NASA CR-134375

۰.

Prepared by

THE PILLSBURY CO.

Table of Contents

.

· .

.

•••••	Section	<u>Title</u> <u>Page</u>
·	1.0	Introduction 1
•	2.0	Approach 1
···	3.0	Technical Analysis 2
	3.1	General 2
•	3.2	Selection Rationale Process 6

3.2 • .

۰.

· . :

11

LIST OF TABLES

Table Title Page

> Shuttle Feasibility Equipment Heating Techniques 3 2

Summary Equipment Heating Techniques Selection Rationale Factors

1

12

\$ 1 111

1.0 INTRODUCTION

The active heating system approach is based on the use of an external heating method other than hot water to maintain the food temperature within the palatable range. After reconstitution, no attempt is made to insulate the food packages. The food is positioned in a heating device (such as an oven or Skylab type tray) and the temperature is elevated to the required degree for serving. The meal is then assembled and distributed to the crew.

Various techniques to accomplish active heating are available and must be considered for Shuttle use. The screening analysis evaluated these methods and resulted in the selection of a hot air oven, electrically heated food tray and microwave oven, for further consideration and analysis.

2.0 APPROACH

The approach used to develop technical data for the active system of applying additional heat by means of an external device, such as an oven, was as follows:

- Review engineering data generated in previous food system study for potential applicability to Shuttle study.
- Generate a list of options of techniques to be assessed for preliminary screening for Shuttle use.
- Apply a selection rationale that quantitatively evaluates the options and results in final selection of candidates for detail application.

- 1 -

2.0 Cont'd

Perform calculations for the selected candidates in terms of Shuttle vehicle impact penalties of weight, volume and power.

3.0 Technical Analysis

3.1 General

A summary of the various equipment heating techniques is shown in Table 1. Each of the techniques are described and a Shuttle feasibility decision indicated. The rationale for the decision is also given in a brief explanation. Where Shuttle feasibility is indicated as limited, the screening process resulted in a marginal analysis due to either a significant advantage or disadvantage outweighing the balance of items. The resistance oven by itself is inefficient in zero gravity and produces high temperatures with potential burn hazards. However, if combined with a hot air convection oven, a more efficient combination is produced than either by itself. Similarly, the self heating food packages are lesirable from a systems viewpoint but are costly in development and per flight use. With development, however, they may become acceptable.

- 2 -

		Shutt	le Feas	ibility	
Technique	Description	Yes	No	Limited	Rationale
Hot Air Convection Oven	Heating by impingement of hot air on food. Air circulated by fan or blower in insulated compartment.	x			Heating effectiveness is independent of gravity. Utilizes on board power. Proven concept requiring minimum development for 0-g use.
Microwave Oven	Heating by directing microwave energy to an insulated food cavity.	X			Immediate warmup and cooking time. No emission of heat from oven sur- faces. Minimum development re- quired. Utilizes on board power.
Resistance Oven	Heating by radiation from electrically heated elements within a closed chamber,			x	No convection coefficients hence radiation is in all directions with loss of efficiency. Packaging inter- face with plastic could be problem. High temperatures may create burn hazard.
Dielectric Heating	Heating by rapid molecular agitation as a high frequency potential applied to electrode plates of a special container.		х		Temperature control difficult. Dielectric constant varies with food type, requiring power converter that is complex and bulky.
Wrap-on Heating Jacket	Heating by an external jacket containing flexible resistance elements wrapped around food container.		X		Jacket contact with container critical to heating efficiency. Type of pack- aging therefore limited to rigid containers rather than soft, flexible packages.

TABLE 1. SHUTTLE FEASIBILITY EQUIPMENT HEATING TECHNIQUES

ديا

TABLE 1. SHUTTLE FEASIBILITY EQUIPMENT HEATING TECHNIQUES

		Shutt	le Feasi	bility	,
Technique	Description	Yes	No	Limited	Rationale
Self Heating Food Package	An electrical resistance circuit is made by slotting a sheet of aluminum foil so that remaining foil forms a continuous electrical path. When integrated into a package, electrical power applied to create uniform heat.			X	Compatible with all container sizes and shapes. Very light, low volume and low power concept. Applicable to individual packaging. Major development required.
Induction Heating	The food container is placed within a wound helical conduction coil which develops a multidirec- tional magnetic field when AC applied to coil. Heating occurs without contact.		x		Concept requires auxiliary power converter, metallic containers and produces large weight and power penalties. Cold spots can occur in larger food containers requiring food stirring.
Conduction Heating Oven	The oven consists of separate compartments independently lined with resistance heating elements to permit contact of package so as to establish conductive coupling.		x		The compartments provide a large mass that is heated concurrently with the food. Volume penalties inherent in design. Packaging limited due to size and material compatibility.
Probe-Type Resistance Heating	A resistance heated probe is in- serted directly into food mass and heating is by conduction between solid and liquid. Penetration is through package.		X		Excess package uliage required to prevent spillage on probe insertion. Volume penalties result throughout system. Constant cleansing required of probe. Time factor may be excessive.

4

ORIGINAL' PAGE IS OF POOR QUALITY

ן ה

TABLE 1. SHUTTLE FEASIBILITY EQUIPMENT HEATING TECHNIQUES

		Shu	ittle Feas	ibility	
Technique	Description	Yes	No	Limited	Rationale
Pressure Cooker Heating	Heating by boiling/condensing within a pressure cooker (pressurized chamber)		x		Zero gravity boiling problems severe, possibly requiring centrifugally created gravity field. Safety, oper- ability and crew acceptance low. Packaging must prevent water pene- tration and food seepage.
Flash Steam Hoating	200°F water is introduced into a low pressure food chamber where it flashes into a vapor phase. Heating occurs when high velocity stream impinges on food packages.		х		Steam chamber requires venting to space or pumping to maintain internal pressure. Water must be provided to the power source circuit. Design requires large weight, development and operability penalties.
Solar Energy Exposure	Food heating accomplished by direct exposure to solar energy collected and concen- trated into high intensity ray.		x		Requires extensive development. Potential safety problem and low crew acceptability.
Eiectrically Heated Food Tray	Heating of food cans is accomplished in food trays with suitable cavities that are heated by resistance elements lining the cavity and provide zero gravity retention.	X			Current Skylab concept that will be flight qualified prior to Shuttle usage. Penalties involve time to heat and weight and complexity of each tray.

3.2 Selection Rationale Process

The selection of the equipment heating candidates for Shuttle use was based on the preliminary screening performed by the selection rationale process. A description of this process follows:

A quantitative rationale was established in order to document the selection for further study of various concepts. The rationale considers the following parameters, all or part of which affect the stated concepts to some extent:

• On-Orbit Performance

 <u>Gravitational Effect</u> -- This parameter is employed to consider the gravitational effect on a particular concept for a range of operability between zero-g to one-g.

<u>Safety</u> -- A measure of the condition (of the particular item or concept) of being safe from causing hurt, injury, loss, or inactivity. The rating ranges from excellent, to good, fair, and poor or hazardous.
 <u>Operability</u> -- This parameter pertains to the product of two factors related to the reliability maintainability of the particular concept. Reliability

is scaled from a low to high ranking, and maintainability is assumed to range from complex to simple maintenance

task requirements.

- 6 -

4) <u>System Compatibility</u> -- This parameter pertains to the product of three prime systems considerations; namely, the weight, volume, and power requirements for each concept under consideration. The effect of weight is considered over that of volume since the launch weight of the Shuttle is considered to govern, rather than the volumetric constraints. Since power requirements are more closely related to weight than are volume requirements, this subparameter of the system compatibility factor has been assumed of greater importance than volume. Ground Operations

5) <u>Serviceability</u> -- This parameter considers the turnaround times or ground servicing required by a particular concept and relates to ease of servicing, cleaning, and checking out an item during normal turnaround procedures. The ratings range from minimal time, to low, normal or lengthy.

Crew Interface

6) <u>Crew Acceptability</u> -- This is a measure of the anticipated crew acceptability for a concept; the rating ranges from excellent, to good, fair, poor, and not acceptable. As applicable, crew acceptability criteria is considered for such elements as: sensory input (sight, smell, etc.); familiarity; task complexity, meniality, or boredom; aesthetics; and confidence.

- 7 -

7) <u>Crew Time</u> -- A measure of crew time requirements for a particular concept, ranging from maximum to minimum. The scale ranges from minimal time requirements through low, medium, and high usage of crew time to accomplish a functional task.

Cost

Time".

8) <u>Development Risk</u> — This parameter considers the status of a particular concept and ranges from what is available or current state-of-the-art, to various magnitudes of effort required to fully develop the concept for space shuttle usage.

9) Operating Cost -- This measures an estimate of per launch cost by rating number of expendables required or spares to support the particular concept in flight, and ranges from minimal through expensive. In order to normalize the nine parameters, the following multipliers (or effective weights) have been established. The list, for example, shows that "System Compatibility" is considered to have twice the impact on selection as "Crew

	Parameter	Multiplier
1)	Gravitational Effect	1
2)	Safety	2
3)	Operability .	3
4)	System Compatibility	4
5)	Serviceability	3

- 8 -

	Parameter	Multiplier
6)	Crew Acceptability	2
7)	Crew Time	2
8)	Development Risk	3
9)	Operating Cost	3

Graphs, presenting the particular criteria for each parameter, have been produced to establish a set of factors which are employed in the concept selection process. The factors for each parameter range, in general, from zero to a value of eight. For the parameters in which products are used (Operability and System Compatibility), the use of more readily scaled numbers produces maximum values in excess of eight. The summation of the product of all factors and their appropriate multipliers gives an overall sum, which when divided by the number of parameters utilized in the process, yields the "final selection factor". This factor is then compared to a preselected value; a final selection factor below this value means that the concept is discarded, a factor equal to or above the selected value implies that the concept has been selected for further study.

The format for the concept selection rationale is shown in the attached figure. It is to be noted that three basic types of graphs are employed: their use is clarified in the following paragraphs, taking an example of each type:

Example: Consider the effectiveness of a resistance type oven under the effects of gravity

From an examination of the charts at point g =), it is determined that the left hand graph is applicable since for zero gravity there would be no convection coefficients, hence radiation is in all directions with loss of effectiveness. Then mentally construct the shape of a curve (see dotted line) which best represents the anticipated effectivity of the concept as g-forces increase. Since the curve falls within area (4), a factor of 4 is recorded in the appropriate column of the chart.

type oven

The graph shows a linear relationship between crew acceptability and rating factor, and gives the investigator a choice of two ways to obtain the factor. In the first case, if one anticipates that 3 out of 6 crewmembers (50%) could find the concept acceptable (as opposed to unacceptable), then a factor of 4 is obtained. The more standard way would be to consider how the average crewmember would view the concept, a ranking of poor would at its highest range also yield a factor of 4. The poor rating for this concept is based on the high temperatures encountered in a resistance type oven which has radiated this heat to all surfaces.

This graph shows a linear relationship between reliability and the rating factor. Since this and other graphs of this type are employed where the product of two or more chart factors are taken, discrete points are established between (in this case) low and high ratings, in order to simplify the procedure. A low rating gives a factor of either 0 or 1; a high rating 2 or 3; and an intermediate reliability rating of either 1 or 2.

The actual selections and ratings are given in the following sheets for the six candidate techniques. A summary of the selection rationale factors is shown in Table 2.

- 11 -

TABLE 2. SUMMARY EQUIPMENT HEATING TECHNIQUES SELECTION RATIONALE FACTORS

				······································		
Rationale Parameters	Hot Air Convection	Microwave Oven	Resistance Oven	Wrap-On Heating Jacket	Self-Heat- ing Food Package	Electrically Heated Food Tray
Gravitational Factor	8	8	2	8	7	4
Safety Factor	5	5	4	4	4	4
Operability Factor	7	6	6	4	6	6
System Compatibility Factor	5	2	5	4	6	4
Serviceability Factor	6	6	5	4	4	6
Crew Acceptability Factor	6	5	4	4	4	4
Crew Time Factor	6	7	5	2	3	4
Development Risk Factors	6	6	5	4	3	8
Operating Cost Factor	5	4	. 3 .	3	3	4

12

- 13 -

- 14 -

- 15 -

OF POOR QUALITY

- 18 -

FINAL REPORT SPACE SHUTTLE/ FOOD SYSTEM STUDY VOLUME II APPENDIX B RECONSTITUTED FOOD HEATING TECHNIQUES ANALYSIS prepared for NATIONAL AERONAUTICS and SPACE ADMINISTRATION Johnson Spacecraft Center Houston, Texas 77058

Prepared by

THE PILLSBURY CO.

	•			
4				
)				
		COUNTRING		
		CONTRAT2		

ι . .

	Section	<u>Title</u>	Page
	1.0	INTRODUCTION	1
	2.0	DISCUSSION	6
	2.1	Passive Systems	6
	2.1.1	Insulated Jacket System	7
	2.1.2	Insulated Tray Analysis	8
	2.1.3	Alternate Preparation Analysis	11
	2.2	Semi-Active Oven System	17
	2.3	Active Systems	17
	2.3.1	Hot Air Convective Oven	17
	2.3.2	Microwave Oven	20
	2.3.3	Heated Tray	21
	2.3.4	Hot Water Source	22
	2.3.5	Chemical Heating System	22
'n	2.3.6	Hydraulic Marming Concept	23
	2.3.7	Preparation Summary	23
	3.0	DETAILED ANALYSIS	25
	3.1	Passive Heating Systems	25
	3.1.1	Insulated Jacket Analysis	25
	3.1.1.1	Preparation of Individual Meals	26
	3.1.1.2	Preparation of 3 Meals at a Time	32
	3.1.1.3	Preparation of 6 Meals at a Time	33
	3.1.1.4	Insulated Jacket Weight	33
	3.1.1.5	Heat Loss from Covered Insulated Jacket	35
	3.1.1.6	Heat Loss Analysis - 5 Can Storage	39
	3.1.1.7	Summary - One Man Preparation	48
	3.1.1.8	Summary - Two Man Preparation	50
			•

CONTENTS Cont'd

Section	<u>Title</u>	Page
3.1.2	Insulated Tray Analysis	52
3.1.2.1	Preparation of Individual Meals in Trays	54
3.1.2.2	Preparation of Meals in Trays - 3 at a Time	57
3.1.2.3	Preparation of Meals in Trays - 6 at a Time	59
3.1.2.4	Tray Weights and Volume	60
3.1.2.4.1	Insulated Tray	60
3.1.2.4.2	Uninsulated Tray	63
3.1.2.5	Thermal Network - Heat Loss Through Tray Sides	65
3.1.2.6	20-Minute Cooling Data - Insulated Tray	67
3.1.2.7	Temperature Analysis - Insulated Tray	74
3.1.2.8	Summary - One Man Preparation	80
3.1.2.9	Summary - Two Man Preparation	81
3.2	Semi-Active Heating System	82
3.2.1	Heated Cavity (Oven)	82
3.2.1.1	Preparation Sequence	82
3.2.1.2	Preparation Times	83
3.2.1.3	Oven Weight and Volume	90
3.2.1.4	Weight Penalties During Performance	91
3.2.1.4.1	Summary - Weight and Power Penalty	94
3.2.1.5	One Man Preparation Analysis - 140°F Entree	98
3.2.1.5.1	Summary - Total Weight and Power Penalty	101
3.2.1.6	One Man Preparation Analysis - 135°F Entree	104
3.2.1.7	Two Man Preparation Time-Lines	105
3.2.1.7.1	Weight Penalties During Performance (140°F)	107
3.2.1.7.2	Weight Penalties During Performance (135°F)	112
3.2.1.7.3	Summary - 2 Man Preparation	115
	ter i terret i terret i	

111

Section	Title	Page
3.3	Active Heating Systems	116
3.3.1	Convective Hot Air Oven	116
3.3.1.1	Convective Hot Air Oven - Heating Time	116
3.3.1.2	Oven Arrangement	118
3.3.1.3	Convective Coefficient Calculation	122
3.3.1.4	Blower Sizing	123
3.3.1.4.1	Blower Volume Flow	124
3.3.1.4.2	Blower Power	125
3.3.1.5	Concurrent Heating	127
3.3.1.6	Insulation Study	127
3.3.1.6.1	Touch Temperature Requirement	128
3.3.1.6.2	Insulation Thickness	128
3.3.1.6.3	Insulation and Box Weight	129
3.3.1.7	Heat Loss	131
3.3.1.8	Electrical Energy	132
3.3.1.8.1	Peak Electrical Power	133
3.3.2	Microwave Oven	134
3.3.2.1	Electrical Power Required	134
3.3.2.2	Heat Loss Penalty	134
3.3.2.3	Electrical Energy Penalty	134
3.3.3	Heated Tray	136
3.3.3.1	Radiation Heating	137
3.3.3.2	Conduction Heating	138
3.3.3.3	Touch Temperature	140
3.3.3.4	Tray Steady State Heat Loss	140
3,3,3,5	Tray Weight	141

iv

Section	Title	Page
3.3.3.5.1	Insulation Weight	141
3.3.3.6	Heat Loss Penalty	142
3.3.3.7	Electrical Energy Penalty	142
3.3.3.7.1	Electrical Power Required	142
3.3.3.8	Uncovered Trays	143
3.3.3.8.1	Weight Saving	143
3.3.3.8.2	Heat Loss	143
3.3.3.8.3	Electrical Energy Penalty	144
3.3.4	Water Tank Analysis	145
3.3.4.1	Hot Water Source Analysis	145
3.3.4.1.1	Water Requirements	145
3.3.4.1.2	Tank Volume	145
3.3.4.1.3	Weight Penalties	146
3.3.4.2	Summary Penalty	152
3.3.5	Hydraulic Warming Concept	156
3.3.5.1	Description	156
3.3.5.2	Assumption	156
3.3.5.3	Calculations	158

V

1LLUSTRATIONS

۰.

.

.

<u>Figure</u>	Title	Page
1	Study Approach	3
2	1-Man Preparation - Passive System	13
3	2-Man Preparation - Passive System	14
4	Individual Meal Preparation - Passive System	15
5	1-Man Preparation - Not Air Oven	24
6	Insulated Jacket -Weight & Volume vs Thickness	33 🚲
7	Meals Prepared and Served Individually	34
8	Meals Prepared and Served in Groups of 3	37
9	Meals Prepared and Served in Groups of 6	38
10	Meals Prepared in Insulated Jacket - 6 Served	49
11 -	Meals Prepared in Insulated Jacket - 2 Groups of 3 Served	51
12	Tray Configuration	62
13	Insulated Tray - Weight & Volume	64
14	Entree Temperature-20 Minute Cooling	68
15	Entree Temperature versus Thickness - 20 Minute Cooling	69
16	Meals Prepared in Insulated Trays- Served Individually	70
17	Meals Prepared in Insulated Trays- Served in Groups of 3	71
18	Meals Prepared in Insulated Trays- Served in Groups of 6	72
19	Meals Prepared in Insulated Trays- Served in Groups of 3 & 6	73
20	Food, Beverage, Water Temperatures for Meals Served in Groups of 6	78
21	Food, Beverage, Water Temperatures for Meals Served in 2 Groups of 3	79

vi

Figure	<u>Title</u>	Page
22	Optimum Oven Weight Penalty	96
23	Power Requirements	97
24	Total Oven Weight Penalty	102
25	Power Requirements	103
26	Oven Weight Penalty	110
27	Power Requirements	111
28	Oven Weight Penalty	113
29	Power Requirements	114
30	Gas Temperature vs Convective Coefficient (40°F - 145°F)	119
31	Gas Temperature vs Convective Coefficient (70°F - 145°F)	120
32	Oven Schematic Arrangement	121
33	Theoretical Blower Power	126
34	Total Weight Penalty	153
35	Tank Energy/Power Requirements	154
36	Water Tank Interface Requirements	155
37	Food Temperature vs. Warming Times	165
38	Hydraulic Concept - Cooling Times	166

ORIGINAL PAGE IS DE POOR QUALITY

Vií

ILLUSTRATIONS Cont'd

Table	Title	Page
1	Current Data and Assumptions	4
2	Summary Matrix-food Heating System Analysis	4a
3	Cost Estimate	5
4	Meal Preparation Time Summary	· 9
5	Meal Preparation Time Summary	12
6	Summary - Alternate Preparation Techniques	12
7	Preparation Summary-Semi-Active Oven	18
8	Cooling Times & Temperatures for First &	89
	Last Cans	10 5
9	2-Man Preparation Times	
10	Cooling Times & Temperatures for First & Last Cans	108

•

ORIGINAL PAGE IS OF POOR QUALITY

1.0 INTRODUCTION

This study is concerned with the relative merits and penalties associated with various approaches to the heating of rehydrated food during a mission of the Space Shuttle. The techniques investigated are indicated in the accompanying "study approach", Figure 1. The three techniques represent an increasing order of potential complexity and cost, ranging from a passive storage system where food would be held at palatable temperatures, to a completely active system where additional heat is required to achieve necessary temperatures. Each of the techniques were studied to assess feasibility in terms of vehicle impact penalties.

In the studies presented the following assumptions are implicit in the analyses:

1) The mission is of seven day duration with a six man crew.

- 2) The design meal consists of an entree, two side dishes, soup, and a dessert. The entree and side dishes are contained in 401 cans and the soup in a 211 can. These dishes, after rehydration, are to be served in a temperature range of 135 - 145°F.
- 3) Forced convection heat transfer is obtained between the cabin air and the food heating and storage gear with an average effective coefficient of h=1.45 BTU/hr-ft²-°F.
- 4) Total time for food preparation, eating and clean-up should preferably not exceed one hour.

- 1 -

1.0 Cont'd

- 5) The system penalties include considerations of weight, heat loss to cabin (calculated as 0.133 lbs per average $\frac{BTU}{hr}$ over a 24-hour period) and electrical energy consumed (1.514 lbs per Kw hr).
- Water available for rehydration in temperature range
 35 190°F.
- Supplementary information pertaining to food data are shown in Table 1.
- Heating calculations based on 401 and 211 cans being filled with an equivalent weight of water.

The food preparation approaches treated in this report are:

- Passive: a) Insulated Jacket System
 - b) Insulated Tray System
- Semi-Active a) Storage Oven
- Active: a) Hot Air Convective Oven
 - b) Microwave Oven
 - c) Individually Heated Serving Trays
 - d) Chemical Heating System
 - e) Hot Water Source

A summary matrix of the study results is presented in Table 2, and cost estimates for each of the considered systems are shown in Table 3.

- 2 -

TECHNIQUE	OBJECTIVE	APPROACH
Passive	Maintain reconstituted food temperature at 135°-145°F using hot water with no ex- ternal or added energy	Use insulated storage cavity and best stacking arrange- ment
Semi-Active	Create equivalent hot environment for recon- stituted food	Use storage cavity that is maintained at 135°-145°F • Electric blanket • Hot water jacket
Active	Add heat as required to elevate reconstituted food temperatures to 135°- 145°F	 Oven (forced hot air convection; microwave) Heated tray (Skylab) Chemical (Exothermal Reaction)

Figure 1. Study Approach

.

ا ہے س

TABLE 1. CURRENT DATA AND ASSUMPTIONS

١

Temperature range to begin a meal	135 - 145 F		
Water content of foods	Entree's 75%		
	Side dishes 80% Beverages 90 - 95%		
Large main meal for purpose of	Entree 6 oz		
heating analysis	Side dishes 15 oz		
	Dessert 3 oz		
	Soup 4 oz		
Specific heat	$1.00\left(\frac{\text{Btu/lb}}{\text{ft}}\right)$ reconstituted		
	0.50 dry		
Thermal conductivity	$0.28 \left(\frac{Btu/lb ft^2 \ ^{\circ}F}{ft}\right) \text{ thaved food}$		
· · · · ·	0.75 frozen		
Rate of temperature decay	Kneading2.7 °F/minutesStill air1.2 °F/minutesInsulated0.34 °F/minute		
Initial food temperature as function of water t	emperature		
Entree 3:1 ratio (75% water)	$T_{\rm m} = 0.86 \ T_{\rm W} + 10$		
Side dish $4:1$ ratio (80% water) $2\frac{1}{2}:1$ ratio (71% water)	$T_m = 0.89 T_W + 8$ Assumed $T_m = 0.83 T_W + 12$ storage		
Beverage 19:1 ratio (95% water)	$T_{m} = 0.97 T_{w} + 6$ at 70 F		
Soup (85% water)	$T_m = 0.92 T_W + 6$		
Volume 401 x 105 can 17.01 in. ³ = 9.43 fl oz Volume 211 x 105 can 7.45 in. ³ = 4.13 fl oz Volume water .976 fl oz/oz at 145°F			
Rehydration times	Entree20 minutesVegetables15 minutesSoup10 minutesBeverage0 minute		

Technique	Option	Weight (lbs)	Power (Kw)	Electrical Energy Kw-hr	Heat to Cabin Btu/hr Aver. for 24 hrs	Volume (ft ³)	*Combined System Penalty Equivalent (lbs)
	Insulated Jacket W = 60 lb/hr One man prop. Prep. time 54,1 min	10.93	. 248	.375	6 . 3 7	1.85	12.36
	Insulated Jacket	10,57	. 248	.375	6.37	1.54	12.0
Passive	<u>Insulated Tray</u> Ŵ = 60 lb/hr One man prep. Prep. tlme 55.2 min	9.13	. 256	.388	6,55	1,19	10.6
	Insulated Tray W - 60 lb/hr Two man prep. Prep. time 35.0 min	9,20	. 252	.380	6, 41	1.08	10.6
	Oven \dot{W} = 30 One man prep. Prep. time 50.6 min	11.66	. 259	. 426	21.1	1.92	15.2
	Oven	11.53	. 246	.405	20.3	1.86	14.9
Semi-Active	Oven $\dot{W} = 30$ Two man prep. Prep. time 27.9 inin	11,98	.246	.402	19.1	1.84	15,1
	Oven W = 60 Two man prep. Prep. time 24.9 min	11.98	. 246	.402	19.1	1.84	15.1
	Hot Air Convective Oven	14,3	1.69	11	60	1.0	35,29
	Microwave	82.5	3.6	18,9	220	3.0	140.5
Active	Heated Trays*** (6 trays)	14,4 with covers	1.57	12.1	90	1.0 with covers	43.0 with covers
		w/o covers	1.51	14.1	03	w/o covers	w/o covers
	** Hor, 150°F Water 470°F Source 190°F	.516 .545 .577	.236 .277 .318	.348 .408 .468	6.44 7.42 8.23	.103 .119 .136	1.90 2.15 2.38

TABLE 2. SUMMARY MATRIX - FOOD HEATING SYSTEM ANALYSIS

* 0.133 lbs per áverage Btu/hr heat loss to cabin over 24 hour period
 1.514 lbs per Kw-hr

** Penalties included in passive and semi-passive systems

*** Performance based on contact officiency of food and heating source. This may be a high risk system.

OR.	IGINAI	L PAGE	TS
Uŗ'	POOR	QUALTI	Y

ORIGINAL PAGE IS OF POOR QUALITY

ះ ហ រ

e.	Hours			R&D Cost			Production Cost
	Design Engineering	Test Engineering	Dev/Qual Manufacturing	Engineering (@ \$25/hr)	Manufacturing (@ \$20/hr)	Other (Mat, Test)	Per Unit (5 Systems)
Insulated Jacket (Incl. serving tray + hot water tank)	2400	960	1280	84K	25.6K	18K	5K
Insulated Tray (Incl. hot water tank)	1920	640	720	64K	14.4K	1.0K	3 K
Semi-Active Oven (Incl. serving tray + hot water tank	3480	1440	2080	123K	41.6K	25K	8К
Hot Air Oven (Incl. serving tray)	5040	1680	2280	168K	45.6K	30K	15K
Microwave Oven (Incl. serving tray)	4320	2160	3000	162K	60K	40K	_ 18K
Electric Heat Tray (See Note)	· 960	- 480	640	36K	12 . 8K	5K	5K

TABLE 3. COST ESTIMATE

NOTE: Estimate based on adapting existing Skylab tray to Shuttle requirements for menu sizing, type of food packages, decreased weight and volume study, and electrical simplification. Qualification by similarity.
2.0 DISCUSSION

2.1 Passive Systems

Two passive systems were studied: the insulated jacket system and the insulated tray system, both of which require a source of hot water to heat as well as reconstitute dry food. The insulated jacket system utilizes cylindrical, covered jackets to prevent excessive cooling of dishes during preparation, and requires trays insulated only sufficiently to prevent food from cooling below 105°F by the end of the 20 minute dining period. The insulated tray system utilizes covered trays insulated sufficiently to prevent excessive cooling during meal preparation as well as to prevent food from cooling below 105°F during the dining period.

Touch temperature of surfaces was not considered as a criteria in the analysis of these systems. However, the results in the analysis sections wherever surface temperature are calculated tend to show that these will be less than 105°F. Other assumptions made in the analyses are as follows:

 Heat transfer to the cabin from FMS surfaces and food was calculated on the basis of natural convection at sea level. The values of h_B and h_C used in the analyses
 were extracted from cooling tests conducted at The Pillsbury Company. The value of h_B was obtained from Figure 3 of WADC TR55-254, "Engineering Study of Air Conditioning Load Requirements of Aircraft Compartments." The heat transfer coefficient, h_r, is that due to radiation, and is a function of source and sink temperature.

- 6 -

2) Cabin temperature, t_f, was 75°F.

3) Thermal contact resistance between can and contents, between can and insulated jacket, or between can and tray was not accounted for. The results, therefore, are somewhat conservative.

4) The time lines developed in the analyses were governed by the water requirements given by The Pillsbury Company in Table 1 for the various dishes and the following time increments for preparation steps:

0.25 min. to open a can and unpack the water valve,0.50 min. to knead the contents of a can,0.25 min. to replace the contents of a can andrepack the water valve.

5) Rehydration times for the various dishes were the values given in Table 1.

6) Only the temperature of the entree was followed in the analyses since this dish will have the lowest temperature at reconstitution and is, therefore, the most critical.

2.1.1 Insulated Jacket System

Three cases were studied for the insulated jacket system: 1) Meals Served Individually -- All hot dishes for a meal are prepared and stored one by one in a jacket until rehydration is completed. At this point, the dishes are placed in a tray and the meal served. Then preparation of the next meal is begun. The sequence continues in this manner until all six meals have been served.

- 7 --

2.1.1 Cont'd

2) Meals Served in Groups of Three -- All hot dishes for a meal are prepared and stored one by one in a jacket. At this point, the preparation and storage of dishes for the next meal are begun. When the third meal is fully rehydrated, all dishes are placed in trays and the meals served. The same sequence is followed for the next group of three meals.

3) Meals Served in a Group of Six — The same sequence of preparation and storage of individual meals described in the previous case is followed. When the sixth meal is fully rehydrated, all dishes are placed in trays and the meals served.

Table 4 shows that only the last case, with a heated water flow rate of 60 lb/hr, can provide a total preparation time under one hour. Total preparation time is defined as the time elapsed to the point when the last meal is fully rehydrated. To this time must be added dining and clean-up times to determine total elapsed time.

2.1.2 Insulated Tray Analysis

Three cases were studied for the insulated tray system: 1) Meals Served Individually -- All cans for a meal are first placed in a tray, and all preparation steps (except kneading) take place with the cans in an uncovered tray. When all preparation steps are completed, the tray is covered until rehydration is completed, and then served. At this point, preparation of the next meal is begun. The sequence continues in this manner until all six meals have been served.

DRIGNAL PAGE IS D. ROOR QUALITY

- 8 -

W	Total Preparation Time (minutes)
7	156.5
15	128.2
30	124.9
60	123.2
(2) Meals stored i	n insulated jacket - prepared and served
In groups of a	
W	Total Preparation Time (minutes)
7	131.0
15	90.2
30	75.3
60	67.9
3) Meals stored i in groups of si	n insulated jacket - prepared and served x:
ŵ	Total Preparation Time (minutes)
. 7	124.7
15	80.7
30	63.0

TABLE 4. MEAL PREPARATION TIME SUMMARY

.

- 9 -

2.1.2 Cont'd

2) Meals Served in Groups of Three -- All cans for a meal are first placed in a tray, and all preparation steps (except kneading) take place with the cans in an uncovered tray. When all preparation steps are completed, the tray is covered and set aside. At this point, preparation of the next meal is begun. When the preparation steps are completed, the tray is covered and stacked on the previous tray. The sequence continues in this manner, and when the third meal is fully rehydrated, all three meals are served. The same sequence is followed for the next group of three meals.

3) Meals served in a Group of Six -- The same sequence described in the previous case is followed. When the sixth meal is fully rehydrated, all six meals are served.

Table 5 shows that only the last case, with a heated water flow rate of 601b/hr, can provide a total preparation time under one hour. Total preparation time is defined as the time elapsed to the point when the last meal is fully rehydrated. Dining and cleanup times must be added for total elapsed time.

網驗

2.1.3 Alternate Preparation Analysis

In order to assess an optimum preparation technique and establish a total meal timeline, the most efficient preparation cycle was analyzed for one-man preparation (Figure 2) and then 2-man preparation (Figure 3) for both 6-man and 4-man crews. The preparation technique entails reconstitution of the entrees first, followed by the 2 side dishes, soup and beverage. Assuming serving times, dining, and clean-up times, total meal cycles were generated. The thermal analysis indicates the feasibility of the passive system within the estimated times established.

An additional analysis was made utilizing an individual preparation cycle where complete meals were reconstituted in predetermined sequences. Whereas all other techniques enable crewmen to dine simultaneously, the individual method shown in Figure 4, is based on three overlapping shifts. The total time, however, is competitive with the other techniques.

A summary of these data is shown in Table 6.

ORIGINAL PAOE IS OR ROOR QUALLEY

TABLE 5. MEAL PREPARATION TIME SUMMARY

(1)	Meals prepare	ed in insulated trays and served individually:
	Ŵ	Total Preparation Time (minutes)
	7	150.5
	15	134.2
	30	131.2
	60	129.2
(2)	Meals prepare three:	ed in insulated trays and served in groups of
	ŵ	Total Preparation Time (minutes)
	7	129.0
	15	92.2
	30	77.4
	60	70.0
(3)	Meals prepare six:	ed in insulated trays and served in groups of
	Ŵ	Total Preparation Time (minutes)
	7	123.7
	15	81.7
	90	64.0
	30	The second se

-

TABLE 6. SUMMARY-ALTERNATE PREPARATION TECHNIQUES

Method	Preparation Time (Minutes)	Total Time (Minutes)
1-Man Preparation	41.50	88
2-Man Preparation	27.12	66
Individual Preparation	-	80

FIGURE 2 - One Man Preparation Passive System

17 O			5.1	2 1.7		10	SA 11001			1.00 2	1.74		31	50		39.	8			
E.		• · · · ·			+						· · · · · · · · ·	ang Ta≣tan. Santan	<u></u>						iii . *	
12		- (12 4	<u>.</u> 									<u></u>			i i i i i i i i i i i i i i i i i i i			- <u></u>		
4			; 	1.1										-						
- 19 5				្រុះស្រុ					20			·····	* 12 : :	· · ·						
50.				1.39	1 1 8			+ 5				₩ <u></u>					;		· · · · · ·	
50,	·				1.218		1.38									÷			-	
S Pr				e e eleger E tankoan		1.25 	1.58		+ · >			<u>- 20</u>				·····				
4						·	1.3				++15					· +-				
		- 1						.38	7		+15			32.34	r 1					
52						_	1.25		1.37	· · · · · · · · · · · · · · · · · · ·			1)			,			
20							1-35			38				H 16						
						;-;- : -;											- 39,24			
						<u>.</u>		1.2			1.31 -		110					-		
						 1177						1				- f				
					-				2,3		++0-		 }2	0.14						
													(جرا					6 E		
		19-5								1.13				+						
8			-					· · · · · · · · · · · · · · · · · · ·		1.1	1		<u>144-1</u>	<u>با :</u>	3			4	ANT TIN	
8												8								
													COM.	T)ME		1.13		rie b		Gwn Tinnt
						PR	EPARE, RECON	געדי <u>נ</u> ק	5 ((511-7	DRATE	IN TRA	× \$)	<u>44,50 j</u>	10:4						91.19 M
					2	Se	RUE 6 TRA	7s (-So (6).	v enj	3.00 -	110	44.So	ศแจ			4 TRAYS)	2.00 N	1 .4	33.19 M
					3	Ð,	NE				20.00	1,01	69.50	Mist				7.0.00	мпд	53.16 M
							FAN-UP 5	E E TOT	20		15 10		79 50	MIN				10.00	MN -	63 IL M
											1.77	- C	070				1 19			
											Ċ		. ? e	2777	C MEN			A550 -	n B - 20	10 pr / 4 miles

. .

÷.

1

ı.

FIGURE 3 - Two Man Preparation Passive System

- 0	7.5	3.	14	1	18 . 10	6120	L	15	>S	9,44				1 			.1				
E1 1-1	1				+10		÷				21.28	an a			entra :	·	·		e interes	· · · · · · · ·	
E 3	,	1.1.9					-+20					94				·	· ··.,=			· · · · · · · · · · · · · · · · · · ·	
ES	1.17	1.29	- .				+ 3	20 —			-> 22	56	·		-,' ·	 `		· · · · · · ·	- dalar -		
50.	• • •		1.7.8	E.			-+15	· · ·						···· ···.	:	<i></i>				••••••	
59. 50			1.38	18				+ 15		······································	23 B	7	<u>ند</u> ریس سرد. مرتب ر	ų <u>i</u> ,		•••	·· ·· ·	·	· ···· · ····	· · · · · · · · · · · · · · · · · · ·	
50y			1.38	1.31		 		-++\$.08				· ···.					اندينة مصد حسب
506		مد. يدريد	r an - Finit	1.15											، ۲۰۰۰ محمد را ۲۰ ز. ۲۰ ز.	· • • • • • • • • • • • • • • • • • • •					
50.	i i i i i i i i i i i i i i i i i i i	.35			1.38			- 35			2	14.36					· · · · · · · · · · · · · · · · · · ·				
505 504	-				.18	-58			- FIS			[17.12	1 7	AF Po R	, Q	15T (T) 14	Res	1 DANTE		
394 514						-38								2	SEA.		τΩ	«			
5					1.24), 34		+ 10		- 25. 12			3						- 20	·
		-					1,	1 1.5.1				-25.	<u> </u>	ц. Ц	C maa	ι _ρ	E RESI	Dul F	5P	10	60.13
51							1.1 1.1	• • • • • •	-+-0		150						0 NT 1 N 6	TA CO		109.6.	when the
	<u> </u>							1.14													
. 8						1.23		· · · ·	1:23											ASSUME (ob mit /bal
	<u> </u>					113	1.53		L) }}	3							Чм		ME Lu		
195 1			an 			<u></u>			1.13	5				- L							-23.08 M
														2.		- 4	7947S			2.00	25.08
														3						70.00	45.08
	<u> </u>	1-1												- 4						5 99 4	J_50.08
																			ю	8-5.	4-55.08,
																		AS	SAME S	5 M.N/	4 MEN

FIGURE 4-a Individual Meal Preparation Passive System

0	6.48 112.99	19.44 25.	12 31.40	999	·····	· · · ·	
		21.28	11.76	46,72	47:20 5	3,68	
E, L	>*						
50,		1994			and the state of the second		
5.		min-1			n n ji se ún h		打击 化马克勒 全黄
6	1>3			The second s			
-							
E	h.27	+ 10					400년928 - 인정 귀한 전성 1월 1월 2월 10일 월 11일 - 일종권
50			Meau				
5							
Ĕ							
-							
Est							
593		38	┿ <u>╪╤╓╡</u> ┊╡ ┝╞ ┕Ѯ				
4.							
67							
2							
E.							
594				MEAL 4			
504							
6.							
- 25							
-				ta national di Carri di Cartena. Ta fanta di Cartena di	MEALS		
345							
Be			1.23				
				12-			
2	na na serie de la companya de la com A serie de la companya de la company A serie de la companya				rank, replacer have been started	MEAL 6	
5.							
Α.				3			
			1				
	- +· ··	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · ·	and a second

ŧ

FIGURE 4-b Individual Meal Preparation Passive System

	• • • • • • • •					CLEK TIME	nmal y
	PREPARE 0 (3) SERVE					0.00-48-76	3 .
	CLEADUP PREPARE		0 103			2876 - 53.14 	25. eo
		2 * <u>*</u>	(9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1			41.7 2 - 66.72	25.82
C4 -5	SERVE DINE		41.99 C			5376-74.76	21.00
	DINE		2°	S] [(\$ 6)	54.75-73.1%	25.00
ASS	ンハイ11005 - SEAL5 - C.So. - C.PANUA - 12-50					To AL ELAPSED TH NSSCHAR CO	12-12-16 and 51-122

- _ -

2

2.2 Semi-Active Oven System

The purpose of the semi-active oven is to prevent further cooling of dishes once they have been heated by hot water and prepared. This system requires a source of hot water and an insulated oven whose inner wall is maintained at a selected serving temperature by means of resistance heaters. Also required are trays insulated only sufficiently to prevent food from cooling below 105°F by the end of the 20 minute dining period. The analysis of this system was based on preparing and storing all hot dishes (except beverages) required to serve six crewmembers at one sitting.

Table 7 shows that this system, with heated water flow rates of 30 and 60 lb/hr, can provide total preparation times under one hour. Total preparation time is defined as the time elapsed to the point when all dishes are prepared or rehydrated, whichever is longer.

2.3 Active Systems

2.3.1 Hot Air Convective Oven

The oven is designed to simultaneously heat the full complement of cans required for six meals, i.e., eighteen No. 401 cans plus six No. 211 cans. The oven is a closed, insulated box containing electrical air heating elements, flow baffles, plenum chambers, and retainers for the cans. An external blower ducted to the internal plenum chambers serves to circulate heated air over the cans.

ŵ		τ_2	$\tau_{\rm E}^{, \ \tau_{\rm D1}^{, \ \tau_{\rm D2}^{, \ \tau_{\rm S}^{, \ \tau_{\rm B}^{, \ T}^{, \ B}^{, \ \tau_{\rm B}^{, \ T}^{, \ B}^{, \ $	$\mathtt{T}_{R}^{}$ (minutes)
7	Entree'	2.41	35,96	118.32
	Side Dish	3.21	56,22	
	Side Dish	3.21	81.48	
	Soup	1.82	93.40	
	Beverage	4.07	118.32	
15	Entree'	1.12	28.22	.71.22
	Side Dish	1,5	38,22	
	Side Dish	1.5	53.22	
	Soup	, 85	59.32	-
	Beverage	1.90	71.22	
30	Entree'	.56	24.86	50,58
	Side Dish	.75	30,36	
	Side Dish	.75	40.86	
	Soup	.42	44.38	
	Beverage	. 95	50.58	
60	Entree'	. 28	23.18	40.35
	Side Dish	. 38	26.46	
	Side Dish	. 38	34.74	
	Soup	. 21	37.00	
	Beverage	. 475	40.35	

TABLE 7. PREPARATION SUMMARY-SEMI-ACTIVE OVEN

.

- 18 -

2.3.1 Cont'd

Assuming a rehydration water flow rate of 60 lbs/hr, approximately 10 minutes will be required to fill all the bags for a given meal. During this period the oven will be "on" for an initial preheat during which time the oven will come up to operating temperature. At the end of the preheat, the cans which now contain bags of rehydrated food, are inserted into the oven. The four cans of each meal are contained in an integral retainer.

The blower delivers recirculated air to a plenum chamber which contains electrical heating elements. The latter are controlled so that the air is not heated above 270°F which is the maximum tolerable to the food bag material. The heated gas flows over the cans in a two-pass heat transfer arrangement ultimately returning to the blower for reintroduction into the plenum containing the heaters. To be compatible with the time constraint on meal duration, the heating time is limited to 15 minutes assuming the most conservative case of 35°F rehydration water available.

It was established that with an average effective gas temperature of 250°F, the blower must induce sufficient flow to generate a heat transfer coefficient of h=5.5 Btu/hr-ft²-°F over the surface of the cans. This can be done with a small blower having low power requirements. The required insulation ~thickness for the oven was determined on two bases. The first was the maximum allowable external "touch" temperature chosen as 105°F to be consistent with Skylab practice. The second basis was determination of the optimum thickness to minimize overall system penalty. It was found that the "touch" temperature requirement dictated the insulation thickness.

P POOR OUALTY

- 19---

2.3.1 Cont'd

A schematic sketch of the convective oven and details of the analysis are contained in the appended calculations. System penalty values are presented in the summary matrix (Table 2-Ref.).

2.3.2 Microwave Oven

Though microwave ovens are heat conservative in the sense that the heating is accomplished inside the food while the oven structure remains cool, it is, as yet, a highly inefficient, heavy device. The assembly includes a magnetron microwave generating tube, a power supply to transform line voltage to 3500 volts, a waveguide to convey microwave energy to the oven and associated electronic devices and controls, all aside from the metal oven enclosure. The efficiency of conversion of supply line electrical energy to microwave energy is 50%, and of the microwave energy generated, only S5% is effective in heating the food. Therefore, the overall efficiency is $0.5 \ge 0.425$. The line power required to heat 6 meals simultaneously from 40°F to 145°F in 15 minutes amounts to 3.6 Kw (1.8 Kw microwave energy produced).

Microwave ovens are currently employed in certain of the operational 747 aircraft. The weight of these units which deliver 2.4 Kw microwave energy is 110 lb each. A weight estimate for our required capacity construed from this value amounts to 82.5 lbs.

ORIGINAL' PAGE IS OF POOR GUALITY

- 20 -

2.3.2 Cont'd

The microwave oven will not heat the contents of metal cans, since the latter reflect the microwave energy. Accordingly, the rehydrated food bags would have to be introduced into the oven directly rather than the original can containers.

2.3.3 Heated Tray

This approach provides individual trays for each meal. The unit tray contains full depth recesses for three 40l cans and one 21l can. The recesses are lined with electrical heater elements which contact the sides and possibly the bottom of each can. The recesses are surrounded with insulation and the tray may include an insulated cover. To heat the cans, they are pressed into the recesses which fit snugly around the cans to provide good thermal contact between the cans and the heater elements. The latter are limited to a maximum of 270°F to avoid damage to the food bags.

The ability to heat the food from 40°F to 145°F in 15 minutes depends upon the thermal contact conductance between the heaters and the can walls. This conductance does not lend itself to analytical prediction. It is necessary to establish achievable values through test. The Skylab food heating system is similar to this configuration and existing performance data would be extremely valuable in assessing the merit of this approach. It was determined that with heating sides and bottom, a conductance value of 7 to 8 Btu/hr-ft²-°F would be required while if

DRUGINAL PAGE IS DE POOR QUALITY

- 21 -

2.3.3 Cont'd

only the sides are heated, a conductance level \sim 14 would be required. The system analysis assumes these conductances can be obtained pending affirmation from experimental data.

2.3.4 Hot Water Source

The hot water source, which is activated only prior to and during meal preparation, consists of an insulated spherical tank of sufficient volume to contain the water required to reconstitute six main meals, an electrical water inlet heater and an electrical internal heater to make up the heat leak through the insulation. The water inlet heater receives 35°F water from the fuel cells at a constant flow rate of 7 lb/hr.

2.3.5 Chemical Heating System

To date no exothermic reactions of possible interest to the present application have been determined in the light of the following considerations:

- 1. Safety factors-explosion, fire, health hazards
- 2. Zero-g environment
- 3. Controlled chemical reaction
- 4. Container and heat transfer requirements

Generally, exothermic reactions involving direct combination of chemical elements appear to be unsatisfactory on the basis of the above. Also liquid reactions such as mixing of salt solutions and neutralization of acides and bases have been discarded, to date, due to thermoneutrality, low heat production, and safety hazards.

2.3.5 Cont'd

Further consideration will be given to systems utilizing precipitation reactions from solution and the release of heat due to hydration and solution of various salts.

2.3.6 Preparation Summary

A timeline for 1-man preparation based on the previously determined optimum technique, is presented in Figure 5. The time is competitive with the other methods and calculated penalties for power and weight are also reasonable.

2.3.7 Hydraulic Warming Concept

This concept provides for the utilization of hot water to replace heating coils in the Skylab type tray. The design is based upon hot water available from either a heat waste loop or hot water heater.

The concept is not applicable to shuttle by reason of excessive time to bring food to temperature.

- 23 -

- 24 -

FIGURE 5 1 Man Preparation Hot Air Oven

D 268	73 (
A CARE	RENTORATE			
EarRee's (G				
DesCode	1596	30.96		
5+DE DISH(6)		74.20		
Stor Day (A Filler	PASPAGE			
		31.50 H So		
560P (b)	1-0			
		G AYDRAN		
GINAN CARLY (Smar 1000)			1650	
BOR 15 MIA			2.16 42	63-15 Mid HOT - 36.00 M
3 BERADIE HERM ONEN & SET OF	-54 A.N		3. 4 Tžev	5/50mm)=2.00 M=39 00 M
6 - 124-7 5- (SU MW EA) - 80 M				
G SERNE O TAYS (S) NH FA) 1 ON -S	Somu		્ય પ્રસ્	(5)-4 4)-3.444 - UO DO AA
				2000 M 00.00 M
6 7.4 CAN UP 6 16 50 J Could S to 4 - 0	215 O Chi ().			0.0 M - 70 00 M
tor Tru coust 10% in T				
ASSUME 9/m	M/8M8			

3.0 DETAILED ANALYSIS

.

~ 傳教

3.1 Passive Heating Systems

3.1.1 Insulated Jacket Analysis

~ 25 -

3.1.1.1

Preparation Sequences for Individual Meals Stored in an Insulated Jacket.

1) Can is opened and valve is unpacked.

2) Water is added to contents.

3) Contents are removed from can and kneaded.

4) Contents are replaced in can, value is repacked and can is stored in jacket.

Dishes are prepared in the order of rehydration times: entree', side dishes, soup, beverage.

Entree' is most critical because it has the lowest initial temperature.

During water addition entree' cools to cabin

 $h_{\mathcal{B}}^{\prime} \mathcal{A}(t, -t) = \rho V_{er} \frac{dt}{d\tau}$

ho = 1.80 Bru/hr .Fr2 . F, from test A is can total surface area V is can volume

$$\frac{t_i - t_T}{t_i - t_t} = E \times P \left\{ \frac{-h_B}{\rho C \rho} \frac{A}{V} \gamma_z \right\}$$

 $\frac{A}{V} = \frac{d}{A} + \frac{2}{L}$

where r and L can radius and depth, reflectively.

$$\frac{t_{1}-t_{4}}{t_{1}-t_{4}} = E \times P \left\{ \begin{array}{c} -h_{B} \\ \overline{\rho} c_{p} \left(\frac{2}{r_{1}} + \frac{2}{L} \right) r_{1} \end{array} \right\}$$

Entree' cools to cabin environment during kneading

$$h_{c}A(t_{y}-t) = V_{\rho}C_{\rho}\frac{dt}{dr}, \quad h_{c}=5.06 \quad \frac{V+4}{N_{P}+Fe^{1}-Fr} \text{ from test}$$

$$\frac{t_{x}-t_{r}}{t_{y}-t_{r}} = Ex^{p} \left\{ \frac{-h_{c}}{\rho C_{\rho}} \left(\frac{a}{r_{y}} + \frac{2}{L} \right) \frac{2}{r_{y}} \right\}$$

Entree' cools to cabin environment during repacking and storing. $h_{0} A \left(t_{f} - t \right) = V_{f} C_{f} \frac{dT}{dt}$

$$\frac{t_3 - \dot{x}_4}{t_6 - t_7} = \overline{t_{xy}} p \left\{ \frac{-h'_8}{\rho c_7} \left(\frac{a}{h_1} + \frac{a}{h} \right) \overline{r_1} \right\}$$

Entree' cools in insulated jacket while first side dish is prepared.

 $h A_{\tau} (t_{\tau} - t) + h \rho A_{RS} (t_{\tau} - t) = V_{\rho} c_{\rho} \frac{dt}{d\tau}$ $\frac{A_{\tau}}{V} = \frac{1}{k}$ $\frac{A_{RS}}{V} = \frac{2}{r_{\tau}} + \frac{1}{k}$ $\frac{t_{v} - \kappa_{\tau}}{t_{s} - \tau_{\rho}} = \sum_{k \neq \rho} \left[-\frac{1}{\sqrt{\frac{h}{\rho c_{\rho}}}} \frac{1}{k} + \frac{h\rho}{\rho c_{\rho}} (\frac{1}{k} + \frac{a}{r_{\tau}}) \right] d \right] \text{ where } \theta_{\tau} = \frac{7}{\tau} + \frac{7}{2} + \frac{7$

Entree' cools in insulated jacket while subsequent dishes are prepared and stacked on entree'.

Heat transfer between stored can is negligible due to small temperature differences.

ha Ass (t, t) = Vpc, dt

$$\frac{z-z_{+}}{z_{+}-z_{+}} = \bar{c} \times P \left\{ \frac{-hA}{P^{CP}} \left(\frac{L}{L} + \frac{2}{P_{+}} \right) \right\}$$

 $\frac{\tau - \tau_r}{\tau_r - \tau_r} = \frac{\tau_r}{\rho c_p} \left(\frac{2}{h_r} + \frac{2}{L} \right) \left(\frac{7}{h_r} + \frac{7}{L} \right) \frac{-h_e}{\rho c_p} \left(\frac{2}{h_1} + \frac{2}{L} \right) \frac{1}{r_r} - \left\{ \frac{h_e}{\rho c_p} \left(\frac{1}{L} + \frac{2}{h_r} \right) \right\} \Theta \frac{-h_e}{\rho c_p} \left(\frac{1}{L} + \frac{2}{h_r} \right) \frac{1}{r_r} \right\}$ $t_r = \frac{8c}{r_e} \frac{7}{r_e} \frac{\tau_r}{r_r}$ where T is water temperature. This

relationship assumes dry food storage at 70° F, and applies to entree'. This relationship was provided by the Pillsbury Co.

In the time lines which follow, γ is defined for the first entree' prepared. The dish will be the coldest of all dishes by the end of the preparation period.

Preparation of Individual Meals - meal stored in insulated jacket during rehydration.

Rehydration Times:	Entree'	20 minutes
	Vegetables	15 "
	Soup	10 " Pillsbury Co.
	Beverage	o ")
Preparation Times:	Assume $\mathcal{T}_{i} =$	25 minutes to open a can nd unpack valve.
	$\mathcal{T}_{3} = .1$	50 minutes to knead contents
	$\mathcal{T}_{\mathbf{y}} =$	25 minutes to replace contents, epack valve and store in jacket
	$\mathcal{P}_{\mathbf{z}} = W$ to W	/W, where is the time required o add water, W is the water equirement for the dish, and is the water flow rate.
Water requirements:	Entree'	W _g = 4.5 oz.
	2 Side dishes	W ₂ = 12.0 oz.
	Soup	$W_{3} = 3.4 \text{ oz.}$
	Beverage	W _g = 7.6 oz.

All dishes are contained in 401 x 105 cans, except for soup, which is contained in a 211 x 105 can.

$W = 7 \mathbf{b}B/HR$	1. 867 oz./mi	in.
	Cumulative Time	Cum. + Rehydration time.
1 = . 25 min	. 25	
1 741	2.66	22.66
And S	3.16	
F3	5.41	
n = . 15	3.66	
7 3.21	6.87	21. 17
7- = .5	7.87	
74 = .25	7.42	
p 15	7.17	
7-1 = 3.41	11.08	26.08
73: 15	4.58	
7.425	11.85	
T1 = .25	12.00	
7 1.12	15.09	23.90
7	14.10	
74	,,,,,,,	
7-) = ,20	77.70	
7 . 4.07	13.97	
73 2 5	19.47	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 - 19.72	
	$W = 76B/HR$ $f_{1} = .25 min$ $f_{2} = 2.47$ $f_{3} = .55$ $F_{4} = .25$ $F_{4} = .25$ $F_{5} = .25$ $F_{4} = .25$ $F_{1} = .25$ $F_{1} = .25$ $F_{2} = .55$ $F_{3} = .55$ $F_{4} = .25$ $F_{5} = .25$ $F_{5} = .25$ $F_{5} = .25$ $F_{5} = .55$ $F_{5} = .5$	$W = 76B/HR  1.867  \text{oz./mi} \\ \text{Cumulative Time} \\ \begin{array}{r} 7 = .25 \text{ min} & .25 \\ 7 = 2.47 & 2.46 \\ 7 = .5 & 3.76 \\ 7 = .45 & 3.46 \\ 7 = 3.21 & 6.87 \\ 7 = .45 & 3.66 \\ 7 = 3.21 & 6.87 \\ 7 = .5 & 7.57 \\ 7 = .25 & 7.42 \\ 7 = .45 & 7.42 \\ 7 = .45 & 7.42 \\ 7 = .45 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .25 & 7.42 \\ 7 = .26 & 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .28 = 7.42 \\ 7 = .$



ĸ

Meal is fully reconstituted 26.08 minutes after preparation

begins.  

$$P_1 + P_4 = 2.66$$
 minutes  
 $P_3 = .5$   
 $O_1 = 4.21$   
 $P_2 = 26.08 - .25 - 2.66 - .5 - 4.21 = 18.46$ 

 $W = 15 \ 1b/HR = 4 \ oz./min.$ 

Cumulative time Cum + Rehydration Time

Entree'	P, = .25 min.	.25	
	<b>?₁</b> = 1.12	1.37	21.37
	<b>†</b> ₃ = .5	1.87	
	<b>?</b> ; _y = .25	2.12	
Side Dish	<b>7,</b> = .25	2.37	
	<b>?、</b> =1.5	3.87	18.87
	<b>t</b> 3 = .5	4.37	
	A, = .25	4.62	
Side Dish	<b>1.</b> = .25	4.87	
	<b>? =</b> 5	6.37	21.37
	<b>7</b> ₃ = .5	6.87	
	Pz = .25	7.12	
Soup	<b>7</b> , = .25	7.37	
	<b>?∈</b> = .85	8.22	18.22
	<b>?</b> j = .5	8.72	
	<b>?</b> _{5y} = .25	8.97	
Beverage	<b>7,</b> = .25	9.22	
	<b>K</b> =1.90	11.12	
	<b>2</b> = .5	11.62	
	1 = .25	11.87	. :
Meal is fully	reconstituted 21	1.3/ minutes aft	er preparation begins.
$\mathcal{T}_{n} + \mathcal{T}_{y} = 1.5$	7 minutes	B ;= 1.5	-177- C.A 1175
r;:.5		7= 21.87-,25	· -1.21=.3- 2.3= 13.10

W = 30 LB/HR = 8 oz./min.

	Cumulative time	Cum. + Rehyd	lration time
Entree'	$\mathcal{P}_1$ = .25 minutes	.25	20.81
	<b>7</b> = .56	.81	
	îz = .5	1.31	
	<i>Hy</i> = .25	1.36	
Side Dish	<b>7, = .</b> 25	1.81	
	<b>K</b> = .75	2.56	17.56
	<b>1,</b> = .5	3.06	,
	<i>Ty</i> = .25	3.31	
Side Dish	<i>P</i> , = .25	3.56	
	<b>?,</b> = .75	4.31	19.31
	<b>1_j = .</b> 5	4.81	
	<b>7</b> _y = .25	5.06	-
Soup	<b>77 = .25</b>	5.31	
.*	<b>% =</b> .42	5.73	15.73
	<b>7j</b> = .5	6.23	
	<b>P</b> ₄ = .25	6.48	
Beverage	$\tau_i = .25$	6.73	
	R = .95	7.68	
	<b>1</b> <del>3</del> = .5	8.18	
	2 = .25	8.43	

Meal is fully reconstituted 20.81 minutes after preparation begins.  $P_1 + P_4 = .8/$   $P_3 = .5$   $O_1 = 1.75$  $P_2 = 20.81 = .25 = .81 = .5 = 1.75 = 17.50$  W = 60 + /HR 16 oz./min.

	Cumulative Time	Cum. + Rehydration	Time
Entree'	Τ; ≃.25	minutes .25	20.53
	Tz =.28	.53	
	Ty =.5	1.03	
	1 ¹ ₄ =.25	1.28	
Side Dish	វ¦ =.25	1.53	
	Y2 =.38	1.91	16.91
	15 = .5	2.41	
	ĥ ₄ =.25	2.66	
Side Dish	1, =.25	2.91	
	۴2 = .38	3.29	18.29
	T3 =.5	3.79	
	1 ₄ =.25	4.04	
Soup	1 =.25	4.29	
	1 ² =.21	4.50	14.50
	°T₃ =.5	5.00	
	ĭ₄ =.25	5.25	
Beverage	ti =.25	5.50	
	R2 = .47	5 5.975	
	R ₃ =.5	6.475	
	î _t = .25	6.725	

Meal is fully reconstituted 20.53 minutes after preparation begins.

$$T_{2} + T_{4} = .53$$
  
 $T_{3} = .5$   
 $\Theta = 1.38$   
 $T = 20.53 - .25 - .53 - .5 - 1.38 = 17.87$ 

3.1.1.2

Preparation and Storage in Insulated Jacket of Three Meals at a time.

Define  $T_{\rho}$  as the time in which a meal is fully rehydrated  $T_{\rho}$  as the time to prepare a meal, beginning with opening of first can.

Meals would be prepared and stored in sequence given below:



The three meals would be served after  $T_{p} + 2T_{p}$  minutes. During the time internal 0 to  $T_{p}$  minutes, the five cans comprising a meal and prepared and stored in the insulated jacket. The relationship characterizing the cooking of the entrees is the same as that already given, except that for the first entree' prepared must include the additional time required for preparing and rehydrating the subsequent meals.  $T = T_{p} + 2T_{p} - .25 - (T_{2} + T_{4}) - T_{3} - \Theta_{1}$ 

μ	TR	TP	$T_{2} + T_{4}$	13	Θ,	7   _	TR + 2 TP
7 15 30 60	26.08 21,37 20.81 20.53	19.72 11.87 8.43 6.72	2.66 1.37 .81 .53	5 5 5 5	4:21 2.50 1.75 1.38	57.90 40.49 34:36 31.3;	65.52 45.11 37.67 33.97
	1						

3.1.1.3

Preparation and Storage in Insulated Jacket of Six Meals at a Time.

Meals would be prepared and stored in sequence given below:



The six meals would be served after  $T_{\mathcal{R}}$  + 5  $T_{\mathcal{P}}$  minutes

N= 7	R + 51P-	25 · (1	$(1_2 + (1_4)) - 7$	ez-∂,			
W 7 15 30 60	Tr 26.08 21.37 20.81 20.53	TP 19.72 11.87 8.43 6.72	T2 + T4 2.66 1.37 .81 .53	~~ ううち ら	0; 4.21 2.5 1.75 1.38	1 117.06 76.10 59.65 51.47	Tp + 5TP 124.68 80.72 62.96 54.13

Insulated Jacket Weight



₹ .5	1434447104 Vol. 67.13	Шецынт .022368 0563	FACE, AREA 270.1 1H ^C 330.4	WE16HT .540868	TOTAL WT .56468 .718	JACKET VOLLIME 152.1 IN ³ 247.1
1.0	162.0	.0563	330.4	5 ماما ،	.718	247.1
2.0	4540	.1577	479.2	.9594	1.12	539.1



3.1.1.4

DRIGINAL PAGE IS



#### 3.1.1.5

Heat Loss From Covered Insulated Jacket - 5 Can Storage



H= Q/SA2(C2-C4) OVERALL CONDUCTANCE TOP OF CAN TO CABIN ENVIRONMENT.

LET 
$$t_2 = 150$$
 °F  
 $t_3 \cdot 150$  °F  
 $t_3 \cdot 150$  °F  
OHE CAN GIARTEP  
 $\frac{1}{R} = .50 \text{ in}$   
 $\frac{1}{R} \cdot (1 + \frac{1}{R}) = .2201$   
U=.4399 BTU/HR FT² °F = ha  
.05114 h_{FIR} (150-ti) + .2942 (10-t_F)=0  
SOLUTION 15 t₁ = 87.5°F  
 $\Phi = 4.258$  BTU/HR  
h = .5914 BTU/HR FT² °F  
 $T = 1.0$  in  
 $\frac{1}{R} = (1 + \frac{3}{A_1}) = .4009$   
U = .2759 BTU/HR.FT² °F = ha  
.05114 h_{FIS} (150-t₁) + .1518 (20-t₁)=0  
SOLUTION 15 t₁ = 95.1 °F  
 $\Phi = 5.8/2$  BTU/HR.FT² °F  
 $h = .5295$  BTU/HR.FT² °F  
 $T = 2.0$  in  
 $A (1 + \frac{3}{A_1}) = .6855$   
U = .1705 BTU/HR FT² °F = ha  
.05114 h_{KIR} (150-t₁) + .0945 (70-t₁) = 0  
SOLUTION 19 t₁ = 104.3°F  
 $\Phi = 3.247$  BTU/HR.  
h = .4510 BTU/HR. H² °F



...

# ORIGINAL PAGE IS



<u>ن</u> 7

1



с S



3.1.1.6

Heat Loss Analysis - 5 Can Storage

In order to complete the analysis, the temperatures of the hottest dishes as well as the coldest must be ascertained in order to determine that all are within the 135 - 145°F serving temperature band when meals are served. The hottest dishes when meals are served would be the beverage and soup of the last meal prepared. Attention will be restricted to the care characterized by a water flow rate of 50 LB/HR, and preparation and serving of meals in groups of six (one man preparation) since Table 4 shows that this care results in a total meal preparation time under one hour. For comparison purposes, results are furnished for a case characterized by a water flow rate of 1000 LB/HR, and preparation and serving of meals in two groups of three (two man preparation). For this case, it was assumed that each man prepares three complete meals. The total preparation time would be half the value given in Table 4 for meals prepared and served in groups of three with a water flow rate of 60 LB/HE, or 34.0 minutes.

For both the case of one man preparation and two man preparation results we presented for water temperature yielding 135°F and 140° F coldest entree' temperatures. This dish would be the first one prepared.

********

Heat Loss From Covered Insulated Jacket - 5 can Storage Analysis



Next to last and last cans stored are a 211 x 105 and a 401 x 105 can, respectively.

Configuration Factor,  $F_{1}^{e}$ Superscript Denotes,  $F_{1}^{e}$   $F_{2}^{e} = .430$   $F_{1}^{e} = .430$   $F_{1}^{e} = .430$   $F_{1}^{e} = .430$   $F_{1}^{e} = .076$   $F_{1}^{e} = .430$   $F_{2}^{e} = .07694$   $F_{3}^{e} = .17510$   $F_{1}^{e} = .7500$   $A_{2} = .007694$   $F_{2}^{e} = .17510$   $A_{2} = .007694$   $F_{2}^{e} = .109)/2 = .22050$   $A_{2} = .007694$   $F_{2}^{e} = .16277$   $F_{2}^{e} = .17510$  (.07694)/.05058) = .26635  $F_{3}^{e} = F_{3}^{e} = 1-F_{2}^{e} - F_{4}^{e} = .22678$   $F_{4}^{e} = .22050$  (.11627)/.05058) = .50687  $(A_{1}F_{1}^{e} - \frac{A_{1}}{1-E_{1}})R_{1}^{e} + A_{2}F_{1}^{2} - \frac{A_{2}}{1-E_{3}}R_{2}^{e} + A_{3}F_{2}^{e}R_{3}^{e} + A_{4}F_{2}^{e}R_{6}^{e} = -E_{4}A_{9}F_{2}^{e}$  (1)  $A_{1}F_{3}^{e}R_{1}^{e} + (A_{2}F_{3}^{2} - \frac{A_{3}}{1-E_{3}})R_{2}^{e} + A_{4}F_{3}^{e}R_{7}^{e} = -E_{4}A_{9}F_{3}^{e}$  (2)  $A'_{1}F_{3}^{e}R_{1}^{e} + A_{2}F_{3}^{e}R_{2}^{e} + (A^{3}F_{2}^{2} - \frac{A_{5}}{1-E_{5}})R_{5}^{e} + A_{4}F_{3}^{e}R_{7}^{e} = -E_{4}A_{9}F_{3}^{e}$   $A_{1}F_{4}^{e}R_{1}^{e} + A_{2}F_{3}^{e}R_{2}^{e} + (A^{3}F_{2}^{2} - \frac{A_{5}}{1-E_{5}})R_{5}^{e} + A_{4}F_{3}^{e}R_{7}^{e} = -E_{4}A_{9}F_{3}^{e}$   $A_{1}F_{4}^{e}R_{1}^{e} + A_{2}F_{7}^{e}R_{1}^{e} + A_{3}F_{3}^{e}R_{3}^{e} + (A_{4}F_{7}^{e} - \frac{A_{4}}{1-E_{4}})R_{7}^{e} = -E_{4}A_{9}F_{7}^{e}$   $A_{1}F_{4}^{e}R_{1}^{e} + A_{2}F_{7}^{e}R_{1}^{e} + A_{3}F_{3}^{e}R_{3}^{e} + (A_{4}F_{7}^{e} - \frac{A_{4}}{1-E_{4}})R_{7}^{e} = -E_{4}A_{9}F_{7}^{e}$   $A_{1}F_{4}^{e}R_{1}^{e} + A_{2}F_{7}^{e}R_{1}^{e} + A_{3}F_{3}^{e}R_{3}^{e} + (A_{4}F_{7}^{e} - \frac{A_{4}}{1-E_{4}})R_{7}^{e} = -E_{4}A_{9}F_{7}^{e}$  $A_{1}^{e}$ 

$$E_{1} = .22$$

$$E_{2} = .9$$

$$E_{2} = E_{4} = .22$$

$$= .06223 R_{1}^{9} + .01347 R_{2}^{9} + .01147 R_{3}^{9} + .02564 R_{4}^{9} = -.00513 (1)$$

$$.01347 R_{1}^{9} - .09618 R_{2}^{9} + .01347 R_{3}^{4} + .05020 R_{4}^{9} = -.0100 (2)$$

$$.01147 R_{1}^{9} + .01347 R_{2}^{9} - .50580 R_{3}^{9} + .02564 R_{4}^{9} = -.00513 (3)$$

$$.02564 R_{1}^{9} + .05000 R_{2}^{9} + .02564 R_{3}^{9} - .13034 R_{4}^{9} = -.00300 (4)$$

ORIGINAL PAGE 19 OF POOR QUALITY

$$R_{4}^{H} = .08112 + .21316 R_{4}^{H} + .18143 R_{3}^{H} + .44057 R_{4}^{H}$$

$$Substitutine into Equations (2), (3), (4,)$$

$$-.09331 R_{2}^{H} + .01591 R_{3}^{H} + .05546 R_{4}^{H} = -.01109$$

$$.01591 R_{2}^{H} - .50372 R_{2}^{H} + .03029 R_{4}^{H} = .00508$$

$$.05546 R_{2}^{H} + .03029 R_{4}^{H} - .1194 R_{4}^{H} = .00508$$

$$= \frac{-.01109}{-.00508} \cdot .03029 - .11994$$

$$R_{4}^{H} = \frac{-.00508}{.0391} \cdot .05546}{.035246} = \frac{.00082595}{.039187} = .21077$$

$$.01591 R_{3}^{H} + .05546 R_{H}^{H} = .00858$$
  
 $.50372 R_{3}^{H} + .03029 R_{H}^{H} = -.00491$ 

$$\begin{array}{rll} & .00858 & .05546 \\ R_{4}^{H} = . & \underline{-.0094/} & .03029 \\ & .0159/ & .05546 \\ & \underline{-.50372} & .02029 \end{array}$$

$$\begin{array}{l} A_{i} \; 7_{j}' = R_{j}' \; A_{j} \; \underbrace{E_{i}}_{1 - E_{j}} \\ A_{4} \; 7_{2}^{4} = \; 21077 \; (.07694) (.2/.8) = .00405 \\ A_{4} \; 7_{3}^{4} = .02751 (\, .050 = 58) (\, .9/.1) = .01252 \\ A_{4} \; 7_{3}^{\, 4} = .14676 \; (.11672) (.2/.8) = .00426 \\ A_{4} \; 7_{4}^{\, 4} = .19057 \; (.05058) (\, .2/.8) = .00291 \end{array}$$

Original' Page is of poor quality

.

.
HEAT BALANCE.

 $t_{1} = t_{2} = t_{3}$   $\frac{V}{VA} = \frac{F}{k} \frac{L(1 + \frac{F}{A})}{2\pi FD} + \frac{1}{2\pi (A + F)(D)(h_{0} + E)}$ 

BEVERAGE CAN

 $\Phi = A_{4} + \hat{q}^{4} h_{R, I_{4}} (z_{-} - z_{4})$   $h_{c} = \Phi / \left[ A_{4} (z_{1} - z_{4}), A_{7} = \pi R,^{3} = .08999 FT^{3} \right]$   $h_{A} = UA / A_{4}$   $h_{V} = U_{A} / A_{4}$ 

Soup CAN  $\Phi = \Delta_4 \ T_a^4 \ hr_{aq}(t - t_f)$   $h_a = \Phi / \xi A_a (t_a - t_f)$  h = D

BEVERALE GOUP 82.5 VA .. . 055146 Q= ,2933 P=.1746 .01898 hr 14 (150-t4)+.051146 (10-t+)=0 he = .0242 hp = 0477 L. 4399 Jaution ty = 96.9 °F hu= .4399 F= 1.0"  $\varphi$  = .1467 VA . . 03/18 0 - 12465  $h_{L} = .02037$ 01898 hny (150-ty)+ 01378 (10-ty)=0 ha = .2734 ha . .04005 JOWTION tH= 116.3 % hu = 12734 F= 2.0 M. Q . 1162 VA.01999 h. . ,01614 Q. 1953 .01898 hung (150-tw)+.01979 (70-TH)=0  $h_{a} = .1709$ har. 03173 Gaurion hu - 1104 ty = 110.30F

ORIGINAL PAGE IS OF POOR QUALITY NEXT TO LAST CAN GTARTED 19 A 211 × 105 CAN



 $F_3^2 = .17512.$ AREA OF SIDE OF CAN. 07694 FT2 = A35 TOTAL EXPOSED SURFACE AREA OF CAN  $A_3 = .11635 Fr^2$  $A_2 F_1^3 = A_2 - A_3 F_3^2 = .01388$  $F_3^3 = .26635$   $F_1^3 = 1-.26635 = .73365$   $A_3f_1^2 = .05058 (.73365) = .03711$ A, =. 32253 A: F' = A, -A, F' - A, F' = . 18259  $(A, F'_{1} - \frac{A_{1}}{1 - E_{1}})R'_{1} + A_{3}F_{1}^{2}R'_{2} + A_{3}F_{1}^{3}R'_{3} = -EA, F'_{1}$  $A_{i}F_{2} R_{i}' + \left(A_{2}F_{2}^{2} - \frac{A_{35}}{1435} - \frac{A_{3}}{1 - E_{cr}}\right) R_{3}' + A^{3}F_{2}^{3}R_{3}' = -E_{i}A_{i}F_{3}'$  $A_{1}F_{3}R_{1}'+A_{2}F_{2}R_{2}'+(A_{3}F_{3}^{3}-A_{3})R_{3}'=-E_{1}A_{1}F_{3}'$ E1 = .2 E35 = 2 E20 = .9 Eg= ,2

-, 22062 R; +. 10288 R2 +. 03711R3 = -.03651 ,10288 R,' -, 4 9028 R' + ,01847 R' = -,02058 .03711 R; +.01347 R2 76322 R3 =-,00742-

$$-.22062 R_{1}^{2} + .10288 R_{2}^{2} + .0371 R_{3}^{2} = -.03037$$

$$-.02058 R_{1}^{2} - .49028 R_{2}^{2} + .01847 R_{3}^{2} = -.02058$$

$$-.03111 R_{1}^{2} + .01347 R_{2}^{2} - .00742$$

$$-.03651 .10288 .03711$$

$$-.02058 - 49038 .01347$$

$$R_{1}^{2} = -.00114444 = .21387$$

$$R_{1}^{2} = -.00742 .01347 .06322$$

$$-.00114444 = .21387$$

$$10288 - .49028 .03711 - .0053510$$

$$.10288 R_{2}' + .03711 R_{3}' = .01067$$

$$- .49028 R_{2}' + .01347 R_{3}' = -.04258$$

$$.01067 .03711$$

$$R_{2}' = .04258 .01347 = .08804$$

$$.10288 .03711$$

$$-.49028 .01347$$

$$\begin{split} R_{3} &= .26167\\ A, 7' &= .21387 (.32253) (.2/.8) = .01723\\ A, F, ' &= .21167 (.05058) (.2/.8) = .00331\\ A, 7_{2}' &= .08804 \left\{ .07694 (.2)/.8 \right\} + .03941 (.9)/.1) = .03292 \end{split}$$

HEAT BALANCE

$$t_{2} = t_{3}$$

$$(A, T_{2}' + A, T_{3}')_{h_{1,2}} (t_{2} - t_{i}) + UA, (t_{f} - t_{i}) = 0$$

$$V_{VA} = V_{R} = \frac{L(1 + J/L)}{2\pi J0} + \frac{1}{2\pi (r_{i} + J(0))(h_{B} + E_{i} - h_{L} \neq \mu)}$$

$$\begin{aligned} f &= .50 \text{ IM.} \\ U &= .4399 \\ .03623 h_{n/2} (150-t_1) + .14188 (20-t_1) = 0 \\ t_1 &= 90.4^{\circ} F \end{aligned}$$

$$F = 1.0$$
  
 $U = .2733$   
.03623  $h_{12}(150-c_1) + .08816 (70-c_1) = 0$   
 $t_1 = 98.8°F$ 

J = 2.0 U = ,1702  $03623 h_{R,2} (150-E_i) + .05490 (10-E_i) = 0$  $E_1 = 1085^{\circ}E_1 = -44 - -$  ORIGINAL PAGE IS OF POOR QUALITY

Ф=2.633 h=.2828

\$ 1.911 h=.2060 In preparation of last meal:

Beverage cools dining water addition for 
$$\mathcal{F}_{2}$$
 minutes  

$$\frac{\mathcal{L}_{i} - \mathcal{L}_{f}}{\mathcal{L}_{i} - \mathcal{L}_{f}} = \frac{\mathcal{E} \times \mathcal{P}}{\mathcal{R}_{p}} \left(\frac{2}{\mathcal{L}_{i}} + \frac{2}{\mathcal{L}}\right) \mathcal{T}_{3}^{2}$$

Beverage cools during kneading for  $\mathcal{T}_{j}$  minutes

$$\frac{T_2 - T_F}{T_1 - T_F} = E \times P \left\{ \frac{-h_{in}}{P_{ep}} \left( \frac{2}{r_1} + \frac{2}{L} \right) \right\}$$

Beverage cools during repacking and storing for f minutes

$$\frac{\mathcal{T}_3 - \mathcal{T}_f}{\mathcal{T}_2 - \mathcal{T}_f} = \frac{E \times P}{\frac{f - h^2 (2}{R_p^2 (a)} + \frac{2}{L}) \mathcal{T}_3}$$

Beverage cools in insulated jacket until rehydration is complete.  $h_{\nu} A_{T}(t_{f} \cdot t) + h_{h} A_{g}(t_{f} - t) + h A_{T}(T_{f} - t) = PVG_{p} \frac{dt}{dT}$  $\frac{t - t_{f}}{t_{3} - t_{f}} = EXP \left[ \int_{PC_{p}}^{t} \frac{h_{\mu}}{L} + \frac{h_{\mu}}{PC_{p}} \frac{2}{L} \right] T \int_{T}^{T} T_{p} T_{p}$ 

Combining Equation

$$\frac{t_{i}-t_{f}}{t_{i}-t_{f}} = E X P \left[ \frac{-h'b}{PC\rho} \left( \frac{2}{w_{i}} + \frac{2}{L} \right) \left( \frac{T_{2}+\tilde{1}_{g}}{PC\rho} \right) - \frac{bc}{PC\rho} \left( \frac{2}{v_{i}} + \frac{2}{L} \right) \frac{T_{3}-\left( \frac{hu+h_{L}}{Pc\rho} + \frac{1}{PC\rho} + \frac{h_{R}}{PC\rho} \right)}{\frac{2}{h_{1}}} \right) \frac{T_{1}}{T_{1}} = \frac{97}{T_{W}} \frac{T_{1}}{T_{2}}$$

FOR 
$$W = 60 \ LB/HR$$
,  $TR = 20.53 \ MIN$   
 $Tp = 6.72 \ MIN$   
 $T_2 + T_4 = .72.5$   
 $T = 13.81$ 

DRIGINAL PAGE IS DE POOR QUALITY

F	hu	hr	hr
.5	.4399	:0242	.4399 1.734
1.0 1.0	.1704	.0161	. 1704

P = 61.7 PCF Cp = 1.0 BTU/68°F L = 1.312 IH  $R_1 = 2.031 IH$ 

In preparation of last meal:

Soup cools during water addition for  $T_2$  minutes

$$\frac{t_i - t_f}{t_i - t_f} = \frac{t_i + \frac{t_i}{2}}{Fc_f} \left( \frac{t_i}{\lambda_i} + \frac{t_i}{t_i} \right)^{1/2} \left( \frac{t_i}{\lambda_i} +$$

Soup cools during kneading for  $\gamma_3$  minutes.

$$\frac{C_2 - C_F}{C_1 - C_F} = \frac{E_{AD}}{R_{PC}} \left\{ \frac{-h_{C}}{R_{P}} \left( \frac{2}{R_1} + \frac{2}{L} \right) \right\}$$

Scup cools during repacking and stowing for 14 minutes.

$$\frac{\mathbf{t}_3 - \mathbf{t}_F}{\mathbf{t}_2 - \mathbf{t}_F} = E \times P \left\{ \frac{-h'_b}{R_p} \left( \frac{2}{R_i} + \frac{2}{L} \right)^{-1/q} \right\}$$

Soup cools in insulated jacket while beverage is prepared.  $h_{ABS}(\tau_{F} \cdot t) = UP_{cp} \frac{d\tau}{d\tau}$ 

 $\frac{t_w - t_F}{t_3 - t_f} = \frac{E_X P}{PC_P} \left\{ \frac{-h}{PC_P} \left( \frac{2}{R_i} + t \right) T_i + T_2 + T_3 + T_9 \right\}_{\mathcal{B}} \right\}$ Soup cools in insulated jacket until rehydration is complete.

$$h_A A_S (t_f - t) = PVC_P \frac{dt}{dt}$$

$$\frac{t_f - t_f}{t_i - t_f} = E_X P \left\{ \frac{-h_A}{PC_P} \frac{2}{\lambda_i} + \frac{T}{2} \right\}, \quad T = T_R - T_P$$
Combining Equations

$$\frac{L-t_{f}}{t_{i}-t_{f}} = E X P \left\{ \frac{-h'_{A}}{PC_{p}} \left( \frac{2}{A_{i}} + \frac{2}{L} \right) \left( \frac{\tau_{3} + \tau_{4}}{P} \right) - \frac{h_{c}}{PC_{p}} \left( \frac{2}{R_{i}} + \frac{2}{L} \right) \left( \frac{\tau_{3} - h_{c}}{PC_{p}} \right) \left( \frac{2}{R_{i}} + \frac{1}{L} \right) \left( \frac{\tau_{1}}{T_{i}} + \frac{\tau_{2}}{T_{i}} + \frac{\tau_{3} + \tau_{3}}{T_{i}} \right) - \frac{h_{c}}{PC_{p}} \left( \frac{2}{R_{i}} + \frac{2}{L} \right) \left( \frac{\tau_{3}}{T_{i}} - \frac{h_{c}}{L} \right) \left( \frac{\tau_{1}}{T_{i}} + \frac{\tau_{2}}{T_{i}} + \frac{\tau_{3} + \tau_{3}}{T_{i}} \right) - \frac{h_{c}}{PC_{p}} \left( \frac{2}{R_{i}} + \frac{2}{L} \right) \left( \frac{\tau_{3}}{T_{i}} - \frac{h_{c}}{L} \right) \left( \frac{\tau_{1}}{T_{i}} + \frac{\tau_{2}}{T_{i}} + \frac{\tau_{3}}{T_{i}} + \frac{\tau_{3}}{T_{i}} + \frac{\tau_{3}}{T_{i}} \right) - \frac{h_{c}}{PC_{p}} \left( \frac{2}{R_{i}} + \frac{2}{L} \right) \left( \frac{\tau_{3}}{T_{i}} - \frac{h_{c}}{T_{i}} \right) \left( \frac{\tau_{3}}{T_{i}} + \frac{\tau_{3}}{T_{i}} + \frac{\tau_{3}}{T_{i}} + \frac{\tau_{3}}{T_{i}} + \frac{\tau_{3}}{T_{i}} \right) - \frac{h_{c}}{PC_{p}} \left( \frac{2}{R_{i}} + \frac{2}{L} \right) \left( \frac{\tau_{3}}{T_{i}} - \frac{h_{c}}{T_{i}} \right) \left( \frac{\tau_{3}}{T_{i}} + \frac{\tau_{3}}{T_{i}} + \frac{\tau_{3}}{T_{i}} + \frac{\tau_{3}}{T_{i}} + \frac{\tau_{3}}{T_{i}} \right)$$

ha 2 TZ PG R, J

t1 = .92 TW+6

FOR 
$$W = 60 LB/HR$$
 TR = 20.53  
TP = 6.72  
 $T_2 + T_4 = .46$   
 $(T_1 + T_2 + T_3 + T_4) = 1.475$   
 $T = 13.81$ 

Е	h	ha
.5	. 2828	.0477
1.0	. 2482	.04005
2.0	. 2060	.03173

ORIGINAL PAGE IS OR POOR QUALITY

Meals prepared in insulated jackets and served in groups of six,  $M = 60 \ LBS/HR$ ,  $T_f = 15^{\circ}F$ 

Total preparation time 54.1 minutes

First entree'

At the	point in time	where mea	ls are serv	ved a sea	LAST EN	nee' T	1 LAST BEU	ERIE C	1 LAST C	JOUP T
JACKETS	t,-te	t	ti	KEQUILED	0-0	C .	<u><u><u><u></u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	t	<u>C-Cf</u> Ci-Cf	t
.5	85044	140	154.4	164.5	931467	145.7	.93574	156	.96173	154.2-
1.0	.89408		147.7	160.1	.94182	143.5	948:2	153	96258	150.4
2.0	,92234		145.5	157.5	.95271	142.1	95594	151.3	96355	148.1
.5	85044	135	145.6	157.6	.92.469	141.2	.93574	149.7	96173	1 48.1
1.0	.89048		142.0	153.6	.94182	138.2	94812	147,0	.96258	144.6
2.0	92234		140.1	151.2	.95271	137.0	, 95 954	145.4	96355	142.5

Results for this case are plotted in Figure 10

47 -

1

Entree  $t_i = PC T_w + 10$ 

Beverage t, = .97 Tw + 2

Soup T1 = . 92Tw +6

Meals prepared in insulated jacket and served in two groups of three,  $\mu$  -  $\mu$  LPS/HR  $t_f$  = 75 $^\circ$ F

Total preparation time 34.0 minutes

Fruit en	ntree' 1	-			LAST ENT	кеед	LAYT BEVERA	Æ	LAGT GOLIF	)
At the p JACKETE 1.0 2.0 .5 1.0 2.0	oint in <u>E-C4</u> .99424 .92242 .94045 .99424 .92942 .94045 .94045	time when T 140 135   1	meals are <i>Li</i> <i>147.7</i> <i>145.5</i> <i>144.1</i> <i>143.1</i> <i>140.0</i> <i>38.8</i>	served Tw Kaip 160.1 157.5 155.9 153.6 151.2 149.8	<u>t-t</u> ti-tr .92469 .94182 .95271 .92469 .94182 .955184	t 141.4 141.4 140.8 137.0 136.2 135.8	<u>t-t</u> 93974 94819 95594 93574 94812 94812 94812 95594	t. 152.0 150.6 149.8 144.8 144.8 144.1	.96173 .96258 .96355 .96173 .96258 .96355	150.3   48.1   46.7   44.5   42.5   41.3

BUGINIAL PACE IS



#### ONE MAN PREPARATION

Figure 10 shows that water temperatures required to furnish a first entree' temperature of 1  $0^{\circ}$ F yield last soup and beverage temperatures above 145° F for the range of jacket insulation thicknesses studied. The figure also shows that water temperatures required to furnish a first entree' temperature of 135° F can yield last soup temperature within the serving temperature band, but that last beverage temperatures would be above 145° F. Assuming that soup temperature is the parameter, all dish temperatures (except beverage) will be within the serving temperature band for a choice of jacket insulation thickness and water temperature of 0.925 in. and 154.0° F, respectively

W Jacket T Hot Water Source Penalty Tray Penalty Jacket Penalty Total Penalty*  $10^{-925}$  1540 1.9568 183 IN³ 5.7668 1627 IN³ 4.1568 1380 IN³ 1236 L8 3190 IN³

(Jacket) (Tray) (Water Source) (Water Gun)Hardware Weight = 4.15 + 5.76 + .52 .5 = 10.93 lb. Hot Water source requirement .24 PKH Hot water resource electrical .375 KM/HR

Hot water source heat to cabin 6.37 BTU

48

Note: Tray configuration is that of an uninsulated tray(See Insulated Tray Analysis) Figure 19 (Ref) that an uninsulated 135° F entree' will not cool below 105° F by the end of a 20 minute dining period.

* Total penalty includes a 0.5 LB allowance for a water



## TWO MAN PREPARATION

Figure 11 shows that water temperatures required to furnish a first entree' temperature of  $140^{\circ}$  F yield last soup and last beverage temperatures above  $145^{\circ}$  F for the range of jacket insulation thickness studied. The figure also shows that water temperatures required to furnish a first entree' temperature of  $135^{\circ}$  F can yield last soup temperatures within the serving temperature band, but that last beverage temperatures would be above  $145^{\circ}$  F. Assuming that soup temperature is the governing parameter, all dish temperatures (except beverage) will be within the serving temperature band for a choice of jacket insulation thickness and water temperature of 0.425 in. and  $154.2^{\circ}$  F, respectively.

W	Jacket	T	Hot Water	Source Penalty	Tray Penalty	Jacket Penalty	Total Penalty*	
60	.425	154.2	1.95LB	183 in.	5.76LB 1627in.	3.29LB F52 ir	. 12.00LB 266.3	/in.

(Jacket) (Tray) (Water Source) (Water Gun) Hardware Weight = 3.29 + 5.76 + .52 + 1.0 = 10.57 lb. Hot water source former requirement .248 KW Hot water source electrical energy requirement .375 KW-HR Hot water source heat to cabin 6.38 BTU

Note: Tray configuration is that of an uninsulated tray (see Insulated Tray Analysis) Figure 18 (Ref) shows that an uninsulated 135° F entree' will not cool below 105° F by the end of a 20 minute dining period.

* Total Penalty includes a 1.0 LB allowance for two water guns.

5

3.1.1.8



- 51 -

DESCENDEL PAGE IN DESCENDER QUALITY

### 3.1.2 Insulated Tray Analysis

Preparation Sequence for Individual Meals in Trays

1) All cans for a meal are placed in a tray.

2) Cans are opened and valves are unpacked

3) Water is added to entree', side dishes, soup and beverage

Beginning with entree', contents of a can are kneaded,
 replaced in can, and the valve repacked.

5) After all dishes are prepared, insulated cover is placed over tray.

Entree' is most critical because it has the lowest initial temperature. During water addition, entree' cools to cabin through open top and insulated sides and bottom of tray.

(ho Ar i ha Az + hAr) (ty-t) = Vpcp dt, ho = 1.00 BTU/HR FT. F, FROM TEST  $AT = \frac{1}{2}$ <u>As</u> = 2

 $\frac{t_{i}-t_{f}}{t_{i}-t_{i}} = E \lambda P \left\{ - \left( \frac{h_{0}}{P_{c}} - \frac{1}{L} + \frac{h_{a}}{P_{c}} + \frac{2+h}{h_{i}} + \frac{1}{P_{c}} \right) \Theta_{3} \right\},$ 

 $\Theta$  is sum of  $\mathcal{T}$ 's for all dishes,

 $t_{\chi}$  . If  $T_W + 10$  where  $T_W$  is water temperature. This relationship assumes dry food storage 70° F and applies to entree'.

Entree' cools during kneading

hcA(Eg-E)=VpCPdE, he= 5.06 BTU/HRFT F, FROM TEST OBIGINAL PAGE  $\frac{A}{V} = \frac{2}{\Lambda} + \frac{2}{L}$  $\frac{c_2 - c_F}{t_1 - t_2} = EXP \left\{ \frac{-he}{\rho_{Co}} \left( \frac{2}{\rho_1} + \frac{2}{L} \right) \frac{r_3}{r_3} \right\}$ 

Entree' cools to cabin through open top and insulated sides and bottom tray while entree' valve is repacked and while other cans are kneaded and repacked.

 $\frac{z_3 - t_F}{t} = EXP \left\{ -\left(\frac{h\beta}{f_1} + \frac{h}{f_2} + \frac{h}{f_1} + \frac{h}{f_1} + \frac{h}{f_2} + \frac{h}{f_1} + \frac{h}{f_1} + \frac{h}{f_2} + \frac{h}{f_1} + \frac{h}{f_2} +$ 

3.1.2 Cont'd

Prep. for Ind. Meals in Trays Cont'd

Of 15 5UM OF 14 FOR ENTREE' AND 7" AND THIS FOR ALL OTHER DIGHES

Entree' cools through insulated cover and insulated sides and bottom of tray.

$$(2h Ar + h_A A_3)(t_{f} - t) = V_{PCP} \frac{dt}{dt}$$

$$\frac{t - t_{f}}{t_3 - t_{f}} = EXP \left\{ -\left(\frac{n}{PCp} - \frac{2}{L} + \frac{h_A}{PCp} - \frac{2}{n_1}\right) \uparrow \right\}, \quad T = \Theta_3 + T_3 + \Theta_9$$

$$\Theta_3 = W_T / W$$

$$\Theta_4 = 5T_4 + 4T_3$$

Combining equations

 $\frac{t-t_{F}}{\tau_{i}-t_{f}} = E X P \left\{ -\left(\frac{hb'}{Pcp} + \frac{h}{Pcp} + \frac{h}{Pcp} + \frac{h}{Pcp} + \frac{h}{L}\right) \left(\frac{Wc}{W} + \frac{5}{\gamma_{4}} + \frac{473}{Pcp} + \frac{h}{Pcp} + \frac{2}{\gamma_{5}}\right) \frac{h}{r_{5}} \left(\frac{h}{R_{0}} + \frac{2}{r_{5}} + \frac{h}{R_{0}} + \frac{2}{r_{5}}\right) \frac{h}{r_{5}} \left(\frac{h}{R_{0}} + \frac{2}{r_{5}} + \frac{h}{R_{0}} + \frac{h}{R_{0}}\right) \frac{h}{r_{5}} \left(\frac{h}{R_{0}} + \frac{2}{r_{5}} + \frac{h}{R_{0}} + \frac{h}{R_{0}}\right) \frac{h}{r_{5}} \left(\frac{h}{R_{0}} + \frac{h}{R_{0}} + \frac{h}{R_{0}}\right) \frac{h}{r_{5}} \left(\frac{h}{R_{0}} + \frac{h}{R_{0}} + \frac{h}{R_{0}}\right) \frac{h}{r_{5}} \left(\frac{h}{R_{0}} + \frac{h}{R_{0}} + \frac{h}{R_{0}} + \frac{h}{R_{0}}\right) \frac{h}{r_{5}} \left(\frac{h}{R_{0}} + \frac{h}{R_{0}} + \frac{h}{R_{0}} + \frac{h}{R_{0}} + \frac{h}{R_{0}}\right) \frac{h}{r_{5}} \left(\frac{h}{R_{0}} + \frac{h}{R_{0}} + \frac{h}{R_{0}} + \frac{h}{R_{0}}\right) \frac{h}{r_{5}} \left(\frac{h}{R_{0}} + \frac{h}{R_{0}} + \frac{h}{R_{0}} + \frac{h}{R_{0}}\right) \frac{h}{r_{5}} \left(\frac{h}{R_{0}} + \frac{h}{R_{0}} + \frac{h}{R_{0}} + \frac{h}{R_{0}}\right) \frac{h}{R_{0}} \frac{h}{r_{5}} \left(\frac{h}{R_{0}} + \frac{h}{R_{0}} + \frac{h}{R_{0}}\right) \frac{h}{r_{5}} \left(\frac{h}{R_{0}} + \frac{h}{R_{0}} + \frac{h}{R_{0}} + \frac{h}{R_{0}}\right) \frac{h}{r_{5}} \frac{h}{r_{5}}$ 

In the time lines which follow, is defined for the first entree' prepared. This dish will be the coldest of all dishes by the end of the preparation period.

Preparation of Individual Meals in Trays

Rehydration Times:	Entree'	20 minutes	
	Vegetables	15	
	Soup	10	
	Beverage	0	
Preparation Times:	assume $\tilde{l}_i = .25$ unp	minutes to op ack valve.	pen a can and
	<i>1</i> ₅ = .50	minutes to kr	nead contents
	$f_{+}$ = .25 ten	minutes to re ts, repack val	eplace con- lve.
	$f_2 = W/W$ W i the flo	, time to add s the water ro dish and W is w rate.	water, where equirement for s the water
Water requirements:	Entree'	₩ _E = 4.5 oz	
· ·	Side Dishes	W _D = 12.0	Total, $W_{\gamma} =$
	Soup	₩ _S = 3.4	27.5 oz. per meal
· · ·	Beverage	W _B = 7.6	
All dishes are conta	ained in 401 x 1	05 cans, excep	pt soup,
which is contained :	ín a 211 x 105 c	an.	
Time Lines W = 7L	B/HR 1.867 oz	/min.	
Cumulative	e Time Cum. +	Rehydration T:	ime
Open all cans and un	npack valves:		
	1.25min.	1.25min.	
Add water to: Entree'	2.41	3.66	23.66 min.
Side Dish	3.21	6.87	21.87
Side Dish	3.21	10.08	25.08
Soup	1.82	11.90	21.90
Beverage	4.07	15.97	·
and repack valve	3.75	19.72	

Meal is fully reconstituted 25.08 min. after cans are placed in tray.

$$\Theta_3 + \Theta_4 = 17.98 \text{ min}$$
  
 $1_3 = .5$   
 $1_{=25.08 - 1.25 - 17.98 - .5 = 5.35$ 

### W = 15 LB/HR 4 oz. 1 min.

Cumulative Time Cum. + Rehydration Tome Open all cans and 1.25 1.25 min. unpack valves: 22.37 1.12 2.37 Add water to: Entree Side 18.87 3.87 Dish 1.50 Side 5.37 20.37 Dish 1.50 8.12 Beverage 1.90 Knead contents and 11.87 repack valves 3.75

Meal is fully reconstituted 22.37 minutes after cans are placed in tray.

 $\Theta_3 + \Theta_4 = |0.12 \text{ MIH}$   $1_3 = .5$  $7 \cdot 22.39 - 1.25 - 10.12 - .5 = 10.50 \text{ MIH}$ 

W = 30 LB/Hr 8 oz./min.

Cumulative Time. Cum. + Rehydration Time

Open all cans an	nd		
un-pack valves	1.25 min.	1.25	
Entree	.56	1.81	21.81
Side Di	ish .75	2.56	17.56
Side Di	ish .75	3.31	18.31
Soup	.42	3.73 .	13.73
Beverag	ge .95	4.68	
repack valv	ve 3.75	8.43	

Meal is fully reconstituted 21.86 min. after cans are placed in tray.

# 3.1.2.1 Cont'd

W ==	60 LB/HR Cumulative	16 oz./min Time Cum.	+ Rehydratic	n Time
Open all cans a unpack valves	nd 1.25	min.	1.25	
Add water to: Entree	'.28		1.53	21.53
Side D	ish .38		1.91	16.91
Side D	ish .38		2.29	17.29
Soup	.21		2.50	12.50
Bevera	ge .47	5	2.975	
Knead contents repack val	and ves 3.75		6.725	

Meal is fully reconstituted 21.53 minutes after cans are

placed in trays.

 $\Theta_3 + \Theta_4 = 4.97 \text{ min}$   $T_3 \cdot .5$ T = 21.53 - 1.25 - 4.97 - .5 = 14.24 Preparation of Meals in Trays-Three Meals at a Time

Define  $T_{\rm R}$  as the time in which a meal is fully rehydrated

T_P as the time to prepare a meal, beginning with opening cans. Trays would be prepared in the sequence given below:

![](_page_87_Figure_4.jpeg)

The three trays would be served after  $T_R$  + Tp minutes First entree cools: During water addition for  $\ominus_3$ During kneading for  $\mathcal{T}_3$ During kneading and repacking other  $\ominus_4$ cans for  $\mathcal{T}_P$  covered for  $T_p$  while second tray is prepared stacked under second tray for  $T_p$  while third is prepared stacked under second and third trays for  $T_R - T_P + 1.25$  while rehydration of third tray is completed.

Third entree'cools: During water addition for  $\Theta_3$ 

During kneading for  $\tilde{T}_3$ During kneading and repacking of other  $\Theta_4$ cans for Tk-TP+125 stacked on top of second and first trays for  $T_R - T_P + 1.25$  while rehydration is completed.

Tp-1.25

3.1.2.2 Cont'd

Heat transfer between stacked, covered trays is negligible due to small temperature differences. Therefore for first

and last trays:  $(hA_{f} + h_{A}A_{S})(\tau_{f} - t) = V_{P}c_{P}d_{S}d_{T}$   $\frac{t - t_{F}}{t_{O} - t_{S}} = EXP \left\{ - \left( \frac{h}{R_{P}} \frac{1}{L} + \frac{h_{R}}{R_{O}} \frac{2}{L} \right) \stackrel{?}{}_{S} FOR \text{ THIS STEP.} \right\}$   $WHERE t_{O} \text{ is THE INITIAL TEMPERATURE}$ 

, where t is the initial

temperature for this step.

FIRST ENTREE'  $\frac{t - t_{f}}{t_{j} - t_{f}} = \frac{E \times P}{P_{q}} \left\{ \frac{- \frac{h_{q}}{L}}{R_{p}} \frac{1}{L} + \frac{h_{q}}{R_{p}} \frac{2}{L} + \frac{h}{R_{p}} \frac{1}{L} + \frac{h_{q}}{R_{p}} \frac{2}{L} + \frac{h}{R_{p}} \frac{2}{L} + \frac{$ 

LAST ENTREE'

 $\frac{t-t_{f}}{t_{i}-t_{f}} = EKP \left\{ -\left(\frac{h_{0}}{R\rho} + \frac{h_{0}}{L} + \frac{h_{0}}{R\rho} + \frac{1}{L}\right) \left(\theta_{s} + \theta_{q}\right) - \frac{H_{c}}{P_{c}} \left(\frac{2}{L} + \frac{2}{L}\right) \frac{\Gamma^{3}h}{P_{c\rho}} + \frac{1}{R\rho} \frac{2}{h_{0}} \left(\frac{1}{L} + \frac{1}{R\rho} + \frac{1}{L}\right) \left(\frac{1}{P_{c}} + \frac{1}{L}\right) \frac{1}{P_{c}} + \frac{h_{0}}{L} \frac{2}{R\rho} \left(\frac{1}{L} + \frac{1}{R\rho} + \frac{1}{L}\right) \left(\frac{1}{P_{c}} + \frac{1}{L}\right) \frac{1}{P_{c}} + \frac{h_{0}}{L} \frac{2}{R\rho} \left(\frac{1}{L} + \frac{1}{R\rho} + \frac{1}{L}\right) \frac{1}{P_{c}} + \frac{h_{0}}{L} \frac{2}{R\rho} \left(\frac{1}{L} + \frac{1}{R\rho} + \frac{1}{L}\right) \frac{1}{P_{c}} + \frac{h_{0}}{L} \frac{2}{R\rho} \left(\frac{1}{L} + \frac{1}{R\rho} + \frac{1}{L}\right) \frac{1}{P_{c}} + \frac{1}{L} \frac{1}{P_{c}} + \frac{1}{L} \frac{1}{P_{c}} + \frac{1}{L} \frac{1}{R\rho} \left(\frac{1}{L} + \frac{1}{R\rho} + \frac{1}{L}\right) \frac{1}{P_{c}} + \frac{1}{L} \frac{1}{R\rho} \left(\frac{1}{L} + \frac{1}{R\rho} + \frac{1}{L}\right) \frac{1}{P_{c}} + \frac{1}{L} \frac{1}{R\rho} \left(\frac{1}{L} + \frac{1}{R\rho} + \frac{1}{L}\right) \frac{1}{P_{c}} + \frac{1}{R\rho} \frac{1}{R\rho} \left(\frac{1}{L} + \frac{1}{R\rho} \right) \frac{1}{R\rho} \left(\frac{1}{R\rho} + \frac{1}{R\rho} + \frac{1}{R\rho$ 

Preparation of Meals in Trays - Six Meals at a Time Trays would be prepared in the sequence given below: TR+5TP The six trays would be served after  $T_R + S T_P$  minutes First entree' cools: During Water addition for  $\Theta_3$ During kneading for T3 During kneading and repacking of other  $\ominus_{\phi}$ covered for  ${\rm T}_{\rm p}$  while cans for second tray is prepared stacked under subsequent trays for 4Tp while they are prepared, stacked under all trays for T_R - T_P + 1.25 while rehydration of last tray is completed. Last entree' cools: During water addition for  $\partial_3$ During kneading for 15 During kneading and repacking of other  $\Theta_4$ ORIGINAL PAGE IS OF POOR QUA stacked on top of fifth cans for tray for  $T_R - T_P + 1.25$  while rehydration is completed.

To - 1.25

3.1.2.3

Combining equations as before: First Entree'

 $\frac{t_{c}-t_{f}}{C_{i}-t_{f}} = EXP\left\{-\frac{h_{o}}{P_{c}}\frac{1}{L}+\frac{h_{o}}{P_{c}}\frac{2}{A}+\frac{h}{R_{p}}\frac{1}{L}\right)\left(\Theta_{3}+\Theta_{4}\right)-\frac{h_{c}}{P_{c}}\left(\frac{2}{A}+\frac{2}{L}\right)^{T_{3}}-\frac{h_{o}}{P_{c}}\frac{2}{L}+\frac{h_{o}}{P_{c}}\frac{2}{A}\right)^{T_{p}}-\frac{h_{c}}{A_{p}}\frac{2}{A_{p}}\frac{h_{o}}{A}$   $TR+3T_{p}+1.25)\left\}$ 

### 3.1.2.4 Tray Weights

### 3.1.2.4.1 Insulated Tray

The insulated tray consists of a cover if insulation thickness *t*, and a tray section having the cutouts in insulation shown in the half scale drawing in Figure 12. The cutouts are of can height, and the insulation thickness of the bottom of the tray section is also All surfaces, including the can recesses are sheathed with .020 gage aluminum.

Tray weight is first calculated on the basis of the plan view area and perimeter shown in Figure 12, varying only the insulation thickness of the cover and the tray section bottom. Corrections are then made for the change in plan view area as at the sides of the tray is reduced . 5 inches for the  $\mathcal{F} = .5$  case and increased 1.0 inches for the = 2.0 case.

Insulation density .6 LB/FT 3

Aluminum density 173 LB/PT³

Perimeter for = 1.0 inch case: P = 44.6 in. Plan view area for = 1.0 inch case: A = 149.6 in. Can height 1.3.12 in.

Top area of all cans 63.2 in.²

Plan view surface area of cut-out insulation 149.6-63.2 = 86.4 in.² Volume of cutout insulation  $86.4 \cdot (1.312) = 113.4$  in.³

11 11	Vol. of Top Cover	Vol. of Tray Bottom	Total Volume	Ins. Weight
.5	74.8 in. ³	74.8 in. ³	263.0 in. ³	.0913 LB
1.0	149.6	149.6	412.6	.1433
0.2	299.2	299.2	711.8	2472

- 60 -

Surface area of cover upper and lower surface and tray bottom 3(149.6) - 448.8

Edge surface area of cut out insulation 58.5 in.² Surface area of can recess 152.3 in.² Surface area of cut-out insulation 86.4 in.²

	Edge Surface Area of Cover	Edge Surface Area of Bottom	Total Surface Area
.5	22.3 in. ²	22.3	790.6 in. ²
1.0	44.6	44.6	835.2
2.0	89.2	89.2	924.4

	Sheath Weight	Tray Weight (constant plan area)
.5	1.583 LB	1.674 LB
1.0	1.672	1.816
2.0	1.851	2.098

![](_page_92_Figure_0.jpeg)

ΔA = HPΔJ Δ VOL. - PΔJ (H), H is OVERALL HEIGHT OF COVERED TRAY INGULATION

ð	<b>۵</b> ۶	$\Delta \Delta$	D WEIGHT AL	н	$\Delta V$	△ Шекнт Інци
.5 10 20	5 0 1.0	- 892 in* 0 + 178,4	17968 0 +.35768	2,312 3,312 5,312	-51.6 D 236.9	0179 LB 0 + .0823
8 .5 1.0 2.0	CORFECTED 1.47 1.810 2.531	TRAY WT. 7 LB5 7	OVEPAL 2.4 3.4 5.4	L HE16HT 192 192 192	Ö	VERALL JOLUME 369.8 in 3 519.4 818.6

3.1.2.4.2 Uninsulated Tray

The uninsulated tray consists of a sheet metal tray section having the can recesses shown in Figure 12 and of the same plan area. The height of the tray section is .5 inches greater than can height. The tray section has no bottom surface and is fabricated of .030 aluminum to impart rigidity.

Uninsulated Tray Weight .960 LB

Overall Volume 27.1. in.³

![](_page_94_Figure_0.jpeg)

- 64 -

![](_page_95_Figure_1.jpeg)

Emissivity for heat loss from side of tray 0.2 Cabin side connective heat transfer coefficient 1.45 BTU/NR. FT. 2  or F

Cabin temperature 70 ° F.

Insulation thermal conductively 0.25 BTU-in./HR.Ft.²⁰F Overall Heat Transfer Coefficient for Heat Loss Through Sides of Tray.

ORIGINAL PAGE

Overall Heat Transfer Coefficient for Heat Loss Through Sides of Tray Cont'd.

8= 0.5 IN.  $\delta = 0.51H.$   $h_{A} = 1.654 \left\{ 1.530(81-70) \pm 250(7E-70) \pm 1.774(87-70) \pm (.9944)(87-70) \right\} / \left\{ 2.031(11)(150-70) \right\}$ ha . . 222 BTU'S / HR FT 2 of FOLLOWING EQUATIONS ON BOTTOM OF GHEET.)

Overall Heat Transfer Coefficient for Heat Loss Through Bottom of Tray and Insulated Cover.

F= .05" h= .384 BR15/HEFT 2 OF

1 = 1.0 IH h = .217

J= 2.0 h= .116

 $\begin{aligned} & \xi = 1.0^{\circ} \\ h_{A} = 1.654 \left\{ .750 \left( 75 - 70 \right) + 1.530 \left( 77 - 70 \right) + 1.970 \left( 79 - 70 \right) + 1.190 \left( 78,5 - 70 \right) \right\} \\ & f_{A} = .137 \end{aligned}$ 

 $\int = 2.0$   $h_A = 1654 \underbrace{\frac{5}{2}}_{150} (15 - 70) + 1.535 (17 - 70) + 2.363 (75 - 70) \pm 2.363 (15.0 - 70) \underbrace{\frac{5}{2}}_{2.031} (17) (80)$   $h_A = .101$ 

3.1.2.6

Tray Design to Keep Food Hot for 20 Minutes after Removal from Oven.

(ho' Ar tha Ac +h Ar)(ty-t) = Up Cp de his - 1.80 BTU /HR FT " OF FROM TEST AT = 1 V L Azz = 2 V R,  $\frac{L-t_{f}}{t_{i}-t_{f}} = \frac{E \times P \left\{ \frac{-h_{b}}{P_{cP}} - \frac{1}{L + h_{b}} + \frac{2}{R_{c}} + \frac{h}{R_{c}} - \frac{1}{L} \right\} T}{t_{i}-t_{f}}$ 

8	ha	h	$\begin{pmatrix} \frac{\mu_{a}}{\mu_{a}} \stackrel{i}{\leftarrow} \stackrel{i}{\tau} \stackrel{h_{a}}{\xrightarrow{\mu_{a}}} \stackrel{i}{\xrightarrow{\lambda}} \stackrel{i}{\xrightarrow{\mu_{a}}} \stackrel{i}{\xrightarrow{\mu_{a}}} \stackrel{i}{\xrightarrow{\lambda}} \stackrel{i}{\xrightarrow{\mu_{a}}} \stackrel{i}{$	t-ty
.5in 1.0 2.0	.222 .137 .101	. 384 .217 .116	.12209 .1084/ .10112	ti-t _f .88507 .89726 90397

ĩ	t,	Ċ
.5	135	128.1
1.0		128.8
2.0		129.2
,5	140	132.5
1.0		133.3
2.0		133.7
,5	145	137.0
1.0		137.8
2.0		138.3

¢

DRIGINAL	J PAGE N
VE POOR	QUALITY

UNINGULATED ENTREES' CAN, ha = h - ho'

 $\frac{\tau - t_{f}}{t_{f} - t_{f}} = E X P \left\{ - \left( \frac{h_{e}}{R_{o}} \right) \left( \frac{2}{A_{f}} + \frac{2}{L} \right) T \right\}$ t, t  $\frac{t - t_{f}}{t_{i} - t_{f}} = .14617$ 135 120°F 140 1235 - 67 -145 127,2

![](_page_98_Figure_0.jpeg)

![](_page_99_Picture_0.jpeg)

ORIGINAL PAGE IB

ORIGINAL PAGE IS OF POOR QUALITY

![](_page_100_Figure_1.jpeg)

DRIGINAL PAGE IS

![](_page_101_Figure_1.jpeg)

![](_page_102_Picture_1.jpeg)

![](_page_103_Picture_0.jpeg)

![](_page_103_Figure_1.jpeg)

### 3.1.2.7

Temperature Analysis ~ Insulated Tray

In order to complete the analysis, the temperatures of the hottest dishes as well as the coldest must be ascertained in order to determine that all are within the 135-145° F serving temperature band when meals are served. The hottest dishes when meals are served would be the beverage and soup of the last meal prepared. Attention will be restricted to the case characterized by a water flow rate of 60 LB/HR, and preparation and serving of meals in a group of six (one man preparation) since Table 5 shows that this case results in a total meal preparation time under one hour. For comparison purposes, results are furnished for a case characterized by a water flow rate of 60 LB/HR, and preparation and serving of meals in two groups of three (two man preparation). For this case, it was assumed that each man prepares three complete meals. The total preparation time would be half the value given in Table 5 for meals prepared and served in groups of three with a water flow rate of 60 LB/HR., or 35.0 minutes.

For both the case of one man preparation and two man preparation, results are furnished for water temperatures yielding 135° F and 145° F coldest entree' temperatures. This dish would be the first one prepared.

In preparation of last tray:

Beverage cools during water addition through open top and insulated sides and bottom of tray for  $\widetilde{1_2}$  minutes.

 $\frac{t_{t-t_{f}}}{t_{t-t_{f}}} = EXP \left\{ \frac{-(ho' + hn - 2 + h - 1)}{P(p + R_{p} - R_{p} - R_{p} - 1)} \right\}$ 

- 74 -

### 3.1.2.7 Cont'd

Beverage cools during kneading and repacking of entree', two side dishes, and soup through open top and insulated sides and bottom of tray for 73+74 minutes.

$$\frac{C_{i}-C_{f}}{C_{f}} = \frac{EXP}{R_{p}} \left\{ \frac{2}{L} + \frac{h_{a}}{PC_{p}} \frac{2}{R_{i}} + \frac{h_{a}}{PC_{p}} \frac{2}{L} + \frac{h_{a}}{PC_{p}} \frac{2}{L} \right\} \left( \frac{H}{T_{3}} + \frac{T_{q}}{T_{q}} \right) \left\{ \frac{2}{S} + \frac{1}{T_{q}} \right\}$$

Beverage cools during kneading for  $\tilde{13}$  minutes.  $\frac{T_3 - C_f}{C_2} = \frac{EKP}{PLP} \begin{cases} -h_c}{2} + \frac{2}{L} \end{cases} \tilde{13} \\ \tilde{13} \\ \tilde{13} \end{cases}$ 

Beverage cools during repacking through open top and insulated sides and bottom of tray for  $\gamma_q$  minutes.  $\frac{t_4 - t_4}{t_3 - t_4} = \frac{E \times P}{E} \left\{ \frac{h \cdot h}{R_p} \frac{L}{L} + \frac{h_4}{R_p} \frac{2}{R} + \frac{h}{R_p} \frac{L}{L} \right\} \frac{T_4}{P_c} \frac{2}{L}$ 

Beverage cools through insulated cover and insulated sides and bottom of tray until rehydration is complete

 $\frac{z-t_f}{t_4-t_6} = EXP \left\{ -\left(\frac{h}{PC_p} \frac{2}{L} + \frac{h_a}{PC_p} \frac{2}{L}\right) T^2 \right\}$ 

N. TR-TP

Combining equations

 $\frac{-t_{f}}{C_{f}-t_{f}} = EXP\left[\frac{-h_{B}}{Pcp} \frac{1}{L} + \frac{h_{B}}{Pcp} \frac{2}{L} + \frac{h_{B}}{Pcp} \frac{1}{L}\right] \left\{ T_{3} + h\left(T_{3} + T_{4}\right) + T_{4}^{2} \right\} - \frac{h_{C}}{Pcp} \left(\frac{2}{R} + \frac{2}{L}\right) T_{3} - \left(\frac{h_{B}}{Pcp} \frac{2}{R}\right) T^{2}\right]$   $= t_{f} - t_{f}$ 

$$L_1 = 2031, L \cdot 1.312$$
  
 $E_1 = .917W + 2$   
 $POR W = LO LB/HR TP = 6.72 MINUTES$   
 $TR = 21.53$   
 $T_2 = .475$ 

13.5 MINUTES

3.1.2.7 Cont'd

In preparation of last tray:

![](_page_106_Picture_2.jpeg)

Soup cools during water addition through open top and insulated sides and bottom of tray for  $\mathcal{T}_{\mathbf{2}}$  minutes. From this point on, the soup cools according to the equation characterizing cooling of the beverage.

For the soup,  $h_A = o$ 

 $\frac{t-t_{c}}{t_{i}-t_{f}} = EXP\left[-\left(\frac{hb}{R_{o}} + \frac{1}{L}, \frac{h}{R_{o}} + \frac{1}{L}\right)\left\{\left(\tilde{T}_{2}\right)_{5} * \left(\tilde{T}_{2}\right)_{6} * \left(\tilde{T}_{2}\right)_{6} * \left(\tilde{T}_{4}\right)_{7} + H\left(\tilde{T}_{3} + \tilde{T}_{4}\right) + \tilde{T}_{4}\right] - \frac{h}{R_{o}}\left(\frac{2}{L} + \frac{2}{L}\right)\tilde{T}_{3} - \frac{h}{R_{o}} = \frac{2}{L}\tilde{T}\right], \ \tilde{T} = T_{R} - T_{P}$ 

 $\mathcal{R}_{1} = 1.344, \ \mathcal{L} = 1.312$   $t_{i} = .92 \ Tw + 6$   $Te = 0.72 \ \text{MiNUTES}$   $For \ W = 60 \ Le/HR, \qquad (12)_{8} \quad .415$   $(12)_{8} \quad .21$   $T_{2} \quad .5$   $T_{3} \quad .5$   $T_{4} \quad .25$   $Trav \ \text{Surface Tomesture} \ in$ 

Tray Surface Temperature in Vicinity of Beverage Container.

 $\frac{de}{F}\left(\frac{t_{g}-t}{t_{g}}\right)+\left(\frac{h_{0}+E}{h_{k}}\right)\left(\frac{t_{g}-t}{t_{g}}\right)=0$ 

LET t = 105°F hr = 1.141 TA : 105+50.345 Ø/k

F	TB
./	1251
.15	135.2
.2.	145.3
.25	155.3
, 3	165.4

DRIGINAL PAGE IS DE POOR QUALITY mark prepared in mulated trans and record in groups of sir, is "BOLSINR , \$ = >5°F at the first in time when meale Last entres " that blue of & Last mun I  $\frac{t-t_{\ell}}{t_{\ell}-t_{\ell}}$ Equined 11-4 The Tray 5 É 5. - 14 ti - ti £ e de la compañía de l -5 .16967 140 1-17.7 122.5 72540 1-1-1.1 . 92135 153.0 1.92Fe3 1-19.6 1.0 .90531 140. F. 159.1 142.4 . 95605 931 Fa 151.41,94159 1-17. 6 20 · 92507 135 145.3 1-1.5 , 5-16=9 157.3 91602 150.5 9-1949 1~15.F .5 · Fa927 155 F 1-17.0 . 92803 144.0 92540 131.6 . 92135 1~3 E 1.0 .95531 141.3 152. 4 93880 137 2. 93663 145:41,94159 142.1 ,92507 20 139.9 151.0 9460 D 1~~.7. 9~9~9 175.4, 94PE9 برجد و Renth for this latted i Cantand & izens 20 Entre. G. S. FETS FIL Bethera age 6. ........ 5 million 6, 2.95 72, 26 Mean pyaned in invitated trage and reved in two grouping there, is " cocopye, & " 75" First where t hartaties I hart blocking t Lal map at faint a time when meals are dived 6-EE Required 6. E. 6.61 E- EA Trong & Milling Tw E. . E. 8. - 6 6. - 67 .5 . 19924 1-123 159.5 92520 141.9 92135 150.0 -92AC3 1~33 1923 De 1.0 145.4 シタプ・ショ 978A3 141.1 93882 144.6 - 4159 144.4 20 .93531 1444 15-3 9-602 140.7 . 94839 149.6 .94949 146.0 .F9924 .5 141.7 135 153.2 92510 15=. 5 . 92135 1447,92823 141. F 1.9 : 92326 140.01 151.1 93000 60, 50, 80 P. 10 2 144.1 9:4159 140.9 2.0 .93651 159 1 150.1 19-1302 155.6 ,94469 143.9, 42949 140.6 Route for the Garlan platter in inun al


- 78 -



- 79 -

3.1.2.8 Summary

- 08 -

#### ONE MAN PREPARATION

Figure 20 shows that water temperatures required to furnish a first entree' temperature of  $140^{\circ}$  F yield last soup and last beverage temperatures above 145 ° F for the range of tray insulation thicknesses studied. The figure shows also that water temperatures required to furnish a first entree' temperature of  $135^{\circ}$  F can yield last soup temperatures and last beverage temperatures within the serving temperature band. Assuming that soup temperature is the governing parameter, all dish temperatures (except beverage) will be within the serving temperature band for a choice of tray insulation thickness and water temperature of 0.30 in. and 158.2° F, respectively.

W	Tray	$\mathtt{T}_W$	Hot Water	Source Penalty	Tray Penalty	Total Penalty*
60	0.30	158.2	2.00 LB.	188 in. ³	8.10 LB 1860 in ³	10.60 LB 2048 in ³

(Tray) (Water Source) (Water Gun) Hardware Weight 8.10 + .53 + .5 = 9.13 LB Hot water source power requirement .256 KW Hot water source electrical energy requirement .388 KW - HR. Hot water source heat to cabin 6.55 BTU

Note: Figure 15 shows that a 135° F entree' will not cool below 105°F by the end of the 20 minute dining period.

* Total penalty includes a 0.5 LB allowance for a water gun.

#### TWO MAN PREPARATION

Figure 21 shows that water temperatures required to furnish a first entree' temperature of  $140^{\circ}$  F yield last soup and last beverage temperatures above  $145^{\circ}$  F for the range of tray insulation thicknesses studied. Even though soup temperature can be made to approach within  $1^{\circ}$  F of  $145^{\circ}$  F, the latter figure will be considered to be an absolute limit in order to furnish a uniform criteria for evaluating food preparation systems. Figure 21 shows also that water temperatures required to furnish a first entree' temperature of  $135^{\circ}$  F can yield last soup temperatures and last beverage temperatures within the serving temperature band. Assume that soup temperature is the governing parameter. The figure shows that soup temperature would be within the band for small tray insulation thicknesses but that considerations of touch temperature in the vicinity of the hottest container place a lower bound of 0.20 in. an insulation thickness. Therefore, this insulation thickness and associated water temperature (155.7° F) will be selected as the governing parameters for the case of two man preparation

 W
 Tray
 Tw
 Hot Water
 Source Penalty
 Tray
 Penalty
 Total
 Penalty*

 60
 0.20
 155.7
 1.97LB
 185 in.³
 7.68 LB
 1680 in³
 10.65LB
 1865 in³

(Tray) (Water Source) (Water Gun) Hardware Weight 7.68 + .525 + 1.0 = 9.20 LB. Hot water source power requirement .252 KW

Hot water source electrical energy requirement .380 KW -HR.

Hot water source heat to cabin 6.44 BTU Note: Figure 15 shows that a 135° F entree' will not cool below 105°F by the end of a 20 min. dining period.

* Total penalty includes a 1.0 LB allowance for a water gun.

1

3.2 Semi-Active Heating System

3.2.1 Heated Cavity (Oven)

3.2.1.1

Preparation Sequence for Semi-Active Oven Analysis

Dishes are prepared in the following order: all entrees, all side dishes, all soups, all beverages.

When each group of six dishes is prepared it is placed in the semi-active oven to prevent cooking.

1) All cans in a group are opened and valves are unpacked.

2) Water is added to each can.

 Contents of each can are kneaded, replaced in can, and the valve repacked.

Entreés are most critical because they have the lowest initial temperature.

Equations below are valid for all can groups: During water addition entree' cools to cabia

he' A(t, -t_f) = PVCp dt, h's = 1.80 BTU/HR FT °F FROM TEST A is CAN TOTAL SURFALE AREA. V 15 CAN VOLUME

 $\frac{t_{1} - t_{f}}{t_{i} + t_{i}} = ExP\left\{-\frac{h_{i}}{R_{p}} - \frac{A}{V} \right\}$   $\frac{t_{i} + t_{i}}{V} = \frac{2}{R_{i}} + \frac{2}{L}, \quad \text{WHERE A FIND L ARE CAN RADIUS AND HEIGHT RESPECTIVELY}$   $\frac{T_{i} - t_{f}}{t_{i} - t_{f}} = ExP\left\{-\frac{h_{i}^{\prime}}{PL_{p}}\left(\frac{A}{R_{i}} + \frac{2}{L}\right)T_{W}\right\} \quad \text{DEFINITION OF TW CHARACTERIZES CAN WITH-IN GROUP, i.e. FIRST, THIRD, LAST. Entree' cools to cabin environment during kneading hc A (t_{f} - t) = VPCp \quad \frac{dt}{dt}, h_{c} = 5.06 \quad BTU/HRAT^{-2}F \quad FROM TEST$   $\frac{t_{a} - t_{i}}{t_{i} - t_{f}} = EXP\left\{-\frac{h_{c}}{PCp}\left(\frac{A}{R_{i}} + \frac{2}{L}\right)T_{3}\right\}$ 

Entree' cools to cabin environment during repacking, and kneading and repacking of subsequent cans.

$$h'_{B} A(q-t) \circ V_{PCP} \stackrel{dt}{dt}$$

$$\frac{t-t_{q}}{t_{2}-t_{f}} = EXP\left\{\frac{-h_{B}}{Pc_{p}}\left(\frac{2}{L_{1}}+\frac{2}{L_{1}}\right)T_{P}\right\}$$

3.2.1.1 Cont'd.

Combining equations

 $\frac{t-t_f}{t_i-t_f} = E \times P \left[ - \left\{ \frac{hig}{P_{\phi}} \left( T_W + \tilde{T}_P \right) + \frac{h_c}{P_{\phi}} T_3 \right\} \left( \frac{2}{a_i} + \frac{2}{c_i} \right) \right]$ 

 $t_i = .86 T_W + 10$ , where  $T_W$  is water temperature. This relationship assumes dry food storage at 70° F, and applies to entree'.

For entree',  $r_1 = 2.031$  in. and L - 1.312 in.

soup,  $r_1 = 1.344$  in. and L = 1.312 in.

3.2.1.2 Preparation Times

Rehydration Times: Entree' 20 minutes

Vegetables 15 Scup 10

Beverage

Preparation Time: assume  $\gamma_i = .25$  minutes to open a can and unpack valve.

13 = .50 minutes to knead contents

 $\Upsilon q$  = .25 minutes to replace contents and repack value

#2 = W/W, where is the time required to add water, W is the water requirement for the dish, and W is the water flow rate.

0

Water requirements: Entree  $W_E = 4.5 \text{ oz.}$ 2Side Dishes  $W_D = 12.0 \text{ oz.}$ Soup  $W_S = 3.4 \text{ oz.}$ Beverage  $W_B = 7.6 \text{ oz.}$ 

All dishes are contained in  $401 \times 105$  cans, except for soup, which is contained in a  $211 \times 105$  can.

Time Lines - Preparation by one man.

POOR QUALITY

3.2.1.2 Cont'd

Define  $T_R$  as the time from the beginning of preparation to the point at which all dishes are prepared and fully rehydrated.  $T_R$  is the greatest of the following:

For Entree'  
$$f_E = b(T_1 - T_2) + 2c$$

For Side dish  $T_{D1} = 6(T_1 + T_2 + T_3 + T_4) + 6(T_1 + T_2)_{D1} + 15$ 

For Side dish  $T_{D2} = b(T_1 + T_2 + T_3)_E + b(T_1 + T_2 + T_3 + T_4)_{D_1} + b(T_1 + T_2)_{D_1} + 15$ 

For Soup  $T_5 = 6(T_1 + T_2 + T_3 + T_4)_E + 12(T_1 + T_2 + T_3 + T_4)_G + 6(T_1 + T_2)_5 + 10$ 

For Beverage

 $\mathbb{C}^{2}$ 

 $\mathcal{T}_{B} = b \left( \mathcal{T}_{1} + \mathcal{T}_{2} + \mathcal{T}_{3} + \mathcal{T}_{4} \right) \varepsilon + l 2 \left( \mathcal{T}_{1} + \mathcal{T}_{2} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{DT} + b \left( \mathcal{T}_{1} + \mathcal{T}_{2} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{2} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{2} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{2} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{2} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{2} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{2} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + \mathcal{T}_{3} + \mathcal{T}_{4} \right)_{S} + b \left( \mathcal{T}_{1} + b$ 

DRIGINAL PAGE IS DE BOOR QUALE

3.2.1.2 Cont'd

		TABLE 7 (	REF).	
W		T2	YE, Yoi, Toz, TS, TB	TR
7	Entree'	2.41	35.96	118.32 min.
	Side Dish	3.21	36.22	
	Side Dish	3.21	81.48	
	Soup	1.83	93.40	
	Beverage	4.07	118.32	
15	Entree'	1.12	28.22	71.22
i.	Side Dish	1.5	38.22	
	Side Dish	1.5	53.22	,
	Soup	.85	59.32	
	Beverage	1.90	71.22	
30	Entree'	.56	24.86	50.58
	Side Dish	.75	30.36	
	Side Dish	.75	40.86	
	Soup	.42	44.38	
	Beverage	.95	50.58	
60	Entree'	.28	23.18	40.35
	Side Dish	.38	26.46	
	Side Dish	.38	34.74	
	Soup	.21	37.00	
	Beverage	.475	40.35	

The first group of six cans (entrees) would be placed in the oven  $L(T_1 + T_2 + T_3 + T_4)_E$  minutes after the beginning of the preparation sequence.

Assume beverages are placed directly into trays after preparation.

7#

3.2.1.2 Cont'd

Therefore, the oven operating time is

 $T_0 = T_R - 6(T_1 + T_{2-} + T_3 + T_4)_E - 6(T_1 + T_2 + T_3 + T_4)_S + 10$ where 10 minutes are allowed for warmup.

W	Т
7	77.44 minutes
15	51.10
30	39.52
60	33.82

The temperature at which entrees are served are selected as 135 and 140° F. Since the function of the semi-active oven is to prevent further cooling, the coldest entree in the group of six must not be at a temperature less than serving temperature. The coldest entree prepared would be the first and its cooling times as a function of water flow rate are:

 $T_W = 6T_1$  (This definition of  $T_W$  characterizes the first  $T_3 = .5$  can prepared in each group of six cans)  $T_P = T_q + 5(T_3 + T_q)$ 

W	Ťω	<i>1</i> 3	Te
7	14.46	.5	4.00
15	6.72	11	
30	3.36	11	11
60	1.68	,	

- 86 -

3.2.1.2 Cont'd

From the equation characterizing cooling, and for a cabin temperature,  $t_f = 75^\circ$  F, the initial temperature necessary to furnish a 135 or 140°F entree' temperature at the end of the preparation period can be determined. Once t/ is known, the water temperature required can be determined.

	•	140 ⁰ F	entree'	135 ⁰ F e	ntree'
W	<u>t -tf</u> ti-tf	ti	TW	t _i	T _W
7	.74764	161.9	176.7	155.3	168.9
15	.83735	152.6	165.8	146.7	158.9
30	.87957	148.9	161.5	143.2	154.9
60	.90147	147.1	159.4	141.6	153.0

The weight  $P_W$  and  $V_W$  penalties associated with water usage are given in Figure 34 in the Water Tank Analysis as a function of  $T_W$ :

	140 ⁰ F 3	Entree'	1350 F E	ntree
W	PW	v _w	PW	v _W
7	<b>2.2</b> 3LB	215 In ³ .	2.13	203
15	2.10	199	2.01	190
30	2.05	193	1.95 ·	184
60	2.01	<b>190</b>	1.93	182

- 87 -

. 415 . 1

3.2.1. 2 Cont'd

Cooling times and temperatures for the last entree' prepared are: (This definition of  $\mathcal{T}_{\omega}$  characterizes the last can prepared in each group of six cans). Tw= T2 (THIS DEFINITION OF TW CHARACTERDES THE LAST CAN PREPARED IN OPENING OF 518 CANS.)  $T_{3}^{=}.5$  $T_{p} = T_{4} + 5(T_{3} + T_{4})$ 140 ENTRES. 135' ENTREE' 73 To 5 400 Tw E; W t Ċ, 亡 2.41 1525 1 161.9 155.3 146.6 . .0 9/88 145.5 146.7 1526 1.12 15 . 90888 1403 142.7 148.9 143.7 .91637 30 . H 1315 147.1 141.3 92013 . 28 ω

The cooking times and temperatures for the first and last cans prepared in the other groups of six and given in Table 8 for water flow rates of 30 and 60 LB/HR. Table 7 shows that the slower water flow rates extend preparation times beyond the realm of feasibility.





TABLE &- COOLING TIMES & TEMP. FOR FIRST'S LAST CARS

						140°F 5	ter	135°F m	hee'
01314	ŵ	T.,	73	To .	1-64 	Tur .	Ŧ	Tw.	7
Fint inter "	30	3.50	.5	4.0	. 57957	×=1.5	140.0	15-4.9	135.0
	60	1.86	ļ		, 401.17	157.4	143.0	153.0	135.0
Last entre	30	.5%			. 91637	161.5	1027	154.9	137.5
	60				,92013	153.4	141.3	159.0	134.3
Fint side diet	30	4.50			, PE500	191.5	141.3	154.9	135.3
	60	2.25			15997	159.4	1-12.0	153.0	135.9
Fort side det	20	.75			. 91302	161.5	145.1	154.9	139.8
	60	. 375			. 91815	159.4	143.2	153.0	1 I P. C
Fint ude deit	30	41.50			. PE500	151.5	141.3	154.9	170.3
	50	225			, 89397	159.4	143.0	153.0	132.9
had whe deal	30	.75			.91382	161.5	1~5.1	154.9	139. F
*	60	. 375			. 91FF5	159.4	1 mg. P	153.0	13 A G
- mit nug	30	2.50			. PS\$ 976	161.5	144.2	154.9	131.9
	60	1.20			. FFRAN	159.4	144.0	153.0	138.9
hand ramp.	21	.~2			. 90.2: 7	161.5	1 + G 9	154.9	141.3
· •	60				, 90001	159.4	145.3	153.0	140.1
Fant benerage	30	5.70			1.797.21	161.5	141.7	134.9	13C.G
	60	3.F5			, Frais	159.4	1-17.3	153.0	141.8
hant binkest	30	. 95			.91115	161.5	151.3	154.9	145.4
	60	. 475		V	. 91751	159.4	149.9	153.0	144.2
<b>.</b> .			-		1			1	

* It is assumed that the temperatures this dail decreases in the area to within the servery tangenature band dering the momente, required to prepare via benerate. It is also assumed that benerage temperatures as not gerening paremeters. Under these accomptions, all cale are admissible.

e S

3.2.1.3 Oven Weight & Volume

The oven inner dimensions are the same as those used in the active oven analysis: 17.4 x 14.2 x 3.87. The oven inner surface is assumed to be .040 gage fiberglass having the following properties:  $P = 110LB/FT.^3$ 

 $G = .25 \text{ BTU/LB}^\circ \text{ F}$ 

The oven outer surface is assumed to be .030 gage aluminum having the following properties

 $f' = 173 \text{ LB/FT}^3$  $\zeta \rho = .22 \text{ BTU/LB}^\circ \text{ F}$ 

The oven insulation has the following properties:

 $P = .6 \text{ LB/FT}^3$   $C_P = .21 \text{ BTU/LB}^\circ \text{ F}$   $K = .25 \text{ BTU} - \text{IN:/HR. FT}^2 \circ \text{F}$  $a = 5.130 \text{ FT}^2$ 

Inner surface area

Fiberglass weight 1.881 LB

ð	Outer 1	Dimensions	Insulation V	ol. Outer Surf. Area
.25	17.9 x	14.7 x 4.	37 193.7 In.	3 3.633 FT. ²
.5	18.4 x	15.2 x 4.	87 405.8	6.157
1.0	19.4 x	16.2 x 5.	87 888.6	7.267
2.0	21.4 x	18.2 x 7.	87 2109.0	9.738
Ins.	Wt.	A1. W	<u>t.</u>	
.0673	LB.	2.436	LB.	
.1.409		2.663		
<b>.3</b> 085		.3.143		
.7323		4.212		

- 90 -

120.

3.2.1.3 Cont'd

Oven Weight and Overall Volume

8	Weight, P ₄	Volume
.25	4.384 LB	1149.9 In. ³
.5	4.685	1362.0
1.0	5.332	1844.8
2.0	6.825	3065.2

## 3.2.1.4 Weight Penalties Associated With Fuel Cell & ECS Interfaces

A power consumption penalty (1.514 LB/KW-HR)
 is incurred in heating the oven to equilibrium
 temperature from cabin temperature. This penalty
 is a function of insulation thickness and oven
 temperature. Cabin temperature is taken as 75° F
 and oven temperature as 135 and 140° F.

2) A power consumption penalty (1.514 LR/KW.=HR.) and an ECS penalty (.133 LB/BTU) are incurred in making up and absorbing the heat leak through the oven insulation. This penalty is a function of oven temperature, insulation thickness, and oven operating time (which is a function of heated water flow rate). Oven temperature is 135 and 140° F.

3) An ECS penalty (.133LB/BTU) is incurred as the heated oven cools from equilibrium temperature to cabin temperature after meal preparation. This penalty is a function of insulation thickness and oven temperature.

- 91 -

3.2.1.4 Cont'd

# Penalty (1):140° F oven temperature

Equilibrium Temperature, t, and energy consumption,

KW.-HR.  $\frac{k}{\pi} \left( \tau_{f} - t \right) + \left( h_{0} + Eh_{R} \right) \left( \tau_{F} - \tau \right) = O$ ho = 1.45 BTU/HRFT²°F E =, 20 EMMISIVITY OF OUTER OVEN HURFALE tf = 75°F to = 140°F

¥	2/8	T	CAPALATANCE A.S.	t	CAR INS	CAP. FIB.
.25	1.0	99.3 ⁰ f	.5360	119.6	.0141	.4702
.5	۰5	90.0	.5858	115.6	.0296	
1.0	.25	83.5	.6915	111.8	.0648	
2.0	.125	79.5	.9266	109.8	.1537	

Penalty, P1

ð	E	P ₁
.25	.01295 KW -HR	.01961 LB.
.5	.01187	01797£
1.0	.01122	.01721
2.0	.01175	.01779

 $t = \frac{1}{2}(t + t)$ 

Insulation is taken to heat from t to t Fiberglass heats from t to to

Aluminum heats from  $t_f$  to  $t = \frac{\xi(1CAP. AL)(1-t_f)(CAP. FIBERGLASS)(t_0-t_f)}{2/3413}$ 

Penalty (3): 140° F oven temperature

- 92 -

3.2.1.4 Cont'd

The same energy that heats the oven to equilibrium temperature is dissipated to the cabin during cooling. It is assumed that this energy is dissipated to the cabin at a uniform rate over an eight hour period.

From the analysis for Penalty (1)

б	E/8	P ₃ .
.25	5.525 BTU	.7348 LB
.5	5.062	.6733
1.0	4.850	.6450
2.0	5.012	.6667

Penalty 2: 140° F oven temperature

The heat leak ratio from the oven is given by where A is the outer surface area and t is the equilibrium temperature of the insulation outer surface tabulated in the analysis for Penalty (1).

W	7	t	To	RJJ	А	Е	E/8	P2
7	.25	99.3 ⁰ F	77.44	1.0	5.633	.OPE7 KW-HR	36.99BTU	5.051 LB
	.5	90.0	1111.	.5	6.157	.0582	24.83	3.391
	1.0	83.5	11	.25	7.267	.0388	16.56	2.261
	2.0	79.5	11	.125	9.738	.0278	11.88	1.622
15	.25	99.3	51.10	1.0	5.633	.0572	24.41	<b>3.3</b> 33
	.5	90.0	11	.5	6.157	.0384	16.38	2.237
	1.0	83.5	11	.25	7.267	.0256	10.93	1.492
	2.0	79.5	11	.125	9,738	.0183	7.839	1.070
30	.25	99.3	39.52	1.0	5.633	.0442	18.88	2.578
	.5	90.0		.5	6.157	.0297	12.67	1.730
	1.0	83.5	11	.25	7.267	.0198	8.451	1.154
	2.0	79.5	11	.125	9.738	.0142	6.063	.8279

- 93 -

3.2.1.4 Cont'd

W	Т	t	T	R/J	A	E	E/8	P ₂
60	.25	99.3	33.82	1.0	5.633	.0379	16.15	2.205
	.5	90.0	**	.5	6.157	.0254	10.84	1.480
	1.0	83.5	н	.25	7.267	.0169	7.232	.9874
	2.0	79.5		.125	9.738	.0121	5.188	.7083

In evaluating the ECS penalty, it was assumed that energy dissipated to the cabin would be dissipated at a uniform rate over an eight hour period.

3.2.1.4.1 Summary - Weight & Power Penalty

W	Т	Pi	P2	Pg	P ₄	Total Wt. Penalty
7	.25	.01961	5.051	.7348	4.384	10.19 LB
	.5	.01797	3.391	.6733	4.685	8.767
	1.0	.01721	2.261	.6450	5.332	8.255
	2.0	.01779	1.622	.6667	6.825	9.131
15	.25	.01961	3.333	.7348	4.384	8.471
	.5	.01797	2.237	.6733	4.685	7.613
	1.0	.01721	1.492	.6450	5.332	7.486
	2.0	.01779	1.070	.6667	6.825	8.579
30	.25	.01961	2.578	.7348	4.384	7.716
	.5	.01797	1.730	.6733	4.685	7.106
	1.0	01721	1.154	.6450	5.332	7.148
	2.0	.01779	.8279	.6667	6.825	8.337
60	.25	.01961	2.205	.7348	4.384	7.343
	.5	.01797	1.480	.6733	4.685	6.856
	1.0	.01721	.9874	,6450	5.332	6.982
	2.0	.01779	.7083	.6667	6.825	8.218

- 94 -

3.2.1.4.1 Cont'd

The total penalty is plotted in Fig. 22 as a function of insulation thickness and heated water flow rate. The optimum insulation thicknesses are determined from this figure, and the oven weight penalties associated with these optimum are given in Figure 22 as a function of heated water flow rate.

Power requirements are shown in Figure 23.

5 ...



~ 96 -



3.2.1.5

# 140°F First Entree' Temperature

 $T_{M}$ Hot Water Source Penalty Tray Penalty Optimum Oven W Oven Penalty Total Penalty* 193 In.³ 5.76LB 1627in³ 15.38LB 3340 in. 2.05LB 30 161.5 .688 in. 7.07LB 1520in³ 60 159.4 5.76 2.01 190 6.85 1430 15.12LB 3247 in³ 1627 .588 W = 30(oven) (water source) (trays) (water gun)

Hardware weight 4.93 + 5.76 + .53 + .5 = 11.72 LB

Hot water source power requirement .263 KW

Electrical energy requirement .398 KW-HR

Heat to cabin 6.70 BTU

Oven power requirement .0378 KW

Electrical energy requirement .0362 KW-HR

Heat to cabin 15.5 BTU

W = 60

t

88

£

(oven) (trays) (Water source) (water gun) Hardware weight 4.80 + 5.76 + .53 + .5 = 11.59 LB

Hot water source power requirement .259 KW

Electrical energy requirement .392 KW-HR Heat to cabin 6.60 BTU

Oven power requirement .0415 KW

Electrical energy requirement .0350 KW=HR

Heat to cabin 15.0 BTU

NOTE: Tray configuration is that of an uninsulated tray. Figure 14 shows that an uninsulated 135 or 140°F entree' will not cool below 105°F by the end of a 20 minute dining period.

* Total penalty includes a 0.5 LB allowance for a water gun.

3.2.1.5 Cont'd

Penalty (1) : 135° F oven temperature

Equilibrium temperature, t and energy consumption, KW - HR

Е

$\frac{k}{T}\left(\frac{t_0}{t}\right) + \left(\frac{h_0}{t} + \frac{\epsilon}{h_2}\right)\left(\frac{t_{f-t}}{t}\right) = 0$	
-------------------------------------------------------------------------------------------------------------------------------	--

 $h_{\mathcal{B}} = 1.45 \text{ BTU/HR.FT.}$  $\circ_{\rm F}$ 

$$\epsilon$$
 = .20 (emissivity of oven outer surface)

 $t_f = 75^{\circ} F$ 

	t ₀ =	· 135° .	F			
7	R/F	τ	CAPACITANCE AL	~2	CAPACAPANCE INS.	CAP. FIRE
.25	1.0	97.4	.5360	116.2	.0141	.4702
.5	.5	88.8	.5858	111.9	.0296	
1.0	.25	82.8	.6915	108.9	.0648	
2.0	.125	79.2	.9266	107.1	.1537	

Penalty, P₁

Ŧ.	E	P ₁
.25	.01195 KW-HR	.01810 LB.
.5	.01095	.01659
1.0	.01049	.01588
2.0	.01085	.01643

 $t = \frac{1}{2}(t_0 + t)$ 

Insulation is considered to heat from t to t

Fiberglass heats from tr to to

Aluminum heats from  $t_f$  to t

E = { ( CAP. AL) (t - cf) + (CAP ING.) (t - tf) + (CAP. FIGERULASS (to- tf) 3413 Penalty (3) : 135°F oven

3.2.1.5 Cont'd

The same energy that heats the oven to equilibrium temperature is dissipated to the cabin at a uniform rate over an eight hour period.

From the analysis for Penalty (1)

8	E/8	. P3
,25	5.100 BTU	.6783 LB
.5	4.674	.6216
1.0	4.475	.5952
2.0	4.630	.6157

Penalty 2: 135° F oven temperature The heat leak rate from the oven is given by where A is the oven outer surface area and t the equilibrium temperature of the insulation outer surface tabulated in the analysis for Penalty (1).

W	б	t	To	k/T	A	E	E/8	Py
30	.25	97.4	39.52	1.0	5.633	.04087KW-HR	17.44BTU	2.381 LB
	.50	88.8		.5	6.157	.02745	11.71	1.599
	1.0	82.8	н	.25	7.267	.01830	7.808	1.066
	2.0	79.2		.125	9.738	.01311	5.592	.7636
60	25	97.4	33.82	1.0	5.633	.03498	14.92	2.038
	.50	8.83	11	.5	6.157	.02349	10.02	1.368
	1.0	82.8	tt Ray	.25	7.267	.01566	6.682	.9124
	2.0	79.2	11	.125	9.738	.01122	4.786	.6535

In evaluating the ECS penalty, it was assumed that energy is dissipated to the cabin at a uniform rate over an eight hour period.

3.2.1.5.1 Summary - Total Weight & Power Penalty

W	7	P1	P ₂ .	P3	P ₄	Total Wt. Penalty
30	.25	.01810	2.381	.6783	4.384	7.461 LB
	.5	.01659	1.599	.6216	4.685	6.922
	1.0	.01688	1.066	.5952	5.332	7.009
	2.0	.01643	.7636	.6157	6.825	8.221
60	.25	.01810	2.038	.6783	4.384	7.118
	.5	.01659	1.368	.6216	4.685	6.691
	1.0	.01588	,9124	.5952	5.332	6.855
	2.0	.01643	.6535	.6157	6.825	8.11

The total weight penalty is plotted in Figure 24 as a function of oven insulation thickness and heated water flow rate. The optimum insulation thicknesses are determined from this figure. Power requirements are shown in Figure 25.





### ONE MAN PREPARATION

135°F	Firs	t Entree T	emperatu	re					:			
W 30 1	Τ _W L59.4	Hot Water 2.01LB	Source	Penalty In ³	Tray 5.76LB	Penalty 1627 In	Optimum 3	Oven IN.	Oven 6.90 LB.	Penalty 1500 In. ³	Total 15.17LB	Penalty* 3317 In. ³
60 3	153.0	1.93	182		5.76	1627	.562		6.69	1400	14.88	3209
W =	= 30			·	,					· .		
Ha	ardwar	e weight	(oven) 4387	(t + 5	rays) .76	(water s + .53	source) ( +	water ; .5	gun) =	11.66 LB.		
He	ot wat	er source	power re	quiremen	t.259	ĸw						
	Ele Hea	ctrical er t to cabir	nergy req N	uirement	.392 6.60 1	KW-HR BTU			·	· .		
01	ven po	wer requi	ement .	0362 KW								
	Ele Hea	ctrical en t to cabin	nergy req	uirement	.0342 14.5 BTI	KW-HR U						
W =	= 60		(avon)	(+		(mate)	<b>x</b>	(reat a	<b>n</b> 24 <b>n</b> )			
Ha	ardwar	e weight	4.75	+ ((	5.76	(wate + .5)	2 +	(wate	r gun) =1	1.53 LB		
Ho	ot wat	er source	power re	quiremen	it .246	KW						• •
	Ele Hea	ctrical en t to cabin	nergy req n 6.33	uirement BTU	.372 1	KW-HR				. ·		
ۍ م	ven po	wer requir	cement .0	392 KW								
	Ele Hea	ctrical en t to cabin	nergy req n 14.0 B	uirement TU	.0327 1	KW-HR.						
Note:	Tray entr	configura ee' will n	ation is not cool	that of below 10	an unin: )5 ⁰ F by	sulated tr the end o	ay. Figur f a 20 min	e 14 s ute di	hows that ning per	an uninsula iod.	ited 135 o	r 140 ⁰ F

* Total penalty includes a 0.5 LB allowance for a water gun.

- 104 -

## 3.2.1.7 Time Lines - Preparation by Two Men

Assume each man prepares three meals.

Define  $T_R$  as the time from the beginning of preparation to the point at which all dishes are prepared and fully rehydrated.  $T_R$  is the greatest of the following:

For entree'  $T_E = 3(T_1 + T_2)_E + 20$ 

FOR	9,0E D141.
	$T_{01} = 3(T_1 + T_2 + T_3 + T_4)_E + 3(T_1 + T_2)_{01} + 15$
FOR	Sice Pish
	$7_{02} \circ 3(1_1 + 1_2 + 1_3 + 1_4) = + 3(1_1 + 1_2 + 1_3 + 1_4)_{0, +3}(1_1 + 1_2)_{5, +10}$
FOR	DEVERAGE
	$b = \Im(1_1 + 1_2 + 1_3 + 1_4) = + b(T_1 + T_2 + T_3 + T_4)_{D1} + \Im(T_1 + T_2 + T_3 + T_4)_5 +$
	$-(T_1 + T_2 + T_3 + T_9)_8$

# Table 9 - 2 Man Preparation Times

7       Entree'       2.41       27.98       59.16 min.         Side dish       3.21       35.61       35.61         Side dish       3.21       48.24       35.61         Soup       1.82       51.70       35.61         Beverage       4.07       59.16       59.16         15       Entree       1.12       24.11       35.61         Side Dish       1.50       26.61       35.61         Side Dish       1.50       34.11       35.61         Soup       .85       34.66       34.66         Beverage       1.90       35.61       35.61         30       Entree'       .56       22.43       27.93         Side Dish       .75       22.68       36         Side Dish       .75       27.93       35.61         30       Entree'       .29       21.59       24.87         Soup       .42       27.19       35.61       36         Beverage       .95       25.29       24.87       35         60       Entree'       .29       21.59       24.87         Side Dish       .38       20.73       35       35         Sid						
Side dish       3.21       35.61         Side dish       3.21       48.24         Soup       1.82       51.70         Beverage       4.07       59.16         15       Entree       1.12       24.11         Side Dish       1.50       26.61         Side Dish       1.50       34.11         Soup       .85       34.66         Beverage       1.90       35.61         30       Entree'       .56       22.43       27.93         Side Dish       .75       22.68       35.61         Side Dish       .75       27.93       35.01         Soup       .42       27.19       35.29         60       Entree'       .29       21.59       24.87         Side Dish       .38       20.73       35.61         Side Dish       .38       20.73       35.29         60       Entree'       .29       21.59       24.87         Side Dish       .38       24.87       35.00         Beverage       .475       20.18       20.18	7	Entree!	2.41	27.98	59.16 min.	
Side dish       3.21       48.24         Soup       1.82       51.70         Beverage       4.07       59.16         15       Entree       1.12       24.11       35.61         Side Dish       1.50       26.61       35.61         Side Dish       1.50       34.11       35.61         Soup       .85       34.66       35.61         Beverage       1.90       35.61       30         Soup       .85       34.66       36         Beverage       1.90       35.61       30         Soup       .85       22.43       27.93         Side Dish       .75       22.68       31         Side Dish       .75       27.93       30         Soup       .42       27.19       35         Beverage       .95       25.29       24.87         Side Dish       .38       20.73       31         Side Dish       .38       20.73       35         Side Dish       .38       24.87       350         Beverage       .475       20.18       350		Side dish	3.21	35.61		
Soup         1.82         51.70           Beverage         4.07         59.16           15 Entree         1.12         24.11         35.61           Side Dish         1.50         26.61         35.61           Soup         .85         34.66         35.61           Beverage         1.90         35.61         35.61           30 Entree'         .56         22.43         27.93           Side Dish         .75         22.68         27.93           Side Dish         .75         27.93         35.01           Soup         .42         27.19         35.29           60 Entree'         .29         21.59         24.87           Side Dish         .38         20.73         338           Side Dish         .38         24.87           Soup         .21         23.50           Beverage         .475         20.18		Side dish	3.21	48.24	· · · ·	
Beverage         4.07         59.16           15 Entree         1.12         24.11         35.61           Side Dish         1.50         26.61         35.61           Side Dish         1.50         34.11         35.61           Soup         .85         34.66         30           Beverage         1.90         35.61         30           Soup         .85         22.43         27.93           Side Dish         .75         22.68         30           Side Dish         .75         27.93         30           Soup         .42         27.19         35.61           Beverage         .95         25.29         50           60 Entree'         .29         21.59         24.87           Side Dish         .38         20.73         33           Side Dish         .38         20.73         35           Soup         .21         23.50         350           Beverage         .475         20.18         50		Soup	1.82	51.70		
15 Entree       1.12       24.11       35.61         Side Dish       1.50       26.61       34.11         Soup       .85       34.66       35.61         30 Entree'       .56       22.43       27.93         Side Dish       .75       22.68       27.93         Side Dish       .75       27.93       200         Soup       .42       27.19       24.87         Beverage       .95       25.29       24.87         60 Entree'       .29       21.59       24.87         Side Dish       .38       20.73         Side Dish       .38       24.87         Soup       .21       23.50         Beverage       .475       20.18		Beverage	4.07	59.16	· · · · · · · · · · · · · · · · · · ·	
Side Dish       1.50       26.61         Side Dish       1.50       34.11         Soup       .85       34.66         Beverage       1.90       35.61         30 Entree'       .56       22.43       27.93         Side Dish       .75       22.68       27.93         Side Dish       .75       27.93       20.18         Soup       .42       27.19       24.87         Beverage       .95       25.29       24.87         Side Dish       .38       20.73       24.87         Side Dish       .38       24.87         Soup       .21       23.50       23.50         Beverage       .475       20.18       20.18	15	Entree	1.12	24.11	35.61	
Side Dish       1.50       34.11         Soup       .85       34.66         Beverage       1.90       35.61         30 Entree'       .56       22.43       27.93         Side Dish       .75       22.68       56         Side Dish       .75       27.93       500         Soup       .42       27.19       24.87         Beverage       .95       25.29       24.87         60 Entree'       .29       21.59       24.87         Side Dish       .38       20.73       51de Dish       .38         Side Dish       .38       24.87       500       24.87         Soup       .21       23.50       23.50       24.87         Beverage       .475       20.18       20.18       24.87		Side Dish	1.50	26.61		
Soup       .85       34.66         Beverage       1.90       35.61         30 Entree'       .56       22.43       27.93         Side Dish       .75       22.68       56         Side Dish       .75       27.93       500         Soup       .42       27.19       500         Beverage       .95       25.29       24.87         60 Entree'       .29       21.59       24.87         Side Dish       .38       20.73       51         Side Dish       .38       24.87       500         Soup       .21       23.50       23.50         Beverage       .475       20.18       20.18		Side Dish	1.50	34.11		
Beverage         1.90         35.61           30 Entree'         .56         22.43         27.93           Side Dish         .75         22.68         56           Side Dish         .75         27.93         500           Soup         .42         27.19         56         24.87           Beverage         .95         25.29         24.87         56           60 Entree'         .29         21.59         24.87         56           Side Dish         .38         20.73         56         500         500           Side Dish         .38         24.87         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500		Soup	.85	34.66		
30 Entree'       .56       22.43       27.93         Side Dish       .75       22.68		Beverage	1.90	35.61		
Side Dish       .75       22.68         Side Dish       .75       27.93         Soup       .42       27.19         Beverage       .95       25.29         60 Entree'       .29       21.59       24.87         Side Dish       .38       20.73         Side Dish       .38       24.87         Soup       .21       23.50         Beverage       .475       20.18	30	Entree'	56	22.43	27.93	-
Side Dish       .75       27.93         Soup       .42       27.19         Beverage       .95       25.29         60 Entree'       .29       21.59       24.87         Side Dish       .38       20.73       36         Side Dish       .38       24.87       24.87         Soup       .21       23.50       23.50         Beverage       .475       20.18       20.18		Side Dish	.75	22.68		
Soup       .42       27.19         Beverage       .95       25.29         60 Entree'       .29       21.59       24.87         Side Dish       .38       20.73         Side Dish       .38       24.87         Soup       .21       23.50         Beverage       .475       20.18		Side Dish	.75	27.93		
Beverage         .95         25.29           60 Entree'         .29         21.59         24.87           Side Dish         .38         20.73         24.87           Side Dish         .38         24.87         24.87           Soup         .21         23.50         23.50           Beverage         .475         20.18         20.18		Soup	.42	27.19		
60 Entree'       .29       21.59       24.87         Side Dish       .38       20.73         Side Dish       .38       24.87         Soup       .21       23.50         Beverage       .475       20.18		Beverage	.95	25.29		
Side Dish       .38       20.73         Side Dish       .38       24.87         Soup       .21       23.50         Beverage       .475       20.18	60	Entree'	.29	21.59	24.87	_
Side Dish         .38         24.87           Soup         .21         23.50           Beverage         .475         20.18		Side Dish	.38	20.73		
Soup         .21         23.50           Beverage         .475         20.18		Side Dish	.38	24.87		
Beverage .475 20.18	÷.,	Soup	.21	23.50		
		Beverage	.475	20.18	· · · · · · · · · · · · · · · · · · ·	

3.2.1.7 Cont'd

The first two groups of three cans (entrees) would be placed in the oven  $3(T_1+T_2+T_3+T_4)_e$  minutes after the beginning of the preparation sequence.

Assume beverages are placed directly into trays after preparation.

Therefore, the oven operating time is

To =	$T_R - 3(T_1 + T_2 + T_3 + T_4)_E - 3(T_1 + T_2 + T_3 + T_4)_8 + 10$
where	10 minutes are allowed for warmup.
W	To
7	43.72 minutes
15	30.55
30	27.40
60	26.60
<b>6</b> 11	

The cooling times during preparation of the first and last cans of a group of three are:

First Can	Last Can
$T_{10} = 3T_3$	Tw = T2
$T_3 = .5$	T3 = .5
Tp = Tq +5(T3+Tq)=4.0	Tp. 19 +5(19+19)=4.0

From the equation characterizing cooling, and for a cabin temperature,  $t_f = 75^\circ$  F, the initial temperature necessary to furnish a 135 or  $140^\circ$ F entree' temperature at the end of the preparation period can be determined. Once  $t_i$  is know, the water temperature required can also be determined.

		140	"ENTLEE	135° ENTREE		
W	<u>t-t</u>	t;	Τw	t;	Τw	
30	.09147	147.1	159.4	141.6	153.0	
60	.91262	146.2	158.4	140.7	152.0	

- 106 -

3.2,1.7 Cont'd

The weight,  $P_W$ , and volume  $V_W$ , penalties associated with water usage are given in Figure 34 in the Water Tank Analysis as a function of  $T_W$ :

140°F Entree'

W P_W V_W P_W V_W

30 2.01 190 1.93 182

60 2.00 189 1.92 180

The cooling times and temperatures for the first and last cans prepared in each group of three are given in Table 10 for water flow rates of 30 and 60 LB/HR.

3.2.1.7.1

and the second

#### Weight Penalties Associated with Fuel All and ECS Interfaces

The variation of penalties  $P_1$  and  $P_3$  with oven insulation thickness and temperature is identical to that determined for the care of meal preparation by one man. Penalty  $P_2$ , however, is dependent on oven operating time, which is much shorter for the case of meal preparation by two men:



	Γ					140°F entrel	135°F intree'
DISH	Ŵ	Tw	<i>T</i> 3	T _P	1-14 	The t	The F
Fuitatu'	30	1.69	.50	4.0	.90147	157.4 140.0	153.0 125.0
	60	54			.912=0	15F.4 140.0	152.0 1350
East entrel"	50	مته ک			.91-37	159.04 121.1	153.0 136.0
	60	. 28			.92013	15P.4 140.5	15.2.0 135.5
First ride deal	30	2.25			. 89397	159.4 143.0	153.0 134.9
· · · ·	60	1.135.			1,90222	151.4 142.3	152.0 137.1
hat ude deal	30	. 75			.9/322	159.4 14 3.4	153.0 188.2
	60	. 375			. 91885	15F.4 143.0	152.0 137.7
First rede des	30	3.35			. 29397	159.4 142.0	153.0 135.9
• · · · · ·	50	1.125			.90000	158.4 143.3	152.0 127.1
hart reds dert	30	. 75			C91383	154.4 143.4	153.0 138.2
	60	.375			.91925	15F.4 143.0	152.0 137.7
Furting	30	1.26			. PP9-14	159.4 144.0	153.0 13F.7
	60	و چې،			. P9934	158.4 144.0	152.0 13P.7
hart sugar	30	.43			.90207	159.4 125.1	153.0 139.F
•	60	. 31			.9050/	ISF. W INN.S	152.0 159.2
First blue age	30	.D. P5			. FRAIG	159.4 1-17.3	153.0 1-11.P
	60.	1.425			90494	151.41 147.9	1520 1423
hert benerage	50	.95			.91115	159.4 149.4	153.0 143.7
· · · · ·	<i>co</i>	. ~75	Υ.		,71751	151.4 149.0	152.0 1-13.3

TABLE 10-COOLING TIMES & TEMP. FOR FIRST & LAST CANS

It is anumed that blues as timperatures as mil gavening parasters. Under this anaption, all cares are adminable.

108

# 3.2.1.7.1 Cont'd

Penalty (2) : <u>140°F oven temperature</u>

<b>W</b> 30	<b>5</b> .25	- <b>t</b> 99.3	То 27.40	<i>b/8</i> 1.0	<b>A</b> 5.633	<b>E</b> .0306 KW-HR	E/8 13.09 BTU	<b>P2</b> 1.787 LB
	.5	90.0		5	6.157	.0206	8.784	1.199
	1.0	83.5		.25	7.267	.0137	5.859	.8000
	2.0	79.5		.125	9.738	.00985	4.204	.5740
60	.25	99.3	26.60	1.0	5.633	.0298	12.70	1.734
	.5	90.0		.5	6.157	.0200	8.526	1.164
	1.0	83.5		.25	7.267	.0133	5.689	.7766
	2.0	79.5		.125	9.738	.00952	4.080	.5571

Summarizing penalties for this case - See Figure 26.

<b>W</b> 30	<u>б</u> .25	<b>F</b> i .01961	<b>P2</b> 1.787	<b>P3</b> .7348	<b>P4</b> 4,384	TOTAL WEIGHT PA 6.925 LB	ENALTY
	.5	.01797	1.199	.6733	4.685	6.575	
	1.0	.01721	.8000	.6450	5.332	6.794	
	2.0	.01779	.5740	.6667	6.825	8.083	
60	.25	.01961	1.734	.7348	4.384	6.872	
	.5	.01797	1.164	.6733	4.685	6.540	
	1.0	.01721	.7766	.6450	5.332	6.771	
	2.0	.01779	.5571	.6667	6.825	8.067	

A summary of power requirements is shown in Figure 27.

ana Marija





- 110 -



3.2.1.7.2 Weight Penalty (P2) - 135°F Oven Temperature

W 30	<b>8</b> .25	<b>−</b> 97.4	<b>To</b> 27.40	<b>k/B</b> 1.0	A 5.633	<b>E</b> . .02834KW-HR	<b>E/</b> 8 12.09BTU	<b>P2</b> 1.651 LB
	.5	88.8		.5	6.157	.01903	8.119	1.109
	1.0	82.8		.25	7.267	.01269	5.413	.7391
	2.0	79.2		.125	9.738	.00909	3.877	.5294
60	.25	97.4	26.60	1.0	5.633	.02751	11.73	1.603
	.5	88.8		.5	6.157	.01848	7.881	1.076
	1.0	82.8		.25	7.267	.01232	5.256	.7176
	2.0	79.2		.125	9.738	.00882	3.764	.5140

Summarizing penalties for this case - See Figure 28

<b>W</b> 30	<b>8</b> .25	<b>P</b> .01810	<b>Pz</b> 1.651	<b>P3</b> .6783	<b>P4</b> 4.384	TOTAL WEIGHT PENALTY 6.731
	<b>.</b> 5	.01659	1.109	.6216	4.684	6.432
	1.0	.01588	.7391	.5952	5.332	6.682
	2.0	.01643	.5294	.6157	6,825	7.987
60	.25	.01810	1.603	.6783	4.384	6.683
	.5	.01659	1.076	.6216	4.685	6.399
	1.0	.01588	.7176	.5952	5.332	6.661
	2.0	.01643	.5140	26157	6.825	7.971

A summary of power requirements is shown in Figure 29.





.....


#### TWO MAN PREPARATION

For the case of two man preparation, requirements for 30 and 60 lb/hr water flow rates are so close that only those for a 30 lb/hr rate will be detailed.

140°F First Entree' Temperature

Hot Water Optimum Oven T Oven Penalty W  $T_{7,7}$ Source Penalty Tray Penalty Total Fenalty* 2.01 LB 190 IN.³ 5.76LB 1627In³ 6.58 LB 1380In³ 15.35LB 3197 In³ 30 159.4 .525 IN. (water gun) (oven) (trays) (water source) Hardware weight 4.71 ÷ 5.76 +.531.0 + =12.00 LB

Hot water source power requirement .259 KW

Electrical energy requirement .392 KW-HR Heat to cabin 6.60 BTU

Oven power requirement .0438 KW

Electrical energy requirement .0320 KW-HR. Heat to cabin 13.7 BTU

135°F First Entree' Temperature

Į.

115

Т

W  $T_W$  Hot Water Source Penalty Tray Penalty Optimum Oven T Oven Penalty Total Penalty  $\Rightarrow$ 30 153.0 1.93 LB 182 In.³ 5.76 LB 1627 In³.512 In. 6.45 LB. 1370 In³.1514LB. 3179 In³.

(oven) (trays) (water source) (water gun) Hardware weight 4.70 + 5.76 + .52 + 1.0 = 11.98 Lb.

Hot water source power requirement .246 KW

Electrical energy requirement .372 KW-HR Heat to cabin 6.33 BTU

Oven power requirement .0610 KW

Electrical energy requirement .0298 KW=HR. Heat to cabin 12.8 BTU

NOTE: Tray configuration is that of an uninsulated tray, Figure 14 shows that an uninsulated 135 or 140°F entree' will not cool below 105°F by the end of a 20 min. dining period.

* Total penalty includes a 1.0 LB allowance for a water gun.

3.3 Active Heating Systems

3.3.1 Convective Hot Air Oven

3.3.1.1 Hot Air Convective Heating Oven-Heating Time

Determine time to heat 401 and 211 cans from initial to final temperatures. Variables are:  $T = Contemperature {}^{O}F$  $T_g = Gas$  temperature  ${}^{O}F$  $h = Convective heat transfer coefficient - <math>\frac{ATn}{hv - ft^2 - F}$  $\Theta = time - hrs.$ 

# For 401 Can:

TOTAL SUBFACE AREA =  

$$1.31^2$$
  
 $A = 2 \times \frac{11}{4} (4.06)^2 + \frac{11}{5} \times 4.06 \times 1.31^2$   
 $= 42.7 \text{ IN } 2 = 0.296 \text{ ft}^2$   
VOLUME =  $\frac{11}{4} (4.06)^2 \times 1.31^2 = 17 \text{ IN}^3$ 

W = Contents weight assuming water = 0.6#



$$\frac{1}{1.31^{2}}$$

$$\frac{1}$$

W = Contents weight assuming water = 0.27# C = Specific heat of can contents =  $1.0 \frac{AT''}{B'' - F}$ 

Assuming internal contents of can heats uniformly,

(1) 
$$hA(T_g - T) = WC \frac{dT}{d\theta}$$

$$\int_{T_i}^{4} \frac{-d\tau}{\tau_g - \tau} = -\int_{0}^{0} \frac{hAd\theta}{WC}$$

WHERE : Ti = INITIAL CAN TEMP. TP=FINAL CAN TEMP. 3.3.1.1 Cont'd INTEERATING AND REARRANGING GIVES: (2)  $T_f = T_g - (T_g - T) \exp($ 

 $T_i$ :  $T_i$  can be cabin temperature, say 70° F or if water is available at 35°, the mixed temperature resultant with the dehydrated food.

The latter is determined as follows from given equations:

For entree'  $T_m = 0.86 \times 35 + 10 = 40^{\circ}F$ Side Dish  $T_m = 0.89 \times 35 + 8 = 40^{\circ}F$  $0.83 \times 35 + 12 = 41^{\circ}F$ 

Assume lowest initial temp. = 40°F

 $T_f$ : Prepared food temp. stipulated to be  $135 \swarrow T_f \bigstar 145^{\circ}F$  $T_g$ : The heated gas temperature is limited by the nature of the plastic food bag inside the cans. Allowing a maximum spot temperature occuring in the bag to be 270°F, a lower maximum average effective temperature will be taken for the heated gas flowing over the cans, say 250°F.

Using equation (2) on Page , determine the relationship between  $T_g$ , h, and  $\Theta$  in increasing can temp. from  $T_i$  to  $T_f$ . Results are plotted in Fig. 30 for heating from 40°F to 145°F and Fig. 31 for heating from 70°F to 145°F.

- 117 -

#### 3.3.1.2 Oven Arrangement

Fig. 32 is a schematic arrangement of a convective oven which will heat six meals simultaneously, each meal consisting of three 401 size cans and one 211 can (one entree', 2 side dishes, and a soup). The four cans of each meal are arranged in an in-line configuration retainer in an individual meal serving tray which can be slipped into guide channels in the oven. Closed loop hot air recirculation is induced by means of a radial blower driven by an electric motor which is external to the hot air circuit, thereby obviating high temperature operating problems. The blower discharges into a plenum chamber provided with electrical heating elements. The heated air then flows over the cans in the upper cavity of the oven to the opposite end of the oven. A slot at the end of the baffle permits the air to flow downward into the bottom cavity and over the bottom cans in the. reverse direction to enter the bottom plenum which feeds the suction side of the blower. A temperature sensor in the airstream immediately downstream of the heater elements at the entrance to the upper cavity controls the heater power dissipation to limit the maximum air temperature to  $T \leq 270^{\circ} F$ .

a the second



- 119 -





3.3.1.3 Convective Coefficient Calculation

Determination of "h".

Assuming that a total time of one hour is allowed for meal preparation, eating, and cleanup, a reasonable heating time should not be longer than about 15 minutes (0.25 hrs.). Referring to Fig. 30 and taking an average effective gas temperature to be 250°F, it is seen that a 401 can (which heats more slowly than the smaller 211 can) requires an "h" of 5.5 tc be heated from 40°F to 145°F in 15 min. Fig. 31 shows that a 401 can initially at 70°F will reach 145°F in approximately 12 min. for the same conditions.

Design for "h" = 5.5 AT n/ hr.- ft? - F
Ref. Kreith - Principles of Heat Transfer -1958 p. 388.

(3) 
$$\frac{h_c D_o}{K_f} = 0.33 \text{ cH} \left(\frac{G \text{ MAX } D_o}{M_f}\right)^{0.6} Pr_f^{0.3}$$

For transverse flow over in line tubes provided a correction is applied for less than 10 transverse rows. The correction factor for three transverse rows = 0.87. For preliminary design the factor  $C_A$  may be taken as unity.

hc = average "h"

Po = cylinder = 4.06" for 401 can = 0.338 ft. K_f, M_f, Pr_f = fluid properties at film temperature. G max. = mass flow per **UNIT** area at minimum section.

3.3.1.3 Cont'd

Minimum Section:

Flow area between cans:  $1.312 \times 5 \times 0.5 = 3.28 \text{ in}^2$ ?

Area above and below cans for 0.25"clearance:

 $2 \times (0.25 \times 17.37) = 8.68 \text{ in}^2$ 

Flow area at minimum section =  $\mathcal{L} = 11.96 \text{ in}^2$ = 0.0825 ft²

3.3.1.4 Blower Sizing

Can average surface Temp:

If 40  $\rightarrow$  145 F, then  $\frac{40 + 145}{2} = 93^{\circ}F$ If 70  $\rightarrow$  145 F, then  $\frac{70 + 145}{2} = 108^{\circ}F$ Take average SURFACE temp =  $\sim 100^{\circ}F$ T gas average = 250°F  $\therefore$  T film =  $\frac{250 + 100}{2} = 175^{\circ}F$  average than for air at 175°F.  $K_{f} = 0.0169 \text{ BTU/hr-ft-F}$   $Pr_{f} = 0.72$   $M_{f} = 0.043 \frac{\#}{\text{hr-ft}}$ for air  $\sqrt{250^{\circ}F} = \frac{14.7 \times 144}{53.5 \times 710} = 0.0558 \#/\text{ft}^{3}$ Then rearranging and substituting in equation (3)

$$\begin{split} h & \mu \\ 5.5 = \underbrace{0.0169}_{0.338} \times 0.333 \times 1 \times 0.87 \qquad \begin{bmatrix} G \text{ MAX. } \times 0.338 \\ 0.043 \end{bmatrix}^{0.6} \\ ft \\ \hline \\ (\underbrace{G \text{ MAX } \times 0.338}_{0.043})^{0.6} = \underbrace{5.5 \times 0.338}_{.0169 \times 0.33 \times 0.87 \times 0.91}^{0.043} = 420 \\ ft \\ \hline \\ 0.043 \end{bmatrix}^{0.6} = \underbrace{5.5 \times 0.338}_{.0169 \times 0.33 \times 0.87 \times 0.91}^{0.043} = 420 \\ 0.91 \\ \hline \\ \text{SMAX} = \underbrace{(420)^{1.67} \times 0.043}_{0.338} \\ \hline \\ \text{VMAX} = \underbrace{24030 \times 0.043}_{0.0558 \times 0.338} \\ \frac{ft}{hr} \times \frac{1hr}{3600} \\ \text{sec} = 15.3 \\ \frac{ft}{\text{sec}}. \end{split}$$

3.3.1.4.1 Required blower volume flow = 
$$Q = A_{MIN} V_{MAX}$$
  
 $Q = 0.0825 \text{ ft}^{\sim} \times 15.3 \frac{\text{ft}}{\text{SEC}} \times \frac{6052C}{\text{MIN}} = 76 \text{ cfm}$ .

Find required pressure rise across blower.  

$$\Delta P \sim \frac{k' Q V^2}{2} = \frac{k' \times 0.0558 \times 15.3 \times 15.3}{64.4 \times 144 \times 0.036} = k' 0.039'' H_{2'}$$

loss given (ref Kreith P.390) and N number of

transverse rows.

(4) 
$$f' = \left[ 0.044 + \frac{0.08}{(\frac{5\tau - 1}{D_0})^{0.43 + 1.13}} \right] \left[ \frac{G MAX D_0}{M_{b}} \right]^{-0.15}$$

Where  $S_{\rm L}$  &  $S_{\rm T}$  are longitudinal and transverse pitches

respectively. For 401 cans 
$$S_L = S_T = 4.56''$$
  

$$f' = \begin{bmatrix} 0.044 + .08 \frac{4.56}{4.06} \\ (\frac{3.56}{4.06}) 0.45 + 1.13 \times 4.06 \\ \frac{4.56}{4.56} \end{bmatrix} \begin{bmatrix} 15,660 \\ -0.0356 \\ 5 \\ hrg 0.04 \end{bmatrix}$$

 $rows = 6 \times 0.04 = 0.24$ 

Estimated dynamic losses:



$$K^{1} = \mathcal{E} = 7.74$$

System pressure drop =  $7.74 \times 0.039$ " H₂0 = 0.302" H₂0 for H = 5.5



25

3.3.1.4.2 Determine Blower Power = function of "h"

.

Substituting in equation (3).  

$$h = \begin{bmatrix} 0.0169 \\ 0.358 \\ \times 0.358 \\ \times 0.358 \\ \times 0.338 \\ \times 0.67 \\ \times 0 \\ = \begin{bmatrix} 0 \\ h \end{bmatrix}^{1.67} = \underbrace{0 \\ VD} \\ \underbrace{M}_{M} \\ \underbrace{M}_{H} \\ \underbrace{M}_{H} \\ \underbrace{V}_{H} \\ \underbrace{0.43}(9_{h})^{1.67} \\ 0.558 \\ \times 0.338 \\ \times 3600^{2} \\ \underbrace{V}_{L} \\ \underbrace{V}_{L}$$

8.4

11.67

16.38

A CONTRACT OF A

.•

.

7.0

7.5

8.0

.



- 126 -

3.3.1.4.2 Cont'd

These values represent the theoretical blower power to flow air at a sufficient rate to provide the "h" values indicated. The values are plotted on Fig. 33.

# 3.3.1.5 Concurrant Heating

If oven is designed to heat 401 can from  $40^{\circ}F - 145^{\circ}F$ in 15 minutes  $T_g = 250^{\circ}F$ , it was determined that h - 5.5 is required.

Question: Suppose a 211 can initially at 70°F is placed into the given conditions for 15 min.? For 211 can W = 0.265#, A = 0.156 ft² Than  $T_{f} = 250 - (250-7) \exp \left(\frac{-5.5 \times 0.156 \times 0.25}{0.265 \times 1}\right)$ 211  $T_{g}$   $T_{g}$  T can  $T_{f} = 170^{\circ}$  which is too hot.

This can be remedied by baffling the heating air flowing over the line of 211 cans to diminish the heat transfer rate to the 211 cans (only) so that they reach design temp. at the same time as the 401 cans.

### 3.3.1.6 Insulation Study

Determine oven insulation to optimize heat loss penalty and produce allowable touch temperature.

From Skylab experience limit allowable order surface touch temperature to 105°F.

Let insulation have  $K = 0.25 \frac{BTU - in}{hr - ft^2}$ 

, - 127 -

R= 0.6 #/H3 LIKE MICROLITE

3.3.1.6 Cont'd

Cabin temperature =  $70^{\circ}F$ Internal box temp. =  $250^{\circ}F$ Internal h = 5.5 BTU/hr-ft²-F Cabinside h = 1.45 " " "



 $t = Q_67'' = minimum allowable insulation$ Thickness to limit outer surface to  $105^{\circ}F$  max.

3.3.1.6.2 Determine Insulation Thickness Resulting

in Minimum Vehicle Penalty:

Penalties:1.514#/KW-HR electrical energy consumed.(ref O T0.133 # per day averageStol ofhrN.A.R.)into cabin.

# 3.3.1.6.2 Cont^{*}d



Express heat transfer area and system weight penalties in terms of insulation thickness "t".

Heat Transfer Area:

Top Area =  $(17.37 + t)(15.18 + t)=263.68 + 32.55t + t^2$ Side "A" =  $(17.37 + t)(3.87 + t) = 67.29 + 21.24t + t^2$ Side "B" -  $(15.18 + t)(3.87 + t) = 58.81 + 19.05t + t^2$   $\frac{1}{2}$  Total Heat transfer Area =  $389.78 + 72.84t = 3t^2$ Total Heat Transfer Area =  $2 \times z = 779.56 + 145.68t + 6t^2 in^2$  $= 5.41 + 1.01t + 0.0417t^2 ft^2$ 

3.3.1.6.3 <u>Weight</u>

Insulation Volume = (17.37 + 2t)(15.18 + 2t)(3.87 + 2t)-  $17.37 \times 15.18 \times 3.87 =$  $779.55t + 145.7t^2 + 8t^3 \text{ in}^3 =$  $0.45t + 0.0843t^2 + 0.00462t^3 \text{ ft}^3$ 

•

3.3.1.6.3 Cont'd  
With 
$$Q$$
 insulation =  $0.6\#/ft^3$   
Weight of insulation =  $0.6(0.45t + 0.0843t^2 + 0.00462t^3) =$   
 $0.27t + .05058t^2 + 0.0028t^3 = #$   
 $0.27t + 0.051t^2 + 0.0028t^3$ 

Weight of Box

Weight of fiberglass inner wall: excludes plenus ext.

Area =  $2 \times 17.37 \times 14.18 = 492.6$   $2 \times 14.18 \times 3.87 = 109.9$   $2 \times 17.37 \times 3.87 = \underline{134.6}$  $= 737 \text{ in}^2$ 

Inner wall Mat'l vo. = .04 x 737 - 29.4 in.³

Inner wall weight =  $110 \times \frac{29.4}{1728} = 1.88 \#$ 

Outer Aluminum Wall

$$Area = 2 \left[ (17.37 + 2t) (15.18 + 2t) \right] = 527.35 + 130.2t + 8t^{2}$$

$$2 \left[ (17.37 + 2t) (3.87 + 2t) \right] = 134.44 + 84.96t + 8t^{2}$$

$$2 \left[ (15.18 + 2t) (3.87 + 2t) \right] = 117.44 + 76.2t + 8t^{2}$$

$$E A = 719.28 + 291.36 + 24t^{2}$$

Volume: .03 x  $A = 23.38 + 8.74t + 0.72t^2 \text{ in}^3$ Wt. Outer Alum. Wall= $\frac{173}{1728}$  (23.38 +8.74t + 0.72t²)= 2.3 +0.874t + 0.072t²

- 130 -

3.3.1.6.3 Cont'd

Alum: 2 alum, shelves	2 x 17.37 x 14.18	= 492.6
1 splitter	17.37 x 15.18	= 264.
1 plenum separater	17.37 x 1	= 17.37
	A	=773.97 in. ²

Volume =  $0.03'' \times 773.97 = 23.22 \text{ in}^3$ 

Wgt. inner shelves and splitter -  $23.22in^3 \times 0.1\#$  alum.=2.32#Wgt. Blower and ducting = 1.5#

6 trays@.03" THICK alum (merely a holder for 5 cans of food)

**= 3.**5#

OBJEINAL PAGE IS OBJEINAL PAGE IS OB POOR SUALITY

Controls, mounts, handles etc. = 2#

Total wgt. reduces to:

 $13.5 + 1.144t + 0.123t^2 + 0.00283t^3#$ 

3.3.1.7 <u>Heat Loss</u> (Penalty=0.133# per average  $\frac{BT!!}{hr}$ ) Transferred to cabin over 24 hour period.

$$Q_{\text{FREH}} \left( \frac{5.41 + 1.01 + 0.0417 + 2}{0.872 + 4 + 2} \right) \left( 250 - 70 \right) \times \frac{1}{2} \times \frac{10}{60} \text{ BTU}$$
  
RESISTANCE

$$Q \cos 0 \cos x = 0.1.3 \text{ ETU} = \begin{bmatrix} 8.04 + 1.14t + 0.123t^2 + 0.0028t^3 \end{bmatrix} \begin{bmatrix} 176-70 \end{bmatrix} \\ \text{wgt.} \end{bmatrix} \begin{bmatrix} 176-70 \end{bmatrix} \\ \text{wgt.} \end{bmatrix} \begin{bmatrix} 176-70 \end{bmatrix} \\ \text{BTU} \quad \text{AVERAGE} \\ \text{OVEN TEMP} \\ \hline 16 - 1025 \\ 16 \end{bmatrix} \times 22.73 \text{ ETU} \quad \text{OVEN TEMP} \\ \hline 16 - 131 - 131 - 131 \end{bmatrix} = 13.73 \text{ ETU}$$

3.3.1.7 Cont'd

Multiplying by  $\frac{3}{24}$  to set average  $\frac{97U}{hr}$  for 3 meals over 24 hour period and 0.133# penalty per average  $\frac{97U}{hr}$  reducing and simplying gives:  $p = 5.396 + 1.01t + 0.041t^2 + 3.55 + 0.474t + 0.051t^2 + 0.0011t^3$ 3.3.1.8 Electrical Energy: (Penalty = 1.514#/KW-HR.) Elec. Energy  $-E_{PREHEAT} + E \leq s + E$  BLOWER  $Q_{25} = QFOOD$  $F_{FEHEAT} = \frac{1}{2}Q_{55} \times \frac{10}{60} + Q \text{ STORED IN OVEN}$ (BTU) =  $\frac{1}{2} \frac{(5.41 + 1.01t + 0.0417t^2)(250-70)}{0.872 + 4t} \frac{10}{40} + 0.23[B.04 + 1.144t + 0.123t^2 + 0.0028t^3] \times [176-70]}{0.872 + 4t} = \frac{150 + 105}{2}$ STREADY ST.  $Q_{55} + QFOOD$ (BTU) =  $(5.41 + 1.01t + 0.0417t^2)(250-70) \times \frac{15}{15} + 10.47t^4 \text{ HADS} \times 1\times (145-40)$  $E_{TELOWERT} = 16WRTTS \times 3.41 \text{ BTU} \times \frac{25}{60} \text{ hr}$ 

Combining the above and multiplying by 3 meals/day x 7 days with 1.514# penalty for the above in KW-Hr units gives:

$$\mathbf{Fe} = \frac{3.02 + 0.565t + 0.0233t^2}{0.872 + 4t} + 14.22 + 0.266t + 0.029t^{2+} 0.00652t^{3\#}$$

Combining the above, Penalty = Pweight + Pheat loss + Pelec.energy

and simplifying gives

$$\mathbf{E} P = \frac{8.42 + 1.58t + 0.064t^2}{0.872 + 4t} + 31.27 + 1.884t + 0.203t^2 + 0.004582t^3$$



3.3.1.7 Cont^{*}d

TAKING 
$$\frac{d \in P}{dt} = 0$$
 gives:

 $0.22t^4$ +  $6.6t^3$  +  $33.22t^2$  + 13.57t - 30.87 = 0

which gives a minimum penalty for  $\pm$   $\sqrt{0.76}$  "

However, there is negligible penalty difference between

 $t = 0.75^{"}$  and  $t = 0.67^{"}$ , the touch temperature requirement

... N/e 0.67 to save a little volume.

Penalties for  $t = 0.67^{4}$ 

$$\frac{\text{Total Neight Neat Loss}}{14.32} = \frac{\text{Electrical Energy Total Penalty}}{14.32} = \frac{5.6}{15.37} = \frac{15.37}{35.29}$$

$$3.3.1.8.1 = \frac{\text{Peak Electrical Power}}{\text{PEAK LOAD} = (Q_{55} + Q_{FOOD} + Q_{ELOWER}) = \frac{\text{ETV}}{\text{hr}}$$

$$= \left[ \frac{(5.41 + 1.01 \pm + 0.0417 \pm 2)}{0.872 \pm 44} (180) + \frac{30.4}{0.25} + \frac{370}{16} \times \frac{16}{3.41} \right] \times \frac{1}{3413}$$

$$= \left( (FoR \pm = 0.67) \right] = \frac{1.63 \text{ Kw}}{1.63 \text{ Kw}}.$$



3.3.2

Microwave Oven

Efficiency of microwave production = 50% Efficiency of microwave heating capacity = 85% . Overall electrical efficiency = 0.5 x 0.85 = 0.425 Heat power required in food for 40° --> 145°F in 15 min. = 12.42# x 1  $\frac{277}{3}$  x  $\frac{60}{15}$  x (105) = 5216  $\frac{2770}{hr}$ .

3.3.2.1 Electrical Power Required =  $5216 = 12,300 \frac{910}{hr} = 0.425$  hr.

=12,300  $\frac{BTU}{hr}$  x  $\frac{1}{3413}$  =  $\frac{3.6KM}{FW}$ 

Heat Loss to cabin per meal

3.3.2.2 Heat Loss Penalty = 0.133 x  $\frac{1770 \times 3}{24 \text{ Hr.}}$  = 29.5%

3.3.2.3 Electrical Energy Penalty # Kw/hr Kw hr DAYS / MEAUS/DAY 1.514 x 3.600 x 0.25 x 7 x 3 = 28.5#

Weight estimated from existing equipment ref. Litton Atlerton Div. - on 747 airplanes 2400 watt microwave power oven weight 110#. Our required microwave power

$$= \frac{5216}{0.85} \times \frac{1}{3413} = 1.3 \text{KW}$$

(?) = 
$$\frac{1.8}{1.4} \times 110 = 82.5 \#$$

- 134 -

3.3.2.3 Cont'd

Total System Penalty =

Wgt. + Cabin Heat Loss penalty + Electric Energy Penalty

825 + 29.5 + 28.5 = 140.5

Notes:

a) microwave oven cannot use metal cans

plastic bags should be heated directly.

b) case insulation hot required due to internal heating

in Focd. Case remains hot ambient temperature.

ASSEMBLY CONTAINS POWER SUPPLY 5 MIN MAGNETRON OPERATES ON 3500V., MAGNETRON, WAVE CYCLE CONTROLS.

THOUGH COMMERCIAL UNIT CASES ARE 0.04 ST. STEEL, CAN USE ALUMINUM Assume each meal contained in individual self heated tray, configuration as follows:



# DRIGINAL PAGE IS OR POOR QUALITY

Assume: Heaters on can sides and bottom

Ten minute proheat while water is added to the food.

Insulated cover provided for tray.

Check pure radiation coupling between heater and can

and pure contact heating.

3.3.3.1 Radiation Heating

A = radiation area

If heating is due to radiation between heater surfaces and can.

 $\nabla A \ni (T_1^A - T_2^A) = mc dT_2$ 

CONSTANT

M = wgt of can C = specific heat  $\Theta = \text{time}$ Let  $\nabla A F (T_1 - T_2) = hr A (T_1 - T_2)$ 

3 = combines configuration - emissivity factor

where hr is a fictitious convective coefficient  $\therefore$  hr =  $\nabla \mathcal{F}(T_1 + T_2)(T_1^2 + T_2^2)$ 

Condition (1)  $T_{1} = 250^{\circ} = 710^{\circ} R$   $T_{2i} = 40^{\circ}F = 500^{\circ} R$   $T_{1}f = 145^{\circ}F = 605^{\circ}R$ Condition (2)  $T_{1} = 250^{\circ}F = 710^{\circ}R$   $T_{2i} = 70^{\circ}F = 530^{\circ}R$  $T_{2}f = 145^{\circ}F = 605^{\circ}R$ 

#### 3.3.3.1 Radiation Heating

Assume that can surfaces are treated to give = 0.3 with similar value for heated surface.

Then: 
$$J = \frac{1}{\frac{1}{2} + \frac{1}{\epsilon_{x}}} = \frac{1}{\frac{1}{8} + \frac{1}{8}} = 0.67$$
  
 $hr_{AVERAGE} = 1.79 \times 0.67 = 1.2$   
 $T_{2,f} = T_{1} - (T_{1} - T_{2,j}) P_{x} P(\frac{-hrA_{0}}{mc})$ 

F For 401 Can Area(side & bottom)=0.206 ft² M = 0.6#

Solve for time to heat from  $40^{\circ}F - 250 - (250 - 40) \exp(-\frac{1.2 \times 0.206}{0.6 \times 1})$ 

 $\theta$  = 1.67 hours.

• * • Pure radiation coupling for 250° heater surface takes much too long to heat.

Determine heater temperature to give 15 minutes time to rise from 40° to 135° Smaller value to shorten time.  $135 = T_i - (T_i - 40) \exp(-\frac{1.2 \times 0.206 \times 0.25}{0.6 \times 1})$ 

T₁ = 1040F obviously much too high.

Eliminate radiation coupling from consideration.

#### 3.3.3.2 Conduction Heating

Assume pressure contact between heater elements and can surface.

Determine contact conductance,  $h_c$ , required between heater and can surfaces to provide  $40^\circ - 145^\circ$  heating in 15 minutes, with heater at 250°F. 145 = 250 - (250-40) exp  $\left(\frac{-h - x \ 0.206 \ x \ 0.25}{0.6 \ x \ 1}\right)$ 

$$h = 8.1 \frac{13}{hr} - ft^2 - F = -138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 13$$

3.3.3.2 Cont'd

What benefit in lowering h if heater temperature =  $270^{\circ}$ F?

Solving gives  $h_c = 7.1$  (moderate improvement) Values of  $h_c$  actually achievable must be determined by test. Skylab heater trays data would be a valuable input.

Supper can is heater on side surface only (eliminating bottom) as in Skylab tray, then for 250° heater. 401 can side surface area =  $\frac{\pi \times 4.06 \times 1.312}{144}$  = 0.116 ft²

then 145 -250 -(250-4) exp  $(\frac{-h \times 0.116 \times 0.25}{0.6 \times 1})$ 

exp (~0.04333  $h_c$  )

 $e^{\pm 0.04833h_c} = \frac{210}{105} = 2.$ 

 $.04833h_{c} = 0.6931$ 

 $h_{c}=14.4 \qquad \frac{BTU}{hr-ft^{2}} =$ 



To limit touch temperature to 105°F with cabin side

h = 1.45 
$$\frac{\mathbf{5TU}}{\mathbf{hr} \cdot \{t^2 - \frac{2}{5}t}$$
  
R =  $\frac{1}{1.45} + \frac{t}{0.25} = 0.69 + 4t$   
 $\frac{\mathbf{K} \cdot \mathbf{ETU} \cdot \mathbf{in}}{\mathbf{hr} \cdot \mathbf{ft}^2 \cdot \mathbf{ft}}$   
 $\frac{0.69}{0.69} + 4t = \frac{105 - 70}{250 - 70}, t = 0.72''$   
Assuming cover in place:  
Top surface heat transfer area =  $3 \times \frac{1}{4} = (4.06)^2 + \frac{1}{7} \cdot (2.69)^2$   
 $= 0.31 \text{ ft}^2$   
Bottom Surface same as top =  $0.31 \text{ ft}^2$   
Through Sides (approx.)  
 $6 \times 4.06 \times 1.312 + 2 \times 2.09 \times 1.312$   
Total approx. heat transfer area =  $\mathbf{E} = 0.89 \text{ ft}^2$   
 $3.3.3.4 \frac{\text{Tray Steady State Heat Loss}}{1.05 \cdot \mathbf{F}}$   
 $1.45 = 70^{\circ}$   
 $R = \frac{1}{1.45} + \frac{0.72}{0.25} = 2.84 + 0.69 = 3.53$   
 $Q \text{ top} = \frac{0.31(93 - 70)}{3.53} = 2$   
Area Sides + bottom =  $0.89 - 0.31 = 0.58$ 

Sides + bottom = 
$$0.58 (250-70)$$
  
3.53

# =29.6 BTU/hr

Loss for 6 trays=6(29.6 +2)= 192 FMU/hr. = six traysAssume average tray temp.=250 +105 = 178°F 2 3.3.3.5 Tray Weight

Volume of tray including cover=

$$(2 \times 4.06 + 0.5 + 2 \times 0.72)^{2} (1.3.2 + 2 \times 0.72) - -[3 \times \frac{\pi}{4}(4.06)^{2} \times 1.312 + \frac{\pi}{4}(2.69)^{2} \times 1.312] = 220.13 \text{ in}^{3} = 0.13 \text{ ft}^{3}$$

Assume aluminum sheet on all surfaces including cover (neglect can receptacle holes) 4 Surfaces x (2 x 4.06 + 0.5 + 2 x 0.72)²=404.8 in² 4 Surfaces x  $(2 \times 4.06 + 0.5 + 2 \times 0.72)(1.312 + 7 \times .72)=110.7$  $\leq - 515.5 \text{ in}^2$ 

Aluminum Volume by sheet is 0.03" thick Alum. Vol. - 515.5 x  $0.03 - 15.5 \text{ in}^3$ Wgt. Alum. Sheet - 15.5 in³ x 0.1# = 1.65# Add 1 % for attachment wgt. Alum = 1.8# Wgt. Six Trays - 6 x 1.8 = 10.8#/6 trays 3.3.3.5.1 Insulation Weight: Vol. =  $0.13 \text{ ft}^3$  (ref. p. ) Weight =  $0.13 \text{ ft}^3 \times 0.6\# = 0.078$ 0.1#/tray Heater Elements: Assume heater elements weigh (4 per tray) plus accessories = 4 x 2 oz. = 1 0.5#/tray Total weight for 6 trays =  $10.8 \times 6[.1 + .5] =$ Total weight 6 trays

= 14.4%

- 141 -

3.3.3.6 Heat Loss Penalty Preheat (assume  $\frac{1}{2}Q_5$ )  $\frac{19.2}{2} \frac{BTV}{hr} \times \frac{10}{60} hr = 16 BTV / 6 trays$  $192 \times \frac{15}{60}$  h = 43 (**STV**/ 6 trays Heating Cool Down: Assume average temp. of tray =  $\frac{105 + 250}{2}$  = 178 14.4 x 0.23 x 178 - 590 GTU for 6 trays COVER Total heat to cabin = 16 + 48 + 590 = 654 BTV Penalty = 0.133 x  $\frac{3 meak}{24}$  x 654 = 11.0 # / 6 trays 3.3.3.7 Electrical Energy Penalty Preheat:  $1/2 Q_5 \times P_0 + \text{Stored Energy}$  (6 trays) =  $192 \frac{BTV}{hr} \times 10 hr + 570 BTV = 622 BTV/6 trays$ = 192 x <u>15</u> + 12.42 x 1 x 105 = 1348 ESTU Heat 60 lleat to cabin Food heating = 1970Total electrical Elec. Energy Penalty =  $1.514 \times \frac{1970}{34.3} \times 3 \times 7 = 18.4 \frac{4}{6}$  trays Total System penalty (6 trays) = Wgt + Heat Loss Penalty + Electrical Energy Penalty 13.6 + 11.0 + 18.4 = 43.0# 3.3.3.7.1 EEectrical Power Requires: Steady State: 192  $\underline{BTV} + \underline{1300}$   $\underline{BTU}$ = 5392  $\frac{1}{100} \times \frac{1}{3413} = 1.57 \text{ KW}$ 

3.3

3.3.3.8 Uncovered Trays

Suppose trays are not covered with insulated cover.

3.3.3.8.1 Weight Saving

Wgt. Saved is weight of cover

= 2 x  $(2 \times 4.06 + 0.5 + 2 \times 0.72)^2$  x .03 x  $0.1 \#/\text{in}^3 = 0.57 \#$ 0.6#

Wgt saved for 6 trays - 6 x 0.6# = -3.6#

3.3.3.8.2 Heat Loss

Top uninsulated heat transfer area (with h = 1.45)

$$3 \times \frac{\pi}{4} (4.06)^2 + \frac{\pi}{4} (2.69)^2 = ~ 0.31 \text{ ft}^2$$

Insulated heat er area:

0.31  $ft^2$ Bottom

Sides 
$$0.271 \text{ ft}^2$$

(ref. p. ) Q top =  $1.45 \times 0.31 (93-70) = 10.3$  BiV/hr

 $= \frac{29.6}{3.99}$ Q Sides & Bottom 40

For 6 trays = 6 x 40 = 240 BTU/hr.

(ref.p)

) Heat Loss Penalty =  $\frac{240}{192} \times 16 = 20 \text{ EV}/6 \text{ trays}$ 

 $= \frac{240}{192} \times 43 = 60$  /6trays Heat Cool Down = 555 BTV

Total heat to cabin = 636 BTU

$$\frac{635}{619} \times 10.3 = 10.6 \#$$

Increase =  $\pm 0.3^n_u$ 

3.3.3.8.3 <u>Electrical Energy Penalty:</u>

Preheat 240 x 10 + 555 = 595  $\frac{370}{6trays}$ Heat period = 240 x  $\frac{15}{60}$  + 1300 = 1360  $\frac{3570}{60}$ 

# **E** = 1955

 $\frac{1955}{1935} \times 18 = 18.2\%$ 

Increment = 0.2#

Change in Fenalty

=  $\Delta$  weight +  $\square$  Heat Loss Penalty +  $\square$ Electrical Energy = -3.6# + 0.3 + 0.2 = -3.1# for 6 trays

. Cover can be eliminated or made much thinner.

Total system penalty w/thinner covers

= 41.9 - 3.1 = 38.8% for 6 trays.

- 144 -

### 3.3.4 Water Tank Analysis

3.3.4.1 Hot Water Source Analysis

3.3.4.1.1 Mater requirements:

Entree	4.5 oz.
2 Side Dishes	1.2.0
Soup	3.4
Beverages	7.6 27.5 per meal

Total water requirement for six meals is 165 oz. At an inlet flow from the fuel cells of 7 LB/HR, 1.473 hours would be required to fill the tank with the water required for six meals.

3.3.4.1.2 Tank Volume  $[\frac{163}{16}]/61.7]$  (1728) = 288.8 cu. in. Assume Tank is spherical

Tank radius 4.10 in.

Tank surface area 211,2 in.²

Assume tank fabricated of .020 gage aluminum

Tank weighs .423 LB.

B	Insulat:	ion Volume	Insulation	n Weight	( <b>p</b> = ,	.6 LB/FT ³	)
.25 IN.	55.97 In. ³		.0194 I.B.				
.5	118,90		.0413				
1.0	266.83	3	.0926				
2.0	661.90	5	.2298				
æ	Tank + Insu	ul. Weight,	P <b>c</b> Ta	ink + Ins	ul.	Overall	Vol.
.25 in.	.442 LB	The weight	of the	109.8 I	n ³		
.5	.464	mechanism is common		129.8			
1.0	.516	not conside	ered for a	176.9			
2.0	.653	of systems.	apar ison	302.6			

## 3.3.4.1.3

Weight Penalties (Assoc. with Fuel Cell & ECS Interfaces)
1) A power consumption penalty (1.514 LB/KW-HR) is incurred in heating the tank and insulation to their equilibrium temperatures from cabin temperature. This penalty is a function of insulation thickness and water temperature. Cabin temperature is taken as 75°F.
2) A power consumption penalty (1.514LB/KW-HR) is incurred in heating the water entering the tank. This penalty is a function of water flow rate, water temperature and water temperature at the tank inlet. Inlet water temperature is taken as 35°F.
3) A power consumption penalty (1.514 LB/KW-HR) and an ECS penalty(.133LB/BTU)are incurred in making up

and absorbing the heat leak through the tank insulation. This penalty is a function of water temperature, insulation thickness, heated water flow rate, and mode of food preparation.

4)An ECS penalty (.133LE/BTU) is incurred as heated water cools to cabin temperature. This penalty is a function of water temperature.

5) An ECS penalty (.133LB/BTU) is incurred as the heated tank and insulation cool to cabin temperature during and after meal preparation. This penalty is a function of insulation thickness and water temperature. 3.3.4 Cont'd

3.3.4.1.3 Cont'd

Penalty (1)

Equilibrium Temperatures, t°F, and energy consumption,

E KW-HR  $\frac{k}{B} \left(\frac{R_1}{R_1+8}\right) (T_W - t) + hg \neq Ehr)(tf - t) = 0$   $k = .25 \text{ BTU-IN/Hr.Ft.}^{2} \text{F}$   $h = 1.45 \text{ BTU/HR.FT.}^{2} \text{F}$   $E \neq .20 \text{ (assume outer surface of insulation is sheathed in aluminum foil)}$   $tf = 75^{\circ}\text{F}$ 

 $r_{i} = 4.10$  In.

Tw	8 4	(R)	Ł	ALUM.	Ŧ	INSUL.	E
<b>150°</b> F	.25IN.	.94253	102.0°F	.1489BTU/°F	126.0°F	.00408	.00333
	.5	.44563	90.8		120.4	.00367	.00339
	1.0	.20098	83.1		116.6	.01946	.00351
	2.0	.08402	78.6		114.3	.04827	.00383
170	.25	.94253	109.1		139.6	.00408	.00419
	.5	.44565	95.0		132.5	.00867	.00429
	1.0	.20098	85.2		127.6	.01946	.00444
	2.0	.08042	79.6		124.8	.04827	.00485
190	.25	.94253	116.2		153.1	.00408	.00511
	.5	.44565	99.2	· .	144.6	.00867	.005.9
	1.0	.20098	87.4		138.7	.01946	.00581
	2.0	.08042	80.5		135.2	.04827	.00587

3.3.4 Cont'd

3.3.4.1.3 Cont'd

Penalty, P

Tω	б	P,	
150	.25	.00505 LB.	$\bar{t} = 1/2(T_W + t)$
	.5	.00513	Insulation is taken to heat from $t_1 = E$
	1.0	.00531	t to T _W
	2.0	.00579	E = { (CAP. AL) (Tw- ts) + (CAP. INSUL)
170	.25	.00635	$( \frac{1}{2} - \frac{t_{f}}{2} ) \} / 3413$
	.5	.00649	Insulation density = $.6LB/FT^3$
	1.0	.00673	$C_p = .21 \text{ BTU/LB}^{\circ} \text{F}$
	2.0	.00734	Aluminum density = 173 LE/FT ³
190	.25	.00774	$C = .22 BTU/LB^{\circ}F$
	• 5	.00785	
	1.0	.00879	
	2.0	.00389	

Penalty (5), P₅

The same energy that heats the tank and insulation to their equilibrium values during filling is dissipated to the cabin during cooling. It is assumed that this energy is dissipated to the cabin at a uniform rate over an eight hour period.

3.3.4 Cont'd

190

٠.

.4683

3.3.4.1.3 Cont'd

Penalty (5) Cont'd

From Penalty (1)

т _w	б	E/3	P ₅	
150°F	.25	1.422BTU	.1892 LB	
	.5	1.445	.1922	
	1.0	1.498	.1992	
	2.0	1,632	.2171	
170	.25	1.789	.2379	
	.5	1.830	.2434	
	1.0	1.896	.2522	
	2.0	2.069	.2751	
190	.25	2.180	.2899	
	.5	2.216	.2948	
. ••	J.O	2.478	. 3295	
	2.0	2.504	.3330	
	Penalty	(2), P ₂		
	E = WC	$(T_{W} + T_{in})$	/3413 T _{in}	= 35°F
	C = 1.0	BTU/LB°F		= 1.473 HR
	W = 7 LH	3/HR		
	T _W	Е	P ₂	
	<b>150°</b> F	• 3474KW-H	R .5260LB	
	170	.4078	.6175	

.7089
3.3.4 Cont'd

3.3.4.1.3 Cont'd

Penalty (3),  $P_3$ 

The heat leak rate from a full tank is given by

where t is the equilibrium temperature of the insulation outer surface tabulated in the analyses for Penalty (1). Approximate the integrated average surface area during filling and emptying by half the surface area. The fill time is 1.473 hours. The emptying time is a function of the water flow rate to the galley and the mode of food preparation, but since the allowable cases require a total food preparation time of approximately one hour for six meals, the emptying time will be taken as one hour.

	Е	= 271 ( R,	+ 5) ²	$\frac{k}{8} \left( \frac{R_{1}}{R-8} \right)$	)(Tw-E)(2.473)/3413
$\mathbf{T}_{W}$	б	Е		E/8	P ₃
150	., 25	.02707.KW-HR	92.38	11.55 BTU	1.577 LB
	.5	.01765	60.24	7.530	1.028
	1.0	.01106	37.74	4.718	.6442
	2.0	.00706	24.09	3.011	.4112
170	.25	.03434	117.2	14.65	2.000
	.5	.02236	76.32	9,540	1.303
	1.0	.01401	47.83	5.979	.8164
	2.0	.00893	30.49	3.811	.5204
190	.25	.04163	142.1	17.76	2.425
	.5	.02707	92.39	11.55	1.577
	1.0	.01695	5787	7.234	.9878
	2.0	.01082	36.93	4.616	.6303

3.3.4.1.3 Cont'd

Penalty Cont'd

In evaluating the ECS penalty, it was assumed that energy dissipated to the cabin would be dissipated at a uniform rate over an eight hour period.

Penalty (4), P4

This penalty is based on 165 oz. of water cooling from  $T_W$ to  $t_f$ . In evaluating the penalty, it is assumed that this energy is dissipated to the cabin at a uniform rate over an eight hr. period.

 $Q = (165/16)(1.0)(T_W - t_f)/8$ 

$T_W$	Q	РĄ
150	96.68 BTU	12.86LB
170	122.5	16.29
190	148.2	19.72

Since this penalty was not considered in the active oven analysis, it will be neglected here in order to obtain comparative penalties for all systems. 3.3.4.2

Summary Penalty

т _w	б	P	Pl	P ₂	P ₃	P ₅	Total Weight Penalty
150°F	.25	.442	.00505	.5260	1.577	.1892	2.739
	•2	.464	.00513		1.028	.1922	2.215
	1.0	.516	.00531		.6442	.1992	1.891
	. 2.0	.653	.00579	1	.4112	.2171	1.813
170	.25	.442	.00635	.6175	2.000	.2379	3.304
	<b>.</b> 5 ⁰	.464	.00649		1.303	.2434	2.634
	1.0	.516	.00673		.8164	.2522	2,209
	2.0	.653	.00734	1	.5204	.2751	2.073
190	. 25	.442	.00774	.7089	2.425	.2899	3.874
	.5	.464	.00736		1.577	.2948	3.053
	1.0	.516	.00379		.9878	.3295	2,551
	2.0	.653	.00889	}	.6303	<b>.33</b> 30	2.334

The total weight penalty is plotted in Figure 34 as a function of insulation thickness and water temperature. It can be seen from the figure that optimum insulation thickness is somewhat greater than two inches, and that the weight penalty varies little over a wide range of insulation thickness around the optimum value. For this reason, practical optima were selected at the points where the weight penalty begins to vary markedly with change in insulation thickness. The weight penalties associated with the practical optimum insulation thicknesses are given in Figure 34 a function of water temperature.







### 3.3.5 Hydraulic Warming Concept

3.3.5.1 Description

The concept is based on the utilization of hot water to replace the electrical heating coils in the Skylab type tray. The food can cavities are encircled by conduits on the sides and bottoms, where hot water is directed from the vehicle supply through an inlet fitting and returned to the vehicle loop at an outlet fitting. The tray would contain disconnects at each fitting to permit plug-in when required.

The design is based on the use of hot water availability from the vehicle coolant loop as the primary source of heat energy. By plugging in the trays, a 'free' water supply at the proper temperatures . enable warming of the food cans. A sketch of the hot water ducts arrangement is shown in Figure 1.

3.3.5.2 Assumptions

Initial Ambient at 70°F

• Can size to be heated = 401 x 105

Heat applied to bottom and sides

• Vehicle supplied temperature = 155°F



3.3.5.3 Calculations

Determine the coefficient of heat transfer through film between inside surface of cool tubing and warm liquid - low viscosity, streamline flow. (1) h=  $1.62\frac{k}{d} \left[\binom{H}{H_f}\right]^{1/3} (1 + 0.015 \text{ z}^{1/3}) \left[\frac{4 \omega c_{\rho}}{|T|^{2L}}\right]^{1/3}$ where  $Z = (d^3p^2 \beta \Delta \tau / u^2) g = 0$  (assume zero grav.) M: Viscosity at 155°F = .00292 lb/hr.ft.  $M_{f}$ : .Viscosity at 80°F = .00578 lb/hr.ft Thermal Conductivity = .384 BTU/hr.ft.°F K : Cp: Specific Heat = 1.0 BTU/1b.°F Liquid-Surface = 155°F -80°F t: Hydraulic Diameter =  $(\pi'/2 + \pi')D$ = .00865 Ft. d: Tube Length =(TBD) ft. L: ₩: Coolant Flow Rate =(TBD) 1b/hr.

(2): h = 1.62 
$$\left(\frac{.384}{.00765}\right) \left(\frac{.292}{.577}\right)^{1/3} \left(\frac{4 \times 1}{.584 \Pi}\right)^{1/3} \left[\frac{\omega}{L}\right]^{1/3}$$

Where a value for the warming flow rate W is 20.1 lb/hr, as solved in equation (3).

#### Laminar Flow

The value of W = 20.1 lb/hr is the limit for flow in the laminar or streamline region based upon the following: Re = 2100

3.3.5.3 Cont'd

(3)  $W = VA_{TUBEC} = RE \frac{u}{D} \left(\frac{T}{B}\right) \left(Di\right)^{2}$  $W = 2100 (1.05) / .00365 (TT) (.0142)^{2}$ 

W = 20.1 lb/hr. Max. flow for laminar regime Thus in the equation (2), the coefficient of heat transfer becomes

(4)  $H = 234 L^{-1/3}$ 

where L is the length of heating lines.

Can Heating

For sides of Can -

 $h_s = 234 (4.81)^{-1/3}$  (from solution (4))

h_{side} = 146.5 BTU/hr.ft²°F

 $\frac{1}{U} = \frac{\Delta x}{K} + \frac{1}{4600}$  (assume perfect conductance at food surface)

Where U is overall surface conductance

X is thickness of teflon membrane between

can and water film (from Fig. 1 = .003 in.)

K for teflon membrane = 0.14 BTU/hr.ft°F

 $U^{-1} = \frac{.003}{12.14} + 1/146.5$   $U_{306} = 116 \text{ ETU/hr-ft}^{2} \text{ F}$ For Bottom of can - $h = 234 \ (4.13)^{-1/3}$   $h_{bottom} = 139.0 \text{ BTU/hr.ft}^{2} \text{ F}$ and  $U^{-1} = \frac{.003}{1.2} \cdot 14 + 1/139$   $U_{bottom} = 111.3 \text{ BTU/hr.ft}^{2} \text{ -F}$ 

3.3.5.3 Cont'd

### Effective Conduction Correction

Due to the fact that the unit surface conductance may act on only a portion of the actual available heat transfer area, the effective conductance acting on the sides and bottom of the food can will be adjusted for subsequent calculations with the following expression:

(5) U effective = U actual  $\times$  Aeffective A actual Adjusting the previous values therefore U side (eff)  $= 116 \times \frac{.0552}{.0580}$ U side (eff) = 110.2 BTU/hr.ft^{2..o}F and U bottom (eff)  $= 111.3 \times \frac{.025}{.0387}$ U bottom (eff) = 72.0 BTU/hr.ft^{2.o}F <u>Physical Properties Used For Food</u> (Based on 70% water; 30% solid food) K = 0.20 BTU/hr-ft^{2.o}F C = 0.82 BTU/  $^{\circ}F$ Q = 50.0 1b/ft³

 $h = .00488 \text{ ft}^2/\text{hr}$ 

3.3.5.3 Cont'd

Physical Prop. used for Food Cont'd

Assume that the sides and bottom of the food can are heated from the vehicle water source at 155°F, at the respective conductance values. For the graphical solution presented below, the curved walls of the food can are considered as a long cylinder, while the end effects are considered as parallel surfaces of a wall; one surface of the wall is heated (can bottom) while the other wall surface is assumed perfectly insulated (can lid).



Defined point of interest at (X=0),r= 0) Determine temperature transient of point x = 0, r = 0 versus time for an initial ambient condition of 70°F (Flow rate of 155°F fluid is 20.1 lb/hr). <u>Solution</u>: Calculate two intermediate transient temperatures for x = 0, r = 0 using 130°F and 150°F From Kreith ⁽¹⁾, it can be determined for the Heisler tables:

(6)  $\left(\frac{T - T_{\infty}}{T_{0} - T_{\infty}}\right) = \frac{130^{\circ}F - 155^{\circ}F}{70^{\circ}F - 155^{\circ}F} = .294$ for the surface of the wall' (can bottom)

$$\frac{K}{t_{ro}} = \frac{.20 \times 12}{72 \times 2.28} = .01465$$
  
using U_{bottom}(eff) = h

- 161 -

3.3.5.3 Cont'd

(1) Principles of Heat Transfer, Frank Freith

For the surface of the 'cylinder' (curved sides of can)-

$$\frac{K}{h^{L}} = \frac{.20 \times 12}{110.2 \times 1.10} = .0198$$

using  $U_{side}$  (eff) =  $\hbar$ 

For a finite cylinder, the product solution of the temperature ratios must agree according to -

$\frac{T}{T}$	- Too =	$\frac{T - T \infty}{T - T \infty}$	$x \frac{T - T_{o}}{T - T_{o}}$
	Finite	infinite	Finite
	Cylinder	cylinder	plate

using equation (6)

(7)	Τ - Τ	_	130°F – 155°F	
	T - Too	-	70°F - 155°F	.294
	Finite			
	cylinder			

The trial and error solution using figures in Kreith at x/L = 0 and  $r/r_0 = 0$  are shown below.

(HRS) Time	Flat Pla (Fig. 4-8 Ar do L ¹	REAP <u>T-Too</u> <u>To-Too</u>	Long Cyl (Fig. 4 AT OO T _o t	inder -10) REAP T-Tao To -Too	Product of Temperature Ratio	Comments on Size of Ratio (***)
2.0	1.164	.074	.270	.36	.0266	too small
1.0	.582	.37	.135	.69	.255	
0.8	.466	.40	.108	.80	.320	too large
0.9		.36	.121	.78	.281	
0.88	.512	.367	.119	.79	.290	ok

# Trial and Error Solution (130°)

*** MOTE: Comparison is with results of equation (7)

Temperature ratio = .294

. ..

The point at x = o, r = o reaches a temperature of 130°F in about .88 hours. (or 53 min.)

For the case of food at 150°F

$$\frac{T - T \omega}{T_0 - T \omega} = \frac{150^\circ F - 155^\circ F}{70^\circ - 155^\circ F} = .0589$$

The trial and error solution using figures in Kreith' at x/L = o and  $r/r_o = 0$ , are shown below,

(HRS) Time	Flat Plat (Fig. 4-8 AT <u>d 9</u> L2	e ) <u>T-Too</u> To-Too	Long Cy (Fig. Ar <u>d@</u> ro ²	linder 4-10) Rew To $\frac{T-Tap}{10-Tap}$	Froduct of emperature Ratio	Comments on Size of Ratio (***)
2.0	1.164	.074	.270	.36	.0266	Too small
1.9	1.105	.082	.256	.35	.0287	<u>.</u>
1.5	.872	.148	.203	.46	.068	Too Large
1.6	.930	.13	.216	.45	.0585	ОК

.

# Trial & Error Solution (150°)

The point at x = 0, r = 0 reaches a temperature of 150°F in about 1.6 hours. (or 96 min.)



4-3



- 166 -