7. $8-10.455$ $c \pi-148586$
 OPERATION OF THE LANDSAT AUTOMATIC TRACKING SYSTEM

\#wáde available under NASA sponsorship In the interest of early and wide disseminbtion af caill fescurtes Saney
 for any nse made thereot. ${ }^{n t}$

NEW ENGLAND DIVISION U.S. ARMY CORPS OF ENGINEERS

WALTHAM, MASSACHUSETTS

$$
\text { Soul Cagor }-P_{i .} .
$$

New England Division
U.S. Army Corps of Engineers
424 Trapelo Road
Waltham, Massachusetts 02154

by
Timothy D.: Buckelew

ORIGIMAL COHTABAS
 color mustantions

Originalshotograptiy may be purchased fromas:
EROS Date Center
10th and Dakota Avenue
Sioux Falls, SD 57198

TABLE OF CONTENTS

Foreword ii
List of Figures ij.j.

V. Powering Up Tracking Equipmention

Appendices 28

FOREWORD

The purpose of this manual is to document the proçedures and theory of operation of the LANDSAT țracking system at New England Diyision, U.S. Army Corps of Engineers, Waltham, Masșachusetts.

The manual is arranged generally by degree of detail, with the simplest operating pracedures first; instructions for normal day-to-day operation are given in Section I, while information needed for program modification, file majntenance, and troubleshooting is in Sections II , VII and the Appendices, All figures referred to in the text are in Appendix B.

List of Figures

1. Subsystems Diagram
2. LANDSAT Tracking Pedestal and Parabolic Antenna
3. Simplified Flowchart of Events Associated with LANDSAT Tracking
4. Complete Flowchart of Events Associated with LANDSAT Tracking
5. Format of Orbital Elements Provided by NORADC
6. Dialogue Between Operator and Computer during Execution of

ELW. Note: " \downarrow " Stands for "RETURN".
7. Power Switches on Computer and Command Equipment
8. Bit mapping Between NOVA Software and DG4065 Interrace Controlling 1848 Digital Comparator.
9. LANDSAT DCP Sitelist

I. AUTOMATIC TRACKING SYSTEM OPERATION - OVERVIEW

The Automatic Tracking System for receiving LANDSAT'data at. New England 'Division, Waltham, consists of a 15-foot dish antenna, a tracking pedéstal, some pedestal control equipment', and a Data' General NOVA minicomputer with various accessories. The-reTationship of all these parts is shown in the subsystems diagram, Figure 1. Most day-to-day .operation of the system will require very little action by operators, but full control of it and the handling of unusual situations require some knowledge of the programs and various information files that are kept on disc. Most operator action is taken at the computer terminal (Figure 7). (No card decks are needed, and the system is almost entirely separate from the IBM 1130 and Motorola equipment which are in the same room.) The operator may have to power up the NOVA computer (see section II) and start execution of the programs which track the LANDSAT and store incoming data. Once the NOVA has the correct time of day and is executing the tracking programs, it should do so continualiy until the operator interrupts it. These programs are cyclical, and if one of them is interrupted, it may be restarted later; that is, the operator may re-enter the cycle at one of several points.

The simplest procedure for tracking is as follows (refer to Figure 3):

1. Power up the NOVA (șee Secticion II).
2. Set the NOVA's real time clock precisely (see Section III).
3. Turn on all required control equipment (see Section V.).
4. Execute the program TRACK by typing "TRACK" followed by a carriage return.
'II: ROUTTINE TO POWER UP THE NÖVA ${ }^{\prime}$: $\%$.
SWITCHES ARE LABELLED WITH RED TTAPES. (SEE FIGURE 7):
5. TURN CÖNSOLE POWER SWíTCH TO "ON'":
6. TURN ON POWER SWITCH ON TEKTRONIX TERMINAAL
7. TURN TELETYPE SWITCH TO "LINE".
8. TURN DISC POWER SWITCH TO "ON" (clockwise).
9. PUSH WHITE KEY ("POWER'ON") ON MOVING HEAD DISC' CABIENET
10. SET CONSOLE SWITCHES $0,11,12,14$, and 15 UP; ALL OTHER NUMBERED SWITCHES STAM DOWN:
11. When green light on disc cabinet comes on, lift "reset" SWitch and then "program load" switch on the console. the following dialogue ensues:

NOTES:

1. " \downarrow " means "RETURN". You type in the underTined characters.
2. WHEN RDOS SYSTEM CRASHES, PUSH WHITE KEY ON DISC CABINET (OFF) AND GO TO STEP 5 ABOVE.

ROUTINE TO POWER DOWN THE NOVA (SEE FIGURE 7).

1. TYPE RELEASE DP $\dot{\theta}$). (" \emptyset^{n} IS A ZERO: " \downarrow " IS A RETURN).
2. PUSH WHITE KEY ON DISC CABINET (WHITE LIGHT GOES OUT).
3. TURN OFF FHD SWITCH.
4. TURN DISC POWER SWITCH TO OFF (counter cTockwise),
5. TURN TELETYPE" SWITCH FROM "LINE" TO "OFF",
6. TURN TEKTRONIX TERMINAL SWITCH TO "OFF".

NOTE: NOVA IS NORMALLY LEFT RUNNing all the time.

III. SETTING NOVA'S REAL TIME CLOCK

To track LANDSAT accuratley the NOVA's Real Time clock must .': ' be set to Coordinated Universal Time (UTC). Accuracy of one-fourth second is sufficient. Two methods may be used; a manuat one and (eventuáliy) an automatic one.

Automatic Method. Execute the program CL. Within 2-3 minutes the computer will signify completion by typing "R". If it doesn'it, means that it probably won't. In this case, use the manual method.

Manual Method. The NOVA provides for its clock to be set by the teletype command STOD hh mm SS \downarrow

Where. hh, mm, and ss stand for hour, minute, and second.

Dial up the FIS number 8-323-4245 to get the National Bureau of Standards' audio time signal. When you have found out what time mark will be coming soon (e.g., the next minute), use the STOD command to prepare to enter that upcoming time, and hit CARRIAGE RETURN exactly when the time marker occurs.

Before hanging up the telephone, you may check the NOVA's time by executing the program PU which will send an audible pulse to the terminal every 15 seconds.

This annotated sample of operator/computer dialog ịlustrates the method:

IV. HOW TO ENTER ORBITAL ELEMENTS INTO TRACKING SYSTEM

.To track LANDSAT, the system mustibe able: to predict when the satellite will rise over the horizon and what azimuth and elevation angles to send to the tracking pedestal. To predict those times and angles the system is given a description of LANDSAT's orbit by means of the teletype or CRT terminal. This orbital information is contained in the element set provided by the North American Air Defense Command, Ent AFB; Colorado.* The element set.comes via TWX twice a week and looks like the example in. Figure 5. Eight of the elements in Figure 5 are important to our system. Their meanings, formats, and units are as follows:

1. EPOCH - - An arbitrarily chosen recent instant expressed as a Julian date, at which the rest of this element set was determined.
XXX.XXXXZXXXX (DAYS)
2. NDOTD** - - First derivative of mean notion + or - .xXXXXXXX (REVS/DAY/DAY)
*Questions about NORDADC elements can be addressed to:
SPACE DEFENSE CENTER (Cheyenne Mountain Office)
ENT AFB, Colorado
As of 9 December 1975, our contact person there was Capt.
Tohlen, FTS 8-327-0111 635-8911, ask for ext. 3549
** " \emptyset " stands for zero; " 0 " is the 15th character of the alphabet.
3. I \emptyset - - Inclination. $\mathrm{XX} . \mathrm{XXXX}$ (DEGREES $)$
4. NODEØ - - Right Asceension of the Ascending Node, XX.XXXX (DEGREES)
5. EØ - - Eccentricity: XXXXXXX (NO UNITS)

Notice that the decimal point is not printed on NORAD message, but must be supplied to system when you type it in.
6. OMEG \emptyset - Argument of Perigee. $X X X$. $X X X X$ (DEGREES)
7. MD - - Mean Anoma Ty. . XXX.XXXX (DEGREES)
8. NØ - - Mean Motion. XX.XXXXXXXX(REVS/DAY)

The orbital element set is entered into the system by executing a program called "ELW", which stands for "Element Writer". ELW is an interactive pragram which guides the operator in entering the numbers correctly. Because the numbers have many digits, it is easy to mistype them on the teletype keyboard. Therefore, ELW echoes each number as it is entered and allows revision of that one number. If no correction is needed, the operator types \mathbb{Y} after " 0 K?" and enters the next number. If a correction is needed, the operator types \underline{N} and retypes the same number. An example of the operator/computer dialog for the element set of Figure 5 is given in Figure 6.

V. POWERING' UP T̈RACKING EQUIPMENT

= Power switches for the Data General equipment, the Scientific/ Atlanta equipment and associated devices are shown on the photo-. graphs in Figure 7. The order of turning switches ON is as follows:

Data General:

1. Console power
2. Disk power on console
3. Disk power on disk cabinet
4. CRT
5. Teletype
6. Decoder

Scientific/Atlanta:
7. Receiver
8. Synchro Display
9. Servo Control:
10. Digital Comparator

In addition, the main power switch on "the":antenna pedestal concrete foundation must be $0 N$, "and any interlock" switches in the: pedestal itself must be closed.

There is one power switch on a plug strip inside the S/A. cabinet of which you should be aware.

VI. IF SOMETHING FAILS...

Oceasionally, a device will malfunction and cause tracking to cease. Here are a few things to notice as you recover from the malfuriction:

1. Is the computer still up and running?

If the lights are glowing softly, it is probably still running and should respond to commands from the terminal. If the console lights have stopped with some on and some off, or if no lights are on it has crashed. Go to Section II, Step 2, in the footnotes.
2. Is the dish in the stow position (pointed straight up)? If not, tracking is either in progress or has ended abnormally. If it has ended abnormally, the command equipment must be returned to STANDBY mode. Go to next item.
3. Are the two tiny (5/16") red lights (LED'S) on the Servo Control Unit lit?

If so, the equipment is in PROGRAM mode. Put it in STANDBY, by typing "OFF" at the terminal followed by carriage return. The tiny red lights should go off. If that doesn't work, turn off the power switch on the DECODER (see Section IV) for 2 or 3 seconds.

To put the antenna in the stow position, use the manual command unit, the cabinet immediately above the Servo Control Unit. Push the two square buttons on the manual command unit. The antenna should go to the position indicated on the two round dials on this unit. If it doesn't respond to the manual commands, something has
blown out - probably a fuse. Finally, push the standBy buttons on the Servo Control Unit.
4. If it looks like a fuse has blown, zero in on the difficulty by the equipment's behavior and appearance (e.g., lights out, movement in azimuth but not elevation, or vice versa), lost power in Servo Amps, etc.). Most commonly the center (30 amp) fuse on the concrete foundation supply box is the one that is blown.

Fuses have also blown in the Digital Synchro Display Uni.t (back panel) and in the Servo Amplifier in the pedestal itself.
5. The root cause of these fuse troubles seems to be back in the NOVA computer. When it sends bad data, the pedestal equipment gets overloaded. The NOVA runs into difficulties when RDOS is not functioning right, and recently it has appeared that RDOS gives problems when the files CLI.OL and TLOG are not "cleared". That is, their user counts in the system directory are greater than zero. This is remedied by the commands "CLEAR•TLOG" and "CLEAR CLI.OL" at the terminal.
6. If the equipment all seems to work, but no signal comes in during a satellite pass, the system time may be set wrong. Also, check the system date. Perhaps the satellite has not been turned on by NASA at Goddard Space Flight Center. Usually, they turn it on by the time it reaches 10° elevation.
7. If the equipment has failed so badly that it can't be fixed by NED, the following service groups are available:

Data General Corporation
Field Service
237 Riverview
Waltham, MA . 02154
891-7024
Tektronix, Inc.
Field Service.
482. Bedford

Lexington, MA
861-6800
Scientific/Atlanta
Bud Lydon, Fred Leavett, or Dan Pioli
Burlington, MA
272-1256

VII. SYSTEM DESIGN AND OPERATION, IN-DEPTH VIEW

The LANDSAT tracking system integrates a set of about twenty programs or subroutines (software), about ten disk data files; and several pieces of equipment (hardware). The inter-relationships of the programs and data files can be seen in the flowchart in Figure 4. The hardware configuration is shown in Figure 7. In the flowchart, an information flow can be seen as well as a cycle of program executions. Essentially, the system predicts the satellite's position, tracks the satellite, stores and prints the data, returns to the predicting program, and so forth. This cycle can be entered by the method given in Section I. However, from time to time, other operator action will be necessary.

For example, the computer's real-time clock must be accurately set (see Section III). As of this writing, only a manual method. is available, and it has to be performed at least once a day for various reasons such as clock inaccuracy and system cràshes. A better, automatic method of imputting time from a standard clock : is being developed by the writer.

The operator must also inform the tracking system of the latest description of the LANDSAT's orbit. This must be stored in a file called "ELEMENTS". The orbital information is contained in an eight-number set which is supplied to WCB under a standing arrangement with the North American Air Defence Command (NORADC) in

Colorado. Twice a week, NORADC sends the element set to the TWX machine in Building 115S. A detailed description of how to enter the elements into the system is given in Section IV.
.Normally, entry to the tracking system is by execution of the program TRACK, a FORTRAN program which calculates pairs of azimuth and elevation angles to LANDSAT from NED. TRACK starts with the current time and keeps incrementing it until it calculates that the satellite would be above the horizon, In other words, it projects into the future from the current time in the computer's real-time clock.

After the current date and time are input to TRACK, they are converted to Sideral time. This is done by a subroutine called TCALC. . Sidereal time is a relationship between the constellation ARIES (γ) and the Greenwich prime meridian. Specifically, it is an angle between the Greenwich prime meridian and the inertial X-axis, which points toward the first point of ARIES (Escobal, p. 20)*. This angle is denoted by θ. This angle is called the local sidereal time. Knowing the east longitude (λ, e) of an ob-. server's station and, θg (Greenwich Sidereal time) θ can be easily determined. This is given by $\theta=\theta \mathrm{g}-\lambda \mathrm{e}$, where $\emptyset<\theta \leq 2 \pi$ (Escobal, p. 20, Eq. 1.26).

[^0]

To find the sidereal time, the Julian Date (J.D.) must be calculated. The Julian Date is a continuing count of each day elapsed since : some arbitrarily selected epoch. The epoch selected for LANDSAT orbital predictions in TCALC is January 1, 4713 B.C. Each Julian Date is measured from noon to noon; hence, it is an integer 12 hours after every midnight (Escobal, page '17). After the Julian Date and sidereal time are calculated, the next thing found is TSINCE, the number of days since the most recent NORAD EPOCH. TSINCE is then used to determine the unit vector pointing toward the satellite (see SGP of this text). These unit vectors are in turn converted to azimuth and elevation angles at the observer's station (degrees clockiwise from north and degrees" above the horizon, respectively) (see SRV of this text.). These two values and the times at which they occur are then written on the disc under. the file name PTAE. The Time of interest is then incremented seconds or minutes by the routine INCT, and the next values of AZ and EL are determined, etc. In this incremental fashion, the computer is able to predict the path of the satellite across the sky at the observer's site.

The name PTAE stands for Paper Tape Azimuth Elevation. The fite can be transferred as it is to the paper tape purich by the teletype command, "XFER/A PTAE \$TTP". This will cause a paper tape to be generated that is suitable for input to the paper tape reader on the pedestal control equipment.

PTAE is a disk file which comprises a time, a time increment, and many pairs of azimuth and elevation angles. The file.is ended-with a special file terminator. An example of PTTAE is shown in Appendix C.

TRACK calculates azimuths and elevations at 10 -second increments, so the angle pairs in PTAE are pointing angles for instants 10 seconds apart. If these angles were fed to the tracking pedestal, the antenna would jump quickly to the next position every 10 seconds. The progress of the satellite is smoother than this jumpy motion, and it has been found that one-second incrementing is sufficiently small for constant satellite acquisition. Therefore, the program INTERP 1 is executed right after TRACK to interpolate ten angle pairs for every one pair in PTAE. Furthermore, INTERPI recodes the angles from ASCII characters to a binary coded decimal (BCD) format suitable for the electronic interface enroute to the command equipment. The new angles are stored in a binary file called BCDAZEL, and the number of angles in $B C D A Z E L$ is stored in the file NANGLES.

The recoding is done by bit-mapping in the program INTERP1 (q.v.); the assignment of angular values to bit positions is shown in Figure 8. A set of special interfaces, built by Robert Snyder of NASA Wallops, is used to route the BCD angles from the NOVA to the 1848 Digital Comparator (see Figure 1). Input to the 1848 is
in the form of Two 18 -bit BCD words representing azimuth and elevation. However, the NOVA can output only 16-bit words, by way of the 4065 Digital Interface. For this reason, it was . necessary to concatenate two pairs of 16-bit words into two 18-bit: words as shown below (see also Figure 8):

TCALC is a time handing routine which calculates the following three variables:
\therefore 1. XJD - No. Julian days; it is used to find TSINCE and THETA (Escobal ; Pgs. 20, 21, 22).
2. TSINCE - No. of days since most recent NORAD EPOCH. This is used by SGP. to find the unit vector pointing toward the satellite (RDOT).
3. THETA; $\boldsymbol{\theta}$ - Șidereal time (measured in radians) - the angle between a line from the center of the earth to the first point of the constellation ARIES $(\underset{\sim}{-})$, and the plane of observer's meridian.:

THETA is used by SRV in determining Azimuth (A) and elevation (H).

EXPLANATION OF TCALC VARIABLES

$E P=2442413.5=$ Number of Julian days from an original EPOCH to January 1, 1975. This EPOCH is January 1, 4713 B.C. (days).

TWOPI $=2 \pi=6.2831853072$ (no units).
LAMBDA E = East longitude from Greenwich to NED $=288.784332^{\circ}$ (degrees). (λ_{e})

DTHDT $=.25068447$ - Constant used to account for one extra sidereal day for every tropical year (degrees/mim).
$E P Y R=$ DFLOAT (75) = An arbitrary year used as a reference (years).

XJD $=$ Number of Julian days (days).
$N=T(2)-1=$ Number of months in year up to last month (months).
DAYS IN MO (I) = Number of days in each month (days).
$N=T(1)-1=$ Number of years up to last year (years).
TSINCE $=$ Number of Julian days at INSTANT, the time of interest (days).

INSTANT $=$ Future prediction times, or the times of interest (year, month, day, hour, minute, second).
$D T=$ The number of hours, minutes, seconds which T, the time of interest, is incremented for successive executions of TRACK.
$T U=$ Time since January 1, 4713 B.C.; used to find THETA G \emptyset (centuries).

THETA G $\emptyset=$ Greenwich Sidereal time at \emptyset hour of a particular date (degrees).

THETA $G=$ Greenwich Sidereal time (degrees).
THETA - Sidereal time at NED, Waltham: (degrees).

SAMPLE CALCULATION OF SIDEREAL.TIME
August 23, 1975, at 10 hours, 15 minutes, \emptyset seconds; Number of hours, minutes, seconds expressed in minutes: DT $=615$ minutes.

XJD $=2442648.5 \quad$ DTHDT $=.25068447$
$T U=(X J D-2415 \emptyset 2 \emptyset) / 36525=.7564271 \emptyset 47227926$
THETA GØ $=99.6909833+(36 \emptyset \emptyset \emptyset .7689)(T U)+(. \emptyset 0 \emptyset 38708)(T U)^{2}$
$=337.6485916 \emptyset 1549 \emptyset$
THETA $G=$ THETAG \dagger (DT) $(D T H D T)=125.819540651549 \emptyset^{\circ}$
THETA $=$ (THETA $G+$ LAMBDAE) $(2 \pi / 360)=.9530184529430946$
radians

SGP is a FORTRAN subroutine embodying a truncated simplified general perturbation theory for use in the determination of LANDSAT pointing elements. SGP computes osculating position, velocity and mean classical elements. SGP is a first order analytical integration of the equations of motion including perturbations caused by the first two zonal harmonics of the geopotentia1. The zonal harmonic constants account for the effects of the non-circularity of the meridian cross sections of the earth. The, perturbations caused by these harmonics are independent of the longitude of the satellite. SGP is based on the orbital elements a, AXN, Ayn, i, Ω, and L which are well defined for all elliptic orbits except those that are nearly equatorial. For equatorial satelijites, the elements Axn and Ayn are ill-defined because of the indeterminacy of the node. angle Ω to which they are referred. The SGP mathematical model is adequate to handle a majority of routine cataloguing. Accuracy is said to be better than one part in 10^{9}.

SRV (Slant Range Vector) is a FORTRAN subroutine of TRACK which transforms the orthogonal vectors and the time angle, THETA, from subroutine SGP into an azimuth/elevation coordinate system with the observer's station as the origin. Files of azimuth and elevation angles in this coordinate system describe the path of LANDSAT over a particular station during some interval.

TRACKING THE SATELLITE: PROGRAM LSI.

After TRACK has predicted the satellite's path across the sky and prepared a file of pointing angles, it chains automatically to the program LSI which will perform any of over six main functions. It is a complex multi-tasking program which defies flowcharting, because program internal control shifts according to time as counted down by the Real Time Disc Operating System (RDOS) and according to real events in the outside world.

Typically, LST carries out the following main tasks:

1. Schedules itself by looking at the starting time of the upcoming pass. This time is the first number stored in the disk file BCDAZEL.
2. Orients the antenna 1-1/2 minutes before the satellite rises.
3. Starts repositioning the antenna second by second beginning at the instant the satellite rises; and simultaneously logs any data that arrives by way of the antenna/receiver/decoder pathway (see Figure 1); and also simultaneous.ly will accept corrections from the terminal to advance or retard some number of seconds. These corrections are made to improve antenna position.
4. Restores the antenna to the stow (upright) position when the last angle pair in file BCDAZEL has been sent.
5. Dumps the field data that. have come in from core buffer to a temporary disk file called "SDF" (Satellite Data File).
6. Finally chains to a program called QD3 which will decode field data from binary to an octal format similar to one used by NASA at Goddard.

Note that once TRACK and INTERPI have been executed for an upcoming pass, LSl can be run at any time up to one minute, 40 seconds before satellite rise time. Execution of LS1 after that causes problems which are signalled by a "W" being printed at the terminal. One then has to quickly reset the system clock; execute LST; and when the computer eventually types ":", enter positive corrections that stand for numbers of seconds to enable LSI to catch up with real time.

If further knowledge of LSI is desired, the program itself is the best source. The original source code is copiously annotated with explanations of individual steps.

OUTPUTTING DATA: QD3 and P3

QD3 and P3 are programs that condition the raw field data received by the ground receive antennat for disk storage or legible output. QD3

Output to QD3 is the disk file "SDF" which was produced by LSI immediately after the last satellite pass. Output from QD3 goes to a temporary file "LS2DAT" and a permanent file "STORAGE". These file formats are shown in Appendix C.

The arrival time of each DCP message is recorded by LST by storing a seconds counter with each message. This number of seconds is accumulated from the beginning of each pass, and QD3 calculates a message arrival time by adding the number of elapsed seconds to the starting time. The arrival time (Y, M, D, H, M, S) is then stored with each message. The time used is Coordinated Universal Time.

P3
Legible output of DCS data is obtained by executing P3. Input to P3 is from temporary disk file "LS2DAT". Essential.ly, the program examines each message for the platform ID number. looks up the ID in a table, and decides how to interpret the data on the basis of indices in the table. These indices then direct program control to appropriate subroutines for calculating decimal numbers and attaching labels. The kinds of parameters handled by P3 are shown in the sitelist, Figure 9.

FOLDOUT FRAXI 2

APPENDICES

A. History and Background of LANDSAT Program at NED'
B. Figures
C. Computer File Formats
D. Glossary
E. Program Listings
F. . Literature Cited and Related Documents

APPENDIX A

HISTORY' AND BACKGROUND OF LANDSAT PROGRAM AT NED

Since the Industrial Revolution in the 1800's, the rivers of New England have been developed to supply water for power and transportation. As new means of transportation became more economical, both railroad and highway systems were built along the banks of the rivers to service the expanding needs of the industrial, commercial and urban centers. Structures, such as buildings, roads, bridges and dams have restricted floodways to such an extent that considerable property and environmental damages have occurred during moderate and major floods. Notable floods of November 1927, March 1936, September 1938 and August 1955 have demonstrated the need for flood control to prevent these natural catastrophes.

At the direction of Congress, the U.S. Army Corps of Engineers developed a comprehensive plan of protection for each river basin after a careful analysis of ail water resources. Protective works generally consist of a combination of channel improvements, dikes and/or floodwalls at major damage centers augmented by upstream flood control reservoirs. Many of these reservoirs contain additional storage reserved for other uses such as water supply, conservation and recreation. The Corps has built 35 flood control reservoirs, 37 local protection projects and four hurricane barriers in New England at à total investment of some $\$ 300$ million.

To achieve optimum operating benefits from this comprehensive protection system, the New England Division requires hydrologic data such as river, reservoir and tidal levels, wind velocity and direction, barometric pressure and precipitation.

In the past this data was collected from field observation and relayed via telephone or voice radio. It took several hours to compile and assess the data in this manner. With the need for timely and reliable information increasing, the Corps began development of new methods of data collection.

In 1970, the Automatic Hydrologic Radio Reporting Network was placed in operation. This ground-based radio relay system consists of 41 remote reporting stations, and a central control at Division Headquarters in Waltham, Massachusetts. This network, under computer programmed control, collects and analyzes, in real time mode, information which is essential for flood regulation. The remote reporting stations are strategically located in five major river basins and at key coastal points, with each contributing to a detailed, comprehensive hydrologic picture.

LANDSAT
In June 1972, NAȘA entered into a contract with the Corps for an experiment to study the feasibility of using the Earth Resources Technology Satellite (ERTS or LANDSAT) for collection environmental
data from Data Collection Platforms. (DCP's) which are installed at 27 locations throughout New England. Many are situated at * existing U.S. Geological Survey gaging stations.

Since July 1972, LANDSAT has been relaying river stage, precipitation, and water quality data from DCP's via the Goddard Space Flight Center to the U.S. Army Corps of Engineers, New England Division, in near real time. This is the first resources satellite designed to obtain data from the planet Earth exclusively for planning, design, operations and research of land and water resources.
the ned ground receive station

Since any operational satellite configuration serving an urgent function like flood control should include ground receiving stations at all major user locales, NED, with NASA support, constructed and is now operating an inexpensive semiautomatic and easily maintained ground receive station as a follow-up to its original study. The Division is now able to receive hydro-meteorological data from data collection platforms in the field directly at its headquarters in Wal tham, Massachusetts with no time delays. The software to drive the antenna system has been developed with the intention that the antenna operate in an unattended mode automatically over nights and during weekends and holidays, with a computer controlling all processes.

The major objective of the program has been to compare the effectiveness of the LANDSAT Data Collection System (DCS) with existing systems in aiding our watershed management functions.

Data collection platforms tested by the Corps have performed successfully in all seasons including the winter months and also during significant flood events, transmitting near real time operationally useful data for our flood fighting missions.

The satellite proved invaluable in April and early May of 1973 and 1974, monitoring flooding in Maine Rivers. LANDSAT relayed data from five river points in that State to aid the New England Division in the coordination of the flood emergencies.

The successful testing of the LANDSAT Data Collection System at the New England Division should encourage serious consideration of the institution of an operational satellite data relay system on a Corps-wide basis. Such a system appears to be more costeffective than conventional ground-based data relay.

The New England Division is also making a study of satellite imagery to determine its usefulness in planning, designing and managing water resource systems. To obtain an overall broad coverage of ground conditions,imagery studies and measurements are being made of fluctuations in river, lake, and reservoir stages as well as tidal changes, icing of water surfaces, location and depth of

$$
28-A-4
$$

snow cover, moisture content of the soil, and water quality parameters.

FLOOD CONTROL OPERATIONS

Data received at the New England Division's Reservoir Control Center from either the Automatic Hydrologic Radio Reporting Network or the LANDSAT Data Collection System is compiled by computer. This is augmented by information from other sources such as the National Weather Service Meteorologic and River Forecast Offices and the U.S. Geological Survey. Experienced engineers and hydrolo'gists at the Reservoir Control Center analyze the data for timely operation of dams and hurricane barriers, and then issue instructions to operating field personnel.

Flood Control reservoirs, local protection projects and hurricane barriers built by the Corps in New England have been responsible for prevention of almost $\$ 300 \mathrm{million}$ in flood and storm damage.

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 3

$$
28-\quad \mathrm{B}-3
$$

HOW TO ENTER ORBITAL ELEMENTS INTO SYSTEM

ARMY ENGRS WAL
GRIFFISS ROME
S-9
710-324-6949 VIA 3I5-337-6275 MSG NBR 050857
R 050857 D DEC 75
FM SPACE DEFENSE CENTER ENT AFB COLO
TO USA ENDE WALTHAM MA
BT
UNCLAS SDC-O FO50851 0819 DEC 75
NEDED-W/ATTN COOPER

FIGURE 5 FORMAT OF ORBITAL ELEMENTS PROVIDED BY NORADC.

$$
28-B-5
$$

```
E.W\downarrow
ENTER EPOCH,NDOTG,T D,NODED,E0,OMEGO,MD,NO
DO YOU NEED FURTHER EXPLANATION? YES OR NO NL
AYSWER. YES(Y) OR NO(N) TO. OK?
71.22545099 \
    71. 225450990 OK?Y\downarrow
-00000327\downarrow
    -0.000003270 OK?YJ
99.0355\
    99.035500000 0K?Y)
130.8772,
    130.877200000 OK?Y,
-0011596\downarrow
    0.001159600 0K?Y)
260.7835 )
    260.783500000 OK?Y%
99. 1966\downarrow
    99.19660øøø\emptyset OK?Y\.
13.95212232\downarrow
    .- 13.95212232@ 0K?Y)
R
```

FI GURE 6.

DIALOGUE BETWEEN OPERATOR AND COMPUTER DURING EXECUTION OF ELW. NOTES " \downarrow " STANDS FOR RETURN.

$$
28-B-6
$$

0

POWER SWITCHES
subject FIGURE GORPS OF ENGINEERS, U. Bit army
 COMPUTED BY \qquad oheckeo by OLLNG $134 G$ DLGUTAL COMURAATOS oate 2 NARCA 76

ORIGINAT PAGE IS
OF POOR QUALITY

NEW ENGLAND DIVISION
27 Sept 49
CORPS OF ENGINEERS, USS ARMY
sugeot FIGURE Ta. FILE FORMATS. FILE \qquad
COMPUTATION
cOMPUTED BY \qquad checked by \qquad DATE G MARCH 76

SUBJECT \qquad EEE XE 76.
cOMPUTATION
COMPUTED BY \qquad CHECKED BY \qquad DATE $5 m \neq c 川 16$

OLE 5 . BCDAZEL

28-c-2

SUBJECT \qquad FIGURE \qquad ETLE FOTMATS. FILE "INDX" \qquad
COMPUTATION \qquad Checkeo by SMA4! ! COMPUTED BY

ORIGINAL Page is
Trpe isim
71477 GIAEMSLE BRIDG5 ME.

73555 AbIAEASM HETMS HE

78 整6 FTMEURG Ma。

\%el7 g \%

Rss 2 II pingto vo 8t.

$$
28-c-3
$$

$$
\begin{aligned}
& 28-c-4 \\
& O_{\text {ORIGINILI }} P_{A G B} \\
& P_{O O R} P_{A L I S}
\end{aligned}
$$

ADR - Anlog to digital recorder. Typically a Fisher-Porter or LeupoldStevens recorder, equipped with a telekit.

Azimuth - Horizontal angle measured clockwise from north.
BCD - Binary Coded Decimal.
Chain - in programing, a call from one program to execute another, thereby terminating its own execution.

Coordinated Universal Time - an observer's local mean solar time plus the number of time zones the observer is west of Greenwich observatory, corrected for aberrations in the spin of the Earth.

Crash - (v.i.) - to cease functioning. Syn. bomb.
CRT - Cathode Ray Tube - Specifically, the Tektronix 4014 terminal connected to the NOVA.

DCP - Data Collection Platform - Field installation used for sensing parameters, encoding data, and transmitting data to satellite.

Disc (or disk) - medium for storage of data in the Data General Computer. Refers to twenty-surface disc pack and drive which is a peripheral device to the computer. Files on the disk are divided into two directories, "DPD" and "USER". Most system programs are in DPQ, and most user programs are in USER.

Elevation - angle above, the plane of the observer's horizon.
Flowchart - diagram that shows flow of control in a computer program. Elements shown are input, output, initializations, processes, decisions, and connectors.

Julian Date - an arbitrary benchmark that is a continuing count of each day elapsed since some particular epoch.

Multi-tasking - in a computer several program tasks competing for devices and the contral processor on a priority or queued basis.

Octal - refers to a number system that has 8 as a base.

Sidereal Time - the relationship between an observer's meridian and some inertial coordinate system, for example, one based on the constellation ARIES.

Real Time Clock - device in the Data General Nova Computer that consists of a crystal controlled clock and associated DG system software that are used (1) to keep track of date and time of day and (2) to provide for low resolution timing.

Tracking - keeping the antenna pointed at the satellite, and in conjunction with that, logging any incoming data.

Universal Time - see Coordinated Universal Time.

RTPE 73
TASK TS
CALL HS
CALL KILL
END
TASK TS
CALL HS
CALL XILL
ENE
CALL KI
END
R ${ }^{R}$ TPE ART
TiPPE Git
-TITL AIIT

- TITL AIIT
.ENT HNT
IVREL
$J=-167 \quad ; 10 \mathrm{GZ}$
$J=I+1 \quad ; \mathrm{HI}$ ft
$K=I+2 \quad ; 10 \mathrm{EL}$
$L=I+3 \quad: H I E L$
FS. 55 ;PROG ETDEY SUITCH
FS. JSp
ANT ZJSR E.CPILL
SFA 3 PTH
LDH 9 GM 3
LDH O GM 3
MOIJ O
TMP SLR ;TUPN OFF FELESTALT
JMP DFF SLYES TUPN OFR FELEST
JMP OFF :YES
LDA O ATE
OHO. SENI ANGLES
STA 9 TTB
DA 2 CII4
LDA C CAA
LDA 1 OTTB
LDA 1 ETTB
$\begin{array}{lll}\text { LDA } & 1 & \text { eT } \\ \text { COH } & 0 \\ 0\end{array}$
$\begin{array}{lll}\text { CDH } & 0 \\ \text { AHD } & 1 & 0 \\ \text { COM }\end{array}$
COM
ISO
OFB
CDM
IS己 TTB
DOAS O DUC

JIN MOR
BK: LDA 3 PTH
JSR Q.FRET
VFF: LDA O B
JITHP BR DUC

DUC=42
ATB: +1
85: 135777 $\quad 081+085$
$\begin{array}{lll}85: & 135777 & 2081+085 \\ 34: & 133777 & 2051+084 \\ 3: & 127777 & 9051+083\end{array}$
3: 12777? $2051+083$
BL: 117777 180ti62 $081+6 \mathrm{BL}$
Be:
RTN: -
SMA:
TTD:
RTN: $=0$
CMA: -4
TTBI.
TTBI.
TBI.:.

```
HRITE(10.130)
```

HRITE(10.130)
WRITE(15,130)
WRITE(15,130)
FORPRAT(\, I=)
FORPRAT(\, I=)
CALL KILL
CALL KILL

```
CALL KILL. (15,IER)
```

CALL KILL. (15,IER)

```
CALL KILL. (15,IER)
END
```

END

```
END
```

R END
路
,

```
er 3
```


.
JMP DFF :YES CDA OTE SENO ANGLES
$2081+385$
$: 081+084$

```
%0814083
```

RTN: - - .
TASY TE
DIMENSION J(4)
CALL APPEND (15, "TLOG*, ミ, IER
REHD BINARY(1こ)J :GET FIFET ANGLE FAI
GO TO 100 ; GO SElti: PAIP
CHLL FDELY(38) , GAIT FOR AMTENHA TO GET THERE
DO CO I=1,2I ; SEND ANITEINA CCH TUICE
IPOINTMZ
GO TO 120
CALL FDELY(21)
COHTINUE
GO TO 21
000 CALL ANT (J(1),J(2),J(3),J(4), I0)
WRITE(15,120
URITE (10, 120)
20 FORMATI:
21 GO TO (10,15.25,35),IPOINT
DO 39 I $=1,9$ SEND ANTENNA CN OHCE
1POIMT $=3$
00 TO 100
$\operatorname{IF}(I(1) E E,-1) 60$ TO 30 , EITD OF FILET
READ BINARY(5)

IF (KEY3. LE, OIGO TO ZS :ADJUST IF KECESSARY
KEYZ-KEY3-1
1T1(2)=1T1 (2)-1
$25 \quad$ coto 10
35 CALL KILLKEUA 1,350 , TEL HG TO DUAP TO DIEA
CALL XIAT (YEYZ.1.350) :TELL HG TO DUFP TO DISE
CALL RECHKEYC, IONE, , WAIT FOF WG TO FINISH

易象	type wi ．TITL 4 －ENT UG
	－EXTK UIEX，．REC，IXMT，．TASK，．AKILL，．XHT EXTD CPYL FRET
	－TXTM 1 发
	－Prelice control table－．．．－－
	10DCT：DCT
边	DCT：．－．
	${ }_{187}^{187}$
B	
	OINTERRUPT SERUICE ROUTINE
	－RESPONDS TO ONLY ONE INTERRUPT
	ZFROM 4065 INTFC I LOADS S WORDS IN A ：RON AS FAST AS DECODER PROUIDES IHEM．
	ISR42：HIOC IUC
	STA 3 URTH3
	LDA O SYHC
	JSR e．tobur
	LDA 1 GNS ${ }^{\text {，}}$
8	MOR：DIA O DUC
	JSR TMP
	InC 1152 R
	JPIP MOR
$\stackrel{\Gamma}{\omega}$	JMP OUT
	－TOBUF：TGEUF
ω	TOBUF：LDA 2 e．mbs
	INC $2{ }^{\text {c }}$
	STA 己 E．MEP
	JMP ${ }^{\text {a }} 3$
．	TMR：LDA 2 CH15
	$\mathrm{INC}_{\text {JmP }} \mathrm{C}$ 2 SZR
	JMP O^{-1}
	OUT：LDA O ebitess ；GET TIME COUJiter，
	LDA 2 e．MBP STA O O L STORE TIME UITH MSE
	STA 2 e．mbp
	SUB $\frac{1}{1}$
	LDA 2 URTNE LDA 3 URTN3
	－UIEX
	Verme：．－
	Werint：

```
SYNC: 12214
CNH: -5
CN15:
CNE150:-2100.
CTK:
WGIJSR . CPYL
STA 2 ACE
\(\begin{array}{ll}\text { STA } \\ \text { SUB } & \text { AL } \\ \text { O }\end{array}\) GEN \(A 0\)
LDA 2 GNEJió
STA C CTR
STA O PB \(^{2}\); IHIT BUFFEF TO ALL D'S
INC 2 IT
SHP \(\dot{\text { IN }}^{-5}\)
LDA A ENEN ;DEFINE 4 065 DIGITAL I O ZOGRD TO SYSTEF
LDA 1 IDUCT
-SySTM
IDEF
JMP E.ERT
GDA"
JIAP E.EPT
```



```
LDA 2 PEUF
STA 2 NIEP
\begin{tabular}{lll} 
STA & C PIEP \\
STH & 1 & 0 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
STH & 1 \\
2 & 0 \\
\hline
\end{tabular}
\(\begin{array}{lll}\text { INC } & 2 & 2 \\ 5 T H & 6 & 2\end{array}\)
IHC 2
ING
5 TA
ITRP
-545511
GTOD
JIT O.EPT
HOH 2 3 HEAE TT TINES ET:JFE HR,MIH, SES IN SDF
L.DH 2 ©.MEP
\(\operatorname{sinc} 2^{3} 2^{2}\)
\(\sin \sin ^{2} \mathrm{E}_{2}\)
```



```
IHC 2
STA 0
```



```
STH ट EMEP
SUR \({ }^{1} 12\)
HIOS nuc
REC JHAIT HEFE FOP LHST LOOK MHGLE TO RE SĖNT
LDH 0 EMEN
-S'STM
IRMU
\(\operatorname{IMP}\) O.EPT
LDA O HSNF POOINT TO F
-SYSTH
-ADPEND 5
JMP O.ERT
LDA, O PEUF
MOUZL 0 , BYTE POINTER
LDA 1 CHEOA ; BYTE COUNT
.SYSTM
. WRS 6 THAP THE RUFFER
```

```
Jmp e.ERT
.SYSTM
JMP
LDA ACB
LDOBZO
**MT
\XMT, &.ERT
#DATA ARE
AC:-
AC3I:?: GADD KEY, 1 ;POINTS TO ZND ELEMENT IN LASELLED COMmON,"KEY
```



```
C4200: 4200.
M
ijDST = JSR a.
HTDST - JSR e.
duch:42
DMC=42
MEP:Q ;POUABLE BUFFEP POINTER
EERT:ERT
ERT:.5YSTM
PERTN
PBUF:BUF
- END UHA
RYPE TASkcall
- TITL TASKCAL
.ENT, TASK, XMT, XMTLI, REC, KILLL,OHES, TOULD
-ENT OUREL,OOUKIL,OFSK,PRI, SUSP, PENLD,IIST
-ENT TIDS,.TIDR.,TIDK,TIDP,.AKILL,.HSUSP
-ENT HRDY, APEND, AUNPD
,EXTN CTASK, XMTT, XHTTL,RECC,KILL,TOUEK,TOULD. TOURL,TOHK:L
-EKTN TGTSK,TPRI,TPEND,TIDST,STID,PTID,KTID,TIDP
```


25 TS（I）＝T（I）
c
CHLL TCALEIT，TSINCE，THETA，LAMEDA EI
TSINGE＊TSINCE－EPOCH JHO OPOCH DAYS SINCE MOST RECENT MORAD
CALL SGP（TSINCE）
SALL SRU＇THETA，H，A，GL（SPHI，FZSSPHI，SNPHI，ESPHI，GLSNPHI）
IF（K2．NE．X1 ）G）TO 889
$160=0$
$Z=0$
$Z=0$
$X=0$
IMARIY＝MMANTri＋1
J0：1
STEL：90．00 ：STOW ANGL
IRITE（4， 339 JH，STEL．
IF（IMANY．NE．IPHSS GO TO SO
CHLL OLOSE＇4，IEP，
CALL ELOSE（8，IER）
CALL 1 LOSE（15，IER）
ALL SHATN：IIITERPI．SIU，IEP ．
H1ER，NE． 1 ）T＇イPE＂LSCE＂
SHECK．TO
CALL EXIT
390 Xट．
IF（H．LT．O．） 130 TO 250
IF（O．GE，E．．NF．IFLAS．EA． 1 160 TO 192
IFLAGel
DO $150 \mathrm{I}=1,6$
TTHSDT
$\mathrm{H}=\mathrm{Q}$

60 TO
CO
TO
OH
CHLL PEHK（IMAN＇，H，Z，Y，ICOMMT， $4, E T, I G U E R ;$
FLAGZ 0
IFIJO．EG． 1 URITEI 15， $135 \cdot T(4), T(5), T(E)$
135 FORMAT（L，

30～己
IFIIW．EC． 1 ）UKITE（4，333）T5S，DT
FOPMAT（1\％，F14．O：1；F6．1）

FORNAT（2H 4，FE．3，14E，F5．2，＇：＇）
2 $\dagger=$ 己
D0 30 CI I：, 6
TSII $=T(I)^{\prime}$
CALL INCT（T，DT）
$G O T O Z O$
$I F$
$(G . G T . O) D T=.B D T$

$\mathrm{Q}=\mathrm{H}$
IN＝1
CO 70 2
ENB
R
GTOD
$3 / 23,7$
GTOD
$3 / 23.76$
R
16：6：16

THIS ROUTINE COMPUTES SATELLITE POSITION USING G SIMPLIFIED GENERAL PERTUREATIONS WETHOD，OLASSICAL MEAN ELEMENTS HPE RETAINED

REAL IO，IM，NO，NDOTO，MO，NODEO，NODEM，LM，NFI，NDOTM，LLONG， INDOTG，LO，$M O D D T, J 2, J 3, M L, I S$, NODES EXTERNAL EXANM
INTEGER YR
c．．IMPUT PGPAMETEPS
COMMON EPOCH，YR，MO，NUDEO，NMEGO，NDOTO，
\＄AKI，EM，IM，NODEM，ONEGA，LA，NH，NDOTM，EO，ND， $10, L O, A O$
EELONG，LLONG，EXLNG，ONEGL，TRLEU，RMAG，RDOT，NODDT，CHGDT， IUX，UY，UZ，PK，PY，RZ，RDOTX，RDOTY，RDOTZ

J2＝．00103248
$13=-00000$ ご56
NDOTE＝ 0 ．
$\mathrm{AE}=1$ ．
TWOPI： 6.2831853072

COMPUTE

TIME UAPIAHT MEAM ELEMENTS GT TS：HCE
TT＝TSITICE TTME SITNE EPOCH IDAYS，
 DOMEG：UMADTKTT；D ARG PER
 DHEGIT＝DIOL，\quad UMEGO $+D G H E G I$ ，TUOPI I ；A．P．
NODEM＝DHOD＇（IUUEO＋DHCDE ，TUOPI I ；RA OF HII
IM：IA ：IHCLITARTION URICHNGD
SINI 2 DSIUI IM
cosisideos（in）

If（en） 10,10
$10 \quad E M=0.00931$

COMPUTE AND APPLY＇LONG PERIUDIC TERHS（SUESRCPTD＂L＂I

AXHL＝EMEDCOS（OMEGM）
AYNL＝EM D DSIN（OMEGM $=.5 * T E M P L$

LOMG FAEGCDMOD（CDATANC！AYNL，AYNL 1 ，TUPPI）；PRESERUE（HUAD

C SOLUE KEPLER＇S EOUATION AND OTHER TLIO－BODY FORNHLAE
C LONG PERIODIC ECC ANOM：
TRU EXLNG－EXANM（LLOHG－OMEGL－MODEM，ELONG）
：THE LATITUDE：

RHRG－ANT（ 1. －ELONGED）$)$ COMEGL
C TRONSUERSE COMPONENT OF UEL UECTOR

RUDT－DSORT（MU＊AM末（1．－ELONG＊＊2 ハ＊（1．／RMAG）
C PADIAL COMP OF HEL DECTOP

COMPUTE AND APPLY SHORT PEPIGDIS TERHS

SINZU＝DSIN（Z．KTRUEU）

IS＝I $1+3$. FTEMPE
NODES：NODEM＋3．＊TEMPS＊COSI \＆SIHEL

```
```

COMPUTE. OUAHTITIEE FOR OUTPUT

```
```

COMPUTE. OUAHTITIEE FOR OUTPUT
SNODE=DSIHAHOUESS
SNODE=DSIHAHOUESS
SNIDEFDCOSNHODES
SNIDEFDCOSNHODES
SIHI-DSIMEIS,
SIHI-DSIMEIS,
ON-DCS
ON-DCS
COSU=DCOS, TRUEU
COSU=DCOS, TRUEU
*, UNIT 先CTOR POIHTIHG TOUnPN SMTELLITE:
*, UNIT 先CTOR POIHTIHG TOUnPN SMTELLITE:
SEE P.104 IN ESCOBAL, NETHODS OF GPRIT UETEFRILMGTON*,
SEE P.104 IN ESCOBAL, NETHODS OF GPRIT UETEFRILMGTON*,
TACHOLOA IN ESO
TACHOLOA IN ESO
UX=COSUACHODE-SIHUASNODEACOST
UX=COSUACHODE-SIHUASNODEACOST
UZマSINU*SITII
UZマSINU*SITII
V:=-5I|U*CTHODE-1.0SU*SNODE*COST
V:=-5I|U*CTHODE-1.0SU*SNODE*COST
JY*-SINI\&SNHDE+COSU\&CNODEWIOSI.
JY*-SINI\&SNHDE+COSU\&CNODEWIOSI.
U2*6)SU*SIMI
U2*6)SU*SIMI
*x=5INI*SHOUE
*x=5INI*SHOUE
JY=-SINIFCNGDE
JY=-SINIFCNGDE
秋"0.jsI
秋"0.jsI
RY=RPMAT'YU'S
RY=RPMAT'YU'S
F=RMAC\&N
F=RMAC\&N
O"FMHNXUJ

```
```

 O"FMHNXUJ
    ```
```



```
```

 RDUTZ=PRGOT*UZ+PHDT *UT
    ```
```

 RDUTZ=PRGOT*UZ+PHDT *UT
 PDOT*DGOPT•ROOT**2+PDGTV**2+PNOTT**21
 PDOT*DGOPT•ROOT**2+PDGTV**2+PNOTT**21
 FETUPN
 FETUPN
 EETL
    ```
```

 EETL
    ```
```


TYPE SRU

SRU (SLANT RANGE UECTOR) TDB ($6,27,75$) COMAENTS AFTER LINES TN THIS SUBRDUTII ARE EQUATIONS IN APPENDIX ORATION COMPILER DOUBLE PRECISIOH
SUBRDUTINE SRUYTHETA,H, H, GICSPHI,GECSPHI, SHPHI, CSPHI, \$G2SMPHI)

REAL IO, IM, NO, NDOTO, MO, NODEO, NODEM, LM, NH, NDOTTM, LLONG,
\&LO, NODOT, LX,LY,LLZ,LXH,LYH,LZH
INTEGER YR COMMON EPOCH, YR, MO, NODEU, OMEGO, NDOTO,
SAM, EM, IM, NODEM, OMEGM, LM, NM, HDOTM, ED, NZ, 10, LO HO
EELOHG
*UX,UY,UZ, PX,RY RZ, RDOTK, PDOTY',RDOTz
TWOPI=6. 2831853072

RHOX $\because P X+X ; 1 A+6 S$
RHOL=RZ $+G 2 S N P H I: 1 H .7 A$

LY=RHOY/RHOH ; IITTO 1 H .73
IT:RHOL RHOH; OITTS IH.7A
COSTH=DCOSTTHETA)
SINTH 2 ISIN, THETH)

6OHH=[GORTi! -LCH\#*己

$\mathrm{H}=360$. KH .TWOPI ${ }^{-1}$ OP - DESPEEG FROM HOPIEON

A= 36 . KH TWOPE ; DEGPEES i, FPON HOPTH
IFGA.LT. O. MA=A +360 . ; MDJUST GOOPDIMHTE S'STEMS
PETURN
EHD

TYPE PEAK
C JHE 6/30/75
COMPILEP UOUELE PRECISIGN
SUEROUTINE PEAK IMAII', H, Z, X, IROLINT, A, IIT, IDUER
CALL APPEHDI 15, "TLJf,", 3, IER
ICGUNT:ICOUNT +1
IF (H.LT. 2130 TO. 333
$Z=H$
RE TERN I MO TO
FF(CEU.1)GOTO 1
NHM=ICOUNT-1
ZHUM=TitM
MUM= (7 H
TFIINUER,EIEXD 60.
IF (

FOPMAT: $11 \lambda, 13,5 \times, F 7,2,2 Y, F 5.0, \therefore$, Y
社:
 CONTMUE
GHLL C'LUSE1 15, IER)
RETURH
EHD
$4 T 00$
$3.23 \cdot 76$
$16: 20: 9$

```
        TYPE P3
    C R
    RHC 8 JAN }7
    8 JIMENSION IDX(14,25),ITEMP1(6),ITEMPC(12),
    COMHON/JSLKK/J,K,S,F,JX,IX,NAME (12J,CHK
    CONWOH/JBLK/COND,DOX,TEMP'PH
    CALL. DFILL("DATA".IER)
    CALL CFILU(*DATG",2,IER)
    CALL APPEND(5, DATA:,3,IER)
    CALL APPEND (6,'TLOK*,3,IER)
    CALL OPEN(?,INDX:1,IER)
    CALL OPEN(8, DIRC - A,IER)
    CALL OPEN(G;'LSEDAT;',1, IER,
    IF(IER,NE,I'TYPE'OE.'M,IER
    HRITE(10,21)
```



```
    IX=0
    READ(7,16,TDY
    FORMAT(14,1X,11,1X,12A2)
    IFLG=0
5 7
    FOPMAT(I4)
    REAM(9,1E,END=11)ITEMP1,IPID,ITEMPC
    FORTAT(6AZ,I4,12AZ)
    IF(IPIF,EO.IPD)URITE(5,19)ITEKP:,IRID,ITEMPE
    IF(IPID.EQ.IPD)IFIGEIFLG41
    FOPNAT(ix,GR2,I4,12N2J
    GOTOG
    IF(IFLG,EQ.0)GO TO 39
    CALL SL.)SE(5,IER)
    CHLL,OPEH{5,"DATA*,1,IER)
    DG15 IW*1,IFLGTH*,1,IER)
    PEAD(5,20,END=145)IV,IHO,IDD,IHH,HM,: SS, IEPF,IPLU, PHM
    FORMAT(I1,5I2,A1,I4,24I1)
    CALL, UTII(IY,ITHO,IDD,IHH,INI,ISS)
    IFIIDX(1,I),EO.1PID)G% To to
    COITINUS
    IND=ID>i(2,I
    DO 45 J=3,12
    NAME(K)"IDXIJ,I 
    \AMME(K)"IDX(J,I',
    WRITE(G,48 IIPID,NAME,IHO,IUD,IY,IHH,INM
    LRITE(10,48)IPID, HAME,IMO,IDD,IY,IHH,IMM
```



```
    G0 TO(61,62,63,64,65,66,67,68,69)IND
    MRITE(6,51)
    URITE(10,51)
    FORMAT (3XX, "TEST SET*
    G0 TO 15
    GALLL ERTDA
    IF(CHK.EO.1,)GO TO 125
    URITE(10,54)S
    FORMAT(3X,'STG=",F6.E)
    60 TO &S
C
    O TO ISX, STG=*,F6.2
    GALL ERTDA
    IF(CHN.EC.1)OO TO 12S
```

```
    WRITE(6,55)S 
```

 WRITE(6,55)S
 FOPMHT(3%,"PRC=",F6.2)
 FOPMHT(3%,"PRC=",F6.2)
 COTO 15
 COTO 15
 00X=0
 00X=0
 TE14P=0
 TE14P=0
 PH=O
 PH=O
 CALL WTGLY
 CALL WTGLY
 IF(CHK,EQ. 1. IGO T0 125
 IF(CHK,EQ. 1. IGO T0 125
 URITE 6,56)CGND,DOY,TEMP,PH
 URITE 6,56)CGND,DOY,TEMP,PH
 WRITE(10,56)COMD,DOX,TEMP,PH
    ```
    WRITE(10,56)COMD,DOX,TEMP,PH
```



```
    O2 70 15
```

 O2 70 15
 GALL SHOP (HUM, ENL,DEPTH
 GALL SHOP (HUM, ENL,DEPTH
 IF(CHK.EQ. I 1GO TO 125
 IF(CHK.EQ. I 1GO TO 125
 WRITE(10,5:JDEPTH
 WRITE(10,5:JDEPTH
 URITE(6,5%IDEPTH
 URITE(6,5%IDEPTH
 FDR14AT(3%,"WES"*,F7.3)
 FDR14AT(3%,"WES"*,F7.3)
 I2 TV }1
 I2 TV }1
 JRITE'G,58)
 JRITE'G,58)
 URITE{10,58
 URITE{10,58
 FDR[4AT (3X, "CRREL")
 FDR[4AT (3X, "CRREL")
 GOTO 15
 GOTO 15
 CHLL ERTDA.
 CHLL ERTDA.
 CALL SNOPIHUM, ITDD.DEPTH,
 CALL SNOPIHUM, ITDD.DEPTH,
 IF (CHE,EQ,1)IOO TO 125
 IF (CHE,EQ,1)IOO TO 125
 WRITE(6,59)5,DEPTH
 WRITE(6,59)5,DEPTH
 0,59)S,DEPTH
    ```
    0,59)S,DEPTH
```



```
    SOTO 15
```

 SOTO 15
 GOND=O
 GOND=O
 OOND=O
 OOND=O
 TEMP=0
 TEMP=0
 FH=\
 FH=\
 CAEL WTOLY
 CAEL WTOLY
 IF (CHK.EO.1 IGO TO 125
 IF (CHK.EO.1 IGO TO 125
 HRITE:S,6OIS,COHD,DOK,TEMP,PH
 HRITE:S,6OIS,COHD,DOK,TEMP,PH
 URITE (19,60 IS,COND,DOX, TEMP, PH
    ```
    URITE (19,60 IS,COND,DOX, TEMP, PH
```



```
    F,43K,NHT**,F6.2,2%,4PH=*,FE.3:
```

 F,43K,NHT**,F6.2,2%,4PH=*,FE.3:
 GO TO 15
 GO TO 15
 IRITEG6.5E
 IRITEG6.5E
 HPITE(10.52)
 HPITE(10.52)
 FORMAT:3% NDEMG SET*)
 FORMAT:3% NDEMG SET*)
 60 TO 15
 60 TO 15
 NRITE:6,130J
 NRITE:6,130J
 FORMAT:EX, "INUNALID*)
 FORMAT:EX, "INUNALID*)
 COHTINUE
 COHTINUE
 D) 152 1Q=1,25
 D) 152 1Q=1,25
 IF(IDKII,IQS.EO.IPD NO TO 154
 IF(IDKII,IQS.EO.IPD NO TO 154
 BONTINUE
 BONTINUE
 GOTO 4
 GOTO 4
 DO 156 JQ=3,12
 DO 156 JQ=3,12
 NO#JO=Z
 NO#JO=Z
 NANE(NO)=IDKYJO,IO)
 NANE(NO)=IDKYJO,IO)
 IF(IFLG. EO.0)WRIEE(6, 160)IPD,NAME
 IF(IFLG. EO.0)WRIEE(6, 160)IPD,NAME
 l
    ```
    l
```

```
145 REWIND 5
150 CONTINHE
CALL CLOSE'S,IER,
    CALL CLOSE(6,IER)
    CALL CLOSE (?.IER
    CALL CLOSE (8,IE
    WPITE(10,200)
    200
    FORMAT(/'/\prime\prime?
    CALL. CHAIH'"TRACK,S('*,IEP)
    STOP
RYYPE ERTDA
    SUBROUTINE EPTDH
```



```
        OM#GN/JBLK,1,K,S,F,JX, IX,MAME(LE), LHK
```



```
        JJ=3
        S*0
        F=1:;
        J1=1
        Kn-3
        T=0.055
        IF(NLM\IS,GT:?:GU TO 40
        Kak+3
        CHLLLD(EPY'LEIN.FUM(I),JJ)
        j010 L=1,3
1 0
            BIHIN|*LPIHCL
            -2
            0゙こり ==2,9
            1F,Y-6,131,32,31
            F=10,*F
            T=0.005
            K1=6
            IF:JBIN:IIJ20,25,20
            T1:F&己.*KiI-k;')
            T=T+T1
            F(F&10,-T)40,26,26
            S-E+T1
            Jj=4
    J1=4
    FF(J2-4)30,40,40
    RETURN
    CHK=1.
    RETURN
    END
RYPE BIEWAI
```

SUBROUTINE BINAI

CMMON JBLK $/ J, K, S, F, J X, I 人$, NAME（ 12 ），CHK
COHMON／JBLK／COND，DOX，TEMP，PH
D0 10．I： 2,3

I＇ $\mathrm{P}=3 * 5 \mathrm{X}-(3-1)+6$
IF（NUM（IX）－7）45，45，55
$1 \mathrm{k} \boldsymbol{k}+3$
GHLL DCER＇VILEIH，NUITI IY），3）
$\mathrm{D} 010 \mathrm{~L}=1.3$
jELNK
CUNTINIJE
RETIM
ENI
RUPE BINE
SUBROUTINE EIHE：

COHMCN，JEEK－SOUN，DOR；TEMP，PH
I1 $45 I=2.7$
$M=I-i$
IF（JETHL 1）140，10，40
$\begin{array}{ll}10 & 1 F(I-6) 20,30), 30 \\ 20 & \text { G（Mi－2t）}\end{array}$
20 Si（min2ti 5 S－I）

60 T0 45

$C(1) T$
$N=0$

SLIM 1 M1：
10 E $0 \quad L=1,4$
SUMCM：
$\therefore \because \leq\}=0$
\therefore Mry
contithe

$k=2$
$\begin{array}{ll}70 & k=ट \\ 30 & \text { CUNTNUE }\end{array}$
PETUPN
ENL
T＇YPE DCEP＇
\therefore［1
SUEROUTIHE DCBRY LBII．NUM，JJ
MIMENSION LEIN，千
$10 \quad-1 \sim I=1, J J$
LEINII）：O
IF（NWN）5，5，35
DCO $32 \mathrm{KK}=1$ ，NUM
J．jJ－1＋1
IF（LEIN！J），20．20， 15
CONTINUE
DC 25 I＝j，JJ
LEIN（I）＝0
LRIN（J1－1
COATINUE
RETURN
END

TYPE LSTTAE
CYEROUTIME TO CALCULATE DISCHARGES AND VALIDITY FROM

SUPROUTINE LSTGE(ISH,STHGE,O,IAME,DA,J)
DIMENSION EISCH (441, MNME (10)
COTHHONKBLK, LE1(15)
\$6063, $\mathrm{P} 106,7304,7345,7254,7335,7206,65456,7201,7233$,
(1),

VG $85 \mathrm{~N}=1,16$

0 t-initill stage in table; dastage incperient in znd line
READ (13, 3 WNAME, DH, T, 0, DISCH

J.0

IF(STAGE-T)S1, áz, 22
$0=-005$
DO $60 \quad \mathrm{H}=1,43$
5 \times STAGE -T-NYG
$\mathrm{R}=(\mathrm{S}+\mathrm{a} 1,0$
Z.DISCHCN,

P=DISCHCN $1+1,3-2$
IFIPI24,60,65

1F12152,52. T Q
IFIP,151,152,152
0 OP*P***
GO TO 50
60 TO 50
Continue
E:TRAPOLATE CN Ratinis table
$0=\pi+p w(Z-515 \operatorname{cin}(N-1))+.005$
S-1
RETUPN

```
TYPE OD3
    TDB 10 MARCH 76 _PROGRAM TO COMVERT LANDSAT MSGS TO NASA-LIY.E
    FORMAT. THIS PROUIDES INPUT TO *P' OR "P3"
    PROGRAM ACCEPTS MSGS FRON ALL DCP'S AHD SCPEENS OU
    THOSE WHICH ARE NOT NED'S
            DIFENSION IA(6),IB(IE)
            CALL APPEND(15,TLOGE,3,IER)
    IF(IER.NE, )TYPE OLER',IER
    CALL OPEN(S, USER :SDF, 1,IER 
    GALL DFILLU"LSEDAT*"IER)
    CALL CFILU("LS2DAT',',IER)
    CALL OPEN(6, LSZDATA, 3, IER,
    IF(IER,NE.I)TYPE "OPENERR"
    UPITE(10.10)
        WRITE (15,10
        FORPATI\prime\prime
        ICOUNT=0
        ICT=0
            YR=6
    EAD EINGRY (S)IMONTH,IDA゙Y,IHR,IMIH,ISEC ;GET STGRTINNG TIME
            SEC=ISEC+60%IMIN
1 READ BITARY(5)IA,IS& ;GET DATA AHD SECONDS COUNTER
    ISO=ISC+ISEC-ICT:3600
    SOZISC+1SEC-1CT 3000
    ICT=ICTT+1
    IST=ISC-IOT*3600
    IHP=IHP+1
    IF(IHR,GE.24)IHR=IHR-24
4 IF(IHR,GE*24)
            IMINv(I5N:OH)
            SC.1 [5%-66x IMIN
            FFIMIt.LT.60lisO TO 5
            IMIN=O
            IHP-IHR +1
            IF(IHF.LT.24)G0 Ti) 5
            ILAAY=IDAY'II
            IHR=a
5 CONTINUE
            CONTINUUE EO, INO TO 100
            IF(IAGI?,EQ+OISO
            DO 20 I= 3,6.
    DO 20 I=3,6. 
    ICNISHFTIIAIIJ.
    J=I*2-1
    IB(J)=IC
    J-J+1
    IB(J)=ID
20 CONTINUE
    ICHX=IA(2)
    IA(2)-IACZS.AND.TT7TK ;STRIP EUERTHING EUUT THE DCP 
    IF(IA<Z).EO.60G3K.OR.IA(2).E0.6504K JGO TO 25
    IF(IARC).EQ.60G3K.OR.IA(2
    IF(IA(Z).EO.76己Z7K)GO TO 1
    IF(IA(2).EQ:75346K)G0 TO 1
25 IER-gRE4 ;ASSUTLE NO ERROR, OUJTPUT A BLAINK
```

TYPE OD3
C TDB 10 MARCH 76

```
IF(ICHK.GT.1)IER=17696 .:IF ERRR IS FLAGGED OUTPUT AN =E
    E.12)
    SGS FROM ALLL DCP'S HHD SEPEENS OUT E5,12)
    -5,12
    5,12)
    35
                            FORMAT(IK,II,5I2,A1,DI4,8013)
    GO TO 1
    100 FALL CLOSE(5,IEP
    GAEL CLOSEIB,IEP
    WRITE(10,120)ICOUHT
    JRITE(15,i2@jICOUTT
    FORMAT("'TOTHL NUMEER OF NESSNGES = -,I3)
    WRITE(10,110)
FORHMT(,%1%
CALL. BHAIH'*PZ.SU*, TER)
IFIIER.NE, 1IT'PPE "OLER", IEP
EMd
```

ORIGINAI PAGH
OF POOR QUALIIII

12	N R, AINEMILEBR						$\underset{\sim}{\boldsymbol{\theta} \dot{6}}$	
${ }_{3}^{2} 46$	$\begin{array}{rr} 0.3 \\ 1420 & 1810 \end{array}$	2244	2720	243 3290	$\begin{array}{r} 375 \\ 3950 \end{array}$	546 4700	$\begin{array}{r} 756 \\ 554 \end{array}$	1069
446	73808410	9520	10700	11900	13800	14200	15400	16608
	17800 19200	20600	22100	23600	25200	26700	28300	
	3160033200	35800	35600	36200	36800	37400	38000	3860 \%
	ST JOWw P. DICKEY				2700.		3.5	
	0.5160	560	1140	2020	3129	4450	6050	7800
	11800	13889	16100	18600	210100	23600	26400	23700
	3290036200	39499	42708	46800	50108	54208	58:00	63208
47	67709 72200		81200	85708	50200	94700	99200	
48	ST SOHN R. FORT KEMT				5630.		0.5	
48	$1.6 \quad 450$	1280	2230	3600	5310	a	10100	00
	1600019700	23700	28000	33000	38900	44400	50000	
448	6350071000	79000	87000	95000	140000	113006	123008	133003
19								
19	PEHOESCDT, W. ENF IELD				6670.		1.	
49	0.51860	2668	3590	463	5750	6960	8270	970
	129012900	14600	1660	1360	20700	23009	25500	28900
	30700 33500	36506	39580	42540	45500	49000	52500	56200
549	6000063900	67800	71800	75900	80008	84000	38200	92500
49	97000101500	106200	111200	116000	121000	126000	131000	136500
	CARABGSSET P, N.ANSOH				354.			
	0.50	5	128	270	490	795	1160	1550
	2030 2530	3230	3830	4530	5276	6070	5870	7670
-	8529	10390	11200	12500	13100	14100	15000	6000
	1700018100	19200	20308	21490	22600	23700	24300	$2600 ¢$
58	27200 28500	29800	31000	32300				
51	SACO R, COPNISH				1292.		1.	
	0.5215	351	531	761	1060	1440	1930	2550
	3240 4040	4950	5950	7000	8130	9360	10600	11700
	1290014100	15400	16600	17900	19200	20500	21390	23200
	24500 35800	27200	23500	23900	31200	32600.	34809	35300
	3670038100	39500	40900	42490	43800	45300	46309	48300
2	Mmouth	25			622.0	0.0	1.	:2.6
22	. 5		193	430	980	1780	2340	2790
	3250 3750	4290	4360	5438	6168	6900	7710	580
432	948010410	11362	2358.8	13354.8	14350.0	15370.0	16420.0	17470.6
	$8570.019620 .0{ }^{\text {a }}$	9770.	1900.0	23050.4	$24 ट(1)$	25400.6	26509.	7850.0
632	29100.030350 .831	1650.0	32960.0		35710.9	37:10	38510	39910
	FS FALES	423			3492.0		12.	
	$1.0 \quad 115.0$	454.8	1110. ${ }^{\text {a }}$	三350.0	$4730.1)$	3200.0	12500.8	17240.0
39	240.026840 .031	1640.0	36440.8	41240.2	18040.9	50840.6	55640.8	60440.0
49	240.070040	4800.0	29400.0		-	硅	480.6	0320. 0
59	105900.0113000 .01	000.	3000	0.0	3000.	000.	300	8000
	153009.0 0.0	0.8	0.0	0.	0.0	0.0	0.0	0.0
	SUICH R, IPSUICH						2.0	
	${ }^{\text {O.2 }}$	- 36	3.38	17.5	32	52	82	22
	+174 248	335	430	550	685	825	950	1855
	2150	1340	1440	1546	1640	1740	1845	1955
	$2065 \quad 2175$	229	2410	2530	2670	2810	0	
	N.NASHUA R,FITCHBURG				63.6			
	9.2 5 46				120	175	242	323
	1540 168e						126	
55	0				-	0	0	
				0		0		
				22				
	109 880	1040	1215	1395	1580	1780°	1985	2205

APPENDIX F - LITERATURE CITED AND RELATED DOCUMENTS

1. Escobal, P.R.* "Methods of Orbit Determination". New York: John Wiley and Sons, 1965
2. "How to Use the NOVA Computers". Data General Corporation Southboro, Massachusetts
3. "Real Time Disc Operating System", Revision 3 or higher. Data General Corporation, Southboro, Massachusetts
4. "Fortran IV", Data General Corporation, Southboro, Massachusetts
*Referred to in text.

LANDSAT

 SATELLITE

28-F-2
department of the army - new england division - corps of engineers - waltham, Ma.

THE LANDSAT SATELLITE and
 FLOOD CONTROL IN NEW ENGLAND

JUNE 1976

HISTORY AND BACKGROUND

Since the Industrial Revolution in the 1800's, the rivers of New England have been developed to supply water for power and transportation. As new means of transportation became more economical both railroad and highway systems were built along the banks of the rivers to service the expanding needs of the industrial, commercial and urban centers. Structures, such as buildings, roads, bridges and dams have restricted floodways to such an extent that considerable property and environmental damages have occurred during moderate and major floods. Notable floods of November 1927, March 1936, September 1938 and August 1955 have demonstrated the need for flood control to prevent these natural catastrophes.

At the direction of Congress, the U.S. Army Corps of Engineers developed a comprehensive plan of protection for each river basin after a careful analysis of all water resources. Protective works generally consist of a combination of channel improvements, dikes and/or floodwalls at major damage centers augmented by upstream flood control reservoirs. Many of these reservoirs contain additional storage reserved for other uses such as water supply, conservation and recreation. The Corps has built 35 flood control reservoirs, 37 local protection projects and 4 hurricane barriers in New. England at a total investment of over $\$ 350$ million.

ball mountain dam and reservoir jamaica, vermont
To achieve optimum operating benefits from this comprehensive protection system, the New England Division requires hydrologic data such as river, reservoir and tidal levels, wind velocity and direction, barometric pressure and precipitation.

In the past this data was collected from field observation and relayed via telephone or voice radio. It took several hours to compile and assess the data in this manner. With the need for timely and reliable information increasing, the Corps began development of new methods of data collection.

LANDSAT

Since July 1972, LANDSAT has been relaying river stage, precipitation and water quality data from DCP's via the Goddard Space Flight Center to the U.S. Army Corps of Engineers, New England Division, in near real time. This is the first resources satellite designed to obtain data from the planet Earth exclusively for planning, design, operations and research of land and water resources.

THE NED GROUND RECEIVE STATION

Since any operational satellite configuration should include ground receiving stations at all major user locales, NED, with NASA support has constructed and is now operating an inexpensive semiautomatic and easily maintained ground receive station as a follow-up to its original study. The Division is now able to receive hydrometeorological data from data collection platforms in the field directly at its headquarters in Waltham, Massachusetts with no time delays. The software to drive the antenna system has been developed with the intention that the antenna operate in an unattended mode automatically over nights and during weekends and holidays, with a computer controlling all processes. A diagram of the overall facility is shown.

NED GROUND RECEIVING STATION DIAGRAM

In 1970, the Automatic Hydrologic Radio Reporting Network was placed in operation. This ground-based radio relay system consists of 41 remote reporting stations, and a central control at Division Headquarters in Waltham, Massachusetts. This network, under computer programmed control, collects and analyzes, in real time mode, information which is essential for flood regulation. The remote reporting stations are strategically located in five major river basins and at key coastal points, with each contributing to a detailed, comprehensive hydrologic picture.

In June 1972, NASA entered into a contract with the Corps for an experiment to study the feasibility of using the Earth Resources Technology Satellite (ERTS or LANDSAT) for collecting environmental data from Data Collection Platforms (DCP's) which are installed at 27 locations throughout New England. Many are situated at existing U.S. Geological Survey gaging stations.

LANDSAT SATELLITE

$$
28-F-q
$$

LANDSAT-2 DATA REPORTING STATIONS

LEGEND
LANDSAT STATIONS
- RIVER STAGE
PRECIPITATION
* WATER QUALITY
TEST SET

A major objective of the program has been to compare the cost, reliability, and operational effectiveness of the LANDSAT Data Collection System with the existing NED radio network.

Data collection platforms tested by the Corps have performed successfully in all seasons including the winter months and also during significant flood events, transmitting near real time operationally useful data for our flood fiahtina missions.

TRACKING ANTENNA AT NED WALTHAM, MA.

DATA COLLECTION PLATFORM SACO RIVER CORNISH, MAINE

The satellite proved invaluable in April and early May of 1973 and 1974, monitoring flooding in Maine Rivers. LANDSAT relayed data from five remote river points in that state to aid the New England Division in the coordination of the flood emergencies.

The successful testing of the LANDSAT Data Collection System at the New England Division should encourage serious consideration of the institution of an operational satellite data relay system on a Corps - wide basis. System analysis is being performed to refine cost data and to articulate the data collection needs of Corps users.

$$
28-F-9
$$

The New England Division is also studying imagery regularly collected by LANDSAT to determine the usefulness in planning, designing, and managing water resource systems. It is well established that such imagery is suited to measuring areal extent of ice, snow, and open water, and for estimating moisture regimes. Our studies involve computer analysis of scenes and will explore indirect methods of calculating other hydrologic parameters as well.

IMAGERY PHOTO TAKEN FROM LANDSAT

FLOOD CONTROL OPERATIONS

Data received at the New England Division's Reservoir Control Center from either the Automatic Hydrologic Radio Reporting Network or the LANDSAT Data Collection System is compiled by computer. This is augmented by information from other sources such as the National Weather Service Meteorologic and River Forecast Offices and the U.S. Geological Survey. Experienced engineers and hydrologists at the Reservoir Control Center analyze the data for timely operation of dams and hurricane barriers, and then issue instructions to operating field personnel.

Flood control reservoirs, local protection projects and hurricane barriers built by the Corps in New England have been responsible for prevention of about $\$ 300 \mathrm{million}$ in flood and storm damage.

Lieutenant General William C. Gribble, Jr. Chief of Engineers

Colonel
John H. Mason Division Engineer

KEY OFFICIALS

DEPARTMENT OF THE ARMY

NEW ENGLAND DIVISION, CORPS OF ENGINEERS WALTHAM, MASSACHUSETTS

COLONEL JOHN H. MASON New England Division Engineer

COLONEL RALPH T. GARVER
Deputy Division Engineer
JOHN WM. LESLIE
Chief, Engineering Division
VYTO L. ANDRELIUNAS
Chief, Operations Division

SAUL COOPER

Chief, Water Control Branch
$28-F-11$

NIAL • 1775

[^0]: *See Appendix F for literature cited.

