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PREFACE

With the recent developments in statistical methodology of clustering

and classification as well as in automatic remote sensing data processing

techniques, the scope of extracting useful information on earth resources

from multispectral scanner data has increased considerably. Though the

performance of most of the previously developed remote sensing data handling

techniques has yet to be ascertained through the process of testing and

numerical evaluations, it now appears that the development of a technology

for performing a large area earth resources inventory is in sight.

For the earth resources project of EOD, NASA-JSC, presently a top

priority has been given to the development of a system for performing an

inventory of some crop or crops of economic interest over a large area. An

important aspect of this project would be to devise a suitable crop acreage

estimation procedure. A major part of the research work reported here in

our final report is concerned with this problem.

First of all, a model is developed for the evaluation of crop acreages

(proportions) in an agricultural area using the classification approach. The

model takes into account the classification errors likely to arise in labeling

remotely sensed data points under the classification algorithm used and evalu-

ates the actual crop proportions by correcting the expected labeled crop

proportions for the possible bias due to these errors.

If the goal is to determine crop acreages for a large area, it will be

necessary to use only a subset of the full data obtained using a sampling

technique since it would not be practical to collect and process a complete

set of scanner data covering the entire area. Depending upon whether or not



any information is available on the area crop layouts, agricultural practices,

etc., a suitable sampling scheme needs to be devised for acquiring a well

representative sample of the unlabeled remotely sensed data. The precision

of any crop acreage estimates will also depend upon the performance of the

classification algorithm used in labeling remotely sensed data points and

whether or not the associated classification errors are known. It is very

unlikely to have these errors known in advance. As such, a certain amount

of ground truth, preferably a sample of ground truth for each crop type in

the area of interest, needs to be ascertained so that the classifier is

properly trained and the classification errors estimated.

Considering these aspects of the problem, we have discussed the estima-

tion of crop acreages for different possible cases. If the classification

errors for the classification procedure used are assumed known, the estima-

tion method provides best estimates for the crop acreages. In case of

unknown classification errors, the estimates are consistent. Next, both the

error analysis and the problem of sample size are investigated in general

as well as for certain specific cases. Our results are given in reports 1,

4 and 5 listed in the table of contents.

A study of classification errors for the Gaussian maximum likelihood

classifier is made when due to interest in identifying elements of only one

class, the other class is made of the remainder of the classes and then the

problem is treated as a two-class classification problem. Given in report

6, depending upon the geometry and location of the classes under this practice,

it is shown that the classification performance for elements in the class of

main interest may or may not improve under this practice.
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The estimation of optimum errors of classification and the dependence

of these estimates upon the distance between classes are examined for the

two-class problem, assuming classes to be univariate normal, in report 2.

Considering both the maximum likelihood estimate and the minimum variance

unbiased estimate for the optimum probability of misclassification, we give

the relative efficiencies of these two estimates, theoretically as well as

numerically, and investigate the bias of the former.

A simulation study 1n done on the relationship between the probability

of misclassification using linear as well as quadratic discriminant rules,

the number of features and the training sample size. As shown in report 3,

when the sample size is small, use of a fewer number of features for dis-

crimination leads to smaller probability of misclassification.

For classifying an observation into one of two given normal populations

whose parameters are unknown, the usual practice in the absence of any

training sample is to cluster past data into two nearest neighbor clusters

and to design a sample based Bayes' classifier, treating the two clusters

as training samples from the two populations. The use of £-norm is often

advocated for such clustering. In report 7 it has been shown that such

advocation is not always reasonable.

A unified theory of adaptive pattern recognition has been presented in

report 8. It has been shown that all adaptive pattern recognition algorithms

are just different means of approximating a function that separates the sets

of training samples, choosing different criteria for best approximation.

The data obtained by remote sensing devices in Earth Resources Survey

come from a large area and often over a large period of time. Due to changes
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in spatial and temporal conditions the statistical characteristics of the

data have been found to undergo changes. In such a situation, the performance

of sample-based Bayes classifier designed on the assumption of normality of

the populations can be enhanced by periodic updating of the parameter esti-

mates. It has been shown in report 9 that all updating algorithms that can

be found in literature are related to one particular model of the random

environment.
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ESTIMATION OF A LARGE AREA CROP ACREAGE

INVENTORY USING REMOTE SENSING TECHNOLOGY

0. SUMMARY

Based upon the existing remote sensing capabilities, the useful informa-

tion about the acreage of some crop of economic interest can be obtained from

multispectral scanner measurements acquired over an agricultural area. If

the goal is to determine the acreages covered by various crops over some large

-area such as the continental United States, then some sampling procedure will

be necessary since it would not be practical to collect and process a set of

scanner data covering the entire area.

In this report we develop a model for the evaluation of acreages (propor-

tions) of different crop-types over a geographical area using a classification

approach and give methods for estimating the crop acreages. If prior informa-

tion is available on the classification errors associated with the classifica-

tion algorithm used, the estimation method provides the best estimate for the

crop acreages. Otherwise, the method would first require a certain amount of

ground truth in the area of interest to be obtained so that the classifier

can be trained and the classification errors estimated.

If the main interest lies in estimating the acreages of a specific crop-

type such as wheat, it is suggested to treat the problem as a two-crop problem:

wheat vs. non-wheat, since this simplifies the estimation problem considerably.

The error analysis and the sample size problem is investigated for the two-

crop approach. Certain numerical results for sample sizes are given for a

JSC-ERTS-1 data example on wheat identification performance in Hill County,

Montana and Burke County, North Dakota. Lastly, for a large area crop acreages

inventory we suggest a sampling scheme for acquiring sample data and discuss

the problem of crop acreage estimation and the error analysis.
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1. INTRODUCTION

In recent years the development of several automatic data processing

techniques for statistical pattern recognition has enhanced considerably

the scope of remote sensing technology for the study of earth resources,

particularly in the field of agriculture. It now appears that a system

for performing a large area crop inventory can be developed on the basis

of existing remote sensing capabilities.

The data handling and analysis for remotely sensed agricultural resources

over a large area may not be feasible both from technical and economical view-

points if each scanned data point is being processed for its recognition. For

example, if a complete recognition is desired for an ERTS scene, it would re-

quire processing over half a million data points. As such, an important

requirement for any system to be developed for a large area crop inventory

should be to have a suitable crop acreage estimation technique that uses

only a sample of the unlabeled remotely sensed data obtained for the area

of interest for the purpose of recognition.

In this report we -discuss a large area crop acreage estimation procedure

that would meet this requirement for the system. We develop a model for the

evaluation of crop proportions for an agricultural area and provide methods

for crop acreage estimation, taking into consideration the classification

errors likely to arise in labeling remotely sensed data. The error analysis

for the model is studied and expressions for variances of different estimates

are given, in general as well as in specific cases. For the two-crop situa-

tion, the problem of sample size is investigated and certain numerical results

for the sample size are provided. Next, we extend the scope of our study to

investigate a large area crop inventory.
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2. CROP PROPORTIONS MODEL

Suppose there are m different crops l, 2 , ...,T m in the agricultural

area of interest and that every data point is identifiable with respect to

one of these crops. Let pi denote the proportion of pixels in i., i=1,2,...,m.

Considering a random sample of n unlabeled remotely sensed data points, let

ni be the number of points classified into 
i, i=1,2,...,m,using a classifi-

cation algorithm. Suppose n(ijj) is the number of data points to be in 7.

but classified into >., then
1

n. = n(il) + n(i 2) + ....... + n(i m)

and

m
ni - n(i j ) , i=1,2,.. .,m (2.1)n .

j=1

are. the. .bserved -crQp.proportions for .the sample data under the classification

algorithm used. The observed proportion n./n is a biased estimate of p.i since
1

it estimates unbiasedly E[ni/n] given by

m

e. = E n(ili)

j=1

m

= Pj P(ijj) (2.2)

j=l

where P(ijj) denotes the probability of classifying a data point from 7.

into 7. under the classification algorithm. It may be pointed out that
1

processing of remotely sensed data for total recognition would lead to an

evaluation of the expected classified crop proportions ei's instead of the
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actual crop proportions pi's. Of course, if the classification algorithm

performs so well that the classifiction errors are sufficiently small, e.
1

will be close enough to pi, i=1,2,...,m. But most statistical pattern

recognition techniques for processing of remotely sensed data are expected

to be fallible and thereby the two types of proportions are not going to be

near equal. Henceforth in our discussion we will assume that P(ijj) > 0

for at least one j different from i.

Denoting the observed proportion n./n by ei,i=1,2,...,m, it follows

from (2.2) that

e = E[e]

or

e = Pp (2.3)

where

el P
e= e2  = P2

e P
m m

and

P(1 1) P(112) . .... P(ljm)

P = P(211) P(212) ..... P(2 m)

P (ml ) P(m 2) P(mlm)

Accordingly, the vector of actual crop proportions
-i

p = P-e (2.4)

m

are obtained subject to Pi = 1 provided e and P are known.

i=1
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The vector of classified crop proportions, e, can only be known if the

complete set of remotely sensed data is processed for total recognition using

a classification algorithm. Hence, in general, e will be unknown. Regarding

the classification error matrix P, two cases arise:

(i) P is known

(ii) P is unknown

If P is known, an unbiased estimate of p is

_l^
p = P e . (2.5)

But P will generally be unknown. As such it would be necessary to obtain a

certain amount of suitably selected gound truth in the area of interest,

probably independent of the sample data used in estimating e, so that the

classifier is trained and the classification error- matrix estimated. Let

P be an estimate of P. Then an estimate of p when P is unknown is given by

A

^ -1 ^
S= P e. (2.6)

Clearly, p will generally be a biased estimate. Both bias and mean

square error of p will depend upon the performance of the classification

algorithm. as. well as the degree to which the sample represents the popula-

tion. The classification performance can be achieved desiredly by training

the classifier sufficiently on the basis of a well representative sample for

the ground truth. By adopting certain sampling schemes that may be suitable

for the area of interest, appropriate samples for both the ground truth and

the unlabeled remotely sensed data can be acquired. For our later discus-

sion we assume that these two types of samples are independently obtained.

In appendix 1 we have derived general expressions for the covariance

matrix of p,and both the bias and the mean square error matrix of p. In the
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A A

case of p not only the estimate p itself but bias as well as mean square

error quantities will also depend upon how P is obtained. One solution for P

and the probability distribution of its components is suggested therein, as well.

3. TWO-CROP APPROACH

Sometimes the main interest is in estimating the acreage of a specific

crop type in the area of interest. In that case one approach to the acreage

estimation problem lies in considering 71 to be the specific crop type and

70 to be the "other crop" consisting of the remainder of the crops, and then

treating it as a two-crop situation. However, lumping of different crops

together for the "other crop" would require certain caution and should be

judged in terms of the classification performance for the two-crop case as

against that for the case of the original set of crops. For the Gaussian

maximum likelihood classifier, Basu and Odell (1973) have investigated this

problem and have shown that the classification performance for the class of

main interest may or may not improve when the classification is performed

using the two-class approach. But the problem under this approach is

greatly simplified and, barring extreme cases, perhaps it will provide

satisfactory solutions in the remote sensing situation when interest only

lies in ascertaining the acreage cover of one specific crop.

Now considering two crops i 1 and 0', let P(110) = 1 and P(01) = @2

for the probabilities of misclassification when a certain classifier is

used. We will assume that l + @2 1. Then

P =L2 1l

#2 1 - 1
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If pl and p 2 are the actual crop proportions of wi and T0 , respectively,

whereas el and e2 are their respective expected classified crop proportions

under the classifier used, it follows from (2.3) that

el = (1-42) P1 + 1 (1-P1) (3.1)

and

e 2 = 1-el

On the other hand,

e -

P 1 =- 1 (3.2)

1 2

and

e2 - 22 2
P2 = l-,1-I 2  or p 2 = 1-p.

Suppose from a random sample of n unlabeled remotely sensed data points,

n1 points were classified into i 1 and n 2 = n-n 1 points were classified into

T 0 by the classifier. Then

1 n

^ 1

p (3.4)1 1-4 -P2

if 1 and 2 are known, and

^ e 1
Pl ^ ^ (3.5)

1 2

when l 1 and 2 are unknown and have estimates 01 and 2 respectively. Clearly

1
Var(p) 2 Var(el) . (3.6)

For the estimate P in (3.5), it easily follows that
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Bias (pl) = (el- ) E[T-O] - E[T( 1 - 1)] (3.7)

where

T = (1-412)

and

e = (1-9 1 2 -

However, evalution of expected values in (3.7) may be quite a difficult job

and so an exact bias value may not be accessible. An evaluation of the

MSE(pl) in its exact form is even more difficult. As such we instead con-

sider having it in the following approximate form obtained in Appendix 1

using the 6-method. For a discussion on the method, see Rao (1965).

1 e - 0 2 e - 0 2
MSE(p) [1 2 (Var(el)+ [1- 1

1 -2 Var( 1)+[
1- -] Var( 2 )) (3.8)

1 [_4i1 2] 1 2 1 2

or

12 2
MSE(p) [ 212 [Var(el)+ (l-pl) Var(~l) + P1 Var(0 2 )] (3.9)

where pl is given by (3.2).

Sample Size

Considering simple random sampling with pixel as the sampling unit, we

discuss the problem of sample size necessary to minimize the sampling cost

or to achieve a desired amount of precision for the proportion estimate, given

that the other is specified. Suppose total sample consists of N=n+N 1 +N 2

data points selected randomly, where n is the size of sample of unlabeled

remotely sensed data used for estimating el, and N1 and N2 are sample sizes

for ground truth data from i1 and O0 and are used to estimate ¢1 and 2,

respectively. The estimates el, ¢1 and 02 are all obtained as observed

sample proportions and thus it follows from (3.6) and (3.9) that



e l (l - el)
Var(p1) 2n(i-1 2

and

1 el(l-el (P2 (1- 2 2(1+ 2).
MSE(pl) = 2 n N + P l . (3.10)

( -42 +)  1 N

Suppose we want to obtain sample sizes necessary to minimize the sampling

cost when Var(pl) and MSE(pl) are specified, say each equal to or smaller

2
than a 2. In the case of l' 02 known, the only cost involved is that of

p'icessing the remotely sensed-sample data. Clearly, it will be minimum

when the sample size n is the smallest integer greater than or equal to

e l (1-e 1 )

2 2 (3.11)
:(1 _2 2

For when ¢1 and ¢2 are unknown, there are two types of cost involved: one

is the cost of processing the total sample data, say at the rate of cl dollars

per data point and the other is the cost of obtaining ground truth, say at

the rate of c2 dollars per data point. Then the cost associated with a

sample of size N = n + N1 + N2 is of the form:

C(N) = c1 n + (c1 +c 2 ) (N1+N 2) (3.12

The purpose is to find N (i.e., n, N1 and N2) which minimize C(N) subject to

MSE(pl) < 02 . This is done in Appendix 2 where we derive explicit expressions

for n, N1 and N2 in (A.9).
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4. AN EXAMPLE

Certain sites in Hill County, Montana and Burke County, North Dakota

were selected to investigate wheat identification performance for the ERTS-1

satellite data during 1973. For the sites in Hill County, there were three

acquisition periods, covering both winter and spring wheat seasons, for

which ERTS-1 labeled data were evaluated against the ground truth to ascer-

tain wheat identification performance. In the case of the site in Burke

County, there were only two acquisition periods covering the spring wheat

season. For the classification identification performance results and other

details, refer to Appendix 3.

Considering Pl to be the omission percentage for the non-wheat data

points and 4 2 for the wheat data points, we give sample size results in

Figure 1-7 for the various cases of omission percentages listed in Appendix

3, assuming different wheat proportions in the area and a2 = .01. Based on

these results, the following conclusions are drawn:

1. Expected labeled wheat proportion, el, increases as the actual

proportion of wheat, pi, increases for the area, though not strictly.

Though to a certain extent it depends upon the magnitude of the

omission percentages for both non-wheat and wheat data points,

it tends to centralize away from too low or too high values for

the percentage.

2. Sample size for the unlabeled remotely sensed data first increases

as the actual wheat proportion increases and then decreases later

on; the point of decrease depends upon the size of the two omis-

sion percentages.



3. All sample sizes increase as the total omission rate D1 + D2

increases.

4. Sample size, for the unlabeled remotely sensed data is much

larger when Dl' D2 are unknown compared to when these are known.

5. In the case of Dl,' 2 unknown, the sample size for the unlabeled

remotely sensed data is proportional to c2/c1; the ratio of two

types of cost.

6. Sample sizes for ground truth of wheat and non-wheat are inversely

proportioned to c2/ c1

7. Sample size for the ground truth of wheat is larger than that for

non-wheat when the expected labeled wheat proportion is below .5.

Reverse is the case when such proportion is above .5. A similar

trend holds against the actual wheat proportion, though not

strictly.

8. Sample size for the ground truth increases as either of the two

omission percentages increases when the other is held fixed.

For making a comparison of sample sizes irrespective of the wheat propor-

tion which, in fact, is unknown, a suitable criterian is to determine the sample

sizes against values for the coefficient of variation, C.V. = a/p. Generally

the wheat coverage in any area of interest is expected to be somewhere in

between 1 percent and 20 percent. As such we here give sample sizes for the

unlabeled remotely sensed data and the ground truth of wheat as well as non-

wheat by specifying a = .01 and considering certain C.V. values in a 5 to 50

percent range. Numerical results are presented in Table 1 for all different

cases of l.' .2 values that arise from the wheat identification performance
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results given in Appendix 3. Moreover, for certain cases the sample sizes

are sketched in Figure 8-14. The following conclusions are drawn:

1. All samples sizes increase as the total omission percentage

01 + 02 increases.

2. Except for the sample size for the ground truth of wheat, sample

sizes decrease as the coefficient of variation increases. These

are generally very high in numbers for the 5 percent co-efficient

of variation but levels off when the co-efficient of variation is

50 percent.

3. Sample size for the unlabeled remotely sensed data increases con-

siderably if 01, 02 are unknown compared to their known case.

4. Again, all sample sizes depend upon the ratio c2/c1 as regards

the two types of cost.

5. Sample size for the ground truth of wheat is consistently larger

than that of non-wheat. Also, it shows very small changes over

the range of co-efficients of variations being considered here.

In cases where there is a high overall omission percentage, and

particularly for the non-wheat, it tends to increase as the co-

efficient of variation increases.
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5. A LARGE AREA CROP ACREAGE ESTIMATION

Our previous discussion, in essence, applies to crop acreage inventory

for an agricultural area which is homogeneous in respect to agricultural

practices and thus is not expected to be large enough. Since a major objective

of the JSC-EOD project is to perform or estimate crop acreages for a large

area using available remote sensing capabilities, we here suggest a sampling

procedure to procure sample data for the purpose of estimating a large area

crop acreage inventory and discuss the error analysis associated with it.

Once again, we assume that the frame is made of agricultural areas; the

non-agricultural areas in the region of interest can be easily excluded by

way of a monitoring system. As a first step in the sampling procedure, we

suggest having a geographical-based stratification which effects a division

of the region into reasonably homogeneous areas with respect to physical and

climatological conditions. Considering additional factors of (i) the pre-

dominance of various crop-types and (ii) the latitude and longitude, a

finer stratification must be achieved. This is to obtain better discrimina-

tion for the underlying crop-types and to control variability which may

otherwise dominate over the distinction that exists between the resolution

classes for these crop-types.

Note that as a result of stratification one may only need to consider

a part of the region for frame if crops of interest do not cover the whole

region. So depending upon whether the frame would require consideration of

the complete region or only a part of it, one should make a list of strata

making up the frame for the purpose of sampling.

Remoting sensing data gathered by an ERTS satellite is documented in

terms of scenes, each covering approximately an area of 100 x 100 miles and
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divided into four strips where each strip has approximately 6,400 scanlines

in it. As such, we suggest a three stage sampling plan to be independently

carried out in each stratum: select randomly ERTS scenes at the first

stage, strips within scenes at the second stage and scanlines within strips

at the third stage. Of course, one may consider one more stage in selecting

pixels within scanlines. However, sampling at this stage is excluded from

the plan because it is inconvenient and uneconomical.

Notations

Let R be the region (in the sense of frame) of interest for estimating

crop acreages. Suppose it is stratified into strata Rt, t=1,2,...,L, with

weights wt, the proportion of pixels in tth stratum, t=l,2,...,L so that

L L

R = UR t  with wt = .
t=l

t=l

In stratum Rt, let It be the number of scenes whereas J, H and n denote the

number of strips per scene, number of scanlines per strip and number of

pixels per scanlines, respectively. From the previous paragraph it is

obvious that there is no need to distinguish between strata in the categories

of strips per scene, scanlines per strip and pixels per scanline. Next, let

etijh( Ok) be the expected proportion of pixels to be classified in 7k from

the hth scanline in jth strip of ith scene for stratum Rt, t=1,2,...,L.

Then for Rt,

H

e i j ( k
) = etijh (k)

h=l
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the expected proportion of pixels to be classified in rk from the jth strip

in ith scene,
J H

eti rk ) =  I I etijh (k ) '

j=1 h=l

the expected proportions of pixels to be classified in irk from the ith scene,

I J H

e t Ok) ItI etijh( k '
i=1 j=1 h=l

the expected proportion of pixels to be classified in k.* Accordingly,

L

e(ik) = wtet Ok) , (5.1)

t=l

is the expected proportion of pixels to be classified in k,3 k=l,2,...,m,

for the region R.

Estimates

Suppose mt, r and s denote the corresponding number of scenes, number

of strips per scenes and number of scanlines per strip that one selected for

Rt, t=l,2,...,L, using the stratified three stage random sampling described

earlier. Let ntijh (k) be the number of pixels classified into ik from the hth

selected scanline in jth selected strip of the ith selected scene in R .

Then considering the observed proportions of classified data points into

different crops for estimates, one has

^ ntijh (k)

etijh( 7k ) = n

etij (Ik) = ntijh k )

h=l
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r s

ti k nsr ntijh k
j=1 h=l

m r s

et(k) = 1 t nt i )
t k nsrm t tijh k

i=1 j=l h=l

and L

e(Tk) = t et Ork ) , k =1,2,...,m (5.2)

t=l

Next, expressions for Var(e(tOrk)) and Cov(etkt ) , et(t ))(k#k') can be

obtained without much difficulty. For example, refer to Section 10.8 in

Cochran (1963) for the general discussion on three stage sampling plan.

Hence, the covariance matrix of e is given by

L

Var(e(wk)) = wt Var(et ( k))
t=l

and L

2
Cov(e( k), e(Tk')) t Cov(et (k) , et( 0k')), kk', k=1,2,...,m. (5.3)

t=l

Similarly, an estimate of the covariance matrix is obtained by replacing

the unknown quantities by their estimates in (5.3). In this context, see

Chhikara and Odell (1974) who have discussed such results in greater details.

Now to obtain the actual crop proportions, there is a need to consider

whether or not the classification error matrix is the same for each stratum.

When the area is wide and large and the stratification is performed consider-

ing factors mentioned in the beginning of this section, it is quite likely that

these classification error matrices will not be the same for different strata.
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In that case, find an estimate of pk' k=1,2,...,m, using (2.5) if the classi-

fication error matrix is known and (2.6) if it is unknown for each stratum.

Denoting pk by pt k) for stratum Rt, it then follows that

L

Pk wtt(k) , k = 1,2,...,m (5.4)

t=1

when the classification matrices, say Pt, t = 1,2,...,L, are known, and

L

Pk ~ tPt(k) , k = 1,2,...,m (5.5)
t=l

when these are unknown and are separately estimated using ground truth data

from each stratum. Next, Var(pk) and MSE(pk) are respectively obtained from

(A.2) and (A.7) after making an appropriate substitution from (5.2).

On the other hand, either there is the same classification error matrix

for all strata or can be made so by proper adjustment of signatures in the

classification algorithm for each stratum. For then an estimate of crop

proportions pk' k=1,2,...,m is directly given by (2.5) if the common classi-

fication error matrix is known and by (2.6) if it is unknown, using e( k),

k=1,2,...,m of (5.1) for e. Hence, both estimates and their error analyses

are obtained by following the general procedure given in Section 2.

In fact, our approach in Section 2 is quite general and can be applied

to perform any large area acreage inventory by considering an appropriate

sampling scheme for both the unlabeled remotely sensed data and the ground

truthed data.

Once again if interest lies in estimating only the wheat acreage, the

two-crop approach of Section 3 can be applied. Then an estimate of wheat

proportion is obtained from (3.4) or (3.5) as the case may be, either first
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obtaining it stratumwise and then combining as we did above in (5.4) and

(5.5) or directly,depending upon whether or not the classification error

matrix is the same for different strata. Subsequently, the precision of

this estimate and the sample size necessary to achieve a desired precision

with minimum cost can be easily obtained by applying our technique of

Section 3.

Sample Size

Taking the cost factor into consideration, suppose we want to determine

the sample size that either minimizes the sampling cost for a specified

precision or maximizes the precision of the estimate for a fixed cost.

Though a large initial cost is involved in acquiring remotely sensed data,

presently we are mainly concerned with the cost of the processing and

labeling of the sampled data. In general, any such cost can be considered

as

Ct = clm t + c2mtr + c3mtrs

for the sample in stratum Rt, and

L

C = (c + c2r + c3rs) I mt
t=l

for the area of interest.

In case of unknown classification error matrix or matrices, there is an

additional costof sampling the ground truth, say C'. As such the total cost

involved is C = C + C'. Now if the cost is fixed, say C" < CO, a determina-

tion of sample sizes for both the unlabeled remotely sensed data in all

three categories and the ground truth for various crops can be achieved by

solving equations obtained by equating the partial derivatives of
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MSE(pk) + ,(C"-CO) , k = 1,2,...,m

where X is a Lagrange multiplier, with respect to m , r, s and the ground

truth sample sizes to zero. Similarly, when the MSE (pk) is fixed, say k,

k=1,2,...,m, again this can be achieved by considering the function

C" + Ak[MSE(pk) - 2k], k = 1,2,...,m

for minimization. This, of course, would lead to k different values for

various sample sizes unless we consider the minimization from the point of

a specific crop-type proportion estimate. On the other hand, a unique

determination can be obtained by considering the largest value obtained

in each case.

It may be pointed out that under this procedure, it will be difficult

to give any closed form expression for any sample size and its carrying out

would involve some optimization technique.

If the classification error, matrix (or matrices) is known, the sample

sizes mt (t=1,2,...,L), r and s can be easily determined by minimizing
t2

Var(e(rk)) + X(C-C 0 ) or C + Xk[Var(e(k)) - ok] as the case may be. More-

over, the sample size problem in the case of unknown classification error

matrix or matrices can be treated either by assuming the classification

errors known or by investigating the two types of sampling separately.
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6. FURTHER REMARKS

In actual practice it may not be possible to have every data point

identified with one of the crops in the area of interest, particularly if

the area is large. This may be caused by not knowing all crop-types that

exist in the area or some data points representing pixels falling on the

field boundaries. As such the model developed in this report may be viewed

somewhat restricted. Its use for performing a large area crop inventory

may be considered subsequent to obtaining information about the agricultural

practices in the area.

It is extremely difficult to model the problem of a large area crop

inventory in its full generality unless certain constraints are imposed.

The condition of identifiability is one such constraint that one must have

in order to deal with the problem analytically.
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APPENDIX 1

A.1. Variances of Components of p

For p given in (2.5), the covariance matrix,

S ^ T -1 T -iT
E[(p - p)(p - p) ] = P E[(e - e)(e - e) ](p- )

or

S= (P - ) V (P ) (A.1)

^ th
where V denotes the covariance matrix of e. Denoting the (i, j)

element of P by p , it follows that the variance of pi, the ith

element of p, is given by

m m m

Var =  (ij)2r (r (e ) + pij pik Cov (ej, ek) (A.2)

j9l j l k=l
j#k

where V(e ) and Cov (ej, ek) would depend upon the sampling scheme

used for obtaining samples of unlabeled remotely sensed data points.

In the case of random sampling with sampling unit as pixel (i.e. one

data point),

e.(l e.)
Var (e) = n (A. 3)

and
e. e

Cov (ej, ek) = - n j # k, j, k = 1, 2, .. , m,

ignoring the finite population correction due to large population size. Next
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an unbiased estimate of these quantities is given by

A e.(l - e.)
Var (e.)

n - 1

Cov (e , ek) = - , j # k, j, k = 1, 2, .. , m.
j k n- 1

On the other hand if the sampling unit is a 5 x 6 mile segment con-

sisting of r pixels then considering a random sample of m segments

(here for the sample size one may consider n = mr data points) from

the total of M segments in the area of interest and again ignoring the

finite population correction, one gets (Cochran, 1963)

M
^ 1 2

Var (e) = m(M- (e.. - e.)

i=l1

and

M (A.4)

Cov (e, e = (e - e)(eki - ek), j k
m (M-i) i=l

j, k = 1, 2, .. , m

where e.. denotes the proportion of classified data points in n. for

the ith segment. Once again, for their unbiased estimates

Sm
Var (e) (e.. - e.)

Var (e m(m- 1) j- )

i=l

and
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m

Cov (ej, e ) = ) (e - e.) e - e, i k,

i=l

j, k = 1, 2, ... , m.

Similarly, components of V and their estimates can be obtained for other

types of sampling plans. Making appropriate substitution in (A.1) or

(A.2), variances for the components of p and their estimates are then

obtained.

A.2. Mean Square Errors of Components of p.

First we calculate the bias of p given by

Bias (p) = E[p-p]

^l ^  -1

= E [p e - P -e]

-1 A-1 -l
= E [P (e-e) + (P - )e]

^-1 -1
E [P - P ]e (A.5)

^-1
because the first term is zero due E(e-e) = 0 for a given P . Clearly,

-1
the bias depends upon how much bias there is in P , and

^ ^-1
Bias (#) = (Bias (P ))e.

In order to find the mean square error of any component of p, let us

first consider the evaluation of matrix,

^ T -1^ -1 -1^ -l T
E [(p-p)(p-p) i = E [(P e - P e)(P e - P e) 1
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so

^Al A A T ^-1 T ^-1 -1 T _1 -1 T
= E [(P )(e-e)(e-e) (P ) + (P - ) ee (P -P )]

-1 ^-1 T ^-1 -1 T ^-1 -1 T= E [([(P ) +E(P -) ee T (P -P )T]

(A.6)

where E stands for expectation with respect to P. Again, denoting the

(i, j-th element o -1 ij ^-1(i, j)th element of P by P and that of P by Pij, it follows from

(A.6) that the mean square error of Pi. the i component of 8, is given

by m m m
MS ^( 2  

A ik
MSE (pi) = E (pij2 Var (e)+ p Cov (e,ek)

j=l j=l k=l1

.m m m j#k . -

+ e E [P j - P ]2+ eeekE[(p13_p13)( ikpik)] (A.7)

=l j=1 k=1 -

j#k

i 1 , 2, ... , m.

Once again, V, i.e. Var (e ) and Coyv (ej, ek), j and k = 1, 2, ... , m,

may be obtained as in (A.3) and (A.4). If some other sampling plan is used

for selecting remotely sensed data to obtain the estimates e.'s, expres-

sion for V can accordingly be obtained. To evaluate expectation in (A.7),

one needs to find the distribution of P. This will, of course, depend

upon how P is obtained. In general, it will be difficult to obtain any

exact distribution of P. However, if the sampling of ground truth involves

separate independent samples from each crop and P is obtained as the

matrix of observed proportions among randomly selected pixels classified
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into different crops using a classifier, each column vector of P has a

multinomial distribution and is stochaotically independent of the others

^-1
in P. Since expectation in (A.7) is for elements of P , it may not be

easy to derive the MSE (ai) in a closed form, especially if the number of

crops is large.
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APPENDIX 2

Two-Crop Case

First we derive the MSE(pl) as in (3.8).

Proof of (3.8)

Considering the estimates 01 2 and e, being obtained from

independent sets of samples, it follows by an application of the 6-method

that

2 2 2

MSE(P1) Var(e) 1 Var(l +(l2- Var(c2
Ae ( 2_

2:
e '-1+2

( -1 )2 Var(el + 2 e Var(^)
1 12 1 L 2

+ el -D2 )  Var( 2 )

Hence

1 el 1
: MSE(p 1) (1-122 Var(el )  + l -- l2 Var( 1l)

+ Var(;)

Here dot with equality sign means equality with approximation. This

establishes (3.8).

For a determination of sample size necessary to minimize the cost
2

subject to MSE (p ) < a as discussed in section 3, it is achieved by

minimizing the function
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F = C (N)+ X (MSE (p) - 2 )

with respect to n, N1 and N2, where C (N) is given in (3.12) and MSE(p 1)

is given in (3.10). By rewriting, we have

-2
F = Cl n + (c + c2) (N 1 + N2 ) + x (1 - i - 2)

el(-e 2 41 (1-01) + 2 2 (1-D2) 2T2. ____ + (1-p) 2  1 2  (L n N1 N2

Taking partial derivatives of F with respect to n, N1 and N2 and equating

each to zero, one obtains the following set of equations.

-2 el(l-e)

S12) 2 0
n

-2 2 4 (1-D )
(c1 + c2) - X(1- 1-1 2) (l-p1) 1 1 = 0

2

N2 2
-2 2

Considering only the admissible solution of these equations, one has

Sel (1-el)
n..=

c1 (1-41_(2 )

l(1-l)
N1 = (1-P) 2 (A.8)

(cl+c2 ) (1-4)1 - 2

A 4)2(1-42

2 =Pl (cl+c2) (_ l-)2)
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A 2
Considering that MSE (pl) = a and making substitution in (3.10)

for n, N1 and N2 obtained in (A.8), one gets

/-= 21 N2  clel(1-el) + (1-p 1 ) (cl+c2 ) 4 1) + Pi (cl'2) 2(1-2
)

2  - 2)
a (1-41 2

After substituting forv/ in (A.8), the sample sizes n, N1 and N2 are obtained

as following:

n el(1-el)/c 1  [ /lel (1-el) + (1-pl)p (cl+C2)1(-1 1)1)/(cl+C2)2(-2)2 (1- 1 2)

N/ (1-) )l(1-~l lel(l-e)+ (1-l) V(cl 2 1 2i2-2

1 1 2

0(1-P2 dlc2

N = 1 2(1 2) [ (1-el) + (1p ( 1 ±c 2) 41 (1- 1 )

2 2 1 2
2 (l ) 21-D 2) +pl v(cl c 2 ) 12 (1- 25 .(A. 9)

It can be easily seen that n is a monotone increasing and N1, N2 are monotone

decreasing functions in c2 /c 1 , the ratio of two types of cost. For when

el' ~1' 02' are unknown, estimates of n, N1 and N2 can be obtained from (A.9)

by replacing these unknown quantities by their estimates.
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APPENDIX 3

ERTS-1 DATA INVESTIGATION

FOR

WHEAT IDENTIFICATION

1. Hill County, Montana

. Complete ground for evaluation in 2 x 6 mile area in Hill
County North

. Ground identifications of wheat, barley, oats in Hill County
South

. ERTS-1 data evaluated at three acquisition periods covering
spring and winter wheat seasons

Date Winter Wheat Stage Spring Wheat Stage

May Greening Pre-emergence
June Heading 100% cover
July Mature Headed

Classification performance results:

W - Spring/Winter Wheat
NW - Oats/Barley/Pasture

Commission/Omission Percentages

W NW W NW W NW

W f7O 30] W 9O 190 1 W 8O 20

NW 20 8 NW 15 85] NW 5 9

May 23(tl) June 27(t 2 ) July 16(t 3 )

W NW W NW W NW

W 10W 90 10 W f95 5

NW 5 95 NW L5 95 NW 10

May, June May, July May, June, July
(tlt 2 ) (tlt 3 ) (tt2,t3)
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2. Burke County, North Dakota

. Complete ground truth for evaluation in 2 x 10 mile area

ERTS-1 data evaluated at two acquisition periods

Date Spring Wheat Stage

June 5 3"-4" growth
June 23 Jointing

Classification performance results:

W - Spring Wheat
NW - Bariey/Oats/Pasture/Summer Fallow

Commission/Omission Percentages

W NW W NW

W 75 25 W 85 1

NW 0 9 NW 0 9

June 5(tl) June 23(t 2)

W NW

NW 9

June 5, June 23
(tl,t 2 )
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rAjE : Sample sizes: n for the unlabeled remotely sensed data, and N1 and N2 for the ground truth

of wheat and non-wheat, respectively, when precision for the proportion
estimate is specified by a = .1.

Actual Omission Expected Sample Sample sizes for 1,' ¢2 unknown case
theat percentage classified size, n
propor- wheat for 1D c2/c I = 5 c 2/c1  10
tion proportion

l known n. N1 N2  n N 1  N 2Pi (1 e 2 22 case

0.050 0.200 0.300 0.2250 70 235 88 C 379 76 5
0.050 0.100 0.250 - 0.1325 

-  
28 . 86 Al-- 1 - 3..- 140 26 '- 2....

3.050 0.150 0.100 0.1875 28 Be 31 2 140 27 2
0.050 0.100 0.150 0.1375 -22 67 -- - 23------- 2 ...... 107 ..... 20 2 -
0.050 0.050 0.200 C.0875 15 43 13 2 67 11 .2
0.050 0.050 ---- 0.100 --- 0.0925 .-- 12 . . 34 ------- 10------------I----- . 53 ........ 9--------1------
0.050 0.000 0.050 0.0475 G 6 0 1 7 0 1

0.100 0.200 0.309 0.2500 75 248 84 11 398 .73 10
0.100 0.100 -- 0.259 - 0.1650--- -. 33 - 101 --- ---- 30 ----- 5- i. 5 159 ..... 6 - -....... 5-0.100 0.150 0.103 0.2250 31 95 30 3 151 26 3
0.100 0.100 ----- 0.150 - 0.1750------ 26 -- 77 --- 23 --- ------- 121- - 19 - 3-
0.100 0.050 0.200 0.1250 20 54 13 3 84 11 3
0.100 0.050 --- 0.100 0.1350 .--- 17- 43----- -- 10---.2--- .------- 66---------- 9 - 20.100 0.000 0.053 0.0950 10 12 0 1 13 0 1

0.150 0.200 0.300 0.2750 80 259 81 17 415 69 14
0.150 0.100 --- 0.250 - 0.1975 38 12-- -30---- ---- 176 ----- 25 7
0.150 0.150 0.100 0.2625 35 - 102 29 5 160 24 4
0.150 0.100 0.150 - 0.2125 30 85 - ----- 22----- - 5-- - 133 ---- 19 -- 4
0.150 0.050 0.200 0.1625 25 64 14 5 98 11 4
0.150 0.050 0.100 0.1775 - .21 -- 51------ - -10----- 3 ----- -77 - ------- -9----- ---- 2-
0.150 0.000 0.050 0.1425 "14 17 0 1 20 0 1

0.200 0.200 0.300 0.3000 84 269 77 22 430 66 190.200 0.100 .0.250 0.2300 --------- 42--- - -- 122---- 9----- ---- 1- -- -- 101-- - - 24
- 

-... 9 --
0.2300 0.150 0.100 0.3000 38 107 28 6 167 23 5
0.200 0.100 0.150 - 0.2500--- -- 34- - - 93 .----- --1 - 7 ----- --- 144 .----- 18 -- -- 6

- -

0.200 0.050 0.200 0.2000 29 73 13 6 112 11 5
0.200 0.050 0.100 ---- 0.2200 =-- =7 24-S--.--. - .5z .-.-. -.. -10 - - ---- - -- - 86- --- - 8 - - - -3--0.200 0.030 0.050 0.1900 18 22 0 1 26 0 1

0.250 0.200 0.300 0.3250 88 278 73 28 444 63 24
0.250 0.100 0.250 0.2625 - - 46- -- 131 2 --- 28-- -14-~- - 205 23 11 -0.250 0.150 0.100 0.3375 40 111 26' 8 172 22 60.250 0;100 0.150 0.2875 -- --- 37 -<----~---- 99-- - 0 ---- 8 :- 153 ------ -- 17 --------. 7-.

-
---

0.250 0.050 0.200 0.2375 - 33 82 13 8 124 11 70.250 0.050 0.100 0.2625 27--.- - - 63 ----- :10-'--- 5-- - 94 - - --- 4-
0.250 0.000 0.050 .0.2375 21 27 0 2 32 0 . 1

0.300 0.200 0.300 0.3500 91 287 69 34 457 59 290.300 0.10 -- 0.250 - 0.2950 50.--- - 140- ----- 27 ------ 17---- 218-- - 22----- - - 1 4---0.300 0.150 0.100 0.3750 42 114 24 0 176 20 S
0.300 0.100 0.150 0.3250-- 39 -- - 104 -19 -- - 10 161 16 - 8
0.300 0.050 0.200 0.2753 36 89 13 10 135 11 80.300 0.050 0.100 0.3050 30-" -.= 68 - 10 6 - 1018 5----
0.300 0.000 0.050 C.2850 23 31 0 2 38 0 2

0.350 0.200 0.300 0.3750 s4 294 C5 40 407 55 340.350 0.100 -0.250 0.3275 53 147 -.-- -25 20 229 21 170.350 0.153 0.100 0.4125 44 116 23 11 17? 19 90.350 0.100 - 0.150 0.3625 42 -- 109- 18 12 - 167 15 100.350 0.050 0.200 0.3125 39 90 "12 12 145 10 100.350 0050 0.100 0.3475 32-- 72 9 ------ 7 106 7----- 60.350 0.000 - 0.050 0.3325 25 35 0 3 43 0 2

S0.400 0.200 -" 0.330 . 0.4000 ' 5 310 60 G 477 51 390.400 0.100 0.250 0.3000 55 153 - 2 23 23 . 20. 190.420 0.150 C.100 0.4500 44 117 21 12 120 17 10
n-4:3 0.1-0 . .155: C.40C00 - .....42 .... - -- 7 .=.. .. . -4 172 14. 11 ...
0.400. 0.050 0.200 0.35)0 41 101 12 14 154 10 120.400 0.050 0.100 0.300 33--- 75- - -9 --.. 8 111 -7ll - 60.400 0.000 0.050 0.0.300 27 38 O 3 42 0 2
3.450 0.200 0.300 0.4250 9P 305 56 52 4'4 47 450.4 50 0.100 0.250 0.3925 57 159- ----- 22.. --- - 26 248 1--- --- 220.453 0.153 0.13C 0.4.75 45 1i7 1 13 13o 16 110.450 0.100 0.150 0.4375 44 115 - 16 - - 1- 170 13 .. 13)0.450 0.053 0.003 0.30375 43 109 11 15 r2 9 130.450 0.05. 0.300 C.4325 34' 77 - - - .-- -- 15 .7 -- 70.40 0.0 0.000 0.C53 0.4275 2r 41 0 4 52 0 3

NOT REPRODUCIBLE
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ESTIMATION OF OPTIMUM ERRORS OF CLASSIFICATION

FOR UNIVARIATE NORMAL POPULATIONS

by

Raj S. Chhikara

and

Patrick L. Odell

1. Introduction

For the multivariate normal populations, the problem of classification

using the Bayes' discriminant procedure involves certain difficulties as to

an exact evaluation of actual errors of classification, i.e. optimum proba-

bilities of misclassification, and an optimal estimation of these errors,

particularly in the case of small samples. If the populations are assumed

to be univariate normal, these errors of classification are easily expressi-

ble in a close form. Yet even for this simplified case the problem of their

estimation has not been fully examined. For example, to the authors' best

knowledge no minimum variance unbiased estimates of these errors are given

so far in the literature.

Recently Sorum [8] investigated the estimation of both expected and

optimum errors of classification associated with the linear discriminant

function for univariate normal populations with known common variance. For

the optimum errors of classification, she considered the maximum likelihood

estimates and their various slight variants in her study involving large

samples. Hill [6] too considered the same problem but his investigation was

primarily motivated towards examining expected errors of classification.
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For a brief statement of the problem, let 7l and r2 be two normally

distributed populations with means p l and j2 , respectively, and common

2
variance a . Having obtained an observation x from one of the two popula-

tions, the problem is to identify the population to which it belongs.

Assuming equal a priori probabilities for '1, r2 and a constant cost of

misclassifying any observation, the Bayes' discriminant criterion amounts

to: classify the observation x into nu if

x > ~ when l - P2 > 0

and

x < 2 when - p2 < 0,

otherwise classify x into rr2. Without loss of generality, we assume

1- 2 >0.

Suppose P(i j) denotes the probability of classifying an observation x

from w . into i., i and j=1,2. Then the actual errors and non-errors of classi-

fication under the above discriminant rule are

(- -) if i j

P(ilj) =  2 (1.1)
(- , otherwise

Sometimes it is desirable to have the knowledge of P(ijj)'s. It provides

an assessment of the confusion likely to arise between individuals of two

groups and thereby it is helpful in correcting for bias, etc. For example,

see Cochran [3] who deals with several aspects of statistical inference in

presence of certain types of classification errors.



51

In this paper we consider the problem of estimating P(iJj), i and

j=l,2 when sample observations are available from the populations. In view

of (1.1), one, however, only needs to consider the estimation of c(-A/2)

when an estimation of P(ilj)'s is desired.

Let xl,x 2 ,...,xn be a random sample from population l and yl'Y2" 'Yn 2

be another random sample from population 7 2 . Considering the two parametric

cases (i) P1 '12 unknown and a2 known and (ii) p1 ' 2 and a2 all unknown,

the maximum likelihood estimate (MLE) of (-A/2) is 4(-A/2) where A= (x-y)/o

in case (i) and A = (x--7)/s in case (ii); here x and y denote the two sample

means and s is obtained by

n I  n2

1 2

Below in section 2 we obtain the minimum variance unbiased estimate

(MVUE) of I(-A/2) and then compare it with the MLE in section 3 by evaluating

relative efficiencies of both MVUE and MLE with respect to the Rao-Cramer

lower bound for variances of unbiased estimates of 0(-A/2). It can be

shown that the Rao-Cramer lower bound is

1 1 2 A
2n +n) (1.2)1 2

in case (i) and

I 1 1 2  2 A+(L + A2 . (A (1.3)S nl n2 2(nl+n2-1) 2 ) (1.3)

in case (ii), where p denotes the standard normal density function. The

relative efficiency of an estimate is obtained by dividing the appropriate

lower bound by the mean square error (MSE) of the estimate.
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2. MVUE of P(- A
2

(i) 1u'1 2 unknown and a2 known: The random variable

(Z4-(- + L)
2 n1  n2  a

where Z is the standard normal variate, is distributed normally with mean

and variance one. As a result

@(- ) = Prob (Z 4-(- + -) + -y- < 0)2 n n2  a

= E[Prob(Z < - I x,y)]
1 1a 4-(- + -)
n n

o,4- ( + -)
n 1  n2

E denoting expectation with respect to x,y, a set of complete sufficient

statistics. Thus by the Rao-Blackwell theorem we have the MVUE of D(- A),

A x-y (2.1)

4- (- + -)
n I  n2

2 v-1 v-l1
(ii) l'i2 and a , all unknown: Let U be a beta variate, 1( 2 2

2 22
stochastically independent of s which is a x /v distributed with

v = (n1+n2-2) degrees of freedom (d.f.). Then by applying theorem 1 in

Ellison [5], it follows that (2U-1) iv s/a has the standard normal distribu-

tion. Furthermore, the random variable

I [(2U-1) s v(4-( -- ) + (x-)]
21 n2

has the normal distribution with mean A/2 and variance one. Accordingly,
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A 1 +
@(- -) = Prob {(2U-l)s i[4-(-+- + (x-) < O

" I  n2

/ 1 1 -
= E[Prob{(2U-1)s v[4i-(- + - )] +(x-y)<O x,y,s}]

n n2

where E denotes expectation with respect to the set of complete sufficient

statistics x, y and s. Thus the MVUE of @(- --) is2

(-) Prob{(2U-1) s/v[4-( +-- ) + (x-)< x , s}
n1  n2

Prob {U < - -)/2s v[4-(- + -)] jx,y,s} (2.2)

- F1  2

v-I v-I
where U has a ( ) distribution. Since extensive incomplete-beta

integral tables are available, (2.2) can be easily evaluated for any given

values of x,y and s obtained from sample observations. Next, denoting

1 x- y

2s 4(4-(- + )
n I n

(2.2) can be rewritten in the form
w

vI- f [u(l-u)]( 3)/2du. (2.3)

B(v)

3. Relative Efficiencies of MVUE and MLE of (- -)

First we derive formulas for the variance of MVUE, ;(-A/2), and the MSE

of MLE, 4(-A/2), in forms suitable for numerical computations, and then

present their values as well as relative efficiencies of both types of

estimates for certain parametric values of A in each of the two cases

(i) and (ii).
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3.1. R.E. of the MVUE

Case (i). Noting that v= x-_ is distributed normally with mean A and variance
0

(- + -) and
n I  n2 A v

i(- -) = Prob {Z < - v} ,

+ )
nI  n2

we have

00

E[(- -2 f 2(_ v v-A dv
-00 4-(L +-

nI  n2  nI  n2

A A 1 1 +1 (3.1)
= (- 2 ' 2 ' n(3.1)

1 2

where D(x,y;p) is the bivariate standard normal c.d.f. The result in (3.1)

easily follows by a simple probability argument, e.g. see Zacks and Evens

[9]. Hence

A A A 1 1 2 A
Var [n(- 7)] = (- ' - + n - 2(- ) ) (3.2)

1 2

and

R.E. [+(- ) 12 (_ )/4 Var [(- -) (3.3)2 n 1 2 2

Case (ii). Letting t = (x-y)/s(-- + 1/2, a non-central student t variate

2 1 1 1/2
with v d.f. and non-centrality parameter A/( -- + -) , (2.2) can ben n

1 2
written as

A -1 1 1
) Prob {(2U-1) < -t - + - / 4-(- + t} It)

- n n2  n1  n2

Furthermore, letting UI and U2 be two independent beta variables, each dis-

tributed as ( 2 ' V2 ) and considering W = max(2Ul-1, 2U2 -1), it follows

that the density function of W is
I v-3

f(w) = v (-w2  - , ), -<w<l
v-3 v- v- (w2)- -  (l+w)/2(2 2

2 B( ' 22 '2
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where
x

IxB(,b) = ab)i ya-( 1 -y) b-dy

0

Now we can write

t1 +
A 2 tn n2

[¢(- -)] = Prob (W - 2 t)
1 12/A4- + )]
n I  n2

t 1 1

nI  n2
= F(- I t), (say)

v [4 -(L + )]
n I  n2

Then t1 1
n n2

E[(- )]2 = F(- 2 ) g(t;6,v) dt (3.4)

nI  n
I1 2

where g(t;6,v) is a non-central student t density function with non-centrality

parameter 6 = A/(- + 2-) /2 and v d.f. For numerical integration of the
n1  n2

right side in (3.4), we have considered the following forms for the functions

F(w) and g(t;6,v):
(1-w)/2

F(w) 4 v-2 -2dy

(v-1)B () 2 I

+ B-v-,k+1) y (1-y) dy
k=0 0

where exact integration was obtained using recursive scheme, and

00

g(t,6,v) =f y(v-)/2 exp[- -{(t -6) }]dy
T 2/2 (2 ) 0v

J~v ~2~ V yY~)2 x[-((J~T-62v0~
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where the 32-point Gauss-Laguerre quadrature formula was used for numerical

integrations. The final integration in (3.4) was done using the Rhomberg

method of numerical integration. All of these evaluations were on double

precision basis.

After finding the variance of P(- 2), we now obtain
2

A 1 1 2 2 A A
R.E. [(- )] = ( + +n (- )/4 Var[(- )] . (3.5)

n1 n 2  1 2(n+n 2-) 2

3.2. R.E. of the MLE

For the MSE and Bias of the MLE, we need to find both E[l(-A/2)] and

E[2 (-A/2]. We will be using the following result of Ellison [5] in

our discussion.

2
If X is a normal variate with mean i and variance o , then

E[ (X)] = ( D . (3.6)

Case (i): Since -(x-7)/2 has the normal distribution with mean -A/2 and

variance ( + ), it follows from (3.6) that
4 nI n1 n2

2 2 +A)
E4 (-n-- + n)

1 2

Again, it can be easily shown that

2^l+4nln 2 _+-) 2 (

2 A A , -A, ( -1

4 n n 4 n n1 2 1 2

Hence
4 n n 2  2

-)]= , (1+ ) - 24(()(- ) + D)
1 2
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and

Bias[(- -)] = ( ) - @(- ) (3.9)

where

A

2 / - + i--)

1 2

Next, the relative efficiency of 2(- ),

A 1 1.2 A
R.E.[@(- )] = (-+-) 2 -)/4MSE[(- )] (3.10)2 n n 2 2

Case (ii). Given s , conditionally (x-7)/2s has a normal distribution with

mean (i-2)/2s and variance ( + -)o2/As 2 So by applying (3.6), we havem2 n n
2 2

E[@(- -)] = E[E[(- a) s 2 ] ]

= E[(-A//4s
2 n n

a 1 2

Since Q = vs2/o2 has a X distribution with vd.f.,

Ele(- = E [(-A/ / + (l1 ) ) (3.11)2 v n n(
1 2

where the expectation on the right side is with respect to the random variable

Q.

Next by drawing analogy with the previous result in (3.7), it can easily

be shown that

2 A 2
E[2( -  )] = E[E2 (- )

= El(- A , ._)]. (3.12)
/Q +(1 1 4Q 1 1+

v n n v n

Accordingly,

M= E[(n ) 2 A
MSE[(- )] - ) - ) + (- ) (3.13)2 2 2
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and

Bias[P(- )] = E[(r )]- P(- A) (3.14)
2 2

where

/4Q + 1_I +(-- + -)
Once 2

Once again,
+2 2

R.E. [P(- 4)] = (n + +2 )/4MSE[P(- )] (3.15)
1 2 1 2

Expressions in (3.1), (3.7) are in terms of the standard bivariate

normal c.d.f. and can be easily evaluated using the method by Owen (1956),

among others, for any given values of nl,n 2 and A. Next, for the final

numerical integration in (3.11) and (3.12), we employed the Gauss-Laguarre

quadrature formula.

4. Numerical Results

Certain numerical results are presented in tables I and 2 considering

nl=n2=n and specifying values for n and A: n=5,10,15,30 and A = .5,1.0,1.5,

2.0,2.5,3.0 in table I for a2 known case and n=5,10 and A=.5,1.0,1.5,2.0,

2.5,3.0,3.5 in table 2 for a2 unknown case. (Due to limited computational

facilities, we considered only two values for n in the latter case). The

presented results are mainly designed to-exemplify the comparison of the

MVUE and the MLE in small sample case.

For the case of known 02 (figure 1), bias of the MLE is non-negative for

all values of A, maximizing at A = 2.0. But when 02 is unknown (figure 2),

bias is negative for A equal or less than 2.0 and positive for A greater

than 2.0. However, in both cases, as one would expect, it decreases uni-

formly as the sample size n increases and is zero when A=O.
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Further, interestingly enough, we observe that whether or not a2 is

known makes a great difference in relative efficiences of the two types of

estimates. The.relative efficiency of MLE is higher than that of MVUE for

smaller values ofA (i.e. when probability of misclassification is higher)

when a2 is known (Table 1). But reverse is the case when a2 is unknown

(Table 2).
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TABLE 1

a 2
Relative Efficiencies of MVUE and MLE of D(- A) for a Known Case

A n Var[4(- )] MSE[4(- )] R.E.[(- ] R.E. (
22

.5 5 .01502 .01374 .9955 1.0883

10 .00749 .00716 .9982 1.0044

15 .00499 .00484 .9989 1.0297

30 .00249 .00245 .9995 1.0149

1.0 5 .01256 .01172 .9867 1.0573

10 .00624 .00603 .99361 1.0285

15 .00415 .00406 .9958 1.0189

30 .00207 .00205 .9980 1.0095

1.5 5 .00933 .00899 .9722 1.0082

10 .00460 .00452 .9861 1.0026

15 .00305 .00302 .9907 1.0014

30 .00152 .00151 .9954 1.0005

2.0 5 .00615 .00620 .9523 .9438

10 .00300 .00302 .9756 .9677

15 .00198 .00200 .9836 .9774

30 .00098 .00099 .9917 .9881

2.5 5 .00360 .00384 .9274 .8685

10 .00173 .00180 .9623 .9249

15 .00114 .00117 .9745 .9475

30 .00056 .00057 .9871 .9725

3.0 5 .00186 .00212 .9014 .7907

10 .00088 .0095 .9500 .8798

15 .00058 .00061 .9653 .9144

30 .00028 .00029 .9816 .9538
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TABLE 2

Relative Efficiencies of MVUE and MLE of @(- -) for 02 Unknown Case

S n Var (- -)] MS El R.(- ) R.E. ( )] R.E.[(- )

.5 5 .01639 .01726 .9438 .8965

10 .00780 .00814 .9900 .9485

1.0 5 .01491 .01494 .9467 .9448

10 .00712 .00722 .9843 .9714

1.5 5 .01249 .01178 .9526 1.0106

10 .00597 .00586 .9851 1.0027

2.0 5 .00951 .00849 .9576 1.0730

10 .00454 .00432 .9845 1.0340

2.5 5 .00653 .00564 .9549 1.1052

10 .00309 .00289 .9832 1.0514

3.0 5 .00403 .00346 .9374 1.0906

10 .00188 .00175 .9747 1.0441

3.5 5 .00224 .00189 .8988 1.0615

10 .00102 .00091 .9543 1.0717
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Figure I: Bias of the MLE of the true probability of
misclassification when 0-2 is known.
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n= 5
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.006-
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.004- n= I0
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-. 004 -
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Figure 2: Bias of the MLE of the true probability of
misclassification when o- 2 is unknown.
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Summary

Considering the problem of estimating the optimum probability

of misclassification under the maximum likelihood discriminant

rule for univariate normal populations with common variance, we

give its minimum variance unbiased estimate (MVUE) and derive

the variance of the estimate for both cases of variance known

and unknown. Next, we obtain the mean square error of the maxi-

mum likelihood estimate (MLE) and compare the two estimates by

evaluating their relative efficiencies with respect to the Rao-

Cramer lower bound for variances of any unbiased estimates. Also,

bias of the MLE is investigated.



67

CHAPTER I

INTRODUCTION

The Bayesian Solution of the Discrimination Problem

Consider m populations 1nl''...m and suppose that each

individual in the union of these populations possesses p

common observable characteristics C1 ,...,C . Let the

observed values of an individual be denoted by

X = (xl,...,xp)T, where xj denotes the observed values of

Cj. The classical discriminant analysis problem consists

of formulating a technique to divide the space of observa-

tions into m mutually exclusive and exhaustive regions

Rl,...,Rm (hence classifying the individual in population

Hj if X falls in region Rj) in a manner such that the cost

of misclassifying the individual is minimized.

There have been various techniques proposed for solv-

ing the problem, of which the Bayesian solution is optimal,

in the sense that it minimizes the expected cost of

misclassification. Anderson [1] states the Bayesian

solution as follows:

"If qi is the a priori probability of drawing

an observation from population Hi with density

pi(X) (i = 1,...,m) and if the cost of misclassi-

fying an observation from Hi as from Hj is
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C(jli), then the regions of classification,

RI***.,Rm, that minimize the expected cost are

defined by assigning X.to Rk if:

m m
SqiPi(X) C (kl i) < I qiPi(X)C(jli) (1)

i=l i=l
ifk i/j

for j = l,...,m,j / k."

Estimation of Population Parameters

In actual situations the values ql,'-.,qm, C(ilj) for

all i, j = l,...,m, and the probability densities p 1 (X),

P2(X),...,Pm(X) may not be known. One solution is to

assume the populations are equally likely, C(ilj) = 0 for

i = j and C(ilj) is constant for i / j, and the populations

are normal, that is, when X is from population H ,

X " N(Pi,Ei) (2)

where Pi is the mean vector and i is the covariance matrix

of the ith population. In addition, if the parameters vi

and Ei, i = l,...,m, are unknown and a random sample of
(i) (i) (i)

size ni (denoted x1  ,x 2  ,..., Xni ) can be obtained

from the ith population, then vi and Ei can be estimated

by the estimators Xi and Zi given by

1 n~i (i)
jX (3)
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and

1 ni (i) (i) T-= n (xj -Xi) (x -Xi) (4)
1 j=1

respectively [1]. One can then estimate

pi(X) = Pi(X,Pi,Ei) (5)

by

pi(X) = Pi(X;yi,zi) (6)

or p i

Pi(X) = (2) 21ii exp[-2( x-i)Ti (7)

An individual with the observation vector X = X0 will be

classified as belonging to the jth population if

max Pi(Xo) = pj(X ) , i = L,2,...,m. (8)
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CHAPTER II

DIMENSION REDUCTION AND VARIATE SELECTION

Misclassification as a Function of Separation

If p, the vector length, is large, the problem of

classifying individuals becomes quite cumbersome and time

consuming [7,9]. For example in the analysis of remote

sensing data [10], when p = 12 the amount of computational

time is immense. Thus it is desirable to reduce p while

maintaining near optimal results. One technique is to

pick an acceptable number of characteristics, say s, s p,

based on an examination of a measure of the separation

between the populations, and proceed with Bayesian classi-

fication procedure using the s-variate marginal densities.

Provided the separation is held constant or nearly so, it

is feasible that fewer than p variates may be used for

classification purposes without significant degradation of

accuracy.

In the case where m = 2 and El and H2 are normal

populations with unknown parameters pl' 12 and

El = E2 = Z, the classification procedure (8) can be

replaced by an equivalent discriminant function [1]

T 1 T- ((9)
V~ = X (X1-YX X+2) - (X1X2) E9)
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where i is given by (3) and

2 n )
nl+n2-2 i=l j=l

V is asymptotically distributed N(-a/2,a) when X " N(P2,E)

and N(a/2,a) when X " N(. 1,C), where a is the Mahalanobis

distance between the populations given by

= ( 2 )  (11)

Thus the probability of misclassification is asymptotically

dependent on a and not on p. Hence the procedure to select

s < p in a manner so as to hold the separation, a, relatively

constant, and then to classify on the basis of s variates,

is reasonable.

Development of Divergence (A Measure of Separation)

For the two population case, El y E2 , Kullback [5]

uses the divergence between the populations as the measure

of separation or difficulty of discriminating between the

populations. Defining the logarithm of the likelihood ratio,

log [pl(Xo)/ 2(Xo)], to be the information in X = Xo for

discimination in favor of l1 against H2, the mean infor-

mation for discrimination in favor of Rl against H2 is

112 = P1(X) log P1(X) dX . (12)p(x)
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The divergence between the populations, J, is defined by

J = 112 + 21  . (13)

In the case where Hl and H2 are s-variate normal

populations,

s 1s 11 T -1

pi(X) = (2w) Ji 2 exp[-(X-i) i (x-i)] (14)

for i = 1,2. Then

pl(X) 1 1 T
log P =(X) 1 log E2 _ 1 tr -1 (X- (X-l)

P2 (X) 2 lll 2

(15)
1 -1 T+ tr E2 (X-P 2 ) (X-P 2 )

from which we get

1 I-21 1
112 log + tr E1( 2  1 )2 2 2E

(16)

+1 -tr E1 T+ 2 tr 2 (-112) (1-2)

Similarly

1 I11l 1 -1 -1
21 log 2 + - tr Z2 ( 1 -E2 )

(17)

1 -1 T
+ tr £1 (P2-i) (P2-111)

Thus

J = 112 + 121
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or

1 -1 -1
J =-tr (-2)

(18)

A cvtr (1 21tre T = =

2 1 2 2) ( 2)

J = tr [2Z (T- 2 ) (-2) (19)

or

J = (Pl-2)T - (Pl-2) (20)

That is, if El= 2 = E,

J = a (21)

where a is the Mahalanobis distance between the populations.

It may be noted in (18) that the first term of the

expression for divergence is due to the difference of the

covariance matrices, and the second term is due to the dif-

ference of the means. In actual situations El / -2, however,

one may choose to ignore the difference and compute a instead

of J. Then a value to substitute for E in (11) or (20) is

_ 1+.2
E 2 (22)

This assumption is made within this report, and the conclu-

sions of Chapter IV indicate it is reasonable.
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Sample Size Considerations

If the parameters of El and 12 are unknown but esti-

mated on the basis of training samples of sizes nl and n2,

respectively, then the choice of s may be heavily dependent

on the values nI and n2 . Consider 1) if El = Z2 =

(n1 + n2 )p measurements are used to estimate the

2p + (p2 + p)/2 distinct elements of XlX 2 and E; and 2)if

E1 4 E2, (n1 + n2 )p measurements are used to estimate 
the

3p + p2 distinct elements of Xl,X2 ,E1 and E2. In either

case, the number of elements to be estimated increases as

a function of p2 . This suggests that for small sample sizes

the probability of classification may actually be improved

by considering fewer variates. The results contained herein

support this hypothesis.
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CHAPTER III

SIMULATED POPULATION CLASSIFICATION

Classification Criteria

Anderson [1] discusses the classification when m = 2

and Hl and H2 are normal populations with equal covariance

matrices. The classification procedure (8) can be replaced

by an equivalent discriminant function

T-1 1 T - -
S= x E (X 1 -X 2 )-2(X 1 +X 2 ) (X 1 -X 2 ) (23)

where Xi and Z are given in (3) and (10), respectively. If

n, = n 2 = n then the distribution of V if X is fromH 1 is

the same as the distribution of -V if X is from H2. Thus

if V_ > 0 is the region of classification as HI, then the

probability of misclassifying X when it is from 1l is equal

to the probability of misclassifying X when it is from H 2 .

Since V is asymptotically distributed N(-a/2,a) when X is

from 12, P(112), the probability of classifying an observa-

tion from H2 -in HI, is approximately

1 -(v+a/2) 2 /2a (24)f e dv (24)
o

Similarly

o 1 -(v-a/2) /2a
P(211) =f -2 e dv(25)

and P(211) = P(112).
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In the event £1 3 Z2, Pl(X) and p2 (X) are estimated

on the basis of training samples of sizes nl and n2,

respectively. X is classified in H2 if

P 2 (X) > Pl(X) (26)

and in 1l otherwise. Notice it is not necessary to compute

pl(X) and p 2 (X) since (26) is equivalent to

1 1

£2 2 exp[-zl/2] < I£112 exp[-z 2/2] (27)

where

- T-l
z i = (X-X i ) Zi (X-X i )  , (28)

i = 1,2. Taking the natural logarithm of (27) and multiplying

through by 2 gives the classification rule: Classify X in H2

provided

log (det ~l)-z 2 > log (det 2)-zl (29)

and in H1 otherwise. This rule is equivalent to (8) and (26).

Monte Carlo Simulation Procedure

If the populations H1 and H2 are assumed to have equal

covariances matrices, the probability P(211) can be estimated

from (25) provided the sample sizes n1 and n2 are large.

For small (and moderately large) values of nl = n2 = n, the

probability P(211) can be estimated by Monte Carlo methods.

The process involves taking a sample of size n from each of
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the two normal populations. These samples are used to

compute X1,X 2 and E according to (3) and (10). A sample

population of 50 is generated from i n N(I1,E) and 50

values of V are calculated. The probability of classifying

an individual from the El population as belonging to H2 is

then estimated by

P(211) = k/50 (30)

where k is the number of values of V < 0. The sequence

[training samples - estimation - population - classification -

P(211)] is repeated 50 times, and the mean of the 50 values

of P(211) is used as the estimate of P(211). The results

of Test Case 1 were obtained in this manner.

When the covariance matrices of 1l and H2 are not

assumed to be equal, the procedure for estimating P(211)

is basically the same as the preceding discussion. Dif-

ferences arise in the estimation of 1i and i2 and in the

classification procedure since V is no longer valid. El

and E2 are computed according to (4). The sample population

of 50 is generated from Hl n N( 1 1,El) and the 50 members are

classified as belonging to 1l or H2 according to (29). Then

P(211) = k/50 - (31)

where k is the number of times a member of the population

is classified as belonging to H12. Again the sequence

terminating in the computation of P(211) is repeated 50
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times and the mean of the 50 values of P(211) is used as the

final estimate of P(211).

When E1 6 E2, P(211) V P(1[2). However, the estimation

of P(112) is accomplished by changing the order of the input

of the parameters of the populatio.s. The results of Test

Case 2 were obtained in this manner.
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CHAPTER IV

RESULTS AND CONCLUSIONS

Test Case 1: Feasibility

To demonstrate the feasibility of selecting a subset

of the variates while holding the separation measure constant

consider the populations HI and H2 and the simulation results

given in the following table:

TABLE 1. TEST CASE 1: FEASIBILITY

Number of 11= 0  Max
Variates V2 a P(211)

1 (1) 1 .318
2 (1,1) 2 .256
3 (1,1,1) 3 .216
4 (1,1,1,1) 4 .171
5 (1,1,1,0,1) 4 .192
6 (1,1,1,0,1,0) 4 .195

H1 , N(0,I) V2 = (11,1,0,1,0)

1 1  N(p2 1I) nI = n2 = 15

Table 1 illustrates a hypothetical situation where the

maximum separation, a, for the populations considered as

4-variate, 5-variate, and 6-variate populations is the same.

Thus, if the training samples are large, an individual

could be classified on the basis of four characteristics,

namely C1 ,C,2 C3 and C5, with no degradation of accuracy.
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For small sample sizes, in particular nl = n2 = 15, the

simulation indicates that sample size considerations are

significant, and better results are obtained using only

4 variates.

Test Case 2: Remote Sensing Data

To test the classification procedure using selected

variates under meaningful conditions, actual data from a

12-channel sensor typical of those used in remote sensing

of agricultural crops was obtained from NASA and used as

population parameters for simulation purposes. H1 was a

composite of soybean fields and is represented by ul and

E1 as given in Table 2. H2 was a composite of corn fields

and is.represented by 12 and E2 as given in Table 3. The

divergence J for all combinations of 12 channels taken s

at a time (s = 1,2,...,11) was computed by NASA. As many

as 50 of the largest values of J were printed for each

value of.s and the values were included in the data package.

For purposes of comparing separation measures, a was

computed [assuming E =.(El+2)/2] for s = 1,3,6 and 12.

The maximum and minimum a and the maximum J for the various

values of s are plotted in Figure 1. The two distance

measures are not readily comparable; however, the data

does demonstrate the existence of combinations of fewer

than 12 channels which yield almost the same separation as



Mean 11

169.56 174.76 193.24 192.64 169.11 166.80 190.56 171.49 185.49 173.79 160.94 181.18

Covariance Matrix El

19.08

14.47 14.28

9.01 7.52 5.91

9.40 8.49 5.12 6.50

16.77 14.59 9.00 9.86 19.23

13.73 11.98 7.24 8.01 14.22 12.84

7.97 7.01 4.68 4.90 8.44 7.15 5.31

13.79 12.62 7.72 8.63 15.12 12.30 7.42 15.17

10.43 10.02 6.00 7.00 12.08 9.82 6.14 11.47 10.88

9.46 8.69 5.68 6.28 10.99 9.26 5.97 10.32 . 57 10.10

-3.02 -3.48 -1.33 -2.19 -2.81 -1. 10 -. 20 -4. 14 -4.02 -. 84 23.59

-4.73 -4.11 -2.73 -2.75 -4.24 -2.69 -1.67 -4.11 -3.23 -1.43 6.55 9.70

Table 2: MEAN AND COVARIANCE FOR SOYBEANS

00



Mean V2

172. 35 178.58 196.25 196.02 175.20 171.77 194.28 180.16 193.56 183.46 157.35 178.62

Covariance Matrix 22

23.92

18.21 17.21

11.57 9.33 7.25

10.95 9.28 6.01 6.74

23.40 19.28 12.65 12.59 28.43

24.52 20.50 13.18 13.47 28.94 32.71

13.29 11.06 7.52 7.61 15.95 17.52 10.84

15.21 13.26 8.88 9.19 19.14 20.45 11.46 16.43

8.93 8.12 5.41 5.76 11.49 12. 11 6.97 9.92 7.76

9.14 8.16 6.26 6.65 14.15 15.62 9.31 12.40 8.32 13.89

19.88 16.31 11.27 11.92 27.21 32.89 18.61 18.00 8.77 17.48 63.35

8.79 7.52 5.17 5.72 13.18 15.85 9.01 9.57 4.94 9.32 26.18 18.21

Table 3: MEAN AND COVARIANCE FOR CORN



83

Separation
". .. .. ..... - - .-.-- .-- . . .- --- .-- .

40

I5 .- I . -..

F I

.7: ."''

0 - -I

.I -:-. - - - . . . . . . / ~~- --4- -

: .-.-r... rn 0.

S-- -- , M n imum .

0 2 4 6 8 10 12

Number of Variates

FIGURE 1. SEPARATION vs. NUMBER OF VARIATES



84

the full complement of channels. In particular, regardless

of the choice of separation measure, very little increase

in maximum separation is obtained by considering more than

5 channels.

To further study the equivalence of J and a as the

criteria for the selection of variates, Table 4 was con-

structed. Table 4 contains some of the values obtained for

J and a for various subsets of variates. For a single

variate, the largest three values of J arise from consider-

ing the same three variates or channels that yielded the

largest values of a, and in the same order.

TABLE 4. SEPARATION AS A SELECTOR OF SUBSETS

Subset of Channels Values of a Values of J

(10) 7.8* 16**
(9) 7.0 15
(8) 4.8 10
( 6,10,12) 12.0 32**
( 6, 9,10) 12.4* 31
( 1,10,12) 12.3 30
( 4, 6, 9,10,11,12) 13.5 38**
( 4, 6, 8, 9,10,12) 13.6 38
( 4, 6, 7, 9,10,12) 13.5 38
( 1, 4, 6, 9,10,12) 13.6 38
( 1, 4, 8, 9,10,12) 13.7*

* largest a for fixed number of channels
** largest J for fixed number of channels

For the three variate case, the best three subsets by J

measure were the best three subsets by a measure, though

in different order. In the case of 6 variates, from the
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924 possible subsets of channels, the best three by J

measure were not among the best three by a measure; however,

the best three by J did yield values of a significantly

close to the maximum a.

The conclusion from Figure 1 and Table 4 is that either

of the separation measures between populations, divergence

and Mahalanobis distance, is a suitable selection criteria

for the desired subset of variates.

Figures 2, 3, and 4 were constructed from simulation

data based on training sample sizes of 15. They support

the theory that P(211) is a decreasing function of a. In

most instances P(211) decreases as the distance measure

increases. The relation is consistent with what could be

.expected from the asymptotic theory. Figure 2 is not too

coherent because there are exactly 12 data points to con-

sider. It does, however, indicate the trend. Figure 3 is

very consistent in support of the relation. Figure 4 shows

considerable scattering. If one looks ahead to Figure 6,

the reason for the scatter in Figure 4 is evident. The

sample size was too small. A training sample size of 30

would probably have produced a more consistent figure.

Figures 5 and 6 are the significant figures of this

report. They represent the same data presented from two

different viewpoints. Figure 5 shows that for small fixed

training sample sizes, there is a subset of fewer than 12
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variates which yield the minimum probability of misclassifi-

cation. Figure 6 holds p constant and varies the training

sample size. This figure shows that, for the populations

considered, if one is constrained to n S 11, one might just

as well look at a single variate. For 11 < n < 30, 3-

channel data is adequate, and n must be somewhere in the

neighborhood of 100 before 12-variate data can be justified

over 6-variate data.

The conclusion of this report is that for small sample

sizes, a subset of the variates can be chosen so as to yield

better classification results than the full complement of

variates, and the selection of variates can be accomplished

by considering the separation between the populations.
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ACREAGE ESTIMATES FOR CROPS USING REMOTE SENSING TECHNIQUES:

CLASSIFICATION ERROR MATRIX KNOWN

1. Introduction

Remote sensing technology has shown a great potential for data collection

for the earth resources in any given geographic region. As a result of this,

it may be feasible to assess various earth resources and, thereby, answers

to some of the important yet previously unsolvable problems may be available.

At present we address ourselves to the problem of estimating crop sizes, i.e.,

amount of acreage under crops, in a large area using remote sensing technique.

Even though it may not be difficult to obtain full data over an area by using

remote sensors, crop acreage estimation on the basis of complete enumeration

of data points in the area may not be feasible both from technical and

economical viewpoints. As such it would be desirable to derive estimates

based upon sampled data acquired by a suitable sampling process.

In this report we discuss a sampling scheme providing crop acreage

estimates in a given geographic region, and investigate the precision of

these estimates and the effect of misclassification on the estimates. Since

observations are obtained on individual pixels, we consider the frame made

of the collection of all pixels in the region of our interest. As to the

actual layout for various crops, two cases arise. One is that no informa-

tion is available and the other is that some a priori information on the

physical situation of crops exists. For example, if the area of interest

is small like a county or certain areas covering Western Oklahoma, it is
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possible to have some prior information for the location of different crops.

In our discussion we consider each of these cases and point out the difference

that exists in precisions of two estimates.

2. Formulation of the Problem

Let CI,C2,...,C m be m different crops and AI,A2,...,A m be their corre-

sponding acreage areas in a region. Assume the whole region consists of N

total number of pixels. Since a pixel on the basis of observation taken by

a remote sensor is subject to uncertainity in its correct identification,

let P(ilj) denote the probability of misclassifying a pixel from crop C.
J

into crop Ci, and P(ili) denote the probability of correctly classifying a

pixel into crop C.. Accordingly, the expected acreages associated with C.

on the basis of remote sensing data is

m

E. = 1 Ai P(ilj) , (2.1)

j=1

i=1,2,...,m.

Given the total number of pixels and a pixel size, it is sufficient to

consider proportions of pixels associated with different crops in the region.

Let plP 2 ,...,pm be the proportions of pixels for CI,C2,...,Cm, respectively.

Then the expected proportions of pixels likely to be identified in C.,

i=1,2,...,m, are

e = pj P(ilj) . (2.2)

j=l

ei coincides with pi,i=1,2,...,m, when every pixel is correctly classified.

Since it is almost impossible to expect so in remote sensing, in our discus-

sion we first consider estimation of e., i=1,2,...,m, and then seek estimates
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for p., i=1,2,...,m, assuming that P(ilj) > 0 at least for one j different

from i. This will be done considering two cases: (a) P(jli)'s are known

and (b) P(i lj)'s are unknown.

3. The Sampling Procedure

As we mentioned earlier in Section 1, we consider the following two

cases:

(i) Crop boundaries (i.e. the physical layout for crops) are unknown.

(ii) Crop boundaries are enhanced and so known.

(i) In this case, a sampling procedure which appears to be useful is a two-

stage sampling scheme. At the first stage a specified number of flightlines,

each of the same size, are randomly selected, and at the second stage an

equal number of units (pixels) are randomly selected from each of the selected

flightlines. However, in order for this scheme to be useful, it may require

a fairly large number of flightlines to be selected. Otherwise, a simple

random sampling with single-stage, though more difficult to execute, may

produce estimates with smaller variance than the two-stage random sampling

scheme.

(ii) When the physical layout for the crops is known to a certain degree,

consider the region made of subregions, each consisting of flightlines

covering area as homogeneous as possible. This could allow more than one

crop in a subregion, and such subdivision should be restricted to a minimum

possible number of subregions. For an illustration, see Figure I given at

the end.
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For a sampling procedure, we suggest a three-stage sampling scheme

carried out in each subregion. At the first stage flightlines are randomly

selected proportional to the size of a subregion; at the second stage blocks

(or segments) are randomly selected within a flightline proportional to the

size of a crop in the flightline; and at the third stage units within blocks

are randomly selected in equal numbers. The number of blocks selected in

each of the sampled flightlines is the same. Here by block we mean a

sampling unit of specific size within a flightline. It may be pointed out

that careful consideration should be given in specifying the size of a

block. Neither should it be too small for any practical use, nor should

it be too large to make any distinction for the crops when sampled. This

way at the first two stages the sampling is proportional to the size of the

underlying strata (i.e., subregions or crops, whichever may be the case) and

at the last stage it is a simple random sampling. Though one may expect

accumulation in sampling error due to three stages of sampling, it should

lead to a smaller variance of the estimate for e. (i=1,2,...,m) compared to

a single-stage or double-stage sampling scheme.

4. Expected Proportions Estimates

(i) Let N denote the total number of flightlines for the region and let n

flightlines out of N be randomly selected. Suppose each flightline consists

of R units from which r units are randomly sampled for each of the sampled

flightlines. In the sample, let m. denote the number of units from tthIt

selected flightline classified into C.. Now denoting

^ m.S it
e. - r t = 1,2,...,n,

it r
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an unbiased estimate of e. is given by

n

e. = m i=1,2,...,m . (4.1)

t=l

Since the total size of units, NR, is expected to be large in relation to the

sample size, nr, the random vector e = (el,e 2 ,...,em)T has a multinomial dis-

tribution, usually a satisfactory approximation in such a situation. So it

follows that the variance of e.,

N N
N n(1 2 r I RN- (l2 lt) (4.2)

V (ei)=(l- -) n(N- (eit-eir2+(I- r) - N- - eit(-ei (4.2)

t=l t=l

and an unbiased estimate of V(e.) is given by

n n
S n 1 2 r 1 2 ^, r)

V(e.) = (1 n -) (Re. -e.) +(1- r-) e.(-eit (4.3)
) N nT = t R Nn(r-l) It

t=l t=l

where e. denotes the expected proportion of C. in tth flight-line and
It I

ei = eit/N, the same as defined in (2.2), (Cochran, 1963).

t=l

(ii) Again, let N denote the total number of flightlines, each consisting of

R units. Suppose the region is divided into k subregions, RI,R 2,....,Rk, and

NI,N 2 ,...,Nk are the corresponding number of flightlines for RI,R 2 ,...,Rk

such that k

N = Nj

j=1

Considering a sample of n flightlines out of N, let n. flightlines be
J

randomly selected from N. in R. such that n. = n(N./N), j=1,2,...,k, and
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n = n]

j=l

For subregion R., let Bji t be the number of blocks covering ith crop

in the tth sampled flightlines; from this let b.j blocks be randomly

samples such that m m

B B jit , b= bit

i=l i=l

and

b.. =-B
Jit B jit '

t = 1,2,...,nj,

Considering block size L, suppose I units are randomly selected for each

sampled block. Thus the sample size for subregion R. is n.bl and the complete
J J

sample consists of nbl units.

Let u.. denote the number of sample units being classified in C. for

tth flightline selected from R.. Then
J

n.

e.. - u.. (4.4)
Jl n.bl it

t=l

is an estimate of ei., the expected proportion of units in C. for subregion
J

R., i=1,2,...,m and j=1,2,...,k. Thus

k

e = N e =1,2,...m. (4.5)

j=l

Next, k

V(e) = 2 Nj V(ej)

j=l
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where

V(e ) (1 n) ji -e j i )

ji n N Nj.-

assuming the same variance in each flightline of R. for a fixed C.. Thus
J t

k 2
N.

V(e ) (1 ) e (-e ) , (4.6)
nN N j N.- ji i

j=1 J

i = 1,2,...,m.

5. Actual Proportions Estimates

Denoting

el P

e = e2  = P2  , and

e Pmm m

P(111) P(112) . . . . P(llm)

Q = P(211) P(212) . . . . P(2j m)

P(mll) P(m12) . . . . P(mfm)

(2.2) can be written as

e = Qp (5.1)

Observe that Q may be a singular matrix. In view of this the equations

in (5.1) may or may not have a solution for p for specified e, Q. In

case any solution exists, it is given by
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P = Q Ie + p0  (5.2)

where Q1 is a generalized inverse of Q matrix satisfying

QQ IQ = Q (5.3)

and p0 satisfying Qp0 = 0.

In the second case when no solution exists, we look for the vector p

that minimizes the squared length of e-Qp for a given e, Q. Any such vector

is given by

p = QSe + po (5.4)

where QS is a right pseudo inverse of Q matrix satisfying

(QQS)T = QQS (5.5)

and p0 satisfying Qp0 = 0.

Since more than one p0 may satisfy the condition Qpo = 0, in either case,

a unique solution for p may not exist. Accordingly, either one would have a

complete set of solutions p given by (5.2) or a complete set of vectors p

which are a "best-fit" when obtained from (5.4). The techniques for finding

QI, QS and p0 are well known (Boullion and Odell, 1972). Henceforth, by a

solution we mean in either sense and will denote it by

p = QGe , (5.6)

assuming p0 
= 0 without loss of generality.

5.1. Q known

(i) Taking the estimate e given by (4.1) and the known value of Q, it follows

from the above discussion that an estimate of p is given by

^ =G^
p =Qe (5.7)

G G
Denoting the (i,j) the element of Q by qj.., we have

iJ
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S= q j e , i ,2,...,m. (5.8)

j=1

These are unbiased estimates of pi, i=1,2,...,m. For the variance,

m m m

V(pi) = V(e ) + q . q Cov(e,e,) (5.9)

j=l j=1 j'=l

where V(ej) is given in (4.2) and

N

Cov(e.,e.,) = (1- n-l) (e. -e.)(e -e,)
J j N nN- Jt J J'tj

t=1

r 1 R- (1- ) N(RI) ejte j ' t , (jgj')

t=1

Next, an unbiased estimate of V(ej) is given in (4.3). Similarly an unbiased

estimate of Cov (ej,ej,) can be shown as

^ n I .
Cov(e.,ej,) = (1- )n- (e -e ) (e -ej,)j j N n(n-l) Jt 't

t=1

-(1 - ) Nr-) ejtej't' (jj')
t=I

Replacing the unknown quantities in (5.9) by their estimates, one thus

obtains an unbiased estimate of V(Pi), i=1,2,...,m.

(ii) In this case using the estimate e given in (4.5) we obtain

p = Qe (5.10)

or
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= Z ej i=1,2,...,m . (5.11)

j=l

Once again,

m m m

V(p ) = (q V(e + qq Cov(ei,e. (5.12)e

j=l j=I j'=l

where V(ej) is given in (4.6) and

S^ ) N.
Cov(e ,e.,) = (1- N.- e..e.

i=1

Now replacing V(e.) and Cov (e ,e.,) by their estimates, we can get an
J J J

estimate of V(e.), i=1,2,...,m.

5.2. Q unknown

In this case one also needs to estimate P(ilj), i and j=1,2,...,m. An

obvious way to do so is to ascertain the ground truth for a certain number of

additional observations taken independently of those used for estimating e.'s

and utilize these to estimate P(ilj)'s. In view of this e and Q will be

stochastically independent and an estimate of p is given by

^ ^~G ^

p = e (5.13)

or

Pi = e i=1,2,...,m . (5.14)

j=1
^G .G

where q i.. is the (i,j)th element of .
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^G
For a given Q , the conditional variance of p.i is given by (5.9) in

-G G '
case (i) and (5.12) in case (ii) with q .'s replaced by q j.'s. For the

IJ IJ

unconditional variance, the expression will involve the variances and co-

variances for the elements of Q . In general it will be difficult to express

the unconditional variance explicitly.
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Figure l: A subdivision of a region with five crops
for a three-stage sampling plan.
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Estimation of Crop Acreage Through

Sampling of Remotely Sensed Data

R. S. Chhikara and P. L. Odell
The University of Texas at Dallas

1. INTRODUCTION

In this report we consider the problem of estimating crop acreages

in an area using samples from remotely sensed data for the area. Ration-

ale for using samples is to avoid enormous cost and time that might be

involved otherwise if the full data is processed. In particular, such

would be the case for a ERTS scene which generally has over half a mil-

lion data points and covers approximately an area of 100 X 100 square

miles.

While considering crop acreage estimation, it is desirable to as-

sume that the underlying region is an agricultural area and that every

data point is identifiable with respect to certain known types of crops.

In a larger context of an arbitrary area, it is sufficient for the con-

dition of identification to hold with respect to the underlying known

earth resources.

To formulate the problem, let Ei, n2, ..., m denote the m crops in

the area and pl, P2, ..., Pm be the proportions of their acreages. Next,

let P(i/j) be the probability of classifying a resolution element (pixel)

from Ij into fi using a classification algorithm. Then associated with

such classification algorithm processing of full remotely sensed data

would amount to expecting proportion of Hi acreage given by.



108

m
ei  = pj P(i/j), i, j, 2, ... , m (1)1 j=l

Equivalently,

e = Pp (2)

where

e2 P2

e =  p = and P = P(1/1) P(1/2)... P(l/m)
P(2/1) P(2/2)... P(2/m)

em Pm P(m/i) P(m/2)... P(m/m)

If the vector e and matrix P are known, one gets p by solving (2) sub-

ject to zpi = 1. Otherwise one needs to consider estimation of e or P

or both of these as the case may be in order to ascertain about p.

In general, e will be unknown. An estimate of e is given by the

vector of observed proportions of resolution elements processed and clas-

sified into i, i = 1, 2, ... , m using sample data obtained under a

sampling plan. Regarding P, two cases arise:

(i) P is known

(ii) P is unknown

Again, P will generally be unknown and for an estimate of P one would

require some suitably selected amount of the ground truth, probably in-

dependent of the previous sample data used in estimating e. Moreover,

care should be exercised in handling of the sampled ground truth. Most

often, it would be desirable to use the sample for both training the

classifier and obtaining estimate of P.
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Clearly how much complex the estimation problem is depends upon how

much one knows about P. In an entirely unknown situation of classifica-

tion with untrained classifier, estimation of acreage proportions can be

very misleading. As such we would assume for the classifier to be proper-

ly trained and thus are able to achieve reliable estimate of P.

2. PROPORTION ESTIMATES

Let e be an estimate of e and P of P. Then an estimate of p is given

by

(i) 1 = P-1 when P is known (3)

and

(ii) = -1 ~ when P is unknown (4)

In case (i) 0 is an unbiased estimate of p whenever e is an unbiased es-

timate of e. However, if estimate for both e and P are involved in esti-

mating p as in case (ii); it may hardly be possible to obtain an unbiased

estimate of p in p. Henceforth, we will assume e, and so also p, to be

unbiased estimate and it is the vector of observed proportions of resolu-

tion elements processed and classified into different ni's (This will be

the case due to the sampling plans being considered in this report.)

Also, we would restrict our investigation to case (ii) and for case (i),

refer to Chhikara and Odell [1 ]. Though final results in [1 ] pertain

to -specific sampling plans, the discussion there is of general nature

and results can be adopted in any sampling situation.
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3. MEAN SQUARE ERRORS OF ESTIMATES

First we calculate the bias of p given by

Bias {$} = E [p-p]

= E [P- _ p-le

= E [P-l(-e) + ( _ p-l )e]

= E [P-1 _ p- 1]e (5)
because the first term is zero due E(6-e) = 0 for a given P . Clearly,

the bias depends upon how much bias there is in -1, and

Bias {b} = (Bias {P-l})e. (6)

In order to find the mean square error of any component of p, we

first consider the evaluation of matrix,

E [(p-p)(p-p)T] = E [(P - P p -l e - P e) T]

= E E(P-l)(e)e-e e)T p-l)T + (-1 _p-l) eeT (p-l _ p-)T]

=E [( -l ) M(p-)TI + E [(- _ -.P) eeT (p-l _ p-l)T], (7)

where M denotes the covariance matrix of e.

Denoting the (i,j) th element.of P-1 by Pij and that of P-1 by

pij, it follows from (7) that the mean square error of $ is given by

m Pi k m A A A
E l Pj Cov(ej,ek)

k=l j=l e

+ m ek p ikk  m pij

k=l j=l

where E stands for expectation with respect to P.. Denoting it by MSE {pi },

we have



MSE (p) = E (P ij)2 Var (e C ikov (e ek

j=1 j=1 k=1

m m - m jjk

+ e2 E [j_ - ij]2+ . ejekE[(P -P )(P pik

j=1 j= kl (8)
j#k

i 1, 2, ..., m.

The procedure for obtaining P would involve sampling of ground

truth independent of samples taken for estimating e. In the following

section we give expressions for v(i ) and Cov (6i , j) considering dif-

ferent sampling plans. To evaluate expectation in (8), one needs to

find the distribution of P. This will, of course, depend upon how P

is obtained. In general, it will be difficult to obtain any exact dis-

tribution of P. However, if the sampling of ground truth involves sep-

arate independent samples from each crop and P is obtained as the ma-

trix of observed proportions among randomly selected pixels classified

into different crops using a classifier, each column vector of P has a

multinomial distribution and is stochaotically independent of the others

in P. Since expectation in (8) is for elements of P1 , it may not be

easy to derive the MSE'{p } in a closed form, especially if the number

of classes is large. As such we now consider the two-class case and

show the procedure for obtaining Bias {pi } and MSE {p-,}, i=l, 2.

Two-class Problem

Often interest lies in ascertaining acreage of a specified crop in

an area. In view of this one may consider nT to be the crop of main in-

terest and H2 to be its complementary part. Without loss of generality,

let us assume density functions for nl and n2 to be symmetric about certain
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location points." Then P(1/2) is same as P(2/1). Denoting this common

value by 4, one gets

P 1

It now follows from (2) that

el = P1 + (P 2 - Pl )

and

e2 = P2 +  P1 - 2  , (el + e2 = 1)

Assuming e f 1/2, we have

e -

1 -2

and

P2 e2 -2

1 -2

Considering el, e2 and $ ($ 1/2) estimates for el, e2 and o, respec-

tively, obtained according to the procedure outlined in the previous

paragraphs, one has

1 - 2

^ e 2
P2 = 2 2

1-2

Clearly, p1 + p2 = 1 because of el + e2 1=  . Next, it follows that for

k = l, 2,

Bias {pk = (ek - 1/2) (E[T] - e)

and

MSE{pk) = Var(ek) E[T 2] + (ek - 1/2)2 E[T - 0]2

where

T = (1 - 2 $)- 1 and o = (1 - 2 0)-1
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To obtain E[T] and E[T 2], one way is to find the distribution of

. Let r1 out of N1 pixels sampled from T1 be misclassified into F2

and r2 out of N2 pixels sampled from n2 be misclassified into n1. Then

rl + r 2

N1 + N2

provides an estimate of D. The condition of $ / 1/2 is easily met if

we restrict N1 + N2 to an odd number, a mild restriction which should

not undermine the generality of present discussion. Denoting r = r1 + r2
and N = N1 + N2, the random variable r has a Binomial distribution with

proportion o and sample size N. Accordingly

N
E[TI = E N (N) r (1 -)N-r

r=O N - 2r \r

and
N r ,)N-r

E[T 2] = 2 \ (1 -

r=O (N -2r) 2

However, it is difficult to give any closed-form expression for E[T] and

E[T 2 ]. Due to -1 < (1 -2-) <1,

E[T] = z (2/N)ss
s=O

and

E[T 2 ] = Z (s + 1)(2/N)sp s
s=O
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where ps is the sth moment of Binomial distribution about the origin and

can be easily obtained by evaluating the sth derivative of the moment gen-

erating function at the origin, i.e.

sV (1 - + + t )N]
"s = t=0 .

It can be shown that

E[T] = ( 1 - 2¢) -1 + 0(1/N)

E[T 2 ] = (1 - 2o) -2 + 0(1/N)

Then asymptotically, i.e. as N becomes large,

Bias {Pk = 0

and MSE {pk} = Var (pk) = (1 - 20) -2 Var(ek)

4. SAMPLING PLAN AND COVARIANCE MATRIX OF e

In a remote sensing situation involving collection of data over a

large region, we suggest-a stratified random sampling scheme with three

stages. First of all, stratification will be most effective if strata

are formed on the basis of at least

(i) predominance of various crops,

(ii) latitude,

(iii) longitude.

The first factor would lead to homogeneity in various strata whereas

the other two factors are important from the point of assessing P appro-

priately.

Let R denote the region for which crop acreages are to be estimated.

With the consideration of (i) - (iii),suppose R is stratified into strata
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Rst, s=1,2,...,a and t=1,2,...,b, with weights wst, the proportion of

acreage (number of pixels in a stratum divided by the total number of

pixels in the region), i.e.

R =U Rst
s,t

with

1 Wst

s,t

Due to (i), one may expect elimination of many scenes or even many

strata if interest lies in only a few specific types of crops. Nevertheless,

for sampling purposes, select ERTS scenes at the first stage, strips within

scenes at the second stage and scanlines within strips at the third stage.

Of course, one can go one more stage in selecting pixels within scanline.

However, this would not be convenient as far as processing is concerned.

As such, this stage is not considered for the sampling.

For stratum Rst, we denote the following:

est ijhk = expected proportions of pixels in ni for kth scanline

in hth strip of jth scene,

est ijh = expected proportions of pixels in ai for hth strip in

jth scene,

est ij = expected proportion of pixels in 7i for jth scene,

est i = expected proportion of pixels in fi.

Then a b

ei = Wst est i ,  i = 1,2,...,m.

s=l t=l

Next, let Gst, Hst, Rst and n denote the number of scenes, number of

strips per scene, number of scanlines per strip and number of pixels per
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scanline, respectively, for stratum Rst. Suppose gst' hst and rst are

the corresponding number of scenes, number of strips in a scene, number

of scanlines in a strip that are selected randomly at three stages. Let

nst ijhk be the number of pixels classified into i for kth selected

scanline in hth selected strip of jth selected scene. Then considering

the observed proportions for estimates, one has

^ nst ijhkest ijhk n

Arst
e5tnijh =knrt n
est jh nst ijhk

hst rst

est ij nrsthst  nst ijhk

gst hst rst

est i nrsthst st nst ijhk
j=l h=l k=l

and
a b

e. = Wst est i' i=l,2,...,m.

s=l t=l

For the covariance matrix,

Gst
Var(t gstGst- (est ij est )2

t ts
t s t

G s Hst(

+ (0- Rs) 1 2
Hst sthstGst(Hst-1 st ijh-st ij

j=l h=l
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Gst Hst Rst

+ g st hstrstGst H st(Rt-) - ( e s t ijhk-est ijh )

j=l h=l k=l

Gst

ov(et ,e ) = (- est-est i)(es t  -e )O st St Gst gt(Gs-1) est I Gst i i- (G st 
st st st j=1

G St Htst 1st

Hst gsth~stGsHst1(est ijhe st ij)(est ij-eh st i'j
j=1 h=l

Gst Hst Rst

Rs-t gsthststGstst(Rst-1) k-estijh)(estijhk-esti'jh
j=1 h=l k=l

Thus the covariance matrix for e can be obtained because

a b
2

Var(ei) = 5st Var(est ) (9)
s=1 t=l

a b
2Cov (ei,e i) = w2 t Cov(est , est ,) (10)

s-I t=l

For an estimate of the covariance matrix,

a b
2Var(ei) = w st ar(est i

s=1 t=l

a b

Cov (ei,e ) = w st Cov(est ), est i
s=1 t=l

where
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where

st

Var(e ) = (1-st 1 ij-et )st i Gst gst(gst- (est i-et
j=l

hs t 1 st hst - 2
+ ( H1st Gst sthst(hst- ) (est ijhe st ij

j=l h=l

st hst rst 2st 1
R (1- H (h r () (11)st  stHst st st st st )  t ijhkst ijh (

j=l h=l k=l

Similarly one can write Cov (est i, est i') by replacing the sum of

squares terms in the variance by the corresponding sum of product terms.

5. OPTIMUM SAMPLE SIZE

Taking the cost factor into consideration one may want to know the

sample size that either minimizes the cost for a specified mean square

error or minimize the mean square error for a.given cost. In remote

sensing, the sampling cost would mainly involve a large initial cost plus

the processing cost. Although it would depend upon a situation, the cost

function may be considered as

Cst = C1 st + C2 gsthst + C3gsthstrst

for when sampling in stratum Rst, and

C = C1 gst + C2 gsthst + C3 gsthstrst

for the whole region.
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In the present context, there is an additional cost of taking samples

for estimating P and this can be expressed in the form of

m

C' = Cini. Thus the overall cost involved is given by

C" = C' + C

Next, the mean square errors, MSE{Pk}, k=l,2,...,m, are obtained

from (8) after making substitution from (9) and (10). Now, if the cost

is fixed, say C" 5 C0, a determination of sample sizes, ni 's , gst s,

gst's, hsts and rst s, can be achieved by solving equations obtained

by equating the partial derivatives of MSE{Pk} + x(C"-CO), k=1,2,...,m

and x a Lagrange multiplier, with respect to ni's, gsts, hst's and rst's

2^to zero. Similarly, for any fixed values, say ak, for MSE{pk}, k=1,2,...,m,

this can again be achieved by considering the function

2
C" + XK(MSE{pk) - ~). k=l,2,...,m, for minimization. Of course, this

procedure may lead to k different values for various sample sizes. For

a unique determination, take the largest value in each case.

It may be noted that under this procedure, it is not possible to

give any closed form expression for any sample size and its carrying

out would involve some optimization technique.

One direct way to simplify the problem is to treat the two types

of cost separately. For example, if we consider only the cost C and

variances given in (9) for the purpose of determining gst s, hst's and

rst's, the problem is greatly simplified. Denoting

Gst

(Gst st 1 (est ij - est i)
j=1
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Gst Hst 2

G (H -1)S2 G H e -e 2
Gst(Hst st 2  st ijh st ij

j=l h=l

and

Rst Hst Gstt2

GstHst(Rst-1)Sst 3= (est ijhk-est ijh
k=l h=l j=l

(9) may be written as

Var(e ) = st w s t  (Sst 1- st 
2/Hst + gsthst ( st 2 st 3/Rst

s,t

+ S2  2 ]
st 3/g sthstrst - St 1/Gst

which is a function of gst' gsthst and gsthstrst as is the case with

the above cost function. Thus, the quantity Var(ei) + x(C-C0 ) or

C + X(Var(e ) - V i), and equivalently Var(e i) for fixed C or C for

fixed Var (ei), is minimized when

2 2
st st st -1 st 2/Hst)/AC

sthst Wst (Sst 2 - St 3/Rst)/AC 2

st stlst sst 3/XC3

Accordingly,

t = Sst 3 C2/ C3(St 2-Sst 3/Rst)

h = 2(S -S 2 S2
st 4 C st 2 -Sst 3/Rst)/C2(Sst 1- st 2/Hst )
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and gst ,aWt i (St 1- S t2/Hst)/C 1

These values are, of course, for the case of Var(ei). Similarly, one

can obtain sample sizes corresponding to other variances. By choosing

the maximum of these values in different cases, a unique solution can

be obtained.

6. FURTHER COMMENTS

When stratification is based upon factors of latitude and longitude,

one might expect different P's over different strata. However, if proper

adjustment can be made in the classification algorithm with respect to

spectral variation so that P remains the same, there is no need to make

any change in the above procedure. On the other hand, one should find

both the actual proportion estimate and its mean square error separately

for each stratum and then by combining these one is able to obtain so

called p and its mean square error. In this situation the formula in

(8) is still valid but stratumwise.

Our discussion given in Section 1-3 is quite general and can be

specialized and different sampling schemes can be adopted. For example,

if our inference set is only one scene, then proportion estimates and

their mean square errors are again obtained as discussed in Section 1-3,

but as to sampling scheme there may not be any need of stratification

and the sampling is done in two stages rather than in three stages.



122

REFERENCES

[1] Chhikara, R.S. and Odell, P.L. "Acreage Estimates for Crops Using
Remote Sensing Techniques," Preliminary Report submitted to
NASA, 1973.

[2] Cochran, W. Sampling Techniques, 2nd Edition, John Wiley and Sons,
Inc., New York, 1963.



123

ON COMBINING POPULATIONS IN STATISTICAL

CLASSIFICATION USING REMOTE SENSING DATA

J. P. Basu

and

P. L. Odell

The University of Texas at Dallas

This research is supported by Johnson Space Research Center Contract #NAS9-13512.



124

ABSTRACT

Observations may be known to be coming from m+l normal

populations having same dispersion matrix; but one may be

interested in identifying observations from i 0 only. Then

the usual practice is to merge the other populations ,...,m"'"

into one single population and assume it to be normal. This

is done in order to achieve the computational convenience of

two population classification. This paper investigates the

effectiveness of such practice. It has been found that in

some situations this practicle may decrease the proper classi-

fication probability of observations from r0 considerably.

Key Words

Dispersion matrix, Bayes' procedure, misclassification

probability, proper classification probability, prior proba-

bility, misclassification cost.
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1. Introduction

Let us suppose that all of our observations come from (m+l) p-variate

normal populations nr lr 2) ,... rm with densities N (Pi,V)(i=0,1,2,...,m),

where p, = ( il'"i2 ... ,.ip) is a vector of p means of the populations I.

and V is the dispersion matrix, same for all populations. In general the

problem of classification into more than two classes (m+l>p>l) is more

complex and computationally inconvenient than the problem of classification

into two classes. In some situations, instead of finding which population

an observation has come from, one may be interested in finding only if the

observation has come from some particular population, say r0 . There, for

achieving the convenience and simplicity of two-population classification

problem~one may think of merging the populations l,' 2"..'' m into one

single population 7 and further assume the resulting single population W to

be normal. Then the question that needs to be answered is how badly the

classification procedure based on such assumptions affects the misclassifi-

cation probabilities. This paper endeavors to answer this question.

In Bayes' procedure the prior probabilities play a significant role.

Improper choice of prior probabilities affects the misclassification proba-

bilities. The usual practice in remote sensing data analysis is to assume

the prior probabilities q0 and q of p0 and p to be equal, even though it has

been assumed that the prior probabilities q,q,.. "q m of O'l " m are

equal. Therefore in answering the question raised in the above paragraph

we should take into consideration our assumption about the prior probabilities.

Thus our study will be concerned with combination of following sets of

assumptions.
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Assumptions regarding population densities

(1) Before merger the populations "Orl0 'T1  m, have densities

N (Pi V), i=0,1,...,m;

(2) After merger, m0 has density N (p0 ,V) and the density of a is

a linear combination of the densities N ( V) i=l,...,m;

(3) After merger r0 has density N (P0,V) and 7 has a density

N (p,V'), where p and V' will be specified later.

Assumptions regarding prior probabilities

(a) q0 = l/(m+l), ql = q2 = =  = I/(m+);

(b) q0 = 1/2 , ql 2 =" = 1/2m

2. Dispersion Matrix of the Population 7

The true density p(x) of the population i is given by

p(x) = m=1 [qi/(l-qo)] N (pV). (1)

Now-since in both assumptions (a) and (b) we have

ql = q2 = "=qm

and q i/(l-q 0) = ql/(l-q) = I/m,

then the density p(x) under (a) or (b) is given by

p(x) = (1/m) i=1 N (i ,V) . (2)

Therefore the mean p of r is given by

7T = E (X) = / x p(x)dx = I m x N (i ,V) dx
R R

P P

I-

and the dispersion matrix V' of r is given by
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ITTV1 = ET [(X- P)(X- )

m i=l p i
1 xf- N (ji.V) dxR

p

m f {(x-j )(x-i )T + 2(V-1 )T(x-p ) + (P.--)(P.-P) T } N (Pi ,V)dx
m i= i p I

p

= V + I m I ( - )i-)T (4)m i=l I

Here E (.) denotes expectation of the population r.

Therefore)if we want to use a normal density function for Tr instead

of the density p(x) given by (2), we have to use N p(-,V'), where V' is

given by (4).

Expression for (V')-1

Let us write V0 = V and

I T
1 - (5)V. = V. m(9. -)(p - ) , (i=1,2,...,m). (5)

I l-I m '"

Then V = V'. We know (Rao, 1965; p. 29) that if A is a nonsingular p x p

matrix and ca and B are two p X 1 vectors, then

-1 -1 T-l
T -1 A aBTA-

(A + a T )  = A (6)
I+BTA-lI

-1 - _ 1 -1 T -1 - T - 1 l
Thus, V =V -- Vm (1 T-1 V (7)

-1 = 1  -1 -- T -1 -T -1
and Vi V -I -Vil (Ii- )(i-]) V - +(u-P) V (i - )} ,

(i=2,...,m). Therefore

(V')-1 = V- - M (say). (8)

The exact expression for M that can be found recursively from (7) is not a

simple one.
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3. Acceptance Region For TO: Assumptions (1) and (2)

We will denote the acceptance region of TO given by a Bayes' classifi-

cation procedure by B. B2a, for example, will denote the region B obtained

under the assumptions (2) and (a). If the populations Tr O l... ' m have

densities p0 (x), Pl(x),...,pm(x) and prior probabilities qo,ql,...,qm and

C(r i.. ),(ji), denote the cost of misclassifying an observation from T.

into y., then it is well known (Anderson, 1958; p. 143) that the acceptance

region B for r0 is given according to Bayes' procedure by
m m

B= 1j= IX: i= 1q iPi (X) C(F0 17i ) i j i (X)C(n.j i )+qoPo(X)C(Tj I0) ) (9,)

In case of assumption (1) if we assume all costs of misclassification to

be equal, then we have
m

B1 = n 1 {x: qoPo(x) > qjpj (x))

= {x: q0OP(x) > max [qjpj(A)] . (10)
l<j<m

Therefore, Bla = {x: p0 (x) > max pj(x)} (11)
I<j<m

and Blb = {x: p0 (x) > (i/m) max pj(x)} . (12)
l<j<m

In case of assumption (2) we assume that

C(ir0li) = C( 7iI 0 ) = C(rj TO), for all idjAO

and C(Tri lV ) = 0, for all i,j~0

Then we have

B2 = {x: q0OP(x) > qlP (x) + + qmP (x)}

m
= {x: qOPo() > (1-q0 ) Zi= [qi/(l-q)]pi(X)} . (13)

Therefore, B2a = {x: p0(x) > pl(x) + ... + Pm(x)} (14)

and B2b = {x: po(X) > (I/m) [pl(x) + ... + Pm(x)]} (15)
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Now since max {pl(X),...,Pm(x)} > (1/m)[pl(x)+...+Pm(X)] , the following

set theoretic inequalities are evident.

Blb :  B2bi Bla B2a (16)

When pi(x) = Np(l,V), (i=,l,...,m), then we know (Anderson, 1958; 147)

that B can be expressed as follows.
m

B = = {x: W.(x) > log(qj q0)}

= {x: W (x) > log(qj q0), for j=l,...,m} ,

where W (x) = (O-j) TV- l [x - (1/2)(J 0 + )] (18)

Therefore B = {x: W.(x) > 0, for j=l,...,m} (19)
S Bla

and B = {x: W.(x) > -log m, for j=1,...,m}

When the means pl'2'" ... 'm are collinear, without loss of generality we

can assume the populations to be two dimensional and assume the means to be

as follows:

= i = , (i = 1,2,...,m). (20)

b 0

In case of three populations, we can take

0 = l ' a and 2 ] = (21)
b 0 2 0

Let the 2 x 2 disperion matrix V be given by V = [vij]. Then we have

w1 = (1/jvl) [xl-(1/2)(a0-a)][(a 0+a) v2 2 - bo0v 2]

+ (I/Ivl) [x2 - (1/2)b] [b v11 - v12 (a +a)] (22)
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and W2 = (l/VIj) [xl- (1/2)(a 0+a)][(a 0-a) v 2 2 -b 0 v 1 2 ]

+ (1/jvj) [x2 - (1/2)b 0 [b0  v11 - v 12 (a0-a)] (23)

The acceptance region B I for 70 will be bounded by two straight lines, viz,

W ld and W2=d , where d=O in case (a) and d= -log 2 in case (b). The point of

intersection of these two lines will be given by

(v12C/D, v2 2 C/D), (24)

2  a2)2abV

where C = [{(a 0 - a2) v22  012 b0 vll} + 2dV]

and D = 2b(vllv2 2 - v22) = 2b0oVI,

iVI denoting the determinant of V.

From (14) and (15) it follows that the acceptance region B2a and B2b

can be given the following general description.

B2 = {x: po(x) > (1/a) [P (x) + .. + Pm(x)]},

where a should be taken as I for B2a and as m for B2b. In case of three

populations with means given by (21) we may note that the condition

apo(x) > Pl(x) + P2 (x)

is equivalent to

log [a po(x)/pl(x)] > log [p2 (x)/pl(x) + 1].

Noting that l = 2' we can write the above condition as

log a + (I2+ V [x+( 2 -po)/2] > log [1 + exp (2iI2V x)] (25)

Here a should be taken as I for B2a and as 2 for B2b.

When all means are collinear, without loss of generality we can assume

the populations to be univariate and Pl<P2< ...<m . V in this case is the

common variance of the univariate populations. Now from (18) we have

W. (x) = [( 0,-ij )/ V] [x-(1/2) (10+j )].
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It now follows from (19) that if p0< Il, then

Bla = {x: x <(po+1)/2} , (26)

if Pi<PO<pi+l' then

Bla = x:{(JO+ i)/2 < x < (p O+li+)/2} (27)

and if p0 > lm , then

Bla = {x: x > (pO+pm)/2} . (28)

The positions of the end points of the interval B2a depend on Vlogm and the

values of p0 ,1l, ...,0m . B2a can not be given a general description like Bla*

4. Acceptance Region for w0: Assumption (3)

When m populations ml''''' m have been merged to form the population f,

according to assumption (a) the prior probabilities q0 and q of 70 and n are

then given by q0 = I/(m+l) and q = m/(m+l) and according to assumption (b)

they are given by q0 = 1/2 and q = 1/2. When f is assumed to have density

N p(-,V'), the acceptance region B3a of f0 will be given according to Bayes'

procedure by

B3a = {x: N p( 0 ,V) > mN(-,V')}

= {x: -(x--)T(V')-(x- ) + (X-p)T v- (x-P0)

< log(jV'I/ Vj) - 21ogm}.

Using (8) we can write

B3a = {x: Q(x) < log(IV'I/IV I)  - 2 logm} , (29)

- T -M-xT -1 
where Q(x) = (x-) TM(x - P) - 2 (T0-)T V [x-(p 0+7p)/2]. (30)

We can similarly have

B3b = {x: Q(x) < log(jV'i/jVI)} (31)

Obviously B3b = B3a.
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Special Case

Let us suppose that the populations are two dimensional, their means are

given by (20) subject to the condition vp = 0 and their common dispersion

matrix is given by V = diag {vl, v 2 }. Then from (4) we have

m T T
V' = V + i Ii/m = diag {v1 +Zli Li/m, v 2 }. (32)

i=l

Therefore (33)

T

/I'l/IVI = I +ZPii /mv

Writing

T = [( a /m) 0],

we can express V' as

V' = V + T*

From (6) and (8) we now have

M = (m..) = V1 w V /l+wTV- w.

Obviously M is a matrix such that

2. 2
ml = Eai /vl(mvl + a )}

and m 12 
= m2 1 = m2 2 

= 0.

Therefore, from (20) and (30) we have

2 T -1 T -1
Q(X) = m l x - 2P V x + PT V I

= mllxl2 -- 2aoxl/l -- 2boX2/V 2 + (ao2 /V1 + bo2/V 2 )

From (29) and (31) it now follows that the regions

B3s (s = a, b) are bounded by

{xI - (ao/vlmll)} 2 = 2(bo/mll 2 ){x2 -A+ (v2/bo ) log a}

where a should be taken as m for B3a and as I for B3b and

A= bo'2 + a 2 v2 (mll - l))/{2b mll -- (2/2bo) log (IV'I/IV) (35)

A boundary described by (34) is a parabola with vertex at the point

(ao/(vmll), A - (v 2 /b ) log a ) (36)
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and symmetric about the point

X = ao/v lml l  . (37)

When there are three populations with means given by (21) and

V = diag ({v, v2 }, we then have the regions B3 s(s=1,2) bounded by a para-

bola (X1-f)
2 = 4k(X 2 -g), where

f = ao(l+a 2)/a2 v

k b (l+a 2 )/2v 2 a2  (38)

and 2 2 2 2
g = b /2 + a 2(a v - 1-a )/(2a b )

- (v2/2bo){ log (1+a2/vl) -2 log a}

a being equal to 2 for B3a and to 1 for B3b.

5. Classification Probabilities

The acceptance region of Ro being given by B is (i=1,2,3 and s = a,b)

under different assumptions, the true probability of misclassification of

an element from the 'other' population H into Ro is given by
m

P(B.is ) = ZI[q/( l-qo)] Np (p, V)

j=l B . (39)Is

and that of an element of HT into I by

P(Bc s I) = N (po' V), (40)

B.
Is

where Ac denotes the complement of a set A. As the regions B2a , B2b'

B3a or B3b are bounded by conicoids, the integrals in (39) and (40) can

not be evaluated in closed form.

In special cases, when the populations are two dimensional and the

common dispersion matrix is diagonal, the boundaries of B3a and B3b are

parabolas. The integrals in (39) and (40) cannot be evaluated in closed

form even in this case. Therefore, it is not possible to state precisely
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in terms of misclassification probability how much we have to pay if we

want to reduce our many population classification problem into a two

population classification problem and which one of the alternative assump-

tions lb, 2a, 2b, 3a and 3b is preferable next to the true assumption la.

In special cases, it may be possible to make some inference looking

at the graphs.

Examples

In the following examples we consider three populations with densities

N2 (i', V), i=O, 1, 2, where

V =1 0 = ' =- and P2 '

a, ao, bo being specified separately in each example. All the populations

have the same prior probability.

Example 1. Let a=l, a =3 and b =6. Then we have

Bla = {(xly): 8x + 3Y - 17 >0, 4x + 3y - 17 >0},

Bilb = {(xly): 8x + 3y - 15.b2 >0, 4x + 3y - 15.b2 >0},

B2 a = {(x Y): 3Y > 2 log [I + exp (2x)] - 8x + 171,

B2b = {(xly): 3Y > 2 log [1 + exp (2x) - 8x + 15.b2},

B3 a = {(xly): (x-b)2 < b(y-0.23)},

B3 b = {(xly): (x-b)2 < b(y + 0.23)}.

The classification procedure defining the partition (Bla , Bla) is optimal

in the sense that it has the minimum expected cost of misclassification

(which in this case is equal to the total misclassification probability).

From the graph it is evident that the next best partition is (B2a, B a)

then (B2b, B2b), then (Blb' Bcb). The two classification procedures based

on the assumption of normality of the mixture perform relatively poorly.
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B2 b @ (3,6)
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FIGURE I
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(0,8)

B2b B2a

(-2,0) (2,0)

FIGURE 2
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Of the two, the partition (B Bb ) has lower misclassification probabi-

lity than the partition (B3 b, B3b).

Example 2. Let a=2, a =0 and b =8. Then we have
o o

Bla = y{(xy): x + y - 3 > 0, y - x - 3 > 0},

Bilb = {(xly): x + y - 2.66 > 0, y - x - 2.66 > 0},

B2a = {(xly): 2y > log [1 + exp (4x)] - 2x + 6},

2 b = {(x y): 2y > log [1 + exp ( 4x)] - 2x + 5.31},

B3a = {(xly): x 2 < 5(y - 3.94)}

B3b = {(xly): x 2 < 5(Y - 3.6)}.

The classification procedure defining the partition (Bla, Bla) is optimal

and from the graph we may infer that the next best is the one with partition

(B2a, B2a). Unfortunately, in this case, no comparison of other procedures

can be made even from the graph.
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it fs known that the parent populations have the

saiec. dispcrsion matrix, then in designing the

classifier, the matrices El and Z2 above are re-

placed by 1, where

When we have a single sample of observa- = [( 1) 1 + (2-1) .(+:22), (1)

tions from two normal populations with sana co- N denoting the number of clements of Cj. A

variance matrix, but no training sar.ple from classification procedure defined in this fashion

either population, then for classifying future will be referred to as cluster based classificE-

observations, the usual practice is to.cluster tion procedure.

the sample into two nearest neighbor clusters Let P denote the Bayes' procedure based on

and design a Bayes' classifier treating the compl6te kno.ledge of N (P ,C) (j=1,2) and P. the

two clusters as two training samples. The use cluster based procedure when l-nor (i=1,2,)

of £1-distance is often advocated for such has been used for clustering and the sample sizes

clustering. It has been shown in this paper are very large. Our objective in this paper is.

that such advocation is not always reasonable. to compare the misclassification probabilities of

these classification procedures. 
We have made

the comparison a little simpler by taking p=
2 ,

.Int'roduction 
i=0 and X = I, that is, by assuming our popula-

1 In tnducetion tion densities to be N2(0,T) and N2(,1) 
• 

In

Ve suppose that our data have been obtained designing the classifiers we have also assumdi

through remote sensing devices from two p-variate that both populasstiofiers we have equal prior rossubabil-

normal populations R, and 
E2 with densities 

that both populatios have equal prior probabil

nor l (,) adnd N 02) respectively, the vectors ities (1/2 each) and equal misclassification

Sand )2 of means and the c lmmon dispersion ma- costs. Now, without any further loss of gener-

91 and u2 of reans and the common dispersion ma- T [a,h] and

trix E being unknomn, and that we do not have 
any alit, t can be assumed that a and

a>0, b>O.
training sample, that is, we do not know the act- a>ic roce P.

ual source of our observations; but the data is 2. Classification Procedure P

essured to be such that two and only two distinct 
Under the set 6f assumption

s 
made above, the

modes can be determined from them. For classi- Bayes' classifier is given by

fying; future. observations into these two popula- 
io (Z) ax + by - it 2 f ,y) (2)

tions on the ba:sis of such data, the usual prac- and hence the acceptance region. B for 1 is

tice is to cluster the data Into two nearest given by 2+2

neighbor clusters C1 and C 2 eu!ing i.:tric or dis- Bo  ((xy): ax + by < (a 2K)/2). (

tance function deflnd by I.-, R2-, or 1 -norm; If P(j i) denotes the probability of misclassi-

and then design a fayes' cina..sf;l[Ir with the fying an elcmnt fromi H into I1, then for this

assm.pton that the population deingitces aTe procedure we hI:ve

p(0 ,. 0)(J=,), whre and r are renlpc.- 1(2 t) P(1) 2 h/2)

titvely the : a:urpple r.'an :and the a.nple dispersion where

matrIi; of the s:ap)c Cj as u"J to he con,; stLi, 4'() -
t exp (-x 2/2) dx/ .

Of o;ervalon,; froI: the popIlati on v Ialone. If
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Let B be the acceptance region for 111 accord-

If a=1.an
d b=2, tlhrn we have fron (4) ing to the Dayes' classification procedure in

C(2l').= P(12) .(- r f/2) = 0.13. vhich the population densities for n11 and 12 have

3. Clusttr Based Cl1 ificati . been Sn-.advercently assumed to be N (m,V) and N

It is well kno:n (Lerean, 1970) that as the ( r',V') respectively. Then

sample sizes increase, the clusters Cli and C2i B = {Z = (x,y): W(x,y) 01, (12)

based on 2i-noni converges with prcbability one to vhere 2

the partition (Sli ,Si) of R2 , the two dimensional (r.,y) = 2(gx +g2Y ) K + + 2exy-d, (13)

real vector space, wiere d - vi2lV - v22 lv

Si S = = (xy): Izlli < el.2-zli) e2 = yvilIV'l - V.I ,

(5) e =  i2/1VI - 2/IVI,

Ac denotes the complenent of the set A and g = (V,2 i-vi2m)/I'I - (v 22 m1 -v 12 2)/1v,

Ilu-vlli denotes the distance between the points u g2 = (,'im-v2 19/ V' - (vl. 2 v" 2m)/V,

and v of R2 according to .i-norm. Vji and tji, e K V' - TV' - log(IV'I/[VI-

mean and dispersion matrix of the sample Cji, Here V [v i . = v], T = [ml,M2] and

(j=1,2), can be viewed as the sample rmean and san- T.T [

ple dispersion natrix of a population with density 
The risclassification probabilities P(2l1)

function p..(i) given by and P(112) can now be expressed in the form

Pji(z) = (112){N 2 (0,I)' + N2 (1l2 , I) z S ji(6) r(2[1) = P(W(X,Y) >0 IZ E E1 ) (14)

= 0 otheclise. and P(112) = P(W(X,Y) <0 JZ C n2) (15)

Thus, by the law of large numbers, with probabil- If V$i', then the exact distributien of

ity one ji cnveres to ji ad to ji, where W(X,Y) vhen Z c 11 or Z c H2 is intractable. But

i S ji(z)d/P(S ji)  if dl, d 2 and e are negligible compared to gl and

i )(z- T p.(z)dz/P(S ( 2, then in (14) and (15), the contribution from

(i S j i i ji ji j the second degree termnns in X and Y will be ncgli-

and P(S 
=  ji Pji(z)dz. (9) gible co=pared to that from K + 2(g1X g2Y). Thus

3 • ve can perhaps approxinate the distribution of

In designing cluster bas.ed classifiers, as wehe distribution of i'(KY) = K +

have mentioned earlier, we shall consider .wo n

2(ge+gY) . But if V V' , then ow. No W- can be

cases---when we do not know that the dispersion ra- sh2g toX . istributed normally with mean b

trices of the population 11 and IT2 are equal and to be distributed normally with an(0,I

when we know that they are equal. In the first 
=  2( )

case, we shall denote the cluster based procedure Tah = + 2(ga+ 2 b)(1

by Pi (based on 9.-norm) and in the second case by wheh Zx1 2 ( 2 ,I)
Sh and variance

P '. Thus P is the Bayes' procedure based on the a var(ance
i i Var U =  2 2

densities N2 (ji, i  ) (j=1,2), where 
Var g g 

(17)

i s l i), i P(2i))2i. (10) in either case. The approximate values of the

i li 2i isclassification probabilities r(211) and P(112)

a ificato Pro i can be- given by
2 2

P(2!1) " P(, 0OZ 0 01) 1--(-K/2, _ )
If a classification procedure defines a set ~ P(>0jZ r11) (/

as thee acceptance region for the pepul.ition 1 (18)

C and r(112) rc',01z C n2) -

wit. true density ad(0,I) and as tile accepnce/2 219)

region for 2 wiith true density i;:(u2,T)), then the C( .rcvth/r/ P2 )n P2

cl ~ ci prol £ 2-1nor Il:Lnuc(d di;tance beCtween tvo

are given by po. 10 Tulu]0 and v : [vtv ti given by

.1(2i1) p' (u.d pulct nl' [v 1 ,V" 1,; given by

11'-,i12 
=  (ul-v

2 + (-) 12

ii'. () Since :1 [a,b, then it follo from (5) that,, r( l ." P(" ;;)' / 2(" ' '!: O i S nce :,> -
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the limIting clusters S1 2 and S22 are-given by points (x,y) catil-fy)ing the following conditions

S2 2
c  SI2  ((x,y): ax-lby < (a2h 2)/2). in three different cases.

Evidently S1 2=B o , as given by (3). Now it fol- Case 1. b>a>0 [figure (2) and (3))

lows from (6)-(9) that (1) xa, y<(b-a)/2

P(S12) -P(S 2 2) = 1/2, 
(20) (ii) O<x<a, x y<(a+b)/

2

2 ki a and 
(iii) x<O, y<(a4b)/2.

2 2  In this case S11 and S21 are distinct from S12 and

a2 1-i ) b 1-i ,(21) S2 2 given by (3).
S abk(1- 1 + bk (1Case 2. b>0, a=0 [figure (1)]

(i=1,2), where () y<b/2.

kl = ((- a2+b2/2) - ( 211(a2+b2)/2)
-  In this case Sgl coincides with S12 and S2 1 coin-

exp {-(a 2 -b2 )/81 (22) cides with S22.

22 22 -1br
and k2 = 0( a 2+b 2/2) + ( 2(a 2+b2 )/2) I Case 3. b=a>O [figure (4)]

2 3 (i) x-ty<a
exp {-(a +b-)/8). (23)

T The £1-norm distances of the point (x,y) from

0- The set EB2 , the acceptance region of 1 (0,0) and (a,b) are equal when

0 according to P2, can be obtained from (12) by
)-1ya and x<0

letting r. 12 , r'='22, "V=12 and V'=E2 2 and the

corresponding misclassification probabilities orThese points have been assigned to 2 1 in order

from (13), (18) and (19). 7hese points have been assigned to S21

fro (13) 18) and (19). that no point escape classification. In this case

also the cluster S1 1 coincides with S12 and S21

Let a=1 and b=2. Then

S22C S 2 (XY): Y.+2y S 2.5) coincides with S2 2.
e  {(xy): x+2y < 2.5 Thus the procedure P1 (Pj) differs from the

p [figure (3)f procedure P2 (Pi) only in case 1. In this case,

T the expression for the components of the means v11

kI = -0.06, k2 = 1.06, 12 = k[l,2], and 221 and the dispersion rmatrices E2 1 and 121

]2 =0.11 -0.78 and ) 2 2 = O.12 0.1 are long and complicated expressions involving the

S0.7 0.7probabilities O(a), (+b)/2] and [(b-a)/2].

In P 2 , for discriminating observations from r)a
For that reason wVe have not included it here. As

and E2, the Bayes' classifier based on densities
in the example in section 4, if we take a=l and

N2 (12,712) and 2(',22,E22
) 

is used instead of b=2, then we shall have

that based on the true densities N2 (0,I) and 0.00 2 .423= ]

N2 ([1,2]T,I), which are unknown. Then the ap- .197

proximate valucs of the resulting miscla:sifica- 11 : 0.05 0.605 and l2

tion probabilities are obtained from (18) and
From (13) it now follows that

(19) as (2 and ,Y) = 0.46X 2 + 0.24Y2 + 2(0.52X + 2.46Y)

P(112) = 0.2 and r(2|1) = 0.078.

In procedure P4, the anyes' classifier sY - 9.36

Tne exact distribution of W is intractable. The

based on densitices 2(l12,.) and 2(u122,.), where
.935 -0.,1 normal approxir.tion to W given in section 3 is.not

L-0. 1 5 0.765" valid, since the coefficients 0.46 of X
2 and 0.24

The nisclassification prob abilities are now ob- of Y2 are not negligible cor:pared to coefficients

tained from (18) and (19) as 0.52 of X and 2./4 of Y. Using a very rough ap-

P(12) = 0.18 and 1'(211) 
= 0.09. proxlnation, it can he shown that in this case

5. ClnseltCat.l on Proceu-:c "1'1 and P1  P(211) and P(1 12) are larger th n those

Tlhe. £.1--norm IndcAd distance between the for P2 .

.points u and v is given by 
For procedure -Pf we have

i-vli - Y lu vi I-v21) . E0. 5 1s + S0.505 21

The 111 l.g l,, Clul;t'r 81 (. )jcenni :ts of 0.495 T11 + 0.505 E2
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-. ' .4 -0.1 7. Concluslon

-0.13 0.73j Our findints about the mlsclassification

From (13) we no, have probabilities P(112) and P(211) for the procedures

W(X,Y) = 1.11SX + 5.44Y - 6.541 Poo P1, Pi, P2 and Pj in the special case when a=1

and fros (18) and (19) we have and b=2 can be seen at a glance from the following

P(211) = 0.18 and P(12) = 0.12 table.

6. Class!fication Procedure P and P' Table

The ; -norm indccd distance between the True £1-norn based £2-norm based

Bayes
points u and v is given by

P PI Pf P2 Pi
I-vil = max {Ju-v1  , ju2-V21. P P1  P2P(112) 0.13 0.12 0.22 0.18

The points (x,y) in the limiting cluster
P(2I1) 0.13 0.18 0.078 0.09

Sl_(=S 2 ) satisfy thile follow;ing conditions. P(2[l 0.13 0.18 0.078 0.09
Total 0.26 * 0.30 0.299 0.27

Case 1. b>a>0 [figure (2) and (3)]
*Using rough approx ination it has been found that

(i) a-b/2<x <s (b/2,a) and
y<b/2, the total nisclassification probability of P1 is

greater than 0.229.
(ii) 'x<a-b/2 and x+y<a

Thus, taking misclassification probability as
(iii) x>max (b/2,a) and x+y<b.

the criterion for comparing the performance of the
Case 2. b=a>0 [figure (4)]

classifiers, we find that in the example consid-
(i) x-y<a

ered above Pi is better than Pj and P2 is better
The £ - distances of a point (x,y) from (0,0) and

athan P1 . But, no such conclusion can be made in
(a,b) are equal when

general. It is not kno-n whether Pj always has
x+y>a and x<0

lower risclassification probability than its com-
or x+y>a and y<0.

patitor Pj or P, and P2 has lower nisclassifica-
Such points have been assigned to S2 _ arbitrarily.

Lion probability than P 1 or P .
Thus in this case S]_ and S2 . coincide with S1 2

and S22 respectively.
Case 3. b>O, a=0 [figure (1)] Among all norm-induced distances, R1-dis--

tances are the most easy to compute. When popula-
In this case, the performance of Pt-norm in clus-

tion reans are known to be such that the straight
tering is very poor. The im- distances of every

line joinig them is inclined at an angle of 45'
point (x,y) from (0,0) and (0,b) arc equal when-

to x-axis (for example, when they are (0,0) and
ever

(a,a ), the classification procedure Pi(Pf) and
x-y+2<0 and x~y<O

P2 (Pr) become identical. Only in that case, r1 or
or, x+y-2>0 and x-y>0
or, x+y-2>0 and x-y> Pj is the optifal procedure, because we then
i!owcvar, :we can arbitrarily define S1, as the set

achieve the computational ease along with low mis-

{(x,y): y<b/2).
classification probability.

But Si then becomes identical to S 1 1 or $12-
SThe procedures P and P' are not desirable.

Thus the proccdur P (P) differ; from P2(P-) If in the process of clustering, two cluster cen-

only in case 1. But in this case, the exact mis-
ters are such that they have the same x-coordinate,

classification probability is hard to find. In
then some points are to be clustered according to

the spec:!l case, whoa a=1 and b=2, (figure (3))
E 2-distance. This arbitrariness in allocation of

ve find thc, t the blundary lice of Sl anl S2 canSpoints to the clusters makes P or P undcsirablc.

be obtained as the refl.ctton of the baundary line pP '

of S11 and S21 about the loundarry line of S12 and
Pe fercnce

S22 . Fro thi c r:we .ay guess that, as in cas;e of
1. Lerm .n, I. C. (1970). L s n aes doe la Can'.-

the' pnc::ure P 1 andl PI', the tota.l ;classifUca- - -"-.-

ftt of n I b.n Autesir ..t . Cnuthler-Villars, Pars.

than t ,i totnl It:i el:l::;l fJcati n l probl,ili g rtn of

P2 and P'.
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1. Introduction

A classifier or discriminant function W(xjc) is a function or a set of

functions which determine the membership of an observation vector x into one

of several given sub-populations, c denoting the vector of parameters of theo

classifier. The classifier usually considered is one which has minimum

expected cost of misclassification among all classifiers. This optimal

classifier is known as Bayes' classifier [2]. This classifier is obtained

on the assumption of complete knowledge of misclassification costs, prior

probabilities (the proportion of the given subpopulations in the over all

population) and the probability densities of the given subpopulations. When

the parametric family of the population densities are known, but the parameter

themselves are unknown, then the usual practice is to replace the true values

of these parameters by their respective estimates based on sets of past

observations of known classification in the expressions giving the elements

of c. A classifier W(x, c), thus obtained, lacks in the above optimality

property. A set of past observations known to be coming from a particular

population is often referred to as a training sample. When the parametric

family of the population densities are also unknown and sometimes the prior

probabilities are also unknown, the methods by which a classifier W(x, c) is

obtained from the available training samples of the populations are referred

to as nonparametric methods of classifier design. An adaptive pattern recog-

nition scheme is one such nonparametric method.

An adaptive pattern recognition scheme is a nonparametric method in

which a classifier is assumed to be of the form
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W(x, c) = cQ ] (x) + ... + cm Q(x) = cT (x), (1)

where the components Ql(x), ..., Qm(x) of the vector D(x) are prechosen

linearly independent continuous functions of the observation vector x and

T
the unknown parameters [c, .,... cm] = c are directly estimated recursively

as in [1, 7] or nonrecursively as in [6, 8] from the available training

samples, instead of being obtained terms of the estimates of the probability

densities. A classifier obtained in this fashion will be referred to as an

adaptive classifier.

The functional forms of the functions Qi(x)'s and their number m are

often choosen arbitrarily. This arbitrariness in the choice of the func-

tions Qi(x)'s may create problem. A good classifier should be optimal for

discriminating among the given populations. For example, it is well known

[2] that when there are two p-dimensional normal populations with different

covariance matrices, a linear classifier of the form

W(x, c) = c X + ... + Cp x +c c z, (2)

T = T =x n T Twhere c = [Cl, ..., Cp, c ], x = [ [x , 1], is not

optimal for discriminating between these two populations. Therefore, if the

functional forms of Qi(x)'s are not properly chosen, then the classifier

W(x, c) given by (1) may not be optimal for discriminating among the given

populations. Also in designing an adaptive classifier rarely any attention

is paid to the optimality criterion, minimum expected cost of misclassifica-

tion. However, adaptive classifiers are easy to design and are very attrac-

tive in fast classification for their simplicity. Besides, there are

empirical cases in which they do no worse, if not better, than many other

sample based classifiers [2].
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A comprehensive survey of adaptive pattern recognition schemes can be

found in H0 and Agrawala [5] and in Tsypkin [91]. Our objective here is to

present a unified theory of adaptive pattern recognition. Most of the adap-

tive pattern recognition schemes have been devised for discriminating between

two populations and few of these schemes have been generalized in a very

straight forward manner for discriminating among more than two populations.

For this reason, we shall also restrict ourselves mostly to the case of two

population classification.

2. Basic Theory

Let all the observations come from two p-dimensional population l1 and

2' Then the observations can be represented by points and the two training

samples by two sets T1 and T2 of points in the p-dimensional real Euclidean

space E . It will be evident later from the way an adaptive classifier is

designed that the sets TI and T2 should be disjoint. A real function f(x),

f: E - El, is sai'd to separate two disjoint sets TI and T2 in Ep , if there

exists a constant t such that f(x) > t for all x E TI and f(x) < t for all

x E T2 . If there exists a function f(x) separating T and T2, then f(x) can

be considered to be an ideal classifier which can be used to classify all of

the points of T1 and T2 correctly. It may not often be possible to construct

such f(x), even if it exists. But, it may be possible to obtain a function

W(x, c) as an approximation to the function f(x) and use it as a classifier

instead of the ideal classifier f(x). This is precisely the way an adaptive

classifier is designed.

The existence of function f(x) separating the training samples T1 and

T2 will be evident soon. The following theorem is well known (Dunford and

Schwartz, [4], p. 417).
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Theorem. In a topological vector space, any two disjoint convex sets,

one of which has an interior point, can be separated by a nonzero continuous

linear functional.

If T1 and T2 have disjoint convex hulls C1 and C2, then we can use the

above theorem to prove the existence of function f(x) of the form

f(x) = CI x + ... + c x + c
pp o

such that f(x) > 0 on Cl and f(x) < 0 on C2 .  In this case the training

samples T1 and T2 are said to be linearly separable. Therefore, when the

training samples are linearly separable, then a linear function f(x) separat-

ing T1 and T2 can be used as an ideal classifier. An adaptive classifier is

then easily obtained as a linear function approximating this ideal classi-

fier.

Unfortunately, the sets TI and T2 of training samples are rarely lin-

early separable. Therefore, often there may not exist any linear function

separating TI and'T 2 . However, there exists a function f(x), not necessarily

linear, which will separate TI and T2 whenever the sets Cl and C2, the

smallest closed sets containing T1 and T2 respectively, satisfy the conditions

of Uryshon's theorem, well known in Topology ([4], p. 24).

Uryshon's Theorem. If Cl and C2 are disjoint subsets of a normal topo-

logical space V, then there exists a continuous function g(x), g: V -* [0, 1],

such that g(x) = 0 for all x E C2 and g(x) = 1 on C1.

Using the function g(x) of Uryshon's theorem, we can easily define a con-

tinuous function f(x) on V such that (a) f(x) = tl on C and f(x) = t2 on C2)

where tl and t2 are any two distinct preassigned numbers, or, (b) f(x) > 6 on

C1 and f(x) < - 6 on C2, where 6 is a preassigned positive number. Now, since
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it is well known that E is a normal topological space under any nontrivial

topology and TI and T2 are disjoint sets containing finite number of points,

then we can always obtain two disjoint sets Cl and C2 as the smallest closed

sets containing TI and T2 . Therefore, as long as TI and T2 are disjoint sets

of training samples, there always exists a function f(x), linear or non-

linear, which separates T1 and T2.

As we have mentioned earlier, in an adaptive pattern recognition pro-

cedure the ideal classifier f(x) is approximated by a function W(x, c) of

the form (2), namely, a linear function of an observation x to obtain a

linear adaptive classifier, or, by a function W(x, c) of the form (1), a

linear combination of a finite number of known nonlinear continuous func-

tions, to obtain a nonlinear adaptive classifier, the parameter vector c

being selected in order to minimize certain given pay-off function.

As the probability densities of the populations are unknown, expected

misclassification cost cannot be evaluated and therefore cannot be used as

a pay-off function. Distances D(f, W) between the functions f(x) and

W(x, c) or some functions of it defined by some meaningful metric can be

used as geometrically and intuitively appealing pay-off functions. For

example, using Euclidean metric we can define

D2 ( f, W) = I f(x) - W(x, c)12, (3)

xeTIUT 2

as a pay-off function and select the parameter vector c in order to minimize

D2 (f, W). In this case W(x, c) is a least square approximation to f(x).

In order to assure the existence of a unique minimum of the pay-off function,

a pay-off function of the form
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L(f, W) = F (f(x) - W(x, c))/n, (4)

xeT UT2

where n is the total number of points in TI and T2 and in the fashion of

decision theory F is a convex function interpreted as a loss function, can

also be used [9]. We may note that the pay-off function D2 (f, W)

D2 (f, W)/n, often referred to as mean square error criterion [6, 8], is a

particular case of (4).

Let the subpopulation H. have prior probability qi and probability

density function Pi(x). Then the population which is a mixture of 1l and

12 has probability density function qlpl(x) + q2p2 (x). Therefore, the

expected value of F(f(x) - W(X, c)) will be given by

R(f, W) = E F (f(x) - W(X, c))

2

qi i F(f(x) - W(x, c)) p i(x) dx (5)

i=l

Now, if there are n. observations in T. and n + n2 = n, then we can write

2

L(f, W) = (n./n) F(f(x) - W(x, c))/n. (6)

i=l xcT.

and observe that L(f, W) is the sample mean and R(f, W) is the population

mean of F (f(x) - W(X, c)).

It is important to note that there is some arbitrariness in the choice

of the number m and the continuous functions Ql(x), ..., Qm(x), used in the

definition of W(x, c).
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3. Linear Classifier

The linear classifiers are used in adaptive classification mainly due

to following reasons.

I. They are relatively simple to implement as electronic circuits.

2. The circuits can be made adaptive very easily.

3. The Bayes' classifier with minimum expected cost of misclassifica-

tion has a linear structure when the two populations have normal distribution

with equal covariance matrices.

3.1. Nilsson's Classifier

The algorithm proposed by Nilsson [71 iteratively determines the para-

meter vector c of W(x, c), as defined in (2), according to the following

rule. Let x(i) denote the ith observation of known classification, that is,

an element selected from TI UT2 at the ith step of an iteration, z(i) the

corresponding value of z, c(i, n) that of c at the ith step of the nth

iteration and W. = cT(i, n) z(i). Then at the (i+l)th step of the nth

iteration we have

c(i+l, n) = c(i, n) if x(i) E T1  and Win > 0

= c(i, n) if x(i) E T2 and Win < 0

= c(i, n) + dz(i) if x(i) c T1  and W.n 0

= c(i, n) -dz(i) if x(i) E T2 and W.n - 0,

where d is a positive number, so chosen that cT(i+l, n) z(i) can correctly

classify x(i) for all i. The vector c(l, n+l) is taken as the value of c

at the end of nth iteration. The process is continued until we have, for

some i, c(i, n) = c(j, n) = c(k, n+l) = c (say) for all j>i and Z<i. When

such c exists, we shall say that c(i, n) has converged to c.
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Unfortunately, if the sets TI and T2 of training samples are not

linearly separable, then the sequence c(i, n) may not converge. The algor-

ithm is effective, that is, c(i, n) converges to a c, only when TI and T2

are linearly separable. It should be noted that c is not unique; it depends

on the sequence in which we select the observations from T1 UT2 . The num-

ber of iterations needed to reach such c also depends on this sequence.

The classifier W(x, c) constructed in this fashion is not in general a

Bayes classifier.

Example. Let T 1 = {[0, I] T , [1, I]T}, T2  = {[0, 0] T , [1, 0] T }. Then

choosing d = 1 and the sequence of observations as in the Table we can

obtain Nilsson's classifier in the following way.

c z

n c c2  co  x1  x2  1 W. Change c?

0 0 0 1 1 1 0 Yes
2 1 1 1 1 0 1 2 Yes
3 0 1 0 0 1 1 1 No
4 0 1 0 0 0 1 0 Yes

1 0 1 -1 1 1 1 0 Yes
2 2 1 2 0 1 0 1 1 Yes

3 0 2 -1 0 1 1 1 No
4 0 2 -1 0 0 1 -1 No

1 0 2 -1 1 1 1 1 No

3 2 0 2 -1 1 0 1 -1 No

Therefore c = [0, 2, -11] and the classifier is 2x 2-1. A decision rule

based on this classifier is to assign x to Hl if 2x2 - > 0 and to 12 i1

2x2 -1 < 0.



152

k = dZ (m2-ml) and c = -{T (NIml+N2m2) - (NI-N2)}/(N1+N 2

where d = 2/[(NI+N2)3/{NIN2(NI+N2-2)} + (ml-m 2 ) -l(ml-m 2 )] (10)

and E = (NISl+N 2 S2 )/(NI+N 2 -2). (II)

When NI = N2, then we have

co = (ml-m 2 )T -l (m +m2 )[Nd/4(n-1)] (12)

T

The classifier W(x, c) = c z in this case resembles the Bayes' classifier

with parameters of the population densities replaced by their respective

estimates, that is, Anderson's [ 2 ] sample based discriminant function for

two normal population with equal covariance matrices.

The classifier attributed to Agmon and Mays [5] is obtained when

L(f, W) = E [LW(x, c) - f(x) I - {W(x, c) - f(x)}] 2

xcT
1 UT2

is used as the pay-off function.

4. Nonlinear Classifier

The nonlinear classifiers are used in adaptive classification mainly

due to following reasons.

1. If the sets T 1 and T2 of training samples are not linearly separ-

able, then a function f(x) that can be used to separate them are often

nonlinear.

2. The Bayes classifier has nonlinear structure when the two popula-

tions have (a) multivariate normal distributions with unequal covariance

matrices, or (b) nonnormal multivariate distributions.
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3.2 Other Linear Classifiers

An adaptive linear classifier can be obtained as linear approximation

to a function f(x) separating T1 and T2 and taking the value 1 on TI and

-1 on T2, the parameter vector c being selected as a vector c that minimize

a given pay-off function. Different pay-off functions can be used to obtain

different classifiers.

Koford-Groner Classifier

An adaptive linear classifier W(x, c) may be obtained by selecting a

vector c as the parameter vector that minimize the mean square error cri-

terion D2 (f, W), or equivalently the squared Euclidean distance D2 (f, W)

given by (3), using gradient method or any other suitable optimization

technique. An iterative algorithm based on gradient method for obtaining

c can be given by

c(n+l) = c(n)+QzZ {f(x) - cTz} 7)

XETI UT2

Koford and Groner [6] observed that the criterion D2 (f, W) can be expre

expressed in the form

2

D2 (f, W) = Z N.[kTS.9 + {Tm. + c + ()J} 2 ] (8)

j=l

where CT =[9T, c ], m. = x/N., S. = (x-mj)(x-m)T /Nj
0 , J ] J J J

xcT. xcT.
J J

and N. is the number of observations in T.. The values of k and c that

minimize D2 (f, W), given by (8), are as follows.
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As mentioned earlier, a nonlinear classifier W(x, c) is obtained in the

form of a linear combination

W(x, c) = cT (x) = clQl(x) + ... + cmQm(x) (1)

of linearly independent nonlinear continuous functions Ql(x), ..., Qm(x),

whose functional forms and number are prechosen. The performance of the

classifier W(x, c), how often the classifier will be able to correctly

classify an observation of known classification, depends primarily on the

choice of these functions. But, often they are chosen arbitrarily on the

basis of economic consideration and one's intuition. However, sometimes,

when one has some prior knowledge of the population densities, they can be

satisfactorily chosen. For example, when it is known that the populations

have multivariate normal distributions with unequal covariance matrices, the

function W(x, c) may be chosen as a second degree polynomial in xl, ...,

x , the p components of the observation vector x, and the functions Q (x)'s

P k k2  k

as the monomials x x 2 . x , where k.'s are 0, 1 or 2 and
1 2 p

kI + k2 + ... + k = 2. It has been suggested [5] that when the densities
p

are unknown, the functions Q (x)'s should be taken as orthogonal or ortho-

normal functions such as generalized Hermite functions given by

(n) -n/2 n P

Hk k k W = (-1)n (2T) k n k exp (- E x. 2). (13)
P x ... x i=

1 p

Unfortunately, there is no specific rule to guide us in selecting these

functions judiciously.
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4.1.. Patterson - Womack Classifier

The adaptive classifier of Patterson and Womack [8] is a nonlinear

classifier W(x, c) obtained as an approximation to a function f(x) that

separates the training sample sets T1 and T2 and takes the value C(211) on

TI and -C(112) on T2, where C(jii) denotes the cost of misclassifying an

element from HI. into H.. The parameter vector c is selected as a vector

c that minimize the pay-off function

M(NI, N2) = (q/N1) IW(x, c) - C(211)1 2 +

xcT 1

(q2/N2) Z W(x, c) + C(12) 12 ,  (14)

xET2

where N. is the number of elements in T. and the prior probability qi of

the population H. ,is assumed to be known. As in (5) and (6), it is not

difficult to see that M(NI, N2) is the sample average of IW(X, c) - f(X)12

and therefore, by law of large number, M(NI, N2 ) converges to

R(f, W) = EIW(X, c) - f(X)1 2

as N m and N2 - C. Patterson and Womack [8] have shown that the vector

c that minimize R(f, W), as given above, will also minimize

E IW(X, c) - D(X) 12,

where D(X) is the Bayes' classifier given by
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D(X) = {C(211) qlpl(X) - C(112) q2P 2 (X)}/{qlP1 (X) + q2P 2 (X)} (15)

and Pi(x) is the density of Ii, provided that f(x) has been chosen in the

above fashion. This has been the motivation behind using C(211) and -

C(112) as the preassigned values of the separating function f(x).

When qi's are unknown and to be estimated, then N./(N I+N2) can be used

as an unbiased estimate of qi, where N. is the number of elements belonging

to T. out of a sample of size (NI+N 2 ) from the mixed population. Then the

criterion M(NI, N2 ) may be replaced by

D2 (f, W) = Z I W(x, c) - f(x) 12/(N+N2),
xeT UT2

the mean square error criterion. Patterson and Womack have called M(N1, N2)

the mean square error criterion.

Example. Let T = {[;0, ] T , [1, 0] T , [2, 1] T } and

T2 = {[0, 0] T , [2, 0] T , [0, -1_]T}

Then, assuming W(x, c) to be of the form

2 2
W(x, c) = cx + c2x2 + C3X1X2 + C4X + c5x2 + c (16)

and C(112) = C(211) = 1, we can obtain the parameters cl, c2, ... , c6 by

the least square method. Solving the normal equations, we obtain

cI = -11/8, c2 = 1/4, c3 = 5/8, c4 = 17/8, c5 = 1 and c6 = -1/4

and W(x, c) = (1/8)[2x2 - Ilx2 + 5x l x2 + 17x 1 + 8x2 - 2].
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A decision rule may be defined in order to assign xC 1H whenever W(x, c) > 0

and to H2 otherwise. We may note that such a decision rule correctly clas-

sifies all the observations in TI and T2.

In this example, the sets T and T2 can be separated by a quadric such

as parabola, ellipse, hyperbola or circle. That is why a classifier assumed

to be of the form (16) of a second degree polynomial in x could classify all

the points of T1 and T2 correctly. But there are cases when the sets T l

and T2 cannot be separated by any such curve. Then a second degree poly-

nomial in x will not be so efficient, that is, the classifier will not be

able to classify so many points of T and T2.

4.2. Potential Function Method

The potential function method was introduced for adaptive classifier

design by Aizerman, Braverman and Rozonoer [1]. They assumed that a function

f(x), f(x) > 0 on T l and f(x) < 0 on T2, that is, sign f(x) = 1 on Tl and

sign f(x) = -- on'T2, that can be used to separate TI and T2 can be

expressed in the form

f(x) =  cil (X) + ... + cm Qm(x) '  (17)

where {Ql(x), ... , Qm(X)} is a finite set of orthogonal or orthonormal

functions. This function f(x), which can be used as a classifier, can be

obtained iteratively using the following algorithm.

fn+l (x) = fn(x) + s(n+l) K (x, x(n+l)), fo(x) = 0, (18)

where s(n+l) = sign f(x(n+l)) - sign f n(x(n+)), fn(x) is the approxima-

tion to f(x) obtained at the nth step of iteration, x(n) is the nth obser-

vation in a sequence of observations of known classification from the
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mixture of the populations RIl and 12 and K(x, y) is a potential function

of the form

m
K (x, y) = Z Qi(x) Qi (y). (19)

i=l

In order to avoid the problem of choice of the set {Ql(x), ... ,

Qm(X)} Braverman [3] made the following suggestions. Let us assume that

f(x) can be represented by

f(x) = Q c. Q(x), 2 < (20)

i=l i=l

where {Q (x)} is a complete set of square integrable functions. Then

K(x, y) in the above algorithm (18) should be replaced by a function

K(x, y) of the form

K(x, y) = Z Qi(x) Qi(y). (21)

i=l

Braverman showed that if we take

K(x, y) =  F (d(x, y)), (22)

where F is a continuous real function, d(x, y) is any function defining

distance between x and y and F has a positive Fourier transform everywhere,

then K(x, y) can be represented in the form (21). For exaniple, K(x, y)

may be chosen as

K(x, y) = exp { - ac2  I xi - y 2 }, (23)

i=l
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where a is any finite real number. Braverman has shown that the sequence

fn(x), where x is an observation from HI or 2, converges in mean to the

function f(x).

Example. In the expression (23) for K(x, y) we choose =l and illu-

strate the construction of f (x).

n xI  x2  Member s(n) fn(x)

1 0 0 T -1 - exp ( -- x)
2 2

2 0 T 2 2 exp { --x -- (x2-1) + f(x)

3 2 0 T2  0 f2(x)

4 2 1 T1 0 f2(x)

5 0 -1 T2  0 f2(x)

6 1 T 2 f2 (x) + 2 exp { - (xl-1) 2- x2

4.3. Stochastic Approximation Method

Yau and Schumpert [10] have used stochastic approximation method in

obtaining an adaptive classifier W(x, c), as in (1), as an approximation to

a function f(x) that takes the value 1 on TI and -1 on T2 using G(c) given

by

G(c) = E f(x) - W(X, c)12
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a special case of (5), as a pay-off function. G(c) has a unique minimum,

or, the equation G'(c) = 0 has a unique solution. But the density qlPl(x) +

q2P2(x) of X from the mixture of Hl and H2 being unknown, G(c) is unknown.

The solution c of G'(c) = 0 can be obtained iteratively using the following

algorithm.

c(n+l) = c(n) - a {cT(n) 4 (x(n) - f(x(n))} D (x(n)),

T
where x(n) is the nth observation from the mixture of H1 and 12 T(x) =

[Q (x), ... , Qm(x)] and {an } is a sequence of real numbers satisfying the

conditions

2
(a) Ea = m and X a < m.

n n
n=l n=l

{l/n) is an example of one such sequence. The convergence of c(n) to c

follows from the fact that c(n) forms a Robbins - Monroe process.
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ABSTRACT

Two recursive estimators for the current 'mean' of two

stochastic processes used in model.ling patterns varying over

space and/or time have been obtained. A brief survey of models

and estimators so far proposed in literature has also been made.



1. Introduction

In the analysis of remotely sensed data, such as multispectral scan-

ner (mss) data, it is usual practice to assume that the data generated

come from populations having multivariate normal distribution. When the

parameters of the distributions, namely, the means and the covariance

matrices, are known, then assuming the misclassification costs to be the

same for all populations the Bayes' classifier, the classifier with mini-

mum probability of misclassification, is given by

W.ij(x) = log Pi x) - log pj(x) + log (qi/q.),i#j,i, j=l,...,m,

where m is the number of populations and Pi(x) is the density and qi is the

prior probability of the ith population. When the parameters are unknown

the usual and useful practice in designing classifiers is to replace the

unknown parameters in (1) by their respective estimates obtained from a

training sample, a sample of known classification. These sample based

classifiers, which we shall refer to as estimate plug-in classifiers, do

not in general minimize the probability of misclassification. But they

are useful in large number of applications and theoretically desirable

since we know (Anderson [2]) that as the training sample sizes increase

the estimates converge with probability one to the value of the unknown

parameter, provided that the observations in a training sample are iden-

tically distributed. Thus for large training sample sizes and each

training sample having identically distributed observations a sample

based classifier may be expected to perform satisfactorily.

The data obtained by remote sensing devices in the earth resources

survey come from large areas and over a long period of time. Often the



statistical characteristics of the data have been found to undergo changes

over space and time due to variation in spatial and temporal conditions.

Thus observations in a training sample collected from a large area and/or

over a long period of time are not identically distributed. Therefore,

the estimate plug-in classifiers in which the estimates are based on such

samples can no longer be expected to perform satisfactorily in classifying

patterns that vary over space or time. The performance of these estimate

plug-in classifiers can be improved by updating the estimates whenever

necessary.

The estimate updating methods are applicable to all populations in

the same way. So, without loss of generality, we can discuss these

methods in the context of any single population.

The efficiency of the updated estimates depends to a great degree on

the accuracy of the statistical model chosen to represent the statistical

nature of the varying patterns. But the complexity of the statistical

model may on the other hand lead to estimates that are not useful for

practical purposes because of computational inconvenience. In this paper

we shall consider two general models for estimation and some "quick"

methods of estimation based on exponential smoothing techniques (Box and

Jenkins [3], Brown [4]).

Throughout the paper we shall denote a sequence of observation vec-

tors from the p- dimensional population H by Y1 Y2' ... , Yn, ... and

assume

Yk = Xk k' (1)

where Xk's are the signals, true patterns or means of Y k's and Wk's are



p - variate normal random noise vectors distributed independently and

identically as N(O, C). Henceforth we shall write L(*) to designate the

distribution law of the random vector or vectors in the parenthesis.

2. Autoregressive Model

The pattern Xk can be assumed to be a member of a r-th order auto-

regressive process. For the sake of simplicity and mathematical tract-

ability we assume that Xk is a member of a first order autoregressive

vector process given by

Xk - A Xk- = Zk- (2)

where A is a pxp matrix of real numbers, Zk's are independently and

identically distributed as N (0, E), Zk's are independent of Wk's and

L(X1) = N(O, V). The process is known (Box and Jenkins [3]) to be sta-

tionary if IAI < 1, where IAI denotes the determinant of A, and nonsta-

tionary otherwise.

We shall denote by L(P), L(P, Q) and L(PIQ) the probability distri-

bution of P, P and Q jointly and conditional distribution of P given Q

respectively. We know that if L(P, Q) = N(p, D), L(P) = N(pl, D1 1), L(Q)

N(p 2 , D2 2 ) and

D D I
D = 11 12 , =

D 2 1 D22 2



then L(PIQ) = N(Q, q), where

-1
Q = l + D12 D22 (Q -2 )  (3)

-1
and = D - Db D22 D21.11 12 22 21

Therefore, from (1) and (2) we have

Y1 = X1 +W1 , L(Y1 IX1 ) = N (XI, C), L(Y1) = N (0, V+C).

and hence L(Y1, XI) = N(0, Q), where

Q=[V+C V]

From (3) we now have L(X1JY1) = N (Pi' Q1 ), where

Pl = E(XJIY 1) = V(V+C)-Y (4)

Q1 = Cov (Xl, X1 Y 1) C(V+C)-Iv.

Similarly we have

Y2 = X2+W 2 = AX1+Z+W2 '

so, L(Y2 1Y1) = N (Ai1 , AQ1AT+Z+C) and L (X2 1Y) = N (Al, AQ1AT+Z)

As in (4), we obtain from (3)

2 = E(X21Y2  Y ) = C (AQ1AT+E+C)-A 

+ (AQ1AT+E) (AQ1AT ++C)- 1 Y2

and Q2 = Cov (X2 , X21Y 2 , Y1 ) = C (AQ A T+E+C)-l (AQIAT+Z)



thus k = E(X Yk' "' Y1) = C(AQk- +E+C) Apk-1+(AQk-

T T -l
+ (AQ A T+E)(AQ A T++C) -l Yk-1 k-l k-1

and Qk = Cov (Xk' 'k k' Y 1) = C (AQk-1AT+E+C)-I(AQk-lAT+Z) (5)

From the above model we can obtain the model of Abramson and

Braverman [1] by taking A = al , where I is the pxp identity matrix

and a is a real number, and that of Scudder [12] by taking A = I

If we assume IAI < 1, so that the process is stationary, then we obtain

the model proposed by Tamura et al [14]. Following Abramson and Braverman,

if we assume for slowly varying patterns that Q = XC, E = { 2/_-X)} C,k-i

0<X<l, in order that Qk-1 = Qk' then we have from (5)

k = (1-X) Pk-1 + XYk

Writing k = E(Xk+Yk, ... , Y1), we obtain

'k = E(X+lYk+ Y 1)

= E(Xk+ZklYk, ' Y1 ) = k'

Therefore pk = (l-X) k- + XYk (6)

The above recursive formula is reminiscent of the exponentially weighted

averages to be discussed in section 4.

In the model (2) it is implied that a new pattern is encountered at

each observation, in other words, Y' "... Yn are observations on random

vectors each having different means. The efficiency of the estimator (5)



will be poor if the changes in pattern are few and far between. In Sec-

tion 6 we will come back to the question of how to improve the estimates

(5).

3. Chernoff - Zacks Model

For analyzing time varying patterns Chernoff and Zacks [6] proposed

a model and obtained minimum variance linear unbiased (MVLU) estimate of

the current mean. They also obtained Bayes' estimator and an "ad hoc"

estimator, a simplified version of Bayes' estimator. But they are unus-

able for practical purposes, Bayes' estimator due to computational diffi-

culties and the "ad hoc" estimator due to its being based on many restrictive

assumptions. Chernoff and Zacks dealt with univariate observations. There

we have Yk, Xi, Wi as univariate random variables. The model assumes

Y. = X. + W., i = 1, ... , n, (7)

X. = Xi+l + J.Z.i i = 1, ... , n-1 (8)

where W.'s are independently and identically distributed as N(O, 1),
1

J.'s are random variables having the value 1 if there is a change
1

in the mean or pattern X. between ith and (i+l)th observation and the
1

value 0 otherwise and Z. is a random variable representing the amount
1

of change when a change takes place.

Let us write

nxl nxl nxl nxl
Y W n-1 0n-1j n0



Then noting that we can combine (7) and (8) to obtain the equation

n-1
Y. = X + W. + E J Zk, l<i < n-l,i n I k k

= X +W i=n,n n

we can write

Y =X e + W + MZ, (10)

where M = J .. Jn-1 and e = 1
n x nJ2 "" Jn - 1 0 n -- 1

J J 0 ax1
2" n-1 0

0 0

If we assume

P(Jk= 1 ) = Pk' k=l, ... , n-l, (11)

and L(Z) = N(O, a2S)

where S = [In- 0 , (12)

then we obtain from (10) that

L(YIX , J) = N(Xnen, Q(J)),

2 T
where Q(J) = I + a MMT .  (13)

n



From (11) we have

k=l
n-n-

EQ(J) + E } + ( k) k=0}
k==1
n-i

= I + Z Pk R(n, k), (14)
n k=l

where R(n, k) is a nxn matrix whose upper left submatrix is Ek, a

kxk matrix all of whose elements are 1, and the other elements are zero.

When changes in the mean occur almost always or when there are al-

most no changes, the random vector J can be assumed to be distributed

independently of Y. In that case we obtain from (13) and (14)

L(YIX) = N(Xne, V n), (15)

n-i
where V = EQ(J) = I + Z Pk R(n, k). (16)

n n k=l

If P n is the current mean, the mean of Yn, then using standard argu-

ments it can be shown from (15) that

T -1 T -1
S= e V Y / e V e (17)

n n n n n

is a MVLU estimator of p . If v(n, j) denotes the sum of the elements

-1 ^
of the jth column of V , then P can be written in the form

n n

n-1 n-i

Pn = [E v(n, j)Yj + Y ]/[X v(n, j) + 1i]. (18)
j=1 jn =



When we have n+l observations, we can obtain in a way similar to

(16)

n 2
Vn+1 = In+1 + Z o Pk R(n+l, k)

k=l

= 0 2+  p  [ [eT 0]
n n n

We know (Rao [11] p. 29) that if

B = A + U VT

pxp pxp pxl lxp

-1 -1 -1 T -1 T -1
then B = A - A UVTA /(1 + VA U). (19)

Therefore,

-1 2

V0n+l -+p e Vn e
n n n n

where Kn+1 = (n, 1)1 [v(n, 1) ... v(n, n) 0]. (20)

v(n, n)

So, v(n+l, n+l) = 1

2 n
v(n+1, i) = v(n, i)/[1l + a v(n, k)], 1<i<n,

k=l

n n n
and 1 + E v(n+l, i) = [1+(l+o pn) E v(nli)]/[l + o pn Z v(n, k)]

i=l i=l k=l

n n
Therefore, n+l = [E v(n+l, k) Yk + Y n]/[1 + E v(n+1l, k)]

k=l k=l



n n
[Z v(n, i)] n + [1 + cr p E v(n, i)] Y
i=l i=l

2
1 + (1 + a p) E v(n, i)

i=l

n n + n  n+l'(21)

n n

2 2
where = {1 + a p E v(n, i)}/{l + (1+o pn) E v(n,i)}.

n i=l i=l
(22)

Using (22) we can now recursively estimate the current mean.

4. Exponentially Weighted Moving Average

In analyzing observations on space and time varying patterns, espe-

cially time series data, it has been a popular practice (see Brown [4])

to use exponentially weighted moving average (EWMA) (Box and Jenkins [3])

as the current "mean", location or "level" of the process because of its

success in a variety of applications. Let {..., Ytl ,Yt} be observations

at .. t-l, t (a stochastic process in discrete time). Then an exponen-

tially weighted moving average (EWMA) is a predictor or forecast of a

future level at t + h derived by weighting past observations "exponen-

tially" (or geometrically) and expressed in the form

Y (t, h; X) = A E (1-)r Yt-r 1  <1 (23)
r=0

= A Yt +(l-A) Y (t-1, h; X), I.1 <1. (24)

For h=l, we shall w-ite

Y(t, 1; A) = Yt(A). (25)



Thus from (24) and (25) we have

Yt(X) = Yt + (1-X) Ytl( ) (26)

t-r
r=O

Muth [10] has shown that Yt(A), as given by (26), is optimal for some

A for the following nonstationary moving average process. Let

Y = Xt+Wt'

Xt = Xt- 1 + Z , (27)

where W t 's are independently distributed as N(O, 2 ) and Zt's are

independently distributed as N(0, t ). Then the predictor Yt ()

given by (26) minimizes the error variance

E(Y t+- t (A)) (28)

when A is given by

t t t1/2
S= 2 o (1 + 2) (29)

20 40

From (28) it also follows that

Yt (A) = E(Xt+Yt Yt-l' ... ). (30)

When Yt is a pxl vector, L(Wt) = N(O, C), L(Zt) = N(0, Z),

then following Muth, it can be shown that Yt(A) minimizes the scatter of

error given by



E"YT
E (Yt+l- t (A ) (Yt+l- Y (W) )

provided we take

S= 1 + (l /21C!) - j/ICI J1 + II/41CI. (31)

In passing, it should be noted that the choice of the weight X is

vital in the definition of EWMA. In many situations EWMA's may not be

optimal, because the underlying process may not be of the form (27), or

even if the process is of the form (27), the matrices Z and C are

unknown, so that it may be impossible to obtain the exact value of A

given by (29) or (31). Even then they are attractive because they are

easy to compute.

Motivated by the work of Abramson and Braverman [1], especially by

the equation (6) which has been derived from a model of the form (27) and

perhaps following the popular practice, Kriegler and Horwitz [8] have

proposed that for simultaneously updating the current mean of several

populations whose covariance matrices do not change any one of the follow-

ing three algorithms should be adopted.

(1) Exponentially Weighted Running Estimates

If an observation A has been recognized as one coming from the

class I., then the present mean M. of this class is to be updated to1 1

a new value M', where
i1

Mf = (1-A) M. + AY, (32)
i 1

and A is a constant.



Kriegler and Horwitz have recommended that X should be given a

value between 0.001 and 0.003. Evidently such small X will heavily

weigh the past observations, especially the present mean M. and will
1

attach very little weight to the current observation. Unless the pat-

terns are extremely slowly varying, such small X will make the updated

mean M' a very poor representative of the current pattern.

(2) Exponentially Weighted Running Estimates With Interaction

Assuming that at any time the mean 14. of the class H. is related
1 1

to the sum M of means of all M classes by the equation

M = mpiMi, (33)

where pi is constant for all' time, the present mean M. of any

clsss H. should be updated to the value MC, where
J J

Mj = piMC/p (34)

and Mf is the current updated mean of Hi, updated according to (32).
i 1

The assumption (33) is hard to justify.

(3) Posterior Probability Weighted Estimates

Let K. denote the fixed covariance matrix of R.. Then according
1 1

to this algorithm an observation Y is assigned to the class H. if
t 1

for some preassigned threshold value tl,

Li(Y t ) >L.(Y t) and Q.(Y ) < tl'

wIhere L i ( t e (Yt) 1

where L.(Y ) = K. exp {-Qi(Y )/2}
i t 1 i t



T -1
and Qi(Y) = (Y-Mi) K (Y -Mi).

The mean M. should be updated to M given by
1 1

M= 1 + YR.(Yt )(Y -M) (35)i i t t i

= {1 - X(t, i)} M. + X(t, i) Y t

where Ri(Yt) = Li(Y )/ m L.(Y )
j=l

and X(t, i) = YRi(Y t), y being a constant (O<y<l).

The updating formula (21) based on Chernoff - Zacks model and formula

(35), both resemble EWMA, except that the weights are now variable and to

be updated each time. The predictor (21) has been shown to be MVLU. But

the predictor M given by (35) may not enjoy any such property. It is
1

not known for what kind of process M' will be optimal in some sense.
1

Kriegler and Horwitz have suggested some values of tl, t2 and y on

empirical grounds, but have failed to give a specific rule for the selec-

tion of these quantities. The performances of the predictors (35) in

different situations are yet to be determined and compared.

The work of Kriegler and Horwitz [8] motivated Chang [5] to propose

updating formulae for the mean and covariance matrix using variable

weights. Let Y I, .. , Yjn(j) denote the observation from the jth

training field, a set of identically distributed random vectors. Then

the updated mean M' is given by

MC = Yj M1 + (l-y ) M , (36)j j-l j,36



where M. = (Y. + ... + Yj(j)/ n(j),

y. = aj_ 1 Nj_/ Nj,

Nk = n(l) + ... + n(k)

and aj_. is a number satisfying 0 < a. < N./N and to be guessed
- -- i-- j i-i

from the nature of the data. The covariance matrix is to be updated to

K. where
J

K. = {N./(N -1)} (Q- - MC M T ) '  (37)

Qj = Yj- Q- + (1-yj _) Qj,
j j-1 j-l j-1 j

n(j)
and Q = E Y.. Y. n(j).

i= 1  i i

When the patterns are varying, the updated "mean" M given by (36) is

not an unbiased estimate of the current mean. It is not known in what

way these updated estimates are optimal. The other disadvantage of this

algorithm is that it leaves the choice of yi to the gues:: of the user.

5. Updating By Kalman Filters

Consider the dynamic relationship

Yk = HkSk + Wk (38)

Sk = ASk_- + Zk-1

satisfied by the pxl observation vectors Yl' " Y k ... and the

qxl state vectors S1 , ..., S, 
5 ... where Wk 's are pxl random



noise vectors independently distributed as N(0, C), Zk's are qxl

random vectors distributed independently of each other and of Wk's as

N(0, Q) and the pxq matrix Hk and qxq matrix A may be time vary-

ing, but are known matrices of real numbers. It is well known (Lee [91)

that an estimate Sk of Sk  given Y' "... Yk such that

E(Sk) = E(Sk Yk' " Y1 ) (39)

and E[(Sk-Sk)T (Sk-Sk)] is minimum

can be obtained, using discrete Kalman filter, recursively as

T -1 (40)
Sk = ASk-l + Pk C [Yk - HkAS- (40)

Pk = [(A Pk- AT + Q)-1 + HC- Hk] (41)

= Cov (Sk' Sk k' .., Y1)

Assuming covariance matrices of all populations to be the same and

not undergoing any change, Crane [7] used the estimation method by Kalman

filters for simultaneously updating the means of the populations

E ... ' m. Crane considered the following model:

Yk = 'kSk + Wk' (42)

Sk = Sk-1 + Zk-l' (43)

Hk = k (Ip (44)



where Mk is a mxl matrix with ith row (i1, ... , m) as 1 if Yk

has been recognized to be coming from H. and zero otherwise and A B
1

denoting the Kronecker product of the matrices A and B (Anderson [2]).

It has also been assumed that

Q = R C, (45)

1 r2 ... r 2

where R = rl r2 1 ... r2  (46)
mxm

r2  " 1

The state vector Sk  is a m pxl vector of m stacked subvectors of

(i) (i)
pxl vectors of present means (prior to updating). Let i) and Zk

denote the ith pxl vector component of Sk  and Zk  respectively.

Then assuming Yk to be an observation from H., we obtain from (42),
k 1

(43) and (44) that

Yk = i) k (47)

(i) (i) (4(i)8)
Xk- k-1 (48)

This is the process for which EWMA s are optimal. Thus it is evident

that Crane's model is a generalization of the above model so that in

simultaneously updating the means of all populations their interaction

has been taken into account.



Noting that

[(Pk-1 +  )- + C- 1 k-1 Hk C-1

= (Pk-1+ Q) k [lk- (Pk-1+ Q) HLT + C]-1

we now obtain from (40) that

Sk = Sk + (P (Pk-+ Q) [H (Pkl + Q) H + C]-l(Yk -Sk ). (49)

Further assuming L(S1) = N(0, Po) and

P = T 0 ) C, (50)

mpxmp mxm pxp

we can obtain from (45) that

-1 T -1 -1P +Q (P + HT C- H + Q

-1 T -1
=(To + M M) G C + R 0 C

0 111

ToM 1 MTTo
= {T - C + R C

o l+M ToM
o 1

= T C

and P2+Q =T - 1  -1+ R
and P +Q Hp +Q) + H2 C H2] + R 0 C



= (T1 + M2M2) 1 C + R Q C

T
TIM2M2 T1

= {T - } 2 C + R C
1+M

2 TIM 2

=T 2  C,

ToMIM T o

where T = T + R
0 1+M T o M1

TIM2M2 T 1

and T = T + R
2 1 2

By induction, we can obtain

Pk + Q = Tk 0 C ,

mpxmp mpxmp mxm pxp

Tk- M k M Tk-l
where T = T - + R (51)

k k-1 T
1 + M4 T k

Using (51) we can simplify (49) and obtain

A T -1
Sk = Ski + [(1+14 Tk-l M k)-i Tk-l i 0 I ] (Yk-HkSk ). (52)

Crane has suggested some "ad hoc" value for rl and r2  in (46)

in order to define the interaction matrix R. But it seems more reason-

able to estimate them from a part of the sample.



The above estimation procedure will be clear from the following

numerical example.

Example. Let m = 2, p = 2, To =2, C = 2, r I = 0.01, r 2 = 0.02,

Y1 = [1 2] E 1 Y =T [-1 1] E R2 Then

T T
M = [1 0], m2 = [0 i],

T
M To M= 1i,

T1 12 - {I2 [1 01 121/ 2 + 0.01 L.02 0.01

[1 0] [0.5 0] + 0.01 0.0021

0 1 0 0 0.002 0.01

=[0.51 0.002

0.002 1.01 ;

MT2T1M2 = 1.01,

T 2 = T1  {T1  [0 ] Tf}/ 2.01 + R

T - 0. 0.002 0.51 0.002 + R.
2.01 0 1.01 0.002 1.01

6. Detection of Change in Mean

The models on which we have based our estimation process so far

implicitly assume that the means change almost at each observation. If

this is the case, then the updating of means using the procedures so far

discussed is just. But when we are considering spatial variation and



have observations from points spaced not too far from each other, then it

is more likely that the sequence of observations Y1 Y2' ... Y n  can be

grouped as {Y1, Y2' " Ykl' kl +1' kl+2' "' Yk2} ... such that

members in the same group have the same mean while members in different

groups have different means. In that case it will be more reasonable to

use the arithmetic mean (Y + ... + Y )/(ki+ - k.) as the mean
k.+1 k i+l i
i i+l

of Y.(k.+l < j < ki+ ) than to use the mean obtained by the updating
j 1 - i -+

process. But often the points KI, k2, ... at which the changes in mean

take place is unknown. Therefore we have to use some statistical test

in order to determine the points of change.

When Y1. Y2' "... Yn are pxl random vectors independently dis-

tributed normally with the same covariance matrix, say I , then for test-

ing the hypothesis

H : p = P = .. = (equality of means)

against H : = .'' =  r #r+l "' =n'

where the change point r is unknown and 1 < r < N-1, Sen and Srivastava

[13] have used the test statistic U* given by

n-l n-i n-i
U* =N( (Yj+ - ( (Yj+ Y)

i=1 j=i j=i

where Y = (Y1 + + Y )/N. They have also given the asymptotic

percentile of U* for p=2 through p=8. Chernoff and Zacks [6] have

also given a test for p=l. For other references of work in this connec-

tion we refer to [13].
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Addendum to Papers 1, 4 and 5

Consider the matrix P for the two crop situation. Say,

P(111) P(112)
P (21) P(2 , where P(lIl) = x/N 1 P(212) = y/N 2  and

P(2j1) P(212 2

P(211) = 1 - P(l1), P(112) = 1 - P(212). x is the number correctly

classified into population one and y is the number correctly classified

into pojulation two. Since X and Y are indeyendently distributed as bi-

nomial variates, the probability that P is singular is positive. This is

illustrated for the case N =N2 = 3 where pi represents the probability of

correctly classifying an observation in population i.

Since P is singular iff xy - (3-x)(3-y) = 0, iff x+y = 3, there are 4

points yielding P singular. They are (1,2), (2,1), (0,3), (3,0) and the

^ 22 2 2 33 33probability P is singular is 9 plq 212 + 9 p 1q 2q 2 + q + p q2 . In

general, if N1=N2  there are N2 +1 points which yield P singular.

Hence, an alternate method must be used to estimate P. One approach

is to estimate pi, E. for each population from training samples and then

estimate P(i j) by P(ijj) = f p.(x;I ,E.) dx, where R. is the region
R. 1

1

corresponding to an observation being classified into the ith population,

and p. is the (continuous) density function of the jth population. The

probability that P is non-singular with probability one can be established

using advanced probabilistic arguments.

Another approach is to use the pseudoinverse of P rather than the inverse.

However, this approach would affect all the analyses done and the results may

be difficult to interpret. This approach is probably the best but needs to

be studied to assure that subtleties have not been ignored.
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Finally, one could make the analysis conditional on the fact that P is

non-singular. Formulas for variances and mean squared error of P would

necessarily be modified to incorporate this condition; yet the analysis

would conceptually be straightforward and follow the arguments now presented.


