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PREFACE

The research described in this report forms the basis for

a Ph.D. dissertation, "The Motion of Interconnected Flexible

Bodies," by Arthur Stewart Hopkins. This dissertation serves

as Volume 3 of the Final Report for Contract NAS8-28358, Mod. 6,

sponsored by the NASA George C. Marshall Space Flight Center,

and completed under the direction of Peter Likins, Principal

Investigator.
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ABSTRACT

In this report the equations of motion for an arbitrarily inter-

connected collection of substructures are derived. The substructures are

elastic bodies which may be idealized as finite element assemblies. The

substructures are subject to small deformations relative to a nominal

state. Interconnections between the elastic substructures permit large

relative translations and rotations between substructures, governed by

Pfaffian constraints describing the connections. In the special case of

screw connections (permitting rotation about and translation along a

single axis), constraint forces are eliminated and modal coupling is

incorporated.

This work is a generalization and extension of the recent literature

directed at the problem of flexible spacecraft simulation. It is an

extension of Hurty's "component mode" approach in that interconnected

elastic substructures are permitted large motions relative to each other

and relative to inertial space. It is more general than the "hybrid

coordinate" methods advanced by Likins and others, in permitting all sub-

structures to be flexible (rather than only the terminal members of a

topological tree of substructures). The presentation here is further

distinguished from the spacecraft literature by its development of the

basic relationships of continuum mechanics, on which spacecraft simula-

tion models are based.
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INTRODUCTION

Prompted by increasing economic incentives for weight reduction

and, in application to spacecraft, increasingly stringent pointing

requirements of scientific instruments, there has been a growing inter-

est in the dynamical behavior of flexible structures. Of course, the

basic equations governing dynamical behavior were developed by scien-

tists in the seventeenth and eighteenth centuries, principally by

Newton, Euler and Lagrange. However, direct application of these

equations to elastic continuum models is neither economically nor

computationally feasible. Research in recent years has been directed

toward obtaining efficient approximate techniques. Essentially two

independent approaches were developed.

The first approach was directed toward increasing computational

efficiency for the detailed models required to accurately portray the

small motion behavior of discretized models of flexible structures.

This method is known as component modal analysis, and is generally

attributed to Hurty (1965). As originally developed, the method

applies to small motions of nonrotating structures.

The second approach, in recognition of the need to include large

relative motions between portions of the structure, was directed toward

efficient computation of collections of point.connected rigid bodies.

Early research in this area was conducted by Hooker and Margulies (1965),

followed by Roberson and Wittenberg (1966) using what may be classified

as augmented body methods. A somewhat different approach to the same

problem was developed by Velman (1967) and Russell (1969), who used

what may be classified as nested body methods. As presented, both of
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these methods apply only to point connected rigid bodies assembled in

a configuration described as a topological tree.

The failure of the rigid body methods to provide adequate defi-

nition of flexible behavior, and the failure of the component modes

methods to include large relative motions, led Likins (1967, 1968,

1970) to a marriage of the two approaches. Using what he terms a

hybrid coordinate approach, he has developed a procedure for treating

the extremal bodies of a topological tree of point connected rigid

bodies as flexible. As currently conceived, the method employs the

Hooker-Margulies equations (as subsequently modified by Hooker (1970)

to reflect the constraint force elimination techniques developed by

Russell (1969)) for the central rigid bodies of the topological tree,

and techniques similar to Hurty's for adding flexible extremal bodies.

The present study consumates the union of the two approaches. In

this study all of the bodies may be flexible, the configuration is

0
arbitrary (topologically) and general differential (Pfaffian) con-

straints are permitted. In addition to the general development, the

special case of screw connections is treated and the resulting simpli-

fications to the governing equations are detailed.

The study is presented in three sections. The first section

presents the theoretical' background and the derivation of the varia-

tional equations governing the behavior of a material continuum in a

rotating frame of reference. The second section applies the finite

element method to obtain the governing ordinary differential equations

for a substructure. These equations describe the small deformational

motions of a structure idealized as a collection of finite elements.
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This section also includes a demonstration of the adequacy of linear

assumed displacement fields in the inherently quadratic Lagrangian for-

mulation. A procedure for linearizing the equations about arbitrary

frame motions is also presented, in conjunction with modal analysis

procedures. The third section details procedures for connecting the

substructures to form a structure, with the possibility of large rela-

tive motions between substructures. In addition to the equations for

general Pfaffian constraints, the results are specialized to the case

of screw connections (a rotation about and a translation along an axis).

In this special case (which includes most connections of practical use),

constraint forces are eliminated and the system equations are reduced

by modal coupling. The summarizing fourth section presents the analysis

procedure for an arbitrary dynamical system, as a means of abstracting

the salient features of the study.
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Section 1

MATERIAL CONTINUA

Newtonian mechanics provides an approximate description of a

portion of the physical phenomena within man's experience. Specifi-

cally it accurately describes some of those phenomena for which

relativistic effects are negligible; and whose spatial and temporal

scales are large compared to atomic phenomena and small compared to

cosmological phenomena.

Physical phenomena are generally analyzed by means of the following

procedure. First, a mathematical model is associated with the physical

phenomenon being studied. Next, results are obtained from the model by

purely mathematical methods. Finally, the mathematical deductions are

extrapolated to the physical phenomenon. Experience has shown that

these extrapolations accurately portray the physical phenomenon, if

the model is developed with sufficient care.

Since the second step in the procedure is mathematical, some

understanding of mathematics is necessary. Mathematics consists of

"mathematical objects" called "sets" (e.g. functions, numbers, geometri-

cal objects) and "relations" between these objects (A.O). (To preserve

the continuity of the presentation, the definitions of mathematical terms

have been placed in Appendix A. When a term with a specific mathematical

meaning is first used, it is set in quotation marks and followed by a

reference to the appropriate section in the appendix.) The most funda-

mental mathematical concepts cannot be defined and so are introduced, a

priori, as primitive notions. The most fundamental rules governing
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mathematics cannot be deduced, and so are taken, a priori, as true

"axioms" (A.O).

Analogously, certain physical concepts will be accepted as primi-

tive; and certain relationships will be taken as axiomatic. Physical

concepts are, ultimately, high order abstraction of information obtained

through the senses; therefore description of primitives is most conven-

iently carried out in anthropomorphic terms. The purpose of this section

is to identify the relevant physical concepts, and to associate a math-

ematical model with them. Although a reasonably coherent development

is intended, a mathematically rigorous treatment lies outside the

scope of this study.

1.1 Space and Time

The concept of a physical system implicitly involves the notions

of space and time. Both will be taken as undefined primitives. For

the range of phenomena being considered, space and time may be identi-

fied with the usual intuitive concepts. Some of the more relevant

characteristics of space and time will be listed.

Space is infinite, homogeneous and isotropic. It is independent

of time and physical phenomena. The concept of a point in space will

also be primitive; A distance can be associated with any two points

in space. An arbitrary reference distance (e.g. a meter) may be

selected as a unit. The number of reference distances comprising the

distance will be associated with the distance and the selected unit.

Time is infinite, homogeneous and independent of space and

physical phenomena. The concept of a point in time will be primitive.

Time is anisotropic; for any two points, one is before and the other

6



after. A duration can be associated with any two points. An arbitrary

reference duration (e.g. a second) may be selected as a unit. The

number of reference durations comprising the duration will be associated

with the duration and the selected unit.

The determination of absolute position in space or time is pre-

cluded by the infinite and homogeneous characteristics. Similarly,

isotropy precludes determination of absolute direction in space.

An anthropomorphic primitive, the observer, will be introduced to allow

the unique identification of points in space and time. The observer,

as a spatially anisotropic collection of inhcmogeneous points in space

and time of finite extent, is able to uniquely identify the points of

space and time by relating them to himself.

The mathematical model associated with any specific, uniquely

identified point in space will be a unique "mathematical object" (A.0),

generically denoted by "s"; similarly, for any point in time, "t". The"

distinction between the physical and mathematical is customarily left

implicit and the mathematical objects, s and t, are also called a point

in space and a point in time. The model of space is the "set" (A.0) of

all spatial points, which will be denoted "S",={s),- and called physical

space. The model of time is the set of all temporal points, which will

be denoted "T",= {t}, and called temporal space. It is convenient to

introduce the "ordered pairs" (A.1) of spatial and temporal points which

will be called events and denoted "e",= (s,t). The set of all events,

denoted "E",={e), is the "cartesian product" (A,1) of spatial and

temporal points (E S x T) and will be called event space.
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The mathematical models associated with distance and duration will

be "functions" (A.1), "a": S x S -+ R and "T": T x T - R, assigning non-

negative real numbers to pairs of points in physical space or temporal

space. The functions, a and T, define "metrics" (A.2) on S and T. The

function, "E ": E x E - R, p > 1, defined by
p

6 p[(18s,t), (2s, 2t)] = [o(1is'2s)P + [T(t,2t)P /p, (1.1-1)

is a metric for E. Similarly, in the limit as p + m ,

E [(1S,lt),( 2s,2 t)] = max[a(1 s'2 s), T(1t,2t)] (1.1-2)

is also a metric. All of the E -metrics are "strongly equivalent" (A.2).
p

Physical space, S, with a, temporal space, T, with T, and event space,

E, with any of the c , are all "metric spaces" (A.2).

If the "open sets" (A.3) of S,T or E are defined as arbitrary

unions of "open balls" (A.2) the collections of all open sets are

"topologies" (A.3), specifically they are "metric topologies" (A.3);

and the sets, along with the topologies, define "topological spaces"

(A.3). The topology on E obtained from any of the E -metrics is the

same as the "topological product" (A.3) of S and T.

1.2 Coordinates

The mathematical models of space and time will be related to the

real numbers to facilitate manipulation. The observer can establish

this relationship by constructing a coordinate system. He may

specialize an event as the origin, and certain spatial points as

dextral, orthogonal, coordinate axes. The duration between an event

and the origin, and the distances between the event's geometric

projections on the axes and the origin, along with appropriate sign

conventions, establish the usual coordinate system.
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The mathematical model of a "coordinate system" (A.4) is a

function from the topological space onto a cartesian product of the

real numbers (e.g. Sp: S - R 3 , T: T - R, or E]: E -- R ). Taking this

function as the only "chart" (A.4) in an "atlas" (A.4), physical,

temporal and event space become "Co manifolds" (A.4). The product

topology, E, with the chart, "EP ' = (SI'T'), is called the "product

manifold" (A.4).

The manifold provides a mathematical model that transcends the

coordinate system. Since a manifold, by definition, includes all

"admissible charts" (A.4), a change in coordinates does not change the

manifold. For physical space, origin translations and axes rotations

do not change the manifold; polar, spherical and the other customary

curvilinear coordinates (with minor restrictions) are all just special

cases of the admissible coordinates.

The metrics, 0: S x S - R and T: T x T - R, have a simple form in

3 123
terms of the usual coordinates, sV:S - R , = (xx ,x ), and

Tp: T R, = (x 4); namely

O(s2s)  = ([x 1( s) - xl( 2s)]2+ [x2 (1 s)- x2 (2s)]2+ [x3 1 s)- x
3 (2s)]2)

(1.2-1)

and

T( 1t,2t) = x 4 (l t) - x4 (2t) . (1.2-2)

1.3 Matter

Certain events, called material events, are characterized by the

presence of matter. Matter will be taken as an undefined primitive

notion, some of the more important characteristics of which will be

listed.
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Matter occurs as aggregates of spatial and temporal points, never

as an isolated point in space or time. Mathematically, material events

occur in "open sets" (A.3). Only aggregates of finite spatial and

temporal extent will be treated, so the open sets will be "bounded" (A.2)

(and their closures will be compact). An aggregate of matter, over

which the physical characteristics vary smoothly, will be called a

material continuum and will be denoted "M". The characteristics are

called material properties and are determined by the constituent atoms.

Mathematically, the material properties are functions, and varying

smoothly corresponds to being a "C Map" (A.4).

Inertia is an important characteristic of matter that will be

taken as primitive. It can be measured by the material property mass

density. An arbitrary reference mass density (e.g. a kilogram/meter3)

may be selected as a unit. The number of reference mass densities

comprising the mass density will be associated with the mass density

and the selected unit. Mathematically, the mass density is the Co

map "p": M -+ R assigning a non-negative real number to each point in a

material continuum.

Another important characteristic of matter is that it interacts

with other matter. This interaction is called force, and may be

associated with the anthropomorphic notion of a push or pull. Force

will be taken as a primitive, even though it is intimately related to

inertia. Forces may generally be categorized as either long range

(remote or field) forces or as short range (contact) forces; depending

on whether the distance between the interacting matter is very large

or very small in comparison to the dimension of the material continuum.
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Long range forces can be measured by body force densities. An

arbitrary reference body force density (e.g. a Newton/meter3) may be

selected as a unit. The number of reference body force densities com-

prising the body force density will be associated with the body force

density, and the selected unit. If the material properties are constant

over the material continuum, the long range forces vary slowly over the

continuum. Gravity is a primary example of a long range force.

Conversely, short range forces vary extremely rapidly over the

material continuum. If the interaction between matter exterior to and

interior to a material continuum is considered, the forces are extremely

high in the region of the "boundary" (A.3) and drop to negligible values

at an extremely short distance into the "interior" (A.3). It is custom-

ary to treat the integral of these forces, normal to the surface, as a

surface force density defined on the boundary. An arbitrary reference

surface force density (e.g. a Newton/meter ) may be selected as a unit.

The number of reference surface force densities comprising the surface

force density will be associated with the surface force density and

the selected unit. Forces at the points of contact between bodies are

primary examples of short range forces.

Forces are characterized by direction as well as magnitude. The

mathematical model for the surface or body force density at a point in

a material continuum is a "vector" (A.6) which is a member of a "vector

space" (A.6) at the point. The "tangent space" (A.5) at a point in a

manifold is a natural vector space to associate with a manifold. The

forces at each event of a material continuum collectively form a

"vector field" (A.5).
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The final characteristic of matter to be described here is

traceability. Matter persists through time; exactly the same matter

is present at any point in time in a material continuum (i.e., matter

neither appears in nor disappears from a material continuum). For any

specified event in a material continuum, and any (possibly different)

given time, there is exactly one event in the material continuum which

occurs at the given time and which may identified as being the identical

matter (i.e., consisting of the same atoms) as the previously specified

event.

The subset of the events in M for which the time "projection" (A.4)

is some reference time "t " will be called the time slice at t . It is
o o

a "submanifold" (A.4) of M (which is an "open submanifold" (A.4) in E).

A "diffeomorphism" (A.4) may be selected from the time slice onto the

subset "S" of physical space. The mapping is usually just the spatial

projection, but it may be used to establish a reference spatial state

of the material which does not occur in the time period being treated

(e.g., an undeformed state). The image, S, is an open submanifold of S,

and will be referred to as material space. The temporal projection of

M is an open submanifold of T, which will be denoted "T," and may be

referred to as the time range of the material continuum. The product

manifold, "M", = S x T, will be called material event space. It may be

noted that M and M are different and provide two different means of

identifying matter. The first, M, by its reference position and the

time (referred to as Lagrangian) and the second, M, by its actual

position at the given time and the time (referred to as Eulerian).
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The property of traceability can now be formulated as the

diffeomorphism, "Fi": M + M, which assigns to each material point (i.e.,

the reference position of the matter), "s" E S, and to each time,

"t" f T, that is to each material event, "m" E M, the event in the

material continuum, "m" E M, which represents the location at time t

of the matter occupying s in the reference state. The event, m, will

be called the position of the matter. It may be noted that this

implicitly limits the material continua to those subsets of event space

for which there is a 1-1 correspondence between the spatial points in

any time slice and the spatial points in the reference state.

The manner in which M is constructed implies certain relationships

for f. The times are the same (e.g., if (s,t) = H(s, t), then t = t).

The diffeomorphism from the time slice to S is just the restriction to

-1
t = t of the inverse of TI (e.g., (s, t ) = HI (s,t )). The usual

coordinate system, {x }, on M is the product of the restrictions of sy

and TP to S and T. In terms of the usual coordinates, the "coordinate

expression" (A.4) for R is

i i -1 -2 -3 -4
x o = (x x , x , x ) . (1.3-1)

1.4 Velocity

For any specific s C S, the position function assigns a point in

M to each time, t, E T. These points in M or M form a "differentiable

curve" (A.5) parameterized by the usual time coordinate. These curves

represent the trajectory of the matter which occupies s in the refer-

ence state. The "tangent vector" (A.5) to these curves at any event

has a physical interpretation as the velocity at the event. The

collection of all such tangents is modeled as a "vector field" (A.5)

13



called the velocity field and denoted "V" or "V". Each of the curves

is the "integral curve" (A.5) that passes through H (s, to) or (s, t ),

respectively.

An integral curve in M has the form "y(u)" = 1- (x (s),x (s),

-3 -
x (s),u); that is it is the fourth "coordinate curve" (A.5). Its

tangent is "y,(m)", = T (m). The velocity field, V, in M is thus
ax

V = . The tangent to the integral curve in M, H o y (u), is
ax

obtained from the "differential" of H (A.5) as

V[l(m)] = H*[y,(m)] = a[xo (m) (1.4-1)

ax ax

Recalling the coordinate expression for H, (1.3-1), the velocity field

in M is

i i
V -(x O) o 1  4 -- o o - .a (1.4-2)4 i  4  1ax ax 3u 3x

4 -4 _
It may be noted that since x o II = x the component of 4 is 1. (In

ax
4 1 2 3

the usual notation with x = t, x oI = r , x o =r , x o = rz ,x y

a A A 3 A
= i, j, - = k, this becomes

ax ax ax

ar ar ar
V = + +- k + ;+ (1.4-3)

t t at at (

the spatial part of which is the usual definition of velocity.)

The velocity at any point, m, is algebraically a vector in the

vector space "M ," the "tangent space" (A.5) to the material continuum.

The "coordinate vector fields," (A.5) " " form a "basis" (A.6)

for the space. Among all the bases, the coordinate vector fields
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satisfy the additional relationship of the "usual tensor transform"

(A.5). If "{yi}" are also coordinates, then V = ai (m) = b - (m)
.i ax ay

implies ai = bJ Dx  (m). The velocity at a point is, thus, a "tensor"

ay
of "type (1,0)", a "contravariant vector" (A.7), belonging to the

"tensor space" M (A.7).m

1.5 Reference Frames

The notion of a reference frame is equivalent to the concept of

the event space of an observer. If there are two observers, they will

be, in general, in motion relative to one another. The spatial points

that appear fixed to one observer appear to be moving relative to the

other observer (i.e., the observers' event spaces or frames of refer-

ence are different). If at some point in time the two observers

mutually agree upon the identification of points in space and time, and

upon a coordinate system, their temporal spaces and coordinates will

be the same. However, at any time other than the reference, their

physical spaces may differ (e.g. a point in space that they agreed was

the same at to, they will, in general, interpret as different points

at'any other time). If they both select the reference time for the

time slice and the same reference state, material event space will be

the same for both observers.

The mathematical model of this relationship is a diffeomorphism,

A : E' -- E, (1.5-1)

which assigns to any event in the second observer's space, the event in

the first observer's space that they would mutually agree is the

identical event physically. Let the p' - p coordinate expression for

this relationship (1.5-1) be
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x o A =  (x , x , x , x ) (1.5-2)

for the usual coordinates, ix i and {x' }, on E and E'.

Since the distance and duration functions are associated with

space and time, and are not dependent on the observer, they should

appear the same in both observers' physical and temporal spaces. The

metrics are equivalent to "bilinear forms" (A.7) on the manifold. In

fact, a and T may be obtained as the "distance" (A.7) between points

with respect to the bilinear forms (in terms of the usual coordinates)

6B dxa @ dx (1.5-3)

and

dx 4 & dx 4 . (1.5-4)

(The Greek postscripts indicate a range of 3, oa, = 1,2,3. Latin

postscripts will be used when the range is 4.) These forms are

"A-related" (A.8) to the bilinear forms

6 aX0 ) ( 0 P) dx'Y@ dx' 6  (1.5-5)
68 DxY @x, '

and

(4 o 4') ( o ') 4
acx Px, 0 P' dx4 O@ dx' . (1.5-6)

ax'4  ax'4

For the bilinear forms to have the expressions on E',

6B dx'c) dx '  (1.5-7)

and

dx' 4 ® dx '  , (1.5-8)

the Xi must satisfy

8(A" o 9') 8(" o 9 ')
x a= 6 (1.5-9)

16



and

a(X o ') a(X o ) =1 (1.5-10)

ax 4 ~x' 4

throughout E'. For these relationships to hold at every event in E',

the indicated partial derivatives must be constants, and consequently

the associated Xi must be linear in the appropriate coordinates. The

p' - p coordinate expression must, therefore, have the form

1 1 4 1 4 1 1 4 2 + 1 4 3
x oA = r (x' ) + 1 (x' ) xl+ c'2 (x' ) x,2 + cl (x' ) x' ,1 2 3

2 2 4 ,2 4 1 2 4 2 ,2 4 3
x oA = r (x' ) + c (x ) x' + c' 2 (x' ) x + c 3 (x ' ) x'1 2 3

3 3 4 3 4 1 3 4 2 3 4 3x oA = r (x') +' 1 (x' ) x' + (x' ) x,2 c '3 (x' ) x ,42 3

x oA = x' (1.5-11)

and satisfy the constraints

c ' (x'4 ) c'c (x'4) = 6 (1.5-12)

The arbitrary translation in time coordinates has been set to zero, so

the observers share the same time coordinate.

The coefficients of this expression have a physical interpretation.

The r terms represent the unprimed components of the displacement from

the unprimed to primed origin. The c't terms represent the direction

cosines between the xa and the x' axes.

The transform is apparently determined by the twelve real valued

functions of time, r and c'; however, the constraints limit the number

of independent c' to three. There are several alternative parameteri-

zations of the c' part of the transform. The Euler-Rodrigues parameters

are an example of a four parameter set, and the Euler angles are an
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example of a three parameter set. All three parameter sets have

singularities (i.e., transforms that cannot be represented by the set).

The inverse map, A-1 : E - E', has a p - p' coordinate expression

,1 -1 ,l 4 1 4 1 1 4 2 1 4 3
x o A - r (x) + c(x ) x + c 2 (x ) x + c3(x ) x

,2 -1 ,2 4 2 4 1 2 4 2 2 4 3
x oA r (x + c(x )x + c2 (x x + c3 (x ) x

x 3 o = - r (x ) + cl(x4 ) x + c2 (x ) x + c3(x ) x

and

4 -1 4
x' oA = x, (1.5-13)

subject to the constraints

cc (x) c (x) 6 (1.5-14)

Since the composition of A and A-1 must be the identity map,

x = r (x ) + c' (x) [- r' (x ) + C (x ) xy ]

Y

Sr (x ) - c'L (x 4 ) r' (x ) + C (x 4 ) c (x 4 ) x . (1.5-15)
BY

From this it may be concluded that r, r', c, and c' satisfy the relations

r (x) = c' (x4 ) r' (x4 ) (1.5-16)

and

,c (x4  c6  4)c (x c (x 6 . (1.5-17)

Recalling the constraints (1.5-12 and -14), it may be seen that
cB (x 4  ,c
ca (x ) = c (x 4 ) ;  (1.5-18)

that is, that C is the transpose of C'. Since its transpose is its

inverse, C is an orthogonal matrix.

A contravariant vector field, V' :M' - TM', (e.g. velocity) has a

A-related vector field, V : M -- TM, defined by
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v= A (V' =v' o A-1 a(x A)o A-1  (1.5-19)
ax'i  axj

(for the usual coordinates). Recalling the coordinate expression for

A (1.5-11), this is

vt ,4 4 (x ) c 1

V=(xv' (xv ) + c1 ,4 ac I+ x ' l oA -1 a

ax'4  ax,4  ax

+v,4 -1 a
+v' o 1  a (1.5-20)

ax

where the v'i are the components of V' with respect to the usual coordi-

nates. Note that v'4 = v = 1 for velocity.

As an alternative procedure, the real valued functions on M,

i o A-1, may be taken as coordinates, {yi , on M. The expression for

V under a change of coordinates is provided by the usual tensor

transformation V =v i  v . So
ay ayi  Dxj

Vy + ' ar(y4) a y ax

4 ay4 y

+ v' (1.5-21)

ax

Thus reference frames may be considered either as special classes of

diffeomorphic manifolds, or as special classes of coordinatizations of

a manifold.

It remains to be shown that the transform of the primed observer's

velocity is actually the velocity that the unprimed observer would

assign. If H' : M -* M' is the mapping from material event space to the

primed material continuum, then H = A o H', since M is the same for both

observers. If the coordinate expression for H' is
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x' o -- -1 -2 -3 -4
S' = ' (x , x , x , x x ) , (1.5-22)

then the velocity in M' is

@(x' oH') -1 a D'i

V = a(x li 4  P o 11 '" (1.5-22b)
axax" a@ x' ux'

i i i i -Substituting = A o H' in x o I =  oP yields x o A o H' = o P.

Inserting the coordinate expression for A (1.5-11) yields

ao o = [rU(x'4 ) + c (x' 4) x ' ] o H' and

4 4
= x'4  H'. (1.5-23)

The usual velocity in M is

i i
V = a(x ) l a o(ro a (1.5-24)

ax ax ax ax

Substituting (1.5-23) in (1.5-24) yields

ar (x ) + ( (x ,ca -4 a(x' o H') -1 aV + C-4 - (x o i') + c, ( ) x oH a
xx ax x x

+ 4  (1.5-25)
ax

4  -4 -4 -1 4 H ' 1- I =A

since x' o I' = x . Noting that x o = x and H' o -1

V = [c (x4)][v ' o A-1] + 3ra(x) [ c'( [x' o A-
ax ax

+ * (1.5-26)

as was obtained before (1.5-20 or -21).

There is a class of reference frames which are preferred since the

laws of mechanics, when expressed in these frames, have a simple form.

They are called inertial reference frames. In practice no such frame
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can be found; instead a frame which is sufficiently inertial to

provide the degree of accuracy required by the problem is selected.

Examples of sufficiently inertial frames of increasing accuracy are:

1) a frame fixed on the surface of the earth; 2) a frame fixed at

the earth's center with an axis pointed at the sun; 3) a frame fixed

at the sun's center with an axis pointed at a nearby star; 4) a

frame fixed in the "fixed stars." In what follows, a reference to an

inertial frame will mean a frame selected by a user as sufficiently

inertial for the problem being solved. Unless otherwise noted, the

unprimed reference frame will be taken as inertial.

A physical interpretation of the transformation of velocity between

reference frames may be obtained by considering just the components in

physical space. Time is then viewed as a parameter and is not explicitly

in the manifold structure. Physical space is a submanifold of event

space, and the tangent space to physical space is a submanifold of the

tangent space to event space. Specifically, if M(t) is the submanifold

of the material continuum at time t (i.e., the time slice at t), and
i 8

V = a 1 , i = 1,...,4 is a tangent to M at m C M(t), then the
8x

associated tangent to M(t) is V = a (t) - (t), a = 1,2,3 and will
3x

be called a spatial vector, or the spatial part of V. The spatial

vectors are generally easier to work with and are more familiar,

however a contravariant vector (e.g. velocity) does not transform

properly when treated as spatial, and an artificial means must be

developed for treating them.
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The spatial position relative to the primed origin may be defined

as

P' = (x , x x3 ) o H'-1 = xa - (1.5-27)
ax,' ax,'

noting the coordinate expression for H' (1.5-22). Similarly

p T-l -2 -3 -1 a a (1.5-28)
P = ( , x , )o - x -- (1.5-28)

ax axa

is the spatial position relative to the unprimed origin. Adopting the

convention of using the same symbol for spatially related fields,

A ) a -1 -2 -3 ,-1 - 1 a(x o A) - 1  aS= A,(P') = p (xx , x ) o I o o o A

,a -1 -2 -3 ,-1 -1 ,1 -1 a=p (x x , x ) o H o A c o.A
ax

=x' oA-1 c o - . (1.5-29)
ax

Recalling the coordinate expression for A (1.5-11) yields

P' . (x8  r o A- 1)  = P - r o A -

ax ax

=P - R, (1.5-30)

where R is defined by

R 8  -o -
R = r oA (1.5-31)

ax

The spatial field R may be recognized as the position of the primed

origin relative to the unprimed. In summary

P = R + P' . (1.5-32)

As noted, velocity does not transform properly as a spatial vector

field. To circumvent this, differentiation with respect to a reference

frame will be defined. Differentiation is conceived of as acting on the
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a a a a a a
vector field as a whole; so if U = u , then -(U) (u )

ax a at at a1

+ u ( The derivative of a basis in its own frame is
at aax

defined to be zero (e.g. ( ) = 0 = ( ) but - (-) # 0)at at t ,a at a
@x @x ax"

With this notation, the definitions of velocity become

S(p) ap (x , x o (1.5-33)
-- at ax

and

, la-1 -2 -3 -1 aV' (P') = a' p (x - . (1.5-34)
-- at at ax,a

Inserting the A-i  related basis,

A 1  a a(x' oA1 ) a c a.A I A oA - = c a (1.5-35)

ax ax ax,Y ax,

into the spatial part of the velocity (1.5-26), yields

a c'
arV= - a +c c e , + c- x
at ax a ,axy  a at ax'Y

3 (R) + V' + c 3 ' x a (1.5-36)
t at C ax 'Y

where it has been noted that

c ,a = 6 and V' = A (V')

The term cY c '  = c Y c is the component matrix of a "skew-a at c a at a

symmetric" tensor (A.7) since

c= -- (6  ) -() ctatt at 

at23
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A skew-symmetric tensor of type (2,0) is naturally isomorphic to one

of type (1,0) (in a three dimensional vector space). If this isomor-

phism is denoted by the "Hodge star operator" (A.9), then the asso-

ciated contravariant vector field is

* @= - - = - Q' . (1.5-38)

This vector field may be physically interpreted as, and will be called,

the angular velocity of the primed frame relative to the unprimed

frame. The components, w , are determined by

1 = - 1 c a (c , (1.5-39)

where E is the "Levi-Civita epsilon" (A.9). Conversely, a tensor of
ya

type (1,0) is isomorphic to a skew symmetric tensor of type (2,0),

customarily denoted by a tilde, "~", over the symbol for the vector

field. Thus

* - * -6 a aa a
W x' = ax' ax

S ' , (1.5-40)

where

W E Wi

The double underline denotes a tensor of type (2,0). Combining the

two definitions yields

-a = - L a- (1.5-41)cW _ Y j2 6 c at T(5

Noting the identity,

E = 6 6 6 CL (1.5-42)Y E: 6E
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(1.5-41) becomes

~ 1 -a 8 [c 6~c 6
2 E 6 6 n t

= [ c c) - c a (c) . (1.5-43)
2 T at I n t n

Recalling the skew-symmetry, (1.5-37),

,aB c - ( = - E~8 , (1.5-44)

in accord with the definition (1.5-40).

With this notation, the previously obtained expression for

velocity, (1.5-36), becomes

V (R) + V' + 7v x a
x,

= (R) +_ V' - x a' i (1.5-45)

The last term may be recognized as the "cross product" (A.9) of the

vectors Q' and P' at any point in the field. So

V R + V' + Q' x P' (1.5-46)

This may be written in the more suggestive form

(P) - (R) +- (P') + ' x P' . (1.5-47)t atC at

On the other hand, (1.5-32) implies

T- (P) Tt (R) + -~ (P') . (1.5-48)

Thus the correct transform for velocity is obtained by setting

S(p') (P') + ' x P (1.5-49)
at - at.-

Actually no redefinition is required since (1.5-49) holds for any

vector field. To demonstrate this, let U' = u' a. Then in terms

of the A-related basis,
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a (u') a (u'a) - + u',a (
at at ,x' at xaIax ax /

-t (u) )- + u --at axx' at ax /

= -- (U') + u' (1.5-50)
t at a ) ax

Returning to the primed basis yields

a (U') -- (U') + u'¥ cy  aat at - at aC u

S -- (U') + 'y U,
at

at (U') + E2' x U'
t- a - - , (1.5-51)

recalling the previous definitions.

In summary, the proper transformation of velocity,

V = (R) + V' + 0' x P'at . (1.5-52)

or

a P a a'
(P) = (R) + (P') + Q' x P' , (1.5-53)

is obtained by the definition of differentiation,

a U )
(U') = - (U') + Q' x ' . (1.5-54)

1.6 Newton's Laws

Newton's laws form the basis for much of structural mechanics.

Although originally stated for a particle, the first and second laws

have been generalized to a continuum. For any point, m, in a material

continuum, M, which is in an inertial reference frame, E,
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pA - F = 0 , (1.6-1)

where F is a spatially contravariant body force density representing

the sum of all long and short range forces at the point; p is the mass

density; and A is the acceleration.

The acceleration will be defined as the spatially contravariant

vector

a a -1 -2 -3 0-1 3a
A = (V)= p x x x ) o . (1.6-2)
-- at 2 aat ax

The acceleration in the primed reference frame,

a ' a' I a(-1 -- 2 -3 -1 A' = - (V') = ---- ptu(x , x2  x ) o I I (1.6-3)
a-- t 2  a

is related to A by

A = (R) + V' + ' x P'

- tt at
2

(R) + -- (V') + Q' x V' + (') x P' + ' x - (P')t 2 
- at at at

+ 0' x (' x P')

S2 3

= -- (R) + A' + 2Q' x V' + -- ((') x P' + ' x (n' x P') .2  .tat
(1.6-4)

Since Newton's laws hold at any event in a material continuum,

taking the "inner product" (A.7) with arbitrary spatial vector field,

6P, and "integrating" (A.10) does not affect the identity,

JT m(t) *(pA SP) - fTi (t) *(F - P) = 0 . (1.6-5)

The integration may be considered as an integral over a time slice

followed by integration with respect to the time parameter, or by

returning to a four dimensional model, as the integral over the
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material continuum expressed in iterated form in accord with

Fubini's theorem. This distinction will not be pursued since the

"associated Riemann integrals", (A.10), are essentially the same,

fT(T)fP(M(t)) (pao pa) o - 1 dp3 dt

PT )(T)JS(M(t)) (fa 6 p) o -1 dp3 dt = 0 . (1.6-6)

The first term is transformed to material event space to remove

the time dependence of the spatial region of integration,

fT 3S 
) (pa 6pO ) Ho -1 det/U d3 dt . (1.6-7)

The Jacobian determinant, det (ap/au ), may be interpreted as the

ratio of an infinitesimal volume in M to one in M. Since the mass

density, p, may be interpreted as the ratio of the infinitesimal mass

to its volume in M, the product poH dettP/ )may be interpreted as the

mass density in M and will be denoted "A". The first term in (1.6-5)

becomes

* (P A 6P) (1.6-8)

Recalling that. A = ~- V , noting the identity
Sat

S(V) 6P -- (V • 6P) - V (6P) (1.6-9)at at at

and performing the temporal integration (since the spatial region is

now independent of time) yields for the first term of (1.6-5)

a~ * V * P) -ff *["vY -  ()j. (1.6-10)
t 2

where -T may be taken as meaning 2. Recalling V = a/at(P), and
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noting that

2 (P). (6P) = - (P + P) - (P + 6P)

- _-(P)- (P) + (1 P ), (1.6-n)
at at - t -

the last term of (1.6-10) may be recognized as the "variation of a

functional" (A.11). The first term of (1.6-5) may be written as

1 A

The term in the inner parentheses of the last integral is constrained

to be zero, so the.termL may be thought of as Lagrange multipliers for

the constraint. The term - p V * V is called the kinetic energy density

A
and will be denoted "T". The process which yields the second two terms

of (1.6-12) from the last term of (1.6-10) may be recognized as a

Legendre transformation.

The stationary conditions for the terms in (1.6-12) include

requiring the coefficients of the independent variables, 6V and 6L, be

equal to zero (e.g. V = P and L PAV). Eliminating as an inde-

pendent variable by substituting $V yields

aTfs (P V * 6P) - * V V V

+ 6 + PVV - P (1.6-13)

for the first term in (1.6-5).

The previous results are associated with Newton's first and second

laws. Newton's third law states that the force on matter, due to its
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interaction with some other matter, is equal but opposite in sign to

the force on the other matter due to the first. If the force on the

matter at m I due to interaction with matter at m2 is denoted "j(mlm2)"

then

J(m2,m ) = - 1(m l ,m2 ) (1.6-14)

At any point, m, in a spatial region, R, let the sum of all long

range forces be denoted "X", let the sum of all short range forces on

the matter at the point due to matter outside the region be denoted

"S", then the total force, F, at the point has components

a a Aea f A-i •.1
f =x + + (R) (m, P- ) dxdydz (1.6-15)

Integrating these component fields with respect to the usual coordi-

nates, find

fp(R) fa o -1 dxdydz l(R) x 0 -dxdydz +f,(R) opL-dxdydz

+ p(R)f \(R) l -1 -1)dxdydz dxdydz

(1.6-16)

The last integral vanishes; and the integral of short range external

forces is customarily replaced by the associated boundary integral,

yielding

op(R) 1 dxdydz =f(R) x o 1 1 dxdydz + p(R) duldu

(1.6-17)

or on the manifold

S* R30 (1.6-18)
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1.7 Stress

in the previous section (1.6) the integrals of the components of

the total force and the body force vector fields over a region were

related to the integral of the components of the surface force over the

boundary. In an appendix (B.1) this result is applied to a tetrahedron

with an apex at an arbitrary point, m, base normal to an arbitrary

vector, EN, and sides defined by the usual coordinate planes.

The form of the result suggests the definition of a stress tensor

field of type (2,0),

= 8t x8  - (1.7-1)
ax ax

Then a surface force on a surface with an outward pointing normal,

n -- , is determined as
ax

S N " (1.7-2)

where the "dot product" (A.7) in the usual coordinates is

n Ca (1.7-3)
ax

It may be noted that the surface force on the face with an outward

pointing normal, - is in accord with the definition
ax ax

in the appendix.

It has been shown that there is a tensor field called stress,

that when dot multiplied by the unit outward pointing normal to a

surface, yields the surface force density; and that the force density

so obtained is consistent with (1.6-18). However, this has only been

shown for the usual coordinates. In Appendix B.2 it is demonstrated

that the relations are true for arbitrary coordinate systems. Thus

31



the relation, (1.6-18), may be written

fR N .+ R * E * ) . (1.7-4)
ax ax

The last integral can be converted to a volume integral by means

of "Stokes' theorem" (A.10),

RR [ ( = d * -( *

a (1.7-5)

Since the region of integration is arbitrary, the components, and thus

the vector fields, are related by

F = X + V , (1.7-6)

where "nabla, V," with a dot denotes the "divergence" (A.12). In the

usual coordinates, this is

f = x a a + (C0 ) . (1.7-7)
ax ax ax

1.8 Virtual Work

Substituting (1.6-13) for the first term and (1.7-6) for the

second term of (1.6-5), yields as a consequence of Newton's Laws

- i * (T) +* PV att

+ aI - * (PV 6P)

S.* (X 6P) - 1 .M(t) ) PJ= 0 . (1.81)

Body forces generally depend on the amount of matter present, so

it is convenient to transform to material event space. The product
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X aDet p  is called the body force referred to the undeformed

volume and is denoted "X." The body force integral may then be written

fTfJ M(t) * (x ' 6P) =-J * 6P) . (1.8-2)

The body force may be separated into two parts, a conservative part
which may be obtained as a "gradient" (A.12), CA V and a non-

_ = - W , and a non-

conservative part, NX. The body force integral (1.8-2) becomes

fJM * (X P) = * (fif i 6) JL * ( P).

(1.8-3)

Noting that

A A
- vW 6P = - W(P + 6P) + W(P) + o( S6P I), (1.8-4)

the body force integral may be written

A
The function W is called the potential energy density field. This

result may be generalized slightly by allowing W to be a non-

conservative explicit function of time, in which case W is said to be

lamellar or irrotational.

The integral involving the stress may be rewritten by noting the

identity

e( 6P = V 6P : V 6P . (1.8-6)

The double dot ":" means contractions are to be performed on the first

indicies of both tensors and then on the second. In terms of the usual

coordinates this identity has the form

(c ) 6P : (at 6PB) -6P a (6PB) . (1.8-7)

ax 8x @x
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The stress integral in (1.8-1) may thus be written in two parts,

-fTTfM(t) t*[( =)* j ()* 6P1

fTf M(t) * V 6P) .(1.8-8)

The first stress integral in (1.8-8) may be converted to a boundary

integral via the generalized Stokes' theorem (A.10), yielding

JTJoM(t) *y .( t * * * t ) .1.8-9)

The boundary integral may be separated into two parts, the spatial

surface, aM(t)s, over which surface forces are prescribed, S, and the

surface, aM(t)p, over which positions are prescribed, P. The condition

that actual positions equal the prescribed can be introduced with S as

a Lagrange multiplier. With these definitions (1.8-9) may be written

ITf M(t) *1 * iSPt = *M() S 6fL t(

-.ffMa(t)* k 6P - faM(t)*6 S E P( . (1.8-10)

The second stress integral in (1.8-8) may be transformed to

material event space yielding

fff: M(t)*6z ( 0 * : V P)o adet 1 .(1.8-11)

The stress tensor may be expressed in terms of the usual basis for

material event space. However, the stress represents the magnitude of

the force on a unit area perpendicular to a unit normal in S, not M(t).

The rectangular parallelepiped with a base defining a unit area and

with a height determined by the unit normal becomes, in S, an oblique

parallelepiped with volume equal to the Jacobian determinant. To
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obtain the force for a unit normal and unit area in S, C can be

multiplied by the Jacobian determinant det . The result is

called the stress referred to the dimensions of an element before
A

deformation, and is denoted " "

The differentiation in the gradient may be converted to material

event space coordinates. In terms of the usual coordinates, this

becomes

aCx~ po oil = o p o poT oo

Ix'(iorrl]A fl,--1- -i -i- 1 il)

= C OR jo []

-yB -x1 B

Noting the identity

_ Oil-(X6 1

=oa ono Oi

o1J

35
= oa(H a (,P l op Oil

ax au

(1.8-12) may be written in the form
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/ XY -1 1E a-s 171a(x YO n) Aa (X o1 )

1 x x0 0 )
(a(x 0) 1 a(6p o)

S x _ , (1.8-14)
ax ax

where the first term in the product may be recognized as the related

stress in S, a . Alternatively, the expression for the related stress

in M(t),

a-ye a a

(xo ) -1 Aye - a(x o 1) -11 a aS o 0 - o 0 , (1.8-15)
x xx ax X

could be directly substituted in (1.8-12) with the same result.

The second term in the product in (1.8-14) may be recognized as

the variation of the strains. The strains are determined from the

fundamental bilinear form (1.5-3). The H-related form in S is

a(xo H) a(x o n) d' -6 (x° H) dx y (® dx . (1.8-16)
ax ax

The strain tensor, "E", is defined to be 1/2 the difference between the

bilinear forms,

1 *
E = [ 1 (b) - b]

1 r(xao H )  3(xao R )  6-

61 d (dx dxi (1.8-17)

the usual form can be obtained by noting

y6 = ax a  * (1.8-18)
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The strain can then be written in the form

E 1 (xoH - x ) a(xaoH - x ) + 6y (x o1 - x )
- 2 1a a a3x 8x +x

6 (xoH' - x

+6 x dx Odxa I
1 [(xYoH - x- Y) (
2 ax~

+ (x o - x) a(x oH - x ) --6 (

6 -6
In the customary notation, the difference in coordinates, x oH - x,

is called the displacement, u , the form 1 + a  is just the

usual definition of the linear strains, and the term ! u is
2 -ax yl

just the correction to provide the geometrically nonlinear definition

of the strain. Now, noting that

6- 6 6 6a(p o ) a(6p o v-) + a(6p o P) a(p o P)
ax a'y a x 3cx

6 6- 6 6- 6- 6
= a(p + 6p ~ ) (p + 6  o ) _ 8(p o P) a(p o )+ o(6PII)

ax x ax a

= 6 [2E (1.8-20)

(1.8-14) may be written as

1A 6- 61 [Aye Ay [ (p 6 o vI) a(6p o v) 1
+2. +o + (1.8-21)

37



Since the stress tensor is symmetric, interchanging indices gives

1D 6 o 6 0 o[ y] [(p o a(6p o i) - (pio) a(pp )

1 A A (1.8-22)
- a 6[2E e (1.8-22)
2 Ey yE

Thus the second stress integral (1.8-11) may be written

S V 6P f 6 + 6 ff [ -

(1.8-23)

where the term in the inner parentheses of the last term is constrained
A

to be zero, so the term.E may be thought of as a Lagrange multiplier.

The bar over nabla implies the associated expression in material event

space.

The stresses may be represented as the sum of non-conservative and

conservative parts. If the deformation is adiabatic or isothermal,

AyE
then the process is conservative and a de Y is a perfect differ-

ential (Washizu, 1968). This assures the existence of a strain energy

A
density function A. The second stress integral (1.8-23) may thus be

written as

V6P 6f (+fP - E)'J

+fj *(N : 6E) (1.8-24)

where the prescript "N" denotes the non-conservative part of the stress.

In summary, Newton's laws have as a consequence (1.8-1), which

may be rewritten, inserting Equations (1.8-5,-8,-10 and -24), as
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A A A
- 6  * (T) + 6 * ( ) + 6 * (A)

fJf, t 6[) (, IPP)]I j f- .(C 6P)

+- * P + * N : = 0. (1.8-25)

In the absence of inertial terms and non-linearities, and assuming the

prescribed surface forces and displacements are constant, this becomes

P* I A

If ( A) A ) T+S

ff f N 6N :(L -, , 6 P ) f t) .0, (1.8-26)

which may be recognized as the Hu-Washizu variational form.

1.9 Virtual Work for an Arbitrary Reference Frame

The expression of the principle of virtual work in Equation

(1.8-25) was based on Newton's laws in an inertial reference frame

(1.6-1). The result may be transformed to an arbitrary reference frame

via the results of Section 1.5 (Equations (1.5-32, -46 and -54)). It

may be noted that since the strain is defined in terms of bilinear

forms, and since bilinear forms are independent of reference frames,

the strains do not change. Proceeding term by term,
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jT) = -

S2 R R + V' '

Yf J a.L R__ VI+ [R' PI

+P t R V' + Rat [ ' x P']+1V']*[2' x P'] . (1.9-1)

Noting the identities in Appendix A.13, this may be written

+ () *(pV') + Rx ' S *(') + ' - (P'x V,*

(1.9-2)

where U is an identity tensor (i.e., U= x = x). The potential energy

becomes

*W(P)] ( =J f * [W(R + P')]

=* [' W'(R, P')] (1.9-3)

The strain energy, as previously noted is independent of frame. The

constraint between velocity and position becomes
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J pV ( IV P
S t P)]

R + V' + ' x P ( R + V' + Q' x P'

R - P' - 7' x P'
at- at - -

SV') + -L *PVA ' *(p x V'),
-t - f- _

a aP P) / ('\ 1 fD a'\1
- -R - *(p') -fS* V'* -FPI -Q *-*P'x P'at - atjs J\ at-/ -As 3 t at

(1.9-4)

The next integral becomes

*yf EP = - EE : , (1.9-5)

since R is constant spatially, and since the stress and strain are

independent of reference frame.

The integral on the temporal boundary becomes

Ia V 6P*( ) = (aT  * R + + V ' + ' P') (R + 6P'

= aT  R" 6R *() + Q (P' x 6P')

+- R(- *(A6P') - R' 6R*f- *(6P')

at - s -JS

+ 6R*f-. *(p V')+- *(p V'* 6P') . (1.9-6)

The prescribed positions on the spatial boundary become

fT Jam (t) k ( - =IA f-i (t)1'  (R + P'- R - PP')]

-~f fM(t)p* (St. P)

M(T)1  * S'. P P (1.9-7)
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The other remains unchanged. The prescribed forces on the spatial

boundary become

.4.f M(t)(S* 6: = -J Mt)S)S* (6R + 6P')

= 16R- .fMt) S + )J M(t) (S'.6P

(1.9-8)

The non-conservative body forces become

S- Rf* )+j ( ? *) JP . (1.9-9) 6P')

The non-conservative stress integral remains unchanged.

The dot products of R with vectors defined in the primed basis

introduces the direction cosines into the variational form. The

relationship between the direction cosines and the angular velocity

(1.5-39) may be introduced as a constraint

16 * H' 6 + 161 ) cY c (1.9-10)

The Lagrange multiplier, H', may be interpreted as the angular

momentum.

Inserting Equations (1.9-2) through Equations (1.9-10), yields

for Equation (1.8-25)
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R Lt R Rf *()- "*(pV* V')
2 at t - S2_

-0' - -*P (P' P') U - P'P'] ) -'

- R*- *( V') + ' x R -*(pP') - * (P x V')
at D SS

+f* (W') + *(A) + - R- * V' -
SS at - S t P

+f- * : (.(v ' -.'] P) + _'* * x a '
V P + * X SB

= 2 ya t t

+f- I-fam, t * [S'* 6R] - JaC) )* [6(S'* P')] + *(t) p [6(S' * P)l+ f M(t)p -- JM(t) -. M(t)p*l S.

+ R *6R A ()+* a(R 6 P') ]

R -*(V') + -*(pV'. P') - [ ' _( )

( Appr x 6P1')

6R fM(t)( - fM(t) -/ JM(t)P\ - /

- SR. j*(N_) _ ,(~ ') + N ( : 6 ) o. (1.9-11)
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SECTION 2

SUBSTRUCTURES

A substructure will be defined as a finite collection of material

continua satisfying certain properties. The continua must all coexist

in the same region of time. They must have no interior points in com-

mon, however, each must have part of its boundary in common with

another. The shared boundaries of the continua will be called the

internal boundaries of the substructure, and any parts of the boundaries

of the continua which are not shared will be called external boundaries

of the substructure. The union of the closures of all the continua

must be connected, and the boundary of the union is the union of all

of the external boundaries. The position and stress are generally

required to be continuous at all internal boundaries.

The final requirement is that the positions deviate from a

reference spatial state by a small amount for some reference frame.

This last requirement forms the basis for an approximate solution,

which is the subject of this section.

2.1 Finite Elements

The variational expression (1.9-11) has as known functions of

A
the coordinates and the other variables the potential energy, W', the

strain energy, ., the non-conservative body forces and stresses, N

N A
and N ~, and on the external boundaries, the prescribed positions,

and surface forces, P and S. The prescribed positions and surface

forces on the internal boundaries, P and S, the velocity, V', the

position, P', the stress, . , the strain, E , and the surface force,

S are all unknown functions'of the coordinates.
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Direct solution of the governing equations is seldom possible.

Instead, the unknowns are represented as a series, and the least sig-

nificant terms are truncated. The domain of the expansion may be the

whole substructure, the material continuum or a mixed form involving

both. Moreover, the domains for the various fields need not be the

same. When the domain of the expansion is the material continuum, it

is called a finite element. Since use of expansions for the other

domains is rare, only finite elements will be treated.

It may be noted that the series expansion could be in the

temporal as well as spatial coordinates. In fact this has the advan-

tage of reducing the partial differential equations to algebraic

equations, as opposed to the ordinary differential equations

obtained by expanding only in the spatial coordinates. However, the

temporal approach will not be pursued here, and the conventional

spatial expansion will be used.

The development of a finite element seems, at present, to be as

much art as science. The developer may arbitrarily select the geometry

of the elements, the fields to be approximated, the approximations

to be used, and the variational form to be applied. Aside from certain

mathematical and practical considerations, the worth of an element is

determined by the accuracy it provides for a given number of degrees of

freedom, and by its convenience in use. Although the development of

finite elements lies outside the scope of this presentation, some of

the more pertinent aspects of the method will be included.
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Geometrically regular material continua are generally selected

because of their analytical convenience, and the ease with which they

are assembled. Parametric elements are a notable exception, where an

irregular spatial region is mapped into a regular region in a parametric

space.

The choice of which fields to approximate can be divided into

three categories: first assumed compatible displacement fields,

second assumed equilibrium stress fields, and third mixed partial

assumptions on the stresses and displacements. There are further

choices within each category. For instance, with a displacement

assumed model, the strain could either be separately assumed, or

determined from the strain displacement relations. In fact, the dis-

placement fields could even be different depending on application

(e.g., one for strains, another for the potential energy associated

with body forces).

The fact that any complete series expansion provides an exact

solution to the equations, makes them desirable choices. (However,

any series expansion may be acceptable.) Polynomials are frequently

used because of their convenience and since P0 (the set of all poly-

nomials to order ) is a complete function space for the class of

continuous functions (Weierstrass theorem). Trigonometric expansions

are also used, especially for the circumferential direction in

axisymmetric elements.

The variational form used may be some variant of (1.9-11),

which is essentially of the Hu-Washizu form, or some variant of the

dual form obtained by a Legendre transformation of the strain energy,
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yielding a complementary energy formulation. Generally, finite

elements are developed ignoring the kinetic energy terms, considering

only the strain energy and sometimes the potential energy. When

the finite element developers do include kinetic energy, it is

usually in the simpler form of Equation (1.8-25) rather than Equation

(1.9-11), with the velocity field explicitly assumed to be the time

derivative of the position field. In this special case, the associated

terms are usually referred to as "consistent mass."

To be of practical value, the finite element field approximations

must converge to the correct values for the field as the element size

decreases. A finite element generally must satisfy the following

criteria to be convergent. First, the approximation should be capable

of representing a constant value of the field or its derivatives up to

the highest order appearing in the functional. Secondly, the approxi-

mation should be continuous to one order less than the highest deriva-

tive appearing in the function. Generally this is met by requiring

that the highest order derivative be continuous almost everywhere

(i.e., except on a set of measure zero, e.g., piecewise continuous).

The finite elements are assembled by applying the variational

form to the whole substructure. The conditions at the interfaces are

just the previously mentioned continuity requirements. If these are

met, the internal boundary integrals cancel. However, the requirement

may be relaxed, if the discontinuity is at the boundary, by explicitly

retaining the internal boundary integrals. In practice, when using an

assumed displacement field, the satisfaction of compatibility require-

ments is usually made automatic by transforming from coefficients of

48



an approximate expansion to the displacements at nodes on the

boundary. If the displacement on a boundary surface depends only on

the displacements of the nodes defining the surface, compatibility

is established by requiring the displacements of those nodes be

identical for adjacent elements. This is the basis of the "direct

stiffness" method.

As an illustrative example, the derivation of a beam finite

element based on an assumed displacement field is presented in

Appendix C.l. The derivation includes the effects of geometric non-

linearities.

2.2 Finite Element Dynamics

In this section, and in the material that follows, it will be

assumed that the assumed displacement finite element method is

being used and the assumed displacement field is known. Alternatively,

a mixed or stress assumed formulation may be used, provided that the

displacement field is known, or can be obtained in closed form. To

incorporate dynamics, the variational expression in Equation (1.9-11)

must be used instead of Equation (1.8-25). Taking the indicated

variations in Equation (1.9-11) and noting the definitions of vari-

ations of vectors in Appendix (A.14),
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* R - 'aa V'- _'[(P''P') U - P'P']'St R-t - •-

A 
-

- S~'[(P 6'P') U - P 6'P']'-~V _' R - R "'V'

- r ,R6 + p Rx P'6'Q'- ~' x P'6 R
at a at at

+ x- rR(''x P')Sc - p'x V''6' '

Sat - a

+ _'x v'.6'P'- 'x P'.6''+ V'~.~6R + Va'. 6'P'

+ . p IY a( c )+ a + aay6 6a8
*A\ a ax ''

+ '- R+ R 6''V- 6 ) P'+ at - at at at -

+ - rP (V'- - P
at at - a

S- P 6'V'+ 6'V' 6 ' P + A'x V' - - P '6' '

'x V'- P '6'P'+ I_'x P'. 6'V'-6' ~ P' +(VP'-E):6 L

+ :(6V P'- 6E) + * .'6+ . c c c 'h' +h 6'w'

+ h' - 6 1 a 6c y+ c 6 I N ' .6R - Nx, '
6 2 y at at S

SX* p yc 6 cy a + N :6E- a a x /IP

BM,() S'*6R - P'*6'S' - S'*6'p'+ P''6'S'- S'* p 6ca

P 'a a/j
+JT IWO)jS'- - PS .'P'- PSI. 'y P_ (p c 6

R _R + R ' R + R .6, + V'* 6R

+ PV'*6'P'+ '{Py ' c 6 )+ 1 x P'- 6R + Ix P.6Pa a x
+ xa Y . (2.2-1)

Noting the derivative relationships,
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at at at

" ' '' 'A
A' 6' 2 P (A' • 6P') - A' 6P' (2.2-2)

- at - t at

and integrating by parts, yields

at t - t + at ) + at at -

- N.J1+M(t) * - S'}+JaM( * PS) . 6R

+Ij -f-- $  R - V'- ~' x P+ I PI + AtR

_' + 'x P' 6R

f ~- - I- 
('+_T- a ~- R -L'.x P'+ R + '-a P'at t t-

+ Ov' + Q' x P'). 6'v'

• a + a e + rB )6 E: + * j(_e'- E) 6
+1f * (a+ a6 a N) J c

+Y *{(6+ cB6h'+f f(t)P -

+ * ×SQ Ix [' x P'] + a' x -- R + ' V' + V/ + L

+f t [V'] - ' - P + - [a-'at ax P' - '

at [t -- at )

+f ( R - - V' - p' x P' + 2- R + OV'+ P') * 6'P'

+ ~ { : 6V P', +J M(t) s' 6'P'+ M(t) S*(- _ s.. 6 P

+ff.C * {(- $'.[(P'P')u - P'P'] + R x R P' - P'x V'aat

+ P' x ' - Pf +H 6' '

+f--f * - ra v'- - r[iQ' x P'] + [V']Y P'B cY

Equation (2.2-3) Continued
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+ PJ t) - S p c fM(t) { s" p - a

1 6 cy p a p vYpcy

62 y ca *tp r p' + PV p 'c

+ p(' x P')Y P cyJ) c. (2.2-3)

The stationary onditions of this form provide, in essence, the Lagrange

equations for the element. It has been assumed that all vectors except

R are expressed in the primed (body fixed) vector basis, and that R is

expressed in the unprimed (inertially fixed) vector basis.

If the displacement and velocity fields are assumed to have the

form

-_ a -3 -3 MP' = x - + y -- T + z -5T+ Piq and
i=l

N
V' = .V' jp , (2.2-4)

j=l

some of the stationary conditions may be immediately identified. The

coefficient of 6R must vanish over the time domain, T,

M R + M x + iq) + W' x P' i
at 2 - t o- - i-

+ M S' x [' x ( P' + P' q)] + M.P' . + M 'x .P'.- -0- i-i 1- - 1-

= * N, + M(t)p *[S, ] + M(t Ps' , (2.2-5)
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where the repeated Latin subscript implies summation over the M q's,

and

M = * {}, 0 + y-+ z z) /M and

i' =~ pi'"/M.

In addition, the coefficient of 6R must vanish on the time boundary,

T

N
F v' jp iP'i (2.2-6)
j= 1 J ii

where

=V' * {p V'}/M

j-/ A

The coefficients of the independent variations in 6'V' (i.e., the

6jp) must vanish for all time,

N

i V i p  kiG k (2.2-7)

where

ijV = S * {iai '  .v', .G *f(iP' .V'-

A A
The coefficients of S c, 6 ,6'S', and the terms VW'-6'P

NA --

X 6'P', : 6V P', S'* 6'P' and S'-6'P' are the terms associated

with the elasticity problem. .It will now be assumed that the elasticity

problem has already been solved by the methods noted in Section 2.1.

Moreover, it will be assumed that the results are of the form

Q = Q  ijK q + ijC jq , (2.2-8)

where the iQ are the generalized forces associated with the surface

and body forces, and the jq are the generalized (generally nodal)
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displacements with any constrained additional coordinates eliminated.

The coefficients are presumed to include the effects of preload

(geometric non-linearity), and any other effects, linearized for small

q, so that they are constant or at most known functions of time.

If additional displacement degrees of freedom were eliminated

during the solution of the elastic problem, those constraints are

modified by dynamics and the static coefficients are improper for the

dynamics problem. Properly, those extra coordinates should be retained

in the problem; however, the problem will be disregarded here by

selecting the field resulting from eliminating the constraints as the

initially assumed field. In this case, the previously noted terms can

be replaced

Jii* {(ao+ aA A A
* a + Nae _6~ +y 6a e + (V P'- E): 6 + :6V P'

VW'- NX 6P + * PP'- P') * 6S'- S'* 6P'T M(t) -

+., 4.M(t) * I-PS . 6d

= [Q + ..K .q + ..C .4 - .Q 6.q . (2.2-9)

Returning now to the stationary conditions for Equation (2.2-3),

the coefficients of the independent variations in 6'P' (i.e., the 6.q)

must vanish for all time. In the simplest dynamic case, Q' and R both

zero, this gives

Q= + ijK jq + ijC j4 + ikG k . (2.2-10)

Solving Equation (2.2-7), assuming jV is non-singular, or taking a

pseudo-inverse if it is, the stationary conditions are
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S. + J C  4 + i K Jq = Q Q , (2.2-11)
ij j ij i i

where
N N

-1
ij M = E F ik G kZV jZ .

k=l £=l

This result is the usual dynamic model. If .V' = P', then the mass
J- j -

is called consistent. If a piecewise continuous linear field is used

for the velocity field, the result is nodal masses. However, just the

assumption of this simplified field does not eliminate coupling between

the nodes. To eliminate coupling the constraints must be violated.

This procedure is justified if the resultant energy error vanishes as

the element size tends to zero. It may be noted that the assumed

velocity field appears nowhere else. Thus for what follows, the

question of proper velocity field is immaterial and will not be

further treated. Instead, it will be assumed that the array ..M is

available.

The mass terms associated with the displacement field could

conceivably be derived based on a different assumed displacement field

from that assumed for the elastic solution, with or without violation

of the constraints. This possibility will not be pursued here.

Returning to the general case, the stationary conditions of Equation

(2.2.-3) provide, instead of Equation (2.2.-1), as coefficients of

the independent variations in 6'P' (i.e., the 6.q)

-n .1 *'- '*..I *' .q + M .P' - R + 2Q'. .0 q + - '. O- = - - ji= -J - 2i -t - 1-

t+ _ jiQ q + iM + iC4 +ijKq = Q - Q , (2.2-12)
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i * 0 i- - ip'? ,
iji =L * {[(iP'. P')U - .P' iP'

1ij = i- j-

o = * {pOP' x "P'} and
i-J 0

ijO =f- * {01P ' x ,P '} "

The remaining terms govern the rotational behavior of the element.

The coefficients of 6H' must be zero so

6 1 6 y a aW'= - E c c . (2.2-13)
2 yx t *

This may be recognized as the nonlinear differential definition of '.

The coefficients of 6'Q2' must also vanish,

H' = I'. * + ' I q + I ' q + '. . .q j qi- i i= i ij 1

+ M P'x R + M P' x R q + .0 .4 + . q 4
0- at - t - i 1 i-i i i

where

= * {U [(' p - 0OP' ]} . (2.2-14)
0- = 0 '

The Lagrange multiplier, H', may be recognized as the angular momentum

about the primed origin (i.e., *{ P' x VI).

The variations, 6 ca are not independent; only three are. Instead

of reducing the generality by selecting a specific three parameter set

(e.g. a set of Euler angles), the three independent equations can be

obtained by noting the skew symmetry of cY 6c. The difference witha a.

its transpose will contain only the three independent linear combinations

of variations,
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a 6 c = a cy  6 ca agC 6 6

= a c 6 6 c 6 c
= a E y 6  6YcY 5 6 6

= - a c c 6  C , (2.2-15)

where the skew-symmetry has been noted. Adding these expressions,

noting appendix Equation (A.9-14) and interchanging indices,

a 6 = -( cE i c c
c a 2 L\ a Y _E 6 s

= bn (I E c 6 c 6 ) . (2.2-16)

The quantity in the parentheses represents the three independent

variations (r = 1,2,3), so the stationary conditions bI = 0, can be

obtained by multiplying the coefficient of 6 cB by ED B cY.
Ot Y a

The coefficient of 6 cB on the time boundary, after multiplication

by EnB cc is
E a

0 = E c 6 cY +  * p t ra+ c v'+ c(Q'x P')

y6 6 - 6 6T) 6, Y' * pfp c - -r+ v 6Yv,
j Y 2 C 1 1 t

+ 6Y (Q' x P'

h' - + - *1 p C' [c r + V' + (Q' x P')

H' = * P' x R + V' + ' x P , (2.2-17)

which is the same as Equation (2.2-14) (i.e., H' is the angular

momentum about the primed origin on the time boundary as well as the

interior, t f T). The final stationary condition is that the

coefficient of 6 c, after multiplication by E C c ~ , must vanish in
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the interior of the time domain,

0= n c ( 1 6 6 a h'1 cy - 1 6 c
t ch T cot 2 c -a Y c

SA a a y'a

at -t -t

+ V Y p _ NAy ,B et(

+ *M(t)t s pB cJa +I M(t)S* P p c

h' 66 - 6 E + h'6  6I - 6I6 Cywmt 6 2\ E Y Y6 K Y Ey7 C

T E a Tc Aata-+ - 'x- P '] c- t-r - p -- r
SAc_ NAE}

+ : p V'- N

+SM(t)p* - sE p s+ M(t)S* - 8 p, s'EF

t n+ x x (' x P') x -paIt /)-p'x

+[~ x (4' -~]N

+P(t)e *- P x SO + M *I- P' x .S' (2.2-18)

Rearranging and multiplying by axV gives

f<H *fA[V ' P,+ ' x ] A
' + ' x ' = p - x R + P'x - y,+X

t t

+ - M(t) * P x S + M(t)* P' x S (2.2-19)

This may be recognized as the identity

S{P'x V} =l *a P' x R+t P + P' x A
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where it may be noted that pA = F. The expression can be converted

to a function of Q', instead of H', by inserting Equation (2.2-14).

To linear order in q this is

-. " I + -' x (I * ') + __ ' I  q + '*I i + q' x ('q + I)at 't 8 2

+ I * 'q + I  _' i + Q' x i * 'q + M P ' x R
at

+ M(Q' x P') x ~ R

2

- at

+ M i P ' x  R q + M .P' x - R qi-- t2 - -- t - - 1-- t - i

+ 0 + Q x .0 4
F- 1 - 1 .

M P' x a R 4 + M(' x 0 ') x- R + M(' x ') x R q
i- at - 0 at - - at

_-* S- {P' x [- VA' + , + M(t) x ' M(t)* PxS'}
+f -WX 'SM ( t ) P + J a M ( t ) S *PI X S 11 .

(2.2-20)

or rearranging,

t Q I + Q'x I * '+ X • .I q + ' Q + Q'x (Q' I) q

+ .1 • 'iq

2 2
+ .1 .4 + Q'x .1 ' .q + M ' x -- R * M .P'x R q1=  - = P 0 t- 2- 1-- 2 -

+ .0 + Q' x .0
1- i x 1-

= * {P'x [- VW + N]+ J JM(t)* ( PX S' + JM(t) *{P'x S'} .

(2.2-21)
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2.3 Finite Element Assembly

A substructure, as a collection of material continua, is itself

a material continuum. Therefore it must satisfy the same variational

principle as the finite elements. Each finite element deformation field

may be thought of as a piecewise continuous deformation field for the

substructure, defined on the element and zero elsewhere. The varia-

tional form for the entire substructure differs from the sum of the

forms for the finite elements by the presence of pairs of internal

boundary integrals in the later. The displacements must be continuous

(compatible), and the stresses must be continuous (in equilibrium)

throughout the substructre. In particular these conditions must be

satisfied on the element boundaries. In this case, the pairs of

integrals cancel. Since the finite element method is only approximate,

there are generally violations (usually of equilibrium for the dis-

placement method) and the integrals do not vanish. However, under

appropriate conditions, it can be shown that the contribution of these

integrals goes to zero as the mesh size approaches zero (i.e., as the

number of elements in the model approaches infinity). The details of

these effects belong to the study of finite elements, and will not

be treated here. It will be assumed that an appropriate model has been

developed, and that the mesh (number of elements) is sufficiently

refined so that the contribution of the integrals is small enough

to be ignored.

The result of the application of the compatibility requirements

to the collection of finite elements is to assemble them into the

substructure by eliminating the dependent generalized displacements.
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In the case of nodal displacements, the assembly of the stiffness

terms is quite automatic and is called the direct stiffness method.

To generalize this procedure slightly, all the parameters associated

with a given finite element will be denoted by a pre-superscript index

associated with the element. For an element, a, the vector OP' will
0--

be divided into two parts, a constant portion, SaP', defining the

position of a local origin (used in developing element properties)

relative to the substructure, plus the position relative to the local

origin for the element, P'. Now if the variational forms (e.g.EO-

(2.2-3)) are summed for all of the elements, assuming the internal

boundary integrals are negligible, the stationary conditions for the

frame variables are the sums of the element conditions. If the

compatibility requirements between elements are expressed in terms

of N independent j in the form

N

i ij4 T  (2.3-i)

they may be incorporated in the form with Lagrange multipliers,

E Ma
~iA - i T q), (2.3-2)

where E is the number of elements. (In the case of direct stiffness,

the q are the nodal displacements in global coordinates, the .q are

the nodal displacements of the a element in local coordinates, and T
ij

consists of direction cosines.) The stationary conditions on the

deformation variables are the same as for the elements individually,

except for the additional term X. The coefficients of 6 \ just give
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Equation (2.3-1), and the coefficients of the variations of the global

coordinates, 6 , are just a a
a=1 i=1

Summing Equation (2.2-5) over all elements provides the trans-

lational equation,

sM - R + x s' p ?_ +A ' q + 2 x S q
t2 + .t - OE +t - j-

_ j _ jq +=F , (2.3-3)
+ ' (' x 0') + 'Qx(,'x P + P S , (2.3-3)

where double Latin subscripts imply summation i=l,..,N and

E E

0-V SO- EO-

E M
S- g a S

M P aiT/ M and

a=1li=l

Sf  
, {- VW+ + *{S'}+ *{s'} ,

a= aM(t)F  fp (t)S

noting, however, that only the external boundary integrals are

retained in the force calculation. Similarly, the sum of the nominal

rotational Equations (2.2-21) over all elements gives

SI ' S ' S A S a'
I + + x + L21 q+ I .1 'at - t - j= j= t -

+ Jl S= j2 J=
s ,+ * + ' x ' ) + O' x *

+ M x2 R + M 'x 2-- R + O + Q'x STSt2  - t2 - j- - 3- J '

(2.3-4)

where
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IM PI + a 2a 'P U
= S -+ O EO SO- SO - =

- c a c' -w, O P+ +aP Pv
so- EO- E - SO- SO- SO-  '

E M
S a- IaT + aM t a ,

1=: E 0I? 2 = '] and=1 =i=1 i = O- i - SO-  - ij

E M

SO = O + soP  x J and
3- U=1 i= ij SO[ ij a

E M

S -E .,(fC{t[,,,ars 0*" a [- p jx Y

a =l P  4EO- P+ i jT x - VWA'+ N

+ +P ap aTP x [S'1
aaM(t) SO0  EO- i - I

+ i-i jX [sj'
PM S

again noting that only external boundary integrals are retained in the

torque calculation.

Aq previously noted, the incorporation of the constraints via

Lagrange multipliers results in the appearance of the additional term

n th thiA in the i equation for the a element. Solving these equationsSj
for the Oi , the stationary conditions for the 6jq are the sum

E M

C= iFl iX ijaT = 0. In other words, the new stationary conditions are
a=1 i=1

obtained by premultiplying by ,OT and summing over all i in all

elements a . The elastic equations (2.2-12) become
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- 0, S 3, -, S _+ SM S , 2

S S ' S S-'

+ 2Q'. -j + 0 _ + 0 - 'q
- j- k j- at -- - t -

SR + j C + JS K = jQ (2.3-5)

where

E M M

jk= E F i T ,

a=l i=1 k=l

E M M T)

E MM
S = (TOr K a nd

jRM  a - - (ij ik k

=lI i=1 k=l

E M MjM=C : a ( a

j =_ ik kt '

£K = x ( iT ad

a=1 i=1 k=1 ij A k )

a=l i=l kl

E M

S F T [ l a I N PP* S,

a=1 J- i=1 j -- t
SM(t)s

again including only external boundaries.

It may be seen from the above equations that the following

parameters are required for each finite element:
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La a a a
M EO ' ' ' ' ik ' i i ' ik ' ik' i

The last two parameters, kK and Q, were calculated for a beam

element in Appendix C.l. The remaining terms are calculated for the

same element in Appendix C.2, as an illustrative example. The

parameters, s0 i 'jT, appearing in the preceding equation are

specifically associated with the assembly procedure. It should be

noted that the positions are defined for a deformed state which may

require a geometrically nonlinear static analysis for their computation.

Finally, the generalized force parameters must be computed from an

assumed environmental model.

2.4 Quadratic Expansions

The development of the finite element as presented here, uses the

unknown coefficients of a series expansion as generalized coordinates.

However, an expansion in the form
M

P' = p + i iq (2.4-1)
i=l

suggests the possibility of extending the expansion in q's to include

higher orders (i.e., terms involving the square of q). Although the

approach adopted here does not prohibit such expansions, it does make

them seem rather unnatural. However, such is not the case when the

problem is approached from a physical rather than a mathematical view-

point. It is quite natural to interpret a linear displacement field on

a surface as a rotation of the surface. However, if rotations are taken

as generalized coordinates, the displacement is not linear.

All of the remarks above would be largely academic if the linearized

equations resulting from a quadratic approximation were the same as
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those resulting from a linear expansion. However, the essentially

Lagrangian approach adopted here results in a different system of

equations when quadratic terms are included. The best that can be

hoped for is that the systems of equations resulting from the two

methods are mathematically equivalent, although non-identical. The

two systems are equivalent (i.e., have identical solutions) if each

equation of one set is an independent linear combination of equations

in the other set. If the equations are equivalent, then inclusion of

quadratic terms is optional, and, for convenience, they may be

omitted. That the resulting equations are equivalent, has been

demonstrated both analytically and by example. Appendix D.1 presents

an analytical demonstration of the equivalence of the equations.

Appendix D.2 presents a particularly challenging example of a

gimbaled mass for which the nonlinear field is more natural, and for

which the nonlinear system of equations is more easily derived. It

is also noted that the same result holds for a sequence of rotations

about inertially fixed axes, as for the body fixed sequence in the

example. Based on these results, it may be concluded that quadratic

terms may be omitted. Therefore only linear terms will be retained

in the rest of this presentation.

2.5 Substructure Modes

The motion of a substructure, isolated from all other substructures,

is governed by the three scalar second order equations in R (2.3-3),

by the three scalar first order equations in S' (2.3-4), by the

three scalar first order equations in C8 (2.2-13), and by "N" scalar

second order equations in jq (2.3-5). Unfortunately, "N" is frequently
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large, sometimes hundreds or even thousands. Moreover, much of the

motion governed by these equations is of the uninteresting, small,

high frequency type. It is desirable to reduce the dimension of the

problem by eliminating the uninteresting motions and retaining only

the larger, usually lower frequency, motions. Modal analysis provides

a basis for this reduction by uncoupling the equations and providing

the frequencies associated with the degrees of freedom. The frequencies

provide one of several possible criteria for truncation. The uncoupled

nature of the equations guarantees that the solution of the remaining

equations is unaffected by assumptions on the truncated modes, and

allows formal establishment of bounds on the truncation error.

Calculation of modes is possible only for constant coefficient

linear equations. The substructure equations are inherently nonlinear,

and even if linearization about a nominal motion is possible, the

coefficients are not generally constant. However, the need to reduce

the problem is sufficiently overriding that the method is frequently

applied to problems for which it is not formally correct. In the

presence of good engineering judgment, this has been quite successful.

Before pursuing this tack (in 2.6), however, it will be helpful to

identify the class of problems for which the method is formally

correct.

The equations will be linearized by assuming that the .q represent

a small disturbance about the nominal motion (the rigid body motion

solution when all q = 0). (It should be noted that there are cases

for which the nominal solution is grossly different from the frame

motion in the actual solution.) Now, arbitrarily partitioning the
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force into a nominal force, OF, and a disturbance force, F, the

nominal motion equations corresponding to Equations (2.3-3, -4 and -5)

are

S 1a2  S- +S I + s. s
M RL + - -Ix t t OSF, (2.5-1)

S O'+ 'x S w_'+ M ~P' R = OST and (2.5-2)
at

S I S,+ SM S-, S @' 0S+ M - R + 0 *-- = Q (2.5-3)
S j t2 - j- at j

Similarly, the disturbed motion equations are

SM + 202'x S P + - - x S- + 'x S )'x ] .} is

(2.5-4)

Sx + x x R + - '* S
SJ -+ J = -+ J at - at j=

+ sI *at'+ Q'x '. S )+ Q'x S* I = 1ST and (2.5-5)

j + S C + 22' SO) +SK - '. S • S 0 * - q

lS
= Q . (2.5-6)

Equation (2.5-3) may be written in integral form as

@ ' a t - 1I [ Rt2 + a E2' x op+ Q_'x '_,×

*sP' * . (2.5-7)

Noting that in the limit as the mesh size approaches zero, the SP

become a complete function space, it may be concluded that the body
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force must satisfy

X= 2  + - x P' + 2' x X (2.5-8)

t2- - - 0 -

where 0X is constant in time and equilibrates the initial and boundary

stresses. It may be noted that this body force also satisfies Equations

(2.5-1 and -2).

This leads to the perhaps surprising conclusion that linearization

may be about an arbitrary time varying nominal motion, if the nominal

motion is driven by body forces in the form of Equation (2.5-8). It

may be noted that the prospects of finding a physical source for body

forces of the indicated form are rather dim. However, this result

suggests an analytical technique. Any forces applied to the sub-

structure may be represented as the sum of the equivalent body force and

a- disturbance composed of the applied force and the negative of the

equivalent body force. This technique provides a formally correct

solution and reduces the structural equations to linear form (2.5-6).

There is one potential difficulty with the method. The linear

solution is predicated on the i remaining small. For those problems

in which flexibility grossly alters the nominal motion, the gross

difference between the nominal and actual motion would appear in the

rigid body modes inherent in the j. (The rigid body modes are a con-

sequence of the unconstrained, displacement method, finite element

formulation adopted here.) There are two ways in which this difficulty

might be overcome. If this behavior is anticipated (e.g., by "energy

sink" analysis) or is detected during integration, a pair of body
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forces, a nominal force, and an equal but opposite disturbance force

(summing to no net force on the system), could be applied to transfer

the rigid body motion in the j to the reference frame variables and

maintain the smallness of the j . Alternatively, when the motion in

the rigid body modes exceeds some predetermined bound during inte-

gration, the motion in the rigid body modes could be transferred

to the reference frame, and the rigid body motion in the q reset to

zero.

The presence of rigid body degrees of freedom in the q, is a

consequence of the displacement method. The method also results in

redundant Equations (2.5-4 and -5). Equation (2.5-6) is sufficient

to determine the j . Qualitatively, this is a system of ordinary

differential equations of the form

M + C4 + G4 + Kq + Jq + Aq = Q . (2.5-9)

The terms have the following characteristics. The "mass" matrix, M,

is constant, real, symmetric, and positive definite (in some special

cases positive semi-definite). The "damping" matrix, C, is constant,

real, symmetric, and positive semi-definite. In the special case of

proportional damping, it is assumed that C can be expressed in a Caughey

series. The "coriolis" matrix, G, is constant only if o ' is, other-

wise it is a function of time. It is real but skew-symmetric. The

"stiffness" matrix, K, is constant, real, symmetric, positive semi-

definite and consists of two parts, the elastic stiffness and the

"geometric" stiffness associated with the preload. (If the preload

depends on spin, then K is not constant unless o' is.) It may be
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noted that in the case of structural instability (buckling) K

becomes indefinite. Such cases are excluded here. Sometimes K is

made complex to incorporate "structural" damping. The "centripetal"

matrix, J, is constant only if 0' is, otherwise it is a function of

time. It is real, symmetric, and negative semi-definite. The

"spin-up" matrix, A, is null if the spin is constant, constant if

- ' is constant, and otherwise is a function of time. (In somet -

formulations A is a function of spin;see 2.5 and related appendices.

The spin independence is a result of the Lagrangian formulation.) It

is real but skew-symmetric.

The equations, in general, must be integrated numerically.

However, if the coefficients are almost constant, certain stability

results may be derived, and if they are periodic, Floquet theory may

be used. However, in order to calculate modes, they must be constant.

Consequently, the nominal angular velocity must be constant. In

addition to systems for which the spin is constant, it is customary

engineering practice to approximate a slowly varying system by time

slices (i.e., assuming that the deviation from constant coefficients

is negligible over some period of time). This can be formalized by

selecting the nominal body forces to provide constant spin, and

absorbing the change in the disturbance equation for some period of

time. Although a large constant spin and a small constant rate of

change of spin might be assumed, for formally constant spin A vanishes.

In general, second order equations must be converted to first

order to obtain modes. Appendix A.15 outlines the method. The

71



special case of zero spin and proportional damping is an exception for

which eigen solutions can be obtained directly from the second order

equations.

When a substructure must ultimately be connected to others, a

number of researchers have noted that "free" modes of the substructure

do not always provide the most rapid convergence during a process of

modal synthesis. A number of alternative procedures have been

suggested which may speed up convergence. These include constraining

certain degrees of freedom, adding masses and adding stiffnesses. A

comparative analysis is forgone here; it is merely noted that all such

methods result in a transformation of the variables, and q, to

a smaller dimension set of coordinates, n,

A (2.5-10)

and a reduced order set of equations

[a] { } + [8] {I = {} . (2.5-11)

The analyst's choice of method is based upon a number of factors

including: ease of calculating the modes, storage requirements for the

reduced equation, rate of convergence, and ease of coupling sub-

assemblies.

As an example of the modal analysis procedure, the component

mode method, generally attributed to Hurty (i.e., constraining certain

degrees of freedom) is applied to a very simple substructure in

Appendix C.3.
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2.6 Extended Modal Analysis

As noted in the previous Section (2.5), the benefits of modal

truncation are sufficiently important to justify application to

problems for which it is not formally correct. In such cases, even

though linearization is not formally possible, a nominal state or

perhaps several nominal states are chosen to linearize about anyhow.

Similarly, cohstant coefficients are selected, and modal analysis

proceeds as before. The extended procedure now departs from the

method previously outlined by relaxing all the assumptions and sub-

stituting back into the governing equations. The Equations (2.3-3

and -4) assume the form

Sa' 2- -S T T S
M 2R + Q'I' x P +0c'x + F

at2 t a- - - - j -j

S a' S S a2  R RB ST
I -~+ Q' x I '+ M P'x-- R + .a + R =

t U-- t 2 - 3- j 3-- T

(2.6-1)

and after premultiplying by the transpose of the adjoint matrix,

Equation (2.3-5) becomes

S S S--, S a' M M S
= 2 - - at-

(2.6-2)

If the complete set of modes is retained, there is no compromise in

the above equations. They contain exactly the same information as

their non-modal counterparts. The a and coefficients are functions

of the variables R, , and 2', and the equations are no easier to

solve than their predecessors.
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At this point engineering judgment is invoked. It is assumed

that the effect of the modes selected for truncation on Equations

(2.6-1) is negligible. It is assumed (as in normal modal analysis)

that the response in the truncated modes is insignificant in the

result. And, it is assumed that the coupling in Equation (2.6-2)

between the truncated and retained modes has no significant effect on

the retained modes (and conversely that the retained modes do not make

the truncated modes important in the result). Under these assumptions,

the modes may be truncated and the reduced set of nonlinear equations

integrated. It should be noted that these assumptions are frequently

reasonable and lead to good results. Some truncation can almost

certainly be justified since the highest modes are usually more a

reflection of the details of the finite element model than of the sub-

structure itself. The degree of truncation suitable for a given

problem is sometimes determined by repeating the simulation several

times, with differing degrees of truncation, and observing the rate of

convergence of the solution.
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Section 3

STRUCTURES

A structure will be defined as a finite collection of interconnec-

ted substructures. The interconnection mechanisms will be classified

in three categories: those producing known forces, those producing

known relative motions, and those with a known relationship between

forces and motions. The interconnections.producing known forces will

be treated as external forces on the system. The interconnections pro-

ducing known relative motions constrain not only the nominal motion of

the structure but the disturbed motion as well. The interconnections

yielding relationships will be- assumed to be in the'special form of the

sum of a large known motion (i.e., constrained for nominal motion) plus

a linear force-displacement relationship for small disturbed motion.

Although arbitrary connections can be treated by direct numerical

integration of the connection relations and equations of motion, a

reduction of the equations is possible in certain cases. These reduc-

tions are the primary subject of this section.

3.1 Constraints

An interconnection relationship that prescribes some aspect of the

relative motion between two substructures is called a constraint. Con-

straints may be broadly categorized as either equality or inequality

constraints. Inequality constraints will not be specifically treated;

rather it is recommended that they be treated as two separate problems,

unconstrained, and equality constrained, with the integrator constructed

to detect the passage from one regime to another.
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There are some discrepancies in the literature as to whether or

not an inequality constraint may be classified as holonomic. However,

among the equality constraints, a constraint is classified as holonomic

if it may be expressed in integrated form

S(, 2, ... N t)= 0, (3.1-1)

and non-holonomic if it must be expressed in differential form

N

i di + c dt = 0, (3.1-2)
i=l

where the i are generalized coordinates, and the coefficients a, ia

are functions of iE and t. The differential form of constraint

(Equation 3.1-2) is known as Pfaffian form. It should be noted that a

holonomic constraint in the form of Equation (3.1-1) can always be

written in Pfaffian form by setting = i ' = ; but the converse

is not true.

Constraints may be further classified as catastatic if a = 0 and

acatastatic if oa 0. A constraint is scleronomic if it is independent

of time, and rheonomic if it is explicitly dependent on time. Again

there are discrepancies in the literature as to whether this classifica-

tion can be applied to non-holonomic systems.

3.2 Interconnections

The position of any point in a substructure is defined by the

variables of C R, and q. Thus a non-holonomic (Pfaffian) constraint

between the s-th and t-th substructure may be expressed in the form

scas t tat s s t t s sA
sA  sCadSC + A tCadtC + SB * dR + tB . dtR + F d q

t tA
+ r d.q + Adt = 0 (3.2-1)
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The variational form governing the structure is the sum of the

forms for the substructures and terms governing the interconnections.

The constraints may be incorporated via Lagrange multipliers. If there

are "C" such constraints among the "S" substructures, then there are

"C" subsidiary conditions of the form

(Cs s' s d SR cs d sA +  (3.2-2)
- - dt - dtj

s=1

where c = 1, ***, C and

csA = cE s6 s C cs s

SaSx A

aB DSx'Y

In addition, the term

Sc es C + B 6sR + sr 6A (3.2-3)

is incorporated in the variational form. This results in an additional

term in the translational Equations (2.3-3) for each of the substruct-

tures

12 s *E1'S ,S - S
M 2 R + x p + x q + 2sQt' x ssj

t2 at - 0- t j-

. C

+ ' x s~P, s+ s sq F + cXcsB
+c=l

(3.2-4)

The substructure rotational Equations (2.3-4) also gain an additional

term
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s s s s 3 s ' s SA s 3 s' sA
S + s_ x + I Q JI jq + J1 9 qt at j j at

s s ' S + SQ X (SS11 . S S + s 2' S s SA+ QM 1  + 32I 

s s a 2 S - a2  s sA s SA s s sA
+ MP x- 2R+ + P'x q s + s' x s0 Aq

0- 2 - - 2 . j j- j . j- ]
at at

C
= sT + ,  c CA (3.2-5)

c=l

Finally, the deformation Equations (2.3-5) acquire an additional term

Ss n ' . t I s s' S s s' 32
s s _q ' 2 R + 2s5 ,+ 0 ss

s 8' s a ' ss s' s sA s s

+ so ' + O 1 0 S A + jM Sq + sC £q + K q

C

Sc=l (3.2-6)

In general, these equations or their counterparts in modal coordin-

ates (i.e., with n's instead of q's as in 2.6) with Equation (2.2-13)

after some action to eliminate the redundant rigid body modes, must be

numerically integrated for the cX as well as the C8, R, 4, since

CS CS CS sC SA
A, B, e are, in general, functions of sC , R, q, and time. If there

are force deflection relationships, the forces become additional param-

eters and the relationships become additional equations.

The redundancy between the rigid body modes inherent in the q's and

the frame variables permits the partitioning of each constraint into a

nominal and a disturbance constraint. The nominal constraint is deter-

mined by setting all 0q =0 (i.e., the zeroth order term in q) and the

disturbance constraint is what remains (i.e., the first order terms

in j ). Although doubling the number of constraints is not usually

possible, the redundancy permits it here as long as the nominal

78



constraints are not contradictory (e.g., no rotation between two

substructures about an axis and a prescribed rotation about a parallel

axis is not permitted). This is equivalent to not allowing the inter-

connection to enforce deformation. This may be relaxed, if the

enforced deformation is sufficiently small, by including the incom-

patible term in the disturbance constraint instead of the nominal con-

A
straint. If the .q are thought of as the primary variables, and the

frame variables as redundant, and the distrubance constraints are

thought of as primary, the redundant nominal constraints can do no

more than eliminate some of the redundant frame variables. If the

constraints are not contradictory, any excess of nominal constraints

can be at most redundant.

The doubled set of constraints may be introduced via Lagrange

multipliers, as before, except there are now twice as many, and their

A
coefficients are either zeroth or first order in the jq. The analysis

proceeds by eliminating constraint forces, excess coordinates, and

redundant equations wherever possible, recomputing eigenvalues and

vectors for any constant coefficient portions of the equation, and

integrating, taking some action on any remaining redundancy between

frame variables and rigid body modes. The following sections outline

the procedure in more detail for a special class of constraints.

3.3 Rotational Constraints

The equations governing the behavior of a structure may be sim-

plified for special classes of interconnections. The remainder of

this study will illustrate the procedure for one such class. Each

interconnection will allow only one translational and one rotational
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degree of relative motion along a single axis passing through and con-

nected to a single point, a, on a substructure, s, and a single point,

T, on a second substructure, t. (Any substructure may have several

such interconnections at several points.) Thus four degrees of free-

dom are completely constrained and the remaining degrees of freedom

may be either unconstrained, a known function of time, or a small

motion satisfying a known force-deflection relationship. The restric-

tion to a translation and a rotation about a single axis (known as a

screw displacement) is not as restrictive as it might appear, since

trivial substructures (i.e., massless rigid bodies) may be introduced

to represent more complex interconnections.

Two substructures, point connected with one degree of rotational

freedom must have bases related by

1 0 0

'2 3 = t cos e sin st(3.3-1)

Sst st0 -sin ste cos st

whereby is a dextral orthogonal basis in substructure s, and
ay

in substructure t, with both and directed along the
ty s 1 t

"st "
axis of rotation from s to t. 6 is then the rotation of t relative

to s in the sense indicated. Such a set of axes can always be defined

in terms of the deformed body axes by a set of direction cosines

depending only on the substructure geometry

d sg C (3.3-2)
asdx'o a s 8
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(The image of the material event space axes under the position mapping

provides such a set of coordinate axes which participate in the deforma-

tion.) The direction cosines between these axes, sd , and the
a x

coordinate axes of the substructure, - , are given by
ax

a sd C a
s X sd asd8 (3.3-3)

where
a5P' (ac)sdC = 68+

when the images of the material axes coincide with the physical axes

in the reference state (otherwise there is a constant matrix which may

be absorbed in the geometric, SgC ). And where the direction cosines

have this simple form because the elongations and shears have been

assumed small in comparison to one. Finally the substructure basis is

related to the inertial basis by

= sC z 
(3.3-4)

axt a aSxxB

Combining these relationships provides

sgCS sdCY s = stcCa tg a tdc tC 6 0  
(3.3-5)

or rearranging

stCa = sgC sdCy sC6 tC tdC tgC (3.3-6)
B  Y 6 E - rl

Expanding the deformations gives

stCa = g + p ( C ) sAsC6 tC ( t(T) tA tgCa
Y Y saY i E £ q

(3.3-7)
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A
The nominal constraint (i.e., with .q = 0) may be obtained from this

as

st0 =C sgCB s tC tg a (3.3-8)Y 6 6 6

This relationship may be used to determine either tC or sC in terms

of the other and 06. The equation is not suitable for direct inclusion

as a constraint because the direction cosines have only three independ-

ent terms (i.e., Equation (3.3-8) represents three constraints) but

Equation (3.3-8) represents nine equations. The number of equations

may be reduced to three by writing the Pfaffian form

1 6 st0cY 8 st0 a-1 6 8sto a B . (3.3-9)2 ya a~ t I

Inserting Equation (3.3-1), it may be seen that the values of Equation

(3.3-9) are 6 = 1, 05 ; 6 = 2, 0; 6 = 3, 0. Defining

stO ' st0 3- = 0 (3.3-10)
O y

where

a tg C

x t

and inserting Equation (3.3-8) in (3.3-9) gives

st0'6 1 _6 9 s E: t ty tg Y

[sgC8 sC 0 tCK tg + sg C s 8 tK tg a
g CI I K i t I K

(3.3-11)

Noting the identity, C a CY = 60y, and regrouping terms gives

82



st0 ,6 s CPB sCe 16 tgC tKSI s t 1 tg YCYX at XY 2 yaC C

Stc) 6tc KtgC tgC

-(sU j1 s ) S6  + (tcq- a tCk t6  (3.3-12)
+ -C I t6A

which is in the form of Equation (3.2-1). The associated vector

coefficients (3.2-2) may be calculated as

S6A = Ea6 A 6P pe Pe x

t6 - 6 t6 AAt6  t6A t (3.3-13)
- flK TIK t x

Noting the identities in Equations (A.9-15 and -17) of Appendix A,

and using Equation (3.3-8) these formulae become

s6 ( 1A 6  tg Ca tCk sCP s C tC tgCY a
- - 2 ya K 1 C Tc sn

6 - sg sto~ ta sto y gC
lO 2 yO " 2E v S --

= g F- sg v 1 S6 st0 a st a sg a
ie E C -- C Ca C

Cv E v 2 yav at y

- Y 2 y tO 'Y n)

(3.3-14)

and
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t6 1 6 tg y tg a
- nK 2 ya K t 8

E: 8 Y tg a1 x

E: C C :, a) tgCC
fnK f1 K 2 y ~ to '

E Y

2 y a

tO '6 (3.3-15)

The computation may be reversed

i A --A2 2 6y p 6 le

6 (- 6 6y 0 ' 6 P

= A6Y (3.3-16)

since the A are clearly skew-symmetric. Inserting this expression

in Equation (3.3-12) provides

stO '6 s8- S6A -t t6A
= - _ • - _ A (3.3-17)

since 8 Sc a s d 6A'
since - C and A are both the betath component oflie X t X

vectors expressed in the -- basis. Noting Equations (3.3-14 and -15)
a x

and rearranging

t Q st0, s a
-to -yto 6 to '6Sy y a y

tQ , s+ sto Q (3.3-18)

This provides either 2 or sQ in terms of the other and st0O (much as

Equation (3.3-8) did for direction cosines).

Returning to Equation (3.3-7), the disturbance constraint

obtained from the Pfaffian form analogous to Equation (3.3-9) is (to

linear order)
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1 6 st Y a st a 1 sto C a st Ca
+ 2 (a at )

- 6 s gC1 adC Cg sCE tC6 tdCt tgCY]
2 ya L C 1 n t

S( s CA tCV tdC tg 

+gC) sd K ~ sCX tcV tdct tgK t-K i v

+ sg sdCK sa SA t v td C tg a

+ sgC C C C C C

K \X P v

+ C K C C t tgC

[ sgC 6 X Z st C X tC 6v tgC
K K Tt JJ P ;

s K K - CV 6 C . (3.3-19)

Since the nominal constraints must be satisfied, any linear combina-

tion of products of the constraints with terms of linear or higher

SAorder in q may be added to the disturbance constraint. In particular

the second terms may be replaced by

1 P ( stOy Cy stO C tgcp tdcT tgc6

2 yc\ at o o T

EP tg Clp C 6 sCC tc t t gC

K K t P J o

+ Go&X sC X -tC\ 6v tgCa tg p t tgC TgC 6
K K q t o K & J1 0 0 T

= Cx tC [ sC t st tv td tf  t  (3.3-20)
St 1 P P at v
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Using the reverse of the identities, this may be re-expanded to

. T I sd C E SC tC6 tdCA tgCI

gC s sdC K sC X t v td C tgCa
K V

+ sgCB sd K scX tC tdC tgC1

td a tgCT tdcT tgC6
o a o TI

- sCS sd s s tC tdcl tgC
2 yal L E C n. n e 1J

[sgCa sd K a s X tCv tdC tgCa

K a a se x p v } (3.3-21)

This may be recognized as the negative of the middle part of the first

term in Equation (3.3-19). Defining

stn  St -- (3.3-22)
- ty

Equation (3.3-19), as modified by Equation (3.3-20) may be written as

st '6 _ st0'p tgCp tdC7 tgC6
O O

06 [sgC sdCE SCC t C 0 tdCI tgC
2 ye L E q n n 6

s Xs s A t v td C tgC a

K i K iq 1 CV

sgC sdK sC A tv t )v tA tgCa1
+ A . j J Q  c]

s6 sA t6 tA
= iq + jq . (3.3-23)
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where

s als

8 x

which is in the form of Equation (3.2-1). This may be expressed in

vector form by multiplying by t 6 and summing

st'- st0 ,p tgcp td cT tg 6 
0 0 7T t- o o C ty6

8y

st, st

1 sgC sdCE sC tC0 tdCI tg Y6C C C
2 ya ~ n n 6

SgC s X sA sC t v tdCE tg a
Ki () K i q P C

+ sg sd KscX tcV t vtA tg a+ C C C PC P( ) q C t y 6

sdCK s A s. _ _ _

td it v t 1 o
+ C (T) q 2 t o

j a x

1 CT s X sA 1 o t I tO
2 Xa 1 iq j(T)I jq -t (3.3-24)

The product Ciq may be recognized as i for that direction cosine matrix.

However, since the rotation is zero to zeroth order in q, the angular

velocities are defined by

S1) y s 1 ~S P'(C)C
$( = + l~ E lP(cy) = + I E

i (2 A i 2 X s-

t 0 1 o t 1 o 8tP((T - o Pt(T)) (3.3-25)
S287
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which are just the theory of elasticity definitions of the rotation

due to deformation. It may be noted that these are known constants

once the assumed deformation fields for the finite elements are estab-

lished (in the case where nodal rotations are selected as generalized

coordinates, and if the points of connection between substructures are

nodes, this is just a Boolean array, one for the i = the rotation at

the point, and otherwise zero.) Defining the vectors

St t

j ( tx o0  (3.3-26)

Equation (3.3-24) becomes

sto? st%0' s SA t tA
s - 0 = - i(c) iq + J(T)jq (3.3-27)

The terms r in Equations (3.3-23 and 3.2-1) may now be recognized as

s6 s
i = - - ( 0 )

*
i i t 6

ti t 6

This disturbance constraint may be thought of as providing either some

tA SA st0_
of the jq or the q in terms of the other and Qst' and st .

In summary, a one axis rotational constraint is incorporated via

Lagrange multipliers with constraint Equations (3.3-12 and -23). The

additional Equations (3.3-18 and -27) are incorporated in the system

of equations with the definition in Equations (3.3-10 and -22) implicit.

The nominal rotation, st08, is either a known function of time
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(including zero) or unconstrained. In the latter case, the first

line of the constraint equation may be though of as introducing the

new variable, st06. In this case the variations OX16 st06, - 6st06,

11 stO Sto St
and ~st06, must be included. When st0 is unconstrained, may

be selected in two ways. First, if it is desirable to include the

total (nominal and deformation) rotation in the frame state variable,

stO st stO
s , set st = st0. In this case the first line of Equation (3.3-23)

constrains the deformation rotations to be the same in each substruc-

ture. In this case, the variations - 16st0 and 1 6 st0 cancel, pro-

01
viding the stationary conditon A = 0. Second, if the frame state

variable, st0, only represents the nominal part of the rotation, st0 ,

is arbitrary. In this case the first line defines the new variable,

st 01 11 11
6, and there are stationary conditions X = 1 and X = 0. The

second method is preferable because the associated free boundary is

consistent with the physical system, and hence modal convergence may

be improved. (The first method does, however provide an opportunity

for modal synthesis).

When the nominal rotation, st06, is a known function of time

(including zero), the rotation due to deformation may be either known

or arbitrary. A known function may result from several situations. If

the nominal motion is a non-zero function of time then the deformation

st stO
may be the correction for the deformed axis st0 - s , or the sum of

such a term and a small known motion not included in the nominal. If

the nominal motion is zero, the deformation may result from a small

known prescribed motion (possibly incoppatible with other nominal
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constraints) or may be zero. Such cases can be directly included.

However, the case of arbitrary motion requires special treatment.

Any arbitrary disturbance motion (in the presence of a known

nominal motion) must be small. To maintain smallness there must be,

in general, a restoring force. If the force lies outside the system

being treated (e.g., a controller), the disturbance rotation,

stl6= st6- st,can be introduced via the first line of the constraint

and it may again be noted that I 1 = 0. The restoring force is treated

as an external force on the system. If, on the other hand, the restor-

ing force mechanism is included in the system, there is a known force

stl
deflection relationship governing 0 and the Lagrange multiplier

does not vanish. If F = f(stl ) is the force on the mechanism then

the term F6Stle must be included in the system variational expression

to reflect the virtual work done on the mechanism. If F6 tl6 is a

perfect variation, the form 6V may be included instead (e.g., if

F = Kstl , V = K stl )2). In either case, the coefficient of the

variation, 6 6tl, is now 1l + F with the stationary condition 1 = -F.

The substitution -f tl) may be made for 1 X1 in the equations, or

ll may be retained as a variable and the equation 1 = - ( stle)

included in the system of equations.(With 1 directed from s to t,

iX1 is a clockwise torque applied to t and 6 is a clockwise

deformational rotation as viewed from s.)

3.4 Translational Constraints

This section continues the subject of single degree of freedom

point constraints, introduced in the previous section. In this sec-

tion, however, the single degree of freedom will be taken to be
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st
translation along the axis - - If s is the magnitude of

syl t t
; y 8y

the translation, then defining

st st (3.4-1)
t 1

The position of the connection point of t may be expressed in two

ways

t t' s s st.
tR + P(T) = sR + sP(a) + st (3.4-2)

or rearranging

t t tA - R s ' sA
st tR+ t t sR -sP (O) - sP(c) sq, (3.4-3)

0- j- i.0.

The nominal part of this is

st t ' s
st = R + P(T ) -R - 0P(G) (3.4-4)

or rearranging

t R = st0+ R + sP() - (T) (3.4-5)0-

This relationship may be used to determine either tR or R in

terms of the other and st0C. This is not in Pfaffian form. The

Pfaffian form will now be obtained for inclusion in the system equa-

tions.

Taking the dot product of Equation (3.4-3) with gives

stE a= tgCa tdC tc~ tR6 + tg C a tdC tp'(rT)

stCa sgCB sdCy s 6 sRE st a sgCS sdCy sp'(o)6

B y 6 E B y 6

tg C tdc tY tR6 tg a tdc tP
8 6 + Y

-tgCa tdCS tC sR - CB tdC tCY sC sp'() (3.4-6)

where Equation (3.3-6) has been used.
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Differentiating this gives

- st a= tg at Y tA t tR6 +tgct (T) tp(T)
a j (T) t C6  R + tC I(T) j t s
tg tr y t tc Y sR6 tgc tY tA tcY s 6 Sp(E

- () Jq C6 R j ) q C 6)

+ tgC a tdCB t Y t 6 - tgcct tdC y t s R6

f Y 7t 6 B 7 at 6

tg Ca tdC ty C s P' (0 ) E tg~ca td C ty sCE sp' ()
B y at 6 6 Y 6 at 6

+ tgCa tdC B tc - t R 6 tgCa tdcB tc - SR6
y 6 at y 6 at

tg C td t (T)y tq tgCa tdC tc s sSA+ C u -P qC i P ( q) i

(3.4-7)

The nominal constraint may be determined from this, or by differentia-

ting the dot product of Equation (3.4-4) with tO ' as

a y

3 st0 a tg ca t t 6 t 6 tR - tg a 3 tc t 6 t c SR
at at y y E -St y Y E

tg a 3-- t c t C 6 t c 6 s c s ' tg a t s 6 s 6 s C Cs p)
a t y y 6 O y y E .t E

tg C t ty - tgca tCB sRY+ C C RY -
6 Y at 6 y at

6( A t C 6 y)

+ Y( - a R RY)+ 3- - R (3.4-8)

This is in the form of Equation (3.2-1) the associated vector co-

efficients (3.2-2) may be calculated as
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sLA = 16C SA - -

ET 6C tgca to6 Sc6 sP (a)- Y 0 );7 x

= i( tgC CB SC P  () a

y ya asxS

a s= '- x P ( O) (3.4-9)

8ty

and

A = E A~gA t-
xx

= -tgC a tc 6 t R 6 t C t 6t sR E

(t E E /af

+ tgO t 6S s t'
x Y x

a tx + x sR + to ' x0o (C) (3.4-10)
ty y y

Similarly, the other coefficients are

s tg a tcB
B C CY
- Y

to 'y a(3.4-11)

and

tB tgc a tc C

BY C- Y 3xY
(3.4-12)

to '93
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The nominal constraint in vectorial form may be obtained by multiply-

ing Equation (3.4-8) by -- v a

st0 a tga 3 t tC6 t tREo
at tO 'a B at Y Y E a y

tgC a tcB tC6 tc6 S R
t Y Y t 6se at

B 8t y y E tO 'a
s y

tgc a t t  t 6 s c  s P ( )

c c c(
- tg Ca t C sC6 SC 9 SaJ CJP C a

S y y E at E.0 tO'

tgca t a tRy 9 tg a tcB aSRY a+ C C R - C Cy -t R
S yt tO a Y at tO 'a

at ay a y

(3.4-13)

or

stO tQ x tR + t x s t_ x sp'(c)
0-

s- x s P (C) + t_ - si (3.4-14)
-

which may be recognized as the nominal part of Equation (3.4-2), dif-

ferentiated in the t0------ reference frame. This may be rearranged

a y
slightly to

t= =t x tR -_ x sR - t s s s) + + Q x sPI' st. 0 +- o 0-+ x P(c)

(3.4-15)

Noting Equations (3.3-18) and (3.4-5), this may also be written as
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s* s. ' st0
-1 -0- 0-,

+ SR+ s x P (a)+ st

-S x s - 0 x 0 P (T) + Qx 0
P () + Si+ St x st0

st~' x (T) stO~ (3.4-16)
X 0-

This may be thought of as providing either tR or s_ in terms of the

other and st0

Returning to Equation (3.4-7), the disturbance constraint may be

obtained by first multiplying Equation (3.4-8) by tgCl tdCe tgCa

tg L td C tg a st0 a

o n C n "

tgoi tdC a t tC6 tC6 tRC

S n -t y y E 6

tg l td 6 a t t 6 S P ( )¢
S C C C C C 0

- C C C C C C P (CY)
0 n y Y 6 at E 0

tgCL tdC tC R t Ry - tgCI tdC6 tc a sR (3.4-17)
+ n y at n y at

The first, second, fifth and sixth terms of (3.4-17) are the same as the

fifth,sixth, ninth and tenth terms of Equation (3.4-7), so subtracting

(3.4-17) from (3.4-7) provides the disturbance constraint.
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ast a tg C td tgc6 a stO&5

at y y at

tg t tA tY t + tgCa t~ Y t tp y
C i w jyq C R + q P (T)

tg at t t t Y SR tga ta Y tA t~y sC 5 Sp'(
C a a R C a (T) aq C P

tg ao td a t tcE tc s C Sp (') SA

S y at 6 6 5 i i

tg a tdC S tys s Ec Sc6 saCT p'1 - S q

8 y 6 6 C t ( i i

tg0c tdCB t') tA tgCa tdc tCs sp'(a5 SA+ Y j (  q 6 6 i i q

SOA C as C + ta t ca t C

sa s A t ( tA
+ i( i r )(( jq (3.4-18)

This is in the form of Equation (3.2-1). The associated vector

coefficients (3.2-2) may be calculated as

sA = E: uSflsaA asA =en s a  8

6£En tg a tdCS toy SE s ' n sA 8= E: - Y 6 P (c) q Sxe

8Y 6 6 s 'E x 1 q s IT= x 8 tx

(c ?a sA
- a x p'() iq (3.4-19)

8ty

and
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to ey to _

A = tA ae-y t'

et d. tg c td es s (a' 6 asxA

tgct tdC f x t s t E S ip (C) TiSA

_ a t Ax

t x P () 1q (3.4-20)
ay

Similarly the other coefficients are

so tgCa tdC ty C E (S)E
i y 6 i

ta  s (a) (3.4-21)

ay

and

tar tg () t C tR 6 + tgC (T)8 tp(T)y

tga t Yt t SR6 tg a t 6 tc O~gC (T) Y sR C (T) tC sCEBj 6 6c

+ tgC tdC tp (T)y

= i(T) x tR - tp(T) + sR + Sp'()) + P(T)

(3.4-22)

This can be expressed in vectorial form by multiplying by a
ay

st st0 t tA t t tA t t tA st t = - (T).q x R - *lp(T) q x 0 P (T) + RN() q X R

+ j*(T) q ( + x ())+ -q sx ip() iq

t tA sA
+ P () .q - P () q (3.4.23)j 9 i

97



where it has been noted that iJ(a) is skew-symmetric for small

deformations. This result may also be obtained by differentiating

Equation (3.4-3) in the ---r- reference frame.

y

ty'st t* t t t tA t t tA t '
t = R - x R - (T) q x R - j() q x P (T)

t t S t - S

+ P (T) -R + tQ x sR + '(T) x SR- s x p (X
j - - - - -

t ' t tA s '
+ to x P (a) + t(T) x () - P(0)

s SA t st S A
x iP'() sq+ t x iP (0) sq (3.4-24)

and subtracting Equation (3.4-14). Noting Equations (3.3-18, -27 and

3.4-5) , Equation (3.4-23) may be written as

st st t tA Xst0 s s ' t tA

- (T) q +x (t + P ()- P (T- (T) jq

t tX 8t t sP()+ s st0o

i i1 t I I

(T) t sq + P (T) j

s 'sA
P (0) iq (3.4-25)

The terms in this expression may be identified by noting that the

identity

St sto Sa' SA t ' tA
St = t - PP() s +P (T) q (3.4-26)

differentiated in the - reference frame gives
t y
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sts t tA stst s sAs (st0 - ( q x ) P (o) - st0 ' x iq () iq

+ P (T) q (3.4-27)

This disturbance constraint may be thought of as providing some of

tA sA stthe q in terms of the q and .

In summary, a single axis translational constraint is incorporated

via Lagrange multipliers with constraint Equations (3.4-8 and -18).

The additional Equations (3.4-5 and -26 or -25) are incorporated in

the system of equations. The nominal translation, sto0 is either a

known function of time (including zero) or unconstrained. In the

latter case, the first line of the constraint equation may be thought

of as introducing the new variable st0. In such cases, the variations

0 16st0o,_ll 6st~ and 1 1 st( must also be included in the variational

form. When st is unconstrained, there are two ways to select st.

First, if it is desirable to include the total (nominal and deforma-

tional) translation in the frame state variable st0C, set st stO

In this case, the first line of Equation (3.4-18) constrains the deforma-

tional translations to be the same in each substructure. The varia-

tions -1 1 6stO and 1 16st( cancel giving the stationary condition

X = 0. The second option is to let the frame state variable, stO

represent only the nominal part of the translation by making st

arbitrary. In this case the first line defines the new variable,sts.

There are stationary conditions 1 X = 0, and 0 1 1 1 so that

1 = 0 also. The second method is preferable because the associated

free boundary is consistent with the physical system, and hence modal
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convergence may be improved. (The first method, however, does provide

an opportunity for modal synthesis.)

When the nominal translation, st0C, is a known function of time

(including zero), the translation due to deformation may be either known

or arbitrary. A known function may result from several situations. If

the nominal motion is a non-zero function of time, then the deformation

may be the correction for the deformed axis, st - st0E, or the sum of

such a term and a small known motion not included in the nominal. If

the nominal motion is zero, the deformation may either result from a

small known prescribed motion (possibly incompatible with other nominal

constraints) or be zero. Such cases can be directly included. How-

ever, the case of arbitrary motion requires special treatment.

Any arbitrary disturbance motion (in the presence of a known

nominal motion) must be small. To maintain smallness, there must, in

general, be a restoring force. If the force lies outside the system

being treated (e.g., a controller), the disturbance translation,

stl5 = stE - st0 can be introduced via the first line of the cons-

traint; and it may again be noted that 1 1 = 0. The restoring force

would be treated as an external force on the system. If, on the

other hand, the restoring force mechanism is included in the system,

there is a known force deflection relationship governing stl and the

Lagrange multiplier does not vanish. If F = f(stl ) is the force on

the mechanism, then the term F6s tl must be included in the system

variational expression to reflect the virtual work done in the mechan-

ism. If F6 tl is a perfect variation, the form 6V may be included

instead (e.g., if F = KstlE, V = - K st )). In either case the
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sti 11coefficient of the variation, 6 st, becomes 1 + F with the station-

ary condition = -F. The substitution -f stl) may be made for 1X1

in the equations, or 1 may be retained as a variable, and the equa-

0 11 sti)\
tion = - f () included in the system of equations. (With

ay

directed from s to t, 1X1 is a positive force on t, and tl is

a positive deformation displacement of t away from s.)

3.5 Elimination of Constraint Equations and Forces

Thus far, constraints between substructures have been incorporated

via Lagrange multipliers. They may be interpreted as forces ( and

torques) on the substructures, due to the constraints. The number of

system equations has been augmented by the C constraint equations, and

the number of variables has been augmented by the C Lagrange multi-

pliers. In some cases, it is desirable to retain the A as explicit

variables. This practice may even be computationally more efficient.

However, if the integration forces are not of interest, there is fre-

quently a computational advantage in reducing the dimension of the,

system equations by eliminating them (and the associated equations).

Even if the forces are desired, it may still be advantageous to elimin-

ate them and subsequently recover them.

The nominal translational constraint (3.4-2) results in constraint

forces (see Equation (3.2-4)) on the s substructure (3.4-11)

0 1 0 2 0 3 3
- 1 to 2 i '3 (3.5-1)
ay ay ay

and on the t substructure (3.4-12)

+01 a 02 a 03 8
+ 0 + 0 2 + 0 (3.5-2)tO 1 t 2 tO '3 (35-2)

ay 8ay ay
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and, in addition in constraint torques (see Equation (3.2-5))on the s

substructure (3.4-9).

(3.5-3)

and on the t substructure (3.4-10)

(0 1 + 0 2 + 0 3 a x s(R + sP' tR
t0 '1 t 2 t0y3 -

a y a y/ k
(3.5-4)

The torques can be eliminated from the rotational equations by sub-

tracting the cross product of the s translational equation with

s (a) from the s rotational equation. And, similarly, subtracting
01

s s ' t

the cross product of the t translational equation with SR + P (a)- R
- 0-

from the t rotational equation. The resulting equations replace the

rotational equations, but the translational equations are retained

for no net change in the number of equations. (This effectively

translates the origins to the nominal attachment point on the s

substructure.)

The constraint forces can be eliminated from the translational

equations by summing the equations for the two substructures. The sum

replaces the individual equations resulting in a reduction by three

stO
equations (and three X s). If C is arbitrary, the constraint has

added stO5 to the system variables, so another equation is needed.

The required equation may be obtained as the dot product of the t

substructure translational equation with t0' .1 This contains no

a y
constraint force since only O1 is involved, and it is zero for this

case.
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The nominal rotational constraint (3.3-12) results in constraint

torques (see Equation (3.2-5)) on the s substructure (Equation (3.3-14))

0A + 0A2 + 0 A3 (3.5-5)
t0 '1 tO '2 tO '3

3y a y . y

and on the t substructure (3.3-15)

0 1 02 0 3  (3.5-6)
tO '1 tO '2 tO '3

y y y

Summing the rotational equations for the s and t substructures results

in the cancelling of the constraint torques. The sum replaces the

individual equations in the system equations resulting in a reduction

' st0O
by three equations (and three A s). If 8 is arbitrary, the con-

straint has added stO0 to the system variables, so another equation is

needed. The required equation may be obtained as the dot product of

the rotation equation of the t substructure with t0 '1i. This equation

0 1 y
contains no constraint torque since only A is involved and it is zero

for this case. It may be noted that since the rotational equations for

s and t are in different bases, constant coefficients for either may

not remain so after transforming to a common basis. In such cases, it

may not be computationally advantageous to sacrifice constant coeffici-

ents for reduced dimension. However, if sto0 is constant in time, or

if one of the substructures is symmetric about the axis, con-

8 y
stant coefficients can be preserved.

The disturbance translational constraint (3.4-18), in addition to

forces on the disturbance equations, results in constraint torques

(see Equation (3.2-5)) on the s substructure (3.4-19)

103



11 12 3 1 3 s ' sA
-+ + +  x P () q (3.5-7)

t '1 t '2 t'3
Sy y y

and on the t substructure (3.4-20)

( l1 + t '2 + 1 '3 x i-P ( iq (3.5-8)

Sy y y

Since the 1 1 are forces on the deformational equations, they are first

order in q. Consequently, the constraint torques (3.5-7 and -8) are

second order in q and may be dropped from the rotational equations.

The elimination of constraint forces for the deformation equations

will be postponed to the following section on modal coupling. The

remainder of this section will be directed to eliminating the constraint

equations. The constraint equations may be eliminated by substituting

the right hand side of Equation (3.3-18) for each appearance of tQ,

and the right hand side of Equation (3.4-5) for each appearance of tR.

In addition, the direction cosine relation (2.2-13) for the t substruc-

ture may be deleted in favor of the implicit definition of st0o

(3.3-10) and the fact that resolving the rotational equations in a

stO
common basis introduces 0, and makes the equation second order.

3.6 Modal Synthesis

The partitioning of constraints into nominal and disturbance parts,

leads to constraints between disturbance variables, q, in addition to

those between frame variables, discussed in the previous section. As

in the previous section, it may, or may not, be computationally

advantageous to eliminate the constraint forces. In some cases, the

structure may be divided into substructures, primarily to obtain
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smaller, more tractable models. The constraints, in this case,

merely reassemble the pieces, eliminating all six relative motions.

In such cases, it is generally computationally advantageous to elimin-

ate the constraint forces. If the dimension of the substructure equa-

tions has been reduced by modal truncation, the procedure is known as

modal coupling or modal synthesis.

Since the single degree of freedom point connected constraints

are holonomic, it is more convenient to deal with their integrated

form. Noting Equations (3.3-7 and -8)
st i( ) sg $ 6 +s 6 sA)FSgCFiq  StOcO tg0l t() tA tgc06

stC = SgC 6 + q + ) q C3 Y - Y \YCyj[ E J B 3/ jq

stO t sg SA stOC st0c tg( T O tA
B i Biq C Bj a j

where

g = gC g C

(i.eo, the rotations -resolved in the ,or ---- basis). Recall-
sO tO

Sy 8 y
ing Equation (3.3-1), this may be written as nine explicit equations

1 0 0 1 0 0 1 0 0 0 s 3 s 2-

0 c sO = 0 c6 so + 0 co0 s° 0 s 3 0 s

0 -sO c 0 -s0 c0 0 -s0 - 2 s 1 0

0 +t 3 t 2 -1 0 0

S3 0 +tl c00 s 0 (3.6-2)

+t2 t 1 0 0 -so0  c OJ

1, -sC 3+cO t 3+sO 0t 2 s 2+s0 t 3_cO t 2

cOs 3 3-s 0 6s 2-t 3 cO0+s0 I- sOtlt 1,s0O6c0s I+cO6lt l

S-sOs 1 3-c O0s 
2 +t 2 , -s0 +cO s 1-c0 61 tcO+sO s 1-ls06 t 1
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where the abbreviations are defined as

cO = cos(st ), sO = sin(stO), c00 = cos (st0), s0 = sin(st0 ),

so 1 E sg y s to _ 1 B tg y tA
= i ( ) iq '  2 (T) jq"

Noting the small angle approximations, cos tEI, sin EE, and the

sum of angles formulae sin(x+y) = sin x cos y + cos x sin y, and

cos(x+y) = cos x cos y - sin x sin y, the (2,2) (2,3), (3,2) and (3,3)

elements all yield

st st sg' s tg 'tA

st6 - sto= - () iq + (T) q (3.6-3)
i i j

where

1 c gg= 
1 f3 g gc g c g§ rl

2 y E TI T

- C rl

The (1,2) and (1,3) equations may seem to be the linear combinations

-cos st)[(2,1)] + sin(sto0)[( 3 ,1)] and

-sin st00)[(2,1)]- cos(sto)[(3 ,1)] of the (2,1) and (3,1)

equations. Selecting these as the two independent equations provides

cos Ast% ) 3 SA sto sg 2 SA
t(T)3 j = cos st0 s~ q - sin st0 sip()2

2 tA = stO sg 2s s S s g 3 SA
tg 2 t = cosst0 ()2 s + sin(St0) sg ()3 sq (3.6-4)

i i i ) i

The translational constraint may be obtained by dot multiplying

Equation (3.4-26) by
t a
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st a tg v. tdB tgd st0o tg tgg td3 tg st0 sg E s '(O) sA

. Y Y E 5i i 

tg a td t t I
C 3 3,

tgp Td tA

+ Ptg q (3.6-5)

where

gp gx P

This may be written as the three equations

st sto 0 t 3 t 2 st0 1 0 0 spl t 1

0 0 t03 0 t1 0 o sO Sp2 + tp2

0 0 t2 t l 0 00 0 sp3 tp3

stO sp1+ t 1

stO t 3 c0 sp2 0 6 Sp3 tp2

st0~ t 2 + sO0 sp2 c sp3 + tp3 (3.6-6)

where the abbreviations are defined by

S o sg sA t ' tg tAP = P () q and P =tP (T )I q. In explicit form, the

constraints are

st st ' 1 s tg ' I tA
S = - P (CY) q + P (T) ji i j J

tg ) 2 st 3 = cos(st0)sgp' ()2 + sin St0 s p (o) i

t 3 st0 tg(T) = cos(St0) sgP () -sin(St0 g iP () iq

(3.6-7)
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The constraints (3.6-3, -4 and -7) are complicated by the

presence of the nonlinear nominal relative translation and rotation

terms. In general, the nonlinear constraint might not be eliminated,

or might be eliminated each integration step. If the nominal rela-

tive translation and rotation are known functions of time, a non-

autonomous solution to the constraints might be found. In either case

the calculation can be simplified by selecting the rotation and trans-

lation at the connection point as explicit degrees of freedom (e.g.,

boundary points in a Hurty component mode analysis). One possible

simplification is to apply a stronger constraint requiring the de-

formantional rotations and translations (normal to the axis) to be

zero in one substructure. This would be formally acceptable to the

extent that it eliminated still present redundant rigid body modes.

However, it would generally be expected that there would be insuffici-

ent redundant variables to allow this for every constraint. This

might be an acceptable approximation if the constraint point was not

expected to participate significantly in the deformation. If the con-

nection point is constrained on one substructure the constraint equa-

tions yield a similar constraint for the other substructure.

The greatest simplification occurs when there is no nominal rela-

tive translation or rotation. In this case the nonlinearities are

gone, and explicit solution is possible. It may be noted that the

constraints in Equation (3.6-3) and the first of Equations (3.6-7) are

always linear (although inhomogenous) as noted earlier in this section.,

The case of no nominal relative motion frequently occurs in modal
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coupling. The remainder of this section will be dedicated to the

treatment of this special case.

Without loss of generality, it may 'be assumed that st0 and

st0
s are zero (either by changing the geometrical direction cosines

or linearly extrapolating the displacement field). In this case the

constraints assume the simpler form.

st = sg 1(o sA +tg ~ t
0= -i( i) q + t(T) q

S sg 2 sA tg 2 tA

sA tg 3 t A

0 = _Sgp'(o) i q + tg ((T) q

St g ' 1 sA tg 1 t^

sg 2 sA tgp' 2 tA0 P (0)2 iq + P (T) jq

sg' 3 sA tg ' 3 tA
0 = ( )3 i P (T) jq (3.6-8)

The union of the sets of iq and 3q may be thought of as a vector

space. Similarly the relative motions on the left of Equations

(3.6-8) may also be thought of as a vector space. The Equations

(3.6-8) may then be recognized as a linear function. This may be

written in abbreviated form as

{s} = [T] {q} (3.6-9)

Since the number of q is generally much greater than the number of s,

and prohibiting contradictory constraints, the linear function, T,

generally has a non-trivial null space (and the matrix has a rank

smaller than its larger dimension). The q can be represented in a
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new basis consisting of a basis for the null space and a set of

vectors whose images under T span the space of s.

{q} = [N] {(1 + [B]{ } (3.6-10)

where

[T][N] = [01

and

[T][B] = [U]

B is sometimes referred to as a pseudo-inverse. (Redundant con-

straints could lead to zeros in the identity matrix, however, this

is of no concern here.) Substituting Equation (3.6-10 in -9) yields

{() = {s} (3.6-11)

It may be noted that a "B" basis vector added to any linear com-

bination of "N" basis vectors is still a "B" basis vector. The dis-

turbance equations have the generic form

[D]{q} = {Q} + [F]{X} (3.6-12)

where equations for both the s and t substructures have been

included (and D is thought of as an operator including differentiation

in time). Forming the linear combinations N and B , and noting

Equation (3.6-10)

[N]T[D][N]{ } + [N] [D][B]{} = [NIT {Q} + [N] [r]{ }

[B] T[D][N]{} +[B] T [D][B]{C} = [B] {Q} + [B] [F]{x} (3.6-13)

The term NTFX may be recognized as the virtual work done by the con-

straint force on a virtual displacement compatible with the constraint,

and is therefore zero. Thus the constraint forces do not appear in

the first equations. This is not true of the term B TX. In fact,
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the second equations may be thought of as determining the X. If the

constraint forces are of no interest, the second set of equations may

be dropped, or if they are of interest, retained for subsequent re-

covery of the constraint forces. Only the first equations are re-

tained in the system equations. Noting Equation (3.6-11), they may

now be written

[N] T [D][N ]{} = [N]T {Q - [D][B]{s}} (3.6-14)

Since these equations already reflect the constraint (3.6-9), it may

be dropped from the system equations and if desired, Equation (3.6-10)

can be used for subsequent data recovery. Thus for each such con-

straint, there is typically a reduction by twelve equations, six X's,

and six q's (in favor of 's).

The use of one fully constrained connection above is illustrative,

not restrictive. For instance, three substructures with four such

connections (as long as they are not contradictory) can be treated in

exactly the same manner by merely increasing the dimensions of the

indicated matrices. And, even if the connections are not fully con-

strained the two constraints, Equation (3.6-3) and the first of Equa-

sstttions (3.6-7), can always be treated in this manner. If either t

or 6 is arbitrary, an additional equation is required. This is

obtained by adding the appropriate (first or third) member of the

second set of Equations (3.6-13) to the system equations as previously

noted, the associated X is zero for this case, so the equations has no

constraint forces.
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At this point the methods outlined in Section 2.5 can be applied

to the coupled substructures. So if constant coefficients can be

assumed, modes can be generated for the coupled system. If con-

strained modes are to be calculated for further coupling (e.g.,

Hurty's method) it may be desirable to defer the calculation of the

null space until after the static shapes have been calculated, since

the calculation of static shapes is simplified by having the boundary

nodes as explicit degrees of freedom, and transforming to the null

space could result in variables involving linear combinations of

the boundary degrees of freedom.
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Section 4

SUMMARY

The purpose of this last section is to summarize the concepts and

procedures outlined in the previous sections. As a vehicle for pre-

senting this summary, the procedure for analyzing a dynamical system

will be outlined.

4.1 Isolation of Structural Elements

The first step in the analysis of any dynamic system is to define

the system under consideration. The process involves two procedures:

defining the boundary, and defining the interaction across the bound-

ary. For instance, for a train on a track, the track could be treated

as external to the system, providing a rolling constraint; or in the

system, with the road bed external to the system providing an elastic

foundation.

The second step is the division of the system into dynamical

subsystems of separate analytical types. For instance, in the train

example, some of the dynamical subsystems might be: the hydraulic

coupling system, the pneumatic brake system, the turbulent boundary

layer, the biological engineer, the electrical power system, in addi-

tion to the mechanical structure of the train itself. Each subsystem

might be separately analyzed, and in some cases equations governing

the behavior of the subsystem might be obtained. In some cases a

trivial solution might be selected (e.g. constant temperature for a

thermodynamic subsystem if it is not particularly relevant to the

system), or the subsystem might be excluded from the system. (This

latter case really falls under the first step, defining the system.)
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As in the first step, the second step involves two procedures:

isolating the subsystem, and defining the interaction. For instance,

the acoustic subsystem loads the structure, and the structure displaces

the gas. The interactions now include not only interactions with

things outside the system, but also with different subsystems within

the system.

This study treats a subsystem identified as a structure. The

primary interactions between structure and other subsystems are dis-

placement and force (including body and surface forces). Although other

interactions are possible (e.g. thermal and chemical), they will not

be explicitly treated. It will now be assumed that all of the dynam-

ical subsystems except the structure have been treated, and that their

interactions with the structure result in either displacements or

forces. Although the discussion in Section 1 has applicability to

general material systems, the primary thrust of this study is solid

materials. Therefore fluids and gases are included in the dynamical

subsystems assumed to be already analyzed; not in the structural

subsystem.

4.2 Selection of Substructures

A structure may be divided into a number of substructures for

several reasons. Some subdivision may have already been made by the

removal of other dynamical subsystems (i.e. if the dynamical subsystem

joined the two substructures). If there are any joints in the struc-

ture which allow large relative motion, a subdivision should be made

across the joint so that no substructure includes large relative

motions internally. It may be desirable to select substructures to
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isolate portions of the structure of different types (e.g. to isolate

a visco-elastic material, or an orthotropic shell). The structure may

also be subdivided to distribute the burden of analysis among individ-

uals, or in some cases companies. Finally, and frequently most impor-

tantly, the structure may be subdivided to realize the substantial

reductions in computational costs available through modal synthesis

techniques. Since the savings is dependent on the amount of inter-

face a substructure has with others, when there is no other reason

for picking a given division, it should be selected to minimize the

amount of interface (e.g. a long slender structure should be divided

into two substructures by a cut perpendicular to the long axis rather

than parallel to it).

4.3 Substructure Dynamics

The next step after dividing the structure into substructures

is to obtain the equations governing the behavior of each substructure.

Although there are numerous ways of obtaining these equations (e.g.

finite difference, closed form, etc.), one of the most popular and

powerful methods is the displacement formulation of the finite element.

This method is developed in detail in Sections 2.1 - 2.3. Whatever

method is used, the result should be a set of equations governing the

behavior of the substructure in the form of Equations (2.2-13), (2.3-3

-4, and -5) which are reproduced here for reference

,6 1 6 l y 3
- y c at (4.3-1)

st2-s sM s ' x + ' x (R' x s P') + s ,0- 0- q

2 ' x j J q + , X s q, A Q, s , )
2' x q x. I' .q + ' x (' x ) I (4.3-2)

S-- -- (4.3-2)
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ss As I * ' + ' s I q + qI ' q
= t- t j j= j = t j

s q s A s A
+ Q'x O + ' . I q + I ' .q

+ Q X ofq + Q' X (Q' s I) + Q x Si .
- -j jJ _

ST A O Xq A' S 'xq Pt
T - s x M P' x R (4.3-3)

-- - J - 2 - j 0 -- 2

91 M Yq + C Pq + 2Q' * O q

s A s A s A
SK q - ' I. ' ~ + 0 -

s  s S S s a'
SQ + ' I * R- O ' (4.3-4)

j j j 2  j -t

Along with the governing equations, the equation for recovering

displacements on the interfaces (e.g. Equation (2.4-1) must be available

P' = ' + iP' i (4.3-5)

The class of substructures or dynamical subsystems treated may now

be expanded to include any resulting in equations of the above form.

4.4 Substructure Modes

In many cases, substantial reductions in the dimensions can be

obtained by transforming from the generalized coordinates to modal

coordinates. The circumstances under which this is permissible and

the procedure for obtaining modes are outlined in Sections 2.5 and 2.6.

Because of the substantial savings resulting from this procedure, it

should be carried out for all substructures for which it is possible.

The result of the transformation is to reduce the number of equa-

tions and to modify the numerical values in the governing equations.

However, the basic form is unaltered. (At least when rewritten in
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first order differential equation format.) It will therefore be

assumed that modal analysis has been performed for all substructures

for which it is possible, the governing equations now involve modal

variables, and.the number of elastic equations has been appropriately

reduced. Conversely, if modal analysis is not possible for the sub-

structure, the equations remain unaltered.

If the interconnection points are retained as degrees of freedom

(e.g. Hurty's method), then no back transformation is required to

apply the constraints as developed. If they are not retained, and the

substructure was treated as first order, the constraints must be modi-

fied to reflect the contact transformation. It will be assumed that

the displacements at the interaction boundary are available as a linear

combinations of generalized displacements (not velocities).

4.5 Substructure Coupling

At this point, there are at least two distinct paths which might

be followed. It has been assumed, thus far, that the deformational

coordinates contain all the rigid body modes, so there is a redundancy

between them and the frame variables. The first path eliminates the

redundancy at this point in the development by constraining the defor-

mation and frame variables. For instance, a mean motion frame, or a

principal axis frame, or a frame attached to the material at some point

of the substructure. If this path is chosen, a constraint requiring

that the motion of some degree of freedom be the same on two substruc-

tures, would be reflected by a single equation involving both frame

and deformational variables.
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The second path defers the elimination of the redundancy between

deformational and frame variables. Consequently the physical inter-

pretation of the frame motion (e.g. as mean motion) may be lost. Since

each constraint can be thought of as constraining frame as well as

deformational motion, each constraint is partitioned into a nominal

(zero order in deformation) and deformational (first order in deforma-

tions) part. Each part is treated as an independent constraint. Focus-

ing on the nominal constraints for a moment, it is clear that for sub-

structures with numerous, redundant, connections, the number of nominal

constraints could easily outnumber the frame variables. As long as the

constraints are prohibited from being contradictory, the excess con-

straints are at most redundant. This procedure leaves as many frame

variables as there are rigid body degrees of freedom for the structure.

In this study the second path has been selected because it tends

to minimize the coupling between frame and deformational variables.

Since this method tends to place motion in the deformational variables

that the first path would associate with the frame, the chances of

obtaining deformations large enough to compromise the linearization are

increased. In such cases the model should allow relative frame motion

at some joint to reduce the deformations.

If the first path is elected, the appropriate constraints may be

written, (including those defining the frame) and the resulting equa-

tions integrated. The following sections, however, are based on select-

ing the second path.
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4.6 Point Connections

As noted in Section 3.6, rigid connections provide six linear

constraints, and single axis point connections provide at least two

linear constraints. All of the constraints of this type and all of

the associated deformational equations may be gathered together. The

techniques of Section 3.6 may then be applied to any subset (including

all) of those constraints and reiterated as required. As noted, when

the coefficient matrices can be approximated as constant, the techni-

ques outlined in Sections 2.5 and 2.6 may be applied to obtain modes

of the coupled substructures.

The procedures outlines in Section 3.3 - 3.5 may be applied to

incorporate the nominal constraints for all of the point connections.

As noted, it is generally possible to eliminate the constraint forces,

at the expense of complicating the equations. However for rigid con-

nections or for the variables along the axis in single axis connections,

it is generally desirable to eliminate them. So, in general, some of

the constraint forces will have been eliminated. In this event the

number of equations is reduced, the number of variables is reduced, the

constraint equations need not be retained, and the constraint forces

do not appear. Those constraint forces which are not eliminated are

treated in the next.section (4.7).

In the event the deformational constraint motion is unknown and

governed by a force-deflection relationship compatible with the form

of the equations, the relative motion variable can be included in the

deformation variables, and the governing relationship in the assembled

equations. Analysis may then proceed as above.
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4.7 Pfaffian Constraints

Those single axis connections for which an election was made not

to eliminate constraint forces, may be treated in the same way as

Pfaffian constraints. The procedure is outlined in Section 3.2. The

effect of this class of constraint is to augment the system equations

by the constraint equations, and to augment the system variables by

the constraint forces (Lagrange multipliers). As noted, unknown motions

may be treated in a similar fashion.

4.8 Equations for Structure

After applying all these constraints, the number of frame variables

is equal to the number of rigid body degrees of freedom. Similarly

the number of rigid body modes remaining in the deformation equations

is the number of rigid body degrees of freedom unless the option to

reflect total relative motion in a frame variable (Sections 3.3 and 3.4)

was exercised. For each of these cases where the nominal motion is

arbitrary, but the relative deformation is constrained, the number of

rigid body deformational modes is reduced by one. The rigid body

deformational modes can now be eliminated by selecting a mean motion

or principal axis frame for the composite substructure, by fixing

some degrees of freedom, or they can be retained. The method outlined

in Section 2.5 can be used to integrate the coupled system in appro-

priate cases, if all of the rigid body degrees of freedom are retained

in the deformations.

At this point, any structural elements which do not fit the

procedure outlined above (e.g. non-Pfaffian constraints) can be incor-

porated in the equations governing the structure.
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4.9 System Synthesis

The complete set of structural equations may now be combined with

the equations governing the behavior of the other dynamical subsystems.

To whatever extent the equations for the other subsystems share the

form of the structural equations, the same techniques may apply. In

particular, any subset of constant coefficient linear equations may be

subjected to modal analysis. The complete set of system equations is

now available for the intended analysis (e.g. numerical integration to

determining system behavior).
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APPENDIX A

MATHEMATICS.

To preserve the continuity of the main body of this presentation,

the mathematical definitions have been placed in this appendix. The

material in this appendix is not new, and has not been originated by

the author; rather it has been abstracted from the sources noted in

the bibliography, particularly from Bishop and Goldberg's text "Tensor

Analysis on Manifolds." The material is reproduced here primarily to

establish the nomenclature, and secondarily, to review some of the more

important results. For a more complete study, the noted sources are

recommended.

Throughout this appendix, the most fundamental aspects of math-

ematics are applied implicitly. Some of these fundamental concepts

and signs are noted below. Mathematics consists of mathematical

objects and relations. The term set is synonymous with mathematical

object. Mathematics is written in terms of complicated assemblies of

fundamental signs and letters. A letter represents a totally indeter-

minate mathematical object. The fundamental rules governing the use

of the fundamental signs and letters are called axioms. The true

relations which may be logically deduced from the axioms are called

theorems. Additional signs are introduced to abbreviate complex

assemblies..

The fundamental logical signs may be taken as "or" and "not". If

R and S are relations, the assemblies "R or S" and "not R" are rela-

tions called the logical disjunction and negation. If at least one of

R and S is true, then "R or S" is true. The negation of a true relation
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is false. The derived logical signs: "and", ":>" and "<=>" yield

relations: "R and S", "R =S" and "R <>S", called logical conjunction,

logical implication and logical equivalence; and defined to be "not

[(not R) or (not S)]", "S or (not R)" and "(R==>S) and (S==>R)",

respectively. If R is a relation, A is a mathematical object and x

is a letter, then "(Alx)R" is the relation obtained by substituting

A for x in R. If "(AIx)R" is true then A satisfies the relation R.

The derived logical signs: " 3" and "V " are called the existential

and universal quantifiers and are read "there exists" and "for all".

They yield relations: "(3 x)R" and "(V x)R"; the first is defined by

the axiom

(Alx)R ==> (3 x)R. (A.0-1)

The second abbreviates "not[(3 x)(not R)]".

The fundamental mathematical signs may be taken as: "=" and " f"

called the sign of equality and the sign of membership. The rules

governing the sign of equality are

(Vx)(x = x),

( Vx)(V y) [(x=y) * (y=x) ],

(Vx)(Vy)(Vz)[(x=y and y=z)= >(x=z)] and

(u=v)= [(ux)R e>(vJx)R]. (A.0-2)

The rule governing the sign of membership is

(A=B) [(x E A) <(x C B)]. (A.0-3)

A.1 Set Theory

The fundamental concepts and symbols used in set theory are

outlined in the introduction to this appendix. The symbol "C", called

the inclusion sign, yields a relation "A C B" which is an abbreviation
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for "(V x)[(x E A)==>(x f B)]". The relation is read "A is a subset

of B" and is also written "B D A". The relation satisfies

[(A C B) and (B C C)]=>(A C C), and

(A = B)4 [(A C B) and (B C A)]. (A.1-1)

If R{x} is a relation with x a letter (variable), then for every

set, B, 3 a unique A C B where

x E.A<,>(x E B and R{x} is true). (A.1-2)

It is conventional to indicate this set by x I R {x} . The braces

conventionally indicate a set and the vertical bar may be read "such

that". In other uses, "such that" may be denoted " )". The complement

of A in B (where AC B) or the set theoretic difference of B and A is

denoted

B - A = IxI(x f B) and (x J A)). (A.1-3)

The set "0" = A - A is called the null or empty set. For any two sets,

A and B, the intersection and union of A and B are denoted "A n B" and

"A U B" and are defined as

A n B = {xl(x C A) and (x ( B)) and

AU B = {xI(x ( A) or (x C B) . (A.1-4)

N N
The notations " U Ai" , " A", " U A" and " A " are used toi' a ai=1 i=li 'aJ J a
indicate unions and intersections of families ofsets.

If x and y are mathematical objects, the mathematical object

"(x, y)" is called an ordered pair. More generally, (x 1 ,.. .,x n ) is

called an ordered n-tuple. The ordered pair satisfies

[(w,x) = (y,z)]<>[(w=y) and (x=z)]. (A.1-5)

The cartesian product of two sets, A and B, is denoted "A x B" and

defined as
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A x B = {(x,y) (x A) and (y ( B) . (A.1-6)

More generally, "AI x A2x.. .x A N " is the set of ordered n-tuples. If

two adjacent sets are the same, exponential notation may be used (e.g.

Ax Ax B = A 2 x B).

A set consisting only of ordered pairs (i.e. a subset of a

cartesian product) is called a graph. A function, "f: A - B", is a

set, A, called the domain, a set, B, called the range and a graph,

G,CA x B, satisfying Vx i A, 3 exactly one y 4 B 9 (x,y) E G. The

unique y associated with any x is denoted "f(x)". The image, "f(A)",

is defined by

f(A) = tf(x) x C A . (A.1-7)

When f(A) = B, the function is called onto, otherwise it is into. If

V y C f(A), 3 only one (x C A) ) (f(x) = y), the function is one to one;

which is abbreviated "1-1". The function f':C - B, CC A, i f'(x) =

f(x), Vx f C is called a restriction of f and is denoted "flc". If

f: A - B and g: C - D, then"g o f:E- D" is the function obtained by

following f by g (i.e. g[f(x)]). The domain is E = xl(x f A) and

(f(x) f C) . The function "g o f" is called the composition of g and

f. In the event E = 0, the function is the null function 0: 0 - D.

If f: A - B is 1-1 and onto, 3 a unique function called the inverse

of f, denoted "ff-l: B - A", 9 f-1 o f(x) = x and f o f-l(y) = y.

The algebraic development of the number system and its properties

will not be pursued here. Notationally, the natural numbers will be

denoted "N", the integer "I", the rational "Z", the real "R" and the

complex "C".
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A.2 Metric Spaces

Afunction, p: A x A R, is a metric if Vx,y,zEA,

0 < p(x,y) < c,

p(x,y) = 0 4 x=y,

p(x,y) = p(y,x) and

p(x,y) < p(x,z) + p(z,y). (A.2-1)

Two metrics, pl, 2: A x A - R, are strongly equivalent if 3 cl, c2 > 0,

;Vx,yE A,

P1(x,y )  c 2 P2 (x,y)] and p2(x,y) < c P1(x,y)] . (A.2-2)

Two metrics are equivalent if they give rise to the same "topology"

(A.3). A strongly equivalent metric is equivalent. A set with a metric

is called a metric space. The open ball centered at x with radius r, is

defined by

B(x,r) = {yl(yCA) and [p(x,y) < r]}. (A.2-3)

A bounded set is one which is contained in some open ball.

A.3 Topological Spaces

A collection, T, of subsets of a set, A, is a topology in A if

0 T, A T,
N

Bi. T, i=l, ... , N == ( Bi.T and
i=l

BOET, CCJ ==> j B CT (A.3-1)
SEJ

where J may be finite, countable, or uncountable. Any set, BET, is

called an open set.. A set with a topology is called a topological

space. A topology constructed from a metric is called a metric topology.
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If A and B are topological spaces, the topology whose open sets are

cartesian products of open sets in A and B is called the product

topology. The formal statement "A with T is a topological space" is

customarily abbreviated as "A is a topology."

A neighborhood of a point is defined as an open set containing the

point. A closed set is the complement of an open set. For any subset,

8, the union of all open sets, C ,CB, is called the interior of B and

is denoted "80"; the intersection of all closed sets, Ca, B is called

the closure of B and is denoted "B- "; the set B- - Bo is called the

boundary of B and is denoted "B". A topological space, A, is connected

if 0 and A are the only sets which are both open and closed. An open

connected set is called a region. A function, f: A - B, from a

topology, A, into a topology, B, is continuous if for every open

CC B, f-1(C) is open in A.

Two topologies, A and B, are homeomorphic, and a function, f: A + B,

-1.
is a homeomorphism, if f is 1-1, onto and both f: A -+ B and f-1: B + A

are continuous. This is the natural notion of topological equivalence.

A.4 Manifolds

A chart at a point, p,f A, a topological space, is a homeomorphism,

p: U - Rd , mapping U, a neighborhood of p, onto an open subset of Rd

The dimension of the chart is d. The standard Cartesian chart on Rd is

the identity map, iI: Rd - Rd ' which is defined by (ul (p), u2(p), ...

d 1 2 d i 1 2 d i
u (p)),where p - (a a , ... ,a ) and u (a , a , ... ,a ) = a . The

i d
function u Rd - R is called the i-th projection. A chart is also

called a coordinate map. The entries in the chart, p, are defined by
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u o pand are called the coordinate functions, usually denoted by

" i" " 1 2 d "
x . Collectively the coordinate functions (x , x ,...,x ) are

called the coordinates or coordinate system at the point.

A function, f : V - R, V open in R , is continuous to order

II Coi
infinity, denoted C , if f has continuous partial derivatives of all

orders and types. A function, ( : V + Re , is a Cm map if its entries,

i C d e
u op, i = , ... , e are C . Two charts, : U - R and T : V R

on a topological space, are C -related if d = e and either U fV = 0
-1 -1 l

or both PoT and To p are C maps. A collection of charts,

{: Uc Rd lo I, U CA}, such that {Uc a l} is a covering of the

topological space, A, (i.e., AC U U ) is called an atlas. AC

atlas is one for which every pair of charts is C - related. A chart is

admissible to a C atlas if it is C - related to every chart in the

atlas. A topological manifold is a separable Hausdorff space 33 a

d-dimensional chart at every point. The dimension of the manifold is

d. (A metric topology is a Hausdorff space, and the metric topologies

in this presentation are separable.) A C manifold is a topological

manifold with all of the admissible charts to some C atlas.

If M and N are manifolds of dimension d and e, then the product

manifold is the manifold of dimension d+e obtained from the product

topology with an atlas obtained from the products of charts from the

atlases of M and N. The product of charts, 1: U + Rd and T:

V Re, is (P,T): U xV Rd+e where

[(p,T)] (m,n) = [p(m), T(n)]. (A.4-1)
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The definition of a C map may be extended to include a function,

F : M -+ N, where M and N are C manifolds. Let pT: U - Rd and

P2 : V Re be Cm charts on M and N. The p~ - 1 2 coordinate expression

for F is

P2 oFo p I oF (V) - R e . (A.4-2)

If all such expressions, for all admissible charts, Pl and p2, are Cm

Cartesian maps, the map F is called a C map. (It is sufficient that

the coordinate expressions for one atlas in M and one in N are C .) A

diffeomorphism is a 1-1, onto, C map, F :M - N, such that the inverse

-l
map, F-1: N - M, is also C ; M and N are called diffeomorphic. This is

the natural notion of equivalence between manifolds.

If there is a 1-1, C map, F : M - N, I at every mCM 3 a neighbor-

hood, U of m, and 3 a chart of N at F(m), I : V - Re , P = (yl, ye)

i i Ii = y oF U, i = i,..., d are coordinates on U forM, the map, F, is

called an imbedding. A submanifold of N is a subset, F(M), where F:

M - N is an imbedding, provided with the manifold structure for which

F: M - F(M) is a diffeomorphism. An open submanifold is an open sub-

set of a manifold, with the manifold structure obtained by restricting

the topology and the coordinate maps to the subset.

A.5 Tangents

A differentiable curve, y : [a,b] - M, is a map of an interval of

real numbers, [a,b], into a manifold, M, 3 an extension to an open

interval, y : (a-c, b+c) - M (c > 0 and y = y on [a, b]), which is a

C map.

The set of all real valued Co functions, F : U + R, where U is a

neighborhood of a point, m,f M, is denoted F (m) . A tangent at m is
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a derivation of F (m), which is a function, t : F (m) - R,

Vf,geF (m) and Va,bfR

t(af + bg) = at(f) + bt(g) and

t(fg) = t(f) g(m) + f(m) t(g). (A.5-1)

If y is a C curve in M I y(c) = m, then the tangent to y at c,

y,(c) , is defined by, Vf E F (m),

y(c)](f)= df o du (c). (A.5-2)

The set of all tangents at a point, m, is called the tangent space

at m and is denoted M
m

A real valued function at m, f, E F (m), has a coordinate expres-

sion, f = g(x, ... , x ), where g = f o : U - R, U open in R . The

i
partial derivate of f with respect to a coordinate, x , is defined as

-1
S(f i (f ) ) o . (A.5-3)
x ui au

The operators a/ax are called the coordinate vector fields. If

application of is followed by evaluation at m, the result is a
x "

tangent at m, which is denoted -(m) , defined by
ax

i (f) = (f) (m). (A.5-4)
ax lax

Specifically, it is the tangent to yi at m, where yi is the i-th

coordinate curve through m defined by

-1 1x i-i i+l d( )]
Yi(u) -- 1 (m),..., x (m), u,x (m),..., x (m) .

(A.5-5)

These tangents form a "basis" (A.6) so that for any a i R, i=l, ... , d
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d

t = C a (m) (A.5-6)
i=1 3x

i

is a tangent. Conversely, for any tangent, t, EM , 3 unique a 13 equa-
i

tion (A.5-6) holds. These a are called the components of t with

respect to the coordinates x i

It is convenient to introduce an abbreviation for sums called the

Einstein summation convention. The appearance of an index exactly twice

in a product (usually once up and once down) implies summation over the

i
range of the index. For example, if a and b. are defined for i=l,...,

1

N, then

ai i=l aibi .  (A.5-7)

Thus the expression for any tangent may be written as

t = a -- (m) (A.5-8)
ax

The ai may be determined by noting that

t(xj) = ai a (m)](xj)

=ai 6j
1

= a. (A.5-9)

The symbol "6j" is called the Kronecker delta and is defined to be one
1

if i=j and zero if i # j. The contraction is

i 1 2 36 = 61 + 62 + 6 = 3. (A.5-10)i 1 2 3

The tangents are algebraically "vectors" (A.6) and the set of

tangents at a point forms a "vector space" (A.6). In addition, the

components with respect to the coordinates satisfy the usual tensor
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transformation relations. If (x ) and (y i) are coordinates then the

tangent i (m) has an expression in terms of the x i

ay

S(m)= a -- (m), (A.5-11)
ay a3x

where

a = t(x ) = (m) . (A.5-12)
ayi

So
a ax a
S (m) =- (m) (m). (A.5-13)

ayi yi x

Thus for any tangent,

i 8 i 8 i b xt a (m) = b (m) - a b (m), (A.5-14)
ax ayi  y j

which is the customary tensor transform.

The set of all tangent spaces at all points of a manifold,

M, is called the tangent bundle, and is denoted "TM". If p: M - N is

a C map, then the tangents in M are mapped to the tangents of N by

p,: TM - TN, the differential of p. In terms of coordinates, xii=

d, at m and y , a = 1, ... , e at n = p(m), if p has a coordinate expres-

sion, y op = fa(x ... , x d), then a tangent, t, t = a --- (m) is
ax

mapped to the tangent V,(t) N n, (n=p(m)), where

(t) = ba (n) and b = ai (YtoY (m). (A.5-15)
a

The array i (y op) is called the Jacobian of p with respect to the
ax

coordinates x iJ and j{y . In the special case of a real valued func-

tion, f: M - R,

d
f,(t) = t(f) du (c), where c = f(m). (A.5-16)
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The component, t(f), is redefined as the differential of f and the

notation is changed to

[df](t) = t(f). (A.5-17)

If ix i are the coordinates on M,

df = (f) dx i  (A.5-18)
x 1

and

[dxi] -- = 6 i  (A.5-19)

A vector field, X, on E C M is a function assigning to each mfE

a vector, X(m), f M . It is C if the components of X with respect to

every coordinate system, x , are C functions. A curve, y, is an inte-

gral curve of a vector field, X, defined on ECM if the range of y is

in E and for every s in the domain of y

y,(s) = X[y(s)]. (A.5-20)

A.6 Vector Spaces

A commutative group is a set, X, with a law of composition,

(x,y) -. x+y, Vx,yEX satisfying, Vx,y,ztX,

x + (y + z) = (x + y) + z,

x + y =y + x,

30)x + 0 = 0 + x = x and

3(-x) 9 x + (-x) = (-x) + x = 0. (A.6-1)

A ring is a commutating group with a law of composition, (x,y) - xy,

Vx,y EX, satisfying, Vx,y,zEX,
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x(yz) = (xy)z,

3 1 1x = xl = x,

x(y + z) = xy + xz and (x + y)z = xz + yz. (A.6-2)

A vector space is a set, V, whose elements are called vectors,

a ring, S, whose elements are called scalars, and two operations,

vector addition, (x,y) - x + y, Vx,yfV and scalar multiplication,

(A,x) - Ax, V x fV, AX S such that V with addition is a commutative

group and Vx,yfV and A,pf s

( x) = (xp)x,

lx = x,

(A + I)x = Ax + px and

X(x + y) = Ax + Xy. (A.6-3)

The ring of scalars will be taken to be R, the real numbers, unless

explicitly noted otherwise.

A sum of products of scalars, ai, and vectors, vi, i.e., a vi is

i
called a linear combination. If all of the a = 0 it is trivial,

otherwise it is nontrivial. A finite set of vectors {vi) is linearly

dependent <*3 a nontrivial, null linear combination, a v 0; other-

wise the set is linearly independent. A non-empty subset, U, of vector

space is a subspace if it is closed under addition and scalar multi-

plication (e.g., V u,vEU,a S, u + v fU and au EU). The minimal sub-

space containing a subset, T, is called the subspace spanned by T.

A linearly independent set of vectors, T, spanning a space, V, is

called a basis for V. It can be shown that every basis for a space

has the same number of elements, d, the dimension of the space.
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Any vector, vC V may be represented as a unique linear combination

i
of basis vectors for any basis {vi , v = a vi. If {ei } and {fi are

two bases of V then each basis vector, ei, has an expression in terms

of the if j,

ei = ai f.. (A.6-4)

Similarly,

f. = b e.. (A.6-5)

If the scalars, a are arranged in an array with j constant on rows

and i constant on columns, the array is called a matrix and is denoted

(a ) . Specifically, it is the matrix of change of basis from

{e.} to if.}. Since
1 j

e = a (b k e), (A.6-6)
= i j k

it may be concluded that

aj bk = 6k (A.6-7)
i j i

Similarly,

bJ a = 6 k (A.6-8)
i j i

Matrices, (a)j and (b ), satisfying these relationships are called
1 1

inverses.

A.7 Tensor Spaces

If V and W are vector spaces, f: V - W and Vvl, v2 f V and a f R,

f(vl + v 2 ) = f(v 1 ) + f(v 2 ) and

f(a vl) = a f(vl), (A.7-1)
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then f is a linear function. The vector spaces V and W are isomorphic

and the function f is an isomorphism if f is a 1-1, onto linear func-
-l

tion. The set of points mapping into the zero of W, f-1 (0), is called

the null space of f. The set of all linear f: V - W, {flf: V - W and

f linear), is called the space of linear functions from V into W and is

denoted "L(V,W)". Defining [f + g](v) = f(v) + g(v) and [af](v) = a f

(v) as vector addition and scalar multiplication, L(V,W) is a vector

space.

Just as the selection of a basis provides a coordinatization of a

vector space, selection of bases, lei} , i = 1, ..., dl on V and {e },

at = 1, ..., d2 on W (where dl and d2 are the dimensions of V and W)

provides a coordiatization of linear functions as d x d2 matrices,

if )
f (e) = f (e (A.7-2)

A basis for L(V,W) is {Ej}, where

E ei = 6 e (A.7-3)

For any f,

f = f E3 (A.7-4)

The matrix of Ej is 6 6 .

The set of scalar-valued linear functions, L(V,R), is called the

dual space of V and is denoted "V* " For any given basis of V, {ei ,

* i i i i
there is a unique basis of V , {C i, such that E e. = 6.. {e I is

J 3

called the dual basis to {e.}. The dual basis to the coordinate1

vector field, a (m) , is a basis for the space of differentials,
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{dx (m)} , (i.e. dxi = 6). If {fi. is another basis of V and {O i

j •
its dual, where fi = ai ej, and e. = b3 f. and b is the inverse of

a 1 i i j

a , theni= a i and = b b 1 . The dual space to V (i.e.

(V ) ) is naturally ismorphic to V. The two will not be distinguished

and (V ) will be denoted V.

If V., i=l, ... , r, and W are vector spaces, f: V1 x ... xVr W,
1 r

and Vv., v. e V., and Va, aER,
1 1 1

f(v1 ,..., avi + a Vi,..., v r) = a f(vl,.., ,.. Vr)

+ a f(vl...., Vi' ... ' r ) ,

(A.7-5)

then f is a multi-linear, specifically an r-linear function. The

space of r-linear functions is denoted "L(V 1 ,..., Vr; W) . The scalar

valued multi-linear functions with variables all in V or V are called

tensors over V and the vector spaces they form are called tensor spaces

over V. The number of variables taken from V is called the contra-

variant degree, and from V the covariant degree. The functions, f :

V x ...xV x Vx ... xV - R (V r times, V s times) form a tensor space

denoted "T r (V)",
s

T (V) = V ... xV O V* ... V (A.7-6)S

(V r times, V s times). They are called tensors of type (r,s) and have

contravariant degree r and covariant degree s.

0
A tensor of type (0,0) is called a scalar, TO = R; of type (1, 0)

1 *
is called a contravariant vector, TO = V = L(V ,R); of type (0,1) is0 *c

called a covariant vector, T = V = L(V,R). The symbol, " ",

denotes the tensor product which assigns to tensors AE Tr and B Tt
s u

144



a tensor A(BCr+t. The tensor, A B : (V*)r + t x (V)s+ u  R,s+u .

is defined by

1 r+t
A xB (T ,..., T , v ,., s+

A 1  r ) r+l r+t u
= A(T ,..., T , Vl,..' Vs) B(T , ... , T , vs1' " su).

(A.7-7)

Selection of a basis, {ei}, and its dual, {Ei}, provides a coordina-

r
tization of a tensor, A,ET , as a multi=dimensional array;

i . .i
A=A. . e. O ... e. ( ... s (A.7-8)

l1 "s 1 e i  j l  (Es (A.7-8)

where

A A , ... , E r, e, ...., e. . (A.7-9)

Ajl..s r, ej

If the basis is changed to {fi} with an associated dual {i}, where

f. = a e and i b. E, then the coordinate expression for A in the
1 i j

{f i basis is

Am1 ... r b 1 ...b.r a ... as Ail. r (A.7-10)
f n i 1r n ns e J,..

n ...n 1 r s s
1 s

A tensor is called symmetric if it is both covariant and contra-

variant symmetric. a tensor is (co- or contra-) variant symmetric if

it is symmetric in every pair of (co- or contra-) variant indices. It

is symmetric in the p-th and q-th (co- or contra-) variant indices if

the components with respect to every basis are unchanged when the

indices are interchanged. If the interchanging changes only the sign,

the tensor is skew-symmetric in the p-th and q-th (co- or contra-)

variant indices. It can be shown that symmetry with respect to one

basis implies symmetry with respect to every basis.
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A tensor valued function of tensors is frequently discribed in

terms of the components with respect to a certain basis. If the result

is independent of the basis, the function is called an invariant. A

contraction is an example of an invariant. A contraction assigns to a

tensor of type (r,s) another tensor of type (r-l, s-l). Formally, a

contraction in the p-th contravariant and q-th covariant index is

defined by

i i i i ki. i
B1 " r-l=A"p1 p- p r-l

1 Js-1 1***q-1 k Jq'''Js-1 (A.7-11)

The scalar product of a vector and a dual vector is an example of a

contraction. If v = v e. and T = T. Ej then
13

v T = v T. e. E (A.7-12)

and the contraction is v k. There are several alternative inter-

pretations. Recalling V = L(V,R) the scalar product may be thought of

as a function, T(V), or with V = L(V , R) as a function V of T, or as a

bilinear function < , > : V x V - R defined by

<v, T> = T(v). (A.7-13)

An invariant may be linear or multi-linear. A linear invariant of the

p-fold tensor product of a variable with itself is called an invariant

of degree p.

A quadratic form on V is an invariant of degree 2 with variable

in V. A tensor of type (0,2) is called a bilinear form, b : V x V - R,

and has a coordinate expression

b = b.. i j. (A.7-14)
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For every quadratic form, q(v), there is an associated symmetric bi-

linear form, b, defined by

b(v, w) = ~ q(v+w) - q(v) - q(w) . (A.7-15)

Conversely for every symmetric bilinear form, b, there is an associated

quadratic form, q, defined by

q(v) = b(v, v). (A.7-16)

A bilinear form is non-degenerate if for every vtV, v # 0, 3 wEV3b

(v,w) # 0, or equivalently, if the matrix (bij) is non-singular. A

quadratic form is positive or negative semidefinite if Vv # 0, q(v)> 0

or q(v) < 0, respectively; if q(v) # 0 for v # 0 the form is (positive

or negative) definite. A definite form is non--degenerate.

A non-degenerate symmetric form (usually positive definite) is

called an inner product. A vector space with a positive definite inner

product is called a Hilbert space and implies a topological structure.

Two vectors, v,w, are orthogonal with respect to b if b(v,w) = 0. If

b(v,v) = 0 then v is called a null vector of b. A basis, {ei), of V,

is orthonormal with respect to b if for i # j, b(e i, e.) = 0 and

b(ea, ea), no sum, is one of the values + 1, 0, - 1. The bases, ii(m),

in general, may not even be orthogonal. However, an orthonormal basis

always exists. If the form is definite, the Gram-Schmidt process

yields an orthonormal basis. If, as in the usual orthogonal curvi-

linear coordinates, the basis is orthogonal (and definite) but not

-1 j
normal, the change of basis, ei = h i j(m), yields an orthonormal

basis. The h are the Lame coefficients defined by
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h xk x x and h - kj 6 (A.7-17)
i Dyi yj i = i

A metric on a manifold is a bilinear form, b, which is defined and

non-degenerate at every point of the manifold. For the usual coordin-

ates on E, S or T,

b = 6ij dx' dx j  (A.7-18)

(i,j-l, 2, 3, 4 for E, i, j = 1, 2, 3 for S, and i, j = 1 for T).

This metric is Reimanian (positive definite) and the pair (M, b) is

called a Reimanian manifold. The inner product or dot product is

frequently denoted by."< , >" or" "

b(v,w) = <v, w> = v.w. (A.7-19)

The use of the dot product is extended to tensors (e.g. A * B) by

interpreting it as acting on the last contravariant index of the pre-

ceding tensor, and the first of the following tensor. There are three

interpretations of the action of the fundamental bilinear form repres-

ented by the dot: 1) lowering the last contravariant index of the pre-

ceding tensor and contracting, 2) lowering the first contravariant

index of the following tensor and contracting, or 3) directly assign-

ing a tensor of contravariant degree two less. As an example,

axY a axB
(A.7-20)

Using the first interpretation,

148



N S=n s x a a . dxE

xB ax

= n s (A.7-21)
ax

The length of a tangent on a Riemanian manifold is

I vll = <v,v> • (A.7-22)

The angle between vectors is the value of 0, 0 < 0 < f, such that

cos(0) = v w> -. (A.7-23)

lvl I IwI

The length of a curve; y : [a,b] - M, denoted "ly", is the integral

of the lengths of the tangent vectors,

b

Y f IiY*(t) dt. (A.7-24)
a

The distance between points is the greatest lower bound of the

lengths of all curves. The Riemanian metric, b, is consistent with

the previous definitions of distance and duration, and straight lines

are minimum distance curves.

The usual coordinates make E,S and T essentially equivalent to

R , R and R. If Rd had been taken as the models of the physical
• R d'

system, or if the metric is carried over to R , then b would be the

standard flat metric and (Rd,b) would be ordinary Euclidean d-space.

A.8 Tensor Fields

For each type, (r,s), of tensor, and each m C,M a manifold, there

is a corresponding tensor space 'M r, over M , the tangent space.
ms m

For any (r,s) the union of these tensor spaces VmM is called the
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bundle of tensors of type (r,s) over M, and is denoted "TrM.'' In par-

ticular the tangent bundle is TM = TO , and the bundle of differentials

is TOM. A tensor field, T, of type (r,s) is a function, T : E - Tr M
1 s

where E CM. In particular, X: E-+TM is a vector field, and the dif-

ferential of a C function, f, df : ET is a tensor field of type

(0,1).

A vector field is "C o" < for every coordinate system {x 1, the

i i x i

components of X with respect to the x , X = X(x ), are C functions.

The components of T4TrM, with respect to the coordinates {xi}, are

r+s
the dr + s real valued functions.

Til'.ir = xJlT ,1 ••, .r = T dxi dx r J1, (A.8-1)

jl" ...Js

The tensor field, T, is "C " if its components are C functions. A

tensor field of type.(0,1) that is C is called a 1-form (or Pfaffian

form).

If P : M + N is a C map, then vector fields, X and Y, on M and

N are (9 related * Vm in the domain of X

O*[X(m)] = Y[ap (m)]. (A.8-2)

The definition is extended to tensor products by

P*m (AOB) = [pm (A)] x [p*m(B)]. (A.8-3)

Then two contravariant tensor fields, S, on M, and T, on N, are

p -related if V m domain of S.

'P*m [S(m)] = T[p(m)]. (A.8-4)

For covariant tensors,

* m (T[ p(m)]) = S(m), (A.8-5)
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where (m N ((m) M m  is defined by

< P*m (v),T> = <V, (P (T)>. (A.8-6)

In terms of coordinates if

y o( = F (x ,...,x )

and

T = T ..., ye) dya dye,

Then

(p (T) T (Fl (x),..., F (x)) F dx dx j . (A.8-7)T) = r ,.. ix i

A.9 The Hodge Star Operator

The space of skew-symmetric tensors of type (r,o) is denoted

by a wedge, "A rV," where V is the associated vector space. The dimen-

sion of ArV is the binomial coefficient " (d)" where d is the dimen-

sion of V. If jl''""' jr is a permutation of il,..., ir, it may be

obtained in any of a number of ways by transposing pairs of indices.

The number of transpositions required for a permutation is odd or even

and the corresponding sign of the permutation is -1 or 1, resectively.

For a permutation, Tr, this is denoted "SGN(rr)." The component of a

tensor, Al"' r' is the same as, or the negative of Aili...r if

SGN(j1 ...jr) is +1 or -1, respectively. The alternating operator,

A: Tr Ar V, assigns to each tensor, B, its skew-symmetric part,

denoted "B ". For e1...er fV B is defined as

a 1 r a

Ba(1 ''' r ! SGN ,il .i B , .

(A.9-1)

where the sum runs over all r! permutations of (l,...,r). The
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exterior product, denoted by "A", is defined by

A A B = (A ( B) , (A.9-2)

where A and B are skew-symmetric. The treatment of covariant tensors

is analogous.

An orientation of V is given by a non-zero element, 0, of

AdV. For the usual coordinates on R3

0 = A 2 3 (A.9-3)
1 x2 3

ax x x

is taken. An ordered bais, (el,..., ed), is in the orientation given

by 0 if

el A... A ed = , a > 0. (A.9-4)

Since the binomial coefficients, (d ) and (r are the same, the
r d-r

spaces of skew-symmetric tensors, ArV and Ad-rV, have the same

dimension. The Hodge star operator is an isomorphism between the

two spaces. Let (el,..., ed) be an ordered orthonormal basis in the

orientation. A typical basis element of A rV is e lA ... A ei . Let

jl''" Jd-r be chosen such that (il,..., ir, jl"' d-r) is an even

permutation of (1,..., d). Then * is the linear transformation such

that

*(ei A ... Aei ) = e A ... A e . (A.9-5)

It may be noted that for an odd dimensional space (e.g., 3),* o * is the

identity. The dot product may also be expressed in terms of the *

operator,

a * b = * (*aAb). (A.9-6)

152



If a and b are vectors of dimension three, the vector or cross

product is defined to be

a x b = *(aA b). (A.9-7)

By definition, if a = a ---- and b = b
ax 3x

aAb = (a b) a

8 i xax a

1 b B  a b ) 3
2 x a ax

a 2 a2 3 _b _ + (a 3 bl-alb 3 )  (alb bl) a a

ax2  x 3  ax3  1  ax 1  ax 2

(A.9-8)

So in terms of components, a x b is

/2332\a3 1 1 3 /1 2 2 1 a
*(aAb) = (ab 3-ab 2) + a3b -ab -- + ab -ab a

x1 x 2  3

(A.9-9)

This may be abbreviated by use of the Levi-Civita epsilon, EBy

defined as: + 1 if (a,8,y) is an even permutation of (1,2,3); -1 if

it is an odd permutation; and zero otherwise.

a x b =E a a (A.9-10)

The Levi-Civita epsilon may be used to express the determinant of

a matrix of order three.

DET (Aij) = Eijk ali a2j a 3 k

= Eijk ail aj2 ak3. (A.9-11)
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The rule for row or column interchange may be expressed as

aip aiq air

ajp ajq ajr = Cijk 'pqr IAI. (A.9-12)

akp akq akr

The contraction on the first indices may be obtained by setting

aMN = 6MN'

611 61q 61r 622 62q 62r 633 63q 63r
Eijk 6i .j j + j 6J

ijk iqr 1 jq 6 jr + 6 j2 jq r j3 jq r

6kl 6kq 6kr 6k2 6kq 6kr k3 6kq 6kr

(A.9-13)

For non-trivial cases, q J r and the first column will be identical

to the second or third in two of the arrays. The third reduces to

6jq 6jr

Eijk Eiqr = 6
kq kr

(A.9-14)
= 6 jq 6 kr- 6 jr 6 kq

A further contraction gives

Cijk 6ijr =  jj kr jr kj

= 36 kr - 6 kr

= 26 kr. (A.9-15)

A final contraction gives

Cijk Eijk = 26kk

= 6. (A.9-16)
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The results in Equations (A.9-11, - 12) yield some useful

identities for direction cosine matrices (whose determinants are one),

namely

ijk Epqr Cip cjq Ckr

pqr pi cqj ckr. (A.9-17)

A.10 Integration

A differential p-form is a C , covariant, skew-symmetric tensor

field of degree p (type (0,p)). For the case of R , the bases for

forms are:

0 - forms: {1) (i.e. the real valued functions)

1 - forms: {dx, dy, dz} (i.e. the space of differentials (A.7))

2 - forms: {dy A dz, dz A dx, dx A dy}

3 - forms: {dx A dy A dz}.

The Hodge star operator (A.9) may be used as it was for contravariant

tensor fields.

The exterior derivative of a p-form, 0, is the p+l form

dO = dO .. i ) dx 1  ... A dx P, (A.10-1)

summed over all increasing sets of indices.

As an example, on R , if

6 = fdx + gdy + hdz,

then
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dO = df A dx + dg A dy + dh A dz

(8f Lf af= dx + dy + 2 dz A dx
3 x dyz

+ dx + 2dy + dz A dy

/h ah ah+ dx + - dy + - dz Adz

_ h dy A dz + dz A dx+ dxA dy.
y 9z 3z ax x dy.y

(A.10-2)

Integration on a manifold is defined only for forms. Forms are

oo oo
integrated over sums of oriented C p-cubes. A C p-cube is a map-

ping, a : U - M from a rectilinear p-cube in RP , U, into the manifold,

M. A rectilinear p-cube in Rp , U, is, the set

U = {(ul b u ..., uP) < < + c , i=l,..., p}. (A.10-3)

The integration is performed by pulling back the differential form

to Rp (i.e., a*(6)). A scalar valued function on RP is obtained by

defining an inner product on p-forms such that the orientation, w,

is unitary,

<W, W>p = i, (A.10-4)

and taking the inner product with the orientation,

<a*(8), W> . (A.10-5)

The integral of a p-form, 8, on an oriented (w) C p-cube, a: U + M,

is denoted

0, (A.10-6)
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and is defined to be the associated Riemannian integral

( ) = , < a*(6), > dp . (A.10-7)

The generalization of Stokes' theorem to forms is as follows:

let 0 be a (p-l)-form defined on a chain of p-cubes, C,(p>O), then

dC = Ce (A.10-8)

A.11 Variations

A real valued function of functions is called a functional.

(e.g., f p < v, v > dpM is a real valued function of the functions

M

v.) The variation of a functional, J Y1,..., YN,] is denoted

"6J[hl,...h N] and is defined as the principal linear part of the

increment.

AJ [hl,...,hN]= J[Yl + hl".. YN + hN] - J[ YI'''YN]

(A. 11-1)

is the increment of the functional, J, corresponding to the incre-

ments

1 d 1 d
hi(x ,., x ) of the functions yix ,...,x ).

The increments are arbitrary members of the normed function space

appropriate to the associated function y. (e.g., F

etc., suggests the space of 3-times continuously differentiable func-

tions over R, D3 (R).) If the increment can be expressed as
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AJ[hl,...,h n ] = [hl,...,hN + E(IlhlI) (A.11-2)

E - 0 as jIlhll 0; and is a linear functional, then is called the

principal linear part and is thus, by definition, the variation of the

functional. A functional, 4, is linear if is continuous and

[hl,..., xhi+ h, ... , ] = "][hl,..hi..-.,Nt] +

+ h hl,...,hi,...,] (A.11-3)

A natural norm for h is

N

llhll = l i (A.11-4)
i=1

and for an h i  DM(R) is

d d 3Mh

_hi = hil + ".. + "" MAX ...3x I. (A.11-5)
R l =1 j M=1 R 3 3

Alternatively maximums could be used in place of sums. The term

E(l hi I), if E - 0 as I h j 0, can be written using little - 0

notation as "o( hi J)," meaning

LIM E(I hl I) = 0 , (A.11-6)

1h[l - 0 | h|[

or with big - 0 notation as "O(jhj 12), meaning ]M)

I (lh|I < MI hI2 . (A.11-7)
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A.12 Nabla

The symbol "V", called nabla or del, is used to represent the

operation of the exterior derivative on differential forms (A.10).

The gradient is denoted "Vf" and is defined as df. The divergence

is denoted "V V" and is defined as * d * V, where "*" is the Hodge

star operator (A.9). The curl is denoted "V x V" and is defined as

* d V.

In terms of the usual coordinates on three dimensional space,

these have the usual forms

d(f) = dx + -- dy + - dz , (A.12-1)
Dx Dy az

V - V = * d * (V dx' + V 2dx
2 + V 3 dx

3)

2 3 3 1 1 2
= * d (Vdx A dx + v 2 dx A dx + v 3 dx dx)

* dxl  dx A dx + dx dx A dx

+ dx 3 A dx A dx

* \L D (lx2 av x 2 dx1 2 3 1 x2

+ -+  - and (A.12-2)
1 2 3

Vx V= * d (v1 dx + v 2 dx2 + v3 dx 

1 2 1 1 3 1 2 1 2
3 n

ax xx 3x

= - dx A dx + dx A dx +- dx A dx

Equation (A.12-3) continued
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S2 3v2 3v 3v3
+ - dx A dx + - dx A dx + - dx A dx

ax 3x 3x2

(Pv2 vl 1 2 [Fv D3 2 r  dx 3

(3 A. 13 2 2

A.13 Dot and Cross Product Identities

Some of the identities involving dot and cross products will be

listed here with proofs as needed. Since the dot product is defined

by a symmetric bilinear form,

A -B=B * A A (A.13-1)

Similarly, since the cross product is defined by the exterior product,

Using the tilde symbol introduced in (1.5-40), the cross product may

also be written

A x B = E b e

+ a e e 6e *-[bY e

= B . (A.13-3)

Similarly,

A x B = B = A B = - B =- B A = - B x A . (A.13-4)

The vector triple product may be rewritten by applying Equation

(A.13-3) as

160160



A * (B x C) = A * B * C = (A x B). C . (A.13-5)

The twelve permutations of (A, B, C) may be obtained from the symmetry

properties, Equations (A.13-1 and -2) and from (A.13-5). All even

permutations are equal, and all odd permutations are equal in magnitude

but of opposite sign. In terms of the tilde notation,

A - B x C = * B * C = A B * C = A * B C , (A.13-6)

where the parentheses have been dropped since there is only one

interpretation possible.

The parentheses must be retained in the iterated vector product

since there are two different forms. The iterated vector product may

be written

x (B C) = a( b c)ea (A.13-7)

Noting the expression for the contraction of Levi-Civita epsilons

(A.9-14), this may be written as

Ax (B x C) = (a 6 6 ) a b6 c e

-(a c)be- (a b )c e

= (A * C)B - (A * B)C . (A.13-8)

From the anti-symmetry of the cross product

Ax (B x C) = (C x B) xA * (A.13-9)

Finally it may be noted that

A x (B x C) + B x (C x A) + C x (A x B)

= (A * C)B - (A.B)C + (B.A)C - (B.C)A + (C.B)A - (C.A)B

= 0 . (A. 13-10)
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In terms of the tilde notation, this last result may be written

(C * B) A =- B ( A) + 'C (- 6 A) , (A.13-11)

where the tilde outside the parentheses implies the quantity inside is

to be operated on. This may be written in an operational form as

( B) C BB - BC . (A.13-12)

The four fold iterated vector product may be expressed in either

of two forms,

Ax [B x (C x D)] = A x [(B * D)C - (B - C)D]

= (B D)A x C - (B * C)A x D (A.13-13)

or as

A x (B x [C x D]) = (A * C x D)B - (A * B) C x D . (A.13-14)

A.14 The Variation of a Vector

The use of the variational operator, 6, in conjunction with vector

notation, in an inertial reference frame, has the interpretation

6A = (6a') . (A.14-1)

ax

This may be expressed in terms of the A- 1 related basis, (1.5-35), as

6A = (6ao) c a

ax'

= 6(aac) - (aa6,c) . (A.14-2)
a ax' a 3x'

If the combination, a c is denoted 'a (noting that a
Y = c y 'f  =

a 9 i

c a ), then Equation (A.14-2) becomes
Y
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A =(6 'a) a - ('a c 6 c ) a
ax' Ox'

= 6'A - ('a Y c 6 c) a (A.14-3)
Dx'

where the symbol 6' is defined by

6' B = (6b . (A.14-4)
-x,a

It may be noted that the array, cy 6 c , is skew symmetric since

0 = 6(6y) = 6(c c) = 6 c c + cY 6c
aa a ,a a a

-= c 6c= c 6c . (A.14-5)

Thus in a dot product,

6(A • B) = 6aa be + aa 6b a

= (6'a- 'ac6c )'b + 'a (6'bA- 'bcycB )
a at a

= 6 'a b + a 6'b 'aYBc6c- 'a 'byc6c

= 6 'a 'b + 'a 6'ba

= 6 '(A B) . (A.14-6)

In the case of mixed bases,

'b = 6(a c 'b )

ax ax'

= 6a a'$b B + a c'bc 'b + a c 'b

= 6A * B + a'b6c + A 6"'B (A.14-7)
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A.15 Modes

An ordinary, second order constant coefficient system of

differential equations in the form

M' + CA 4-+ G 4 + (1 + oi)Kq = 0 (A.15-1)

must be converted to first order before modes can be calculated. The

matrices M, C, K, are real positive semi-definite, G is real skew-

symmetric, and i = L. First the q must be transformed into those

spanning M, q, and those spanning the null space of M, 2q. Pre and

post multiplying by the transform gives

11 0 1 11 1 12 1 11 12 1 12 12 1

(A.15-2)

The equation may be written in first order form as

ll 1. 1 1.
llM l 1'12 12 1 ' 1

S 2+ C2G+ 12 C 1 q + 0 (l+i) K (l+ai)12 K q

0 21 21 22 22 2 21 22 2

(A.15-3)

If C is zero, then the first matrix is skew-symmetric. If G is zero

(and C is not), then reversing the sign on the first equation would

result in both coefficients being symmetric.

A first order differential equation of the form

A + B q = 0 (A.15-4)
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may be subjected to further reduction if A is of less than full rank.

Transforming q into those spanning A, 1q, and those spanning A's null

space, 2q, and then pre- and post multiplying by the transform gives

11 11 12 1
SiI + - (A.15-5)

0 2 21 22 2
L O'0 q B' B jqJ .

The last of these equations is algebraic and can be solved for the

space spanning the partition 21B 22B. If 22B is non-singular this is

simply

q2 = 22B] 1  21B] 1qj (A.15-6)

which when substituted in give

[lA]41 + 1 B 1 2  22B -1 21B] {q = 0 . (A.15-7)

The singular case yields similar results. In either case, we are

returned to an equation of the form

D4 + Eq = 0 (A.15-8)

where D has full rank.

The procedure for reducing the dimension of the equations

generalizes a method applied in structural analysis known as static

condensation or Guyan reduction. Those methods were developed for the

special case where moment of inertia terms are considered negligible

and dropped from the mass matrix, reducing its rank to about half.

In those applications the mass matrix is frequently diagonal, there

is usually no damping or coriolis terms, and the resulting 22K is
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non-singular, allowing immediate identification of the null space and

solution in the form of Equation (A.15-6). In the more general pro-

cedure, finding a null space is not trivial. Eigen routines may be

used (if they can treat multiple zero roots), some Choleski decompo-

sition routines, based on maximal pivots, provide the spaces, and

there are a class of elimination methods sometimes known as "structure

cutters" which do the job.

Returning to the Equation (A.15-8), if E has less than full rank,

transforming gives

11 Dl2 1 11 E 1

-- - - . -- -- (A.15-9)

and solving as in Equation (A.15-6) provides the rigid body modes and

leaves

F4 + Hq = 0 . (A.15-10)

The matrix H is symmetric and may be factored into lower, L, and

upper, L , triangular matrices (which is a by-product of using a

Choleski routine on E). Pre- and post multiplying by L-1 and L

provides

J4 + Iq = 0 , (A.15-11)

-1 -lT
where I is an identity, and J = L F L- . Assuming an exponential

A t/
solution q = q e provides the standard eigenvalue problem on the

dynamic matrix J

[J] + [LI] {} = {0} . (A.15-12)
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The frequencies of the system are 1/A so the usual procedure of

calculating highest eigenvalues first provides the desired lowest

frequencies first (or, with a shift, in some low range).

It may be noted that in the absence of damping (C = 0, a = 0),

i[J] is hermitian, so the eigenvalues, iX, are real and the resulting

motion is sinusoidal. In the general case, the adjoint problem must

also be solved

[IJ [ + II]] {a = {o). (A.15-13)

The eigenvalues are the same, and occur in conjugate pairs or are

real, but the eigenvectors are different. After transforming the

vectors back to the original q's, premultiplying by the transpose

of the adjoint vectors and substituting the vectors times modal

amplitudes, [ {n}, into the first order equations (e.g., A.15-3)

diagonalizes the system of equations.
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APPENDIX B

STRESS

The presentation of the relationship between Newton's Laws

and stress has been removed to this appendix to preserve the

continuity of the text.
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B.1 Stress Transformations

Let m be an arbitrary point in a material continuum, N an

arbitrary spatially contravariant vector of unit length. Let

1 2 3
(x , x , x ) be Cartesian coordinates with origin at m, and such that

the point defined by EN lies in the first quadrant. The plane normal

to N through cN, and the coordinate planes define a tetrahedron with

vertices (0,0,0), (.i, 0,0), (0, - ,0), (0,0, E ) where N = n D
n n n - ax

x2

NS

-3S

1S
x1

x3

The surface force densities on the planes normal to N and the coordi-

nate axes x will be denoted NS and - S respectively. The volume

of the tetrahedron is

31 E
V = 6 1 2 3 (B.-)nnn

and the areas of the faces are

NA = 1 2 3 (B.1-2)
nn n

and

a 2
1 n 2

A = 123 (B.1-3)2 12170
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From Section 1.6, Newton's laws imply

f (A- ax = ax

S n ta R * x . (B.1-4)

Since the terms p, A, X remain constant as E varies (0(1)) and the

integral varies as the cube (O(E3)) , and noting

S(m') = S(m) + O(E) , (B.1-5)

the equation becomes

a2 2
-a 1 nE N 1 O( (B.1-6)

2 12 3 + 2 1 2 3
nnn nnn

Thus

Ns(m') = n aS (m) + 0(E) , 
(B.1-7)

In the limit as Ep- 0 this gives

NS(m) = n S (m) .
(B.1-8)

B.2 Generalized Stress Transformations

As in Appendix B.1, let m be an arbitrary point in a material

continuum, N an arbitrary spatially contravariant vector with unit

length. Let (x ,x ,x ) be an arbitrary coordinate system such that N

lies in the first quadrant. The plane normal to N and at distance E

from m, and the planes defined by the tangents to the coordinate curves

at m describe a tetrahedron.
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,8/ax 1

CN

a/ax3

The vectors from m to the apexes may be denoted

iU = Ui  (No Sum) . (B.2-1)
ax

The product of the area of the triangle and a unit outward normal

vector is given by the cross products

1 1 1 3 2
A N =- Ux U

2A 2N 1 1U x 3U
2

3A N 2U U . (B.2-2)
- 2 - -

For the face normal to N

NA N = (2U - 'U) x (U- 1U)
2

= 2 Ux 3U + Ux U + lU x 2 (B.2-3)

As in Appendix B.1, in the limit as E+ 0

NA NS + iA iS 0 . (B.2-4)

To demonstrate that this holds for

NS = N * E 
(B.2-5)

Equations (B.2-2 and -3) may be substituted yielding
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12U x 3U + 3U x 1U + ux 2 + 1 3U 2U*
2 2 

+ 1Ux U  + 2 + 2U x U  E = 0 (B.2-6)

which is satisfied identically.
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APPENDIX C

BEAMS

The calculation of numerical results for a beam finite

element are presented in this appendix. This material is placed

in this appendix to preserve continuity in the text.
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C.1 Beam Finite Element

The material continuum is a beam of length P, depth h, and width

w.

52

The position vector will be approximated by

[X + u(x, y)] -x + [ y + v(x)] + [z] -

where the displacements are

- -- 1-2 -u = u  
+10u x + 0 1 u y + 1 1

u x y + 2 1
u  x y

- 01 -2 1 -3v = v + v x + v x + 3 x (C.l-1)

Surface forces will be prescribed as zero on the lateral surfaces of

the beam. Body forces will also be prescribed as zero. The prescribed

positions will be expressed in terms of nodes located at the center of

each end. They will be assumed to have the form

S = q - 5 q )3 y + (z) ,z

PIx= +( 2 q - 6 q i xj + y + 
4q) y + (z) (C.-2)

The element will be restricted to infinitessimal (or at least

sufficiently small) strains so that the strain energy density can be

approximated by a quadratic in the strains
A A 0  3 1 Acgy6
A=A o +A Ea +2 A EaB Ey6 (C.1-3)
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The material is required to be homogeneous, so that the coefficients

are independent of the coordinates. And, the material is required to

be isotropic so that the coefficients are determined by Young's modulus,

E, and Poisson's ratio, V

AIIII E AIIJJ
A =+A =A

l + v

AIJJI AIJIJ
A A = G (No Sums) , (C.1-4)

where I # J, all other coefficients are zero, and X and G are Lame's

constant and the shear modulus defined by

E = and G = E
(1 + v)(l - 2v) ' 2(1 + v)

Taking the variation indicated in Equation (1.8-26) gives

[(& -6

0 = , 6 q ] B 6 _A

-Sp*[P - PpS) 6s] (C.1-5)

The coefficient of 6b6 must be zero, so

Sc B At y (C.1-6)

The beam will be taken to be in a state of uniaxial tension along the

Axx A
x-axis in the reference state. Thus A = a, and all others are zero.

The term "VP" may be calculated from Equation (1.8-19) as
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+11 _ 2 2 2

(x 2 x \ax

(VP) + + au + v + aw
( 2 y ax ax y ax y 3x -y

)av 1 u \ v 2 I2(P)2 2 = - [ + ( +) (C.1-7)
ay Wy)By

Inserting Equation (C.1-l) yields

1 --l --" + 2Y
(20 1 1  1 0u +1 1 uy + 2 1u

x y + u +1 1
uy +2 1uxy

v+ vx + 3v  x2

V -( 1 3 2

12 2-101u +11ux +21 u 2 x v +2 v x + 3 2

+1 +11 u y +21 u x 01 u + u  + 2

(VD22 1 [Ol u +11 u x + 21u  2 2 (C.1-8)

The coefficient of 6E in Equation (C.1-5) must be zero. Retaining

only linear terms, this gives

ll 10 u + 11 u y + 2 1
u x y

12 = 1 u + 11u x + 21 u  + i v  2 x+ 2 (C.1-9)

Inserting this result in Equation (C.1-6) yields

l = + 1 +E +X) 
0 u 1 1

u Y + 2 1
u x)

22

10u + 1,u y + 21u x y)

E = x (GU + 11u y + 2 1u x y +

G u + 11u x + 21u x 1 2 x + 3 x (C.1-10)
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The third integral in Equation (C.1-5) may now be written as

* + )(0 u +1 1 uY + 2 1 u x)] [610u + 6 llUy + 6 21u x y

2 2
( v+ 6 2 v x + 6 v  + + x+ 21 +

+ 2vx + 3 v  [ Ol u + 6 i u x + 6 u - x + i v + 6 2v
2 3 2 2

I-

+ 6 v 1
3 2

1--2x y u + ux xu 2)10 u 1 0 11 + 21"2

+10 u + 11 u y + 21u x y

1--u  u x + 621u - + 1 0 u +iiu y +21u x

0 2 -- i 2

i u +11UX +21 u 2 0) ( +01 1u + 6
1  621u (C.1-11)

Collecting coefficients of the independent variations (i.e., 6 10u ,

6 0 1u, 6 1 1u
, 6 2 1u, 6 1' 6 2v, 6 3v), retaining only linear terms,

and defining

fI II-2 -4 20 2

ydz =A, dydz = 0, dydz = I, dydz = -- h I

dx = ,fx dx = - f dx2
2 'J dx 3

Equation (C.1-11) becomes
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S + ) 10  10u] 10

01 2 6 21 u  2 6- 3
2 2 2 3

+ [+ u + u +I 2v +  3v + u 

+ + ) 9 ( A1 1 u + -2 1 u)+ t ( iiu + 21u )+ G A( 0 1 u + 1 1 u

£ 
£ 4

8l 2 2+1 3 - 8  + ' ] 1

4 2 3 4
+- u+v +v+ v+ u

£2 £3 £4 5 3 4 5

+ GA £1 2+ 2 + 3v) + G A(01u + 2 1 1 u + 6 2 1 u + £1v

+ - iv + .- 2v  v12
22 6 3 f 1

A +2 1 3 2 11u + 21u
2 3 4

+ A 2 + 3 3 + A - u + 1 u + £ u

( 1 V+ I 2 T 3 (6 01 3 11 8 21"

2 180

3 4 5

+ _V + 3 v+
6 1 8 2 20 3 3 (C.1-12)

The two remaining integrals in Equation (C.1-5) are over the

deformed (physical space) ends of the beams. A rectangular area

perpendicular to the x-axis, with sides dy, dz in material space,

becomes, as a result of deformation, a parallelogram with sides

(1+ E L2dy , (1 + E3 )dz i3, where 1 + E2 = 1 + 2E22 , and

'3 is a unit vector tangent to the deformed x 3axis. The ratio of
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the area after deformation to the area before is (1+E2)(1+E3) sin
A A AA
-2,3 ) , where cos(i 2, 3) = 2 3 /(l+E2)(l+E 3). The Jacobian of the

transformation is equal to the ratio of the areas

£2
J = (1+E2 )(1+E 3) 1- 23

(l+E2) 2(1+E 3)

= (+2c 22)(+2E ) - E23 (C.1-13)

Noting Equation (C.1-9), to linear order J = 1. Transforming the

fourth integral in Equation (C.1-5) to material coordinates gives

0 u + 610u x + 6 01Y + 61 1
u x y + 621 u x2 x )

+ 0
v + 61v x+6 2  x +63v x

• [J]2 (C.1-14)

Evaluating this integral at the two ends (i.e. x = 0 and x = P) and

introducing the symbols

/SX0 *iSx  =

x=O

fx=0*{ [J]} = Q

x=o*{S* Y[J} = -

S-i *IS: y [J]} =- Q

fS X *{S[J]} = Q  (C.1-15)

yields for Equation (C.1-14)
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(1Q  0 u - Q 01u + 3Q 60v) + (2Q 60u + 2Q Z
6 10u - 6Q 

6
0 1u

2 2

-6 11u - 6 21 + 4Q 0 + 4 1 4 2 2

p3
+ Q - 6 3v) (C.1-16)

Summing Equation (C.1-12) and the negative of (C.1-16), and setting

the coefficients of the independent variations equal to zero provides

the stationary conditions

0u  : - 1  2Q = 0

u : C A9 + G A 1 0 u + X At10 - Q  k = 0
10 10 0+v 10  2  =

/ 2 3 2 3
60 1 u GA 0u + u + - 2 1 u + 9 v + P- 2 v + - 3 

+ 
5 Q+ 6Q= 001 (9-01 2 11 6 21 1 T2 T 3 5 6

611u o ( 11u + 2 u) +2 + )( u +
2 2

11 11 2 l+v 1  2 21

( 2 3 4 2 3 4
+ AG - u + --1 u -- u  v + v  L- +  Q =0u2 (1u21 2 1 3 2 8 3 6

(.3 4 5 3 4 5

2
+ 6Q -= 0

6 2

60 : - 3 4Q = 0

9: 2 p3 )
6 v V + v-2v+ +

2 3 2 93
+ AG 01 u + -- 1 u  + U + 1 2 3 4QA=0

Equation (C.1-17) continued
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A ( 2 3 4
6 2v : oA v + 8 3

S2 * 3 4 2 3 4 2

+AGT 0
u +  u + 

1 1 U+ 21 + L 2  - 4Q
(2 01 11 21 2 1 3 2 8 3) 4q z2

6 vv : a( v + - 2v + 3
3 1 82 20 3.

Z3 4 5 3 4 5 3
+ AG u +-- u + X-- +-vQ - - =0

01 11 20 21 61 8 2 203) 4 6=0

(C.1-17)

These nine relations may be solved for the six Q's and three constraints.

A A
Q = A +A u +A +

1 10 1+v 10

A A u E
2Q = AA 10 + A\ +v + 10 u

A [,v 2 p3 ]+ [2.2 3
3Q = - v 2 2 v 3 V, + 3 01 2 11 61 21 u

+ 1 2 +6 3

2 3 92 3
AAa + AG 2 2

Q= - v+- v+- v+- u+- u+- u
4 1 2 2 6 3 01 2 11 6 21

+ 2 2 3

Q u 4 2u+ + u +

S2 3 4 2 3 4AGj. 2 2 R 2 2.u+ u+ u+ v+ v+
S2 T01 u11 24 21 2 + '61 2v + 3

Q = -- U+ u  +- +2-
S - 17 + 21- + ) (-ll + 2 21 )

I 2 3 4 2 3 4
A2 .01 3 11 8 21 2 1 3 2 8

Equation (C.1-18) continued
with constraints
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2 
2 312

+ v + v + 3v1 2 2 20 3

A 2 v + - 3
v + AG 1 u + u + + 0

2 2 3 11 2 21 2 2 3+

A8 8 8
(2 15 11 15 21 2 15 3.1-18)

the last two of these imply

A G
a 2v + G (1u + 2v)= 0, or 2v = u

o+G

A G
S3 v + G 21u + 3v)= 0, or 3v = AG u

a+G 21

and inserting these in the first of Equations (C.1-18) gives

A , A 2 A2 R
U+ 2 11

U--u-- - u--u+- u
01u  A 2 11 A 20 21 GA 21

[1-2v] 21u  (C.1-20)

Substituting back in Equation (C.1-18) yields

Q = - A - A 1u - A 0u  - + X)1 u

2 Q = A + 0 10u + + I X0 u

2 10A A 1u+v +

Equation (C.1-21) continued
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a2 a a' R2 
A 2 1

Q = A u + A u + A u - A - 21
3 01 +G 20 21 G A21

A 2(1-v IL(1-2v) A 21 u

+ A A u
u +  - I - + I U

S 2 11 AG 20 21 21 1 21G+G cA+G

aA2 2 A2
Q = - A01u - A u - A 20 21 u + A 21 u

4 01 A 2 11 A 20 21 G A 21

+ A [2(1-v) I
L-2V A 21

AoG 2 AG 312 A E
- 1u A 20 21 u + GI 21 u + + 1 21 u

^ 2 11 A 20 21u  21 u  1+v 21G+G o+G

A2 -2

5Q A 1 1  2 1u 1+v 11 2 21)

AUG A2G 3A 2 AG 33 A E+ + u ---- - - u - + I- u
A+G 411 +  40 21 2 21 - + 2 21•+G a+G

A 2 A 3
AUG t2 AG 3
A 6 11 A 24 21
a+G a+G

6 11u+ 21u - -+- 11u + i 21u

AAG Y2 + AUG 3 A k( E P1
A 4 11 40 21 21 1+v /21 u

a+G a+G

It will be assumed that the preload is very small compared to

the shear or elastic moduli (e.g., for steel G = 11000 ksi, E = 29000

ksi, and the yield stress is 36 ksi; so a < .0033G to be in the elastic
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range). It will also be assumed that the beam is slender (e.g. h << X)

121 3  121 h 2so that 21 << (recall I = wh /12, A = wh, so -2 ). Equation
AZ 2  

A 2

(C.1-21) can then be written

A A 1-v
2Q = - A - A 1 0 u- AE 1(i+)(i-2-v )]i0 u

^ +A u+ 1-v

Q = A0 +u + A E u + Au-R El

3 10 (l+V)(1-2v) 1 0u (

A A A 3, -vQ = - lu + AG 1 1 u + A 20 21 u 
+ El I -2) 21u

2  3  _ _ _ _
Q = + Aj llU + Aa 21 u + EI (i u

Q=+-A - u+A- u+El 1- u5 12 11 a30 21 L(1+v)(1-2v 1

A 1 A 1-v
6 12 11 U T 2 1u (l+v) (1-2v) 11

- El ( l+v)1- 2  u (C.1-22)

The above noted approximations along with the constraints (C.1-19

and-20) may be used to re-express the second of Equations (C.1-l)

A A 2a UZ- 3 - 1-2 1-3
v = 0 01u x - 11u  x - 21u G 20- 11u 2 - 21u 6 x

(C.1-23)

The final integral in Equation (C.1-5) when converted to material

event space assumes the form
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xSO ou +01u y - 1  +y 5q)6S + (0v 3q)

+ x= + Ou + 10u + 01uy + 11uY + 21"u --Y

- - + y 6 q)6 S x

+A 2 A 3 2
S1 3£ 3  R0v  01 11 G2 21 G 20 11 2

-2 1u - 4qS J 
(C.1-24)

The stationary conditions are

6S : u - q = 0

x
6S yxI0 : 01 u + 5q = 0

6S x=0 01 0

6Sx=0 0- 3 q = 0

6SX x=1 : Ou + 10u- 2q = 0

)2
6Sxylx=k: 01 u + lluk + 21 u - + 6q =0

6SYx= : 0v - 01u  - 11U -  - 21u i- - q = 0 (C.1-25)

Solving for the displacement coefficients

0u = 1

1 10u = - - q + 1 q
10 k 1 k 2

01u = - 5q

6 6 4 2
11u  2 3 2 4 +  5 +  6q

12 12 6 6
21 3 3 3 4 2 5 2 6

0 = 3 q (C.1-26)
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Substituting this into Equation (C.1-22) the result may be expressed

in matrix form as

Q = Q + KG q + K q (C.1-27)

where

Q = [Q, 2 ' 3Q' 4 ' 5 Q, 6 Q T

Qo = [ - Aa, Aa, 0, 0, 0, 0 ]T

q = [ 1q
' 

2 
' 

3q,
' 

4q, 5q 6
q  T

1' 1 II
1 1 0 0 0 0

_ --i --I --- I
1' 1 I
- , 0 0 0 0

.1 ----" -------

S3/ - 9/5k I- 3/£ + 9/5V - 1+2 - .9 1 1 - .9
I I I I

0 ,

S = 6/5 = - 6/5, = 1/10 = 1/10
KG = A - -- - - T - - - - - - i - - - - ----

,- 3/£ + 9/5k , 3/£ - 9/5i, 1-2 + .9 1-1 + .9
0 0 1 , I

= -6/5, = 6/5 1  = - 1/10 = - /10

1/2 - 2/5 '- 1/2 + 2/5 /3 - £/5 '£/6 - £/5
0 0 I I

= 1/10 = - 1/10 = 2Z/15 = - £/30
- - -- -- --- =--- + - ---------- I-

0 ' 0 - 1/2 + 3/5 1 1/2 - 3/5 1-£/3 + 3/101-£/6 + 39/10

= 1/10 = - 1/10 = - k/30 ' = 2k/15
I I I - I -

A I Ai, 0 0 0 0
I I I I I

-------------------------- ---------------
Ai' AR' I
-- I 7- 0 i 0 0 0

EI
K =-- 0 I 0 I 12/£ I -12/ i 6 I 6

O ' -0i l1/ 7- -6- - - - -
--- -- - - - - - - - -

0 0 1 6 1 -6 4 I 2P

- 6 + 12' 6 - 12 i - 4k + 6ki- 2k + 6Z
0 0 1

S6 =- 6 = 29 = 4ZI I - I - I- I - I -

where = E -v
where E (1 + v)( - 2v)

188



This result is identical to the geometrically nonlinear beam

finite element usually obtained by assuming a stress distribution,

except for E replacing E. This is due to the fact that the simplified

displacement field used in this example allows no extension in the

lateral direction, and the associated stresses fail to vanish on the

lateral surfaces. This deficiency may be corrected by selecting a

more complete displacement field, or merely by replacing E by E,

noting that E is the axial modulus for laterally restrained material,

and E for laterally free material. That is, E is the elastic coefficient

A (C.1-4) giving the stress for unit strain with the other normal

strains zero. The inverse set of elastic constants B -
E

IIJJ v
B - E provide the strains given the stresses. Thus for a unit

1 IIII
stress with the other normal stresses zero, the strain is -, B

E

C.2 Beam Dynamic Parameters

The purpose of this section is to develope the dynamic parameters

for the finite element described in the previous appendix (C.1). The

assumed position field may be obtained by substituting the results of

Equations (C.1-19,-20,-26) in Equation (C.1-1)

P =x + q + x q + q +y q

(6 6 6 4 2

Z3 24 5

1 -2 - 12 12 6 6 a
+ x y q + L q q2 3 3 3 4+ 2 5  2 6 ax... + Z{P}

+ y + q+ x q) + -x q+ + 6 4 23 5 2 2 3 2 4 k 54 6

1 -3 12 12 6 6 a+ x - q- q+ q+6 P3 Z3 4 2 5 Z2 6 y

+ {-} (C.2-1)
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From this, the functions P' , P' may be determined

P ' = x -x + y -y + z -z

P' - x a
1EG- ax y z

PI
1662\a/ 2ax 3

= x -x x -3 + -- 2 -(6 --- 6 -2 - x x 34- 2 3 /x k2 k3 y

S -2) (-2 -3

-x y -x x x + 3
4-- 2 3 ) x 2 3 3) y

+ - 4- 3 -2 - 3 - 2 -2 +1 -3S= +xy -- x y + x1x 2 x

( 2 - - 3 -2 -_ 1 -2 1 -3 31-- -- -+(x - + - Y (C.2-2)5XYTX Y+y 2 x 2ay

Assuming a uniform density p the dynamic parameters may be

computed as

M = * {} (C.2-3)

A
= pwh £

The center of mass is

IA kI /A

E ( EDP /Mwh

= phw /p w h k

2 Dx

The shift in mass center due to generalized displacements are
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= wh wh

a2 x

2) ax

4 =f * ' M

= wh (- 2 / pwht

3£2  3 ywh

S= *p '/M

= wh 3 2 1 whR

4-E hL A

= w h (3- + -7 y w h £
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The moment of inertia is

{= ~ P 2' ED )'

3 3 3 3 3S R h -hw w
= O k(w h - + w Ih '  + 24 24 ht)

24 24 24 24 x x

= M + x ++ Jy®-

S+ (C.2-5)

w h xw

3 x ax 24y 24 y az

24 24 3z 8z

2 2 3 0 L +[ 2 2] 9

SM 1 0
12 12 9x 9x 3 12 Dy 9y

Equation (C.2-6) (C.2-5)
3 12 z z192

The change in moment of inertia due to generalized displacement is

P (EO X) EOV1

A -2 3 + -L 2 , D
2 R x x 3y Dy Dz az

- 2 R 9x ax]

6 y By az Dz

P [wh &-+ a 0-+ h- PT3R x x y 3y 3z z) 3 Wx

3 0y ay Dz z

Equation (C.2-6) continued
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3= EO 3 K)- EOD 3

A (k2 4 5 3 3 2
= { wh ( 3 + 2 x w

3£ a h2 a}

=M - 2-
20 ax 5y 12 Ty ax

S 4 . £5I h 3 -h36 £2 6 £3

= - wh 3 - 2 Z _-wi 3 -[ w -,2 x -y2-24 23( 2 2 3 ) a

= ML a  h 2 a

20 ax ® y +12z y ax

S= * E-') EQ'

h -h 4 3 _a a
Sw - 4+ 

S24 24 2 2 3 ay Dx

M 2
M30 ax ay

-61 [(E e- .620 E® "

= 2 a (C.2-6)

-wR

20 3x ay(

The first order moment terms are
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--

=¢,

-0

0

A I
P h - 3- + 2 - w z

2 2

1 h a
20 1 2 Z @z

402 f *i AO' x 4'

[wh 3 - 2 w wi h- -h 6S 4X 2  5 3 24 24J X2 2 3 z

7 7, h 2

* EO- X i

20 1kz

- w 24 2 2 7 1

changes in moment of inertia are

194changes in moment of inertia are



- * - 1- +P 0IY 2 2 3 x x]

=M1 (-®.. + -
31 ay y Dz z

S 2 1 2

L h Z2 1 Z3

,- -4!
1 43= * O 1 P'. 4) U-

- M a® 0

20 x y

161 =f p i[ &E)U-

+ M. a D
30 Dx Dy

x Equation (C.2-8) continued
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22--f */[( ') -
[p2L

22 - 2( 2 2-- 2 2-

= - ®+ ~y= ( y x 9z

231- 2 3P-') g 2- 3Ii
20 x Dy

24 * P 4

f A [2L, ,,]
25 2

= - M a 0 -

30 Dx ay

2= 2 2

1* 8

[13 . L 1 h2 ( L 1 h2 13 1
35 3x x 10 P2 y y 10 2 352 z a z

Equation (C.2-8) continued
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36 =A [( 3y- 'L) -? 6 K

3 3 1 h 2  a 1 h2  13a a
= MA 0x - 1x

+  - + i h 2  13 f_
420 x 3 120 2 )y ay 120 2 420 az

= -M% x 2 + L 2+ -I-S13[aI a 1 h 2 l Jh, 2
35 x ax 10 k 2y 3y 10 2 35f 3z +zI

=M ,@ 0- +  + 0-
420 3x ax 120 2r ay by 120 2 420eaz

46a = xj I PL - x1.x

1 ) a 1 ah 3 + 1 h2  11 a
210 3x x 120 2 y 3y 120 P2 120 8z 9

2 1 1 h 1 ) 2  + 1
10 ax x 90 ,2y y 90 2 105 az az

561 s p2 _1 _ 1 h2 _L _L h2+ 1

2 a= r. _, )

105 ax ax 90 ,22 y ay L90 P22 105 az da

(C.2-8)

where the remaining terms may be determined by the symmetry relation:

ab= ab 3 a3 ba B3 a (C.2-9)ax ax .ax ax
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MR a a MR a ®
(e.g., = 

5 3 Ibut I= 0 -L and 6 = 3 0
35= 53= 16= 30 3x Dy 611 30 y x

Similarly, the second order moment terms are

= M
=M20 z

2 =- * p P' x 4p
-I4A

=M

1 P' x

198
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The elements with interchanged subscripts are obtained from

antisymmetry ( 0 = - 0 ). All other elements are zero. The mass

matrix elements for a consistent formulation (i.e., assumed velocity

field the same as the assumed displacement field) are

12M= /S 2-. 1 = )

13 1 3z- 0

2M = /- *{ p ' } = o
1 4 1 h 1-4

14M = - * ~P p' - = 0
15 S P1 5 1 =

16 S X 61

22 2 M

23M = * 2 '1

24M = - 2 -E PX = 0

25  
2P X 0

26M = f p 2 1 0

10 2
A J h 1333 S 1-10 2 35

14 = P Wr9 P.' =M 1 h2
.34 f -4 J10 2 70

* 'M f !' P' 1= Mt 11
35 S5 120 k2 210

M f- *{ ' P' 1= 1 h2 13
36 S P 6V 120 92 4201

Equation (C.2-11) continued
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MP h , P13
44 f" 4L X1 J 1 2 35

S * Af nj-i h  1 3

45M = p P 4 = - 0 420

46M S 4 -6L' ML1 20 P,2 210J

5 5 M), 2 0 1

6 2 h

6M T *{A j ,.}= M2{ I h2  1(

66M 2 10 (C. 2-11)

where the remaining elements are determined by symmetry (i.e.,

ijM = M). It may be noted that if the beam is slender ( << 1), then

the terms involving (h/k)2 are negligible. The mass matrix is then

identical to the consistent mass matrix for a slender beam as presented

in the literature.

C.3 Substructure Modes

In this section modes for a very simple substructure are calculated

using Hurty's method. The substructure selected for this example

consists of a single beam finite element in a stationary reference frame

(see Sections C.1 and C.2 of this appendix). It will be assumed that

the beam is attached to other substructures at 1q, 2q, 3q and 5q. Out

of plane deformations are not included and the preload is assumed to

be zero.

For this special case the equations of motion (2.3-5) become

kM + K k =  Q (C.3-1)
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where M and K are obtained from Equations (C.1-17) and (C.2-11),

respectively. Rearranging the rows and columns to 4,6,1,2,3,5 to

group internal (4,6) and boundary (1,2,3,5) nodes, the equations may

be partitioned

MII MIB I K KIB I I- - - + [- - = --
MIB MBB B KIBI KBB B B (C.3-2)

The inverse of K may be computed as

2 [ /3 1/21

EI L1/2 1/£ (C.3-3)

The static shapes are

- 92 Z/31 1/21 El0 0 I-12/k'6 6
- KI KIB -- - - - - - -- -

El 1/21 1/J 0 LO 0 6 2k

- I

,0 0I 1 (C.3-4)

The modes of the internal degrees of freedom satisfy

[KII-1 M - i U] {i}= 0 (C.3-5)

where iA =1/i 2, the inverse of the square of the frequency in radians

per second, and i. is the associated mode shape. This yields the

characteristic equation
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[ /3 1/2 13/35 -11/210 0

0 DET M 2
0I 1/2 1/k -119/210 P /105 0 *X

M 2 2
52Z/420 - 119/420 - X'' -11Z /630 + 3Z. /630

I I

1/420 - iX ' , - 4J/315

SDET

---------------------- 1/60- iX'
!

S- 17/210 ' - 1/25200 + 8/4725'

= x' 2 - 17/210.A' + 1/15120 (C.3-6)

where ' = X. The roots are

Mk

1' = .08013, and 2A' = .0008254 (C.3-7)

with associated frequencies (radians/second)

1 = 3.533 and 2m = 34.81 (C.3-8)

It may be noted the first frequency is quite accurate (the exact

continuum mechanics solution is 3.52 E ). The second is much
Mk

less accurate (exact is 22.4 ). The associated mode shapes are
Ishapes 

are

.5875 1 .1301j
1= and 2¢

.8092/ a .9915/ij (C.3-9)
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Now assuming only the lower frequency is of interest, or merely

noting that this single element model cannot accurately reflect

behavior for higher frequencies, the higher mode is discarded. Thus

the original coordinates are related to a new set of coordinates by

q4 .5875 0 0 I 1 9 Y

q6 .8092/k 1 0 1 0 0 I 1

q9 0 1 0 0 0 ql

q2 0 1 0 0 q2

q 3  0 0 1 0 q3

q5  0 0 0 0 1 q5

(C.3-10)

Transforming the mass matrix to these new coordinates gives

.08462 0. I 0. .2263 .1652k

0. 1/3 1/6 0. 0.

M 0. a 1/6 a 1/3 a 0. I 0.

.2263 0. 0. I . I /2
II 2

.1652. 1 0. I 0. I /2 2/3

(C.3-11)

Similarly, transforming the stiffness matrix provides

1.0561 a 0. I 0. I 0. I 0.

0. a AR/I I- AR/I I 0. I 0.

I I IEI

0. I 0. I 0. I 0. I 0.
SI I

0. I 0. 0. I 0. I 0. (C.3-12)
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The reduced dimension mass and stiffness in an equation of the

form (C.3-1) provide a reduced dimension set of differential equations

in the modal amplitude, n, and the four boundary coordinates which

describe the low frequency behavior. The reduction is not particularly

impressive in this example since there are more boundary than internal

nodes. However, in practice, the number of internal nodes is usually

much greater than the number of boundary nodes. Discarding half of

the modes in such cases results in substantial savings.
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APPENDIX D

QUADRATIC TERMS

This appendix demonstrates the adequacy of a linear expansion.

The unimportance of quadratic terms is demonstrated both analytically

and by example. This material has been removed to this appendix in

an effort to preserve the continuity of the text.
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D.1 Quadratic Terms in Lagrangian

The purpose of this section is to analytically demonstrate

that in a Lagrangian formulation truncation of an assumed quadratic

expansion of the displacement field to linear order results in

equivalent (although not identical) linearized equations. Let the

assumed displacement field be of the form

P = ~P + P  q + P q jq ,(D.-)

where the repeated Latin subscripts imply summation over all the

generalized coordinates. Similarly, body and surface forces may be

expressed in terms of the generalized coordinates as

X= X+ i q , and

S = S + .S .q . (D.1-2)
- 1- 1i

The generalized forces may be computed.

S6 1 qfi * {X 6P} +JM(t)* (S - 6P)

S S i q i q
i Q i q

Selecting an inertial frame of reference (to avoid the detail of a

quasi-coordinate formulation) the velocity and acceleration are

P = i4 + , and
-

2 .q i t

S+q + 2 A + 2  (D.1-4)
iqq i t
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The kinetic energy may be calculated as

T q gP 2 j + 2- . i + . . (D.-5)
sA q a.jq i' 1  q at i at 91 I

Lagrange's equation (including all potential energy terms in the

generalized force),

d a I qT , (D.1-6)

provides

A d )T + 2 pa q j a q at kaq 1q

i qt a t2 qt q kq j P k

iqt .q j 8_ (D.-7)

3 att q

207 2

f I a aEq aj q j + a+ 3Z DP

a q D aqat D j q a qaD q aa qat at1 j q 1Jqa D aq

2 Y D2 2 DP
+ a -E* q -2 a a D.j1 -7

i i at i k

Noting the cancellation of the third and tenth, fifth and eleventh,

sixth and twelfth, and seventh and thirteenth terms, this becomes
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S[qakjq qk q at j a2J

=A a q qj a 3 qDk q jd 40 9 St2~

= a * (D.1-8)

Substituting the expansions in Equations (D.1 - 1 and - 2) into

Equations (D.1-3 and -8) and combining these two provides to linear

order

[g + j jq ] + (ijj- +j iP) j q]}

SfM(t) I X [ + j q]P [ L +(P) + j

2 2.

Pa + jL q j t+ 2 3 q 2+t2 qjt at2

(D.1-9)

or

- j + i+ j jq + . j

+ J2(t)jOS * P  + + * + ji) + P qfa M *: (i8 __+ jq +? J 17 2

2 2 p 
2

2 J

+ i * q
Sat 2 j

Equation (D.1-10) continued
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P + P . P

Sti- 2  j L t2 j - -- 1- t j

a- 2 j

the region is arbitrary, or merely recognizing the above as iP  timesi--
Newton's law, it may be seen that

P j i+j ) j j + M(t) (j +* P ) q

Equation (D.-) gives

S - iM )1 - j.

= A iP ° P + 2 jq (D.1-12)

209

must also be satisfied. Subtracting this from the linear term in

Equation (D.1-10) gives

j I j. jqj + M(t) * j jq

[A P 2 ]
=A * P j + 2 + q (D.1-13)

which is the equation obtained by retaining only linear terms. Thus

the retention of quadratic terms adds the terms in Equation (D.1-12)

which are redundant with the zero order term (D.1-ll) and thus may be

eliminated.
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D.2 Quadratic Terms in Gimbal System

The purpose of this section is to demonstrate, by example,

that it is sufficient to retain only linear terms in an assumed

quadratic expansion of the displacement field. To provide a reason-

able test of the hypothesis, a system was selected for which rotations

are the natural coordinates. The base of the illustrated gimbal

system is experiencing a steady inertial spin, 2. The equilibrium

state is O = 0, in which steady state torques T are carried through

clocksprings.

13

'2

1/

210



The linear equations governing small motions about the steady state

equilibrium will.be obtained in three ways: first in the natural,

Eulerian fashion, second retaining quadratic terms in a Lagrangian.

formulation, and finally retaining only linear terms in a Lagrangian

formulation. It will then be shown that the equations are all

equivalent.

This problem is not entirely academic. Structures are frequently

represented by finite elements whose generalized displacements are

three translations and three rotations at connecting nodes. Kinetic

energy is sometimes associated with these models in the simplest

possible way, by assuming all the mass is concentrated in infinitessi-

mal rigid bodies at the nodes (which, however, also have rotary

inertia). The gimbal system may be thought of as a mechanization of

such a nodal body. In this case the rotations are a 1-2-3 set about

the body fixed axes. An alternative mechanization that has been

suggested by other researchers is a 1-2-3 set about axes fixed in the

substructure reference frame. It can be shown that such a set is

equivalent to a 3-2-1 set about the body fixed axes, so the example

covers both types of mechanizations. (Of course, the question of

mechanization is academic, since it is about to be demonstrated that

linear terms are sufficient, and since it is only the quadratic terms

that are affected by mechanization.)

Before proceeding with the development of equations, it will be

convenient to express some of the relationships common to all of the

derivations. It may be noted that the customary letter with a caret
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(e.g., e) notation has been used for unit vectors in place of the more

cumbersom . The basis vectors are related by the direction cosine
3x

matrices

ce cOe 0 b'1 3 83 -1

A A

b -so c 0 b'

b c 0 0 1 b'
3 2 3j

b O c O sOasb' 0 1 0 . a j ,

3 " cOs2  s -e

1  0 0 As 1 32 3

0 e c

Ba [sO , c s O ca O J

- 1 2 -3b c6 e B se c s6e e a

-2 2 31 3: 2 3 -2

b L 0 se c a

(D.3 2 2-)2

2 1 1 2
0 c so A and

b' s I- ce so ce cB a
-3 2:- 2 1, 2 1 A3

4 C3c62's3 + s1c63s12 I s32 3s1- C3 2 al
A A

=-b2 2 3 3 1 1s2s3 3s1+ 2s3c1 - 2

s - se ce ce ce a
-3 2 1 2 2 1

(D.2-1)
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where the abbreviations ce and sO have been used for cos(O ) and

sin (06). The angular velocity of the body is

AT A + A A
w= a 0 +2 +2 + b' 63 3' (D.2-2)-1 -12 2-3 3

where the absence of subscripts in the first term implies the complete

array treated as a matrix, and the juxtaposition of the two terms

implies the matrix product. Making use of thedirection cosine

relationships (D.2-1) this may be written

T A+c 1 61 + se sO a

= 2 1 2 2 1 3 -2

Q + se 6 + c0 cO e aS3 1 2 2 1 3 j -3 (D.2-3)

Linearizing this result gives

+ Al T A

W = 2 + A = (QT + iT)
2 2 2 a

63 +e3 (D.2-4)

In the body fixed basis this is

T A
S+  1 2+ 023 Q382 bl

A

= 2 2 1- 3 381 -2

03 + + 0 e - e b3 3 1 2 21 -3

b ( + 6 + 8O) . (D.2-5)
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The angular acceleration is

* AT AT -
w = b + i ) = a (0 + Q e) (D.2-6)

The components of the torque are

S 41 = T1 - KlI1 '

A
T a' = T - K2 and

A
b ' = T - K33  (D.2-7)-3 3 3 3

A
Expressing T in the a basis

T1 = T1- Kl1 '

cO1 T2 + se1 T3 = T2- K22 , and

sO2 T1 + c82 sO1 T 2 + cO2 cO1 T 3 = T3- K3O3  (D.2-8)

Multiplying the second equation by cO2 so1 and adding cO1 times the

third equation gives

cO2s1 (T2- K2 2) + c01 (T3- K3O3) - cOlsO 2(T1- K 1 1 ) = c2T3 •

(D.2-9)

Linearizing this result provides

T3 = T3 - K3e3 + a1 T2 - 2 T1 , and

T2 = T2 - K2O2 - O1 T3  (D.2-10)
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So the torque may be expressed as

0 0 0 0 - T3  T2
AT ATT = a(T - Ke + T3  0 = b (T - KO+ 0 0 - T 6)

T2- T1  0 0 0 0

(D.2-11)

Before proceeding with the Eulerian derivation it will be

demonstrated that a 1-2-3 rotation about axes fixed in the a basis is

the same as a 3-2-1 about body fixed axes. A set of three unit vectors,

u , initially parallel to the a basis vectors, u = U a (where U is

an identity matrix), after a rotation 6 about the a axis have an1 -1
A

expression in the a basis

A A

a, U C( l) a (D.2-12)

A subsequent rotation, 02, about the A2 axis yields unit vectors, b' '

with an expression in the a basis

A A

b, U C(e 1 ) C(6 2 ) a . (D.2-13)

A final rotation, e3, about the a axis yields unit vectors, A, with
3 , v with

A
an expression in the a basis

A

bu= U C(6 1 ) C(6 2 ) C(03) A . (D.2-14)

It may now be recognized that the product direction cosine matrix is

the same as that for a 3-2-1 rotation about body fixed axes.
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The equations of motion will now be developed following the

usual Eulerian formulation. The rotational equation is

S *{Px }. (D.2-15)

For a rigid body

P P
-0-

P=w x + W x (W x ) , (D.2-16)

so that

I *A • -- +_P x •X P +[*P

AT A
where I = b I b and I is the array of moments and products of

A
inertia. Writing this result in the b basis and noting Equations

(D.2-5,6, and -11)

0 - T3  T2

T - KO+ 0 0 -T 1  = I + + (Q + + 'e) I (Q + + '6).

0 0 0

(D.2-18)

Retaining only terms to linear order
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0 - T3 T2

T - K9 + 0 0 - T 1e=I + I + + +

0 0 0

+ 9I + (Q-()" I2 . (D.2-19)

The steady state and deviational equations are

T = cIi , and

0 T3 2
I + [I + GI - (I)N]0 + [ I + K - (IQ) "- 0 0 - T1 6] = 0

0 0 0

(D.2-20)

These equations may also be written in the a basis. The inertia

dyadic becomes

AT A AT +=I =a (E +) I (E - )a = (I + -1 ) , (D.2-21)

where the linear approximation to the direction cosine matrix (E - e)

has been used. The governing equations are

0 0 O0

T - K + - T3  O 0 6 = (I + 61 - 16)(6 + Q)

T2 - T1  0

+ +2 + 'e I + 660 (n + 6)

- I ' + I 0+Q 0 I

(D. 2-22)

The steady state and deviational equations are
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T = 15 , and

0 0 0

I0 +[I +QI - (Iwo 6 + [SI2 + K - '(I) - - T3  0 0 ]O = 0.

T2 - T1  0

(D. 2-23)

It may be noted that Equations (D.2-20 and -23) are equivalent although

not identical since subtracting gives

0 - T3  T2

[- () + + (I) - T3  0 - T ] = 0

T2  T1 0

(D.2-24)

or

T =I (Ia) - (Ia) 2)

(= 2 I Q)~, (D.2-25)

(where use has been made of the identity (A.13-12)) and this is merely

a restatement of the steady state torque relation.

The equations will now be derived using Lagrange's equations

retaining all quadratic terms. The notation is taken from Roberson

and Likin's "The Quadratic Approximation in Rotational Dynamical

Equations". With this notation the direction cosine matrix is

A d" l1 1 U123 - A
b = (U - 6 + - + - )a (D.2-26)2 2

where
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0 0 03  i - 1 0

A
The relative angular velocity, w, is expressed in the b basis as

AT AT ( 1 A123 *
b w=b U - + - (D.2-27)

where

0 83 62 1 0 0
A -123
0 = e3  0 e1 , = 0 -1 0

e 2  e1 0 0 0 -1

The total angular velocity is then

AT AT
I=a + w

e_ - e e1- 1 ++_2

2 2 2 2

(D.2-28)

The generalized forces may be computed as follows. Noting that

=Tp = .IT C 0P (D.2-29)

A
and that a is a function only of time

A DCTAT ac S6q OP , (D.2-30)

therefore
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S6q m = M(t) * 6 oP S

M(t) C • a P (D.2-31)M(t) * IqU 0 q a

Now noting that C is not an explicit function of time so that

T*T = aC
C q qa (D.2-32)

and recalling that

C = , (D.2-33)

the generalized forces become

Q * S T C P

a M(t) { a 0

8 t T D(T) O T

(t) * (D. 2-34)

* 0 PS

Now w may be written as

= + a + 2 a2 3 b'3 (D.2-35)
so

a AW

-1

a A
2 a

a- A
w b 3 * (D.2-36)
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Thus the generalized forces are

A
Q1 = a1  *T T1 - K

T - 1 - K 112 =-- 12 T- 2 - K22

Q3= ' * = T - K 3  (D.2-37)

-3 3 33

and the potential energy is

V TTe + 1T K O , (D.2-38)

which is just the sum of the strain energies in the three springs.

The kinetic energy is

1
T=--w I * w

2 -

1 T W

= 1 T T + bT + T -123 T 1 T 1 T-lU23
2 2 2 2 2

++QO123 A 1 1- U123-
2 2 2 2

(D.2-39)

where it has been noted that x y = y x. So

1 6TT 1 i 6T (I~ +1 T -123
2 2 2 2

+ jT I e- eT" + I eT (I) e 1 eTu1l2 3

2 2 2 2

(D.2-40)

A A
Now noting x y y y x, the elements of Lagrange's equations may be

obtained
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- = I + I 1 (123I)^
2 2

d1 1-123 ^Ad 1 = I + 2 (I),) + - (U 3O)I
dt 6 2 2

T [ (I) - l+ (Ul231 - 1 + - I

1 ~ 1 i ~ s 123 - 1 12+ 1 (I1) + (I) - 123 (I)- + (IQ) U12 3  6.

(D. 2-41)

Lagrange's equations may now be written

T - KB = ~IQ2 + i' +[Iz + i - (Im-16 +[ I?

1 { Z(n1  + ()S + _ {! U 123 (n)- )-( U1 23 -})]2{2

(D.2-42)

Thus the steady state and deviational equations are

T =T fl

I + [I + I .I) 1_ + I + K - (I) + (IQ

+ U 23(I)- - (I)- U 123 O = 0 (D.2-43)

Some of terms in the stiffness matrix can be identified by noting

1(i- ) + (Ir nQ' = - 1 {2 (I3)'- [2(In)~- (I')']}
2

= - --(I)' + y (n I2)

I - n) + y T . (D.2-44)

A
Subtracting the a basis Eulerian equations (D.2-23) yields
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0 - T3  T2  0 0 0

1 1 123 - - 123-
T3  0 - T + -T 0 0 + - () - (I) U123] = 0

T2  T1 0 T - T1 0
S 1 (D.2-45)

or

0 - T 3  T 2

- T3  0 - TI  = (IQ)- U1 2 3 - U1 2 3 (In)-

T2 - 1 0 (D.2-46)

Thus if this equation is satisfied Euler's equations and Lagrange's

equations retaining quadratic terms are equivalent. That this equation

is true, may be verified by direct expansion. From the steady state

equation

Ta a y 8 Iy6 Q6

T1 = 2 13a a 0"3 12a a '

T = 3 Il 0 - i I3 0 '2 3 la a 1 3a a

T = i I2 - I 10 (D.2-47)3 1 2a a 2 laQ a

So

0 -T3  T2 0 1I - i 1 0 10 1 - Q I2
3 2 2 la a 1 2 a1 3 la a 1 3a a

-T 0 -T = 2I - GI 2 0 In32 eI - 222o 03 1 2 1 a 1 2 a 3 2a a 2 3a a

T -T 0 I3 -  I oIn - Q 2I 3 0
2 1 la a 1 3a al 3 2a a 2 3a a 0

(D.2-48)
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The elements of the other terms are

{(IQ) U a I y Y UU Q (no sum a,B), and

SU 1 2 3 (I)} = U1231 (no sum a,3).

(D.2-49)

Thus they produce matrices

0 u12 2 1 a a u3 313 l a
u 123- 2 I I

(I)-U 123 = u21 1 2a 1 0 uI 23 3 12a a , and

u Q1 0 and

2 123u 3 1

U13u I )I - c uu 2I21 ~032

12 21 2 la Qa 0 u 23 2I30a 1
u Q 2 u I I
u313 la a u32 3 2ac 0

(D.2-50)

The difference between the two arrays, noting that U 23= Ul23 gives

0 gu 12 ( 2 I 1  Q12 ) Iu13(311 - i3 )

u12 2 lola 1 2a Icc 0 u2 3 (Q3 12 a Q- 2 13a )

u 13 3la a- 130 )  u23( 3 12~2 13ct ca) 0

(D.2-51)

Recalling that u12  u3 =13 = = 1, it can be seen that the arrays in

Equations (D.2-48 and -51) are identical, so Equation (D.2-46) is

satisfied and the Eulerian and quadratic Lagrangian equations are

equivalent. It may be noted, however, that the stiffness matrix in

the Lagrangian formulation is symmetric and its elements are order of

rotation dependent.
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The equations of motion will now be obtained using Lagranges

equations, but retaining only linear terms in the displacement field.

So in this case the position is

P = a , C 0P

AT
= a (E + e) P (D.2-52)

The generalized forces are computed by noting that

AT -
6 P = a 60 P (D.2-53)

so

Q 6 = {6 P S}1 a 3(t) o0 -

6T M(t)* {d P S} (D.2-54)

The velocity is

O-= x P.+x(P + x P)

0--0( (_ + _) x o- +  < (_ x °P )  (D.2-55)

so the kinetic energy is

*{p[l(I + 4) x OP+ x ( x P).[( + ) x o_ + Q x(6 x )o]

= *{p[( + 0) x * (_Q + )x p + 2(2 + 0) x * ax(6 x?)

+ 0 x (6 x P) * x (e x )]}

= *{p[( + 0) x [(Q + _) x P] + 2( + ) x[x(0 xp)]

+ * (6 x P) x [Q x (6 x p)]}
- 0-

Equation (D.2-56) continued
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S a+ + I + +( + . P [xe(. )]}
2 2 S i +

+ .*_[Gn (e x P) x (Q x ( x P ))]}2 (D. 2-56)

Now

* {0[o x e (f.o*)]} *{Oe x( P.P U - OP1 .- 2( P*P)-x)]

1

= ex = •+ -+ TR(I) n x 6

= x Q + - (10 x 0 + 2 x * 0 + (It.)x e)

(D.2-57)

where TR(I) denotes the trace of the array. Inserting Equation (D.2-57)

in (D.2-56) and expressing the result in the a basis yields

iT *T 1T 1 T *T~
T = 5 IQ + 0T I + 6TIO + _ (nT+ 6T) (in+ 01 + IIf)

2 2 2

+ -T i * {$[ 0  6 0P) a e 0P }  (D.2-58)

Applying Lagrange's equations

(t*{ P} - 6 + + IR + - (8)
faM(t) 0 dt 2 2 2

[- n Q - -Q 6 + - (Ir, - I- IQ - in Q + !:(IQ)

-= 1 + 1 + [I1. + e1 - (In l, - * [ Q o 0 Pe1}

(D.2-59)

Now
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0P  0 P 0P - - ( P) 0 0

0 0 0 0 0 0

= (oP oP e + ( P) P -- (i p) e

0 0 0 0 00 0 POP+0S- (oP P 6 + (Q 0oP) o 0P 0 P o + 0 oP )

O- Po'ev oi P ? (- [6ooV o'eP 5 . (D.2-60)

Inserting this in Equation (D.2-59) yields

fM(t)*0 P S} + In + 1 [I~ + 'I - (I>) ]

+f * 8 'ofoOP + oQ7ETe -hP £oo 0Q] (D.2-61)

or rearranging

faM(t) o~ s) W - *{[() p g P] = 16 + i6 +Ia~+r - (r2r10

- 6(I6) e + Q l6e (D.2-62)

Now recognizing that to zero order S = Q 2 OP this can be written

M/t) * { ( 0P  - 0 pes} -Q IQ + I + [I6 + I - (Im)i

+[ I[ - (10)j 0 (D.2-63)

Recalling that

AT ATS =_P (0P ) a = a P + 0P )  (D.2-64)

noting that

S M( t)*{p22 x S 7
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and recalling Equation (D.2-ll), the steady and deviational equations

become

T=0In

t + [I + Z- (I) ~ ]

0 0 0

+ [ I + K - (I)- TT3  0 0 ] = 0

T 2 - T 1  0

(D.2-65)

A
which is identical to the Eulerian formulation in the a basis.
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