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Foreword

This document is the Final Report of the delivery
of HAL compilers and the engineering study reports of
the design of HALM, a computer architecture to directly
execute HAL statements. This program was sponsered by
by the NASA Johnson Spacecraft Center, Houston, Texas,
under Contract NAS 9-12291. It was performed by Inter-
metrics,' Incorporated, Cambridge, -Massachusetts -over
the period October 1971 to July 1974. The program was
under the direction of Mr. Daniel J. Lickly and Dr.
Fred H. Martin. Mr. Woodrow Vandever was the principal
contributor to the HALM effort documented in Chapter 4
of this report. The NASA Technical Monitors for the
Johnson Spacecraft Center were Mr. Jack Garman and
Mr. Richard Carl.

Publication of this report does not constitute
approval by NASA of the findings and conclusions
contained therein.
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1. INTRODUCTION AND CONTRACT SUMMARY

The development of the HAL language and the compiler
implementation of a mathematical subset of the language had
been completed under NAS 9-10542. The on-sitel support,
training, and maintenance of this compiler were completed
under NAS 9-11944. The objective of this contract was to
broaden the implementation of HAL to include the implemen-
tation of all features of the language specification thus
permitting MSC to conduct an evaluation of the language
for NASA manned space usage. The contract commenced on
31 October-1971 with these two tasks: The implementation
on the 360 of all HAL language specification features and
the implementation of a HAL compiler for an airborne computer.
In this case, the IBM 4wEP.computer was selected. This machine
was scheduled to be an integral part of an MSC Shuttle avionics
breadboard. Early in the contract period, it was recognized
that this avionics development system was being redirected
and it was pointless to continue with the 4fEP as an object
machine for a HAL compiler. Fortunately, few resources had-been
expended in this direction. A stop work order was issued,
followed by a change order directing Intermetrics to establish
a HAL facility on the Univac 1108. This contract change order
was.effectively initiated in April 1972.- In addition to the
1108 compiler effort, a task was also undertaken to conduct
a study of the problems associated with implementing a HAL
compiler on an air borne computer.

In July 1972, the Space Shuttle Orbiter contract was
awarded to Rockwell, International (then North American -

,Rockwell). In October 1972, at the first meeting of the soft-
ware control board, it was decided to use HAL as the programming
language for the Space Shuttle computer. Intermetrics came
under contract for the development of those compilers. It
was then redundant to conduct the engineering study under
this contract as the implementation would solve these
specific problems. This effort was put aside until August
1973 when, after considering a number of alternatives, it
was decided by NASA/JSC to conduct a design of the implemen-
tation of a HAL machine.
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The contract was amended in January, 1973 to add an
additional task to conduct a study of the possible implemen-
tation routes to construct a GOAL to HAL translator. This
effort was conducted for the Kennedy Space Center using
this contract or an existing vehicle and was intimately tied to
the basic contract objective. The results of this work
have been previously reported and are contained in the
following document:

1. The GOAL-TO HAL/S Translator Specification,
Contract NAS 10-8385, December 15, 1973.

This final report then addresses three basic items.
Chapter 2 is a summary of activities associated with the HAL
compiler for the IBM 360/75 computer. Chapter 3 is a
summary of activities of the moving of the HAL/360 compiler
to the UNIVAC 1108. Chpater 4 is the results of the
engineering study and design of a HAL machine. Chapter 5
are the conclusions and recommendations for further work.
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2. THE HAL/360 COMPILER

2.1 HAL/360 Compiler Releases

The structure of the HAL/360 compiler had been
developed under a previous NASA contract. The compiler
is a two pass compiler. Pass 1 performs syntactic and
semantic interpretation of HAL statements. The output
is an intermediate language, HALMAT. This portion of
the compiler is machine independent and is written in
XPL. XPL is a higher order language (a subset of PL/1)
and has been designed for writing compilers. Pass 2 of
the compiler is the code generator and becomes machine
specific. In this compiler, the code generator translated
HALMAT into Fortran. There were some portions of HAL system,
the run time library, that were more ammenable to direct-360
BAL statements and were implemented in that manner. This
general structure of the compiler was released for usage on
6/8/71 and implemented a mathematical subset of HAL plus
certain other features. Further releases of the compiler
were accomplished during the summer of 1971. These added
new language features and modified the compiler to operate
on the IBM 360/75 complex at MSC which utilized RTOS as
the operating system.

The compiler development was managed using the develop-
ment plan concept. The plan was updated and reviewed with
NASA/MSC technical personnel on approximately a two month
schedule. The final release schedule for compilers is shown
in Figure 2-1.

2-1
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HAL COMPILER RELEASE SCHEDULE

Release Target Predicted Actual
Number Date Date Date Comments

360-1 4/5/71 4/5/71 4/5/71 Feasability Version

360-2 6/8/71 6/8/71 6/8/71 Most of HALM plus other features

360-3 7/30/71 7/30/71 7/30/71 RTOS Modifications

360-4 9/15/71 9/15/71 9/15/71 See HAL User Memo (10/71) (Appendix A)

360-5 1/10/72 1/10/72 1/10/72 See HAL User Memo (03/72)

360-6 :3/15/72 4/1/72 4/14/72 Most of Real-time, complete output
writer, diagnostics HAL User Memo(15/72)

360-7 5/15/72 6/8/72 6/13/72 User-aids, error handling
HAL User Memo (19/72)

360-8 7/15/72 8/8/72 9/15/74 Structures, update blocks, access rights,
data sharing, link to FORTRAN, Optimiza-
tion, clean ups

360-9 10/1/72 10/1/72

360-10 11/1/72 11/1/72

360-8A 2/21/73 Final HAL 360 Release

7/25/73 Compiler modified to correct reported
errors and discrepancies

Figure 2-1



2.2 Compiler and HAL System Features

2.2.1 Real Time Features

The real time language features of HAL were
released in version 6 of the compiler with some of the
final clean up of these features being completed by
release 360-8. The real time features of HAL provided
an active means of controlling the computing system
for purposes of manned space software development. These
features were, for the most part, a departure from the gen-
eral capabilities of most higher order languages. In
particular, the Fortran intermediate approach to HAL
-implementation did not provide means to deal with these
features. For the most part, they were implemented by
linking to run time routines written in 360 basic assembly
language, BAL.

Real time implies a clock, either a real or pseudo-
clock. In this implementation, the actual 360 clock was
used for timing. Interfaces to this clock were implemented,
and access to time dependent HAL statements were thus 360
clock time dependent. A dynamic storage capability was
implemented permitting multiple scheduling of the same
program or task. Included in the real time statements
implemented were:

SCHEDULE: A capability to activate a program or
task on the basis of an event or time.

TERMINATE: The ability to terminate a program or
task.

UPDATE PRIORITY: This feature permitted the change
in priority of a program or task in real time. Real time
dependency permitted an ability to schedule in advance a
program or task dependent upon another program or task.
Real time task ID was implemented. This is an ability to
control multiply scheduled versions of the same program
or task.
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A second category are the real time services.
These inclide:

SIGNAL: A statement that causes an event.
This event could be used to wake up a task or program
and be activated on the basis of the emitted signal.

WAIT: A program could be scheduled to WAIT
in real time for a signal or a specified time.

Data sharing is a feature that was included with
the HAL system. This is fundamentally a real time feature.
The capability was included to permit data to be shared
with reading and writing. A series of locks are employed
such that during the time that data is being modified or

accessed by a program, the operation is permitted to run
through completion without being interrupted by another
program which desires to modify or access the same data.
The critical operations are confied by the compiler-to an
UPDATE block, which provides both high visibility on the
program listing and the protected environment during execution.

2.2.2 Advanced HAL Language Features

The following advanced development features were
included in the HAL compiler implementation:

ARRAYS: An ability to handle data structures of a
very complete nature was included in the compiler
implementation. These could be multi-dimensional arrays,
or hierarchical tree structures of data. Structures were
handled in a very general sense.

BITS AND CHARACTERS: The ability to manipulate
bits and to handle characters were included in the compiler
implementation. An ability to control the precision of
data was part of the compiler implementation. This is
called precision modifier. It gave the ability to ask
for either single, double, or mixed precision of arithmetic.
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The file I/O statement was included. This gave,
through the language, a direct access to randomly stored
file data. A feature was added to the compiler to permit
Compool initialization, that is, a means to start the
Compool values out at desired values.

2.2.3 HAL System Features

Of primary importance to the HAL system was the
output writer. The output writer is a program which
operated in Pass 1 of the compiler to put each compiled
HAL program into a standardized format. The listings
were annotated and indented to provide paragraphing for
easy identification of programs, tasks, and procedures. --
It permitted quick identification of statements, such as
IF THEN ELSE, and DO groups. The multiple line format
was included to subscript and superscript variables, for
example, vectors were marked by a bar superscripted over
the variable and matrices with an asterisk. Brackets and
braces were used to identify arrays and structures.

At the end of the program listing generated by
the output writer, a program layout was formatted. It
gave the program and all the procedures and tasks within
the program, and the procedures within tasks.

A symbol table was included and a cross reference
for all of the HAL variables within that program or compila-
tion. Attributes of the HAL variables are listed, such as
statement numbers for declaration, reference and use. The
output writer was a significant advance as an aid to manage-
ment for flight software development.

A complete system of traces and dumps was included
with the compiler. There was an ability to dump at termin-
ation, and this dump was done with HAL variables. Individual
HAL variables could be dumped by name at any user-specified
statements. An ability to trace by HAL statements was pro-
vided. That is, an operation of the HAL statements could
be traced statement-by-statement in a dynamic sense, as
the program ran on the 360. One way link.to Fortran was
provided in the compiler. A HAL program could call a
Fortran program. This program could be linked in and run
with the HAL program.
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A complete system of error determination and

recovery was included. These fell into two categories:

compile time errors and run time errors. In the compile
time error category, the compiler listed where errors

were found, and categorized them. A serious attempt
was made to compile the program in the presence of errors.

There is a limitation as to the ability to coAtinue

compilation based upon the severity of errors.

The second class of errors had to do with run time

errors. Here, two capabilities are included. One

capability is to perform an operation upon the event of

an error. For example, ON ERROR X, performs this opera-
tion. A second class of run time errors are those associated
with mathematical singularities. These are signalled through
.the rn time system in the eventI o a matheatical error.

For example, DIVIDE BY 0.

Compiler directives are a feature that were included

within the system. As an example, the INCLUDE directive
allowed a programmer to include other HAL programs with a
simple inclusion statement. That is, that these -are non-
language features that aid in the building of HAL programs.

Access Rights: Access rights are management tools
which can be employed to limit the access of programs, tasks,

and procedures to the availability of data. For example,
only certain programs could be permitted access -to read the
state vector of the vehicle, or only certain programs could
be permitted an ability to write the state vector of the
vehicle.

2.2.4 Documentation

A HAL 360 User's Manual was issued in November 1972.
This document constitutes the User Manual for the 360
implementation of the HAL language and the compiler. The
User's Manual, along with the Language Specification,
contains the fundamental information needed for a programmer
to write and run a HAL program on the 360 computer. The
manual covered the following subjects:

Running a HAL Program: The communication required
with the OS 360 in the job control language.
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Compiler Outputs: The outputs of subsequent steps
of the compiler were covered in detail including the
compilation listings. This was the output writer that
was described previously.

The User's Manual contained a complete description
of the debugging aids both for real time and for non real
time programs. This included compilation errors, execution
errors, execution dumps and traces. In the real time
category, it included compilation errors and execution errors.
The manual also described HAL 'characteristics specific to
the 360. Such things as the character set, the internal
table capacities, the data type size limitations, Fortran
call restrictions, program organization limits, input/output
statements, program naming conventions, the include compiler
directive, and compile time compatibility checking.

The execution time characteristics contained input/
output, formatting of output, and execution time checks.
The unimplemented features of HAL and the language
restrictions was also contained in the document.

2.2.5 Re'sident Support, Maintenance, and Training

Mr. Carl Helmers was in residence at NASA/MSC from
November 1971 through September 1972. His principle
function was to aid programmers in the use of HAL and
install compiler releases on the IBM 360. He did, in
addition, a number of other tasks. These included: providing
complete listings of the error messages for the HAL 360
compiler, and aiding in the translation of XPL to the
Univac 1108. Mr. Carl Helmers, along with Dr. Fred Martin,
conducted HAL training courses. These courses were given
at NASA/MSC and at NASA/KSC. In the area of maintenance
and training, an important function conducted was the
communications with the C.S. Draper Laboratory, with whom
NASA had contracted to perform an evaluation
of the HAL language for manned space programming. This
group of people performed a very complete evaluation of
the language and compiler characteristics and its use for
manned space programming. There was much communication
between the two organizations to provide support for the use
of the compiler and for feedback of desired language features
into the HAL system.
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3. THE HAL 1108 COMPILER

3.1 Method of Implementation

Under contract NAS 9-12291, Intermetrics was to
provide two HAL compilers for the UNIVAC-1108 at
MSC: one essentially duplicating the capabilities
developed for the IBM/360 (RTCC), and one providing code
generation and linking to the G&CD FORTRAN functional
simulator operational on the 1108 (SSFS).

HAL/360 as it existed, compiled source HAL
language and emitted FORTRAN. This approach had
-utility at MSC in that linking HAL to already existing
FORTRAN programs was straightforward, and HAL/1108 would
exhibit this feature. The HAL compiler itself is a
large (-15,000 lines) program written in XPL, a
derivative of PL/1. It is compiled using XCOM on the
360/75.

1. 1108 Implementation

In transferring HAL from the 360 to the 1108,
three technical approaches were considered:

a) Write the compiler in HAL, that is, trans-
late the XPL program into HAL. XPL and HAL
have many similar features and the transla-
tion can be done, to a great extent (95%)
automatically. The objective is to obtain
a large HAL program, compile this program
on the current HAL/360 compiler, obtain
FORTRAN, adjust this 360/FORTRAN to 1108/
FORTRAN, and transfer the compiler. The
final 1108 compiler would then be in FORTRAN.

Intermetrics fully investigated this
approach, wrote sample programs, examined
emitted FORTRAN, and concluded that "HAL-in
HAL" is not feasible. The essential reasons
were that: 1) FORTRAN code generation is too
general for an efficient compiler implementa-
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tion, 2) resulting code would be very
bulky, 3) emitted FORTRAN is unreadable,
4) numerous "handcrafted" changes would
be necessary to adjust 360/FORTRAN to
1108/FORTRAN.

b) Write the compiler in FORTRAN, that is
translate the XPL program into FORTRAN.
This has the same effect as a) above,
that of producing a compiler written in
FORTRAN which can then be transferred
to the 1108. The advantage here is that
the translation is direct and not through
HAL. As a result, an efficient FORTRAN
version could be generated which would be
modular (i.e. a series of small subroutines),
and readable in that the names of variables,
etc. would have some relation to names in the
original XPL.

Intermetrics has investigated this approach
and although feasible, it was not recommended
for two principal reasons:

i) It required a large (essentially manual)
translation job from.XPL to FORTRAN.
These languages are not very similar
and we would expect the process to be
error-prone.

ii) FORTRAN does not offer language features
(control, naming conventions, block
structure, data types) which enhance
efficient and reliable compiler-writing.

c) Write the compiler in XPL, that is, utilize most
of the current XPL source code but provide
an XPL-to-1108 code generator. The result here
was to augment the current XCOM, which has an
XPL-to-360 code generator, with a new code
generator. In addition, modularize the XPL
source code by making its subroutines indepen-
dent for convenient use by 1108 programmers.

Intermetrics fully investigated this approach
and concluded that of all the alternatives this
was clearly the best. XPL was a well known
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quantity to Intermetrics, and it is
particularly well-suited to.compiler-
writing. (This is the reason it was
selected in the first place for HAL).
HAL/1108 would then be a large XPL
source program, similar in most ways to
the HAL/360, presenting no structure, or
readability problems.

Intermetrics ascertained that the
technical risk of producing a new 1108
code generator was no more than that of
effecting a massive translation into
FORTRAN, while the benefits-were much
greater.

2. Trade-off Issues Between XPL and FORTRAN

a) Technical Risks

Fortran is' straightforward, but error-
prone because of large translation and would
require a higher percentage of assembly
language subroutines because of data-type
and manipulation deficiencies.

XPL would require a new 1108 code gener-
ator but Intermetrics' intimacy with XPL
made this task accomplishable.

Intermetrics was confident it could
deliver the HAL/1108 compilers, using either
approach, within the cost and schedule con-
straints.

b) Language Features

FORTRAN is not as well-suited to compiler-
writing as XPL. FORTRAN exhibits severe name
restrictions, is not block-oriented and has poor
control structure.

As an example, consider the illustration
selected from the HAL/360 compiler,and shown
in Figure 3-1. Because FORTRAN only permits
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6 letters for an identifier the expressive
name HOW TO INIT ARGS in XPL becomes the
unintelligible HOWTOI in FORTRAN. Also,
VAR LENGTH becomes VARLEN and VEC TYPE be-
comes VECTYP. Note that.XPL allows the
useful IF--THEN--ELSE while FORTRAN requires
multiple GO TO's and the objects of the GO TO's
must be numeric; thus GO TO 4, GO TO 5, GO TO 7,
etc. In addition, the logical AND must be I
a function in FORTRAN. rather than the operator e,
and lastly the convenient hexadecimal constant
FF must be expressed as the integer 255.

These few observations portended numerous
errors and a variety of translation difficulties
using FORTRAN,

c) Maintenance and Configuration Control

By having both HAL/360 and HAL/1108 in
a single source language (XPL), maintenance
will be less costly and configuration control
easier. Maintenance personnel (whether NASA
or contractor) need not master two quite
different programs and changes and modifications
can be effected in a straightforward manner.
A separate FORTRAN version for the 1108 would
encourage separation of the two compilers and
permit independent modification and compilation.
Once this drift developed' it would be virtually
impossible to keep.track of or reconcile the
differences, especially when the source code
program design were different.

d) "Portability"

Although a compiler written in FORTRAN
is theoretically portable to other machines
because of the universality of FORTRAN compilers,
in actuality the specific differences among
FORTRAN's can be considerable. HAL/1108 would
require advanced FORTRAN V features which are
non-standard due to word-length and byte
definitions across machines.
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3. Summary Recommendation

In view of the foregoing discussion and based

upon the analyses conducted by Intermetrics, it was

recommended, and NASA/MSC concurred,. to pursue

implementation of a HAL/1108 compiler by writing

an XPL-to-1108 code generator and delivering the

HAL/1108 compiler to MSC in XPL source language.

Problems arising during implementation were handled

by introducing a limited amount of 1108 assembly

language and/or other expediencies where required.
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Figure 3-1
In XPL

IHCW_TC_ INIT_ARGS :
I PRCCEDURhINtASYT);

I DECLARE( A,SYT) FIXED;

I DECLARE (NU,NE,TEAP) FIXED;

IF NA <= 1 THEN /* IF I (OR ERROR) ARGS THEN JUST RETURN */
I . RETURN 1; /- 1 INDICATES 1 ARG */

I IF SYTTYPE(SYT) = VEC_TYPE THEN / PICK UP VECTOR DIMENSIONh *

I NU = VARLENGTHISYT);
I ELSE DO;

S[F SYTTYPE.(SYT) = MAT-TYPE THEN DO; /* GET THE M, N DIMENSION
I 'U = VARLENGTH(SYT) & ",OFF";

TEMP = SHR(VARLENGTH(SYT),8) & "OOFF";
I IF (N U="FF")I(TE:P="FF") THEN /- CAREFULE OF THE FF CASES
I NU = -1;
I ' ELSE
I NU = NU * TEMP;
I LEND

I ELSF
I NU =,1 ; 1* THIS.IS THE BIT, CHAR, INTEGER, OR SCALAR CASE

In FORTRAN

TNTEG'R FIJ!CTTON HO!r)'TOI(MA, SYT)
T7MPI.TCTT ITEG- ( A-Z)
COM,..ONI SYTYPE(IO1), SYAR,'Y(100), FYAR::Y(90)t SYCLA(100)
COW ON SYTPTR( I 1) VARLE"J( I 00))
COM ON VECTYP, MApTTYPt CTRJCC
IF (NA .GT. 1) GO TO 1

C TF 1 (OR ER-R ,) ARGS THEN JuST RET'JRN

ETUN I AA&

1 IF (SYTYPE(SYT) .NE. VECTYD)- GO TO 2 f
C PICK tip VECTOR r.'lENSTION O PyIO

N!) = VARLEN(SYT)
GO TO 3 O

2 IF (SYTYPE(SYT) .NE. NATTYP) GO TO 4
C GET THE ',i* nrM: ENTON,

NII = ANr)(VARLEN(,'YT) ' 25'5)
TE'IP = ArII(S R(V. :LEN(SYT), 8) 25"3)

C CAREFIL OF THE F- CASRS
IF ((N!i .NE. 25-i) .ANO. (TE.P .NE. 255)) GO TO 5
N! = -1

GO .TO 6
5 NJ = NIJ TEMP
6 GO TO 7
C T:Ill T S THE '31T, CHAR, T.IC.F, O'r SCA- CA' F
4 NIJ = 1

7 CO'A T,"F 3-6
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3.2. Implementation Guidelines for 1108 XPL

A set of general guidelines was established to
transfer the 360 XPL programs that comprise HALPASS1
and HALPASS2. This contained the design decisions and
implementation facts necessary to understand and imple-
ment the 1108 XPL.

1. BOOTSTRAP MEDIUM

XPL-1108 would produce assembly language subroutines
to be collected together and executed. The assembler
was to fix-up forward branches and the like as well as
to supply relocation information. - It- also provided
external linkages where appropriate.

2. SUBMONITOR

The submonitor was implemented via a set of library
subroutines.

3. REGISTER ALLOCATION

Although a form of a general register machine, the
register allocation policy for the 1108 was quite
different from the 360. Some of the differences are:

a) No base registers are needed since the 1108
permits direct addressing of the whole computer.
(This removes the need of R4 through Rll, R13,
R14, and R15 of the 360 which were all bases of
some sort).

b) 16 accumulators (A regs) which need only'be used
for accumulators. (RO through R3 on 360).

c) 15 index registers (4 overlap and hence are also
accumulators) which are used for indexing and as
link registers. (These were R1 through R3 on the
360 and R12).

d) In addition, there are auxiliary R-regs on the
1108 if any use can be made of them.
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4. STORAGE ALLOCATION

Storage allocation and use differs fundamentally because
the 1108 is a word machine (36 bits) whereas the 360
is byte-oriented. Although the 1108 provides partial
word designators in instructions for manipulating
smaller pieces, there exists no mechanism to index
within a word to the next logical quantum (such as
the byte point on the PDP-10). This dictates that
the elements of all arrays must be located in different
words (and occupy the same location within the word).

The various partial words that can be handled
are the following: Signed and unsigned half-words
(18 bits), signed third-words (12 bits), unsigned
quarter-words (9 bits), and unsigned sixth-words
(6 bits). Unfortunately, the quarter-words and
third-words cannot both be used since a bit must
be set in the PSW to indicate which mode is currently
being used. (Actually the quarter mode eliminates
all three thirds and one of the halves). After
analyzing the programs using XPL, and receiving information
that quarter-words are unavailable on the 1108's
at MSC, the following strategy was chosen:

a) Sixth-words: used for characters and for BIT < 6
that are packable.

b) Quarter-words: cannot be used.

c) Third-words: used for packable quantities of
items of type of BIT(n) where 6 < n < 12.

d) Signed half-words: used for packable quantities
of BIT(n) where 12 < n < 16. (It is probably
only of academic interest, but the last limit
should actually be 18 bits).

e) Unsigned half-words: did not appear to be useful.

f) Signed full-words: used for FIXED and BIT < 16,
and all items not indicated as packable.
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Items in COMMON may be packed if they have a bit
length of 16 or less and are dimensioned (arrayed).
For NON-COMMON items, they must be declared to be
packable by declaration keyword (either ARRAY or
PACKED are favorite choices). Local variables may
be determined to be suitable for packing by usage
context.

5. CHARACTER HANDLING

Character handling was to be similar to the 360 except
word addressing was used and characters are packed
6 per word. The similarities and differences include:

a) There was to be a free string area that was
repeatedly filled as new strings were created.

b) A COMPACTIFY routine to condense these areas as
necessary.

c) Strings to be designated by descriptors which
would be kept in one contiguous area of memory so
that these are accessible by COMPACTIFY for garbage
collection. However, there was no need to limit
this area to 1024 descriptors. There were to be
two subdivisions within the descriptor area; one
for COMMON descriptors, and the other for the rest.
The best approach to form the descriptor group
seemed to be to use a'SEG card in the MAP processor
to gather up the descriptors from all the separate
assemblys. Were it not for the HAL multipass overlay
requirements, a more elementary method of collecting
descriptors might have been feasible.

d) A character assignment (MSG1 = CHAR2;) was to
merely transfer the descriptor of CHAR2 to the
descriptor location known as MSGl. Thus, a single
string could comprise several character variables
as was done on the 360.

e) The form of the descriptor was to be as follows:

12 bits 16 bits

35 24 15 0
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The low 16 bits was an absolute pointer to
the first word of the string. Zeros filled
out the rest of the low 22 bits so that it
could be used as an indirect address. (x,
h, & i fields).

The upper 12 bits was the string length
in characters; it could be fetched using a
third-word partial word designator. This
permitted strings to vary from 0 to a theor-
etical limit of 2047 characters. There seemed
little need for the special handling accorded
a zero-length (null) string on the 360.

f) The descriptor approach facilitated character
procedures since they could return a full word
descriptor in one of the A registers (AO)
for further usage.

g) The character functions were similar to their
360 counterparts.

The LENGTH function is even faster than the
360 since there is no need of special tests for
null strings and fix-ups if not because of the
(length - 1) methodology of the 360.

The BYTE function has three cases:

1. Literal arguments were detected and
accorded special treatment -- BYTE('H')

2. Numeric literal indexing could be
accomplished efficiently on both left
and right sides -- BYTE (MS6,7)

3. Variable indexing would be slower
since it had to be done by subroutine
because of the word organization of
memory -- BYTE(MSG,J)

SUBSTR was slower then the 360 since it involved
the creation of a new string rather than just a
new descriptor. The reason for this decision
was a desire to have strings start at a word
boundary.

CONCATENATION was to be done in an analogous
fashion to the 360.
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6. ARITHMETIC ENVIRONMENT

Some differences do arise because of the l's comple-
ment arithmetic used on the 1108. In particular,
when the low 8 bits of -1 are examined, it is not FF
but rather FE. (-0 reduced to FF). A systematic
method to reconcile the HEX constants and negative
numeric usages was sought. The language was extended
to allow initialization with negative numbers. It
was then mandated that HEX constants were not to be
treated as signed on the 360.

7. CODING "TRICKS"

Advantage'was taken on the 360 that storage into an
8 bit quantity (1 byte) masked off any excess bits-.
The effect was not identical on the 1108 if it was
stored into a 12 bit storage quantum. (The 8's
reducible to 6 bits were ok). The only way to
exactly duplicate results would be to mask (AND with
an 8 bit mask) before storage. This would have been
too high a price to pay for 360 emulation when it was
seldom really required. There are over 1000 STC
in both HALPASSI and 2 and 2000 STH. (This truncation
may have been used on half words also). Besides,
it seems inherently wrong to imitate the 360 for the
purpose of propagating coding that has utilized
machine dependent characteristics of the 360.

A better move seemed to be to eliminate this
usage. A method was devised that trapped the dirty
cases and flagged them for modification. In addition,
it was helpful for people to point out all the places
that they remembered using implicit characteristics
of the 360 or seeing them used. A master listing was
kept with all the trouble spots marked.

8. FORTRAN COMPATABILITY

FORTRAN compatibility was to be maintained if at all
possible. "Compatibility" in this case, means only
the ability to call FORTRAN subroutines, pass them
arguments, and accept returning results from FORTRAN
functions. It was anticipated that it would also be
possible to call XPL procedures from FORTRAN but it
is not a primary requirement and would take more effort.

3-11

1NTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



A procedure or function call produced code that
resembled the following FORTRAN example.

_CALL FOOL~ , J,_ iEA: DUN) ..... ..
C000117 7201 00 00c 0 ocoo000o 00oo
000120 7413-13 00 0 ICG)GI.0 00]6 X_1F LX i 0L

L000121 0003 )0 00 0 0C0012 0010 + 1
00 22 000 00 00 0 uCo13 010 _+ _. J

. C123 0000 00 00 0 0000r 0010 + "EMDUM,

+ 0153,0

While this example is not exhaustive, it did
illustrate the general format. The specific
rules for subroutine branches were as follows:

a) Linking was to be accomplished via an LMJ
using Xil as link register.

b) The argument list would immediately follow
the branch instruction. The list would be
constructed as addresses for each actual argument
so that indirect addressing could be used to
fetch their values. The list for each type was
to be:

1) Variables - the address of a full word
variable (not packed). For character
variables, it was the address of the
descriptor.

2) Constants - the address of a full word (36 bit)
constant.

3) Expression - the address of a temporary
containing the resultant value.

4) Subscripted variable - same as for expressions
except for full word arrays when it is easy to
generate the element address.

c) According to FORTRAN conventions, AO through A5 and
R1 through R3 may be modified in the subroutine.
However, we planned to assume that almost all
registers were invalid upon return. This required
less register saving and restoring than FORTRAN.
Calls to FORTRAN subroutines would then involve
needless register saving but it was not incompatible.

3-12

INTERMETRICS INCORPORATED -701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



d) A function would return its result in AO.

e) It was anticipated that the Walk-back location
would be eliminated. To not do so would cost
1,000 words in HALPASSI. This would require
some care in exiting from FORTRAN subroutines.

The rationale for the FORTRAN compatibility was
to take advantage of existing FORTRAN capabilities.
in areas that were either not frequently needed in
XPL or else difficult to implement. Some examples
could include:

a) Floating point, single and double precision and
conversions to and from integers.-

b) I/O routines.

9. ASSIGN PARAMETERS

XPL was incapable of modifying parameters passed to
subroutines because all calls were by value. For
compatibility reasons, this decoupling would be
maintained on the 1108 version even though the calling
was by pointers. (See the next section for actual
details). However, it was often useful to modify
calling parameters by assigning them new values,
(especially for arrays). The suggestion was to
implement the HAL ASSIGN type of list in both pro-
cedure definition statements and calling sequences.
Examples are:

CALL SUBGUM(A,B) ASSIGN(Y,Z);

SUBGUM: PROCEDURE(U,V) ASSIGN(W,X);

Before the ASSIGN all the usual XPL rules would
apply. After the ASSIGN in the CALL statement,
may come only variable names, with or without
subscripts, but no expressions. The compiler would
link them up by reference.so that assignments in
the subroutines will be reflected back in changes in
the actual variables.
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10. PROCEDURE PARAMETER LINKAGES

At procedure entry Xll was to be left pointing at
a list of indirect addresses that permit accessing
of the actual calling variables. Section 8 shows
the list for FORTRAN calls. The treatment accorded
each variable depends on how it is used in the
procedure. Specifically,

a) If merely referenced in the 'procedure, it was
to be accessed via indirect addressing.

b) If it was assigned a value (via the LHS of an
assignment statement, or in other usages.that
could possibly change its value), its value
would be copied into a temporary in a prologue
and the temporary used exclusively.

c) If on the ASSIGN side of the list, it would always
be referenced indirectly, including stores.

d) Arrays were to be permitted on the ASSIGN side and
direct fetches and stores would be accomplished
with appropriate indexing. (It was not clear
whether arrays should be allowed on the other
side of the lists; they were not functional in
360 XPL. If permitted, storing would be
prohibited.)

11. REGISTER RECOGNITION

The System 360 has 16 general purpose registers, 15
of which may be used as base and/or index registers.
The XPL philosophy allocated nine of these registers
as base registers, whether the program required them
or not. Three more were used to branching and
subroutine linkage. This left four registers to serve
as accumulators, only three of which could double as
index registers. This severely limited the amount of
information which could be retained in registers. Thus,
no attempt was made to remember what a register contained
once its value was used. On the other hand, the 1108 has
16 accumulators and 15 index registers (4 of which double
as accumulators). Since many operations require a
register pair, accumulators were managed as pairs, while
indices were handled as single registers. Thus, at
minimum 8 accumulators and 9 index registers (which is
considerably more than an average XPL statement would
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require) were available for use on the 1108. Thus,
a system was developed which allowed the code generator.
to remember the contents of these registers for later
use. The following quantities were remembered: 1) the
name of the variable in the register, plus any variable
and/or constant indexing which applied to the name; and
2) any additive constant modifier applied to the variable
which changed its value from that in memory. Because of
the bottom-up properties of the XPL synthesis, multi-
level indexing could be remembered to as many depths
as required, significantly reducing the number of
storage references required by the compiled code
(approximately 30% fewer instructions on the 1108 than
for an identical program on the 360).

12. INSTRUCTION GENERATION

Where possible, instructions were not generated until
they were absolutely necessary, such that the most
information could be-used to intelligently decide
what code would produce the desired result. In general,
constant terms in expressions were saved as modifiers,
their value changing as other constant terms entered
into.the expression. Any constant operating on another
constant was evaluated at compile time, the result being
a new constant term. Any constant added to or subtracted
from a variable was retained as an expression modifier,.
to be generated only when the expression value was forced
to be evaluated. If the value or variable term represented
in the compiler stacks matched up with the contents of a
register whose value was known, the expression was
suppressed and the register value was used instead (in
some cases, it was necessary to move the register contents,
if other sub-expressions required the register, and its
contents were to be altered).

Unlike the 360, virtually all non-branch types
of instructions on the 1108 can use immediate operands
(operands specified within the actual instruction). Any
constant whose absolute value is less than 216 can be
specified in this manner, effecting a saving in genera-
tion of constants, as well as memory references.
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Statement constructions of the form "IF <relational
expression> THEN" generated a TEST, JUMP sequence.
Otherwise, a bit conditional was generated, using a
SET TRUE, TEST, SET FALSE sequence, to be subsequently
used in a JUMP testing the resulting condition. Any
relational expressions involving constant terms on both
sides of the relational operator are balanced, such
that the constant term of one operand (the one to be
used in the TEST operation) is zero. Thus, (A+3) > 8
becomes A > 5, and (A-4) < (B+5) becomes (A-9) < B.
Also, since the 1108 has no "less than" or "greater
than or equal" test instruction, the "greater then"
and "less than or equal" tests must be used with the
respective operands reversed; i.e. A < B is coded as
B > A.

Tnstructions and data were kept physically
separate, so that the two bank interleaved fetch
properties of the 1108 could be taken advantage of.

Unlike other compilers, the XPL code generator
does not attempt to save and restore the registers
which are used within a procedure (except the linkage
registers). Instead, registers whose contents are
vital are saved prior to calling-a.function, and
restored upon return. Registers considered non-vital
are merely treated as if their contents were destroyed
during the function, and are no longer considered to
have recognizable .contents. Except in very complex
expressions involving functions, especially character
functions, register saving is never done. In the HAL
Compiler, with its 130 procedures, less than 50 register
saves are performed.

By definition of the XPL grammar, any index expres-
sion on the left-hand side of an assignment will be the
first quantity forced into a register. This classed
the register as vital over any functions which appeared
on the right-hand side, forcing many unnecessary register
saves. For simple indices (variable ± constant), the load-
ing of the index expression is deferred until the right-
hand side is evaluated, thus eliminating many such register
saves.

3-16

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



13. DATA ALLOCATION

Data on the 1108 compiler falls under three main
classifications: FIXED, BIT, and CHARACTER. Within
BIT are 4 sub-classifications: BIT(6), BIT(12),
BIT(18), and BIT(36), which corresponds to the
allowable partial word designators in 1108 instructions.
All but BIT(6) are.classified as signed quantities. The
data generation section of the compiler follows a number
of rules: 1) data declared as COMMON, ARRAY, or global
in modular compilations, is explicitly packed or not-
packed strictly on the declaration properties, whereas
all other data attributes are subject to change depending
upon its usage within the program; 2) all unpacked data
is generated in the order in which it is declared; 3)
packed data is sorted down by bit length,- and secondly
by array length. Side-by-side arrays of like data
types are generated from longest to shortest until all
are exhaustive. All uninitialized data is implicitly
set to zero.

The following rules determined how data might
become unpacked: 1) use as an ASSIGN parameter, 2) use
as a formal parameter, either by name alone or modified
by a constant index; and 3) not having the ARRAY attri-
bute in global declarations. The first two reasons
result from the implementation restriction that all
formal parameters must be passed as full words. It is
less costly to force a BIT(6) simple variable to occupy
a full word than to load a packed variable and store it
in a full word temporary for passing into a procedure.
The third reason merely assures an identical storage
layout for global data regardless of the contextual
uses within the various modules sharing this data.

Any integer initialization is passed to the
assembler as signed decimal numbers (negative initiali-
zation was added to the language). Any data initialized
with hexidecimal or binary constants are converted to
the corresponding octal representation on the 1108 (since
32 bit masks on the 360 would not be identical on the
1108 if passed as signed numbers). It is assumed, there-
fore, that binary initial values are not utilized as signed
quantities in the XPL program .
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Data is isolated into the following categories
for later use by the 1108 MAP processor and collector:

1) initialized string data (all modes)

2) local data and literals

3) local string descriptors

4) global data (shared between co-resident
modules)

5) global string descriptors

6) common data (shared between both co-resident
and overlay modules)

7) common string descriptors

14. MODULARIZATION

Although the 1108 assembler is capable of assembling
very large source programs, there is a finite maximum
number of source cards it is capable of absorbing.
To avoid this problem, the XPL compiler was extended
to allow both EXTERNAL and ENTRY properties, permitting
intermodule communication. The global data declaration
facility can be used in conjunction with this facilityj
if so desired. Although Phase I was only separated into
two major modules (scanning and analysis), it could
easily have been modularized to the point where each
procedures was a separate compilation. More importantly,
however, this facility can be used to group mutually
exclusive collections of procedures to generate an overlay
structure, should space limitations become a serious
problem. (The 360 implementation has the advantage of
growing into any size partition the host operating
system will allow).
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3.3 Implementation

Implementation of the HAL 1108 compiler followed
the procedure described in Section 3.1 and used the
guidelines of Section 3.2. The tasks follow in almost
a straight chronological -flow from the start of the
effort through final delivery.

1. Design of the 1108 code generator that described
each of the XPL constructs and their equivalent
on the 1108 was undertaken. These followed the
1108 guidelines described in Section 3.2.

2. XPL was rewritten to produce 1108 assembly language
and the 1108 constructs per the design guidelines.
This version of XPL was compiled and debugged on
the 360.

3. XPL 1108 subroutines and supporting routines were
written in 1108 assembly language and assembled for
the 1108. This involved conversion routines, character
handling routines, and input/output routines, both
sequential and direct access. These were programmed
and debugged on the,1108, both at Intermetrics, Cambridge
on a rental 1108, and at MSC in Houston.

4. When the 1108 XPL was thought to be producing reasonable
code, the 1108 assembly language out of the 360 was
taken to the 1108 where it was assembled, loaded,
and debugged on the 1108. The result was that several
simple XPL programs, such as ANALYZER, could be compiled
on the 360 and executed on the 1108.

5. At this juncture, the XPL compiler itself was fed
through the 1108 XPL code generator running on the 360
and the resultant assembly language taken to the 1108
added to the supporting routines and debugged on the 1108.
When this was successfully completed, a working XPL
compiler had then been bootstraped from the 360 to the
1108. From this point on, XPL programs could be compiled
as well as executed on the 1108.
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6. Work that had been proceeding on the HAL pass 2
code generator to produce 1108 FORTRAN was not a
large effort since a great deal of attention had
been paid in the attempt to conform to ANSI standard
FORTRAN. However, there were a number of differences
and in particular, the data organization had to be
changed to reflect the word size, and word structure
of the 1108 versus the bit oriented 360. However,
this was accomplished during the XPL development
process.

7. Work commenced on.the 1108 HAL support routines.
These included the usual HAL supporting and library
routines, such as the vector/matrix package, the
math routines, the character routines, post-mortem
dump, and input/output. Most of these were written
in FORTRAN and therefore the transfer was accomplished
easily. However, there were a number of changesT

especially in any area where the data had been packed
for efficiency reasons, or for-address constant
restrictions on the 360 (i.e. LOGICAL*l, INTEGER*2).
However, the sort of changes that were required could
be and were done in a systematic method. Some routines,
such as character handling, had to be changed drastically.
However, the resultant changes effort required was
much smaller due to the FORTRAN than would have been
otherwise.

8. At this point, work had to begin on HAL Pass 1 and Pass
2 to make them compatible with 1108 XPL. In particular,
a number of minor changes were required, such as the use
of hex constants for negative values in certain areas.
But, beyond these minor fixes, the major cause for re-
vision was the different data structuring required in
the 1108. In particular, large tables which had been
8 bit quantities in the 360 had to be re-analyzed to
see if they would fit in to 6 bits or 12 bits on the
1108, which were the quantums of memory that could be
dealt with directly. The same held true for 16 bit data,
to see whether it could be reduced to 12 or had to be
increased to 18 bit. XPL 1108 had already been written
to permit packing of these different tables into the
same words on the 1108, which was a necessity because
of the indexing on a word oriented machine. This proved
straightforward in an XPL 1108: however, initialization
of this data area was a troublesome problem. Nevertheless,
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workable techniques were devised and implemented.
The requirements for this data packing came about
because of the size restriction on the 1108 HAL
compiler. Only about 53,000 words of memory were
available to a user program under EXEC 2, the
operating system which as all there was for a given
pass, such as pass 1 and included the area required
for code, data, buffers, and free string area. It
was a fairly tight requirement compared to the 360
memory availability. It was readily achieved. The
key ingredient in this success of the process to
shoe-horn the HAL compiler onto the 1108 was the success
of the 1108 XPL implementation. The design appears to be
a good one, and is implemented efficiently on the 1108.
The measure of the 1108 XPL design efficiency, the
number of instructions required for the same pass 1
of the compilers was reduced from approximately 45,000
on the 360 to under 30,000 on the 1108. And, this
under 30,000 figure included about 4,000 words of
address constants, which were not required on the 360.

9. Finally,.pass 1 and pass 2 were compiled for the 1108.
The results assembled using the 1108 assembler, they
and their library routines were loaded and executed
and debugged on the 1108. When this process was
successfully completed, HAL programs could then be
compiled on the 1108.

10. The compiled HAL programs produced 1108 FORTRAN which
was fed through the 1108 FORTRAN compiler and combined
with HAL 1108 support and library routines written in
FORTRAN for the most part, but some assembly language,
(see item 3 in the list) the combination loaded and
executed on the 1108. Successful completion of this
phase of the process was that HAL programs could then
execute on the 1108, thus terminating the move process.
HAL was thus a totally independent and operational
compiler system on the 1108.- A number of HAL test
cases were successfully compiled and run on the 1108
and their result compared quite favorably with their
360 counterpart to within the accuracy supported by
the differences in the machines word length and data types.
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The HAL compiler that resulted from this effort,
the HAL 1108, with all things considered, was a very
good implementation of HAL. In many ways, it was
superior to the 360 implementation, faster and more
efficient than the 360 HAL. However, it never received
the amount of usage and exercise that was undertaken
using the 360 HAL. One reason for this is that the HAL
1108 was not completed until January 1973. By this time,
HAL had been picked for the Space Shuttle. Shuttle work
had begun in earnest, and the definition of HAL/S was
already undertaken. None of the.Shuttle contractors
had an 1108 whereas all of them have 360's. JSC did have
1108's that had already done much of its Shuttle work
using other methods, were committed to other approaches.
However, this does not detract from the intrinsic merit
of the HAL 1108 compiler. Much was learned from the
process of moving compilers from one machine to another
(e.g. the essentials of maintaining transferability), and
from creating a machine language code generator for 1108 XPL,
(e.g. the design prbblems of two quite different type
instruction architectures). It was learned from these
processors that they should find their way into better
compiler and code generators for HAL/S on the AP-101 and
360's, and any other possible HAL/S compilers that might
be undertaken in the future.
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4. HALM IMPLEMENTATION STUDY

This study was for the development of an instruction
architecture to support HAL/S and the investigation of
micro-processors in order to implement the resultant architecture.
The results of this study include:

1) The investigation of addressing structures for
the support of higher order language instruction
architectures;

2) the results of a partial implementation indicating
possible modifications to HAL/S and desirable
modifications for a support micro-processor; and

3) a comparison of the initial instruction architectures
code size with respect to current instruction
architectures.
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4.1 Introduction and Overview

Higher order languages have been accpeted in
recent years as the proper method for programming
software projects. HAL/S is to be used in the Space
Shuttle program for the coding of the actual flight
computer. While the advantages in software cost savings
with the use of higher order languages has been well known
and documented [Bo 73, Ca 68, Co 68, C6 69, Gr 70], there
has often been the fear of a corresponding hardware penalty.
The argument has often been receited that a higher order
language generates inefficient machine instructions. The
natural result of this consideration and the
insentive to use higher order languages, has been
the development of various machine instruction
architectures which are directly oriented towards the
higher order language(s) being implemented. This problem
is most acute in the aerospace industry where efficiency of
memory usage not only correlates to dollar cost, but also to
weight, physical size and power consumption. Thus, an avid
interest in higher order language instruction architecture
has occurred in this industry [Co 72, Ke 70, Kr 70, Mi 72,
Ni 72, We 71].

While it was admitted that an instruction architecture
oriented towards a higher order language provided for efficient
code generation and execution, it was sometimes questioned
as to whether this was accomplished by an undue excess in hard-
ware size and complexity. Results of the micro-program
implementation of the SUNY at Buffalo's BSM instructio ;
architecture [Lu 72, p. 15] on the QM-1 micro-processor
shows that the only "complexity" in implementation is
in the address (GEA: get effective address) routine. But,
if the support processor aids in the function required, even
this is not complex. The results of encoding higher order
language emulators and second generation instruction
architectures on the B1700 which have been reported by
W.T. Wilner [Wi 72c] indicate that the number of bits
needed to encode their respective instruction architectures
is equivalent. Wilner's results lead him to claim:
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Figure 4.1-1: Study Summary
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"No matter what one is emulating,
whether it be a second-generation-
computer, a contemporary program-
ming language, or a futuristic
abstract machine, one's interpreter
tends to contain 28,000 bits of code
for virtual hardware and from 5,000
to 25,000 bits of debugging aids
(e.g. trace, dump, symbolic modifica-
tion of memory).

[Wi 72c, p. 1051

The purpose of this study was basically two
fold. First, it wasto develop an instruction architecture
suitable for the efficient implementation of HAL/S.
Secondly, it was to investigate micro-processors in order
-to determine-and then use a suitable micro-processor
for the implementation of the resultant HALM instruction
architecture.

Figure 4.1-1 gives a diagram of the work performed
to accomplish this study. Section 4.2 will discuss
the relationship between HAL/S, its intermediate language
HALMAT, and develop an initial architecture for a HAL
machine, HALM. Section 4.3 will indicate the importance
of addressing considerations in the development of instruc-
tion architectures and analyze the requirements made by
HAL/S upon any proposed implementation methodology. It
is particularly in this area that both incremental improve-
ments and major reorientations to instruction architectures may
occur. Section 4.4 will discuss the major areas of design
differences of micro-processors, provide a description of
the various micro-procesosrs under consideration, and indicate
the choice of the B1700 for this study. Section 4.5
will give the results of the partial implementation of the
modified HALM instruction architecture on the 11700.
Section 4.6 will discuss the results obtained from the
implementation with respect to desired modifications in
both the HAL specification and in the support micro-
processor. Section 4.7 will discuss the meaning of
comparison between various instruction architectures, methods
for performing such a comparison, and will give a brief
comparison between HAL/S code generated for the IBM 360,
AP-101, and the initial HALM instruction architecture.
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Section 4.8 will indicate other areas besides the HAL/S
instruction architecture where a micro-processor capability
is of use. Section 4.9 will provide a brief summary and
.conculsions of the study, ... .

Two appendices are also included with this Chapter.
Appendix 1 gives a HAL/S program example and the code generated
for it on both the IBM 360 and AP-101. Appendix 2 contains the
same HAL/S program example encoded in the initial HALM instruc-
tion architecture. Included in Appendix 2 is a state-
ment for statement comparison of the code generated for the
program for each of the three instruction architectures.
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4.2 HAL/S-HALMAT-HALM

One of the major tasks in this study, and that
which forms a basis for the remainding tasks, is the
development and designation of an instruction architecture
for HAL/S implementation.

Under contract to NASA/JSC in 1972, Intermetrics
developed an instruction architecture for HAL implementa-
tion as part of its multi-processor design. Chapter 2 of
the final report of that contract [Mi 72] discussed in
detail the design rational and methodologyalong with the
resultant instruction architecture.

4.2.1 Design -Methodology

The methodology used in the development of a higher.
order language machine is graphically represented in
Figure 4.2.1-1.

The desire to use a higher order language is now
a commonly accepted idea at NASA. The advantages of
documentation, communication, maintainability, shortened
programming time, fewer conceptual errors, no machine
oriented errors and ease of learning have all become self

apparent. HAL/S is now being used to program the Space
Shuttle computer. Having accepted the use of a higher
order language, the next step is to implement it efficiently.

In the aerospace community in particular, there is
the requirement to have efficient execution. In particular,
memory is costly, power consuming, weighty and physically
large. But it is also true -that the aerospace environment
has many aspects which do not bear directly on the design of
a general computer. Some of these aspects include the
assumption that the architecture can be tailored to a single
language or at least a similar family of languages. The
actual use of an aerospace computer also facilitates the
assumptions that it has a relatively small memory size, and
that there exists reasonable limits upon the complexity of
the operating system environment with respect to the number
'of processes in existance. Similarly, the addressing space
can in general be considered to be smaller than on a commercial
computer since there is a pragmatic limit to the number of
variables in'use. Memory management often can be accomplished
in a relatively static fashion since telemetry and hybrid
simulation requirements often can make mandatory a correlation
between the physical address and the logical entity; reliability
considerations often prohibit the free use of secondary
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storage. The result is to eleviate many of the problems
found when dynamic address management is required.

An efficient implementation of a higher order
language instruction architecture has two aspects. One
is the problem of forming a concise logical representation
of the HOL. The second problem is to do this in such a
way that it can be implemented in a cost efficient manner.
It is this second constraint, the understanding of current
technological limitations and the availability of support
micro-processors, that limits the capability of a logical
instruction design. Thus, for example, the arithmetic
data type formats supported by a language are usually
driven by the hardware available with the computer upon
whidh the language is implemented.

On the IBM 360, HAL/S supports 32 and 64 bit

floating point scalars. If it were implemented on another

machine, such as the B6700, it would be supporting 48 bit

floating point scalars. Indeed, on the Singer SKC-2000, although

it has 32 bit floating point capability, this is of a different

format than that of the IBM 360. Similarly, the quantum of

data which is easily manipulated, and thus, efficiently

supported by a language on any given processor varies.

The IBM 360 supports addressing easily to the 8 bit byte

level. The IBM AP-101 supports addressing only to the

16 bit half word level. Other computers support 18 bit
units or 24 bit units. These data widths in turn tend
to force design decisions upon an instruction architecure.
Thus, for example, descriptors would be given but a single
length such as 32 or 64 bit widths. If more information
need be encoded, then multiple descriptors of this basic
unit length would be used. And indeed, this form of machine
constraint was a major driver in the handling of multi-rank
descriptors in the HAL.instruction architecture [Mi 72].
It is to be noted, however, that all of these particular
machine constraints are not now inherent in current
technology. For example, the Burrough's B1700 supports
bit addressing of memory with (basically) any bit field
width; and similarly it is possible with the B1700 to
execute arithmetic data efficiently in varying widths.
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Figure 4.2.1-2: The Steps of Translating HAL/S to
an Implemented HALM

4-12



Figure 4.2.1-2 is a slightly different representation of
this critical step in the design process. HAL/S is the
language to be implemented. There already exists an
intermediate language for code generation called HALMAT.
The object is to first take the intermediate language HALMAT
and make it into a logical design for a HAL machine. It is
this step that takes into consideration the real world of
current technology and available micro-processors.

The translation from HAL/S into HALMAT accomplishes
several purposes. First, it reorders the HAL/S language
from a parenthetical language into a parenthetical free
notation. Effectively, this is a reordering of the code
which places operators and operands into a sequential form, a
polish notation, so that each particle is meaningful. In
the process of performing this reordering (i.e. parsing)
the compiler has also performed syntactical verification
and then performs appropriate semantic verification.
Figure 4.2.1-3 represents -such a translation .from HAL into
HALMAT.

The translation from HALMAT into a logical HALM
again accomplishes several purposes. The current technology
in general requires that an instruction stream be of a single
instruction single data form (SISD). That is, a single
operator is executing at any given instant upon a single
object (perhaps of several operands). This is to distinguish
between, for example, array processors or tree structured
execution [refer Mi 72,pp. 25-28]. Included in this considera-
tion of arranging the code for proper execution would be making
explicit all the required operands. Thus, DO FOR...END;.:-
statements needs six operands: the iteration variable,
the initial value, incremental value, limit value, and the
next instruction address within the loop, and the next instruc-
tion address when the loop is finished. This sixth operand,
for example, is not rectified in just the HALMAT. It is a
pragmatic concession to machine efficiency that it is included
with the operation. For example, when the loop is finished
it would be possible for the processor to keep reading each
instruction (and performing a NOP) within the DO block, until
the END statement is located.
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REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

assignment with terminal subsc'ipting

DECLARE V VECTOR (6),

M MATRIX (7,4) ;

V1 TO3 = M3 AT 4,2 +V4 TO 6

1 ' 13 r N I SMRK

2 V i/ SYT // ". / A RALC receiver
I _ subscripting

3 -1 . IM 3 1 MD Al TTSB

SAi ALCE (note 1.)+ e 1.)

5 M ISYT / A ALC matrix
4 , /, subscripting:

6 4 IMD 3 2 LIT A TASB
. A .irow then

7. 2 IIMD 1 AI TIDX column

9 V1 SYT -/ ' At ALC v
SI vector

10 4. 1.ZIMD 6 1 I IMD A TTSB . subscripting

11 '' " A ALCE

12 5 i AC 9 . VAC VADD

13 2VC 12 I' VAC 0 0 VASN assignment

Notes:

1. It is difficult to predict the order of emission of

the subscript constructs for different variables in
the same assignment.

[Ii 71]

Figure 4.2.1-3

REPRODUCIBIAT OF THE
.... -GNAL PAGE IS POOR
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The other main function that is performed by the
translation between HALMAT and the logical HALM , is the
attachment of an addressing structure. IIALMAT refers to
variables via symbol table reference and their value
space does not in reality exist: only the requirements
for it are described within the symbol table. And as
was seen above, there are various flow addressing questions
to be resolved. The question of addressing at this point
can change the design drastically. It is possible to support
a tagged, stack oriented architecture or a normal Von Neumann
architecture or any point in the spectrum between them.

Both Figures 4.2.1-1 and 4.2.1-2 indicate there is a
final translation between the logical HALM design and its
physical implementation. It is during this last translation
step-that the final constraints are placed upon the use of
the higher order language. It is here that physical limits
are placed upon the addressing capabilities of the design,
the number and type of data operands and the flow addressing
capabilities. For example, it would be possible to keep the
same basic design of the AP-101 yet reduce its displacement
fields in SRS instructions from 56 to 48. Or, it would be
possible to add a new addressing form allowing 32 bits of
addressing space, i.e. a 3 half word instruction with 2
half words of addressing. In the case of a higher order
language architecture, these limitations could either be
in the field sizes or,indeed, the number of different formats
made available.

In general, the implementation on a particular processor
forces the exact data representation upon the implemented
language. The processor effectively defines the size (16
bit, 32 bit, ...), the representation .(sign magnitude, 2's
complement, ..., ASCII, ... ), and restrictions (only single
precision) upon the languages data formats. And, of course,
the physical implementation places an actual bit representa-
tion upon the operators and operands.

Figure: 4.2.1-1 has one further line in its graphical
representation. This is the feedback from the physical.
implementation to the logical design. This represents both
the continual improvement possible with the gathering of
actual statistics, and the discovering of problem areas in the
logical design when the instruction architecture is actually
used.

Further details on design methodology with examples
may be found in Chapter 2 of Mi 72.
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4.2.2 Initial HALM Design

The question of addressing structure is considered
to be both the most controversial and the most important
issue in the design of efficient HALM architectures.
Section 4.3 will go into more detail in the discussion of
this subject. Because of the interest in the addressing
problem, it was felt that an initial instruction architecture
must be choosen in order to pursue the micro-programming
implementation aspect of this study. It was therefore
decided to use the instruction architecture developed by
Intermetrics in Mi 72 (designated MP) as the baseline
for micro-processor considerations, while at the same
time separately pursuing the design issues of addressing
and HALM modularity. The choice of the MP architecture
as the baseline was subject to varying degrees of modifica-
tion when first the micro-processor was choosen and then
comparisons were to be made. Section 4.2.3 will briefly
discuss some of the features of an instruction architecture
that are basically independent of each other, and are thus
subject to change without affecting the total design.

The MP architecture is basically a modification of
the Algolish design of the Burrough's B6700. It consists
of a tagged architecture, stack oriented with a polish
instruction stream. The floating point data types of the MP
are of a compatible precision and range as that of the IBM
360 and AP-101 however.

Figures 4.2.2-1 through 4.2.2-4 briefly summarize
this instruction architecture. Figure 4.2.2-1 presents
the instruction set and is divided into their functional
categories. Figure 4.2.2-2 presents the special words which
are required forthe addressing of both formal parameter and
flow control. Figure 4.2.2-3 presents the format of the
descriptors used within this architecture. Figure 4.2.2-4
represents the arithmetic data types as supported in the MP
architecture. It also indicates the transformation that.
takes place between its main memory representation and its
representation when residing in the stack.

A full description of this architecture is to be found
in Mi 72 Section 2.4, pp. 88-156.
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It is to be noted that the MP architecture was
predicated upon a syllabic orientation: that the implemen-
tation would operate with a preference for 8 bit bytes.
While this was a reasonable initial assumption, the B1700
is bit oriented and does not require this orientation.
Thus, this machine constraint is removed when the B1700
is the host micro-processor. This would principally
have design repercussions in the various format constraints:

e no need to have 8 bit quantums for operators

o no need to keep addressing within 16 bit units

a no need to keep the arithmetic data types as
a multiple of 8 bit units.

The main effect upon the instruction architecture,
therefore, is with respect to the actual instruction
encoding and- data elements available for execution,.
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OPERAND META-OPERATORS ARITHMETIC MANIPULATORS FLOW CONTROL

COPY ADD JOT
GET SUB JOF"
ADR MUL JMP
ADRE DIV JCC m

CHSN PRCS
LITERALS MKS

LOGICAL MANIPULATIONS ENTR
LTS4 RTRN
LTS10 EQUL EXIT
LTS15 GREQ FOR
LT32 LSEQ
LT32F SAME DATA FIELD MANIPULATION
LT64 LAND
LTS 7M LOR '. INTT
LTLD LNOT INTR
LTLDX BSETL n FRAC

SBRSTL n CCAT
0NAME MANIPULATORS BCHGL n ITOC

BTSTL n STOC
LOAD BSET CTOI
LDRK BRST CTOS
INDX BTRN
LIM BLD m,n SYSTEMS CONSIDERATION
AROF BOUT m,n

BIN m,n XCH
STORE DLET

ARRAY AND MEMORY DUPL
STD NOP
STN STT IDLE
STDI STT3 HALT
STNI LDPR
BST m,.n .......----- . ..... STPR

STLD
LDID

Figure 4.2.2-1 .Instruction Repertoire IPC n



REPRODUCIBILITY OF.THE
ORIGINAL PAGE IS POOR

?E Byte El Entry Offse 7  ,Segment PTR

5 6 3 5 12 12 20

REW Byte £Z Entry Offse Segment PTR

5 6 3 5 12 12 20

[MSW j ,R9 Link PTR Stack Link PTR

5 6 3 5 4 20 20

5 1

PEW: Program Entry Control Word

k£: Lexical level of procedure to be entered
Segment PTR: Stack number-offset of program segment
Entry Offset: Double word offset within program segment to which

to transfer control
Byte: Byte identification within double word entry offset

REW: Return Entry Control Word
U: Lexical level of procedure when control is returned
Segment PTR: Stack number-offset of return program segment
Entry Offset: Double word offset within return program segment

to which to return control
Byte: -Byte identification double word return entry offset

MSW: Mark Stack Control Word

£1 : Lexical level of indicated procedure
Stack Link PTR: Stack number-offset of previous MSW
Z£ Link PTR: Stack number-offset of previous lexical level MSW

ADW: Address Word

A: Access Bit: either read/write or read only allowed
PTR: Address pointer in stack number-offset representation

Figure 4.2.2-2 Special Words ,
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ADpe A X I:Delt Array Offse Limit MOM PTR Copy

5 1.1 1 2 1 8 12 12 20

M0M PTR - Stack number - offset of associated mom descriptor
P - Presence bit: either M2 or M3 address

___pe _ _ _ _ _ _ _ _ _ _ _ _ _ AL tdeR - Refer bit: segment has been referred to either by reading
IyefM x Length M2/M3 Address 4o writing into it

5 1 111 2 111 2 12 12 20 C - Changed bit: Segment has been written into

CR - Critical information:

00: Normal, one copy stored

XX: Critical, duplicate copies interleaved

Type - Data Type Form 11: Both copies good

ARS: eight bit arithmetic array 01: "One" copy good, use this one

A.6: sixteen bit arithmetic array 10: "Other" copy good, use this one

AR32: 32 bit single precision floating point array Length - Length of segment in units of that array type (critical

AR63: 63 bit double precision floating point array data segment twice as long as length indicates)

character array M2/143 address = Physical address of the segmentCVR: character array

PROG: code segment

GEN: untyped descriptor

CO M ! Copy Descriptor (uses stack number-offset pointers)

Mom Descriptor (uses M:2/M3 address pointers)

A * Read/write access allowed from array
Read only allowed from array

.D - Single rank array, no additional rank information present
Multiple rank array, more rank information follows

X - Compool bits:

00: Normal non-Compool
10: Comoool unreferenced
11: -Compool referenced

I - Delta, array offset, limit fields refer to (sub) arrays
Delta = 0; Limit = 0; Array offset = single element index

Delta- Distance between elements in this rank
Distance in units of. elements

Array offset = index into array of first element of this rank;
In units of elements starting at €

Limit- :Maximum limit for index into this rank in units of elements

Figure 4.2.2-3 Descriptors



DP Floating
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s| Stack and

i1 10 51 1 Storage

SP Floating

mantissa is Point -
SStorage
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int. r teger or
logical

... 0 t Stack
Q II)

11 10 36 15 1

8 bit in-

int is teger or
I logical

0 . stack

0 0-... 0

11 10 44 7 1

Figure 4.2.2-4 Arithmetic Type Formats and Mapping
to Stack
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4.2.3 Separable implementation Issues of Instruction
Architectures

Reflection upon HAL/S or other'lhigher order languages
will show that there are several areas that are basically
independent of each other. These include the control

sequencing of the HOL, versus the data addressing
methodology, versus the set of functional transformations

(operators) of the languages, versus the data representa-
tion. It is easy to conceive that any one of these areas may

vary in their implementation methodology and physical

representation with minimal effect upon the other areas.

4.2.3.1 Control Sequencing. The method employed for
the implementation of the CALLs,-RETURNs, DO FORs, GO TOs,
etc., must as a minimum reflect the semantics of the language

definition. If it is to be an efficient implementation,
it should reflect the HOL structure, taking into account

the properties of block addressing. It is also important
that the implementation be efficient with respect to
machine constraints and thus be able to be executed from
a local context.

One can conceive that a language such as HAL/S
could remove its GO TO and implement a LEAVE..
Or it could modify its Procedure and Function and other
block structures. These would not affect the data addressing,
data representation or data transformation operations.

It is true, however, that the change of a tagged
architecture to/from a Von Newmann architecture can have
a drastic effect in data appearance since there is the
necessity for at least one bit of tag for-each data item
is not referenced through a descriptor. Even this, however,
is an addressing problem and does not directly affect the
data transformations or their basic representation.
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4.2.3.2 Data Addressing. The method used for data
addressing is extremely important if one is to have
an efficient HOLM implementation. The addressing of
data takes up the majority of bits in the instruction
stream in most architectures. Thus, improvement in data
addressing compactification can provide to be a dramatic
total space savings. But again, it is to be noted that
how one addresses data is basically independent of data
representation and the various data transformation operators.
The data addressing does not of necessity interact with
the control flow addressing, although they are usually
combined since a given instruction architecture tends to
have but one addressing methodology.

Questions as to whether the..architecture supports
one or two dimensional addresses; whether addresses are of
a lexical level-displacement or base-displacement form; whether
a single accumulator general register set, or stack exist;
or whether absolute, indirect, sectored or banked
addressing exists; do not prevent the implementation of
the language. The question again is 'one of efficiency and
design cleanliness.

4.2.3.3 Functional Transformations. From examining a higher
order language such as HAL/S, it is readily seen that one
could change, add or delete,the set of operators that
perform the data transformations. One could have the exact
same .set of control instruction and yet remove arithmetic
operators and provide list structure type manipulation.
Similarly, how one addresses the data, or the exact.
details of the data representation,do not overly affect
the concept of add, multiply, etc.

The actual implementation of a given transformation
operator will, of course, be dependent upon the actual data
representation. But, during implementation, this is isolated
into a subroutine. That is, when the "operator" is decoded,
control is transferred to the appropriate micro code routine
to perform the semantics, e.g. add. Thus, while the. routine
may change, it does not effect the overall structure of the
micro-program implementation.
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4.2.3.4 Data Representation. It is obvious that the
detailed data representation is basically independent
of the other three areas. Indeed, often the data size,
precision and range are not even defined within the higher
order language other than by some vague concept such as
SINGLE and DOUBLE precision.

This then is an area that can easily be modified
in design for purposes of comparison of hardware restric-
tion.

Whether an integer is represented in binary by
sign magnitude, one's complement, two's complement, or is
16 bits, 24 bits, etc.; or even represented in a decimal
format, the value has an identical interpretation. Three

plus four is still seven: Add has a definite meaning.

4.2.3.5 Advantages of Separation of Issues. By under-
standing that these basic implementation issues are
separable, it is possible to investigate the effects of
modifying one particular area. Also, it then becomes
possible to perform meaningful comparisons with other
architectures, where for example, the data format'is already

specified. Also, when viewed in this manner, it becomes
clear that the emphasis for improvement falls upon the
addressing structure both for control flow and data
addressing.
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4.3 Addressing

The importance of addressing in an efficient instruction
architecture design cannot be over emphasized. The memory
used for program code is dominated by the addressing fields.
The efficiency of execution of a HOL program depends upon a
clean implementation of the addressing structure. This
section will discuss the importance of addressing, the
requirements which are placed upon any addressing design
for HAL/S implementation, an ideal encoding of this
information, and the requirements for HAL/S usage statistics
in order to form the basis for the proper encoding. A large
amount of time was spent on this task during the study.
While the method of optimal address encoding is clear when
thought about (-Section 4.3.3), this is but one aspect of
the HALM development. More fundamental is the process of
trying to understand the addressing options available in
the aerospace environment and their effect upon execution
efficiency. While various avenues were investigated, any
conclusion must be reached when HAL/S user statistics become
available.

4.3.1 Importance of Addressing

When trying to compare instruction architectures
it is very useful to separate the data space requirements (D)
from.the program code requirements (P). The total memory
requirement (M) being the- sum of the two.

M = P + D

Regardless of the instruction architecture, a first
approximation is to assume that the data representation
must remain similar. While this is not always true, and
indeed integer arrays may be greatly improved upon, the bit size of
arithmetic data and character representations are usually
based upon outside requirements, such as required precision.
It is therefore in the program code where most of the memory
savings must be found. In the aerospace industry, this is
particularly evident since program memory requirements are
often two, three or more times as large as that of the data
memory requirements.
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BASIC INSTRUCTION FORMATS
rST ALtWORD SECOND HALMRD TM BALORDD

R FL R.AT 1 2

[I~ IIl I

I I

7RE ISR B R

,oMOP RD ' I

o 6 1112 '516 1920 I

EISTE 
STORASE

Number of RADS OPERator Ope randsND

RR 16 81920 50% 8 50%

RS 32 ORMAT 8 25 24 75%

SS* t 48 8 16 2/3% 40 83 1/3%

OP CODE L, 2 0

iFormat Bits bits percentage bits perentagpercentage

present: SI 12 37 1/2%

SS 20 41 2/3%

t Length fields could possibly be considered
as part of operator.

IBM 360 Instruction Formats
Figure 4.3.1-1
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RR Format

Op R1 p R2
I I I 1I I 1111 o0 x

0 4 5 7 8 11 12 13 15 -

SRS Format

Op R1 Disp* 8 2
IDisplacements of the form 111XXX are not valid.

O 4 5 7 8 13 14 15

RS Format

Op J1 p J B2 Address Specification

0 4 5 7 8 . 11 12 13 14 15 16 31

Number of Operator Operand

Format Bits bits percentage bits percentage

RR 16 10 62.5% 6 37.5%

SRS* 16 5 31.25% 11 68.75%

RS 32 10 31.25% 22 68.75%

* Not quite 11 bits,since only 56 displacements used.

Actually: log 2 56 = 5.8; thus, 5.8 + 5 = 10.8 bits.

IBM AP-101 Instruction Format.

Figure 4.3.1-2
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CUBES

HAL/S PROGRAM EXAMPLE RESULTS

(refer to Chapter 4, Appendix 1)

IBM 360 encoding:

Total Address Opcode

Number of Bits 2800 2144 656

Percentage of Total 100% 76.5% 23.5%

AP-101 encoding:

Total Address Opcode

Number of Bits 1888 1298 590

Percentage of Total 100% 68.7% 31.3%

AP-101 encoding coipared to the IBM 360 encoding:

Comparing Comparing Comparing
.Totals Address Opcodes

Reduction in Bits 912 846 66

Reduction Percentage 32.6% 39.6% 10.1%

Relative Size of AP-101 67.4% 60.4% 89.9%

Bit Savings compared to Total program size:

Total Address Opcodes
Savings Savings Savings

Fraction 912/2800 846/2800 66/2800

Percentage 32.6% 30.2% 2.4%

Figure 4.3.1-3
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An investigation of the program memory usage itself
leads to the differentiation between operators and
operands. That is, the opcode fields (0) versus the
addressing fields (A).

P='O+A

An examination of the IBM 360 instruction formats (Figure
4.3.1-1) show for the RX, RS and RI formats the opcode
field constitutes only 25% of instruction, while the
address field(s) contains the remaining 75%. [Qualifica-
tions of understanding can be made: the register field
is a second operand, but will be here considered as an
"implied" operand; indexing is here considered part of
the operand specification rather than as an operator]. It is
easily seen therefore, a savings in the address field
representation can easily have a: large impact upon total.
memory savings.

The IBM AP-101 instruction architecture design
recognized this large bit representation dedicated to
addressing. Its instruction.compactification,. to a large
degree, depends upon having a short memory reference form.
Assuming that these instructions are used with a high
frequency, the total memory requirements for a program
can be appropriately reduced. Figure 4.3.1-2 shows the
AP-101 formats along with operator and operand break down.
Even here, the addressing information dominates, except
for the RR instructions.

Appendix 1 contains a HAL/S program along with both
the IBM 360 and AP-101 code which is generated for it.
Figure 4.3.1-3 summarizes the results of this example.
There is a substantial reduction of the program size from
2800 bits for the IBM 360 down to 1888 bits for the AP-101.
But when this is examined in detail, it is seen that while
the addressing bits were reduced by 846 bits, or 39.6%,
the opcodes were only compactified by 66 bits, or 10-1%.
Even this reduction of the opcode fields is not reflective
in the total program size reduction. Since the opcode
fields formed but a small percentage of the bit space
initially, its contribution to the resultant code compacti-
fication is only 2.4%! Sixty six bits out of the total
2800. Of the total savings of 32.6%, the address field
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reduction contributed 30.2%. The reason, of course, is
that even in the AP-101, the address portion of the

program is 68.7% of the total while the opcode portion
is only 31.3%. Even a small reduction in the address
field size has a large effect upon the total reduction.

While the AP-101, for example, has been able to

reduce the address portion of the instruction from the

IBM 360's 76.5% down to 68.7%, it is still apparent
that addressing considerations dominate. Indeed, it is

very easy, given user statistics, to Huffman encode the

opcode fields very efficiently, but addressing must also
reflect a spectrum of capabilities. It should not be
so tailored to a particular set of programs or users
that is becomes inefficient in other cases. Because of
this dominance of addressing in efficiency considerations,
considerable time was spent investigating and analyzing
various methods of address implementation in instruction
architectures; the requirements that HOLs, HAL/S in
particular, place upon address mechanisms if they are
to be efficient; and the actual encoding techniques
available for optimal encoding once the addressing
methodology has been choosen.
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4.3.2 Data Addressing

The forms of addressing required to access data
referenced in a HOL (HAL/S) can be examined from several different
points of view.

* Super compilation data (COMPOOL) versus compiled
data

* Statically declared versus dynamically declared

* Formal parameters versus declared data

Name (address) reference versus value fetch

• Name scope properties (locality) versus homo-
geneous treatment of data

Formal parameters versus scopped in data versus
locally declared data

Each of these different attitudes indicate the various
characteristics of data which must be resolved in the code
generated by a HOL. In order to create- an efficient machine
for the execution of a HOL, the semantics of the language must
be considered along with a model as to the actual usage of the
language. That is, while an instruction architecture such as
the IBM 360 is capable of implementing an(y) HOL, it is in
general very inefficient in doing so. While the semantics
of the particular HOL can be implemented, both the instruction
architecture of the IBM 360 itself and the lack of a model
of the proposed language usage,cause inefficient implementa-
tion of the language.

4.3.2.1 'Super Compilation Data versus Compiled Data. Data
at a COMMON or COMPOOL level exist outside of any given
single compilation. The data is to be referenced (by
definition) by several different compiled units. It is
only at link edit or actual run time that the environment
of the generated code is known. It is only after the
COMPOOL has been "linked" to the compiled unit(s) that actual
referencing (addressing) of data is completely known.
From a pragmatic point of view, this has two major implica-
tions for an instruction architecture. The first is that
the Compool data cannot be massaged by the compiler. It
cannot be sorted by size or frequency of reference or homo-

4-31

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



geneously addressed as other compiled data might be.

Since the Compool is to be referenced by multiple
compilations, its data must be referenced by each compila-
tion in a set standard way.. The second implication is

that the actual physical addressing of a Compool cannot
be "complete" until either.a link edit step or at run

time. While the Compool is logically addressible, its
actual memory residency is not known. Thus, for example,
the Compool could be considered to have, of necessity, a
different memory "relocation factor", than does that data
which was known in the compilation step.

4.3.2.2 Statically Declared versus Dynamically Declared.
Ideally, storage allocation would follow the semantics
of language definition both explicitly (static -versus
automatic) and implicitly (the life duration of a process

or procedure). Pragmatically, the data storage policy is
often otherwise. In aerospace applications, it is often
useful to have information be truly static regardless of
how it is declared. This can facilitate both hybrid simu-
lation and testing, and provide a "down link" capability
for further analysis. However, if procedures are either
reentrant or recursive, this is not often viable,and true
automatic storage need be provided.

Another static/dynamic question involves the question
as to when data memory is allocated to a process. This
question also involves the decision as to how storage is
allocated. That is, is it allocated as'a single contiguous
block (region), or as several blocks. One model of data
memory allocation that can be assumed is that which is similar
to the Space Shuttle model. All data which is to be allocated
statically will reside in one contiguous block, which can be
assumed (if necessary) to be resolved at linkage edit time.
All data which is dynamically allocated will be from another
contiguous block (stack area) which may be allocated at run
time. Thus, there appears three blocks of data to be addressed
by'a program: the COMPOOL, the static data, and the dynamic
data.
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4.3.2.3 Formal Parameters versus Declared Data. The actual
data reference for declared data can be resolved during
compilation. The reference for a formal parameter, by defini-
tion, is more complex. While it is possible to address the
"formal parameter", the data must either be placed in this
known address or else must be obtained via an indirection step.

While declared data can be either static or dynamic
(and in the Space Shuttle model the static appears to
predominate), formal parameters by their nature are dynamic,
and need exist only when the procedure in which they are
used is actually called.

The addressing structure of the instruction architecture
should then be able to handle both static addressing and
dynamic addressing. The static addressing would be used
for both Compool data and the majority of compiled data,
while the dynamic addressing would be used for formal
parameters and dynamic data of regntrant or recursive
procedures.

4.3.2.4 Name Reference versus Value Fetch. An instruction
architecture must be able to both generate the address of
an operand and also be able to fetch the value of the operand.
When a "call by value" occurs, as with a formal parameter,
the value must indeed be passed and sent rather than an address,
or else side effects of the change of value could occur. Simi-
larly, if a "call by reference" of a formal parameter occurs,
an address must be passed in order to assure that-the value
of the parameter changes as the variable changes, and also
in order that the formal parameter itself can be assigned into.

Besides their use in formal parameter passage,
addresses must also be able to be generated if the instruction
architecture separates "operators" from "operands". This occurs
in standard stack organized machines (e.g. B6700, and base-
line MP) where the store operator needs the address of the
operand to be stored into to reside on the stack. Of course,
this usage could be circumvented if the stack operator (and
any other memory changing operator: set bit, move, ... ) were
allowed to be incorporated into the "operand" versus "operator"
class. This is not as strange as it might first sound, since
the "operand" class is itself standardly a load stack and/or
load address to stack operator.
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4.3.2.5 Name Scope Properties versus Homogeneous Treatment
of Data. Instruction architectures which are

developed from a HOL often use the name scope properties
of the HOL to develop the addressing structure of the
machine. The pragmatic result is an immense saving in
memory requirements by the efficient compactification of
the required address field. This result comes from two

phenomena. One reason is that name scopes (lexical levels)
inherently narrow the amount of data that need be addressed
in any given instant. The name scope forms a static tree
and identifies that data which can be seen by the instruction.

Only that information which is in the name scope can be
referenced, by definition of the HOL. Hence, only that
amount of data (information) need be addressible. This "

greatly reduces the number of bits needed to address the
allowable data. In conventional Von Neumann architectures,
all of memory is addressed (although often partially compacted
by a ... c two dimensional address - base and displacement -
as in the IBM 360).

The second reason.is that instruction architectures
developed from a HOL recognize that they only need to
address variables, e.g. integers, scalars, vectors, matrices,
bit and character strings, arrays, and structures. They
do not have to explicitly address each element of a vector,
matrix, array, . Hence, the number of entities which must

be addressed are simply the number of names, of variables, which

appear in the program. While a Von Neumann architecture would
have a large enough address field to address each element of
a 100 element array, a .HOLM would need only reference the
array itself. To reach the ith element of this 100 element
array, an index operation is performed.

The reason then for the savings of address field size
when a HOLM is developed is that of the "locality" of the
appearance of the possible data is taken into condieration.
The address field can be compacted by both considering name
scope rules (hence HOL self imposed data referencing restric-
tions) and by directly &ddressing only the HOL named data
and not elements of the data.
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4.3.2.6 Formal Parameters versus Scopped In Data versus
Locally Declared Data. From another point of

view, a HOL procedure must be able to reference from three
distinct sources. One source following name scope rules
is scoped in from other procedures. Formal parameters
are passed into the procedure and can either be known
as values or must be referenced indirectly to the indicated
data. Locally declared data must either be created upon
entry or else be static throughout the life of the process.

In the use of most name .scoped HOLs, local data is
"created" upon entry to the procedure and thus requires
a dynamic characteristic' similar to formal parameters. Indeed,
this implies that scoped in data has been, in general, so
created from a previous outer level procedure. In this
case static data which is to exist throughout the process
could be handled by moving it physically (addressability)
to the outer most level of the process to the program level.

The Space Shuttle, however, uses the other assump-
tion: most data is to be considered static and only exceptionally
will it be dynamic (formal parameters, local data of reentrant
or recursive procedures). This then would imply that if the
addressing scheme is to.be efficient with the Space Shuttle
model, and hence make use of "locality", this static data can
not be simply moved in the program level, but rather the
standard lexical level referencing must be able to reference
both static local data and dynamic local data (formal para-
meters and reentrant local data).

4.3.2.7 Solutions to Addressing. One major motivation for
a HOLM design is to be efficient. No matter what the form
of addressing available for an instruction architecture,
it must be able to support the various HOL addressing modes
indicated in Sections 4.3.2.1 to 4.3.2.6. Indeed, all
(almost) addressing methodologies do have solutions since
such languages as Fortran, Algol, and Cobol can be
implemented with them. The question therefore turns.
rather on efficiency: the minimizations of addressing
space requirements. As Section 4.3.2.5 indicated, the
advantage of the lexical level-displacement form of
addressing is in fact that it minimizes the space of
variables which must be spanned. The size, therefore, of a
sufficient displacement field can be more compact than if
all memory had to be addressed. That is, it makes use of:
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1) Name Locality.

Associated with this concept is the use of descriptors.
This then allows the limitation of the addressing to
only the number of variables declared, and is not de-

pendent upon their size. Thus, an array of a hundred
elements counts as but one entity for instruction addres-

sing. This again reduces the requirements on the size

of the displacement field, thus:

2) reference only declared entities.

If these two features are examined, it is seen their
saving is a result of the reduction in the address field
width. The conclusion to be drawn is that any form
of addressing which can reasonably support the addressing
requirements of a HOL (Section 4.3.2.1 through 4.3.2.6) is
sufficient if it can be made efficient by the reduction of
the address field width. In order to do this intelligently
it is necessary to have very explicit statistics of actual
programmer usage. While one may have to support a possibly
large address space, if the majority of the time only 16
or 32 entities need be addressed, then this would only require
for the majority of cases only log 2 32 or 5 bits worth of
information. This of course depends exactly on how these
variables are distributed across the classes of data
described in Section 4.3.2.1 through 4.3.2.6. Section 4.3.4
will indicate the forms of statistics on addressing that
should be acquired by HAL/S programs in order that a tailored
efficient addressing structure can be designated.
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4.3.3 Addressing with the B1700

The baseline MP architecture for HAL/S was
predicated upon the use of a byte oriented micro-
processor. For efficiency reasons, it was assumed
that an access to an 8 bit byte was optimal and that
there was no advantage, because of hardware restrictions,
for entities of a non 8 bit multiple. However, the use
of the B1700 opens another set of possibilities. The
B1700 has been designed (refer to Section 4.4.3.4) to
have bit addressible memories with access width of
varying sizes. This has been accomplished without
paying an execution penalty for any quantums of 24 bits
(i.e. 1-24 width field each requires the same access
time; 25-48, etc. ... ). This possibility of efficient
bit addressing therefore opens the way for more efficient
encoding. No longer are bytes sacred and both instruction
and data built upon these units. The baseline MP instruc-
tion architecture consists of a majority of 8 bit "operators"
and 16 bit "operands"; data is in multiples of 8 bits with
the basic arithmetic types being of 32 and 64 bits width;
and stack usage was predicated upon 64 bit quantums both
for special words and descriptors. With the B1700 it is
possible to actually have 3 bit or 7 bit operators without
paying an efficiency penalty. Indeed, such encoding is as
quick as 8 bit encoding, yet can be spacially more efficient.

The paper "Burroughs B1700 Memory Utilization", by
W.T. Wilner, IWi 72b], presents the results of Burroughts
own success in developing implementation for their Fortran,
Cobol, RPG and SDL (system development language ) on the
B1700. These results can be summarized in Figure 4.3.3-1.
Figure 4.3.3-2 reports similar results from another paper
by Wilner [Wi 72a]. These results appear to be dramatic,
and indeed they are. The results come from properly
encoding the information of the respective higher order
language under actual user statistics. The best example
presented by Wilner was with respect to SDL. Since Burroughs
is the sole user of, this language, the accurate sample
(namely all that exists) of its usage was available.
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B1700 Comparisons

Percent Faster
Percent Program Execution Speed

Other System Memory Reduction Comparison

FORTRAN System/360 50%

FORTRAN B3500 40%

RPG System/3 50% 25% to 5%

COBOL System/360 Mod 30 70% 60%

Burrough's Encoding Comparisons for the B1700

Figure 4.3.3-1 [Wi 72b, p. 585]
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Percent
Aggregate Aggregate Improved

Language Size on Size on Other B1700
of Sample B1700 Other System Utilization

FORTRAN 280KB 560KB System/360 50

FORTRAN 280KB 450KB B3500 40

COBOL 450KB 1200KB B3500 60

COBOL 450KB 1490KB System/360 70

RPG II 150KB 310KB System/3 50

Amount of Program Compaction on B1700

Figure 4.3.3-2 [Wi 72a, p. 495]
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Total Bits
Encoding for MCP's Utilization Decoding
-Mehod Opcodes Improvement Penalty Redundancy

Huffman 172,346 43% 17.2% . .0059

SDL 4-6-10 184,966 39% 2.6% .0196

8-bit field 301,248 0% 0 % .4313

Comparison of SDL Opcode Encoding
Against Extreme Methods

Figure 4.3.3-3 [Wi 72b, p. 581]

4-40

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184



Figure 4.3.3-3 represents the chart Wilner
presents showing a comparison between an 8 bit opcode
encoding of SDL versus the ideal Huffman encoding versus the
method which they adopted. This method was to have three
opcode sizes: 4, 6, and 10 bits in width. What is
interesting to note is how close their choosen encoding
approaches the ideal case, and yet how much it saves from
the 8 bit encoding. Besides the opcode encoding, the SDL
Bl700 implementation provides for both flow control addressing
and data addressing. Flow control addressing is a triple
as follows:

f i e l d  segment
description name displacemen

3 bits . 0, 5 or 0,12,16 or
10 bits 20 bits

where the field description indicates which of the eight
allowable addressing possibilities is present. The data
addressing is also a triple but of the form as follows:

field lexical
description level displacement

2 bits 1 or 4 5 or 10 bits
bits

where the field descriptor indicates which of the four
formats is involved.

While the width of these addressing structures

produce "operands" of varying length, the data addressing
can be either 8, 11, 13 or 16 bits in length, while the
control addressing can possibly vary between 12 bits and
33 bits.
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MEMORY

COMPOOL CODE

Block Allocation: Block Allocation:

Linkage Edit Time Linkage Edit Time

Block/Displacement Block/Displacement
Binding: Binding:

Pre-Compilation Compile Time

STATIC DATA

Block Allocation:

Linkage Edit Time

Block/Displacement

DYNAMIC DATA Binding:
(STACK AREA) Compile Time
Block Allocation:

Run Time (Process
Initiation)

Block/Displacement
Binding:

Run Time

Block Allocation:

Memory management assumes memory has been assigned by the
linkage editor with the possible exception of the stack area.
Overlays to be handled statically and resolved by the linkage
editor.

Block Displacement:

The displacement relative to the start of the block is known
except in the case of the stack area. In the case of the stack,
displacements are relative to a mark stack word (i.e. procedure
level usage).

Memory Usage Model

Compiler Generated Blocks and Data Referencing

Figure 4.3.4-1
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The methodology applied in-the reduction of
opcode fields, and the control flow and data addressing.
is straight forward and produces a near optimal result.
But in order to accomplish this in a realistic way, it
is necessary to obtain real user'statistics of both opcode
appearances (HAL/S language usage) and information as to the
distribution of the referenced operands.

Unfortunately, it was not possible during the period
of this study to gather meaningful HAL/S usage statistics
since HAL/S had only begun to be used in the Space Shuttle
program.

4.3.4 Useful HAL/S Statistics

Gathering statistics for HALM development, not only
allows for optimal encoding of operators and operands, but
it can also make possible an understanding of what forms
of operands need be cleanly supported. While lexical level-
displacement addressing follows.the name scope rules of a
block structured language, it is not the most efficient
method when parameters outside the current name scope are to-
be passed. Similarly, the aerospace environment often--'
requires a more static environment than is implicit with
a stack organization. This too can cause inefficiencies
in lexical level-displacement addressing, forcing a
disproportionate number of variables to the higher lexical
levels. This of course then requires a large
displacement field at these levels: Named Compools
also can provide addressing problems for lexical level-
displacement addressing. While a single Compool can be easily
handled by allocating a single high lexical level for its
addressing, multiple Compools demand multiple addressdng
capabilities, and hence resolution. In aerospace usage-,
there is also the possibility that the sizes required are 'L
smaller than is a more general earth bound environment.
From these considerations, it is apparent that good distributional
statistics of actual address usage, not only can provide for
efficient encoding, but will also perhaps indicate another
appropriate form of addressing. The requirements for addressing
discussed in Section 4.3.2 must be fulfilled, but is a
minimimum, efficiency is to be found in compactification of
the result addressing fields. It would be hoped, therefore,
that patterns of locality of operands would be detected in
the statistical distributions. Figures 4.3.4-1 displays one
possible model for code and.data blocks generated by HAL/S
in an aerospace environment such as the Space Shuttle. .From
this diagram, it is seen that even here there is localization
of addressing requirements to very specific blocks.
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Assuming a lexical level-displacement form of
addressing is a real possibility for implementation,
it is necessary to know:

* The number of procedures at each lexical
level that define n variables.

* The number of procedures at each relative
lexical level that define n variables.

In the HAL/S environment it is useful to know:

e The number of Compools with n defined
variables referenced at each lexical level.

In the aerospace environment it is of interest to know:

* The distribution of procedures with respect to
the number of locally declared dynamic variables,
the number of locally declared static variables,
and the number of formal parameters.

* The distribution of variable references with respect
to their lexical level (or Compool) definition-
for each procedure at level n.

To develop a reasonable control flow addressing structure,
information of the following nature should be obtained.

* The number of programs expected to be in the
system at any given time.

* The distribution of the number of procedures
per program.

* The number of tasks within a program that can
be expected.

It is expected that with the progress of the Space Shuttle
program, these statistics will become available. This will
allow for both a near optimal encoding of HAL/S, and for
further investigation into the addressing possibilities open
to aerospace applications.
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4.4 Micro-Processors

The level of design' immediately below the instructionz
architecture is that of the processor that will implement
the instruction architecture. The development of micro-
processors and their availability for use, has.-...
allowed the tailoring and development of varying
instruction architectures. These in turn have aided in
the development of appropriately designed micro-processors.
This section will first give a brief history of the develop-
ment of the concept of micro-programming. This will facili-
tate an understanding of why micro-processors tend to
differ so dramatically from each other and the motivation
for their design. Next, several important issues for micro-
processor design will be discussed along with their relevancy
for higher order language emmulation during the -instruction
architecture development stage. Finally, several specific
micro-processors will be examined and the reasons for the
selection of the Burrough's B1700 indicated.

4..4.1 History of Micro-Programming

A lot of confusion and difference of opinion regarding
micro-programming arises because each author and corporation
uses this term in their own manner with their own connotations.
In the literature. on micro-programming, there are at least
four different attitudes and hence four different connotations
in using the term micro-programming. The four divergent views
of micro-programming can be classified as follows:

1) clean systematic hardware design;

2) computer manufacture cost savings with a
"family" of systems;

3) "User" being able to save "old" software via
compatibility and tailoring of the system to his
needs; and

4) special requirements such as teaching and research,
and associated cost savings in singular develop-
ments such as found in the aerospace industry.

These will each be briefly discussed in turn.

4-45

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



4.4.1.1 Systematic Hardware Design. Historically,
micro-programming was a term coined by M.V. Wilkes in

1951 [Wi 51). He states:

"My object was to provide a system-
atic alternative to the usual some-
what ad hoc procedure used for de-
signing the control system of a
digital computer. The execution
of an instruction involves a sequence
of transfers of information from one
register in the processor to another;
some of these transfers take place
directly and some through an adder or
other logical circuit. I likened the
execution of these individual steps
in a machine instruction to the execu-
tion of the individual instructions in
a program. Hence the term micro-
programming. Each step is called for by
a micro-instruction and the complete set
of micro-instructions constitutes the micro-
program. The analogy is made more complete
by the fact that some of the micro-instruc-
tions are conditional." [Wi 69a)

The term "micro-programming" used in this way applies only as
a hardware concept. It is a "method" of logical design which
has all the advantages of modular development for complex
systems. Many authors who are hardware oriented
a~refer to [Va 71]) still tend to regard this

as its main value, while recognizing others.

4.4.1.2 Manufacture Cost Savings. Large companies find
that micro-programming is a means to provide system com-
patability.over a wide range of performance and cost.
The IBM 360 series of computers is able to have even its
smallest computers have the same "power" as its large
brothers since they can be encoded via micro-programming.
S.S. Husson's book, "Microprogramming: Principles and
Practices", [Hu 70) is representative of this attitude.
In this book (pp. 72-74), he discusses seven advantages
with the use of micro-programming.
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1) flexibility and tailoring;

2) changeability;

3) ease of designing, maintaining and checking;

4) uniformity of design;

5) ease of education;

6) micro-programming can extend the useful life
of the system; and

7) economy.

In discussing -each of these,-the emphasis is from the system
design point of view, that of the manufacturer. He states
(pp. 16-19.):

"We have seen that microprogramming
offers many advantages over a conven-
tional hardware control in factors
such as cost, performance, flexibility
and tailorability, ease of maintenance,
and many others which will be reviewed
in more detail in a later chapter. Yet
in reality, except for few isolated
cases, microprogramming remains in the
domain of the design engineer. Why?
What is holding the different interested
disciplines from taking advantage of the
flexibility and efficiency microprogramming
can offer? The following is a partial list
of observations on this question.

1. Microprogramming was not intended
for the novice programmer.

2. Except for few special system designs,
the control programs are stored in
read-only storage devices that are
difficult and expensive to modify. ...
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3. The lack of standard assembly
language and standard.micro-
orders and micro-instructions
discourages the users from
attempting to apply micro-
programming.

4. A fourth major problem is
the lack of sufficient educa-
tional effort in preparing the
potential user to cope with
the problems he is to be con-
fronted with in instructing
him of the available means for
solving them, and in acquainting
him with the advantages and dis-
advantages of this additional
option for any given class of
problems. Basically, micro-
programming has been treated
as an adjunct to machine design;
no particular effort has been
made to separate the related
information or to make micro-
programming itself convenient.
Clearly, such a responsibility
does not all fall on.the designer.

5. . ..

6. A sixth reason for the lack of
widespread usage of the micro-
programming option is the
manufacturer's concern for the
preservation of the architec-
tural identity of the system
and with preserving its effective-
ness and its compatibility with
other models in the product line.

This problem becomes a simple one
if the system's original identity
or affiliation with any product line
or any operating system is not needed,
that is, if the system is to become
completely and permanently a slave to
one fixed mission or task ... "
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From a manufacturer's point of view, the emphasis upon
system compatability and orderly .growth becomes para-
mount. This is both obvious and necessary, since they
wish to market their product on a mass scale.

4.4.1.3 Maintenance of Old Software. The same desires
of compatability and orderly growth is expressed from
the user's view but with a different emphasis. This
point of view is well expressed in the birth of the
Standard Computer Corporation and developed in a paper
by its Vice President, L.L. Rakoczi [Ra 69].

The:user of computer systems has a financial
investment and therefore a real desire to maintain the
working set of programs. that he already has. When new
computer systems are bought, the expense of changing the
current programs to make them compatible with the new
system can be prohibitive. It is widely known that those
programs written in a HOL for portability reasons, seldom
are truly transferable, and programs written in an assembly
language are usually given up as a hopeless loss.

IBM has recognized this form of problem by allowing
its small 360's to have a special 1401 emmulation mode in
which the 360 "looks like" a 1401, and hence the old 1401
programs can be run while "the new and improved programs"
can be written for the 360. The user, however, is not
necessarily interested in just one computer manufacturer,
but wants to be able to salvage his software from any
computer. By emmulating the "old" machine while taking
advantage of the new, he obtains the best of both worlds.

"(the user) often finds it costly and
time consuming to rewrite his proven
and useful programs so that they will run
on the new generation computer. A related
problem is faced by users of large scale
computer installations who have a number
of computer systems. These computer systems
frequently have different machine-language
repertoires which are not compatible with
each other. In other words, a program
written for one computer system of the
user will not perform on another computer
system of the same user."
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"any fourth generation machine can
be 'dedicated', not in one direction,
but in many. Vintage software,
massaged and made workable through
frequent use and long study, can
now be employed-as required with-
out locking the user in or out."

" The fourth generation computer
will save training, sales and
service costs for its maker and
will permit its user to call on
an infinite variety of industry
resources and know-how for the
execution of his functions and
the solution of his problems." IRa 69)

Besides this general gain which all users can hope to obtain,

the micro-programmed computer can be of assistance in another
way.

"for their part, fourth generation
thinkers were planning to combine
micro-programming with some form
of inner computer solely to execute
subroutines. Then they started
adding features to increase micro-
programming efficiency."

Commonly executed subroutines can be made into
executed micro-code. If sine or cosine, for example, are
used repeatedly they could be implemented as an instruction.
Similarly, when common table search and date lookup routines
are the main occupation in a commercial application, they
become measurable bottlenecks which can be opened by making
their execution efficient. These two features then are
of the utmost concern to the user:

a) To make all his current software available
to him as he goes to the new (or different)
computer systems. This also would allow
access to any software available from any
source; and
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b) the possibility of tailoring the computer
to particular needs when identifiable bottle-
necks in subroutine execution can be located.

4.4.1.4 Special Singular Users. The fourth attitude is
rather limited by its very nature of being specialized.
There are applications where the three previous economic
incentives meant generalization. Designing systematically
with a general method means ultimiate savings. Building
a compatible system across a spectrum of price range means
economic savings in developmental cost and a market base
for growth. Being able to save current software and being
able to use any other software in existence saves rewriting
and much developmental cost.

In the university environment, one runs into the
needs for education and research. These both have their
special requirements [Ro 71]. Micro-programming becomes
both a teaching tool to train people in system architecture
and a device for research to expand the frontiers of know-
ledge.

The use of micro-programmed machines for aerospace
applications is another example of special usage. Patzer,
et al. [Pa 70] states:

"Attention is focused upon three systems
engineering considerations:

(a) Specialized Operations - A micro-
programmed computer organization
is shown to be well suited to
applications where very special-
ized tasks require a significant
percentage of total execution
time.

(b) Restructurable Architecture - The
case with which the computer instruc-
tion set, data representation, inter-
rupt system, and input/output system
can be restructured via micro-
programming is shown to be a sig-
nificant consideration.
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(c) Efficient Simulation - The unique
capability for efficient simula-
tion (emulation) inherent in
micro-programmed computers is shown
to permit a significant reduction
in development time and overall
cost when a previous system is up-
graded or an experimental system
is used."

and " Two costs are relevant to the aero-
space systems implications of micro-
programmed computers. The first is
the cost of the computer itself; the
second is total system cost. The
former includes electrical and logic
design, packaging, drawing release,
tooling and qualification and environ-
mental testing of the computer. The
latter includes the cost of the computer,
its peripheral devices, other system com-
ponents, software, operating costs and any
costs assigned to intangibles. For a specific
aerospace system application, the cost-of a micro-
program controlled computer by itself may
or may not be less than that of an alternative
computer. However, the system engineer's free-
dom to modify computer characteristics with-
out major hardware redesign, repackaging or
requalification and his ability to extend
system life by micro-program changes may
lower overall system cost. This freedom can
often allow later incorporation of a new
weapon system, navigation aid or mode of
operation. System cost analysis for each
application must quantitatively account
for such factors qualitatively discussed here-
in."
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4.4.1.5 Current Micro-Programming Usage. It is
as a direct out growth of research by both the
Universities and by the aerospace industry that
an emphasis upon higher order language machines has
occurred.

For the universities, this has been an emphasis
upon research in developing new instruction architectures
and improving programming practices. The aerospace
industry has been highly interested in the compactifica-
tion of memory in order to reduce computer cost, weight,
power consumption, and physical size.

While hardware designers, industry, and large
software users still maintain their particular orienta-
tions, the usefulness and capabilities of micro-processors
in HOL execution has become a major area of investigation. It is
with respect to this attitude, concern for HOL implementa-
tion, that the various microprocessors have been examined
in this study. The ability of a.micro-processor to imple-
ment a HAL machine is the criteria by which they were
judged.
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Micro-Instruction Formatting for IBM 2050 [Hu 70, p. 322]



4.4.2 Important Micro-Processor Design Issues

There have been a large number of micro-processors
designed and developed in recent years. .They vary in their
internal bussing, computational capability, data width,
and methodology of micro-instruction encoding. In order
to appreciate their basic differences and associated
advantages with respect to higher order language implemen-
tation, it is necessary to discuss certain of these
differences.

4.4.2.1 Horizontal Versus Vertical Micro Encoding. Micro-
instructions are used to control the execution of the processor.
It does this by specifying at the adder, shifter, and register
level both the inter-connectionsbetween these elements and
the function which the active elements are to perform. How
this information of inter-connections and functional specifica-
tion is encoded differentiates "horizontal" versus "vertical"
micro-programming.

Horizontal is meant to imply "wide", a large number,
of bits. With many bits available it is possible to encode
very low level information, specifying all the gating at
the adder, shifter, and register level.' Thus, any of the
capabilities of the circuit can be potentially exercised.
Similarly, this in turn implies that any possible paral-
lelism (e.g. independent shifter, and adder action) can be
taken advantage of. The wide width of a' horizontally
encoded micro-instruction also.in general allows for a
fairly reasonable form of micro addressing to occur. That
is the address specification of the next micro-instruction
can be directly specified with each micro-instruction.
The micro instruction format (Figure 4.4.2-1) for the
IBM 2050 (processor for the IBM 360/50) is 89 bits wide
and is an example of this form of "horizontal" encoding.
[Hu 70]. The Nanodata QM-1 slightly modifies this normal
concept of horizontal encoding to include four "time steps"
within a single micro-instruction. This width is a total
of 342 bits [Nc. 71, p. 9-1].
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Vertical is meant to imply a "narrow" width for
the micro-instruction. This is accomplished either
by encoding the possible gatings into mutually exclusive
fields, as for example selecting but one register to be
the left input to the adder, or by minimizing the address
capability within each micro-instruction, (either requiring
a separate instruction to branch, or allowing only
a.:branch of a few bits), or a combination of these two.
The Shuttle computers, the AP-101, is an example of a
partial vertical encoding (Figure 4.4.2-2) being 43 bits
in width. The B1700 has a.micro-instruction width of
16 bits [Va 73] being extremely encoded.

The Burrough's D-machine [Bi 70] combines both
of these concepts. It has a -two level encoding.. On the-
lowest level, it has a "nano" store with a horizontal
encoding being 54 bits in width and a vertical encoding
of 16 bits in width. While the nano-stdre (horizobtal)
indicates the normal inter-connections, function specification
and simpler micro addressing; the micro store (vertical)
is used as a source of literals and larger addressing fields
(Figure 4.2.2-3).

The QM-1 has also adopted this concept. Besides
having a horizontal encoding, as mentioned above, it
also contains a vertical encoding used to provide access
to the routines of the nano store (horizontal).

From the practical point of view, the difference
between these methods of encoding is a question of dollar
cost and execution speed. The more "horizontal" a micro-
instruction, the less decoding required. and thus
potentially the faster the execution. But this in turn
requires a larger micro-instruction store (more bits)
which in turn is more costly. In the other direction, the
more vertical a micro-insturction, the more decoding
that is required before the designated inter-connections
can be completed and functions executed. But in return,
there is a reduction in the amount of micro-instruction
storage.
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Besides these cost arguments, the vertical encoding
by its very nature removes some of the possibilities for
the circuits usage. While this could potentially reduce
some useful execution capabilities, it in general does not,
since few of all the possible horizontal' encodings would ever
be useful.

What is more serious in extreme vertical encodings is
the cost of micro-instruction addressing capability. If no
sequencing information is provided, then this vertical
instruction becomes in nature, similar to the normal Von
Neumann machine architecture. That is, for example, a lack
of parallelism in processor execution and the general require-
ments for two instructions to be executed in instruction
sequencing,i.e. a separate branch instruction is required.
Thus, the penalty becomes not only an execution time lossage
due to "vertical" encoding, but indeed time lossage due to-a second
micro-instruction fetch before a change in sequencing can occur.

It is seen that the choice of encoding effects both
dollar cost and execution time capabilities. From the
point of view of the development of. a higher order language
architecture, however, this is a minor consideration. Time
can be conveniently counted in time steps rather than the
real execution time. The implementation of the HOLM architecture
*on a micro-processor gives insight into problem areas, but
being a tool in design is not overly restrictive. In a produc-
tion version of an HOLM, the insights gained in its develop-
mental implementation would allow for the appropriate modifica-
tion of the underlying support processor.
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4.4.2.2 Degree of Parallelism. One advantage of a micro-

processor over the standard mini computer is that it 
is

possible to make more efficient usage of the processors
circuitry. As mentioned in the last section, many micro-

instruction encodings allow for sequencing information
in each micro-instruction. Thus, upon the execution of

each micro-instruction there can be made a conditional choice

of the next micro-instruction. This saves a time step when

compared to the normal computers which are required to 
execute a

following branch instruction.

It is also often possible to execute the various
active elements in the same time step within a micro-

processor. Thus, for example, the shifter and adder
of the QM-1 can be executed separately in the same time

steP while even incrementing another register. Often,
memory accessing can be initiated and overlapped with the

micro-processor, e.g. Burroughs D-machine.

The advantages of the use of parallelism within

the processor is, of course, the time savings involved.

The price is having a relatively wide micro-instruction
encoding and the complexity of more than a simple single
bus between the various executing elements.

From the point of view of the implementation of a

higher order language machine, any specific parallelisms are not

required for development. But a production version can
benefit highly from the appropriate combination of certain
limited parallel functions, such as stack manipulation
(maintenance of stack indicators) while also using the ALU.
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4.4.2.3 Bit Testing and Field Extraction. There are two
basic extreme philosophies with regard to accessing particular
bit fields within a main store instruction. One extreme is
to be able to access any bit field within the main memory
instruction within any given micro cycle. This would thus
allow for a micro-processor to have a general emmulation
capability: no matter how the (any) instruction architecture
is encoded, it can be swiftly and efficiently decoded since
any bit field-can quickly be accessed and tested. The price
for this capability is to have a "barrel switch"; a field
isolation unit that can both shift, mask and test the
resultant value of a word within one micro-instruction clock
time. This indeed is included in the design of the Burrough's
D-machine. The 31700 has a similar capability but is done
differently and can often require several micro-instructions
in order to complete the process. Once such a feature as
a barrel switch is developed and the initial developmental-
cost covered, it can become an effective element of any
processor.

The other extreme is to allow access to just those
bit fields that are of interest for the particular instruc-
tion architecture being implemented by the micro-processor.
This is indeed the method used by the AP-101. Thus, this
does not require the use of such a complex element as a
barrell switch within the processor. It is accomplished
instead by placing the appropriate random logic required to
access and test the fields of interest. While this does
not therefore lend itself to the capability of general
instruction architecture emmulation, it does prove to be a
cost effective engineering technique in the development of
a production computer.

One other difference between these two methodologies
should be noted. The second method allows the following micro-
instruction to be executed upon results of the fields and/or
conditions specified. In the first case, though more general,
the field of interest to be tested mustoften first be isolated via
the barrel switch, and which would take an extra micro-instruc-
tion clock step to do. (Sometimes, of course, it could
take more,and other times the second method itself would take
several clock steps in order.to generate the desired result).
Between these two extremes are many possible design compromises.
While a micro-processor may have an oritentation to a
particular main instruction architecture format, it may also
have a fairly good field isolation and testing capability.
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Figure 4.4.2-4
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The B1700 has extremely good testing and sequencing control
since it can efficiently manipulate and--isolate fields from
zero to 24 bits.

In order to use a micro-processor for instruction
architecture development, it is extremely important to
have the capability of field isolation and testing. It
is to be noted, however, that this generality often causes
more time steps than if an "ideal" micro-processor was
available which is specifically oriented towards the
instruction architecture being emmulated. While this is
no handicap during development, and indeed can be considered
a great advantage since no bias towards certain field
.usages and designations are present, it is not the most
efficientmethod for a final production version.

4.4.2.4 Sequencing. In conjunction with bit testing and
field isolation, the method of sequencing found in a micro-
processor can allow for both efficiency and ease of implementa-
tion of a higher order language machine, or it can allow
for the opposite: inefficiency and difficulty. It has already
been stressed how micro-instruction addressing correlates to
micro-instruction bit width (horizontal/vertical) and how this
inturn can imply either parallel, next instruction selection
or the need for an extra clock step.

The capabilities of the micro-instruction addressing
are also of interest. Often, these consist of but simple
branches which thus forma linearization upon the micro
control flow. If a sequence such as in Figure 4.4.2-4
is required, this would in turn require the setting of a
flag in order to differentiate the source and hence the
return from the common subroutine. While this is often not

a problem with micro-processors used for standard Von Neumann
architectures, it can pose a problem for those processors
used to emmulate higher order languages. The solution,of
course,is to provide for modularization: CALL and RETURN.
This is effectively done on the D-machine by use of a simple
alternate micro program counter, thus providing for the
savings of the return address. In the B1700, an actual return
stack is provided for several levels of calling. As in most
cases, the penalty for this cleanliness is, in general, a degree
of inefficiency: that is, a call and a return must be performed.
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(In the D-machine, this form of sequencing is part of each
nano-instructions option and thus does not provide a time
penalty). However, if modularization is required, this
is no more inefficient than the setting and testing of
some flag.

Another consideration is with respect to the design
process: modularization allows for a clean design which
can be modified rather than having the design controlled
in development by addressing and size restrictions. Thus,
modularization is also an important feature for a micro-
processor if it is to support general emulation.
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4.4.3 Micro-Processors Under Consideration

In recent years there have been a plethora of
micro-processors made available on the market. Many
of these have been developed by mini computer manufacturers
in order to gain entry into the "micro computer" market
and in order to allow their customer to do some tailorihg
to his specific needs. Often, however, these mini micro
computers are merely the standard mini computer with some
access to fast memory. That is, the micro-instruction
set itself is basically indistinguishable from a standard
mini computer instruction set. The instruction format is
vertical with no parallel processing capability, and requiring
sequencing instructions. Further, it is usually required
.that-any -"new" instruction added rigidly follow their current
instruction formats with regard to field size, location, and
meanings. Finally, they are usually limited in the amount of
control store available for this extra usage. These state-
ments do not, of course, pertain to all cases.

For a variety of reasons, the micro-processors which
were seriously considered and examined were the Nano Data QM-l,
The Burrough's D-machine, the IBM AP-101, and the Burrough's B1700.
The QM-1, D-machine and B1700 each have been initially designed
to be emmulators and interpreters for higher order languages.
The AP-101 on the other hand is the micro-processor used for
the Space Shuttle program and upon which HAL/S will be
implemented in the standard fashion. The B1700 is a newer
design than either the QM-1 or the D-machine and has taken
emmulation a step further than the other two. The B1700
uses bit addressing of memory and is basically free of any
particular bit width restrictions (no inherent bytes or words),
fields or formats. This, along with its commercial availability,
makes it the most desirable micro-processor for developmental
work.

4-65

NTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



AD OD COEOA

ALU HOLD SHIFTER

MA IN LOCL CONTROL XTERNAL
STORE STORE STORE EG ISTERS

. ALU.

0Ld
". ©

I I-

NANOSTORE, CONTROL M ATRIX, and MACHINE STATE VECTOR

QM-1 ORGANIZATION AND DATA FLOW

Fiaure 4.4.3-1 rNc 711



4.4.3.1 The Nano Data QM-1 [Nc 711. The QM-1-offers an
exceptional degree of flexibility in a processor unit.
Control is effected by double level emulation with a micro-
control store driving a nano-control store. The micro
memory is a writeable control store. The data width is
18 bits. One of the major features of the machine is the
variety within the memory hierarchy. This includes main
memory up to 512K bytes of 750 ns core, a local store of
thirty-two 18 bit registers, external register consisting
of thirty-two.18 bit registers, control store of up to
32K 18 bit words, and a nano store up to 1K 360 bit wide.
This hierarchy of storage with the extremely wide nano
memory, and potentially large degree of processing
parallelism would certainly prove quite satisfactory for
implementing the proposed instruction set.

One important shortcoming of the machine is that
the word length is fixed to 18 bits. While this-is not a
handicap for developmental work, it would penalize its
execution for the standard aerospace units of 32 bits in
actual operation.

The generalized structure of the QM-1 appears to
be ideal for emulation, which indeed is what it was
designed for. The reason that the QM-1 can not currently be
considered is that it is not easily available for usage,
and thus is currently an unrealistic choice for HALM
development. A study of its structure, however, proves
very fruitful in comparing micro-processor designs
(Figure 4.4.3-1).
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4.4.3.2 Burrough's D-Machine [Bi 70]. The Burrough's D-Machine
is an unusually modular and flexible architectural design,
which is capable of application to a wide variety of problem
areas. In its basic multi-processor configuration, it
consists of three major building blocks: interpreters,
switch interlock, and memories. The interpreter is a micro-
programmed processor and is used to perform both arithmetic/
logical computation and I/O device control. The switch
interlock is the communication network which links
interpreters, operating memory, and I/O devices.

The D-machine interpreter is constructed from
five functional parts: memory control unit (MCU),
control unit (CU), logic unit (LU), micro program memory
(MPM), and nano memory (NM), (Figure 4.4.3-2). The word-
length of the interpreter depends only upon the logic unit,
which is modular in 8-bit blocks, from 16 bits to 64 bits.
The use of micro programming enables the control logic to
be quite regular in structure, resulting in economy of
manufacturing'. Additionally, different micro programs may
be used with the same hardware to implement different instruc-
tion sets for different applications. Furthermore, if a
read-write rather than read-only micro programmable memory
is attached, the system can reload this memory dynamically
to run programs written in different machine languages at
different times.

To save storage, the micro program structure of the
interpreter has been divided into two logical sections: micro
and nano. The control of functional operations within the
interpreter is dictated by the contents of a location in nano
memory. Each of the 56 bits corresponds to a control line
for the elements of the LU, CU, and MCU. A given nanoword
is selected under control of a micro word which specifies
the nanoword's address in nano memory. As a result,
nanowords may be referred to by many micro words; hince,
the bit saving.

Burroughs is producing both a commercial and a
military version of the interpreter-based system. The
commercial version is being used for disk controllers and
for other applications not yet announced.
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A major shortcoming of the D-machine appears to

be the fact that there is little local storage associated
with an interpreter. However, Burroughs has indicated
that a memory unit could be attached to a device port,
which would serve the function.

The D-machine would be a good candidate for a
micro-processor implementation of HAL. But as with
most micro-processors, it has a definite byte and word
orientation. The data units would have to be choosen
to be some multiple of 8 bits. This structuring of
sizes varies greatly in philosophy from the bit orienta-
tion and non forced structuring of the B1700. This,
in conjunction with the easier access to the B1700,
removed the D-machine from active consideration.
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4.4.3.3 The IBM AP-101 [Va 72]. The IBM AP-101 is a
micro-processor oriented to the execution of a modified
IBM 360 type of instruction architecture. Intermetrics
has in the past examined the capabilities of this processor
under contract first to IBM and latter within the Space.
Shuttle program under contract to Rockwell International.

The data width of the AP-l01 is 32 bits. It contains
a single 32 bit ALU and a register file containing 32 32-
bit registers. The instruction decoding is specifically
oriented towards the current AP-101 instruction architecture.
While it is always possible to emulate any particular
instruction architecture, the AP-101 was not designed for
this purpose and any such use would become very inefficient.
The micro instruction addressing capability is basically
oriented towards a limit of 4K by 44 bit micro words.
The physical implementation is actually less than that limit.

Since the AP-101 is the computer to be used for the
Space Shuttle, it was of interest to see how it would be
able to support a HAL machine design. However, its specific
instruction format orientation and micro addressing structure
make it unfeasible to consider it as a design tool. Further,
it would be impossible to have access to it in order to develop
an implementation, since, for example, the micro.store itself

is not writtable.

A study of the AP-101 micro processor design is
interesting in the fact that it has taken a very pragmatic.
engineering approach for a cost effective implementation of
its instruction architecture [Pa 70].
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4.4.3.4 The Burrough's B1700. The B1700's design objective
was "to give 100 percent variability, or the appearance of
no inherent structure". [Wi 72a]. It was designed to be
-an essentially unbiased emulation facility, able to adopt
to any instruction architecture used to support the
language being emulated. The general structure, philosophy,
and usage of the B1700 has been published in a series of
three papers by W.T. Wilner in 1972 [Wi 72a, Wi 72b, Wi 72c].

The basic qualities of the B1700 indicated in
these papers include:

0 Bit Addressible Memories

In order to be free of structure restrictions, there
are no mandatory byte or word boundries inherent in the
processors architecture. The hardware supports the memory
access in such a way that there is no penalty for addressing
and particular bit address (even though physical mem6ry is
eight bit units).

0 Field Widths are Free to Vary

Besides having bit addressible memory,
the field width accessed and processed are free to vary
for 1 to 65K bits. The internal bussing and ALU are
capable of automatically handling information in units of
from 1 to 24 bits. If larger units than 24 bits are to be
processed, this would require further memory accessed (access is in
24 bit quantums), but the processing can be performed without
the involvement of the user.

e Good Bit Testing and Field Manipulation

As a corallary to the bit addressing capability,
the B1700 provides for efficient manipulating, and
sequencing upon 4 bit units while being able to easily
manipulate and extract 1 to 24 bit units.

O Writable Micro Memory

The system was designed to support a multi emulator
capability. The micro instruction executes out of main memory,
but may be buffered by fast circuits. The ability to modify
and develop an emulator is inherent in the design and its
philosophy.
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Designed for Multi Emulators

The B1700 was intended to operate in a multi-
emulator mode. Thus, the facility for this form of
development explicitly exists. Similarly, the problems
of common executive and I/O interfaces has been resolved.
The interface to each emulation is standardized and the
I/O and other executive functions supported. Thus, the
development of a new emulator can principally concentrate
on the instruction architecture under development.

o Micro Code Facilitates Modularity

The addressing structure of the micro code is
such that micro-procedures may be defined both re-
entrantly and recursively. The micro-processor hardware
supports a 32-deep hardware stack. This then enables
clean modular design with minimal penalty.

The B1700 is a commercial machine which is
fairly accessible for usage. Upon the request of
Intermetrics for work under this contract, the Burrough's
corporation allowed access to further information upon
the B1700 micro-processor and for its actual usage in
the development of a HALM emulator. The details of the
B1700 micro-processor design has not yet (it is believed)
appeared in general publication, and are currently considered
propriatory by the Burrough's Corporation. The availability
of this information has greatly helped the pursuit of the
HALM development in this contract.
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4.5 Implementation

In order to investigate the implementation of a

HALM, the B1700 was choosen to be the host processor
for the baseline MP instruction architecture. The
baseline MP instruction architecture is more highly
structured (byte and word oriented) than is required
by the Bl1700. While modification of the design could.
have improved the efficiency of the HALM design, the
limited time available for this task made this prohibitive.

Requirements for, and possible modifications to, the BALM
addressing structure were, however, investigated in parallel

to this implementation task (Section 4.3), thus providing.
a basis-for future improved implementation.

The two main results of this task have been the

detailed investigation and analysis of the B1700

capabilities and limitations for the implementation of
emulators; and the design and partial implementation of
a modified MP instruction architecture.

The remainder of this section will discuss the

programming environment and conventions provided by the
B1700 for HOL emulators; the high level design of
the MP instruction architecture implementation; and
examples of instruction architectures encoding. Section
4.6 will discuss the limitations and possible modifications
to the B1700 (also applicable to other micro-processors)
for improved HALM execution.

4.5.1 B1700 Emulator Environment

The Burrough's B1700 was designed as an emulation
vehicle. It does not have any preference for a particular
instruction architecture or format sizes, and various
HOLs can be supported in their own fashion. This

amorphousness is inherent in its design philosophy. The
B1700 was designed for a multi emulator environment. From
this decision arises the requirement that there be a
standardized interface to the operating system and for

I/O processing. It is by convention that the various
emulators interface in a particular way. This is not
inherent in the processor's design itself. Being but
a gentleman's agreement, it is the responsibility of
each emulator to test for any required interrupt servicing
at convenient times (normally the start of each new HOL
instruction cycle) and then to return to the operating system
having saved one's own environment.
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I/O, for example [Wi 72c], is handled by sending
or receiving a string of bits. A pointer to a buffer
area along with a device code is passed to the operating
system. The system is designed so that the HOL emulators
may assume perfect I/O transmission. I/O devices,
from the HOL emulator point of view, can be assumed to be
present and ready, and the results obtained to be error free.
This philosophy is consistent with a top down design.
Responsibility for I/O preparation is not placed upon each
HOL emulator, but rather upon the next level of service,
in this case the operating system. The emulators do, however,
have the responsibility of periodically checking to see if
there is a high priority I/O process waiting to be performed;
that is, the micro-program must check for I/O.interrupts.

Other operating system functions for multi-programming
are handled in "a similar fashion.

This establishment of a standardized operating
system and I/O handling greatly facilitate the use of the
B1700 as a design tool for the development of instruction
architectures. Concentration can thus be placed upon the
development and refinement of the instruction architecture
language structures.

4.5.2 Implementation Structure

The basic flow of all instruction set implementations
follows the basic pattern:

o instruction fetch

o op decode

e semantic routines

Instruction execution begins by obtaining the next
instruction. The opcode of this instruction is then
decoded. This decoding is used to indicate the meaning
of the instruction: what function is to be performed. Control
is transferred to the appropriate routine-and the semantics
of the instruction is performed. Figure 4.5.2-1 indicates
this flow with respect to B1700 usage.
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* HALM to B1700 Interface Routines

- SET-UP-HALM initial entry set up

- SWAP return interface

- RUN-TIME-ERROR error handling

* HALM Instruction Architecture Requirements

- PUSH-STACK register to memory

- POP-STACK memory to register

- REGISTER-FILL fill the top of stack

- GEA calculate physical address

- FORM-DESCRIPTOR fill in descriptor fields

o Common Semantic Subroutines

- GET-2-OPERANDS set up stack for dyadic operator

- GET-l-OPERANDS set up stack for monadic operator

- PUT-RESULT set up stack with operator's result

- MULTIPLY-16-16 fixed point multiply service routine

- Floating Point Support
Routines

Working Subroutines

Figure 4.5.2-2
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In the micro-instruction set of the B1700 is
an instruction for directly reading from the main memory.
With this instruction.it is possible to simultaneously
execute the read and increment/decrement the address
pointer while simultaneously incrementing/decrementing an associated
counter. This allows for very efficient memory referencing
since the bookkeeping and maintenance of pointers and
counters are simultaneously provided for. This allows
for modification of the standard instruction flow to only
two basic steps:

instruction FETCH and DECODE

Q SEMANTIC routines

In the description of the B1700 micro-processor
(Section 4.4.3.4),it was indicated that there was great
facility in the manipulation and testing of four bit fields.
This allows for the decoding of the opcodes by four bits
at a time. It is possible to.do an effective 16 bit do case
by "or"ing a four bit field to the micro-instruction program
counter. Thus, op code decoding occurs in steps of four bits
at a time.

The semantic routines then perform their appropriate
functions as defined in the instruction architecture. These
are the basic routines that actually execute the instruction
function such as ADD, COPY, Store,....

The B1700 was designed with a micro-instruction level
stack mechanism which allows for re ntrant and recursive
routines. This design modularity allows each of the
semantic routines to call upon a series of service routines
for common functions. These functions can either be
reflective of the bookkeeping required for the instruction
architecture, e.g. stack Push or Pop, calculate effective
address, j..; or bookkeeping required by B1700 conventions,
e.g. operating system and I/O interfaces; or they can be
a common function of two or more the semantic routines, e.g.
floating point normalize.

Figure 4.5.2-2 gives a summary of the basic service
routines associated with an implementation of the MP
instruction architecture. Other service routines would also
exist because of the desire for modularity and clean design.
The B1700 allows each of these routines to be encoded in a
fashion similar to normal machine instructions.

This section has presented the basic structure of the
HALM implementation consisting of three parts: 1) the FETCH
routine for obtaining and decoding the instruction, 2) the
semantic routines for their interpretation, and 3) various
support routines.
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4.5.3 Implementation Examples

A partial implementation of the MP instruction
architecture was made during this study. During
this implementation, several modifications to the base-
line MP instruction architecture were made. In particular,
since this was an investigation and analysis task,
modifications were made to the arithmetic types as
described in the baseline. This was caused by the fact
that the internal data width of the B1700 is 24 bits.
Thus, it is more aimiable to manipulations of'quantum
either less than this size or multiples of it. In
particular, it.was decided that instead of supporting
a stack of 64 bits width, it would support a -stack of
48 bits of width. This does not directly effect the
other portions of the MP architecture, but only changes
its data types, descriptors, and special words. The
change, however, facilitates the implementation on the
B1700. While .the 64 bit format can be supported by the
B1700, it required more care in details and bookkeeping.
Figure 4.5.3-1 shows the modifications to the arithmetic
formats for the modified MP architecture. Similar minor
modifications also were required for the descriptor and
special word formats.

Three of the implemented routines are now given as
examples. These. are the FETCH routine, and the two,
semantic routines, LTS4 and LOR.
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FETCH * ROUTINE LABEL

MOVE 24 TO CP * SET FIELD CONTROL TO FULL WIDTH

MOVE FETCH-ADDRESS TO TAS * RESET;:UP THIS ROUTINES. ADDRESS

IF ANY-INTERRUPT THEN * TEST FOR HI-PRIO INTERRUPT

BEGIN * IF THERE IS ONE:

MOVE CHECK-FOR-INTERRUPT-CODE TO X
* WHICH CODES TO TEST FOR

CALL SWAP * SEE IF SHOULD RETURN TO O.S.

MOVE L TO Y * HAVE SUCCESSFULLY COMPLETED

IF Y NEQ 0 THEN CALL RUN-TIME-ERROR
* ERROR HAS OCCURRED

END

MOVE NEXT-INST-PTR-TO FA * PLACE PC FOR MEMORY FETCH

READ 24 BIT TO T INC FA * READ THE NEXT 24 BITS

EXTRACT 4 BITS FROM T(0) TO L
* OBTAIN THE FIRST 4 BITS

MOVE L TO M * OR IT TO THE MICRO INSTRUCTION

JUMP FORWARD * JUMP UPON THE 4 BITS

GO TO EIGHT-BIT-OPS * 000'0

GO TO EIGHT-BIT-OPS * 0001

GO TO EIGHT-BIT-OPS * 0010

GO TO EIGHT-BIT-OPS * 0011

GO TO LTS4 * 0100

GO TO LTS4 * 0101

GO TO LT-OPS * 0110

GO TO LTLD-LTLDX * 0111

GO TO COPY * 1000

GO TO COPY * 1001

GO TO GET * 1010

GO TO GET *. 1011

GO TO ADR * 1100

GO TO ADR * 1101

GO TO ADRE * 1110

GO TO ADRE * 1111

The Initial Op Decode of Four Bits

Figure 4.5.3-2
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4.5.3.1 FETCH Routine. Section 4.5.2 indicated the
function of the FETCH routine in the HALM implementation.
It is responsible for checking for any interrupt, for
obtaining the next instruction from memory, and for the
actual opcode decoding process. Figure 4.5.3-2 shows
this routine as written for the modified MP instruction
architecture. Figures 4.5.3-3 through 4.5.3-5 show the
MP instruction architecture encodings as given in Mi 72,
(errors being corrected). These are the encodings that have
been implemented in the FETCH routine.

Going through the FETCH routine, the following is
seen:

o The data width to be used within the processor
is set to 24 bits. By setting the CP to a value
of 1 to 24, the ALU will act accordingly on
that bit width.

§ The address of the FETCH routine itself is now
placed upon the micro instruction stack. This
allows the semantic routines, when they are
finished, to do an EXIT (e.g. a GOTO the
address indicated by the value on the top of
the micro-instruction stack).

o The interrupt flags are tested to set if there
is an interrupt present. If there is an inter-
rupt, the mask of those of interest is passed
to the SWAP routine. If control must be
returned to the operating system, this will
be done so by the SWAP routine after appropriately
saving the emulators environment (i.e. registers).
Upon return from the SWAP routine, it is checked
to see if all is satisfied or if there is an error.
If there is an error related to the process, control
is given to a routine to handle it.

o After any interrupt processing has been handled,
if present, the program counter (PC) is placed
into the memory address register. Twenty four
bits of memory is now read, and the PC is
incremented by this 24.
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* The first four bits from this memory
read are now extracted from the 24 bits.

e The extracted 4 bits, the opcode, are now
"ored" into the next micro-instruction. This
effectively modified the next micro-instruction's
address field.

o This next instruction is a branch. The low
four bits of address have been modified by
the four bits of opcode which have been
extracted. Therefore, a 16 way branch can
now occur.

o A comparison of the sixteen GO TOs with the
encoding presented in Figures 4.5.3-3 through
4.5.3-5 show that each of these branches now
go to the appropriate semantic routine.

Bits 0000 to 0010 need further decoding and
thus now go to an EIGHT-BIT-OPS decode
routine which does another appropriate fan-
out.

Bits 0100 and 0101 both go the the LTS4 instruc-
tion routine.

Bits 0110 must be further decoded to discover
which literal operator is present. Hence, this
branch goes to a LIT-OPS routine for decoding.

Bits 0111 are either a LTLD or a LTLDX instruc-
tion. It thus goes to a routine which will perform
the appropriate semantics.

Bits 1000 through 1111 are similarly decoded
and go appropriately to either the COPY, GET,
ADR, or ADRE instruction routines.

Control returns to the FETCH routine when the
appropriate instruction semantics are completed.

It is interesting to note that the preference of the
B1700 for 4 bit fields has resulted in a 16 way fan out for
this routine.. Often, other forms of opcode decoding are
possible. Either random logic or fields of a larger width
can be tested. These methods pay the penalty of either being
special logic, non modular, or if the field size is larger
than 4 bits, it will cost more memory in its usage (8 bits
implies 28 fan out or 256 fan out: but the literals and
operands are encoded in 3 of 4 bits!).
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z OPERATOR BYTE LENGTH FORM
m

m 1 0 1 v..v provides codes

a) All Instructions (except 1 0 0 v v v..v provides codes

those below)

b) Exceptional Instructions

oST m,n 3 0 0 0 m m m m m m 0 U n n n n n n

-)
O

BLD ,n 3 inmmmmmm i 0 n n n n

m

M BOUT m,n 3 0 n n mmmmmn mb l iin-

0o

SBINRSTL m,n 3 0 q q O l 0 1 mmn n n n n 0 n

m ... nm bit field length
m

0. I

BSTL n 2 T0 0q q qq q l 0 n n n n n n

c BCHGL n 2 r r r 0 n n n I

C

-n BTSTL n 2 0 0 qqq 1 n n n n n n

o

n ... n bit position

JCC m 2 - r r r r rr0 00 min m m m

MP Instruction Encodings (1)
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m
c) Operand Meta-Operators

DCOPY 2 0 0 a a aaa a a a a a a

GET 2 aa0 a a a a al a a a a a a a
z

ADRE 2 fl1 a a a a aa a a a a a aa

o

rn a...a lexical level, displacement

o LTS4 1 xX Xy

0
LTS10 2

LT32 5 0 0 0 ... x x x x x x
>T 4 bytes

0 1- 0 1 0 1 . x x x

0LT64 94 bytes

SLTS1 o ... xx xxxx xs
C LTS7M 3 2 bytes

4 1 1 0 1 1 0 1 ... xXXXXXX

~ 4 bytes

C 50 1 0 1 1 1 0 ... xxxxxx x s

n L4 bytes

o

x11. - numerical value
au 4 bytes

rlgu'L 4 . r--



OPERATOR BYTE LENGTH FORM

o LTLD 1 0 1 1 1 0 N N

or3 0 1 1 0 NN ... 1 NNi i
> ..... 2 bytes

m
LTLDX 1 0 1 1 0 N N

oor 3 U 11 1 1 1 N ... ii i ii i
0r3 2 bytes

0

m
C

0 NN: literal to be loaded 00 signed 7 bit
> 4 '01 signed 15 bit

Ci...i: literal table address 10 32 bit flt. pt.
S. 11 64 bit value

O

m

/ MP Instruction Encodings (3)
0

Figure 4.5.3-5
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LTS4

COUNT FA DOWN BY 16 * FIX PC ADDRESS CORRECTLY

EXTRACT 5 BITS FROM T(3) TO Y
* GET THE 5 LITERAL BITS

CLEAR X * ZERO THE X REGISTER

CALL PUT-RESULT * PLACE RESULT: X,Y INTO STACK

EXIT * RETURN TO FETCH ROUTINE

(Note: This rotuine assumed a 48 bit arithmetic format

versus the baseline MP 64 bit arithmetic format; refer

to Figure 4.5.3-1).

Semantic Routine: LTS4 Implementation Load Signed 4 Bit

Literal Into Stack

Figure 4.5.3-6
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4.5.3.2 LTS4 Semantic Routines. The LTS4 operator places
a signed five bit quantity into the top of stack. Figure
4.5.3-6 shows the B1700 implementation of this instruction.

e Since the FETCH routine counted up the PC by
24 bits, but the LTS4 is only 8 bits in length,
this routine must now decrement the PC back down
by 16 bits. (The FETCH routine incremented the
PC by 24 bits since it read the maximum amount
that it efficiently could, and the increment
of the address pointer can be done at the same
time).

0 Referring to the LTS4 format in Figure 4.5.3-4,
shows the literal information in bits 3 to 8
of the operator byte. Thus,-these five bits .
are extracted from the instruction register (T)
which still contains the 24 bits of information
obtained by FETCH. These five bits are placed into
the Y register and then the X register is zeroed.

o By convention, the X and Y registers contain the
high and low portions of a resultant value of
an operation (in this implementation). Referring
to Figure 4.5.3-1, it is seen that the literal is
indeed in the correct format for placing into the
stack.

0 The routine PUT-RESULT is now called which will
take the 48 bit XY value and place it in the top
of stack. The PUT-RESULT routine worries about
the bookkeeping of the stack: whether the A
register is currently filled, whether the top
of stack must be pushed to memory, etc.

o Finally, control is returned to the FETCH routine
in order to process the next instruction. EXIT
is a return using the address on the top of the

This routine is representative of the bit extraction
capability of the B1700 and the ease of the code generation
for it.
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LOR

COUNT FA DOWN BY 16 * FIX PC ADDRESS CORRECTLY

CALL GET-2-OPERANDS * SET UP TWO TOP OF STACK REGISTERS

MOVE B-REG-2 TO X * SET UP TO "OR" LOW

MOVE A-REG-2 TO Y * 24 BITS OF STACK

MOVE XORY TO L * REGISTERS, SAVE IN TEMPORARY

MOVE B-REG-1 TO X * SET UP TO "OR" HIGH

MOVE A-REG-1 TO Y * 24 BITS OF STACK

MOVE XORY TO X * REGISTERS, LEAVE IN X

MOVE L TO Y * LOW 24 BITS TO Y

CALL PUT-RESULT * PLACE RESULT INTO STACK

EXIT * RETURN TO FETCH ROUTINE

Semantic Routine: LOR Implementation Perform Logical

Or Upon Two Top of Stack Registers

Figure 4.5.3-7
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4.5.3.3 LOR Semantic Routine. Tre LOR operator performs
a logical OR upon the top two operands upon the stack. The
result is the left on the top of the stack. Figure 4.5.3-7
shows the B1700 implementation of this instruction.

* As with the LTS4 instruction, the PC must be
decremented by 16 bits since the operator is only
a syllable of 8 bits in length.

* The routine now calls the GET-2-OPERANDS routine. This
routine makes sure that the two top of stack
registers, A and B, contain values. This may
require reading operands from memory or interpreting
an address.

e The LOR routine then takes the low 24 bits of- the
A and B registers and places them as inputs to
the 24 bit ALU (i.e. the X and Y registers).

o The "logi&al or" of these values is temporarily
saved.

e The routine then does the same for the high 24
bits of the A and B registers. The"logical or"
being placed into the X register.

0 The low order 24 bits are now placed into the Y
register, thus,forming the desired 48 bit result.

0 Now, as with the LTS4 routine, the 48 bit result
in the XY register is placed into the stack by
the PUT-RESULT routine.

0 Finally, control is returned to the FETCH routine
for processing the next instruction.

This routine discloses the preference for 24 bits.
in the B1700 architecture. To process 48 bits took two
steps through the ALU.

4-91

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840



4.5.3.4 Routine Implementation. The previous three

examples have shown how code is generated for the B1700.

The process is basically straight forward with the ability
to manipulate various bit fields as desired. The ALU

itself provides the standard types of results such as

"and", "or", "not", "exclusive or", "masking", "complemen-
tation", "addition", and "subtraction".

These three examples are sufficient to show how the

B1700 is used and its possibilities. In the next section,
several limitations and desired modification to its
structure will be discussed.
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4.6 HALM and B1700 Mutual Reflections

Implementation of the MP instruction-architecture
upon the B1700 highlights the assumption made during
their individual developments. The free, basically
structureless form of the-B1700, indicates how HAL/S
has presummed the necessity of rigid data formats.
The ability of the B1700 to perform almost any form
emulation, on the other hand, often results in time
penalties when a specialized function is required. A
proper design process consists of refinement, with feed-
back to the previous level, as artificial restrictions
are discovered or pragmatic ones required.

4.6.1 HAL/S

The process of implementing the MP instruction
architecture highlights the ease of implementation with
the use of the B1700. But it also indicates where
HAL/S has either general or complex capabilities
whose requirement for a micro-implementation is debatable.
Either because they are used very infrequently, or because
they could consume large amounts of time, thus adversly
interacting with real time process and I/O handling.

The B1700 also indicated areas where more generality
for the HAL/S language does not involve efficiency penalties.

4.6.1.1 Ability to Implement a HALM. As previously discussed,
the implementation of an instruction architecture can be
viewed with respect to four separate categories: control
sequencing, data addressing, functional transformations,
and data representation.

The B1700 has a very clean modular structure. It
is fairly easy to write a micro routine for any particular
instruction. The control sequencing as presented in the
MP instruction architecture is basically of a straight
forward nature. As was mentioned previously, the MP
instruction architecture was modified to have a 48 bit
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width stack instead of the initial design of 64. This in

turn forces modification to the special control words by
narrowing their width. This constraints was not mandatory,
but rather one of convenience since the internal bussing
is of 24 bit width. (It would be possible to use multiples
of 32 bits, but this requires more careful bookkeeping and
more coding. This was not of importance for the investigation
of the implementation aspects of both the instruction
architecture and host micro-processor).

Similarly, the implementation of the MP instruction
architecture data addressing is well defined. While the
B1700 easily emulates this structure, it is to be noted
that address manipulation (lexical level-displacement
to stack number-offset to physical memory addresses) are
performed in a step by step fashion using the general
capabilities of the micro-processor. In a specific
implementation of such an instruction architecture, it
would be profitable to have the specialized capability
for some of this, otherwise, sequential manipulation.
Of course, in a non-real time or developmental environment,
this is no real penalty.

HAL/S has a set of function transformations, semantic
operations, more powerful than the conventional scalar
arithmetic. These include the ability to do vector and
matrix arithmetic along with generalized array processing
of the various basic data types. These powerful operators could
be encoded either as micro instructions, as are the scalar
operations, or they also can be provided as basic instruction level
subroutines. The advantages and disadvantages are of course
memory size and execution requirements. In particular, the
time granularity of response required for process and I/O
interaction may make prohibitive the total calculation upon
an array or even a large matrix. The question then of
implementation depends upon statistics.of HAL/S language
usage, the capabilities of the micro-processor, and the
real time characteristics of the required mission. Within
the context of this study, these various complex operators
were considered to be a refinement to the basic implementation
and non essential for this initial investigation. Thus,
they are, in general, assumed to exist as subroutines, (which
of course, is how they are implemented, either in line or out
of line, in the IBM 360 and AP-101 implementations).
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REPRODUCBILITY OF THE
ORIGINAL PAGE IS POOR

One other set of operators are of interest in HAL/S.
These are the real time or.executive functions. HAL/S
assumes that there exists an executive which is both
priority driven and is capable of supporting the HAL/S
real time statements. The B1700 was not designed, nor
meant to be,a real time processor. It is oriented towards
batch processing in the business community. Since the
Bl700 is also meant to execute in a multi emulator environ-
ment, it has already assumed a particular executive inter-
face and its appropriate functions. Within the context of
this project, this was the executive interface assumed for
HAL/S.

The final area of data representation was also affected

by the B1700. Soley for implementation convenience within
the context of this project, the data representations were
modified from the initial MP instruction architecture format
of 64 bits in the stack to 48 bits. It is to be noted,
however, the HAL/S language specification does not designate
data types other than by the weak attribute of SINGLE or
DOUBLE. The B1700 does not directly support floating point
arithmetic data types. :Rather, this must be encoded
via micro subroutines. The only penalty paid, of course,
is that of execution time. For the business community to
which the B1700 is oriented, this is no problem since most
of their arithmetic is in decimal (or binary) format. To
efficiently support a scientific application where floating
point calculations predominate, it would of course be
desirable to have a special floating point capability.

One other reflection of the B1700 is the fact that
it is able to support data representations of varying
widths. Thus, it actually is practical to support a
spectrum of data precisions within higher order language.
It is easy to envision the higher order language having
a precision attribute specifying the number of decimal
digits required, and then having the storage thus
allocated and the calculations thus performed.
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4.6.1.2 Modifications to HAL/S. The last section indicated
two interesting possibilities for the HAL/S language definition:
one with respect to data type representation, and the other
with respect to the executive interfaces.

The data representation was seen to be one of the
four areas of language specification which are basically
independent of each other. Further, HAL/S, as with most
higher order languages, does not directly specify the
arithmetic data representation to be used. Their policy
of non-specification is a hedge. Higher order languages
are usually implemented on various processors. There is
no industry standard upon format representation, the Univac
1108 varying from the IBM 360 from the Singer SKC 2000 from
the Burroughs 6700, ..... It can, in general, also be
legitamately argued that an add is indeed an add. If the
precision provided is sufficient for any task, then the
algorithm (encoded in the HOL) itself should not care
about the data representation.

The variability offered in the B1700 for data widths
indicates that perhaps what should be done is that a higher
order language should specify the characteristics: precision
and range, required for the variable, and thus make this
a part of the algorithmic development.- It would then be
possible to have efficient use of both memory resources
and to have an algorithm that would work "correctly"
upon different host processors.

Another variant of this idea (in the context of
the current generation of software) would be to have the
data declared to have a particular data representation
(instead of the required attributes such as precision and
range) and thus be able to have the execution have the data
characteristics of a known architecture: IBM 360, SKC 2000,
B6700, ... . This attitude, while not ideal from either
the top down design or analytical approach, would be useful
in the context of software verification, duplication, and
reproducibility of results while allowing the introduction
of more efficient instruction architecture and hardware
implementations.
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The other area of interest to HAL/S is the executive
interface. While HAL/S goes in great detail in specifying
the executive and real time statements, it would be of interest
to see, as part of the specification, the other side of this
interface. That is, HAL/S should also specify the assumed
characteristics of an executive required to properly support
HAL/S. In particular, since HAL/S is a real time language,
it would be desirable to quarantee that a complex of HAL/S
programs will execute identically in an identical real
time environment when the processor and/or executive support-
have been changed. Basically, the specification desired is
that equivalent to specification of a "multiply". It is
not important how the circuitry is done, but rather that
the same result be returned. In the case of HAL/S executive
functions, both "time" and "processes" are entities whose
interactions need be specified in order to obtain determin-
istic and reproducible results.

4.6.2 B1700

The B1700 has proved to be an excellent facility for
the investigation, implementation and refinement of
instruction architectures. The results of this study,.of
course, indicate several areas in which'it is found lacking,
highlights useful modifications, and indicates some of
the general characteristics desired in any micro-processor
used as a support for emulators.

4.6.2.1 Deficiencies. While the B1700 is an extremely
efficient emulator for the general case, it has several draw-
backs for use with HAL/S. In the aerospace environment, HAL/S
is used as a real time process control language and must
efficiently execute various scientific calculations.

While it is not impossible to have the B1700 execute
in "real time", the amount of calculation that could be
performed in such a manner is limited. Again, this is
not that for which the B1700 was designed.

The newer aerospace computers have come to support
floating point calculations. The advantages have
to do with algorithmic specification, programming design
and fewer conceptual or run time errors. When floating
point is encoded into a micro routine, it of course takes
in general quite a few time steps. These can become
prohibitive if the floating point is used regularly. From
the HAL/S point of view, it would be-more than desirable
to have direct floating point support, and thus improved
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execution time. From the conceptual design point of view,
this is of no importance.

The SKC-2000 and the AP-101 both have 32 bit single
precision floating point formats (however, of slightly
different representations). One drawback of the B1700
is its preference for, and internal bussing of, 24 bit
data widths. While conceptually this does not alter the
B1700's design, it has the real pragmatic effect of hampering
in the efficient emulation of many current 32 bit width!
machines. It is quite easy to conceive of the B1700 design,
but altered to have an. internal bussing (and ALU capability,
etc.) of 32 bits.

4.6.2.2 Possible Modifications. While the last section
contained issues that are thought to be real
drawbacks for the use of HALM-B1700 implementation
in a real time environment, this section will contain possible
modifications to the micro-processor's structure that would
aid in exdcution efficiency.

0 Special Opcode Facility

The FETCH routine illustrated the preference of
the B1700 for four bit-manipulations. The initial fan out
in the opcode decoding was 24 or 16 ways. While this is
an extremely efficient methodology in minimizing the number
of steps required versus the amount of memory required,
it can be seen that a large part of this routine is
consumed with standardized testing and bookkeeping.
Since the FETCH routine, by definition, occurs in each
instruction execution, it would be reasonable to provide
some further hardware support for this function.

This hardware support could take the form of a
particular entry point for FETCH (thus no need to set up
the FETCH address into the micro-instruction stack),
automatic interrupt testing under mask, reading of the
next instruction from memory, and a fanout to the
specified routines (pragmatically again this would be on
the order of the 24 or 16 way fanout).

Further sophistication could allow for a specifica-
tion of encoding of the opcode bits. This would allow the
minimum number of words required for the opcode jump table
while still being fast by use of hardware-support.
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e Hardware Support of a Memory Stack

While it is easy to manipulate the register file
of the B1700 and to read/write memory, the use of a stack
in the higher order language instruction architecture usually
requires some degree of bookkeeping. Thus, for example, if two
registers are designated to be the "top of stack", A register,
and "next to top of stack", B register, it becomes necessary to
keep track of which is currently filled and of when it becomes
necessary to push one or both of them into the memory-
portion of the stack, or to fill them from memory.

Since so many higher order language architectures
are stack oriented (by the fact, of the stacks correspond
to both the compiler codes generation and the' algorithm's run
time execution characteristics), it would be quite reasonable
to have two of.the registers in the register file be designatable
as the A and B registers, and then to provide hardware support
for their maintenance and manipulation.

While this might seem to be a minor point, their
continual need for maintenance in a stack oriented architecture
becomes a sizeable overhead.

o Fixed Point Multiply

When one is multiplying by a multiple of two,
this can be accomplished with great efficiency by merely
shifting. In the B1700, where fields of .any bit width may
be used, numbers such as 3, 5 or 23 can usually appear. In
the process of addressing elements of an array, for example,
the index must be multiplied by the field widths. Thus, if
the B1700 is being used efficiently, general multiplications
must occur and not mere shifting. The way that this would
currently be done is, of course, to call a multiply subroutine.
This subroutine uses the adder in the normal repetitive fashion
to accomplish the multiplication. Since HAL/S does have both
a Vector/Matrix and array capability, the use of indices,
either implicit or explicit, must be efficiently supported.

If a hardware fixed point multiple were provided,
the manipulation of arrays of varying bit sizes and dimensions
of course becomes that much more efficient as does the process
of multi ranked entities which also involve general multi-.
plication.
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o Condition Code Testing

The B1700 provides both a very good mechanism
for bit manipulation and field extraction, and for a large
number of condition code testing. However, the bit
manipulation and field extraction is not a part of the ALU,
while most of the condition code testing is. It would be
desirable to be able to have condition code on bits without
having to use the ALU which would both consume another instruc-
tion for this move, and potentially destroy some useful information.

o Floating Point Support

As has been previously discussed, it would be beneficial
from an execution point of view if floating point calculations
were directly supported by the B1700 rather than being micro-
programmed. In the scientific environment, towards which HAL/S
is oriented, this is most important..

o Internal Bussing of 32 Bits

The desire for an internal bussing of 32 bits is
the pragmatic desire to be efficiently compatible with a
large number of processors currently.available. With some
loss of efficiency, it is of course possible with the B1700,
to emulate a 32 bit architecture. Also, of course, certain
applications may not require an arithmetic data representa-
tion greater than 24 bits or multiples thereof. Then, of
course, the current B1700 is emmiently suitable.

o Descriptor and Addressing Support

While the previous suggested modifications were
oriented towards the general support of any emulator, this
suggestion presupposes a particular architecture with
a particular representation. Once the formats and semantics
of the addressing of an instruction architecture becomes
known, it is then possible to specify subfunctions for their
manipulations. It is these repetitive actions and bookkeeping
that become prone to inefficiencies.

When, for example, the descriptor formats are given,
specific hardware aids can be envisioned for tearing apart
the information and its appropriate manipulation.
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Similarly, when the addressing structure is
designated, such as base-displacement in the IBM 360,
or the lexical level-displacement, stack number-offset,
and physical memory addresses, as in the MP instruction
architecture, it is obviously more efficient if the
hardware is capable of adding in the appropriate transla-
tions. That is, the micro-process must decipher the
base-displacement form of addressing.by:

a) extract the "base" bits ;

b) fetch the indicated register using the bits as an index;

c) add the displacement bits to register value; and

d) use the resultant value as the memory address.

If hardware aid were available, the extraction of bits
and fetch of registers and addition of displacement
could all occur in one. time step.

This form of aid is seen to be very dependent
on the instruction architecture being emulated. But,
this specialization in return greatly aids in efficiency.

All of the above modifications were not functional
requirements in nature, but were rather related to the
question of efficiency: the number of time steps required
for the emulation of an instruction architecture.
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4.6.2.3 General Micro-Processor Characteristics. From the
discussions in the previous section and Section 4.4 on
micro-processors, several general charcterizations may
be drawn about the features desired in a micro-processor
used for a HALM instruction architecture emulation.

o Easy Bit and Field Manipulation

In order to interpret the various formats, bit
fields must be able to be manipulated.

o Condition code testing and branching

It must be possible to test bits and bit field
and to make a decision upon the result.

o Modularization

In an instruction architecture oriented towards
a higher order language, modularization becomes extremely
important since there is the need of various common
service and common semantic subroutines. Also, this allows
for a clean design methodology.

o Special Hardware Support

In order to have an efficient emulation of a higher
order language such as HAL/S it is desirable to have hard-
ware support in the following areas:

- floating point support

- automatic top of stack maintainance

- special opcode decoding mechanism

- address decode aids such as fixed point multiply

A combination of generalized bit and field manipulation
along with some.specialized hardware supports, proves to be a
very efficient methodology of supporting a class of higher
order language machines.
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4.7 Statistical Results

The comparison of instruction architectures requires
an understanding of just what a meaningful comparison is,
and which measures are useful; it also requires a method for
obtaining these measures; and then finally the results
obtained by this comparison. While the most desirable
comparisons would have been made with the use of HAL/S Space
Shuttle usage statistics, these were not available during
the time period of this contract. However, the simple
method of benchmarks allows for a meaningful, general
'comparison.

4.7.1 Useful Measures for Comparing

In order to compare various instruction architectures,
it is necessary to choose a measure, or quantification, of.some
aspect of their design. From a realistic point of view, the
only important measure of any system development is whether
it can perform as needed within the cost and time constraints
allowed. But, within this framework there are many different
architectures available to a computer system with respect to
network design, instruction architecture, implementation of the
instructions, and the actual physical circuit design. In the
consideration of a higher order language, there would seem to
be three measures that could be considered as objective criteria
for measurement of an (any) instruction architecture: time,
space, and ease of use.

4.7.1.1 Execution Time. While initially time may seem to
be a useful criteria, further consideration shows that the
execution time of a program is basically independent of the
instruction architecture itself, relying instead upon the
logic and circuit design of the architecture's implementation..
That is, while gross inefficiencies of instruction architecture
design could have bad effects, "good" designs (in all the various
forms.: three, two, one operand or stack-oriented; single
accumulator or multiple register; etc.) are largely dependent
on the speed of memories, registers and logic, and the degree
of parallelism used in the instruction execution. The actual
number of fetches from memory can, however, provide a metric
which accurately compares efficiency of one architecture to
another. A further refinement would be to differentiate the
memory accesses for instructions from those for data.
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4.7.1.2 Memory Requirements. Space, the amount of main

memory required, is however a real objective measurement

that can be made. It is possible to separate the "logical"

design of an instruction set, from the actual "physical"

bit implementation. From an information theoretical point
of view, even "logical" designs can be compared regarding
efficiency of representing the information content of a

given program. Memory is a major factor in system design,
since currently it is the most costly physical component
within a computer system. Reducing program length (compacting
instructions) minimizes both hardware cost and execution

speed. Hence, if the instructions fetched from memory have
a higher information content, fewer memory fetches and total
memory cycles are needed. In th& measurement of memory needs,
data memory may be differentiated from instruction memory. It
is not to be expected that different machine architecture will

vary greatly in data memory requirements since data (size)
is predicated upon on the precision requirements of the

problem under consideration. The instruction memory however,
allows for a large memory savings. The design of several
architectures for Higher Order Languages have claimed memory
reductions from 25% to 75% [Sa 72].

a) Cirad [We 71] has reported that their SPL machine
had yielded an overall reduction of 60% in the
memory requirements over a traditional single-
addressed architecture for implementing the same
set of guidance equations and functions. The
memory efficiency is reported to be "due to the use
of Polish stack with implied addressing, the use
of floating point, the number representation used,
direct fetch of literals for instructions, built-in
array operations and use of one of two byte instruc-
tions without word boundary restrictions".

b) Kerner and Gellman [DR 70) have designed a machine
which directly executes Fortran statements.
Programs written in this language and executed
on their machine occupied 75% less memory. These
results were atained by comparing the machine
code generated by the Fortran compiler for the
IBM 7094 with the numbers of words required to
represent the instructions for the ILM. The 4:1
compression of memory space for program storage
was the result.
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c) Sugimoto [Su 69] has studied the direct execution
of the PL/1 language and the implementation of
his PL/1 reducer. For typical scientific programs,
the length of the object code has been reduced
by 25% compared to the object code generated by
presently available PL/l compilers. He also found
a speed gain of 28% for arithmetic string opera-
tions.

d) Higher order language examples have demonstrated
that a traditional machine architecture; viz. the
IBM 360, uses at least twice as much memory as a
specially designed computer, the Burroughs 6500.
Distinguishing between the static memory size and
the dynamic memory usage allows for a more efficiently
compacted information and optimal design of the data.

e) As previously indicated in Section 4.3.3, Wilner
[Wi 72a, Wi 72b] has reported program memory
savings of from 40% to 70% with usage of the
B1700 over current instruction implementations.

4.7.1.3 Ease of Use. The third criteria, "ease of use" is
difficult to express quantitatively. It is, however, very
real with respect to programmer usage: How easy is it to
implement a program? When the system is to be programmed in.
a higher order language, the question is changed into whether
the HOL can be easily and effectively implemented with the
instruction architecture. This question of ease of usage
also can be useful in examining an existent architecture
with respect to what. are the common programmer mistakes and
errors, what do programmers find irritating and annoying,
and what then are useful incremental improvements.
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4.7.2 Methods for Quantifying Instruction Architecture
Comparisons

Several methods have been suggested to compare proposed
instruction architecture and produce quantitative results.
The ideal solution would be to continue development on all
candidates and measure performance with respect to cost and
execution time after they have been built. This method
of approach is hardly practical. An attempt to achieve
the same results has been made by postulating some mix of
instruction types and then evaluating the machine's execu-
tion time and memory sizing, based on the assumed mix. This
approach, however, is open to question because of the assump-
tions inherent in the a priori presumed instruction mix.
This fault is particularly apparent when comparing two architec-
tures which are basically different, such as an IBM 360 versus
a Burrough's B6700. They do not even begin to have the same,
or similar, breakdown of instructions.

When dealing with a higher order language, such as HAL,
it is more practical to take a different approach. Often,
benchmark programs have been devised for comparative testing,
but they have the drawback that they are seldom representative.
They usually consist of but a relatively simple set of routines
that do some well-defined tasks such as matrix multiply, sort,
etc. They are inadequate since they ignore the real character-
istics of a job's execution. It is most important to know
how the machine executes programs in the application environment.
Subroutine calling and exiting, saving of special index registers,
linking conventions, and addressing are of interest insofar as
they are utilized in the execution of actual programs.

In the selection of a computer from a set of already
existing candidate machines, the use of benchmarks is often
facilitated by the existence of the appropriate HOL compiler
(e.g. FORTRAN) on each of these machines. The benchmarks
then can be compiled and run and results compared on each of
the candidates. The software as well as the hardware is tested
in this fashion: it is only the success of the combinations
of both that can produce good results and merits the ranking.
It can be argued therefore, that fair and reasonable overall
conclusions may be obtained. This method is not directly
applicable to the development and comparison of new computer
architectures, since compilers on these machines, of course,
do not yet exist; further it is difficult to project accurately
the picture of proposed job usage. However, the use of bench-
mark programs can still be a useful technique. Note that the
code generated must also assume the capabilities of a compiler.
A more detailed discussion of this method is given below in
Section 4.7.2.1.
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Besides the use of benchmark programs, the various
language features of a HOL can be- separated so that code
generation and performance on the candidate machine may be
examined. This then allows for a comparison between state-
ment types on each machine as well as the additional ability
of separately weighing the relative importance of statement
types under discussion. This method of relative comparison
was first developed by Wichmann [Wi 69, Wi 70; Wi 71, Wi72]
who compared the implementation of different Algol compiler's
code execution time. His methods were extended by Wortman
[Wo 72] into a tool for the comparison and development of
machine architectures. Section 4.7.2.2 will discuss a modified
Wichmann approach; Wortman's approach is examined in Section
4.7.2.3.

To a large degree., the actual design.of an instruction
architecture itself can allow for a near optimal encoding.
Once the basic logical instruction architecture is made, a
Huffman encoding is then performed with respect to actual
usage statistics of the language. However, this method
itself has several limitations. 1) There is the assumption
that the basic operators and operands have some how been
designated, i.e. the logical instruction architecture has
been made. But, this logical design can often itself be
improved upon such factors as by examining the frequency of two or
more instructions following each other. 2) There is the
requirements that actual usage language statistics are available.
If they are available, how representative are they? 3) Probably
the most important decision which effects the encoding is the
implementation of the addressing structure. The actual sizing
of operand fields will highly effect the efficiency of encoding;
but this is dependent upon usage statistics which can be
interpreted in many ways depending upon how the addressing is
handled. 4) Most important, it is to be noted that this provides
for but or static bit encoding. It is not concerned with
either execution time or with dynamic encoding. Thus,taken
in extreme, it would become very inefficient and prohibitive.

It is thus seen, that while usage statistics can aid
in the physical encoding of a logical instruction architecture,
it is not in itself a sufficient methodology for the develop-
ment of the instruction architecture. The instruction architec-
ture is of a logical nature that must reflect the HOL (HAL/S)
while taking in consideration current machine capabilities
and possibilities, and in particular, the addressing structure
must be developed. Even with this design work being done,
improvement can be made outside of the architecture. Thus,
the methods of Wichmann and Wortman provide a useful tool to
highlight both the efficiencies and inefficiences of the
instruction architecture allowing for improvement beyond more
efficient Huffman encoding.
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4.7.2.1 Method of Benchmark Programs. One method of
obtaining a comparison between proposed instruction archi-
°tecture involves encoding a series of benchmark programs
for each proposed machine. The approach involves arranging
a cursory compilation of representative programs; the resultant
code is then examined in terms of both memory and time
efficiency. This method eliminates one major source of
discrepancy, namely the vagaries of individual compiler
writers and their chosen techniques. Since the code
generation is being performed by the developer, the
compilation techniques remain constant, the results obtained
should be a fair measure of each architecture's capabilities.

The application of this approach would consist
of the following steps:

a) Selection of a subset of representative HAL
programs. This may be based on those developed
for the proposed usage if it differs from the general usage.

b) Postulation of a run time environment for each
of the proposed architectures. Included would
be assumptions concerning the compiler's use of
the general register set if present (e.g. bases,
indices, accumulators). It is necessary to
define in.detail the addressing assumptions used,
and the method and number of things addressed.
Allowance must be made for the number of entities
in excess of the basic addressing policy. Also
included is the definition of linking conventions:
their type, purpose, size restrictions and various
specialized formal parameter passage policies.

c) Given the basic run time environment, the mechanical
policy for translating the HAL language features is
adopted. Modification of the basic policies is allowed
only insofar as it is reasonable to assume that a
compiler could efficiently detect special cases.
It is important to emphasize the global attitude
and policies of a compiler versus those of an
assembly language programmer. The assembly language
programmer in general takes an extremely local
contectual view in the generation of code.

4-108

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



d) Using the run time environment and mechanical
code generation policies, generate the code for
the selected HAL programs.

e) Statistics can now be directly obtained from the

generated code. Size data can be gathered by
direct examination of the resultant code. Speed
information can be inferred (approximately) by
counting the instructions to be executed and
assuming equivalent hardware implementation for
the comparative architectures.

While this method gives a basically sound comparison
between various architectures, it does not indicate the
relative merits of each architecture. Indeed, the assumption

in generati-ng-code from benchmark programs is that the
benchmark programs are indeed representative of the environ-

ment to be encountered in actual usage. While the code

generation can be considered fairly accurate, the relative

weighing of the various language features may not be so.
Secondly, a small subset of a total run time environment
does not approach, let alone emphasize, the limitations
of a particular architecture. There are the limitations
which are inherent in any instruction architecture. These

include how many entities can be addressed, the size of a

code module, the number of formal parameters which can be

passed, and so on. It is important when developing an
instruction architecture that these limitations of the archi-

tecture are carefully choosen and thus may be assumped to be

reasonable for the proposed computer usage. These boundary
limits will seldom be highlighted, or even encountered, by
benchmark programs.

Nevertheless, it is this method (though not applied
in a rigorous fashion) which is most convenient and easiest

to apply with the initial investigation and development of
differing instruction architectures. While a detailed analysis
is often required when architectures vary but in small
detail, a short benchmark is often helpful in differentiating
architectures that vary greatly (e.g. Von Newmann
architecture versus a stack-oriented architecture).
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4.7.2.2 Modified Wichmann Approach [Sa 72]. A second
approach to comparative evaluation can be made by
extending a method presented by B.A. Wichmann [Wi 69].
Briefly, this method consists of defining a representative
set of statements (figure 4.7.2-1) of the HOL (in this
case Algol, in our case it would be HAL/S), and making
a set of time measuremenst, Tij, for each representative
HOL statement i (i=l to n) on machine j (j=l to m). Wichmann
choose to use 41 representative statement types for his
comparisons.

He then models these measurements as:

Tij = Fi Sj Rij 1 < i < n

l<j < m

where Fi- is a measure of statement complexity, Sj is a-
measure of machine performance, and Rij is a factor related
to the machine's relative performance for a particular
statement.

The assumption is that the execution time of a state-
ment is somehow directly proportional to the "complexity" of
that statement and to the "performance" of the particular
machine. The Rij is then a measure of how much the particular
Tij measurement varies from the ideal.

After obtaining the Tij measurements, the next step
is to use these mn values and to determine the m + n values
for the Fi and Sj. This is a valuable approach if the
postulated measurements Tij are the only ones obtainable.
However, the results are less than satisfying since the
relative frequency of dynamic occurrence of the statements
of the actual application is not taken into account. An
extension of this approach is proposed as a more satisfying
view of the problem of determination of statement complexity
and machine performance.
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Suppose a large sample of software were coded in
the HOL. If these programs were executed on a commercial
machine, under instrumentation which can observe the relative

frequency of dynamic occurrence of each statement type wi,
or the relative weights of each statement type is assumed

upon aerospace statistics, then a more meaningful measure
of machine performance (in this case, slowness: Pj) is given
by

n

. wi Tij = Pj 1 < j < m

i=l

The P-values are analogous to Wichmann's S-values, but are

renamed to avoid confusion. These P-values are computed
from the measured statement execution times on the j machines
as defined by the matrix Tij. adjusted by the statement execu-
tion frequency estimation for the proposed application
software.

In an analogous manner, the relative measure of the
memory utilization can be obtained. Let Mij be the amount

...of memory needed to represent the HOL statement i, and the
machine j. The static distributiion of HOL statements
can be obtained for the benchmark by counting the HOL
constructs in the code. Define ai as the static distribu-
tion. Then a relative measure of memory efficiency can
be obtained by

n

C = ij = Aj

i=l

The Aj values are relative measures of the memory sufficient
for each machine.

Since the Pj have been determined, the statement
complexities Ci in the Wichmann equation can be written
as:

Tij = Ci Pj Qij 1 < i < n (1)

1< j < m
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where the Qij and Ci are related to the Rij. and Fi of the
Wichmann equation. This is mn equations in n(m+l)
unknowns. To obtain a "best fit", we chose to minimize
the variation of the Qij relative to the Ci, therefore
define:

E = (LQij)2 =  . (LCi + LPj - LTij)2

ij ij

where the prefix L on a variable indicates the logarithm
of that variable. This leads to

LCi = 1 (LTij - LPj)

and the Qij may then be computed from (1).

The interpretation to be placed upon the Qij
values is that they reflect the inefficiency of machine j
executing statement-type i, relative to how that machine
executes other statement-types, independent of the statement-
complexity and frequency of execution.

The values Qij then, allow for an understanding of
the structure of the machine with respect to the HOL. This
would allow insight as to the ability of the machine to
carry out particular functions not specifically considered
in the weighting of the HOL statements.

In this method, therefore, it is necessary to first
develop a set of statement-types to be examined with respect
to code memory size and execution time. Further, in order
to develop the P, an assumption of their relative weights
is made. After this it is possible to develop a meaningful
measure which is capable of indicating inefficiencies in the
design of the respective architectures.
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4.7.2.3 Wortman's Approach. Wortman [Wo 72] enlarged
Wichmann's approach both by having static and dynamic
metrics, and in his particular choice of metrics. These
metrics which Wortman used, included two terms for the
description of the static characteristics of programs:

a number of bits required to represent the
instructions,

a2 number of bits required to represent the
data,

and four terms for the description of the dynamic character-
istics of programs:

a3  the number of memory references required to fetch
instructions during program execution,

a4 the number of memory references required to
access (fetch or store) data during program
execution,

a5  the number of bits of instruction fetched during
program execution,

a6 the number of bits of data accessed during program
execution.

Using each of these attributes with each of the associated
language fragments (statement-types) and then experimentally
obtaining:

sj static frequency of the language fragment,

and

d dynamic frequency of the language fragment fj
for computer p.

This allows for the development of cost measurement with
respect to either measure, or assumed weighing functions

(p)

for the statement fragments fi for the machine p. This
then leads. to a total cost formula of:
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k m (p) n m

M (P) = ( P ) ( qij sj) + i (P) ( qiP)dj ( p ) )

i=l j=1l i=k+l j=1

In actual practice it is generally sufficient to be able
to calculate:

qj(p )s i = 1,2

j=1

m

qi P)d )  i = 3,4,5,6
j=1

without obtaining the wi(P) in detail. This is true since
the difference between various architectures is great
enough to see the difference in most language fragments.
Further, in using this information for incremental design
improvement, the relative changes in each fragment can be
clearly seen.

While Wichmann limited himself to 41 statement-types,
Wortman performed his comparisbn upon 284 statement-types
[Wo 72]. The statement fragments as presented by Wortman,
modified by the additions and subtractions of features,
would be quite appropriate for HAL. These added features
would primarily concern the real time features of HAL; the
primitive arithmetic types in HAL of vector and matrix and
their associated operators; the HAL TASK blocking; general
HAL flow control statements including DO CASE, EXIT and
LOOP; and the use of the HAL sub-array capability. The
deletions would include the ALLOCATE and FREE statements.

For a detailed comparison of various instruction
architectures, this is the method which is most beneficial.
While it is possible to make a basic statement of the
efficiency of one form of instruction architecture as compared
with another by using benchmark programs, this is but a gross
measure which fails to indicate, in detail, where the efficiencies
and inefficiencies lie. By examiningeach language feature, and
thereby producing statement fragments, it is possible to find
the inefficiencies and hence to allow incremental improvements
in the design.
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However, this level of analysis which is necessary for
the fine tunning, the incremental improvements, of an

instruction architecture was neither required nor feasible
'within the context of this study. The investigation
of stack-oriented architectures and various addressing

possibly in themselves greatly reduced memory requirements
when compared to Von Neumann architectures, and thus a
benchmark form of comparison suffices. The applications
of the Wichmann/Wortman approaches requires actual usage
statistics when used as a design methodology. But it
is to be noted that during the time period of the performance
of this work, actual HAL/S Shuttle usage statistics had

not yet become available.
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4.7.3 Comparisons of Architectures

Section 4.3 discussed the importance of addressing
and provided a comparison between the IBM 360 and AP-101
code generation of the HAL/S compilers. (The actual code
generation and HAL/S program are contained in Appendix 1).
For the purposes of the implementation on the B1700, a
modified MP instruction architecture was adopted.
Appendix 2 shows the encoding of the same HAL/S program,
CUBES, using this instruction architecture. There are several
interesting things to note about the resultant comparison.

While the AP-101 reduced the IBM 360 code size by
32.6%, the MP reduced the IBM 360 code size by 42.5%.
This is by 10% more (Figure.4.4.2-2). The Mv instruction
architecture also managed to reduce the address field
pottion to 56.6% of the bits used (Figure 4.4.2-3)
versus 76.5% of the IBM 360, or 68.7% of the AP-101
(Figure 4.3.1-3). Only 901 bits were required for
addressing with the MP versus 1298 for the AP-101 and
2144 by the IBM 360. Yet, the AP-10.1 only required 590
opcode bits while the MP required 691 bits. The reason
for this discrepancy in favor of the AP-101 is.simply
that the initial MP instruction architecture design was
byte oriented with the majority of operators requiring
8 bits, while the AP-101 was able to obtain a large
number of 5 bit of opcodes. Even with this advantage
for the AP-101, the total result showed more efficiency
for the MP architecture.

Any final (next) physical mapping of the MP instruction
architecture would be a great improvement on the current
good results.. 1) Actual usage statistics will become
available and allow for an efficient Huffman encoding
of the opcodes (thus, by definition be as
compact as possible) and 2) when using a basically
format free micro-processor such as the B1700 there is
no requirement to have "syllable" operators, but rather
5 or 6 bits, or what ever operator is most informationall{
efficient may be used. It is hoped that in the next bit
mapping another 20 to 40% reduction in space may occur.
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4.8 Supra-HAL/S Usages

It has been seen that a micro-processor allows for

a relatively efficient implementation of a higher order

language instruction architecture. There are other

possibilities for the use of a micro-processor other

than just HOL implementation. Certain features of a

language may be too complex and thus, prohibitive for

implementation; but other features, which normally give
rise to difficulty, e.g. error handling, may be
easily implemented with the aid of micro code. Looking

beyond the HOL language instructions, it is seen that

whole routines may be written in the micro code if

their simplicity and frequency of usage warrant it. Besides

features related to a particular HOL and its usage, there

is the whole area of executive support which can be greatly
enhanced by use of micro code.

4.8.1 Language Features and Routines

It was previously indicated that certain of the HAL/S
semantics may be too complex than to be worthwhile to implement

in the micro code. These would include the general array
and matrix processing. Besides requiring excessive micro memory for

implementation, they require a large amount of processing
time, perhaps more than would be allowed for the real time

processing. But, it is also possible that certain
language functions (which are usually defined to be a
function in the language specification and treated as such
during implementation) may be of frequent enough occurrence
and simple enough nature to be effectively implemented in
the micro code.

These routines might consist of some of the trig-
onometric package as has often been suggested [Pa 70].
These, however, are not usually of a very high occurrence
in actual practice. Another possibility following the
same line of thought would be to implement some basis for
the generation of the various trigonometric functions, thus
aiding in all of their implementations. (Conceptually, for

example, implement eiO in miclro code).
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Recognizing that a HOL implementation normally
functions with a support package of routines including.
the trignometric, vector and matrix, and other arithmetic
functions, it would seem very reasonable to carefully
consider their linkages. In particular, these "system"
routines are both well defined and completely known by
the compiler performing code generation. Whether a
particular routine is to be in micro code or to be
implemented with the normal instruction set, could be deter-
mined by statistical usage or execution requirements.
In either case, the executive environment required
by these system routines is very limited and defined.
Thus, it is possible to generate linkages which take
particular advantage of this fact and need not set up
the general environment. An example- of this concept
of linkages can be found in Va 73a pertaining to proposed
modification for the AP-L01 for the Space Shuttle computer.

Generalizing this special interest taken in the
functions and routines defined to be part of the language
(SIN(X); ...), it would of course be possible to actually
encode other routines written in HAL/S into micro code.
This would be done either.because the timing characteristics
of the routine are so critical that they must be made more
efficient, or else the frequency of usage of this routine
is so high that a dramatic saving in throughput is to be
gained by such an implementation.

While it is possible to envision an automatic
mechanism for either generating standard HALM code or
actual micro code for a particular routine during compila-
tion, the need for this complex and difficult code
generation capability would not in general be warranted.
By the definition of the routine which is candidate for
such an encoding, it is an exceptional case.
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4.8..2 Executive Usage of Micro Code

The operating system of a particular computer is
not necessarily directly encoded in, or even related to,
the higher order language used by the application programmers.

Two promising areas for executive/micro code
interaction are in the data structure required by the
executive and in the interfaces to the higher order
language programs.

Executives require certain general forms of data
structures which are not directly-supported by scientifically
oriented HOLs. These data structures would include queues,
stacks, and various linked lists structure. Often, these
basic structures are "built" by specifying an array or
structure in the executive's implementation language.
Then, a few basic routines are written to treat the "built"
data structure in the appropriate manner. These routines
would indicate such things as ENQUE and DEQUE elements
for queue data structures, and ENTER, REMOVE and SEARCH
for the link list data structures. It is obvious, that if
the executives implementation language were to have these
data types as:primitives and their manipulative routines
as language primitives, then a micro code implementation would
greatly improve its execution efficiency.

Besides general data structures, any particular executive
has specific data structures which are basic to its operations.
These would include such things as the Process Control Block
(PCB), or a Time Queue element. It then becomes possible to
define operators upon, for example, the PCB, which do
exactly the appropriate manipulations. These could include
the state transaction operations such as READY, WAIT, ACTIVE,

Being identified as primitives, they too could then
be implemented in micro code. It should be noted, that these
forms of data structure manipulation,in general,are not complicated
but consist of searching and bit manipulation, and these types
of functions of course are very efficient in micro code.
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A third set of data structures which concern the
executive, are those various synchronization primitives
that are finding their way.in higher order languages and which
are required for real time processing. These primitives
include, for example, Dijkstra's PV primitives, and Events
and locks as used in HAL/S. Here is a case where there
is an interaction between -the HOL implementation and the
executive. While the data structure is defined in the HOL,
by its nature of being more global than a particular process,
it must be handled by the executive. Again, a micro code
implementation can make the implementation very efficient,
and in this case it can also lend authority to the
integrity of the operators by guaranteeing their uninterrupted
execution.

Besides data structures, another area is the specifica-
tion of interfaces from the applications program to the
executive. The executive can be considered to be a series
of routines that act upon the process state of the system.
It allows changes in the states of processes. The executive
also handles the interfaces to the outside world: interrupts
and I/O processing.

If some of the HOL executive interfaces are simple
executive routines (e..g. UPDATE PRIORITY) then it is possible that
the whole function had become a single instruction, a micro
routine. In this case, the interface indeed consists of
executing one instruction which is the appropriate executive'
routine.

It is also possible to develop special executive
HOL interfaces in order to minimize the amount of
overhead required. This is possible, just as with the other
language service routines (SIN(X),..) since all of the inter-
faces are known and well defined.

As with all routines, the decision of the encoding
of an executive routine must depend upon its complexity,
critical time requirements, and frequency of usage. With
a refined definition of the required executive environment
for a real time HAL/s, it would be possible to investigate
those routines candidate for micro program encoding. The
method for determining the best candidates is to instrumentate
the actual execution of the system, and to determine the bottle
necks. Perhaps in the future, this will become possible, with
for example, the development of the Space Shuttle environment.
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4.9 Conclusions and Recommendations

As a result of this implementation study, it is

clear that a HALM is fairly simple to realize. A

modified version of the MP instruction architecture

[Mi 721 was investigated in detail and partially
implemented on the B1700. While the B1700 is not

designed to be a real time process control computer,
its internal structure allows for convenient implemen-

tation of varying instruction architectures, and with

the help of some specialized hardware, e.g. floating
point unit, it would prove to be efficient in time

as well as it is in space.

Further results of this study are the emphasis upon
the importance of the instruction architecture addressing
methodology; the requirements for actual HAL/S user
statistics in order to both properly encode the instruc-
tion architecture operators and in order to help determine
the most appropriate addressing mechanisms; and, an
appreciation of the possibilities of being able toaddress

any bit width without penalty, e.g. true precision specifica-
tion in the HAL/S language itself.

While the results of this short study have been
affirmitive and reassuring, it is desirable that several
of the areas of investigation be developed further. Areas
which can be considered to be of particular importance
are as follows:

0 HAL/S User Statistics

In order to both compare current instruction
architectures and to develop future ones, it is necessary
to know exactly how a language is used. Both Section 4.3
on addressing and Section 4.7 on statistics emphasized the
requirements for usage statistics. It is only by this
means that compact encoding of a logical instruction
architecture into a physical representation of the
instruction architecture may occur. Further, by knowing
both the forms of operands and their character-
istics distribution, it becomes possible to develop the
appropriate, and most efficient addressing structure.
User statistics also enable incremental improvements
to the instruction architecture itself. Not only can
encoding be made better, but appropriate operators can

4-122

INTERMETRICS INCORPORATED .701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-184(



be specified to optimize upon the-eorrelation of actual
occurance of several basic operators (e.g. A = A + 1;).

As the Space Shuttle program continues, statistics
for HAL/S usage should become available. It is hoped that
they will be used.

0 Investigation of Various Address Structures

A thorough investigation of the various addressing
structures available (absolute, indirect, lexical level-
displacement, stack number-offset, base-displacement,
sectors, banks, descriptors, ... ) should be performed.
In particular, it is of interest to know the time and
space tradeoffs with respect to implementation complexity.
In the aerospace environment, in particular, appropriate
addressing would greatly decrease memory requirements.

O Develop Standardized Basic Operating System

It would be useful to have a virtual operating
system specification which would define not only the
HAL/S interfaces, but would indicate the allowable
process interactions and time constraints. Such a
specification would allow for deterministic and
reproducible results of a complex of HAL/S programs
regardless of the specific executive implementation or
support processor.

O Variations and Stability in User Statistics and
Resultant Design

It would be useful to determine how well a particular
physical HALM realization acted with different sets of
user statistics. Had the design been so tuned, that with
a different set of usage characteristics, it became
inefficient? Or, is it a relatively stabile design that
varies but reasonably? This task would require both an
analysis of how the design varies as statistics vary, and
the actual gathering of several sets of statistics which
do vary. Both the analytical and practical treatment of
this task can be considered of interest.

4-123

ERMETRICS INCORPORATED -701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840



o Full Implementation of a HALM

It would be desirable to actually complete a HALM
implementation. This would afford assurance of actual
design integrity and provide a facility for statistics
validation. While it is relatively easy to develop
memory size comparisons in abstraction,.the actual
execution of a HALM provides valid timing statistics
and the micro routines provide the basis for the under-
standing of the timing. Actual execution on a micro-
processor enables the determination of the timing bottle
necks of an instruction architecture design.

The efficient hardware implementation of higher order
languages is no longer in question. It is possible to orient
the instruction architecture for the language which they are
to execute, and to do so in an efficient manner. The principal
issue for computing systems should be the development of
languages which are truly oriented towards the problems to
be solved.
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Chapter 4

Appendix 1

HAL Programming Example

Included in this appendix is an example of
the code generated for HAL/S on both the IBM 360 and
the IBM AP-101.

This program is representative of the sizereduc-
tion which occurs when in a program code generated for
the AP-101 versus the IBM 360. Several comments need be
made in order to determine the relative sizes,of the
address fields and the opcode fields.

In the code generated for the IBM 360, there are
inserted into the listings, several constants-which are
not directly needed for the execution, but are rather used by
the Functional Simulator, SDL, and for debugging. These
constants have been ignored in the total size count. But
there are also some constants which are required in order
to both set up the addressing environment for the routine
and in order to bind it to other routines. These have
been included in the instruction count as contributing
to the address and total bit sizes. Figure 4.Al-L shows
a summary of the sizing-as indicated in the listings.
This sizing is broken down into the address field and
opcode field portions of the total.

The listing for the AP-101 code generation does'not
break the instruction summary into the various formats,
SRS and RS. Figure 4.Al-2 provides analysis of this break
down, and then summarizes the program sizing. This again
is broken down into the address field and opcode field
portions of the total.
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IBM 360 Code Generation Field Breakdown

* Constants to be counted in program size

LOCCTR = 000004 DC A used for initial addressibility

= 000178 DC A used to set up addressi-

through 000190 DC. A f bility registers

= 6 "4 byte" Address Constants

There are 7 BALR instructions requiring address constants
in order to link to the indicated routine

7 "4 byte" address constants

All other constants are assumed to be not relevant to
the programs algorithm, and are for the Functional Simulator,
SDL, or other usage.

o The break down of instruction count is therefore as follows:

RR (RX,RS,SI) SS DC

number of
instruc- 15 67 0 13
tions

a Weighing these as indicated by Figure 4.3.1-1:

RR (RX,RS,SI) SS DC Total

Address
Field Bits 120 1608 0 416 2144

Opcode
Field Bits 120 536 0 0 656

Total Bits 240 2144 0 416 2800

Figure 4.Al-1
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AP-101 Code Generation Field Breakdown

e The output listing of the AP-101 code generation does

not provide for a breakdown between the SRS and RS

formats. This breakdown can beifound by counting the
instructions as given in the listing. The results of

such an examination are here presented:

Total as Given

INSTRUCTURE RR SRS RS in Listing

AH 0 0 1 1

AHI 0 0 5 5

-BAL 0 0 8 8

BC 0 6 2 8

LH 0 1 4 5

LA 0 2 0 2

LH 0 18 7 25

LHI 0 0 7 7

STH 0 13 5 18

TOTAL 0 40 39 79

o Weighing these as indicated by Figure 4.3.1-2:

RR SRS RS TOTAL

Address field
bits 440 858 1298

Opcode field
bits 0 200 390 590

TOTAL BITS 0 640 1248 1888

Figure 4.Al-2
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HLI/S COMPILATION I N T E R M E T R I C S , I N C , JULY 16, 1974 21:14:42.78 PAGE 2

s sTIT ..T .... _. . SOURCE CURRENT SCCFE

000000 1 Ml CUBES: I CUBES

0000oooooo0 i MI PRoGRAM; -' CUPES

000.000 . 2 MI DECLA TINTEG.R INITIL1) __ CULBES

000000 2 MI I, IL, MINIM: I CLPES

000000 3 MI ..- 0ECLAREI H INTEGER INITIAL(2)- I CLEES

000000 _ 4 I .~DEC LAPE _.I N4TGR, ..._. I CUeS
000000 4 MI A, 8, K; CLEES

000000 5 MI DECLARE J ARRAY(i2) INTEGER INITIALI2#1 9); I cLers

000000 .6 MI 0_ CLAFF S ARRA 12) INTFGFR INITIAL(2, _, ); I CLBES

000000 7 MI DECLARE P ARRAY(12) INTEGER INITIAL(1,I , *); .( CUEES

000000 8 l DO WHILE MINIM -,= S ; 10 CuLES
S I I ... .'

0000ooooo 9 1 A =i; CUeES

000000 10 Ml MINIM = S : I CLBES

000001 _ 11 ,I____ = _ J C L . CLUES
SI II

000001 12 MI IF J = I THEN I CLUES

000001 13 MI IL _ IL + 1; I CLEES

000001 14 'M ELSE CLUES

000oo01 14 MI 00: ....-. CLBES

000001 15 '41 IF J I THEN I CUEES

000001 16 MI 0 ; I CLBES

000001 17 MI IH 1 IH + 1I ! CUPES

000001 18 MI P = IH ; I CUBES
SI IH

000001 19 MI . J 1 I CLBES
S TH I



H 4L/S CONPILATION I N T E R m E T R I C S , I N C . JULY lq 1,74 21:14 :42. 7 E FG~

SI S TMT SCURCE __ __ CU P ENT__ SCPE

000001 20 M\ S P + 1; j ctEES
__ 1H TH ---- -- _I- -

000001oooool 21 MI FN D CUEES

CLEES000002 22 I J = J + 1;S l- ----------. .. . .......... ..... ...

SI. I I

CLEES
000002 23 MI S -- P . P

Si I I J

-- --- - --- - ----- - ____ ------ .------ ______________________________________ ______________________ __________

CUPES
000002 24 MI END:

000002 25 MI I = IIL; E

0 0 0 0 0 2 . 2 6 M I K = I ; _..._......_I __cuE S . ....... .... ...... . .....

000002 27 MI 00 WHILE K < TH; CLEES

000002 28 MI K = K + 1: IcEs

000002 29 M1 IF S < S ThEN _____ __ _ ___ _______________ I CUEES

CLES000002 30 MI I = K; ........-----------------.------...

ucooo002 31 MI END; ,I C S

00o0003 32 HI --- -EN-.- ". .: .- "

000003 33 "I WRITE(6) MINIM, A 8, , J ;

Sl I

34 MI CLOSE CUBES; I CLPES

---. .

Cd 0



HALIS COMPILATION I N T E R M E T R I C S , I N C o JULY 169, 174 l2:14:42.'E PAGE

LCr TR. CrvnE LAB L INSN• OPEEPNDS .YMBOLIC CPERAND

000046 ST#1 'OJ *' TIV = 49
000000 s CUBES__ CS-CT .ESCIC 0-__O _._

000000 CUBES QU ,
000000 470F010 BC , 15,16(0,15)
000004 00000150 DC '000C0150'
00000U 0050 . DC X'OG50'
000(05. 0533402 0C X'05 r 3r4C2'
c000ou C 5" 2 DC X'C5'2'

000010 5830=004 L 11,4(0,15)-
000014 9965A028 LM 6,10,40(11)
000018 92010000 MVI 0(13) 1
000010 ST 2 50'J . TIRE = 0
oC000000 CUeES CSECT FSCIC 0003

000000 0001 CC X'000i'

000002 ST#2 Q1U . TIME = 0

00000? 0001 DC X'0001 '

000004 ST92 -QJ * TIME = 0
O0004 0001 .pC X'0001'

OO0O. .  ST#3 5QU TIME = 0
00000O 0002 DC _X'0002'

000003 ST,4 EQU " TIME 0

000008 STY4 FOU * TINE = 0
000000 STt5 ro'J TIME = 0
000)0.: 0001 Dc X'00O1
000010 0001 DC X10001'
0o0012 ST46 FOJ * TIME - 0 _
00002" 0002 D X'0002'
000028 0009 CC X'0009'
002,:. ST47 FQU * TIME 0 -- ---------

0303.1 0001 . PC X'0001'
00U 0 0098 DC X'0008'
000042 ST18 EOU *. TIME = 45.. " _

00001,: SOCUBES CS CT F SD01 0001
00001C LBL#2 CQU 4
00 00tf 4890,'. 000 IH 9,0(0,10) I

000020 l. 99 A R q,9
00,002 4P.?0004 LH 2.410,10) IVINIM

000126 4q29' 02
4  CH 2,36(9,10) S

00002' 478F0104 BC 8,260(15,0) C00104 LBL#3

000027 ST99 QU TIME 18

00002 4830.'.000 LH 3,0(0,10)
000032 4030:.008 STH 3,8(0,10) • .
000036 STN10 FOU * TIME r 18

00C0' 6. 4849' 024 LH 4,36(9,10) S __

00003.' 4040A004 STH 4,4(0,10) MINIM

00003 ST#11 EQJ * TIME 18
00003- 4829A00C. LH 2,12(9, 10) J__
000042 4020,100A STH 2,10(0,10) E
000046 ST#12 EQU * TIME a 33
00004b 4859A00C LH 5,12(9,10) -___J

00004 495.0000 CH 5,0(0,10) I
00004 476F0062 BC 6,98(15,0) CC0062 L8L4
-000)52 ST013 FOU * TIME 26

000052 48b60 002 LH 6,2(0,10) IL

000056 4A60n044 AH 6,68(0,11) H)'v



HAL/S COMPILATION I N T E R M-E T R I C S , I N C - JULy 1, I 14 21114:42.7E FA

LOCCTR COn .__. LABEL__ INSN OPERANDS !YMBOLIC CPERAND

00O5^ 40604002 STH 6,2(0,10) IL

000057 ST 14 FO U * TI 17 -____----___

00005L 47FFOOCO BC 15,192( 15,0) C00OC0 L8L#5

000062 LBL#4 FQU *
000062 ST#15 EQU * TIM 43

000062 4890 000 LH 9,0(0,10)
000066 199 A 9,9
000068 41200001 LA 2,1(0,0) . . - _

00006L 4?29A00C CH 2,12(9,10) J

000070 476FOOAO BC 6,160(15,0) o0000O LBL#6

030074 ST#16 . EOU _ TIME 0 -------

0J0074 ST417 EQU TIOE 26

000074 4830\006 LH 3,6(0,10) IH

000078 4,00 O44 AH 3,68(0,11) ' -

00007C 4030400 6 STH 3,f(0,10) It

000080 ST418 FQU * TIME 180

bb0000 1A33 . 3,3

000002 41100003 LA 1,3(0,0)
000086 4800A006 LH 0,6(0,10) IH

0000,A 05::C .B LR. 14.12 .. .-... .. _

00008 00000000 DC A'00000000' ICTHEI

000090 4013403C STH 1,60(3,10). P

000094 ST419 FQU TIME 10

000094 4023'.00C STH 2,12(3,10) J
000098 ST420 EQU * TIME = 18

000098 44 10 044 AH 1,68(0,11) Fi.. HI. ___........_- , l__l

000090 4013A024 STH 1,36(3,10) S
0000.0 ST#21 EQU * TIME = 0

0000.30 ST#22 r'J * TIfM = 38

ooo0000 LBL#6 1OU *

0000 .0 4890: 000 LH" 9,0(0,10)]
0000.4 1t 99 AR 9,9
00 00.6 4829A00C LH 2,12(9,10)
00000' 4A201044 AH 2,68(0,11) '

0000-' 40291'00C STH 2,12(9,10) Jooo--, -T Z3 - ........ F0'J I... * I ... T 30 ,,..,0000 2 ST923 FQ' i TIMa 30

0000%2 1,22 AR 2,2

000014 4839-:03C LH 3,60(9,10) P

0000 8 4A32,03C AH 3,60(2,10) P L

0000 C 40394024 STH 3,36(9,10) M-

0000(0 ST024 EOU * TIME = 0

000000 ST 25 FU . TIME = 18 :

0000o 0 LBL 5 FO'J *

000 00 48204002 LH 2,2(0,10)_ IL'

0000C4 4020. 000 STH 2,0(0,10) I

000008 ST#26 EQ' * TIME 10

0000C8 4020400C STH 2,12(.0,10) K

0000Cc ST-27 OQU . TIME 33

0000Lt LBL#7 LOU *

0000CC 4820:00C LH 2,12(0,10) . K

000000 4920;-006 CH 2,6(0,10) IH

0000C4 47!,F0100 BC 10,256(15,0) 000100 LBL#8

0000A8 ST#28 FQU _ TIME= 18

000008 4,;20044 A H 2,68(0,11) *'
000000DC 4020' O0C STH 2,12(0,10) K



HAL/S COPILATION I N T E R M E T R I C S , IN C . JULY 16, 1974 21:14:42.78 PACE 1

LOCC 'R CO E LABL I NSN CPERANOS SYMBOLIC OPERAND

000010 ST929 5OU * TIME = 49
0000r 0 1A22 AR 2,2

OC00- 2 4890-4000 LH 9,0(0,10) -

0000 6 1499 AR 9,9

000r8 4832 024. LH 3,36(2,10) S

0000-C 4939"024 CH 3,36(9,10)
0000O0 47.FOOFC .BC 10,252(15,0) COOCFC LBL#9

0000F' ST#30 EOU -TIE 18 ' _ _

0000F4 484OtOOC -- LH 4,12(0,10)
0000F 8 40404000 STH 4,0(0,10) I
0000-: ST31 FOU__ * TIME = 10

0000FC LFL #9 EQU
000 CC 47 F00CC C 15,204(15,0) 0000CC LEL#7 '

0O0100 LFLO8 'OU *

000100 ST#32 FQU * TIME 10
000100 47FFO01C BC 15,28(15,0) 00001C LBL#2
0001.04 LBL .3 _QU "

UO00104 STI-33 TOU * TIME 124
00O104 41100006 LA -1,6(0,0) I , I
000,108 41000003 L___ A 0,31o,0)_

00010C 05 C BALP 14,12
000101 00000000 DC A'00000000" ICINlT

000112 4800'004 LH 0,4(0,10) VINIM
S00116 057C EALR 14,12 .

00011q 00000000 OC -A'O0COCO0C ICUT
00011C 4e00.'009 LH 0,8(0,10) A ._., _

J 000120 05. C BALP 14,12 .
000122 000030000 PC A'00000000' IUT
000126 4800,00A LH 0,10(0,10) P __ _

00012A 05 :C ALR 14, 12 .,,

00012. 00000000 DC A,0000000 ICUT
o000130 4800'000 LH .0,10(010) _ ... " _ _

000134 05. C BALP 14,12
000136 000000 CC . A'OC000000' lOUT .

00013, 48')0' 000 LH 9,0(0,10) _ '_

0001..1 It99 An  9,9

000140 4809 00C t.H 0,12(9,10) J I'

000144 05-C B LR 14,12
000146 00000000 CC A'00000000' IOUT

00014A ST#34 FO U  * TIME = 10
00014:. 47,0'-004 1C 15,4(0,12) _

000150 'FCU-ES CSCT ESDID= 0002
003150 47 0::174 RC , 15,372(0,12) STRAC E, -

S00015t 0000000 . .. ... DC ... A'00000000 i
000158 00000000 DC X'00000000'

000150 00000000 DC X'OC00000'
000t60 00000000 OC A'00000000. CLBES _ __'

000164 0001 DC X'0001,
000166 0022 -00 X'0022'
000168 00000000 DC X'OcaCOo_000'-" __ "

000316 0.0000000 .C- X'00000000' .

000170 00000000 DC X'OC000000'

000174 00000000 c. X'00000000
'  -

000178 00000000 DC A'OCO0000OO' -

00017C G0000000. OC A'000G000'



H6L/S COMPILATION I N T E R M E T R I C S , I N C JULY 16, 1S14 21:
; o
42.7E PAGE 12

. RO0R COOE E INSN__ OPEP F CS 
S'MBCLIC OPERAND....

000180 00000000 PC A' 0000(0000
00084 00000000 C.. A'00000000'..
000184 00000000 oc_ A4ooo0000i

00018 00000001 OCD X00000001'

000190 00000000 Dc _UB..0000.. 
:0CUBES

S0 01 00 ---. o 00 1,
END

-- ---- -
S---- -..-.-..-

"

I

_____________

(J--. - ~3-- _- ____

0

0/2

0



H-L/i C)1P ILATION I N T E R M E 7 R I C S , I N C ,. JULY 16,v' 1974 .21:14:42.7e FPAGE 13

FLO) 0S R.. FLAGr .DDR,-SS

0001 000; 08 000147
0001 0007 .08 000137 __ ""
0001 0007 08 000120
0001 0007 08 000123
0001 0007 08_ 000119
0001 0006 08 00010F
001 0005 08 00001)
0001 0302 08 000005
0002 0004 08 000191
0002 0003 .08 000189
0002 0003 09 000185
0002 0003 08 000181
0002 0003 08 000170
0002 0001 08 000179
0002 0001 09 000161
0002 0003 08 000155

LOC DISP NAME

UN)ER CUSES
000000 10 000 I1
000002 10 002 IL_
C0004 10 004 MINIM
000006 10 006 I[H J
000008 10 008 A

S000Q04 10 00A B
00000C 10 00C K
00000.' 10 00C J

Co 00002o 10 024 S
0000w- 10 03-C

INSTPUCTION FREQUENCIES

INSN COUNT
ELLR 7

STH 14
Lt. 4
oC .... 11 -
LH 24
CH 5
1H 6
1. 1
?"VI 1
LM 1

130 H LMAT OPERATORS _CONV:RTDO __ : _

406 SY'TS OF PROGRAM. 86 BYTES OF DATA

FAX. OPERArN STCK SIZE =4
Frn 0P;PAND STACK StZF =0
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LOC .... CODE. EEAD ...... .. LABEL .. INSN .OP EANDS ._. ....S.YMB.C-LIC._O.BAND.

O3O 0 .00 STHI FI *

.Occooc-- -...... " $...$OCU BES ... CSEC .... _. --.E S01 O-

OCCCCO 0000 DC X'0000'

CCCCO0 #DCUBES CSECT ESDID= 0002

CCCCOC. 001 .-- C X. .0000,I'

000001 0000 X'O000'

00001 $OCUBES CSECT ESDIC= 0001

OCcOiL C00000 - . ....... ........ ---RG..*- -----

CCCC0000 CUBES ECU '

OLCo00 E80 0000. LHI 0,0(3) @OCUBES

00 0002. 09 ' 000 _ - ..... . .. ... .. . ...- - .. L . HL 1,0 3)E

OCCC"4 9CA C00002 STH 1,2(0)

000005 ER50 00014 LA 3,20(0)

CCC('6 PEOC .CCC3 .-...- ....... S.. TH-.... 3,.3(.0)

00CCC7 O001 00000 LA . ,0(1)

CCCCC8 R04 00001 STH 3,1(0)

OCCCO.9 ST#2 .... CU "... " .

00002 # DCUBES CSECT FSDID= 0002

GCCC0 r 01 CC X'0001'

C0CC0003 .......... . ...... T.. .... .. ..... ST#2. . EQU. ... _. ._:.:.

CCCC03 COOL DC X'0001'

0600CC004 ST#2 ECU *

SCCCCC4 COO _-C---- 
O01'

CCCCO005 ST03 FCU *

010005 0002 DC X'0002'

OCCOO06 ............. - ST#4 --... CU .... ---
CCCCo0 6 ST#4 EOU *

CCCCCC06 ST45 EQU

.OCOCC6_ C0 t009 . . - RG__* -3 -.. _

GCCCCCS Cool C C X'0001'

OCCrCA COOt CC X'O001'

OC 0 9 000 _ ....... -_.l_ _ST#6.. . £QU ...... -, .. .

OCCCC3 000015 CRG *+1.0

000015 C002 DC X'0002'

OCCC16 CC09 . .. .. ......----. CC __X ..O 09

CC C'1.7 ST97 FCU

0C0017 C00021 OpRG 4+10

000021 COO1 
.C . X. - 0 o001-

000)?2 0008 DC X'0008'

CCCCO03 STI8 ECU *

...OOC 9 .-......... ----- .. O.C.ES__ C SET. ESDnD= o000

CCCCO09 LPL12 EIJ *

OCCC9q 9409 00C02 LH 7,2(1)

00 O00A 9 11 .... 00004 .......... ..... LH ------ -- NI M

OCCCCi 95F5 E01' COC14 CH 5,20(7,1) S

000000 C4c7 004E 00050 RC 4,78(3) LBL#3

CCCC00. ---- - ST_ EQU *

000000 BPF19 00006 STI 7,(l)

CCCCOiO "STlo [-O
OCC(.C 9 C9.. ... 00?02 - (1 - -LH .... 6,

000011 9CF5 C014 00014 --LH 4,20(6,1) S

C0OC13 BCII, COC4 STH 4,4(1) MINIM

S00 0000.14 __ S _E---.__ - -E.U _*

OOCC14 9OCF5 CO08 0C08 LP 5,8(6,1). .J

000016 -DI10 00007 STH 5,7(1) B
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.LC. .._.CODE.__ EA LABEL_ ISN... OERAND • SYMnLICXERAND

CCCCCC17 ST#12 FoU *

000317 G6c5 COC8.... .. CCCO ........ ......... 1... ....CH. 6,8(6.1i I .. ...

CCCCIs C;14 O0001F RC 3,5(-1) LBL#4

CCOl'0014 ST#13 CU
O0jO01A 9F03_ . _ C0003 _LH -- 7,3 1 II1
OCCC13 07 CO01 AHI 791

COCCI') PFO,) 00001 STH 7,3(1) IL

CCCC 01= . ........ . . ...... . . ST#1L .... EQU ......

00OCCIT rFAc O0044 BC 7,43(-1) LBL#5

0020001= LBL#4 FCU *
CCC.01c ... S.T#15- . UI-. -' --

0001 c0 9 09 00002 LH 7,2(1) I

OCCC.0 -P3 00CI LHI 5,1
C000022 95F5 ECC8 . 00008 ....... CH ,8(7,L1
COCC?4 t060 . 00030 BC 3,24 (-1) LBL#6
CCCGCC25 ST#16 ECU *
CCo000025 . . ... -. S-- -. . .. _U _

nCCC25 9815 C005 LH 6,5(1) IH

000C6 POs 0001 AHI 6,1
CCCC9 V'"15 _00C5 . _STr .. 6.. ,5. l . .. 1- . .

OCCCCC29 STM18 EQU f
OCC029 48 00012 STH 6,18( 0--

OOC02i EF3? 0003... . LHI 6.,3
0000,) 9n15 00005 LH 5,5(1) TH

OrPC2?0 4FI 0000 BPL 4,0(3) . HTOTHEH

o0007? f c04_ . 001 .LH .. 18 t0Il

OCCClO ~0r5 8020 COC20 STH 5,32(4,1) P

00C000? ST#19 FCU *

S0OCC32? 415 .00005 L._ '(il IH ...

0000?3 CC 0001CC LHI 4,1

00035 fCF5 A008 000C08 STH 4,8(5,1) J

CCCCC37. .. . . .. S.T20.... f_.... _ . __

On037 9FF5 4020 00020 LH 7,32(5,1) P

00CC19 R0~7 CCOO API 7,1

o0000cc0 p~F5_ l14 C00.014...__ _____.. .STH_.. 72QL511. 5 ---

CCCCCO03C ST#21 FCU

CCCCCC;O STN22 fcU *

O7000U ... ..... _ ... ... LBL# . ECU ._ _

OCCC~0 9=C9 OCCC2 LH 7,2(1)

0003O I 0F5 E008 00008 LH 5,8(7,1) J

OCCC'O P075 .001 AH... .. 5,1.

00(42 prF5 C008 CCCC8 STH 5,8(7,1) J'

CCCCCC44- ST#23 EQU *

OCCCL4 SF5 EO20... C0020 .. I.H .. ..32.17,1 . P----
000046 86F5 4020 C0020 AH 6,32(5,1) P

OCCC48 AEF5 E014 COC14 STH 6,20(7,1) S

OOCO04A ..... ... ST #24 .. EU... *

CCCCCC4A STN25 FrU
0C(0004 LBL#5 FCU •

CCCC4A 9 09 ............ 00003 ... ...... L. ...... L - 5,3(1) _IL .
OCCC4R 9DC9 00002 STH. 5,2(1) I

000COO004C ST#26 EQU *

00004C PD21. _0C008 . .. S TL5.,.8 (1)
00C00040 ST#27 ECU

C0CC0CAo LBL#7 FOU *



FAL/S CCMPILATION I N T E R M E T R I C S I N C JULY 17v 1974 19:4745.26 PAGE 1

LOC O?... FADLAEL.. _N S- . OPE. N.C S YOLICOERAN ----- ----------

0 0 Cc .4 7J?l CCo00 LH 5,8(l) H

COCC4E C515 - . 00005 . C-- -- 5,51-) IH _

00CC4r 25C 000'8 BC 5,11(-1) LBL#8
O000CCSC ST#28 EQU

OCCCSC, ~o0:5 .00A1 H 5.

00001'? PD21 030008 TH 58(l) K
CCCCCC'0? ST#29 FCUJ

~-----------------------------------------------------------00C051 cC9 00002 L...... .. 7,2(1)

OCCC54 S7F5 A014 00014 LH 6,20(5,1) S

00Cn56 S6r5 P014 COC14 CH 6,20(7,1) -S

CCC C4----- ----- 0005A . .. --- 77C.-.-5,17(- 7--L B L#.9--
OCCC5A C0 005A

CC C CS CS S5f30 -GU 5 S '

o0C C r O009 00002 TTH 5,2()

OCCCCCSA .S T#.31 C.

000,)005A LBL#9 EOU 1

CCCCSA P.F3A 00040 BC 7,14(-) LBL#7

CCCCCC . .. B .
CCCCCCS8 ST#32 ECU *

CCr4,iR r7c7 C854 00009 BC 7,84(3)

O C C 3 ( 0 5 . .. ... . . . . .. .. .
_ _ _ _ _ _ _ __LB 

L # 3 E C U _ -....
SCCC cciC.) ST433 EQ0U

00o0r E F3 0006 LHI 696

OCCC5 -3 0003........... CINIT
00061 ,..3 0000 BAL 4,0(3) ICINIT

006C 000? 000LF MINIM
CCCC61 911 00004 L 54(1 MINIM
CCCC64 --4r3 0000 ...... BL 0(.3)... .. _ HUT

00CC6 9319 00006 LH 5,6(1) A
0007 1 0000 BAL 4,0(3) HOUT

00CC67 Z4F3 0000

000C6) 9 . ........ .. 000 .....- -- ----- LH _ ,7 I )._ 7_111
00069 9 100--AL 4,0 ?) H OUT

OCCC6A E4c3 0000 5 .(1 1
00CC 6 ) )09 00002 H (II
COCC6C -4:3 0000 L---------------------------- ,0(3

OCCC6F0 939 00002 LH 7,2(11

OCCCf70 93F5 E008 00008 LH 5,8(7,1) J

C CCC-7'F3 0000 ... -, AL ..4,0(.3 1----
00h J) 74 ST#34 FOU .

00L74 0000 PAL 4,0(3) STOP
OiC,~ CC 4 "-z, 0000 ___ D_~ scUB.E s cSC. ......... -_-aU-I

--  2 -

..0 0 C,0 2 3 -- . . .. .. ... * 1 0

OCCC23 C020 
O 10

--. -. -...........-0
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LCC B DISP NAME

'JN "E . CUS ...

0C00O2 1 002 1i
OoO00 1 003 IL
cccCo4 004 MIN IM ...........
0005 .1 005 IH
CCCCC6 1 006 A
O CGC7 1 .007 . .. :.. " . ....

CCCC 1 000 K
CiCCCO 1 0 '. J
00001.5 1 014 . S.

CCCC21 1 0?0 P

INSTP'.CTICN FRFOUNCI'S

IN I CCU T.\L.-- .-

STH 18
LA 2
...PAL ... 8
cC 7
LH 25

S Ch 5 ................

AH 1
9C 1
LPI 7.
AHI 5

130 H-.L~4T OPERATORS CCNVERTEC
_118 MALF .. CF PROGRM.,_ 48._ALFIO-DS GE_ DATA

MAX. OP PA'N STACK SI7 =5
( = C Q: AN

,  
STACK SIZ0 ... . =0

NUMEe. iO ST4TEMt NT LARELS USED =9
MAX. RT-CRGE OSCRIPFCP STACK SIZ - =1
__J N S TORAG _Q._ECIPT R _ST AC K. S I_Z_-Of
NUJ -'" C= : VINP CfJMPACTI rFS =1
NUN';>r CF MAJOR COMPACTIFIFS =0

END OF HAL/S PHASE 2 JULY 17, 1974. CLOCK TIME = 19:47:55.78
TnTAL CPU TIr"r Cfnr PHAS. 

"  
0:0:0.80

CPU TIM- FOPH~AS .SET_Ip .. 0:C,.P2
CPU T IM- FOlR PHASe 2 GENERATICN 0:0:0.31
CDoU TIME FOR PIAS 2 CLEAN LIP 0:0:0.47



Chapter 4

Appendix 2

Initial MP Instruction Architecture Coding Example

Included in this appendix is both an example of
the MP instruction architecture and a statement for
statement comparison with respect to the AP-101 and
IBM 360 code generation. The CUBES example given in
Appendix 1 has been encoded with MP instruction archi-
tecture. The size comparison between the IBM 360, AP-101
and MP is given in Figure 4.A2-1.

It should be noted that in the encoding of the
example, the data has been assumed to have been declared-
statically in order to be equivalent to the IBM 360
and AP-101 coding methodologies. Similarly, the method
of executing the WRITE statement (St #33) has been made
equivalent to the current IBM 360 and AP-101 methods
even though others would be more efficient. Figure 4.A2-2
summarizes the relative code size for the three architectures.
It also indicates the relative sizes when the address
initialization (St.#1) and I/O statement (St#33) are
removed. This was done to remove the bias. in favor of
the MP instruction architecture which has a great deal less
overhead in these particular functions.

Figure 4.A2-3 gives the dpcode field and address
field encoding for the CUBES example usage of the MP instruc-
tion architecture. This provides for convenient comparison
to Figure 4.3.1-3 of Section 4.3.1 which contains the
analogous breakdown for the IBM 360 and AP-101.
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MP AP-101 IBM 360

ST#1(...7) 0 18 40

ST#8 10 12 18

ST#9 5 2 8

ST#10 7 8 8

ST#11 7 6 8.

ST#12 8 6 12

ST#13 5 8 12

ST#14 3 2 4

ST#15 9 10 18

ST#16(17) 7 8 12

ST#18 10 18 20

ST#19 6 10 4

ST#20 11 12 8

ST#21(22) 11 14 18

ST#23 14 12 14

ST#24 (25) 5 4 8

ST#26 5 2 4

ST#27 8 6 12

ST#28 7 6 8

ST#29 11 12 20

ST#30 5 2 8

ST#31 3 2 4

ST#32 3 4 4

ST#33 38 46 70

ST#34 1 4 4

TOTAL 199 234 346*

*NOTE: Instruction summary was incorrect in Appendix 1,
HAL/S-360 listing. There were but 10 BC, thus,
Appendix 1 counted 4 bytes too much.

Comparison of Code Sizes for CUBES (refer to Appendix 1)

Figure 4.A2-1
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Relative Program Sizes

CUBES

Total Program Size Comparison

IBM 360 AP-101 MP
Total Program
Bytes 346 234 199

% Compared to
IBM 360 100% 67.4% 57.5%

o Program Size Comparison with I/O and Environment
Initialization Removed

IBM 360 AP-101 MP
Program Bytes
Excluding
ST#1 & ST#33 226 170 161

% Compared to
IBM 360 100% 75.3% 71.3%

Figure 4.A2-2
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Operators Operands LTS4 LTS10

Number of
Instructions 56 60 11 6

Weighing these as indicated by Figures 4.5.3-3 and
4.5.3-4:

Operators Operands LTS4 LTS10 Total %

Address field bits 0 780 55 66 901 56.6%

Opcode field bits 448 .180 33 30 691 !43.4%

Total bits 448 960 88 96 1592 100%

Bit Distribution in the MP Instruction
SArchitecture

Figure 4.A2-3
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00020 CU DEIS EI WCODED ULING T I E iNTIAL HP IT RUCTI. ON A CII3TLE CTUE
00030
00040 STl1 EQU *
00050 STi8 EQU *
00060 LBL#2 EQU *
00070 GET I
00060 GET S
00090 GET II I NIi'l
00100 EQUL
00110 LTS0 150 LL3 RFPRODUCIBILITY OF THE

00120 JOT ORIGINAL PAGE IS POOR

00130 ST#9 EQU *
00140 GET I
00150 ADR A
00160 STD
00170 ST#10 EQU *
00160 GET I
00190 GET S
00200 ADR 'INIM
00210 STD
00220 ST#11 EQU "
00230 GET I
00240 GET J
00250 ADR B
00260 STD
00270 ST#12 EQU *
00280 GET I
00290 DUPL
00300 GET J
00310 EQUL
00320 LTS4 * LBL#4 '
00330 JOT
00340 ST#13 EQU *
00350 LTS4 1
00360 ADD
00370 ADR IL
003d0 STD
00390 ST#14 EQU *
00400 LTS10 68 LBL#5
00410 JIMP
00420 LBL#4 EQU *
00430 ST #15 EQU "

00440 GET I
00450 GET J
00460 LTS4 I
00470 EQUL
00480 LTSIO 34 LBL#6
00490 JOF
00500 ST#16 EQU *
00510 ST#17 EQU "
00520 GET IH
00530 LTS4 1.
00540 ADD
00550 ADR IH
00560 STD
00570 ST#18 EQU *
00560 GET IH
00590 DUPL
00600 DUPL
00610 DUPL
00670 H UL
00660 HUL 4-147
00681



006c3
00664
00605
00666
00690 ADRE P
00700 STD
00710 ST#19 EQU *
00720 LTS4 1
00730 GET IH
00740 ADHE J
00750 STD
00760 ST#20 EQU
00770 GET IH
00760 GET P
00790 LTS4 I
00800 ADD
00610 GET IH

00820 ADRE S
0030 STD
00d40 ST#21 EQU *
00650 ST#22 EQU *

00660. LBL#6 EQU *
006,70 GET I
00680 GET J
00890 LTS4 1
00900 ADD
00910 GET I
00920 ADRE J
00930 STD
00940 ST#23 EQU *
00950 GET I
00960 DUPL
00970 DUPL
009d0 GET J
00990 XCHi
01000 GET P
01010 ADD
01020 XCH
01030 ADRE S
01040 STD
01050 ST#2 4 EQU *
01060 ST#25 EQU *
01070 LBL#5 EQU *
01060 GET IL,
01090 ADR I
01100 STD
01110 ST#26 EQU *
01120 GET I
01130 ADR K
01140 STD
01150 ST#27 EQU *
01160 LBL#7 EQU *
01170 GET K
01180 GET IH
01190 GREQ
01200. LTSIO 26 LBL#8
01210 JOT
01220 ST#26 EQU "

01230 GET K
01240 LTS4 1
01250 ADD
01260 ADR K
01270 STD 4-148
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01291
01292
0 12 9301.093
01294
01295
01300 GET S
01310 GET I
01320 GET S
01330 GREQ
01340 LTS41 5 1LL#9
01341 JOT
01350 ST#30 EQU -
01360 GET K
01370 ADR I
01360 STD
01390 ST#31 EQU *
01400 LBL#9 EQU *
01410 LTS10 -34 LBL#7
01420 J1P
01430 LBL#d EQU *
01440 ST#32 EQU '

01450 LTS10 -160 LBL#2
01460 JUP
01470 .LBL#3 EQU *
0146Q0 ST#33 EQU *
01490 HIKS
01500 LTS4 3
01510 LTS4 6
01520 ADR IOINIT
01530 ENTR
01540 MKS
01550 GET HIINIH
01560 ADR HOUT
01570 ENTR
01560 HKS
01590 GET A
01600 ADR HOUT
01610 ENTR
01620 MKS
01630 GET B
01640 ADR HOUT
01650 ENTR
01660 MKS
01670 GET I
01660 ADR HOUT
01690 ENTR
01700 MKS
01710 GET I
01720 GET J
01730 ADR HOUT
01740 ENTR
01750 ST#34 EQU *
01760 EXIT
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5. CONCLUSIONS AND-RECOMMENDATIONS

5.1 Conclusions - HAL

A. All language features of the HAL language
specification were implemented in the 360
version of the compiler. This permitted a
thorough evaluation of the language prior to
its selection for usage in the Space Shuttle.

B. Many implementation problems were solved and
the way was paved for the inclusion of these
solutions into Space Shuttle compilers. This
permitted the rapid and timely deliver of
HAL/S compilers.

C. The invest~ent in compiler implementation
and the tailoring of the compiler to the
machine architecture produced a number of
positive proposals that resulted in adoption
into the Space Shuttle FC instruction repetoire.

D. The method and procedures for rehosting the-
HAL compiler were demonstrated by the transfer
of HAL 360 to the 1108.

E. A system of language control, compiler change
control and modification was developed that was
to prove useful for Space Shuttle work.

F. In general, the RTOP investment in language and
compiler activity provided many returns that
are being reaped in the Space Shuttle program.
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5.2 Recommendations - HAL

A. The HAL language was developed and evaluated.
It has now been adopted for Space Shuttle usage.
NASA should make wide usage of the language.
This will provide a common language of communica-
tion across all levels of NASA software develop-
ment, it will increase programmer productivity,
and provide software transferability.

B. Broad usage of HAL will require a unified method
of language control to insure transferability and
reduce maintenance and compiler change costs.

C. A unified method of compiler implementation should
be studied and the best method adopted by NASA
consistent with their objectives of centralization
of compiler generation and maintenance, transfer-
ability, and language control.

5.3 HALM Recommendations and Conclusions

The recommendations and conclusions resulting from
the HAL machine design effort are contained within Chapter 4
in order to provide a section of the.final report that can
be self contained. These same recommendations and conclusions
are repeated here for completeness.

As a result of this implementation study, it is
6lear that a HALM is fairly simple to realize. A
modified version of the MP instruction architecture
[Mi 72] was investigated in detail and partially
implemented on the B1700. While the B1700 is not
designed to be a real time process control computer,
its internal structure allows for convenient implemen-
tation of varying instruction architectures,.and with
the help of some specialized hardware, e.g. floating
point unit, it would prove to be efficient in time
as well as it is in space.

Further results of this study are the emphasis upon
the importance of the instruction architecture addressing
methodology; the requirements for actual HAL/S user
statistics in order to both properly encode the instruc-
tion architecture operators and in order to help determine
the most appropriate addressing mechanisms; and, an
appreciation of the possibilities of being able to address
any bit width without penalty, e.g. true precision specifica-
tion in the HAL/S language itself.
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While the results of this short study have been
affirmitive and reassuring, it is desirable that several
of the areas of investigation be developed further. Areas
which can be considered to be of particular importance
are as follows:

A. HAL/S User Statistics

In order to both compare current instruction
architectures and to develop future ones, it is necessary
to know exactly how a language is used. Both Section 4.3
on addressing and Section 4.7 on statistics emphasized the
requirements for usage statistics. It is only by this
means that compact encoding of a logical instruction
architecture into a physical representation of the
instruction architecture may occur. Further, by knowing
both the forms of operands and their character-
istics distribution, it becomes possible to develop the
appropriate, and most efficient addressing structure.
User.statistics also enable incremental improvements
to the instruction architecture itself. Not only can
encoding-be made better, but appropriate operators can
be specified to optimize upon the correlation of actual
occurance of several basic operators (e.g. A = A + 1;).

As the Space Shuttle program continues, statistics
for HAL/S usage should become available. It is hoped that
they will be used.

B. Investigation of Various Address Structures

A thorough investigation of the various addressing
structures available (absolute, indirect, lexical level-
displacement, stack number-offset, base-displacement,
.sectors, banks, descriptors, ...) should be performed.
In particular, it is of interest to know the time and
space tradeoffs with respect to implementation comnplexity.
In the aerospace environment, in particular, appropriate
addressing would greatly decrease memory requirements.

C. Develop Standardized Basic Operating System

It would be useful to have a virtual operating
system specification which would define not only the
HAL/S interfaces, but would indicate,-the allowable
process interactions and time constraints. Such a
specification would allow for deterministic and
reproducible results of a complex of HAL/S programs
regardless of the specific executive implementation or
support processor.
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D. Variations and Stability in User Statistics and
Resultant Design

It would be useful to determine how well a particular

physical HALM realization acted with different sets of
user statistics. Had the design been so tuned, that with
.a different set of usage characteristics, it became
inefficient? Or, it is a relatively stabile design that

varies but reasonably? This task would require both an

analysis of how the design varies as statistics vary, and
the actual gathering of several sets of statistics which
do Vary. Both the analytical and practical treatment of
this task can be considered of interest.

E. Full Implementation of a HALM

It would be desirable to actually complete a HALM
implementation. This would afford assurance of actual
design integrity and provide a facility for statistics
Validation. While it is relatively easy to develop
memory size comparisons in abstraction, the actual
execution of a HALM provides valid timing statistics
and the micro routines provide the basis for the under- -

standing of the timing. Actual execution on a micro-
processor enables the determination of the timing bottle
necks of an instruction architecture design.

The efficient hardware implementation of higher order
languages is no longer in question. It is possible to orient
the instruction architecture for the language which they are
to execute, and to do so in an efficient manner. The principal
issue for computing systems should be the development of
languages which axe truly oriented towards the problems to
be solved.
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Appendix A

Selected HAL Memos Describing HAL Compiler Releases

10/71 Operation Status of HAL on the IBM 360

03/72 HAL Specification Change Notice #1 (HAL I/O)

15/72 Operational Status of HAL/360 Version 360-6

19/-72 Release of HAL Version 360-7
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HAL USER'S MEMO #10-71

TO: Jack Garman

FROM: Dan Lickly

DATE: 19 October 1971

SUBJECT: Operation Status of HAL on the IBM 360

The utility of the HAL compiler on the 360 is constantly
increasing as more capabilities are added to the system and

previous flaws corrected. Consequently, any discussion of

operational features must reference a version or point-in-time.
Two versions are of interest at this time; first, the one made
in early September and in use at MSC and second, the one that
will be installed at MSC at the nest opportunity - approximately
1 November 1971. The characteristics of both are described
below.

A. HAL-360 (1 Nov. 1971)

The following items have not yet been' implemented in the
IIAL compiler.

Pass. 1

1. The linear array functions: MAX,.M-IN, SUM, PROD, POLY.

2. Compiler directive cards; viz., INCLUDE.

3. The character cons-tant, CHAR.

4. Output listing cosmetics; e.g., stars, bars, and brackets
are incomplete.

5. Real-time control statements are recognized, but not
processed further.

Pass 2

1. Update blocks or tasks

2. Locking

3. Precision modifiers

4. READALL
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5. Structure assignment, comparison, and parameter passing.

6. The following built-in functions: INDEX, LJUST, RJUST,
SIGNUM, ARCCOSH, ARCSINII, ARCTANH, ADJ, MAX, MIN, SUM
PROD, POLY, MOD

7. The following shaping functibhs: BIT, BIT@ CHAR, CHAR@,
SUBBIT.

8. Advanced bit string features; e.g., bit user functions,.
bit conditionals, and arrayed bit arguments to procedures
or functions.

9. No shaping functions with arrayness, nor shaping functions
with arrayed argurents.

10. File operations

11. Run-time checks of subscripts & other out-of-limit
.violations.

B. HAL-360 (10 September 1970) All of the above plus the following:

Pass 1

1. Real-time control statements are not recognized and the
key word not reserved; e.g., SCHEDULE, WAIT, UNTIL, SIGNAL,
etc.

2. The reserved bit constants: FALSE, ON, OFF.

3. The CHARACTER conversion function is spelled CHAR.

4. DO FOR loops with negative increments.

5. Nested repeat expressions in INITIAL lists.

6. Bit constants may not have repeat numbers.

7. EOF is a key word denoting end-of-file.

8.. The optional comma separating the factored attribute
list from the first variable name in a factored DECLARE
statement is not optional, but mandatory.

Pass 2

1. All bit string operations

2. 'Multiple invocation of the same function at different
levels of nested functions.
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3. The built-in function, LENGTH.

4. Arguments of.procedures for user function may not be

expressions.

5. DO groups operate unreliably under certain circumstances.

C. Implementation Dependent Restrictions

The following limitations are imposed on the current

implementation of HAL on the 360.

1. Vectors limited to a length of 32 elements.

2. Matrices limited to 16-by-16.

3. Integers are 32-bit two's complement numbers.

4. Bit strings limited to 32 bits.

5. Varying character strings limited to 255 characters.

6. The number of calls to any one procedure or user function
is limited to 50.

7. The number of cases in a 'do case' is limited to 40.

8. The number of groups in a grouped DO FOR is limited
to 40.

9. The READ statement only handles 80 column input, through
one channel only.

10. The WRITE statement only handles 133 columns output.
through one channel only.

11. Arguments of procedures or user functions which are
arrayed expressions are not allowed.

12. No precision or type conversions are made on arguments
of procedures or user functions, hor upon the returns
of user functions.

13. If a IHAL programn is to be called by another then only
the first 5 characters of the name are used. The
underscore ( ) may not be used in the first 5 characters
of a program name under any circumstances.

14. The PREPLACE statement has a size limitation; the string
replacing the identifier may not be more than 256 characters
longc, nor, in the case of nested RE]PLACE's may the sum
of the string to be added and the part of the old string
to. the right of the insertion be more than 256 characters.
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HAL USER MEMO .# 03-72

TO: Distribution

FROM: P. M. Newbold

DATE: 1 February 1972

SUBJECT: HAL Specification Change Notice #1 (HAL I/O)

The following changes to and clarifications of the HAL I/O
specifications are hereby made. They are implemented in the
current version of the HAL 360 compiler. They cover the
following areas:

a.. characterization of stream--oriented (sequential)
storage devices

b. commanding the movement of their read- or write-
mechanisms

c. structure of the input data stream

d. effect of the READALL statement

e. type conversion during READ statements.

1. Storage devices are divided into two classes, paged and
unpaged. A paged device may be visualized as a book,
control functions being used to move the device-mechanism
from page to page as well a.s to position the device-
mechanism on the page. An unpaged device may be visualized
as a long strip of teletype paper; control functions being
used to position the device-mechanism anywhere on the strip.

2. The device-mechanism of any paged device may be commanded
by the following control functions,. whether -they occur
in, READ, READALL or WRITE statements:

SKIP(<p>) TAB(<p>)
LINE(<p>) COLUMN(<p>)
PAGE(<p>)

where <p> is an integer or scalar expression (the latter
being rounded). The device-mechanism of any unpaged
device may be commanded by any of the above control func-
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tions except PAGE(<p>) which is meaningless. The operation
of a physical device may impose bounds on the acceptable
values of <p>.

3. The data fields in the input data stream may be delimited
by 1 or more spaces, by a comma, or by a comma and L or
more spaces. No delimiter is required to data field if
one of them is a character data field (i.e. enclosed in
quotes). A semicolon, as well as delimiting data fields,
also serves to terminate the read operation. If n commas
appear between 2 data fields, or if n-l commas appear
between a data field and a trailing semicolon, then n-l
null.data fields are said to exist at that place in the
data stream. The null field has the effect of leaving the
value of the READ list element being processed at that
point unchanged.

Example:

X = 0.5;

READ(CARDS) Y,X,Z;

input:

0.753, , 0.0157

X is left at 0.5.

4. The READALL statement causes different'actions to take
place, depending on whether the character string list
elements have the fixed or varying attribute. If the
character string is fixed, it will be completely filled
from the input data stream, as many lines being traversed
by the device-mechanism as required. If the character
string is varying then one of two courses of action are
taken. If the maximum length of the character string is
greater than the (remaining) length of the current line,
then the character string takes on that length, and is
filled with the remainder of the line. Otherwise the
character takes on its maximum length and is filled from
the input stream as if it were a fixed character string.

5. A run-time error message is given if a data field enclosed
in quotes is read on input to a scalar, integer or vector/
matrix variable, or if a data field not enclosed in quotes
is read on input to a character variable. If a scalar
data field with a fractional part is read into an integer
or bitstring, rounding will. occur.
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Extra-Lingual Features

In the current implementation of IIAL-360 the association
of actual I/O devices with HAL I/O channels is made by the
use of the DEVICE compiler directive [1] in conjunction
with OS360 JCL. Two types of device are supposed to exist:

1. PRINT device: for output only; not input
compatible; paged.

2. non-PRINT device: for output and input, possibly
in the same program; unpaged.

An expanded explanation of the way in which physical I/O
devices are allocated will appear shortly in a future memo.

[1] -HAL-USER MEMO #01-72, The. HAL DEVICE directive,
R.E. Kole.
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HAL User Memo # 15

TO: Distribution

FROM: HAL Staff

DATE: 28 April 1972

SUBJECT: Operational Status of IIAL/360 Version 360-6

The purpose of this memo is to describe the HAL/360 compiler
release number 6 as it is currently being installed at the RTCC
at MSC. This release represents a snapshot of the HAL system as
of March 15, 1972. Topics covered in this memo include:

. Functional Restrictions of the HAL Language
Specification

. Compiler implementation dependent restrictions

. Summary of new features

With the exception of the Functional Restrictions, all improve-
ments and extensions of the compiler's capabilities mentioned in
previous memoranda also apply to the new release.

1. Functional Restrictions of the HAL Language Specification

The following restrictions on the use of IIAL's full specification
remain in the current release. They are'divided into two categories
based upon the pass of the compiler which pertains to the restriction.

A. Phase 1 Restrictions

1. The linear array functions MAX, MIN, SUM, PROD,
and POLY are not recognized.

2. The INCLUDE compiler'directive and corresponding
library facilities have not been implemented.

3. The character constant form of CHAR' ... ' has not
been implemented -_! and may be dropped from the
language specification.

4. Houston/MSC only: Lack of a "TN" print chain in
RTCC forces the output writer to use an "up-arrow"

, () to replace brackets ( [ ] ) in the annotation
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of arrays, and "integral signs" () in place of
braces ({ [) to yield annotation for structures.

B. Phase 2 Restrictions

1. Update blocks and the control of data sharing
among programs via the LOCKTYPE attribute have
not been implemented.

2. Structure operations of assignment, comparison
and parameter passing should not be attempted.

3. The following list of built-in functions:

INDEX LJUST RJUST SIGNUM
ARCCOSH ARCSINH ARCTANH ADJ
MAX MIN SUM PROD
POLY' MOD

4. The following bit and character string shaping
functions

BIT BIT SUBBIT

CHAR CHAR@

5. Certain rules regarding the use of Shaping
Functions have now been defined. Refer to HAL
USER MEMO #8-72 for details of these rules.

6. With two exceptions, there are no run time checks
of limit condutions connected with program control.
.The exceptions are the detection of compool size
discrepancies and the situation of program control
flowing to a FUNCTION procedure's CLOSE statement.
Various run time error conditions relating to data
integrity and I/O operations are detected.

7. The optional comma separating the factored attribute
list from the first variable name in a factored
DECLARE will produce a warning message if omitted;
however, omission will not affect the validity of
the compiled program.
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2. Compiler Implementation Dependent Restrictions

The implementation restrictions summarized in the previous
release memo, HAL Houston User Memo #02-72 still apply to the

present compiler without modification.

3." Summary of New Features

A. Output Writer: The HAL output writer feature has
been upgraded to its full specification in the
current release. The improvements to this routine
in the Phase 1 program of the compiler are as follows:

1. Automatic indentation algorithms have been
implemented. As a result, a standard format
which is quite readable now is created by the
output writer. The block structure and logical
organization of such language features as DO
statements and IF statements is now quite
recognizable in the standard form produced.

2. The previous deficiency of ignoring embedded
PL/l form commaents ("/* ... */") has been
corrected. All embedded comments which occur
prior to the semicolon which terminates a state-
ment (beginning with the first comment in the
statement if any) are collected, stripped of the

/*...*/ delimiters, catenated together and turned
into a single comment which starts with the "/*"
delimiter and ends with .the "*/" delimiter and is.
placed following the terminating semicolon of the
statement. A word of caution: comments which are
embedded in E or S lines of a statement are still
ignored.

3. Certain cosmetic features have been added or
improved in the listings of the compiled program.
The principal example is a much improved LISTING2
input image format.

B. REAL Time Facility: The current release of the HAl system
supports a simulated real time environment. In this
simulation, an external file of events (stimuli) is main-
tained, which is used tiegether..with application program-
internal scheduling of events to run examples of real time
systems. New features of the Phase 2 code generation
support the following statements:

SCHEDULE... WAIT...
TASK... TERMINATE...
SIGNAL...
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REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

Additionally, the EVENT variables used in a real
time situation may now be declared in the HAL language*
DECLARE statement using the keyword EVENT as an
.attribute. For a disucssion of the details of this new
feature, consult HAL User Memo #9-72.

C. The use and applicability of shaping functions for
conversion between data types in the HAL language have
been extended. in several ways. Refer to HAL User
Memo #8-72 for a discussion of the current ground rules
of shaping function-us-.

D. Precision modifiers have now been implemented.

E. Literals: The literal processing of Phase 1 now implements
an improved algorithm for maintaining a list of literals
used in a given program. .There is still a limit of 100
unique numeric literals in any program, but this limit
restricts only literals occurring in executable statements;
i.e., literals in declare contexts are no longer considered
in checking the literal limit of 100.

F. Initialization: In the previous versions of the compiler,
there was a stacking limitation on the number of literal
values which could be coded in the literal lists of HAL
DECLARE statements. This limitation typically was in the
50-70 range.depending upon the context of the program in
being compiled.. The current release of the compiler
employs a new strategy which alleviates.this restriction
to a great extent. The limitation now is that no more than
450 arithmetic values may be initialized within the
initial lists of a single HAL statement. This limitation
is independent of program context.

G. Dump and trace facilities: This new release of the
compiler incorporates a termination dump which may be used
on program failure in the execution of non-real time jobs,
and a trace facility which is usable in both real-time
and non-real time situations. . The dump may be used at
termination or at selected points in the program, giving a
formatted listing of the user defined variables and
identifiers. The trace may apply in general to a whole
program, or may be specified for a specified range of
statements in a program --- in either case, the trace
consists of a formatted message notifying the user of the
current position in the program. In a future release,
facility will be incorporated for both TRACE and DUMP
user aids in either real time or static modes of operation
of a program. HAL User Memo #12-72 gives a full descrip-
tion of the DUMP and TRACE facilities as they now stand.
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H. The following Specification Change Proposals which were

detailed in the specified Intermetrics HAL User Memos

have been implemented. These memos may now be considered

as updates to the HAL specifications:

1) User Memo #3 HAL I/O
2) User Memo #6 The TIME keyword
3) User Memo #7 Real Time Control
4) User Memo #9 Real Time Control
5) User Memo #11 Compool Initialization
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HAL USER MEMO #19-72

TO: -Distribution

FROM: R. E. Kole

DATE: 12 June 1972

SUBJECT: Release of HAL Version 360-7

This memo describes the status of the HAL/360 compiler as
of the release of Version 360-7 to M.I.T. on June 13, 1972.

1. Functional Restrictions of the HAL Language Specification

The following restrictions on the use of the full HAL
language remain in Version 360-7.

A. Phase 1 Restrictions

(1) The linear array functions MAX, MIN, SUM,
PROD and POLY are not implemented.

(2) The character constant form of CHAR'...'
is not implemented.

(3) The EXCLUSIVE attribute of procedures is
not implemented.

(4) ACCESS rights for control of COMPOOL data.
are not implemented.

B. Phase 2 Restrictions

(1) Update blocks and control of shared data
are not implemented.

(2) Structure operationsare undefined.

(3) The following built-in functions are not
implemented:

INDEX LJUST RJUST SIGNUM
ARCCOSH ARCSINH ARCTANH ADJ
MAX MIN SUM PROD
POLY MOD

A-13

TEnMEWTRICS INCORPORATED • 701 CONCORD AVI'ENIE • CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840



(4) The following bit and character string
shaping functions are not implemented.

BIT BIT@ SUBBIT

CHAR CHAR@

(5) HAL User Memo #8-72 is still applicable
(defines rules for use of shaping functions).

(6) Run time limit checks are only made for the
following situations:

(a) Attempted execution of CLOSE of a
function.

(b) Mismatching of COMPOOL sizes of programs
that invoke, each other.

2. Compiler Implementation Dependent Restrictions

No additions or deletions to the list of implementation
restrictions have been made. Therefore, those restric-
tions summarized in the previous release memo still

-apply.

3. Summary of New Features

A. Output Writer

Small improvements have been made to the output
writer portion of Phase 1. -These improvements
include.the correction of errors in the expansion
of single line input to multi-line output and the
correction of improper indenting in some forms
of the DECLARE statement.

Also, REPLACE items are underlined in the listing
to make their use clear.

B. The INCLUDE compiler directive has been implemented.
The form of the directive is that proposed in
HAL User Memo #13-72. Use of the INCLUDE directive
causes source code to be read from a data set
defined on a JCL card of the following form:

//INCLUDE DD DISP=SHR, DSN=name,...
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where name defines a partitioned data set. The
partitioned data set directory is searched for
the member name specified in the INCLUDE directive
and that memlber is included if it is found. All
other situations result in an error message.

C. User Aids

Extensive changes and improvements have been made
to the listing produced by the compiler. These
changes involve the production of a block summary
at the CLOSE of each block of a program and a
completely reordered symbol table listing. These
improvements are fully explained in HAL User
Memo #17-72.

D. Error Recovery

Full error recovery facilities are now available
in non-REALT IME including use of the ON ERROR.
and SEND ERROR statements.

Also, HAL error messages. are now produced for all
errors and HAL error summary is given at termination
of a run.

The full functional description of the HAL Error
Processor is given in HAL User Memo #18-72.

The form of the SEND ERROR statement has been
changed to correspond to the form defined in HAL
User Memo #16-72.
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