# NASA CONTRACTOR REPORT

C R - 2 6 7

ASA



**NASA CR-2676** 

CASELE

# DEVELOPMENT OF A COMPUTER CODE FOR CALCULATING THE STEADY SUPER/HYPERSONIC INVISCID FLOW AROUND REAL CONFIGURATIONS

Volume II - Code Description

Frank Marconi and Larry Yaeger

Prepared by GRUMMAN AEROSPACE CORPORATION Bethpage, N.Y. 11714 for Langley Research Center



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1976

| 1. Report No.                                                                                                                                                                                                                                                        | 2. Government Accessi                                                                                                                          | on No.                                                                                                                                       | 3. Recipient's Catalog                                                                                          | No.                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| NASA CR-2676                                                                                                                                                                                                                                                         |                                                                                                                                                |                                                                                                                                              |                                                                                                                 |                                                                                                     |
| 4 Title and Subtitle                                                                                                                                                                                                                                                 | 0.1                                                                                                                                            | de Caron/Human                                                                                                                               | 5. Report Date<br>May 1976                                                                                      |                                                                                                     |
| Development of a Computer Code for Calculating the Ste<br>sonic Inviscid Flow Around Real Configurations - Volum<br>Description                                                                                                                                      |                                                                                                                                                | e II - Code                                                                                                                                  | 6. Performing Organiza                                                                                          | tion Code                                                                                           |
| 7. Author(s)                                                                                                                                                                                                                                                         |                                                                                                                                                |                                                                                                                                              | 8. Performing Organizat                                                                                         | tion Report No.                                                                                     |
| Frank Marconi and Larry Yaeger                                                                                                                                                                                                                                       |                                                                                                                                                |                                                                                                                                              |                                                                                                                 |                                                                                                     |
|                                                                                                                                                                                                                                                                      | <u></u>                                                                                                                                        |                                                                                                                                              | 0. Work Unit No.                                                                                                | -                                                                                                   |
| 9. Performing Organization Name and Address                                                                                                                                                                                                                          |                                                                                                                                                |                                                                                                                                              | 505-26-10-07                                                                                                    |                                                                                                     |
| <ul> <li>Grumman Aerospace Corporation<br/>Bethpage, NY 11714</li> </ul>                                                                                                                                                                                             |                                                                                                                                                | 1                                                                                                                                            | 1. Contract or Grant M<br>NAS1-1152                                                                             | ło.<br>5                                                                                            |
|                                                                                                                                                                                                                                                                      |                                                                                                                                                |                                                                                                                                              | 3. Type of Report and                                                                                           | Period Covered                                                                                      |
| 12. Sponsoring Agency Name and Address                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                              | Contractor R                                                                                                    | eport                                                                                               |
| National Aeronautics & Space Adm<br>Washington, DC 20546                                                                                                                                                                                                             | inistration                                                                                                                                    |                                                                                                                                              | 4. Sponsoring Agency                                                                                            | Code .                                                                                              |
| 15. Supplementary Notes<br>Langley Technical Monit                                                                                                                                                                                                                   | or: Harris                                                                                                                                     | Hamilton                                                                                                                                     |                                                                                                                 |                                                                                                     |
| Final Report                                                                                                                                                                                                                                                         |                                                                                                                                                |                                                                                                                                              |                                                                                                                 |                                                                                                     |
| 16. Abstract                                                                                                                                                                                                                                                         |                                                                                                                                                |                                                                                                                                              | ······································                                                                          |                                                                                                     |
| vehicle geometries accurately and efficie<br>three-dimensional Euler equations in reg<br>via the Rankine-Hugoniot jump conditio<br>of blunt nose entropy layers are compu-<br>of Mollier charts. Typical calculated res<br>tions are included to demonstrate the use | ently. A second-orde<br>gions of continuous<br>ns. Conformal mapp<br>ted in detail. Real ga<br>ults for shuttle orbit<br>sefulness of this too | er accurate finite differe<br>flow, while all shock w<br>bings are used to develop<br>as effects for equilibrium<br>er, hypersonic transport | ence scheme is used<br>aves are computed<br>p a computational g<br>n air are included u<br>rt, and supersonic a | to integrate the<br>as discontinuities<br>rid. The effects<br>using curve fits<br>ircraft configua- |
|                                                                                                                                                                                                                                                                      |                                                                                                                                                |                                                                                                                                              |                                                                                                                 | -                                                                                                   |
| · .                                                                                                                                                                                                                                                                  |                                                                                                                                                |                                                                                                                                              |                                                                                                                 |                                                                                                     |
|                                                                                                                                                                                                                                                                      |                                                                                                                                                |                                                                                                                                              |                                                                                                                 |                                                                                                     |
|                                                                                                                                                                                                                                                                      |                                                                                                                                                |                                                                                                                                              |                                                                                                                 |                                                                                                     |
|                                                                                                                                                                                                                                                                      |                                                                                                                                                |                                                                                                                                              |                                                                                                                 |                                                                                                     |
|                                                                                                                                                                                                                                                                      |                                                                                                                                                |                                                                                                                                              |                                                                                                                 |                                                                                                     |
| · · ·                                                                                                                                                                                                                                                                |                                                                                                                                                |                                                                                                                                              |                                                                                                                 |                                                                                                     |
|                                                                                                                                                                                                                                                                      |                                                                                                                                                |                                                                                                                                              |                                                                                                                 |                                                                                                     |
|                                                                                                                                                                                                                                                                      |                                                                                                                                                |                                                                                                                                              |                                                                                                                 |                                                                                                     |
|                                                                                                                                                                                                                                                                      |                                                                                                                                                |                                                                                                                                              |                                                                                                                 |                                                                                                     |
|                                                                                                                                                                                                                                                                      |                                                                                                                                                |                                                                                                                                              |                                                                                                                 |                                                                                                     |
| 17. Key Words (Suggested by Author(s))                                                                                                                                                                                                                               |                                                                                                                                                | 18. Distribution Statement                                                                                                                   |                                                                                                                 |                                                                                                     |
| Vehicle flow fields, three dimensional flows                                                                                                                                                                                                                         |                                                                                                                                                |                                                                                                                                              |                                                                                                                 |                                                                                                     |
| supersonic/hypersonic flows, inviscid flow,                                                                                                                                                                                                                          |                                                                                                                                                | Unclassified • Unl                                                                                                                           | imited                                                                                                          |                                                                                                     |
| numerical flow field computations                                                                                                                                                                                                                                    |                                                                                                                                                |                                                                                                                                              |                                                                                                                 |                                                                                                     |
|                                                                                                                                                                                                                                                                      |                                                                                                                                                | · •                                                                                                                                          | Subject Cat                                                                                                     | egory 12                                                                                            |
| 19. Security Classif. (of this report)                                                                                                                                                                                                                               | 20. Security Classif. (c                                                                                                                       | f this page)                                                                                                                                 | 21. No. of Pages                                                                                                | 22. Price*                                                                                          |
| Unclassified                                                                                                                                                                                                                                                         | Unclassified                                                                                                                                   |                                                                                                                                              | 153                                                                                                             | <b>\$6.25</b>                                                                                       |

\*For sale by the National Technical Information Service, Springfield, Virginia 22161

# DEVELOPMENT OF A COMPUTER CODE FOR CALCULATING THE

STEADY SUPER/HYPERSONIC INVISCID FLOW AROUND

RFAL CONFIGURATIONS

VOLUME II - CODE DESCRIPTION

# by

F. Marconi and L.S. Yaeger

## GRUMMAN AEROSPACE CORPORATION

### SUMMARY

A set of four computer codes has been developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries. The numerical procedures used in these codes are described in detail in Volume I of this report. Here the codes developed are described with two views; one oriented toward the user and the other toward the programmer.

The nomenclature used in the codes, the input and output formats, and the storage requirements and computer time are discussed in detail. A description of routines, over-all logic flow, and overlay structure are also presented.

# Page intentionally left blank

\_ \_ \_

# CONTENTS

|        |                                                   | Page |
|--------|---------------------------------------------------|------|
|        | ORIENTATION · · · · · · · · · · · · · · · · · · · | 1    |
| PART 1 | USER-ORIENTED DOCUMENTATION                       |      |
| ·      | Description of Codes and Their Interaction        | 2    |
|        | Nomenclature                                      | 5    |
|        | QUICK                                             | 5    |
|        | STEIN                                             | 19   |
|        | STRMBL                                            | 31   |
|        | BOOM                                              | 36   |
|        | Input Data Format                                 | 43   |
|        | QUICK                                             | 43   |
|        | STEIN                                             | 45   |
|        | STRMBL                                            | 49   |
|        | BOOM                                              | 50   |
|        | Output Data Format                                | 53   |
|        | QUICK                                             | 53   |
|        | STEIN                                             | 57   |
|        | STRMBL                                            | 59   |
|        | BOOM                                              | 59   |
|        | Storage Requirements and Computer Time            | 76   |
|        | QUICK                                             | 76   |
|        | STEIN                                             | 77   |
|        | STRMBL                                            | 78   |
|        | BOOM                                              | 79   |
| PART 2 | PROGRAMMER-ORIENTED DOCUMENTATION                 |      |
|        | Overall Flow of Logic                             | 80   |
|        | QUICK                                             | 80   |
|        | STEIN                                             | 80   |
|        | STRMBL                                            | 80   |
|        | BOOM                                              | 81   |

# CONTENTS (Continued)

| <u> </u>                                                      | age |
|---------------------------------------------------------------|-----|
| Subroutine Descriptions $\dots$                               | 85  |
|                                                               | 85  |
| STEIN                                                         | 88  |
| STRMBL                                                        | 96  |
| BOOM                                                          | 99  |
| Subroutine Tree Diagrams (Call Sequence)                      |     |
| QUICK                                                         | _01 |
| STEIN                                                         | .03 |
| STRMBL                                                        | _06 |
| BOOM                                                          | .07 |
| REFERENCE                                                     | .08 |
| APPENDIX A: A BRIEF CODE-ORIENTED USER'S GUIDE FOR THE QUICK- |     |
| GEOMETRY SYSTEM                                               | .09 |
| APPENDIX A-A: QUICK-GEOMETRY MODELING PACKAGE EXAMPLES        | .32 |
| APPENDIX B: A BRIEF USER'S GUIDE TO THE THREE-DIMENSIONAL     |     |
| BLUNT-BODY CODE (BLUNT)                                       | 45  |

#### ORIENTATION

Volume I gave the approach to the numerics and this volume gives all the other matters closely related to the codes.

When handling real configurations, one matter of decisive importance is how the geometry is modeled, particularly when one solves partial differential equations (rather than integral equations as in other aerodynamic efforts). Therefore the user needs to have an idea of the approach to the geometry modeling before learning the operations of the codes. In this piece of work, geometry modeling is done with a technique developed by A. Vachris and L. Yaeger. For the reader unfamiliar with it, Appendix A gives a brief, self-contained description of this technique, called the QUICK Geometry System. Appendix A is couched in code oriented terms without indulging in dissertations of lofting techniques.

. •

· .••

÷ ,

· .

. .

· 1.

To compute the transonic flow over the nose of blunted vehicles, a three dimensional time asymptotic technique was used. The code (BLUNT) which was used for these calculations is briefly discussed in Appendix B. The computational procedure used is discussed in reference 1.

The typical user will be interested in Part 1, the 'user oriented documentation', which will give him the minimum amount of information necessary to operate, as 'black boxes', the codes developed or adapted under this contract. The large amount of nomenclature included here is to be used primarily as a dictionary; only a few symbols and terms need to be learned by the user, namely those that appear in the input/output data format. The nomenclature and non-dimensionalizations of Volume I of this report are used here.

To the programmer who wants to look into the 'black boxes', Part 2 of this volume is dedicated.

## PART 1 USER-ORIENTED DOCUMENTATION

### DESCRIPTION OF CODES AND THEIR INTERACTION

A series of five codes has been developed or adapted under this contract:

QUICK

written by A. Vachris and L.S. Yaeger, is a geometry system designed to allow the user to model a complex vehicle geometry in a quick, straightforward fashion. The QUICK geometry system also allows another code, which uses the modeled vehicle geometry as input, to interrogate the model for cross sectional information as efficiently as possible. QUICK consists of an initial defining and logical checkout group of routines, which actually set up the mathematical model, and a second group of routines (called SUB-QUICK throughout this report) which is used for interrogating the mathematical model. SUB-QUICK is used as a part of QUICK to inspect the modeled vehicle, and as a part of the supersonic flow field code (STEIN), along with an output data set from QUICK (the QUICK intermediate data deck), to supply all geometry information.

STEIN

written by F. Marconi and L.S. Yaeger, is a supersonic flow field code designed as a tool to allow the user to compute the super/hypersonic inviscid flow about realistic configurations. The numerical techniques utilized in STEIN are described in detail in Volume I of this report. STEIN reads control data, starting plane data, and geometry data, and computes the flow from the starting plane to a user prescribed axial station. The nose region of the vehicle must be computed with another code which generates starting plane data (where the axial Mach number is supersonic, see Volume I). In STEIN there is a routine which will compute the starting plane data for sharp circular cones at small angles of attack,

so the initial data need not be generated elsewhere for this case. For blunt nose vehicles a BLUNT BODY code, developed by Professor Gino Moretti (ref. 1) which is compatible with QUICK and STEIN is used. STEIN computes the flow field, the aerodynamic coefficients and the metric coefficient from the starting plane to the end station.

STRMBL

written by L.S. Yaeger, is a code designed to utilize flow field data, output on tape from STEIN, to compute streamlines on the body, create pseudostream surfaces (p-s-s; defined by the body surface normals taken at each point along a given body streamline), and evaluate flow variables and their normal derivatives along the streamlines and in the p-s-s from the starting plane to the end station.

written by L.S. Yaeger, is a code designed to utilize flow field data (from the same STEIN output tape used by STRMBL) to evaluate flow variables on a data cylinder (whose centerline is the z-axis and radius is user-specified) for sonic boom work.

BLUNT

BOOM

developed by Moretti, uses a time dependent computational technique to asymptote to a steady transonic solution. Its results are used as an initial condition to compute three dimensional supersonic flow over blunt nose vehicles. Details of the technique used to compute the blunt nose flow fields are presented in reference 1. The geometry input for this blunt body code can be either supplied by the geometry package ("QUICK") or computed internally for simple noses. The output from this code is compatible with the three dimensional supersonic flow field code's (STEIN) requirements for initial data. The input for BLUNT is described in Appendix B.

The interaction of these codes (i.e., input-output flow) is described in figure 1.



Figure 1 - INTERACTION OF SYSTEM OF CODES

#### NOMENCLA'TURE

### QUICK TERMINOLOGY

During the discussion of QUICK, several terms will appear frequently, and as such, will be defined here:

- 1) <u>Cross section</u> standard definition; a planar cut through the vehicle normal to the FRL at a given x-station.
- <u>Cross-sectional model</u> mathematical abstraction of a cross section, using simple curves to represent arcs between specified control points.
- 3) Control points break or joining points for defining each arc.
- 4) <u>Arc</u> a portion of one simple mathematical curve between two control points in cross section.
- 5) <u>Body lines</u> the defining lines of the vehicle geometry in plan and profile views; x-running control points given as  $y_i = y_i(x)$ and/or  $z_i = z_i(x)$ .
- 6) <u>Body line model</u> mathematical abstraction of a body line, using simple curves to represent segments between specified match points.
- 7) <u>Match or Key points</u> break or joining points between body line segments; initial and terminal points for defining each segment.
- 8) <u>Segment</u> a portion of one simple mathematical curve between two match points of a body line model.
- 9) <u>Component</u> same as an arc; usually considered to be a named portion of the vehicle geometry (e.g., a wing-upper-ellipse may be component WNGUPELL).

Body line segments are discussed in terms of an origin point at  $(x_1, v_1)$ (v standing for y or z), a termination point  $(x_2, v_2)$ , an initial slope  $t_1$ and a final slope  $t_2$ .

- ANAME Hollerith input variable; body line (BL)/control point name to which BNAME is to be aliased, when applicable (blank when not)
- ANNAM Hollerith input variable; cross section (CS) arc or component name
- ARCNM(1) Hollerith input variable; if type is FILET: the name of the most aft component arc to which the current arc's forward end is to be filleted
  - If type is other: the name of the most aft component arc which, in case of intersection with the current arc, is to update the forward end of the current arc and the aft end of the intersected arc
- ARCNM(2) Hollerith input variable; if type is FILET: the name of the most forward component arc to which the current arc's aft end is to be filleted

If type is other: the name of the most forward component arc which, in case of intersection with the current arc, is to update the aft end of the current arc and the forward end of the intersected arc

ASHAPE Hollerith input variable; arc or component shape

ASPEC(1) Hollerith input variable:

= blank yields no effect

- = Y when type is FILET, and only y-values are to be specified for the next control point in order of input (z is computed on controlling component)
- = Z when type is FILET, and only z-values are to be specified for the next control point in order of input (y is computed on controlling component)

- = B to indicate that the next control point is the bottom centerline of the vehicle for the model currently being defined (optional)
- = T to indicate that the next control point is the top centerline of the vehicle for the model currently being defined (optional)
- ASPEC(2) Same as ASPEC(1)

ATYPE Hollerith input variable; arc or component type

AYORZ Hollerith input variable; the letter Y or Z to indicate which definition is to be used when aliasing (blank when not)

BLCOEF(I,N,M) I = 1 to 7; defining mathematical parameters for each segment and BL model

 $I = 1: x_{1}$   $I = 2: v_{1}$   $I = 3: A^{2}$   $I = 4: B^{2}$  I = 5: C  $I = 6: x_{2}$   $I = 7: v_{2}$ 

BLMDEE(I,N,M) I = 1 to 8; points used to define each segment and BL model

 $I = 1: x_{1}$   $I = 2: v_{1}$   $I = 3: x_{2}$   $I = 4: v_{2}$   $I = 5: x_{3L}$   $I = 6: v_{3L}$ 

| 1                                     |                                                                                                       |
|---------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                       | $I = 7: x_{3R}$                                                                                       |
|                                       | $I = 8: v_{3R}$                                                                                       |
|                                       | $(x_1, v_1)$ and $(x_2, v_2)$ are the initial and final points,                                       |
|                                       | respectively, of the given segment. $(x_{3L}, v_{3L})$ establishes                                    |
| · · · · · · · · · · · · · · · · · · · | the slope at the initial side, $(x_{3R}, v_{3R})$ establishes the                                     |
|                                       | stope at the terminar side                                                                            |
| BLMMAX(I)                             | I = 1 to KNTBLM; maximum x for each BL model                                                          |
| BLMMIN(I)                             | I = 1 to KNTBLM; minimum x for each BL model                                                          |
| BLMNAM(M)                             | Alphanumeric name of each BL model                                                                    |
| BLMNYZ(M)                             | Alphanumeric y or z coordinate specification for each BL model                                        |
| BNAME                                 | Hollerith input variable; body line/control point name which is to be defined                         |
| BTITLE(I,II)                          | not used currently                                                                                    |
| BYORZ                                 | Hollerith input variable; the letter Y or Z to indicate which data coordinate definition is to follow |
| COMPNM(I)                             | I = 1 to KCOMP; component names (alphanumeric)                                                        |
| CPNTNM(I)                             | I = 1 to KCPNT; control point names (alphanumeric)                                                    |
| CTITLE(I,K)                           | I = 1 to 10; alphanumeric CS model title or comments                                                  |
| D(1)                                  | Input variable; if type is PIECE or FLINK, this is $x_1$ .                                            |
|                                       | If type is ALINK, PATCH, or FILET, this is a floating                                                 |
| · · ·                                 | point number equal to KSEG of the segment from which                                                  |
|                                       | $x_1$ and/or $v_1$ are to be determined.                                                              |
| D(2)                                  | Input variable; if type is PIECE or FLINK, this is $v_1$ .                                            |
|                                       | If type is ALINK, PATCH, or FILET, this is a floating $\overline{i}$                                  |
|                                       | point number equal to KSEG of the segment from which $\mathtt{t}_{\mathtt{l}}$                        |
|                                       | is to be determined.                                                                                  |
|                                       |                                                                                                       |

•

. :

8

.

| D(3)    | Input variable; if type is PIECE or ALINK, this is $\mathbf{x}_2^{}$ .                                              |
|---------|---------------------------------------------------------------------------------------------------------------------|
|         | If type is FLINK, PATCH, or FILET, this is a floating point                                                         |
|         | number equal to KSEG of the segment from which $x_2$ and/or                                                         |
|         | $v_2$ are to be determined.                                                                                         |
| D(4).   | Input variable; if type is PIECE or ALINK, this is v.                                                               |
| · · ·   | If type is FLINK, PATCH, or FILET, this is a floating point                                                         |
|         | number equal to KSEG of the segment from which to is to be                                                          |
|         | determined.                                                                                                         |
| D(5)    | Input variable; if SLP1 is blank:                                                                                   |
|         | If type is FILET, this is x,; y, and t, are to be determined                                                        |
|         | from the segment specified by $D(1)$ and $D(2)$ . If type is                                                        |
| · · · · | other, this is x <sub>3</sub> .                                                                                     |
|         | If SLP1 is other than blank, see definition of SLP1.                                                                |
| D(6)    | Input variable; if SLP2 is blank:                                                                                   |
|         | If type is FILET, this is $x_2$ ; $y_2$ and $t_2$ are to be determined from the segment specified by D(3) and D(4). |
|         | If type is other, this is x <sub>3</sub> .                                                                          |
|         | If SLP2 is other than blank, see definition of SLP2.                                                                |
| HDEL    | Input variable; increment size in degrees to establish inter-                                                       |
|         | rogation points between HGO and HEND; not required for                                                              |
| , .     | modes 1 or 3.                                                                                                       |
| HEND    | Input variable; final value of theta (in degrees) to be                                                             |
|         | interrogated; not required for modes 1 or 3.                                                                        |
| HGO     | Input variable; initial value of theta (in degrees) to be                                                           |
|         | interrogated; not required for modes 1 or 3.                                                                        |
| HNOW    | Current value of A in degrees (used in various exercising                                                           |
| :       | routines; e.g., MODE1, MODE2, etc).                                                                                 |
|         | Convert value of a in various (used in various evenciains                                                           |
| HIVOWR  | current value of 9 in radians (used in various exercising                                                           |
|         | routines, e.g., MODEL, MODEL, EUC).                                                                                 |
| IAMD    | IABS(MODE)                                                                                                          |
| IANDV   | IABS(NDERV)                                                                                                         |
|         |                                                                                                                     |

1  $\backslash$ 

.

. 9

| IBLCOR(I,J)   | I = 1 to 6; body line coordinate index for Y1(I = 1),<br>Z1(I = 2), Y2(I = 3), Z2(I = 4), Y3 and/or Y4(I = 5), Z3<br>and/or Z4(I = 6).                                                                                                                                                                                       |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IBLMIX(M)     | Index to the control point coordinate for which this BL model was first defined.                                                                                                                                                                                                                                             |
| IBLMWD(I,N,M) | I = 1 to $\frac{1}{4}$ ; indicator for the shape (I = 1), type (I = 2),<br>mode of definition (I = 3), and freed constraints (I = 4)<br>of each segment and BL model                                                                                                                                                         |
| IBLMX(I)      | I = 1 to NBLCOR; index of the body line model for the $I^{th}$ coordinate control point                                                                                                                                                                                                                                      |
| IBLSSH(N,M)   | Shape index for each segment and BL model<br>= (1) LINE, (2) CIRC - not used, (3) ELLX, (4) ELLY,<br>(5) XPAR, (6) YPAR, (7) RXPA, (8) RYPA, (9) CUBI, (10) ALL -<br>not used, (11) NULL                                                                                                                                     |
| IBLSX(I)      | I = 1 to KNTBLM: current segment number index for each BL model.                                                                                                                                                                                                                                                             |
| ICOMPX(J,K)   | Index of the component definition for each arc and CS model                                                                                                                                                                                                                                                                  |
| ICRITE        | Output unit for error and checking messages, primarily for<br>use on a time sharing computing system, otherwise, ICRITE<br>= IRITE                                                                                                                                                                                           |
| ICSACC(I,J,K) | I = 1,2; controlling component index for each arc and CS model                                                                                                                                                                                                                                                               |
|               | <pre>I = 1: information pertains to forward end of arc I = 2: information pertains to aft end of arc = -1: end of arc is unaffected &gt; 0: gives index of another arc which is to intersect the J<sup>th</sup> arc for growing pieces, or which is to supply filleting information if J<sup>th</sup> arc is a fillet.</pre> |
| ICSACP(I,J,K) | <pre>I = 1 to 3: control point index for each arc and CS model I = 1: initial point of arc I = 2: final point of arc I = 3: slope control point for arc</pre>                                                                                                                                                                |

| ICSAFR(J,K)   | Free constraint index for each arc and CS model (not currently used)                                                                                                                                                                                                                                                                                |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICSASH(J,K)   | Shape index for each arc and CS model                                                                                                                                                                                                                                                                                                               |
| <br>          | <pre>-= 1: LINE<br/>= 2: CIRC, circle (not currently available)<br/>= 3: ELLI, in-facing ellipse (concave to origin)<br/>= 4: ELLO, out-facing ellipse (convex to origin)</pre>                                                                                                                                                                     |
| ICSASQ(J,K)   | Sequencing index to establish the order in which cross sectional arcs are to be defined.                                                                                                                                                                                                                                                            |
| ICSATY(J,K)   | Type index for each arc and CS model                                                                                                                                                                                                                                                                                                                |
|               | <pre>= 1: PIEC, piece<br/>= 2: FIJN, forward link<br/>= 3: ALIN, aft link<br/>= 4: PATC, patch<br/>= 5: FILE, fillet</pre>                                                                                                                                                                                                                          |
| ICSMX(KMODEL) | Index of current CS model (from 1 to NCSM), describes use of library of CS models as applied to this vehicle.                                                                                                                                                                                                                                       |
| IFREE         | Input variable; index of the datum quantity which is to be<br>"free," i.e., determined by the code. IFREE ranges from<br>1 to 6 corresponding to $x_1$ , $v_1$ , $x_2$ , $v_2$ , $t_1$ , $t_2$ , as ordered.<br>A line must have any one of these free; an x- or y-parabola<br>must have either 5 or 6 free; other curves should have<br>IFREE = 0. |
| IN(J)         | <pre>Indicator, for each arc of the current CS model = -l: arc not included at this station = l: arc included at this station</pre>                                                                                                                                                                                                                 |
| IPLOT         | I/O unit for plot mode output from GEMCHK, MODE1, MODE2, etc.                                                                                                                                                                                                                                                                                       |
| IPUNCH        | Assumed punch unit (= 7)                                                                                                                                                                                                                                                                                                                            |
| IREAD         | Input unit                                                                                                                                                                                                                                                                                                                                          |
|               |                                                                                                                                                                                                                                                                                                                                                     |

| ISPEC(I,J,K) | I = 1, 2; index to indicate what coordinate is to be speci-<br>fied at the initial control point (I = 1) and the final<br>control point (I = 2) |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|              | <pre>= 1: y is to be specified (z is to be computed on the<br/>controlling component)</pre>                                                     |
|              | = 2: z is to be specified (y is to be computed on the controlling component)                                                                    |
| ·            | = -1: for nonfillets                                                                                                                            |
| ITAPE        | I/O unit for QUICK intermediate data deck (math model)<br>(note: called INREAD in GEOMIN)                                                       |
| IUORDR(J)    | Use order index to establish sequence of CS arcs after inter-<br>sections and filets are completed.                                             |
| IZBDEX(K)    | Index of the bottom center body line model for each CS model.                                                                                   |
| IZCDEX       | Index of the center body line model (mapaxis)                                                                                                   |
| IZTDEX(K)    | Index of the top center body line model for each CS model.                                                                                      |
| J            | Index of current cross sectional arc for a given CS model (K) from 1 to KNTCSA(K).                                                              |
| JSEQ         | Input variable; definition sequence (order in which the CS arcs are to be defined)                                                              |
| К            | Index of current cross sectional definition (library) model (from 1 to NCSM)                                                                    |
| KARC         | Input variable; number of arcs in current cross sectional model.                                                                                |
| KCOMP        | Number of components used to define all CS models (entire vehicle).                                                                             |
| KCPNT        | Number of control points used to define all CS models (entire vehicle).                                                                         |
| KDUM         | Input variable; running count of the current cross section model.                                                                               |

| KMODEL     | Index of current cross sectional use model (from 1 to KNTCSM)                                                     |
|------------|-------------------------------------------------------------------------------------------------------------------|
| KNTARC     | Number of arcs in the CS model corresponding to the current                                                       |
|            | - station                                                                                                         |
| KNTBLM     | Number of body line models                                                                                        |
| KNTBLS(M)  | Number of segments for each body line model                                                                       |
| KNTCSA(K)  | Number of arcs for each cross sectional model                                                                     |
| KNTCSM     | Number of applications of cross section models to define entire vehicle                                           |
| KSEG       | Input variable; the order (in increasing $x$ ) in which this segment appears in this body line model. A KSEG = -1 |
| 14.<br>14. | (further arguments not required) terminates the data for a given body line.                                       |
| KZBDEX     | Control point index for bottom centerline.                                                                        |
| KZCDEX     | Control point index for mapaxis.                                                                                  |
| KZTDEX     | Control point index for top centerline.                                                                           |
| М          | Index of current body line definition model (from 1 to KNTBLM)                                                    |
| MODE       | Input variable;                                                                                                   |
|            | = <u>+</u> 1, creates body line traces                                                                            |
|            | = <u>+</u> 2, creates cross sectional cuts                                                                        |
|            | = +3, interrogates cross sections in neighborhood of control points                                               |
|            | -3, allows multiple body line traces to create plan and profile views                                             |
|            | = +4, comparison of analytic derivatives with numerically formed derivatives                                      |
|            | = +5, check of unit vectors normal to body surface                                                                |

= +6, exercises modes 1, 2, and 3 at the limits of each cross sectional model

-6, exercises modes -2 and -7 at the limits of each cross sectional model

= -7, (plotting mode only) creates cross sectional cuts, but includes all arcs in their entirety (including growing pieces still contained within the basic skin)

MODEL

N

Index to the current CS library model definition

from 1 to KNTBLS(M).

NBLCOR Number of control point coordinates to define entire vehicle (y and z are distinct, thus NBLCOR = 2\*KCPNT).

NCSM Input variable; number of distinct cross section models.

NDERV Input variable;

=  $\pm N$ , where N is the order of derivative to be calculated (N = 0, 1, or 2)

= +N, should always be used for checkout interrogations (means each call to a given location is new, thus the radius and all temporary variables must be computed)

= -N, should not be used for checkout interrogations; requires previous call to same location (x and  $\theta$ ); radius and certain temporary variables are not recomputed.

NHPTS Number of θ points (ŭsed in various exercising routines; e.g., MODEl, MODE2, etc).

NXPTS Number of x-stations (used in various exercising routines; e.g., MODE1, MODE2, etc).

PNTNAM(1) Hollerith input variable; control point name for the beginning of the arc currently being defined.

| PNTNAM(2) | Hollerith input variable; control point name for the termi-<br>nation of the arc currently being defined.                                                 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| PNTNAM(3) | Hollerith input variable; slope control point name for                                                                                                    |
|           | the current arc when required, blank if not.                                                                                                              |
| SDEF      | Hollerith input variable; segment definition mode (currently, only two point, two slope/slope control point method is available - input "KV").            |
| SLPI      | Hollerith input variable;                                                                                                                                 |
|           | = blank yields no effect                                                                                                                                  |
|           | = S when following item, D(5), is to be explicit $t_1$                                                                                                    |
| 4         | = A when following item, $D(5)$ , is to be arctan $t_1$ (in degrees)                                                                                      |
| SLP2      | Hollerith input variable;                                                                                                                                 |
|           | = blank yields no effect                                                                                                                                  |
| • .       | = S when following item, $D(6)$ , is to be explicit $t_2$                                                                                                 |
|           | = A when following item, $D(6)$ , is to be arctan $t_2$ (in degrees)                                                                                      |
| SSHAPE    | Hollerith input variable; segment shape (including NULL,<br>in which case this segment is essentially deleted, and no<br>further parameters are required) |
| STYPE     | Hollerith input variable; segment type                                                                                                                    |
| THETA1(J) | Value of $\theta$ at the initial control point location for each are (at the current x-station)                                                           |
| THETA2(J) | Value of $\theta$ at the final control point location for each arc                                                                                        |
| TITLE     | Hollerith input; any comments                                                                                                                             |
| UNX       | x-component of surface unit normal                                                                                                                        |
| UNY       | y-component of surface unit normal                                                                                                                        |
| UNZ       | z-component of surface unit normal                                                                                                                        |

|        | UTHET1(J)  | Initial use $\theta$ for each arc (as affected by intersed<br>and fillets)               | ctions         |
|--------|------------|------------------------------------------------------------------------------------------|----------------|
|        | UTHET2(J)  | Final use 0 for each arc                                                                 |                |
|        | V(M)       | Current (latest x-station) computed value of each H                                      | BL model       |
|        | VTITLE(I)  | I = 1 to 15; alphanumeric vehicle or run title                                           | •              |
|        | VX(M)      | Current computed slope $(dv/dx)$ of each BL model                                        | · .            |
|        | VXX(M)     | Current computed derivative $(d^2v/dx^2)$ of each BL mo                                  | odel           |
|        | W(I,J)     | I = 1 to $\frac{1}{4}$ ; defining mathematical parameters for easarc at a given station: | ach CS         |
|        | <i>:</i> . | $R_{o}(I = 1), \theta_{o}(I = 2), A^{2}(I = 3), B^{2}(I = 4)$                            |                |
|        | WX(I,J)    | I = 1  to  5;  for  I = 1  to  4,                                                        |                |
|        |            | WX(I,J) = d(W(I,J))/dx                                                                   | · · · ·        |
|        |            | WX(5,J) = dr/dx for internal computations only                                           | -              |
|        | WXX(I,J)   | I = l to 4; d(WX(I,J))/dx                                                                | - <sub>1</sub> |
|        | XCSMS1(KK) | Starting x-station of the current cross section mod                                      | lel            |
|        | XCSMS2(KK) | Ending x-station of the current cross section model                                      | <u> </u>       |
|        | XDEL       | Input variable; increment size in x, to establish of stations between XGO and XEND       | putput         |
|        | XEND       | Input variable; final x-station to be interrogated                                       |                |
|        | XGO        | Input variable; initial x-station to be interrogate                                      | ed             |
|        | XNOW       | Current x-station (used in various exercising routi<br>e.g., MODE1, MODE2, etc).         | nes;           |
|        | Yl(J)      | y of initial point for each CS arc                                                       |                |
|        | YLX(J)     | dYl(J)/dx                                                                                |                |
|        | YlXX(J)    | $d^2$ Yl(J)/dx <sup>2</sup>                                                              |                |
|        | ¥2(J)      | y of final point for each CS arc                                                         |                |
|        |            |                                                                                          | · · · · ·      |
| ·<br>· | •<br>•     |                                                                                          |                |
|        |            | 16                                                                                       | ·.             |
|        | ·          |                                                                                          |                |

| Y2X(J)   | dY2(J)/dx                                                                                                      |
|----------|----------------------------------------------------------------------------------------------------------------|
| YSXX(J)  | $d^2 Y_2(J)/dx^2$                                                                                              |
| ХЗ(J)    | y of slope control point for forward (initial)                                                                 |
|          | end of each CS arc                                                                                             |
| Y3X(J)   | dY3(J)/dx                                                                                                      |
| Y3XX(J)  | $d^2Y_3(J)/dx^2$                                                                                               |
| Y4(J)    | y of slope control point for aft (final) end of each CS $\underset{(f,f) \in \mathcal{F}}{\operatorname{arc}}$ |
| Y4X(J)   | $dY_{4}(J)/dx$                                                                                                 |
| Y4XX(J)  | $d^2$ Y4(J)/dx <sup>2</sup>                                                                                    |
| ZCL(I)   | I = 1 to 3; current value (z) of bottom center line                                                            |
|          | (I = 1), top center line $(I = 2)$ , and mapaxis $(I = 3)$                                                     |
| ZCLX(I)  | I = 1 to 3; current slope $(dz/dx)$ of bottom center line (I = 1), top centerline (I = 2), and mapaxis (I = 3) |
| ZCLXX(I) | I = 1 to 3; current second derivative $(d^2z/dx^2)$ of bottom                                                  |
|          | centerline $(I = 1)$ , top centerline $(I = 2)$ , and mapaxis                                                  |
| · · ·    | (1 = 3)                                                                                                        |
| ZMAPNM   | Name of mapaxis                                                                                                |
| Zl(J)    | z of initial point for each CS arc                                                                             |
| ZlX(J)   | dZl(J)/dx                                                                                                      |
| ZlXX(J)  | $d^2 Z I(J)/dx^2$                                                                                              |
| Z2(J)    | z of final point for each CS arc                                                                               |
| Z2X(J)   | dZ2(J)/dx                                                                                                      |
| Z2XX(J)  | $d^2Z^2(J)/dx^2$                                                                                               |
| _Z3(J)   | z of slope control point for forward (initial) end of each<br>CS arc                                           |
| Z3X(J)   | dZ3(J)/dx                                                                                                      |
| Z3XX(J)  | $d^2 Z_3(J)/dx^2$                                                                                              |
|          | -                                                                                                              |

Z4(J) z of slope control point for aft (final) end of each CS arc Z4X(J) dZ4(J)/dx

-77

 $z_4xx(J)$   $d^2z_4(J)/dx^2$ 

 $\sim 1$ 

2.

ALL NOT NOT A BASA SI

. ~, ^v

a the state a

. An fi

DES SEGUCIDES - 200

;.

1.

ياسي وتظر الد

. . . .

· · · .

18

.

|                                | א דקוווס. סו                                                                                                                          |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| SIMBOL LIST FC                 | A STEIN                                                                                                                               |
| AAA, BBB, CCC,                 |                                                                                                                                       |
| DDD; EEE, FFF;                 |                                                                                                                                       |
| AAAZ, BBBZ, CO                 |                                                                                                                                       |
| DDDZ, EEEZ, FF                 | £2,                                                                                                                                   |
| CCCZZ DDDZZ                    |                                                                                                                                       |
| EEEZZ, FFFZZ                   | The coefficients of the conformal mappings, and their first                                                                           |
| ,                              | and second derivatives with respect to z                                                                                              |
| ACH                            | Free stream Mach number                                                                                                               |
| APINF                          | Dimensional free-stream pressure (Note: dimensions must                                                                               |
|                                | be consistent with choice of length scale; this is for                                                                                |
|                                | the computation of aero-coefficients only.)                                                                                           |
|                                | Currently not used - leave blank.                                                                                                     |
| AR(I,J)                        | I = 1 to KCOMP, J = 1 to KPIECE(I); integrated surface                                                                                |
|                                | area for each component and piece                                                                                                     |
| AREF                           | Reference area for aerodynamic coefficients                                                                                           |
| ARINF                          | Dimensional free-stream density (see note for APINF).                                                                                 |
|                                | Currently not used, leave blank.                                                                                                      |
| ATTACK                         | Angle of attack (input in degrees)                                                                                                    |
| B(M)                           | Radial position of the body in the mapped plane                                                                                       |
| BHH(M)                         | Second derivative of body radius with respect to $\theta$                                                                             |
| BHZ(M)                         | Cross derivative of body radius with respect to $\not$ and $\theta$                                                                   |
| BN(M)                          | Radial position of body in mapped plane at $Z + DZ$                                                                                   |
| BZZ(M)                         | Second derivative of body radius with respect to $2$                                                                                  |
| B2, B2Z                        | y position (in the physical plane) of the wing tip and<br>its derivative with respect to g (Fig. 5)                                   |
|                                | TOP GETTAGOINE MIGHT LEDDECO OD 2 (LIR. ))                                                                                            |
| C(M,L), $CH(M, L)$ . $CZ(M,L)$ | Radial position of shock L in the mapped plane and its derivatives with respect to $\theta$ and $\hat{\epsilon}$ (mapped coordinates) |

: 19

| CC(M,L),<br>CCY(M,L),<br>CCZ(M,L) | Radial position of $L^{th}$ wing type shock surface (CC(M,1) = B(M) and CC(M,L) = C(M,L-1) (L = 2 LC +1)) and its derivatives with respect to Y and Z  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| CFTITL(I)                         | I = 1 to 5; alphanumeric request for aerodynamic coefficients (i.e., CL, CD, CM, CN, and CA).                                                          |
| CMPTTL(I)                         | I = 1 to KCOMP, CMPTTL (KCOMP + 1) = TOTL (total);<br>alphanumeric title for each component (above)                                                    |
| CN(M,L),<br>CHN(M,L),<br>CZN(M,L) | Radial position of shock L in the mapped plane at $Z + DZ$<br>and its derivatives with respect to $\theta$ and $2$ (mapped<br>coordinate at $Z + DZ$ ) |
| CONE                              | Cone half angle (input in degrees); only used for sharp cone calculations                                                                              |
| DX(L)                             | Mesh spacing in the radial direction, in region L.                                                                                                     |
| DY(I)                             | Mesh spacing in the circumferential direction, in region I.                                                                                            |
| DZ<br>DZFAC                       | Factor multipling DZ computed from CFL stability condition<br>(usually DZFAC = .7)                                                                     |
| DZGEOM                            | Interval for geometry test                                                                                                                             |
| DZWRIT                            | Interval for printed output                                                                                                                            |
| ERR(J)                            | $J^{th}$ error generated in an iteration                                                                                                               |
| GAMFR                             | Equivalent ratio of specific heats ( $\gamma$ ) for frozen flow                                                                                        |
| GAMIN                             | Free stream ratio of specific heats $(\gamma)^{(\gamma)}$                                                                                              |
| GAMLO (N,M)                       | Local value of a $^{2}/(p/\rho)$                                                                                                                       |
|                                   | (a= speed of sound, $p = pressure$ , $\rho = density$ )                                                                                                |
| H(N,M)                            | Mapped space polar angle                                                                                                                               |
| HCX(N,I),<br>HCZ(N,I)             | The X and Z derivatives of the I <sup>th</sup> cross flow surface                                                                                      |

. ·:

| HFN(I,J)                             | Same as $HFO(I,J)$ but at current station (see Fig. 8)                                                                                                                                                                                                                                                             |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HFO(I,J)                             | I = 1 to KCØMP, J = 1 to KPIECE(I); final value of $\theta'$<br>defining_each_component_and_piece_at_previous_station                                                                                                                                                                                              |
| HHL(M)                               | Value of $\theta$ in the mapped plane of entropy layer surface point M (Fig. 3)                                                                                                                                                                                                                                    |
| HIN(I,J)                             | Same as $HIO(I,J)$ but at current station (see Fig. 8)                                                                                                                                                                                                                                                             |
| HIO(I,J)                             | I = 1 to KC $\phi$ MP, J = 1 to KPIECE(I); initial value of $\theta'$<br>defining each component and piece at previous station                                                                                                                                                                                     |
| HO(M)                                | Cylindrical $\theta'$ at mesh points on the body at Z (see Fig. 8)                                                                                                                                                                                                                                                 |
| HS(N,I),<br>HSR(N,I),<br>HSZ(N,I)    | Circumferential position of cross flow surface I and its derivatives with respect to r and $2$ at Z                                                                                                                                                                                                                |
| HSN(N,I),<br>HSRN(N,I),<br>HSZN(N,I) | Circumferential position of cross flow surface I in the mapped plane and its derivative with respect to r and $2$ at Z + DZ                                                                                                                                                                                        |
| HST                                  | Free stream total enthalpy                                                                                                                                                                                                                                                                                         |
| Hl(M)                                | Metric factor $h_{l}$ (spreading of streamlines) at Z                                                                                                                                                                                                                                                              |
| HlN(M)                               | Metric factor $h_1$ at Z + DZ                                                                                                                                                                                                                                                                                      |
| I<br>,                               | Counter for regions in the circumferential direction; $I = 1$<br>in the region adjacent to the bottom symmetry plane and<br>I = IC is the region adjacent to the top symmetry plane.<br>I is also a counter for cross flow type surfaces ( $I = 1$ ,<br>bottom symmetry plane; $I = IC + 1$ , top symmetry plane). |
| IÁERD                                | Indicator:                                                                                                                                                                                                                                                                                                         |
|                                      | IAERD = 0: Integrated forces and moments on the body are<br>not read, and are set to 0. (This would be used to start<br>an aero-coefficient run)                                                                                                                                                                   |
|                                      | IAERD = 1: Integrated forces and moments on the body are                                                                                                                                                                                                                                                           |
|                                      | run)                                                                                                                                                                                                                                                                                                               |
|                                      |                                                                                                                                                                                                                                                                                                                    |
|                                      | .21                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                                                                                                                    |

IAERO Indicator:

IAERO = 0: No aero-coefficients to be computed

IAERO = 1: At least one aero-coefficient to be computed

IBLOUT Output (tape) unit for streamline/boundary layer code and sonic boom code - set equal to 0 if no boundary layer inputs are to be computed.

IBUG Output indicator - IBUG = 0: no intermediate output, IBUG<sup>5</sup> = 1:<sup>5</sup> for intermediate output

ICNumber of regions in the circumferential directionICASEIndicator - ICASE = 1: Initial flow field data are not

read but computed in the code (i.e., first run for sharp nose vehicles)

ICASE = 2: starting plane data will be read (i.e., first run for blunt nose body or continuation run)

ICF(K)

K = 1 to 5; indicates request and name location for each aerodynamic coefficient (K = 1 for CL, K = 2 for CD, K = 3 for CM, K = 4 for CN, and K = 5 for CA)

ICF(K) = -1: coefficient not requested

ICF(K) = N > 0: coefficient requested and

CFTITL(N) = proper alphanumeric coefficient name (CL, CD, etc).

(If ICF(3) = 4, then CM is to be computed and CFTITL(4) = 'CM')

Maximum number of regions in the I direction

IENT(M)

IDIMEN

Indicator for entropy layer IENT(M) = 0: surface not detected yet at M, IENT(M) = 1: surface detected at M, IENT(M) = 2: surface collapsed to body at M.

| <br>IENTE | Indicator IENTE = 0: no entropy layer to be detected,<br>IENTE = 1: entropy layer to be detected. IENTE is set<br>equal to 2 when an entropy layer is started. |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IFCP(I,J) | I = 1 to KCOMP, J = 1 to KPIECE(I); final control point<br>(in $\theta$ ) for each component and piece (determined from QUICK<br>modeling)                     |
| IGAS      | Indicator; IGAS = 0: ideal gas; IGAS = 1: equilibrium;<br>is set equal to 2 at Z = ZREEZ (freezing station)                                                    |
| IHS       | Indicator:                                                                                                                                                     |
|           | IHS = 0: metric factor $h_1$ not computed                                                                                                                      |
|           | IHS = 1: $h_1$ initial plane data read and computed                                                                                                            |
| v .       | IHS = -1: $h_1$ initial plane data not read, but initialized<br>by code to the body radius at each mesh point and computed                                     |
| III       | Indicator:                                                                                                                                                     |
|           | III = 0: No component pieces were found between this Z and Z + DZ                                                                                              |
|           | III = 1: At least one component piece was found between this Z and Z + DZ                                                                                      |
| INCP(I,J) | I = 1 to KCOMP, J = 1 to KPIECE(I); initial control point<br>(in $\theta$ ) for each component and piece (determined from QUICK<br>modeling)                   |
| IPUNCH    | Output unit for starting plane data for next run                                                                                                               |
| IREADO    | Set to 5 in data statement in INIT-read unit for read #1                                                                                                       |
| IREADL    | Read unit for control data 1                                                                                                                                   |
| IREAD2    | Read unit for control data 2                                                                                                                                   |
| IREAD3    | Read unit for starting plane data                                                                                                                              |
| TREAD4    | Read unit for QUICK intermediate data                                                                                                                          |

· 23

| ISHBEG(J)               | Indicators: J = 1 denotes the bottom symmetry plane,                                   |
|-------------------------|----------------------------------------------------------------------------------------|
|                         | J = 2 wing plane, and $J = 3$ the top symmetry plane.                                  |
|                         | $ISHBEG(J) = 0$ no sharp leading edge at the $J^{th}$ plane.                           |
|                         | $ISHBEG(J) = 1$ there is a sharp leading edge at the $J^{th}$                          |
|                         | plane but the shock has not been detected yet. $ISHBEG(J)$                             |
|                         | is set equal to 2 when the shock has been detected.                                    |
|                         | ISHBEG(J) is set equal to 3 when the shock is in.                                      |
| ISHOK(M,L)              | Wing type shocks surface indication for shock L at M ISHOK(M,L) = 0: arbitrary surface |
|                         | ISHOK(M,L) = 1: shock point (detached)                                                 |
|                         | ISHOK(M,L) = 2: sharp leading edge shock point                                         |
| ISHTIP                  | Indicator: ISHTIP = 0 no sharp leading edges;                                          |
|                         | ISHTIP $\neq$ 0 sharp leading edges exist on the geometry                              |
| IWRIT                   | Output unit for printed flow field data                                                |
| IZ(I,J)                 | I = 1 to KCOMP, J = 1 to KPIECE(I); Indicator:                                         |
| · · · · · · · · · · · · | = 0: Component piece is not present between this Z and                                 |
| •                       | Z + DZ                                                                                 |
|                         | = 2: Component piece is present between this Z and $Z + DZ$                            |
|                         | and, thus, must be integrated over                                                     |
| JA .                    | Maximum number of steps between printed output                                         |
| K                       | Step counter, $K = 0$ at starting plane for each run                                   |
| KA                      | Maximum number of steps before punching output and stopping                            |
|                         | run at the the restance will a                                                         |
| KCOMP                   | Number of individual components for which aero-coefficients                            |
| • ::                    | are to be computed                                                                     |
| KNTCAL                  | Number of consecutive calls to AEROCF from ARCONT; signifi-                            |
|                         | cant for initialization procedures                                                     |
| KDIECE(I)               | T = 1 KCOMP: see NP                                                                    |

| L                                           | Counter for regions in the radial direction; $L = 1$ is the region closest to the body, $L = LC$ is the region closest to the bow shock. L is also a counter for wing type    |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ·                                           | <pre>shocks (L =l inner most and L = LCbow shock). Finally L is used as a counter for radial dividing surfaces (i.e., L = l =&gt; body and L = LC + l =&gt; bow shock.)</pre> |
| TC                                          | Number of regions in the radial direction                                                                                                                                     |
| LDIMEN                                      | Maximum number of regions in the L direction                                                                                                                                  |
| LOOP                                        | Indicator:                                                                                                                                                                    |
|                                             | LOOP = 0: level one of the MacCormack scheme                                                                                                                                  |
|                                             | LOOP = 1: level two of the MacCormack scheme                                                                                                                                  |
|                                             | LOOP = 100: print one more station and stop                                                                                                                                   |
| М                                           | Counter in the circumferential direction; $M = 1$ is the<br>bottom symmetry plane and $M = MC(IC) + MREG(IC)$ is the top<br>symmetry plane                                    |
| MC(I),<br>NSHKL(I),<br>NSHK2(I),<br>MREG(I) | Correspond to NC(L), MSHKl(L), MSHK2(L). NREG(L) but for cross flow type surfaces                                                                                             |
| MCIR                                        | Minimum number of points in the "M" direction in any region I (usually MCIR = $5$ )                                                                                           |
| MCL                                         | Number of points in the "M" direction in region $I = 1$ .                                                                                                                     |
| MDIMEN                                      | Maximum number of points in the "M" direction                                                                                                                                 |
| MDZ                                         | The value of M at which the minimum step size was found                                                                                                                       |
| MSHK1(L),<br>MSHK2(L)                       | Values of M at end shock points of shock L (Fig. 4)                                                                                                                           |
| MSHOK(N,I)                                  | Crossflow shock surface indicator<br>MSHOK(N,I) = 0: arbitrary surface                                                                                                        |

:

|            | MSHOK(N,I) = 1: cross flow shock point                                                                                                               |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | MSHOK(N,I) = 2: for points at a sharp leading edge shock                                                                                             |
| N          | Counter in the radial direction (Fig. 2); $N = 1$ is the body<br>and $N = NC(LC) + NREG(LC)$ is the bow shock                                        |
| NC(L)      | Number of points in region L (radial direction)                                                                                                      |
| NCL        | Number of points in the radial direction in region $L = 1$                                                                                           |
| NDIMEN     | Maximum number of points in N direction                                                                                                              |
| NDZ        | The value of N at which the minimum step size was found                                                                                              |
| NLOOK      | Indicator:                                                                                                                                           |
|            | = 0: wing type shock is first detected in any circum-<br>ferential region I.                                                                         |
|            | = 1: wing type shock is first detected in region I = 1.                                                                                              |
|            | <pre>= 2: wing type shock is first detected outside of region I = 1.</pre>                                                                           |
| NP         | Number of pieces or segments into which a given aerodynamic<br>component is to be divided (stored in KPIECE(I), I = 1 to<br>KCOMP)                   |
| NREG(L)    | NREG(L) = NC(L-1) + NREG(L-1) (NREG(1) = 0)                                                                                                          |
| NRUN       | Run number, used to order runs                                                                                                                       |
| NSOUT      | Number of specific values of z at which there is to be printed output (NSOUT $\leq$ 10)                                                              |
| P(N,M)     | $ln(p/p_{\infty})$ (where p is the pressure)                                                                                                         |
| PFT(I,J,K) | I = 1 to KCOMP, J = 1 to KPIECE(I), K = 1, 2, 3; x, y, and z components, respectively, of the integrated pressure force for each component and piece |
| PHL(M)     | $ln(p/p_{\infty})$ on the entropy layer surface (Fig. 3)                                                                                             |

| PHLN(M)                    | $ln(p/p_{\infty})$ on the entropy layer surface (Fig. 3) at Z + DZ                                                   |
|----------------------------|----------------------------------------------------------------------------------------------------------------------|
| PIN                        | $p_{\infty}/p_{SL}$ (free stream pressure/sea level pressure)                                                        |
| PMT (I,J,K)                | I = 1 to KCOMP, $J = 1$ to KPIECE(I); Cartesian components<br>of the integrated moments for each component and piece |
| PN(N,M)                    | $p(p/p_{x})$ (where p is the pressure) at Z + DZ                                                                     |
| PO(M)                      | In ARCONT and AEROCF only, $\ln(p/p_{\infty})$ on the body at Z                                                      |
| PO(N,M)                    | $ln(p/p_{\infty})$ (where p is the pressure) at Z - DZ                                                               |
| R(N,M)                     | Mapped space radial coordinate                                                                                       |
| RHL(M)                     | Radial position of the entropy layer surface (Fig. 3)                                                                |
| RHLN(M)                    | Radial position of entropy layer surface in the mapped plane at M and Z + DZ (Fig. 3)                                |
| RQRI                       | Ratio of the freezing plane gas constant to its free stream value                                                    |
| S(N,M)                     | Entropy                                                                                                              |
| SFR                        | Reference entropy at the freezing plane                                                                              |
| SHL(M)                     | Entropy on the entropy layer surface (Fig. 3)                                                                        |
| SHLN(M)                    | Entropy on the entropy layer surface (Fig. 3) at $Z + DZ$                                                            |
| SN(N,M)                    | Entropy at Z + DZ                                                                                                    |
| SO(N,M)                    | Entropy at Z - DZ                                                                                                    |
| T(N,M)                     | Local value of (pressure/density)                                                                                    |
| TIN                        | $T_{\infty}/T_{SL}$ (free stream temperature/sea level temperature)                                                  |
| TRY(J)                     | J <sup>th</sup> guess in an iteration                                                                                |
| U(N,M), V(N,<br>M), W(N,M) | Cartesian velocity components                                                                                        |
| UHL(M), VH                 | Cartesian velocity components on the entropy layer surface (Fig. 3)                                                  |

١,

| UHIN(M),                     | Cartesian velocity components on the entropy layer surface                                                               |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| WHIN(M),                     |                                                                                                                          |
| UN(NM), VN(N,<br>M), WN(N,M) | Cartesian velocity components at Z + DZ                                                                                  |
| UNOR(I,J)                    | The three (UNOR(1,J), UNOR(2,J) and UNOR(3,J)) Cartesian components of the unit normal to the body at the $J^{th}$ sharp |
|                              | leading edge (Fig. 6)                                                                                                    |
| VIN                          | Free stream velocity                                                                                                     |
| VMO(I)                       | I = 2, 3; y and z positions of line about which moments are                                                              |
|                              | computed                                                                                                                 |
| X(NN,L)                      | Computational plane coordinate $(X(l,L) = 0 \text{ and } X(NC(L),L)$                                                     |
| €. av                        | = 1) (Fig. 2)                                                                                                            |
| XO(M)                        | Cartesian x' at mesh points on the body at Z (see Fig. 7)                                                                |
| XTIP, XTIPZ                  | x position (in the physical plane) of the wing tip and its                                                               |
|                              | derivative with respect to 2 (Fig. 5)                                                                                    |
| Y(MM,L)                      | Computational plane coordinate $(Y(1, I) = 0 \text{ and } Y(MC(I), I) = 1)$ (Fig. 2)                                     |
| YD, YDZ, YB,                 | Position and z derivatives in the physical space, in the                                                                 |
| YBZ                          | symmetry plane, of the top and bottom of the body. These                                                                 |
|                              | roles depend on whether the configuration is high wing or                                                                |
|                              | low wing (Fig. 5)                                                                                                        |
| YO(M)                        | Cartesian y' at mesh points on the body at Z (see Fig. 7)                                                                |
| Ζ.                           | Axial station                                                                                                            |
| ZCOMP                        | z station immediately prior to start of sharp leading edge                                                               |
| ZEND                         | Last axial station to be computed before punching output and stopping                                                    |
| and the second second        |                                                                                                                          |

| ZFINL(I,J)   | I = 1 to KCØMP, J = 1 to KPIECE(I); final station (z) for<br>each component and piece (Note: ZINIT and ZFINL may over-<br>lap or coincide for different pieces of the same component,<br>thus allowing for disjoint cross sectional members) |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ZFREEZ       | Value of z at which the thermodynamics is to be converted from equilibrium to frozen.                                                                                                                                                        |
| ZGEOML       | First axial station at which a "geometry test" will be printed                                                                                                                                                                               |
| ZGEOM2       | Last station of geometry test                                                                                                                                                                                                                |
| ZINIT(I,J)   | I = 1 to KCOMP, $J = 1$ to KPIECE(I); initial station (z)                                                                                                                                                                                    |
| ZMADD, MDEL  | MDEL points will be added at $Z = ZMADD$ . In the circumferential direction                                                                                                                                                                  |
| ZMAP1, ZMAP2 | The conformal mappings are not used for $Z \leq ZMAPl$ and they<br>are fully developed for $Z \geq ZMAP2$ . (ZMAPl = starting plane<br>station for the first supersonic flow run and ZMAP2 = ZMAPl +<br>a number of noise radii, usually)    |
| ZN           | Updated axial station $ZN = Z + DZ$                                                                                                                                                                                                          |
| ZNADD, NDEL  | NDEL points will be added at Z = ZNADD. In the "radial" direction                                                                                                                                                                            |
| ZO           | Z (in ARCONT and AEROCF)                                                                                                                                                                                                                     |
| ZSHRP        | z station immediately following start of sharp leading edge ( $\approx$ ZCOMP)                                                                                                                                                               |
| ZSOUT(I)     | Specific values at z at which there is to be printed output $I = 1 \rightarrow NSOUT$ (if NSOUT $\leq 0$ no values of ZSOUT are read or stored)                                                                                              |
| ZSTART       | Starting value of z for run                                                                                                                                                                                                                  |
| ZTIPS        | Value of z at which wing tip surface (Fig. 7) is inserted (usually ZTIPS $\leq$ ZWING). This surface is used to control the grid.                                                                                                            |

ZWING Axial station at which wing starts (used in mappings) (Fig. 7)

ZWRITI Axial station at which output is begun (ZWRITI  $\geq$  ZSTART usually)

ZWRIT2 Last axial station at which output is printed (ZWRIT2 < ZEND usually)

ZIMSH, Z2MSH Same as ZINSH, Z2NSH but for cross flow shocks (See Fig. 7)

ZINSH, Z2NSH

manage 11

A wing type shock will be looked for between z = ZlNSH(J)and z = Z2NSH(J). After detection, ZlNSH(J) is set to  $l \ge 10^{6}$  and Z2NSH(J) is set to  $-l \ge 10^{6}$  so that shock J is not found again. (See Fig. 7)

-30
## SYMBOL LIST FOR STRMBL

| ACHINF        | Free stream mach number, read from data tape                                                                            |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| ATTACK        | Angle of attack, in degrees, read from tape                                                                             |  |  |
| DZ            | Current step size, ∆z                                                                                                   |  |  |
| DZO           | previous step size                                                                                                      |  |  |
| FNU           | Nondimensional kinematic viscosity                                                                                      |  |  |
|               | FNU, =' $v_{\infty}^{\prime} = \bar{v}_{\infty}^{\prime} / \bar{v}_{ref}^{\prime}$ where ( ) = dimensional quantity and |  |  |
|               | $\bar{v}_{ref} = \sqrt{\bar{p}_{\infty}/\bar{\rho}_{\infty}}$                                                           |  |  |
| GAMMA         | Free stream ratio of specific heats, read from tape                                                                     |  |  |
| HCUT(IS,ICUT) | $\theta'$ -location of each streamline at each cut for body normals                                                     |  |  |
| HP(N,M)       | Angle from x' -axis (see Fig. 8) to mesh points ( $\theta'$ in Fig. 8)                                                  |  |  |
| HPO(N,M)      | HP(N,M) at previous data plane                                                                                          |  |  |
| HZNP          | $d\theta'/dz$ for the current streamline and data plane                                                                 |  |  |
| HZOP(IS)      | $\mathrm{d} \theta'/\mathrm{d} z$ for each streamline at the previous data plane                                        |  |  |
| Н1 (М)        | Metric coefficient h at mesh points on the body                                                                         |  |  |
| HIS           | Metric coefficient $h_1$ for the current streamline and data plane                                                      |  |  |
| IC            | Number of regions in the circumferential direction*                                                                     |  |  |
| ICO           | IC at previous data plane                                                                                               |  |  |
| ICUT          | Indicator of current pseudo-stream-surface normal cut, from 1 to NCUT                                                   |  |  |

\*As in STEIN

| ICUTMX                 | Largest ICUT currently in storage                                                                                                   |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| IDUML, IDUM2,<br>IDUM3 | Not used                                                                                                                            |
| IIC(IICUT)             | Indicates which ICUT (= IIC(IICUT)) is currently stored in<br>location referred to by IICUT                                         |
| IICUT                  | Index (between 1 and NIICUT) to dynamic storage locations for pseudo-stream-surface data                                            |
| INPT                   | Index/counter for points taken along body surface normals, from 1 to NNPT                                                           |
| IR                     | Read unit for card input                                                                                                            |
| IRT                    | Not currently in use                                                                                                                |
| IS                     | Streamline index/counter, from 1 to NS                                                                                              |
| ITP                    | I/O unit for data tape input                                                                                                        |
| IW                     | Write unit for printed output                                                                                                       |
| JCUT                   | Output and pseudo-stream-surface (p-s-s) parameter, normals<br>to body are taken and p-s-s data is output every JCUT data<br>planes |
| JS                     | Output parameter, streamline flow variables are output<br>every JS data planes                                                      |
| <b>LC</b>              | Number of regions in the radial directions*                                                                                         |
| LCO                    | LC at previous data plane                                                                                                           |
| M                      | Circumferential mesh point counter, from 1 to MC(IC) + MREG(IC)                                                                     |
| MC(I)                  | I = 1 to IC; number of points in region I (circumferential direction)*                                                              |
| MCO(I)                 | MC(I) at previous data plane                                                                                                        |

\*As in STEIN

| MREG(I)                 | MREG(I) = MC(I-1) + MREG(I-1), MREG(1) = O*                                                                                                                                                                                                                          |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MREGO(I)                | MREG(I) at previous data plane                                                                                                                                                                                                                                       |
| N                       | Radial mesh point counter, from 1 to NC(LC) + NREG(LC)                                                                                                                                                                                                               |
| NC(L)                   | L = 1 to LC; number of points in region L*                                                                                                                                                                                                                           |
| NCO(L)                  | NC(L) at previous data plane                                                                                                                                                                                                                                         |
| NCUT                    | Number of pseudo-stream-surface normal cuts                                                                                                                                                                                                                          |
| NFLG(INPT,IS,<br>IICUT) | Flag set to indicate whether a point on the normal for a given streamline has been computed $(= 1)$ or not $(= -1)$                                                                                                                                                  |
| NIICUT                  | Number of cuts permitted to be in storage simultaneously<br>(must be sufficiently large, now equal to 5, to prevent<br>body normal from the K + NIICUT data plane from extending<br>past the K data plane or vice versa)                                             |
| NNPT                    | Number of points taken along body surface normal to establish data in pseudo-stream-surface                                                                                                                                                                          |
| NREG(L)                 | NREG(L) = NC(L-1) + NREG(L-1), NREG(1) = O*                                                                                                                                                                                                                          |
| NREGO(L)                | NREG(L) at previous data plane                                                                                                                                                                                                                                       |
| NS                      | Number of streamlines to be traced (up to 50)                                                                                                                                                                                                                        |
| NUM(IICUT)              | Number of points successfully computed for the IICUT cut<br>(when NUM(IICUT) = NS*NNPT, all points on all normals<br>taken at the ICUT corresponding to this IICUT have been<br>computed, and thus may be output and the storage locations<br>used for the next cut) |
| P(N,M)                  | $\ln(\bar{p}/\bar{p}_{\infty})$ at mesh points (where $\bar{p}$ is pressure)                                                                                                                                                                                         |
| PI                      | π                                                                                                                                                                                                                                                                    |

.

\*As in STEIN

:

| ד תמאר אתראת     | $\bar{n}/\bar{n}$ (where $\bar{n}$ is pressure) at each point along the |  |  |
|------------------|-------------------------------------------------------------------------|--|--|
| TROUM (INFI, 15, | $p/p_{\infty}$ (where p is pressure) at each point along the            |  |  |
|                  | hormal to each streamine for each cut currently                         |  |  |
|                  | being stored                                                            |  |  |
| PO(N,M)          | P(N,M) at previous data plane                                           |  |  |
| PS               | $\ln(\bar{p}/\bar{p}_{m})$ for the current streamline and data plane    |  |  |
|                  | (where $\bar{p}$ is pressure)                                           |  |  |
| RP(N,M)          | Radial distance from mapaxis ( $B_p$ line) to mesh points               |  |  |
|                  | (r' in Fig. 7)                                                          |  |  |
| RPO(N,M)         | RP(N,M) at previous data plane                                          |  |  |
| S(N,M)           | entropy at mesh points                                                  |  |  |
| SLNG(IS)         | Integrated arc length along each streamline                             |  |  |
| SNORM(INPT, IS,  | Entropy stored the same as PNORM(INPT, IS, IICUT)                       |  |  |
| IICUT)           |                                                                         |  |  |
| SO(N,M)          | S(N,M) at previous data plane                                           |  |  |
| SR(IS)           | r for each streamline                                                   |  |  |
| SS               | entropy for the current streamline and data plane                       |  |  |
| STHE(IS)         | $\theta$ for each streamline                                            |  |  |
| TESTA            | Angle of attack, in degrees, read from cards                            |  |  |
| TESTG            | Free stream ratio of specific heats, read from cards                    |  |  |
| TESTM            | Free stream mach number read from cards                                 |  |  |
| TESTŻ            | Initial value of z, read from cards                                     |  |  |
| THEOP(IS)        | $\theta'$ for each streamline                                           |  |  |
| U(N,M)           | x-velocity component at mesh points                                     |  |  |
| UNORM(INPT, IS,  | x-component of velicty stored the same as PNORM(INPT,                   |  |  |
| IICUT)           | IS, IICUT)                                                              |  |  |
| -                |                                                                         |  |  |

·

|   | UNX                      | x-component of body surface unit normal                                                                                          |
|---|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|   | UNY                      | y-component of body surface unit normal                                                                                          |
| _ | -UNZ                     | -z-component of body_surface_unit_normal                                                                                         |
|   | UO(N,M)                  | U(N,M) at previous data plane                                                                                                    |
| , | US                       | x-component of velocity for the current streamline and data plane                                                                |
|   | V(N,M)                   | y-velocity component at mesh points                                                                                              |
|   | VNORM(INPT,<br>IS,IICUT) | y-component of velocity stored the same as PNORM(INPT,IS,<br>IICUT)                                                              |
|   | VO(N,M)                  | V(N,M) at previous data plane                                                                                                    |
|   | VS<br>W(N,M)             | y-component of velocity for the current streamline and data<br>plane<br>z-velocity component at mesh points                      |
| - | WNORM(INPT,<br>IS,IICUT) | z-component of velocity stored the same as PNORM(INPT,IS;<br>IICUT)                                                              |
|   | WO(N,M)                  | W(N,M) at previous data plane                                                                                                    |
|   | WS                       | z-component of velocity for the current streamline and<br>data plane                                                             |
|   | YCL(J)                   | J = 1 to 3; y-position of body bottom center line $(J = 1)$ ,<br>body top centerline $(J = 2)$ , mapaxis or $B_2$ line $(J = 3)$ |
|   | YCLZ(J)                  | dYCL(J)/dz                                                                                                                       |
|   | YCLZZ(J)                 | $d^2$ YCL(J)/ $dz^2$                                                                                                             |
|   | Z                        | Current z                                                                                                                        |
|   | ZCUT(ICUT)               | z-locations at which cuts for body normals were made                                                                             |
|   | ZO                       | z at previous data plane                                                                                                         |
|   | ZSTAR                    | Initial value of z, read from tape                                                                                               |

SYMBOL LIST FOR BOOM

| ACHINF        | Free stream Mach number, read from data tape                            |                     |
|---------------|-------------------------------------------------------------------------|---------------------|
| ATTACK        | Angle of attack, in degrees, read from tape                             | 7                   |
| DZ            | Current step size, $\Delta z$                                           | 14 A.               |
| GAMMA         | Free stream ratio of specific heats, read from tape                     |                     |
| HP(N,M)       | Angle from x' -axis (see Fig. 8) to mesh points ( $\theta$ ' in Fig. 8) | ·<br>· · · · .<br>· |
| IC            | Number of regions in the circumferential direction*                     | <u>ن</u> س          |
| IR            | Read unit for card input                                                | 2 C                 |
| IRT           | Not currently in use                                                    | .÷.,                |
| ITP           | I/O unit for data tape input                                            | , ÷                 |
| IW            | Write unit for printed output                                           |                     |
| JA            | Output parameter, data are computed and output every JA                 |                     |
|               | data planes                                                             |                     |
| KZBDEX, KZTDI | EX,                                                                     | en de la            |
| KZCDEX        | See symbol list for QUICK (not used here)                               |                     |
| <b>LC</b>     | Number of regions in the radial direction*                              |                     |
| Μ             | Circumferential mesh point counter, from 1 to MC(IC) +<br>MREG(IC)*     |                     |
| MC(I)         | I = 1 to IC; number of points in region I (circumferentiadirection)*    | al                  |
| MREG(I)       | $MREG(I) = MC(I-I) + MREG(I-I), MREG(I) = O^*$                          | ·                   |
| N             | Radial mesh point counter, from 1 to $NC(LC) + NREG(LC)*$               |                     |
| NC(L)         | L = 1 to LC; number of points in region L (radial direction)*           |                     |

1.3

\*As in STEIN

| NHPTS    | Number of circumferential points on the data cylinder at '                                                                       |
|----------|----------------------------------------------------------------------------------------------------------------------------------|
|          | which values of the flow variables are to be determined                                                                          |
| NREG(L)  | NREG(L) = NC(L-1) + NREG(L-1), NREG(1) = O*                                                                                      |
| P(N,M)   | $ln(p/p_{\infty})$ at mesh points (where p is pressure)                                                                          |
| RCYL     | Radius of data cylinder                                                                                                          |
| RP(N,M)  | Radial distance from mapaxis ( $B_2$ line) to mesh points (r' in Fig. 8)                                                         |
| S(N,M)   | entropy at mesh points                                                                                                           |
| TESTA    | Angle of attack, in degrees, read from cards                                                                                     |
| TESTG    | Free stream ratio of specific heats, read from cards                                                                             |
| TESTM    | Free stream Mach number, read from cards                                                                                         |
| TESTZ    | Initial value of z, read from cards                                                                                              |
| U(N,M)   | x-velocity component at mesh points                                                                                              |
| V(N,M)   | y-velocity component at mesh points                                                                                              |
| W(N,M)   | z-velocity component at mesh points                                                                                              |
| YCL(J)   | J = 1 to 3; y-position of body bottom center line $(J = 1)$ ,<br>body top centerline $(J = 2)$ , mapaxis or $B_2$ line $(J = 3)$ |
| YCLZ(J)  | dYCL(J)/dz                                                                                                                       |
| YCLZZ(J) | $d^2$ YCL(J)/ $dz^2$                                                                                                             |
| Z        | Current z                                                                                                                        |
| ZSTAR    | Initial value of z, read from tape                                                                                               |

\*As in STEIN

• ]

11 .5

1. 1. 1.



## Figure 2 - COMPUTATIONAL GRID







.

Figure 4 - CROSS SECTIONS IN THE PHYSICAL AND COMPUTATIONAL SPACES







41,





INPUT DATA FORMAT FOR QUICK

QUICK input may be divided into three basic blocks: data input for (1) cross section modeling, (2) body line modeling, and (3) exercising the model. The first block may also be subdivided into (1a) - a cross section library definition, and (1b) - an application of this library to construct the total vehicle. For another presentation of QUICK input see Appendix A.

(1) - Cross Section Modeling

(a) - Library

5

| Card Type | Format      | Variable Names        |
|-----------|-------------|-----------------------|
| l         | 15A4        | VTITLE(I) (I = 1, 15) |
| 2         | I2          | NCSM                  |
| 3         | 212,6X,10A4 | KDUM, KARC, CTITLE(I) |
|           |             | (I = 1, 10)           |

(Note: There will be exactly NCSM cards of type 3 appearing together with the appropriate cards of type 4.)

| 4 | A8,12,A4,2X, | ARCNAM, JSEQ, ASHAPE,           |
|---|--------------|---------------------------------|
|   | A4,4X,A1,A8, | ATYPE, ASPEC(1), PNTNAM(1),     |
| • | 1X,A1,4A8    | ASPEC(2), PNTNAM(2), PNTNAM(3), |
|   |              | ARCNM(1), ARCNM(2)              |

(Note: There will be exactly KARC cards of type 4 per model, and they will be grouped together for a given model after a card of type 3.)

(b) - Application (Note: These cards appear after NCSM blocks of one card 3 and KARC card 4's.)

12,8x,A8 KNTCSM, ZMAPNM

| Card Type | Format  | Variable Names             |
|-----------|---------|----------------------------|
| 6         | 212,6X, | KDUM, MODEL, XCSMS1(KDUM), |
|           | 2F10.5  | XCSMS2(KDUM)               |

(Note: There will be exactly KNTCSM cards of type 6.)

## (2) - Body Line Modeling

2

| Card Type | Format    | Variable Names |
|-----------|-----------|----------------|
| 1         | Al,A8,1X, | BYORZ, BNAME,  |
|           | A1,A8     | AYORZ, ANAME   |

(Note: There will be as many cards of type 1, followed by its cards of type 2 and 3, as there are body line models, and as many cards of type 1, alone, as there are aliased control point coordinates, plus one blank card to terminate modeling input.)

|   | 12,1X,A4, | KSEG, SSHAPE, |
|---|-----------|---------------|
|   | 3X,A4,2X, | STYPE, SDEF,  |
| • | A2, I1    | IFREE         |

(Note: There will be as many cards of type 2 and 3 as there are segments in a given body line, plus one card type 2 with KSEG = -1. These cards are deleted when aliasing.)

| 3 | 3F10.5,    | D(1), | D(2), | D(3), |
|---|------------|-------|-------|-------|
|   | 2(F9.4,    | D(4), | SLP1, | D(5), |
|   | Al), Fl0.5 | SLP2, | D(6)  |       |

(Note: If SSHAPE is NULL, this card type 3 is deleted; also see Note for card type 2.)

(3) - Exercising the Model

| Card Type | Format  | Variable Names    |
|-----------|---------|-------------------|
| 1         | I2, 1X, | MODE, NDERV, XGO, |
|           | 12, 5X, | XEND, XDEL, HGO,  |
|           | 6F10.5  | HEND, HDEL        |

(Note: MODE = 0, or blank, terminates all input.)

An example of the input deck for a simple sharp-nose cone  $(10^{\circ} \text{ half-angle})$  with afterbody follows in Fig. 9. Figure llf also shows the intermediate data deck for this geometry.

INPUT DATA FORMAT FOR STEIN

There are five separate data sets read by the STEIN code. They are read on different read units because they may be generated in different places (i.e., some may be user-generated and others are generated by other codes). These data sets are shown in Fig. 10.

Control data (0) is read for every run of STEIN. This data set is generated by the user and read in on unit IREADO (set in a data statement in INIT). The data in control data (0) are

| Card No. | Format | Variable Names           |
|----------|--------|--------------------------|
| 1        | 1615   | IREAD1, IREAD2, IREAD3,  |
|          |        | IREAD4, IWRIT, IPUNCH,   |
|          |        | ICASE, IBUG, MCIR, NRUN, |
|          |        | KA, JA, NLOOK, NSOUT,    |
|          |        | IBLOUT, IAERO            |
|          |        | •                        |

Control Data (1) is read for every run of STEIN. This data set is generated by the user and read in on unit IREAD1. Its data are

| Card No. | Format      | Variable Names                                                        |
|----------|-------------|-----------------------------------------------------------------------|
| 2        | 5F10.5      | ZEND, ZWRITL, ZWRIT2,<br>DZWRIT, DZFAC                                |
| 3        | 6F10.5      | ZGEOM1, ZGEOM2, DZGEOM,<br>ZWING, ZTIPS, ZFREEZ                       |
| 4        | 2(F10.5,15) | ZNADD, NDEL, ZMADD, MDEL                                              |
| 5 & 5-a  | 8F10.5      | ZSOUT(I) (I = 1, NSOUT)<br>(if NSOUT < 0 these cards<br>are not read) |

Control Data (2) is read for every run of STEIN. This data set is generated by the user for the first run of a configuration (geometry and free stream conditions). This data set is output (on IPUNCH) by STEIN for continuation runs of the same configuration but can be modified by the user. These data are read in on IREAD2 and consist of:

| Card No. | Format | · . | <u>Variable Names</u> |
|----------|--------|-----|-----------------------|
| 6        | 5E15.5 |     | ZLNSH(I) (I = 1, 5)   |
| · 7      | 5E15.5 |     | Z2NSH(I) (I = 1, 5)   |
| 8        | 5E15.5 | •   | ZLMSH(I) (I = 1, 5)   |
| 9        | 5E15.5 |     | Z2MSH(I) (I = 1, 5)   |
| 10       | 2E15.5 |     | ZMAP1, ZMAP2          |
| 11       | 715    |     | IENTE, IGAS, ISHTIP,  |
|          |        |     | ISHBEG(1) (1 = 1, 3)  |
|          |        | ι.  | IHS                   |

The following data are read if and only if IAERO  $\neq$  0

| Format                 | Variable Names                                                  |
|------------------------|-----------------------------------------------------------------|
| 8x,11,1X,<br>5(A2, 3X) | IAERD, CFTITL(1) $(1 = 1, 5)$                                   |
| 5E15.6                 | VMO(2), VMO(3), APINF, ARINF,<br>AREF                           |
| 12                     | KCOMP                                                           |
| 12,3X,A4               | NP, CMPTTL(I) (Note: NP is stored in<br>KPIECE(I))              |
| 12,11,12,              | <pre>INCP(1,J), IFCP(1,J), ZINIT(1,J)</pre>                     |
| 2F10.4                 | <pre>ZFINL(I,J) (I = 1, KCOMP; J = 1,<br/>NP = KPIECE(I))</pre> |

4

The following data are read if and only if IAERD  $\neq 0$  (set and used by code for continuation runs).

| <br>   |        |                         |    |
|--------|--------|-------------------------|----|
| 6E13.7 | ·<br>· | PFT(I,J,K), PMT(I,J,K), | •* |
|        |        | AR(I,J) (I = 1, KCOMP;  |    |
|        |        | J = 1, NP = KPIECE(I);  |    |
|        |        | K = 1, 3)               |    |

Starting plane control data are read for every run of STEIN. These data are generated by another code\*\* or the user for the first run of a configuration. It is output from STEIN for continuation runs of the same configuration. These data are read on IREAD3 and consist of:

| Card No. | Format | Variable Names                                                                                               |
|----------|--------|--------------------------------------------------------------------------------------------------------------|
| 12       | 415    | LC, IC, NCl, MCl                                                                                             |
| 13 & 14  | 5E15.5 | ZSTART, ACH, GAMIN, ATTACK,<br>CONE, PIN, TIN                                                                |
| 15       | 3E15.5 | GAMFR, RQRI, SFR<br>(Only read if IGAS = 2 i.e., the<br>flow has been frozen in a previous<br>run of STEIN.) |

The starting plane flow field data are read by STEIN only if ICASE  $\neq$  1; since if ICASE = 1 the starting plane flow field data are computed in STEIN (vehicle having a sharp circular nose of half angle CONE with axis the same as the Z axis). This data set is generated by another code\*\* or the user for the first STEIN run and is output by STEIN for continuation runs. These data are received on unit IREAD3 and consist of:

T - 11153 9.1

\*\*These data are output by the BLUNT body code used to compute the flow over the nose of blunt vehicles.

47-

## Format

415.

415.

8011

4E13.5

3E13.5

## 3E13.5

5E13.5

NC(L). MSHK1(L), MSHK2(L), NREG(L) (L = 1, LC) MC(I), NSHKl(I), NSHK2(I), MREG(I) (I = 1, IC) ISHOK (M, L) (L = 1, LC)(M = 1, MC(IC) + MREG(IC))MSHOK(N, I) (I = 1, IC + 1) (N = 1, NC(LC) + NREG(IC))BN(M), CN(M,1), CHN(M,1)CZN(M,1) (M = 1, MC(IC) + MREG(IC)) CN(M,L), CHN(M,L), CZN(M,L)(L = 2, LC) (M = 1, MC(IC))+ MREG(IC)) HSN(N,I), HSRN(N,I),HSZN(N,I) (I = 2, IC). (N = 1, NC(LC) + NREG(LC))VN(N,M), UN(N,M), WN(N,M),

Variable Names

41-1. .

PN(N,M), SN(N,M), (N = 1,NC(LC) + NREC(LC)) and (M = 1, MC(IC) + MREC(IC))

The following data is read if and only if IENTE = 2 (i.e., entropy layer points have been detected):

| Format | Variable Names               |
|--------|------------------------------|
| 8011   | IENT(M)                      |
|        | (M = 1, MC (IC) + MREG (IC)) |
| 6E13.5 | RHLN(M), PHLN(M), UHLN(M),   |
|        | VHLN(M), WHLN(M) SHLN(M)     |
| • • •  | (M = 1, MC (IC) + MREG(IC))  |

The following data are read if and only if IHS > 0 (i.e., metric coefficient  $h_1$  is being computed, and is not to be initialized by the code).

 $6E13.5 \qquad HlN(M) (M = 1, MC(IC) + MREG(IC))$ 

The QUICK intermediate data set is read by STEIN for every run and is output by the QUICK code. These data are read on unit IREAD4. Since the user need not interact with these data, they will not be described in detail here.

INPUT DATA FORMAT FOR STRMBL

STRMBL input consists of user input control data, geometry data in the form of the QUICK intermediate data deck, and a flow field data tape generated by STEIN upon request. All control input is from unit IR, set in subroutine INOUT.

| 1 | 4F10.5 | . • | testm, | testa, | TESTG, | TESTZ |
|---|--------|-----|--------|--------|--------|-------|
| 2 | E13.6  |     | FNU    |        |        |       |
| 3 | 315    |     | NS, JS | , JCUT |        |       |

Since the user need not alter the QUICK intermediate data deck, and the flow field data tape cannot be altered by the user, neither of these inputs need be described in detail. Geometry input is from unit IR; flow field data input is from unit ITP, also set in subroutine INOUT.

The following the second se

1.200

49.

## INFUT DATA FORMAT FOR BOOM

BOOM input consists of user input control data, geometry data in the form of the QUICK intermediate data deck, and a flow field data tape generated by STEIN upon request. All control inputs are from unit IR, set in subroutine INOUT.

| Card No. | Format          | Variable Name              |     |
|----------|-----------------|----------------------------|-----|
| l        | 4 <b>F10.</b> 5 | TESTM, TESTA, TESTG, TESTZ | · . |
| 2        | F10.4, 215      | RCYL, NHPTS, JA            | •   |

Since the user need not alter the QUICK intermediate data deck, and the flow field data tape cannot be altered by the user, neither of these inputs need be described in detail. Geometry input is from unit IR; flow field data input is from unit ITP, also set in subroutine INOUT.

| SCONE10  | : TEN DEGR | EE SHARP C | ONE         | Charles and                            |                   | ul v titu<br> | ··· . mol?                               |
|----------|------------|------------|-------------|----------------------------------------|-------------------|---------------|------------------------------------------|
| 1        |            |            | ar 12-1 27  | ······································ | · · · ·           |               |                                          |
| 12       |            |            |             |                                        |                   |               |                                          |
| BDYLOWEE | 1ELLI PIE  | CE BDY B   | OT          | ECYSIC                                 | BDYLSCP           |               |                                          |
| BDYUPPER | 2ELLI PIEC | CE BDYS    | ID h        | BDYTOP                                 | BDYUSCP           |               | en e |
| 1        | MAPAXIS    |            |             |                                        |                   |               | an an an                                 |
| 7 4      | 0.         | 20.        | t tra gr    |                                        | 1. T              |               |                                          |
| YBDYBOT  |            |            |             |                                        |                   |               | •                                        |
| 1 LINE   | PIECE KV5  | La Laire   |             |                                        |                   | ,             |                                          |
| 0.       | <u>0</u> . | 20.        | ′0 <b>.</b> |                                        |                   | •             |                                          |
| - 1      |            |            |             |                                        |                   |               | •                                        |
| ZBDYBOT  |            | • • •      |             |                                        |                   |               | t                                        |
| 1 LINE   | PIECE: KV4 |            |             |                                        |                   |               |                                          |
| 0.       | 0.         | 15.        |             | A-10.                                  | · · ·             |               |                                          |
| 3 LINE   | PIECE KV5  |            |             |                                        |                   |               |                                          |
| 10.      | -2.        | 20.        | -2.         | e Pri Fre                              | the second second |               |                                          |
| 2 ELLX   | FILET KVD  |            |             |                                        |                   | · · ·         |                                          |
| 1.       | 1.         | 3.         | 3.          | 10.                                    | 15.               |               |                                          |
| - 1      |            |            |             |                                        | •                 | ۰.            |                                          |
| YBDYSID  |            |            |             |                                        | ·                 |               |                                          |
| I IN E   | PIECE KV4  |            | • • •       | ·                                      | • •               |               |                                          |
| e.       | 0.         | 15.        |             | A 10.                                  |                   |               |                                          |
| 3 LINE   | PIECE KV5  |            |             |                                        |                   | •             |                                          |
| 10.      | 2.         | 20.        | 2.          |                                        | · · ·             |               |                                          |
| 2 ELLX   | FILET KVO  |            |             |                                        |                   |               |                                          |
| 1.       | 1.         | 3.         | 3.          | 10.                                    | 15.               |               |                                          |
| -1       |            |            |             | •                                      |                   |               | •                                        |
| ZBDYSID  | YBDYBCT    |            | ,           |                                        |                   | •.            | · · · .                                  |
| YBDYTOP  | YBDYBOT    |            |             |                                        | · ·               | •             |                                          |
| ZBDYTOP  | YBDYSID    |            |             | •                                      | · · ·             |               |                                          |
| YBDYLSCP | YBDYSID    |            |             |                                        |                   |               |                                          |
| ZBDYLSCP | ZBDYBOT    |            |             |                                        |                   | -             | · · ·                                    |
| YBDYUSCP | YBDYSID    |            |             |                                        |                   |               |                                          |
| ZBDYUSCP | ZBDYTCP    |            |             |                                        | •                 |               |                                          |
| YMAPAXIS | YEDYBOT    |            |             |                                        |                   |               |                                          |
| ZMAPAXIS | YBDYBCT    |            |             |                                        |                   | •             | •                                        |
|          |            |            |             |                                        |                   |               |                                          |
| 1 2      | 5.         | 20.        | -5.         |                                        |                   | , ·           |                                          |
| 2 2      | 5.         | 20.        | 5.          | -90.                                   | 90.               | 1             | 0.                                       |
| 3 2      | 5.         | 20.        | 5.          |                                        |                   |               | ,                                        |
| 42       | 5.         | 20.        | 5.          | -90.                                   | 90.               |               | 30.                                      |
| 5 1      | 5.         | 20.        | 5.          | -90.                                   | 90.               |               | 0.                                       |

. .

Figure 9 - SAMPLE INPUT DATA FOR QUICK



. ' . .

. . .





TAMES VON YEAR JC. . . . .

. 2

. . .

, <sup>.</sup> . 4

. t. . . Figure 10 - STEIN INPUT

200 2.9

. .

 $(\cdot, \cdot, \cdot)$ 

 $f = \frac{1}{2} \frac{1}{2}$ 

## OUTPUT FORMATS

## OUTPUT FORMAT FOR QUICK

QUICK generates several modes of printed output, output suitable for external plotting codes, and an intermediate data deck (the mathematical model) to be used as input to other codes using SUB-QUICK.

The math model is output on unit ITAPE (set in QUICK - the main routine) from subroutine GEMOUT. ITAPE may, of course, correspond to the punch unit in which case a card deck will be generated that may easily be used (with SUB-QUICK) with any other code. This data set need not be altered (configuration changes should be made in the initial QUICK input data which should then be rerun through QUICK, thus generating a new math model), and as such, will not be described in detail. This data deck is also included in the printed output and may be seen in Fig. 11f.

QUICK prints several cross section and body line checks with every run. Fig. lla shows a correlation check between the cross section input data and the math model. Labels and names make this and all printed output self-explanatory. Note that the indices in parentheses correspond to the indices in the tables. Any misspelled names will show up as additional items in the component and/or control point tables and thus are easily detected on the first pass. A blank is always loaded into the first position of the control point index table.

Figure 11b shows a check list menu for body line models, output strictly for user convenience. In modeling a vehicle, the user may first define the logical cross section library and its application (see input data description) with subsequent blank cards to terminate input (thus, initially no body line models would be defined) and by filling in this table he could ensure that all control points were defined, either as a separate model or as an alias.

-53

The output shown in Fig. llc provides an important cross reference between the control point coordinates and the body line models (the indices in the parentheses) which define them. Model numbers are repeated because aliasing was used. The left hand sequential index bears a direct relation to the control point index table in Fig. lla. Each control point has two coordinates which must be defined (y = f(x), z = g(x)), and in Fig. llc, the index for a particular control point's (n in Fig. lla) z definition is  $m_z = 2n$  and for its y definition,  $m_y = 2n-1$ . Any control point coordinates that were not defined will have a zero (0) in the parentheses, thus providing a quick check for complete definition. The first two blanks correspond to the initial blank in the control point index table of Fig. lla.

The output shown in Figs. 11d and e provides a correlation check between the body line input data and the math model. The index in parentheses represents the shape of that segment, a negative value indicating that a line between the initial and final points of that segment has a negative slope. The output of Fig. 11e is completely annotated. In the column marked GAP, if two consecutive segments were not continuous in either x or v (v standing for y or z) the symbols X\* or Y\* would appear, accordingly. The last two lines in Fig. 11e are generated in GEMOUT, and indicate that a successful check was performed to ensure that all control points are defined throughout the range of the cross section models in which they are to be used.

Figure llf shows a listing of the math model. Figure 12 gives an example of the output, generated at user request only, from MODEL. The first line is an echo of the user's input which requested this exercising of the math model (MODE, NDERV, etc. ... see input data description). This line appears at the start of each piece of user requested output. INXBLM is the body line model number, INXBLS is the segment number, and V represents y or z (VX = dV/dx, etc.). If MODE = - 1, no printed output will be generated, but the following output will be written on unit IPLOT:

<sup>-</sup>54

| Line           | Variables                                 | Format |
|----------------|-------------------------------------------|--------|
| 1 <sup>.</sup> | IAM, IANDV                                | 215    |
| 2              | NXPTS, KNTBLM                             | 215    |
| 3              | WOM                                       | F10.4  |
| 4              | V(I), VX(I),<br>VXX(I) (I = 1,<br>KNTBLM) | 3F10.4 |

Blocks of lines 3 and 4 are repeated NXPTS times and line 4 is repeated KNTBLM times for each line 3.

Figure 13 shows an example of user requested output from MODE2. The use of a "G" suffix (THETAG, RAD-G, ZGCORD) denotes variables referenced to the "geometric" coordinate system; i.e., the x (not x') axis which does <u>not</u> include the shifting due to the mapaxis (most often the FRL). Note that in general, ZGCORD = Z-CORD + ZCL(3). Here, since z of the mapaxis (ZCL(3)) is zero, ZGCORD = Z-CORD. Variables without the "G" are of course referenced to the mapaxis. H is used to represent  $\theta'$ , so RH, RX, RXH, and RXX are the first and second derivatives of the radius R with respect to  $\theta'$  and x. All labels with "SUB" indicate derivatives formed numerically in SLOPE. Where "SUB" appears together with "D" the variables shown are the differences between the analytically formed and numerically formed derivatives. Plotting output from MODE2 (MODE = - 2) is in the following form:

| <u>Line</u> | . :            | Variables           | Format 10 JI Jaks X9 |
|-------------|----------------|---------------------|----------------------|
| l           | and the second | IAMD, IANDV         | 215                  |
| 2           | ;              | NXPTS, NHPTS        | 215                  |
| 3           |                | XINOW               | F10.4                |
| 4.          |                | YP, ZPG, HNOW*,     | 7F10.4               |
|             | ·              | RPX*, RPH*, RPXX**, | ·                    |
|             |                | RPXH**              |                      |

\*written if and only if IANDV ≥ 1 \*\*written if and only if IANDV ≥ 2

Lines 1 and 2 are output once per call to MODE2; line 3 is output NXPTS times per call; line 4 is output NHPTS times for each line 3. Line 4 output consists of y, x,  $\theta$ ,  $r_x$ ,  $r_{\theta'}$ ,  $r_{xx}$ , and  $r_{x\theta'}$ .

Output from MODE3 is shown in Fig. 14. ZBCL, ZTCL, and ZMAP are ZCL(1), ZCL(2), and ZCL(3), respectively. J is an index reference for each arc, but it may not appear sequentially since the arcs will be listed in increasing  $\theta'$  after all intersections and fillets have been computed and inserted in their proper location. If J is positive the arc is in (IN(J) = 1); if J is negative the arc is not in (IN(J) = -1) - this occurs, for example, when a growing piece is still completely contained by the basic skin or a fillet was unable to be inserted. U/THETA1 and U/THETA2 are the theta limits of the arc, UTHET1(J) and UTHET2(J) if J > 0, THETA1(J) and THETA2(J)(original definition theta limits - unaffected by intersections or fillets) if J < 0. RO, HO, AA, and BB are curve parameters  $R_0$ ,  $\theta'_0$ ,  $A^2$ , and  $B^2$ . The second portion of MODE3 output is a crosssectional interrogation in the neighborhood of each control point; labels are self-explanatory.

Plotting output for MODE = - 3 is generated in subroutine MODE1 (multiple body line traces may be used to create plan and profile views). Output format is the same as for MODE = - 1 except for line 4 which will consist of just V(I), I = 1, KNTBLM (no VX(I) or VXX(I)).

MODE<sup>4</sup> output is shown in Fig. 15. Labels are the same as those used in the output of MODE2.

Output from MODE5 may be seen in Fig. 16. NORM-X, NORM-Y, and NORM-Z are the x, y, and z components of the unit normal to the body surface at the x, r',  $\theta'$  location indicated.

There is also a mode of output for MODE = 6, but no separate subroutine is involved. When MODE = 6 is specified, GEMCHK exercises modes 1, 2, and 3 at x-stations near the limits of each cross section model. For plotting purposes, if MODE = -6, GEMCHK exercises modes -2 and -7 at these same stations.

MODE7 output is for graphical purposes only. Output is again on unit IPLOT, and is in the form of cross-sectional cuts which show all arcs over their entire definition range (THETAL to THETA2) rather than their limited use range (UTHET1 to UTHET2). For MODE = -7, output is in the following format:

| Line | Variables                                | Format |
|------|------------------------------------------|--------|
| 1    | IAMD, IANDV                              | 215    |
| 2    | NXPTS, NHPTS                             | 215    |
| 3    | KARC, KNTARC                             | 215    |
| 4    | KNOW                                     | F10.5  |
| 5    | Y, ZG, HNOWR*, RX*,<br>RH*, RXX**, RXH** | 7F10.5 |

Lines 1 and 2 are written once per call to MODE7. Lines 3 and 4 are written NXPTS times per call. Line 5 is written KARC\*NHPTS times for each write of lines 3 and 4. NHPTS is the number of points on each arc, KNTARC is the total number of arcs at the current station, and KARC is the number of arcs minus any fillets that were unable to be defined at this station (and also the number of arcs output from this mode for plotting purposes).

OUTPUT FORMAT FOR STEIN

STEIN generates three types of output. On unit IPUNCH STEIN will output (only if IPUNCH > 0 ) starting plane data to continue a run. This output is generated at Z = ZEND or at K = KA (i.e., the final axial station or step of a run).

\*written if and only if IANDV ≥ 1 \*\*written if and only if IANDV ≥ 2

The second type of output from STEIN is on unit IBLOUT (if and only if IBLOUT > 0) and is used as input for both BOOM and STRMBL. IBLOUT should usually correspond to a tape unit, since a great deal of output is to be expected. This output consists of body and shock position, the flow field variables, and the various region sizing and control parameters (IC, LC, MREG(I), etc.) at each computational step. The formats are not important as long as they are consistent with the input formats of STRMBL and BOOM, and since all the formats are consistent they need not be discussed further.

The last type of output from STEIN is usually printed o unit IWRIT. The input data is printed as shown in Fig. 17. The flow field data at the first axial station (Z = ZSTART) is always printed as in Fig. 16. Where X & Y are the Cartesian coordinates of the mesh point, P is the pressure  $(p/p_{\infty})$  U, V & W are the three Cartesian velocity components, S is the entropy, M is the total Mach number and MA is the axial component of the Mach number. This flow field data will be printed in this format at every axial station between ZWRIT1 and ZWRIT2 at an interval of DZWRIT; the maximum number of steps between outputs is JA. Figure 18 shows a "Geometry Test" of the body in the mapped space. Here Y is the circumferential position in the computational space, B is the body radius in the mapped space, BH and BZ are the body derivatives with respect to the polar angle and axial position in the mapped space. Figure 19 shows the output format for the variables on the entropy layer surface.

Aerodynamic coefficients are also written on unit IWRIT following the flow field output at each z-station. An example of the aero-coefficient output follows in Fig. 20a and b. The first piece of output, 20a, is computed using a reference area which is the integrated surface area of a given component up to the current station. The second piece of output, 20b is computed with a user input reference area. Labels make the output self-explanatory but it is important to note that the input reference area must be in the same units as the geometry is model.

### OUTPUT FORMAT FOR STRMBL

Output from STRMBL is of two main types. The first of these is associated with the tracing of streamlines on the body, and consists of the location ( $\theta'$ ,  $\theta$ , r, x, and y) of each streamline and the value of the flow variables (u, v, w, p, and S) at these locations in various data planes. Also included are the index, the integrated arc length, and the value of the metric coefficient  $h_1$  for each streamline at the current z-station, see Fig. 21a.

The second type of output from STRMEL corresponds to the development  $\int_{\Omega}^{\Omega}$  of the pseudo-stream-surfaces. Locations and values of flow variables and their derivatives are output at NNPT points along the body normals originating from each of the previously traced streamlines at selected data planes. For each data plane (which, along with the  $\theta'$  location of each streamline and the geometry model, establishes the origin points for the body normals) there are two blocks of output associated with each streamline. The first block gives the location of and flow variable values at the points equally distributed along the body normal. The second block gives the length along the normal, the derivatives of the flow quantities in the normal direction (DUDN = du/dn, etc.) and the component of velocity in the normal direction (VELDTN =  $Q \cdot \hat{n}$  or  $Q \cdot \hat{\zeta}$ ) at the same points; see Fig. 21b.

## OUTPUT FORMAT FOR BOOM

Output from BOOM, see Fig. 22, is a simple presentation of flow variables (p, S, u, v, w) on the surface of the data cylinder of user specified raidus with centerline at x = y = 0 (the z axis, not the z' axis). HC is the angle  $\theta$  to the points on the cylinder, measured from the windward symmetry plane.

| 1 1                                      | POSS SECTION DE                                                 | FINITICN                                        |                                                 |                                       |            |
|------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------|------------|
| 12<br>BDYLOWER(<br>BDYUPPER(             | 1) 1 ELLI( 3) PI<br>2) 2 EILI( 3) PI                            | 190( 1)080480<br>190( 1)080480<br>190( 1)080481 | T (2) BDYSID<br>D (3) BDYTOP                    | ( 3) BDYLSCP<br>( 5) BDYUSCP          | (4)<br>(6) |
| 1<br>1 1 BDYB                            | MAPAXIS (7)<br>OT (2) BDY1                                      | COP (5)                                         | 0.0                                             | 20.00000                              |            |
| С ОМ РОМЯ<br>1 В DY LOW<br>2 В D У ПРР   | NT INDEX.TABLE                                                  |                                                 |                                                 |                                       |            |
|                                          |                                                                 |                                                 | . ,                                             |                                       | . :        |
| CONTFOL<br>1                             | POINA INDEX TA                                                  | A D L F                                         |                                                 |                                       | :          |
| 280480T<br>3804810<br>4804180<br>5804700 | P                                                               |                                                 |                                                 |                                       |            |
| 7 MAPAXI                                 | S                                                               |                                                 |                                                 |                                       |            |
| ें हम की<br>स                            | Figure lls                                                      | CROSS SEC                                       | TION MODEL CHEC                                 | CK                                    | •••        |
| · · ·                                    | CHECK                                                           | A.                                              |                                                 | )FIC                                  |            |
|                                          | CHECK                                                           | LISI MANU FUR                                   | COLI LINE NO                                    | JELS                                  |            |
|                                          | CONTPOL<br>POINT<br>NAMES                                       | PLAN<br>DEFIN<br>Y-COOF                         | NFORM PI<br>NITION DEF<br>NDINAIE 2-COO         | ROFILE<br>INITION<br>DRDINATE         |            |
|                                          | • • • • • • • • • • • • • • • • • • • •                         | • • • • • • • • • • • • • • • • • • • •         | ο δια φλαγοματικά του του<br>1 - δ. Νζοιδια<br> | • • • • • • • • • • • • • • • • • • • | ·          |
|                                          | • • • • • • • • • • • • • •                                     | • • • • • • • • • • • • • •                     |                                                 |                                       |            |
|                                          |                                                                 |                                                 |                                                 | •                                     |            |
|                                          | . 2 .BDYBOT                                                     | •<br>• • • • • • • • • • • • • •                | •                                               |                                       |            |
|                                          | . 2 .BDYBOT                                                     | •                                               | •                                               | •                                     |            |
|                                          | 2 .BDYBOT                                                       | •<br>• • • • • • • • • • • • • • • • • • •      | •                                               | •                                     |            |
|                                          | 2 .BDYBOT<br>. 3 .BDYSID<br>. 4 .BDYLSCP                        | •<br>•<br>•<br>•<br>•                           | •                                               | •                                     |            |
|                                          | 2 .BDYBOT<br>3 .BDYSID<br>4 .BDYLSCP<br>5 .BDYTOP               |                                                 | •                                               | •                                     |            |
|                                          | 2 .BDYBOT<br>3 .BDYSID<br>4 .BDYLSCP<br>5 .BDYTOP<br>6 .BDYUSCP |                                                 |                                                 |                                       |            |

*.*60

## CHECK BODY LINE DEFINITION

## BODY LINE COORDINATE INDEX

| 1  | Y          | ••        | (0) |
|----|------------|-----------|-----|
| 2  | Z          |           | (0) |
| 3  | . <b>Y</b> | BDYBOT    | (1) |
| 4  | Z          | B DY BO T | (2) |
| 5  | Y          | BDYSID    | (3) |
| 6  | Z          | BCYSID    | (1) |
| 7  | Y          | BDYLSCP   | (3) |
| 8. | Z          | BDYLSCP   | (2) |
| à  | Y          | BDYTOP    | (1) |
| 10 | Z          | BDYTOP    | (3) |
| 11 | Y          | BDYUSCP   | (3) |
| 12 | Z          | BDYUSCP   | (3) |
| 13 | Y          | MAPAXIS   | (1) |
| 14 | Z          | MAPAXIS   | (1) |

## BODY LINE MODEL TABLES

|   | BODY         | LINE MODEL | NUMBER 1 | 1        |                 | · · ·           | 4              |
|---|--------------|------------|----------|----------|-----------------|-----------------|----------------|
| • | 1            | LINE (1)   | 0.0      | 0.0      | 0.0             | -0.2000000E 02  | 0.0            |
|   | BODY         | LINE MODEL | NUMBER 2 | 3.       |                 |                 |                |
|   | 1            | LINE (+1)  | 0.0      | 0.0.     | -0.26449032E 01 | -0.15000000E 02 | 0.0            |
|   | <b>2</b> · · | ELLX (-3)  | 10.00000 | -1.76327 | -0.48419382E-01 | -0.27460033E 00 | 0.48419386E-02 |
|   | 3            | LINE ( 1)  | 10.00000 | -2.00000 | 0.0             | -0.1000000E 02  | 0.0            |
|   | BO DY        | LINE MODEL | NUMBER 3 | 3        |                 |                 | i.<br>L        |
|   | 1.           | LINE (1)   | 0.0      | 0.0      | 0.26449032E 01  | -C.1500000E 02  | 0.0            |
|   | 2            | ELLX ( 3)  | 10.00000 | 1.76327  | -0.48419382E-01 | 0.27460033E 00  | 0.48419386E-02 |
|   | 3            | LINE ( 1)  | 10.00000 | 2.00000  | 0.0             | -0.1000000E 02  | 0.0            |
|   |              |            |          |          |                 |                 |                |

Figure 11d - BODY LINE MODEL CHECK TABLE 1

# Figure 11e - BODY LINE MODEL CHECK TABLE 2

٠.

.....

### CROSS SECTION CHECK AGAINST BODY LINES CROSS SECTION DEFINITION CHECK IS FINISHED

· • :

YBD YLSCP ZBDYTCP YBDYUSCP ZBDYUSCP

| SEG SHAPE CONN DEF PREE GAP<br>1 LINE PIEC KV 5                                                                | X-ORIGIN Y-ORIGIN<br>0.0 0.0                                                                                              | X-TERM<br>20.00000                                            | Y-TERM X-LEFT SCI<br>0.0 10.00000                                               | Y-LEFT SCP<br>C.O                              | X-RIGHT SCP Y-RIGHT SCP<br>10.C0000 0.0                                               |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------|
| SPGMENT EQUATIONS<br>SEG SHAPE EQUATION<br>1 LINE 0.=AX+BY                                                     | A-COEFFICIENT<br>0.0                                                                                                      | B-COEPFICIENT<br>-0.20000000E                                 | C-COEFFICIENT<br>02 0.0                                                         |                                                |                                                                                       |
| ALIAS LIST<br>2BDYSID YBDYTOP YMAPAXIS                                                                         | ZMAPAXIS                                                                                                                  |                                                               |                                                                                 |                                                |                                                                                       |
| ***** ZBDYBOT BODY LINE MO                                                                                     | DEL MODEL NUMBER =                                                                                                        | 2 NUMBER                                                      | OF SEGMENIS = 3                                                                 |                                                | •                                                                                     |
| BOUNDARY CONDITIONS<br>SEG SHAPE CONN DEF PREE GAP<br>1 LINE PIEC KV 4<br>2 ELLX FILE KV 7<br>3 LINE PIEC KV 5 | X-ORIGIN Y-ORIGIN<br>0.0 0.0<br>10.00000 -1.76327<br>15.00000 -2.00000                                                    | X-TERM<br>10.00000<br>15.00000<br>20.00000                    | Y-TEKN X-LEPT SCI<br>-1.76327 7.50000<br>-2.00000 12.50000<br>-2.00000 15.00000 | Y-LEFT SCP<br>-1.32245<br>-2.20409<br>-2.00000 | X-RIGHT SCF Y-RIGHT SCP<br>7.50000 -1.32245<br>12.50000 -2.00000<br>15.00000 -2.00000 |
| SEGMENT EQUATIONS<br>SEG SHAPE EQUATION<br>1 LINE C.=AX+BY<br>2 ELLX D.=AX+BY+CXX+YY<br>3 LINE D.=AX+BY        | A-COEFFICIENT<br>-0.26449032E 01<br>-0.48419382E-01<br>0.0                                                                | B-COEFFICIENT<br>-0.15000000E<br>-0.27460033E<br>-0.10000C00E | C-COEFFICIENT<br>02 0.0<br>00 0.48419386E-02<br>02 0.6                          | 2                                              | 、                                                                                     |
| ALIAS LIST<br>ZBD YLSCP                                                                                        |                                                                                                                           |                                                               |                                                                                 |                                                |                                                                                       |
| ***** YBDYSID BODY LINE MO                                                                                     | DEL MODEL NUMBER =                                                                                                        | 3 NU MBER                                                     | OF SEGMENTS = 3                                                                 |                                                |                                                                                       |
| BOUNDARY CONDITIONS<br>SEG SHAPP CONN DEP FREE GAP<br>1 LINE PIEC KV 4<br>2 ELLX FILE KV 0<br>3 LINF PIEC KV 5 | X-ORIGIN         Y-ORIGIN           0.0         C.0           10.00000         1.76327           15.00000         2.00000 | X-TERN<br>10.00000<br>15.00000<br>20.00000                    | Y-TERN X-LEFT SCH<br>1.76327 7.50000<br>2.00000 12.50000<br>2.00000 15.00000    | Y-LEFT SCP<br>1.32245<br>2.20409<br>2.00000    | X-RIGHT SCP Y-RIGHT SCP<br>7.5000C 1.32245<br>12.5000C 2.00000<br>15.0000G 2.00000    |
| SEGMENT EQUATIONS<br>SEG SHAPE EQUATION<br>1 LINE 0.=AX+BY<br>2 ELLX 0.=AX+BY+CXX+YY<br>3 LINE 0.=AX+BY        | A-CCEFFICIENT<br>0.26449032E 01<br>-0.48419382E-01<br>0.0                                                                 | B-COEFFICIENT<br>-0.15000000E<br>0.27460033E<br>-0.10000000E  | C-COEFFICIENT<br>02 0.0<br>00 0.48419386E-02<br>02 0.0                          | !                                              |                                                                                       |
| ALIAS LIST                                                                                                     |                                                                                                                           |                                                               | -                                                                               |                                                |                                                                                       |

BODY LINE MODEL. MODEL NUMBER = 1 NUMBER OF SEGMENTS = 1

62

## •

\*\*\*\*\* YBDYBOT

BOUNDARY CONDITIONS

| 1            | SCON<br>1   | -<br>IE10<br>7<br>5 | ): T             | EN !                 | DEGF              | EE                | SHARP                      | CONE                   |                         | = . =              |                         | · - 2 <i>7</i> <del></del> |          | ·        |          |
|--------------|-------------|---------------------|------------------|----------------------|-------------------|-------------------|----------------------------|------------------------|-------------------------|--------------------|-------------------------|----------------------------|----------|----------|----------|
| 1<br>1<br>1  | 1<br>2<br>1 | .,                  | ე.               | 1<br>2<br>0          |                   | 20.               | 1<br>1<br>00000            | 0<br>0                 | 2<br>3                  | 3<br>5 -           | 4<br>6                  | -1<br>-1                   | -1<br>-1 | -1<br>-1 | -1<br>-1 |
| 14<br>1<br>2 | 0           |                     |                  |                      |                   |                   |                            |                        |                         |                    |                         |                            |          |          |          |
| 3<br>4<br>5  | 2           |                     |                  |                      |                   |                   |                            |                        |                         |                    |                         |                            |          |          |          |
| 7            | 3           |                     |                  |                      |                   |                   |                            |                        |                         |                    |                         |                            |          |          |          |
| 10           | 33          |                     |                  |                      |                   |                   |                            |                        |                         |                    |                         |                            |          |          |          |
| 13           | 1<br>1      |                     |                  |                      |                   |                   |                            |                        |                         |                    |                         |                            |          |          |          |
| 1<br>1<br>1  | 1<br>1<br>1 | •                   | 0.               | 0.<br>0<br>•0        | .0                | 0.                | ე <sup>}</sup><br>-0.      | 20.00<br>20.0<br>2000  | )000<br>00000<br>0000E  | 0.<br>02·0         | .0<br>).0               |                            |          |          |          |
| 2<br>2<br>2  | 3<br>1<br>1 | -1                  | 0.<br>-0         | 0<br>• 26            | .0<br>+490        | 0.<br>32E         | 0<br>0 <b>1-</b> 0         | 20.00<br>10.0<br>15000 | 0000<br>00000<br>0000E  | -1.<br>02 0        | 7632                    | 7                          |          |          | •        |
| 22           | 2<br>2<br>3 | -3                  | 10.<br>-0<br>10. | 0000<br>-484<br>0000 | )0<br>4193<br>)0  | -1.<br>795<br>-2. | 76327<br>- 01- 0.<br>00000 | 15.(<br>2746(<br>20.(  | 00000<br>0033E<br>00000 | -2.<br>00 0<br>-2. | 0000<br>•484<br>•0000   | 0<br>19349<br>0            | E-02     |          |          |
| 3            | 3<br>3<br>1 | 1                   | 0<br>0.          | •0<br>•0•            | 0                 | 0.                | - 0.                       | 10000<br>20.00<br>10.0 | 0000E                   | 02 0               | 7632                    | 7                          |          |          | -<br>1-  |
| 33           | 2           | 1<br>3              | 0<br>10.<br>-0   | .264<br>000(<br>.484 | 1490<br>20<br>193 | 32E<br>1.<br>79E  | 01-0.<br>76327<br>-01 0.   | 15000<br>15.0<br>27460 | 0000E                   | 02 0               | 0.0000<br>.0000<br>.484 | 0<br>19349                 | E-02     |          | ÷        |
| 3            | - 3 ·       | 1                   | 0                | •0                   |                   | ۷.                | -0.                        | 10000                  | 0000E                   | 020                | •0                      | U                          |          |          |          |

Figure llf - SAMPLE QUICK INTERMEDIATE DATA DECK (MATH MODEL)

: ·

.

.

| 1       2       5.00000       20.00000       5.00000       0.0       0.0         XSTATION =       5.00000         INXBLM INXBLS       V       VX       VX         1       1       1       0.0       0.0         2       1       -0.88163       -0.17633       0.0         3       1       0.88163       0.17633       0.0         XSTATION =       10.00000         INXBLM INXBLS       V       VX       VX         1       1       0.0       -0.17633       0.0         2       1       -1.76327       -0.17633       0.0         3       1       1.76327       -0.17633       0.0         3       1       0.0       0.0       0.0         XSTATION =       15.00000       VX       VX         1       1       0.0       -0.0       0.0         XSTATION =       15.00000       0.01       -0.01         1       1       0.0       -0.00000       -0.01         3       2       2.00000       -0.00000       -0.01 |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| $XSTATION = 5.00000$ $INXBLM INXBLS V VX VX$ $\frac{1}{2} 1 -0.88163 -0.17633 0.0$ $3 1 0.88163 0.17633 0.0$ $XSTATION = 10.00000$ $INXBLM INXBLS V VX VX$ $\frac{1}{2} 1 -0.0000 -0.0 0.0 0.0$ $XSTATION = 15.00000$ $INXBLM INXBLS V VX VX$ $\frac{1}{2} 2 -2.00000 -0.0000 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0          |
| INXBLM INXBLSVVXVX11 $0.0$ $0.0$ $0.0$ 21 $-9.88163$ $-0.17633$ $0.0$ 31 $0.88163$ $0.17633$ $0.0$ XSTATION = 10.00000INXBLM INXBLSVVXVX11 $0.0$ $0.0$ 21 $-1.76327$ $-0.17633$ 31 $1.76327$ $0.17633$ 0.00.0 $0.0$ XSTATION = 15.00000INXBLM INXBLSVVX11 $0.0$ $0.0$ 22 $-2.00000$ $-0.00000$ 32 $2.00900$ $0.00000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | / X X        |
| XSTATION = 10.00000 $INXBLM INXBLS V VX VX$ $1 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )<br>)<br>)  |
| INXBLM INXBLSVVXVX $1$ $1$ $0.0$ $0.0$ $0.0$ $2$ $1$ $-1.76327$ $-0.17633$ $0.0$ $3$ $1$ $1.76327$ $0.17633$ $0.0$ INXBLM INXBLSVVXVX $1$ $1$ $0.0$ $0.0$ $2$ $2$ $-2.00000$ $-0.00000$ $3$ $2$ $2.00900$ $0.00000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XX           |
| XSTATION = 15.00000 $INXBLM INXBLS V VX VX$ $1 1 0.0 0.0 0.0 0.0$ $2 2 -2.00000 -0.00000 0.01$ $3 2 2.00000 0.0000 -0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )            |
| XSTATION = 15.00000 $INXBLM INXBLS V VX VX$ $1 1 0.0 0.0 0.0 0.0$ $2 2 -2.00000 -0.00000 0.01$ $3 2 2.00000 0.0000 -0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| INXBLM INXBLS         V         VX         VX           1         1         0.0         0.0         0.0           2         2         -2.00000         -0.00000         0.01           3         2         2.00000         0.00000         -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XX           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1295<br>1295 |
| XSTATION = 20.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · .      |
| INXBLM INXBLS V VX VX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X X          |
| 110.00.00.023-2.000000.00.0332.000000.00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ı.           |

Figure 12 - QUICK OUTPUT FOR MODE = 1

0.88163 -0.766837E-07 -0.341510E-06 0.26E-06

-0.102453E-05 0.10E-05

### SCONE10: TEN DEGREE SHARP CONE

.

. :

•

.

0.27E-07

0.1707558-06 -0.17E-06

0.0

0.1793948-06

0.190267E-06

.

#### GEOMETRY CHECK

#### STATION 5.00000 =

|            |          | ZNAP      | =  | C.O        |     | ZXMAP   | =       | 0.0       | ZXXMA | P =      | 0.0          |               |
|------------|----------|-----------|----|------------|-----|---------|---------|-----------|-------|----------|--------------|---------------|
| THETA      |          | RADIUS    |    | THETA G    | •   | RAD-    | G       | Y-CORD    |       | Z-CORD   |              | ZGCORD        |
| -0.900000E | <u> </u> | 0.881634E | 00 | -0.900000E | 02  | 0.88163 | 34E 00  | 0.0       | - 0   | .881634  | E 00         | -0.881634E 00 |
| -0.8000002 | 02       | 0.881634E | 00 | -0.799999E | 02  | 0.88163 | 4E 00   | 0.153094E | 00 -0 | .868240  | E 00         | -0.868240E 00 |
| -0.700000E | 02       | 0.881634E | 00 | -0.699999E | 02  | 0.88163 | 4E 00   | 0.301537E | 00 -0 | .828465  | E 00         | -0.828465E 00 |
| -0.600000B | 02       | 0.881634E | 00 | -0.599999E | 02  | 0.88163 | 34E 00  | 0.440817E | 00 -0 | .763517  | E 00         | -0.763517E 00 |
| -0.500000E | 02       | 0.881634E | 00 | -0.500000E | 02  | 0.88163 | 4E 00   | 0.566704E | 00 -0 | .675371  | E 00         | -0.675371E 00 |
| -0.400000E | 02       | 0.881634E | 00 | -0.400000E | 02  | 0.88163 | 4E 00   | 0.675371E | 00 -0 | .566703  | B 00         | -0.5667C3E 00 |
| -0.300000E | 02       | 0.881634E | 00 | -0.300000E | 02  | 0.88163 | 34E 00  | 0.763518E | 00 -0 | 440817   | E 00         | -0.440817E 00 |
| -0.200000E | 02       | 0.881634E | 00 | -0.200000E | 02  | 0.88163 | 4E 00   | 0.828465E | 00 -0 | . 301537 | E 00         | -0.301537E 00 |
| -0.100000P | 02       | 0.881634E | 00 | -0.999999F | 01  | 0.88163 | 4E 00   | 0.868240E | 00 -0 | . 153094 | B 00         | -0.153094E 00 |
| 0.0        | •        | 0.881634E | 00 | 0.0        | • • | 0.88163 | 4E 00   | 0.881634E | 00 0  | .0       |              | 0.0           |
| 0.100000P  | 02       | 0.881634E | 00 | 0.9999998  | 01  | 0.88163 | 4 P 00  | 0.8682402 | 00 0  | 153094   | E 00         | 0.1530948 00  |
| 0.200008   | 02       | 0.8816345 | 00 | 0.200000   | 0.2 | 0.88163 | AUE 00  | 0.8284658 | 00 0  | 301537   | R 00         | 0.3015378 00  |
| 0.300000   | 02       | 0.881634E | 00 | 0.3000002  | 02  | 0.88163 |         | 0.0204032 | 00 0  | 440817   | P 00         | 0.4408178 00  |
| 0.400000   | 02       | 0.8816348 | 00 | 0.000000   | 02  | 0.00103 |         | 0.7033102 | 00 0  | 566703   | P 00         | 0 5667038 00  |
| 0.500008   | 02       | 0 881634E | 00 | 0.4000002  | 02  | 0.00103 |         | 0.0733712 | 00 0  | 675271   | 5 00<br>7 00 | 0.5007032 00  |
| 0 600000   | 02       | 0.0010342 | 00 | 0.5000002  | 02  | 0.00103 |         | 0.0007045 |       | 767547   | 2 00         | 0 7636178 00  |
| 0.8000003  | 02       | 0.0010342 | 00 | 0.5999995  | 02  | 0.88163 | 14 E 00 | 0.4406178 | 00 0  | . /0351/ | E 00         | 0.763517E CO  |
| 0.7000002  | 02       | V.001034E | 00 | 0.6999992  | 02  | 0.88163 | 45 00   | 0.301537E | 00 0  | .828465  | ROC          | 0.020465£ UL  |
| 0.8000008  | 02       | U.881634E | 00 | 0.799999E  | 02  | 0.88163 | 14E 00  | 0.153094E | 00 0  | .868240  | E 00         | U.868240E 00  |
| 0.90000D   | 02       | 0.881634E | 00 | 0.900002   | 02  | 0.88163 | 4E 00   | 0.0       | G (1  | .881634  | E 00         | 0.881634E 00  |

DERIVATIVES CHECK

|          |         |        |          |     | STATI         |       | =        | 5.  | 00000     |     |      |       | •     |               | •         |              |
|----------|---------|--------|----------|-----|---------------|-------|----------|-----|-----------|-----|------|-------|-------|---------------|-----------|--------------|
|          |         | ZMAP   | =        | 0.0 | 2 X I         | 1 A P | =        | 0.0 |           | ZXX | MAP  | =     | 0.0   |               |           |              |
| THETA    | RADIUS  | RH     | ł        | ,   | RSUBH         |       | DSUBH    |     | RX        |     |      | RXH   |       | RXSUBH        | DXSUBH    | BXX          |
| 89.99997 | 0.88163 | 0.0    |          | •   | 0.102453E-05  | - O   | .10E-05  | 5   | 0.176327E | 00  | 0.   | 0     |       | -0.683019E-06 | 0.68E-06  | 0.152213E-06 |
| 79.99997 | 0.98163 | 0.766  | 5837E-   | 07  | 0.341510E-06  | - 0   | .26E-06  | 5   | 0.176327E | 00  | -0.  | 27181 | 0E-07 | 0.0           | -0.27E-07 | 0.2283208-06 |
| 69.99997 | 0.88163 | 0.766  | 58 37 E- | 07  | -0.170755E-06 | 5 0   | .25 E-06 | 5   | 0.176327E | 00  | . Ö. | 0     |       | 0.512264B-06  | -0.51E-06 | 0.125032E-06 |
| 59.99997 | 0.88163 | ò.o    |          |     | -0.170755E-06 | 5 Ö   | .17E-00  | 6   | 0.176327E | 00  | 0.   | Ō     |       | 0.0           | 0.0       | 0.103288E-06 |
| 49.99998 | 0.88163 | 0.0    |          |     | 0.0           | 0     | .0       |     | 0.176327E | 00  | Ö.   | ō     |       | -0.341510E-06 | 0.34B-06  | 0.233756E-06 |
| 39.99998 | 0.88163 | -0.766 | 6837E-   | 07  | 0.0           | -0    | .77E-07  | 7   | 0.176327E | 00  | -0.  | 15336 | 7E-07 | 0.0           | -0.15E-07 | 0.239192E-06 |
| 29.99998 | 0.88163 | 0.0    |          |     | 0.0           | . 0   | .0       |     | 0.176327E | 00  | 0.   | 0     |       | 0.170755E-06  | -0.17E-06 | 0.206575E-06 |
| 19.99998 | 0.88163 | 0.0    | •        |     | 0.170755E-06  | -0    | .17E-06  | 5   | 0.176327E | 00  | 0.   | 0     |       | 0.0           | 0.0       | 0.1250322-06 |
| 10.00000 | 0.88163 | -0.766 | 5837·E-  | 07  | -0.170755E-06 | 5 Ö   | .94E-0   | 7   | 0.176327E | 00  | 0.   | 11844 | 2E-07 | -0.170755B-06 | 0.18E-06  | 0.9241528-07 |
| 0.0      | 0.88163 | 0.0    |          |     | 0.0           | 0     | .0 ~~    |     | 0.176327E | 00  | ò.   | 0 .   |       | 0.0           | 0.0       | 0.152213E-06 |
| 10.00000 | 0.88163 | 0.766  | 5837E-   | 07  | 0.170755E-06  | - 0   | .94E-07  | 7   | 0.176327E | 00  | -0.  | 11844 | 2E-07 | 0.170755E-06  | -0.18E-06 | 0.157650E-06 |
| 19.99998 | 0.88163 | 0.0    |          |     | -0.170755E-06 | 5 0   | .17E-00  | 5   | 0.176327E | 00  | ٥.   | 0     |       | 0.0           | 0.0       | 0.190267E-06 |
| 29.99998 | 0.88163 | 0.0    |          |     | 0.0           | 0     | .0       |     | 0.176327E | 00  | 0.   | 0 🗸   |       | 0.0           | 0.0       | 0.190267E-06 |
| 39.99998 | 0.88163 | 0.766  | 5837E-   | 07  | 0.0.          | Ó     | .77E-07  | ,   | 0.176327E | 00  | 0.   | 15336 | 7E-07 | 0.341509E-06  | -0.33E-06 | 0.190267E-06 |
| 49.99998 | 0.88163 | . 0.0. |          |     | 0.0           | Ō     | .0       |     | 0.176327E | 00  | Ó.   | 0     |       | 0.170755E-06  | -0.17E-06 | 0.7610672-07 |
| 59.99997 | 0.88163 | 0.0    |          |     | 0.170755E-06  | -0    | .17E-06  | 5   | 0.176327E | 00  | 0.   | 0     |       | -0.170755E-06 | 0.17E-06  | 0.869791E-07 |
| 69.99997 | 0.88163 | -0.766 | 5837E-   | 07  | 0.1707558-0f  | i -0  | . 25E-06 | 6   | 0.176327E | 00  | Ô.   | 0     |       | -0.341510E-06 | 0.34E-06  | 0.163086E-06 |

Figure 13 - QUICK OUTPUT FOR MODE = 2

0.176327E 00 0.271810E-07

0.176327E 00 0.0

65

-89.

-79. -69.

-59.

-49.

-39.

-29.

-19.

-10.

0.

10. 19.

29.

39.

49.

59.

69.

79.99997

89.99997

0.88163

0.0

| XSTATION = | 5.000    | 00      | •       |         |        |      |            |             |                |              |                   |
|------------|----------|---------|---------|---------|--------|------|------------|-------------|----------------|--------------|-------------------|
| ZBCL Z     | BCLX     | ZBCLXX  | ZTCL    | ZTCLX   | ZTCLXX | ZHAP | ZNAPX      | ZHAPXX      |                |              |                   |
| -0.88163   | -0.17633 | 0.0     | 0.88163 | 0.17633 | 0.0    | 0.0  | . 0.0      | 0.0         |                |              |                   |
| J U/THETA1 | U/THETA2 | RO      | ROX .   | ROXX    | HO     | но х | нохх       | AA AA       | X AAXX         | BB           | BBX BBXX          |
| 1 -1,5708  | 0.0      | 0.0     | C.O     | 0.0     | 16E 01 | 0.0  | 0.0 0.     | 78E 00 0.31 | E 0.0 0.62E-01 | I 0.78E 00 ( | 0.31E 00 0.62E-01 |
| 2 0.0      | 1.5708   | 0.0     | 0.0     | 0.0 C.  | 16E 01 | 0.0  | 0.0 0.     | 78E 00 0.31 | E 00 0.62E-01  | 0.78E 00 (   | 0.31E 00 0.62E-01 |
|            |          |         |         |         |        |      | *          |             |                |              |                   |
| XSTATION = | 5.000    | 00      |         |         |        |      | ž.         |             |                |              | ·                 |
| THETA      | RADIUS   | RX      | RH      | RXX     | RXH    | ¥-C0 | RD Z-COR   | D ZGCORD    |                |              | -                 |
| -1.57980   | 0.88163  | 0.17633 | 0.0     | 0.00000 | 0.0    | 0.0  | -0.881     | 63 -0.88163 | 3 .            |              |                   |
| -1,57079   | 0.88163  | 0.17633 | 0.0     | 0.00000 | 0.0    | 0.00 | 001 -0.881 | 63 -0.88163 | 3              |              |                   |
| -0.00001 . | 0.88163  | 0.17633 | 0.0     | 0.00000 | 0.0    | 0.88 | 163 -0.000 | 01 -0.00001 | 1              |              |                   |
| 0.0        | 0.88163  | 0.17633 | 0.0     | 0.00000 | 0.0    | 0.88 | 163 0.0    | 0.0         |                |              |                   |
| 0.00001    | 0.88163  | 0.17633 | 0.0     | 0.00000 | 0.0    | C.88 | 163 0.000  | 01 0.00001  | 1              |              |                   |
| 1.57079    | 0.88163  | 0.17633 | 0.0     | 0.00000 | 0.0    | 8.00 | 001 0.881  | 63 0.8816.  | 3.             | ,            |                   |
| 1.57080    | 0.88163  | 0.17633 | 0.0     | 0.00000 | 0.0    | 0.0  | 0,881      | 63 0.88163  | 3              |              |                   |
|            | ,        |         |         |         |        | -    |            |             |                |              |                   |

Figure 14 - QUICK OUTPUT FOR MODE = 3

4 2 5.00000 20.00000 5.00000 -90.00000 90.00000 30.00000

SCONE10: TEN DEGREE SHARP CONE'

GEOMETRY CHECK

THETA = -90.00000

| X-CORD<br>0.500000E 01<br>0.100000E 02<br>0.150000E 02<br>0.200000E 02 | RADIUS<br>0.881634E 00<br>0.176327E 01<br>0.200000E 01<br>0.200000E 01 | RAD-G<br>0.881634E 00<br>0.176327E 01<br>0.200000E 01<br>0.200000E 01 | Y-CORD<br>0.0<br>0.0<br>0.0<br>0.0 | Z-CORD<br>-0.8816342 00<br>-0.1763272 01<br>-0.2000002 01<br>-0.2000002 01 | ZGCORD<br>-0.881634E 00<br>-0.176327E 01<br>-0.200000E 01<br>-0.200000E 01 | THETAG         -0.9000000 02       0.         -0.9000000 02       0.         -0.9000000 02       0.         -0.9000000 02       0.         -0.9000000 02       0. | 2 CAP<br>,0<br>,0<br>,0 |
|------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                                        |                                                                        | · · ·                                                                 |                                    |                                                                            |                                                                            |                                                                                                                                                                   |                         |

Figure 15 - QUICK OUTPUT FOR MODE = 4

e a contra c

and the second second
#### SCONE10: TEN DEGREE SHARP CONE

#### DERIVATIVES CHECK

# THETA = -90.00000

| X-CORD<br>5.00000<br>10.00000<br>15.00000<br>20.00000 | RADIUS<br>0.98163<br>1.76327<br>2.00000<br>2.00000 | RX<br>0.176327E 00<br>0.176328E 00<br>0.398393E-07<br>0.0 | RSUBX<br>0.230966E 00<br>0.932421E-01<br>0.236734E-01<br>-0.236735E-01 | DSUBX<br>-0.55E-01<br>0.83E-01<br>-0.24E-01<br>0.24E-01 | RH<br>0.0<br>0.0<br>0.0<br>0.0 | * | BXH<br>0.0<br>0.0<br>0.0<br>0.0 | BXSU2H<br>0.0<br>C.0<br>0.0<br>0.0 | СХSОЕН<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 2 X BA P<br>0 . 0<br>0 . 0<br>0 . 0<br>0 . 0 |
|-------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------|---|---------------------------------|------------------------------------|-------------------------------------------|----------------------------------------------|
|                                                       |                                                    | •                                                         |                                                                        |                                                         |                                |   |                                 |                                    |                                           |                                              |

SCONEIO: TEN DEGREE SHARP CONE

#### DERIVATIVES CHECK

THETA = -90.00000

| X-CORD   | RADIUS  | RX           | RXX .         | RXSUBX          | DXSUBK    | RSUBIX        | DSUBXX DXX          | ZXXMAE |
|----------|---------|--------------|---------------|-----------------|-----------|---------------|---------------------|--------|
| 5.00000  | 0.88163 | 0.176327E 00 | 0.152213E-06  | 0.105801E-01 -  | -0.11E-01 | -0.335697E-01 | 0.34E-01 -C.44E-01  | 0.0    |
| 10.00000 | 1.76327 | C.176328E 00 | -0.5653652-06 | -0.176327E-01   | 0.18E-01  | -0.194722E-01 | 0.19E-01 -0.18E-02  | 0.0    |
| 15.00000 | 2.00000 | 0.398393E-07 | -0.1294522-01 | -0.105797E-01 - | -0.24E-02 | -0.114440E-01 | -0.15E-C2 -0.86E-03 | 0.0    |
| 20.00000 | 2.00000 | 0.0          | 0.0           | 0.176328E-01 -  | -0.18E-01 | -0.686174E-02 | 0.69E-02 -0.24E-01  | 0.0    |

Figure 15 (continued)

5.00000 20.00000 5.00000 -90.00000 90.00000 30.00000 .5 1

SURFACE NORMALS CHECK

|               |              |              | STATION =     | 5.00000       |               |              | l             |
|---------------|--------------|--------------|---------------|---------------|---------------|--------------|---------------|
| THETA         | RADIUS       | Y-CORD       | Z-CORD        | ZGCORD        | NORH-X        | BCBE-Y       | BOBH-2        |
| -0.9000002 02 | 0.881634E 00 | 0.276814E-06 | -0.881634E 00 | -0.881634E 00 | -0.173648E 00 | 0.0          | -0.984808E 00 |
| -0.60000E 02  | 0.881634E 00 | 0.440817E 00 | -0.763517E 00 | -0.763517E 00 | -0.173648E 00 | 0.492404E 00 | -C.852868E 00 |
| -0.3000002 02 | 0.881634E 00 | 0.7635188 00 | -0.440817E 00 | -0.440817E 00 | -0.173648E 00 | 0.852868E 00 | -0.492404E 00 |
| 0.0           | 0.8816348 00 | 0.0          | 0.0           | 0.0           | -0.173648E 00 | 0.984808E 00 | 0.0           |
| 0.30000E 02   | 0.8816342 30 | 0.763518E 00 | 0.4408175 00  | 0.440817E 00  | -0.173648E 00 | 0.852868E 00 | 0.4924048 00  |
| 0.600008 02   | 0.8816342 00 | 0.440817F 00 | 0.7635178 00  | 0.763517E 00  | -0.173648E 00 | 0.492404E 00 | 0.852868E 00  |
| 0.90000CE 02  | 0.8816348 00 | 0.276814E-06 | 0.881634E 00  | 0.881634E 00  | -0.173648E 00 | 0.0          | 0.984808E 00  |

Figure 16 - QUICK OUTPUT FOR MODE = 5



#### Figure 17 - INITIAL PLANE OUTPUT

.

۱

<sup>:</sup> 68

|                |                               | THREE-DI                      | MENSIONAL                      | SUPERSINIC                    | FLOW.PRDG                     | RAM 148 /                        | RUN NUKBER 1                                           |
|----------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------|-------------------------------|----------------------------------|--------------------------------------------------------|
| ZSTART         | - 47.0000                     | O ZEND=                       | 66.70000                       |                               | - 0 10                        | r- 0                             |                                                        |
| ACH= 10        | 6+00000                       | ATTACK=                       | = 2 INUG                       | = 1 16.916<br>Байна=` 17      | 20000 PI                      | S= 0<br>N= 0.1000                | 00E 01 TINE 0.10000E 01                                |
| ZWING          | 0.312008                      | 02 211P                       | 5= 0.3120                      | 0E 02 ZFRE                    | F= 0.667                      | 00F 02 ZN                        | (ADD= 0+10000E 02 NDEL= 15 ZMADD= 0+20000E 02 MDEL= 15 |
| ZINSH=         | 0.10000E                      | 07 0.10                       | 000E 07 0                      | 47400E 02                     | 0.70000E                      | 02 0.700                         | 000E 02                                                |
| ZINSH=         | 0.70000F                      | 07 -0.10                      | 000E 07 0                      | .70000E 02                    | 0.70000                       | 02 0.700                         | 000E 02                                                |
| ZZMSH=         | 0.700008                      | 02 0.70                       | 000E 02 0                      | .70000t. 02                   | 0.70000E                      | 02 0.700                         | 000E 02                                                |
| THERE          | WERE NO SP                    | ECIAL OUT                     | PUT STATIO                     | NS REQUESTE                   | D                             |                                  |                                                        |
|                | e.                            |                               |                                |                               |                               |                                  |                                                        |
|                |                               |                               | GEO                            | METRY TEST                    |                               |                                  |                                                        |
| 20             | €0M]=                         | 0.0                           | ZGE DH2                        | = 0.661                       | 700E 02 D                     | ZGEDM=                           | 0.10000E 01                                            |
| HSH            | NE= 15.15                     | HOMETRY F                     | OR MODEL H                     | SRA CONFIGU                   | MAPZ- 10<br>MATION            | -00000                           |                                                        |
| 7=             | 0.0                           |                               |                                |                               |                               |                                  |                                                        |
|                |                               | B                             | <u>н</u> н                     | 87                            | **                            | **                               |                                                        |
| 23             | 0.04762<br>0.09524            | 0.00018                       | -0.00000                       | 0.27169                       | 0.00002                       | -0.00018                         |                                                        |
| 45             | 0.14286                       | 0.00018                       | -0.00000                       | 0.27169                       | 0.00005                       | -0.00017                         |                                                        |
| 78             | 0.28571                       | 0.00018                       | -0.00000                       | 0.27169                       | 0.00009                       | -0.00016                         |                                                        |
| 10             | 0.38095<br>0.42857<br>0.47619 | 0.00018                       | -0.00000<br>0.00000<br>0.00000 | 0.27169<br>0.27169<br>0.27169 | 0.00012<br>0.00013<br>0.00014 | -0.00014                         |                                                        |
| 12             | 0.52381                       | 0.00018                       | 0.00000                        | 0.27169                       | 0.00015                       | -0.00010                         |                                                        |
| 15<br>16       | 0.66667                       | 0.00018                       | 0.00000                        | 0.27169                       | 0.00017                       | -0.00006                         |                                                        |
| 17 18 19       | 0.76190<br>0.80952<br>0.85714 | 0.00018                       | 0.00000                        | 0.27169<br>0.27169<br>0.27169 | 0.00018                       | -0.00003                         | WING TIP SURFACE                                       |
| 20 21 22       | 0.90476                       | 0.00018                       | -0.00000                       | 0.27169                       | 0.00018                       | 0.00002                          |                                                        |
| 1 2            | 0.0                           | 0.00018                       | -0.00000                       | 0.27169                       | 0.00017                       | 0.00005)                         | )*                                                     |
|                |                               |                               |                                |                               |                               |                                  |                                                        |
|                |                               |                               |                                |                               |                               |                                  |                                                        |
| _              | · · · · · -                   |                               |                                |                               |                               |                                  |                                                        |
| 3<br>4<br>5    | 0.25000                       | 0.00018                       | -0.00000                       | 0.27169                       | 0.00015                       | 0.00010                          |                                                        |
| 676            | 0.41667<br>0.50000<br>0.58333 | 0.00018                       | 0.00000<br>0.00000<br>0.0      | 0.27169<br>0.27169<br>0.27169 | 0.00012                       | 0.00013                          |                                                        |
| 10             | 0.66667                       | 0.00018                       | 0.00000                        | 0.27169                       | 0.0000P                       | 0.00016                          |                                                        |
| 12             | 0.91667                       | 0.00018                       | 0.00000                        | 0.27169                       | 0.00002                       | 0.00018                          |                                                        |
| 2=             | 1.000                         |                               |                                |                               |                               |                                  |                                                        |
| ļ              | 0.0                           | B<br>0-19964                  | 0.0                            | HZ<br>0.06187                 | ××<br>0.00000                 | -0.20000                         |                                                        |
| 3              | 0.09524                       | 0.19982                       | 0.00204<br>0.00305             | 0.06427                       | 0.03478                       | -0.19708<br>-0.19344             | •                                                      |
| 5<br>6<br>7    | 0.19048<br>0.23810<br>0.28571 | 0.20035                       | 0.00406<br>0.00506<br>0.00605  | 0.07125<br>0.07630<br>0.08226 | 0.05868<br>0.08502<br>0.10081 | -0.18838<br>-0.18192<br>-0.17410 |                                                        |
| 89             | 0.33333                       | 0.20182                       | 0.00703                        | 0.08900                       | 0.11595                       | -0.16495                         |                                                        |
| 11             | 0.47619                       | 0.20405                       | 0.00988                        | 0.11260                       | 0.15642                       | -0.13011                         |                                                        |
| 13<br>14<br>15 | 0.57143<br>0.61905<br>0.66667 | 0.20594                       | 0.01165<br>0.01249<br>0.01329  | 0.12969<br>0.13820<br>0.14650 | 0.17832<br>0.18748<br>0.19534 | -0.10139<br>-0.08562<br>-0.06905 | ·                                                      |
| 16             | 0.71429                       | 0.20934                       | 0.01404                        | 0.15447                       | 0.20181                       | -0.05177                         |                                                        |
| 19<br>20       | 0.85714<br>0.90476            | 0.21330                       | 0.01587                        | 0.17527                       | 0.21235                       | 0.00320                          |                                                        |
| 21             | 0.95238                       | 0.21653                       | 0.02316<br>0.02858<br>0.02855  | 0.18512<br>0.18996<br>0.18996 | 0.21182                       | 0.04124<br>0.06046               |                                                        |
| 23             | 0.08333                       | 0.22224                       | 0.03503                        | 0.19637                       | 0.20525                       | 0.06416                          |                                                        |
| 5 6            | 0.33333                       | 0.23632                       | 0.05059                        | 0-21846                       | 0.17897                       | 0.13150<br>0.15476<br>0.17736    |                                                        |
| 7 8            | 0.50000                       | 0.24774<br>0.25349            | 0.05394                        | 0.23457                       | 0.14896                       | 0.14887<br>0.21378               |                                                        |
| 10             | 0.75000<br>0.83333            | 0.26355                       | 0.03909                        | 0.25590                       | 0.08360                       | 0.25121                          | · · · · · · · · · · · · · · · · · · ·                  |
| 12             | 0.91667                       | 0.26952                       | 0.01468                        | 0.26381<br>0.26487            | 0.02895                       | 0.26932<br>0.27169               |                                                        |
| Z =            | \$*000                        | в                             | 814                            | 87                            |                               | ~~                               |                                                        |
| 2              | 0.0                           | 0.26553                       | 0.0                            | 0.07252                       | 0.00000                       | -0.26250                         | · · · · · · · · · · · · · · · · · · ·                  |
| - 3<br>4<br>5  | 0.14286<br>0.19046            | 0.26745<br>0.26982<br>0.27310 | 0.02170<br>0.03219<br>0.04227  | 0.07691<br>0.08021            | 0.04395<br>0.06615<br>0.08862 | ~0.25992<br>~0.25663<br>~0.25191 |                                                        |
| . 6            | 0.23810                       | 0.27724                       | 0,05183                        | 0.08432                       | 0.11135                       | -0.24565                         |                                                        |

Figure 18 - GEOMETRY TEST OUTPUT

..

| 23.4                           | 79.33952<br>41.05796<br>0.00057                                                                                                                                                                                                                                                          | 448+03208<br>467+10400<br>475+33911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.72362<br>4.55149<br>4.50313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.70695<br>0.36147<br>0.0                                                                                                                                                                                                                                                                   | 14.11835<br>14.23296<br>14.32294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21-8575<br>21-8860<br>21-9248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 1.02882<br>6 1.02292<br>7 0.99756                                   | 14.29816<br>14.40807<br>14.62465                                                                                                                                                                                                                                                                   | 12.0060<br>12.0774<br>12.2436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 09<br>33<br>50                                                 | 1 . <b></b>                 |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------|
|                                | NN=                                                                                                                                                                                                                                                                                      | н (B(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | о вноск                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | · .                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · •                                                        |                             |
| 123                            | X<br>0.00005<br>21.55699<br>43.13039                                                                                                                                                                                                                                                     | y<br>-80.74327<br>-80.49380<br>-79.58731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | р<br>213.06577<br>212.82309<br>213.93681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U<br>0+0<br>0+39258<br>0+85797                                                                                                                                                                                                                                                              | V<br>-0.27951<br>-0.26604<br>-0.28065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W<br>23.1908<br>23.1931<br>23.1550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S<br>0 2.23424<br>6 2.23319<br>3 2.23797                              | M<br>6 • 06 484<br>6 • 06 948<br>6 • 04 824                                                                                                                                                                                                                                                        | MA<br>6.0644<br>6.0682<br>6.0430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40<br>21<br>55                                                 | 21 <b>9</b> - 21            |
|                                |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                | 2                           |
|                                |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                | • •                         |
| 456789011123456789011234567122 | 64.35666<br>84.64880<br>103.07898<br>119.10098<br>32.58316<br>151.52809<br>156.15782<br>161.77187<br>166.84258<br>169.06884<br>169.49633221<br>167.82368<br>166.78944<br>170.57242<br>174.01126<br>174.4298<br>174.57243<br>185.46001<br>175.99237<br>151.92928<br>121.16148<br>82.53585 | $\begin{array}{c} -77.94236\\ -75.10149\\ -70.3679\\ -54.45012\\ -57.8482\\ -51.14046\\ -31.43026\\ -31.43026\\ -21.11906\\ -21.11906\\ -7.461902\\ -6.5100\\ 26.15753\\ 44.91669\\ 65.15973\\ 87.34164\\ 111.66056\\ 139.46260\\ 171.64221\\ 209.75115\\ 254.96970\\ 305.69233\\ 356.26714\\ 49.56714\\ 489.56714\\ 481.53003\\ 65.15973\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2.56714\\ -2$ | 214.22591<br>209.46503<br>209.46503<br>202.91034<br>202.65240<br>180.48079<br>140.14216<br>105.10097<br>153.12871<br>37.65988<br>30.09792<br>24.82166<br>24.82166<br>14.32734<br>14.45413<br>12.57969<br>11.15231<br>9.7.1319<br>8.54089<br>3.7.62833<br>6.57712<br>6.57712<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77126<br>5.77726<br>5.77126<br>5.77126<br>5.77126<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5.77726<br>5 | 1.52602<br>2.64020<br>3.94398<br>5.30011<br>6.25977<br>6.43929<br>9.46929<br>9.46943<br>5.67334<br>7.85327<br>6.61281<br>5.63917<br>4.97108<br>4.50161<br>4.50161<br>4.50161<br>4.19900<br>3.98762<br>3.61508<br>3.615498<br>3.38822<br>3.13460<br>2.61344<br>2.27966<br>1.36516<br>1.36518 | $\begin{array}{c} -0.23146\\ 0.10711\\ 0.96417\\ 1.15734\\ 1.70725\\ 4.14587\\ 9.51181\\ 10.37369\\ 12.0181\\ 10.37369\\ 12.0181\\ 13.34877\\ 13.99172\\ 13.9940\\ 13.54877\\ 13.99802\\ 13.59840\\ 13.55445\\ 13.39802\\ 13.37151\\ 13.51763\\ 13.576394\\ 13.576394\\ 13.576394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56394\\ 13.56$ | 23.1145<br>23.2730<br>22.7857<br>22.5542<br>21.59792<br>22.5542<br>22.5542<br>22.5542<br>22.5545<br>22.5542<br>22.5545<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5542<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.5552<br>22.55 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                  | 6.04275<br>6.13432<br>6.45133<br>6.26449<br>6.30639<br>6.30639<br>6.75092<br>7.664168<br>9.15500<br>10.348455<br>12.55670<br>14.37049<br>15.55446<br>16.56812<br>17.31187<br>17.42043<br>18.21388<br>18.21388<br>18.6141<br>19.20085<br>20.330200<br>20.330200<br>22.27684<br>22.27684<br>22.77684 | 6.029;<br>6.093;<br>6.355;<br>6.094;<br>6.001;<br>7.906;<br>8.960;<br>12.109;<br>12.999;<br>13.918;<br>15.236;<br>15.236;<br>15.236;<br>15.460;<br>16.108;<br>17.447;<br>17.447;<br>18.052;<br>18.600;<br>16.494;<br>18.600;<br>16.494;<br>18.600;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>16.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;<br>17.494;17.49 | WING<br>SURF                                                   | TIP ANGRE<br>ACE<br>SS FLOW |
| Ä                              | 0.00061                                                                                                                                                                                                                                                                                  | 511.20776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.05600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                         | 15-24089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.9257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 0.07495                                                             | 23.06511                                                                                                                                                                                                                                                                                           | 19.2079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92                                                             | 24                          |
|                                | LNTROPY<br>IENT<br>1 2<br>2 2 2                                                                                                                                                                                                                                                          | LAYER SURF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ACE DATA<br>Y<br>3.68585 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | р<br>5.36320 0<br>4.23940 0                                                                                                                                                                                                                                                                 | U<br>•00000 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v<br>•65837<br>•65735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ¥<br>23.81189<br>23.77602                                             | 5<br>2.08821<br>2.09589                                                                                                                                                                                                                                                                            | M<br>6.64501<br>6.61620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MA<br>6+64247<br>6+61160                                       | ·                           |
|                                | 3 2 4                                                                                                                                                                                                                                                                                    | 1.23151 -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.68576 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.03462 1<br>4.95773 2                                                                                                                                                                                                                                                                      | •24421 -0<br>•01714 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •65494<br>•65106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23.68781<br>23.54749<br>23.39738                                      | 2.11091<br>2.13183<br>2.15198                                                                                                                                                                                                                                                                      | 6.55327<br>6.46870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.54175<br>6.44266<br>6.36150                                  |                             |
|                                | 6 2 10<br>7 2 11<br>8 2 12                                                                                                                                                                                                                                                               | 0.55553 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.05701 20<br>57.22383 21<br>52.10840 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.23164 3<br>4.11888 4<br>7.60854 5                                                                                                                                                                                                                                                         | -72278 -0<br>-42653 0<br>-33235 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •14934<br>•07900<br>•47271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.22018<br>23.05029<br>22.85452                                      | 2 • 16446<br>2 • 17214<br>2 • 17550                                                                                                                                                                                                                                                                | 6.35051<br>6.30871<br>6.31006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.27031<br>6.19547<br>6.14377                                  | 1 . N Ž                     |
| 1                              | 9     2     13       0     2     14       1     2     14       1     2     14       2     2     14       3     2     13                                                                                                                                                                  | 9.44995 -4<br>6.11684 -3<br>8.20976 -3<br>8.20975 -3<br>6.02238 -2<br>6.04704 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.71214 18<br>38.04332 12<br>30.38263 6<br>30.38258 6<br>24.24310 2<br>17.84221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.81647 6<br>6.43452 6<br>0.61606 5<br>0.61606 5<br>2.90605 1<br>2.17630 -0                                                                                                                                                                                                                 | +42090 1<br>+67176 3<br>+09676 4<br>+49571 5<br>+42204 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +45284<br>+19969<br>+70925<br>+70925<br>+13264<br>+03251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22,59378<br>22,53745<br>23,04443<br>23,04443<br>23,88,921<br>25,09500 | 2.17627<br>2.17670<br>2.17709<br>2.17709<br>2.17779<br>2.18298                                                                                                                                                                                                                                     | 6+36545<br>6+54489<br>6+90578<br>6+90578<br>7+39712<br>8+64638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.11132<br>6.21833<br>6.61248<br>6.61248<br>7.21946<br>8.58274 | . ;                         |
|                                | 4 2 12<br>5 2 10<br>6 2 10                                                                                                                                                                                                                                                               | 1.61044 -1<br>8.78307 -<br>7.99992 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.34836<br>18.56909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.23441 -0<br>4.48628 0                                                                                                                                                                                                                                                                     | •17538 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •15622<br>•62078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.16127<br>24.85277<br>24.44789                                      | 2.22233<br>2.224396                                                                                                                                                                                                                                                                                | 8.24273<br>7.96655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.17685<br>7.82796                                             |                             |
|                                | 7 210<br>8 210<br>9 210                                                                                                                                                                                                                                                                  | 8.00000<br>8.00009<br>6.90633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.20229<br>2.90488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.37018 0<br>5.09376 -0<br>3.66230 -1                                                                                                                                                                                                                                                       | •00000 6<br>•00000 6<br>•15320 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •79354<br>•81828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23.79066<br>23.52036                                                  | 2.20122<br>2.27530<br>2.29142                                                                                                                                                                                                                                                                      | 7.90328<br>7.75897<br>7.86318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.46075                                                        | •                           |
| 1                              | 0 210<br>1 29<br>2 28                                                                                                                                                                                                                                                                    | 3.08160 8<br>6.92870 10<br>6.86649 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.32474<br>)4.30865<br>17.66864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.556902<br>1.136064<br>0.69640 -5                                                                                                                                                                                                                                                          | •66114 8<br>•16798 8<br>•68354 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •27735<br>•24604<br>•00095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.47543<br>23.30995<br>23.22232                                      | 2.31475<br>2.34007<br>2.34730                                                                                                                                                                                                                                                                      | 8 •21085<br>8 •27859<br>8 •51729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.69972<br>7.69605<br>7.84544                                  | •. "                        |
| 1                              | 3 2 7<br>4 2 6<br>5 2 5<br>6 2 4                                                                                                                                                                                                                                                         | 9.33260 12<br>8.78067 13<br>7.65984 14<br>6.38301 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29.24648<br>38.95255<br>16.78294<br>52.62306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.36654 -6<br>0.16551 -7<br>0.14120 -7<br>0.11619 -8                                                                                                                                                                                                                                        | -94141 7<br>-65617 6<br>-94973 4<br>-12339 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -30577<br>-14862<br>-8800£                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.42648<br>23.98468<br>24.43568<br>24.69318                          | 2.30495<br>2.20174 1<br>2.08644 1<br>2.04197 1                                                                                                                                                                                                                                                     | 9.08722 -<br>0.09131<br>0.81380<br>1.19310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 + 34760<br>9 + 33894<br>10 + 10272<br>10 + 52326             |                             |
| •                              |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                | ÷ î                         |
|                                |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                                                                                                                                                                                                    | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ROSS FLOW                                                      | SHOCK                       |
| 1                              | 7 2 3<br>1 2 3<br>2 0 7<br>3 0 4<br>4 0                                                                                                                                                                                                                                                  | 5.28726 15<br>5.28726 15<br>9.33952 44<br>1.05798 40<br>0.00057 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57 • 2 3 6 5 8 6<br>57 • 2 3 6 5 8 6<br>54 • 6 3 2 0 8 6<br>57 • 1 0 4 0 0 6<br>7 • 1 3 3 9 1 1 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15963 -7<br>2.14961 -0<br>4.72362 0<br>4.55149 0<br>4.50313 0                                                                                                                                                                                                                             | -88487 2<br>-41697 0<br>-70695 14<br>-36147 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -65016<br>-14015<br>-11835<br>-23296<br>-32294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.60596<br>24.36610<br>21.85757<br>21.88606<br>21.92487              | 2.17550 1<br>2.49334<br>1.02882 1<br>1.02292 1<br>0.99756 1                                                                                                                                                                                                                                        | 0 +25249<br>7 +26156<br>4 +29816<br>4 +4 0807<br>4 +62465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.71251<br>7.26038<br>12.00609<br>12.07743<br>12.24360         | . A 18                      |

Figure 19 - BOW SHOCK AND ENTROPY LAYER SURFACE OUTPUT

70

i

AERODYNANIC COEFFICIENTS

### USING

. .

.

.

:

```
PINE = 1.0000
RHOIN = 0.10000E 01
VIN = 9.4066
QIN = 44.2417
```

MONENTS ARE TAKEN ABOUT A LINE THROUGH YO = 0.0 ZO = 10.0000

CONE PARAMETERS

| . 4         | FOR PIECE(S) |         | IN Z-R    | ANGE    | BETWEEN CONT. PTS. |  |  |
|-------------|--------------|---------|-----------|---------|--------------------|--|--|
| 1           | 1            |         | 1.0000 .  | 20.0000 | 2 • 5              |  |  |
| CL =        | 0.0098       |         |           |         |                    |  |  |
| CD =        | 0.0365       |         |           |         |                    |  |  |
| ĊM =        | -0.0002      |         |           |         |                    |  |  |
| CN =        | 0.0110       |         |           |         |                    |  |  |
| <b>CA</b> = | 0.0362       |         |           |         |                    |  |  |
| AREA        | =            | 398.941 | SQ. UNITS |         |                    |  |  |
| TOTL        | PARANETER    | 25      |           |         |                    |  |  |
| a =         | 0_0098       |         | -         |         |                    |  |  |
| CD =        | 0.0365       |         |           |         |                    |  |  |
| CM =        | -0.0002      |         |           |         |                    |  |  |
| CN =        | 0.0110       |         |           |         |                    |  |  |
| CA =        | 0.0362       |         |           |         |                    |  |  |
| AREA        | Ŧ            | 398.941 | SQ. UNITS |         |                    |  |  |

ė

Figure 20a - AERODYNAMIC COEFFICIENTS OUTPUT 1

/

1

I

### AERODYNAMIC COEFFICIENTS

USING

PINF = 10.0000 RHDIN = 0.10000E-06 VIN =94065.6250 QIN = 442.4167 AND AREA(REF) = 12.566 SQ. UNITS

#### MOMENTS ARE TAKEN ABOUT A LINE THROUGH

YO = 0.0ZO = 10.0000

#### CONE PARAMETERS

|     |              |                       |           | •                           |
|-----|--------------|-----------------------|-----------|-----------------------------|
| ÷., | FOR PIECE(S) | IN Z-RANG<br>1.0000 , | E 20.0000 | BETWEEN CONT. PTS.<br>2 . 5 |
| •   |              | •                     |           |                             |
| CL  | = 0.3104     |                       |           |                             |
| CD  | = 1.1598     |                       |           |                             |
| ĊМ  | = -0.0355    |                       |           |                             |
| CN  | = 0.3507     | · .                   | · .       |                             |
| CA  | = 1.1483     |                       |           |                             |
|     |              |                       |           |                             |
| toi |              | •                     |           |                             |

| a.  | =  | 0.3104  |   | · |   |
|-----|----|---------|---|---|---|
| CD  | =  | 1.1598  |   |   |   |
| ĊМ  | =  | -0.0355 |   | • |   |
| CN  | =  | 0.3507  | , |   | : |
| CA. | _= | 1.1483  |   |   |   |

Figure 20b - AERODYNAMIC COEFFICIENTS OUTPUT 2

... • • • •

# STREAMLINE AND PSEUDD-STREAM SURFACE CALCULATIONS FOR BOUNDARY LAYER INPUT

FREE STREAM MACH ND. = 15.0000 ANGLE OF ATTACK = 5.0000 GAMMA = 1.2000 STARTING AT 2 = 50.0000

#### STREAMLINE DATA (ON THE BODY) ...

۰.

÷

٩.,

...

.... -

• 

.

...

٠.

τ.

AT STATION 2 # 320.5479

| WITH NEW STEP S | 12E_DZ .= |            |          |            |            |                 |         |            |               |          |            |
|-----------------|-----------|------------|----------|------------|------------|-----------------|---------|------------|---------------|----------|------------|
| INDEX THETAP    | THE TA    | þ          | ¥        | ×          | LENGTH     |                 | v       |            | ·p            | s        | нэ         |
| 1 -1-5708       | -1.5708   | 57.2919    | 0.0001   | -57-2919   | 272.0122   | 0.0000          | -0.3194 | 11.5511    | 5.5060        | 2.6774   | 47.7406    |
|                 | ~1.5040   | 57.4179    | 3-8008   | -57.2919   | 272.0210   | 0.0107          | -0.3191 | 11.5411    | 5.5575        | 2.6774   | 46.4543    |
| 3 1 -4179       | -1.4346   | 57.7884    | 7.5587   | -57.2919   | 272.0466   | 0.0200          | -0.3189 | 11.5342    | 5.5931        | 2.6774   | 46.8249    |
| 4 -1.3412       | -1.3733   | 58.4276    | 11.4640  | -57.2919   | 272.0991   | 0.0284          | -0.3188 | 11.5302    | 5.6140        | 2.6774   | 48.8464    |
| 5 -1.2692       | -1.3106   | 59.2881    | 15.2552  | -57.2919   | 272.1897   | 0.0283          | -0.3188 | 11.5311    | 5.6095        | 2.6774   | 50.8368    |
| 6               | -1-2386   | - 60 6044  | 19.7617  | -57.2919   | 272.3445   | 0.0307          | -0.3189 | _11.5342   |               | 2.6774   | 55_6_113_  |
| 7 -1.0986       | -1.1566   | 62.5283    | 25.0485  | -57.2919   | 272.5933   | 0.0449          | -0.3190 | 11.5378    | 5.5742        | 2.6774   | 65.6125    |
| 8, -1.0157      | -1.0828   | 64.8648    | 30.4151  | -57.2919   | 272.9436   | 0.0441          | -0.3196 | 11.5602    | 5.4631        | 2.6774   | 79.8609    |
| 90.9123         | -0.9858   | 68.7192    | 37.9469  | -57.2919   | 273.5190   | 0.1059          | -0.3194 | 11.5519    | 5.5005        | 2.6774   | 102.7747   |
|                 |           | 73.0088    | 45.2540  | -57.2919   | 274-2915   | <u>''0.3014</u> | -0.3168 | 11_4591_   | 5.9683        | 2.6774   | 104.5546   |
| 11 -0.7105      | -0.7880   | 80.8133    | 56.9950  | -57.2919   | 275.7317   | 0.2801          | -0.2546 | 11.5060    | 5.7359        | 2.6774   | 195.8138   |
| 12 -0.5227      | -0.5947   | 99.3927    | 82.3276  | -55.6873   | 275.1797   | 0.5030          | -0.8251 | 11.4215    | 5.9959        | 2.6774   | 505.4995   |
| 13 -0.3235      | -0.3971   | 106.3815   | 98.1054  | -41.1383   | 275.5969   | 1.8402          | 0.0338  | 11.1872.   | 6.7020        | 2.6774   | 432.1084   |
| -14 -0.2213     |           | -105-1215- |          | -30.8594   |            | 1.7279          | 0.5532  | 11.2292    | 6_4.84.7      | 2.6774_  | _316.5696_ |
| 15 -0.1316      | -0.2112   | 102.7889   | 100.5047 | -21.5491   | 275.6011   | 1.6940          | 0.5795  | 11.17675   | 6.8238        | 2.6774   | 202.2810   |
| 16 -0.0558      | -0.1371   | 101.4565   | 100.5047 | -13.8645   | 275.2688   | 1.6933          | 0.6542  | 11.1721    | 6.8254        | 2.6774   | 137.9717   |
| 17 0.0260       | -0.0560   | 100.6625   | 100.5047 | -5.6327    | 275.0295   | 1.6964          | 0.7659  | 11.1927    | 6+6611        | 2 6774   | 96-2827    |
|                 |           | -100.5222  | 100.5047 |            | 274.8149   | 1.6962          | 0.7942  | <u></u>    | 0.05/8        |          |            |
| 19 0.1727       | 0.0921    | 100.9327   | 100.5047 | 9.2846     | 274.6719   | 1 6937          | 0.7946  | -11-1749   | 0+/505        | 2.0774   | 64 +1 091  |
| 20 0.2501       | 0.1717    | 102.0040   | 100.5047 | 17.4244    | 274 .6609  | 1.6936          | 0.8287  | 11.1740    | 0.7408        | 2.0774   | 01.4421    |
| 21 0.3271       | 0.2517    | 103.7747   | 100.5047 | 25.8453    | 274.7473   | 1.5930          | 0.8720  | 11.1704    | 0.7459        | 2.0774   | 60 40 907  |
|                 |           | -105-9877- |          |            | -2.74+9158 |                 | 0.9057  |            |               | 2 6 77 6 | 73 1600    |
| 23 0.4525       | 0.3840    | 108.4006   | 100.5047 | 40.6139    | 275.1938   | 1.0741          | 0.9134  | 11 1502    | 6 0 1 6 2     | 2.0774   | 78.0765    |
| 24 0.5056       | 0.4405    | 111.1189   | 100.5047 | 47.3941    | 275.7000   | 1.0/52          | 0.9060  | 11 1 1 097 | 6 6446        | 2 6774   | 86.8730    |
| 25 0.5578       | 0.4905    | 114.3055   | 100.5013 | 54+4539    | 270+4241   | 1 . / 245       | 0.0732  | 11 1206    | 6 0012        | 2 6774   | 06.4982    |
|                 | 0.5562_   |            |          |            | 270 3000   |                 | 0 9676  |            | 7.0011        | 2.6774   | 111.7105   |
|                 | 0.6963    | 121+7400   | 99.1007  | 70 6 409   | 270 5920   | 2 0521          | 0.0316  | 11.0352    | · 7.1684      | 2.6774   | 125.2473   |
| 20 0.7350       | 0.00000   | 120 7407   | 97+2313  | 90 0916    | 200 9062   | 2 1780          | 1.0621  | 10.9570    | 7.4317        | 2.6774   | 132.9985   |
| 30 0.8697       | 0.8200    | 133.9002   | 94.3370  | 09.0010    | 282,2842   | 2.2726          | 1.2684  | 10.8602    | 7.7848        | 2.6774   | 139.4341   |
| 31 0.0302       | 0.0036    | 137.6402   | 85.1840  | 109.1870   | 283-6646   | 2.3183          | 1.5319  | 10.7496    | 8.2216        | 2.6774   | 145.6222   |
| 32 1.0088       | 0.9777    | 141.3334   | 75.9922  | 117.1979   | 285-0564   | 2.3047          | 1.8328  | 10.6300    | 8.7324        | 2.6774   | 151.7067   |
| 33 1.0789       | 1.0520    | 144.6786   | 71.7396  | 125 6 396  | 286.3726   | 2.2257          | 2.1557  | 10.5046    | 9.3105        | 2.6774   | 157.0196   |
| 34 1 1492       | 1.1263    | 147.6788   | 63.4998  | 1 13. 1297 | 287.5950   | 2.0771          | 2.4803  | 10.3819    | 9,9111        | 2.6774   | 160.6.155  |
| 35 1.2192       | 1.2003    | 150.2784   | 54.4125  | 140-0817   | 288.6863   | 1.8609          | 2.7881  | 10.2679    | 10.4998       | 2.6774   | 164.2103   |
| 36 1.2890       | 1.2739    | 152.4478   | 44.5972  | 145.7787   | 289-6184   | 1.5839          | 3.0638  | 10.1678    | 11.0395       | 2.6774   | 168.0408   |
| 37 1.3589       | 1.3477    | 154.1744   | 34.1137  | 150.3530   | 290.3726   | 1.2478          | 3.2976  | 10.0865    | 11.4882       | 2.6774   | 172.2601   |
| -38-1.4293      | 1.4218    | -155.4346- | 23.0669  | 153.7134   | 200.0204   | 0.8609          | 3.4762  | 10.0252    | 11.8372       | 2.6774   | 175-8249   |
| 39 1.4999       | 1.4961    | 156.2006   | 11.6527  | 155.7654   | 291.2710   | 0.4403          | 3.5878  | ·9.9871    | 12.0578       | 2.6774   | 177.8100   |
| 40 1.5707       | 1.5707    | 156.4590   | 0.0087   | 156.4590   | 291.3867   | 0.0003          | 3.6259  | ,9.9739    | . 12 . 1 36 1 | 2.6774   | 178.0621   |
|                 |           |            |          |            |            |                 |         |            |               |          |            |

۰. ٠., Ż

....

----.. č 

......

.

.....

#### -Figure 21a - STREAMLINE OUTPUT FROM STRMBL 4

. **~**.

.

٠ .

ан 1 м 2 м

÷.,

.

....

.

• •

4٠

.

.

..

4. . ••

~

.....

1 , '

1

. ..

23

۰. .

. . · ·

• -

.

.

41.14

÷

• ; .'

.

1. A.S.

ς.

.....

۰.

.\*

1

. •

.

# Figure 21b - PSEUDO STREAM SURFACE OUTPUT

| 1       00.4400       51.4008       -00.7999       0.0001       -51.0080       11.4500       2.6774       -0.0000       -0.2946       10.         2       95.4016       51.1155       -54.9999       0.0001       -51.1555       11.6401       2.6773       -0.0000       -0.2966       10.         4       95.4516       51.2424       -69.9999       0.0001       -51.1555       11.64401       2.6773       -0.0000       -0.2966       10.         5       95.45192       51.2424       -69.9999       0.0001       -51.2858       11.6242       2.6764       -0.0000       -0.2969       10.         7       95.45502       51.2424       -69.9999       0.0001       -51.2858       11.6242       2.6764       -0.0000       -0.2969       10.         7       95.45502       51.3727       -60.9999       0.0001       -51.3297       11.61497       2.6731       -0.0000       -0.3031       10.         10       0.45450       51.3757       -0.0000       -0.3031       10.       -0.0000       -0.3031       10.         10       0.45450       51.3757       -0.0000       -0.0231       0.0001       -51.4596       11.6034       2.6724       -0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DINT             | Z                           | R           | THETA       | x      | <b>`</b> Y | P       | S <sub>.</sub> | U       | v       | W      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------|-------------|-------------|--------|------------|---------|----------------|---------|---------|--------|
| 2 05.402F 51.1121 -69.9999 0.0001 -51.121 11.21 11.2455 2.6766 -0.0000 -0.2958 10.<br>4 95.4616 51.1555 -89.9999 0.0001 -51.1989 11.66348 2.6753 -0.0000 -0.2978 10.<br>5 95.4502 51.2424 -69.9999 0.0001 -51.2429 11.66348 2.6753 -0.0000 -0.2978 10.<br>5 95.4504 51.3343 -54.9999 0.0001 -51.2393 11.6169 2.6735 -0.0000 -0.3010 10.<br>F 95.4556 51.377 -50.9999 0.0001 -51.3393 11.6169 2.6735 -0.0000 -0.3010 10.<br>F 95.4556 51.377 -50.9999 0.0001 -51.31727 11.6137 2.6735 -0.0000 -0.3010 10.<br>V 95.4534 51.4151 -89.9999 0.0001 -51.4161 11.6085 2.6735 -0.0000 -0.3022 10.<br>U 95.4534 51.4151 -89.9999 0.0001 -51.4156 11.6034 2.6724 -0.0000 -0.3031 10.<br>U 95.4535 51.4456 -86 -9999 0.0001 -51.4156 11.6034 2.6724 -0.0000 -0.3032 10.<br>U 95.4532 51.4456 -86 -9999 0.0001 -51.4156 11.6034 2.6724 -0.0000 -0.3032 10.<br>UNT N LENGTH DPDN DSDN DUDN DVDN DWDN DVELDN VFLDTN<br>1 0.00 -0.1242 -0.0127 0.0000 -0.0235 0.1423 0.1423 0.0421 0.0001<br>3 0.0060 -0.1220 -0.0127 0.0000 -0.0235 0.1423 0.1423 0.0001<br>4 0.1304 -0.1220 -0.0127 0.0000 -0.0235 0.1405 0.0001<br>5 0.1736 -0.1220 -0.0128 0.0000 -0.0235 0.1406 0.1412 0.0007<br>4 0.1304 -0.1220 -0.0128 0.0000 -0.0235 0.1309 0.1405 0.0034<br>5 0.2173 -0.1210 -0.0128 0.0000 -0.0235 0.1309 0.1405 0.0034<br>5 0.2173 -0.1210 -0.0128 0.0000 -0.0235 0.1309 0.1374 0.0002<br>9 0.3476 -0.1166 -0.0128 0.0000 -0.0235 0.1361 0.1366 0.0079<br>10 0.3476 -0.1166 -0.0128 0.0000 -0.0235 0.1361 0.1366 0.0079<br>10 0.3476 -0.1166 -0.0128 0.0000 -0.0253 0.1361 0.1366 0.0079<br>10 0.3476 -0.01173 -0.0128 0.0000 -51.1550 11.7777 2.6776 -0.0157 -0.2956 10.0007<br>10 0.54542 51.4605 -51.4529 4.0690 -51.1526 11.7727 2.6776 -0.0157 -0.2956 10.0007<br>10 95.4534 51.5160 -55.4529 4.                                                                                                                                                                           | · ,              | 95-4640                     | 51-0686     | -89.9999    | 0.0001 | -51-0686   | 11-6509 | 2.6774         | 0.0000  | -0.2948 | 10.662 |
| 3       55.4016       51.1555       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.0000       -60.00000       -60.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ;                | 95-4626                     | 51.1121     | -49.9999    | 0.0001 | -51-1121   | 11-6455 | 2.6768         | -0.0000 | -0.2958 | 10.668 |
| 4       05.4604       51.1985       -80.6999       0.0001       -51.2824       1.6324       2.6757       -0.0000       -0.2978       10.         5       95.4592       51.2424       -60.9999       0.0001       -51.28268       11.6242       2.6746       -0.0000       -0.29969       10.         7       95.4566       51.3227       -69.9999       0.0001       -51.28268       11.6242       2.6746       -0.0000       -0.29969       10.         6       95.4536       51.3273       -69.9999       0.0001       -51.42764       11.6189       2.6735       -0.0000       -0.3001       10.         10       95.4534       51.4161       -89.9999       0.0001       -51.4163       11.6085       2.6720       -0.0000       -0.3001       10.         10       95.4534       51.4161       -89.9999       0.0001       -51.44596       11.6034       2.6724       -0.0000       -0.3023       10.         11       0.0       -0.127       0.0000       -0.0227       0.1430       0.1433       0.4000       -1423       0.0000       -0.0225       0.1402       0.0002       -1423       0.0000       -0.0225       0.1406       0.1412       0.0007       0.0234       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | 45.4616                     | 51.1555     | -84 9999    | 0.0001 | -51-1555   | 11.6401 | 2.6763         | -0.0000 | -0.2968 | 10.674 |
| 5       05.45402       51.2424       -40.50506       0.0001       -51.2424       11.6295       2.6752       -0.0000       -0.2969       10.         7       95.4560       51.3293       -64.9999       0.0001       -51.2293       11.6189       2.6741       -0.0000       -0.3010       10.         4       95.4556       51.3727       -64.9999       0.0001       -51.3727       11.6137       2.6735       -0.0000       -0.3031       10.         9       95.4532       51.4161       -89.9999       0.0001       -51.4356       11.6034       2.6724       -0.0000       -0.3031       10.         9       95.4536       -0.1249       -0.0127       0.0000       -0.0227       0.1430       0.1435       0.0000       -0.3042       10.         1       0.0       -0.1242       -0.0127       0.0000       -0.0233       0.1433       0.1429       0.0006       -0.3042       0.1423       0.1429       0.0006         3       0.0463       -0.1226       -0.0127       0.0000       -0.0233       0.14330       0.1435       0.0000       -0.0233       0.1415       0.1429       0.0016       -0.0243       0.1352       0.1306       0.00251       0.00021       0.0024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ă                | 95.4604                     | 51.1989     | -80.0900    | 0.0001 | -51.1089   | 11-6348 | 2 .6757        | -0.0000 | -0.2978 | 10.680 |
| h       05.4560       51.2658       -60.0000       0.29990       10.         r       05.4566       51.3293       -64.9999       0.0001       -51.3293       11.6189       2.6746       -0.0000       -0.3010       10.         r       95.4546       51.4161       -89.9999       0.0001       -51.3727       11.6189       2.6747       -0.0000       -0.3010       10.         10       05.4564       51.4161       -89.9999       0.0001       -51.4161       11.6034       2.6724       -0.0000       -0.3031       10.         0HMAL DERIVATIVES AT SAME LOCATIONS       UINT       N LENGTH       DPDN       DSDN       DUDN       DWDN       DWDN       VELDTN         1       0.0       -0.1224       -0.0127       0.0000       -0.0223       0.1423       0.1429       0.0007         2       0.0035       -0.1284       0.0127       0.0000       -0.0233       0.1429       0.0007         3       0.4695       -0.1274       0.0000       -0.0235       0.1406       0.1412       0.0007         4       0.1304       -0.128       0.0000       -0.0241       0.1399       0.1435       0.00042         5       0.1735       -0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ŝ                | 95.4592                     | 51-2424     | -69,9999    | 0.0001 | -51-2424   | 11-6295 | 2.6752         | -0-0000 | -0.2989 | 10.687 |
| 7       65.4567.       51.3293       -66.9696       0.0001       -51.3293       11.6189       2.6741       -0.0000       -0.3020       10.         9       95.4534       51.4161       -89.9999       0.0001       -51.4161       11.6085       2.6735       -0.0000       -0.3021       10.         0       95.4532       51.4566       -80.9999       0.0001       -51.4161       11.6085       2.6735       -0.0000       -0.3021       10.         0       95.4532       51.4566       -80.9999       0.0001       -51.4596       11.6034       2.6724       -0.0000       -0.3042       10.         0       0       -0.127       0.0000       -0.0227       0.1430       0.1435       0.0000       -0.0000       -0.0233       0.1423       0.1421       0.0000       -0.0255       0.14021       0.0000       -0.0255       0.14020       0.0117       -0.0127       0.0000       -0.0233       0.14123       0.0025       0.01423       0.0142       0.0007       -0.0233       0.14123       0.0006       -0.0235       0.14050       0.0007       -0.0235       0.1307       0.0042       0.0017       -0.0233       0.14123       0.00051       -0.0128       0.0000       -0.02247       0.1396<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                | 45.4540                     | 51.2658     | -84 0999    | 0.0001 | -51-2858   | 11-6242 | 2.6746         | -0.0000 | -0.2999 | 10.693 |
| L GE 4565 51.3727 -E0.6999 0.0001 -51.4727 11.6137 2.6735 -0.0000 -0.3020 10.<br>9 95.454 51.5161 -68.9999 0.0001 -51.4161 11.6085 2.6730 -0.0000 -0.3031 10.<br>10 65.4532 51.44566 -H0.9999 0.0001 -51.4596 11.6034 2.6724 -0.0000 -0.3032 10.<br>GHMAL DERIVATIVES AT SAME LOCATIONS<br>UNT N LENGTH DPDN DSDN DUDN DVDN DWDN DVELDN VFLDTN<br>1 0.0 -0.1249 -0.0127 0.0000 -0.0227 0.1430 0.1435 0.0000<br>2 0.0645 -0.1242 -0.0127 0.0000 -0.0233 0.1415 0.1429 0.0000<br>3 0.0669 -0.1220 -0.0128 0.0000 -0.0235 0.1406 0.1412 0.0007<br>4 0.1364 -0.1220 -0.0128 0.0000 -0.0235 0.1406 0.1412 0.0025<br>5 0.1735 -0.1219 -0.0128 0.0000 -0.0238 0.1399 0.1397 0.0042<br>5 0.0173 -0.1210 -0.0128 0.0000 -0.0244 0.1382 0.1389 0.0001<br>7 0.2607 -0.1205 -0.0128 0.0000 -0.0227 0.1375 0.1381 0.0061<br>8 0.3042 -0.1197 -0.0128 0.0000 -0.0223 0.1361 0.1386 0.0079<br>10 0.3911 -0.1173 -0.0128 0.0000 -0.0225 0.1366 11.7583 2.6772 -0.0163 -0.2205<br>10 0.3911 -0.1173 -0.0128 0.0000 -0.0224 0.1362 0.1368 0.0079<br>10 0.3911 -0.1173 -0.0128 0.0000 -0.0225 0.1361 0.1368 0.0079<br>10 0.3911 -0.1173 -0.0128 0.0000 -0.0255 0.1361 0.1368 0.0079<br>10 0.3911 -0.1173 -0.0128 0.0000 -0.0255 0.1361 0.1368 0.0079<br>10 0.3911 -0.1173 -0.0128 0.0000 -0.0255 0.1367 -0.01657 -0.2065 10.2060<br>10 0.3911 -0.1173 -0.0128 0.0000 -0.0255 0.1361 0.1368 0.0079<br>10 0.3954532 51.4052 -65.43375 4.0690 -51.1265 11.7559 2.6762 -0.0157 -0.2065 10.206<br>10 0.0005 11.3162 -65.43375 4.0690 -51.1265 11.7599 2.6762 -0.0157 -0.2065 10.206<br>5 95.4580 51.4062 -65.43375 4.0690 -51.1265 11.7732 2.6774 -0.0160 -0.2997 10.207<br>5 95.4580 51.4060 -51.4317 4.0690 -51.2028 11.7737 2.6774 -0.0128 -0.0146 -0.2997 10.207<br>5 95.4580 51.4060 -51.4079 4.0690 -51.2029 11.7721 2.6740 -0.0129 -0.3014 10.2090 10.207<br>5 95.4580 51.4060 -51.4439 4.0690 -51.3292 11.7721 2.6740 -0.0129 -0.3014 10.202905 10.207<br>10 95.4535 51.6561 51.5714 -85.4452 4.06                                                                                                                                                                              | 7                | 95.4565                     | 51.3293     | -64-9994    | 0.0001 | -51.3293   | 11.6189 | 2.6741         | -0.0000 | -0.3010 | 10.699 |
| 9       05.4542       51.4151       -89.9999       0.0001       -51.4151       11.6085       2.6730       -0.0000       -0.3031       10.         10       95.4532       51.4566       -89.9999       0.0001       -51.4596       11.6034       2.6724       -0.0000       -0.3042       10.         0.0HAL DERIVATIVES AT SAME LOCATIONS       0.0001       -0.0227       0.1430       0.1435       0.0000       -0.3042       10.         1       0.0       -0.1249       -0.0127       0.0000       -0.0227       0.1430       0.1435       0.0000       -0.0001         2       0.04635       -0.1242       -0.0127       0.0000       -0.0233       0.1415       0.1429       0.0001       -0.0127       0.0000       -0.0233       0.1415       0.0001       -0.0234       0.1397       0.0042       0.0042       0.0042       0.0042       0.0042       0.0042       0.0042       0.0042       0.0004       0.0247       0.1361       0.0069       0.0042       0.0004       0.0253       0.1361       0.0069       0.0051       0.0051       0.0042       0.0051       0.0051       0.0051       0.0051       0.0051       0.0051       0.0051       0.0053       0.1361       0.0069       0.0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ÷                | 45.4556                     | 51.3727     | -80.0000    | 0.0001 | -51.3727   | 11-6137 | 2.6735         | -0.0000 | -0.3020 | 10.705 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ü                | 95.4544                     | 51.4161     | -89,0990    | 0.0001 | -51-4161   | 11.6085 | 2.6730         | -0-0000 | -0.3031 | 10.711 |
| DHMAL DERIVATIVES AT SAME LOCATIONS         UINT       N LENGTH       DPDN       DSDN       DUDN       DVDN       DWDN       DVELDN       VFLDTN         1       0.0       -0.1242       -0.0127       0.0000       -0.0227       0.1430       0.1435       0.0000         2       0.0165       -0.1242       -0.0127       0.0000       -0.0230       0.1423       0.1429       0.0000         3       0.0165       -0.1226       0.0000       -0.0235       0.1412       0.0001         4       0.1304       -0.1226       0.0127       0.0000       -0.0235       0.1405       0.0001         5       0.1736       -0.1219       -0.0128       0.0000       -0.0238       0.1399       0.1405       0.0034         6       0.2173       -0.1219       -0.0128       0.0000       -0.0241       0.1381       0.0060         7       0.2607       -0.1285       0.0000       -0.0244       0.1382       0.1374       0.00060         9       0.3476       -0.1197       -0.0128       0.0000       -0.0250       0.1367       0.1374       0.00060         9       0.3911       -0.1286       0.0000       -51.0686       11.7583 <t< td=""><td>10</td><td>95.4532</td><td>51.4596</td><td>-89.9999</td><td>0.0001</td><td>-51.4596</td><td>11.6034</td><td>2.6724</td><td>-0.0000</td><td>-0.3042</td><td>10.717</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10               | 95.4532                     | 51.4596     | -89.9999    | 0.0001 | -51.4596   | 11.6034 | 2.6724         | -0.0000 | -0.3042 | 10.717 |
| ÚINT       N LENGTH       DPDN       DSDN       DUDN       DVDN       DWDN       DVELDN       VFLDTN         1       0.0       -0.1249       -0.0127       0.0000       -0.0227       0.14330       0.14355       0.00000         2       0.04355       -0.1242       -0.0127       0.0000       -0.02230       0.1423       0.1429       0.00007         3       0.0669       -0.1220       -0.0128       0.0000       -0.02235       0.1415       0.1412       0.0007         4       0.1270       -0.0128       0.0000       -0.02235       0.1406       0.1412       0.0025         5       0.1736       -0.1210       -0.0128       0.0000       -0.02241       0.13999       0.1405       0.00034         6       0.2173       -0.1205       0.0000       -0.02241       0.13822       0.1389       0.0060         7       0.5070       -0.1173       -0.0128       0.0000       -0.02247       0.1375       0.1381       0.00669         9       0.3476       -0.1173       -0.0129       0.0000       -5.0253       0.1361       0.1368       0.0079         10       0.3911       -0.1173       -0.0129       0.0000       -5.10666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OHMAL            | DERIVATIVES                 | AT SAME LOO | ATIONS      |        |            |         |                |         |         | •      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ÚINT             | N LENGTH                    | DPDN        | D SDN       | DUDN   | DVDN       | DWDN    | DVELDN         | VELDIN  |         |        |
| $\frac{2}{3} \begin{array}{c} 0.0435 \\ 0.0435 \\ -0.1233 \\ 0.0649 \\ -0.1233 \\ -0.1204 \\ -0.1226 \\ -0.0128 \\ 0.0000 \\ -0.0235 \\ 0.1415 \\ 0.1421 \\ 0.0017 \\ -0.0017 \\ -0.0017 \\ -0.0128 \\ 0.0000 \\ -0.0235 \\ 0.1406 \\ 0.1412 \\ 0.0025 \\ 0.1405 \\ 0.0034 \\ -0.1405 \\ 0.0034 \\ -0.1210 \\ -0.0128 \\ 0.0000 \\ -0.0241 \\ 0.1399 \\ 0.1397 \\ 0.0005 \\ -0.0247 \\ 0.1397 \\ 0.0005 \\ -0.0244 \\ 0.1399 \\ 0.1397 \\ 0.0005 \\ -0.0244 \\ 0.1395 \\ 0.1397 \\ 0.0005 \\ -0.0051 \\ -0.0051 \\ -0.0000 \\ -0.0244 \\ 0.1395 \\ 0.1374 \\ 0.0069 \\ -0.0250 \\ 0.1367 \\ 0.1374 \\ 0.0069 \\ -0.0250 \\ 0.1361 \\ 0.1368 \\ 0.0079 \\ -0.0253 \\ 0.1361 \\ 0.1368 \\ 0.0079 \\ -0.0253 \\ 0.1361 \\ 0.1368 \\ 0.0079 \\ -0.0253 \\ 0.1361 \\ 0.1368 \\ 0.0079 \\ -0.0253 \\ 0.1361 \\ 0.1368 \\ 0.0079 \\ -0.0253 \\ 0.1361 \\ 0.1368 \\ 0.0079 \\ -0.0253 \\ 0.1361 \\ 0.1368 \\ 0.0079 \\ -0.0253 \\ 0.1361 \\ 0.1368 \\ 0.0079 \\ -0.0253 \\ 0.1361 \\ 0.1368 \\ 0.0079 \\ -0.0253 \\ 0.1361 \\ 0.1368 \\ 0.0079 \\ -0.0253 \\ 0.1361 \\ 0.1368 \\ 0.0079 \\ -0.0163 \\ -0.2945 \\ 10.000 \\ -0.0253 \\ 0.1361 \\ 0.1368 \\ 0.0079 \\ -0.0163 \\ -0.2945 \\ 10.000 \\ -0.0295 \\ 0.0015 \\ -0.0163 \\ -0.2956 \\ 10.000 \\ -0.0295 \\ 10.000 \\ -0.0253 \\ 0.1361 \\ 0.1368 \\ 0.0079 \\ -0.0163 \\ -0.2945 \\ 10.000 \\ -0.0295 \\ 0.0151 \\ -0.0163 \\ -0.2965 \\ 10.000 \\ -0.0295 \\ 0.0151 \\ -0.0163 \\ -0.2965 \\ 10.000 \\ -0.0295 \\ 0.0151 \\ -0.0151 \\ -0.2965 \\ 10.000 \\ -0.0295 \\ 0.0151 \\ -0.0151 \\ -0.2965 \\ 10.000 \\ -0.0295 \\ 0.0151 \\ -0.0151 \\ -0.2965 \\ 10.000 \\ -0.0295 \\ 0.0151 \\ -0.0151 \\ -0.2965 \\ 10.000 \\ -0.0295 \\ -0.0151 \\ -0.0151 \\ -0.2965 \\ 10.000 \\ -0.0295 \\ -0.0151 \\ -0.0140 \\ -0.2996 \\ 10.0000 \\ -0.0295 \\ -0.0151 \\ -0.0140 \\ -0.2996 \\ 10.0000 \\ -0.0295 \\ -0.0151 \\ -0.0140 \\ -0.2966 \\ 10.0000 \\ -0.0295 \\ -0.0151 \\ -0.0140 \\ -0.2966 \\ 10.0000 \\ -0.0295 \\ -0.0151 \\ -0.0140 \\ -0.2996 \\ 10.0000 \\ -0.0295 \\ -0.0112 \\ -0.0128 \\ -0.0128 \\ -0.0128 \\ -0.0128 \\ -0.0128 \\ -0.0128 \\ -0.0128 \\ -0.0128 \\ -0.0140 \\ -0.2966 \\ 10.0000 \\ -0.0295 \\ -0.0118 \\ -0.0014 \\ -0.0029 \\ -0.0118 \\ -0.0002 \\ -0.0014 \\ -0.0029 \\ -0.0118 \\ -0.0028 \\ -0.00128 \\ -0.0014 \\ -0.00129 \\ -0.0014 \\ -0.0029 \\ -0.0014 \\ -0.0028 \\$ | 1                | 0.0                         | -0.1249     | -0.0127     | 0.0000 | -0.0227    | 0.1430  | 0.1435         | 0.0000  |         |        |
| 3       0.0869       -0.1233       -0.0127       0.0000       -0.0233       0.1415       0.1421       0.0017         4       0.1304       -0.1226       -0.0128       0.0000       -0.0235       0.1406       0.1405       0.0024         5       0.1736       -0.1219       -0.0128       0.0000       -0.0238       0.1399       0.1405       0.0034         6       0.2173       -0.1210       -0.0128       0.0000       -0.0244       0.1381       0.1387       0.0042         7       0.2607       -0.1186       -0.0128       0.0000       -0.0247       0.1375       0.1381       0.0060         9       0.3476       -0.1186       -0.0129       0.0000       -0.0253       0.1361       0.1368       0.0079         10       0.3911       -0.1173       -0.0129       0.0000       -0.0253       0.1361       0.1368       0.0079         10       0.3911       -0.1173       -0.0129       0.0000       -51.0666       11.7583       2.6772       -0.0163       -0.2945       10.4         2       95.4628       51.2753       -65.4229       4.0690       -51.1555       11.7478       2.6766       -0.0163       -0.2966       10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                | 0.0435                      | -0.1242     | -0.0127     | 0.0000 | -0.0230    | 0.1423  | 0.1429         | 0.0008  |         |        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                | 0.0869                      | -0.1233     | -0.0127     | 0.0000 | -0.0233    | 0.1415  | 0.1421         | 0.0017  |         |        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ă                | 0.1304                      | -0.1226     | -0.0128     | 0.0000 | -0.0235    | 0.1406  | 0.1412         | 0.0025  |         |        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                | 0.1736                      | -0.1219     | -0.0128     | 0.0000 | -0.0238    | 0.1399  | 0-1405         | 0.0034  |         |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ь                | 0.2173                      | -0.1210     | -0.0128     | 0.0000 | -0.0241    | 0.1391  | 0.1397         | 0.0042  |         |        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                | 0.2607                      | -0.1205     | -0.0128     | 0.0000 | -0.0244    | 0.1382  | 0.1389         | 0.0051  |         |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>.</b> H       | 0.3042                      | -0.1197     | -0.0128     | 0.0000 | -0.0247    | 0.1375  | 0.1381         | 0.0060  |         |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                | 0.3476                      | -0.1186     | -0.0128     | 0.0000 | -0.0250    | 0.1367  | 0.1374         | 0.0069  |         |        |
| STREAMLINE       2 $T$ THFTA (ON BUDY) = -85.4220 DEG         DINT       Z       R       THFTA       X       Y       P       S       U       V       W         1       95.4640       51.2321       -85.4220       4.0890       -51.0686       11.7583       2.6772       -0.0163       -0.2945       10.4         2       95.4628       51.2753       -85.4229       4.0890       -51.1120       11.7530       2.6767       -0.0163       -0.2945       10.4         3       95.4616       51.3186       -85.4296       4.0890       -51.1555       11.7478       2.6762       -0.0157       -0.2965       10.4         4       95.4604       51.3186       -85.4375       4.0890       -51.1555       11.7478       2.6762       -0.0146       -0.2997       10.4         5       95.4592       51.4052       -85.4375       4.0890       -51.2424       11.7374       2.6751       -0.0140       -0.2990       10.4         6       95.4580       51.4918       -85.44375       4.0890       -51.2858       11.7322       2.6745       -0.0134       -0.3002       10.4         7       95.4550       51.5351       -85.4490       4.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10               | 0 • 391 1                   | -0.1173     | -0.0129     | 0.0000 | -0.0253    | 0.1361  | 0.1368         | 0.0079  | •       |        |
| UINTZPSUVW195.4640 $51.2321$ $-85.4220$ $4.0890$ $-51.0686$ $11.7583$ $2.6772$ $-0.0163$ $-0.2945$ $10.4$ 295.4628 $51.2753$ $-65.4259$ $4.0890$ $-51.1120$ $11.7530$ $2.6767$ $-0.0157$ $-0.2965$ $10.4$ 395.4616 $51.3186$ $-85.4296$ $4.0890$ $-51.1555$ $11.7478$ $2.6762$ $-0.0157$ $-0.2965$ $10.4$ 495.4604 $51.3020$ $-85.4375$ $4.0890$ $-51.1999$ $11.7478$ $2.6756$ $-0.0146$ $-0.2979$ $10.4$ 595.4592 $51.4052$ $-85.4375$ $4.0890$ $-51.22658$ $11.7374$ $2.6751$ $-0.0146$ $-0.2990$ $10.4$ 695.4568 $51.4918$ $-85.4452$ $4.0890$ $-51.22658$ $11.7322$ $2.6745$ $-0.0134$ $-0.3002$ $10.4$ 695.45568 $51.5351$ $-85.4452$ $4.0890$ $-51.3292$ $11.7271$ $2.6740$ $-0.0129$ $-0.3014$ $10.466$ 695.45568 $51.5351$ $-85.4529$ $4.0890$ $-51.44595$ $11.7720$ $2.6723$ $-0.0129$ $-0.3026$ $10.466$ 99.5.4556 $51.5351$ $-85.4529$ $4.0890$ $-51.4595$ $11.7119$ $2.6723$ $-0.0118$ $-0.3026$ $10.466$ 1095.4552 $51.6217$ $-65.4559$ $4.0890$ $-51.4595$ $11.7119$ $2.6723$ $-0.0112$ $-0.3050$ $10.472$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RUM ST<br>T THET | TREAMLINE 2<br>TA (ON BUDY) | = -85.422   | Ó DEG       |        |            |         |                |         |         |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UINT             | Z                           | R           | THETA       | ×      | . <b>Y</b> | Р       | `s             | U       | v       | W      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i,               | 95.4640                     | 51.2321     | -85 .4220   | 4.0890 | -51.0686   | 11.7583 | 2.6772         | -0.0163 | -0.2945 | 10.65  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                | 95+4628                     | 51.2753     | -85.4259    | 4.0890 | -51-1120   | 11.7530 | 2.6767         | -0.0157 | -0.2956 | 10.65  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                | 95.4616                     | 51.3186     | -85 +4 298  | 4.0890 | -51+1555   | 11.7478 | 2.6762         | -0.0151 | -0.2967 | 10-66  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                | 95.4604                     | 51.3620     | -85 .4337   | 4.0890 | -51.1989   | 11.7425 | 2.6756         | -0.0146 | -0.2979 | 10.67  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                | 95.4592                     | 51.4052     | -85 •4 375  | 4.0890 | -51.2424   | 11.7374 | 2.6751         | -0.0140 | -0.2990 | 10.67  |
| 7       95+4568       51+4918       -85+4452       4+0P90       -51+3292       11+7271       2+6740       -0+0129       -0+3014       10+         8       95+4556       51+5351       -85+4490       4+0890       -51+3727       11+7220       2+6734       -0+0123       -0+3026       10+         9       95+4544       51+5784       -85+4592       4+0690       -51+4161       11+7169       2+6723       -0+0118       -0+3038       10+         10       95+4532       51+6217       -65+4567       4+0890       -51+4595       11+7119       2+6723       -0+0112       -0+3050       10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                | 95.4580                     | 51.4466     | -85.4414    | 4.0890 | -51.2858   | 11.7322 | 2.6745         | -0.0134 | -0.3002 | 10.68  |
| 6         95.4556         51.5351         -85.4490         4.0890         -51.3727         11.7220         2.6734         -0.0123         -0.3026         10.4           9         95.4544         51.5784         -85.4529         4.0690         -51.4161         11.7169         2.6729         -0.0118         -0.3038         10.4           10         95.4532         51.6217         -65.4567         4.0890         -51.4595         11.7119         2.6723         -0.0112         -0.3050         10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                | 95+4568                     | 51.4918     | -85 .4452   | 4.0890 | -51.3292   | 11.7271 | 2.6740         | -0.0129 | -0.3014 | 10.68  |
| 9 95+4544 51+5784 -85+4529 4+0690 -51+4161 11+7169 2+6729 -0+0118 -0+3038 10+4<br>10 95+4532 51+6217 -65+4567 4+0890 -51+4595 11+7119 2+6723 -0+0112 -0+3050 10+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                | 95.4556                     | 51.5351     | -85.4490    | 4.0890 | -51.3727   | 11.7220 | 2.6734         | -0.0123 | -0.3026 | 10.69  |
| 10 95+4532 51+6217 -65+4567 4+0890 -51+4595 11+7119 2+6723 -0+0112 -0+3050 10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                | 95-4544                     | 51.5784     | -85.4529    | 4.0690 | -51.4161   | 11.7169 | 2.6729         | -0-0118 | -0.3038 | 10.69  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0Ľ               | 95.4532                     | 51.6217     | -65 •4 56 7 | 4.0890 | -51.4595   | 11.7119 | .2 .6723       | -0.0112 | -0.3050 | 10.70  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                             |             |             |        |            |         |                |         |         |        |

FROM CUT 1 AT Z = 95.4640 TOTAL NORMAL LENGTH = 0.391078

VALUES ALONG NORMAL TO HODY ...

PSEUDO STREAM SURFACE DATA

NORMAL STREAM SURFACE CALQULATION BEGINS USING SIMEN COEFFICIENT OF VISCOSITY = 0,117000E-03

.

### SONIC BOOM DATA

FREE STREAM MACH ND. = 26.1000 ANGLE OF ATTACK = 30.0000 GAMMA = 1.1200 STARTING AT Z = 50.0000

DATA TO BE FOUND ON CYLINDER OF RADIUS = 250.0000 AT 40 EVENLY DISTRIBUTED POINTS OUTPUT EVERY 10 DATA PLANES (COMPUTATIONAL STEPS)

. , .**!** 

| AT  | STEP | 700     |    |
|-----|------|---------|----|
| Z = | 0.   | 660402E | 03 |

| INDEX | нс       | P        | S           | U       | v        | W       |
|-------|----------|----------|-------------|---------|----------|---------|
| 1     | -1.5708  | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| 2     | -1.4902  | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| 3     | -1.4097  | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| 4     | -1.3291  | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| 5     | -1.2486  | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| ·· 6  | -1.16.80 | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| 7     | -1.0875  | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| 8     | -1.0069  | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| : 9   | -0.9264  | 1.0000   | 0.0         | 0.0     | 13.8108  | 23,9210 |
| 10    | -0.8458  | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| 11    | -0.7653  | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| 12    | -0.6847  | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| 13    | -0.6042  | 1.0000   | 0.0         | 0.0     | 13-8108  | 23.9210 |
| 14    | -0.5236  | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| 15    | -0.4430  | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| 16    | -0.3625  | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| 17    | -0.2819  | . 1.0000 | 0.0         | 0.0     | 1.3.8108 | 23.9210 |
| 18    | -0.2014  | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| 19    | -0-1208  | 1.0000   | 0.0         | 0.0     | 13.0100  | 23.9210 |
| 20    | -0.0403  | 1.0000   | 0.0         | 0.0     | 13.0100  | 23.9210 |
| 22    | 0.1208   |          | 0.0         | 0.0     | 13 6100  | 23.9210 |
| 27    | 0.2014   | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.0210 |
| 23    | 0.2819   | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.0210 |
| - 25  | 0.3625   | 1.0000   |             |         | 13-8108  | 23.9210 |
| 26    | 0.4430   | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| 27    | 0.5236   | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| 28    | 0.6042   | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| 29    | 0.6847   | 1.0000   | 0.0         | 0.0     | 13.8108  | 23.9210 |
| 30    | 0.7653   | 8.6333   | 0.8962      | 2.7111  | 12.4647  | 24.3062 |
| 31    | 0.8458   | 4.6277   | 1.6488      | 1.2488  | 10.7615  | 23.4038 |
| 32    | 0.9264   | 2.6368   | 2.0147      | -0.0347 | 10.1836  | 23.0840 |
| 33    | 1.0069   | 1.6773   | 2.2607      | -1.1147 | 9.8309   | 22.3604 |
| 34    | 1.0875   | 1.2045   | 2 • 4 3 8 7 | -2.2003 | 9.5024   | 21.4749 |
| 35    | 1.1680   | 0.9108   | 2.5899      | -3.2451 | 9.0350   | 20.5599 |
| 36    | 1.2486   | 0.7451   | 2.7254      | -4.1283 | 8.3530   | 19.6477 |
| 37    | 1.3291   | 0.7149   | 2.8538      | -4.6716 | 7.3395   | 19.0988 |
| 38    | 1.4097   | 1.9142   | 3.0574      | -1.3095 | 4.5444   | 18.7060 |
| 39    | 1.4902   | 2.7432   | 3.2551      | -1.3244 | 3.9880   | 18.2131 |
| 40    | 1.5708   | 2.5597   | 3.3075      | -0.0001 | 3.7832   | 18.4587 |

### Figure 22 - SONIC BOOM DATA CYLINDER OUTPUT

#### STORAGE REQUIREMENTS AND COMPUTER TIME

### STORAGE REQUIREMENTS AND COMPUTER TIME FOR QUICK

Using the IBM G-compiler, QUICK requires approximately  $128K_{10}$  bytes of core to compile ( $\approx 40K_8$  words), and  $176K_{10}$  bytes to execute ( $\approx 54K_8$  words). CDC requirements may somewhat exceed the figures in parentheses since CDC machines do not use half-word instructions and IBM machines do.

These core requirements are true with the code dimensioned to allow a maximum of:

10 arcs pre-cross section (maximum value of  $J^*$ ).

10 segments per body line model (maximum value of N\*)

10 cross-sectional models (maximum value of K\*)

25 body line models (maximum value of M\*)

Of course, these may be adjusted if required.

QUICK run time varies greatly with the user requested output options. On the IBM 370/168, a sample run for a simple  $10^{\circ}$  cone with afterbody, exercising modes 1, 2, 3, 4 and 5 at four x-stations each, nineteen (19) circumferential points per station in mode 2, and seven circumferential points per station in modes 4 and 5 required approximately 30 cpu seconds (of which, less than a third would be attributable to the initial defining and checking tasks). On a more complex vehicle, exercising only mode 2, assembly of the model and output of data for thirteen cross-sectional stations, using theta increments of one degree (181 points), required approximately 20 cpu seconds.

\*Each dimensioned variable in QUICK is defined in the Symbol list for QUICK in terms of these integers, unless otherwise specified.

#### STORAGE REQUIREMENTS AND COMPUTER TIME FOR STEIN

The storage used in STEIN is divided, of course, between logic and variables. Using fixed dimensions at a maximum grid of 40 x 50 (which could be required for very complex vehicles) the core needed to store the variables is  $180K_{10}$  bytes (on the IBM 370/168). The core required for logic without overlay is  $400K_{10}$ . So that  $580K_{10}$  bytes of computer core is needed to run STEIN in this configuration. When STEIN is overlayed, the core required for the logic becomes  $160K_{10}$  bytes. And if the dimensions of the variables were made to vary with the problem the expression for core required for this part of the code would be (NDIMEN x MDIMEN) x 17 + MDIMEN x 70 + NDIMEN x 40 + 50K\_{10} where NDIMEN is the number of points in the radial direction and MDIMEN is the number of points in the radial direction. For simple geometries with small shock layers these can be as small as 10 x 10.

Presently the code is dimensioned to allow a maximum of:

40 grid points in the radial direction (maximum value of N\*) 50 grid points in the circumferential direction (maximum value of  $M^*$ )

4 regions in the radial direction (maximum value of L\*)

4 regions in the circumferential direction (maximum value of I\*)

The computer time required by STEIN depends in general upon length of vehicle and free stream condition. One of the longest running calculations was that of a shuttle orbiter flying at  $M_{\infty} = 10$  and an angle of attack of  $30^{\circ}$ . This calculation took about 2 hours on the CDC 6600. Some of the reasons for this running time are:

 At large angle of attack the shock layer on top of the body becomes large (requiring 25 mesh points in the radial direction for accuracy). These mesh points are also across the

\*Each dimensioned variable in STEIN, STRMBL and BOOM is defined in the appropriate symbol list in terms of these integers, unless otherwise specified.

shock layer on the bottom of the body which makes the physical distance between mesh points small and caused DZ (stable marching step) to become very small. With this small value, of DZ it takes 3000 steps to compute the entire vehicle.

(2) On blunt nose vehicles the body entropy is very large causing small Mach numbers on the body. As the local axial Mach number approaches one, DZ approaches zero. On the forebody of blunt nose vehicles this condition exists causing the calculation to slow down there.

The computer time required to compute the flow field about an H.R.A. configuration at  $M_{\infty} = 6$  and  $\alpha = 0$ , was about 1 hour of CDC 6600 time. The same number of mesh points at each axial station were computed in this case and the Shuttle orbiter case but the step size DZ was doubled because of the small angle of attack and the low body entropy. Finally, the time required to compute the flow field about a simple slab delta wing ( $M_{\infty} = 9.6$  and  $\alpha = 30^{\circ}$ ) from the nose to 15 nose radii down stream was about 15 min.

The computer time/mesh points depend significantly upon two parameters:

- (1) Vehicle geometry (Shuttle orbiter or simple slab delta wing)
- (2) Gas model used in thermodynamics (ideal gas or chemical equilibrium)

There is also a slight dependence on the number of imbedded shocks in the flow field, but this comparison is hard to make since one cannot run the same vehicle with and without imbedded shocks.

STORAGE REQUIREMENTS AND COMPUTING TIMES FOR STRMBL

With the IBM 370/168 H-compiler, STRMBL requires roughly 240K<sub>10</sub> bytes of core to compile ( $\approx 7^{4}K_{8}$  words), and approximately  $35^{4}K_{10}$  bytes ( $\approx 131K_{8}$  words) to execute.

Approximately eight cpu minutes were required to run STRMBL on the IBM 370/168 for an 89B shuttle calculation of about 225 computational steps (from Z = 50 to Z = 790; this piece of the flow field computation required approximately 22 cpu minutes.)

## STORAGE REQUIREMENTS AND COMPUTING TIMES FOR BOOM

BOOM requires (for the IBM G-compiler) approximately  $122K_{10}$  bytes to compile ( $\approx 37K_8$  words), and  $190K_{10}$  bytes to execute ( $\approx 60K_8$  words).

In the same shuttle calculation as above, BOOM required about 3.6 cpu minutes.

PART 2 PROGRAMMER-ORIENTED DOCUMENTATION

## OVERALL FLOW OF LOGIC

QUICK

consists of three basic sets of routines with distinct functions. The first of these reads the input data and begins to assemble the mathematical model - this is the defining portion of QUICK. The second set of routines perform some logical checking of the math model, and correlates it to the input data - this is the checking portion of QUICK. Included in this set is a routine which reads user requests to exercise the math model, and calls upon the third and remaining portion of QUICK - the interrogating or exercising section, called SUB-QUICK in this report; see Fig. 23.

utilizes a finite difference marching technique, so that given the flow field at one axial station z the code computes the flow field at z = z + Dz. This process is repeated until the desired station is reached. Figure 24 shows a flow chart of the overall logic used in STEIN.

STRMBL

STEIN

performs two basic functions in two nearly independent steps. The first step reads all of the flow field data planes from tape and traces streamlines for the length of the vehicle in this run. Flow variables are evaluated and output along these streamlines. The link with the second step is the establishing of the cutting planes at which body surface normals will be taken to determine the pseudo-stream-surfaces (p-s-s). The data tape is rewound and control transferred to the second portion of the code which, reading through the entire data tape a second time, uses SUB-QUICK to establish the body normals and then evaluate the flow variables and their derivatives in the constructed p-s-s. An end-of-file (EOF) mark on the tape terminates the job.

<u>BOOM</u> simply reads through the same flow field data tape used by STRMBL, and interpolates for flow variables on the data cylinder every JA data planes. (JA is a user input.) An end-of-file (EOF) mark on the tape terminates the job.







83

•

The only code we found it necessary to overlay was STEIN. It was found that the core requirements could be reduced by 50% using a simple overlay.

The routines in the root segment (No. 1) (always in core) are: STEIN (main routine), TIPSUR, UPDATE, CSGEOM, BLGEOM, CSCALC, IMAP, MAP, BODY, NINTER, MINTER, PRAN, RANK, GAS, MOLEH, MOLES, EXPAN, OBSHK, SHTEST, SHTIP, VDOTV, MDOTV, THELIM, CSMINT, CSCALC, CURVES, CSMSET, CSMCOE, CSMFLT

| egment 2: | INIT, GEOMIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                       |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3         | BOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                       |
| . 4       | SHARP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                       |
| 5         | FREEZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ":                                                                                                                                                                                                                                                                                                                    |
| 6.        | NMESH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                       |
| 7         | ENTRLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| 8         | SHMOVE and the second state of the second stat |                                                                                                                                                                                                                                                                                                                       |
| 9         | MMESH and the second states of |                                                                                                                                                                                                                                                                                                                       |
| 10        | OUTPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| 11        | BLOUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                       |
| 12        | POINTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| 13        | COEF' The second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                       |
| 14        | NSHOCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| 15        | MSHOCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| 16,       | MREGIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| 17        | CFL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                       |
| 18        | SHRPIN, SHPEDG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                       |
| 19        | ARCONT, AEROCF, KAREN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                       |
| 20        | NREGIO, INTSEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                       |
| 21        | MSURFA, MTEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                       |
| 22        | NSURFA, NTEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                       |
|           | egment 2:<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | egment 2: INIT, GEOMIN<br>3 BOUND<br>4 SHARP<br>5 FREEZ<br>6 NMESH<br>7 ENTRLA<br>8 SHMOVE<br>9 MMESH<br>10 OUTPUT<br>11 BLOUT<br>12 POINTS<br>13 COEF<br>14 NSHOCK<br>15 MSHOCK<br>16 MREGIO<br>17 CFL<br>18 SHRFIN, SHPEDG<br>19 ARCONT, AEROCF, KAREN<br>20 NREGIO, INTSEC<br>21 MSURFA, MTEST<br>22 NSURFA, MTEST |

# SUBROUTINE DESCRIPTIONS

ī

| SUBROUTINE DESCRIPTION FOR QUICK |                                                                                                                                                                                                                                                                                                                        |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| BLGEOM                           | assigns body line model values and derivatives to control point                                                                                                                                                                                                                                                        |  |  |
| •                                | coordinates.                                                                                                                                                                                                                                                                                                           |  |  |
| BLMCHK                           | correlates and checks the input data deck and the indices for                                                                                                                                                                                                                                                          |  |  |
|                                  | the generated body line math models.                                                                                                                                                                                                                                                                                   |  |  |
| BLMDEF                           | defines body line models from the input data.                                                                                                                                                                                                                                                                          |  |  |
| BLMSET                           | controls the determination values and first and second derivatives                                                                                                                                                                                                                                                     |  |  |
| 2 · · ·                          | for all body line models at a given x-station.                                                                                                                                                                                                                                                                         |  |  |
| CSCALC                           | computes radial position and derivatives for specified cross section model, arc, and $\theta'$ .                                                                                                                                                                                                                       |  |  |
| CSGEOM                           | is the main subroutine in the SUB-QUICK (look-up or exercising) portion of the QUICK system. It is called to establish $r' = f(\theta',x)$ . It calls appropriate subroutines to evaluate body line values and construct cross section geometry at a given x-station. It is used for all geometry model interrogation. |  |  |
| CSMCHK                           | correlates and checks the input data deck and the indices for the cross sectional math model.                                                                                                                                                                                                                          |  |  |
| CSMCOE                           | composes the equations which are to define the cross section geometry at a given station.                                                                                                                                                                                                                              |  |  |
| CSMDEF                           | logically defines the cross section models from the input data.                                                                                                                                                                                                                                                        |  |  |
| CSMFLT                           | creates control point definitions to permit the insertion of a smooth fillet between cross sectional arcs.                                                                                                                                                                                                             |  |  |
| CSMINT                           | locates user specified intersections between cross sectional arcs and adjusts their use-theta limits.                                                                                                                                                                                                                  |  |  |

- CSMSET sets up the control point coordinate arrays used to define the cross section geometry at a specified x-station.
- CURVES calculates values and first and second derivatives for individual curvé fits.
- DLOKUP is a simple dictionary look-up routine. It assigns an index to match an input name to a codeword list, but is not capable of adding new items to that list.
- DSETUP is an adapting dictionary look-up routine. New items are added to a codeword list, an index (counter) is returned for the codeword, and an indicator (INEW) is set equal to 1 when a new item is encountered.
- GEMCHK exercises the mathematical model at user request via MODE1, MODE2, etc.
- GEMOUT outputs the math model generated by the defining portions of QUICK (this is referred to as the QUICK intermediate data deck). Also ensures that all body lines required by a crosssectional model are defined for the range of that model.
- GEOMIN reads in the math model generated by the defining portion of QUICK and output by GEMOUT (the QUICK intermediate data deck).
- KRVDEF calculates coefficients for the various curve fits associated with body line math models.
- MDOTV performs matrix multiplication of a vector.
- MODE1 is called by GEMCHK to trace body line model values.

MODE2 is called by GEMCHK to create cross sectional cuts.

MODE3 is called by GEMCHK to examine the cross sectional modeling in the region about control points. Mode -3 plotting is transferred to MODE1 (multiple body line traces to create plan and profile views).

86 🖯

MODE4 is called by GEMCHK to exercise subroutine SLOPE and examine the numerically formed derivatives at various x-stations along traces at a constant value of  $\theta'$ .

MODE5 is called by GEMCHK to examine the surface unit normals.

MODE7 is called by GEMCHK to examine all defined arcs at a given x-station. This routine is used for plotting purposes only.

QUICK is the main routine. It sets the read and write units and controls the flow of the defining, checking, and exercising portions of the QUICK system.

SLOPE forms a numerical estimate of the first derivatives of a supplied set of points. It is used as an independent check on computed QUICK derivatives.

THELIM creates and controls use-theta arrays to establish continuity in the cross sectional model.

87

1.11

1.2. J. 1. <sup>2</sup>

VDOTV computes a vector dot product.

#### SUBROUTINE DESCRIPTION FOR STEIN

AEROCF performs the integration of pressure forces and moments on the body for aerodynamic coefficient calculations.

ARCONT controls the integration of pressure forces and moments on the body for aerodynamic coefficient calculations.

BLGEOM (This routine is used both in STEIN and QUICK, it is described in the section on QUICK routines.)

BLMSET (This routine is used both in STEIN and QUICK, it is described in the section on QUICK routines.)

BLOUT outputs the entire flow field on tape at every computational step, to be used by STRMBL and BOOM.

BODY computes the position (B(M)) of the body in the mapped space and its derivatives (BH(M) and BZ(M)). The body is defined in the physical space, in the routine BODY an iterative procedure is used to find the position of the body in the mapped space, and then BH(M) and BZ(M) are computed analytically.

BOUND computes the position and derivatives of all boundaries of the computational space (CC(M,L), CCY(M,L), CCZ(M,L), HCZ(N,I) and HCX(N,I) ) from their positions in the mapped space.

CFL computes the step size DZ that satisfies the Courant-Friedrichs-Lewy criterion for stability. It is called from the main routine once per step.

COEF computes the coefficients used in the conformal mappings and their derivatives. The positions of the top, bottom, and wing tip are transferred to COEF through common. These geometry variables are used to compute the coefficients of the mapping which are then stored in common.

CSCALC

LC (This routine is used both in STEIN and QUICK, it is described in the section on QUICK routines.)

- CSGEOM (This routine is used both in STEIN and QUICK, it is described in the section on QUICK routines.)
- CSMCOE (This routine is used both in STEIN and QUICK, it is described in the section on QUICK routines.)
- CSMFLT (This routine is used both in STEIN and QUICK, it is described in the section on QUICK routines.)
- CSMINT (This routine is used both in STEIN and QUICK, it is described in the section on QUICK routines.)
- CSMSET (This routine is used both in STEIN and QUICK, it is described in the section on QUICK routines.)
- CURVES (This routine is used both in STEIN and QUICK, it is described in the section on QUICK routines.)
- ENTRLA is used to compute, detect, and collapse the entropy layer surface. It is called in each level of the MacCormack scheme (LOOP = 0 and LOOP = 1). If IENTE is input as zero, control will return from ENTRLA immediately but if IENTE  $\neq 0$  for the points on the entropy layer surface which have already been detected (IENT(M) = 1) the position and dependent variables will be computed. When ENTRLA is called with LOOP = 1, after the dependent variables are computed, additional entropy layer points are looked for and all entropy layer points are tested to see which are to be collapsed (IENT(M) = 2) at the current station.

EXPAN computes the flow through a 2-D centered expansion corner. Given the upstream Mach number (XMl), GAMLO(N,M) and the flow deflection (DELTA). EXPAN will compute the conditions after the expansion (pressure ratio P2QP1, temperature ratio T2QT1, Mach number XM2 and the slope (BETA) of the first expansion wave).

 $n \rightarrow \infty$ 

FREEZ

is called at a station Z = ZFREEZ when the thermodynamics of the flow field is in equilibrium. In FREEZ an equivalent "frozen state" is computed at each mesh point, IGAS is set to 2 so that the thermodynamics of the flow is frozen from that station on. FREEZ is called, at most, once per vehicle.

- GAS relates all the thermodynamic variables for ideal gas (IGAS = 0), equilibrium air (IGAS = 1) and frozen gas (IGAS = 2). If IN = 1, P ( $ln p/p_{\infty}$ ) and S (entropy) are input; if IN = 2, P and H (enthalpy) are input; if IN = 3, S and H are input. GAS will compute GAMLO (N,M) and T(N,M) and then return if IOUT = 1. If IOUT  $\neq$  1, GAS will compute the temperature (THE) and the variable P,S or H that is not input in addition to GAMLO(N,M) and T(N,M).
- GEOMIN (This routine is used both in STEIN and QUICK, it is described in the section on QUICK routines.)
- IMAP is the inverse mapping subroutine. It uses X and Y (physical Cartesian coordinates in the Z = constant plane) to compute R and THE (polar coordinates in the mapped space). The index I indicates which value of the coefficients (gotten in common) are to be used -- those at Z for I = 1, those at Z + DZ for I = 0.
- INIT is used to initialize variables. In INIT all input data is read and then most variables are initialized. INIT is called only once per run.
- INTSEC is called from NREGIO when two wing shock type shock points intersect. In INTSEC the conditions behind the resulting shock are computed.
- KAREN computes the area of the discrete triangular facets and sets up the unit normals used to integrate pressure forces on the body.

is the mapping routine. It uses R and THE to compute X and Y (see description of IMAP) with the index I indicating at which value of Z the coefficients are to be used (as in IMAP). If ID = 0, X and Y are computed and control is returned. If ID = 1, the derivatives of the mapping, XR, YR, XZ, YZ, XH, YH ( $x_r$ ,  $y_r$ ,  $x_2$ ,  $y_2$ ,  $x_{\theta}$ ,  $y_{\theta}$ ) and RX, RY, RZ, HX, HY, HZ, ( $r_x$ ,  $r_y$ ,  $r_z$ ,  $\theta_x$ ,  $\theta_y$ ,  $\theta_z$ ) are also computed and returned in the argument list. In POINTS, for the body calculation, the second derivatives of the mapping are also needed, so that for ID = 2, RXR, RYR, RZR, HXR, HYR, RXH, RYH, RZH, HXH, HYH, HZH, RXZ, RYZ, RZZ, HXZ, HZZ ( $r_{xr}$ ,  $r_{yr}$ ,  $r_{zr}$ ,  $\theta_{xr}$ ,  $\theta_{yr}$ ,  $r_{x\theta}$ ,  $r_{y\theta}$ ,  $r_{z\theta}$ ,  $\theta_{x\theta}$ ,  $r_{x2}$ ,  $r_{y2}$ ,  $r_{z2}$ ,  $\theta_{x2}$ ,  $\theta_{y2}$ ,  $\theta_{z2}$ ) are computed and stored in common.

MDOTV (This routine is used both in STEIN and QUICK, it is described in the section on QUICK routines.)

MAP

- MINTER plays the same role as NINTER but for circumferential interpolation.
- MMESH is called at Z = ZMADD to add MDEL points in the circumferential direction. These points will be divided proportionately between all the regions in the circumferential direction.
- MOLEH uses curve fits of GAMLO(N,M), T(N,M), S(N,M) and the temperature as functions of P( $ln p/p_{\infty}$ ) and H (enthalpy) for air in equilibrium.
- MOLES uses an iteration to compute GAMLO(N,M), T(N,M), H and temperature (THE) from P and S for air in equilibrium.
- MREGIO shifts mesh points in the circumferential direction. There are no provisions for crossflow shocks intersecting.

MSHOCK serves the same purpose as NSHOCK but for crossflow shocks.

MSURFA serves the same purpose as NSURFA but for crossflow shocks and surfaces.

MTEST

serves the same purpose as NTEST but for crossflow shocks. Crossflow shock points started as infinitely weak shocks.

- NINTER is a general purpose interpolation routine. At some value of M, NINTER interpolates from an old mesh with NC(L) mesh points in LC regions onto a new mesh with NCN(L) points in LCN regions. The positions of the old shocks are C(M,L) and those of the new shocks are CN(M,L).
- NMESH is called at Z = ZNADD to add NDEL points in the radial direction. These points will be divided proportionately between all regions in the radial direction.
- NREGIO shifts mesh points in the radial direction as wing type shocks approach each other. When two wing type shocks are close enough to each other at some value of Y, they are intersected at that point, the outer shock being considered the resulting shock and the inner shock becoming an "arbitrary surface" at this point. When all the points on one shock intersect another, this shock is eliminated as a boundary.
- NSHOCK computes the high pressure side of the wing type shocks, including the bow shock. NSHOCK is called from the main routine in each level of the MacCormack scheme. After the interior points have been computed in level one of the MacCormack scheme NSHOCK uses the predicted values of the dependent variables on the low pressure side of the shock to integrate to a value of CZN(M,L). After level two of the MacCormack scheme the corrected values of the dependent variables on the low pressure side of the shock and CZN(M,L) compute in level one, are used to recompute the high pressure side of the shock. The bow shock is computed only in level one since the flow on its low pressure side is constant. The position and derivatives (CH(M, L) and CZ(M,L)) of the wing shock type surfaces are also computed in NSHOCK.

NSURFA is used to rearrange the mesh when wing type shocks and wing shock surfaces are first inserted in the flow field. This routine is called after a shock point has been detected; in it the arbitrary surface is initialized. A new grid is defined and the dependent variables are interpolated.

- NTEST detects wing type shock points. If Z is not between ZINSH(J)and Z2NSH(J), for some value of J, control is returned from NTEST. Once shock points are detected the initial jump conditions are gotten by extrapolating from either side and then CZN(M,L) and CHN(M,L) are computed.
- OBSHK serves the same purpose as EXPAN but for a 2-D wedge compression. Both OBSHK and EXPAN are used in the sharp leading edge wing calculation.
- OUTPUT outputs on unit IWRIT the dependent and independent variables at each output station. The user specifies ZWRIT1 (initial output station), DZWRIT (output interval) and ZWRIT2 (last output station). The user can also specify NSOUT and ZSOUT for additional output. The maximum number of steps between output stations is JA and this routine will be called if execution is terminated for any reason. When requested, aerodynamic coefficients are also output from this routine. OUTPUT also writes (on unit IPUNCH) the starting plane data for the next run at Z = ZEND or K = KA (only if IPUNCH > 0).
- POINTS

computes all the dependent variables at interior points, body points, and on the low pressure side of all shock waves. For the portion of the internal boundaries that are not shocks the dependent variables are set equal across them in POINTS. POINTS is called from the main routine for each level of the MacCormack integration scheme. In POINTS the body second derivatives BHH, BZZ, and BHZ are also computed.

computes the flow through a Prandtl-Meyer centered expansion for equilibrium or ideal gas. Given  $P(\ln \bar{p}/\bar{p}_{\infty})$  on either side of the expansion, the entropy (constant through the expansion) and the velocity in the plane of the fan (VN1) PRAN computes the change in flow direction DXNU.

PRAN

RANK

SHARP

. 1

computes the flow through a shock. Given VNl (velocity normal to the shock), GAMl (the value of GAMLO(N,M)), Pl  $ln(p/p_{\infty})$ , Sl (entropy), Tl( $p/\rho$ ), and Hl (enthalpy), all on the low pressure side of the shock, RANK computes these quantities on the high pressure side of the shock.

computes the exact solution for the flow over a sharp circular cone at zero angle of attack (with half cone angle CONE) (for attached shocks). It also give an approximate solution for sharp cones at small angle of attack. SHARP is called once per run only if ICASE is input as 1.

SHMOVE computes the positions and derivatives in the Z = constant plane of all shocks (crossflow and wing type). SHMOVE is called once per step from main. HN(N,M) is also computed here.

SHPEDG computes the body unit normal components at a given fuselage station (X) on counterclockwise first (ILOHI = 1) or last (ILOHI = 2) cross section arc ending or beginning with a control point at a specified angle (THE).

SHRPIN iterates to find the exact location of the start of a sharp edge. Then it sets up a call to SHPEDG to establish the body normals.

SHTEST is used in the initial setup for starting a sharp leading edge wing. In SHTEST the mesh is adjusted to accommodate a sharp leading edge shock in the wing plane or top or bottom symmetry plane.

- SHTIP calculates the flow variables behind a sharp leading edge wing. In SHTIP, given the conditions in front of the sharp tip, the conditions behind the expansion or compression at the tip are computed.
- STEIN is the main program of this code. It is used for control mainly. In STEIN the geometry test is generated, some initialization is performed, the marching loop is entered (i.e., ZN = Z + DZ) and finally, the routines that detect shocks or rearrange mesh points are called.
- THELIM (This routine is used both in STEIN and QUICK, it is described in the section on QUICK routines.)
- TIPSUR computes the position and derivatives (HSN(N,I), HSRN(N,I), and HSZN(N,I)) of the wing tip crossflow surface.
- UPDATE is called once in each level of the McCormack scheme to "update" the dependent and independent variables. In UPDATE the symmetry conditions (U(N,1) = U(N,MC(IC) + MREG(IC)) = 0 and CH(1,L) =CH(MC(IC) + MREG(IC),L) = 0) are also imposed.
- VDOTV

(This routine is used both in STEIN and QUICK, it is described in the section on QUICK routines.)

#### SUBROUTINE DESCRIPTION FOR STRMBL

BLDEL establishes the length of each line, in the direction of the body surface normal, which makes up the p-s-s. Currently this is an approximation for the boundary layer thickness on a flat

plate 
$$\delta = 5\sqrt[]{\frac{\sqrt{z}}{M\sqrt{\gamma}}} \approx 5 * z/\sqrt{\text{Rez.}}$$

BLGEOM (This routine is used both in STRMBL and QUICK, it is described in the section on QUICK routines.)

ta Bella

- BLMSET (This routine is used both in STRMBL and QUICK, it is described in the section on QUICK routines.)
- BRCKT examines the distribution of mesh points in the current data plane to determine those points which will bracket a specified location.
- BRCKTO examines the distribution of mesh points in the previous data plane to determine those points which will bracket a specified location.
- CSCALC (This routine is used both in STRMBL and QUICK, it is described in the section on QUICK routines.)
- CSGEOM (This routine is used both in STRMBL and QUICK, it is described in the section on QUICK routines.)
- CSMCOE (This routine is used both in STRMBL and QUICK, it is described in the section on QUICK routines.)
- CSMFLT (This routine is used both in STRMBL and QUICK, it is described in the section on QUICK routines.)
- CSMINT (This routine is used both in STRMBL and QUICK, it is described in the section on QUICK routines.)
- CSMSET (This routine is used both in STRMBL and QUICK, it is described in the section on QUICK routines.)

- CURVES (This routine is used both in STRMBL and QUICK, it is described in the section on QUICK routines.)
- DELTHE controls the determination of flow variables on a given streamline at the current station (Z), computes  $d\theta'_S/dz$  for the given streamline, integrates to find  $\theta'_S$  (circumferential location of the streamline) and  $S_{\eta}$  (arc length measured along the streamline), and determines  $r_S$  (radial position of the streamline).  $(\theta'_S, S_{\eta}, \text{ and } r_S \text{ at } Z + DZ)$ .
- FLINE is a simple function used for a line (where y = f(x)), determined from two distinct points, to calculate  $y^*$  at a specific  $x^*$ .
- GEOMIN (This routine is used both in STRMBL and QUICK, it is described in the section on QUICK routines.)
- INOUT initializes all I/O units.
- INTERH performs a simple, second order interpolation in M (circumferential direction) at a specified N.
- INTERR performs a simple, second order interpolation in N (radial direction) at a specified M.
- INTRH1 performs a simple, second order interpolation in M (circumferential direction) for variables only evaluated at the body (a function of M only).
- INTR2D performs a two dimensional, second order interpolation for quantities at a specified location.
- INTR3D performs a three dimensional interpolation for any variable. The z-location of the point of interest must lie between the previous and current data planes.
- LOCATE determines the location  $(z', r', \theta')$  of a given point lying along the body surface normal taken at a specified z and  $\theta'$ .
- MAIN2 is a subroutine, but acts as a second main program once STRMBL has established the z and  $\theta'$  locations at which body surface

normals are to be taken to establish the pseudo-stream-surfaces (p-s-s). The data tape is rewound just prior to entry into MAIN2, which then proceeds to search the flow field data, interpolating in three dimensions, and dynamically allocating storage to find, store, and output all quantities of interest in the p-s-s.

MDOTV

(This routine is used both in STRMBL and QUICK, it is described in the section on QUICK routines.)

NOUT gives printed output of flow variables in the pseudo-streamsurfaces (p-s-s) and forms numerical derivatives of these variables in the p-s-s and outputs them.

SOUT gives printed output of location and flow variable values for a given streamline.

STRMBL is the main routine. It reads data from cards and tape, calls the integrating and output routines, and sets up the stations at which the cuts will be taken for body surface normals to establish the pseudo-stream-surfaces.

THELIM (This routine is used both in STRMBL and QUICK, it is described in the section on QUICK routines.)

VDOTV (This routine is used both in STRMBL and QUICK, it is described in the section on QUICK routines.)

#### SUBROUTINE DESCRIPTION FOR BOOM

- BLGEOM (This routine is used both in BOOM and QUICK, it is described in the section on QUICK routines.)
- BLMSET (This routine is used both in BOOM and QUICK, it is described in the section on QUICK routines.)
- BOOM is the main routine. It reads data from cards and tape, calls the appropriate interpolation routines, and outputs the data cylinder computed quantities.
- BRCKTl examines the distribution of mesh points to determine those
  points which will bracket a specified location. An INDEX is
  returned to indicate that the point was found in the field
  (INDEX = 0), inside the body (INDEX = 1), or in the free stream
  outside the bow shock (INDEX = 2).
- CSCALC (This routine is used both in BOOM and QUICK, it is described in the section on QUICK routines.)
- CSGEOM (This routine is used both in BOOM and QUICK, it is described in the section on QUICK routines.)
- CSMCOE (This routine is used both in BOOM and QUICK, it is described in the section on QUICK routines.)
- CSMFLT (This routine is used both in BOOM and QUICK, it is described in the section on QUICK routines.)
- CSMINT (This routine is used both in BOOM and QUICK, it is described in the section on QUICK routines.)
- CSMSET (This routine is used both in BOOM and QUICK, it is described in the section on QUICK routines.)
- CURVES (This routine is used both in BOOM and QUICK, it is described in the section on QUICK routines.)
- FLINE is a simple function used for a line (where y = f(x)), determined from two distinct points, to calculate  $y^*$  at a specific  $x^*$ .

- GEOMIN (This routine is used both in BOOM and QUICK, it is described in the section on QUICK routines.)
- INOUT (This routine is used both in BOOM and STRMBL, it is described in the section on STRMBL routines.)
- INTERH performs a simple, second order interpolation in M (circumferential direction) at a specified N.
- INTERR performs a simple, second order interpolation in N (radial direction) at a specified M.
- INTR2D performs a two dimensional, second order interpolation for quantities at a specified location.
- MDOTV (This routine is used both in BOOM and QUICK, it is described in the section on QUICK routines.)
- THELIM (This routine is used both in BOOM and QUICK, it is described in the section on QUICK routines.)
- VDOTV (This routine is used both in BOOM and QUICK, it is described in the section on QUICK routines.)

## QUICK TREE DIAGRAM






Ŷ,

## STEIN TREE DIAGRAM (CONT'D)



**´**104

#### 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

## STEIN TREE DIAGRAM (CONT'D)



#### STRMBL TREE DIAGRAM



# BOOM TREE DIAGRAM



# G. Moretti and G. Bleich, Three-Dimensional Flow Around Blunt Bodies, AIAA J., 5, 1967.

)

# APPENDIX A

# A BRIEF CODE-ORIENTED USER'S GUIDE

FOR THE QUICK GEOMETRY SYSTEM

QUICK is a highly general geometry package based on library controlled mathematical modeling of cross sectional arcs and body lines. The mathematical models for the cross sections and the defining lines are taken together to provide a continuous analytic model of the surface geometry. Slopes, normals and all derivatives are therefore developed analytically. Of course, either discontinuous intersections or smooth fairings can be modeled and enforced in both the cross sections and the body lines.

QUICK generally works in two basic coordinate systems (x, y, z) and  $(x, r, \theta)$ ; see Figure Al. Data for modeling is input in Cartesian coordinates, while interrogations for exercising the models are performed in Cylindrical coordinates. Both of the coordinate systems are further subject to a translation in z. This is due to the necessary presence of a mapaxis, located in the symmetry plane, usually corresponding to the position of maximum half-breadth  $(y_{max})$ ; see Figure A2. The mapaxis is necessary to fulfill one of the basic constraints of the QUICK approach, which is: the radius (r) must be a single-valued function of the angle  $(\theta)$ . Figure A2 (b) obviously does not meet this constraint, while Figure A2 (c), with a properly defined mapaxis, does.

During the discussion of the use of QUICK, several terms will appear frequently, and as such, will be defined here:

- (1) <u>Cross section</u> standard definition; a planar cut through the vehicle normal to the FRL at a given x-station.
- (2) <u>Cross sectional model</u> mathematical abstraction of a cross section, using simple curves to represent arcs between specified control points.
- (3) <u>Control points</u> logically selected break or joining points between cross sectional arcs; initial and terminal points for defining each arc.

- (4) <u>Arc</u> a portion of one simple mathematical curve between two control points in cross section.
- (5) <u>Body lines</u> the defining lines of the vehicle geometry in plan and profile views; x-running control points given as y<sub>i</sub> = y<sub>i</sub>(x) and/or z<sub>i</sub> = z<sub>i</sub>(x).
- (6) <u>Body line model</u> mathematical abstraction of a body line, using simple curves to represent segments between specified match points.
- (7) <u>Match points</u> logically selected break or joining points between body line segments; initial and terminal points for defining each segment.
- (8) <u>Segment</u> a portion of one simple mathematical curve between two match points of a body line model.
- (9) <u>Component</u> same as an arc; usually considered to be a named portion of the vehicle geometry (e.g., a wing-upper-ellipse may be component WNGUPELL).

QUICK modeling is performed in terms of the basically independent logical cross section models and logical/mathematical body line models. The cross sections are defined purely in terms of the named component arcs and the named control points; see Figure A3 (a), which models the vehicle shown in Figure A2 (a). Body lines, corresponding to the named control points, are then defined mathematically for the length of the vehicle (or as long or short as is necessary); see Figure A3 (b). At a given x-station the body lines are interrogated to give values for the control points. These control point values are then used to create the required cross sectional arc models which are interrogated at a given value of  $\theta$ .

In cross section, a component arc is defined in terms of its control points, its shape, and its type. The arcs are considered to be ordered counter-clockwise (looking up the x-axis, i.e., in the negative x direction)

starting at the bottom of the vehicle ( $\theta = -\pi/2$ ) and going to the top of the vehicle ( $\theta = +\pi/2$ ); see Figure A3 (a). A full complement of these arcs will define a cross sectional model, which is then given a specific range, in x, over which the model is applicable. The only exception, or extension, to the ordering rule is used to allow intersections between cross sectional arcs to be computed internal to the code. Components which may be considered to start in the body and grow out (such as a canopy or wing; see Figure A3 (a)) make use of ARCNM, as defined later in Figure A4, to specify to the code the other arc sharing the intersection point. Such growing components are ordered as before except they appear after the last arc in the outer, basic skin. Fillets (see Table AII and Figure A4) are also ordered as before, but appear last as a group; i.e., all fillets follow both the basic skin and the growing adaptive pieces.

The arc shapes available in cross section, along with their key ... words and equations follow in Table AI.

| SHAPE                          | KEYWORD | EQUATION                                            |
|--------------------------------|---------|-----------------------------------------------------|
| LINE                           | LINE    | Ay + Bz + C = O                                     |
| ELLIPSE<br>(Concave to Origin) | ELLI    | $\frac{(y-y_0)^2}{A^2} + \frac{(z-z_0)^2}{B^2} = 1$ |
| ELLIPSE<br>(Convex to Origin)  | ELLO    | Same                                                |

TABLE AI - CROSS SECTION ARC SHAPES

The line is defined exclusively in terms of its end points (control points); the ellipses also require a slope control point.

The curve type controls the blending of the various arcs (or segments, since the cross sectional curves use the same group of curve types as the body lines). In cross section, fore and aft are determined from the component ordering as mentioned before. A list of the curve types available, their keywords, and their functions follow in Table AII.

## TABLE AII - CROSS SECTION AND BODY LINE CURVE TYPES

| TYPE        | KEYWORD       | FUNCTION                                                                                                                                                                  |
|-------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Piece       | PIECE         | Curve is defined as a unit, with end<br>points and slope control point if<br>necessary.                                                                                   |
| Aft-Link    | ALINK         | *Curve being defined begins at the<br>end of the previous curve and is<br>tangent to it.                                                                                  |
| Fore-Link   | FLI NK        | *Curve being defined ends at the<br>beginning of the following curve and<br>is tangent to it.                                                                             |
| Patch       | PATCH         | *Curve being defined begins at the<br>end of the previous curve and ends<br>at the beginning of the following<br>curve and is tangent to both of the<br>adjoining curves. |
| Fillet      | FILET         | End points and slopes of curve being defined are calculated from specified positions on the adjoining curves.                                                             |
| **Null      | NULL          | Deletes an already existing segment.                                                                                                                                      |
| *Tn body li | ne definition | "nrevious" and "following" are only relative                                                                                                                              |

(Blending Control)

:.)

\*In body line definition, "previous" and "following" are only relative as the specific segments being linked or patched to are given as part of the data.

\*\*Available only in the modeling of body lines.

Figure A<sup>4</sup>, which follows, gives a card-by-card description of the data input format for cross sectional modeling.

Consider, for an example, the simple forebody shown in Figure A5 (a). There are two basic cross sectional configurations corresponding to the initial purely conical section and the final section with flat sides. One therefore selects the cross sections as shown in Figure A5 (b). The coding of the input data is shown in Figure A6. Note that in the first model both ellipses are PIECE's, while in the second model one ellipse is an FLINK and one is an ALINK. Also note the order in which the arcs are to be defined (JSEQ); for either of the ellipses to link to the line, the line must first exist. Of course, depending upon the definition of the two slope control points, either or both of the ellipses could have been PIECE's. In the current setup, note that in model two the slope control points a slope for the center line points only, the slope soft the tangent points being established by the line.

For a body line (a control point definition as a function of x), a segment is defined in terms of its match points, its shape, and its type, much the same as a cross sectional arc. The major difference between segment and arc definitions is that segment match points are numbers, establishing immediately the mathematical representation of the given curve, while, as shown before, arc control points are, at the input stage, logical definitions only. Body lines may also be aliased to other body lines, when duplicate definitions are desired. The segments are considered to be ordered in the increasing x-direction over a range of applicability established by the match points. Segments are input in the order in which they are to be defined and have an index to establish their x-direction ordering as opposed to the cross sectional arcs which are input in their order of appearance (bottom to top) and have an index to establish their order of definition. This will be better understood after looking at Figure A6 a little later and after having seen an example. A full complement of these segments (from one to the code's dimensional limits - these are presented later) will define a body line.

The segment shapes available are more numerous than are the arc shapes, and they follow, along with their key words and equations, in Table AIII.

| SHAPE              | KEYWORD | EQUATION             |
|--------------------|---------|----------------------|
| Line               | LINE    | Ax+By = 0            |
| x-Parabola         | XPAR    | $Ax+By+y^2 = 0$      |
| y-Parabola         | YPAR    | $Ax+By+x^2 = 0$      |
| Rotated x-Parabola | RXPA    | $Ax+By+Cxy+y^2 = 0$  |
| Rotated y-Parabola | RYPA    | $Ax+By+Cxy+x^2 = 0$  |
| x-Ellipse          | ELLX    | $Ax+By+Cx^2+y^2 = 0$ |
| y-Ellipse          | ELLY    | $Ax+By+Cy^2+x^2 = 0$ |
| Cubic              | CUBI(C) | $Ax+By+Cx^2+x^3 = 0$ |

TABLE AIII - BODY LINE SEGMENT SHAPES

The line is defined exclusively in terms of its endpoints; the x- and yparabolas require, in addition, one slope to be specified and one to be left free; all other curves require two points, and two slopes (the slopes usually being established by means of a slope control point).

The curve type controls the blending of the various segments, as for the cross sectional arcs. The list of curve types available for body line segments, as well as arcs, along with their key words and functions, has already been tabulated in Table AII.

Following, in Figure A6, is a card-by-card description of the data input format for body line modeling. A given segment is defined from an initial point as  $(x_1, v_1)$  to a final point  $(x_2, v_2)$  with an initial slope,  $t_1$ , and a final slope,  $t_2$ . Where applicable,  $t_1$  and  $t_2$  are determined from a slope control point at  $(x_3, v_3)$ . The letter "v" is used to represent y or z since either may currently be under definition. These cards follow the cross section data. Consider, for example, the same simple forebody that was used to demonstrate cross sectional modeling; Figure A5 (a). Looking back to our cross sectional model, we see that we have defined a total of seven control points (BDYECL, BDYLTN, BDYLSCP, BDYUTN, BDYTCL, BDYUSCP and MAPAXIS). Each of these must now have y and z defined as a function of x. (The mapaxis is constrained to the symmetry plane; i.e., y = 0.) Immediately following the cross section input data shown in Figure A7 one would input the body line data shown in Figure A8. Note that since tan  $(10^{\circ}) = .176327$ , the definitions for YBDYLTN and YBDYUTN are equivalent, and therefore could have been aliased. Also note that in aliasing, only the model itself is important, and thus one may alias <u>ZBDYTCL</u> with <u>YBDYUTN</u>. Observe that a negative reflection of a given body line requires a separate model.

After reading the previous sections, a general approach to modeling any given configuration should begin to be apparent. One must first look at the general shapes involved in the cross sections, and determine how many unique cross section models are necessary to completely define the vehicle. These cross sections must then be logically defined by choosing the appropriate control points and arcs as in Figure A3 (b) and Figure A5 (b), and by deciding upon each model's range of applicability, in x. The coding of the input data for these cross sections can then be commenced. After this, one must carefully go through and define y(x) and z(x) for each control point. This completely defines the vehicle geometry.

The code is currently dimensioned to allow 10 arcs per cross sectional model, 10 segments per body line model, 10 cross sectional models and 25 body line models. Of course, these may be adjusted if required.

To exercise the geometry model, there are several modes of interrogation built into QUICK. Following the blank card which terminates the body line modeling, one may insert a card of the format shown in Figure A9. A positive MODE produces printed output, a negative MODE produces a data file on unit IPLOT which may be used for plotting purposes. A blank card must follow these checkout requests to terminate the program.

116 ·

In the main routine, there are five integer variables which control I/O operations. They are:

|            | IREAD_=_read_unit                                      |        |
|------------|--------------------------------------------------------|--------|
|            | IRITE = write unit                                     | ··· ·. |
| ····       | ICRITE = write unit for any error messages             |        |
| •~ •       | ITAPE = write/read unit for intermediate data file     | •      |
| · <u>·</u> | IPLOT = I/O unit for plotting data output from GEMCHK, |        |
|            | MODE1, MODE2, etc.                                     |        |

In addition, a reference punch unit (IFUNCH) is set equal to seven (7) in a data statement. This variable is used simply to prevent improper I/O operations on the punch unit and is normally transparent to the user; however, if the punch unit is not seven (7), then IFUNCH must be redefined to the proper unit in QUICK and GEOMIN.

The intermediate data file is an interface between QUICK and SUB-QUICK. SUB-QUICK is a subset of QUICK's subroutines which may be used in conjunction with any other code. In exercising QUICK, the intermediate data file will be written on the unit corresponding to ITAPE. All necessary information is passed between the defining and checking subroutines and the interrogating subroutines of SUB-QUICK via common blocks when they are used together; however, the intermediate data deck is both necessary and sufficient for SUB-QUICK when exercising it alone. A list of the routines in QUICK/SUB-QUICK follows:

> QUICK DSETUP DLOKUP CSMDEF CSMCHK BLMDEF BLMCHK KRVDEF GEMOUT GEMCHK MODE1 MODE2 MODE3

> > 117 '

| MODE4    | · . · · · ·                             |
|----------|-----------------------------------------|
| MODE5    |                                         |
| MODE7    |                                         |
| SLOPE    |                                         |
| GEOMIN 🛑 |                                         |
| CSGEOM   |                                         |
| BLMSET   |                                         |
| CURVES   | 1                                       |
| CSMSET   |                                         |
| BLGEOM   | SUB-QUICK                               |
| VDOTV    |                                         |
| MDOTV    |                                         |
| THELIM   |                                         |
| CSCALC   | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |
| CSMINT   |                                         |
| T. TAMP' |                                         |

To make use of SUB-QUICK, one must call two subroutines, the first being GEOMIN to read in the intermediate data deck, the second being CSGEOM for each point of interest.

To read the data:

CALL GEOMIN (ITAPE, IRITE, ICRITE, IREAD)

Where: ITAPE = unit location of intermediate data deck for vehicle geometry

IRITE = write unit

ICRITE = write unit for any error messages

IREAD = read unit (not currently used in SUB-QUICK)

To interrogate at a point:

CALL CSGEOM (X, H, R, RX, RH, RXX, RXH, NDERV)

Where: X = x location

H = theta location  $(-\pi/2 \le \theta \le + \pi/2)$ 

R = radial distance from mapaxis to point on body surface corresponding to X and H.

RX = dr/dx at this point

 $RH = dr/d\theta$  at this point

RXX =  $d^2r/dx^2$  at this point RXH =  $d^2r/dxd\theta$  at this point

NDERV = + N, where N is the order of derivative to be calculated -

+ N, previous call was to different location; must compute

R and all temporary variables

- N, previous call was to same point, thus derivatives may be computed without recomputing R or certain temporary variables

The quantities X, H and NDERV are, of course, user specified, and the geometry code will return all other values.

Two additional and more complex geometry modeling examples are included in Appendix A-A for the potential user's reference.







|            |                     |                          | FORMAT                   | SYMBOL                           | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|---------------------|--------------------------|--------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | <u>Card</u><br>Col. | <u>1</u><br>1-80         | 15A4                     | VTITLE I                         | Vehicle or run title.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>ئ</b> ر | <u>Card</u><br>Col. | <u>2</u><br>1-2          | 12                       | NCSM                             | Number of distinct cross section models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | Card                | <u>3</u> (There<br>of ty | will be expe 4.)         | actly NCSM num                   | mber of these cards appearing together with the appropriate cards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Col.                | 1-2                      | 12                       | KDUM                             | Running count of the current cross section model (from 1 to NCSM).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | Col.                | 3-4                      | 12                       | KARC                             | Number of arcs in current cross section model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | Col.                | 11-50                    | 10A4                     | CTITLE                           | Title and/or descriptor of current cross section model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | <u>Card</u>         | <u>4</u> (There<br>will  | will be ex<br>be grouped | actly KARC num<br>together for a | mber of these cards per model; i.e. one for each arc, and they<br>a given model after a card of type 3.)                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | Col.                | 1-8                      | <b>A</b> 8               | ARCNAM                           | Arc or component name.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | Col.                | 9-10                     | 12                       | JSEQ                             | Definition sequence (order in which the arcs are to be defined).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | Col.                | 11-14                    | A4                       | ASHAPE                           | Arc or component shape.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | Col.                | 17 <b>-</b> 20           | A4                       | ATYPE                            | Arc or component type.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | Col.                | •                        | Al                       | ASPEC(1)                         | <ul> <li>blank yields no effect.</li> <li>Y when type is FILET, and only y - values are to be specified for that control point (z is computed on controlling component).</li> <li>Z when type is FILET, and only z - values are to be specified for that control point (y is computed on controlling component).</li> <li>B to indicate that this control point is the bottom center line of the vehicle for this model (optional).</li> <li>T to indicate that this control point is the top center line of the vehicle for this model (optional).</li> </ul> |
|            | Col.                | 26-33                    | <b>A</b> 8               | PNTNAM(1)                        | Control point name for the beginning of this arc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Col.                | 35                       | Al                       | ASPEC(2)                         | Same as Col. 25, ASPEC (1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Figure A4 - DATA INPUT FORMAT FOR CROSS SECTION MODELING

· · · · · · - - - - - -

|     |                 | FORMA              | T SYMBOL                                             | DESCRIPTION                                                                                                                                                                                                        |
|-----|-----------------|--------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -   | Card 4          | (Cont)             |                                                      |                                                                                                                                                                                                                    |
| •   | <u>Col.</u> 36- | -43 A8             | PNTNAM(2)                                            | Control point name for the termination of this arc.                                                                                                                                                                |
|     | Col. 46         | -53 A8             | PNTNAM(3)                                            | Slope control point name for this arc when required, blank if not.                                                                                                                                                 |
| м., | Col. 56         | <b>-6</b> 3 A8     | ARCNM())                                             | If type is FILET: the name of the most aft component arc to which<br>the current arc's forward end is to be filleted.                                                                                              |
|     |                 |                    |                                                      | If type is other: the name of the most aft component arc which,<br>in case of intersection with the current arc,<br>is to update the forward end of the current arc<br>and the aft end of the intersected arc.     |
|     | Col. 66         | -73 A8             | ARCNM(2)                                             | If type is FILET: the name of the most forward component arc to<br>which the current arc's aft end is to be filleted.                                                                                              |
| •   | ••              |                    |                                                      | If type is other: the name of the most forward component arc which,<br>in case of intersection with the current arc, is<br>to update the aft end of the current arc and the<br>forward end of the intersected arc. |
|     | Card .ty        | pe 5 (Appear       | s after NCSM block                                   | s of one card type 3 and KARC cards of type 4.)                                                                                                                                                                    |
|     | Col. 1-         | 5 IS               | KNTCSM                                               | Number of cross section models to define entire vehicle.                                                                                                                                                           |
|     | Col. 11         | -18 A8             |                                                      | Name of mapaxis.                                                                                                                                                                                                   |
|     | Card ty         | pe <u>6</u> (There | will be exactly KI                                   | WTCSM number of these cards.)                                                                                                                                                                                      |
|     | Col. 1-         | 5 15               | KDUM                                                 | Running count of the current cross section model (from 1 to KNTCSM).                                                                                                                                               |
| -   | Col. 3-         | 4 I2               | MODEL                                                | Index corresponding to the already defined cross section models (between 1 and NCSM).                                                                                                                              |
| • • | ŗ               | •                  | 1. <b>1</b> . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | NOTE: KNTCSM may be larger than NCSM if a given model is used more than once.                                                                                                                                      |
|     | Col. 11         | -20 FlO.           | 5 XCSMS1                                             | Starting x-station of the current cross section model.                                                                                                                                                             |
|     | Col. 21         | -30 F10.           | 5 XCSMS2                                             | Ending x-station of the current cross section model.                                                                                                                                                               |

Figure A4 - DATA INPUT FORMAT FOR CROSS SECTION MODELING (Continued)

۰ ۲۰۰ ۲۰

÷124





1.25

| Card 1                                          | FORMAT                                  | SYMBOL                                            | DESCRIPTION                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------|-----------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Note: There<br>model:<br>blank                 | will be as<br>s, and as n<br>card to te | s many Cards o<br>many cards of<br>erminate model | f type 1, followed by its Cards of type 2 and 3, as there are body line<br>type 1, alone, as there are aliased control point coordinates, plus one<br>ing input.)                                                                                                                                                                       |
| Col. l                                          | Al                                      | BYORZ                                             | The letter Y or Z to indicate which data definition is to follow (a blank terminates all modeling input data).                                                                                                                                                                                                                          |
| Col. 2-9                                        | A8                                      | BNAME                                             | Body Line/Control Point name which is to be defined.                                                                                                                                                                                                                                                                                    |
| Col. 11                                         | Al                                      | AYORZ                                             | The letter Y or Z to indicate which definition is to be used when aliasing (blank when not).                                                                                                                                                                                                                                            |
| Col. 12-19                                      | 8A                                      | ANAME                                             | Body Line/Control Point name to which BNAME is to be aliased, when applicable (blank when not).                                                                                                                                                                                                                                         |
| Col. 31-70                                      | 10A4                                    | TTLE                                              | Any comments.                                                                                                                                                                                                                                                                                                                           |
| <u>Card 2</u> (if not<br>(Note: There<br>type 2 | t aliasing<br>will be as<br>2 with KSE( | )<br>s_many Cards o<br>G = -1.)                   | f type 2 and 3 as there are segments in a given body line, plus one Card                                                                                                                                                                                                                                                                |
| Col. 1-2                                        | I2                                      | KSEG                                              | The order (in increasing $x$ ) in which this segment appears in this body<br>line model. A KSEG = -l (further arguments not required) terminates the<br>data for a given body line (one Card l).                                                                                                                                        |
| Col. 4-7                                        | A4                                      | SSHAPE                                            | Segment shape (including NULL, in which case this segment is essentially deleted, and no further parameters are required).                                                                                                                                                                                                              |
| Col. 11-14                                      | A4                                      | STYPE                                             | Segment type                                                                                                                                                                                                                                                                                                                            |
| Col. 17-18                                      | A2                                      | SDEF                                              | Segment definition mode (currently, only two point, two slope/slope control point method is available - input "KV")                                                                                                                                                                                                                     |
| Col. 19                                         | E1                                      | IFREE                                             | Index of the datum quantity which is to be "free", i.e., determined<br>by the code. IFREE ranges from 1 to 6 corresponding to $x_1$ , $u_1$ , $x_2$ ,<br>$v_2$ , $t_1$ , $t_2$ , as ordered. A line must have any one of these free;<br>an x- or $y(v)$ - parabola must have either 5 or 6 free; other curves<br>should have IFREE = 0. |

•

Figure A6 - DATA INPUT FORMAT FOR BODY LINE MODELING (Sheet 1 of 2)

# FORMAT SYMBOL

#### DESCRIPTION

 $\frac{Card 3}{(see note for Card 2)}$ 

÷

(Note: If SSHAPE is NULL, this card is deleted)

| Col. 1-10  | F10.5 | D (1)  | If type is PIECE, FLINK, this is $x_1$ .<br>If type is ALINK, PATCH, or FILET, this is a floating point number<br>equal to KSEG of the segment from which $x_1$ and/or $v_1$ are to be determined.                                                                                              |
|------------|-------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Col. 11-20 | F10.5 | D (2)  | If type is PIECE or FLINK, this is $v_1$ .<br>If type is ALINK, PATCH or FILET, this is a floating point number equal<br>to KSEG of the segment from which $t_1$ is to be determined.                                                                                                           |
| Col. 21-30 | F10.5 | ,D (3) | If type is PIECE or ALINK, this is $x_2$ .<br>If type is FLINK, PATCH, or FILET, this is a floating point number equal<br>to KSEG of the segment from which $x_2$ and/or $v_2$ are to be determined.                                                                                            |
| Col. 31-39 | F9.4  | D (4)  | If type is PIECE or ALINK, this is $v_2$ .<br>If type is FLINK, PATCH, or FILET, this is a floating point number equal<br>to KSEG of the segment from which $t_2$ is to be determined.                                                                                                          |
| Col. 40    | Al ,  | SLPL   | <pre>= blank yields no effect = S when following item, D (5), is to be explicit t<sub>1</sub>. = A when following item, D (5), is to be arctan t<sub>1</sub> (in degrees).</pre>                                                                                                                |
| Col. 41-49 | F9.4  | D (5)  | <pre>If SLP1 is blank:<br/>If type is FILET, this is x<sub>1</sub> (v<sub>1</sub> and t<sub>1</sub> are to be determined from the<br/>segment specified by D (1) and D (2))<br/>If type is other, this is x<sub>3</sub><br/>If SLP1 is other than blank, see definition of SLP1, Col. 40.</pre> |
| Col. 50    | Al    | SLP2   | = blank yields no effect<br>= S when following item, D (6), is to be explicit $t_2$ .<br>= A when following item, D (6), is to be arctan $t_2$ (in degrees).                                                                                                                                    |
| Col. 51-60 | F10.5 | D (6)  | <pre>If SLP2 is blank:<br/>If type is FILET, this is x<sub>2</sub> (v<sub>2</sub> and t<sub>2</sub> are to be determined from the<br/>segment specified by D (3) and D (4)).<br/>If type is other, this is v<sub>3</sub>.<br/>If SLP2 is other than blank, see definition of SLP2.</pre>        |

Figure A6 - DATA INPUT FORMAT FOR BODY LINE MODELING (Sheet 2 of 2)

| FROORAM                                                             | PREPARED                                                                                                         | BY .                                  | GROUP (DEPT)                                                         | DATE             | JOB NO.             | PRI. NO.                              | SEC. NO.                | PROGRAM NO.                                | PAGE        |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------|---------------------|---------------------------------------|-------------------------|--------------------------------------------|-------------|
| SAMPLE CROSS SECTION NODE                                           | L L.S.                                                                                                           | YAEGER                                | 423                                                                  | 4/23/74          |                     |                                       | · ·                     |                                            | 1 0= 1      |
|                                                                     | ·                                                                                                                |                                       | •                                                                    |                  |                     | <u></u>                               |                         |                                            |             |
|                                                                     | •                                                                                                                |                                       | <u> </u>                                                             |                  |                     |                                       | ·                       |                                            |             |
| 03 05 07 09 11 13 15 17<br>02 04 06 08 10 12 14 15 18               | 19 21 23 26 27 29<br>20 22 24 26 28                                                                              | 31 33<br>30 32 34                     | 35 37 39<br>36 38 40                                                 | 41 43 4          | 5 47 49<br>46 48 50 | 51 53 55 57<br>52 54 56 58            | 59 61 63 65<br>60 62 64 | 67 69 71 73<br>66 68 70 72                 | 75 77       |
| LTCK GEOMETRY EAR                                                   | STMPIE EAR                                                                                                       | FRANY                                 |                                                                      |                  | 1                   |                                       |                         |                                            |             |
|                                                                     |                                                                                                                  |                                       |                                                                      |                  | · · · ]             |                                       | 1                       |                                            |             |
|                                                                     | AT ART OF EI                                                                                                     | AT                                    |                                                                      | •••••            |                     | · · · · · · · · · · ·                 |                         | 1 · · · · <u>1 · </u>                      | • •         |
|                                                                     |                                                                                                                  | 71' : : : :                           | RAYIT                                                                | N                | BAYId               | C P                                   |                         |                                            | · • • • · · |
|                                                                     | EVE BDYI                                                                                                         | TIN.                                  | ROYTO                                                                |                  | BNYUS               | C P                                   | · · · · · ·             |                                            |             |
| $3$ $\Gamma$ $\Gamma$ $\Lambda$ $\tau$ $\tau$                       | ENN AS EARS                                                                                                      | RADY                                  |                                                                      |                  | 0.0.1.0.0           | ••••••                                |                         | $1 \cdot \cdot \cdot + 1 \cdot 1$          |             |
| 10F1 2E11T E1                                                       | TNK ROYA                                                                                                         |                                       | any it                                                               | N                | RAYID               | 7 P                                   |                         |                                            |             |
|                                                                     |                                                                                                                  | TINI                                  | BAYUT                                                                |                  |                     | ••••;=•••   ••••                      |                         | $\left\{ \cdot \cdot \cdot \cdot \right\}$ |             |
| J P E I = 3 E I T = A I                                             |                                                                                                                  | TN                                    | BAYTO                                                                | 1                | RATUS               | 10                                    |                         |                                            | • • •       |
| MAPAXIC                                                             |                                                                                                                  | · · · · · · · · · · · · · · · · · · · |                                                                      | ••••             | 0,0,1,0,0           |                                       | · · · · · ·             |                                            | • • • •     |
|                                                                     | 50                                                                                                               | · · · · ·                             |                                                                      | • • • •          | 1 1                 |                                       |                         |                                            | • •         |
| 2 50                                                                | 100.                                                                                                             |                                       |                                                                      |                  |                     |                                       | · [ · · · ·             |                                            |             |
|                                                                     |                                                                                                                  |                                       | [ · · · · ]                                                          | •                | 1                   |                                       |                         |                                            |             |
| •••••••••••••••••••••••••••••••••••••••                             |                                                                                                                  |                                       |                                                                      |                  | 1 1                 |                                       |                         |                                            |             |
|                                                                     |                                                                                                                  |                                       |                                                                      |                  | 1                   | · · · · · · · · · · · · · · · · · · · |                         |                                            | •           |
|                                                                     |                                                                                                                  |                                       |                                                                      | • • • •          | 1 1                 |                                       |                         | 1                                          |             |
|                                                                     |                                                                                                                  |                                       |                                                                      |                  |                     |                                       |                         |                                            |             |
|                                                                     |                                                                                                                  |                                       |                                                                      |                  |                     |                                       |                         |                                            |             |
|                                                                     |                                                                                                                  |                                       |                                                                      |                  |                     |                                       |                         |                                            |             |
|                                                                     |                                                                                                                  |                                       |                                                                      |                  |                     |                                       |                         |                                            |             |
|                                                                     |                                                                                                                  |                                       |                                                                      |                  |                     |                                       |                         |                                            |             |
|                                                                     |                                                                                                                  |                                       |                                                                      |                  | 1                   |                                       |                         |                                            |             |
|                                                                     |                                                                                                                  |                                       |                                                                      |                  |                     |                                       |                         |                                            |             |
|                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                            |                                       |                                                                      |                  | l l                 | · · · · · · · · · · · ·               |                         |                                            |             |
| · · · <b>] ]</b> · · · <b>]</b> · <u>.</u> · <i>i</i> <b>: .</b>    |                                                                                                                  |                                       |                                                                      |                  | · · · · · · · · · · |                                       |                         |                                            |             |
|                                                                     |                                                                                                                  |                                       |                                                                      |                  |                     |                                       |                         |                                            |             |
| · · · ] ] · · · ] · · · · ] ] :                                     |                                                                                                                  |                                       |                                                                      | i                |                     |                                       |                         |                                            |             |
|                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                            |                                       |                                                                      | · - <del>1</del> |                     | i i i i i i i i i i i i i i i i i i i |                         | 1                                          |             |
|                                                                     | and the second |                                       |                                                                      |                  | ↓ i . i             |                                       |                         |                                            | · ·         |
|                                                                     |                                                                                                                  |                                       |                                                                      |                  | <u> </u> i          |                                       |                         |                                            |             |
| 03 06 07 09 11 13 15 17                                             | 19, 21 23 25 27 29                                                                                               | 31 33                                 | 35 37 39                                                             | 41 43 4          | 6 47 49             | 51 53 55 57                           | 59 61 63 69<br>60 62 64 | 67 69 71 73                                | 75 77       |
| <u>a na Ingi na 101 12 14 116 18</u>                                | _ ANJ 12 28 140 28                                                                                               | 301 32 34                             | PO 30 40                                                             |                  | T                   |                                       |                         | 100 00 101 /2                              |             |
| CODING INSTRUCTIONS 1 ALPHABETICAL CHARACTERS ARE WRITTE            | 4 C<br>MASFOLLOWS R                                                                                              | OLUMNS 1-5 OF THE<br>ENT NUMBER THAT  | E FIRST LINE OF A STAT<br>IS LESS THAN 32,768<br>TO INDICATE THE CON | TEMENT MAY CON   | TAIN A STATE-       |                                       |                         |                                            |             |
| A B C D E F G H I J K L M N Ø<br>2 NUMERICAL CHARACTERS ARE WRITTEN | PORSTUVWXYZ . M<br>AS FOLLOWS                                                                                    | ENT USE NON BL                        | ANK, NON ZERO CHAP                                                   | ACTERS IN THI    | COLUMN TO           | KEYPUNCH                              | VERIFIED:               | 1.                                         |             |
| 1234567890                                                          | - B                                                                                                              | DLUMNS 73-80 AR                       | E FOR IDENTIFICATION                                                 | AND SEQUENCI     | ۰.<br>۱G.           |                                       | · ·                     |                                            |             |

Figure A7

| PROGRAM      |                                                                                                 | PREPARED BY                             | GROUP (DEPT)                                  | DATE JOB NO.                              | PAI, NO.                              | SEC. NO.                         | PROGRAM NO.                             | PAGE                                    |
|--------------|-------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|-------------------------------------------|---------------------------------------|----------------------------------|-----------------------------------------|-----------------------------------------|
| SAMPLE       | BODY LINE MODEL                                                                                 | L.S. YAEGER                             | 423                                           | 4/23/74                                   | 1                                     | ··· { · · · ·                    | 1.                                      | 1002                                    |
|              | · · · · · · · · · · · · · · · · · · ·                                                           |                                         | •                                             | <u> </u>                                  |                                       |                                  |                                         |                                         |
|              |                                                                                                 |                                         |                                               |                                           |                                       |                                  |                                         |                                         |
| 01 03 05 07  | 09 11 13 15 17 19 21 23 25<br>08 10 12 14 16 18 20 22 24                                        | 27 29 31 33<br>76 28 30 32 34           | 35 37 39<br>38 38 40                          | 41 43 45 47 49                            | 51 53 55<br>52 54                     | 57 59 51 63 65<br>56 58 60 52 64 | 67 69 71 73<br>66 68 70 72              | 75 77 79<br>74 76 78 80                 |
| MBDYBCI      |                                                                                                 |                                         |                                               |                                           |                                       |                                  |                                         |                                         |
| 1 I TNE      | PITECE YUE                                                                                      |                                         |                                               |                                           |                                       | • · · · · ·                      |                                         | 1111711                                 |
| 0.1          |                                                                                                 |                                         |                                               | ┊╶┧┈╪╼╍┾╍╊╸┟╸┠╴╏╴╏╶                       |                                       |                                  |                                         | · · · · · · · · ·                       |
|              |                                                                                                 | 1 + Y ·   -                             |                                               |                                           |                                       |                                  |                                         |                                         |
| ZB DY BCL    | ╶╍╼┰╸┫╾┊╸╁╴╬╴┇╴┇╴┇╴┇╶┽╍┿╍╊╴╂╴┇╶╫╍╼╕                                                             |                                         |                                               | ┝· ┾· / · · · · · · · · · · · · · · · · · |                                       |                                  |                                         | tere transfer transfer                  |
| 1 LINF       | PTECEKV5                                                                                        |                                         |                                               |                                           | -+                                    |                                  | · · · · · · · · · · · · · · · · · · ·   |                                         |
| o            | 0, / 00,                                                                                        | 1 7                                     | 6327                                          |                                           |                                       |                                  |                                         | · · · · · · · · · · · ·                 |
| - 1          |                                                                                                 |                                         |                                               |                                           | · · · · · · · · · · · · · · · · · ·   | · · · · · · · · ·                |                                         |                                         |
| YBDYLTN      |                                                                                                 |                                         |                                               |                                           |                                       |                                  |                                         | · · · · · · · · · · · · · · · · · · ·   |
| 1 LINE       | PIECE KV5                                                                                       |                                         |                                               |                                           |                                       |                                  |                                         |                                         |
| þ            | 0. /00.                                                                                         | 17.6                                    | 327                                           |                                           |                                       |                                  |                                         |                                         |
| <u>-1</u>    |                                                                                                 |                                         |                                               |                                           |                                       |                                  |                                         |                                         |
| ZBOYUTN      |                                                                                                 |                                         |                                               |                                           |                                       |                                  |                                         |                                         |
| I. LINE      | PIECE KV5                                                                                       |                                         |                                               |                                           | · · · · · · · · · · · · · · · · · · · |                                  |                                         |                                         |
| 0            | 0                                                                                               | o.                                      |                                               |                                           | l                                     |                                  |                                         |                                         |
| 3 LINE       | PIECE KVS                                                                                       | ┝╍┢╍┝┙╿╶╿╶┫╴┍╼┯╾╽╌┙                     |                                               | ╶╺╾╍┥╍┞┈┣╶┊╶┊╍┆╍╞╼                        |                                       |                                  |                                         |                                         |
| 6.0.         | 0. //0.                                                                                         |                                         |                                               |                                           | ·                                     | ┉╢╺╷┟┥┫┈┉╺╴╁╌┼╴                  | ╞╧╍╺╶╌┟╖╒╸┠╌                            |                                         |
| 2 RYPA       | FILETKVO                                                                                        | ╽╫╫╍╍╍┝╍╻╻╽╎╎                           |                                               |                                           | ┝┿┿┥┶                                 | ╶┼╍╪╍┥┊╶┠╌┲╍┿╸╿╎╵                | · • · · · · · · · · · · · · · · · · · · |                                         |
|              | . 1                                                                                             | 3.                                      |                                               | 50.                                       | 70.                                   | ┝┥┥╷┉╍                           |                                         | • • • • • • • • • • • • • • • • • • • • |
|              |                                                                                                 | ╺╾┼╼╾┼╼╌┼╸╏╶┥╌╞╌┝━╸                     |                                               | ╤┟┼┼╌┲╶┨┈┿┯╆┯┼╌┡╍╵                        |                                       | ┝╶╪╼╪╼┑╸┊╸┠╵╄╍═╍┊╸╞╴             | ┨╶┊╶┍╸┯╍╌┥╍╺╌╢╴╸                        | • • • • • • • • • •                     |
| T.B.D.Y.L.SK | P. YBDYLTN                                                                                      | ╺╍┶┶╼╋                                  | ┉┨╷┊┢╌┿╍┿╺                                    | <b>╶╶╴┊╼┊╴╞╸╉╶┊╶┊╺┼</b> ╶┞╶╵              |                                       |                                  | ▋▎▖▃▖▖▌▕▎▌                              | ╡╡╡┅╸╸╞╌┉                               |
| EBDYLEC      | P Z.B.D.Y.BCL                                                                                   |                                         | ┉┠┉┯╍┠╍┽╺┥                                    | ╷╷╁╼╍╾┶╸┟╶┨╼┟╼┼╼┼╍┶╸╸                     | <mark>┟╌╎╌┊┉┍┈</mark> ╽╹╽             | ╷╶┼╍┿╍┽┄╎╴╷┠╼╍╼╕┉┢╴╺╴            |                                         | ···· · · · · · · · · · · · · · · · · ·  |
| TBDTUTN      |                                                                                                 | ┝╌┿╍┿╸┟╌┢╼┠╸┿╌╍╍╋╾┥                     |                                               | ┝╌╪╌╾┊╌╞╴┠╌┽╍┿╌ᅷ╵┯━╸                      | ╏╴╎╌╍╎╍╎╴                             | ┝┼╍╷╞╶┽╍╋╍╍┊╞╺╌╌╸                | <u>↓</u>                                | ····                                    |
| LINE         |                                                                                                 |                                         |                                               | ┝╶┧╶┯╼╪╼╪╾╉┈╽╶┢╼╾╾╼╼                      | <mark>┟╌┊╶╌┼╾┼</mark> ╍               | ┟╶┟╶┟╾┼╾┝╴┠╴┟┄┿╼╿╸┼┄             | Ă <sup>Ċ</sup> ĂĸĂĸĸĸĔĸĔĸĸĔĸ            |                                         |
| 94           |                                                                                                 | A/0.                                    | ┝╾┫╴╎╴┟┈┆╺┿╾┥                                 | ┝╌╞╼┾╸┿╌╞╌┠╴┾╼┼╼╍╌╞╌                      | ┟╼┽╼╾┯╍╌┼╍╌┊╶╶                        | ┝╋╍╁╍┶╺╋┝╍╍┈┯╶╁╴                 | <u> </u>                                | · · · · · · · · · · · · · · · · · · ·   |
|              | ╶╏╍╁╺╂━┽┄┼╍┽╷╂╷╏╵┠╶┼╾┿╾┿╾╊╸╂╴┠╴┠╶┝┅                                                             | ┝╾╅╍┽┉╎╎╎╏╎╎╌┿╼╅╼┥                      | · · · · · · · · · · · · · · · · · · ·         | ┝╌╊╼╋╍╦┅┚╴┨╴╛╺╦╼╤╍╉╶╵                     |                                       | ┝╶┨╍╇╍┿╍╍╾╋┅┿╺╍═┿═╅╸             | ┟╴╍╍╼┝╼╍╾╉╾┽╴╉╼                         | f                                       |
| CDU.I.UIN    |                                                                                                 | ┠╌┼╌┤╶┦╼╊╼╅╼┿╼┿╵┆                       | ┟╺┝─┼─┼╌┥╼┙                                   | ┝╊╋╋                                      | ┟╺╼┝┿╸╍╺                              |                                  | ╏┊╺╍╪╍╼┨╍┼┨╼                            | +-+-+-+                                 |
|              |                                                                                                 | ┝┼┿┽╋┙┥┝╺                               | ··· <b>··································</b> | ·· <del>├╶┼╍┝╍</del> ┼╍                   | ┟╶┼─┼──┤                              |                                  | ┟╼┧╼╼╸┙╴╸╴╉╾┾╺╉╸╴                       | • • • • • • • • • • • • • • • • • • • • |
|              | Preice with                                                                                     |                                         |                                               | ┊┊╌┼╴┠╶┽╴╉╶╴╞╾╁┉╁╾                        |                                       |                                  | ·i                                      | · · · · · · · · · · · · · · · · · · ·   |
| 01 03 06 07  | 09 11 13 15 17 19 21 22 25                                                                      | 27 29 31 33                             | 35 37 39                                      | 41 43 45 47 49                            | 51 53 55                              | 57 59 61 63 65                   | 67 69 71 73                             | 75 77 79                                |
| 02 04 06     | 08 10 12 14 16 18 20 22 24                                                                      | 26 28 30 32 34                          | 36 38 40                                      | 42 44 46 48 50                            | 62 54                                 | 56 58 60 62 64                   | 66 68 70 72                             | 74 76 78 80                             |
| CODING       | G INSTRUCTIONS:                                                                                 | 4. COLUMNS 1.5 OF TH                    | E FIRST LINE OF A STA                         | TEMENT MAY CONTAIN A STATE                | •. • .                                |                                  |                                         |                                         |
| 5. AL<br>A   | LPHABETICAL CHARACTERS ARE WRITTEN AS FOLLOWS<br>BCDEFGHIJKLMNØPQR\$TU <del>V</del> W)          | YE S. COLUMN & IS USED                  | TO INDICATE THE CON<br>ANK, NON-ZERO CHAT     | TINUATION OF A LONG STATE                 | KEYPUNCH:                             | VERIFIED:                        | 7                                       |                                         |
| 2, NI<br>- 1 | UMERICAL CHARACTERS ARE WRITTEN AS FOLLOWS 2 3 4 5 6 7 8 9 0                                    | 9 FOR FORTRAN 11<br>6. COLUMNS 73-80 AR | AND 19 FOR FORTRAN<br>E FOR IDENTIFICATION    | IT OF CONTINUATION CARDS IS               |                                       |                                  |                                         |                                         |
| 3 60         | ARDS WITH A C IN COLUMN 1 ARE NOT PROCESSED BY FORTRAN<br>OLUMNS 2.72 MAY BE USED FOR COMMENTS. | AND 7. START ALL STATEM                 | ENTS IN COLUMN 7 A                            | ND USE BLANKS ONLY WHERE                  | L                                     | k                                | <b>-</b>                                | i                                       |

FORTRAN CODING FORM

129

Figure A8

|                            |                                                                                              | PREPA                                   | RED BY                                                       | GROUP (DEPT)                                                         | DATE                         | JOB NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PRI, NO.                            | SEC. NO.                                | PROGRAM NO.                             | PAGE                          |
|----------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------|
| SAMPLE                     | BODY LINE MODEL                                                                              | (CONT 'D.) L,S                          | . YAEGER                                                     | 423                                                                  | 4/23/74                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                         | ].                                      | 2 05 2                        |
|                            | ······································                                                       |                                         |                                                              | •                                                                    | ·                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | •                                       |                                         |                               |
|                            |                                                                                              |                                         |                                                              |                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                         |                                         | •                             |
| 03 06 07                   | 09 11 13 16 17 1                                                                             | 9 21 23 25 27                           | 29 31 33                                                     | 35 37 38                                                             | 43 4                         | 5 47 49 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53 55 67 5                          | 9 61 63 65                              | 67 69 71 73                             | 75 77                         |
|                            |                                                                                              |                                         | 6                                                            | 30 30 40                                                             |                              | <b>f</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                         |                                         | /4 /6 //                      |
| RYDA                       |                                                                                              |                                         |                                                              | 1 1                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ╶╸┊┊╸╏╍┍╺┿                          |                                         | · · · · · · · · · · · · · · · · · · ·   | • • i,· •                     |
| 1. 1 <u>5. 15. 15. 15.</u> |                                                                                              | 2                                       |                                                              |                                                                      |                              | ╈┼┼╞╞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                         |                                         | • • • • •                     |
| ╆╌┼╌┠╌┨┊                   |                                                                                              |                                         | <b>-</b>                                                     | ┈┠╍┼┈╡╶╷╺┝┣                                                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | - 1 - +                                 | <b>↓</b>                                | • •                           |
|                            | Y-BNYBCI                                                                                     | ┿╍╊╍╡╌┇╶╏╴╍╍╉╍┥╍╶┇                      | t · <b>P</b> →+++ · · ·                                      |                                                                      | 11                           | <b>1 1 </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · ·             | · • • • • • • • • •                     |                                         | $\frac{1}{2}$ = $\frac{1}{2}$ |
| NYTC                       | YBAYUTA                                                                                      | ** _ ++++++ + +++++++++++++++++++++++++ | ┼┈ <b>╿┟┼╾┼╌┼</b>                                            | ╾┨┊╞╼┊╾┞╼╍╌┠                                                         | - <del></del>                | ··· • ··· ··· ··· ··· ··· ···                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ╺┿╺╸┆╌┶╍╋╍┥╶┊┊                      | 1                                       |                                         | • • • • • •                   |
| DYUKC                      | YBDYUTN                                                                                      |                                         | ╞╌┍╴┫╍┽╴┥╶┥╶┥                                                |                                                                      |                              | 1:1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                         |                                         | • • • • • •                   |
| DYUSCO                     | ZBDYTCI                                                                                      |                                         | <u>┼</u> ╍┿╍╋╼┊╼┥┅┽╼╕                                        |                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                         |                                         |                               |
| APAXI                      | TRATBCL                                                                                      |                                         |                                                              |                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                         | · · · · · · · · · · · · · · · · · · ·   | ••••••                        |
| APAXIS                     | TBDTBCL                                                                                      |                                         |                                                              |                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                         |                                         |                               |
| 5 C                        | Jank card                                                                                    |                                         |                                                              |                                                                      |                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                         |                                         |                               |
|                            |                                                                                              |                                         |                                                              |                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                         |                                         |                               |
|                            |                                                                                              |                                         |                                                              |                                                                      | 1 1<br>1. 1 1 1 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                         |                                         |                               |
|                            |                                                                                              |                                         |                                                              |                                                                      | · · · · ·                    | ┦──┼──ゎ╞┷┨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                                         |                                         |                               |
|                            |                                                                                              |                                         | i                                                            |                                                                      |                              | ┢╍┊┊┤┢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·                                   |                                         |                                         |                               |
|                            |                                                                                              | ╪ <del>╺┫┊╻┊┍╶┨╍╍</del> ┶┈              | ┊┊╶╻╴╾┯┯┥╌╸                                                  |                                                                      | +                            | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ┥╺╼╼                                | · · · · · · · · · · · · · · · · · · ·   | · · • · · · · · · · · · · · · · · · · · | i .                           |
|                            |                                                                                              | <b> ┃              </b>                 | • • • • • • • • • • • • • • • • • • • •                      |                                                                      | 1                            | <b>I</b> - | ┼╍╍┼╌┼╶┨╷╽╶╸┝╸                      | .∔. <b> </b>                            |                                         |                               |
| · · · ]·] ·                | • +                                                                                          | ╺╺ <b>┨</b> ╾╪╌╪╌╡╴╏╴┠╴╁╼╸              | +                                                            |                                                                      |                              | ┨╎╎╷┼╋                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>╺</u> ┿╪╎╺┝ <mark>╞</mark> ┾╼┯╺╷ |                                         |                                         |                               |
| ┉╪┉╤╍╋┙╋╍╸                 | ┊┊┨┽╎┉┼┉╟┉┠╏╏╶╷╷                                                                             | <sub>╈╍╋╍┶╍┿</sub> ┊╎╷╋╍┿╍┾╼            | ,                                                            | ╌┠┊┍╴┾╍╍╌╊                                                           | ++++                         | ┟┶┅╌╽╶╂╸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ┿┼┼┉╊┽╎┉                            |                                         |                                         | · · · ; ·                     |
|                            | ╺╾╾╉╌╴╾┽╴╸┨┊╌┝╌┼╼                                                                            | <sub>╈╍╋╍┙</sub> ╢┝╍╍┣┿┿╌               | •••• • • • • • • • •                                         | ┈┨┶╶╴┾╍╾╄                                                            | -ii                          | ╷┨╴╺╼╾┼╴┼┝╼╌╂╼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ┥┥╴                                 |                                         | ┊┊╌╦━┅╍╉╌┢╴┫                            | •••••••                       |
| · · · [ ] [ · · ·          | ····   ·· · · ·   ····+·                                                                     | <del>┊╴<mark>╏╶╍</mark>┊╶╸╼╶┨╶╍┊</del>  |                                                              | ╶┨╺╶┟╍┾╍╼╊                                                           |                              | ┨╍╍╌┼╌┽╺┥╌┩╴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ┼┼╍╍╌┨┼╼┿┼                          |                                         |                                         | + · → · ·                     |
| · · · • • • •              | •••••                                                                                        | ┊┠┼┿┯╾╾┫╺╴┍╴                            |                                                              | · + + + +                                                            |                              | ·╊╾┾╾┝÷┊╴╍┈╊╴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -}                                  | <b>}</b>                                | +                                       | • • • • • • •                 |
|                            | · · · Ⅰ· <del>· · · · · · · · · · · · · · · </del>                                           |                                         |                                                              | -1-1-1-1                                                             | <u> </u>                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ┿╍╍┑╍┿╍╋╶┽╸╸┟╸                      |                                         |                                         |                               |
|                            | • • • • • • • • • • • • • • • • • • • •                                                      | ╾╉┼┉┼┼╍╉┼┼                              |                                                              | 1 1                                                                  | 1                            | t :t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | · + · • • • • • • • • • • • • • • • • • |                                         | • • • • • •                   |
|                            |                                                                                              |                                         |                                                              |                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                         |                                         |                               |
|                            |                                                                                              |                                         |                                                              |                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                         |                                         |                               |
|                            |                                                                                              |                                         |                                                              |                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                         |                                         | 1 ° .<br>1 11 - 14 - 14 -     |
|                            |                                                                                              | ┟┛──┤╎┝┛┛┈╍╴                            |                                                              |                                                                      | 1 . <u>.</u>                 | <u>↓</u><br>↓<br>↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | 4                                       |                                         |                               |
|                            |                                                                                              |                                         |                                                              |                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | -                                       |                                         |                               |
| 03 06 07                   | 09 11 13 16 17 19                                                                            | 21 23 25 27                             | 29 31 33 3                                                   | 35 37 39 4                                                           | 1 43 40                      | 47, 49, 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 53 55 57 5                        | 9 61 63 65<br>60 62 64                  | 67 69 71 73<br>68 49 70 77              | 75 77                         |
|                            |                                                                                              |                                         |                                                              | Par, 130 401                                                         |                              | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                         |                                         |                               |
|                            | HABETICAL CHARACTERS ARE WRITTEN                                                             | AS FOLLOWS                              | COLUMNS 1.5 OF THE<br>MENT NUMBER THAT<br>COLUMN 5 IS USED 1 | IS LESS THAN 32,760,<br>TO INDICATE THE CONT                         | IDENTIFY TH                  | E STATEMENT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KEYPUNCH:                           | VERIEIED                                | ·]                                      |                               |
| A<br>2. NU                 | I L U E F G H I J K L M N Ø P<br>Ierical characters are written as                           | JOLLOWS VY W X Y E                      | NENT. USE NON BLA<br>INDICATE CONTINUA<br>S FOR FORTRAN 13 A | INK. NON ZERO CHARA<br>TION CARDS. THE LIMIT<br>IND 19 FOR FORTRAN I | CTERS IN THE<br>OF CONTINUAT | I COLUMN TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | VARIFIED:                               |                                         |                               |
| 3 CAL                      | : J & J & 7 & 9 U<br>De With A C in Column I Are not Pr<br>UMNS 2-72 May be used for Comment | GCESSED BY FORTRAN, AND 7               | COLUMNE 73.80 ARE<br>STARY ALL STATEME                       | FOR IDENTIFICATION A<br>NTS IN COLUMN 7 AND                          | ND SEQUENCIP                 | IG.<br>ONLY WHERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L                                   | · · · · · · · · · · · · · · · · · · ·   |                                         |                               |
|                            |                                                                                              |                                         | HELED IN HOLLER                                              | THE SECTIONS OF FURN                                                 | A. FIAILAENI                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                         |                                         |                               |
|                            |                                                                                              |                                         |                                                              |                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                         |                                         |                               |

Ì

Figure A8 (Con't)

|   |                     | FORMAT | SYMBOL | DESCRIPTION                                                                                                                                                                                   |
|---|---------------------|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Col. 1-2            | 12     | MODE   | = 0 (or blank), terminates all input.                                                                                                                                                         |
|   |                     |        |        | = ± 1, creates body line traces.                                                                                                                                                              |
|   |                     |        |        | = ± 2, creates cross sectional cuts.                                                                                                                                                          |
|   |                     |        |        | = + 3, interrogates cross sections in neighborhood of control points.                                                                                                                         |
|   |                     |        |        | - 3, allows multiple body line traces to create plan and profile views.                                                                                                                       |
|   |                     | · · ·  |        | = + 4, comparison of analytic derivatives with numerically formed derivatives.                                                                                                                |
|   |                     |        |        | = + 5, check of unit vectors normal to body surface.                                                                                                                                          |
|   |                     |        |        | = + 6, exercises modes 1, 2, and 3 at the limits of each cross sectional model.                                                                                                               |
|   |                     |        |        | - 6, exercises modes - 2 and - 7 at the limits of each cross sectional model.                                                                                                                 |
|   |                     |        |        | <ul> <li>- 7, (plotting mode only) creates cross sectional cuts, but includes all<br/>arcs in their entirety (including growing pieces still contained<br/>within the basic skin).</li> </ul> |
|   | Col. 4-5            | 12     | NDERV  | = $\pm$ N, where N is the order of derivative to be calculated (N=O, 1 or 2).                                                                                                                 |
|   |                     |        |        | + N, should always be used for these interrogations (means each call to<br>a given location is new, thus the radius and all temporary variables<br>must be computed).                         |
|   |                     |        |        | - N, should not be used for these interrogations (requires previous call to same location (x and $\theta$ ), radius and certain temporary variables are not recomputed).                      |
|   | Col. 11-20          | F10.5  | XGO    | Initial x-station to be interrogated.                                                                                                                                                         |
|   | Col. 21-30          | F10.5  | XEND   | Final x-station to be interrogated.                                                                                                                                                           |
|   | Col. 31-40          | F10.5  | XDEL   | Increment size in x, to establish outputs stations between XGO and XEND.                                                                                                                      |
|   | Col. 41-50          | F10.5  | HGO    | Initial value of theta (in degrees) to be interrogated; not required for modes 1, 3.                                                                                                          |
|   | Col. 51 <b>-</b> 60 | F10.5  | HEND   | Final value of theta (in degrees) to be interrogated; not required for modes 1, 3.                                                                                                            |
| • | Col. 61-70          | F10.5  | HDEL   | Increment size in degrees to establish interrogation points between HGO and HEND; not required for modes 1, 3.                                                                                |

Figure A9 - DATA INPUT FORMAT FOR EXERCISING THE GEOMETRIC MODEL

# APPENDIX A-A

# QUICK GEOMETRY MODELING PACKAGE

# EXAMPLES

NCEF111A: QUICK GEOMETRY FOR THE EF-1118 (W/RADOME) 5

| 12                                                                                                                                 | NOSE 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FO START (                                                                                      | OF FLATS                                        |                                |                    |                          |                                       |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------|--------------------|--------------------------|---------------------------------------|
| BDYLOELL                                                                                                                           | 161-6-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PIECE                                                                                           | BDBGL-                                          | BOLSOTH                        | -BOLSCP            | ·                        | ·                                     |
| BOYUPELL                                                                                                                           | 2ELLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PIECE                                                                                           | BDLSDŦN                                         | BBTCL                          | -BOUSCP            |                          |                                       |
| 24                                                                                                                                 | FLATS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TO START                                                                                        | OF CANOPY                                       |                                |                    |                          |                                       |
| BOYLOFLT                                                                                                                           | 1 L THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PIECE                                                                                           | BDBCL                                           | BOBTMTN                        |                    |                          |                                       |
| BDYLOELL                                                                                                                           | BELLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PATCH                                                                                           | BOBTMTN                                         | BOLSOTN                        |                    |                          |                                       |
| BDYSDFLT                                                                                                                           | 2LINE ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PIECE                                                                                           | BOLSDTN                                         | BDUSDTN                        |                    |                          |                                       |
| BDYUPELL                                                                                                                           | 4ELLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AL THE                                                                                          | BOUSDIN                                         | BOTCL                          | BDUSCP             |                          |                                       |
| 3 5                                                                                                                                | CANOPY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 TO STAR                                                                                       | C OF PADOM                                      | -                              |                    |                          |                                       |
| BOYLOFLT                                                                                                                           | 1LINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PIECE                                                                                           | BOBCL                                           | BOBININ                        |                    |                          |                                       |
| BDYLOELL                                                                                                                           | BELLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PHTCH                                                                                           | BOBTMTN                                         | BOL SOTN                       |                    |                          | •                                     |
| BOYSOFL T                                                                                                                          | 21 THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PIECE                                                                                           | BDI SDTN                                        | BOUSOTN                        |                    | •                        |                                       |
| <b>BOVUPELI</b>                                                                                                                    | 46111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ALTINK                                                                                          | BOUSOTN                                         | BOTCL                          | ROUSCR             |                          |                                       |
| CANOPY                                                                                                                             | SFLLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PIECE                                                                                           | CHETM                                           | CNTCL                          | CNSCP              | BOUIDER I                |                                       |
| 46                                                                                                                                 | RADOMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TO STAR                                                                                         | F OF WING                                       | And B. F. And Kan              | And Contraction    | torter front to to to be |                                       |
| BOW OFLT                                                                                                                           | 11 THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PIECE                                                                                           | BOBCI                                           | RORTMIN                        |                    |                          |                                       |
| BUAL OFFICE                                                                                                                        | ZELL T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PATCH                                                                                           | RORTHYN                                         | ROLEDTN                        |                    |                          |                                       |
| ROVENELT                                                                                                                           | OLINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DIECE                                                                                           | RDLCDTN                                         | POLODIN                        |                    | • •                      |                                       |
| DOUDDIN                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n a catalan<br>Galan Table                                                                      | CONTRACTOR IN                                   | DDDDDD AA<br>DDDDD             | philopp            |                          |                                       |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP T ET THE                                                                                     | DECOURSED TO T                                  | DOMENC                         | DAMOND             |                          | DOULOD T                              |
| CONCOL                                                                                                                             | an fan Lackarde<br>An Fan Lackarde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                 | PALIFICAL.                                      | ny Lon ( ICLUNC)<br>I CHATTAIN | CHOCCO             | ononoci i                | DUYLOUTLU                             |
| E O                                                                                                                                | LITING 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n a courac.<br>Na Tribul Como L                                                                 | 1.0                                             | Just 1 Flashin                 | Col 1600.47        | DUY OF EALL              |                                       |
|                                                                                                                                    | INTERACTOR IN THE REPORT OF THE PROPERTY OF TH | .03 1011111111111111<br>1017107107                                                              | u u ri<br>Eprintoria                            | DEND TENTEN                    |                    |                          |                                       |
| DOVLOPLI                                                                                                                           | 1 L. 1. 1 1 L.<br>12 L. 1 1 L. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n unuun<br>Dammu                                                                                | DEPENDENCE<br>DEPENDENCE                        | DODITIO<br>DOL COTN            | . *                |                          |                                       |
| DOMEDICULE<br>DOMEDICULE                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E FRA USTA<br>E FEITERE                                                                         | DDD FRIM                                        | ODLODIN                        |                    |                          |                                       |
| DUY OUTLI<br>DDUUDDUU                                                                                                              | alline de la 1982.<br>La grada de la 1982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ET LELENCE<br>COLUMNARIA                                                                        | DULDUIII<br>DULDUIII                            | DUUGU HT                       | nnumen             |                          |                                       |
| DUYUTELL<br>DDUUDTLO                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TTL. 11 TP.                                                                                     | DEUDEURIA<br>DEUDEERE                           | ENDINE.                        | DEUCOUR            |                          |                                       |
| DUYUMELE.                                                                                                                          | CONTLAND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | THE LUTY                                                                                        | DUUDUTA -                                       | DELLI LAL.                     | DEUDOUT            |                          | ENERGIA CONTRACTOR                    |
| RMUUUNE.                                                                                                                           | TO BLE LE LE COMPANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 | AND TO GALL                                     | P(CANDOLUUD)<br>Lacemente      | MURDUM<br>LICE COD |                          | DUATOLE                               |
| NUMBER OF THE                                                                                                                      | a tututu t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | 449310 113<br>1 00101000                        | Matalua<br>Lienen              | NULLOUM            | BUYUMBLL                 | ENERGY IN THE CO.                     |
| en na um cului.                                                                                                                    | MODOVY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n fin de Celoker Celo<br>North                                                                  | PROFILING                                       | Form Frida                     | Marcon             |                          | . DUYUMELLE                           |
| !<br>!                                                                                                                             | - 1100 DA4<br>- 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 | : 1                                             |                                |                    |                          |                                       |
|                                                                                                                                    | - U.a<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 """                                                                                           | 1                                               |                                |                    |                          |                                       |
| 22                                                                                                                                 | 1 ***(1 1 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4,000                                                                                           |                                                 |                                |                    |                          |                                       |
|                                                                                                                                    | 4 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180.                                                                                            |                                                 |                                |                    |                          |                                       |
| 1.4 1.5                                                                                                                            | 180.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180.<br>240.                                                                                    |                                                 |                                |                    |                          |                                       |
| 44                                                                                                                                 | 180.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180.<br>240.<br>274.                                                                            | <b>.</b>                                        |                                |                    |                          |                                       |
| 4 4<br>5 5                                                                                                                         | 180.<br>240.<br>274.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180.<br>240.<br>274.<br>440.1                                                                   | с.,<br>                                         |                                |                    |                          |                                       |
| 4 4<br>5 5<br>YBDBCL                                                                                                               | 180.<br>240.<br>274.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180.<br>240.<br>274.<br>440.1                                                                   | <u>.</u>                                        |                                |                    | •                        |                                       |
| 44<br>55<br>YBDBCL<br>1 LINE                                                                                                       | 180.<br>240.<br>274.<br>PIECE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 180.<br>240.<br>274.<br>440.1<br>KV5                                                            | 5                                               |                                |                    | •                        |                                       |
| 4 4<br>5 5<br>YBDBCL<br>1 LINE<br>0                                                                                                | 180.<br>240.<br>274.<br>PİECE<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180.<br>240.<br>274.<br>440.1<br>KV5<br>440.1                                                   | 5.<br>50.                                       |                                |                    | •                        | · .                                   |
| 4 4<br>5 5<br>YBDBCL<br>1 LINE<br>0.<br>-1                                                                                         | 180.<br>240.<br>274.<br>PIECE<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180.<br>240.<br>274.<br>440.1<br>KV5<br>440.1                                                   | 5.<br>5. 0.                                     |                                |                    | •                        | •                                     |
| 4 4<br>5 5 5<br>YBDBCL<br>1 LINE<br>0.<br>-1<br>ZBOBCL                                                                             | 180.<br>240.<br>274.<br>PIECE<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180.<br>240.<br>274.<br>440.1<br>KV5<br>440.1                                                   | 5 .<br>5 0.                                     |                                |                    | •                        | · ·                                   |
| 4 4<br>5 5<br>YBDBCL<br>1 LINE<br>0.<br>-1<br>ZBOBCL<br>1 LINE                                                                     | 180.<br>240.<br>274.<br>PIECE<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180.<br>240.<br>274.<br>440.1<br>KV5<br>440.1<br>KV4                                            | 5 °.                                            |                                |                    |                          |                                       |
| 4 4<br>5 5<br>YEDBCL<br>1 LINE<br>0.<br>-1<br>ZEOBCL<br>1 LINE<br>0.                                                               | 180.<br>240.<br>274.<br>PIECE<br>0.<br>PIECE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180.<br>240.<br>274.<br>440.1<br>KV5<br>440.1<br>KV4<br>12.                                     | 50.                                             | A-18.5                         |                    |                          | · · ·                                 |
| 4 4<br>5 5<br>YBDBCL<br>1 LINE<br>0.<br>-1<br>ZBOBCL<br>1 LINE<br>0.<br>2 ELLX                                                     | 180.<br>240.<br>274.<br>PIECE<br>0.<br>PIECE<br>0.<br>ALINK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 180.<br>240.<br>274.<br>440.1<br>KU5<br>440.1<br>KU4<br>12.<br>KU0                              | 5 0.                                            | Ĥ-18.5                         |                    |                          | · · ·                                 |
| 4 4<br>5 5<br>YBDBCL<br>1 LINE<br>0.<br>-1<br>ZBOBCL<br>1 LINE<br>0.<br>2 ELLX<br>1.                                               | 180.<br>240.<br>274.<br>PIECE<br>0.<br>PIECE<br>0.<br>ALINK<br>1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180.<br>240.<br>274.<br>440.1<br>KU5<br>440.1<br>KU4<br>12.<br>KU4<br>120.                      | 5 °.<br>5 0.                                    | A-18.5<br>5 50.                | 5<br>-20.          | . 255                    | · · ·                                 |
| 4 4<br>5 5<br>YBDBCL<br>1 LINE<br>0.<br>-1<br>2BOBCL<br>1 LINE<br>0.<br>2 ELLX<br>1.<br>4 LINE                                     | 180.<br>240.<br>274.<br>PIECE<br>0.<br>PIECE<br>0.<br>ALINK<br>1.<br>PIECE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180.<br>240.<br>274.<br>440.1<br>KV5 440.1<br>KV5 12.<br>KV5 120.<br>KV5 120.                   | 5 0.                                            | A-18.5<br>5 50.                | 5<br>20.           | . 775                    | · · ·                                 |
| 4 4<br>5 5<br>YBDBCL<br>1 LINE<br>0.<br>-1<br>2BDBCL<br>1 LINE<br>0.<br>2 ELLX<br>1.<br>4 LINE<br>120.                             | 180.<br>240.<br>274.<br>PIECE<br>0.<br>PIECE<br>0.<br>ALINK<br>1.<br>PIECE<br>-21.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180.<br>240.<br>274.<br>440.1<br>KV5 440.1<br>KV5 12.<br>KV5 120.<br>KV5 180.                   | 5 0.<br>5 0.<br>-20.7<br>-17.7                  | A-18.5<br>35 50.               | 5<br>20.           | .75                      | · · ·                                 |
| 4 4<br>5 5<br>YBDBCL<br>1 LINE<br>0.<br>-1<br>ZBDBCL<br>1 LINE<br>0.<br>2 ELLX<br>1.<br>4 LINE<br>120.<br>3 ELLX                   | 180.<br>240.<br>274.<br>PIECE<br>0.<br>PIECE<br>0.<br>ALINK<br>1.<br>PIECE<br>-21.25<br>FILET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 180.<br>240.<br>274.<br>440.1<br>KV5<br>440.1<br>KV5<br>120.<br>KV5<br>180.<br>KV0              | 5 °<br>5 0.<br>-20.7<br>-17.7                   | A-18.5<br>5 50.                | 5 20 .             | . 775                    | · · · · ·                             |
| 4 4<br>5 5<br>YBDBCL<br>1 LINE<br>0.<br>-1<br>2BDBCL<br>1 LINE<br>0.<br>2 ELLX<br>1.<br>4 LINE<br>120.<br>3 ELLX<br>2.             | 180.<br>240.<br>274.<br>PIECE<br>0.<br>PIECE<br>0.<br>ALINK<br>1.<br>PIECE<br>-21.25<br>FILET<br>2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180.<br>240.<br>274.<br>440.1<br>KV5<br>440.1<br>KV5<br>120.<br>KV5<br>180.<br>KV0<br>4.        | 5 °<br>5 0.<br>-20.7<br>-17.7<br>4.             | A-18.5<br>5 50.<br>5 120.      | 5<br>-20.<br>135.  | . 7165                   | · · · · · · · · · · · · · · · · · · · |
| 4 4<br>5 5<br>YBDBCL<br>1 LINE<br>0.<br>-1<br>2BDBCL<br>1 LINE<br>0.<br>2 ELLX<br>1.<br>4 LINE<br>120.<br>3 ELLX<br>2.<br>6 LINE   | 180.<br>240.<br>274.<br>PIECE<br>0.<br>PIECE<br>0.<br>ALINK<br>1.<br>PIECE<br>-21.25<br>FILET<br>2.<br>PIECE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180.<br>240.<br>274.<br>440.1<br>KV5<br>440.1<br>KV5<br>120.<br>KV5<br>180.<br>KV0<br>4.<br>KV5 | 5 0.<br>5 0.<br>-20.7<br>-17.7<br>4.            | A-18.5<br>5 50.<br>5 120.      | 5<br>20.<br>135.   | r 7 m3                   |                                       |
| 4 4<br>5 5<br>YBDBCL<br>1 LINE<br>0.<br>2BDBCL<br>1 LINE<br>0.<br>2 ELLX<br>1.<br>4 LINE<br>120.<br>3 ELLX<br>2.<br>6 LINE<br>180. | 180.<br>240.<br>274.<br>PIECE<br>0.<br>PIECE<br>0.<br>ALINK<br>1.<br>PIECE<br>-21.25<br>FILET<br>2.<br>PIECE<br>-17.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180.<br>240.<br>274.<br>440.1<br>KU5 440.1<br>KU5 120.<br>KU5 180.<br>KU0 4.<br>KU5 440.1       | 5 0.<br>5 0.<br>-20.7<br>-17.7<br>4.<br>5 -14.9 | A-18.5<br>5 50.<br>5 120.      | 5<br>20.<br>1.35.  | . 745                    | •                                     |

| ц.<br>1          | ч.                           | 6.                          | 6.          | 165.                        | 180.             |
|------------------|------------------------------|-----------------------------|-------------|-----------------------------|------------------|
| ZBOLSDTN         |                              | ·.                          |             |                             |                  |
| 1 LINE           | PIECE KU5                    |                             |             |                             |                  |
| U. 7 I TNC       | U.<br>Dicensi Mas            | 100.                        | 0.          |                             |                  |
| 100.             | - nicus Kou<br>0.            | 140.                        | 3.6         | •                           |                  |
| 2 ELLY           | FILET KUO                    |                             | and 41 mar  | ,                           | •                |
| 1                | 1.                           | 3.                          | 3.          | 90.                         | 110.             |
| 5 LINE           | PIECE KV5                    | 1100 45                     | -           | · · ·                       |                  |
| 4 FILX           | рыисы<br>Рется КUA           | 440.10                      | 61 w        | •                           |                  |
| 3.               | -3.                          | 5                           | 5.          |                             |                  |
| 1                |                              |                             |             | ·                           |                  |
| YBOLSDIN         | و و و در و العمر بدر بدو بدو |                             |             |                             |                  |
| 1 L.IAL          | PIEUE KUH                    | 1.0                         |             | 010 E                       | 1 <sup>1</sup> 1 |
| 2 FH X           | O.<br>ALINK KUO              | 1 40. m                     |             | MICs.J                      | , ·              |
| 1.               | 1.                           | 180.                        | 30.16       | 160.                        | 28.78            |
| 3 RYPA           | ALINK KUO                    |                             |             |                             | · ·              |
| 2.               | 2.<br>                       | 328.                        | 32.8        | 300.                        | 33.32            |
| H RYPH           | HLINK KUU                    | uun im                      | 74 60       | 11-011                      | -714             |
|                  | - <sup>1</sup> 8             | тт <u>т</u> () и Г <u>т</u> | LDFT 8 LUIC | TLL TO                      | _DTN_            |
| YBDLSCP          | YBOLSOTH                     |                             |             |                             | · .              |
| ZBDLSCP          | 2BOBCL /                     | • • •                       |             |                             |                  |
| YBDTCL           | YBDBCL                       |                             |             |                             |                  |
| ZBUTUL<br>1 LINE | PIECE VIN                    | *                           |             |                             |                  |
| Ω.               | ň.                           | 12.                         |             | 818.5                       | •                |
| 3 LIME           | PIECE KUS                    |                             |             |                             |                  |
| 40.              | 10.15                        | 180.                        | 36.016      |                             |                  |
| 2 ELLX           | ратсн кио                    |                             |             |                             | -                |
| 1.<br>5.1.1NE    | I.<br>PIECE KUS              | .j.                         |             |                             |                  |
| 184.             | 36.016                       | 274.                        | 20.         | · · ·                       |                  |
| 4 RVPA           | FILET KU0                    |                             |             |                             | - 1              |
| 3.               | 3.                           | 5.<br>                      | 5.          | 180.                        | 195,             |
| 9 LIME           | PIEUE KUS                    | 1110 1E                     | ~ 1 ~ 1)    |                             |                  |
| 8 ELLX           | FLINK KUN                    | -T-TQ-0-1                   | 01.07       |                             |                  |
| 316.236          | 69.5                         | 9.                          | 9.          | 400.                        | 69.5             |
| 7 ELLX           | FLINK KUO                    |                             |             |                             | •                |
| 274.             | 68.16                        | 8.                          | 8.          | 300.                        | 69.8             |
| b ELLA           | FILEI KUU                    | -7                          | -7          | 260                         | 97 <b>u</b>      |
|                  | ' H                          | í u                         | r" u        | 21,000 #                    | CLY TH           |
| YBDUSCP          | VEDLSDTN                     |                             |             |                             |                  |
| ZBDUSCP          | ZBDTCL                       |                             |             |                             |                  |
| YBOBTMTN         |                              |                             |             |                             |                  |
| 1 RYPH<br>140    | DIEGE KUU                    | 170                         | 77 77       | 147.52                      | Ŭ.               |
| 3 A THE          | PIECE KUS                    | н с 52 ж                    | الي 14 ألب  | 1 1 f 9 - " <sup>1</sup> ú… | 1.7 W            |
| 210.             | 2.15                         | 440.15                      | 18.14       |                             |                  |

| 2 RYPA<br>1.<br>-1    | РАТСН КО0<br>1.                   | 3.          | 3.             |             |                                       |
|-----------------------|-----------------------------------|-------------|----------------|-------------|---------------------------------------|
|                       |                                   |             |                |             |                                       |
| - YBDUSDTN-           |                                   |             |                |             | · · · · · · · · · · · · · · · · · · · |
| 1 LINE                | PIECE KUH                         |             |                |             | · .                                   |
| Ü.                    | Ü.                                | 12.         |                | A18.5       |                                       |
| 2 ELLX                | ALINK KUU                         | 4.000       |                | a .* .*.    |                                       |
| },,<br>⊎ Гтыл‴        | i i al 1<br>- manananan - Barrier | 160.        | 30° 16         | 160.        | 20.78                                 |
| T L.LINC.<br>7777 722 | 755 4                             | 440 (S      | 26 50          |             |                                       |
| AAVA 2                | PATCH KUN                         | 1 1.4 8 1   |                |             |                                       |
| 2.                    | 2.                                | Lý "        | ч.             |             | •                                     |
| 1 NULL                |                                   |             |                |             |                                       |
| 1                     |                                   |             |                |             |                                       |
| ZEDUSOTN              | ;                                 |             |                |             |                                       |
| 1 LINE                | PIECE KUS                         | a 1 · 25    |                |             |                                       |
| 100.                  | U.<br>Damen Ivita                 | 140.        | Sato           |             |                                       |
| 13 L.13E              | - MIEUE KVD<br>- 7 2              | 20 <b>1</b> | ាម កំ          |             |                                       |
| ETT.                  | - DIECE KHS                       | 22.0 -1 -   | 1 "To U        |             |                                       |
| 204.                  | 14.0                              | 333, 36     | 41.24          |             |                                       |
| Z LINE                | PIECE KUS                         |             |                |             |                                       |
| 333.36                | 41.74                             | 440.15      | 32.48          |             |                                       |
| 2 ELLY                | FILET KUO                         |             |                |             |                                       |
| 1.                    | 1.                                | З.,         | 3.             | 140.        | 160.                                  |
| _4 ELLX               | FILET KUO                         |             |                |             |                                       |
| B. Dumo               | ி.<br>மாபமா ⊮பல                   | <u>.</u>    | 50 v           | 190.        |                                       |
| o Karn                |                                   | -7          | -7             | 17 - 10 (D) | 770                                   |
|                       |                                   | r" n        | e u            | 1022.000    |                                       |
|                       |                                   | 1           |                |             |                                       |
| VENTEL                | VEDTCL                            |             |                | •           |                                       |
| ZONTOL                |                                   |             |                |             |                                       |
| 1 LINE                | PIECE KU5                         |             |                |             |                                       |
| 180.                  | 36.016                            | 230.        | 56.            |             |                                       |
| 2 ELLX                | ALINK KUO                         |             |                |             |                                       |
| 1.                    | 1.                                | 274.        | 68.16          | 300.        | 69.8                                  |
|                       | •                                 |             |                |             |                                       |
| 1 61 1 2              | PIFCE KIN                         |             |                |             |                                       |
| 180                   | - 01.                             | 1280.       | 32.5           | 180.        | 25.7                                  |
|                       |                                   |             |                |             |                                       |
| ZCHBTM                |                                   |             |                |             |                                       |
| 1 ELLY                | PIECE KUO                         |             |                |             |                                       |
| 180.                  | 36.016                            | 200.        | 32.            | 190.        | 32.                                   |
| BLAINE                | PIECE KUS                         |             |                |             |                                       |
| 210.                  | BB.<br>Borrow March               | 280.        | ⊾ <b>∔</b> ; " |             |                                       |
| 2 ELLY                | PHICH KUU                         | -7          | -7             |             | ·                                     |
| ци<br>1               | 1 u                               | _2° o       | ' "            |             |                                       |
| Vensee                | •                                 |             |                |             |                                       |
| 1 ELLX                | PIECE KU0                         |             |                |             |                                       |
| 180. 💉                | Ü.                                | 280.        | 20.            | 180.        | 16.                                   |
|                       |                                   |             |                |             |                                       |
| · ·                   |                                   |             |                |             |                                       |

1.

|          |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | •           |
|----------|------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|
| INULL    | 1          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| 1        |            | . *           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · •          |             |
| YRDMEDG  | • • • •    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| 1 LINE   | PIECE KU5  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • • •      |             |
| 240.     | 12.        | 440.15        | 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |             |
| 1        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| ZRDMEDG  |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| 1 LINE   | PIECE KU5  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •            |             |
| 180.     | -5.95      | 440.15        | 2.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . •          |             |
| 3 I THE  | PIECE KUS  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| 245.52   | 5.19       | 300.          | -18.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |             |
| 5 I THE  | PIECE KUS  |               | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |             |
| 190      | ~17.9      | 4777          | -15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |             |
| o pupp   | FUET KHO   | ( ( (         | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · ·      |             |
| 1        | 1          |               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 240.         | 255.        |
| 4 RVPA   | FILET KUN  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nume 1.97 11 | 414 84 84 H |
| 7        | 7.         | <del>در</del> | ۲.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 285.         | 305.        |
| 6 RVPA   | ALINK KUO  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| 5.       |            | 472.          | -10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 433.         | -18.12      |
| 1 1111   |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
|          | ι.         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · ·    |             |
| VRDMSCP  | VRDMEDG    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| ZRDMSCP  | ZRDMBCL    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | -           |
| VMAPAXIS | VERBOIL    | :             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| ZMAPAXIS | ·          |               | · . ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |             |
| 1 I THE  | PIECE KUS  |               | · • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · ·        | ı           |
| Ũ.,      | 0          | 80.           | Ο.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | *           |
| 2 FILV   | PIECE KUD  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1           |
| SÜ.      | й.         | 180.          | 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140.         | 0.          |
| S I INF  | PIFCE KUS  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| 290.     | 47.96      | 440.15        | 47,28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |             |
| 4 RVPA   | FI THE KUN | 1 1.0 8 1.0   | The Contraction of the Contracti |              |             |
| 260.     | 48.8       | 5.            | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 280.         | 48.8        |
| 3 ELLY   | PATCH KUD  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,            | · ·- ·· ··  |
| 2        | 2.         | <b>ц</b>      | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | · . ·       |
| -1       | 1          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i gene       |             |
|          | · ·        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |



137<sup>.</sup>

FULSHTL: QUICK GEOMETRY FOR SHUTTLE ORBITER

| 1 2                                  | NOSE TO       | START (         | ар воттом и                    | FLAT            |                       |                         |
|--------------------------------------|---------------|-----------------|--------------------------------|-----------------|-----------------------|-------------------------|
| BOWLOFU                              | OFFLIT PI     | ECE<br>C        | RODVRO                         | RUSULA          | RDL OSCR              |                         |
| BDYUPFLL                             |               | FCF             | BOSOTUP                        | RODVTOP         | BOUPSOP               |                         |
| 2 7                                  | BOTTOM F      | LAT TO          | START OF                       | SIDE FLAT       | Eliteration (Colored) |                         |
| FLATETM                              | 11 THE PT     | FCF             | BODVEC                         | BOBTMEN         |                       |                         |
| BOVE OF L                            | RELIT PA      | TCH             | RNRTMTN                        | BOSOTUR         |                       |                         |
| BUANDELL                             | OFFIT PT      | FOF             | phoninip                       | RODUTOR         | - philipeap           |                         |
| 72 LL                                | CLATE TO      | orapr           | AE AGNADU                      | COULD I 1 COF   | DUUROUR               |                         |
| FLATRIM                              | TENC DT       | COLLEC          | DARUDARA<br>DARUDARA           | DIDDIDMIN       |                       |                         |
| POVENCE                              |               | ncun<br>Troui   | EQUID Y EQUID<br>EQUID Y EQUID | DUD HILL        |                       |                         |
| CLOTOTOT                             | - DELLA PPP   | nor<br>ror      | DDD IN IN                      | DUOUTLU         |                       |                         |
| DELLER DELLE                         |               |                 | DEDEDITED                      | DODUTOR         | CORDA (FOUS-CORD)     |                         |
| DUYOFELL                             | TELLI MII     | nun<br>o orona  | BUSUIUM<br>For corp.           | BUUYIUP         | BUUFSUF               |                         |
|                                      | UHMUMY D      | U SIMMI<br>Dogo | UF FHLKI                       |                 |                       |                         |
| FLHIBIM                              | ILINE FI      |                 | BUUYBUL                        | BUBININ         |                       |                         |
| BUYLUELL                             | BELLI PH      | I C.H           | BDBIMIN                        | BUSDILU         |                       |                         |
| FLATSIDE                             | STINE bit     | ECE             | BOSDILO                        | BOSDTUP         |                       |                         |
| BOYUPELL                             | HELLI PI      | ECE             | BDSDTUP                        | BODYTOP         | BDUPSCP               |                         |
| CANOPY                               | SELLI PI      | ECE             | CHBDINT                        | CMPYTOP         | CNPYSCP               | BDYUPELL ,              |
| 56                                   | FAIRING       | TO STAP         | T OF WING                      | (and end        | OF CANOPYS            |                         |
| FLATETM                              | ILINE PI      | ECE             | BODYBCL                        | BOBIMIN         |                       |                         |
| BDAFOEFF                             | BELLI PA      | TCH             | BOBININ                        | BOSDTLO         |                       | •                       |
| FLATSIDE                             | 2LINE PI      | ECE             | BDSDTLO                        | BOSDTUP         |                       |                         |
| BDYUPELL                             | HELLI PI      | ECE             | BOSDTUP                        | BODYTOP         | BOUPSCP               |                         |
| CANOPY                               | SELLI PI      | ECE             | CNBDINT                        | CNPYTOP         | CNPYSCP               | BDYUPELL                |
| FAIRING                              | 6ELLI PH      | ECE             | FREDINT                        | FRNGTOP         | FRNGSCP               | CANOPY                  |
| 6-6                                  | WING TO S     | START C         | F TAIL                         |                 |                       | •                       |
| FLATETM                              | ILINE BI      | ECE             | BODYBCL                        | BOBTMTN         |                       |                         |
| NGROL OFL                            | BELLI PA      | тсн             | BOBTMTN                        | WINGLE          |                       |                         |
| <b>WINGUPER</b>                      | PELLI PH      | ECE             | WINGLE                         | BOSDTLO         | WINGSOP               |                         |
| FLATSTOF                             | 41 THE PT     | -CF             | BOSOTLO                        | BOSOTUP         |                       |                         |
| ROVURFU                              | SELLI PIE     | FCF             | BOSOTUP                        | BODYTOP.        | BOUPSCP               |                         |
| FATETNE                              | AFLLT PIR     | ECE.            | EPENINT                        | FRNGTOP         | FRNGSCP               | BOVUPELI                |
| 7 7                                  | TAIL TO P     | END:            | T PARAKA AT T                  | n nya nyan sara |                       | ha ha f a f ha ha ha ha |
| CLOTOTM -                            | ALTNE DI      | 27°E            | ponupo                         | REPRESENTEN     |                       |                         |
|                                      |               |                 | POPTMEN                        | LIINGEE         |                       |                         |
| LTNCHOCC.                            | ODULT DI      | ron<br>ror      | LITNOLE                        | PRODUCE         | LIINGGOD              |                         |
| READETER.                            |               |                 | DDODTLO                        | phonrup         | EM (K. C. 1994) SUM   |                         |
|                                      |               |                 | BDOD1LO<br>BRONTHB             | DODUTOR         | Philperp              |                         |
| DOTOFICE.                            |               |                 | CODDITON                       | CONGTOD         | EDNGCOD               | phunder r               |
| n nuns autora<br>Hiterationnen autor | PELLI FI      |                 |                                |                 | TATIOND               |                         |
| - VER 1 1 MILL-                      | RELLI PIL     |                 | 1 L. F. F. J. I. I. I.         | 1716.100        | 111.LL-39.21"         | 1111115-11111           |
| r<br>                                | nnnnato       | 20              |                                |                 |                       |                         |
|                                      | 90<br>20      | 2000<br>1110    |                                |                 |                       |                         |
|                                      | 20 m<br>190   | 100 C           | . 4                            |                 |                       |                         |
| .5 .5                                | 10.<br>100.01 | 100.0           |                                |                 |                       |                         |
| ·+ ·+                                | 180.01        | addu t          | )<br>•                         |                 |                       | · .                     |
| b b                                  | 226.6         | .360.           | · · · · · ·                    |                 |                       |                         |
| 66                                   | 36U.          | 1077.           | 8769                           |                 |                       |                         |
| 2.2                                  | 1022.8269     | 9 1280.         | 5206                           |                 |                       |                         |
| <b>YBODYBCL</b>                      |               |                 |                                |                 |                       |                         |
| 1 LINE                               | PIECE KU      | 5               |                                |                 |                       |                         |
| 0.                                   | 0.            | 1280.           | 5206 0.                        |                 |                       |                         |
| 1                                    |               |                 |                                |                 |                       |                         |
ZBODYBCL. 2 LINE PIECE KUS 45.4119 -74.1348 -49.6848 929.7185 1 ELLX FLINK KU0 Ü. Ο. 2. 2. Ü. ~50. **3 RYPA** ALINK-KUO- -2. 2. 1280.5206 -65. 1250.0 ~67.0 --1 YBOSDTUP 2 LINE PIECE KU5 370. 46.2026 59. 108. 1 ELLY FLINK KU0 0. 0. 2. 2. Ũ. 10. 4 LINE PIECE KUS 370. 108. 1280.5206 108. 3 ELLY FILET KU0 2. 2. 4. Ч. 360. 380. --- 1 ZEDSDTUP PIECE KU5 1 LINE 46.2026 Ο. 0. 0. 3 LINE PIECE KUS 46.7026 0. 343. 58. FILET KU0 2 ELLX З. 40. 1. 1. З. 55. 5 LIME PIECE KUS 343. 58. 1102. 58. 4 ELLX FILET KU0 5. З. . З. 5. 335. 360. 7 LINE PIECE KUS 58. 1328.3 66.25 1107. 6 ELLX FILET KU0 5. 5. Ζ. 2. 1100. 1120. --- 1 YBDLOSCP YEDSDTUP ZBDLOSCP ZBODYBCL V80DYT0P YBODYBCL ZEODYTOP. 2 LINE PIECE KUS 37.7036 53.6344 338.54 163. 1 ELLX FLINK KU0 Ü. 2. 2. Ü. Ü., 10. 4 LINE PIECE KUS 338.54 163. 1280.5206 163. 3 ELLX FILET KU0 2. 4. 330. 2. 4. 360. --- 1 YEDUPSOP YBDSDTUP 2BODYTOP ZEDUPSCP VEDETMIN I LIME PIECE KUS 30. Ü., Ü. Û. 3 ELLX PIECE KU0 30. 80. Ü. 360. 120. 38.8

| 2 ELLY                                                                                                                    | FILET KU0                 |                 |                     |                       |                                          |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|---------------------|-----------------------|------------------------------------------|
| 1.                                                                                                                        | 1.                        | 3.              | 3.                  | 20.                   | 40.                                      |
| 5 LINE                                                                                                                    | PIECE KUS                 | 5               |                     |                       |                                          |
| 360.                                                                                                                      | 80.                       | 250.            | 60.                 |                       |                                          |
| 4 ELLX                                                                                                                    | FILET KU0                 |                 |                     |                       | · · · · ·                                |
| 1944 -<br>1944 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - | Z.                        |                 | na an taon          | 350.                  | 370;.                                    |
| 750                                                                                                                       | PIECE KOD                 | 1100            |                     |                       | · · ·                                    |
| A FILL                                                                                                                    | ETTET VIG                 | 1100.           | - <b>150 a</b> - 16 |                       |                                          |
| ter ta ta ta ta ta                                                                                                        | - 1 2 546 - 10000<br>- 10 | 7.              | 7.                  | 240                   | 260                                      |
| 9 LINE                                                                                                                    | PIECE KUS                 | , n<br>,<br>,   |                     | 7 107 W               | к <b>ч.ч.</b> ти                         |
| 1100.                                                                                                                     | 60.                       | 1280.5206       | 20.                 |                       | 2 · : .                                  |
| 8 ELLY                                                                                                                    | FILET KU0                 |                 |                     |                       |                                          |
| 2.                                                                                                                        | 2.                        | 9.              | 9.                  | 1080.                 | 1120.                                    |
| 1 NULL                                                                                                                    |                           |                 |                     |                       |                                          |
|                                                                                                                           |                           | د به            |                     |                       |                                          |
| ZEUBIMIN                                                                                                                  | ZBUUYBUL                  | . V             |                     |                       | · · ·                                    |
| YBUSUILU<br>Zenentio                                                                                                      | ABD2D10H                  | ;               | ÷ •                 | · · · ·               |                                          |
| 1 I TNE                                                                                                                   | DIECE KUS                 |                 | ŗ                   |                       | i +                                      |
| Π.                                                                                                                        | 1 1LOL 1000               | 46.2026         | <u>0.</u>           |                       |                                          |
| 3 ELLX                                                                                                                    | PIECE KVO                 | the second      | ·.· •               |                       |                                          |
| 46.7026                                                                                                                   | 0.                        | 360.            | -30,3826            | 180.                  | -30.3826                                 |
| 2 ELLX                                                                                                                    | FILET KU0                 | •               |                     |                       | 174 ( ).                                 |
| 1                                                                                                                         | 1                         | 3.              | З., 22              | 40.                   | <b>55.</b> 181                           |
| 4 ELLX                                                                                                                    | PIECE KUO                 |                 |                     | <b></b>               |                                          |
| 360.                                                                                                                      | -30.3826                  | . 850.          | -6.6                | 360.                  | bab                                      |
| D DLLA                                                                                                                    | HEINK KOU                 | toon sõha       |                     | 1720.0                |                                          |
| - T a<br>'l                                                                                                               | Ти                        | 14200 9 04200   |                     | i ang tang ta         |                                          |
| VENBOINT                                                                                                                  | - <i>f</i> 4.             | ÷ •             | the fatter          |                       | ÷                                        |
| 1 ELLX                                                                                                                    | PIECE KV0                 |                 |                     |                       |                                          |
| 180.                                                                                                                      | 0.                        | 360.            | 95.                 | 180.                  | 254 1998                                 |
| 1                                                                                                                         |                           | <i>:</i> ,      | 3                   |                       |                                          |
| ZCNBDINT                                                                                                                  |                           | · · · ·         |                     |                       |                                          |
| 1 LINE                                                                                                                    | PIECE KV5                 | برا سر مر سر اس |                     |                       |                                          |
| 180.                                                                                                                      | 100.350                   | adb.b           | tous.               | i i                   |                                          |
| 3 L10L                                                                                                                    | FIDUE NVD                 | 760             | 67                  | $\frac{1}{2}$ $(1,1)$ |                                          |
| 220.0<br>2 FU X                                                                                                           | ETTEL KAU                 | 201200 B        | 1                   | : · ·: `              |                                          |
| 1                                                                                                                         | 1                         |                 | 3.                  | 220.                  | 235.                                     |
| 1                                                                                                                         |                           |                 |                     |                       |                                          |
| <b>POTYPHOP</b>                                                                                                           | VBODVBCL 1                |                 |                     | and a spin of the     |                                          |
| ZCNPYTOP                                                                                                                  |                           |                 |                     |                       | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 |
| 1 LINE                                                                                                                    | PIECE KUS                 |                 |                     |                       |                                          |
| 37.7036                                                                                                                   | 53.6344<br>57000 1/100    | 338, 54, 5      | 163.1               | · · · · ·             | · · · · · ·                              |
| 100 LINE                                                                                                                  | THELE KVD                 | 100mg 24        | 1117                |                       |                                          |
| 5   TMF                                                                                                                   | PIECE KUS                 | Kanda Kato Kat  | t Taitu             |                       | • •                                      |
| 276.3705                                                                                                                  | 163.                      | 360.            | 163.                |                       | • • • •                                  |
| 2 ELLY                                                                                                                    | FILET KV0                 | ·· ·· ·· ··     | · ·- ··· ···        | : <sup>1</sup>        |                                          |
| 1.                                                                                                                        | 1                         | Ξ.              | 3.                  | 180.                  | 200.                                     |
| 4 ELLX                                                                                                                    | PATCH KU0                 | e1.             | ,                   |                       |                                          |
| З                                                                                                                         | 3.                        | 5.              | 5.                  |                       | -                                        |
|                                                                                                                           | Ť,                        |                 |                     |                       |                                          |
|                                                                                                                           |                           | · .             | · · · ·             |                       |                                          |

140

.

-1 ZCNSCP. ZCHTCL YNGBTM -2-LINE, PIECE, KU5 333.36 440.15 34. 35.12 1 RYPA FLINK KU0 260.4 25. 2. 2. 333.36 38. -1 YNGTOP ε., 1 LINE PIECE KV5 260. 25. 440.15 20. -1 . YNGEDG -2 LINE PIECE KUS 304. 🐋 40.2 440.15 89.2 1 RYPA FLINK KU0 25. 260. 2. 2. 285. 25. -- 1 ZWGBTM. . . , t 2 LINE PIECE KU5 333.36 41.74 440.15 32.48 1 RXP8 FLINK KU0 260. 👘 48.8 260. 2. 2. 40. -1 : ZWGTOP -1 RXPA PIECE KU0 260 48.8 281. 49.38 260. 49,12 2 ELLX ALINK KÚO 440.15 1. 56. 400. 56. 1.. -1 ZNGEDG PIECE KUS 2 LINE 290.1 47.96 440.15 43.28 1 RYPA FLINK KU0 260. 48.8 2. .280. 48.8 2. -1 YNGLSCP. YMGEDG ZWGLSCP ZWGBTM YMGUSCP. YMGEDG. ZWGTOP ZWGUSCP YEDBOL YRDMBCL ZRDMBCL 1 LINE PIECE KV5 180. 440.15 -17.95 -14.,97 PIECE KUS 3 LINE 245.52 -17.19 300. -30.283 5 LINE PIECE KU5 300. -30,783 -29.63 433. 2 RYPA FILET KU0 ۰, 240. 255. 1. 1. З. З. 4 RVPA FILET KUO 305. 5. 285. 3. -3. 5. 6 RYPA ALINK KUO 433. 5. **5**., 472, -24,83 -32.75

. . .

1 NULL

--- 1 VCHPVSCP. VCHBDINT 2CMPYSCP 20MPYT0P YFREDINT. PIECE KUO I ELLX Ü. 24.359 226.6 309. 226.6 24.359 PIECE KUS 2 LINE 309. 24.359 1280.5206 24.359 ---1 ZFR8DINT 2 LINE PIECE KU5 155. 1280.5206 155. FLINK KU0 276.3705 1 ELLY 109. 226. 143. 2. 2. 190. 51 ---1 **VERNGTOP** YBODYBCL 11.01 ZERNGTOP 2 LINE PIECE KU5 183. 309.1 1280.5206 183. FLINK KU0 1 ELLY 190. 226.6 143. 2., 2. 109. --1 . . . . . **YFRNGSCP** 1 ELLX PIECE KUO Ü. 19. 19. 226.6 309. 226.6 PIECE KUS 20.94 2 LINE 309. 1280.5206 19. 19. --- 1 ZERNGSCP ZERNGTOP. YWINGLE. 1 LINE PIECE KU5 46.7026 59. 370. 108. . . . . PIECE KU5 3 LINE 834.8 210.8 370. 108. 5 LINE PIECE KU5 1064.2 428.34 83418 210.8 PIECE KV5 7 LINE 1241.6 · . . . 468.34 1280.5206 468.34 • • • • VIG RYPH PATCH KU0 7. WA HOLE 0.5 5. . Ζ. 4 ELLX FILET KU0 290 a · 3. 5, 870. 3. 5. 1 1<sup>11</sup> 1 1 FILET KUO 2 ELLY З. 1. З. 360. 380. 1 MULL --- 1 ZWINGLE PIECE KU5 THE LINE V -30.3826 1105. -30.3826 360. V PIECE KU5 3 LINE -30.3826 1280.5206 -60. 1105. 2 ELLY FILET KU0 з. 1090. 1120. 1. . `**1 .** 🤄 З.

-1 YWINGSOP YWINGLE. ZWINGSCP ZBDSDTLO **YTLFRINT** 111.1 2 LINE PIECE KUS 1082. 4.4 1215.4 18.4 FLINK KU0 1 ELLX 2. 1077.8769 1077.8769 10. Ü. 2. 4 LINE PIECE RU5 1215.4 18.4 1280.5206 9.2 **3 RYPA** FILET KUO 1220.4 2. 2. 4. 4. 1210.4 ۰. -- 1 ZTLFRINT PIECE KU5 1 LINE 1077.8769 1280.5206 163. 163. --- 1 YTAILTOP YBODYBCL ZTRILTOP 2 LINE PIECE KUS 1107. 192.6 1366.8 453. FLINK KU0 1 ELLX 2. 1077.8769 183. 2. 1000. 183. --- 1 VTAILSCP VILFRINT ZTHILSCP ZTAILTOP YMAPAXIS VBODYBCL ZMAPAXIS 1 LINE PIECE KUS 0. . 300. Ű., Ü. 3 LINE PIECE KUS -30.3826 -360. -30.3826 1105. S COBIC PATCH: KU0 з. 1. 1. З. 5 LINE PIECE KU5 1105. -30.3826 1280.5206 -60. 4 ELLY FILET KUO Ξ. 5. 1090. 1120. З., 5. : -1 • • 143



## APPENDIX B

### A BRIEF USER'S GUIDE

# TO THE

THREE-DIMENSIONAL BLUNT BODY CODE (BLUNT)

...

BLUNT is a simple to use code which will accept the QUICK intermediate data deck to define a blunt nose body and will supply a directly useable data deck for the starting plane of STEIN.

Here BLUNT's input data will be described. There are three input data cards for BLUNT in addition to the QUICK INTERMEDIATE DATA DECK. This intermediate data deck is output from QUICK and the user need not get involved in its details.

### Input:

Card #1 NRUN, MONTH, MDAY, MYEAR, NA, MA, LA, KA, JA, LB, LE, IN, IGAS, IRESTRT

Card #2 ACH, GAMMA, STAB, THEMAX, ELL, XO, ANGLE, ALPHA

Card #3 PIN, TIN

Card #4 NCSU, MCSU, IPUNCH

QUICK INTERMEDIATE DATA DECK

#### Formats:

| A11 | quantities | oņ | Card #1 are read in 15 format                  |  |
|-----|------------|----|------------------------------------------------|--|
| A11 | quantities | on | Cards $\#2$ and $\#3$ are read in El0.4 format |  |
| All | quantities | on | Card #4 are read in I5 format                  |  |

### Nomenclature:

| NRUN  | Run number                                                          |    |
|-------|---------------------------------------------------------------------|----|
| MONTH | Month                                                               |    |
| MDAY  | Day                                                                 |    |
| MYEAR | Year                                                                |    |
| NA    | Number of intervals in the r direction (maximum of 10)<br>(Fig. Bl) | )  |
| MA    | Number of intervals in the $\theta$ direction (maximum of 10)       | ). |

(Fig. Bl)

| LA      | Number of intervals in the $\phi$ direction (maximum of 8) (Fig. Bl)                                                         |
|---------|------------------------------------------------------------------------------------------------------------------------------|
| KA      | The number of steps to be computed, after which the code will output initial data. Typically KA = 700 to reach steady state. |
| JA      | The number of steps between outputs before the steady state.                                                                 |
| LB      | Indicator for output quantities indicating convergence at every<br>step LB = 0 for no output.                                |
| LE      | Geometry indicator:                                                                                                          |
|         | LE = 0 General geometry input (from "QUICK")                                                                                 |
|         | LE $\neq$ 0 Circular cross sections, geometry is nondimensionalized<br>with respect to the radius of curvature of the nose.  |
|         | LE = 1 Paraboloid cap                                                                                                        |
|         | LE = 2 Ellipsoid cap with a given axis ratio (ELL) and<br>followed by a cone with half angle (ANGLE)                         |
| IN      | Index not used                                                                                                               |
| IGAS    | Gas Indicator IGAS = 0 for perfect gas IGAS = 1 for air in<br>equilibrium                                                    |
| IRESTRT | Restart indicator:                                                                                                           |
|         | = 0 Blunt body is started with code supplied guess and outputs<br>data on unit 8 for restarting blunt body code.             |
|         | = 1 BLUNT reads starting data from unit 8 and continues.                                                                     |
| ACH     | Free stream Mach number                                                                                                      |
| GAMMA   | Ratio of specific heats (Cp/Cv) in free stream                                                                               |
| STAB    | Stability factor for C.F.L. condition (DT = DTmin(STAB)).<br>Typically STAB = 1.2.                                           |
| THEMAX  | Limit on $\theta$ . Now computed in code but still in read statement.                                                        |
|         |                                                                                                                              |

147

)

| ELL    | Used only when $LE = 2$ . Axis ratio of ellipsoid, $ELL = 1$ . for spherically caped cone. |
|--------|--------------------------------------------------------------------------------------------|
| xo     | Location of center of coordinate system (Fig. Bl) (XO should be                            |
|        | large enough so that initial data plane for supersonic flow                                |
|        | calculation in supersonic)                                                                 |
| ANGLE  | .Cone half angle for $LE = 2$                                                              |
| ALPHA  | Angle of attack                                                                            |
| PIN    | Free stream pressure $(p_{\infty}/p_{SL})$ use only when IGAS = 1.                         |
| TIN    | Free stream temperature $(T_{\infty}/T_{SL})$ used only when IGAS = 1.                     |
| NCSU   | Number of mesh points in the initial data plane in the r                                   |
|        | direction (Fig. B2). NCSU can be different from NA + 1.                                    |
| MCSU   | Number of mesh points in the $\bar{\theta}$ direction (Fig. B2)                            |
| IPUNCH | Output unit for initial data plane results.                                                |

L<sub>.</sub>

. .

.

•

1

|

148

÷\* .



Figure BI - COORDINATE SYSTEM



Figure B2 - INITIAL DATA PLANE

149

\*U.S. GOVERNMENT PRINTING OFFICE: 1976 - 635-275/99