General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CR-135104

(NASA-CR-135104)AN EXPERIMENTAL STUDY OF AN77-16288SELF-CONFINED FLOW WITH HING-VORTICITYDISTRIBUTION Ph.L. Thesis. Final ReportUnclass(Cornell Univ., Ithaca, N.Y.)159 p HCUnclassA08/MF A01CSCL 20D G3/3412356

AN EXPERIMENTAL STUDY OF A SELF-CONFINED FLOW WITH RING-VORTICITY DISTRIBUTION

1

by Kon-Mang Lin and Franklin K. Moore

Cornell University Ithaca, New York

C

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Cleveland, Ohio 44135

August 1976

Grant NGL-33-010-042

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
NASA CR-135104	-	
4. Title and Subtitle	1	5. Report Date
AN EXPERIMENTAL STUDY C	OF A SELF-CONFINED FLOW	
WITH RING-VORTICITY DISTRIBUTION		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
Kon-Mang Lin and Franklin K. Moore		None
		10. Work Unit No.
9. Performing Organization Name and Address		
Cornell University		11. Contract or Grant No.
Ithaca, New York 14850		NGL-33-010-042
		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address		Contractor Report
National Aeronautics and Space Administration 14. Spons		14. Sponsoring Agency Code
Washington, D.C. 20546		
15. Supplementary Notes		
	r, Cecil J. Marek, Airbreathing E	
Research Center, Cleveland,	Ohio. Report was submitted as a th	lesis by the first author in
partial fulfillment of the requir	rements for the degree Doctor of P	hilosophy at Cornell University,
Ithaca, New York, in August 1	976.	
16. Abstract		
A new form of self-confined flo	w was investigated where a recircu	lation zone forms away from
any solid boundary. An invisc	id-flow analysis indicated that in a	purely meridional axisymmetric
flow a stationary, spherical, s	elf-confined region should occur in	the center of a streamlined
divergent-convergent enlargen	nent zone. The spherical confineme	ent region would be at rest and
at constant pressure. Experim	nental investigations were carried of	out in a specially built test
apparatus to establish the desig	red confined flow. The streamlined	d divergent-convergent interior
shape of the test section was fa	abricated according to the theoretic	al calculation for a particular
streamline. The required inle	t vorticity distribution was generat	ed by producing a velocity pro-
_	in the straight pipe upstream of th	
	sured with a constant-temperature l	
	d a very orderly and stable flow fie	
	even at the sharply divergent wall o	
	d for the first time the existence of	
	per flow field with the ring-verticity	

17. Key Words (Suggested by Author(s)) Recirculation zone		18. Distribution Statement Unclassified - unlimited		
Stable confined flow				
19. Security Classif. (of this report)	20. Security Classif. (e	of this page)	21. No. of Pages	22. Price*
Unclassified	Unc	lassified	159	

the theory.

 * For sale by the National Technical Information Service, Springfield, Virginia 22161

CONTENTS

1

1

4

.1

.

.....

	Page
CHAPTER I. INTRODUCTION	1
1. Motivation of the present study	1
2. The problem	3
3. Outline	6
CHAPTER II. THEORY	8
1. The governing equations	8
2. Solutions	12
3. Evaluation of the solutions	16
CHAPTER III. EXPERIMENTS	19
1. The flow apparatus	19
1.1. Entrance section	20
1.2. Vorticity generator	25
1.3. Boundary layer removal section	32
1.4. Test section	33
1.5. Exit section	36

iii

	Page
2. Measuring equipment and traversing mechanism	37
2.1. Pitot-static probes, manometers and thermocouples	37
2.2. Constant temperature hot wire anemometer system	41
2.3. Hot wire calibrations	47
2.4. Traversing mechanisms	52
3. Some experimental procedures	56
4. Stability of the generated velocity profile	58
CHAPTER IV. RESULTS	63
1. Visualization	63
2. Quantitative results	66
2.1. Incoming straight pipe	6 6
2.2. Test chamber	76
3. Flow rate calculation	91
CHAPTER V. CONCLUSIONS	97
1. Summary	97
2. Application	99
3. Suggestions	100
BIBLICGRAPHY	105
APPENDIX	108

(i) and the second sec second sec

1

1

1

1

1

\$

,

£

iv

LIST OF ILLUSTRATIONS

4

....

.

. .ł

1

and the second second

٩,

الم الم المراجع والمراجع المسالية. 1995 - المراجع المراجع المسالية المسالية المسالية المسالية المسالية المسالية المسالية المسالية المسالية المسالي ł

- **-** - **-**

Figure		Page
1-1	Vortex breakdown in a spiraling flow	2
2–1A	Cylindrical coordinate system	10
2-1 B	Spherical polar coordinate system	10
2-2	Streamlines, velocities and pressure distribution in the smoke-ring solution	17
3-1	Schematic of the flow apparatus	21
3-2A&B	Flow apparatus	22
3-3A	Non-uniform shear screen	29
3–3B	Shaped foam screen and holder	29
3-30	Shaped gauze screen and holder	29
3-4	Gauze screen installation	31
3-5	Layout for the test section	34
3-6	Instrumentation schematic	38
3-7	Instrumentations for flow measurements	39
3-8	Test section & traversing mechanism	39
3-9	Hot wire calibration curve	51
3-10	Linearizer calibration curve	53
4-1	Flow pattern inside the test chamber as indicated by the tuft probe (without vorticity generator)	65
42A&B	Local average speed and turbulence intensity in the straight pipe	68-69
4-3A,B&C	Azimuthal distribution of velocity and turbulence intensity profiles in the straight pipe (6 dia. downstream of the flat screen and 1 dia. downstream of the vorticity generator)	71-73

المحادث العربي المراجع المراجع المحادث المحقية محادثهم من 200 من المحادثة المحادثة. المحمد المحمد المحادث المحتمد المحمد المحمد المحمد المحادثة المحادثة المحادثة المحادثة المحادثة المحادثة المحاد

Figure

Ŧ

ſ

1

···· • • • •

t

,

\$

l

4-4A&B	RMS signals of the linearized bridge output at three different axial locations on the axis of the straight pipe	75
4-5	Normalized speed profiles (Q/Q_{ref}) in %, in the test chamber, 0°- 180° plane. Data points inside the confinement region are presented only as an indication for their maximum values.	77
4-6A,B&C 4-7A,B&C 4-8A,B&C	Normalized speed, local turbulence intensity and absolute turblence intensity in the test chamber for meridional planes of $0^{\circ}-180^{\circ}$, $60^{\circ}-240^{\circ}$, and $120^{\circ}-300^{\circ}$	78-86
4-9	Location of the self-confined region at the cross-section of $\chi = +0.25$ inch	88
4-10	Linearized RMS hot wire signals along the axis of the test section (without vorticity generator)	92
4-11A&B	Linearized RMS hot wire signals along the axis of the test section (with vorticity generator)	93-94

ł

1

1

vi

LIST OF TABLES

.

1

.

ъ.

r -

Ą

. .

.

.

Table		Page
1	Coordinates for the test section interior wall	108
2	Hot wire calibration data	109
3	Linearizer calibration data	110
4	Detailed hot wire measurement data for the test section (partial list)	111.

vii

NOMENCLATURE

- ۲ Fluid density
- 7 Velocity vector
- $ec{\omega}$ Vorticity vector
- P Static pressure
- Volume force vector
- Oij Viscous stress tensor
- r, e, X Coordinates of a cylindrical coordinate system
- R, φ, ξ Coordinates of a spherical polar coordinate system
- $\vec{e}_r, \vec{e}_e, \vec{e}_\chi$ Unit vectors in the cylindrical coordinate (Γ, Θ, X) and the $\vec{e}_r, \vec{e}_q, \vec{e}_z$ spherical polar coordinate(R, φ, ξ) systems, respectively
- $\begin{array}{c} \mathsf{U},\mathsf{V},\mathsf{W} \\ \mathsf{u}_{\mathsf{s}},\mathsf{V}_{\mathsf{s}} \end{array} \right\} \begin{array}{c} \text{Components of the velocity, } \overrightarrow{q} \ , \ \text{in} \ \overrightarrow{e}_{\mathsf{s}}, \overrightarrow{e}_{\mathsf{r}}, \& \overrightarrow{e}_{\theta}, \overrightarrow{e}_{\mathsf{k}} \& \overrightarrow{e}_{\phi} \ \text{directions} \\ \text{respectively, i.e. } \overrightarrow{q} = \mathcal{U} \overrightarrow{e}_{\mathsf{s}} + \mathcal{V} \overrightarrow{e}_{\mathsf{r}} = \mathcal{U}_{\mathsf{s}} \overrightarrow{e}_{\mathsf{k}} + \mathcal{V}_{\mathsf{s}} \overrightarrow{e}_{\phi} \ , \ \mathsf{w} = \mathbf{0} \end{array}$
- ω_{θ} θ -component of the vorticity, $\overline{\omega}$
- $\psi, \psi, \psi_r, \psi_z$ The stream function in the cylindrical coordinate system and its derivatives with respect to r and χ .
- $F(\psi) = -\frac{\omega_e}{r} = \mathcal{Q}$, a constant
- a.M.N Constants
- Γ_{S} The radius of the spherical confined region
- R The spherical radius, $R = \sqrt{\chi^2 + \Gamma^2}$
- V_r The reference velocity at r' = 1.4
- A duamy variable of integration
- \mathcal{U}_o The axial velocity on the axis of symmetry at the test chamber entrance
- β The angle between the normal to the gauze screen and the flow direction
- Ψ' The non-dimensionalized stream function, $\Psi' = \Psi / \alpha r_s^4$

viii

f(t)	An arbitrary time dependent function
$\overline{f(t)}$	Time average of $f(t)$
t	Time
E	The bridge output voltage of the anemometer
A,B	Hot wire calibration constants
n	The exponent in the hot wire calibration relationship
T _s	The hot wire sensor operating temperature (hot)
Te	The fluid or environment temperature
RH	The hot sensor resistance (at operating temperature)
Rc	The cold sensor resistance (unheated)
de	The temperature coefficient of resistance of the sensor
<i>ï</i> ,7,77	Velocity components of the basic, steady flow in the pipe in $\vec{e}_x, \vec{e}_r \& \vec{e}_{\theta}$ directions
 <i>□</i> (<i>r</i>)	\overline{u} as an arbitrary function of r
U _m	The maximum generated velocity at the edge of the boundary ? ayer
2	Normalized radial dimension $\gamma = (R_P - r)/\delta$
R _p	The inside radius of the pipe
8	The boundary layer thickness
Re	Reynolds number based on pipe diameter D, Re = μ D/ p
D	Diameter of the pipe, $D = 4.144$ inches
ν	Kinematic viscosity of the fluid (of room air)
ŕ	Local fluctuating component of \vec{q} Local average fluid speed $\vec{q} = \vec{Q} + \vec{q}'$
Q,	Local average fluid speed $\int \mathcal{J} = \mathcal{Q} + \mathcal{J}$
Qr	The average speed of twelve Q values at the same radius r
Q _{ref}	The reference speed at the chamber entrance χ = +5.2 inches and on the axis γ = 0.0 inch

. ...**.**

1....

. .L

. .

1

1

ix

CHAPTER I

INTRODUCTION

Fluid flows with regions of closed streamlines or streamsurfaces away from the solid boundaries may be called self-confined flows. These phenomena can occur either naturally or by desigr. A particular example of this is the "vortex breakdown" in a spiraling flow (Figure 1-1). It has been observed to occur over delta wings (Refs. 1 to 7) at large incidences and in axisymmetric flows in tubes (Ref. 8). And it has been the subject of extensive theoretical and experimental studies for more than a decade (Refs. 9 to 15). The difficulties, both mathematical and experimental, involved in describing the nature, predicting the location, and identifying the occurrence of the phenomenon have been well documented (Cf. Hall in Ref. 16, P. 53 et seq.).

1. Motivation of the present study

For these self-confined flows, like that of the axisymmetric mode of the vortex breakdown consisting of a nearly self-confined recirculation zone, there could be useful applications in the fields of combustion, chemical or general fluid mechanical processes where a region of fluid or fuel must be contained within a flowing medium. In a gas turbine combustor, for example, with the help of turbulence across the region interface, diffusion as well as containment, and as a consequence, combustion of the fuel could be better controlled.

In the recent past, there had been considerable interest in

STAR category 34

-1-

- 2 -そのないないないのでは、「「「「「」」」、 いいできないのから、 へいらうちゃく シュー・ 國際國際的新加州的基金 网络加州东 and the second second the state of the state of the second second 6.

Figure 1-1. Axisymmetric vortex breakdown in a spiraling flow. Flow enters the pipe from the left through a series of vanes in order to acquire swirling velocity. As indicated by the dye lines, an axisymmetric bubble is formed on the centerline and the outer flow rotates in a spiral form (From Ref. 15).

harnessing the nuclear energy by using a concept of the gas-core power reactor. But it was clear that this energy could not be efficiently or effectively utilized without drastic improvement of the thermal efficiency. This meant that the maximum power cycle temperatures would have to be increased far above the 1000°F level of today's nuclear power plants. Therefore, the entire energy-conversion process would have to be rather independent — naterial limitations. One of the conceptual design of the gas-core power reactor was that a gaseous uranium cloud would undergo fission, became extremely hot, and transfered heat by thermal radiation to a working fluid introduced between the cloud and the reactor vessel wall. If the cloud could be contained without touching the walls, its temperature might be permitted to rise to tens of thousands of degrees, and presumably a magnetohydrodynamic generator could be used to derive electrical energy directly from the workingfluid plasma in a closed circuit. This arrangement would provide a power-generation system of very high efficiency without undue damages to the environment. In order to meet today's challenges of a rising energy demand and minimum pollution into the environment, with more extended developmental work, this gas-core power reactor may yet be a possible method for future usage of the nuclear energy.

Above are just a couple of examples where self-confined flows could play an important role. These enclosed regions of fluids can be confined relatively independent of the chamber walls. The confining mechanism is provided by the resistance of the vortex lines, because of rotational inertia, to the stretching process involved. This is analogous to the resistance to lateral deflection of magnetic field lines in a conducting fluid. Conceivably, these two resistance forces could be combined to provide a powerful mechanism for fluid containment. Interest in such fundamental fluid mechanical phenomena motivated us to investigate another possible form of self-confined flows.

2. The problem

The heretofore mentioned axisymmetric vortex breakdown in swirling flow occurs only when the swirl to axial velocity ratio reaches a certain magnitude. An analytical study based on inviscid-flow theory

- 3 -

Į

indicated that another form of self-confined region, different from the vortex breakdown, should occur in a purely meridional, swirl free flow field with a certain prescribed ring-vorticity distribution (see Moore and Leibovich, Ref. 17). By ring-vorticity distribution is meant an axisymmetric distribution of azimuthal vorticity in the fashion of a bundle of coaxial smoke-rings in axial motion. This vorticity induces an axisymmetric velocity field with no swirl component about the axis of symmetry. According to the analysis, when the vorticity in each ring is simply proportional to the distance from the axis in an inviscid, incom-1 ~...ble, steady flow field, a self-confined region of spherical shape, should occur on the axis. One may think, in this regard, of Hill's spherical vortex (A description of Hill's spherical vortex can be found in Refs. 18 and 19) in which vorticity is continuously distributed in a sphere and there is no vorticity at all beyond the sphere.

Then the question may rise, is this flow unique? Given the above initial distribution of outer vorticity, the sphere is perhaps the only shape within which fluid can be confined. A different vorticity distribution might well yield another shape, provided the duct walls were also modified in the proper way. There seems to be no flow of this character in two dimensions, nor should it be expected; a straight vortex line can pass around a cylinder without stretching and hence without exerting a containing force. Therefore, the plane-flow experiment by Ragsdale and Lanzo (Ref. 20) is probably only superficially comparable to the flow we have just proposed to study. We feel that the axisymmetric geometry may be fundamental to the success of the approach.

Another question may rise very naturally. One may ask, can this

- 4 -

kind of confined region exist in a real situation? Turbulence and separation characteristics of the flow may undermine its existence. And then even if these problems can be brought under control, would the self-confined region be stable? Can a region of fluid be confined by the resistance of smoke-rings in the outer flow to the stretching process involved in passing around this region? In fact, the Hill's spherical vortex flow is not statically stable without the interposition of, for example, surface tension at the sphere.

Theoretical analysis of the existence and stability questions is difficult for the proposed self-confined flow in a real situation. It is obscured by factors like turbulence, viscous effect, separation, flow symmetry, etc. Examples of such flows are scarce. Most closely related example occurs in the physiological phenomenon of peristaltic pumping actions of the ureter, the gastro-intestinal tract, the bile duct or other glandular ducts. In their paper (Refs. 21 and 22) Shapiro, Jaffrin and Weinberg described the discovery of a surprising phenomenon called "trapping" in the peristaltic pumping process. In their theoretical model, they assumed an inertia-free flow of constant density and viscosity fluid, and that the wall motion consisted of an infinite sinusoidal wave train of infinite wave length. In the wave frame of reference, the velocity had a parabolic profile --- similar to our test condition in the incoming pipe (see Chapter III for further details); and under certain pumping range, the center streamline split to enclose a bolus of fluid particles describing closed streamlines or the so called "trapping" phenomenon. In the laboratory frame of reference, this bolus moved as a whole at the wave speed as if trapped by the wave. Accordingly,

- 5 -

the fluid particles contained in the bolus moved at a mean speed of advance exactly equal to the wave speed. This trapping phenomenon does have some similarity to the self-confined flow we have proposed to study here.

More recently, Hung and Brown (Ref. 23) have reported the finding of a trapping region in their experimental study of solid-particle motion in two-dimensional peristaltic flows. This trapping region formed a pair of vortices as viewed in the moving frame of reference. Again, this finding has some similarity, though maybe only superficially, to the flow pattern in our self-confined region as indicated by the tuft probe (see Chapter IV). Both examples of the peristaltic flows mentioned above were for the low Reynolds number cases. The present study, however, has shown that a self-confined region (described in later chapters) exists in a flow of very high Reynolds number (about 150,000).

Attempting to answer some of , if not all, the questions raised, this experimental study was undertaken. The main effort has been made on trying to produce this flow in the laboratory, if possible, and to map out the flow field after it had been successfully produced. Then based on the measured flow data, attempts are made to clear up some aspects of the important question about the flow stability.

3. Outline

In the second chapter, a prior theoretical analysis based on inviscid-flow theory for an assumed inviscid, incompressible, steady flow in a conservative force field is reviewed. Pertinent equations are obtained; and proper solutions are found.

- 6 -

In the third chapter, experimental methods and the description of the apparatus are presented to establish an experiment which will represent the theoretical model. The method of generating that crucial ring-vorticity distribution by the "vorticity generator" is delineated. The stability of the generated velocity profile is analysed. Furthermore, flow measurement equipments for both the mean speed and turbulence intensity are described in some detail. They consist of the constanttemperature hot wire anemoneter system and its associated equipments, the traversing mechanism, pitot-static probes and micromanometers. An visualization scheme using a piece of short, soft tuft at the end of a small hypodermic tubing is employed in the whole test chamber to give an approximate visual indication of the flow field. The rough picture thus obtained is then compared with the hot wire measurements to form an idea of the flow.

Visualization results from the tuft probe as well as the quantitative results of the speed and turbulence intensity from hot wire measurements are given in the fourth chapter. Situations inside the incoming pipe, both with and without the vorticity generator, and in the test section are included. Important information summarized in the form of graphs is presented. Samples of measured data are included in the Appendix. Furthermore, a flow rate calculation is performed to verify the existence of the self-confined region in the test section.

Finally, some discussions and conclusions on this experimental study are presented in the fifth chapter. Its potential applications and the direction for future studies are suggested.

- 7 -

CHAPTER II

THEORY

In this chapter, we investigate the confining mechanism of the flow provided by the resistance of the vortex lines to the stretching process involved, and also find the necessary conditions required of the flow field such that general criteria can be established for the realization of an experiment in the laboratory.

1. The governing equations

Vorticity is the key element in this problem. "Therefore, mathematical equations can be more conveniently analysed by starting with the vorticity equation rather than the usual momentum equation. Continuity and vorticity equations may be written in the form of Cauchy's equations of motion as follows.

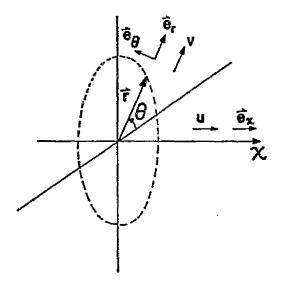
$$\begin{cases} \frac{D\rho}{Dt} + \rho \nabla \cdot \vec{q} = 0 \qquad (2-1)\\ \frac{D\vec{\omega}}{Dt} = (\vec{\omega} \cdot \nabla)\vec{q} - \vec{\omega}(\nabla \cdot \vec{q}) + \nabla P \times \nabla(\frac{1}{\rho}) \\ + \nabla \times \vec{f} + \nabla \times (\frac{1}{\rho} \sigma_{ij,j}) \qquad (2-2) \end{cases}$$

Where ρ , \vec{g} , $\vec{\omega}$, ρ , \vec{f} , and σ_{ij} represent the fluid density, velocity, vorticity, static pressure, volume force and viscous stress tensors respectively.

In order to make things simple, we now assume that the fluid is

- 8 -

inviscid and incompressible. Furthermore, the flow is steady, and in a conservative force field. Then the following relationships hold:


$$\begin{cases} \sigma_{zj} = 0 \\ \nabla P \times \nabla \left(\frac{1}{p}\right) = 0 \\ \frac{\partial}{\partial t} = 0 \\ \nabla \times \vec{f} = 0 \end{cases}$$

Aduations (2-1) and (2-2) can thus be simplified to:

$$\begin{cases} \nabla \cdot \vec{q} = 0 \quad (2-3) \\ (\vec{q} \cdot \nabla) \vec{\omega} = (\vec{\omega} \cdot \nabla) \vec{q} \quad (2-4) \end{cases}$$

Since we are looking for the solutions of a confinement region in a vorticity field without swirling component, an axisymmetric geometry will be assumed. For this case, a cylindrical coordinate system (Γ, θ, χ) is most convenient (Figure 2-1A). In this figure, C_{Γ}, C_{θ} , C_{χ} are the unit vectors in the direction of their respective coordinates. As a consequence, all derivatives with respect to Θ will vanish, i.e., $\frac{\partial}{\partial \Theta} = 0$, Velocity has only two components in the Γ and χ directions and the vorticity has only one component in the azimuthal direction. They may be written as:

$$\begin{cases} \vec{q} = u \vec{e}_{\chi} + v \vec{e}_{r} \qquad (2-5) \\ \vec{\omega} = \nabla \times \vec{q} = \omega_{\theta} \vec{e}_{\theta} \qquad (2-6) \end{cases}$$

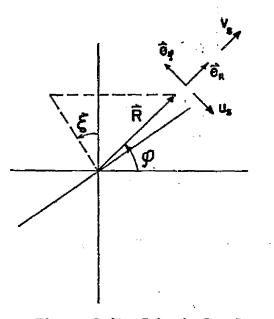


Figure 2-1A. Cylindrical coordinate system.

Figure 2-18. Spherical polar coordinate system.

Equations (2-3) and (2-4) are then reduced to the following form:

$$\int \frac{\partial}{\partial r} (rv) + \frac{\partial}{\partial \chi} (ru) = 0 \qquad (2-7)$$

$$\left(u\frac{\partial}{\partial\chi}\left(\frac{\omega_{\theta}}{r}\right) + V\frac{\partial}{\partial r}\left(\frac{\omega_{\theta}}{r}\right) = 0$$
(2-8)

Equation (2-7) suggests a stream function which will satisfy the continuity equation identically. Hence we define a stream function ψ such that:

- 10 -

l

$$\begin{cases} ru = \frac{\partial \psi}{\partial r} = \psi_r & (2-9) \\ rv = -\frac{\partial \psi}{\partial \chi} = -\psi_\chi & (2-10) \end{cases}$$

1 . . .

1

1

1

Substituting equations (2-9) and (2-10) into [rx (2-8)], we obtain:

$$\Psi_{r}\frac{\partial}{\partial\chi}\left(\frac{\omega_{0}}{r}\right) - \Psi_{\chi}\frac{\partial}{\partial r}\left(\frac{\omega_{0}}{r}\right) = 0 \qquad (2-11)$$

It is obvious that if we let $(\omega_{\varphi}/r) = -F(\psi)$, it would satisfy this equation identically. Therefore, from equation (2-6), an expression can be derived for ω_{φ} , the Θ -component of the vorticity, in terms of the stream function ψ . It is:

$$\begin{split} \omega_{\theta} &= \nabla \times \vec{q} \\ &= -\frac{\partial u}{\partial r} + \frac{\partial V}{\partial \chi} \\ &= -\frac{1}{r} \left(\psi_{rr} + \psi_{\chi\chi} - \frac{\psi_{r}}{r} \right) \end{split}$$
(2-12)

By substituting $\omega_{\theta} = -r F(\psi)$ into equation (2-12), we can arrive at the following relations in terms of the stream function ψ and an unknown function $F(\psi)$ as:

$$\int \Psi_{xx} + \Psi_{rr} - \frac{1}{r} \Psi_{r} = r^{2} F(\Psi)$$
 (2-13)

$$F(\Psi) = -\frac{\omega_{\sigma}}{r} \tag{2-14}$$

- 11 -

·[- · · ·

E.

This then becomes the set of governing equations for the flow problem we seek to explore.

2. Solutions

The set of equations shown above involves an unknown function $F(\psi)$. Once a certain value of $F(\psi)$ is specified, a solution to equation (2-13) can then be attempted. Such a solution has been found by Moore and Leibovich (Ref. 17), and is presented below. The simplest case is when $F(\psi)$ vanishes everywhere in the flow. This would represent an irrotational flow field and the stream function is simply that of a potential flow. However, this is not the flow we are interested in.

Now if we assume that $F(\Psi)$ is a constant, i.e., the vorticity is simply proportional to the radial distance from the axis of symmetry, Γ , not just along each stream surface, but throughout the flow; that $\omega_{\theta} = -\alpha \Gamma$. Then the right-hand side of equation (2-13) becomes just $\alpha \Gamma^2$. A suitable solution for our purpose can then be constructed as follows:

$$\Psi = Kr^{2}(\chi^{2} + r^{2}) + Mr^{2} + \frac{Nr^{2}}{(\chi^{2} + r^{2})^{3/2}}$$
(2-15)

Substituting (2-15) in to (2-13) and matching the coefficients, we can determine K. By differentiating equation (2-15), following relations are found:

$$\Psi_{\chi} = 2Kr^{2}\chi - 3N\frac{r^{2}\chi}{(\chi^{2} + r^{2})^{5/2}}$$

L

$$\begin{split} \Psi_{\chi\chi} &= 2Kr^2 - 3N\frac{r^2}{(\chi^2 + r^2)^{5/2}} + 15\frac{r^2\chi^2}{(\chi^2 + r^2)^{7/2}} \\ \Psi_r &= 2Kr\chi^2 + 4Kr^3 + 2Mr + 2N\frac{r}{(\chi^2 + r^2)^{3/2}} \\ &- 3N\frac{r^3}{(\chi^2 + r^2)^{5/2}} \\ \frac{1}{r}\Psi_r &= 2K\chi^2 + 4Kr^2 + 2M + \frac{2N}{(\chi^2 + r^2)^{3/2}} - \frac{3Nr^2}{(\chi^2 + r^2)^{5/2}} \\ r\left(\frac{1}{r}\Psi_r\right)_r &= 8Kr^2 - \frac{12Nr^2}{(\chi^2 + r^2)^{5/2}} + \frac{15Nr^4}{(\chi^2 + r^2)^{5/2}} \end{split}$$

The value of K is then found to be $\mathcal{Q}/10$. Hence equation (2-15) takes the form:

$$\psi = \frac{\alpha}{10} r^2 (\chi^2 + r^2) + Mr^2 + N \frac{r^2}{(\chi^2 + r^2)^{3/2}}$$
(2-16)

This solution involves the sum of a particular solution, a free stream, and a potential doublet. For Hill's spherical vortex (Refs. 18 and 19), one uses the first and second terms inside the sphere, and the second and third terms outside. The values of the constants M and N can be appropriately chosen to make a sphere of radius $/_{S}$ a stream surface. A different set of choices was made by Lighthill (Ref. 24) who was concerned with the rotational flow behind a curved bow shock washing over the forward part of a sphere. Thus, he determined M and N by applying a shock condition and a requirement that the sphere be a stream surface. In his case, the vorticity was outside the sphere.

In a similar manner, we will find the values of M and N by

- 13 -

applying equation (2-16) outside the sphere and requiring that both components of the velocity vanish on the sphere. So that the sphere, or the boundary of the confined region will become a stream surface. Recall from equation (2-9) and (2-10), we have the following relations:

$$u = \frac{1}{r} \psi_r = \frac{\alpha}{5} \left(\chi^2 + 2r^2 \right) + 2M - N \frac{\left(2\chi^2 - r^2\right)}{\left(\chi^2 + r^2\right)^{5/2}} \quad (2-17)$$

$$V = -\frac{1}{r} \psi_{\chi} = -\frac{\alpha}{5} \chi r + \frac{3N\chi r}{(\chi^2 + r^2)^{5/2}}$$
(2-18)

If we let U_s and V_s be the components of velocity, \vec{g} , in the directions of $-\vec{e}_{\varphi}$ and \vec{e}_R of a spherical polar coordinate system (R, φ, ξ) (Figure 2-1B); then $R = \sqrt{\chi^2 + r^2}$ is the spherical radius. By a simple transformation, expressions for U_s and V_s can easily be found in terms of quantities in cylindrical coordinates.

$$u_{s} = u \sin \psi - V \cos \psi$$

$$= u \frac{r}{R} - V \frac{\chi}{R}$$

$$= \frac{a}{5} \left(\frac{\chi^{2}r}{R} + \frac{2r^{3}}{R} + \frac{\chi^{2}r}{R} \right) + \frac{2Mr}{R} + \frac{N}{R^{5}} \left(\frac{2\chi^{2}r - r^{3} - 2\chi^{2}r}{R} \right)$$

$$= \frac{2}{5} arR + 2M \frac{r}{R} - N \frac{r}{R^{4}}$$

$$= \frac{r}{R} \left(\frac{2}{5} aR^{2} + 2M - \frac{r}{R^{4}} \right)$$

 $V_s = u \cos \varphi + v \sin \varphi$

. **I**.

$$= u \frac{x}{R} + V \frac{r}{R}$$

$$= \frac{a}{5} \left(\frac{x^{3}}{R} + \frac{2xR^{2}}{r} - \frac{xr^{2}}{r} \right) + \frac{2Mx}{R} + \frac{N}{R^{5}} \left(\frac{2x^{3} - xR^{2} + 3xr^{2}}{R} \right)$$

$$= \frac{a}{5} xR + \frac{2Mx}{R} + \frac{2Nx}{R}$$

$$= \frac{x}{R} \left(\frac{1}{5} aR^{2} + 2M + \frac{2N}{R^{3}} \right) \qquad (2-20)$$

Now we apply the required boundary conditions to U_s and V_s , i.e., U_s and V_s both vanish on the sphere of radius Γ_s . Then, at $R = \Gamma_s$ the following conditions hold:

$$\begin{cases} \frac{2}{5} a r_s^2 + 2M - \frac{N}{r_s^2} = 0 \\ \frac{1}{5} a r_s^3 + 2M + \frac{2N}{r_s^3} = 0 \end{cases}$$

$$\begin{cases} M = -\frac{1}{6} a r_s^2 \\ N = \frac{1}{15} a r_s^5 \end{cases}$$
(2-21)
$$(2-22)$$

Substitute the values of M and N in equations (2-21) and (2-22) into (2-16), (2-17), (2-18), (2-19) and (2-20), final solutions are found.

$$\psi = ar_s^4 (r')^2 \left[\frac{1}{10} (R')^2 - \frac{1}{6} + \frac{1}{15} \frac{1}{(R')^3} \right]$$
(2-23)

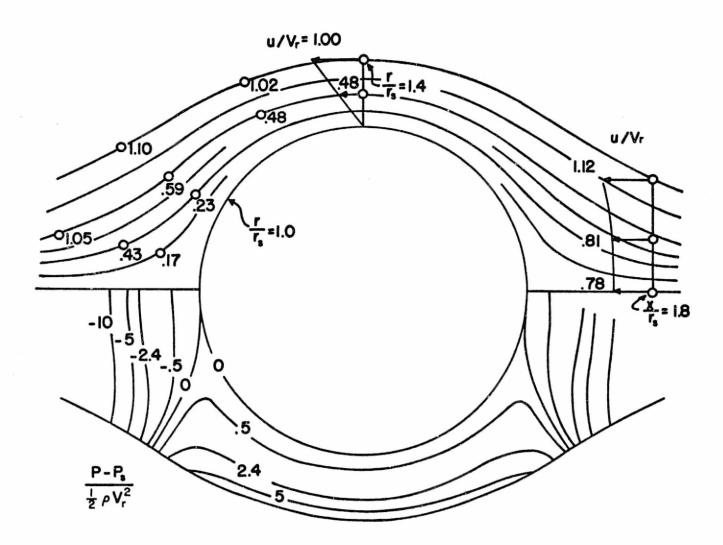
$$u = \frac{ar_{3}^{2}}{15} \left\{ 3 \left[(\chi')^{2} + 2(r')^{2} \right] - 5 + \frac{2(\chi')^{2} - (r')^{2}}{(R')^{5}} \right\}$$
(2-24)

$$V = \frac{ar_{s}^{2}}{15} (3r'\chi') \left[\frac{1}{(R')^{5}} - 1\right]$$
(2-25)

$$\mu_{s} = \frac{ar_{s}^{2}}{15} r' \left[6(R')^{2} - 5 + 2\left(\frac{1}{R'}\right)^{3} \right]$$
(2-26)

$$\mathbf{v}_{s} = \frac{\alpha r_{s}}{15} \chi' \left[3(R')^{2} - 5 + 2\left(\frac{1}{R'}\right)^{3} \right]$$
(2-27)

Where primed quantities are non-dimensionalized with reference to $arsigma_{\mathcal{S}}$.


$$\chi' = \frac{\chi}{r_s}$$
, $r' = \frac{r}{r_s}$, $R' = \frac{R}{r_s} = \frac{\sqrt{\chi^2 + r^2}}{r_s} = \sqrt{(\chi')^2 + (r')^2}$

3. Evaluation of the solution

The solutions obtained above are for the specific conditions that we have previously established. Clearly, both \mathcal{U} and \mathcal{V} or \mathcal{U}_{5} and \mathcal{V}_{5} vanish on the surface of the sphere $\mathcal{R}'=1$. Now, for given values of the constants \mathcal{Q} and \mathcal{V}_{5} , the solutions can be evaluated for velocity and pressure distributions. Stream surfaces can also be found. Figure 2-2 from Ref. 17 shows the essential features of this flow. Streamlines are curves in the upper half of the figure. The velocity at $\mathcal{V}'=1.4$, $\mathcal{X}'=0$ is denoted as \mathcal{V}_{F} , and all other resultant velocities are indicated at various positions on the streamlines as the ratio $\mathcal{U}/\mathcal{V}_{F}$. Pressure distribution is given by curves in the lower half of the figure. The axial velocity at $\mathcal{X}'=1.8$ is indicated.

Figure 2-2 shows that the streamlines are reasonably shaped for flow over a sphere. But it should be noted that there is no free stream in this flow; velocities approach infinity far upstream and far downstream. Thus, there is no characteristic velocity for this problem.

- 16 -

gure 2-2. Streamlines, velocities, and pressure distribution in the smoke-ring solution (From Ref. 17).

- 17 -

ŧ

Also note that, since velocities vanish on the sphere, the confined region at the center is at rest and at constant pressure \mathcal{P}_s .

It is quite remarkable that the velocity remains nearly constant over the central portion of each streamline path. This is reflected in the pressure contours as well. In the region 50° to either side of the central vertical, where pressure is higher than P_3 , pressure is nearly constant along streamlines.

Now one may ask, is the flow unique? Given an initial ringvorticity distribution, linear with Γ , the sphere is perhaps the only shape within which fluid can be confined. A different vorticity distribution might well yield another shape, provided the duct walls were also modified in the proper way. There seems to be no flow of this character in two dimensions, nor should it be expected; a straight vortex line can pass around a cylinder without stretching and hence without exerting a containing force. Therefore the plane-flow experiment by Ragsdale and Lanzo (Ref. 20) is probably only superficially comparable to the flow phenomenon just described. It is felt that the axisymmetric geometry is fundamental to the success of the approach.

As for the stability of the flow just mentioned, we will try to answer some aspects of this question by the following experimental study. Obviously, the quiescent center is favorable, as is the positive outward pressure gradient. The weak streamwise pressure gradient is no doubt helpful for bound y layer stability. As shown in Figure 2-2, pressure is nearly constant along streamlines. This circumstance should be helpful in maintaining an attached boundary layer along the duct walls.

- 18 -

CHAPTER III

EXPERIMENTS

As stated in the introduction, the primary objective of this study is to find out whether the self-confined flow described in the previous chapters does exist in a real situation; whether the flow turbulence and separation characteristics would undermine the existence of the confined region. Also, if the flow does exist, we hope at least some aspects of the stability question can be answered by the information obtained from mapping out the entire flow field.

First, and experimental apparatus was designed and developed in the laboratory in accordance with the theory formulated in the last chapter. The flow madium was air, and the initial assumptions of an inviscid, incompressible, and steady flow were closely met. Then a visualization method using a piece of short, soft tuft was used to identify the self-confined region and its surrounding flow field. Finally, quantitative measurements of flow mean velocity and turbulence data were taken with a constant temperature hot wire anemometer system. Analysis of these quantitative results are presented in the next chapter.

1. The flow apparatus

In order to conform to the initial assumptions made for the theoretical model of being an inviscid, incompressible and steady flow, a low speed (maximum Mach number was less than 0.07) flow apparatus was designed using air as the flow medium. Room air was drawn into an inlet chamber through high efficiency filters, then went through a turbulence-

- 19 -

manipulating section--consisting of a honeycomb and a flat screen--into a straight pipe. Thus the turbulence of the stream was reduced to an acceptable level. A vorticity generator was placed in the stream, at an appropriate distance behind the turbulence manipulator to shape the velocity profile and to produce the desired vorticity distribution. When the generated velocity profile was well established, a boundary layer removal section peeled off the boundary layer of the flow before it entered the test chamber. Combined with the low turbulence level in the flow, the effect of viscosity could thus be minimized.

The test chamber was machined out of Plexiglas. Its interior wall was shaped to be one of the stream surfaces obtained from the theoretical solution without any boundary layer correction because the estimated boundary layer thickness was small and its effect would be negligible. Attached to the downstream side of the test chamber was a four-way traversing mechanism; it could make axial and radial traverses, azimuthal rotation as well as tilting in any meridional plane. Then the flow went into a settling chamber through a slowly diverging diffuser, and exited at the blower outlet into the room. A schematic diagram of the flow apparatus is shown in Figure 3-1, and two photographs of the actual experimental set up are shown in Figures 3-2A & 3-2B.

1.1. Entrance section

The room air was drawn into the flow apparatus and then exited at the blower outlet into the room in an open return circuit. During the initial hot wire calibration stage, a severe dust problem was encountered. Both the wire and its supports were coated with a thin layer of fine,

- 20 -

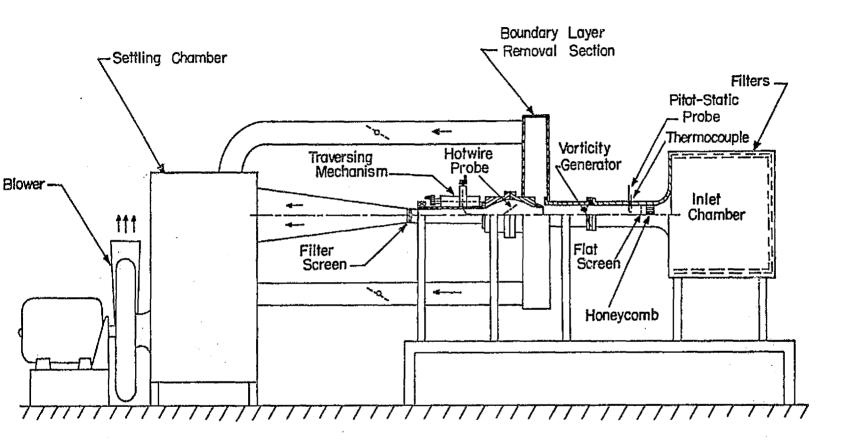


Figure 3-1. Schematic of the flow apparatus.

The state of the s

1 21 -

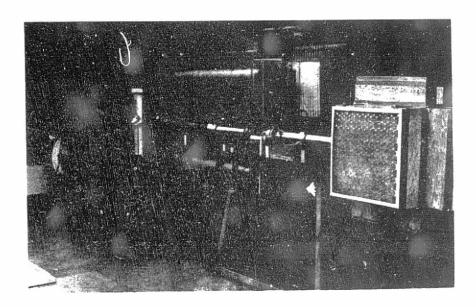


Figure 3-2A. Flow apparatus

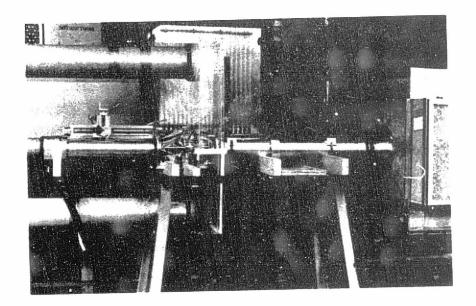


Figure 3-2B. Flow apparatus

ORIGINAL' PAGE IS OF POOR QUALITY

1

1

1

brownish dust powder causing the calibration curve to continously drift with the running time. Therefore, air filters of very high efficiency were used to solve this problem.

Two layers of filters were used on all five sides of a cubical inlet chamber; the remaining side was the inlet bellmouth. The first layer was a common furnace filter (24" x 24" size). It was used as a pre-filter to remove the larger sizes of particulate matter, lint and other contaminants. The second layer was a Model 7A10-L Flanders Airpure Absolute Filter, made by the Flanders Filter Inc., Washington, North Carolina. The overall filter dimensions were 24" x 24" x $5^7/6$ " with a flow capacity rated at 775 CFM.' This was a very high efficiency air filter; the minimum efficiency was 99.97% by the DOP (DioctyI Phthalate) test for a homogeneous smoke of 0.3 microns in diameter (Ref. 25). At the maximum test capacity of approximately 150CFM, pressure drop across each filter was about 0.05" of water gage. After these air filters were properly installed and sealed, a very clean air flow was achieved inside the flow apparatus and the problem of hot wire drift due to dust was completely eliminated.

An aluminum bellmouth was installed at the center of the remaining side of the inlet chamber and connected to a straight aluminum mipe of 4.144" inside diameter. At the entrance section, flow straighteners and "turbulence manipulators" were used to eliminate any swirling velocity component and to manage the turbulence level such that a low turbulence, axial flow was established in the straight pipe. A section of a precision, hexagonal, aluminum honeycomb (0.25" cell size x 1.45" long), manufactured by the Aerospace Technology Corporation, New York, N. Y.,

- 23 -

was used both as a flow straightener and as a part of the turbulence manipulator. The turbulence manipulator mentioned here consisted of a honeycomb section and a flat gauze screen (30 mesh/inch, 0.012" wire dia.) 1.04 inches downstream of the honeycomb. The choice of the honeycomb, the flat gauze screen and their relative spacings were experimentally found in order to achieve the desirable flow characteristics. These manipulators suppressed the level of the incoming turbulence and generated new turbulence with scales characteristic of the device and its shear layer. As pointed out by Loehrke and Nagib (Ref. 26) that the process of turbulence generation might be due to instabilities of wakes caused by the device or to boundary layers generated within the device (as in honeycombs at high Reynolds numbers), or to the action of the Reynolds stress on the mean shear. And the ultimate effect of these generation processes might at times be an overall reduction in the turbulence level. Hence, they could be used to control, manage and modify the incoming flow of high turbulence level to a low turbulence flow for practical applications.

The level, structure and decay of the generated turbulence depended, in part, on the instabilities and therefore could be modified by passive devices acting on the shear layers immediately downstream of the manipulators. For honeycombs, the suppression of the incoming turbulence appeared to mostly due to the inhibition of lateral components of the fluctuating velocity. It was conjectured by Loehrke and Nagib that part of the energy in the undesirable larger scales of motion drains away through the action of the Reynolds stresses of the smaller scale laminar and turbulent motions (including the instabilities). An

- 24 -

1

experimental study on the management of free-stream turbulence had been carried out by them and a quite extensive bibliography, on theoretical and experimental information of the effect of screens, honeycombs and other devices on turbulence, were included in their AGARD report.

The resulting flow in the pipe downstream of the turbulence manipulators were checked with both pitot-static probe and hot wire measurements. A swirl-free low turbulence stream (turbulence intensity about 1% of local velocity -- see Chapter 4 for detailed results) were established three to four pipe diameters downstream of the flat gauze screen.

1.2. Vorticity generator

It has been shown in the last chapter that one of the key features of this self-confined flow is the ring-vorticity distribution. Vorticity is axisymmetrically distributed throughout the flow in the fashion of a bundle of coaxial smoke-rings in axial motion; and the vorticity in each ring is simply proportional to the radial distance, Γ , from the axis of symmetry (i.e. $F(\Psi) = -\omega_g/\Gamma = \alpha$).

One of the main problems we faced at the beginning of the experiment was how to generate the required vorticity distribution in the flow apparatus conveniently. It should be noted that there was no free stream in the theoretical flow model; velocities approached infinity far upstream and far downstream (Cf. Figure 2-2). Ideally, the wall of the flow apparatus should correspond to a particular streamline such that the field velocity would have both axial and radial components as shown by equations (2-24) and (2-25). However, in order to simplify the construction, two separate sections were designed for the flow apparatus

- 25 -

--- a test section and a straight-pipe section. The test section was centered around the self-confined region, and its wall was machined in accordance with a particular streamline shape calculated from equation (2-23) (see Section III.1.1.4.). A straight-pipe section was used upstream of the test section in order to avoid difficult contour machining in a pipe. In doing this, it had been assumed that even the proper radial velocity component was not generated in the incoming pipe, the general confinement characteristics would not be affected to any significant extent as long as the proper vorticity distribution could be produced at the entrance of the test section. It was expected that once the flow entered the test chamber, due to the divergence of the wall, radial velocity components would be developed to provide the suitable flow field for confinement without any flow separation.

In a straight pipe flow, velocity had an axial but not a radial component. Therefore, the axial velocity profile had to be modified so that a prescribed vorticity distribution was established. If $F(\psi) = -\omega_{\phi}/r = \alpha$, a constant, the corresponding axial velocity profile could be found. Recall that:

$$\omega_0 = -\alpha r = -\frac{\partial u}{\partial r} + \frac{\partial v}{\partial \chi} = -\frac{\partial u}{\partial r}$$

There was no V component in the pipe. Integrating once with respect to Γ , we get:

$$u = \int_{0}^{r} a \varsigma d\varsigma + u_{\bullet} = \frac{1}{2} a r^{2} + u_{\bullet}$$
(3-1)

- 26 -

Where ς is a dummy variable, and u_o is the velocity on the axis of symmetry. When the dimension of the test chamber was specified, u_o could be chosen as the axial velocity at the chamber entrance according to the calculation of equation (2-24). This parabolic velocity profile would provide the proper vorticity distribution as well as the correct axial velocity on the axis of symmetry at the entrance of the test chamber.

In order to generate the parabolic velocity shown above for the proper vorticity distribution, a vorticity generator was used. The straight-pipe section was divided into two parts. The first part constituted the entrance section with flow straightener and turbulence manipulators. The second part was just a straight pipe. These two parts were joined together with flanges and the vorticity generator was installed between these two flanges in a holder. Both parts of the pipe were made of aluminum pipes of 4.144" inside diameter and 18" & 12" in length respectively. Along the centerline of both pipes, 1/8" diameter probing holes were drilled at 1/2 of a pipe diameter intervals starting from the flat gauze screen so that probes (both pitot-static & hot wire) could be inserted for measurements. The downstream end of the second pipe was also flanged to provide convenient joint to the test section through spacers. The length of each pipe was selected for the best results in velocity profile and turbulence intensity.

Various devices were tried as the vorticity generator. All these devices were designed to have variable resistance across the pipe diameter in order to produce a parabolic velocity profile with larger velocity at larger radius. Some of the devices which were able to produce

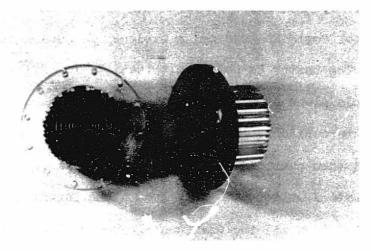
- 27 -

. 1

1. .

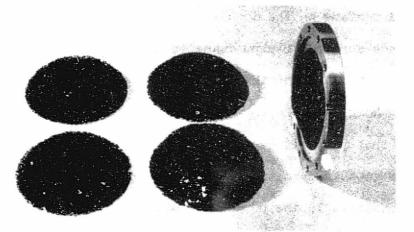
1

1

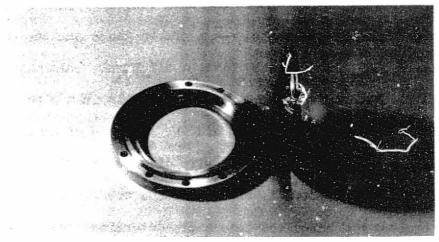

this kind of velocity profile are described below.

The first device tried was a non-uniform shear screen (Figure 3-3A). It consisted of concentric rings of various diameters suitably spaced to give the desired solidity. The entire shear screen assembly was bounded to a metal honeycomb and mounted in a metal frame. The honeycomb served to stiffen the assembly structurally and to prevent flow instabilities. This non-uniform shear screen redistributed the energy of the incoming stream by selectively introducing losses. The static pressure immediately downstream of the sereen was not constant over the screen because the screen losses were not uniform. Far downstream, the flow readjusted to a condition of uniform static pressure. Consequently it was not possible to simply extrapolate the desired velocity distribution back to the screen to determine the required distibution of screen losses. A theory for such a screen design and calculation was provided by Vidal and Curtis in their report (Ref. 27) along with some experimental results. This non-uniform shear screen was tested in the present experiment; the velocity profile generated, while generally conformed to the required form, did not have good axisymmetry. It was difficult to fabricate a series of good quality concentric rings and mount them accurately on the honeycomb support in our machine shop. For this reason, other methods were tested.

The second device tried was a shaped foam screen (Figure 3-3B). A piece of Scott industrial foam (fully reticulated polyurethane foam), made by Scott Paper Company, Philadelphia, Pa., was first soaked in a liquid epoxy, then cleaned with compressed air and hardened in room temperature so that a thin, hard coating was applied to the entire foam


- 28 -

Ł



ł.

A. Non-uniform shear screen

B. Shaped foam screen and holder

C. Shaped gauze screen and holder

1

1

Figure 3-3

structure without any hole blockage. The liquid epoxy used was composed of a Hysol resin R8-2038 and a hardener H2-3404 made by the Hysol Division of The Dexter Corporation, Olan, N. Y. After 24 hours of curing time, this piece of hardened foam was then soaked in liquid wax and allowed to cool down till a solid piece of mold was formed. The wax mold was then machined on a lathe to a desirable shape which could be fitted into a holder and installed in the incoming pipe. Then the wax was melted down and the foam was cleaned with appropriate wax solvent. The finished foam screen had a flat surface on the upstream side and a curved surface on the downstream side. It also provided variable resistance across the pipe diameter and produced the required velocity profile. The shape of the curved surface could be obtained with a few trials. However, like that of the first device, although the velocity profile thus produced generally agreed with the shape required, it did not have good axisymmetry. The created velocity profile appeared to be quite sensitive to the pore uniformity of the curved surface. It was difficult to get a good pore uniformity on any surface of a porous foam. Therefore, this foam screen was not used for our experiment.

The third device tested was a shaped gauze screen, (Figure 3-3C) and (Figure 3-4), furnished by Livesey and Laws. This method of producing a required axisymmetric velocity profile in a pipe was worked out by them and reported in Refs. 23 and 29. A piece of gauze screen of known mesh size (20 mesh/in.) and wire diameter (0.016 inch dia.) -thus of known gauze porosity and resistance coefficient -- was successively pressed and annealled into a pre-determined shape. A specially made steel punch and hard rubber die arrangement was used to form the

- 30 -

ł

ļ

. . **.**

shape of the gauze screen, and it was necessary to anneal the gauze between each press to prevent the screen from tearing. The edge of the finished gauze screen was then rigidly sandwiched between two metal rings which in turn could fit into a holder. The whole gauze screen and holder assembly was then tightly bolted between the flanges of the upstream and downstream sections of the incoming straight pipe. The velocity profile produced by this shaped gauze screen agreed generally well with the required form, and it was reasonably axisymmetric (maximum velocity deviation from the corresponding averaged value was about 5% in the azimuthal distribution ---- see detailed results presented in the next chapter). Among the various devices tried, the shaped gauze screen provided the best velocity distribution and was finally used as the vorticity generator for this experimental study.

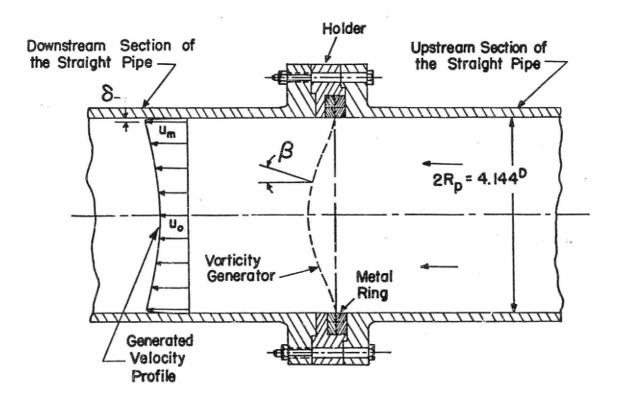


Figure 3-4. Gauze screen installation.

- 31 -

For a given velocity profile, the required gauze screen shape could be found with the method outlined as the "Indirect Problem" in the papers by Livesey and Laws. 'he solution, in this case, employed an iterative numerical technique with the local screen angle, β , as an unknown. Gauzes with the same resistance and deflection coefficients would produce the same downstream velocity profiles. By varying the gauze mesh size and wire diameter so that the screen porosity remained constant, the effect was to vary the turbulence characteristics (e.g. intensity and scale) of the downstream profile. In such a way, it was possible to vary the profile shape and initial turbulence structure of the profile independently. The analysis also provided the method of calculation for the "Direct Problem" -- i.e. for a given gauze screen shape, the downstream velocity distribution could be calculated. Some experimental results were also presented in these papers.

There was another work by Sajben, Kroutil, Hoffman and Sedrick (Ref. 30) on generation of arbitrary axisymmetric velocity profiles. It used plane screens of variable solidity, fabricated by electroplating a uniform screen in a rotating apparatus. A wide range of screen mesh sizes could be used, permitting control of the overall turbulent intensity as well as velocity profiles. Good results had been found for relatively fine screens (24 mesh/in.). This method was not tried in our experiment.

1.3. Boundary layer removal section

In order to minimize the effect of the viscous boundary layer, a boundary layer removal section was built at the junction of straight

- 32 -

pipe and test section (Cf. Figures 3-1, 3-2 & 3-5). Immediately before the established flow, with the prescribed velocity profile, entered the test chamber, fluid in an annulus of 3 inches inside diameter and 4.144 inches outside diameter were peeled off into the boundary layer removal section. Thus the flow entering the test chamber were free from any previous boundary layer build-up. Of course, new boundary layers would build up again in the test chamber; nevertheless, the effect of this new layer would be kept to a minimum by the removal procedure.

The incoming straight pipe had an inside diameter of 4.144 inches and was bolted to the test section, with an entrance scoop of 3 inches of inside diameter, through six spacers. A chamber, made of Plexiglas, was built around the gap bridging the downstream section of the straight pipe and the test section. It was sealed on both sides so no outside air could leak into the chamber. Two furnace pipes, 6 inches in diameter, connected the boundary layer removal chamber to the rear settling chamber as shown in Figure 3-1. In each of these pipes, a butterfly valve was installed to allow controls on removal rate.

In the original design, the entrance scoop of the test section had a rather sharp leading edge. Very turbulent and unsteady flow conditions were found in the test chamber which was later traced to having been caused by the leading edge separation at the sharp leading edge. This problem was corrected by blunting out the sharp edge to a semicircular shape.

1.4. Test section

The test section was just a hollowed chamber in which the self-

- 33 -

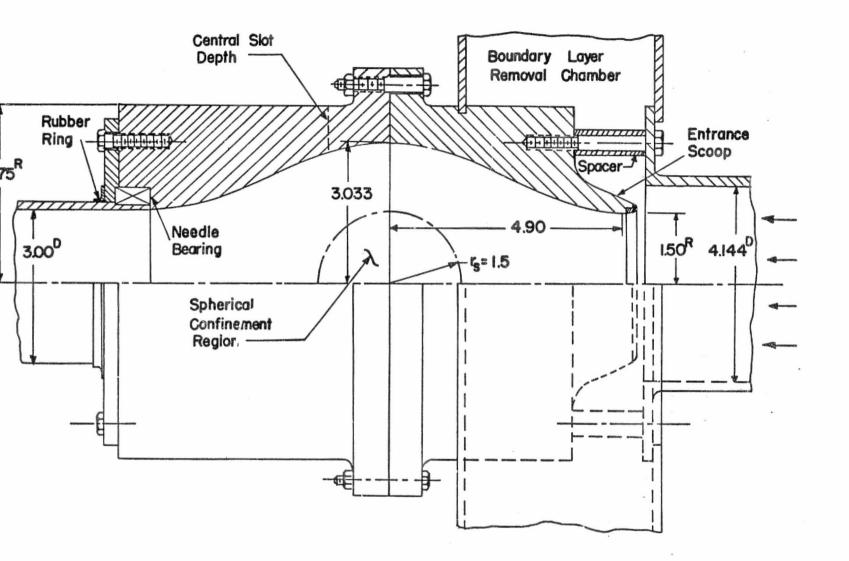


Figure 3-5. Layout for the test section

- 42 -

confined region was to appear. It consisted of two halfs, both machined out of solid Plexiglas material (Figures 3-5 & 3-8). The essential features of this section; besides the entrance scoop of the upstream half, was the special interior wall configuration of the whole section. It must be shaped as one of the stream surfaces as prescribed by equation (2-23) so that the condition of no flow across the stream surface was satisfied.

Before designing the test section for manufacturing, a series of streamline calculations were made. First, the stream function ψ was non-dimensionalized with αr_s^4 , and then the non-dimensionalized stream function ψ' was assigned a series of constant values for streamline coordinate calculations. Namely:

$$\psi' = \frac{\psi}{\alpha r_s^4} = (r') \left[\frac{1}{10} (r')^2 - \frac{1}{6} + \frac{1}{15} \frac{1}{(r')^3} \right]$$
(3-2)

Different sets of streamline coordinate values calculated from equation (3-2) were then plotted on a graph for design purpose.

As stated in the last chapter, the constants M and N in the stream function solution of equation (2-16) were found by choosing a sphere of radius Γ_s to be a stream surface $\Psi = 0$ such that both velocity components, $\mathcal{U} \And \mathcal{V}$, vanished on the sphere. Now the size of this spherical confinement region was chosen to have a diameter of 3 inches, i.e. $\Gamma_s = 1.5$ inches. Then a value of $\Psi' = 1$ was selected for the evaluation of wall configuration. This would give us a reasonable wall size of $\Gamma = 3.033$ inches at the center of the test section, and $\Gamma = 1.499$ inches at $\chi = 4.9$ inches at the entrance scoop. The final coor-

dinate values for the test section interior wall are shown in Table 1 in the Appendix.

At the very center of the test section wall, a slot was cut along the center line to provide access for various probes into the test chamber. This slot could be tightly sealed against air leaks with an insert, flush with the inside wall, without causing any disturbances in the flow. At the rear end of the downstream half, a precision traversing mechanism was mounted on a pipe through a needle bearing seated on the test section. On the outside, a rubber ring sealed the air passage so that the whole traversing mechanism and pipe assembly could rotate around with respect to the test section without any air leakage into the flow.

1.5. Exit section

The flow, coming out of the test chamber, went through a section of straight pipe (for mounting the traversing mechanism) into a conical diffuser, passed into the rear settling chamber, and then exited into the room at the blower outlet. The diffuser was made of sheet metal and had a small angle of divergence of 4.7° in order to prevent separation. The diffuser had dimensions of 4 inches inside diameter at the inlet, 12 inches diameter at the outlet and a length of 49 inches. At the junction of the straight pipe and the diffuser inlet a thin layer of furnace filter material was placed across the entire area, supported by criss-crossed wires, in order to damp any downstream disturbances. For the same reason, a gauze wire screen was placed at the junction of the diffuser outlet and the rear settling chamber to insure that minimum chamber fluctuations could propagate upstream into the flow.

- 36 -

The rear settling chamber was constructed of heavy plywood panels. The diffuser exit and two boundary layer removal pipes were connected to this chamber as shown in Figure 3-1 & 3-2A. There were several baffle plates inside the settling chamber to further damp any fluctuation that might be caused by the downstream suction blower. A 5 HP centrifugal blower, made by Baffalo Forge Company, was connected to the rear end of the settling chamber. The maximum flow speed obtained in the incoming straight pipe, without the vorticity generator, was about 92 ft/sec. A gate valve with vernier scale was installed at the blower exit to control the flow rate through the apparatus.

2. Measuring equipment and traversing mechanism

I

The measuring equipment used in this experiment included pitotstatic probes, manometers, micromanometers, tuft probes, thermocouples, the constant hot wire anemometer and its associated instrumentation, digital voltmeters, a microvoltmeter, an oscilloscope, a Dynograph chart recorder, etc. The arrangement of the equipment can be seen on Figures 3-1, 3-2, and 3-7. An instrumentation schematic is shown on Figure 3-6.

2.1. Pitot-static probes, manometers and thermocouples

The initial pipe flow velocity and its profiles were measured with standard pitot-static probes and a manometer. Later, a micromanometer was used with the standard pitot-static probes for more accurate measurements as well as for the hot wire calibrations. After the initial measurement stage, a pitot-static probe was permanently

- 37 -

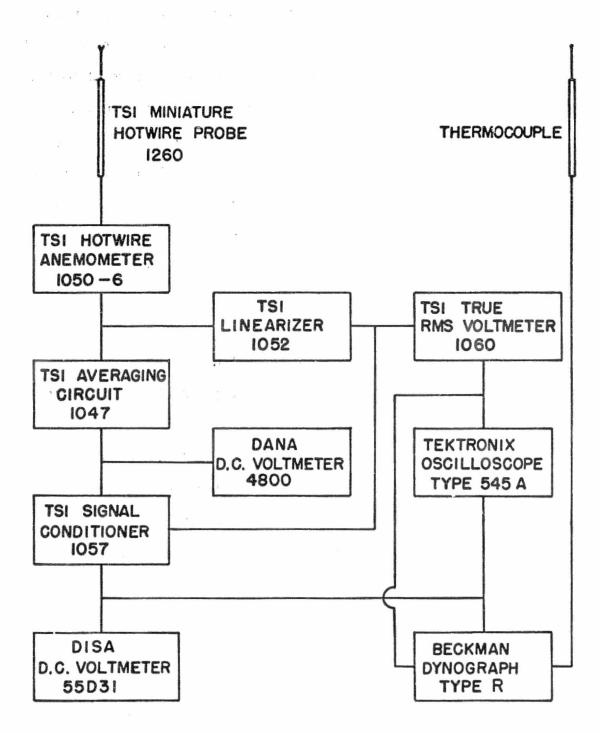


Figure 3-6. Instrumentation schematic

- 38 -

1

1

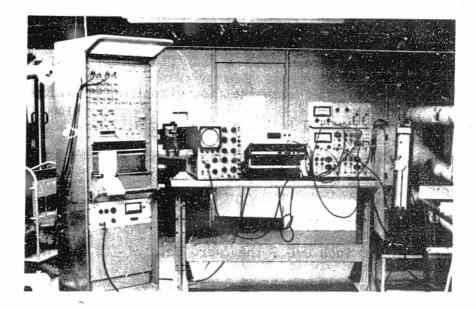


Figure 3-7. Instrumentation for flow measurement

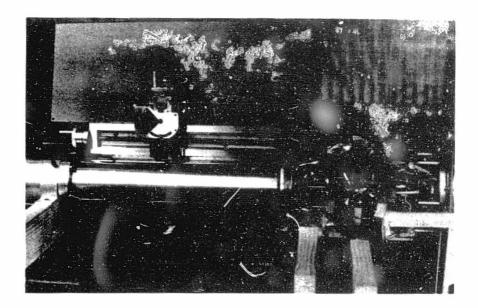


Figure 3-8. Test section and traversing mechanism

- 39 -

installed in the upstream section of the incoming pipe to continually monitor the flow velocity during the test. It was located 6.25 inches downstream of the flat screen where a plug flow profile existed. The probe was carefully aligned with the flow direction and raised above the pipe centerline to 0.50 inch away from the wall and outside the boundary layer so as to minimize the disturbance and obstruction caused by the probe stem.

Two sizes of the standard pitot-static probes were used, an 1/16 inch 0.D. and an 1/8 inch 0.D.; they were both of the Prandtl type and made by The United Sensor and Control Corp., Watertown, Mass. They were calibrated by the manufacturer and had an accuracy of 0.5% for a Mach number less than 0.5. The micromanometer was made by The Meriam Instrument Company, Cleveland, Ohio. It had a range of differential pressure readings of 0.001 inch to 10 inches of water. A special indicating fluid was used in the micromanometer for accurate readings; it was a mixture of 1 part of Meriam 1000 green fluid concentrate into 9 parts of distilled water such that the mixed green indicating fluid had a specific gravity of 1.000.

Another specially made miniature pitot-static probe was used to obtain qualitative velocity and pressure information of the flow in the test section. It was inserted from the top and away from the center of the test section so that the tip of the probe would measure the flow condition across the central diameter. Quantitative measurements were later carried out with the hot wire anemometer.

A copper-constantan thermocouple was also installed in the upstream section of the incoming pipe, in front of the permanent pitot-

- 40 -

1

I.

.

1....

ļ

static probe, to monitor the temperature of the flow. The thermocouple output signal was fed into a Keithley Model 149 milli-microvoltmeter and a Type R, Beckman Dynograph so that accurate temperature readings and a record could be obtained. These temperature measurements were important during the hot wire calibration and measurement.

2.2. Constant Temperature hot wire anemometer system

-1

Because information on turbulence intensity was needed to provide some insight into the flow stability question, and also due to the divergent-convergent nature of the flow in the test section with curved streamlines, the hot wire was chosen over the standard pitot-static probes for the final quantitative measurements. The flow direction inside the straight pipe, except in the regions immediately behind the turbulence manipulator and the vorticity generator, was well defined. Also the flow in the test section was in the meridional plane (no swirling component). Therefore, as long as the sensing element of the hot wire probe was placed perpendicular to the meridional plane, both the turbulence intensity and flow speed could be measured without too much difficulty.

The instrument used for the final quantitative measurements was a constant temperature hot wire anemometer system made by the Thermosystems Inc., St. Paul, Minn. The system was of a No. 1050 series consisting of the following components (Ref. 31):

Model 1051-6 monitor and power supply unit Model 1050 constant temperature anemometer Model 1052 signal linearizer

L

Model 1057 signal conditioner Model 1047 averaging circuit Model 1055 linearizer Model 1060 true RMS voltmeter Model 1015C correlator

Model 1260 straight miniature probe

The straight miniature probe had a main body size of 0.06 inch in diameter and 2 inches in length. Rooted on one end of the probe body were two small gold plated sensor supports. The distance between the tips of the sensor supports was enlarged from 0.06 inch to 0.082 inch. A plain platinum coated tungsten wire of 5 micron in diameter (instead of the TSI supplied sensor element) was stretched over this distance and spot welded at the tip of each support by a special welder equipped with a microscope. The reasons for this modification were to obtain a larger length to diameter ratio for the sensor and also that a damaged sensor could be more conveniently replaced by ourselves in the laboratory. In our case, a length to diameter ratio of 416 was achieved. According to Champagne, Sleicher and Wehrmann (Ref. 32), the correction factor due to sensor length ranged from 0.2 to 0.0 for length to diameter ratios of 200 and greater than 600 respectively. So in this experiment ---- under most circumstances, the flow was perpendicular to the sensor --- the effect of the correction factor could be assumed to be very small.

The miniature probe was fitted into either a straight or a bent support tube. Both support tubes were made of 1/8 inch diameter, thickwalled stainless steel tubing. The straight tube, 6.785 inches in

- 42 -

L

length, was used for flow measurements in both the incoming straight pipe and in a 1.2 inches diameter cylindrical tunnel around the axis of the test section. For measurements in the incoming straight pipe, the support tube was inserted through the probing holes in the wall; for that in the test sectior, the support tube was inserted from the section exit for minimum disturbances. The bent tube, 7.643 inches in length, had a 45° bend 1.383 inches from the end. It was also inserted from section exit into the test section for flow measurements in the areas not reachable by the straight tube. Finally, there was a 12.97 inch long support tube extension. It was made of 3/16 inch diameter, thick-walled stainless steel tubing with a 90° bend 6 inches from the end. This extension was used to join the support tubes to the traversing mechanism for flow measurements in the test section.

Model 1051-6 monitor and power supply unit was a six channel unit. It was capable of supplying steady, regulated power to six hot wire channels. At the same time, it could monitor, on a taut-band panel meter with 1/2% of full scale accuracy, either the bridge output voltage or the linearized output voltage for any of the channel selected. Each model 1050 constant temperature anemometer unit was equipped to handle the input and output signals for a single hot wire channel. It had all the necessary electronic circuits for the bridge, feed back, amplifier, stability control, trim control, temperature and resistance measurement controls, square wave calibrations as well as filters and resistors. For more detailed information on both the model 1051-6 and 1050 units, readers are referred to the TSI Bulletins and Manuals (Refs. 31 and 33).

- 43 -

The Model 1052 signal linearizer was used to linearize the output of a constant temperature anemometer. Calibration curves of hot wire sensors generally would not follow any analytical expression and varies in shape for different sensors and fluids. These non-linear calibration curves were frequently linearized for convenient data analysis. Linearization was accomplished by approximating a curve with a fourth degree polynomial. The four coefficients of the polynomial were determined by using a computer program based on the standard leastsquare curve fitting technique. Then these four coefficients were set into the linearizer for a calibration run. If the result was good, the linearizer was ready for operation. Detailed information can be found in the TSI Bulletin and Instruction Manual (Refs. 31 and 34).

The Model 1057 signal conditioner was a precision device for making more accurate, controlled measurements with anemometer equipment. signals from either the anemometer, linearizer or other sources could be zero suppressed, filtered or amplified in various manners. The Model 1047 averaging circuit was a low pass filter used for mean flow measurements by averaging a voltage signal with selectable time constants. More information on these two units could be found in (Refs. 31, 33, and 35).

The primary function of the Model 1060 true RMS meter was to measure the true RMS value of a random signal or a turbulence quantity in the flow on a 1/2 % linearity taut-band panel meter. A mean square output was also provided. Now suppose that f(t) is an arbitrary, time dependent function where t represents time. The mean square value of f(t) is:

- 44 -

$$\overline{f^{3}(t)} = \lim_{t \to \infty} \frac{1}{t} \int_{-\frac{t}{2}}^{\frac{t}{2}} f(t) dt$$

and the root mean square value is:

$$\sqrt{f^2(t)}$$

Normally a transducer is used to convert these to voltage signals for measurement purpose. In actual practice, the mean square meter or root mean square meter is generally coupled with a capacitor so D.C. voltages are not processed. Therefore, the measurement is really for a variance or standard deviation quantity. Variance is

$$\overline{f(t)} = \lim_{t \to \infty} \frac{1}{t} \int_{-\frac{t}{2}}^{\frac{t}{2}} \left[f(t) - \overline{f(t)} \right]^2 dt \qquad (3-3)$$

and the standard deviation is:

$$\sqrt{\overline{f(t)}} = \left\{ \lim_{t \to \infty} \frac{1}{t} \int_{-\frac{t}{2}}^{\frac{t}{2}} \left[f(t) - \overline{f(t)} \right]^2 dt \right\}^{\gamma_2}$$
(3-4)

12

Therefore, the mean square value with the Model 1060 meter is really a measurement of variance while the root mean square value is a standard deviation measurement. The term "true" root mean square meter is often utilized for a meter to distinguish it from the "untrue" meters. The later are essentially rectifier units that give an accurate root mean square reading only on a sine wave input. A "true" RMS meter gives an

- 45 -

accurate RMS reading independent of wave forms as long as the bandwidth and crest factor limitations of the meter are not exceeded. More detailed information can be found in (Refs. 31 and 36). The Model 1055 linearizer was modified to provide readings for the squared values of input signals. Both this unit and the Model 1015C correlator were not used for this experiment.

Three types of voltmeter were used. The first one, a DANA Model 4800 D.C. voltmeter was used to measure the D.C. component of an analog voltage. The anemometer bridge output signals were first routed to the Model 1047 averaging circuit then fed into this voltmeter to monitor the mean bridge output voltages for accurate mean velocity measurements through the use of the calibation curves. The second one was a DISA Model 55D31 D.C. voltmeter with a built-in averaging circuit. Linearized signals from Model 1052 linearizer went first to the Model 1057 signal conditioner for zero suppression, were then fed into this voltmeter to monitor the mean, linearized voltage for direct velocity measurements. The third one was a Keithley Model 149 milli-microvoltmeter. It was used in conjunction with a multi-channel, Beckman Type D Dynograph to simultaneously monitor the thermocouple signals so that a more accurate reading could be obtained when it was needed.

A Tektronix Type 545A oscilloscope with a Type CA plug in unit was used to monitor various fluctuating voltage signals. The stability and frequency response of the anemometer were set and adjusted with the aid of this oscilloscope. Both the mean flow and the turbulence quantitles could be monitored and photographed by the scope.

- 46 -

2.3. Hot wire calibrations

The hot wire anemometer has been used for many years as a research tool in fluid mechanics and heat transfer fields. Recently, the application of anemometry has expanded greatly due to better equipments and more interest in details of fluid flow. A hot wire is a small, electrically heated element exposed to a fluid medium for purpose of measuring a property of that medium. Normally, the property being measured is the velocity. Since these elements are sensitive to heat transfer between the element and its environment, temperature and composition changes can also be sensed. Two types of anemometry are in general use. i.e., the constant current and the constant temperature anemometers. The constant current type of anemometer operates by taking the voltage signal caused by wire resistance changes and compensates for frequency lag with a non-linear amplifier while maintaining a constant current through the wire sensor. The constant temperature type of anemometer operates by utilizing a feedback controlled bridge circuit to maintain the sensor at a constant temperature. In this experiment a constant temperature anemometer was used. This type of anemometer has gained rapidly in acceptance recently because of its versatility over the constant current type. The performance characteristics of these anemometers can easily be found in numerous papers (see, for example, Refs. 31, 36 and 37).

The hot wire sensor is a small resistance element which is heated and controlled at an elevated temperature. The amount of electrical energy dissipated from the sensor is a measure of the cooling effect of the fluid flowing past the heated sensor. This cooling effect depends

- 47 -

on both the mass flow and temperature difference between the sensor and the fluid. The relationship, however, is a non-linear one. It could only be expressed in an empirical form. Calibration of a particular sensor in a certain fluid has to be done first before any quantitative measurement can be carried out. Generally, the basic bridge output signal of the anemometer is a voltage which is related to flow approximately as follows:

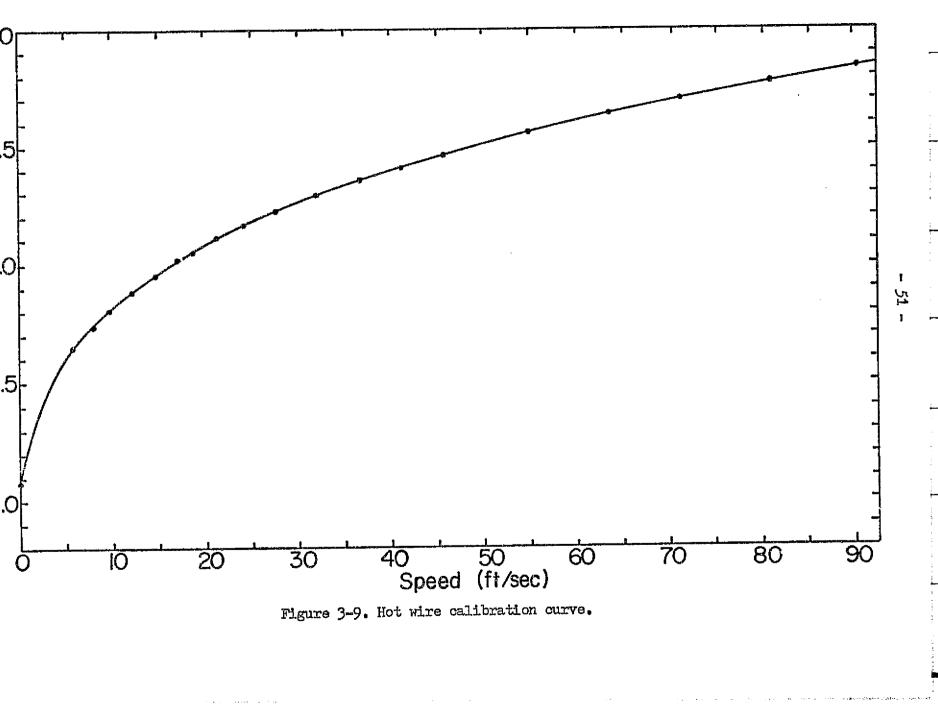
$$E^{2} \sim \left[A + B(\rho q)^{n}\right] (T_{s} - T_{e}) \qquad (3-5)$$

Where A and B are constants depending on fluid properties; ρ is the fluid density; g is the fluid velocity perpendicular to the sensor; \mathcal{N} is the exponent that varies with range and fluid (usually about 2); \mathcal{T}_{s} is the sensor operating temperature (hot); and \mathcal{T}_{e} is the fluid or environment temperature (cold). The original work on this relationship was done by King (Ref. 38). In practice, the cylindrical sensors do not follow the King's Law precisely. As shown by Colli and Williams (Ref. 39), the value of \mathcal{N} for a very long wire varies from 0.48 for low velocity ranges to 0.51 for higher velocity ranges. For sensors of finite length, the variation in \mathcal{N} is greater. Equation (3-5) illustrates the non-linearity of the anemometer output with the fluid density, velocity and temperature. Therefore a careful calibration of the hot wire is required for each particular test condition. It is clear that when fluid density and temperature are kept constant, velocity (both mean and fluctuating quantities) can be found.

Before taking the final quantitative measurements in this

- 48 -

experiment, many test runs as well as hot wire calibrations were carried out to make sure that the whole system was in good running condition. As mentioned previously in section III.1.1.1., the "Entrance section", there was a severe hot wire drift problem due to dust collection on the sensor in the beginning. This problem was later solved by using very high efficiency air filters at the flow inlet. From time to time, the hot wire sensor was cleaned by dipping into a solution of potassium dichromate in sulfuric acid, and then was rinsed in distilled water and acetone. This way a dry and clean sensor could be maintained.


Another common problem associated with the hot wire anemometer operation was due to the change in the environment (fluid) temperature or the change in the actual cold resistance of the sensor. Many methods can be used to correct this problem. However, if the amount of change is small, the problem can be corrected by slightly adjusting the overheat ratio so that the same zero flow bridge voltage is obtained as that in the original calibration. And then a few more calibration points are needed to verify the accuracy of hot wire outputs. This method has been used successfully in general practice with very little sacrifice in accuracy. Good results were reported in a study by Hollasch and Gebhart (Ref. 40) using variable overheat ratios for a hot wire calibration procedure at low velocities in water with variable fluid temperatures. Generally, as long as a large temperature difference is maintained between the fluid and the sensor, errors in the hot wire outputs are small even if the overheat ratio is not adjusted. For example, if the sensor is at 470°F, and the fluid at 70°F, a 4°F change would represent about a 1 % error without any correction.

- 49 -

All hot wire calibrations were performed in the far downstream side of the incoming straight pipe against a standard pitot-static tube and a micromanometer system. Sensors were carefully oriented so that they were normal to the ...w. The flow there was well defined and had very low local turbulence in ansity (about 1%). Two hot wires, similar in their characteristics, were used for the final quantitative measurements. The calibration curve for the last hot wire used is shown in Figure 3-9, and the data are shown in Table 2 in the Appendix. In both cases, an overheat ratio of 1.6 were used. The overheat ratio is defined as the ratio of the hot sensor resistance, R_H , to that of the cold (unheated) resistance, R_c . The relationship between the overheat ratio and the operating temperature is as follows:

$$\frac{R_H}{R_c} = / + \alpha_c \left(T_s - T_e \right) \tag{3-6}$$

Where α_c is the temperature coefficient of resistance for the sensor material referenced to temperature \mathcal{T}_c . For a tungsten hot wire $\alpha_c = 0.00^{-5/6} \mathrm{F}$. Once an overheat ratio is selected, the hot wire operating temperature can be determined from equation (3-6). In our case, with an overheat ratio of 1.6 and 76°F room temperature, the sensor operating temperature was approximately at 336.9°F. When an accurate determination of sensor operating temperature is required, an actual temperature vs. resistance curve should be plotted for the specific sensor of interest. For most work with anemometers, the sensor is calibrated for flow measurement and knowledge of the exact sensor operating temperature is not important so long as conditions can be repeated. With this large

~

temperature difference between the hot sensor and fluid, very good sensitivity was achieved for velocity and turbulence measurements while maintaining a very low sensitivity to small temperature fluctuations.

Based on the final hot wire calibration data, a set of four linearizer coefficients was generated by fitting a fourth degree polynomial to the calibration curve. A computer program based on the standard, least square curve fitting technique was used for this procedure. Two sets of linearizer coefficients were found for the two hot wire sensors used in the final quantitative measurements. The first set, in ascending order, was 0.2071, 3.6907, 2.4803, and 3.6219. The second set was 0.8927, 2.2530, 2.0311, and 4.8222. Then the values of these coefficients were individually set into the potentiometers in the linearizer and a calibration run was carried out to determine the accuracy of the linearizer output. The linearizer calibration curve is shown in Figure 3-10, and the data are shown in Table 3 in the Appendix. During the experiments, output signals from the linearizer were fed both into a RMS meter for turbulence readings and into a signal conditioner then to a voltmeter for direct mean velocity readings. Detailed calibration procedures for the hot wire and linearizer can be found in (Refs. 31, 33 and 34).

2.4. Traversing mechanism

Three different traversing units were used in this experiment. To traverse the pitot-static probe which monitored the flow velocity, a traversing unit was mounted on the incoming straight pipe $6\frac{1}{4}$ inches downstream of the flat screen (Figure 3-2B). It had a micrometer to

- 52 -

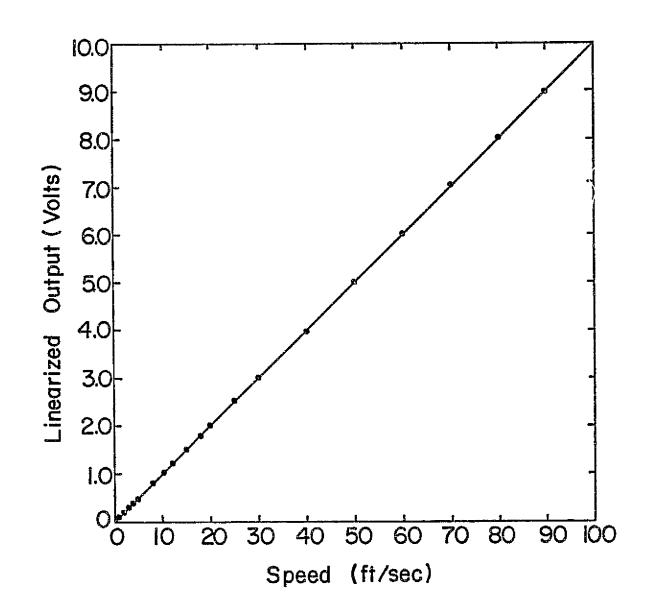


Figure 3-10. Linearizer calibration curve.

- 53 -

control the vertical position to within 0.001 inch and a protractor and a rotary vernier scale to control the yaw angle to within 6 minutes. The probe vertical position and the initial orientation were calibrated with a precision gage using the pipe wall as a reference. Another traversing unit of the similar type, except having a vertical slide and a linear vernier scale instead of the micrometer, was used to traverse the hot wire probe for pipe flow measurements. The unit could be moved from one axial location of the pipe to another without too much difficulty. Vertical position of the hot wire was also calibrated with the same precision gage against the pipe centerline. The yaw angle, however, was calibrated by the hot wire output signal. A maximum bridge output would indicate that the wire was perpendicular to the main flow.

Due to the particular test section configuration, a special traversing mechanism had to be developed to measure the flow inside the test chamber (see Figures 3-2B and 3-8). The chamber wall was machined according to a particular streamline shape which had a 3 inch diameter at the inlet and outlet, and 6.066 inch diameter at the center section. It also had a boundary layer removal section at the entrance. So it was impractical to drill probing holes through the chamber wall, and the hot wire probe had to come into the chamber through the exit. In order for the probe to reach all the places inside the test chamber, two probe support tubes were made (see section III.2.2.2., the section on "Constant temperature hot wire anemometer system"). The straight tube was for flow measurements in a 1.2 inch diameter cylindrical tunnel around the axis of symmetry in the test chamber, and the bent tube was for that of remaining areas. Either of these tubes was fitted into a support tube

- 54 -

extension and fixed onto the traversing slide.

This traversing mechanism consisted of a section of aluminum pipe, two precision Unislide assemblies, pitch control assembly, mounting blocks, bearings, housings, vernier scales, seals, adapters for the hot wire leads, etc. The straight pipe had an inside diameter of 3 inches and a length of 18.875 inches; and it was force fitted with a stainless steel sleeve as the hard bearing surface at each end. The ends of the pipe were then assembled into needle bearings housed in the test section on one side and a diffuser junction block on the other (see Figure 3-5). Both ends were sealed against air leak with rubber rings. A 0.75 inch wide by 13.25 inch long slot was machined out from the top of the pipe and a sealing lip, flush with inside wall surface, was molded into place with a silicone rubber compound. Through a slit in the rubber lip, the support tube extension could traverse back and forth in the pipe without any air leak. A Unislide assembly with a 15 inch travel was fixed to the pipe through a mounting block and plate to control the movement of the probe in the axial direction. Another Unislide assembly with $4\frac{1}{2}$ inch travel was then mounted on the slide of the first assembly to control the radial probe movement. Both Unislide assemblies, made by Velmex, Inc., E. Bloomfield, N. Y., were of the precision lead screw type capable of movements with 0.001 inch of accuracy. Lastly, a pitch control assembly was fastened to the slide of the second Unislide assembly. The support tube extension mounted on this control assembly could pitch with an accuracy of 6 minutes by readings on a set of protractor and a vernier gage.

Therefore, besides providing controlled movements for the probe

- 55 -

in axial, radial and pitching directions, the whole traversing mechanism could rotate in the azimuthal direction with an accuracy of 6 minutes by readings on a yet another set of protractor and vernier gage. Before the final flow measurements, position calibrations were performed for the probe with both the straight and bent support tubes. The test section center and the central cross-sectional plane were used as the bases for this calibration.

3. Some experimental procedures

In the early stage of the experiment, a long pipe with axial probing slot was installed downstream of the vorticity generator in order to find an appropriate length for the second part of the straight pipe. Measurements of the generated velocity profiles were taken at different locations along the axis to locate the position where it would have the desired profile shape without too much boundary layer build-up. This distance was found to be 12 inches downstream of the vorticity generator and then the second part of the straight pipe was fabricated to this length. The boundary layer thickness at this point was 0.3 inch and was subsequently removed before the flow entered the test section.

The opening of the values in the boundary layer removal pipes were first approximately set with the aid of a tuft probe. A piece of short tuft at the end of a hypodermic tubing was used to indicate the flow pattern and to determine whether the boundary layer was properly removed into the removal section. Final adjustments of the value opening (56.25° to the pipe axis) were done with reference to the quantitative velocity profile measurements at the test section entrance such

- 56 -

that the entering flow would have a negligible boundary layer and a good velocity profile.

During the initial test runs, the tuft probe was inserted into the test chamber from the downstream side by the traversing mechanism for flow visualization. The flow rate in the apparatus was varied from very small to full capacity; and for each flow rate, the tuft probe would traverse the entire test chamber to see whether there was a confinement region in the center, any separation along the wall, or just to find the approximate flow directions. This information was later combined with the initial hot wire test results to select a particular flow rate for detailed quantitative measurements.

The final phase of the experiment was the detailed hot wire measurements of the mean flow velocities and the turbulence intensities in both the pipe and the test section. Because the hot wire was a very delicate and difficult instrument to use, extreme care had to be taken in so far as to its physical conditions as well as to its calibration characteristics. First we must have accurate calibration curves and corresponding sets of good linearizer coefficients. Then at the beginning of each data taking session, these conditions were carefully checked to insure the repeatability of the instruments. Temperature was continuously monitored so that minor adjustment could be made on the hot wire overheat ratio if it was needed. A few points on the calibration curve were tested to make sure that the original calibration was still valid. Flow rate in the apparatus was also constantly watched with the pitot-static probe and micromanometer system, while the velocity profile at the test section was checked by hot wire measurements. After all

- 57 -

these steps were performed then the final measurements were carried out.

4. Stability of the generated velocity profile

As stated in section III.1.1.2. on "Vorticity generator", the velocity profile generated in the incoming pipe was of a parabolic form specified by equation (3-1). It consisted only of axial component yet had the same vorticity distribution as that in the theoretical model, i.e., $\omega_{\theta} = -\alpha r$. The velocity had a larger magnitude further away from the axis. However, due to the no slip condition at the pipe wall, a thin boundary layer was built up. This would cause a inflection point to appear on the generated velocity profile (see Figure 3-4). Thus a question would be raised: due to the particular characteristics of this velocity profile, would inviscid instability occur in the flow?

The inviscid instability problem for the flow in a circular pipe had previously been studied. As shown by Shen (Ref. 41), in the case of an axially symmetric basic flow with rotationally symmetric disturbances, a stability criterion was established. Consider the case:

$$\overline{v} = \overline{w} = 0; \quad \overline{u} = \overline{u}(r)$$

Where $\overline{\mathcal{U}}, \overline{\mathcal{V}}$, and $\overline{\mathcal{W}}$ are the velocity components of the basic, steady flow. Then inviscid instability would occur only if, within the fluid,

$$\frac{d^2 \overline{u}}{dr^2} - \frac{l}{r} \frac{d \overline{u}}{dr} = 0 \tag{3-7}$$

Consequently, this term $\left[\overline{u}'' - (\overline{u}'/r) \right]$ played the part of \overline{u}'' in the

two-dimensional case. So a velocity profile with a point of inflection was no longer necessarily unstable, at least with respect to rotationally symmetric disturbances, in the inviscid limit.

In order to answer the inviscid instability question about the flow in our incoming straight pipe, equation (3-7) was used as a criterion for the test. However, before this test could be performed, the velocity profile, as a function of γ had to be found first. This function could be easily constructed such that the function would represent the velocity profile in the inviscid core as specified by equation (3-1) and represent the boundary layer profile adjacent to the pipe wall.

Assuming that the velocity inside the boundary layer slowed down exponentially from its maximum value of \mathcal{U}_m at the boundary layer edge to zero at the wall. As an approximation, a function of the following form was used.

$$\frac{u}{u_m} = \left[1 - e^{-Re} \frac{\eta^3}{2} \right]$$

$$\eta = \frac{R_p - r}{\delta} , \quad Re = \frac{uD}{2}$$
(3-8)

Where R_p was the inside radius of the pipe, \int the boundary layer thickness, Re the Reynolds number based on pipe diameter D, and p the kinematic viscosity of the fluid. The boundary conditions for this function were (1) zero velocity at the wall, (2) maximum velocity at the boundary layer edge to match that of the inviscid core, (3) vanishing shear at the boundary layer edge.

It was a simple matter to check whether equation (3-8) met all

- 59 -

these three boundary conditions.

$$\frac{d}{d\eta} \left(\frac{u}{u_m} \right) = -e^{-Re^{0.25}\eta^3} \left(-3Re^{0.25}\eta^2 \right)$$

at $\eta = 0$: $u/u_m = 0$
at $\eta = 1$: $u/u_m = 1 - \frac{1}{\sqrt[4]{Re}} \approx 1$ for large Re
$$\frac{d}{d\eta} \left(\frac{u}{u_m} \right) = 3\sqrt[4]{Re}/e^{\sqrt[4]{Re}} \approx 0$$
 for large Re

So equation (3-8) satisfied all the boundary conditions. It then could be combined with the velocity profile in the inviscid core to provide a composite velocity function valid for the whole cross-section. Equation (3-1) was simply multiplied by equation (3-8) to become:

$$\overline{u}(r) = \left[1 - e^{-Re^{\frac{a^{25}}{5}} \left(\frac{R_{p}-r^{3}}{5}\right)} \right] \left(\frac{a}{2}r^{2} + u_{o}\right)$$
(3-9)

Numerical evaluation of this profile for a Reynolds number of 150,000 in our experiment showed that the parabolic profile in the inviscid core was not disturbed by the modification in equation (3-9) and it had a very thin boundary layer adjacent to the pipe wall.

Now the criterion specified by equation (3-7) could be applied to the velocity profile of equation (3-9) to determine whether inviscid instability would occur in the pipe.

- 60 -

$$\overline{u}(r) = \left[-e^{-Re^{0.25} \left(\frac{R_{p}-r}{\delta}\right)^{3}} \right] \left[\frac{3}{\delta} \left(\frac{R_{p}-r}{\delta}\right)^{2} Re^{0.25} \right] \left(\frac{a}{2}r^{2} + u_{o}\right) + \left[1 - e^{-Re^{0.25} \left(\frac{R_{p}-r}{\delta}\right)^{3}} \right] \overline{u}(r) = \left[-e^{-Re^{0.25} \left(\frac{R_{p}-r}{\delta}\right)^{3}} \right] \left\{ \left[\frac{9}{\delta^{2}} \left(\frac{R_{p}-r}{\delta}\right)^{4} Re^{0.5} \right] \left(\frac{a}{2}r^{2} + u_{o}\right) - \left[\frac{6}{\delta^{2}} \left(\frac{R_{p}-r}{\delta}\right) Re^{0.25} \right] \left(\frac{a}{2}r^{2} + u_{o}\right) + \left[\frac{3}{\delta} \left(\frac{R_{p}-r}{\delta}\right) Re^{0.25} \right] (ar) \right\} - \left[1 - e^{-Re^{0.25} \left(\frac{R_{p}-r}{\delta}\right)^{3}} \right] a$$

If there was to be any inviscid instability, equation (3-7) must be satisfied, i.e.:

$$\overline{u}'' - \frac{\overline{u}'}{r} = 0 \quad , \quad \text{or}$$

ł

٩.

$$(3aRe^{0.25})r^{7} - (12aRpRe^{0.25})r^{6} + 6Re^{0.25}(3aRp^{2} + u_{o})r^{5}$$
$$-(12Re^{0.25}aRp^{3} + 24Re^{0.25}Rp u_{o} - 5a\delta^{3})r^{4} + (3Re^{0.25}aRp^{4})r^{4}$$
$$+ 36Re^{0.25}u_{o}Rp^{2} - 8aRp\delta^{3})r^{3} - (24Re^{0.25}u_{o}Rp^{3} - 2u_{o}\delta^{3})r^{4}$$
$$- 3aRp^{2}\delta^{3})r^{2} + (6Re^{0.25}u_{o}Rp^{4})r^{2} - u_{o}R^{2}\delta^{3} = 0$$

To solve for this polynomial equation, a standard IBM 'POLRT' program was used. No real solution could be found, which meant that equation (3-7) could not be satisfied by any real values of \checkmark inside the pipe. Therefore, inviscid instability would not occur anywhere inside the pipe

- 61 -

l

1

Į

Į

ļ

and the flow in the pipe was either stable or neutrally stable to any rotationally symmetric disturbances. Later quantitative measurements by the hot wire also confirmed that the flow inside the pipe was a very stable one.

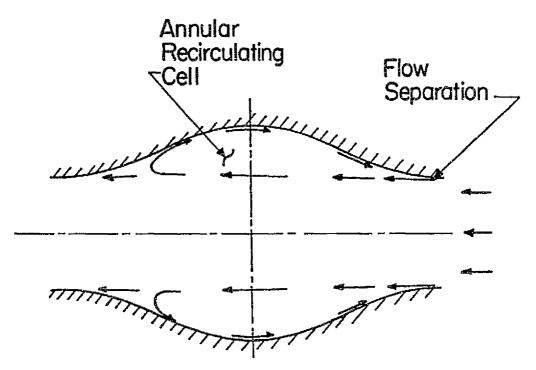
CHAPTER IV

RESULTS

In order to see the unique phenomenon of this experiment, test runs were conducted for two different conditions. First, flow visualization with a tuft probe and hot wire measurements were performed without the vorticity generator in the incoming straight pipe to acquire some base information about the flow without the prescribed vorticity distribution. Then the vorticity generator was installed in the pipe and the same procedures were repeated. Finally detailed quantitative measurements were made. These results are presented in the following two sections. In the last section, mass flow rates at both the entrance and the central plane of the test section were calculated from the measured velocity profiles to verify the existence of a self-confined region as described in the second section of this chapter. A pitotstatic probe inserted into the test chamber through the central slot and traversed along the vertical axis confirmed that the static pressure did increase from the center outwardly toward the wall as mentioned in Chapter II. However, no detailed pressure measurements inside the test chamber were made.

1. Visualization

A tuft probe, as described in the last chapter, was used to visualize the flow inside the test section. It was inserted into the test chamber through the central slot and traversed up and down the vertical axis. For the test condition without the vorticity generator,


- 63 -

flow rate was varied through the full range by changing the opening of the exit valve at the blower outlet. For all the flow rates, no selfconfined region was indicated. At low flow rate, owing to the small amount of stiffness in the tuft and very low fluid speed, the tuft probe was not a good flow indicator. Therefore, a higher flow rate was used in the test.

Then by using the precision traversing mechanism, another tuft probe was inserted into the test chamber from the chamber exit to probe the entire region. Flow separation was seen to occur at the diverging wall almost immediately behind the entrance. A large, annular recirculating cell formed adjacent to the wall stretching from the separation point to a point about three quarters of the chamber length. The flow in the central portion of the chamber was similar to a straight jet issued from the entrance. There was no self-confined region at the central portion of the chamber. Figure 4-1 shows the general flow pattern inside the test chamber as indicated by the tuft when there is no vorticity generator in the straight pipe to produce the proper vorticity distribution.

The same procedures as those stated above were repeated for the test condition with vorticity generator installed in the straight pipe. For all the higher flow rates (in order to see the tuft movements), no flow separation could be seen anywhere along the chamber wall, and there was no recirculating cell adjacent to the wall. The flow was very orderly and the fluctuations were very small. In the central portion of the test chamber, a distinct region approximately the size as prescribed by the theory existed. Inside this region, very low flow speed

- 64 -

۰.

Figure 4-1. Flow pattern inside the test chamber as indicated by the tuft probe (without vorticity generator).

in the reversed flow direction (toward upstream) was indicated. Flow patterns in this case are shown in the figures of the next section as confirmed by the hot wire measurements.

Flow visualization by smoke was attempted, but no good result was obtained. A small cigar smoke generator was used to send smoke through a tube directly into the self-confined region from chamber exit. The amount of smoke was not large and dense enough to give any good flow visualization. Then a sky diver's smoke flare (Kilgore smoke signal) was used to send dense orange smoke into the flow apparatus from the inlet chamber. This did not work well either because the flare burning time was very short and the amount as well as the way to channel the smoke could not be controlled. For good flow visualization, a well designed, controllable smoke generator must be used along with a proper ventilation system for the flow apparatus.

2. Quantitative results

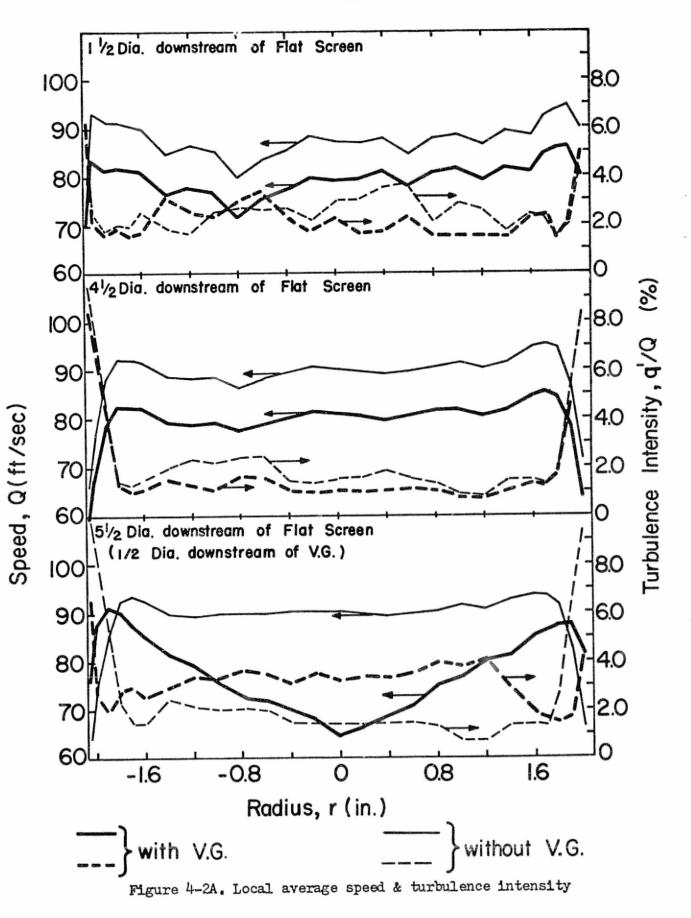
The quantitative measurements were performed with a constant temperature anemometer system described in the last chapter. Preliminary measurements inside the test chamber were carried out for the two test conditions both with and without the vorticity generator in the straight pipe. When there was no vorticity generator, the hot wire measurements confirmed the general flow patterns as visualized by the tuft probe and shown in Figure 4-1. At the point of separation, large turbulence levels as well as base fluctuations were detected. There were also large fluctuations along the interface of the jet and the recirculating cell. Approximately one quarter of the chamber length downstream from the entrance, the flow became increasingly chaotic (about 15--20 % absolute turbulence intensity) then quieted down a little near the exit (about 14 % absolute turbulence intensity). After the vorticity generator was installed, the flow became very orderly at the former separation point with very small turbulence level. In the chamber center, a region of very low speed was found having about the same size and location as that indicated by the tuft probe. The situations were approximately the same for different flow rates. For the final detailed measurements, a higher flow rate was chosen so that more accurate hot wire readings could be obtained.

2.1. Incoming straight pipe

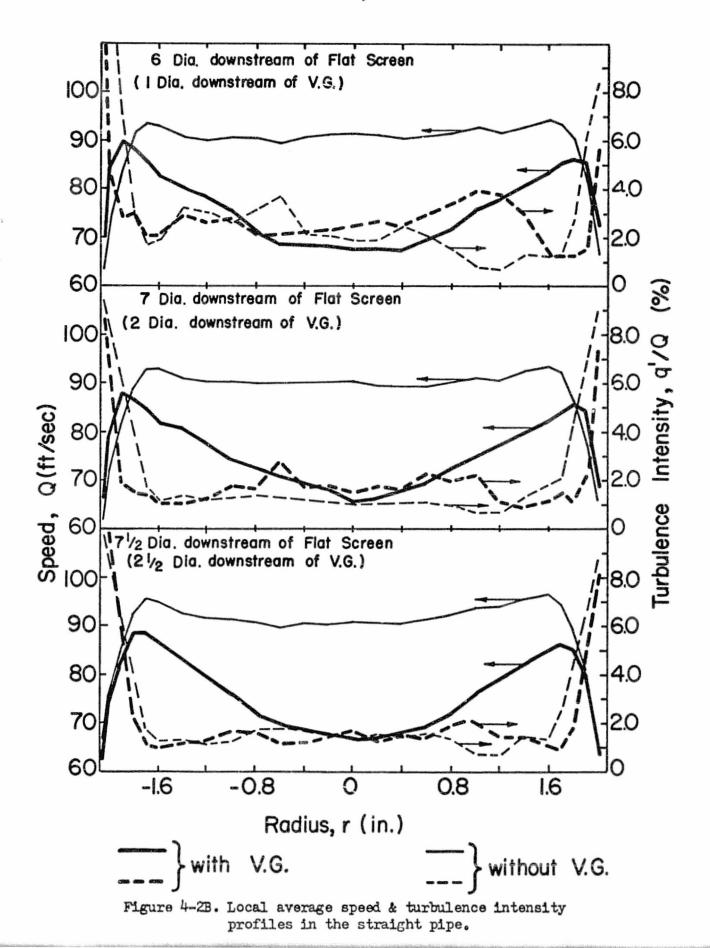
During the entire data taking period, flow rate was carefully

- 66 -

watched by the upstream pitot-static tube and micromanometer system to insure identical test conditions at all times. Fluid temperature was monitored by the thermocouple, chart recorder and a milli-micro voltmeter. Hot wire and linearizer calibrations were also checked every day for accuracy.


Results of the hot wire measurements in the straight pipe are presented in the graphs of Figures 4-2A & B, and 4-3A, B & C. In Figures 4-2A & B, local average fluid speeds (Q in ft/sec), and local turbulence intensities (g'/Q in %) at different axial locations are plotted against pipe radius. For the test condition without vorticity generator (V.G.), local average fluid speeds are represented by thin solid lines and the local turbulence intensities by thin dashed lines. For the test condition with vorticity generator, the local average fluid speeds are represented by heavy solid lines, and the local turbulence intensities by heavy dashed lines.

From these results, one can see that the local turbulence intensity decreases quite rapidly to 1--2 % in a few pipe diameters downstream of either the flat screen or the vorticity generator. Without the vorticity generator, the speed profile at the location of $5\frac{1}{2}$ pipe diameters downstream of the flat screen is reasonably smooth over the central portion and has a boundary layer of 0.37 inch thick adjacent to the wall. After the vorticity generator is installed, it can be seen that the speed profile is inverted to have a higher speed at a larger radius and small speed at the center, and at the same time the boundary layer becomes thinner. Turbulence intensity is increased to 3--4 %. Further down the pipe, the inverted speed profile becomes smoother; the


- 67 -

1

t

- 68 -

- 69 -

thickness of the boundary layer increases again; and the turbulence intensity dies down to 1--2 % at about half a pipe diameter upstream to the test section entrance. The boundary layer is subsequently removed and the flow entering the test section has a speed profile similar to the one shown in the last graph of Figure 4-2B (central portion of the heavy solid line on the last graph -- $2\frac{1}{2}$ diameter downstream of V.G.). The actual speed profile at the test section entrance are presented in the next section.

In order to find out the axisymmetric characteristics of the generated velocity profile, hot wire measurements of the local average velocities and turbulence intensities were made at an axial location one diameter downstream of the vorticity generator. The hot wire sensor was placed at a certain radial location and readings were taken while the vorticity generator was being rotated through twelve different azimuthal angles (30° apart). Then the sensor was moved to a new radial location, and the same procedure was repeated. In Figures 4-3A, B & C, for various radial locations, graphs are plotted with axial velocity deviation (Q/Q_r in %), along the axis of ordinates and azimuthal angles of the vorticity generator (heta in degree), along the axis of abscissa. Where Q is the local average speed and Q_r is the average speed of twelve Q values at the same radius. It can be seen that the maximum axial velocity deviations from Q_r are +3.9 % and - 4.8 %. In view of the fact that these data are taken only one pipe diameter downstream of the vorticity generator, the generated velocity profile can be considered to have a reasonably good axisymmetric property. Turbulence intensity along radial direction is generally lower at the center, increases, decreases

- 70 -

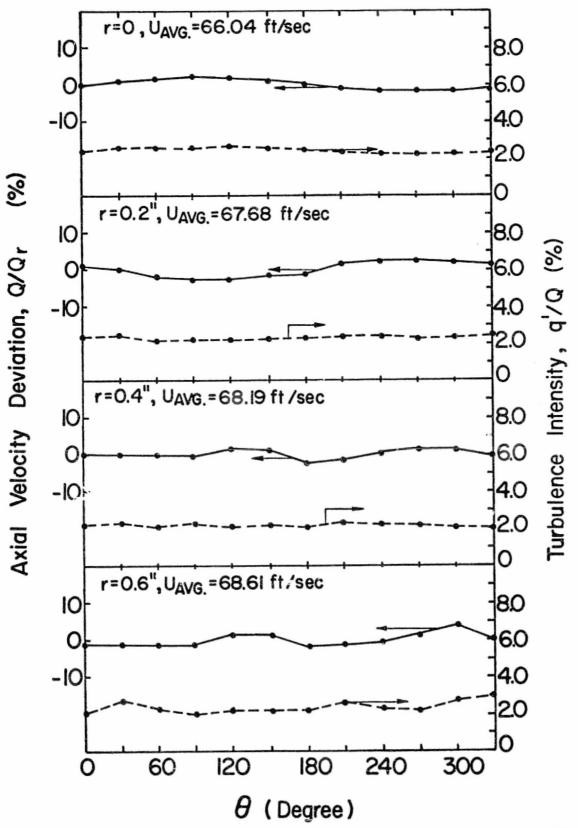


Figure 4-3A. Azimuthal distribution of velocity & turbulence intensity profiles in the straight pipe (6 dia. downstream of flat screen and 1 dia. downstream of the vorticity generator).

1

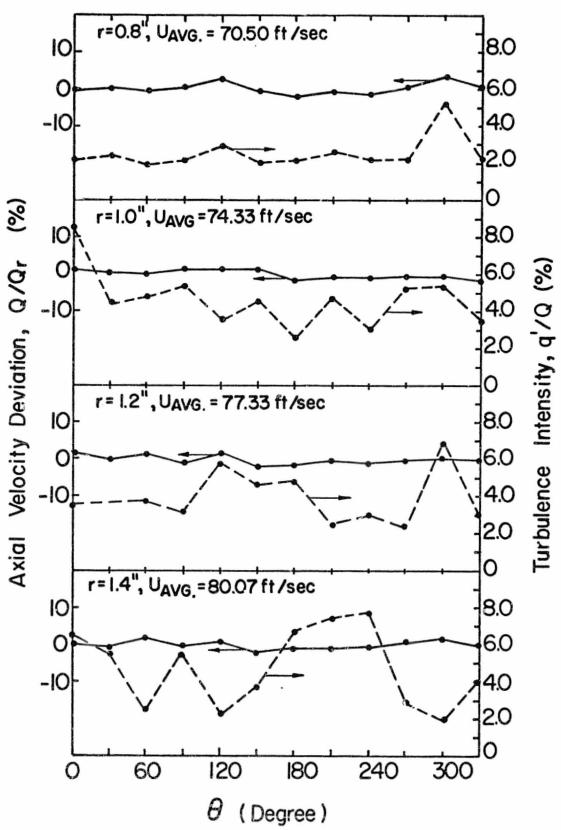


Figure 4-3B. Azimuthal distribution of velocity & turbulence intensity profiles in the straight pipe (6 dia. downstream of flat screen and 1 dia. downstream of the vorticity generator).

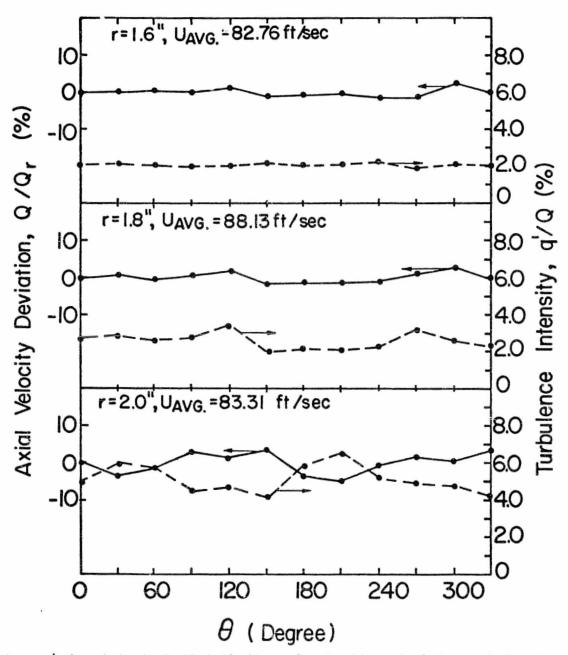
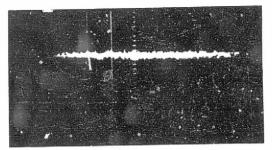
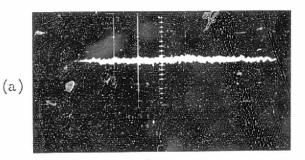
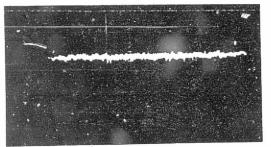
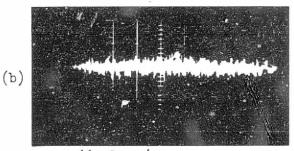



Figure 4-3C. Azimuthal distribution of velocity & turbulence intensity profiles in the straight pipe (6 dia. downstream of flat screen and 1 dia. downstream of the vorticity generator).


and finally increases somewhat close to the wall. This particular situation is directly related to the special properties of the vorticity generator. For different vorticity generators, turbulence characteristics are different. Immediately behind the shaped gauze screen, a large amount of flow is being diverted toward the outer region of the pipe and is subsequently forced to make an adjustment in its flow direction. This creates strong shearing effects at the middle range of the radius producing higher turbulence intensities at the same time. Further downstream, the turbulence levels are reduced as can be seen on Figure 4-28.

Figures 4-4A and B are the oscilloscope pictures of some RMS signals of the linearized bridge output at three different axial locations on the axis of the straight pipe. These RMS signals represent the fluctuating velocity components perpendicular to the hot wire sensor. Two conditions are shown here, one with the vorticity generator installed in the pipe and the other without. It can be seen that the RMS values increase right behind the vorticity generator and decrease further down the pipe. Except for the magnitude differences, these signal traces appear to have the same general turbulence characteristics. Magnitudes of each trace are quite uniform, and the frequencies are all quite high (estimated at about 1200 -- 2000 Hz.).


- 74 -


Q = 93.25 ft/sec RMS_L = 0.88 ft/sec

Q = 82.50 ft/sec RMS_L = 0.797 ft/sec $(\frac{1}{2}$ dia. upstream of V. G.)

Q = 94 ft/secRMS_L = 0.745 ft/sec

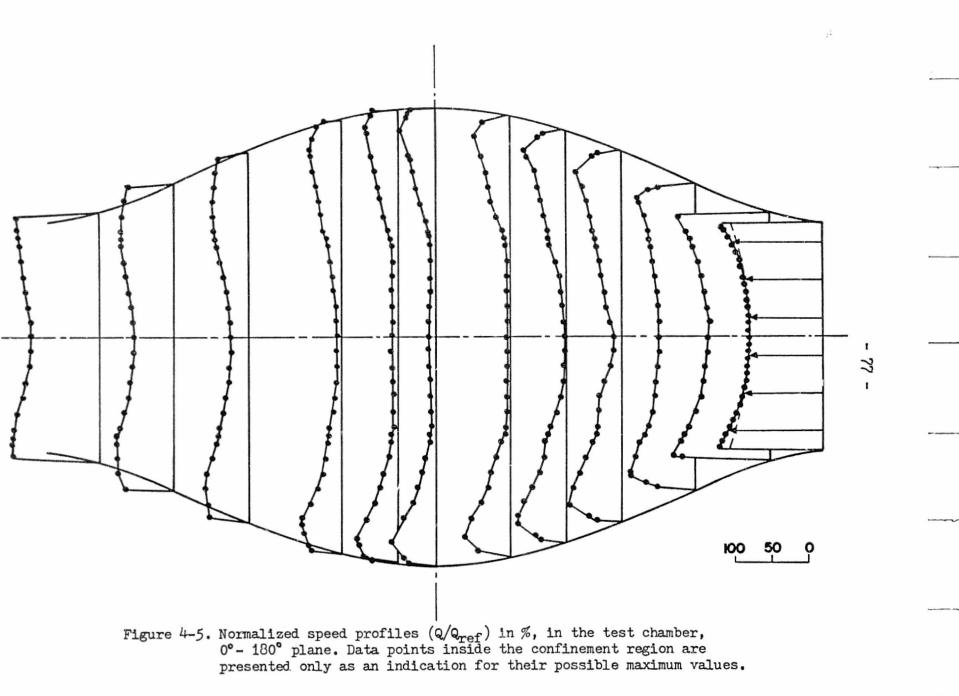
Q = 66.78 ft/sec RMS_L = 2.35 ft/sec $(\frac{1}{2}$ dia. downstream of V. G.)

Q = 93.75 ft/sec RMS_L = 0.72 ft/sec

Q = 69 ft/sec $RMS_L = 0.98 \text{ ft/sec}$ $(2\frac{1}{2} \text{ dia. downstream of V. G.})$

(4A) Without vorticity generator

(4B) With vorticity generator


Figure 4-4. RMS signals of the linearlized bridge output at three different axial locations on the axis of the straight pipe. (Scale: 1V/Cm--Vertical; 10 Milli Sec/Cm--Herizontal) (a) 4 dia. downstream of flat screen (b) 5 dia. downstream of flat screen (c) 7 dia. downstream of flat screen 2.2. Test chamber

The detailed hot wire measurements inside the test chamber were conducted only for one flow rate and with the vorticity generator installed in the incoming straight pipe. Results for fluid speed and turbulence intensity measurements are summarized in the next ten figures (Figures 4-5, 4-6A, B, and C; 4-7A, B, and C; and 4-8A, B, and C). They are organized into three sets; each contains the information for one meridional plane. Therefore the three sets represent the three meridional planes of 0° - 180°, 60° - 240°, and 120° - 300° respectively. Each set represents the normalized speed profiles (Q/Q_{ref}), the local turbulence intensities (g'/Q) and the absolute turbulence intensities (g'/Q_{ref}). Where Q_{ref} is the reference speed at the chamber entrance $\chi = +5.2$ inches and on the axis $\Gamma = 0.0$ inch.

Numerical data for these graphs are included in Table 4 of the Appendix. Actual measurements were carried out for stations along the axis in 0.5 inch increments and generally for 0.2 inch radial increments. For briefness and clarity, only the data on alternate axial cross-sections are presented here. The ones not presented show the same basic characteristics and trends. At locations $\chi = \pm 1.75$ inches and $\chi = \pm 1.25$ inches along the axis, hot wire measurements indicated two minimum average speeds of 1.58 ft/sec and 3.47 ft/sec respectively. Therefore, detailed measurements were taken for these two cross-sections also.

In Figure 4-5, each circular dot represents a single data point where hot wire measurement has been taken. Numerical values for these data points are shown in Table 4 of the Appendix. It can be seen that the velocity has very small magnitude in the central region of the test

- 76 -

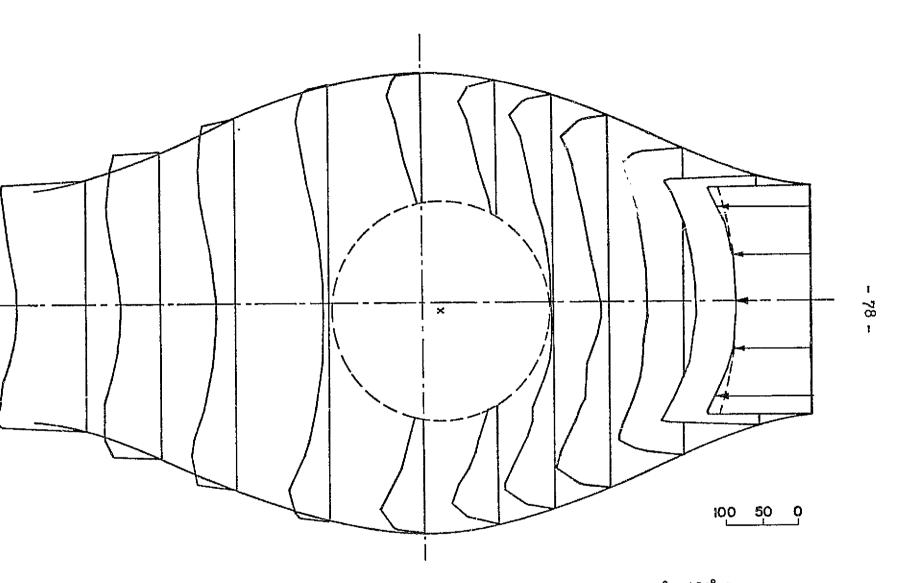


Figure 4-6A. Normalized speed profiles (Q/Q_{ref}) in %, in the test chamber, 0° - 180° plane.

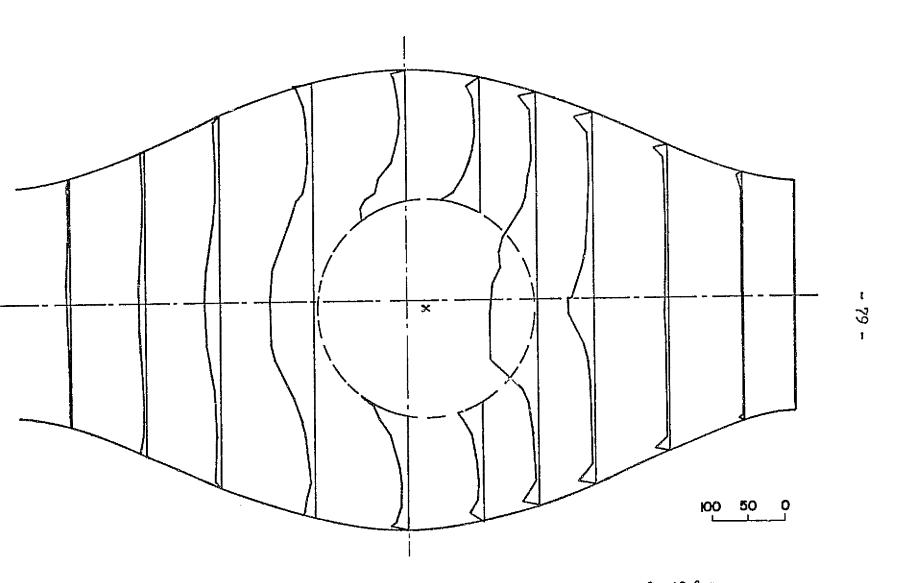


Figure 4-6B. Local turbulence intensity (g'/Q) in %, in the test chamber, 0°- 180° plane.

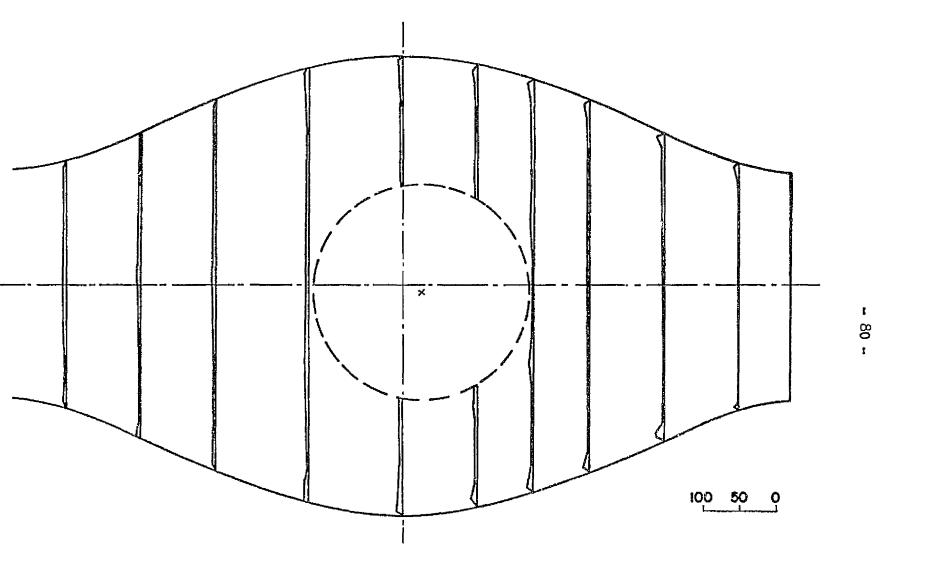


Figure 4-6C. Absolute turbulence intensity (q'/Q_{ref}) in %, in the test chamber, 0°- 180° plane.

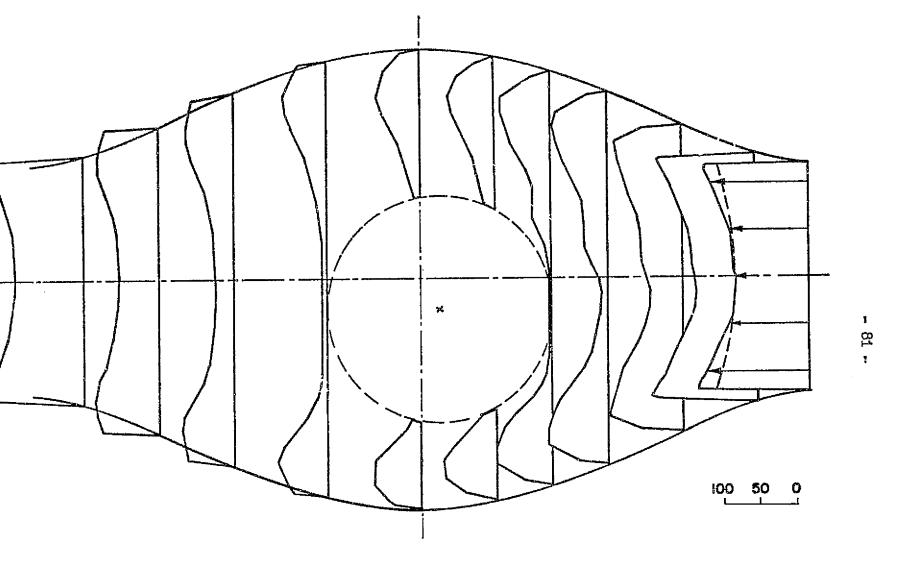
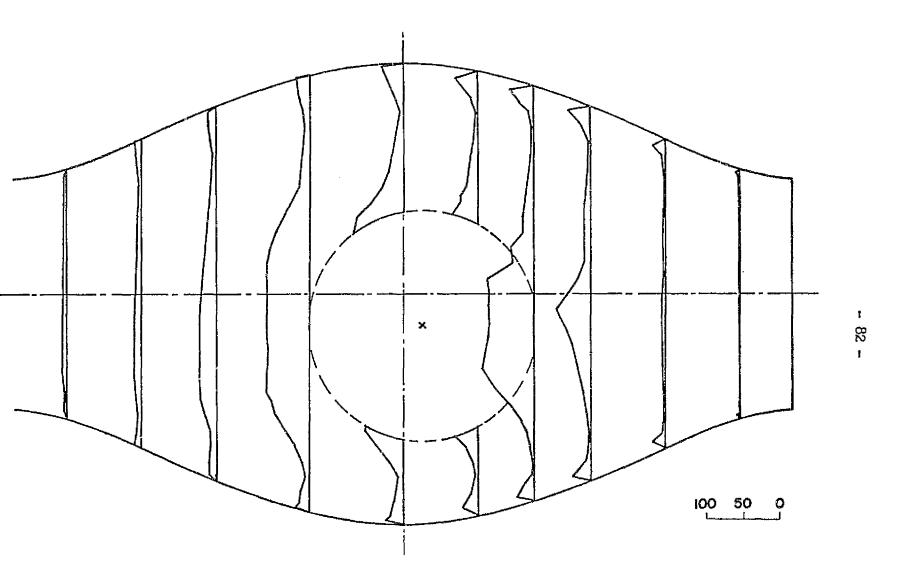



Figure 4-7A. Normalized speed profiles (Q/Q_{ref}) in %, in the test chamber, 60° - 240° plane.

atric o

Figure 4-7B. Local turbulence intensity (g'/Q) in %, in the test chamber, $60^{\circ} - 240^{\circ}$ plane.

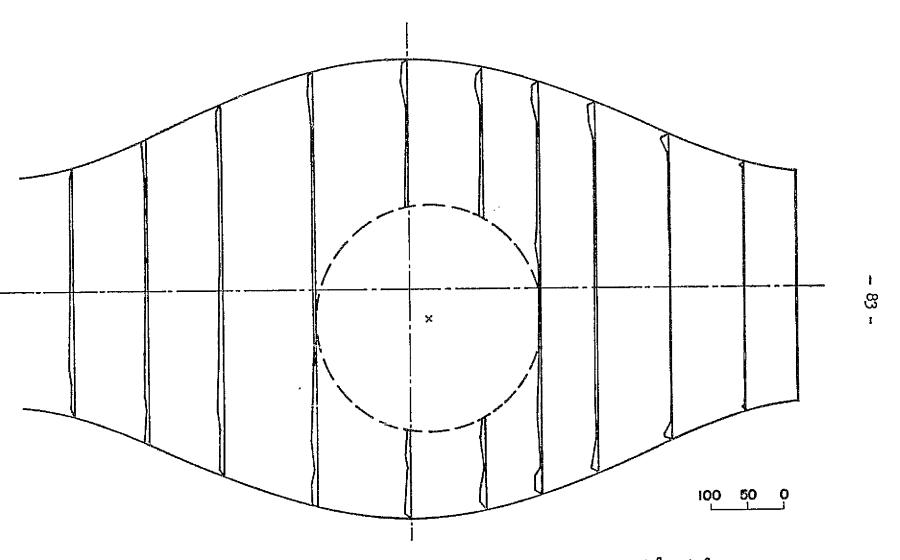
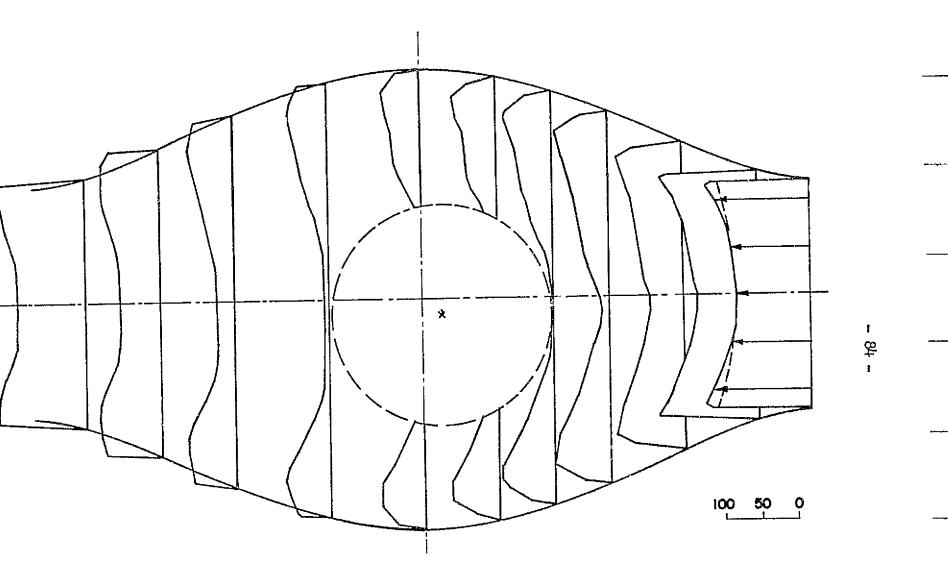



Figure 4-7C. Absolute turbulence intensity (q'/Q_{ref}) in %, in the test chamber, 60°- 240° plane.

عنتقا

Figure 4-8A. Normalized speed profiles (Q/Q_{ref}) in %, in the test chamber, 120° - 300° plane.

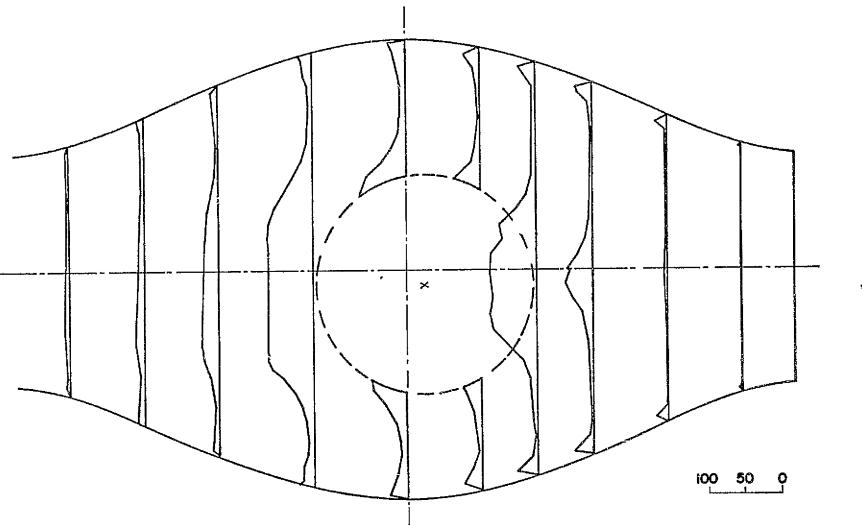


Figure 4-8B. Local turbulence intensity (q'/Q) in %, in the test chamber, 120° - 300° plane.

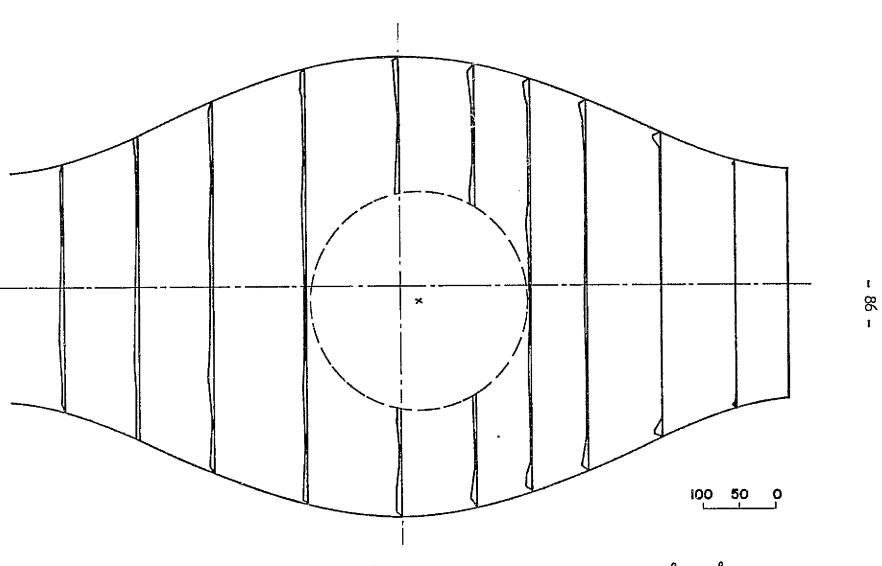


Figure 4-8C. Absolute turbulence intensity (q'/Q_{ref}) in %, in the test chamber, 120°- 300° plane.

10.00

chamber. Although the speed reading in this region is not very accurate (see later explanation), it still gives an indication for its possible maximum values. While all the profiles represent only the velocity magnitudes, not its directions, it should also be noted that there are flow reversals inside the central region as indicated by the tuft probe. Data for the other two meridional planes have the same general characteristics. A dashed circle of 1.5 inches in radius has been drawn in the central portion of the test chamber. It represents the spherical selfconfined region as mentioned in the previous chapters. From tuft probe visualization results, we know that there is a self-confined region and its approximate location. With the aid of this rough picture and after the three normalized speed graphs (Figure 4-6A, 4-7A and 4-8A) are plotted, we then try to place a circle of 1.5 inches in radius in the central portion of the test chamber such that the speed on the boundary of this circle will be minimum (if not zero). The result is quite good; a self-confined spherical region fits into the graph very well. However, the center of this spherical region is shifted to 0.25 inch upstream of the chamber center and off the axis of symmetry by the amount shown in the Figure 4-9 below. In order to visualize such a confinement region in the test chamber more easily, the above mentioned circle is placed on to each of the remaining nine figures in the same manner, and inside the dashed circle speed profiles are not presented.

Because of the skewness of the confinement region, speed profiles on either sides of the region are not symmetrical as can be seen in the normalized speed profiles. Although the speed on the region boundary does not vanish, its magnitude is very small. The local turbulence

- 87 -

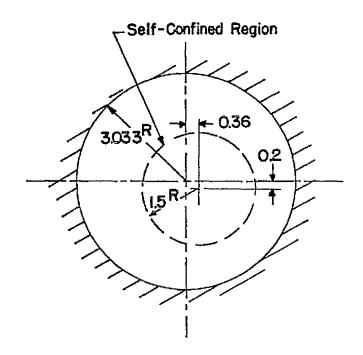


Figure 4-9. Location of the self-confined region at the cross-section of χ = + 0.25 inch.

l

1

intensity there is high. This small speed is thought to be related to the local turbulence across the region interface. So the self-confined region does not have a very clear-cut, solid boundary. Rather, the boundary is a fuzzy zone with small turbulence velocities in different directions. Therefore the dashed circle only represents a time average position of the region. In spite of this situation, the confinement region still exists. The existence of the self-confined region as described above is further confirmed by the flow-rate calculation in the next section.

As indicated by the tuft probe, there are flow reversals inside this region and thus the flow would tash over the probe support first before it reaches the hot wire sensor. The disturbances created by the probe support would render the hot wire signals inaccurate. Besides, inside this region, the flow pattern may be very complicated. Further experimental work, especially good flow visualization, has to be done in order to completely understand the phenomenon. Nevertheless, hot wire measurements inside this region have indicated that the speeds are generally low with some regions having slightly higher speeds than others (Figure 4-5). Local turbulence intensities are high due to the low local mean speed, but the absolute turbulence remains low throughout the entire region (see numerical data in Table 4 of the Appendix).

A speed profile indicated by the dashed curve is also shown at the chamber entrance on each of the three normalized speed graphs. It represents the profile required by the theory in order to have the proper vorticity distribution. One can see clearly that the actual, generated speed profile at the chamber entrance pocesses a greater amount

C. 2

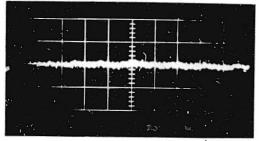
- 89 -

of vorticity than what is theoretically required. Therefore, it is conjectured that the shifting of the region position to an upstream location is caused by the excess in vorticity distribution of the generated speed profile. Furthermore, one can also notice that there is a certain amount of skewness in the actual, generated speed profile at the chamber entrance, and this corresponds very well with the dislocation of the confinement region to an off axis position. In other words, the location of the self-confined region can be directly related to the amount and the characteristics of the vorticity distribution in the generated speed profile. This phenomenon is certainly expected. As was noted ir the second chapter, for a different vorticity distribution, we may very well obtain a different confinement region. It should be an easy matter to prove this conjecture in future experiments by using slightly different vorticity generators to generate slightly different input profiles, and then mapping out the confinement regions for comparison. More theoretical analysis on this situation will also be able to provide deeper insight into the confinement mechanism in this flow.

One of the remarkable characteristics of this flow shown on all the normalized speed profiles is that except for the smoothing effect of the viscosity, speed profiles have maintained and recovered their shapes quite well downstream of the self-confined region. No flow s >paration has occured anywhere inside the test chamber. Due to the small speeds in the central portion of the chamber, local turbulence intensities there are higher, but have returned to small magnitudes further downstream. Even the turbulence in the boundary layer are suppressed in the downstream part of the test chamber. Absolute turbulence

- 90 -

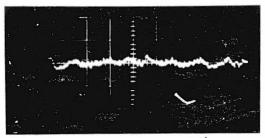
intensities have remained small throughout the entire test section. No flow instability has been detected.


Some oscilloscope pictures of the linearized RMS hot wire signals along the axis of the test section are given in Figures 4-10 and, 4-11A and B. In order to show the differences in the characteristics of the fluctuating velocities, these pictures were taken for two different conditions. Figure 4-10 is for the condition without the vorticity generator and Figure 4-11 is for the condition with the vorticity generator.

It can be seen that although the magnitudes of the fluctuating velocities at the chamber entrance (χ = +5.2 inches) in Figure 4-10 are slightly lower than that of the Figure 4-11A (larger fluctuating velocities caused by the vorticity generator), the fluctuating velocities generally have a much larger magnitude and higher frequencies for the former than that for the later. Especially at the chamber exit (χ = -5.2 inches), the difference in the magnitude of the fluctuating velocities is quite large. In addition to having smaller fluctuating velocities in the central portion of the test chamber, the frequencies of the RMS signal in Figure 4-11 are also much lower (about 150 - 500 Hz.). These results confirm the facts revealed by the tuft visulization that when the vorticity generator was installed in the pipe, the flow inside the test chamber became very orderly and a distinct flow region existed in the central part of the chamber.

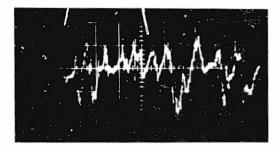
3. Flow rate calculation

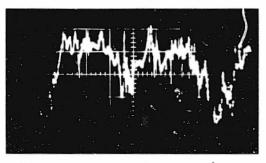
The mass flow rates both at the test chamber entrance (χ = +5.2 inches) and at the chamber central cross-section. (χ = 0.0 inch) are


- 91 -

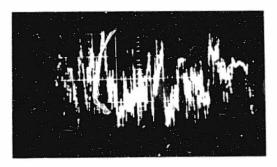
.

- 1

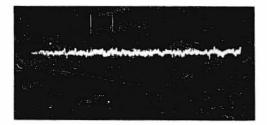

 χ = +5.2", Q = 58.12 ft/sec RMS_L = 0.64 ft/sec


- 1

- 1

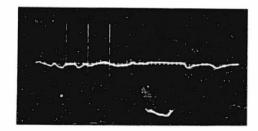

 χ = +2.5", Q = 50.62 ft/sec RMS_L = 1.61 ft/sec

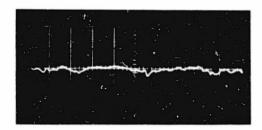
 χ = 0.0", Q = 45.50 ft/sec RMS_L = 7.6 ft/sec


X = -2.5", Q = 33.73 ft/sec RMS_L = 11.70 ft/sec

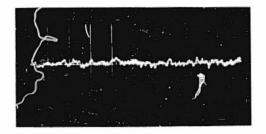
 χ = -5.2", Q = 52.75 ft/sec RMS_L = 9.78 ft/sec

Figure 4-10. Linearized RMS hot wire signals along the axis of the test section (without V.G.). Scale: 1V/Cm-Vertical, 10 Milli Sec/Cm-Horizontal

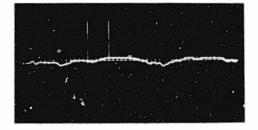

.


1

- 1


 χ = +5.2", Q = 46.8 ft/sec RMSL = 0.92 ft/sec

 χ = +2.0", Q = 1.62 ft/sec RMS_L = 1.03 ft/sec

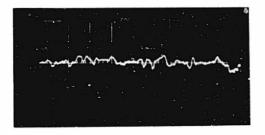


 χ = +1.25", Q = 2.00 ft/sec RMS_L = 1.22 ft/sec

1

 χ = +3.0", Q = 14.1 ft/sec RMS_L = 1.50 ft/sec

 χ = +1.75", Q = 1.55 ft/sec RMS_L = 0.98 ft/sec



 χ = +1.00", Q = 2.12 ft/sec RMS_L = 1.31 ft/sec

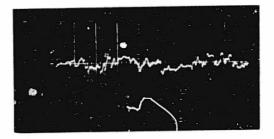
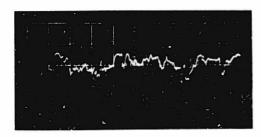
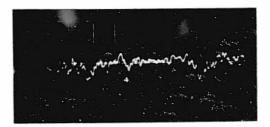
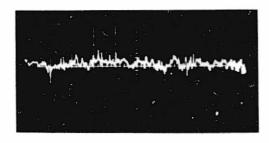

 χ = 0.0", Q = 4.25 ft/sec RMS_L = 1.73 ft/sec

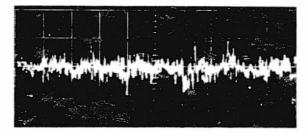
Figure 4-11A. Linearized RMS hot wire signals along the axis of the test section (with V.G.) Scale: 1V/Cm-Vertical, 10 Milli Sec/Cm-Horizontal



1


 χ = -1.0", Q = 3.77 ft/sec RMS_L = 1.98 ft/sec


 $\chi = -1.25$ ", Q = 3.71 ft/sec RMS_L = 2.14 ft/sec


 χ = -1.75", Q = 5.40 ft/sec RMS_L = 2.56 ft/sec

 χ = -2.0", Q = 6.82 ft/sec RMS_L = 2.55 ft/sec

 χ = -3.0", Q = 18.12 ft/sec RMS_L = 2.49 ft/sec

 χ = -5.2", Q = 51.3 ft/sec RMS_L = 2.58 ft/sec

Figure 4-11B. Linearized RMS hot wire signals along the axis of the test section (with V.G.) Scale: 1V/Cm-Vertical, 10 Milli Sec/Cm-Horizontal

- 94 -

.

calculated. For this purpose, it is assumed that the self-confined region in the chamber center is stationary with respect to the main flow, just as if the spherical region was a solid sphere. Then the mass flow rate at the entrance must be the same as that through the skewed annulus (similar to the one shown in Figure 4-9) at the central cross-section in order to meet the continuity requirement.

References are made to the normalized speed profiles in Figures 4-6A, 4-7A, and 4-8A, and the numerical data in Table 4 of the Appendix. At each radial position, six speed measurements have been taken (i.e. every 60° in the azimuthal direction) for a certain radius r. Mass flow rate calculations are carried out by numerical integrations over both sections. The speed is assumed to be constant over a sector of annulus with radius r, width $\pm \frac{\Delta r}{2}$, and an included angle of 60° centered around the measuring station. Where Δr is the radial increment for the measuring stations. For entrance section $\Delta r = 0.1$ inch and for central section $\Delta r = 0.2$ inch.

The two mass flow rates thus found are surprisingly close to each other. Except for the third decimal figure, they are identical.

Mass flow rate at entrance section (χ = +5.2 inches)

= Mass flow rate at the central annular section (χ = 0.0 inch)

= 2.85 (1b/sec

and the second sec

This mass flow rate calculation is based on the measured speed data and the flow geometry as shown in Figures 4-6A, 4-7A, and 4-8A. There is a small degree of uncertainty involved in the mass flow rate calculation for the central annular section. As discussed in section IV.2.2.2, there is no clear-cut, solid boundary at the confinement region interface. The dashed circles only represent the time average position of a certain fuzzy zone with low average speed (about 1.5 - 5.5 ft/sec) and locally high relative intensity of turbulence (about 40-60 %). Therefore there is considerable amount of turbulent diffusion between the fluids of the main flow and that of the confinement region across the fuzzy zone. This would affect the accuracy of the hot wire measurements. Nevertheless, this uncertainty would have little effect on the flow rate calculation. If the velocity at the region interface has an error of 50%, by a very rough estimate, the local position of the time average boundary will have a possible maximum error of less than 4% of the region diameter (3 inches) so as to meet the continuity requirement. In addition, the accuracy of the hot wire anemometer in the day to day measurements is estimated to be less than 4%. In any event, the above uncertainty or the possible errors involved will not affect the mass flow rate calculation a great deal. The closeness of the mass flow rates at the two sections helps us determine, with a reasonable accuracy the size and location of the self-confined region.

- 96 -

CHAPTER V

CONCLUSIONS

To a great extent, the original goals set for this experimental study have been successfully achieved, and most of the questions raised in the beginning have also been answered. However, in order to have a more complete understanding of this problem, further theoretical as well as experimental studies are required. Some suggestions on the direction for future studies are presented in the later section. Based on the results obtained in this experiment, some possible applications for this self-confined flow are also outlined here. The major findings of this study are now summarized below.

1. Summary

The theoretical model based on an inviscid, incompressible, steady-state analysis showed that an isolated, stagnant, self-confined region of constant pressure might be produced by suitable choices of flow parameters. The main concern, however, was that in a real situation, would this flow exist? Either the turbulence, instability, or separation of the flow, or any combination of these factors could undermine the confinement mechanism and made the theoretical model unrealistic. There were also questions about how to properly produce the required vorticity distributions. Now with the results presented in Chapter IV, these questions have been settled and the existence of such a self-confined region in a flow with a specified ring-vorticity distribution is confirmed. Furthermore, the flow appears to be unique and

- 97 -

stable. Even in the actual situation of this experiment, where the generated velocity profile deviated from the theoretical value (too much vorticity and some skewness in its distribution), the spherical self-confined region of the right size still existed at the same location every time the experiment was carried out. The only deviation from the theoretical model indicated was that the position of the confinement region was shifted to 0.25 inch upstream of the theoretical center and off the axis of symmetry by 0.41 inch. It is this author's opinion that such a deviation in the location of the confinement region is directly related to the shape of the generated velocity profile. Both the vorticity distribution and the symmetry of this velocity profile are important in determining the location of the confinement region. However, the detailed relationship between the generated velocity profile and the location of the confinement region are yet to be determined.

This experiment has shown that there has been no undue influence of the low turbulence level in the incoming stream on the confinement mechanism, except for the possible effects on the turbulence characteristics at the interface between the self-confined region and the main flow. Again, this is the area which requires more detailed study in the future so that the relationship between the turbulence in the incoming stream and that of the region interface can be better understood. In the initial stage of the experiment, flow separation was found at the sharp leading edge of the test section entrance scoop. This problem was subsequently corrected by blunting out the sharp leading edge to a semi-circle shape. With this problem eliminated and the introduction of the generated velocity profile into the test section, a self-confined

- 98 -

region was formed in the central part of the test chamber. The flow was very orderly and no flow separation was found anywhere along the chamber wall. This contrasted dramatically to the situation when the vorticity generator was not used in the incoming straight pipe (see Chapter IV for detailed descriptions). The velocity profile produced by the vorticity generator definitely contributed to the formation of the self-confined region and the orderliness of the flow in the test chamber.

2. Application

The author feels that the self-confined flow studied here could offer a new range of important possibilities for fluid mechanical confinement. If the other known confining mechanisms, such as the vortex breakdown phenomenon or the electromagnetic pinch effect, could be combined with this ring-vorticity case, a very powerful confinement method could be devised. Although the concept of a nuclear core reactor can not be realized yet, it could be brought closer to reality if a good confinement scheme could be found. The confinement mechanism illustrated in this experimental study could certainly make some contribution toward that end.

Most importantly, this method of flow confinement could be develowed so as to have immediate benefit for some practical applications. For example, the concept of self-confined flow could be incorporated into a turbine combustor design such that the fuel could be confined in the combustor and with the help of the turbulent diffusion across the region interface, the combustion process might be better controlled. Of course, the concept of the vortex breakdown could also be

- 99 -

incorporated into the design to further enhance the confinement process. There also could be useful applications for this type of self-confined flow in the fields of chemical processes where a region of fluid must be contained within a flowing medium without touching the chamber walls.

One interesting result revealed by this experimental study was that the flow inside the test chamber was very orderly and no flow separation was found anywhere in the chamber. In view of the large area ratio (3 to 1) between the central section annulus to the entrance of the test chamber in such a short distance (5.2 inches which is shorter than the diameter of the central cross-section), an oddly shaped but very effective flow diffuser can be made. Such a diffuser has a peculiar shape because the central self-confined region is relatively stagnant to the main flow, just as if the whole spherical volume was a solid block standing there with respect to the main flow. Also the test chamber has a certain specific contour as required by Equation (3-2). A more practical diffuser could be made if the rear half section of the test chamber could be eliminated, or even if the contour of the chamber could be modified to have a simpler shape. These modifications are considered to be possible but more studies are certainly needed before any definite relationship or rule could be established.

3. Suggestions

The experimental study performed here is only the first effort made to establish such a self-confined flow in the real situation. For a new flow phenomenon like this, there will certainly be a lot of questions and also difficult problems associated with its practical

- 100 -

applications. This study has only broken the ground and a great deal of research work still remains to be done before all the questions could be answered and the whole phenomenon fully understood. Some areas for the future study on this problem are suggested below.

Flow visualization for this experiment was carried out with a tuft probe which was good only for general flow indications. Smoke visualization was tried but it was not very successful. It is strongly recommended that a good smoke visualization method be used as the next step in this experiment. A controllable smoke generator with sufficient amount of dense smoke is needed. Smoke could be introduced into the confinement region from downstream side to occupy the self-confined region, or a sheet of smoke could be introduced into the incoming stream so that the smoke would follow the main flow and passes around the confinement region. Then good photographs could be taken for better understanding of the flow patterns inside the test chamber.

One of the special features of this self-confined flow was in the generated velocity profile of the incoming flow such that it had a prescribed vorticity distribution. The vorticity generators tested in this experiment were all passive devices, i.e. they provided different resistances across the pipe diameter to create different velocities. Pressure drops (or losses) were incurred through this process. There were also problems with the axisymmetry with the generated velocity profiles. Unless a series of different devices are made, it is difficult to study the effect of the vorticity distribution and symmetry on the formation or the characteristics of the confinement region by varying the generated velocity profiles. One plausible remedy for this problem is to use an

- 101 -

array of tiny jets compactly arranged in a series of concentric rings. Flow rate from each tiny jet can be individually adjusted to give a desirable downstream velocity profile. If more sophistication is allowed, the flow rate of each jet can be controlled independently by a small computer so that quick and accurate changes can be made with very simple commands to the computer.

As stated in the third chapter, in order to simplify the construction, a straight pipe was used upstream of the test section for the velocity profile generation. Even though a reasonably good vorticity distribution could be produced in the straight pipe, there was no radial velocity component as required by the theory. The experimental results have shown that the confinement mechanism was not significantly affected. The theoretical model could be more realistically approached in any future study if a properly contoured incoming pipe is used to develop the correct amount of radial velocity before the test section.

In this experiment, the boundary layer was removed immediately before the flow entered the test chamber. Effects of the boundary layer build-up could be studied by eliminating the boundary layer removal section. Also, for a more sophisticated set-up, boundary layer suction arrangements could be applied to the test section walls to study the effect of the boundary layer on the confinement region.

The effect of density difference and of energy evolution and transfer require much further theoretical as well as experimental studies before practical containment applications can be claimed. Heavier fluid could be introduced into the confinement region to see whether it could be contained. However, stability theory suggests that it would indeed

- 102 -

be desirable for a rotationally confined heavy fluid to be at rest (Ref. 17). The diffusion rate across the region boundary as well as the total leakage rate of the fluid from the region should be investigated. Both the diffusion and the leakage would actually help the combustion process if fuel is confined in the central region.

Theoretical, experimental, and numerical work could also be performed to study the relationship among the incoming velocity profiles, the chamber contour and the shape and location of the self-confined region. Further work could also be done for the cases where $F(\Psi)$ in Equation (2-14) takes on different values other than constant. Maybe more detailed turbulence work (e.g. scales, spectra, Reynolds stress, etc.) could be done in order to understand the connections between the turbulence of the incoming stream and that of the region interface. This understanding is essential for the practical combustion processes. Also Laser Doppler Anemometer could be used to measure the flow speed, direction as well as turbulence characteristics. However, in order to accommodate the LDA system, the entire test section may have to be redesigned.

Finally, a simpler variation of this experiment could be performed for some useful applications. As mentioned in the last section that suppose the rear half of test chamber is eliminated, what would happen to the confinement region? The flow could simply exit into the open air, or into a straight pipe of 6.066 incnes in diameter. The simpliest case would be just to let the generated velocity profile (maybe from a straight tappered pipe in order to have proper radial velocity component) exit into the open air like ... jet, or into a straight pipe similar to the arrangement

- 103 -

in a combustor canister. More understanding for these phenomena would certainly be very important for the practical application of such a self-confined flow in combustion, turbine combustor design and other general fluid mechanical confinement processes.

BIBLICGRAPHY

- 1. Werlé, H.: "Sur l'éclatemant des tourbillons dapex dune aile delta aux faibles vibles vitesses". La Recherche Aeronautique, pp. 23-30, No. 74, 1960
- 2. Elle, B. J.: "On the Breakdown at High Incidences of the Leading Edge Vortices on Delta Wings". Journal of the Royal Aeronautical Society, p. 491, Vol. 64, 1960
- Peckham, D. H.: "Low Speed Wind Tunnel Tests on a Series of Uncambered Slender Pointed Wings with Sharp Edges". ARC RM 3186, 1961
- 4. Lambourne, N. C. and Bryer, D. W.: "The Bursting of Leading Edge Vortices. Some Observations and Discussion of the Phenomenon". ARC RM 3282, 1962
- 5. Lowson, M. V.: "Some Experiments with Vortex Breakdown". Journal of the Royal Aeronautical Society, pp. 343-346, Vol. 68, 1964
- 6. Huumel, D.: "Unterschuchungen uber das Aufplatzen der Wirbel en schlanken Deltaflugeln". Zeitschr. Flugwiss, S 158-168, Vol. 13, 1965
- 7. Hummel, D. and Srinivasan, P. S.: "Vortex Breakdown Effects on the Slow-Speed Aerodynamic Characteristics of Slender Delta Wings in Symmetric Flow". Journal of the Royal Aeronautical Society, pp. 319-322, Vol. 71, 1967
- 8. Harvey, J. K.: "Some Observations of the Vortex Breakdown Phenomenon". Journal of Fluid Mechanics, Vol. 14, pp. 585-592, 1962
- 9. Benjamin, T. B.: "Some Developments in the Theory of Vortex Breakdown". Journal of Fluid Mechanics, Vol. 28, p. 65, 1967
- Sarpkaya, Turgut: "An Experimental Investigation of the Vortex-Breakdown Phenomenon". Report NPS-59SL0071A, U.S.Naval Postgraduate School, July 1970
- 11. Hall, M. G.: "Vortex Breakdown". Annual Review of Fluid Mechanics, Vol. 4, 1972, pp. 195-218
- 12. Mager, A.: "Dissipation and Breakdown of a Wing-Tip Vortex". Journal of Fluid Mechanics, Vol. 55, p. 609, 1972
- Randall, J. D. and Leibovich, S.: "The Critical State: A Trapped Wave Model of Vortex Breakdown". Journal of Fluid Mechanics, Vol. 58, pp. 495-515, 1973

- 14. Kubo, I.: "A Numerical Study of Confined, Coaxial, Turbulent Swirling Flows". Ph.D. Thesis, 1974, Cornell University, N. Y.
- 15. Faler, J.: "Some Experiments in Swirling Flows: Detailed Velocity Measurements of a Vortex Breakdown Using a Laser Doppler Anemometer". Ph.D. Thesis, 1976, Cornell University, Ithaca, N.Y.
- 16. Hall, M. G.: "The Structure of Concentrated Vortex Cores". Article in Progress in Aeronautical Sciences, 7, Edited by Küchemann et al, Pergamon Press, 1966
- 17. Moore, F. K., and Leibovich, S: "Self-Confined Rotating Flows for Containment". NASA, SP-236, 1973
- 18. Lamb, H.: "Hydrodynamics". Dover Pub. (New York, N. Y.),1932, pp. 245-246
- 19. Batchelor, G. K.: "An Introduction to Fluid Dynamics". Cambridge University Press, 1967, p.526
- 20. Ragsdale, R. G., and Lanzo, C. D.: "Summary of Recent Gaseous Reactors Fluid Mechanics Experiments". NASA, TM X-1847, 1969
- 21. Shapiro, A. H., Jaffrin, M. Y. and Weinberg, S. L.: "Peristaltic Pumping with Long Wavelengths at low Reynolds Number". Journal of Fluid Mechanics (1969), Vol. 37, pp. 799-825
- 22. Jaffrin, M.Y., and Shapiro, A. H.: "Peristaltic Pumping". Annual Review of Fluid Mechanics, Vol. 3, 1971, pp. 13-35
- 23. Hung, Tin-Kan, and Brown, Thomas D.: "Solid-Particle Motion in Two-Dimensional Peristaltic Flows". Journal of Fluid Mechanics (1976), Vol. 73, pp. 77-96
- 24. Lighthill, M. J.: "Dynamics of a Dissociating Gas, Part I. Equilibrium Flow". Journal of Fluid Mechanics (1957), Vol. 2, pp. 1-32
- 25. Manual for Air Filtration Systems, Flanders Filters Inc. Washington, North Carolina, 1972
- 26. Loehrke, R. I., and Najib, H. M.: "Experiments on Management of Free-Stream Turbulence". AGARD Report No. 598, 1972
- 27. Vidal, R. J., and Curtis, J. T.: "The Effects of Axisymmetric Shear on Airfoil Characteristics". TCREC Technical Report T61-138, Cornell Aeronautical Laboratory, Inc. 1961
- 28. Livesey, J. L., and Laws, E. M.: "Simulation of Velocity Profiles by Shaped Gauze Screens". AIAA Journal, Vol. 11, No. 2, pp. 184-188, 1973

- 29. Livesey, J. L., and Laws, E. M.: "Flow Through Non-Uniform Gauze Screens". Journal of Fluid Mechanics (1973), Vol. 59, pp. 737-743
- 30. Sajben, M., Kroutil, J. C., Hoffman, G. H., and Sedrick, A. V.: "Generation of Velocity Profiles Using Screens of Nonuniform Solidity". AIAA Paper No. 73-1229, 1973
- 31. TSI Manual for Anemometry, Thermo-Systems Inc., St. Paul, Minn. 1973
- 32. Champagne, F. H., Sleicher, C. A., and Wehrmann, O. H.: "Turbulence Measurements with Inclined Hot-Wires". Part 1 & 2, Journal of Fluid Mechanics, Vol. 28, pp. 153 & 177, 1967
- 33. Operating and Service Manual, 1050 Series Constant Temperature Anemometers and Related Accessories., Thermo-Systems Inc., St. Paul, Minn., 1970
- 34. Instruction Manual for Model 1052 Linearizer, Thermo-Systems Inc., St. Paul, Minn., 1971
- 35. Model 1047 Instruction Manual, Thermo-Systems Inc., St. Paul, Minn., 1974
- 36. Bradshaw, P.: "An Introduction to Turbulence and Its Measurement". Pergamon Press, 1971
- 37. Hinze, J. O.: "Turbulence, An Introduction to Its Mechanism and Theory". McGraw-Hill Book Co. Inc. 1959
- 38. King, L. V.: "On the Convection of Heat from Small Cylinders in a Stream of Fluid: Determination of the Convective Constants of Small Platinum Wires with Applications to Hot-Wire Anemometry". Proc. of Roy. Society, Vol. 214A, No. 14, p.373, 1914
- 39. Collis, D. C., and Williams, M. J.: "Two-Dimensional Convection from Heated Wires at Low Reynolds Numbers". Journal of Fluid Mechanics (1959), Vol. 6, p. 357
- 40. Hollasch, K., and Gebhart B.: "Calibration of Constant-Temperature Hot-Wire Anemometer at Low Velocities in Water with Variable Fluid Temperature". ASME Paper No. 71-HT-9, 1971
- 41. Shen, S. F.: The section on "Stability of Laminar Flows". p.788, in the book: "Theory of Laminar Flows". Edited by Moore, F. K., Prinston University Press, 1964

2. The second se Second sec

1

APPENDIX

Table 1

Coordinates for the test section interior wall

X (inch)	۲ (inch)
0.000	3.033
0.146	3.018
0.212	3.015
0.339	3.008
0.456	2,999
0.548	2.989
0.608	2,982
0.728	2,966
0.920	2.934
1.218	2.871
1.441	2.813
1.505	2.795
1.810	2.698
2.060	2.609
2.274	2.526
2.464	2,450
2.635	2.377
2.939	2.246
3.206	2.131
3.447	2.027
3.671	1.934
3.881	1.850
4.080	1.773
4.272	1.703
4.365	1.670
4.548	1.609
4.726	1.552
4.900	1.499

108

Table 2

Hot wire calibration data

P-S Reading (inwater)	Speed (ft/sec)	Bridge Voltage <u>(volt)</u>
0.0000	0.00	2.082
0.0070	5.64	2.656
0.0135	7.83	2.736
0.0200	9•53	2.803
0.0320	12.06	2.888
0.0465	14.53	2.956
0.0630	16,92	3.014
0.0760	18,58	3.048
0.0985	21.15	3.105
0.1280	24.11	3.161
0.1675	27.59	3.218
0.2250	31.97	3.288
0.2955	36.64	3.355
0.3710	41.05	3.409
0.4600	45.71	3.461
0,6615	54.82	3,558
0.8890	63,55	3.639
1.1180	71.27	3.703
1.4380	80.83	3 . 774
1.7950	90,30	3.834

Room temperature: 76°F Sensor cold resistance: 5.022 Ohms Overheat ratio: 1.6 Operating resistance: 8.04

the second s

and second

÷

1996 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

- 110 -

Table 3

inearizer calibration da

Speed* (ft/sec)	Bridge* Voltage (volt)	Linearizer Output (volt)
0	2.082	0.000
1	2.243	0.100
2	2,358	0.200
3	2.450	0.302
4	2.526	0.405
5	2.587	0.501
8	2.739	0.808
10	2.818	1.014
12	2.884	1.214
15	2.970	1.517
18	3.043	1.816
20	3.086	2.017
25	3.182	2,518
30	3.263	3.015
40	3.397	3.999
50	3.509	5.000
60	3.605	6.002
70	3.691	7.031
80	3.765	8.031
90	3.831	9.000

* Values of the speed and bridge voltage used in this table are taken from the hot wire calibration curve plotted on a large graph paper for accuracy (the curve is similar to the one shown on Figure 3-9).

Table 4

Detailed hot wire measurement data for the test section (partial list)

Nomenclature

ANGLE: Azimuthal angle in degrees, starting from the twelve o'clock position and in the counterclockwise direction

SPEED: Fluid speed in the meridional plane in ft/sec

SPEED RATIO: Ratio of the local average speed to the reference speed at $\chi = +5.2$ inches and r = 0.0 inch, i.e., Q/Q_{ref}

RMS SPEED: The fluctuating speed & in ft/sec

LOCAL INT: Local turbulence intensity in %, $\frac{q}{Q}$

TURB INT: Absolute turbulence intensity in %, g'/Q_{ref}

ANGLE	SPEED	SPEED KATIO	RMS SPEED	LOCAL INT	TURB INT
		X= 5.20	R	=0.000	
•					-
0	47.62	1.012	0.940	1.974	1.997
30 60	47.62 47.05	1.012	0.960	2.016	2.040
90	46.95	0.998	0.940 0.960	1.998 2.045	1.997 2.040
120	46.87	0.996	0.930	1.984	1.976
150	46.80	0.994	0.910	1.944	1.934
180	46.80	0.994	0.920	1.966	1.955
210	46.80	0.994	0.930	1.987	1.976
240	46.80	0.994	0.950	2.030	2.019
270	46.95	0.998	0.920	1.960	1.955
300	47.13	1.001	0.950	2.016	2.019
330	47.35	1.006	0.930	1.964	1.976
		X= 5.20	D	=0.100	
		x- J.20	ĸ	-0.100	
ο	47.64	1.012	0.890	1.868	1.891
30	47.90	1.018	0.910	1.900	1.934
60	48.25	1.025	0.900	1.865	1.912
90	48.10	1.022	0.910	1.892	1.934
120	47.85	1.017	0.950	1.985	2.019
150	47.35	1.006	0.920	1.943	1.955
180	46.60	0.990	0.910	1.953	1.934
210	46.17	0.981	0.830	1.798	1.764
240	40.04	0.978	0.800	1.738	1.700
270	46.40	0.986	0.820	1.767	1.742
300	46.55	0.989	0.830	1.783	1.764
330	46.85	Ú.9 96	0.860	1.836	1.827
		X= 5.20	R	=0.200	
0	47.62	1.012	0.820	1.722	1.742
30	47.85	1.017	0.850	1.776	1.806
60	48.62	1.033	0.820	1.687	1.742
6.0	1.4 VA	1 0 4 7	0 770	1 570	1 1 24

0.770

0.800

0.840

0.840

0.830

0.750

0.770

0.800

0.820

1.578

1.645

1.754

1.785

1.789

1.627

1.654

1.711

1.750

1.636

1.700

1.705

1.785

1.764

1.594

1.630

1.700

1.742

1.037

1.033

1.018

1.000

0.986

0.980

0.989

0.993

0.996

48.80

48.02

47.90

47.07

46.40

40.10

40.56

46.75

46.85

1

1

1

> 60 90

120

150

180

210

240

270

300

330

1

- 112 -

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
		X= 5.20	R	=0.300	
0	47.64	1.012	0.810	1.700	1.721
30	41.66	1.013	0.820	1.721	1.742
60	48.72	1.035	0.870	1.786	1.849
90	49.55	1.053	0.710	1.433	1.509
120	49.00	1.041	0.690	1.408	1.466
150	48.60	1.033	0.710	1.461	1.509
180	48 . ŭU	1.020	0.750	1.563	1.594
210	46.90	0.997	0.890	1.898	1.891
240	46.60	0.990	0.790	1.695	1.679
270	47.04	1.012	0.790	1.658	1.679
300	47.70	1.014	0.760	1.593	1.615
330	47.85	1.017	0.830	1.735	1.764
		X= 5.20	R	=0.400	
0	48.00	1.020	0.860	1.792	1.827
30	47.80	1.015	0.810	1.695	1.721
60	48.78	1.037	0.910	1.866	1.934
90	49.75	1.057	0.720	1.447	1.530
120	49.77	1.058	0.690	1.386	1.400
150	49.72	1.057	0.700	1.408	1.487
180	48.65	1.034	0.710	1.459	1.509
210	47.87	1.017	0.900	1.880	1.912
240	47.62	1.012	0.820	1.722	1.742
270	48.65	1.034	0.780	1.603	1,657
30u	48.47	1.030	0.700	1.444	1.487
330	48.75	1.036	0. 790	1.621	1.679
		X= 5.20	F	l=0.500	
0	48.70	1.035	0.850	1.745	1.806
30	48.60	1.033	0.930	1.914	1.976
60	49.55	1.053	0.890	1.796	1.891
90	50.25	1.068	0.730	1.453	1.551
120	50.50	1.073	0.710	1.406	1.509
150	50.72	1.078	0.750	1.479	1.594
180	48.75	1-036	0.700	1.436	1.487
210	48.62	1.033	0.890	1.831	1.891
240	48.48	1-030	0.880	1+815	1.870
270	49.77	1.058	0.790	1.587	1.679
300	48.92	1.040	0.710	1.451	1.509
330	49.65	1.055	0.740	1.490	1.572

- - - - - **-** - **-**

-- -- ----**L**

സം

and the second second

en en la substance de la substanc

NGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
•		X= 5.20	R	=0.600	
0	48.82	. 1.037	0.820	1.680	1.742
10	48.70		0.840	1.725	1.785
30	49.30	1.054	1.050	2.117	2.231
00	49.72	1.057	0.980	1.971	2.082
90	50.13	1.065	0.720	1.436	1.530
120	50.80	1.079	0.690	1.358	1.466
150	51.53	1.095	0.740	1.436	1.572
180	48.77		0.730	1.497	1.551
210	49.55	1.053	0.840	1.695	1.785
240	49.77				2.104
270		1.088	0.780	1.523	1.657
	50.45		0.750	1.487	1.594
330	50.58	1.075	0.700	1.384	1.487
		X= 5.20	R	=0.700	
0	50.60	1.075	0.780	1.542	1.657
10	50.45	1.072	0.790	1.566	1.679
30	51.75	1.100	1.190	2.300	2.529
60	52.25	1.110	1.050	2.010	2.231
90	51.20	1.088	J.730	1.426	1.551
120	51.85	1.102	0.680	1.311	1.445
150	52.83	1.123	0.770	1.458	1.036
180	50.60	1.075	0.710	1.403	1.509
210	51.00	1.084	0.810	1.588	1.721
240	52.70	1.120	1.030	1.954	2.189
270	53.52	1.137	0.830	1.551	1.764
30.0	52.50	1.116	0.820	1.562	1.742
330	52.25	1.110	0.780	1.493	1.657
		X= 5.20	R	=0.800	
0	51.53	1.095	0.600	1.552	1.700
. د ا	53.90	1.145	1.230	2.282	2.614
60	53.60	1.139	1.030	1.922	2.189
90	52.25	1.110	0.850	1.627	1.806
120	52.72	1.120	0.720	1.366	1,530
150	53.50	1.137	0.790	1.477	1.679
180	51.63	1.097	0.710	1.375	1.509
210	52.68	1.119	0.920	1.746	1,955
240	55.48	1.179	0.940	1.694	1.997
270	54.88	1.146	0.810	1.476	1.721
300	53.75	1.142	0+880	1.637	1.870
330	53.55	1.138	0.870	1.625	1.849

- 114 -

A

ANGLE	SPEED	SPEED RATIO	KMS SPEED	LOCAL INT	TURB INT
		X= 5.20	R	=0.900	
0	52.53	1.116	0.830	1.580	1.764
30	56.00	1.190	1.070	1.911	2.274
60	55+66	1.183	0.840	1.509	1.785
90	54.15	1.151	0.990	1.828	2.104
120	53.68	1.141	0.690	1.285	1.466
150	54.52	1.159	0.730	1.339	1.551
1.80	53.10	1.128	0.750	1.412	1.594
210	54.75	1.163	0.950	1.735	2.019
240	57.70	1,226	0.810	1.404	1.721
270	56.75	1.206	0.760	1.339	1.615
300	55.75	1.185	0.890	1.596	1.891
330	55.20	1.173	0.920	1.667	1.955
		X= 5.20	R	=1.000	
0	53.65	1.140	0.920	1.715	1.955
0 30	57.87	1.230	0.920	1.590	1.955
60	57.65	1.225	0.700	1.214	1.487
90	56.50	1.201	0.880	1.558	1.970
120	54.87	1.166	0.720	1.312	1.530
150	55.75	1.185	0.730	1.309	1.551
180	55.35	1.176	0.770	1.391	1.636
210	57.50	1.222	0.790	1.374	1.679
240	59.80	1.271	0.690	1.154	1.466
270	59.00	1.254	0.680	1.153	1.445
300	57.87	1.230	0.720	1.244	1.530
330	56.72	1.205	0.920	1.622	1.955
		X= 5.20	F	l=1.100	
_				1	0 39 4
0	55.63	1.182	1.100	1.977	2.337
30	60.05	1.276	0.870	1.449	1.849
60	59.25	1.259	0.640	1.080	1.360
90	58.63	1.246	0.650	1.109	1.381
120	56.70	1.205	0.770	1.358	1.636
150	57.75	1.227	0.790	1.368	1.679
162	56.70	1.205	0.820	1.446	1.742
150	57.70	1.226	0.750	1.300	1.594
210	60.00	1.275	0.720	1.200	1.530
240	61.60	1.309	0.660	1.071	1.402
270	61.30	1.303	0.650	1.060	1.381
300	59.86	1.272	0.590	0.986	1.254
330	58.63	1.246	Gk 970	1.654	2.061

والمرورج والمحمد والمراجع والمحمد والمعاد فالأفاق ومحمد والكرامية

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
		X= 5.20	R	=1.200	
. 0	57.85	1.229	1.100	1.901	2.337
30	62.40	1.326	0.900	1.442	1.912
60	61.10	1.298	0.620	1.015	1.317
90	60.03	1.276	0.580	0.966	1.232
120	58.80	1.249	0.700	1.190	1.487
150	60.00	1.275	0.840	1.400	1.785
108	58.75	1.248	0.780	1.328	1.657
180	60.00	1.275	0.720	1.200	1.530
210	62.25	1.323	0.580	0.932	1.232
240	63.70	1.354	0.590	0.926	1-254
270	63.80	1.356	0.700	1.097	1.487
300	61.25	1.302	0.610	0.996	1.296
330	60.03	1.276	1.060	1.766	2.252
		X= 5.20		=1.300	
Ö	60.87	1.293	1.000	1.643	2.125
30	65.20	1.385	0.920	1.411	1.955
60	63.68	1.353	0.590	0.927	1.254
90	62.55	1.329	0-630	1.007	1.339
120	61.80		0.710	1.149	1.509
150	63.35	1.346	0.800	1.263	1.700
180	62.43	1.327	0.680	1.089	1.445
210	64.28	1.366	0.560	0.871	1.190
240	66.24	1.408	0.610	0.921	1.296
270	66.76		0.660	0.989	1.402
300	63.72	1.354	0.660	1.036	1.402
330	63.50	1.349	1.080	1.701	2.295
		X= 5.20		x=1.400	
0	63.25	1.344	1.200	1.897	2.550
30	68.50	1.456	0.850	1.241	1.806
60	66.20	1.407	0.620	0.937	1.317
90	66.20	1.407	0.700	1.057	1.487
120	65.30	1.388	0.780	1.194	1.657
150	66.30	1.409	0.760	1.140	1.615
180	64.86	1.378	U.710	1.095	1.509
210	67.30	1.430	0.630.	0.936	1.339
240	70.00	1.487	0.690	0.986	1.466
270	70.10	1.490	0.650	0.927	1.381
300	66.37	1.410	0.670	1.009	1.424
330	66.13	1.405	1.030	1.558	2.189
			P - C - C - C - C		

- 116 -

والمراجعة والمتحر المتحد المتحاف وتتأته

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
		X= 5.20	· · ·	1.450	
0	64.32	1.367	1.450	2.254	3.081
30	68.75	1.461	0.800	1.164	1.700
60	66.80	1.419	0.660	0.988	1.402
90	67.20	1.428	0.670	0.997	1.424
120	66.80	1.419	0.790	1.183	1.679
150	67.70	1.439	0.730	1.078	1.551
180	66.05	1.404	0.770	1.166	1.636
210	68.20	1.449	0.650	0.953	1.381
240	71.25	1.514	0.680	0.954	1.445
270 300	70.45 67.45	1.497 1.433	0.650 0.690	0.923	1.381
330	61.05	1.297	0.960	1.572	1.466 2.040
550	01.07	L • C 7 1	V+ 70 V	1.716	2.000
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				
		X= 4.50	Ê	R=0.000	
0	39.87	0.847	1.000	2.508	2.125
60	39.62	0.842	1.030	2.600	2.189
120	39.05	0.830	1.020	2.612	2.167
180	39.05	0.830	1.020	2.612	2.167
240	39.40	0.837	1.000	2.538	2.125
300	39.80	0.845	1.020	2.563	2.107
	· · ·	X= 4.50	F	R=0.200	
•	30.07	0.047	1 000		1 012
0 60	39.87	0.847 0.887	0-900 0+840	2.257 2.012	1.912
90	42.13	0.895	0.800	1.899	1.700
120	41.50	0.882	0.840	2.024	1.785
180	39.72	0.844	0.950	2.392	2.019
240	38.20	0.812	0.840	2.199	1.785
300	38.90	0.827	0.870	2.237	1.849
		X= 4.50		X=0.400	
		N- 4020	1997 - 1997 -		
0	40.50	0.861	0.930	2.296	1.976
60	42.20	0-897	0.940	2.227	1.997
90	43.00	0.914	0.740	1.721	1.572
120	42.90	0.912	0.700	1.632	1.487
180	41.50	0.882	0.750	1.807	1.594
235	39.23	0.834	0.910	2.320	1.934
240	39.25	0.834	0.920	2.344	1.955
300	40.80	0.867	0.790	1.936	1.679

				· · ·	
	· · · .		- 118 -		
NGLE	SPEED	SPEED RATIC	I RMS SPEED	LOCAL INT	TURB INT
	n Alexandra (Maria)			en e	
	en de la composition National de la composition	X= 4.50	¶entre († 1997) 1990 - Parland Barris, 1997 - Parland Barris, 1997	l=0.600	
0	42.37	6.900	0.840	1.983	1.785
60	43.20	0.918	1.000	2.315	2.125
120 140	44.75	0.951 0.967	0.710	1.587	1.509 1.636
180	42.50	0.903	0.690	1.624	1.466
225	41.50	0.882	1.000	2.410	2.125
240	42.50	0.903	1.050	2.471	2.231
300	43.27	0.919	0.760	1.756	1.615
֥					and the second sec
		X= 4.50	F	R=0.800	an a
•	11. 22	0.04.0	0.000	1 000	1 700
0	44.22	0.940	0.800	1.809	1.700
60 120	46.77	0.994	1.160	2.480	2.465
135	46.25	0.983	0.710	1.535 1.542	1.509
180	40.00	0.940	0.740 0.710	1.605	1.572
240	47.90	1.018	1.100	2.296	2.337
263	48.50	1.031	0.960	1.979	2.040
270	48.45	1.030	0.880	1.816	1.870
300	46.67	0.996	0.920	1.963	1.955
		X= 4.50	6	R=1.000	
o	46.55	0.989	0.870	1.869	1.849
60	50.72	1.078	0.810	1.597	1.721
120	48.55	1.032	0.710	1.462	1.509
180	47.87	1.017	0.810	1.692	1.721
240	53.00	1.126	0.790	1.491	1.679
300	51.00	1.084	0.890	1.745	1.891
en tetran Anna tetran		¥- (50	· · · · · · · · · · · · · · · · · · ·	-1 200	
		X= 4.50	na sa Manazarta a sa sa	R=1.200	and a second
0	49.63	1.055	1.150	2.317	2.444
40	55.50		0.670	1.207	1.424
	54.25		0.630	1.161	1.339
	51.72		0.760	1.469	1.615
	52.68		0.780	1.481	1.657
		1.206	0.640	1.128	1.360
300	54.62	1.161	0.590	1.080	1.254
		X= 4.50		R=1.300	
0 3.5	52.00	1.105	1.150 0.790	2.212 1.374	2.444
	57.40	1 221			· · · · · · · · · · · · · · · · · · ·

. As a second

.

Ľ.

•				• .	a star in the
ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
60	56.20	1.194	0.610	1.085	1.296
120	53.82	1.144	0.700	1.301	1.487
180	55.00	1.169	0.730	1.327	1.551
240	58.75		0.590	1.004	1.254
300	56.20	1.194	0.620	1.103	1.317
		X= 4.50		=1.400	
		A- 4.JU		=1.400	
0	53.87	1.145	1.080	2.005	2.295
60	58.90	1.252	0.610	1.036	1.296
	57.62	1.224	0.740	1.284	1.572
180	57.78	1.228	0.700	1.211	1.467
	62.30	1.324	0.640	1.027	1.360
300	58.12	1.235	0.680	1.170	1.445
					· · · · · · · · · · · · · · · · · · ·
	· · · · ·	X= 4.50	-	=1.575	
0	58.72	1.248	3.140	5.347	6.672
60	63.70	1.354	2.120	3.328	4.505
120	63.25		0.990	1.565	2.104
180	62.40	1.326	1.080	1.731	2.295
240	67.50	1.434	1.080	1.600	2.295
300	64.25	1.365	2.120	3.300	4.505
		X= 4.50	R	=1.600	
0	58.00	1.232	3.520	6.069	7.480
60	61.15	1-299	3.020	4.939	6.417
120	58.90	1.252	1.770	3.005	3.761
155	51.63	1.097	4.210	8.154	8.946
180	56.82	1.207	3+410	6.001	7.246
240	63.27	1.344	3.220	5.089	6.842
260	64.50	1.371	2.750	4.264	5.844
300	62.28	1.323	3.060	4.913	6.502
	en e				•
		X= 3.50		=0.000	
0	23.00	Ú. 489	1.180	5.130	2.507
60	22.87	6.486	1.180	5.160	2.507
120	22.35	0.475	1.180	5.280	2.507
180	22.50	0.478	1.180	5.244	2.507
240	22.95	0.488	1.200	5.229	2.550
300	23.00	0.489	1.180	5-130	2.507
· · · · · · · · · · · · · · · · · · ·					

- 119 -

10 J. (

.

.

•

and the second

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
 		X= 3.50		R=0.200	· · · · ·
		an a			
O .	23.75		1.060	4.463	2.252
60	25.84	0.549	1.000	3.870	2.125
90	25.95	0.551	1.000	3.854	2.125
120	25.30	0.538	1.060	4.190	2.252
180	22.90	0-487	1.160	5.066	2.465
240	20.30	0.431	1.080	5.320	2.295
300	21.50	0.457	1.080	5.023	2.295
		X= 3.50		R=0.400	
	· · · · ·	A- 3.JU		~~~~	n ingen
	24.10	0.512	0.960	3.983	2.040
. 60 :	26.50	0.563	1.020	3.849	2.167
90	27.50	0.584	0.800	2.909	1.700
120	27.18	0.578	0.790	2.907	1.679
180	24.90	0.529	0.910	3.655	1.934
240	21.20	0.450	1.060	5.000	2.252
300	23.70	0.504	0.970	4+093	2.061
				D-0 /00	
		X= 3.50		R=0.600	
Ð	25.30	0.538	1.050	4.150	2.231
60	26.60	0.565	1.080	4.060	2.295
90	28.50	0.606	0.840	2.947	1.785
120	28.55	0.607	0.800	2.802	1.700
140	29.00	0.616	0.910	3.136	1.934
180	25.95	0.551	0.800	3.083	1.700
240	23.50	0.499	1.070	4.553	2.274
300	25.80	0.548	0.830	3.217	1.764
340	26.00	u- 552	0.940	3.615	1.997
		X= 3.50		R=0.800	
_					
0	26.55	0.564	0.960	3.616	2.040
60	28.30	0.601	1.320	4.664	2.805
120	30.00	0.637	0.790	2.633	1.679
140	31.75	0.675	0.880	2.772	1.870
180	26.50	0.563	0.800	3.019	1.700
225	25.70	0.546	1.120	4.358	2.380
240	26.70	0.567	1.280	4.794	2.720
275	29.60	0.629	0.970	3.277	2.061
300	28.82	0.612	0.950	3.296	2.019

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
an a		X= 3.50	R	k=1.000	
0	27.90	0.593	0.920	3.297	1.955
50	33.75	0.717	1.350	4.000	2.869
60	32.10	0.602	1.400	4.361	2.975
90	29.75	0.632	0.920	3.092	1.955
120	31.25	0.664	0.810	2.592	1.721
140	33.95	0.721	0.810	2.386	1.721
180 195	27.82	0.591 0.579	0-840 0-840	3.019 3.083	1.785
240	32.40	0.688	1.450	4.475	3.081
260	33.40	0.710	1.240	3.713	2.635
300	31.25	0.664	1.080	3.456	2.295
	· · ·	X= 3.50	f	R=1.200	
· · · ·	29.25	0.622	0.970	3.316	2.061
60	35.77	0.760	1.040	2.907	2.210
120	32.60	0.693	0.820	2.515	1.742
180	31.00	0.659	0.950	3.065	2.019
240	38.10	0.810	1.060	2.782	2.252
300	35.20	0.748	1.140	3.239	2.422
			<u>.</u>		
		X= 3.50	•	l=1.300	· ·
Ó	29.97	0.637	1.030	3.437	2.189
60	37.32	0.793	0.870	2.331	1.849
120	33.65	0.715	0.870	2.585	1.849
140	36.53	0.776	0.700	1.916	1.487
180 240	32.75	0.696	1.040	3.176	2.210
300	39.80	0.846 0.793	0.870	2.186 2.708	1.849 2.146
					a fa shakara
		X= 3.50		₹=1.400	
0	30.70	0.652	1.100	3.583	2.337
6Õ	38.50	0.818	0.800	2.078	1.700
120	35.90	0.763	0.900	2.507	1.912
180	35.30	0.750	0.980	2.776	2.082
240	41.60	0.884	0.920	2.212	1.955
300	39.10	0.831	0.970	2.481	2.061
		X= 3.50	I	<=1.600	
0	33.80	0.718	1.450	4.290	3.081
60	41.00	0.871	0.670	1.634	1.424
a statistici					

n an the second		and the state of the state of the		and the second second	an a
ANGLE	SPEED	SPEED RATIO	RMS SPEED	LUCAL INT	TURB INT
120	38.80	0.824	0.870	2.242	1.849
180	39-25	0.834	0.870	2.217	1.849
240	44.15	0.938	0.660	1.495	1.402
300	40.95	0.870	0.700	1.709	1.487
	• .	X= 3.50	R	=1.800	4. -
0	37.62	0.799	1.600	4.253	3.400
60	43.05	0.915	1.510	3.508	3.209
120	42.20	0.897	1.340	3.175	2.847
180	42.40	0.901	1.140	2.689	2.422
240	46.72	0.993	1.350	2.890	2.869
270	47.50	1.009	1.450	3.053	3.081
300	43.45	0.923	1.260	2.900	2.677
		X= 3.50		=1.840	en e
0	38.00	0 907	1.920	5.053	4.080
60	42.37	0.807 0.900	2.560	6.042	5.440
120	42.45	0.902	1.880	4.429	3.995
180	42.55	0.904	1.660	3.901	3.527
240	46.22	0.982	2.190	4.738	4.654
265	46.82	0.995	2.250	4.806	4.781
300	43.32	0,921	2.010	4.640	4.271
		X= 3.50	ĥ	R=1.950	
0	31.50	0.609	4.890	15.524	10.391
45	28.37	0.603	5.700	20.092	12.112
60	31.00	0.659	5.510	17.774	11.708
120	32.80	0.697	5.210	15.884	11.071
180	32.28	0.686	5.200	16.109	11.050
240	33.10	0.703	5.700	17.221	12.112
270	33.18	0.705	5.820	17.541	12.367
300	32.12	0.683	5.510	17.154	11.708
		X= 3.50		X=1.990	
0	26.62		5.030	18.896	10.688
45 60	22.72	0-483 0-537	5.110 5.100	22.491 20.198	10.858 10.837
120	20.68	0.567	4.910	18.403	10.433
120	25.30	0.538	4.810	19.012	10.221
240	26.82	0.570	5.180	19.314	11.007
205	27.75	0.590	5.290	19.063	11.241
300	25.97	0.552	5.100	19.638	10.837
	in the third sector of the fi				a da esta esta esta esta esta esta esta est

- 122

Ŀ

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
		X= 2.50		=0.000	
	· . · . ·				
0	6.10	0.130	1.900	31.148	4.037
60	6.02	0.128	1.840	30.565	3.910
120	5.30	0.113	1.900	35.849	4.037
180 240	5.30 5.70	0.113 0.121	1.880	35.472 32.632	3.995
300	5.10	0.131	1.920	31.220	4.080
	0.12				
		X= 2.50	R	=0.200	andra a construction Anna Anna Anna Anna Anna Anna Anna Ann
Ő	7.75	0.165	1.790	23.097	3.804
60	11.00	0.234	1.810	16.455	3.846
120	9.50	0.202	1.940	20.421	4.122
180	5.13	0.109	1.750	34.113	3.719
240	3.51	0.075	1.620	46.154	3.442
300	4.65	0.099	1.700	36.559	3.612
		X= 2.50	n de la companya de En la companya de la c	k=0+400	
0	9.45	0.201	1.480	15.661	3.145
60	14.75	0.313	1.270	8.610	2.699
90	15.55	0.330	1.270	8.167	2.699
120	13.50	0.287	1.480	10.963	3.145
180	7.20		1.780	24.722	3.782
240 300	4.37	0.093 0.133	1.600 1.670	36.613 26.720	3.400 3.549
200	0023	V •1 <i>33</i>	1.010		
- · · ·	: ·	X= 2.50	R	-0.600	
0	11.45	0.243	1.340	11.703	2.847
60	15.25	0.324	L.250	8.197	2.656
90	17.30	0.368	0.940	5.434	1.997
120	16.25	0.345	1.000	6.154	2.125
180	11.25	0.239	1.550	13.778	3.294
225	5.80	0.123	1.620	27.931	3.442
240	6.15	0.131	1.620	26.341	3.442
300	10.00	0.212	1.480	14.800	3.145
		X= 2.50		t=0•800	
0	13.10	0.278	1.320	10.076	2.805
60	15.00	0.319	1.300	8.667	2.762
90	18.20	0.387	0.930	5.110	1.976
120	18.00	0.382	0.910	5-056	1.934
180	14.30	U.304	1.100	7.692	2.337
				너희 이야지 않는 것 같이 가지?	entre este entre statues porte

				- 124 -		
	ANGLE	SPEED	SPEED RATIO	RMS SPEED	LDCAL INT	TURB INT
	24C	8.30	0.176	1.720	20.723	3.655
• • •	300	13.30	0.283	1.180	8.872	2.507
r jedi je			X= 2.50	a a construction de la construcción	k=1.000	
		14 70				
	0 60	14.70 16.40	0.312 0.348	1.320	8.980 9.085	2.805 3.166
	90	19.20	0.408	0.940	4.896	1.997
t.	120	19.90	0.423	0.930	4.673	1.976
	140	21.30	0.453	1.050	4.930	2.231
1	180	15.30	0.325	0.990	6.471	2.104
	240 300	11.25	0.239 0.340	1.730	15.378 6.437	3.676 2.189
		10100				E • 10 2
gine Na Alina		e in the state of the	X= 2.50		1=1.200	
	Ò	16.30	0.346	1.230	7.546	2.614
	60	20.70	0.440	1.860	8.986	3.952
t din an	120	21.25	0.452	0.890	4.188	1.891
	140	24.25	0.515	0.980	4.041	2.082
	180	15.70	0.334	0.970	6.178	2.061
	225 240	14.60	0.310 0.342	1.690	11.575 11.677	3.591
•	270	21.50	0.457	1.420	0.605	3.995 3.017
	300	18.70	0.397	1.200	6.417	2.550
			X= 2.50		k=1.300	
	ant Second California Second			· · · · · · · · · · · · · · · · · · ·	-1-300	
	0	17.10	0.363	1.130	6.608	2.401
	60	23.30	0.495	1.780	7.639	3.782
	120 138	21.80 25.75	0.463 0.547	. 0.900	4.128	1.912
	138	16.30	0.346	0.930 1.020	3.612 6.258	1.976 2.167
	189	15.80	0.336	1.000	6.329	2.125
	240	19.75	0.420	2.010	10.177	4.271
	270	23.60	0.501	1.390	5.890	2.954
	300	20.60	0.438	1.280	6.214	2.720
r Seret ^{te} rk			X= 2.50		₹=1.400	
	0	18.80	0.399	1.020	5.426	2.167
	38	20.05	0.596	1.560	5.561	3.315
	60	24.80	0.527	1.500	6.048	3.187
e Le serie	120 135	24.20 27.70	0.514	0.960 0.760	3.967 2.744	2.040
	135	19.04	0.405	1.040	5.462	1.615 2.210

ź.

ANGLE	SPEEU	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
189	17.92	0.381	1.050	5.859	2.231
240	23.80	0.506	1.860	7.815	3.952
300	22.68	0-482	1.310	5.776	2.784
		X= 2.50	R	=1.600	
0	20.25	0.430	1.060	5.235	2.252
40	32.20	0.684	1.110	3.447	2.359
60	29.10	0.618	1.210	4.158	2.571
120	25.37		0.950	3.745	2.019
180	22.63	0.481	1.150	5.082	2.444
	30.67	0.652	1.510	4.923	3.209
247	32.17	0.684	1.100	3.419	2.337
300	27.20	0+578	1.360	5.000	2.890
	н 	X= 2.50	R	=1.800	
	21.90	0.465	1.190	5.434	2.529
40	35.30	0.750	0.950	2.691	2.019
	32.40	0.688	0.830	2.562	1.764
120	27.80	0.591	1.060	3.813	2.252
180	27.47	0.584	1.210	4.405	2.571
247	35.70	0.759	0.900	2.521	1.912
300	32.25	0.685	0.930	2.884	1.976
		X= 2.50	R	=2.000	
0	25.30	0.538	1.670	6.601	3.549
35	37.70	0.801	1.270	3.369	2.699
60	34.70	0.737	0.820	2.363	1.742
120	31.10	0.661	1+040	3.344	2.210
180	31.75	0.675	1.030	3.244	2.189
240	38.22	0.812	0.760	1.988	1.615
273	38.90	0.827	0.970	2.494	2.061
300	34.45	0.732	0.820	2.380	1.742
· · · · ·		X= 2.50	R	=2,200	
Ö	29.85	0.634	1.930	6.460	4.101
60	32.55	0.692	3.500	10.753	7.437
120	34.00	0.722	1.890	5.559	4.016
180	34.62	0.736	1.550	4.477	3.294
240	38.22	0.812	2.670	6.986	5.674
204	39.00	0.829	2.670	6.846	5.674
300	35.28	0.750	2.360	6.689	5.015

125 -

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
		X= 2.50		R=2.375	
0	20.10	0.427	4.210	20.945	8.946
45	14.22	0.302	4.590	32.278	9.754
60	17.05	0.362	4.500	26.393	9.562
120	21.22	0.451	4.290	20.217	9.116
150	21.75	0.462	4.240	19.494	9.010
195	22.60	0.480	4.380	19.381	9.307
240	21.70	0.461	4.520	20.829	9.605
270	22.68	0.482	4.680	20.635	9.945
300	20.22	0.430	4.540	22.453	9.647
				e de la companya de l	
	•	X= 2.50		R=2.420	
0	16.58	0.352	3.950	23.824	8.394
45	10.70	0.227	4.030	37.664	8.564
60	13.58	0.289	4.080	30.044	8.670
120	17.12	0.364	3.880	22.664	8.245
180	17.44	0.371	3.800	21.789	8.075
195	18.70	0.397	3.960	21.176	8.415
240	17.85	0.379	4.100	22.969	8.712
265	18.75	0.398	4.220	22.507	8.967
300	16.28	0.346	4.100	25.184	8.712
	•	X= 1.75	· .	R=0.000	
0	1.56	0.033	0.960	61.538	2.040
60	1.70	0.036	1.010	59.412	2.146
120	1-49	0.032	0.920	61.745	1.955
180	1.55	0.033	0.980	63.226	2.082
240	1.70	0.036	1.010	59.412	2.146
300	1.48	0.031	0.940	63.514	1.997
· · · · ·		X= 1.75		R=0.200	
0	1.74	0.037	1.030	59.195	2.189
60	2.06	0.044	1.300	63.107	2.762
120	1.73	0.037	1.050	60.654	2.231
180	1.48	0.031	0.930	62.838	1.970
240	1.62	0.034	1.000	61.728	2.125
300	1.48	0.031	0.900	60.811	1.912
1. S. S.	· · ·				
		X= 1.75		R=0.400	
0	2.01	0.043	0.980	48.756	2.082
60	4.13	0.088	1.200	29.050	2.550
**					

- **1** - ---

	ANGLE	SPEED	SPEED RATIO	RMS. SPEED	LOCAL INT	TURB INT
	120	2.52	0.054	1.150	45.635	2.444
	186	1.50	0.032	0.940	62.667	1.997
	240	1.62	0.034	0.980	60.494	2.082
	300	1.56	0.033	0.900	57.692	1.912
			X= 1.75	R	=0.600	
	0	2.75	0.058	1.550	56.364	3.294
	60	8.48	0.180	2.680	31.604	5.695
	120	5.40	0.115	2.700	50.000	5.737
	180	1.80	0.038	1.160	64.444	2.465
	240	1.70	0.036	1.060	62.353	2.252
	300	1.86	0.040	1.180	63.441	2.507
			X= 1.75		=0.800	
	0	4.26	0.091	1.980	46.479	4.207
	60	12.05	0.256	1.860	15.436	3.952
	90	13.75	0.292	2.000	14.545	4-250
	120	10.40	0.221	2.640	25.385	5+610
	180	2.97	0.063	1.900	63.973	4.037
	240	1.75	0.037	1.180	67-429	2.507
	300	3.20	0.068	1.870	58.437	3.974
			X= 1.75	F	R=1.000	
	0	6.85	0.146	2.260	32.993	4.802
•	03	12.00	0.255	1.820	15.167	3.867
	90	15.55	0.330	1.180	7.588	2.507
	120	13.90	0.295	1.640	11.799	3.485
	180	6.05	0.129	2.560	42.314	5.440
	240	2.20	0.047	1.540	70.000	3.272
	300	6.30	0.134	2.470	39.206	5.249
	:		X= 1.75	F	R=1.200	
	0	10.00	0.212	1.970	19.700	4.186
	60	11.75	0.250	1.630	13.872	3.464
	90	16.00	0.340	1.070	6.687	2.274
	120	16.25	0.345	1.150	7.077	2.444
	140	16.85	0.358	1.480	8.783	3.145
	180	10.20	0.217	2.280	22.353	4.845
	240	3.55	0.075	2.010	56.020	4.271
•	300	10.70	0.227	2.080	19.439	4,420

- 127 -

E ESTREN EF CERTINEAU

٩Z

+

. •

فالمكمل والمراجع والمحاطين وأرأ ومتعاص والمشمو

ANGLE	SPEED	SPEED RATIO	AMS SPEED	LOCAL INT	TURB INT
		X= 1.75	D	=1.300	
		V- 1113	n	-1.500	
0	11.30	0.240	1.820	10.106	3.867
60	13.00	0.276	1.830	14.077	3.889
120	17.00	0.361	1.120	6.588	2.380
140	18.85	0.401	1.300	6.897	2.762
180	11.65	0.248	1.950	16.738	4.144
240 300	4.50 12.10	0.096 0.257	2.170 1.630	48.222 13.471	4.611 3.464
300	12010	V+291	1.050	130411	3.404
		X= 1.75	R	=1.400	
0	12.10	0.257	1.760	14.545	3.740
60	15.37	0.327	1.660	10.800	3.527
120	19.77	0.420	1.120	5.665	2.380
132	22.19	0.472	1.140	5.137	2.422
180	13.55	0.288	1.660	12.251	3.527
222	4.73	0.101	2.200	46.512	4.675
240	6.40	0.136	2.550	39.844	5.419
300	14.05	0-299	1.380	9.822	2.932
		X= 1.75	R	=1.600	
C	13.85	0.294	1.550	11.191	3.294
60	20.20	0.429	1.840	9.109	3.910
120	21.10	0.448	1.080	5.118	2.295
132	24.70	0.525	0.960	3.887	2.040
160	13.95	0.296	1.350	9.677	2.869
222	10.15	0.216	2.370	23.350	5.036
240	13.50	0.287	2.870	21.259	6.099
300	16.95	0.360	1400	8.260	2.975
		X= 1.75	F	l=1.800	•
C	16.20	0.344	1.250	7.716	2.656
50	29.18	0.620	1.400	4.798	2.975
60	25.90	0.550	1.480	5.714	3.145
120	21.70	0.461	1.080	4.977	2.295
180	17.15	0.364	1.300	7.580	2.762
240	23.70	0.504	2.440	10.295	5.185
255	27.55	0.585	1.660	6.025	3.527
300	21.73	0.462	1.620	7.455	3.442

- 128 -

ĺ

1

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
		X= 1.75	R	=2.000	
0	17.82	0.379	1.220	6.846	2.592
5	16.82	0.357	1.250	7.432	2.656
40	32.75	0.696	1.140	3.481	2.422
60	29.00	0.616	1.040	3.586	2.210
120	23.27	0.494	1-160	4.985	2.465
180	21.72	0.462	1.510	6.952	3.209
240	31.00	0.659	1.610	5-194	3.421
245	32.27	0.686	1.150	3.564	2.444
300	27.12	0.57ċ	1.550	5.715	3.294
		X= 1.75	R	=2.200	
0	20.00	0.425	1.520	7.600	3.230
5	19.70	0.419	1.660	8.426	3.527
40	35.05	0.745	1.140	3.252	2.422
60	31.72	0.674	0.920	2.900	1.955
120	26.75	0.568	1.200	4.486	2.550
180	27.25	0.579	1.350	4.954	2.869
240	35.30	0.750	0.890	2.521	1.891
300	33.12	0.704	0.790	2.385	1.679
		X= 1.75	٥	=2.400	
		X- 1013	••	-21100	
0	24.77	0.526	2.070	8.357	4.399
30	32.30	0.686	3.070	9.505	6.524
60	31.57	0.671	2.810	8.901	5.971
120	30.27	0.643	1.500	4.955	3.187
180	31.54	0.670	1.250	3.963	2.656
240	36.80	0.782	1.600	4.348	3.400
270	37.50	0.797	1.870	4.987	3.974
300	33.10	0.703	1.530	4.622	3.251
		X= 1.75	ł	=2.483	
0	26-25	0.558	2.200	8.381	4.675
38	21.90	0.465	5.010	22.877	10.646
60	25.50	0.542	4.500	17.647	9.562
120	29.50	0.627	2.750	9.322	5.344
180	31.50 33.05	0.609	2.230	7.079	4.739
240 265	33.25	0.702 0.707	3.700 3.300	11.195 11.429	7.862 8.075
300	30.27	0.643	3.400	11.232	7.225
2.00		VIUT9	31400	110CJC	10622

- 129 -

1

1

. E

- 14

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
		X= 1.75	R	=2.652	
0	18.33	0.390	3.790	20.676	8.054
45	10.77	0.229		38.812	8.882
60	13.55	0.288	4.210	31.070	8.946
120	18.33	0.390	3.930	21.440	8.351
180 195	20.27 21.60	0.431 0.459	3.900 4.090	19.240 18.935	8.287 8.691
240	19.73	0.419	4.300	21.794	9.137
300	17.77	0.378	4.300	24.198	9.137
		X= 1.75	D	=2.690	
		X- 1413	•	-20070	
0	15.25	0.324	3.490	22.885	7.416
50	8.00	0.170	3.490	43.625	7.416
60	10.50	0.223	3-580	34.095	7.607
120	14.57	0.310	3.490	23.953	7.416
180	16.54	0.351	3.500	21.161	7.437
210 240	17.40 16.00	0.370 0.340	3.580 3.720	20.575 23.250	7.607 7.905
300	14.28	0.303	3.750	26.260	7.969
500	1.020	00505		201200	
		X= 1.00	P	t=0.000	
_		·			
0	2.03	0.043	1.290	63.547	2.741
60 120	2.01 2.01	0.043 0.043	1.300 1.270	64.677 63.184	2•762 2•699
180	2.12	0.045	1.310	61.792	2.784
240	2.02	0.043	1.280	63.366	2.720
300	2.00	0.042	1.260	63.000	2.677
	:.	X= 1.00	, F	R=0,200	
0	1.93	0.041	1.320	68.394	2.805
60	1.90	0.040	1.230	67.368	2.720
120	2.05	0.044	1.320	64.390	2.805
180	2.20	0.047	1.310	59.545	2.784
240	2.20	0.047	1.280	58.182	2.720
300	1.98	0.042	1.240	62.626	2.635
		X= 1.00	.4	₹=0.400	
, 	• • -	a ba b			
0	1.82	0.039	1.280	70.330	2.720
60 120	1.99 2.18	0.042 0.046	1.310 1.330	65.829 61.009	2.784 2.826
180	2.25	0.048	1.350	60.000	2.869
100		44 V I V	N - 2 2 V	00000	

nann faith an the state

. L...

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
240 300	2.25 2.02	0•048 0•043	1.320 1.240	58.067 61.386	2.805 2.635
		X= 1.00	R	=0.600	
0 60 90 120	1.80 2.50 2.56 2.25	0.038 0.053 0.054 0.048	1.220 1.580 1.680 1.430	67.778 63.200 65.625 63.556	2.592 3.357 3.570 3.039
180 240 300	2.23 2.28 2.19	0.047 0.048 0.047	1.450 1.340 1.310	65.022 58.772 59.817	3.081 2.847 2.784
		X= 1.00	R	=0.800	
0 60 90 120 180 240 300 300 0 60 90	1.87 4.29 4.50 2.80 2.18 2.22 2.27 2.27 2.21 7.50 8.24	0.040 0.091 0.096 0.059 0.046 0.047 0.048 X= 1.00 0.047 0.159 0.159 0.175	1.220 2.250 2.450 1.780 1.430 1.360 1.390 F 1.310 2.800 3.250	65.241 52.448 54.444 63.571 65.596 61.261 61.233 R=1.000 59.276 37.333 39.442	2.592 4.781 5.206 3.782 3.039 2.890 2.954 2.954 2.784 5.950 6.906
120 180 240	4.61 2.23 2.17 2.37	0.098 0.047 0.046 0.050	2.580 1.440 1.380 1.440	55.965 64.574 63.594 60.759	5.482 3.060 2.932 3.060
		X= 1.00	P	8=1.200	
0 60 90 120 180 240 300	3.09 9.98 12.48 8.80 2.82 2.10 3.11	0.066 0.212 0.265 0.187 0.060 0.045 0.066	1.680 2.470 2.530 2.980 1.620 1.380 1.870	54.369 24.749 20.272 33.864 57.447 65.714 60.129	3.570 5.249 5.376 6.332 3.442 2.932 3.974

and the second second

- เมษณฑิตาม และมีสาว และมีอาการณ์ เป็นหมายในสมบัติสารณ์และมีการณ์ ไม่ไม่หนึ่งเป็นและสาวารณ์ เป็นและ เป็นสาวารณ์

A Research at the second

- 131 -

· · · · · · .

1. Structure instruction devices and the process of the contract construction of the structure of the contract of the contr

entry instruments of the second second

والمرين وسأعدت المستعرض والمتحارج للعاد الجرافحيرج أحجا الالاحتجاز ويرتقون ويرتقر الاخترار

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
		X= 1.00	R	=1=300	
0	3.77	0.080	2.020	53.581	4.292
60	10.41	0.221	2.440	23.439	5.185
90	14.07	0+299	1,900	13.504	4.037
120	11.30	0.240	2.720	24.071	5.780
180	3.75	0.080	1.980	52.800	4.207
225	1.83	0.039	1.270	69.399	2.699
240	2.09	0.044	1.380	66.029	2.932
300	4-13	0.088	2.360	57.143	5.015
		X= 1.00	R=1.400		
0	6.00	0.127	2.270	37.833	4.824
60	11.90	0.253	1.980	16.639	4.207
90	15.62	0.332	1.360	8.707	2.890
120	14.72	0.313	1.980	13.451	4.207
180	5.60	0.119	2.320	41.429	4.930
225	2.45	0.052	1.050	42.857	2.231
240	2.58	0.055	1.120	43.411	2.380
300	6.50	0.138	2.520	38.769	5.355
		X= 1.00	P	t=1.600	
0	9.25	0.197	2.230	24.108	4.739
60	13.45	0.200	1.690	12.565	3.591
90	16.26	0.346	1.100	6.765	2.337
120	18.00	0.382	1.310	7.278	2.784
135	20.25	0.430	1.380	6.815	2.932
180	9.30	0.198	2.470	26.559	5.249
225	2.90	0.062	1.270	43.793	2.699
240	3.50	0.074	1.720	49.143	3.655
300	10.90	0.232	2.250	20.642	4.781
		X= 1.00	R=1.800		
0	11.77	0.250	1.820	15.463	3.867
60	18.50	0.393	1.960	10.595	4.165
120	19.25	0.409	1.090	5.662	2.316
135	23.22	0.493	0.920	3.962	1.955
180	12.45	0.265	1.830	14.699	3.889
225	5.38	0.114	2.200	40.892	4.675
240	7.64	0.162	3.000	39.267	6.375
300	14.62	0.311	1.640	11.218	3.485

.

.

Ļ

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
	X= 1.00		R=2.000		
0	13.55	0.288	1.420	10.480	3.017
60	23.25	0.494	1.640	7.054	3.485
120	19.65	0.418 0.526	1.030	5.242	2.189
135 180	24.75 14.27	0.303	0.710 1.440	2.869 10.091	1.509 3.060
225	13.07	0.278	2.930	22.418	6.226
	17.55	0.373	3.320	18.917	7.055
300	18.40	0.391	1.600	8.696	3.400
		X= 1.00	R=2.200		
0	15.50	0.329	1.140	7.355	2.422
40	31.00	0.659	1.170	3.774	2.486
60	27.30	0.580	1.040	3.810	2.210
120	20.78	0.442	1.010	4.860	2.146
135 180	25.80 18.40	0.548 0.391	0.830 1.440	3.217 7.826	1.764 3.060
225	23.20	0.493	2.560	11.034	5.440
240	27.12	0.576	2.280	8.407	4.845
270	29.05	0.617	1.100	3.787	2.337
300	24+10	0.512	1.640	6.805	3.485
		X= 1.00	F	k=2•400	
0	17.55	0.373	1.290	7.350	2,741
40	33.40	0.710	1.340	4.012	2.847
60	30.00	0.637	0.950	3.167	2.019
120	24.50	0.521	1.120	4.571	2.380
180	24.87	0.528	1.380	5.549	2.932
240 300	33.72 29.52	0.717 0.627	0.910 0.850	2.699 2.879	1.934 1.806
300	27.72	0.827	0.000	2.017	T+ 000
	X= 1.00		R=2.658		
0	23.50	0.499	2.050	8.723	4.356
40	21.70	0.461	4.860	22.396	10.327
60 120	24.10	0.512	4.270	17.718	9.074
120 180	27.15 29.62	0.577 0.629	2.460 1.840	9.061 6.212	5.227 3.910
240	31.77	0.675	3.340	10.513	7.097
300	28.37	0.603	3.140	11.068	6.672

- 133 -

- 10 - 14 E

1

2 · · · · · ·

1

ł

			-		
ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
	X= 1.00		£=2.843		
Û	17.97	0.382	3.410	18.976	7.246
45	10.50	0,223	3.950	37.619	8.394
60 120	13.17 17.53	0.280 0.373	4.050 3.650	30.752 20.821	8.606 7.756
	20.58	0.437	3.610	17.541	7.671
195	21.73	0.462	3.810	17.533	8.096
240	19.77	0.420	4.170	21.093	8.861
300	17.51	0.372	4.070	23.244	8.649
		X= 0.00	R=0.000		
0	4.24	0.090	1.720	40.566	3,655
60	4.10	0.087	1.700	41.463	3.612
120	3.62	0.077	1.720	47.514	3.655
180	4.25	0.090	1.730	40.706	3.676
240 300	4.03 3.66	0.086 0.078	1.700 1.730	42.184 47.268	3.612 3.676
500	3.00	0.010	1.130	778200	5.010
		X= 0.00	F	R=0.200	
0	3.86	0.082	1.720	44.560	3.655
60	3.73	0.079	1.650	44.236	3.506
120	3.62	0.077	1.720 1.740	47.514 40.465	3.655 3.697
160 240	4.30 4.30	0.091 0.091	1.720	40.000	3.655
300	3.60	0.076	1.730	48.056	3.676
		X= 0.00	K=0.400		
		X- 0.00	•		
0	3.52	0.075	1.670	47.443	3.549
60	3.16	0.067	1.620	51.266	3.442
120	3.38	0.072	1.720	50.888 42.518	3.655 3.804
180 240	4.21 4.26	0.089 0.091	1.790 1.800	42.254	3.825
300	3.58	0.076	1.750	48.883	3.719
500	3470				
		X= 0.00	ł	R=0.600	
0	3.02	0.064	1.610	53.311	3.421
60	2.70	0.057	1.620	60.000	3.442
120	3.13	0.067	1.740	55.591	3.697
180	3.77	0.080	1.770	46.950 46.247	3.761 4.059
240 3JU	4.13 3.50	0.088 0.074	1.910 1.830	40.247 52.286	3.889
200	2420	V. V/7	1.030	72020U	2.007

- 134 -

- 1

а **на** се с

1

1

. .

.

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
		X= 0.00	R	=0.800	
0	2.69	0.057	1.520	56.506	3.230
60	2.71	0.058	1.820	67.159	3.867
120	2.76	0.059	1.700	61.594	3.612
180	3.24	0.069	1.740	53.704	3.697
240	3.75	0.080	1.930	51.467	4.101
300	3.46	0.074	1.790	51.734	3.804
		X= 0.00	R	=1.000	
0	2.48	0.053	1.470	59.274	3.124
6 0	3.80	0.081	2.380	62.632	5.057
90	4.23	0.090	2.600	61.466	5.525
120	3.10	0.066	1.890	60.968	4.016
150	2.50	0.053	1.640	65,600	3.485
240	3.24	0.069	1.900	58.642	4.037
300	3.30	0.070	1.810	54.848	3.846
		X= 0.00	F	=1.200	
0	2.75	0.058	1.690	61,455	3.591
٥Õ	6.10	0.130	2.650	43.443	5.631
90	7.38	0.157	3.170	42.954	6.736
120	5.00	0.106	2.630	52.600	5.589
180	2.56	0.054	1.640	64.063	3.485
225	2.31	0.049	1.590	68.831	3.379
240	2.78	0.059	1.830	65.827	3.889
300	3.07	0.065	1.850	60.261	3.931
		X= 0.00	R	t=1.300	
0	3.25	0.069	1.840	50.615	3.910
60	7.41	0.157	2.600	35.088	5.525
90	9.25	0.197	3.030	32.757	6.439
120	6.51	0.138	2.870	44.086	6.099
160	2.87	0.061	1.800	62.718	3.825
225	2.11	0.045	1.440	68.240	3.060
240	2.56	0.054	1.820	71.094	3.867
300	2.98	0.063	1.800	60.403	3.825
		X= 0.00	f	R=1.400	
0	4.62	0.098	1.990	43.074	4.229
60	8.45	0.180	2.480	29.349	5.270
90	11.22	0.238	2.600	23.173	5.525

a and a second of a second

.

•

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
120	8.77	0.186	2.790	31.813	5.929
180	4.05	0.086	1.930	47.654	4.101
225	2.77	0.059	1.460	52.708	3.102
240	3.10	0.066	1.590	51.290	3.379
300	3.68	0.078	1.800	48.913	3.825
		X= 0.00	R	=1.600	
0	7.05	0.150	2.190	31.064	4.654
60	10.77	0.229	2.150	19.963	4.569
90	14.50	0.308	1.710	11.793	3.634
120	13.72	0.292	2.450	17.857	5.206
180	6.23	0.132	2.300	36.918	4.887
225	2.80	0.059	1.410	50.357	2.996
240	3.10	0.066	1.550	50.000	3.294
300	5.88	0.125	2.620	44.558	5.567
		X= 0.00	R	k=1.800	
0	9.86	0.210	2.070	20.994	4.399
60	13.75	0.292	2.050	14.909	4.356
90	15.37	0.327	1.470	9.564	3.124
120	17.38	0.369	1.670	9.609	3.549
135	19.23	0.409	2.160	11.232	4.590
180	9.27	0.197	2.220	23.948	4.717
225	3.90	0.083	1.880	48.205	3.995
240	4.52	0.096	2.340	51.770	4.972
300	10.25	0.218	2.720	26.537	5.780
		X= 0.00	£	k=2.000	
			•		
0	12.27	0.261	1.740	14.181	3.697
60	19.25	0.409	2.240	11.636	4.760
120	18.55	0.394	1.430	7.709	3.039
135	23.00	0.489	1.200	5.217	2.550
180	11.55	0.245	2.060	17.835	4.377
225	7.50	0.159	2.850	38.000	6.056
240	9.62	0.204	3.550	36.902	7.544
300	14.82	0.315	2.060	13.900	4.377
		X= 0.00	F	R=2.200	
o	14.08	0.299	1.370	9.730	2.911
45	28.05	0.596	1.520	5.419	3.230
60	24.00	0.510	1.740	7.250	3.697
120	18.75	0.398	1.240	6.613	2.635
		•		_	—

- 136 -

..

•

1

- 1.

. 1 ..

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
180	14.22	0.302	1.620	11.392	3.442
189	13.80	0.293	1.860	13.478	3.952
	19-27	0.409	3.860	20.031	8.202
300	19.72	0.419	1.830	9.280	3.889
		X= 0.00	R	L=2.400	
0	15.80	0.336	1.280	8.101	2.720
	31.00	0.659	1.360	4.387	2.890
60	27.55	0.585	1.180	4.283	2.507
120	21.25	0.452	1.230	5.788	2.614
	20.20	0.429	1.710	8.465	3.634
	29.60	0.629	2.320	7.838	4.930
300	26.04	0.553	1.700	6.528	3.612
		X= 0.00	R	2.745	
0	21.20	0.450	2.370	11.179	5.036
60	23.10	0.491	4.390	19.004	9.329
120	24.72	0.525	2.830	11.448	6.014
180	27.55	0.585	2.500	9.074	5.312
200	30.12	0.640	2.860	9.495	6.077
240	30.34	0.645	3.750	12.360	7.969
300	26.40	0.561	3.530	13.371	7.501
		X= 0.00	F	R=2.947	
0	17.78	0.378	2.720	15.298	5.780
45	12.28	0.261	3.720	30.293	7.905
60	14.60	0.310	3.810	26.096	8.096
120	17.88	0.380	3.280	18.344	6.970
180	21.07	0.448	3.310	15.710	7.034
195	22.50	0.478	3.530	15.689	7.501
240	21.27	0.452	4.010	18.853	8,521
300	18.36	0.390	3.740	20.370	7.947
		X= 0.00	f	R=3.000	
0	15.50	0.329	3.060	19.742	6.502
45	9.55	0.203	3.410	35.707	7.246
4J 60	11.73	0.249	3.570	30.435	7.586
120	14.28	0.303	3.510	24.580	7.459
180	16.63	0.353	3.790	22.790	8.054
195	18.50	0.393	3.930	21.243	8.351
240	17.97	0.382	4.100	22.816	5.712
300	15.78	0.335	3.680	23.321	7.820

<u>ى ئەلەرلىلەر ئەرەبىيە بەرەبىيە ئەلەرىمۇرىمۇرى بەلىرىدە تەرەبىدە بەرەبىيە بەرەبىيە مەرەبىيە بەرەبىيە بەرەبىيە ب</u>

and the second of the second second second

a Ber waare a side waar

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
		X=-1.25	R	=0.000	
0	3.69	0.078	2.130	57.724	4.526
60	3.50	0.074	1.990	56.857	4.229
120	3.21	0.068	1.900	59.190	4.037
180	3.71	0.079	2.140	57.682	4.547
240	3.55	0.075	2.040	57.465	4.335
300	3.21	0.068	1.880	58.567	3.995
		X=-1.25	R	=0.200	
0	3.96	0.084	2.260	57.071	4.802
60	3.50	0.074	2.000	57.143	4.250
120	3.25	0.069	1.900	58.462	4.037
180	3.55	0.075	2.050	57.746	4.356
240	3.56	0.076	2.050	57.584	4.356
300	3.22	0.068	1.910	59.317	4.059
		X=-1.25	R	k=0.400	
0	4.30	0.091	2.360	54.884	5.015
60	3.57	0.076	2.080	58,263	4.420
120	3.30	0.070	2.030	61.515	4.314
180	3.06	0.078	2.080	56.831	4.420
240	3.54	0.075	2.050	57.910	4.356
300	3.25	0.069	1.940	59.692	4.122
		X=-1.25	R	R=0.600	
0	5.07	0.108	2.500	49.310	5.312
60	4.17	0.089	2.290	54.916	4.866
120	3.92	0.083	2.360	60.204	5.015
180	4.00	0.085	2.290	57.250	4.866
240	3.55	0.075	2.040	57.465	4.335
300	3.27	0.069	1.940	59.327	4.122
		X=-1.25	F	R=0.800	
C	6.05	0.129	2.520	41.653	5.355
υŬ	5.20	0.110	2.400	47.308	5.227
90	5.95	0.126	2.850	47+899	6.056
1∠0	5.25	0.112	2.740	52.190	5.822
180	4.67	0.099	2.430	52.034	5.164
240	3.68	0.078	2.060	55.978	4.377
300	3.26	Ú.069	1.940	59.509	4.122

الإنبان المارسة

- in attances at a line of the

وأحجار ويستعقبهما وتدأرته وتدارك تشخص والمحاص

.

-L-

1

ANGLE	SPEED	SPEED KATIO	RMS SPEED	LOCAL INT	TURB INT
		X≖-1.25	R	.=1.000	
0	7.48	0.159	2.430	32.487	5.164
60	6.72	0.143	2.460	36.607	5.227
90	8.56	0.182	2.840	33.178	6.035
120	7.47	0.159	2,950	39.491	6.269
180	5.94	0.126	2.520	42.424	5.355
240	3.69	0.078	2.090	56.640	4.441
300	3.32	0.071	2.030	61.145	4.314
		X=-1.25	R	k=1.200	
0	9.00	0.191	2.260	25.111	4.802
60	8,56	0.182	2.260	26.402	4.802
90	11.55	0.245	2.340	20.260	4.972
120	10.30	0.219	2.740	26.602	5.822
180	7.55	0.160	2.450	32.450	5.206
240	3.92	0.083	2.310	58.929	4.909
300	4.23	0.090	2.510	59,338	5.334
		X=-1.25	R	1=1.300	
0	10.00	0.212	2.120	21.200	4.505
60	9.48	0.201	2.110	22.257	4.484
90	12.70	0.270	1.970	15.512	4.186
120	11.95	0.254	2.530	21.172	5.376
180	8.44	0.179	2.360	27.962	5.015
240	4.24	0.090	2.510	59.198	5.334
270 300	3.55 5.24	0.075 0.111	2.230 2.850	62.817 54.389	4.739 6.056
		X=-1.25	P	=1.400	
			•		
0	11.73	0.249	1.650	14.066	3.506
60	11.70	0.249	1.790	15.299	3.804
90	13.88	0.295	1.630	11.744	3.464
120	13.54	0.288	2.170	16.027	4.611
180	8.78	0.187	2.030	23.121	4.314
240	4.77	0.101	2.510	52.621	5.334
300	7.00	0.149	2.810	40.143	5.971
		X=-1.25	R	l=1.60ນ	
O	13.55	0.288	1.320	9.742	2.805
60	13.95	0.296	1.670	11.971	3.549
120	16.62	0.353	1.600	9.627	3.400

- 139 -

_

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LUCAL INT	TURB INT
180	10.70	0.227	1.780	16.635	3.782
240	7.05	0.150	3.250	46.099	6.906
300	11.19	0.238	2.750	24.576	5.844
		X=-1.25	R	=1.800	
0	15.20	0.323	1.170	7.697	2.486
60	18.00	0.382	1.900	10.556	4.037
120	18.38	0.391	1.280	6.964	2.720
135	20.26	0.431	1.560	7.700	3.315
180	12.75	0.271	1.520	11.922	3.230
195	11.73	0.249	1.960	1.6.709	4.165
240 300	12.03 16.20	0.256 0.344	3.760 2.300	31.255 14.198	7.990 4.887
		X=-1.25	R	=2.000	
0	16.60	0.353	1.170	7.048	2.486
50	24.13	0.513	2.280	9.449	4.845
60	22.50	0.478	1.740	7.733	3.697
120	19.62	0.417	1.080	5.505	2.295
180	15.78	0.335	1.520	9.632	3.230
195	15.03	0.319	1.800	11.976	3.825
240	18.95	0.403	4.040	21.319	8.585
300	21.20	0.450	1.800	8.491	3.825
		X=-1.25	F	R=2.200	
0	18.50	0.393	1.450	7.838	3.081
50	29.23	0.621	1.570	5.371	3.336
60	26.57	0.565	1.370	5,156	2.911
120	22.21	0.472	1.090	4.908	2.316
180	20.77	0.441	1.580	7.607	3.357
240	27.95	0.594	3.000	10.733	6.375
250	29.03	0.617	2.360	8.130	5.015
300	26.53	0.564	1.530	5.767	3.251
		X=-1.25	F	R=2.400	
0	19.82	0.421	1.300	9.082	3.825
60	27.45	0.583	2.320	8.452	4.930
120	24.80	0.527	1.520	6.129	3.230
180	25.40	0.540	1.520	5.984	3.230
240	32.20	0.684	1.910	5.932	4.059
300	28.20	0.599	1.940	6.879	4.122

 a^{-1} . A taken we will an in the transformation of the interval of the transformation of the transformation $a_{\rm const}$

Sec. See

والارتفاقية المعلأهم

- 140 -

an 📲 an

والإيراقي والمراجع والمتروح والمتروح والمراجع والمراجع

...

٠

and the second post of the print last soldiers

1

the second second to

ANGLE SPEED SPEED RATIO RMS SPEED LOCAL INT TURB INT						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			X=-1.25	R	=2.462	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	19.85	0.422	1.920	9.673	4.080
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	26.52				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	27.70	0.589	2.400	9-981	2.221
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			X=-1.25	R	=2.600	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C	19.00	0.404	2.320	12.211	4.930
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
x=-1.25 $R=2.796$ 015.380.3273.02019.6366.4176019.300.4103.38017.5137.18212020.270.4312.68013.2225.69518021.680.4612.82013.0075.99224024.000.5103.65015.2087.75627024.300.5163.67015.1037.79930021.500.4573.20014.8846.800X=-1.25R=2.845011.600.2463.11026.8106.6096017.300.3683.45019.9427.33112017.970.3623.11017.3076.60918019.300.4103.20016.5806.80024021.650.4603.88017.9218.24526522.600.4803.81016.8586.096X=-2.50R=0.000X=-2.50R=0.000X=-2.50R=0.000X=-2.50R=0.000X=-2.50R=0.000011.660.2522.51021.1645.3346012.01.102.502.50 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	27.22	0.250	3.200	13.000	0.710
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			X=-1.25	F	R=2.796	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	15.38	0.327	3.020	19.636	6.417
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	120	20.27	0.431	2.680	13.222	5.695
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	180					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
X=-1.25 $R=2.845$ 011.600.2463.11026.8106.6096017.300.3683.45019.9427.33112017.970.3623.11017.3076.60918019.300.4103.20016.5806.80024021.650.4603.88017.9218.24526522.600.4803.81016.8585.09630019.600.4163.35017.0927.119X=-2.50R=0.000011.860.2522.51021.1645.3346011.720.2492.41020.5635.12112011.620.2472.32019.9664.93016011.840.2522.53021.3685.376						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	21.50	0.457	3.200	14.884	6.800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			X=-1.25	i	R=2.845	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q	11.60	0.246	3.110	26.810	6.609
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					19.942	7.331
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				3.110	17.307	6.609
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	180	19.30	0.410			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\chi = -2.50$ $R = 0.000$ 011.86 0.252 2.510 21.164 5.334 6011.72 0.249 2.410 20.563 5.121 12011.62 0.247 2.320 19.966 4.930 16011.04 0.252 2.530 21.368 5.376						
0 11.86 0.252 2.510 21.164 5.334 60 11.72 0.249 2.410 20.563 5.121 120 11.62 0.247 2.320 19.966 4.930 160 11.54 0.252 2.530 21.368 5.376	300	19.60	0.416	3.350	17.092	7+119
6011.720.2492.41020.5635.12112011.620.2472.32019.9664.93016011.040.2522.53021.3685.376			x=-2.50	I	R=0.000	
6011.720.2492.41020.5635.12112011.620.2472.32019.9664.93016011.040.2522.53021.3685.376	0	11.86	0.252	2.510	21.164	5.334
12011.620.2472.32019.9664.93016011.040.2522.53021.3685.376						
180 11-84 0-252 2-530 21-368 5-376				2.320	19.966	
260 11 62 0.267 2.620 2012 6 146						
ZTU II+UZ U+ZTI Z+TJU ZU+712 2+104	240	11.62	0.247	2.430	20.912	5.164

•

• .

.

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
300	11.60	0.246	2.290	19.741	4.866
		X=-2.50	R	=0.200	
0	12.41	0.264	2.580	20.790	5.482
60	11.96	0.254	2.240	18.729	4.760
120	11.85	0.252	2.270	19.156	4.824
180	11+84	0.252	2.450	.10.693	5.206
240 300	11.62 11.40	0.247 0.242	2.560 2.370	22.031 20.789	5.440
300	11.440	0.242	2.510	20.109	5.036
		X=-2.50	R	=0.400	
0	13.52	0.287	2.620	19.379	5.567
60	12.40	0.263	2.110	17.016	4.484
120	12.41	0.264	2.300	18.533	4.887
180	12.42	0.204	2.420	19.485	5.142
240	11.87	0.252	2.660	22.409	5.652
300	11.62	0.247	2.380	20.482	5.057
		X=-2.50	R	=0.600	
0	15.00	0.319	2.420	16.133	5.142
60	13.14	0.279	2.020	15.373	4.292
120	13.85	0.294	2.420	17.473	5.142
180	13.47	0.286	2.390	17.743	5.079
240	12.62	0.268	2.830	22.425	6.014
300	11.48	0.244	2.480	21.603	5.270
		X=-2.50	A	t=0.600	
0	16.67	0.354	2.150	12.897	4.569
60	14.45	0.307	1.960	13.564	4.165
90	16.00	0.340	2.040	12.750	4.335
120	15-62	0.332	2.370	15.173	5.036
180	14.77	0.314	2.270	15.369	4.324
240	13.50	0.287	3.150	23.333	6.694
270	11.58	0.246	2.640	22.798	5.610
300	11.97	0.254	2.670	22.306	5.674
		X=-2.50	F	R=1.000	
o	16.75	0.398	1.830	9.760	3.889
60	16.37	0.348	1.830	11.179	3.889
90	17.75	0.377	1.470	8.282	3.124

alle and a second and a second and a second and the second second second second and a second s

,

- 143 -

ł

Ţ

ł

4

- - -

1

1

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LUCAL INT	TURB INT
120	18.18 16.73	0.386	1.950 1.900	10.726 11.357	4.144 4.037
180 240	15.00	0.356 0.319	3.480	23.200	7.395
270	12.00	0.255	2.990	24.917	6.354
300	13.95	0.296	3.350	24.014	7.119
		X=-2.50	R	k=1.200	
υ	20.32	0.432	1.530	7.530	3.251
40	16.23	0.345	2.150	13.247	4.569
ьÖ	18.75	0.398	1.910	10.187	4.059
90	19.23	0.409	1.130	5.876	2.401
120	20.25	0.430	1.300	6.420	2.762
180	18.74	0.398	1.670	8.911	3.549
240	17.26	0.367	3.950	22.885	8.394
270	14.73	0.313	3.770	25.594	8.011
300	17.72	0.377	3.610	20.372	7.671
		X=-2.50	fi	x=1.300	
0	21.20	0.450	1.420	6+698	3.017
40	17.26	0.367	2.320	13.441	4.930
60	20.39	0.433	1.930	9.465	4.101
90	20.20	0.429	1.160	5.743	2.465
120	21.52	0.457	1.070	4.972	2.274
180	20.00	0.425	1.650	8.250	3.506
240	19.00	0.404 0.357	4.020 4.050	21.158 24.136	8.542 8.606
270 300	16.78 20.23	0.430	3.300	16.312	7.012
		X=+2.50	F	R=1.400	
_		. . .			
0	22.10	0.470	1.250	5.656	2.656
33	19.30	0.410	2.360	12.228	5.015
60	23.10	0.491	1.630	7.056	3.464
120 180	22 .7 2 20 . 60	0.483 0.438	0.980 1.610	4.313 7.810	2.082 3.421
24Ú	20.00	0.431	4.080	20.118	8.670
300	23.07	0.490	2.640	11.443	5.610
500		U 1 7 U	2.070	******	24010
		X=-2.50	f	R=1.600	
0	Z3.10	0.491	1.300	5.628	2.762
60	20.50	0.564	1.570	5.911	3.336
120	24.78	0.527	0.930	3.753	1.976
180	23.76	0.505	1.710	7.197	3.634

a in a second description of the second s

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
240	25.80	0.548	4.040	15.659	8.585
300	27.62	0.587	1.950	7.060	4.144
		X=-2.50	R	=1.800	
0	23.25	0.494	1.460	6.280	3.102
60	29.75	0.632	1.480	4.975	3.145
120	27.26	0.579	1.130	4.145	2.401
180	27.10	0.576	1.450	5.351	3.081
240	31.70	0.674	2.700	8.517	5.737
300	30.38	0.646	1.560	5.135	3.315
		X=-2.50	R	=2.000	
Ο	22.76	0.484	1.660	7.293	3.527
60	30.12	0.640	2.330	7.736	4.951
120	28.38	0.603	1.690	5.955	3.591
180	28.27	0.601	1.710	6.049	3.634
240	33.20	0.705	2.500	7.530	5.312
300	30.22	0.642	2.290	7.578	4.866
		X=-2.50	R	=2.200	
0	21.70	0.461	1.810	8.341	3.846
60	28.00	0.595	2.850	10.179	6.056
120	27.07	0.575	2.080	7.684	4.420
180	27.07	0.575	2.130	7.868	4.526
240	31.12	0.661	3.160	10.154	6.715
270	32.20	0.684	2.930	9.099	6.226
300	28.38	0.603	2.580	9.091	5.482
		X=+2.50	R	L=2.377	
Û	20.18	0.429	1.810	8.969	3.846
60	25.97	0.552	2.760	10.628	5.865
120	25.48	0.541	2.150	8.438	4.569
180	25.40	0.540	2.250	8+858	4.781
	28.88	0.614	3.130	10.838	6.651
	29.77	0.633	3.060	10.279	6.502
300	26.55	0.564	2.560	9.642	5.440
		X=-3.50	F	R=0.000	
•	36 in	0 6.7.4	3 440	0 4 0 8	6 106
0	25.69	0.546	2.440	9.498 9.169	5,185 4,994
6Ü	25.63	0.545	2.350	7.107	7.774

and and all the second of the second states and the second states and the second states and the second second s

- 144 -

Ţ

a na manana da sa ta ta ta ta ta

an in the second state of the s

للعلومين بعيومات

Section in

.....

ي. يوريوني دروي دروي المديني

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
120	25.46	0.541	2.320	9.112	4.930
180	25.63	0.545	2-420	9.442	5.142
240	25.46	0.541	2.410	9.466	5.121
300	25.46	0.541	2.270	8.916	4.824
		X=-3.50	R	=0.200	
0	26.32	0.559	2.400	9.119	5.100
60	25.78	0.548	2.080	8.068	4.420
120	25.69	0.546	2.190	8.525	4.654
180	25.75	0.547	2.400	9.320	5.1ÒO
240	25.78	0.548	2.580	10.008	5.482
300	25.46	0.541	2.380	9.348	5.057
		X=-3.50	R	=0.400	
0	27.30	0.580	2.270	8.315	4.824
6Õ	26.00	0.552	1.830	7.038	3.889
120	26.00	0.552	2.030	7.808	4.314
180	26.52	0.564	2.270	8.560	4.824
240	26.60	0.565	2.730	10.263	5.801
300	25.69	0.546	2.470	9.615	5.249
		X=-3.50	H	l=0.600	
0	28.97	0.616	1.950	6.731	4.144
10	29.20	0.620	2.060	7.055	4.377
60	26.60	0.565	1.650	6.203	3.506
120	27.18	0.578	1.900	6.990	4.037
180	27.73	0.589	2.020	7.285	4.292
240	27.90	0.593	2.920	10.466	6.205
200	25.97	0.552	2.580	9.935	5.482
		X=-3.50	F	R=0.800	
0	30.75	0.653	1.700	5.528	3.612
10	31.45	0.668	1.800	5.723	3.825
60	28.37	0.603	1.750	6.168	3.719
120	29.25	0.622	1.710	5.846	3.634
180	29.87	0.635	1.820	6.093	3.867
240	29.74	0.632	3.180	10.693	6,757
280	26.60	0.565	2.710	10.188	5.759
300	27.70	0.509	2.940	10.614	6.247

- 145 -

ः िः

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
		X=-3.50	R	=1.000	
0	32.52	0.691	1.330	4.090	2.826
10	33.26	0.707	1.540	4.030	3.272
40	28.54	0.606	1.770	6.202	3.761
60	31.23	0.654	1.830	5.860	3.889
120	32.00	0.680	1.220	3.813	2.592
180	32.54	0.691	1.670	5.132	3.549
240	31.98	0.680	3.400	10.632	7.225
280 300	28.73 31.25	0.610	3.190	11.103	6.779
500	31+23	0.664	3.400	10.880	7.225
		X=-3.50	R	=1.200	
0	33.40	0.710	1.230	3.683	2.614
35	30.75	0.653	2.220	7.220	4.717
60	34.20	0.727	1.830	5.351	3.889
120	34.98	0.743	1.120	3.202	2.380
150	32.40	0.688	1.270	3.920	2.699
180	35.03	0.744	1.500	4-282	3.187
240 280	35.10 32.95	0.746 0.700	3.440 3.280	9.801 9.954	7.310
300	35.95	0.764	2.630	7.316	6.970 5.589
330	32.38	0.688	1.940	5.991	4.122
		X=-3.50	-	-1 300	
		X3+30	ĸ	≑1.300	
0	33.52	0.712	1.240	3.699	2.635
35	32.67	0.694	2.530	7.744	5.376
60	35.97	0.764	1.780	4.949	3.782
120	36.22	0.770	1.100	3.037	2.337
180	36.40 38.22	0.773 0.812	1.250	3.434	2.656
230 240	37.69	0.801	2.650 3.110	6.934 8.252	5.631 6.609
300	37.71	0.801	2.010	5.330	4.271
500	5		20010		78411
		X=-3.50	R	=1.400	
0	33.18	0.705	1.330	4.008	2.826
60	37.75	0.802	1.340	3.550	2.847
120	36.45	0.775	1.010	2.771	2.146
180	36.55	0.777	1.290	3.529	2.741
230	39.27	0.834	2.530	6.443	5.376
240	39.12	0.831	2.940	7.515	6.247
300	38.52	0.819	1.520	3.946	3.230

1. .

t

1

[

. 1

literiose the stars was more well-and and the excerning

ANGLE	SPEED	SPELU RATIO	RNS SPEED	LOCAL INT	TURB INT	
		X=-3.50	R	=1.600		
0	32.73	0.695	1.460	4.461	3.102	
60	38.40	0.816	1.910	4.974	4.059	
120	37.00	0.786	1.430	3.865	3.039	
180	30.92	0.785	1.500	4.063	3.187	
240	40.90	0.869	2.200	5.379	4.675	
300	38.48	0.818	1.910	4.964	4.059	
		X=-3.50	R=1.800			
0	31.77	0.675	1.510	4.753	3.209	
60	37.47	0.796	2.250	6.005	4.781	
120	36.45	0.775	1.680	4.609	3.570	
180	36.10	0.767	1.690	4.681	3.591	
240	39.80	0.845	2.510	6.307	5.334	
270	40.72	0.865	2.330	5.722	4.951	
300	37.50	0.797	2.070	5.520	4.399	
		X=-3.50	R	=2.000		
C	29,50	0.627	1.690	5.729	3.591	
60	34.39	0.731	2.860	8.316	6.077	
120	31.80	0.676	2.640	8.302	5.610	
180	31.64	0.672	2.680	8.470	5.695	
240	35.72	0.759	3.380	9.462	7.182	
270	37.00	0.786	3.220	8.703	6.842	
300	34.57	0.735	2+690	7.781	5.716	
		X=-4.50	R	=0.000		
O	42.95	0.913	2.470	5.751	5.249	
60	42.90	0,912	2.460	5.734	5.227	
120	42.68	0.907	2.400	5.623	5.100	
180	42.91	0.912	2.500	5.826	5.312	
240	42.82	C.910	2.460	5.745	5.227	
300	42.80	0.909	2.360	5.514	5.015	
		X=-4,50	F	k=0.200		
0	43.30	0.920	2.450	5.658	5.206	
ں 40	43.15	0.917	2.200	5.098	4.675	
120	42.90	0.912	2.210	5.152	4.696	
180	43.25	0.919	2.390	5.526	5.079	
240	43.37	0.922	2.610	6.018	5.546	
300	42.91	0.512	2.520	5.873	5.355	

The second s

.

,

. . . .

ļ

.

า การสาราชสตร์ประโตราชการให้หรือไปประการใหม่ได้สาร ก่อนการไปที่ได้เห็นให้สารให้เป็นให้เป็นได้เห็น และได้เป็นได

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LUCAL INT	TURB INT	
		X=-4.50	R=0.400			
0	44.75	0.951	2.140	4.782	4.547	
60	43.28	0.920	1.880	4.344	3.995	
120	43.26	0.919	1.980	4.577	4.207	
160	44.04	0.936	2.040	4.632	4.335	
225	45.00	0.956	2.580	5.733	5.482	
240	44.95	0.955	2.720	6.051	5.780	
300	43.28	0.920	2.610	6.030	5.546	
		X=-4.50	R=0.600			
0	46.25	0.983	1.770	3.827	3.761	
60	44.20	0.939	1.660	3.756	3.527	
120	44.75	0.951	1.760	3.933	3.740	
180	46.00	0.977	1.840	4.000	3.910	
225	46.97	0.998	2.640	5.621	5.610	
240	46.54	0.989	2.800	6.016	5.950	
300	44.2Ú	0.939	2.720	6.154	5.780	
		X=-4.50	R	=0.800		
C	48.03	1.021	1.290	2.686	2.741	
45	45.25	0.962	1.590	3.514	3.379	
60	46.77	0.994	1.770	3.784	3.761	
120	47.60	1+011	1.470	3.088	3.124	
180	49.00	1.041	1.560	3.184	3.315	
225	49.42	1.050	2.650	5.362	5.631	
240	48.55	1.032	2.930	6.035	6.226	
300	46.83	0.995	3.000	6.406	6.375	
		X=-4.50	R	=1.000		
0	49.46	1.051	1.130	2.285	2.401	
40	47.23	1.004	1.870	3.959	3.974	
60	49.71	1.056	1.680	3.380	3.570	
120	50.73	1.078	1.070	2.109	2.274	
180	51.62	•	1.140	2.208	2.422	
225	52.56	1+117	2.300	4.376	4.857	
240	51.74	1.099	2.860 2.540	5.528	6.077	
300	51.26	1.089	2.940	4.955	5.397	
		X=-4.50	R=1.200			
G	50.25	1.008	1.320	2.627	2.805	
6Ū	53.25	1.132	1.490	2.798	3.166	
			67 1 / V	E		

والمراجع المرتبي المراجع

معقبه فيعقبهم والمعادي والمعروب أو

[...

ามาแก่สถานของแรก เป็นของและแก่แก่ แรงสาวอยู่และแก่สถานของสาวอาสาร์การสำนักสาวอาสาร์การสาวอิสาร์การและและและและแ

t

L

1

1

- 1

...

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
120 180 240	52.75 52.90 55.50	1.121	1.080	2.047 2.079	2.295 2.337
300	53.82	1.179 1.144	1.860 1.600	3.351 2.973	3.952 3.400
		X=-4.50	R	=1.300	
0 60 120	50.75 54.10 53.50	1.078 1.150 1.137	1.300 1.590 1.240	2.562 2.939 2.318	2.762 3.379 2.635
180 240	53.52 56.37	1.137 1.198	1.180 1.760	2.205 3.122	2.507 3.740
300	54.50	1.158	1.580	2.899	3.357
		X=-4.50	R	=1.400	
0 60	51.60 55.40	1.096 1.177	1.450 1.770	2.810 3.195	3.081 3.761
120 180 240	54.60 54.63 57.32	1.160 1.161	1.340 1.350	2.454 2.471	2.847 2.869
270 300	57.75 55.50	1.218 1.227 1.179	1.990 1.790 1.710	3.472 3.100 3.081	4.229 3.804 3.634
		X=-4.50	R	=1.550	
0	52.16	1.108	1.430	2.742	3.039
60 120 180	55.54 54.73 54.68	1.180 1.163 1.162	1.800 1.370 1.350	3.241 2.503 2.469	3.825 2.911 2.869
240 270	57.50 57.95	1.222	1.980	3.443 3.296	4.207 4.059
300	55.73	1,184	1.690	3.032	3.591
		X=-5.20	R	.=0.000	
0 60	51.50 51.50	1.094 1.094	2.600 2.590	5.049 5.029	5.525 5.504
120 180	51.22 51.30	1.088 1.090	2•530 2•580	4.939 5.029	5.376 5.482
240 300	51.25 51.23	1.089 1.059	2.580 2.530	5.034 4.939	5.482 5.376

- 149 -

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LGCAL INT	TURB INT
		X=-5,20	R	=0.200	
0	51.72	1.099	2.520	4.872	5.355
60	51.55	1.095	2.350	4.559	4.994
120	51.25	1.089	2.330	4.546	4.951
160	51.62	1.097	2.480	4.804	5.270
240	51.96	1.104	2.720	5.235	5.780
300	51.55	1.095	2.630	5.102	5.569
		X=-5.20	R=0.400		
^	52.76	1.121	2.160	4.094	4.590
0 03	51.72	1.099	1.960	3.790	4.165
120	51.70	1.099	2.080	4.023	4.420
180	52.16	1.119	2.060	3.912	4.377
240	53.50	1.137	2.760	5.159	5.865
300	51.75	1.100	2.780	5.372	5.907
		X=-5.20	f	R=0.600	
0	54.58	1.160	1.680	3.078	3.570
60	52.63	1.118	1.790	3.401	3.804
120	52.95	1.125	1.810	3.418	3.846
180	54.73	1.103	1.840	3.362	3.910
223	55.65	1.183	2.510	4.510	5.334
240	55.00	1.169	2.840	5.164	6.035 6.099
300	52.92	1.125	2.870	5.423	0.099
		X=-5.20	•	R=C.800	
0	56.00	1.190	1.200	2.143	2.550
45	53.75	1.142	1.650	3.070	3.506
60	55.32	1.176	1.740	3.145	3.697
120	56.02	1.190	1.470	2.624	3.124
150	54.25	1.153	1.460	2.691	3,102
180	57.77	1.228	1.320	2.285	2.805
223	57.95	1.231	2.390	4.124 4.878	5.079 5.929
240	57.20	1.215	2.790 2.870	4.070 5.254	6.099
280	54-62	1.161	2.940	5.278	0.247
300	55.70	1.184	6 B 7 T V	24210	
		X=-5.20	1	R=1.000	
0	57.73	1.227	1.140	1.975	2.422
35	56.00	1.190	1.920	3.429	4.080
60	58,50	1.243	1.660	2.838	3.527

l server elle

l

[

ANGLE	SPEED	SPEED RATIO	RMS SPEED	LOCAL INT	TURB INT
120 150	59.52 57.20	1.265	0.990 1.130	1.663	2.104 2.401
180 223 240	60.03 61.27 61.20	1.276 1.302 1.300	1.010 1.770 2.440	1.682 2.889 3.987	2.146 3.761 5.185
300	60.00	1.275	2.180	3.633	4.032
		X=-5.20	R	l=1.200	
0 60	58.90 61.77	1.252 1.313	1.230 1.530	2.088 2.477	2.614 3.251
120 180	61.50 62.00	1.307 1.317	1.160 1.110	1.886 1.790	2.465 2.359
223	63.70	1.354	1.500	2.355	3.187
240	64.52	1.371	1.670	2.588	3.549
306	62.40	1.326	1.570	2.516	3.336
		X=-5.20	P	x=1.300	
0	60.00	1.275	1.250	2.083	2.656
60 120	62.50 62.45	1.328 1.327	1.610 1.230	2.576 1.970	3.421 2.614
180	63.45	1.348	1.170	1.844	2.486
240	66.00	1.402	1.660	2.515	3.527
300	63.42	1.348	1.530	2.412	3.251
		X=-5.20	F	R=1.400	
0	63.90	1.358	1.200	1.878	2.550
60	66.77	1.419	1.310	1.962	2.784
120 180	66•45 66•75	1.412 1.418	1.060 1.060	1.595 1.588	2•252 2•252
240	69.00	1.466	1.370	1.986	2,911
300	66.77	1.419	1.260	1.887	2.677
		X=-5.20	f	R=1.475	
0	64.53	1.371	1.140	1.767	2.422
00	67.50	1.434	1.420	2.104	3.017
120 180	65.73 65.50	1.347 1.392	1.290 1.410	1.963 2.153	2.741 2.996
240	69.05	1.467	1.610	2.332	3.421
270	70.00	1.487	1.550	2.214	3.294
300	67.76	1.440	1.300	1.919	2.762

en and an de la calendaria de la contracta de l

+USGPO: 1976 - 758-187/09 Region 5-11