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Resistive Networks

First of all a few definitions must be given,

Definition 1: A graph consists of vertices and edges, each edge
connecting two vertices, A graph is connected if every pair of vertices
can be joined,

Definition 2: A tree of a connected graph is a connected subgraph

containing all the vertices and no loops,

Definition 3: An oriented graph is a graph in which each edge has

assumed an orientation,

Definition 4: An incidence matrix ‘a (vertex matrix) for an

e e e —

oriented graph with v vertices and e edges is a v by e matrix

..th :
whose ij  element is

41 if edge j i+ connected to vertex i and directed
away

TR -1 if directed opposite to above
: 0 if edge j does not touch vertex |
The following is an example of a connected graph and the corre -

sponding incidence matrix,

L]}
—
—_—
o
L]
-

1 4.

Connected Graph Incidence Matrix
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If a vector Je is made up of edge currents then Kirchoff's

current law can be expressed as

4.4, -0 (m

Definition 5: A reduced incidence matrix & is obtained by de-

leting one row of ¥ &

Theorem 1;: Reduced incidence matrices are of rank v-1 (v
being the number of vertices).

Proof: Consider a tree of the graph, It will have v-1 branches
which can be numbered 1,2,...,v-1, Then the reduced incidence
matrix of this subgraph is nonsingula:. But, the columns of this matrix
are a subset of the columns of part of d .

Thus, A is alsoof rank v-1, i

It is also true that
49 -0 (2)

in fact, the extra row of a is just a linear combination of the rows of -
so there is no loss of information in using (2).
There exist voltages, denoted Yn’ such that branch voltages

¥V, canbe generated by ¥ as follows

A4y, - 1. (3)

To demonstrate this relation break up 4 into Jl' the v-1 by v-l
nonsingular matrix which evolves from a tree of the graph, and 42
made up of the remaining columns. With this partitioning of d, and
by partitioning ‘re into rel and t;?. associated with 41 and

J?_. respectively, we have:



4, 4

47 | v v °® (4)
2 ?..’ez

Now since d; is invertible we immediately have a candidate for the

"node'' voltages in
n C g rn

1,~1
fn ' (*_4|’ A2 (5)

Since this assures the equality in (4) of the first v-1 voltages, the
tree voltages, the rest follow from the fact that thes~ tree voltages
completely determine all of the voltages,

Introducing now resistors and voltage sources as branch relations

2L 8. L. (6)

then we can replace ‘Zv

Av, - £4.+ 6. (7)

and letting I ‘livaris e P, thén
gAr, - 4.+ 88, (8)
(ASAVY, - A6, (9

soif (HFA') has an inverse then
Y, - AGA48E. (10)
V. A A54745g.| (an

Definition 6: Let ._‘3-__4' be called the node admittance matrix,

— e . . —

It can be shown that if the branch edge conductances are positive

then the node admittance matrix is nonsingular,
This development does not exclude the possibility of voltage sources

linearly dependent upon edge currents,
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The following diagram illustrates some of these relationships

d v -g _.:e 4 -0

" branch g branch KCL £
voltages in relations
terms of tree
voltages

From this it can be seen that

J. VLY 4%, 2T, 0 (12)

So the edge currents lie in a subspace which is orthogorsl to the edge
voltages. In fact, togeither these subspaces cover the whole space
(Tellegen's theorem).

From Eq. | it was seen that Kirchoff's current law could be ex-
pressed in a very simple form. It is now shown that Kirchoff's volt-

“g® law can be expressed in a similar equation

3.7 - ¢ (13)

where re are the voltages across the edges of the network.
The appropriate elements of the ..‘ matrix can be found by

numbering all the possible loops in the network and letting

+1 if edge j is in loop i and oriented the same way
b, » -1 if oriented in the opposite direction from above
0 if edge j is not in loop i

Because there is much duplication of information in 'aa z; be -
cause of the overlapping of loops, it becomes advantageous to find
linearly independent rows of ‘!a'

If we have a tree of a network, then adding a link from the link
set forms a loop through that link and the tree. Choose the orientation

in the loop the same as that in the link, With e and v the number of
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edges and vertices we see that we have formed e-v+l loops by adding in

all of the e-v+l possible links,

Definition 7: Let J8, the fundaricntal loop matrix, be the partion of

the 3. matrix formed with
1 | «-loop 1

I
|
3 - ‘ ' =loop 2
‘ - . . . l . . . »
- |
|
1

L ) ! y ) =loop ¢-v+l
link 1 link2, . .link e-v+]l tree edges ‘

where loop 1 is associated with link i,

Theorem 2: Fundamental loop matrices are of rank e-v#l, where e

and v are the number of edges and vertices, In fact, they are of the

form

8( . u‘e-vﬂ'all (14)

where -I-e is the e-v+l identity matrix, and 32 is a e-v+l by

v+l
v-1 matrix,
: th . >

Proof: Inthe formation of af the i loop is obtained by
adding the ith link and taking the loop through just that link and the tree,
Thus, no other link can be involved in the loop, and the orientation was
chosen in the positive sense. So the e-v+l identity matrix is shown to
be in af’ Thus, 8{ is of rank at least e-v+¢l, However, af has
only e-v#l rows so that must be exactly its rank. The rest is obvious.

If the crrents in the fundamental loops are numbered as in the

rows of 3{: and denoted "m (sometimes called the mesh currents),

then it can be shown that
i & (15)

Recalling the form of ’! (Eq. 14) we see that
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I
8 9 d whi
f m T . ’m ’ ; " le
-ﬂz -82 ’m
but is this equal to ’e' Because we havweequality for a fundamental
set of currents, that is, Jm equals its respective portion of Je'
and since all the currents can be expressed in terms of these, then
equality must hold throughout,

Now introducing resistors and voltage sources

Y. 84.* 7. (16)

then we can replace le

Y. - E28JI.* 1. (17)

multiplying by 8{

0 - BT, - BERI, BT, (18)
g, - -(BZB)' BT, (19)

_L_: -8 ( 3(9}’4&:?. (20)

We can now construct the following diagram

node edge edge
voltages A voltages . currents A
& — >0
Lo branch Ye branch Je KCL
voltages in relations ﬁ
terms of tree
voltages
I (identity) 1 (identity)
' '
0 Jf "V z g 8‘ 4 mesh
_‘*_ e e
KVL o branch "~ brarch | Currenss
relations currznts in
ter:ns of loop
currents

Basic Diagram of Relationships




Ve
For son.: specific ports we wish now to synthesize a network

which yields

Considering branches of the types

._M__o v s v bl (22)
J\"‘) I h = ity (a3)
1

what sort of networks can be built?

pip © ¥p s

First, assume we have an arbitrary n-port network. If we put
current sources on the ports we can solve for the impedance of the
network by finding the voltages across the ports,

VVe know that
T, - #'7, (24)

but with current sources now
]
Js"'gre 7 le . s+g‘rn= "e (25)

AI +AGCA'Y, - 0 (26)

thus - S ACHA )4 J. (27)

v, - LY, - -LLGA'49, (28)

Define a new matrix K such that

4 *Bi, (29)
where the minus sign comes from the reversed orientation at each
b —
ve p
port: P

L ————e
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Therefore, [+l if port j is across branch i and oriented
oppositely
kij :{ =1 if oriented opposite to above

0 if port ) is not across branch |

It can also be seen now that the relation

ALY & - (30)
holds, and so from Eqs. 28, 29 and 30
2! ' ' nwel 2
v, © K 4404 SKi, (31)
2t g - K' o' 4G4 4K (32)

What now can be said about this arbitrary zp? In other words,
what statements can we make immediately about a gp which can

be synthesized?

(1) zp = z;): Since G = G'

then (44" - (gL (33)
$0 Z, - KA Ao 4D K A04)")'aK g,
(34)
(2) tp '8 nonregative definite: If the branch conduciances are

nonnegative, then since G is diagonal G is nonnegative definite, i,e., G> 0,

Thus, S G&«' >0 because with x - A'y

yAGA'y = x'Gx>0 because G>0 so AGA'>0 (35)
If the minimum branch conductance is € > 0 then
YA+ (G-cl] f'y - ey' AA'y + y' 4 (G -y (36)

But ey' A4 'y >0 (37)

and this equals zero only if y = 0 because & is of full rank. The
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se.ond expression on the right side of (36) is at least > 0 so their sum,

§. 0, ; Jgd' >0. So (d_g")-] exists and is > 0 bec i-e¢ since

x'AGH'x > 0 (38)
then  x'(ACHNACH NAGH x>0 (39)
and for y (AGA" x x'(ggd')'l y>0 (40)
and thus Z, - K'd' A0 Wi k>0 (41)

(3) If there is a conductance across each element i then
el I

494' >0 and hence (d_(_}d')-l exists. This was proven above,

(4) Izij' < Z and z“_?_ 0 (proven by voltage gain considerations)
() Z._ is a paramount matrix, (Best necessary con-

dition on zp known at this time.) This includes (4) as a special case,
Definition 8: A matrix is paramount if every one of its minors
is < the princip'e minor made up of the same rows.”
It should here be stressed that there are pararnount matrices
which cannot be built, That is, paramountcy is only a necessary con-
dition for ;p to be synthesizable,
There ar-nports where there is no impedance formulation possible,
5o let's ook at admittance representationsalso(manytimes neither will e’ -
ist and a "hybrid" formulation must be sought),
We make an argument analogous to that in Eqs. 24 through 30,

With branchrelations 2 § + ¥, = ¥ (42)

we define an L such that

Y, =-kx, (43)

then by KVL writing 8 for &t since there will be no confusion

with other .B ig

*See Karni, S., gdetwork Theory: Analysis and Synthesis, Allyn and Bacon,
1966, p, 418.



$2zd.-8Ly - 87, - 2 (44)
#28'9,,- 8Ly, -0 (45)
g 828V 8Ly (46)

Z. : .B't.az.a')“agvp (47)

L ] '
and with _l_p = L le (48)

i, - L8828 8Ly, (49)
or |y - 8823 8L (50)

A diagram follows which will help withconceptual understanding

as well as being a n nemonic device, Assume all the sources are in
place, and assume that ¥ and Jr are the voltages and currents
in the resistive branches. fo and 40 are not related physically to

any quantities.

Diagram of Fundamental Relationships




Definition 9: Aa n by n real symmetric matrix A is dominant

n
if 2a,.> £ Ja..| forall 0<i<n, (51)
ii= i1 i) - -
Lefinition 10: A matrix A is hyperdominant if it is dominant
and aij_f 0 for ifj.
It is true that all the hyperdominant Symmet ric\
matrices ‘

matrices are contained in the space of all s ey

deﬁnitc__

Paramount

dominant matrices which is contained in ‘

the set of all paramount matrices. The Phoanl s

paramount matrices are a subset of Hyper-
dominant
positive semi-definite matrices which are K

a subset of all symmetric matrices,

/J

Theorem _3: A necessary (and sufficient for n< 3) condition for

an n by n matrix to be the impedance or admittance matrix of a
resistive n-port is the paramountcy of that matrix. A sufficient con-
dition for an n by n matrix to be the admittance matrix of a re-
sistive n-port is the dominance of that matrix,

Proof: The entire proof of this theorem is long and tedious so
it will not be covered, However, two parts of the proof are constructive,
in that the matrices are synthesized, These two results follow,

Synthesis Result 1: A 2 by 2 matrix can be realized as an im-

pedance of a 2-port if and only if it is dominant. To show this consider

the following two networks and their matrices,
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\'rl rl+r£ rz il vl r4+ re Ty il
g or
\«2 rz r3+rz iz VZ “re r6+r5 iz

(52)
Since these are the only forms a 2 by 2 dominant matrix can take,
then we are finished,

Synthesis Result 2: A matrix can be realized as an admittance

matrix if (no only if) it is dominant. To show this note that any domi-

rant matrix J can be decomposed as follows:

r - - =
vzl vy, 0...0 lyysl 0 vy ven 0
Y12 Iylzl B.i.0 0 0 s
= + *eoa 153
.yi 0 0 g,..0 Yi3 O h]3l...o
[°9 g A8 A om0 0
- - - n e
.-Q..i...l.g. ..... o 2y~ £ vy 0 0
Yii oy . n
Ao | 3
*lo: 000 B Al ° 2Y52 i’illyzi‘ 0
*w. By, . :
iy il . 8
l.2 : 0 2 L © ¢ 2Ypn"Z

whe re ’yij‘ occurs in the ii and jj positions, i.e., on the diagonal.
So we have %(nz-n) terms plus one term to make up the missing
amounts on the diagonals, Consider now the following two networks of

conductances and their matrices

E 2a i i, i,
e VW — S— -
+ +
vy v, Vi v,
- 2a E: : 2b 2b "

!
L
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il a -a i il b b i
: = (54)

iz -a a v, iZ b b Vo
The claim now is that networks of these types may be superimposed to
take care of all but the last term in Eq. 53, This last term, however,
has all nonnegative elements because Y is dominant. To take care
of this last term we simply take, for each i, a conductance of the same
value as the ith port. The critical point in this admittance synthesis is
the fact that when a number of ports are shorted, no current flows be -
tween any two of these ports, Because of this,superposition can be
used, This is where resistive synthesis like this would faii.

Example: This is a 3 by 3 example of the second synthesis

result, Let y be dominant, then

: Yin Y12 Y13 Iyl vy O lyysl @ vy
Y¥:1vz va2 va3| = | miz Iyl of 4]0 o o
Yi3 Y23 V33 0 WE=9 vi3 0 lyysl
0 0 0 Y“-llei'lvu’ 0 0
0 |Y23| Y23 ¥ 0 YZZ-'YIZI-IYZ:iI 0
0 Yz3 |Y23' 0 0 V33‘|Y13|"Y23|

(55)

Assuming for the sake of example that Y12 <0, Y13 >0, Y3 <0 and

assume y,,- |y12 I- Iynl =0, Then the network will have the form



odids

+ port 3

Por‘t 1 +

yﬂ-w‘J“yul

Yay = 1Visl = 1%

* port
k2

Three-port Network Synthesized from a Dominant y

The question arises:

as an_impedance matrix? This question has not yet been answered.

Can every dominant matrix be synthesized

(Warning: although the inverse of a paramount matrix is paramount,

the same is not true for dominance).

The synthesis of a particular type of matrix follows,

Synthesis Result of a Special Case:

is in tri-diagonal form, that is

od \ T
g Bha L
b 0
v = T 4 r e i
- 12 22 B i 5 -
~
N r b
\23 33 2 ~ &
\ -
(] ~ ¥ t'n-l,n
P r
§ ~n-1l,n nn |

can be synthesized as an impedance matrix of the network

Any dominant matrix which

(56)



aibe

port 1 port 2 pert n
[Pl (Lo 8.8 % [P-1.nl
Y= 1ral LPVR LA | PN Pan = 1Ty nl

Network for a Tri-diagonal Dominant Matrix

The polarities at the ports are determined by the signs of the off-

diagonal terms. For example, if r, then the polarity

i,i+1” '|’"i,i+1|
of port i+l is the same as the polarity of the ith port, if " el
'

!ri i+l| the polarities are oppositely oriented,
L



-16-

RC Networ«s

Consider now the addition of dynamics to the resistive
n-gport retwork, Capacitors are used for these dynamic elements,
thus branch relations will depend on s, the Laplace transform
variable,

Y= cs? (1)

or () - ¢ gl (2)

One method of analysis allows the branch relations to depend
on s as in Eq. ] and then to proceed as before, This procedure is
however limited iu that the resistances must be constant,

Another method of analysis involves extracting capacitors
and considering the resulting capacitive n-port as coupled to a

recistive n-port, This is the method which will be used here,

Winae 217

sistive
I S //, 5

-
N

V2
2 . /, é___..
o G 0 S //f”._._..

. &

Extraction of Capacitors Leaving a Resistive Network




Consider first the admittance form, With ip as the currents
in the capacitors and }_q as the currents in the sources, the resis-

tive necwork yields the admittance relations

G11 S2] |%

= (3)
_iﬁ G, S, =
defining -l 3
Cl 0 ST
AlO C S
c = y (4)
0 0 C
— p—
s0, in matrix form
d
ig = -3 Cyy (5)

\'vith this and the symmetry of the resistive network, Q-Zl = 9'12.

- — -

- - —~
i, S, §); Ya
P = (6)
g 3 812 S22] 1%
b e - — L —

Another form of Eq. 6 results from making the substitutions

iﬁ = é'ﬁ and iﬂ - _(_:'l‘sp (7)

If ncw we can solve for lu in terms of vy, we will have the
general ad nittance relation of the RC network, It is important to
note, however, that this "extraction of capacitors' method is not
always topologically possible, tlowever, in this analysis we 3ssume
the capacitor currents to be independent, while in fact it is possible

to connect capacitors in such a way as to make their currents
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dependent on one another, When this problem occurs it can be
eleviated by introducing ¢ resistors, and then letting ¢ approach
zero after the analysis is completed,

To find the RC admittance formula first take the Laplace
transform of the lower portion of matrix £q. 6 (assuming R's and

Z's constant),

- 5Cyg(8) = Gjpv(s) + Gy vgls) (8)
50 yls) = - (Cs 4G, Gi,v (e) (9)

but again from Eq. 6
i(5) = Gy xo(s) + Gy vgls) (10)
thus i(s) = G v (8) - G,(Cs +Gy,) G,y (5) (11)
or ¥(s) = Gy -Gy, (S5 + Gy G, Vs

What properties does this Y(s) have

(1) l(s) is symmetric, Because g“ =_Q'“ and gZZ = 9'22

for the resistive network we can see immediately by Eq., 12 that
X(s) = Y'(s).

(2) All the poles of the entries in Y(s) are nonpositive real,
-

We will prove here that these poles are real, From Fq. 12 notice
that the poles of Y(s) are the poles of (Cs +g22)-l. However,

since the elements of adj(Cs + sz’ are just polynomials, and since

1 adj (Cs + -922}

(€ +G,)" = FTC+ 7, (13)

then the poles of Y(s) are the zeros of det (Cs + QZZ)' Define now
VC such that YCVC = C. Now det (Cs +G,,) = 0 if det Welcsve s
€ lG,, V€)= 0, that is if
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det (1s + V€16, v€ ) = 0 (14)

S0 we have shown that the poles of Y(s) are the eigenvalues of
\/;"guﬂ'!_' ! But because C and G,, are sym.netric then this
matrix is also, and since all symmetric matrices have real eigen-
values we are done,

A slight mathematical digression is now necessary, The
following corollary will aid in the solution of the RC impedance

relation,
Corollary | (Partial Inversion Formulas):

Given a matrix formula

¥y i L 21, B),l] &)
= B = (15)
'
L3 i, Bla Raallis

¥ i My M4
i
- M - (16)
By
i, X2 M, Mlly
with M“ = M'“ and -M'ZZ = MZZ which is invertible, then
TR T =3
M ‘MM, M, M,oM,
R = (17)
) 75
M,, M, M,
and
53 5
R 1"R;,R,, Ry, R,,R,,
M = (18)

<3 a3
R, R}, R
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where the dimension of ) equals the dimension of -Ll and the
dimension of ¥, equals that of 12.
Now for the RC impedance representation we again pull out

the capacitors and find the relations

Yo B 2|l
- (19)
Ys Bla Bl |dp

With the partial inversion formula of Eq., 18 and by replacing -i-p
with -zd; Qg_ﬂ we obtain

Ya 211 212 | ~a
= (20)

d
"RE M. ¥l

Using a procedure very similar to that used in Eqs, 8 through 12

produces the impedance result

%
Zis) = M), +M,, Qo +2,,) M, i,

What properties does this RC impedance, Z(s), have

(1) E(s) is symmetric,

(2) The poles of the entries of ﬂ’) are real and nonpositive,

The proofs of these facts are nearly identical to those in the

admittance case,
More can be said about the properties of RC admittance and
impedances. In fact a.l the possible forms for the plots of th:se

functions can be displayed once we know the result of the following

theorem,

Theorem 1: The impedance of any RC network can be

expressed in the form
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n
Zs) = Zw) + Y & (22)

i= )

where 5_; = Bl >0, s > 0 and Z(w) = ﬁ“ the symmetric matrix
cf Eq 21.

Proof: Consider any symmetric matrix S, Since S = g'

then there exists a matrix H which is orthogonal, i.e., ﬁﬁ' =1,
such that

Ay 0 e+ 0
3 0 kz .. 0
HSH = (23)

I

where the \; are the eigenvalues of S, Now from Eq. 2] we can
write

Z(s) = My, + M ,0TVTs + My,T ' My, (24
s0 E(,) = Mll +Mlzf!:--l(.l.. +@-1M22@-1)-1@-1M'|2 (25)

The matrix Jg-lﬁzz\fg-l is symmetric, so there exists an
orthogonal H such that

HVC '™, 'H=D (26)
where D is diagonal with real, nonnegative entries (because M.ZZ =
M,, > 0). From Eq. 25 it can be seen that

- (] - - - -l
Z(s) =My, + M VE HEHHs + H'VE M, T HVE M,

(27)



letting Beue'M, (28)
then Zs) = M, +B'Us+D)'B (29)
If we let the diagonal elements of D be L] then
pr— -I -
(s+3,) 0 0
1 o (s48,)7" o 0
Z(s) = M,, +B B (30
0 0 cer (a8 )"
n
mssume for the moment that the s, are distinct, then
n
1
Z(s) = M, +2 —+— B'E;B (31)

ot 3

where -El is the zero matrix except for a one in the i,i position,
So this B _“B is the E»i we sought and it is indeed symmetric and

_E_:_“ is,
On the other hand, if the s, are not distinct, then instead of

nonnegative definite because

EEHB wewouldhuveB Byt 45,000, kk B where \i=\j='--=lk
and E“ §3, 0+, kK has "ones" in the indicated positions with zeros
elsewhere, But these new E matrices aie still symmetric and non-
negative definite so the reasoning used in the "distinct' case is still
valid. i
Now for the special case of Z(s) a scalar we can show the

form of the plot of Z(s) versus s.

Lemma 1: If

Z(s) = m + : (32)
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with a, and s real, a, > 0, s > 0 and m,2 0, then the poles
and zeros of Z(s) are real and they interlace with a pole closest to
(or at) the origin,

Proof: Let s be a real variable, then

n n

a -a,
a%z(., s 3“: 2 l+1l +m“ 2 <0 (33)
i=1 i e (l'l'li)

and for s real this derivative will exist for all s and will be strictly
less thaa «ero, So Z(s) cannot cross the zero line more than once
between poles, Because Z(o) > 0 of all the poles and zeros there
must be a pole closest to the origin,

Now by substituting into Eq, 32 Z(o0) is either m or Kl >0
and Z(w) is 0 or KZ > 0, And because Y(s) is Z(l) then Y(o)
is 0 or K3 > 0 and Y(w) is -0 or K4 > 0. So we can graph these

functions,
i 4zZe Y ()
|
|
\
\
\\
"\\ ~
N\
""'\\, e 4! ; - nA _a
. \ F ¥
3 \. /
K, \. K, o /! Ky
or ¥y e o I, or
| ’/
|
| /’

General RC Impedance and Admittance Craiphs




The general form of Y(s) comparable to Eq, 32 is

Y(s)

b=

n

as+b +
0 o 2:

i=1

.

s+s

(34)

where a < 0. That a is indeed negative can be seen from Y(s)

monotone increasing so

and thus a; < 0,

n

izl (l-fsi

)

(35)

There are four specific methods of realizing Z(s) and Y(s)

which will be presented before covering the general form of all

realizations,

Foster's First Form:

Consider the simple resistive

network
O—b—w o+
i r v
o 1
rl%__‘ -
+
—_—e
'z%_. 2
v
a
+
- rp vﬁ
— ° -

Resistive Network for Foster I
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The R matrix is then the f+1 by f+1 matrix

|
o g | -
2 |
ro + ri | rl rz 1"3
izl |
_______ A i i pe s kA B i
| .-
r, : 0 ¥ - FE2 0
. i > .
. ' . -
10 0 X
L p I L 3
See the M matrix is
r §to 3 | . 1
o |
1 i et
& < T . i
Ri1RoRy, Ry, RpR;, L ey .
- = ' -
M- - ol e 0
R R R, :
=22 =12 =22 : | A ’
. ' . .
|
-1 | 0 0 . l/l'BJ

From Eq. 21, connecting capacitors across the vollages v, of the

4

resistive network above

_— -1

-1
1
Cls-l- /rl 0 0
1
0 (','Zs+/1:'2 0
Z(s)=r°+[l  Suadll b : .
0 0 Cﬁs+ /rﬁ
\— =




|
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Thus,

B r
Z(s) = ro'l' zm%-n (39)

i=1

and so any RC impedance, Eq. 32, can be synthesized by Foster I,
To put Eq. 39 in the general form of Eq. 32 set

a
; i
r, = m, C; = /a and =y

Foster's Second Form: Consider the admittance of the
resistance retwork

. r rz% “e rp

v. 330 ; i . i ip h -I
Vi v2 ces vp

£ 4 o T I

Resistive Network for Foster Il

The R matrix is then 41 by B+1 as is the corresponding M
matrix and these will have following forms

o e
LS B 1
AR : 1 20 Iny ey Ty
ro i :'o ro ro {To i | ﬂ
— A S — W W W— W — —— _— — — --—--—1 —————————————
| .. -
*o 1 Fo™2 Yo To /r; : l/rz 0 0
| |
r r P Py, v r
-1
0 : 0 ' "8 B Gs= /rz : 0 l/fz 0
. : . | .
| | .
¢y ! 'p r v+ T 4r |
i) (¢} o o P . ' 1
- /TB I 0 0 * /rp
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where g is the network's admittance matrix,

a drive of v

inversion formula (17), so

If we put capacitors CO' Cl’ oo

g
1 1
L /rp Eo /ri

The _h_i_l_ matrix with

can be found from the G matrix by using partial

rzrﬁ

ifp

(41)

> ('J‘3 across the positions indicated

in the network diagram then we can solve for the admittance at the

a-port directly in terms of the G matrix of Eq. 40.

Y(s) = G}, -G, (Cs +G,,)

|

Thus,

B 2ok 5 1
Y(s, = o onms %P0 s
igo Ti %1 2 "J

-lG

-]

?_+Co’

(42)

|... -!|...
—

-
[a¥]

"l'._

lm

(43)

+C
o



And eventually we find

B C.s
=N i
Yis) = 3 4 Z—c———”i ST+ G (44)
iz

and so any RC admittance, Eq. 34, can be synthesized by the Foster
II method by letting

a4

ok . ~
r '5: C,=a, r, = /‘i and C; s

Cauer's First Form: Consider the network represented by
the block diagram

ot Z (s) Zl(s) s 'f‘ﬁlﬁ)

Z(s) Y (s) Y,(s) Yg(s)

Block Network for Cauer's First Form

By inspection the form of Z(s) for this network can be seen
to be :

Z(s) = Zo(l)+(Yl(s)+(Zl(;)+. . .(zﬂ-l(!)*' (Yp(’,+ Zp-l(s))-l)-l' _ ) -l) -1

(45)

which is called a continued fraction, If now the Zi's and Yi(s)'s

are replaced by r, and Cis respectively then the network and

impedance equation become



2%

4 r

Yo | p
s . WA WW-
s
Z(s) (Tlu S Czs :: (fﬁs

' Network for Cauer |

R ORR Lo R b AR
(46)

The values for r and Ci can be found for a specific Z(s) by
repeatedly dividing and inverting. The R and M matrices which

correspond to Cauer [ can be found to be

p .
E t‘i : E ry rﬂ-l‘ I"B My
i=0 i=1
|
- o e QO e o o i o o o o
A I &
g 1 r y 2ok rg+7 r
R }E: i }E: i B p " (47)
i=1 | i=1
|
|
|
|
rﬂ-l' rﬁ' rﬁ-l’ r‘B rﬂ-l’ t'p r‘n
| — r
ry T % T a




ro : | 0 0 0
——-r -----------------------
ol F o ode 0 0
:'1 o |
T :
,"1 ) 2
M= (48)
o | 0 o s 0
| 2 2.
- | -
. | .
T :
' R
o I 0 0 0 o &
| -1 P

Cauer's Second Form: This is the reversed form of Cauer I,

that is, Yi(’) replacing Zi(l) and Zi(l)'! replacing the Yi(l)'s.

Thus, capacitors and resistors exchange places, so

+ -

18 Czs
R s T
b ot 1y

Y(s) ; o grl r, %rﬁ

Network for Cauer Il

o e (e oo e o ) )Y

(49)
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Again the values of resistors and capacitors can be found from a

specific Y(s) by repeatedly dividing and inverting. The corres-

ponding R and M matrices are

r— -
r T 0 0
--r0 r0+rl -rl 0
_R: 0 =T rl+r2 0
0 0 0 rp_l+rp
| p
TS > -
i} =) i P
- s o - - - - -
- P | -
M= ™ Ot LZL
= 1 i= ] r, r
i=0 : i izo ' i=o0 !
- W N G
: ¢ lded . ok
L | % AT
- B =0 o

Suppose now that we have a realization of

I

- LB TRE TL LRGP T

2)

IA

IA

(50)

(51)

(52)

We may ask when is the most general representation of Z(s)

possible, In what is to follow the intent is to find a form which

covers all possible representations although it may also include un-

realizable representations,



The impedance in Eq. 52 remains unchanged if we change

the capacitance by

Z0s) = My, + M, VET N (1s 4 VE T My, VETINE T M),

Now let T be any n by n orthogona) matrix, i.e,, II_' =1. For
2 by 2 the most general T is, for any @,

cos 0 sin@ cos sinf@
T = or 54)
-sinf cos @ sin@ -cos 6

A 3by 3 T can be (Euler)

cos @ sinf 0 cos ¢ 0 sing cos siny 0
T = |¥sinf tcos ¥ 0 0 1 0 Fsinl #cosy 0
0 0 1 ¥sing¢ 0 %28 ¢ 0 0 1

(55)

for any 0, ¢, and U,

So we can further generalize Z(s) as

Z(o) =My, +M,VE T (1s + TVE M, v T TVE M),
(56)

Finally, to be completely general, instead of being confined to the
use of the identity as the capacitance matrix we may use any capaci-

tances we wish, say K, by noticing that
Z(s) = M, +M VT T VR (Ks +VRIVE "' M,, v TVR) VR IV I M),
(57)

Thus we have generated the form of all the possible realizations

given a particular realization, i,e., givenan M and C.
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The matrix diagram which shows the relationy between
these different representations is given on the previous page,
Here, since _h_d_” must be the same in any representation 4ctine

v = v - M

Yo T LMy, (5

Cf course, there may not exist realizaticns for each possible T,
And, in fact, given a desired K it may be an involved process just
to find a T for which a realization can be found. That is, we must
finda T for which

-11
M= - -1 i (59)
-R1/C M, VE1/T Mzz@ I VK
or rather
-] ' -]
M +M, My, My, MM, VT IR
_B_ = (60)
-1 =1, -1 -1 ' -1
RIC M,, M), VR TVCM,, VCTI VK

is realizable,.

We now look at an example of the realization of an impe-
dance using the two Foster forms and the two Cau=r forms. Then
we will see where these fit into the family of all realizations,

Example: Consider the impedance

Z(s) = s+’+;s+ (61)

To find the Foster I realization notice that

= s+2 e F 1/2
Z(s) = (s+1)(s+3) s+ e (62)




So the Foster | network is

1/2 1/6
Z(s) o= |

Foster | Realization

Thus, to see what the R matrix is for this network examine :

+._....:: "I‘WT iiz W T

é 1/2 1/6
a
.
therefore
r
& ) Vs A 0o ! :_l
R = 1/2:1/2 0 M=|-1 12 o] (63)
1/6 : o 1/6 -1 )0 6J
.

We can now check this via Fq. 52 to sce if we have the correct

realization

2s +2 0 1

- 1 |
Z(-)-0+[l 1] ! R 1 : gery ¢ g=pp (64)

and this checks with Eq. 62.
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Now find the Foster Il reaili#ation for Z(s). Since

Y(s) = .2+4.+3

s+l (65)
then
2
Y(s) s +4s+43 2s +3 3/2 1/2
s & slstd) ° 1 4 s(s+2° ! +-[l- T (66)
Y(s) = s +3/2 +-‘;@,‘- (67)

Therefore, the Foster 1l network is

e
+ /‘
Z(s) 2/3 ==
2
Foster 1] Realization
and the corresponding R and M are
- | -
2/3 1 2/5 2/3 0 1 1 0
-——* —————— -——-1— -------
R=]2/3 : 27y & M= |- : 2 -1/2 (68)
2/3 : 2/3 8/3 Lo : -1/2 1/2

which also checks when M is put into Eq. 52,
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The Cauer | form of this impedance comes out of the cal-

culation

Z(s) ( +4-+3) ( z-+3) ( (.”
. (”G: +%)-l)-l:(”(% *G”(z‘;)-l)-l)-l)l“"”

e MWW

+
1/2 1/6
R

Cauer [ Realization

This network yields R and M matrices

2/3 + 2/3 1/6 R ES 0
o e o - I SR

R =1]2/3 : 2/3  1/6 S0 M=|-1 { 2 53T M
1i/6 ' 1/6 1/6 AR ok

Finally, the Cauer II form of Eq. 58 is generated from

Y(s) = 3448 48° e 3.2 59 48> o daul 282 -3
3 Z+s 'f e 2.58+s

BeG ) GG @)

-
——

]

-y



therefore
11 11
—
2
2(s) % =
Cauer Il Realization
2/3 -2/3 0 ¢, %1 -1
I e
R = |-2/3 : T -3% so M=|1 : 3/2  3/2 (72)
I |
0 | -3 3 {3 32 W

Notice that the Foster ""series' form uses as little total
resistance as any of these realizations whereas Fovter's "parallel"
fcrin uses the minimum total capacitance,

As a final application of the transformation ideas consider
the following realization of the previous impedance which is not cne of

the standard forms

1/3 1/3
AN 4'A'A

i _}_ _L
Z(s) | —* 1 ‘
ey 3 _1—

Ot

1

[

Nonminimal Realization

It can easily be verified that for this network we do indeed

have

26 = EEDGT) i



2/3 | 2/3 1/3 g8 0
R = 2/3"r 2/3 1/3 and M= -1 : 2 -1] (719
I i
1/3 | 1/3  2/3 L 0 I 1 2

We thus have five different realizations of this same impe-
dance and it is interesting to find the transformations T of Eq, 57
which relate these different representations. First we will norma-
lize all of these realizations so that they all are of the form of
Eq. 53, then we can easily compute the T's which transform one
into another,

We will call

cos 6 sin@
T- (75)

-sin @ cos

a rotation of 6 deuee:. and

cosf sin@

1=
1]

(76)
sin @ -cos @

a reflection of @ degrees,

Thus, we notice from the table on the following page, that
the normalized, i.e., unit capacitance , Foster Il and Cauer I
forms are identical to the nonminimal form, Foster I is a 45° rota-
tion of the nonminimal form and Cauer II is a reflection of about

243.5° (180° + arctan 2) from the nonminimal form.



Realization M c e lm,|vE M, T}
of 1 o - -
o §lang | 8 vl
Non Minimai[-1 ; 2 -1
l -1 2
ik oy 0o 1 K 4
L J
pgfec g gl - -
- 2 ol | [wT -
Foster | -1, 2 0
[ 0 3
S T IS _I/JZ" _
= o
oY 4 0 E =~
b ————— i 0 1 e
Foster II -1, 3 =g
| -l 2
0, -1/2 1/2 L° 1/4{] Lo L ¥
-
Fol 2 % E 5 .
- 1 0 1 2 -l
Cauer I -1 | & =2
| .l 2
0: <2 8 iy L v
-
0! -1 -} ' ;
-——: —————— s/4 ofl||l-2/vB|||6/5 3,5
Cauer II b, 3/2 3/2
‘ 3/5  14/5
1 : 3/2 14 e V5 / /

Table Showing Normalized Network Representations
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Scalin‘ Transformations

Recall the necessary and sufficient conditions for some Z(s) to

be realizable as an RC driving point impedance :

(1) The poles and zeros of Z(s) interlace and a pole is

closest to the origin,

(2) All poles are nonpositive real and the residues at the

poles are positive real,
An equivalent RC condition on Z(s) is:

a.
Z(s) = Z(w) + 2 ”‘,i (1)
i=1

with a; and s real, a; > 0, siz 0 and Z(w) > 0.

Consider now an RLC network with impedance Z(s) and a fixed,
arbitrary topological arrangement of the system's elements. Denote
this network by (L, R, c"!, z(s)). Keeping the topology fixed there are

two fundamental types of transformations which can be performed:

(1) Magnitude Scaling

Tla): (L. R, C~), Z(s)) % (aL, aR, aC"}, aZ(s)) (2)
(2) Frequency Scaling
P(B): (L, R, C™', Z(s) ~u (BL, R, 5C ', 2(8s)) (3)

Case 1: Given an arbitrary RC network consider the effect of

scaling its magnitude by s,

T(s): (0, R, C"}, Z(s)) < (0, sR, sC"}, sZ(s) (4)

1

= (R, C 7, 0, sZ(s))



because sR acts like the impedance of an inductor of value R, and

sC.‘ -:-=
that what we have left is just an arbitrary RL network.

c™! acts like the impedance of a c"! valued resistor. Notice

Thus, any RL network must be such that % ZRL(l) is an RC
impedance. The interlacing property of the RC poles and zeros can
then be graphically interpreted for the RL case. There are two possi-
bilities :

Zpcls Zpp(s) = sZp (s)

YR PR N — 8 My oo s
Zpcls

nn.—‘ . ' € s -L. “ee

Pole-Zero Plots for Topologically Equivalent RC and RL Networks

So the poles and zeros of ZRL(I) interlace,with a zero closest
to the origin. In fact RL impedances will also have partial fraction

expansions as in Eq. 1.

Case 2: Given an arbitrary RC network consider the effect of
scaling its magnitude by ,/s.

T4/E) : (0, R, C™, Z(s)) 2 (0. /3R, v5C"), /o 2(s) (5)

Substitute p for /8, then /sR = pR acts like an R inductor and
ﬁC-l %= C-l‘/l_= C.l % acts like a capacitance of value C. Then
s

1

T(p) : (0, R, C~}, Z(s) 2 (R, 0, C}, pz(p®N (6)

which is just an arbitrary LC network.
Therefore, any LC network must have an impedance ZLC(S)
such that Z, (s) = sZRC(sZ). The pole-zero configurations for an

arbitrary LC network can then be calculated graphically :
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ZLCCI) = g

2
ZRC(I )

Zycl® = .ZRC(.a)

Pole-Zero Plots for Topologically Equivalent RC and LC Networks

Thus, the poles and zeros of an LC plot lie symmetrically along

the imaginary axis with a pole or a zero at the origin.

ZRL(s)

work with

1

w be
realized

Realization
of /.R L( s)

Change
resistors R
to inductors R
and capacitors C
to resistors C~

work with

1 y R

=7, ~(V/5) LC

realized

Change

resistors R

to inductors R
Realization Realization
of ZRC(s) > of ZLC(S)

All Two Element Synthesis in Terms of RC Synthesis

Example :

Z(s) =

s(sz+2)

Consider the LC impedance

(52"' 1) (s

Z43)

(7)
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We can see that the topologically equivalent RC impedance is:

ZRC(I) s

st2

l'
7z VR = GG

(8)

In the example on page 19 of the previous section we have found five

realizations of this RC impedance.

So we have immediately five

realizations of Eq. 7 merely by changing the resistors of the RC

realizations to inductors of the same values.

4

——  —
Pm— . 1§ | 1/6 o
+ + 5
| |
|1 "—I '_- 2 1/
Z(s) 2 - Z(s) 7 ]
X 2
Foster I Foster 11
1| | }__
T L
/2 176 5/4 5
Z(s) s ey Z(s) 2/3 2/25%
Cauer I Cauer II
+c m‘ m\
1/3 1/3
Z(s) dise ] 1/3 —_1

A Nonminimal Realization




Minimal RLC Synthesis

The method which will be used here to analyze a general RLC
network will be similar to that used previously to examine RC sys-
tems. This method involves extracting all the capacitors, inductors,

and sources and considering the properties of the resulting resistive

.

5.0

Ca-a;ﬁ //A——éﬁ

Extraction of Reactive Elements and Sources Leaving a
Resistive Network
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Now let us form the following vector quantities :

vy h Va+l lat1
v i v i
- 2 2 a+t? = a+t+2
U la * |. Yp ip el
Ve .id'. | ¥ | L i 4

and so forth. Thus, we can display the dynamics of the reactive ele-

ments in the pair of equations

F Sy - -ig (2)
FLi, = -y (3)

where C and L are the diagonal matrices with diagonal elements
equal to the values of the various reactances.

Assume now that the ""a' and "8 portions of the network are
the ports, and that we have added sources onto them for the purpose

of calculating impedance (or admittance). Our objective now

i v
is to find [“‘] in terms of [‘.“].
=& 2%

Because of the purely resistive property of the "extracted
network' we can find a hybrid description of the form:

el | ESTRRCF : Mg M xa ]
B M My, 1 My My, || %
___g___.____.:- _______ s (4)
Y% ¥ | M Ny
o [ M0 M ) My M ][5 ]




b=

where the purely resistive nature of this "extracted network' assures
us of the symmetry conditions :

- ]
-

My M, My My,

. (5)
Moy Moyl Ma ¥,
v 5 '
M M3 25 My
M) ) Ma ¥p

M, - i TV el

May 2,4 May 434

= > 0 7
Mo My, Moy Mg,

Substituting Eqs. 2 and 3 into a portion of Eq. 4

d 9 i
T Exp| (M2 Mas| | Xpl |22 M) ie
o = . (8)
akl, Mo Masl|dy Ma, Myllds
and .
do1 1312 2k My M, Ya
- + | (9)
Xs By 24 '!74 L ITRE. 77 24 |

Consider now the task of finding the impedance of the given RLC net-

work, In this case we would use the current sources i, at the

b
driving point ports and we would try to find Y in terms of _'16. Thus,
v = 0. Taking the Laplace transformation
~
S M, M Yp L57Y
- - = i, (10)
By ¥ 8wll3, M4



J -1
p CstM,, M,, Maa &
s 1, (11)
i M, Ls+M M
Y LstM ., M
From Eq. 9
¢ M., M,.|[cs+m M ' Im,,]%,4m,.2 12
Ve=-I(M,,, M,]|CnM,, M,, Mool do*Myly 112)
M., LstM, LW
-1
Z(',=M44-[M.42 M‘}' 9.+MZZ EZJ MZ‘ (13)
My, Myl | M,

This is then the impedance of the RLC circuit provided the
"M description” is possible after the reactances have been extracted,

In a similar fashion the admittance may be calculated as
1

Xio)= M, ,-(M,, M,)iCetM;, M, M2 (14)
M, LstMy,| | M,

If we wish to leave the impedance (or admittance) in its most

‘general form, we may redefine Eqs, 8 and 9 such that with

rc o
Q® (15)
|2 ¥
d =p e, ™ (16)
g &
F 9], |*H, * By 14
i i
-8 LY
v
- 5 -
+ H,, (17)
8 —ib

and then we see eventually that

A A
1 v
-=Q 'l -0
a | = [Hyp-Hy(Qs + H ) HGH (18)
=8 -16
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It now becomes advantageous to put the symmetry conditions,
Eqs. 5, 6 and 7, in terms of the H matrices. First, however, a
small diversion iy necessary in the way of preparing a convenient
form for the symmetry conditions,

A Lorentz transformation is a transformation, e.g., T,
which transforms a four dimensional vector x = (xl. Xp0 X0 x4)
into y = (yl. Ypr Yy y4i and preserves the "pseudo-length”

2. 2 1/2 2 1/2

(xf+xz+x3-xi) = (yf'l'yz*vg'vlz) (19)

where B =2 (20)

Definition 1: A pseudo-Euclidean space En(q, n-q) is a

space with the inner product defined as

éxlyli-xzyz e ot XY

< >
21 a’q

» N=q
L xq+l yq+l 2 xq+2 yq+2" 0" Xp¥n (zh)

Definition 2: The signature matrix X (nl. nz) has all zero off-

diagonal terms with the first n diagonal terms +! and the other
n, diagonal terms -1,

So we can write

= x'Z(q,n-q) y = < x,Z(q,n-q) 1>Ef' (22)

Now the question which arises is: What transformations will

<x.X )Ql n=q

preserve "length" in these pseudo-Euclidean spaces? If we choose our

transformation as A, then to preserve length we must have

x'A'L(q,n-q)Ax = x'E(q,n-q) x (23)

or AZlq,n-g)A= £(q,n-q) (24)

So this is the condition required to preserve "length" in E™(q, n-q).

Example: Find the "lengih'" preserving transformations in
the pseudo-space EZ(Z.O). These transformations are just theo
rotations and reflections defined in Eqs. 75 and 76 of the sect'on on
RC synthesis,
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Example: Find the "length" preserving transformations in
the pseudo-space Ez(l. 1). Let a general transformation A be de-

a b
é =
e @
So since ] 0
(1) = (25)
0 =1l

then Eq. 24 yields the condition

gt G

thus nzocz ab-cd 1 0
2 2 - (27)
ab-cd b"-d 0 -1

noted by

Therefore, a solution for the most general "length" preserving
transformation in Ez(l. 1) is
&l @ cosh 6 sinh @ 83.. @
A= (28)
0 +1 sinh & cosh @ 0 =]
where the 0 is arbitrary and where all £+ signs are independently
arbitrary.

Transformations of this type are called "rotations'". Unfortu-
nately, the general formulas for rotations become extremely compli-
cated as the dimension of ¥ increases. One frequently encountered
case where a general expression is lvailablel is the case where the
rotutions are in Ezn(n, n). For this space the rotations are of the
form

A 0 cosh A sinh A 53 0

A = (29)

0 A, sinh A cosh A 0 A,

where the éi'l are n by n orthogonal matrices and A is an arbi-
trary diagonal matrix,
It is interesting to note that if A and B are 'rotations" in

the same pseudo-space, then A. B is a "rotation'. The identity

1. Youla,
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matrix is also a "rotation", so these transformations form a muliti-
plicative group with an identity,

Now we are prepared to set down the symmetry conditions in
Eqs. 5, 6 and 7 in a compact form and using the H matrices from
Eq. 18,

(1) ZBy) H), ZB.y) = H), (30)
() Z(a,6)H,, Z(a,8) = H,, (31)
(i) Z(P,v) B, Ela,8) = y'u (32)

or in terms of the M matrix in Eq. 4

Z(atp, y+6)M Z(atp, y+6) = M’ (33)

and these symmetry conditions hold for time-varying as well as
constant systerns,
From Eq. 18 and substituting

? ~
-a 'v'l

x 2 A 2 . ? (34)
=8 = §

then we obtain the representation

=1

Y= [H,-H,(@s+H,,) H,lu (35)

We now ask what sort of transformations can be made on the H
matrices to generate new networks with the same impedance, The
intent here is to find families of transforms which cover all possible
minimal representations although there may also be included some
unrealizable transformed systems,

The first step, since the impedance must remain unchanged,
is to define

z=y-Hyu (36)

because HZZ cannot be effected by any transformations which do not

change the total impedance. ‘'hus,

2= -Hy(@s+H 7' H,u (37)
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If we normalize to obtain uait inductors and capacitors we have
4 -1 101 .
E"E31m Ll""'/g ﬁn"g ) \/_-9 E;zB (38)

Now, as in the case of the RC transformations, let T be a non-

singular transformation then
-1
sl .ol -] ol -1
2= =M, Q7T er T VT, BT VR, (39)

Further restrictions will be required of the T transformation,
but first to be completely general we can use an arbitrary reactance

matrix P by noticing
z=-H, 21" VP(Ps+PTVE ', V& ' VB!
=" =2y 2 YSRRTRSSYE S =
-1
VP IVQ H,u (40)

Thus, we have generalized the form of all the possitle reali-
zations given a particular realization, i.e., givena Q and a set of
H matrices. The only problem which remains is that of placing the
extra necessary conditions on T,
Let us hypothesize that a sufficient condition to be required of
T is
T'ZB. T = Z(B,v) (41)

That this is also a necessary condition to relate any reali-
zations of the same dimension is here only asserted, but let us at
least prove that all of the symmetry conditions of Eqs. 30, 31 and
32 hold,

‘W, V@ VP (42)
vEPI ' veH, veTlTvE (43)

.y

because of the fact that the P and Q matrices are diagonal. Also
from this fact

£, TR 'H, VO T Hp, 1)

"~

e H Ve (44)
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Premultiply by T' and post maltiply by T'~! and make the
substitutions of Eq, 41

£, e 'H, V8 'z, 2 Ve 'H), Ve ! (45)
Since @'l is diagonal we obtain
ZPB,YH Z(B, )= 11 (46)

which is true by Eq. 30,
(ii) Eq. 31 remaim unchanged

(i) Z(B, WP T/Q'H 22(0.6)- B 1V (47)
Using methods similar to those in Eq. 43

Z(8, IVE 'H ,Z(0,8) L TR H', (48)

VO T'Z(B.VIVEH,Z 0, 6) « Hy, (49)

finally Z(B, vH,,E(a, 8) = Hy (50)

Thus, the restriction on the T transformation is that it be a
"rotation" in the ...p+7(ﬂ.1) pseudo-space,

The matrix diagram showing the relations between the different
representations is given on the following page.

As in the RC case, there may not exist realizations for each
possible T. And, infact, given a desired P it may be quite difficult
to lind a T for which a realization can be found,

We now take four LC network realizations of the same im-
pedance and demonstrate the RLC transformations which relate them.

Example: Consider the impedance

el o J.2+12L2+3) (15
s(s™+2)

The intent here is to find T matrices which will make the trans-
formations between various different realizations. (Since Z(s) is
the reciprocal of Eq. 7 of the previous section, realizations of
Eq. 51 can be obtained by using the so-called '""dual networks' to
those previous realizations, )

Using the methods of the previous section we can easily find

the Foster Il realization as
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Relations between Network Representation

Diagram Showi



b
‘ -—-—+ i d_'
2 Y2 0T
Foster Il Realization
Now Eqs. 16 and 17 become
- - k: - r - o -
1/2 v, ’-0 0 A v, 0
d "
- l/6v3 =0 0 0 -1 vy 10| v, (52)
2 i4 L 8 0 14 -1
-2 ts J -0 l 0 0- -iSJ -.l-
i, =[0 0 1 1] v, (53)
V3
i4
's
and thus Eq. 35 becomes
fL=-t0o11)([izz 0 00 00 -1 o]}
0 1/6 0 0 s4/00 0 -1 3, (54)
0 9 29 R R I -1
0 0 0 2 W S = -1
To normalize this representation note that
v2 0 0 0
-1 0 V6 o0 0
@ =10 o Nz o0 (55)

9 0 0 1/V2



P =3 ¢

gi|o o o -
1 0 0 0
0 1 0 0

/o™ u

9 H,,

-1/v2

0

-1
o H, Q-
1/V2

-56-

(=
=

- 0 (56)

(=]
<
-
(=}
o

[o o 1/Ve 1/V2) (57)

Now compare this to the normalized Foster I realization which

is found from

5 , |
L

iy
—

13

1

Foster I Network

This network is represented by the equations

2/3 v, 0

d 2 v 0

S dt 1/4 13 § 0
4

15 |

0

0
-1
1

0

©C O =

(S L SO

v, 0
vy + 0 v, (58)
i 0
i -1
(59)



Thus,
V372 0 0 0
@4: 0 I/N2 0 o (60)
0 0 2 0
0 0 0 1
and so in normalized form
0 0 =17 0 0o o -/3/2
e K IS R 0 0 V2 -1I/J2 (61)
r 0 -1 0 0 = 0 -2 0 0
A S V32 N2 o 0
0"I
-1 = -1
Ve Hoo-* : ;ﬁ“@ {0 0 o 1) (62)
-l-

At this point it can easily be verified that the "rotation" which
transforms the normalized Foster Il form into the normalized

Foster [ is

'2‘/3 3 0 0
-3 =%/3 0 0
T = (63)
0 N ]
V2 V2
s 0 T S
V2 V2 J

Cauer I Realization
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The representative equations are thus

-I/Z v,
1/6 v
dat i
4
[ 44
Therefore,
gl =
So
0 -1
m-l ¢ 0 ©
i 0
«1 1 ©
0
2} 0
VvQ 'H,, =
= 12 ot
0

"8 9 <y |
0O 0 0 -l
1 0 0 0
[ -1 1 0 0

[0 0o 1 o]

T

vé 0 0

g kB

0 0 1/2
0

@-l E 0
V2
-We

H,v8'=(0 0 1 o

(64)

(65)

(66)

(67)

(68)

Again we wish to relate this normalized Cauer | realization to

the Foster Il normalized realization,

Foster II to Cauer 1 is

A T which will transform



Fi- 2‘«/3 0 0o
T = |33 -3 0 o (69)
T B S
Ve V2
R L EE o
- v2 v2 -

Once more, using the methods of the previous

section we find the Cauer Il network to be

. & pt

] 11

»’jll ||
Vz"

L5 — Vi lad

e
S

on<

a !
—

o
wn

Cauer Il Representation

This network is then represented by

-l — — o —y . .I - -
3 v, 0 0 -1 -l Vs 0
o v 090 0 v 0
d 25 '3 2 3
. - z + v, (70)
¥~ :
T i 50 79 0 iy -1
| 5 i b il o 4
i, = {0 0o 1 1] ’vz’ (71)
=
14
_15_]




So in this case

0 0 0
ot - o 5/N2 o 0 (72)
e 0 0 2/V5 0

0 0 -1 -l 0 0 -V6/5 ~V3]To
@-1 0 0 0 -l At . 0 0 0 -J5/2
1 0 0 0 Y63 0 0 0
- Y. & 9 ViJio V572 o y 3
(73)
rFe
Vo H,, = v H@'lz[o 0o 2 l]
2 T2 =21 75 V5 (74)
V5
il
L V5 ]
Now when we compare this realization to the others we find
that the T which transforms the Foster Il form into this Cauer II
form is
Vs 3 0 0
-3 33 0 0
R e S
0 0 _— -
vio V1o
0 Fe T
- V10 V10

These results are tabulated in the table on the following page.

It is interesting to note the fact that the Foster Il and Cauer |
forms yield the minimum total capacitance, while the Foster I form
offers the least inductance,

The RLC transform theory which has been presented seems to
have one very serious drawback. This is the restriction which re-
quires the number of capacitors and the number of inductors to re-
main the same throughout the transformations., This drawback is in-

herent in the theory due to the inflexibility of the numbers of current
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and voltage variables which in turn fix the numbers of inductors and
capacitors (in X these are the numbeis of +1's and -1's re-
spectively),

For example, a network which cannot be linked to the previous
systems, but which does yield the same impedance

2 2
Z(s) = L'_‘”l&'_”.l (76)

s(s"42)

is the circuit

e

S I T
Z(s) \ _____3,3 g

No nimal Realization

L]
—

ol

However, in a way, we are not as "interested' in this network
because it uses more reactive elements than the previous realizations,
In light of this we make the following definitions,

Definition 1: If H(s) is realized by a passive network using

the minimum number of reactive elements then we call this realization
minimal,

It is well known that this minimum number of reactive elements
which will realize a given H(s) (which is bounded at infinity) is the
minimum dimension of all square matrices H which permit the

11
representation

H(s) = Hy, - Hy (s + H, 7' H), (17)

where -'-[21' l{“ and EZZ are constant (this number is called the
McMillan degree).
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If we are only interested in time invariant minimal realizations
we can specify not only the total number of reactive elements,
but also the number of inductors and capacitors individually. So the
RLC transform theory will relate all constant, minimal realizations,

It is possible to calculate these minimum numbers of in-
ductors and capacitors explicitly,

Definition 2: The Cauchy index of a real rational function
Z(s) between the limits a and b (denoted by I‘.’Z(-))h the number
of times Z(s) jumps from minus infinity to plus infinity, minus the

number of times Z(s) jumps from plus infinity to minus infinity as s
increases from a to b,

Theorem 1: In any minimal realization of Z(s) where n is the
total number of reactive «!lements then

%[n-l?w Z(s)] = number of inductors (78)
%[n + I(_Dw 7Z(s)] = number of capacitors (79)

and any nonminimal synthesis requires at least this many inductors and
capacitors, 3

Example: Consider the impedance

2.5
Zis) 8 %-!H-Z (80)
s +s+1l

What number of inductors and capacitors must be used to synthesize
this funcuion ?
Because Z(s) is a scalar function with no common factors in
the numerator and denominator (i, e., irreducibile), then the maximum
of the degrees of the numerator and denominator is the McMillan degree
of Z(s). Thus,
ns 2 (51)



A pole zero plot of Z(s) readily & j"“
reveals that there will be no "jumps" in o
Z(s) as s goes from -m to +w. So s N———

I:an(l) = 0, and therefore

Pole-Zero Plot of Z(s)

Hn-1Z_2(s)] = 3(2-0] = 1 inductor (82)
F(n#1® Z(s)] = 3[240] = 1 capacitor (83)

and these are the minimum numbersof capacitors and inductors required
for the synthesis, In fact it can be easily verified that the network

Minimum Realization

does indeed have the impedance

2te) = s242842

s +s8+l

(64)

Therefore, since only the minimum number of capacitors and inductors
have been used (these numbers given in Eqs., 82 and 83 , thus this is
a minimal realization,

To sum up, we have said that any two networks with the same
input-output representation have a T which connect them if they are
minimal. However, the possibility of equivalent nonminimal realizations
can not be excluded. Still needed in this field is a type of transformation

which is capable of relating nonminimal forms to the minimals,
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It may be interesting to ponder the conjecture that the four

realizations given on pages 10 to 15 are the only minimal realizations

of that impedance function,
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Transfer Function Synthesis

We now address ourselves to the problem of generating a two-
port network which has a certain transfer characteristic. It is

common to express this transfer characteristic in one of the three

forms
i) z2), transfer impedance
i1) Y12 transfer admittance
'8
i11) wu voltage transfer functions —
12 vy

The voltage transfer functions are the 2,1 terms in the matrices

below
. - - a s B 12 - 2 _] —
1 12 S -
g z, B -1 | 1m-y el
11 22 ' 22 22 |
& = { 1)
32 y |= ' '
g W RGN % | R Y21 S Bia
i 2 | 1252 22 z), | L ?J | Y22 Y22 i !
First of all we consider building 2P with no regard for
minimality, or z, and LIYE This can always be dome if 2%
merely satisfies the condition that it can be expressed as the
difference between two positive real functions.
s ! Bk, gy 2

If this is possible then the symmetric lattics shown in the following

figure realizes z, 6 since an easy calculation yields

12



z +z2 (8, -85 |
E - a b { b a l (3)
_fb "% L * 8, |
+ (.)""""‘—‘!.__"‘“ Zl‘ / ——dl=O &
v A v,
" /’a% Sl
)\:L I —— \\J .
- O =R _....—-.'l 22‘ 1 ; U=
LT IR

A Network for Realizing 2, " ;h - f.

Certainly any function P which has all its poles in Re s ¢ 0,
which has only simple poles with real residues on Re s = 0, and
which grows no faster than |s| as |s| = ® can be realized in rthis
way.

I1f we ask for a synthesis of z,, which is minimal in the sense

12
that the number of reactances should equal the McMillan degree of
z12 then the situation is more complex. To begin with, we will
cons’‘er certain properties of these minimal 249 realizations.

For simplicity we take up only the case where ), has simple poles
and no pole at infinity.

Property 1 : If Z(s) is the impedance matrix of a minimal

realization of

n
z2,,(8) = ] a/(s+1) (4)
i=1
then o
1 =
g : | %
2(s) - Z(w) = 3 (5)
1=1 s+A1 ui
Q —
i a

-~



-6~

This form comes about because the McMillan degree is the sum
of the ranks of the residue matrices. Hence, minimality demands
that these residue matrices have rank one, and thus they must be in
the form of Eq. 5.

Property 2 The sum of the numbers of inductors and capacitors
in a minimal numbers of inductances and capacitors necessary to

build the z 1 (or '22) term of that realization. Therefore,

1
No. of L's = % no. of complex poles + no. of real poles with ‘i <0
No. of C's = % no. of complex poles + no. of real poles with El >0

It should be clear that the choice of the sign of Yy in Z(s)

is arbitrary. Hence, there are minimal realizations which use

different numbers of inductors and capacitors (provided some of

the poles of z,, are real). To make this point perfectly clear

consider the following two networks :

e T L
§ = % ! ‘T 12 Vs
Py, DN W—— : y -

Realization 1

for which
% s + 2 2
1
Z(®) = G (3% (6)
2 12s + 16
and

+—-T———J/3/j'.ﬁ--—- . T
: - =3 % :J 1 v
1 ‘ 2 qT 2

- O— — Sl g

Realization 2
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for which

1 28 + 6 2
Z(s) ® y—vv7—37v (7)

(s+1) (s+42) 2 '2 +2

———

And thus we have two different minimal realizations of

2
'12(') (s+1) (s+2) (8)
We now consider the question of generating all possible %12
realizations from a ,iven one. This will be more difficult than
the job of generating all Z realizations from a given one because
of the added degrees of freedom implicit in the rather loose
constraints on z, and Zyp
A two port impedance description after aormalization will
have the form
ey 1T . s S i
'5! i e B9 O
]
I v l = -hy L (Byy) hyy hyy 4 (9)
L Y2 BB h23 o (KRR
where the network symmetry confines
0
2 (8, Y)Hll 1(8 Y) = 11 (10)

where we ha'e used the fact that a=0 and 1(0,8) = -I. A change of

variables, x* = Px, with P constant and nonsingular gives

| 1 ‘ 1 _] F 3
- & | PH, P~ :
AL 1 Kt Ph, TPV

v i
V1 Ry B Rl e L B
SSRGS RO

23 33 -
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Naturally Eq. 11 will not have network symmetry unless

L,(B,Y)PL,(B,y) = P' (12)

However, only the terms which contribute to z,, are really essential
here, and the others can be adjusted to give network symmetry. The
terms which must remain unadjusted are the 1, l-block, the 1,2~
block and the 3,l-block. Changing the 1,3-block and the 3,2-block

to reflect the symmetry conditions brings about an M matrix of the

form :
s -1 -1 -
PH P Ph,, L,(B,Y)E T'L, (By)h 4
B [-hl'ip(By) . By, h23 a3
-1
By BE T Ry h33 _J

where we have 1nttoducod.i2( ,» ) as the signature matrix of the new

realization. Notice that there is one constraint on P, namely that

-1 =1,
L,(8,Y)PH PT L, (B,y) = (PH, P7) (14)

But since H' - I (8, Y)Hll 1(B Y) we can be more explicit and write

- L -1 ' ' "
L,(B,Y)PH P _Z_z(B.Y) P 'L (a,B)H, L (a,B)P (1%)
Premultiplying by glg' gives
' -
LN, = 05010 e

'
That is, L, P'L,P must commute with d,,.
Thus, the sole constraint on a P transformation which vields
a matrix with the proper network symmetry is that IP commutes with

M1 for some L, so we can make a diagram which will relate normalized

realizations.
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hyo | By
P Fi
i
| I
-1 f -1,~1
. (lﬁ+ﬂll) i- (l?*gﬂllg )
"y
& e e e e
; “al
-1
by Byt
z,, Diagram Relating Normalized Minimal Representations

Example :
Eqs. 6 and 7.
3 ;N [~ 1
M- % Vo1 5 -3 -1
1 1 1
" 12 Ve2 -3 ] 0
Vo1 1 0 0
L Vo2 _o 1 0

and after normalization this becomes

4 TR
4 2 2 /3

= A0 3 d
xz 3 K 0 2
v 1 2 0 0

| ; /i

| Vo2 0 2/3 0

o

We will here relate the two networks represented by

The state equation for realization 1 is

- -
0 ! vcl
|
-1 i ch
| an
0 e
| “pl
t
° 1t
0'7' :r—‘x
/5 | ' x2 !
| ! | (18)
o | '
| e
l i |
T '
| | v |



e
Similarly, the state equation and normalized state equation

for realization 2 are :

J . L]
“$% | & 3 =k @ Yoy
‘ |
. % " Fh e e
o | : (19)
'pl 1 0 0 0 1pl
Va2 {0 1 0 1 -
. = - -r "
- % 0 2 -2 0 x
1 /3 1
- *2 -2 3 0 /3 Xy
- (20)
v {Z 0 0 0 i
pl /3 pl
v 0 "] 0 1 1
Pl b - L

is : , =
i 1 k] -2
al 1.1 /z /3
0 0 2 ‘L 0
el R o ———
s ... ¥ 3| -
s + "z" - ‘i‘ ﬁ - *2- ] J
-1
1 3 1
-3 o3 0 2 | ! V2 843
*‘_.—.._._......_
(o 2/3 | (o /3]
| «
Realization 1 Realization 2

Diagram Relating Two Normalized Representations

12




Time Varying Realizations

Given the impedance

2
2(s) = 502822 )

8 +28+42
it is clear from the relationship between the Cauchy index and the
reactance sipgnature that no RC realizations exist which are time
invariant. But the possibility of time varying RC realizations
cannot be ruled out. In fact we will here generate such a realization

from the given RLC realization :

B 41wt
VT )

Figure 1 : Network which Realizes Eq. 1.

This network is represented by the Eqs. 2 and 3.
- X 1 1 1

LML
- X, -1 1 2 0

v = [-1 0] rx

P [ 1] 41 (3)
lz P

Moreover, we know that all other minimal representations of z(s)

which use constant elements can be obtained by rewriting the equations

in terms of x* where x* = Tx with L(1, -1)TI(1,-1) = T',

On the other hand, certain time varying transformations, T(t),
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can be found which will put this system in the RC class at the cost

of introducing time varying coefficients. Consider defining a

transformation

B ey

Then a short calculation shows that
co8 -gin t cos t -sin t -1
o I +[ .
int cos t sin ¢t cos t 1 0
Herce, x* satisfies the differential equation

Bl 1 0 cos t x4
~5g1 "] 0 1 sin ¢t x
"p ~Cos t -gin ¢ 1 1"

where in deriving Eq. 6 we have used the identity
cos t -sin t EA cos t sin t
[oin t cos t][-l 1] Lsin t cos t] -
cos t -gin ¢t 0 =1 cos t sin t 1
|'ltn t cos t][l 0][—-lln t cos t] r [n
Now the M matrix for Eq. 6 satisfies the equation

£(2,1)ME(2,1) = M'

(4)

(5)

(6)

0
oo
1

(8)

Hence, Eq. 6, if realizable at all, will correspond to a two capacitor,

no inductor circuit. Some experimentation vields the realization of

Eq. 6 given in Fig. 2.
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. —'“‘“—‘F‘/\
l-co l+co
st i 1221 +cost
A G
;,__* \-—7
l+cost : ‘r l-cost

2(8) —p % >/‘
%lﬂint

- l+sint {/[j\/‘xl 1-sint

l2+3l+2
Fig. 2 : Time Varying RC Realization of z(s) = 55—
8 +2842

If we let the terminal variables be voltage and charge then the
equations remain unchanged if we replace the resistances by elastances

(inverse capacitance) and replace the capacitances by resistances.

Henice, the network in Fig. 3 has

2
= gz2(s) = !5:2212 (10)

8 +28+2

F-F )

It is left as an exercise to the reader to verify that if the
capacitors in Fig. 2 are replaced by arbitrary impedances zl(u). then

the terminal impedance would be

) 1 1 }

s(e) = 2 - 2 { 1+zl(s+1) " 1+z1(ﬂ-1) an

Note that for :l(s) o % + B8 in Meg. 2,
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q
‘N ' \/ﬂr\
.
l-cost \ " /<l+cont
f \fVVV > all capacitor
\_ values are
A . expressed as
v - 5 e elastances
1-sint '\\ 1+sint
LN -'/.Q
" \
ﬁ{ ﬂ—ﬁwﬁﬂhﬁ““w</j
l+sint /(\ ;N\ 1-siny
[ S
s243842
Fig. 3 : Time-Varying RC Realization of z(s) = ——5—
8 +28 +2s
2(s) = 2 - 3 (—g +—24 i (12)
1
leo A%
1 s+i s-1
2(e) = 2 - 3 { 50T *aei-1 ) (13)
2
.22 sl (14)
(s+1)” + 1
lz+3s+2
z(s) = R (15)
s " +2s8+2

Likewise, {f in Fig. 3 the resistors are replaced by impedances

'1' then the terminal impedance is given by

1 . 1
1+(-+nz1(-+1) 1+(s=1) zl(s-i)

3(s) ® % - o } (16)

Neither of these results is difficult to prove if the system is
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described in the time domain and shift theorems are used.
The general approach to time varying realization theory which
these examples suggest will now be summarized.

(1) Find a set of firsr order equations in the form

“k ®Ax +Bu ; y*Cx+Du an

which generate the desired terminal behavior.
(11) Find a time varying, nonsingular transformation P(t) such

that the change of variables x* = P(t)x, which gives

i = (P(OART () + PP () )x* + P(O)BU (18)
y = ngl(t)!f + Du (19)

generates a realizable M matrix

papt e bet pe

M- 3 (20)

CpP D

At present the number of worked examples is limited. However,
this approach has been successful enough to allow the design of

certain nonreciprocal two-ports as well as some parametric amplifier

circuits.

Exercise : Compute z(s) for the circuit shown below

1ecost 7 1’% l1-sin \\k %Zlﬂint
Sy L
l+cost 'fﬂ, ' I-cogiﬂint . /X 1-sint

l+cost

where all values are conductances.

Most of these results are from a paper by R.W. Brockett and R.A. Skoog
and/or from R.A. Skoog's Ph.D. Thesis, Dept. of E.E., M.I.T., 1969,
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