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CONTROL POWER REQUIREMENTS OF VTOL AIRCRAFT

PREFACE

A vertical take-off and Tanding (VTOL} airplane is inherently difficult
to handle since it has, among other problems, insufficient control power and
imposes an extremely high task load on the pilot. Thus an automatic flight
control system is desirable to improve the handling qualities of the air-
craft. A number of trends in guidance and control provide the necessary
tools for the task. The foremost is probably the application of modern
control theory to both guidance and control problems. Of equal importance
is the application of high-speed, general purpose, vehicle-bornedigital com-
puters which make the use of modern control theory possible. The research
reported here was initiated to investigate certain facets of modern control
theory and their integration with a digital computer to provide a tractable
flight control system for a VTOL aircraft. Since the hover mode is the most
demanding phase in the operation of a VIOL aircraft, the research efforts
were concentrated in this mode of aircraft operation.

Subdivided into three sections, this report describes research work on
three different aspects of the operation of the X-14B VTOL aircraft. In
the first section, a general theory for optimal, prespecified, closed-loop
control is developed. The ultimate goal was optimal decoupling of the modes
of the VTOL aircraft to simplify the pilot's task of handling the aircraft.
Modern control theory is used in the second section to design deterministic
state estimators which provide state variables not measured directiy, but
which are needed for state variable feedback control. The third section
examines the effect of atmospheric turbulence on the X-14B and determines
a maximum magnitude gust envelope within which the aircraft could operate

stably with the available control power.
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DESIGN AND APPLICATION OF SPECIFIED

CLOSED-LOOP OPTIMAL CONTROL

NOMENCLATURE

MATRICES
A = system matrix
gi = desired system matrix
B = system input matrix
2: = system output matrix
K = feedback controlier matrix
E: = weighting matrix on the effort
Q = weighting matrix on the system states
R = precompensating'matrix
S = Riccati matrix

VECTORS
r = reference input vectors
u = input vector
X = state vector
y = output vector

SCALARS

p = roll rate
q = pitch rate
r = yaw rate
u = forward velocity
v = side velocity



SCALARS

NOMENCLATURE

vertical velocity
roll moment

pitch moment

yaw moment

roll angie

pitch angle

yaw angle



CHAPTER 1
INTRODUCTION

In the control design of a vertical take-off and landing (VTOL) aircraft,
a large number of problems arise. Some of these are general problems associ-
ated with the complexity of mu]tivariaﬁ?e systems and are related to the dim-
ensionality of the subject systems and the interaction among their variables.
The VTOL presents still additional problems to the designer. It has inher-
ently poor stability and, due to its handling characteristics, requires the
pilot to perform an unrealistically high number of tasks in order to maintain
the aircraft at a desired attitude.

The additional handling difficulties associated with a VTOL arise from
the supplementary control forces and moments added to the aircraft in order
to maintain the aircraft in a hover or near-hover condition. For the air-
plane studied in the project, NASA's X-14B research aircraft, the control
forces to provide 1ift and propulsion were obtained by vectoring the thrust
of its two engines. The control moments for pitch and roll were obtained
by bieeding air from the engines and ducting it to variabie area nozzies
in the wing tips and the tail of the airplane.

For the design of an automatic flight control system which would im-
prove the handling qualities of the X-14B aircraft, it was felt that the
state variable decoupling techniques would yield the best results. The
Togic behind this decision was that if the pitch, roll, heave, and yaw modes
were completely decoupled from each other, the pilot's task of flying the
aircraft would be enormously simpler. This was the motivation for the op-
timatl control technique developed in this section. Although the fesults ob~

tained may be used for arbitrary closed-loop system behavior specifications,



they are especially well suited for decoupling.

As background for the control technique developed in this report, a
few brief comments on decoupling and optimal control theories follow.

The current Titerature on the subject on non-interacting, or decoupiing,
contrgl is headed by Morgan [2], who arrived at sufficient conditions for
decoupling and developed a procedure using a constant gain compensator with
state variable feedback to obtain a decoupled controlled system. Rekasius
£3] then obtained some useful results extending eariier work. A more gen-
eral decoupling probtem with static compensation, was solved subsequently
by Falb and Wolovich [5]. Their result was the first complete solution to
the decoupling problem for a significant class of linear systems. Gilbert
[6] added to the results of Falb and Wolovich. The more general state feed-
back decoupling problem, with dynamic compensation, was formulated and
solved by Wonham and Morse. Additional work on system decoupling has been
done by Silverman [9], Sato and Lopresti [11], Porter [34], and Yore [35].
The last author used & model reference approach to obtain an optimally de-
coupled system.

Thé foregoing methods, while useful in many applications, were only of
tTimited use to the X-14B and hence a different approach was sought for the
aircraft. Since most physical systems cannot be decoupled exactly, a tech-
nique for approximate decoupling was sought. Thus research efforts were
turned to the method of approximate decoupling with a specified index of
performance.

The theory of optimal control is well defined and conceptually not
very difficult to apply. However, the methods of optimal control suffer
from several drawbacks. The major difficulty arises from the fact that,
even in well defined problems, it is difficult to specify a meaningful

performance index that is analytically tractable. Furthermore, once a



performance index is defined, it 1s not a simple task to interpret the
meaning of the elements of the performance index or to manipulate these
to create desired changes in the dynamic behavior of the controlled sys-
tem or the structure of the controller.

In an effort to overcome some of the above difficulties, Sotheim [15]
presented a design of qptima] control systems which minimized a guadratic
performance i1ndex for a set of prescribed closed-Toop eigenvalues. The
procedure is as follows. For a performance index of the form

J = fﬁo (x' Qx+u'Pu)dt (I-1)
0
The weighting matrix Q: and the eigenvalues of the closed-loop system
are selected by the designer. Then the @ matrix, corresponding to the
prescribed set of eigenvalues, is determined. Finally, the optimal feed-
back gain matrix is determined from the steady state solution of the Ric-
cati equation.

The most exacting Tevel of system design occurs when the engineer is
given the task of designing a feedback system with specific input-output
and dynamic behavior characteristics. This implies that a percompensator
with a particular closed-Toop system matrix must be availabie. Again,
since precise agreement between specificatioﬁ and physical realization is
not possible, some compromise result is usually accepted. The research
reported herein considers an analytical approach based on the premise
that exact system behavior cannot be dictated. The result is a design
tool for finding an optimal control policy, with respect to some quadra-
tic performance index, that yields a closed-loop system approximately
equal to that desired by the designer.

The method developed herein is compietely general with respect to

system structure and conceptually is very easy to apply. However, there
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are certain computational difficulties which are discussed in the main text
of this report. Basically, it enables the control system designer to solve
the following problem. A system is described by a set of input and output
matrices and a system matrix i. The specification is a desired matrix 5
and the problem is to find a feedback control matrix K that will yield
the desired closed-Toop matrix and will minimize a performance index based
on system error and effort. The procedure is to determine 5= by direct
comparison of A and é:, if possible, and then to determine E: and Q
from the result. This approach yields a closed-Toop system behavior which
is similar to the desired behavior. However, the magnitudes of state and
nput variables may be undesirably large. These characteristics may now
be winimized, since g: and gzare known, while the closed-loop behavior
is maintained at or near the desired condition, by varying the elements of
P and Q. The final result is a compromise between the approximate equal-
ity, between the desired and actual closed-loop system matrices and the
magnitudes of the transients of the state input variables.

Since _é may not be arbitrarily specified, the above method is some-
what restricted in application to decoupling problems. A more severe
Timitation to the method 1s that even when é can be calculated, there

1s no guarantee that corresponding weighting matrices ? and Q can be
found. Another limitation of the method is that state variable feed-
back must be used. Thus some form of state estimation has to be utilized.

The general theory of specified closed-loop optimal control is devel-
oped in Chapter 2. In Chapter 3, the results preapplied to controller
design of the X-14B airplane and a successful design is shown. The

Appendices include the derivation of the complete dynamic equations for

the X-14B.
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CHAPTER 2
MATHEMATICAL DEVELOPWMENT OF OPTIMAL
CLOSED-LOOP SPRCIFIED CONTROL

2.1 Statement of the Problem and Assumptions
In the design of a controller for a multivariable system, it 1s {re-
quently necessary to impose restrictions on ihe behavior characteristics
of ihe closed-loop system. These restrictions i1nclude the location of the
eigenvalues of the system as well as interaction between the inputs and
the outputs. The most systematic way of specifying these restrictions 1is
to prescribe a particular closed-Toop system matrix and a precompensator
matrix. Ordinarily this is not possible except for certain classes of
systems. What is normally obtained is a system which resembles the desired
system. It is not known however, what the degree of resemblance 1s. and
what the penalty the designer must pay for the desired operation behavior.
This chapter presents an analytical procedure that will systematically de-
sign a controller such thal a Tlinear closed-loop sysiem will behave close
to a prescribed manner and is optimal for some quadralic criterion.
The assumptions made for the analysis are the following:
- the plant is represented by a set of linear, time-invariant
set of state space equations,
- the plant is completely observableand completely control-
Table,
- all states are directly available for measurement or can be
generated by estimation techniques,
- the control Taw 1s 1inear and constant,
- the performance index is a quadratic with constant weighting

caoefficients.
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The class of systems considered consists of deterministic systems
modeled mathematically by constant coefficient, linear differential equa-

tions in the form

x=Axt+tBu (1-2)
y=Lx

The control policy is
u=-Kx+tRr . (1-3)

Here, x 1is an n-dimensional state vector, u is a p-dimensional control
vector, y 1is an m-dimensional output vector, and r is a p-dimensional
reference input vector. The matrices QJ E? gf é, and R are constant
and have dimensions consistent with X, y, 4, and r. R 1is a precompen-
sator matrix which is necessary when additional requirements on input-
output relations, such as decoupling, are made.

A desired dynamic behavior may be described by the linear differential

equations given by

X =

fiz=1

xtByr . ) {(1-4)

Substitution of Equation (I-3) inio (II-2) yields

X=(A-BKX+BRr . (1-5)

Thus 1f a controlled system is to behave according to specifications, it

must obey the Equations

A-BK=-2 (1-6)
BR=8y . (1-7)

Mote that Ed is not affected by the feedback controlier K and is

affected only by the precompensator R. 1In all cases R 1is either
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known or, for 1npul-output decoupled systems, may be compuled [4. H]
readily. Hence, the problem reduces to finding an optimal control K

which minimizes the performance index

I= [ (x Qx+u' Puydt . (1-1)
0O

This is simply the optimal regulator problem except that now ? and g
are not specified but must be determined for a given closed-lcop condition.
Matrix Q 1s symmetric and positive and semidefinite while P is symme-

tric and positive definite.

2.2 Development of the Specified Optimal Control Technique

The conventional approach to optimal control problems is to specify
P and Q 1in the performance index and to solve {or the optimal control
policy. It is well known that the optimal control policy for infinite
time problem is

-1

-

E"::.-.

jo=
Hen

X (1-8)

where S , the Riccati matrix, is the steady state solution of the Riccati
equation

§:= -

jen
o=

“ATS -4

e

g 5. (1-9)

8

=

3 1s symmetric and positive definite. Comparison of Equations (I-3) and
(I-8) yields

= E——-[

II==
o=

BRI (1-10)

Thus, given a set of weighting matrices P and Q , a corresponding op-
timal solution is readily obtained. However, there is no guarantee that
the resulting closed-Toop system has the'desired dynamic characteristics.
Instead, one has to evaluate the c?osed-]obp system for several sets of

values of P and Q before arriving at a desired solution.



To develop the method of optwmal specified response, consider a

system matrix A and a desired closed-loop matrix A defined by

1=

=A-8

iI=

(1-11)

If the inverse of the system input matrix B exists, then the control ma-
trix K may be readily found. For the case when the rank of B is less
than the order of the system, several courses of action exist. One is to
specify a set of eigenvajues and to compute K by any technique which

will provide the desired set of eigenvalues. Finally the determined vaiue
of _5 is used to compute é_ from Equation (I-11}. This, of course, re-
moves some degree of arbitrariness in the specification of é_, but still
provides for a compromise between the choice of desired set of eigenvalues
and the amount of effort necessary to obtain the set.

A second course of action 1s to specify i s consistentwith permis-
sable values of K , and to determine P and Q for the closed-loop sys-
tem. This 1s especially attractive when closed-loop behavior Tike decou-
pling 1s desired.

The mathematical equattons necessary to solve the probTlem are obtained
by Tirst considering the optimal controller K, given by Equation (I-10),
substituting it into Equation (I-]1), and solving for A - é::

= -1

yl:b‘
3=
==
|

B''S

=B Pl s, (1-12)

B

:A:—

o

The Tast equation, when substituted into the steady state Riccati equation,

yields
SA+A S+R-

{3

(A-A)=

o
-

(1-13)

which reduces to

A'S+SA+Q=0 . (1-14)
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When the transpose of Equation (I-14) 1s added to 1t the final result,

recalling that S and Q are symetric, is

)'StS(ATA) =-20 . (1-15)

=1

(A +

Equations (I-10), (I-11) and {(I-15) are fundamental to the problem of spe-
cified optimal control. The method is to determine K from (I-11), cal-
culate P from (1-10), determining $ simultaneously, and determine Q
from (I-15). Once P , which is symmetric and positive definite, and Q ,
which is symmetric and positive semi-definite, are determined, they may be
modified to maintain a degree of resemblance to the desired closed-loop
matrix while minimizing state variable and input variables magnitudes,

The nonideal systems are analyzed in the next section.

2.3 Analytical Development for Nonideal Systems

Consider now the case where the number of manipulated variables is
tess than the number of state variabies (p < n}, and hence, the B matrix
is nonsquare. Assume that the p inputs are Tinearly independent from
each other; consequentiy, the rank of B 1is p.

Suppose a change of variables is made with

X = (1-16)

","’?

where G 1is an n x n nonsingular matrix to be defined later. When this

15 substituted into the system equation

1>

:ﬁ.}i-[r-B
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the result can be written as

2=6 AGz+E Bu . (1-17)
Define

ié_@_"i Ag (1-18)

Blee (1-19)
Further, define G such that

.12

E:=

B
where B 1s an n x p matrix, 0 represents an (n-p) x p matrix and é_ is
a nonsingular p x p matrix. This may be obtained as foTllows.
If G = [==1 52], then
~ 0

B =GB =G &l [é (1-20)
or «

B=6 B
and

- nemy-] )

& = BB . (1-21)
The matrix Eﬁ can be any n x {n-p) matrix such that Qf] exists. This
demonstrates that a new system representation can be found of the form

z=Az+Bu (1-22)

such that the first (n-p) rows of the matrix B are identically zero

with the remaining p rows forming a matrix of rank p. Therefore, for

the derivations

can be taken as

and anatyses which follow, the first (n-p) rows of B

zero without 1oss in generality. The lower p rows of

B are assumed to be of rank p.
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For the development of the control policy for the nonideal system

where p < n, consider the closed-loop representation

ix=

= A - BK (1-23)

with

i13=
it

The dimensions of the various matrices are as follows:

Aln x n), Aln x n), B(n x p), K(p x n), Ay (3 x 3),

i =

A3 x p)s Ap(p x 3)s Apy(p x p)s Apy(d x 3),

| 2=

Ao(3 x p)s Ay x 3)5 Ayy(p x p), O3 x p) and

(p x p), where j = n-p.

The Riccati equation for optimal control 1s given by Equation (I-13),

with the control policy given by

7=
1}
a

Let

g=
m~
-~
~
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with Kilp x 3), Ko{p x pls S4900 % 3)5 §3,(3 x p)» Syo(p x ),
Q€3 x 3)5 Q4,3 x ), Qyolp x p) and P (p x p).
Working with partitioned matrices, Equation (1-23) can be expressed

Il

9 (Y

A A

as {
i =11 =2
i

.{3>

Ayp

PO
it m—————

|
- |

lB K

: Aoy —22J

| ==

5 B

=21 —22-J

Breaking down this matrix equation into components parts and solving for

Eﬁ and K L% yields
- =1 Y
K =8 (B - Ay) (1-24)
T ;
Ko =By~ (Bpy - Apy)

Provided §,"1 exists. This was shown to be true since §2 is of rank p.

Ay = Ay and A5 = Ay

cause of the Timit in the number of inputs. After the transformation, the

Clearly A A, are restrictions imposed at this time be-

optimal weighting matrices P and ( can be found. Repeating Equation

(I-12), we have

Bp™ !

s

BS=A-A

In the partitioned form this becomes

9 9 -
B, P B, S B, P !B, S
By P By3y, ByB By 3y
- -
g 9 § (1-25)
Boy ~ By By
L 4
or -1 _
Bo P By 595 = Ay - Ay
(1-26)
B, P71 8, S,, = A,, - &
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2.4 Application to an Ideal System

To illustrate the design procedure, consider an 1deal second order

system given by Equation (I-2) where

-3 27 i1 [1 0
, C=

B =
& Lo 1] lo 1

Let the desired closed-Toop response be governed by

(s o
=B-..EE=
= = 10 -8

F

= 4

To determine P and Q for the given A, the first step 1s to find
K from !

o 1 N -
K=B (A-A)= .
= = " 4 3

iz

The next step is to determine a symmetric, positive definite P from
Equation (I-10) keeping in mind the condition that S must also be sym-

metric and positive definite. Thus

where -

B:

-

12

Upon expansion of the last equation, the result is

Prp ¥ 4 Py Pt 3Py IS11 Sz
Py 3 P APy Py - AP T3P 151 Sap |
Thus
Sqp = Pip + 4 P, (1)

S12 = Py ¥ 3P =4 Py - Py - 3P, (1)

Sog T Py m G Pyt 3 Py (111)
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Because of symmetry of S, Equation (ii) yields the relationship

2 )
Pra =3P - (iv)

Eguations (i) - (ii) become

8

S11 =Py 3P (v)
S, = Poy 4 LD (vii)
22 = P11t 3P

Analysis of the equations suggests that P22 may be chosen arbitrarily.
Since P must be positive definite, PH > g—P22. Thus an acceptable

choice for P 1s

1 2/3 I
P:
= {231 ]
which yields
11/3 1]
S==
1 4/3 ]

_ From Equation (I-15), Q is found directly to be

108 17 }

1
Q= 7
= 3 197 s

It may be readily verified, using Equation {(I-13), that the above values
of P and Q will yield the desired value of S and hence the feedback
matrix K.

The time responses for the closed-loop system 'ﬂ:= A - B K are shown
in Table I-1 for three sets of initial conditions. While the transient

behavior is as desired, Tet us assume that the maximum magnitude of the

control variable Uy is excessive. To reduce it, P22, the weighting asso-
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ciated most closely with Uy is increased from Py, = 1 to Py, = 2 while

all the other elements of E: and g: are held constant. The resulting

feedback matrix, obtained from Equations (I-10) and (I-13), is

2.90 0.32 g

K = }
| 1.56 1.39

and the ciosed-loop system matrix is

—

‘ -7.76  -0.30

1=

_ 2.4 -6.39

The time responses for this modified closed-loop system are shown in Table
I-2 for the same three sets of initial conditions used in the original
system. Note that the desired reduction in the magnitude of Uy has been
obtained, but at a loss in the degree of decoupling between the states.

A system designer would have to choose a compromise between excessive in-
put and excessive coupling. With the foregoing information, he is in a )

position to make an objective choice of a control policy that most nearly

meets his needs.



TABLE I-1
TIME RESPONSE FOR THE SECOMD ORDER
EXAMPLE PROBLEM, P(2,2) = 1.0

X,(0) = 0, X,(0) = 10

TIME X Xy U U, (U) + (U,)
0.0 0.00 10.00 10.00  -30.00 40.00
0.3 0.00 7.86 7.86  -23.59 31.46
0.6 0.00 6.18 6.18  -18.56 24.75
0.9 0.00 4.96 1.86  -14.60 19.47
1.2 0.00 3.82 3.82  -11.48 15.31
1.5 0.00 3.01 3.01 - 9.03 12.04
1.8 0.00 2.36 2.36 - 7.10 9.47
2.1 0.00 1.86 1.86 - 5.59 7.45
2.4 0.00 1.46 - 1.46 - 4.39 5.86
2.7 0.00 1.15 115 - 3.46 2.61
3.0 0.00 0.90 0.90 - 2.72 3.62
X,(0) =10, X,(0) =0

TIME X, X, U, U, {u7) + (Uy)
0.0 10.00 0.00 -10.00  -40.00 50..00
0.3 7.86 0.00 7.86  -31.46 39.33
0.6 5.18 0.00 - 6.18  -24.75 30.93
0.9 1.86 0.00 - 4.8  -19.47 24.33
1.2 3.82 0.00 - 3.82  -15.31 19.14
1.5 3.01 0.00 - 3.01 -12.04 15.06
1.8 2.36 0.00 - 2.36 - 9.47 11.84
2.1 1.86 0.00 - 1.86 - 7.45 9.31
2.4 1.46 0.00 - 1.46 - 5.86 7.33
2.7 1.15 0.00 -1.15 - 4.61 5.76
3.0 0.90 0.00 - 0.90 - 3.62 4.53
%,(0) = 10, %,(0) = 10

TIME X, X, U, , (Uy) + (U)
0.0 10.00 10.00 0.00  ~70.00 70.00
0.3 7.86 7.86 0.00  -55.06 5506
0.6 6.18 6.18 0.00  -43.31 43.31
0.9 1.86 1.36 0.00  -34.07 34.07
1.2 3.82 3.82 0.00  -26.80 26.80
1.5 3.01 3.01 0.00  -21.08 21.08
1.8 2.36 2.36 0.00 -16.58 16.58
2.1 1.86 1.86 0.00  ~13.04 13.04
2.4 1.46 1.46 0.00 -~10.26 10.26
2.7 1.15 1.15 0.00 - 8.07 8.07
370 0.90 0.90 0.00 - 6.35 6.35



TABLE I-2

TIME RESPONSE FOR THE SECOND ORDER

EXAMPLE PROBLEM, P(2,2) = 2.0

XT(O) =0, XZ(O) =10

TIME XI X2
0.0 0.00 10.00
0.3 0.04 8.27
0.6 0.06 6.84
0.9 0.08 5.66
1.2 0.09 4,68
1.5 0.09 3.88
1.8 0.09 3.21
2.1 0.08 2.66
2.4 0.07 2.20
2.7 0.07 1.83
3.0 0.06 1.51
Xl(O) = 10, XZ(O) =0
TIME X4 Xy
0.0 10.00 0.00
0.3 7.92 0.53
0.6 6.28 0.87
0.9 4.98 1.06
1.2 3.95 1.14
1.5 3.13 1.16
1.8 2.48 1.12
2.1 1.97 1.06
2.4 1.57 0.99
2.7 1.24 0.90
3.0 0.99 0.81

X](O) = 10, X2(0) = 10

TIME Xo Xy

0.0 10.00 10.00
0.3 7.96 8.81
0.6 6.34 7.71
0.9 5.06 6.72
1.2 4.04 5.83
1.5 3.22 5.04
1.8 2.57 4.34
2.1 2.06 3.73
2.4 1.64 3.19
2.7 1.32 2.73
3.0 1.05 2.33

-29.84
-23.91
-19.17
~-15.38
-12.35
- 9.92
- 7.98
6.42
5.17
4.16
3.36

I

i

I

-34.73
-28.08
-22.72
-18.40
-14.91
-12.09

- 7.97
£.48
5.27
- 4.29

~-13.35
~11.71
- 9.26
7.71
6.42
5.34
4.45
3.70
3.08
2.57

[ | [ | I T ]

1
n
o
w

-31.15
-25.94
-21.60
~-17.99
-14.98
~12.47
-10.39
- 8.65
- 7.20
- 6.00
- 4.99

L o~
s
[ 3

(uy) + (U)

47 .65
38.73

25 .66
20.97

13.91
11.36

(u)) + (U,)

65.89
54102
44,32
36.39
29.89
24.57
20.20
16.63
13.69
11.27

9.29

22.
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CHAPTER 3
LIMITATIONS IN APPLICATION OF SPECIFIED CLOSED-LOOP
OPTIMAL CONTROL TO X-14B AIRCRAFT

3.1 Control Design Problems in VTOL Aircraft

The major problems in the control of VTOL aircraft, occur at the hover
and near-hover conditions. Because of the low speed of the aircraft at
these conditions, insufficient aerodynamic forces exist to produce an
effective control system relying on aerodynamic control surfaces. Hence,
supplementary controls are added to provide 1ift, roll moment, and pitch
moment. With the added controls the pilot is required to perform a Targe
number of tasks to maintain the aircraft at a desired attitude.

To simplify the task of controlling the airplane, a decoupling con-
trotler scheme was sought. The specified closed-loop optimal control meth-
od, developed in the previous chapter, was selected. The primary reason
was that while linear decoupling techniques gave adequate results and these
were used to ébtain a completely decoupled system, it was necessary to
minimize the magnitudes of some of the control and state variables, and
it was necessary to maximize the envelope control systei operation in
the linear domain. The Tatter implied avoiding saturation of the control
variables as much as possibie. It 1s obvious that the handling character-
istics of a controlled system are drastically changed when saturation is
reached. To maximize the envelope of operation, it is necessary to dis-

tribute the control effort in an equitable manner.

3.2 Description of the X-~14 VTOL Aircraft
The Bell X-14B VTOL aircraft is a fixed wing, jet-propelied, deflected-

jet vehicle. It is a small (4200 pounds) two-place, side-by-side airplane
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with two jet engines mounted in the fuselage. The vertical thrust is
derived from cascade-type diverters on the exhausts of each engine which
enables the pilot to select any desired thrust angle from vertical to hori-
zontal. In addition to this thrust diverter, 1t 1s also assumed that a
side vane is present in the exhaust enabling direct Tateral movement.
Angular control about the three axes is maintained through a continuous
bleed from the engine compressors and discharged at the tail and wing tips

of the airplane.

3.3 Equations of Motion for a VTOL Aircraft

The complete development of the nonlinear equations of motion for a
VTOL aircraft in general and the X-14B in particular is made in Appendix
A-I. A general method to 1inearize an nth order nonlinear equation is
presented in Appendix A-II. Appendix A-III is a listing of the Tinearized
system equations for several flight conditions of the X-T4B,

A common practice in analyzing aircraft is to separate, or decouple,
the Tongitudinal mode of motion from the lateral mode. The Tinear equa-

tions of motion for the Tongitudinal mode of the X-14B in hover, after

dropping the effects of the elevator, can be expressed as

X=X +By
where }
0 1.0 0 0 A
0 _.150 a4 x10% 15 %1078
A=1_32.0 0 - .020 . .038
0 0 0 - .02

L
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0 0 0 ]
i.035 020 0 !
E = 0 56 0
. 0 0 3.6 J
where
r'x]w (g [ 6y ) g u]"‘
x - X5 ) q T ) "
X3 W o

(e Lu ] O] U3

The physical variables corresponding to the state variables are 8 {radians),
q {(radians/second), u (feet/second), and w (feet/second), respectively,
with the control vector corresponding to §  {reaction nozzle about the y

Y
axis), o (thrust angle measured positive from the vertical), and @ (engine

RPM as a percent of maximum).

3.4 Design of a Controlier for Hover Flight

In the open-loop system there is strong coupling between roll and the

vertical velocity. Let the feedback control policy be given by

.
kip K2 K3 kyg
Us=-Kx= 1Ky kpp  kpg kyg f X
' |
Koo kon koo K
| Ka1 Kaz Kz kg

To obtain the desired decoupling a closed-loop syStem matrix may be

specified as

iz
it

(1-27)
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It must be determined that the system is completely controllable and com-
pletely observable. Since state variable output is assumed, observability
is compiete. It is controllable since the rank of the controllability

matrix

is four.

Next, it should be determined that a feedback control matrix K,
exists that will produce the closed-icop response, E. The general form
of this nonideal case was treated in the previous chapter. The closed-

Toop equation is

(1-28)
0 ] 0 0
0.-035k;;  -.15-.036ky,  -1.5x107"-.035k,;  -1.5x10""-.035k,,
ne o - -.02k,, .02k, -.0%k, 4 -.02,,
32.- .56k, 056k, ~.02-.56k,,, -.038- .56k,
0-3.6k 5 0-3.6k, 0-3.6k., -.021-5.6k 5,

Comparing Equation (I-27) with Equation (I-28), the control matrix is found

to be
146.94 81.43 -0.60 0.03

K= -57.14 0. 1.03 -0.06 (1-29)
0. 0. 0. 0.16

The next step is to determine P and Q which, when used in conjunction
with optimal control theory, would yield the same matrix K. Following
the same procedure as given in the example of Chapter 2a set of positive
éemi—definite matrices P and Q ., which yields Equation (I-10) as the
optimal solution was found. This set one solution to inverse quadratic

optimization problem for the X-14B airplane is




50..000
P =1 28.416
-.32301

[ 649794.
0

o
f

-20.918

71.434

..

28.416 -.32301
17.150 - 244.47
-244.47 60676 .
0 -20.918
39392. 116.83

116.83 1.1395
-3872.8 -43.576

27.

> (1-30)
=
71.434
~43.576
1683.6 |

The corresponding solution to the steady state Riccati equation is

given by

[ 489834.
163518.

-133.74

| 2867.3

163518. -133.74
116327. -22.548
-22.548 1.8539
-7.3061 -76.279

3867.3 |

-7.3061
(1-32)
-70.27%

2715.3 |

As a check, the above values of P and @ were used in the per-

formance index (I-1) and the resultant optimal solution, obtained by

conventional optimal control theory techniques, was found to be

C0.00
-4.00

21
H

-2.35x10°

8

| ~6.08x10”

Note that the above matrix
given by (I-29) and, hence

problem is complete.

1.00 0.00
-3.00 4.77%107%
-1.61x107°  _0.60
-4.17x1078  7.31x107°

1s nearly identical to

, the first part of the

B

0.00

-2.17x10"9

~1.11x107°

-0.60 J

the desired matrix

contraller design
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To determine whether the above controller was acceptable, a Tinear
mode1 and the controller were simuiated on the digital computer. Further-
more, the diagonal elements of P were varied by 1 percent sequentially
and the corresponding control matrices were determined. These are shown
in Table I-3. The resulting closed-loop systems were observed for trans-
ients due to initial conditions and the results are shown in Table I-4.
The parameters recorded were the maximum values of the state and the in-
put variables. Examination of the data for the exact decoupling control-
ler veveals that the control effort Uy {reaction bleed control, 6y) is
excessive and should be reduced. The penalty on this variable, Py7 >
when increased by 1 percent causes a near 90 percent decrease in the
maximum value of up - This was the evaluated to be the most desirable
of the controllers presented in Table I-3. With this choice of Py >

the final closed-loop configuration selected is

[0 1.00 0 0 )
-4.023 -3.013 9.701x10™° -5.536x107°
A=l -126.6 67.40  -.1781 ~2.408x1072
-3.277 -1.744 1.092x1072 -0.6005 |

The disadvantage of this design is that there is some uniiateral
coupling. That 1s, pitch and pitch rate (¢ and gq) disturb the for-
ward and vertical velocities (u and w), but the last two affect

& and q only minimally. Thus. the "best" controller selected is

18.416 13.040 -0.176 0.010
K= 168.949 120.348 0.282 -0.025

0.911 0.484 -0.003 0.161 |
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3.5 CLonclusions

One of the goals of this study was the development of a suboptimal
decoupling technique for general systems. Even though the theory of op-
timal control is well defined, it suffers from the fact that it is dif-
ficult to prescribe a meaningful performance index. When a degree of
decoupling is desired in a controlled system, there is no means of
specifying a performance index which would provide a decoupling controi-
ler. Thus the problem was investigated 1n a reverse order. A decoupl-
ing control policy was determined and then an attempt was made to find
a performance index which, when used in a standard fashion, yielded
the desired closed-Toop system. The objective was to manipulate the
known performance index to strike a balance between the degree of tol-
erable coupling and some criteria on magnitudes of states and inputs
of the system.

The elements of the performance index were perturbed a finite
amount, one element at a time. The resulting control policies were
evaluated and the most desirable policy was finally selected. There
was an increase in coupling with the new policy, but that was off set
by the large decrease in the amount of control needed to maintain the
airplane in the proper attitude.

The technique developed in the foregoing appears to be quite pro-
mising. Additional work, however, is necessary to define the most de-

sirable type of control acticn.
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APPENDIX A
DEVELOPMENT OF THE EQUATIONS OF MOTION FOR THE X-14 AIRCRAFT

A. General Equations of Motion for VIOL Aircraft

This development of the equations of motion for a VTOL aircraft as-
sumes the aircraft is rigid and the origin of the coordinate system is at
the mass center [1, 2, 3]. Additional assumptions used in this develop-
ment of the equations of motion are:

1. The VTOL aircraft has diverters and vanes affecting the

engine exhaust.

2. Any wind disturbance 1s irrotational.

3. Engines rotate in the same direction at the same speed.

A standard aircraft body axis system is used where the aircraft is
symmetric about the x-z piane with the positive y-axis pointing out the
right wing, the z-axis down, and the x-axis. in the forward direction of
flight (stability axes). This is a right-handed coordinate system.

For the system, the velocities, angles, angular velocities, forces

and moments associated with each axis are shown in Table A-1-1 and Figure

A-I-1 [4].

Table A-I-1
Ax1s Linear Velocity Force Angle Angular Velocity Mement
X u e ¢ p L
Y v F 8
y 9 &
Z W F 4 r N
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From Etkin [1], the time derivative of the angular quantities can be

expressed as

0

g ccs ¢ - r sin ¢

o
i

P*qsing tan 8 + r cos ¢ tan O

" (g sin ¢ + r cos &) / cos B

Since the analysis is for a VTOL aircraft, 1t becomes necessary to in-
troduce some notation not normally found in ajrplane equations. A Tisting

of this additional notation is in Figure A-I-2.

Inertial Forces

In writing the egquations of motion, all inertial components are ex-

pressed as D'Alembert forces, i.e.,

zF =0

+ . .
external EF1nert1a1

where

IF -ma

inertial

Using this notation the inertial forces along the three axes are

in = -m (u + wg - vr)
Fyi = -m (v - wp + ur)
F;=1m (W - ug + vp)

Likewise, the moments are

1]

Mxi -p IX + qr (I‘y - IZ) + (r + pq) Ixz

M

- é Iy + pr (I2 - Ix) + (r2 - p2) I

yi Xz

My == r I tpa(l, - L)+ (p-ar) I,
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Figure A-Y-2

Definitionn of Nen—standard Notatiom

w subseript is for wind velocity

V. = jet exhaust velocity from the diverters

i

0 = thrust diverter angle measured in the verticle plane from the

positive z—-axis

A = exhaust side vane angle measured pesitive about the x~axis by

the right hand rule

UO = [(u - uw)2 + (w -

Ty = [ - uw)z + (v

@ = angle of attack;

B = side slip angle;

M
i

distance engine

z, = distance engine

]
]

distance engine
gravity

2z, = distance engine

2

w )2]1/2

w
2 2. 1/2
+(v-vw)]

- ww)
ds‘: R

gin (w ww)/UO

sin 8 = (v - vw)/U0

intake is in front of the center of gravity

intake 1s below the center of gravity

exhaust pivot point is in front of the center of

exhaust pivot point is below the center of gravity

21 is the effective length where the exhaust will impinge on the diverter

vane from the end of the jet engine

Ie = moment of inertia of one engine about the axis of rotation

Qe = angular velocity of an engine measured positive in the direction

of the x—axis

N.E., = number of engines

T = total thrust from the diverters

Lp, Mq’ Nr apparent

attributable to the effects caused by CZ . Cm s G

aerodynwmnic dawping near hover not directly

» "q “r

Ls » Mﬁ , Nﬁ Moment effects due to reaction control nozzles

X y z
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21.

22.

23.

Y3

i

=jet velocity at the engine exhaust

total installed jet thrust
longitudinal diverter efficlency factor

lateral diverter vane efficiency factor

37.
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where

fic>

jibeg

I 4 f(yz + zz)dm, Iy f(x2 + yz)dm

I(x2 + zz)dm, I
x z

e
ne-

i
Ixz = [xzdm IxY [xydm Iyz

with

[yzdm

I =0andI_ =20
Xy yz

_ since the aircraft 1s symmetric about the xz plane.
In addition to aircraft inertial terms, there is a contribution from
the rotation of the engines to the moment equations. If the engine speed
is almost constant, the contribution to the moment cquations can be expressed
as
M =0
e
x
M = (N.EDJI 0 ¥
e e e

¥
= - e Q
Mez {N.E.) Ie o3

Gravitational Forces

Since the origin of the cocordinate system s at the center of gravity,
the gravitational forces do not enter into the moment equatiens. Their
contribution to the force equations is

F =-Wgin®
X

g
Fy = Wsin ¢ cos @

4
Fz =W cos ¢ cos ©

g

Mass Flow Fffects
There are two contributions to mass flow effects, one at the engine

intakes and a second effect at the engine exhausts. If the mass of the fuel.

burned is neglected, the forces due to the mass flow can be expressed as

2wl - - o] A
Fxﬁ o {u u Vj sin cos 1)
F = - (v-v =V, sin A)
Yﬁ ( u ]
F = -m(w=w +V, cogs U cog A)

zs w 3
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where m is the entering mass flow rate which is approxlmately cqual to the

4

mass flow rate out, V. is the relative exhaust'wvelocity of the jet, © is

3
the diverter angle, and ) 1s the side vane angle. Recalling that the gross

thrust equals mass flow rate times relative velocity,

TedV
3
or
o=
v
3

Upon making this substitution, the mass flow contributions to the equations
of motion can be written as

Fx =T [sin ocos A~ (u~ uw)/V 1

. h|
Fyﬁl =T [sin A- (v - "w)/ Vj]
Fzﬁ =-T [cos oco8 A+ (w - ww)/vjl

The mass flow comtributions to the moment equations enter in because the

intakes and ezhausts are not at the center of gravity. The moments are

2

Mx. = T z; {v - vw)/Vj
m
in
Hyﬁ = T [x1 (w - Ww) -z {u - uw)]/Vj
in
Mz. =-F %) (v - Vﬁ}/Vj
m
in
where Xy and z, are the distances from the center of gravity to the center

of the intakes. The moments caused by the exhaust are

= A L
Mg. T sin (22 + 1 cos a)
out
= A (2 g + g
H§. T cos { 9 sin ¥, cos }
m
out
E- ] A -
Hz. T sin (x2 zl sin g)
out

where x, and z, are the distances from the center of gravity to the center

of the exhausts, and £, is the effective length where the exhaust will

1

impinge on the diverter vane.



40.

The total moments caused by engine masz flow terms can now be
expressed as

M = T [-sin A (:«;2 + 21 cos a) + zq (v - vw)/'V |

X h|

T ) .
M}?Il =T { cos XA (z2 sin ¢ + X, cos o) + [xl {w - ww) -z (u—uw)]/Vj]
Mz. =T [sin l(xz - 21 sin ) - X {v - vw)lvj]

Additional woments are caused by discharge nozzles in the tail and on the

wing tips. These reaction control moments can be written as

Mx = LG Bx
R.C. x

M = MG )

Yr.c. ¥ ¥

Hz = Né éz
R.C. z

where 6x’ 6y and Gz are the reaction nozzle openings expressed in degrees.

Aerodynamic Expressions

ine completre aeroaynamic expressions IOT @ Conventional a.:.rplane can

be writiten as

3%

p
Xaero = 7Y, 5 €4
Y =27%s¢
aero 2 o y
Z =2y?gse¢
aero 2 o z

= 2T 2
Laero 2Uo SbC£

P 2
Mau.arc» = 2 Uo Sec Cm

-— 7
N =£U “sbc
aero 2 o n

where Cx, Cy, Cz, Cy, Cm and Cn are the non-dimensional aerodyunamic

coefficients, n is the air demnsity, Uo = [(u - uw)2 + (w - €ww)z}1/2,

ffo = [{u - uw)2 + {w -~ ww)z + {v - vw)z]llz, S is the wing area, b is the

gpan and c is the wing chord.
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Now use a Taylor series expansion of the non-dimensional aeroaynamic

forces retaining only the first terms in the serles [1, 2] and let the

vehicle velocities relative to the air mass be denoted by LCT L T
A
v = v~ v and w =y - w . Then,
rel v rel w

ac 3C 3¢
x x P
Cy Cxo tga Ot 3G Gey T 35 _ B

aC aC aC aC
Cy=Cy0+'aTslB+§§xp+ar r+3326r

BCZ BCZ BCZ BCZ s aC
Cz = Czo * Ba © +'§E“ rel = 3g a+ az * o6 6e

ac 3¢ aC 3C ac
cg=c£0+38—&s+appip+§;—’°f-r+~§-iaa+5—6i’“—ar

Y

BCm BCm acm BCm ECm
cm = Cm0 + T Fu Crel + 3q g * 3a + 36, ae

ac aC aC 3C 2C
cn=Cn0+‘§EEB+3§EP+'EQr+5?S§‘Sa+3§§6r

where o is the angle of attack (sin « = Voa1/ UO), B is the side slip
angle (cos 8 = U0 / ﬁb), and 58, 6a and 6r are the elevator, aileron and
rudder deflections, respectively.

Following Etkin [2], if the partial derivatives are written as
non-dimensional stability derivatives, the aerodynanic portions of the

equations of motion become



4?.

n-E- 2 —I-)- 4+ - +
aero = 2 Uo Sb[Ck + cE g+ __cz p+ = CE T C2 8, +
o B 2U P 2U r §
Q o a
c 8_]
s
T
= B 2 .f...l; .;.5'. +
Yaero 2 Uo Sc{Cm + Cm Ty Cm urel 2y Cm 9
0 o u 0
c »
= 8
22U cm- at Cm ]
[s) [+ 6&
LT sic +c 8+2 ¢ p+2 ¢ r+c §
aero o n - n - n n a
(! 2u P 2y r ¢,
+¢c 8]

In addition to these stability derivatives normally found in alrplane
equations, for VIOL aircraft it is desirable to add the rotational
damping observed ON 2 NOVEring alrplane. Lhis can ve expresbed an.

Laero VTIOL = Lp P

Maero vron = Mg @

Naero VIOL x

After summing the component parts, the complete non~linear equations of

motion for a VIOL aircraft can be written as in Fig. A~I-3.
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Figure A-1-3
Summary of Complete Non-linear Equations of Motion for a VTOL Aircraft
G=vr-wqg~-gsing + [sin o cos A —-——1—(u-—u)]
m Vj W (A-1-1)
1,2 1 i}
+5-00,"8[C_ +C o+FC (u-uj+¢ 38 e]
(4} o 0 u &
. & _2
T 1 pUy S
=wp - ur + gsin¢ cos @ +—r&-[sin) - ={(v -—vw)] + =
3 (A-1-2)
b b
[CY + C g+ —¢C p+—C r+C §_1
Y — Y - Y Y T
0 8 2U0 P 2U0 r Gr
. T 1
Wmug-vp+gcosd cos® -— [coso cosh+i— (w-w)l
m v W
h|
oy’ ¢ 1 c
+ o [Cz + Cz a + - C (u - uw) + 5 ('z q {A-1-3)
0 o 4] u 0 g
+E5—¢  adcC 8]
2U0 z . zg e
e
. (Iy B Iz ) Ixz . T
P=—7 qr + 3 (r + pq) +~I—-[-sinl (22+9’1 cos O)
X x x
zy }_.R Lsx 1’1023b
+V—-(v—\rw)]+1 p+-i-——6x+p-§*i-—-[c£0+cg B (A-T-4)
3 X X X B
b b
+;_J——C£ p+g-02 r'{'CE‘a 63+C’°‘6 51_]
o P o * a r
(r -1) I ‘
s 2z X %z ,. 2 2 1 LT
q 1 pr-!»I l(r1 p) I (N.E.)Ieﬂer.l
y y y y
Lo w-w)-2z (w-uw)h
Vj 1 W 1 W

{cos A(zz sin ¢ + x, cos o )+



fiﬂ MG pUOZSc 1
+ 3 q+—XI 8§ + 57 fc, +cC o+gC (u—-uw)
y y 0 0 u
C C .
+o—C qt+7—C_ a+C § ]
2U0 mq ZUO me ¥ e
e
(Ix - I}Z) Ixz 1
= XZ 2. - 0
r i pq + I (p qr) + I (N.E.) IE e q
z z z
X N
T . 1 r
. A - 2 - — - £
+ 3 [sin (x2 , Sin a) 5 (v Vw)] tyor
z i z
Y, P ﬁOZSb b b
‘!'—I“""'ﬁ‘l' 71 [C + C B+—:"'C p+TCn r
z z "o Tp 2T, “p 2. "t
0 0
+ C E§ +¢C g1
ng a ng T

44,

(A-1-5)

(A-T—6)
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Figure A-I-4

Summary of the Reduced Non-Lincar Equations of Motlon for the X-14 Aircraft

Ce
it

T
Vr -~ wg - g $in 0 +~a [sing cos A - L {(u - uw)]

v
i
1 9 (A~1-7)
—_— T —_
+ 2m¢JJU 3 [(CL + 4 CL) sin o CD cos @]
p. off
V=wp - ur+ g sin ¢ cos d + z—[sin A - ;—-(v -~ v)] + L o7 % (A-T-8)
m Vj W 2m 0 Y
. T 1
w=uq - vp + g cos 3 cos 0 - [cos 6 cos X +-§—-(w - ww)]
J (a~I-9)
1 2. .
ol pUO 3 [(CL + ACL) cos © + CD sin «]
p. off
a - Iz) Ixz T zl
- = A4 . I )\ 0 _r -
P 7 qr + 3 (r + pq) + I [ sin (z2 + %, cos c) + 7 (v vﬁ)]
b4 X x k|
L “s (&-1-10)
+ P X 1 52
AR, 5+21 puos?(cz e, 8
X X 0 3
a
(1, -1)
. 2z X ¥z , 2 2 1 T
qQ=-—7—— pr + T (r P ) - I 2 Ie Qe r + T~ cos A
y y v y
1
(22 sin g + %, €08y ) + ﬁg-[xl {w - ww) -2 {u - uw)]
_ﬂ M 12 (A-1-11)
+ q + “—X 5 + I pUO Se [(CM + A Cmo)
y y p. off
+(cm +4C )“+Mzuocm q+cm6 Ge]
ap. off " 4 e
I -1) I
. . 1
= xI ypq-i-lxz(p—qr)-}--i—ZIeﬂeq
z z z
N
N 8
T ) X1 x 2 (A-1-12)
+ 7 [sinA (x2 - 21 sin ad) - v (v - vw)] + 7T + T 62
3 z zZ
1 2
C
ZIpUOSb(L +C 8 +C 5)

! 8 T
r a
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B. Application of the Equations of Motion to the X-14 Aircraft

Several of the above aerodynamle stability derivatives have a very
small effect in the representation of the dynamics of the X-1l4. The
determination of which stability derivatives have this insignificant
effect was based upon examination of wind tunnel data and a knowledge
of the physical airplane. The final justification for retaining or
neglecting different stability derivatives comes from the fact that an
analytical model] was obtained which when used in simulator studies closely
approximated the physical airplane [5]. Using these findings the above

acrodynamic contribution to the equations of motion can be expressed as

p .
xaero > Uo S (CL sin o - CD cos @)
g2
Yaero "2 U6 5 &
o 2
zaero = %B S (CL cos o + CD sin o)
L =252, +C, 6)+1L p
aero 2 o ﬁo Ly @ P
a
o] 2 c
Maero =3 Uo Sc (Cm +C_ o 70 C a+ Cm 5e) + Mﬁ q
o o o q §
e
p 2
Naero = 3 U0 §b (Cn + Cn Gr + Cn éa) + Nr r

(4] Gr éa

where CL is the non-dimensional lift coefficient and CD is the drag

coaefficient{2].

Continuing to follow the develapment in reference [5], some of the

above "power on" stability derivatives are expressed as "power off" plus

£

" AY terms where the " A" represents the difference between power om and
power off effects. The aerodynamic portion of the equations of motion

now becomes

= E-Uo2 s{(c +AC ) sina -~ CD cos_a]

X
aero 2 power off L
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p = 2
aero 2 Uo S CY
=-2y 2 s [(C + AC ) cosa + C_ sin o]
aero 2 o | D
power off
=252 (¢, +C S§)+L p
aero 2 7o % )2 a P
o o}
a
M =E-U28c[(C + AC ) + (C +4 C Yo
aero 2 o ™ M
power off power off
+ & ¢ q+C § 1+M q ’
2u m g e q
o q o

-
TN

=2
=BT “ sp (c, +C, & +C )+ N r

o ¢ Sa

Upon incorporating these expressio;s for the aerodynamic forces in the
complete equations of motion, the reduced non-linear equations of
motion for the X-14 can be written as in Fig. A-I-4.

These equations can be put in state variable form by eliminating
the derivative terms from the right hand side of equations (A~I-10) and
A~1-12). Revrite the equations as

I p=1 T + L%

{A-1-13)
I £=1__ p+N*



where

X = - - £ ¢
L (Iy Iz) gr + Ixz pg + T[-sin A (z2 + cos ¢)

1

-I*-z1 (v—vw) /Vj]+Lpp+L6 6x+

X

+1/2p U 2 s (c% +C

0 aa)

%

a

* = - _ .
N (Ix Iy) pa-I _qr+ 2 IeQ 0
+ T [sin A (xz - 21 sin g} ~ Xy (v - v, }/Vj] +le_ T

= 2
2 8 3
+ N5 62 + 1/2 p U0 Sb (cn + cn - + cn a)
2 ° Gr 5a

Upon solving Egns. (A-1-13) for p and t it is found that

z

P I Lx+I W®/Q@C I, - Ivzz‘

2
= = k! -
r (Ixz L=+ IK N ‘) / (IX IZ IXZ )
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C. Numerical Evaluation of the X~14 Equations of Motion

Numerical values for the constants in equations (A-I-7) to (A-I-12)
are given in Table A-I-2. In addition, the followlng stability
derivatives can be expressed as functional relationships [5]:

¢ = 0.0030 cos’s/ deg

s
a
2
C = -0.00014 cos™8/ deg
s
a
. 2
c = 0,00118 cos g/ deg
Ts
r
C = -0,0178/ deg
s
e

Furthermore, Figures (A-I-5) through A~I-12) show graphs of Cg ’

0
CC,C ,c ’C

Y’
%0 mapower of £ Lpower off

¢, AC /T,
m C

»
M 0

0 b’
power off

ACL/TC and T,vs. REM. Tc ig the non~dimensionalized thrustc with Tc =

T/(1/2 UOA §). T is the thrust at the engine exhaust and T is the

thrust at the end of the diverters. Hence,

where Eo is the longitudinal diverter efficiency factor and El is the

lateral side vane efficiency factor. Also,

Vj = Vj0 EU El
which demonstrate that the jet velocity is somewhat less at the exit
of the diverters than at the exit of the engines. In order to reduce
these graphs to a useable form, functional relationships must be ob-
tained. It was attempled to fit all of the graphs with polyndhiéi
curves. This, however, was impractical for the more,irregular func-

tions and straight line approximations were used. The functions used

are shown in Table A-~-T-3.
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The reactioa control nezzle effects were evaluated by two independent
methods. The X-14's responsce to sinusoidal inputs was analyzed by NASA
at Moffet ¥ield. The second method is to note that

moment = M ﬁy = Force . Length

§
y
or
Mg 6Y = Fmax . length
y “max
where the length is the distance to the discharge nozzle. Fmax was
measured directly using transducers, and § was also measured di-

max

rectly. HNumerical values associated with these calculations and a com-
parison with the other method are shown in Table A-I-4., This agreement
is quite good, especially when considering the errors and uncertainties
involved in measuring quantities like the moments of inertia and the

maximum foree at the nozzle outlets.



Table A-I-2

X-14 Comstant Parameters

-3 3
2.378 x 10 ~ slugs/ft

0 =
weight = 4182 1b.

Ix = 2340 slug~ft2
I, = 3400 slug-ft?
1 = 5400 slug-ft’
I = 180 slug-ft>

mass center at station 99.84 in. and 0.58 in, right of center line

xi = 6 ft.

%, = =~0,0133 ft.
z, = 0.583 ft.

22 =} 916 ¢

% = 0.167 ft.

ge = 1728 radfsec at 100% RPM
1 = 0.5 slug £t
5 = 182.69 ft°

c = 5.56 ft.

m = 129.9 slugs

b = 33,83 ft.

M /I = -0.15 sec *
q 7y

L /1 = «0.45 sec
p %

Nr/I = ~0.20 sec *
c = -11.4

m

5‘1‘



C = -0.0178 deg -1
m
§
e
-1
AC = 0.576 rad
T
M /Iy = 0.0350 rad/seczldeg
N /1 = 0.0166 rad/seczldeg
L /I = 0.0681 rad/seczldeg
8 x x
v = 2000 ft/sec
Io
EO’ = 0.91

£, = 1.00

b2.
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Table A-T -3

T=T {2) with § in percent of maximum RPM and T in pounds (for one
engine only)

T0 = 44,15011 * - 1869.205 1 < 93.3
= 68.96552 * Q -4184.483 93.3 < 2 < 9%.1
= 80 * Q -~ 5278. 99.1 < £ < 100.1
= 18.18182 * {2 + 910. 100.1 < 2 < 101.2
Q=T )
2 = 0.02265 * To + 42.3375 T0 < 2250
= 0145 * TO + 60.675 2259 < To < 2650
= 0125 * To + 65.975 2650 < To < 2730
= ,055 * To - 50.05 2730 < To < 2750

ACL/Tc = f (UO)

1

- - 2
ACT/Tc = -2,248398 x 10 / U03 + 2.483009 x 10 ~ Uo" ~ 1.332148

x 10'-3 UO ’

ACM/TC = f (UO)

AG,/T_ = 4.900354 x 1077 U3 - 3.164620 x 107> U2 + 1.529505
c 0 0
-3
x 10 U0
cD = LD(UO)
CD = ,11 + 1./(2.152195 UO + 12.5)
CMO = CMO Uy
power off power off
Gy = ~0.6 + 0.00237 U U < 34 (ft/sec)
0 o
pover off _ 4 52 + 0.0148 (W, ~ 34) 34 < U < 51
= -0,27 + 0.001579 (U0 - 51) 51 < U0 < 101

= =0.19 U0 > 101
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Cy = Cy (U
%over off %power off
CM = ~4,1 + 0.04145 U0 UO < 34 (ftfsec)
upower off
= 2.7 + 0.1007 (U0 ~ 34) 34 < Uo < 51
= -1.0 U0 s 101
Cy = Gy (B)
CY = =1,8518 0 < g < 0.189 (rad)
= -0,35 + 0.393 (B -~ 0.189) 0.189 < B < 0.418
= =0.26 — 0.362 (B - 0.418) 0.418 < B < 1,22
= -(,55 g > 1.22
C = (8)
') 2y
C“ =0,113 8 0 < g < 0.1945 {rad)
v
= 0.022 0:1945 < g < 0.594
= 0,022 4+ 0.1348 (8 — 0.594) 0.594 < g < 1.395
= 0.13 . B> 1.395
c, =Cc_ (8
b h
CRD = -0.083 B 0 <p <0.169 (rad)
=0,014 + 0.0066 (8§ - 0.169) 0.169 < g < 0.471
=0.012 - 0.00865 (B - 0.471) 0.471 < B < 1.395
==0(,02 -8 > 1,395
CL = CL
power off power off (UO)
c, = 0.61 + 0.002763 U, | U, < 51 (£t/sec)
power off

I

0.
75 Uo > 51



i Discharge
Axis Point Length
X Wing Tip 16.9 ft.
b Tail 18.75 ft.
4 Tail 18,75 ft.

max

20°

20°

20°

Table A~I-4

F
max

s

200 1bs.
130 1bs.

90 1bs.

Calculated
Inertia Sensitivity

2340 slug ft.2 4,13 deg/seczldeg

2

3400 slug ft. 2.05 deg/seczldeg

5400 slug ft.2 .90 deg/seczldeg

NASA
Sensitivity

3.9 deg/seczfdeg
2
2.0 deg/sec”/deg

.95 deg/seczldeg
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D. Solution of the X¥—14 Equations of Motion for the Reference Control

Variables

The reference values for the elements of the control vector u are
desired for any given state vector x. Since a steady state reference
condition is sought, set X = 0. Upon examination of the non-linear
equations of motion for the X-14 (see Fig. A-I-4), it is seen th;t
i, ¥, and W are only functions of T, ¢ and X . Theref;re, an explicit
solution for these variables should exist since there are three egquations
and three unknowns. To find this solution, first rewrite the equations
as

0=A+T (sino cos XA - urellvj + f gin o)

0=B+T (sin A -v_ _/V)

rel’” 3 (A-I-14)
= - T A -3 ~
0=C-7T (cos o5 cos ) “rellvj f cos ~ )
where .
A=m(vr~vwyg - gsing) +1/2 p 002 3 (C sina - CD cos o )
power off
B=m(uwp -~ ur+ gsiné cos €) + 1/2 p 502 S CY
2
C=m(ug - vp+ gcos ¢ cos €) - 1/2 ol, S (CL

power off

cos o + C_ sin a)

f= ACL/TC

After squaring, rearranging and adding equations, the result can be
written as
DT2 +2ET-F=20

where

o /Vj - £7 + 2f (urel sin o - W41 COS a)lvj
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= + B + - o Y o
E (A e Vel C wrul)/vj f (A sina € cos o)

(A-1-15)
F=a”+38°+c? '

Hence,

T = (-E + YEZ + DF )/D. (A-1~16)
Now since T is known,
[V, - B/T) (A-I~17)

rel’ |
and now from Eqn. (A-1-14),

A= sin-'1 (v

/JV, -~ £ sin® - AfT)Y/cos A1, (4-T-18)

¢ = sin—l {(urel f

Some additional information is needed to solve the moment equations
since there are six unknowns and only three equations. Since both the
three reaction controls and the three aerodynamic controls have approximately
the same rvange of trawel, let ws assume for determining the coantral aettines
for reference flight conditionsjthat the aerodynamic and the reaction con-

trols are of the same magnitude, or that

When the above numerically determined values of T, ) and ¢ are
substituted into the summary equations for the X-14, the equations can

be solved foré , 86 ,6_,6 ,686 , and § . The results are
z’ Te x’ 'y z

T

Sx =8 =- {(IY - lz) qr + Ixz pq + T{-sin A (z2 + 21 cos a)

e

~ 2 -
1 vrellvj] + Lp p+ 1/2p Uy” sb c20 } /(:,er (A-1-19)

+ z

+1/2p 0.2 b C )
0 b
a
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2 2 " -
- - — -— — - Q
6y GE { (Iz Ix) pr +Ixz (r p) 18,
A -
+ T [cos (z2 sin o+ X, cos o ) + (xl L zy urel)lvj]
+M q+1/2 pU.2 sc [(C +8C )
q 0 m m
0 0
power off
+ (C + AC Jo + —~S-¢c qll/M
m m 2U m 5 T
apower of £ * 0 1 y (4-1-20)
2
+ 1/2 pUO Sc Cms)
e
= - -— -— [} o
§, = & {(Ix Iy) pa-I _qr+2L 8 q+N r
- 2
-9 i - p
+ P [sin A (xz , sin o) xl vreljvj] + 1/2 U’o Sh (C:no
= 2
+C + -1~
n § ) 1} / (N67 1/2p Uy" Sb C“a) (A~1-21)

a ’ T
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APPENDIX B-1

LINEARIZATION OF MON-LINEAR EQUATIONS OF MOTION

FOR A TIME INVARIANT DYNAMIC SYSTEM

The non~linear equations of motion for a time invariant dynamic
system can be expressed as:

k=f(x, w (B-1-1)
where x is the state vecter, u is the control vector, and f is a vector
function of x and u [1].

Suppose that for the system represented by Eqn. ®-I-1) there is a
given x (t0 y = %, and u (t) for t > to, then the unique solution 9 (t, 1{0)

is determined and can be found. Now consider small perturbations d&x (to)

in * and Ju (t) in u {t). Hence, swall perturbations iam the solution

o (&, 3_(0) can be expected and X + 8% = £ (x + 8x, u + Su); &x (to) = '5_2{_0
(B-7-2)

Expanding the right-hand side of Eqn. (B~I-2) in a Taylor series and
retaining terms only of the first order, and after substituting equation
A-2-1 for %, we have the variational equation

sk = A ex + B du; &x (£5) = &%,
{p-1-3
where
9f.
A, =021 B
11 5% ij  u
b h|

with the partial derivatives being evaluated along the known solutvion,

. ofy (B~-I-4)

x (£) = ¢ (¢, EO) and control u (t). Hence, the motion of the dynamic
system about a known path for a small perturbatica 1s seen to be governed

by the linear ordinary differential equations (B-I-3} and (B-I-4).
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The numerical evaluation of the partial derivatives in equation
{R~I-4) can be accomplished by using the central difference approxi-
mation. [2] A review of this method follows. The Taylor series for

. - + .
the function tj expanded about (3:_0 Ax, 9_0) with

(ax)T=@ ... 0 % 0 ... 0)
is
ot 2° £, ,
= + —= - - ~T-
£, (xg + 8%, uy) = £, (x5 uy) + o Bxs + 1/23%-2 dx, + (B~1-5)
Bfi
with e evaluated at (x., Eg)' Similarly, the function expanded about
§0 - Ax, }_1_0) is given by )
Gfi 0 fi 2
- = - —— Foaee T
£, (%~ % uy) £y 1y axj X + 1/2 - Qb (B~1—6)
k|

, , 3 , e
Since Ax is small, (ij) and higher order terms are neglected., If
2gquatioa {B~I-6) is subtractea from $-I-5), and the resulerng equation
solved for the partial derivative evaluated at the point (x., ED) with

Axk = for k # j, the result is

o filp t e uy) - Fy G - A% up)

Aij T 2h0% ®-~1-7
J d

In a similar manner the elements of B are found to be

5 - R e e T T T ) .
i3 " Tou 2(hu,) B=T-8 )
T
where (Au)” = (0 0 0 ... Auj 0 ... 0). LRI R

A digital computer program that performs the above operations has
been developed and used in the linearization of the equations of motion

of the X-14B airplane.
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Dvnamic Estimation of an Unmeasurable State
for the X-14B YTOL Aircraft

NOMENCLATURE

MATRICES

= continuous time system matrix

= continuous time system input matrix
= continuous time system output matrix
= modal continuous time output matrix

= controller gain matrix

1)

modal contreller gain matrix

= modal continuous time input matrix
= jdentity matrix

= full observer gain matrix

= partial observer gain matrix

= gigenvector matrix

= modal continuous time system matrix
= discrete time system matrix

= desired discrete time modal matrix
= modal discrete time system matyix
= discrete time input matrix

= modal discrete time input matrix

El_g»e e __g'.e- BT O o B L ET L 1= gm I I ey oo Ix

VECTORS
u = input vector
v = eigenvector
x = state vector
y = output vector
z = modal state vector



SCALARS

NOMENCLATURE

pitch rate

yaw rate

time

forward velocity

side velocity

vertical velocity

pitch angle

continuous time eigenvaiues
desired eigenvalues
discrete time eigenvalues
time interval for difference equations

roll srgle

65.
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CHAPTER 1
INTRODUCTION

Accurate measurement of the complete state vector is an integral,
and sometimes difficult, part of implementing the powerful techniques of
modern control theory. This research is concerned with the development
of a method to estimate the side velocity of NASA's X-14B vertical takeoff
and landing vehicle during hover. When the aircraft is flying at low side
velocities, particularly during hover, measurement devices are unable to
give reliable readings, and thus are usually not used. Hover is defined
as low speed flight where aerodynamic and inertial effects are not impor-
tant. This corresponds to flight with forward velocities of less than
30 ft/sec. Determination of the side velocity is important for
both completing the state vector for control and for general knowledge
of flight.

The approach is t¢ investigate the application of linear dynamic ob-
server theory around flight operating conditions to estimate the side
velocity. Both full and partial dynamic observers are developed for
two linearized hover conditions.

The 1inear differential equations are discretized to hold computer
time to a minimum. The observers are tested on the linearized systems.

A linear modal control policy is also developed primarily to test the ob-
servers' ability to track the real system. Finally the developed linear
observers are applied to the full nonlinear equations to determine their

accuracy and range around the given operating conditions.
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CHAPTER 2
THE MODEL

The model for the X-14B VTOL was developed in previous research by
Hoffman, Loscutnff and Seevers [1} and has recently been improved by
Roeserner [2]. The resulting eight nonlinear differential equations are

found in Figure 1. The state variables for the model are

8 = pitch angle,

q = pitch rate,

u = forward velocity,
¢ = roll angle,

p = roll rate,

r = yaw rate,

v = side velocity,

it

w = vertical velocity.

This set of noniinear differential equations was linearizec around several
cperzling conditions characterizing hover, transition and full flight

in [1].

In this research, the system is 1inearized at the following operating

cenditions:

fl

fase 1:  u = .01 ft/sec,

I
L
[t}
3
it

-2
n

O

q:w:tb:p

it

Case 2: u =20 ft/sec,

13
e

H
<3

)
D
.

8'_q=w=¢:;p
These conditions are used for development of linear observevs and control-
lers. They will be referved to as Case 1 and Case 2 respectively 1n sub-

seguent sections.  The Jinearization at u = 01 ft/sec was chosen vecause |
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it was believed to be the most-difficu]t flight condition for estimating
the side velocity, due to the limited coupling between the measurabie
states and the side velocity. The u = 20 ft/sec flight condition was
chosen because it is a typical hover condition. These linearized flight
cenditions are found in Tables 1 and 2. The output matrix, L, in Table 1A,
is the same for both Case 1 and Case 2. The output matrix shows that all

states are directly measurable, except for the side velocity.
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FIGURE 1

Summary of the Reduced Non-Linear Equations of Motion for the X~14 Alrcraft
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p. off
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REFERENCE CONDITION

THETA = 0.0 RADIANS
Q = 0.0 RAD/SEC
U = 0.01 FT/SEC
W = 0.00 FT/SEC
PHI = 0.0 RADIANS
P = 0.0 RAD/SEC
V = 0.00 FT/SEC
R = 0.0 RAD/SEC
0.000000 1.000000
0.000000 -0.150113
-32.035897 0.000200
¢.000090 0.010000
4.000000 0.000090
0.000000 0.024327
£.00°009 0.009320
6.002000 0.316257
0.000000
0.034%07
0.000000
0.000000
0.00C000
0.0C0000
0,000000
0.000000

0.000000
-0.000436
-0.020130

0.000050

0.000000

0.G00000

0.0C0500

0.030500

0.000000
0.019679
3.562003
0.000604
0.000000
0.000000
0.000000
0.000C00

TABLE 1
THE LINEARIZED SYSTEM - CASE 1

TRIM PARAMETERS

ELEVATOR*= 0.47

REACTION NOZZLE DY = 0.47

THRUST DEFLECTION ANGLE (SIGMA) = 0.00
ENGINE RPM =98.57

AILERONS*= 0.00

RUDDER*= 0.00

SIDE VANE ANGLE (LAMBDA} = 0.00

REACTION NOZZLE DX = 0.00

REACTION NOZZLE DZ = 0.00

A MATRIX
0.000000 0.000000 0.000000 0.000000
-0.000147 0. 000000 0.000000 0.000000
-0.038363 0.600000 0.000000 0.000000
-0.020812 0.020000 0.000000 0.000000
0.000CC0 0.000000 1.000000 0.000000
0.0000090 0,00000¢0  -0.451157 0.000306
C.000000  31.832873 0.000000 -0.022425
0.006033 0.0000C0 -0.015039  -0.002452
B MATRIX

0.000000 ¢.000000 0.00000C 0.000000
0.001822 0.C00000 0.000000 0.000000
0.0000C0 €.0C0000 0.9000C0 0.000000
3.600187 0.000000 0.000000 0.000000
0.00C000 0.000000 0.000000 0.000000
0.000000 -0.033893 0.068243 0.001279
0.0000C0 0.562003 0.000000 0.000000
0.000000 -0.001310 0.002275 0.016623

*NEGLIGIBLE AT LOW SPEEDS,THEREFORE NOT INCLUDED AS INPUTS IN THE B MATRIX.

DEGREES
DEGREES
DEGREES

PERCENT OF MAXIMUM

DEGREES
DEGREES
DEGREES
DEGREES
DEGREES

0.000000
-0.,500992
0.000000
0.000000
0.000000
-0.015424
-0.010000
-0.200514

"0/



1.000000
0.039000
0.000000
¢.000000
0.000000
{.C00000
0.000000

0. 000000
1.000000
0.000000
0.000000
0.000000
0.006G00
0.000000

TABLE 1A

THE OUTPUT MATRIX ~ CASE 1 AND CASE 2

0.000000
0.000000
1.000000
0.000600
0.000000
0,0C0000
0.000000

0.000000
0.0000C0
0.0000C0
1.0006¢0
0.000000
0.000000
0.000000

C MATRIX

0.000000
0.000000
0.000000
0.000000
1.000000
0.000000
0.000000

0.006000
0.000000
0.000000
0.000000
0.0000C0
1.0000C0
0.000000

0.000000
0.000000
0.000000
0.000000
¢. 000000
0.000000
0.000000

0.000000
1.000000
0.000000
0.000000
0.000000
0.000000
1.000000

Rvi



TABLE 2
THE LINEARIZED SYSTEM - CASE 2

REFERENCE CONDITION TRIM PARAMETERS

THETA = 0.0 RADIANS ELEVATOR = -1.96 DEGREES
Q = 0.0 RAD/SEC REACTION NOZZLE DY = -1.96 DEGREES
U =20.00 FT/SEC THRUST DEFLECTION ANGLE (SIGMA) = (.87 DEGREES
W= 0.00 FT/SEC ENGINE RPM = 98.76 PERCENT OF MAXIMUM
PHI = 0.0 RADIANS ATLERONS = 0.00 DEGREES
P = 0.0 RAD/SEC RUDDER = 0.00 DEGREES
Vv = 0,00 Fi/SEC SIDE VANE ANGLE (LAMBDA) = 0.00 DEGRFES
R = 0,0 RAD/SEC REACTION NOZZLE DX = 0.00 DEGREES
REACTION NOZZLE DZ = 0.00 DEGREES
A MATRIX
0.000000 1.000000 0.CC0000 0.008000 0.000000 0.000000 0.000000 0.000000
0.0000C0  -0.375150 -0.001513 -0,014664 ¢.000000 0.000000 0.000000 -0.507932
-32.035897 0.000000 -0.02837 -0.007426 0.000000 0.000000 0.000000 0.000000
0.000000  20.000000 -0.026590 -0.024535 0.000000 0.000000 0.000000 0.0C0000
¢.00000C0 0.00000C 0.000000 0.000000 0.000000 1.000000 0.0000¢c0 0.000000
0.000000 0.024373 0.000000 0.0060000 0.000000 -0.451157 -0.004610 -0.015424
0.000000 0.000000 0.600000 G.000000  31.832873 0.00CC00  -0.082783 -20.000000
B MATRIX*
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.037416 0.019777 -0.015868 0.000000 0.000000 0.000000
0.000000 0.564681 -0.009580 0.000000 0.00C000 0.000000
0.000000 0.008554 3.552470 0.000000 0.00C000 0.000000
0.000000 0.000000 0.000000 0.C00000 0.000000 0.000000
0.000000 0.000000 0.000000 ~0.034060 0.072015 0.001329
0.000000 0.000000 0.000000 0.564746 0.000000 0.000000
0.000000 (.000000 0.000000 -0.001351 0.002325 0.017267

*(DY-ELEVATOR} , (DX+ATLERONS )} ,AND (DZ+RUDDER) ARE COMBINED AS INPUTS IN THE B MATRIX.

‘el
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CHAPTER 3
CONTROLLABILITY AND OBSERVABILITY

Controllability and observability are dual criteria that must be
satisfied to allow feedback control and state estimation. Controilabiiity
is the ability to transform any siate at time ti to any other state at
time tj by applytng the appropriate control input u(t). Observability
is the ability to identify any previous state by observing the output
y(t) for a finite time 1nterval.

Several methods for determining whether a system meets these criteria
exist. The method used in this research determines contrgllability and ob-
servability of individual modes. This is a superior method since modal
mnput-output signal Tlows can be determined and the degree of controlla-
bility and observability of wodes can be determined. For example, if a
system is found to be maryinally controllable or observablz it is important
to know if the offending wude or modes are stable or unstable and to what
degree,

The Tincarized system equations

Xx=Ax+8 (11-1)

- e

y=Lx {11-2)

T=1ly, v, ¥,... !ﬂ] . (1I-3)
The system equalions beccne
Z =zt My ( 11-4)

y = fe ( 11-5)



where

= 1=
] 1l

i—

=

i
I

)

1

A is the modal system matrix,

o
1]

=

where A's are eigenvalues.

A
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(I11-5)

= diag [A], AZ’ .

0'8]

In the event that complex roots are present, the T matrix takes the

form

L= [y

where

XIC L] . e

¥R ¢ the real part of the eigenvector

Vic © thé complex part of the eigenvector.

Vyp and vy are complex conjugates.

becomes
MrRooAic
=X A
A = IC IR

The resulting modal matrix, A,
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where

AIR = real part of eigenvalue
AIC = complex part of eigenvalue.

The treatment and interpretation of systems with complex eigenvalues
is the same as for any other system except for the variations noted. The
case of repeated eigenvalues is neglected throughout this discussion.

H is the modal input matrix. If any complete row of H is zero, the
mode is unaffected by any control policy implemented, and is uncontrollable.
Therefore, the controllability criterion 1s satisfied if every row of H
has at least one non-zero element.

Observability can be determined by examining the modal output matrix
E. The requirement is that every mode must apnear in the output vector ¥-
To accomplish this, every column in F must contain at 1eas§ one non-zero
element. ‘

For Case 1, the A, H and F matrices are as shown in Table 3, while
for Case 2, the A, K and F matrices are shown in Table 4. From both A
matrices, it can be seen that thc linearized systems are inherently un-
stable. However, both linearizations are completely controllable and com-
pletely observable, and therefore can be stabilized by feedback control.
The most important result js that since the side velocity 1s observable
through the measurable state variables, dynamic observers may be used to

estimate 1t,



TABLE 3
THE LINEARIZED SYSTEM IN MODAL FORM - CASE 1

A MATRIX
-0.13660 0.423%8 0.00000 0.00000 0.000300 0.00000 0.00000 0.00000
-0.42555  -0.186%0 0.00000 0.00000 0.C0000 0.00000 0.00000 0.00000
2.00000 0.00006C -0.30996 0.020%g 0.C0000 0.060C00 0.00000 0.000060
1.00802 0.C00C8 ~C.,02019 ~-0.30825 0.01300 0.00000 0.000C0 0.00000
0.0c000 0.300C) 0.0C000 0.000C3 -0.172080 0.0C000 0.00000 0.00000
0.90000 0.00050 C.00000 0.00GC0 0.0G6000 0.15912 0.00000 0.00000
0.06000 0.00000 0.00000 0.000066 0.00000 0.00000 0.11029 0.00000
0.GC000 0.05000 0.00000C 0.00009 8.00000 0.00C00 0.00000 -0.02084
H MATRIX
3.38837 1.97663 0.31828 -2.88713 5.24580 1.944117
3.31723 1.84020 0.06916 -3.45586 6.14046 ~1.88379
~2.18415 -1.30327 -0.34686 -65.27828 127.52590 1.04069
-11.50003 -6.75670 -1.41944 -289.15382 569.48136 5,42458
4.30468 2.72745 1.61925  100.33871 -197.24024 -7.27932
2.01065 1.05477 0.04308 -44.71371 94.88475 -0.84612
-3.50121 -1.78538 -0.13110  -76.76226  159.69359 3.74697
.00431 0.00251 3.86946 0.05583 -0.11182 ~0.00548
F MATRIX
0.00520 -0.01328 0.00905 -0.00063 0.00314 0.00558 -0.004067 -0.00112
0.00468 0.00469 -0.00279 0.00038 -0.00038 0.00089 -0.00045 0.00002
1.00000 0.00000 1.00000 0.060000 0.99977 -0.89772 0.99973 -0.36601
0.00002 -0.00023 ~-0.00008 -0.00002 -0.00046 -0.00023 0.00035 0.93061
-0.00009 -0.00078 0.00382 -(0.00052 0.00006 0.00038 0.00009 0.00000
0.00035 0.00011 -0.00117 0.00036 -0.06001 0.00006 0.0000% 0.00000
0.00345 -0.00354 -0.06175 (.00023 -0,00085 0.00032 -0.00064 0.00005

74



TABLE 4
THE LINEARIZED SYSTEM IN MODAL FORM - CASE 2

A MATRIX
-0.2895] 0.66661 0.00000 0.0000C 0.00000 0.00000 0.00000 0.00000
-0,66661 -0.28951 0.00000 0.000C0 0.00000 0.,0000G 0.00000 0.00000
0.0C000 0.00000 -0.74830 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 ~0.17565 0.00000 0.00000 0.00000 0.00000
0.03000 0.00006 0.60000 0.00000 0.06400 0.14200 0.0C000 0.00000
0.00000 0.00600 0.00000 $.00000 -0.14200 0.06400 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.10626 0.43161
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.43161 0.10626
H MATRIX
1,82635 1.03373 3.08609 18.560148 ~-0.03779 -0.00078
1.41645 0.67930 -2.88325  -18.16568 -0.05271 -0.00090
0.12454 0.07176 0.18701 -2.63280 -2.5208] -0.05069
0.12258 0.11941 1.09256  -40.15281 -0.02941 -0.00043
-1.94683 -0.58549 -4.16373 20.09309 -0.01219 -0.00002
-1.91553 -0.79425 22.85470 65.47933 0.08503 0.00160
-G, 248056 -0.12457 -0.22805 -6.41398 -2.51054 -0.03326
-3.18510 -0.38084 0.595420 -11.39252 4,99281 0.08281
F MATRIX
0.00811 -0.02072 0.00020 0.00436 -0.00285 -0.00444 0.00023 0.00016
0.01146 0.01140 -0.00015 -0.00077 0.00045 -0,00069 -0.00004 0.00012
1.00000 0.60000 0.009M1 0.96188 1.00000 0.£0000 -0.01555 0.01246
0.719109 -0.38004 0.00455 0.27063 -0.12565 0.04577 0.00397 0.00224
0.00103 -0.C005% 0.02073 -0.00649 0.00000 -0.00057 0,00598 0.01345
0.00009 0.00086 ~0.01551 0.00174 0.00008 -0.00004 -(0.00517 0.00401
0.00459 -0.00607 -0.00027 -0.01050 0.00007 -0.00086 0.00007 -0.00018

"L
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CHAPTER 4

DISCRETIZATION OF LINEAR DIFFERENTIAL EQUATIONS

The linear differential equations are transformed to discrete time
equations because the aircraft has an on-board digital computer for con-
trol. Thus discrete time control is more applicable, Digital computers
are also more suited to adding and subtracting difference equations than to
nunerically integrating differential equations [3].

Differcnce equations are the time domain solutions to differential

equations. [herefore, the set of differential equations (1) and (2)

%= Ax o+ Bu (11-1)
v e (11-2)

can be transformed into the difference equations

Kap T 2y (11-7)

VAR 0. { 11-8)
Assuming ul(t) is constiant over a time interval (0 < t < 71, where 1 is

e timz incerval), it can be shown that for linear, constant coefficient

s¥s bers , AT (11-9)

i-e

y=[eAT - 1]'g . (11-10)

It will now be shown that ¢ can be simply formed from A when in the
modal diyeir. first, it must be shown that the similarity transformation
matrix, [, vewains invariant and continues to diagonalize the system
whethar in difference or differential equation form.

£ is desoribed by the series

= AT - I+ At + é?Tz

T

1 i
§‘i - - {11-11)

To shov that 1 tegyonslizes g, premultiply and postmultiply by 1:}

o

and T

respect it ely,

Ale # 5T L 1TET2)
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Now, simplify (12) using the identity

2 -1

im

= ATT

=N

-1

—

ST = 1 + At + cer (11-13)

§

This technique can be readily extended to all higher order terms; there-

fore -
s i
e1to .. ..0
“ler 2 b = AT _ AT _
Ier=2 0 e 0 (11-14)
6 ..... eA"T
The discrete time eigenvalues are defined as
- 1,22 _ T .
Aps = THAat 0%+ o= e (11-15)

in equation(13). & can then be obtained from A by the following steps.
First, transform the continuous time system into lha modal domain, a step
done ﬁfeviously to determine controllability and observabiiity. Then
create gm by transforming the individual eigenvalues of A into KDIS by

using the scalar equation (15). Now, simply transform out of the modal

domain,

= —1 —
=11 . (11-16)

The input matrix, ¥, car be approximated easily by noting that

2= [+ A+ 5% ) - AT

v

(11-17)

e
I
~
iz
-+

o]
"z
]

[ -] M~

=
i

e
(=]

e
i
—
.,
+
~|
s
| —|
vl

For this system, the time step was .05 seconds. For this secend order

approximation the error is on the order of 0.25 percent when the higher

order terms are left out., The system equations for Case 1 are found 1n

Table 5 and those for Cese 2 are in Table 5.
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TABLE 5

¢ MATRIX

02060
.00060
00272

aArAY
. C'JU“UU

LOCG00
Lot
02010
. 5%000

DO~ WO

¥ MATRIX

0.00000
0.00000
0.00000
0.0000C0
0.00000
~-0.00169
-0.00007
0.02810

0.00600
0.00000
0.00000
0.00000
9.00000
0.00341
0.00011

0.C0000 -

-0.00062
-0.02430

0.00040
~0.036%!
-0.00002
-J.00077

2.950C0
-0.00043

0.,60000
0.00000
0.00000
0.00000
0.00000
0.00006
0.00083
0.00G0¢
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C.00Z200
0.00000
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0.999G0
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-1.60000
0.00110
0.00000
0.00000
0.00000
0.00000
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0
-0
0
0
0
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. 04950
.98100
.04000
.9%000
.00003
.00119
.01560
.00782

.00000
.00187
.00200
.00094
.00000
.00000
.00000
.00000

THE LINEARIZED DISCRETE TIME SYSTEM

0.00000
-0.00007
0.99900
-0.00137
0.00000
0.00000
0.00000
0.00000

0.00000
0.00099
0.02820
0.00092
0.00000
0.00000
0.00000
0.00000

~0
-0
-0

.00002
.00073
.00036
.59800
.00000
.00000
.00007
.00000

.00000
.00079
.00048
.177C0
.00000
.00000
.00000
.00000

TABLE 6

¢ MATRIX

0.00000
0.00000
0.00000
0.00000
1,00000
-0.00018
0.00000
1.59000

¥ MATRIX

0.00000
0.00000
0.00000
0.00000
0.00000
~0.00170
0.02820
0.00063

CO0O0O0OOO0

ODOO0COoOOOC

-0

- CASE 2

.00000
.00001
.00000
.00000
.04940
.97800
.00074
.03980

.00000
.00000
.C0000
.00000
.00000
.00360
.00000
.00006

-0.00062
-0.02470

0.00041
-0.01240
~0.00002
-0.00066

0.99000
-0.99300

0.00000
0.00000
0.00000
0.00000
0.00000
0.00007
0.00000
~0.00043

0.00000
0.00000
0.00000
0.00000
-0.00007
-0.00023
0.00000
0.99600

18
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CHAPTER 5

LIMITED INPUT MODAL CONTROL VIA STATE VARIABLE OUTPUT

The linearized set of difference equations, given by equations.{7)

and (8) and repeated here,

Koy = 4 * M (11-7)

B =="Q2(-k s (I1-8)
specify a system of eighth order, with six inputs and seven ocutputs., For
the purposes of controller design, though, state variable output will be as-
sumed, The missing states will be provided later by dynamic observers.

The control matrix G will be designed to place six of eight eigenvalues
wherever desired: The remaining two eigenvalues will be considered suf-
ficiently stable, although a readily available extension of the following
technique allows for placement of all eight poles.

To condition the first six eigenvalues, the system is transformed inte

the discrete time modal domain, using

Thus
Zyy =22, YU (I1-18)
y, = £z, (11-19)
vhere
_ =1
v =18
=1
e =18 .

Now, let us partition the system equations into two segments. The modal

state vector becomes

Zye T the first six modes, all to be conditioned

Z79 T the last twn niodes, not to be conditioned.
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The gm matrix is arranged so that

() 0 -« - 0
0 (lps
: (A3)prs
s = |- (gdpis
- U
(Agdprs
(7)prs
| 0 (Agdprs
8
614n &
218 g

gm78 consists of the last two poles, which are the most stable and there-
fore are ignored in the conditioning process.

Let us define a matrix of desired eigenvalues,

(yglors 0+ - - 0

0 Ogddors

: (A34)p1s :

LI I (agdprs
(A5 pys
(gl prs
(A7)p1s

0.... (Ag)p1s
- d
o8 BT
219
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These eigenvalues will be the closed loop system poles after implementa-

tion of the control matrix G. Partition ¥ such that
6
Lt

6

vy =
ﬂ1'ﬂ

2| tnrs

wiere ¥ is a nonsingular 6x6 matrix. Then the control matrix 1n modal

form is
Y _ .
En ™ dni [Li‘-’mL 9 -2y 91]] (11-20)
to condition the first six modes. To 11lusirate that this will give the

desired results, let us examine the systei in modal form under the control

policy
o= -8z - (11-21)
We have
. ] . -
By T & T i,r&nL[L?ﬂ:_ o1 - Ly QJ} 2y (11-22)
Simplifying and rewriting in a partitioned form
Z16 [imL o } [ L ] [L%Tﬂi. a1 - [g—d!_ Y 215
£78 k+1 2 2 uzatm £78 "
(11-23)
Expanding, we obtain
Bef . | fL 2 jlz
i 1 (11-24)
Z78l41 Yoratm [ 01 - Loy 8] ] | 276 )

. . y '] A=
Note that despite the 2m78$mL[‘ ] term, the modal closed loop system

matrix
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F("m)ms 6o o o o 0. o o0
0 (Mg © 0 0 0. 0 0
0 0 (dys® 0 0. 0o 0
0 0 0 (ups® 0. 0 0
0 0 0 0 (yg0. 0 0
00 0 0 0 -0 (hgyys 0 O
------- ‘—--“—-_--U—?)E)IQ-O-
A PR L Ogyrs

is in triangular form and its eigenvalues are the six elements Of:gdL and
the original eigenvalues (17)DIS and (AS)DIS‘ Thus, the first six modes
nave been moved to their dosired values, and the lasi two modes have re-
mained unchanged. To trdnsformxgn into the control matrix, reverse the
modalizing process: post muliiply by ;:},

-] ,
,:(,é, ﬂ‘{ll ((I) i '("PC;L)J"' Y { II"?-S)

The resulting closed loop equaticas are
= b ~ YOI -
EICIRGN G L ()7 S ( 11-26)

Using this technique the conirol malrices derived for Case 1 and Case 2 are
as shown in Table 7. )

The modal technique alless the designer to place eigenvalues arbitrar-
ily. The only restriction is that eigenvalues must be chosen to give the
required response while remeining vithin control power restraints.

It should be noted heco {rom previous development that

At
Apis < ©
where
AUIS = giscrene tim. Ligenvalue
A= continu0u1 iipe cigenvalue

= time iniryval,
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For Aprse the stability limit on the compiex plane is the unit circle.
Positive,real parts of magnitude less than one correspond to continuous
time negative, real parts. Zero corresponds to infinity as the fastest
response, Any e1génva]ue within the real, negative half of the unit circle
will oscillate with each time step, and thus, is not very useful for con-

trol. Time constants for discrete time eigenvalues can be approximated as

= T —_
T°C'1' \U_‘:TDI_ST ] (11-27)

by recalling the infinite series for an exponential function.
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139.00600
~239.00000
0.27000
27.710000
12.80C00
6.22000

-2.160300
25.00000
-2.02000
-0.15200
7.24000
-379.60000

TABLE 7

THE CONTROL MATRICES FOR THE LINEARIZED DISCRETE TIME SYSTEMS

72.,00000
-83.10000
0.30000
1.70C00
5.50000
12.70000

0.00000
0.600C0
-0.05610
0.00C36
0.00260
-0.13100

~-0.700600

1.24000
.00017
00479

= RoNe el

00877

~0.37500
0.70200
-0.00171
0.00000
~0.00003
0.00182

00217 -

1.74000
-3.44000
2,77000
-0.40100
-0.18300
-0.05330

0.04670
0.00156
0.11300
0.00000
-0.00018
G.00968

CASE 1
& MATRIX

-4.24000
25.20000
-1.70000
127.00000
67.3000C
13.7C000

CASE 2
G MATRIX

25.43000
-38.50%00
-0.27600
-0.20000
-19.7000

1050.00000

9.70000
3.38000
~-3.9300
76.3000
48.16300
5.04000

£.006000
0.00000
~3.00117
~0.00085
5.48000
3.67000

24.30000
-53.00000
-0.48400
12.30000

4.91000
49. 30000

-0.03490
0.10400
¢.00028
0.70802
0.34700

-0.61400

0.66200
-1.20000
0.00114
1.38000
0.6880C
-0.02310

-0.C0006
0.00019
0.0000G
0.G0000
0.85700

-46.50000



88.

CHAPTER 6
STATE VARIABLE GUTPUT VIA DYNAMIC OBSERVERS

To implement the control scheme discussed previously, a full state
vector is assumed for feedback. Qn the X-14B VIOL, seven of eight state
variables are available for measurement during hover. A dynamic observer,
which is a special form of filter, is used to estimate the missing state,
side velocity. .

The full dynamic observer 1s a time invariant linear model of the
system to be observed. The model is driven by the same inputs as the
system. Therefore, if the model is perfectly accurate, i.e., no dis-
turbances or noise are present and the initial conditions of the system
known, the system state vector is known at any time t. As can be reoadily
seen, these arc rather demanding assumptions and a method for updating the
model states to the measurable system states is needed. This is the key
to the usefulness of the dynamic observer,

To design a dynamic observer, assume a system is governed by equa-
tions (7) and (8), Let us define gk as an estimate of x . The model

defined by X is

Xy =X T Ay ( 11-28)
y=Lx . (11-29)

This is ine opep loop model of the system. To force tie model states {o tne
system states an error feedback term, ﬁ(xk - 2+), is implemented. K is

the observer vonirol matrix. Thus, the closed loop model becomes

2= : .y {11-
Rypp = 2% F Yy K(y, - y) { 11-30)

¥, = x : (11-31)

To illusiraie that a control matrix, K, ¢an be chosen to drive
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observer error in measurable states to zero, Tet us define an arror state

vector

Xesy ~ Xaq T Bt 0y F Ky -y ) - ox - Yoy

which becomes

or the single set of equations
X4y = (@-KOX, . {11-33)
The eigenvalues of this homogeneous set of differential equations are
determined by the arbitrarily chosen K. By choosing K to make this sct of
equalions stable, it can be seen that
X(t) »0 as t- e

and

Ek(t) - Ek(t) as t+e

The rapidity of convergence depends solely upon the error system's
closed Toop eigenvaiues determined by X.

The dynamic observer, then, models the systen, continually forcing
the measurable states' error to zero at a convergence rate determined by
K, and gives an estimate of unmeasurable states based upon the measurable
states. Thus, a dynamic observer, supplying estimates of unmeasurable
states, can be used in conjunction with control schemes based on state
variable feedback 1o create contlrol., A block diagram of the complete

closed loop system can be found in Figure 2.
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The matrix K can be determined by any method desired by the designer.
This system, by the simplicity of its output matrix [, Tends itself to a
very simple procedure. Firsi notice that { is of the form Li ],g]. The
nomogeneous error system matrix becomes
(e -KQ) = (2-[K|Q0D .
The effect of K upon the closed loop system, in this case, is clear,

Choose

Kij = Qij ifdjy i=1,2, ..., 8

Kiqu,ij-kd.. 1.=3; J":], 2’ 0-0’8
1]
where A4, is the desired eigenvalue, and the convergence rate is deter-
13
mined. A1l but cne eigenvalue can be placed using this method., To com-
plete the arbitrery placanent of all eigenvalues, determine the state which
is most strongly coupled to the unaffected vecior in ¢. Then, devise a
second order system with the twe states. For example, for Case 1, it is

2yt D Ky g %
(11-33)

Obviousiy, K77 and K87 can he chosen to arbitrarily set the eigenvalues

of this subsyster. Since all of the other states are already decoupled,

the ei1genvalues of tae Lotel system will be the main diagonal plus the
eigenvalues deteranned Ly the sccond order subsystem.

This design mcthod was used to calculate observer gain matrices for
both linearized cases. Iirr Case 1, the only coupling between the side
velocity vector end the resi of whe system was through yaw rate. The re~
sulting K matrix is sho.w 1n Toable B, For Case 2, the major coupling wa’
between side velcurty anmd roll 1ate. The resulting observer gain matrix

15 also showyn 1n Iable &,
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The resuits of applying the dynamic observers in conjunction with the
control systems described earlier are illustrated in Figures 3 and 4.
These simulations are done by modeling the linearized systems, setting
initial conditions at u = 10 ft/sec, v = 4 ft/sec, and all other state
variables at zero. Recall that these velocities are relative to the
linearized operating conditions. The observer started with all initial
conditions at zero, so that for Case 2, u is actually 30 ft/sec. Since
the system 1tself, in the computer simulation, was a model, a comparison
between the system's siae velocity and the observer's estimated side velo-
city is possible. Time constants for both observers are around one-fifth
second and by one-half second have completely converged., This is a very
rapid rate of convergence. The observer converges to the other statle vari-
ables, which are measurable and directly controllable as fasi as or faster
than the unmeasurable side velocity. It is interesting to note ihat side
velocity is much easier to control for Case 1 (T7.C., = 1.75 sec) than for
Case 2 (T.C. = 6 sec). The tnertia terms in Case 2 couple the system more
strongly, but also make the control more aifficult.

The full observer for Case 1 was also run with noise introduced into
measyrement (Figures 5 and 6). The measurement 2rror was randomly intro-
duced +1.0 ft/sec for u and 10 percent for all other state varialbles. The
estimated forward velocity follows the actual forward velocity much belter
than the measurement of u. This is due to the filtering effect of a full
observer. Since an observer converges to a measurable state at a rate
determined by 1ts eicenvalues, the fluctuations with measurement error
will be slower and smailer in magnitude than the actual measured values.
For instance, a measurement error of pne ft/sec will resultl in a .4 ft/sec
error for a system with a time consiant of .05 sec over a .05 sec time in-
terval. This property of observers should be considered when choosing ob-

server eigenvalues. The faster tne eigenvaluns the faster the estirated
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states converge on measured states, and the Tess filtering is accomplish-
ed; slower eigenvalues give more filtering and slower convergence. The un-
measured side velocity estimate is also shown to follow the real state;
even at its worst it is off by only one ft/sec.

if fi]te}ing is of no importance, a second type of dynamic observer
can be more useful. The full observer discussed here is redundant in that
it recreates states which are already measured, The partial observer,
discussed in the next section, eliminates this redundancy by creating estii-
mates of only the unmeasurable states. The partial ohserver also uses much

less computer time.
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0.650
0.000
~1.6C0
0.060
0.000
0.000
.000
0.000

0.650
0.000
-1.600
0.001
0.000
0.000
0.000
0.600

0.050
0.600
-0.040
0.000
0.000
0.001
0.016
0.000

0.050
0.600
-(.040
0.990
0.000
0.001
0.016
~0.008

.000
.000
.550
.000
.000
.000
.000
.000

OCCOCOQOQOOOOC

.000
.CO0
.550
.001
.00
.000
.000
0.000

OQoOOo0OC

TABLE 8

CASE 1
K MATRIX

0.000
0.000
-0.002
0.500
0.000
0.000
0.000
0.000

CASE 2
K MATRIX

¢.000
-0.001
0.000
0.500
¢.000
0.000
0.0C0
0.000

0.000
0.000
0.000
0.000
0.450
0.000
0.000
1.590

0.000
0.000
0.000
0.000
0.450
0.600
0.000
1.580

0.000
0.000
0.002
0.000
0.049
0.400
-0.001
0.039

0.000
0.000
0.000
0.000
0.049
0.977
~0.001
-1000,000

-0.001
-0.025
0.000
0.000
0.000
-0.001
1.000
-2000.000

-0.001
-0.025
0.000
-0.012
0.000
-0.001
0.620
-0.993

£6
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CHAPTER 7
THE PARTIAL OBSERVER

This method for the development of the partial observer is explained
by Luenberger [4].

Again, assume the Tinear system given by equations-(Y) and (8) which
is completely controllable and observable. The system equations, possibly .
by a coordinate transformation, must be transformed so that

- L] o

where L s the identity matrix. In this case the system is especially
amenable to this method because it is essentially already in this form.
The transformation is done to provide a direct correspondance between
the output and the transformed state variables. The new state variables

are partitioned

2
x= .
W

where y is the vector of measurable state variables (by the definition of
C, y is the same as in (8 )) and w 1s the vector of unmeasurable state vari-
ables.

The state equations can then be written as

W
=L ) oot \11-34)

The partial observer is defined from the above as

R RS WA R L W N L

Notice that the term in brackets 1s & constant and is defined equal to

zerg for the correct values of w. Pearranging the partial observer equa-

tion
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ﬁk+] = (@ - L? )w + 4 yxk T+ L[xk+1 X M- =y2k] {11-36)
it becomes apparant that the eigenvalues of the observer are the eigen-
values of

(2 - L2,

and all other terms are inputs into the partial observer eguations. To
eliminate the need to calculate &k+1‘ assume the transformation
Z,=4W-LY

The final form of the observer is
7 B M) (@ - iy + (8, - L My + (3, - L)

. (11-37)
A block diagram of the system is found in Figure 7.

The partial observer control matrix, L, is chosen by any desirable
method to place the eigenvalues. In the X-14B YTOL only the side velocity
is unmeasurable and thus the partial observer is a first order system.

For Case 1,

L=[{0 0 ¢ 0 0 2000 -2000] .

This placed the partial observer discrete time eigenvalue at
(Ad)DIS = 0.725
or a time constant =0.18 seconds,
For Case 2, the partia1'observer gain vector was chosen as
=[0 0 0 0 0 -1000 0] .

The partial observer eigenvalue was approximately .769. As seen
through these examples the observer gains can be chosen for any desired
convergence rate. Observer gains are not Timited by control power con-
straints.

Figures 8 and 9 compare the estimated and actual side velocities.
when the initial conditions of the system are u = 10 ft/sec, v = 4 ft/scc,

and all others are set to zero. The states are again relative to the
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linearized reference states. The system controilers are the same as used
for the full observer simulations. Convergence is rapid and is

essentially completed in both cases in less than one second.
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CHAPTER 8
APPLICATION TO FULL NONLINEAR SYSTEM

The 1inear full observer is next applied to the nonlinear model de-
veloped by Roesener [2].

The purpose is to determine the usefulness of linear observers in
estimating the side velocity for the actual craft. Trim parameters for
the craft were held to the nearest linearized reference values.

To test the usefulness of the linearized equations for Case 1, the
nonlinear equations were initialized at u = 5 ft/sec, v = 2 ft/sec,

8 =q=w=p=¢ =r=0, The essential resuits can be found 1n Figures

10 through 12. Figure 10 shows the observer estimate of forward velocity
converging on the actual forward velocity within one-half second, but 1in
Figure 11, yaw rate is shown undergoing small oscillations at approximately.
six cycles per second. The oscillations can be attributed to computer er-

ror as the oscillations are small (:]0'3 radians/sec) and difficulties were
encountered with balancing accumulation error and truncatigggérror. The
tinearized system's eigenvalues predicted no such oscillation. The ob-
server is tracking the yaw rate very well, but the necessary .05 second
time delay becomes very noticeable in an oscillation this fast. The vaw
rate in the linearized versions showed no such oscillations, Remembering
that yaw rate was the only significant coupling between the system ana

side velocity for this linearization, Figure 12 is no surprise when it
shows no reasonable estimate of the actual side velocity. I+ computer
error this small can degrade the estimate of side velocity this severely,

1t can safely be assumed that no accurate estimate will be developed for

this cperating condition on the actual craft.
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For Case 2 the results were more useful. The yaw rate still oscil-
lated as before, but for this linearization roll rate was the the major
coupling between side velocity and the system. In Figure 13, for initial
conditions of u = 20 ft/sec and v = 2.0 ft/sec, the observer gives a very
good estimate of side velocity. At u = 25 ft/sec, v = 10 ft/sec (Figures
14 and 15) the observer forward velocity converges rapidly to the measured
forward velocity. The observer side velocity rises rapidly to 6 ft/sec,
and then waits until the real system side velocity slows before continuing
to follow, Given the initial concgitions u = 25 ft/sec, v = 5 ft/sec, in
Figure 16, the observer estimate rapidly overshot the system side velocity
by about 20 percent and followed increasingly better as side velocity went
through zero., The case of u = 15 ft/sec, v = 5 ft/sec is found in Figure
17. The observer again waited, this timé at around 2 ft/sec, for the

system side velocity to slow.
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CHAPTER 9
CONCLUSIONS

Dynamic observers can be used to create an estimate of unmeasurable
states needed for implementing state variahle feedback control policies.
Although based on linear control theory, dynamic observers can be applied
to some nonlinear systems, depending upon the nature and degree of the non-
linearities.

The method applied in this research can place observer eigenvalues
arbitrarily. If the output matrix is not in [L | 0] form, general modal
pole placement techniques could be used, as in the control section. A
full dynamic observer should be used when measurement error is large and
filtering of measured states desired. The only faults of a full observer
are a slight time Tag and an excessive use of computer time. The partial
observer eliminates time lag and minimzes computer time, but offers
limited filtering capabilities. The decision between full and partial ob-
servers must be made by the designer to fit the individual situation.

The results from the linearization al 20 ft/sec forward velocity in-
dicate that the side velocity can be estimaled for the full nonlinear
system using linear observer theory. The ei{feclive range of each linear-
ization must be determined for criteria such as the desired accuracy in
the estimate, balanced with the computer timnz and memory needed to imple-
ment it. For the X-14B VIOL, these ranges scem to extend further above
the operating points than below. For instarnce, the linearization at
20 ft/sec forward velocity did a much beiier job of estimating the side
velocity at u = 25 ft/sec and v = 5 ft/secc vhan 8t u = 15 ft/sec and
v = 5 ft/sec. The two lineartzed flight cwditions also seem to indicate

that the linearization ranges becnme increasiiigly smaller as flight becomes
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slower, culminating in the condition at u = .07 ft/sec which seems to have
no ability to estimate the nonlinear side veloc¢ity because of a lack of
coupling between the state variables,

It is recommended that a method for estimating side velocity over the
entire operating range be obtained by generating a matrix of operating con-
ditions similar to Figure 18. The aircraft, as it changed flight condi-
tions, would switch from one set of parameters for a linear observer to
another, continually using the most applicable.

Figures 13 through 17 illustrate that to make the desired estimate
more accurate, more operating conditions are needed. The limiting case
of mapping operating conditions would be to investigate fully adaptive
observers. These would include parameter varying observer gains to con-
trol the model to the system.

Limited input modal control is a useful and relatively simple tech-
nique for designing control policies. The designer must approach pole
placement in a Togical and systematic manner. It is suggested that ong
eigenvalue be moved at a time while keeping all others stationary to ae-
termine the individual eigenvalues' effects on the gain matrix G. Using
this method for this system it was determined that some poles could be ar-
bitrarily placed with 1ittle effect on G, while G was highly sensitive to
others.

One effect of arbitrary pole placement of which the designer should
be aware is derivative action. This is an undesirable initial overshoot
during control caused by a zerc dominating the initial dynamics. To elim-
inate this problem, the designer must place poles so that they demnate.

A most informative method for determining complete controllability
and complete observability is through the modal iransformation. It aliows

the designer to determine the degree of the system's input, output coupling

N
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for individual modes. For the X-14B VIOL, the modal input matrix H,

for Case 1 and Case 2, was studied in detail before actual design. It can
be seen readily that the magnitudes are larger for Case 1 than for Case 2,
which suggests that Case 1 might be controlled more quickly. This con-
clusion was reinforced when control was later implemented and found to be
slower for Case 2. The inertia terms in Case 2, which create a more
strongly coupled system, also require more control power. Examining the
output matrix, F, the designer is alsoc able to determine that side velo-
city will be much more difficult to estimate for Case 1 than for Case 2
as the maximum coupling is an order of magnitude smaller. This observa-
tion was proven true when the linear observer was applied to the nonlinear
system,

All simulations of systems to be performed on a digital computer
should be transformed into discrete time difference equations. The trans-
formation is simple and easily performed through many techniques, just one
of which is explained here. The method used here is again most applicable
if modal control is to be used. Discrete time equations have been shown to
be approximately an order of magnitude faster to execute on a digital com-
puter than integration routines {3]. If a digital computer is to be used
to implement the control at a specified time interval, it is an additional
reason to use difference eguations. The application of control iechniques
in this research proved to be no different than for coniinuous time con-
trol except for the interpretation of eigenvalues. Eigenveclors remain

invariant.
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FULL OBSERVER SIMULATION
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I1I. Wind Gust Analysis of the X-14B VTOL Ajrcraft
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Wind Gust Ana]&sis of the

X-14B VTOL Aircraft

NOMENCLATURE

Variable or

Constant Description Yalue-units
u forward velocity of the X-14 fps
v side velocity of the X-14 fps
W vertical velocity of the X-14 fps
p roll rate of the X-i4 rad/sec
q pitch rate of the X-14 rad/sec
r yaw rate of the X-14 rad/sec
X longitudinal displacement of the X-14 feet
y lateral displacement of the X-14 feet
z vertical displacement of the X-14 feet
) pitch attitude of the X-14 rad
) roll attitude of the X-14 rad
Y yaw attitude of the X-14 rad
Tnet net thrust pounds
d diverter vane angle rad
X side vane angle rad
8 roll reaction control nozzle angle degrees
6y pitch reaction control nozzie angle degrees
62 yaw reaction control nozzle angle degrees
3, aileron control angle degrees
3o elevator control angle degrees

§ rudder control angle degrees
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Variable or

Constant Description Yalug-units
0 engine angular velocity rad/sec
Uk steady-state Tongitudinal wind fps
VW steady-state lateral wind fps
WW steady-state vertical wind fps
UG Tongitudinal gqust component fps
VG Tateral gust component fps
WG vertical gust component fps
g acceleration due to gravity 32,174 fps2
m mass of the aircraft ’ 130.35 slugs
Ix moment of inertia of the aircraft with 2340 s1ug~-ft2
respect to the x-axis )
I ‘moment of inertia of the aircraft with 3400 s]ug—ft2
Y respect to the y-axis
IZ moment of inertia of the aircraft with 5400 s'lug—ft2
respect to the z-axis
7 product of inertia of the aircraft with 180 s1ug—ft2
respect to the x and z axes
Ie moment of inertia of one engine with 0.5 sTu_q-ft2
respect to the axis of rotation
S wing area 182.69 ft°
b wing span 33.83 ft
¢ mean aerodynamic chord 5.56 ft
p density of the atmosphere at sea level 0.002378 s]ug/ft3
X1 distance the center of the engine intake 6.0 ft
is forward of the center of gravity
Xo distance the center of the engine exhaust -0.0133 ft
is behind the center of gravity
Z4 distance the center of the engine intake 0.583 ft
is below the center of gravity
Zy distance the center of the engine exhaust 0.916 ft

is below the center of gravity



Variable or
Constant

4

Vjet

Mapo

Lo

Do
AC

Mq

MS
e

C}’IO

né

¢
nSa

Description

effective length between engine exhausts
and diverter vanes

net exhaust velocity of the engines
1ift coefficient, power off

difference in 1ift coefficient between
power off and power on

drag coefficient

coefficient of side force due to side
velocity

ro11ing moment coefficient

rolling moment coefficient due to aileron
deflection

pitching moment coefficient, power off

difference in pitching moment coefficient
between power off and power on

pitching moment coefficient due to angle
of attack

1ift coefficient due to angle of attack
drag coefficient due to angle of attack
difference in pitching moment coefficient

due to angle of attack between power off
and power on

pitching moment coefficient due to pitch
rate

pitching moment coefficient due to eleva-
tor deflection

yawing moment coefficient

yawing moment coefficient due to rudder
deflection

yawing moment coefficient due to aileron
deflection

rolling moment coefficient due to side
velocity
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Value-units

0.167 ft

1613 fps

deg

0.576 rad™|

-11.4

-0.0178 deg”

deg



Variable or

Constant

i.p/IX
MQ/IY
Nr/Iz

Description

rotational damping in rolil
rotational damping in pitch
rotational damping in yaw

reaction control rolling moment

reaction control pitching moment

reaction control yawing moment

longitudinal diverter efficiency factor
based on engine speed

longitudinal diverter efficiency factor
based on engine thrust

angle of attack

sideslip angle

138.

Value-units

]
1
1

-0.45 sec”
-0.15 sec”
-0.20 sec
0.0681 rad/seczldeg

0.0350 rad/secZ/deg
0.0166 rad/sec’/deg
0.9139
0.807

rad

rad
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CHAPTER 1

INTRODUCTION

1.1 Air Turbulence,

Nature confronts man with certain obstacles in his use of the air as
a medium of transportation. One of those obstacles, turbulent motion of
the atmosphere, was the subject of this research. An airplane is subject
to random external forces which result in random v§riations of attitude
and trajectory. The time scale and intensity of these responses are gov-
erned by the scale and intensity of the turbulence, as well as the charac-
teristics of the aircraft. Their effect is to produce fatigue in both the
pilot and the vehicle, to produce an uncomfortable ride, and to impair

precise control along the flight path.
1.2 Vertical Take-off and Landing Aircraft.

A vertical take-off and landing (VTOL) aircraft is affected to a
greater extent by the turbulence of the atmosphere whenever the aircraft
is in the hover or transition modes of flight than when in normal aero-
dynamic flight. The aerodynamic forces used for control have negligible
effect in hover. The onily control available to a hovering VIOL is the
stability augmentation system built into the aircrafi. There exist dif-
ferent control systems for different VTOL configurations. A part%cu]ar
control system for a specific aircraft is the subject of this research.

The airplane studied in this project was NASA's X-14 research VTOL
aircraft. The control of this particular aircraft is accomplished by
vectoring the thrust of its two engines (to provide thrust for ho;er and
propulsion) and by bleeding air from the engines and ducting it to control

nozzles in the wing tips and the tail (to provide thrust for attitude
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control). The control effort available is Tlimited since too much air bled
from the engines Towers the thrust capabilities. A trade-off between
thrust capabilities and control effort available is a major factor in de-
signing VTOL control systems. Therefore, the knowledge of control effort
needed is vital in designing the VTOL.

Control effort is defined as the angular acceleration produced by a
control input. If an angular acceleration produced by an input disturb-
ance, such as a wind gust, exceeds the control power available, then the
aircraft is considered unstable. The Tine between stability and insta-
bility depends not only on the criteria used to define stability, but also
upon the characteristics of the aircraft. For the X-14 the stability is
based on the angular accelerations and the attitude of the'aircraft.

These criteria were applied to the hover mode where they are far more
important than for regular aerodynamic flight.

It is important then to be able to calculate accurately the angular
accelerations produced by the turbulence of the atmosphere. A model of
atmospheric disturbances is necessary to perform this task. Modeling the
atmosphere is difficult using explicit functions of time. Studies of
¥TOLs and other aircraft involving the wind most frequently use a statis-

tical, probabilistic model for the wind model.
1.3 Research Objectives.

The objective of this research was to find the maximum allowable gusts
which the X-14 could encounter while in hover and still maintain a stable
flying condition. The general procedure for solving the problem was to
generate a simulated velocity field from a standard wind model. This field

was then imposed on the simulated aircraft as a disturbance. Due to the
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nonlinearities of the aircraft, there were changes in its aerodynamic char-
acteristics. These changes resulted in a modified aircraft motion and
were duly considered. The aircraft control system sought to drive the air-
craft to its reference flight condit{on, hover.

The basic solution was found by arbitrarily selecting a wind model,
observing the output variables of consegquence, and changing the amplitude
of the wind model until the aircraft failed to return to its nominal

state.

The models for the aircraft and wind are presented in Chapters 2
and 3 respectively. The solution procedure, in more detail, is pre;ented
in Chapter 4. The resulis of this study and a discussion and interpreta-

tion of these results are presented in Chapter 5.
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CHAPTER 2

AIRPLANE MODEL

2.1 X-14 VTOL Airplane.

The aircraft used for this project is the NASA X-14 VTOL research
aircraft stationed at the NASA Ames Research Center, Moffett Field, Cali-
fornia. The airplane was built by the Bell Aircraft Corporation as a re-
search vehicle for the study of VTOL flight.

The X~14 is a thrust-vectored VTOL airplane. Two General Electric
J85-19 jet engines are fixed on the aircraft. The thrust of the engines
is vectored by diverter vanes at the jet exits. The thrust is diverted
down for hover, whereas, for the transistion of the aircraft from hover
to normal aerodynamic flight, the thrust is rotated rearward.

The X-14 is equipped with a stabjlity augmentation system for control
in the hover and transistion modes of flight. The control effort is ob-
tained by bleeding air from the compressor stages of the engines. The air
is ducted to reaction control nozziles located in each wing tip and in the
tail. The aircraft attitudes, rates, and accelerations are monitored by
gyros and accelerometers. Various types of controllers had been tested
and used, but they were not of importance to this study. Some type of
control system was needed to do the simulations of this project and an
acceleration command (manual} mode was used.

The airplane was assumed to be a rigid body and therefore had a body-
fixed reference frame with the origin located at the mass center (Figure
1). The aircraft was symmetrical about the x-z plane with the positive
y-axis pointing out the right wing, the positive z-axis pointing down, and

the positive x-axis pointing in the direction of forward flight. The
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Yi,w
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z
L = rolling moment
M = pitching moment
N = yawing moment
p = roll rate
g = pitch rate
r = yaw rate

[X, Y, Z] = components of resultant aerodynamic force

fu, v, w] = components of velocity of 0 relative to the
atmosphere

Figure 1. Body-fixed Reference Frame.
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translational displacements, velecities, accelerations, and the components
of the resultant aerodynamic forces were considered positive in the same
sense as the coordinate axes (body axes).

The airplane also had another reference frame attached to it. The
vehicle-carried vertical frame (see Chapter 4) had its origin located at
the vehicle mass center. The angular orientation of the vehicle was then
the relation of the body axes to this vehicle-carried frame. The relative
orientation was expressed by the Euler angles 8, ¢, and y.

The position angles were considered positive if an observer, Tocated
at the origin of the reference frame (the vehicle-carrvied frame in this
case), looked along the axes and saw a clockwise rotation of the airplane
axes {body axes). The yaw angle, {, was positive for a clockwise rotation
about the z~axis (i.e., the right wing goes back). The pitch angle, 8,
was positive for a clockwise rotation about the y-axis (i.e., the nose
of the airplane goes up}. The bank, or roll, angle, ¢, was positive for
a clockwise rotation about the x-axis {i.e., the right wing goes down).
The angular velocities and accelerations and the aerodynamic moments were
considered positive in the same manner as the angular displacements.

The stability augmentation system reacted to disturbances by creating
reaction control moments opposite to the induced disturbance moments. The
reaction control moments were dependent upon the angular displacements of
the sieeves located in the ends of the air ducts (see Figure 2). For
zero displacements, the sleeves were oriented so that the air was expelled
through the top and bottom control nozzles to provide equal amounts of
thrust. Zero displacement was the reference flight condition.

The reaction control nozzies in the wing tips corrected any induced
rolling or yawing moments. Rolling moments were generated by changing

the difference between the left nozzle exit area and the right nozzle exit
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-Ls nduced
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Figure 2. Definition of +6x.
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area. The anguiar displacement, §,, of the sleeve in the control nozzle
was considered positive if it created a positive rolling moment (Figure
2). Yawing control moments were created by rotating the thrust vectors
from the left and right nozzles in opposite directions about the lateral
axis (y-axis) of the aircraft. Pitching control moments were éreated by
a reaction control nozzle tocated in the tail. Changing the differential
area between the top and bottom exit areas produced the pitching control
moment. The reaction control angles for pitch, Sy, and yaw, 6z, were
considered positive if they produced positive pitching and yawing moments
respectively.

The aerodynamic controls were directly coupled to the reaction con-

trols through the pilot controls (the stick and the pedais) as follows:

aileron controel angle, &, = §,, (111-1a)
elevator control angle, §, = ﬂy, and (ITI-1b)
rudder control angle, §,. = §,. (I111i-1¢)

Two angles were associated with the thrust vectoring. The diverter
angle, &, had a range from zero degrees displacement (thrust vectored
straight down for hover) to 70 degrees displacement for full aerodynamic
flight. This angle was measured in the vertical plane counterclockwise
from the positive z-axis (body axis). The exhaust side vane angle, 2,
was measured about the x-axis (body axis) by the right hand rule and had

a range of 25 degrees.
2.2 Basic Model.

The equations of motion for the X-14 were taken from [1]. The model
in [1] was a ninth-order system with the state variables being u, v, w,
p, 4, s 6, ¢, and Y. These variables are defined in Appendix 4. For

this project three other state variables were added which allowed the
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displacements to be ca]cd1ated. The model was of the basic form

x = F(tsx,u,m) fr1-2)
where x was a twelve-dimensional vector of state variables, u was a nine-
dimensional vector of control parameters, and w was a six-dimensional
vector of input disturbances.

The problem was to solve for the transient response of the aircraft
subject to a disturbance(s). The hover mode, x =0, represented the ini-
tial conditions. The disturbance vector, w, was known for each instant
of time. The control vector was calculated by setting i;=g, the reference
flight condition, and solving equation (2) for u at a specific instant of
time. Equation (2) was then solved for x at the next instant of time.
This was continued until the nature of the transient, whether a recovery

or a crash, was determined.
2.3 Changes in the Original Model.

The equations of motion of the basic model were reviewed by the
author, more for a better understanding of the model than to see if they
were correct. The equations were found to be nearly correct. Only a few
discrepancies were found in certain terms of the equations.

The term accounting for the rolling moment due to side velocity was

omitted from the original model. This term, the stability derivative, CQ .
B

was derived following methods of [2]. The derivation of this term is pre-
sented in Appendix 1.

In the interim period between the time the basic equations were first
written and this project started, the engines of the airplane were replaced
with newer, more powerful engines. The newer engines, the GE J85-19

engines, had greater thrust capabilities. With the new engine data incorpo-
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rated into the model, a simulation for the hover mode was conducted and
a discrepancy between simulation vresults and actual flying results was
discovered,

In hover the actual airplane was flying with the engines running at
98 to 99 percent of maximum engine speed. The model calculated the engine
speed to be only 90 percent. The conclusion drawn from this was the ef-
ficiency of the diverter vane had been neglected in the model. An effi-
ciency factor was added to the model to adjust the engine speed to that
of the actual aircraft. This factor also had a direct effect on the thrust
and the exit velocity of the jet exhausts.

Reference [1] also calculated this factor and reported it to be 0.91.
This was based on a direct correlation between the engine speeds of the
model and the actual aircraft. For this project, the engine speed, 9,
could not be calcualted by any means other than from the thrust, Q@ =
Q{thrust). The thrust was an integral part of the model and was included
in the control vector u. Therefore, the efficiency factor was re-calcu-
lated based on the ratio of the gross thrust for hover as calculated by
the model and the gross thrust for hover of the actual aircraft. The
factor was calculated to be 0.807. This factor was assumed to be constant
over the range of operating conditions of the aircraft. The calculation
of this factor, £, is presented in Appendix 2.

The nature of the solution procedure {see Chapter 4) required the
modification of two aeroﬁynamic coefficients, ACL, 1ift interference, and
ACMO, pitching moment interference. The corresponding 1ift interference
force appeared in the equations for forward and vertical velocity. The
pitching interference moment appeared in the equation for the pitch rate.
These terms required that the value of the net thrust be known before it

had been calculated. Both coefficients were defined as functions of two
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parameters, the relative velocity between the aircraft and the atmosphere,
Uo' and a non~-dimensionalized thrust coefficient, Tc. The equations for
ACL and ACMD were

AC

L _ _ 7,3 -5 .2 -3
~;- f(Uo) = -2.248398x10 -U;+2.483009x10 -Y,-1.332149x10 U, (111-3a)
C

¢
Mo _ .1 - - -

—"0 = £1(Uy) = 4.900354x10"7+ 13-3.164620x10"5+ 141, 529505x10 ., (111-3b)
c

. _ 2 .

where T_ = Tnet/(T/Z »p - U *S)

These aerodynamic terms were incorporated into the thrust terms of
their respective equations by algebraic manipulation (see Appendix 3).
This "rearrangement" eliminated the necessity of having to arbitrarily
select an initial value for the thrust.

The last cﬁange involved the aerodynamic coefficients ql s C and

2 s

0 0

G . These coefficients were "extended” to be defined for the full range
of the sideslip angle, B, +90 degrees to -90 degrees (see Figure 3). The

extended portion of the curves were based on the known curves.
2.4 Final Study Model.

The model finally used for the study was a twelfth-order system.

The state variables were the three translational velocities (u,v,w), the
three angular disptacements (6,¢,9) and associated angular velocities
(p,q,r), and the displacements {x,y,z). The full set of equations of the
system are presented in Appendix 4.

These equations of the model that define the dynamics of the X~14 were
nontinear differential equations. More correctly, equation (2) was written
as

X o= Fltx(t) ult)wit)} . : (111-4)

With the control vector assumed to be a known function of state variables,
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equation (4) then became

x = £t {t),u{x(t))w(t)} . {111-5)
and was the egquation of a closed-loop system.

The nonlinearities of the system were due in part to the inertia
terms of the fundamental dynamical eguations. The kinematic variables
{angular positions and velocities) were nonlinear also. The external for-
ces, especially the aerodynamic forces contained inherent nonlinearities.
Nonlinearities were also introduced into the system by the aerodynamic
coefficients. However, in this project, the biggest nonlinear contribu-
tion was made by the control system of the feedback loop, the pilot [6].

To model the pilot control system is very difficult. A pilot model
mist be able to perceive rates, predict attitudes, and then provide the
proper lead time in control inputs so that it can maintain some degree of
precision. The control policy should be one that is capable of driving all
the state variables to some reference condition, which, for hover, is the
zero vector. For a nonlinear system, as was the X-14, the derivation of
such a controller was a difficult task without first producing a Tinear
model. For large disturbances as those considered in this study, many
linear models would be required with each one linearized about a different
operating condition. The analysis would then switch models as the condi-
tions warranted. This approach would optimize the use of the control ef-
fort available, but it would be extremely difficult to construct. There-
fore, the control policy of [1] was used because of its simplicity.

Reference [1] calculated the control vector by setting x = 0 and
solving for u (see Appendix 5 for the equations). This control would not
return the aircraft to its original position, but would control the air-

craft to some steady-state reference. For example, if a disturbance caused

the aircraft to roll, the present control would seek to drive the roll
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acceleration, p, to zero. This meant that the roll rate would be a con-
stant and that the roll angle, ¢, would continue to increase at a constant
rate until the critical roll angle was exceeded. Using this type of con-
trol would tend to give results on the conservative side for the calcula-
tion of maximum permissible qusts.

The pilot introduces a time delay into the system due to his time
response, which includes his reaction time and the time required for the
pilot's response to be transmitted to the physical control system through
servos [6]. Reference [7] gave a nominal reaction time delay of 0.15
seconds. A neuromuscular lag of 0.10 seconds was also given.

The pilot represented the majority of the time delay. The response
of the control to a command input was taken to be 0.05 seconds. Equation
(3) was then written as

x = fltsx(t) ulx{t-T)mw(t)} . (I11-6)
where 1 was the time delay.

The control system just mentioned was affected by the time delay of
the pilot. The control vector u was calculated every 0.30 seconds. During
this response time interval, the aircraft was assumed to be in a state of
flight in free conditions with locked controls.

A second control was used in which the pilot was assumed to apply
full control when a disturbance was sensed. Full control in this sense
meant that full control effort was available to him through the stability
augmentation system. The throttle for the thrust was assumed to be con-
trolled just enough to keep the airplane flying. The thrust and the vane
angle(s) were calculated for k = 0.

This type of control, u

Unax® Was more representative of a pilot's re-

action to disturbances. The design was very basic in nature and could not

be regarded as sophisticated enough to be useful in other applications.
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Figure 4 shows a schematic of the control policy using pitch as an example.
A disturbance (in the form of a step) was introduced to the system and the
pilot reacted {after the time delay) by applying full control effort to
counteract the disturbance. This should have resuited in an immediate
change in sign of the pitch acceleration. Full control effort was applied
until the pitch rate passed through zero. Then the control was returned
to the "other" control. The pitch angie was then watched to see if it ex-
ceeded its critical value.

Tne preceeding Yooy control sequence was only applied to step dis-
turbances. A simpler sequence of applying Yooy Was used for disturbances
other than steps. Whenever the aircraft exceeded a certain attitude, usu-

ally one half the critical value, the control was changed from (S to

(L When the attitude dropped below one half its critical value, then
Ynay Was returned to Eﬁ?Qf

For the remainder of this study, the two control "schemes" will be

designated as

reference controil
x=0 ag (111-7a)
maximum control effort Loax . (111-7b)

The nine parameters of the control vector were the net engine thrust
(Tnet)’ the two diverter angles (G,A), the three reaction control angles
(Gx,ay,ﬁz
and low speed flight the aerodynamic controls have negligible effect on

), and the three aerodynamic control angles (Ga,ae,ér). For hover

controlling the aircraft.

The exhaust side vane angle, A, was set to zero because the present
aircraft does not use it, Since the primary function of the side vane was
to produce lateral forces for lateral translation, some simulations were
conducted with it present. These simulations were restricted to the case

of lateral disturbances only. Also, only the hover condition was considered.
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Therefore, for the major part of this study, the nine-dimensional control
vector was actuaily a vector of only five dimensions.
The disturbance inputs represented the three\orthogonai components
of the wind and the three orthogonal components of the gusts. As discussed
in more detail in the next chapter, the airplane was asstumed to be facing
into a headwind with no crosswinds or vertical winds. Therefore, the dis-
turbance vector was reduced by two dimensions to a four-dimensional vector.
The valid range of the model was dependent on four variables [16].
The variables with their 1imits were

forward velocity (u)

+101 fps (+60 knots),

~17 fps (-10 knots},
side velocity (v) - =51 fps (30 knots},
angle of attack (o)

1
i+
Ny
o’

degrees, and
sideslip angle (B) - +90 degrees

The conditions Tor hover were defined as

forward velocity {u) - +30 Tps,
-10 fps,

side velocity (v) - +30 fps, and

vertical velocity {(w) - +10 fps

2.5 Stability Criteria.

The objective of this project was to find an envelope of wind gusts
in which the aircraft could operate safely. Therefore, certain criteria
for instability were established. 1In hover, close to the ground, the at-
titude of the aircraft is always very critical. It was assumed that the
aircraft would be considered unstable, or unable to recover to its refer-
ence flying condition, if either the roll or pitch angle exceeded 25 de-

grees.
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Since the control effort available was 1limited. the aircraft was also
considered unstable whenever it exceeded its maximum control effort. The

maximum available control efforts were

$ (roll) - 1.361 rad-sec'z,
8 (pitch) - 0.698 rad-sec™>, and
¥ (yaw) - 0.332 rad-sec”?

The altitude for the aircraft was initially set at 100 feet. This
gave the aircraft reasonable room to operate vertically and eliminated the
altitude as a critical criterion in determining unsafe flying conditions.

A change in altitude would be an important factor to watch since this would
be critical at lower altitudes on the ordér of a few feet. Also, this al-
titude was assumed to be great enough to eliminate any effect the ground

might have on a hovering VIOL (e.g., re-ingestion of engine exhausts).
2.6 Comment on the Aircraft Model.

As stated in Section 2.2, the aircraft model was based on the work of
[1] which in turn was based on the work of [16]. One aspect of the latter
work raised certain questions regarding the aerodynamic forces and moments
that appeared in some of the equations. In particular, the points in
question concerned the angle of attack, a. Reference [16] included the
pitching moment due to o in its model, but it neglected the 1ift and drag
due to o. Figure 5 was reproduced from [16] and shows the moment, 1ift,
and drag coefficients with respect to o. Three things were immediately
obvious. First, unlike most aerodynamic procedures, these coefficients
were given as functions of relative velocities and not as functions of a,
Secondly, the drag coefficient had a negative value which indicated that
the drag force acts as a propulsive force (i.e., a contribution to the

thrust) and not as a resistive force. Thirdly, there existed some ambi-



X-14A* Longitudinal Aerodynamics

Static Data 40'x80' Wind Tunnel =Body Axes

"Power 0Ff" o=0 Controls Neutral
1
B -1 (=Cy ) |
X d D
" o ra o«
A Mo rad”! A
o Cro  rad™! ('CLa) o
©- \C
-5
% | | | 1 L
C 10 20 30 40 50 60

v, (knots)

Figure 5.

Copy of CLa’ CDa’ CMa from [16].

* A notation refers
to the aircraft
before the new en-
gines were install-
ed.

L8l



168.

guity in the heading of the graph. The statements "w=0" and "body axes"
were left to be defined by the user. Digressing slightly in order to inter-
pret this, [15] showed that the wings were at an incidence of 11 degrees
at the root and 6 degrees at the tip with respect to the aircraft center
Tine (body axes). This then meant the statement "o=0" implied that the
aircraft was "pitched down" at an angle of 6 to 11 degrees (11 degrees
w1ll be used for the ¥1lustration). To the author, the statement "body
axes" implied that the forces and moments represented by the coef%icients
were defined to be parallel to the body axes. However, the forces of 1ift
and drag, L and D_, were generated perpendicular and paraliel to the rela-
tive velocity vector (Figure 6). For o=0, this then meant that 1ift and
drag were defined with respect to the mean aerodynamic chord. Therefore,
1ift and drag had to be rotated into the body axes system through an angle
equal to the incidence of the wing with respect to the body axes (i.e., 11
degrees). Rotation of these forces, L, and D_, showed that drag with re-
spect to the body axes was a positive quantity (Figure 6). This contra-
dicted the information presented in Figure 5. At the present time, only
a partial copy of [16] is available. The previous discrepancies may be
resolved when a complete copy is referred to.

For this study, the original equations as defined in [1] were used
in which CM@ was inciuded and CLOL and cDa were neglected. However, a set
of simulations, with CLa and Coo included in the aircraft model, was con~
ducted. Also, since the atmosphere and aircraft reference frames were
parallel (see Chapter 4), the angle of attack had an initial value of 11
degrees. Therefore, another set of simulations was conducted where 11 de-
grees was added %o the angle of attack. The results of both sets of simu-

lations are presented in Section 5.3.c.
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CHAPTER 3

WIND MODEL

3.1 Background.

A hovering aircraft, either a VIOL or a helicopter, is limited to
hovering within the so-called Earth boundary layer. This boundiny Tayer
extends from the surface of the Earth through the lowest few hundred feet
of the atmosphere. Due to the nature of many factors present in the
planetary boundary layer, turbulence is nearly always present [9].

Turbulence is defined by [8] to be rotational, dissipative, three-
dimensional, nonlinear, stochastic, diffusive, and a continuum phenomenon.
Turbulence can then be defined as a random process that cannot be described
by explicit functions of time; only a statistical, probabilistic approach
can be taken [5]. Therein lies the problem of modeling the wind.

Reference [5] stated that much of the extensive information avail-
able on wind-induced turbulence near the ground is inconclusive and even
contradictory. This made a low altitude turbulence model seemingly im-
possible to derive. However, with certain assumptions, a reasonable re-
presentation of presently available information was constructed.

The first assumption was that turbulence can be broken down into a
sTowly-time-varying component and a rapidly-time-varying component. This
was seen by observing a typical spectrum of wind speed near the ground
(Figure 7). The spectrum showed that measured winds contain high-frequency
and Tow-frequency modes with a wide gap of frequency where the wind con-
tains 1ittle energy. Because of the long periods associated with the low-
frequency mode (on the order of hours), this low-frequency mode was assumed

to be constant over the relative short period of time (10 seconds) of the
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computer simulation, This then defines a constant velocity mean wind.
The high-freguency mode was assumed to represent the irregularly fluctua-
ting wind gusts.

Another assumption was that there was no dependence of the statis-
tical properties of turbulence on time. Turbulence was therefore assumed
to be a stationary process. Turbulence was aiso assumed to be homogeneous
(i.e., the statistical properties were the same at each point in the gust
field). The last assumption was that the gust velocity components were
Gaussian. This was necessary in the development of the gust part of the

model in Section 3.3.

3.2 Wind,

It was state& in Section 3.1 that the Tow-frequency wind was assumed
to be a constant because of the short time period of the simulation. This
was aiso carried over and ysed to assume that the direction of the wind
would be constant over the time period of the simulation.

The reference frame of the wind was an atmosphere-fixed reference
frame (see Chapter 4), the axes of which point north, east, and vertically
down. The wind model assumed the mean wind to be blowing from north to
south (a negative direction) parallel to the north-south axis of the re-
ference frame. Therefore, the crosswind and vertical wind were zero.

The mean wind was assumed to be constant over the entire width and

height of operation of the aircraft (see Figure 15).
3.3 Gusts.

A discrete model of gust velocity is described in [13]. The discrete
model has the "1 - cosine" shape and is shown in Figure 8. The eguation

of the discrete gust model is
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v X
v(x) = —-‘;1 « {1 - cos{m + —)} . (8)

m
This model is an arbitrary model that relates the gust magnitude in a

rational manner to the expected intensity of continuous random turbulence.
The model has a gust velocity v(x) defined spatially in terms of a magni-
tude'vm, which occurs at a distance x=dm, where dm is a physical dimension
of the gust velocity field. This model can be applied to any of the three
gust components [13]. This model describes an average of all conditions
for clear air turbulence. The model neglects the effects on turbulence

of terrain roughness, atmospheric stability (lapse rate), mean wind hag-
nitude, and all other meteorlogical factors, except altitude. Too few

data are available to incorporate these factors into the model.

The validity of a discrete model for gust magnitudes was discussed
in [2] and [13]. Reference [13] stated that a discrete gust provides
spike-type inputs that may not be apparent in the simulated Gaussian ran-
dom turbulence. These gusts affected a vehicle in a specific way, but
ocne which was likely to be encountered.

The discrete gust model jointly considers gust magnitude and gust
gradient, both of which are important parametérs. A study of these para-
meters was the objective of this research.

The discrete model was a function of three parameters, dm, already
mentioned, L, the scale length of turbulence, and'c, the root-mean-square
intensity of continuous random turbulence. The last two parameters were
functions of altitude. A conditicnal probability density function of the
random turbulence was the key to the discrete model. The derivation of the
model is presented in [13]. Hcwever, a basic description and some of the
assumptions used will be repeated here.

The discrete model was developed by arbitrarily choosing reasonable

values of the scales and then determining values for the intensities so
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that the mathematical spectral form matched the measured spectra data.
The root-mean-square intensity of vertical velocity, o, was the basis
for the model. The statistical properties of g, were developed in [13].

First, the discrete probability (P1) of encountering turbulence was
obtained from Figure 9 (Figure 3, page 443 of [13]). As can be seen, it
is a function of altitude. The value of Ty at a particular a]titude‘was
taken to be that rms turbulence which was exceeded with a probability of
exactly 0.01 (i.e., 99 percent of all time spent in flight at a given al-
titude will be spent in either turbulence with less than the specified Ty
or in turbulent free air). If P(cw) is the probability that g, equals or
exceeds a given value, then by definition of T2

Po,) = Py » Plo,) = 0.01 (111-9)
where P(gw) and P1 are defined as above and P(cw) is the conditional prob-
ability of equailing or exceeding a given Oy once turbulence has been en-
countered. The function 5(cw) was obtained from Figure 10 (Figure 2, page
442 of [13]), which was based on fitting a Rayleigh distribution to known
gust data. From the graph, the value of B(UW) necessary to make P(aw) =
0.01 was found and the corresponding g, as @ function of altitude, was
found,

The vertical scale of turbulence, Lw’ had been established to a
reasonably good approximation as a function of altitude. Reference [13]
cites two different scales for clear air turbulence, the preferred von
Karman scales and the Dryden scales. The vertical scale of turbulence was

found from one of the following equations,

I

L 2500 feet altitude (h) > 2500 feet , (1II-10a)

1]

or L h feet altitude (h) < 2500 feet . (III-10b)

The scales of turbulence for longitudinal, Lu’ and lateral, Lv’ turbulence

were calculated from one of the following equations,
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Figure 10. Probability of Equaliing or Exceeding a Given
Oy Once Turbulence Has Been Encountered.
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L =L
u v

or L =L =184 ht/3 feet altitude (h) < 2500 feet .  {I1I-10d)

The root-mean-square intensities for the Tongitudinal and lateral clear

]

2500 feet altitude (h) > 2500 feet , (111-10c)

i

air turbulence were derived from the von Karman relationship

: 2 42
B AL A, £11-11)
L2/3 [?73 [273

u v W

For any component of clear air turbulence, the scale of turbulence and the
rms intensities were known. By arbitrarily selecting several values of

qn’ corresponding values of vm were obtained from Figure 11 (Figure 7, page
429 of [13]). Figure 11 was derived by cross-plotting the values of vm/c
and dm/L from Figure 12 that corresponded to a probability of occurrence
of 0.01. Figure 12 is a Gaussian cumulative distribution, P(vm/c), in

a normalized form. The variable dm/L was a parameter used in calculating
P(vm/c). Therefore, for a given altitude and a given probabiTity of being
in a specific turbulent field, a discrete model was found.

This was a partial solution to the problem of determining the maxi-
mum gust fields in which the aircraft can safely fly. The approach taken
in this research was to find the envelope of maximum vm's and, then,
knowing the lengths, dm, from basic relationships regarding each vé,
working back to find the probabilities of encountering such turbulence.

A change was made in the discrete equation {8) in order to apply
it to the problem. The procedure used in [13] was for an aircraft flying
through the velocity field. The total time the aircraft was subjected
to the turbulence was the length of the gust field, 2dm, divided by the
airspeed of the aircraft. For this project, the Tength of time the X-14
was subjected to the turbulence was the distance traveled by the gust
divided by the speed at which the qust field was traveling. The Tength of

time was specified based on previous knowledge about gusts [10]. The pro-
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duct of the time and the speed of the gust field then gave an appoximation
to the length 2dm {see Figure 30).

Examination of Figure 7 shows that the period associated with the
peak of the high-frequency component occurs around 0.05 hours (3 minutes).
However, [10] stated that analysis suggests at least two-thirds of tur-
bulent energy is associated with fluctuations lasting Tess than five
seconds. This Tatter information was used as a basis for establishing
testing frequencies of the gusts. Another conclusion was that, at mod-
erate heights, the eddying energy was equally divided along all three
axes. This then was the basis for modifying the discrete equation to be
a function of time rather than length, and for it to be equally repre-
sentative of any one of the three gust components. Therefore, equation
(8) became

t

v
v(t) = '; {1 - cos(w - —)} , f11-12)

tm

where the distances were repfaced by times. The time t was any instant
of time during the simulation between t=0 and t;lo seconds. The time tm
was the "half-Tife" of the gust frequency and was when v occurred.

Three "base" times, tm, were selected for the model. Times were
limited to the length of the simulation or less. The "base" times were
ten, five, and three seconds. These times corresponded to frequencies of
0.10, 0.20. and 0.33 cyc]es—sec“] (cps) respectively. The fourth repre-

sentation of a gust, the step, was also used since a step represents the

most severe type of turbulence an aircraft may encounter [2], [14].
3.4 Equations of the Wind Model.

The final model of the wind consisted of a mean wind with gusts 1n

the three component directions. The gust opposite in direction to the
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mean wind was omitted for the reason that this condition would violate the
validity of the model in that it would force B to be greater than 90 de-
grees, The mean wind was considered to blow from the north at a constant
velocity of UWI fps. The gusts were considered positive if they blew in

the direction of the positive body axes. The mean wind was transformed

from the atmosphere-fixed reference frame i1nto the body-fixed reference frame

by the Euler angles. The equations were

waf = leaf-cos(w)-cos(e) , (111-13a)
W = UwIaf-{cos(¢)-sin(e)-sin(¢)~cos(¢)'51n(¢)} s (111-13b)
Hwa = UwIaf-{cos(¢)-cos(w)-sin(e)+sin(¢)-sin(¢)} s (I1I-13¢)

where the subscripts bf and af referred to body reference and atmosphetic
reference frames respectively.
The gust components were also transformed into the body reference

frame of the aircraft by the Euler angles. The equations were

i

Uﬁaf-cos(w) «cos(e) + VGaf-cos(e)-sin(w) -

_ f1r-14a)
wGaf-s1n(e) s
Vbe = VGaf-{cos(w)-cos(¢)+sin(¢)-sin(¢)-sin(e)} -
UG+ {cos(p)esin(y)-cos(y)-sin{¢)-sin(e)} + (111-14b)
WGaf-cos(e)osin(¢) R
Wbe = UGaf-{cos(w)-cos(¢)-sin(e)+sin(¢)-sin(¢)} -
VGaf-{cos(w)-sin(¢)-cos(¢)-sin(¢)-sin(e)} + (11I-14c)
WGaf.cos(¢)-cos(9) s
where UG, = 1/2ev {1 - cos(mt/t )} (ITI-15a)
Ve . = 1/2ey {1 - cos('rr-t/tmv)} s (111-15h)
WGaf = ]/Z-Vmw-{] - COS(w-t/tmN)} . (I111-15¢)

3.5 Input to the Aircraft Model.

The approach to this study is illustrated in Figure 13. The wind
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model described the atmospheric turbulence, the output of which was a velo-
city field. This velocity field acted as a disturbance on the aircraft in
the form of changes in aerodynamic forces and moments. These forces and mo-
ments were then fed into the aircraft model. The stability of the output,
or the vehicle motion, of the aircraft model was used in determining the
maximum gust field the aircraft could withstand.

The velocity field of the atmosphere may be regarded, over the time
and space intervals of interest, as composed of a steady mean value with
turbulent fluctuations superposed. This leads to the assumption that the
structure of turbulence takes the form of ingividual patches, in each of
which the turbulence is approximately random, homogeneous, and isotropic.
This is based on the fact that the statistical properties of the distur-
bance input to an airplane flying through a turbuient field are not appre-
ciably affected by the variation of that field with time. Essentially,
turbulence may be treated as a frozen patte}n in space.

Another assumption must be made in order to deal with a hovering
VTOL aircraft like the X-14. Refarence [5] stated that an assumption of
a frozen turbulence model was invalid for a stationary point. However,
[8] and [12] stated that the hypothesis of a gust field frozen in time
moving downwind with the mean wind speed (known as Taylor's hypothesis)
was acceptable at low airspeeds. The lower Timit of airspeed at which
this assumption was valid was put at one-third the mean wind speed.
Therefore, the model of the aircraft was assumed to have a forward air-
speed equal to one-third the mean wind speed. This does not violate the
definition of the hover conditions as a 30 fps forward velocity was de-
fined as the limiting forward velocity for the hover mode.

It was assumed that there was no variation of the gusts over the

physical dimensions of the aircraft. The longitudinal gust was assumed
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P

constant along the wing span, the lateral qust was assumed constant along
the fuselage, and the vertical gust was assumed constant along the wing span
and fuselage. The aircraft was in effect treated as a point [5].

Treating the airplane as a point simplified the model as far as defin-
ing the input to the aircraft. However, it restricted the usefulness in
calculating certain responses. The point approximation was valid provided
the wavelengths of the gusts were much greater than the physical dimensions
of the aircraft. This was valid for lower frequencies only. Reference [5]
1imited the upper frequency for validity to 2/(wing span) which, for the
A-14, was 0.059 cps. This was the upper limit for con§idering the plane
vanishingly small compared to the gust wavelength. The smallest frequency
used in the model was 0.100 cps, or almost twice the limiting value. This
would indicate that the point approximation assumed in this study would
yield somewhat limited results.

To consider the higher frequencies would then require treating the
airplane as a finite plane in space where the gusts vary along the dimen-
sions of the aircraft. Variations in longitudinal gusts along the wing span
would result in induced rolling moments and pitching moments. Variations
1n vertical gusts along the wing span and fuselage would result in pitching
and rolling moments also. Variations in lateral gusts along the fuselage
would resuit in yawing moments.

The gust model would need to be modified in order to produce these
variations. The modifications would entail splitting the gust velocity
field into smaller parts, each of which possessed different magnitudes and,
each of which acted on a separate section of the aircraft. The aircraft
model would then also need modification in order to calculate the response
of the aircraft to each gust input. These modifications would increase

the complexity of each model, which, at this time, is beyond the scope of
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this project.

Treating the aircraft as a point also neglects the effect of gust
penetration (i.e., wing-to-tail delays). Gust penetration is important
for high gust magnitude to airspeed ratios, which was the case for this
project. However, this would require that the response of the taii to
gusts be known. At the present time these responses are not available.

For the altitude considered in this project, 100 feet, this model
derived in the foregoing was assumed to be a reasonable representation

of clear air random turbulence.
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CHAPTER 4

METHOD OF ANALYSIS

4.1 Reference Frames,

Four frames of reference were needed for the definition of this prob-
lem. An inertial reference frame was needed in which Newton's Second Law
is valid for motion of a particle or a rigid body. The inertial frame
chosen was as Earth-fixed reference, Fe’ with Earth surface axes Oexeyeze
(Figure 14). The origin of this frame was placed near the vehicle with
the Oeze axis pointing vertically down, the Oexe axis pointing north, and
the Oeye axis pointing east. The rotation of the Earth and its curvature
were neglected, thus being calied a Flat-Earth approximation (i.e., treat-
ing the Earth as a stationary plane in inertial space).

A reference frame defining the aircraft was also needed. In this
case, two were defined. First, a vehicle-carried verticail frame,‘Fv, with
axes vavyvzv was attached to the aircraft at the mass center. The Ovzv
axis was directed vertically down and the remaining axes, vav and Dvyv,
were chosen to point north and east respectively. For hover, the movement
of the aircraft from its original position was small enough to consider
the origin of FV near enough to the origin of Fe so that the axes of each
could be considered parallel. '

The second reference frame associated with the airplane was a body-
fixed reference frame, Fb’ with bodyaaxes Oxyz. The origin of this frame
was located at the aircraft mass center (see Figure 1). The axes were the
same as those defined in Chapter 2. As mentioned previously, the Euler
angles gave the orientation of the body axes relative to Fv' However,
by considering the origins of Fe and Fv to be coincidental, or nearly so,

because of hover, the Euler angles also gave the orientation of the aircraft
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relative to the inertial reference frame, Fb relative to Fe.

The fourth reference needed to define the problem was one to be used
with the motion of the atmosphere. The atmosphere-fixed reference frame,
Fa’ with axes Oaxayaza, was necessary to define the relative velocity be-
tween the aircraft and the atmosphere for the calculation of aerodynamic
forces and moments. When the atmosphere was at rest relative to the Earth,
Fa and Fe were the same. When the atmosphere was in non-uniform motion
relative to the Earth, Fa was chosen so that the average motion of the
atmosphere relative to Fa was zero [5]. Therefore, non-uniform and uniform
motion of the atmosphere relative to the Earth resulted in motion of Fa
relative to Fe' By selecting Fa parallel to Fe initially, Fa then moved
paraliel to Fe at constant velocity.

A1l reference frames were assumed to have the same origin at the start
of the simulation, or at time zero, as shown in Figure 15. The changes in
the references for an incremental time At are shown in Figure 16. Reference
Fa has moved a distance of UWI.pt feet in the negative x-direction. The
aircraft has flown along a trajectory path P and has undergone angular dis-
placements in roll, pitch, and yaw. For purposes of derivations to follow,
these displacements were assumed to be positive. The aircraft was no longer
orthogonal to the other three reference frames. Disturbances parallel to
Fa were transformed into Fp by the Euler angles. The aircraft now "saw"
orthogonal components of the wind and the gusts.

The transformations were carried out in a particular sequence as shown
in Figure 17 [5]. The sequence was 1) a rotation ¥ about 0z, carrying the
axes to a temporary position O X,y,Z,, 2) a rotation ¢ about 0y, carrying
the axes to another temporary position va3y323, and 3) a rotation € about

va3 carrying the axes to their final position Oxyz.

4.2 Method of Solution.



Yas¥ys¥q sl

=
>
-
> (north)
= <
> XgaXy sXg oX Oe’ov’oa’O
>
=
>
Wind conditions are
constant over the
height and width of
operation of the aircraft.
v Zys2y 9252

Figure 15. Relative Positions of the Reference Frames for Initial Conditions.

v
{east)

08l



A

-

7 Ve 7Ya
vV, (east)

Figure 16. Relative Positions of Reference Frames At Seconds After Gust Input.

181



182.

.y2’.y3

Figure 17. F, and Fa Transformed into Fb Through
the Euler angles 8, ¢, and y.
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The objective of this research was to find the largest gust field the
aircraft could encounter and still maintain a stable flying condition. The
stability of the aircraft was defined by certain constraints or limits on
some of the state variables and control parameters.

The procedure was to solve equation {6)

X = Flesx(t) ,alx(t-1)) ()} ,
for maximum w with constraints and limits imposed on x and u. Due to the
nonlinearity and time variance of the equations, w could not be solved for
directly.

A simple iteration technique to solve for w indirectly was used. An
arbitrary wind model was selected and introduced into the aircraft model.

If the airplane flew in a stable manner for ten seconds, the wind model was
increased in magnitude. If the airplane could not recover, the magnitude
was decreased. The iteration was carried out until the largest values of
wind and gusts the aircraft could withstand were found.

The problem was then an initial value problem with a known set of
initial conditions and a set of 12 first-order differential equations that
could be integrated by numerical methods.

The initial conditions of the aircraft represented the hover mode.

The forward velocity, u, was set equal to one-third the mean wind speed, a
necessary condition for Taylor's hypothesis. The remaining state variables,
except for the altitude, were set to zero.

The Tength of time for the observation of the aircraft was arbitrarily
set at ten seconds. The solution of the differential equations was obtained
by integrating over the time interval in steps of 0,10 seconds. The inte-
gration routine used a fourth-order Runga-Kutta iteration to calculate the
initial values of the integration and a four-point Adams-Bashforth-Moulton

predictor-corrector method to continue the integration.



184,

The first part of the solution to the problem was to determine the
maximum steady-state headwind the airplane could withstand. No other
components of the wind were calculated because of the assumption that the
aircraft was always facing initially into the steady~state headwind. The
second part of the solution consisted of finding operational enveliopes of
maximum gust magnitude for various gust frequencies, headwinds, and con-

trol policies.
4.3 Computer Program.

The flow chart for the program WINDY, used to calculate the opera-
tional envelopes, is shown in Figure 18. The program was given the initial
conditions for hover and the velocity of the headwind. For these condi-
tions, the aerodynamic coefficients used in calculating the aerodynamic
forces were calculated, These aerodynamic coefficients changed instantan-
eously for each change in relative velocity of the atmosphere with respect
to the aircraft.

At some time t0 the gust disturbances were introduced. These gusts
were parallel to the atmosphere-fixed reference frame. The program trans-
formed the gusts and the wind into the aircraft reference frame.

The initial values of the control vector were then calculated by
WINDY. These values were stored by the program. They represented the
state of the aircraft before any disturbance was encountered.

The solutions of the system of differential equations describing the
aircraft motion were obtained and stored for a particular instant of time.
Next, the angular accelerations were calculated and stored. These values
were cbtained by treating the equations involving angular motion (i.e.,
the p, q and r equations) as algebraic equations. For the particular

time (of the simulation) in question, these equations take the form
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D. = Fx, . 0. I

P; (_&J o) (T11-16a)
‘ rj = f(f—_jsﬂ-_j 9EJ,J) . (III—'[GC)

The current values of the state variables, Ed’ the control parameters, s

and the disturbances, ;s were substituted directly into the above equa-
tions. These equations also gave the control effort requirements since
these requirements and the angular accelerations were equivalent.

The stability criteria were checked as the program proceeded to the
next part. If the aircraft was found to be unstable, the program printed
the time history of the motion up to that point and then stopped. The time,
the state variables, the control parameters, and the angular accelerations
were printed for every 0.10 seconds. If the aircraft was stable, the time
was checked to see if it was time to calculate new values for the control
parameters. The control parameters were calculated every third step after
the introduction of the disturbances. This simulated the time lag due to
the pilot.

Upon every calculation of a new control vector, the program checked
the saturation Timits of the various parameters. Any control parameter
exceeding its saturation point was set equal to that saturation point.

The time was then incremented by 0.10 seconds, If the time was less
than ten seconds, the program introduced the gusts with their new velo-
cities and then went through the same procedure as just outlined, If the
simulation was complete (ten seconds) the program printed the éomp?ete
time history.

A copy of WINDY is presented in Appendix 6.
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CHAPTER 5

RESULTS, DISCUSSIONS, AND CONCLUSIONS

5.1 Steady-state Wind (Headwind).

The first part of the project was to find the maximum headwind (with
no gusts) in which the aircraft could maintain a hovering flight condition.
The computer simulations found the maximum headwind to be 61 fps (36 knots).
The aircraft was found to remain virtually motionless with only the thrust
and the pitch control nozzle angle, Gy, differing from hover conditions.
The net thrust was lower by 449 pounds {obviously due to the 1ift created
by the wind) and ﬁy was nearly saturated at -19.2 degreés.

The next higher value of headwind, 62 fps, resulted in the aircraft
being unable to counteract the pitching moment created by the 1ift due to
the wind. The pitch control angle was saturated (~20 degrees) for the en-
tire simulation. The aircraft exceeded +25 degrees in pitch attitude after

5.6 seconds.
5.2 Maximum Gust Envelope.

Table 1 presents the maximum gust envelope for the X-14. The values

in this table represent the variable v_ of equation (12) in Chapter 3.
5.2.a Analysis of Longitudinal Gusts.

Table 1 shows the Tongitudinal gust magnitude {UG) to be independ-
ent of frequency. A1l three frequencies have nearly the same magnitude,
52 fps. The computer simulations showed that Gy became saturated whenever
the gust magnitudes approached their maximum values (52 fps).

An analysis of the next higher magnitude for each frequency showed



HEADWIND LONGITUDINAL GUST
UWI -UG +G6
-10 -52 +65
-10 ~52 +65
~10 =53 +72
~10 ——- +27
-61 maximum headwind

A1l magnitudes are fps.

Table 1.

Maximum Permissible Gust Envelope.

LATERAL GUST

-VG
-67

VERTICAL GUST

+WG
+23
+23
+23
+16

~WG
-19

FREQUENCY

0.10 cps

0.20 cps

0.33 cps
step

‘681
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the aircraft to exceed +25 degrees in pitch for the two lower frequencies
(0.10 and 0.20 cps). The pitch control effort, equivalent to g, was ex-

ceeded in the third case.
5.2.b Analysis of Lateral Gusts.

Examination of Table 1 shows that the permissible magnitudes for the
lateral gusts to be the largest of the three component magnitudes. The
1imiting factors were the aircraft side velocity and the pitch angle, de-
pending on the frequency content of the gust., At 0.10 and 0.20 cps, the
side velocity exceeded the definition of hover for all gust magnitudes in
excess of 65 fps. At 0.33 cps the pitcﬁ angle exceeded +25 degrees for
gusts in excess of 72 fps. It should be noted that if the side velocity
was ignored, the maximum permissible gusts were 88 and 73 fps for 0.10
and 0.20 cps respectively.

Detailed analysis showed that a Targe yaw angle, ¢, was indirectly
responsible for the large pitch angle (0.33 cps case and for the two cases
where side velocity was ignored). For a large v, tjpical]y 50 to 60 de-
grees, the lateral gust provides a component which resembles longitudinal
velocity, UO. Figure 19 shows the relationship between U0 and 8 for a
longitudinal gust of 53 fps and 0.10 cps (minimum case of instability).
Also shown are Uo and 8 for a lateral gust of 89 fps and 0.10 cps (minimum
case of instability also--one fps above the limiting case). The figure
shows a close resemblance between the two sets of curves as ¥ increases.
This substantiates ¢ as being indirectly responsible for 6 exceeding its
critical value.

The Tateral gusts in the form of a step function resulted in more
Timited responses because of excessive yaw control effort ({ or r) demanded

by the aircraft. The permissible magnitude was 27 fps. Ignoring aircraft
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side velocity, the permissible magnitude was 53 fps.
5.2.c Analysis of Vertical Gusts.

Table 1 shows the aircraft to be the most sensitive to the vertical
gusts. In all cases the critical parameter in determining instability was
6. For both positive (down) and negative {up) vertical gusts, the pitch
angle exceeded +25 degrees before any of the other hover criteria were vio-
lated. The maximum gust magnitudes were +23 and -19 fps for 0.10 cps, +23
and -17 fps for 0.20 cps, +23 and -21 fps for 0.33 cps, and +16 and -15 fps
for the steps.

Figure 20 shows the time history for & for +23 and -19 fps {0.10 cps},
the Timiting hover case. The responses were normal for the first half of
the simulation. Normal responses meant positive pitch from a down gust
(gust striking a larger surface area behind the center of gravity of the
aircraft and thus forcing the nose up} and negative pitch from an up gust
(same reasoning, nose down). The initial -0 created by the up gust resulted
in an increase in u, forward velocity. This increase resulis in a larger
positive pitching moment which should tend to return the aircraft to an
"even keel"™. Figure 20 shows this to be the case over the first six seconds
of the simulation. However, at that time, the aircraft acquired a Targe
positive pitch rate which rapidly drove the aircraft unstable. The pitch
control effort did not respond as would be expected for this situation.
Figure 21 shows Sy for both cases. As can be seen, Gy never approached
saturation at any time for the up gust case. The reason for this can be
found by examining the equation for Gy (equation {A5-5), Appendix 5)}. In
detailed analysis it was found that the angle of attack exceeded its valid
range for the model, *20 degrees. Typically « approached 50 to 60 de-

grees. This was the cause for the unusual results.
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q increased through term (1ii) which resulted in an increasingly larger
8. As o increased (positively), & increased again and the cycle started
again. This phenomenon can be seen by examining the equation for &,

g = sin-](Ure]/Vjet - MT e (3) = Adesin(a)) . (111-17a;
The second term, A/Tnet(j)’ was the dominating term of the equation.
Examining it more closely revealed that 8 and & were closely related.
The term, with the proper substitution for A, was
-*--{m-(v-r-w-q—g-sin(e))+1/2-p-U§-S-(CLO-sin(a)-CD-cos(u))}/Tnet(j)v--
The dominant part of this expression was m-g-sin(e)/Tnet(j). This term
reduced essentially to sin{8) since m-g/Tnet(j) was nearly unity because
meg, the weight, was canceled by the thrust, which, for hover, was slightly
less than the weight. Therefore, the expression for & was approximately

g = sin‘](---sin(e)--z) (111-17b

which reduced to

(ITI-17c

=]
1
D

for large positive 6.

This showed the model to be inherently unstable for any condition
that resulted in a positive pitch angle. It must be remembered that
this occurred because of the way the control vector, of which ¢ was a part,
was defined. The next two subsections attempted to alleviate this problem
with a by restricting ¢ through gust combinations and by utilizing more of

the control effort availabie.
5.2.¢.1 Analysis of Longitudinal and Vertical Gust Combinations.

The large angles of attack were responsible for the initial positive
pitching motion. These large angles resulted when the vertical relative
velocity component, wrel’ was large compared to the relative longitudinal

velocity, UO. The equation for o,


http:m.(v-r-w-q-g-sin(e))+I/2.p.U2
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o= sin (W /0) (111-18)
then forced the ratio Wee1/U, to be restricted to a value less than £0.342
in order for o to be within 20 degrees. Placing a restriction on wre1/uo
complicated the iterative procedure used to find the vertical gusts of the
gust envelope. This was abandoned in favor of observing the response of
the aircraft to "typical” gust fields. In these gust fields the Tongitudi-
nal gust was also considered since it was an integral part of U0 {i.e.,

U, = (Upgy” + 0,2 VE),

rel rel
Reference [8] stated that the only successful non-zero cross-corre-
Tation between different velocity components recorded at the same points
involved the Tongitudinal and vertical gust components. The procedure
of Section 3.3 was used to find "typical” qusts for both components. These
combinations were used to give an estimate of the maximum magnitude of c.
Only the combinations that kept o close to #20 degrees or less were used.
Table 2 gives the 10 combinations that were used. The gust combinations
were calculated on probabilities of occurrence of 0,10, 0.01. and 0.001.
Two different headwinds, 10 and 25 fps, were used in determining the
gust combinations. The total effects of the two headwin&s will be dis-
cussed in more detail in a later subsection.
The aircraft was unaﬂle to withstand the gust field for the last
three cases of Table 2. In all three situations, the pitch angle exceeded
+25 degrees. Table 3 gives the maximum values of the pitch angle for the
10 cases. The data showed the aircraft to be more stable for the combina-
tions with positive vertical gusts than those with negative vertical gusts.
This was true only for the lower value of headwind (cases a to d, Table 2).
The behavior of the aircraft "switches" for the higher headwind as the
aircraft was more stable for those combinations with negative vertical gusts

than for those with the positive vertical gusts. The degrees of stability
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-10
-10
-10
-10
-10
-10
~25
-25
-25
-25
-25
-25

)

.

.

3

. *

—l Bty e TFUS (D OL Y O
- L] - . - L]

* these two were not used.
all gust frequencies were 0.10 cps;

Table 2.

Table 3.

GUST

-8.4

-8.4
-19.1
-19.1
-29.8
~29.8
~-11.5
-11.5
~25.7
-25.7
-40.0
-40.0

CASE MAXIMUM PITCH ANGLE CHANGE IN ALTITUDE

-.041 to .117 rad
083 rad
-.084 to .379 rad
.202 rad

-.040 rad

098 rad
~-.016 to .060 rad
>25° at 6.4 secs
»25°% at 6.2 secs
>25° at 4.6 secs

. - ] » -

— A, e U OO T

GUST

-7.2
+7.2
-16.3
+16.3
-25.4
+25.4
~7.2
+7.2
-16.3
+16.3
-25.4
+25.4

OCCURRENCE

0.10
0.10
0.01
0.01
0.001
0.001
0.10
0.10
0.01
0.01
0.001
0.001

"Typical" gusts, Tongitudinal and vertical

+0.51 ft
+1.26 ft
+4.22 ft
+3,10 ft
-0.64 ft
+4.81 ft
+4.53 ft
+5.45 ft
+6.20 ft
+3.41 ft

*time during which §_ was saturated.

y

Y

all magnitudes were fps.

189,

APPROXIMATION ACTUAL
OF ALPHA ALPHA
21° 16°
=21° -16.5°
28° 21°
-28° 22.5°
30° *
-30° *
11° 7.5°
-'I'IO _70
18° 16.5°
-18° -11.5°
21° 37.5°
-21° -13°
combinations.
MAXIMUM §y
+3° to -4°
-6.7°
+13°2 to -12°
-15.2°
4+2° to -1°
-8,1°
+1,.5° to -9°
-20° 3.9-6.4%
-20° 3.9-6.2%
-20° 3.0-4.6%

8, Az, and 8§ _ Tor "Typical" Gust Combinations.
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here were based upon the relative absolute magnitudes of 6, which was the
critical parameter. The three conditions at which the aircraft became un-
stable were characterized by a rapid increase in & over the Tast few sec-
onds of the simulations, Table 4. Again the aircraft model was shown to
be inherently unstable due to the interdependence between & and 8. For
these cases, the Targer magnitude for the headwind created the positive

pitch which led to the instability of the aircraft.

5.2.c.2 Use of All Available Control Effort, To.

Since the unstable cases for vertical gusts (limiting cases) involved
Bs Upay WaS applied only to 8¢ Whenever 6 exceeded 12.5 degrees (1/2 of
its critical value), the control switched from Himp PO & (i.e., § =220

X=0 " -max y
degrees depending on the sign of 6). Table 5b compares the results of
using ooy against not using it for the gusts of Table 5a. The effect of
Yooy WAS to reduce the maximum pitch rate and thus, a1jow the operational
envelope to be expanded. The control was more effective for up gusts than

down gusts. Figure 23 shows that did a better job in controlling ©

Lnax
by using more of the control effort available. The other contro],.5k=0,
never reached a saturated state and therefore, did a poorer job in c;ﬁ;}o1*
1ing 6. At this point it must be stated again that these limiting condi-
tions of vertical gusts were beyond the valid range of the model in that o
exceeded +20 degrees.

The results of using Yooy in determining maximum vertical gust mag-
nitudes are presented in Table 6, which shows relative values between the

vertical gusts of Table 1 and those using w The results were affected

ax’
by the fact o exceeded 20 degrees for a good portion of the time. However,

Table 6 does demonstrate the effectiveness of using all the control effort

available.



Table 4,

CASE

Table ba.

CASE MAXIMUM © AND TIME, Yo

a'.
b*.
c'.
d'.
e'.
.

]
*

g
h'.

Rapid Increase of & for Unstable Cases j, k, and 1.

Vertical Gust Magnhitudes (repeated from Table 1).

425
413
. 365
401
. 324
41
.432
.402

CASE

HEADWIND

-10 fps
-10 fps
-10 fps
-10 fps
-10 fps
-10 fps
-10 fps
-10 fps

rad at 10 secs
rad at 10 secs
rad at 10 secs
rad at 10 secs
rad at 10 secs
rad at 10 secs
rad at 10 secs
rad at 10 secs

TIME

.3 secs
secs
secs
secs
secs
secs

-

SN W
T~ PO GO P

Qi

17 rad
474 rad
.121 rad
A11 rad
17 rad
501 rad

VERTICAL GUST F

+23 fps
~19 fps
+23 fps
-17 fps
+23 fps
=21 fps
+16 fps
-15 fps

*q exceeded -0.698 rad/sec2 at 7.3 secs.

Table 5b. Comparison of Bnax between gé?gﬁand ([N

REQUENCY

0.10 cps
0.10 cps
0.20 cps
0.20 cps
0.33 cps
0.33 ¢ps
step
step

MAXIMUM 6 AND TIME, Unax

.335 rad at 7.3 secs
.266 rad at 9.1 secs
.328 rad at 8.9 secs
.223 rad at 7.3 secs
.290 rad at 8.5 secs
.236 rad at 7.3 secs*
.240 rad at 4.9 secs
.238 rad at 7.5 secs

201.
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0.25(
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- 0__
20 saturation
| 1 1 1 l
0 2 4 6 7.2 8 10

Time (seconds)

Figure 23. @ and Gy for w .y and &, _ns

Vertical Gust (+23 fps, 0.70 cps).
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The analysis of Table 6 showed that, with the use of Uax® the air-
craft became less sensitive to positive gusts and more sensitive to nega-
tive gusts (step functions excluded) as the gust frequency increased. The
results for the negative gusts showed the aircraft to call for more thrust
than it was capable of produci?g (thrust saturation), to acquire a high for-
ward velocity, and to call for radical changes in Yrax? Figure 24. As the
figure shaws, the forward velocity and the pitch angle diverge while the
net thrust and the reaction control angle change radically.

Step functions for vertical gusts were also investigated. The con-
trol policy for tax described in Section 2.4 was applied to this type of
disturbance. Tabie 7 compares the maximum vertical gusts for (- (dif-
ferent than the y .. used with the step functions of Table 6) and Yieg-
Tables 6 and 7 show that some form of control by a Loy type of policy was

definitely beneficial.
5.3.a2 Model Variation, the Effect of the Side Vane Angle, A.

The present configuration for the X-14 does not include the side vane
angle. The side vane angle was introduced in the study to see its effect
in combatting the high side velocities induced by lateral gusts. The la-

teral gusts were limited to positive-vaiued step functions and the control

Was go_qe

—%;é resulting analysis is presented in Table 8. The maximum gust mag-
nitude dropped slightly from 53 to 45 fps. The side vane angle reduced the
side velocity of the aircraft considerably at a consequence of increased
rolling and yawing moments. A slight loss of 1ift was noted since the

aircraft required higher thrusts with A

5.3.b Model Variation, the Effect of Increasing the Magnitude of the Headwind.
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FREQUENCY MAXIMUM VERTICAL GUST MAXIMUM VERTICAL GUST

S0
0.10 cps +23 fps
0.10 cps -19 fps
0.20 cps +23 fps
0.20 cps -17 fps
0.33 cps +23 fps
0.33 cps -21 fps
step +16 fps
step -15 fps

Ymax

+23 fps
-35 fps
+28 fps
-26 fps
+30 fps
~26 fps
+16 fps
-15 fps

Table 6. Maximum Vertical Gusts for géfg_and Ynax®

MAXTMUM VERTICAL GUSTS (STEP FUNCTION)

=x=0 +16 fps

— e

Yrax +22 fps

-15 fps
-19 fps

Table 7. Maximum Vertical Gusts (Step Function) for gé?g-and Yo

Maximum Tateral gust velocity (step)
Maximum aircraft side velocity, v
Maximum roll angle, ¢
Maximum yaw angle, v .
Change in lateral displacement, Ay
Change in altitude, Az "
Maximum yaw control effort,

and time of occurrence
Minimum net thrust

A INCLUDED

+45 fps

+3.23 fps
402 rad

-.453 rad
12.5 ft
3.2 ft

-.195 rad/sec’

0.2 secs
4194 1bs

WITHOUT A

+53 fps
+58.34 fps
.207 rad
-.250 rad
265 ft
24.2 ft
-.322 rad/sec
0.2 secs
4122 1bs

2

Table 8. Comparison of Lateral Mode Parameters for Control
With and Without the Side Vane Angle.



(pounds)

(1;85 )

10 {secs)

560
5200
forward velocity
T 4800
gross
4400 gross thrust
]
0 5 10 (secs) 0 5
£
25¢° 20°
0 5 0°
y pitch reaction
control nozzle
angle
pitch angle
-259_ - -20°0- 5!
0 g 10 (secs) :
Figure 24, u, 9, Tgross’ay for Ynax and @ Negative Vertical Gust (~19 fps and 0.10 eps).

10 (secs)
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Table 9 compares the maximum allowable lateral gusts {ignoring the
limitations on aircraft side velocity) and vertical gusts for two headwinds,
10 and 25 fps. Increasing the headwind had 1ittle effect on the verti-
cal gusts, except for the step functions which showed slight decreases in
magnitude. The pitch angle was the limiting factor in determining sta-
bility. Again, as with the other simulations involving vertical gusts,
it must be remembered that o plays an important role when interpreting
results. ‘

The larger-valued headwind increased slightly the operational enve-
lope of the aircraft when it was subjected to lateral gqusts. The excep-
tion was the step functions where an increase in headwind resulted in a
big decrease in gust maghitude. For the step functions, the limiting fac-
tor for stability was the yaw control effort. Large requirements for it
occurred during the time delay before the control was initiated.

The 25 fps headwind was felt to be a practical maximum which would
be encountered in actual conditions. Hence, it was felt that there was

no need for analyzing aircraft responses at still higher magnitudes.
5.3.¢ Considerations of CLa’ CDa’ and (at11°).

Section 2.6 pointed out the ambiguities and uncertainties of CLa’
Cnx’ CMa’ and o as used by [16]. The major concern was centered on the
fact that [16] used CMx in its model, but neglected CLa and CDa' The fol-
Towing simuiations were run to test the effects of adding these two coeffi-
cients to the model. These coefficients appeared in the equations for
forward and vertical velocities and were present in calculating the thrust
requirements (see Appendix 7).

The first simulation was concerned with the effect of CLa and CDa

on the response of the aircraft to longitudinal gusts. The effect was



GUST

+VG (step)

+WG (step)

-WG (step)
+VG (0.10 cps)*
+V6 (0.20 cps)*
+VG (0.33 cps)
+WG (0.10 cps)
+WG (0.20 cps)
-WG (0.10 cps)

HEADWIND (-10¥ps) (Table 1)

+53 fps
+16 fps
-15 fps
+88 fps
+73 fps
+72 fps
+23 fps
+23 fps
~-19 fps

*ignores aircraft side velocity.

207.

HEADWIND (-25 fps)

+10 fps
+11 fps
~13 fps
+95 fps
+78 fps
+76 fps
+22 fps
+23 fps
-19 fps

Table 9. Comparison of the Limiting Lateral and Vertical

Gusts for Two Different Headwinds.
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negligible. The same result occurred when CLa and CDa

simutations involving gust combinations. Results of these two series of

were added to the

simulations are presented in Table 10.

Section 2.6 mentioned that the aircraft possessed an initial angle of
attack of 11 degrees when the aircraft and atmosphere reference frames were
parallel. The last series of simulations were conducted with CLa and CDa
included in the model and with the angle of attack increased by a constant
of 11 degrees [5]. The simulation with the Tongitudinal gusts showed that
the addition of 11 degrees to o resulted 1n slightly higher forward and
vertical velocities and significantly lower thrust requirements (Table 11).
The lower thrusts were a result of higher 1ift generated by the wing due
to the higher angle of attack. As a consequence, the simulation also re-
sulted 1n a slightly larger pitch angle which in turn required more pitch
control effort (see Figure 25).

The gust combinations that were considered were combinations (i)
and (3) of Table 2, longitudinal qust of 25.7 fps and 0.10 cps and vertical
gusts of $16.3 fps and 0.10 cps The effect of (a+11°) was to reverse the
responses from the original responses (without a+11°). The aircraft remain-
ed stable when subjected to the down gust and 1t became unstable when sub-
jected to the up gust. Table 17 compares the simulations without the addi-
tions of CLa’ CDa’ and {o+11°), the simulations with CLa and CDa only, and
the simulations with CLa’ CDu’ and {o+11°). Figures 26a and 26b show @
for the positive and negative vertical gusts. The figures show the re-
versed responses due to (a+11°). Figures 27a and 27b show the effects of

(a+11°) on the net thrusts for each case.
5.4 Interpretation of Wind Gusts.

The data presented in the first three subsections of this chapter



LONGITUDINAL GUST ONLY

MAGNITUDE, 19 fps
FREQUENCY, 0.20 cps
HEADWIND, 20 fps

No significant differences in
any parameters between using
or not using CLa and CDa'

Table 10. Effects of C
Gusts and Co
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GUST COMBINATIONS

LONGITUDINAL MAGNITUDE, 25.7 fps
VERTICAL MAGNITUDE, %16.3 fps
FREQUENCY, 0.10 cps

HEADWIND, 25 fps

The most significant differences
occurred in Tnet'

25.7, +16.3 25.7, -16.3

time without with without with
(sec) (]bf) (be) (be) (1bf)

0.0 4130 4130 4130 4130

4.2 3942« 4402
5.1 3720«
5.4 +3022
6.1 +3861
6.4 4095+«
10 4179+ 3985

La and CDOt on Longitudinal
mbination Gusts.

LONGITUDINAL GUST ONLY: MAGNITUDE, 19 fps; FREQUENCY, 0.20 cps

HEADWIND, 20 fps

without CLa’ CDa’

Uy 6.67 fps

w: -.285 fps at 2.8 secs
.000 fps at 5.2 secs

-.286 fps at 7.6 secs

-.002 fps at 10 secs
net” 4182 1bf at 0.0 secs
3994 1bf at 2.7 secs
4182 1bf at 5.1 secs
3993 1bf at 7.5 secs

4180 1bf at 10 secs

Tabtle 11. Comparison of

(a+11°)  with C

Lo’ CDa’ (at11°)

7.38 fps

-.496 fps at 2.7 secs Eminimums)
.008 fps at 5.2 secs {maximums)
-.577 fps at 7.6 secs (minimums)
-.041 fps at 10 secs (maximums)
4046 1bf at 0.0 secs (initially)
3716 1bf at 2.7 secs {minimums)
4056 1bf at 5.1 secs (maximumx)
3664 1bf at 7.5 secs (minimums)
4032 1bf at 10 secs  (maximums)

Relative Maximums and Minimums

of u, w, and Tnet With Regard to (at11°).



.025

eorigina]

1 i
0 2 4 6 8 10

t
jo=]
N
n

—

Time (seconds)

note. Longitudinal gusts only.

80
4o+
8
Y{o+11°)
0° 5
yoriginai
-4° | ! A
0 2 4 6 8 10

Time (seconds)

Figure 25. Effect of (o#11°) on 9 and Gy.
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A: LONGITUDINAL GUST: 25.7 fps and 0.10 cps
VERTICAL GUST: -16.3 fps and 0.10 cps

B: LONGITUDINAL GUST: 25.7 fps and 0.10 cps
VERTICAL GUST: +16.3 fps and 0.10 cps

without Co Cpor (a#11°); with Ci o Cpo OMYs with € s Cpos (a+17°)

A. ok ok g>25° at 8.3 secs
B. 8>25° at 6.4 secs 8>25° at 6.1 secs ok
Ao lunay) .33 fps 10.2 ps 17.8 ps
B. (u,) 8.33 fps 8.33 fps 8.33 fps
A. (wmax} -.62 fps -1.67 fps -3.00 fps
B. (wmax) -.74 fps -1.07 fps -.595 fps
A. (Tnet) 4130 at 0.0 secs 4130 at 0.0 secs 3927 at 0.0 secs
3720 at 5.1 secs 3022 at 5.4 secs 2246 at 6.0 secs
4119 at 10 secs 3685 at 10 secs 3190 at 8.3 secs
B. (Tnet) 4130 at 0.0 secs 4130 at 0.0 secs 3927 at 0.0 secs
3942 at 4.2 secs 4402 at 4.2 secs 3650 at 6.6 secs
4095 at 6.4 secs 3861 at 6.0 secs 3788 at 10 secs
A. (6. ) -8.9° at 5.7 secs 9.2° at 5.1 secs +20°, 3.6 to 6.5
Yinay
B (8 ) -20°, 3.9 to 6.4 -20°, 3.9 to 6.1 -20°, 4.8 to 5.6
Ymax

Table 12. Effects of CLa’ CDa’ and (a+11°) on Combination Gusts.
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(rad)
0.50
e0riq1‘na1
0.25
8
0
i } | {
-0.25, 2 1 5 8 10
Time (seconds)
(a) Longitudinal gust. -25.7 fps, 0.10 cps
Vertical gust: +16.3 fps, 0.10 cps
(rad)
0.4
0.2
6
0 o . .
original
-0.2 i ] | !
0 2 4 6 8 10

Time (seconds)

(b) Longitudinal gust: same as (a)
vertical gust: -16.3 fps, 0.10 cps
Figure 26. Effect of (a+11°) on 8 for Combination Gusts (#vertical qusts).
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(pounds)
4200
-
4000 I netorigina1
i
net
3800 |- T
B
3600 : ! : '
0 2 4 6 8 10 -
Time (seconds)
(a) Gusts same as Figure 26(a).
(pounds})
4400

3600
original

Tnet

2800+

200 | I i |

Time (seconds)
(b} Gusts the same as Figure 26(b).

Figure 27. Effect of {(a+11°) on Net Thrust for Combination Gusts
{1vertical gusts).
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represented the maximum magnitudes of gusts for the discrete model. Real
world wind gusts do not appear in such a well-behaved manner. Section 3.3
defined a method for determining root-mean-square intensities from the
discrete model. The only detail Tacking was some measure of the variable
de. This variable was interpreted as the distance between the points
where the gust velocities were zero (see Figure 8). The measure of this
Tength was affected to a great extent by the speed at which the frozen gust
field was moving. By considering the airplane as a point, only the move-
ment of the gust field past that point was needed. A first approximation
to de would.be the velocity of the gust field times the time duration of
that field (Figure 28a)}. However, the point moves also and its displace-
ment must be taken into account (Figurg 28b): The last figure shows that
if the displacement was in the samé direction as the gust field was moving,
the displacement was subtracted from the first approximation. For the oppo-
site case, the displacement {of the point) was added.

Now, at this point the speed at which the gust field is moving takes
importance. For longitudinal gusts, this speed was assumed to be the mean
wind speed. The longitudinal displacement of the aircraft was then needed
to qomp]ete]y determine de. Once 2dm was obtained, the rms intensities
for longitudinal gusts could be determined. Table 13 presents the rms in-
tensities for the longitudinal gusts of Table 1. The rms intensities were
calculated for probabilities of occurrence (for 100 feet in altitude) of
0.10, 0.01, and 0.001. This meant, for example, that for a rms intensity
of 41.6 fps (24.7 knots), which was the Towest rms intensity for longitud-
inal gusts, a gust with a magnitude of 52 fps (vm from Table 1) would occur
only 0.10 percent of the time. The conclusion drawn was that the aircraft
could withstand a severe Tongitudinal gust environment. A sample calculation

for rms intensity is presented in Appendix 8.


http:would.be

10 fps -+ 10 fps -
g \\\
R N
o \
ln--——— 2 ——————x-l
t=0 seconds t=10 seconds
2d =10 fps + 10 seconds

It

100 feet

{a) P stationary.

L__f.ps > 10 fps ~
/ .
/ >N
il A
P N
” \\ Pl P
- ey o
e 2y ——]
m
t=0 seconds t=10 seconds

To pass P, in 10 seconds, 2d£=100 feet.

If 2dm=100 feet, point P will not be completely
passed in 10 seconds.

Therefore, de must be altered in order to com-
pletely pass P in 10 seconds.

The displacement of P must be subtracted from
2d 1 (i.e., 2d = 2d ‘- x).
(b} P mobile.

Figure 28. Interpretation of de.
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Ve (of Table 1) rms Intensity
J0 (10%) .01 (1%) .001(0.1%)

52 fps 0.1 cps 84.0 54.7 41.6
52 fps 0.2 cps 115.5 74.3 57.7
53 fps 0.33 cps 151.5 88.4 75.7

Table 13. rms Intensities for Longitudinal Gusts.

PROBABILITY OF OCCURRENCE
0.10 (10%) 0.01 (1%) 0.001 (0.7%)

IZ)"J O'V GW 0'u GV 0'W O'u O'V 0'W

84.0 60.0 39.0 54.7 39.2 25.4 41.6 29.8 19.3
115.5 82.5 53.6 74.3 53.0 34.5 57.7 41.2 26.8
151.5 108.1 70.4 88.4 63.1 41.0 75.7 54.1 35.2

Table 14. Lateral and Vertical rms Intensities, Based

on Longitudinal Intensities, Using GU/GV/UW=2'8/2'O/]'3'
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The length de did not exist for the lateral and vertical gusts be-
cause of the assumption that there did not exist any mean winds in these
directions to transport the gust fields. Therefore, the rms intensities
cannot be calculated for these gusts. Reference [12] stated that nominal
values for component dust intensity ratios differ among the various Titer-
ature. However, [12] picked nominal values for the Tongitudinal/lateral/
vertical (ou/cvlow) gust ratio of 2.8/2.0/1.3 to agree with available data.
Table 14 presents the lateral and vertical gust intensities based on this
ratio and on the ou's of Table 13. The smallest intensity for a vertical
gust was 19.3 fps rms. From Figure 10 it was determined that the proba-
bitity of Ty equalling 19.3 fps rms was much smaller than 10'5. There-

fore it was conciuded that the 1ikelihood of the aircraft encountering a

velocity field possessing enough energy to upset it was very remote.
5.5 Closing.

The results presented above must be compared against some standard
in order to assess them. The pilots of the X-14 have arbitrarily set
1imits on wind conditions. They will not fly in winds over 12 knots (20.3
fps--1longitudinal direction) and they would prefer not to fly in winds over
eight knots (13.5 fps). On research flights, data measurements will not be
taken if the winds exceed five to eight knots [17].

Based on the assumptions made for this project (listed in Table 15),
the following conclusion was made. The arbitrary Timits set on the wind
conditions by the pilots were within the limits determined by this study.
The Timits were

52 fps, 0.10 cps
52 fps, 0.20 cps

53 fps, 0.33 cps for Tongitudinal gusts;



+65 and
+65 and
+72 and

+23 and
+23 and
+23 and
+16 and

-67
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fps, 0.10
fps, 0.20
fps, 0.33
fps, step
fps, 0.10
fps, 0.20
fps, 0.33

fps, step

cps
cps
cps
for lateral gusts;
cps
cps
cps

for vertical gusts.

and
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Assumptions, Aircraft Model

Rigid body.
Forward velocity equals one-third the mean wind velocity (initially).
No variations in the gusts over the physical dimensions of the
aircraft.

No gust penetration effects.

E& constant over the entire range of operating speeds of the en-
gines.

Considering the angular accelerations equivalent to the reaction
control efforts required.

Excluding cLa and C, in the model (as does [1] and [16]) has

D
negligible effect.
A 0.30 second delay exists between the introduction of a distur-

bance and the application of control.

Assumptions, Wind Model

Turbulence is stationary, homogeneous, and isotropic.
Turbulence is a frozen pattern in space.

Gust velocity components are Gaussiaﬂ.

The direction and velocity of the headwind are constant.
Effects of terrain roughness, lapse rate, mean wind magnitude,
etc. on turbulence are neglected.

Periods of Tess than ten seconds represent most of the turbulent
eneray.

Gust fields move at a speed equal to the mean wind speed .

No crosswinds or vertical winds (steady-state winds) exist.
Estimation of de is reasonable,

Table 15. Assumptions Concerning Aircraft and Wind Models.
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APPENDIX 1

Modification of the Rolling Moment Equation.

The rolling moment, L, due to side velocity, v, was omitted from the
set of original equations for the X-14. This characteristic of the airplane,
known -as the dihedral effect, is represented by the stability derivative

€, in the roll equation (p equation).

B

The derivation of C2 followed a procedure used in [2]. The stability
B

derivative is a function of five parameters: 1) influence of sweepback,
2) influence of fuselage, 3) influence of the tail fin, 4) contribution of
the wing ptanform, and 5) influence of dihedral.
1. Influence of sweepback of the wings.

The X-14's wings are swept forward 4.6° at the quarter-chord Tine [15].
The interpretation of the effect of sweepforward (or sweepback, depending
on the situation) is that & change in 1ift between the two wings occurs
when the aircraft is yawed with respect to the wind. The derivative CRB
is then a function of the 1ift coefficient CL‘

The difference in 1ift of two panels between the two wings is

AL=C - 1/2-p-12-5- Ve . {cosz(ﬁ - A) - cosz(B £4)) (11-A1-1)
where AL is the change in Tift between the two panels,

€, is the local 1ift coefficient for the panels,

p is the density of the atmosphere at sea level,

S is the wing area,

V is the local relative velocity between the panels and the atmosphere,
B is the angle of sidesiip, and

A is the sweepforward at the quarter-chord.

Assuming g a small angle, equation (A1-1) reduces to
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ML=C =1/2+0+S. V. g sin(2n) . (111-A1-2)
The rolling moment produced by the panels will be 1/2 the difference
AL muitiplied by the distance between the centers of pressure of the itwo
panels
L=1/2+d+C ~1/2+p-5+V . g sinn) . (111-A1-3)
The corresponding rolling moment coefficient is

Y2 ed-C + 12 p-5- v . g . sin(2n)
cL = . (ITI-A1-4)

12 -p-VP.5.b

which reduces to
1/2 « d » CL « B « sin(2p)

C
L b

(1T1-A1-5)

where d is the distance between the centers of pressure of the panels and
b is the wing span.

The stability derivative Cn is
R
aCL _ . /2 + d - C - sin(2A)

~L=c X (111-A1-6)
3R R b

The total effect would be the jntegration of the changes in 1ift over
the entire wing span. For purposes of this derivation, it will be assumed

that CE is a representative average of the C£ 's of all the panels. The
B B

d for this average will be assumed to be the distance between the mean
aerodynamic chords (approximately 2/5 of the wing span). Therefore

12+ 2/6 + b + €~ sin(2 - 4.6°)
2 b

N

0.031976 - ¢, . (111-A1-7)

2. Influence of the fuselage.

The wing-body interference effect on Ci can be calculated from
B
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h+w
ac, = 1.2 A2 R
B b b

where A is the aspect ratio of the wings,

(111-A1-8)

Z, is the vertical distance the wing-root quarter-chord point is below
_the fuselage center line,
b is the wing span,
h is the average fuselage height at the wing root, and
w is the average fuselage width at the wing root.
The parameters s h, and. w were estimated from drawipgs in [15] to have
values of 1 foot, 3.36 feet, and 4.38 feet respectively. Therefore
12, (6.2)1/2 . 1 ) 4,38 + 3.36
B 33.83 33.83

0.0202 (111-A1-9)
3. Influence of the tail fin.

ACQ

L]

When the aerodynamic center of the vertical tail fin is appreciably
offset from the roll axis {x-axis of the aircraft), the side force on the
vertical surface (side force due to sideslip) may produce a significant
contribution to the roll moment. For hover, this contribution was assumed
to be negligible.

4. Contribution of wing planform.

The contribution of wing planform on CgvB is found from the lower
figure of Figure B.11.2, page 489 of [2]. The lower figure is for taper
ratios (\) of 0.50. The taper ratio of the X-14 is 0,48. For A equal to
6.2 and A]/4 (sweepforward of the wings at the quarter-chord)} of -4.6°

{negative for sweepforward), the value of —(CE )w/CL is approximately
8
0.0275. Therefore
C, =-0.0275- ¢, . (111-A1-10)

e
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5. Influence of dihedral.

The influence of dihedral on Cg is found from Figure 11.3, page 490

8 .
of [2]. The top curve gives Cg for zero sweepback. This can be convert-
B8
ed to C, for the dihedral angle involved by using the formulas
8
(CQB )partiaI span T
C =¢, - {-—2L - T7} (1II-A1-11)
28 RB T
iy (C. )
2, ‘full span T

Bp

where CQ is given by the equation
B
r A+ 4 . cos{p)
CQB = - (G, Yieg s (111-A1-12)
r (A+4) . cos{p) Bp

A is the aspect ratio, and
Iy is the dihedral of the partial span.

For the X-14 It is zero. Therefore, for A equal to 6.2 and a taper

ratio of 0.50, the top figure gives a value of (Cﬂ ) =g OF -0.0162.
B
Then T
6.2 +4 « cos(-4.6°)
¢, - - {~0.0162)
Bp (6.2 +4) » cos(-4.6°)
= -0.0162 (I11-A1-13)
and
C2 = -0.0162 (2 - 0)
8
= -0.0324 (111-A1-14)
6. Cgs-
The total of all contributions on C, is
8
C2 = 0.032 - G + 0.0202 ~ 0.0275 - C; - 0.0324
B
ik c, =0.0085 - ¢ -0.0122 . (1¥1-A1-15)

B
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APPENDIX 2

Calculation of the Diverter Vane Efficiency Factor.

The comparison of results for the hover mode (no disturbances) between
the simulated and the actual results showed a discrepancy in the engine
speeds. Simulation results gave an engine speed at 90.02 percent of maxi-
mum speed whereas actual results gave the engine speed at 98 to 99 percent
of the maximum speed. It was then concluded that the efficiency factor for
the diverter vane had been omitted from the model.

Reference [1] calculated this factor by simply dividing the theoreti-
cal speed by the actual speed. Hence

90.02

£, = ———=0,9139 . (IT1-A2-
9% 98.50 11-A2-1)

However, the equations of the model calculate the engine speed from
the engine thrusts since the thrust was solved for explicitly as one of the
control parameters. Therefore, if the efficiency factor was based on the
thrusts, the value was

4194
gaT = 3556.3 0.80654 . (111-A2-2)

The thrusts 4194 and 5200 were obtained from Figure 29, which shows
the total thrust as a function of engine speed. Figure 29 was derived from
Figure 30, which shows the thrust curves of each engine.

The model uses this efficiency factor in that it takes the calculated

net thrust (obtained from the control vector) and multiplies it by the in-

verse of & (1.23986). This thrust is then sent to a subroutine which
T

calculates the engine speed from the total gross thrust. The equations are

Tyross = 1.23986 - T . (111-A2-3)

for the gross thrust,
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Q = 4,52x107°+(1-4370)3-9.31x10"8+ (7-4370)%41.25x107%. (1-4370)492  ({11-A2-4)
for the engine speed of gross thrusts greater than 4370 pounds, and
Q = (T - 3305)/88.75 + 80 (I11-A2-5)
for the engine speed of gross thrusts greater than 3305 pounds, but
less than 4370 pounds.
The exit velocity, Vj, of the engine exhausts was 2000 fps. The

diverter vane efficiency also reduces this value to E& V., or 1613 fps.

T 3
This is based on
Taross =M * V; (11-A2-6)
at the engine exhausts. The net thrust is Tgrcss'géT so that
Taross ° EGT = Vet = (M~ Vj) ’ EaT . G11-A2-7)
The mass flow rate, m, is constant. Therefore
Tnet =™ * Vi T11-A2-8)

where Vjo is 1613 fps.
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APPENDIX 3

Modification of’ACL and ACHO of the Aircraft Model.

The aerodynamic coefficients AC, and AC , Were defined initially by

L M
[16] to be functions of Uo’ reTative Tongitudinal velocity, and Tc’ thrust
coefficient, which, in turn, was a function of Tnet’ the net thrust. The

equations for AC, and ACMO were

L
ag =T - f(U)) and (11-A3-1)
= T o A3
ACMO Tc f (Uoi (TI1-A3-2)
where T, = Tnet/(1/2-p-Uo'5) . (ITI-A3-3)
Therefore, T must be known in order to calculate AC, and AC, .
net L Mo

However, the net thrust contained, among other things, the term ACL. This

posed a problem in that Tne could not be calculated without first knowing

t

ACL, and also, AC, and AcMo were to be calculated before Tnet was to be

L
calculated. The procedure through the program was:
i} Define initial conditions; x(0) = X
i1) Calculate the aerodynamic coefficients for x(0).
iii) Calculate the control vector for the initial conditions;
u(0) = u(x(0)).
jv) Introduce the disturbances w(1)}.
v} Calculate the new values for the state variable vector;
x(1) = £(x(0),u(0},w(1)).
vi) And so on.
Tnet was not calculated until {iii) whereas ACL and ACMO were calculated
at (ii). One way to solve this dilemma was to estimate Tnet at (i). This
would then require that Tnet be estimated for each different set of wind
conditions. A second solution was found through algebraic manipulation of

the equations involving ACL and ACMB' These equations were, for ACL,
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forward velocity, g = v-r~w-q—g-sin(ﬁ)+(T /m)-{sin(ﬁ)'cos(l)~

Upet/Vseet #(172)- (wm) p-uZs+{(c, 000" ([11-A3-4)
sinfe)- -y cosf{z)} , and
vertical velocity, w = u-q-v-p+g-cos(8)-cos(¢)-(Tnet/m)'{cos(ﬁ)'
L] a - 2I -
c05(k)-wre]/Vjet}-(1/2) (1/m)+p-Zes {(CLp0+ {11-A3-5)
ACL)-cos(a)+CD°sin(a)}
For ACMO,
pitch rate, q = {(1 -1 )/1 }-p-r+(I 1 )-(rz-pz)—2°(Ie/Iy)'9'r+
(T net ) {(N % -U azl)/Vjet-*cos()\)-(z2
2

z-cos(o)}+(mq/1y)-q+(ﬁ6 /Iy)-6y+(1/2)'(T/Iy)°p°U0' T11-A3-5)
Sece(C pO+ACM0 +(chpo+Ach)-a+(1/2)-(T/Uo)‘c‘C
q+C

+sin{F)+

Mq'
s, -8,)

By substituting equat1on (A3-3) into equations (A3-2) and (A3-1), and then
substituting (A3-1) into equations (A3-4) and (A3-5) and then (A3-2) into
equation (A3-6), the equations for u, w, and g were

2 :
...+(1/2).(I/m)-poug-s-{{CLpo-+Tnet/(1/2-p-UO-S)-f(UG)}-S1n(a)'UII~A3-7)
- 2 2 . , \

...-(1/2).(1/m).p.u0.s.{{cho-rrnet/(1/2-p-uo-s)-f(uoz} cos () + (11-A3-8}
2 e
Mopo' Unet! (1/270°U=8) = F1(U ) e+ +{11-A3-9)

2
...+(1/2).(]/Iy)apoUOOSoCo{C
The quantity (1/2)-p-Ug-S cancelled and the resulting expressions,

)

u

<.
I

-

q

(Tnet.AcL.s1n(a))/m and (Tnet-ACMo-c)/Iy, were incorporated into the net

thrust terms of the equations. The resulting equations were

g = ...(Tnet/m).{...+ACL.sin(a)}+(]/2).(]/m).p.ug.s.{cho.sin(a)_...

fI1-A3-10)
W= ---(Tnet/m) '{"'+ACL‘C05(G) }-(]/2) c(]/m) oanﬁ-Sc{choocos(a) derow
) f11-A3-11)
g = --o(T netll ). {--°+AEM Clteeet(1/2)- (1/Iy)-p-Uas-c-(CM0pd+---
{11-A3-12)

where ACL and ACMO were no longer functions of TC and Uo, but U0 only,
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that is ag = f(Uo) and Ay, = f](Uo). Therefore, the estimation of Tne

t
was not needed now.
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APPENDIX 4

Equations of the System and Terms of the Equations.

The equations of the twelfth-order system are presented in this ap-

pendix.



[l
n

v-r*w-q—g-sin(s)+(Tnet/m)-{sin(&)-cos(A)-Ure1/Vjet+AcL-sin(u)}+(1/2)°(1/m)-p-U§-S-{CLpo-sin(a)-CD-cos(a)}
(I1I-A4-1)

-
1

w-p—uar+g-sin(¢)-cos(6)+(Tnet/m)°(Sin(l)“vre1/vjet)+(1/2)'(]/m)'p'Ug's'Cy (111-R4-2)

=
i

u-q-v-p+g-cos(¢)'cos(e)-(Tnet/m)-{cos(8)-cos(l)-wreilvjet+ACL-cos(a)}-(1/2)-(I/m)-p-Ug-S-{CLpo—cos(a)+CD-sin(a)}
(111-A4-3)
p = {Ix-IZ/(IX'IZ-Iiz)}-{({Iynlz}/Ix)-q-r+(Ixz/Ix)-p'q+(Tnet/Ix)‘{(21-Vre])/Vjet“Sin(l)'{22+11'605(5)}}+(Lp/1x)'9+

(Lﬁx/Ix)'6x+(1/2).(]/Ix)'p'Ug's.b.(020+C26a.6a+016'8)+{Ixz/Ix}.{({Ix'ly}/Iz)‘p.q-(I /1 ).q.r+2-(Ie/Iz)-9-q+

Xz' 2z
(Tnet/Iz)-{sin(l)-{x2-£1-sin(&)}-(x1-Vre])/Vjet}+(Nr/Iz)'r+(NGZ/IZ)'52+(7/2)'(1/12)'9'U§'S'b'(Cn°+cn5r'6ﬁf
s °6a)}i (111-A4-4)

a

q = ({Iz-Iy}/Iy)vp-r+(IXZ/Iy)-(r2~p2)~2'(Ie/Iy)'Q‘r+(Tnet/Iy)'{(Nre1'x1~Ure1'21)/Vjet+605(l)‘{Zz'siﬂ(5)+X2'C°5(5)}+

C°ACM0}+(Mq/Iy)'q+(Msy/Iy)'6y+(1/2)'(]/Iy)'p'Ug’S'C°{FM0po+(CMupD+ACMu)'a+(1/2)'(1/U0)°C°CMq'q+CM6e'6e}

(111-A4-5)

P L T O LB P /1 (L, )0 (T /L) q (T /T, )+ {2 Wy /Y s sin(0) - (2540, cos ()3 }+

Z XZ

72 . .-
(LP/IX)-p+(L6X/Ix)-£x+(1/2)-(1/Ix)-p'U0°S-b'(CQO+C£63-6a+CRB'B)}+({IX-Iy}/Iz)'P‘Q-(IXZ/IZ)'Q‘P+2 (Ig/1,)-0-qt

"¥Ee


http:1z).6z+(1/2).(I/1z).pU

(Tnat/ 1) {s1n(A) ¢ {xp=y =sIn(E) 3= (xp 2V o0 )/ V5o HN/T )-r+(N62/I )+6,+(1/2)+(1/1,) <p-U s *be(C, +Cn6

Cnaa"sa)}i (111-A4-6)

6 = gecos(¢) - resin(e) (I111-A4-7)
¢ = p + q'sin{¢)+tan(8) + recos(¢)-tan(s) (I11-A4-8)
P = (r-cos(¢) + qesin(s))/cos(8) (111-A4-9)
z = vesin{¢)ecos(8) + wecosld)-cos(8) ~ ussin(a) (111-A4-10)
X = uecos(0)+cos(y) + v+{sin(¢) sin(6)+cos(y) - cos(¢)sin{y)} + w-{cos{o)-sin(8) cos(¥) + sin{e) sin{y)} (III-A%-11)
y = urcos(8)+sin{yp) + ve{sin{¢)-sin(@)+sin(y) + cos{d)-cos(¥)}} + we{cos(¢)+sin(6) sin(y) - sin{¢p)-cos(y)}} (I1I-A4-12)
where a = sin™ (W q/U,) (I11-A4-13)
g = sin“(v o1/7.) (111-Ad-14)

U, = (W8, +we )1/ (I11-A4-15)

T, = (U + V2 + Wl 1)”2 (111-A4-16)

Ure'l =y - U« UG {111-A4-17)
Vre-l =- v - YW - VG (I1I-A4-18)

Mgy =W - WH - WG { 111-A4-19)

£

The equations for T Ay 8., & , and 62 are presented in Appendix 5. o

net* 9» X'y
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APPENDIX 5

Equations for the Control Vector.

The equations for the six control parameters were derived in [1] and
will be restated here. The equations were derived by setting the,é vector
equal to the Q vector and solving for the control vector, W

The net thrust equation was

L {-E + (2 + D F)le}/D {11-A5-1)
where E = (A'Ure1 + B'Vre1 + c'wvel)/vjet - ACL-(A-sin(a) ~ Cecos{a)} ,
- _—2 2 2 L] » - 1 L]

D=1 - Up/Vigy = A + 228G +{U, y sinla) = W qocos(@) Py, s

F=a%+8%+c% ,

A= m-{v-r-w-q—g-sin(e)}+(}/2)-p-Ug-S-{CLpo-sin(a)—CD-cos(a)} ,

B = m-{w-p—u-r+g-sin(¢)-cos(e)}+(1/2)-p-U§-S-Cy , and

C =

m-{u-q-v'p+g-coso¢)-cos(e)}—(1/2)-p-U§-S~{CLpo'cos(a)+CD-sin(a)} .
The diverter vane angies were

o cin”}
A = sin {Vre1fvjet - B/Tnet} and (111-A5-2)

- ACL°sin(a)}/cos(l)} . (111-A5-3)

N
G = sin {{Ure1lvjet = MT ot

The reaction control angles and the aerodynamic control angles were

-

§ =6, = {(Iz-Iy)-q-r—Tnet-{(Vre1-2])/Vjet-sin(k)-{zz+21-cos(&)}}-
Lp'P-(1/2)'o‘U§'5'b°(CQO+C£B°B)—Ixz°p-q}/{L6X+(1/2)-p- (111-A5-2)
772
Uosb-Cys } s
a
= "‘.‘ af)e 02-2 | wlle P L] o, - L)
Gy - 5e B {(Ix'lz) P Ir'sz (p™-r®)+2 Ie fer Tnet {(wreT X1 Ure1 Zl)/

Vjet+cos(h)-{zz-sin(5)+x2.cos(&)}+C.ACMO}_Mq.q_(1/2).p. (111-A5-5)

U2+ ¢ (O (Cuapo™ G +(1/2)+ (17U ) ey va} /


http:cos()}-(l/2).p.US

237.

(Mg +(1/2)+pe0%eSeceCy } , and
y e

§, = 5, = {(Iy-IX)-p-q+Ixz-q-r-2°Ie-Q-q+Tne£{(Vre1°x])/vjet-sin(l)-

(172)-pTge5tbCpg }

The control parameters had certain bounds or saturation peints.

They were

1!

Tgross max 5515 pounds ,

ar
]

g° to 70° ,
A = -25° to +25° when used, otherwise 0° ,
8,0 8,5 5, = -20° to +20° ,
§ = -25° to #15° , and
§.= -30° to +30° .
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——— = e K_.t - - - - m— ————— - [ - = — e - - . - - E— -

L=2

. ysyl - - — -~ - - - Tt Tt ot m s T TTTm s T e

Vavl

———ee K | — e e - -

P=PI

- - Qa} - - e et m i s e o owe - s - —— e e
R=R1
————~TFTHETA=THETAI - e et b b ———— -
PHI=PHIT -
—PS5t=psS it - - e
UG=O‘0
“““““ V6=s030° - - CoTTmTs T T T e T




e . ] ) _ ) 240.

WG=0.0
TTTSTTTT RO TR 20 oo ) ; B - ) T

‘““‘INTRHDHCTIHN OF THETGUSY VELDCITY FIELO, “1¥F A 5TEP 1§ DESIRED, -
L ““RQfL@CL TuE ﬁfpﬁqpqlgq;_ﬁnUAtlﬂw_pt: FGF EXAMPLEs GWeGSMAGH,

30 PLE=3¢1lat59
- JIK= =} it - - T e - - m e s
GUZ0 S*(SHAGU*CL 0= cﬂ&(PIE*JIK!n[nnn)}
T T GYED G SRASUAGY L O COSIPIERJIK/DENDMY )T T T T T T e e
GN 0. S*FSQAGH*{i 0 CUSCPIE+*JIR/VENINY)
_.._c._ R—— - -

¢ TATION DfF THF GUST vELGGITY FIELD FROW THE ATHOSPHERE®FIXED
=L - FERENCE FRAME INTU THE ATRCRAFT REVERENGE FRAME,

¢
¢
- ¢

T UG GU S (PSS T ENSCTHETA )4 Gy SINCPSIIvCOSCTHETAI=GWSIN(THETA) -
VGV (LNSCPAII*COSPHII+SINCPASII*SINCTHETA S INIPHI) dnsUslgn
smem - H{PSIIREDSIPHIIwCOS(PSII*SINCTHETAIwSINCPRID 4R COSCTHETA #3510
2{PHI}
—_ HG=GW*CUS(PHI Y CUSCTHETAIFBURCCNS{PST 3eSIN(THETA YN COS(PHII*SINIPS!
1)*qiﬂcpHI)J-Gy*CCOSCP:IJ*er(PHI}-sIN{FsII*51u<THETa}«cnstpnl3)
—= {1 UNSUAI*CUSL{PSII*CUS{THETAY - - B
VW2UNT e (COSCPST)«STA(THETAY 2 SINCPHT 1aSINCPST12COSCPHIY)
S HWzUWI® ¢ STH{THETAY*CDSEPBII*COSEPSI 1+SIHCPSI)*SIN(PHIY)
BREL=2U=UH=14G
e VREL2=VoVWmyG R R - e e - —
WREL=H=4=y¥{§
YA s SORTCURE L4424 HREL R T~ 7Y T T T T e s e e
HOgARS bnar(untl**2+quL**a+wﬂEL**2} ’
ALPHASARA THCHREL /UD ) )
BETA=AHSINCVREL JUURARD

-~ : Sk - el e ea - . - -

£ CALCULATIUN OF THE AERGOYNAWIC COEFFICIENTS
R
IFCUQLLT 910 CLPO=0,6140,002763%U0
[FCUUELS1e )} CLPO=DL7S i ’ N T T
BELCLFZ2. 933009505, ﬂ**E“E-2ﬂ6393F'07*uu**3'1 332149E=03+ 10
CO=U I+ L7020 1521954%00+12,.5)
(ECALSCRETA) L T+0.389) cY==1,B851+BETA
~TFCARSCAETAY GF 03130, AHD;ARSCBETAYLT,0.418)CY=C0,3540; 3938~
1CARSCHETAI=D 1A I (ABS(RETAY/BETAS
IFCAuS{ai AT GF e Do 81 B AHD ABRSCRETAT LT 1 e22) CYR(™D.2690,362%
1{ARS(BETAI=0,818)3+{A35(BETAY/BETA)
--- TRCanS(HETA) 68, 1,22 CY=a0,554(ABS{BETAY/BETAY -
TECARSIRETAI LT V4155 ) CLU="0D83*RETA
e = - I UANSORETA) s GF « Qe 1694 AND ARSCRBETAI LT 0ed71) CLOR(=0,014¢0,0086%
TCaBS{BETAI0169))%{ABS(RETAI/RETAY
- IF(ARS(aLTA) 6L U, 478 L AND ARS(BETAY LT ,1,395) CLO=2{=0,052=0,00p65+
JCREHCRETAY«Dw 71 3 )*(ARSCREYAI/HETA)
FTFIAGSORE TAIG6F ¢ 14399) CLO==0, 0240 AySCRFTAI/BETA) . - T
CLBELAZDONI*EONSIRETA % »?
Sl CLBFTAZD 0045+ CLPO=0,0120 — 7~
IHCUQeb Tadlel CUDPDz=0,6+40,00P37%00
IECUD s 5+ 30, 0r ANDa YD LTS 10} CHUPUE=N,52+40,0108+«CUD"34,)
TFCURenyb140, nwu.un LT«1014) CMnPu--c 2740.,001575
I RCTIEEYS P MRS
IFCUNGE 108 ) CHOPU=~0,19
DILCANT 4, FG03SE~0TwyOv* 373 16462F 05 YQ**2+1,529505E034y0 "~
IE00GelTvdd,e) CHALPUZ™8,440,08145%%1p
I s G e 354 00 ANDsUD A LTSt ) ﬂMﬁLPﬂ='2.7+UoIUU?*(UD‘B“.}

e

———— e

e rns i a i — L =


http:A~S~LTA.GiU.41
http:Itt4,s(DLT4).Gr'.o169AND*ARSoi4J.A)Lr*(o.4r
http:8.AtJD.A85(MEtAI.LT.1.22

IF(UD.uE 5141 CMALPUB-I 0 241.

Tt T IFCABS(BETA) sLT.0.1945) CNO=0,113#RETA T
IFCARS(RETA) GE,U,1945,AND, ABS(BETA) LT,0.594) CNO»,022+CABS(BETA)
1/BETA)
IFCARSCNETA) s GE+D0eS 720 ANDoARSCBETA) s LLTe14395) CNOT(0,022+40,1348¢
" CABS(BETA)=0,594) )4 ARS(RETA)/BETA)

IFCARSCAETA) ,GE,1,395) CNU=O, 13#CABS(BETA)/BETA)
CNDLIRtn.00115~c0°¢ggrgg.*p - e
CNDELAZ+0,00014+COS(BETA)e*2

£

L INCLUDE THE LIFT AN DRAG CNEFFICIENTS WITH RESPECT TO THE
""" 7 TTTTANGLE Tp TATTACK AT THIS PUINTS

" IFCUOWLT434,0) CDALPH=0,0
TTTTTTTOIFCUDWL T 38400 CLALPHES 2 320,03235%00 T T T
b IFLUNGBE.34.0) CUALPH3=0.J L _

O FCUNLGE (34,0 ANDSUD (LT o580 CLALPHES, 20,0611 wc0N=33.0)

L TFCUD.GE,S51.0) CLALPH=3,2 ) ) .

¢

c INCLUDE ALPHA+110EGREES (UR WHATEVER AMGLE) AT THIS POINT» _
TTETTT ALPHASALPHA+0,192

" .
T TR TIMEN G EN 0 0V AND KR EGLIY G0 T G e

IFCINENTLEQWL) 40O TO 50
R & O A I O T 1T (R oo T o o
YIt(2s1)=v1
RS S S TR R T ) 4 T T T e rm e m 2 T T
YII1(4.1)mPT
TTTTTTTTTTYTTIUR T Y RAT Tt - -
YiIl(6si)=RY
s YII(721VETHETAD - <---wmsnmeesom s s e e e
YII(Bs1)=PHII
s YII(9a1)=PSIT — - — e semme e
YII(10s1)=~1G0,0
90~ 69 -1 2 }p 1O - “
[Je]+}
YICIDBYEULT0) - - —ommmmmm s o e oo e e
YYCIJal)=YTIC(1,1
-~ 60 CONTINUE - — e e e e e o s
YI{11)=0.0
R LS ER LT R - e e e
YY(lrl)zTIHE(i)
— ————— - N 12_ —_— ——— mmmr— — o —— —— e — —_ - = - - = = e et e e oo -
XI1=0,0
KSTP=Q - —-== - T e e o e
KODE=1
T | e —— ——— e e
¢ Esnpra LALPULATE& THE STATE VECIUR. THE QUTPUT OF ESOpER
C  ARE THF ¥Y(I)*5, =  -= = - ——- R R R
C
-~ 50 GALL ESDDEQCKODESL)- - — e e
KODE=3
L LIV 2 3 NP -
NEE-NLJ)
JLAST=Y e s — Smmemmssomm mm e men e e e e
TIMECJS)Y=2TIMECIT I +H
- e XY RTIHE(Y) e i
TIMEXRTIMECY) '

-

c -
c STORAFE UF THE STATE VECTOR IN THE ARRAY YY
c - -

= e e —— e —— - [ A Y -

— — N A E s ma e AR oA Ame e A ArmAEee = AR
[ m A e e m— ——— ——— —


http:ZFCUOoLE.51

po 70 131:10 242,

T T IKB YT ] ) - T T i R
YY(IKsd)=Y(]) '

T 70T CONTINUE — R T
Usyeld

TTTTTTIYRY(Z) U T o s o s mm s s s s me
W2Y(3)

TTTTUTTPRsY(R) T T T osT s e s - T

. A=Y(5)

T RsY(&)
THETA=RY(7)

T UPHIEYEAYS C T Tt - s S :
PSI=Y (%)

S £ B S R S
NN=L=1T¢
THRUSTCL IS THRUSTCNN Y — — e R
SIGMACLI=SIGHACNN)

s s e DELXCL) =DELX(MN ) - - o

DELYCL)=DELYCNN)D
o= PDELZCL ) =DEL Z{NN) - -
¢
—¢~— -~ $TORAGE OF THE CONTROL- VFCTOR-IN THE ARRAY Yg - - —  — =~
¢
remm YBOLISTIMECLY - - e - e
YBC2,L)=THRUSTCL)
e WRC3AL )= THRUSTOLIXL 23086
o YBU4sL)mSIGMACLY
Ye{é, L V=0FLX¢L)
YB(7aL)=DELY(L)
- YB(8,L)=0ELZCL)
C
¢ CALCHUATION OfF ANGULAR ACCELERATIONS CEQUIVALENT TN THE
C CONTROL EFFORTSY.
¢ e e

LSTARCL )=( 1Yl Z)w a7 IX+IX7 4P aQ/IX4THRUST(LY/IXA{ZONE#VREL /VIF T
1=STNCLAHRUACL ) )% (ZTwlt« LONE*COSCSTOMACL YY) Y+LPIX2P+LOXIX«eDEL X (L )+
205/ IX*HO*YNBAR** 24 yAREA*®SPAN®(CLUO+CLODELA*DELA+CLRETA*RETA)

NSTARCLISCIX=IY )P aG/ 12~ XZ4Q4 1/ 1742, *JENG*NOMEGA*Q/1Z
T+THRUST (L) 712 (SINCLAMBDACL 1) #{XTHWOLONF#SENCSIGMACL ) ) )= XONE
T2 VREL JVIETIHNR T ZARFINDZIZ+DELZCL )+ 0.5 /1 7*RHO#UQBAR*+2+#HAREA

I«SPANK(CNOHCNDELR*DELRFCNDFLA*DELA)
e PROTOL) 2 IRRIZ /PP AL IXIw w2 (L STARCLY S TXZ*NSTARCLI/IX)
ROOYCL)=EX 2 Z/CIXa12alXZaa2) 2l XZxLOTARILYIZIZ4NSTARCL))
s - QDT (L )2 (I Z%IX )% F*R/TYHIY N (RA*2opP k2 3/ TY=2 2 [ENG*OMEGA®XR/TY
$4THRUSTCL) /1Y A CCnREL#XDNE~UREL*ZONF) /v JETH+COSCLAMBNACL Y)Y
- 2a (LB aS INCSIGHACL ) )42 THORCUS(SJGMA(L)II+DELCMO#CHORD Y 4MDY JY #
3DELY(L)4MQIY# Q4045 /Ty *REOFUGH* 22 JAREA*CHORD* (CHMOPO+(CHALPO+
e - UDELCMAI WAL PHA+DWOXCHORDYCMA*Q/ U+ CHMDELE*DELE) - -
YACE L)=TIMECL)

S
¢ STORAGE OF THE ANGULAR ACCELERATION% IN THE ARRAY YA, YA(S)
TTUTTTT TANDTYAUS Y TSTORE TTHETLAST TWOTSTATE vARIABLES, LUNGITUDIHAu"”

c AND LATERAL CISFLACEMENT RESPECTIVEL Y.
e . At e e o
YACZ2,L)=POOT(L)
YAC3,LI=00NTCL " - Tt -
YAC4sLI=RDDT(!

TTTTTTYALS, L)Y (LY T s m o rmmmmmer e e
YALGsL )Y 1.7)
POOTAzPNO (o



e00TA=QUUTCL) 243,
TUTRDOTA=RDOTC(LY T T T - T - o Temerme e

FHECK THE SYABTLITY CRITERTA, -

TFCARS{THETA},GT.0,83634) ITF=2 "~ : '“ T
IF{ABS(PHI).GT.O.ﬂ3634) 1TF=2
TIFCAHSIPDOTAY o GTela361) TITF22 77 ) oo
IFCAHS(QCOTA),GT, 0.698) 1TF=2
IFCARSCRUOTA) GTe0, 332y ITF=2
S O
IF(ITF ER.2.0R.JeGEL1CG1) GD TO 1009

©y OO

¢ e e e

¢ ITC TS THE COUNTER TO SIMULATE THE TIME DELAY OF THE PILDT,
c

B IFCITC.LTL3) GO YO 30 -
KeK=)

¢ CALCULATIUN Df THE CONTROL VECTUR. THE FIRST TIME THROUGH THE
T 6 7 PROGRAM, THIS VECIOR 1S CALCULATED IMMEDIATELY AFTER THE
¢ AERODYNAMIC COEFFICIENTS ARE CALGCULATED. AFTER THATs THIS VECTOR
TTCTTTTIS CALCULATED WHENEVER ITC=3,
TTT RO AR MASS M (YRR QP GHSTINCTHETAD I + 0 H* ReU* YO ** 22 wAREA* CLCLPU+CLALPHY
FALPHAI*SINCALPHAY=(CD*+CODALPH*ALPHAI #COSCALPHAD)D
T TRENASS AT W AP SURRFGHSTIN(PHI Y« COS(THETAY ) 40,5 aRHO *JOBAR * 2 ~ 7 7
{*HARFA*CY
T T CEMASSA(UNTYAPEGRCUSCPHI)4COSCTHETA) )0 S*RHDCYQe*2 ™~ -~ ~ 7 T T
1*HARFA*((CLPU+CLALPH*ALPHAJ*cOS(ALPHA)+(cn+CDALPH*ALPHA)*51N
————-2(ALPHAY Y - s e - v e i L
AA=LTLCL
DR iy =UOHARY*2 /Y UE T+ #2mAAR*232 , ¥ AA* (SINCALPHA )*UREL=COS —
1 CALPHAY*WREL)/VUET
e EECASUREL+BAVRELFCHWNREL I /VIET=AAR CARSINCALPHA)=C - mme o o
1#COSCALPHA)Y)
e - ~FBARRDER R KPR D - - -— - - e m e e ol -
THRUST(K)=(~= E+s@nr(a**2+ntr))/o
THRSTG(K ISTHRUST(K)+1:23986 - —-- - s e -
THRSY=THRSTG(K) .
“—CALL ENGRPM(THRSTSOMEGPCHUNEGA) - e

c
—¢———IF- LAMBDA- 15- 70 BE -CALCULATEDs INSERT Cm e e
¢ LAMBDACK)=ARSTHCVREL/VJET =B/ THRUST(K))

'n e ———— J—, —

SIGMACK)=ARSINCCYREL /v JET= ﬁ/THHUQT(KJ Aﬂ*SIM(ALPHA))
——— {7COSCLAMBDA(K))) . TomeTetT s e
DELXCK)2((1Z=1Y)%0aRmTHRUSTLKI&(VRFL#ZONC/VJET=SINCLAMBDA(CK))
e == A CZTHO S LONE*COS(SIGMACK) I DITL PIXHDX I X=0 ¢ 24 RAO*YUOBAR* *2% yAREA
2*SPAN®(CLU+CLRETA* 3£ TA)~ Ixz*P*Q)/(Lux1y+Ix+0.)*RHO*UOBAR*'2*
————3WAREA*SPAN+CLDELAY -— -~ - — = — - e
DELY(K)s({IX=I714PxR4+(P#+x2= R**2)*IXZ+2,9IENGﬁ0MEGAﬁR-THdU$T(K)
e o * ({WREL=XONE=UREL* ZUNE ) /VJETHCOSCLAMBDACL )Y )*(ZTHWO*SIN(SIGMA(CK))
2+XTHO*CNSCSIGMACK) ) )+CHURD*DELCMOI DI Y* N+ TY=0,S*RHOYUQ** 2+ JAREA
e 3R CHURD A (CHAPO (CHMALPIDFUELCMAY X ALPHA+0,54CHNRD#CMQA*Q/U0)Y )/ - -
ACMDYTY*TY+0  S*REUNUUA*2*WAREA*CHORL «CHDFLF )
DELZIKISC(IYm X ePaQe X7 v QwR 2 ¢ # IFANGAOMFUA*G=THRUST(KI*( *VYREL *XUNE
L/VJETHSINCLAMBRACK) YA (XTHO=LONE#SIN{SIGHALRII I I=NRTIZ¥R*]Z=0,5+«RHO
—— -2 *UDHAR® o 2 a HAREA«SPANR{CND+CNUCLA®DE LAY /(N2 7%#1240,5+RHO




3*UUBAR*t2*HAREA*SPAN*CNUELR)
T TTYBLL,K) = TIME(K) ST
YBC2sKY=THRUST(K)
e B 3, K YA THRS TG CKY - - = - =
YBCUsK)=STGMACK)
- YBC&sK)=DELX(K)

244,

YB(7,K)=DELY(K)
—- s - YB( B2 K =DELZCK) - - e———— - - - - -
c
-g~——-CﬁEtﬁ~FﬂR~5A?URATTﬂN—or"CBNfRUt—PARAMETERs."
oo~ CIFLOFLX{K)«GT.2040) DELX(K)I220,0 -
IFCOELX(K) 4LT 220,03 DELX(K)==20,0
e TFCDELYCK) «GT,2040) DELYC(KI®=20,0 -
IFCDELY(K),LT.=20,0) DELY(K)==20,0
e JECBELLEK Yo GT42040) DELZCKY=Z20,0 - - - == == =~ ==
IFCDELZ(KY o LT+*2040) DELZ(K) =200
DELASDELX(K) -
DELESDELY(X)
e —me -DELR=DELZ(K) e e
IFCDFLE.GTe15¢0) DELE 15.0
~1F€516MA(K1.ur 1622173) -SIGHMALKIaf¢22173 - - = =
IFCSIGHACK) LT ,0.0) SIGMA(K)=0,0
e = IFCTHRSTGCK 357935154 ) THRUST(K)I=5515,/1:23986
ITC=0
el CLL S EE T T T
G TO 30
¥ ) e
¢ ITERATIAN PROCEDQURE fFINUS THE RANGE A TO A+410 FIHSTY, THEN IT
— -0 -—— FINDS THE RANGE A Tir A+2, AN FINALLY THE EXACT VALUFE.
¢ IT CAN a0 TU EITHER GREATER OR LESSER VALUES FRDH THE INITIAL
— ¢ T VALUES OF THE GUST HMAGNITUOES.

¢

000 TIFCITFWERL Y GO TO 9987 - e T T
IFCITRERLL)Y GO TO 996

- IFCJGUST-EN.1) GSMAGU=GSMAGL410,0
IFCJGUST,ER,2,0R,JOUST ,EQ.3) G3MAGV2GSHAGY+10,0

- IFCJGUST Enoke UR.J USTEQeS) GSMAGWSGSMAGH+10.0
ITA=!
GtITr B0~ - e e s

996 IFC(JGUST«ER.1) GSHMAGUSGSHMAGU+ELO

—— e - IR GUSTeEN e 24 ORe JBUSTWEQ43) GSMAGYSGSMAGY ] L0
IF(JGUST Eq,8,0R, JuUSf E@ 5) GSMAGN GSMAGH+1 0

- —- - —ITD=t- —em— e

G TG 80
— Q9B JF{ITAsEY, 1) GO TO-997 —— — e e e

1§ CUGUST.ENT) GSMAGU=GSMAGU=10.,0
- IFCIGUSTLER 2. 0ReJGISTLEQe3) GSMALVSGSMAGY~10,0
IFCUGUSTAEN 8, ORJGHSTEQ,5) GSHMAGH=GSHAGK=10,0
e e GO TO.BO - e e e —
997 IF(JGUST«ENL1) GSMAbU GSMAGU“2.0
e JFCJGUSTvEQe2e DR ¢JGIHSFekB+3) GSMAGVRGIMAGY=2,0 -—-———r—— - -
IFCJBUST . EQ. 1. 0R,JSUST . E9.,5) GSMAGﬂ:GSMAGN 2,0

i 11B=% - - .- e e - - - -
IFCITDECL1) GO TU 1001
— e—e- GD TU 89 N . s

1001 WRITE (6. 800)((\'\’(1;.}):1 lrllJ#J ! JLAST)
e B0Q FORMATOIPLIE]L 8] - - — - S mmeee—me e -

WRTTEC62R01) (CYACTSJds 121560005 I;JLAST)
~ 801 FORMATCIPGELT(4) - -


http:IF(&ELX(K).LT

HRITF(é 809)(CY8(I)J)JI“lpa}pJﬂipJLAST) 245.
S0P FORVAT(IPOETL el) vome om — oo —mm .. -
GO T 100
S O0QD §IOP o - e
END
FUNCTION FQIpXp¥) wmmmme - oo oo o oo e -

FUNCTIUN SUBRQUFINE "FUR ESOpEQy— —————"- =~ -~

o0

st CDHION/ZESO/NOBD - - -
REAL Y(99)
COMHON/FUNCYI/ G THRUST (1015 RASSI SIGHACIOL > LAMBOACIO0L )™ T
1UD» wAREA» CLPOSDELCLA ALPHAS CN» VREL s UOBAR2CY» IXo 122 1Xd0 1Y,
2ITH L ONE, ZUNE, LP IX,LOXIXs DELXC101)aSPAMSHRELSCLOSCLDEL A
3DELASCLAETA» IFNGr OMEGA» XTWOs XONESNRIZANDZIZ-DELZ(10132CNDs
ACNDELRaNELR» CNDELASMDYIYSDELYC(10135MQ1Ys CHORDS CMOPOS™ o
SDELCHO» CHALPU»DELCMA» LY s CMDELES DELESBETAS Jo URELP VIETIRHD
6sCOALPH,CLALPH T T )
IFCILEQ, 1) FsY(2)*Y(6)I~Y(3)I*Y(5)=G*SINCY{7))+THRUST{J)/MASS
1#(SINCSIGHMACUII*COUSCLAMBDACYI I =UREL/VJETH+DELCL*SINCALPHA)Y+0,5/
2MASSERANY YN+ 42 WAREA* ((CLPO+CLALPH*ALPHAI#SINCALPHA)=(Cp+COALPH*
T JALPHA)*CNS(ALPHAY) T
IF{IWFG,13 RETURN
IFCTWEDL2) Fay(3)#Y(q)=Y(1)*Y(6)+GHSINCY(BII*COSCY(T))
1+fHkHST(J)/HASS*(SIN(LAMBDR(JJ)'VREL/VJEI)+0.5/MASS*RHJ*UUBAR
- ) 2hRRZEHAREARCY T o
IFCTaEw.?) RETURN '
EEAEE— IFCLEQ. Iy FEy 3 *y(S)I=Y(2)wY T8 )+GHCOSCY LB I+COSLY(TIY "~ Tt
{=THRSTCJII/HASS*(CUSCSTGMACJ)IRCOSCLAMBDACJ) I+WREL/VJET+DELCL Y
- - P2CUS(ALPHA)Y Y= (5 /MASS«RHU#UNT w2« WAREAMCCCLPOFCLALPH#ALPHAY#COS
J(AlrHA)+(CD+CDALPH*ALPHA)*SIN(ALPHA))
- IFCIaEQe3) RETURN - - - USRS
TFCTLER, 43 Fs([X*Il/(IKiIZ-IxZ**z))*((IY IZ)tY(S}tY(BJIIX
e A RIXZAYCA)RY(5)/INSTHRUSTCIY 71X ( ZONE « VRFL /VJET = »SINCLAMBRDACY) )+
2¢LTwD+LINEXCOSCSIGMACI)IIIIHLPIX*Y (4)+LOXIX*DELXCJI+0.5/1X
JARHUXUURAR** 23 WAREARSPAN*(CLO+CLDELAYDELA+CLRETARGETA) —
A+IXL/ TR R COIR=IY IxY ()Y (5)/ [ Zm)XT*Y(5)sY(£)/1Z+2,%1ENG
SxUMCGA*Y(SI/TIZ4THRUST(JIZI7%(STMCLAMBDACU) YA (XTHO«LONE#SIN -
S(STGHA(CY) )™ XONF*VRLL/VJET)+NRIZ*Y(6)+NPZIZ*nELzCJ)+O.5/IZ*RHO
veemiae = TAYDBARX* 22 JAREA*SPAN* G+ CNDELR*DEJ R+CNDELAWDELAYY) ——
IFCIEQ,4) RETURN
.- - IFCI LB, 5) FallZmIN)aY ()Y (471 Y4TXZ Y {6 wu2=Y(g)%22) -~
17]Y=24*IENG*OMEGA*Y (6 )/ IY+THRUST(JIZTIY*( (AREL*XONE=UREL
S 2%IDHEX/YJETHCOSCLAMRDAC I IR (ZTWO*SINCSIGHAL )Y +XTHO+COS- —~ - -~
3(STIGHMACYI ) Y4CHORD A0 pLCHMUY+MOY TY#DELY(JI+4HAIY*Y(5)40,5/IY*RHO»xUQw*2
e e R YAREARCHORD % (CHUP O+ (CMALPOSDELCHAI*ALPHA+0 4 S*CHORD*CHQA*Y(S) 7UQ -
5+CMDELE*PELE)
- IFCTERG9) RETURN - === - -7 -omw—=eommes oremsommcem o - mmesim s meees oo
IFCIEQ,A) Fa(IXwlZ)/CIXs12=IXZw22)u(IXZ/12Z2CLIY=IZ)nY(5)
1Y (6)/IX+IXZRY(A)Y*Y(S)/IX+THRUST(JI/IXN*(ZONE#VREL/VIET=SINCLAMRDA(
23X LT+ L ONEACUS(SIGMACUI I D)+ L PIXAYCAX+LOXIX*DELX(J)+0,5/1X»
e JRHO*UOBAR 2 xWAREA#SPAN®(CLUSCLOELADELA+CLBETAABETA) D+ (XY o
BYCU)Y*Y () /T 2=IXToY(SI*Y(A) /T 242, s JENGNMEGA*Y (S5)/T12+THRUSTCJIIZTZ*
S{SINCLAMPOACUI I *(XTwO~LONE*SINC(SIGHAL U)X )=XONE*YREL/VJET)IHNRIZ*
AY(EY+NDZIZ*DELZ(JI+0, 5/1?*RHU*UDBAR**Z*HAREA*SPAN*(CN0+CNDELR*
.- PDELR+CNDELA#DELAY) ~ == - - m crmem o - - - .- e
IFCI.ER,6) RETURN
e LF (] ¢ ER o TI-F SY L5 4GOS {BII =Y (&3 *SIN(Y(8)) -
IFCI.EQ,7) RETURN
ceem— = IR QL GER B FeY(4)+Y(SI#SINCYL(BII#TANCY(7I)+Y(6)2CDSL{Y(8)) — —




LATANCYC7)) 246,
IFUTIVERL8) RETURN

IF(I Ed.9) F=(Y(6)*CUS(Y(8))+Y(5)*SIN(Y(8))]/CUS(Y(T))
ISEOTH) RETURN—

{F (118, 10) FaY(2)#$IHCYI8)4COSCY(7))+Y(3)#COSCY(B)I*(OSLY(T))=
Y1 S ENCYC Y )

IFCI,E0,10) RETURN
T E IR 1LY FEY (L YA COSCYET I RCOSCYLP) I+YC2IHCSINCY(BIINSINCY(T))*
100SCYCH) I=COSCYCBII#SINCY(9)II+Y 3D+ COSIY(BIIHSINCY-L7I)#CDSLYCI))
T2 FSINTYCRTIAS INCY TN T
1FC1,E6,11) RETURN
e IFCIAEWa12) FEY () *COSCYCTIINSINCYC) I+ VC2I+CSINCY(BIINSINCY(T) )4
ASINCYC9))4C0SLY(B)I4CESEYIO)II+YC3I#CCOSCY(RIINSINCY(TII4STHCY(9))
T 2= SINC(Y(B)YCOSCY(9))) Tt TTTTT T T

RtTURN
- —END
SUBROUTINE EMGRPM(THRST;UMEGPC:OMEGA}
— c___..._._.___. L ———— ——— g S— pmpe—— - s A M M 8 e W BHE e R i A ——m—— R & —— T -
¢ SURROUTINE TO CALCULATE THE ENGINE ANGULAR
—=C——VELOCITY FROM THE THRUSTs — — == === R e
¢
——ANGVELE1 7285 —
IF{THRST+LE.4370.) 60 TO 300
= om0 T 301 oo Mo e s oo e
300 OMEULPCSCTHRST=3305%.)/88.75+80.,
- - G T0-302 - Com e s m s e e e RS

301 BATL.S244623E~09
T BB RV IIIU9THE~DE ‘"
BC=1,2498497E=02
BU=THRST~4370, - - T -7
CHEGPC=RnA+AD# R 3= BB*aD**?+aC*ao+92.
™ © 302 OMEGA=OMLGPC*ANGVEL/100. - o -
RETURN
T T TTEND
SUBKOUTINE ESUDEQ(KQQE;NRU)
) ) COMMNNNZESU/ZWNRN - T T T T T 0T
CUHHDN/{SUCUH/M:XI;YI(99);Xxy(99);TR:H:KSijoyt99}
ot " REAL XCaYCC99)sDYPCUp99I25(99) - S
DATA HO/O/s0YP/396%0/
e AT MSTP T NS TR T TINT T INZ s INI T TINGS G0 Y T R T3 T
TR = (~1.0)
“TUTHOB@=Y ot T ST T T s s e
IF(N.GT,.99) GO TO 7777
©G0 CTNCL000s 20002 30033 XODE—" "~ ot o -
1000 DD 1001 I=1sH
merere e Y (F Y -8 T (1) -
100t DYCI) = F(IsXI,YD)
-X ® XI- — - - — — - —— S s s e m e
INT = 1}
- INP--z—-2- e e
IN3 = 3

TTTING = G
1050 HSTP = «STP
CONSTP R OO T TSI Sm e e e e e
HO = H
TG0 I074000° T R TTTTTT T T T e e
2000 60 TN 1030
30007 IF T THOWNEGRY 60707 {050 -
GO TO 4000
3001 RETURN ™~ ™~ - — - R -



http:IF(NGT.99
http:IF(I-,Ea.12
http:IF(I.EO.1j
http:IF(I.EQ.1O

4000 DO 4n01 Iz {,N 247.
=7 4001 DYPCINL,I) ="pYCQIYy— "~~~ " T SRR - - —— -
_IF (NSTP.LE.2) GO TO 4500

DU 4002 I=tsN
4002 Yo(I) 3 Y(1) + H*(55,0+DYpliINT»12"59, O*anc1N2rIJ+3?.o*DYP<IN3aI)
1 ey OxDYPCINGSIYY/24,0
MSTP = 45TP=1 ;
TTTTTTTTTTIF (MSTRLLEVDY GOTTD 4100 T o -
D) 4003 I=i,N

TR0y YOI EYCID Tt T
X = X ¢+ H
TG0 10 4300 T o T T
4100 X = X + H
T T DO 4101 IstsNTT T T - - T
63101 pYCI) = FQIs X» YC2
T T bU 4102 Iat,N ) T Tm o m e e
410? YCI) = Y(I) & H*(9.0%0Y(T)+19«0*DYP(INI,1)"5,0%DYP(IN2,])
T I T T T T T T S5 YP(IN3SLYYZ248,0 )
MSTP = KSTP
TIR =00 T T T T T ” Tt T o
DO 4103 I=isN

TTTTRIOI IR EIN G VSORCYLIYRYCCII YRR T
TR = SWRT(TR)
GO TN 48007 e o T Tt T
4500 p0 4501 I=i,N

TUTTSCIY = HADY(LD T, T T mmm e e e e
4501 YCCI) = Y(I) + SCIX/2,0

TR S X TE H T, O e
DO 4%02 f=1»N
T TTRYCIY = F{I» XCaTYT) TTToT Tt T mmeon s e o e o
sCIY = S{I) + 2,0+H«DY(1)
- 4502 YECI) = YCI) ¢ CH*DACIII/2,0 —— 1 — = = = = =- = e -
DU 4503 I=1,N
——me—- DYCE) 3 $(1s XC»—YEI— - —
S(I) = (1) + 2,0%42DYCI)
43503 YCC(TI) =2 Y(1) ¢ HeDY{I)ome - ~- . - - . —-—
XC = X + H
DO 8504 TS1pN - o — v oo = e - - e e
DYCL) 3 F(I» XC» YC)
—e S I Y}-w R Y -+ WAV DD —= - -
4504 Y(I) = Y(I) + S([)/s,0
s =X ca AC e e
NSTP = MSTP + 1
- 8800 DO 4801 I=laN~ ~—— 0 T omemmos T n e m e TomeTTTe T
4801 pDYCIY = F{1» X» Y2

=" ING— -
ING = IN3 '

e L E B o e
IN2 = INY
—— = INL s s mm e e e s e

G0 70 3001
—F {7 T HRITE~(K»—TTF} -

CALL EXIT
— —— 777 FORMAT({Hi» OH-TOO-HUCH) -—— - = — - — S
END
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APPENDIX 7

Inclusion of cLa and cDa in the Afrcraft Model.

C, and C, are to be included in equations (A4-1) and (A4-3) in
Appendix 4. The altered equations are
G=ee+(1/2) o125 {(Cpo * Gy * @) + sina) -

(Cp * Cp, * @) cos{o)} +(1/m) (111-A7-1)

and

&:ooon(]/Z)np-Uz

N {(CLpo P a) + cos(o) +
(Cp * Cy, = @) * sin(a)} -(1/m) . (111-A7-2)

These two coefficients are also included in the terms A and C
of the thrust equation {A5-1) of Appendix 5. These terms are altered

in the same manner as above with the exception that {1/m) does not appear.

A= e+ (172) < p Ug -5 . {(?Lpo Gyt a) * sin(a) -
(CD * Gy o) « cos{a)} . { 1II-A7-3)
Cmeee = (U2) oo W2 oS {o 0+ G, v a) v cos(a) +

(Cp+ Cpy * @) sin(a)} . ( 111-A7-4)
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APPENDIX 8

Determination of Gust RMS Intensity.

The Tongitudinal gust will be used in this example. The value of
m from WINDY was 52 fps. The gust field was moving at a speed equal to
the headwind, 10 fps and the gust frequency was 0.10 ¢ps. The displace-
ment of the aircraft was 23.9 feet in the positive x-direction. The dis-
placement was in the opposite direction to the movement of the gqust field.
Therefore,

2d = (10) - {1/0.10) + 23.9 = 100 + 23.9 = 123.9 feet.
Also L, = 854 feet which implies that
dm/L = (123.9)/(2 - 854) = 0.0724

Using the probabilities of occurrence of 10, 1, and 0.10 percent of exceed-
ing v (52 fps) for a specific d./L (0.0724), the ratios (Vm/U) for each

probability can be found from Figure 12.

P(Vm/U) !mfz

0.10 > 10% 0.62
0.01 » 1% 0.95
0.001 + 0.1% 1.25

The corresponding intensities are

90 = 52/0.62 = 84.0 fps yms ,
o, = 52/0.95 = 54.7 fps rms , and
Gy = 52/1.25 = 41.6 fps rms
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