AERO-ACOUSTIC EXPERIMENTAL VERIFICATION OF OPTIMUM CONFIGURATION OF VARIABLE-PITCH FANS FOR 40×80 FOOT SUBSONIC WIND TUNNEL

FINAL REPORT

Prepared for
NASA-AMES RESEARCH CENTER MOFFETT FIELD, CALIFORNIA

Contract No. NAS2-8364
CR-152,040

Prepared by
Harold Lown.
Applied Mechanics Branch
Power Generation and Propulsion Laboratory
Corporate Research and Development General Electric Company
Schenectady, New York 12301

AERO-ACOUSTIC EXPERIMENTAL VERIFICATION OF OPTIMUM CONFIGURATION OF VARIABLE-PITCH FANS FOR 40×80 FOOT SUBSONIC WIND TUNNEL

FINAL REPORT

Prepared for
NASA-AMES RESEARCH CENTER MOFFETT FIELD, CALIFORNIA
Contract No. NAS2-8364
CR-152,040

Prepared by
Harold Lown. Applied Mechanics Branch Power Generation and Propulsion Laboratory Corporate Research and Development

General Electric Company
Schenectady, New York 12301

August 1977

FOREHORD

Thiș final report, "Aero-Acoustic Experimental Verification on Optimum Configuration of Variable Pitch Fans for 40×80 Foot Subsonic Wind Tunnel, " covers the work completed under NASA Contract NAS2-8364 for NASA-Ames Research Center, Moffett Field, California. The work was performed by both the Applied Mechanics Branch in the Power Generation and Propulsion Labora~ tory of Corporate Research and Development (CRD) and the Compressor Aerodynamic Section of the Aircraft Engine Business Group (AEBG) of the General Electric Company. The principal contributoss to the program were:
H. Lown, CRD
M.R. Simonson, AEBG

Dr. L.H. Smith, Jr., AEBG
R.J, Wells, CRD

PRECEDING PAGR BLANK NOT FTHME

"

TABLE OF CONTENTS

Section Page
1
INTRODUCTION 1
Wind Tunnel Fan Operating Requirements 1
Fan Acoustic Program 2
2 1/7-SCALE MODEL FAN EXPERIMENTAL PROGRAMPRETEST PHASE5
Instrumentation. 5
Aerodynamic Instrumentation. 6
Acoustic Instrumentation 6
Aerodynamic and Acoustic Performance Data Reduction 6
Aerodynamic Performance Data-Reduction Computer Program. 8
Acoustic Performance Data-Reduction Computer Program 8
3 1/7-SCALE MODEL FAN EXPERIMENTAL PROGRAM AERODYNAMIC AND ACOUSTIC PERFORMANCE EVALUATION9
Aerodynamic Performance of High-Speed Fan 9
Acoustic Performance of High-Speed Fan 9
Aerodynamic Performance of Low-Speed Fan 11
Aerodynamic Performance Deficiency 13
Aerodynamic Performance Testing with
Honeycomb Section Upstream of Fan 13
Effect of Rotor-Blade Stagger Angle on Fan Performance 13
Acoustic Performance of Low-Speed Fan. 14
Comparison of Acoustic Performance of Low-
Speed and High-Speed Fan Configurations 17
Aerodynamic Performance of Low-Speed Fan with Artificially Generated Inlet Distortions 19
4RESTUDY OF LOW-SPEED FAN REDESIGN23
Results and Recommendations of Low-Speed Fan Aerodynamic Study by GE's Aircraft Engine Business Group (AEBG) 23
Rotor and Stator Blade Geometry Recommendations 23
Redesigned Fan Performance 26
5 SUMMARY 29
REFERENCES 31

TABLE OF CONTENTS (Cont'd)

Appendix A - 40×80 FOOT MODEL FAN PERFORMANCE INSTTRUMENTATION
Appendix B - 40×80 FOOT MODEL FAN OVERALL PERFORMANCECALCULATTION PROCEDURE
Appendix C - FAN ACOUSTIC DATA REDUCTION PROGRAM
Appendix D - SUMMARY OF TESTS CONDUCTED ON HIGH-SPEED AND LOWW-SPEED FANS

LIST OF ILLUSTRATIONS

Figure Page
1 New 40×80 Foot Wind Tunnel Power Section 3
2 1/7-Scale Model Fan Test Vehicle 5
3 Instrumentation Schematic 5
4
Microphone Probe in Station 3 7
5
Microphone Positions in Duct Passage 767
High-Speed Fan No. 1-Aerodynamic Performance 10
High-Speed Fan-Reduced Performance Data 10
High-Speed Fan-Radial Discharge Total Pressure Distribution at Design Flow 11
Sound Power Levels with Mass Flow for High-Speed Fans 12
10
Low-Speed Fan No. 1-Aerodynamic Performance 14
Low-Speed Fan-Radial Discharge Total Pressure Distribution 18Low-Speed Fan-Inlet Distortions19
Low-Speed Fan--Inlet Survey with Inlet Obstructions; Station 4. 20
Low-Speed Fan--Discharge Survey with Inlet Obstructions; Station 6 20
15
Blade Channel Length vs Radius. 24161718Maximum Thickness Ratio vs Radius24
Camber Angle vs Radius 25
Stagger Angle vs Radius 26
Rotor Blade Sections 27
Flow Path 27
21 Stator Vane Sections 28
LISTT OE TABLES
Table Page
1 Full-Scale Fan Aerodynamic Design Conditions 2 2
High-Speed Fan-Noise Spectra at Design Speed and Flow 12
NASA-AMES Low Speed Fan Model Noise Tests - DBA Sound Power Level Summary 15
NASA-AMES Low Speed Fan Model Noise Tests - DBA Sound Power Level Summary 16
Low-Speed Fan-Noise Spectra at Design Speed and Flow 17

Section 1

INTRODUCTION

Corporate Research and Development (CRD) of the General Electric Company has since 1970 been involved in a series of fan design studies and a model fan test verification program in aiding the National Aeronautics and Space Administration to achieve optimum aero-acoustic performance on new variable pitch fans to be incorporated into the repowered drive section of the 40×80 foot wind tunnel at Moffett Field, California. The previous design studies (Refs. 1-5) established the basis for design, construction, and test program for the $1 / 7$-scale model fan conducted by NASAAmes to verify the 40 foot full-scale fans to be incorporated in the repowered section of the 40×80 foot wind tunnel.

This report describes the results of the several phases involved in the " 40×80 Foot Subsonic Wind Tunnel Fan Section Verification Program" employing $1 / 7$-scale model fans, conducted by General Electric under Contract NAS2-8364. The objective and scope of this contract were to monitor the aerodynamic and acoustic performance of the two fan configurations under investigation (low-speed and high-speed variable pitch fan design), supply the necessary aero-acoustic data-reduction computer program logic, evaluate the results of the tests, and recommend the optimum configuration to be employed in the final 40 foot full-scale fan.

The original design of the low-speed and high-speed fans and the test vehicle for the $1 / 7$-scale model fan were previously reported on in Reference 5 . The test program was therefore a continuation of that program, designed to verify how well the fans met the design objectives and also the ability of the fans to operate with large inlet boundary layer growth, such as is present in the wind tunnel power section of the fullscale fans.

The initial $1 / 7$-scale model fan test results showed that the noise generated by the low-speed model fan configuration when scaled to its full-scale configuration would be 5 dBA quieter than the high-speed fan configuration. The aerodynamic test program became focused then on the low-speed fan model. As the low-speed model fan tests progressed, however, it became apparent that the low-speed fan design would have serious problems in meeting the wind tunnel airflow objectives, especially if a lower hub/tip ratio fan design were incorporated in the full-scale fans.

The original contract was therefore expanded in scope to include a restudy effort on the low-speed fan model. General Electric's Aircraft Engine Business Group (AEBG) Compressor Aerodynamic Section was involved in this phase of the contract, evaluating the fan operating characteristics with a lower hub/tip-ratio and more severe inlet boundary layer condition. The results of the new fan study and recommendations leading to improved low-speed fan performance have also been incorporated in this report.

WIND TUNNEL FAN OPERATING REQUIREMENTS

In structuring the model fan test program, careful consideration had to be given to all the operating requirements imposed on the variable-pitch fans of the repowered wind tunnel. The new power section described schematically in Figure 1 is designed to operate with both a closed and an open wind tunnel configuration. The previous GE
study (Ref. 4) evolved the fan design operating requirements for these two tunnel configurations which are shown in Table 1.

Table 1
FULL-STCALE FAN AERODYYAMIC DESIGN CONDITIONS

Parameter	Closed Tunnel Configuration	Open Tunnel Configuration
Inlet Total Pressure (psia)	14.54	14.55
Inlet Total Temp. (${ }^{(} \mathrm{R}$)	530	530
Fan Weight Flow (lb/sec)	16333	20251
Fan Head Rise (ft)	680	525
Fan Stage Efficiency (\%)	90	86
Fan Head Input (ft)	756	
Fan Tip Diameter (ft)		40
Hub/Tip Ratio	0.5	610
Fan Rpm		180

These design conditions, derived from the motor drive power output limitation of $135,000 \mathrm{hp}$ for the existing power section of the 40×80 foot wind tunnel, resulted in attaining tunnel test section speeds of 300 knots and 102 knots, respectively, for the closed and open tunnel configurations.

The variable-pitch fan capability was in turn designed to permit attaining various closed tunnel speeds ranging in value from 58 to 100 percent of design, while maintaining the synchronous fixed speed of the motors.

The fan arrangement in the power section shown in Figure 1 results in large boundary-layer generation at the inlet to the corner fans, where the two wall boundary layers merge. This produces sizable inlet velocity profile distortions that can result in fan stall. In order to assess the effect of large in-flow distortions, the fan model experimental program was designed to include investigation of fan performance with different degrees of distorted inlet profiles, artificially generated.

Another important consideration in the fan model experimental program was the evaluation of the likelihood of fan stall and performance deterioration if a lower hub/tip ratio of 0.4375 were employed in the final full-scale fan design. On the basis of NASAAmes studies a gain of approximately 6 percent in tunnel speed could be affected by going from a fan hub/tip ratio of 0.5 to 0.4375 . This improvement in tunnel performance results from the reduced diffuser losses downstream of the fan, affected by a smaller fan center body.

FAN ACOUSTIC PROGRAM

The basic objective of the fan acoustic program was to verify the theoretically calculated acoustic advantage of utilizing a low-speed fan over that of a high-speed fan in the power section of the 40×80 foot wind tunnel. This theoretical advantage was estimated to be in the order of 13.2 dBA in lower noise for the six prototype low-speed fans versus the six prototype high-speed fans, or a total sound power level of 139 dBA versus 152.6 dBA . The actual fan noise was in turn to be established experimentally by obtaining the third-octave band noise frequency spectrum with an array of microphone settings covering the inlet and discharge duct cross-sectional areas.

Figure 1. New 40×80 Foot Wind Tunnel Power Section

Section 2

1/7-SCALE MODEL FAN EXPERIMENTAL PROGRAM PRETEST PHASE

The 40×80 foot aero-acoustic verification program was to be carried out at NASA-Ames with the $1 / 7$-scale test model shown in Figure 2. The pretest phase of this program included designation of the aero-acoustic instrumentation and development of the aero-acoustic data-reduction computer programs to be employed during the tests.

Figure 2. 1/7-Scale Model Fan Test Vehicle

INSTRUMENTATION

The instrumentation designed to obtain the model fan aero-acoustic performance consisted of static pressure instrumentation, total pressure rakes, a combined total pressure/static pressure/directional survey probe, and a four-microphone traversing rod as well as temperature, speed, and torque measuring instrumentation. The inlet bellmouth section of the test vehicle was employed as the weight flow metering device. The complete arrangement of the test vehicle instrumentation, the designated measuring stations, and their exact axial location are presented in the instrumentation schematic of Figure 3.

Figure 3. Instrumentation Schematic

Aerodynamic Instrumentation

The aerodynamic instrumentation required to obtain either fan overall aerodynamic performance, detailed rotor performance, or diffuser performance is presented in Appendix A of this report. While the instrumentation section dealing with fan overall performance (Section A of Appendix A) shows four circumferential positions at Station 6 for obtaining the radial distribution in fan performance, only one traversing probe was available for the tests. This required physically moving the probe to each of the four azimuth positions; therefore each position of the traversing probe represented a different test even though the flow and speed settings were the same.

Inlet Bellmouth Weight Flow Calibration Tests

To employ the bellmouth section of the fan test vehicle as a weight flow measuring nozzle, its flow coefficient had to be established. The high Reynolds number of the bellmouth throat section of 4×10^{6} readily lent itself to obtaining its flow coefficient with a scaled model, since the lower Reynolds number of the scaled model would still be sufficiently high not to affect the flow coefficient accuracy.

A bellmouth model having a $1 \mathrm{ft}^{2}$ throat section was manufactured, and weight flow calibration tests were conducted at CRD. The metering flow nozzles employed in obtaining the bellmouth flow coefficient had a high degree of accuracy, approaching a flow coefficient of 0.998 .

The results of the bellmouth section calibration tests showed that for throat Reynolds numbers of 10^{6} or greater, the test vehicle bellmouth section would have a flow coefficient CN of 0.989 .

Acoustic Instrumentation

The acoustic instrumentation was designed to obtain the inlet and discharge fan noise spectra at stations 2 and 9 (Figure 3) respectively. A continuous microphone traversing system of employing two probe-mounted microphones 45° apart was initially recommended. Because of mechanical complexity, however, a traversing discreetposition microphone system consisting of four microphones on a movable strut was used. The sound power was obtained by subdividing the inlet and discharge ducts into 36 equally spaced cells and measuring the noise spectra in each of these cells with the four-microphone-array measuring probe. The microphone probe is shown in Figure 4, the nine locations of the microphones necessary to obtain either fan intake or exhaust noise for each test point are shown in Figure 5.

AERODYNAMIC AND ACOUSTIC PERFORMANCE DATA REDUCTION

The fan aerodynamic and acoustic test data reduction was a joint effort carried out by CRD and NASA-Ames. In the case of fan aerodynamic data reduction CRD provided the computational logic required to structure a computer program that would develop the detailed fan performance. The actual data reduction was conducted by NASA-Ames. In the case of fan noise reduction, the noise measurements were recorded on tape by NASA-Ames and transmitted to CRD for final reduction on the General Radio real-time analyzer, and the associated computer program developed by CRD to perform this function.

Figure 4. Microphone Probe in Station 3

1	2	3	4	5	6
(1)	(5)	(9)	(2)	(6)	(10)
1	1	1	2	2	2
7	8	9	10	11	12
(3)	(7)	(11)	(4)	(8)	(12)
3	3	3	4	4	4
13	14	15	16	17	18
(13)	(17)	(21)	(14)	(18)	(22)
1	1	1	2	2	2
19	20	21	22	23	24
(15)	(19)	(23)	(16)	(20)	(24)
3	3	3	4	4	4
25	26	27	28	29	30
(25)	(29)	(33)	(26)	(30)	(34)
1	1	1	2	2	2
31	32	33	34	35	36
(27)	(31)	(35)	(28)	(32)	(36)
3	3	3	4	4	4

Lower

Meaning
Cell Designation, Area No.
Assumed Test Order (Record and Data Reduction) Microphone No.

Figure 5. Microphone Positions in Duct Passage

Aerodynamic Performance Data-Reduction Computer Program

The computer program logic to evaluate fan performance is presented in Appendix B. It contains the equations and relationships that establish the fan adiabatic efficiency, corrected and normalized weight flow, and developed head conditions and fan input power based on the instrumentation system described in Appendix A.

The NASA standard sea-level temperature and pressure conditions of $518.7^{\circ} \mathrm{R}$ and 14.69 psia were used as the reference base to which fan operating conditions were corrected. While this has merit when comparing fan performance to other NASA fans, it did require multiplying factors of 0.9786 and 0.978 to be applied to the reduced test data of corrected weight flow and developed head. These additional corrections were necessary because the original fan design was not based on NASA standard sea-level conditions but on estimated temperature and pressure values of $530^{\circ} \mathrm{F}$ and 14.54 psia, thought to exist at the fan inlet of the 40×80 foot wind tunnel.

Acoustic Performance Data-Reduction Computer Program

The fan acoustic data reduction program developed by CRD, designated as "NASA FAN," is presented in Appendix C. The program is composed of six files: CONTROL, ATTENS, FANDATA, MIKEAREA, PAGE, and FANCALC. The exact function of each of these files is described as follows:

- CONTROL designates the actual order of data sampling.
- ATTENS lists record attenuator settings corresponding to the actual test order.
- FANDATA is the basic data file from the General Radio (GR) real-time analyzer.
- MIKEAREA is for microphone frequency response corrections, and cell areas expressed in decibels.
- PAGE is employed for paging of output data file.
- FANCALC is the output file for the reduced fan noise data.

A sample calculation is presented in Appendix C based on the cell designation and microphone positions presented in Figure 5. The frequency range of the output tabulations is automatically governed by control settings of the GR real-time analyzer. For fan-noise data reduction these will be set for 25 to 20,000 hertz, the available limits.

The actual sound-pressure spectra for the individual 36 samples are to be printed out so that it will be possible to evaluate the feasibility of reducing the number of sampling positions. In the sample calculation (Appendix C) the sound pressure levels (SPL's) are separated into three tabulations, with the double asterisks denoting the four corners of the three cell blocks.

Section 3

1/7-SCALE MODEL FAN EXPERIMENTAL PROGRAM AERODYNAMHC ANQD ACOUSTIC PERFORMANCE EVALUATION

Abstract

As was pointed out in the introduction, the objective of the fan test program was to test two fan configurations, a high-speed and a low-speed fan, and determine which would be the quieter when sealed to full prototype fan size and speed. In addition, the quieter fan had to satisfy the tunnel head requirements at closed and open tunnel operating conditions.

From the outset it was recognized that achieving the fan design head and flow conditions would be more difficult with the low-speed fan than with the high-speed fan because of its higher hub loading. This hub loading condition would become even more aggravated if a hub/tip ratio of 0.4375 were to be employed in the final full-scale fan design than with the $0.5 \mathrm{hub} /$ tip ratio employed in the first $1 / 7$-scale model configuration.

Performance testing of the low-speed fan configuration would therefore be more involved than that of the high-speed fan. It would require several blade pitch settings to establish whether adequate design margin exists in meeting some of the more stringent, thickened-boundary-layer operating conditions than the tunnel corner fans would be subjected to.

In the case of the high-speed fan, with its lightly loaded blade conditions, a relatively short test program at design-pitch blade setting was thought to be adequate in establishing its capability in meeting its design performance objectives.

AERODYNAMIC PERFORMANCE OF HIGH-SPEED FAN

The aerodynamic performance of the high-speed fan at design stagger angle setting of 56° is shown in Figure 6. It can be seen that the fan meets its design head objective of 680 feet at the design corrected weight flow of $367 \mathrm{lb} / \mathrm{sec}$, while its peak efficiency value of 86 percent at design flow is somewhat below the design efficiency value of 90 percent. Approximately $1-1 / 2$ percent in efficiency loss can be attributed to the inlet-contraction section loss upstream of the fan, as evidenced by the total pressure survey at the fan inlet. (Overall fan performance based on surveys at stations 3 and 6 included the flowpath through the contraction section.)

A sample of the high-speed fan reduced performance data at design flow and speed based on the starboard azimuth-position radial survey at station 6 is shown in Figure 7. The radial total discharge pressure distributions for the four azimuth positions are in turn shown in plots of Figure 8. As can be seen from the plots of Figure 8, the blade-section radial performance patterns approach normality, with the usual decay in performance in the tip and hub regions caused by boundary layer effects.

ACOUSTIC PERFORMANCE OF HIGH-SPEED FAN

The acoustic performance data of intake exhaust and combined SPL spectra for both the $1 / 7$-scale model fan and a cluster of six prototype fans are presented in Table 2 for the 100 percent design mass-flow condition. The variation of the dBA SPL spectra for the combined six prototype fans as a function of mass flow is presented in Figure 9. In arriving at the plots of Figure 9 and Table 2, the following scaling methods were employed.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 6. High-Speed Fan No. 1-Aerodynamic Performance

Figure 7. High-Speed Fan-Reduced Performance Data

Figure 8. High-Speed Fan-Radial Discharge Total Pressure Distribution At Design Flow

The $1 / 3$-octave-band noise levels of the model fan were first converted to prototype (6 fans) noise levels by applying the simple fan-noise-scaling-low relationship of

$$
\mathrm{dB}\binom{\text { Prototype }}{6 \text { Fans }}=\mathrm{dB}(\text { model })+10 \log _{10} \quad\left[\frac{6 \times W \text { prototype }}{\text { W Model }}\right]
$$

The frequencies were then shifted by the 0.15 -scale factor of the model fan diameter to full-scale fan diameter; and lastly, the dBA weighting factor was applied to the shifted $1 / 3$-octave-band frequency noise levels in arriving at the dBA sound power levels for the Prototype (6 fans).

The total sound power levels for the $1 / 7$-scale model high-speed fan and the six prototype fans were respectively 127.8 dBA and 146.8 dBA . These compared to predicted values of 136.8 dBA and 152.5 dBA respectively for the high-speed fan model and the six prototype fans. While deviation between predicted and tested noise levels for the high-speed prototype fans of 5.7 dBA was appreciable, the predicted noise level for the low-speed fans of 139.4 dBA was still 7.4 dBA below that of the indicated noise level of the high-speed fan. The potential gain of employing low-speed fans was therefore still appreciable, and the test program as originally outlined was continued.

AERODYNAMIC PERFORMANCE OF LOW-SPEED FAN

The aerodynamic performance testing program on the lowspeed fan was contingent on verification of the acoustic advantage of the low-speed fan over that of

Table 2
HIGH－SPEED FAN－－NOISE SPECTRA AT DESIGN SPEED AND FLOW

IGH SPFED FAN III\％MASS FLOW

INTAKE
FREAIENCY

HFRT7	munel	pforotypf （SIX FAns）
25	10／．うn	12 \％． 71
31.	1 nn .2 s	129．64
411	104.47	1．94．116
¢ 0	104.25	144.113
63	104．56	133．1．1
810	104.48	154．22
110 n	10 nc ． 18	140．E1
125	1154.94	155.16
163	104.15	156．7？
200	1115.38	1．56．A2
2511	Lロ9．80	156.99
315	119.77	1s6．n\％
409	10.8 .87	1．55．711
510	109.96	1．35．3／
639	116.55	135.611
	1110.90	135.94
1040	11\％．46	155.56
175！	112．58	1.34 .86
1600	111.73	13.5 .58
20100	111.76	111.63
25010	111.44	128．2\％
5150	111.10	125.90
40 BO	111.54	
bill	111.68	
63011	111.30	
80110	111.611	－
10000	109.39	
125018	107.37	
160 an	1月4．11）	
210110	101.13	
HHA	175．90	143．82

EXHAUST

LW PE 1E－12 WATTS
MUDEL PROIOTYPE

117.04	139.51
118.07	138.34
118.11	158.96
117.64	146.85
117.57	156.4 .5
117.90	137.10
116.74	144.48
115.99	136.97
115.24	138.54
114.68	138.65
111.70	137.78
177.59	156.59
112.17	135.79
112.85	1.55 .57
129.27	135.39
112.71	135.80
114.28	135.26
114.39	134.43
113.57	133.13
112.53	131.49
111.53	128.31
111.26	137.09

TOTAL
LH RF LE－12 WATTS MUNEL PROIOTYPE （SIX FANS）

117．51	139．85
118.25	138．89
118．29	147．1
117．83	148．68
117.59	1.58 .10
11ヵ．U9	138．90
117．03	146.03
116．3？	139．17
115.59	140.73
114.63	140.84
115.97	1.59 .99
124．47	159.32
115.84	13 A．76
114.65	158.45
171.77	138.51
114.91	138．88
116.47	1．38．42
116．58	1，37．66
115.13	156．37
11 ． 06	1.34 .57
114.30	131．31
114.19	129．59
114.25	
114.62	
114.16	
113.40	
112.11	
110.31	
107.115	
185.53	－
127.77	146.84

Figure 9．Sound Power Levels with Mass Flow for High－Speed Fans
the high-speed fan. The initial tests were made on the low-speed fan (specific details are discussed below under "Acoustic Performance of Low-Speed Fan"), and the planned comprehensive low-speed aerodynamic fan test program was then carried out.

A total of 487 test runs were completed on low-speed fan configuration No. 1, whereas only 23 test runs were made on the high-speed fan. The complete summary of the tests conducted on both the high-speed and low-speed fans is presented in Appendix D.

Aerodynamic Performance Deficiency

The initial tests of the low-speed fan at the design stagger-angle setting of 40.8° showed a serious deficiency in performance. This was the result of poorer fan efficiency (82% vs a design efficiency of 90%) and insufficient work addition imparted by the blades to the air. While the lower work input at a stagger angle of 40.8° could be corrected by operating the fan at a higher angle of attack or a reduced stagger angle setting, improvement in fan efficiency would require modification of the fan blade shapes.

Unlike the high-speed fan performance characteristic, the low-speed fan exhibited a sensitivity to azimuth position that appeared to be associated with inlet flow distortion. The test results showed that at the 100 percent flow and speed setting for the 40.8° stagger angle setting a deviation of 10 percent in developed head existed between the port azimuth total pressure survey and the starboard total pressure survey, or 536 feet versus 485 feet respectively. The port azimuth measuring station is in a line of sight of undisturbed inlet bellmouth flow, while on the starboard side of the bellmouth the flow is disturbed by the wall forward and along the side of the inlet (Figure 2).

Aerodynamic Performance Testing with Honeycomb Section Upstream of Fan

In order to reduce the flow distortion produced by the ground and sidewall effects at the inlet to the test vehicle bellmouth section, a honeycomb section was introduced in the vicinity of the inlet distortion screen designated as Station $18^{1}-3^{11}$ in the schematic of Figure 3. The low-speed fan tests were then repeated with the design stagger angle setting of 40.8° and with stagger angle settings of 38° and 35.4° : The performance results of these tests are presented in Figure 10. While a small improvement in performance in the order of 3 to 4 percent increase in weight flow was achieved with the honeycomb section for the design stagger angle setting of 40.8°, it was relatively insignificant compared with the large effect in developed head produced by small changes in blade stagger angle setting.

Effect of Rotor-Blade Stagger Angle on Fan Performance

As can be seen from Figure 10, the rotor-blade stagger angle setting of 38° achieved the highest fan efficiency of 83 percent, but at a reduced developed head of 94 percent of design head. This particular test did have the benefit of a less severe annulus passage contraction upstream of the fan. In terms of good stall margin and reasonable radial profiles, the 38° stagger angle setting appeared to be the most favorable. The radial total pressure profiles for this stagger angle setting shown in Figure 11, with the exception of the starboard profile, exhibit a nearly normal radial distribution, with a greater performance decay towards the hub region than the tip

Figure 10. Low-Speed Fan No. 1-Aerodynamic Performance
region. Again both the starboard and bottom azimuth total pressure profiles are the weakest, with the starboard profile exhibiting serious performance deterioration over nearly 40 percent of its blade height. This sensitivity of fan performance deterioration to inlet flow distortion could put a serious limitation on the original fan blade design in its ability to meet the more severe boundary layer effects that exist at the inlet of the full-scale fans of the 40×80 foot wind tunnel.

Of the various low-speed fan blade angle settings, the 35.4° stagger angle did approach achieving the design head of 680 feet. It showed, however, a limited flow range capability, with stalling characteristics appearing at the 90 percent flow condition. Based on the above test results and factoring in the more stringent performance requirements contemplated for the full-scale fans-(1) operating with a reduced fan hub/tip ratio of 0.4375 , and (2) with significantly thickened inlet boundary layers generated by the tunnel walls--the original aerodynamic design of the low-speed fan became questionable in its ability to meet the full-scale fan performance objectives of the 40×80 foot wind tunnel.

ACOUSTIC PERFORMIANCE OF LOW-SPEED FAN

The acoustic test results for the low-speed fan are presented in Tables 3, 4, and 5. Table 5 shows the low-speed-fan noise frequency spectra for the model and six prototype fans corresponding to the design-developed head and flow condition of the fan. Tables 3 and 4 are summaries of the reduced acoustic results for the low-speed fan generated by CRD.

Table 3

NASA-AMES LOW SPEED FAN MODEL NOISE TESTS - DBA SOUND POWER LEVEL SUMMARY

,	31	\therefore	31/23	70	70	70	70	70	70	70	135	135	135	135	135	171	171	171	171	210	210	210	210	295	250	230
STAGGER ARGLE	20.8	40.2	40.8	- 354	35.4	354	35.4	35.4	35.4	35.4	45.2	45.2	452	45.2	45.2	35.4	35.4	35.4	35:4	52.8	52.8	52.8	52.8	40.8	2 cos	¢ $8 . \varepsilon$
\pm SPEED	203	109	100	100	100	100	:00	100	90	90	100	100	100	100	70	100	100	100	100	100	100	100	133	100	100	103
\% Mass floh	3	So	:00	75	90	100	105	210	80	100	70	80	100	110	100	70	90	100	105	70	90	100	:35	70	5	230
HODEL dBK L_{w} Intike	: 3	12 C .5	1.9 .7	123.2	1222	122.4	1226	122 ?	1196	119.5	122.0	119.8	116.9	116.6	105.9	123.3	120.3	121,0	120.6	125.2	14.9	112.2	112.0	128	:29,3	1:9.2
Exhoust	. 22 :	122.3	122.4	1240	1236	1245	124.7	1247	120.7	122.0	124.0	121.8	119.6	119.6	109.8	126.9	124.8	1251	124.6	128.8	1185	116.4	115.5	1235	1235	22.:
Total	: 2	A.4. ${ }^{\text {\% }}$:24.3	126.6	126.0	126.6	1268	126.6	123.2	123.9	126.1	123.9	121.7	121.4	111.6	128.5	126.1	126.5	126.1	130.4	120.1	1173	117.1	1250	124.7	123.9
$\begin{aligned} & \text { PROTOTYPE dBA } L_{W}(\text { six fans } \\ & \text { (} \end{aligned}$												-														
Intake	: 2 2	$12 \pm!$	135.9	1435	1400	139.5	2394	138.9	136.9	1359	1387	1373	133.9	133.1	123.1	1333	136.8	136.6	136.8	137.0	130.6	120.4	1223	155.8	125	St:
Exhaust	233	! $=9$:32 7	1493	140.2	141:	141.2	1413	137.4	1381	140.8	139.3	136.6	135.2	1254	142.8	142.2	141.8	141.5	142.1	135.7	132.9	13.1	140.6	133 6	12: 7
Total	:7.3	14: 6	.i. 5	133.4	143.4	143.4	143.4	143.4	240.2	140.1	142.9	141.4	138.5	137.3	127.4	144.1	143.3	142.9	142.8	143.3	136.9	134.2	132.9	151.3	14:0	$1+3.3$
tape rest mo.	3	3	3	7	7	7	7	7	7	7	9	9	9	9	9	10	10	10	10	11	11	11	11	12	12	12

Table 4
NASA－AMES LOW SPEED FAN MODEL NOISE TESTS－DBA SOUND POWER LEVEL SUMMARY

RUEA M0．	23.	231	23：	327	327	327	327	327	328	328	328	338	338	， 338	465	456	465	465	466	496	496	496	496	395	45	43
stasger amgle	ij．$\%$	\because a	40.2	EE 4	22.4	82.4	88.4	284	62.9	62.9	62.9	62.9	62.9	62.9	40.8	40.8	40.8	40.8	403	38	38	33	39	39	\％	35
＊Speeo	$\because 3$	：	：	52	76	20	90	100	100	100	100	100.	100	103	100	100	90	75	50	100	100	100	95	52	\％	5
2 mass flom	73	35	20\％	Sicticter	100	100	100	100	90	100	120	90	100	110	100	109	100	100	100	105	100	80	133	103	： 3	こう
HODEL dea L^{2}																										
Intake	123．\％	： 32	12.7	34.2	1047	1061	1095	111.6	124.2	1246	119.7	1248	1252	1199	126.3	1240	120.2	116.5	206.6	125.3	125.3	1261	122．5	119.5	1：5．7	267．s
Exhaust	ご：	．25：	122.3	948	cs 0	105．2	109.6	112.1	127.4	127.5	1230	127.4	127．7	122.9	． 130.5	126.2	122.6	117.	107.7	128.4	129.6	129.3	125.6	122．8	115.7	\＄35．5
Total	12E． 2	：\square^{5}	：23．9	975	107.9	109．2	122.6	114.9	129.1	1293	1247	129.3	129．6	1247	131.9	128.2	124.6	120.0	1102	130.1	131.0	1310	127.4	125.2	12： 5	2！1．2
$\begin{aligned} & \text { PROROTYPE dBA } L_{W} \\ & \text { (six fans) } \end{aligned}$							－																			
Intake	： 2.7	：	13：	：67．3	218.1	129.7	＇123 3	125.9	1357	136.2	134.5	136.3	136.9	134.9	139.0	137.1	133.5	123.6	1185	135.8	1387	138.8	135.1	132.3	A．：	1：3．5
Exhaust	A ${ }^{\text {\％}}$	：．．．z	： 3.7	12\％ 3	128	123.5	1240	126.8	139.8	1402	133.5	140.1	140.7	138.7	144.1	340.2	135.8	131.5	120.2	142.2	122．8	143.4	－139．8	1254	：33 3	22：．7
rotal	－iz．	\therefore ： 0	： 0.1	120．e	22.5	123.1	126.7	129.4	241.2	241.7	140.0	141.6	142.2	140.2	145.3	141.9	238.5	133.3	122.4	143.8	144.2	1447	140.3	135.3	13＊．8	123.7
TAPE REEL MO	13	13	13	14	14	14	14	14	14	14	14	15	15	15	16	17	17	17	17	18	18	18	18	15	23	： 5

Table 5
LOW-SPEED FAN--NOISE SPECTRA AT DESIGN SPEED AND FLOW.

LOW SPFEDFAN 354 CEGR. 100% SPEEN 1 NO\% FLOW

FREQUENCY L. ${ }^{\text {L }}$ RE 1F-12 WATTS		
HERTZ	morel	PROTOTYPE (5IX FA*S)
25	122.9	142.8
31	122.6	142.1
40	122.6	142.1
50	121.6	142.7
63	121.1	140.8
80	120.7	141.2
100	119.9	145.2
125	119.4	140.6
160	118.5	140.6
200	117.8	141.1
250	117.8	139.2
315	118.5	137.5
400	116.6	137.5
500	117.0	136.3
630	121.0	135.2
800	116.3	133.9
1000	116.3	132.4
1250	116.8	132.0
1600	115.0	130.4
2000	113.2	127.8
2500	113.3	124.4
3150	112.0	125.5
4000	110.9	
5000	109.7	
6300	108.2	
8000	107.8	
10000	106.2	
12500	103.5	
16000	100.2	
20000	101.2	
DBA	126.5	142.9

As was previously described in Figure 10, the low-speed fan has to operate at the reduced stagger angle setting of 35.4° to attain design-developed head. This somewhat penalized its acoustic performance. The noise levels for the low-speed fan at design operating conditions are respectively 126.5 and 142.9 dBA for the model and six prototype fans. This falls short of the originally predicted noise levels of 122.1 and 139 dBA respectively for the model and six prototype fans. Yet, in spite of this deficiency in realizing the predicted noise levels for the low-speed fan, the test results showed a definite significant reduction in fan noise generation in going to the low-speed configuration.

Comparison of Acoustic Performance of Low-Speed and High-Speed
 Fan Configurations

The low-speed fan noise test results at design operating conditions (Table 4, Run 171) are 126.5 and 142.9 dBA respectively for the model and six prototype fans. This compares to noise levels for the high-speed fan configurations of 127.7 and 146.8 dBA . While this comparisonishows a net reduction in the order of 4 dBA in going from the high-speed to the low-speed fan configuration, it represents a conservative comparison.

Figure 11. Low-Speed Fan-Radial Discharge Total Pressure Distribution

As the noise comparisons for the low-speed and high-speed fans were made at design head and flow, this somewhat penalized the low-speed noise operation. : In order to meet design head, the low-speed fan with its deficiency in both turning and efficiency had to be operated at a 5° blade incidence setting, or a less favorable incidence condition from the standpoint of noise generation than that of the high-speed fan. Comparing the two fan configurations at their design inceidence conditions, corresponding to a stagger angle setting of 40.8° for the low-speed fan, a further reduction in noise level is realized by the low-speed fan. Run No. 291 in Table 5, corresponding to the low-speed fan's stagger angle setting of 40.8°, shows a noise level for the prototype six fans of 140.1 dBA . This represents a noise reduction of 6.7 dBA in going from the high-speed to the low-speed fan configuration. Based on the above analysis, it would appear reasonable to project that with an improved low-speed fan design it would be possible to achieve a noise level reduction with the low-speed fan that would be midway between the two test comparisons of Runs 171 and 291. This would represent a noise reduction of 5.3 dBA for the low-speed fan over that of the high-speed fan.

AERODYNAMIC PERFORMANCE OF LOW-SPEED FAN

 WITH ARTIFICIALLY GENERATED INLET DISTORTIONSThe inlet flow distortions that were introduced at the fan entrance are shown in Figure 12. The obstructions that were introduced at the inlet to the model fan were designed to simulate the thickened boundary layer conditions on the tunnel walls upstream of the six-fan cluster.

$\mathrm{B}=$ TWICE THE NUMBER OF LAYERS OF H or V
$A=$ TWICE THE NUMBER OF LAYERS OF B
D.S. = DOUBLE SCREEN E 26° STATION (FULL DUCT AREA)
14×18 WIRE
Figure 12. Low-Speed Fan - Inlet Distortions
Based on the test results it appears that the fan tip section is able to operate with a highly distorted flow without stalling. This is illustrated by the test results with maximum blockage, corresponding to configuration D-9 (Figure 12): Examination of computer output sheets for the inlet and discharge fan performance, presented in Figures 13 and 14 for Runs 461 and 462 corresponding to the bottom azimuth surveys at stations 4 and 6 respectively, shows that with a severely skewed velocity profile from tip to hub, the tip section had no problem in exceeding design-developed head by approximately 20 percent. Furthermore, the developed head rise of 821 feet for the entire radial blade section, based on the total pressure rise data from the station 4 to 6 survey probe; seems to indicate the ability of the fan to operate with a thickened boundary layer over a circumferential sector without stalling. The data, however, are not conclusive, since only two of the four azimuth positions (bottom and top) were surveyed. There is conceivably a circumferential shift of the poor-performance regions of the fan that would have shown up in either the port or starboard survey position had they been taken, and the overall fan performance may actually be poorer than that indicated by the more favorable results shown by the bottom and top azimuth surveys.

Figure 13. Lộw-Speed Fan-Inlet Survey with Inlet Obstructions; Station 4

Pr	аяマ. (IN HG)	$\begin{gathered} \mathrm{T}, \mathrm{H} 2 \mathrm{C} \\ \text { cofgrin } \end{gathered}$		$\begin{aligned} & \text { PE, INLET } \\ & \text { (I)(IWGS) } \end{aligned}$	PT,INLET (3)(TWG)	$\begin{gathered} T, D \mathrm{E} \\ \left(\mathrm{n}^{2} \mathrm{~g}\right. \text { f } \end{gathered}$	$\begin{aligned} & \text { per,nis } \\ & \text { (IWG) } \end{aligned}$	$\text { рT }{ }^{-}, \mathrm{OI} \mathrm{I}$ (I Kin)	$\begin{aligned} & \text { SWIRL } \\ & \text { (ITGG. } \end{aligned}$	RADIAL \{ คFG\}	Q/R ${ }^{\text {r }}$	DSM	$\begin{gathered} \pi n \ni w \\ (5 \pi\|P\| \end{gathered}$
1	29.94	81.63	59.11	-1.92	-3.59	62.44	-4.34	1. 55	10.56	1.10	9.7895	1196.	1999.3
2							-4.36	2.32	10.54	1.15	0.9712		
3							-4.32	2.70	10.30	1.34	0.9516		
4							-4.4.7	2.78	19.97	1.51	0.7315		
5			-				-4.57	2.38	10.40	1.59	0.0100		
6	,		. \quad				-4.55	2.88	9.95	1.79	0.3000		
7							-4.57	2.76	9.11	1.74	0.8695		
8							-4.57	2.70	8.47	1.95	0.8465		
9							-4.63	2.44	7.78	2.04	0.8249		
10	79.94	81.86	'50.0?	-1.88	-3.56	62.12	-4.67	2.18	6.23	2.20	0.8007	110f..	197A. 5
11							-4.61	2.03	6.31	2.00	0.7756		
12							-4.67	1.52	8. 22	$? .16$	9.7520		
13							-4.5n	1.32	5.33	2.02	0.7265		-
14					-		-4.61	5.82	5.22	$2.12 \times$	0.7002		
15		,					-4.57	3.50	5.00	1.78	9.5726		
16							-4.61	0.13	4.74	1.63	0.6439		
17							-4.80	-0.19	4.14	1.29	7. F 140		
18							-4.59	-0.49	2.50	1.05	0.5825	-	
19		,					-4.56	-3.49	-0.39	0.70	0.5491		
20.	29.94	81.50	59.14	-1.96	-3.64	62.29	-4.46	-0.49	-4.26	0.12	0.5134	1196.	1987.0

PT		$\begin{gathered} \text { TOA } \\ \{\text { (DFG F } \end{gathered}$	$\begin{gathered} P^{T} O A \\ (P S I A) \end{gathered}$	$\begin{gathered} \text { TOR } \\ \text { (OFGR) } \end{gathered}$	$\begin{aligned} & \text { PTDJ } \\ & \text { (PSTA) } \end{aligned}$	$\begin{gathered} \text { NEUM } \\ \text { ILB/ERC) } \end{gathered}$	$\begin{gathered} H H \\ (\mid R / S) \end{gathered}$	$\begin{gathered} \text { Hr กD } \\ (\mathrm{LR} / \mathrm{S}) \end{gathered}$	$\begin{aligned} & \text { WNOR } \\ & (\mathrm{LB} / \mathrm{S}) \end{aligned}$	DP	HTSNRR (FFTT)	HDIFIP (HD)	ren
1	14.71	519.7	14.98	522.0	14.76	259.6	$32^{9} .8$	331.5	332.?	1.0125	348. 5	452.85	0.456
10	14.71	518.6	14.58	521.7	14.76	259.7	325.4	328.0	329.1	1.0125	345.8	45n. 57	. 0.451
. 20	14.71	513.7	14.57	¢21.9	14.76	259.7	332.3	335.0	336.2	1.0127	351.1	452.47	0.466
AVG	14.71	518.7	14.58	. 521.n	14.76	259.7	328.8	331.5	332.7	1.0126	34R.5	451.96	0.458

Figure 14. Low-Speed Fan-Discharge Survey with Inlet Obstructions; Station 6

It would appear, therefore, that the inlet distortion tests on the low-speed fan should be repeated with survey data taken at the four azimuth positions, to more correctly ascertain how well the 40 -foot-diameter fans will perform in the presence of a distorted flow due to a thickened boundary layer.

PRECEDING PAGE BLANK NOT FILMED

Section 4

RESTUDY OF LOW-SPEED FAN REDESIGN

The aerodynamic test results on the low-speed fan established that the fan hub profile was poor and would further deteriorate in going from a hub/tip ratio of 0.5 to 0.4375 . It was, therefore, decided to reevaluate the fan blade design procedures in arriving at the original rotor and stator blade shapes for the low-speed fan. In order to capitalize on the advanced analytical procedures for fans that are available within the General Electric Company, this study phase was turned over to GE's Aircraft Engine Business Group's Advanced Turbomachinery Aeodynamics Subsection under the direction of Dr. Leroy H. Smith, Jr.

RESULTS AND RECOMMENDATIONS OF LOW-SPEED FAN AERODYNAMIC STUDY BY GE'S AIRCRAFT ENGINE BUSINESS GROUP (AEBG)

The aerodynamic fan study evaluated the following rotor and stator blade design areas:

- Rotor and stator blade chord length distribution with radius.
- Rotor and stator airfoil maximum thickness ratio with radius.
- Rotor and stator camber angle distribution with radius;
- Rotor and stator stagger angle distribution with radius.
- Basic airfoil thickness distribution for the rotor and stator and blade stacking arrangement.

Rotor and Stator Blade Geometry Recommendations

The recommended rotor and stator blade geometry modifications resulting from the aerodynamic study are shown in Figures 15 through 20.

Blade Chord Length and Thickness Distribution
Changes in the stator chord length and rotor and stator blade thickness distribution are shown in Figures 15 and 16. All of these values were increased from the original design. The increase in stator chord length was incorporated to improve its stall resistance; the increase in blade thickness distribution was mainly dictated by structural considerations.

Blade Camber

The blade camber shape shown in Figure 17 was considerably modified from its original design for both the rotor and stator. The curlups in camber at the hub are primarily a result of the recognition of end-wall boundary layer effects that show up as increased losses and a consequent requirement for increased air deflection there. At the tip the camber curlups are also partly due to increased losses, but an additional consideration adds to the camber. This is the assumption of a slightly reduced inlet total pressure toward the tip in anticipation that the inlet profile, treated on a circumferential-average basis, will be better matched this way. The magnitude of this assumed inlet total-pressure distortion is small. It represents a 10 percent lower-tip

Figure 15. Blade Channel Length vs Radius

Figure 16. Maximum Thicknẹs Ratio vs Radius
axial velocity than the hub axial velocity when calculated under the assumption that the static pressure is uniform. With the nonuniform static pressure that was actually computed to exist at the rotor face, the axial velocity distribution from tip to hub wa: not so severe, the tip having an axial velocity only 4 percent lower than the hub.

Figure 17. Camber Angle vs. Radius

Blade Stagger

The blade stagger-angle setting (Figure 18) was increased for both rotor anc stator. This was largely a consequence of the camber increases shown in Figure 17.

Airfoil Shape Modifications and Blade Stacking Arrangement

The original blade C-4 thickness distribution for the rotor and-stator was changec to a modified NACA 65 -series thickness distribution on circular are mean lines, and the individual airfoil sections were stacked on a radial line through their centroids. The rotor blade sections are shown in Figure 19, with the inseribed circle (which is 90% of the blade spacing at the hub) representing the recommended rotor blade trunnior diameter.

The large trunnion size is designed to minimize the clearance that occurs wher ϵ the root airfoil overhangs the trunnions. Furthermore, since such a clearance at the leading edge tends to form an aerodynamically unfavorable forward-forcing step, it is recommended that the root section be slid aft, as indicated by the dashed line, in order to eliminate any leading edge overhang.

GENERAL (G) ELECTRIG

Figure 18. Stagger Angle vs Radius

Hub Modification to Improve End-Wall Boundary Layer

The end-wall boundary layer shape leaving the rotor and entering the stator can be improved by allowing the hub surface between the rotor and stator to rotate. This feature is shown in the view of the fan (Figure 20).

Stator Airfoil Sections

The modified stator airfoil sections are shown in Figure 21. The sections were shaped to discharge the flow to the diffuser without any appreciable swirl.

REDESIGNED FAN PERFORMANCE

The final test results on the redesigned low-speed fan were not fortheoming in time to be incorporated in this report. However, preliminary test results indicate significant performance improvement for the redesigned fan employing 65 -series airfoil blade sections over that obtained with the original C-4 airfoil blade section in the lowspeed fan design.

Figure 19. Rotor Blade Sections

Figure 20. Flow Path

Figure 21. Stator Vane Sections

Section 5

SUMMARY

The comprehensive aero-acoustic investigation program for the NASA-Ames 1/7scale model fan established the necessary aero-acoustic design guidelines which will enable optimization of the 40 foot full-scale-diameter fans to be incorporated in the repowered section of the 40×80 foot wind tunnel. The extensive investigation program established the following fan aero-acoustic characteristics:

1. The low-speed fan design will be quieter than the high-speed fan by 4 to 5 dBA .
2. The high-speed fan with its lighter blade loading was'several points more efficient than the low-speed fan. Its indicated efficiency of 86 percent was several points below its objective design efficiency of 90 percent.
3. The original design of the low-speed fan marginally met its design head requirement and was seven percentage points deficient in its efficiency objective. Its poor hub-region operation mandated that a new aerodynamic design be incorporated, if the fan was to meet the performance objectives of the 0.4375 hub/tip ratio design contemplated for the full-scale fans.
4. Initial performance results on the redesigned low-speed fan indicate a significant performance improvement over the original design.
5. Fan inlet distortion tests indicated a considerably greater fan capability in operating with thickened boundary layers over a circumferential sector without stalling.

Section 6

REFERENCES

1. "Large Scale V/STOL Wind Tunnel Power Section Design Study," NASA/Moffett Field Contract NAS2-5890, Marine and Defense Facilities Sales Operation, General Electric Company, November 1970.
2. "Large Șcale V/STOL Wind Tunnel Power Section Design Study," NASA/Moffett - Field Contract NAS2-5890, Marine and Defense Facilities Sales Operation, General Electric Company, January 7, 1972.
3. . "Large Scale V/STOL Wind Tunnel Power Section Design Study," NASA/Moffett Field Contract NAS2-5890 MOD 2, Marine and Defense Facilities Sales Operation, General Electric Company, September 1973.
4. "Feasibility Study of Repowering the 40×80 Foot Wind Tunnel and Increasing Its -Testing Capacity," John A. Blume and Associates subcontract for NASA-Ames Research Center, Marine and Defense Facilities Sales Operation and Corporate Research and Development, General Electric Company, 1973.
5. "Design of Fans and Model Test Stand for Simulating the Proposed New Fan Power Section of the 40×80 NASA/Ames Wind Tunnel," NASA Contract NAS2-7477, Corporate Research and Development, General Electric Company, August 1973.

Preciming page blank not fllúed

Appendix A

40×80 FOOT MODEL FAN PERFORMANCE INSTRUMENTATION

A. Overall Fan Performance Instrumentation

Stations: $0,1,3,6$ and $6 \mathrm{~A}-$
\square Symbols refer to stations described on drawing A T4622-C

Station No.

0
(Upstream of "STA ZERO")

1
3

6
(4 Circumferential Positions 90° Apart)

Type of Instrumentation

(1) 5 Thermocouples-Millivolt Readings
(2) Barometer-(in. HG)
(3) TA-Manometer Fluid Temperature (${ }^{\circ} \mathrm{F}$)

16 - Static Pressure Taps, 4 per Panel (in. $\mathrm{H}_{2} \mathrm{O}$) -
4-Total Pressure Rakes 6 Total Pressure Tubes per Rake; 24 Total (in. $\mathrm{H}_{2} \mathrm{O}$)
Radial Traverse Probe:
(1) Static Pressure (in. $\mathrm{H}_{2} \mathrm{O}$)
(2) Total Pressure (in. $\mathrm{H}_{2} \mathrm{O}$)
(3) Direction (degrees), Null Balance

3 Fixed Thermocouple Probes for Total Temperature at Strut Entrance

Fan Power Input Measurements:

1. Fan Speed
2. Torque Input, $\mathrm{ft}-\mathrm{lb}$
B. Rotor Performance Instrumentation

Stations: 0, 1, 3, 4, 5, and 6A
Instrumentation for stations $0,[1,4$ and 6 A same as "Section A "
Instrumentation for stations 4 and 5 same as for station 6 of Section A
C. Diffuser Performance Instrumentation

Stations: $0,1,6,6 \mathrm{~A}$, and 8
Instrumentation for stations $0,1,6$ and 6 A same as in Section A

Station No.

8

Type of Instrumentation

16 - Static Pressure Taps, 4 per Panel (in. $\mathrm{H}_{2} \mathrm{O}$)

4 - Total Pressure Rakes, 6 Total Pressure Tubes per Rake; 24 Total (in. $\mathrm{H}_{2} \mathrm{O}$)

All pressure instrumentation will have tọ be read to an accuracy of $\pm 0.01 \mathrm{in} . \mathrm{H}_{2} \mathrm{O}$.

Appendix B

40×80 FOOT MODEL FAN OVERALL PERFORMANCE CALCULATION PROCEDURE

PROGRAM STRUCTURE AND INPUT DATA FILE

The program is structured to evaluate the fan adiabatic efficiency, corrected weight flow, and normalized developed head, pressure rise, weight flow, and input horsepower for each specific constant-speed constant-throttle valve flow setting. The program treats each azimuth position of the discharge Radial Traverse Probe as a separate run number. The performance data for the number of azimuth stations employed are normalized and then averaged to arrive at the overall performance data of the fan.

The input data should then be assembled in two arrays. The first array, arbitrarily designated as (I), will correspond to the elements of the Radial Traverse Probe radial positions on centers of equal area at Instrument Station 6 for a particular azimuth location. The second array, arbitrarily designated as (J), will correspond to the azimuth or circumferential positions of the Radial Traverse Probe identified as run numbers.

DATA INPUT FILE

The inputted data for overall performance reduction will be as follows:
(1) TA(J) $=$ Manometer Fiuid Temperature, ${ }^{\circ} \mathrm{F}$
(2) $\operatorname{BAR}(J)=$ Barometric Pressure, " Hg
(3) $\operatorname{TMER}(J)=$ Temperature of mercury barometer, ${ }^{\circ} \mathrm{F}$
(4) TO(J) $=$ Average of 5 Inlet thermocouples (millivolt readings converted to ${ }^{\circ} \mathrm{F}$)
(5) $\operatorname{PSTI}(J)=$ Average of 16 static pressure taps at station 1 , " $\mathrm{H}_{2} \mathrm{O}$ with
(6) $\mathrm{PTO}(\mathrm{J})=$ Average of 24 total pressure tube readings at station 3 , " $\mathrm{H}_{0} \mathrm{O}$ with respect to ambient (values should be negative if less than atmospheric pressure)
(7) $\operatorname{PSD}(\mathrm{I}, \mathrm{J})=$ Static pressure at immersion (I) for azimuth position (J) of Radial Traverse Probe, " $\mathrm{H}_{2} \mathrm{O}$ with respect to ambient. Value is negative if pressure is below atmosphere
(8) $\quad \operatorname{PTD}(\mathrm{I}, \mathrm{J})=$ Total pressure at immersion (I), same as for static pressure in step (7).
(9) $\quad \alpha 2 Z(I, J)=$ Fluid flow direction with respect to axial direction as measured.by Radial Traverse Probe, degrees
(10) $\mathrm{TD}(\mathrm{J})=$ Average discharge temperature at station 6A, (millivolt readings converted to ${ }^{\circ} \mathrm{F}$)
(11) $N(J)=$ Fan actual speed, rpm
(12) $\operatorname{TORK}(J)=$ Fan torque measurement, ft-lb
(13) NPERC $=$ Percent of design speed to which overall performance will be corrected, per unit ($100 \%=1$)
(14) NDES $=$ Fan design speed, rpm

PROGRAM COMPUTATION LOGIC

Two loops will be set up similar to the input data loops, with the (I) loop evaluating the radial pressure data at an azimuth location of the Radial Traverse Probe and the (J) loop evaluating the average conditions of fan efficiency, total head, pressure rise, weight flow, and horsepower associated with all the azimuth measurements of the Radial Traverse Probe, during a particular flow and speed setting.

(005)	AN	$=$ Inlet Nozzle throat area, $\mathrm{ft}^{2}, \mathrm{~S}^{2}=6.9^{2}$
(010)	$R D$	$=1 \times 10^{6}$ (initially assumed Reynolds number for calculating fan weight flow)
(015)	ETAS	$=0$
(020)	HADSUM	$=0$
(025)	WSNOR	$=0$
(030)	NP	$=$ Number of azimuth or circumferential positions of Radial Traverse Probe
(035)	NS	$=$ Number of radial stations of Radial Traverse Probe
(040)	DO 100 J	$=1, \mathrm{NP}$
(045)	RHOW	$=$ Manometer fluid density, $\mathrm{lb} / \mathrm{f}^{3}{ }^{3}$ expressed as a function of $\mathrm{TA}(\mathrm{J})\left(\right.$ RHOW $=62.38 \mathrm{lb} / \mathrm{ft}^{3}$ at $\left.58^{\circ} \mathrm{F}\right)$
(050)	KPS	$\begin{aligned}= & \text { Pressure conversion factor } \\ & \text { RHOW } / 1728=(045) / 1728\end{aligned}$
(055)	KMER	$=$ Barometer multiplication factor to convert Hg to psi, function of TMER(J) $=(3 \rightarrow$ Data $)$
(060)	PATM(J)	$\begin{aligned} = & \text { Absolute pressure in psia, } K M E R \times \operatorname{BAR}(J)=(055) \\ & x(2 \rightarrow \text { Data }) \end{aligned}$
(065)	TOA(J)	$=$ Absolute inlet air temperature, ${ }^{\circ} \mathrm{R}$
(070)	RHO	$=$ Inlet density, $\mathrm{lb} / \mathrm{ft}^{3}$,
		$\underline{\operatorname{PATM}(\mathrm{J})} \times 2.7=\underline{(060)} \times 2.7$
		TOA(J) (065)
(075)	DPN	$=$ Inlet Nozzle differential pressure, psi, PSTI(J) \times KPS $=(5 \rightarrow$ Data) $\times(050)$
(080)	MU	$\begin{aligned} = & \text { Dynamic Viscosity, } 1 \mathrm{~b} / \mathrm{sec}-\mathrm{ft} \\ & {\left[1.109+1.673 \times 10^{-3} \mathrm{TO}(\mathrm{~J})\right] \times 10^{-5}=} \end{aligned}$
(085)	CN	$1.109+1.673 \times 10^{-3}(4 \rightarrow \text { Data }) \times 10^{-5}$ $=$ Nozzle flow coefficient, $\mathrm{CN}=\mathrm{f}(\mathrm{RD})$ (Equation for CN to be developed from $1 \mathrm{ft}^{2}$. Inlet Bellmouth Flow Tests at GE)
(090)	WN(J)	$=$ Fan weight flow, $\mathrm{lb} / \mathrm{sec}, \mathrm{CN} \times \mathrm{AN} \mathrm{x}$
(095)	RDN	
(100)	If $[A B S(R D N-R D)$	GT - 500) G $\mathrm{f}^{\mathrm{T} \phi}$ (110)
(105)	$\mathrm{G} \phi \mathrm{T} \phi$ (115)	
(110)	RD	$=\mathrm{RDN}$, Return to (085)
(115)	PTOA(J)	$\begin{aligned} = & \text { Absolute inlet total pressure, psia, } \\ & (\text { PATM }(J)+\text { PTO(J) } \times \text { KPS })=[(060)+ \\ & (6 \rightarrow \text { Data }) \times(050)] \end{aligned}$

Evaluation of Radial Weighted Flow Discharge Total Pressure as Measured by Radial Traverse Probe at Station 6] .

(120)	WSUM(J)	$=0$
(125)	PTDSUM	$=0$
(130)	PTDWSUM	$=0$
(135)	DO 200, I	$=1$, NS
(140)	PSDA(I,J)	$\begin{aligned} = & \text { Absolute discharge static pressure, psia, } \\ & (\text { PATM }(J)+\text { PSD (I, J) } \times \text { KPS })=[(060)+ \\ & (7 \rightarrow \text { Data }) \times(050)] \end{aligned}$
(145)	PTDA(I,J)	$\begin{aligned} = & \text { Absolute total pressure, psia, (PATM(J) }+ \\ & \operatorname{PTD}(\mathrm{I}, \mathrm{~J}) \times \mathrm{KPS})=[(060)+(8 \pm \mathrm{Data}) \times(050)] \end{aligned}$
(150)	TDR(J)	$\begin{aligned} = & \text { Discharge temperature },{ }^{o} \mathrm{R}, \quad[\mathrm{TD}(\mathrm{~J})+460]= \\ & (10 \rightarrow \text { Data })+460 \end{aligned}$
(155)	$\mathrm{VAB}(\mathrm{I}, \mathrm{J})$	$=$ Absolute velocity, $\mathrm{ft} / \mathrm{sec},(2 \mathrm{~g} \mathrm{R} \mathrm{(TDR)}$
		$\left.\left[\frac{\operatorname{PTDA}(\mathrm{I}, \mathrm{~J})}{\operatorname{PSDA}(\mathrm{I}, \mathrm{~J})}\right]-1 \quad=58.56\left[(150) \times \frac{(145)}{(140)}-1\right)\right] 1 / 2 .$
(160)	$\alpha 2 \mathrm{Z}(\mathrm{I}, \mathrm{J})$	$=$ Fluid flow direction with respect to axial direction, degrees
(165)	VZ(I,J)	$\begin{aligned} & =\text { Axial component of absolute velocity, } \mathrm{ft} / \mathrm{sec}, \\ & {[\mathrm{VAB}(\mathrm{I}, \mathrm{~J}) \times \cos \alpha 2 \mathrm{Z}(\mathrm{I}, \mathrm{~J})]=(155) \times \cos (160)} \end{aligned}$
(170)	AZI	$=\text { Stream tube area, } \mathrm{ft}^{2}, \frac{\mathrm{II}}{4}\left(\frac{\mathrm{DT}^{2}-\mathrm{DH}^{2}}{\mathrm{NS}}\right)=$
		$0.785\left(\frac{6^{2}-3^{2}}{\mathrm{NS}}\right)=\frac{21.206}{(035)}$
(175)	RHOD(I,J)	$\begin{aligned} & =\text { Approximate stream discharge density, } \mathrm{lb} / \mathrm{ft}^{3} \text {, } \\ & {\left[2.7 \times \frac{\operatorname{PSDA}(\mathrm{I}, \mathrm{~J})}{\operatorname{TDR}(\mathrm{J})}\right]=2.7 \frac{(140)}{(150)}} \end{aligned}$
(180	W(I,J)	$\begin{aligned} & =\text { Stream tube weight flow, lb/sec, RHOD }(\mathrm{I}, \mathrm{~J}) \times \mathrm{x} \\ & \mathrm{VZ}) \mathrm{I}, \mathrm{~J}) \times \mathrm{AZI}=(175) \times(165) \times(170) \end{aligned}$
(185)	WSUM(J)	$=\mathrm{WSUM}(\mathrm{J})+\mathrm{W}(\mathrm{I}, \mathrm{J})=(120)+(180)$
(190)	$\operatorname{PTDW}(1, J)$	$=$ Weighted total pressure term in stream tube, (psia) ($\mathrm{lb} / \mathrm{sec}$), $\operatorname{PTDA}(\mathrm{I}, \mathrm{J}) \times W(\mathrm{I}, \mathrm{J})=(145) \times(180)$
(195)	PTDWSUM	$=$ PTDWSUM + PTDW $(\mathrm{I}, \mathrm{J})=(130)+(190)$
(200)	PTDSUM	$=$ PTDSUM + PTDA $(1, \mathrm{~J})-(125) \pm$ (145)
(205)	200 continue	
	If (ABS ($1 \sim$ WSUM(J)	.GT. .15) G $¢$ Tф (222)
(215)	$\begin{aligned} & \text { If } \operatorname{ABS}(1-W n(J) \\ & \text { PTDJ } J \text {) } \end{aligned}$	$=\cdot \operatorname{PTDWSUM} / W S U M(J)=(195) /(185)$
(220)	GO TO(230)	
(222)	Print Message: Weig	ted Method Not Used
(225)	PTDJ(J)	$=\mathrm{PTDSUM} / \mathrm{NS}=(200) /(035)$
(230)	DEL	$\begin{aligned} = & \text { Ratio of inlęt total pressure to standard pressure of } \\ & 14.694 \mathrm{lb} / \mathrm{in}^{2}, \\ & (115) / 14.694 \end{aligned}$

DESIRED COMPUTER PRINT-OUTS

1. All Input Data Except TA(J) and TMER(J)
2. The following list of calculated results

$\operatorname{PATM}(J)$	WN(J)	HISNOR(J)	WSUM(J)
TOA(J)	WCOR(J)	HPIND(J)	
PTOA(J)	WNOR(J)	ETA(J)	
TDR(J)	PR(J)		
ETDJ(J)			
	HADAV,	WNORAV	
	DPFAN	HPAV	

Appendix C

FAN ACOUSTITC DATA REDUCTION PROGRAM

```
    NASAFAN
                10/29/74
```



```
    10 FILES CENTRQLLGAITENS;FANDATA;MIKEARFA;PAGF3FANCALC
    20 DIM X(1,36),A(1,36),R(1,36),F(1,36),C(4,36),M(4,36),K(1,36),V(1,36)
    30 DIM P(36,36),L(10),L(36,37),W(36,36),I(1,37),0(1,37),S(1,36),1J(1,36)
    40 SCNARCH #6
    50 MANGIV #6,175
    60 MAT READ #O,F,R,S,U
    70 AO = 100
    80 CO = -10.5
    90 so = . 15
    100 YO = SGN(LEG(SO))*INT(ABS(3/LGG(2)*LのG(SO))+.5)
    110 WO = 6/SO+2
    120 N = 36
    130 MAT READ #1,X(1,N)
    140 MAT KEAD #2,A(1,V)
    150 READ #3, [$
    160 MAT READ 44.M
    170 MA[ READ #A,K
    180 READ #5.PS
    190 KEAD #O,AG,RG,C$,DS,ES,Fक,Gक,HG;IS,J&.
    200 READ #3,0
    210 1F د > O IHEV 1860
    320 . = -3
    230 J2 = INT(.) 
    240 J1 = 100*(0-J2)
    250 J1 = INT(Jl-.5)
    260 J2 = IN\Gamma(J2-.5)
    270 F0K J = J1 ro J?
    280 READ #3,C(1,J)
    290 NEXI J
    300 L(1) = C(1,11)
    310 FEK K = 2 T0 4
    320 READ #3,00
    330 IF U0 <> -D IHEV 1860
    340 FGR J = J1 TE J2
    350 READ #3,C(K,J)
    360 NEX[ J
    370 L(K) = C(K,11)
    380 NEXT K
    390 F0R K = 1 T0 N
    40. READ #3,30
    410 IF 20 <> - \ [HEV 1%60
    42O FGR J = Ji [0 J2
    430 KEAD 43.P(K,J)
:r440.MU =.K-4*INF((K-1)/4)
    450'L\cdot(X(1,K),J) = P(K,J)-M(MO,J)+124-Z(MO)+A(1,K)-A0
- 460W(X(1,K),J) = L(X(1,K),J)+K(1,X(1,K))+C0
470V(1,J)=L(x(1,K),J)
4BO VEX[J
4*0 GGSUB 1660
500 L(X(1,K),37) = A9
```

```
S10 NEXT K
520 F0K J = J! T0 J2
530 W=0
540 FER K=1 re N
550.W = W+10%(W(K,J)/10)
560 NEXI K
57.0[(1,3)= 10/LEG(10)*LEG(N)
580 NEX[ J
590 FOR J = J! T0 JC
600 IF J > J2+YO THEV 630
610 O(1,J)= f(1,J-Y0)+10/L.EG(10)*LQG(WO)
6 2 0 ~ N E X I ~ J ~
630 FOK J = J1 T0 J2
640 V(1,J)= I(1,J)
650 .NEXI J
6 6 0 ~ G Q S U B ~ 1 6 6 0 ~
670 [(1,37) = A9
680 FEN J = J1 r0J2
690 v(1,J) = U(1,J)
700 NEXT J
710 GBSUB 1660
720 !!!:37) - ^!口
730 FOK J = 1 T0 10
740 PRIVT #6
7SO NEXTJ
760 PRI.NI #6, USI:NG780, [क
770 PRI.V! #6
```



```
790 PRINT #6
800 PRIVT 46
810 PKIVI #G,Aक;TAB(21);RS
820 PRINT #6
830 PRINT #6,TAB(2);C&; IAB(20)3D$;TAR(30);F$
840 PRINT #6,TAS(30);F$
8SJ PRIN! 46
860 FGR J = Ji T0 J!
870 PRIVI #6,USING 1530,F(1,3);
880 G010 910
890 PRINT #6
900 PRINI #6," ";J$;" ";
910 P:RINF 46," ";
920 PRIV[ #6,USIVG y30,r(1,J);
930: #44.##
940 PRIN: 46," ";
950 1F J = 37 [HEV 970
960 IF J \geq J己+YO THEV 980
970 PRINT #6,USIVG 9.30, )(1,J);
980 PrIVR 46
990 IF J = 37 [HEN 1030
1000 NEXT J
```

1010 J = 37
1020 G0r0 890
1030 PRIN[\#6,P\$
1040 FOR J = 1 T0 10
1050 PRINT \#6
1060 NEXI J
1070 PRINF \#6,USING 1080,G%

```

```

1090 PRI.NI \#6
1100 PRIVT \#6
1110 A = 1
1120 8 = 4
1130 G0SUB 1330
1140 FER J = 1 [0 10
1150 PRINT \#6
1160 NEXT J
1:70 PRINT \#6, USING 10%0,H\$
1180 PRINT \$6
1190 PKINT \#6
1200 A = 5
1210 B = 16
1220 GeSN0 :330
1230 F0R J = 1 [0 10
1240 PRINT \#6
1250 NEXT J
1260 PKINI \#6,USING 1080,I5
1270 PRINT \#6
1280 PISINT 46
1290 A = 17
1300 B = 36
1310 GOSUB 1330
1320 S ICP
1330 PrINT \#G,A53' "%
1340 F0R I = A T0 B
1350 PRINT \#6,USING 1360,S(1,1);
1360: \#\#
1370 .VEXI I
1380 PRINT \#6
1390 PRINT \#6,TAB(2);C\subseteq;" ";
1400 FGR I = A TQ B
1410 IF U(1,I) <> 1 IHEV 1440
1420 PRIVI \#6," ** ";
1430 G0!0 1450
1440 PRINT \#6," ";
14SO NEXI I
1460 PRINT \$6
1470 PRINT \#6
1480 FER J = لl 「0 J2
1490 PKINI 46,USING 1530,F(1,J);
1500 G010 1530

```
```

NASAFAN luハヒヒハ:4
1510 PRINT \#6
1520 PRIN「 \#6," ";J\$;" ";
1530: \#\#\#\#\#
1540 PRIVT \#6," ";
1SSU FER I = A T0 B
1560 PNINT \#6,USING 1570,L(S(1,1),J);
1570: \&ま\#.\#
15%0 NEXT I
1590 PKIVI \#6
1600 IF J = 37 THEV 1640
1610 NEXI J
1620 J = 37
1630 GOT0 1510
1640 PRINF \#6.PS
1650 RE[URN
1660 AY = 0
1670 FEK J = 1 [0 31
1680 A9 = 49+10:((V(1,J)-R(1.J))/10).
1690 NEX[J
1700 A9 = 10/L0G(10)*LDG(A9)
1710 RETURN

```

```

1730 DATA 1000,1,250,1600,2000,2500,3150,4000,5000,6300,8000,10000
1740 DA IA 12500,16000,20000,25000,31500,40000,50000,6,3000,80000
1 7 5 0 ~ D A T A ~ 4 4 . 7 , 3 9 . 4 , 3 4 . 6 , 3 0 . 2 , 2 6 . 2 , 2 2 . 5 , 1 9 . 1 , 1 6 . 1 , 1 3 . 4 , 1 0 . 9 , 8 . 6 ~
1760 DATA 6.6,4.8,3.2,1.9,.8,0,-.6,-1,-1.2,-1.3,-1.2,-1,-.5,.1
1770 DA[A 1.1,2.5,4.3,5.6,9.3,0,0,0,0,0,0
1780 DATA 1 5,16,22,21,6,9,10,11,17,23,29,23,27,26,20,14,1,2,3,4,5,6
1790 DATA 12,18,24,30,36,35,34,33,32,31,25,19,13,7
1 8 0 0 ~ D A T A ~ 1 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1
1810 DATA 0,0,0,0,1,0,0,0,0
1820 DASA FREJUENCY,LA RE 1E-12 WATTS,HERTZ,MODFL,PROFOTYPF
1830 DA [A (SIX FAVS)
1840 DATA SPL EF GFVIER CELLS,SPL OF INTERMFDIATF FFLLLS
1850 DATA SPL OF GUFER CFLLS,DRA
1860 PRIVI "CHFCKDATA"
1870 END

```

CONTROL \(10 / 29 / 74\)
\(1001,4,7,10,2,5,8,11,3,6,9,12\)
\(11013,16,19,22,14,17,20,23,15,18,21,24\)
\(12025,28,31,34,26,29,32,35,27,30,33,36\)

ATTENS \(\quad 10 / 29 / 74\)

100 90,90,90,90,90,90
110 90,90,90,90,90,90
120 90,90,90,90,90,90
130 90,90,90,90,90,90
140 90,90,90,90,90,90
\(15090,90,90,90,90,90\)

FANDATA

50 PROGRAM CALCULATION CHECKS
\(100-30.02,070.00,070.00,070.00,07.0 .50,036.25,070.00 .070 .00\),
\(110 \quad 077.00,086.00,104.00,123.50,105.00,086.75,089.00,073.75\), \(120 \quad 070.00,075.00,070.00,070.00,070.00,070.00,070.00,070.00\), 130 070.00,070.00,070.00,070.00,070.00,070.00,
\(140-30.02,070.00,070.00,070.00,070.50,086.25,070.00,070.00\), \(150 \quad 077.00,036.00,104.00,123.50,105.00,086.75,089.00,073.75\), \(160070.00,075.00,070.00,070.00,070.00,070.07,070.00,070.00\),
\(170 \quad 070.00,070.00,070.00,070.00,070.00,070.00\),
\(180-30.02,070.00,070.00,070.00,070.50,086.25,070.00,070.00\),
190 \(077.00,086.00,104.00,123.50,105.00,086.75,089.00,073.75\),
\(200 \quad 070.00,075.00,070.00,070.00,070.00,070.00,070.00,070.00\), \(210 \quad 070.00,070.00,070.00,070.00,070.00,070.00\),
\(220-30.02,070.00,070.00,070.00,070.50,086.25,070.00,070.00\),
\(230 \quad 077.00,086.00,104.00,123.50,105.00,096.75,089.00,073.75\),
240 070.00,075.00,070.00,070.00,070.00,070.00,070.00,070.00,
250 070.00,070.00,070.00,070.00.070.00.070.00,
\(260-30.02,078.25,078.00,073.25,073.25,072.00,070.00,070.00\),
\(270 \quad 075.25,080.75,075.00,080.00,098.00,094.00,095.50,092.75\),
\(280 \quad 096.75,105.75,095.00,095.75,098.75,096.00,095.00,094.50\),
290
300
310 \(094.00,092.00,092.00,090.50,098.50,090.75\),
 \(078.00,084.50,080.50,084.25,088 \cdot 50,092 \cdot 50,194.00,091 \cdot 50\), \(099.00,111.00,096.50,100.00,098.75,097.25,099.00,096.25\), \(096.75,095.50,09.3 .00,090.50,039.75,08.6 .50\),
330 \(-30.02,078.25,078.00,073.75,073.00,072.75,071.75,070.00\),
\(350 \quad 071.50,081.25,075.50,079.50,086.75,091.25,093.00,039.50\),
\(360 \quad 093.25,105.50,091.25,095.00,095.25,093.50,095.00,090.50\),
370 088.25,086.25,084.75,083.00,086.50.085.75,
\(380-30.02,078.75,078.00,072.50,074.00,073.25,071.50,070.00\),
\(390 \quad 073.50,085.75,074.50,079.00,086.50,090.00,091.50,090.75\),
\(400 \quad 095.00,107.25,091.75,095.00,097.25,092.50,094.75,089.75\),
\(410 \quad 086.75,085.25,033.25,081.75,032.00,081.25\),
\(\therefore\)
\(420-30.02,079.50,076.50,073.25,071.75,071.00,070.75,070.00\),
\(430 \quad 073.25,087.00,074.25,079.25,087.50,092.00,094.25,091.25\),
\(440 \quad 095.75,108.25,093.75,094.50,098.50,095.25,095.50,090.00\),
\(450 \quad 088.75,087.00,085.25,082.75,082.00,083.50\),
\(460-30.02,030.00,079.00,073.25,073.75,072.75,070.00,070.00\),
\(470 \quad 074.50,075.00,041.00,081.75,099.50,095.75,096.75,096.75\).
\(480 \quad 096.75,107.00,103.00,099.50,100.50,100.25,099.50,097.00\),
490 \(098.00,096.75,1396.25,095.50,092.50,094.00\),
\(500-30.02,099.25,094.75,091.00,097.25,035.50,033.50,078.50\),
510 081.50, U81.25,090.00,086.75,090.75,094.50.095.25,094.50,
\(520 \quad 099.00,109.25,103.75,104.00,102.25,102.25,103.50,100.75\),
\(530 \quad 100.75,099.50,098.00,095.50,094.00,090.50\),
\(540-30.02,077.50,07 ヶ .50,073.00,073.25,072.50,071.00,070.00\),
\(550 \quad 072.25,076.02,035.75,081.75,087.75,094.25,094.50,093.25\),
560 093.50,104.00,104.00,099.25,099.00,098.00,096.75,093.75,
\(570 \quad 092.75,090.75,089.50,087.75,088.50,087.00\),
580
\(-30.02,079.25,077.25,073.75,073.25,072.50,071.25,070.25\),

FANDATA
\(10 / 29 / 74\)
\(590 \quad 075.25,078 \cdot 50,088.00,080.50,085.50,093.25,092 \cdot 50,094.00\); 600 091.50,090.00,085.25,086.50,035.75,084.75,
\(-30.02,079.00,077.50,074.25,071.50,070.75,071.75,070.00\), \(071.50,075.75,085.50,080.00,087.75,095.00,095.50,095.00\), \(096.25,104.50,103.75,098.00,100.00,099.50,097.25,093.75\), \(093.00,091.00,039.75,087.50,036.00,036.75\),
\(-30.02,078.50,079.50,07.3 .00,072.25,072.50,071.00,073.75\), \(079.00,086.75,091.00,095.75,098.75,097.00,097.00,151.59\), \(097.50,095.00,095.50,098.00,101.75,095.25,094.25,094.00\), \(095.75,093.50,094.50,093.50,091.75,093.75\),
\(-30.02,079.75,076.75,074.00,072.75,071.00,072 \cdot 50,074.75\), \(077.50,084.50,091.75,093.00,095.75,094.50,094.25,094.25\), \(096.50,093.25,093.25,095.75,097.25,090.00,091.50,087.75\), \(086.75,086.00,085.50,086.00,087.50,083.25\),
\(-30.02,080.50,077.50,074.00,072.75,073.75,071.75,073.50\), \(076.50,080.00,085.75,092.75,096.25,093.50,094.75,095.0 n\), \(093.25,091.25,098.50,093.75,098.00,091.25,089.25,089.25\), \(087.00,085.00,086.00,084.25,087.25,086.75\),
\(-30.02,082.00,073.50,073.50,073.50,073.00,071.50,073 \cdot 50\), 077.25,082.25,083.50,094.00,095.50,093.75,094.25,097.0n,
 \(088.75,083.00,085.75,085.50,085.50,094.50\),
\(-30.02,081.75,077.75,072.75,075.50,073.00,072.50,074.75\), \(078.00,034.50,089.25,093.25,096.00,095.25,093.25,098.50\), \(097.25,094.50,092.50,095.00,099.50,092.00,091.00,090.75\), \(088.75,088.00,086.75,084.25,033.75,084.75\),
\(-30.02,079.50,079.50,073.75,074.00,074.75,075.25,078.00\), \(081.25,086.50,092.50,092.50,090.50,099.25,090.25,090.25\), \(094.25,108.50,103.00,096.00,094.75,094.00,093.50,08,9.75\), \(088.50,085.75,082.50,080.25,076.75,075.00\),
\(-30.02,079.00,078.75,074.25,074.50,075.50,078.50,082.50\), \(085.25,039.00,094.50,095.75,094.75,092.50,092.00,093.75\) \(097.00,109.00,198.50,102.25,098.50,100.25,100.25,098.00\), \(098.75,097.75,095.50,093.25,091.75,088.50\),
\(-30.02,079.25,078.75,073.75,073.50,074.50,075.25,079.50\),
\(082.00,085.75,092.75,092.25,191.75,098.25,089.25,090.25\),
\(095.25,106.50,103.50,096.75,0,96.00,096.25,0913.00,090.75\), \(089.25,087.00,085.00,082.25,080.00,076.50\),
\(-30.02,080.50,077.75,074.00,074.25,074.00,073.75,075.50\), \(077.25,08\). \(75,091.75,090.00,087.50,084.00,088.00,090.75\), \(093.75,103.00,101.00,093.75,1791.75,089.50,090.00,086.75\), \(084.75,082.25,080.00,079.00,077.50,1775.50\),
\(-30.02,030.25,076.75,074.00,074.00,072.50,074.25,078.25\), 081.00,084.00,039.25,091.00,059.25,039.2.5,090.75,791.25, 097.50,107.50,106.75,097.25,092.50,095.00,094.00,087.00, 087.50,086.50,063.75,081.50,079.75, 080.50,
\(-30.02,030.00,079.50,073.75,073.00,070.75,071.75,072.00\), \(075.00,074.50,076.25,076.25,077.00,078.00,084.50,038.00\), \(087.75,090.00,088.00,087.75,053.50,077.25,079.25,079.50\),

FA.NDATA

\section*{10/29/74}

1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
:300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
\(077.50,075.50,074.75,072.50,072.50,071.75\),
\(-30.02,079.75,079.50,074.50,075.25,071.75,071.450,073.50\),
075.50,075.75,080.50,077.50,076.75,078.75,084.75,091.25,
\(087.00,089 \cdot 50,090.50,089.50,083 \cdot 75,078 \cdot 50,078 \cdot 50,073 \cdot 25\),
\(078.00,075.75,077.00,077.50,073.00,072.75\),
\(-30.02,079.75,073.25,072.75,073.25,073.25,071.00,071.00\),
\(073.00,080.00,090.50,076.50,077.75,080.25,081.25,084.75\),
\(085.50,086.50,087.50,086.75,085.75,082 \cdot 25,086.00,080.75\),
\(081.25,081.00,079.25,077.00,077.25,074.50\),
\(-30.02,079.50,078.75,074.00,073.75,071.75,072.75,073.25\),
\(076.00,081.00,091.00,079.25,079.00,079.50,086.50,091.75\),
\(037.50,090.50,090.75,089.25,083.25,082.25,084.75,085.75\), \(082.25,081.00,080.00,079.75,077.75,077.50\),
\(-30.02,081.50,077.25,073.50,073.00,071.75,072.75,074.50\), \(077.00,077.00,032.50,079.50,080.00,083.75,086.75,088 \cdot 5\), \(088.25,090.00,038.75,091.50,086.00,082.00,087.25,081.75\), \(081.25,079.75,078.00,078.25,078.00,030.25\),
\(-30.02,031.50,078.75,073.50,074.25,073 \cdot 75,073.75,077 \cdot\) ? 5, \(080.25,086.00,097.00,099.25,102.00,100.75,100.25,109.25\), \(102.00,097.50,097.50,102.00,106.25,100.75,099.25,099.25\), \(100.00,097.25,097.00,097.25,095.00,095.75\),
-30.0に, 06: • 50, © \(079.75,095.00,096.25,095.75,098.50,096.75,096.50,105.50\), \(099.25,096.00,098.00,099.25,101.50,096.25,094.75,083.50\), 086.50,087.75,090.00,069.75,087.75,085.50,
\(-30.02,078.50,079.00,073.00,073.75,074.25,073.00,076.25\), \(079.00,084.00,089.00,095.09,098.75,095.75,094.25,104.0\), \(096.00,095.50,095.00,099.00,103.00,099.75,094.00,09\) 亿.00, \(090.75,089.75,090.50,089.00,090.75,089.09\),
\(-30.02,080.75,076.50,072.75,073.75,072.00,073.50,077.75\),
\(080.00,085.00,093.25,096.50,098.50,095.75,094.00,102.25\),
\(097.25,095.00,096.25,101.25,102.25,099.00,097.25,092.00\),
\(092.00,093.25,091.75,090.50,088.25,08.6 .00\),
\(-30.02,081.75,079.00,073.25,072.75,074.75,074.50,077.50\), \(079.75,086.00,096.75,098.00,099.00,096.09,095.50,104.75\), 101.75,697.50,097.75,100.25,103.00,101.09,096.75,095.75, 094.25, 092.75,091.50,090.50,099. 50,089.50,
\(-30.02,080.00,080.75,074.00,075.00,075.75,077.00,080.75\), \(085.00,089.50,095.50,095.75,094.25,092.00,091.25,096 . ? 5\),
097.50, 104.75,104.50,101.25,097.00,096, 50,096.2.5,09.2.25, 092.75,039.75,087.25,084.75,081.02,079.00,
\(-30.02,078.25,077.00,074.75,075.50,077.50,081.75,096.75\),
\(089.50,093.75,096.75,093.00,097.25,095.25,093.75,098.00\),
\(099.75,109.00,110.00,106.00,100.50,103.50,104.50,102.50\), \(103.00,102.25,100.50,093.25,096.25,09.3 .50\),
\(-30.02,079.75,079.00,074.25,074.25,075.75,078, \cdot 2,084.75\), \(086.50,090.25 ; 095.75,096.25,095.25,091.25,091.25,095.75\), \(098.50,107.50,104.25,101.00,098.00,098.50,096.50,094.75\), \(093.25,090.75,089.00,086.25,083.50,080.50\),
\(-30.02,030.75,075.50,074.00,073.50,072.25,075.00,078.75\),

FANDATA
\begin{tabular}{ll}
1590 & \(080.50,085.25,096.00,094.75,091.50,088.25,087.25,094.25\), \\
1600 & \(098.00,104 \cdot 50,104.00,100.00,094.50,093.75,094.00,091.25\), \\
1610 & \(088.50,086.50,083.25,083.50,080.50,079.50\), \\
1620 & \(-30.02,081.25,077.25,073.75,072.25,073.25,077.00,082.25\), \\
1630 & \(083.50,087.75,093.00,093.00,091.00,092.25,091.50,095.25\), \\
1640 & \(099.75,107.50,107.00,101.25,094.00,098.75,098.25,090.75\), \\
1650 & \(090.25,089.75,088.00,035.00,082.00,078.75\), \\
1660 & \(-30.02,080.50,077.50,072.00,073.75,072.00,072.00,074.25\), \\
1670 & \(075.75,076.25,083.25,079.75,079.00,090.75,084.75,091.75\), \\
1680 & \(090.75,093.25,093.00,090.50,086.00,084.00,081.75,091.00\), \\
1690 & \(080.00,077.75,076.25,076.00,076.00,075.25\),
\end{tabular}

MIKEAREA 10/29/74
```

$1000,00$
$1100,00$
$1200,0 \Omega$
$1300,76$
$20010,10,10,10,10,10$
210 10,10,10,10,10,10
$22010,10,10,10,10,10$
230 10,10,10,10,10,10
$24010,10,10,10,10,10$
$25010,10,10,10,10,10$

```
\begin{tabular}{|c|c|c|c|}
\hline R.J.HELLS1 & f ANCALC & \(10 / 29 / 74\) & 12:22 \\
\hline
\end{tabular}

\section*{PROGHAH CALCULATIUN CHECKS}


SPL Gf thtermediate Cells
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline FREUUENCY HERTZ & \({ }^{\text {B }}\) & 0 & 10. & \[
11
\] & 17 & 23 & \[
29
\] & 28 & 27 & \[
\begin{aligned}
& 26 \\
& * *
\end{aligned}
\] & 20 & 14 \\
\hline 25 & 189.7 & 69.0 & \(69 . ?\) & 68.0 & 69.7 & 70.7 & 72.2 & 72.0 & 70.7 & 71.2 & 71.0 & 09.5 \\
\hline 31 & 85.7 & 70.0 & OR. 5 & 09.10 & 69.2 & 67.2 & 69.5 & 69.2 & 69.5 & 67.0 & 68.2 & 69.2 \\
\hline 40 & 81.5 & 03.5 & 6.3 .0 & 63.5 & 64.7 & 64.5 & 63.7 & 84.0 & 64.7 & 63.7 & 64.5 & 64.7 \\
\hline 50 & 77.7 & 63.7 & 64.5 & \(n 3.7\) & 64.0 & 04.5 & 63.2 & 64.7 & 64.7 & 64.2 & 64.7 & 65.0 \\
\hline 63 & 76.0 & 03.0 & 63.7 & 63.0 & 65.0 & 63.0 & 65.2 & 64.2 & 66.2 & 62.5 & 64.5 & 66.0 \\
\hline H0 & 74.18 & 61.5 & 67.0 & 61.5 & 65.7 & 64.7 & 65.0 & 64.2 & 68.7 & 64.0 & 64.2 & 69.0 \\
\hline 140 & 69.0 & 64.2 & 60.5 & 00.5 & 70.0 & 68.7 & 68.0 & 67.7 & 75.2 & 68.2 & 66.0 & 73.0 \\
\hline 125 & 72.n & 89.5 & 64.0 & 62. 7 & 72.5 & 71.5 & 70.2 & 70.7 & 77.0 & 71.5 & 67:7 & 75.7 \\
\hline 160 & 71.7 & 77.2 & 76.? & 66.5 & \(76 . ?\) & 74.5 & 76.5 & 76.5 & 80.7 & 75.5 & 73.? & .79.5 \\
\hline 210 & 80.5 & 51.5 & - 50 & 76.2 & H3. 2 & 79.7 & 37.2 & 87.5 & 86.2 & 83.7 & 82.? & 85.0 \\
\hline 250 & 77.2 & 36.7 & 69.5 & 72.2 & H2. 7 & 81.5 & 88.5 & 89.7 & 86.7 & 87.0 & 80.5 & 86.2 \\
\hline 315 & 81.7 & 89.2 & 77.0 & 78.2 & 92.2 & 79.7 & 89.5 & 92.5 & 85.7 & 89.0 & 78.0 & 85.2 \\
\hline 400 & 85.0 & 87.5 & 80.5 & 184.7 & 78.7 & 79.7 & 86.5 & 91.2 & H1.7 & B6.? & 74.5 & 83.0 \\
\hline 500 & 85.7 & 87.5 & 82.0 & 85.0 & 79.7 & 81.2 & 86.0 & 900.7 & 81.7 & 84.5 & 78.5 & 82.5 \\
\hline 630 & 85.0 & 97.0 & H1.? & 33.7 & M0. 7 & 81.7 & 95.2 & 99.7 & 86.2 & 192.7 & \(81 . ?\) & :84.2 \\
\hline 800 & 89.5 & 88.0 & 85.5 & +4.0 & H5. 7 & 88.0 & 92.2 & 92.5 & 89.0 & .87.7 & 84.2 & 67.5 \\
\hline 1000 & 99.7 & 85.5 & 97.7 & 94.5 & 97.0 & प8.0 & 88.0 & 88.0 & 98.0 & 85.5 & 93.5 & 99.5 \\
\hline 1250 & 99.2 & 86. 0 & 82.2 & 94.5 & 94.0 & 97.2 & 88.2 , & 88.0 & 94.7 & 86.7 & 91.5 & 99.0 \\
\hline 1600 & 94.5 & 88.5 & 85.5 & 89.7 & 87.2 & 87.7 & 90.7 & 92.5 & 91.5 & . 91.7 & 84.7 & 92.7 \\
\hline 20n0 & 92.7 & 92.2 & 87.7 & 89.5 & \(8 \mathrm{8}\). & 83.0 & 93.5 & 9 6. 7 & 88.5 & 92.7 & 81.? & 89.0 \\
\hline 2500 & 92.7 & 85.7 & 83.0 & 88.5 & 85.7 & 85.5 & 91.5 & 91.2 & 89.0 & 89.5 & 80.0 & 90.7 \\
\hline 3150 & 94.8 & H4.7 & 85.2 & 47.2 & H3. 5 & 44.5 & 87.2 & 89. 7 & 87.0 & 87.7 & 80.: 5 & 90.7 \\
\hline 4010 & 91.? & \$4.5. & 80.2 & 84.2 & 81.2 & 77.5 & 86.2 & 49.7 & 85.2 & 82.5 & 77.2 & 88.5 \\
\hline 5000 & 91.2 & 86.2 & 77.2 & 83.2 & 79.7 & 78.0 & 84.7 & 90'. 5 & 83.7 & 82.5 & \(75 . ?\) & 89.2 \\
\hline 6300 & 90.0 & 84.0 & 275.7 & H1.2 & 77:5 & 77.0 & 83.2 & 87.9 & 81.2 & 83.7 & 72.7 & 88.2 \\
\hline 8000 & 88.5 - & 85.8 & -73.7 & H0.0 & 75:5 & 74.2 & 82.0 & 87.5 & 75:5 & \(82 . ?\) & 70.5 & 86.0 \\
\hline 10000 & 86.0 & 84.0 & 77.2 & 78.2 & 72.7 & 72.0 & 81.0 & 87.7 & 76.7 & 81.0 & 69.5 & 83.7 \\
\hline 12500 & 84.5 & 82.2 & 72.5 & 79.0 & 70.5 & 70.2 & 80.0 & 85.5 & 74.0 & 78.7 & 68.0 & 82.2 \\
\hline 16000 & 81.0 & 84.2 & 71.7 & 77.5 & : 67.0 & 71.0 & 88.0 & 86.2 & 71.0 & 76.5 & 66.0 & 79.0 \\
\hline DRA & 105.7 & 99.4 & 99.5 & 100.6 & 100.4 & 101.8 & 101.5 & .104.2 & 102.1 & 100.2 & 97.2 & 104.6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FREUUENCY HERTZ & 15 & 16 & 28 & 21 ** \\
\hline 25 & 70.5 & 72.5 & 70.0 & \(70 . ?\) \\
\hline 31 & 70.0 & 69.1 & 7\%.0 & BR. 7 \\
\hline 40 & 64.7 & 64.1 & 64.7 & 63.2 \\
\hline 50 & 63.5 & 64.0 & 64.5 & 63.7 \\
\hline 63 & \(61 . ?\) & 63.5 & 65.2 & 63.7 \\
\hline 80 & 62.7 & 82.0 & 65.7 & 01.5 \\
\hline 100 & 62.5 & 64.0 & 68.5 & 61.5 \\
\hline 125 & 65.5 & 67.7. & 71.7 & 63.5 \\
\hline 160 & 65.0 & 72.7 & 77.0 & 70.5 \\
\hline 200 & 66.7 & 79.0 & 83.10 & 31. 0 \\
\hline 250 & 66.7 & 84.5 & 83.0 & 67.0 \\
\hline 315 & 67.5 & 86.0 & 41.0 & 68.2 \\
\hline 410 & 68.5 & 84.? & 79.7 & 71.7 \\
\hline 500 & 75.0 & 84.7 & 60.7 & 71.7 \\
\hline 630 & 78.5 & 87.5 & カп. 7 & 75.? \\
\hline Run & 78.7 & 85.0 & 4.4 & 16.0 \\
\hline 1040 & 80.5 & 4P.2 & 99.0 & 77.0 \\
\hline 1250 & 78.5 & 183.7 & 43.5 & 78. \\
\hline 1600 & 78.7 & 85.7 & 86.5 & 77.2 \\
\hline 2000 & 74.0 & 39.2 & 85.7 & 76.7 \\
\hline 2500 & 67.7 & 83.2 & 84.5 & 72.7 \\
\hline 3150 & 69.7 & 86.2 & H4.0 & 76.5 \\
\hline 4000 & 70.0 & 81.7 & 8 B. ? & 71.2 \\
\hline 5010 & 68.0 & 79.7 & -79.010 & 71.7 \\
\hline 6300 & 66.0 & 78.5 & 76.2 & 71.5 \\
\hline 8000 & 65.2 & 76.2 & 73.0 & 69.7 \\
\hline 100 un & 63.0 & 76.0 & 70.7 & -67.5 \\
\hline 12500 & 63.0 & 76.0 & 67.7 & 67.7 \\
\hline 16000 & 62.2 & 75.10 & 65.5 & 65.0 \\
\hline DRA & 86.8 & 96.2 & 101.1 & 86.7 \\
\hline
\end{tabular}

\section*{SPL OF OUTFR CELLS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline FREDUFNCY HERTZ & \[
1
\] & 2. & . 3 & 4 & 3 & \[
\begin{array}{r}
6 \\
* 4
\end{array}
\] & 12 & 18 & 24 & 30 & \[
36
\] & 35 & 34 & 33 & 32 & \[
31
\] & 25 & 19 & 13 & 7 \\
\hline 25 & 68.7 & 71.10 & 69.7 & H0. 7 & 70.5 & 69.5 & 70.2 & 70.2 & 10.0 & 71.2 & 71.0 & 68.7 & 69.0 & 71.7 & 70.5 & 72.0 & 72.0 & 72.2 & 71.0 & 68.7 \\
\hline 31 & 68.5 & 67.0 & 67.7 & 76.7 & 69.5 & 68.0 & 67.2 & 70.0 & 69.2 & 66.0 & 68.n & 67.5 & 69.5 & 67.7 & 71.2 & 69.0 & 67.7 & 68.2 & 68.0 & 68.5 \\
\hline 40 & 63.7 & 63.7 & \(64 . ?\) & 72.0 & 63.7 & 64.7 & 64.5 & 65.0 & 64.5 & 64.5 & 62.5 & 65.2 & 63.5 & 64.2 & 64.5 & 65.0 & 64.0 & 63.2 & 64.5 & 64.2 \\
\hline 50 & 63.7 & \(62 . ?\) & 63.7 & 68.7 & 64.2 & 62.0 & 63.2 & 65.7 & 64.2 & 64.0 & 64.2 & 66.0 & 64.2 & 62.7 & 65.5 & 64.0 & 63.5 & 66.0 & 63.2 & 63.5 \\
\hline 63 & 67.5 & 01.5 & 6.3 .0 & 65.0 & 63.2 & 61.2 & 61.5 & 62.2 & 62.2 & 62.7 & 62.5 & 68.0 & 64.7 & 63.7 & 66.2 & 61.7 & 62.2 & 63.5 & 64.2 & 63.2 \\
\hline \% 0 & 611.5 & 41.2 & 61.7 & 63.7 & 60.5 & 07.2 & 63.0 & 62.0 & 63.2 & 65.5 & 62.5 & 72.2 & 63.5 & 67.5 & 67.5 & 63.0 & 63.2 & 63.0 & 62.2 & 62.2 \\
\hline 100 & 60.5 & 60.5 & 60.7 & 63.2 & 61.5 & 60.5 & 65.2 & 64.0 & 63.7 & 69.2 & 64.7 & 77.2 & 66.7 & 72.7 & 71.2 & 68.0 & 65.0 & 65.2 & 64.0 & 60.5 \\
\hline 125 & 65.7 & 63.7 & 65.7 & 68.5 & 65.0 & 62.0 & 68.0 & 66.0 & 66.5 & 71.0 & 66.7 & 80.0 & 69.5 & 74.0 & 75.5 & 70.2 & 67.5 & 68.5 & 67.0 & 62.0 \\
\hline 168 & \(71 . ?\) & 77.5 & 69.0 & 75.0 & 65.5 & \(66 . ?\) & 75.0 & 66.2 & 71.5 & 75.7 & 66.7 & 84.2 & 74.5 & 78.2 & 80.0 & 75.5 & 67.5 & 75.0 & 70.5 & 71.7 \\
\hline 2 m 0 & 65.5 & 64.7 & 78.5 & 71.0 & 71.5 & 76.0 & 82.2 & 71.0 & 31.5 & 86.5 & 23.7 & 87.2 & 79.5 & 83.5 & 86.0 & 86.7 & 73.0 & 79.7 & 76.2 & 66.0 \\
\hline 250 & 70.5 & 69.7 & 71.0 & 74.7 & 72.2 & 70.5 & 83.5 & 68.0 & 69.7 & 85.2 & 70.2 & 88.5 & 85.5 & 83.5 & \(86 . ?\) & 86.2 & 70.0 & 83.7 & 83.2 & 70.0 \\
\hline 315 & 78.5 & 78.0 & 76.0 & 79.0 & 81). 0 & 78.2 & \(186 . ?\) & 67.2 & 09.5 & 32.0 & 69.5 & 87.7 & 89.2 & 81.5 & 84.7 & 89.0 & 70.5 & 86.5 & -86.7 & 77.2 \\
\hline 400 & 84.5 & 82. 5 & H3.7 & 83.0 & H6. 2 & 85.5 & 85.0 & 69.2 & 70.0 & 78.7 & 71. ? & 85.7 & 86.2 & 82.7 & 82.5 & .87.2 & 74.2 & 85.7 & 84.0 & 81.7 \\
\hline 500 & 86.0 & 84.7 & 83.0 & 44.5 & 87.2 & 86.0 & 84.7 & 75.2 & 77.0 & 77.7 & 75.? & 84.2 & 84.7 & 82.0 & 81.7 & 87.0 & 7.7 .2 & 83.7 & 85.2 & 83.5 \\
\hline 630 & R3.? & 81.7 & 84.5 & 8 8.0 & 86.7 & 85.5 & 88.7 & H1.7* & H2. 2 & 84.7 & H2. 2 & 88.5 & 94.5 & 85.7 & 86.7 & 96.0 & 79.0 & 89.0 & 85.5 & 80.0 \\
\hline 800 & \(87 . ?\) & 86.2 & 67.? & 89.5 & 87.2 & H6.7 & 87.0 & 77.5 & 78.0 & 88.5 & 81.? & 90.2 & 86.5 & 90.2 & 88.0 & 89.7 & 78.7 & 87.7 & 83.7 & 83.7 \\
\hline 1008 & 96.7 & YR:7 & 94.5 & 111.5 & 97.5 & 95.0 & 83.7 & 80.0 & 81.0 & 95.0 & 83.7 & 99.5 & 86.0 & 98.0 & 95.2 & 86.5 & 80.5 . & 85.0 & 81.7 & 96.0 \\
\hline 1250 & 85.5 & 84.2 & 93.0 & H7.0 & 93.5 & 94.2 & 03.7 & 81.0 & 81.2 & 94.5 & 83.5 & 100.5 & . 85.5 & 97.5. & 95.0 & 88.5 & 79.2 & 83.0 & 79.0 & 81.7 \\
\hline 1600 & H6.? & 85.0 & +9.0 & 40.5 & 911.0 & 8R,5 & 86.2 & 80.0 & 79.7 & 90.5 & 81.0 & 96.5 & 89.5 & 91.7 & 91.7 & 89.7 & 82.0 & 85.5 & 84.2 & 85.5 \\
\hline 2000 & 89.7 & 89.0 & 90.7 & 89.2 & 91.0 & 90.5 & 87.7 & 74.2 & 73.7 & 85.0 & 76.5 & 91.0 & 93.5 & 84.5 & 87.5 & 92.0 & 76.5 & 90.0 & 88.5 & 85.7 \\
\hline 2500 & 86.5 & H5. 7 & 87.5 & 87.7 & 90.7 & 9 0 .0 & 80.5 & 69.0 & 72.7- & -84.2 & 74.5 & 94.0 & 90.2 & 89.2 & 87.0 & 86.7 & 72.5 & 82.5 & 81.7 & 84.0 \\
\hline 3150 & 85.5 & 86.0 & 89.2 & 89.5 & 90.0 & 87.7 & 82.0 & 69.0 & 75.2 & 84.5 & 72.2 & 95.0 & 84.5 & 88.7 & 86.7 & 85.2 & 77.7 & 81.5 & 79.7 & 85.5 \\
\hline 40110 & 85.0 & 80.5 & 63.5 & 86.7 & 87.5 & 84.2 & 78.2 & 68.7 & 76.2 & 81.7 & 71.5 & 93.0 & 84.5 & 81.2 & 83.7 & 79.0 & 72.2 & 81.2 & 79.7 & 81.0 \\
\hline 5000 & 84.5 & 79.2 & '42.0 & 87.2 & 88. 5 & 33.5 & 77.2 & 68.5 & 72.7 & 79.0 & 70.5 & 93.5 & 81.2 & 80.7 & 83.2 & 77.0 & 71.7 & 79.2 & 77.5 & 78.7 \\
\hline 6300 & 82.5 & 17.5 & 80.5 & 36.0 & 87.2 & 81.5 & 76.5 & 66.2 & 71.5 & 77.0 & 68.7 & 92.7 & 80.2 & 80.2 & 80.2 & 78.2 & 70.2 & 78.5 & 75.5 & 76.7 \\
\hline 8000 & 8 2. 5 & 75.7 & 78.7 & 83.5 & H6.7 & 80.2 & 76.0 & 67.5 & 70.5 & 73.7 & 66.7 & 91.0 & 81.0 & 78.5 & 77.7 & 80.5 & 68.5 & 77.2 & 76.5 & 75.2 \\
\hline 10000 & 81.0 & 73.2 & 77.0 & - 81.0 & H6.0 & 78.0 & 76.5 & 68.0 & 70.2 & 74:0 & 66.5 & 88.7 & 79.5 & 75.5 & 75.2 & 80.2 & 68.7 & 74.7 & 74.7 & 73.5 \\
\hline 12500 & 79.0 & 72.5 & 76.2 & 30.2 & \(\ 83.0\) & 76.5 & 78.0 & 63.5 & 68.2 & 71.0 & 66.5 & 86.7 & 81.2 & 72.5 & 71.5 & 78.2 & 68.5 & 74.2 & 77.7 & 77.0 \\
\hline 16000 & \(81 . ?\) & 74.0 & 75.2 & 77.0 & 84.5 & 77.2 & 73.7 & 63.2 & 68.0 & 70.0 & 65.7 & 84.0 & 79.5 & 69.2 & 69.5 & 76.0 & 70.7: & 75.2 & 77.2 & 76.2 \\
\hline OBA & 99.7 & 100.5 & 100.4 & 103.5 & 102.5 & 101.0 & 95.7 & 87.9 & 89.1 & 100.1 & 90.3 & 106.7 & 100.1 & 102.8 & 101.1 & 100.0 & 89.0. & 96.6 & 94.7 & 98.3 \\
\hline
\end{tabular}

\section*{Appendix D \\ SUMMARY OF TESTS CONDUCTED ON HIGH-SPEED AND LOW-SPEED FANS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{TEST: High-Speed Fan} & & \multicolumn{9}{|c|}{Test Identification No.
\[
7-1-48
\]} \\
\hline \multirow{9}{*}{\(\underset{\text { çen }}{ }\)} & & & AZIMUTH & \multicolumn{8}{|c|}{\% WEIGHT FLOW \& RUN NO.} & INLET DISTORTION \\
\hline & ANGLE & STATION & POSITION & \%RPM & 70 & 80 & 90 & 95 & 100 & 105 & 110 & CONFIGURATION \\
\hline & 56.08 & 6 & P & 100 & 4 & & & & 3 & & 2 & \\
\hline & " & " & " & " & & & & 7 & 5 & 6 & & \\
\hline & " & " & T & " & 10 & & & & 9 & & 8 & \\
\hline & " & " & S & " & 13 & & & - & 12 & & 11 & \\
\hline & " & " & B & " . & 16 & & & - & 15 & & 14 & \\
\hline & " & 5 & P & " & & & & & 18 & & 17 & \\
\hline & " & 4 & " & " & 22 & & & & 21 & & 20 & \\
\hline
\end{tabular}

TEST: Low-Speed Fan No. 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TEST CONFIGURATION} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { STAGGER } \\
& \text { ANGLE }
\end{aligned}
\]} & \multirow[t]{2}{*}{INSTRUMENT STATION} & \multirow[b]{2}{*}{AZIMUTH POSITION} & \multirow[b]{2}{*}{9RRPM} & \multirow[b]{2}{*}{70} & \multicolumn{6}{|l|}{\% WEIGHT FLOW \& RUN NO.} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { INLET } \\
\text { DISTORTION } \\
\text { CONFIGURATION }
\end{gathered}
\]} \\
\hline & & & & & & 80 & 90 & 95 & 100 & 105 & 110 & \\
\hline - & 40.8 & 6 & P & 100 & 27 & 26 & 25 & 24 & . 23 & & & \\
\hline & " & " & 1 & 90 & & 30 & 29 & 28 & & & & \\
\hline & " & " & T & 100 & 33 & & & 32 & 31 & & & - \\
\hline - & " & " & " & 90 & & \(\cdot\) & & 34 & & & & \\
\hline & 35.4 & " & S & 100 & & & & 37 & 36 & 35 & & \\
\hline & . & 1 & " & 90 & & & & & 38 & & & \\
\hline , & 11 & " & - B & 100 & & & & .41 & 40 & 39 & & \\
\hline & 1 & " & " & 90 & & & & & 42 & & & \\
\hline & " & " & T & 100 & & & & 45 & 44 & 43 & & \\
\hline & -11 & " & " & 90 & & & & & 46 & & & \\
\hline & " & " & P & 100 & 53 & 52 & 51 & 50 & 49 & 48 & 47 & \\
\hline - & \(\because\) & " & " & 90 & & 56 & 55 & & 54 & & & \\
\hline & " & 4 & " & 100 & 63 & 62 & 61 & 60 & 59 & 58 & 57 & \\
\hline & " & " & " & 90 & & 66 & 65 & & 64 & & & \\
\hline & " & " & T. & 100 & & . & & 69 & 68 & 67 & & , \\
\hline . & " & " & " & 90 & & & & & 70 & & & \\
\hline & " & " & B & 100 & & & & 73 & 72 & 71 & & \\
\hline - & " & " & 1 & 90 & & & & & 74 & & & - \\
\hline
\end{tabular}

TEST: Low-Speed Fan No. 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{TEST-CONFIGURATION} & \multirow[b]{2}{*}{STAGGER -ANGLE} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { INSTRUMENT } \\
& \text {-STATION }
\end{aligned}
\]} & \multirow[b]{2}{*}{AZIMUTH POSITION} & \multirow[b]{2}{*}{\%RPM} & \multirow[b]{2}{*}{70} & \multicolumn{6}{|l|}{\% WEIGHT FLOW \& RUN NO.} & \multirow[t]{2}{*}{INLET
DISTORTION
CONFIGURATION} \\
\hline & & & & & & & 80 & 90 & 95 & 100 & 105 & 110 & \\
\hline \multirow{17}{*}{\(\xrightarrow{4}\)} & & \[
35.4
\] & \[
\begin{aligned}
& 4 \\
& \pi
\end{aligned}
\] & \[
\begin{aligned}
& S \\
& n
\end{aligned}
\] & \[
\begin{gathered}
100 \\
90
\end{gathered}
\] & & & & 77 & \[
\begin{aligned}
& 76 \\
& 78
\end{aligned}
\] & 75 & & * \\
\hline & Station 7 Totals & " & \(4 / 7\) & " & 100 & 79 & 79 & 79 & & 79 & & 79 & \\
\hline & " & " & 1 & " & 90 & & 80 & 80 & & 80 & & & \\
\hline & Honeycomb Out & " & " & 11 & 100 & & & & & 82 & & & \\
\hline & " & 32.9 & 6 & P & 100 & 86 & 85 & 84 & & 83 & & & \\
\hline & 11 & " & 1 & 1 & 90 & & & & & 87 & & & \\
\hline & ' & " & 1 & " & 70 & 90 & 89 & & -- & . 88 & & & \\
\hline & 11 & " & " & T & 100 & & . & 92 & & 91 & & & \\
\hline & " & " & " & " & 90 & & & & & 93 & & & \\
\hline & " & " & " & 1 & 70 & & & & & \(\cdot 94\) & & & \\
\hline & " & " & " & S & 100 & & & & 96 & 95 & & & 9 \\
\hline & 1 & " & " & " & 90 & & & & . & 97 & & & \% \\
\hline & " & " & " & " & 70 & & & & & 98 & & & S \\
\hline & " & " & " & B & 100 & & & 100 & & 99 & & & \\
\hline & \(\because\) & " & " & " & 90 & - & :. - & - & & 101 & & &  \\
\hline & " & " & " & " & 70 & & & & & 102 & & & Eta \\
\hline & " & 40.8 & " & " & 100 & 106 & & & 105 & 104 & 103 & & Lim \\
\hline
\end{tabular}


TEST: Low-Speed Fan No. 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{TEST CONFIGURATION} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { STAGGER } \\
& \text { ANGLE }
\end{aligned}
\]} & \multirow[b]{2}{*}{\(\underset{\text { STATION }}{\text { INSTRUMENT }}\)} & \multirow[b]{2}{*}{AZIMUTH
POSITION} & \multirow[b]{2}{*}{\%RPM} & \multirow[b]{2}{*}{\(\cdot 70\)} & \multicolumn{3}{|l|}{\% WEIGHT FLOW} & \multicolumn{3}{|l|}{\& RUN NO.} & \multirow[t]{2}{*}{INLET DISTORTION CONFIGURATION} \\
\hline & & & & & & & 80 & 90 & 95 & 100 & 105 & 110 & \\
\hline & Exit Honeycomb Out & 35.4 & 4 & B & 100 & 160 & & 159 & & 158 & 157 & & \\
\hline & \multicolumn{13}{|l|}{Inlet Honeycomb In} \\
\hline & " & " & 6 & P & " & 166 & 165 & . 164 & 163 & 162 & 161 & & \\
\hline & " & " & " & T & \(\wedge\) & 170 & . & 169 & & 168 & 167 & & \\
\hline & " & " & " & S & " & 174. & & 173 & & 172 & 171 & & \\
\hline & " & " & " & B & " & 178 & & 177 & & 176 & 175 & & \\
\hline \multirow[t]{2}{*}{r} & " & " & " & ! & 90 & & & & & 179 & & & \\
\hline & " & " & " & " & 80 & & & - & . & 180 & & & \\
\hline & " & " & " & " & \(75^{\text {- }}\) & & & & & 181 & & & 守 \\
\hline & " & " & " & " & 50 & & & & & 182 & & & 8参 \\
\hline & " & '" & 5 & - \({ }^{\text {P }}\) & 100 & 186 & & 185 & & 184 & 183 & & R \\
\hline & " & " & " & P & " & 192 & 191 & 190 & 189 & 188 & 187 & & 0 \\
\hline & " & " & " & T & " & 196 & & 195 & & 194 & 193 & & E \\
\hline & " & " & " & S & " & 200 & & 199 & & 198 & 197 & & \\
\hline & " . & 52.3 & . " & " & " & 203 & & 202 & & . 201 & & & \\
\hline & " & " & 4 & " & " & 209 & 208 & 207 & 206 & . 205 & 204 & & \\
\hline & " & " & 6 & " & " & - 215 & 214 & 213 & 212 & 211 & 210 & & \\
\hline & " & 40.8 & 6/7 & " & " & 218 & & 217 & & 216 & & & \\
\hline & - " & " & 6 & " & " & 221 & & 220 & & 219 & & & - \\
\hline
\end{tabular}


TEST: Low-Speed Fan No. 1


TEST: Low-Speed Fan No. 1


TEST: Low-Speed Fan No. 1



TEST: Low-Speed Fan No. 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TEST CONFIGURATION} & \multirow[b]{2}{*}{STAGGER} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { INSTRUMENT } \\
& \text { STATION }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { AZIMUTH } \\
& \text { POSITION }
\end{aligned}
\]} & \multirow[b]{2}{*}{\%RPM} & \multirow[b]{2}{*}{70} & \multicolumn{6}{|l|}{\% WEIGHT FLOW \& RUN NO.} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { INLET } \\
\text { DISTORTION } \\
\text { CONFIGURATION }
\end{gathered}
\]} \\
\hline & & & & & & 80 & 90 & 95 & 100 & 105 & 110 & \\
\hline Modified Contraction & 40.8 & 4 & T & 100 & & & & & 465 & & & \(\mathrm{D}_{9}\) \\
\hline " & 38.0 & " & " & " & 469 & & & 468 & 467 & 466 & & - \\
\hline " & " & 5 & " & " & 473 & & & 472 & 471 & 470 & & - \\
\hline 11 & \({ }^{\prime \prime}\) & 6 & " & " & 477 & & & 476 & 475 & 474 & & - \\
\hline " & " & " & P & " & 481 & & & 480 & 479 & 478 & & - \\
\hline " & 11 & 7/5 & \({ }^{\prime \prime}\) & " & & & & & 482 & & & - \\
\hline " & " & " & \({ }^{\prime \prime}\) & " & & & & 483 & & & & \(\mathrm{D}_{8}\) \\
\hline " & " & 4/5 & " & " & & & & 484 & & & & 1 \\
\hline " & " & " & " & " & & & & & 485 & & & - \\
\hline \(\cdots\) & " & 6 & " & " & & & 488 & & 487 & 486 & & - \\
\hline " & " & 11 & B & " & & & 491 & & 490 & 489 & & - \\
\hline " & " & 11 & S & " & & & 494 & & 493 & 492 & & - \\
\hline " & " & 4 & B & " & & & & & 495 & & & - \\
\hline " & " & ." & " & 11 & & & & 496 & & & & \(\mathrm{D}_{8}\) \\
\hline " & " & 5 & 11 & " & & & & 497 & & & & 1 \\
\hline " & " & 6 & \(\cdots\) & " & & & . & 498 & & & & " \\
\hline " & " & " & T & " & & & & 499 & & & & \({ }^{11}\) \\
\hline " & " & 5 & \(\because\) & " & & & & 500 & & & & " \\
\hline
\end{tabular}

TEST: Low-Speed Fan No. 1
```

