General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASh CR- 143828

FINAL REPORT

FOR

BREADBOARD IINEAP ARRAY SCAN IMAGER PROGRAM

25 April 1975

For
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Goddard Space Flight Center

Greenbelt, Maryland

By

WESTINGHOUSE DEFENSE AND ELECZRONIC SYSTENS CENTER Systems Development Division Baltimore, Maryland

For
 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Goddard Space Flight Center Greenbelt, Maryland

By

WESTINGHOUSE DEFENSE AND ELECTRONIC SYSTEMS CENTER Systems Development Division

Baltimore, Maryland

PREFACE

This document is the Final Report for Contract NAS 5-21806, entitled Breadboard Linear Array Imager Program. The report describes the objectives, approach, implementation, and test results of the program.

The objective of the program is to evaluate the performance of large scale integration (LSI) photodiode arrays in a linear array scan imaging system breadboard for application to multispectral remote sensing of the Earth's resources.

The Final Report is submitted in compliance with Deliverable Item 5a, Final Report of NASA Goddard Space Flight Center, Contract NAS 5-21806. The final report was prepared in accordance with GSFC specification S-250-P-1C, March 1972, entitled "Contractor-Prepared Monthly, Periodic, and Final Reports."

TABEE OF CONTENTS

Page

1. BACKGROUND 1
2. I Introduction 2
3. 2 Summary of Results 3
4. TECHNICAL REPORT 5
5. 1 Program Objective 5
6. 2 Performance Objectives 5
7. 3 Photodetector Array Chip 6
8. 4 Program Implementation 10
2.4.1 Test Bench 13
2.4.2 Electronic Processing and Timing 23
2.4.3 Detector Array Design and Fabrication 35
9. 4. 4 Computer Processing 44
2.5 Test Program 47
2.5.1 Test Results 47
2.5.2 Image Evaluation 61
2.6 Array Fabrication Improvement Study 69
2.6.1 Introduction 69
2.6.2 Alignment Results 71
2.6.3 Problem Areas 72
2.6.4 Study Objective 72
2.6.5 Candidate Approaches 73
2.6.6 Preferred Approach 75
2.6.7 Fabrication Study Summary 84
Appendix A. MTE Comparison for Ideal System 87
Appendix B. Breadboard Linear Array Scan Imager Noise Programin 91
Appendix C. Failure Analysis of a Westinghouse Photodiode Array Integrated Circuit 95
Appendix D. Westinghouse Failure Analysis Report on Four Photo- diode Linear Array Chips (NAS 5-21806) 103
Appendix E. Computer Processing of Photodiode Linear Array Data 111
Appendix F. Detector Temperature Test Results 119
Appendix G. Temporal Test 123
Appendix H. Eighteen Chip Array Detector Test Data 129
Appendix I. HP-8330A Calibration Report 137

LIST OF ILLUSTRATIONS

Figure

Figure12
96-Photodiode Detector Chip Showing Associated Electronics and Geometry 7
Schematic Diagram of 96-Detector Chip 9
Schematic of Photodiode Detector and Amplifier 9
Overall Block Diagram of Integrated Breadboard Linear Array Scan Imager, Data Processing and Display 11
Test Bench and Data Recording System 14
Optical Bench Showing Light Source, Scene Translator, Filter Wheels, Line Detector Array and Mount, and Analog Processing Electronics 15
Filter Characteristics 17
Detector Array in Micropositioning Mount 18
Lens MTF (Squarewave Response) for $\lambda=0.55 \mu \mathrm{~m}$ 19
Lens MTF Squarewave Response $0.65 \mu \mathrm{~m}=\lambda$ 20
Lens MTF Squarewave Response $0.75 \mu \mathrm{~m}=$ l 21
Lens MTF Squarewave Response $1 \mu \mathrm{~m}=\boldsymbol{\lambda}$ 22
Simplified Signal Processing Schematic 24
Array Signal Current (Waveform Representation) 29
Analog Processo MHP Schematic 31
Analog Processor MHP 33
System Timing Diagram 34
Chip Carrier and Array Assembly Technique 36
6-Chip Array (576 Detectors) 37
18-Chip Array (1728 Detectors) 40
Fully Assombled 1728-Detector Focal Plane Array 41
Bilinear Design (Detector and Edge Element Geometry) 43
Simplified Flow Diagram
Page
Detector NEI Histogram For A Typical 96-Element Chip 4845
System NEI Histogram for 576 Detectors
Squarewave MTF With Optics For 6-Chip Array 56
Squarewave MTF With Optics For 18-Chip Array 57
Spectral Response 60
System Output as a Function of Gray Scale Transmission 62
Gray Scale Image 63
576-Detector Array 'imagery 64
1728 -Detector Image 65
Examples of Image Artifacts on Bar Chart 67
Wave-Effect Dis to Phasing Between Detector and Scene Edge 68
Example of Thermal Streaking 70
Depth of Field vs F-Numbex (Assumes Rayleigh $\lambda / 4$ Criterion and Depth-of-Field Given As Deviation From Nominal) 74
Chip Carrier Assembly Micropositioner and Microscope 76
Chip Carrier Assembly Micropositioner (Top View) 77
Chip Carrier Assembly Micropositionex (Side View Showing Jack) 78
Exploded View of Array Assembly 80
Assembled Chip Carrier 81
Chip Carrier Assembly Jig 82
Detector Array Assembly Functional Flow Diagram 85
Comparative MTF with $f / 4$ and $f / 12$ Optics for $\lambda=1.0 \mu \mathrm{n}$ 88
Comparative MTE Response to Squarewave Input 89
Computer Program for rms Noise Output 93
Failure Analysis Report 96
Failed Half of Silicon Die of Submitted Westinghouse Integrated Circuit -65 X Magnification 100
FigurePage
49 Scanning Electron Micrographs of Anomalies Detected in Submitted Device 101
50 Scratches in the Third Metal Shield 105
51 Scratches in the Third Metal Shield 10552 This Photo Shows a Scratch Causing Phase B, Bº and Bus BAll Shorted to Ground and Smeared Metal From Pad B-
Intersecting all Three Lines
106106
53 This Photo Shows a Scratch in the Third Metal GND Shield 106
54 the Beta Side 107
55 This Photo Shows Scratches in the Third Metal GND Shield Over the Second Metal V_{R} Line 107
56 Shows Scratch in Third Metal GND Shield Over the Second Metal V_{R} Line 108
57 Shows Scretches in the Third Metal GND Shield Over the Second Metal Bus A Line 108
58 Computer Listing for Photodiode Linear Array Data Processor 113
Eighteen Chip Image Processing Elow Diagram 117
59Dark Level Current at Two Temperatures for all Detectorsof a 576-Detector Array121
61 Outputat Dark vs Time and Temperature - Six Chip Array - Bus A 124
62 Output at Dark vs Time and Teroperature - Bus A of Group 2 125
63
OLtput at Dark vs Time and Temperature - Bus B of Group 2 126
64 Output at Dark vs Time and Temperature - Bus C of Group 2 127
65 Output at Dark vs Time and Temperature - Bus D of Group 2 128
vii/viii

LIST OF ACRONYMS

CMOS

ERTS
HPBW
IFOV
LSB
LSI
MHP
MOSFET
MOST
MTF
NEI
OPD
RMS
RSS
SNR
TTL

Complementary Metal Oxide Semiconductor
Earth Resources Technology Satellite
Half Power Band Width
Instantaneous Field-of-View
Least Significant Bit
Large Scale Integration
Multichip Hybrid Package
Metal Oxide Semiconductor Field Effect Transistor
Metal Oxide Semiconductor Technology
Modulation Transfer Function
Noise Equivalent Irradiance
Optical Path Difference
Root-Mean-Square
Root-Sum-Square
Signal-to-Noise Ratio
Transistor-Transistor Logic

Frontispiece. Breadboard Linear Array Imager Program

I. BACKGROUND

In the evolutionary development of earth observation sensors, demands on improving reliability and resolution are ever present. The use of a long array of photodetectors in the image plane of a geocentric stabilized spaceborne telescope used in the "pushbroom" scanning mode offers the opportunity to achieve both higher reliability and finer resolution. Improved reliability is achieved by the elimination of complex mechanical scanning mechanisms using point detectors, and finer resolution is achieved by increasing the number of detectors in the image plane per picture width.

The advent of large scale integration (ISI) CMOS (Complementary Metal Oxide Semiconductor) technology has allowed the inclusion of detector sampling and commutation circuitry on the same chip ${ }^{I}$ as the silicon diode photodetectors. Heretofore, the use of conventional interconnection techniques made it impossible to connect the large quantity of photodetectors to subsequent signal processing circuitry. Thus, the application of pushbroom scanning using long arrays ${ }^{1}$ of phetodetectors has become a viable technique for future flight sensors.

The Breadboard Linear Array Scan Imager program was begun to exploit this emerging technology. The goal of the program is to demonstrate through experimentation and testing that the technology is feasible for use in future high resolution multispectral imaging sensors for earth and ocean survey applications.

[^0]
1.1 INTRODUCTION

Solid-state linear array photodetector technology is being put to use to develop electronically-scanned multispectral imaging systems. Experience has shown that assembling discrete photodetectors into a long array produces a complex maze of wiring to access each detector element. Thus, a monolithic approach has been developed which results in a single substrate with many detectors interconnected within the chip. The detector outputs are multiplexed onto a few output lines minimizing the physical wiring required. A shift register provides time multiplexing of detectors and is within the chip to reduce the number of physical connections. The chip used on this program has 96 photodetecto 1 s anc on-chip signal processing provides spatial sequential output time sharing on four common output lines. The chip requires less than two dozen external wires to be attached. Each chip is capable of being physically butted to provide a continuous line of photodetectors of thousands of resolution elements per line. Multiple chip sharing of the data output lines is possible by serially connecting the shift registers of butted chips, thus reducing external processing requirements to a minimum. The use of this approach allows the development of solid-state imaging systems with thousands of resolution elements requiring no mechanical scanning.

To investigate the characteristics and capabilities of fabricating solidstate arrays, NASA/GSFC is sued contract NAS 5-21806, entitled Breadboard Linear Array Imager Using LSI Solid-State Technology, in July 1972. The governing technical specification and statement of work is included in NASAGSFC document S-731-P-128, Specification for a Breadboard Linear Array Imager Using LSL Solid-State Technology, dated January 1972.

The original contract includes the design, fabrication, and test of a 576detector element array. In late 1973, a contract change order was received to design, fabricate, and test an 18-chip (1728 detector) linear array which has been completed. In accordance with contract requirements, a test plan document was prepared and used as the test criteria for performance evaluation, The final system test program on the 6-chip array was completed in

June, 1973. A similar test program was complezed on an 18-chip array in February, 1974.

Li June of 1974, a second contract change order was received to design, fabricate, and test multichip hylurid package (MHP) analog processing circuits and to perform a study to determine improved techniques for mechanically aligning linear photodiode detectors in long arrays. The goal of the M.HP analog processor development was to provide a desisn which would more closely achieve detector-limited noise performance. The work performed on the multichip hybrid package analog processing circuits is discussed in paragraph 2.4.2.2. The array fabrication improvement study is included in paragraph 2.6.

1.2 SUMMARY OF RESULTS

The results of the Breadboard Linear Array Scan Program Imager Program have conclusively shown that photodiode linear arrays can be applied to multispectral remote sensing of earth resources. A summary table including the performance objective and the actual performance achieved on the program is shown in table 1 , Summary of Results. The table alsc includes a reference to the paragraph number or appendix that discusses the source of the performance data.

TABLE 1 SUMMARY OF RESULTS

Perrormence Obective or
Functional Evaluation
(Spec S-731-P-128 par No.)

Noise (par. 3.1)

Spectral Response \{par. 3.1)
Dynamic Range (par. 3.7)
Calibration Problems \{par. 3.1)
Image Artifacts (par. 3.1)
Cross Talk Between Detectors (par. 3.1)
Reliability (per, 3.1)
Temporal Characteristics

Obtain tmagery
Determine Array Fabrication Problems

Performance Goals (par. 4.t)

- 500 elements (later changed to 1728)
- Four Spectral gands (par. 4.2)
- Acdiance Conditions (par, 4.3)
- SNR $_{1}$ Goal 22 (par. 4.4)
- SNR2 Goal 2 (par. 4, 4)

MTF Along Scen and Across Sean
Radiometric Accuracy, 5 percant of High Radiance, (par 4.6)
Detector Geometric Linearity of 1 percent \{par, 4.7)

Chip Alignment
NEI (Noise Equivalent Irradiancel of Detector to be Less Than $1,2 \mu \mathrm{~J} / \mathrm{m}^{2}$

Linearity Within 2 percent of Best Fit Line (par. 5.6)
Detector Requirements: (par. 5.7)
= < 5 percent Element-to-Element Variation After Processing

- No Dead Eiaments
- End Elements to have Response of >60 percent Mean Fult Scale

Performance/Evaluation Obtained

System level NEt (equivalent to 0.4 to $0.8 \mu \mathrm{~m}$ band) $\cong 1.4 \mu \mathrm{~J} / \mathrm{m}^{2}$ (see paci. 2.5.1.1)
Typical sllicon photodlode response [see par. 2.5.1.6]
Greater than 600:1; (see par, 2.5.1.4
Image streaking due to thermal drift in array temperature (see par. 2.5.2.5)
Artifacts due to geometrical and electrical characteristics (ste par. 2.5.2)
Not detectable (see par, 2.5.1.5)
Detectors meet Mil-883 tevel B; see Appendixes C and D for failure analyses
No apparent long-term (six-months) temporat problems, although a precise assessnent of performance was not possible in laboratary environment (see appendix G)

Extensive image production and evaluation was obtained (see par. 2.5.1.7)
Primary fabrication problem was found to be chip handling and intricacy of alignment (see par, 2.4.7.2). Corrective techniques discussed in par. 2.4.3.2 and par. 2.6

Three arrays were fabricated (two each 576 and one each 1728 detectors/array) (see par. 2.4.3.1)
Spectral bands were: $\{1\}$ 0.50-0.58 $\mu \mathrm{m}(2) 0.62-0.68 \mu \mathrm{~m}(3) 0.73-0.81 \mu \mathrm{~m}$, and (4) 0.8-1.1 $\mu \mathrm{m}$, See par. 2.4.1.3
Various radience conditions used, \{see par. 2.4, 1.2\}
For $0.5-0.6 \mu \mathrm{~m}$ band, system SNR of 40 was achieved for low radiance, low spatial frequency target (see par. 2.5.1.1)

For 0.5-0.6 am bend, system SNR of 4 was achieved for low contrast, high spatial frequency (see par. 2.5.1.1)
The detector geametry was chosen to provide equal MTF along and across track. (see figure 9) HP B330A radiometer calibration shows absolute untertainty of better than 5 percent [ses Appendix I)

Array chips positioned to within less than 1 percent of array length (see par 2.6.2)

Chip alignment of $1 / 4$ rasolution element was achieved (see par, 2.6.2)
The mean detector noise is less than $1.2 \mu \mathrm{~J} / \mathrm{m}^{2}$ (see par, 2.5.1.1)

Linesity measurements and detector data indicate a 2 sigme variation of less than 3 percent of full signal from a best fit line (see par. 2.5.1.2)

For the signal quantization interval (approx. 30 to 50 intervals futl scale signall and 2 calibration levels and irradiance used this exceeds limit (peak error of 6 percent)

Chip manufacturing data provided on 30 chips used on this program indicated only one bad element for all chips.

Most of the chips used for this program had ant end element response better than 60 percent of the mean response: however, limited availability of chips made this parameter an impractical selection criteria.

75-0298-TB-65-1

2. TECHNICAL REPORT

2. I PROGRAM OBJECTIVE

The objectives of the program as stated in the Technical Specification are:

- To evaluate the performance of LSI photodiode arrays in a linear array scan imaging system. Emphasis will be placed on determining noise characteristics, calibration problems, spectral response, dynamic range, image artifacts, crosstalk between contiguous detectors, reliability, and temporal performance.
- To evaluate total system performance, especially for conditions simulating ERTS scenes.
- To provide high quality images from the camera system.
- To determine fabrication problems associated with making long arrays from many short arrays.

2. 2 PERFORMANCE OBJECTIVES

The Technical Specification contains a listing of system performance objectives which are summarized below:

- Minimum of 500 detectors per array (this was later changed to 1728 detectors)
- Four passbands of interest are $0.5-0.6 \mu \mathrm{~m}, 0.6-0.7 \mu \mathrm{~m}, 0.7-0.8$ $\mu \mathrm{m}$ and 0.8-1.1 $\mu \mathrm{m}$.
- The system is to be evaluated with nominal ERTS scene conditions as follows:

Passband ($\mu \mathrm{m}$)	Scene Radiance$\left(\mathrm{W} / \mathrm{cm}^{2}-\mathrm{sr}\right)$	
	High	Low
0.5-0.6	2. 48×10^{-3}	1. 20×10^{-1}
0.6-0.7	2. 00×10^{-3}	2. 00×10^{-4}
0.7-0.8	1. 76×10^{-3}	2. 80×10^{-4}
0.8-1.1	4.60×10^{-3}	6.7×10^{-4}

- After signal processing, the system is to have a signal-to-noise ratio in excess of 22 for the low radiance conditions ($0.5-0.6 \mu \mathrm{~m}$) with a high contrast, low spatial frequency target.
- For the low radiance conditions of the $0.5-0.6 \mu \mathrm{~m}$ passband and a target contrast ratio of 2 to 1 , the system is to have a SNR greater than 2 at the limiting spatial frequency.
- The modulation transfer function (ivTF) (at the limiting spatial frequency) in the along-scan and across-scan direction is to be approximately equal.
- After signal processing, relative radiometric measurements are to be accurate to 5 percent of the high radiance test conditions.
- The linear dimension geometric accuracy of the detector arrays is to be maintained to one percent.
- The system is to operate at room temperature.
- The bilinear staggered self-scanned LSI detector is to have a rectangular diode aperture with a cross-track to along-track dimensional ratio of $1.3: 1$ with an effective sample distance of $15.24 \mu \mathrm{~m}$. The mean value of noise equivalent signal (NEI) is to be $1.2 \mu \mathrm{~J} / \mathrm{m}^{\text {? }}$? ior a spectral interval of $0.4 \mu \mathrm{~m}$ to $0.8 \mu \mathrm{~m}$ for a 6000 K source.
- The diode array is to have a dynamic range (in terms of input radiant energy from NEI) of 600:1.
- The detector response linearity defined as percent error from the best straight line fit to the mean response curve for the full range is not to exceed two percent.
- Objectives in detector variation are: (1) after processing, the element-to-element variation for a given video output bus on a chip shall be less than or equal to ± 5 percent of the full scale response, (2) there are to be no dead elements, and (3) after processing, the end element response is to be at least 60 percent of the mean full scale response.

2. 3 PHOTODETECTOR ARRAY CHIP

The photodetector chip used on the breadboard linear array program is an array of 96 photodiodes on $0.6-\mathrm{mil}$ centers with the associated electronics necessary to form an array of light detectors for image scanning (see figure 1). The scene image is formed by periodically sampling each photodiode in the line array. The on-chip electronics furnishes the first level of preamplification and the multiplexing necessary to periodically sample each sensor

Figure 1. 96-Photodiode Detector Chip Showing Associated Electronics and Geometry
and commutate the sensor outputs onto one of four output buses. The chips are fabricated using the complementary metal-oxide insulated-gate semiconductor transistor technology (MOST) which is compatible with the diode fabrication.

A schematic diagram of the chip is shown in figure 2. To perform the functions necessary of the array, a sensor, amplifier, and address and control circuitry are associated with each diode position in the line array. The photodiode, operating in the integration mode, and a reset switch form the sensor whose output is taken from the node between the two devices. The output of the sensor is connected to the gate of a single MOST whose drain current is the measured variable commutated to the output line. The address circuitry consists of a shift register stage and an AND gate to control the reset switch.

The schematic diagram of the detector and the amplifier is shown in figure 3 where Q_{1} is the reset switch, Q_{2} is the amplifier, Q_{3} is the amplifier commutating switch, and the external amplifier is the output current detector.

The photodiode detector is operated in the integration mode. Initial conditions for the integration mode are established when the photodiode is reverse biased by switching Q_{1} on. When Ω_{1} is switched off, the photodiode remains reverse biased because of the charge stored on the input capacitance of the amplifier, the parasitic capacitance of the interconnects and the reset switch, and the capacitance of the diode itself. The rate with which this voltage will decay toward zero is proportional to the leakage of the diode, the parasitic leakage of the node, and the light proportional reverse current of the photodiode. After a period t, Ω_{1} is again turned on and the capacitance is recharged. This mode of operation ensures that the diode is detecting during the entire period between reset pulses and offers an efficiency proportional to the ratio of the integration period to the total period from reset pulse to reset pulse. The measure of irradiance may be the peak recharge current,

Figure 2. Schematic Diagram of 96-Detector Chip

Figure 3. Schematic of Photodiode Detector and Amplifier
the total replaced charge, or the voltage across the diode prior to reset. This last approach is used on the 96-detector chip.

The detector amplifier is the single p -channel $\mathrm{MOST}_{,} \Omega_{2}$, shown in figure 3. The voltage between its gate and the output bus is the integrated signal which in turn determines the source current flowing through R_{f} (the measured variable). The series n-channel MOST, Q_{3}, between the supply and the amplifier enable this current to flow through the amplifier when addressed by a 1 during the sample period and inhibits the current when addressed with a 0 between samples.

Figure 3 shows that the output bus is connected to the summing point of an operational amplifier which is referenced to ground. The output bus is thus a virtual ground with an impedance of R_{f} / A_{v}. This being the case, many amplifiers may be multiplexed onto this line without channel interaction. Thus, a substantial reduction in the number of output leads is made possible. The scene energy is converted into small analog signals and thus is available for further processing.

2. 4 PROGRAM IMPLEMENTATION

The principal objective of the subject program is to evaluate the performance of large scale integration (LSI) photodiode arrays in a linear array scan imaging breadboard. To perform this evaluation required the construction of a test tool capable of performing appropriate quantitative tests. The integrated test tool and evaluation program consists of the breadboard imager, computer software programs for image data processing, and display software. An overall block diagram of the entire process of image generation, detection, signal processing, data processing, and display is shown in figure 4.

This program required the design and fabrication of a test bench, the design and fabrication of detector arrays, the preparation of computer software programs, and the conduct of a test and evaluation program.

Figure 4. Overall Block Diagram of Integrated Breadboard Linear Array Scan Imager, Data Processing and Display lative 5 percent of motor step contributed by the motor and a $0.0005 \mathrm{in} / \mathrm{ft}$ for the lead screw. These accuracies prevent scene distorticns due to the scene simulator but use standard quality components.

Figure 5. Test Bench and Data Recording System

Figure 6. Optical Bench Showing Light Source, Scene Translator, Filter Wheels, linear Detector Array and Mount, and Analog Processing Electronics

2.4.1.2 Radiant Source

The radiant source is a 10 -inch diameter hemisphere with a high reflectance white interior. A. 150 watt de tungsten (3300 K) bulb is located at the radius center and two apertures are cut in the flat surface cover. These apertures are: (I) a slit to back-irradiate the scene transparency, and (2) a circle to allow direct radiance measurement. The aperture areas are approximately equal, thereby minimizing the radiance measurement error. A Hewlett-Packard Radiant Flux Meter and Detector (Model 8330A/ 8334A) with an Infrasij. window and thermopile detector are used for radiance monitoring. Levels are controlled by adjusting the de lamp power supply. This source with the radiometer provides the capability for the specified radiance levels and the 5 percent of the full-scale measurement range. See Appendix I for the radiometer calibration results.

2. 4. 1. 3 Spectral Separation

Spectral separation is achieved with thin film filters. Three bandpass filters centered at $0.55,0.65$, and 0.75 microns with 0.08 -micron width are used. A long pass filter with a short wavelength cutoff at 0.8 micron provides the near IR band. The filters have a peak transmission greater than 60 percent. Characteristics of the filters are shown in figure 7. Although these "off the shelf" filters did not meet the 70 percent peak transmission of the original specification, they were chosen with NASA concurrence as fullfilling the intent of the program.

2. 4. 1. 4 Detector Array Mount

The detector array is mounted in a micropositioning mount (see figure 8). It is adjustable along each axis and can be rotated about the optical axis and about the axis orthogonal to both the array and optical axis. This allows enough freedom to align the array relative to the scene and to finely adjust the focus, Either the 576-or 1728-detector array can be used in the micropositioner. This capability was required to overcome the coarse focus capability of commercial optics.

Figure 7. Filter Characteristics

Figure 8. Detector Array in Micropositionins Mount

2. 4. 1. 5 Optics

High quality commercial photographic lenses are used for the optical system. A $55 \mathrm{~mm}, \mathrm{f} / 3.5$ lens optimized at 610 mm (2 feet) is used for the 576 -detector array. The 1728 -detector array uses a Nikon $150 \mathrm{~mm}, \mathrm{f} / 5.6$ El-Nikkor enlarger lens. Optical distances and magnification were arranged to allow an integral number of motor steps per IFOV. For the 576-detector array, the object to image distance is 434 mm with a magnification of 0.172 . The 1728-detector array has an object to image distance of 642 mm and a magnification of 0.600 .

A squarewave MTF measurement was made using the 150 mm lens set at f/8. The measurement was made using the breadboard's spectral filters. The optical distances were made equivalent to the breadboard with a silicon detector used in the image plane to measure the response. The results of these squarewave MTF measurements for the 150 mm lens are show in figures 9 through i2.

Figure 9. Lens MTF (Squarewave Response) for $\lambda=0.55 \mu \mathrm{~m}$

Figure 10. Lens MTF Squarewave Response $0.65 \mu \mathrm{~m}=\lambda$

Figure 11. Lens MTF Squarewave Response $0.75 \mu \mathrm{~m}=\lambda$

Figure 12. Lens MTF Squarewave Response I $\mu \mathrm{m}=\lambda$

These figures include the calculated squarewave response for $\lambda / 4$ and $\lambda / 2$ OPD (optical path difference) third order spherical aberation. ${ }^{2}$ An $f / n u m b e r$ of 12.8 is used for the calculation. The $f / 12.8$ is the effective f-number calculated for the image distance of the breadboard.

The photographic lenses used in the breadboard although of high comm mercial quality were not diffraction limited, therefore contributed to a reduction of system MTF. The Ienses, however, were of sufficient quality to produce high quality imagery, a primary program objective.

2. 4. 2 Electronic Processing and Timing

The following sections describe the analog processing and timing circuits required to process the photodiode video data. It is important to note that the aralog processor demonstrated an ability to meet program requirements. The timing circuits performed all functions satisfactorily and were flexible enough to permit the operation of two different size arrays (576 elements and 1728 elements).

2.4.2.1 Analog Signal Processing

The analog processor accepts the detector array output, derives the video signal, amplifies the signal, then stores it for A/D conversion. Figure 13 is a simplified schematic of the circuit configuration. Early in the program, discrete, hardwired components were used in the analog processor. A later phase modified the processor to a multichip hybrid package (MHP). The conversion from the discrete component analog processor to the multichip hybrid package is discussed in paragraph 2. 4. 2. 2.

There are several constraints on the performance of the first analog processor amplifier. This amplifier must provide as much gain as possible to minimize the latter stage gain, but not exceedits dynamic range with detector chip bias current differences. The frequency response (and slew rate) must be wide enough to allow sufficient video sample time and small error even after

[^1]

Figure 13. Simplified Signal Processing Schematic
chip transitions, but preferably narrow enough to keep the noise bandwidth low and therefore, a low noise amplifier is required. In the breadboard, a Westinghouse type WA 1006 operational amplifier is used. Since the WA 1006 must operate on low power supply voltages, such as +5 and -2 , the available dynamic range is limited. The bias current variations in the group of chips used in the array was in the range of 300 to $400 \mu \mathrm{~A}$. With a 4 -volt maximum output range, the feedback resistor was limited to lok Ω. An input resistor was selected to provide the nominal bias current for each of the four buses. This typical resistor was $2 \mathrm{k} \Omega$. The amplifier bandwidth is approximately 800 kHz and voltage gain is 5 , giving a Johnson noise at the amplifier output of approximately $25 \mu \mathrm{~V}$ rms. A measurement of a typical ampliner output indicated that a factor of 3 increase in noise is likely due to the amplifiex. This gives a total processor-only noise of $75 \mu \mathrm{~V} \mathrm{rms}$ at the first amplifier output. The gain from the first amplifier output to the analog channel output is 210 . Additions to noise beyond the first amplifier are considered negligible since the first stage noise gain is greater than five. The RSS (root-sum-square) for noise contribution at the second stage (assuming a noise equal to the first stage input) increases the total noise by 2 percent. The impedance of the second stage is lower than the input and thus contributes even less noise.

A computer processed noise run (see Appendix B) using the MFP amplifiers indicated that the average noise is 0.566 counts (see table 2). This is equivalent to $100 \mu \mathrm{~V}$ at the first amplifier output or an NEI of $0.39 \mu \mathrm{joule} /$ m^{2} in the 0.5 to $0.6-\mu \mathrm{m}$ spectral band. Three buses (A, B, D show 0.32 $\mu j o u l e / \mathrm{m}^{2}$ noise and one bus (C) indicates a $0.48 \mu \mathrm{joule} / \mathrm{m}^{2}$ equivalent noise. The analog-to-digital quantization uncertainty is 0.2μ joules $/ \mathrm{m}^{2}$ (see table 3) in the 0.5 to $0.6 \mu \mathrm{~m}$ band. The quantization uncertainty ${ }^{3}$ is the quantization interval $/ \sqrt{12}$.

[^2]TABIE 2
144 RMS NOISE SAMPLES FOR EACH OF FOUR MHP ANALOG PROCESSORS

THIS IS THE CDMPUTER PRINTOUT (SEE APPENDIX B) OF THE MHP ANALOG PROCESSOR RMS NOISE. FOR THIS CALCULATION, THE SYSTEM GAIN FROM SOURCE TO DUTPUT IS 1.3 COUNTS $/ \mu \mathrm{J} / \mathrm{m}^{2}$. THE AVERAGE OF THE RMS VALUES FOR THE MHP ANALOG PROCESSOR IS $0.39 \mu \mathrm{~J} / \mathrm{m}^{2}$ FOR A LENS TRANSMISSION OF gO PERCENT IN THE $0.5-0,6 \mu \mathrm{~m}$ BAN D. THIS MEASUREMENT WAS MADE WITH A bESISTOR TO SIMULATE THE AR RAY IMPEDANGE.

TABLE 3
ANALOG-TO-DIGITAL RMS QUANTIZATION ERROR

	${ }^{P} 1 \subset$	$\begin{aligned} & \text { JRE NO } \\ & \text { ITSENO } \\ & \text { GEROR } \end{aligned}$	GAIN		NPUT	24									
-86	- 33	- 21													
- 25	-16	-18	$\bigcirc 18$	-19	-17	$.27$.16	.25	-16	015	.17	:18	17	-26	-16
-2 23	-15	18 +18	$\cdot 17$	-17	-16	-25	-16	$\because 23$	-15	-18	.17	$\bigcirc \cdot 17$	-16	-25	-16
-23	-15	-18	$: 17$	$\because 17$	-16	- 25	-16	- 23	.15	-18	-17	.17	+16	124	-15
- 22	- 15	.18	. 17	-16	-16	- 23	-16	-22	-15	-19	.17	-1 8	-16	-39	. 21
-00	.22	20.33	-19	-10	-1星	-20	-1号	-24	0.17	-00	.19	$\cdot 72$	-20	-12	-18
- 14	-16	-19	-17	. 20	$\cdot 19$	- 25	.17	-18	-18	-19	-17	$\bigcirc 18$	$\cdot 17$	-21	-16
- 25	-17	-19	-18	-18	-19	- 25	-16	-23	$\cdot 17$	-18	-18	-17	-18	- 25	-16
- 25	$\because 17$	-413	-17	-18	-18	-30	-16	-24	${ }^{18}$	-20	-19	- 17	$\bigcirc 19$	-18	$\bullet 17$
-24	-18	-20	. 20	.17	-19	$\cdot 27$	-17	-24	18	.20	19	$: 17$	-19	-40	-172
- 00	- 10	-00	. 22	-19	+20	-24	. 20	-24	.16	-18	-19	.21	-19	-26	-18
- 25	17	-20	-19	-19	-19	-28	. 17	. 25	-18	- 20	- 20	-19	-19	-28	-17
- 25	-18	- 20	-19	- 20	-19	-16	-18	- 3	.17	-19	-19	. 19	-19	- 29	-18
-24	-18	-20	. 20	- 20	-19	- 2 B	-18	- 25	-18	- 20	- 20	. 20	- 20	- 28	-18
. 25	$\because 17$	-2 2	- 71	-16	-18	-28	17	-25	-17	-20	- 20	-20	-19	127	418
- 25	-17	-19	- 20	-18	-19	- 27	-18	- 24	.22	- 20	19	-18	-19	137	- 23
- 00	123	$\cdot 17$	-17	. 18	-16	.19	-15	. 23	-16	-18	-18	. 17	-18	-27	-17
- 25	17	-18	.17	. 17	. 17	- 26	-16	. 25	-16	-18	-16	.17	.17	- 25	-16
- 25	-16	-18	-16	-16	.17	- 26	-16	. 26	. 16	-18	$\cdot 17$	-1 16	-17	- 26	-16
	-16	\cdots	-17	-16	-18	.27	-17	. 27		.19	-17	-16	10	- 27	. 17
- 26	$\cdot 17$	-17	. 17	-15	-18	- 25	-17	-25	-17	-18	$\cdot 17$	-16	-18	-27	.17
- 26	.17	-18	.17	. 17	-14	- 26	-16	-20	.17	-19	-17	-17	-19	- 45	- 0
1.05	- 2 B	-18	- 21	-17	-18	- 22	-18	- 28	-16	-16	.16	-15	-15	- 24	-16
-27	-15	-16	-16	-15	-15	- 24	$\bullet 15$	- 26	-15	015	-19	-15	-15	- 26	-15
- 26	-14	-15	-15	-15	-14	- 24	-15	- 26	-14	-15	416	. 15	-15	- 23	-15
- 25	-14	-15	-15	114	- 15	-24	.15	- 26	-14	-15	.17	. 14	-15	- 23	116
- 75	-15	-15	-16	. 14	-16	- 23	-16	+24	-15	-14	$\cdot 17$	-14	-15	- 22	-16
- 25	-14	-15	-1b	-14	-16	- 23	. 15	+25	+15	-15	-19	-15	- 00	-38	- 00
- 00	.90	. 25	- 33	- 20	-18	- 23	. 20	. 22	.17	-19	-19	- 20	- 20	- 28	-19
- 27	- 20	- 21	+21	.23	. 21	- 30	-19	. 27	119	- 21	- 20	-19	.19	- 27	-18
-26	118	-20	- 20	- 20	. 29	. 26	119	. 25	-18	. 19	-19	- 20	5.26	- 30	-12
- 32	-11	- 22	-15	.17	$\cdot 11$	- 00	-16	. 23	-18	- 20	-19	-19	- 22	- 24	-19
- 26	- 21	-19	.72	. 20	. 22	- 26	-19	. 25	. 2 D	- 20	. 21	119	- 20	- 25	
-23	-19	14	. 20	.17	-19	. 22	-18	. 25	-13	-18	.20	. 17	. 23	133	-00

THIS IS THE COMPUTER PRINTOUT OF THE RMS UUANTIZING ERROR DUE TO ANAL OG-TO-DIGITAL CONVEASION. THE NUMBERS IN THE TABLE ARE DETERMINED BY dIVIDING THE MEASURED OUANTIZATION INTERVAL GY $\sqrt{12}$. IN THIS PRINTOUT. THE DUANTIZATION ERROR TABULATED IS IN $\mu \mathrm{J}: \mathrm{m}^{2}$
in Calculating the average of the rms error, in operative detectors are excluded
the averace of the rms notse values for analog to-digital conversion is $0.2 \mu \mathrm{~d} / \mathrm{m}^{2}$.

The array output is a current which incIudes the video information and a large bias level (see figure 14). The image information is the amplitude difference between the pre-reset (video) and post-reset (reference) current. This difference current is $20 \mu \mathrm{~A}$ or less, assuming a peak irradiance of $0.5 \mathrm{~W} / \mathrm{m}^{2}$ and a $1.5-\mathrm{msec}$ integration period. The bias current is 1 mA or less and varies from chip to chip. Without chip selection, the chip-to-chip bias variation could be several orders of magnitude greater than the video si.gnal level.

The first amplifier provides a dual function of current to voltage conversion and removal of the average bias level.

The pre- and post-reset differencing to extract the video is performed by a "keyed-clamp" circuit. A capacitor is charged to the pre-reset level by clamping one side to ground at the pre-reset time interval. At all other times, the clamp is opened. The clamp circuit output is the instantaneous first amplifier output less the stored value on the capacitor.

A series switch is included in this same area to open circuit the system during the reset period to prevent amplifier saturation. The combination series and clamp switches provide the charging impedance for the subtraction capacitor. It should be noted that this bandwidth essentially matches that of the first amplifier (800 kHz).

Selection of the time constant for the keyed clamp circuit involves the tradeoff of noise and offset. The circuit must have the speed to remove an offset that is much greater than the signal, but slow enough so as not to store noise pulses. The bias current changes between chips is nominally 10 times the $0.55-\mu \mathrm{m}$ band, low level, full scale signat. In order to keep the coupled offset during chip to chip transitions below 1 percent of the full scale, a time constant of less than $1 / 7$ of the pre-reset gate width is required. A factor of $1 / 10$ was used, giving a coupling of 0.05 percent (0.5 to 1 percent of the signal full scale).

Figure 14. Array Signal Current (Waveform Representation)

The second amplifier provides gain and a buffer between the keyed clamp subtractor capacitor and the sample-hold circuit and has a gain of 21 switchable to a gain of 3. There is no external bandwidth limiting added to this amplifier. It is desirable to have the amplifier recover from degraded elements or high offsets as rapidly as possible. The internal amplifier response gives a closed loop bandwidth near 800 kH .

The sample-hold circuit samples the second amplifier output during the post-reset video period and holds it unti: the next element is sampled. A time constant to sample time ratio of $1 / 5$ is used to keep signal crosscoupling below 1 percent.

The final amplifier provides a buffer and line driver. A National Semiconductor LH0003 is used with a gain of 10 . This provides the 10 -volt capability required for the A / D converters and causes a droop less than $1 / 2$ an LSB (least significant bit) over the $10-\mu \mathrm{sec}$ holding period.

A $4-\mu s e c$ per conversion A/D converter is used for each channel. At the end of each element conversion, the data is stored in an 8-bit holding register. The data is multiplexed and sent to the recording encoder on eight lines in the correct pixel sequence. Aclock signal is sent with each data word. 2.4.2.2 Analog Processor Conversion to Multichip Hybrid Package (MHP)

A change order to the contract provided for the conversion of the analog process electrical schematic (see figure 15) into a microminiature module. The MHP was expected to give more nearly detector-limited performance. The design procedure is shown below. The $1^{\prime \prime} \times 2^{\prime \prime}$ package was chosen because it meets both the requirements of small size and ease in manufacture. The layout takes into consideration the output lines and the minimization of interconnection lead lengths between amplifier stages and the use of power line bypassing in several places to ensure decoupling.

Figure 15. Analog Processor MFP Schematic

The layout is in three layers. The first layer is the main conductor layer where 85 percent of all necessary interconnections are made. The second layer is a dielectric which provides insulation between conductor layers as well as providing an insulation over which a wirebond passes. The third layer is the second conductor layer; this layer serves to interconnect the lines on the first conductor layer.

The layout, after it was checked for accuracy, was next converted into artwork necessary for the manufacture of the substrate. Each layer was screened, then fired onto the substrate and visually examined. After the third layer was screened and fired, the substrate was again visually examined and electrically checked, thus assuring a quality substrate. The amplifier substrate consists of two thick film-deposited conductive layers with one dielectric layer and is inspected. The components which already have been visually examined are mounted in their respective places using nonconductive adhesives. After curing, the components are wirebonded using gold thermocompression ball bonding techniques. This assures a reliable connection between component and conductor.

The finished analog processor is shown in figure 16.

2.4.2.3 Timing and Control

All timing and control functions, except for recorder encoding and control, are provided by the main timing circuitry. Figure 17 is the system timing diagram. A $3.6-\mathrm{MHz}$ clock is diviced to provide the $400-\mathrm{kHz}$ data rate clock. A preset counter ounts to 576 (96 times 6) at the $400-\mathrm{kHz}$ rate to provide an end-of-line signal to enable synchronizing at the line scanning rate. A slift register provides $0.28-\mu \mathrm{sec}$, the basic timing interval over a $10-\mu \mathrm{sec}$ period. All analog gates, A/D control, holding register load, and array clocks are determined by decoding the proper interval from the shift register.

The maximum rate at which the digital data tape recorder can accept data is significantly less than the detector axray can produce. Therefore, the record rate is designed to accept only one of sixteen scan lines. The scan

Figure 17. System Timing Diagram

Abstract

line that is recorded represents one contiguous IFOV of the scene. During the interval between recorded data lines, the scene is translated and stopped prior to recording. The timing and logic is arranged to provide the correct number of motor steps (2 motor steps for the 18 -chip array and 7 for the 6-chip array) to accommodete the different field-of-views required for the 6 -r hip and 18 -chip arrays.

The clock signals used to control the timing of the analog processor and array use open collector TTL to increase the voltage limits. This I2V signal is ac-coupled for the negative voltage biased array and the bipolar analog gates. A CMOS CD4041 driver interfaces between the TTL and array inputs. CMOS CD4041 drivers also interface with the CD4016 analog switches in the processor. 2.4.3 Detector Array Design and Fabrication

A major objective of the breadboard program was to determine the feasibility of fabricating long detector arrays for possible use on future earth observation sensors. This section discusses the fabrication of detector arrays and both achievements and problem areas are identified.

\subsection*{2.4.3.1 Fabrication Techniques}

An early program decision was to select a design which would allow replacement of individual chips. This was of particular importance with the limited number of chips available. During the program, several chips were successfully replaced.

The selected approach shown in figure 18 uses the "chip carrier" concept and the use of multi-level substrate interconnections. Each detector is cemented to a precisely machined chip carrier. The carriers are assembled on a baseplate with each aligned such that the chips form a contiguous Iine of detector elements. An appendage on the carriers extends beyond the chip edges, on alternating sides, providing a surface with up to twice the chip width for baseplate mounting. Figure 19 shows the assembled 6-chip array with this carrier arrangement. It is well to remember that one chip contains 96 detectors; therefore, six chips is equal to 576 detectors.

Figure 18. Chip Carrier and Array Assembly Technique

Figure 19. 6-Chip Array (576 Detectors)

The chips are cemented to the carriers with an epoxy cement doublewsided film. The film cement eliminated possible metering problems associated with liquids. This also eased the handing and prevented seepage onto the chip surface. Curing is performed at $150^{\circ} \mathrm{C}$ and a jig is used to align the chip on the carrier during the cement curing period.

The chip alignment was performed by manipulating the baseplate mounted carriers while viewing the detector elements through a microscope. A custom fixture was used to elevate the arxay during alignment to allow access to the screws on the bottom surface. The chip carrier mounting screws could, therefore, be fightened while observing the chip alignment to detect movement of the carrier. A measuring stage was used with the microscope providing a means of measuring the final alignment accuracy. Using this measuring capability, all chips were assembled relative to a datum to prevent error accumulation. It is important to note that with this technique errors in the along scan direction are not accumulated. However, positional error can occur from one chip to an immediate neighbor chip. A measurement made on the 18-chip array indicated a maximum error of 0.15 mil ($3.8 \mu \mathrm{~m}$) between adjacent chips.

With the use of a measuring microscope, an imaginary reference line (best fit) was developed which minimized the maximum detector lateral excursion from the reference line. For the 6-chip array, the maximum late ral excursion was $0.2 \mathrm{mil}(5.1 \mu \mathrm{~m})$ and for the 18 -chip array, the maximum lateral excursion was 0.3 mil ($7.5 \mu \mathrm{~m}$).

The errors in detector lateral excursion in the across-scan direction and positional error between adjacent chips in the along-scan direction are within the specification requirement of 1 percent of the array linear dimension.

For interconnecting the chips electrically, a substrase of synthetic sapphire was used on which gold conductor patterns had e ven deposited. This also provided the connection to the array package interface leads. All interconnect wires within the array package were gold and ultrasonically bonded. Rework of the goid-to-gold bonds was made many times with
excellent results. The gold-aluminum (chip pads) bonds were reworked, but the number of times an aluminum pad could be used with a good bond was less than three.

The array package was assembled in a standard I inch by 1 inch microelectronic package. This package was attached to an adapter ring for assembly into the micropositioner. A filter board was connected to the rear surface of the adapter ring and wires run through the adapter and filter for connecting the array to the signal processing and power supplies.

Photographs of the 576 detector (6 -chip), the 1728 detector (18-chip) and the fully assembled 18 -chip array are shown in figures 19, 20, and 21. From an observation of the photographs, it is readily seen that a major objective of the breadboard program was achieved. Thus it is fully demonstrated that the fabrication of long arrays is totally feasible. Achieving this objective was not devoid of problem areas, however. Some of the problem areas encountered during the array fabrication phase are discussed in the following paragraphs.

2. 4.3.2 Fabrication Problem Areas

Throughout the fabrication and test phases, both accomplishments were made and problem areas became apparent. Those problems which could readily be resolved were improved with the later 18 -chip array fabrication. This section discusses the problem areas and possible solutions.

Many of the early chip failures were similar, occurring after several hours of operation. One of these damaged chips was sent to NASA-GSFC for failure analysis (see Appendix C, Failure Report SN-2979). The conclusion was that the chip had a probable electrical overstress although some manufacturing scrapes could have been contributing factors.

Later in the program, there was a long period during which no failtres occurred until some electrical modifications were pexformed. The coincidence of electrical circuit modifications and the occurrence of array failure may have been due to the use of an ungrounded soldering iron. The extremely

Figure 20. 18-Chip Array (1728 Detectors)

Figure 21. Fully Assembled 1728-Detector Focal Plane Array
high in pedance of the MOSFET devices make them very susceptible to static charge damage. For the 18 mochip assembly, special care was used to do all wiring with a grounded soldering iron thus preventing failure due to static charge effects. Also, the power lines are decoupled with large capacitors; zener diodes, and resistors to remove the possibility of power line transient damage to the array. The data buses were decoupled by the first amplifier resistances and the MOSFET gates are protected on the chips with zener diodes. No failure occurred during an operating period of many months with the 18-chip array, indicating that the electrical induced problems were resolved.

Probably the most critical problem area is the chip sensitivity to handling. The chip is very brittle, making the chips very susceptible to nicks and cracks from pressure or edge contact. Pressure on the front surface can cause breakdown of the thin dielectric between conductors. These are the most probable causes of the majority of chip failures seen during the array fabrication. Many of the visible damage problems are caused during the array assembly and alignment. The cause of problems during this phase is the awkwardness of handling the small chips while performing the required assembly procedure. Particularly duxing alignment and tightening, it is necessary to manipulate the chips which are now mounted to their carriers while viewing the procedure through a microscope. The microscope objective depth of field is so limited that it allows only one surface to be visible. Beyond the focal plane, small spurs or debris on the chip edges can come in contact with an adjacent chip causing a piece to be broken off. It must be remembered that the chip-to-chip nominal spacing between edges is $7.6 \mu \mathrm{~m}$ (0.3 mil). In addition, the staggered geometry has interlocking edges which also interfere with the alignment (see figure 22). As the chip carrier screws are tightened, these edges can be overlapped (confused by the out-of-focus condition) and the chip broken or cracked.

The 6-chip array carriers were mounted to the top surface of the base. plate, with the sapphire substrate sandwiching the chip carriers between it

A basic requirement of the breadboard program is to develop a totally contiguous array of photodetectors, i.e., no gaps between end-element detectors. The use of bilinear staggered detector geometry shown in figure 22 meets this requirement. But, as was statedin a previous paragraph, the physical interlocking of the chip edges is an extremely tedious, but feasible, mechanical assembly operation.

2.4.4 Computer Processing

The photodiode linear axray detectors exhibit differences in signal offset and gain. Data from the program has shown that on a per bus basis, a majority (≈ 80 percent) of the elements vary from eacin other by less than 15 percent of full scale. There is a finite number of elements with much larger offsets. Dynamic range and gain variations are relatively closely matched for all working elements. From this, it is seen that radionetric cortcstion is the prime driving function in computer processing.

These characteristics (signal offset and gain) obscure the real information content of the raw data and therefore require removal prior to data evaluation. With the discrete element configuration, the linear array is ideally suited for computer processing of its data. The computer, therefore, was an important tool used during the breadboard linear array test phase.

The computer has two primary functions in this program: reordering of the staggered geometry and normalizing the data. During the data manipulation, other capabilities of the computer were also used for image cosmetics and data anaiysis. Although the listing (Appendix E) is lengthy, the actual function is not complex as can be seen in the simplified flow diagram of figure 23. The following paragraphs provide a more informative description of the computer functions.

Initially the data tape was formatted for 6-chip data. Rather than modify the hardware, when the 18 -chip array was fabricated, the same 6-chip format was used. To process the data from the 18 -chip array, three runs were made with each of three 6 -chip segments. The software was modified to read

Figure 23. Simplified Flow Diagram

1728 lines of 576 elements each and then repeat the 6 -chip process for each segment. The simple tape (calibration and scene data) format for the 6 -chip array was changed to a two tape (one for calibration and one for scene data) format to handle the increased data requirement of the 18 -chip array. The Appendix E program listing and the flow chart is for the 18 -chip format.

The first information entered into the computer is the calibration data. These are array outpits for each element at five predetermined radiance levels. Five hundred seventy-six (576) samples are run for each element at each level. The computer averages these samples and stores the results for use in normalizing the picture data. While reading the tape data, the computer also smooths inoperative elements by averaging between the two adjacent elements to compensate for the missing data.

The next step is for the computer to read and store the image fata. During the reading of this data, the inoperative elements are also removed by adjacent element averaging. Two 576 element data lines are read into the comFter per tape access. The even numbered elements are stored for one tape access interval and then placed into the storage array with the data from the odd numbered elements tead during the next interval forming a 576 element line. This removes the two pixel displacement (across scan) inherentin the staggered photodiode array. The elemental data values are compared to the calibration data and, by interpolation between the nearest higher and lower calibration values, normalized to a range of 0 to 255 . One thousand, seven hundred twenty eight (1,728) lines of normalized data from each 6 -chip section are accumulated in a drum storage area until the scene data from all three sections have been read.

The final step of a scene data process is to retrieve the data from the drum, taking a tine from each 6-chip section, to form a single 1728 element data line. Values equivalent to each of the five calibration levels are added to the data lines (one level for each of 376 lines). This data is recorded on a magnetic tape for playback on a film recorder.

Another benefit obtained from the computer usage was the obtaining of noise calculations. The same scene software was used except the scene processing was removed and an rms routine inserted. The trms deviation from the average level was calculated using 557 samples. This rms value was normalized to the 0 to 255 range for easy comparison to the signal levels. An rms value was then printed for each of the 1728 elements.

The computer was also used to obtain a comparison of temperature data. This was a simple plotting routine using the peripheral plotter. Room temperature and $0^{\circ} \mathrm{C}$ plots were made of the dark level for the 6 -chip array. The effects of temperature become readily apparent with the plotted data as shown in Appendix F.

2.5 TEST PROGRAM

A comprehensive test program was performed on the Breadboard Linear Array Imager. Prior to performing the test program, a test plan, entitled Test Plan for Breadboard Linear Array Imager, Specification No. 21806-1, was prepared. This plan enumerated performance parameters to be evaluated.

2.5.1 Test Results

Test results are discussed in the following pare.graphs. Each significant test parameter as identified in the test plan and technical specification is discussed as an individual periormance item.

2.5.1.1 Noise

The noise contributors to the breadboard imaging system are from the detector, analog processor, and quantization. The detector noise was from 1.0 to $1.3 \mu \mathrm{~J} / \mathrm{m}^{2}$ based on measured manufacturing data in a 0.4 to $0.8-\mu \mathrm{m}$ bandwidth with a 6000 K source. A detector noise (NEI) distribution histogram of a typical 96 welement chip is shown in figure 24. The MHP analog processor noise was measured at $0.39 \mu \mathrm{~J} / \mathrm{m}^{2}$ and the quantization noise was calculated to be $0.2 \mu \mathrm{~J} / \mathrm{m}^{2}$.

The breadboard system radiance band used for the noise measurements is centered at $0.54 \mu \mathrm{~m}$ with an $0.082-\mu \mathrm{m}$ width with a source of approximately 3000 K . Although the measured manufacturing detector noise spectral

Figure 24. Detector NEI Histogram For A Typical 96-Element Chip
bandwidth is not the same as that of the breadboard, the product of the average detector response and integrated irradiance produces an error of less than 5 percent between the two measurements.

For tests on the breadboard, the two measurements (wide band and 0.5 $0.6 \mu \mathrm{~m}$ narrow band) are considered to be equivalent. Taking the rms noise of each component of the system, detector, processor, and quantization noise, a total noise is calculated to be between 1.1 and $1.4 \mu \mathrm{~J} / \mathrm{m}^{2}$. A typical calculation of system noise (RSS) is:

$$
\begin{gathered}
\text { System noise }=\sqrt{(\text { detector noise })^{2}+(\text { analog processor noise })^{2} \div} \\
\text { (quantization noise) }^{2}
\end{gathered}
$$

where

$$
\begin{array}{ll}
\text { detector noise } & =1.3 \mu \mathrm{~J} / \mathrm{m}^{2} \\
\text { - analog processor noise } & =0.39 \mu \mathrm{~J} / \mathrm{m}^{2} \\
\text { quantization noise } & =0.2 \mu \mathrm{~J} / \mathrm{m}^{2}
\end{array}
$$

and,

$$
\begin{aligned}
\text { System noise } & =\sqrt{(1.3)^{2}+(0.39)^{2}+(0.2)^{2}} \\
& \cong 1.4 \mu \mathrm{~J} / \mathrm{m}^{-2}
\end{aligned}
$$

The noise measurement on the 6 whip array yielded a noise of $1.9 \mu \mathrm{~J} / \mathrm{m}^{2}$ (see table 4). To improve this condition, a processor change was made to correct a cross-coupling problem. The l8-chip array noise was then obtained yielding the maximum expected $1.4 \mu \mathrm{~J} / \mathrm{m}^{2}$ (see table 5).

The use of the MHP analog processor was expected to result in lower system noise. As seen above, the analog processor contributes less than 10 pexcent of the total system noise. For example, a 50 percent reduction in the MHP noise results in a reduction of 3 percent in system noise. The replacement of several detector chips in the 18 -chip array coupled with the uncertainty in making precision analog measurements have obscured the effects of lower MHP noise. Therefore, the quantitative performance of the MHP has not been established. Actually, the test results of table 6 showed an

TABIE 4
RMS NOISE FOR 576 DETECTOR ARRAY WITH DISGRETE-COMPONENT
 ANALOG PROCESSORS

4.64	6.72	3095	4.57	3.04	4.26	4,40	3198	5.24	5,52	4.07	5.31	3:22	5.03	4.95	3.87
4.78	4.47	3488	$5 \cdot 18$	3.03	4.16	4.55	3.92	5.32	4.55	4046	4.55	-11431	3.77	4.57	3.76
4.74	4.23	3670	3.95	3:30	3.07	4.74	3.78	4.89	4.00	3.51	4.21	1103	3:32	4.33	4.06
4.79	4.78	3.07	4.23	3.95	4019	4.807	4.70	5:33	4.05	3.70	5.87	3161	5.19	5.51	4.09
5.15	4.16	3454	4.05	$3 \cdot 23$	4.93	5.00	3.72	5.33	6.00	3.34	5.83	3 tab	4.51	4.55	4.14
5.15	6.05	3.48	4.07	3.17	5051	5.14	4.26	2.79	5.47	4.03	5,63	4.56	5.47	6.45	5.33
-21.30	5.11	-11.38	4.33	5.14	4.24	4.39	4.29	5.41	4.37	4.27	4.96	4.27	5.74	4.76	4.27
4.53	4.21	3.80	4.75	3.97	4.17	4. 45	4.35	4.63	4.10	3.69	5,03	3.93	4.42	4.26	4.20
4.53	3.8E	3444	4.49	4.04	4.85	4.82	4*61	4.83	3.99	3.4a	4.20	3172	4.61	4.54	4.05
4.52	4.17	$3 \cdot 75$	5.14	3.54	4.70	4.62	4.37	4.91	4.20	3.51	4.86	3170	4.78	4.71	4.11
5.00	4.40	3491	5.13	4.19	5.03	4.52	4.47	4.91	4.41	3.97	5:04	10:90	4.94	4.61	4.34
4.43	3.88	3804	3.95	3.948	5.21	4.74	4.03	5.04	4040	4.30	5.44	3, ${ }^{4}$	5.52	7.50	6.15
6.11	5.81	$4 \cdot 37$	5.29	4.22	4.47	5.09	$4 \cdot 81$	5.37	4.31	4.08	4.57	4122	$4 \cdot 62$	5.03	4.62
5.57	4.36	4.16	4.97	4.92	4.68	5.5	4.73	5.04	4.42	$4 \cdot 16$	5.09	5102	5431	5.17	4.84
5.34	4.56	4032	5.27	3081	4.48	4.67	4.25	4.89	4.18	4.11	4.44	4110	4.71	4.67	3.97
5.15	4.36	4.08	4.83	4003	4.76	5.01	4.21	5.17	4.26	4.34	4.94	4.27	4.61	5.08	4.38
4.98	4.20	4427	4.27	4.21	4.33	4.76	4.43	$5 \cdot 05$	4.20	9.20	4.77	4940	4.518	4.91	4.43
4.92	4.47	4.18	4.42	3.71	4.50	4.75	4.65	5.19	4.34	4.31	5.49	4138	6.19	7.48-	25.23
5.75	5.46	344	3.76	2093	3.74	4.43	3.79	$4 \cdot 15$	3.50	3.47	4.00	3.12	3.88	4.41	3.77
4.65	4.73	3.66	4.63	2496	4.17	4.33	3.80	4.48	5.21	3.80	4.55	2199	3.83	4.49	3.66
4.27	5.07	3121	4.44	2*76	3.52	4.32	3.44	4.25	4.15	3.34	4.14	2175	3.47	4.10	3.52
4.06	3.61	$3 \cdot 33$	3.34	2.77	3.43	4.11	3.66	4.47	4.52	3.35	4.19	2198	4.50	4.59	3.53
4.59	5.22	3.24	5.00	3-10	4.10	4.62	3.93	4.93	6.18	3-32	5.72	3104	4.64	$4 \cdot 80$	3.79
4.31	3.95	3.54	4.58	3000	4.06	4.91	3.43	5.04	13.24	3.47	-9.20	4,62	-9.2年	b.82	-6.37
4.54	4.10	3420	1.57	3.105	3.44	$4 \cdot 18$	4.26	4.86	3.72	3.83	3.89	3161	5.54	5.52	4.58
4.08	4.25	3.54	5.27	3.19	4.94	4.37	4.70	5.06	3,94	3.64	5.37	3.01	3.88	4.24	3.69
4.23	3.67	3665	3.94	3.03	3.40	4.15	3.47	4.33	3,77	3.46	3.98	1.00	3,53	4.15	3.42
4.41	4.19	3.38	4.12	3-01	3.45	4.21	3.65	4.65	4.10	3.64	4,43	3121	3.56	4.30	3.57
4.8:	4.07	3478	4.09	3.32	3.94	4.67	y.47	4.49	3,82	3.42	4.20	3.14	3.55	4.49	3.58
4.74	3.98	3495	4.15	3.00	3.57	4.04	3.5 \ddagger	4.93	3.93	3.88	4.51	3149	3.66	6.33	4.56
6.05	5.75	2.78	3.70	$2 \cdot 96$	4.23	4.06	6.11	4.43	6.36	3.25	4.96	2:70	3.83	4.42	3.51
4.45	3.70	2.78	3.70	2.84	3.65	4.27	$3 \cdot 30$	4.30	3,50	2.56	3.49	2189	3.20	3.99	3*27
4.27	3.50	2.67	3.51	2.98	4.20	5*00	3.45	4.39	4.04	2.51	3.60	2163	4.82	5.53	3.63
4.48	4.79	2496	4.03	2487	3.83	4.45	3.67	4.31	3.70	3.17	4.14	2.77	3.71	4.25	3.61
4042	3.81	249	3.90	2.85	3.37	4.05	3.27	4.53	3.43	2.80	3.80	3804	3.41	4.31	3.33
4.37	3.63	2091	3.59	2.84	3.60	4.37	3.40	4.57	3.74	4.24	5.15	6.84	10.37	22-26	31.20

THIS IS THE COMPUTER PRINTOUT OF RMS NOISE ($0.5-0.6 \mu \mathrm{~m}$ BAND) FOR 576 DEFECTORS IN THE G-CHIP ARRAY USING DISGRETE-COMPONENT ANALOG PROCESSORS. THE NOISE IN THE TABLE IS IN DIGITAL COUNTS WHERE ONE COUNT IS . $45 \mu \mathrm{~J} / \mathrm{m}^{2}$. THE AVERAGE OF THE RMS NOISE VALUES IS $1.9 \mu \mathrm{~J} / \mathrm{m}^{2} \mathrm{WH}$ LCH INGLUDES 90 PERCENT
LENS TRANSMISSIDN EFFICIENCY. INOPERATIVE DETECTORS ARE EXCLUDED.

TABLE 5
RMS NOISE FOR THE 1728 DETECTOR ARRAY WITH DISCRETE COMPONENT ANALOG PROCESSORS

TABLE 6
RMS NOISE FOR THE 1728 DETECTOR ARRAY WITH MIP ANALOG PROCESSORS

THIS IS THE COMPUTER FRINTOUT OF RMS NOISE ($0.5-0.6 \mu \mathrm{mBAND}$ FOR 1728 DETEC TORS IN THE 18-CHIP ARRAY USING MHP ANALOG PROCESSORS. THE NOISE IN THE TABLE IS IN $\mu \mathrm{J} / \mathrm{m}^{2}$. THE AVERAGE OF THE RMS NOISE USING THE MHP ANALOG PROCESSOR IS $1.5 \mu \mathrm{~J} / \mathrm{m}^{2}$. INOPERATIVE DETECTORS ARE EXCLUDED.
increase of $0.1 \mu \mathrm{~J} / \mathrm{m}^{2}$ up to $1.5 \mu \mathrm{~J} / \mathrm{m}^{2}$. It is concluded that this increase is not due to the MHP but to the use of replacement detectors with higher NEI. Figure 25 is a histogram showing the system NEI distribution of approximately 576 detectors. The noise is plotted in terms of $\mu \mathrm{J} / \mathrm{m}^{2}$ in the 0.5 to $0.6 \mu \mathrm{~m}$ band.

In summary, noise equivalent irradiance (NEI) of $1.4 \mu \mathrm{~J} / \mathrm{m}^{2}$ has been achieved. With this NEI, signal-to-noise in excess of 200 is obtained from typical $\mathbb{E} R T S$ scenes, i.e., scene radiance of $10 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{sr}$ in the 0.5 $0.6 \mu \mathrm{~m}$ band with an $\mathrm{f} / 4.7$ optical system.

At the specified radiance of $1.2 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{sr}(0.5-0.6 \mu \mathrm{~m}$ band), and with the $f / 4.7$ lens setting and an NEI of $1.4 \mu \mathrm{~J} / \mathrm{m}^{2}$, a SNR in excess of 40 is achieved. The SNR of 40 significantly exceeds the program goal of 22 .

For the specified condition using a target with a radiance ratio of $2: 1$ at the limiting frequency and an NEI of $1.4 \mu \mathrm{~J} / \mathrm{m}^{2}$, the low contrast SNR is calculated to be 4. This exceeds the program goal of 2 for the same conditions.

2.5.1.2 Linearity

Einearity measurements were made by making three independent runs with differentirradiance levels. The upper level of each lower range was adjusted to be close to the low-level of the adjacent higher range and one amplifier gain change was made. Irradiance attenuation was produced by adjusting the aperture within a range and using the detector and radiometer between ranges. Since discontinuities are unlikely, exrors between ranges were removed to make a smooth transition. The high radiance level outputs were increased by 7 to account for the gain change. Noise was removed by averaging 500 samples of each element. The full dynamic range covered is nominally 700:1.

The data indicated that the vast majority of the elements fall within 2 percent (full scale) of a best fit straight line. Only a few elements deviated from a straight line by not more than 3 percent.

$$
7
$$

75-6298-VA-67

Figure 25. System NEI Fistogram for 576 Detectors

Chip manufacturing data (see Appendix H) indicates that a 2 to 3 percent deviation from a straight line can be expected. With careful design, the signal processing electronics will not add further nonlinearity.

2.5.1.3 Modulation Transfer Function (MTF)

The system modulation transfer function (MTF) for the breadboard system consists of the lens MTF, detector window function, image motion, temporal response of electronics, phase of image, and a Fourier coefficient factor for the squarewave targets used in the measurements. For the breadboard, a stationary scene is used and, therefore, image motion is not a factor. The electrical bandwidth (800 kHz) of signal processing electronics is very much greater than the array output frequency for a target period equal or less than the pixel spacing (0.6 mil), and therefore there is no temporal component. Phasing has also been removed by adjusting for maximum and minimum outputs. The detector window MTF component is rectangular, having a sine (X)/X transfer function. The argument X is π times (detector window dimension) times (target spatial frequency). The lens factor was taken from Smith ${ }^{2}$ with aberration indicated from the lens measured data.

The specification requires that the system MTF in the along-scan and across-scan direction to be approximately equal. Tests were performed to determine the extent to which this requirement was met. The experimental MTF in the across-scan and along-scan directions for the 6-chip and 18-chip arrays are shown in figures 26 and 27 . It is seen from the figures that the MTF's are nearly the same. The effect of optics MTF can be clearly seen by observing the ideal detector response curve.

It is concluded from this experimental data that the specification of equal MTF in the along-scan and across-scan directions has been met.

[^3]

Figure 26. Squarewave MTF With Optics For 6-Chip Array

Figure 27. Squarewave MTF With Optics For 18-Chip Array

2.5.1.4 Dynamic Range

A performance goal of the breadboard is to demonstrate that the detector array is to have a dynamic range (in terms of input radiant energy relative to NEI) in excess of 600-to-1. Test results indicate that this goal was achieved.

Measurements of dynamic range were complicated by different bandwidths of the HP 8330 radiometer and detector, and the finite maximum energy output of the light source. For these conditions, a special procedure was developed to obtain dynamic range. The dynamic range of the detectorsismeasured by a procedure starting at low radiance and increasing to saturation. The procedure is to set the reference radiance to 0.7 to $0.8 \mu \mathrm{~m}$ with the use of bandpass spectral filter. This level is measured with an HP 8330 radiometer and the voltage level of a detector element output is also measured. For this test, the source clear aperture is more than 2 orders of magnitude greater than the detector element FOV. The spectral filter is then removed and the irradiance at the detector reduced rith neutral density filters and the lens aperture until the original detector voltage is obtained. By removing the neutral density filters and changing the aperture settings the radiant energy to the detector is increased until saturation (no voltage change) is observed at the detector output. The neutral density and aperture changes required to achieve saturation provide a scale factor to be applied to the original radiometer reading.

2.5.1.5 Cross-Talk

Observation of the $6-c h i p$ MTE data reveals that cross-talk between adjacent detectors is not a significant factor in system performance. If crossm talk were present, it would be most predominant in the long wavelength (0.8 to $I .1-\mu \mathrm{m})$ band due to increased photon penetration at the high wavelength. Tests show the measured data higher, by 14 percent, along-scan, and 40 percent, across-scan, than the calculated value. A further examination of the measurement uncertainties involved show that the lens spectral
characteristics can cause a 25 percent variation in MTF ($\triangle M T F$ between $\lambda=0.8$ and $1.0 \mu \mathrm{~m})$. A 10 pexcent uncertainty in detector aperture dimension produces an 18 percent uncertainty in M'TF. System noise is also a contributor by making high spatial frequency ATF measurements less precise. From the measured results and the known uncertainties, it can be seen that the 1 percent or less expected cross-talk is not detectable in the breadboard system.

2.5.1.6 Spectral Response

Spectral response data for the chips used in the 1728 detector (18-chip) array is shown in figure 28 . The figure shows the mean spectral response of 96 detectors on one chip of the array and also the range of mean response for all of the chips. From the figure it is seen that the useful band extends from $0.4 \mu \mathrm{~m}$ to greater than $1.0 \mu \mathrm{~m}$ and the spread of mean responses is minimal. At wavelengths less than $0.8 \mu \mathrm{~m}$, the peak-to-peak deviation is 6 percent, and at wavelengths greater than $0.8 \mu \mathrm{~m}$, the peak-to-peak deviation is less than 12 percent. It is important to note that these spectral variations are removed in subsequent image processing operations.

2.5.1.7 Temperature

Although temperature testing was not a specific part of the initial program, the knowledge gained during the program indicated that temperature was a critical parameter for future array usage. In order to better understand the thermal effects on the data, a simple temperature test was run.

The array was mounted in a temperature chamber with the processor outside. A light source was placed in the chamber and all ports sealed. Two reference scans were made at $20^{\circ} \mathrm{C}$, a dark level and a light level, to obtain a mid-range output. The Iamp voltage was measured to allow later repetition of the same light level. The array was again operated at $0^{\circ} \mathrm{C}$ at both the dark and same light level as set by the lamp voltage. A third dark level was run at $10^{\circ} \mathrm{C}$. Each of the runs consisted of 576 samples with the samples averaged to reduce the noise uncertainty. Appendix F includes the listing of the average data for each element.

Figure 28. Spectral Response
The average dark level of the data reduces significantly at $0^{\circ} \mathrm{C}$. But, of more interest, it was determined that the element to element offsets reduced by a nominal factor of 4 between $20^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$. This effect reduces the dynamic range required of a system since the offset is a significant portion of the typical signal level. It also reduces the temperature sensitivity of a system by making changes in offiset a small fraction of a scene level. A composite plot of the dark level at $0^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ is given in Appendix F.

Although the temperature test did not provide a rigorous proof of gain variation factors, it did show that the effect is small. A total change of less than 10 percent was indicated over the $20^{\circ} \mathrm{C}$ temperature range.

2.5.1.8 Inoperative Elements

A goal of this program was to use detectors with no dead elements. With the 30 chips made available for the program, this goal has been nearly met with only one chip of the 576 element array having a dead elernent and none of the 1728 element array chips having dead elements prior to alignment.

Although the results of the program have shown the feasibility of producing linear array imaging systems, a perfect array was not achieved during the program. The 576 element array was fabricated with 1.2 percent inoperative elements and a 1728 element array with 5.5 percent was fabricated. These failures are attributed to handling and static discharge and a promising means of avoiding the problem in future systems is addressed in the fabrication improvement study discussed in paragraph 2.6.

2.5.2 Image Evaluation

The previous sections have presented the quantitative results of the breadboard linear array test program. This section presents the more subjective results of image evaluation.

2.5.2.1 Gray Scale Reproduction

An important requirement for a remote sensing system is its ability to faithfully reproduce scene gray levels. The results of scanning a nonstandard gray scale image show that the linear array technology is capable of meeting that requixement.

The plot of figure 29 shows the results of scanning a multi-level gray scale. Full scale irradiance at the detector (including a 90 percent lens efficiency) is $450 \mu \mathrm{~J} / \mathrm{m}^{2}$ providing a typical mission scene range. At 100 percent film transmission, the array output in counts would be 255 . The plothed data shows an excellent relative linearity of within 1 percent of full scale for a best fit straight line. It also shows that the array output faithfully reproduces the gray levels within 3.7 percent absolute. Figure 30 is a film reproduction of the gray scale image from the array. The film fidelity is shown by the gray scale at the right, showing maximum irradiance, dark, and three factors of 2 steps.

2.5.2.2 576-Detector Array Imagery

Figure 31 shows four scenes made from the 576-detector array. The IFOV is 0.23 mrad with an irradiance of $0.03 \mathrm{~mW} / \mathrm{cm}^{2}$ in the 0.5 to 0.6 $\mu \mathrm{m}$ band.

Figure 29. System Output as a Function of Gray Scale Transmission

Figure 30. Gray Scale Image

Figure 31. 576-Detector Array Imagery

2.5.2.3 1728-Detector Imagery

Figure 32 is a 1728 -detector image produced from the breadboard from an aerial transparency provided by the U.S. Geological Survey. The figure is a contact print made from the exposed film produced from an Optronics P-1500 Photowrite display system. The facsimile recorder has a LED source which is optically focused and modulated to form an image with 64 gray levels and a square illumination spot size of $50 \mu \mathrm{~m}$.

The image of figure 32 was produced from the 1728-detector, self-scanned photodetector linear array placed in the focal plane of the breadboard. The detector-to-detector spacing is $0.6 \mathrm{mil}(15.6 \mu \mathrm{~m})$ which results in an array length of 1.0368 inch . The scene radiance was $3.0 \mathrm{~mW} / \mathrm{cm}^{2}-\mathrm{sr}$ in the 0.7 to $0.8-\mu \mathrm{m}$ spectral band. Using the breadboard lens at a focal length of 240 mm results in an effective focal ratio of $f / 12$. 8. The angular resolution under these conditions is 62 microradians.

Figure 32. 1728-Detector Image

Ir radiance at the detectors for this image is $210 \mu \mathrm{~J} / \mathrm{m}^{2}$ and for an experimental noise equivalent irradiance (NEI) of $1.4 \mu \mathrm{~J} / \mathrm{m}^{2}$, a system signal-tonoise ratio of 150 was obtained.

2.5.2.4 Image Artifacts

One of the objectives of the breadboard program is to evaluate the performance of photodiode linear arrays in the context of image artifacts. Figure 33 is a bar chart target image obtained from the 1728-detector array and several image artifacts are identified. The artifacts are:
a. Nonoperating Elements

These are either seen as either black or white or white streaks and may be due to:
(1) The detector does not respond to light.
(2) The detector has a characteristic such as offset which is much different than the normal value.
(3) The detector has a high offset (or low) such that only a portion of the illumination range is within the linear processor range. This artifact is not likely to be observed on a bar target, but appears to be operating intermittently in a general scene.
b. Wave Effects
(I) In the across-scan direction, a waviness is seen which is due to phasing between detector and the scene edge (see figure 34).
(2) In the along-scan direction, both waviness and steps can be seen. This is due to both phasing between detector and scene edge and chip-to-chip alignment error.
c. Leakage Lines at Chip Edges

This is seen as a white line protruding into a dark area and is due to light leakage at non-metallized chip edges.
d. Tooth-Effect

The tooth-effect as shown in the figure is not an artifact and is included to show the effect of a computer program error. This error showe the detector stagger effects.

Figure 33. Examples of Image Artifacts on Bar Chart

Figure 34. Wave-Effect Due to Phasing Between Detector and Scene Edge

e. Thermal Streaking

This is due to the effect of the difference in temperature of detectors at calibration and when a real image is recorded.

2.5.2.5 Thermal Streaking

Tests performed on the breadboard system resulted in a phenomena which is referred to as thermal streaking. This phenomena is common to highly parallel processing systems where it is caused by changes in dark current as a result of temperature changes of the detector array. For example, a change of $10^{\circ} \mathrm{C}$ results in a $2: 1$ change in dark current (see Appendix F). Figure 35 shows two pictures, one with thermal streaking and one without. Full scale of these pictures is $211 \mu \mathrm{~J} / \mathrm{m}^{-2}$ and the streaking shown is equivalent to a $2^{\circ} \mathrm{C}$ temperature change at an ambient of $+20^{\circ} \mathrm{C}$. The most predominant lines are equivalent to a $50 \mu \mathrm{~J} / \mathrm{m}^{-2}$ error or 25 percent of the full scale scene. For an uncooled array (nominally $20^{\circ} \mathrm{C}$) maintained at $\pm 1^{\circ} \mathrm{C}$, thermal streaks of ± 2 percent of full scale would occur. If the array is cooled to $0^{\circ} \mathrm{C}$ and maintained to within $\pm 2^{\circ} \mathrm{C}$, thermal streaks less than ± 1 percent will occur. The results of this test strongly indicate that for operational applications, thermal control of detector arrays is desirable.

2. 6 ARRAY FABRICATION IMPROVEMENT STUDY

2.6.1 Introduetion

In compliance with the Statement of Work, an array fabrication improvement study was performed. The purpose of the study was to show the status of array fabrication, experience gained, and improved fabrication methods to achieve higher yield, reduced assembly; and alignment time.

The methods proposed and the equipment recommended also serve the purpose of advancing detector array fabrication from the development to a limited production stage, a transition necessary prior to entering into a flight program.

This scene includes lines attributed to a thermal streaking phenomena. The calibration curve used for data normalization and the scene data were taken at different times (and temperatures) in a laboratory without temperature control. Since the offset varies 5 percent $/{ }^{\circ} \mathrm{C}$, the 10 percent change in level between the calibration and scene runs indicates a $2^{\circ} \mathrm{C}$ temperature difference, well within the temperature range encountered in the room.

This scene was made with the calibration and scene data taken within a short time interval; i.e., 15 minutes. With the short interval involved, the array temperature did not change significantly. This shows the data improvement which can be obtained by thermal control of the array.

Figure 35. Example of Thermal Streaking

Since the beginning of the breadboard linear array program, three detector arrays have been fabricated, two 576 diode arrays and one 1728 diode array. In the assembly of a detector array there are many stages in assembly; the most complex steps are the joining of the photodiode chip to the chip carrier, the assembly of the chip carrier assembly to the baseplate, and alignment of the photodiode chips in the desired geometric position.

2.6.2 Alignment Results

As was expected, using manual methods of alignment resulted in some positional error in the arrays. Measurement results taken on the 6-chip (576-detector) array in the across-scan direction were:

- Average deviation from nominal position $=2.3 \mu \mathrm{~m}$
- Maximum deviation from nominal position $=5.1 \mu \mathrm{~m}$

In the along-scan direction, or along the chip common axis, the measurements were:

- Average deviation from nominal position $=2.5 \mu \mathrm{~m}$
- Maximum deviation from nominal position $=5.1 \mu \mathrm{~m}$

From these test results, $i t$ is concluded that the maximum deviation from the reference (best fit) line is:

- 0.28 (or $5.1 \mu \mathrm{~m} / 18.0 \mu \mathrm{~m}$) of the detector dimension in the across-scan direction
- 0.23 (or $5.1 \mu \mathrm{~m} / 22 \mu \mathrm{~m}$) of the detector dimension in the along-scan direction

With the use of a measuring microscope, an imaginary reference line (best fit) was developed which minimized the detector lateral excursion from the reference line. For the 6 -chip array, the maximum lateral excursion was $0.2 \mathrm{mil}(5.1 \mu \mathrm{~m})$ and for the 18 -chip array, the maximum lateral excursion was $0.3 \mathrm{mil}(7.5 \mu \mathrm{~m})$. These results are within the specification requirement.

In terms of resolution elements, the results of breadboard programs indicate that a positional accuracy of about $1 / 4$ resolution element has been achieved. Expressed in terms of the linear dimension of an array chip, the alignment error is less than 0.3 percent of that dimension.

2.6.3 Problem Areas

When assembling and aligning chips in the detector arrays, two problems were observed. First, due to manual alignment and assembly, there is no mechanical control or astistance present during the movement of the chip into position. The operator must rely solely on manual dexterity. Occasionally this will result in collision between the chip being aligned and an adjacent assembled chip. This can result in a chip edge damage and possibly the loss of an end photodiode.

The second problem arises during chip positioning or alignment when the chip carrier assembly is assembled to the baseplate. The fixing surews are lightly torqued so that further damped movement of the chip carrier assembly in relation to the baseplate is possible. It is at this stage that final alignment takes place and is implemented by very light taps at suitable points on the chip carrier. Due to the several variables, including variations in surface roughness at the baseplate and chip carrier interface, and slight variations in applied torque, overshoot and undershoot may occur during alignment. There is also the possibility that while positioning on the X and Y axis, the chip carrier may commence to turn about the Z -axis (optical axis). This adds complications and increases time required to complete the alignment.

Therefore, technicues used on the breadboard were costly both in time and materials. To eliminate this condition for future applications, a study was performed to determine improved methods of assembly.

2.6.4 Study Objective

The objective of the fabrication improvement stady is to identify improved methods of array assembly intended to improve manufacturing efficiency and reduce cost.

Improved manufacturing methods will not only result in efficiency and Iower cost, but will also permit greater accuracy in chip alignment. Therefore, it is reasonable to reduce the experimentally achieved deviation of $1 / 4$ resolution element to $1 / 10$ resolution element.

Another important parameter is the chip Z-axis dimensional tolerance and is directiy related to focus. For the breadboard, this adjustment was made manually during the process of cementing the chip to the chip carrier. This procedure resulted is lack of good control of chip face angle and coincident chip-to-chip face position on the Z -axis.

Figure 36 shows the relationship between depth of field and $f /$ No. for the wavelength covered by the photodiode chips, assuming that the RayIeigh criterion is a reasonable design objective. For a candidate future sensor, an optical system with a focal ratio of $f / 4$ is required. It is seen from the figure that the depth of focus for $\lambda=0.5 \mu \mathrm{~m}$ will be $\pm 16 \mu \mathrm{~m}$. Improved techniques will ensure placement of chip within this limit.

2.6.5 Candidate Approaches

The operator skill required to align photodiodes on the breadboard model detector arrays was of the highest ordex. It follows, therefore, that for future applications, the number of operators available to perform such a function will be minimal, and the skill required from the operator cannot be guaranteed to be continuous. The degree of skill will vary from day to day because of human factors. The higher the ciegree of skill required, the lower the chances of maintaining such skill at peak level.

It is clear that in a flight program involving many arrays, it would be advantageous to find a way to reduce the necessity for highly skilled operations with attendant low yield high cost and prolonged assembly time.

The type of equipment required to minimize manual skills must be of a kind which eliminates the necessity for direct contact between the operator's hands and the parts to be aligned.

The approaches available generally fall into two categories. The first approach using micropositioners has certain disacivantages such as the greater possibility of involuntary overshoot while positioning and the possibility of mechanical crosstalk because of the need to control several axes from one source. All this can be avoided by using the second choice -

Figure 36. Depth of Field vs F-Number (Assumes Rayleigh $\lambda / 4$ Criterion and Depth-oi-Field Given as Deviation From Nominal)
whereby each axis movement is controlled separately, thus eliminating the possibility of crosstalk. Direct axis movement would be implemented using micrometer controlled positioning. The latter ensures smooth, damped, predictable movement without overshoot. Thus, this latter approach has been selected as the preferred approach.

2.6.6 Preferred Approach

The preferred micropositioner, including the microscope used for observation during positioning, is shown in figure 37 and comprises the following:
a. Detector Array Fixture
b. Goniometric Turntable, Phase Z
c. Extension Plate
d. Translation Stage, X-Axis
e. Translation Stage, Y-Axis
f. Laboratory, Z-Axis
g. Baseplate
h. Device for Holding Chip Carrier during Assembly.

Additional views of the micropositioner are shown in figures 38 and 39. The entire equipment is mounted on the microscope stage plate. During assembly of the development arrays, a microscope with total magnification of 25X was used for observation during assembly, and l00X magnification for final alignment. Illumination during assembly is obtained from a source in the base of the microscope which provides a silhouette of the chip carrier as it approaches its optimum position in the detector array. In this way, an observed clearance can always be maintained while the carrier is moved into position, thus minimizing the possibility of chip edge damage.

Before operating the micropositioner, the chip carrier will be placed and held on an electromagnet so that the center of chip will be aligned with the axis, 'the turntable. By appropriate setting of the various micrometer controls of the positioning equipment, the chip carrier assembly will be

ARRAY ASSEMBLY

Figure 37. Chip Carriex Assembly Micropositioner and Microscope

Figure 38. Chip Carrier Assembly Micropositioner (Top View)

Figure 39. Chip Carrier Assembly Micropositioner (Side View Showing Jack)
elevated to the level of the detector array baseplate and then moved to and held in the desired position - at which time the chip carrier screws will be inserted and tightened. The process will be repeated until the whole array is finally assembled. Figure 40 shows an exploded view of the array assembly. Figure 41 is a view of the assembled chip carrier.

There are indications that, in the future, greater detector positional accuracy will be required although not yet precisely specified. With this in mind, the micropositioning equipment chosen will have the capability of positioning chips within $1 / 10$ of a resolution element. To achieve this result depends on the use of high sensitivity micrometers and the rigidity of structural members holding the positioning system together.

Due to the variation in chip thickness, it was not possible in the breadboard program to control chip surface height variation in the image plane. However, a jig has been designed (see figure 42) which reduces the variation in height of the chip surface plane above the chip carrier mounting surface to an acceptable value. The jig is constructed in such a way to make it fully adjustable and capable of being set to a precise position by the use of gage blocks.

In the sequence of chip-to-chip carrier assembly, the chip is placed face down in the bottom of the jig resting on a reference surface. The part of the chip in contact with this surface contains none of the circuitry or bonding pads associated with the electrical-optical configuration and, therefore, no darnage to the active surface of the chip is anticipated. Physical contact is made only with the bare silicon chip which presents a standard reference contact for all chips.

The insertion of the chip will be followed by the chip carrier with chip mounting surface facing down. The mounting surface contains a narrow slot into which is pressed a pretormed epoxy film adhesive of suitable volume.
Substrate
Assy

Base

Housing

Figure 40. Exploded View of Array Assembly

[.

75-0298-V-35

Figure 41. Assembled Chip Carrier

Figure 42. Chip Carrier Assembly Jig

With the chip carrier in place, there will be a gap between the chip carrier mounting surface and the chip carrier jig contact surface. The gap is caused by the thickness of the epoxy film now in contact with the underside of the chip.

Upon application of heat to the jig of a temperature sufficient to cause the film epoxy to flow, and upon the application of a light pressure to the chip carrier base, the epoxy will flow and the gap will close. This will ensure that the distance between the active surface of the chip and the carrier mounting surface will be uniform on all chip carrier assemblies. Further application of heat will cause the epoxy to cure. All chip carrier mounting surfaces will be assembled to a common baseplate reference in the detector array. This will keep the Z-axis chip surface deviation to a minimum.

There are many factors contributing to the quality of the final product. Reference has been made to suitable equipment to assist in accurate positioning of detectors. However, the operator must have the means to observe and check the accuracy of his operation. Not only must the positioning of detectors be accurate, they must be seen to be accurate.

This brings to mind the problem of seeing. During the assembly of the development arrays, use was made of Leitz Simplex Microscope System, and the accuracy of observation of this system depends upon the operator's ability to achieve parallax focusing. Failure to do this causes an apparent shift of the filar line in relation to the object being measured. This occurs if the eye is unconsciously moved off the optical center. This may happen after many observations and is probably due to eye fatigue.

A system that will eliminate subjective errors of this nature is the Tele-Microscope, a closed circuit television system. This comprises a Ieitz microscope, and a videc camera head and display. The camera head is fitted to the microscope tube and replaces visual observation by the eye through the normal microscope eyepiece. Unlike the human eye, the video
head cannot move and parallax error is eliminated and thus improves overall fabrication accuracy. A further added advantage with the Tele-Microscope is the useful magnification up to 400 X , and the electronically generated filar lines displayed. Together with an associated measurement computer and digital readout, measurements as small as $0.1 \mu \mathrm{~m}$ can be made provided the edges of the photodiodes are sharply defined. Such a system will mean faster and more accurate measurements with only moderate operator skill requirements.

A flow diagram of the entire fabrication procedure for potential use on a future flight program is shown in figure 43.

2.6.7 Fabrication Study Summary

The experiential learning gained from the breadboard program has been extraordinarily beneficial in many areas. The experience gained in the fabrication arrays has shown that it is totally feasible to fabricate long arrays. Although positional accuracies of about $1 / 4$ resolution element were achieved, where $1 / 10$ is a suggested goal, the experience gained in this preliminary program strongly indicates that the latter positional accuracy can be achieved for future requirements.

Figure 43. Detector Array Assembly Functional Flow Diagram

APPENDIX A

MTE COMPARISON FOR IDEAL SYSTEM

Throughout the text, several MTF measurements have been presented. The data presented is for non-diffraction limited optical systems and squarewave targets at $f / 4.7$ and $f / 12$. 8. It is considered of interest to include (in this appendix) theoretical MTF for diffraction limited optics and theoretical detector response. Figure 44 compares the diffraction limited MTF (sinewave) of an $f / 4$ and $f / 2$ optical system. Figure 45 presents the ideal squarewave response of the detector (along scan) and the system MTF for various lens parameters. The detector corner frequency relationship (on the normalized frequency scale) is detector center spacing/detector linear dimension in direction of MTF.

Figure 44. Comparative $M T F$ with $f / 4$ and $f / 12$ Optics for $\lambda=1.0 \mu \mathrm{~m}$

Figure 45. Comparative MTF Response to Squarewave Input

BREADBOARD LINEAR ARRAY SCAN IMAGER NOISE PROGRAM

A computer program was written to process the linear array data and provide a rms noise output. The listing of the program is included in figure 46.

This program collects 57\% samples from each detector element at each of two input radiance levels. These inputs are averaged to provide a gain measurement for each elment. The rms deviation from the average is calculated for each element and referred to the input using the measured gain factor. A composite noise level is also determined. For the composite value, nonoperable elements are not included.

An additional feature of the noise program is to generate the quantization noise uncertainty for each element. This 'value is also referred to input irradiance.

GFOR SEAR
FA
-5

cohmos blocks:
EXTERNAL REFERENCES (BLOCK, NAHEI

ORIGRAL PAGE IS

APPENDIX C

FAILURE ANALYSIS OF A WESTINGHOUSE PHOTODIODE ARRAY INTEGRATED CIRCUIT

This appendix is a failure analysis report performed by the NASA Goddard Space Flight Center on a 96-element photodiode detector array. Figure 47 is a copy of a Failure Analysis Report; figures 48 and 49 are micrographs.

FAILURE ANALYSIS SECTION TERMIYAPIOX REPORT
(Continuation Sheet)
Serial No 2979
oived maittod die, which vas bonded to a gold sheet, vas recoived mounted on a stainless steel block wich nonconductive spoxy. It was not housed vithin a package. There wore no identification markings on the die. The interconneetion wires had been severed, presumably whon the device was removed from the falled eircuit.

The subaitted integrated circuit vas manufactured by Westinghouae Blectric Corporation, Advanced Technology Laboratory, Baltimore, Maryland. The device vax not sereened or inconing tested.

Ho functional electrical tests could be perforwed because all the intercomection wires had bsen severed.

An examination of the die surface using an optical nieroscope dizelosed two anomalies in the failed half of the diez a severg serape in a metailizaicion stripe associated with the "C 4 shift" bonding pad and one dark region on the die surface where some of the metaliization stripes appeared. to be irregular.

Pin-to-pin electrical teats of both the good and failed halves of the ite surface were performed using a micromanipulator in conjunetion with a curve tracer. These tests shoued that the B^{-}pover supply pin assocf ated with the failed half or the die vas opon-circuited. So other gerious anomalies vere detected.

The die surfsee vas. examined using a scanning-qlectron rievoscope. It vas observed that the scrape in the "p 4 shift" metailixation stripe previously nentioned had nearly open-circuited this stripe. There were only suall filaments of aluninua maintaining continuity (Pigure 2a). This scrape appeared to have resulted during probing of the bonding pads by the manufacturer.

The region of the irregular appearing metallization stripes noted earlier was oxanined more closely. This examination disclosed that several of the stripes had been sueared (apparently during manufaeturing) and that two or the stripes were open-circuitod. One of these stripes was comen vith ground and the other was comon with the B^{-}supply. In addifion, there ras a amall portion of apparently apited aluainum

Figure 47. Failure Analysis Report (Sheet 2)
FAILURE ANALYSIS SECTION FYRMIEATIU捔
at the site of the open－circuited metallization stripes （Figure 2b）．
（The open circuit in the B^{-}suppiy wetalifation isolated this pin fros ali the other pins and cecountod for the pin－tomin electrical test regults．The open cirauit in城 ground wetallizetion apparently isolated this pin from soma，but not all of its norial connections．This explains why this pin tas not open－circuited during pin－to－pin teats．）
Electrical probing of the 5 getallization（bsyond the point of the open elreait）G1 celosed that this wetalliation was short－efrculted to several other points ineluceng ground． Escense of the dawage to the die，it res not possible to deter－ Elne whother or not these short cirenits contifkntat to or resaltad frow the failure．
Removal of the varions metallization and ingmiating oxide layers and aditional silh oxaminations did not reveal any fuyther anomalies．

Conclusisicps

Although no functional tasts conld be performed in an atteapt to roproduce the axact reported failure，the in－ veatigation of the grabaitted intogratod circuit disciowed an anomaly thich would explain why the fatled helf of the die would not fonction．The B^{-}supply ling vas completely opan－ circuited and the ground ine was open－eircuited from some of its normal connections．Based upon the melted pluminum detected at the aite of those opan eireuits，it is concluded that the danage resulted from an electrical stress．However： it skisuld be noted tratt these open－circuited stripes had been smearad initially duriog manuracturing．It is possible that this semaring eitior reduced the cross－sectionsl arsa（and consequantif，the current Eandiing capebility）of the motal－ Ifention or dataged the underiying inealating oxide between tietalilzation layers（permitting a ahort circuit between metalilzation layess to occur）．These factors may have per－ sitted the sailure to ocewr under normal eloctrical conditions．
The scrape detectad in the＂中 4 shift＂wetalilization stripe is considered to be a garious selinbility hezard．This derage can result in an open eircuit or mant circuit be－ crand matilisation layers and cause a catistrophic fallure．

0

［
 REPORT
（Continuation Sheat）
Serial No． 2979

 1s yecomsinded that in the futuras andilar parts be subjected to atringent internal miorcisenie waminmtiona to elininate deriems contsining defecti such zs soctious metalilismion gerapes ani gemays．In addithong all daviceg baing doneidared for uns in GSFC high－raliability applieations sbould be qoreen－ －and incuming tantad．Figure 47．Failure Analysis Report（Sheet 4）

Figure 48. Failed Half of Silicon Die of Submitted Westinghouse Integrated Circuit - 65 X Magnification

SCRAPE IN " \varnothing_{4} SHIFT" METALLIZATION STRIPE. 1200 X

Figure 49. Scanning Electron Micrographs of Anomalies Detected in Submitted Device

APPENDIX D

WESTINGHOUSF FAILURE ANALYSIS REPORT ON FOUR PHOTODIODE LINEAR ARRAY CHIPS (NAS 5-21806)

MICROANALYSIS REPORT \#451

 February 7, 1957SUBJECT: The Westinghouse Failure Analysis Laboratory was authorized to perform a failure analysis of four 96-detector element photodiode linear arrays. The chips were removed from the 18cF ${ }^{\prime}$, array developed under NASA contract NAS 5-21806, Breadboard Linear Array Scan Imager. The purpose of the failure analysis was tc determine the probable nature of failures which occurred during system level testing.

PROBLEM: Four (4) photodiode chips were submitted for failure analysis with the following comments:
Chip 5 (229-9-68)
Alpha side - phese B shorted to GND since initial turn on
Beta side - Bus C shorted to GND after 2 to 3 months of operation
Chip 9 (262-7-35)
Beta side - Bus B shorted to GND since initial turn on Chip 10 (237-9B-38)

Beta side $-V_{R}$ shorted to GND since initial turn on Chip 14 (262-4-6)

Alpha side - Bus A shorted to GND since initial turn on

RESULTS OF ANALYSIS

The procedure used in this analysis was to mount the chips in 40 pin dual-in-line packages (for ease in handling), verify the shorts electrically, and trace the shorted bus lines to intersections with GND areas to search for possible physical damage.

Chip 5 - No shorts to GND were found on either side of this chip. Figures 50 and 51 show scratches in the third metal shield.

Chip 9 - No shorts to GND were found on the beta side. On the alpha side phase B, B^{-}, and bus B were $a l l$ shorted to GND. Figure 52 shows phase B, B^{-}, and GND along with smeared metal from Pad B-intersecting all three (3) lines. (GND is third metal, B^{-}and phase B are second metal lines.) Figure 53 shows a scratch in the third metal GND shield over the second metal bus B line. Figure 54 shows scratches in the third metal shield on the beta side (one scratch is over the second metal bus B line).

Chip 10- The V_{R} line was found shorted to GND on the beta side. Figures 55 and 56 show scratches in the third metal GND shield over the second metal V_{R} line.
Chip 14- Output bus A was found shorted to GND on the alpha side. Figure 57 shows scratches in the third metal GND shield over the second metal bus A line.

CONCLUSIONS

The shorts found on chips 9, 10, and 14 were low resistance shorts (10 ohms). Based on previous work with chips of this type, these shorts were probably caused by physical damage which breaiks through the layer of glass separating third and second metal. Shorting of these metal layers usualiy results. The B^{-}and phase B shorts to GND were probably cansed by physical damage at the time of bond removal, as suggested by figure 53.

Figure 50. Scratches in the Third Metal Shield

Figure 51. Scratches in the Third Metal Shield

Figure 52. This Photo Shows a Scratch Causing Phase B, B", and Bus B all Shorted to Ground and Smeared Metal from Pad BIntersecting all Three Lines

Figure 53. This Photo Shows a Scratch in the Third Metal GND Shield

Figure 54. This Photo Shows Scratches in the Third Metal Shield on the Beta Side

Figure 55. This Photo Shows Scratches in the Third Metal GND Shield Over the Second Metal V_{R} Line

Figure 56. Shows Scratch in Third Metal GND Shield Over the Second Metal V_{R} Line

Figure 57. Shows Scratches in the Third Metal GND Shield Over the: Second Metal Bus A Line

The information received with chip 9 may have been mislabeled since the bus B short was found on the alpha side. Although no electrical shorts were found on chip 5, scratches were found on the third metal shield. Heating these chips during the mounting process may have caused previously shorted intraconnects to open.

Although laser debris can be seen (by a skilled observer) in several photographs, the debris is not considered a source of scratches.

APPENDIX E

COMPUTER PROCESSING OF PHOTODIODE LINEAR ARRAY DATA

This appendix describes the use of the computer in processing image data on the breadboard program.

The computer has two primary functions in this program - reordering of the staggered geometry and normalizing the data. During the data manipulation, other capabilities of the computer were also used for image cosmetics and data analysis. Although the listing in figure 58 is lengthy, the actual function is not complex as can be seen with the simplified flow diagram in figure 59. The following paragraphs provide a more informative description of the computer functions.

The first information entered into the computer is the calibration data. These are array outputs for each element at five predetermined radiance levels. A total of 576 samples are run for each element at each level. The computer averages these samples and stores the results for use in normalizing the picture data. While reading the tape data, the computer also smooths malfunctioning elements by averaging between the two adjacent elements.

The next step is for the computer to read and store the image data. During the reading of this data, the malfunctioning elements are also removed by adjacent element averaging. Two 576 element data lines are read into the computer per tape access. The even numbered elements are stored for one tape access interval and then placed into the storage array with the data from the odd numbered elements read during the next interval forming a 576-element line. This removes the two pixel delay (across scan) inherent
in the staggered photodiode array. The elemental data values are compared to the calibration data and, by interpolation between the nearest higher and lower calibration values, normalized to a range of 0 to 255. A total of 1,728 lines of normalized data from each 6-chip section are accumulated in
 The effects of temperature become readily apparent with the plotted data. This was a simple plotting routine using the peripheral plotter. Room temperature and $0^{\circ} \mathrm{C}$ plots were made of the da+k level for the 6 -chip array. processing was removed and an rms routine inserted. The rms deviation from the average level was calculated using 557 samples. This rms value was normalized to the 0 to 255 range for easy comparison to the signal levels. An rms value was then printed for each of the 1,728 elements.

The computer was also used to obtain a comparison of temperature data. (

The final step of a scene data process is to retrieve the data from the drum to form a single 1,728 -element data line. Values equivalent to each of the five calibration levels are added to the data lines. This data is recorded on a magnetic tape for playback on a film recorder.

Another benefit obtained from the computer usage was the obtaining of noise calculations. The same scene software was used except the scene

manninninume

品品品路品品品

프므응
686
407
122
$2 E 7$
OLI
0.8
0

 On

Figure 58. Computer Listing fow Photodiode Linear Ayyay Deta Processoz (Sheat 1)

ut

$\underset{\sim}{\boldsymbol{7}}$

RETURN ON EDF
MOVE IC=IDTO IA = IB ARRAYS

RETURN FQR NEXT PHYSICAL RECHRD

哈
צus Hun
............

440 きがメ

1145

．

등ㅁㅁㅁㅁㅁ
品品

 昌 量豆

 $\stackrel{\text { e }}{\stackrel{e}{e}}$

Tigure 58，Co

monogm mant 3

Figure 58. Computer Listing for Photodiode Linear Array Data Processor (Sheet 2)

Figure 59. Eight
Mratip zeare 之

Figure 59. Eighteen Chip Image Processing Flow Diagram

APPENDIX F
DETECTOR TEMPERATURE TEST RESULTS

The data shown plotted in figure 60 is the measured dark level at $+22^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ using five bilinear staggered chips. Only the chip temperature was varied. Fach data point is the average of 576 samples. The channel gain is 2. 3 digital counts $/ \mathrm{mW} / \mathrm{m}^{2}$. The plots show that at $0^{\circ} \mathrm{C}$, a significant (\approx factor of 4) reduction of the peak-to-peak difference in elemental offsets occurs. This means that less of the dynamic range needs to be reserved for transmitting offsets. It also reduces the temperature sensitivity allowing coarser temperature control requirements.

Figure 60. Dark Level Current at Two Temperatures for All Detectors of a 576-Detector Array

APPENDIX G

TEMPORAL TEST

A rigorous test for temporal stability has not been performed, therefore no conclusion about time related drifts can be made. However, measurements of offset in the room ambient environment were conducted over a 3 -month period during which the baseplate temperature was monitored. Some of these results are plotted in figures 61 through 65.

Figure 61 data was taken over a period of 35 minutes with an initial measurement made, one at 20 minutes and one at 35 minutes. Althougli during this period the level changed, it was accompanied by a temperature change of $2.2^{\circ} \mathrm{C}$. The magnitude and polarity of the change are consistent with the change in temperature. The average change is only $6 \mu \mathrm{~J} / \mathrm{m}^{2}$ equivalent input which indicates that, if a short term temporal change occurred, its magnitude is very low and undetectable with the $1.4 \mu \mathrm{~J} / \mathrm{m}^{2}$ NEI.

A longer temporal run three runs over a 2 -month period is shown in figures 62 through 65. These again show variations attributable to the ambient temperature differences with little change in the general level. There is again no evidence of a temporal drirt.

Figure 61. Output at Dark vs Time and Temperature Six Chip Array - Bus A

Figure 62. Output at Dark vs Time and Temperature Bus A of Group 2

Figure 63. Output at Dark vs Time and Temperature Bus B of Group 2

Figure 64. Output at Dark vs Time and Temperature
Bus C of Group 2

Figure 65. Output at $\mathrm{Da}_{\mathrm{i}} \mathrm{k}$ vs Time and Temperature Bus D of Group 2

APPENDIX H

EIGHTEEN CHIP ARRAY DETECTOR TEST DATA

This appendix contains actual test data for a 96-element photodetector array chip. This performance data is typical of the chips used to fabricate the eighteen-chip array.

Included herein are six data tables which are:

Table 7	Summary Tables
Table 8	Response Minus Dark Current
Table 9	Quantizing Interval
Table 10	RMS Deviation
Table 11	Noise
Table 12	Linearity

TABLE 7

SUMMARY

RESPONSE MINUS DARK CURRENT
U

TABLE 9

QUANTIZING INTERVAL

TABLE 12
LINEARITY

APPENDIX I
HP-8330A CALIBRATION REPORT

Westinghouse Electric Corporation Industry \& Defense

Defense \& Electronic Systens Centrar Aerosuce \& Electranic Systems Divistin Fientshiplnternalioral Atrpert Bax 748
Battimare Marytand 21203
Standardiziryg Lahoratory

REPORT OF CALIBRATIDN
for
THERMOPILE (Hadiant Flux Detectors)

MFR: HEA
MODEL: B330A
SERIAL NO: 00520

SDDE (Tracy)
The relative spectral response of this instroment was determined by comparison to an EPFLEY thermopile equipped with a window of known spectral transmittance. A 250 m monochromator with a 20 na bandpass was used to provide the monochromatic radiation.

The absolute response was measured at 632.8 na using a helium-neon laser as the source. The radiation field was 3.0 cm in diameter and was produced with a spatial filter and lenses. The calibration factor was found to be 96%.

The uncertainties in the measurement arise from the repeatability of the test instrument, stray light in the monochromator and non-uniformity in the radiation field.

Uncertainty of the relative response is estimated to be within $\pm 2.0 \%$ with the absolute response estimated to be $\pm 5.0 \%$.

The relative response normalized to 632.8 nom with a calibration factor of 969 is tabulated in Trable 1.

For the Manager

Carroll G. Hughes, FII
Test No: 75020606
Senior Engineer

Date: 11 February, 1975

TABLE 13
RELATIVE SPECTRAL RESPONSE AT SELECTED WAVELENGTHS, NORMALIZED TO 632.8 nmi

Wavelength (nmi)	Relative Spectral Response
500	0.80
600	0.93
632.8	1.00
700	1.01
800	1.00
900	0.96
1000	0.99
1100	1.00
1200	1.08
Test No: 75020606	
Date:	11 February 1975

(nmi)
500
600
632.8

700
800
900
1000
1100
1200

Test No: 75020606
Date: 11 February 1975

[^0]: ${ }^{1}$ The term chip used in this report is the component containing 96 photodetectors and associated electronic circuitry (see figure l). An array is a contiguous line of chips.

[^1]: ${ }^{2}$ Smith, Warren J., Modern Optical Engineering, McGraw-Hill Book Company, page 322.

[^2]: ${ }^{3}$ Schwartz, M., "Information Transmission Modulation and Noise," MeGraw-Fill, page 329.

[^3]: ${ }^{2}$ Smith, Warren J. page 322.

