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SUMMARY



Closed-cycle gas turbine systems include both recuperated and



combined cycles. Both systems employ a pressurized furnace to heat the



helium and as such required a pressurizing system which includes a



conventional gas turbine-generator (pump-up turbine).



The recuperated system uses a pump-up turbine with an inlet



temperature of 1478, 1200 or 866 0 K (2200, 1700 or 11000 F). The two lower



temperatures are compatible with direct fluidized bed combustion of coal.



Helium turbine inlet temperatures of 922, 1089, and 12550 K (1200, 1500



and 1800'F) with pressure ratios of 2, 2.5, 3 and 4 are considered.



The helium compressor discharge pressure is fixed at 6.895 MPa



(1000 psi) with variations of 3.448 and 13.79 MPa (500 and 2000 psi).



Values of recuperator effectiveness of 80, 90 and 95% are assumed for



both the pump-up and helium turbine exhausts. Clean distillate fuel is



used for the major part of the study but several cases with direct coal



firing are considered. A thermodynamic efficiency of 38% is found for the



1255°K (1800'F) helium turbine inlet temperature with 90% effective



recuperators using distillate as fuel. A 4.5 point increase in efficiency



at the 1089 0K (1500°F) helium turbine inlet temperature is observed as the



recuperator effectiveness is increased from 80 to 95%.



The combined closed-cycle gas turbine system uses pump-up 

and helium gas turbine engines similar to those used in the recuperated 

cycle. The recuperators are replaced by heat recovery vapor generators. 

Heat from both the pump-up and helium turbine exhausts is used to heat 

the bottoming fluid. The major part of the study uses steam as the 

bottoming fluid but R-12, methylamine and sulfur dioxide are also 

included. An efficiency of 40.9% is obtained with steam bottoming and 

43.1% with methylamine.



v 



The high cost of the high temperature gas to gas heat exchangers



reaslts in high plant.capital costs, typically __00/kW for the coal burning



plants and $500/kW for those burning distillate. Notwithstanding this, tl



,coal fired plants show a cost of electricity as low as 8.75 mills/M



(31.5 mills/kWh) for the combined system with a steam bottomer compared to



10.06 mills/Mi (36.2 mills/kWh) for the distillate burning system. The



cost of electricity for the recuperated systems is about 0.56 mills/Mi



(2 mills/kWh higher).



Although the potential cycle efficiencies are high enough to be



interesting, the complexity of the cycle, high cost of heat exchange



surface and the resultant cost of electricity mitigate against externally



fired closed-cycle gas turbine systems.
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7. CLOSED-CYCLE GAS TURBINE SYSTEMS



7.1 State of the Art



7.1.1 	 Closed-Cycle Plant Installations



Closed gas turbine cycles have been studied since the mid-1930s



when they were first proposed by Professor Ackeret and Dr. Keller. Since



then, a few noteworthy closed-cycle power plants have been built and



operated. A combination electricity and heat production plant at



Spittelau, Vienna (Reference 7.1) has been in operation since 1971. -This



plant, rated at 30 Ntqe, utilizes a closed loop'with air as the working



medium and is fossil-fuel fired. A larger output combined electricity/



heat plant (Reference 7.2) has bean commissioned recently at Oberhausen,



Germany. this unit, which is natural-gas fired, is particularly inter­


esting because it employs helium as its working fluid. The Oberhausen
 


plant is rated at approximately 50 MW of heat output in addition to the



nominal 50 M14 electrical output. Major cycle parameters of the Spittelau



plant include a turbine inlet temperature of 991'K (13250F) and a com­


pressor pressure ratio of 5.7 to 1. Thermal efficiency with respect to



electrical output is approximately 30%. The corresponding data for the



Oberhausen closed-cycle helium plant read as follows: turbine inlet tem­


peratures of 1023°K (1382°F), a compressor pressure,ratio 2.7 to 1, and a



plant thermal efficiency of 31.3%.



7.1.2 	 Areas of Concern, Heat Exchangers and Increased Turbine


Inlet Temperature



There are two principal areas of concern regarding the wide­


spread aommercialization of closed-cycle plants. First, heat is added to



the cycle by means of a surface heat exchanger which adds considerable



expense to the overall capital cost of such a plant and limit helium



turbine inlet temperatures. In the above-cited examples, some of this
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higher capital cost burden is ameliorated by the recovery and utilization



of otherwise wasted cycle reject heat. The second concern pertains to



the potential means for achieving higher cycle top temperatures.



Conventional open-cycle gas turbines have achieved higher cycle inlet



temperatures by means of convection-cooled turbine blading. By comparison,



heat transfer rates in high-pressure helium are large and may lead to



excessive stress-inducing thermal gradients in cooled turbine blading.



Economically acceptable high temperature heat exchanger materials are not



currently available.



7.1.3 Organic Bottoming Cycle Considerations



As discussed in Subsection 5.1, organic bottoming fluids have



potential advantages over steam in two areas. Certain organic fluids



have a much lower turbine exhaust volumetric flow than does steam and may



potentially require smaller, less expensive turbomachinery, as discussed



more fully in Subsection 7.2. Further, it may be economically preferable



to utilize lower heat-rejection temperatures (for higher efficiency) than



are now the practice with steam plants, owing to the smaller low-pressure



element size requirements. Also, organic fluid bottoming cycles may be



more amenable to a better thermodynamic fit to the available heat rejec­


tion from a gas turbine topping cycle. Subsection 7.3 discusses this



principle of thermodynamic fit with organic bottoming cycles more fully.



7.2 Description of Parametric Points to Be Invest!gated.



Two kinds of closed-cycle systems were investigated during



Task I: the recuperated closed-cycle systems with recovery of closed



Brayton-cycle reject heat via recuperation and the combined closed-cycle



systems with recovery of closed Brayton-cycle reject heat by means of a



steam or organic Rankine bottoming cycle. In nearly all cases of both



recuperated and combined-cycle arrangements, a pressurized furnace system



(listed as pump-up cycle for convenient reference and consisting essen­


tially of an open-cycle gas turbine system with externally pressurized



furnace combustor) is used to provide heat input to the closed Brayton



cycle.
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Parameters varied for the helium turbomachinery include the 

turbine inlet temperature, compressor pressure ratio, and compressor dis­

charge pressure level. Three values of turbine inlet temperature have 

been selected: 922, 1089, and 12550K (1200, 1500, and 18000 F). Pressure 

ratios have been varied from 1.5 to 1 to 4 to 1 for nonintercooled helium



cycles and from 4 to 1 to 7 to 1 for the intercooled cases. The level of



compressor discharge pressure has been set at 6-.895 MPa (1000 psi) abs



for nearly all cases. Consideration is given to two other levels [3.447



and 13.790 MPa (500 and 2000 psi) abs].



Recuperator effectiveness values of 0.80, 0.90, and 0.95 and



recuperator total pressure drop ratios of 0.02, 0.04, and 0.06 were



assumed for both the pump-up and helium r~cuperators. Any one calcula­


tion used the same value of effectiveness for both the helium and pump-up



recuperators unless otherwise noted.



7.2.1 Parametric Point Descriptions of Recuperated Closed-Cycle


Systems 

Table 7.1 displays the parametric point selection for the re­


cuperated closed-cycle system. The systems evaluated are grouped accord­


ing to combustion gas temperatures exiting from the furnace which



represents different proportions of heat transmitted to the helium. The



first group, with 14780K (2200F) into the pump-up turbine, is used for



perturbation of recuperator effectiveness, helium top temperature, and



helium pressure ratio. Figure 7.1 illustrates the cycle arrangement for



this group, and Figure 7.2 displays the thermodynamic relationships by



means of a temperature entropy diagram. On the temperature entropy dia­


gram, heat added by combustion is depicted as heating the air to high



(of the order of stoichiometric) temperature. The air is then cooled as



it gives up its heat to the helium in the closed cycle. Both the closed­


loop and open-loop gas turbine systems utilize recuperation for exhaust



heat recovery.



The second group has an intermediate pump-up turbine inlet tem­


perature of 1200'K (1700'F), corresponding to that in a projected fluid



bed burning coal. The helium cycle parameters are set at the mean values
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of the specified range of variation. The pump-up pressure ratio is



varied here, and, in-addition, the use of a pump-up recuperator is



included. The base cases used no pump-up recuperator.



Figure 7.3 illustrates the cycle arrangement for this base case, and



Figure 7.4 shows the corresponding temperature entropy diagram.



The third group has a low pump-up turbine inlet temperature of



8660K (11000F) and contains the other parameter variations. A fluidized



bed burning coal might require an over-the-bed or outlet heat transfer



surface to cool the air to the 866 0K (11000F) level.



The last is a group of one, representing a conventional atmos­


pheric furnace helium heater with rotating Ljungstrom-type regenerator as



a base case for comparison. A cydle arrangement is shown in Figure 7.5.



7.2.2 	 Parametric Point Description of Combined Closed-Cycle


Systems



The parametric point selection for the combined closed-cycle



gas turbine systems calculations is shown in Table 7.2. The basic cycle



arrangement is shown in Figure 7.6, and a typical corresponding tempera­


ture entropy diagram is illustrated by Figure 7.7. In general, reject
 


heat from both the pump-up and helium cycles is transferred to the bottom



steam cycle. The steam cycles are, for most cases, reheat cycles with



both superheater and reheater receiving heat from both gas turbine sets.



The first group in Table 7.2 uses a pump-up turbine inlet tem­


perature of 14780K (22000F) with both the pump-up and helium cycles fur­


nishing heat to the bottoming steam cycles. In this group, the parametric



variations are in helium top temperature and helium pressure ratio. The



base case has been selected from this group with a 10890K (15000F) helium



turbine inlet temperature and a 2 .5-to-i pressure ratio. Bottoming steam



cycle conditions are set at supercritical pressure and at 755 0K (9000F)



superheater inlet conditions.
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The second group has been selected to determine the effect of



not transferring heat from the pump-up cycle to the bottom cycle. The



helium cycle has a mean top temperature of 1089'K (1500°F), and the pump­


up turbine inlet temperatures include 866, 1200, and 1478
0K (1i00, 1700,



and 22000F).



The third group varies the helium compressor inlet temperature.



A helium precooler is used for some cases; also included are two cases



without bottom cycle reheat.



The following cases serve to investigate, in turn, the effects



of varying pump-up temperature and pressure ratio, pinch point tempera­


ture differences, various pressure drops, pressure level, furnace 
type,



and mode of heat rejection.



The last group is for bottom fluids other than steam. All are



used in supercritical Rankine cycles without reheat at helium 
turbine



Fluids used are R-12, methylamine,
inlet temperatures of 1089 K (1500*F). 
 

and sulfur dioxide. (A description of the rationale for selecting these



fluids is given at the end of this section.) 
Figure 7.8 illustrates the



One R-12 case and one sulfur

general cycle arrangement for these cycles. 
 
The



dioxide case have desuperheating recuperators which 
are not shown. 
 

methylamine cases represent bottom cycles added 
to recuperated main



cycles; one case has direct condensing in a dry-cooling 
tower (air con­


denser).



Vapor generators for combined cycles are dtilized under both



the pump-up gas turbine and closed-cycle helium turbine in most cases.



of
Approach or pinch point temperature differences were set at values 
 

22.2, 33.3, and 44.40K (40, 60, and 80'F). Vapor generator helium outlet



temperatures of 339, 366, 394, 422, and 4500K (150, 200, 250, 300, and



3500F) were assumed. Vapor generator gas-side pressure drop ratios of



0.02, 0.04, and 0.06 have been selected.



The basic pump-up turbine parameters of turbine inlet tempera­


ture, compressor pressure .ratio, and furnace pressure loss were varied. 
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Table 7.3 - Low Boiling Fluids 

Name of Fluid MolecularWeight BosiBoiling 
Gritical 
Constants TroutonNbumber 

Sat. Pres. 
at 1000F,piat10% 

Turb. Exh. 
Area Para. 

h tTemp., T, OF P, psia 

Hydrogen sulfide 
R13B1 

34.08 
148.93 

79.2 
72.0 

212.7 
152.6 

1307.0 
574.8 

21.1 
19.6 

397.0 
316.0 

1.85 
7.60 

Carbonyl sulfide 
Propylene 
Propane 
R-22 

60.07 
42.08 
44.09 
86.48 

58.4 
52.5 
44.0 
41.4 

221.0 
197.2 
206.2 
204.8 

897.0 
670.3 
617.4 
716.0 

19.5 
19.4 
20.8 

250.0 
227.6 
188.7 
212.6 

2.31 
3.66 
4.26 
4.99 

Ethyl fluoride 
Ammonia 

48.06 
17.03 

35.9 
28.0 

216.0 
271.2 

730.0 
1636.0 23.2 

180.0 
211.7 

4.11 
1.49 

Propadiene 
R-12 

40.06 
120.92 

25.6 
18.4 

248.0 
233.6 596.9 

21.0 
19.4 

182.0 
131.6 

3.17 
8.10 

G-152A 66.05 - 12.5 236.3 652.0 20.8 126.0 5.69 
Methyl chloride 
Methyl ether 
Propyne 
Cyanogen 
Sulfur dioxide 

50.49 
46.07 
40,06 
52.04 
64.07 

-
-
+ 

10.7 
10.6 
9.9 
4.9 

14.0 

289.6 
260.4 
262.4 
262.0 
315.5 

968.7 
764.4 
776.2 
868.0 
1143.0 

20.7 
20.6 
20.9 
21.2 
23.1 

116.7 
123.0 
123.0 
116.0 
84.1 

4.94 
4.70 
4.23 
4.90 
5.75 

R-142B 100.50 15.4 20.3 72.0 10.00 
Methylamine 31.06 20.3 314.4 1082.0 23.1 78.6 3.96 
Isobutane 56.10 21.2 292.5 580.0 19.9 65.6 8.53 
1-Butene 56.10 23.0 295.5 583.2 19.5 62.5 8.72 
Propyl fluoride 
trans 2-Butene 

62.09 
56.10 

26.2 
33.6 311.0 595.0 19.9 

60.0 
50.0 

8.55 
10.00 

R-114 170.93 38.4 294.3 474.8 20.2 46.4 18.30 
Methyl bromide 
cis 2-Butene 

94.95 
56.10 

38.5 
38.7 

375.8 
320.0 

1227.0 
610.0 

20.6 
20.2 

50.0 
46.0 

12.00 
10140 

G-133A 128.49 43.0 306.5 589.6 21.2 45.0 20.00 
Dimethylamine 
Methanethiol 

45.08 
48.10 

45.4 
45.7 

328.1 
386.2 

770.0 
1049.6 

22.6 
21.0 

45.4 
49.7 

7.78 
7.93 

1-Butyne 54.09 47.5 40.0 10.50 
4-21 102.93 48.0 353.3 749.7 21.1 40.0 14.20 
Ethylene fluoride 66.05 50.0 38.0 12.00 
Ethylene oxide 
Ethyl chloride 

44.05 
64.52 

51.4 
54.0 

383.0 
369.0 

1044.0 
764.0 

21.5 
21.3 

38.6 
34.8 

9.20 
12.90 

Cyclobutane .56.10 55.4 385.0 740.0 34.0 12.10 

I 
o 

Ethylamdne 
Acetaldehyde 
R-I 

45.08 
44:05 

137.38 

61.9 
69.8 
75.3 

361.8 
370.0 
388.4 

816.4 

635.0 

22.3 
20.4 
20.1 

32.7 
31.0 
23.6 

9.78 
11.40 
26.00 

D Dibromodifluoromethane 209.84 76.1 388.8 600.0 23.0 31.20 

Water 18.02 212.0 705.4 3206.2 26.0 0.949 98.30 
j j 2-Butyne 54.09 80.8 21.0 16.90 



Turbine inlet temperatures of 866, 1200, and 14780K (1100, 1700, and



2200'F) were selected. The first corresponds to relatively large energy



transfer directly to the closed-cycle fluid in the pressurized furnace;



the second value was selected on the basis of its compatibility with the



operating temperature levels of proposed fluidized bed processes; and the



third value corresponds to base case open-cycle gas turbine values. Com­


pressor pressure ratios of 5, 10, and 15 to l,were selected, all compati­


ble with single-shaft gas turbine technology. Furnace pressure drop



ratiost of 0:02, 0.04, 0.06, 0.09 and 0.12 were used.



Heat rejection methods fnclude once-through, wet tower, and



dry tower systems. One system, a methylamine bottomed cycle, used direct



dry tower condensing.



Both pressurized furnaces burning liquid fuel and pressurized



fluidized bed furnaces firing coal were included in the study. An atmos­


pheric pressure conventional power generation furnace was used for one



case.



7.2.3 Selection of Bottoming Cycle Organic Fluids



'When the bottom fluid itself may be varied the number of possi­


ble parameter combinations increases greatly. Since the number of cases



is limited, they were chosen to illustrate particular aspects.



The fluids themselves were selected from a list of low-boiling



fluids shown on Table 7.3. In this table the turbine exhaust area para­


meter (TEAP) illustrates the relative turbine exhaust area for each of



the fluids when used for bottoming cycles under comparable conditions.



To 	 derive the TEAP, it is assumed that for each fluid:
 


* 	 Heat is rejected at the same specificed temperature.



* 	 The latent heat represents all of the rejected cycle



heat.



References 7.3 through 7.12 were used in determining organic bottoming 
fluid properties.


Shelium pressure drop ratios of 0.02, 0.04, 0.06 and combustion gas pressure

drop ratios of 0.06, 0.09 and 0.12.
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* The cycle input heat is the same.



" The leaving velocity energy is the same.



" The specific volume is given by the perfect gas



equations.



Exhaust Area, A (Flow Rate)(Specif ic Volume) .-W V (7.1)

(Axial Velocity) (71



v2 ( ,FWPL
[ )VJ PTL .



where W is the mass flow rate, L is the latent heat, R the universal gas



constant, and M the molecular weight. Since each quantity within



parentheses is a constant in the preceding expression,



5

.
A 'vT/M P L
1



TEAP is defined as this ratio times 105.



5
TEAP = T x 105/M P L1. (7.2) 

This equation is convenient to use if tabulations of latent heats and



saturation pressures are available, but frequently they are not. The



latent heat may be approximated using Trouton's law and then adjusting it



from the boiling point to the specified temperature.



Trouton's law simply states that the molal atmospheric latent



heat of any substance is approximately 21 times the boiling temperature.



This rule holds well for a large number of substances, but there are also



marked deviations. When the latent heats are known, we can find Trouton's



number as the number" to substitute for 21 in order to give the correct
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latent heat. In general, associated fluids such as water and the alco



hols tend to have high Trouton numbers; the number for water being 26.



For our present use it will be convenient to normalize the



Trouton numbers about 21 by using a correction factor, q, defined as:



q = Trouton No/21



so that



L =21 q TB (7.3)
B M



at the boiling point.



Since all of the fluids are to be compared at the same sink



temperature, it is necessary to correct the latent heat from the various



boiling points to the common sink temperature. Watson (Reference 7.11,



p. 233) relates latent heat at two different temperatures as;



L (1T=. 0 3 (7 .4) 

in which TR is the reduced temperature.
 


0.38 T/T0.38 
L____ = F T, -- _LI}L = ___(7.5)



in which the bracketed quantity is F. Then,



21 q T F T2 
L - LB F = B = MT BPL (7.6) 
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Substituting in the definition for TEAP: 

Tx10
TEAP= 

P [(21tq T)fl'1B J1.5 

15115)Wq51( M 

= [-1040(1- )(- (7.7-) 

in which



T= E ]1.5 

T
T0.57 

Sis plotted in Figure 7.9.



This latter forM of TEAP displays the theoretical effects with



greater clarity. It is dominated by the inverse saturation pressure



function; the molecular weight increases area directly in a square root



relation; fluids with high Trouton number reduce area in a strong 1.5



power relation, but the range of values is small; the compressibility
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factor, Z, which was ignored in the derivation, would also act as a sys­


tematic variable causing a slight reduction at high pressures.



TEAP values for steam and some other fluids are plotted vs



saturation pressure in Figure 7.10. The values for steam are plotted up


to high pressure to show the form of the function even though this is



outside of the intended range of application. The values for the other



fluids are plotted for two different temperatures and demonstrate that



the relation between fluids is generally the same and largely independent



of the temperature at which compared.



Figure 7.11 shows the TEAP values for fluids in Table 7.3, all



at 3110 K (1000 F). The bottoming fluids for the study were chosen in the



intermediate TEAP/pressure range so the turbine exhaust area would be



greatly reduced over that of steam yet not have so high a saturation



pressure as to make them difficult to contain. Fluids R-i2, methylamine,



and sulfur dioxide were selected.



R-12 (Dichlorodifluoromethane) was selected as a well-known,



nontoxic, nonflammable fluid. It is used in cycles which illustrate the



effects of poor thermodynamic fit due to stability limitation and also to



low-temperature superheated turbine exhaust.



Methylamine was selected as having the best area-pressure char­


acteristics in the intermediate range (see Figure 7.11). It is highly



flammable. It was used in recuperated cycles for which stability tempera­


ture limits are not critical. These cycles were also used to illustrate



the direct deployment of the condensing vapor to air condenser made pos­


sible with the low volumetric exhaust flow.



Sulfur dioxide was selected, also from the intermediate area­


pressure characteristic range, for its high-temperature stability. It is



rather toxic. It was used in a cycle illustrating good thermodynamic fit



made possible when not precluded by stability temperature limitations.



These fluid selections and their assignment to illustrate par­


ticular cycle effects are rather arbitrary. Note that the cycle effects
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illustrated are not an intrinsic characteristic of the particular fluid



but would apply for any candidate fluid that would fit a particular ap­


plication.



7.3 Approach



7.3.1 Overall Cycle Calculation Procedure



The number of distinctly different combinations of pump-up,



helium, and bottoming cycle configurations for this conversion system is



large compared with other systems. Many of the parametric values for the



helium cycle, however, are common for several of these combinations.-


Individual cycle calculations, therefore, were made for the pump-up loop



cycles, helium cycles, and bottoming cycles. Subsequently, each parame­


tric point cycle combination was assembled from the individual component



calculations to give the resultant efficiency and power.



An example for a typical closed regenerative cycle is described



as follows. Figure 7.12 illustrates the two subsystems: pressurized



combustor or pump-up cycle and helium loop subsystem. For all cases the



pump-up airflow is kept constant at 408 kg/s (900 lb/s). Power output



and heat output, Q1, are computed as a function of turbine inlet tempera­


ture, compressor pressure ratio, air equivalence ratio, fuel-type, and



recuperator effectiveness. Likewise, helium cycle power output and heat



input, Qhe' is computed as a function of turbine inlet temperature, com­


pressor pressure ratio, recuperator effectiveness, pressure losses,



intercooler and precooler approach values, and'heat rejection system for



a unit mass flow. The assembly consists then of first determining helium



flow for each parametric point from:
 


Whe AhHe =Wpu Ahpu



where WHe = helium flow rate



Wpu = pump-up turbine compressor inlet airflow 

[408 kg/s (900 lb/s)] 
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Ah = enthalpy drop based on the difference between


Pu



furnace combustion section outlet temperature
 


(typically near stoichiometric) and pump-up



turbine inlet temperature



AhHe = enthalpy rise based on the difference in tem­


perature between helium compressor discharge



and turbine inlet.



Subsequently, helium power output is determined and added to



the pump-up cycle power to yield the gross power output. After subtract­


ing station auxiliary power requirements, net power output is divided



into the higher heating value heat input to the pump-up cycle to deter­


mine net heat rate.



A similar procedure is used in computing combined closed-cycle



performance.



7.3.2 Organic Bottoming Cycle Calculation Procedure
 


The organic cycles were assembled in a manner similar to that



of the other combined cycles. Since there were only a few cycles, each



cycle was fitted closely to the available heat line from the pump-up and



helium cycles, changing the parametric values from those initially chosen
 


in order to better demonstrate the intended effect.



For R-12 (Points C46 and C47), thermodynamic properties were



obtained from the tables in Reference 7.6 except that in that pamphlet



the higher temperature properties existed only on a small-scale figure.



For both cycles the bottom pressure was taken as 0.931 MPa (135 psi) abs,



corresponding to 312.K (101.70 F). The turbine inlet temperature and



pressure were set at 644 0K (700'F) and 1.724 MPa (2500 psi) abs,



As results from both recuperated closed-cycle systems and combined


closed-cycle systems are frequently referred to, the cycle point numbers


as described in detail in Subsection 7.4, are preceded by an "R" or a


"C", respectively, for clarity and convenience.
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respectively. The turbine expansion was calculated in two parts, from 

1-7-.24. to 3.447 .MPa (2500-to-.500--psi)- abs and from 3.447 bfa -(500 psi)- abs 

to the turbine exhaust pressure. For Point C46, which contained an R-12 

desuperheating recuperator, a 17.2 kPa (2.5 psi) drop was assumed. The 

turbine efficiency was assumed to be.0.86 for the high-pressure portion



and 0.89 for the low-pressure portion. The pump work was calculated from



the inlet liquid volume and pressure rise at an efficiency of 0.75. A



15% pressure drop ratio was assumed for heating to turbine inlet tempera­


ture. (A temperature-entropy diagram for these cycles is given in Sub­


section 7.4 as Figures 7.44 and 7.45.) The pinch point temperature 

difference was taken as 22.2 0K (400F), and the R-12 flow for Point C46 

was calculated as that required to receive all of the available heat from 

both the pump-up and helium cycles to heat the R-12 to the turbine inlet 

temperature.



The Rankine feedheae was obtained by cooling the helium to a



specified temperature [366 0K (200°F)J and by cooling the superheated R-12



exhaust down to 353°K (176 0F). No additional beat could be absorbed, and



the pump-up exhaust was discharged to stack at the pinch point tempera­


ture. For Point C47, the R-12 flow was calculated from the total heat
 


available from both the pump-up and helium cycles. The R-12 net power



was calculated using an electrical and mechanical efficiency of 0.965 and



by subtracting the pump power. The methylamine cycles are slightly dif­


ferent in that the helium and some of the pump-up cycles which they



bottom were recuperated. The assembly calculation process was similar.
 


Since there were no conveniently available thermodynamic tables



for methylamine, some of the properties were calculated for specific



points. (A skeleton temperature-entropy diagram for these cycles is de­


picted on Figure 7.47 of Subsection 7.4). For temperatures below 3230K



(1220F) there were tabulated'values in Reference 7.4. The zero pressure



specific heat enthalpy and entropy were taken from Reference 7.11, p. 759.



The enthalpy and entropy adjustments for pressure were calculated using



Pitzer's acentric method which is described in Reference 7.13, Appendix I.



* Fig. 7.44 
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From Figure 7.47 (given in Subsection 7.4) it can be seen that



the methylamine turbine expansion ends close to the saturation line, and



,	the relatively straight heating line is conducive to an excellent fit to



the heat available line. The condenser temperatures were adjusted



slightly in order to correspond to tabulated values. For wet tower ap­


plication (Points C48 and C49), the temperature was set at 313'K (104'F):



for dry tower application, C50, the temperature was set at 323 0K (1220F).



The difference of 10'K (18'F) is the same as for other cycles, and the



comparison should correspond. Since there is no advantage in raising the



compressor inlet temperature for a recuperated cycle, the helium cycle



bottom temperature was made 20'K (36oV) above the condenser temperature;



i.e., 3330K (1400F) for the 3130K (104'F) condensing temperature and



3430K (1580F) for the 323 0K (1220F) condensing temperature.



The heater pressure drop ratio for these fluids was assumed to



be 10%, and the turbine inlet pressure was taken as 17.24 MPa (2500 psi)
 


abs for Points C48, C50, and C51. Since the bottoming cycle in C49 was



placed below a recuperated helium cycle but with an 866 0K (11000F) unre­


cuperated pump-up cycle, there was insufficient heat temperature to raise



the methylamine to 533 0K (5000F) as was done in the other cycles. A



vapor turbine inlet temperature of 505'K (450'F) was selected. At that



temperature, a pressure of 1.379 MPa (2000 psi) abs gave a better fit.



The turbine efficiencies were assumed to be 0.88.



7.3.3 Cycle Fit and Heat Exchange Effectiveness Considerations



When assembling the results for the combined cycle from the



various subcycles (pump-up, helium, and steam), the low-temperature heat



demand (feed heating) of the steam cycle was not sufficient to fully cool



the helium to the 3660K (200'F) chosen as the compressor inlet tempera­


ture.- For the base case, the helium could be cooled only to 398 0K (250SF)



in the vapor generator. The additional heat will be rejected to sink in



order to cool the helium 31'K (560F) further. This will not have a large



effect on the plant. The energy involved does not have much availability.
 


The temperature approach to the cooling water is large, and the required
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heat exchange surface will be relatively small. Functionally, there will



be a precooler, although none was originally intended.



It became apparent that most of the steam-bottomed combined



cycles would require a similar adjustment; the other fluid cycles would



not.



Figure 7.13 depicts the heat load requirements of the steam



cycle for Point C5 (base). Lines A and B represent the heat available



from the air and helium cycles, respectively. At the time of fitting



these lines to the 'steam cycle, the flow rates of both the air and helium



have been determined and the absolute values for Lines A and B were



known. The steam flow, however, had not then been determihed. Lines A



and B were both assumed to be linear, and-their enthalpy rates were added



-to form Line C. For this case, the right-hand steep end represents the



-air turbine exhaust cooling from the 9180K (11930 F) to the helium exhaust



temperature 799 0K (9790 F). The left-hand steep segment represents the



helium cooling from the 4160K (2900F) air lower limit to 366 0K (2000F).



Since the air and helium flows ate known, it is convenient to



extend the combined part of line C to a fictitious end point, D. This



represents the inlet temperature if both the air and helium started at



the same temperature and both transmitted the same sensible heat as the



air alone does in this region. Obviously, this fictitious temperature



cannot be used for heat transfer calculations.



Point D can be considered as the end point on the steam heat



requirement curve and the Line C rotated to fulfill the pinch point re­


quirement. This is'depicted on Figure 7.14 with the pinch point, E, cor­


responding to 628'K (670°F) on thetsteam cycle. The flow rate for steam



is now calculated so that the heat required to the right of this point



exactly matches that available from the air and helium cycles down to



Point E. The additional heat required by the steam below the pinch point



then can be calculated. It was intended that this heat be supplied by.



cooling the helium to 366 0K (2000F) and by cooling the air as much as re­


quired but not below 4160K (290F). Thus, the air would be discharged at
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634 0K (681'F), producing the situation shown dotted in Figure 7.14. The,



left helium-cooling line shows a negative pinch point at the reheat knee,



which is obviously impossible.



There is still sufficient heat in the discharge air to avoid



this condition; but when this is used, the helium can no longer be com­


pletely cooled by the steam cycle. This cooling scheme is depicted by



the solid lines in Figure 7.14, with the air being discharged at 5780K



(580'F) and the helium at 398°K (256°F). The helium was assumed to have



been cooled to 3660K (200'F) in a precooler. Physically, the precooler



need only constitute some banks of finned tubes carrying cooling water



and placed after the steam cycle economizer tubes in the vapor generator.



The heat rejected to sink is increased accordingly.



Since the amount of extra cooling would be different for the



various cases, results would be hard to interpret. In order to relate



the various cases to -one another, the effectiveness values with which the



available energy of the turbine exhaust streams was transmitted to the
 


bottoming fluid were calculated as:



'E= B Bottom (7.9)



BPUf 'He



For the bottom fluid, B could be calculated from tabulated



thermodynamic properties.



B = W Abi (7.10) 

where W mass flow rate



b. =h-TS



BBottom = transmitted to bottom fluid



Bpu = available in pump-up turbine exhaust



BHe = available in helium turbine exhaust.



in which T was taken as the condenser temperature.



o 
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For the turbine exhaust streams, the values of B were calcu­


lated separately for .each from.-the equation derived below,



Assume linear availability of heat (constant C ) over a small 

temperature difference: 

dq= Wdh C dTP 

C dT - C (T 2 -T) (7.11) 

T2



dT 

TiT



dB = (n carnot) (dQ)= 1 - - C dT 

B = W Cp[TI dT - T 2 4T (7.12)1I0.TIY 
B = C , T2 - Tl ­ .inkj] 

B Qo- (T ) lin (7.13) 
7(T2 i-
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7.3.4 Heat Exchanger Design Procedures



Since the use of surface heat exchangers is central in these



closed-cycle concepts, the resultant pricing of such equipment has a



major impact upon assessing the overall viability of the concept. Unfor­


tunately, the majority of the heat exchangers involved (helium pressur­


ized furnaces, heat recovery vapor generators, intercoolers, and



recuperators) are not in widespread commercial use and, of necessity, the



approach to pricing and concept design must be somewhat arbitrary. Given



below is a description of the design procedures used for sizing this type



of heat exchanger.



Due to the single-phaseflow nature and relatively high pres­

sures encountered in these exchangers a shell-and-tube design was 

adopted. For a given heat transfer rate, Q, a specific pressure drop, and 

cycle-determined fluid temperatures, the first step was to select suit­

able tube configurations for the conditions involved. Then, using pub­

lished correlations for internal heat transfer and pressure drop, as well 

as external correlations (Reference 7.13), the following iterative calcu­

lation would be made: 

1. Choose a tube velocity, Vt.



2. Compute



Ltp Vt 2 

P = 4f tt 2 (7.14) 

where f 0.046 (p Vt Dr/0 
- 0 .2



Lt = tube length (arbitrarily chosen) 

Dt =tube internal diameter



fluid density



= fluid viscosity. 

3. Adjust V to.conform to allowable pressure drop.


t 
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4.-	 Compute



ht = 0.023 - (Re)08 	 (7.15)



where k = fluid conductivity



Re = p Vt Dt A (Reynolds number) 

Pr = C U/k (Prandtl number).


P



5. 	 Select a triangular, staggered-tube arrangement



where the center-to-center distance, St, = 2Do .



6. 	 Choose a maximum shell-side velocity.



7. 	 Compute



f' (p V ) 2N 
AP = a 7.6P (2.09 x 108) 	 (7.16)



where Vs = maximum shell-side fluid velocity



N = number of tube rows transverse to the
 


flow



D0-0.16
f' 0.25 + [~s, 	25 7J'°0/[ V

f,+P = 	 V



where D = outside tube diameter.



8. 	 Adjust V based on the assumed value of N and on the

S 

allowable shell-side pressure drop.
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9. Compute



h = 0.33 i- V o 0.6Pr 0.3 	 (7.17)r 
10. 	 Solve the following equation for At



LMTD-= 1 I- _+ + at-o --+Tat-7	 (7.18) 
Q At h h lktk) 

where LITD = given log mean temperature difference 

Q = 	 given heat transfer rate 

A = 	 total area internal to tubes 
t 

at_0 = 	 ratio of tube internal area to external 

area per unit length 

atk = 	 ratio of tube internal area to radial 

thermal 6onduction area per unit length 

of tubing 

k = 	 thermal conductivity of tubing metal 

T = 	 tube wall thickness. 

11. 	 From the tubing geometry, and knowing the total-tube



inside area required, compute the total length, Lt,



of tubing needed.



12. 	 Compute the total tube flow cross-sectional area, A ,
 


required from



Pt Vt (Ac) = Total tube-side mass flow. rate (7.19)



13. 	 Knowing (Ac) and the tube inside diameter, compute the 

total number of tubes requires, N 
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14. 	 Computc the length of each tube from (Lt/N) = length 

of each tube. 

15. 	 Go back to step 2 with new values of Lt and N and



repeat steps 2 to 14 until the desired accuracy if



obtained.



16. 	 Knowing the number of tubes and length of each tube,



as well as the staggered arrangement, find internal



shell diameter, D.


s 

17. 	 Finally, using-the formula



p Ds 
t = - (7.20) 
s 	 2a



where t = shell wall thickness

s 

D = 	 shell vessel inside diameter


S 

a = 	 allowable shell wall metal stress



Ps = 	 shell design pressure.



the shell wall thickness was computed.



7.3.5 Definitions



Basic turbomachinery terms such as turbine inlet temperature,



compressor pressure ratio, etc.', and heat exchanger definitions such as



throttle pressure, approach temperature difference, etc. are consistent



with those given in Subsections 5.3 and 6.3 of this report.



7.4 	 Results ofthe Parametric Study



7.4.1 Recuperative System of Parametric Point Identification



Table 7.4 presents a detailed listing of-the recuperated system



parametric point numbers and lists the results of the thermodynamic effi­


ciency calculations.
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For Points RI through R12, the basic closed-cycle parameters of



helium turbine inlet temperature and compressor pressure ratio were



varied. Pressure ratio values of 2 to I through 4 to 1 were used in con­


junction with turbine inlet temperature values of 922 through 12-55'K



(1200 to 18000 F). For all of these calculations, the pump-up gas turbine



inlet temperature was 1478K (22000F), and its compressor pressure ratio



was 10 to 1. A recuperator effectiveness value of 0.90 was chosen for



both the pump-up turbine and the helium gas turbine subsystems. In



Points R13 through R20, variations in the ricuperator effectiveness were



made simultaneously'over the range 0.80 to 0.95 for both the pump-up



cycle and the helium cycle gas turbine. Variations of the assumed fuel



were made in Points R21 through R30. Included were the use of pressur­


ized fluid bed combustion of bituminous, subbituminous, and lignite coals



as well as the uses of high- and low-Btu gas. These points all have
 


helium turbine inlet temperatures of 10890K (1500'F), a helium compressor



pressure ratio of 2.5, and recuperator effectiveness values equal to 0.9.



Points R21 and R22 investigated the variation of the pump-up cycle com­


pressor ratio at values of 5 to I and 10 to 1 with recuperator effective­


ness values of 0.90. For Points R23 and R24, the same pressure ratios



were used but without a pump-up recuperator. Point R25, Base Case A, was



fired with Illinois No. 6 bituminous coal in connection with a pump-up



gas turbine inlet temperature of 1200°K (17000 F), a compressor pressure



ratio of 10 to 1, and no pump-up recuperator. For Points R26 through



R30, a pump-up turbine inlet temperature of 866 0K (11000F) was used,



thereby transferring more heat directly to the helium cycle; and the



three coals as well as high- and low-Btu gas fuels were considered. In



Points R31 through R36, variations were made in compressor pressure ratio



for each cycle: 2, 2.5, 3, and 4 to 1 for the helium cycle, and 5 and



15 to 1 for the pump-up cycle, respectively. These calculations were



made with a pump-up turbine inlet temperature of 8660K (1100'F) and'no



recuperation and a helium turbine inlet temperature of 10880K (15000 F)



with 0.9 recuperator effectiveness. Points R37 and R38 investigate dry



cooling tower and once-through heat rejection of the heat picked up from
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the helium in the precooler. In Points R39 and R40, the effect of in­


creasing the pump-up cycle furnace pressure drop ratio from the base case



value of 0.06 to 0.09 and 0.12 was investigated. Similarly, the effect



of increasing the helium heat exchanger pressure drop ratio from the base



ccse value of 0.02 to 0.04 and 0.06 was investigated'in Points R41 and



R42, respectively. Helium compressor intercooling was considered in



Points R43 through R45 and helium compressor pressure ratios of 4, 5, and



7 to 1 were used, respectively. The effects of varying helium cycle top



pressure have been investigated with the nominal 6.895 MPa (1000 psi) abs



replaced by 3.447 and 13.790 M2a (500 to 2000 psi) abs in Points R46 and



R47, respectively. Point R48 corresponds to Base Case B and differs



principally from Base Case A in the use of an atmospheric pressure furnace



with a Ljungstrom-type regenerator. Distillate fuel derived from coal



was used, and the helium cycle principal parameters were 1089°K (1500°F)



turbine inlet temperature, a 2.5 to 1 compressor pressure ratio, and a



0.9 recuperator effectiveness.



7.4.2 	 Recuperative System Base Case Results



The Base Case A cycle schematic diagram has been shown previ­


ously in Subsection 7.2 (Figure 7.3). Selected thermodynamic data re­


sults for this cycle are given in-Figure 7.15. The overall cycle



efficiency for this arrangement has been calculated to be approximately



32%, with a net output of just over 300 MW in the single pump-up turbine,
 


single helium turbine configuration.



Base Case B, utilizing the atmospheric pressure furnace, is



illustrated schematically by Figure 7.5 of Subsection 7.2. Both a



schematic temperature-entropy diagram and tabulation of selected cycle



data for Base Case B are given in Figure 7.16. This cycle arrangement



with a single helium turbine having an inlet temperature of 10890K



(15000 F) delivers approximately 350 MW at 32.5% overall thermal effici­


ency.
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Pump-Up (pressurizing) Gas Turbine Cycle 

PI 14.696 59.0 900.0 
P2 147.0 615.0 
P3 3620. 0 976.7 
P4 133.8 1700.0 
P5 14.7 910.0 

Helium Gas Turbine Cycle 

HI 400.0 96.5 821 I 
H2 1000.0 382.5 
H3 990.0 930.7 
H4 970.2 1500.0 
H5 412.3 991.6 
H6 408. 2 443.4 

Fig. 7.15-Summary of thermodynamic cycle data (recuperative cycle Base Case A, Point R25) 
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Fig. 7.16-Summar,'of thermodynamic cycle data (recuperative cycle'Base Case B, Point 48) 
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Results of Parametric Variations*
7.4.3 Recuperative System: 
 

Figures 7.17 through 7.23 and Figures 7.24 through 7.30 show



the effects of the various parameters on the thermodynamic cycle effici­


ency and gross cycle power. 'Note that the trends described by the effi­


ciency curves and by the power curves are the same for each value of



pump-up temperature and fuel as, for each value, the cycle heat added is



constant, e.g., Figures 7.17 and 7.24 show a similar trend as the pump-up



temperature and fuel is the same for all curves, but Figures 7.19 and



7.26 do not show the same trend, as the pump-up temperature and fuel vary



from curve to curve.



At constant heat added, the efficiency is directly proportional



to the power; also, the efficiency is directly proportional to the speci­


fic power, as the airflow is always 408 kg/s (900 lb/s). For this reason



the curves are not plotted in terms of specific power and efficiency,



which would give a single straight line for each value of pump-up tem­


perature and fuel.



The efficiency is taken with respect to the higher heating



value of the fuel. The plant electrical output is corrected for the me­


chanical and generator loss.



Figure 7.17 shows the effect of helium temperature and pressure



ratio on the cycle efficiency. The contribution of the helium loop to



the cycle performance is roughly as follows. The helium loop produces



roughly 60, 66, and 69% of the power; and the loop efficiency is roughly



31, 39, and 45%, at helium turbine inlet temperatures of 922, 1089, and



12550 K (1200, 1500, and 18000 F), respectively, at 2.5 to 1 pressure



ratio. Also shown is the combined effect of the pump-up and helium re­


cuperator effectiveness which were varied from 0.8 to 0.95 for a helium



turbine inlet temperature of 1089.°K (1500'F).



The results listed in Table 7.4 and figures shown below apply to thermo­

dynamic efficiency and corresponding gross power output before related


station auxiliary powers were deducted.
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Fig. 7.18- Recuperated closed-cycle efficiency, ISO ambient 
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Fig. 7.19-Influence of pump-up temperature and pressure ratio



Pump-up: T=11000 F,p =10, Fpu=0 Pump-up: T=11000 F,p 10, EpU=0 
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Helium: T=-1500OF, p=2.5, EHe =0.9 
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Fig. 7.22-Influence of fuels Fig. 7.23-Influenceof type 
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Recuperated closed-cycle efficiency, ISO ambient 
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In Figure 7.17,' the pump-up temperature is 14780 K (22000 F) and



the pump-up recuperator is included-. But- in the following curves,



Figures 7.18 through 7.23, pump-up temperatures of 1200 and 8660 K (1700



and 1100'F) were used, and the pump-up recuperator was not included



(with the exception of the dashed line curve, Figure 7.19).



Figure 7.18 shows the effect of intercooling, approximately a



1-1/2 point gain in efficiency. This comparison was made at different



pressure ratios.



The parametric variations displayed in Figures 7.18 through



7.23 use Point R32 as a base or reference condition. Here , the pump-up 

temperature and pressure ratio are 8660 K (1100 0 F) and 10 to i; the helium 

temperature and pressure ratio are 10890K (15000F) and 2.5 to 1. No 

pump-up recuperator was used, and a 0.90 helium recuperator effectiveness 

was assumed. Most cases were assumed to fire a coal-derived distillate



fuel. Point R25 (Base Case A) is the same as the Point R32 reference



except that the pump-up temperature was 1200 0K (17000F) and the fuel was



Illinois No. 6 coal.



Figure 7.19 shows the effect of pump-up temperature and pres­


sure ratio. The two solid line curves for 1200 and 866'K (1700 and



11000 F) show approximately a one-point improvement in efficiency at 8660K



(11000F) at a 10-to-I pressure ratio. The improvement is due to the



larger percentage of work in the more efficient helium loop at 866°K



(1100'F), although the improvement is somewhat offset by the drop-off in


* 

pump-up efficiency at the lower temperatures. This ignores the differ­


ence in fuel at the two temperatures, but this probably has little effect



(see Figure 7.22). The effect of pump-up recuperation is shown by the



solid and dashed line curves for 1200'K (17000 F) to be in the order of



two points at a lO-to-i pressure ratio. Finally, by comparing Point R22



with Point R6 of Figure 7.17, it is shown that the efficiency is



At low pump-up temperature, more heat is absorbed by the helium in re­

ducing the furnace air to the lower temperature and, hence, more heat


is added to the helium cycle.



Point R32
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approximately the same at 1200 and 14780K (1700 and 22000 F) pump-up tem­


perature. Here the stand-off is due to the counteracting effects of the
 


work shift to the more efficient helium cycle and the drop-off in the



pump-up efficiency at 1200 0K (17000F).



As a rough guide to the work shift referred to above, 2/3, 3/4,



and 9/10 of the total power is produced by the helium loop at 1478, 1200,



and 866°K (2200, 1700, and 1100'F) pump-up temperature for the reference



helium conditions of 10890K (15000 F) and a 2.5-to-i pressure,ratio.



Figures 7.20 and 7.21 show the effect of pressure loss in the



pump-up and helium circuit. Because of the low-pressure ratio, the pres­


sure loss in the helium loop has a greater effect. Note that the pres­


sure drop in the recuperator is the combined pressure loss for the hot



and cold side.



The effect of fuel type on efficiency is shown by Figure 7.22.



In Points R32, R26, R27, and R28 for distillate and coals, the spread is



in the order of one-half percentage point. For Points R29 and R30 which



used high- and low-Btu gas, respectively,' the main factor behind the



differing efficiency results is the approximate 10% difference in the



fuel higher and lower heating values (compared with about 5% for distil­


late). This larger difference for the fuel gases is associated with



their high hydrogen content. This means that a larger amount of the heat



added is unavailable for work in the pump-up turbine. Note, also, that



the efficiency of the low-Btu gas case allows for the energy requirements



of the coal gasification plant.



The efficiency differences associated with the precooler tem­


perature are 'shown in Figure 7.23. with wet, dry, and once-through cool­


ing, water temperatures of 292.3, 305.4, and 282.60K (66.5, 90, and 490F)



were assumed. With a 16.70K (30F)approach temperature, the helium was



assumed to have been cooled to 309, 322, and 2990K (96.5, 120, and 790 F).



The power curves in Figures 7.24, 7.25, 7.27, 7.28, and 7.30



have trends identical to those displayed by the corresponding efficiency
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Fig. 7.25-Recuperated closed-cycle power, ISO ambient 
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curves, The heat added is constant with respect to all points on each of



these curves; hence, the efficiency changes are proportional to the power



changes. In Figures 7.26 and 7.29 there is a variation in heat added



from point to point associated with the difference in pump-up temperature



and fuel. At low pump-up temperature, more heat is absorbed by the helium



in reducing the furnace air to the lower temperature.



The heat of combustion per pound of air ,ishighest for high-Btu



gas, intermediate for distillate and low-Btu gas, and lowest for the



three coals. Furthermore, the coals are assumed to burn with a 4% com­


bustion loss reducing their effective heating still further, whereas the



gases and distillate are assumed to burn completely. Thus, as the air­


flow was assumed constant, the heat added drops off in the order named



(at fixed pump-up temperature). This accounts for the difference in



Figures 7.26 and 7.29 with respect to the corresponding efficiency curves.



Note in Figures 7.19 and 7.26 the shift in the dashed line curve with



respect to the solid line curves and the change in spread of the solid



line curves. This is associated with the lower heat addition at 1200'K



(1700'F) and the higher heat addition with distillate fuel. Note also,



in Figures 7.22 and 7.29, that the power is affected more by the change



in heat addition (highest with high-Btu gas, intermediate with distillate



and low-Btu gas, and lowest with coals) than by the change in efficiency.



Point R48, Base Case B, is for an atmospheric combustion sub­


system. Atmospheric pressure air is supplied to the furnace by a fan.



A Ljungstrom regenerator preheats the furnace air. By comparison with



Point R25,'Base Case A, the efficiency is roughly the same, but the power



is approximately 16% higher.



7.4.4 Combined System Parametric Point Identification



A tabulation of the combined system parametric variations in­


cluding parametric point numbers and thermodynamic efficiency results is



given in Table 7.5.



The first group, including Points Cl through C9, has been



selected for variation of the helium cycle turbine inlet temperature and
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Fig. 7.26- Influence of pump-up temperature and pressure ratio 
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compressor pressure ratio. The first three points utilized a helium tur­


bine inlet temperature of 9220K (1200'F) with compressor pressure ratios



of 1.5, 2, and 2.5 to 1. A pump-up gas turbine inlet temperature of



14770K (2200'F) and a compressor pressure ratio of 10 to 1 were used for



all nine points. Each was fired with coal-derived distillate fuel, and



high-pressure reheat steam turbines were used to bottom both the pump-up



and helium cycles. Points C4, C5 (Base Case), and C6 of this group in­


corporate a helium turbine inlet temperature of 1089 0K (1500'F) and com­


pressor pressure ratios of 2, 2.5, and 3 to 1, respectively. For the



last three points of the group, the helium turbine inlet temperature was



set at 12550K (18000 F); and pressure ratios of 2.5, 3, and 4 to 1 were



used. For Points C10 through C12 the pump-up set vapor generator was



omitted and the pump-up turbine inlet temperatures of 1478, 1200, and



8660K (2200, 1700, and 1100'F) were used. All three cases assumed pump­


up set compressor pressure ratios of 10 to 1. Helium compressor inlet



temperatures of 339, 394, 422, and 4500K (150, 250, 300, and 3500 F) were



assumed .for Points C13 through C16. Point C5 with a compressor inlet



temperature of 3660K (2000F) is also a member of this sequence.



Points C17 through C20 contrast with these in that a precooler is added



to bring the hompressor inlet temperature to 3090K (96.50 F). The pre­


cooler rejects heat to a wet cooling tower and receives helium from the



vapor generator discharge at temperatures of 366, 394, 422, and 4500K



(200, 250,, 300, and 350'F), respectively. It was intended that the



Points C17 through C20 would be the only ones requiring a precooler. The



compressor inlet temperatures of the other points were intended to be



high enough that the compressor would accept helium directly from the



vapor generator. Due to pinch-point problems discussed in Subsection 2.3.3,



however, a cooler was required for all points except C7, C15, and C16 and



the organic fluid points C46 through C52. For Points C21 and C22, nonre­


heat bottoming steam turbines of nominal steam conditions 11.032 MPa
 


(1600 psi) gauge, 811'K (1000'F) and 8.618 MPa (1250 psi) gauge, 7830K



(950'F) were used. Variations of pump-up cycle turbine inlet temperature



and pressure ratio have been selected for Points C23, C24, and C25. The
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combinations were 14780 K (22000F) and 15 to 1 for Point C23; 13000K


-
(1700'F) and-5 to 1 for PoInt C24; and 1200'K -1700F)--and 10 to-I for -

Point C25. The helium vapor generator pinch-point temperature difference 

has been modified from the base value of 220K (40'F) to 33 and 440K (60 

and 800F) in Points C26 and C27. The effects of pressure drops have been 

identified for investigation in Points C28 through C36. Furnace pressure



drop ratios of 0.04 and 0,06 were investigated in Points C28 and C29, as



compared with the base case value of 0.02. Helium vapor generator pres­


sure drop ratios of 0.04 and 0.06, respectively, were substituted for the



base case value of 0.02 in Points C30 and C31. Furnace pressure drops of



0.03, 0.09, and 0.12 were used for Points C32, C33, and C34. These com­


pare with the base case value of 0.06. The pump-up gas turbine vapor



generator pressure drop variations of 0.02 and 0.06 (base case value was



0.04) were used for Points 035 and C36. The influence of helium cycle­


top pressure has been identified for study in Points C37 and C38. Alter­


native values of 3.447 to 13.790 MPa (500 and 2000 psi) abs were compared
 


with the base case value of 6.895 MPa (1000 psi) abs in Points C37 and



C38, respectively. The use of alternative fuels was investigated in



Points C39 through C43. Points C39 and C40 utilized high- and low-Btu



(integrated gasification plant)_coal-derived gases, respectively. Both



use a helium cycle turbine inlet temperature of 1089eK (1500'F), a com­


pressor pressure ratio of 2.5 to 1, and a pump-up cycle turbine inlet



temperature of 14780K (22000F) with a l0-to-i compressor pressure ratio.



Fluidized bed combustion of Illinois No. 6 bituminous, subbituminous, and



lignite were selected for Points C41, C42, and C43. With each the pump­


up cycle turbine inlet temperature was set at 12000K (1700°F), which is



compatible with fluid bed operation. For Points C44 and 045, alternative



cycle heat rejection modes were selected. Diy cooling towers were desig­


nated for Point C44 and the once-through cooling method for Point C45.



Alternative bottoming cycle fluids were identified for study in



Points C46 through C52. The three fluids used in connection with the re-.



cuperated open-cycle studies (Section 5) were used here. These included
 


R-12, methylamine, and sulfur dioxide. The outstanding properties of
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R-12 are that it is nontoxic, nonflammable, and noncorrosive. It is used



below the base case configuration of pump-up and helium cycles to consti­


tute calculation Cycles C46 and C47. Since the turbine expansion end



point lies far into the superheated region for R-12 for this cycle,



Point C47 contains a desuperheating recuperator to help'heat the feed
 


liquids. This is to show the contrast with Cycle C46, which does not



have such a desuperheater. The top temperature for both cycles is 644°K


(700'F), which is higher than that usually used for R-12. However, the



usual limits for the fluid are based on its use as a refrigerant, in which



it is mixed-with oil and may even contain some water. In the absence of



these contaminants and in contact only with materials of construction,



the fluorine stays fixed and the fluid remains stable to a higher tem­


perature. This is the basis for the 6440K (700'F) application.



Cycles,:C48 through C51 have been formed by adding bottoming



cycles to recuperated-type cycles. Since the required temperatures are



low, the fluid could be chosen without much regard for chemical stabi­


lity.



Methylamine was chosen as having good volume relations in the
 


intermediate pressure range (TEWP of 3.96). It has a moderate critical



pressure and could be fitted easily to the available heat lines.'



Cycles C48 and C49 aresubposed below the two types of recuper­


ated cycle with pump-up turbine temperatures at 14780K (2200.F) and 866*K



(11000 F), respectively (similar to recuperated Cycles R6 and R32, respec­


tively), for a basic comparison.



Cycle C50 rejects heat through a water circuit to a dry pooling



tower and has a condenser temperature of 3231K (1220F). It compares with



Cycle C48 which uses a wet cooling tower.



The low volume 6f the methylamine turbine exhaust allows one to



consider deploying the bottom fluid directly to an air-cooled condenser



(dry cooling tower). This avoids the t1iermodynamic losses associated



with the use of an intermediate heat exchanger and the temperature range
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Fig. 7.31 -Summary of thermodynamic cycle data (combined closed cycle base case, Point C5) 
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associated with the intermediate cooling-water loop. Cycle C51 has such



an arrangement with a condenser temperature of 313°K (104'F). Since this



is the same as Cycle C48, the thermodynamic performance will be identical.



The comparison will center on the relative cost and edse'of providing the



different apparatus associated with the condensing vapor.



Cycle C52 is similar to Cycle C46, except that sulfur dioxide



is used for the bottom cycle instead of R-12. The importance of sulfur



dioxide is that is has high-temperature stability and thus permits the



cycle to be adjusted to utilize the available energy from the pump-up and



helium cycles to a much fuller extent.



,Of the fluids considered, the only others which also have high­


temperature stability (nominally) are ammonia and cyanogen. The choice



of sulfur dioxide over these is somewhat arbitrary, but it appears to be



advantageous.



Sulfur dioxide is completely nonflammable. Although it will



not make as low a volume plant as ammonia (TEAP of 5.75 for sulfur di­


oxide vs 1.49 for ammonia), the volume seems low enough for the applica­


tion. Furthermore, the higher critical pressure of ammonia [II.280.MPa



(1636 psi) abs compared to sulfur dioxide 7.881 MPa (1143 psi)] abs might



require a pressure too high to contain easily in order to obtain a good



thermodynamic fit. The higher critical temperature of sulfur dioxide was



also thought to be advantageous for ease in obtaining a good fit.



In any case, sulfur dioxide serves to illustrate the potential



value of a well-fitted, low-volume, high-temperature supercritical bot­


toming cycle.



7.4.5 Combined System Base Case Results



Figure 7.7 of Subsection 7.2 has illustrated the cycle schematic



arrangement for Point C5, the combined closed-cycle base case. Selected



thermodynamic cycle data for this arrangement are tabulated in connection



with the appropriate temperature-entropy diagram on Figure 7.31. For



this cycle, it has been calculated that a power plant of this
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configuration would deliver approximately 380 M at a net thermodynamic
 


efficiency of nearly 41%.



7.4.6 Combined System Results of Parametric Variations



The influence of helium temperature and pressure ratio on the



engine performance is shown by Figure 7.32. It is evident that the



helium temperature has a controlling effect. The performance progres­


sively improves as temperature increases from 922 to 1089 to 12550K



(1200 to 1500 to 1800°F). This increase is associated with the higher



efficiency of the helium cycle at the higher temperatures.



Note the double scale for efficiency and power in Figure 7.32.



The efficiency and power are directly related as the cycle heat added is



constant for all points on the curve. The heat added is fixed by the



choice of pump-up cycle temperature and fuel, as the pump-up (combustion)



airflow was always assumed to be 408 kg/s (900 lb/s). Thus, in



Figure 7.32, the efficiency varies in lockstep with the power. (This is



also true of Figures 7.33 and 7.36 through 7.42 which follow.)



Note also that the efficiency reported is, with respect to the



engine electrical power, corrected for mechanical and generator loss, and



the heat equivalent of the fuel based on the higher heating value. There



is no account of the auxiliary power for providing the circulating water



to the condenser and cooler in the results-plotted in these figures.



The data are shown by the curves with regard to the pump-up and



helium conditions, but without regard to the temperature and pressure of



the steam in the bottoming cycle. This simplifies the curves and is



justified, in that the steam conditions are generally set by the pump-up



and helium conditions. Thus, the pump-up and helium parameters are re­


garded as independent variables, and the steam parameters as dependent



variables.



The results listed in Table 7.5 and the figures shown below apply to


thermodynamic efficiency and corresponding gross power output before re­

lated station auxiliary powers were deducted.
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In the identification of the parametric points for calculation,



it was intended that the steam cycle heat demands would be well fitted to



the heat available from the pump-up and helium turbine exhaust streams.



The degree of fit, however, has varied and' is a noteworthy factor in the



interpretation of the results. Table 7.6 lists the calculation points



along with the effectiveness with which the thermodynamically available



energy of the two exhaust streams is transmitted to the bottoming cycle.



The values vary from 0.5787 to 0.8534. Also included in Table 7.6 are



cycle efficiencies normalized for a constant available energy transmis­


sion effectiveness of 80%. These normalized values are plotted on



Figure 7.33 and denoted by dashed lines. These curves are flatter than



the directly calculated ones and show that much of the variation at a



particular helium turbine temperature can be explained by the changing



thermodynamic fit of the bottoming cycle.



Note that the base case, Point C5, is shown as a reference on



all of the curves. This point is for a pump-up temperature and pressure



ratio of 14780K (2200cF) and 10 to 1, and a helium temperature and pres­


sure ratio of 1089 0K (15000P) and 2.5 to 1. The use of distillate fuel



is assumed.



The effect of pump-u temperature and pressure ratio is shown



by Figure 7.34. The efficiency is notably lower at 12000K (1700'F) than



at 1478'K (2200'F). At 12000K (1700'F) a greater portion of heat is ab­


sorbed by the helium, which gives an increase in power in the helium loop



but cannot be transferred in full measure to the steam cycle due to the



pinch-point limitation in the helium section of the vapor generator.



Thus, a greater portion of the heat is rejected to the helium cooler to



the detriment of the efficiency. On the other hand, the cycle heat added



is roughly 9% larger at 12000K (17000F). (More heat is absorbed by the



helium in reducing the furnace air to the lower temperature of 1200 0K



(1700F); hence, more heat is added.] This tends to increase the power,



but the increase is roughly offset by the drop-off in efficiency.
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Table 7.6 - Effectiveness of Available Energy
Transmission to Bottom Cycle 

Cale. Gale.


Point eA.E. n - 0.8 Point eA.E. Tic= 0.8



CI 0.7906 0.3828 C27 0.6859 0.4202



C2 0.6760 0.3915 028 0.7886 0.4172



C3 0.5787 0.3936 029 0.7954 0.4171



C4 0.8120 0.4147 030 0.7886 0.4172



C5 0.7819 0.4201 C31 0.7954 0.4142



C6 0.7191 0.4232 C32 0.7828 0.4217



07 0.8534 0.4380 C33 0.7862 0.4184



C8 0.8302 0.4433 034 0.7903 0.4170



09 0.7602 0.4473 035 0.7799 0.4211



C1O 0.6959 0.3328 C36 0.7847 0.4192



Cel 0.6958 0.3578 c37 0.7819 0.4201



012 0.7200 0.3709 C38 0.7819 0.4201



C13 0.7799 0.4183 C39 0.7732 0.4050



C14 0.7896 0.4210 C40 0.7440 0.4172



C15 0,8018 0.4208 C41 0.7056 0.4170



C16 0.8195 0.4194 C42 0.7069 0.4038



C17 0.7954 O.4119 C43 0.7075 0.3984



c18 0.8068 0.4092 G44 0.7777 0.4103



C19 0.8221 0.4057 C45 0.7837 0.4244



C20 0.8413 0.4014 C46 0.7058 0.4112



C21 0.7268 0.4150 C47 0.7047 0.3663



C22 0.7333 0.4149 C48 0.7448 0.4484



C23 0.7498 0.4201 C49 0.8198 0.4074



C24 0.7318 0.3998 C50 0.7180 0.4381



C25 0.7029 0.4043 C51 0.7448 0.4484



C26 0.7356 0.4202 C52 0.8539 0.4204



CAE -Proportion of Available Energy of Pump-up and Helium 
Cycle Transmitted to Bottom Cycle.



i = 0.8 - Power Plant Efficiency Normalized for eA.E = 0.8.
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Curve 680326-A
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The effect of including an air-to-steam vapor generator is shown



in Figure 7.35. Without the vapor generator, a greater portion of the beat



from the pump-up turbine is rejected in the exhaust, particularly for the



case with the pump-up turbine inlet temperature of 14780 K (2200'F).



Figures 7.36 and 7.37 show the effect of pressure loss in the



pimp-up and.'the helium circuits, respectively. The individual effect of



furnace loss and vapor generator loss is the same with respect to each



circuit.



Figure 7.38 shows the effect of the helium temperature at the
 


vapor generator exit; i.e., at the compressor inlet. The performance



improves with increased compressor inlet temperature. This effect is



opposite to that commonly associated with compressor inlet temperature.



However, it must be noted that the thermodynamic heat rejection temperature



from the overall closed-combined cycle is linked most directly to the temp­


eratures at the pump-up compressor inlet, the pump-up stack and the supposed



condenser; not to that of the helium compressor inlet.



As the helium compressor inlet temperature increases, its outlet



temperature also increases; and it accepts heat from the pump-up set in a



more efficient temperature rahge. This is partially counterbalanced by the



greater power required to drive the helium compressor. The effectiveness



of transmission of available energy to the bottom cycle is also improved. -

This last effect has been removed for the dotted line of Figure 7.38



showing the efficiency values normalized for an 80% effectiveness of



available energy transmission. These show an optimum compressor inlet


'

temperature of about 394 0K (2500F).



The pinch point is shown by Figure 7.39 to have a notable effect



on the performance. As the vapor generator pinch point temperature
 


difference increases from 22.2 to 44.40K (40 to 800K), less of the heat



absorbed by the helium is transferred to the steam. This is shown by the



increase in helium,temperature at the vapor generator exit (T5 in Table 7.5)



and by the increase in heat rejected from the helium cooler.



Figure 7.40 shows the effect of condenser pressure associated
 


with the temperature of the circulating water. The relation between the



condenser pressure, saturation temperature, and water temperature is



shown in Table 7.7. The 11.85 and 30.48 kPa (3.5 and 9 in Hg) abs
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Pressure, 
 
in Hg abs 
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2.0 
 

3.5 
 

3.8 
 

9.0 
 

Table 7.7 -


Saturation 
 
Temperature, 'F 
 

91.7 
 

101.1 
 

120.6 
 

123.4 
 

157.1 
 

Heat Rejection Conditions



Cooling


Water, F 
 

49.0 
 

66.5 
 

90.0 
 

Cooling Mode 

Once through 
 

Wet tower 
 

Wet tower 
 

.		 Dry tower 

Dry tower 

Ambient 

ISO



ISO



5% day



ISO



5% day
 




conditions are not study points, but are included in the performance



summary (Table 7.5).



The effect of the precooler is shown by Figure 7.41. Note that



the precooler reduces the helium temperature to 309
0K (96.5 0F) at the



inlet of the compressor. [This is in line with the 16.7 0K (30°F) approach



temperature in the precooler.] As such, Points C17 through C20 are best



regarded in association with Figure 7.38. It is a matter of semantics



whether the temperature is reduced to 3090K (96.5 0F) in the cooler and



precooler or in the cooler alone. (Had it been determined that the



cooler was necessary when the sttdy was planned, the precooler points,



would not have been included.) We felt that the helium temperature could



be reduced to its final value in the vapor generator, but for most points



this is impossible without violating the 22.2 0K (40'F) pinch point tem­


perature difference.



Figure 7.42 shows that the use of a nonreheat bottoming cycle



results in about a two-point drop in efficiency and a corresponding de­


crease in power. Without reheat, the available heat from the pump-up set



in particular is not fully utilized in the steam loop. Note that the



amount of the decrement is for this particular cycle.



The influence of fuels is shown by Figure'7.43. Due to the



difference in pump-up temperature, fuels for each temperature must be



compared as a group. In each group, the comparison is with respect to



distillate. Of the coal points at 12000K (17000F) temperature, Illinois
 


No. 6 gives higher efficiency and less power than does distillate, with



distillate, the heat added is 6% higher. (This is associated with the



constant airflow and the combtstion properties of the fuel.) This in­


creases the power, but the increase is somewhat offset by the drop-off in



efficiency. In particular, the additional heat is absorbed by the helium



cycle, giving some increase in power; but it cannot be passed on in full



measure to the steam cycle because of the limitation imposed by the pinch
 


point. Were it not for this limitation, the efficiency would remain near



constant and the power would increase in proportion to the heat added (as
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in the recuperated cycle). Comparing the,coal points, there is an ap­

proximate two-point drop-off in efficiency in going from Illinois No. 6


to subbituminous to lignite. This decrement, in the case of the low-Btu


coals§ is due to the greater percentage of work in the low-efficiency



pump-up set. There is a corresponding decrease in power as the heat



added is roughly constant. Turning now to the gas points at 14780K


(2200'F) pump-up cycle inlet temperature, the efficiency is approximately



1-1/2 points less with both high- and low-Btu gas than with distillate.



This drop-off is related to the greater difference in the higher and


lower heating value of the gaseous fuels as compared with the liquid


fuel. Note that the performance of the low-Btu gas point allows for the


energy requirements of the coal gasification plant.



7.4.7 Combined Systems with Organic Fluid Bottoming Cycles



Special attention was given to the use of organic fluids in the


bottoming cycles. A detailed description of the results of those calcu­


lations, Points C46 through 052, is given below.



Points C46, C47, and C52 illustrate the importance of bottoming


fluid top temperature capability and of the value of good thermodynamic



fit between the subposed cycle heat absorption line and topping cycle


heat rejection line. These parametric points and Point C5 are similar in



that each is used under high-temperature primary cycles [pump-up cycle


turbine inlet temperature of 14780K (22000F) and helium cycle turbine


inlet temperature of 1089°K (1500F)]. 
A tabulation of the efficiency



results of these cycles is given in Table 7.8.



As with other cycles, much of'the efficiency difference here


can be explained by the difference in the available energy transmission



effectiveness. Although the normalized cycle efficiencies at the 0.8



available energy transmission effectiveness are tabulated, the physical


implications of achieving such values must be considered. 
 For the steam



case (Point G5), the higher transmission effectiveness was obtained for a



physically plausible cycle. To maintain such a level with other steam



bottomed cycles, however, would require similar high values of helium
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Point Power, 

o.n Pwr 


C5 390.2 


c46 364.2' 


C47 326.8 


C52 408.2 


-4­

Table 7,8 - Organic Bottomed Closed Combined-Cycle 

Efficiency Comparison 


Theodynamic, % 


0.415 


0.388 


0.348 


0.435 


Available Energy 


Transmission
Effectiveness, B 


0.782 


0.706 


0.705 


0.854 


Cycle Efficiency with 


Available Energy Transmissio
Effectiveness Corrected to 0.8 


0.420 


0.411 


0.366 


0.420 




turbine exhaust temperature and high helium compressor inlet temperature.



Increasing the cycle complexity would not materially improve the level of



available energy transmission effectiveness. The lower cycle efficiency



valuesof the.R-12 points (Points C46 and C47) illustrate a fundamental



point: that fluids cannot accept the available energy effectively where



fluid top temperatures are limited by the chemical instability of the
 


fluid. The 6440K (700*F) limit is for practical purposes about as high



as R-12 could be used. Point C47 does not utilize recuperative feed



heating and further illustrates the losses encountered when the super­


heated exhaust energy of these fluids is directly rejected to the heat



sink. Cycle temperature-entropy diagrams for Points C46 and C47 are



given as Figures 7.44 and 7.45.



The temperature-entropy diagram for Point C52 is given in



Figure 7.46. Since sulfur dioxide is stable to high temperatures, the



bottomIcycle has been intentionally closely fitted to the available heat



supply, the sulfur dioxide turbine inlet temperature being 811'K (10000F).



The close thermodynamic fit is reflected in the available energy trans­


mission effectiveness of 0.854 and the cycle efficiency of 0.435 - two



percentage points above that of Point 05. The sulfur dioxide turbine ex­


haust superheat has been used recuperatively to aid in feed heating the



sulfur dioxide liquid rather than rejecting it to the heat sink. The



good thermodynamic,fit is made possible by using this exhaust superheat



and by having the top-pressure so far above the critical pressure. At



17.327 MPa (2500 psi) abs, sulfur dioxide has a reduced pressure of 2.19,



a value which would correspond to a pressure of 48.263 MPa (7000 psi) abs



in steam.



Since sulfur dioxide is a low-boiling fluid, this cycle also



avoids the excessively large exhaust annulus-area turbines required when



steam is used.



Cycle Points C48 through C51 use methylamine as the working



fluid of the bottoming cycle below the recuperated closed-cycle helium



turbines. The methylamine cycles are supercritical cycles designed to



7-73
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Fig. 7.44 -Dichlorodifluoromethane (R-12) T-S diagram. (Closed
combined cycle Point46) 
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Curve 682028-A 
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Curve 682027-A
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have the turbine expansion line end close to the saturation line, thus



avoiding the superheated exhaust energy usage problem. The relatively



low temperatures of the pump-up and helium heating streams permit the



close thermodynamic fits for these cycles. Figure 7.47 depicts the



temperature-entropy diagrams for these methylamine cycles. The results



of thermodynamic efficiency calculations of these and other related



cycles are tabulated below.



Table 7.9 - Methylamine Working Fluid 
Bottoming Cycle Comparison 

Power Plant 
Point No. Power, M Pice nyt


Efficiency, %



R6 328.5 0.350



R32 371.1 0.338



C48 413.4 0.440



c49 449.7 0.410



C50 400.0 0.426



C51 413.4 0.440



Points C48, C50, and C51 utilize organic fluid bottoming cycles



subposed below recuperated closed-cycle R6, and C49 incorporates a sub­


posed cycle below R32. Cycle 048 has as high.an efficiency (0.44) as any



of the closed combined cycles for the same pump-up and helium cycle tur­


bine inlet temperatures [1478 and 1089 'K (2200 and 15000 F), respectively].



The efficiency difference between Cycles C48 and C49 (0.03) denotes the



difference resulting from a 14780K (2200'F) pump-up turbine inlet tempera­


ture and one of 1089°K (1500'F).



Cycle C50 is similar to C48 except that heat is rejected to



water from a dry cooling tower. Its performance is poorer, as would be
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Curve 682026-A
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expected. Cycle C50 is intended for comparison with C51, since it also



has a dry cooling tower, but with direct condensing. Since the inter­


mediate water loop is avoided, Cycle 051 is thermodynamically the same 

as C48. Thus, C51 shows a thermodynamic performance with a dry tower



equal to that of C48 with a wet tower. This efficiency gain is one ad­


vantage of using a low-boiling fluid having a volumetric flow suffici­


ently low that the fluid can be deployed directly to an air-cooled



condenser.



7.5 Capital and Installation Costs of Plant Components



7.5.1 Description of the Base Case Power Plants
 


Three base cases have been selected for study in the closed­


cycle gas turbine concept category. Two base cases have been identified



among the recuperated closed cycles, and one base case has been selected



for study within the combined closed-cycle group. Capital and installa­


tion costs were generated first for the base cases, and later for the



remaining parametric points.



Base Case A of the recuperated closed-cycle systems corresponds



to Point R25. It utilizes a single pump-up gas turbine to pressurize a



fluid bed furnace firing Illinois No. 6 coal. The combustion gas turbine



compressor airflow has been set at 408 kg/s (900 lb/s) with a compressor



pressure ratio of 10 to 1 and turbine inlet temperature of 12000K (1700'F)



The closed-cycle heliu~ gas turbine utilizes a compressor pressure ratio



of 2.5 to 1 and has a turbine inlet temperature set at 1089 *K (15000F).



The helium cycle recovers waste heat by means of a recuperator having an



effectiveness of 0.9. Heat rejection below the helium cycle recuperator



is accomplished by means of a wet cooling tower. No exhaust heat recu­


peration is used with the pump-up turbine cycle.



The Base Case A power plant island arrangement is illustrated



by -Figure7.48, and the overall site plot plan is shown in Figure 7.49.



A cross-sectional view of the pressuring or pump-up gas turbine is given



in FLgure 7.50. This unit incorporates a single-shaft rotor arrangement
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similar to the designs described in the recuperated open-cycle gas tur­


bine and combined gas-steam turbine portions of the study. The combus­


tion section of this unit is highly modified, however, compared to the



other units. All compressor discharge air is withdrawn from the gas tur­


bine cylinder through two large ports. The air is directed to the pres­


surized furnace; and combustion products are returned by means of a



concentric piping arrangement, with hot combustion gases returning via



the interior pipe and cooler compressor discharge air passing through the



outer annulus. A convection impingement air-cooling approach has been



selected for the turbine blade cooling system as appropriate for opera­


tion at turbine inlet temperatures of 1478°K (2200'F).



Figure 7.51 illustrates the closed-cycle helium gas turbine



utilized in Base Case A. This unit features a 60 rps (3600 rpm) power
 


turbine and a separate 71.3 rps (4280 rpm) high-pressure shaft. The tur­


bine sections of each shaft utilize conventional construction through



bolted individual disk designs. A welded assembly of individually forged



disks has been selected for the compressor rotor design. Each shaft is



supported by a two-bearing arrangement with tilting-pad fluid film jour­


nal and tilting-pad thrustbearings. Special sealing circuits are re­


quired to. prevent oil coitamination of the main working fluid.



Several niobium- and molybdenum-based blading alloys have been 

considered for use in the initial high-pressure turbine stages for un­

cooled operation at the 12550K (1800'F) turbine inlet temperature. 

Metallurgical studies have indicated that although the niobium alloys 

have superior rupture strength, they appeat to suffer serious deteriora­


tion in impure helium. The most promising candidate alloy identified is



the commercial molybdenum-based alloy TZM.



The overall power plant arrangement of Base Case A, exclusive



of waste storage area, encompasses 254,952 In2 (63 acres). Fuel and dolo­


mite delivery is by unit train with four 29-car unit -trains of coal and



two 31-car unit trains of dolomite per week. There is an auxiliary dis­


tillate fuel storage tank which is used during start-up and stand-by
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Fig. 7.51 -Recuperated cycle helium gas turbine engine (Base Case A) 



operation. The waste dolomite storage area totals 728,453 m2 (180 acres).



Heat injection from the plant is accomplished by one eight-cell wet



cooling tower.



The recuperated closed-cycle system Base Case B corresponds to



Point R48. The turbine island arrangement for this plant is shown in



Figure 7.52, and the overall plot plan arrangement is illustrated in



Figure 7.53. This plant utilizes a single closed-cycle helium turbine



which receives its heat input from an atmospheric pressure furnace (in



contrast with the pressurized furnace of Base Case A). Consequently, no



pressurizing or pump-up combustion gas turbine is required. The power



plant is fired on coal-derived distillate fuel. The closed-cycle helium



gas turbine is essentially similar in design to the unit of the Base



Case A power plant. The power plant site arrangement is similar also to



the Base Case A arrangement, with the principal differences being the



substitution of liquid fuel storage tanks for the coal and dolomite piles



and the elimination of the waste'dolomite storage area.



One base.case has been identified from the grouping of combined



closed-cycle systems under study. This base case corresponds to Point C5.



The base cycle consists of a power-producing pressurized furnace subsys­


tem, which is bottomed by a closed-cycle gas turbine system. Both these



Brayton cycles are, in turn, bottomed by a conventional steam Rankine



cycle. The plant island arrangement for the base case is illustrated in



Figure 7.54; the overall power plant plot plan in Figure 7.55.



A single pump-up gas turbine is incorporated in the combined



closed-cycle base'case. The electrical output from this 408 kg/s



(900 lb/s) inlet airflow machine is 113 MW. The unit has a turbine inlet



temperature of 1478 0K (22000F) and a compressor pressure ratio of 10 to



The single helium closed-cycle gas turbine selected for this



plant is illustrated in Figure 7.56. It is similar in design to the unit
 


of Base Case A, with the essential difference being the construction of



the compressor rotor. This design incorporates a through-bolted assembly
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Fig. 7.56-HelIum close-cycle gas turbine for the combined plant 



of compressor disks as opposed to the integral, welded'design. The unit



is designed for a'net 86 MW electrical output, with a turbine inlet tem­


perature of 1089 0K (1500'F). The compressor pressure ratio is 2.5 to 1.



The base case Rankine bottoming cycle consists of a 24.132 MPa



(3500 psi) gauge, 7550K/7830K (9000F/9500 F) steam turbine generator of



"191 MW electrical output.



Principal heat input to the cycle is from a distillate fuel­


fired furnace pressurized to 1013 kPa (10 atm). The exhaust heat from



each gat turbine is recovered by means of heat recovery vapor generators



for the steam bottoming cycle. A four-cell wet cooling tower ha& been



selected to reject waste heat from the helium turbine compressor pre­


cooler and the steam cycle condenser.



The overall site requires an area of 190,202 m2 (47 acres) and



is serviced by three 34-car unit train fuel deliveries per week.



During the combined closed-cycle portion of the study, consid­


erable attention was given to the use of organic fluid bottoming cycles.



The potential for relatively smaller turbomachinery in conjunction with



the use of these fluids has been discussed. A conceptual design for a



Rankine cycle turbine using sulfur dioxide working fluid is shown in



Figure 7.57. It is interesting to note that the last-row-blade size for



this 60 rps (3600 rpm) unit of approximately 70 M net output is just



0.28 m (11 in) in length.



7.5.2 Approximate Sizes and Weights of Major Components



The relatively complex closed-cycle gas turbine systems have



enjoyed limited commercial application to date (see Subsection 7.1).



Consequently, estimates of major component configurations, particularly



with respect to furnaces and heat exchangers, only can be approximate.
 


A tabulation of the estimated sizes and masses of the major



components for these systems is listed in Table 7.10.
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Table 7.10 - Approximate Size and Mass of Base Case


Closed-Cycle System Major Components



Component Basic Dimensions Mass (Weight), lb



Recuperated Closed-Cycle Base Case,A (Parametric Point 25)



Pump-up Gas Turbine


Turbine section 
 10,4 ft x 13,8 ft dia 150,000 

Compressor section 
 19.3 ft x 13.8 ft dia 130,000 

Pressurized Furnace 
 15 ft dia x 100 ft 8,000,000 

Helium Gas Turbine


Turbine section 
 28 ft x 14.5 ft dia 370,000 

Compressor section 
 21 ft x 12.5 ft dia 190,000 

Helium Recuperator 
 20 ft dia x 150 ft 2,000,000 

Recuperated Closed-Cycle Base Case B (Parametric Point 48)



Atmospheric Furnace


(including preheater) 150 ft x 100 ft x 150 ft 28,000,000



Helium Gas Turbine



Turbine section 
 30 ft x 14 ft dia 675,000 


Compressor section 
 20 ft x 14 ft dia 250,000­


Helium Recuperator 
 20 ft dia x 150 ft 3,000,000 


Combined-Closed Cycle ­ Base Case (Parametric Point 5) 

Pump-up Gas Turbine


Turbine section 
 10.4 ft x 13.8 ft dia 150,000 


Compressor section 
 19.3 ft x 13.8 ft dia 130,000 


Pressurized Furnace 
 30 ft x 70 ft x 150 ft 8,000,000 


Pump-up Vapor Generator 
 30 ft x 60 ft x 50 ft 1,500,000 


Helium Gas Turbine



Turbine section 
 20 ft x 11,3' ft di 160,000 


Compressor section 
 15.4 ft x 9.20 ft dia 120,000 


Helium Vapor Generator 
 15 ft x 50 ft 1,000,000 


Steam Turbine Generator 
 80 ft x 16 ft dia 750,000 


Includes Combustor section.
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7.5.3 Price Determination Procedure



The method of determining pump-up gas turbine prices is identi­


cal to that used for the open-cycle recuperated and combined gas-steam



systems (see Subsection 5.5). Suitable price modifications were made for



the turbine combustor shell and the-combustor subsystem to account for



the full air extraction and the absence of conventional internal combus­


tors.



Closed-cycle helium turbine prices were detrmined in a manner



very similar to that used for the open-cycle gas turbines. Concept de­


signs were prepared and arbitrarily divided into major sections or compo­


nents. The price for each section was estimated and then functionally



related to a principal thermodynamic parameter. Then, as with the open­


cycle gas turbines, the price of each parametric point engine was deter­


mined as the sum of the prices of its components as found from the



functional relationships.
 


The method of pricing the steam turbine generator was identical



to that used in conjunction with the combined gas-steam system and de­


scribed in Subsection 6.5 of this report.



Because.the heat exchange equipment represents a relatively



large percentage of the total cost, the prices of these items (including



the pressurized furnace, heat recovery vapor generator, intercoolers, and



recuperators) play a pivotal role in assessing the closed-cycle energy



conversion--systems. Very little tommercial experience exists, however,



in manufacturing such equipment for closed-cycle gas turbine systems.



The price estimates for this equipment were, therefore, approximate in



nature and should-be regarded as such. The procedure used to determine



the price of this equipment was first to prepare conceptual designs in



several heat exchangers (approach described in Subsection 7.3) and then
 


to prepare price estimates fdr each. Correlations were then developed



to relate parametric variations to the examples. For instance, the re­


sulting correlation developed for the helium recuperator parametric



pricing is described below.
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Recuperator Price, $ = C1 [1 + ai1 + C2 (1 + 2] F] W0 -5 4 
The constants C1 and C2 are 10,250 and 0.00094, respectively. P is the



nominal shell pressure obtained by dividing the cycle top pressure by the



compressor pressure ratio. W is the helium flow rate in lb/s. c is the



recuperator effectiveness, and a±1 and a2 are adders to account for an



increase in price with temperature. The following values were used:



Price Adjustment Factors



Turbine Outlet Temperature oI a2



T < 8330K (10500 F) 0 0



833 0K (10500 F) < T < 894 0 K (ii500F) 0.15 0.35



894 0K (11500 F) < T 0.30 1.00



The two cases with increased pressure drop were individually adjusted ac­


cording to a general curve for plate-fin recuperators (Figure 5.45), even



though these recuperators are assumed to be of the shell-and-tube type.



The reduction from the equation price was 6.35% for 4% AP/P and 11% for



6% AP/P.



Furnace prices were generated for each of the categories:



pressurized and atmospheric pressure, distillate-fired heaters, pressur­


ized fluidized bed fired heater systems, and low-Btu gas-fired heater



systems with integrated gasification plants. The total price for each
 


parametric point furnace system was summed from individual components
 


such as (for the pressurized fluidized bed fired heater systems):



7-95





Table 7.11 RECUPERATED HELIUM CLOSED CYCLE E TSYSTEM 
ICCOUNT NO AUX POWER.MWE PERC PLANT POW OPERATION COST MAINTENANCE COST



4 1.78l1 2E.35622 .00000 11.26S0T


7 1.46407 21.63D30 434,L6714 .00000


a 	 .19939 2.94501 .00000 .1000C
is 1.5B350 23.39530 .00000 .00000


? 1.7375E 25.67171 2.68778 .0OO00
TOTALS 6.76345 2.18335 436.85452 11.26970
RECUPERATED PELIUM CLOSED CYCLE C 7 SYSTEMASE CASE INPUT

NOMIN L POWER. MWE 316.7000 NET POWER, MwE 309.9315


NOM H AT RATE. BTU/KW-HR 1C449.3259 NET HEAT RATE. BTU/KW-HR 10677.5238
ST TURB HEAT RATE CHANGE .0000


CONDENSER


DESIGN PRESSURE, IN -1C A 2.000O NURflR OF SHELLS 	 .0000
NUMBER OF TUBES/SHELL .UMB TUWE LENGTH FT 	 .0000


u. ZTU/HR-FT2-F 	 .000 TERNINAL TEMP 0ZFF, f 
 5.0000


HEAT REJECTION

DESIGN TEMP. F 51.4000 pPRDACH. F 	 15.0000
RANGE, F 	 15.0000 
 OFF DESIGN TEMP. F 	 77.02OD
OFF DESIGN PRES, 1N HO A .0000 LP TURTTNE BLADE LEN, IN .900)



1 2E.ICC 2 or. 3 .327 4 .rrc E. q.!E6 .000 7 2.000 3 .000 9 .0O0 10
12 1.000 1? .rC 13 1.000 14 Coo i1
1 .ooO 17 S;30r0 UO 3.000 	 5.000 
 20 .000
21 2.50O 22 errc.ppr 23 .000 -4 S0.000 25 .0Oo2q 100000.000 27 
 5&.0(0 2' 100or,.00 2S SO000.000 ' .300
31 .750 32 CCCIDO 33 
 .00 34 Goo NJ.6 .7l0
36 954000.000 37 
 *rin 3 1.000 39 1.000 40 300300.00o
41 sr'crc.rot 42 F5E0CCrO 'IS asrrr.tCO 44 2 LCLC Cc-r 4F l5iroc.crt4f,.000 	 47 .. Do ' :.000 43 1.00r 5F - .OO
rl 1.006 E2 -.Z-C



I e.o 2 44850oo.loo 3 .300 1 1.0oo 5

G 1.0CCi 7 1.0 C 9 2400O s 
 .000 10 1460000.0220
11 .I00 2 273UOO.COO 13 .SO 14 4030000.000 15 CS


16 283E*GE.00C 17 .140 1 423CCC.00 12. .090 2C 
 .c2
21 -OD 2z .O&D 
 2i .000 ?4 .000 25 -000

2F -00 27 .OCQ 2e .000 29 a.O 30 .111

31 .000 32 *150SOo33
 91400[-.000 34 .O 35 .036 -0CC[ 37 S1000.C0 72 .140 32 3500r00r '4S .014

S 	 41 SS.100 42 2Z0).gD 43 1?710000t&.0*0DO 44 1.000 45 -2 
46'I -0, 47? CUD0 40 .00 49 2 .000 EC0? 

http:S1000.C0
http:423CCC.00
http:100or,.00


* Heater modules



" Coal and dolomite preparation equipment
 


* Coal and dolomite feeding equipment
 


* Solid waste handling equipment



" Particulate removal equipment



* Special piping.



Section 2 of this report describes-the balance of plant pricing
 


methods utilized by the architect/engineering firm, Chas. T. Main, Inc.



7.5.4 Tabulation of Overall Plant Material and Installation Costs



As described in Subsection 6.5.4, the prices for steam turbine
 


condensers, cooling towers, and related installation costs have been cal­


culated by price correlations preprogrammed into the cost of electricity



calculation. The prices of remaining items were determined by means of



the methods described above.



The price and heat rejection input for the recuperated cycle



Base Case'A (Point R25) as used in the computer program is given in



Table 7.11. Similar input for the recuperated cycle Base Case B



(Point R48) and the combined closed-cycle base case (Point C5) are given



in Tables 7.12 and 7.13, respectively.



Prices and installation costs have also been prepared according



to account code category (including such headings as Site Development,



Excavation and Piling, Plant Island Concrete, etc.). This tabulation for



the recuperated closed-cycle Base Case A is shown in Table 7.14, and



similar listings for the recuperated closed-cycle Base Case B and the



combined closed-cycle base case are shown in Tables 7.15 and .7.16, respec­


.tively. Both unit and total quantity costs are listed in addition to the



percent of the total equipment and installation cost contained within



each particular account code.



Table 7.17 gives similar cost tabulations for the remaining



parametric points of the recuperated closed-cycle system, and Lthe 
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Table 7.12 0ECUPEIATEO H:LIUM CLIEr CYCLE S T zYSTC 
ACCOUNT NO AUX POWERvNWE PERC PLANT PO. OPERATION CE!T MAINTENANCE CCST 

'I 2.75396 s0.O41s5 .00000, 17.70620 
i8 1.83100 39.90883 ,.00000 .000OG 

TOTALS' 4.53796 1.26875 .00000 17.70620
RECUPERATEO RELIUMI CLOSED CYCLE C T SYSTEtPASE CASE INPUT 
NOMINAL POWER, MWE JSE. 200 NET POWER. MWE 361.6120NON HEAT RATE, 5TU/Rk-HR 103EC.7!7! NET HEAT RATE. BTU/l<W--f 10A55.32E5 
Si TURB HEAT RATE CHANGE' .WOOD
CONDENSER 

DESIGN PRESSURE, IN 'G A 2.0000 NUMBER OF SHELLS oOOO 
NUMBER OF TUBES/SHELL
U, BTU/HR-FTZ-F 

.O00 
.WO0 

TUBE LENGTH, FT 
TERMINAL TEMP DIFF. F 

.[EDO
5.13000 

HEAT REJECTION
DESIGN TEMP. F 
RANGE. F 

51.4000 
1.Occo 

APPROACH, F
CFF DESIGN T61P. r 

15.0000
77.0000 

OFF DESIGN PRES, IN HG A .0000 L, TURBINE BLAOE LEN, IN .0000 

1 
6 

-Coo 
.000 

2 
7 

.rcc 
2.000 

3 
3 

.329 
.000 

4 
3 

.tr I 
.000 

5,E5 
10 .000 

11
16 

1.000
.000 

1z 
27 

.p)O
43.000 

13 
13 

1.o0
3.000 

14
19 

1.0o
5.000 

15
20 

.0c0 

21 
28 

1.000 
1300000.000 

22 
27 

iincr.rro 23 
5000 00 -23 

.000 
10000.000 

24 
23 

7E0.000 
2400000.000 

2 
30 .200 

31 
36 
41 
46 

.500 
735000.000 
990O.0ct 

.000 

32 
37 
42 
47 

11C.Cro 
.000 

35CCLC.CDO 
.ODfl 

3! 
33 
43 
42 

.010 
1.000 

lrOcC.ooo 
3.00O1 

34 
33 
44 
49 

.7VC 
1.000 

E£C00.000 
1.000 

3E 
40 
45 
so 

.7C[
254*300.0f0G 
3FIt0C.CCC 

6.000 
51 °OCC 5? .350 

1 

iS 
16 
21 
2f 
31 
36 
41 
46 

1.oQ 
. 1-0g 

.000 
3 c.o 

.000 

.000 
7650000.000 

1.000 
.000 
.ccr 

2
7 

1? 
27 
2? 
27 
3z 
37 
4Z 
47 

3s40oo0C.cO0 3 .300
6 0  ,gO0­ 1.0C0 

ICGQ000.00O I .050 
.3 On 
.000 23 .000.000 2s 1.000 
.150 33 13430000.00)

143CO00.000 i2 .14C 
3S6 .25C 43 .:nOQ O .. DO0 

rrr 4' .ccC 

4 
5 

14 

242, 
34 
3. 
44 
4# 

.00c 5 
,000 10 

7 0370.000 15 
.0o zc 
.000 251.000 3C 
150 35 

- 5qo4 0.OO" ' 
. or 45'1. 

1.000 SC 

1.000 
.0c0 
.05 
. cc 
*1 

1.000 
4040 

#0 



Table 7.13 COM3tNE) AIR-4ELUM-5TTAM TURS CYCLE 

ACCOUNT NO AUX POVERevWE PERC PLANT POW OPERATION COST MAINTENANCE COST 
4 3.15585 50.45633 17.55673 4.56329


14 .00000 .D000 3.30889 occurC


18 3.39970 49.54312 DOoO .0000


TOTALS 6.25455 1.62860 20.87567 4.86322


COMBINED AIR-AVLUM-STEAM TURs CYCLE SASE CASE NPRUT


NOMINAL POWER. MWE 390.3000 NET POWER, MWE 384.0454


N*MQ EAr RATE. 3TUIKW-4R 8215.5152 qET HEAT RATE, BTU/KU-4R 8349.3737


S1 TUR8 EAT RATE CHANGE .0000


CONDENSER


DESIGN PRESSURE, IN HG A 2.0000 NUMBER OF SHELLS i.1tifh


NUMBER OF TUBESfSXELL 6587.3370 TUBE LE43TH, FT 77.4467

U, BTU/HR-FT2-F 591.4577 TERMINAL TEMP 0IFF. F 5.000


HEAT REJECTION


DESIGN TEMP, F 51.4000 APPROACH. F 21.674 
R4NBE. F 23.3030 OFF DESIGN TEMP. F 77.0000


OFF DESIGN PRES. IN HO A .0000 LP TURBINE BLADE LENT IN 25.0000



1 112.83 2 .200 3 .415 4 .abof 5 9.0n9 
5 191.200 7 2.000 8 1076000000.000 9 1.000 0 1.000 

11 1.003 1z .000 13 1.000 14 1.000 i5 .000

is 2.000 17 58.000 18 3.000 .19 5.00 Zn -. Eau 
21 1.03 22 13275.300 23 .000 24 1235.000 25 .000 
26 36315C0.000 27 .000 z2 5100.000 29 8100000.000 30 .500


31 1.03 32 750.000 33 .000 34 1.000 35 1.000 
36 1200000.0fl 37 300.000 38 1.000 39 1.000 40 322C.flfl


41 7700u.000 4O 550000.909 43 1203.000 44 250000.000 45 150300.000


*6 .000 47 .000 48 3.000 49 1.000 50 6.000 
61 .0D0 5z 5.350 

1 1-000 2 19160t00.000 3 .300 4 1.0CC 5 1.000 
6 1.003 7 1.900 3 1.000 9 1.000 10 7410000.000


13 .050 14 1750000.C00 15 .05



1 133303.009 17 .140 I 1970000.009 19 .090 20 G350000.000


11 .100 12 1750000.000 
 

21 .080 22 1.000 23 1.000 24 3220000.000 25 .300
26 B500330.O3 Z7 .300 23 .000 Z9 .000 30 .0


31 000 32 000 33 .000 34 .000 35


36 .0 37 3350O.000 38 .140 39 .230 40,1
41 112800 42 86.100 q4 52200CO0.000
O 44 .000 45 .00s45 .003 S1 .000 f#9 .000 #9 1.00 sogt
51 .0ne 52 .000 53 325.00C 54 2500.000 55 1CAC 

C 

http:B500330.O3


Table 7.14 RECUPERATED XELIUP CLOSLD CYCLE C T SYSTEM ACCCUNT LISTTNC


PARAMrTRIC POINT NO.2!



ACCOUNT NO. P AM, UIIT AFOUTNT FAT ',/UNIT INV S/UNIT pAT COST.3 INS CCST. 

EITF DEVELCPHENT 
1. 1 LAND COST 4CRE 3".O 100.00 .( 63000.00 .0O 
1. 2 CLEARINS LAND ACRE I.0 .cp 100.OC .LO 1?Ee*i4 
1. 3 GRADING LAND ACRE S.q .OC 3000.on .00 1890.00 
1. 4 ACCESS RAILROAO PILE F.D I1ECCC.Co 1ICOr.C E7CO.cO?o 
 56C0uu.03
 
1. 5 LOOP RAILROAD TRACK MILE .0 120000.00 70000.00 .00 .00


1. 9 SIDINC r R TRACK MILE I.- 32EfEO.C0 SO000.00 127500.0C 120OCCC.C


I. 7 OTHFP SITE COSTS 
 ACRE .0 .00 .00 147122.78 147122.73,


PERCENT TOTAL DIRECT COST IN AC7OtNT 
 1 ACCOUNT TOTALi$ S72622.78 IC12721.52
 

EXCAVATION & PILINC 

f 3.00 .o. 1 COMION EXCAVATION YoL t41o:. , .00 7 1z0d.C 

2. PILING FT 7t'OC.f E. C E.50 427600.00 5$!400.CC 
DIRECT COST IN ACCOUNT 2 .SEB ACCOUNT TOTAL,$ 457600.01 677800.00
PERCENT TOTAL 
 

PLANT ISLAND CONCRETE


7.CO 0.0c EIECOO.GO 7040E0.CC
3. 1 PLANT IS. CONCRETE yD3 E8vC.O 
 

3. 2 SPECIAL STRUCTURES YD3 .0 .00 .00 - .00 .00 
PERCENT TOTAL DIPECT COST IN ACCOUNT 3 1.C10 ACCOUNT TOTAL,$ ElEbC.eO 704C00.t0 

HEAT REJECTION SYSTEM


.00 .G0 ir15350.lO 541500.10
4. 1 COOLING TOWERS FACA 21.C 
 

4. 2 CIRCULATINS F?C EYZ EACH 1.0 .00 .BE 6CIE87.30 IS!EZ.IS ! 
4 3 HELIUM PREOOL R EACH9 .0 .0 .00 239393.97 266000.0a 
PgRCENT TOTAL DIRECT COST IN 4CCOUIT4 5.C36 ACCOUNT TOTAL,3 

STRUCTURAL FEATURES


5: 1 STAT. STRUCTURAL ST. TON 85r.11 850.00 175.00 552500.00 148750.00


5. 2 SILOS a BUNKERS TPH r 19CC.CC 750.00 .00 .E0 

FT .0 .00 .on .00 .00
5. 3 CHIMNEY 

1.0 300D0.0.00
S. 4 STRUCTURAL FEATURES 1AH 300CcE.r 
 E-cEtf.Oc 500oc.c0
 

PERCENT TOTAL DIRECT C00T IN ACCOUNT 5 .SC4 ACCOUNT TOTAL*$ 352500.00' 193750.00 

3UILDINGS


G. I STATION SUILOINGS FT7 101Or.1 .J 6 .IE 16COCO.0 160000, cc 
c. 7 ADMINSTRATION FT7 5ODO.f1 I°.00 14.00 80000.00 70000.00 
6. 3 WAREHOUSE & SHOF FTZ lbCOPC.O '12.cc 2.0 120000.00 a£DO.CO 
PERCENT TOTAL DIRECT COST IN ACCOUNT 6 = .313 ACCOUNT TOTAL-S 360000.00 310000.00 

CUCL HANDLTNS9 , STCAC


7. 1 COAL HANDLINC SYS TPH lz.4O 0 Lc C37.72 114:Z 7,ES


7. 2 ULOP oIL HAND. SYS TPH 61.2 .00 .OQ 1329857.69 639292.16 
7. 3 FUEL OL HAND. SYS CAL s5OOO.0 .o .00 76378.21 GE248.E3 
PERCENT TOTAL DIRECT COST IN ACCOUNT 7 4.339 ACCOUNT TOTAL;$ 37S6511.59 1904029.22 

'UEL PROCESSINS


F. I COAL DRYER & CPUSHER TPH .C ,C . .DCCO .CO 
. 2 CARSONIZERS 7PH DO .0n .D0 .00 .00 

8. 3 GASIFIER' TFH .G rc .05 .Cc .co 
PERCENT TOTAL DIRECT COST IN ACCOUNT 1 .000 ACCOUNT TOTALS .00 .00 

http:1904029.22
http:37S6511.59
http:GE248.E3
http:76378.21
http:639292.16
http:1329857.69
http:310000.00
http:360000.00
http:120000.00
http:70000.00
http:80000.00
http:193750.00
http:352500.00
http:500oc.c0
http:300D0.0.00
http:E-cEtf.Oc
http:148750.00
http:552500.00
http:266000.0a
http:239393.97
http:IS!EZ.IS
http:6CIE87.30
http:541500.10
http:ir15350.lO
http:704C00.t0
http:ElEbC.eO
http:7040E0.CC
http:EIECOO.GO
http:677800.00
http:457600.01
http:5$!400.CC
http:427600.00
http:IC12721.52
http:S72622.78
http:147122.73
http:147122.78
http:127500.0C
http:SO000.00
http:32EfEO.C0
http:70000.00
http:120000.00
http:I1ECCC.Co
http:56C0uu.03
http:63000.00


Table 7.14RrCUPtRhTEfl HELIUM CLOSrC CYCLE 0 T SYSTEM ACCOUNT LISTINC 
'AR4'TRIC POINT NO.25Continued 
 

ACCOUNT NO. 2 NAM,, UNIT. AWOLI'T PAT S/UNIT INS U/UNTT 
 

FIRING SYSTEM


1 .0 .00 .00PERCENT TOTAL DIRECT COST IN ACCOUNT S = .000 ACCOUNT TOTAL-$ 

VAPOR CENEPATOP (FI'EE)


10. 1 PRESSURIZED HE FURNACE 1.0 44R50O0.O0 13455000.00 
 
PERCENT TOTAL DIPECT COST IN ACCOUNT 10 4.E11 ACCOUNT TOTAL,$ 
 

ENERGY CONVERTER


11. I Pi4RP UP GT-QEN 3 AUX 1.0 7460000.00 745S99.99 
 
11. 2 HE TURS COMPRESSOR SECT 1.0 r730Ob.CC- 13F50O.CC 
 
!1. 3 HE TURB TURBINE SECT I.U -40300030.00 201500.00 
 
11. 4 HE TURB AUXILIARIES 

P 
I.[ 2GCGOO.CC 4032r0.C 
 

11- S E TURB-3EN & EXCITE 1.0 4230000.00 330700.OD 
 
PERCENT TOTAL DIRECT COST IN ACCOUNT 11 =37.749 ACCOUNT TOTAL,$ 
 

n
COUPLING HEAT EXC-ANCL
 
12. 1 , .0 .00 .Or 
 
PERCENT TOTAL CiQTECT Cn ZN ACCC1T 2.; = ;CC ACCOUNT TCTAL, 

HEAT RECOVCRY hEAT EXCH.


13. 1 UMP UP RECUPfEATOR .C .O0 .00 
 
13. 2 HELIUM RECUPEtATOR a.oD Cr.rCG.rn ISZCOr.OC

4 PERCENT TOTAL DIRECT 'OST t - U1,C0UT3 E .745 ACCOUNT TOTAL,$ 

WATER TREATMENT


14. 1 DEM41' RALILE p SLt" 2CO.rf 7CC.00 
14. ' CONDENSATS POLISLI'n XV .n 12. .30 
PERCENT TOTAL DIRECT COST IN ACCCU T I .000 ACCOUNT TOTALS 
 

POVER CONCITIONINC


15. WTDTRANC O R KVA Ir7 7. .0) .00 
 
PERlENT TTAL SIKECT COST IN A-LT 1E r 1.15 ACCOUNT TCTtL.$ 

AUXILIARY PECF EGUIPV7ENT


li. I =OIISR CEEn P;11:~ W .55 .04 
IF. 2 OTHEF PU4PS }(E .bEklI .
 .12 
15, 3 MISC SERVICE SY KWE z2T07?. 1.17 ?3 
 
16. 4 AUXILIARY BOILER PPH .c 4.CO .80 
 
PEOCENT TOTAL iIR:CT COST IN ACCOUNT Is .503 ACCOUNT TOTALS 
 

PIPE P RITTIN^S


17. 1 CONVENTIONAL PIPING TON IccDE 30OE0 .00 
17 t HOT GA PEINI FT 2!0.0 5600.00 '250.00 
PRRMT TOTALr DIRECT CCST IN ACCOURT 17 2.I1C? ACCOUNT TCTALS 

mAT COST.S INS CCST.S 

.00


.c0c8



Q448500O.0C 1345500S&.0


44E5000U.00 


7460000.00 

2730000.00 

4030000.00 

Z8ECCCO.COG 

423000.00 

2133000O.C0 


,C

VSC 
 

.00 

Ss4rcO.oc 

3qflr'. O 

CE 

.DO 

.0 


1571775.4$ 

1531775.49 


.00 

100557.42 

334704.50 


.00 

435401.92 


focoocc0o.n 
1624000.00

1S 4C(C.CDO 

13455C00.0



745399.99


13CEfCD.C0


201500.00


403200.C0


380170.0a



1EC792.S5



.00


cc
 

.00


iqIsxccc O 

1491000.00 


.r


-or


.AC



3 35*53


3t 3.,3



.00


13731 .47


C03S32.72



CO


22?564.13



isrccE.r0 
552500.00
 
s3sE.[C 


http:552500.00
http:1624000.00
http:isrccE.r0
http:22?564.13
http:435401.92
http:C03S32.72
http:334704.50
http:100557.42
http:1531775.49
http:1491000.00
http:Ss4rcO.oc
http:1EC792.S5
http:2133000O.C0
http:380170.0a
http:423000.00
http:403200.C0
http:201500.00
http:4030000.00
http:13CEfCD.C0
http:2730000.00
http:745399.99
http:7460000.00
http:44E5000U.00
http:Q448500O.0C
http:ISZCOr.OC
http:Cr.rCG.rn
http:330700.OD
http:4230000.00
http:2GCGOO.CC
http:201500.00
http:40300030.00
http:13F50O.CC
http:r730Ob.CC
http:745S99.99
http:7460000.00
http:13455000.00
http:44R50O0.O0


Table 7.14 RECUPERATED HELIUM CLOSED CYCLE G T SYSTEM ACCOUNT LISTING 
Continued 	 PARAMETRIC POINT k0.25


ACCDUNT NO. Z NAME, UNIT AMOUNT MAT S/UNIT IS- S/UNIT MAT COSTt INS COST,$ 

AUXILIARY ELEC EQUIPMENT 
18. 1 MISC HOTERS.ETC 22a857.3 1.40 .17 320400.8S 3sSC5.92 
18 2 SWITCHGEAR & MCC PAN KWE 2G7000.7 1.95 .45 1430551.#4 1281SO0.33 
LS- 3 CONOUI~tCABLEStTRAYS I S540000 .1.32 1.3E 1259279.98 129743_.48 
1A. 4 ISOLATED PHASE BUS FT .0 510.0 450.00 .00 .00 
18. 	 5 LIGHTING & COMMUN KWE 3el42S. .35 .43 133500.37 154CI1 .74


PERCENT TOTAL DIRECT COST IN ACCOUNT 13 3.645 ACCOUNT TOTAL#$ 3113532.62 1GZO510.S



CONTROL, INSTRUMENTATION


19. 1 COMPUTEr EACH 1.0 EECOD.O0 12000 .0!C ODOGO .0 12CCG00


19. 	 2 OTHER CONTROLS EACH 1.0 250000.1 150000. ZSn OO.I 1SI000.Dfl


PEPCENT TOTAL DIRECT COST IN ACCOUNT 1 1.0C4 ACCOUNT TOTALPs 1150fO.00 ISCU



PROCESS WASTE SYSTEMS


20. 1 SOTTOM ASH TPH .0 .OD .00 .00 .DO 
20. 2 DRY ASH 	 TPR 14.7 1012042.95 253a10.74 1012D42.25 253010.74


20. 3 WET SLURRY TPH 81.2 2144922.22 53S230.5 42144922.22 535230.55


20. ' ONSITE DISPOSAL .A... 2 	 -. 65f32.54 	 9650.72 174E335.S7 47384- -.9 
PERCENT TOTAL DIRECT COST IN ACCOUNT 2a = S.342 ACCOUNT TOTALv$ 405301.12 334025.97 

STACK 0Aj CLEANING­

21. 1 PR CIPITATOR EACH .0 324740S.53 E170720.75 .10


21. 2 SCRUBBER KWE . 20,23 3.73 .00 Am


21. 	 3 MISC STEEL & DUCTS .0 .00 .01 .00 cc 
PERCENT TOTAL DIRECT COSTLINLAfCOUNLIS .009.ACC.OUNILTAL $U *0 1 

TOTAL DIRECT COSTS,% 	 1oOSIs31.O0 29776550.75



IC



http:29776550.75
http:1oOSIs31.O0
http:E170720.75
http:324740S.53
http:334025.97
http:405301.12
http:65f32.54
http:174E335.S7
http:535230.55
http:42144922.22
http:2144922.22
http:253010.74
http:1012D42.25
http:253a10.74
http:1012042.95
http:1150fO.00
http:EECOD.O0
http:3113532.62
http:133500.37
http:129743_.48
http:1259279.98
http:1281SO0.33
http:3sSC5.92
http:320400.8S


Table 7.15 RECUPERATED HELIUM CLOSE CYCLE G T SYSTEM ACCOUNT LISTING 
PARAMETRIC POINT N$.4?



ACCOUNT NO. C NAM-, 	 U'flT 	 4IouNT PAT /UNT IN S/JNTT 

;ITE DEVELOPMENT,


1. i LAND COST ACRE 43.0 iocD.co .0E 

.00 60OO.
1. 2 CLEARINS LAND ACRE 14.3 
43.O 	 .00 
 3000.0m
1. 3 GRADING LAND ACRE 	
 

1. 4 ACCESS RAILROAD MILE 6.0 115000.00 1100000.0 
5 LOOP RAILPOAD TRACK MILE .0 12coCf.to 70C00.00
1: 


1 6 SIDTNG 	 R R TRACK 	 MILE 
 1.0 ?!OOO.P 30000.00 
1. 7 OTHER SITE COSTS ACRE , .0 .00 .00 
PERCENT TOTAL DIRECT COST IN ACCOUNT 1 1.14 ACCOUNT TOTAL,$ 
 

:XCAVATION & PILING


2. 1 COMMON EXCAVATION YD3 10C.0 .00 3.DE 
 
2. 2 PTLING 	 FT 8380o. 6.50 0.50 
 
PERCENT TOTAL DIRECT COST IN ACCOUNT 2 r .542 ACCOUNT TOTAL,$ 
 

PLANT ISLAND CONCRETE


3- 1 ,PLANT IS. CONCRETE YD3 11000.0 70.00 80.00 
 
1. 2 SPECIAL STRUCTURES YD3 .0 .00 OC 

3 z 1.103 ACCOUNT TOTAL,$ 
PERCENT TOTAL DIRECT COST IN ACCOUNT 


IEAT REJECTION SYSTEM 
4. ' COOLNC TOWERS eACP 27.0 .o Cc 
 
q- 2 CIRCULATING H2O SYS EACH 1.0 .00 D0o 
 
4. 3 HELIUM PRECOOLER EACH .0 .Do CC 
PERCENT TOTAL DIRECT COST IN ACCOUNT 4 6.10 ACCOUNT TOTAL,$ 

o T'UCTURAL CEATURES 
W f I STAT. STRUCTURAL ST. TON TZC.C EC.CO 175.1C 

5. 2 SILOS & nUNK-RS TP-i .0 1300.GO 750.00 
r- 3 CHIMNEY FT 40C.0 C.C .D 
5. 4 STRUCTURAL EATU -S EACH 1.0 54000.00 92000.00 
PERCENT TOTAL DIRECT COST IN ACCOUNT 5 z 1.376 ACCOUNT TCTAL,$ 

EUlLDINeS


6: 1 STATZON SUILDIN3S TT3 1300000.0 .16 .1 
6. 2 ADMINSTRATION FT2 E00.0 16.00 14.OC 
C. 	 AHOUSE R SHOP FTZ 10000.0 12.00 3.00 
EROENT"OTAL DIRECT COST IN ACCOUNT 8 r .512 ACCOUNT TCTAL,$ 

FUEL HANDLING g STORACE 
a: COAL 1i1NOLNC- SYS TPH 
2 DLOM t HAND. SYS TPH .		 B 

7 3 FUELOOIL LNo. SYS SAL 9S4r00. .01 o00

TAsF.~VTOA's TOTAL DJRETCNT COST IN ACCOUNT 7q= .S'4 ACCOUNT TCTAL,S 

FUEL FROCEVSINC 
8- I COAL DRYER & C;JSH5- TP4 .C .GO .00 
6. 2 CAREONIZEPS TPH . .r1 .tC 
9 S3A IFERS T04 .' .0W 00 
P REN TOTAL DIRECT COST IN ACCONT 
 S z .CCC ACCOUNT TOTALEE 

MAT COST.S INS COST,$ 

43000.C[ cc 
.00 3599.14


.0 129Cnc.ro



575000.00 350000.00


.00
CCO



125OO0 3000r.00
0.OD 
102410.E1 10241E.SI 
845410.1l 8100109.74



.00 5CC0.tC


572000.00 748OOO.OO



. 947CC.tO572000.00 

710000.00 S80000.00


.00 .[O


770OP0.00 SanOOI.D 

-eCs5v,.Q v izcCEi-CC


9557S.10 1?54632.17 

372?7S_.-7 4Z2CC1.tO 
73S3283.06 2177132.12 

4750C.C0 13125c.(r
.00 .00 

435070.S2 FECE.2p


254000.00 S Cfl.Ol) 
1116570.S2 ,8s:56.-3



209000.00 201000.00 
80000.E( 700CC CO 
Z000.0 30000 0 
'O18CE.OD



8 2 
343SS7D0. 537613.41


9F7CC E7 4!4?T605. S37EI3.41 

.00 .130 
.00 .CG 
.000o 
 .00. °0
 

http:S37EI3.41
http:537613.41
http:O18CE.OD
http:201000.00
http:209000.00
http:1116570.S2
http:254000.00
http:435070.S2
http:4750C.C0
http:2177132.12
http:73S3283.06
http:4Z2CC1.tO
http:1?54632.17
http:9557S.10
http:770OP0.00
http:S80000.00
http:710000.00
http:947CC.tO
http:572000.00
http:748OOO.OO
http:572000.00
http:8100109.74
http:845410.1l
http:10241E.SI
http:102410.E1
http:3000r.00
http:350000.00
http:575000.00
http:129Cnc.ro
http:92000.00
http:54000.00
http:30000.00
http:70C00.00
http:12coCf.to
http:115000.00


Table 7.15 RECUPERAT.D nELrULM CYCLE N T SYSTEM ACCOUNT LISTING 
RARAYrTRIC PO6nT V0.4-Continued 

ACCOUNT 0O. 9 NAME, UNT AMOUNT M"T S/UNIT INI $/UNIT 

rIR!NT SYSTEM


S. I 	 .l .00 .10 
 
PERCENT TOTAt' O:RECT COST IN ACCOUNT 9 .000 ACCOUNT TOTAL.$ 
 

VAPOR GENERATOP CFf:El,)


10. 	 1 PRESSURIZED HE FURNACE 1.0 5Z140 .CO 1EE470G0.OD 
 
PERCENT TOTAL DIRECT COST IN ACCOUNT 10 =4B.209 ACCOUNT TOTAL,$ 
 

ENfRGY CONVERTER
 

11.' 1 PUMP UP 61-ZEN & AUX - . .0.0.f 
12. 2 HE TUR COMPRESSOR SECT -10 3Godo00 19r3000.0 
 
11. 3 HE TURB TURBINE SECT 1.0 7370000.0 3650O.0C 
 
11. 4 HE TUR3 AUXILIARIES 1.0 3:40000.0D 551600.00 
 
ii. 5 HE TURB-SEN e EXCITER . 1.0_ .S81OtCO.co E12899.Ss 

PERCENT TOTAL DIRECT COST IN ACCOUNT It =I5.702 ACCOUNT TOTAL.$ 

COUPLING HEAT £XCHANCSR


12. 1 
PERCENT TOTAL DIRECT COST IN 
 

4EAT RECOVERY HEAT EXH.


3. 1 PUMP UP RECUPERATOR 

13. 2 HELIUM RFCUPERATOR
pERCENT TOTAL DIRECT COST I 

WATER TREATMENT


14. 1 DEMINERALIZEq 2PM 
 
14. 2 CONDENSATE POL15HNC HWE 
 
PERCENT TOTAL MR:Z2T COST IN 
 

DOWER CONDITIONING


15. I STD TRANSFORMER KVA 
PERCENT TOTAL DIRECT COST IN 

AUXILIARY MECH EQUIPMENT 
is. I $OILER FFEE OVMP OKWE 
!6. 2 opiSP PUMPS KWE 
 

C .00 .00 
ACCOUNT 12 = .000 ACCOUNT TOTAL#$ 

1.0 7E50000.O 1147500.0f 

MAT COST.$ INS CO7,3



.00 .CC



.0O 00



54S0DCO.CC 1647CC..tC


55490000.OD ISS47000.O0



10 13430000.00 2014500.00 13430000.00ACCOUNT 1! rlE.2t0 ACCOUYT TOTAL'S 2DO8000G.CC 

.0 
 
.0 

ACCOUNT 14 = 
 

.0 
ACC0'JNT 15 = 

.E 
 
IS934..4



16. 3 H SC SERVICE SYS VE d1h" 
1 a AXILiTARYfL =0ILER PPH .0
P RCENT TOTAL DRECT COST IN ACCOUNT 16 

PIPE 9 FITTINCS 
17. 1 CONVENTIONAJ PIPINT TON 110.0 
 
17. 2 HOT tAS PIPLNe FT 20.EC
oPqCrNT TOTAL D7'TT 017T :J AC!'tI'T i7 

360o0oo.0O 
 
73700C.00 
 
3240000,00

S10000.Ct 
21790000.00 
 

Cc 
 
QaO 
 

7E5C(C0.CC 

200n.0 700.00 

Ifr .30 

.000 ACCOUNT TOTALiS 

CE .OC 
7S ACCOUNT TOTALs 

.55 .04.00 

a'. 

4.00 .80
ACCOUNT-0 TOTALs 


3VZO.00 1800.00 

srr. O 2250. U
1.'74 ACOUNT TOTALi$ 


co. 
 
,C
 
.00 
 

1fl2413,S?
102413.59 

2 SIS.7 
.00
26SOt.C4 

330000.00 
 
I24000.CC
150,OflO 
 

183000.00


3E 5CC.CO
 

55100.ro


61.SS. 9 

171S9Sz.97 

CC


.or



1147EC0.CO 
Z014500.00
zir-CC.o 

.Do


SO 
.00



21E .


Z2S4S.2



O



16 g
a90I6 S47..B 

lsSOOO.08


ss SCC'CO

aE5SOr.0O



http:aE5SOr.0O
http:lsSOOO.08
http:Z014500.00
http:1147EC0.CO
http:171S9Sz.97
http:55100.ro
http:183000.00
http:I24000.CC
http:330000.00
http:26SOt.C4
http:102413.59
http:7E5C(C0.CC
http:21790000.00
http:S10000.Ct
http:73700C.00
http:360o0oo.0O
http:2DO8000G.CC
http:13430000.00
http:2014500.00
http:13430000.00
http:ISS47000.O0
http:55490000.OD
http:54S0DCO.CC
http:1147500.0f
http:E12899.Ss
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http:3650O.0C
http:1EE470G0.OD


SYSTEM ACCOUNT LISTTNC
Table 7.1 5 RECUPERATED HELIUM CLOSVD CYCLE C T 
 
PARAMrTRIC POINT NO.4
Continued 

UNIT AVOUNT MAT %/UNIT INS s/UgtT M.T COSY's IhS CCST.SACCOUNT NO. 9 NAME. 
 

AUXILIARY ELEt EOUIPMENT


300420.5 1.40 .17 420599.76 51071.49
18. 1 MISC MOTERStETC 
 

1.25 .45 2C15820.05 13F139.24
18. Z SWITCHGEAR 9 MCC PAN KUE 320420.5 
 
F ?t7: S300. 1.37 1.36 
 97199.99 999539.9918 3 CONOUITCA8L S.TRAYS 


10 D 4SO.- .CD t0

18. 4 ISOLATED PHASE EUS FT 
 .G 


.43 150210.27 184544.95
19. 5 LIGTIN 
 & COMUN KWE 423172.2 .35 

ACCOUNT 18 .293 ACCOUNT TOTALiS 355E819.0O, 137C404 7
PERCENT TOTAL DIRECT COST IN 
 

CONTROL, INSTFUMENTATION


19. I COMPUTER EACM 1,' SSOOOO.DO IOUG0.00 aSOQO95 O 10000.oD 
1S. 2 OTHER CONTROLS EACH 1.0 EODCO.C ZF000,00 E3600t.OO, 3TCo0{.


PERCENT TOTAL DIRECT COST IN ACCOUNT IS 
 .SSG ACCOUNT TOTAL,$ 950000.00 4SO0O.OO



OROCESS WASTE SYSTEMS


.00 .c C0



?0. 2 DRY ASH 
 
20. 1 BOTTOM AS14 TPHF.c .0 


TPM .O .DO .00 .00 .DO


TPH .0 .00 .00 
 .00 .10
20. 3 WET SLURRY 


20. 4 ONSXTE DISPOSAL ACRE .D 1976.4S 11070.39 .00 .00


ACCOUNT TOTALY 
 .CD .tO'
PERCENT TOTAL DIRECT COST IN ACCOUNT 70 -CrO 


STACK GAS CLEANING


.00 .n .Do .nO
21. 1 PRECIPITATOR EACH 2.0 
 

21. Z SCRUBBER KWE .0 IC.2G P.31 .00 .CO


.00 .00
21. 3 MISC STEEL & DUCTS 
 .0 .0O .00 


,Cc
PERCENT TQJAL DIRECT COST rn ACCOUNT Z1 0CtO ACCOUNT TCTALs$ .el 
 

TOTAL DIRECT COSTS.S I1 2ECS.CC 
 f43311?.
 

http:11070.39
http:4SO0O.OO
http:950000.00
http:E3600t.OO
http:10000.oD
http:IOUG0.00
http:SSOOOO.DO
http:355E819.0O
http:184544.95
http:150210.27
http:999539.99
http:97199.99
http:13F139.24
http:2C15820.05
http:51071.49
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Table 7,16 COM31NE) 4IR-4ELIUM-STZM TURt CYCLE ACCOUNT LISTING


PARAMETRIC POINT NO. 5



4CC3U4T 40. & NAME. UNIT AMOUNT MAT S/UNIT 14S S/UNIT MAT COSTeS 

SITE 1EVELOPMENT


1. 1 LAND COST ACRE 58.0 1000.00 .0 58000.OE 
 
1- 2 CLEARING LAND ACRE 19.3 .90 600.00 .00 
 
1. 3 GRADING LAND ACRE 58.0 .00 3000.00 .cc 
1. 4 ACCESS RAILROD MILE 5.0 115000.00 t10000.00 575000.00 
1. 5 LOOP RAILROAD TRACK MILE .0 120000.0D 7000C.00 .00 
I. 5SI014 R R TRCK "*ILE 1.3 12SO00.02 8000.BEL 125000.0D 
1. 7 OTHER SITE COSTS ACRE .0 .00 .00 136097.86 
PERCENT TOTAL DIRECT COST IN kCCOUNT 1 z 2.019 ACOUNT TOTAL,$ 894037.85 

EXCAVATION S PILING 
2. 1 COMMON EXCAVATION YD3 3982S.C .00 3.00 .00 
2. 2 PILING FT 10620.33 5.50 8.50 690300.00 
PERCENT TOrAL DIRECT COST IN ACCOUNT Z 1.873 ACCOUNT TOTAL*$ 690300.00 

PLANT ISLAND CONCRETE


3. 1 PLANT IS. CONCRT? 703 13275. 70.0O 30.00 329250.00 
3; 2 SPECIAL STRUCTURES YD3 .0 .00 .00 .00 
PERCENT TOTAL DIRECT COST IN ACCOUNT 3 2.178 ACCOUNT TDTALwS 329250.20 

4ET IEJECTION SYSTEM 
4. 1 COOLING TOWERS EACH E.c .00 .00 921000.00 

S 4. 2 CIRCULATINS 41Z SYS EAC4 1.0 .00 B0O 350951.63 
4. 3 STH SURFACE COND FTZ 135589.0 .00 .00 615194.33 
4. 4 ORGANIC VAPOR COM3 .0 .00 .00 .00 
PERCENT TOTAL DIRECT COST IN ACCOUNT 
 4 ± 3.106 ACCOUNT TOTALes 1897155.95 

STRUCTURAL FEATURES


5. 1 STAT. STRUCTURAL ST. TON 1285.3 650.39 175.00 835250.00 
5. 2 SILOS 8 BUNKERS TPH .0 1800.00 750.00 .10 

FT .0 .00 .00 .D05. 3 CHIMNEY 
 
5. 4 STRUCTURAL FEATURES EACH 1.0 322000.00 77000.00 3zz0O0.0 
PERCENT TOTAL DIRECT COST IN ACCOUNT 5 1.595 ACCOUNT TOTALeS 1157250.00 

3UILDINGS


6. 1 STATION BUILOINOS FT3 363150C.0 .1 .16 581f1*0.Ct 
6. 2 AOIINSTRATION FT2 . 16.3. 14.00 .00
 
5. 3 WAREHOUSE 8 SHOP FTZ 5000.0 12.00 8.00 60000.00 
PERCENT TOTAL DIRECT COST IN ACCOUNT - 1.380 ACCOUNT TDTALos S41040.00 

FUEL 'ANDLINS 3 STORA3E


7. 1 COAL HANDLING SYS TPH .0 .00 .DC .Do 
7.'2 DOLOMITE HAND. SYS TPA .0 .00 .00 .00 
7. 3 FUEL OIL HAND. SYS SAL 8100600.0 .cc .01 732240.00 
PERCENT TOTAL DIRECT COST IN ACCOUNT 7 1.4ZO ACCOUNT TOTAL*$ 732240.00 

WUEL PROCESSIN3


8. 1 COAL DRYER & CRUSHER TPN .0 .00 .00 .c 
8. 2 CARBONIZERS TPA .0 .00 .00 .00 
8. 3 GASIFIERS TPN .0 .00 .Go .00 
PERCENT TOTAL DIRECT COST IN ACCOUNT 8 .330 ACCOUNT TOTALS .00 

INS :OST,$ 

.Ou


11598.84



14fCC.O 
.550000.00



.00 
80800.08 

136027.85 
351695.59



119475.00 
932700.00


1022175.00



1062000.00


.00 

1962900.00 

45!EC00.0 
484003.93



.00 

.00


943O03.93



224875.00 
.00 
.00



77CO.00 
331875.00



581i4C.C 
.D0



40000.D 
521040.00 

.00 
.00 

56596S.99


56SS9.99



.00 
.00 
.D0



.00 

http:56SS9.99
http:56596S.99
http:521040.00
http:331875.00
http:224875.00
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http:921000.00
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http:329250.00
http:690300.00
http:690300.00
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Table 7.16 COMBINED AIR-HELIUM-STEAM TURE CYCLE ACCOUNT LISTING 
PARAMETRIC POINT NO. 5



-ACCOUNT NO. 8 NAME. 

Continued 
 

UNIT AMOUNT MAT $/UNIT INS S/UNIT MAT COST.S INS CCSTtS



FIRING SYSTEM


.0 .00 .00 .00 .00
S. 1 
 

PERCENT TOTAL DIRECT COST IN ACCOUNT 9 = .DOC ACCOUNT TOTAL,$ .00 .CO
 

VAPOR GENERATOR (FIRED)


10. 1 PRESSURIZED HE FURNACE- 1.o 191OOO.33 5748000.03 131OOO.00 5748l00.O


PERCENT TOTAL DIRECT COST IN ACCOUNT 10 =27.241 ACCOUNT TOTAL,$ 19160OOD,0C 574800C.0



ENERGY CONVERTER


11. 1 PUMP UP ST-SEN & AUX 1.0 7410000.33 711939.99 741000.00 740999.99 
11. 2 HE TURB COMPRESSOR SECT 1.0 1750000.00 87500.00 175000ODC 87500.00


11. 3 HE TURS TURBINE SECT 1.2 17SUD00.o 0 87500.00 1750OO.0l 87500.00 

1.0 133000000 1862130.00 1330CC.U000- 18620.fl0.
11. 4 HETURB AUXILIARIES 
 
11. 5 HE TUR3-3EN S EXCITER 1.0 1870000.00 168300.00 1870000.00 168300.00 
11- 6 STEAM TURBINE-BEN 8 AUX 1.0 7909649.12 632771.53 7909649'.12 632771.93 
PERCENT TOTAL DIRECT COST IN ACCOUNT It :2S.163 ACCOUNT TOTAL,$ 22019#9.00 1933271.87 

COUPLING HEAT EXCHANGER


GEN 1.0 3220000.00 965000.0 3220000.O0 966000.00
12. 1 PUMP UP HEAT REC VAP 
 

12. 2 HE TUR3 VAPOR SEN 	 1.0 8500000.Dfl 2550000.00 8590000.00 2550000.00 
PERCENT TOTAL DIRECT COST IN ACCOUNT 12 =16.663 ACCOUNT TOTAL.$ 1172000.00 3516000.0o 

HEAT RECOVERY HEAT EXCH.


.9 .30 .00 .G .00
13. 1 PUMP UP RECUPERATOR 
 

.00 .00 .00 .00


DESUPERMEAT RECUPERATOR .3 .31 .00 .00 .00


13. 2 HELIUM RECUPERATOR 	 .0 

13. 3 
PERCENT TOTAL DIRECT COST IN ACCOUNT 13 = .000 ACCOUNT TOTAL,$ .00 .00



WATER TREATMENT


32.S Z530.30 70a.03 764803.00 21414.40
L1. 1 DEMINERALIZER 3PM 
 

.30 239000.00 57360.00
14. 2 CONDENSATE POLISHING KWE 151200.0 1.25 
 
)PERCENT. TOTAL DIRECT COST IN ACCOUNT 14 : .1131 ACCOUNT TOTAL.S 315480.00 73774.#C
 

'OVER CONOITIONINS


15. 	 1 STO TRANSFORMER KVA 477033.3 .Cc .00 1634530.313 32690.51


PERCENT TOTAL )IRECT COST IN ACCOUNT 15 = 1.823 ACCOUNT TOTAL,$ 1534530.30 32690.61



AUXILIARY MECH EQUIPMENT


16. "1 BOILER FEED PUMP &OR.KUE 221227.3 .55 .04 121675.00 8849.09



.88 .12 198701.90 27395.71
16. 2.OTHER PUMPS KUE 225797.6 

73 528366.41 329664.52
16. 
 3 MISC SERVICE SYS KWE 451595.2 1.17 


15. 4 AXILIARY BOXLER PP14 .0 4.00 .80 .00 .00


1.328 ACCOUNT TOTAL,$ 848743.31 365505.32
PERCENT TOTAL DIRECT COST IN ACCOUNT 16 = 
 

PIPE 8 FITTINGS>


TOM 753.0 3000.29 180000 2250000.00 130000,09
17. 1 CONV.NTIONAL PIPINS 
 

3z5.D 2500.00 1000.00 8i250O.t 325C00OO *

17 2IIOT GAS PPNG FT 
 
PERhNT TOTAL DIRECT COST IN ACCOUNT 17 = 5.181 ACCOUNT TOTAL,$ 30S2500.00 1675000.00



http:1675000.00
http:30S2500.00
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http:1933271.87
http:22019#9.00
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Table 7.16 COMBIED AIR-HELIUM-STEAM TURB CYCLE ACCOUNT LISTING 
Cont±nued 	 PARAMETRIC POINT NO. 6 

ACCOUNT NO. 8 NAME. UNIT AMOUNT MAT $/UNIT INS $UNIT MAT COST.$ INS COSi$" 

AUXILIARY ELEC EQUIPMENT


18. 1 MISC MOTERSETC 451595.2 1.4O .17 532233.31 7677o1 9


18. 2 SUITCHBEAR &,MCC PAN KWE 451595.2 1.95 .45 1216610.69 20321 5


18. 3 CONDUZTCASLES.TRAYS FT 12l0001.0 1.3 1.36 1583999.98- 1531999.98

18. 4 ISOLATED PHASE BUS FT 300.0 510.00 450.00 153000.0U 135000.0c


18. 	 5 LIGIYINa 9 COMMUN XWE 451595.2 .35 .43 158058.33' 194185.95 
PERCENT TOTAL DIRECT COST IN ACCOUNT 18 = 6.546 ACCOUNT TOTALPS 3743902.28 2241114.94 

CONTROL, INSTRUMENTATION


19. 1 COMPUTER- !ACA 1.2 553000.30 120lf.fl SSUOflios 12000.00


19. 	 2 OTHER CONTROLS EACH 1.0 250000.0 i 00. 250000.00 1S0000.0 
PERCENT TOTAL DIRECT COST IN ACCOUNT 19 z 1.052 ACCOUNT TOTALw$ 80OO00.0 152000.00 

'ROCESS WASTE SYSTEMS


20. 1 BOTTON ASH TPH 0 .30 .00 .00 .00


20. 2 DRY AS4 TP4 .0 .0000 .00 .00


2f. 3 WET SLURRY TPH .0 .00 B00 .00 .00


03. 4 ONSITE DISPOSAL ACRE - .0 7576.9 11070.89 .00 .00


PERCENT TOTAL DIRECT COST IN ACCOUNT 20 = .000 ACCOUNT TOTALv$ .00 .cc 

STACK GS CLEANING


21. 1 PRECIPITATOR EAC4 .0 .3g .00 .00 .00

21. 2 SCRUBBER 	 KWE .0 20.45 8.82 .00 .00 
21. 3 .IIIS STEEL & )UITS 	 .0 .00 .00 .00 .00 
PERCENT TOTAL DIRECT COST IN ACCOUNT 21 .000 ACCOUNT TOTALS .00 .q0



TOTAL DIRECT COSTSv$ 	 7DZ4S13]1of0.fl 
 SOZEl.25
 

0



http:SOZEl.25
http:11070.89
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http:1216610.69
http:532233.31


Table 7.17 - RECUPERATEr ELIUM CLOSED fVCLE G T 'YSTFM VVARY FLANT RESULTS 

Continued



MARANETRIC POINT 	 1 2 4 F C 7a 

TOTAL CAPITAL COST ,Ms 151.52 149.45 142.30 132.67 191.17 17G.55 170. G2 151.16 
p PRESS HE FURNACE 'Ms 12.690 12,.44G 12.300 12,0EO 24 ,3?0 23 C4C 2- .23C 2_43BE 
L PUMP UP 3T-GTN ,Ms 7.419 7.410 7.410 7.410 7.410 7.410 ,i*40 7.410 
A 14ELIUM CAS TUR5-CEN 'M$ 13.890 1 BZ5 21.77C 10.430 13.760 13 C70 12,q2C 11.42C 
N PUMP UP RECUPERATOR 9 PIPING So2G1 3.ZG1 3.2G1 9.261 9.261 3.261 9.261 9.261 
t HELIUM RECUPERATOR 8,PIPING 13.130 !C .820 S.53C 9.11C 14.830 5 .550 P .410 7.00 E 

R TOT MAJOR COMpONENT COST 'HI$ Sk. 371 12.916 50.271 47.271 69.641 62.931 GO0.7 41 5 7.641 
E TOT MAJOR COMPONENT COST,$/KWE 29 .CG1 12S.007 133.CE4 203.475 21E.2e6 SE3.E31 121.483 I5E°37C 
S-BALASMCE OF PLANT M:OST %$/KWdE 62 IZZ 53,93.4.. 53.153 62.4.02 55S.295 52.690 52.031 52.6D8 
U SITE LABOR 'Ir/KWE ED .256 59.186 SC.165 65.565 55 .694 61.S21 51,555 64.168 
L T07AL DIRECT COST ,$/KWE 32V.4653 307.534 306.373 331.447 336.274 308.132 305.519 313.146 
T INDIRECT COSTS ,$/KWE 3C,.74E 3C.185 3C.G84 33.438 33.504 31.EEO 31.E97 32.725 

PROF & OWNER COSTS $/KWE 25.-&3 2 24. Gl 24.67(l 28-516 26.9C17 24.651 24.441 251052 
E!CONTINGENCY COST $/KWE 24.1335 13.022 22.965 24.343 25.560 2Z .'34 23 .174 23.56 C 
R ESCALATION COST S$/KWE 73.1R4 70,101 59.695 73.032 78.980 7BrIC 71.6135 72.432 
E TNT OURING CONSTRUCTION ,$/KWE 82.992 79.362 70.798 82.228 B 8.761 e2.E33 S1.439 E2.106 
ATOTAL CAPITALIZATION- v$/KWE 556.962 534,.805 535,16q 571,065 590.982 542.338 537.366 5149,0ZI


KCOST OF ELEC-CAPITAL MILL S/KWE 17.607 1E.506 1 G. 18 18.13B3 1E.E32 17.IE3 17.[03 17.356 
D COST OF ELSE-FUEL HILLS/KWE 29.235 29.933 31.354 3S.890 26.321 25.641 2G.27S 28.401 
0 COST OF ELEC-OPSM AIN MILL S/KWE .548 .545 .5R3 .548 .545 E5g ,E48 .548 
WTOTAL COST OF ELEO MILLS/KWE 47 439 47 283 43.520 514. 4UO_ 45.5'12 4f3.352 43,8?7 46.305 
N 	 COE C..5 CAP. FACTOR MILLS/KWE FZ.5 3 2,472 54,CC7 ED,008 51.258 4Eft13 4SC39 51.623 

COE D. Q :.AP. FACTOR MILLS/KWE 44.HE4 4q.043 45.573 31.07-1 41.364 40.060 q0.554 42.976 
COE,1.2XCAP. COST ,MILLS/KWE !C.5CI r.SCS 52.2C3 5?,C 3 45E.27e 4e.7 5 47.227 45 .T76 
COE 1.ZXcU!:L COST M7ZLLS/KWE 37.23Z -.3.2"54 5.1,31 El.G5Z50.90g4 4S.481 49.032 51.935 
COE ( CONTINGENCY=E} ,MILLS/KWE 4C.3&4 4IC.276 47. 15 T3.423 44.411 42.315 42 .203 4E.269 
-COE {ESCALATION=O) .MILLS/KWE 44.o731 44.742 46.2--3 51.34o 42.sr64 40.706 41.216 43.672 

14RAMETRIC POINT 	 I QD 11 12 !3 14 1 S Ii 

TOTAL CAPITAL COST ,m$ 2C3 .93 -E.32 234.17 22C .27 I5? X3 2R4 .21 14 .2F 2 1.6 C 
p PRESS HE FURNACE 'Ms; 5-.,340 O.001 46.1-C 4E.350 ?3.540 37.570 22.980 Z3.3E0 
L PUMP UP GT-CEN 'I's 7.41C 7.411 7.411 7.410 7.°2c 7. 1E 7.qlC 7.41C 
A HTLIUM SAS TUR:S$N 'ms 13.31" 13.500 13.141 12.400 11.G30 15.220 11.63D 13°OO 
N PUM1P UP RECUPEFATOR C PIPINC 9.2c1 5.ZF1 9.261 9.261 4.122 1S565 4 .122 1E.555 
T HELIUM RE UPERATOR V.PIPING 17. 820 24.210 3.810 6.450 5.660 33.420 3.320 21.030 

R TOT MAJOR COMPONENT COST ,M$ 2L .641 '4 °3 1 27.012 ?11 E 2.542 1175.ES5El .222 BE .26E 
z TOT MAJOR COMPONENT COST,$/KWE ZF5,.355 2,4.243 741..218 243.34S I3?.337 329.313 157.013 ZED .10 8 
S BALANCE OF PLANT COST S/KWE E3222 4e.918 48.157 45.252 57.046 E3.eG0 53,.575 51.545 
u siTS LABOR ,$/KWE -SS. 39n i .30S 79.224 78.458 63.341 96.236 59.GO02 9.108 

DIRECT COST 	 .46E - 72EF270,CE3L TOTAL $/KWE q4.571 Z 4,B .. ZV- .24 R6CECS 23C F95 371,.45? 

T INDIRECT COSTS e$.KUE 44.054 41.465 3 .8 4 4C.Ol 3 32.3134 43,331 3r.397 35.244 


PROF OWNER COSTS ,$/KWE 33.FFE -1,5E7 2 .SC? " Er E Z4.21, 3T7,35 3 22 .443 22.717 
3CONTINGENCY COST , $/I(WE 3Z. 54 'r..297 2 3.5 B5 2 .244 2273- 35 .74 4 2i.160 2 .2 31 
R E CALATION COST '$/KwE .101,ELI$ S4,ECE S5!7Z B-5.172 ES5. 5- 210 EEl E5,.74 87.763 

IN URING CONSTRUCTION $/KWE 115. 77G !rS 1 7 102.046 100.322 73.194 123.597 74.Ir0 19.°876 
A TOTAL CAPITALIZATTON ,$/KWE 75, .591 70C.75t CCZ.C7 EF5.42G E?1.V51 F2r.E44 4S4.245 E52.4141 
K COST OF ELEC-CAFITALVMILLS/KWE ?3. 790 -2.154 ?0 .313 70.751 16.783 -5.942 15.621 20.625 
D COST OF ELSE-FUEL ,MILL S/KWE 2Z,.770 -3.335 23.582 24.774 22.S36 Z4,.165 27 .732 24.522 
o 	 COST or 5L EC-OP& MAIN MILLS/KWE .548 .548 .58 548 .548 .548 . 548 .54s .58 
W TOTAL COST OF EL EC ,MILL.S/XWE 4F.102 4E.r7G 4E5*E75 46,073 4F.271 C .EEC 42 S51 4E.695 
mC OE 0.5 C4P. FACTOR MTILLS/KWC E 357 - '.T7 4 511.473 32:41P 51 .42 5 .d 450 4 9 7 4 5.1.994 

COE r,.? CAP. 	 MILLS/KWE a. 
 4l.C7E 42.1IE7 ASERE 4E .617 41.E 47 42.753FACTOF 	 -157 O­.COE 1.7XCAP. COST ,MILLS/KWE 5' ;G F1.467 49.2Ca 50.223 43.529 55.744 47.075 49.820 
COE I.2ZO:UEL COST MILLS/KWE 5Z.862 5c 7C3 49.757 51.026 52 C58 55.3E E 49 .!07 51-.539 
COE ( CONTING ENCY=O) ,MILLS/KWE 47.661 44,5689 43.808 44.920 45.272 48996 43.019 44.435 
COE (ESCALATION=r) H ILL s/KwE 44.397 i1Z°571 41.8C8 42.8C7 4?.732 48EE 41 E73 42.4S3 



Table 7.17 - RECUPERATED HELIUM CLOSED CYCLE C T -YSTEMSUMNARY PLANT RESULTS 
Continued



FAPAMETRIC POINT 	 17 is 12 2c 21 2? 23 24



TOTAL CAPITAL COST .M$ 145.31 1Z.21 140.92 135.02 267.80 253.05 235.32 223.34 
P PRESS HE FURNACE iMS 22.620 '3.4C0 ?2.140 20.700 50.190 44 E5C 5c.1 E3.001: 
L PUMP UP OT-GEN iMS 7.410 7.410 7.410 7.4t0 G.630 7.4GO G.690 8 G2U 
A HELIUM GAS TUIR-GEN ,MS 11.540 13.030 11.050 11.720 16.040 15.2CC 12 .886 14.590 
N, PUMP UP RECUPERATOR & PIPING 4.122 129.565 4.122 19.565 7.722 7.722 .OO .GCO 
T HELIUM RECUPERATOR & PIPING 3.530 18.2Sj 3.090 15.340 10.T40 10.570 2SA30. 1t.Zsc 

P TOT MAJOR COMPONENT COST .,mS 4S.222 '1.755 47.8a2 74.735 91.572 85.302 7.160 72.490
E TOT MAJOR COMPONENT COSTt/KWE 164.222 242 .9? 167.718 251.001 272.632 252.e75 779.12G 227.154 
S 3ALANCE OF PLANT COST S/WE 52.991 51.583 53.245 53.062 73.290 73.072 84.396 79.49C 
U SITE LABOR ,$/KWE 58.333 70.23C 66.4t3 71.414 98,465 E5.565 107.78I--SS5268 
L TOTAL DIRECT COST S/KWE 276.265 371.679 281.365 375. 76 450.394 433.512 470.204 359 
T INDIRECT COSTS St/KWE 30.081 35.766 36.8C5 3E.421 50.127 '9.738 54.S68 45.51

PROF 8 OWNER COSTS %5/KWE '22.101 22.734 22.505 30.038 36:032 34.6.81 37,616 31.673
B CONTINGENCY COST ,s/XWE .20.830 9'.284 21.105 22.2S4 34.0G 32.72 34.557 29.785 
P ESCALATION COST *$/KWE r4.3S2 37.249 54.963 86.584 105.894 101.558 107.379 92.323 
E INT DURING CONSTRUCTION *$/KWE 73.021 92.Ie 73.582 98.186 120.197 115.222 121.455 104.651 
A TOTAL CAPITALIZATION p$/KWE 436.631 651912fl494.330.554.93 797.3139 766.440 326.479 693:37

COST OF ELEC-CAPITAL.MILLS/KWE 15.385 20.668 15.627 20.706 25.205 24.229 26.127 22.12
O COST OF ELEC-FUL ,MILLS/KWE 27.825 25.487 29.233 27.998 9.378 8.521 9.890 8.814
1 COST OF'ELEC-OPEMAIN.MILLS/KWE .548 .548 .548 .548 1.49 ± .E1 2.Ca2 1.917 
V TOTAL COST OF ELEC *MILLS/KE 43.75r 46.643 45.JUj 49.251 35.432 34.621- 38.089 32.859
N C0 V.5 CAP. FACTOR .MILLS/KWE 45.4q5 52.S37 51.213 55.575 42.104 42.CCl 4E.638 39.604 

COE rl.9 CAP. FACTOR .MILLS/KWE 40.7S1 42.704 42.4r3 45.229 30.631 30.003 ,33.11525.233
CO 1.2XCAP. COST ,MILLS/KWE uG.635 0C.7E5 45.533 C3.3S3 4C.473 3S.466 4 .


C0 1.2XFUEL COST *MLLS/KWr 45.323 -l.740 51.262 54.351 37.107 35.325 4C0.65 34.618C0E (CONTINSENCY=I .MILLS/XWE 42.541 45.391 44.427 48.OG 33.S28 33.179 36 .61 31.545 
COE (ESCALATIONZO) ,MILLS/KWE 41.417 43.463 43.054 46.103 31.578 30.926 34.196 29.500 

0 ARAMETRIC 0OINT 	 25 ;s 27 23 29 30 31 32



TOTAL 	CAPITAL COST 4s 2Zf1.-2 75t.Ic 234.E3 236.7 273.22 372.52 276.91 255.88


P PRESS HE FURNACE *t's 4-. SO 47.120 41.530 42.790 58.120 45°77 S39SO 52.930

L PUMP UP CT-CEN .r$ 7.4EV C.7SC E.7SC .790 E.7O E.7S 6 .19. 6.79C 
A HELIUM SAS TURF-GEN ,'It 1:.37f 19.231 18.770 1 .DO 21.290 20.320 22.010 20.421 
NN PUMP UP RECUPERATOR R PIP INC .000 ..Ccc .0i .0CC .,00 _U, C0CDOE
T HELIUM RECUPERATOR a PIPIN( .940 22.200 12.030 11.760 12.930 12.S 0 19.50 12.630 
p TOT MAJOR COMPONENT COST ,4s 7.12C :1.341 79.12D 7?.4C6 99.136 EE.8COCC2.280 92.671 

TOT MAJOP COMPONENT COST,/KWE 245.603 ! 35.312 ?2S.830 235.252 255.184 251.166 230.854 252.7515 	 S BALANCE OF PLANT COST ,S/KWE sO.017 21.66C 72.417 75.402 55.t6 1S.7S9"'GO.73i '57.195 
U SI- t OR ,S/AWE 9'.075 20.796 92.9G3 fl.179 92.503 155.686 96.498 81.702

TOTAL RECT COST .$/ WE 421.64 461.783 335.211 36 .233 SE4.7:E EE7.E48 L28.C92 391.645
C 	 T INDIRECT COSTS $/0w: 4 .393 46.306 42.311 47.352 42.130 79.400 44.114 41.668 
- PROF & OVNER COST: S/KWE 7-.73S -Z.623 36.817 31.747 31.581 h7,812 34.247 31.332
' 	 3 CONTIN3'NCY COST $5/XWE 31.627 .0.940 29.214 30.039 3C.537 45.529 32.957 30.173 

NTAELRIpi COYSTRUCTION 5,/KWE 94.843cRmESALATION COST ,/ 97.852 .515 80.825 S3.3C6 SG.4G 144.ES2 103.255 
A t't'UT CA TAL ZATION 110.841 103.6.40 103.169 10593L1D.385 164.538 117.,736 103.865 
K OT CTN 	 $/ WE 744.755 723.867 631.55Z 7[01.812 7CE.08 IS77.E1 760.401 637.20 

OST 	 FCLEC-CAPITAL.MILLS/KWE 23.543 22.8)1 21.545 22.186 22.321 34.129 24.038 22.06
0ELEC-FUEL MILLS/KWE ?.076 	 8.812 	 S.410 26.555OF £.702 8.949 27.547 26.138 
O.COST OF ELEC-OP&MANdIILLS/KE 1.nS7 1.899 .902 0 .540 3*533 .4 .548IOTALT COST OF ELEC iM LLS/K WE 34.577 T3.483 31.2S0 32.075 50416 47.672 51°.24 14.163 

C)0-5 A FACTOR , S/ WE "{ .C78 .'c..11. 27.145 27.841 IiE.176 11C.5C 4C 74Z 44 .952 
851,2§ P[ COST MI /gE 4.735- 135 

C S Co MIL~i~WE 32.~ 5 35.562 36.E5 3 So.9 53.898 56.J 31 53.57512XAPCOT2XEt COST INIL / WE 3392 N53 3 3.C2, 33.855 Sss25 48-584 St. 71 54.474 
DNnEYQ .NILLSIR W 33.198 32.115 29.969 30°749 49.049 4S.0SS 4 9 .SSS 47.817

iCAAu:O iNILSM WE 31.1322 29.967 27.E352 28.679 4E.E7E 41.121 47.5 451.6 

http:103.6.40
http:651912fl494.330.554.93


Table 7.17 - RECUPERATED HELIUM CLOS EC CYCLE c T 1 YSTFMELMMARX FLANT RELLT 
Continued 

2 7 4 2:5 3G Z7 3E Fs 4PARAMETRIC POINT 
 

TOTAL CAPITAL COST .4S ' ?39. ,O n25.79 242.57 
 2G3.24 2EI.26 244.54 251o42 j51618
 
. .Ol 
p PRS SS HE FURNACE Ms$ ? 1 0 4EIGq BLL 4S.7qC 54.430 2.120 5C S40 51. 1C 

G.790 G.79BSOL PUMP UP fT-GEN ,MS G. 70 .7Or G.790 6.730 6.790 6.700 
1i .820 2C .2'50 21 .421 2C .421A HELIUM GAS TURP.-CEN M$ Ie,.210 1 .OBC iS.rBC 21371 

.0DD .000 °DO :Boo 00.000 ,D .000 .000 

T HELIUM RECUPERATOR & PIPING 11..130 -. 4,70 12.150 12.950 12,650 12.52C 12.E30 12.63C 

S7.7GO 95.541 90.410 91.170 9O.851 90.852 

N PUMP UP RECUPERATOR 8 PIPING 
 

R TOT MAJOR COMPONENT COST Ks S G.290 92.130 
Z4E.171 25C.437
ETOT MAJOR COMPONENT COST,$KWE 24333S 2EE.564 24.IE6 258.366 26E.557 232 3 

57.002 5B.OG6 87.854 48.179 57.377 57.57CSBALANCE OF PLANT COST ,$/KWC 56.465 511 461 
U SITE LABOR S/1KWE 79.B947 54:S67 BC.613 83 .26C 'e2.O I 72.&79 80.565 SC.939 

400.199 435.502 360.29F 357.013 333.347L TOTAL DIRECT COST S/H WE 37S.754 401.992 335.680 
fl. 113 qE,466 41.667 37.26E 41,CBS 42.279T INDIRECT COSTS I/KWE 4D.773 4 3.3 23 

PROF & OWNER COSTS ,$/KWE 30.350 -,2.159 30.954 32.016 34.340 28.524 30.961 31.116 
B CONTINGENCY COST ,S/EWE 259,153 7n.SCS 25.GO0 30.:8 55 3.393 27 .652 29.EGC 29 .931 

92.747 97.027 103 687 87.576 93.608 93.971RESCALATION COST t$KWE 91.428 "4.756 
EINT DURING CONSTRUCTION i /KFWE IC4.1L75 Ir'7.64? IV5.ESB 120 .677 112°lO6 S£°465 ICS.74l 1C7.139 

A TOTAL CAPI TALI ZATION ,$/KWE F75.GG4 710.33 635.663 713.239 767.395 641.GS1 GSS.2!11 692.333 
K COST OF VLEC-CAPITAL.MXLLS/XVE 21.359 22.457 21.675 22.547 24.25S 20.285 21.787 2].,8 
0COST OF ELECFUEL ?1ILLS/fKWE 27.43 30.537 27.526 26.396 25.501 25.552 26.650 26.795 
0COST OF ELEC-OP MAINMILLS/HWE .548 .545 .548 .548 .548 E48 E543 .548 

W TOTAL COST OF ELED ,MILLS/KWE 49.370 53. "2 43.749 49.4q1 53.407 46.39S 4B.986 49.230 
N COE 0.5 CAP. FACTOR ,MILLS/KWE 55.SFS CO.4S1 56.3E;3 56.356 EC.7S7 52.!E2 S5.E33 1550e 

COE 0.9 CAP. FACTOR ,MILLS/XW E 45.290 49.357 h5.611 45.173 4S.7134 42.507 44.826 45.052 
53.a


COE I.2XFUEL COST ,MILLS/I(WE 54.3G2 TS.77C S .-. 5 54.759 59°128 51.43 . 54 *316 54.530 
COE ( ONTINGENCY=01 MIL-LS/KWE 4f .073 Z.ZE4 45.431 4e.10E E. 2 3 45.141 47,E5B 47.357 

COE I.2XCAP. COST MILLS/KWE E? .64:' "e.134 54.19S 53.SSC FE.2 sSC5.442 E=--4 

45.796CODE (ESCALATION=D) vMILLS/KWE 4--.030 Q.I5l 475.362 45.933 45.622 43.131 45.5B4 

41 4v 47 44 4 5 45 47 43PARAMETRIC POINT 
 

-4T.EE 2 G.FE 24 5 C2 22P.37 24Z,.40 26 22 262,3-
P PRESS HE FURNACE 'm$ S1,2G0 cl *490 97.280 -3.530) 4q.990
TOTAL CAPITAL COST Rs$ 24E 20 

51.010 51.010 55.490 
L PUMP UP GT-'EN ,MS 0.790 E.jEC C.7SC -(.7e0 E.70Sri E.7O C,.i9c cc[ 

,A HELT'JM GAS TN-NM$ 2E.15 ISOi.sBO 1 3.G70 ]BG70 17.140 17. 356 ?4 330 2 .780 
,00 LQO CCU ,COE .6sN PUtP UP RECUPERATOR 8 PIPING .000 .OCc OCU 

T HELIUM RECUPERATOR 9 PIPING 11.930 11.500 11.050 3.670 .°940 10.910 1G.070 13o43-

R TOT MAJOR COMPONENT COST 'M$. 5C.1--C FS5.656 S4.741 DE.GOD 522°5c0 FE.E55 5z.20L 5E.45[ 
E TOT MAJOR COMPONENT COSTIS/KWE Z5-,.:90 21'3,634 245.634 240.441 24S.971 236.373 267.831 271.977 
S BALANCE OF PLANT COST ,S/f(W E 58.219 F S.93 3 51 764 52.4E2 E4.704 E5E.1 C El.466 F4.SE,7 
U SITE LABOR ,S/KWE 82.077 c4.506 80.444 79.934 33.002 79.93E 82.628 86-325 
L TOTAL DIRECT COST ,s/KWE Z53,215 4P4,075 -77 a2 372.SZF Z54.677 Z70,.3F5 4IJEZ5 412o805 
T INDIRECT COSTS SI/KWE 4i.553 U3.093' 41.027 4Os7GG 42.331 40.?57 42 140 44.332 

-ROF 8 OWNER COST- 'SKW 'r. ".1-C IL.7-1 2E.22E --r.774 5££ 32.554 3Z.105 
J.BH 3o345 
 25.534 31.735 31.0363CONTINGENCY COST ,S/KWE 31.2Gr, .O3 29.740 

1C,7e5 ?255 Z51.741 BE SE3 ES.43C, S5.345
0.526
RESCALATION COST wS/KNE 94.Cc'
 
_ N OU ONE R TION $.IK W$iK 107.315 110.136 105.731 103:339 104.3E55 102.474 113.39r 107.992 

A tTA9.pRiPGTLLZ TE FES . T 717.3E3 C70.731 GGG.OS5 E8K.237 E62.115 731.E5C 72E.617 
23.127 22.938
K COST OF ELEC-CAPITALMILLSIKWE 22.103 22.G76 21.393 21.057 21.52S 20.399 

O COST OF ELEC-FUEL ' MILLS/KWE 27°329 2E.2C5 25 25C!' 2G 4C5 ZS 126 2E.555 2G.E55 27.256 
.5ks- °:8 .549 :543 .548 .549 .548 

W TOTAL COST OF EL-EC ,MT.LS/KWE 49.985 E1.428 47 .151f 4 P '10 1.275 4F rm 51 .23CEC£.782
Q COST OF ELEO-OPSMAIN.MILLS/KWE :548 

54 43-k 57.54 54.333 57.Z79 57.775
05 CAP. FACTOR MILLS/MWE 56.723 53.34, 3 720N ED 
OE*0: CAP: FACTOR MILS/KWE 453.765 47.1C2 4--.105 43.SE7 47.142 4 .CCE 4F .515 4E .406 

CO 1:29AP. COST MIUS/KWE 5,4.401 "5.264 51.470 52.221 55.593 52.132 S4.355 55.37C 
CO 12 UE1 COST ,MILLS/KWE 55.451 S1.065 52.241 53.2S1 57.098 53,.313 55 E.1 6.241 

COE tEONITMNNCT=O) MILLS/KWE 49.641 S0.054 45.883 46.TZB 49.972 46.730 41.315 49.419 
COE I SCALAT ON=C) MI-LS/KWE 46.52C 47oBe 43.BE3 44.628 47.E27 44 .719 4C.ES5 47.31S 



Table 7.18 COMBINED AIR-HELIUM-STEAM TURE CYCLE SUMMARY PLANT RESULTS 

PARAMETRIC POINT 	 1 2 3 4 5 6 7 8 

TOTAL CAPITAL COST VMS 146.24 134.31 123.24 158.00 168.44 110.33 217.15 217.22 
P PRESS HE FURNACE VMS 10.520 10.720 10.880 28.760 12.10 22.180 37.220 38.050 
L PUMP UP ST-GEM .1S 7.410 7.410 7.410 7.410 7.410 7.413 7.410 7.410 
A HELIUM GAS TURB-GEN .MS 4.920. 6.080 7.250 5.880 6.700 7.370 6.480 7.l1
N STEAM TURSZNS-ENERATOR VMS 3.4tf5 7.137 5.029 3.483 7.910 7.ZOO 8.645 8.209 
T PUMP UP REC VAP GEN .MS 3.2GO 1.820 1.450' 3.540 3.220 2.070 4 .40 3.99D 

HE TURS REC VAP GEN .M$ 10.190 7.920 4.360 8.260 8.500 B.290 6.950 6.770 

R 	 TOT MAJOR COMPONENT COST H$S 44.655 41.087 37.379 52.333 52.300 E4.52C 71.345 71,539 
TOT MAJOR COMPONENT COST.$/KWE 127.343 123.799 119.f9 135.558 137.743 146.175 170.525 171.418 

S BALANCE OF PLANT COST $/KWE 47.544 47.147 48.180 45.756 45.168 45.223 44.487 44.915 
UITE LABOR -91KWE 52.a899 51.12S 49.351 54.792 55.171 57.211 -4.987 Gn48S1AL DIRECT COST .$/KWE 271T76 222 .060 216.723 236.106 238.187 248.610 A9.9 280.91199
T 	 INDIRECT COSTS ,$/XWE 2S.973 ?5.073 2561S9 27.944 23.14Q J9.178 33.143 33.175
PROF 8 OWNER COSTS .$/KNE 18.222 17.765 17.338 10.88$ 15.104 15.89 ZZ.f1Q0 22.#73

3 CONTiNOENCy COST ,S/KWE 18.045 17.485 1S.959 18.901 19.047 19.823 22.611 22.677 
R ESCALATION. COST ,S/KWL* 58.647 . 56.485 54.441 61.95't G2.393 64.715 74.653 74.84C 
ENT DURING CONSTRUCTION .$/KWE G7.379 54.789 S2.342 71.376 71.869 74.478 S6217 89.q18
TOTAL CAPITALIZATION .5/KE 417.044 404.857 392.972 435.170 438.583 456.ES2 519.031 520.494 

K 	 COST OF cLEC-CAPITALinILLS/KWE 13.184 12.792 12.423 13.757 13.865 14.437 16.408 16.454 
D 	 COST OF ELEC-FUEL .MILLS/KWE 23.766 25.118 26.583 21.588 21.708 22.350 12.224 12.975 
O 	 COST OF £LEC-OPKMAINMILLS/KE .614 .602 .5396 .606 .602 .537 .603 3700
V TOTAL COST OF ELEC HILLSiKEr 37.563 38.512 39.602 35.951 36.175 37.384 36.935 31.029 
4 COE 0.5 CAP. FACTOR ,MILLS/KWE 11.630 42.451 43.440 40.189 40.449 41.826 41.969 42.079

COE 0.8 CAP. FACTOR 'MILLS/KWE 35.017 36.039 37.198 33.297 33.501 34.60Z 33.784 33.869 
0OE 1.ZX:AP. COST .MTLLS/KVE 40.230 41.070 42.00? 33.702 3a.943 40.271 43.217 40.320 
COE 1.2XFUEL COST .MILLS/KWE 42.317 43.536 44.919 40.268 40.517 41.854 4C.920 41.0 4 
COE (CONtINSENCY=3) MILLS/KWE 33.746 37.723 39.939 35.089 35.307 3S.483 35.899 5.990
COE (ESCALATION=0) HILLSJKUE 3t.405 ?9.43G 37.605 33.665 33.873 34.9S8 34.175 34.262



PARAMETRIC POINT 	 2 10 11 12 13 14 15 16 

TOTAL COITAL COST VMS 217.52 131.24 171.33 240.13 156.23 171.71 170.86 172.66 
P PRESS HE FURNACE .M$ 39.710 19.160 28.940 42.680 18.860 1S.48t 19.800 20.280 
L PUMP UP 3T-GEN VME 7.410 1.410 7.460 5.790 7.410 7.413 7.410 7.410
A HELIUM GAS TURB-eEN VMS 8.090 6.700 8.580 11.130 $.670 6.76D 6.990 7.31C0 1' STEAM TUR3ENE-3N ERkTOR .MS 7.337 4.646 6.141 7.71t 7.710 8.134 7.41 7.48b 
T PUMP UP REC VAP GEN VMS 2.900 .000 .000 Coo 3.270 3.13C 3.500 4.060 

NETUR9 REC VAP GEN .M$ 7.170 4.610 6.500 8.750 7.990 9.100 8.270 7.Z80 
R TOT MAJOR COMPONENT COST .M$ 72.617 42.526 57.621 84.060 51.310 4.C14 53.381 53.826 
F TOT MAJOR COMPOMENT COST,$/KWE 179.156 144.462 153.930 221.053 135.830 139.755 137.153 137.195S BALANCE OF PLANT COST S/RUE 44.372 46.497 45.508 45.504 45.798 45,728 45,672 46.021 
U SITE LABOR .$/KWE S5.834 56.097 62.259 77.394 54.699 5S.6fl-5.22t $5.287

TOTAL DIRECT COST .S/KWE 290.412 247.047 276.698 343.951 236.323 241.151 238.051 238.503

T INDIRECT COSTS ,S/KWE 34.111 28.513 31.752 39.471 27.895 28.391 28.165 28.:97



PROF 8 OWNER COSTS .$/KWE 23.233 19.764 22.136 27.516 18.506 1S.Z2Z 19.044 19.080


CONTINGCNCY COST .$/KWE 23.36S 19.195 21.845 27.487 18.895 19.306 19.073 19.28



R ESCALATION COST ,$/KkE 76.862 61.229 70.595 89.716 G1.052 63.257 52.585 62.790


:ENT DURING CONSTRUCTION S./KWE 38.672 S9.983 91.032 103.313 71.243' 72.878 72.097 72.375 
TOTAL CAPITALIZATION .$/KWE 536.656 445.827 504.061 531.454 435.122 444.275 438.295 440.072



K COST OF-LEC-CAPTALIITLLS/KWE 16.955 14.094 15.934 13.962 13.755 14.045 13.871 13.912


D COST OF ELEC-FUEL .MILLS/KWE 20.566 28.318 26.653 25.606 Z1.808 22.569 21.41a 21.Z4S
0 0 COST OF ELEC-OP&MAN.MILLS/KME .594 .584 .592 .501 .601 ;6f04 .606 .r 9W 	 TOTAL COST OF ELEC .MILLS/KUE 38.125 42.996 43.179 46.168 36.164 3C.218 35.202 35.*791
C, N OO 0.5 CAP. FACTOR .HILLS/KUE 43.326 47.335 4B.071 52.268 40.402 40.543 40.177 54

COE 0.8 CAP. FACTOR *MILLS/K4E 34.870 
 40 .27 40:117 42.351 33.510 33.51C 33.225 MAR0


C OE 1.ZDXAP. COST vILLS/KWE 41.518 45.814 45.365 50.161 33.915 39.027 38.677 81. 5


COE 1.2XFUEL COST .KILLS/KWE 42.239 48.659 48.530 51.290 4C.525 4C.532 4E.186


COE (CONTIM~tNC=3) MI4LLS/KVE 37.057 42.136 42.191 44.917 35.303 35.338 35.032 34.897


COE CESCALAION=O) .HILLS/KWE 35.28C 40.753 40.583 42.859 33.882 33.884 33.593 33.452





corresponding summaries for the combined closed-cycle system parametric



points are given in Table 7.18. For these tabulations, the "Total Major



Component Cost" entries include pressurized furnace, pump-up gas turbine



generator, helium gas turbine generator, pump-up recuperator and piping,



and helium recuperator and piping for the recuperated cycles or pressur­


ized furnace, pump-up gas turbine generator, helium gas turbine genera­


tor, bottoming turbine generator, pump-up set vapor generator, and helium



set vapor generator for the closed-cycle systems.



The top line of each summary table, Total Capital Cost, repre­


sents the total capitalized cost for each plant and is made up of the



following items: total direct major component material costs, balance of



plant direct material costs, site labor costs, indirect costs, profes­


sional services and ownership costs, contingency costs, escalation costs,



and interest during construction costs.



Also included for each parametric point are cost of electricity



data including the capital, fuel, and operating and maintenance costs



components.



7.6 	 Analysis of Overall Cost of Electricity



Cost of electricity (COE) values have been computed for each
 


parametric point for both the recuperated closed-cycle and combined



closed-cycle systems. Summaries for each of these systems, including



both COE and capital cost, are given in Tables 7.19 and 7.20:



Also, for 	 each parametric point, the effect on COE of varia­


tions in labor rate, contingency, escalation rate, interest during con­


struction, fixed- charge rate, fuel cost, and capacity factor were



calculated. The results for the recuperated cycle Base Case A are shown



in Table 7.21. Similar tabulations for Base Case B and the closed



combined-cycle base case are given in Tables 7.22 and 7.23, respectively.



The COE vs installed capital costs are shown graphically in



Pigure 7.58 for the recuperated closed cycles and in Figure 7.59 for the
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Table 7.18 COMBINED AIR-HELIUM-STEAM TURE CYCLE SUMMARY PLANT RESULTS 
Continued



PARAMETRIC POINT 
 

TOTAL CA'ITAL COST 'M$ 
 
P PRESS HE FURNACE vM$ 
 
L PUMP UP 9T-OEN 	 *MS 
 
A HELIUM GAS TURB-GEN ,MS 
 
N STEAM TURSINE-9!NERATOR 'MS 
 
T PUMP UP REC iAP GEN gMs 
 

HE TURS REC VAP BEN *M$ 
 

TOT MAJOR COMPONENT COST $MS 
 
TOT MAJOR COMPONENT COST.$IKWE 
 

S BALANCE OF PLANT COST S5/MuE 
 
ILROR 	 v$/flE


L AL DIRECT COST $/KUE 
T INDIRECT COSTS .$/flE

PROF 9 OWNER COSTS vS/KWE 
 
3 CONTINGENCY COST .$/KWE

B 	 ESCALATION COST , $/KWE 
 
INt DURING CONSTRUCTION ,S/KWE


A 	 TOTAL CAPITALIZATION r$/KE 
 
K 	 -OSTI rc LEC-CAPETALMILLS/KWE


COST OF ELEC-FUEL .811L3/fWE 
COST OF ELEC-OPRMAItI.MLLS/KWE 

idTOTAL COST OF ELEC .MILLS/KWE 
N COE 0.5 CAP. CACTOR ,MILLS/HWE

COE 0.8 CAP. FACTOR MIILLS/KWE 
 
COE 1.ZXCAP. COST .MELLS/KWE 
 
COE 1.2XFUEL COST .MXLLS/KWE

COE (CONTINSENCY=2) ,MILLS/KWE 
 
COE (ESCALATION:CI .MILLS/KWE 
 

PARAMETRIC POINT 
 

TOTAL CAPITAL COST IMS 
P PRESS HE FURNACE vM$ 

lMP NST-GEM 'MS 
LIOAS TURBO-BEN .85 

MERATOR ,M3S
CUREC vMS
VAP- 6H
HE Juns R YAP OEM RM$ 

R TOT MAJOR COMPONENT COST vMS 
E TOT MRJOR COMPONENT COST,$/KWE 
S BALANCE OF PLANT COST j$/KNE 
U-SITO LABOR IS/KWE 
L 	 TOTAL DIRECT COST v$/KUE

T IN RECT COSTS s$/KWE 
 

PROF S OWNER COSTS .q$/xE 
 
3 CONTINGENCY COST .S/XWE 
 

ESCALATION COST .$/KE 
 
INJ DURING CONSTRJCTION .S/HKE 
 

CC A TO AL CAPITALIZATION vS/HUE
K-COST OF ELEC-CAPITA-LNILLSflUE

DIOCOST OF kLEC-FUE L v-LSPKVE 
 

OS~O
T 	 OF zLEC-OPSMAIN& J LS/XVE
O ALCOST OF ELEC &HILLSKIE 
 
N 	 CVE 0.5 -CAP. F(TOR iNILLS/KWUE

COE 0.8 CAP. FACTOR sMILLS/KNE
COE 1.ZXCAP. COST .ILLS/KWE
 COE I-2XFUEL COST MILLS.4M 

t ?SC4 TrTONa-t=O)kz oMILLKVNE 
COE (ESCALATIONOD1 rHILLSfHUE 

17 is, 19 20 21 22 23 24



166.33 165.15 161.13 1 D1.00158.47 158.57 171.90 
 192.57
 
18.500 18.500 16.500 18i5D 12.160 1S.160 19.940 27.100


7.410 7.410 7.410 7.410 7.410 7.410 8.500 6.680


6.880 7.020 6.471 5.470 G.630 6.521 G.590 7.780


3.159 7.648 7.561 7.187 8.009 8.358. 8.694 7.561


3.500 3.660 4.240 4.540 2.170 1.9S0 2.600 2.S60


7.980 7.380 5.620 5.560 8.1f8 6.390 8.740 10.610



52.429 51.618 49.801 49.667 k.859 49.a28 551.11_.-249.


139.020 135.836 131.102 130.7591 1135.0 133.523 14.433 162.971


45.877 45.877 .45.877 45.877 45.600 45.664 45.5CO 46.214



? 2Z .95454.951 54.529 53.449 53.560 54.122 53.88 3 55 4 62.770235.14230.848 Z36.292 23 .4Z8 Z30 A"-07 
23.025 27.8±0 27.2 9 27.315 27.S02 27.482 28.834 f2.113


19.108 18.903 18.434 18.415 18.8S7 12.8E 19.878 21°.S6


19.084 18.880 18.411 18.392 18.770 18.718 19.836 21.761


62.408 61.757 f60.253 6C.ZOV2.6.61 ..61.D13 64.752 71.21


71.82 71.113 59.381 69.323 70.361 70.131 74.544 02.100


439.336 434.756 424.167 423.845 432.600 431.283 456.314 500.853


13.838 13.744 13.409 13.399 13.675 13.634 14.425 a53


21.943 ?1.943 21.943 21.943 22.756 22.C72 22.12 3-61 
oa .Gal .500 .600 .6bz .605 .599 S5nq 

36.431 36.286 35.251 35.941 37.034 3E.310 37.150 40.0'S


40.739 4O.521 40.085 40.072 41.248 41.112 41.589 44.940


33.752 33.6Z5 33.363 33.354 34.395 34.279 34.371 37.035 
39.239 39.035 33.633 38.621 39.769 39.637 40.035 43.245


40.820 40.S75 40.346 40.330 41.585 41.445 41.575 44.607


35.552 ZS.427 35.113 35.104 36.181 36.060 36.248 39.087


34.129 34.009 33.729 33.721 34.780 34.62 34.762 37.449



25 26 27 28 29 30 31 3z.



193.30 159.37 154.83 168.74 159.74 169.83 169.41 168.94


28.900 1.160 19.160 19.160 19.160 19.160 19.160 12.160


7.4;0 7.410 7.410 7.41 7.410 .4 3O 7.2Ao 6.40 
7.140 6.810 6.810 E41 6.230 .510 6 
7.S 7.561 7.591 7.3H 8.109 8.009 8.109 7.872



2.300 3.330 	 3.210
1.170 2.71c 3.42 3.0 91.01U3.390 8,S2010..200 5.830 5.140 81780 9101a. 3.783

63.511. 49.481 48.381 52.772 53.309 53.349 53.309 52.87i


LS3.915 t32.657 133.932 137.862 139.72r 139.407 140.821 137.06


45.716 46.183 46.214 45.856 45.945 q5.851 46,093 45.655


82.862 53.575 53.705 55.586 55.96S 55.716 56.290 54.f8S


274.493 232.517 233.852 239 34 241.641 24C.985 243.209 2. 17


32.050 27.375 27.390 26.349 23.544 2.415 28.708 28.044


21.959 19.601 18.7CS 1.144 1.331 1S.279 12.456 19017


21.952 19.542 18.532 19.138 19.313 19.272 19.427 19.026


71.81C 60.553 60.474 62.686 63.242 63.096 63.548 62.337


92.709 S9.630 63.532 72.200 72.934 72.672 73.170 7J.514



.95
504.983 	 427.278 428.537 440.822 444.911 A43.718 447.512 43 

£5.96 13.507 13.347 13.35 14.D06 14.027 14.147 13.844


23.7S4 22.35i 23.073 21.776 21.791 21.77 21.80 21.608



°6D2 .611 .599 03 , 5 ,6 ° 5
40.31--."		 38.802 36.0
36.458 37.218 36.315 36.460 36.406
O0.319

45.220 10.621 41.394 40.607 -0*791 40.726 40.957 4S.318 
37.252 33.850 34.604 33.627 33.749 33.702 33.875 3 3 

39.159 3S.923 39.102 39.273 39.212 39.431 38.863
q312
45.1370 4C.928 41.833 40 670 40 818 0C.761 4V47Z '0 

. 32o0 35.65 36.375 35S13 3S°RbT fl=sl 34t8 3.1 
37.670 34.226 341.991 34.002 34.128 3q.V7 34.2 a 33. 54 
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Table 7.18 COMBINED AIR-HELIUM-STEAM TURB CYCLE SUMMARY PLANT RESULTS 
Continued 

PARAMETRIC POINT 33 34 35 36 37 38 3S 40 

TOTAL CA'ITAL CosT 
P PRESS HE FURNACt 
L PUMP UP 3T-GEN 
A HELIUM GAS TURB-GEN 

.M$ 
*MS 
VMS 
VM$ 

183.31 
19.160 
7.410 
6.700 

170.38 
19.160 
7.410 
6.700 

16973 
19.260 
7.410 
6.700 

169.51 
19;160 
7.411 
6.700 

168.32 
19.160 
7.410 
6.700 

172.9S 
1S.16C 
7.410 
6.700 

172.33 
2C.OCC 
7.410 
6.840 

271.25 
18.360 
7.410 
6.30 

M 
T 

STEAM TURSrNE-3ENERATOR 
PUMP UP REC VAP GEN 
HE TURS REC YAP BEN 

.M$ 7.972 
VMS 3.400 
.MS 5.620 

B.034 
3.480 
8.580 

7.360 
3.270 
2.460 

7.947 
3.350 
8.830 

7.910 
3.220 
8.220 

7.910 
3.22C 

10.163 

9.034 
3.483 
8.970 

7.735 
3.33a 
8.170 

R TOT MAJOR COMPONENT COST .MS 53.262 53.465 52S861L_ 53.197. 52.620 54.56C 54.734 51.435 
E TOT MAJOR COMPONENT COSTiS/KUE 133.831 139.604 137.454 138.635 136.487 141.519 135.794 141.838 
S BALANCE OF PLANT COST .5/KNE 45.839 45.912 45.715 45.813 45.695 4E.65 42.886 144.361 
U SITE LABOR .S/KWE 55.521 55.701 55.108 55.435 S4.904 5G.314 52.924 112.364 
L TOTAL DIRECT COST vS/KWE 240.220 241.217 -238.277 239.884 236.586 243.5Z8 231.604 398.563 
T INDIRECT COSTS .S/KWE 29,335 8 . 07 28.105 28.272 27.950 28.720 2S.991 57.306 

PROF a OWNER COSTS .S.KWE 19.218 19.297 19.062 19.191 18.959 1..482 18.528 31.885 
3 CONTINGENCY COST .$/KE 19.215 19.292 19.065. 19.189 19.967 19.490 18.826 31.827 

z Eaz..-3.7 62.139 63.8511 51.202 106.179
a.ESCALATIONL.COST N $2$.FZ.2L ..- -t.

-rYN OIRf CONSTRUCTION *S/KWE 72.471 72.146 71.9334 72.379 71.585 73.561 70.598 122.245 
A TOTAL CAPITALIZAYTON $/KWE 442.347 444.119 438.889 441.752 436.587 411.836 427.549 748.005 
CPOST OF ELEC-CAPITAL.MILLS/KWE 13. 984 14.040 13.874 13.965 13.801 1q.182 13.516 23.646

OOS7 OF ELEC-FUEL .MILLS/KWE 21.737 21,766 21.681 21.721 21.708 4.708 2Z.627 7.628


O COST OF !LEfC-OPMNAINPCILLS/KME .6 .804 .602 .603 .602 .6802 1801


W TOTAL COST OF ELEC *MILLSJKUE 36.324 36.409 36.157 36.288 36.112 3 .492 36.743 .113 
N OE 0.5 CAP. FACTOR .NILLS/KWE 40.630 40.732 4G.430 40.589 40.363 A0.858 40.910 40.324 

COE 0.8 CAP. FACTOR .MILLSJKWE 33.627 33.302 33.481 33.5.95 33.449 !3.759 34.135 28.611 
COE 1.2XCAP. COST ,MILLS/KWE 39.120 39.217 38.332 39.081 31°.B2 39.329 39.447 J7.8%8 
COE i.ZXFUEL COST .KILLS/KWE 40.671 e0.762 40.493 40.632 40.453 C.83 41.270 4.645


COE (CONTINS!NCY=:) .MILLS/KW- 35.448 35.531 35.288 35.414 35.247 35.604 35.893 3 .57
 

COE (ESCALATION=O) .MILLS/KWE 34.003 34.179 33.853 33.970 33.819 34.136 34.483 2 .20
 


PARAMETRIC POINT 41 42 43 44 45 46 8T 48



TOTAL CAITTAL COST VMS 253.95 247.99 251.52 170.39 160.87 167.26 152.78 220.42


19.160 23.740P PRESS HE FURNACE .NS 44.850 43.270 .44.720 19.10 19.160 19.160 

PUMP UP 3T-GEN *MS 7,460 7.460 7.450 7.410 7.410 7.410 7.'1 7.410 
HELIUM GAS TURB-GEN *m$ e.400 7.S90 7.560 6.700 S.700 E.700 6.700 12.88a 
STEAM TUR31NE-SENERATOR VMS 7.972 7.773 7.611 7.611 8.022 5.358 4.111 3.383 
PUMP UP REC VAP GEN .N$ 1.200 1.360 1.520 3.220 3.220 E.040 G.800 5.600


HE TURD REC YAP GEN .N$ 11.080 to.430 9.800 8.460 8. 3 3.870 4.230 5.320



VM$ 80.9G2 78.183 78.751 52.561 53.042 48.536 48.411 58.313
R TOT MAJOR COMPONENT COST 

v TOT MAJOR CDMPONENT COST.S/KXE Z13.289 215.359 223.372 141.502 135.568 136.475 152.306 143.966



BALANCE OF PLANT COST .$/KWE 71.237 67.501 70.527 54.9G4 34.847 C2.674 4S.763 91.015 
U SITE LABOR .$/KWE 9.621 88.294 17 55.146 52.329 S7.339 81.838 81.958 
L TOTAL DIRECT COST vS/KWE 380.147 371.155 382.848 251.612 222.741 257.485 263.913 296.937 
T INDERECT COSTS .$/KWE 46.217 45.030 4 .792 29.Z124 25.68 29.243 31.537 31.598 

PROF 8 OWNER COSTS vS/KWE 30.412 29.632 
 30.812 20.129 17.819 20.599 21.113 23.755


3 CONTINGENCY COST .$/KWE 30.327 3.541 30.410 20.072 17.a1# 20.445 20.710 23.905


R ESCALATION COST S$/KNE 99.376 S6.589 52.380 65.265 
 58.576 6E.31C 66.817 77.993



.75.120
fINT OURIN3 CONSTRUCTION .$/KWE L14.394 111.10S 114.270 67*495 76.227 75.571 89.992

A TOTAL CAPITALIZATION .$/KWE 700 .863 6t3.112 704.111 460.322 111.158 47.312 480.662 544.181 
K :OST OF £LEC-CPITAL.NELLS/IKE 22.156 21.595 22.259 14.552 12.398 14.868 15.135 17.203


o COST OF ELEC-FUEL MILLS/KWE 7.586 7.818 7 932 22.442 21.307 Z3.444 26.231 20.577 
O COST OF ELEC-OPMAINMrLLS/KWE 1.783 .919 .951 .556 .557 .613- .631 .602 
W TOTAL COST OF ELEC .KILLS/KWE 31.525 3C.332 31.141 37.550 34.862 38.9SZI 42.157 38.382 
N COE 0.5 CAP. FACTOR N'LIS/KN7 33.233 36.922 37.330 42.027 33.372 43.49G 4 6.27 43.654 

COE 0.8 CAP. FACTOR .MILLS/KWE 27.296 26.208 26.893 34.717 32.350 36.262 39.133 35.082 
COE 1.ZXCAP. COST 'MILLS/KWE 35.956 34.651 35.533 40.461 37.461 41.898 45.096 41.823 
COE 1.2XFUEL COST *MILLS/KUE 33.042 31.895 32.728 42.03f 33.12 43.r,3 47.03 4Z.318 
CBE fCOWTINSENCY=') .NILLS/KWE 33.148 23.990 29.761 3S.53 34.048 37.997 91.124 37.289 
COE IESCALATION=O) .MILLS/KWE 27.861 26.773 27.481 35.144 32.70C 3E.483 39.603 35.500 

http:2$.FZ.2L


Table 7.18 COMBINED AIR-HELUM-STEAM TURB CYCLE SUMMARY FLANT RESULTS 
Continued 

PARAMETRIC POINT 49 50 51 52 53 54 55 56 
TOTAL CAITAL :OST .$ - 304.75 225.55 Z22.39 172.25 .90 .9 .001 .DO 

P 
-

A 
N 
T 

PRESS HE FURNACE 
PUMP UP $T-SEN 
HELIUM GAS TURB-GEN 
STEAM TURINE-sENERTOR 
PUMP UP REC VAP DEN 
HE TUR9 REC VhP GEN 

.ms 

.ms 

.1S 

.M$ 
9ms 
eMS 

51.210 
S.790 
22.221 
3.612 
4.040 
9.330 

23.740 
7.410 
12.660 
3.239 
5.110 
4.950 

23.740 
7.410 
12.880 
3.3G3 
5.0oo 
5.320 

19.160 
7.410 
6.701 
5.726 
7.000 
4.990 

.00 
.00 
.000 
.OD 
.000 
.000 

.EC 
.000 
uvcO 

.000 
.000 
.009 

.1200 
.000
.000 
.000 
.000 
.000 

.Doe 
.000
.0 
.000 
.000 
.000 

R TOT MAJOR COMPONENT COST .1s 97.233 57.109 58.313 51.986 .000 .Oo .000 .000 
- TOT MAJOR COMPONENT COSTS/KWE

BALANCE OF PLANT COST .S/IWE 
U SIT7 LABOR qs/xw
L TOTAL DIRECT COST .S/KWE 
T INDIRECT COSTS .S/XNE

PROF & OWNER COSTS .S/KWE
3 CONTINGENCY COST eS/KWE
R ESCALATION COST $5/KWE
7 INT DURING CONSTRUCTION .S/KWE
TOTAL CAPITALIZATION .S/KWE

K O0ST OF ELEC-CAPITALMILLSIKXE 
D COST OF-ELEC-FUEL rMILLS/KWE
0 COST OF ELEC-OP&MAINeNILLS/KWE
W TOTAL COST OF ELEC oMILLS/KWE
4 OE 0.5 CAP. FACTOR .MILLS/KWF
COE 0-8 CAP. FACTOR #KILLS/KWE 

ZZ1.135 148.053 145.7"58 130.154 
75.802 111.724 105.923 51.087 
73.791 62.07S 59.373 52.719 
375.728 321.853 311.82 233.959 
45.183 51.559 30.535 26.886 
30.058 25.748 24.327 18.717 
33.531 25.818 25.085 1i8.09 
10.420 83.450 81.303 E1.7103 
11S.1G2 96.195 93.808 71.177 
693.083 584.124 567.236 431.25S 
21,910 13.484 17.932 13.G33 
22.150 21.610, zo.843 2Q.875 

.6t2 .548 .543 .602 
44.G72 40.642 39.322 35.111 
51.356 45.299 44.813 39.312 
40.489 37.102 35.8a5 32.48C 

.oa 
.000 
.000 
.000 
.000 
.000 
.000 

00D 
.000 
.B0D 
.000 
.000 
.000 
.000 
.000 
.0 

.000 
.00 
.200 
G.1E) 

.000 
.0DO 
.000 
.OO 
.000 
OCC 

.0o0 
.0DE 
.000 
COO 

.000 
.00 

.000 
.000 
.000 
.100 
.0BO 
.000 
.000 
.000 
.000 
.OD 
.000 
.COU 
000 
. 
. 
. 

-000 
.000 
.000 
.0O 
.000 
.000 

. 
*a 
A 
.00 
.0011 
.000 
.00 

*U 0 
COE 1.ZXCAP- COST 
COE 1.2XFUEL COST 
COE £CONTINSENCY:3I)
COE (ESCALATIONO) 

,MILLS/KE
tMILLS/KWE
MILLS/MWE
*MILLS/KWE­

49.054 
49.102 
43.2S8 
46.953 

44.339 
44.964 
39.4G4 
37.562 

42.90B 
43.491 
38.175 
36.318 

37.837 
35.286 
34.251 
32.831 

.001 

.OO 

.000 
COD 

.003 
.(
.000 
.000 . 

.00 
.000 
.000 
0010 

00 

ace 

Hd 

H 

C' 



Table 7.19 -RECUPERATED HELIUM CLCSED CYCLE C T 'YSTEMZUMMARY PLtNT RErULTS



PARAMETRIC POINT I 1 2 4 5 6 7 
THFRMODYNANIC 5 .FF .00l .000 .000 .000 .000 D0i 
 .000
.000 

POWER PLANT EFF .303 .2S7 .283 .247 .337 .346 .338 .312

OVERALL ENERSY EFF .153 .150 .143 .125 .170 .17S .170 .158

CAP COST MILLION $ 158.519 149.446 142.304 122.666 3C1.172 176.549 17C.6l8 11.155

CAPITAL COSTS/tE 556.962 534.805 535.164 571.065 590.932 542.938 537.8G6 54..021

COE CAPITAL 17.607 16.906 16.?18 18.053 18.682 17.153 17.003 17.356

COE.FUEL 23.ZS5 29.833 31.35-1 35.SJ 26,311 25.641 26*276 28.401

COE OP 8 MAIN .545 .548 .545 .548 .546 .548 .54B .548

COST OF ELECTRIC 47.439 47.298 49.820 S4.480 45.542 43.352 43.827 46.3aS

EST TIME OF CONST .500 4.486 .1147 4.345 4.601 4.605 4.585 4.524


PARAMETRIC POINT 9 10 12 12 13 14 15 as
IHE"BODYNAMIC JEEE .Ono .OO00 .00 .-0 

POWER PLANT EFF :373 398- IN 03 .069 n03 * 
OVERALL ENERGY EFF .188 .19? .190 .181 .155 .136 .161 .183


CAP COST MILLION $ 263.929 256.308 23q.126 22,.874 153.C27 284.214 14C.2-2 221.805


CA.PITAL COST $/KWE 75Z, Ss1_o.7a_6z.507 69,.Z5 532,051 ZO.644 494.145 652.441
a 
 
CO CAPITAL 23.790 22.154 20.843 20.751 16.188 25.942 I5.C21 20.G25 
COE FUEL 23.770 23.335 23.5s.a 24.7 4 28.936 24.065 27.782 24 .55


COE OP & MAIN .548 .542 .548 .548 .548 .548 . .548 .t48


COST OF ELECTRIC 48.IBJ-. 4rE.Q3E -5.79 48.n23 . 86.z71 5n.556 43-953 45.695 
EST TIME OF CONST 4.G6G 4.681 4.612 4.632 4.509 '.ES5 4.541 '.640 

PAPAMETRIC POINT 17 18 1? 2c 21 22 2! 24 
THERMODYNAMIC EFF .000 .00 .00 .000 .000 .000 .000 .000 
POWER PLANT 6FF .31S .342 .303 .311 .34c .340 .294 .329 
OVERALL ENERGY 5FF 1P1 .17r .153 .IGQ .346 .340 .294 .3e9 
CAP COST MILLION S 145,811q 12.213 4C.321 ' Z.CZ5 2C7.755 2tF..0E3 23E.316 223.344 
CAPITAL COSTv$/KWE 49C.631 651.900 494.330 F.44.999 7q7 369 765.1440 28.479 G99.571 .
CO0 CAPITAL 15.395 20E0S 15.T27 20.7CE 25.205 24.229 26.127 22.124


COE FUEL 27.25 25.487 2 -.23' 7.998 3.378 .521 9.3s0 3.314 
COE OP 8 MAIN .548 .E4E .54S .545 1.842 1.1 2.082 1.517 
COST OF ELECTRIC 43.758 46.543 45.414 49.251 35.432 34.621 33.089 32.356 
EST TIME OF CONST 4.541 4.610 4.501 4.535 4.5G3 4.550 4.434 4.523 

PARAMETRIC POINT 25 26 Z7 29 29 3C 31 32 
THERMODYNAMIC 6 F g .000 .000 .00 .000 .000 .000 ,Dor
POV R PLANT E .20 .333 .329 .324 .322 .308 .332 .334 
OVERALL ENERGY EFF .320 .333 .329 .324 .217 .310 .1G7 .1G9 
CAP COST MILLION $ 23.523 250.193 234.627 2?.565 273.219 372.527 276.EO9 2E .255 
CASI A OST.S/KWE 744.755 723.807 B1.552 701.812 706.0871079.619 750.401 697.328 
Co0 LAPIIAL 22.54? 22.991 21.545 ?2.196 22.721 34.12S 24.039e 22.CGG1 
CO FUEL ?.078 9.702 F.312 3.949 27.547 .410 26.738 26.555 
COET OP R MAIN 1-57 I.es .F[2 ,£40 .548 3.533 .548 .548 

FE CTRIC 34.577 33.493 31.GO Z2.075 50 416 47.072 51.324 49.163 
E TME OF CONST 4.S5L 4.587 4.54 4.57C 4 .74 8 4,.Gis 4.6-9 11.7C4 

PARAMETRIC POINT 53 34 3F 35 37 33 79 14 
THERMODYNAMIC EFF .0V .000 .00O .0DQ .000 .000 .000 .000 
POWER PLANT 5FF -323 .29C .322 i336 .310 .347 .333 .331 

ENRGJ FPF .ERL -1r6 .170 .175 .169 .167.163 .163 1 56 
P OST MILL ON I 235597 225.787 242.572 253.238 261.263 244.535 251.3S6 251.176 

CAPITAL COSTS/KWE 675.GS' 710.338 625.563 713.239 767.395 SL1.631 683.220 592.333 
COE CAPITAL 21.!FT 22.457 2L1.75 2.E47 24.2SE 20.285 21.727 21.e8S 
nOE FUEL 27.R63 3fl.637 27.52G 2S.38, 23.01 25.552 26.650 26.795 
COE OP 8 MAIN .54S .549 .548 .548 .548 .548 .548 .548 
COZ O ELECTRC 49!.370 57.642 43.749 t13.421 53.407 4.315 43.185 43.230 
CSTT EOF cON ST 4.677 4.529 4.675 q.71c 4.565 4.730 4.10 4 .S5 



Table 7.19 - RECUPERATED HELIUM CLOSED rYCLE C T 3YSTEMSUMMARY PLANT RESULTS 
Continued



PArAMETRIC POINT 41 42 43 44 4IS. 46 47 49 
THERMODYNAMIC EFF .000 .000 .000 .000 ;DOD .000 .000 .000 
POWER PLANT EFF -325 .315 .351 .336 .305 .334 .334 .325 
XER.JLE -,R.E. .. ,64 . .l5G...... . Th. 454 *2j9 .169 .164 

'.PCS ILOS 249.195 247.682 260.S9 245.615 226.312 24±.398 268.234f 262.3S2 
CAPIAL OSTStKWV 99.394 717.303 676.731 SCS.095 683.231 S61.115 731.589 725.617 
C APITAL 22.109 22.676 21.393 21.057 21.599 20.899 .23.121 22.438 
CDE FtEL .. 27.3?8 Z82fLS 25.ZSfl 2S.405 29.126 26.55 26.555 27.295 
COE OP & MAIN .548 .548 .543 .548 Selo .548 .548 i543 
COST OF ELECTRIC 49.985 51.428 47.191 48.010 51.273 48.002 50230 50 732 
EST TIME OF CO ST 4.691 4.656 4.745 4.7C2 4.630 4.7V4 4.704 q.50 

PARAMETRIC POINT 49 s5 E1 52 53 54 55 56 
THERtIODYo ?1c R NE .00.000 .00000 .:00 .o .000.UCO .000.OD .000;uGc 
OVERALL ENERGY EFF 
CAP COST MILLION S 

.000 

.ODE 
.000 
ace 

.000 
.000 

.000 
.Cc1 

.000 
CO 

.000 

.D0G 
.000 
.000 

C0o0 
.CO 

iAPITAL COST.$/KWE
OE CAPITAL 

.000 

.000 
.000 
.oc0 

.000 

.000 
.000 
.00C 

.000 

.0CO 
.000 
.OO 

.000 

.000 
.000 

0e 
COE FUEL 
COE OP & MAIN 

.000' 

.000 
"000 
.O0 

.000 

.000 
.000 
.00 

.000 

.000 
.000 

0C 
.000 
.000 

.000 

.C0 
CO.T OF ELECTRICEST TIME OF CONST .09.00 .000EOC .000.000 .0000[11 .000,o0c .000Lfi.0 .00:GoO .O0CEO 

-S 



Table 7.20 'COMBINED AIR-HKEIU#-STEANrTURS CYCLE SUMXARY PLANT RESULTS 

PARAMETRIC POINT 1 2 3 q 5 6 7 8 
.090 .030 .000 .000 .000 .000
THERMOOYNAHIC EF .0 .090 
 

POWER PLANT EFF .373 .353 .334 .411 .409 .397 .445 .4f1 
.158 .207 .206 .200 .225 .224OVERALL EN'R3Y E = .138 .178 

CAP COST MILLION S 246.244,134.312 123.237 167.998 168.436 17E.335 217153 217.220


404.557 392.972 435.170 438.583 456.592 
 513.031 520.494
CAPITAL COSTo$KUZ 417.344 

22.792 23.757 14.437 IE.454
COE CAPITAL 13.184 12.4Z3 13.865 16.408 


COE FUEL 23.755 25.118 26.533 21.538 21.708 Z2.350 19.924 19.975


COE OP 8,MAIN .G14 .602 .596 ,608 .602 .597 .603 .600



OF 33.512 3S.951 36.175 37.384 356935 37.023
S ELECTRIC 37.563 33.602 

TIME OF CONST 4.923 4.874 4."25 5.005 5.000 4.974 5.0176 5.073 

15 
 16
 
Tc ;To " ."00 .030 n .0OO0 .000PARAMETRIC POINT 9 10 11 12 13 14 


mAN5VRXNCF .000 d 
.431 .313 .333 .347 .407 .411 .414 .418
POUER PLANT EFF 


.158 .175 .208 .211
OVERALL ENER3Y EF? .213 .158 .205 .203 

CkA ACAST MILLION £ 217.521 131.241 
171.%31 2411.125 166.291 171.708 17C.862 172.655



535.553 445.827 504.051 531.454 435.122 444.275 43S.935 44D.072
CAPITAL COST.S/Kd 
 13.755 14.045 13.878 13.912


COE FUEL Z0.5S5 23.319 25.S53 
 25.s6O 21*908 21.589 21.418 21.249
COE CAPITAL 16.965 14.094 15.934 
 19.96Z 


.584 .592 .601 .601 .604 - .60 2 .609COE OP & MAIN .594 5

siT OF ELECTRIC 38.125 42.995 43.179 46.158 3Z.154 33.218 3 j0 35.770


4.770 4.991 5.O6G 5.020
ESTIME OF CONST 5.046 4.896 4.996 512 


20 21 2Z 23 24 
.000 .000 .000

PARAMETRIC POINT 17 18 1s 
 
THERMODYNAMIC EF" .00 .000 .030 .000 .902 
POWER PLANT EFF .404 .404 .404 
 .404 .390 .391 .401 .375



.197 .197 .202 .189
OVERALL ENeRSY EF . Z!)q .204 .204 .204 
165.148 151.125 TFI.003 158.468 158.571 171.03 ls.667



CAPITAL C0STS/KWS 439.333 434.755 *24.1S7 4?3.845 432.300 431.283 455.314 500.85

CAP COST MILLION S 168.887 
 

- 13.888 13.744 
 13.409 13.399 13.675 13.634 14.425 1E.833CE CAPITAL 

21.943 21.943 21.943 21.943 22.755 22.67 22;126 23.641
COE FUEL 


.6OC 600 .605


COST 09 ELECTRIC 35.431 35.29 35.951 35.941 37.034 3S.910
 37.150, 4-.079

COE OP a MAIN 1600 .600 .602 .605 .593 


ES! TIME OF CONST 4.99C 4.99C 4.990 4.990 4.59 4.9G3 4.983 5.5Cz



25 26 27 28 29 30 31 32
PARAMETRIC POINT 
 
090 .330 .000 Coe0 .000
THERMOD¥YANIC EFr' O0 .b00 .000 
 

POWER PLANT EFF .374 .397 .385 .407 .407 .407 .406 .411 

OVERALL ENER3Y 5E; . 189 .20 .194 .20 .2115 .205 .205 .207 

CAP COST MILLION $ 193.303 XSS.374 154.802 1;8.740 269.745 169.805 169.409 18c.932 

CAPITAL COSTfKE 534.9S3 427.273 128.537 440.822 444,911 443.718 447.512 437.945 


13.844COE CAPITAL 15:964 13.5C7 13.547 13.935 14.0685 14.027 14.147 
COE FUEL 23.754 224350 23.073 :1.775 Z1.791 21.775 21.850 21.60& 

COE OP a MAIN .602 .601 ;599 .603 .605 .604 .605 .C02 

COST OF SLECTQIC 43.313 3A;58 37.218 3G.315 33.4GO 33.403 3;G62 35.054 


4.946 4.997 4'.25 4.927 4.988 5C04EST TIME"OF CONSr 4.997 4.9791 

34 35 38 40


THERMOOYNAMIC EFe .902 .000 .030 .000 .00 .000 ;.000 .000 

PARAMETRIC POINT 33 35 37 39 


POWER PLANT EFF .408 .408 .409 .409 .409 .409 .2 .380 
.203 .20S .205 .205 * 20 .6 
 .382OVERALL ENER3Y E .26 


CAP COST MILLION $ 169.643 170.084 168.781 169.509 188.317 1712.962 172.332 271.252 

CAPITAL COSTS/KUS 442.347 444.119 439.899 441.752 436.587 443.G39 427.549 748.005


COE CAPITAL 13.984 14.040 13.814 13365 13.801 1 4. 1 13.516 23.646 

ZOE FUEL 21.737- 21.76 Z1.8-2 1.721 21. 70,_D 22.52? 7.628



COE OP & MAIN .603 .604 
 .602 .G13 'Got- .602 .601" 1.eS5

35.32j 35,403 35.15) 36.288 3 671&2. 35.. 3.7 33.113OF ELlCTIC 4
1 SO.B72sany tsS 
 

http:21.737-21.76


Table 7.20 COMBINED AIR-HELIUH-STAM TURE CYCLE SUMMARY PLANT RESULTS 

Cbntinued 

PARAMETRIC POINT 
 41 42 43 
 44 45 46 47 48
THERNODYNAMIC EF' 
 .003 .000 .03 .000 .000 .00 .on .000
POWER PLANT EFF .382 .311 .366 .395 .416 .378 .338 .431
OVERALL ENERaY E" .392 .371 .35s .199 .210 11 .171 .219CAP COST MILLION S 259.946 247.992 251.617 170.985 160.868 167.261 152.779 22C.419
CAPITAL COST.$KWE 703.353 583.112 704.111 4S0.322 411.158 472.312 480.662 544.180COE CAPITAL 22.156 21.595 
 ZZ.259 14.55Z 1Z.998 14.68 15.195 17.203
COE FUEL * 7.585 7.813 7.932 2.442 
 21.307 23.444 28.31 20.577
COE OP a MAIN 1.783 .919 .951 .558 .557 .613 .631 .602:DST OF ELECTRIC 31.525 30.332 31.141 37.550 34.862 3S.92# 42.057 38.382EST TIME OF CONST 4.978 4.959 4.947 4.977 5.010 4.940 4.847 5.051 

PARAMETRIC POINT 49 
 50 51 52 53 54 55 56

THERMOOYNAI: EFY .003 .000 
 .000 .000 .000 .000 .600 .000

POWER PLANT EFF .401 .411 .426 
 .425 .0C .000 .000 .000
DVERALL ENR3YEZ .202 .207 215 .214 -000 .000 .000 .000CAP COST MILLION $ 04 .749 225.545 226.890 172.254 £00 .000 .000 .G00CA'IT&L COSTSKWE 393.233 534.724 567.236 431.259 .000 .000 .000 .000COE CAPITAL 21.210 18.484 
17.932 13.633 .000 .o .000 
 .00CCOE FUEL 22.15) 21.10 
20.843 20.875 .!30 .000 .000 
 .000


COE OP a MAIN .612 .548 .548 .602 .100 .000 .DE0 .C0
2OS OF ELECTRIC 44.67 43.G12 39.322 35.111 .000 .000 .000 .000E5 TIME OF CONST 5.126 5.022 5.051 5.00 .000 .000 .000 .000 

0





Table 7.21


RECUPERATED.MELIUM CLOSED CYCLE G T SYSTEM COST OF ELECTRICITYHILLS/KW.HR



PARAMFTRIC POINT No.25



ACCOUNT 	 RATE. LAEOR RATEP $/R


PERCENT S.00 8.50 10.50 15.00 21.50 

TOTAL" DIRECT COSTSS .0 1177744E2. 124797253. 13069G381. 1430S645E. 18131564. 
INDIRECT COSTS 51.0 3395972. 12177485. 15V3E540. 2148980. 3080137S. 
PROF8 OWNER COSTS,$ 8.0 34213558. 538378C. 10455710. 1144517. 1205fl3. 

9359794. 9802228. 10729234. 12098675.
ONTTNNNCYCOST,$ 7.5 5333086. 
9B0;cS. 1449253s9.lS 13C f42W1 ~8. 7I1214S4.



ESCALATION COST,$ 
 6.5 26402047. 13536644. 30329705. 34035595. 39636546.


INTREST DURING CONSTwS 1O.C 2'SS042'44. 3232151. 4 5 29. 3SE913E. 44ES4iO. 

TOTAL CAPITALIZATION,$ .0 ?00931S36. 21717694?. 230822160. 259414519. 301652233. 

COST OF ELEC-CAPITAL 18.0 20.49452 22.15149 23.54335 26.45963 30.7C776 
COST OF ELEC-FUEL .0 9.07590 9.0530 9.07530 3.07590 3.07590 
COST OF ELEC-OP 8 MAIN .a 1.25742 1.95742 1.55742 I.S5742 I.55742 
TOTAL COST OF ELEC .0 31.$2783 33148o 34.57656 37.49294 41.0107 

'ACCOUNT RATE. CONTINGENCY. PERCENT


PERCENT -£.Et .00 7.50 5.00 2C.DE



TOTAL DIRECT COSTS,$ .0 130595381. 130596381. 130696381. 130635381. 130628381.


INDIRECT COST,$ 51.0 15191040. 1518604C. 15196040. I125040 . 15186C40.

PROF 9 OWNER COSTS,$ 3.0 10455710. 10455710. 104ST10. 10455710. 10455710.

CONTINGENCY COST,$ 20.0 -SE343.... C-. SBfZ22Z8.. 6534E21t. Z6139276.

SUB TOTAL,$ .0 31403312. a-6338130. 165140358. 152872948. 182477406.

ESCALATION COSTS t.t 27a473C0. 7EF4C2E2. 303297.E. 2E733224. 3331211.

IN'REST DUPING COPT, I;.0 309TuS33. 2326039. 34352399. 33677296. 37730916.

TOTAL CAPITALIZATION,$ . 2C,12.4S4. 272O-446C. 2208225E0. 2?*2E34?E. 253520[42.

COST OF ELEC-CAPITAL 18.0 21.22327 22.15430 23.54335 23.08033 25.85843 
COST OF ELEC-FUEL c 07590 S.07550 9.07590 .075S S.X759E

COST OF ELEC-OP & IiAIN .0 1.95742 1.35742 1.95742 1.957q 1.95742

TOTAL COST OF ELEC .2 32.2615E 33.16761 34.57666 34.11365 35.89:175 

ACCOUNT 	 RAT7, :SCALATICK SATE, PERCENT


PCENT 5.0L 6.50 8.00 10.00 .00 

TOTAL DIRECT COSTS,S .0 12rO63E1. i7Cc9ez3I. 13056GS31. 13r.9S31. 1025CS321. 
INDIRECT COST,$ R1.0 151?r304f. 15136040. 151?6040. 15136040. 151soq0. 
PROF 8 OWNER COSTS.$ 8.V 104571C. 2145572C. 10455710. 164z571D. 10455710. 
CONTINGENCY COST,s 7.5 $0D22 ' 3802228. 3802223. .2902228. 3902229. 
SUB TOTALS .1 IE1614552. IE14035S. I5814035e. 156140358. I614025E. 
ESCALATION COST,$ .0 2299813. 30329705. 37869230. 43249720. 0. 
INTREST DURING CONSTs 1IC.0 3327E500. 34352895. 345S359. ?7672582. 22S3240E. 
TOTAL CAFITALIZATION,$ Q0 222407675. 2Z0R22950. 23945894G. 2513S2666. 155972324.

COST OF ELEC-CAPITAL 18.0 22.68501 23.54335 24.q2522 25.63B35 12.96573


COST OF ELEC-FUEL .0 .*07590 9.07590 9.07590 9.07590 9.07590 
COST OF ELEC-OP & MAIN .0 1.OC742 1.35742 1.SS742 1.55742 I.S5742


TOTAL COST OF ELEC .0 33.71833 34.57566 35.45853 36.67166 31.02204



ACCOUNT 	 RATE, INT DURING CONSTPERCENT


.6c.. oCEN in, 
154O0 	 . IE CC 

TOTAL DR-TC COSTS,$ .0 130696391. 13096381. 130696381. 13069 381. 130696331.

INDPECT COST,$ 51.0 IE186 40. 1E185046. 1515040. 1516040. 1518604C


&ROF & OWNER COSTSP$ 8.0 10*55710. 10455710. 10455710. 10455710. 10455710.


OKNJKGN-YCOS-Ts 7.S s-.auf28_ ZS.80222&. 950222.-. S8022_8. C802228.


PUAATOTh C$ T. 	 166140358. 166140358. IGl1403.Sq810359. tI'i0359'.
ESALATIO COST,$ F . 5 3C329705. 3[CZ HT5. 3C !5705. Z32ST0 . 3C!22715. 
N3R23$ T 2CIS* 71$53252628. S941701. 
TTA S'CA yj9LZTyON $ 152 	 ~ 2302...65*.23 233'20. 24.411762.



COST OF ELEC-CAPITAL 18.0 22.0"6G3 22.81233 23.54335 24.47903 25.43936 
COST OF ELEC-FUEL .0 	 1.07590 E.075E0 9.07590 2.07520 5.0759 

95742 1.95742 1.95742 1.95742 1.35742 
0 A COS FEL2C. .3.94564 	 34.5756 3E.51232 3E.47297 

http:2302...65
http:1449253s9.lS
http:ELECTRICITYHILLS/KW.HR


Table 7.21 Continued-

RECUPERATED HELIUM CLOSED CYCLE 6 T SYSTEM COST OF ELECTRICITY,MILLS/KW.HR



ACCOUNT 
 

TOTAL DIRECT COSTS,$ 
 
INDIRECT COST,$ 
 
PROF 8 OWNER COSTS,$

CANTINSENCY COSTi$ 
 
SUB TOTALS$ 
 
ESCALATION COSTS$ 
 
INTREST DURING CONSTiS 
 
TOTAL CAPjTALZATIQJJ$

COST ELEC-CAPITA -

COST OF ELEC-FUEL 
 
COST OF ELEC-OP 8 MAIN 
 
TOTAL COSL0F. ELEC 
 

ACCOUNT 
 

TOTAL DIRECT COSTS,t

INDIRECT COST,$ 
 
PPOF ? OWNER COSTS,S 
 
CONTINgENCY COST,$ 
 
SUB TOTALS 
 
ESCALATION COST,S 
 
INTREST OURINS CONST,$

TOIAL CAPITALIATIONPS 
 
COST OF ELEC-CAPITAL 
 
COST OF ELEC-FUEL 
 
COST OF ELEC-OP 8 MAIN 
 
TOTAL COST OF ELEC 
 

ACCOUNT 
 
-PER~CEN4TTOTAL DIRECT COSTS.$ 
 

INDIRECT COST,S 
 
PROF F OWNER COSTS.S 
 
COIIIINSENCY COST.$ 
SUB TOTAL,$ 
 
ESCALATION COST.$ 
 
INTREST DURINO CONST.t 
 
TOTAL CAPITALIZATIONS 
 
COST OF ELEC-CAPITAL 
 

ff ELEC-TUEL 
 
SLEC-OP MAIN 

TOTAL COST OF ELEC 
 

PARAMETRIC POINT NO.25



RATE. FIXED CHAFGE RATE. PCT


PERCENT 10.00 - 14.40 , 13.00 21.60 Z5.00 

.0 130963821. 1CGSr3° 130696331. 130696381. 130C6381. 
51.0 15186040. 1518040. 1519040. 15186040. 15186040 
3.0 1045571G. 10455710. 10455710. 10455710. 10455710.
7..5 902223. 99O2ZZ8, flfZZZ8. - 9802228. 58022z8. 

156140359. 14614035B. 12614C358. 156140353. 16E140358.

s.5 30323705. 30329705. 30329705. 30329705. 30329705.



10.C 3435233. ? 4352BSS. 3435229S. 34352655. 34352829.


.0 230922960. 
''230822960.-
 ?30822360. 230822960. 230822960.


5.0 	 13.079=64 12.83468- 23.54335 28.25202 32.609SI


.0 9.07530 9.07590 9.07890 9.07590 9.07590


.0 1.95742 1.25742 1.35742 2.9E742 1.95742


.0 24.11295 23.96799 34.57606 39.28533 43.73241



PATE, FUEL COST, $/l0**G BTU


PERCENT .5C e95 1.50 2.50 1.02

.0 130696381. 130936381. 130696MS1. 130596331. 130696381.
F1.0 15186040. 15136040. 151B5040. 15156040. 1518604G. 
8.0 10455710. 10455710. 10455710. 10455710. 10455710. 
7.5 9e0222. !02222. 2802229. S02229. E802228. 
.0 16610V35?. 1&6140350. 166140353. 166140358. 166140358.

6.5 3032S705. 3C32S705. 3U322705. 3C329705. 3032975.



I°. 34352339. 34352939. 34352399. 34352999. 34352899.


°C 23P92290o. 2Z05229EC. 23CB2290. 230E2CO. 230E22960.


18.0 23.54335 . 23.54335 23.54335 23.54335 23.54335
0 5.33876 S.C7520 16.01629 26.65381 10.82107



.0 1.5742 1.95742 1.5742 1.95742 1.95742



.1 3C.3S53 34.57E66 41.51705 S2.1S458 36.3s134



FATEv CAPACITY FACTOR. PERCENT


12.00 - 4500 5.00 S .fO 55130.00.C 130696381. 1?CE9E53. 130696351. 1-CC06321. 1206S6381. 

11.0 2518G040. 1S186040. 15136040. 15196040. 15136040.


8.0 10455710. I455710. 1045710. 10455710. 10455710. 
7.5 	 9802223 . . 38022U. S02228. F802228. 9802228. 
.C 1ssa14053 166140352. aE614035S. 1EE140355. 165140358. 

S5. 30322705. 30329705. 30329705. 30329705. 30329705.

Ic.0 4352BSE *435286E. 343F2852. 7435289. 343522E9.


.0 230922?600 Y71S22960. 2308229. 2308229-0. 230322360.


18. 	 127.E2E48 34.CCC 3o0.0636 23.54335 1S.12E97



..0 9.07590 9.07590 9.07590 9.07590 9.0753)0

.0 3.Z1250 2.12357 2.06874 1.85742 1.88281


.0 139.31439 45.20253 41.75099 34.57666 30.08767



http:55130.00
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Table 7.22


RECUPEPATED HELIUM CLCSEO CYCLE G T SYSTFM COST OF ELECTRICITYMILLSKW.FR



PARAMeTrIC POTNT NO.4S



ACCOUNT OATE, LA3OR RATE* 5/HR


PERCENT 6.oC F.50 1C.60 15.0 21.50



TOTAL DIRECT COSTS, .0 135'I97293. 143410653. 149637S72. 1S2635678. 11isso70O.

INDIRECT COSTS !1 074E37. 
 l2954PSF. 1GC05097. 22GE5217. 22E15478.


PROF & OWNER COSTSS 3.0 14873775. 114728S3. 1197103B. 13014854. 1455GSS.


CORTINGENCY COSTtS 7.5 
 112759. 10755752. 1122284. 12201426. 13647C52. 
SUB TOTALt .0 1S5150936. 178494264. 183S274l 210587172. 242630086. 
ESCALATION COST.$ 6.5 30531610. 1290466. 54477782. 
 E443690. 443t23S2. 
INTR:ST DURING CONSTi$ 10. 543530GG. 38907324. 39051214. 43543 82. 50179045. 
TOTAL CAPITALIZATIC,S .0 230337IF1. 247FBFSEZ. 2E2331736. Ze2S74032. 2371E1S20. 
COST OF ELEC-CAPITAL 18.0 20.179S3 22.S705 22.93336 25.57690 29.47475 
COST OF ELEC-FUEL .0 Z7.2556 27.2c255 27.2!565 27.255 27.2G565 
COST OF ELEC-OP 8 MAIN .0 .14790 .5790 .54790 .54790 .54790 
TOTAL COST OF ELEC .0 45.02343 4,.522C0 EC.78191 ES.4204'E E.31E3C 

ACCOUNT RATE, COtrTINCENCY, FERCENT 
PERCE'T -5.Do QD0 7.50 5.00 20.00 

TOTAL DIRECT COSTSS .O 14637S72. 14S637972. 149E37972. 14E637872. 1496377?2. 
INDIRECT COST,$ 51.0 16030387. 1603087. 16030887. 16030887. 103087. 
PROF 8 OWNER COSTS,$ 3.0 11971039. 115710Z8. 11S71038. 11S71038. 11571038.


CONTIENCY COST, 20.0 -7112. . . 7 81899. 299275S4.


SUB TO ALtS .0 17tI579S6. 17763?E24. 1862240. I''21792. 267 674-8.


ESCALATION COST,S S.5 31063143. 32428a8. 34477782. 33794855. 37392422.


!NTREST DURINS CONST,$ 16.0 3523rZR7. t£73D662. 3CC51'14. 52277E37. 42EI1[1:.


TOTAL CAPITALI'ATZON,S 23.,4r47e4. 2l579O.5,4.
.U 26239173S. 257194342. 283378708.

COST OF ELEC-CAPITAL 1s.0 20.6EE7 21.57E2. 22.5898 72.4E40D$ 2E.21C14 
COST OF ELEC-FUTL .0 27.-33g 27.2S&55 27.2:355 i7.29565 27.23565 
COST OF ELEC-OP 6 MAIN .c .54720 .5475C .5470 .5817SC .5470 
TOTAL*COST OF ELEC .0 48.51012 4S.41853 50.78191 50.32755 53.05363 

- CCOUNT -AT, -:'ALATION RATi, ?RCEMT 
PERCENT E.CC 6.EC e.00 10.5o .t0 

TOTAL DIRECT COSTSS .0 141637972. 1h9G37372. 149G37972. 142637972. 149637172.


INDIRECT COST,$ 1.0 I03GS87. 1E3(CCC. 
 IC3OST. 15030887. 16C3CSe7.


PROF R OWNER COSTS,1 1.0 l1971031. 11'7103'. 11371038. 11971038. 11971038.


CONTIEFNCY COSTS 7.E I12ZE4L. 1122 2.2. 1122248. 11222B48. 11222P48.


SU3 TOTAL.$ .0 13162740. 1-3362740. IS8862740. 1R56Z740. 138362740.


ESCALATION COST,$ .C 2514250S. 54471722. 43048460. 54248E50. 
 a.



c L t4IN O.ST, 3782n770. 19n51214. 40309000. 42029189 33912840.
10.0 0


TOIA-CPTA 2~ ONc *L 2C 9WA:,t22. 2F.23S173E. 2722202O . 265740576. 22775250.


OST OF rLEC--APTTAL 18. 3c2c2 '959333$ 23.79756 24.179S2 19.475 3



q.1R
TOALCST OF ELE o [+2; . 37 547q-q5 [1! Z.54798
:4 S5Y790 .5479C .54790

LOCTOC E FOP & MAIN 
 

ACCOUNT RATE, flT ZURINC COhSTPFRCEtT


PRCENT 6.00 .00 10.00 12.50 19'0S



TOTAL DIRECT COSTS.S Tt93S12.S37972V


INDIRFCT COST,S 51.0 16030887. 1603087. 16030887. 15030837. 16030387. 

PPOFS OWNER COSTS,$ 8.0 21971C38. 1127±032. 1$971038. IIS71C39. IIE71C33. 


fl14s$37971 7 142637972 i'9C!HS72. 

CONTNENCY 00S$ 7. 12S95. i228 2 kL 11222349. 11222843. 11222349. 
SBTAiS.0 a18862740f. 128662140.IA1886 274Mfl< r9GT74T-. 'lEeTg74c;-

CPT.$ 6.5 34477782. 34477702. 34477782. 34477782. 34477792.t5QALAIION 
iNTRLSTCDRNG CONSTus 15.c 22 27505 30903927. 32051214. 45479178. 5C122335. 
TOTAL CAP TALIAI ONS1$ 24626 G 74!44 ?6139173S. 27291S700. 283522ASE.



LOIOr.ECCPTL 190 21.j2e2 2 22E1 2.?!83E 23.84S27 24.71!565



COST OF ELEC-FUEL .0 27.255S5 27.23565 27.23565 27.29565 27.29565


COST OF ELEC-OP 8 MAI .0 .54790 *54160 .54720 .5470 .54790 
TOTAL COST OF £LEC .0 49.37237 30.06967 50.78191 51.69352 52.G,912 

http:128662140.IA
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Table 7.22 continued


RECUPERATED HELIUM 
 

ACCOUNT 
 

TOTAL DIRECT J:STS,
INDIRECT COST,$

PROF 8 OWNER COSTS,S

CONTINEENCY COST.S 
 
S8 TOTALt% 
 
ESCALATION CCaT,s

INTREST DURIN CONST,t

TOTAL CAPITALIZATION.S 
 
COST OF ELEC-CAPITAL 
 
COST OF ELEC-FUEL 
 
COST OF ELEC-OP & MAIN 
 
TOTAL COST OF ELEC 

ACCOUNT 
 

TOTAL DIRECT COSTSS 
 
INDIRECT COST,$

PROF P OWNER COSTSS 
 
CONTINGENCY ZOST,$

SUB TOTAL,$ 
 
ESCALATION JOST.$ t 
 
INTREST DUR £N CONST,

TOTAL CAPITAL!~ATION,S

COST OF, LEC-CAPITAL

COST OF ELEC-FUEL 
 
COST OF ELEC-OP & MAIN 
 
TOTAL COST OF ELEC 
 

ACCOUNT 
 
' 

TOTAL DIRECT COSTSS
INDIRECT COST,S 
 
PROF 8 OWNER 20STS.S 
 
CONTINGENCY COSTtR 
 
SU3 TOTALS 
 
ESCALATION CCST,S 
 
INTREST DULING CONSTS 
 
TOTAL CAPITALTZTTON,S 
 

0 COST OF ELEC-CAPITAL
COST OF ELEC-FUEL 
COST OF ELEC-0 0 8 MAINTOTAL COST OF -LEC 

0 

CLOSED CYCLE G T SYSTCM COST OF ELECTRICITY,HILLS/KW.R


PARAMFTRTC OINT NO.48



RATE, FIXED CHARSE RATE. POT


PERCENT IC.tt 14.4o 18.0C 21.6c 28.dl.0 !4S 37972. 149S37972. 149S37972. 149637972. 149S37972.
51.C lFCZs 7. !03CFS7. 1G030887. 15030E87. 1EC3g7.

3.0 1137103. 11?71033. 11971033. 11371033. 11971038.

7.5 11222$t9. U122264S. 11222849. 11222848. 122Z54S.


17'6'740. I '236h7O. 1886274P. 113962740. 18S362740.


E.F 34477722. 4'777q2. Z4477762. 34477782. 344777E2.


10.0 3?051214. 9fl51?14. 3051214. 13031214. 3W0)51'4.

.X 267391736. ZE23S1732. 262391736. 2623S1736. 2E23S1.3ZG.?5.0 12.74353 13.35063 2Z.93356 27.52603 31.25893
.0 7.2955 27.:9305 27.2565 Z7.ZS56F 27.2.65


.0 .54790 .54790 .54790 .54790 .54790


.0 4C.587dB qC.19423 50.78181 55.30?58 ES .70236 

RATE, FUrL COST, S/1046 BTU
PERCENT 1. fl ?.50 4.00 2.G3 3.17.0 '490378Th. 1'CE37S72. 14SEZ7?72. 14S37S72. 14SE37?72.
51.0 15030387. 1603087. 1Gr30887. I5030887.- 16030I 7.

8.C 11772C33. 31I71G30. 11571032. 171038. 11271038.
7.5 1222-45. 11?343. 11222343. 1122?48. 1:222348.

.C IS£S2740. I8Sq6274C. 38886274C. I98C274D. 12EEE2740.


.3 34477732. 74477732. 3447778. 34477782. 34477732.
10.C 3fl51214. 7SC51214. 3CE1214. ZE51214. 3S051214.

.0 252391735. 2G2391735. 262391735. 2c?3S173G. 223'01736.


2'39 22.03R3 22. 33o3 22.23836 Z2.F3t3E 22. E3E.0 15.74743 27.225s5 41.9331 21.93652 32.75478
.C .E47S0 .5478C .547-C .54758 .5472C

.C 73.23375 5f.7ll cS.47956 u5.27q 56.24104



PATE, CAPACITY FACTOR, PERCENT


PERCENT 22.50 45.05 D. 
 1500 2c°cc



.0 149637972. 149537?72. 1495E7-1. 14967972. 149637972.51.0 16030827. 16r30C07. 1E0300S7. 1FC30O7. 1EC30SE7.


8.0 1127103P. 1q7107. 11971033. 1197103. 11S71039.

7.5 12222343. 11222648. 11222348. 11222642. 11222948.


.0 13q3637401. 1C e6'74C. 1839740. 123362740. 138362740.
E.5 3447776:. 4447771.. 34q77732. 44777T7Z. 244777E2.


1C.0 SFtS:214. "'51?14. 3-01214. 7'0nS114. 301'14.

'60 


IS.0 124.24943 22.13319 29.8198 22.q383; IS..:t741


.C '1730. 
 23517'(. 252Zz17Z. c:t173. 26 h7?6.


.6 27.29565 27.23525 27.29565 27. 256E 21.2S565 
.0 1.50300 .71006 .65922 .54 7 0 .47323.C 1FT.34803 2.130Ee 57.77474 E .76191 4E .4CO35 

iO0­
Cm





Table 7.23 -COMBINED AIR-HELIUM-STEAM TURP CYCLE COST OF ELECTRICITYMILLS/KW.ER 
PARAMETRIC POINT NO. S. 

kCCOU4T 
 RATE. LABOR RATE. $/HR


PERCENT 6.00 8.50 10.60 15.00 21.5C



TOTAL 3IR!CT COSTS,$ 
 .0 82240635. 37238343. 91436418. 130232353. 1132242.


INDIRECT COST,$ 
 51.0 6117194. 8666025. 10807043. 152929a6. 21919946.

PROF 8 OWNER COSTS,$ 
 5.3 6S79251. 5979067. 7314913. 3018591. 9058114.

CONTINGENCY COST.$ 
 8.0 6579251. 919067. 7314913. 8018591. 9158114. 
SUB TOTALt$ 
 . 131516329. 139862502. 115873237. 131582548. 153262594. 
ESCALATION COST-$ 
 6.5 20813097. 22524248. 23961614. 26973238. 314Z2229.

INTREST DURING CONST S 
 10.a 	 23974170r. 25945299. 2713080. 31089937. 3619.G65.­
TOTAL CAPITALIZATION&$ 
 .0 146303596. 158331958. 168435780. 18S605E2. 220879421. 
COST OF ELEC-CAPITAL 
 18.0 	 12.01za20 13.03299 13.85458 15.60715 18-t1x42 
COST OF ELEC-FUEL .0 21.70837 21.70837 21.70837 21.70837 21.70837 
COST OF ELEC-OP K MAIN. .1 . 2225 .50225 .60225 .G0225 .S0225. 
TOT AL COST OF ELEC .I 34.35342 35.3;352 36.17520 37.91778 fE4.204 

ACCOUNT 
 RATE. CONTINBENCY. PERCENT 
'ERCENT -5.03 00 8.00 5.00 20.00 

TOTAL DIRECT COSTS'S 
 .0 91436418. 91436418. 91436428. 91436418. 51436418. 
INDIRECT COST.$ 
 51.0 10907343. 10807043. 10807043. 10807043. 10807043.

PROF 8 OWNER COSTS$. 
 8.0 7314913. 7314913. 314513. 73U4913. 7314513.

CONTINGENCY COST,$' 
 20.0 	 -4571321. * . 7314313. 4571821. 18287283.

SUB TOTALPS 
 .0 104986554. IG9558374. 116873287. 114130194. 127845657.

ESCALATION COST.S 
 S.5 2152457 . 22461895. 2396161. 23399213. 26211193.

INTREST DURING CONST.S 
 10.0 	 24793701. 25873385. 27610880. 26953070. 30192123.

TOTAL CAPITALEZATION.S 
 .0 151304924. 15789365%. 168435780. 154432480. 184249972.

COST OF ELEC-CAPITAL 
 18.0 	 12.45447 12.99682 13.86458 13.53917 15.16623 
COST OF ELEZ-FUEL 
 .0 21.73837 21.70337 21.70837 21.70837 21.70837 
COST OF ELEC-OP 8 MAIN 
 .0 .60225 .60225 .60225 .60225 .6C225 
TOTAL COST OF ELEC 
 .0 34.76509 35.30?%t 36.17520 35.84979 37.47G85 

ACCOUNT 
 RATE. ESCALATION RATE. PERCENT 
PERCENT 5.00 6.S0 8.00 10.00 .00


TOTAL 31Rr:T COSTS.$ 
 .0 91436515. 31435413. 31436418. 31436413. 31438418.


INDIRECT COST,$ 
 51.0 10807043. 10807043. 10801043. 10807043. 10807C43.


PROF 8 OUNER COSTS,;
 8.3 7314913. 7314913. 7314913. 7314913. 7314913.


CONTINGENCY COST,$ 
 8.0 	 7314913. 7314913. 7314913. 7314913. 7314S13.


SU3 TOTALeS 
 .0 11S873287. 116873237. 115873287. 116873287. 116873287.


ESCALATION COSTS 
 .0 18123232. 23961514. 29992857. 38342171. 0.


INTREST DURING CONSTi$ 
 10.0 	 26636159. 27600839. 29591014. 23951471. 23593606.


TOTAL CAPITALIZATION9$ 
 .0 161632676. 168435780. 175457158. 185166925. q471852.


COST OF ELE:-CAPITAL 
 13.0 13.335 13.86458 14.44254 15.24179 11.56277


COST OF ELEC-FuEL 
 .0 21.70837 21.70837 21.70837 21.70837 21.7C837


JOST OF ELEC-OP 9 MAIN 
 *3 .69225 .50ZZ5 .60225 .60225 .50225


OTAL COST OF FLEC 
 .0 35.61522 36.17520 36.75316 37.55241 33.87339



ACCOUNT 
 RATE. INT DURING CONSTPERCENT


oERCENT E;03 8.20 10.90 12.50 15.00.



TOTAL DIRECT COSTS .
 .0 91436418. ?2436418. 91436418. 91436418. -1436418.

I9I0IECT COST$ 
 51.0 108073W3. 10807043. 1080043. 10807043. 10807043.

PROF 9 OWNER COSTS.$ 8.0 7314913. 731413. 7314913. 731913. 731*913.

CONktN1GEN:Y :OST,$ 
 3.0 	 7314913. 7314913. 7314913. 7314913. 7314913.

SUB TOTAL.S 
 .0 116873287. 116873287. 116873287. 116873287. 116813287.

ESCALATION COSTS 
 5.5 23361614. 23951614. 2391614. 2391814. 23961614.

INTREST DURING CORST,$ 
 15.0 	 16130300. 2372102. 27600880. 35072679. 32183719



0
TOTAL po TALIZATION.S 
 .0 1596-5198. 12827032. 1'9435730. 175907578. 183618618.


COST OF ELEC-CAPITAL 
 18.0 12.92040 13.38644 13.86458 14.q7261 15.11434


COST oc ELE:-FUEL 
 .0 21.73837 21.70337 21.70837 21.70837 21.70837


COST OF ELEC-OP 8.MAIN 
 .0 160225 .60225 ,60225 .G0225 GU225


TOTAL COST OF ELEC 
 .0 35.23102 35.6595 35.17520 36.7902Z 37.42496
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Table 7.23 - COMOINED AIR-HELIU-STEAM TURB CYCLE COST OF ELECTRICITY.IILLS/KW.EFi 
Continued PARAMETRIC POINT NO. 5 

%CCOUIT RATE. FIXED CHAISE RATE. CT 
PERCENT 10.OC 14.40 18.00 21.60 Z5.00 

TOTAL )IR7CT COSTStS .0 91435413. 91436413. 31435418. 31436413. 31435418. 
INDIRECT COST,$ 51.0 10807043. 10807043. 10807043. 10807043. 10807043. 
PROF 8 OWNER COSTS,$ 3.3 7314913. 7314913. 7314913. 7314913, 7314913. 
CONTINGENCY COSTe$ 8.0 7314913. 7314913. 7314913. 7314913. 7314913. 
SUB TOTAL,$ .0 113973287. 1158732R7. 116973287. 116873287. 116873287.
ESCALATION COSTe$ 6.5 23961614. 23961614. 23961614. 23961614. 23261614.


INTR ST DURIN3 CONSTys 10.0 27500380. 27500830. 27600880. 27500880. 27600380.


TOTAL CAPITALIZATION.$ .0 168435780. 16B435780. 168435780. 168435780. IE8435180.


COST OF ELEt-CAPITAL 25.0 7.73255 11.09157 13.86458 16.83750 19.25635


COST OF ELEC-FUEL .0 21.70837 21.70837 21.70837 21.70837 21.7C837


COSI OF ELEC-OP & MAIN .0. .61225 .60?Z5 .80225 .60225 .602Z5


TO AL COST OF ELEC .0 30.01317 33.40223 36.17520 38.94812 42.56639



ACCOUNT RATE. ' FUEL COST, S/1i*s MU 
PERCENT 1.53 2.60 4.00 2.08 3.12 

TOTAL,DIRECT COSTS.S .0 91436418. 91436418. 91436418. 91436418. E1436418. 
INDIRECT COSTiS 5L.0 10307043. 10907043. 10807043. 108070q3. 10807043. 
PROF 8 OWNER COSTSS 8.0 7314913. 7314913. 7311913. 7314913. 7314213. 
CONTXNGtN:Y COSTS S.3 7314913. 7314913. 731r913. 7314913. 7314913.


SUB TOTAL,$ .0 11683287. 116873287. 116873287. 116873287. 116873287.


ESCALATION COSTiS 5.5 23951614. 23961614. 23961614. 23961614. 23961614.


INIREST DURING CONSTf$ 10.0 27600880. 2763086l. 27600880. 27600880. 217600880.


O1 L JAPITALIZATION.$ .0 163435780. 168435730. 153435780. 166435780. 168435780.


0 O OLEC-CAPITAL 18.0 13.86458 13.86458 13.86458 13.86458 13.86458



COST OF ELEO-FUEL .0 12.524,6 21.70837 33.39749 17.35670 26.05005

COST OF ELEC-OP 8 MAIN .0 .60225 .60225 .60225 .60225 .G6225


TOTAL COST OF ELES .0 2S.99089 36.17520 47.36433 31.83353 40.51588



%CCONT, RATE. CAPACITY FACT32. PERCENT 
PERCENT 12.00 45.o00 50.00 £5.00 80.00 

TOTAL DIRECT COSTS.$ .0 91436418. 31436419. 31435418. 31436419. 31436418.


INDIRECT COST.S 51.0 10807043. 1C807043. 10807043. 16807043. 10807t43.


PROF 8 OWNER COSTS.S 3.0 7314313. 7314313. 7314913. 7314913. 7314913.


CONTINGENCY COSTS 8.0 7314313. 1314913. 7314913. 7314913. 7314913.
ESL TOTTOTALNS .O~e0 115313287.
 116873297. 116873237. 118873287. 116873287.


ESCALA CC)STS 9.5 23961614. 2396114. 23961614. 23961614. 23961614.


INTREST ODRINS CONSTe$ 13.) 27500380. 27600832. 27Jl8fl. 276083. 2760agS°.
 

SU9


TOTAL CAPITALIZATIONPS .0 168435780. 158435780. 168435780. 168435780. 168435780.


COST Oc rLEC-CAPITAL 18.D 75.03982 ZO.0255? 18.02396 13.86455 11.25497


COST OF !LEC-FUEL .0 21.70837 21.70837 21.70837 21.70837 21.10837


COST Or ELEC-OP & MAIN .0 1.35732 .75441 .71357 .6022S .52761


TOTAL COST OF ELEC .0 98.66551 42.49939 40.44590 36.17520 33.50098





combined closed cycles. Each plotted point is numbered according to the



parametric point number established in Subsection 7.4.



The COE for the closed-cycle recuperated and closed-cycle com­


bined systems did not compare favorably with conventional steam power



plant COE. For no parametric point did the COE fall below 8.2 mills/MJ



(30 mills/kWh). In general, both the capitalization and COE were higher



for the recuperative systems.



One of the prominent aspects of Figures 7.58 and 7.59 is the



great difference in COE and capitalization between distillate and coal



fuels. Distillate at the price contemplated would not be competitive



with the direct burning of coal for the base-load operation (65% capacity



factor) illustrated in the figures.
 


Various relative effects can be discerned using these two



figures. Related points have been connected by lines to assist in the



interpretation. Thus, for the recuperated cycles, Rl, R2, R3, R4



represents the points on distillate fuel having a pump-up turbine inlet



temperature of 14780K (22000 F)' and a helium turbine inlet temperature of



9220K (1200OF). The individual points have different helium cycle pres­


sure ratios of 2, 2.5, 3, and 4 to 1, respectively. The sequences



RIl,R2, R3; R4; R5, R6, R7, R8; and R9, R10, 1li, R12 pertain to helium



turbine inlet temperatures of 922 0K (1200°F); 1089°K (1500°F) and 1255°K



(1800'F), respectively. They clearly reflect the much greater costs



associated with the higher temperature heat exchangers. The sequences



R13, R15, R17, 119; R5, R6, R7, R8; and 14, R16, Ri8, R20 depict recu­


perator effectiveness values of 0.8, 0.9, and 0.95 applied to both the



pump-up and helium cycles.



The above mentioned points can be considered to relate to para­


metric Point R6 as a mean value in the parameter variations. Point R6 is



also the most attractive from the standpoint of lowest COE in the family



of points.



The next group of points are those in the coal-burning family



and relate to Point R25, Base Case A. Points R24, R25, R23 have changing
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pump-up pressure ratio and mainly reflect increasing capitalization for



lower pressure level combustion. The COE for Point R25 is 9.61 mills/MJ



(34.6 mills/kWh).' Points R21, R22 are similar but with added recupera­


tion (0.9 effectiveness) for the pump-up set. At a pressure ratio of 10



to 1, Point R22 has a performance improvement over Point R25 which is



almost exactly countered by the added capitalization for no net change in



COE. At a pressure ratio of 5 to 1 much more heat can be recovered, and



Point R21 is considerably improved in both capitalization and COE over
 


Point R23. Points R26, R27, R28 have the different specified types of



coal but with 'the pump-up turbine inlet temperature brought down to 866°K



(11000 F). Point R26 reflects an improv;ement over Point R25, Base Case A.



There is some difference in COE associated with various coal



fuels [about 0.55 mill/MJ (2 mills/kWh)], Montana subbituminous being



the best.



Point R32 using distillate at 866 0K (1100°F) for the pump-tip 

turbine inlet temperature is a reference for most of the remaining points. 

Point R48, Base Case B, in itself has a COE'of 14.11 mills/MJ 

(50.8 mills/kWh) burning distillate fuel. By switching to coal fuel, a



considerable reduction in COE would be expected. Such a plant would re­


semble a typical steam power plant except that the conventional steam



turbine generator would be replaced by a closed-cycle recuperated helium



gas turbine. Point R30, burning low-Btu gas, has a 13.08 mills/MJ



(47.1 mills/kWh) COE and is off-scale for capitalization. It appears to



have no redeeming attributes. At a COE of 14 mills/MJ (50.4/kWh) the



high-Btu gas fuel point, R29, also, is not an attractive option.



The combined closed cycles shown on Figure 7.59 generally had



lower capitalization and better performance than did the recuperated



cycles. The coal-fueled points of both types of system appear to be



similar. Point C41 burning Illinois' No. 6.bituminous coal is closely re­


lated with respect to cycle configuration to Point R26. Point C41 has a



COE of 8.75 mills/MJ (31.5 mills/kWh) and a capitalization of $701/kW.



compared to corresponding values of 9.03 mills/MJ (32.5 mills/kWh) and
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$692/kW for Point R26. The lowest COE, Point C42 burning Montana subbi­


tuminous coal has a value of 8.42 mills/NJ (30.3 mills/kWh), for COE



0.278 mill/MJ (I mill/kWh) lower than the corresponding, and best, recu­


perated Point R27.



The higher turbine inlet temperature pump-up points using dis­


tillate fuel are definitely better with combined rather than recuperated,



cycles. The higher cost of distillate fuel, however, eliminates'it from



competition with the coal-fueled points.



On Figur4 7.59, the congestion of points about the base case,



Point C5, requires the use of an inset at larger scale to differentiate



them. Points 01, 02, C3; 04, 05, C6; C7, C8, 09 are a sequence with



varying helium temperatures of 922, 1089, and 1255 0K (1200, 1500, and



1800°F), respectively. For Points C10, ClI, C12, the exhaust heat of the



pump-up set is not utilized for heating the vapor of the bottom cycle.



Of course, this is wasteful, and the COE values of 11.94 mills/MJ



(43 mills/kh) and higher reflect this fact.



Although the COE levels for the closed combined cycles would



appear to be too high to be competitive relative to some of the other



ECAS energy conversion concepts, certain effects have been identified



which can be valid in other applications, such as open combined cycles



or nonfossil fuel closed cycles for gas-cooled nuclear reactors. These



effects relate to the base case, Point C5. Points C13, C14, C15, C16



show an advantage in cycle performance as the helium compressor inlet



temperature is allowed to rise. The maximum advantage is about



0.11 mill/iJ (0.4 mill/kWh) for Point C16 compared to Point C5 for a com­


pressor inlet temperature of 450'K (350*P) compared to 3660K (200'F). 


Points C17, C18, C19, C20 are similar in that the helium temperature from 


the vapor generators is allowed to rise, producing the same improvement 


in bottom cycle fit as did Points C13, C14, C15, 016. Here, however, a 

precooler was intentionally added to bring the compressor inlet tempera­

ture down to 3090 K (96.5 0F). The improvement in COE over Point C5 was 

only 0.05 mil/MJ (0.2 mil/kWh) compared to the 0.11 mill/MJ (0.4 mill/kWh) 

improvement when the precooler was not applied. 
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Points C46, C47 use dichloridifluorimethane (R-12) as a bottom­


ing fluid. The poorer thermodynamic fit due to the stability limit re­


sulted in .afall-off in performance such that the COE for Point C46 is



10.78 mills/M (38.8 mills/kWh), 0.75 mill/MJ (2.7 mills/kWh) poorer than 

for Point C5. Point C47 had an added loss from the rejected heat of the



superheated R-12 turbine and has a COE value of 11.69 mills/MJ



(42.1 mills/kWh), 1.64 mills/MJ (5.9 mills/kWh) poorer than has Point C5.



Points C48, C50, C51 . . . C49 utilize methylamine bottoming



fluid and are subposed below recuperated cycles; C48, C50, C51 below a



1478 0K (2200'F) pump-up cycle, and C49 below an 8660K (1100F) pump-up



cycle. All have 1089'K (1500F) turbine inlet temperature helium cycles.



The large amount of heat exchange equipment required for these cycles re­


sults in a high capitalization so that the lowest COE (Point C48) is



0.61 mill/MJ (2.2 mills/kWh) poorer than Point C5. The 8660K (11000F)



case, Point C49, is especially unfavorable in this respect and has a COE



2.36 mills/MJ (8.5 mills/kih) poorer than Point C5. 

In addition to their relation Eo Point C5, Points C48, G50, C5] 

relate to each other as to the method of heat rejection. Point C48 re­

jects heat to a wet cooling tower by means of a cooling-water loop.



Point C51, however, rejects its cycle heat to a dry tower by condensing



the methylamifie directly in an aircondenser. Point C50 has poorer per­

formance and greater capitalization than Point C48 so that the COE Ls 

0.61 mill/MJ (2.2 mills/kh) higher. This is analogous to the relation 

between Point C44 (dry tower) and Point C5 (wet tower) with steam which



has a COE difference of 0.39 mill/MJ (1.4 mills/kWh). The difference be­


tween 0.61 and 0.39 mill/MJ (2.2 and 1.4 mills/kWh) is primarily due to 

differences in capitalization which, due to the novelty of some of the 

special bottoming fluid apparatus, is somewhat uncertain. Point C51 has 

better performance and lower capitalization than Point C50 so that its 

CCE is 0.36 mill/IJ (1.3 mills/kOh) lower. There is no counterpart for



the steam bottomed cycles. 
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The direct condensing for Point C51 is made possible because



the volumetric flow from the bottom turbine is low enough to deploy it



directly to air condensers. Actually, the pipe size required for the



methylamine vapor is of the same magnitude as that -required for a cooling­


water loop. The pipe size for collecting the condensed methylamine is



much less than that required for cooling water. Since the heat transfer



-to air for the condenser and that for cooling water for a loop are both
 


dominated by the air-side heat transfer coefficient, both types of sur­


face would be highly finned and be comparable in cost. This-same effect



should be applicable foi a low-boiling fluid such as R-12, sulfur dioxide,
 


or any other fluid of this type.



Point C52 utilizes sulfur dioxide as a bottom fluid under a



14780K (22000.F) turbine inlet temperature pump-up cycle and 10890K



(15000F) turbine inlet temperature helium cycle. The high stability



limits for sulfur dioxide permit its operation to levels of 8iI°K



(10000F). This bottoming cycle using supercritical pressure levels was
 


carefully fitted to the heat available lines, and the superheated sulfur
 


dioxide exhaust energy was utilizedby regenerative feed heating. The



resulting high efficiency and small turbine size resulted in a COE of



0.306 mill/MJ (1.1 mills/kWh) lower than that of the base case (Point C5).



It should be possible to realize this same effect in other related types



of cycles, such as open combined cycles, and in nuclear applications.



In addition to the.overall descriptions provided by the compo­


site plots of mills per kilowatt hour versus capitalization, th6 effect



of specific parameter variations upon COE has been investigated.



Figure 7.60 illustrates the effect of helium cycle pressure



ratio and recuperator effectiveness upon the COE for the recuperated



closed cycle. Pump-up turbine inlet temperature is 14780K (2200F) and



compressor ratio is 10 to 1. The fuel is distillate from coal. Helium



turbine inlet temperature is 10890K (1500F). The optimum COE occurs at



a compressor pressure ratio of 2.5 to 1 and with a recuperator effective­


ness of 0.9. Although for higher recuporator effectiveness efficiency 
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Fig. 7.6.0-Influence of recuperator effectiveness on cost of 
electricity (Recuperated closed-cycle) 
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can be improved, additional capital costs outweigh the gains and the


result is a net degrading of the COE advantage.



Table 7,24 principally illustrates the impact of the higher


distillate fuel prices 
 on COE for four closed recuperated cycle cases.



Points R25 and R26 are each fixed on coal fuel. 
 Point R25 cor­

responds to Base Case A, and Point R26 is similar, except that the pump­


up turbine inlet temperature is reduced by transferring more primary heat


to the helium cycle. 
 This change resulted in a net reduction in COE.


Point R6 has the added effect of recuperation in the pump-up cycle, and


overall efficiency consequently reflects an improvement. Distillate fuel


was used, however, and the higher COE reflects the added fuel costs.


Point R48, Base Case B, utilizes an atmospheric pressure furnace as a


substitute for the pump-up cycle and reflects a decrease in efficiency



relative to Point R6.



Figure 7.61 applies to the combined closed cycles and illus­

trates the effect of helium cycle turbine inlet temperature and compres­

sor pressure ratio on COB. 
 The-optimum combination of these parameters


appears at 10890K (1500'F) and 2 to 1, respectively.



Similar to the above described recuperated cycle tabulation,


Table 7.25 illustrates the effects of fuel type and cycle arrangement on


COE for selected combined closed cycles.



A comparison of recuperated and combined closed cycles with re­

spect to fuel price sensitivity is presented in Table 7.26. 
 In each


case, the cost of fuel has been arbitrarily escalated from 0.806 to



$l.42/cJ (0.85 to $l.S0iiO6 Btu), an increase of 76Wt 
 The combined


closed cycle is preferred here, with its overall COE escalating 18%, as


compared with.20% for the recuperated cycle example.



The natural-resource requirements consisting of coal, sorbent


(for gasification systems), water for heat rejection, gasification pro­

cess, etc., and land usage have been estimated and are given for the re­

cuperated and combined closed-cycle systems in Tables 7.27 and 7.28,



respectively.


* Indicated by number in parentheses in Table 7.26. 
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TABLE 7.24- RECUPERATED CLOSED-CYCLE RESULTS 

Fuel Type Coal Coal Dist. 
Fuel Cost, $/106 Btu 0.85 .85 2.60 b, 

Cost of Elec. ,mil Is/kWh 33.7 32.5 42.6 45.9 
Capital Cost, $/kW 719 692 519 .573 
Efficiency,t% 32.0 33.3 34.6 32.5 
Power Output,MW 

Pump-up 86 38 112 
Helium 231 316 217 360 
Total 317 354 429 360Helium Cycle
Temp. ' F 1500 

P.R. 2.5 No 
Recup. Eff. .90 

Pump Up Cycle 
Temp. ' F 1700 1100 2200 No 
P.R. 10 10 10 Pump
Recup. Eff., --.. 90 Up 

Capacity Factor 0.65 10 
Parametric Point 25 26 6 48 



40 

S38 

37 

36 

35 ­
Pump-up Cycle Temp. = 2200°F



34 Pressure Ratio = 10: 1


Fuel: Coal Distillate


33I



1.5 	 2.0 2.5 3.0 4.0 
Helium Cycle Pressure Ratio 

Fig. 7.61 -Influence of helium temperature and pressure 
ratio on cost of electricity for a closed combined cycle 
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TABLE 7.25- COMBINED CLOSED-CYCLE RESULTS



Fuel Type Coal Dist. I0

Fuel Cost,.$/106 Btu 0.85 2.60 
Cost of Elec., mills/kWh 
Capital Cost, $/kW 

31.5 
 
701 
 

36.2 
 
439 
 

38.9 
 
470 
 

38.4 
544 

35.1

431


Efficiency,, % 38. 2 
 40. 9 
 37. 8 
 43. 1 42.5 
Power Output, MW 

Pump-up 84 
 113 
 113 
 110 113

Helium 
 117. 86 
 86 
 198 86

Bottom 
 179 
 191 
 165 
 105 209

Total 
 380 
 390 
 364 
 413 408


Helium Cycle 
Temp., 'F 1500 
 00 
P.R. 2.5 1,


Pump Up Cycle 
Temp., OF 1700 
 2200

P.R. 10


Bottom Cycle Fluid Steam 
 Steam R-12 Methyl ­ so2 
amine 

Capacity Factor 0.65 
Parametric Point 41 
 5 
 46 
 48
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Table 7.26 Comparison of Closed Cycle Coal Fired Gas Turbine Plants 

Recuperative Combined 

Cost of Fuel, $/106 Btu 0.85 1.50 (1.76) 0.85 L 50 (1.76) 

Cost of Elec., Mills/kWh 33.50 40. 10 (1. 20) 31. 50 37.30 (L 18) 

Cost of Fuel, Mills/kWh 8.70 15.40 7.60 13.40 

Capital Cost, $/kW 692.00 701.00 

Efficiency, % 

Capacity Factor 

33. 30 
0.65 

38.20 
0.65 

Parametric Point 26. 00 41.00 
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Table 7.27 -RECUPEFATEC HE'LIUA CLLStr CYCLE C T :YrTxC NATURAL RESOURCE R IPCItS
 

PARAMETRIC POINT 1 2 3 4 5 E 7 8CZAL LB/K8-HR 2.DBflB 2.1B08 2.21610 2.53596 1.85967 1.B1222 1.85715 2.00733 
SCRBANT OR SEDr,Lu/KW-HR .0000C . rr .Oco .onrcc .Cooo .Cooa .cCOcC .Cueotc 
TOTAL WATE P , 3AL/KW--1R .000 .000 .000 .ori .Oo .DOD .no .O00 

COOLINC WATER .DOC .OO .CO0 .C00 .000 .000 .OCC .0Cc 
GASIFIER PROCESS q2 .0000 .0009 .DOOOD .0o000 . 00000 .00000c .cooa 

CONDENSATE MAKE UP .00000 Coc-o .onlo .coco0 .0oo .Oo0 .C&O0f .toCur 
WASTE HANDLING SLUPRY .0000 .Cc-o .000o .00nO .0000 .000 .000 .0000 
SCRUBBER WASTE WATER COCOC .COrC0 .orCO .CQC0 .loo00 .00000 .CcCC 00C 
fNOX SUPPRESSION .O00flO .00000 .00000 O0031O OOOaf .C00O .00000 .1O290 

TOTAL LAND ACkES/1CMWE 94.23 S5.I4 IC.35 121.S0 78.0s 77.72 7S.50 E3E 
MAIN PLANT 17.57 17.7G 19.30 19.36 16.26 16.21 16.45 17.24 
DISPOSAL LAND .00 .00 .00 .CO .C0 .00 OC .Cc 
LAND F0T ACCESS RR 76.56 73.03 3t.05 101.74 61.93 61.51 53.05 68.14 

PARAMETRIC POINT 9 10 12 12 13 14 15 1G 
COAL, LB/KW-HR 1.88008 1.E4 2 I.F 717 1.75100 Z.64515 1.70092 I.SfEt 1.7331S 
OFBANT OR SEEDLS/K-4R .00000 .ooa .00000 .000 .coo0 .05000 .oo .00mO 
OTAL WATER, GAL/KW-HP .Co0 o 000 .000 .020 .000 .000 .O00 .Ot 
COOLNGATER .00 .00 .000 .oo .000 .000 .00 0 
GASIFIER PRO CESS "420 C6280C Cocoa0 .00000 .C5COO A008 .C60003 C.000 .oC8 

CONDENSATE MAKE UP . .0000 .OOOO .00000 .00000 .O0OOG .00000 .000300 Co000 
WASTE HANDLING SLURRY .OCO0 .0000 .Coc0 .000c .000 . 00C .O00 .00Co 
SCRUBBER WASTE WATER .00u00 000 .OOOOJO.00.00OD 00 0 .OOO0 a0000 . 00000 
NOX SUPPRESSION, 00000 .0000C 00600' .0000 .CO0OO .00000 .OOCCO .9ooc" 

TOTAL LAN3 ACRES/OMWE S7.33 qS.22 3L.S6 69.ql ^56.94 3.10 33.G 89.S6 
MAIN PLANT 15.4 15.32 1.:41 IF.82 17.1 15.r 17.C1 15.7E 
DISPOSAL LAM. 00 .00 .00 .Do .130 .00 .00 .00 
LAND FOP ACCESS RR 51.4 Fe.O0 E1.45 54.04 58.41 52.50 E.64 !3.4S 

PARAMETPIC POINT 17 18 iC 0 21 22 23 24


COAL. LB/K.-HQ i.s6sGG 1.-i 4l 2.0r.S61 1.37tc5 .91364 .s2921 1.07741 .96124

SORBANT OR SEEC.LE/KW-FR .COGUC .Ccccc .orcro .COCCE .4e34C .49IE4 .57CCE BOSSE 
TOTAL WATV t 3AL/$W-,iR .00I .000 .000 .000 .155 .153 .123 .163



COOLING WATER Co60 .CCU .000 Co0o .000 Co0 .C .CCC 
GASI IaS PROCESe RZO .GO000 .CO .00001 .00000 .00000 .00000 .0000 .00C 

NSATE HAKE UP . .5000 .0C[ r .LcCO .COcOa .CCUDO0 .CC cOCr .rc r 
o d WASIE HANDLING SLURRY .0000 .OC0o .0000 .0000 .1001 .1013 .1190 .1053 

SCRUBBER WASTE WATER oofioc COCrO .0 0G CC00 .C54B8 .0557E .EE4Eq .E576 
TOTALLS a aCOOQOVOOO .00000 .00000 .00000 *Co .00 
TOX LA C AC ES/aCVNWE 7J.7780 27.7C S0.37 2ES.92 3,7.05 199.0 
 172.55



OSLANT 17.03 16.15 17. S 17.10 1q.37 1S.57 21.40 19.97

S0 ~ 0AL LAND .CC rc .01 .rc 20.08 Cl .44 S4.43 F4 .2S 

LAND FOR ACCESS RR 66.78 61.is 70.18 73.28 70.37 GS.Ds 63.39 8.37 

'APAMTRIC VOINT 2; 17 23 -0 31
1I 
COAL. LP/KI.-HP .2857E S4S12 1.1 JSIL 1. 31.4SE17 1 £2033 1.68552 ltl 
TTAL WATE', .168 .B5 °ORS .O0OOO 1.07997.344 .0C .00000tALIKW-HR li1 .00D .0OOO .OCr

/(NT .32353 .50212 .13167 .14375OR SECD,LB/KW-HR 
COOLING WATER .000 .000 .DO .uo0 .001 .000 .000 .0OO 
GASIFTE9 PPOCESS 1420 .000 .0000o .0O000 .CCOt . COCOG ESE7S7 ,COCC0 .ECGEE 
CONDENSATE AKE UP. I- .fl0OO .OO00 .00000 .00000 .00000 .00000 .00000 .0 
WAS HANDL No SLUR~Y °C94 .103S C273 .03C2 .0000 .223E .COC F 
SCqUB3Z' WASTE WATER .0593S .nS694 .0,739 .033n7 .UOOQ .Lql23 00pooo .00000Nox SU°:PESSIGN .rocoo COCCU .CCCEC CCCrC ,rcocc .ccccE CrcrC Cccrr



STOTAL LAN: %C IO 71.S1 1'1.13 131.E? qB1'.'55 '7.78 t55 OR 54.43 
MAIN PLANT 20.33 IS.CE 1I.05 IS.3' 14.E2I S .3 15.1E IE.CE 
DISPOSAL LAND 95.75 33.18 33.27 36.60 .00 153.72 .00 .00
LAND FOP ACCESS PP. E4.53 78.90 7Q.22 75.42 7S.19 E4.25 7S.8e 79.34 



C T -Y TI NTUPAL RrSCURC RFUZwIVEhT5Table 7.27 - PECUP£PAT~r FELIU CLOSEC CYCLE 
Continued



PAPAMETRIC POINT 
COAL, LB/HW-HR
SORBANT OR SEEC,La/KW-NR 
TOTAL WATrP. 3AL/KWq-HR 

COOLING WATER 
SASIFIER PROCES' 420 
CONDENSATE MAXE UP * 
WASTE HANDLING SLURRY 
SCRUBBER WASTE WATER 
NOX SUPPRESSION 

TOTAL LAND ACRES/1CMNW 
MAIN PLANT 
DISPOSAL LAND 
LAND FOR ACCESS RR 

33 34 3F r7 
I.SiV3 '.15.42 1.4553 1.3 433 
.rno00 LGCC. CCC .cr cc 

.010 .00 .DOD .000 
.0OC .CO0 colt .C00 

.000o .00000 .9QO00 .00000 
0O0OO .OOrQQ .00000 .00OCZ 
.0000 .0000 .DCO0 .000 

.0000 .COOCC .OCCCG .0000 

.OOOO .00000 .00000 .00000 
97.44 117.70 2.91 £89.7 
15. 40 IF.45 1--.42 5.04 

.0c CC .CC .C 
92.04 57.25 77.09 S3.75 

3s 
?.L214 6 1.?0O2 1:333G 
.CCooc *CICO .CCL 

.00 " .000 .000 

.00a .000 .000 
.0c000 .0000 .00OO 
.0C00 .CODO .CO00O 
.00000 .OOO .0000 

.QCOOO .coca) .00000 
.0000 .00000 .00000 
25.2S 14.71 54.E 
5.7 14.71 15.14 

.L .5 .CD 
240.32 .00 79.75 

4IC 
1:89831 

cc(CL, 
.000 
.&Cc 

.00000 

.CCCC 
.0000 

.O0CC 

.00000 
F5.3E 
25.19 

EC 
80.19 

PAqAMETRIC POINT 
COAL, LB/W-HR 
SORBANT OR SEEDLS/K6-HR
TOTAL WATEP, GAL/KW-HP 

COOLING WATER 
GASIFIER PROCESS HZC 
CONDENSATE MAKE UP . 
WASTE HANDLING SLURRY 
SCRUBBER W4STE WATER 
NOX SUPPRESSION 

TOTAL LAND ACPSS/1DO"W7 
MAIN PLANT 
DltPOSAL LAN, 
LAND FOR ACCESS RR 

41 42 
1.93152 1.59351 
.00000O 00000 

.CV .00 
.CO0 .0C0 

.000 .C0]C0 
.DDOOD .Cooa 

.00CC .5505 
.00000 .0ou0 
.COCO .50050 
97.00 1G5.17 
IF.36 35.EE 

.BO .00 
21.6£ PS.E2 

'43 
:.7q8E 

. 
.crO 
.CO0 

.CCCOC1 
.o0000 

.1F6CC 
.O5OO 
.LOVCV600 

n. 36 
14.64 

.00 
7r.72 

44 45 
1.28632 ;.058S3 

.0000 .0oo 
.r .Fr 
.000CIo 

cr0.Ccoo.rrOCIE 
. 0000 .50O00 

.OC .00o 
.00000 .06000 

CQCGG o 0coa 
13.93 I09.43 
15.C4 15.96 

.QE' .00 
79.8s 22.47 

46 
I .7EEE 
.Cocoa 

.COO 
.000 

.Dor 
. 

.10000 
Utc 

c4.43 
15.0X 

.0 
7.24 

47 48 
1 E769E I.E2924 
.0OOOO .0000 

.[cc .UL 
.000 .DO 

.CCCC .crct 
.0n00 .00010 

. CC .. CC(
.00000 .0 
.C.CGC . 
94.43 97.37 
iE .CE 11.85 

.00 amD 
75 .74 E5.4E 

_­

rARAVETRIC POINT 
COAL, LB/KN-HR
SORBANT OR SECO,LZ/KW-HR
TOTAL WATER, 3AL/KW-4I

COOLING WATER 
GASIFIER PROCESS 420 
CONDENSATE MAXE UP 
WASTE HANDLING SLURRY 
SCRUBBER WASTE WATER 
NOX SUPPRESSION 

TOTAL LAND ACRES/10CMV8 
MAIN PLANT 
DISPOSAL LAND 
LAND FOR ACCESS RR 

4C 
.00000 
.CO0C0 

.000
.Vo 

.00000
O.COOOC 
*Onen 

.000o 

.Op00 
.o 
.BO 
.CC 
.00 

r 
.L:0 
.OBC 
.OO 
.Car 

.000" 
Cacao 
..Oa 

.0000 
.00O0O 

.rc 
.00 
.OC 
.00 

El 
.0D 
.DOCOO 

.0OD 
.000 

.00000 
-Ca 
.nofDl 
.COCG 
.Ooon 

.CC 
.00 
0Cc 
.00 

B2 
.00000 
.ET0CC 

.000 

.000 
.00000 
.1CO505 
.BCDO 
Gooco 

.00000 
.C0 
.00 
.GO 
.00 

Z3 
.0 000 
.cooc 

.000 

.0O0 
.00000 
. o0000 
.0000 
.00000 
.POflOI 

.rC 

.00 

.cO 
.00 

!4 
.000 0 
.Conan 
. 000 

.Co0 
OOVD0 

.00000 
.0OD 
.cccnC 
. ,o.

.05 

.Cp 

.,
.00 

r! 
.00o00 
.CCGGE 
.000 
.000 

.00000 
.000 
.0000 
.CCccC 
.Ca00o 

.CC 
.00 
.C 
.00 

. £ 
.OOOOD 
.OGCCE 

.000 
.CC[

.00000 
.COG[( 
.0000 
cC[
.00001 

.Cc 

.DO 
.Cc 
.00 

@SRKPT PRINTS 
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Table 7.28 COMBINED AIR-HELIUM-STEAM TURB CYCLE NATURAL RESOURCE REUrREIETS 

PARAMETRIC-POINT 1 2 3 4 s 77 8 
.COAL, L9/KW-R4R 1.67977 1.77530 1.87888 152580 1.S3433 1.57369 1.4V924 1.41182 
SORBANT OR SEEDtL/KW-HR .0000C .00000 .00000 .00000 .U0000 .OC0 .CDOU .000 
TOTAL WqTER, 3ALfKdW-iR .597 .538 .546 .615 .577 .547 .584 .549COOLING WATER .691 .603 .541 .610 .572 .543 .572 .544 

GASIFIER PROCESS 420 .30000 .33030 .000 .30030 .0000 .00000 .20000 .00808 
CONDENSATE MAKE UP . .00577 .CC480 .00411 .00527 .00478 .00433 .00!01 .00466 
WASTE HAN2LIN3 SLURRY .9000 .9030 .3300 .0300 .0000 .0000 .0000 .000 
SCRUBBER WASTE WATER .0000 .00000 .00000 .00000 .00000 .00000 .OCCOO coo 
NOK SUPPRESSION .0000 .30030 .00000 .3000 .00:00 0 .00DOD.30000 

TOTAL LAND ACRES/ICONWE 47.07 43.87 46.04 43.32 43.51 39.7 410.42 40.50
MAIN PLANT 15.96 1G.49 17.05 ts.06 15.10 15.36 14.35 14.36 
DISPOSAL LAND .00 .00 .00 .00 .00 .cc .00 .10 
LANo FOR A^CESS RR 31.11 27.39 28.99 28.25 28.41 24.37 25.07 26.14 

PARAMETRIC POINT 9 10 11 12 13 14 15 it 
COAL. LB/KW-HR 1.45359 2.00152 1.88382 1.80982 1.54138 1.52451 1.51380 1.50194 
SORBANT OR SEED.L3fKW-IR .09000 .33030 .01000 .30203 .00000 .00000 .00000 .ODUOU


TOTAL WATER. GAL/KW-HR .423 .401 .488 .5SV .559 .597 .EZ1 .650



COOLING WATER .189 .398 .485 .595 .555 .592 .616 .G44 
GASIFIER PROCESS H20 .CDCOC .C000o .00000 .00000 .OOOU .VOOC .0000C .OOO0 
CONDENSATE HAKE UP , .00439 .03317 .00386 .304G. .00463 .00495 .00515 .00339 
WASTE HANDLING SLURRY .0000 .Co00 .000 .000 .1000 .0001 .000 .000 
SCRUBBER WASTE WATER .00090 .333300 .000 . o0000 .00000 .00000 .90000 .2000 
NOX SUPPRESSION .00000 .00000 .00000 .00000 .00000 .00000 .00OC .0000 

TOTAL LAND A:RESf1232PWE 37.34 3&.22 42.85 43.88 43.89 43.27 43.01. 47.35
MAIN PLANT 14.61 17.G9 16.21 15.19 15.15 15.05 14.99 14.92 
DISPOSAL LANO .00 .30 .00 .Do .00 .00 .00 .00 
LAND FOR ACCESS RR 22.43 18.53 2F.65 28.69 28.55 28.23 28.03 32.44 

PARAMETRIC POINT 17 18 1 20 21 22 23 24 
COAL, L91PW-4R 1.55391 1.55031 1.55391 1.55991 160339 1.90243 1.56385 1.57091 
SORBANI OR SEEDLB/KW-HR .00000 .ODC .O00CO .00000 .DC0DO .CE00 .0OCCU .DOUCE 
TOTAL WATER, 3ALfKW-lR .5119 .543 .549 .543 .511 .543 .573 .601 

COOLING WATER .544 .544 .544 .544 .607 .63S .568 .559

GASIFIER PROCESS H2? .00030 .33030 .0300 .30000 .00000 .OQ0OD .90000 .00000 

CONDENSATE MAKE UP , .00455 .00455 a .00455,45S .00454 .0045r .00452 .00501 

WASTE HAN3LINS SLURRY .000 .3030 .9000 .0000 .0000 .oo0 .0000 .0000
SCRUBBER WASTE WATER .Co00 .00000 .00000 .0800 .00000 .0CO00 C .CDOO0cacao 
NOX SUPPRESSION .a0000 .3030 13OO .3000 .00000 .00000 .OOOD .00000 

TOTAL LAND ACRES01CQ4WE 45.92 43.92 43.92 43.92 45.32 45.10 44.23 43.q5 
MAIN PLANT 15.20 15.20 15.20 15.20 15.54 15.51 15.28 15.09 
DISPOSAL LAND .0 .ti .00 .00 .10 .00 .00 .UO 
LAN) 'OR AZCESS RR 28.72 23.7Z 23.72 Z8.72 23.78 29.87 23.96 28.3G 

%ARAMETIIC POINT 25 26 27 28 23 30 31 32 
COAL, LB/tK-HR 1.67891 1.579C7 1.63076 1.83902 1.54016 1.5391C 1.54433 1.52721 
SOREANT OR SrEEL3/W-A1 .3000D .33030 .0300 .03300 .3000 .00000 .00000 .3000 
TOTAL WATER. GAL/KU-HR .608 .552 .538 .590 .604 .590 .608 .571 

COOLING WATER .503 .554 .533 .595 .539 .585 .603 .567

GASIFIER PROCESS H20 .Doonc .0o000 .OCCDC .C00 .00 .00000 .000C2G .CO0 
CONDENSATE NAKE UP , .3045 '.02343 .00146 .30R83 .00500 .00489 .00497 .01473
WASTE HANDLING SLURRY .0000 .U0 .0000 .0000 .0001 .000 .OCO .000 
SCRU3BER WASTE WATER .30090 .1320 .03000 .33300 .UDO .0000 .20000 .30000 
NOX SUPPRESSION .ooDoo ooa DQCDoD .COQOU .00000 .0000V .cacao Coc0a 

TOTAL LAND AZRES/13MWE 43.83 t4.92 43.93 43.63 43.76 43.64 44.05 43.34 
MAIN PLANT 15.13 15.37 15.66 15.13 15.1E 15.14 15.24 15.06 
DISPOSAL LAN3 ,go .10 .00 .03 .00 .00 Do0 .00 
LAND FOR ACCESS RR 28.50 29.25 25.17 28.50 28.59 28.51 28.82 28.28 



Table 7.28 COMBINED AIR-HELIUM-STEAM TURC CYCLE NATURAL RESOURCE REQUIREMENTS



Continued


35 36 37 38 39 40
PARAMETRIC POINT 33 34 
 

COAL. LB/KW-R 1.53535 1.53810 1.53238 1.53519 1.53430 1.53430 1.19358 .82726


.00000 .00000 .00000 OO00C .43771
SORBANT OR SEEDLR/KW-HR .00000 .00000 .00000 

TOTAL WATER, ALfK/-R .5894 .532 .572 .582 .574 .574 .563 .780 
COOLING WATER .579 .587 .567 .577 .570 ..570 .558 . .581 
GASIFIER PROCESS 420 .30000 .30030 .00000 .09000 .00 D000DO .00000 .34765 
CONDENSATE MAKE UP . .o0480 .00421 .00474 .00482 .00480 .00480 00467 .00491 
WASTE H4N)LINS SLURRY .0000 .310 .0000 .0000 .3000 DOD0 .0900 30O5 
SCRUBBER WASTE WATER .00000 .00000 .00000 .000000- .00000 - .00000 .00000 .CL964 
NOr SUPPRESSION .0000' .00930 .00000 .30000 .OOOO -. 00000 D0000 .00000 

TOTAL LAND ACRES/lOEMIE 43.56 43.61 43.46 43.54 43.36' 43.36 ' 39.71 127.02 
15.13 15.09 15.11 15.07 15.07 1Z.65 27.39
MAIN PLANT 15.12 

.0 .00 .00 69.54DISPOSAL LAND .00 CO .00 .0 
LAND FOR ACCESS RR 28.45 23.49 29.37 28.43 28,30 28.30 27.07 30.08 

48'AAETRIC POINT 41 12 43 14 45 "45 47 
COAL, LB/KU-HR .82728 1.02841 1.35436 1.58620 1.50500 1.65701 1.85399 1.45439 

OR3ANT OR SEED.L3/K-AR .43771 .11533 .12918 .000a .00000 .000 .00000 .000 
TOTAL WATER. GAL/KU-HR .756 .681 675 .005 .05 810 1.038 .67s 

.000 .000 .310 1.038 .679 
GASIFIER PROCESS HZO .00000 .00000 .00000 .C000 .00100 .00000 .0000o °COC. 
CONDENSATE MAKE UP . .904S4 

COOLING ATER .511 .631 .593 
 

.09457 .90450 .30463 .00480 .00000 .00000 .00000. 
WASTE HANDLING SLURRY '.0906 .024Z 0267 .0000 .0000 O000 .0000 .0000 
SCRU8BER WASTE WATER .949S4 .05331 .95147 .OOOO .00000 .90000 .00300 .30000 
NOX SUPPRESSION .00000 .00000 .000O .00000 .00000 .00000 .00000 .0000 

TOTAL LAND ACRES/IO3IME 62.35 60.56 62.56, 93.77 14.89 61.88 7k.20 55.05 
MAIN PLANT 15.48 15.68 15.84 15.45 14.89 15.87 17.00 14.85 
DISPOSAL LAND 17.45 14.93 15.19 
 .00 .00 .00 .00 .00 
LAND FOR ACCESS RR 29.41 30.05 30.53 78.32 .00 46.01 57.20 40.4C 

50 52 54 56


COAL, LB/MKW-HR 
 
PARAMETRIC POINT 49 51 53 55 


1.56552 1.52738 1.47313 1.4754S .00000 .00000 .00000 .00000


SO.ANT4 -SEEDLB/K-HR .00000 .00000 .00000 .0000V0. .0000. .00000 .00CO rOuou


TOTAL 'ATER*' 3AL/KU-4R 
 .806 .090 .300 .677 .000 .000 .000 .DO0



.677 .000 .000 .000 .000COOLING WATER .806 .000 .000 
 
GASIFIER PROCESS qO .30000 .30090 .OOO .20000 00000 .00000 .30000 .30000 
CONDENSATE MAKE UP 9 .00000 rDOO .00000 .00000 .0000 OQO VOCO0 00000 
UASIE HANDLINS SLURRY .000 .000 .0000 .0C00 .0000 .0000.000a 29)0
SCRUBBER WASTE WATER .00000 .00000 .00000 .0000 .00000 .00000 Vt0o 0000 
NOK SUPPRESSION .0300D .93090 .00000 .30300 .00000 .O0 O .09000 .0000 

TOTAL LAND ACRES/1COWE 59.45' 156.59 137.57 55.75 .00 .00 Lc0 .00 
MAIN PLANT 13.96 15.19 14.94 14.79 ,Do .00 .00 
DISPOSAL LAND .00 .00 .00 .00 .00 .00 .00 . 
LAND FOR ACCESS RR 45.49 141.41 122.73 40.37 .00 .00 .00 .00 

a3RKPT PRINT$





7.7 Conclusions and Recommendations



7.7-.1 Conclusions



In comparison with other ECAS energy conversion systems, both



the closed recuperated and combined-cycle systems are not generally



attractive for base-load (or lower) capacity factor operation.



The combined closed-cycle systems, in general, have a lower COE



and better performance than the recuperated dlosed-cycle systems, al­


though for operation on coal fuel the results for both types of cycle are



nearly alike. Substitution of a sulfur dioxide bottoming fluid system



for the steam system results in reduction of the overall base-load COE



because of higher efficiency and reduced capital costs.



Firing of the coal-derived distillate fuel is not competitive



with direct burning of coal for base-load operation in this type of



plant. Further, of the types of coals investigated for direct burning,



the Montana subbituminous results in the lowest COE. Firing high-Btu



gas, as well as using integrated low-Btu gasification, are not attractive



options because of high capital cost.



As with open-cycle gas turbine systems, increasing the closed­


cycle turbine inlet temperature results in improved cycle efficiency for



both the recuperated and combined closed-cycle systems. Also, the closed­


cycle compressor pressure ratio for optimum efficiency increases grad­


ually with higher turbine inlet temperatures. For example, the



nonintercooled recuperated and combined closed cycle systems, at a tur­


bine inlet temperature of 922 0K.(12000 F), show optimum therodynamic effi­


ciency at a compressor pressure ratio of approximately 2 to 1; while at



12550K (18000F) turbine inlet temperature the optimum occurs at a value



of nearly 2.5 to 1.



In contrast with the open-cycle gas turbine systems, however,



the COE is not a continually decreasing function of higher turbine inlet



temperature. For both the recuperated and combined cycles, the minimum



COE was determined to occur at a turbine inlet temperature of 10890K
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(1500'F). This result follows from the greatly increasing heat exchanger



cost at the higher-turbine inlet temperatures.



The influence of recuperator effectiveness for the recuperated



closed-cycle systems is similar to the above described effect of turbine



inlet temperature. Although increasing the nominal recuperator effective­


ness results in a steady improvement in thermodynamic efficiency, the



optimum value for a minimum COE is approximately 0.9.



Results of alternative methods of heat rejection, including wet
 


cooling tower, dry cooling tower, and once-through cooling, are similar to



the results determined in the gas-steam combined-cycle section of this



study. That is, minimum COE obtained with once-through cooling, maximum



COE with dry tower heat rejection. Also, the difference in COE between



wet and dry tower rejection is larger than that between once-through and 

wet tower cooling.



The use of compressor intercooling in conjunction with the



recuperated-cycle configuration results in a reduced COE with the optimum1 

compressor pressure ratio at a value of approximately 5 to 1 at the 

1089 0K (15000F) turbine inlet temperature level. 

7.7.2 Recommendations



Certain features of the closed-cycle system merit further in­


vestigation.



* 	 Due to the high leverage of the helium heater costs on 

the plant cost and the overall COE further work on



this cycle should begin with more detailed technical



and economic evaluation of the helium heater system.



" 	 The use of closed helium cycle with bottoming cycle



should be further studied for other heat source appli­


cations, such as in a high-temperature gas-cooled



nuclear reactor.



" 	 The feature of bottoming with a low-boiling, high­


temperature stable fluid, such as sulfur dioxide or



ammonia, should be studied further.
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* 	 The feature of deploying a low-boiling fluid for



direct condensing in an air condenser should receive



additional investigation.
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