

- For information concerning availability of this document contact:

Tēchnical Information Division, Code 250

- Goddard Space Flight Center
*. Greenbelt, Maryland 20771
\because
(Teléphone 301-982-4488)

GENERATION AND PHYSICAL CHARACTERISTICS
 OF THE LANDSAT 1 AND 2 MSS COMPUTER COMPATIBLE TAPES

Valerie L. Thomas
Image Processing Branch
Information Processing Division

November 1975

GODDARD SPACE FIIGHT CENTER
Greenbelt, Maryland

FOREWORD

This document discusses the format and physical characteristics of the LANDSAT multispectral scanner (MSS) computer compatible tape (CCT). The resulting system corrected CCT has been generally referred to as the bulk MSS CCT.

The document is designed to be useful to those who are interested in knowing loniy general information about the system corrected MSS CCT as well as to those who have a need to know more details about the CCT. The overview section covers all of the general information. The second section (tape format) contains the necessary details for the data analyst or computer programmer who is interested in developing computer software which will read the CCT. The radiometric striping section and the appendices contain supplemental information about the radiometric striping characteristics and the radiometric calibration of the video data respectively.

GENERATION AND PHYSICAL CHARACTERISTICS OF THE LANDSAT 1 AND 2 MSS
 COMPUTER COMPATIBLE TAPES

Valerie L. Thomas
Image Processing Branch
Information Processing Division

Abstract

This document discusses the generation and format of the Landsat 1 and 2 system corrected multispectral scanner computer compatible tapes. Included in the discussion are the spacecraft sensors, scene characteristics, the transmission of data, and the conversion of the data to computer compatible tapes at the NASA Data Processing Facility. Also included in the discussion are geometric and radiometric corrections, tape formats, and the physical characteristics of the tape.

GONTENTS

Page

OVERVIEW

Spacecraft Sensors 1
Discussion of a Scene 2
Transmission of Data 8
Interleaving of Data 10
TAPE FORMAT
ID Record 11
Annotation Record 12
Video Data Record 20
RADIOME TRIC STRIPING WITHIN VIDEO DATA ON CCTs
Radiometric Striping 27
Sixth Line Striping 27
Intermittent Problems 27

APPENDIXES

APPENDIX A - Distance Between MSS CCT Video Data.Bytes and the Corresponding Ground Area Covered
APPENDIX B - Magnetic Tape Physical Characteristics
APPENDIX C - Line Length Adjustment
APPENDIX D - Radiometric Calibration
APPENDIX E - Decompression Tables Used by Digital Subsystem Prior to Calibration
APPENDIX F - Tick Mark Reference System
APPENDIX G - Conversion Tables: Binary/Octal/Decimal/Hexadecimal, Hexadecimal/Decimal/Fraction
APPENDIX H - SIAT Logical Tape Header
APPENDIX I - Detector-to-Dector Radiometric Accuracy

ILLUSTRATIONS

Figure Page
1 Components of a Completed Ground Scene as Represented on the MSS CCT 3
2 Ground Scan Pattern for a Single MSS Detector 4
3 MSS Scanning Arrangement 5
4 Bulk MSS Image-to-CCT Conversion 7
5 Position of Registration Fill Characters inSpectral Bands8
6 Nominal Calibration Wedge Output 9
7 ID Record Organization 11
8 Computer Printout of a Sample ID Record 12
9 Annotation Record Information Sequence 12
10
Sample Output from the Val Dump Program 13
11 Val Dump Printout of MSS Tick Mark tucation Information 20
12
Bulk MSS Four-Band Scene to Interleaved CCT Conversion 22
13 Bulk MSS Full Scene Interleaved Record Format 23
14 Bulk MSS Calibration Group Detail 23
15
Val Dump Printout of Calibration Data 23
16 Sample Val Dump Output of an MSS Video Data Record 24

ILLUSTRATIONS (continued)

Figure Page
17 Bulk MSS Full Scene Fifth-Band Data Record 25
18 Bulk MSS Full Frame Line Set 26
19 Bulk MSS Full Scene, Four-CCT Format 26

TABLES

Table Page
1 ID Record Information Definitions 6
2 Annotation Block Data 143 Causes and Effects of Intermittent StripingProblems . 28

GLOSSARY

APT	Auxiliary paper tape
Bit	The smallest element of binary, computer-intelligible data
Byte	A unit of data consisting of eight bits
CCT	Computer compatible tape
DS	Digital subsystem
DPPS	Digital pre-processing system
EBCDIC	Extended binary coded decimal interchange code
ERTS	Earth Resources Technology Satellite (now known as Landsat)
GSFC	Goddard Space Flight Center
HDDT	High-density digital tape
IAT	Image annotation tape
ID	Identification
IIGS	Initial image generating subsystem
km	Kilometer
Landsat	Land Satellite (formerly ERTS)
LLC	Line length code
MSS	Multispectral scanner
NDPF	NASA Data Processing Facility
nm	Nautical mile
Nmax	Maximum line length code
Pixel	One video data byte
RBV	Return-beam vidicon
SIAT	Special Image Annotation Tape

OVERVIEW

SPACECRAFT SENSORS

The Landsat Spacecraft contains in its payload two separate subsystems designed to produce spectral imagery of the earth's surface: the return-beam vidicon (RBV) camera subsystem, and the multispectral scanner (MSS) subsystem.

RBV Camera Subsystem
The RBV camera subsystem contains three individual cameras that operate in different nominal spectral bands from 0.475 to 0.830 micrometers. Each camera contains an optical lens, a shutter, an RBV sensor, a thermoelectric coder, deflection and focus coils, erase lamps, and the sensor electronics. Spectral filters in the lens assemblies provide separate spectral viewing regions for the cameras. The three cameras view the same nominal 185kilometer square ground scene. When the cameras are shuttered, the images are stored on the RBV photosensitive surfaces, then scanned to produce video outputs.

MSS Subsystem

The MSS is a four-band scanner operating in the solar-reflected spectral region from 0.5 to 1.1 micrometers. It consists of six detectors for each of the four bands. The MSS scans crosstrack swaths 185 km wide at normal altitude, imaging six scan lines across in each of the four bands simultaneously. This is accomplished by means of an oscillating flat mirror between the ground scene and a double-reflector telescope type of optical chain. The mirror scans the crosstrack field of view as it oscillates about its nominal position.

Video outputs from each detector in the scanner are sampled, digitized, commutated, and multiplexed into a modulated stream. The commutated samples are encoded and transmitted to ground-based recieving sites. The recieving sites compile the raw data on video tapes and transmit these tapes to the NASA Data Processing Facility (NDPF) at the Goddard Space Flight Center (GSFC), Greenbelt, Maryland.

The NDPF corrects, calibrates and formats the raw MSS data and converts it to a usable binary form on computer compatible tapes (CCT). Data processing operations discussed in this document include the formatting of digitized data on the CCTs, various corrections that are applied to the data to enhance its usefulness, and additional data processing such as decompression of data, radiometric calibration, and insertion of geographic coordinate tick mark information. For a more detailed description of these and other data processing operations at the NDPF, see "ERTS Data User"s Handbook" and the appendices in this document.

This document discusses only Bulk MSS CCTs. . .
DISCUSSION OF A SCENE
The annotated and corrected $185-\mathrm{km}$ square ground scene on the CCT is a final product of the MSS. This scene provides a number of different types of information that can be of value to the data user. An understanding by the user of the several steps necessary to produce this product will aid him in obtaining fullest use of the MSS data.

Scan Lines

A scene is made up of parallel scan lines, each containing a large number of video data points. There are 2340 of these lines per completed MSS CCT scene. Each scan line covers a distance of 185 km and is comprised of from 3000 to 3450 "bytes" of video data. A byte is made up of eight binary "bits," which are the smallest units recognized by the computer. These eightbit bytes (only six of the eight bits contain data in the linear mode, seven in the decompressed mode) are arranged in such a manner that they can represent differing radiance levels. The mirror motion since launch has thus far been highly repeatable. The scan line for a given scene has had an average of 3216 ± 6 bytes per line for Landsat-1, and 3247 ± 5 bytes per line for Landsat-2. The deviation per scene is typically ± 1 in the worst case. The relationship between video data bytes and the corresponding ground area covered is discussed in Appendix A. Figure 1 shows the components of a completed ground scene.

The distance covered by a scan line varies with altitude. Experience has shown that the variations have resulted in scan line changes of approximately $\pm 4 \mathrm{~km}$ in the worst case. At nominal altitùde, $918.592 \mathrm{~km}(496 \mathrm{~nm})$, the scan line is 185 km . Throughout the remainder of this document, nominal altitude conditions will be used.

Figure 1. Components of a Completed Ground Scene as Represented on the MSS CCT

Direction of Scan

The scan mirror operates in a scan-and-retrace cycle. The active portion of the scan is in a west-to-east direction. The full scan-and-retrace cycle produces a $185-\mathrm{km}$ sweep by the detectors of the ground scene beneath the satellite. Figure 2 shows the composite scan pattern of the MSS.

Direction of Flight

The spacecraft's near-polar orbital motion produces the along-track spacing between mirror sweeps. This along-track scan pattern, when combined with the scan-and-retrace cycle, provides complete coverage of the full. $185-\mathrm{km}$ scene.

Figure 2. Ground Scan Pattern for a Single MSS Detector

Sampling Rate

The video outputs of each detector are sampled during the active west-to-east sweep of the mirror. The sampling rate is a constant 100.5 kilo samples/sec and is maintained by an internal crystal clock.

Mirror Sweep

The 11.56-degree effective crosstrack field of view is scanned as the mirror oscillates ± 2.89 degrees about its nominal position, as shown in Figure 3. The mirror scans in a west-to-east direction, imaging in each mirror sweep the six scan lines from each of the four bands.

Radiance Levels

Differing levels of radiance within a scene are represented by means of various combinations of bits in the scan lines. Radiance values are registered on a scale of from 0 to 63 (minimum to maximum) in the linear mode, and from 0 to 127 in the decompressed mode. To determine which mode the data is in, see the definition of "MSS data mode/correction code" in Table 1.

Figure 3. MSS Scanning A rrangement

The Total Set of CCTs

One CCT contains an $I D$ record, an annotation record, 780 line sets of video data (which represent the interleaved data for a 42.25 by 185 km strip of the scene), for the four MSS spectral bands for Landsat-1 and -2, and includes the fifth band for future Landsat mission. A complete set of CCTs consists of: a) Four single CCTs; CCT 1, CCT 2, CCT 3, CCT 4, or b) Two merged CCTs; CCT 1 and 2, CCT 3 and 4. The fourth CCT in single or merged copies, will also contain a SIAT file. See Figure 19 for a diagram of the tape format.

Comparison of CCT Scene to Film Scene

The NDPF transmits completed ground scenes to data users on four separate CCTs, or two merged CCTs. For the single CCT copies, each tape contains image datafor one 46.25 - by $185-\mathrm{km}$ strip. For the merged CCT copies, each tape contains image data for two strips. The CCTs contain more image data than does the corresponding film print. The additional data consists of 42 scan lines preceding and 42 scan lines following the data from which the film scene was made (the film contains 2256 scan lines). Figure 4 shows a scene as contained

Table 1
ID Record Information Definitions

Char.	Information	Format	Code
1-12	Scene/Frame ID B $=$ spectral band identifier $\mathrm{N}=$ sequential subframe ID b $=$ blank char.	EDDD-HHMMSBN*	EBCDIC
13-16	Tape Sequencing Numbers Tape N of M	bNbM	EBCDIC
-	,		
17-18	Data Record Length (bytes)	nn	Binary
19-26	Binary Frame ID	nnmonnmn**	Binary
27-28	Binary Strip ID ,	nn	Binary
29-36	IAT Identification (from Header record on IAT)	AAnnnnnn	EBCDIC
37-38	MSS Data Mode/Correction Code*** Unitary Code	nn	Binary
39-40	MSS Adjusted-Line Length .	nn	Binary

*E	```Encoded Project Identifier LandSat I - I or 5 LandSat II - 2 or 6None```
DDD	Day number relative to launch at time of observation * OF'
HH	Hour at time of observation
MM	Minute at time of observation
S	Tens of seconds at time of observation
B	NDPF Identification Code (RBV: 1, 2, 3; MSS: 4, 5, 6, 7, 8)
**The Binary Frame $I D$ is the binary representation of the Scene/Frame ID.	
Char.	
19	Encoded Project Identifier (same as $* \mathrm{E}$ above.)
20-21	Days since launch; this number is determined by extracting the six right-most bits from bytes (characters) 20 and 21 and combining them into one word (six bits from byte 20 followed by six bits from byte 21)
22	Hour at time of observation
23	Minute at time of observation
24	Tens of seconds at time of observation
25	Spectral Band Identifier
26	Sequential Subframe ID
For characters 22 through 26, the six right-most bits are used.	
***Bits 0-7 of this two-character word are zero.	
Bits 8-15 have the following significance:	
Bit	
$8=$	1 for Sun Cal Data, $\quad 0$ otherwise
$9=$	1 for Calibration Wedge, $=0$ otherwise
$10=$	1 for Compressed Data, $=0$ otherwise
$11=$	1 for Hi gain on Band 1, $=0$ otherwise
$12=$	1 for Hi gain on Band 2, $=0$ otherwise
$13=$	1 for Decompression, $\quad=0$ otherwise
$14=$	1 for Calibration, $\quad=\cdots$ otherwise
$15=$	1 for Line Length Adjust, $=0$ otherwise

Figure 4. Bulk MSS Image-to-CCT Conversion
on four CCTs. The CCT scene and the film scene contain the same annotation data. Both the film and the CCT have the same algorithm applied to radiometrically calibrate the data; however, only the film is corrected for the mirror velocity profile. The film and CCT are both corrected for line length variation. The CCT is not geometrically corrected for effects such as skew as a function of earth rotation or mapping projection.

Seven- and Nine-track CCTs

Data users should request either seven- or nine-track CCTs according to the requirements of their computer. This and other physical characteristics of magnetic tapes are discussed in Appendix B.

Spectral Range for Each Band

The MSS subsystem is used on two missions. For Landsat-1 and -2, the four spectral bands are as follows:

Band 4
Band $5 \quad 0.6$ to 0.7 micrometers
Band 6
Band 7

0.5 to 0.6 micrometers

0.7 to 0.8 micrometers
0.8 to 1.1 micrometers

Bands 4 through 6 use photomultiplier tubes as detectors; Band 7 uses siliconphotodiodes.

For a future Landsat mission, a fifth band (band 8) will be added that operates • in the thermal (emissive) spectral region from 10.4 to 12.6 micrometers. This band uses mercury-cadmium-telluride, long-wave infrared detectors.

TRANSMISSION OF DATA
Registration of Scan Lines
The MSS detectors are sampled sequentially at a constant rate; therefore, the corresponding detectors of each band for the same ground field of view are not simultaneously sampled. Since the same ground field of view is not sensed by the detectors for each band at the beginning of the sampling, individual band pictures are misregistered in the along track scan direction by whole data samples.

The NDPF corrects for this slight variation by inserting registration fill characters (which contain no useful video data) at the ends of the lines. Registration fill characters correspond to bytes, and the number added to a given scan line is always six. These six characters are inserted at either or both ends of a scan line, as shown in Figure 5. Fill characters are added to the scan lines of each of the four spectral bands.

Figure 5. Position of Registration Fill Characters in Spectral Bands

Line Length Adjustment

Because the length of the scan lines that comprise a scene may vary slightiy due to small, variations in the period of the mirror, NDPF performs a line length adjustment operation on the computer to adjust all scan lines on ground scenes to the same length. The scan lines are lengthened by inserting "synthetic" bytes at regular intervals as needed to attain the length of the adjusted lines. The "synthetic" byte is a duplicate of the last byte preceding it on the scan line. This line length adjustment produces negligible distortion of the imagery. See Appendix C for a discussion of how line length adjustment is calculated.

Radiometric Calibration

During every other retrace interval a shutter wheel closes off the optical fibers viewing the earth and an artificial light source is projected into them through a variable neutral density filter on the shutter wheel. This process introduces a calibration wedge into the video data stream of Bands 4 through 7. The nominal shape of this calibration wedge, referred to as the gray wedge, is shown in Figure 6. The actual shape and level vary somewhat among the four spectral bands.

Figure 6. Nominal Calibration Wedge Output

The fact that the calibration lamp intensity profile is constant makes it possible to check the relative radiometric levels, and also to equalize gain changes which may occur in the six detectors of a spectral band. Corrections are performed at the NDPF to equalize these levels so that striping will be avoided. Appendix D provides an explanation of the radiometric calibration procedure.

Decompression of Data

The signal compression mode is normally used for the data from Bands 4 through 6 (photomultiplier tubes) since these bands have a better signal-tonoise performance than Band 7 (silicon photodiodes). By compressing the higher light levels and expanding the lower levels, the quantization noise more nearly matches the detector noise. Because of the performance characteristics of silicon photodiodes, no signal compression is performed on Band 7 .

Decompression of MSSS data at the NDPF consists of converting the data points to an expanded format that is easier to use. The MSS data are decompressed by means of a computer program which utilizes a decompression look-up table. This decompression table appears in Appendix E.

Annotation

The annotation record on CCTs is in two parts. The first part is background information concerning conditions under which the data were taken such as sun angles, spacecraft heading, etc. The second part provides tick mark location information so that the ground scene can be located in terms of geographic coordinates. The annotation record follows the ID record on the CCT and immediately precedes the video data.

INTERLEAVING OF DATA
Data from the four spectral bands are combined on the CCT through a process called interleaving. Bytes of data from the bands are interspersed by twos to produce an eight-byte "Group." The Group is the smallest element of interleaved data.

In addition, the first and last three Groups of each scan line contain registration fill characters to correct for misregistration among spectral bands. This registration process is discussed more fully in the Tape Format Section of this document.

TAPE FORMAT

The MSS CCT is made up of four groups of records: ID, annotation, video data, and SIAT data. The ID record contains a combination of binary and EBCDIC information which is used to identify the video data on the CCT. The annotation record contains binary and EBCDIC data which provide additional information about the scene such as the format center, nadir and sun elevation. This record also includes tick mark location information which associates the digitized scene with the latitude and longitude coordinate system. 'The video data record contains scene information which has been digitized so that each data point is represented by a radiance value which varies from 0 to 63 if the data are linear, and from 0 to 127 if the data are decompressed. The SIAT data are written in a separate file following the data on the fourth of the CCT set.

ID RECORD

The 40 -byte ID record is the first record on the tape, and appears only once per tape. Figure 7 shows the organization of the ID record.

The first word in the ID record is the scene/frame ID, given in terms of days, hours, minutes, and tens of seconds since launch. In addition, this record indicates the spectral band, sequential subframe ID, and whether the data are from Landsat-1 or -2. Characters 13-16 contain the sequencing numbers, i. e. , 1 of 4,2 of 4 , etc. , which distinguish the tapes in the set of four. Characters 17-18 contain the data record length in binary, i. e., the Iength of the adjusted scan line plus 56 bytes of calibration information. Characters 1926 contain the binary frame ID, which is the binary representation of the scene/ frame ID and must be broken into days, hours, minutes, seconds, etc., to be read. See Figure 8 for a computer printout of a sample ID record. The binary strip ID is stored in characters 27-28; however, this ID is not used for Bulk MSS CCTs. Characters 29-36 contain the image annotation tape (IAT) ID, which identifies the IAT used in making the CCT. Characters $37-38$ contain the MSS data mode/correction code, which is a digital word that indicates the

Figure 7. ID Record Organization (40 Characters, EBCDIC and Binary Code)
******* ID RECBRDSPECTRAL BAND 0 SUBFRAME 0 SCENE/FRAME ID: OS30 16448 M . 2 S
CCT SEQ. NU 1 OF 4 DATA RECORD LENGTH 3296
BINARY FRAME ID 5.531648200 BINARY STRIP ID O
IMAGE ANNET. ID SI510103
MSS DATA MODE/CORRECTION CODE 00100111
MSS ADJUSTED LINE LENGTH 3240

Figure 8. Computer Printout of a Sample ID Record
characteristics of the data such as decompression, calibration, and line length adjustment. See Table 1 for the complete definition of the MSS data mode/ correction code. Characters 39-40 contain the MSS adjusted line length. .

ANNOTATION RECORD

The annotation record is the second record on the tape. It occurs once per tape and contains 624 characters. The annotation record is a composite of two records taken directly from the image annotation tape. The first 144 characters comprise the annotation block, and the next 480 characters comprise the image location record. Figure 9 defines the sequence of information in the annotation record.

Figure 9. Annotation Record Information Sequence

Annotation Data Block

The information taken from the annotation tape is in human readable format to allow user interpretation. These data are specified at the time of RBV exposure or at the center of the MSS frame. All decimal points and special characters are included. The annotation block data format consists of 144 EBCDIC characters (72 sixteen-bit words). The format and content of the characters are defined in Table 2. Sample output from the Val Dump program (Figure 10) illustrates the type of information. that is available in the first 144 characters of the annotation record.

Figure 10. Sample Output from the Val Dump Program

Table 2
Annotation Block Data

Characters	Description
$\begin{aligned} & 1-2 \\ & 3-5 \\ & 6-7 \\ & 8-10 \\ & \\ & \\ & \\ & \\ & \\ & 11 \\ & 12-13 \\ & 14 \\ & 15-16 \\ & 17 \\ & 18 \\ & 19-21 \\ & 22 \\ & 23-24 \\ & 25-27 \\ & \hline \end{aligned}$	Day, Month, Year of Exposure - The date at Greenwich, month, and year of picture exposure. Date of Exposure, day of month, numerals. Date of Exposure, month of year, abbreviated to three alpha characters. Date of Exposure, year, abbreviated to two numerals. Constant: 'bCb' (signifies Format Center). Format Center - The center of the RBV and MSS image format is indicated in terms of latitude and longitude in degrees and minutes. The MSS format center shall be identical to the RBV format center. Format center is defined as the geometric extension of the spacecraft yaw attitude sensor axis to the earth's surface. Latitude direction, 1 alpha, N or S . Latitude, degrees, two numerals. Constant: -1/1. Latitude, minutes, two numerals. Constant: $1 / 1$. Longitude, direction, 1 alpha, E or W. Longitude, degrees, three numerals. Constant: '-'. Longitude, minutes, two numerals. Constant: 'bNb' (signifies Nadir). Nadir - The latitude and longitude of the nadir (the intersection with the earth's surface of a line from the satellite perpendicular to the earth ellipsoid) shall be indicated in degrees and minutes. Latitude direction, 1 alpha, N or S . Latitude, degrees, two numerals. Constant: '-'. Latitude, minutes, two numerals. Constant: 1/י.

Table 2
Annotation Block Data (continued)

Characters	Description
35	Longitude, direction, 1 alpha, E or W:
36-38	Longitude, degrees, three numerals.
39	Constant: '-'.
40-41	Longitude, minutes, two numerals.
42	Constant: 'b'.
43-54	Blank Field 1 (12 characters long)
55-60	Constant: 'SUNbEL'.
61-62	Sun elevation, degrees, two numerals.
	Sun Elevation - The sun elevation angle at the time of RBV exposure or midpoint of MSS frame shall be specified to the nearest degree.
63-65	Constant: 'bAZ'.
	Sun azimuth, degrees, three numerals.
	Sun Azimuth - The sun azimuth angle from true North at the time of RBV exposure or midpoint of MSS frame shall be specified to the nearest degree.
69	Constant: 'b'.
70-72	Heading of orbital path, including yaw, degrees, three numerals.
	Satellite Heading - The satellite heading shall be specified to indicate the orientation of the imagery. The heading includes yaw and is specified to nearest degree.
73	Constant: '-'.
74-77	Revolution number, four numerals.
	Rev Number - The consecutive rev number for the Landsat spacecraft shall be specified.
78	Constant: '-'.
79	MSS data acquisition site, abbreviated to one alpha, A, G or N. Data Acquisition Site - A one-letter acronym designates the data acquisition site. This will be either Alaska, (A), Goldstone, (G), or NASA Tracking and Training Facility (N).
80	Constant: '-'.
81	Constant: '1'.

Table 2
Annotation Block Data (continued)

Characters	Description
82	
83-84	Blank Field 2 (two characters long).
$85^{\text {. }}$	Type of orbit data, Predicted $=$ P; Definitive $=\mathrm{D}$.
86	Constant: '--'.
87-88	Blank Field 5 (two characters long).
89-101	Constant: bNASAbERTSb-'. Frame Identification
	Frame Identification Number - Each image or frame has a unique ideñtifier which contains encoded information. This identifier shall be used for an information retrieval system and will consist primarily of time of exposure relative to launch information. The Initial Image Generating Subsystem will add the appropriate spectral band number. Also part of the frame identification number is a "regeneration of images ${ }^{11}$ identifier. This identifier will also be added by Initial Image Generation Processing to the imagery when appropriate.
102	Landsat mission number $=\mathrm{S}$
103-105	Day number relative to launch = DDD
	$\mathrm{S}=1$ for Landsat 1 and DDD ≤ 999
	$\mathrm{S}=5$ for Landsat 1 and DDD >999
	$\mathrm{S}=2$ for Landsat 2 and DDD ≤ 999
	$\mathrm{S}=6$ for Landsat 2 and DDD >999
106	Constant: '-'.
107-108	Hour at time of observation.
109-110	Minutes.
111	Tens of seconds.
112	Constant: '-1.
113	Blank Field 3 (one character long).
114	Blank for earth images.
	RC1 Images - A 0,1 , and 2 to reflect the 3 exposure levels for radiometric calibration, where 0 corresponds to the minimum exposure level, and 2 corresponds to the maximum. A Blank signifies no RCI images.
115-116	:Blank Field 4 (two characters long).
	During Initial Image Generation Processing, the sensor code will be inserted on the imagery into Blank Field 1; the gamma

Table 2
Annotation Block Data (continued)

Characters	Description
	(normal ' $\mathrm{N}-$ ', or abnormal 'A-') into Blank Field 2; the spectral identifier into Blank Field 3; the regeneration number of the processed image (when necessary) into Blank Field 4; and the type of MSS signal encoding into Blank Field 5.
117-140	24 blank characters if RBV is off.
141-144	4 blank characters if MSS is off.
	Otherwise:
117-121	Direct or recorded data: 'IbbDX' or 'bbRX'.
122-123	Shutter Setting* and Aperture Correction Indicator, **RBV 1; a
124-129	Direct or recorded data: 'bb2bDX' or 'bb2bRX'.
130-131	Shutter Setting and Aperture Correction Indicator, RBV 2; aa
132-137	Direct or recorded data: 'bbb3DX' or 'bbb3RX'.
138-139	Shutter Setting and Aperture Correction Indicator, RBV; aa
140	Constant: ' b^{\prime}.
141-142	Direct or recorded MSS data: ' Db^{\prime} or ' Rb '.
143-144	MSS data acquisition site, 'A-', 'G-', or ' $\mathrm{N}-\mathrm{l}$.

*Shutter setting code, applicable to RBV annotation only:

Setting

	camera 1	camera 2	camera 3
A	4.0	.	4.8
B	5.6	6.4.	6.3
C	8.0	8.8	7.2
D	12.0	12.0	8.8
E	16.0	16.0.	12.0
			16.0

Duration of exposure
**Aperture correction indicator:
$I=$ Aperture correction in
$\mathrm{O}=$ Aperture correction out

Image Location Data

The image location data consist of 240 sixteen-bit words which describe the tick marks that associate the scene with latitude and longitude. There can be a maximum of six tick marks per side (i. e., left side, right side, top and bottom), and the image location data includes the tick marks for Bulk RBV as well asBulk MSS data.

The tick mark location data consist of four fields: the tick position, the special tick character, the direction (N, S, E, or W), and the value in degrees and minutes. Each tick mark is denoted by a 16-bit signed integer fraction which specifies its position along the edge of the scene, followed by eight EBCDIC characters. See Table 2 for a detailed description of the tick mark location information.

The $16-b i t$ signed integer fraction represents the location of the tick mark along the edge of the scene and takes on values from $+1 / 2$ to $-1 / 2$. The most significant bit of the integer fraction indicates the sign of the fraction. If the bit is a one, the fraction is negative; if it is a zero, the fraction is positive. See Appendix F for a discussion of the tick mark reference system, and Appendix G for a sample hexadecimal-decimal fraction conversion table.

The special tick characters are either an $X^{\prime} 4 F^{\prime}$, an EBCDIC vertical bar which is used along the top and bottom edges of the scene, or an $X^{1} 7 E^{\prime}$, an EBCDIC equals sign which is used to represent the ticks on the left and right sides of the scene. The direction is represented by an EBCDIC character which represents north, south, east, or west ($\mathrm{N}, \mathrm{S}, \mathrm{E}$, or W). The value of the latitude or longitude is given in degrees (3 characters) and minutes (2 characters).

There are two formats used to represent the location of tick marks. The tick marks are usually written first and are followed by the value of the latitude or longitude. If there is not enough room on any one of the sides for the last tick mark, then the value of the latitude or longitude is written first and is followed by the tick character for the last tick mark. An illustration of the two tick mark formats follows:

Format 1

Position: - 16-bit signed binary fraction

-

Tick mark annotation:

Tick mark character: $X^{\prime} 4 F^{t}$ or $X^{17} 7 E^{t}$

- Direction, one character: N, S, E, or W

Value
Degrees, three characters:
Constant: '-'
Minutes, two characters: 00 or 30

Format 2

Position: 16-bit signed binary fraction
Tick mark annotation:
Direction, one character: $\mathrm{N}, \mathrm{S}, \mathrm{E}$, or W
Value, six characters: same as Format 1 Tick mark character: $X^{\prime} 4 F^{\prime}$ or $X^{\prime} 7 E^{\prime}$

Each of the eight tick mark tables (one for each MSS and RBV edge) contains the tick mark data arranged in positional order from the top of the table downward. The unused tick mark locations are signified by a zero in the position words and $\mathrm{X}^{\prime} \mathrm{FF}^{\prime}$ in all of the annotation characters.

The tick mark record format defined in the 16 -bit words is. as follows:
RBV tick mark set:

Character

B(1)
$B(2)-B(5)$
B(6)
$\mathrm{B}(7)-\mathrm{B}(10)$
B(11)
$B(12)-B(15)$
B(16)
$B(17)-B(20)$
B(21)
$\mathrm{B}(22)-\mathrm{B}(25)$
B(26)
$\mathrm{B}(27)-\mathrm{B}(30)$
$\mathrm{B}(31)-\mathrm{B}(60)$
$\mathrm{B}(61)-\mathrm{B}(90)$
$B(91)-B(120)$

Description

Position, tick mark no. 1
Annotation, tick mark no. I
Position, tick mark no. 2
Annotation, tick mark no. 2
Position, tick mark no. 3
Annotation, tick mark no. 3
Position, tick mark no. 4
Annotation, tick mark no. 4
Position, tick mark no. 5
Annotation, tick mark no. 5
Position, tick mark no. 6
Annotation, tick mark no. 6
Left edge tick mark table
Right edge tick mark table
Bottom edge tick mark table

MSS tick mark set:

Figure 11 is a Val Dump printout of the MSS tick mark location information.

VIDEO DATA RECORD

Data Word

The data word consists of eight bits, of which only six are used if the data mode is linear and seven are used if the data mode is decompressed. The following illustrates the data word for the two modes:

The X's represent the video data bits in the word. The bits in the diagram which contain the O's are used to indicate flags (e.g., 11111111 is used as the registration fill character).

The value of the data within the data word varies from 0 to 63 in the linear mode and from 0 to 127 in the decompressed mode, and represents the variation of the radiance level (0 represents black, 63 or 127 represents white and the values in between represents all the shades of gray).

Figure 11. Val Dump Printout of MSS Tick Mark Location Information

Group

In order to obtain a video data record which includes information from all four spectral bands, the data from the bands are combined in a process called interleaving. This is an operation in which two bytes of data from each band are interleaved to produce an eight-byte "group," which is the smallest element of interleaved data. Figure 12 shows the scheme used to interleave the four bands of MSS data. The data samples in the group are registered and represent the same two points on the ground, as sensed by each of the spectral bands.

Registration fill characters are included in the first and last three groups; i.e., the first three groups of each quarter scan line on tape 1 of 4 and the last three groups of each quarter scan line on tape 4 of 4 . In the illustration of these groups which follows, the O^{\prime} 's represent registration fill characters and the X's represent video data bytes:

First three groups

000000 XX	0000 XX XX	$00 \mathrm{XX} \mathrm{XX} \mathbf{X X}$
Last three groups		

XX XX XX OO XX XX OO OO XX OO OO OO
Since the length of scan lines varies slightly, the adjusted scan line length is used to determine the number of groups (3n eight-byte groups) per scan line. The n referred to is the same n that is used in adjusting the scan line length. See Appendix C for an explanation of the line length adjustment.

Video Data Record for Landsat-1

The Landsat-1 video data record ($\mathrm{R}_{\mathrm{i}, \mathrm{k}}$) consists of 3 n eight-byte groups and four 14-byte calibration groups. Figure 13 illustrates the record format; i denotes the image segment and the CCT tape number, and k is the sequential scan line index.

The four 14-byte calibration groups contain calibration data for each of the four MSS bands. Each group contains six calibration wedge samples, a sun calibration coefficient, correction coefficients (filtered offset and filtered gain), and the value of the unadjusted line length for a band. Figure 14 gives the breakdown of the calibration data. The b denotes the band and the k denotes the scan line. Figure 15 shows the Val Dump printout of the calibration data.

Figure 12. Bulk MSS Four-Band Scene to Interleaved CCT Conversion

Figure 13. Bulk MSS Full Scene Interleaved Record Format (Line Length Adjusted to $\mathrm{N}=24 \mathrm{n}$ Samples)

*LLC is a 2-byte banary number denoting the number of video data samples per
THE LOCATION OF EACH BINARY POINT IS AS FOLLOWS: uncorrected (raw) scan line.

SUN CAL	$X X X X$	$X X X X$	$X X X ॰ X$	$X X X X$	
FILTERED OFFSET	$X X X X$				
FILTERED GAIN (LINEAR)	$X X X X$				
FILTEREDGAIN	$X X X X$				
(DECOMPRESSED)	$X X X X$	(DISCUSSED IN APPENDIXD)			
$\hat{U}_{S_{n}}$					

Figure 14. Bulk MSS-Calibration Group Detail

Figure 15. Val Dump Printout of Calibration Data

ORGMNAL PAGE IS

Figure 16 is a sample Val Dump output of an MSS video data record. The printout is in hexadecimal. Note that in this example, tape 1 of 4 is used; therefore, the registration fill characters ($\mathrm{X}^{\prime} \mathrm{FF}^{\prime}$) appear within the first data bytes.

Video Data Record for a Future Fifth Band

The special fifth band video data record B_{i}, k contains $2 n$ (the same n used in calculating the adjusted line length) video data points and 14 bytes of calibration data for the fifth band. The format for the cal data is the same as that for the other bands. Figure 17 is a diagram of the $B_{i, k}$, where k is the sequential Band 8 scan line index and i is the image segment and computer-compatible tape number.

Figure 16. Sample Val Dump Output of an MSS Video Data Record (See Appendix G for hexadecimal-to-decimal conversion.)

Figure 17. Bulk MSS Full Scene Fifth-Band (Band 8) Data Record

Missing Data Flags

If data for a scan line is lost while making a CCT, a flag ($\mathrm{X}^{\prime} \mathrm{CC}^{\prime}$ or, in the binary representation, 1100 1100) is inserted at the beginning of the scan line (on tape 1 of 4 only) and at the end of the scan line (on tape 4 of 4 only).

Line Set

The line set ($L_{\mathbf{i}}, p$) is the scheme used for including the video data from the fifth band which is planned for Landsat-C. A line set consists of three regular video data records and a fourth special record which contains the fifth band's video and cal data. Figure 18 is a diagram of the line set. For Landsat-1 and -2 there is no fourth record-just the regular video data records.

SLAT Data File

This file, shown in Figure 20, consists of seven records. The first record is a 2048 byte record which contains the SIAT logical tape header. The second record contains 216 bytes of Processing Information Data. The third record contains 204 bytes of Spacecraft and Sensor Performance Data. The fourth record contains 144 bytes of Annotation Block Data (Table 2). The fifth record contains 76 bytes of RBV Computational Data. Record six contains 326 bytes

ORIGINAL PAGE IS OF POOR QUALJIF

Figure 18. Bulk MSS Full Frame Line Set, With Fifth Band

Figure 19. Bulk MSS Full Scene, Four-CCT Format
of MSS Computation.Data. The seventh record contains 480 bytes of Image Location Data.

A detailed description of each of these files is shown in Appendix H.

RADIOMETRIC STRIPING WITHIN VIDEO DATA ON CCTS

Striping problems in CCT video data can be divided into three basic types: radiometric striping, sixth line striping, and intermittent problems which appear to be striping.

RADIOMETRIC STRIPING

Radiometric striping is characterized by variations in the film density of imagery which should be uniform. These variations are repeatable and are present in the digital data in the same manner.

This type of striping is due to slight differences in sensitivity among the detectors. To compensate for this variation in detector output, gains and offsets are used which are calculated from regression coefficients that operate on the cal wedge of each detector.

The regression coefficients (for Liandsat-1) used before April 1973 were based on prelaunch evaluations: Radiometric sensitivity, however, changed slightly after launch, causing a striping problem. In April 1973, new regression coefficients were selected which effectively eliminated the radiometric striping problem.

Appendix I provides information on detector-to-detector radiometric accuracy.

SIXTH LINE STRIPING

This striping is characterized by a variation in every sixth scan line of six quantum levels or more from the average quantum level of the other scan lines.

This striping problem was caused by an intermittent hardware problem in the MSS controller in IIGS, and was corrected through modification of the software in April 1973.

INTERMITTENT PROBLEMS

This class of problems occurs so intermittently that a solution has not been determined to correct for them. These problems include partial sync loss, full sync loss, track loss or disable, bit slips, and demux noise. These problems, along with their causes and effects, are listed in Table 3.

Table 3 Causes and Effects of Intermittent Striping Problems

Problem	Cause	Effect
Track loss or disable	Inoperative track on FR1928 tape recorder or MSS controller un- able to find sync	Zeros are stored on the CCT for a detector or detectors, line length code, cal wedge, etc.
Partial sync loss	Complete loss of data/ sync for one or several scan lines	Zeros stored on the CCT for a detector
Bit slips	Data not decoded properly by the FR1928 tape re- corder	Missing scan line, or portion of scan line contains zeros
Demux noise	The demultiplexer oc- casionally adds noise to the data as it is being transferred to the ground from the spacecraft	Intermittent zeros ap- pear in the video for a detector
Full sync loss	Loss of sync for all six detectors of a band	All zeros on the CCT for video data, line length code and cal wedge

NOTE:
Updated Landsat-2 calibration constants were calculated shortly after launch to reduce striping in several detectors. The results of a study (June 1975) involving the detector-to-detector striping indicated that the RMS striping is less than one MSS level for every detector on Landsat-2.

APPENDIX A

DISTANCE BETWEEN MSS CCT VIDEO DATA BYTES AND THE CORRESPONDING GROUND AREA COVERED*

During the MSS scan of the ground, the video data bytes correspond to 260 by 260 foot areas which, if the mirror velocity were constant, would have a constant overlap of 71.5 feet. The actual mirror velocity is not constant because of the speeding up and slowing down of the mirror. A realistic representation of the mirror velocity versus time is very nearly a cosine curve during the active scan, as shown in Figure A-1. Since the mirror velocity is not constant, the amount of overlap is also variable, but is negligible for most applications of the data. Figure A-2 shows the variable overlap, exaggerated to illustrate this characteristic.

If the distance covered on the ground and the sweep time of the mirror are plotted for a constant mirror velocity and for a variable mirror velocity, the relationship between the two is similar to that shown in Figure A-3. The straight line shows a constant velocity of the mirror versus the distance covered on the ground. The curved line shows the actual variable velocity of the mirror versus the distance covered on the ground. The difference between the two lines indicates the corrections necessary to make points on the CCT reflect accurately the distance covered on the ground.

Figure A-4 shows a mirror velocity profile curve which plots the summation of the ground error versus the 185 km of ground covered. The maximum accumulated error is approximately ± 400 meters (i. e., approximately 1300 feet, which is about 5 pixels). It should be noted that the mirror velocity profile curve shows the accumulated error at any point across the scan line. The accumulated error at 46.25 km is close to the maximum; however, at 92.5 km the accumulated error is zero. When interpreting the distance between two points on the ground corresponding to the distance between video data bytes on the CCT, one must remember that the error accumulated from the beginning of the scan line to the point located at 46.25 km is approximately 400 meters. The distance represented by a quarter of a digital scan line is not 46.25 km ; it is 46.25 km minus approximately 400 meters; whereas, half of the digital scan line corresponds to 92.5 km .
*This discussion is based on nominal spacecraft conditions (such as spacecraft altitude) and does not consider negligible perspective errors.

NOTE: Not drawn to scale
Figure A-1. Comparison of the Constant Mirror Velocity and the Variable Mirror Velocity .

NOTE: 1. Pixels are represented by circles for ease of illustration; they are actually squares.
2. Not drawn to scale

Figure A-2. Overlay of Pixels, Corresponding to a Variable Mirror Velocity

NOTE: 1. $X=$ the easterly scan of the ground
2. Not drawn to scale

Figure A-3. Comparisoñof Distance Covered on the Ground for a Constant Mirror Velocity and a Variable Mirror Velocity

Figure A-4. Mirror Velocity Profile for the Active Mirror Scan

MAGNETIC TAPE PHYSICAI CHARACTERISTICS

Computer-compatible tapes (CCTs) are standard one-half-inch polyester-base magnetic tapes. The physical characteristics of CCTs are given in Figure B-1 and Table B-1.

There is one scene of digital imagery for each set of four CCTs, or on two merged CCTs. The external label on each tape contains the information shown in Figure B-2.

CCTs are available in two basic formats:
Nine-track, 800 bpi
For the nine-track CCT, the alphanumeric data are in EBCDIC and the video data are in binary.

Seven-track, 800 bpi
The seven-track CCT contains packed binary video data and packed binary EBCDIC alphanumeric data. The record layout and bit structure are identical to the layout and structure of the nine-track CCT. The standard product is a seven-track, 800 -bpi CCT, but a seven-track, 556 -bpi CCT may be ordered by special request. The format is the same as for the 800 -bpi CCT.

Figure B-1. Physical Spacing of Records on Tape

Table B-1

CCT Operational Data Format Definitions

Figure B-2. External Tape Label

APPENDIX C

LINE LENGTH ADJUSTMENT

When the MSS video tape is processed in IIGS in the video-to-tape mode, a comparison is made while each'scan line is being read to determine the maximum line length code (LIC) for the scene. The maximum LLC, referred to as Nmax, is stored on an auxiliary paper tape (APT) which is used by the digital subsystem (DS) to compute the adjusted line length.

To compute the adjusted line length, DS uses the Nmax from the APT and LLC, a code denoting the number of video data samples per uncorrected (raw) scan line, referred to as LLC raw, which is provided to the DS in the calibration data. In computing the adjusted line length, LLC raw is confined to boundaries as follows:

$$
2650<\text { LLC raw } \leq 3480
$$

If LLC raw extends beyond these boundaries, DS uses the value of LLC raw from the previous scan line. Next, Nmax minus LLC raw is computed; if it.is equal to zero, no line length corrections are made. LLA (adjusted line length) is converted to the smallest multiple of 24 which satisfies the following condition:

$$
\text { LLA }>N \max +6
$$

where 6 corresponds to the number of registration fill characters added to each interleaved scan line
or

$$
L L A=24 n
$$

where $n=$ integer part of:

$$
E=\frac{N \max +6+23}{24}
$$

23/24 provides high roundoff.
The multiple of 24 is selected as the smallest integer which is divisible by both six and eight, the six representing six bytes maximum for spatial registration, the eight representing bytes for interleaving (two bytes per band, multiplied by four bands).

After calculating the LLA, a computation is made to determine the interval for interspersing synthetic bytes. To obtain equal line lengths, synthetic bytes are interspersed with data bytes at a specific interval. The value assigned to the synthetic byte is equal to the actual quantum level of the last video data byte. immediately preceding the synthetic byte. The interval is calculated as follows:

$$
\Delta=\frac{\operatorname{LLC}}{\mathrm{LLA}-(\mathrm{LLC}+6)} \quad \text { (integer part only) }
$$

This interval is set into a counter. The counter is decremented with each transfer of video data (bytes). When the counter reaches zero, the last data byte transferred is repeated. The counter is then reset and the process is repeated until the scan line is complete.

All deltas in the count sequence are the same with the exception of the initial deltas, which must be adjusted to correct for spectral band misregistration. As the data is transmitted from the sensor, each MSS band is spatially offset from the preceding band by two video data bytes (a function of sensor operation). Therefore, to register the video data on the CCT, Band 1 data is offset by six bytes, Band 2 by four bytes, and Band 3 by two bytes relative to Band 4. This is accomplished by adding registration fill characters of $X^{\prime} F F^{\prime}$ data.

To adjust the delta for the initial count for each scan line, the quantity Δ_{b} is subtracted, where:

$$
\Delta \mathrm{b}=8-2 * \mathrm{~b}
$$

where b is the spectral band number; i.e.,

$$
\Delta \text { initial }=\Delta-\Delta b
$$

APPENDIX D

- RADIOMETRIC CAIIBRATION

Figure D-1 shows the data flow through the initial image generating subsystem (IIGS) and the digital subsystem (DS) of the NASA Data Processing Facility. The MSS video data is entered into the DPPS where a high-density digital tape (HDDT) is made. The HDDT contains the uncalibrated data, line length code values for each scan line and the rediometric calibration wedge samples. The HDDT, is the input to the DS. The DS reformats the data, calibrates the data and generates the CCT.

Figure D-1. Data Flow through IIGS and DS
Figure D-2 is a flowchart of the radiometric calibration procedure (used for the first three MSS bands; the fourth band is uncalibrated for Landsat-1) which takes place in the DS. A detailed explanation of the equations, calibration wedge word counts, maximum specified rediance and the sun calibration procedure is provided in the ERTS Data Users' Handbook. Note that the sun calibration is not used at present; the sun cal coefficient K_{S} is set equal to one.

The calibration data from the HDDT scan line record is entered into the system. At this point, either a compressed or decompressed mode is selected. Next, an estimate is made for \hat{a} and \hat{b} from the calibration data. The equations used
in making this estimate are the following:
V_{i} is the input value of the cal wedge word i, and C_{i} and D_{i} are regression coefficients. See Tables $D-1$ through $D-5$ for the C_{i}^{\prime} 's and D_{i}^{\prime} 's. \hat{a} and \hat{b} are then filtered, yielding \hat{a}_{S} and \hat{b}_{S}, which are referred to as the filtered offset and filtered gain respectively. The filter equations are as follows:

$$
\left(\hat{a}_{s}\right)_{n}=\left\{\begin{array}{l}
\hat{a}_{n}, \quad, \text { for } n=1 \\
\left(\hat{a}_{s}\right)_{n-1}+w_{n}^{a}\left[\hat{a}_{n}-\left(\hat{a}_{s}\right)_{n-1}\right], \text { for } n>1
\end{array}\right.
$$

and

$$
\left(\hat{b}_{s}\right)_{n}= \begin{cases}\hat{b}_{n} & , \text { for } n=1 \\ \left.\hat{b}_{s}\right)_{n-1}+W_{n}^{b}\left[\hat{b}_{n}-\left(\hat{b}_{s}\right)_{n-1}\right], & \text { for } n>1\end{cases}
$$

where

$$
W_{n}^{a}=\left\{\begin{array}{l}
1 / n, \text { for } n \leq N_{a} \\
1 / N_{a}, \text { for } n>N_{a}
\end{array}\right.
$$

and

$$
W_{n}^{b}= \begin{cases}1 / n, & \text { for } n \leq N_{b} \\ 1 / N_{b}, & \text { for } n>N_{b}\end{cases}
$$

N_{b} is the control number for the gain filter. The present value for N_{a} and N_{b} is 32.

Finally, calibrated values are produced by applying the following equation:

$$
\hat{U}_{S_{n}}=\frac{K_{s}}{\left.\hat{\mathrm{~b}}_{s}\right)_{n}} \quad\left[\begin{array}{ll}
X & (U)-\left(\hat{a}_{S}\right)_{n}
\end{array}\right]
$$

K_{S} is the sun cal coefficient and U is the gray scale level (0 to 63).
The transformation X (U) may be the decompression transform or it may be the identity transform. Values of U_{S} are rounded to integers before being loaded into the look-up table.

NOTE:
The previous equations are applied once per sensor for each band on the odd mirror sweep (six scan lines per mirror sweep). A filtered gain and offset are saved for each sensor in each band in order to calibrate the even sweep.

Figure D-2. DS Radiometric Calibration Flowchart

Landsat-1 Ci's and Di's - 9/5/75
Low'gain decompressed

D_{3}	c_{3}	D_{4}	C_{4}	D_{5}	c_{5}	D_{6}	c_{6}
-:247559	. 191650	-. 352783	. 216309	- . 601807	. 274658	- .688477	, 294922
- . 251709	. 332764	- . 357422	. 375244	-. 806934	. 475342	-. 694092	. 510254
- . 273926	.237061	-. 383301	. 266602	- .640869	. 336426	- .732178	. 361328
- . 250244	. 240479	- . 348877	. 269775	- . 578613	. 337646	- . 657471	. 360840
- . 273193	. 246582	-. 378906	. 276611	- . 625732	. 346436	- . 712158	. 370850
- . 272217	. 305684	-. 382568	. 343750	-. 641846	. 433105	-. 731934	. 464111
- . 293701	. 170654	- . 366943	. 185791	-. 537109	. 220703	- .619385	. 237793
-. 283936	- . 330322	- . 361572	- . 361572	-. 643701	- . 435303	- .633057	-. 471436
-. 287354	. 307129	- . 361928	. 334717	-. 533691	. 399658	- .617432	. 431152
- . 291016	. 255859	-. 369141	. 279297	-. 652246	. 336937	-. 841846	. 363525
- . 284668	. 192383	-. 358154	. 209961	- . 530029	. 250977	-. 613770	. 271240
- . 296143	. 324219	-. 374268	. 354492	-. 657861	. 425293	-. 647705	. 460205
. 240479	-. 391787	-. 647949	-1.305176	- . 703125	-1.365729	-. 777100	-1.446777
:259521	.003906	-. 647705	.017090	- . 706055	. 018066	-. 784424	. 019043
. 273926	.085938	- . 673828	. 364746	- . 735107	. 382812	- . 817383	. 406982
. 30443	- . 204590	-. 755615	- .839955	-. 823242	- . 879883	- . 013574	- . $934082^{\text {- }}$
. 284668	. 091064	- . 733643	. 360840	-. 797607	. 377930	- . 882812	. 400391
. 270752	. 092529	$-.677490$.379639	- . 737793	. 397949	-.818848	. 422607
. 583496	. 034180	-. 984863	. 389898	-1.079834	. 411377	-1.157471	. 428955
. 652832	. 032959	-1. 101662	. 392090	-1.207764	. 413818	-1.294922	. 481641
. 610840	.085645	-1.043701	. 389893	-1.142090	. 411133	-1.222656	. 428223
. 743652	. 030029	-1.212646	. 389160	-1.336426	. 411885	-1.438477	. 430664
. 744385	. 036377	-1.245605	. 384521	-1.368943	. 405518	-1.466309	.423096
. 629395	:041748	-1.090088	. 382568	-1.189941	. 402344	-1.271484	. 418701

Table D-2

Landsat-1 Ci's and Di's - 9/5/75

Table D-3
Landsat-2 $\mathrm{Ci}^{\dagger} \mathrm{s}$ and $\mathrm{Di}^{\prime} \mathrm{s}$ - 9/5/75
high gain decompressed

	Sensor	D_{1}	c_{1}	D_{2}	c_{2}	D_{3}	C_{3}	D_{4}	c_{4}	D_{5}	c_{5}	D_{6}	c_{6}
	Band 4												
	1	. 930420	- . 229248	. 518555	-. 053955	. 272461	. 050781	-. 231934	. 265625	-. 612793	.427734	-. 875732	. 539795
	2	1.061279	- . 229248	. 585205	-. 051514	. 311523	. 050537	- . 260254	. 263916	- . 697998	. 427246	- . 999023	. 539795
	3	. 822266	- . 225586	. 496826	-. . 070813	. 246094	. 049072	-. 200928	. 262695	-. 566406	. 437256	-. 797119	. 547363
	4	. 867920	- , 220459	. 528320	-. 069092	. 264404	. 048584	- .212402	. 261475	-. 600098	.434814	-. 847412	. 545166
	5	. 919189	- . 222900	. 526611	-. 056396	. 286133	. 045410	-. 225586	. 262451	- . 630859	. 434326	-. 874756	. 537598
	6	. 892334	- . 225098	. 511475	-. 057861	. 268799	. 048584	-. 218262	. 262695	-. 609619	.434570	-. 843994	. 537598
	Band 5												
	7	1.280273	-. 454102	. 762451	-. 202881	. 225342	.057373	-. 295654	. 310059	-. 728871	. 520020	-1.243408	. 769775
$\begin{aligned} & -1 \\ & 1 \\ & \hline \end{aligned}$	8	1.460693	-. 449219	- .905518	--. 215088	. 304443	.038330	- . 424805	. 345947	- . 824707	. 514648	-1.420410	. 765869
	9	1.158203	-. 482422	. 685303	-. 217285	. 218750	. 043945	-. 297363	. 333496	-. 633301	. 521729	-1.130859	. 800781
	10	1.156738	-. 444824	. 703857	- . 205322	. 216653	. 052246	-. 303467	. 327148	- . 638184	. 504395	-1,134521	. 766846
	11	1.137939	- . 450195	. 690918	- . 207764	. 208252	. 053711	- . 286865	. 322266	- . 634521	. 510742	-1.114990	. 771484
	12	1.321289	-. 502197	. 709527	-. 233398	. 200439	. 065186	-. 447266	. 393311	-. 651855	. 496826	-1.212402	. 780762

Table D-4
Landsat-2 Ci's and Di's - 9/5/75

Sensor	D_{1}	c_{1}	D_{2}	c_{2}	D_{3}	C_{3}	D_{4}	C_{4}	D_{5}	C_{5}	D_{6}	C_{6}
Band 4												
1	1.124023	-. 120850	. 710205	- .046143	.031738	. 076416	-. 238770	. 125244	- . 658203	. 201172	-. 988018	. 257324
2	1.268066	-. 158691	. 786377	- .057861	. 040283	. 098145	-. 269287	. 163086	- . 734131	. 260498	-1.090332	. 334961
3	1.088379	- . 174561	. 720459	- .077148	.045166	. 101562	- . 212646	. 169922	-. 654053	. 286865	- .986572	. 375000
4	1.113770	- . 168213	. 760010	-. 078613	. 050537	. 100342	-. 211426	.166992	- . 684082	. 286621	-1.027832	. 373779
5	1.145996	- . 194092	. 736572	-. 078369	. 051025	. 114990	- . 224121	. 192871	-. 680176	. 322021	-1.028076	. 420410
6	1.114502	-. 151123	. 723877	-. 062256	. 039307	. 093018	- . 222948	. 154053	-. 661865	. 252441	-. 985596	. 326172
Band 5												
7	1.049561	-. 053711	. 736107	-. 025635	.073975	. 032715	- . 256592	. 062256	-. 656494	.097656	- . 944824	${ }^{123291}$
8	1,221924	-.089600	. 872559	-. 045898	. 036621	. 058594	- . 276367	. 098145	- .761963	. 158936	-1.090820	, 200195
9	. 979004	- .088379	. 697754	-. 045898	. 080566	. 047119	- . 230713	. 094482	- . 615479	. 152832	- .910400	. 197266
10	. 978027	-.083740	. 706299	- . 042480	. 074219	. 052002	-. 237305	. 077881	-. 614502	. 155273	-. 832520	. 198730
11	. 938721	-. 094727	. 672607	-.048828	. 065918	. 055176	- . 231689	. 106445	-. 586914	. 167725	-.858643	. 214600
12	. 975586	-. 149902	.689941	-. 074707	. 058105	. 090332	-. 238037	. 168213	-. 604980	. 264848	-. 879883	. 336670
Band 6												
13	i. 194580	-. 176758	. 881787	-. 090332	. 018555	. 103027	-. 278809	. 174316	- . 753662	. 287354	-1.011475	. 348877
14	1.132324	-. 106934	. 766602	-. 051758	. 022949	. 060059	-. .251953	. 101807	-. 713379	. 171387	-.956811	. 207764
15	1.133545	-. 135010	. 787598	-. 069824	. 025146	. 072998	- . 240723	. 123047	- . 728271	. 214844	- . 976807	. 261719
16	1.043213	-. 103027	. 740967	-. 055176	. 020752	. 058594	-. 219727	. 096680	- . 675293	. 168701	-. 908936	, 205811
17	1.046875	-. 120805	. 750244	-. 065430	. 011230	. 072021	-. 224609	. 115967	-. 673340	. 199463	-. 909180	. 243652
18	1.156250	-. 064941	. 782959	-.031006	. 014160	. 038574	-. 255127	. 062988	-: 724854	. 105713	-. 973145	. 128418
Band 7												
19	1.763672	-. 473877	1.112793	-.219971	. 352539	. 075928	-. 388057	. 363281	-1.077881.	-634277	-1.767934	. 903320
20	1.740234	-. 709473	1.126709	-. 353760	. 383801	. 076416	-. 348389	. 500244	-1.077148	. 922363	-1.823730	1.354980
21	1.468262	-. 490479	. 944336	- . 245361	. 330078	. 041504	- . 266113	. 321045	-. 888926	. 616943	-1.576660	. 984570
22	1,533936	- .644775	1.005615	-. 333008	. 340576	. 059570	-. 281494	. 427490	- . 953857	. 824463	-1.844287	1.232422
23	1.455811	-. 363525	.942383	- . 180176	. 322998	.039795	-. 280762	. 256104	-. 900635	. 477295	-1.539063	. 704834
24	1.612305	-. 535400	1.044922	-. 263916	. 352539	. 066895	-. 29614.3	. 377686	-1.002197	. 718867	-1.714844	1.056885

APPENDIX E

 DECOMPRESSION TABLES

 DECOMPRESSION TABLES USED BY DIGITAL SUBSYSTEM PRIOR TO CALIBRATION

The following tables are used for decompressing the video data from Bands 4, 5 and 6. Band 7 is linear and requires no decompresion.

The values of the compressed video data vary from 0 to 63; after decompression, the video data values vary from 0 to 127. The decompressed values, gains and offsets are used to determine the calibrated values of the video data. To reverse the process and obtain compressed values from the decompressed values on the CCT, the user must have the gain and offset values in addition to the values in the decompression table.

MSS Bands 4 and 6, Landsat-1

Input	Output	Input	Output	Input	Output
0	0	17	17	28	34
1	1	18	18		35*
2,3	2	19	19	29	36
4	3		20*		37*
5	4	20	21	30	38
6	5	21	22		39*
7	6		23*	31	40
8	7	22	24		41*
9	8	23	25	32	42
10	9		26*	33	43
11	10	24	27		44*
12	11.		28*	34	45
13	12	25	29		46*
14	13	26	30	35	47
15	14		31*		48*
	15*	27	32	36	49
16	16		33*		50*

*Prior to calibration these quantum levels are not used. After calibration

- (individual detector offset and gain adjustment) different quantum levels may , - be used, while others are unused.

APPENDIX E (continued)
MSS Bands 4 and 6, Landsat- 1

Input	Output	Input	Output	- Input	Output
37	51		76*		102*
	52*		77*		103*
38	53	47	78	56	104
	54*		79*		105*
	55*		80*	57	106
39	56	48	81		107*
	57*		82*		108*
40	58	49	83	58	109
	59^{*}		84*		110*
	60*		85*		111*
41	61	50	86	59	112
	62*		87*		113*
42	63		88*		114*
	64*	51	89	60	115
	65*		90*		116*
43	66		91*		117*
	67*	52	92	61	118
	68*		93*		119*
44	69		94*		120*
	70*	53	95	62	121
	71*		96*		122*
45	72		97*		123*
	73*	54	98	63	124
,	74*		99*		125*
46	75		100*		126*
		55	101		127*

*Prior to calibration these quantum levels are not used. After calibration (individual detector offset and gain adjustment) different quantum levels may. be used, while others are unused.

APPENDIX E (continued)
MSS Band 5, Landsat-1

Input	Output	Input	Output	Input	Output
0	0	26	30	41	60
1	1		31*		61*
2,3	2	27	32		62*
4	3		$33 *$	42	63
5	4	28	34		64*
6	5		35*		65*
7	6	29	36	43	66
8	7		37*		67*
9	8	30	38		68*
10	9	31	39	44	69
11	10		40*		70*
12	11	32	41	45	71
13	12		42*		72*
14	13	33	43		73*
15	14		44*	46	74
	15*	34	45		75*
16	16		46*		76*
17	17	35	47	47	77
18	18		48*		78*
19	19	36	49		79*
	20*		50*	48	80
20	21	37	51		81*
21	22		52*		82*
22	23	38	53	49	83
	24*	39	54		84*
23	25		55*		85*
	26*		56*	50	86
24	27		57*		87*
25	28	40	58	51	88
	29*		59*		89 90

*Prior to calibration these quantum levels are not used. After calibration (individual detector offset and gain adjustment) different quantum levels may be used, while others are unused.

, APPENDIX E (continued)

MSS Band 5, Landsat-1

Input	Output	Input	Output.	Input	Output
52	91	56	103*	60	115
	92*		104		116*
	93*		105*	61	117
53	94		106*		118*
	95*	57	107		119*
	96*		108*	62	120
54	97	58	109		121*
	98*		110*	63	122
	99*		111*		123*
55	100	59	112		124*
	101*		113*		125*
	102*		114*		126*
					127*

MSS Band 7, Landsat-1
Data from MSS Band 7 are not decompressed.
*Prior to calibration these quantum levels are not used. After calibration (individual detector offset and gain adjustment) different quantum levels may be used, while others are unused.

MSS Bands 4 and 6, Landsat-2

Input	Output	Input	Output	Input	- Output
0	'0	.	42*		85*
1	1	32	43		86*
2	1		44*	49	87
3	2	33	45		88*
4	3		46*		89*
5	4	34	47	50	90
6	5		48*		91*
7	6	35	49	51	92
8	7		50*		93*
9	8	36	51		94*
10	9		52*	52	95
11	10	37	53		96*
12	11		54*		97*
13	12	38	55	53	98
14	13		56*		99*
	14*		57*		100*
15	15	39	58	54	101
16	16		59*		102*
17	17	40	60		103*
18	18		61*	55	104
	19*		62*		105*
19	20	41	63		106*
	21*		64*		107*
20	22		65*	56	108
21	23	42	66		109*
	24*		67*		110*
22	25	43	68	57	111
23	26		69*.		112*
	27*		70*		113*
24	28	44	71	58	114
	29*		72*		115*
25	30		73*		116*
	31*	45	74	59	117
26	32		75*		118*
	33*		76*		119*
27	34	46	77	60	120
28	35		78**		121*
	36*		79*		122*
29	37	47	80	61	123
	38*		81*		124*
30	39		82*	62	125
	40*		83*		126*
31	41	48	84	63	127

*Prior to calibration these quantum levels are not used. After calibration - (individual detector offset and gain adjustment) different quantum levels may be used, while others are unused.

APPENDIX E (continued)

MSS Band 5, Landsat-2

Input	Output	Input	Output	Input	Output
0	0	25	30	40	60
1	1		31*		61*
2	2	26	32		62*
3	3		33*	41	63
4	4	27	34		64*
5	5	28	35		65*
6	6		36*	42	66
7	7	29	37		67*
8	8		38*		68*
9	9	30	39	43	69
10	10		40*		70*
11	11	31	41		71*
12	12	32	42	44	72
13	13		43*		73*
14	14		44*	45	74
15	15	33	45		75*
	16*		46*		76*
16	17	34	47	46	77
17	18	.	48*		78*
18	19	35	49		79*
19	20		$50 *$	47	80
	21*		51*		81*
20	22	36	52		82*
21	23		53*	48	83
	24*	37	54		84*
22	25		55*		85*
23	26	38	56	49	86
	27^{*}		57^{*}		87*
24	28	39	58		88*
	29*		59*	50	89
					90*

*Prior to calibration these quantum levels are not used. After calibration (individual detector offset and gain adjustment) different quantum levels may be used, while others are unused.

APPENDIX E (continued)

MSS Band 5, Landsat-2

Input	Output	Input	Output	Input	Output
51	91*	55	103*	59	115*
	92		104		116
	93*		105*		117*
	94*		106*		118*
52	95	56	107	60	119
	96*		108*		120*
	97*		109*		121*
53	98	57	110	61	122
	99*		111*		123*
	100*		112*	62	124*
54	101	58	113		125
	102*		114*		126*
				63	127

MSS Band 7, Landsat-2

Data from MSS Band 7 are not decompressed.
*Prior to calibration these quantum levels are not used. After calibration (individual detector offset and gain adjustment) different quantum levels may be used, while others are unused.

$$
\mathrm{E}-7
$$

APPENDIX F

TICK MARK REFERENCE SYSTEM

The Bulk MSS film image is used in establishing the tick mark reference system. The scene on a $70-\mathrm{mm}$ film image is 55 mm in the X direction and 53 mm in the Y direction. The area represented by the scene is 185 km by 178.36 km ; this scene consists of 2256 scan lines.

The tick mark reference system has been chosen so that the origin is at the format center. The corners of the tick mark reference system are designated A ($1 / 2,-1 / 2), \mathrm{B}(-1 / 2,-1 / 2), \mathrm{C}(1 / 2,1 / 2)$ and $\mathrm{D}(-1 / 2,1 / 2)$. See Figure $\mathrm{F}-1$.

Figure F-1. Tick Mark Reference System
The value that locates the tick marks along the edges is, therefore, given in terms of a 16-bit binary integer fraction with the binary point to the left of bit position 0.

It should be noted that the scene on the Bulk MSS CCT contains 2340 scan lines, equating to 2256 scan lines for the film image, plus 42 scan lines of data preceding the film image and 42 scan lines following the film image as shown in Figure F-2.

Figure F-2 CCT and Film Image Comparison

$$
\mathrm{F}-1
$$

APPENDIX G
CONVERSION TABIES
CONVERSION TABLE: BINARY/OCTAL/DECIMAI/HEXADECIMAL

Binary	Octal	Decimal	Hexadecimal
00000000	0	0	0
00000001	1	1	1
00000010	2	2	2
00000011	3	3	3
00000100	4	4	4
00000101	5	5	5
00000110	6	6	6
00000111	7	7	7
00001000	10	8	8
00001001	11	9	9
00001010	12	10	A
00001011	13	11	B
00001100	14	12	C
00001101	15	13	D
00001110	16	14	E
00001111	17	15	F
00010000	20	16	10
00010001	21	17	11
00010010	22	18	12
00010011	23	19	13
00010100	24	20	14
00010101	25	21	15
00010110	26	22	16
00010111	27	23	17
00011000	30	24	18
00011001	31	25	19
00011010	32	26	IA
00011011	33	27	1 B
00011100	34	28	1 C
00011101	35	29	1D
00011110	36	30	1 E
00011111.	37	31	1 F
00100000	40	32	20
00100001	41	33	21
00100010	42	34	22
00100011	43	35	23
00100100	44	36	24

APPENDIX G (continued)

Binary	Octal	Decimal	Hexadecimal
00100101	45	37	25
00100110	46	38	26
00100111	47	39	27
00101000	50	40	28
00101001	51	41	29
00101010	52	42	2A
00101011	53	43	2B
00101100	54	44	2C
00101101	55	45	2D
00101110	56	46	2 E
00101111	57	47	2F
00110000	60	48	30
00110001	61	49	31.
00110010	62	50	32
00110011	63	51	33
00110100	64	52	34
00110101	65	53	35
00110110	66	54	36
00110111	67	55	37
00111000	70	56	38
00111001	71	57	39
00111010	72	58	3A
00111011	73	59	3B
00111100	74	60	3C
00111101	75	61	3D
00111110	76	62	3E
00111111	77	63	3 F
01000000	100	64	40
01000001	101	65	41
01000010	102	66	42
01000011	103	67	43
01000100	104	68	44
01000101	105	69	45
01000110	106	70	46
01000111	107	71.	47
01001000	110	72	48.
01001001	111	73	49
01001010	112	74	4A
01001011	113	75	4B

APPÉNDIX G (continued)

Biñary	Octal	Decimal	Hexadecimal
01001100	114	76	4C
. 01001101	115	77	4D
01001110	116	78	4E
01001111	117	79	4 F
01010000	120	80	50
01010001	121	81	51
01010010	122	82	52
01010011	123	83	53
01010100	124	84	54
01010101	125	85	55
01010110	126	86	56
01010111	127	87	57
01011000	. 130	88	58
01011001	131	89	59
01011010	132	90	5A
01011011	133	91	5B
01011100	134	92	5C
01011101	135	93	5D
01011110	136	94	5E
01011111	137	95	5 F
01100000	140	96	60
01100001	141	97	61
01100010	142	98	62
01100011	143	99	63
01100100	144	100	64
01100101	145	101	65
01100110	146	102	66
01100111	147	103	67
01101000	150	104	68
01101001	151	105	69
01101010	152	106	6A
01101011	153	107	6B
01101100	154	108	6C
01101101	155	109	6D
01101110	156	110	6 E
01101111	157	111	6 F
01110000	160	112	70
01110001	161	113	71
01110010	162	114	72

APPENDIXG (continued)

Binary	Octal	DecimaI		Hexadecimal
01110011	163	115	73	
01110100	164	116		74
01110101	165	117		75
01110110	166	118	.	76
.01110111	167	119		77
01111000	170	120		78
01111001	171	121		79
01111010	172	122		7 A
01111011	173	123		7 B
01111100	174	124	7 C	
01111101	175	125	7 D	
01111110	176	126	7 E	
01111111	177	127	7 F	

Hexadecımal	Decimol	Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decrmal
. 00000000	. 0000000000	.40000000	. 2500000000	. 80000000	. 5000000000	.C0 000000	. 7500000000
. 01000000	. 0039682500	.41000000	2539062500	.81000000	5039062500	C1000000	. 75390662500
. 02000000	. 0078125000	.42000000	. 2578125000	.82000000	. 5078125000	.C2 000000	.75781 25000
. 03000000	. 0117187500	43000000	2617187500	.83000000	. 5117187500	.C3 000000	. 7617187500
. 04000000	. 0156250000	.44000000	. 2656250000	.84000000	. 5156250000	.C4 000000	. 7656250000
05000000	0195312500	45000000	2695312500	. 85000000	. 5195312500	.C5000000	. 7695312500
06000000	0234375000	. 46000000	2734375000	86000000	. 5234375000	.C6000000	. 7734375000
. 07000000	. 0273437500	.47000000	. 2773437500	.87000000	. 5273437500	. 77000000	. 7773437500
08000000	0312500000	. 48000000	. 2812500000	. 88000000	. 5312500000	C8 000000	. 7812500000
. 09000000	. 0351562500	49000000	. 2851562500	89000000	5351562500	.C9000000	. 7851562500
. 0 A 000000	0390625000	.4A 000000	. 2890625000	8A 000000	. 5390625000	CA000000	. 7890625000
. 08000000	. 0429687500	.48000000	. 2929687500	88000000	5429687500	CB 000000	. 7929687500
. 00000000	04687 50000	.4C000000	. 2968750000	8C 000000	5468750000	CC 000000	7968750000
. 00000000	0507812500	.4D 000000	3007812500	. 8 DD 000000	. 5507812500	.CD 000000	8007812500
. 0 E 000000	. 0548875000	4E 000000	. 30468 75000	. 8 E 000000	. 5546875000	.CE 000000	. 8046875000
. OF 000000	. 0585937500	.4F 000000	3085937500	. 8 F 000000	. 5585937500	CF 000000	. 8085937500
. 10000000	. 0825000000	. 50000000	. 3125000000	. 90000000	. 5625000000	. 00000000	. 8125000000
. 11000000	0664062500	51000000	. 3164062500	. 91000000	. 5664062500	.D1 000000	. 8164062500
.12000000	. 0703125000	52000000	3203125000	.92000000	. 5703125000	.D2 000000	. 8203125000
.13000000	. 0742187500 ,	. 53000000	. 3242187500	.93000000	. 5742187500	.D3 000000	. 8242187500
. 14000000	0781250000	. 54000000	. 3281250000	.94000000	5781250000	. 24000000	. 8281250000
. 15000000	0820312500	55000000	3320312500	. 95000000	. 5820312500	. 55000000.	. 8320312500
16000000	0859375000	. 56000000	. 3359375000	-. 96000000	. 5859375000	. 06000000	. 8359375000
.17000000	. 0898437500	. 57000000	. 3398437500	97000000	. 5898437500	.D7 000000	. 8398437500
. 18000000	. 0937500000	. 58000000	. 3437500000	. 98000000	. 5937500000	. 18000000	. 8437500000
19000000	. 0976562500	. 59000000	. 3476562500	. 99000000	. 5976562500	.D9 000000	. 8476562500
.1A 000000	. 1015625000	5A 000000	. 3515625000	.9A 000000	6015625000	.DA 000000	. 8515625000
.18 000000	. 1054687500	.5B 000000	. 3554687500	. 98000000	8054687500	.DB 000000	. 8554687500
.1C 000000	. 1093750000	SC 000000	. 3593750000	. 9000000	6093750000	.DC000000	. 8593750000
. 10000000	1132812500	.5D 000000	. 3632812500	.9D 000000	6132812500	OD 000000	8632812500
.IE 000000	. 1171875000	.SE 000000	. 3671875000	.9 000000	. 6171875000	.DE 000000	8671875000
.1F 000000	. 1210937500	5F000000	. 3710937500	.9F000000	. 6210937500	. DF 000000	8710937500
20000000	. 1250000000	60000000	3750000000	. A 0000000	. 6250000000	. $E 0000000$. 8750000000
21000000	. 1289062500	81000000	. 3789062500	Al 000000	. 6289062500	.E1 000000	. 8789062500.
22000000	. 1328125000	. 62000000	. 3828125000	.A2 000000	. 6328125000	.E2 000000	. 8828125000
23000000	. 1367187500	63000000	. 3867187500	. 43000000	. 6367187500	.E3 000000	.88671 87500
. 24000000	1406250000	64000000	3906250000	A4 000000	. 6406250000	E4 000000	. 8906250000
25000000	. 1445312500	.65000000	3945312500	A5 000000	6445312500	E5 00,00 00	8945312500
. 26000000	. 1484375000	66000000	3984375000	. 46000000	6484375000	. 56000000	. 8984375000
27000000	. 1523437500	. 67000000	4023437500	A7 000000	6523437500	.E7 000000	. 9023437500
. 28000000	1562500000	68000000	. 4062500000	.A8 000000	. 6562500000	E8 000000	. 9062500000
. 29000000	1601562500	69000000	. 4101562500	A9 000000	. 6601562500	E9 000000	. 9101562500
.2A 000000	. 1640625000	6A 000000	4140625000	.AA 000000	6840625000	EA 000000	9140625000
. 28000000	. 1679687500	6 CO 0000	4179687500	.AB 000000	. 6679687500	EB 000000	. $917 \% 87500$
. 2 C 000000	. 1718750000	6C 000000	4218750000	AC 000000	. 6718750000	.EC 000000	. 9218750000
.20 000000	. 1757812500	. 60000000	4257812500	AD 000000	. 6757812500	.ED 000000	. 9257812500
.2E 000000	. 1796875000	6E 000000	4296875000	.AE 000000	. 6796875000	.EE 000000	. 9296875000
.2F 000000	. 1835937500	6F 000000	4335937500	AF 000000	6835937500	.EF 000000	. 9335937500
. 30000000	. 1875000000	70000000	4375000000	. 80000000	6875000000	. 50000000	. 9375000000
.31000000	. 1914062500	71000000	4414062500	B1 000000	. 6914062500	.F1000000	. 9414062500
32000000	. 1953125000	. 72000000	. 4453125000	. 82000000	6953125000	F2 000000	. 9453125000
. 33000000	. 1992187500	. 73000000	. 4492187500	. $\mathrm{B3} 000000$	6992187500	F3 000000	9492187500
.34000000	. 2031250000	74000000	. 4531250000	. 84000000	. 7031250000	.F4000000	. 9331250000
.35000000	. 2070312500	. 75000000	. 4570312500	85000000	. 7070312500	.F5 000000	. 9570312500
. 36000000	. 2109375000	. 7600000	. 4609375000	B6 000000	. 7109375000	.F6000000	. 9609375000
. 37000000	. 2148437500	77000000	. 4648437500	. 87000000	. 7148437500	.F7 000000	. 9648437500
. 38000000	. 2187500000	78000000	. 4687500000	. 88000000	. 7187500000	. 58000000	. 9687500000
39000000	. 2226562500	. 79000000	. 4726562500	B9 000000	. 7226562500	.F9 000000	. 9726562500
3 A 000000	. 2265625000	.7A 000000	. 4765625000	. BA 005000	. 7265625000	.FA 000000	. 9765625000
38000000	. 2304687500	78000000	4804687500	.88000300	. 7304687500	.FB 000000	. 9804687500
$3 C 000000$. 2343750000	.76000000	. 4843750000	. $B C 000000$. 7343750000	FC 000000	. 9843750000
3 O 000000	. 2382812500	. 70000000	4882812500	.BD 000000	7382812500	.FD 000000	. 9882812500
. 3 E 000000	. 2421875000	7E 000000	. 4921875000	. BE 000006	7421875000	FE 000000	9921875000
3F 000000	. 2460937500	7F 000000	4960937500	. BF 000000	7460937500	.FF 000000	9960937500

APPENDIX G (continued)

-Hexedecimal	Decimal	Hexadecimal	Decimol	Hexodecimal	Decimal	Hexadecimal	Decimal
. 00000000	. 0000000000	. 00400000	. 0009765625	. 00800000	0019531250	. $00<00000$. 0029296875
. 00010000	. 0000152587	.00410000	. 0009918212	. 00810000	. 0019683837	00 Cl 0000	. 0029449462
. 00020000	0000305175	. 00420000	. 0010070800	. 00820000	. 0019836425	00 C 20000	. $002 \% 02050$
. 00030000	. 0000457763	. 00430000	. 0010223388	. 00830000	. 0019989013	. 00 C3 0000	. 0029754638
. 00040000	0000610351	. 00440000	. 0010375976	. 00840000	. 0020141601	$00 ¢ 40000$	0029907226
.0005 0000	. 0000762939	. 00450000	. 0010528564	. 00850000	. 0020294189	. $00-50000$. 0030059814
. 00060000	. 0000915527	. 00460000	. 0010581152	. 00860000	. 0020446777	. 00 C60000	0030212402
. 00070000	. 0001068115	00470000	0010833740	00870000	. 0020599365	. 00070000	. 0030364990
. 00080000	. 0001220703	. 00480000	0010986328	. 00880000	. 0020751953	. 00 C8 0000	. 0030517578
. 00090000	. 0001373291	.00 490000	.0011138916	00890000	. 0020904541	. $00<90000$.00306 70166
. 000 A 0000	. 0001525878	. 00 4A 0000	. 0011291503	. 00880000	. 0021057128	. 00 CA 0000	. 0030822753
. 000 OB 0000	. 0001678468	. 00480000	. 0011444091	00880000	. 0021209716	. 00 CB 0000	. 0030975341
. 00000000	. 0001831054	. 00 4C0000	0011596679	. $008 \mathrm{8C} 0000$. 0021362304	00 CC 0000	. 0031127929
. 00000000	. 0001983642	. 00400000	. 0011749267	. 0080000	0021514892	00 CD 0000	0031280517
. 00 OE 0000	. 0002136230	00450000	. 0011901855	. $008 \mathrm{8E} 0000$. 0021667480	. 00 CE 0000	. 0031433105
. 00 OF 0000	. 0002288818	. 00 4F 0000	. 0012054443	. 008 F 0000	. 0021820068	. 00 CF 0000	. 0031585693
. 00100000	. 0002441406	. 00500000	. 0012207031	.00900000	. 0021972656	. 00 D0 0000	. 0031738281
. 00 110000	. 0002593994	. 00510000	. 0012359619	. 00910000	. 0022125244	. 00 DI 0000	. 0031890869
00120000	. 0002746582	. 00520000	. 0012512207	. 00920000	. 0022277832	.00 D2 0000	. 0032043457
. 00130000	. 0002899169	. 00530000	. 0012684794	.00) 930000	. 0022430419	00 D3 0000	. 00321 \%044
. 00140000	. 0003051757	. 00540000	. 0012817382	. 009840000	. 0022583007	.00 D4 0000	. 0032348632
. 00150000	. 0003204345	00550000	0012969970	. 00950000	,00227 35595	. 00 D5 0000	0032501220
. 00160000	. 0003356933	. 00560000	0013122558	. 00980000	. 0222888183	. 00 DS 0000	. 0032653808
. 00170000	0003509521	. 00570000	. 0013275146	. 00970000	. 0023040771	.00070000	00328 05398
. 00180000	. 0003662109	. 00580000	0013427734	. 00980000	. 0023193359	. 00 D8 0000	0032958984
. 00190000	0003814697	. 00590000	0013580322	. 009990000	. 0023345947	. 00 D9 0000	0033111572
00 1A 0000	,00039 87285	. 005 SA 0000	0013732910	. 009 9A0000	. 0023498535	00 DA 0000	0033264160
00 1B 0000	. 0004119873	. 00580000	. 0013885498	. 0598 BCO 00	0023651123	. 00 DB 0000	0033416748
001 CO 000	. 0004272460	. 00550000	. 0014038085	.009\% 0000	. 0023803710	. 00 DC 0000	0033569335
. 00100000	. 0004425048	. 00 50 0000	. 0014190673	. 00980000	. 0023956298	. 00 DD 0000	. 0033721923
. 00 IE 0000	. 0004577636	. 005 SE 0000	. 0014343261	. 00 9E 0000	. 0024108886	. 00 DE 0000	0033874511
. 00 IF 0000	. 0004730224	. 005 FF 0000	. 0014498849	. 00 9F 0000	. 0024261474	. 00 DF 0000	. 0034027089
. 00200000	. 0004882812	. 00600000	. 2014648437	. 00 A0 0000	. 0024414062	. 00 E0 0000	. 0034179687
. 00210000	. 0005035400	. 00610000	. $\mathbf{0} 014801025$. 00 Al 0000	. 0024566650	. 00 E1 0000	. 0034332275
,00220000	. 0005187988	. 00620000	. 0014953613	. 00 A2 0000	. 0024719238	. 00 E 20000	. 0034484863
. 00230000	0005340576	. 00630000	. 0015105201	.00 A3 0000	. 0024871826	. 00 E3 0000	. 0034637451
. 00240000	0005493164	. 00640000	. 0015258789	. 00 A4 0000	. 0025024414	. 00 E4 0000	. 0034790039
. 00250000	0005645751	. 00650000	. 0015411376	. 00 A5 0000	. 0025177001	.00 E5 0000	. 0034942626
. 00260000	0005798339	. 00660000	. 0015563964	. 00 A6 0000	. 0025329589	.00 E6 0000	. 0035095214
. 00270000	. 00055950927	. 00670000	. 0015716552	. 00 A7 0000	0025482177	.00E7 0000	. 0035247802
. 00280000	. 0006103515	. 00680000	. 0015869140	00 AB 0000	. 0025634785	. $00 \mathrm{E8} 0000$. 0035400390
. 00290000	. 0006256103	. 00690000	. 0016021728	.00 A9 0000	. 0025787353	.00 E9 0000	. 0035552978
00 2A 0000	. 0006408691	. 00 6A 0000	0016174316	. 01 AA 0000	. 0025939941	. 00 EA 0000	. 0035705566
. 00280000	. 0006561279	00680000	. 0016326904	. 00 AB 0000	. 0026092529	. 00 E8 0000	. 0035858154
00260000	. 0006713867	. 006 CCO 00	. 0016479492	. 00 AC 0000	.00262 45117	. 00 EC 0000	. 0036010742
. 00 2D 0000	0006866455	. 00600000	. 001632080	00 AD 0000	. 0026397705	. 00 ED 0000	. 0036163330
. 002 E 0000	.00070 19042	. 006 6E 0000	0016784667	. 00 AE 0000	. 0026550292	. 00 EE 0000	. 0036315917
. 00 2F 0000	0007171630	. 00660000	. 0016937255	. 00 AF 0000	0026702880	. 00 EF 0000	. 0036468505
. 00300000	. 0007324218	. 00700000	. 0017089843	. 00800000	. 0026855468	. 00 F0 0000	0036621093
00310000	. 00074 76806	. 00710000	. 0017242431	. 00810000	. 0027008056	. 00 Fl 0000	0036773681
00320000	. 0007629394	. 00720000	. 00173595019	. $00 \mathrm{B2} 0000$. 0027160684 -	.00 F2 0000	. 0036926269
00330000	. 0007781982	. 00730000	. 0017547607	. 00830000	. 0027313232	. 00 F3 0000	0037078857
00340000	. 0007934570	00740000	. 0017700195	. 00 B4 0000	. 0027465820	. 00 F4 0000	. 0037231445
. 00350000	0008087158	. 00750000	. 0017852783	. 00 B5 0000	. 0027618408	. 00 F5 0000	. 0037384033
. 00360000	0008239746	00760000	. 0018005371	.00 B6 00000	. 0027770996	. 00 F6 0000	0037536621.
. 00370000	. 0008392333	. 00770000	. 0018157958	. 00 B7 0000	. 0027923583	. 00 F7 0000	0037689208
. 00380000	. 0008544921	. 00780000	. 0018310546	. 00 B8 0000	0028076171	. 00 F8 0000	0037841796
.0039 0000	. 0008697509	. 00790000	0018463134	. 00 B9 0000	. 0028228759	. $00 \mathrm{F9} 0000$. 0037994384
. 0003 A 0000	. 0008850097	. 00 7A 0000	0018615722	. 00880000	. 0028381347	. 00 FA 0000	0038146972
. 00380000	. 00098002685	.0078 0000	0018768310	. 00 BB -00 00	. 0028533935	. 00 FB - 0000	0038299560
. 00350000	. 00009155273	007 CO 000	. 0018920898	. 00 BC 0000	. 0028686523	. 00 FCC 0000	0038452148
. 003 D 0000	0009307861	. 00700000	. 0019073486	00800000	. 0028839111	. 00 FD 0000	. 0038604736
. 603 SE 0000	0009460449	. 0078000	. 0019226074 -	00 BE 0000	.00289 91699	. 00 FE 0000	. 0038757324
. 003 F 0000	0009613037	. 00780000	. 0019378862	. 00 日F 0000	. 0029144287	. 00 FF 0000	0038909912

APPENDIX G（continued）

Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal
． 00000000	0000000000	00.004000	0000038146	． 00008000	． 0000076293	． $0000 \mathrm{C0} 00$	0000114440
． 00000100	． 0000000598	00004100	． 0000038743	00008100	． 0000076889	0000 Cl 00	． 0000115036
． 00000200	0000001192	00004200	． 0000039339	00008200	． 0000077486 ，	． 0000 C 200	． 0000115633
00000300	． 00000001788	． 00004300	0000039935	． 00008300	． 0000078082	． $0000 \mathrm{C3} 00$	．00001 16229
． 00000400	0000002384	00004400	． 0000040531	． 00008400	0000078678	． $0000<400$	．00001 16825
． 00000500	0000002980	． 00004500	． 0000041127	． 00008500	． 0000079274	． $0000 \mathrm{C5} 00$	．00001 17421
． 00000600	． 0000003576	． 00004600	． 0000041723	． 00008600	． 0000079870	． $0000 \mathrm{C6} 00$	． 0000118017
． 00000700	． 0000004172	． 00004700	．00000 42319	． 00008700	． 0000080468	． $0000 \mathrm{C7} 00$	． 0000118613
． 00000800	． 0000004768	． 00004800	．00000 42915	． 00008800	． 0000081062	． $0000 \mathrm{C8} 00$	． 0000119209
． 00000900	． 0000005354	． 00004900	． 0000043511	00008900	． 0000081658	． 00000000	． 0000119805
． 00000 OA 00	． 0000005960	． 00004 A 00	． 0000044107	． 00008 BA 00	． 0000082254	． $0000 \mathrm{CA}^{-00}$	． 0000120401
． 00000000	． 0000008556	． 00004800	． 0000044703	． 000088.00	． 0000082850	． 0000 CB 00	． 0000120997
． 00000000	． 0000007152	． 0000 4C 00	．00000 45299	． 00008800	． 0000083446	． 0000 Cc 00	． 0000121593
． 00000000	． 0000007748	． 00004000	． 0000045895	． 00008000	． 0000084042	． 0000 CD 00	． 0000122189
． 00000 EO 00	． 0000008344	00004500	．00000 46491	． 00008800	． 0000084638	． 0000 CE 00	．00001 22785
． 00000 OF 00	． 0000008940	． 0000 4F 00	． 0000047087	00008500	． 0000085234	． $00000{ }^{\circ} \mathrm{CF}{ }^{-00}$	．00001 23381
． 00001000	． 0000009536	． 00005000	． 0000047683	． 00009000	． 0000085830	． 0000 DO 00	． 0000123977
．0000 1100	． 0000010132	． 00005100	0000048279	． 00009100	． 0000088826	． 0000 DI 00	． 0000124573
．00001200	． 0000010728	． 00005200	． 0000048875	． 00009200	． 0000087022	． 0000 D 200	0000125169
． 00001300	． 0000011324	． 00005300	． 00000049471	.00009300	． 0000087618	． 0000000	0000125765
． 00001400	0000011920	00005400	． 0000050067	． 00009400	． 00000888214	． 0000 D4 00	0000126361
00001500	． 0000012516	00005500	． 0000050663	． 00009500	0000088810	． 0000 D5 00	0000126957
． 00001600	0000013113	． 00005600	0000051259	． 00009800	0000089406	． 00000000	． 0000127553
． 00001700	0000013709	00005700	． 0000051856	． 00009700	0000090003	． 00000700	0000128149
00001800	0000014305	00005800	0000052452	． 00009800	． 0000090599	000018800	． 0000128746
.00001900	0000014901	00005900	． 0000053048	． 00009900	． 0000091195	0000 D9 00	． 0000129342
0000 la 00	． 0000015497	． 0000 5A 00	． 0000053544	． 00009 A 00	． 0000091791	0000 DA 00	． 0000129938
． 00001 lB 00	． 0000016093	00005800	． 0000054240	． 00009800	． 00000923887	． 0000 DB 00	． 0000130534
0000 IC 00	． 0000016689	00005 CO	． 0000054836	． 0000×00	0000092983	0000 DC 00	． 0000131130
00001 co	． 0000017285	． 00005000	． 0000055432	． 00009000	． 00000993579	． 0000 DD 00	． 0000131726
0000 IE 00	． 0000017881	． 00005800	． 0000056028	． 00009 EO	． 0000094175	． 0000 DE 00	． 0000132322
． 0000 IF 00	．00000 18477	． 00005 F 00	0000056624	00009500	．0000094771	． 0000 DF 00	． 0000132918
． 00002000	． 0000019073	． 00006000	． 0100057220	0000 AO 00	． 0000095387	． 0000 EO 00	． 0000133514
． 00002100	．00000 19669	． 00006100	． 0000057816	． 0000 Al 00	． 0000095983	． 0000 El 00	． 0000134110
． 00002200	0000020265	00006200	． 0000058412	． 0000 A 200	． 0000096559	． 000 E2 00	． 0000134706
00002300	． 0000020881	． 00006300	0000059008	． $0000 \mathrm{A3} 00$	0000097155	． 0000 E 300	． 0000135302
． 00002400	． 0000021457	． 00006400	． 0000059604	． 0000 A 400	． 0000097751	0000 E4 00	0000135898
． 00002500	． 0000022053	． 00006500	0000060200	． 0000 A5 00	0000098347	． 0000 E5 00	0000136494
． 00002600	． 0000022649	． 00006600	0000060796	0000 A 600	0000098943	． 0000 E 600	．0000137090
． 00002700	． 0000023245	． 00006700	0000061392	． 0000 A7 00	0000099539	$0000 \mathrm{E7} 00$	0000137686
． 00002800	． 0000023841	． 00006800	0000061988	0000 AB 00	． 0000100135	0000 E8 00	，0000138282
00002900	0000024437	． 00006900	0000062584	0000 A 900	0000100731	$0000 \mathrm{E9} 00$	． 0000138878
00002 A 00	0000025033	． 00006 A 00	0000063180	0000 AA 00	0000101327	． 0000 EA 00	0000139474
． 00002 BCO	0000025629	00006800	． 0000063776	0000 AB 00	0000101923	0000 EB 00	0000140070
$00002 C 00$	． 0000026226	0000 6C 00	0000064373	． 00000 AC 00	． 0000102519	． 0000 EC 00	0000140666
00002000	0000026822	00006000	． 0000064969	． 0000 AD 00	． 0000103116	0000 ED 00	0000141263
． 0000 2E 00	． 0000027418	． 0000 GE 00	． 0000065565	． 0000 AE 00	． 0000103712	0000 EE 00	0000141859
．0000 2F 00	． 0000028014	． 00006 F 00	． 0000066161	0000 AF 00	0000104308	． 0000 EF 00	．00001 42455
． 00003000	0000028810	． 00007000	0000068757	0000 BO 00	0000104904	． 0000 FO 00	．0000143051
00003100	0000029206	． 00007100	． 0000067353	00008100	0000105500	． 0000 Fl 00	． 0000143647
． 00003200	． 0000029802	00007200	0000067949	000008200	0000106098	． 0000 F 200	． 0000144243
00003300	． 0000030398	00007300	0000068545	$0000 \mathrm{B3} 00$	0000105692	． $0000 \mathrm{F3} 00$	． 0000144839
00003400	． 0000030994	00007400	． 0000069141	． 00008400	0000107288	． $0000 \mathrm{F4} 00$	．0000145435
． 00003500	． 0000031590	00007500	． 0000069737	00008500	． 0000107884	． 0000 F5 00	． 0000146031
． 00003600	． 0000032186	． 00007600	． 0000070333	． 0000 日6 00	0000108480	． 0000 FG 00	． 0000146627
． 00003700	． 0000032782	． 00007700	． 0000070929	$0000 \mathrm{B7} 00$	0000109076	． $0000 \mathrm{F7} 00$	． 0000147223
． 00003800	． 0000033378	． 00007800	． 0000071525	． 000008800	． 0000109672	． $0000 \mathrm{F8} 00$	．00001．47819
． 00003900	． 0000033974	． 00007900	． 0000072121	． $0000 \mathrm{B9} 00$	． 0000110288	$0000 \mathrm{F9} 00$	0000148415
00003 A 00	． 0000034570	00007400	． 0000072717	． 0000 BA 00	． 0000110884	． 0000 FA 00	0000149011
00003 B 00	． 0000035166	． 00007800	． 0000073313	． 0000 BE 00	．00001 11460	$0000 \mathrm{F8} 00$	0000149607
． $00003 \mathrm{3C} 00$	． 00000335762	00007500	． $00000 / 3909$	． 0000 6C 00	． 0000112056	0000 FC 00	． 0000150203
00003000	0000036358	00007000	0000074505	． 00008000	． 0000112652	0000 FD 00	0000150799
． $00^{\circ} 003 \mathrm{SE} 00$	0000036954	$00007 E 00$	0000075101	00008500	0000113248	0000 FE 00	0000151395
． $00003 \mathrm{~F}^{\prime} 00$	．00000 37550	． 00007 F 00	． 0000075697	． 0000 BF 00	0000113844	0000 FF 00	． 0000151991

APPENDIX G (continued)

Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Deermal	Hexadecimal	Decimal
. 00000000	. 0000000000	. 00000040	. 0000000149	. 00000080	0000000298	. 000000 CO	. 0000000447
00000001	.00000 00002	. 00000041	0000000151	. 00000081	. 0000000300	000000 Cl	. 0000000449
. 00000002	. 0000000004	. 00000042	. 0000000153	. 00000082	. 0000000302	. 000000 C 2	. 0000000451
. 00000003	. 0000000008	. 00000043	. 0000000155	. 00000083	. 0000000305	$000000 \mathrm{C3}$. 0000000454
. 00000004	. 0000000009	. 00000044	. 0000000158	. 00000084	. 0000000307	. $000000 \mathrm{C4}$	0000000456
. 00000005	. 0000000011	. 00000045	. 0000000160	. 00000085	. 0000000309	. 000000 C 5	. 0000000458
. 00000006	.0000000013	. 00000046	. 0000000162	. 00000088	. 0000000311	. 000000 Cb	. 0000000461
. 00000007	.0000000016	. 00000047	. 00000000165	00000087	. 0000000314	. 000000 C 7	. 0000000463
. 00000008	. 0000000018	. 00000048	0000000167	. 00000088	. 0000000316	. $000000 \mathrm{C8}$	0000000465
. 00000009	.0000000020	. 00000049	. 0000000169	. 00000089	. 0000000318	. $000000 \mathrm{C9}$. 0000000467
. 0000000 A	. 0000000023	0000004 A	. 0000000172	. 0000008 A	. 0000000321	. 000000 CA	. 0000000470
. 000000008	. 0000000025	. 00000048	. 0000000174	. 0000008 BB	. 000000.00323	. 000000 cB	. 0000000472
. 00000000	. 0000000027	. 0000004 C	. 0000000176	. 0000008 BC	. 0000000325	000000 CC	. 0000000474
. 00000000	. 0000000030	. 0000004 D	. 0000000179	. 0000008 D	. 0000000328	. 000000 CD	. 0000000477
. 00000000 E	. 0000000032	. 00000045	.0000000181	. 00000085	.00000 00330	. 000000 CE	. 0000000479
. 000000 OF	. 0000000034	. 00000045	. 0000000183	. 0000008 F	. 0000000332	.000000 CF	. 0000000481
. 00000000	.0000000037	. 00000050	. 00000000186	. 00000090	.00000000335	. 000000 DO	.0000000484
. 00000011	.0000000039	. 00000051	. 0000000188	. 00000091	. 0000000337	. 000000 Dl	. 0000000486
. 000000012	. 0000000041	. 00000052	. 0000000190	. 00000092	. 0000000339	. 000000 D 2	0000000488
. 00000013	. 0000000044	. 00000053	. 0000000193	. 00000093	. 0000000342	. 000000 D 3	0000000491
. 00000014	. 0000000045	. 00000054	. 00000000195	. 00000094	. 0000000344	. $000000 \mathrm{D4}$. 00000000493
. 00000015	. 00000000048	. 00000055	. 0000000197	. 00000095	. 0000000346	. 00000005	. 0000000495
. 00000016	. 0000000051	. 00000056	.00000 00200	. 00000096	. 00000000349	. 00000006	. 00000000498
. 00000017	. 0000000053	. 00000057	. 00000000202	. 00000097	. 00000.00351	. $000000 \mathrm{D7}$. 0000000500
. 00000018	. 0000000055	. 00000058	.00000 00204	. 00000098	. 0000000353	. $000000 \mathrm{D8}$. 0000000502
. 00000019	.00000 00058	. 00000059	. 0000000207	. 00000099	. 0000000356	000000 D9	.00000 00505
. 0000001 A	. 0000000060	. 00000058	. 0000000209	. 0000009 A	. 0000000358	000000 DA	. 0000000507
00000018	. 0000000008 ?	00000058	. 000000021 l	. 00000098	. 0000000360	. 00000008	. 0000000509
. 000000 IC	. 00000000055	. 0000005 C	. 0000000214	. 0000009	. 0000000363	. 000000 DC	. 0000000512
00000010	. 0000000057	. 0000005 D	. 0000000216	. 0000009 D	.00000 00365	. 000000 DD	. 0000000514
000000 IE	0000000069	0000005 E	.0000000218	. 0000009 SE	.00000 00367	. 000000 DE	. 0000000516
. 000000 lF	. 0000000072	. 0000005 F	. 0000000221	. 0000009 F	.00000 00370	. 000000 DF	. 0000000519
. 00000020	. 0000000074	. 00000060	. 0000000223	. 000000 AO	. 0000000372	. 000000 EO	. 0000000521
00000021	. 0000000076	. 00000061	.00000 00225	. 000000 Al	. 0000000374	. 000000 El	. 0000000523
-00 000022	. 0000000079	. 00000062	. 0000000228	. 000000 A 2	. 0000000377	. 000000 E 2	. 0000000526
. 00000023	. 0000000081	. 00000063	. 0000000230	.000000 A 3	.00000 00379	. $000000 \mathrm{E3}$	0000000528
. 00000024	. 0000000083	. 00000064	. 0000000232	. 000000 A4	.00000 00381	. $000000 \mathrm{E4}$. 0000000530
. 00000025	. 0000000086	. 00000085	. 0000000235	. 000000 AS	. 0000000384	000000 ES	. 0000000533
. 00000026	. 0000000088	. 00000066	. 0000000237	. $0000000 \mathrm{A6}$. 0000000385	. $000000 \mathrm{E6}$. 0000000535
. 00000027	.0000000090	. 00000067	. 0000000239	. 000000 A 7	. 0000000388	. $000000 \mathrm{E7}$. 0000000537
. 00000028	. 0000000093	00000068	.00000 00242	. 000000 AB	. 0000000391	. $000000 \mathrm{E8}$. 0000000540
. 00000029	. 00000000095	. 00000069	. 0000000244	. 000000 A9	. 0000000393	. 0000000 Eq	. 0000000542
. 0000002 A	. 0000000097	00000064	.00000 00246	000000 AA	. 0000000395	. 000000 EA	. 0000000544
. 00000028	. 0000000100	. 00000068	. 0000000249	. 000000 AB	. 0000000398	. 000000 EB	. 0000000547
.0000002C	. 0000000102	. 0000006 C	0000000251	000000 AC	. 0000000400	000000 EC	. 0000000549
. 0000002 D	. 0000000104	. 0000006 D	. 0000000253	. 0000000 AD	. 0000000402	. 000000 ED	. 0000000551
. 0000002 E	. 00000000107	. 00000065	0000000256	. 000000 AE	0000000405	000000 EE	. 0000000554
0000002 F	0000000109	. 0000006 F	0000000258	. 000000 AF	. 0000000407	. 000000 EF	. 0000000556
.00000030	. 0000000111	. 00000070	. 0000000260	. 00000080	. 0000000409	. 000000 FO	. 0000000558
00000031	0000000114	. 00000071	0000000263	. 00000081	. 0000000412	. 000000 Fl	.00000000581
. 00000032	. 0000000116	. 00000072	. 0000000265	. 00000082	.00000 00414	. 000000 F 2	. 0000000563
. 00000033	. 0000000118	. 00000073	. 0000000267	. $000000 \mathrm{B3}$. 0000000416	. $000000 \mathrm{F3}$. 0000000565
. 00000034	. 0000000121	. 00000074	. 0000000270	. $000000 \mathrm{B4}$. 0000000419	. $000000 \mathrm{F4}$. 00000000568
. 00000035	. 0000000123	. 00000075	.00000 00272	. $000000 \mathrm{B5}$. 0000000421 '	. $000000 \mathrm{F5}$.00000 00570
00000036	. 00000000125	. 00000076	. 0000000274	. 00000088	. 0000000423	. $000000 \mathrm{F6}$. 0000000572
00000037	. 0000000128	. 00000077	.0000000277	$000000 \mathrm{B7}$. 0000000426	. $000000 \mathrm{F7}$. 0000000575
. 00000038	. 0000000130	. 00000078	.0000000279	.000000 88	. 00000000428	. $000000 \mathrm{F8}$. 0000000577
. 00000039	. 0000000132	. 00000079	. 0000000281	. $000000 \mathrm{B9}$. 0000000430	.000000 F9	. 0000000579
. 0000003 A	. 0000000135	. 0000007 A	. 0000000284	. 000000 BA	. 0000000433	. 000000 FA	0000000582
. 00000038	. 0000000137	. 00000078	. 0000000285	. 000000 BE	. 0000000435	. 000000 FB	0000000584
. 0000003 C	. 0000000139	00000075	0000000288	. 000000 BC	. 0000000437	. 000000 FC	0006000586
. 000000 3D	0000000142	. 0000007 D	. 0000000291	000000 BD	. 0000000440	. 000000 FD	. 00000000589
.000000 35	. 00000000144	0000007 E	0000000293	. 00000008 BE	. 0000000442	. 000000 FE	.00000 00591
. 0000003 F	. 0000000146	:000000 7F	. 0000000295	. 000000 BF	. 0000000444	. 000000 FF	0000000593

APPENDIX H
SIAT DATA FILE RECORDS

Table H－1
SIAT Logical Tape Header

By，te	Length	Content	Format
1	8	SIAT Number	EBCDIC（TTADDDNN）
9	10	Date of Tape Preparation	
19	$1 \varnothing$	ZERO	BINARY
29	8	SIAT Number	EBCDIC（TTADDDNN）
37	8	RBV Tape Number	EBCDIC（TTADDDNN or＇blanks）
45	8	MSS Tape Number	EBCDIC（TTADDDNN or blanks）
53	2	Number of Data Files on Logical SIAT	INTEGER
55	2	ZERO	BINARY
57	2	ZERO	BINARY
59	2	Number of RBV／VTC	INTEGER
61	2	Number of MSS／VTC	INTEGER
63	2	Number of RBV／TFC	INTEGER
65	2	Number of MSS／TFC	INTEGER
67	2	ZERO	BINARY
＇69	2	1st－64th RBV Scene ID＇s	EBCDIC ADDD－HHMMSぬb
837	768	1st－64th MSS Scene D^{\prime}＇s	EBCDIC ADDD－HHMMSぬね
$16 \not 55$	444	ZERO	BINARY

Table H-2
Processing Instruction Data
Record 2

Starting Byte No. and Length (Bytes)		Information	Format
	2	No. of Scenes Remaining, RBV/VFC	Binary
3	2	No. of Scenes Remaining, MSS/VFC	Binary
5	2	No. of Scenes Remaining, RBV/VTC	Binary
7	2	No. of Scenes Remaining, MSS/VTC	Binary
9	2	Not Used	Binary Zero
11	2	Not Used	Binary Zero
13	10	Scene ID	EBCDIC nddd-hhmms
23	10	Preceding Closest RCI ID From W.O.	EBCDIC nddd-hhmms
33	10	Succeeding Closest RCI ID From W.O.	EBCDIC nddd-hhmms
43	1	Mission No. (1 or 2)	Binary
44	1	Day Number From Launch	Binary (most significant part; least signif. bit is 2^{6})
.45	1	Day Number From Launch	Binary (6-bit least signif. part; 6 bits avail.)
46	1	Hours of Day	Binary
47	1	Minutes of Hour	Binary
48	1	Yens of Seconds	Binary
49	2	Not Used	Binary Zero
51	8	Band 1 Information from PIAT W.O.	EBCDIC laaaaabb
59	8	Band 2 Information from W.O.	EBCDIC 2aaaabb
67	8	Band 3 Information from W.O.	EBCDIC 3aaaaab -
75	8	Band 4 Information from W.O.	EBCDIC 4aaaaab
83	8	Band 5 Information from W.O.	EBCDIC 5aaaaab
91	8	Band 6 Information from W.O.	EBCDIC 6aaaaab

Table H-2 (continued)
Processing Instruction Data

- Record 2

Startin and Len	Byte No. (Bytes)	Information	Format
- 99	8	Band 7 Information from W.O.	EBCDIC 7aaaaabb
107	8	Band 8 Information from W.O.	EBCDIC 8aaaaabb
115	72	Special Instructions to Precision Processing Operator from W.O.	EBCDIC
187	1	Mission No.	Binary
188	1	Day'No. From Launch	Binary (most signif. part; least signif. bit is 2^{6})
189	1	Day No. From Launch	Binary (6-bit least signif, part; 6 bitsıavail.)
190	1	Hours of Day	Binary
191	1	Minutes of Hour	Binary
192	1	Tens of Seconds	Binary
193	1	Not Used	Binary Zero
194	1	Not Used	Binary Zero
195	6	Output Frame ID	Same as Item 38
201	1	Not Used	Binary Zero
202	1	Not Used	Binary Zero
208	2	Processing Code from SIAT Generation Work Order	Binary
205	2	Processing Code for MSS	Binary
207	2	Polar Stereo Projection	HEXADECIMAL
209	8	FLAG	Binary Zero
216 - Total Bytes			-

Inter-Record Gap

Table H-3
 Spacecraft Performance Data
 Record 3

Starting Byte No. and Length (Bytes)		Information	Format
1	8	RBV 1 Mode of Transmission	EBCDIC RBVb1bba
9.	2	RBV 1 Exposure Duration	EBCDIC Xa
11	2	RBV 1 Sperture Correction Indicator	EBCDIC ab
13	8	RBV 2 Mode of Transmission	EBCDIC RBVbb2ba
21	2	RBV 2 Exposure Duration	EBCDIC Xa
23	2	RBV 2 Aperture Correction Indicator	EBCDIC ab
25	8	RBV 3 Mode of Transmission	EBCDIC RBVbbb3a
33	2	RBV 3 Exposure Duration	EbCDIC Xa
35	2	RBV 3 Aperture Correction Indicator	EBCDIC ab
37	12	MSS 4 Mode of Transmission	EBCDIC MSSb4bbbbbab
49	12	MSS 5 Mode of Transmission	EBCDIC MSSbb5bbbbab
61	12	MSS 6 Mode of Transmission	EBCDIC MSSbbb6bbbab
73	12	MSS 7 Mode of Transmission	EBCDIC MSSbbbb7bbab
85	12	MSS 8 Mode of Transmission	EBCDIC MSSbbbbb8bab
97	2	MSS Sensor Gain	Binaxy, bits 1 \& 2 for bands 4 \& 5 respect., $1=$ high Bits 3-16 are zero
99	1	MSS Sensor Encoding	Binary, bits 1-3, for bands 4-6 respect. $\mathbf{1 = c o m -}$ pressed. Bits 4-8 are zero
100	1	Not Used	Binary Zero
101	8	SPDT Tape ID	EBCDIC SPndddnn
109	4	MSS SUN CAL DAY	EBCDIC OODDD
113	48	MSS SUN CAL's SENSORS 1-24	Binary Scaled 2^{-12}

Table H-4
Annotation Block Data
Record 4

Starting Byte No. and Length (Bytes)		Information	Format
1	2	Day of Month Exposure	EBCDIC nn
3	3	Month of Exposure	aaa
6	2	Year of Exposure	nn
8	3	Constant	bcb
11	6	Latitude of Format Center	ann-nn
17	1	Constant	/
18	7	Longitude of Format Center	anmm-nn
25	3	Constant	bNb
28	6	Latitude of Nadir	ann-nn
34	1	Constant	$/$
35	8	Longitude of Nadir	annn-nnb
43	12	Blank Field 1	blanks
55	8	Sun Elevation at Nadir (Deg)	SUNbELnn
63	6	Sun Azimuth at Nadir (Deg)	bAZnnn
69	4	Satellite Heading (Deg)	bnnn
73	6	Rev. Number	-nnn-
79	4	RBV Data Acquisition	a-1-
83	2	Blank Field 2	bb
85	2	Type of Orbit Data (Pred. or Defin.)	a-
87	2	Blank Field 5	bb
39	13	Constant	bNASAbERTSbE-
102	10	Scene Identification	nddd-hhmms
112	1	Constant	-
. 113	1	Blank Field 3	1 b

- Table H-4 (Continued)

Annotation Block Data

- Record 4

Starting B and Lengt	No. Bytes)	Information	Format
114	1	RCI Images Calibration Level	EBCDIC n (or blank) bb 1bbaX (or blanks) aa (or blanks) bb2baX (or blanks) aa (or blanks) bbb3aZ (or blanks) aa (or blanks) baba- (or blanks)
115	2	Blank Field 4	
117	5	RBV 1 Mode (Direct or Recorded)	
122	2	RBV I Shutter Setting, Aperture Correction Indicator	
124	6	RBV 2 Mode	
. $130{ }^{\circ}$	2	RBV 2 Shutter Setting, Aperture Correction Indicator	
132	6	RBV 3 Mode	
138	2	RBV Shutter Setting, Aperture Correction Indicator	
140	5	MSS Mode (Direct or Recorded) and Acquisition Site	
144	Total		

Inter-Record GAP

Table H-5
RBV Computational Dáta

Record 5

Starting Byte No. and Length (Bytes)		Information	Format
1	8	Spacecraft time of Exposure	4-bit BCD OOOOOdddhhmmssce
9	8	Greenwich Mean Time of Exposure	4-bit BCD OOOdddhhmmssmmmO
17	2	Normalized Altitude Change .	Binary fraction
19	10	GMT Date of Exposure	EBCDIC bddbmmmbyy
29	8	GMT Time of Exposure	ESCDIC bhhmm:ss
37	4	Latitude of Format Center	Binaxy
41	4	Longitude of Format Center ($10{ }^{6}$ Radians)	Binary
- 45	4	Latitude of Nadix (10^{-6} Rad.)	Binary
49	4	Longitude of Nadir (10- ${ }^{6}$ Rad.)	Binary.
53	4	Spacecraft Altitude (meters)	Binary
-57	4	GMT of Exposure '(Milliseconds of Day)	Binary
61	4	S/C Flight Path Heading (10^{-6} Rad.)	Binary
65	4	Pitch (10^{-6} Rad.)	Binary
69	4	Roll ($\left.10^{-6} \mathrm{Rad}.\right)$	Binaxy
73	4	Yaw (10^{-6} Rad.)	Binary
76	otal Bytes		

Inter-Record Gap

Table $\mathrm{H}-\dot{6}$
MSS Computational Data
Record 6

Starting Byte No. and Length (Bytes)		Information	Format
1	8	Spacecraft Time of Scene Center	4-bit BCD OOOOOdddhhmmssec
9	8	GMT of Scene Center	4-bit BCD OOOdddhhmmssmmmO
17	2	Normalized Altitude Change at Image Center - 13.80300	Binary fraction
19	2	Same as 102 at I. C. - 10.35225	
21	2	Same as 102 at I. C. - 6.90150	
23	2	Same as 102 at I. C. - 3.45075	
25	2	Same as 102 at I. C. Time	
27	2	Same as 102 at \%. C. +3.45075	
29	2	Same as 102 at I. C. +6.90150	
31	2	Same as 102 at I. C. +10.35225	
33	2	Same as 102 at I. C. +13.80300	γ
35	2	Altitude (N. M. /32) at time of 102	Binary
37	16	8 Values of Alt. at the times of Items 103 - 110, respectively	Binary, 2 bytes per value
53	2	Vehicle Roll at Imge Center Time. (Rad.)	Binary fraction
55	2	Vehicle Pitch at I. C. (Rad.)	Binary fraction
57	2	Vehicle-Yaw at I. C. (Rad.)	- Binary fraction
59	2	Roll at Time of Item 102 (Rad:)	-Binary fraction
61	16	8 Values of Roll at the times of Items 103-110, respectively	Binary fraction, 2 bytes per value
77	2	Pitch at time of Item 102 (Rad.)	Binary fraction
79	16	8 Values of Pitch at the times of Items 103-110, respectively	-Binary fraction, 2 bytes per value
95	2	Yaw at Time of Item 102 (Rad.)	Binary fraction

Table H-6 (Continued)
MSS Computational Data
Record 6:

Starting Byte No. and Length (Bytes)		Information	Format
97	16	8 Values of Yaw at the Times of Items 102-110, respectively	Binary fraction, 2 bytes per value
113	2	Image Skew (Rad.) \quad.	Binary fraction
115	2	Normalized Velocity Change	Binary fraction
117	4	Mean Pitch (10^{-6} Rad.)	Binary
121	4	Mean Roll (${ }^{-6}{ }^{-6} \mathrm{Rad}$.)	Binary
125	4	Mean Yaw ($10^{-6} \mathrm{Rad}$.)	Binary
129	4	Mean Pitch Rate ($10^{-6} \mathrm{Rad} / \mathrm{Sec}$.)	Binary
133	4	Mean Roll Rate ($10^{-6} \mathrm{Rad} / \mathrm{Sec}$.)	Binary
137	4	Mean Yaw Rate ($10^{-6} \mathrm{Rad} / \mathrm{Sec}$.)	Binary
141	4	Meal Altitude (meters)	Binary
145	4	Mean Altitude Rate (Meters/Sec.)	Binary
149	4	GMT Milliseconds of Day at ICT 25 SEC.	Binary
153	4	GMT Milliseconds of Day at ICT 25 SEC.	
157	4	GMT Milliseconds of Day at ICT - 15 SEC.	Binary
161	4	GMT Milliseconds of Day at ICT-10 SEC.	Binary
165	4	GMT Milliseconds of Day at ICT. - 5.SEC.	Binary
169	4	GMT Milliseconds of Day at ICT	Binary
173	4	GMT Milliseconds of Day at ICT + 5 SEC.	Binary

Table H-6 (Continued)
MSS Computational Data
Record 6

Inter-Record Gap

Table H-7
 Image Location Data
 Record 7

Start and L	$\begin{aligned} & \text { Byte } \\ & \text { th (B) } \end{aligned}$	Information	Format
1	10	RBV, Top Edge, Tick Mark No. 1 Position and Annotation	Binary fraction and EBCDIC
11	50	5 More Tick Marks as Above For the Same Edge	
61	60	Same as Items 204 and 205 For the Left Edge	
121	60	Same as Above for the Right Edge	
181	60	Same as Above for the Bottom Edge	
241	240	Same as Items 204-208 for the MSS	
480	tal		

[^0]
APPENDIX I

DETECTOR-TO-DETECTOR RADIOMETRIC ACCURACY

Tests have been made using a computer program (EVAL) to evaluate the video data on the Bulk MSS CCT. The radiance levels have been sorted into three ranges (referred to as regions and corresponding to the intervals 0 to 20,21 to 60 and 61 to 127). As part of the evaluation, a confidence check is used which requires at least 50 data points within a region for each detector in a mirror sweep. If a detector has fewer than 50 data points for a region, then none of the data in that region are used in evaluating the data for that particular mirror sweep. The computer output includes an area which lists the number of samples for each detector. These samples refer to the number of mirror sweeps for which the data satisfy the confidence check. The results of EVAL have been useful in detecting striping problems and in comparing detector-to-detector radiometric accuracy.

Two CCTs have been chosen to demonstrate the usefulness of the program's output. One CCT has video data which have not been radiometrically corrected using the new regression coefficients (C^{\prime} s and D^{\prime} 's) for Landsat-1. The video data on the other CCT have been radiometrically corrected using the new C's and D's. These tapes are referred to as "before" and "after" CCTs respectively.

Figure I-1 shows, in summary form, the average radiance level for each detector. The averaging is calculated for each mirror sweep, which consists of six scan lines. As can be seen in Figure I-2, the difference in radiance levels among the detectors for a given region is not more than two quantum levels. By referring to Figures I-1 and I-2, the detector-to-detector radiometric accuracy of the "before" and "after" CCTs can be compared. It will be noticed that the ranges of values on "before" and "after" CCTs are quite different. This is because slightly different areas are represented on each CCT; however, a comparison of the differences between detectors is meaningful. For example, note that detectors 2 and 4 of band 3 , region 3 were quite high and low respectively on the "before" CCT. The corresponding detectors on the "after" CCT show considerable improvement.

Figure I-1. Average Radiance Levels for the "before" CCT

BULK MSS CCT SCENE/FRAME 1D 198.07441 CCT SEO. NO. 4 OF 4 CONFIDENCE LIMTT 50							
AVR RADIANCE LEVEL F日R NB: EF SAMPLES FOR							
-							
-3ApIO-2							
- .. - REGLON_							
. BEGLANK \qquad 0.1 -0.0 0.0 0.0 0.0 \qquad 0 0 0 \qquad 0 \qquad *STOP* 0							

Figure I-2. Average Radiance Levels for the "after" CCT

[^0]: END OF FILE

