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SUMMARY

Closed-cycle gas turbine systems include both recuperated and
combined cycles. Both systems employ a pressurized furnace to heat the
helium and as such required a pressurizing system which ineludes a

conventional gas turbine-generator (pump-up turbine).

The recuperated system uses a pump—up turbine witﬁ an inlet
temperature of 1478, 1200 or 866°K (2200, 1700 or 1100°F). The two lower
temperatures are compatible with direct fluidized bed combustion of coal.
Heljum turbine inlet temperatures of 922, 1089, and 1255°K (1200, 1500

and 1800°F) with pressure ratios of 2, 2.5, 3 and 4 are considered,

The helium compressor discharge pressure is fixed at 6.895 MPa
(1000 psi) with variations of 3.448 and 13.79 MPa (500 and 2000 psi).
Values of recuperator effectiveness of 80, 90 and 5% are assumed for
both the pump~up and helium turbine exhausts. Clean distillate fuel is
used for the major part of the study but several cases with direct coal
firing are considered. A thermodynamic efficiency of 387 is found for the
1255°K (1800°F) helium turbine inlet temperature with 90% effective
recuperators using distillate as fuel. A 4.5 point increase in effieiency
at the 1089°K (1500°F) helium turbine inlet temperature is observed as the

recuyperator effectiveness is increased from 80 to 95%.

The combined closed-cycle gas turbine system uses pump-up
and helium gas turbine engines similar to those used in the recuperated
cycle. The recuperators are replaced by heat recovery vapor generators.
Heat from both the pump-up and helium turbine exhausts is used to heat
the bottoming fluid. The major part of the study uses steam as the
bottoming fluid but R-12, methylamine and sulfur dioxide are also
included. An efficiency of 40.9% is obtained with steam bottoming and

43, 1% with methylamine.



The high cost of the high temperature gas to gas heat exchangers
results in high plant capital costs, typically $700/kW for the coal burning
plants and $500/kW for those burning distillate., WNotwithstanding this, the
«coal fired plants show a cost of electricipy as low as 8.75 mills/MJ
(31.5 mills/kWh) for the combined system with a steam bottomer compared to
10.06 wmills/MJ (36.2 mills/kWh) for the distillate burning system. The

cost of eléctricity for the recuperated systems is about 0.56 mills/MJ
(2 mills/kWh higher).

Although the potential cycle efficiencies are high encugh to be
interesting, the complexity of the cycle, high cost of heat exchange
surface and the resultant cost of electricity mitigatre against externally

fired closed-cycle gas turbine systems.

vi



7. CLOSED-CYCLE GAS TURBINE SYSTEMS

7.1 State of the Art

7.1.1 Closed-Cycle Plant Installations

Closed gas turbine cycles have been studied since the mid-1930s
when they were first proposed by Professor Ackeret and Dr. Keller. Since
then, a few neteworthy closed-cycle power plants have been built and
operated. A combination electricity and heat production plant at
Spittelau, Vienna (Refefence 7.1) has been in operation since 1971. - This
plant, rated at 30 MiWe, utilizes a closed loop with air as the working
medium and is fossil-fuel fired. A larger output combined electricity/
heat plant (Referemcé 7.2) has been commissioned récently at Oberhausen,
Germany. This unit, which is natural-gas fired, is pérticularly inter~
esting because it employs helium as its working fluid. The Oberhausen
plant is rated at approximately 50 MW of heat output in addition to the
nominal 50 MW electrical output. Major cycle parameters of the Spittelau
plant include a turbine inlet temperature of 991°K (1325°F) and a com-
pressor pressure ratio of 5.7 to 1. Thermal efficiency with respect to
electrical outﬁut is approximately 30%. The corresponding data for the
Oberhausen closed-cycle helium plant read as follows: turbine inlet tem—
peratures of 1023°K {1382°F), a compressor pressure ratic 2.7 to 1, and a
plant thermal efficiemncy of 31,3%.

7.1.2 Areas of Concern: Heat Exchangers and Increased Turbine
Inlet Temperature

There are two principal areas of concern regafding the wide-
spread commercialization of closed-cycle plants. Firs£,-heat iz added to
the cycle by means of a surface heat exchanger which adds considerable
expense to the overall capital cost of such a blaut and 1limit helium

turbine inlet temperatures. In the above-cited examples, some of this

7-1 OF THE
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higher capital cost burden is ameliorated by the recovery and utilization
of otherwise wasted cycle reject heat, The second concern pertains to

the potential means for achieving higher cycle top temperatures.
Conventional open-cycle gas turbines have achieved higher cycle inlet
temperatures by means of convection—-cooled turbine blading. hy comparison,
heat transfer rates in high-pressure helium are large and may lead to
excessive gtress—-inducing thermal gradients in cooled turbine blading.
Economically acceptable high teméerature heat exchanger materials are not

currentiy available.

7.1.3 Organiec Bottoming Cycle Considerations

As discussed in Subsection 5.1; organic bottoming fluids have
potential advantages over steam in two areas. Certain organic fluids
have a much lower turbine exhaust volumetric flow than does steam and may
potentially require smaller, less expensive turbomachinery, as discussed
more fully in Subsection 7.2. Further, it may be econemically preferable
to utilize lower heat-rejection temperatures (for higher efficiency) than
are now the practice with steam plants, owing to the smaller low-pressure
element size requirements. Also, organic fluid bottoming cycles may be
more amenable to a better thermodynamic fit to the avallable heat rejec-
tion from a gas turbine topping eyele. Subsection 7.3 discusses this
principle of thermodynamic fit with organic bottoming eycles more fully.

7.2 Description of Parametric Points to Be Investigated.

Two kinds of closed-cycle systems were investigated during

Task I: the recuperated closéd-cycle systems with recovery of cleosed
Brayton-cycle reject heat via recuperation and the combined closed-cycle
systems with recovery of closed Brayton—cyclé reject heat by means of a
steam or organic Rankine bottoming cycle. In nearly all cases of both
recuperated and combined-cycle arrangements, a pressurized furnace system
(listed as pump-up cycle for convenient reference and consisting essen—
tially of an open-cycle gas turbine system with externally pressurized

furnace combustor) is used to provide heat input to the closed Brayton

cycle.



Parameters varied for the helium turbomachinery include the
turbine inlet temperature, compressor pressure ratio, and compressor dis-
charge pressure level. Three values of turbine inlet temperature have
been selected: 922, 1089, and 1255°K (1200, 1500, and 1800°F). Pressure
ratios have been varied from 1.5 to 1 to 4 to 1 for nonintercooled helium
cycles and from 4 to 1 to 7 to 1 for the intercooled cases. The level of
compressor discharge pressure has been set at 6.895 MPa (1000 psi) abs
for nearly all cases. Comnsideration is given to two other levels [3.447
and 13.790 MPa (500 and 2000 psi) abs].

Recuperator effectiveness values of 0.80, 0.90, and 0.95 and
recuperator total pressure drop ratios of 0.02, 0.04, and 0.06 were
assumed for both the pump-up and helium récuperators. Any one calcula-

tion used the same value of effectiveness for both the helium and pump~up

recuperators unless otherwise noted.

7.2.1 Parametric Point Descriptions of Recuperated Closed—Cycle

Systems

Table 7.1 displays the parametric point selection fer the re-
cuperated closed-cycle system. The systems evaluated are grouped accord-
ing to combustion gas temperatures exiting from the furnace which
represents different proportions of heat transmitted to the helium. The
first group, with 1478°K (2200°F) into the pump-up turbine, is used for
perturbation of recuperator effectiveness, helium top temperature, and
helium pressure ratio. Figure 7.1 illustrates the cycle arrangement for
this group, and Figure 7,2 displays the thermodynamic relationships by
means of a temperature entropy diagram. On the temperature entropy dia-
gram, heat added by combustion is depicted as heating the air ro high
(of the order of stoichiometric) temperature. The air is then cooled as
it gives up its heat to the helium in the closed cycle. Both the closed-
loop and open-loop gas turbine systems utilize recuperation for exhaust

heat recovery.

The second group has an intermediate pump-up turbine inlet tem-
perature of 1200°K (1700°F), corresponding to that in a projected fluid

bed burning coal. The helium eycle parameters are set at the mean values

7-3
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of the specified range of variation. The pump-up pressure ratio 1s
varied here, and, in-addition, the use of a pump-up recuperator is
included. The base cases used no pump-up recuperator.

Figure 7.3-illustrates the cyele arrangement for this base case, and

Figure 7.4 shows the corresponding temperature entropy diagram.

The third group has a low pump-up turbine inlet temperature of
866°K (1100°F) and contains the other parameter variations. A fluidized
bed burning coal might require an over-the-bed or outlet_heat‘tpansfer
surface to cool the air to the 866°K (1100°F) level.

The last is a group of oné, representing a conventional atmos-
pheric furnace helium heater with rotating Ljungstrom-type regenerator as

a base case for comparison. A cycle arrangement is shown in Figure 7.5.

71.2,2 Parametric Point Description of Combined Closed-Cycle
Systems

The paramétric point selection for the combined closed-cycle
gas turbine systems calculdtions is shown in Table 7.2. The basic c¢ycle
arrangement is shown in Figure 7.6, and a typical corresponding tempera-
ture entropy diagram is illustrated by Figure 7.7. In gemeral, reject
heat from both the pump-up and helium cycles is transferred to the bottom
steam cycle. The steam cycles are, for most cases, reheat ecycles with

both superheater and reheater receiving heat from both gas turbine sets.

The first group in Table 7.2 uses a pump-up turbine inlet tem-
perature of 1478°K (2200°F) with both the pump-up and helium cycles fur-
nishing heat to the bottoming steam cycles. In this group, the parametric
variations are in helium top temperature and helium pressure ratio. The
base case has been selected from this group with a 1089°K (1500°F) helium
turbine inlet temperature and a 2.5~to-1 pressure ratio. Bottoming steam
cycle conditions are set at supereritical pressure and at 755°K (900°F)

superheater inlet conditions.

7-11
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The second group has been selected to determine the effect of
not transferring heat from the pump-up cyele to the bottom cycle. The
helium cycle has a mean top temperature of 1089°K (1500°F), and the pump-
up turbine inlet temperatuyes include 866, 1200, and 1478°X (1100, 1700,
and 2200°¥F).

The third group varies the helium compressor inlet temperature.
A helium precooler is used for some cases; also included are two cases

without bottom cycle reheat.

The following cases serve to investigate, in turm, the effects
of varying pump-up tewperature and pressure ratio, pinch point tempera-
ture differences, various presénra drops, pressure level, furnace type,'

znd mode of heat rejection.

The last group is for bottom fluids othex than steam. All are

used in supercritical Rankine cycles without reheat at helium turbine
inlet temperatures of 1083°K (1500°F). Fluids used are R~12, methylamine,
and sulfur dioxide. (& description of the rationale for selecting these
fluids is given at the end of this section.) TFigure 7.8 illustrates the
general cycle arrangement for these cycles. One R-12 case and one sulfur
dioxide .case have desuperheating recuperators which are not shown. The
methylamine cases represent bottom cycles added to recuperated main
cycles; ome case has direct condensing in a dry-cooling tower {alr con-

densexr).

Vapor genmerators for combined cycles are dtilized under both
the pump-up gas turbine and closed-cycle helium turbine in most cases.
Approach or pinch point temperature differences were set at values of
22.2, 33.3, and 44.4°K (40, 60, and 80°F). Vapor generator helium outlet
temperatures of 339, 366, 394, 422, and 450°% (150, 200, 250, 300, and
350°F) were assumed. Vapor generator gas—side pressure drop ratios of
0.02, 0.04, and 0.06 have been selected.

The basic pump-up turbine parameters of turbine inlet tempera-

ture, compressor pressure ratio, and {urnace pressure loss were varied.
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Table 7.3 - Low Boiling Flulds

Critical ’

Atmos, Sat. Pres., | Turb. Exh.

Name of Fluid Molecular Poiling Constants Trouton | o 100°F, Area Para.

Weight Tem op Number psia at 100°F

Py T, °F | P, psia

Hydrogen sulfide 34.08 - 79.2 212.7 | 1307.0 21.1 397.0 1.85
R13Bl 148.93 - 72.0 152.6 574.8 19.6 316.0 7.60
. Carbonyl sulfide 60.07 ~ 58.4 221.0 897.0 250.0 2.31
Propylene 42.08 - 52.5 197.2 670.3 19.5 227.6 3.66
Propane 44.09 - 44,0 206.2 6L7.4 19.4 188.7 4.26
R-22 86.48 - 41.4 204.8 716.0 20.8 212.6 4,99
Ethyl fluoride 48.06 - 35.9 216.0 730.0 180.0 4,11
Ammonia 17.03 - 28.0 271.2 | 1636.0 23.2 211.7 1.49
Propadiene 40.06 - 25.6 248.0 21.0 182.0 3.17
R-12 120,92 - 1B.4 233.6 596.9 19.4 131.6 8.10
G-1524 66.05 - 12,5 236.3 652.0 20.8 126.0 5.69
Methyl chloride 50,49 - 10.7 285.6 968.7 20.7 116.7 4,95
Methyl ether 46.07 - 10.6 260.4 764.4 20.6 123.0 4.70
Propyne 40'06 - 9,9 262.4 776.2 20.9 123.0 4.23
Cyanogen 52.04 - 4.9 262.0 868.0 21.2 116.0 4.90
Sulfur dioxide 64.07 14.0 315.5 | 1143.0 23,1 84.1 5,75
R-142B 100.50 15.4 20.3 72.0 10.00
Methylamine 31.06 20.3 314.4 | 1082.0 23.1 78.6 3.96
Isobutane 56.10 21.2 292,5 580.0 19.9 65.6 8.53
1-Butene 56.10 23.0 295.5 583.2 19.5 62.5 8.72
Propyl fluoride 62.09 26.2 60.0 8.55
trans 2-Butene 56,10 33.6 311.0 595.0 19.9 50.0 10.00
R-114 179.93 38.4 294.3 474.8 20,2 46.4 18.30
Methyl bromide 94.95 38,5 375.8 | 1227.0 20.6 50.0 12.00
eis 2-Butene 56.10 38.7 320.0 616.0 20.2 46.0 10:40
G-133A 128.49 43,0 306.5 589.6 21.2 45.0 20.00
Dimethylamine 45.08 45.4 328.1 770.0 22.6 45.4 7.78
Methanethiol 48.10 45.7 386.2 | 1049.6 21.0 49.7 7.93
1-Butyne 54.09 47.5 40.0 10,50
R-21 102.93 48.0 353.3 749.7 21,1 40.0 14.20
Ethylene fluoride 66.05 50.0 38.0 12.00
Ethylene oxlde 44,05 5L.4 383.0 | 1044.0 21.5 38.6 9,20
Ethyl chloride 64.52 54,0 368.0 764.0 21,3 34.8 12.50
Cyclobutane .56.10 55.4 385.0 740.0 34.0 12.10
Ethylamine " 45,08 61.9 361.8 8l6.4 22.3 32.7 9.78
Acetaldehyde 44.05 69.8 370.0 20.4 31.0 11,40
R-11 137.38 75.3 388.4 635.0 20.1 23.6 26,00
Dibromodiflucromethane 209,84 76.1 388.8 600.0 23.0 31.20
Water 18.02 212.0 705.4 | 3206.2 26.0 0.949 98.30
2-Butyne 54.09 80.8 21.0 16.90




Turbine inlet temperatures of 866, 1200, and 1478°K (1100, 1700, and
2200°F) were selected. The first corresponds to relatively large energy
transfer directly to the closed-cycle fluid inm the pressurized furnace;
the second value was selected on the basis of its compatibility with the
operating temperature levels of proposed fluidized bed processes; and the
third value corresponds to base case open-cycle gas turbine values. Com-
pressor pressure ratios of 5, 10, and 15 to 1 were selected, all compati~
ble with single-shaft gas turbine technology. Furnace pressure drop
ratiost of 002, 0.04, 0.06, 0.09 and 0.12 were used.

Heat rejection methods include once~through, wet tower, and
dry tower systems. One system, a methylamine bottomed cycle, used direct

dry tower condensing.

Both pressurized furnaces burning liquid fuel and pressurized
fluidized bed furnaces firing coal were included in the study. An atmos-—
pheric pressure conventional power generation furnace was used for one

case.

*
7.2.3 BSelection of Bottoming Cycle Organic Fluids

‘When the bottom fluid itself may be varied the number of possi-
ble parameter combinations increases greatly. Since the number of cases

is limited, they were chosen to illustrate particular aspects.

The fluids themselves were selected from a list of low-boiling
fiuids shown on Table 7.3. In this table the turbine exhaust area para-

meter (TEAP) illustrates the relative turbine exhaust area for each of

the fluids when used for bottoming eyecles under comparable conditioms.
To derive the TEAP, it is assumed that for each fluid:
o Heat is rejected at the same specificed temperature.

o The latent heat represents all of the rejected cycle

heat.

B
References 7.3 through 7.12 were used in determining organic bottoming

fluid properties.

helium pressure drop ratios of 0.02, 0.04, 0 06 and combustion gas pressure
drop ratios of 0.06, 0.09 and 0.12.
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¢ The cycle input heat is the same.
¢ The leaving velocity energy is the same.

s The specific volume is given by the perfect gas

equations.

(Flow Rate) (Specific Volume) A
(Axial Velocity) v

i ers |

A= - Ul

[/IF][RT/MPV] neE

Exhaust Area, A = (7.1)

where W is the mass flow rate, L is the latent heat, R the universal gas
constant, and M the molecular weight. Since each quantity within

parentheses is a constant in the preceding expression,

AnT/MP Ll'5

TEAP is defined as this ratio times 105.

. TEAP = T x 105/M P 'Ll'5

" (7.2)
This equation is convenient to use if tabulations of latent heats and
saturation pressures are available, but frequently they are not. The
latent heat may be approximated using Trouton's law and them adjusting it
from the Boiling point to the specified temperature.

Trouton's law simply states that the molal atmospheric latent
heat of any substance is approximately 21 times the boiling temperature.
This rule holds well for a large number of substances, but there are also
marked deviations. When the latent heats are known, we can find Trouton's

number as the number to substitute for 21 in order to give the correct
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latent heat. In general, associated fluids such as water and the alco

hols tend to have high Trouton numbers;'the number for water being 26.

For our present use it will be convenient to normalize the

Trouton numbers about 21 by using a correction factor, ¢, defined as:

q = Trouton No/21

so that

~ 21 g TB

Ly = == (7.3)

at the boiling point.

Since all of the fluids are to be compared at the same sink
temperature, it is necessary to correct the latent heat from the wvarious
boiling points to the common sink temperature. Watson (Reference 7.11,

p. 233) relates latent heat at two different temperatures as:

17 0.38
L R
P 7.0
1 R1
in which TR is the reduced temperature.
0.38 v /1 038
1.L A
E'__= Tc =F EE _TE = —-—-—?E{T— (7 5)
LB TB T Tc 1- TB/Tc .
1- e J
c
in which the bracketed quantity is F. Then,
L=l F=ZlQTBb=21‘1T—T-]3F (1.6)
B M M T )
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Substituting in the definition for TEAP:

TEAP = T x 105
T 11.5
21 T B
we | (Bt J[THFJJ
=[1051[1 1[@"][ 1 ]
21 15 5) ¢ 3
1040} (Y M 1]
[J?J[P ][G &3 .7
in which
1.5
CEREE
T?*T T
[
0.57
T /TN
B "¢
T, 1.5 |1 T T
= |5 = (7.8)
B
L-7

G is plotted in Figure 7.9.

This latter form of TEAF displays the theoretical effects with

greater clarity.

It is dominated by the inverse saturation pressure

function; the molecular weight increases area directly in a square root

relation; fluids with high Trouton number reduce area in a strong 1.5

power relationm, but the range of values is small; the compressibility

7-21



Turbine Exhaust Area Parameter TEAP
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factor, Z, which was ignored in the derivation, would also act as a sys-—

tematic variable causing a slight reduction at high pressures.

TEAP values for steam and some other fluids are plotted vs
saturation pressure in Figure 7.10. The values for steam are plotted up
to high pressure to show the form of the function even though this is
outside of the intended range of application. The values for the other
fluids are plotted for two different temperatures and demonstrate that
the relation between fluids is generally the same and largely independent

of the temperature at which compared.

Figure 7.11 shows the TEAP values for fluids in Table 7.3, all
at 311°K (100°F). The bottoming fluids for the study were chosen in the
intermediate TEAP/pressure range so the turbine exhaust area would be
greatly reduced over that of steam yet not have so high a saturation
pressure as to make them difficult to contain. Fluids R-12, methylamine,

and sulfur dioxide were selected.

R~12 (Dichlorodifluoromethane) was selected as a well-known,
nontoxic, nonflammable fluid. It is used in cycles which illustrate the
effects of poor thermodynamic fit due to stability iimitation and also to

low-temperature superheated turbine exhaust,

Methylamine was selected as having the best area—pressure char—
acteristics in the intermediate range (see Figure 7.11), It is highly
flammable. It was used in recuperated cycles for which stability tempera-
ture limits are not critical. These cycles were also used to illustrate
thie direct deployment of the condensing vapor to air condenser made pos-

sible with the low volumetric exhaust flow.

Sulfur dioxide was selected, also from the intermediate area-
pressure characteristic range, for its high-temperature stability. It is
rather toxic. It was used in a cycle illustrating good thermodynamic fit

made possible when not precluded by stability temperature limitations.

These fluid selections and their assignment to illustrate par-

ticular cycle effects are vather arbitrary. wNote that the cycle effects
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illustrated are not an intrinsic characteristic of the particular fluid
but would apply for any candidate fluid that would fit a particular ap-

plication.

7.3 Approach

7.3.1 Overall Cyele Calculation Procedure

The number of distinctly different combinations of pump-up,
helium, and bottoming cycle configurations for this conversion system is
large compared with other systems. Many of the parametric values for the
helium cycle, however, are common for several of these combinations..
Individual eyele calculations, therefore, were made for the pump-up loop
cycles, helium cycles, and botteming cycles. Subsequently, each parame-
tric point cycle combination was assembled from the individual component

calculations to give the resultant efficiency and power.

An example for a typical closed regenerative cycle is described
as follows. Figure 7.12 illustrates the two subsystems: pressurized
combustor or pump—up cycle and helium loop subsystem. TFor all cases the
pump-up airflow is kept constant at 408 kg/s (900 1b/s). Power output
and heat output, dl’ are computed as a function of turbine inlet tempera-
ture, compressor pressure ratio, alr equivalence ratio, fuel-type, and
recuperator effectiveness. Likewise, heli;m cycle power output and heat
input, Qhe’ is computed as a function of turbine inlet temperature, com-
pressor pressure ratio, recuperator effectiveness, pressure losses,
intercooler and precooler approach values, and heat rejection system for
a unit mass flow. The assembly consists then of first determining helium

flow for each parametric point f£rom:

Whe AhHe = Wpu Ahpu

i

where W e helium flow rate

H

pump-up turbine compresscor inlet airflow
[408 kg/s (900 1b/s)]

Pu
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Ahpu = enthalpy drop based on the difference between
furnace combustion section outlet temperature
{typically near stoichiometric) and pump-up

turbine inlet temperature

b, = enthalpy rise based on’ the difference in tem—
perature between helium compressor discharge

and turbine inlet.

Subsequently, helium power output ig determined and added to
the pump-up cycle power to yield the gross power output. After subtract-
ing station auxiliary power requirements, net power cutput is divided
int® the higher heating walue heat input to the pump-up cycle to deter—

mine net heat rate.

A similar procedure is used in computing combined closed-cycle

performance.

7.3.2 Organic Bottoming Cycle Calculation Procedure

The organic cycles were assembled in a manner siwmilar te that
of the other combined cycles. Since there were only a few cycles, each
cycle was fitted closely to the available heat line from the pump—up and
helium cycles, changing the parametric values from those initially chosen

in order to better demonstrate the intended effect.

For R-12 (Points C46 and C47),* thermodynamic properties were
obtained from the tables in Reference 7.6 except that in that pamphlet
the higher temperature properties existed only on a small-scale figure.
For both cycles the pottom,pressure was taken as 0.931 MPa (135 psi) abs,
corrésponding to 312°K (101.7°F). The turbine inlet temperature and
pressure were set at 644°K (700°F) and 1.724 MPa (2500 psi) abs,

*As results from both recuperated closed-cycle systems and combined
closed-cycle systems are frequently referred to, the cycle point numbers
as described in detail in Subsection 7.4, are preceded by an "R" or a
"c", respectively, for clarity and convenience.
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respectively. The turbine expansion was calculated in two parts, from
17-.24- to 3.447 MPa (2500--to--500-psi) abs and from 3.447 MPa (500. psi) abs
to the turbine exhaust pressure. For Point C46, which contained an R-12
desuperheating recuperator, a 17.2 kPa (2.5 psi) drop was assumed. The
turbine efficiency was assumed to be.0.86 for the high-pressure portion
and 0.89 for the low-pressure portion. The pump work was calculated from
the inlet liquid volume and pressure rise at an efficiency of 0.75. A
15% pressure drop ratio was assumed for heating to turbine inlet tempera-
ture. {4 temperature-entropy diagram for these cycles is given in Sub-
section 7.4 as Figures 7.44 and 7.43.) The pinch point temperature
difference was taken as 22.2°K {40°F), and the R-12 flow for Toint C46
was calculated as that required to receive all of the available heat from
both the pump-up and helium cycles to heat the R-12 to the turbine inlet

temperature.

The Rankine feedheat was oﬁtained by cooling the helium to a
specified temperature [366°K (200°F)] and by cooling the superheated R-12
exhaust down to 333°K (176°F), No additional heat could be absorbed, and
the pump-up exhaust was discharged to stack at the pinch point tempera-
ture. For Point C47, the R-12 flow was calculated from the total heat
available from both the pump-up and helium ¢ycles. The R-12 net power
was calculated using an electrical and mechanical efficiency of 0.965 and
by subtracting the pump power. The methylamine cycles are slightly dif-
ferent in that the helium and some of the pump-up cycles which they

bottom were recuperated. The assembly calculation process was similar.

Since there were mno conveniently available thermodynamic tables
for methylamine, some of the properties were calculated for specific
points. (A skeleton temperature—entropy diagram for these cycles is de-
picted on Figure 7.47 of Subsection 7.4). For temperatures below 323°K
(122°F) there were tabulated values in Reference 7.4. The zero pressure
specific heat enthalpy and entropy were taken from Reference 7.11, p. 759.
The enthalpy and entropy adjustments for pressure were calculated using

Pitzer's -acentric method which is described in Reference 7.13, Appendix 1.

* Fig, 7.44
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From Figure 7.47 (given in Subsection 7.4) it can be seen that
the methylamine turbine expansion ends close to the saturation line, and
_the relatively straight heating line is conducive to an excellent fit to
the heat available line. 7The condenser temperatures were adjusted
slightly in order to correspond to tabulated values. For wel tower ap-
plication (Points C48 and C49), the temperature was set at 313°K (104°F):
for dry tower application, C50, the temperature was set at 323°K (122°F).
The difference of 10°K (18°F) is the same as for other cycles, and the
comparison should correspond. Since there is no advantage in raising the
compressor inlet temperature for a recuperated cycle, the helium cycle
bottom temperature was made 20°K (36°F) above the condenser temperature;
i.e., 333°K (140°F) for the 313°K (104°F) condensing temperature and
343°K (158°F) for the 323°K (122°F) condensing temperature.

The heater pressure drop ratio for these fluids was assumed to
be 10%, and the turbine inlet pressure was taken ag 17.24 MPa (2500 psi)
abs for Points C48, C50, and C51. Since the bottoming cycle in €49 was
placed below a recuperated helium cycle but with an 866°K (1100°F) unre-
cuperated pump-up cycle, there was insufficient heat temperature to ralse
the methylamine to 533°K (500°F) as was done in the other cycles. A
vapor turbine inlet temperature of 505°K (450°F) was selected. At that
temperature, a pressure of 1.379 MPa (2000 psi) abs gave a better fit.

’
The turbine efficiencies were assumed to be 0.88.

7.3.3 Cycle Fit and Heat Exchange Effectiveness Considerations

When assembling the results for the combined cycle from the
various subeycles (pump—up, helium, and steam), the low-temperature heat
_ demand (feed heating) of the steam cycle was not sufficient to fully cool
the helium to the 366°K (200°F) chosen as the compressor inlet tempera-
ture. - For the base case, the helium could be cooled only to 398°K (250°F)
in the vapor generator. The additional heat will be rejected to simk in
order to cool the helium 31°K (56°F) further. This will not have a large
effect on the plant. The energy involved does not have much availability.

The temperature approach to the cooling water is large, and the required
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heat exchange surface will be relatively small. Functionally, there will

be a precooler, although none was originally intended.

1t became apparent that most of the steam—bottomed'combined
cycles would require a similar adjustment; the other fluid cycles would

not.

Figure 7.13 depicts the heat load requirements of the steam
cycle for Point C5 (base). Lines A and B repxesent the heat available
from the air and helium cycles, respectively. At the time of fitting
these lines to the 'steam cycle, the flow rates of both the air and heldium
have been determined and the absolute values for Linés A and B were
known. The steam flow, however, had not then been determihed. Lines A
and B were-both assumed to be linear, and-their enthalpy rates were added
to form Line C. For this case, the right-hand steep end represents the

-air turbine exhaust cooling from the 918°K (1193°F) to the helium exhaust
temperature 799°K (979°F). The left-hand steep segment represents the
helium cooling from the 416°K (296°F) air lower limit to 366°K (200°F).

Since the air and helium flows are known, it is convenient to
extend the combined part of line C to a fictitious end point, D. This
represents the inlet temperature if both the air and helium started at
the same temperatu%e and both transmitted the same sensible heat as the
air alone does in this region. Obviously, this fictitious temperature

cannot be used for heat transfer calculations.

Point D can be considered as the end point on the steam heat
requirement curve and the Line C votated to fulfill the pinch point re-
quirement, This is 'depicted on Figure 7.14 with the pinch point, E, cor-
responding to 628°K (670°F) on the:steam cycle. The flow rate for steam
is now calculated so that the heat required to the right of this point
exactly matches that available from the air and helium cycles down to
Point E. The additional heat required by the steam below the pinch point
then can be caleuvlated., It was intended that this heat be supplied by.
cooling the helium to 366°K (200°F) and by cooling the air as much as re-
quired but not below 416°K (290°F). Thus, the air would be discharged at
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634°K (681°F), producing the situation shown dotted im Figure 7.14. The-
Teft helium—cooling line shows a negative pinch point at the reheat knee,

which is obviously impossible.

There is still sdfficient heat in the discharge air to avoid
this condition; but vhen this is used, the helfum can no longer be com-—
pletely cooled by the steam cycle. This cooling scheme: is depicted by
the solid lines in Figure 7.l4, with the air being discharged at 578°K
{580°F) and the helium at 398°K (256°F). The helium was assumed to have
heen cooled to 366°K (200°F) in a precooler. Physically, the precocler
need only constitute some banks of finmed tubes carrying cooling water
and placed after the steam cycle economizer tubes in the vapor generator.

The heat rejected to sink is increased accordingly.

S8ince the amount of extra cooling would be different for the
various cases, results would be hard to interpret. In order to relate
the various cases to-ome another, the effectiveness vaiues with which the
available energy of the turbine exhaust streams was transmitted to the

bottoming fluid were calculated as:

B
Sl vy 7.9
PU He

For the bottow fluid, B could be calculated from tabulated

thermodynamic properties.

B=21Z Wi Abi (7.10)
where ﬁi = mass flow rate
bi = hnTOS
B = transmitted to bottom fluid
Bottom
BPU = available in pump-up turbine exhaust
BHe = avallable in helium turbine exhaust.

in which To was taken as the condenser temperature.
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For the turbine exhaust stredms, the values of B were calcu-

lated separately for each from the equatlion derived below.

Assume linear availability of heat (constant Cp) over a small

temperature difference:

.

dg =W dh = ¥ c, dr

2
Q=wc Tf 4T = W C (T, ~ T;)
1
I
ar
——/\\
\ 4Q
dB
T

T
dB = (n carnot){dQ) = [1 - TEJ w Cp dT
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7.3.4 Heat Exchanger Design Procedures

Since the use of surface heat exchangers is central in these
closed-cycle concepts, the resultant pricing of such equipment has a
major impact upon assessing the overall viability of the concept. Unfor-
tunately, the majority of the heat exchangers involved (helium pressur-
ized furnaces, heat recovery vapor generators, intercoolers, and
recuperators) are not in widespread commercial use and, of necessity, the
approach to pricing and concept design must be somewhat arbitrary. Given
below is a description of the design procedures used for sizing this type

of heat exchanger.

Due to the single-phase flow nature and relatively high pres-—
sures encountered in these exchangers a shell—-and-tube design was
adopted. For a given heat transfer rate,‘é, a specific pressure drop, and
cycle-determined fluid temperatures, the first step was to select suit-
able tube configurations for the conditions involved. Then, using pub-
lished correlations for internal heat transfer and pressure drop, as well
as external correlations (Reference 7.13), the following iterative calcu-

lation waﬁld be made:

L. Choose a tube velocity, Vt.

2, Compute
Lt p Vt2
Aptuble = 4F -]—]*; Py (7.14)
- -0.2
vhere £ = 0.046 (p v, Dt/u)

L, = tube length {(arbitrarily chosen)
Dt = tube internal diameter
p = fluid density
p = fluid viscosity.

3. Adjust Vt to.conform to allowable pressure drop.
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4. Compute

0,333
T

h_ = 0.023 & Re)?-8 p (7.15)
t Dt
where k = fluid conductivity
Re = p Vt Dt/u (Reynolds number)
Pr = CP u/k (Prandtl number).
5. Select a triangular, staggered-tube arrangement
where the center—to-center distance, St’ = ZDO.
6. Choose a maximum shell-side velocity.
7. Compute
£' (o vs)z':q
AP = (7.16)

S, (2.09 x 10%)

where VS = maximum -shell-side fluid velocity

N = number of tube rows transverse to the
flow
-0.16
r V_ Dy
£' = |0.25 + 0.118 ‘ s o
3 1,08 u,
L )
591
0
where D0 = putside tube diameter.

8. Adjust VS based on the assumed value of N and on the

allowable shell-side pressure drop.
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2, Compute

-0 (5

0.6 0.3
"[pr] (7.17)

10. Solve the following equation for At

LMTD
Q

where IMTD

t
T =

t

a Ta
L ° —t—"—] (7.18)

ht hS kt

given log mean temperature difference
given heat tramsfer rate
total area internal .to tubes

ratio of tube internal area to external

area per unit length

ratio of tube internmal area to radial
thermal éonduction aiea per unit length

of tubing
thermal conductivity of tubing metal

tube wall thickness.

11. From the tubing geometry, and knowing the total "tube

inside area required, compute the total length, Lt’

of tubing needed,

12. <Compute the total tube flow cross-sectional area, Ac,

required from

oL Vt (AC) = Total tube-side mass flow rate (7.19)

13. Tnowing (Ab) and the tube inside diameter, compute the

total number of tubes requires, Nt'
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14. Computé the length of each tube from (Lt/Nt) = length

of each tube.

15. Go.Back to step 2 with new values of Lt and Nt and
repeat steps 2 to 14 until the desired accuracy i1f

obtained.

16. Knowing the number of tubes and length of each tube,
as well as the staggered arrangement, find internal

shell diameter, DS.

17. Finally, using the formula

t = == (7.20)

where k= shell wall thickness
' Ds = shell vessel inside diameter
¢ = allowable shell wall metal stress
P_ = shell design pressure.

8

the shell wall thickness was computed.
7.3.5 Definitions -

Basic turbomachinery terms such as turbine inlet temperature,
compressor pressure ratio, etc., and heat exchanger definitiomns such as
throttle pressure, approach temperature difference, etc. are consistent

with those given in Subsections 5.3 and 6.3 of this report.

7.4 Results of: the Parametric Study

7.4.1 Recuperative System of Parametric Point Identification

Table 7.4 presents a detailed listing of -the recuperated system
parametric point numbers and lists the results of the thermodynamic effi-

ciency calculations.
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For Points Rl through R12, the basic closed-cycle parameters of
helium turbine inlet temperature and compressor pressure ratio wetre
varied, Pressure ratio values of 2 to 1 through 4 to 1 were used in con-—
junction with turbine inlet temperature values of 922 through 1255°K
{1200 to 1800°F). For all of these calculaticns, the pump-up gas turbine
inlet temperature was 1478°K (2200°F), and its compressor pressure ratio
was 10 to 1. A recuperator effectiveness value of 0.90 was chosen for
both the pump-up turbine and the helium gas turbine subsystems. In
Points R13 through R20, variations in the recuperator effectiveness were
made simultaneously' over the range 0.80 to 0.95 for both the pump-up
cycle and the helium cycle gas turbine. Variations of the assumed fuel
were made in Points R21 through R30. Included were the use of pressur—
ized fluid bed combustion of bituminous, subbituminous, and lignite coals
as well as the uses of higﬁ— and low-Btu gas. These points all have
helium turbine inlet temperatures of 1089°K (L500°F), a helium compressor
pressure ratio of 2.5, and recuperator effectiveness wvalues equal to 0.9.
Points RZ21 and R22 investigated the variation of the pump-up cycle com-
pressor ratio at walues of 3 to 1 and 10 to 1 with recuperator effective-
ness values of 0.90. TFor Points R23 and R24, the same pressure ratios
were used but without a pump-up recuperator. Point K25, Base fase A, was
fired with Illinois No. 6 bituminous coal in connection with a pump-up
gas turbine inlet temperature of 1200°K (1700°F), a compressor pressure
ratio of 10 to 1, and no pump-up recuperator. For Points R26 through
R30, a pump—up turbine inlet temperature of 866°K (1100°F) was used,
thereby transferring more heat directly to the helium cycle; and the
three coals as well as high— and low-Btu gas fuels were considered, In
Points R31 through R36, variations were made in compressor pressure ratio
for each cycle: 2, 2.5, 3, and 4 to 1 for the helium cycle, and 5 and
15 to 1 for the pump-up cycle, respectively. These calculations were
made with a pump-up turbine inlet temperature of 866°K (1100°F) and no
recuperation and a helium turbine inlet temperature of 1088°K (1500°F)
with 0.9 recuperator effectiveness. Points R37 and R38 investigate dry

cooling tower and once-through heat rejection of the heat picked up from
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the helium in the precooler. In Points R39 and R40, the effect of in-
creasing the pump-up cycle furnace pressure drop ratio from the base case
value of 0.06 to 0.09 and 0.12 was investigated, Similarly, the effect
of increasimg the helium heat exchanger pressure drop ratio from the base
cese value of 0.02 to 0.04 and 0.06 was investigated in Points R41 and
R&2, respectively. Helium compressor intercooling was considered in
Points R43 through R45 and helium compressor pressure ratios of 4, 5, and
7 to 1 were used, respectively. The effects of varying helium cycle top
pressure have been investigated with the nominal 6.895 MPa (1000 psi) abs
replaced by 3.447 and 13.790 MPa (500 to 2000 psi) abs in Points R46 and
R47, respectively. FPoint R4B corresponds to Base Case B and differs
principally from Base Case A in the use of an atmospheric pressure furnace
with a Ljungstrom-type regenerator. Distillate fuel derived from coal
was used,and the helium cycle principal parameters were 1089°K (1500°F)
turbine inlet temperature, a 2.5 to 1 compressor pressure ratio, and a

0.9 recuperator effectiveness.

7.4.2 ZRecuperative System Base Case Results

The Base Case A cycle schematic diagram has been shown previ-
ocusly in Subsection 7.2 (Figure 7.3). Selected thermodynamic data re-
sults for this eycle are given in- Figure 7.15. The overall cycle
efficiency for this arrangement has been calculated to be approximately
32%, with a net output of fust over 300 MW in the single pump-up turbine,

single helium turbine configuration.

Base Case B, utilizing the atmospheric pressure furnace, 1is
illustrated schematically by Figure 7.5 of Subsection 7.2, Both a
schematic temperature-entropy diagram and tabulation of selected cycle
data for Base Case B are given in Fipure 7.16. This cycle arrangement
with a single helium turbine having an inlet temperature of 1089°K
(1500°F) delivers approximately 350 M{ at 32.5% overall thermal effici-

ency.
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Temperature

4
theg 16702062

P3

He Loop
=~ .
230, 58 Mw
H5
Precooler
Hl
Entropy
Station Pressure, psia ) Temperature, °F Flow, Ibfs
Pump-Up {pressurizing) Gas Turbine Cycle
Pl 14, 696 50.0 900. 0
p2 147.0 615.0
P3 3620.0 976.7
P4 133.8 1700.0 -
P5 .7 910.0
Helium Gas Turbine Cycle
Hl1 400.0 9.5 8211
H2 1000. 0 382.5
H3 $90.0 930.7
H4 970.2 1500.0
H5 412.3 99L6
HE 408.2 43. 4

Fig. 7.15—Summary of thermodynamic cycle data (recuperative cycle Base Case A, Poink R25)
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Temperature

Dug. 1679863

Atmospheric

Furnace Loop Helium Loop
Precooler
Entropy
Station Pressure, psia: " Temperature, °F Flow, [bfs

Atmospheric Furnace Cycle

Fi 147 59.0 900. ¢

F2 937.0

F3 3800.0 955.5

F4 1100.0

F5 290.0
Heiium Gas Turbine Cycle

Hi 400,0 96.5 1304.1

H2 1000.0 3825 -

H 930.0 9307

H4 970.2 1506.0

HS 412.3 9L 6

H6 408.2 443,4

Fig. 7. 16—Summary of thermodynamic cycle data (recuperative cycle Base Case B, Point 48)
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7.4.3 Recuperative System: Results of Parametric Variations

figures 7.17 through 7.23 and Figures 7.24 through 7.30 show
the effects of the various parameters on the thermodynamic cycle effici-
ency and gross cycle power. “Note that the trends described by the effi-
ciency curves and by the power curves are the s;me for dach value of
pump-up temperature and fuél as, for each value, the cycle heat added is
constant} e.g., Figures 7.17 and 7.24 show a similar trend as the pump-up
temperature and fuel is the same for all curves, but Figures 7.19 and

7.26 do not show the same trend, as the pump-up temperature and fuel vary

from curve to curve.

At constant heat added, the efficiency is directly proportional
to the power; also, the efficiency is directly proportional to the speci=-
fic power, as the airflow is always 408 kg/s (900 1lb/s). For this reason
tiie curves are not plotted in terms of specific power and efficiency,
which would give a single straight line for each value of pump-up tem-—

perature and fuel.

The efficicncy is taken with respect to the higher heating

value of the fuel. The plant electrical output is corrected for the me-

chanical and generator loss.

Figure 7.17 shows the effect of helium temperature and pressure
ratio on the cycle efficiency. The contribution of the helium loop to
the cycle performance is roughly as follows. The helium loop produceé
roughly 60, 66, and 69% of the power; and the loop efficiency is roughly
31, 39, and 45%, at helium turbine inlet temperatures of 922, 1089, and
1255°K (1200, 1500, and 1800°F), respectively, at 2.5 to 1 pressure
ratio. Also shown is the combined effect of the pump-up and helium re-
cuperator effectiveness which were varied from 0.8 to (.95 for a helium

turbine inlet temperature of 108%9°K (1500°F).

%
The results listed in Table 7.4 and figures showm below apply to thermo-

dynamic efficiency and corxeéponding gross power output before related
station auxiliary powers were deducted.
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Thermodynamic Efficiency (7)), %

28 Pump-up:Tpy= 2200 °F, p=10 3 L
Distillate
6 =¢ .
He “PU 4
24 L
2.0 2.5 3.0 4.0

He Pressure Ratio, p

Fig. 7.17—Influence of helium temperature and pressure ratio

36

32

30

Pump-up: T=1100°, p =10, epy=0

Helium: T=1500°F, €e =0.9
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43 c\\
32 Ref. . 44

fm———C NoiC 7]
4 3y

— ) 34 . fan
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He Pressure Ratio, p

Influence of intercooling
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Fig. 7. 18—Recuperated closed-cycle efficiency, IS0 ambient
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Curve 680325-8

Helium: T=1500°F, p=2.5, Epe = 0.9
TPU = 1700°F, Illinois 6

5 7 10 15
Pump-up Cycle Pressure Ratio, p

Thermaodynamic Efficiency i), %

Fig. 7.19~1Infiuence of pump-up temperature and pressure ratio

Pump-up: T=1100°F, p =10, £p;; =0 Pump-up: T=1100°F, p =10, gp|;=0
Hehum: T=1500°F, p =2,5, € = L9 Helium: T=1500°F, p =2.5, e =0.9

Distilfate Distiilate
. 32-Ref. e 3 32 Ref.
X 39 RS
a7 39 41 a2
1 i ] { 1
0.06 0.08 0.10 012 0.02 0.04 0.06
Furnace AP/P AP/ P
Fig. 7.20 — Influence of air pressure {oss Fig. 7. 21— Influence of helium
pressure loss
Pump-up: T=1100°F, p =10, gpy=0
Pump-up: T=1100°F, p =10, py=0  pefiym, T=1500°F, p =2.5, Fyg = 0.9
Hellum: T=1500°F, p =2.5, &y =0.9 Distillate
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Fig. 7.22—Influence of fuels Flg. 7.23—Influence of type

cooling tower

Recuperated closed-cycle efficiency, IS0 ambient
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In Figure 7.17, the pump-up temperature‘is 1478°K (2200°F) and
the pump-up recuperator is included. But in the following curves,
Figures 7.18 through 7.23,-pump—up temperatures of 1200 and 866°K (1700
and 1100°F) were used, and the pump-up recuperaéor was not included

(with the exception of the dashed line curve, Figure 7.19).

Figure 7.18 shows the effect of intercooling, approximately a
1-1/2 point gain in efficiency. This comparison was made at different

pressure ratios.
.

The parametric variations displayed in Figures 7.18 through
7.23 use Point R32 as a base or reference condition. Here**, the pump-up
temperature and pressure ratio are 866°K (1100°F) and 10 to 1; the helium
temperature and pressure ratio are 1089°K (1500°F) and 2.5 to 1. No
pump—up recuperator was used, and a 0.90 helium recuperator effectiveness
was assumed. Most cases were assumed to fire a coal-derived distillate
fuel. Point R25 (Base Case A) is the same as the Point R32 reference
except that the pump-up temperature was 1200°K (1700°F) and the fuel was

Illinois No. & coal.

Figure 7.19 shows the effect of pump-up temperature and pres-
sure ratio. The two solid line cuxves for 1200 and 866°K (1700 and
1100°F) show approximately a omne-point improvement in efficiency at 866°K
(1100°F) at a 10-to-1 pressure ratio. The improvement is due to the
larger percentage of work in the more efficient helium leop at 866°K
(1100°F), although the improvement is somewhat offset by the drop-off in
pump—up efficiency at the lower temperatures.* This ignores the differ-
ence in fuel at the two temperatures, but this probably has little effect
(see Figure 7.22). The effect of pump-up recuperation is shown by the
solid and dashed line curves for 1200°K (1700°F) to be in the order of
two points at a 1Q-to-l pressure ratio. Finally, by comparing Poimnt R22

with Point R6 of Figure 7.17, it is shown that the efficiency is

%
At low pump-up temperature, more heat is absorbed by the helium in re-
ducing the furnace air to the lower temperature and, hence, more heat
is added to the helium cycle.

Hk
Point R32
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approximately the same at 1200 and 1478°K (1700 and 2200°F) pump-up tem-
perature., Here the stand-off is due to the counteracting effects ‘of the
work shift to the more efficient helium cycle and the drop-off in the

pump—up efficiency at 1200°K (1700°F}.

As a rough guide to the work shift referred to above, 2/3, 3/4,
and 9/10 of the total power is produced by the helium loop at 1478, 1200,
and 866°K (2200, 1700, and 1100°F) pump-up temperature fox the reference
helium conditions of 1089°K (1500°F) and a 2.5~to-1 pressure ratio.

Figures 7.20 and 7.21 show the effect of pressure loss in the
pump~up and helium circuit. Because of the low-pressure ratic, the pres-
sure loss in the helium loop has a greater effect. Note that the pres-
sure drop in the recuperator is the combined pressure loss for the hot

and cold side.

The effect of fuel type on efficiency is shown by Figure 7.22.
In Points R32, R26, R27, and R28 for distillate and ccals, the spread is
in the' order of one-half percentage point. TFor Points R29 and R30 which
used high— and low-Btu gas, respectively,” the main factor behind the
differing efficiency results is the approximate 107 difference in the
fuel higher and lower heating values (compared with about 5% for distil-
late). This larger difference for the fuel gases is associated with
their high hydrogen content. This means that a larger amount of the heat
added is unavailable for work in the pump-up turbine. Note, also, that
the efficiency of the low-Btu gas case allows for the energy requirements

of the coal gasification plant.

The efficiency differences associated with the precooler tem-
perature are shown in Figure 7.23., With wet, dry, and once-through cool-
ing, water temperatures of 292.3, 305.4, and 282.6°K (66.5, 90, and 49°F)
were assumed. With a 16.7°K (30°F) approach temperature, the helium was
assumed to have been cooled to 309, 322, and 299°K (96.5, 120, and 79°F).

The power curves in Figures 7.24, 7.25, 7.27, 7.28, and 7.30
have trends identical to those displayed by the corresponding efficiency
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Curve 680327-A
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Fig. 7.24—Influence of hefium temperature and pressure ratio

Pump-up: T=1100°F, p=10, epy =0
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Fig. 7. 25—Recuperated closed-cycle power, ISO ambient
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curves., The heat added is comstant with respect to all points on each of

these curves; hence, the efficiency changes are proportional to the power

changes. In Figures 7.26 and 7.29 there is a variation in heat added

from point to point associated with the difference in pump-up temperature

and fuel. At low pump—-up temperature, more heat is absorbed by the helium

in reducing the furnace air to the lower temperature.

The heat of combustion per pound of air .is highest for high-Btu
gas, intermediate for distillate and low-Btu gas, and lowest for the
three coals. TFurthermore, the coals are assumed to burn with a 4% com-
bustion loss reducing their effective heating still further, whereas the
gases and distillate are assumed to burn completely. Thus, as the air-
flow was assumed constant, the heat added drops off in the order named
(at fixed pump-up temperature). This accounts for the difference in
Figures 7.26 and 7.29 with respect to the corresponding efficiency curves.
Note in.Figures 7.19 and 7.26 the shift in the dashed line curve with
respect to the solid line curves and the change in spread of the solid
line curves. This is associated with the lower heat addition at 1200°K
(1700°F) and the higher heat addition with distillate fuel. Note alse,
in Figures 7.22 and 7.29, that the power is affected more by the change
in heat additiom (highest with high~Btu gas, intermediate with distillate

and low-Btu gas, and lowest with eoals) than by the change in efficiency.

Point R48, Base Case B, is for amn atmospheric combustion sub-
system. Atmospheric pressure air is supplied to the furnace by a fan.
A Ljungstrom regenerator preheats the furnace air. By comparigen with
Point R25, ‘Base Case A, the efficiency is roughly the same, but the power
is approximately 16% higher.

7.4.4 Combined System Parametric Point Identification

A tabulation of the combined system parametric variations in-
cluding parametric point numbers and thermodynamic efficiency results is

given in Table 7.3.

The first group, including Points Cl through C9, has been

selected for variation of the helium cycle turbine inlet temperature and
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REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOP

compressor pressure ratio. The first three points utilized a helium tur-
bine inlet temperature of 922°K (1200°F) with compressor pressure ratios
of 1.5, 2, and 2.5 to 1. A pump-up gas turbine inlet temperature of
1477°K (2200°F) and a compressor pressure ratio of 10 to 1 were used for
all nine points. Each was fired with coal-derived distillate fuel, and
high-pressure reheat steam rturbines were used to bottom both the pump-up
and helium cycles. Points C4, C5 (Base Case), and C6 of this group in-
corporate a helium turbine inlet temperature of 1089°K (1500°F) and com-
pressor pressure rafiecs of 2, 2.5, and 3 to 1, fespectively. For the
last three points of the group, the helium turbine inlet temperature was
set at 1255°K (1800°F); and pressure ratios of 2.5, 3, and 4 to 1 were
used. For Points Cl0 through Cl2 the pump-up set vapor generator was
omitted and the pump—up turbine inlet températures of 1478, 1200, and
866°K (2200, 1700, and 1100°F) were used. All three cases assumed pump-—
up set compressor pressure ratios of 10 to 1. Helium compressor inlet
temperatures of 339, 394, 422, and 450°K (150, 250, 300, and 350°F) were
assumed for Points Cl3 through Clé. Point C5 with a compressor imlet
temperature of 366°K (200°F) is also a member of this sequence.

Points €17 through C20 contrast with these in that a precooler is added
to bring the tompressor inlet temperature to 309°K (96.5°F). The pre-
cooler rejects heat to a wet cooling tower and receives helium from the
vapor generator discharge at temperatures of 366, 394, 422, and 450°K
(200, 250,, 300, and 350°F), respectively. It was intended that the
Points C17 through C20 would be the only ones requiring a precooler. The
compressor inlet temperatures of the other points were intended to be
high encugh that the compressor would accépt helium directly from the
vapor generator. Due to pinch-point problems discussed in Subsection 2.3.3,
however, a cooler was required for all points except C7, C15, and C16 and
the organic fluid points C46 through C52. TFor Points C21 and €22, nonre-
heat bottoming steam turbines of nominal steam conditions 11.032 MPa
‘(1600 pei) gauge, 811°K (1000°F) and 8.618 MPa (1250 psi) gauge,.783°K
(950°F) were used. Variations of pump-up cycle turbine inlet temperature

and pressure ratio have been selected for Points C23, C24, and C25. The
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combinations were 1478°K (2200°F) and 15 to 1 for Point C23; 1300°K
(L700%F) and 5 to 1 for Point C24; and 1200°K {1700°F)-and 10 to- 1 for -
Point C25. The helium vapor generator pinch-point temperature difference
has been modified from the base value of 22°K (40°F) to 33 and 44°K (60
and 80°F) in Points G26 and C27. The effects of pressure drops have been
identified for investigation in Points C28 through C36. Furnace pressure
drop ratios of 0.04 and 0.06 were investigated in Points C28 and C29, as
compared with the base case value of 0.02. Helium vapor generator pres-—
sure drop ratios of 0.04 and 0.06, respectively, were substituted for the
base case walue of 0.02 in Points G30 and C31l. Furnace pressure drops of
0.032, 0.09, and 0.12 were used for Points C32, C33, and C34. These com—
pare with the base case wvalue of 0.06. The pump-up gas turbine vapor

_ generator pressure drop variations of 0.02 and 0.06 (base case value was
0.04) were used for Points C35 and €36. The influence of helium cycle-
top pressure has been identified for stu@y in Points €37 and C38. Alter-
native values of 3.447 to 13.790 MPa (500 and 2000 psi) abs were compared
with the base case wvalue of 6.895 MPa (1000 psi) abs in Peints C37 and
C38, respectively. The use of alternative fuels was investigated in
Points C39 through C43. Points C39 and C40 utilized high- and low—Btu
{integrated pasification plant) coal-derived gases, respectively., Both
use a helium cygle turbine inlet temperature of 1089°K (1500°F), a com~
pressor pressure ratio of 2.5 to 1, and a pump—up cycle turbine inlet
temperature of 1478°K (2200°F) with a 10-to-1 compressor pressure ratio.
Fluidized bed combustion of Illincis No. 6 bituminous, subbituminous, and
lignite were selected for Points C41l, C42, and C43. With each the pump-
up cycle turbine inlet temperature was set at 1200°K (1700°F), which is
compatible with £fluid bed operation. For Points C44 and C45, alternative
ecycle heat rejection modes were selected, Dry cooling towers were desig-

nated for Point C44 and the once-through cooling method for Point C45.

Alternative bottoming eycle fluids ware identified for study in
Points C46 through C52. The three fluids used in connection with the re-.
cuperated open-cycle studies (Section 5) were used here. These included

R-12, methylamine, and sulfur dioxide. The outstanding properties of
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R-12 are that it is nontoxic, nonflammable, and noncorrosive. It is used
below the base case configuration of pump~up and helium cycles to consti-
tute calculatign Cycles €46 and C47. Since the turbine expansion end
point lies far into the superheated regilon for R-12 for this cycle,

Point C47 contains a desuperheating recuperator to help heat the feed
liquids. This is to show the contrast with Gyele €46, which does not
have such a desuperheater. The top temperature for both eycles is 644°K
(700°F), which is higher than that usually used for R-12. However, the
usual limits for the fluid are based on its use as a refrigerant, in which
it is mixed with oil and may even contain scme water. In the absence of
these contaminants’ and in contact only with materials of comstruction,
the fluorine stays fixzed ;nd the fluid remains stable to a higher tem-

perature. This is the basis for_the 644°K (700°F) application.

Cycles ‘C48 through C51 have been formed by adding bottoming
cycles to recuperated-type cycles. Since the required temperatures are
low, the fluid could be chosen without much regard for chemical stabi-

lity.

Methylamine was chosen as having good volume relations in the
intermediate pressure range (TEAP of 3.96). It has a moderate critical

pressure and could be fitted easily to the available heat lines.’

Cycles C48 and C49 are .subposed below the two types of ‘recupex-—
ated cycle with pump-up turbine temperatures at 1478°K (2200°F) and 866°K
(1100°F), respectively (similar to recuperated Cycles R6 and R32, respec~

tively), for a basic comparison.

Cycle C50 rejects heat through a water circuit to a dry cooling
tower and has a condenser temperature of 323°K (122°F). It compares with

Cycle C48 which uses a wet cooling tower.

The low volume of the methylamine turbine exhaust allows one to

consider deploying the bottom fluid directly to an air-cooled condenser
(dry cooling tower). This avoids the thermodynamic losses assoclated

with the use of an intermediate heat exchanger and the temperature range
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Fig. 7.31-Summary of thermodynamic cycle data combined closed cycle base case, Point C5)
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associated with the_;ntermediate cooling—wager loop. Cycle C51 has such
an arrvangement with a condenser temperature of 313°K (104°F). Since this
is the same as Cycle C48, the thermodynamic performance will be identical.
The comparison will center on the relative cost .and ease’ of providlng the

dlfferent apparatus "associated with the condensing vapor

¢

Cycle C52 is similar to Cycle C46, except that sulfur dioxide
is used for the bottom cycle instead of R-12. The importance of-sulfur
dioxide dis éhat is has high;temperature stability and thus permits the
cycle to Le adjusted to utilize the available energy from the pump—up and

helium cycles to a much fuller extent.

0f the fluids considered, the only others which also have high~
temperature stability (nominally) are ammonia and cyanogen, The choice
of sulfur dioxide over these is somewhat arbitrary, but it appears to be

advantageous.

Sulfur dioxide is completely nonflammable. Although it will
not make as low a volume plant as ammonia (TEAP of 5.75 for sulfur di-
oxide vs 1.49 for ammonia), the volume seems low enough for the applica-
" tion. Furthermore, the higher critical pressure of ammonia [11.28Q.MPa
(1636 psi) abs compared to sulfur dioxide 7.881 MPa (1143 psi)] abs might
require a pressure too hiéh to contain easily in order to obtain a good
thermodynamiec fit. The higher critical temperature of sulfur dioxide was

also thought to be advantageous for ease in obtaining a pgood Fit,

In any case, sulfur dioxide serves to illustrate the potential
value .of a well-fitted, low-volume, high-temperature supercritical bot—

toming c¢ycle,

7.4.5 Combined System Base Case Results

Figure 7.7 of Subsectioh 7.2 has illustrated the cycle schematic
arrangement for Point C5, the combined closed-cycle base case. Selected
thermodynamic cycle data for this arrangement are tabulated in connection
with the appropriate temperature-entropy diagram on Figure 7.31. For

this cycle, it has been calculated that a power plant of this
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configuration would deliver approximately 380 MW at a net thermodynamic
efficiency of nearly 41%.

®
7.4.6 Combined System Results of Parametric Variations

The influence of helium temperature and pressure ratio on the
engine performance is shown by Figure 7.32. It is evident that the
helium temperature has a controlling effect. The performance progres-—
sively improves as temperature increases from 922 to 108% to 1255°%
(1200 to 1500 to 1800°F). This increase is associated with the higher

efficiency of the helium cycle at the higher temperatures.

Note the double scale for efficiency and power in Figure 7.32.
The efficiency and power are directly related as the cycle heat added is
constant for all points on the curve. The heat added is fixed by the
choice of pump-up cycle temperature and fuel, as the ﬁump—up (combustion)
airflow was always assumed to be 408 kg/s (900 1b/s). Thus, in
Figure 7.32, the efficiency varies in lockstep with the powerl {This is

also true of Figures 7.33 and 7.36 through 7.42 which follow,)

Hote also that the efficiency reported is, with respect to the
engine electrical power, corrected for mechanical and generator loss, and
the heat equivalent of the fuel based on the higher heating value. There
is no account of the auxiliary power for providing the circulating water

to the condenser and cooler in the results plotted in these figures.

The data are shown by the curves with regard to the pump-up and
helium conditions, but without regard to the temperature and pressure of
the steam in the bottoming cycle. This simplifies the curves and is
justified, in that the steam conditioms are generally .set by the pump-up
and helium conditions. Thus, the pump~up and helium parameters are re-

garded as independent variables, and the steam parameters as dependent

variables.

*

The results listed in Table 7.5 and the figures shown below apply to
thermodynamic efficiency and corresponding gross power output before re-
lated station auxiliary powers were deducted.

7-61



48

5 . £
8 i3 S &

\J
[» =]

Thermodynamic Efficiency (n), %

A
Lo )

\d
=Y

32

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

Curve 682B50-4

!
Pump-up
T=1204.4°C (2200°F) —1440
— p=10,W,, =9001b/s | 1 =982°C (1800°F)
Distillate
- Dotted curves are 360
1 normalized to a
648. 9 (1200) constant effective 7
transfer of 80% of
~ the available heat ]340
4 energy from the -
p. u. and helium
- X, cycles — 320
3 =
. 300
1.5 2.0 2.5 3.0 4.0

He Pressure Ratio, p

Fig. 7.33—Combined closed-cycle efficiency and power,

ISO ambient

7-62

Gross Power, MW



In the identification of the parametric points for calculation,
it was intended that the steam cycle heat demands would be well fitted to
the heat available from the pump-up and helium turbine exhaust streams.
The degree of fit, however, has varied and is a noteworthy factor in the
interpretation of the results. Table 7.6 lists the caleulation points
along with the effectiveness with which the tﬁermodynamically availahle
energy of the two exhaust streams is transmitted to the bottoming cycle.‘
The values vary from 0.5787 to 0.8534. Also included in Table 7.6 are
cycle efficiencies normalized for a constant available energy transmisw
sion effectiveness of 80%Z. These normalized values are plotted on
Figure 7.33 and denoted by dashed lines. These curves are flatter than
the directly calculated ones and show that much of the variation at a
particular helium turbine temperature can be explained by the changing

thermodynamic fit of the bottoming eycle.

Note that the base case, Point (5, is shown as a reference on
all of the curves. This point is for a pump-up temperabture znd pressure
ratio of 1478°K (2200°F} and 10 to 1, and a helium temperature and pres-
sure ratio of 1089°K (1500°F) and 2.5 to 1. The use of distillate fuel

is assumed. aa
-

The effect of pump-uf temperature and pressure ratic is showmn
by Figure 7.34. The efficiency is notably lower at 1200°K (1L700°F) than
at 1478°K (2200°F). At 1200°K (1700°F) a greater portion of heat is ab-
gorbed by the helium, which gives an increase in power im the helium loop
but canmet be tyansferred in full measure to the steam ¢yele duz to the
pinch-point limitation in the helium section of the vapor generator.
Thus, a greater portion of the heat is rejected to the helium cooler to
the detriment of the efficiency. On the other hand, the cycle heat added
ig roughly 9% larger at 1200°K (1700°F).’ [More heat ig absorbed by the
helium in reducing the furnace air to the lower temperature of 1200°K
‘(1?00°F); hence, more heat is added.,] This tends to increase the power,

but the increase is roughly offset by the drop-off in efficiency.
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Table 7.6 - Effectiveness of Available Energy

Transmission to Bottom Cycle

Cale. - Calc. .
Podnt €A.E. Te = 0.8 Point A.E. e = 0.8
ci 0.7906 0.3828 c27 0.6859 0.4202
2 0.6760 0.3915 c28 0.7886 0.4172
c3 0.5787 0.3936 c29 0.7954 0.4171
Ch 0.8120 0.4147 c30 0.7886 0.4172
c5 0.7819 0.4201 ¢st 0.7954 0.4142
cé 0.7191 0.4232 32 0.7828 0.4217
c7 0.8534 0.4380 c33 0.7862 0.4184
c8 0.8302 0.4433 ¢34 0.7903 0.4170
9 0.7602 0.4473 G35 0.7799 0.4211
€10 0.6959 0.3328 c36 0.7847 0.4192
1t 0.6958 0.3578 c37 0.7819 0.4201
12 0.7200 0.3709 38 0.7819 0.4201
c13 0.7799 0.4183 €39 0.7732 0.4050
14 0.7896 0.4210 40 0.7440 0.4172
c15 0.8018 0.4208 chl 0.7056 0.4170
c16 0.8195 0.4194 c42 0.7069 0.4038
17 0.7954 0.4119 c43 0.7075 0.3984
c18 0.8068 0,4092 Chh 0.7777 0.4103
€19 0.8221 0.4057 c4s 0.7837 0.4244
c20 0.8413 0.4014 C46 0.7058 0.4112
c21 0.7268 0.4150 c47 0.7047 0.3663
22 0.7333 0.4149 48 0.7448 0. 4484
c23 0.7498 0.4201, c49 0.8198 0.4074
C24 0.7318 0.3998 C50 0.7180 0.4381
€25 0.7029 0.4043 cs5L 0.7448 0.4484
c26 0.7356 0.4202 c52 0.8539 0.,4204

€, g, — Proportion of Available Energy of Pump—up and Helium

. .o.8 ™ Power Plant Efficlency Normalized for e

Cycle Transmitted to Bottom Cycle,
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The effect of including an air-to-steam vapor generator is shown
in Figure 7.35. Without the vapor generator, a greater porticn of the heat
L]
from the pump-up turbine is rejected in the exhaust, particularly for the

case with the pump-up turbine inlet temperature of 1478%°K (2200°F).

Figures 7.36 and 7.37 show the effect of pressure loss in the
pump-up and. the hélium circuits, respectively. fThe individual effect of
furnace loss and vapor generator loss is the same with respect to each

circuit.

Figure 7.38 shows the effect of the helium temperatufe at the
vapor generator exif; i.e., at the compressor inlet. The performance
improves with increased compressor inlet temperature. This effect is
opposite to that commonly associated with compressor inlet temperature,
However, it must be noted that the thermodynamic heat rejection temperature
from the overall closed-combined éycle is linked most directly to the temp-
eratures at the pump-—up compressor inlet, the pump-up stack and the supposed
condenser; not to that of the helium compressor imnlet.

As the helium compressor inlet temperature Increases, its ogutlet
temperature also increases; and it accepts heat from the puﬁp—up set in a
more efficieht temperature rahge. This is partially counterbalanced by the
greater power required to drive the helium compressor. The effectiveness
'of transmission of available energy to the bottom cycle is also improved. -
This last effect has been removed for the dotted line of Figure 7.38
showing the efficiency values normalized for an 80Z effectiveness of
available energy transmission., These show an optimum compressor inlet
temperature of about 394°K (250°F).°

The pinch point is shown by Figure 7.39 to have a notable effect
on the pefformance. As the vapor generator pinch point temperature
difference increases from 22.2 teo 44.4°K (40 to 80°K), less of the heat
absorbed by the helium is transferred to the steam. This is shown by the
increase in helium. temperature at the vapor generator exit (T5 in Table 7.5)
and by the increase in heat rejected from the helium cooler.

Figure 7.40 shows the effect of condenser pressure associated
with the temperature of the circulating water. The relation between the
condenser pressure, saturation temperature, and water temperature is
shown in Table 7.7. The 11.85 and 30.48 kPa (3.5 and 9 in Hg) abs
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Table 7.7 — Heat Rejection Conditions

Pressure,

Saturation

Cooling

in Hg abs Temperature, °F Water, °F Cooling tede Ambient
1.5 7 91.7 49.0 Once through Is0
2.0 101.1 66.5 Wet tower 150
3.5 120.6 - Wet tower 5% day
3.8 123.4 90.0 . Dry tower 150
9.0 157.1 - Dry tower SZ:day




conditions are not study points, but are included in the performance

sumnary (Table 7.5).

The effect of the precooler is shown by Figure 7.41l. Note that
the precooler reduces the helium temperature to 309°K (96.5°F) at the
inlet of the compressor. [This is in line with the 16.7°K (30°F) approach
temperature in the preccoler.] As such, Points C17 through C20 are best
regarded in association with Figure 7.38. It is a matter of semantics
whether the temperature is reduced to 303°K (96.5°F) in the cooler and
precooler or in the cooler alone. (Had it been determimed that the
cooler was necessary when the study was planned, the precooler points;
would not have been included.) We felt that the helium temperature could
be reduced to its final value in the vapor generator, but for most points
this is impossible without violating the 22.2°K (40°F) pinch point tem—

perature difference.

Figure 7.42 shows that the use of a nonreheat bottoming cyele
results in about a two-point drop in efficiency and a corresponding de—
crease in power. Without reheat, the available heat from the pump-up set
in particular is not fully utilized in the steam loop. Note that the

amount of the decrement is for this particular cycle,

The influence of fuels is shown by Figure'7.43. Due fo the
difference in pump-up temperature, fuels for each temperature must be
compared as a group. Im each group, the comparison is with respect to
distillate. Of the coal point; at 1200°K (1700°F) temperature, Illinois
No. 6 gives higher efficiency and less power than does distillate. With
distillate, the heat added is 6% higher. (This is associated with the
constant airflow and the combistion properties of the fuel.) This in-
creases the power, but the increase is somewhat offset by the drop-off in
efficiency. In particular, the additional heat is absorbed by the helium
cycle, giving some increase in power; but it cannot be passed on in full
measure to the steam cycle because of the limitation imposed by the pinch
point. Were it not for this limitation, the efficiency would remain near

constant and the power would increase in proportion to the heat added (as
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in the recuperated cycle). Comparing the coal points, there is an ap-
proximate twowpoint drop-off in efficiency in going from Illinois No. 6
to subbituminous to lignite, This decrement, in the case of the low-Btu
coals, is due to the greater percentage of work in the low-efficiency
pump—up set. There is a corresponding decrease in power as the heat
added is roughly constant. Turning now to the gas points at 1478°K
(2200°F) pump-up cyele inlet temperature, the efficiency is approximately
1-1/2 points less with both high- and low-Btu gas than with distillate.
This drop—off is related to the greater difference in the higher and
lotrer heating value of the gaseous fuels as compared with the liquid
fuel. Note that the performance of the low-Btu gas point allows for the

anergy vequirements of the coal gasification plant.

7.4.7 Combined Systems with Organice Fluid Bottoming Cycles

Special attention was given to the use of organic fluide in the
bottoming cycles. A detailed description of the results of those calcu-

lations, Points CA6 through €52, is given below.

Points C46, C47, and €52 illustrate the importance of botroming
£luid %op temperature capability and of the value of good thermodynamic
fit between the subposed cycle heat absorption line and topping cycle
heat rejection line. These parametric points and Point C5 are similar in
that each is used under high-temperature primary cycles [pump—up cycle
turbine inlet temperature of 1478°K {2208°F) and helium cyele turbine
inlet temperature of 1l089°K (1500°F)]. A tabulation of the efficiency

results of these cycles is given in Table 7.8,

As with other cycles, much of the efficiency difference here
can be awplained by the difference in the available energy transmission
effectiveness. Although the normalized cycle efficiencies at the 0.8
available energy transmission effectiveness are tabylated, the physical
implications of achieving such values must be considered. For the steam
case {Point C3), the higher transmission effeetiveaesé was obtained for z
ph§sically plausible cycle. To maintain such a level with other steam

bottomed cycles, however, would require similar high values of helium
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Table 7.8 - Organic Bottomed Closed Combined-Cycle
Efficiency Comparison

P;;ir:t Po';;r ' Thermodynamic, % Av%ii::iss E?izgy Avaigggiz gigi;eggzngiigs ion ‘
Effectiveness, B Effectiveness Corrected to 0.8
G5 3590.2 0.415 0.782 0.420
C46 364.2° 0.388 0.706 0.411
() 326.8 0.348 0.705 0.366
C52 408.2 0.435 0.854 0.420

w00d SI HOvq TVNIDIEU
ATHL 30 AIITAoNdoedid



turbine exhaust temperature and high helium compressor inlet temperature.
Increasing the cycle complexity would not materially improve the level of
available energy transmission effectiveness. The lower cycle efficiency
valuest of the.R-12 points (Points C46 and C47) illustrate a fundamental
point: that fluids cannot accept the available energy effectively where
£luid top temperatures are limited by the chemical instability of the
fluid. The 644°K (700°F) limit is for practical purposes about as high
as R-12 could be used. Point C47 does not utilize recuperative feed
heating and further illustrates the losses encountered when the super-
heated exhaust energy of these fluids is directly rejected to the heat
sink. Cycle temperature-entropy diagrams for Points C46 and C47 dre

given as Figures 7.44 and 7.43.

The temperature-entropy diagram for Point €52 is given in

Figure 7.46. Since sulfur dioxide is stable to high temperatures, the
bottom! cycle has been intentionally closely fitted to the available heat
supply, the sulfur dioxide turbine inlet temperature being 811°K (1000°F}.
The close thermodynamic fit is reflected in the available energy trans-
mission effectiveness of 0.854 and the cycle efficiency of 0.435 - two
percentage points above that of Point C5. The sulfur dioxide turbine ex-
haust superheat has been used xecupera&ively to aid in feed heating the
sulfur dioxide ligquid rather than rejecting it to the heat sink. The
good thermodynamic fit is made possible by using this exhaust superheat
and by having the top ‘pressure so far above the ecritical pfessure. At
17.327 MPa (2500 psi) abs, sulfur dioxide has a reduced pressure of 2.19,
a value which would correspond to a presgﬁre of 48.263 MPa (7000 psi) abs

in steam.

Since sulfur dioxide is a low-boiling fluid, this cycle also
avoids. the excessively large exhaust annulus-area turbines required when

steam is used.

Cycle Points C48 through C51 use methylamine as the working
fluid of the bottoming cycle below the recuperated closed-cycle helium

turbines. The methylamine cycles are supercritical cycles designed to
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have the turbine expansion line end close to the saturation line, thus
avoiding the superheated exhaust energy usage problem. The relatively
low teﬁperatures of the pump-up and helium heating streams permit the
close thermodynamic fits for these cycles., TFigure 7.47 depicts the
temperature-entropy diagrams for these methylamine cycles. The results

of thermodynamic efficiency calculations of these and other related

eycles are tabulated below.

Table 7.9 - Methylamine Working Fluid
Bottoning Cycle Comparison

Point No. | Power, Wy | gieiet TN
R6 328.5 0.350
R32 371.1 0.338
c48 413.4 0.440
C49 449.7 0.410
c50 400.0 0.426
€51 413.4 C o 0.440

Points C48, CSb, and C51 utilize organic fluid bottomiﬁg cycles
subposed below recuperated closed-cycle R6, and (49 incorporates a sub-
posed cycle below R32, Cycle G48 has as high. an efficiency (0.44) as any
of the closed combined cycles for the same pump-up and helium cycle tur-
bine inlet temperatures [1478 and 1089°K (2200 and 1500°F), respectively].
The efficiency difference between Cycles C48 and C49 (0.03) denotes the
difference resulting from a 1478°K (2200°F) pump~up turbine inlet tempera-
ture and one of 1089°K (1500°F).

Cycle C50 is similar to C48 except that heat is rejected to

water from a dry cooling tower. Its performance is poorer, as would be
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expected. Cycle C50 is intended for comparison with C51, since it also
has a dry cooling tower, but with direct condensing. Since the inter-
mediate water loop ig avoided, Cycle C51 is thermodynamically the same
as C43. Thus, C51 shows a thermodynamic performance with a dry tower
equal to that of C48 with a wet tower. This efficiency galn is one ad-
vantage of using a low-boiling fluid having a volumetric flow suffici-
ently low that the fluid can be deployed directly to an air-cooled

condenser.

7.5 Capital and Installation Costs of Plant Components

7.5.1 Description of the Base Case Power Plants

Three base cases have been selected for study in the closed-
cycle gas turbine concept category. Two base cases have been identified
among the recuperated closed cycles, and cne base case has been selected
for study within the combined closed-cycle group. Capital and installa-
tion costs were generated first for the base cases, and later for the

remaining parametric points.

Base Case A of the recuperated closed-cycle systems corresponds
to Point R25. Tt utilizes a single pump-up gas turbime to pressurize a
fluid bed furnace firing Illinois No. 6 coal. The combustion gas turbine
compressor airflow has been set at 408 kg/s (900 1b/s) with a compressor
pressure ratio of 10 to 1 and turbine inlet temperature of 1200°K (1L700°F).
The closed-cycle heliuﬁlgas turbine utilizes a compressor pressure ratio
of 2.5 to 1 and has a turbine inlet temperature set at 1089°K (1500°F).
The helium cycle recovers waste heat by means of a recuperateor having an
effectiveness of 0.9. Heat rejection below the helium cycle recuperator
is accomplished by means of a wet cooling tower. No exhaust heat recu-

peration is used with the pump—up turbine cycle.

The Base Case A power plant island arrangement is illustrated
by Figure 7.48, and the overall site plet plan is shown in Figure 7.49.
A cross-sectional view of the pressuring or pump—up gas turbine is given

in Figure 7.50. This unit incorporates a single—-shaft rotor arrangement
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similar to the designs described in the recuperated open—cycle gas tur-
bine and combined gas-steam turbine portioms of the study. The combus-
tion section of this unit is highly modified, however, compared to the
other units. All compressor discharge air is withdrawn from the gas tur-
bine cylinder through two large ports. The air is directed to the pres-—
surized furnace; and combustion products are returned by means of a
concentric piping arrangement, witﬁ hot combustion gases returning via
the interior pipe and cooler compressor discharge air passing through the
outer annulus. A convection impingement air—cooling approach has been
selected for the turbine blade cooling éﬁstem‘as appropriate for opera-
tion at turbide inlet temperatures of 1478°K (2200°F).

Figure 7.51 illustrates the closed-cycle helium gas turbine
utilized in Base Case A. This unit features a 60 rps (3600 rpm) power
turbine and a separaée 71.3 rps (4280 rpm) high~pressure shaft. The tur-
bine sections of each shaft utilize conventional construction through
bolted individual disk designs. A welded ;ssembly of individually forged
disks has been selected for the compressor rotor design. Each shaft is
supported by a two-bearing arrangement with tilting-pad fluid film jour-
nal and tilting-pad thrust-bearings. Special sealing circuits are re—

quired to. prevent oil contamination of the main working fluid.

Several niobium~ and molybdenum—based blading alloys have been
considered for use in the initial high-pressure turbine stages for un-
cooled operation at the 1255°K (1800°F) turbine imnlet temperature.
Metallurgical studies have indicated that although the nicbium alloys
have superior rupture strength, they appear to suffer sefious deteriora-
tion in impure helium. The most promising candidate alloy identified is

the commercial molybdenum-based alloy TZM.

The overall power plant arrangement of Base Case A, exclusive
of waste storage area, encompasses 254,952 m? (63 acres). TFuel and dolo-
mite delivery is by unit train with four 29-car unit trains of coal and
two 3l-car unit trains of dolomite per week. There is an auxiliary dis-

tillate fuel storage tank which is used during start—up and stand-by
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operatiorn. The waste dolomite storage area totals 728,453 m2 (180 acres).

Heat injection from the plant is accomplished by one eight-cell wet

cooling tower.

The recuperated closed-cycle system Base Case B corresponds to
Point R48. The turbine island arrangement for this plant is shown in
Figure 7.52, and the overall plot plan arrangement is illustrated in
Figure 7.53. This plant utilizes a single closed-cycle helium turbine
which receives its heat input from an atmospheric pressure furnace (in
contrast with the pressurized furnace of Base Case A). Consequently, no
pressurizing or pump-up combustion gas turbine is required. The power
plant is fired on coal-derived distillate fuel. The closed-cycle helium
gas turbine is essentially similar in design to the unit of the Base
Case A power plant. The power plant site arrangement is similar also to
the Base Case A arrangement, with the principal differences being the
substitution of liquid fuel storage tanks for the coal and dolomite piles

and the elimination of the waste’'dolomite storage area.

One base.case has been identified from the grouping of combined
closed—-cycle systems under study. This base case corresponds to Point C5.
The base cycle consists of a power—producing pressurized furnace subsys-—
tem, which is bottomed by a closed-cycle gas turbine system. Roth these
Brayton cycles are, in turn,'bottomed by a conventional steam Rankine
cycle. The plant island arrangement for the base case is illustrated in

Figure 7.54; the overall power plant plot plan in Figure 7.55.

A single pump-up gas turbine is incorporated in the combined
closed-cycle base case. The electrical output from this 408 kg/s
(900 1b/s) inlet ajrflow machine is 113 MW. The unit has a turbine inlet

temperature of 1478°K (2200°F) and a compressor pressure ratio of 10 to

The single helium closed-cycle gas turbine selected for this
plant is illustrated in Figure 7.56. It is similar in design to the unit
of Base Case A, with the essential difference being the construction of

the compressor rotor. This design incorporates a through-bolted assembly
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of compressor disks as opposed to the integral, welded design. The unit
is designed for a net 86 MW electrical output, with a turbine inlet tem-

perature of 1089°K (1500°F). The compressor pressure ratio is 2.5 to 1.

The base case Rankine bottoming cycle consists of a 24.132 MPa
(3500 psi) gauge, 755°K/783°K (900°F/950°F) steam turbine generator of
©191 MW electrical output. '

Principal heat input to the cycle is from a distillate fuel-
fired furnace pressurized to 1013 kPa (10 atm). The exhaust heat from
each ga§ turbine is recovered by means of heat recovery vapor generators
for the steam bottoming cycle., A four-cell wet cooling tower has been
selected to reject waste heat from the helium turbine compressor pre-

coocler and the steam cycle condenser.

The overall site requires an area of 190,202 m2 (47 acres) and

is serviced by three 34-car unit train fuel deliveries pér week.

During the combined closed-cycle portion of the study, consid-
erable attention was given to the use of organic fluid bottoming cycles.
The potential for relatively smaller turbomachinery in conjunction with
the use of these fluids has been discussed. A conceptual design for a
Rankine cycle turbine using sulfur dioxide working fluid is shown in
Figure 7.57. 1t is interesting to note that the last-row blade size for
this 60 rps (3600 rpm) unit of approximately 70 MW met output is just
0.28 m (11 in) in length.

7.5.2 Approximate Sizes and Weights of Major Components

The relatively complex closed-cycle gas turbine systems have
enjoyed limited commercial application to date (see Subsection 7.1).
Consequently, estimates of major component configurations, particularly

with respect to furnaces and heat exchangers, only can be approximate.

A tabulation of the estimated sizes and masses of the major

components for these systems is listed in Table 7.10.
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Table 7.10 — Approximate Size and Mass of Base Case
Closed-Cycle System Major Components

i

Component Basic Dimensions Mass (Weight), 1b

Recuperated Closed-Cycle Base Case A (Parametyriec Point 25)

Pump-up Gas Turbine

Turbine section 10.4 £t x 13,8 ft dia 150,000
%

Compressor section 19.3 £t x 13.8 ft dia 130,000
1]

Pressurized Purnace 15 £t dia x 100 £t 8,000,000

Helium Gas Turbine

Turbine section 28 Ft x 14.5 ft dia 370,000
Compressor section 21 fr x 12.5 ft dia 190,000
Helium Recuperator 20 fe dia x 150 ft 2,000,000

Recuperated Closed-Cycle Base Case B (Parametric Point 48)

Atrmospheric Furnace
(including preheater) 150 ft x 100 £t x 150 ft 28,000,000

Helium Gas Turbine

Turbine section 30 £t x 14 £t dia 675,000
Compressor section 20 £t x 14 £t dia 250,000-

Helium Recuperator 20 £t dia x 150 £t 3,000,000

Combined—Closed Cy&le - Base Case {(Parametric Point 5)

Pump—-up Gas Turbine

Turbine section 10.4 £t x 13.8 ft dia 150,000

=
Compressor section 19.3 £t x 13.8 fc dia 130,000
Pressurized Furnace 30 ft x 70 £t x 150 £t 8,000,000
Pump-up Vapor Generator 30 £t x 60 ft x 50 ft 1,500,000

Helium Gas Turbine

Turbine section 20 £t x 11.3 £t dia 160,000
Compressor section 15.4 £t x 9.20 £t dia . 120,000
Helium Vapor Generator 15 ft x 50 £t 1,000,000
Steam Turbine Generator 80 ft x 16 ft dia 750,000

*
Includes Combustor section.

7-93



7.5.3 Price Determination Procedure

The method of determiniﬁg pump—up gaé tﬁrbine prices is identi+
cal to that used for the open~cycle recuperated and combined gas-steam
éystems (see Subsection 5.5). Suitable price modifications were made for
the turbine combustor shell and the  combustor subsystem to account for
the full air extraction and the absence of conventional internal combus-

tors.

Closed-cycle helium turbine prices were detérmined in a manner
very similar to that used for the open—cycle gas turbines. Concept de-
signs were prepared and arbitréfily divided inte major sections or compo-
nents. The price for each section was estimated and then functiomally
related to a principal thermodynamic parameter. Then, as with the open-
cycle gas turbines, the price of each parametric point enginelwas deter—
mined as the sum of the prices of its components as found from the

functional relationships.

The method of pricing the steam turbine gemerator was identical
to that used in conjunction with the combined gas—steam system and de-—

scribed in Subsection 6,5 of this report.

Because .the heat exchange equipment represents a relatively
large percentage of the total cost, the prices of these items (including
the pressurized furnace, heat recovery vapor generator, intercooclers, and
recuperators) play a pivotal xole in assessing the closed-cycle energy ‘
conversion. systems. Very little commercial experience exists, however,
in manufacturing such equipment for closed-cycle gas turbine systems.
The price estimates foy this equipment were, therefore, approximate in
nature and should  be regarded as such. The procedure used to determine
the price of this eqﬁipmeut was first to prepare conceptual designs in
several heat exchangeérs {approach described in Subsection 7.3) and then
to prepare price estimates for each. Correlations were then developed
to relate parametric variations to the examples. For instance, the re-
sulting correlation developed for the helium recuperator parametric

pricing is described below.
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. _ 0.65 3
Recuperator Price, § = Cl [1 + “1] 1+ 02 [1 + uz] Pl W [If:—EJ

The constants C1 and 02 are 10,250 and 0,00094, respectively. P is the
nominal shell pressure obtained by dividing the cycle top pressure by the
compressor pressure ratio. W is the helium flow rate in 1lb/s. e is the

recuperator effectiveness, and o, and ¢, are adders to account for an

1 2
inecrease in price with temperature. The following values were used:

Price Adjustment Factors

Turbine OQutlet Temperature ¢y o,
T < 833°K (1050°F) 0 0
833°K (1050°F) < T < 894°K (1150°F) 0.15 0.35
894°K (1150°F) < T 0.30 1.00

The two cases with increased pressure drop were individually adjusted ac-
cording to a general curve for plate~fin recuperators (Figure 5.45), even
though these recuperators are assumed to be of the shell-and-tube type.

The reduction from the equation price was 6.35% for 4% AP/P and 11% for
6% AP/P,

Furnace prices were generated for each of the categories:
pressurized and atmospheric pressure, distillate-fired heaters, pressur-
ized fluidized bed fired heater systems, and low-Bitu gas—fired heater
systems with integrated gasification plants. The total price for eéch
parametric point furnace system was summed from individual components

such as (for the pressurized fluidized bed fired heater systems):
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e Heater modules

e Coal and dolomite preparation equipment
e Coal and dolomite feeding equipment

¢ Solid waste handling eqpipment
& Particulate removal equipment '

& Special piping.

Section 2 of this report describes- the balance of plant pricing

methods utilized by the architect/engineering firm, Chas. T. Main, Inc.

7.5.4 Tabulation of Owverall Plant Material and Installation Costs

As described in Subsection.6.5.4, the prices for steam turbine
condensers, cooling towers, and related installation costs have been cal-
culated by price correlations preprogrammed intc the cost of electricity
calculation. The prices of remaining items were determined by means of

the methods described above.

The price and heat rejection input for the recuperated cycle
Base Case'A (Point R25) as used in the computer program is given in
Table 7.1ll. Similar input for the recuperated cycle Base Case B
(Point R48) and the combined closed-cycle base case (Point C5) are given

in Tables 7.12 and 7.13, respectively.

Prices and installation costs have also been prepared according
to account code category (ineluding such headings as Site Development,
Excavation and Piling, Plant Island Comncrete, etc.). This tabulation for
the recuperated closed-cycle Base Case A is shown in Table 7.14, and
similar listings for the recuperated closed-cycle Base Case B and the
combined closed-cycle base case are shown in Tables 7.15 and .7.16, respec—
tively. Both unit and total quantity costs are listed in addition to the
percent of the total equipment and installation cost contained within

each particular account code.

Table 7.17 gives similar cost tabulations for the remaining

parametrile pelints of the recuperated closed—cycle system, and the
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Table 7,14 RECUPERATED HELIUM CLOSED DYCLE & T SYSTEM ACCOUNT LISTING

PARAMETRIC POINT ND.25

Continued
ACChpNT-NOQ & NANME» UNIT’ AMOUNT MAT s/UNIT INS $/UNIT
AUXILIARY ELEC EQULPHENT
18a 1 MISC MOTERS(ETC 228857,.8 140 «17 320400 ,.8¢
18: 2 SWITCHGEAR 8 MEC PAN KWE 267000.7 1.935 «45 143065i.%4
18. 3 COMCUITCABLESeIRAYS FI 5400020 1alZ 1.3E 1259279,98
1Rs & ISOLATED PHASE BUS FT «0 510.00 45000 =00
18« 5 LIGHTING & COMMUN KWE 32187¢,6 »35 o33 1335060 .37
PERCENT TOTAL DIRECT COST IN ACCOUNT 13 = 3.685 ACCOUNT TOTALe 3143832402
CONTROL . INSYRUMENTATION
19. 1 COMPUTYER EACH 1.0 oo .00 12C00.0C eoDa60 .00
19+ 2 _OTHER CONT2GLS ZACH 1.0 z50000.00 150008000 2500N00.00
PEPCENT TOTAL DIRECT CCST IN ACCGUKT 1S = 1.00CH ACCOUNT TOTALeS 1150000 .GC
PROCESS WASTE SYSTEMS
20« 1 ROTTOM ASH TPH «0 « 0D « 00 «-00
20« 2 DORY ASH TPH ihed 1012042.95 253810.1I% 31012D042,9%5
Z0s 3 MET SLURRY TPH 31.2 21445822,22 8535230.55 22Aa4922.27
Z0= 4 _ONSITE GISPOSAL _.. _ACRE . 2689 PR0Z.58 ___ 9850472 1748233057
PERCENT TOTAL DIRECT COST IN ACCOUNT 20 = Ga382 ACCOUNT TOTALe®S 5905301.12
STACK G’AE CLEANING.
21 1 PRECIPITATOR EACH . 34<406.53 EI70720.75 00
Z21ls 2 SCRUBBER KMHE -8 +23 Ba «80
21« 3 MISC STEEL & BUCTS 311 «00 00 00
PERCENY TOTAL DIRECT COST_IN_AGCOUNT_ 231 = LOQOD ACCOUNT _TQTAL2S +00
TOTYAL DIRECLT TOSTS,3 1809149831.00
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http:aE5SOr.0O
http:lsSOOO.08
http:Z014500.00
http:1147EC0.CO
http:171S9Sz.97
http:55100.ro
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http:I24000.CC
http:330000.00
http:26SOt.C4
http:102413.59
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http:21790000.00
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Table 7.15 RECUPERATED HELIUM CLOSFD CYCLE € T SYSTEM ACCOUNT LISTING

Continued PARAMETRIC POINT NOuHB
ACCOUNT NO. 8 NAMEs UNTIT ANDUNT  MAT S/UNIT  INS /UNIT  RAT C0sSTrs INS CCSTes
AUXTILIARY ELEC EQUIPMENT
18. 1 MISE MOTERSHETL : 300%20.5 1a40 «17 GZO5R8.76 5107149
T8. 2 SHITCHGEAR & MCC PAN KWE  3D0420.5 1.35 B8 2015820 .0GE 135189 .20
T8, T CONDUIT-CABLESSTRAYS . FF_  7135800.0 1.32. 1.35 g7{119%.29  389592.93
12e & ISOLATED PHASE EUS FY ol S10.44 450,00 LB .10
ig, 5 Lxsqrxns g COMMUN K WE 47817742 + 35 <43 150210427 1su544.q5
PERCENT TOTAL DIRECT COST IN ACCOUNT 18 = 2.283 ACCOUNT TOTALe& 3E5ERIGL00 313TC4CGH 17
CONTROL s INSTFUMENTATION
i%. 1 COMPUTER , EACH 1.0 I50000.00 1H000.80 250000.00 10005G.00
18, 7 OTHER CONTRQLS EACH 1.0 E00L0.CO 2E000 .06 EGHED GO ICL00 WG
PraRCENT TOTAL DIBECT COST IN ACZOUNT 39 = L5566 ACCOUNT TOTAL+S 35C00G.00 45000.00
PROCESS WASTE SYSTEMS
7fi. 1 BOTTON AsH IPE " - E0 «UE «5L L0
?ha Z DRY ASH Py » 0 « 00 <O -00 40
ZCs 3 WET SLURRY TPH o .00 00 .00 o LG
Ge 4 ONSITE DISFOSAL ACRE oL TETG.HE 11070.89 .00 Mt
PERCENT TOTAL DIRFCT COST IN ACCOUNT 70 = .00C ACCOUNT TOTALsS L L0
g;ac§ géEc%%%#ﬁ%gg EACH Zai) efa] on no g
51t 2 ScrUBBER - KRE M 18,26 a3 %0 AR
21« 3 _MISC STEEL_& DUCTS o0 .28 Milsl -00 00
L PERCENT TaIAL OIRECT COST IN ACCOUNT 21 = .CLE ACCOUNT TLT &8 .8 L0

TOTAL CIRECY COSTSes : 118209861 ,0C 133117 .00

-


http:11070.39
http:4SO0O.OO
http:950000.00
http:E3600t.OO
http:10000.oD
http:IOUG0.00
http:SSOOOO.DO
http:355E819.0O
http:184544.95
http:150210.27
http:999539.99
http:97199.99
http:13F139.24
http:2C15820.05
http:51071.49
http:420599.76
http:4SO.-.CD
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Table 7.16 COM3TNZ) ALR~4SLIUN-STEZAM TURD CYCLE

PARAMETRIC POINTY NO. 5

ACCOUNT NDa & NAMI, UNIT AMOUNT MAT S/UNIT INS S/UNIT
SIYE JEVELDPMENT
1. 1 LAND COST ACRE 58,0 1000.00 00
1. 7 CLEARING LAND ACRE 19.3 . 500400
1s 3 BRADING LAND ACRE 5840 0 300000
i« & ACCESS RALLROAD MILE 5S¢0 115000,00 110000.00
1. 5 LOOP RATIROAD TRACK MILE «0 120000.00 70000 .00
1« 5:'SIDINS R R TRACK #MILE 1.1 125000.0D 800R0.00.
1. 7 OTHER SITE COSTS ACRE w0 i -
PERCENT TOTAL DIREST GOST IN ACCOUNT 1 = 2,018 ACCOUNY TOTALs
TXZAVATEON & PILING
Z. 1 COMMON EXCAVATION ¥D3 38825.0 .00 3.00
3. 2 PILING £ 196203.3 5e50 8.50
PERCENT TOTAL DIRECT GOST IN ACCOUNT 2 = 1.873 ACCOUNT TOTALsS
PLANT YSLAND CONCRETE
3 1 PLANY IS. CONCREIZ  YD3 13275.1 70.00 80.00
3. 2 SPECIAL STRUCTURES _ YD3 | - 00 .
PERCCNT TOTAL DIREGT GOST IN ACCOUNT 3 = 2.178 ACCOUNT YOTALeS
4EAT RSJECTION SYSTIN
fi. 1 COOLING JOWERS EACH el .00 =00
9 Z CIRCULATING 1429 SYS EACH 140 <00 «00
4, 3 STM SURFACE COND FT2  135569.0 00 00
8. 3 ORGANIC VAPOR COM) =0 -00 -B0
PERCENT TOTAL DIRECT COST IN ACCOUNT & = 3.106 ACCOUNT TOTALeS
STRUCTURAL FEATURES
S. 1 STAT« STRUCTORAL ST. TON 128543 550473 175.50
Se 2 SILOS & BUNKERS TPH o 1800.00 75000
S« 3 CHIMNEY FT -0 .0n =00
. & STRUCTURAL FEAJURES EACH 1.0 _ 222000,00C 7700000
PERCINT TOFAL DLRECT COSY IN ACCOUNT 6 = 1.535 ASCOUNT TOTALeS
3UILDINGS
« 1 STATION BUILDINGS FI3 363150C.0 .18 .16
€+ 2 ADMINSTRATLION £T2 ] 15.79 Ly ,00
- 3 _WAREHOUSE & SHOP F12 50000 12.00 8al
PERCINT TOTAL DLRZST SOST TN ACCOURY & = 1.380 ACCOUNT TOTALoS
FUEL YANOLING 8 STORASS
7. 1 COAL HANDLINE SY5 TPH .0 00 00
7= 2 DOLOMITE HANDe SYS  YPi . -0 ~00 .00
7v 3 FUEL OIL HAND. SYS GAL g1006DC.O .00 0
PERCSNT TOTAL DIRECT COST IN ACCOUNT 7 = 1.820 ACZDUNT TOTALsS
FYEL PROCESSING
8. 1 COAL ORYER & CRUSHER TPH | .00 .00
8. 2 CARBONIZERS L) <0 .00 -0n
8« 3_BASIFIERS TPH .0 .00 .00
PERCINT TOTAL DERZIST COST IN ACCOUNT 8 = .930 ACCOUNT TOTALeS

ACCOUNY LISTINS

MAT COST»3
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929250400

58104020

6000000
551040,00

00
«00
TIZ22480 00
T32240.100

INS CO0STye$

1062000.00
1962900.00

Z228875.00

« 00
1IC0C 00
331875.00

581C4C .00
ag

B00H00D
5210%0.80

«00
EE526%.9
56536%.9


http:56SS9.99
http:56596S.99
http:521040.00
http:331875.00
http:224875.00
http:943O03.93
http:484003.93
http:1962900.00
http:1062000.00
http:1022175.00
http:932700.00
http:119475.00
http:351695.59
http:136027.85
http:80800.08
http:11598.84
http:732240.00
http:732240.00
http:S41040.00
http:60000.00
http:581f1*0.Ct
http:1157250.00
http:77000.00
http:322000.00
http:835250.00
http:1897155.95
http:615194.33
http:350951.63
http:921000.00
http:329250.20
http:329250.00
http:690300.00
http:690300.00
http:10620.33
http:894037.85
http:136097.86
http:125000.0D
http:12SO00.02
http:7000C.00
http:120000.0D
http:575000.00
http:t10000.00
http:115000.00
http:58000.OE
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MAT S/UNIT INS SFUNIT

PARAMETRIC POINT NO.

COMBINED AIR~-HELIUM-STEAM TURE CYGLE
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http:1675000.00
http:30S2500.00
http:2250000.00
http:365505.32
http:848743.31
http:329664.52
http:528366.41
http:27395.71
http:198701.90
http:121675.00
http:32690.61
http:1534530.30
http:32690.51
http:315480.00
http:57360.00
http:239000.00
http:21414.40
http:764803.00
http:3516000.0o
http:1172000.00
http:2550000.00
http:8590000.00
http:2550000.00
http:966000.00
http:3220000.O0
http:3220000.00
http:1933271.87
http:22019#9.00
http:632771.93
http:7909649'.12
http:632771.53
http:7909649.12
http:168300.00
http:1870000.00
http:168300.00
http:1870000.00
http:1862130.00
http:87500.00
http:1750OO.0l
http:87500.00
http:87500.00
http:87500.00
http:1750000.00
http:740999.99
http:741000.00
http:711939.99
http:7410000.33
http:131OOO.00
http:5748000.03
http:191OOO.33

80T-L

COMBINED AIR-HELIUH-STEAM TURE CYCLE
- PARAMETRIC POINT MO. S

ACCOUNT LISYING

Table 7.16
Continued . i L.
ACCOUNT NOs E NAMEs UNIY AMDUNT MAT S/UNIT INS S/UNIT MAT COSTes INS COSTes
AUXILIARY ELEC EQUIPMENT
18. 1 MISC MOTIERSSETC §515985.,2 1.%0 «i? 532233.3%
18 § SHITCHSGEAR & MCC PAN KWE 451595.2 1495 o485 12166106
18. CONDULT2CABLES TRAYS FT 120000340 1«32 136 1583399.98 -
18. § IESOLATED PHASE BUS FT 3000 510.00 450.00 153000.00
18. 5 LIGHTING & COMMUN KNE 451595.2 «35 «H3 152058,33"
PERCENT TOTAL DIRECTY COST IN ACCOUNT 18 = 5,546 ACCOUNT TOTALss ITRIc0Z .28
CONTROL» INSTRUMENTATION 5
19« 1 CONMPUTER. SACH 1a1 550000,18 120 503008« 00
19. 2 OTHER CONTROLS EACH 1.0 ESUDUD.BB 15%9%%:%% 250600 «00
PERCINT TOTAL DIRECY COST IN ACCOUNT 19 = 1.0352 ACCDUNT TOTALeS 860003, 00
PROCESS WASTE SYSTEMS .
20« 1 BOTTOM ASH TPH o0 « 080 00 «00
20« 2 DRY ASYH TPy 0 «0D =00 =00
20« 3 MEY SLURRY TPH «0 <00 «0b «80
20« & ONSITE DISPOSAL ACRE ) T6.%3 11070.89 «08
PERCENT TOTAL DJIRECT COST IN ACCOUNT 20 = .OOD ACCOUNT TOTALeS «00
STACK 6AS CLEANING
21 1 PRECIPITATOR EACHA «0 +20 « 01 <00
21« 2 SCRUBBER KNE [y L] 20«45 8.82 »00
21e 3 MISC STEEL & DULTS . w0 . . «Q0 =0
PERCENT TOTAL DIRECT COST IN ACCOUNT 21 = .0O8 ACCOUNT TOTALes <00
70286137 .00

TOYAL DIRECT COSTSv$

TV TyNyey
T 90 Aaramonaoy gy

d004d g1

qH,
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http:SOZEl.25
http:11070.89
http:152000.00
http:250000.00
http:12000.00
http:120lf.fl
http:553000.30
http:2241114.94
http:3743902.28
http:194185.95
http:158058.33
http:135000.0c
http:153000.0U
http:1531999.98
http:1583999.98
http:1216610.69
http:532233.31

Table 7.17 - RECUPERATED FELIUM CLESED RYCLE & T "YSTEMTUFFARY FL2NT RESULTS
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Table 7.18 COMBINED AIR-HELIUM-STCAM TURE CYCLE
PARAHETRIC POINT 1 2
TOTAL CAPITAL ZOST NS 136.2% 134.31
P PRESS HE FURNAGE wMS  10.520 10.720
L PUMP UP ST-BEN ) MS  T.410 7.4l
A  HELIUM 6AS TURB-6EN sM$  4.920, E£.080
N STEAM TURBINE-3IMERATOR PHS 2885 7,137
T  PUMP UP REC VAP GEN tMS 3,260 1.82
HE TURZ REC VAP GEN #M$ 10,1080 7.920
R TOT MAJOR COMPOMENT COST  oM$ 54,655 41,087
T YOT MAJOR COMPONENT COST»$/KWE  127.3%3 123,789
S BALANCE OF PLANT COST ~ e$/KME 7.5 " B7.14
v I;g LABOR -~ v S/XUE .8 51.125
£ YOTAL_DIRECT COSY v$/KWE  ZZ7.776 222.0B
T ENDLRECY COSTS v S/KNE 254873 264073
PROF & OWNER COSTS *$/KWE 16.222 17,765
3 CONTINGEMDY COSY + S/KWE 13.0%5 17.485
B ESCALAYION, COST #S/KNE" «6hT . 564485
c ENT DURING CONSTRUSTION »3$/KNE §7.379 54,789
A TOTAL CAPITALLZATION *S/KNE  817.083 405,657
% COST 0F ZLEC-CAPITALsMILLS/KNE 13.18% 12,792
D €OST OF ELEC-FUEL _ #MILLS/KHNE 23,766 25.118
D SO0ST OF ZLZC—OPRMATNsHILL S/KNE . 514 .602
W TOTAL COST OF ELEC +MILLS/KWE 37.563 38.512
¥ COE 0.5 CAP. FACTOR +MILLS/KWE 31,630 52,461
COE U8 CAPe FACTOR vMILLS/KWE 35,017 3b6.039
COE 1ePXCTAP COSF  ¢MILLS/KWE 30,200 41,070
COE 1.2XFUEL_COST  eMILLS/KWE 42,317 43,536
COE (CONTINSINCY=7) #MILLS/KWE 35,796 37.723
COE (ESCALATION=D) MILLS/KWE 35.405 Z6.436
PARAMETRIC POINT g i0
TOTAL CAPITAL ZOSY +M$ 217,52 131.2%
P  PRESS HE FURNACE sN%  32.710 18.160
L PUKP U® 3T-GEN *M3  F.4i0 T.B1
A  HELIUM GAS TURB-~EEN s¥s  8.090 5,700
¥ STEAM TURILNE-SINIRATOR eMS  7.337  4.6RE
T PUNP UP REC VAP BEN sM$  2.300 =00
HE TURB REC VAP GEN #M$ 7,170 B.B1D
R TOT MAJOR COMFONENT COST  sHS 72,617 42.526
£ YOF MAJOR COMPONENT SOSTeS$/KNE  179.155 144,462
S BALANCE OF PLANT COST  »$/KWE =392 46,487
U SITE LABOR o S/KWE 56. 83% 56.097
L TOTAL DIRECT COST *»S/KWE  Z290.417 Z4T7.047
T INDERECT COSTS » S/KNE 35.111 28.61)
PROF & OWNER COSTS *$/KWE 23.233 1%.76%
3 CONTINSENCY COST » S/KWE 23.355 19.195
R ESCALATION cOST v$/KUE 764862 61.229
S INT DURING CONSTRUSTION »$/KNE 33.672 53,983
A TOTAL CAPITALIZATION t$/KWE 536,656 HU5.827
X COST OF ZLEC-CAPITAL#MILLS/KWE 16,955 1%.03%
D COST OF ELEC-FUEL  eMILLS/KMNE 20.566 28a.318
0 COST OF TLEC-OPEHATRsMILLS/KNE - 531 «584
¥ TOTM. COSY OF ELEC sMILLS/XWE 38,125 12,896
N COE 0.5 CAP. FACTOR oMILLS/KNE 83. 325 37.335
COE NeB CAP. FACTOR oMILLS/KWE 34,870 &D.278
COE 1e2ZXCAPa COST  oMILLS/KRE 41.518 45.81%
COE 1«2XFUEL COST  +MILLS/KNE 82,233 48,659
COE (CONTENSENCY=3) oMILLS/KWE 37.057 92.136
COE LESCALATION=D) +MILLS/KWE 35,286 40.753

SUMMARY PLART RESULTS

3 4
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72250 5,880
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1.450° 3.580
§,360 9,250
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184291 135.558
48,180 &5,756
§3.351 54.792

218,723 236,106
252159 27.984
17,338 18,883
15.353 18.901
54,881 £1.954
524342 71.316

392,972 435,170
12.723 13.757
26.583 21.588

=595 -5086
39.602 35,951
83,950 800183
37.198 33,287
424087 39.702
35,519 40.268
33.933 35.083
37.605 33,665

11 12
171.33 280.13
28.980 2 .E8T

<480 3.7390

«580 11.13
5a1%1 7-710

.000 .00
5500 8,750
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45.508 N5.50k
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corresponding summaries for the combined closed-cycle system parametric
points are given in Table 7.18. For these tabulations, the "Total Major
Component Cost" entries include pressurized furmace, pump-up gas turbine
generator, helium gas turbine generator, pump-up recuperator and piping,
and helium recuperator and piping for the reduperaped cycles or pressur-
ized furnace, pump—up gas turbine generator, helium gas turbine genera-
tor,'bottoming turbine generator, pump—up set vapor gemnerator, and helium

set vapor generator for the closed-eycle systems.

The top line of each summary table, Teotal Capital Cost, repre-
_sents the total capitalized cost for each plant and is made up of the
following items: total direct major componeng material costs, balance of
plant direct material costs, site labox costs, indirect costs, profes-—
sional services and owneréhip costs, contingency costs, escalation costs,

and interest during construction costs.

Alsc included for each parametric point are cost of electricity
data including the capital, fuel, and operating and maintenance costs

components.

7.6 Analysis of Overall Cost of Electricity

Cost of electricity (COE) values have been computed for each
parametric point for both the recuperated closed—cycle and combined
closed-cycle systems. Summaries for each of these systems, including

both COE and capital cost, are given in Tables 7.19 and 7.20.

Also, for each parametriec point, the effect on COE of wvaria-
tions in labor rate, contingency, escalation rate, interest during con-
struction, fixed charge rate, fuel cost, and capacity factor were
calculated. Tﬁe results for the recuperated cycle Base Case A are shown
in Table 7.21. Similar tabulations for Base Case B and the closed

combined-cycle base case are given in Tables 7.22 and 7.23, respectively.

The COE vs installed capital costsare shown graphically in

Figure 7.58 for the recuperated closed cycles and in Figure 7.59 for the
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Table 7.23 - COMBINED AIR-HELIUM-STEAM TURE CYCLE
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combined closed cycles. Each plotted point is numbered according to the

parametric point number established in Subsection 7.4.

The COE for the closed—cycle recuperated and closed-cycle com—
bined systems did not compare favorably with conventional steam power
plant COE. For no parametric point did the COE fall below 8.2 mills/MJ
(30 mills/kWh). In general, both the capitalization and COE were higher

for the recuperative systems.

dne of the prominent aspects of Figures 7.58 and 7.59 is the
great difference in COE and capitalization between distillate and coal
fuels. Distillate at the price contemplated would not be competitive
with the direct burning of coal for the base-load operatlon (65% capacity

factor) illustrated im the figures.

Various relative effects can be discerned using these two

figures. Related points have been connected by lines to assist in the

interpfetation. Thus, for the recuperated cycles, R1, R2, R3, R4
represents the points on distillate fuel having a pump—up turbine inlet
temperature of 1478°K (2200°F) and a helium turbine inlet temperature of
922°K (1200°F). The individual points have different helium cycle pres-—
sure ratios of 2, 2.5, 3, and 4 to 1, respectively. The sequences

Rl, R2Z, R3, R4; R5, R6, R7, R8; and RY, R10, R1l, R12 pertain to helium
turbine irlet temperatures of 922°K (1200°F); 1089°K (1500°F) and 1255°K
(1800°F), respectively. They clearly reflect the much greater costs

associated with the higher temperature heat exchangers. The sequences
R13, R15, R17, R19; R5, R6, R7, RB; and R14, R16, R18, R20 depict recu—
perator effectiveness values of 0.8, 0.9, and 0.95 applied to both the

pump-up and helium cycles.

The above mentioned points can be considered to relate to para-
metric Point R6 as a mean value in the parameter variations. Point R6 is
also the most attractive from the standpoint of lowest COE in the family

of points.

The next group of points are those in the coal-burning family

and relate to Point R25, Base Case A, Points R24, R25, R23 have changing
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Fig, 7.58 —Cost of electricity vs capital cost far a recuperated closed-cycle gas turbine system
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pump-up pressure ratio and mainly reflect increasing capitalization for
lower pressure level combustion. The COE for Point R25 is 9.61 mills /MJ
(34.6 mills/kWh}: Points R21, R22 are similar but with added recupera-
tion (0.9 effectiveness) for the pump-up set. At a pressure ratio of 10
to 1, Point R22 has a performance improvement over Point R25 which is
almost exactly countered by the added capiEalization for no net change in
COE. At a pressure ratio of 5 to 1 much more heat can be recovered, and
Point R21 is considerably improved in both- capitalization and COE over

Point R23. Points R26, R27, R28 have the different specified types of

coal but with ‘the pump-up turbine inlet temperature brought down to 866°K

(1100°F). Point R26 reflects an improvement over Point R25, Dase Case A.

There is some difference in COE associated with various coal
fuels [about 0.55 mill/MJ (2 wmills/kWh}], Montana subbituminous being
the best. o

Point R32 using distillate at 866°§ (1100°F) for éhe pump—up
turbine inlet temperature is a reference for most of the remaining peints.
Point R48, Base Case B, in itself has a COE of 14.11 mills/MJ
(50.8 mills/kWh) burning distillate fuel. By switching to coal fuel, a
considerable reduction in COE would be expected. Such a plant would re-
semble a typical steam power plant except’that the conventional steam
turbine generator would be replaced by a closed-cycle recuperated helium
gas turbine. Point R30, burning lgﬁ—Btu gas, has a 13,08 mills/MJ
(47.1 mills/kWh) COE and is off-scale for capitalizatiom. It appears to
have no redeeming attributes. At a COE of 14 mills /MY kSO.A/ka) the

high-Btu gas fuel point, R29, also, is not an attractive option.

The combined closed cycles shown on ?igure 7.59 generally had
lower capitalization and better performance than did the recuperated
cycles. The coal-fueled peints of both types of system appear to be
similar. Peint C41 burning T1linois' No. 6 bitumirous coal is closely re-
lated with respect to cycle configuration to Point R26. Point G4l has a
COE of 8.75 mills/MJ (31.5 mills/kWh) and a capitalization of $701/kW.
compared to corresponding values of 9.03 mills/MJ (32.5 mills/kWh) and
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8692/kW for Point R256. The lowest COE, Point 042 burning Montana subbi-
tuminous coal has a value of 8.42 milis/MI (30.3 mills/kWh} for COE
0.278 mill/MI (1 mili/kWh) lower than the corresponding, and best, recu-—
perated Point R27,

The higher turbine inlet temperature pump-up points using dis-—
tillate fuel are definitely better with combined rather than recuperated,
cycles. The higher cost of distillate fuel, however, eliminates it from

competition with the coal-fueled points.

On Figuré 7.59, the congestion of points about the base case,
Point C5, requives the uge of an inset at larger scale to differentiate
them. Points Ci, C2, C3; G4, C5, Cé; C7, €8, GY are a sequence with
varying helium temperatures of 922, 1089, and 1255°K (1200, 1500, and
1800°F), respectively. For Points C1l0, Cll, ClZ, the exhaust heat of the

pump-up set is not utilized for heating the vapor of the bottom cycle. '
Of course, this is wasteful, and the COE values of 11.94 mills/MJ
(43 mills/kWh) and higher reflect this fact.

Although the COB levels for the closed combined cycles would
appear o be too high to be competitive relative o some of the other
ECAS energy conversion concepts, certain effects have been ldentified
which can be valid in other applications, such as open combined cycles
or nonfossil fuel closed cycles for gas-cooled nuclear reactors. These
effects relate to the bage case, Point €5. Points Cl3, Cl4, €15, Cl6

show an advantage in cycle performance as the helium compressor inlet
temperature is allowed to rise. The maximum advantage is about

0.11 mill/MT {0.4 mill/kWh) for Point Cl6 compared to Point €5 for a com-
pressor inlet temperature of 450°K (350°F) compaved to 366°K (200°F}.
Points €17, C18, 319; €20 are similar in that the helium temperature from

the vapor generators is allowed to rise, producing the same improvement

in bottom cycle fit as did Peints C13, Cl4, C15, Cl6. Here, however, 2

precooler was intentionally added to bring the compressor inlet tempera-
ture down to 309°K (96.5°F). The improvement in CDE over Point C5 wasg
only 0.05 mil/MJ (0.2 mil/kWh) compared to the 0,11 mill/MJ (0.4 mill /kih)

improvement when the precooler was not applied.
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Peints -CW use dichloridifluerimethane (R-12) as a bottom—
ing fluid. The poorer thermodynamic Eit due to the stability limit re-
sulted in .a fall-off in performance such that the COE for Point C46 is
10.78 mills/iJ (38.8 mills/kWh), 0.75 mill/MJ (2.7 mills/kWh) poorer than
for Point C5. Point C47 had an added loss from the rejected heat of the
superheated R-12 turbine and has a COE value of 11.69 mills/MJ
(42.1 miils/kWh), 1.64 mills/MJ (5.9 mills/kWh) poorer than has Point C5.

Points C48, C50, C5) . . . C49 utilize methylamine bottoming

fluid and are subposed below recuperated cycles; C48, €50, C51 below a
1478°K (2200°F) pump-up cycle, and C49 below an 866°K (1100°F) pump-up
cvcle. All have 1089°K (1500°F) turbine inlet temperature helium cycles.
The large amount of heat exchange equipment required [or these eycles re—
sults in a high capitalization so that the lowest COE (Point C48) is

0.61 mill/MJ (2.2 mills/kWh) poorer than Point C5. The 866°K (11L00°F)
case, Point C49, is especially unfavorable in this respect and has a COL
2.36 mills/MTF (8.5 mills/kWh) poorer than Point C5.

In addition to their relation to Point €5, Points C48, C50, (51
relate to each other as to the method of heat rejection. Point C48 re-
jects heat to a wet cooling tower by means of a cooling-water Loop.
Point €51, however, rejects its cycle heat to a dry tower by condensing
the methylamine directly in an airrcondenser. Point C50 has poorer per-
formance and greater capitalization than Point C48 so that the COL 1is
0.61 mill/MJ (2.2 mills/kWh) higher. This is analogous to the relation
between Point Ci4 (dry tower) and Point C5 (wet tower) with steam which
has a COE difference of 0.39 mill/MJ (1.4 mills/kWh). The difference be-
tween 0.61 and 0.39 mill/MJ (2.2 and 1.4 mills/kWh) is primarily due to
differences in capitalization which, due to the novelty of some of the
special bottoming fluid apparatus, is somewhat uncertain. Point C51 has
better performance and lower capitalization than Peoint C50 so that its
CCE is 0.36 mill/MJ (1.3 mills/kWh) lower. There is no counterpart lor
the steam bottomed cycles.
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The direct condensing for Point C51 is made possible because
the volumetric flow from the bottom turbine is low enough to depleoy it
directly to air condensers. Actually, the pipe size required for the
methylamine vapor is of the same magnitude as that required for a cooling-
water loop. The pipe size for collecting the condensed methylamine is
much less than that required for cooling water. Since the heat transier
-to air for the condenser and that for cooling water for a lecop are both
dominated by the air-side heat tranéfer coefficient, both types of sur-
face would be highly finned and be comparable in cost. This same effect
should be applicable for a low-boiling fluid such as R=12, sulfur dioxide,
or any other fluid of this type.

Point C52 utilizes sulfur dioxide as a bottom £luid under a
1478°K (2200°F) turbine inlet temperature pump-up cycle and 1089°K
(1500°F) turbine inlet temperature helium cycle. The high stability
limits for sulfur dioxide permit its operation to levels of 811°K
(1000°F). This bottoming cycle using supercritical pressure levels was
carefully fitted to the heat available lines, and the superheated sulfur
dioxide exhaust energy was utilized by regenerative feed heating. The
resulting high efficiehcy and small turbine size resulted in a COE of
0.306 mill/MJ (1.1 mills/kWh) lower than that of the base case (Point C5).
It should be possible to realize this same effect in other related types

of cycles, such as open combined cycles, and in nuclear applications.

In addition to the.overall descriptions provided by the compo-
site plots of mills per kilowatt hour versus capitalization, thé effect

of specific parameter variations upon COE has been investigated.

Figure 7.60 illustrates the effect of helium cycle pressure
ratio and recuperator effectiveness upon the COE {or the recuperated
closed cycle. Pump-up turbine inlet temperature is 1478°K (2200°F) and
compressor ratio is 10 to 1. The fuel is distillate from coal. Helium
turbine inlet temperature is 1089°K (1500°F). The optimum COE occurs at
a compressor pressure ratio of 2.5 to 1 and wlth a recuperator éffgclive—

ness of 0.%. Although for higher recuperator effectiveness elflciency
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Cost of Electricity, Mitls/kWh

52 (— ,

50

46

44

42

40 | Pressure Ratio =10 —
Fuel: Coal Distiifate

38
2.0

|
Helium & Pump-up
Recuperator Effectiveness

Helium Cycle:

_ Pump-up Cycle: T=2200°F ]

T=1500°F

l

2.5 3.0 ‘ 4.0

Helium Cycle Pressure Ratio

Fig. 7.60—Influence of recuperator effectiveness on cost of
electricity (Recuperated closed-cycle)
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can be improved, additional capital costs outwelgh the gains and the

result is a net degrading of the COE advantage.

Table 7.24 principally illustrates the impact of the higher

distillate fuel prices onm COE for four .closed recuperated cyele cases.

Points R25 and R26 are each fixed on coal fuel. Point R25 cor-
responds to Base Case A, and Point R26 is similar, except that the pump—
up turbine inlet temperature is reduced by transferring more primary heat
to the helium cycle, This change resulted in a net reduction in COE.

. Point R6 has the added effect of recuperation in the pump-up cyecle, and
overald efficiency consequently reflects an improvement. Distillate fuel
was used, however, and the higher COE reflects the added fuel costs.
Point R48, Base Case B, utilizes an atmospheric pressure furnace as a
substitute for the pump-up cycle and reflects a decrease in etficiency
relative to Point R6.

Figure 7.61 applies to the combined closed cycles and illus-
trates the effect of helium cycle turbine inlet temperature aud compres~
S0T pressure ratio on COE. The optimum combination of these parameters
appears at 1089°X (1500°F) znd 2 to 1, respectively.

Similar to the above described recuperated cycle tabulation,
Table 7.25 illustrates the effects of fuel type and c¢ycle arrangement on
COE for selected combined closed cycles,

A comparison of recuperated and combined closed cycles with re~
spect to fuel price sensitivity is presented in Table 7.26. In each
case, the cost of fuel has baen arbitrarily escalated from 0.806 to
$1.42/67 {0.85 to $1. 50!16 Btu), an mncrease of 76%¥ The combined
closed cycle is preferred here, with its overall COE escalating 18%, as
compared with. 20% for the recuperated cycle example,

The natural resource requirements consisting of coal, sorbent
(for gasification systems), water for heat rejection, gasification pro-
cess, etc., and land usage have been estimated and ave given for the re-
cuperated and aoﬁbined closed~cycle systems in Tables 7.27 and 7.28,

respectively.
* Indicated by number in parentheses in Table 7.26.
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Dwg., 6363A79

TABLE 7. 24 — RECUPERATED CLOSED-CYCLE RESULTS

Fuel Type Coal Coal Dist. >
Fuel Cost, $/100 Btu 0.85 .85 2.60 >
Cost of Elec, mills/kWh 33.7 32.5 42.6 45.9
Capital Cost,'$/kw 719 692 519 573
. Efficiency, % 32.0 33.3 3.6 32.5

Power Output, mw

Pump-up 86 38 112

Helium 51 316 217 360

Total 317 354 429 360
Helium Cycie

Temp, °F 1500 >

P. R .5 4

Recup. Eff. .90 >
Pump Up Cycle

Temp, °F 1700 1100 2200 No

P. R. 10 10 10 Pump

Recup. Eff. % -- -~ 90 Up
Capacity Factor 0.65 ‘ >
Parametric Point 25 26 6 48



Cost of Flectricity, Mills/kWh

40
39
38
37
36
35

34
33

C

Pump-up Cycle Temp. = 2200°F
| Pressure Ratio = 10: 1 -

Fuel; Coal Dilstillate 3 ‘

1.5~ 2.0 2.5 3.0 4.0

Helium Cycle Pressure Ratio

Fig. 7. 61 —Influence of helium temperature and pressure
ratio on cost of electricity for a closed combined cycle
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Fuet Type

Fuel Cost, $/100 Btu

Cost of Elec. , mills/kWh

Capital Cost, $/kwW

Efficiency,. %

Power Output, MW
Pump-up
Helium
Bottom
Total .

Helium Cycle
Temp., °F
P.R.

Pump Up Cycle
Temp., °F
P.R.

Bottom Cycle Fluid

Capacity Factor
Parametric Point

Dwg. 6363480

TABLE 7.25— COMBINED CLOSED-CYCLE RESULTS

Coal Dist. »
0.85 2.60 — >
3L.5 36. 2 38.9 38.4 35.1
701 439 4710 244 431
38.2 40.9 31.8 4.1 42.5
84 113 113 110 113
117, 36 86 198 86
179 191 165 105 209
380 390 364 A3 408
1500 — P
2.5 >
1700 2200 P
10
Steam Steam R-12 Methyl - 50,
amine |
0.65 é >
a1 5 46 48 %



6L -/

Dug. 6367450

Table 7.26 Comparison of Closed Cycle Coal Fired Gas Turbine Plants

Recuperative
Cost of Fuel, $/10%Btu 0.85 150
Cost of Elec., Mills/kWh 33.50 40,10
Cost of Fuel, Mills/kWh 8.70 15,40
Capital Cost, $/kw 692. 00
Efficiency, % 33, 30
Capacity Factor 0.65

Parametric Point 26, 00

(L76)
(1.20)

0.8
31.50
7.60
70100
38. 20
0. 65

41, 00

Combined
1. 50
37.30
13. 40

(1.76)
(L 18)
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NATURAL RESOURCE REGUIRIMEATS

COMBINED AIR-HELIUM-STEAM TURB CYCLE
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NATURAL RESOQURCE REQUIREMENTS

COMBINED AIR-HELJIUM-STEAM TURL CYCLE
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7.7 Conclusions and Recommendations

7.7.1 Conclusions

In comparison with other ECAS energy conversion systems, both
the closed recuperated and combined—cycle systems are not generally

attractive for base-load (or lower) capacity factor operation.

The combined closed-cycle systems, in general, have a lower COE
and better.Performance than the recuperated closed-cycle systems, al—
though for operation on coal fuel the results for both types of cycle are
nearly alike., Substitution of a sulfur dioxide bottoming fluid system
for the steam gystem results in reduction of the overall base-load COE

because of higher efficiency and reduced capital costs,

Firing of the coal~derived distillate fuel is not competitive
with direct burning of coal for base~load operation in this type of
plant. Further, of the types of coals investigated for direct burning,
the Montana subbituminous results in the lowest COE. TFiring highuﬂtu
gas, as well as using integrated low-Btu gasification, are not attractive

options because of high capital cost.

As with open-cycle gas turbine systems, increasing the closed-
cycle turbine inlet temperature results in improved cycle efficiency for
both the recuperated and combined closed-cycle systems. Also, the closed-
cycle compressor pressure ratio for optimum efficiency increases grad-
ually with higher turbine inlet temperatures. For example, the
nonintercooled recuperated and combined closed cycle systems, at a turw
bine inlet temperature of 922°K (1200°F), show optimum therodynamic effdi-
ciency at a compressor pressure ratio of approximately 2 to 1; while at
1255°K (1800°F) turbine inlet temperature the optimum occurs at a value

of nearly 2.5 to 1.

In contrast with the open-cyele gas turbine systems, however,
the COE is not a continually decreasing function of higher turbine inlet
temperature. For both the recuperated and combined cycles, the minimum

COE was determined to oecur at a turbine inlet temperature of 1089°K
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(1500°F). This result follows from the greatly increasing heat exchanger

cost at the higher- turbine inlet temperatures.

The influence of recuperator effectiveness for the recuperated
closed—cycle systems is similar to the above described effect of turbine
inlet temperature, Although increasing the nominal recuperator effective-
ness results in a steady improvement in thermodynamic efficiency, the

optimum value for a minimum COE is approximately 0.9.

Results of alternative methods of heat rejection, including wet
cooling tower, dry cooling tower, and once-through cooling, are similar to
the results determined in the gas-steam combined-cycle section of this
study. That is, minimum COE obtained with once-through cooling, maximum
COE with dry tower heat rejection. Also, the difference in COE between
wet and dry tower rejection is larger than tha? between once-through and

wet tower cooling.

The use of compressor intercooling in conjunction with the
recuperated-cycle configuration results in a reduced COE with the optimum
compressor pressure ratic at a value of approximately 5 to 1 at the

1089°K (1500°F) turbine inlet temperature level.

7.7.2 Recommendations

Certain features of the closed-cycle system merit further in-

vestigation.

e Due to the high leverage of the helium heater costs on
the plant cost and the overall COE further work on
this cycle should begin with more detailed technical

and economic evaluation of the helium heater system.

e The use of closed helium cycle with bottoming cycle
ghould be further studied for other heat source appli-
cations, such as in a high-temperature gas-coocled

nuclear reactor.

e The feature of bottoming with a low-beoiling, high-
temperature stable {luid, such as sulfur dioxide or

ammonia, should be studied further.
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7.8

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

e The feature of deploying a low-boiling fluid for

direct condensing in an _air condenger should receive

additional investigation.
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