requirements for these two tunnel 
configurations which are shown in Table 1. 

Table 1 

FULL-SCALE FAN AERODYNAMIC DESIGN CONDITIONS 

Closed Tunnel Open Tunnel 
Parameter Configuration Configuration 

Inlet Total Pressure (psia) 14.54 14.55 
Inlet Total Temp. (OR) 530 530 
Fan Weight Flow (lb/sec) 16333 20251 
Fan Head Rise (ft) 680 525 
Fan Stage Efficiency (%) 90 86 
Fan Head Input (ft) 756 610 
Fan Tip Diameter (ft) 40 
Hub/Tip Ratio 0.5 
Fan Rpm 180 

These design conditions, derived from the motor drive power output limitation of 
135,000 hp for the existing power section of the 40 x 80 foot wind tunnel, resulted in 
attaining tunnel test section speeds of 300 knots and 102 knots, respectively, for the 
closed and open tunnel configurations. 

The variable-pitch fan capability was in turn designed to permit attaining various 
closed tunnel speeds ranging in value from 58 to 100 percent of design, while 
maintaining the synchronous fixed speed of the motors. 

The fan arrangement in the power section shown in Figure 1 results in large 
boundary-layer generation at the inlet to the corner fans, where the two wall boundary 
layers merge. This produces sizable inlet velocity profile distortions that can result in 
fan stall. In order to assess the effect of large in-flow distortions, the fan model 
experimental program was designed to include investigation of fan performance with 
different degrees of distorted inlet profiles, artificially generated. 

Another important consideration in the fan model experimental program was the 
evaluation of the likelihood of fan stall and performance deterioration if a lower hub/tip 
ratio of 0.4375 were employed in the final full-scale fan design. On the basis of NASA-
Ames studies a gain of approximately 6 percent in tunnel speed could be affected by 
going from a fan hub/tip ratio of 0.5 to 0.4375. This improvement in tunnel 
performance results from the reduced diffuser losses downstream of .the fan, affected 
by a smaller fan center body. 

FAN ACOUSTIC PROGRAM 

The basic objective of the fan acoustic program was to verify the theoretically 
calculated acoustic advantage of utilizing 4 low-speed fan over that of a high-speed fan 
in the power section of the 40 x 80 foot wind tunnel. This theoretical advantage was 
estimated to be in the order of 13.2 dBA in lower noise for the six prototype low-speed 
fans versus the six prototype high-speed fans, or a total sound power level of 139 dBA 
versus 152.6 dBA. The actual fan noise was in turn to be established experimentally by 
obtaining the third-octave band noise frequency spectrum with an array of microphone 
settings covering the inlet and discharge duct cross-sectional areas. 
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Section 2 

1/7-SCALE MODEL FAN EXPERIMENTAL PROGRAM 
PRETEST PHASE 

The 40 x 80 foot aero-acoustic verification program was to be carried out at 
NASA-Ames with the 1/7-scale test model shown in Figure 2. The pretest phase of this 
program included designation of the aero-acoustic instrumentation and development of 
the aero-acoustic data-reduction computer programs to be employed during the tests. 

Figure 2. 1/7-Scale Model Fan Test Vehicle 

INSTRUMENTATION 

The instrumentation designed to obtain the model fan aero-acoustic performance 
consisted of static pressure instrumentation, total pressure rakes, a combined total 
pressure/static pressure/directional survey probe, and a four-microphone traversing rod 
as well as temperature, speed, and torque measuring instrumentation. The inlet 
bellmouth section of the test vehicle was employed as the weight flow metering device. 
The complete arrangement of the test vehicle instrumentation, the designated 
measuring stations, and their exact axial location are presented in the instrumentation 
schematic of Figure 3. 

- - A 5I 

I 5 
Figure 3. Instrumentation Schematic 
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Aerodynamic Instrumentation 

The aerodynamic instrumentation required to obtain either fan overall aero­
dynamic performance, detailed rotor performance, or diffuser performance is presented 
in Appendix A of this report. While the instrumentation section dealing with fan overall 
performance (Section A of Appendix A) shows four circumferential positions at 
Station 6 for obtaining the radial distribution in fan performance, only one traversing 
probe was available for the tests. This required physically moving the probe to each of 
the four azimuth positions; therefore each position of the traversing probe represented 
a different test even though the flow and speed settings were the same. 

Inlet Beilmouth Weight Flow Calibration Tests 

To employ the beilmouth section of the fan test vehicle as a weight flow 
measuring nozzle, its flow coefficient had to6be established. The high Reynolds number 
of the belmouth throat section of 4 x 10 readily lent itself to obtaining its flow 
coefficient with a scaled model, since the lower Reynolds number of the scaled model 
would still be sufficiently high not to affect the flow coefficient accuracy. 

A beilmouth model having a 1 ft 2 throat section was manufactured, and weight 
flow calibration tests were conducted at CRD. The metering flow nozzles employed in 
obtaining the belmouth flow coefficient had a high degree of accuracy, approaching a 
flow coefficient of 0.998. 

The results of tlV bellmouth section calibration tests showed that for throat 
Reynolds numbers of 10 or greater, the test vehicle belmouth section would have a 
flow coefficient CN of 0.989. 

Acoustic Instrumentation 

The acoustic instrumentation was designed to obtain the inlet and discharge fan 
noise spectra at stations 2 and 9 (Figure 3) respectively. A continuous microphone 
traversing system of employing two probe-mounted microphones 450 apart was initially 
recommended. Because of mechanical complexity, however, a traversing discreet­
position microphone system consisting of four microphones on a movable strut was used. 
The sound power was obtained by subdividing the inlet and discharge ducts into 36 
equally spaced cells and measuring the noise spectra in each of these cells with the 
four-microphone-array measuring probe. The microphone probe is shown in Figure 4, 
the nine locations of the microphones necessary to obtain either fan intake or exhaust 
noise for each test point are shown in Figure 5. 

AERODYNAMIC AND ACOUSTIC PERFORMANCE DATA REDUCTION 

The fan aerodynamic and acoustic test data reduction was a joint effort carried 
out by CRD and NASA-Ames. In the case of fan aerodynamic data reduction CRD 
provided the computational logic required to structure a computer program that would 
develop the detailed fan performance. The actual data reduction was conducted by
NASA-Ames. In the case of fan noise reduction, the noise measurements were recorded 
on tape by NASA-Ames and transmitted to CRD for final reduction on the General 
Radio real-time analyzer, and the associated computer program developed by CRD to 
perform this function. 
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Figure 4. Microphone Probe in Station 3 

1 2 3 4 5 6 

(1) (5) (9) (2) (6) (10) 

1 1 1 2 2 2 

7 8 9 10 11 1Z 

(3) (7) (11) (4) (8) (12) 

3 3 3 4 4 4 

13 14 15 16 17 18 

(13) (17) (21) (14) (18) (22) 

1 1 1 2 2 2 

19 20 21 22 23 24 

(15) (19) (23) (16) (20) (24) 

3 3 3 4 4 4 

25 26 27 28 29 30 

(25) (29) (33) (26) (30) (34) 

1 1 1 2 2 2 

31 32 33 34 35 36 

(27) (31) (35) (28) (32) (36) 

3 3 3 4 4 4 

Number Waning 
Top Cell Designation, Area No.
 

(Central) Assumed Test Order (Record and Data Reduction) 
Lower Microphone No.
 

Figure 5. Microphone Positions in Duet Passage 
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Aerodynamic Performance Data-Reduction Computer Program 

The computer program logic to evaluate fan performance is presented in 
Appendix B. It contains the equations and relationships that establish the fan adiabatic 
efficiency, corrected and normalized weight flow, and developed head conditions and 
fan input power based on the instrumentation system described in Appendix A. 

The NASA standard sea-level temperature and pressure conditions of 518.7 0 R 
and 14.69 psia were used as the reference base to which fan operating conditions were 
corrected. While this has merit when comparing fan performance to other NASA fans, 
it did require multiplying factors of 0.9786 and 0.978 to be applied to the reduced test 
data of corrected weight flow and developed head. These additional corrections were 
necessary because the original fan design was not based on NASA gtandard sea-level 
conditions but on estimated temperature and pressure values of 530 F and 14.54 psia, 
thought to exist at the fan inlet of the 40 x 80 foot wind tunnel. 

Acoustic Performance Data-Reduction Computer Program 

The fan acoustic data reduction program developed by CRD, designated as 
"NASA FAN," is presented in Appendix C. The program is composed of six files: 
CONTROL, ATTENS, FANDATA, MIKEAREA, PAGE, and FANCALC. The exact 
function of each of these files is described as follows: 

* 	CONTROL designates the actual order of data sampling. 
* 	ATTENS lists record attenuator settings corresponding to the 

actual test order. 
* 	FANDATA is the basic data file from the General Radio (GR) 

real-time analyzer. 

* 	MIKEAREA is for microphone frequency response corrections, 
and cell areas expressed in decibels. 

" 	PAGE is employed for paging of output data file. 

" 	FANCALC is the output file for the reduced fan noise data. 

A sample calculation is presented in Appendix C based on the cell designation and 
microphone positions presented in Figure 5. The frequency range of the output 
tabulations is automatically governed by control settings of the GR real-time analyzer. 
For fan-noise data reduction these will be set for 25 to 20,000 hertz, the available 
limits. 

The actual sound-pressure spectra for the individual 36 samples are to be printed 
out so that it will be possible to evaluate the feasibility of reducing the number of 
sampling positions. In the sample calculation (Appendix C) the sound pressure levels 
(SPL's) are separated into three tabulations, with the double asterisks denoting the four 
corners of the three cell blocks. 
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Section 3 

1/7-SCALE MODEL FAN EXPERIMENTAL PROGRAM 
AERPDYNAWC AIND ACOUSTIC PERFORMANCE EVALUATION 

As was pointed out in the introduction, the objective of the fan test program was 
to test two fan configurations, a high-speed and a low-speed fan, and determine which 
would be the quieter when scaled to full prototype fan size and speed. In addition, the 
quieter fan had to satisfy the tunnel head requirements at closed and open tunnel 
operating conditions. 

From the outset it was recognized that achieving the fan design head and flow 
conditions would be more difficult with the low-speed fan than with the high-speed fan 
because of its higher hub loading. This hub loading condition would become even more 
aggravated if a hub/tip ratio of 0.4375 were to be employed in the final full-scale fan 
design than with the 0.5 hub/tip ratio employed in the first 1/7-scale model 
configuration. 

Performance testing of the low-speed fan configuration would therefore be more 
involved than that of the high-speed fan. It would require several blade pitch settings 
to establish whether adequate design margin exists in meeting some of the more 
stringent, thickened-boundary-layer operating conditions than the tunnel corner fans 
would be subjected to. 

In the ease of the high-speed fan, with its lightly loaded blade conditions, a 
relatively short test program at design-pitch blade setting was thought to be adequate 
in establishing its capability in meeting its design performance objectives. 

AERODYNAMIC PERFORMANCE OF HIGH-SPEED FAN 

The aerodynamic performance of the high-speed fan at design stagger angle 
setting of 560 is shown in Figure 6. It can be seen that the fan meets its design head 
objective of 680 feet at the design corrected weight flow of 367 lb/see, while its peak 
efficiency value of 86 percent at design flow is somewhat below the design efficiency 
value of 90 percent. Approximately 1-1/2 percent in efficiency loss can be attributed 
to the inlet-contraction section loss upstream of the fan, as evidenced by the total 
pressure survey at the fan inlet. (Overall fan performance based on surveys at stations 
3 and 6 included the flowpath through the contraction section.) 

A sample of toe high-speed fan reduced performance data at design flow and 
speed based on the starboard azimuth-position radial survey at station 6 is shown in 
Figure 7. The radiql total discharge pressure distributions for the four azimuth 
positions are in turn shown in plots of Figure 8. As can be seen from the plots of 
Figure 8, the blade-section radial performance patterns approach normality, with the 
usual decay in performance in the tip and hub regions caused by boundary layer effects. 

ACOUSTIC PERFORMANCE OF HIGH-SPEED FAN 

The acoustic performance data of intake exhaust and combined SPL spectra for 
both the 1/7-scale model fan and a cluster of six prototype fans are presented in Table 2 
for the 100 percent design mass-flow condition. The variation of the dBA SPL spectra 
for the combined six prototype fans as a function of mass flow is presented in Figure 9. 
In arriving at the plots of Figure 9 and Table 2, the following scaling methods were 
employed. 

9 
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Figure 8. 	 High-Speed Fan-Radial Discharge Total Pressure Distribution 
At Design Flow 

The 1/3-octave-band noise levels of the model fan were first converted to 
prototype (6 fans) noise levels by applying the simple fan-noise-scaling-low relationship
of 

dB Prototype B (m lr 1t 6 e 
6 Fans B ,d + 10 og L Model 

The frequencies were then shifted by the 0.15-scale factor of the model fan diameter to
full-scale fan diameter; and lastly, the dBA weighting factor was applied to the shifted 
1/3-octave-band frequency noise levels in arriving at the dBA sound power levels for the 
Prototype (6 fans). 

The total sound power levels for the 1/7-scale model high-speed fan and the six 
prototype fans were respectively 127.8 dBA and 146.8 dBA. These compared to 
predicted values of 136.8 dBA and 152.5 dBA respectively for the high-speed fan model 
and the six prototype fans. While deviation between predicted and tested noise levels 
for the high-speed prototype fans of 5.7 dBA was appreciable, the predicted noise level 
for the low-speed fans-of 139.4 dBA was still 7.4 dBA below that of the indicated noise 
level of the high-speed fan. The potential gain of employing low-speed fans was 
therefore still appreciable, and the test program as originally outlined was continued. 

AERODYNAMIC PERFORMANCE OF LOW-SPEED FAN 

The aerodynamic performance testing program on the lowspeed fan was 
contingent on verification of the acoustic advantage of the low-speed fan over that of 
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Table 2
 

HIGH-SPEED FAN--NOISE SPECTRA AT DESIGN SPEED AND FLOW
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INTAKE EXHAUST TOTAL 

FHEIJIIENCY I4 RF 1F-12 PATT$ LW RE IE-12 WATTS LW RI- 1E-12 1ATTS 

0* R7 PIl)LL PF LFOTYPF moubo P110OIP01fE HIJEL POIOTYPE 
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Figure 9. Sound Power Levels with Mass Flow for High-Speed Fans 
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the high-speed fan. The initial tests were made on the low-speed fan (specific details 
are discussed below under "Acoustic Performance of Low-Speed Fan"), and the planned 
comprehensive low-speed aerodynamic fan test program was then carried out. 

A total of 487 test runs were completed on low-speed fan configuration No. 1, 
whereas only 23 test runs were made on the high-speed fan. The complete summary of 
the tests conducted on both the high-speed and low-speed fans is presented in 
Appendix D. 

Aerodynamic Performance Deficiency 

The initial tests of the low-speed fan at the design stagger-angle setting of 40.80 
showed a serious deficiency in performance. This was the result of poorer fan 
efficiency (82% vs a design efficiency of 90%) and insufficient work addition imparted 
by the blades to the air. While the lower work input at a stagger angle of 40.8 could be 
corrected by operating the fan at a higher angle of attack or a reduced stagger angle 
setting, improvement in fan efficiency would require modification of the fan blade 
shapes.
 

Unlike the high-speed fan performance characteristic, the low-speed fan 
exhibited a sensitivity to azimuth position that appeared to be associated with inlet 
flow distortion. The test results showed that at the 100 percent flow and speed setting 
for the 40.80 stagger angle setting a deviation of 10 percent in developed head existed 
between the port azimuth total pressure survey and the starboard total pressure survey, 
or 536 feet versus 485 feet respectively. The port azimuth measuring station is in a line 
of sight of undisturbed inlet bellmouth flow, while on the starboard side of the 
bellmouth the flow is disturbed by the wall forward and along the side of the inlet 
(Figure 2). 

Aerodynamic Performance Testing with Honeycomb Section 
Upstream of Fan 

In order to reduce the flow distortion produced by the ground and sidewall 
effects at the inlet to the test vehicle bellmouth section, a honeycomb section was 
introduced in the vicinity of the inlet distortion screen designated as Station 18'-3" in 
the schematic of Figure 3. The low-speed fan tests were then repeated with the design 
stagger angle setting of 40.80 and with stagger angle settings of 380 and 35.40 . The 
performance results of these tests are presented in Figure 10. While a small 
improvement in performance in the order of 3 to 4 percent increase in weight flow was 
achieved with the honeycomb section for the design stagger angle setting of 40.80, it 
was relatively insignificant compared with the large effect in developed head produced
by small changes in blade stagger angle setting. 

Effect of Rotor-Blade Stagger Angle on Fan Performance 

As can be seen from Figure 10, the rotor-blade stagger angle setting of 380 
achieved the highest fan efficiency of 83 percent, but at a reduced developed head of 
94 percent of design head. This particular test did have the benefit of a less severe 
annulus passage contraction upstream of the fan.. In terms of good stall margin and 
reasonable radial profiles, the 380 stagger angle setting appeared to be the most 
favorable. The radial total pressure profiles for this stagger angle setting shown in 
Figure 11, with the exception of the starboard profile, exhibit a nearly normal radial 
distribution, with a greater performance decay towards the hub region than the tip 
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its ahility to meet the more severe boundary layer effects that eixist at the inlet of the 
full-scale fans of the 40x80 foot wind tunnel. 

° 
Of the various low-speed fan blade angle settings, the 35.4 stagger angle did 
approach achieving the design head of 680 feet. It showed, however, a limited flow 
range capability, with stalling characteristics appearing at the 90 percent flow 

condition. Based on the above test results and factoring in the more stringent 
performance requirements contemplated for the full-scale fans-(1) operating with a 
reduced fan hub/tip ratio of 0.4375, and (2) with significantly thickened inlet boundary 
layers generated by the tunnel walls-the original aerodynamic design of the low-speed 
fan became questionalelain its ability to meet the full-scale fan performance objectives 
of th~e 40x80 foot wind tunnel. 

ACOUSTIC PERFORMANCE OF LOW-SPEED FAN 

The acoustic test results for the low-speed fan are presented in Tables 3, 4, and 
5. Table 5 shows the low-speed-fan noise frequency spectra for the model and six 
prototype fans corresponding to the design-developed head and flow condition" of the 
fan. Tables 3 and 4 are summaries of the reduced acoustic results for the low-speed fan 

generated by GCRD. 
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NASA-AMES LOW SPEED FAN MODEL NOISE TESTS - DBA SOUND POWER LEVEL SUMMARY
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Table 4 

NASA-AMES LOW SPEED FAN MODEL NOISE TESTS -'DBA SOUND POWER LEVEL SUMMARY 
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Table 5 

LOW-SPEED FAN--NOISE SPECTRA
 
AT DESIGN SPEED AND FLOW,
 

LOW SPFrD FAN 354 DEGR. 100,1 SPIED inO FLOW
 

FREOUENCY LU RE 1F-12 WATTS
 

HERTZ MOPEL PROTOTYPE
 
(5IX FA;S)
 

25 122.9 142.8
 
31 122.6 142.1
 
40 122.6 142.1
 
50 121.6 142.7
 
63 121.1 140.8
 
80 120.7 141.2
 

100 119.9 145.2 
125 119.4 140.6 
160 118.5 140.6 
200 117.8 141.1 
250 117.8 139.2 
315 118.5 137.5 
400 116.6 137.5 

500 117.0 136.3 
630 121.0 135.2 
800 116.3 133.9 
1000 ,116.3 132.4 
1250 11A.9 132.0 
1600 115.0 130.4 
2000 113.2 127.8 
2500 113.3 124.4 
3150 112.0 125.5
 

4000 110.9
 
5000 109.7
 
6300 108.2
 
8000 107.8
 

10000 106.2 
12500 103.5
 
16000 100.2
 
20000 101.2
 

DBA 126.5 142.9
 

As was previously described in Figure 10, the low-speed fan has to operate at the 
reduced stagger angle setting of 35.4" to attain design-developed head. This somewhat 
penalized its acoustic. performance. The noise levels for the low-speed fan at design 
operating conditions are respectively 126.5 and 142.9 dBA for the model and six 
prototype fans. This falls short of the originally predicted noise levels of 122.1 and 139 
dBA respectively for the model and six prototype fans. Yet, in spite of this deficiency 
in realizing the predicted noise levels for the low-speed fan, the test. results showed a 
definite significant reduction in fan noise generation in going to the low-.speed 
configurati6n. 

Comparison of Acoustic Performance of Low-Speed and High-Speed 
Fan Configurations 

The low-speed fan noise test results at design operating conditions (Table 4, Run 
171) are 126.5 and 142.9 dBA respectively for the model and six prototype fans. This 
compares to noise levels for the high-speed fan configurations of 127.7 and 146.8 dBA. 
While this comparisont shows a net reduction in the order of 4 dBA in going from the 
high-speed to the low-speed fan configuration, it represents a conservative comparison. 
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that would be midway between the two test comparisons of Runs 171 and 291. This 
would represent a noise reduction of 53 dBA for the low-speed fan over that, of the 
high-speed fan. -
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AERODYNAMIC PERFORMANCE OF LOW-SPEED FAN 
WITH ARTIFICIALLY GENERATED INLET DISTORTIONS 

The inlet flow distortions that were introduced at the fan entrance are shown in 
Figure 12. The obstructions that were introduced at the inlet to the model fan were 
designed to simulate the thickened boundary layer conditions on the tunnel walls 
upstream of the six-fan cluster. 

18' - 0" 26' - 0" 34' - 0" 

FAN 
I WIRE-

SCREEN:' ­
)
 

DISTORTION 1 3/4"0" THICKHONEYCOMB(47.79 Wt
SCREEN/1 


S"C" CONFIGURATION "D CONFIGURATION
 
5 WOODEN BLOCKS + "A" 22x4" STACKED VERTICALLY
 
W2' APART / (e.g. D-9 = 9 - 2x4's
 

TYPE OF RUN
 
NOS.
INLESTEDISTORTION
H = HORIZONTALV =VERTICAL H & V 222 - 304
 

A & B 348 - 447
!2 - C 452 - 454
 

D.Se 504 - 5 0 
H & Vt2 Layerss W= Width of Duct 


1Lay
'r
 

A = TWICE THE NUMBER OF LAYERS OF H or V
Fiur 12.erLo-See -A.= TWICEUTHB NUMIBER OF LAYERS OF B Fan InetDitotin 
D.S DOUBLE SCREEN @ 26' STATION (FULL DUCT AREA)
 

14 x 18 WIRE
 

Figure 12. Low-Speed Fan - Inlet Distortions 

Based on -the test results it appears that the fan tip section is able to operate 

with a highly distorted flow without stalling. This is illustrated by the test results with 
maximum blockage, corresponding to configuration D-9 (Figure 12).. Examination of 
computer output sheets for the inlet and discharge fan performance, presented in 
Figures 13 and 14 for Runs 461 and 462 corresponding to the bottom azimuth surveys at 
stations 4 and 6 respectively, shows that with a severely skewed velocity profile from 
tip to hub, the tip section had no problem in exceeding design-developed head by 
approximately 20 percent. Furthermore, the developed head rise of 821 feet for the 
entire radial blade section, based on the total pressure rise data from the station 4 to 6 
survey probe; seems to indicate the ability of the fan to operate with a thickened 
boundary layer over a circumferential sector without stalling. The data, however, are 
not conclusive, since only two of the four azimuth positions (bottom and top) were 
surveyed. There is conceivably a circumferential shift of the poor-performance regions 
of the fan that would have shown up in either the port or starboard survey position had 
they been taken, and the overall fan performance may actually be poorer than that 
indicated by the more favorable results shown by the bottom and top azimuth surveys. 
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Figure 13. L6w-Speed Fan-Inlet Survey with Inlet Obstructions; Station 4 
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Figure 14. Low-Speed Fan-Discharge Survey with Inlet Obstructions; Station 6 
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It would appear, therefore, that the inlet distortion tests on the low-speed fan 
should be repeated with survey data taken at the four azimuth positions, to more 
correctly ascertain how well the 40-foot-diameter fans will perform in the presence of 
a distorted flow due to a thickened boundary layer. 
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Section 4 

RESTUDY OF LOW-SPEED FAN REDESIGN 

The aerodynamic test results on the low-speed fan established that the fan hub 
profile was poor and would further deteriorate in going from a hub/tip ratio of 0.5 to 
0.4375. It was, therefore, decided to reevaluate the fan blade design procedures in 
arriving at the original rotor and stator blade shapes for the low-speed fan. In order to 
capitalize on the advanced analytical procedures for fans that are aVailable within the 
General 'Electric Company, this study phase was turned over to GE's Aircraft Engine 
Business Group's Advanced Turbomachinery Aeodynamics Subsection under the direction 
of Dr. Leroy H. Smith, Jr. 

RESULTS AND RECOMMENDATIONS OF LOW-SPEED FAN AERODYNAMIC STUDY 
BY GE'S AIRCRAFT ENGINE BUSINESS GROUP (AEBG) 

The aerodynamic fan study evaluated the following rotor and stator blade design 
areas: 

@Rotor and stator blade chord length distribution with radius. 

* Rotor and stator airfoil maximum thickness ratio with radius. 

* Rotor and stator camber angle distribution with radius; 

* Rotor andstator stagger angle distribution withradius. 
* Basic airfoil thickness distribution for the rotor and stator
 

and blade stacking arrangement.
 

Rotor and Stator Blade Geometry Recommendations 

The recommended rotor and stator blade geometry modifications resulting from 
the aerodynamic study are' shown in Figures 15 through 20. 

Blade Chord Length and Thickness Distribution 

Changes in the stator chord length and rotor and stator blade thickness 
distribution are shown in Figures 15 and 16. All of these values were increased from the 
original design. The increase in stator chord length was incorporated to improve its 
stall resistance; the 'increase in blade thickness distribution was mainly dictated by 
structural considerations. 

Blade Camber 

The blade camber shape shown in Figure 17 was considerably modified from its 
original design for both the rotor and stator. The. curlups in camber at the hub are 
primarily a result of the recognition of end-wall boundary layer effects that show up as 
increased losses and a consequent requirement for increased air deflection there. At 
the tip the camber curlups are also partly due to increased losses, but an additional 
consideration adds to the camber. This is the assumption of a slightly reduced inlet 
total pressure toward the tip in anticipation that the inlet profile, treated on a 
circumferential-average basis, will be better matched this way. The magnitude of this 
assumed inlet total-pressure distortion is small. It represents a 10 percent lower-tip 
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axial velocity than the hub axial velocity when calculated under the assumption that th 
static pressure is uniform. With the nonuniform static pressure that was actuall 
computed to exist at the rotor face, the axial velocity distribution from tip to hub wa 
not so severe, the tip having an axial velocity only 4 percent lower than the hub. 
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Figure 17. Camber Angle vs. Radius 

Blade Stagger 

The blade stagger-angle setting (Figure 18) was increased'for both rotor anc 
stator. This was largely a consequence of the camber increases shown in Figure 17. 

Airfoil Shape Modifications and Blade Stacking Arrangement 

The original blade C-4 thickness distribution for the rotor and-stator was changeg 
to a modified NACA 65-series thickness distribution on circular arc mean lines, and thE 
individual airfoil sections were stacked on a radial line through their centroids. ThE 
rotor blade sections are shown in Figure 19, with the inscribed circle (which is 90% of 
the blade spacing at the hub) representing the recommended rotor blade trunnior 
diameter. 

The large trunnion size is designed to minimize the clearance that occurs wherE 
the root airfoil overhangs the trunnions. Furthermore, since such a clearance at thE 
leading edge tends to form an aerodynamically unfavorable forward-forcing step, it is 
recommended that the root section be slid aft, as indicated by the dashed line, in order 
to eliminate any leading edge overhang. 
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Hub Modification to Improve End-Wall Boundary Layer 

The end-wall boundary layer shape leaving the rotor and entering the stator can 
be improved by allowing the hub surface between the rotor and stator to rotate, This 
feature is shown in the view of the fan (Figure 20). 

Stator Airfoil Sections 

The modified stator airfoil sections are shown in Figure 21. The sections were 
shaped to discharge the flow to the diffuser without any appreciable swirl. 

REDESIGNED FAN PERFORMANCE 

The final test results on the redesigned low-speed fan were not forthcoming in 

time to be incorporated in this report. However, preliminary test results indicate 
significant performance improvement for the redesigned fan employing 65-series airfoil 
blade sections over that obtained with the original C-4 airfoil blade section in the low­
speed fan design. 
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Section 5 

SUMMARY 

The comprehensive aero-acoustie investigation program for the NASA-Ames 1/7­
scale model fan established the necessary aero-acoustic design guidelines which will 
enable optimization of the 40 foot full-scale-diameter fans to be incorporated in the 
repowered section of the 40 x 80 foot wind tunnel. The extensive investigation program 
established the following fan aero-acoustic characteristics: 

1. 	 The low-speed fan design will be quieter than the high-speed fan by 4 to 
5 dBA. 

2. 	 The high-speed fan with its lighter blade loading was'several points more 
efficient than the low-speed fan. Its indicated efficiency of 86 percent 
was several points below its objective design efficiency of 90 percent. 

3. 	 The original design of the low-speed fan marginally met its design head 
requirement and was seven percentage points deficient in its efficiency 
objective. Its poor hub-region operation mandated that a new aerodynamic 
design be incorporated, if the fan was to meet the performance objectives 
of the 0.4375 hub/tip ratio design contemplated for the full-scale fans. 

4. 	 Initial performance results on the redesigned low-speed fan indicate a 
significant performance improvement over the original design. 

5. 	 Fan inlet distortion tests indicated a considerably greater fan capability 
in operating with thickened boundary layers over a circumferential sector 
without stalling. 
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Sectiop 6 
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Appendix A
 

4P x 80 FOQr MODEL PAN PERFORMANCE INSTRUMENTATION
 

A. 	 Overall Fan Performance Instrumentation 

Stations: 0, W-], LF3 ] and 6A­

] Symbols refer to stations described on drawing A T4622-C 

Station No. Type of Instrumentation 

0 (1) 5 Thermocouples-Millivolt Readings 

(Upstream of "STA ZERO") 	 (2) Barometer--(in. HG) 

(3) TA-Manometer Fluid Temperature (OF) 

ED 16 - Static Pressure Taps, 
-4 per 	Panel (in. H20) 

F3 4 - Total Pressure Rakes 
6 Total Pressure Tubes 
per Rake; 24 Total (in. H20) 

] Radial Traverse Probe: 
(4 Circumferential Positions - (1) Static Pressure (in. H 0) 
90°Apart) (2) Total Pressure (in. H 2 t) 

(3) Direction (degrees), 
Null Balance 

6A 	 3 Fixed Thermocouple Probes for 
Total Temperature at Strut Entrance 

Fan Power Input Measurements: 
-1. Fan Speed 
2. 	 Torque Input, ft-lb 

B. 	 Rotor Performance Instrumentation 

Stations: 0, 0 , M ,. M , ] and6A 

Instrumentation for stations 0, F] , F3 and 6A same as "Section A" 

Instrumentation for stations M and F5 same as for station j-jof Section A 

C. 	 Diffuser Performance Instrumentation 

Stations: 0, [, F6I, 6A, and El 
Instrumentation for stations 0, [J , [ and 6A same as in Section A 

PRECEDNG PAGE BLANK NOT FITLMD
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Station No. Type of Instrumentation 

8 16 - Static Pressure Taps, 
4 per Panel (in. H2 0) 

4 - Total Pressure Rakes, 
6 Total Pressure Tubes per Rake; 
24 Total (in. H20)
 

All presstVe instrumentation will have to be read to an accuracy of ± 0.01 in. H20.
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Appendix B 

40 x SQ FOOT MODEL FAN OVERALL PERFORMANCE 
CALCOJLATIOW PROCEDURE 

PROGRAM STRUCTURE AND INPUT DATA FILE 

The program is structured to evaluate the fan adiabatic efficiency, corrected 
weight flow, and normalized developed head, pressure rise, weight flow, and input 
horsepower for each specific constant-speed constant-throttle valve flow setting. The 
program treats each azimuth position of the discharge Radial Traverse Probe as a 
separate run number. The performance data for the number of azimuth stations 
employed are normalized and then averaged to arrive at the overall performance data 
of the fan. 

The input data should then be assembled in two arrays. The first array, 
arbitrarily designated as (1), will correspond to the elements of the Radial Traverse 
Probe radial positions on centers of equal area at Instrument Station 6 for a 
particular azimuth location. The second array, arbitrarily designated as (J), will 
correspond to the azimuth or circumferential positions of the Radial Traverse Probe 
identified as run numbers. 

DATA INPUT FILE 

The inputted data for overall performance reduction will be as follows: 

(1) TA(J) = Manometer Fluid Temperature, OF 
(2) -BAR(J) = Barometric Pressure, "Hg 
(3) TMER(J) = Temperature of mercury barometer, F 
(4) TO(J) = Average of 5 Inlet tliermocouples (millivolt readings 

(5) PSTIJ) = 
converted to OF)
Average of 16 static pressure taps at station [] , "H2 0 with 

(6) PTO(J) = 
respect to ambient 
Average of 24 total pressure tube readings at station [], 
"H 0 with respect to ambient (values should be negative 
if less than atmospheric pressure) 

(7) PSD(I,J) = Static pressure at immersion (1)for azimuth position (J) of 
Radial Traverse Probe, "H2 0 with respect to ambient. Value 

(8) PTD(I,J) = 
is negative if pressure is below atmosphere 
Total pressure at immersion (), same as for static pressure 
in step (7)­

(9) 2Z(I,J) = Fluid flow direction with respect to axial direction as 
measured.by Radial Traverse Probe, degrees 

(10) TD(J) = Average discharge tempetature at station 6A, 
(millivolt readings converted to OF) 

(11) N(J) = Fan actual speed, rpm 
(12) TORK(J) = Fan torque measurement, ft-lb 
(13) 

(14) 

NPERC 

NDES 

= 

= 

Percent of design speed to which overall performance
will be corrected, per unit (100% = 1)
Fan design speed, rpm 
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PROGRAM COMPUTATION LOGIC 

Two loops will be set up similar to the input data loops, with the (I) loop evalu­
ating the radial pressure data at an azimuth location of the Radial Traverse Probe and 
the (J) loop evaluating the average conditions of fan efficiency, total head, pressure 
rise, weight flow, and horsepower associated with all the azimuth measurements of the 
Radial Traverse Probe, during a particular flow and speed setting. 

2 22
(005) AN = 	 Inlet lozzle throat area, ft 2 , S2 = 6.9 
(010) 	 RD = 1 x 10 (initially assumed Reynolds number for 

calculating fan weight flow) 
(015) ETAS = 	 0 
(020) HADSUM = 	 0 
(025) WSNOR = 	 0 
(030) 	 NP = Number of azimuth or circumferential positions of 

Radial Traverse Probe 
(035) NS = 	 Number of radial stations of Radial Traverse Probe 
(040) DO 100 J = 	 1, NP 
(045) 	 RHQW = Manometer fluid density, lb/ft 3 expressed as a function 

of TA(J) (RHOW = 62.38 lb/ft at 58 0 F) 
(050) 	 KPS = Pressure conversion factor ("H20 to psi)
 

RHOW/1728 = (045)/1728
 
(055) 	 KMER = Barometer multiplication factor to convert "Hg to 

psi, function of TMER(J) = (3+ Data) 
(060) 	 PATM(J) = Absolute pressure in psia, KMER x BAR(J) = (055) 

x (2+ Data) 
(065) TOA(J) = 	 Absolute inlet air temperature, 0R 
(070) RHO = 	 Inlet density, lb/ft , 

PATM(J) x 2.7 - (060) x 2.7 

TOA(J) (065) 

(075) 	 DPN = Inlet Nozzle differential pressure, psi,
 
PSTI(J) x KPS = (5 + Data) x (050)
 

(080) MU = 	 Dynamic Viscosity, Ik/sec-ft 
[1.109 + 1.673 x 10 TO(J)] x 10­

5 
1.109 + 1.673 x 10- 3 (4 + Data) 	 x 10 ­

(085) 	 CN = Nozzle flow coefficient, CN = f(RD) 
(Equation for CN to be developed from 1 ft 2 . 
Inlet Bellmouth Flow Tests at GE) 

(090) WN(J) = 	 Fan weight flow, lb/sec, CN x AN x 

12 x /DPN x RH%, 2g = 96:26 x (085) x (005) 
x [(075) x (070

(9)RNWN(J) 	 = 00/69x(8)
(095) RDN = 	 (SxMU)­WN(J) - (090)/(6.9 x (080) 

(100) If LABS(RDN-RD) GT • 500) G$ T$ (110) 
(105) G T (115) 

(110) RD = 	 RDN, Return to (085) 
(115) 	 PTOA(J) = Absolute inlet total pressure, psia,
 

(PATM(J) + PTO(J) x KPS) = (060) +
 
(6+ Data) x (050DJ
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Evaluation of Radial Weighted Flow Discharge Total Pressure as Measured by 
Radial Traverse Probe at Station jn6 
(120) WSUM(J) = 	 0 
(125) PTDSUM = 	 0 
(130) PTDWSUM = 	 0 
(135) DO 200, I =1, NS 
(140) 	 PSDA(I,J) = Absolute discharge static pressure, psia, 

(PATM(J) + PSD(I J) x KPS) = [(060) + 
(7 + Data) x (050) 

(145) 	 PTDA(IJ) = Absolute total pressure, psia, (PATM(J) + 
PTD(I,J) x KPS) = [(060) + (8+ Data) x (050)] 

(150) TDR(J) = 	 Discharge temperature, OR, [TD(J) + 460J = 

E 
+(10 Data) + 460 

(155) VAB(I,J) = 	 Absolute velocity, ft/sec, (2g R (TDR) 

1PTDA(IJ 58.56 (150) 	x 1 1/2SPSDA(I,J)Jj 1_) 5 
(IJ)]'_(140) 

(160) a2Z(I,J) = 	 Fluid flow direction with respect to axial-direction, 
degrees
 

(165) VZ(I,J) = 	 Axial component of absolute velocity, ft/sec, 
[VAB(I,J) x cosa 2Z(12 ,J)] = (155) x cos (160) 

2 ­(170) 	 AZI = Stream tube area, ft 2 , , (D DI) 

2_ 2) 4 NS
0.785(6 -3 _ 21.206 

NS (035) 

(175) RHOD(IJ) = 	 Approximate stream discharge density, lb/ft 3 , L2.7x PSDA(I,J) 2.7 (140)
TDR(J)j(150) 

(180 W(I,J) = 	 Stream tube weight flow, lb/sec, RHOD(I,J)x 
VZ)I,J) x AZI = (175) x (165) x (170) 

(185)' WSUM(J) = 	 WSUM(J) + W(I,J) = (120) + (180) 
(190) 	 PTDW(I,J) = Weighted total-pressure term in stream tube, (psia) 

(lb/sec), PTDA(I,J) x W(I,J) = (145) x (180) 
(195) PTDWSUM = 	 PTDWSUM + PTDW(I,J) = (130) + (190) 
(200) PTDSUM = 	 PTDSUM + PTDA(I,J) - (125)+ (145) 
(205) 200 continue 

(210) If (AS (I WSUM(J) .GT. .15) 	 G4 T (222) 
(215) PTDJ(J) WnJ) 	 PTDWSUM/WSUM(J) = (195)/(185) 
(220) GO TO(230) 
(222) Print Message: Weighted 	Method Not Used 
(225) PTDJ(J) = 	 PTDSUM/NS = (200)/(035) 
(230) DEL = 	 Ratio of inlet total pressure to ssandard pressure of 

14.694 lb/in , [PTOA(J)/14.694J ­

(115)/14.694 
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(235) THETA 

(240) SQTHET 
(245) NCOR(J) 
(250) KN 

(255) WCOR(J) 

(260) WNOR(J) 

(265) WSNOR 

(270) PR(J) 

(275) HISEN 
(NTOA(J) 

(280) HISNQR(J) 

(285) HADSUM 

(290) HPINP(J) 

(295) ETA(J) 

(300) ETAS 

(305) 100 continue 
(310) ETAV 

(315) HADAV 

(320) WNORAV 

(325) DPFAN 

(330) HPAV 

= 	 Ratio of inlet total temperature to standard 
temperature of 518.6 0 R [OA(J)/518.6J 
(065)/51 2 

= (THETA) = (235)1/2 
Corrected speed, rpm, N(J)/-e = (11+ Data/C240) 

= 	 Speed and temperature correction factor 
(Fan design speed) x NPERC/NCOR(J) = 
(14+ Data) x (13 + Data)I(245)

= 	 Corrected Flow, lb/sec, LWN(J) x SQTHET/DEL = 

(090) x (240)/(230) 
= Normalized weight flow, lb/sec, WN(J) x KN/DEI = 

(090) x (240)(230) 
= Weight flow summation, ib/sec, WSNOR + WNOR(J) = 

(025) + (260) 
= 	 Pressure ratio at azimuth position of Radial Traverse 

Probe, [PTD(J)/PTOA(J)] = (215)/(115) or 
(225)/(115) 286 x 

= 	 Isentropic developed hea. 8it, FPR(J) - 1x 
x 186.6 = [(270) - 1] 

= Normalized qeveloped head, ft, 
(275) x (250) 

= Head summation, ft, IHADSUM 
(020) + (280) 

x (065) x 18L6) 
[HISEN x KN-= 

+ HISNOR(J)J = 

= Shaft power input, HP, [TORK(J) x , N(J)/33,000] 
(12 + Data) (11 + Data) x 1.904 x 10 ­

= Fan WN(J) x HISEN = 
2eiciencYHPINP(j) x -5 090) x 

(275)/[(290) x 550] 
= Efficiency summation, [ETAS = ETA(J)] 

(015) + (295) 

= 	 Average fan adiabatic efficiency for all azimuth 
position of Traverse Probe, 

,ETA S 
N(P =(300)/(300) 

= 	 Average fan developed adiabatic head, ft, for all 
azimuth position of Traverse Probe, (HADSUM/NP) = 
(285)/(030) 

= 	 Average normalized weight flow, ib/sec, for all azimuti 
positions of Traverse Probe, (WSNOR/4 'P) = (265)/(030)

= 	 Average fan developed pressure, lb/ft 

[ -2116HADAV -5
 

21 186.6) x518.6j +1
 

= (315) x 1.03337 x 10- 5 + 1 3.5 _ 
= 	 Average fan shaft power, hp, HADAV x 

WNORAV/ [ETAV x 550 = (315) x (320)! [310) x 
550] 
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DESIRED COMPUTER PRINT-OUTS 

1. All Input Data Except TACJ) and TMER(J) 

2. The following list of calculated results 

PATM(J) WN(J) HISNOR(J) WSUM(J) 
TOA(J) WCOR(J) HPIND(J) 
PTOA(J) WNOR(J) ETA(J) 
TDR(J) PR(J) 
PTDJ(J) 

ETAV, HADAV, WNORAV 

DPFAN HPAV 
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Appendix C 

FAN ACQUJSTIC PATA lEIaUCTION PROGRAM 

NASAFAN 10/29/7 4
 

10 FILES 00' imItA A [ENS;FA'JDATA; qIKEAREASP flFANC4LC
 
20 DIM XC136),ACI,36),RCI.36),FI,36).0C(4,36),M(A,36.,k(l.36),JCI,3S)
 
30 DIM PC36,36),L(IU),LC36,37),W(c36,36), FC1,37),O(l,37),SCI,36)-,'JIC3,)
 
40 SCR CAEH '16
 
50 MARGI' 46,175
 
60 MAT READ #O.F.NsSU
 
70 AO = 100
 
80 GO = -10.5
 
90 SO = .15
 
100 YO = SGN(LCGCSO))*INTCASS(3/LGGc2)iLOG(SO))+.5)
 
110 WU = 6/SOt2
 
120 N = 36
 
130 MAT HEAD #1,X(I,N)
 
140 MAr NEAD #2,A(l",')
 
150 READ 03, f$
 
160 MAT READ 44,M
 
170 MDAF REA) I/4,K
 
I80 READ #5,PS
 
190 READ M0,AS,R$,C$.DS. FsG'S.HSI .$
 
200 READ #-3,Q
 
210 IF J > 0 FHE' 1860
 

230 J2 = IJr(-)
 
240 Ji = 100*CO-J2)
 
2 50 JI = i.qrcJl-.5)
 
260 J2 = I,f(J2-.5)
 
270 FO, J = J1 TO J2
 
280 READ 03,C(1,J)
 
290 NEXr J
 
300 L(I) C(l,11)
 
310 FOR K =2 TO 4
 
320 READ #3,JO0
 
330 IF JO o -0 rHE'1 1860
 
340 FOR J = Jl T J2
 
350 READ #3,C(KJ)
 
360 NEX f J
 
370 L(K) = C(K,Il)
 
380 NEXT K
 
390 FOR K = I Y0 N
 
400, READ #3,J0
 
410 IF J0 <> -J fHE'J 1860
 
4 0 FOr J = J 170 J2
 
430 READ '13.-CKJ)
 

r440 MO K-4*IN[CCK-)/Z)
z5d"L'(XCIK)','J) = P(K,J)-M(MOJ)+124-ZC'MO) ACIK -fAO 
460 'J(X(C1,K),J) = LCX(l,K),J)+K(,X((1,K))+C0
 
470 V(I,J) = L(X(I,K),J)
 
480 VEX r J
 
4(it GSUB 1660
 
500 L(X(I,K),37) = A9
 

PRECEDING PAGE BLANK NOT fl1 
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NOSA FAN 10/29/74 

510 NEXT K 
52Q FOR J = Ji ro J2 

530 4 = 0 
540 FOR K = i [C N 
550.W = W+10t(W(KJ)/10)
 
560 NEXiT K
 
57.0 r(1,J) = 1O/L6GCIO)*LCG(W) 
580 NE~f J
 
590 FOR J = JI TO J2
 
600 IF J > J2+YO THEN 630
 
610 0(1,J) = f(IJ-Y0)+I0/L(IOrC)*LOrCWO)
 
620 NEA I J
 
630 FOR J = Ji TO J2
 
640 ,V(IJ)= fC1,J)
 
650 NE/XT J
 
660 GOSUB 1660
 
670 (1,37) = A9
 
680 Fr J = JI TO, J2
 
690 VCI.J) : O(l,J)
 
700 NEXt J
 
710 GOSuB 1660
 
Ion ,01*.)7 7 ­

730 FOR J = I TO 10
 
740 ir3 ATI #6 
750 NE'T J
 
760 PRINTI #6, USING7SO, IT,
 
'770 PRINT 46 
780: 'CCCcCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCfCCCCCCCCCC'qCC 
790 PIA.qr #6 1 
800 PRI'NT #6
 
810 PrI r #6,A; TABC21);BS
 
820 PRINr #6 
830 PaINr #6,1T4(2)JC$;rTBc2O);D$S;TAB(30)IFS

&4qOPRI.NF #6,[Aq(30)JF$
 
db3 PRINT #6
 
560 FOR J = J1 TO J2
 
870 PRI'4f #6,USI'JG 1530,F(I,J)3
 
880 GOIO 910
 
890 PRINr #6
 
900 PRI.ql #6," ";Js3 "I
 
910 PRIN f6," "
 
920 PRI Vf #6,US ING '30, FCI,J)3 
930: ###.##
 
940 PRINt 46," ";
 
950 IF J = 37 [HE') 970
 
960 IF J J2+YO THE\ 980
 
970 PRINT #6,uSlIG 930, )(1,J)3

980 PHI Jr #6
 
990 IF J = 37 Ml-EN 1030
 
1000 NEA I ORIGhM]E PAGE 

OF POOR QUALITY 
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.1010 J = 37 
1020 Goro 890
 
1030 PRINt #6,P$
 
1040 FOR J = I TO 10 
1050 PRINF #6
 
1060 NEX" J
 
1070 PRI'Jf #6,UJSING 1080,GWR
 
1080: CCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCflCCCCCCCCOCC
 
1090 rRIIJ #6
 
1100 PRINT i6
 
1110A1 -­

1120 8 = 4 
1130 GOSUS 1330
 
1140 FGR J = I 10 10 
1150 PRINT #6
 
1160 NEXT J
 
1170 PRINT #6,USING 10S0,H$
 
1180 PRNINf #6
 
1190 PKINF #6
 
1200 A = 5 
1210 8 = 16 

1230 FOR J - I £O 10
 
1240 P-xRINr #6
 
1250 NEXT J
 
1260 PIM F #6,USING 1080,IS
 
1270 PRiINI #6
 
1280 PRINT #6
 
1290 A = 17
 
1330 B = 36 
1310 GOSUB 1330
 
1320 STOP 
1330 PfINr #6,A$J" "1 
1340 FOR I = A TO 8
 
1350 pRi,.r #6,USING 1360,6(1.I);
 
1360: #
 
1370 NEXI I 
1380 PRINE #6 
1390 PRINt #6, rA8C2);CSV"' "I 
1400 FOR I = A rq 8 
1410 IF U(1,1) <> I £HE'J 1440 
1420 haPRI'Jr #6," ** "3 
1430 flOtO 145O 
1440 PRINT #6," "
 
1450 JEX f I
 
1460 PR INr #6
 
1470 PRINT #6
 
1480 FOR J = JI 1O J2
 
1490 PrINt #6,USING 1530,F(l.J)j
 
1500 GOfO 1530
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1510 PRINT #6 
1520 PRINt #6, " 
1530: ## 4[## 

1540 PRI'JT #6," 
1550 FOi< I = A To 9 
1560 PrINTf #6,USING 1570,LCS(II),J); 
1570: #4.# 
1580 NEXT i 
1590 PrI'" #6 
1600 IF J = 37 THENJ 1640 
1610 NEAt J 
1620 J 37 
1630 GOTO 1510 
1640 PRINr 96,P$ 
1650 RE r uiN 
1660 A9 = 0 
1670 FON J = I TO 31 
1680 A9 = A9+IOtCCVCI,J)-RCIJ))/0). 
1690 ,NEXT J 
1700 A9 = IO/LOG(10)*LOGCA9) 
1710 RETur N 

1730 DATA 1000,1250,1600,20O0,9-500,3150,4000,5000,6300,R000,10 00 
17"40 DATA 12500,16000,20000,P5000,31500, 40000, 50000, 63000,qn00 
1750 DATA 44.7,39.4,34.6,30.2,26.2,2aP.5,19.1,16.1,13.4,10.9,8.6 
1760 DATA 6.6,4.8,3.2,1.9,.8,0,-.6,.-I,-I.o,-1.3,-I.0,-1,-.1,.1 
1770 DATA 1.1,2.5,4.3,6.6,9.3,0,0,0,0,0,0 
1780 DATA 15,16,22,21,a,9,10,1l,17,123,29,29,p7,26,PO,14,1,P,a,4, 5,6 
1790 DATA 12,18,24,30,36,35,34,33,32,31,25,19,13,7 
1800 DATA II,1,0,0,I,0,0,1,0,0,1,0,0,l.0.0,0.0, 1,0,00l0,I 
1610 DATA 0,0,0,0,1,0,0,0,0 
1820 DATA FREJUENCYL4 RE IE-12 WATTS,HERTZ,MODFL,PRVIF0TYPF 
1830 DATA (SIX FANS)
 
1840 DATA SPL OF CF'JrE, CELLS,SPL OF INTERMFDIATF CFLLS
 
1850 DATrA SPL OF. iUTER CFLLS,DRA 
1860 PRIJf "CHMFCK0Ar4" 
1870 END 
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100 1,4,7,10.2,5,8,11,3,6,9,12
 
110 13,16,19.22,14,17.,20,23,15,18,2124
 
120 25,28,31,34,26,29,32,35,27,30,33,36
 

ATTENS 10/29/74
 

100 90.90,90,90,90,90
 
110 90J90,90,90,90,90
 
120 90,90.90,90,90,90
 
130 90,90,90,90,90,90
 
140 90,90,90,90,90,90
 
150 90,90,90,90,90,90
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50 PROGRAM CALCULATION CHECKS
 
100 -30,02.070.00,070.00,070.0.070.50,086.25,070.-OQ.070.00,
 
310 077.00,086.00,104.00,123.50,105.00.036.75,089.00.073.75,
 
120 070.00,075.00,070.00,070.00,070.00,070.00,070.00.070.00,
 
130 070.00,070.00,070.00,070.00,070.00,070.00,
 
140 -30.02,070.00,070.00,070.00,070.50,086.25,070.00.070.00,
 
150 077.00,086.00,104.00,123.50,105.00,086.75,089.00,073.75,
 
160 070.00,075.00,070.00,070.00,070.00,070.00,070.00,070.00,
 
170 070.00,070.00,070.00,070.00,070.00,070.00,
 
180 -30.02,070.00,070.00,070.00,070.50,086.R5,070.00,07b.00,
 
190 077.00,086.00,104.00,123.50,105.00,086.75,0S9.00,073.75,
 
200 070.00,075.00,070.00,070.00,070.00,070.00,070.00,070.00,
 
210 070.00,070.00,070.00,070.00,070.00,070.00,
 
220 -30.02,070.00,070.00,070.00,070.50,086.25,070.00,070.00,
 
230 077.00,086.00,104.00,123.50,105.00,036.75,089.00,073.75,
 
240 070.00,075.00,070.00,070.00,070.00,070.00,070.00,070.00,
 
250 070.00.070.00.070.00,070.00,070.00,070.00,
 
260 -30.02,078.25,078.00,073.25,073.25,079.00,070.00,07n.00,
 
270 075.25,080.75,075.00,080.00,09.00,094.00,095.50,092.75,
 
280 096.75,105.75,095.00,095.75,09875,096.00,095.00,094.50,
 
290 094.00,092.00,092.00,090.50,0qs.50,090.75,
 

31.0 078.00,084.50,080.50,084.25,088.5009.50.,94.00,09;.50,
 
320 099.00,111.00,096.50,100.00,098.75,097.25,099.00,096.25,
 
330 096.75,095.50,093.00,090.50,039.75,0OB..50,
 
340 -30.02,078.25,078.00,073.75,073.00,072.75,071.75,070.00,
 
350 071.50,081 .25,075.50,079.5O,086.75,091.25,093.00,n39.0,
 
360 093.25,105.50,091.25.095.00,095-25,093.50,095.00,090.50,
 
370 088.25,086.25,084.75,083.00,086.50.085.75,
 
380 -30.02,078.75,078.00,072.50,07A.00,073.25,071.50,070.00,
 
390 073.50,08S.75,074.50,079.00,086.50,090,o00091.50,090.75,
 
40 095.00,107.25,091.75,095.00,097.25,092.50,094.75,089.75,
 
410 086.75,085.25,083.25,081.75,032.00,081.25,
 
420 -3Q.02,079.50,076.50,073.25,071.75,071.00,070.75,070.00,
 
430 073.25,087.00,074.25,079.25,087.50,092.00,094.25,091.25,
 
440 095.75,I0.25,093.75,094.50,09s.50,095.25,095.50,090.00,
 
450 088.75,087.00,085.25,082.75,082.00,o83.50,
 
460 -30.02,030.00,079.00,073.25,073.75,072.75,0TV.00,070.00,
 
470 074.50,075.00,0 1.00,08 .75,099.50,O95.75,096.75,096.PS,
 
430 096.75,107.00, 103.00,099.50,100.50, 100.5,099.50,097.00,
 
490 098.00,096.75,096.25,095. 50,092. 50,094.00, 
500 -30.02,099.25,094.75,091 . 00,0S7.25,0.35.50,0S3.50,07S.90, 
blO 081.50,U$1.25,090.00,086.75,090.75,09. 50.095.25,094.50, 
520 099.00, 109.25,108.75,104.00,102.?5. 102.25,103.50,100.75, 
530 100.75,099.50,098.00,095.50,094.00,090.50, 
540 -30.02,077.50,076.50,073,00,073.25,072.50,071.00,070.00,
 
550 072.25,076.00,035.75,08|.75,0W7.75,094.25,094.50,093.qS, 
560 093.50, 104.00,104.00,099.25,099.00,098.00,096.75,091.75, 
570 092.75,090.75,089.50,037.75,0R8.50,0R7.0o, 
580 -30.02,079.25,077.25,073.75,073.25,072.50,071.25,070.25, 
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http:30.02,079.25,077.25,073.75,073.25,072.50,071.25,070.25
http:092.75,090.75,089.50,037.75,0R8.50,0R7.0o
http:104.00,104.00,099.25,099.00,098.00,096.75,091.75
http:072.25,076.00,035.75,08|.75,0W7.75,094.25,094.50,093.qS
http:30.02,077.50,076.50,073,00,073.25,072.50,071.00,070.00
http:100.75,099.50,098.00,095.50,094.00,090.50
http:102.25,103.50,100.75
http:50.095.25,094.50
http:00,0S7.25,0.35.50,0S3.50,07S.90
http:50,094.00
http:100.5,099.50,097.00
http:103.00,099.50,100.50
http:096.75,107.00
http:30.02,030.00,079.00,073.25,073.75,072.75,0TV.00,070.00
http:088.75,087.00,085.25,082.75,082.00,o83.50
http:095.75,I0.25,093.75,094.50,09s.50,095.25,095.50,090.00
http:073.25,087.00,074.25,079.25,087.50,092.00,094.25,091.25
http:3Q.02,079.50,076.50,073.25,071.75,071.00,070.75,070.00
http:086.75,085.25,083.25,081.75,032.00,081.25
http:095.00,107.25,091.75,095.00,097.25,092.50,094.75,089.75
http:073.50,08S.75,074.50,079.00,086.50,090,o00091.50,090.75
http:30.02,078.75,078.00,072.50,07A.00,073.25,071.50,070.00
http:088.25,086.25,084.75,083.00,086.50.085.75
http:093.25,105.50,091.25.095.00,095-25,093.50,095.00,090.50
http:30.02,078.25,078.00,073.75,073.00,072.75,071.75,070.00
http:099.00,111.00,096.50,100.00,098.75,097.25,099.00,096.25
http:078.00,084.50,080.50,084.25,088.5009.50.,94.00,09;.50
http:094.00,092.00,092.00,090.50,0qs.50,090.75
http:096.00,095.00,094.50
http:075.25,080.75,075.00,080.00,09.00,094.00,095.50,092.75
http:30.02,078.25,078.00,073.25,073.25,079.00,070.00,07n.00
http:070.00.070.00.070.00,070.00,070.00,070.00
http:070.00,075.00,070.00,070.00,070.00,070.00,070.00,070.00
http:077.00,086.00,104.00,123.50,105.00,036.75,089.00,073.75
http:30.02,070.00,070.00,070.00,070.50,086.25,070.00,070.00
http:070.00,070.00,070.00,070.00,070.00,070.00
http:070.00,075.00,070.00,070.00,070.00,070.00,070.00,070.00
http:077.00,086.00,104.00,123.50,105.00,086.75,0S9.00,073.75
http:30.02,070.00,070.00,070.00,070.50,086.R5,070.00,07b.00
http:070.00,070.00,070.00,070.00,070.00,070.00
http:070.00,075.00,070.00,070.00,070.00,070.00,070.00,070.00
http:077.00,086.00,104.00,123.50,105.00,086.75,089.00,073.75
http:30.02,070.00,070.00,070.00,070.50,086.25,070.00.070.00
http:070.00,070.00,070.00,070.00,070.00,070.00
http:070.00,075.00,070.00,070.00,070.00,070.00,070.00.070.00
http:077.00,086.00,104.00,123.50,105.00.036.75,089.00.073.75
http:30,02.070.00,070.00,070.0.070.50,086.25,070.-OQ.070.00
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FAND4TA 10/29/74 

590 
 075.25,078.50,08.00,080.50,085.50,093.25,092.50,094.0O,
 
600 096.75,104.00,I02.50,098.50,100.25,097.00,09875,l93.00,
 
610 091 .50,090.00,088.25,086. 50,035.75,084.75,
 
620 -30.02,079-.00,077.50,074.25,071.50,070.75,071 .75,070.00,
 
630 071.50,075.75,085.50,080.00,087.75,095.00,095.50,095.00,
 
640 096.25,104.50, 103.75,098.00,100.00,099.50,097.-5,093.75,
 
650 093.00,091 .00,089.75,087.50,036.00,036.75,
 
660 -30.02,078.50,079.50,07.3.00,072.25,07.50,071.00,073.75,
 

.670 079.00,086.75,091-00,095-75.098.75,097.00097.00 [1. 50. 

680 097.50,095.00,095.50,098.00,101 .75,095.25.094.-5,09'4.00, 
690 095.75,093.50,09.4-50,093.50,091.75,093.75, 
700 -30.02,079.75,076.75,074.00,072.75,071.00,072.50,074.75, 
710 077.50,084.50,091 .75,093.00,095.75,094.50,094.5,098.25, 
720 096.50,093.25,093.25,095.75,097.25,090.00,091.50,0e;7.75, 
730 086.75,086.00,085.50,086.00,037. 50,033.25, 
740 -30.02,080.50,077.50,074.00,072.75,073.75,071-75,073.50, 
750 076.50,080.00,085.75,092.75,096.25,093.50,094.75,095.0n, 
760 093.25,091 .25,088.50,093.75,095.00,091.25,089.25,089.25, 
770 087 .00,085.00.086.00,084.25,087.25,086.75, 
780 -30.02,082.00,078.50,073.50,073;50,073.00.071.50,073.50, 
790 077.25,082.25,088.50,094.00,095.50,093.75,094.25,097.00, 
800 094.50;n91 .7s.n90.7 .lq9s.0 .fl .7';. I .7 .nQ, .7R.n1 .99,. 
810 088.75,0t38.00,085.75,08 5. 50,085.50,04.50, 
820 -30-02,081.75,077.75,072.75,075.50,073.00,072.50,074.75, 
830 078.00,084.50,089.25,093.25,096.00,095.25,093.25,098 •50, 
840 097.25,094.50,092.50,095.00,099.50,099'.00,091.00,090.75, 
850 088.75,088.00,086.7 5,08/A.25,'093.7 5, 034. 75, 
860 -30.02,079.50,079.50,07•3.75,074.00,074.75,075.25,078.00, 
870 081.25,086.50,092. 50,092. 50,090. 50,059.25,090.2P5,090.25, 
880 094.25,108.50, I03.00,096.00,094.75,094.00.093. 50,08,9.75, 
890 088. 50, 08 5.7 5,082.50,080.25,076.7 5, 07 5.00, 
900 -30.09,079.00,078.75,074.25,074.50,075.50,078.50,089_.9fl,
 
910 0s5.25,089.00,094. 50,095.75,094.75,092.50,092.00,093.7s,
 
920 097.00,109.00,108.50,102.25,098.50,100.25,i00.25,09.00,
 
930 098.75,097.75,095.50,093.25,091 .75,088.50,
 
940 -30.02,079.25,078.75,073.75,073.50,074.50,075.25,079.50,
 
950 082.00,085.75,092.75,092.25,091.75,038.25,089.e5,090.-5,
 
960 095.25,106.50,103.50,096.75,096.00,096-25,09"'s.00,090-75,
 
970 089.25,087.00,085.00,082.-25,080.00,076.50,
 
980 -30.02,080.50,077.75,074.00,074.25,074.QO,073.75,075.50,
 
990 077.25,08?.75,091 .75,090.00,037.50,08 4.00,098.00,090.75,
 
1000 093.75, Ip3.00, l01.00,093.75,09'.75,fnl9.50,090.00,0R6.75,
 
1010 084.75,082.25,ORO.00,079.00,077. 50,075.50,
 
1020 -30.02,030.25,07 6.7 5,074.00,074.00,072.90,074. .5,075.25,
 
1030 081.00,084.00,039.25,091.00,03S9.25,039.P5,090.75,0 91.PS,
 
1040 097.50, ib7 .50,106.7 5,097.! 5,099. 50,095.00,094.00,087.00,
 
1050 087.50,086.50,0,3.75,081 •50,079.75,030.50,
 
1060 -30.02,080.00,079. 50,073.7S,073.00,070.75,071.75,072.00,
 
1070 075.00,074.50,076.25,076.25,077 .00,078.40,084.50,038.00,
 
1080 087.7 5 ,090.00,088.00,07.75,083.50,077.25,079.25,079.90,
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http:5,090.00,088.00,07.75,083.50,077.25,079.25,079.90
http:50,073.7S,073.00,070.75,071.75,072.00
http:�50,079.75,030.50
http:50,095.00,094.00,087.00
http:50,075.50
http:l01.00,093.75,09'.75,fnl9.50,090.00,0R6.75
http:4.00,098.00,090.75
http:30.02,080.50,077.75,074.00,074.25,074.QO,073.75,075.50
http:089.25,087.00,085.00,082.-25,080.00,076.50
http:30.02,079.25,078.75,073.75,073.50,074.50,075.25,079.50
http:097.00,109.00,108.50,102.25,098.50,100.25,i00.25,09.00
http:50,095.75,094.75,092.50,092.00,093.7s
http:5,082.50,080.25
http:50,08,9.75
http:094.25,108.50
http:50,059.25,090.2P5,090.25
http:074.00,074.75,075.25,078.00
http:50,07�3.75
http:097.25,094.50,092.50,095.00,099.50,099'.00,091.00,090.75
http:50,073.00,072.50,074.75
http:077.25,082.25,088.50,094.00,095.50,093.75,094.25,097.00
http:30.02,082.00,078.50,073.50,073;50,073.00.071.50,073.50
http:076.50,080.00,085.75,092.75,096.25,093.50,094.75,095.0n
http:30.02,080.50,077.50,074.00,072.75,073.75,071-75,073.50
http:50,033.25
http:096.50,093.25,093.25,095.75,097.25,090.00,091.50,0e;7.75
http:50,094.5,098.25
http:30.02,079.75,076.75,074.00,072.75,071.00,072.50,074.75
http:095.75,093.50,09.4-50,093.50,091.75,093.75
http:079.00,086.75,091-00,095-75.098.75,097.00097.00
http:30.02,078.50,079.50,07.3.00,072.25,07.50,071.00,073.75
http:103.75,098.00,100.00,099.50,097.-5,093.75
http:096.25,104.50
http:071.50,075.75,085.50,080.00,087.75,095.00,095.50,095.00
http:50,035.75,084.75
http:096.75,104.00,I02.50,098.50,100.25,097.00,09875,l93.00
http:075.25,078.50,08.00,080.50,085.50,093.25,092.50,094.0O
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FANDATA' 


1090 

1300 

1110 

I120 

1130 

1140 

1150 

1160 


.1170 


1180 

1190 

1200 

1210 

1220 

1230 

1240 

1250 

1260 

1270 

1280 

1290 


1310 

1320 

1330 

1340 

1350 

1360 

1370 

1380 

1390 

1400 

1410 

1420 

1430 

1440 

1450-

1460 

1470 

1480 

1490 

1500 

1510 

1520 

1530 

1540 

1550 

1560 

1570 

1580 


10/29/74
 

077.50,075.50,074.75,072.50,072.50071 .75,
 
-30.02,079.75,079.50,074.50,075.25,071.75,071.5@,073"50,
 
075.50,075.75,0.0.50,077.50,076.75,078-75,084.75,091 .25.
"
 
087.00,089.50,090.50,089.50,083.75,078.50,b78.50,078-25,
 
078.00,075.75,077.00,077.50,073.00,07P.75,
 
-30.02,079.75,078.25,072.75,073.25,073.95,071.00,071"00.
 
073.00,080.00,090.50,076.50,077.75,080.25,081.5,084.75,
 
085.50,086.50,087.50,066.75,0535.75,082.-25,086.00,080-75,

081.25,081.00,079.25,077.00,077.25,074.50,
 

-30.02,079.50,078.75,074.00,073.75,071.75,072.75,673.25,
 
076.00,081.00,091.00,079.25,079.00,079.50,086..50,091.79,
 
037.50,090. 50,090.75,089.25,083.25,082.2-5,084.75,0S5.75,
 
082.25,081 .O0,080.00,079.75,077.75,077.50,
 
-30.02,081 .50,077.25,073.50,073.00,071.75,072.75,074.50,
 
077.00,077.00,032.50,079.50,080.00,083.75,O86.75,08.5,
 
088.25,090.00,068.75,091.50,086.00,082.00,087.25,08|1.75,
 
081 .25,079.75,078.00,078.25,07q.00,080.5"
 
-30.02,081.50,078.75,073.50,074.P5,07'.75,073.75.077-25,
 
080.25,086.00,097.00,099.25,102.00,100.75.100.25, l00.25,
 
102.00,097.50,097.50,102.00,106.25,100.75,099.25,099.-25,
 
100.o,097 .25,097.00,097.25,095.00,09 5.75,
 

079.75,0S5.00,096.25,095.75,098.50,0-96.75,096.50,105.50, 
099.25,096.00,098.00,099.25,101. 50,09A.25,094.75,088.50,
 
086.50,087.75,090.00,0,39.75,087.75,05.50,
 
-30.02,078 .50,079.00,073.00,,73.75,074"-5,073.00,076.25
 
079.00,084.00,089.00,095.0S,098.75,095.75,094.95, 104.00,
 

0 96.00,095.50,095.00,099.00,103.00,099.75,094.00,09.00,
 
090.75,089.75,090. 50,089.00,090.75,0S9.00,
 
-30.02,080.75,076.50,07.75,073.75,072.00,073.50,077.75,
 
080.00,085.00,093.25,096.50,098. 50,095.75,094.00,102.25,
 

102.25,f99.00,097-25-092.Q0,
 
092.00,093.25,091.75,090.50,088.25,08-6.00,
 
-30.02.081 .75,079.00,073.25,072.75,.07,.75,074.50,077.50,
 
079.75,086.00,096.75,098.00,099.00,096.00,095.50, 104.75,
 
101.75,097.50,097.75,100.215,103.00,101.00,096.75,095.75, 
094.25,092.75,091 * 50,090.50,0539.50,089.50, ,, 
-30.02,080.00,080.75,074.l0,07 5.00,075.75,077.00,0,0.75, 
085.00,069.50,095.50,095.75,094.25,092.00,091.2P5,096..5, 
097.50,104.75, 104.50,101.25,097.00,096.50,096.25,093.25,
 
092.75,069.75,0 7.25,OS4.75,0S 


-097.25,095.00,096.25,101.25, 


O.00,079.00,
 
-30.02,078.25,077.00,074.75,075.5,077.50,08I .75,OP,6.79,
 
089.50,093.75,096.75,093.00,097.25,095.25,093.75,098.00,
 
099.75,109.00,110.00, 306.00,100-50,103.50, 104.50,102.50,
 
103.00,102.25,100-50,098.2.5,096.25,093.50,
 
-30.02,079.75,079.00,074.25,074.95,075.75,078.25,084.75,
 
086.50,090.25;095.75,096.25,095.95,091.95,091.25,095.75, 
098.50,107.50,104.25,1 01.00,098.00,0953-50,096.50,094.75,
 
093.25,090.75,069.00,086.25,083.50,080.-50, 
-30.02,080.75,075-50,074.00,073.50,072.25,075.00,078.75,
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http:30.02,080.75,075-50,074.00,073.50,072.25,075.00,078.75
http:01.00,098.00,0953-50,096.50,094.75
http:086.50,090.25;095.75,096.25,095.95,091.95,091.25,095.75
http:30.02,079.75,079.00,074.25,074.95,075.75,078.25,084.75
http:103.00,102.25,100-50,098.2.5,096.25,093.50
http:104.50,102.50
http:306.00,100-50,103.50
http:099.75,109.00,110.00
http:089.50,093.75,096.75,093.00,097.25,095.25,093.75,098.00
http:O.00,079.00
http:097.25,095.00,096.25,101.25
http:104.50,101.25,097.00,096.50,096.25,093.25
http:097.50,104.75
http:5.00,075.75,077.00,0,0.75
http:50,090.50,0539.50,089.50
http:101.75,097.50,097.75,100.215,103.00,101.00,096.75,095.75
http:079.75,086.00,096.75,098.00,099.00,096.00,095.50
http:092.00,093.25,091.75,090.50,088.25,08-6.00
http:102.25,f99.00,097-25-092.Q0
http:50,095.75,094.00,102.25
http:30.02,080.75,076.50,07.75,073.75,072.00,073.50,077.75
http:50,089.00,090.75,0S9.00
http:096.00,095.50,095.00,099.00,103.00,099.75,094.00,09.00
http:079.00,084.00,089.00,095.0S,098.75,095.75,094.95
http:086.50,087.75,090.00,0,39.75,087.75,05.50
http:50,09A.25,094.75,088.50
http:079.75,0S5.00,096.25,095.75,098.50,0-96.75,096.50,105.50
http:080.25,086.00,097.00,099.25,102.00,100.75.100.25
http:088.25,090.00,068.75,091.50,086.00,082.00,087.25,08|1.75
http:50,090.75,089.25,083.25,082.2-5,084.75,0S5.75
http:30.02,079.50,078.75,074.00,073.75,071.75,072.75,673.25
http:081.25,081.00,079.25,077.00,077.25,074.50
http:073.00,080.00,090.50,076.50,077.75,080.25,081.5,084.75
http:078.00,075.75,077.00,077.50,073.00,07P.75
mailto:30.02,079.75,079.50,074.50,075.25,071.75,071.5@,073"50


GENERAL a ELECTRIC 

FANDATA 10/29/714 

1590 080.50,085.2"5,096.00,094.75,091 • 50,088.95,087.25,094.25, 
1600 098.00,104.50,104.00,100.00,094.50,093.75,094.00,09l.5,
 
1610 088.50,086.50,083.25,083. 50,080.50,079.50,
 
1620 -30.02,.081.25,077.25,073.75,072.25,073.25,077.00,082.;-5,
 
1630 083.50,087.75,093.00,093.00,091 .00,092.25,091.50,095.25,
 
1640 099.75, 107.50,107.00.101-25,094.00,098.75,098.25,090.75,
 
1650 090.25,089.7 5,088.00,0'85.00,082.00,078.75,
 
1660 -30.02,080.50,077.50,072.00,073.75,072.00,072.00,074.25­
1670 07 5.75,07 6.25.083.25,079.7 5,079.00,050.7 5,08.75,091-.75, 
1680 090.75,093.25,093.00,090.50,086.00,084.00,081.75,031!O0,
 
1690 080.00,077.75,076.25,076.00,076.00,075.25,
 

MIKEAr EA 10/29/74 

100 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,r), 0G
 
110 0,0,0,0,0,0,0,0,0,0,0,0,0,0,O,0,O,O,0,0,0,O,0,0,0,0,0.,0,0,0,0,0,0,0
 
120 0,0,0,0,0,0,0,0.0,0,0,0.0,0,0,0,0,0,,0,0,0,0.0.0,0,0,,O,o,O,,.09
 
130 0,0,0,00,0, Q.0. 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0,0,.,0,09
 
200 10,10,10, 10,10,10
 
210 10,10,10,10,10, 10
 
220 10,10,10,10,10,10
 
230 10,10,10,10,10,10
 
240 10,10,10,10,10,10
 
250 10,10.10,10,10,10
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http:080.00,077.75,076.25,076.00,076.00,075.25
http:5,08.75,091-.75
http:30.02,080.50,077.50,072.00,073.75,072.00,072.00,074.25
http:5,088.00,0'85.00,082.00,078.75
http:107.50,107.00.101-25,094.00,098.75,098.25,090.75
http:50,080.50,079.50
http:50,088.95,087.25,094.25
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PRO(GRAM CALCULATION CHECKS 

FREOUENCY LW RE IE-12 WAITS 

HERTZ HO(lIWI 	 PPOIOTYPE
 
(SIX FANS)
 

25 91.11 115.19
 
31 87.55 1?1.59
 
40 85.4n 122.66
 
50 81.43 124.10
 
63 8n.49 12..31
 
80 80.67 123.39
 

inn 83.54 	 12R.77 
125 . 86.20 126.69
 
160 911.93 134.64
 
?Flo 97.33 152,18
 
250 98.41! 128.7,
 
315 99.84 12R.R8
 
400 99.05 1?6.94
 
500 99.13 126.55
 
630 104.51 	 123.94
 
800 102.44 123.8,
 

1000 1 0.38 122.51
 
1250 107.9? 121.25
 
160a 104.49 119.72
 

200n 104.6? 118.20
 
2500" 10?.6R 117.46
 
3150 102.29
 
4000 99.68
 
5000 99.59
 
6300 98.25
 
8000 96.99
 

10000 95.46
 
'12500 93.94
 
16000 93.20
 

086 115.80 132.82
 

DU 



GENERAL* ELECTRIC
 

SPL (IF INTERHMEDIATE CELLS 

FREUUENCY 8 0 10 It 17 23 29 28 27 26 20 14 
HERTZ . ** 

25 119.7 69.0 69.? 68.0 69.7 70.7 72.2 72.0 70.? 71.2 71.0 09.5 

31 85.? 70.0 68.5 o9.0 69.2 67.2 69.5 69.2 69.5 67.0 68.2 69.2 
40 81.5 o3.5 63.0 63.5 64.2 64.1 63.7 o4.0 64.7 63.P 64.5 64.7 

50 77.7 67.7 64.5 h3.7 64.0 64.5 63.2 64.7 64.7 64.2 64.7 65.0 

63 76.f ,.3.0 63.7 63.0 65.0 63.0 63.2 64.2 66.2 62.5 64.5 66.0 

80 74.0 61.5 62.0 61.5 65.7 64.7 65.0 64.2 68.7 64.0 64.2 69.0 

Ili 0 69.8 64.2 6-0.9 60.5 70.0 68.7 68.8 67.7 75.2 611.2 66.0 75.0 
125 72.0 9.5 64.0 '62.7 72.5 71.5 70.2 70.7 77.0 70.5 67.7 75.7 

1fi0 71.7 77.2 76.2 66.5 76.? 74.5 76.5 76.5 80.7 75.5 73.2 .79.5 

200 80.5 81.5 65.0 76.2 83.2 79.7 87.2 87.5 86.2 83.7 82.? 85.0 

250 77.2 d6.2 69.5 72.2 8?..7 81.5 88.5 89.7 86.7 87.0 80.5 86.2 
315 81.? A9.2 77.0 78.2 92.2 79.7 89.5 92.5 85.7 89.0 78.0 85.2 
400 85.n 87.5 '0.5 84.7 73.7 79.7 *86.5 91.2 81.7 86.2 74.5 83.0 

5(10 85.7 87.5 82.0 85.0 79.7 81.2 '86.0 907.7 81.7 84.5 78.5 82.5 

630 85.0 92.0 A1.? 113.7 H14.7 81.7 '95.2 99.7 86.2 192.7 81.2 j84.2 
800 89.5 d8.0 15.5 84.0 e5.7 80.0 02.2 92.5 "89.0 '87.7 84.2 87.5 

1000 9Q.7 85.5 -97.7 94.5 07.0 98.0 88.0 88.0 g.0 85.5 93.5 99.5 

1250 99.2 66.0 82.2 94.5 94.0 97.2 88.2 88.,0 94.7 86.7 91.5 '99.0 
1600 94.5 68.5 h5.5 89.7 87.2 87.7 90.7' 92.5 91.5 .91.7 84.2 92.7 

2000 92.7 92.2 87.7 89.5 86.5 83.0 93.5 96.7 88.5 92.7 81.? 89.0 
2500 92.7 85.7 83.0 88.5 146.7 85.5 91.5 91,.2 89.0 89.5 80.0 94.7 

3150 94.n 84.7 85.? 47.2 P3.5 84.5 87.2 89.7 87.0 87.7 805 90.7 
4000 91.? 84.5- 60.2 64.2 A1.2 77.5 86.2 m9.7 85.2 82.5 77.2 8Q.5 

5000 91.2 86.2 177.2 b3.2 79.7 '78.0 84.7 90'.5 83.7 82.5 75.2 89.2 
63(0 90.0 14.0 75.7 $1.2 77:5 77.0 83.2 87.7 81.2 83..7 72.7 88.2 

800 88.5 85.0 73.1 80.0 75;5 74.2 82.0 ' 87.5 79;5 82.? 70.5 8.0 
10000 86.0 4.0 72.? 78.2 72.7 72.0 81.0 87.7 76.7 81.0 69.5 03.7 

12500 84.5 82.2 72.5 79.0 70.5 70.2 80.0 85.5 74.0 78'.7 68.0 82.2 
16000 81.0 84.2' 71.7 77.5 67.0 71.0 80.0 - 86.2 71.0 76.5 66.0 79.0 

DRA 105.7 99.4 99.5 100.6 110.4191.8 101.5 104.2 102.1 100.2 97.2 104.6 

FREUUENCY 15 16 2? 21 
HERIZ *. .. * * 

25 '70.5 72.5 711.0 70.2 
31 70.0 69.0 70.0 68.7 
40 64.? 64.n 64.? 63.2 
50 63.5 64.0 64.5 63.7 
63 61.? 63.5 65.2 63.7 
80 6?.? 62.4 65.7 61.5 

100 62.5 64.11 68.5 61.5 
125 65.5 67.7, 71.7 63.5 
160 65.0 72.7 77.0 70.5 
200 66.7 79.0 b3.i 111.01 
250 66.7 84.5 83.0 67.0 
315 67.5 86.n hl.0 68.2 
410 68.5 84.2 79.7 70.7 
500 75.0 64.7 H0.7 71.7 
630 78.5 67.5 hn.7 75.2 

RUO 78.2 85.0 $4.7 16.0 
lo0 80.5 vi?.2 99.0 77.0 
1250 78.5 63.2 93.5 78.0 
1600 78.? 85.7 H6.5 77.2 

20U0 74.0 89.2 85.2 76.? 
2500 67.7 8.2 04.5 72.7 
45150 69.7 86.2 84.0 76.5 
4000 7n.0 21.7 80.2 7"1.2 
500 68.0 79.? r79.( 71.7 

6300 66.0 78.5 76.2 71.5 
8000 65.2 76.2 73.0 69.7 

lOOUO 63.0 76.0 70.7 '67.5 
12500 63.0 76.0 67.? 67.7 
16000 62.2 75.0 61.5 65.0 

DRA 86.8 96.2 101.1 86.7 

51
 



SPL OF OUTFR CELLS 

FREOUIFNCY 1 2, 4 5 6 12 18 24 30 ,36 35 34 33 32 31 25 19 13 7 

75 69.7 70.9 69.7 88.7 70.5 69.5 70.2 70.2 10.0 71.2 71.0 68.,7 69.0 71.7 70.5 72.0 72.0 72.2 71.0 68.7 
31 68.5 67.0 67.7 76.7 69.5 68.0 67.2 70.0 69.2 66.0 68.n 67.5 69.5 67.7 71.2 69.0 67.7 68.2 68.0 68.5 
40 63.7 63.7 64.7 72.0 63.7 64.7 64.5 65.0 64.5 64.5 62.5 65.2 63.5 64.2 64.5 65.0 64.0 63.2 64.5 64.2 
50 63.7 62.? 63.7 68.7 64.2 62.0 63.2 65.7 64.2 64.0 64.2 66.0 64.2 62.7 65.5 64.0 63.5 66.0 63.2 63.5 
4,3 62.5 th1.5 631.0 65 .0f 6.1.2 61.2 61.5 62.2 62.? 62.7 62.5 68.0 64.7 63.7 66.2 61.7 62.2 63.5 64.2 63.2 
80 60n.5 61.2 61 .7 63.7 60.5 t,?.2 63.0 62.0 63.2 65.5 62.5 72.2 631.5 67.5 67.5 63.0 63.2 63.0 62.2 62.2 

100 60.5 6D.5 601.7 63.2 60.5 6n.5 65.2 64.0 63.7 ,69.2 64.7 77.2 66.7 72.7 71.2 68.0 65.0 65.2 64.0 60.5 
125 '65.7 63.7 69.7 68.5 65.0 62.0 68.0 66.0 66.5 71.0 66.P 80.0 69.5 74.0 75.5 70.2 67.5 68.5 67.0 62.0 
160 71.2 77.5 69.0 75.0 65.5 66.? 75.0 66.2 71.5 75.7 66.7 84.2 74.5 78.2 80.0 75.5 67.5 75.0. 70.5 71.7 
260 65.5 64.7 78.5 71.n 71.5 76.D 82.2 71.0 81.5 86.5 73.7 87.2 79.5 83.5 86.0 66.7 73.0 79.7 76.2 66.0 
250 7n.5 169.7 71.0 74.7 72.2 70.5 03.5 68.0 69.7 85.2 70.2 88.5 85.5 83.5 86.? 86.2 70.0 83.7 83.2 70.0 
315 
4110 

7R.5 
84.q ; 

78.0 
82.5 

76.0 
H3.7 

79.0 
83.0 

81)]. Dl 
86.2 

78.2 
85.5 

06 .? 
fB5.n 

67.2 
69.2 

69.5 
70.0 

112.0 
78.7 

69.5 
71.2 

87.7 
85.7 

89.i 
86.2 

81.5 
87.7 

84.7 
4 2.5 

89.0 
87.2 

70.5 
74.2 

86.5 
85.7 

,'86. 7 
84.0 

77.2 
81.7 

500 U6.0l t14.7 a3.n H4.5 b7.2 06.0 84 .7 75.2 77.01 77.7 75.2 84.2 84.7 82.0 81.7 87.0 7.7.2 83.7 85.2 83.5 
630 83.? H1.7 e.4.5 82.n 86.7 65.5 88.7 fll.7'-82.2 84.7 82.2 88.5 94.5 85.7 86.7 "96.0 79.0 89.0 85.5 80.0 
800 87.2 N6.2 1,7.? B9.5 V7.? "6.7 S7.0 77.5 78.0 88.5 81.? 90.2 86.5 90.2 68.n 89.7 78.7 87.7 83.7 83.7 

long 96.2 9R;7 94.5 1111.5 97.5 95.0 83.7 60.0 81.0 95.0 83.7 99.5 86.0 98.0 95.2 86.5 80.5" 85.0 81.7 96.0 
1?5 a 85.5 84.2 93.0 87.0 93.5 94.2 0.3.7 -81.0 81.2 94.5 B3 .5 100.5 85.5 97 . 5 95.0 88.5 79.2 83.0 79.0 81.7 
1600 
2n000 

86.P 
89.P ) 

85.0 
89.0 

9.0 
90.7 

4A.5 
69.2 

9f1,0 
93t.0 

88.5 
90.5 

86.2 
07.7 

80.0 
74.2 

79.7 
73.7 

90.5 
85.0 

81.fl 
76.5 

96.5 
92.0 

89.5 
93.5 

9t.7 
84.5 

91.7 
87.5 

89.7 
92.0 

82.0 85.5 
76.5-.90.0 

84.2 
88.5 

85.5 
85.7 

2560 86.5 85 .7 87.5 87.7 90.7 90.0 80.5 69.0 72.7- 84.2 74.5 94.0 90.2 89.2 87.0 86.7 72.5 82.5 81.7 84.0 
315,0 85.5 86.0 89.2 R9.5 90.0 8.7.7 82.0 69.0 75.2 84.5 72.2 95.0 84.5' 88.7 86.7 85.2 77.7 81.5 79.7 85.5 
40110 85%=0 60.5 .63.5 86.7 B;7.5 b4.2 78.2 68.7 76.2 81.7 71.5; 93.0 84.5 81.2 83.7 79.0 72.2 81.2 79.7 81.0 
5000 414.5 79.2 'h2,fn 87.2 SR.5 U3.5 77.2 68.5 72.7 79.0 70.5 93.5 81.2 80.7 83.2 77.0 71.7 79.2 77.5 78.7 
6300 82.5 77.5 80.5 86.0 87.2 81.5 76.5 66.2 71.5 77.ff 68.? 92.7 80.2 8n.2 80.2 78.2 70.2 78.5 75.5 76.7 
8000 82 .5 75.7 78.7 83.5 86.7 80.2 76.0 67.5 .70.5 73.7 66.7 91.0 81.0 78.5 77.7 80.5 68.5 77i2 76.5 75.2 

10000 81.0 73.2 77.0 ,81.0 146.0 78.0 76.5 68.0 70.2 74,.0 66.5 88.7 79.5 75.5 75.2 80.2 68.7 74.7 74.7 73.5 
12500 79.0 72.5 76.2 800.2"83.0 76.5 78.0 ,63.5 68.2 71.n 66.5 86.7 81.2 72.5 71.5 78.2 68,.5 74.2 .77.7 77.0 
16000 B1.9 741.0 75.2 77.0 84 .5 77.2 73.7 63.2 68.0 70.0 65.7 84.0 7q.5 69.2 69.5 76.0 70.7. 75.2 77.2 76.2 

886 99.7 100.5 100.4 103.5 102.5 101.0 95.7 87.9 b9.1 100.1 90.3 106.7 100.i. 102.8 101.1 100.0 89.0,.96.6 94.7 '98.3 



Appendix D 

,-SUMMARY OF TESTS CONDUCTED ON HIGH-SPEED AND LOW- SPEED YANS 

TEST: High-Speed Fan Test Identification No. 
7-1-48 

TEST CONFIGURATION 

STAGGER 

ANGLE 

INSTRUMENT 

STATION 

AZIMUTH 

POSITION %RPM 70 

96 WEIGHT FLOW & RUN NO. 

80 90 95 100 105 110 

INLET 
DISTO RTIO N 

CONFIGURATION 

56.08 

Iti 

ITi 

6 

It 

P 
if"TI 

T 

S 

B 

100 

IT 

It 

11 .. 

4 

10 

13 
16 

7 

, 

5 
9 

12 
is 

6 

2 

8 

11 
14 

5 

4 

P 

" 

it 

" 22 

18 

21 

17 

20 



-I 

TEST: Low-Speed Fan No. 1 	 Test Identification No. 
7-2-48
 

STAGGER INSTRUMENT AZIMUTH 	 E T Iet&tin NO. DISTORTION&RUNNO.INLETWEIGT 	 FOW 

TEST CONFIGURATION ANGLE STATION POSITION %RPM 70 80 90 95 100 105 110 CONFIGURATION 

40.8 	 6 P 100 27 26 25 24 .23 
it" "90 30 29 28 

T 	 100 33 32 31 
90 34 

35.4 	 S 100 37 36 35 

90 38 

" B 100 -41 40 39 
90 42 

f t T 100 45 44 43 

It" 90 46 

P 100 53 52 51 50 -49 48 47 
90 56 55 54 

4 - 100 63 62 61 60 59 58 57 
" " "90 66 65 64 

" " T . 100 69 68 67 

S"t ft 90 70 

f " B 100 73 72 71 4 

" " " 90 74 



TEST: Low-Speed Fan No. I Test Identification No. 
7-2-48 

TEST-CONFIGURATION 

STAGGER 

-ANGLE 

INSTRUMENT 

-STATION 

AZIMUTH 

POSITION %RPM 70 

% WEIGHT FLOW & RUN NO. 

80 90 95 100 105 110 

INLET 
DISTORTION 

CONFIGURATION 

oz 

Station 7 Totals 

35.4 

"4/7 

4 
It"I" 

S 

IT 

100 
90 
100 79 79 79 

77 76 
78 
79 

75 

79 

"""" 90 80 80 80 

Honeycomb Out 

It 

"" 

32.9 6P 

100 

100 86 85 84 

82 

83 

" "It 90 87 

IT' 70 90 89 - . 88 

""T 100 92 91 

" " 90 93 

Tl" 

S 
"90 

70 
100 ""96 

-94 

95 
97 

"I" 70 98 

" 

" 

" 

" 

"B 

" 

" 

100 

90 

70 

' " 

100 

"101 

99 

1 02", 

"40.8 " 100 106 105 104 103 



TEST: High-Speed Pan Test Identification No. 
7-1 48 

TEST CONFIGURATION 

STAGGER 

ANGLE 

INSTRUMENT 

STATION 

AZIMUTH 

POSITION %RPM 70 

% WEIGHT FLOW & RUN NO. 

80 90 95 100 105 110 

INLET 
DISTORTION 

CONFIGURATION 

Honeycomb Out 40.8 6 "R 90 107 

""S 100 111 110 109 108 

" "90 112 

,,,T 

" "90 

100 116 115 

117 

114 113 

" P 100 121 120 119 118 

45.2 

" 

""" 

"" 

" 

90 

100' 

70 

127 

130 

126 

129 

125 

122 

124 

128 

123" 

""T 

" ""' 

100 

70 

133 132 

134 

131 

""S 
IT B 

100 
100 

138 
142 

137 
141 -

136 
14-

135­
139 

35.4 4 P 100 148 147 146 145 144 143 

INLET HONEYCOMB INSTALLED 

" "T If 152 151 150.' 149 
""S 

B 
" 156 

160 
'155 
159 

154 
158 

153 
157 



TEST: Low-Speed Fan No. I 

STAGGER 
TEST CONFIGURATION ANGLE 

Exit Honeycomb Out 35.4 

Inlet Honeycomb In 
IT 

" 	 " 

" 

IT 

SIT 

"II 	 "IT" 

T 	 I 


" 	 " 


It 	 I'T 

Tt 

It i 


" T 


I 52.3 


S4 

I TI 

I 40.8 

it It 

INSTRUMENT 

STATION 


4 


6 


IS 

TI 

T 

5 


T 


IT 


6 


6/7 


6 


AZIMUTH 

POSITION 


B 


P 


T 


B 

"T
t 

-B 

P 

T 


S 


IT 

i 


T 

It 

it 

%RPM 

100 


It 

, 

T 

90 

80 


75 


50 


100 


t 

I 


I 


1 


It 

70 


160 


166 


170 


174. 


178 


186 


192 


196 


200 


203 


209 


"1215 


218 


221 


Test Identification No. 
7-2-48 

% WEIGHT FLOW & RUN NO. 

80 90 95 100 105 110 


159 158 157
 

165 	 164 '163 162 161
 

169 168 167
 

173 	 172 171
 

177 	 176 175
 

179
 

180
 

181 


182
 

185 184 183
 

191 190 189 188 187
 

195 194 193 


199 198 197
 

202 201
 

208 207 206 205 204
 

214 213 212 211 210
 

217 216
 

220 219
 

INLET
 

DISTORTION
 
CONFIGURATION
 

1
 

ED 



TEST: Low-Speed Fan No. 1 Test Identification No. 
7-2-48 

INLET 
lSTAGGER INSTRUMENT AZIMUTH % WEIGHT FLOW & RUN NO. DISTORTION 

TEST CONFIGURATION ANGLE STATION POSITION %RPM 70 80 90 95 100 105 110 CONFIGURATION 

Exit Honeycomb Out 
Inlet Honeycomb In 40.8 6 S 100 224 223' 222 -H 

,,,,, "" 227 226 225 V 

It it"B if 230 229 '228 V 

"" It 233 232 231 H 
" "" 236 235 234 

"I" 67 "" 239 238 237 

0" "it P it 244 243 242 241 240 

""6 "" 249 248 247 246 245­

"It"" 254 253 252 251 250_ H 
It "t" 259 258 257 256 255 V 

It It T it "262 261 260 V 

"1 "1 " " 265 264 263' H 
S Lo w- e 268 267 266 

ItI 6/7 it" 271 270 269­
i 5 H274 273 272 H 

T"" 4I "4 " 277 276 275 V 
It It S It 280 279 278 " 

I It 5 " 283 282 281 H 



INLET 

TEST: Low-Speed Fan No. 1 Test Identification No. 
7-2-48 

STAGGER INSTRUMENT AZIMUTH % WEIGHT FLOW & RUN NO. DINTTN 

TEST CONFIGURATION ANGLE STATION POSITION %RPM 70 -80 90 95 100 105 110 CONFIGURATION 

Exit Honeycomb Out 
Inlet Honeycomb In 40.8 

""4 

"""P 

""""" 

5 S 

"" 

100 

•" 

286 

289 

294 

299 

293 

208 

285 

288 

292 

' 297 

291 

296 

284 

287" 

290 

295 

H 

Hw 

""6 

""""" 

" 
" 

S"5 

"" 
"" 

"" 

"-" 

"90 
"80 

304 

309 
-314 

303 

308 
313 

302 

307 
312 

301 300" 

306 305,• 
:11 310. 

-. 315 
316 

319 

320 
321 

-

" 

" 

"88.4 

""6 

• II" 

"62.9 
Modified Contraction Fa6/7No. 13Test 

""75 

""50 

4/7 

""s5 

""100 

P, 

100 

329 

317 

318 

324 

325 

326 

328 

322 

323 

330 
327 (at 120) 

""6/4 

""6 

""331 

""334 

331 

333 

331 

332 



fl 

TEST: Low-Speed Fan No. 1 Test Identification No. 
7-2-48 

STAGGER INSTRUMENT AZIMUTH %WEIGHT FLOW & RUN NO. INLETDISTORTION 

TEST CONFIGURATION ANGLE STATION POSITION %RPM 70 80 90 95 100 105 110 CONFIGURATION 

Modified Contraction 62.9 5 P 100 337 336 335 
it it 4 " 340 339 - 338 

It 40.8 " " 344 343 342 341 

it it i . 90 345 

it it It "t 75 -346 

i" 50 347 
It 100 351 350 349 348 A 

"I " " 90 352 

"" 75 353 

IT "1 It 50 354 " 

"1 " It 100 358 357 356 355 B 

" "t " "90 359 

It " " 75 360 
50 361 " 

t t 5/4 " 100 362 362 362 362 It 

"t " "t 363 363 363 363 A 

if" 364 364 364 364 

" 5/7 It 365 365 365 365 



TEST: Low-Speed Fan No. I 

STAGGER 
TEST CONFIGURATION ANGLE 

Modified Contraction 40.8 
,t 

"t 

"t "t 

"t 

IT 

"" 

if 	 f 

It 

IT 

0 

"t 

"t I"f 

" f 

INSTRUMENT 

STATION 


5/7 

5 

" 

t 

6 

t 

5 

" 

4 

""" 

AZIMUTH 

POSITION 


P 

" 

"t 

" 

ITt 

T 

t 

I 

ITft 

f" 

- .- S" 

%RPM 

100 

" 

It 

I 

" 

70 

366 
367 

371 

375 

379 

383 

384 

391 

395 

3"99 

403 

404 

411 

412 

419 

423 

427 

431 

Test Identification No. 
7-2-48 

9 WEIGHT FLOW & RUN NO. 
-80 90 95 100 105 110 

366 366 366 
367 367 367 

370 369 368 

374 373 372 

378 377 376 

382 381 380 

385 386 '387 

390 389 388 

394 393 392 

398 397 396 

4'02 401 400 

405 .406 407 

410 409 408 

413 414 415 

- 418 417: 416' 

422 421 420 

426 425 424, 

430 429 428 

INLET 

DISTORTION
 
CONFIGURATION
 

A 
B 

" 

A 

A 

B 

B 

A 

A 

B 

A 



TEST: 'Low-Speed Fan No. 1 Test Identification No. 
.7- 2-48 

TEST CONFIGURATION 

STAGGER 

ANGLE 

INSTRUMENT 

STATION 

AZIMUTH 
POSITION %RPM 70 

%WGH 

80 90 
LW&RNO.DISTORTION 

95 100 105 110 

INLET 

CONFIGURATION 

Modified Contraction 40.8 

" 

4 

" 

S 100 

it 

432 

439 

433 

438 

434 435 

2"437 436 

A 

B 

MI 
""5 

i 4 
"i" 
" 

443 
447 

'442 
446 

441 
445 

440 
444 

It 

A 

1f 

"t 

f 

4 

" " 451 450 449 448 

452 C 

" 

" 

It 

" 7 

6 

4/5 

B 

i f 

453 

454 

455 

" 

C 

D s 

" " It f 456 D 7 

IIt" 

" " I" " "458 

457 D 9 

D 0 

7/5 ." " 459 D 9 

tt 

If 

" 

"f 

f 

5 
4 

6 

5 

It 
" 

"f 

T 

"1 

f" 

f 

ft 

If 

460 
461 

462 

-463 

464 

" 

" 



TEST: Low-Speed Fan No. 1 Test Identification No. 
7-2-48 

SAGR%
STGGRINSTRUMENT AZIMUTH 

WEIGHT FLOW & RUN NO. INLET 
DISTORTION 

TEST CONFIGURATION ANGLE STATION POSITION %RPM 70 80 90 95 100 105 110 CONFIGURATION 

Modified Contraction 40.8 4 T 100 465 D 9 

It38.0 "'"" 469 468 467 466 -

"1 5 "" 473 472 471 470 -

"6 "" 477 476 475 474 -

"I" P " 481 480 479 478 -

"7/5 """482 

"I""t 483 D 8 

" 4/5 484" 

" ""485 

"6 " 488 487 486' 

" " B 491 490 489 

"""S 494 493 492 

" "4 B 495 

"." it 4 9 6 D 8 

" "5 I""497 it 

IT ?1 6 ""498 It 
I? if I" T "499 It 

" ""5 500" 



TEST: Low-Speed Fan No. I Test Identification No. 
7-2-48 

TEST CONFIGURATION 
STAGGER 

ANGLE 
INSTRUMENT 

STATION 
AZIMUTH 
POSITION %RPM 70 

% WEIGHT FLOW & RUN NO. 
80 90 95 100 105 110 

INLET 
DISTORTION 

CONFIGURATION 

Modified Contraction 

"1 

it 

38.0 4 

" 

IT 

T 

P 

S 

100 

"502­

"503­

501 D8 

"6 

"1 

"1 

It 

T 

S 

B 

P 

"504 

"505 

"506 

"507" 

D.S. 

i 

4 B "508" 

4 rakes 

7 ""510 

"509" 


