AERO-ACOUSTIC EXPERIMENTAL VERIFICATION OF OPTIMUM CONFIGURATION OF VARIABLE-PITCH FANS FOR 40 x 80 FOOT SUBSONIC WIND TUNNEL

FINAL REPORT

(NASA-CR-152040) AERO-ACOUSTIC EXPERIMENTAL VERIFICATION OF OPTIMUM CONFIGURATION OF	N78-10115
VARIABLE-PITCH FANS FOR 40 X 80 FOOT	
SUBSONIC WIND TUNNEL Final Report (General	Unclas
Electric Co.) 65 p HC A04/MF A01 CSCL 14B G3/09	52030

Prepared for

NASA-AMES RESEARCH CENTER MOFFETT FIELD, CALIFORNIA

> Contract No. NAS2-8364 CR-152,040

Prepared by

Harold Lown Applied Mechanics Branch Power Generation and Propulsion Laboratory Corporate Research and Development General Electric Company Schenectady, New York 12301

August 1977

AERO-ACOUSTIC EXPERIMENTAL VERIFICATION OF OPTIMUM CONFIGURATION OF VARIABLE-PITCH FANS FOR 40 x 80 FOOT SUBSONIC WIND TUNNEL

FINAL REPORT

.

Prepared for

.

NASA-AMES RESEARCH CENTER MOFFETT FIELD, CALIFORNIA

> Contract No. NAS2-8364 CR-152,040

> > Prepared by

Harold Lown Applied Mechanics Branch Power Generation and Propulsion Laboratory Corporate Research and Development General Electric Company Schenectady, New York 12301

August 1977

.

FOREWORD

This final report, "Aero-Acoustic Experimental Verification on Optimum Configuration of Variable Pitch Fans for 40 x 80 Foot Subsonic Wind Tunnel," covers the work completed under NASA Contract NAS2-8364 for NASA-Ames Research Center, Moffett Field, California. The work was performed by both the Applied Mechanics Branch in the Power Generation and Propulsion Laboratory of Corporate Research and Development (CRD) and the Compressor Aerodynamic Section of the Aircraft Engine Business Group (AEBG) of the General Electric Company. The principal contributors to the program were:

> H. Lown, CRD M.R. Simonson, AEBG Dr. L.H. Smith, Jr., AEBG R.J. Wells, CRD

> > PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

Section		Page
1	INTRODUCTION	1
	Wind Tunnel Fan Operating Requirements Fan Acoustic Program	· 1 2
2	1/7-SCALE MODEL FAN EXPERIMENTAL PROGRAM PRETEST PHASE	5
	Instrumentation	5 6 6
	Reduction Aerodynamic Performance Data-Reduction	6
	Computer Program	8
	Computer Program	8
3	1/7-SCALE MODEL FAN EXPERIMENTAL PROGRAM AERODYNAMIC AND ACOUSTIC PERFORMANCE	
	EVALUATION	9
	Aerodynamic Performance of High-Speed Fan Acoustic Performance of High-Speed Fan	9 9
	Aerodynamic Performance of Low-Speed Fan	11
	Aerodynamic Performance Deficiency Aerodynamic Performance Testing with	13
	Honeycomb Section Upstream of Fan Effect of Rotor-Blade Stagger Angle on	13
	Fan Performance	13
	Acoustic Performance of Low-Speed Fan	14
	Speed and High-Speed Fan Configurations Aerodynamic Performance of Low-Speed Fan with	17
	Artificially Generated Inlet Distortions	19
4	RESTUDY OF LOW-SPEED FAN REDESIGN	23
	Results and Recommendations of Low-Speed Fan Aerodynamic Study by GE's Aircraft Engine	
	Business Group (AEBG)	23
	Recommendations	23 26
5	SUMMARY	29
6	REFERENCES	31

PRECEDING PAGE BLANK NOT FILMED

,

.

GENERAL 🍘 ELECTRIC

TABLE OF CONTENTS (Cont'd)

- Appendix A -- 40 x 80 FOOT MODEL FAN PERFORMANCE INSTRUMENTATION
- Appendix B 40 x 80 FOOT MODEL FAN OVERALL PERFORMANCE CALCULATION PROCEDURE
- Appendix C FAN ACOUSTIC DATA REDUCTION PROGRAM
- Appendix D SUMMARY OF TESTS CONDUCTED ON HIGH-SPEED AND LOW-SPEED FANS

.

GENERAL 🍘 ELECTRIC

.

LIST OF ILLUSTRATIONS

ł

Figure		Page
1	New 40 x 80 Foot Wind Tunnel Power Section	3
2	1/7-Scale Model Fan Test Vehicle	5
3	Instrumentation Schematic	5
4	Microphone Probe in Station 3	7
5	Microphone Positions in Duct Passage	7
Ģ	High-Speed Fan No. 1-Aerodynamic Performance	. 10
7	High-Speed Fan-Reduced Performance Data	10
Ą	High-Speed Fan-Radial Discharge Total Pressure Distribution at Design Flow	11
9	Sound Power Levels with Mass Flow for High-Speed Fans	12
10	Low-Speed Fan No. 1—Aerodynamic Performance	14
11	Low-Speed Fan—Radial Discharge Total Pressure Distribution	18
12	Low-Speed Fan-Inlet Distortions	19
13	Low-Speed Fan-Inlet Survey with Inlet Obstructions; Station 4	20
14	Low-Speed Fan-Discharge Survey with Inlet Obstructions; Station 6	20
15	Blade Channel Length vs Radius.	
16	Maximum Thickness Ratio vs Radius.	24
17	Camber Angle vs Radius	25
18	Stagger Angle vs Radius	26
19	Rotor Blade Sections	27
20	Flow Path	27
21	Stator Vane Sections	28

LIST OF TABLES

Table		Page
1	Full-Scale Fan Aerodynamic Design Conditions	2
2	High-Speed Fan—Noise Spectra at Design Speed and Flow $\$.	12
. 3	NASA-AMES Low Speed Fan Model Noise Tests - DBA Sound Power Level Summary	15
4	NASA-AMES Low Speed Fan Model Noise Tests - DBA Sound Power Level Summary	16
5	Low-Speed Fan-Noise Spectra at Design Speed and Flow	17

Section 1

INTRODUCTION

Corporate Research and Development (CRD) of the General Electric Company has since 1970 been involved in a series of fan design studies and a model fan test verification program in aiding the National Aeronautics and Space Administration to achieve optimum aero-acoustic performance on new variable pitch fans to be incorporated into the repowered drive section of the 40 x 80 foot wind tunnel at Moffett Field, California. The previous design studies (Refs. 1-5) established the basis for design, construction, and test program for the 1/7-scale model fan conducted by NASA-Ames to verify the 40 foot full-scale fans to be incorporated in the repowered section of the 40 x 80 foot wind tunnel.

This report describes the results of the several phases involved in the "40 x 80 Foot Subsonic Wind Tunnel Fan Section Verification Program" employing 1/7-scale model fans, conducted by General Electric under Contract NAS2-8364. The objective and scope of this contract were to monitor the aerodynamic and acoustic performance of the two fan configurations under investigation (low-speed and high-speed variable pitch fan design), supply the necessary aero-acoustic data-reduction computer program logic, evaluate the results of the tests, and recommend the optimum configuration to be employed in the final 40 foot full-scale fan.

The original design of the low-speed and high-speed fans and the test vehicle for the 1/7-scale model fan were previously reported on in Reference 5. The test program was therefore a continuation of that program, designed to verify how well the fans met the design objectives and also the ability of the fans to operate with large inlet boundary layer growth, such as is present in the wind tunnel power section of the fullscale fans.

The initial 1/7-scale model fan test results showed that the noise generated by the low-speed model fan configuration when scaled to its full-scale configuration would be 5 dBA quieter than the high-speed fan configuration. The aerodynamic test program became focused then on the low-speed fan model. As the low-speed model fan tests progressed, however, it became apparent that the low-speed fan design would have serious problems in meeting the wind tunnel airflow objectives, especially if a lower hub/tip ratio fan design were incorporated in the full-scale fans.

The original contract was therefore expanded in scope to include a restudy effort on the low-speed fan model. General Electric's Aircraft Engine Business Group (AEBG) Compressor Aerodynamic Section was involved in this phase of the contract, evaluating the fan operating characteristics with a lower hub/tip·ratio and more severe inlet boundary layer condition. The results of the new fan study and recommendations leading to improved low-speed fan performance have also been incorporated in this report.

WIND TUNNEL FAN OPERATING REQUIREMENTS

In structuring the model fan test program, careful consideration had to be given to all the operating requirements imposed on the variable-pitch fans of the repowered wind tunnel. The new power section described schematically in Figure 1 is designed to operate with both a closed and an open wind tunnel configuration. The previous GE study (Ref. 4) evolved the fan design operating requirements for these two tunnel configurations which are shown in Table 1.

Parameter	Closed Tunnel Configuration	Open Tunnel Configuration
Inlet Total Pressure (psia)	14.54	14.55
Inlet Total Temp. (^O R)	530	530
Fan Weight Flow (lb/sec)	16333	20251
Fan Head Rise (ft)	680	525
Fan Stage Efficiency (%)	90	86
Fan Head Input (ft)	756	610
Fan Tip Diameter (ft)	40	
Hub/Tip Ratio	0.5	
Fan Rpm	180	

	Table 1		
FULL-SCALE FAN	AERODYNAMIC	DESIGN	CONDITIONS

These design conditions, derived from the motor drive power output limitation of 135,000 hp for the existing power section of the 40×80 foot wind tunnel, resulted in attaining tunnel test section speeds of 300 knots and 102 knots, respectively, for the closed and open tunnel configurations.

The variable-pitch fan capability was in turn designed to permit attaining various closed tunnel speeds ranging in value from 58 to 100 percent of design, while maintaining the synchronous fixed speed of the motors.

The fan arrangement in the power section shown in Figure 1 results in large boundary-layer generation at the inlet to the corner fans, where the two wall boundary layers merge. This produces sizable inlet velocity profile distortions that can result in fan stall. In order to assess the effect of large in-flow distortions, the fan model experimental program was designed to include investigation of fan performance with different degrees of distorted inlet profiles, artificially generated.

Another important consideration in the fan model experimental program was the evaluation of the likelihood of fan stall and performance deterioration if a lower hub/tip ratio of 0.4375 were employed in the final full-scale fan design. On the basis of NASA-Ames studies a gain of approximately 6 percent in tunnel speed could be affected by going from a fan hub/tip ratio of 0.5 to 0.4375. This improvement in tunnel performance results from the reduced diffuser losses downstream of the fan, affected by a smaller fan center body.

FAN ACOUSTIC PROGRAM

The basic objective of the fan acoustic program was to verify the theoretically calculated acoustic advantage of utilizing a low-speed fan over that of a high-speed fan in the power section of the 40 x 80 foot wind tunnel. This theoretical advantage was estimated to be in the order of 13.2 dBA in lower noise for the six prototype low-speed fans versus the six prototype high-speed fans, or a total sound power level of 139 dBA versus 152.6 dBA. The actual fan noise was in turn to be established experimentally by obtaining the third-octave band noise frequency spectrum with an array of microphone settings covering the inlet and discharge duct cross-sectional areas.

. -

GENERAL 🍘 ELECTRIÇ

ω

PRECEDING PAGE BLANK NOT FILMED

Section 2

1/7-SCALE MODEL FAN EXPERIMENTAL PROGRAM PRETEST PHASE

The 40 x 80 foot aero-acoustic verification program was to be carried out at NASA-Ames with the 1/7-scale test model shown in Figure 2. The pretest phase of this program included designation of the aero-acoustic instrumentation and development of the aero-acoustic data-reduction computer programs to be employed during the tests.

Figure 2. 1/7-Scale Model Fan Test Vehicle

INSTRUMENTATION

The instrumentation designed to obtain the model fan aero-acoustic performance consisted of static pressure instrumentation, total pressure rakes, a combined total pressure/static pressure/directional survey probe, and a four-microphone traversing rod as well as temperature, speed, and torque measuring instrumentation. The inlet bellmouth section of the test vehicle was employed as the weight flow metering device. The complete arrangement of the test vehicle instrumentation, the designated measuring stations, and their exact axial location are presented in the instrumentation schematic of Figure 3.

Figure 3. Instrumentation Schematic

PRODUCTION PAGE FLANK NOT D

Aerodynamic Instrumentation

The aerodynamic instrumentation required to obtain either fan overall aerodynamic performance, detailed rotor performance, or diffuser performance is presented in Appendix A of this report. While the instrumentation section dealing with fan overall performance (Section A of Appendix A) shows four circumferential positions at Station 6 for obtaining the radial distribution in fan performance, only one traversing probe was available for the tests. This required physically moving the probe to each of the four azimuth positions; therefore each position of the traversing probe represented a different test even though the flow and speed settings were the same.

Inlet Bellmouth Weight Flow Calibration Tests

To employ the bellmouth section of the fan test vehicle as a weight flow measuring nozzle, its flow coefficient had to be established. The high Reynolds number of the bellmouth throat section of 4×10^6 readily lent itself to obtaining its flow coefficient with a scaled model, since the lower Reynolds number of the scaled model would still be sufficiently high not to affect the flow coefficient accuracy.

A bellmouth model having a 1 ft^2 throat section was manufactured, and weight flow calibration tests were conducted at CRD. The metering flow nozzles employed in obtaining the bellmouth flow coefficient had a high degree of accuracy, approaching a flow coefficient of 0.998.

The results of the bellmouth section calibration tests showed that for throat Reynolds numbers of 10^6 or greater, the test vehicle bellmouth section would have a flow coefficient CN of 0.989.

Acoustic Instrumentation

The acoustic instrumentation was designed to obtain the inlet and discharge fan noise spectra at stations 2 and 9 (Figure 3) respectively. A continuous microphone traversing system of employing two probe-mounted microphones 45[°] apart was initially recommended. Because of mechanical complexity, however, a traversing discreetposition microphone system consisting of four microphones on a movable strut was used. The sound power was obtained by subdividing the inlet and discharge ducts into 36 equally spaced cells and measuring the noise spectra in each of these cells with the four-microphone-array measuring probe. The microphone probe is shown in Figure 4, the nine locations of the microphones necessary to obtain either fan intake or exhaust noise for each test point are shown in Figure 5.

AERODYNAMIC AND ACOUSTIC PERFORMANCE DATA REDUCTION

The fan aerodynamic and acoustic test data reduction was a joint effort carried out by CRD and NASA-Ames. In the case of fan aerodynamic data reduction CRD provided the computational logic required to structure a computer program that would develop the detailed fan performance. The actual data reduction was conducted by NASA-Ames. In the case of fan noise reduction, the noise measurements were recorded on tape by NASA-Ames and transmitted to CRD for final reduction on the General Radio real-time analyzer, and the associated computer program developed by CRD to perform this function.

Figure 4. Microphone Probe in Station 3

1	2	3	4	5	6
(1)	(5)	(9)	(2)	(6)	(10)
1	1	1	2	2	2
7	8	9	10	11	12
(3)	(7)	(11)	(4)	(8)	(12)
3	3	3	4	4	4
13	14	15	16	17	18
(13)	(17)	(21)	(14)	(18)	(22)
1	1	1	2	2	2
19	20	21	22	23	24
(15)	(19)	(23)	(16)	(20)	(24)
3	3	3	4	4	4
25	26	27	28	29	30
(25)	(29)	(33)	(26)	(30)	(34)
1	1	1	2	2	2
31	32	33	34	35	36
(27)	(31)	(35)	(28)	(32)	(36)
3	3	3	4	4	4

<u>Number</u> Top (Central) Lower Meaning

Cell Designation, Area No. Assumed Test Order (Record and Data Reduction) Microphone No.

Figure 5. Microphone Positions in Duct Passage

Aerodynamic Performance Data-Reduction Computer Program

The computer program logic to evaluate fan performance is presented in Appendix B. It contains the equations and relationships that establish the fan adiabatic efficiency, corrected and normalized weight flow, and developed head conditions and fan input power based on the instrumentation system described in Appendix A.

The NASA standard sea-level temperature and pressure conditions of $518.7^{\circ}R$ and 14.69 psia were used as the reference base to which fan operating conditions were corrected. While this has merit when comparing fan performance to other NASA fans, it did require multiplying factors of 0.9786 and 0.978 to be applied to the reduced test data of corrected weight flow and developed head. These additional corrections were necessary because the original fan design was not based on NASA standard sea-level conditions but on estimated temperature and pressure values of $530^{\circ}F$ and 14.54 psia, thought to exist at the fan inlet of the 40 x 80 foot wind tunnel.

Acoustic Performance Data-Reduction Computer Program

The fan acoustic data reduction program developed by CRD, designated as "NASA FAN," is presented in Appendix C. The program is composed of six files: CONTROL, ATTENS, FANDATA, MIKEAREA, PAGE, and FANCALC. The exact function of each of these files is described as follows:

- CONTROL designates the actual order of data sampling.
- ATTENS lists record attenuator settings corresponding to the actual test order.
- FANDATA is the basic data file from the General Radio (GR) real-time analyzer.
- MIKEAREA is for microphone frequency response corrections, and cell areas expressed in decibels.
- PAGE is employed for paging of output data file.
- FANCALC is the output file for the reduced fan noise data.

A sample calculation is presented in Appendix C based on the cell designation and microphone positions presented in Figure 5. The frequency range of the output tabulations is automatically governed by control settings of the GR real-time analyzer. For fan-noise data reduction these will be set for 25 to 20,000 hertz, the available limits.

The actual sound-pressure spectra for the individual 36 samples are to be printed out so that it will be possible to evaluate the feasibility of reducing the number of sampling positions. In the sample calculation (Appendix C) the sound pressure levels (SPL's) are separated into three tabulations, with the double asterisks denoting the four corners of the three cell blocks.

Section 3

1/7-SCALE MODEL FAN EXPERIMENTAL PROGRAM AERODYNAMIC AND ACOUSTIC PERFORMANCE EVALUATION

As was pointed out in the introduction, the objective of the fan test program was to test two fan configurations, a high-speed and a low-speed fan, and determine which would be the quieter when scaled to full prototype fan size and speed. In addition, the quieter fan had to satisfy the tunnel head requirements at closed and open tunnel operating conditions.

From the outset it was recognized that achieving the fan design head and flow conditions would be more difficult with the low-speed fan than with the high-speed fan because of its higher hub loading. This hub loading condition would become even more aggravated if a hub/tip ratio of 0.4375 were to be employed in the final full-scale fan design than with the 0.5 hub/tip ratio employed in the first 1/7-scale model configuration.

Performance testing of the low-speed fan configuration would therefore be more involved than that of the high-speed fan. It would require several blade pitch settings to establish whether adequate design margin exists in meeting some of the more stringent, thickened-boundary-layer operating conditions than the tunnel corner fans would be subjected to.

In the case of the high-speed fan, with its lightly loaded blade conditions, a relatively short test program at design-pitch blade setting was thought to be adequate in establishing its capability in meeting its design performance objectives.

AERODYNAMIC PERFORMANCE OF HIGH-SPEED FAN

The aerodynamic performance of the high-speed fan at design stagger angle setting of 56° is shown in Figure 6. It can be seen that the fan meets its design head objective of 680 feet at the design corrected weight flow of 367 lb/sec, while its peak efficiency value of 86 percent at design flow is somewhat below the design efficiency value of 90 percent. Approximately 1-1/2 percent in efficiency loss can be attributed to the inlet-contraction section loss upstream of the fan, as evidenced by the total pressure survey at the fan inlet. (Overall fan performance based on surveys at stations 3 and 6 included the flowpath through the contraction section.)

A sample of the high-speed fan reduced performance data at design flow and speed based on the starboard azimuth-position radial survey at station 6 is shown in Figure 7. The radial total discharge pressure distributions for the four azimuth positions are in turn shown in plots of Figure 8. As can be seen from the plots of Figure 8, the blade-section radial performance patterns approach normality, with the usual decay in performance in the tip and hub regions caused by boundary layer effects.

ACOUSTIC PERFORMANCE OF HIGH-SPEED FAN

The acoustic performance data of intake exhaust and combined SPL spectra for both the 1/7-scale model fan and a cluster of six prototype fans are presented in Table 2 for the 100 percent design mass-flow condition. The variation of the dBA SPL spectra for the combined six prototype fans as a function of mass flow is presented in Figure 9. In arriving at the plots of Figure 9 and Table 2, the following scaling methods were employed.

.

.

ORIGINAL PAGE IS OF POOR QUALITY

	Ш		ļ	i II	Щ°				Ľ	8	η	ļi,	ļ							ų ų	ļļļ	1	1	' -	1- 																							1						11 11 11 11 11 11	
٣	1	+	<u>-</u>			1	18	13	<u>0</u>	┢	ŀ			Ϊi	t		1	.1	777	÷		÷.	Ť		لينية 1 - 1	ī	Ť			Π	i.	Ш	iii	iii		ill		III	lü	ili	i i	ili	iii	ili	i		Ħ	H	III		lii	II.	Î	Ï	
T	ĥ	"	1	,	÷;	ŗ.		- 1	• •		ł	-		["	i,		:	ب		ĥ,		1		Ā		1	1		li	i	ľ	ij	H	H	Ĭ		H	iii	III		Ť		ü	İİ	ii	Ш	Ш	li	ŧ		li.	iľ	ii	ĥ	
e.					•	1	İ,	-	•		T	1	. L.	1	ŧ.							ŀ	-	-	7	N		h	111	1	ľ.		U,	III	1		m		111	ih	ŧ.		ШÍ	11	5		II.			m			Ī,	Ì.	
						12	;	-	- 2	ţ,	1	+ ا		1:	l.	T	1	11	11	1.	Ηſ	1.	r i	- 1	·	लि	×.			Π	T.		1		İ				H.	ĮĮ,				10	Ī					吅				ij	
	ŀ.	i!	;,	ij		.li	1	1	., '	F,	Τ	1°	•.; • •		11-1			1	, î.		· .	i.		:	 1.11	, †	1	iŇ	Į.			1		il.	I		H	11	11	f			曲		ii	dн		iţ	1			H	:	ļ	
	li	ŀ I.	1	50		ir	i F			-	iþ				, li			14	15		it		-	'ï	i, li	tŗ.			ĥ	$\langle \cdot \rangle$			Щ	Π,			11	H		111				ill		11.			H				ŧ.	Ë	
HI.		11	Ē					-			li		; ;	5		1		1 ⁱ 1	ť.	ľĽ		jĽ.	1		1	1.11	·III		ll I	II \		Ш	Ľ	eа	ĥ		11			Ш	H		III		Ш							Ш		ļ	
		<u>'</u> ''	i	1	'n	1		1		<u> </u>			101	<u> :</u>			6	.,i	.;11		h E		' ::		ųť,		11	Ľľ	 ;	1	ľ	1	11	łł			Ш	雦	Ш	Ш			Ð	ie!	H	8	Ħ		H.		li			li	1
61	i i		t	ιŀ	j:			1	u.	Ľ	II.		<u>,</u>		ıII.			벁	2		11	1.		ï	넾	ΗĻ	ĽĽ,		11	Ħ		Щ	Ш			Ш		Ш		Ш	ŧ.	4	E		η	H	Щ	Ш	Ш	Ш			li	ļ	
	h cu	Ľ.	빛		., 	Ψ	ÿ	5	۰ <u>،</u>	Ľ	1		1.1	<u>lit</u>				ľ	<u>، ، ،</u>		1	1		1	<u>t</u>	1			Ш	ilt			Ň	Ш		H	ų	Щ	Ш		Щ	I.	<u>I</u>		1	Ť	Щ						Щ	1	ļ
ij			-	11 	Ľ	5	1		111	L.,	ļ			Ľ_	<u>li</u>		ų,	1	Ľ.	Ľ.	11		1		יין :11		1	H	Ľ	Į.		Щ		ų					Щ		ill		Ш	Щ		H	Щ	Ш		H	Ш	1	ij	ļ	
1.		_				e	Ľ.	4	4	Ŀ	l.	Ŀ		Ľ.	44	4	j.	i		<u> </u>	ļi.	-	1		1	li.	1		Ц.				Ш	Ň.	H	ų.	Щ	Щ	Щ					Щ				1		Ш	出	11	Щ	#	
	ļý	<u>.</u>	<u>.</u> ,	., ¹		Ξ.	Ľ	-		<u>.</u>	1	Щ	<u>e</u> 1	iii.	4		Щ	4	Ц,		1		щĽ	<u>''</u>	<u>. !</u>	Ш	4	H!	Щ	Ш		4	H	H	ł		i i		龖	ih	錋			鼺			Ħ	扣		Ш			Щ	ij	
Ë,	1 E N		8	<u>}</u>		ä	1	"		ŀ				1	1.	1	ŀ	1 1	4	_	4	<u>I</u> .,	1	11	1	ui:	ВĒ	<u>۽</u> ا	Щ	Z	佪		Щ	Щ				Щ	Щ	Щ	붸	Ш	即	Щ	4		Щ	11		Щ		1		<u>11</u>	Ì
Ľ.	12	4	4	÷		ADITABATICEREAD. RAD - TYPE	7	φļ	١.	1	ļ		Ŀ.,	Ľ.	-	lli	-	-,1	<u>, 1</u>		!:	÷	-	_	Ц	世	46		銄	1.	Ľ.		Щ	Ш		Ŋ	Щ	Щ	Щ		Щ	ļ.	ļ	Щ	Щ			14				Ħ	Щ	11 77	
<u> </u>	TEP				÷.,	1.0	Ϊ.	-			4	4	ч,	<u> .</u> .	4		1 	4	16	12		1	1	ŀ			ľ	1	1	Ц	1		1		П	II.		Щ	Ð		15	ġ'n	Hi			H	111				Ш				
13		÷Ľ.	+	<u>.</u>		Ħ	ч	-	<u></u>	Ŀ	÷	_	Γ.	1-	÷	ľ	-['		4	1	+-	t	4	÷	Ż	21	÷			li-	11	<u>iili</u>	-	ŧŋ		U	Ц	ĥ	h	Ì	ļ		1		-		1		Щ	Щ	H	1	Щ	<u>h</u>	1
н. Т	TARATIC	-	7	5		ABA		니	T	Ľ	╬	÷	'	<u>ľ</u>			÷			ŀ	+	_	.10	9	<u></u>	••		• • •	41) 1	<u>.</u>		ļ		41) 11:1	Щ		1			Щ		ii' zir	11			11	n li Li fi		H	<u>uri</u>	Н			Ë	
141	R	-	+	[· ;·	뎚	Ļ,	-		÷	4	÷	- ' <u>11</u>				÷-1-		1		4	1		-			- 11-	-1-														111	1:			1	11			<u>ii</u>	11	11		1	i
1	AT 1	-	+	-	-	4	Ģ	5	<u>, ''</u>	; ''	ł	-				+	屵		111	<u> </u>	1.1.	-	4		1	<u> </u>	1		<u></u>	1,1		H		븲	Ш					鸓						H			***			1		1	
in.	****	-	- -	-	<u>.</u>	-	1	_			- L-				ť.	+	÷		÷,ť	<u>.</u>			÷	÷		12	ii	-		罰	畕			禮			1	A	畕			詽		1			H	Ш	쁥						ĺ
	÷.	-1-	6	<u></u>	<u>.</u>	÷	┢	÷ł		ļ-		r.t		ľ		4	÷			.	#	1	-			F.	÷		-	<u>, , , , , , , , , , , , , , , , , , , </u>			πt	::::		-	⋕	#	T.			111 111				ГЦ 1.1							-		i
	\vdash		-	-			-,	-			╉		÷.,	ŀ	'n	1	-	-				+	17	-	4	L. 				iii iii	惴				怋	計	Ħ					H.	-	h		間	#				H	╬	÷	r	
			-	-+	•	ľ	ŀ	1	_	\vdash	+	-		+		the state		-	: ::::::	11 17 -		-	5		4		H.	븱		÷.	H			H	閳		t		Ĥ			H		Î	r		Ħ	i i	÷			h	ť	-fi	
H		+-	+	-				oþ)	ŕ	÷		÷	÷۲	┢	-	ii:			H	<u>.</u>	Ť	r ha	-		H-		I	H	U.	Ħ			H	H	Ш	₩	H	Ë			卄	iii		ьці FII	#	₩	II.	ī	1		h		fi	ĺ
1 .	-		Ť	:		÷.	t	-	<u>.</u>	-	t	-		 	1.	╈	1	Ť	l		<u> </u>	++				-1				1				Ť	Ħ	T	-	i		Ħ	ľ	iii				iii	4	開	ili	11	ii.	i	T,	h	
	Ē	t	ť		-	••••	1:			1.	t	7		-	† .:	╞	+	=	÷	17	İ:	1		1		; -				ĥ	Ű	1		ij	顅	Ű	ill Ill	Ť	i II	Ķ	h	Ĥ	<u> </u>	İ			I,		Ħ	÷	Ť	ľ	ţ	ľ	
	ŀ	1-		1			E	4	- L-		Ť	-†	Į-	1.	12		÷			. 1	Ż	50	į.		<u>''</u> -		H.	J.	İ	₿				k j	ij		H	Ţ			Į,	i	Ī			ī.	Ŀ,	į,	ΠÎ	Ī,		F	T	ī	į
i.	t:			2		÷	Ŀ	ť		Ľ.	Ti.				tĒ	q o		1			Ē	ĨĨ		2	1	-1/	a-	I.	F	iii	F	, k		ļ	Ĩ		ŧ.		1	H	H	ħ		h	Ш	Hi	H.	H.	ù li	Ĥ	H			ii	

* * * * 1/7-SCALE 40 X 80 FAN HOUSE PERFORMANCE * * * *

TEST 7-1-48, STATION 6, FLADE 56.00, THROTTLE 100.0, DESIGN SPEED 2000., SPEED CORRECTION FACTOR 2.00 RUN 12, STED ATIMUTH PROBE INSTALLATION ANGLE FRRORS -- SWIRL -0.15, RADIAL -0.34

INPUT PT	RAR.	T,42%	T') ENGIN T,INLET (PEG F)	EEPING UN PS,INLET (IMG)	ITS PT,INLET (ING)	T,[+IS {DEG ₽	PS+1+1 (1+6			SWIKL (JeG)	PADIAL (OEG)	R791	. Fb.	י 1 הוא (פֿד ויז)
1 2 3 4 5 4 5 4 7 8	30.22	34.24	48.05	-2.32	-09	51.57	-0.5 -0.6 -0.7 -0.7 -0.5 -0.5 -0.5 -0.4	3 9 6 9 5 9 2 10 2 11 7 11	•14 •75	1.59 1.69 2.48 3.62 2.23 2.22 2.23	0.10 0.15 0.05 0.02 0.06 -0.01 -0.09	C.9884 G.9711 C.9514 O.9314 O.9109 O.8899 O.8685	•	• 1475•2
10 11 12 13 14 15 16 17 18 19		90.68 -	49.14	-2.32	-0.43	51.5.	-0.5 -0.6 -0.6 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	5 12. 7 11. 7 11. 2 11. 2 11. 2 11. 5 10. 7 9. 0 8.	. 75 .01 .96 .89 .50 .53 .35 .04 .45 .74 .84	3.69 4.64 5.07 5.71 6.25 6.25 5.30 6.25 5.30 6.25 5.30 6.25 5.30 6.25 5.30 5.30	-0.29 -0.46 -0.73 -0.38 -0.12 -0.50 -0.75 -0.69 -0.76 -0.76 -0.84	0.8465 0.8239 0.8036 0.7767 0.7520 0.7264 0.7000 0.6725 0.6439 0.6138 0.5823 0.5490	1982	<u>, 1591.</u> 0
20 Calcul	30.23 .47*0 "UN	02.30 POSULTS	47.15 345.0 0	-2.32 N 3 SAMPL	-9,49 55	51.44	-1).5	3 7.	.00	9.74	-0.36	0.5135	1983.	. 1443.1
PT	РДТМ (PSIA)	тид (425 5)	רידת (≏וצם)	TDR (DFG R)	РТДЈ (P\$1A) {L	*2:14 7/25()	48 (LA/S)	WCDR (1875)	พาวะ (L9/S)			SNIIP 1 E T)	нр{нр (чр}	£ T N
1 10 20	14,84 14,85 12,85	577.2 597.7 577.6	14,93 14,93 14,93	511.2	15.23		260.5 367.0 260.3	359.3 355.8 359.0	363.0 383.1 362.7	1.02	270 7	21.3	566.77	0.8£9 C.452 A.957

Figure 7. High-Speed Fan-Reduced Performance Data

. -

•

.

Figure 8. High-Speed Fan-Radial Discharge Total Pressure Distribution At Design Flow

The 1/3-octave-band noise levels of the model fan were first converted to prototype (6 fans) noise levels by applying the simple fan-noise-scaling-low relationship of

$$dB \begin{pmatrix} Prototype \\ 6 Fans \end{pmatrix} = dB (model) + 10 \log_{10} \begin{bmatrix} \frac{6 \times W \text{ prototype}}{W \text{ Model}} \end{bmatrix}$$

The frequencies were then shifted by the 0.15-scale factor of the model fan diameter to full-scale fan diameter; and lastly, the dBA weighting factor was applied to the shifted 1/3-octave-band frequency noise levels in arriving at the dBA sound power levels for the Prototype (6 fans).

The total sound power levels for the 1/7-scale model high-speed fan and the six prototype fans were respectively 127.8 dBA and 146.8 dBA. These compared to predicted values of 136.8 dBA and 152.5 dBA respectively for the high-speed fan model and the six prototype fans. While deviation between predicted and tested noise levels for the high-speed prototype fans of 5.7 dBA was appreciable, the predicted noise level for the low-speed fans of 139.4 dBA was still 7.4 dBA below that of the indicated noise level of the high-speed fan. The potential gain of employing low-speed fans was therefore still appreciable, and the test program as originally outlined was continued.

AERODYNAMIC PERFORMANCE OF LOW-SPEED FAN

The aerodynamic performance testing program on the lowspeed fan was contingent on verification of the acoustic advantage of the low-speed fan over that of

Table 2

HIGH-SPEED FAN---NOISE SPECTRA AT DESIGN SPEED AND FLOW

		HIGH	I SPFED FAN	100% MASS FLOW		
	11	NTAKE	EXH	AUST	TO	TAL
EREANENCY	IN RE 1	LE-12 #ATTS	LW RE 1	E-12 WATTS	LW RF 1	LE-12 WATTS
HF R 1 7	MODEL	₽₽0101YPF (51% F&N\$)	MUDEL	PROTOTYPE (SIX FANS)	MODEL	PROIOTYPE (SIX FANS)
25	10/.50	128.71	117.04	139.50	117.50	139.85
31-	105.28	129.64	118.02	138.34	118.25	138.89
4.0	104.42	104.06 .	118.11	1.58.96	118.29	140.18
50	104.25	144.03	117.64	146.85	117.83	148.68
63	104.56	133.14	117-37	136.43	117.59	138.10
80	104.48	154.22	117.90	137.10	118.09	138.90
100	105.18	140.61	116.74	144.48	117.03	146.03
125	104.94	135.16	115.99	136.97	110.32	139.17
160	104.45	136.72	115.24	1 38.54	115.59	140.73
200	105.38	136.82	114.08	138.65	114.63	. 140.84
254	109.80	1 15.99	114.70	137.78	115.92	139,99
315	119.77	136.02	122.59	1.36.59	124.42	139.32
400	108.87	135.70	112.17	1.15.79	113.84	138.76
500	109.96	135.36	112.85	1.15.52	114.65	138.45
630	116.55	135.60	120.22	135.39	121.77	138.51
800	110.90	135.94	112.71	135.80	114.91	138.88
1000	112.46	135.56	114.28	135.26	116.47	138.42
1250	112.56	134.86	114.39	134.43	116.58	107.66
1600	111.73	133.58	113.52	1.3.13	115./3	136.37
5000	111.76	1 11.63	112.33	131.49	115.06	134.57
2500	111.44	128.28	111.53	128.31	114.50	131.31
3150	111.10	125.99	111.26	127.09	314.19	129.59
4000	111.34		111.13		114,25	
5000	111.68		111.54		114.62	
6300)11.30		111.00		114.16	
8640	110.60	•	110.17		113.40	
10000	109.32		108.87		112.11	
12500	107.37		167.23		110.31	
16000	104.02		104.05		107.05	
20000	101.73		102.83		105.33	•
11R V	123.90	143.82	125.48	143.84	127.77	146.84

Figure 9. Sound Power Levels with Mass Flow for High-Speed Fans

the high-speed fan. The initial tests were made on the low-speed fan (specific details are discussed below under "Acoustic Performance of Low-Speed Fan"), and the planned comprehensive low-speed aerodynamic fan test program was then carried out.

A total of 487 test runs were completed on low-speed fan configuration No. 1, whereas only 23 test runs were made on the high-speed fan. The complete summary of the tests conducted on both the high-speed and low-speed fans is presented in Appendix D.

Aerodynamic Performance Deficiency

The initial tests of the low-speed fan at the design stagger-angle setting of 40.8° showed a serious deficiency in performance. This was the result of poorer fan efficiency (82% vs a design efficiency of 90%) and insufficient work addition imparted by the blades to the air. While the lower work input at a stagger angle of 40.8° could be corrected by operating the fan at a higher angle of attack or a reduced stagger angle setting, improvement in fan efficiency would require modification of the fan blade shapes.

Unlike the high-speed fan performance characteristic, the low-speed fan exhibited a sensitivity to azimuth position that appeared to be associated with inlet flow distortion. The test results showed that at the 100 percent flow and speed setting for the 40.8° stagger angle setting a deviation of 10 percent in developed head existed between the port azimuth total pressure survey and the starboard total pressure survey, or 536 feet versus 485 feet respectively. The port azimuth measuring station is in a line of sight of undisturbed inlet bellmouth flow, while on the starboard side of the bellmouth the flow is disturbed by the wall forward and along the side of the inlet (Figure 2).

Aerodynamic Performance Testing with Honeycomb Section Upstream of Fan

In order to reduce the flow distortion produced by the ground and sidewall effects at the inlet to the test vehicle bellmouth section, a honeycomb section was introduced in the vicinity of the inlet distortion screen designated as Station 18'-3" in the schematic of Figure 3. The low-speed fan tests were then repeated with the design stagger angle setting of 40.8° and with stagger angle settings of 38° and 35.4° . The performance results of these tests are presented in Figure 10. While a small improvement in performance in the order of 3 to 4 percent increase in weight flow was achieved with the honeycomb section for the design stagger angle setting of 40.8° , it was relatively insignificant compared with the large effect in developed head produced by small changes in blade stagger angle setting.

Effect of Rotor-Blade Stagger Angle on Fan Performance

As can be seen from Figure 10, the rotor-blade stagger angle setting of 38^o achieved the highest fan efficiency of 83 percent, but at a reduced developed head of 94 percent of design head. This particular test did have the benefit of a less severe annulus passage contraction upstream of the fan. In terms of good stall margin and reasonable radial profiles, the 38^o stagger angle setting appeared to be the most favorable. The radial total pressure profiles for this stagger angle setting shown in Figure 11, with the exception of the starboard profile, exhibit a nearly normal radial distribution, with a greater performance decay towards the hub region than the tip

Figure 10. Low-Speed Fan No. 1-Aerodynamic Performance

region. Again both the starboard and bottom azimuth total pressure profiles are the weakest, with the starboard profile exhibiting serious performance deterioration over nearly 40 percent of its blade height. This sensitivity of fan performance deterioration to inlet flow distortion could put a serious limitation on the original fan blade design in its ability to meet the more severe boundary layer effects that exist at the inlet of the full-scale fans of the 40x80 foot wind tunnel.

Of the various low-speed fan blade angle settings, the 35.4° stagger angle did approach achieving the design head of 680 feet. It showed, however, a limited flow range capability, with stalling characteristics appearing at the 90 percent flow condition. Based on the above test results and factoring in the more stringent performance requirements contemplated for the full-scale fans—(1) operating with a reduced fan hub/tip ratio of 0.4375, and (2) with significantly thickened inlet boundary layers generated by the tunnel walls—the original aerodynamic design of the low-speed fan became questionable in its ability to meet the full-scale fan performance objectives of the 40x80 foot wind tunnel.

ACOUSTIC PERFORMANCE OF LOW-SPEED FAN

The acoustic test results for the low-speed fan are presented in Tables 3, 4, and 5. Table 5 shows the low-speed-fan noise frequency spectra for the model and six prototype fans corresponding to the design-developed head and flow condition of the fan. Tables 3 and 4 are summaries of the reduced acoustic results for the low-speed fan generated by CRD.

•

T	al	bl	e	3
---	----	----	---	---

NASA-AMES LOW SPEED FAN MODEL NOISE TESTS - DBA SOUND POWER LEVEL SUMMARY

RUN NO.	31	5.	31/23	70	70	70	70	70	70	70	135	135	135	135	135	171	171	171	171	210	210	210	210	290	290	293
STAGGER ANGLE	40.8	40.2	40.8	• 35 4	35.4	35 4	35.4	35.4	35.4	35.4	45.2	45.2	45 2	45.2	45,2	35.4	35.4	35.4	35:4	52.8	52.8	52.8	52.8	40.8	8.05	40.E
SPEED	100	100	100	100	100	100	100	100	90	90	100	100	100	100	70	100	100	100	100	100	100	100	100	100	100	160
# MASS FLOW	73	50	100	70	90	160	105	110	80	100	70	80	100	110	100	70	90 .	100	105	70	90	100	105	70	50	100
HODEL dBA L				,																						
Intake	120 8	120.5	1.9.7	123.2	122 2	122.4	122 6	122 7	119 6	119.5	122.0	119.8	116.9	116.5	105.9	123.3	120.3	121.0	120.6	125.2	114.9	112.2	112.0	119 7	119.3	
Exhaust	.22 1	122.3	122.4	124 0	123 б	124 5	124.7	124 7	120.7	122.0	124.0	121.8	119.6	119.6	109.8	126.9	124.8	125 1	124.6	128.3	118 5	116.4	115.5	123 5		122.1
Total	124 5	.24.5	124.3	125.6	126.0	126.6	126 8	126.6	123.2	123.9	126.1	123.9	121.7	121.4	111.6	128.5	126.1	126.5	126.1	130.4	120.1	117 8	117.1	125 0	124.7	123.9
PROTOTYPE dDA L (six fans)											•				-	•										
Intake	108 2	108 1	135.9	140 5	140 D	139.5	139 4	138.9	136.9	135 9	138 7	137 3	133.9	133.1	123.1	138 3	136.8	136.6	136.8	137.0	130.6	123.4	155 3	125.8	105 5	.35.1
Exhaust	109 B	109 0	133 7	140 3	140,2	141 1	141.2	141 3	137.4	138 1	140.8	139.3	136.6	135,2	125 4	142.8	142.2	141.8	141,5	142.1	135,7	132.9	131.1	140.6	139 6	132 7
Total	141.3	141.6	.40.5	143.4	143.4	143.4	143.4	143.4	140.2	140.1	142.9	141.4	138.5	137.3	127.4	144.1	143,3	142.9	142,8	143.3	136.9	134.2	132.9	141.8	141 0	1-0.3
TAPE REEL NO.	3	3	3	7	7	7	7	7	7	7	9	9	9	9	9	10	10	10	10	n	11	11	11	72	12	12

•

ORIGINAL PAGE IS OF POOR QUALITY

15

٦

.

,

.

Table 4

NASA-AMES LOW SPEED FAN MODEL NOISE TESTS - DBA SOUND POWER LEVEL SUMMARY

RUN NO.	23.	231	231	327	327	327	327	327	328	328	328	338	338	338	465	456	465	465	465	496	496	495	496	495	495	495
STASGER ANGLE	3.C2	40 8	40.8	4 53	88.4	88.4	88.4	88 4	62.9	62.9	62.9	62,9	62.9	62.9	40,8	40.8	40.8	40.8	40.8	38	38	33	39	39	23	33
X SPEED	100	100	129	50	75	63	90	100	100	100	100	100 -	100	100	100	100	90	75	50	100	100	100	90	\$2	75	50
1 HASS FLOW	75	35	109	166	100	100	160	100	90	100	120	90	100	110	100	100	100	100	100	105	100	90	100	100	100	100
Model dea L																										
Intake	123.0	113 2	118.7	24.2	164 7	106 1	109 5	111.6	124.2	124 6	119.7	124 8	125 2	119 9	126.3	124 0	120.2	116.5	106.6	125.3	125.3	126 1	122.6	119.5	115.7	107.5
Exhaust	120 6	.25 1	122.3	94 B	105 0	· 105,2	109.6	112.1	127.4	127.5	123 0	127.4	127.7	122.9	. 130.5	126.2	122.6	117.4	107.7	128.4	129.6	129.3	125.6	121.6	115.7	133.5
Total	125.2	124 6	123.9	97 5	107.9	109.2	112.6	114.9	129.1	129 3	124 7	129.3	129.6	124 7	131.9	128.2	124.6	120.0	110 2	130.1	131.0	131 0	127.4	125.2	121 5	111.2
PROTOTYPE dBA L _w (six fans)																										
Intake	100.7	124 6	134 4	107.3	118.1	119.7	123 3	125.9	135 7	136.2	134.5	136.3	135.9	134,9	139.0	137.1	133.5	128.6	118 5	133.8	138 7	138.8	135.1	132.3	109.4	119.5
Exhaust	.45.9	5.0.1	138.7	10s 3	118 0	123,5	124 0	125.8	139.8	140 2	138.5	140.1	140.7	138.7	144.1	140.2	135.8	131.5	120.2	142.2	142.8		-133,8	135 4	133 3	
Total	.42.5	141 0	140.1	110.8	121.5	123.1	126.7	129.4	141.2	141.7	140.0	141.6	142.2	140.2	145.3	141.9	138.5	133.3	122.4	143.8	144.2	144 7	140.3	138.3	134.8	123.7
TAPE REEL NO	13	13	13	14	14	14	14	14	14	14	34	15	15	15	16	17	17	17	17	18	16	18	18	18	28	15

.

•

.

Table 5

LOW-SPEED FAN--NOISE SPECTRA AT DESIGN SPEED AND FLOW

-0W	SPFCD	FAN	354	DEGR.	100%	SPEED	100%	FLOW
	FREQ	UENCY			LN RE 1	F-12 WA	TTS	
	HE	RTZ		M	OPEL	PROTO	TYPE	
						(SIX	FA45)	
		25		12	2.9	142	.8	
		31			2.6	142	.1	
		40			2.6	142	.1	
		50		12	1.6	142	.7	
		63		12	1.1	140	.8	
		80		12	0.7	141		
		100			9.9	145		
		125			.9.4	140		
		160			.8.5	140		
		200			7.8	141		
		250			7.8	139		
		315 400			8.5	137		
		500			6.6	136		
		630			1.0	135		
		800 .	, ·		.6.3	133		
	1	ົ້ດບໍ່ດີ			.6.3	132		
		250			6.8	132		
		600			5.0	130		
		000			3.2	127	.8	
	2	500			3.3	124	. 4	
	3	3150		11	2.0	125	.5	
	4	000		11	0.9			
		5000		10	9.7			
		300			8.2			
		3000)7.8			
		0000			16.2			
		2500			3.5			
		5000)0.2			
	20	000		. 10	01.2			
	Ľ	DBA		12	26.5	142	2.9	

As was previously described in Figure 10, the low-speed fan has to operate at the reduced stagger angle setting of 35.4° to attain design-developed head. This somewhat penalized its acoustic performance. The noise levels for the low-speed fan at design operating conditions are respectively 126.5 and 142.9 dBA for the model and six prototype fans. This falls short of the originally predicted noise levels of 122.1 and 139 dBA respectively for the model and six prototype fans. Yet, in spite of this deficiency in realizing the predicted noise levels for the low-speed fan, the test results showed a definite significant reduction in fan noise generation in going to the low-speed configuration.

Comparison of Acoustic Performance of Low-Speed and High-Speed Fan Configurations

The low-speed fan noise test results at design operating conditions (Table 4, Run 171) are 126.5 and 142.9 dBA respectively for the model and six prototype fans. This compares to noise levels for the high-speed fan configurations of 127.7 and 146.8 dBA. While this comparison shows a net reduction in the order of 4 dBA in going from the high-speed to the low-speed fan configuration, it represents a conservative comparison.

STATION 6	SURV	eri			FT			i			<u>ا</u> ت	ZMUT	ſ	цŲ	N.		E:
Stangt ATT	4.4.3	8.9					•	. [_	[l.		Å	Top.		4	ŝ.	11	
Nad # 83.38			K.	1.		• .	k.,				ф. П	Þóft Bttil	'lei	Ă,	9	"山	
HAD 4. 615,9	<u>ftí</u>		· · ·						Ь.,		ш 	Bttn Stol	1	- 40	3 . 11		
1 10 1 377 6	1b/se	0 ()	· · ·	• *				1		:	1.	[T		<u>h.</u>]			
		· ·	r i	÷	. ·.		. •;	: i: .			1.1.1	• : • ·					
19 	. 10 114 ; 5			• •	<u>.</u>			I				<u>i i</u>					
530	+1:5	.			1		• •			. :	<u>۰</u>	• " ,ii			11 -		
		L.	. i	. - :	ĿĽ	Ľ		·: ::		" ji	Ŀ	. 1.1	1.1	iif i			16
		•••••••	· .	ц• ¹ ,		:		. I.,	3	· ;	2.	1,1		<u>I</u>			
使用ななられ			<u>.</u>		100	∯ -1		73		× .	1	山田	반		ЪЩ.		
	•	• .	···· ···	12	* 1:	•••	·1		4	ĽΑ	1 ₅₁	11.	ж	i.u	h F		
	<u></u>		م ـ	/X:		•			N.	<u> </u>	<u>A</u> -	1.15	111	. :		: He	Ω.
	<u> - -</u>		£17	/• :	·	• ' •		<u> </u>	۱÷.	<u>i</u> ĥ:	÷.)	<u> </u>		1 <u>7</u> , 1			Шî
開きる部門		<u> </u>	<u> </u>	· . 1		<u> </u>	<u>i</u>	- 1 - 1	1	X -	Hi!	N.			1		
		וש	<u> </u>	11	1.1		·		· · ·		R				i. H		
		$ \mathcal{I} $ A			<u> :_ :</u> _			<u> </u>		<u>. X</u>	<u> '''</u>	R.E.			īΠ		
	1 1	۲. F.I	<u>/!</u>	;	;].			· • •	-	· !``	<u> </u>	別可		14 ().	<u>1</u>	1111	
	<u> </u>	1/1:4		;; _;	1. j. j. j. j. j. j. j. j. j. j. j. j. j.	1.1.	<u> </u>	-13	••		\sim	A.	<u>.</u>		İl:		
marie r.	10/ 3			·, -				Ľ	"	1	<u> . ·</u>		-4 <u>1</u> 4	i-!'.[!	111		Щ.
	14		L	· · ·	÷.				·				1.1	11	li B		
単正式を書い	<u>اتا</u>	· .	i.,		71	1.		<u> </u>	Ľ			,4191.5		11	Чm		
						1				1 11		<u> </u>			1		1
		l			ыÈ.						1 1	<u></u>			1	101	
	II. 1.1									r 1	11 1						
		<u> </u>	<u> </u>		1.1					i:		:		<u>. 15 </u>	4		Щ.
			<u></u>		F		· · · ·		· .	• •			ŀ-		-	1	
100 ····	H		•••	21.12	4	·	·	<u> -</u>			Ŀ		 		-		#
	• . :::		<u></u> 1_1		<u>. </u>		• • •	<u>. .</u>	-1		131	<u>itn 1</u> -1			<u>F</u>		Ħ
	· · · · ·		14.42	.1 1	<u>i</u>			<u> </u>	, "`\ 	-1	.:i	71.L.	ŀ	<u>. ; ;</u>	1	135	Щ
	<u>l⊈</u> i–t	⊫ <u>t</u> i-l	σË	- <u>Ľ</u> =	<u>† 0</u> -	₽ŧ	j≝d	d t	ان ا	늷습	٥	i da	 	: <u> </u> _::	:	<u>. []</u>	:##
	<u>8</u> -}	<u>- 2</u> -	212	••Ø~~4	- 25		- 11	-83-5	CH	<u>61 92</u>	- P	8-2-07X	[·	<u>··</u>	-		1.2
122217-17-1947-1-1				-	<u>ti la</u>	ا تر ا				· · · ·	È	í <u>H</u>	Ŀ	-÷ -			1
	5		F	4. 3	<u> </u>	<u> </u> .	B			·• ¥ ·	1.1	1	0				1111
					₽/ ₽ ₽	<u> .</u>		.		- 	1.				1		11
	h. h. j		· ·/ <u>-</u>	- · · ·	<u> </u>	-1	•				· •		1.1		al a	<u>F'</u> E	

Figure 11. Low-Speed Fan-Radial Discharge Total Pressure Distribution

As the noise comparisons for the low-speed and high-speed fans were made at design head and flow, this somewhat penalized the low-speed noise operation. In order to meet design head, the low-speed fan with its deficiency in both turning and efficiency had to be operated at a 5° blade incidence setting, or a less favorable incidence condition from the standpoint of noise generation than that of the high-speed fan. Comparing the two fan configurations at their design incidence conditions, corresponding to a stagger angle setting of 40.8° for the low-speed fan, a further reduction in noise level is realized by the low-speed fan. Run No. 291 in Table 5, corresponding to the low-speed fan's stagger angle setting of 40.8° , shows a noise level for the prototype six fans of 140.1 dBA. This represents a noise reduction of 6.7 dBA in going from the high-speed to the low-speed fan configuration. Based on the above analysis, it would appear reasonable to project that with an improved low-speed fan that would be midway between the two test comparisons of Runs 171 and 291. This would represent a noise reduction of 5.3 dBA for the low-speed fan over that of the high-speed fan.

AERODYNAMIC PERFORMANCE OF LOW-SPEED FAN WITH ARTIFICIALLY GENERATED INLET DISTORTIONS

The inlet flow distortions that were introduced at the fan entrance are shown in Figure 12. The obstructions that were introduced at the inlet to the model fan were designed to simulate the thickened boundary layer conditions on the tunnel walls upstream of the six-fan cluster.

Figure 12. Low-Speed Fan -- Inlet Distortions

Based on the test results it appears that the fan tip section is able to operate with a highly distorted flow without stalling. This is illustrated by the test results with maximum blockage, corresponding to configuration D-9 (Figure 12). Examination of computer output sheets for the inlet and discharge fan performance, presented in Figures 13 and 14 for Runs 461 and 462 corresponding to the bottom azimuth surveys at stations 4 and 6 respectively, shows that with a severely skewed velocity profile from tip to hub, the tip section had no problem in exceeding design-developed head by approximately 20 percent. Furthermore, the developed head rise of 821 feet for the entire radial blade section, based on the total pressure rise data from the station 4 to 6 survey probe, seems to indicate the ability of the fan to operate with a thickened boundary layer over a circumferential sector without stalling. The data, however, are not conclusive, since only two of the four azimuth positions (bottom and top) were surveyed. There is conceivably a circumferential shift of the poor-performance regions of the fan that would have shown up in either the port or starboard survey position had they been taken, and the overall fan performance may actually be poorer than that indicated by the more favorable results shown by the bottom and top azimuth surveys.

🕘 GENERAL 🍪 ELECTRIC

Í

ORIGINAL PAGE IS OF POOR QUALITY

		7-2-48	, NGL= 40.			1/7-SCAL5					* {UPDAT			CTAR 1,00
	RUN 4	61, (BTT	M AZ THUT	н)			PROBE TAS	TALLATION	I ANGLE FR	290	SWIRL I	.26 PFG,	ΡΑΡΙΔί	0.10 956
•									. •					
	INPUT	PATA, U	SING STA	TION ** 1	** INLET	STATIC PRE	SSURE, CO	NVERTED T	O ENGINES	RING UNI	TS			
	PT	BAR.		Τ,ΤΝ <u>Γ</u> ΕΤ (DFG F)	PS,INLFT (1)(IWG)	PT,INLFT (3)(THG)	T,D15 (D=G F)	PSC:DIS (ING)	PTC, DIS (ING)	SWIRL (DFG)	RADIAL (NFG)	P/RT	PPH	τΩΡΚ (FT (β)
	1 2 3 4	2º• 43	82.22	58.68	-1.90	-3.51	60.79	-13.55 -14.01 -14.55 -14.91	-11.64 -12.00 -12.43 -12.66	-2.19 -1.33 2.03 2.31	-1.34 0.05 1.60 4.89	0.9882 0.9711 0.9514 0.9315	1197.	1980 . 3
	5 6 7 8							-15.11 -15.44 -15.77 -15.42	-12.87 -13.05 -13.21 -12.60 -12.19	0.42 -0.29 -2.06 0.37 -0.57	3.21 3.73 5.12 7.49 7.94	0.9110 0.8902 0.8685 0.8465 0.8240		
•	9 10 11 12 13 14	29,93	82,40	57.98	-1.90	-3.55	61.28	-15.47 -15.63 -15.73 -15.54 -15.44 -15.28	-12.19 -12.45 -11.85 -10.89 -10.35 -9.77	-0.70 -0.66 -0.75 -0.03 0.04	7.94 6.69 7.12 8.46 9.55 8.45	0.8240 0.8007 0.7766 0.7521 0.7265 0.7001	1196.	[a45°U
-	- 15 16 17 18 19 20	29,93	82,40	57.78	-1.92	-3.59	61.23	-15.22 -15.23 -14.05 -14.88 -14.68 -14.16	-9.12 -8.65 -7.61 -7.03 -6.02 -5.60	0.70 0.91 1.01 0.71 1.89 2.02	7.89 7.20 6.83 5.55 4.35 2.69	0.6726 0.6439 0.6140 0.5824 0.5824 0.5490 0.5134	1194.	1973.6

CALCULATED PUN RESULTS BASED ON 3 SAMPLES AND PRODUCED WITH 3 FPROR WADNINGS --

рт	₽ĂŤĦ (PSIA)	, TOA (DPG P)	ртга (р514)		• PTDJ (PSIA)	WSUM (L8/SFC)	배적 (L8/5)	WC:DP (18/5)	WNOP (LB/S)	PR	HISNOR (FFET)	HPTNP (HP)	FT&
1 10 20	14.70 14.70 14.70	518.3 517.6 517.4	14.57 -14.57 14.57	520.4 520.9 520.8	14.33 14.33 14.33	212.8 212.7 212.8	327.1 327.5 329.4	329.7 329.9 331.7	330.5 331.0 333.4	0.9834 0.9835 0.9836	-464.2 -460.8 -459.4	451.33 451.33 448.69	-0.679 -0.675 -0.678
٨VG	. 14.70	517.7	14.57	520.7	14.33	212.3	328.0	330.5	331.7	0.9835	-461.5	450.44-	-0.608

Figure 13. Low-Speed Fan-Inlet Survey with Inlet Obstructions; Station 4

* 1/7-SCALE 49X80 FAN MODEL PEPEDEMANCE * * * * (UPDATE 8/ 5/75) TEST 7-2-48 FAN STAGGEP ANGLE 40.80, SUPVEY STATION 6, THPOTTLE 100.0 PCT, CAN DESIGN SPEED 1200. RPH, SPEED COPB. FACTOR 1.30 RUN 462. (BTTY AZIMUTH) PRORE DISTALLATION ANGLE ERPORS -- SWIRL -0.63 DEG, PADIAL -0.25 DEC

INPUT DATA, USING STATION ** 1 ** INLET STATIC PRESSURE, CONVENTED TO ENGINEPPING UNITS ---

PT	ዓልሚ. (IN HG)	Т,H20 (DFG Г)	T,[NL⊊T {N ² 6 F}	PS,INLST (1)(IWG)	PT,INL≝⊤ (3)('₩G)	τ,ητς (Ρ"6 F)	per,nIS (IWG)	РТ^,ПІЧ (IWG)	\$ \$¥TRL {DEG}	RADIAL (PEG)	\$/R*	DPM	тлэк - (FT [P]
1	29.94	81.63	59,11	-1.92	-3.59	62.44	-4.34	1.55	10.56	1-19		1195.	1997.3
2							-4.36	2.32	10.54	1.15			
3							-4.32	2.70	10.90	1.34			
4							-4.47	2.78	10.97	1.51			
5			-				-4.52	2.38	10.40	1.59			
6			· ·				-4.55	2_88	9.95	1.79			
7							-4.57	2.76	9.11	1.74			
8							-4.59	2.70	8.47	1-95			
9							-4.63	2.44	7.78	2.04			
10	79.94	81.86	159.00	-1.88	-3.56	62.12	-4.67	2.18	6-93	2.20		1106. /	1979.6
11							-4.61	2.08	6.31	2.00			
12							-4.67	1.62	5.92	2.16			
13							-4.50	1.32	5.33	2.02			
14					•		-4.61	5.82	5.22	2.12			
15							-4.57	3.50	5.09	1.78			
16							-4+51	0.13	4.74	1.63			
17							-4. 9	-0.19	4.14	1.29			
18							-4.59	-0.49	2.50	1.05			
19			.				-4.56	-3.49	-0.39		0.5491	• • • • • •	`
20	29.94	81.50	59.14	-1.96	-3.64	62.29	-4,46	-0.49	-4.26	0.12	0.5134	1196.	1987.0
CALCU	עאדיה פטו	N PESULTS	10 C7748	N 3 SAMPL	FS AND PR	ገጋብሮድው ዘ፲ግ	H 3 F9Q.	ገጽ ዘላ ዋነ[•	465 '				
т Рт	рати	- TOA		TOR	PTDJ	MD5M	អម	ዛርህል	HNOR	PP	HISNOR	HPINP	F7A
	(1514) (DEG P	+) {PSIA) (OFG R)	(PS14)	{[B/5"()	(LB/S)	(LR/S)	(L8/5)		(FF"T)	(HP)	
· 1	14.71	519.7	14.58	522.0	14.76	259.6	329.8	331.5		.0125	348.5	452.85	0.456
10	14.71	518.6	14.58	521.7	14.76	259.7	325.4	328.0		-0125	345.8	450.57	0.451
, 20	_ 14,71	513.7	14.57	521.9	14.74	259.7	332.3	335.0	336.2	•0127	351.1	452.47	0,466
ÂVG	14.71	518.7	14.58	. 521.0	14.76	259.7	328.8	331.5	332+7 1	.0126	348.5	451.96	0.458

Figure 14. Low-Speed Fan-Discharge Survey with Inlet Obstructions; Station 6

It would appear, therefore, that the inlet distortion tests on the low-speed fan should be repeated with survey data taken at the four azimuth positions, to more correctly ascertain how well the 40-foot-diameter fans will perform in the presence of a distorted flow due to a thickened boundary layer.

PRECEDING PAGE BLANK NOT FILMED

Section 4

RESTUDY OF LOW-SPEED FAN REDESIGN

The aerodynamic test results on the low-speed fan established that the fan hub profile was poor and would further deteriorate in going from a hub/tip ratio of 0.5 to 0.4375. It was, therefore, decided to reevaluate the fan blade design procedures in arriving at the original rotor and stator blade shapes for the low-speed fan. In order to capitalize on the advanced analytical procedures for fans that are available within the General Electric Company, this study phase was turned over to GE's Aircraft Engine Business Group's Advanced Turbomachinery Aeodynamics Subsection under the direction of Dr. Leroy H. Smith, Jr.

RESULTS AND RECOMMENDATIONS OF LOW-SPEED FAN AERODYNAMIC STUDY BY GE'S AIRCRAFT ENGINE BUSINESS GROUP (AEBG)

The aerodynamic fan study evaluated the following rotor and stator blade design areas:

- Rotor and stator blade chord length distribution with radius.
- Rotor and stator airfoil maximum thickness ratio with radius.
- Rotor and stator camber angle distribution with radius.
- Rotor and stator stagger angle distribution with radius.
- Basic airfoil thickness distribution for the rotor and stator and blade stacking arrangement.

Rotor and Stator Blade Geometry Recommendations

The recommended rotor and stator blade geometry modifications resulting from the aerodynamic study are shown in Figures 15 through 20.

Blade Chord Length and Thickness Distribution

Changes in the stator chord length and rotor and stator blade thickness distribution are shown in Figures 15 and 16. All of these values were increased from the original design. The increase in stator chord length was incorporated to improve its stall resistance; the increase in blade thickness distribution was mainly dictated by structural considerations.

Blade Camber

The blade camber shape shown in Figure 17 was considerably modified from its original design for both the rotor and stator. The curlups in camber at the hub are primarily a result of the recognition of end-wall boundary layer effects that show up as increased losses and a consequent requirement for increased air deflection there. At the tip the camber curlups are also partly due to increased losses, but an additional consideration adds to the camber. This is the assumption of a slightly reduced inlet total pressure toward the tip in anticipation that the inlet profile, treated on a circumferential-average basis, will be better matched this way. The magnitude of this assumed inlet total-pressure distortion is small. It represents a 10 percent lower-tip

GENERAL 🍪 ELECTRIC

were compared to the second se	112 million (1997) (1997)
	┉╆┯┯┯╤┛╸┝╾╋╺╬┯┥┯╺┅╦┥
WEW ROTOR	
HEW STATOR -	
THE STATOR -	
	·····
Half of the sector in the sect	
	- OLD STATOR
開る「「Furenderstein terrary in North States in	
· · · · · · · · · · · · · · · · · · ·	
HE HE HERE THE FOLD BOTOR	
	김 관계 가슴에 가슴다 가슴다.
開始: 이 가지는 가슴가 ! 그 바람 ! 여 나는 '	
man and the design of the first of states of the first of the	1 12 12 1 1 2 3 4
	╧╋╧╍╌╧╌┨╼╝╆╈┫
	김희교님 몸이 많다.
開展 가지 한 것 않는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같	· · · · · · · · · · · · · · · · · · ·
曲 ほしし としかく おおうかい ちょうちゃく	
التناقي والمحادث والمحادث والمحادث والمحادث والمحادث والمحادث والمحادث والمحاد والمحاد والمحاد والمحاد والمحاد	
1 14 , 16 18 20 22 24 26 , 28 30 32 3	24 - 74 99
14.16.18.20.22.24.26.28 30 32.3	
RADIUS IN	
hurdende de la ferde de la ferde de la construction en la ferde de la construction de la	

Figure 16. Maximum Thickness Ratio vs Radius

axial velocity than the hub axial velocity when calculated under the assumption that the static pressure is uniform. With the nonuniform static pressure that was actually computed to exist at the rotor face, the axial velocity distribution from tip to hub was not so severe, the tip having an axial velocity only 4 percent lower than the hub.

開起上 :::	<u>I Prese se se la la la la la la la la la la la la la </u>
開き ヨニ	
<u></u>	
開かりに	
開小売	
囲たたた	
Ett. 0	
H 40	
田田 ハート	
田川 、 ト・ 「一:	
100 - i	
田王 く	
開いた。	
間ション	
	OLD STATOR
IIII [2] "	NEW ROTOR
#+20	
1111、2	OLD ROTOR
開助ダイト・	NEW ROTOR
開台	
	1.1.2. 经注意上站, 2.6.4.4.1.2.6.2.4.2.4.2.4.4.4.4.4.4.4.4.4.4.4.4.4
間に小司一	
開合した	
h-19	
titit st. "	16 18 2022 24 26 28 3032 34 36 38 101 17 17 17 14
	THE RADIUS IN THE PARTY AND THE REPAIR
Manadi Alo a sano	1 1 tttttt

Figure 17. Camber Angle vs. Radius

Blade Stagger

The blade stagger-angle setting (Figure 18) was increased for both rotor and stator. This was largely a consequence of the camber increases shown in Figure 17.

Airfoil Shape Modifications and Blade Stacking Arrangement

The original blade C-4 thickness distribution for the rotor and stator was changed to a modified NACA 65-series thickness distribution on circular arc mean lines, and the individual airfoil sections were stacked on a radial line through their centroids. The rotor blade sections are shown in Figure 19, with the inscribed circle (which is 90% of the blade spacing at the hub) representing the recommended rotor blade trunnion diameter.

The large trunnion size is designed to minimize the clearance that occurs where the root airfoil overhangs the trunnions. Furthermore, since such a clearance at the leading edge tends to form an aerodynamically unfavorable forward-forcing step, it is recommended that the root section be slid aft, as indicated by the dashed line, in order to eliminate any leading edge overhang.

1.... P.C roro 0LD_.R.O. 24 26 28 N. N. SUIDARY ï,

Figure 18. Stagger Angle vs Radius

Hub Modification to Improve End-Wall Boundary Layer

The end-wall boundary layer shape leaving the rotor and entering the stator can be improved by allowing the hub surface between the rotor and stator to rotate. This feature is shown in the view of the fan (Figure 20).

Stator Airfoil Sections

The modified stator airfoil sections are shown in Figure 21. The sections were shaped to discharge the flow to the diffuser without any appreciable swirl.

REDESIGNED FAN PERFORMANCE

The final test results on the redesigned low-speed fan were not forthcoming in time to be incorporated in this report. However, preliminary test results indicate significant performance improvement for the redesigned fan employing 65-series airfoil blade sections over that obtained with the original C-4 airfoil blade section in the low-speed fan design.

GENERAL 🍪 ELECTRIC

Figure 20. Flow Path

GENERAL 🍪 ELECTRIÇ

Figure 21. Stator Vane Sections

Section 5

SUMMARY

The comprehensive aero-acoustic investigation program for the NASA-Ames 1/7-scale model fan established the necessary aero-acoustic design guidelines which will enable optimization of the 40 foot full-scale-diameter fans to be incorporated in the repowered section of the 40 x 80 foot wind tunnel. The extensive investigation program established the following fan aero-acoustic characteristics:

- 1. The low-speed fan design will be quieter than the high-speed fan by 4 to 5 dBA.
- 2. The high-speed fan with its lighter blade loading was several points more efficient than the low-speed fan. Its indicated efficiency of 86 percent was several points below its objective design efficiency of 90 percent.
- 3. The original design of the low-speed fan marginally met its design head requirement and was seven percentage points deficient in its efficiency objective. Its poor hub-region operation mandated that a new aerodynamic design be incorporated, if the fan was to meet the performance objectives of the 0.4375 hub/tip ratio design contemplated for the full-scale fans.
- 4. Initial performance results on the redesigned low-speed fan indicate a significant performance improvement over the original design.
- 5. Fan inlet distortion tests indicated a considerably greater fan capability in operating with thickened boundary layers over a circumferential sector without stalling.

Section 6

REFERENCES

- 1. "Large Scale V/STOL Wind Tunnel Power Section Design Study," NASA/Moffett Field Contract NAS2-5890, Marine and Defense Facilities Sales Operation, General Electric Company, November 1970.
- "Large Scale V/STOL Wind Tunnel Power Section Design Study," NASA/Moffett Field Contract NAS2-5890, Marine and Defense Facilities Sales Operation, General Electric Company, January 7, 1972.
- 3. "Large Scale V/STOL Wind Tunnel Power Section Design Study," NASA/Moffett Field Contract NAS2-5890 MOD 2, Marine and Defense Facilities Sales Operation, General Electric Company, September 1973.
- 4. "Feasibility Study of Repowering the 40 x 80 Foot Wind Tunnel and Increasing Its Testing Capacity," John A. Blume and Associates subcontract for NASA-Ames Research Center, Marine and Defense Facilities Sales Operation and Corporate Research and Development, General Electric Company, 1973.
- 5. "Design of Fans and Model Test Stand for Simulating the Proposed New Fan Power Section of the 40 x 80 NASA/Ames Wind Tunnel," NASA Contract NAS2-7477, Corporate Research and Development, General Electric Company, August 1973.

PRECEDING PAGE BLANK NOT FILMED

ĢENERAL 🍪 ELECTRIC

Appendix A

40 x 80 FOOT MODEL FAN	PERFORMANCE INSTRUMENTATION
A. Overall Fan Performance Instru	nentation
Stations: 0, 1 , 3 , 6	and 6A —
Symbols refer to stations describ	bed on drawing A T4622-C
Station No.	Type of Instrumentation
0	(1) 5 Thermocouples—Millivolt Readings
(Upstream of "STA ZERO")	(2) Barometer—(in. HG)
	(3) TAManometer Fluid Temperature (⁰ F)
1	16 - Static Pressure Taps, 4 per Panel (in. H ₂ O) -
3	4 - Total Pressure Rakes 6 Total Pressure Tubes per Rake; 24 Total (in. H ₂ O)
6	Radial Traverse Probe:
(4 Circumferential Positions - 90 ⁰ Apart)	 (1) Static Pressure (in. H₂O) (2) Total Pressure (in. H₂O) (3) Direction (degrees), Null Balance
6A	3 Fixed Thermocouple Probes for Total Temperature at Strut Entrance
Fan Power Input Measurements:1.Fan Speed2.Torque Input, ft-lb	
B. Rotor Performance Instrumenta Stations: 0, 1, 3, 4	tion 5 and 6A
Instrumentation for stations 0,	1, 3 and 6A same as "Section A"
Instrumentation for stations 4	and 5 same as for station 6 of Section A
C. <u>Diffuser Performance Instrumen</u>	tation
Stations: 0, 1 , 6 , 6A,	and 8
Instrumentation for stations 0,	1 , 6 and 6A same as in Section A

PRECEDING PAGE BLANK NOT FILMED

GENERAL 🍪 ELECTRIC

Station No.	Type of Instrumentation
8	16 - Static Pressure Taps, 4 per Panel (in. H ₂ O)
	4 – Total Pressure Rakes, 6 Total Pressure Tubes per Rake; 24 Total (in. H ₂ O)

All pressure instrumentation will have to be read to an accuracy of ± 0.01 in. H₂O.

.

Appendix B

40 x 80 FOOT MODEL FAN OVERALL PERFORMANCE CALCULATION PROCEDURE

PROGRAM STRUCTURE AND INPUT DATA FILE

The program is structured to evaluate the fan adiabatic efficiency, corrected weight flow, and normalized developed head, pressure rise, weight flow, and input horsepower for each specific constant-speed constant-throttle valve flow setting. The program treats each azimuth position of the discharge Radial Traverse Probe as a separate run number. The performance data for the number of azimuth stations employed are normalized and then averaged to arrive at the overall performance data of the fan.

The input data should then be assembled in two arrays. The first array, arbitrarily designated as (I), will correspond to the elements of the Radial Traverse Probe radial positions on centers of equal area at Instrument Station 6 for a particular azimuth location. The second array, arbitrarily designated as (J), will correspond to the azimuth or circumferential positions of the Radial Traverse Probe identified as run numbers.

DATA INPUT FILE

The inputted data for overall performance reduction will be as follows:

(1)	TA(J)	≒	Manometer Fluid Temperature, ^O F
(2)	-BAR(J)	=	Barometric Pressure, "Hg
(3)	TMER(J)	Ξ	Temperature of mercury barometer, ^O F
(4)	TO(J)	=	Average of 5 Inlet thermocouples (millivolt readings converted to ^O F)
(5)	PSTI(J)	=	Average of 16 static pressure taps at station 1 , "H ₂ O with respect to ambient
(6)	PTO(J)	Ξ	Average of 24 total pressure tube readings at station $\boxed{3}$, "H ₂ O with respect to ambient (values should be negative if less than atmospheric pressure)
(7)	PSD(I,J)	=	Static pressure at immersion (I) for azimuth position (J) of Radial Traverse Probe, "H ₂ O with respect to ambient. Value is negative if pressure is below atmosphere
(8)	PTD(I,J)	=	Total pressure at immersion (I), same as for static pressure in step (7)
(9)	$\alpha 2Z(I,J)$	=	Fluid flow direction with respect to axial direction as measured by Radial Traverse Probe, degrees
(10)	TD(J)	Ξ	Average discharge temperature at station 6A, (millivolt readings converted to ${}^{\circ}$ F)
(11)	N(J)	=	Fan actual speed, rpm
(12)	TORK(J)	=	Fan torque measurement, ft-lb
(13)	NPERC		Percent of design speed to which overall performance will be corrected, per unit $(100\% = 1)$
(14)	NDES	=	Fan design speed, rpm

PROGRAM COMPUTATION LOGIC

Two loops will be set up similar to the input data loops, with the (I) loop evalu-ating the radial pressure data at an azimuth location of the Radial Traverse Probe and the (J) loop evaluating the average conditions of fan efficiency, total head, pressure rise, weight flow, and horsepower associated with all the azimuth measurements of the Radial Traverse Probe, during a particular flow and speed setting.

(005) (010)	AN RD	=	Inlet Nozzle throat area, ft^2 , $S^2 = 6.9^2$ 1 x 10 ⁶ (initially assumed Reynolds number for
(015)	ፑመለሮ	_	calculating fan weight flow)
	ETAS	=	0
	HADSUM	=	0
(025) (030)	WSNOR NP		Number of azimuth or circumferential positions of
(030)	NF	-	Radial Traverse Probe
(035)	NS	=	Number of radial stations of Radial Traverse Probe
	DO 100 J	-	1 110
(045)	RHQW	=	Manometer fluid density, lb/ft^3 expressed as a function
(010)			Manometer fluid density, lb/ft^3 expressed as a function of TA(J) (RHOW = 62.38 lb/ft ³ at 58°F)
(050)	KPS	=	Pressure conversion factor ("H ₂ O to psi)
•••••	·		RHOW/1728 = (045)/1728
(055)	KMER	Ξ	Barometer multiplication factor to convert "Hg to
			psi, function of TMER(J) = $(3 \rightarrow \text{Data})$
(060)	PATM(J)	=	Absolute pressure in psia, KMER x $BAR(J) = (055)$
			x (2+ Data)
	TOA(J)	=	Absolute inlet air temperature, ^O R
(070)	RHO	=	Inlet density, lb/ft ³ ,
			$\frac{PATM(J)}{TOA(J)} \times 2.7 = \frac{(060)}{(065)} \times 2.7$
(075).	DPN	Ξ	Inlet Nozzle differential pressure, psi,
			$PSTI(J) \times KPS = (5 \rightarrow Data) \times (050)$
(080)	MU	=	Dynamic Viscosity, $lb/sec-ft$ [1.109 + 1.673 x 10 ⁻³ TO(J)] x 10 ⁻⁵ =
			$[1.109 + 1.673 \times 10^{-5} \text{ TO}(\text{J})] \times 10^{-5} =$
(007)	A 37		$1.109 + 1.673 \times 10^{-3} (4 \rightarrow \text{Data}) \times 10^{-5}$
(085)	CN	=	Nozzle flow coefficient, $CN = f(RD)$
			(Equation for CN to be developed from 1 ft^2 .
(000)	147 X 7 (T)	_	Inlet Bellmouth Flow Tests at GE)
(090)	WN(J)	=	Fan weight flow, lb/sec, CN x AN x
			$12 \times \sqrt{DPN \times RHO_{X} 2g} = 96.26 \times (085) \times (005) \times [(075) \times (070)]^{1/2}$
(095)	RDN	Ξ	$\frac{WN(J)}{(SxMU)} = (090)/(6.9 \times (080))$
(100)	If $[ABS(RDN - RD) \cdot$	GT	• • 500) G T (110)
(105)	Gφ Tφ (115)		
(110)	RD	_	RDN, Return to (085)
	PTOA(J)		Absolute inlet total pressure, <u>ps</u> ia,
(110)	F TOA(0)	-	$(PATM(J) + PTO(J) \times KPS) = [(060) + (6^{+} Data) \times (050)]$

Evaluation of Radial Weighted Flow Discharge Total Pressure as Measured by Radial Traverse Probe at Station $\begin{bmatrix} 6 \\ 6 \end{bmatrix}$.

• •

			•
(120)	WSUM(J)	=	0
(125)	PTDSUM ;	=	0
(130)	PTDWSUM	=	0
	DO 200, I		1, NS
(140)	PSDA(I,J)	=	Absolute discharge static pressure, psia, $(PATM(J) + PSD(I,J) \times KPS) = [(060) + (7 + Data) \times (050)]$
(145)	PTDA(I,J)	=	Absolute total pressure, psia, $(PATM(J) + PTD(I,J) \times KPS) = [(060) + (8 + Data) \times (050)]$
(150)	TDR(J)	Ξ	PTD(I,J) x KPS) = $[(060) + (8 \div \text{ Data}) \times (050)]$ Discharge temperature, ^O R, $[TD(J) + 460] = (10 \div \text{ Data}) + 460$
(155)	VAB(I,J)		Absolute velocity, ft/sec, (2g R (TDR)
			$\begin{bmatrix} PTDA(I,J) \\ PSDA(I,J) \end{bmatrix} - 1) = 58.56 \begin{bmatrix} (150) \times \frac{(145)}{(140)} - 1 \end{bmatrix} \frac{1/2}{1}$
(160)	α2Ζ(I,J)	=	Fluid flow direction with respect to axial direction, degrees
(165)	VZ(I,J)	=	Axial component of absolute velocity, ft/sec , [VAB(LI) x cos(27(L J)] = (155) x cos (160)
(170)	AZI	=	Stream tube area, ft ² , π ($\frac{DT - DH}{NS}$) =
·			Stream tube area, ft ² , I ($\frac{DT^2 - DH^2}{NS}$) = $0.785\left(\frac{6^2 - 3^2}{NS}\right) = \frac{21.206}{(035)}$
(175)	RHOD(I,J)	Ŧ	Approximate stream discharge density, lb/ft ³ ,
			$2.7 \times \frac{\text{PSDA(I,J)}}{\text{TDR(J)}} = 2.7 \frac{(140)}{(150)}$
(180	W(I,J)	=	Stream tube weight flow, lb/sec, RHOD(I,J) x VZ)I,J) x AZI = $(175) \times (165) \times (170)$
(185)	WSUM(J)	=	WSUM(J) + W(I,J) = (120) + (180)
(190)	PTDW(I,J)	=	Weighted total pressure term in stream tube, (psia)
(100)	1 10 ((1,0)	_	(lb/sec), $PTDA(I,J) \times W(I,J) = (145) \times (180)$
(195)	PTDWSUM	=	PTDWSUM + PTDW(I,J) = (130) + (190)
(200)	PTDSUM	=	PTDSUM + PTDA(I,J) - (125) + (145)
(205)	200 continue		(123) - (123) - (123)
(200)	200 continue	•	
(210)	If (ABS $(1 - \frac{WSUM(J)}{Wp(T)})$	C.	Τ15) Gφ Ťφ (222)
	$\frac{11}{\text{PTDJ}(J)} = \frac{11}{\text{Wn}(J)}$		
			PTDWSUM/WSUM(J) = (195)/(185)
(220)	GO TO(230)		
(222)	Print Message: Weigh		
(225)	PTDJ(J)	=	PTDSUM/NS = (200)/(035)
(230)	DEL	=	Ratio of inlet total pressure to standard pressure of 14.694 lb/in ² , [PTOA(J)/14.694] = (115)/14.694
	•		

(235)	THETA	=	Ratio of inlet total temperature to standard temperature of 518.6 ⁰ R [TOA(J)/518.6] =
(240)	SQTHET	=	(065)/518.6 (THETA) ^{1/2} = (235) ^{1/2}
(240) (245)	NCOR(J) Corrected	- snee	d, rpm, N(J)/ $\sqrt{\theta} = (11 + \text{Data}/(240))$
(250)	KN	-pee =	
(200)		•	(Fan design speed) x NPERC/NCOR(J) =
			$(14 \rightarrow \text{Data}) \times (13 \rightarrow \text{Data})/(245)$
(255)	WCOR(J)	-	Corrected Flow, lb/sec, [WN(J) x SQTHET/DEL] =
(499)	WCOT(9)	_	$(090) \ge (240)/(230)$
(000)		=	Normalized weight flow, lb/sec, WN(J) x KN/DEI =
(260)	WNOR(J)		$(090) \times (240)/(230)$
(005)	WANOD	_	$(090) \times (240)/(230)$
(265)	WSNOR	Ξ	Weight flow summation, lb/sec, WSNOR + WNOR(J) =
((025) + (260)
(270)	PR(J)	Ξ	Pressure ratio at azimuth position of Radial Traverse
			Probe, $[PTD(J)/PTOA(J)] = (215)/(115)$ or
			(225)/(115)
(275)	HISEN	=	Isentropic developed head, ft, $[PR(J)^{286} - 1] \times TOA(J) \times 186.6 = [(270)^{286} - 1] \times (065) \times 186.6$ Normalized developed head, ft, $[HISEN \times KN^2] =$
			$TOA(J) \ge 186.6 = \lfloor (270)^{-200} - 1 \rfloor \ge (065) \ge 186.6$
(280)	HISNOR(J)	=	Normalized developed head, ft, $[HISEN \times KN^2] =$
	•		$(275) \times (250)^{-2}$
(285)	HADSUM	=	Head summation, ft, [HADSUM + HISNOR(J)] =
			(020) + (280)
(290)	HPINP(J)	Ξ	Shaft power input, HP, $[TORK(J) \ge 2\pi N(J)/33,000] = (12 \rightarrow Data) (11 \rightarrow Data) \ge 1.904 \ge 10^{-4}$
(200)			$(12 \rightarrow \text{Data})$ $(11 \rightarrow \text{Data}) \times 1.904 \times 10^{-4}$
(295)	ETA(J)	=	Fan efficiency, $\frac{WN(J) \times HISEN}{HPINP(J) \times 550} = (090) \times 1000$
(200)			
			(275)/[(290) x 550]
(300)	ETAS	Ξ	Efficiency summation, $[ETAS = ETA(J)] =$
			(015) + (295)
(305)	100 continue		
(310)	ETAV	=	Average fan adiabatic efficiency for all azimuth
			position of Traverse Probe,
			-
			$(\frac{\text{ETAS}}{\text{NP}}) = (300)/(300)$
		,	(NP) = (300)/(300)
(916)		_	Avenue for developed edichetic head ft for all
(315)	HADAV	-	Average fan developed adiabatic head, ft, for all
			azimuth position of Traverse Probe, (HADSUM/NP) =
(000)			(285)/(030)
(320)	WNORAV	=	Average normalized weight flow, lb/sec, for all azimuth
4			positions of Traverse Probe, $(WSNOR/NP) = (265)/(030)$
(325)	DPFAN	=	Average fan developed pressure, lb/ft^2 ,
			HADAV 35
		=	2116 $\left \frac{\text{HADAV}}{(186.6) \times 518.6} \right + 1^{-3.5} - 1$
		=	$\left[(315) \times 1.03337 \times 10^{-5} + 1 \frac{3.5}{10} - 1 \right]$
(330)	HPAV	≡	Average Ian Shalt power, np, HADAV x
			WNORAV / [ETAV x 550] = (315) x (320) / [(310) x
			550
			l

,

GENERAL 🍘 ELECTRIC

DESIRED COMPUTER PRINT-OUTS

- 1. All Input Data Except TA(J) and TMER(J)
- 2. The following list of calculated results

PATM(J) TOA(J) PTOA(J) TDR(J) PTDJ(J)	WN(J) WCOR(J) WNOR(J) PR(J)	HISNOR(J) HPIND(J) ETA(J)	WSUM(J)
ETAV,	HADAV,	WNORAV	
	DPFAN	HPAV	

-

Appendix C

FAN ACQUSTIC DATA REDUCTION PROGRAM

	NASAFAN	10/29/7,4
		WIRELSAI FANDATAJMIKEAREAJPAGFJFANCALC
	30 DIM PC3	36),A(1,36),R(1,36),F(1,36),G(4,36),M(4,36),K(1,36),V(1,36) ,36),Z(10),L(36,37),W(36,36),F(1,37),O(1,37),S(1,36),U(1,36)
	40 SCRAICH 50 MARGIN 60 MAI 250	
	$70 \ A0 = 100$ 80 C0 = -10	
		N(L0G(S0))*INT(ABS(3/L0G(2)*L0G(S0))+.5)
	110 W0 = 6 120 N = 36	· · · ·
		D #1,X(1,N) D #2,A(1,N)
	160 MAI REA 170 MAI REA	D 44.M
	180 READ #	
	200 READ #4 210 IF 3 > 220 J = -0	0 THEN 1860
	230 J2 = 1. 240 J1 = 10	
	250 J1 = I3 $260 J2 = I_1$	IT(J1+•5) ()
	270 FØK J #	
	290 NEXT J 300 2(1) = 310 FCR K	
		> -9 IHEN 1860
	340 FGR J = 350 READ #. 360 NEXT J	
	370 Z(K) = 380 NEXT K	C(K,11)
	390 FØR K 400 READ #.	90
	410 1F JU 420 For J 430 READ 4.	
	440 MU = K 450 L(X(1))	4*INF((K-1)/4) (%)J) = P(K,J)-M(M0,J)+124-Z(M0)+A(1,K)-A0
•	470 V(15J)	りょし) = ヒ(ズ(1ょK)ょし)+K(1ょズ(1ょK))+CO = ヒ(ズ(1ょK)ょし)
	480 NEX [J 490 GCSUB 500 L(X(1))	660 (),37) = A9

PRECEDING PAGE BLANK NOT FILMED

-,

NASAFAN 10/29/74 SIO NEXT K · • 520 FOR J = J1 TO J2 530 V = 0 540 FOR K = 1 fo N $550, W = W+10 + (W(K_*J)/10)$ 560 NEXT K $57.0 \ f(1,J) = 10/L@G(10)*L@G(W)$ S80 NEXI J 590 FOR J = J1 TO J2 600 IF J > J2+Y0 THEN 630 610 O(1,J) = f(1,J-YO)+10/LOG(10)*LOG(WO)620 NEKT J 630 FOR J = J1 TO J2 $640 \quad v(1,J) = f(1,J)$ 650 NEXT J 660 GØSUB 1660 670 $\Gamma(1,37) = A9$ 680 FOR J = J1 TO J2(1,1) = (1,1) = 0(1,1)700 NEXT J 710 GØSUB 1660 720 0(1,37) - 149 730 FOR J = 1 TØ 10 740 PRINT #6 750 NEKT J 760 PRINE #6, USING780, F\$ 770 PRINC #6 790 PRINT #6 1 800 PRINT #6 810 PRINE #6,A\$; TAB(21); B\$ 820 PRINE #6 830 PRINT #6, TAB(2); C\$; TAB(20); D\$; TAB(30); F\$ 840 PRINT #6, TAB(30)3F\$ 850 PRINE #6 860 FOR J = J1 TO J2 870 PRINE #6, USING 1530, F(1, J); 880 6010 910 94 DKINL #6 900 PRINE #6;" ";J\$;" "; 910 PRINE #6," "3 920 PRINE #6, USING 930, T(1, J); 930: ###.## 940 PRINE #6," "; 950 IF J = 37 THEN 970 960 IF J > J2+Y0 THEN 980 970 PRINT #6, USING 930, 1(1, J); 380 BRINE #6 990 IF J = 37 THEN 1030 ORIGINAL PAGE IS 1000 NEKT J

OF POOR QUALITY

-

NASAFAN 10/29/74 .1010 J = 371020 6010 890 1030 PRINE #6,P\$ 1040 FOR J = 1 TO 101050 PRINE #6 1060 NEXT J 1070 PRINE #6, USING 1080, GS 1090 PRINT #6 1100 PRINT #6 1110 A = 1. · $1120 \ 8 = 4$ 1130 GOSUB 1330 1140 FCR J = 1 FØ 10 1150 PRINT #6 1160 NEXT J 1170 PRINT #6, USING 1080, H\$ 1180 PRINE #6 1190 PRINE #6 1200 A = 51210 B = 161220 66509 1330 1230 FOR J = 1 IO 101240 PRINE #6 1250 NEXT J 1260 PRINE #6, USING 1080,1\$ 1270 PRINE #6 . 1280 PRINT #6 1290 A = 171300 B = 36 1310 GØŞUB 1330 1320 STOP 1330 PRINT #6,A\$;" "; 1340 FOR I = A TO B1350 PRINT #6, USING 1360, 5(1,1); 1360: # # 1370 NEXT I 1380 PRINE #6 1390 PRINI #6, TAB(2);C\$;" "; 1400 FOR I = A TO B 1410 IF U(1,I) <> 1 THEN 1440 1420 PRINE #6," ** "; 1430 GOTO 1450 1440 PRINT #6," ** : 1450 NEXT I 1460 PRINT #6 1470 PRINT #6 1430 FOR J = J1 IO J21490 PRINE #6, USING 1530, F(1, J);

```
1500 GØr0 1530
```

```
NASAFAN IUreziia
                    .
1510 PRINT #6
1520 PRINT #6,"
                ניי יינ$נניי
1530: #####
                183
1540 PRINT #6,"
1550 FOR I = A TØ B
1560 PRINT #6, USING 1570, L(S(1,1),J);
1570: ###.#
1580 NEXT I
1590 PRINE #6
1600 \text{ IF } \text{J} = 37 \text{ THEN } 1640
1610 NEXT J
1620 J = 37
1630 GØTØ 1510
1640 PRINE #6,PS
1650 REFURN
1660 A9 = 0
1670 FOR J = 1 TO 31
                                                .
1680 \text{ A9} = \text{A9+10+((V(1,J)-R(1,J))/10)}.
1690 NEXT J
1700 A9 = 10/L0G(10)*L0G(A9)
1710 RETURN
            •
1720 DATA 25,31,40,50,63,80,100,125,160,200,250,315,400,500,630,800
1730 DATA 1000,1250,1600,2000,2500,3150,4000,5000,6300,8000,10000
1740 DATA 12500,16000,20000,25000,31500,40000,50000,63000,80000
1750 DATA 44.7,39.4,34.6,30.2,26.2,22.5,19.1,16.1,13.4,10.9,8.6
1760 DATA 6.6,4.8,3.2,1.9,8,0,-.6,-1,-1.2,-1.3,-1.2,-1,-.5,.1
1780 DATA 15,16,22,21,3,9,10,11,17,23,29,28,27,26,20,14,1,2,3,4,5,6
1790 DATA 12,18,24,30,36,35,34,33,32,31,25,19,13,7
1800 DATA 1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,1
1810 DATA 0,0,0,0,1,0,0,0,0
1820 DATA FREJUENCY, LA RE 1E-12 WAITS, HERTZ, MODFL, PROTOTYPE
1830 DATA (SIX FANS)
1840 DATA SPL OF CENTER CELLS, SPL OF INTERMEDIATE CELLS
1850 DATA SPL OF OUTER CELLS, DRA
1860 PRINE "CHECKDATA"
1870 END
                                                   .
```

GENERAL 🍪 ELECTRIC

•

CONTROL 10/29/74

100 1,4,7,10,2,5,8,11,3,6,9,12 110 13,16,19,22,14,17,20,23,15,18,21,24 120 25,28,31,34,26,29,32,35,27,30,33,36

•

ATTENS 10/29/74

 100
 90,90,90,90,90,90,90

 110
 90,90,90,90,90,90,90

 120
 90,90,90,90,90,90,90

 130
 90,90,90,90,90,90,90

 140
 90,90,90,90,90,90,90

 150
 90,90,90,90,90,90,90

FANDATA 10/29/74

100	JGRAM CALCULATIØN CHECKS -30.02,070.00,070.00,070.00,070.50,036.25,070,00,070.
110	077.00,086.00,104.00,123.50,105.00,086.75,089.00,073.
120	070.00,075.00,070.00,070.00,070.00,070.00,070.00,070.00,070.0
130	070.00,070.00,070.00,070.00,070.00,070.00,
140	-30,02,070,00,070,00,070,00,070,50,086,25,070,00,070,0
150	077.00,036.00,104.00,123.50,105.00,086.75,089.00,073.
160	070.00,075.00,070.00,070.00,070.00,070.00,070.00,070.00,070.
170	070.00,070.00,070.00,070.00,070.00,070.00,
180	-30.02,070.00,070.00,070.00,070.50,086.25,070.00,070.1
190	077.00,086.00,104.00,123.50,105.00,086.75,089.00,073.
200	070+002075+002070+00200000000
200	070.00,070.00,070.00,070.00,070.00,070.00,
220	
	-30.02,070.00,070.00,070.00,070.50,086.25,070.00,070.0
230	077.00,086.00,104.00,123.50,105.00,086.75,089.00,073.
240	070.00,075.00,070.00,070.00,070.00,070.00,070.00,070.0
250	070.00,070.00,070.00,070.00,070.00,070.00, \
260	-30.02,078.25,078.00,073.25,073.25,072.00,070.00,070.0
270	075.25,080.75,075.00,080.00,038.00,094.00,095.50,092.
280	096.75,105.75,095.00,095.75,098.75,096.00,095.00,094.
290	094.00,092.00,092.00,090.50,038.50,090.75,
300	-30.02.090.25.086.25.081.50.079.25.074.50.073.25.072.
310	078.00,084.50,080.50,084.25,088.50,092.50,094.00,091.1
320	099.00,111.00,096.50,100.00,098.75,097.25,099.00,096.
330	096.75,095.50,093.00,090.50,039.75,086.50,
340	-30.02,078.25,078.00,073.75,073.00,072.75,071.75,070.0
350	071.50,081.25,075.50,079.50,086.75,091.25,093.00,039.
360	093.25,105.50,091.25,095.00,095.25,093.50,095.00,090.1
370	083.25,086.25,084.75,083.00,086.50,085.75,
380	-30.02,078.75,078.00,072.50,074.00,073.25,071.50,070.0
390	073.50,085.75,074.50,079.00,086.50,090.00,091.50,090.
400	095.00,107.25,091.75,095.00,097.25,092.50,094.75,089.
410	086.75,085.25,033.25,081.75,032.00,081.25,
420	-30.02,079.50,076.50,073.25,071.75,071.00,070.75,070.0
430	073.25,087.00,074.25,079.25,087.50,092.00,094.25,091.2
440	095.75,108.25,093.75,094.50,098.50,095.25,095.50,090.0
450	088.75,087.00,085.25,082.75,082.00,983.50,
460	-30.02,080.00,079.00,073.25,073.75,072.75,070.00,070.0
470	074.50,075.00,081.00,081.75,089.50,095.75,096.75,096.2
430	096.75,107.00,103.00,099.50,100.50,100.25,099.50,097.0
490	098.00,096.75,096.25,095.50,092.50,094.00,
500	-30.02,099.25,094.75,091.00,087.25,035.50,083.50,078.5
510	081,50,081,25,090,00,086,75,090,75,094,50,095,25,094,5
520	099.00,109.25,103.75,104.00,102.25,102.25,103.50,100.7
530	100+75+099+50+098+00+095+50+094+00+090+50+
540	-30.02,077.50,078.50,073.00,073.25,072.50,071.00,070.0
550	072.25,076.00,035.75,081.75,087.75,094.25,094.50,093.4
560	093.50,104.00,104.00,099.25,099.00,098.00,096.75,093.7
570	092.75,090.75,089.50,087.75,088.50,087.00,
580	-30.02,079.25,077.25,073.75,073.25,072.50,071.25,070.2

¢

-

•

•

FANDATA 10/29/74

590	075-25,078-50,088-00,080-50,085-50,093-25,092-50,094-00;	
600	096.75,104.00,102.50,098.50,100.25,097.00,098.75,093.00,	
610	091 • 50 • 090 • 00 • 086 • 25 • 086 • 50 • 035 • 75 • 084 • 75 •	
620	-30.02,079.00,077.50,074.25,071.50,070.75,071.75,070.00,	
630	071 • 50 • 07 5 • 7 5 • 08 5 • 50 • 080 • 00 • 087 • 7 5 • 09 5 • 00 • 09 5 • 50 • 09 5 • 00 •	
640	096.25,104.50,103.75,098.00,100.00,099.50,097.25,093.75,	
650	093•00•091•00•039•75•087•50•036•00•036•75•	
660	-30.02,078.50,079.50,073.00,072.25,072.50,071.00,073.75,	
· 670	079.00,086.75,091.00,095.75,098.75,097.00,097.00,101.50,	
680	097.50,095.00,095.50,098.00,101.75,095.25,094.25,094.00,	
690	095.75,093.50,094.50,093.50,091.75,093.75,	
700	-30.02,079.75,076.75,074.00,072.75,071.00,072.50,074.75,	
710	077.50,084,50,091.75,093.00,095.75,094.50,094.25,098.25,	
720 <u>.</u>	096.50,093.25,093.25,095.75,097.25,090.00,091.50,087.75,	
730	086.75,086.00,085.50,086.00,087.50,083.25,	
7 40	-30.02,080.50,077.50,074.00,072.75,073.75,071.75,073.50,	
750	076.50,080.00,085.75,092.75,096.25,093.50,094.75,095.00,	
760	093.25,091.25,088.50,093.75,098.00,091.25,089.25,089.25,	
770	087.00,085.00,086.00,084.25,087.25,086.75,	
780	-30.02,082.00,078.50,073.50,073.50,073.00,071.50,073.50,	٠
790	077.25,082.25,088.50,094.00,095.50,093.75,094.25,097.00,	
800	094-50,091.75.092.75.095.25.098.75.091.75.095.75.091.25.	
810	088 • 7 5, 088 • 00, 08 5 • 7 5, 08 5 • 50, 08 5 • 50, 09 4 • 50,	
82Q	-30.02,081.75,077.75,072.75,075.50,073.00,072.50,074.75,	
830	078.00,034.50,089.25,093.25,096.00,095.25,093.25,098.50,	Ċ
840	097.25,094.50,092.50,095.00,099.50,092.00,091.00,090.75,	
850	088 • 75 • 088 • 00 • 086 • 75 • 084 • 25 • 033 • 75 • 084 • 75 •	
860	-30.02,079.50,079.50,073.75,074.00,074.75,075.25,078.00,	
870	081.25,086.50,092.50,092.50,090.50,089.25,090.25,090.25,	
880	094.25,108.50,103.00,096.00,094.75,094.00,093.50,089.75,	
890	088 • 50 • 08 5 • 7 5 • 082 • 50 • 080 • 25 • 07 6 • 7 5 • 07 5 • 00 •	
900	-30.02,079.00,078.75,074.25,074.50,075.50,078.50,082.50	
910	085+25,039+00,094+50,095+75,094+75,092+50,092+00,093+75	
920	097+00+109+00+108+50+102+25+098+50+100+25+100+25+098+00+	
930	098 • 7 5 • 097 • 7 5 • 09 5 • 50 • 093 • 25 • 091 • 7 5 • 088 • 50 •	
940	-30.02,079.25,078.75,073.75,073.50,074.50,075.25,079.50,	
950	082.00,085.75,092.75,092.25,091.75,088.25,089.25,090.25,	
960	095+25+106+50+103+50+096+75+096+00+096+25+098+00+090+75+	
970	089.25,087.00,085.00,082.25,080.00,076.50,	
980	-30+02,080+50,077+75,074+00,074+25,074+00,073+75,075+50,	
990	077.25,082.75,091.75,090.00,087.50,084.00,088.00,090.75,	
1000	093•75,1p3•00,101•00,093+75,090•75,089•50,090•00,086•75,	
1010	084•75,082•25,080•00,079•00,077•50,075•50,	
1020	-30.02,080.25,076.75,074.00,074.00,072.50,074.25,078.25,	
1030	081.00,084.00,039.25,091.00,039.25,089.25,090.75,091.25,	
1040	097.50,107.50,106.75,097.25,092.50,095.00,094.00,087.00,	
10 50	087.50,086.50,033.75,081.50,079.75,080.50,	
1060	-30.02,080.00,079.50,073.75,073.00,070.75,071.75,072.00,	
1070	075.00,074.50,076.25,076.25,077.00,078.00,084.50,038.00,	
1080	087 • 7 5,090 • 00, 088 • 00, 087 • 7 5, 083 • 50, 077 • 2 5, 079 • 2 5, 079 • 50,	

•

FANDATA	10/29/74
1090	077.50,075.50,074.75,072.50,072.50,071.75,
1100	-30.02,079.75,079.50,074.50,075.25,071.75,071.50,073.
1110	075.50,075.75,080.50,077.50,076.75,078.75,084.75,091.
1120	087.00,089.50,090.50,089.50,083.75,078.50,078.50,078.
1130	078.00,075.75,077.00,077.50,073.00,072.75,
1140	-30.02,079.75,078.25,072.75,073.25,073.25,071.00,071.
1150	073.00,080.00,090.50,076.50,077.75,080.25,081.25,084.
1160	085.50,086.50,087.50,086.75,085.75,082.25,086.00,080.
1170	081.25,081.00,079.25,077.00,077.25,074.50,
1180	-30+02,079+50,078+75,074+00,073+75,071+75,072+75,073+
1190	076.00,081.00,091.00,079.25,079.00,079.50,086.50,091.
1200	087.50,090.50,090.75,089.25,083.25,082.25,084.75,085.
1210	082.25,081.00,080.00,079.75,077.75,077.50,
1220	-30+02,081+50,077+25,073+50,073+00,071+75,072+75,074+
1230	077.00,077.00,032.50,079.50,080.00,083.75,086.75,088.
1240	088-25,090-00,038-75,091-50,086-00,082-00,087-25,081-
1250	081 • 25 • 079 • 7 5 • 078 • 00 • 078 • 25 • 078 • 00 • 080 • 25 • `
1260	-30.02,031.50,078.75,073.50,074.25,073.75,073.75,077.
1270	080.25,086.00,097.00,099.25,102.00,100.75,100.25,109.
1280	102.00,097.50,097.50,102.00,106.25,100.75,099.25,099.
1290	100.00,097.25,097.00,097.25,095.00,095.75,
1300	-30.02,001.50,070.50,074.50,073.50,071.25,072.50,077.
1310	079.75,085.00,096.25,095.75,098.50,096.75,096.50,105.
1320	099.25,096.00,098.00,099.25,101.50,096.25,094.75,088.
1330	086.50,087.75,090.00,039.75,087.75,085.50,
1340	-30.02,078.50,079.00,073.00,073.75,074.25,073.00,076
1350	079.00,084.00,089.00,095.00,098.75,095.75,094.25,104
1360	096.00,095.50,095.00,099.00,103.00,099.75,094.00,094. 090.75,089.75,090.50,089.00,090.75,089.00,
1370	-30.02,080.75,076.50,072.75,073.75,072.00,073.50,077.
1380	080.00,085.00,093.25,096.50,098.50,095.75,094.00,102.
1390	097+25+095+00+096+25+101+25+102+25+099+00+097+25+092+
1400 1410	092.00,093.25,091.75,090.50,088.25,08.6.00,
-	-30.02.081.75.079.00.073.25.072.75.074.75.074.50.077
1420 · 1430	079.75,086.00,096.75,098.00,099.00,096.00,095.50,104
1430	101.75,097.50,097.75,100.25,103.00,101.00,096.75,095.
1450 ·	094.25.092.75.091.50.090.50.089.50.089.50.
1450 ·	-30.02,080.00,080.75,074.00,075.00,075.75,077.00,080.
1480	085.00,089.50,095.50,095.75,094.25,092.00,091.25,096
1480	097.50,104.75,104.50,101.25,097.00,096.50,096.25,093
1490	092.75,039.75,087.25,084.75,081.00,079.00,
1500	-30.02,078.25,077.00,074.75,075.50,077.50,081.75,086.
1510	089.50,093.75,096.75,093.00,097.25,095.25,093.75,098.
1520	099.75,109.00,110.00,106.00,100.50,103.50,104.50,102.
1530	103.00,102.25,100.50,093.25,096.25,093.50,
1540	-30.02,079.75,079.00,074.25,074.25,075.75,078.25,084
1550	086.50,090.25,095.75,096.25,095.25,091.25,091.25,095.
1560	098.50,107.50,104.25,101.00,098.00,098.50,096.50,094
1570	093.25,090.75,089.00,086.25,083.50,080.50,
1580	-30.02,080.75,075.50,074.00,073.50,072.25,075.00,078.

FANDA TA

```
080 • 50 • 085 • 25 • 096 • 00 • 094 • 75 • 091 • 50 • 088 • 25 • 087 • 25 • 094 • 25 •
1590
          098.00,104.50,104.00,100.00,094.50,093.75,094.00,091.25,
1600
          088.50,086.50,083.25,083.50,080.50,079.50,
1610
          -30.02,081.25,077.25,073.75,072.25,073.25,077.00,082.25,
1620
         083 • 50 • 087 • 7 5 • 093 • 00 • 093 • 00 • 091 • 00 • 092 • 25 • 091 • 50 • 095 • 25 •
1630
         099.75,107.50,107.00,101.25,094.00,098.75,098.25,090.75,
1640
1650
          090+25+089+75+088+00+035+00+082+00+078+75+
          -30.02,080.50,077.50,072.00,073.75,072.00,072.00,074.25,
1660
1670
          075.75,076.25,083.25,079.75,079.00,080.75,084.75,091.75,
1680
          090+75+093+25+093+00+090+50+086+00+084+00+081+75+031+00+
1690
          080.00,077.75,076.25,076.00,076.00,075.25,
```

MIKEAREA 10/29/74

10/29/74

·

.

PROGRAM CALCULATION CHECKS

FREQUENCY	LW RE 18	-12 WAITS
HERTZ	MODEL	PPOINTYPE (SIX FANS)
25	91.11	115.19
31	87.55	121.59
40	83.40	122.66
50	81.43	124.10
63	80.49	123.31
80 .	80.67	123.39
100	83.54	128.77
125 .	, 86.20	126.69
160	90.93	134.64
200	97.33	152,18
250 -	98.41	128.75
315	99.84	128.88
400 1	99.05	126,94
500 .	99.13	126.55
630	. 104.51	123.94
800	102.44	123.85
1000	110.38	122.51
1250	107.92	121.25
1600	184.49	119.72
2000	104.62	118.20
2500	107.68	117.46
3150	102.29	
4000	99.68	
5000	99.59	
6300 .	98.25	
8000	96.99	
10000	95.46	
12500	93.94	
16000	93.20	
DBA	115.80	132.82

•

86.8 96.2 101.1 86.7

.

							31 2 11	[5	
FREQUENCY	в	Q	10	11	17	23	29	28	27	26	20	14
HERTZ	**		· ·				- #¥			** '		
_												
25	89.7	69.0	69.2	68.0	69.7	70.7	72.2	72.0	78.2	71.2	71.0	09.5
31	85.2	70.0	68.5	09.0	69.2	67.2	69.5	69.2	69.5	67.0	68+2	69.2
4.0	81.5	03.5	63.0	63.5	64-2	64.5	63.7	54-0	64.7	63.2	64.5	64.7
50	77.7	67.7	64.5	13.7	04.0	64.5	63.2	64.7	64.7	64.2	64.7	65.0
63	76.0	03.0	63.7	63.0	65.0	63.0	65.2	64.2	66.2	62.5	64.5	66.0
80	74.0	61.5	62.0	61.5	65.7	64.7	65.0	64.2	68.7	64.0	64.2	69.0
140	69.1	64.2	60.5	60.5	70.0	.68.7	68.0	67.7	75.2	68.2	66.0	73.0
125	72.0	09.5	64.0	62.7	72.5	71.5	70.2	70.7	77.0	70.5	67.7	75.7
160	71.7	77.2	76.2	66.5	76.2	74.5	76.5	76.5	80.7	75.5	73.2	-79+5
200	80.5	51.5	65.0	76.2	83.2	79.7	87.2	87.5	86.2	83.7	82.2	85.0
250	77.2	d6.2	69.5	72.2	H2.7	81.5	88.5	89.7	86.7	87.0	80.5	86.2
315	81.2	49.2	77.0	78.2	92.2	79.7	89.5	92.5	85.7	89.0	78.0	85.2
400	85.0	87.5	80.5	84.7	78.7	79.7	86.5	91.2	81.7	86.2	74.5	83.0
500	85.7	87.5	82.0	45.0	79.7	81.2	486 . 0	90°•7	81.7	84.5	78.5	82.5
630	85.0	92.0	81.2	83.7	H0.7	81.7	95.2	_99.7		+ 92.7	81.2	84.2
800	89,5	d8.0	85.5	84 . 0	×5+7	88.0	92.2	92.5		+87.7	84.2	87.5
1000	99.7	85.5	- 97.7	94.5	97.0	98.O	88.0	88.0	978 • 0	85.5	93.5	99.5
1250	99.2	86.0	82.2	94.5	94.0	97.2		88.0	94.7	86.7	91.5	99.0
1600	94.5	88.5	85.5	H9.7	87.2	87.7	90.7	92.5		.91.7	84.2	92.7
2000	92.7	92.2	87.7	89.5	86.5	83.0	93.5	96.7	88.5	92.7	81.2	89.0
2500	92.7	85.7	83.0	88.5	85.7	85.5	91.5	91.2	89.0	89.5	80.0	9ģ.7
3150	94 . n	84.7	85.2	47.2	83.5	84.5	87.2	89.7	87.0	87.7	80.5	90.7
4000	91.2	84.5	80.2	64.2	81,2	77.5	86.2	ĸ9.7	85.2	82.5	77.2	88.5
5000	91.2	86.2	.77.2	83.2	79.7	78.0	84.7	90'.5	83.7	82.5	75.2	89.2
6300	90.0	84.0	75.7	81.2	77:5	77.0	83.2	87,•Ť	81.2	83.7	72.7	88.2
8000	88.5		-73.7	но.о	75:5	74.2	82.0		79:5	82.2	70.5	86.0
10000	86.0	84.0	72.2	78.2	72.7	72.0	81.0	87.7	76.7	81.0	69 - 5	83.7
12500	84.5	82.2	72.5	79.0	70.5	70.2	80.0	85.5	74.0	78.7	68 D	82.2
16000	81.0	84.2	71.7		\$ 67.0	71.0		86.2	71.0	76.5	66.0	79.0
20000												
DBA	105.7	99.4	99.5	100.6	100.4	1D1.8	101.5	.104.2	102.1	100.2	97.2	104.6
							•	•			-	
			• •		•		1		1			• •
									1			
FREUVENCY	15	16	25	21								
HERTZ	**	**	**	***	•							
•			`									
25	70.5	72.5	70.0	70.2								
31	70.0	69.0	70.0	68.7								
40	64.2	64.0	64.2	63.2								
50	63.5	64.0	64.5	63.7								
63	61.7	63.5	65.2	63.7								
80	62.2	62.0	65.7	ú1.5								
100	62,5	64.0	40 G	61.5								
125			68.5									
	65.5	67.7	71.7	63.5								
160	65.5 65.0	67.7. 72.7		63.5 70.5								
		67.7	71.7	63.5								
160	65.0	67.7. 72.7	71.7 77.0	63.5 70.5								
160 200	65.0 66.7	67.7, 72.7 79.0 84.5 86.0	71.7 77.0 83.0 83.0	63.5 70.5 81.0								
160 200 250	65.0 66.7 66.7	67.7, 72.7 79.0 84.5	71.7 77.0 83.0 83.0	63.5 70.5 81.0 67.0								
160 200 250 315	65.0 66.7 66.7 67.5	67.7, 72.7 79.0 84.5 86.0	71.7 77.0 83.0 83.0	63.5 70.5 81.0 67.0 68.2								
160 200 250 315 400	65.0 66.7 66.7 67.5 68.5	67.7, 72.7 79.0 84.5 86.0 84.2	71.7 77.0 83.0 83.0 81.0 79.7	63.5 70.5 81.0 67.0 68.2 70.7								
160 200 250 315 400 500	65.0 66.7 66.7 67.5 68.5 75.0	67.7, 72.7 79.0 84.5 86.0 84.2 84.7	71.7 77.0 83.0 83.0 61.0 79.7 80.7	63.5 70.5 81.0 67.0 68.2 70.7 71.7								
160 200 250 315 400 500 630	65.0 66.7 67.5 68.5 75.n 78.5	67.7, 72.7 79.0 84.5 86.0 84.2 84.7 87.5	71.7 77.0 83.0 83.0 81.0 79.7 80.7 80.7	63.5 70.5 81.0 67.0 68.2 70.7 71.7 75.2								
160 200 250 315 400 500 630 800 800	65.0 66.7 67.5 68.5 75.n 78.5 78.5 80.5	67.7, 79.0 84.5 86.0 84.2 84.7 87.5 85.0	71.7 77.0 83.0 81.0 79.7 80.7 80.7 81.7 84.7	63.5 70.5 81.0 67.0 68.2 70.7 71.7 75.2 76.0								
160 200 250 315 400 500 630 800 800 1000 1250	65.0 66.7 67.5 68.5 75.n 78.5 78.2	67.7, 79.0 84.5 86.0 84.2 84.7 87.5 85.0 87.2	71.7 77.0 83.0 83.0 81.0 79.7 80.7 80.7 81.7 84.7 99.0	63.5 70.5 81.0 67.0 68.2 70.7 71.7 75.2 76.0 77.0								
160 200 250 315 400 500 630 800 800 1000 1250 1600	65.0 66.7 67.5 68.5 75.5 78.5 80.5 78.5 78.5 78.5 78.5	67.7, 79.0 84.5 86.0 84.2 84.7 87.5 85.0 85.0 87.2 85.2 85.2 85.7	71.7 77.0 83.0 83.0 81.0 79.7 80.7 80.7 80.7 80.7 80.7 80.7 80.7 80	63.5 70.5 81.0 67.0 68.2 70.7 71.7 75.2 76.0 77.0 78.0								
160 200 315 400 500 630 800 1000 1000 1600 2000	65.0 66.7 67.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5 7	67.7, 79.0 84.5 86.0 84.2 84.7 87.5 85.0 87.2 85.0 87.2 85.2	71.7 77.0 83.0 83.0 83.0 83.0 83.0 83.0 79.7 80.7 80.7 84.7 99.0 93.5 85.2	43.5 70.5 81.0 67.0 68.2 70.7 71.7 75.2 76.0 77.0 78.0 78.0								
160 200 315 400 500 630 800 1000 1600 2000 2500	65.0 66.7 67.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5 7	67.7, 72.7 79.0 84.5 86.0 84.2 84.7 87.5 85.2 85.2 85.7 89.2 89.2 87.2	71.7 77.0 83.0 83.0 83.0 83.0 83.0 83.0 83.0 83	63.5 70.5 81.0 67.0 71.7 75.7 75.7 75.0 77.0 78.0 77.0 78.2 76.2 76.7								
160 200 315 400 500 630 800 800 1000 1250 1600 2000 2500 3150	65.0 66.7 67.5 68.5 75.5 78.5 78.5 78.5 78.5 78.5 78.5 7	67.7, 79.0 84.5 86.0 84.5 84.7 87.5 85.0 87.2 85.7 85.7 89.2 85.7 89.2 87.2 86.2	71.7 77.0 83.0 81.0 79.7 80.7 80.7 80.7 80.7 84.5 84.5 84.5 84.5 84.5 84.5	63.5 70.5 81.0 67.0 68.2 70.7 71.7 75.2 76.0 77.0 78.0 77.0 78.0 77.2 76.5								
160 200 250 315 400 500 630 800 1000 1250 1600 2000 3150 4000	65.0 66.7 67.5 75.5 78.5 78.5 78.5 78.5 78.5 78.5 7	67.7, 72.7 79.0 84.5 86.0 84.2 84.7 87.5 85.0 87.5 85.2 85.2 85.2 85.2 85.2 85.2 85.2 85	71.7 77.0 83.0 81.0 79.7 80.7 80.7 80.7 80.7 80.7 80.7 85.5 85.5 85.5 84.6 80.2	63.5 70.5 81.0 67.0 70.7 71.7 75.7 75.7 75.7 75.7 75.7 77.2 76.7 72.7 72.7 72.7 72.7								
160 200 250 315 400 500 630 800 1000 1250 1600 2500 3150 4000 5000	65.0 66.7 67.5 75.7 78.5 78.5 78.5 78.5 78.5 78.5 7	67.7, 72.7 79.0 84.5 86.0 84.2 84.7 87.5 85.0 87.5 85.7 85.7 89.2 87.2 86.2 81.7 79.7	71.70 77.00 83.00 79.77 80.77 80.77 80.77 80.77 80.77 80.55 93.65 84.02 84.02 80 80.00 80 80 80 80 80 80 80 80 80 80 80 80 8	63.5 70.5 81.0 67.0 68.2 70.7 71.7 75.9 76.0 77.0 78.0 77.0 76.9 72.7 76.9 72.7 76.9 72.7 76.9 71.2 71.2								
160 200 250 315 400 500 630 Run 1000 1250 1600 2500 3150 4000 5000 6300	65.0 66.7 66.7 5.5 75.7 78.5 78.5 78.5 78.5 78.5 78.	67.7, 79.0 84.7 86.0 84.5 84.7 87.5 85.0 87.2 85.7 85.7 89.2 86.2 81.7 79.7 78.5	71.70 77.00 83.00 79.77 80.77 80.77 80.77 80.77 80.77 80.55 85 85 85 85 85 85 85 85 85 85 85 85 8	63.5 70.5 81.0 67.0 77.7 71.7 75.2 76.0 77.0 76.0 77.2 76.5 71.7 76.5 71.7 71.7 71.5								
160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000 5000 5000 5000 5000 5000	65.0 66.7 67.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5 7	67.7, 72.7 79.0 84.7 86.0 84.2 84.7 87.5 84.7 87.5 82.2 85.7 82.2 85.2 85.2 81.7 79.7 79.7 78.5 86.2	71.7 77.0 83.0 81.0 79.7 80.7 780.7 79.0 93.5 5 854.5 855.5	63.5 70.5 81.6 67.8 70.7 71.7 75.8 77.8 77.8 76.5 71.7 76.8 77.8 76.5 71.2 71.7 74.5 71.7 76.5 71.7 76.5 71.7 69.7								
160 200 250 315 400 500 630 RU0 1000 1000 2500 3150 4000 5000 6300 6000	65.0 66.7 67.5 68.5 75.5 78.5 78.5 78.5 78.5 78.5 78.5 7	67.7, 72.7 79.0 84.7 86.0 84.2 84.7 87.5 85.7 85.2 85.2 85.2 85.2 85.2 85.2 85.2 85.2	71.70 83.0 83.0 79.77 80.77 80.77 80.77 80.77 80.55 80.55 80.85 80.77 77 80.85 80.77 77 80.85 80.77 77 80.85 80.77 77 80.85 80.77 77 80.85 80.77 77 80.85 80.77 77 80.85 77 70 80.85 77 70 70 70 70 70 70 70 70 70 70 70 70	63.5 70.5 81.6 67.8 70.7 71.7 75.7 77.6 78.8 72.7 76.5 71.2 71.7 76.7 76.8 72.7 76.5 71.2 71.7 76.5 71.2 71.7 76.5 71.2 71.7 76.5 71.2 71.7 76.5 71.2 71.7 76.5 71.7 76.5 71.7 76.5 71.7 76.5 71.7 76.5 71.7 76.5 71.7 76.5 71.7 76.7.5 70.7.5								
160 200 250 315 400 500 630 800 1000 1250 1600 2500 3150 4000 5000 6300 6000 10000 12500	65.0 66.7 67.5 75.5 78.5 78.5 78.5 78.5 78.5 78.5 7	67.7, 79.0 84.5 86.0 84.5 84.5 85.2 85.2 85.2 85.2 85.2 85.2 85.2 85	71.700 77.000 831.000 79.770 831.79.770 831.770 800.7770 800.7770 800.7770 800.7770 800.7770 800.7770 800.85575 800.807770 700.207770 700.2007770 700.2007770 700.2007770 700.2007770 700.2007770 700.2007770 700.2007770 700.2007770 700.2007770 700.2007770 700.2007770 700.2007770 700.2007770 700.2007770 700.2007770 700.2007770 700.20077770 700.20077770 700.20077770 700.20077770 700.20077770 700.20077770 700.20077770 700.20077770 700.20077770 700.20077770 700.200777770 700.200777770 700.200777770 700.20077770 700.200777770 700.200777770 700.200777770 700.200777770 700.200777770 700.200777770 700.200777770 700.200777770 700.200777770 700.200777770 700.200777770 700.200777770 700.200777770 700.20077770 700.20077770 700.20077770 700.20077770 700.20077770 700.20077770 700.20077770 700.20077770 700.200777770 700.200777770 700.200777770 700.2007777770 700.20077777700 700777777770000000000	63.5 70.5 81.0 67.0 70.7 71.7 75.0 77.0 78.0 77.2 76.7 76.5 71.7 76.7 76.5 71.7 76.5 71.7 76.5 71.7 76.5 71.7 75.2 71.7 75.2 71.7 75.2 71.7 75.2 71.7 75.2 71.7 75.2 71.7 75.2 71.7 75.6 67.7								
160 200 250 315 400 500 630 RU0 1000 2000 2000 2500 3150 4000 5000 6300 6000	65.0 66.7 67.5 68.5 75.5 78.5 78.5 78.5 78.5 78.5 78.5 7	67.7, 72.7 79.0 84.7 86.0 84.2 84.7 87.5 85.7 85.2 85.2 85.2 85.2 85.2 85.2 85.2 85.2	71.70 83.0 83.0 79.77 80.77 80.77 80.77 80.77 80.55 80.55 80.85 80.77 77 80.85 80.77 77 80.85 80.77 77 80.85 80.77 77 80.85 80.77 77 80.85 80.77 77 80.85 80.77 77 80.85 77 70 80.85 77 70 70 70 70 70 70 70 70 70 70 70 70	63.5 70.5 81.6 67.8 70.7 71.7 75.7 77.6 78.8 72.7 76.5 71.2 71.7 76.7 76.8 72.7 76.5 71.2 71.7 76.5 71.2 71.7 76.5 71.2 71.7 76.5 71.2 71.7 76.5 71.2 71.7 76.5 71.7 76.5 71.7 76.5 71.7 76.5 71.7 76.5 71.7 76.5 71.7 76.5 71.7 76.7.5 70.7.5								

SPL OF INTERMEDIATE CELLS

•

SPL OF OUTER CELLS

														•						-	
FREQUENCY	. 1	2,	<u>_</u> 3	4	5	6	12	18	24	30 -	36	35	34	33	32	31	25	19	. 13	7	
HERTZ	**					* *					**					**					
25	68.7	70.1	69.7	80.7	70,5	69.5	70.2	70.2	78.0	71.2	71.0	68.7	69.0	71.7	70:5	72.0	72.0	72.2	71.0	68.7	
31	68.5			76.7	69.5	68.0	67.2	70.0	69.2	66.0	68.0	67.5	69.5	67.7	71.2	69.0	67.7	68.2	68.0	68.5	
40	63.7		64.2	72.0	63.7	64.7	64.5	65.0	64.5	64.5	62.5	65.2	63.5	64 2	64.5	65.0	64.0	63.2	64.5	64.2	
50	63.7	62.2	63.7	68.7	64.2	62.0	63.2	65.7	64.2	64.8	64.2		64.2	62.7	65.5	64.0	63.5	66.0	63.2	63.5	
63	62.5	61.5	63.0	65.0	63.2	61.2	61.5	62.2	62.2	62.7	62.5	68.0	64.7	63.7	66.2	61.7	62.2	63.5	64.2	63.2	
80	60.5	61.2	61.7	63.7	60.5	67.2	63.0	62.0	63.2	65.5	62.5	72.2	63.5	67.5	67.5	63.0	63.2	63.0	62.2	62.2	
100	61.5	60.5	69.7	63.2	68.5	60.5	65.2	64.0	63.7	69.2	64.7	77.2	66.7	72.7	71.2	68.0	65.0	65.2	64.0	60.5	
125	65.7	63.7	65.7	68.5	65.0	62.0	68.0	66.0	66.5	71.0	66.2	80.0	69.5	74.0	75.5	70.2	67.5	68.5	67.0	62.0	
168	71.2	77.5	69.0	75.0	65.5	66.2	75.0	66.2	71.5	75.7	66.7	84.2	74.5	78.2	80.0	75.5	67.5	75.0	70.5	71.7	
2 ù 0	65.5	64.7	78.5	71.0	71.5	76.0	82.2	71.0	81.5	86.5	73.7	87.2	79.5	83.5	86.0	86.7	73.0	79.7	76.2	66.0	
250	70.5	69.7	71.0	74.7	72.2	70.5	83.5	68.0	69.7	85.2	70.2	88.5	85.5	83.5	86.2	86.2	70.0	83.7	83.2	70.0	
315	78.5	78.0	76.0	79.0	80.0	78.2	86.2	67.2	09.5	82.0	69.5	87.7	89.2	81.5	84.7	89.0	70.5	86.5	. 86.7	77.2	
4 0 0	84.5	82.5	83.7	83.0	86.2	85.5	85.0	69.2	70.0	78.7	71.2	85.7	86.2	82.7	82.5	.87 • 2	74.2	85.7	84.0	81.7	
500	86.0	84.7	83.0	84.5	87.2	86.0	84.7		77.0				84.7	82.0	81.7	87.0	7,7.2	83.7	85.2	83.5	
630	83.2			82.0	86.7	85.5	88.7		~82.2	84.7	85.5	88.5	94.5	85.7	86.7	96.0	79.0	89.0	85.5	80.0	
800	87.2				87.2	86.7	87.0	77.5	78.0	88.5	81.2	90.2	86.5	90.2	88•0	89.7	78.7	87.7	83.7	83.7	
1000	96.2			101.5	97.5	95. 0	83.7		81.0	95.0	83.7	99.5	86.0	98.0	95.2	86.5	80.5	85.0	81.7	96.0	
1250	85.5				93.5	94.2	83.7	- 81.0	81.2	94.5	83.5	100.5	.85.5	97.5	95.0	88.5	79.2	83.0	79.0	81.7	
1600	86.2		89 . 0	40.5	91.0	88.5	86.2	80.0	79.7	90.5	81.0	96.5	89.5	91.7	91.7	89.7	82.0	85.5	84.2	85.5	
5000	89.2		90.7	89.2	91.0	90.5	87.7	74.2	73.7	85.0	76.5	91.0	93.5	84.5	87.5	92.0	76.5	. 90.0	88.5	85.7	
2500	86.5		87.5	87.7	90.7	90.0	80.5	69.0		- 84.2	74.5			89.2	87.0	86.7	72.5	82.5	81.7	84.0	
3150	85.5		89.2	89.5	90.0	87.7	82.0	69.0	75.2		72.2				86.7	85.2	77.7	81.5	79.7	85.5	
4000	85.0		.63.5	86.7	87.5	84.2	78.2			81.7		93.0				79.0	72.2	81,2	79.7	81.0	
5000	84.5			87.2	88.5	83.5	77.2		72.7	79.0	70.5					77.0	71.7	79.2	77.5	78.7	
6300	82.5				87.2	81.5	76.5			77.0	68.2					78.2	70.2	78.5	75.5	76.7	
8000	87.5				H6.7	80.2	76.0		70+5		66.7				77.7	80.5	68,5	77:2		75.2	
10000	81.0			81.0		78.0			70.2		66.5		79.5			80.2	68.7	74.7	74.7	73.5	
12500				80.2										72.5		78.2				77.0	
16000	81.2	74.0	75.2	77.0	84.5	77.2	73.7	63.2	68.0	70.0	65.7	84.0	79.5	69.2	69.5	76.0	70.7	75.2	77.2	76.2	
0 B A	99.7	100.5	100.4	103.5	102.5	101.0	95.7	87.9	89.1	100.1	90.3	106.7	100,i	102.8	101.1	100.0	89.0	96.6	94.7	98.3	

Appendix D

SUMMARY OF TESTS CONDUCTED ON HIGH-SPEED AND LOW-SPEED FANS

TEST: High-Speed	Test Identification No. 7-1-48											
TEST CONFIGURATION	STAGGER ANGLE	INSTRUMENT STATION	AZIM UTH POSITION	%RPM	70	 % W 80	/EIGH 90	T FLO 95	W & R (100		110	INLET DISTORTION CONFIGURATION
	56.08	6	Р	100	4				, 3		2	
	11	п .	11	11				.7	5	6		
	It	ET	Т	۲ĭ	10				9		8	
	n	15	S	tt	13		•	~	· 12		11	
	11	11	В	и	16			-	15		14	
	11	5	Р	11					18		17	
	Ħ	4	11	• 11	22				21		20	
× •									•			

.

.

•

-

Test Identification No. 7-2-48

,

.

TEST: Low-Speed Fan No. 1

.

	STAGGER	INSTRUMENT	AZIMUTH	0/2 DM	70			r Floi				INLET DISTORTION
TEST CONFIGURATION	ANGLE	STATION	POSITION	%RPM	70	80	90	95	100	105	110	CONFIGURATION
•	40.8	6	Р	100	27	26	25	24	-23			
	11	**	17	'90		30	29	28				
	11	11	Т	100	33			32	31			•
	ŧŦ	17	II	90	•	•		34				
	35.4	11	. S	100				37	36	35		
	n	11	17	90					38			
	u	11	· B	100				· 41	40	39		
,	11	11	11	90					42			
	n	11	Т	100				45	44	43		•
	-11	tt	- 11	90				10	46	,		
	Ħ							- ^		10		
	11	11	Р	100	53	52	51	50	-49	48	47	
•	-11	11	tt	90		56	55		54			
	11	4	11 *	100	63	62	61	60	59	58	57	
	11	11	IT	90		66	65		64			Ş
	n	11 .	Τ.	100	•			69	68	67		
,	11	11	11 .	90		•			70			ROO.
	11	11	В	100				73	72	71		মি
	11 ·	11	11	90					74	, .		QUA
•				90					74			A

.

.

ORIGINAL PAGE IS

TEST: Low-Speed Fan No. 1

.

Test Identification No. 7-2-48

	STAGGER	INSTRUMENT	AZIMUTH	•		% W	'EIGH'	T FLO	W&R	UN NC).	INLET DISTORTION
TEST CONFIGURATION	-ANGLE	-STATION	POSITION	%RPM	70	80	90	95	100	105	110	CONFIGURATION
	35.4	4	S	100				77	76	75		
	11	Ħ	п	90					78			F
Station 7 Totals	11	4/7	11	100	79	79	79		79		79	
11	11	11	11	90		80	80		80			
Honeycomb Out	tt	11	п	100	•				82			
11	32.9	6	Р	100	86	85	84	-	83			
It	11	II.	It	90					87			
t	**	11	11	70	90	89			- 88			
It	11	81	т	100			92		91			
11	11	π	11	90			-	-	93			
11	11	ti	11	70			-	••	-94			
11	11	ti	S	100	••	L		96	95			· OF
11	11	T	11	90					97			PC
IT	11	tt	11	70					98 _.			OF POOR
n .	11	- 11	В	100			100		99			E D
່ ນ	11	ti	11	90	<u>-</u> ,	÷	~		101			PA(ĮUA
11	tt	II	11	70					102	-		GB
11	40.8	11	11	100	106			105	104	103		QUALITY
				×								

.

. .

.

ı INLET % WEIGHT FLOW & RUN NO. STAGGER INSTRUMENT AZIMUTH DISTORTION TEST CONFIGURATION ANGLE STATION POSITION 80 100 105 %RPM 70 90 95 110 CONFIGURATION . Honeycomb Out 40.8 6 ⁻ R 90 107 11 • 11 S 111 110 100 109 108 . n 11 11 90 112Ħ п т 100 116 115 114 113 n 11 11 90 117 n 11 ٠P 100 121120119 118 tt 11 tr . * 12290 45.2 **11** 11 127 126 100 125 124 123 . 11 130 129 T1 11 70 128 17 11 т 100 133 132 131 • • 'n 11 tt 70 134 11 Ħ S 138 137 136 100 **135**· tt 11 В 142141 140 139 . 100•~ 35.4 4 Ρ 100 148 147 146 145 144 143 INLET HONEYCOMB INSTALLED Ħ · 11 Т tt 152 151 150, 149 11 tt S 11 '155 154 153 156Ħ 11 В 160 11 159 158 157

Test Identification No. 7-1-48

TEST: High-Speed Fan

TEST: Low-Speed F	an No. 1	_		Test Identification No. 7-2-48									
	STAGGER	INSTRUMENT	AZIMUTH			% W	'EIGH'	r flo	W&RI	UN NO	•	INLET DISTORTION	
TEST CONFIGURATION	ANGLE	STATION	POSITION	%RPM	·70	80	90	95	100	105	110	CONFIGURATIO	
Exit Honeycomb Out	35.4	4	В	100	160		159		158	157	١	-	
Inlet Honeycomb In			•		•								
11	Ħ	6 .	Р	И .	166	165	.164	163	162	161		•	
tt	, 11	11	`Т́	~11	170		169		168	167			
11	11	Ħ	Ś	11	174.		173		172	171			
11	11	и ,	В	Pt	178		` 177		176	175		,	
Π	11	TL	'n	90					179				
11	11	11 ,	, , , , , , , , , , , , , , , , , , ,	80				•	180			<u></u>	
11	11	tt	' 1 1	75 `					181)F	
n	` II	т <i>′</i>	11	50					182			POR	
II	11	5	≁B	100	186		185		184	183		ORIGINAL OF POOR	
'n	ŧt	11	P.	#1	192	191	190	189	188	187		Q P	
11	11	"	' T	n	196		195		194	193	•	C PAGE IS QUALITY	
Ħ	11	11	S	11	200		199		198	197			
11 v	52.3	. "	11	tt	203		202		201			RØ	
11	17	4	11	11	209	208	207	206	205	204		•	
11	11 <i>-</i>	6	. ' п	11	⁻ 215	214	213	212	211	210			
11	40.8	6/7	, 11	11	218		217		216				
_ 1t	tt	6	11	11	221		220		219				

57 .

.

• .

GENERAL 🌄 ELECTRIC

.

TEST: Low-Speed I	Test Identification No. 7–2–48											
/ TEST CONFIGURATION	STAGGER ANGLE	INSTRUMENT STATION	AZIMUTH POSITION	%RPM	70	% W 80	EIGH'i 90	f Flov 95	V & RU 100	JN NO 105	110	INLET DISTORTION CONFIGURATION
、									•	•		
Exit Honeycomb Out Inlet Honeycomb In	40.8	6	s	100	224		223		222			~ H
imet Honeycomb in	10.0	11	11	100	227		226		225		•	V
T	11	11 `.	°B	11	230	•	229		228			ͺ V
~ų	11	11	11	11	233		232		231			H
11	11	, и .	۳ _{د ۲}	11	236		235		234			-
11	11	677	11	11	239		238		237			-
11 .	11	11	, P	11	244	243	242	241	240			-
11	11	6	1	11	249	248	247	246	245	•		
11	n	11	n	t†	254	253	252	251	250_			Н
Π	11	11	11,	-11	259	258	257	256	255	-		v
n , , , ,	. 11	11	т	11	· 262		261	•	260			v
11	11	11	11	11	265		264		263			Н
11	11	11	n	11	268	-	267		266			-
II .	It	6/7	tt	11	271		270		269			.
11	11	5	11	11	274		273		272			H
Π.,	ti	4	, 11	11	277		276		.275			n
11 -	11	n	S	11	280	•	279		278	•		11
ti	tt	5	tt	, н	283		282		281			11

.

.

.

۰.

TEST: Low-Speed	Test Identification No. 7-2-48												
TEST CONFIGURATION	STAGGER ANGLE	INSTRUMENT STATION	AZIMUTH POSITION	%RPM	70	% W -80	EIGH 90	T FLO' 95	W & R 100	UN NO 105	110	INLET DISTORTION CONFIGURATIO	Ň
Exit Honeycomb Out Inlet Honeycomb In	40.8	5	S	100	286		285		284			, H	
11	11 •	4	Ħ	Ħ	289		288		287			11	
, ₁₁	*1	11	Р	11	[.] 294	293	292	291	290	,		_	
tt	Ħ	11	11	11	299		297	296	295			H	
, 11	11	5	Ħ -	11	304	303	302	301	300			"	~
11	tt	11	11	**	309	308	307	306	305 .			_	OF
11		6.	11	¹¹	· 314	313	312	311	310	,	319		POOR
n			, n	90	. 914	910	014		315		320	*	Ö
IT	- Н	88	It	90 80					315 316		320 321		ې چ
11	H	If	11	. 75									Č
II II	11	11	11						317		322	•	1
, n	•			50					318		323		
11	88.4 ' "	4/7	-	100			714		. 324				
, n	•	6	Р	11					325				
,	17	11 -	11	50					326.	•		,	
IT	62.9	11	. 11	100			329		328			327 (at 120)	
Modified Contraction	tt	6/7	n	11			. 330	-	<u> </u>	••	330		
lt ,	t1	6/4	. 11	11			331		331		331		
tt .	11	6	11	11			334		333		332		
			•										

.

59

.

.

•

.

.

OF POOR QUALTTY

TEST: Low-Speed Fan No. 1

TEST CONFIGURATION	STAGGER ANGLE	INSTRUMENT STATION	AZIMUTH POSITION	%RPM	70	% W 80	/EIGH) 90	FLOV 95	/ & R) 100	UN NO 105	110	INLET DISTORTION CONFIGURATION
Madified Contraction	69.0	e	Р	100			337		336		335	_
Modified Contraction	62.9	5										_
1ť	11	4	11	11			340		339	-	338	-
11	40.8	11	11	17	344		343	342	341			
11	11	11	tt -	. 90					345			
n	Ħ	11	Ħ	75					346			
Π	11	81	. 11	50					347			
11	11	It	tt	100	351		350	349	348			А
17	11	II	11	-90		-			352			
11	11	11	11	75					353			
n	tr	11	TI .	50					354			n
n	TT	11	11	100	358		357	356	355			В
11	n	. 11	11	90					359			tt
11	11	11	It	75					360			11
· 11	11	11	11	50					361	·		tt
11	81	5/4	Ħ	100	362		362	362	362			11
17	tf	11	Ħ	tt	363		363	363	363			А
11	11	. "	11	11	364		364	364	364			-
11	11	5/7	**	tr	365		365	365	365			· _

Test Identification No. 7-2-48

.

TEST: Low-Speed Fan No. 1

.

.

Test Identification No. 7–2–48 .

TEST CONFIGURATION	STAGGER ANGLE	INSTRUMENT STATION	AZIMUTH POSITION	%RPM	70	%₩ ~80	EIGH' 90	F FLOV 95	V&RUN 100 10	INLET DISTORTION CONFIGURATION
Modified Contraction	40.8	5/7	Р	100	366		366	366	366	A
TÊ	11 ,	11	, 1 1	11	367		367	367	367	B
tt	ŧt	5 [:]	11	n	371		370	369	368	11
Π	11	11	11	. ^щ	·375		374	373	372	А
11	tt	.11	11	It	379	•	378	377	376	
11	11	6	ŧī	tt	383		382	381	380	-
Ħ	, п	n 	ti.	11	384		385	386	387	A
Ħ	- H ,	` II .	n	- 11	391		390	389	388	В
11	11	11	Ţ	Ħ	395		394	393	392	В
11	11	11	11	• स	399	,	398	397	 396	А
11	13	11	T	11	403		402	401	400	-
. n	ŋ	5	11	31	404			406	407	-
Ħ	11	11	11	11	411		410	409	408	А
tī	n	11	5 H T	11.*	412		413	414	415	ъв
tt	11	• 4	11	II	419 -		418	417	416	.11
11	11	- 11	tt	n	423			421	420	A
tt ,	, , n ·	- 11	11	11	427		426	425	424 [.]	 ++
, 11	13		S	ti.	431	1	430	429	428	. –

,

TEST: 'Low-Speed Fan No. 1

.

	STAGGER	INSTRUMENT	AZIMUTH		% weight flow & run no.							INLET DISTORTION
TEST CONFIGURATION	ANGLE	STATION	POSITION	%RPM	70	80	90	95	100	105	110	CONFIGURATION
Modified Contraction	40.8	4	S	100	432		433	434	435			А
tt	11	11	11	11	439		438	437	436			В
11	† 1	5	11	rt -	443		442	441	440		•	11
It	It	tt	Ħ	Ħ	447		446	445	444			А
tt	n	11	11	Ħ	451		450	449	448			
11	11	4	11	. 11					452			С
It	tt	7	11	11					453			11 -
11	tt	6	В	11	•			-	454			С
12	. 11	4/5	11	11					455			D ₅
n	11	tt	It	11					456			D_7
17	57	11	18	**					457			\mathbf{D}_{9}
11	ft `	It	11	u					458			D ₁₀
n	"	7/5 .	Ħ	11					459			D _{.9}
11	t	5	11	11					460			τt
tt	11	4	13	11					461			11
11	tt	6	11	Ħ					462			11
11	11	**	т	н ,					-463			tt
17	11	5	11	17					464			11

•

Test Identification No.

7-2-48

•

· · · · ·

Test Identification No. 7-2-48

•

,

TEST: Low-Speed Fan No. 1

TEST CONFIGURATION	STAGGER ANGLE	INSTRUMENT STATION	AZIMUTH POSITION	%RPM	70	% W 80	EIGH 90	T FLO 95	V & R 100	UN NO 105). 110	INLET DISTORTION CONFIGURATION
Modified Contraction	40.8	4	Т	100					465			Dg
11	38.0	tr	11	11	469			468	467	466		-
u	11	5	11	11	473			472	471	470		-
τ	tt	6	11	11	477			476	475	474		-
11	11	**	Р	11	481			480	479	478		-
17	11	7/5	n .	11					482			-
11	11	TT	tt	11				483				D ₈
Ħ	11	4/5	11	11				484				11
11	tt	11	Ħ	17					485			-
11	11	6	11 -	11			488		487	486		_ · `
11	IT	11	В	11			491		490	489		-
11	. 11	11	S	11			494		493	492		-
11 ,	- 11	4	В	11					495			· _
11	11	11	11	12				496				D ₈
Ħ	. נו	5	11	n				497			•	11
11	11	6	* 11	ti				498				f 1
It	11	tt	т	11				499				11
11	11	5	11	ti				500				ŧT

.

.

.

ì

.

TEST: Low-Speed Fan No. 1

Test Identification No. 7-2-48

.

.

	STAGGER	INSTRUMENT	AZIMUTH			% WI	EIGH	r flo	W&RU	JN NC).	INLET DISTORTION
TEST CONFIGURATION	ANGLE	STATION	POSITION	%RPM	70	80	90	95	100	105	110	CONFIGURATION
Modified Contraction	38.0	4	т	100				501				D ₈
11	11	11	Р	11					502			
11 ,	. 11	11	S	. "			•		503			-
11	11	6	Т	Ħ			504					D .S.
11	11	11	S	ti			505					Ħ
11	11	11	В	11			506					11
11	11	11	Р	11			507				•	tt
11	11	4	В	11			508					11
11	11	4 rakes		Ħ			509					TT
11 .	11	7 ".	- *	11			510					

.

.

.

.