
Final Report 
 October, 1970 - September, 1973

Phase 1I Study 
 NASA Grant NGR-05-004-051
 

(RASA-CR-t3a5) 
S UDY ofDYNAMICS OF .N74-21661
 
X-14B VTOL AIRCAF2 Final aeport, Oct.
 

1970 - Sep. 1973 (California Univ.)
253 pHC $15.75 
 CSC1 0IC 
 nclas
 

STUDY OF DYNAMICS OF X-14B VTOL AIRCRAFT
 

by 

W. V. Loscutoff
 

J. L. Mitchiner
 

R.A. Roesener
 

J. A. Seevers
 

November, 1973
 

Department of Mechanical Engineering

University of California
 

Davis, California
 



Final Report October, 1970 - September, 1973 
Phase II Study NASA Grant NGR-Q5-004-051 

(NAA-CB-138185) STUDY 2F DYNAMICS CF N74-21661 
X-14B VTOL AIRCRA.: Final Report, Cct. 
1970 - Sep. 1973 (Califcrnia Univ.) 
253 p HC $15.73 CSCL 01C Unclas 

G3/02 38295 

STUDY OF DYNAMICS OF X-14B VTOL AIRCRAFT
 

by
 

W. V. Loscutoff
 

J. L. Mitchiner
 

R. A. Roesener
 

J. A. Seevers
 

November, 1973
 

Department of Mechanical Engineering
 
University of California
 

Davis, California
 



TABLE OF CONTENTS
 

Page
 

Preface ........ ... ......................... ..
 

I. Design and Application of Specified Closed-Loop
 

Optimal Control ..... ........................ 3
 

Nomenclature. .. .
 . . . . . . . . . . . . . . . 4
 

1. Introduction ........ .. .... .......... 6
 

2. Mathematical Development of Optimal Closed-Loop
 
Specified Control ....... ................... 10
 

3. Limitations inApplication of Specified Closed-Loop
 
Optimal Control to X-14B VTOL ... ... ...... ... 23
 

Appendices.... ........... .............. 34
 

Bibliography ........ .. .. ................ .. 31
 

II.Dynamic Estimation of an Unmeasurable State for the
 
X-14B VTOL Aircraft ........ .. .... ......... 63
 

Nomenclature ........ ..... .. .. ........... 64
 

1. Introduction ........ ..... ... ........ 66
 

2. The Model ......... .. ..... ........... 67
 

.3. Controllability and Observability... . ... ....
 73
 

4. Discretization of Linear Differential Equations ..... 78
 

5. Limited Input Modal Control via State Variable Output 82
 

6. State Variable Output via Dynamic Observers .... ..... 88
 

7. The Partial Observer ........ .. .. .......... 99
 

8. Application to Full Nonlinear System ....... ..... 105
 

9. Conclusions ...... .. ....................... 115
 

Appendix .. ..... .. ... .. .................... 120
 

Bibliography ..... ... .. .. ................... 119
 

/ 



TABLE OF CONTENTS
 

Page
 

III. 	Wind Gust Analysis of the X-14B VTOL Aircraft ...... ... 131
 

Nomenclature ..................... .... 135
 

1. 	Introduction . . ...................
. 139
 

2. Airplane Model .	 142
. ...................
 

. .	 160
3. 	Wind Model . ....................
 

4. 	Method of Analysis ................... 177
 

5. Results .................... .... 188
 

Appendices ........ ....... ........... 221
 

Bibliography ....... .... .............. 250
 

/
 



I 

CONTROL POWER REQUIREMENTS OF VTOL AIRCRAFT
 

PREFACE
 

A vertical take-off and landing (VTOL) airplane is inherently difficult
 

to handle since it has, among other problems, insufficient control power and
 

imposes an extremely high task load on the pilot. Thus an automatic flight
 

control system isdesirable to improve the handling qualities of the air­

craft. A number of trends in guidance and control provide the necessary
 

tools for the task. The foremost isprobably the application of modern
 

control theory to both guidance and control problems. Of equal importance
 

is the application of high-speed, general purpose, vehicle-borne digital com­

puters which make the use of modern control theory possible. The research
 

reported here was initiated to investigate certain facets of modern control
 

theory and their integration with a digital computer to provide a tractable
 

flight control system for a VTOL aircraft. Since the hover mode isthe most
 

demanding phase in the operation of a VTOL aircraft, the research efforts
 

were concentrated in this mode of aircraft operation.
 

Subdivided into three sections, this report describes research work on
 

three different aspects of the operation of the X-14B VTOL aircraft. In
 

the first section, a general theory for optimal, prespecified, closed-loop
 

control isdeveloped. The ultimate goal was optimal decoupling of the modes
 

of the VTOL aircraft to simplify the pilot's task of handling the aircraft.
 

Modern control theory isused in the second section to design deterministic
 

state estimators which provide state variables not measured directly, but
 

which are needed for state variable feedback control. The third section
 

examines the effect of atmospheric turbulence on the X-14B and determines
 

a maximum magnitude gust envelope within which the aircraft could operate
 

stably with the available control power.
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I. DESIGN AND APPLICATION OF SPECIFIED
 

CLOSED-LOOP OPTIMAL CONTROL
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DESIGN AND APPLICATION OF SPECIFIED
 

CLOSED-LOOP OPTIMAL CONTROL
 

NOMENCLATURE
 

MATRICES 

A = system matrix 

A= desired system matrix 

B = system input matrix 

C = system output matrix 

K = feedback controller matrix 

P = weighting matrix on the effort 

Q = weighting matrix on the system states 

R = precompensating matrix 

S = Riccati matrix 

VECTORS 

r = reference input vectors 

u = input vector 

x 	= state vector
 

= output vector
 

SCALARS 

p = roll rate 

q = pitch rate 

r = yaw rate 

u = forward velocity
 

v = side velocity
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NOMENCLATURE
 

SCALARS
 

w = vertical velocity
 

L = roll moment
 

M = pitch moment
 

N = yaw moment
 

4= roll angle
 

e 	 = pitch angle
 

= yaw angle
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CHAPTER 1
 

INTRODUCTION
 

In the control design of a vertical take-off and landing (VTOL)-aircraft,
 

a large number of problems arise. Some of these are general problems associ­

ated with the complexity of multivariable systems and are related to the dim­

ensionality of the subject systems and the interaction among their variables.
 

The VTOL presents still additional problems to the designer. It has inher­

ently poor stability and, due to its handling characteristics, requires the
 

pilot to perform an unrealistically high number of tasks in order to maintain
 

the aircraft at a desired attitude.
 

The additional handling difficulties associated with a VTOL arise from
 

the supplementary control forces and moments added to the aircraft in order
 

to maintain the aircraft in a hover or near-hover condition. For the air­

plane studied in the project, NASA's X-14B research aircraft, the control
 

forces to provide lift and propulsion were obtained by vectoring the thrust
 

of its two engines. The control moments for pitch and roll were obtained
 

by bleeding air from the engines and ducting it to variable area nozzles
 

in the wing tips and the tail of the airplane.
 

For the design of an automatic flight control system which would im­

prove the handling qualities of the X-14B aircraft, it was felt that the
 

state variable decoupling techniques would yield the best results. The
 

logic behind this decision was that if the pitch, roll, heave, and yaw modes
 

were completely decoupled from each other, the pilot's task of flying the
 

aircraft would be enormously simpler. This was the motivation for the op­

timal control technique developed in this section. Although the results ob­

tained may be used for arbitrary closed-loop system behavior specifications,
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they are especially well suited for decoupling.
 

As background for the control technique developed inthis report, a
 

few brief comments on decoupling and optimal control theories follow.
 

The current literature on the subject on non-interacting, or decoupling,
 

control isheaded by Morgan [2], who arrived at sufficient conditions for
 

decoupling and developed a procedure using a constant gain compensator with
 

state variable feedback to obtain a decoupled controlled system. Rekasius
 

[33 then obtained some useful results extending earlier work. A more gen­

eral decoupling problem with static compensation, was solved subsequently
 

by Falb and Wolovich [5]. Their result was the first complete solution to
 

the decoupling problem for a significant class of linear systems. Gilbert
 

[6] added to the results of Falb and Wolovich. The more general state feed­

back decoupling problem, with dynamic compensation, was formulated and
 

solved by Wonham and Morse. Additional work on system decoupling has been
 

done by Silverman [9], Sato and Lopresti [11, Porter [34], and Yore [35].
 

The last author used a model reference approach to obtain an optimally de­

coupled system.
 

The foregoing methods, while useful inmany applications, were only of
 

limited use to the X-14B and hence a different approach was sought for the
 

aircraft. Since most physical systems cannot be decoupled exactly, a tech­

nique for approximate decoupling was sought. Thus research efforts were
 

turned to the method of approximate decoupling with a specified index of
 

performance.
 

The theory of optimal control iswell defined and conceptually not
 

very difficult to apply. However, the methods of optimal control suffer
 

from several drawbacks. The major difficulty arises from the fact that,
 

even inwell defined problems, it isdifficult to specify a meaningful
 

performance index that is analytically tractable. Furthermore, once a
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performance index is defined, it is not a simple task to interpret the 

meaning of the elements of the perfonmance index or to manipulate these
 

to create desired changes in the dynamic behavior of the controlled sys­

tem or the structure of the controller.
 

In an effort to overcome some of the above difficulties, Solheim [151
 

presented a design of optimal control systems which minimized a quadratic
 

performance index for a set of prescribed closed-loop eigenvalues. The
 

procedure is as follows. For a performance index of the form
 

J= f (x'Qx+ u'Pu) dt (I-I) 
0
 

The weighting matrix P and the eigenvalues of the closed-loop system
 

are selected by the designer. Then the _ matrix, corresponding to the
 

prescribed set of eigenvalues, is determined. Finally, the optimal feed­

back gain matrix is determined from the steady state solution of the Ric­

cati equation.
 

The most exacting level of system design occurs when the engineer is
 

given the task of designing a feedback system with specific input-output
 

and dynamic behavior characteristics. This implies that a percompensator
 

with a particular closed-loop system matrix must be available. Again,
 

since precise agreement between specification and physical realization is
 

not possible, some compromise result is usually accepted. The research
 

reported herein considers an analytical approach based on the premise
 

that exact system behavior cannot be dictated. The result is a design
 

tool for finding an optimal control policy, with respect to some quadra­

tic performance index, that yields a closed-loop system approximately
 

equal to that desired by the designer.
 

The method developed herein is completely general with respect to
 

system structure and conceptually is very easy to apply. However, there
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are certain computational difficulties which are discussed in the main text
 

of this report. Basically, it enables the control system designer to solve
 

the following problem. A system is described by a set of input and output
 

matrices and a system matrix A. The specification is a desired matrix A
 

and the problem is to find a feedback control matrix K that will yield
 

the desired closed-loop matrix and will minimize a performance index based
 

on system error and effort. The procedure is to determine K by direct
 

comparison of A and A , if possible, and then to determine P and Q
 

from the result. This approach yields a closed-loop system behavior which
 

is similar to the desired behavior. However, the magnitudes of state and
 

input variables may be undesirably large. These characteristics may now
 

be minimized, since P and Q are known, while the closed-loop behavior
 

is maintained at or near the desired condition, by varying the elements of
 

P and Q. The final result is a compromise between the approximate equal­

ity, between the desired and actual closed-loop system matrices and the
 

magnitudes of the transients of the state input variables.
 

Since A may not be arbitrarily specified, the above method is some­

what restricted in application to decoupling problems. A more severe 

limitation to the method is that even when A can be calculated, there
 

is no guarantee that corresponding weighting matrices P and Q can be
 

found. Another limitation of the method is that state variable feed­

back must be used. Thus some form of state estimation has to be utilized.
 

The general theory of specified closed-loop optimal control is devel­

oped in Chapter 2. In Chapter 3, the results preapplied to controller
 

design of the X-14B airplane and a successful design is shown. The
 

Appendices include the derivation of the complete dynamic equations for 

the X-14B.
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CHAPTER 2
 

MATHEMATICAL DEVELOPMENT OF OPTIMAL
 

CLOSED-LOOP SPECIFIED CONTROL
 

2.1 Statement of the Problem and Assumptions
 

In the design of a control ler for a multivariable system, it is fre­

quently necessary to impose restrictions on Lhe behavior characteristics 

of the closed-loop system. These restrictions include the location of the 

eigenvalues of the system as well as interaction between the inputs and 

the outputs. The most systematic way of specifying these restrictions is 

to prescribe a particular closed-loop system matrix and a precompensator 

matrix. Ordinarily this is not possible except for certain classes of 

systems. What is normally obtained is a system which resembles the desired 

system. It is not known however, what the degree of resemblance is,and 

what the penalty the designer must pay for the desired operation behavior. 

This chapter presents an analytical procedure that will systematically de­

sign a controller such that a linear closed-loop system will behave close 

to a prescribed manner and is optimal for some quadratic criterion. 

The assumptions made for the analysis are the following: 

- the plant is represented by a set of linear, time-invariant 

set of state space equations, 

- the plant is completely observableand completely control­

lable, 

- all states are directly available for measurement or can be 

generated by estimation techniques, 

- the control law is linear and constant, 

- the performance index is a quadratic with constant weighting 

coefficients. 



The class of systems considered consists of deterministic systems
 

modeled mathematically by constant coefficient, linear differential equa­

tions in the form
 

x=A x + B u (I-2)
 

The control policy is
 

u =-Kx + R r (1-3)
 

Here, x is an n-dimensional state vector, u is a p-dimensional control
 

vector, y is an m-dimensional output vector, and r is a p-dimensional
 

reference input vector. The matrices A, B, C, K, and R are constant
 

and have dimensions consistent with x, y, u, and r. R is a precompen­

sator matrix which is necessary when additional requirements on input­

output relations, such as decoupling, are made.
 

A desired dynamic behavior may be described by the linear differential
 

equations given by
 

Ax + ~r
A (1-4)
 

Substitution of Equation (1-3) into (11-2) yields
 

Thus if a controlled system is to behave according to specifications, it 

must obey the Equations 

A - B K A (1-6) 

B RP B (1-7)
 

Note that B is not affected by the feedback controller K and is
 

affected only by the precompensator R. In all cases R is either
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known or, For input-output decoupled systems, may be computed [4, 31 

readily. Hence, the problem reduces to finding an optimal control k 

which minimizes the performance index 

f1f (x' Qx+ u' P u)dt (I-1) 
0 

This is simply the optimal regulator problem except that now P and 

are not specified but must be determined for a given closed-loop condition. 

Matrix 2 is symmetric and positive and semidefinite while P is symme­

tric and positive definite. 

2.2 Development of the Specified Optimal Control Technique
 

The conventional approach to optimal control problems is to specify 

P and 2 in the performance index and to solve for the optimal control 

policy. It is well known that the optimal control policy for infinite 

time problem is 

u - pI B' S x (I-8) 

where S , the Riccati matrix, is the steady state solution of the Riccati 

equation
 

-S - S A - A' S - Q + S B P I' S (1-9) 

S is symmetric and positive definite. Comparison of Equations (1-3) and 

(I-8) yields 

K = P-1 B' S (I-10) 

Thus, given a set of weighting matrices P and _ , a corresponding op­

timal solution is readily obtained. However, there is no guarantee that 

the resulting closed-loop system has the'desired dynamic characteristics. 

Instead, one has to evaluate the closed-loOp system for several sets of 

values of P and Q before arriving at a desired solution. 



To develop the method of optimal specified response, consider a
 

system matrix A and a desired closed-loop matrix A defined by
 

A A-BK (I-l) 

If the inverse of the system input matrix B exists, then the control ma­

trix K may be readily found. For the case when the rank of B is less
 

than the order of the system, several courses of action exist. One is to
 

specify a set of eigenvalues and to compute K by any technique which
 

will provide the desired set of eigenvalues. Finally the determined value
 

of K is used to compute A from Equation (I-II). This, of course, re­

moves some degree of arbitrariness in the specification of A , but still
 

provides for a compromise between the choice of desired set of eigenvalues
 

and the amount of effort necessary to obtain the set.
 

A second course of action is to specify A , consistentwith'permis­

sable values of K , and to determine P and Q for the closed-loop sys­

tem. This is especially attractive when closed-loop behavior like decou­

pling is desired.
 

The mathematical equations necessary to solve the problem are obtained
 

by first considering the optimal controller K , given by Equation (I-10), 

substituting it into Equation (1-1I1, and solving for A - A 

A = A - B P-1 B, S 

A - A - B P B' S. (1-12) 

The last equation, when substituted into the steady state Riccati equation, 

yields 
=S A + A' S+ - S (A- A) 0 (1-13) 

which reduces to
 

A' S + SA+ 0= 0 (1-14)
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When the transpose of Equation (1-14) is added to it the final result,
 

recalling that S and _Q are symmetric, is
 

(A + AY)' S + S (A+ A) - 2 _Q (1-15) 

Equations (I-l0), (I-1I) and (1-15) are fundamental to the problem of spe­

cified optimal control. The method is to determine K from (I-1I), cal­

culate P from (I-10), determining S simultaneously, and determine Q 

from (1-15). Once P , which is symmetric and positive definite, and _Q 

which is symmetric and positive semi-definite, are determined, they may be 

modified to maintain a degree of resemblance to the desired closed-loop 

matrix while minimizing state variable and input variables magnitudes. 

The nonideal systems are analyzed in the next section. 

2.3 Analytical Development for Nonideal Systems
 

Consider now the case where the number of manipulated variables is
 

less than the number of state variables (p < n), and hence, the B matrix
 

is nonsquare. Assume that the p inputs are linearly independent from
 

each other; consequently, the rank of B is p.
 

Suppose a change of variables ismade with
 

x = Gz (1-16)
 

where G is an n x n nonsingular matrix to be defined later. When this
 

is substituted into the system equation
 

x = Ax + Bu
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the result can be written as
 

-1 -1
z G A Gz + G Bu (1-17)
 

Define
 

-
A G AG (I-18)
 

-SG B (1-19) 

Further, define G such that
 

B
 

where B is an n x p matrix, 0 represents an (n-p) x p matrix and B is 

a nonsingular p x p matrix. This may be obtained as follows. 

If G= [G %_2], then 

BGR : [(i1] (1-20)1 

or
 

and
 

()I(1-21)2= 


-
The matrix 6 can be any n x (n-p) matrix such that G I exists. This 

demonstrates that a new system representation can be found of the form 

= Az + Bu (1-22) 

such that the first (n-p) rows of the matrix B are identically zero
 

with the remaining p rows forming a matrix of rank p. Therefore, for
 

the derivations and analyses which follow, the first (n-p) rows of B
 

can be taken as zero without loss ingenerality. The lower p rows of
 

B are assumed to be of rank p.
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For the development of the control policy for the nonideal system
 

where p < n, consider the closed-loop representation
 

A=a - BK (1-23)
 

with
 

A=-AL21 A 21 2 

B[0 
The dimensions of the various matrices are as follows:
 

A(n x n), A(n x n), B(n x p), K(p x n), A3I(j x j),
 

A2(j x p), !21(P x j), A22(P x p), A11(j x ),
 

&__2( x p), x j), A=2 x p), (j x p) and
A21(P 2(p 


B2 (p x p), where j = n-p.
 

The Riccati equation for optimal control is given by Equation (1-13),
 

with the control policy given by
 

K=P -1 BS
 

Let
 

K K]
 

2
1
-l
S_ = 


-12 2
 

La
12 R22
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with KI(p x j), K2(p x p), SI(j x j), S1 2(j x p), $22 (p x P),
 

QllO x j), 212(3 x p), Q22(p x p) and P (p x p).
 

Working with partitioned matrices, Equation (1-23) can be expressed
 

as fri- l~ I I2 1.2 2202l~ 
A A22j 2A 422 qi 021  1 

Breaking down this matrix equation into components parts and solving for
 

K and -2yields
 

= E2- I K1 (A21 - 21) (1-24) 

2=4 - 1 2 - A22 ) 

Provided B2-1 exists. This was shown to be true since 2 is of rank p. 

Clearly A = A, and A12 = 112 are restrictions imposed at this time be­

cause of the limit in the number of inputs. After the transformation, the 

optimal weighting matrices P and fl can be found. Repeating Equation 

(1-12), we have 

IBP- B S = A -

In the partitioned form this becomes
 

0 0 

P2 2 s22pi k2 -l 

0 2 02 (1-25)
 

l21-Sl L-22 -E22 

or
 
2 K B l2 A21 - A21 

(1-26) 

k p-2k2.--2 = 22 - A22 
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2.4 Application to an Ideal System
 

To illustrate the design procedure, consider an ideal second order
 

system given by Equation (1-2) where
 

1 ]0
A= J3= C=L1J 1I 
-=4 5 - [ 1 j - L O 1 

Let the desired closed-loop response be governed by
 

-
A =A -BK = 


To determine P and Q for the given A, the first step isto find 

K from 
-K = (A- A) -1
 

[ 4 3
 

The next step is to determine a symmetric, positive definite P from
 

Equation (l-l0) keeping inmind the condition that S must also be sym­

metric and positive definite. Thus
 

(B') - I P K S 

where ­

il 12 fs1 S12 

- P12 P22  t.=12 S22
 

Upon expansion of the last equation, the result is
 

+Pll 4 P12  -Pll + 3 P12  Sll S12 

-Pll -3 P12 + 4 P22  Pl -4 P12 + 3 P221 S 12s22
 

Thus
 
S1l = Pl + 4 P12 (i)
 

= -Pl + 3 P12 PI
S12 = 4 P22 - 3 P12 (ii) 

522 = PII 4 P12 + 3 P2 2 (iii) 
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Because of symmetry of S, Equation (ii)yields the relationship
 

2 (iv)
P12  _T P22 

Equations (i)- (ii)become 

S11 P11 +T P22  (v) 

S12  -PII + 2 P22  (vi) 

$22 PI1 + P22  (vii)
 

Analysis of the equations suggests that P22 may be chosen arbitrarily. 

Since P must be positive definite, P11 > P22. Thus an acceptable 

choice for P is 

1/ 2/31
2/3 1 

which yields
 

[11/3 1
 

L 1 413
 

From Equation (I-15), Q is found directly to be 

[109 17 1 
17 46 

Itmay be readily verified, using Equation (1-13), that the above values 

of P and Q will yield the desired value of S and hence the feedback 

matrix K. 

The time responses for the closed-loop system = A - B K are shown 

inTable I-I for three sets of initial conditions. While the transient 

behavior is as desired, let us assume that the maximum magnitude of the 

control variable u2 is excessive. To reduce it, P22, the weighting asso­
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ciated most closely with u2 is increased from P22 = 1 to P22 = 2 while 

all the other elements of P and _t are held constant. The resulting 

feedback matrix, obtained from Equations (I-10) and (1-13), is 

K:
 2.90 0.32 1
 

l 1.56 1.39 

and the closed-loop system matrix is 

7.76 -0.30
 

L 2.44 -6.39 

The time responses for this modified closed-loop system are shown in Table 

1-2 for the same three sets of initial conditions used in the original 

system. Note that the desired reduction in the magnitude of u2 has been 

obtained, but at a loss in the degree of decoupling between the states. 

A system designer would have to choose a compromise between excessive in­

put and excessive coupling. With the foregoing information, he is in a 

position to make an objective choice of a control policy that most nearly 

meets his needs. 
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TABLE I-I
 

TIME RESPONSE FOR THE SECOND ORDER
 

EXAMPLE PROBLEM, P(2,2) = 1.0
 

1. X(O) = 0, X2(O) = 10 

TIME X X2 U1 U2 (UI) + (U2) 

0.0 0.00 10.00 10.00 -30.00 40.00
 
0.3 0.00 7.86 7.86 -23.59 31.46
 
0.6 0.00 6.18 6.18 -18.56 24.75
 
0.9 0.00 4.86 4.86 -14.60 19.47 
1.2 0.00 3.82 3.82 -11.48 15.31
 
1.5 0.00 3.01 3.01 - 9.03 12.04 
1.8 0.00 2.36 2.36 - 7.10 9.47
 
2.1 0.00 1.86 1.86 - 5.59 7.45
 
2.4 0.00 1.46 1.46 - 4.39 5.86
 
2.7 0.00 1.15 1.15 - 3.46 4.61 
3.0 0.00 0.90 0.90 - 2.72 3.62 

2. X1(O) l10, X2 (O) 0 

TIME X1 X2 U1 U2 JUI) + (U2) 

0.0 10.00 0.00 -10.00 -40.00 50.00
 
0.3 7.86 0.00 - 7.86 -31.46 39.33 
0.6 6.18 0.00 - 6.18 -24.75 30.93 
0.9 4.86 0.00 - 4.86 -19.47 24.33
 
1.2 3.82 0.00 - 3.82 -15.31 19.14 
1.5 3.01 0.00 - 3.01 -12.04 15.06 
1.8 2.36 0.00 - 2.36 - 9.47 11.84
 
2.1 1.86 0.00 - 1.86 - 7.45 9.31 
2.4 1.46 0.00 - 1.46 - 5.86 7.33
 
2.7 1.15 0.00 - 1.15 - 4.61 5.76 
3.0 0.90 0.00 - 0.90 - 3.62 4.53 

10, =3. X1(O) l X2 (O) 10 

TIME X1 X2 U1 U2 (U1) + (U2)
 

0.0 10.00 10.00 0.00 -70.00 70.00 
0.3 7.86 7.86 0.00 -55.06 55.06 
0.6 6.18 6.18 0.00 -43.31 43.31 
0.9 4.86 4.36 0.00 -34.07 34.07 
1.2 3.82 3.82 0.00 -26.80 26.80 
1.5 3.01 3.01 0.00 -21.08 21.08 
1.8 2.36 2.36 0.00 -16.58 16.58
 
2.1 1.86 1.86 0.00 -13.04 13.04
 
2.4 1.46 1.46 0.00 -10.26 10.26
 
2.7 1.15 1.15 0.00 - 8.07 8.07 
3.0 0.90 0.90 0.00 - 6.35 6.35 
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TABLE 1-2
 

TIME RESPONSE FOR THE SECOND ORDER
 

EXAMPLE PROBLEM, P(2,2) = 2.0 

1. Xl(O) = O, X2(O) : 10 

TIME Xi X2 U1 U2 (U1) + (U2) 

0.0 0.00 10.00 -4.88 -13.35 18.23 
0.3 0.04 8.27 -4.16 -11 .11 15.28 
0.6 0.06 6.84 -3.55 - 9.26 12.81 
0.9 0.08 5.66 -3.01 - 7.71 10.72 
1.2 0.09 4.68 -2.56 - 6.42 8.98 
1.5 0.09 3.88 -2.17 - 5.34 7.51 
1.8 0.09 3.21 -1.83 - 4.45 6.29 
2.1 0.08 2.66 -1.55 - 3.70 5.26 
2.4 0.07 2.20 -1.31 - 3.08 4.40 
2.7 0.07 1.83 -1.10 - 2.57 3.68 
3.0 0.06 1.51 -0.93 - 2.14 3.07 

2. X1(O) = 10, X2 (O) = O 

TIME X1 X2 U1 U2 (u1) + (U2) 

0.0 10.00 0.00 -29.84 -17.80 47.65 
0.3 7.92 0.53 -23.91 -14.82 38.73 
0.6 6.28 0.87 -19.17 -12.34 31.51 
0.9 4.98 1.06 -15.38 -10.28 25.66 
1.2 3.95 1.14 -12.35 - 8.56 20.91 
1.5 3.13 1.16 - 9.92 - 7.13 17.05 
1.8 2.48 1.12 - 7.98 - 5.93 13.91 
2.1 1.97 1.06 - 6.42 - 4.94 11.36 
2.4 1.57 0.99 - 5.17 - 4.11 9.29 
2.7 1.24 0.90 - 4.16 - 3.42 7.59 
3.0 0.99 0.81 - 3.36 - 2.85 6.21 

3. XI (0 ) = 10, X2 (O) = 10 

TIME X2 X2 Ul U2 U) + (U2 ) 

0.0 10.00 10.00 -34.73 -31.15 65.89 
0.3 7.96 8.81 -28.08 -25.94 54:02 
0.6 6.34 7.71 -22.72 -21.60 44.32 
0.9 5.06 6.72 -18.40 -17.99 36.39 
1.2 4.04 5.83 -14.91 -14.98 29.89 
1.5 3.22 5.04 -12.09 -12.47 24.57 
1.8 2.57 4.34 - 9.81 -10.39 20.20 
2.1 2.06 3.73 - 7.97 - 8.65 16.63 
2.4 1.64 3.19 - 6.48 - 7.20 13.69 
2.7 1.32 2.73 - 5.27 - 6.00 11,27 
3.0 1.05 2.33 - 4.29 - 4.99 9,29 
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CHAPTER 3
 

LIMITATIONS IN APPLICATION OF SPECIFIED CLOSED-LOOP
 

OPTIMAL CONTROL TO X-14B AIRCRAFT
 

3.1 Control Design Problems in VTOL Aircraft
 

The major problems in the control of VTOL aircraft, occur at the hover
 

and near-hover conditions. Because of the low speed of the aircraft at
 

these conditions, insufficient aerodynamic forces exist to produce an
 

effective control system relying on aerodynamic control surfaces. Hence,
 

supplementary controls are added to provide lift, roll moment, and pitch
 

moment. With the added controls the pilot is required to perform a large
 

number of tasks to maintain the aircraft at a desired attitude.
 

To simplify the task of controlling the airplane, a decoupling con­

troller scheme was sought. The specified closed-loop optimal control meth­

od, developed in the previous chapter, was selected. The primary reason
 

was that while linear decoupling techniques gave adequate results and these
 

were used to obtain a completely decoupled system, it was necessary to
 

minimize the magnitudes of some of the control and state variables, and
 

itwas necessary to maximize the envelope control system operation in
 

the linear domain. The latter implied avoiding saturation of the control
 

variables as much as possible. It is obvious that the handling character­

istics of a controlled system are drastically changed when saturation is
 

reached. To maximize the envelope of operation, it is necessary to dis­

tribute the control effort in an equitable manner.
 

3.2 Description of the X-14 VTOL Aircraft
 

The Bell X-14B VTOL aircraft is a fixed wing, jet-propelled, deflected­

jet vehicle. It is a small (4200 pounds) two-place, side-by-side airplane
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with two jet engines mounted in the fuselage. The vertical thrust is
 

derived from cascade-type diverters on the exhausts of each engine which
 

enables the pilot to select any desired thrust angle from vertical to hori­

zontal. In addition to this thrust diverter, it is also assumed that a
 

side vane is present in the exhaust enabling direct lateral movement.
 

Angular control about the three axes is maintained through a continuous
 

bleed from the engine compressors and discharged at the tail and wing tips
 

of the airplane.
 

3.3 Equations of Motion for a VTOL Aircraft
 

The complete development of the nonlinear equations of motion for a
 

VTOL aircraft in general and the X-14B in particular is made inAppendix
 

A-I. A general method to linearize an nth order nonlinear equation is
 

presented inAppendix A-II. Appendix A-Ill is a listing of the linearized
 

system equations for several flight conditions of the X-14B.
 

A common practice in analyzing aircraft is to separate, or decouple,
 

the longitudinal mode of motion from the lateral mode. The linear equa­

tions of motion for the longitudinal mode of the X-14B in hover, after
 

dropping the effects of the elevator, can be expressed as
 

x = Ax + Bu
 

where 

0 1.O 0 0 

0 -.150 -4.4 x 10-4  -1.5 x 10-4 

= 32.0 0 - .020 - .038 

0 0 0 - .021
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0 0 0
 

.035 .020 0
 

B 0 .56 0
 

0 0 3.6
 

where
 
xI jy u1
a1e 6Y ul 

x2 i 2
 
x3 'w , = u2U
 
x3 
 w
 

X4 .U~ 
 , 3. 


The physical variables corresponding to the state variables are 0 (radians),
 

q (radians/second), u (feet/second), and w (feet/second), respectively,
 

with the control vector corresponding to ay (reaction nozzle about the y
 

axis), a (thrust angle measured positive from the vertical), and £ (engine
 

RPM as a percent of maximum).
 

3.4 Design of a Controller for Hover Flight
 

In the open-loop system there is strong coupling between roll and the
 

vertical velocity. Let the feedback control policy be given by
 

k11  k12  k13  k14
 

u= -Kx= K21 
 k22 k23 k24
 

k31  k32  k33  k34 ]
 

To obtain the desired decoupling a closed-loop system matrix may be
 

specified as
 

A = 2 (1-27) 

10 0 -.6 0 

0 0 0 -.61 
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It must be determined that the system is completely controllable and com­

pletely observable. Since state variable output is assumed, observability
 

is complete. It is controllable since the rank of the controllability
 

matri x
 

[B AB A2B A3BJ
 

is four.
 

Next, it should be determined that a feedback control matrix K, 

exists that will produce the closed-loop response, A. The general form 

of this nonideal case was treated in the previous chapter. The closed­

loop equation is (1-28) 

0 1 0 0 

0.-035k- -l 1 4_ -l5 1 4_1
i0.-035k11 -.15-.035k 12  -. 5xlO-.035k13  -0.5xlO-.O35k14
 

-.02k 2 1  -.02k 22  -.02k23  -.02k 24
 A - BK 

32.-.56k 21  0-.56k 22  -.02-.56k 23  -.038-.56k 24 

0-3.6k31  0-3.6k32  0-3.6k3 3  -.021-3.6k34 

Comparing Equation (1-27) with Equation (1-28), the control matrix is found
 

to be ­

146.94 81.43 -0.60 0.03
 

KI -57.14 0. 1.03 -0.06 (1-29)
 

0. 0. 0. 0.16
 

The next step is to determine P and Q which, when used in conjunction
 

with optimal control theory, would yield the same matrix K. Following
 

the same procedure as given in the example of Chapter 2a set of positive
 

semi-definite matrices P and Q , which yields Equation (I-10) as the
 

optimal solution was found. This set one solution to inverse quadratic
 

optimization problem for the X-14B airplane is
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50.000 28.416 -.32301
 

P= 	 28.416 17.150 - 244.47 (1-30)
 

-.32301 -244.47 60676.
 

649794. 0 -20.918 71.434 

= 0 39392. 116.83 -3872.8 (1-31) 

-20.918 116.83 1.1395 -43.576 

71.434 -3872.8 -43.576 1683.6
 

The 	corresponding solution to the steady state Riccati equation is
 

given by
 

489834. 163518. -133.74 3867.3
 

163518. 116327. -22.548 -7.3061
 
S = 
 (1-32)
 
- -133.74 -22.548 1.8539 -70.279 

2867.3 -7.3061 -70.279 2715.3 

As a check, the above values of P and Q were used inthe per­

formance index (I-I) and the resultant optimal solution, obtained by 

conventional optimal control theory techniques, was found to be 

0.00 1.00 0.00 0.00
 

9 
-4.00 -3.00 4.77xI0'4 -2.]7x10 -A= 

- 6 6 	 - 5 
-	 -2.35x10 -1.61xlO- -0.60 -1.llxlO

-6.08x10- 8 -4.17xi0 - 8 7.31x10- 9 -0.60 

Note that the above matrix is nearly identical to the desired matrix
 

given by (1-29) and, hence, the first part of the controller design
 

problem is complete.
 

http:1.61xlO--0.60
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To determine whether the above controller was acceptable, a linear
 

model and the controller were simulated on the digital computer. Further­

more, the diagonal elements of P were varied by 1 percent sequentially
 

and the corresponding control matrices were determined. These are shown
 

in Table 1-3. The resulting closed-loop systems were observed for trans­

ients due to initial conditions and the results are shown in Table 1-4.
 

The parameters recorded were the maximum values of the state and the in­

put variables. Examination of the data for the exact decoupling control­

ler reveals that the control effort u, (reaction bleed control, 6y) is
 

excessive and should be reduced. The penalty on this variable, pl
 

when increased by 1 percent causes a near 90 percent decrease in the
 

maximum value of u1 , This was the evaluated to be the most desirable
 

of the controllers presented in Table 1-3. With this choice of Pll
 

the final closed-loop configuration selected is
 

0 	 1.00 0 0 

9.701x10 -5 -5.536xi0 -6 -4.023 -3.013 


-2.408xi0
A -126.6 -67.40 -.1781 
-2
 

_3.277 -1.744 1.092xi0 -2 -0.6005
 

The disadvantage of this design is that there is some unilateral
 

coupling. That is,pitch and pitch rate (e and q) disturb the for­

ward and vertical velocities (u and w), but the last two affect
 

0 and q only minimally. Thus, the "best" controller selected is
 

18.416 13.040 -0.176 0.010 

K = 168.949 120.348 0.282 -0.025 

0.911 0.484 -0.003 0.161
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3.5 Conclusions
 

One of the goals of this study was the development of a suboptimal 

decoupling technique for general systems. Even though the theory of op­

timal control is well defined, it suffers from the fact that it is dif­

ficult to prescribe a meaningful performance index. When a degree of 

decoupling is desired in a controlled system, there is no means of 

specifying a performance index which would provide a decoupling control­

ler. Thus the problem was investigated in a reverse order. A decoupl­

ing control policy was determined and then an attempt was made to find 

a performance index which, when used in a standard fashion, yielded 

the desired closed-loop system- The objective was to manipulate the 

known performance index to strike a balance between the degree of tol­

erable coupling and some criteria on magnitudes of states and inputs 

of the system. 

The elements of the performance index were perturbed a finite
 

amount, one element at a time. The resulting control policies were
 

evaluated and the most desirable policy was finally selected. There
 

was an increase in coupling with the new policy, but that was off set
 

by the large decrease in the amount of control needed to maintain the
 

airplane in the proper attitude.
 

The technique developed in the foregoing appears to be quite pro­

mising. Additional work, however, is necessary to define the most de­

sirable type of control action.
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APPENDIX A
 

DEVELOPMENT OF THE EQUATIONS OF MOTION FOR THE X-14 AIRCRAFT
 

A. General Equations of Motion for VTOL Aircraft
 

This development of the equations of motion for a VTOL aircraft as­

sumes the aircraft is rigid and the origin of the coordinate system is at
 

the mass center [1, 2, 3]. Additional assumptions used in this develop­

ment of the equations of motion are:
 

1. The VTOL ai rcraft has diverters and vanes affecting the
 

engine exhaust.
 

2. Any wind disturbance is irrotational.
 

3. Engines rotate in the same direction at the same speed.
 

A standard aircraft body axis system is used where the aircraft is
 

symmetric about the x-z plane with the positive y-axis pointing out the
 

right wing, the z-axis down, and the x-axis in the forward direction of
 

flight (stability axes). This is a right-handed coordinate system.
 

For the system, the velocities, angles, angular velocities, forces
 

and moments associated with each axis are shown inTable A-I-I and Figure
 

A-I-l [4].
 

Table A-I-1
 

Axis Linear Velocity Force Angle Angular Velocity Moment
 

u F L
x p 

Y v F e q M 

Z w Fz T r N 

X 



35. 

From Etkin [1], the time derivative of the angular quantities can be
 

expressed as
 

= q cos i)- r sin @ 

= p + q sin 1 tan G + r cos p tan 0 

=, (q sin d + r cos t)/ cos e 

Since the analysis is for a VTOL aircraft, it becomes necessary to in­

troduce some notation not normally found in airplane equations. A listing
 

of this additional notation is in Figure A-I-2.
 

Inertial Forces
 

In writing the equations of motion, all inertial components are ex­

pressed as D'Alembert forces, i.e.,
 

EFexternal + EFinertial = 0
 

where
 

Finertial = -ma
 

Using this notation the inertial forces along the three axes are 

Fxi = -m (G+ wq - vr) 

Fyi = -m 0 - wp + ur) 

Fzi = im (w - uq + vp) 

Likewise, the moments are 

Mxi = - p Ix + qr (Iy- I ) + (t+ pq) Ixz 

2
Myi = - q Iy+ pr (Iz - Ix) + (r - 2) ixz 

z + pq (I I
M = Mzi- r I x - Iy) + (p -qr) Iy 
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Figure A-I-2
 

Definitions of Non-standard Notation
 

1. 	w subscript is for wind velocity
 

2. 	V1 = jet exhaust velocity from the diverters 

3. 	0 = thrust diverter angle measured in the verticle plane from the
 

positive z-axis
 

4. 	X = exhaust side vane angle measured positive about the x-axis by
 

the right hand rule
 

5. 	 = [(u - uW)2 + (w - W)2]1 /2
U0 


6.U0 	 [(-u 2 2 2 1/2=6. 	 UO [(u - Uw)2 + (w - w)2 + (v - vw) / 

7. 	 a = angle of attack; sin a = (w - ww)/U 0 

8. 	0 = side slip angle; sin 8 = (v - vw)/U 0 

9. x1 = distance engine intake is in front of the center of gravity 

1U. zI = distance engine intake is below the center of gravity 

11. 	 x2 = distance engine exhaust pivot point is in front of the center of
 

gravity
 

12. 	 z 2 = distance engine exhaust pivot point is below the center of gravity 

13. 	 9i is the effective length where the exhaust will impinge on the diverter
 

vane from the end of the jet engine
 

14. 	 I = moment of inertia of one engine about the axis of rotation
 

15. 	 e = angular velocity of an engine measured positive In the direction
a
 

of the x-axis
 

16. 	 N.E. = number of engines 

17. 	 T = total thrust from the divurters 

18. 	Lp Mq, Nr apparent aerodyntmic damping near hover not directly
 

attributable to the effects caused by C% * , Cn
 
p q r
 

19. 	 16 , M6 y, N Moment effects due to reaction control nozzles 
,x y 
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20. V =jet velocity at the engine exhaust
 

21. T 0 total installed Jet thrust 

22. Ca = longitudinal dverter efficiency factor 

23. , = lateral diverter vane efficiency factor
 



38.
 

where 

I X f(y2 + z2)dm, Iy f(x2 + z2)dm, Iz f(x2 + y2)dmx y z 

I x fxzdm I ffxydm I ffyzdmxz xy y 

with 

I 0 and I =0 
xy yz
 

since the aircraft is symmetric about the xz plane.
 

In addition to aircraft inertial terms, there is a contribution from
 

the rotation of the engines to the moment equations. If the engine speed
 

is almost constant, the contribution to the moment equations can be expressed
 

as 

M =0 
e x
 

M = (N.E.) I Q r
e ea 
y
 

M e = -(N.E.) I ea q
 
z 

Gravitational Forces
 

Since the origin of the coordinate system is at the center of gravity,
 

the gravitational forces do not enter into the moment equations. Their
 

contribution to the force equations is
 

F = -W sin 6 x 
g
 

F = W sin cos 0
Yg 

F = W cos cos 6
 
zg
 

Mass Flow Fffects
 

There are two contributions to mass flow effects, one at the engine
 

intakes and a second effect at the engine exhausts. If the mass of the fuel­

burned is neglected, the forces due to the mass flow can be expressed as
 

F =-&(u - u -V sin -cos )
 
m
 

F - (v - v - V. sin A)
 

F =-m (w - w + V cos a cos A)
 
m
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where & is the entering mass flow rate which is approAinatcly equal to the 

mass flow rate out, V is the relative exhaust'velocity of 'the jet, a is
 

the diverter angle, and X is the side vane angle. Recalling that the gross
 

thrust equals mass flow rate times relative velocity,
 

T=iVj
 

or 

TVj 

Upon making this substitution, the mass flow contributions to the equations 

of motion can be written as 

FX. = T [sin o cos X- (u- uw)/V]
m 

Fy-T [sin A- (v- v)/ vIV
 

F .- T [cos a cos A+ (w - w)/V
 
m
 

The mass flow contributions to the moment equations enter in because the 

intakes and exhausts are not at the center of gravity. The moments are 

M T z (v-v)/V
x. 1 w 1v
 

M min
y1. =T [x 1 (w - w) - 1I (u - uw)]/V j 

in
 
Mz. =T x1 (v - v )
 V 

where xI and z are the distances from the center of gravity to the center 

of the intakes. The moments caueed by the exhaust are 

Mx. -T sin A(z2 + kl cos a) 
mout
 

Ny = T cos A (Z2 sin a + x2 cos a)
 

Mz out = TsinAX (x 2 -z£isina)
 

mout
 
where x2 and z2 are the distances from the center of gravity to the center
 

of the exhausts, and zI is the effective length where the exhaust will 

impinge on the diverter vane.
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The total moments caused by engine mass flow terms can now be 

expressed as 

MX T [-sin X (z2 + cos a) + .z (v - vw)/V 31 
m 

Hyi -T { cos X (z2 sin a + x2 cos a) + [xI (w -w w) - z1 (U-Uw)]/V.] 

H = T [sin X(x2 - Z sin a) -. x1 (v - vw)/V]
 
m
 

Additional moments are caused by discharge nozzles in the tail and on the
 

wing tips. These reaction control moments can be written as
 

xR.C. x x 

M =If 6 
YR.C. y Y 

H = N6 6
 
zR.C. z z
 

where 6x 6y and 6 are the reaction nozzle openings expressed in degrees.
 

Aerodynamic Expressions 

ine compieue aeronynamic expressions ior a convennonai airpiane can 

be written as 

2 Sc
 
aero a x
 

aero 2 o y
 

= .2 Uo2 S C
 
Zaero 2o z
 

L 2 S b C
 

aero 2 o b
 

~aero c
 

N _g U2 Sb C 
aero 2 o n 

where Cx, Cy, C , CZ, Cm and Cn are the non-dimensional aerodynamic 

coefficients, o is the air density, U. [(u - Uw)2 + (w - qw)2]1/2, 

U - [(u- U w)2 + (w - ww)2 + (v - Vw)2]/2, S is the wing area, b is the 

span and c is the wing chord. 
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Now use a Taylor series expansion of the non-dimensional aeroynavmic 

forces retaining only the first terms In the series [1, 2] and 	 let the 
A 

vehicle velocities relative to the air mass be denoted by ure u -U
 

A 	 A 
Vre1 = v- v and wre ! = w - w . Then, 

ac 3C acCx C + 	 Tt c+ u--rel + 3 &e
 

136 e
 

KC DC aC 3C
 
Cy Cy0 + +p3 
 + r 36r r 

C C aC 3C aC
C C + z z + z +- 6
 

z 20 a + u Urel 3q d a H e e
 

a0z0 'CZ 30C3 + 

a a a 6rr 
a0 3W 30 a0 30 

= mo au mm aum + m M m& + __ra eret Dq 	 M. 

aC 3C ac ac ac 

n= Cn0 +-Mn+---n p+ -ar+ Dn6a + n 6 
0 a r 

where a is the angle of attack (sin a = Wrel/ U0), 8 is the side slip 

angle (cos R = U0 / U0),) and 6e 6a and 6r are the elevator, aileron and 

rudder deflections, respectively. 

Following Etkin [2], if the partial derivatives are written as 

non-dimensional stability derivatives, the aerodynamic portions of the 

equations of motion become 

X R=Uo2 S[0 +C a+ C U +C 61 
aero 2 0 x° x U x rel x 6 e 

e 

2eS+ + Cy + C p + C 	 r + C 6 1 
sac 2 o Y Y 2U Yp 2U Yr 6 

a 	 o r 

p- 1 	 .Lc * eZaero 	 o2z= 2oS[Cz + C +U ouoCz Urel +2U C. z. z 6q +2 C &+C 6 
a a 0 u a q a a e 
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L p f 2 Sb[C + C +--C p + - C9 r + C & +aero 2 o 90 z 2U0 p 2U r z6 a 

C 6 r 0 a 

r 

M, - U 2 Sc[C +0 ou+ C +-c C q + aero 2 o m m U Cm rel 2U n 
0 o u q 

_ c C +c 
]2U m. M e

0 a
 
e 

N Sb[C +C 0+b C p+- C r +C a aero 2 no0 n 2U n 2U nr n a a o2npa 
+ Cn. 6r]
 

r 

In addition to these stability derivatives normally found in airplane
 

equations, for VTOL aircraft it is desirable to add the rotational
 

camping ooservea on a novering airpiane. Thib can be expLebbed .
 

Laero VTOL Lp p
 

Maero VTOL Mq q
 

N sN r
 aero VTOL r 

After sunming the component parts, the complete non-linear equations of
 

motion for a VTOL aircraft can be written as in Fig. A-I-3.
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Figure A-I-3 

Summary of Complete Non-linear Equations of Motion for a VTOL Aircraft
 

bvr - wq - g sin 6 + mT [sin a cos X - VjI (u - u)] (A--l 

+ I Po 2 s [c + C a + I oC (u- U) + '5 
2m0 x0x U0x w x 6 

I e _2 
Tos (vV ]+p% S 

v-wp- ur+gsin +Ksn 

U VJ w 2m. (A-I-2) 

+CYC + __ yp + h- Cy r + Cy r
 
0 2U p 2% r r
 

-uq- vp+ gcos cosO6 - [cos cos X +.1 (w-w 

2
PU0 2S +1 -- 3 

+ Pm S + z 0 (uUw)+2U o z 

+ C &,4-C 6] 

e 

(I -I ) I i-[-in X + icos a) 
x x x 

z L L 2 Sb 
+ i( ]+ -P-pP x~~ 2+0 C + 8 (A-I-4) 

b I Ii 
+ i-c 9 p + --- cC, r+ CZ + c9 6r2U0 p 2U0 r 6 a 6 ] 

2 2%a rp 

(Iz -I) xz 2 2 
q pr + pr E. r)(rI 


{Cos (Z2 sina + x coso )+!-[X (w-w ) -Z (u-u)II 

{OA\ 2 2 v [I (w - 1 (t11 
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+ I-q
I y 

Mp6 

q + m - ­y
Iy 

6y + 

U02Sc1 

P21
1y 

[C 0 
no 

+ C 
in a 

a +-C
u0 

(u-
muw 

u) 

(A-I -5) 

+ 
0 q 

q+C 
2 0 M& 

+C 
m6 

e 

6 
e 

(I xr-I - I )y 
z 

Pq + II z(p 
z 

- qr) + --
z 
xI 

e 

e 

e 

e 

T [sin
I z2 

X (x - sin 
1v 

) - (v- v)] 
I 

r 

(A-I--6) 

+I--
I 

z 
z 

+ 2-
21z 

[onC + c 
n 

B+ b-
2 

c 
np 

p + b-
2 0 

C 
nr 

r 

+c+ c ar 

n6 
a 

a n 
r 

r 
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Figure A-I-4
 

Suary of the Reduced Non-Linear Equations of Motion for the X-14 Aircraft
 

= vr - wq - g sin 0 + [sill a cos I- (u - u)]
i Vw 

+-!i (A-I-i) 
1 2P02S [(C + A CL) sin a - C Cos a]

2m 0 p. off D 

6wp - ur + g sin ' cos +1 [sin 	X (v-v w) + 1 0 U02 SC (A-I-8)m v w 2m 0 Y 

= uq - vp + g Cos 4 Cos 0 - T [Cos a Cos + V- (w - w]
 
in w
 

j 
 (A-I-9)
1 PU2. C 
- 2-- 2 + ACL) cos a CD sin+ a]p. off 
(I - I)X


-=-JZr+xz i+ q T [-sin
qr+-j- (r+ pq) +4 -[ i (z(z 2 +Zi+z cosa-o) + (v-v]
Ix x 	 Ix 2 1T 

L 	 1 2(A-I-i 
+ x+ , 2 S 	 +C 6 (x 	 C£
 

a
 
z x pr+ xz (r -p 2)2 1 
Q r o
 

ae+cooos+I ­ e 

(z 2 sin a+ x 2 eosCF) +-L [x1 (w - w) -z (u- u)]2 12 	 (A- I-ii) 

+ 	 S q + ly- 6y + 2-y U02Sc [(51 + A C)

0 p. off 
 0
 

+ 	 (C + A C )a + C q + C 6]
 
Rap.of ma 2U0 mq 6
 

(I -I) I 

Iz 	 2l-e2 e q
SZ 	 z 

N
 

T 	 N 6 (A-I-12)+[sinx Cs sin2 a) -- (v-v )]# +(--2
z 	 jz z
1 u2Sb + C 6 + C
 

6+ (Cn +c r n 6 a 
21 0 n0 6 r a 



46.
 

B. Application of the Equations of Motion to the X-14 Aircraft 

Several of the above aerodynamic stability derivatives have a very
 

small effect in the representation of the dynamics of the X-14. The
 

determination of which stability derivatives have this insignificant
 

effect was based upon examination of wind tunnel data and a knowledge
 

of the physical airplane. The final justification for retaining or
 

neglecting different stability derivatives comes from the fact that an
 

analytical mode] was obtained which when used in simulator studies closely
 

approximated the physical airplane [5]. Using these findings the above
 

aerodynamic contribution to the equations of motion can be expressed as
 

K U 2 S sin a - CD cos a) 

ap-2 sc 
aero 2 a Y
 

z = 2 s (c cos a + C sin a)
 
aera 90 L. D
 

Vaer2 Sb (C + C 6a) + I. p
 

a
 )+Mqc +C +M P 2 
+aero 2 Sc (Cm +m a+-oS Cm q C 6 +M q

ner 2. am 2U qe 
e 

+
N pe1o 2 Sb (C +C C a) + N r 
aera 2 o n0 6 r n6 aa r
 

r a 

where CL is the non-dimensional lift coefficient and CD is the drag
 

coefficient[2].
 

Continuing to follow the development in reference [5], some of the
 

above "power on" stability derivatives are expressed as "power off" plus 

" A" terms where the " A" represents the difference between power on and 

power off effects. The aerodynamic portion of the equations of motion 

now becomes
 

Xar Uo2 Sr(C + A CL ) sin a - CD cos a]

aero2 0 Lpower off LD
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aero 2o S Cy
 

r= _ _ U 2 S [(C + AC ) cos a + CD sin O] 
power off L D
 

L U 2 Sb (CZ + CZ 6 a) + L p
2 0aeroo pP
 

a
 
0 2 

M -U 2Sc [(C m + AC) + (Cm + A ac 
aero 2 o( Ac+( AC )

power off 
 power off
 

C 
++29- C q C 6 ] +M q
 

2U0 mq m6 e q

e 

+.= 2 Sb (C + C 6, + C ' N, r 
o r 6a 

Upon incorporating these expressions for the aerodynamic forces in the
 

complete equations of motion, the reduced non-linear equations of
 

motion for the X-14 can be written as in Fig. A-I-4.
 

These equations can be put in state variable form by eliminating
 

the derivative terms from the right hand side of equations (A-I-1) and
 

A-1-12). Rewrite the Pquations as
 

I 5=i ?+L* 
x xz (A-I-13) 

I z tnI xz +N* 
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whe re 

L* - (Iy - Iz) qr + Ixz pq + T[-sin X (z2 +zI cos a) 

+ z I(v- vW) / V1 +L p + L6 
6 x + 

" 1/2p U2 Sb (C£0 + C z 6a )
 

a 

N*(I -Il)pq-T qr+ S 0q
N* . Ix-Iypq Ixz q r + 2 1I e q
 

+ T [sin A (x2 - 1 sin a) - xI (V - v )/V.] + N rw r 

2
+N &+lf2 p u Sb( +C ' +C )
 
N6 6z o (Cn n 6 r nS 6a 

r a 

Upon solving Eqns. (A-1-13) for P and t it is found that 

2,
',I, L* + I N*)/ ( I - Ix ) 

2
 
L* + Ix Nt)/(Ix 1z -I xz
c(Ixz 
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C. Numerical Evaluation of the X-14 Equations of Motion
 

Numerical values for the constants in equations (A-I-7) to (A-I-12) 

are given in Table A-1-2. In addition, the following stability 

derivatives can be expressed as functional relationships [5]: 

Ci = 0.0030 cos26/ deg 

a 

C = -0.00014 cos2 / deg
 

a
 

C = 0.00118 cos 2/ deg 

r 

C = -0.0178/ deg
 
e 

Furthermore, Figures (A-I-5) through A-I-12) show graphs of C
£0, 

0 a power off' C00maff , C L p o power off
 

C /T and Tovs. RPM. Tc is the non-dimensionalized thrust with Te 

T/(1/2 U0' S). T is the thrust at the engine exhaust and T is the 

thrust at the end of the diverters. Hence, 

T T 0 a EX 

where E is the longitudinal diverter efficiency factor and is the 

lateral side vane efficiency factor. Also, 

V = V C 
which demonstrate that the jet velocity is somewhat less at the exit
 

of the diverters than at the exit of the engines. In order to reduce
 

these graphs to a useable form, functional relationships must be ob­

tained. It was attempted to fit all of the graphs with polynomial
 

curves. This, however, was impractical for the more irregular func­

tions and straight line approximations were used. The functions used
 

are shown in Table A-I-3.
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The reaction control nozzle effects were evaluated by two independent 

methods. The X-14's response to sinusoidal inputs was analyzed by NASA 

at Moffet Field. The second method is to note that 

moment = M6 6Y = Force . Length 

or 

M6y6y Ymx = Fmax . length 

where the length is the distance to the discharge nozzle. F was
max
 

measured directly using transducers, and 6 was also measured di­

rectly. Numerical values associated with these calculations and a com­

parison with the other method are shown in Table A-I-4. This agreement
 

is quite good, especially when considering the errors and uncertainties
 

involved in measuring quantities like the moments of inertia and the
 

maximum force at the nozzle outlets.
 



p 


weight 


I 


I
Y
 

I 


1I
x 


z 
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Table A-I-2
 

X-14 ConsLant Parameters
 

-3 
- 2.378 x 10 slugs/ftS 

= 4182 lb. 

= 2340 slug-ft
2 

= 3400 slug-ft
2 

2
 
5400 slug-ft
 

=180 slug-ft
2
 

= 

mass center at station 99.84 in. and 0.58 in.right of center line 

=6 ft.
 

2= -0.0133 ft.
 

x1 

= 0.583 ft.
zI 


= 0.916 ft
 

k = 0.167 ft.
 

z2 


2I = 1728 rad/sec at 100% RPM
C 
2
 

I 0.5 slug ft
= 

e 

S = 182.69 ft2
 

c = 5.56 ft. 

m = 129.9 slugs 

b = 33.83 ft. 

1
-
M /Iy = -0.15 sec 
q 


L /I = -0.45 sec
 
px
 

= -0.20 sec-1
Nr/I 


C = -11.4 
m 

q 
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c = -0.0178 deg
m
 

e
 

= 0.576 rad -1
 A C 

cc
 

MH/Iy = 0.0350 rad/sec 2/deg
 

N /I = 0.0166 rad/sec 2/deg
 
SZ
 

L /I = 0.0681 rad/sec 2/deg
 
x6x 

Vjo = 2000 ft/sec 

= 0.91 

= 1.00 



Table A-I-3 

T TT (Q) with 9 in percent of maximum RPM and T in pounds (fot one 
engine only) 

T = 44.15011 * 9 - 1869.205 Q < 93.3
0 

= 68.96552 * 0 -4184.483 93.3 < E < 99.1
 

= 80 * Q - 5278. 99.1 < R < 100.1 

= 18.18182 * 9 + 910. 100.1 < 9 < 101.2 

0)
 

0 = 0.02265 * T + 42.3375 T < 2250
 
0 0 

= .0145 * T + 60.675 2250 < T < 2650
 
o 0 

= .0125 * T + 65.975 2650 < T < 2730
 
o 0 

= .055 * T - 50.05 2730 < T < 2750
 
0 0 

ACL/IT = f (UO) 2
703 -:-U

-
ACL/Tc = -2.248398 x 10 U + 2.483009 x 10 U0 1.332149 

x 10-3 U0 

'CM/Tc = f (UO ) 

ACM/iTc = 4.900354 x 10
- 7 U0 3 - 3.164620 x 10- 5 U02 + 1.529505
 

x 10 - 3 U0 

CD = CD(UO) 

CD = .11 + 1./(2.152195 U0 + 12.5) 

CM0 M (UO) 

power off power off
 

C0 = -0.6 + 0.00237 U0 U0 < 34 (ft/sec) 

power off .-0.52 + 0.0148 (U0 - 34) 34< U < 51 

= -0.27 + 0.001579 (U0 - 51) 51 < U0 < 101 

= -0.19 UO > 101 
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c = cm (U0) 
apower off power off 

C - -4.1 + 0.04145 U0 U0 < 34 (ft/sec) 

power off 

. -2.7 + 0.1007 (U0 - 34) 34 < U0 < 51 

-­ 1.0 U0 > 101 

cy = cy (B) 

Cy = -1.851a 0 < 0 < 0.189 (rad) 

= -0.35 + 0.393 (8 - 0.]89) 0.189 < 0 < 0.418 

= -0.26 - 0.362 (3 - 0.418) 0.418 < 0 < 1.22 

= -0.55 8 > 1.22 

c n =0c n (8) 

n0 nu 
c n = 0.113 0 0 < 6 < 0.1945 (rad) 

v 
= 0.022 0:1945 < < 0.594 

= 0.022 + 0.1348 (8 - 0.594) 0.594 < B < 1.395 

= 0.13 >> 1.395 

c = c 0 (0) 

C -0.083 13 0 < a <0.169 (rad) 
20 

=-0.014 + 0.0066 (B - 0.169) 0.169 < a < 0.471 

=-0.012 - 0.00865 (5 - 0.471) 0.471 < 3 < 1.395 

-­0.02 p > 1.395 

Lpower off Lpower off (UO) 

CLpower off = 0.61 + 0.002763 U0 U0 < 51 (ft/sec) 

= 0.75 U0 > 51 



X 

Table A-I-4
 

Calculated NASA
Discharge 

Axis Point Length amax F Inertia Sensitivity Sensitivity
 

Wing Tip 16.9 ft. 200 200 lbs. 2340 slug ft. 2 4.13 deg/sec2/deg 3.9 deg/sec2/deg
 

Y Tail 18.75 ft. 200 130 lbs. 3400 slug ft. 2 2.05 deg/sec2/deg 2.0 deg/sec2/deg
 

Z Tail 18.75 ft. 200 90 lbs. 5400 slug ft. 2 .90 deg/sec 2 /deg .95 deg/sec 2/deg
 

0,0 
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D. 	Solution of the X-14 Equations of Motion for the Reference Control
 

Variables
 

The reference values for the elements of the control vector u are
 

desired for any given state vector x. Since a steady state reference 

condition is sought, set * 0. Upon examination of the non-linear 

equations of motion for the X-14 (see Fig. A-I-4), it is seen that 

a1 v, and , are only functions of T, a and X Therefore, an explicit 

solution for these variables should exist since there are three equations
 

and three unknowns. To find this solution, first rewrite the equations
 

as
 

0 = 	A + T (sin a cos X - urel/V + f sin a) 

0 = B + T (sin X - Vrel /Vi ) (A--14) 

0 = C - T (os 5 cos x- lI -rel/VfcVs ) 

where 

A = m (vr - wq - g sin 6) + 1/2 p U0
2 S (CL sin a - CD cosa ) 

power offD 

2
B = 	 m (wp - ur + g sin$ cos ) + 1/2 p S Cy 

=C 	 m (uq - vp + g cos cos 6) - 1/2 pU 0 2 S (CL power off 

cos 	a + CD sin a)
 

f = 	ACL/TC 

After squaring, rearranging and adding equations, the result can be
 

written as
 

DT2 + 2 ET - F = 0 

where 

D = 1 - U02/V 2 f 2f - wr I cos a)/V if2 + (ureI sin a 
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E (Au + +C - ­re +vCrew )IV f (A sin C cosa) 

F 2 +2 2 (A-I-5) 

Hence, 

T =(-E + E2 + DF )/D. (A-I-16) 

Now since T is known, 

-= sin (Vrel/Vj B/T) (A-I-17) 

and now from Eqn. (A-I-14), 

= sin- [(urel/V - f sin a - A/T)/cos X] (A-I-48) 

Some additional information is needed to solve the moment equations
 

since there are six unknowns and only three equations. Since both the
 

three reaction controls and the three aerodynamic controls have approximately
 

the same range of travel, let 'i- ns'nn for determnin the Pnns-mi ettin' 

for reference flight conditions that the aerodynamic and the reaction con­

trols are of the same magnitude, or that 

6 =6 
x a 

5 =6 
y e 

6 =6 
z r 

When the above numerically determined values of T, Aand a are
 

substituted into the summary equations for the X-14, the equations can
 

be solved for 6 6 , 6 r' 6' ' and 6z. The results are
 

Sx = 6 = - { (I - I ) qr + I pq + T[-sin X (z2 + z1 cos a)x ay zxz 

+ z vrel/V + L p + 1/2 p U0 2 SbC o } /(L6 (A-I-19) 

+ 1/2 p UO2 Sb C )
 

a
 



y= e z Ix) pr + Ixz (r2 - p2) 2 !e e r 

+ T [cosl (z 2 sin o+ x2 coso ) + (xI Wre - z. u frel)/V] 

"Mq q + 1/2 p U0 
2 Sc [(Cmo + ACM) 

+(cm inU Cm (
power off++C2)a C q]}I( 

mpower off a0 iq 

y( - -0 

(A-I-20) 

+ 1/2 p U02 SC C 

e 

6z 6r (Ix - Iy)pq IIxz qr + 2 ! e q + N rr 

" T (sin X (x 2 

+ Cn 6 a 

a 

1£2 sin o) ­

(N 6 + 1/2p 

it1 Vrel/V-] + 

j0-

Sb C ) 

r 

i/2Pff0 2 Sb (C 

(A-I-21) 
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APPENDIX B-I 

LINEARIZATION OF NON-LINEAR EQUATIONS OF MOTION 

FOR A TIME INVARIANT DYNAMIC SYSTEM 

The non-linear equations of motion for a time invariant dynamic
 

system can be expressed as:
 

= f ( x, u) (B-I-I) 

where x is the state vector, u is the control vector, and f is a vector 

function of x and u [1]. 

Suppose that for the system represented by Eqn. (3--1) there is a
 

given x (t0 ) = 0 and u t) for t > to, then the unique solution 4 (t, Xo) 

is determined and can be found. Now consider small perturbations 6x (t 0 ) 

in - and Lu (t) in u .ne, Small perturbations in the solutin 

(t, Xo) can be expected and & + 6k< = f (x + 6x, u + 6u); x (to) = 6­

(B-T-2) 

Expanding the right-hand side of Eqn. (B-I-2) in a Taylor series and
 

retaining terms only of the first order, and after substituting equation
 

A-2-1 for k, we have the variational equation
 

k = A 6x + B 6u; Sx (to) = 0(B_3) 

where 

= ffi (B-I-4)
 
ii a xij 3 u 

with the partial derivatives being evaluated along the known solution, 

x (t) = * (t, 20) and control u (t). Hence, the motion of the dynamic 

system about a known path for a small perturbatioa is seen to be governed 

by the linear ordinary differential equations (B-I-3) and (B-1-4). 
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The numerical evaluation of the partial derivatives in equation
 

(B-1-4) can be accomplished by using the central dlifference approxi­

mation. [2] A review of this method follows. The Taylor series for
 

the function f. expanded about (x + Ax, Uo) with
 

(Ax)T=(0 ... 0 x.
3 0 ... O) 

is 2 

f (X + Ax, O= fi (0' ) + -
I 

Ax
0x 

+ 1/2 --­ 2-
3 

Ax. 
3 

+ .- (B-I-5) 

Df . 

with -
Dx.j 

evaluated at (x0' u Similarly, the function expanded about 

0 - ax, 0) is given by 

f- , u = f 0 0) - x- x. + 1/2 2 AXj + ... (B-r-6) 

33 

Since Ax is small, (Ax.)3 and higher order terms are neglected. if
3 

equation (B-1-6) Is subtractueiECot a-I -5), and the resulting equatLu 

solved for the partial derivative evaluated at the point (20, 2) with 

Axk = 0 for k # j, the result is 

+Of. f.( Ax, u)- f ( - Ax, o )
1 - 1 i - -i-i)=

ij ,x 2Ax.3 J 

In a similar manner the elements of B are found to be
 

f. f. (x , u + Au) - f (x , u - Au) 

B. 1 = 0 - (B-1I-8)j 'u. 2(Au,)

3. 

where (Au)T (0 0 0 ... Au. 0 . . 0). -" 

A digital computer program that performs the above operations has
 

been developed and used in the linearization of the equations of motion
 

of the X-14B airplane.
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II. Dynamic Estimation of an Unmeasurable
 

State for the X-14B VTOL Aircraft
 



Dynamic Estimation of an Unmeasurable State 64.,
 

for the X-14B VTOI Aircraft
 

NOMENCLATURE
 

MATRICES 

A = continuous time system matrix 

B = continuous time system input matrix 

C = continuous time system output matrix 

F = modal continuous time output matrix 

= controller gain matrix
 

G = modal controller gain matrix
 

H = modal continuous time input matrix
 

I= identity matrix
 

K = full observer gain matrix
 

L =partial observer gain matrix
 

= 	eigenvector matrix 

A 	 = modal continuous time system matrix
 

= discrete time system matrix
 

= desired discrete time modal matrix
 

= modal discrete time system matrix
 
= discrete time input matrix
 

= modal dscrete time input matrix
 

VECTORS 

u input vector 

v eigenvector
 

x= state vector
 

= output vector
 

z = modal state vector
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NOMENCLATURE
 

SCALARS
 

q = pitch rate
 

r = yaw rate
 

t = time
 

u = forward velocity
 

v = side velocity
 

w = vertical velocity
 

e = pitch angle
 

x = continuous time eigenvalues
 

Ad = desired eigenvaluas
 

(X)DIS 	= discrete time eienvalues
 

= time interval for difference equations
 

= roll angle
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CHAPTER 1
 

INTRODUCTION
 

Accurate measurement of the complete state vector is an integral,
 

and sometimes difficult, part of implementing the powerful techniques of
 

modern control theory. This research isconcerned with the development
 

of a method to estimate the side velocity of NASA's X-14B vertical takeoff
 

and landing vehicle during hover. When the aircraft is flying at low side
 

velocities, particularly during hover, measurement devices are unable to
 

give reliable readings, and thus are usually not used. Hover is defined
 

as low speed flight where aerodynamic and inertial effects are not impor­

tant. This corresponds to flight with forward velocities of less than
 

30 ft/sec. Determination of the side velocity is important for
 

both completing the state vector for control and for general knowledge
 

of flight.
 

The approach is to investigate the application of linear dynamic ob­

server theory around flight operating conditions to estimate the side
 

velocity. Both full and partial dynamic observers are developed for
 

two linearized hover conditions.
 

The linear differential equations are discretized to hold computer
 

time to a minimum. The observers are tested on the linearized systems.
 

A linear modal control policy is also developed primarily to test the ob­

servers' ability to track the real system. Finally the developed linear
 

observers are applied to the full nonlinear equations to determine their
 

accuracy and range around the given operating conditions.
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CHAPTER 2
 

THE MODEL
 

The model for the X-14B VTOL was developed in previous research by
 

Hoffman, Loscutoff and Seevers [I and has recently been improved by
 

Roesener [2]. The resulting eight nonlinear differential equations are
 

found in Figure 1. The state variables for the model are
 

a = pitch angle,
 

q = pitch rate,
 

u = forward velocity,
 

= roll angle, 

p = roll rate,
 

r = yaw rate,
 

v = side velocity,
 

w = vertical velocity.
 

This set of nonlinear differential equations was linearized around several
 

operating conditions characterizing hover, transition and full flight
 

in [i]. 

In this research, the system is linearized at the following operating
 

conditions: 

Case 1: a = .01 ft/sec,
 

6 q = w = == p r = vv = 0
 

Case 2: u = 20 ft/sec, 

o q =w= = p= r= v 0 

T'lese conditions arc used for development of linear observers and control­

lecs. They will be referred to as Case 1 and Case 2 respectively in sub­

,'c:ceno sections. The linearization at u = .01 ft/sec was chosen oecause 
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itwas believed to be the most difficult flight condition for estimating
 

the side velocity, due to the limited coupling between the measurable
 

states and the side velocity. The u = 20 ft/sec flight condition was
 

chosen because it is a typical hover condition. These linearized flight
 

conditions are found in Tables 1 and 2. The output matrix, C, in Table IA,
 

is the same for both Case 1 and Case 2. The output matrix shows that all
 

states are directly measurable, except for the side velocity.
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FIGURE 1
 

.Summary of the Reduced Non-Linear Equations of Motion for the X-14 Aircraft 

a vr - wq - g sin8 + T [sin a cos A -1 (u - )]m V 

*ipU0 2 S [(C +A C ) sina- C cos a]
-2m 0 P. off L D 

_1
Swp - ur + g sin cos e + 1[sin A - (v- v )] +.LOU0 
-2 

SCy
= vj
 

i m uq - vp + g cos * cos 8 - T [cos a cos + 1 (w w-

1 OU0.2S ((CL + ACt) a]cos a + CD sinp. off 
(In Iz~ r-~Ix pq)+ [sinx Cz+t icos o) + (v -vl] 

Z1
 

I*1 -2 2 1 

,Sb 
 (C +C 6
 
IX I x a
 

a
 
(pr + y (rZ - p T 2 1e J r + Txz 2 1y e2r Trcosxl 

17 y Iy 
(Z2 0n v + x2 cqsa ,) + [x1 (w - w) - z1 (u- u )w


,@q - P0Sc E(C0 off Cmo6y p!)0 

M p. 

4- (Cm + AC )a + - C q + C 6]mp. mfa 0 q e 

x I ) I I1
 
-4- ( - qr) + j-2 e0e q


zzz 

Tx I N N6
" I f[inx (x2 - £ sin a) - ( v- v)l +N r z z 

+ I-P Bo2Sb (C + C 6 + C 6)21z no na r n 6 a 



TABLE 1
 

THE LINEARIZED SYSTEM - CASE 1
 

TRIM PARAMETERS
REFERENCE CONDITION 

ELEVATOR*= 0.47 DEGREES
 

Q = 0.0 RAD/SEC REACTION NOZZLE DY = 0.47 DEGREES
 
U = 0.01 FT/SEC THRUST DEFLECTION ANGLE (SIGMA) = 0.00 DEGREES
 

THETA = 0.0 RADIANS 


ENGINE RPM =98.57 PERCENT OF MAXIMUM
W = 0.00 FT/SEC 

PHI = 0.0 RADIANS AILERONS*= 0.00 DEGREES
 
P = 0.0 RAD/SEC RUDDER*= 0.00 DEGREES
 
V = 0.00 FT/SEC SIDE VANE ANGLE (LAMBDA) = 0.00 DEGREES
 
R = 0.0 RAD/SEC REACTION NOZZLE DX = 0.00 DEGREES
 

REACTION NOZZLE DZ = 0.00 DEGREES
 

A MATRIX
 

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 1.000000 

0.000000 0.000000 0.000000 -0.500992
0.000000 -0.150113 -0.000436 -0.000147 


-32.035897 0.000000 -0.020130 -0.038363 0.000000 0.000000 0.000000 0.000000
 
0.000000 0.010000 0.000050 -0.020819 0.000000 0.000000 0.000000 0.000000
 
0.000000 0.000000 0.000000 0.000000 0.00000 1.000000 0.000000 0.000000
 
0.000000 0.024327 0.000000 0.000000 0.000000 -0.451157 0.000306 -0.015424
 
C.002020 0.000000 0.000000 0.00000 31.332373 0.000000 -0.022425 -0.010000
 
G.OcZCCO 0.316251 0.000000 0.000000 0.000000 -0.015039 -0.002452 -0.200514
 

B MATRIX
 

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
 
0.034907 0.019679 0.001822 0.000000 0.000000 0.000000
 
0.000000 0.562003 0.000000 0.000000 0.000000 0.000000
 
0.000000 0.000004 3.600197 0.000000 0.000000 0.000000
 
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
 
O.O00000 0.000000 0.000000 -0.033893 0.068243 0.001279
 
0,000000 0.000000 0.000000 0.562003 0.000000 0.000000
 
0.000000 0.00000 O 0.000000 -0.001310 0.002275 0.016623
 

*NEGLIGIBLE AT LOW SPEEDS,THEREFORE NOT INCLUDED AS INPUTS IN THE B MATRIX.
 



TABLE IA
 

THE OUTPUT MATRIX - CASE 1 AND CASE 2
 

C MATRIX
 

1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
 0.000000
0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
 0.000000

0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 
 0.000000 0.000000

0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 
 0.000000 0.000000

0.C0000 0.000000 0.000000 0.000000 0.000000 
 1.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 
 0.000000 0.000000 0.000000 1.000000
 



TABLE 2
 

THE LINEARIZED SYSTEM - CASE 2
 

REFERENCE CONDITION 
 TRIM PARAMETERS
 

THETA = 0.0 RADIANS 
 ELEVATOR = -1.96 DEGREES

Q = 0.0 RAD/SEC REACTION NOZZLE DY = -1.96 DEGREES
 
U =20.00 FT/SEC THRUST DEFLECTION ANGLE (SIGMA) = 0.87 DEGREES

W = 0.00 FT/SEC 
 ENGINE RPM = 98.76 PERCENT OF MAXIMUM


PHI = 0.0 RADIANS 
 AILERONS = 0.00 DEGREES
 
P = 0.0 RAD/SEC 
 RUDDER = 0.00 DEGREES

V = 0.00 FT/SEC 
 SIDE VANE ANGLE (LAMBDA) = 0.00 DEGREES
 
R = 0.0 RAD/SEC REACTION NOZZLE DX = 0.00 DEGREES
 

REACTION NOZZLE DZ = 0.00 DEGREES
 

A MATRIX
 

0.000000 1.000000 0.000000 0.000000
O.0000 0.000000 0.000000 0.000000

0.000000 -0.375150 -0.001513 -0.014664 
 0.000000 0.000000 0.000000 -0.501932
-32.035897 0.000000 -0.028319 -0.007426 0.000000
0.000000 0.000000 0.000000

0.000000 20.000000 -0.026590 -0.024535 0.000000 0.000000
0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000

0.000000 0.024373 
 0.000000 0.000000 0.000000 -0.451157 -0.004610 -0.015424

0.000000 0.000000 0.000000
0.000000 31.832873 O.OOCOO -0.082783' -20.000000
 

B MATRIX*
 

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
 
0.037416 0.019777 -0.015868 0.000000 0.000000 0.000000
 
0.000000 0.564681 -0.009580 0.000000 0.000000 0.000000
 
0.000000 0.008554 3.552470 0.000000 0.000000 0.000000
 
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
 
0.000000 0.000000 0.000000 -0.034060 0.072015 0.001329
 
0.000000 0.000000 0.000000 0.564746 0.000000 0.000000
 
0.000000 0.000000 0.000000 -0.001351 0.002325 0.017267
 

*(DY-ELEVATOR),(DX+AILERONS),AND (DZ+RUDDER) ARE COMBINED AS INPUTS INTHE B MATRIX.
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CHAPTER 3
 

CONTROLLABILITY AND OBSERVABILITY
 

Controllability and observability are dual criteria that must be
 

satisfied to allow feedback control and state estimation. Controllability
 

is the ability to transform any state at time ti to any other state at
 

time t. by applying the appropriate control input u(t). Observability
 

is the ability to identify any previous state by observing the output 

y(t) for a finite time interval. 

Several methods for determining whether a system meets these criteria 

exist. The method used in this research determines controllability and ob­

servability of individual modes. This is a superior method since modal 

input-output signal flows can be determined and the degree of controlla­

bility and observability of modes can be determined. For example, if a 

system is found to be marginally controllable or observable it is ;mportant 

to know if the offending mwde or modes are stable or unstable and to what 

degree. 

The linearized systom equations
 

= Ax + Bu (i1-1) 

y = Cx (11-2) 

are transformed into te modal domain through the similarity transformation 

x = Tz 

where T is a matrix of Lhe system eigenvectors v such that 

T = fv- v v . .vn] (11-3) 

The system equations becon.e 

= Az -, Hu (11-4) 

- C (11-5) 
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where
 

A = T"IAT 

H = T-IB (11-6) 

F =CT 

A is the modal system matrix,
 

A1 0 . . 0 

0 A2 
*3 

A= A4 = diag [A1, A2 ' ".8J 
X5 

6 

X7 

0 . . . .
 X
 
where X's are eigenvalues. 

In the event that complex roots are present, the T matrix takes the 

form 

L [XIR 1C". 

where 

- ±IR the real part of the eigenvector 

KIC the complex part of the eigenvector.
 

vIR and v are complex conjugates. The resulting modal matrix, A, 

becomes 

AIR AIC 0 . . . 

A IC AIR 0 . . . . 

0 0 3
 

L8 
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where
 

XIR = real part of eigenvalue 

X1C : complex part of eigenvalue.
 

The treatment and interpretation of systems with complex eigenvalues
 

is the same as for any other system except for the variations noted. The
 

case of repeated eigenvalues is neglected throughout this discussion.
 

is the modal input matrix. If any complete row of H is zero, the
 

mode is unaffected by any control policy implemented, and is uncontrollable.
 

Therefore, the controllability criterion is satisfied if every row of H
 

has at least one non-zero element.
 

Observability can be determined by examining the modal output matrix
 

F. The requirement is that every mode must appear in the output vector y. 

To accomplish this, every column in F must contain at least one non-zero 

element. 

For Case 1, the A, H and F matrices are as shown in Table 3, while 

fbr Case 2, the A. H and F matrices are shown in Table 4. From both A 

matrices, it can be seen that the linearized systems are inherently un­

stable. However, both linearizations are completely controllable and com­

pletely observable, and therefore can be stabilized by feedback control.
 

The most important result is that since the side velocity is observable
 

through the measurable state variables, dynamic observers may be used to
 

estimate it.
 



TABLE 3
 

THE LINEARIZED SYSTEM IN MODAL FORM - CASE 1
 

A MATRIX 

-0.18660 0.423=5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
-0.42555 -0.18650 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 -0.30996 0.02019 0.00000 0.00000 0.00000 0.00000 
0,0000 OC0000 -0.02019 -0.30995 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.O000O -0.12050 0.00000 0.00000 0.00000 
0.00000 0.0000 0.00000 0.00000 0.00000 0.15912 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.11029 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.02084 

H MATRIX 

3.38837 1.97663 0.31828 -2.88713 5.24580 1.94411 
3.31723 1.84020 0.06916 -3.45986 6.14046 -1.88379 

-2.18415 -1.30327 -0.34686 -65.27828 127.52590 1.04069 
-11.50003 -6.75670 -1,41944 -289.15382 569.48136 5.42458 
4.30468 2.72745 1.61925 100.33871 -197.84024 -7.27932 
2.01065 1.05477 0.04308 -44.71371 94.88475 -0.54612 

-3.50121 -1.78538 -0.13110 -76.76226 159.69359 3.74697 
0.00431 0.00251 3.86946 0.05583 -0.11182 -0.00548 

F MATRIX 

0.00520 -0.01328 0.00905 -0.00063 0.00314 0.00558 -0.00407 -0.00112 
0.00468 0.00469 -0.00279 0.00038 -0.00038 0.00089 -0.00045 0.00002 
1.00000 0.00000 1.00000 0.00000 0.99977 -0.99772 0.99973 -0.36601 
0.00002 

-0.00009 
-0.00023 
-0.00078 

-0.00008 
0.00383 

-0.00002 
-0.00092 

-0.00046 
0.00006 

-0.00023 
0.00038 

0.00035 
0.00009 

0.93061 
0.00000 

0.00035 0.00011 -0.00117 0.00036 -0.00001 0.00006 0.00001 0.00000 
0.00345 -0.00364 -0.00175 0.00023 -0.00085 0.00032 -0.00064 0.00005 



TABLE 4 

THE LINEARIZED SYSTEM INMODAL FORM - CASE 2 

A MATRIX 

-0.28951 0.66661 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
-0.66661 -0.28951 0.00000 0.00000 0.00000 0,00000 0.00000 0.00000 
0.00000 0.00000 -0.74830 0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 -0.17565 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.06400 0.14200 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 -0.14200 0.06400 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.10626 0.43161 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.43161 0.10626 

H MATRIX 

1.82635 1.03373 3.08609 18.60148 -0.03779 -0.00078 
1.41645 0.67930 -2.88325 -18.16568 -0.05271 -0.00090 
0.12454 0.07176 0.18701 -2.63280 -2.52081 -0.05069 
0.12258 0.11941 1.09256 -40.15281 -0.02941 -0.00043 

-1.94683 -0.58549 -4.16373 20.09309 -0.01219 -0.00002 
-1.91553 -0.79425 22.85470 65.47933 0.08503 0.00160 
-0.21066 -0.12457 -0.22805 -6.41398 -2.51054 -0.03326 
-0.18510 -0.08084 0.95d20 -11.89252 4.99281 0.09281 

F MATRIX 

0,00811 -0.02072 0.00020 0.00436 -0.00285 -0.00444 0.00023 0.00016 
O.OllA6 0.01140 -0.00015 -0.00077 0.00045 -0.00069 -0.00004 0.00012 
1.00000 0.00000 0.00911 0.96188 1.00000 0.00000 -0.01555 0.01246 
0.19109 -0.38004 0.00455 0.27063 -0.12565 0.04577 0.00397 0.00224 
0.00103 -0.00059 0.02073 -0.00649 0.00000 -0.00057 0,00598 0.01345 
0.00009 0.00086 -0.01551 0.00114 0.00008 -0.00004 -0.00517 0.00401 
0.00459 -0.00607 -0.00027 -0.01050 0.00007 -0.00086 0.00007 -0.00018 
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CHAPTER 4
 

DISCRETIZATION OF LINEAR DIFFERENTIAL EQUATIONS
 

The linear differential equations are transformed to discrete time
 

equations because the aircraft has an on-board digital computer for con­

trol. Thus discrete time control is more applicable. Digital computers
 

are also more suited to adding and subtracting difference equations than to
 

numerically integrating differential equations [3j.
 

Difference equations are the time domain solutions to differential
 

equations. Fherefore, the set of differential equations (1)and (2)
 

x= Ax + Bu (lI-l)
 

x= Cx (11-2)
 

can be transformed into the difference equations
 

(11-7)

Xk( 1 : +' mtk, 

y = CQjk (11-8) 

Assumic u(t) is constant over a time interval (0 < t < T, where t is 

Ine tivz iureival), it can be shown that for linear, constant coefficient 

systems, eAT (11-9) 

SAt ]A (II-10)
 

It will noa be shown that 4' can be simply formed from A when in the 

modal d ~rtxir,First, it must be shown that the similarity transformation
 

matrix, l.,re.ains invariant and continues to diagonalize the system
 

whether in difference or differential equation form.
 

4 ig dcscribed by the series
 

AT= l +AT + 1 1 2 2 + 1 3 + I-) 

To sho, that I ;hgonalizes _',prenultiply and postmultiply by T1 1 and 

respect ,,ly. 

"12 1 1 2 2 . 
g, = I 'IT+LT T +1A "IT~+ 1-2 
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Now, simplify (12) using the identity
 

A2 = ATT- ,A 

T _ I + AT + }-22 + . (11-13) 

This technique can be readily extended to all higher order terms; there­

fore 

e~lfo0 . . .0 

T-1T = A = 0 ex2t 0 (11-14) 

o.....e eArTent
 

The discrete time eigenvalues are defined as
 

X + A + I X2 2 + . XT (11-15) 

in equation(13). 4 can then be obtained from A by the following steps.
 

First, transform the continuous time system into the modal domain, a stop
 

done previously to determine controllability and oLservability. Then
 

create 2m by transforming the individual eigerivalues of A into XDIS by
 

using the scalar equation (15). Now, simply transform out of the modal
 

domain,
 

(-16)
D=TT 


The input matrix, _T, can be approximated easily by noting that 

_I+ 1 T I]A-IB 

2
T= [A+ !-,A TAB (11-17)

1 2 1(II-17) 

21--
 -

For this system, the time steo was .05 seconds. For this second order
 

approximation the error is on the order of 0.25 percent when the higher
 

order terms are left out. The system equations for Case 1 are found in
 

Table 5 and those for Cese 2 are in Table 6.
 



TABLE 5 

THE LINEARIZED DISCRETE TIME SYSTEM - CASE 1 

p MATRIX 

1.00000 0.04980 0.00000 0.00000 O.Coooo 0.00002 -0.00062 0.00000 
0.00002 0.99200 -0.00002 -0.00001 0.00000 O.O00CO -0.02480 0.00002 
-i.5000 

t.0tO 

-C.C1O*0 

O.cScos 

0.9,300
O..23300 

0.00O00 

-0.00192 
0.9.100 

0,00COO 

O.002D2 
2.O.00 

1.00000 

0.00202 

v v0 
0.04940 

0.00040 

-0.0900 
-0.00002 

-0.00001 

0100000 
0.00000 

'000rQ 0.00.19 0.0000 0.00000 O.CO001 0.97300 -0.00077 0.00002 
0,2 30 0,01570 0.00000 0.00000 -0.00010 -0.02075 0.99000 -0.0C012 
0.00030 00000, 0.00000 0.00000 1.59000 0.03870 -0.00048 0.99900 

T MATRIX 

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
0.00175 0.00098 0.00009 0.00000 0.00000 0.00000 
0.00000 0.02810 0.00000 0.00000 0.00000 0.00000 
0.00000 O.C000 0.18000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 -0.00169 0.00341 0.00006 
0.00000 0.00000 0.00000 -0.00007 0.00011 0.00083 
0.00000 0.00000 0,00000 0.02810 0.00000 0.00000 

co 
p 



TABLE 6 

THE LINEARIZED DISCRETE TIME SYSTEM - CASE 2 

'D MATRIX 

1.00000 
0.00006 

-1.60000 
0.00110 
0.00000 
0.00000 
0.00000 
0.00000 

0.04950 
0.98100 

-0.04000 
0.99000 
0.00003 
0.00119 
0.01560 

-0.00782 

0.00000 
-0.00007 
0.99900 
-0.00137 
0.00000 
0.00000 
0.00000 
0.00000 

-0.00002 
-0.00073 
-0.00036 
0.99800 
0.00000 
0.00000 

-0.00001 
0.00000 

0.00000 
0.00000 
0.00000 
0.00000 
1.00000 

-0.00018 
0.00000 
1.59000 

0.00000 
0.00001 
0.00000 
0.00000 
0.04940 
0.97800 
-0.00074 
0.03980 

-0.00062 
-0.02470 
0.00041 

-0.01240 
-0.00002 
-0.00066 
0.99000 

-0.99300 

0.00000 
0.00000 
0.00000 
0.00000 

-0.00001 
-0.00023 
0.00000 
0.99600 

T MATRIX 

0.00000 
0.00187 
0.00000 
0.00094 
0.00000 
0.00000 
0.00000 

0.00000 
0.00099 
0.02820 
0.00092 
0.00000 
0.00000 
0.00000 

0.00000 
-0.00079 
-0.00048 
0.17700 
0.00000 
0.00000 
0.00000 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

-0.00170 
0.02820 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00360 
0.00000 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00007 
0.00000 

0.00000 0.00000 0.00000 0.00003 -0.00006 -0.00043 
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CHAPTER 5
 

LIMITED INPUT MODAL CONTROL VIA STATE VARIABLE OUTPUT
 

The linearized set of difference equations, given by equations,(7)
 

and (8)and repeated here,
 

= (11-7)-k+l - + 14 

= (H1-8) 

specify a system of eighth order, with six inputs and seven outputs. For
 

the purposes of controller design, though, state variable output will be as­

sumed. The missing states will be provided later by dynamic observers.
 

The control matrix G will be designed to place six of eight eigenvalues
 

wherever desiredi The remaining two eigenvalues will be considered suf­

ficiently stable, although a readily available extension of the following
 

technique allows for placement of all eight poles.
 

To condition the first six eigenvalues, the system is transformed into
 

the discrete time modal domain, using
 

Thus
 

L =:- ~+ (11-18) 

Yk =CTzk (11-19) 

where
 

=
 

Now, let us partition the system equations into two segments. The modal
 

state vector becomes
 

16 = the first six modes, all to be conditioned
 

z78 = the last two modes, not to be conditioned.
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The ( matrix is arranged so that-,m 

(XI)DiS 0 . . 0 

0 (X2 )DIS 

()3)IS 

(x4)DIS
 

-(x)MDIS
 

(6)DIS
 

(A7)DIS
 

0 . . . . 8)DI. 

8 

2[22978n7
 

-D78consists of the last two poles, which are the most stable and there­

fore are ignored in the conditioning process. 

Let us define a matrix of desired eigenvalues, 

(xld)DIS 0 . . 0 

0 (X)2d)DIS
 

()3d)DIS
 

-d 4d DIS
 

(ADd)DIS
 
(6d)DiS
 

(A7 IS 

0... (x8)DIS 

8 

6[±dL 0d7 

2.08 
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These eigenvalues will be the closed loop system poles after implementa­

tion of the control matrix G. Partition such that
'4 


6
 

6Ez
 

where T L isa nonsingular'6x6 matrix. Then the control matrix inmodal
 

form is
 

9o [ nL Q~dL (11-20) 

to condition the first six modes. To illustrate that this will give the 

desired results, let us examine the system inmodal form under the control 

policy 

uk = A1 (H1-21) 

4e have 

-- : FLTnL 0]- [d! 0jz k (11-22) 

Simplifying and rewriting in a partitioned form 

(11-23)
 
Expanding, we obtain
 

[6]Jk~ [!d~L[d 9-nL (11-24)
71[ Ic 
Note that despite the T ] term, the modal closed loop system 

matrix 
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(1d)DIS 0 0 0 0 0 0 0 

0 (A2d)DIS 0 0 0 0 0 0 

0 0 (A3d)DIS 0 0 0 0 0 

0 0 0 (A4 d)DIS 0 0 0 0 

-0 0 0 0 (A5d)DISO 0 0 

0 0 0 0 - 0 (,6d)DIS 0 0 

4L 8 )DIS78- Lr-dl. (X£

is in triangular form and its eigenvalues are the six elements of.dL and 

the original eigenvalues (xA Thus, the first six modes7)DIS and (X8)DIS. 


nave been moved to their dosirpd values, and the last two modes have re­

mained unchanged. To trdnsforT G into the control matrix, reverse the
 

modalizing process: post multiply by._
 

G -11-25) )) '
 -M. -.& ' -dL-

The resulting closed loop equaticns are
 

(k+-- 11-26)(14 


Using this technique the control matrices derived for Case 1 and Case 2 are 

as shown in Table 7.
 

The modal technique ale.s the designer to place eigenvalues arbitrar­

ily. The only restriction is that eigenvalues must be chosen to give the 

required response while rcmaining ,'ithin control power restraints. 

It should be noted hepe from previous development that
 

LDIS e 

where 
DIS disc~ute ti.. cigenvalue 

A continuo,,, 1rio- eigenvalue 

t : time jut' V31 
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For XDIS, the stability limit on the complex plane is the unit circle.
 

Positive,real parts of magnitude less than one correspond to continuous
 

time negative,real parts. Zero corresponds to infinity as the fastest
 

response. Any eigenvalue within the real, negative half of the unit circle
 

will oscillate with each time step, and thus, is not very useful -for con­

trol. Time constants for discrete time eigenvalues can be approximated as
 

T.C. 0
X(11-27)
Thi = ieDISI aeo tl n n 

by recalling the infinite series for an exponential function. 
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CHAPTER 6
 

STATE VARIABLE OUTPUT VIA DYNAMIC OBSERVERS
 

To implement the control scheme discussed previously, a full state 

vector is assumed for feedback. On the X-148 VTOL, seven of eight state 

variables are available for measurement during hover. A dynamic observer, 

which is a special form of filter, is used to estimate the missing state, 

side velocity. 

The full dynamic observer is a time invariant linear model of the
 

system to be observed. The model is driven by the same inputs as the
 

system. Therefore, if the model is perfectly accurate, i.e., no dis­

turbances or noise are present and the initial conditions of the system
 

known, the system state vector is known at any time t. As can be readily
 

seen, these are rather demanding assumptions and a method for updating the
 

model states to the measurable system states is needed. This is the key
 

to the usefulness of the dynamic observer.
 

To design a dynamic observer, assume a system is governed by equa-

A 

zions (7)and (8). Let us define 4 as an estimate of -41. The model 

defined by x is 
I 

x+1 
A 

± + 'Yk (I-28) 

ZCX (11-29) 

This is Lne open loop model of the system. To force the q'odel states to tie 
A 

system states an error feedback term, K(k - .), is implemented. K is 

the observer mai. Thus, the closed loop model becomes 
4*x + + K - (-30)11) 

Zk 11-31) 

To illuslrate that a control matrix, K, can be chosen to drive 
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observer error inmeasurable states to zero, let us define an error state
 

vector
 

xR-x 

Subtracting equations (7) and (8 ) from (30) and (31),
 

^
 
A Cx~ -x4+1 +'u14 V4-vt) -xk -u 

which becomes
 

4 =2 
or the single set of equations 

2+I ( - nK) (11-33) 

The eigenvalues of this homogeneous set of differential equations are 

determined by the arbitrarily chosen K. By choosing K to make this set of 

equations stable, itcan be seen that 

K(t) -*0 as t-c 

and
 

4 (t) - (t) as t+c 

The rapidity of convergence depends solely upon the error system's
 

closed loop eigenvalues determined by K.
 

The dynamic observer, then, models the system, continually forcing
 

the measurable states' error to zero at a convergence rate determined by
 

K, and gives an estimate of unmeasurable states based upon the measurable
 

states. Thus, a dynamic observer, supplying estimates of unmeasurable
 

states, can be used in conjunction with control schemes based on state
 

variable feedback to create control. A block diagram oF the complete
 

closed loop system can be found inFigure 2.
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The matrix K can be determined by any method desired by the designer. 

This system, by the simplicity of its output matrix C, lends itself to a 

very simple procedure. First notice that C is of the form [I fl0. The 

homogeneous error system matrix becomes
 

(i- KA = W4 - AK 1 0]) 

The effect of K upon the closed loop system, in this case, is clear. 

Choose 

K.. = 4..- i t j ; i = 1, 2, ..., 8 

13 13 

Kij = ji;jj 1,2, ... , 8 

where Ad. is the desired eigenvalue, and the convergence rate is deter­

mined. All but one eigonvalue can be placed using this method. To com­

plete the arbitrary placeent of all eigenvalues, determine the state whicn
 

is most strongly coupled to the unaffected vector in 4. Then, devise a
 

second order system with the two states. For example, for Case 1, it is
 

[7- K17 "787] PI-33)

LxS8k -"1'87- KB7 88] x8 k 

Obviously, K77 and K87 can be chosen to arbitrarily set the eigenvalues
 

of this subsystem. Since all of the other states are already decoupled,
 

the eigenvalues oF toe Lotl ,ystemwill be the main diagonal plus the
 

eigenvalues detrmnaf by he sucond order subsystem.
 

This design mcthod nos used to calculate observer gain matrices for 

both linearized cases. lr Cann' 1, the only coupling between the side
 

velocity vector and toe, rust cF the system was through yaw rate. The re­

sulting K matrix is sho,,, in Table 8. For Case 2, the major coupling wo' 

between side velcuty Wm1 roil uite. The resulting observer gain matrix 

is also shown in WO N 8,
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The results of applying the dynamic observers inconjunction with the
 

control systems described earlier are illustrated in Figures 3 and 4.
 

These simulations are done by modeling the linearized systems, setting
 

initial conditions at u = 10 ft/sec, v = 4 ft/sec, and all other state
 

variables at zero. Recall that these velocities are relative to the
 

linearized operating conditions. The observer started with all initial
 

conditions at zero, so that for Case 2,u isactually 30 ft/sec. Since
 

the system itself, inthe computer simulation, was a model, a comparison
 

between the system's siae velocity and the observer's estimated side velo­

city ispossible. Time constants for both observers are around one-fifth
 

second and by one-half second have completely converged, This isa very
 

rapid rate of convergence. The observer converges to the other state vari­

ables, which are measurable and directly controllable as fast as or faster
 

than the unmeasurable side velocity. It is interesting to note that side
 

velocity ismuch easier to control for Case 1 (T.C, v 1.75 sec) than for
 

Case 2 (T.C. = 6 sec). The inertia terms in Case 2 couple the system more
 

strongly, but also make the control more difficult.
 

The full observer for Case 1 was also run with noise introduced into 

measurement (Figures 5 and 6). The measurement error was randomly intro­

duced ±1.0 ft/sec for u and ±10 percent for all other state varialbles. The 

estimated forward velocity follows the actual forward velocity much better 

than the measurement of u. This isdue to the filtering effect of a full 

observer. Since an observer converges to a measurable state at a rate 

determined by its eigenvalues, the fluctuations with measurement error 

will be slower and smaller inmagnitude than the actual measured values. 

For instance, a measurement error of one ft/sec will result in a .4 ft/sec 

error for a system with a time constant of .05 sec over a .05 sec time in­

terval. This property of observcrs should be considered when choosing ob­

server eigenvalues. The faster tne eigenvaluns the faster the estiiated 
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states converge on measured states, and the less filtering is accomplish­

ed; slower eigenvalues give more filtering and slower convergence. The un­

measured side velocity estimate is also shown to follow the real state;
 

even at its worst it is off by only one ft/sec.
 

If filtering is of no importance, a second type of dynamic observer
 

can be more useful. The full observer discussed here is redundant in that
 

it recreates states which are already measured. The partial observer,
 

discussed in the next section, eliminates this redundancy by creating esti­

mates of only the unmeasurable states. The partial observer also uses much
 

less computer time.
 



TABLE 8
 

THE OBSERVER CONTROL MATRICES FOR THE LINEARIZED DISCRETE TIME SYSTEMS
 

CASE 1 

K MATRIX 

0.650 0.050 0.000 0.000 0.000 0.000 -0.001 
0.000 0.600 0.000 0.000 0.000 0.000 -0.025 
-1.600 -0.040 0.550 -0.002 0.000 0.002 0.000 
0.000 0.000 0.000 0.500 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.450 0.049 0.000 
0.000 0.001 0.000 0.000 0.000 0.400 -0.001 
0.000 0.016 0.000 0.000 0.000 -0.001 1.000 
0.000 0.000 0.000 0.000 1.590 0.039 -2000.000 

CASE 2 

K MATRIX 

0.650 0.050 0.000 0.000 0.000 0.000 -0.001 
0.000 0.600 0.000 -0.001 0.000 0.000 -0.025 

-1.600 -0.040 0.550 0.000 0.000 0.000 0.000 
0.001 0.990 -0.001 0.500 0.000 0.000 -0.012 
0.000 0.000 0.000 0.000 0.450 0.049 0.000 
0.000 0.001 0.000 0,000 0.000 0.977 -0.001 
0.000 0.016 0.000 0.000 0.000 -0.001 0.620 
0.000 -0.008 0.000 0.000 1.590 -1000.000 -0.993 
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FIGURE 2. A FULL OBSERVER SYSTEM WITH FEEDBACK CONTROL
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FIGURE 3. CASE 1 - A CLOSED LOOP FULL OBSERVER SIMULATION OF SIDE VELOCITY BEING OBSERVED AND CONTROLLED 
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CHAPTER 7
 

THE PARTIAL OBSERVER
 

This method for the development of the partial observer is explained
 

by Luenberger [4].
 

Again, assume the linear system given by equations (7)and (8)which
 

is completely controllable and observable. The system equations, possibly.
 

by a coordinate transformation, must be transformed so that
 

where I is the identity matrix. In this case the system is especially
 

amenable to this method because it is essentially already in this form.
 

The transformation is done to provide a direct correspondence between
 

the output and the transformed state variables. The new state variables
 

are partitioned
 

where y is the vector of measurable state variables (by the definition of
 

C, y is the same as in (8)) and w is the vector of unmeasurable state vari­

ables.
 

The state equations can then be written as
 

K t[ t1tlk t k (11-34) 

The partial observer is defined from the above as
 

4 A A 

w 44+1 +w +~~ =y l-k (1-5nwwll Ady -ya 

Notice that the term in brackets is a constant and is defined equal to
 

zero for the correct values of w. Pearranging the partial observer equa­

tion
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w 
A 

- L ) 
A 

+ =.&+ -+ L[yk+l "w - Wu(11-36) 

it becomes apparant that the eigenvalues of the observer are the eigen­

values of
 

(=Tw - Lkyw) 

and all other terms are inputs into the partial observer equations. To 

eliminate the need to calculate Y-k+l, assume the transformation 

rhe final form of the observer is
 
'Zk+l = ( - 16) K+ (&w - L(D)j + y)&- ==, -Y 

= Y ww Wy -Lyy)k+ Ly 

(11-37) 

4+i w Jy)A 4 ywiX± (-

A block diagram of the system is found in Figure 7.
 

The partial observer control matrix, _, is chosen by any desirable
 

method to place the eigenvalues. In the X-14B VTOL only the side velocity
 

is unmeasurable and thus the partial observer is a first order system.
 

For Case 1,
 

L= [0 0 0 0 0 2000 -2000]
 

This placed the partial observer discrete time eigenvalue at
 

(Xd)DIS = 0.725
 

or a time constant =0.18 seconds.
 

For Case 2, the partial observer gain vector was chosen as
 

L= [0 0 0 0 0 -1000 0J
 

The partial observer eigenvalue was approximately .769. As seen
 

through these examples the observer gains can be chosen for any desired
 

convergence rate. Observer gains are not limited by control power con­

straints.
 

Figures 8 and 9 compare the estimated and actua-l side velocities,
 

when the initial conditions of the system are u = 10 ft/sec, v = 4 ft/scc,
 

and all others are set to zero. The states are again relative to the
 



101.
 

linearized reference states. The system controllers are the same as used
 

for the full observer simulations. Convergence is rapid and is
 

essentially completed in botn cases in less'than one second.
 



N-TH ORDER SYSTEM (N-M) ORDER OBSERVER
 

FIGURE 7. A PARTIAL OBSERVER SYSTEM WITH FEEDBACK CONTROL
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CHAPTER 8
 

APPLICATION TO FULL NONLINEAR SYSTEM
 

The linear full observer isnext applied to the nonlinear model de­

veloped by Roesener [2].
 

The purpose is to determine the usefulness of linear observers in
 

estimating the side velocity for the actual craft. Trim parameters for
 

the craft were held to the nearest linearized reference values.
 

To test the usefulness of the linearized equations for Case 1,the 

nonlinear equations were initialized at u = 5 ft/sec, v = 2 ft/sec, 

0 = q = w = p = 4 = r = 0. The essential results can-be found in Figures 

10 through 12. Figure 10 shows the observer estimate of forward velocity 

converging on the actual forward velocity within one-half second, but in 

Figure 11, yaw rate isshown undergoing small oscillations at approximately. 

six cycles per second. The oscillations can be attributed to computer er­

ror as the oscillations are small (=l0-3 radians/sec) and difficulties were 

encountered with balancing accumulation error and truncation error. The 

linearized system's eigenvalues predicted no such oscillation. The ob­

server is tracking the yaw rate very well, but the necessary .05 second 

time delay becomes very noticeable inan oscillation this fast. The yaw 

rate in the linearized versions showed no such oscillations. Remembering 

that yaw rate was the only significant coupling between the system and
 

side velocity for this linearization, Figure 12 is no surprise when it
 

shows no reasonable estimate of the actual side velocity. Ifcomputer
 

error this small can degrade the estimate of side velocity this severely,
 

itcan safely be assumed that no accurate estimate will be developed for
 

this operating condition on the actual craft.
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For Case 2 the results were more useful. The yaw rate still oscil­

lated as before, but for this linearization roll rate was the the major
 

coupling between side velocity and the system. In Figure 13, for initial
 

conditions of u = 20 ft/sec and v = 2.0 ft/sec, the observer gives a very
 

good estimate of side velocity. At u = 25 ft/sec, v = 10 ft/sec (Figures
 

14 and 15) the observer forward velocity converges rapidly to the measured
 

forward velocity. The observer side velocity rises rapidly to 6 ft/sec,
 

and then waits until the real system side velocity slows before continuing
 

to follow. Given the initial conditions u = 25 ft/sec, v = 5 ft/sec, in
 

Figure 16, the observer estimate rapidly overshot the system side velocity
 

by about 20 percent and followed increasingly better as side velocity went
 

through zero. The case of u = 15 ft/sec, v = 5 ft/sec is found'in Figure
 

17. The observer again waited, this time at around 2 ft/sec, for the
 

system side velocity to slow.
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CHAPTER 9
 

CONCLUSIONS
 

Dynamic observers can be used to create an estimate of unmeasurable
 

states needed for implementing state variable feedback control policies.
 

Although based on linear control theory, dynamic observers can be applied
 

to some nonlinear systems, depending upon the nature and degree of the non­

linearities.
 

The method applied in this research can place observer eigenvalues
 

arbitrarily. If the output matrix is not in [I Ia] form, general modal
 

pole placement techniques could be used, as in the control section. A
 

full dynamic observer should be used when measurement error is large and
 

filtering of measured states desired. The only faults of a full observer
 

are a slight time lag and an excessive use of computer time. The partial
 

observer eliminates time lag and minimizes computer time, but offers
 

limited filtering capabilities. The decision between full and partial ob­

servers must be made by the designer to fit the individual situation.
 

The results from the linearization at 20 ft/sec forward velocity in­

dicate that the side velocity can be estiated for the full nonlinear
 

system using linear observer theory. The effective range of each linear­

ization must be determined for criteria such as the desired accuracy in
 

the estimate, balanced with the computer tiie and memory needed to imple­

ment it. For the X-14B VTOL, these ranges seem to extend further above
 

the operating points than below. For instance, the linearization at
 

20 ft/sec forward velocity did a much beLter jub of estimating the side 

=
velocity at u = 25 ft/sec and v = 5 ft/scc than at u 15 ft/sec and 

v = 5 ft/sec. The two linearized flight -mdltions also seem to indicate
 

that the linearization ranges becnmc incf'edo'ngly smaller as flight becomes
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slower, culminating inthe condition at u = .01 ft/sec which seems to have
 

no ability to estimate the nonlinear side velocity because of a lack of
 

coupling between the state variables.
 

It is recommended that a method for estimating side velocity over the
 

entire operating range be obtained by generating a matrix of operating con­

ditions similar to Figure 18. The aircraft, as it changed flight condi­

tions, would switch from one set of parameters for a linear observer to
 

another, continually using the most applicable.
 

Figures 13 through 17 illustrate that to make the desired estimate
 

more accurate, more operating conditions are needed. The limiting case
 

of mapping operating conditions would be to investigate fully adaptive
 

observers. These would include parameter varying observer gains to con­

trol the model to the system.
 

Limited input modal control is a useful and relatively simple tech­

nique for designing control policies. The designer must approach pole
 

placement in a logical and systematic manner. It is suggested that one
 

eigenvalue be moved at a time while keeping all others stationary to ae­

termine the individual eigenvalues' effects on the gain matrix -. Using
 

this method for this system it was determined that some poles could be ar­

bitrarily placed with little effect on G, while Gwas highly sensitive to
 

others.
 

One effect of arbitrary pole placement of which the designer should
 

be aware is derivative action. This is an undesirable initial overshoot
 

during control caused by a zero dominating the initial dynamics. To elim­

inate this problem, the designer must place poles so that they dominate.
 

A most informative method for determining complete controllability
 

and complete observability is through the modal transformation. It allows
 

the designer to determine the degree of the system's input, output coul'ling
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for individual modes. For the X-14B VTOL, the modal input matrix H,
 

for Case 1 and Case 2, was studied in detail before actual design. It can
 

be seen readily that the magnitudes are larger for Case 1 than for Case 2,
 

which suggests that Case 1 might be controlled more quickly. This con­

clusion was reinforced when control was later implemented and found to be
 

slower for Case 2. The inertia terms in Case 2, which create a more
 

strongly coupled system, also require more control power. Examining the
 

output matrix, F, the designer is also able to determine that side velo­

city will be much more difficult to estimate for Case 1 than for Case 2
 

as the maximum coupling is an order of magnitude smaller. This observa­

tion was proven true when the linear observer was applied to the nonlinear
 

system.
 

All simulations of systems to be performed on a digital computer
 

should be transformed into discrete time difference equations. The trans­

formation is simple and easily performed through many techniques, just one
 

of which is explained here. The method used here is again most applicable
 

if modal control is to be used. Discrete time equations have been shown to
 

be approximately an order of magnitude faster to execute on a digital com­

puter than integration routines [3]. If a digital computer is to be used
 

to implement the control at a specified time interval, it is an additional
 

reason to use difference equations. The application of control techniques
 

in this research proved to be no different than for continuous time con­

trol except for the interpretation of eigenvalues. Eigenvectors remain
 

invariant.
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III. Wind Gust Analysis of the X-14B VTOL Aircraft
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Wind Gust Analysis of the 

X-14B VTOL Aircraft 

NOMENCLATURE 

Variable or 

Constant Description Value-units 

u forward velocity of the X-14 fps 

v side velocity of the X-14 fps 

w vertical velocity of the X-14 fps 

p roll rate of the X-14 rad/sec 

q pitch rate of the X-14 rad/sec 

r yaw rate of the X-14 rad/sec 

x longitudinal displacement of the X-14 feet 

y lateral displacement of the X-14 feet 

z vertical displacement of the X-14 feet 

e pitch attitude of the X-14 rad 

@ roll attitude of the X-14 rad 

yaw attitude of the X-14 rad 

T net net thrust pounds 

Sdiverter vane angle rad 

side vane angle rad 

6 roll reaction control nozzle angle degrees 

6y pitch reaction control nozzle angle degrees 

6 Z yaw reaction control nozzle angle degrees 

6a aileron control angle degrees 

6 elevator control angle degrees 

6 r rudder control angle degrees 



Variable or
 
Constant Description 


engine angular velocity 


UW steady-state longitudinal wind 


VW steady-state lateral wind 


WW steady-state vertical wind 


UG longitudinal qust component 


VG lateral gust component 


WG vertical gust component 


g acceleration due to gravity 


m 	 mass of the aircraft 


moment of inertia of the aircraft with
I 

respect to the x-axis
 

moment of inertia of the aircraft with
I 

Y respect to the y-axis
 

moment of inertia of the aircraft with
I 
z 	 respect to the z-axis
 

product of inertia of the aircraft with
Ix 

respect to the x and z axes
 

I moment of inertia of one engine with 

e respect to the axis of rotation
 

S 	 wing area 


b 	 wing span 


c mean aerodynamic chord 


p density of the atmosphere at sea level 


x1 	 distance the center of the engine intake 

isforward of the center of gravity
 

x2 	 distance the center of the engine exhaust 

isbehind the center of gravity
 

zI 	 distance the center of the engine intake 

isbelow the center of gravity
 

z2 	 distance the center of the engine exhaust 

isbelow the center of gravity
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Value-units
 

rad/sec
 

fps
 

fos
 

fps
 

fps
 

fps
 

fps
 

32.174 fps 2
 

130.35 slugs
 

2340 slug-ft2
 

3400 slug-ft 2
 

5400 slug-ft2
 

180 slug-ft2
 

0.5 slug-ft2
 

2
182.69 ft


33.83 ft
 

5.56 ft
 

0.002378 slug/ft3
 

6.0 ft
 

-0.0133 ft
 

0.583 ft
 

0.916 ft
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Variable or 
Constant Description Value-units 

effective length between engine exhausts 
and diverter vanes 

0.167 ft 

Vjet net exhaust velocity of the engines 1613 fps 

CLpo 

ACL 

lift coefficient, power off 

difference in lift coefficient between 

power off and power on 

CD drag coefficient 

C coefficient of side force due to side
velocity 

Co91rolling 

Cq' 
a 

moment coefficient 

rolling moment coefficient due to aileron 
deflection 

deg -1 

CMopo pitching moment coefficient, power off 

ACMo difference in pitching moment coefficient 
between power off and power on 

CM~po pitching moment coefficient due to angle 
of attack 

CLo. lift coefficient due to angle of attack 

CDa 

ACM 

drag coefficient due to angle of attack 

difference inpitching moment coefficient 
due to angle of attack between power off 

and power on 

0.576 rad 1 

CMq 

CM& 
e 

pitching moment coefficient due to pitch 

rate 

pitching moment coefficient due to eleva-
tor deflection 

-11.4 

-0.0178 deg 1 

Cno 

Cn6 
r 

CO 
a 

yawing moment coefficient 

yawing moment coefficient due to rudder 
deflection 

yawing moment coefficient due to aileron 
deflection 

deg 1 

deg-I 

a 
rolling moment coefficient due to side 
velocity 



Variable or
 
Constant Description 


Lp/I rotational damping in roll x 


Mq/1y rotational damping in pitch 

Nr/Iz rotational damping inyaw 


L6 /Ix reaction control rolling moment 

x 

M6 /1ly reaction control pitching moment 

Y
 

N6 /Iz reaction control yawing moment 

z 

longitudinal diverter efficiency factor
based on engine speed
 

longitudinal diverter efficiency factor 


based on engine thrust
 

angle of attack 


f sideslip angle 
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Value-units
 
-1
-0.45 sec
 

-1
-0.15 sec
 

-I
-0.20 sec
 

0.0681 rad/sec2/deg
 

0.0350 rad/sec2/deg
 

0.0166 rad/sec 2/deg
 

0.9139
 

0.807
 

rad
 

rad
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CHAPTER 1
 

INTRODUCTION
 

1.1 Air Turbulence.
 

Nature confronts man with certain obstacles in his use of the air as
 

a medium of transportation. One of those obstacles, turbulent motion of
 

the atmosphere, was the subject of this research. An airplane is subject
 

to random external forces which result in random variations of attitude
 

and trajectory. The time scale and intensity of these responses are gov­

erned by the scale and intensity of the turbulence, as well as the charac­

teristics of the aircraft. Their effect is to produce fatigue in both the
 

pilot and the vehicle, to produce an uncomfortable ride, and to impair
 

precise control along the flight path. 

1.2 Vertical Take-off and Landing Aircraft. 

A vertical take-off and landing (VTOL) aircraft is affected to a
 

greater extent by the turbulence of the atmosphere whenever the aircraft 

is in the hover or transition modes of flight than when in normal aero­

dynamic flight. The aerodynamic forces used for control have negligible
 

effect in hover. The only control available to a hovering VTOL is the
 

stability augmentation system built into the aircraft. There exist dif­

ferent control systems for different VTOL configurations. A particular
 

control system for a specific aircraft is the subject of this research.
 

The airplane studied in this project was NASA's X-14 research VTOL 

aircraft. The control of this particular aircraft is accomplished by 

vectoring the thrust of its two engines (to provide thrust for hover and 

propulsion) and by bleeding air from the engines and ducting it to control 

nozzles in the wing tips and the tail (to provide thrust for attitude 
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control). The control effort available is limited since too much air bled
 

from the engines lowers the thrust capabilities. A trade-off between 

thrust capabilities and control effort available is a major factor in de­

signing VTOL control systems. Therefore, the knowledge of control effort
 

needed is vital in designing the VTOL.
 

Control effort is defined as the angular acceleration produced by a
 

control input. If an angular acceleration produced by an input disturb­

ance, such as a wind gust, exceeds the control power available, then the
 

aircraft is considered unstable. The line between stability and insta­

bility depends not only on the criteria used to define stability, but also
 

upon the characteristics of the aircraft. For the X-14 the stability is
 

based on the angular accelerations and the attitude of the'aircraft.
 

These criteria were applied to the hover mode where they are far more
 

important than for regular aerodynamic flight.
 

It is important then to be able to calculate accurately the angular
 

accelerations produced by the turbulence of the atmosphere. A model of
 

atmospheric disturbances is necessary to perform this task. Modeling the
 

atmosphere is difficult using explicit functions of time. Studies of
 

VTOLs and other aircraft involving the wind most frequently use a statis­

tical, probabilistic model for the wind model.
 

1.3 Research Objectives.
 

The objective of this research was to find the maximum allowable gusts
 

which the X-14 could encounter while in hover and still maintain a stable
 

flying condition. The general procedure for solving the problem was to
 

generate a simulated velocity fie'd from a standard wind model. This field
 

was then imposed on the simulated aircraft as a disturbance. Due to the
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nonlinearities of the aircraft, there were changes in"its aerodynamic char­

acteristics. These changes resulted in a modified aircraft motion and
 

were duly considered. The aircraft control' system sought to drive the air­

craft to its reference flight condition, hover.
 

The basic solution was found by arbitrarily selecting a wind model,
 

observing the output variables of consequence, and changing the amplitude
 

of the wind model until the aircraft failed to return to its nominal
 

state.
 

The models for the aircraft and wind are presented in Chapters 2
 

and 3 respectively. The solution procedure, in more detail, is presented
 

in Chapter 4. The results of this study and a discussion and interpreta­

tion of these results are presented in Chapter 5.
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CHAPTER 2
 

AIRPLANE MODEL
 

2.1 X-14 VTOL Airplane.
 

The aircraft used for this project is the NASA X-14 VTOL research
 

aircraft stationed at the NASA Ames Research Center, Moffett Field, Cali­

fornia. The airplane was built by the Bell Aircraft Corporation as a re­

search vehicle for the study of VTOL flight.
 

The X-14 is a thrust-vectored VTOL airplane. Two General Electric
 

J85-19 jet engines are fixed on the aircraft. The thrust of the engines
 

is vectored by diverter vanes at the jet exits. The thrust isdiverted
 

down for hover, whereas, for the transistion of the aircraft from hover
 

to normal aerodynamic flight, the thrust isrotated rearward.
 

The X-14 isequipped with a stability augmentation system for control
 

in the hover and transistion modes of flight. The control effort isob­

tained by bleeding air from the compressor stages of the engines. The air
 

is ducted to reaction control nozzles located ineach wing tip and in the
 

tail. The aircraft attitudes, rates, and accelerations are monitored by
 

gyros and accelerometers. Various types of controllers had been tested
 

and used, but they were not of importance to this study. Some type of
 

control system was needed to do the simulations of this project and an
 

acceleration command (manual) mode was used.
 

The airplane was assumed to be a rigid body and therefore had a body­

fixed reference frame with the origin located at the mass center (Figure 

1). The aircraft was symmetrical about the x-z plane with the positive 

y-axis pointing out the right wing, the positive z-axis pointing down, and 

the positive x-axis pointing in the direction of forward flight. The 
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L = rolling moment
 
M = pitching moment
 
N = yawing moment
 
p = roll rate
 
q = pitch rate
 
r = yaw rate
 

[X, Y,ZI = components of resultant aerodynamic force
 
[u, v,w] = components of velocity of 0 relative to the
 

atmosphere
 

Figure 1. Body-fixed Reference Frame.
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translational displacements, velocities, accelerations, and the components
 

of the resultant aerodynamic forces were considered positive in the same
 

sense as the coordinate axes (body axes).
 

The airplane also had another reference frame attached to it.The 

vehicle-carried vertical frame (see Chapter 4) had its origin located at 

the vehicle mass center. The angular orientation of the vehicle was then 

the relation of the body axes to this vehicle-carried frame. The relative 

orientation was expressed by the Euler angles e,0, and i. 

The position angles were considered positive ifan observer, located
 

at the origin of the reference frame (the vehicle-carried frame in this
 

case), looked along the axes and saw a clockwise rotation of the airplane
 

axes (body axes). The yaw angle, *, was positive for a clockwise rotation
 

about the z-axis (i.e., the right wing goes back). The pitch angle, 0,
 

was positive for a clockwise rotation about the y-axis (i.e., the nose
 

of the airplane goes up). The bank, or roll, angle, i, was positive for
 

a clockwise rotation about the x-axis (i.e., the right wing goes down).
 

The angular velocities and accelerations and the aerodynamic moments were
 

considered positive in the same manner as the angular displacements.
 

The stability augmentation system reacted to disturbances by creating
 

reaction control moments opposite to the induced disturbance moments. The
 

reaction control moments were dependent upon the angular displacements of
 

the sleeves located in the ends of the air ducts (see Figure 2). For
 

zero displacements, the sleeves were oriented so that the air was expelled
 

through the top and bottom control nozzles to provide equal amounts of
 

thrust. Zero displacement was the reference flight condition.
 

The reaction control nozzles in the wing tips corrected any induced
 

rolling or yawing moments. Rolling moments were generated by changing
 

the difference between the left nozzle exit area and the right nozzle exit
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area. The angular displacement, 6x, of the sleeve in the control nozzle 

was considered positive if it created a positive rolling moment (Figure
 

2). Yawing control moments were created by rotating the thrust vectors
 

from the left and right nozzles in opposite directions about the lateral
 

axis (y-axis) of the aircraft. Pitching control moments were created by
 

a reaction control nozzle located inthe tail. Changing the differential
 

area between the top and bottom exit areas produced the pitching control
 

moment. The reaction control angles for pitch, 6y, and yaw, 6z, were
 

considered positive if they produced positive pitching and yawing moments
 

respectively.
 

The aerodynamic controls were directly coupled to the reaction con­

trols through the pilot controls (the stick and the pedals) as follows:
 

aileron control angle, 6a 6x' (111-la)
 

elevator control angle, 6e S,. and (IIl-lb)
 

rudder control angle, 6r = 6z.  (Ill-c)
 

Two angles were associated with the thrust vectoring. The diverter
 

angle, 5,had a range from zero degrees displacement (thrust vectored
 

straight down for hover) to 70 degrees displacement for full aerodynamic
 

flight. This angle was measured inthe vertical plane counterclockwise
 

from the positive z-axis (body axis). The exhaust side vane angle, A,
 

was measured about the x-axis (body axis) by the right hand rule and had
 

a range of ±25 degrees.
 

2.2 Basic Model.
 

The equations of motion for the X-14 were taken from [1]. The model
 

in [1] was a ninth-order system with the state variables being u, v, w,
 

p, q, r, e, , and p These variables are defined inAppendix 4. For
 

this project three other state variables were added which allowed the
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displacements to be calculated. The model was of the basic form
 

= f(t;xuAj QII-2) 

where x was a twelve-dimensional vector of state variables, u was a nine­

dimensional vector of control parameters, and w was a six-dimensional 

vector of input disturbances. 

The problem was to solve for the transient response of the aircraft
 

subject to a disturbance(s). The hover mode, x =0 represented the ini­

tial conditions. The disturbance vector, w,was known for each instant
 

of time. The control vector was calculated by setting x =0, the reference
 

flight condition, and solving equation (2)for u at a specific instant of
 

time. Equation (2)was then solved for x at the next instant of time.
 

This was continued until the nature of the transient, whether a recovery
 

or a crash, was determined.
 

2.3 Changes in the Original Model.
 

The equations of motion of the basic model were reviewed by the
 

author, more for a better understanding of the model than to see ifthey
 

were correct. The equations were found to be nearly correct. Only a few
 

discrepancies were found in certain terms of the equations. 

The term accounting for the rolling moment due to side velocity was
 

omitted from the original model. This term, the stability derivative, C,
 

was derived following methods of [2]. The derivation of this term is pre­

sented inAppendix 1. 

Inthe interim period between the time the basic equations were first
 

written and this project started, the engines of the airplane were replaced
 

with newer, more powerful engines. The newer engines, the GE J85-19
 

engines, had greater thrust capabilities. With the new engine data incorpo­
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rated into the model, a simulation for the hover mode was conducted and
 

a discrepancy between simulation results and actual flying results was 

discovered.
 

Inhover the actual airplane was flying with the engines running at 

98 to 99 percent of maximum engine speed. The model calculated the engine 

speed to be only 90 percent. The conclusion drawn from this was the ef­

ficiency of the diverter vane had been neglected in the model. An effi­

ciency factor was added to the model to adjust the engine speed to that 

of the actual aircraft. This factor also had a direct effect on the thrust 

and the exit velocity of the jet exhausts. 

Reference [1] also calculated this factor and reported itto be 0.91. 

This was based on a direct correlation between the engine speeds of the 

model and the actual aircraft. For this project, the engine speed, 0, 

could not be calcualted by any means other than from the thrust, R?= 

f(thrust). The thrust was an integral part of the model and was included 

in the control vector u. Therefore, the efficiency factor was re-calcu­

lated based on the ratio of the gross thrust for hover as calculated by 

the model and the gross thrust for hover of the actual aircraft. The 

factor was calculated to be 0.807. This factor was assumed to be constant 

over the range of operating conditions of the aircraft. The calculation 

of this factor, %, is presented inAppendix 2.
 

The nature of the solution procedure (see Chapter 4) required the
 

modification of two aerodynamic coefficients, ACL , lift interference, and
 

ACMo, pitching moment interference. The corresponding lift interference
 

force appeared in the equations for forward and vertical velocity. The
 

pitching interference moment appeared in the equation for the pitch rate.
 

These terms required that the value of the net thrust be known before it
 

had been calculated. Both coefficients were defined as functions of two
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parameters, the relative velocity between the aircraft and the atmosphere,
 

U0, and a non-dimensionalized thrust coefficient, T . The equations for
c
 

ACL and ACMo were
 

ACL ­
Sf(U) = -2.248398x0-7"U +2.483009xlO-5.U2-1.332149xlO-3.U 
 (III-3a)
 

T 0 0 0 0
 
C
 

f (Uo) = 4"900354xlO 7 U 3-.3164620xlO-5U2+1.529505x10-3*U (III-3b) 
Tc 0 o 
where T = T /(1/2 p -U 2 .S). 

c net 0 

These aerodynamic terms were incorporated into the thrust terms of 

their respective equations by algebraic manipulation (see Appendix 3). 

This "rearrangement" eliminated the necessity of having to arbitrarily
 

select an initial value for the thrust. 

The last change involved the aerodynamic coefficients Cno, C , and 

3. These coefficients were "extended" to be defined for the full range
 

of the sideslip angle, a, +90 degrees to -90 degrees (see Figure 3). The
 

extended portion of the curves were based on the known curves.
 

2.4 Final Study Model.
 

The model finally used for the study was a twelfth-order system.
 

The state variables were the three translational velocities (u,v,w), the
 

three angular displacements (8,, and associated angular velocities
 

(p,q,r), and the displacements (x,y,z). The full set of equations of the
 

system are presented inAppendix 4.
 

These equations of the model that define the dynamics of the X-14 were
 

nonlinear differential equations. More correctly, equation (2)was written
 

as
 

k f{t;X(t),a(t),w(t)} (111-4)
 

With the control vector assumed to be a known function of state variables,
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equation (4)then became
 

& = f{t; (t)(1x(t)),w(t)} .11-5) 

and was the equation of a closed-loop system. 

The nonlinearities of the system were due inpart to the inertia 

terms of the fundamental dynamical equations. The kinematic variables 

(angular positions and velocities) were nonlinear also. The external for­

ces, especially the aerodynamic forces contained inherent nonlinearities. 

Nonlinearities were also introduced into the system by the aerodynamic 

coefficients. However, in this project, the biggest nonlinear contribu­

tion was made by the control system of the feedback loop, the pilot [6]. 

To model the pilot control system is very difficult. A pilot model
 

must be able to perceive rates, predict attitudes, and then provide the
 

proper lead time incontrol inputs so that it can maintain some degree of
 

precision. The control policy should be one that is capable of driving all
 

the state variables to some reference condition, which, for hover, is the
 

zero vector. For a nonlinear system, as was the X-14, the derivation of
 

such a controller was a difficult task without first producing a linear
 

model. For large disturbances as those considered in this study, many
 

linear models would be required with each one linearized about a different
 

operating condition. The analysis would then switch models as the condi­

tions warranted. This approach would optimize the use of the control ef­

fort available, but itwould be extremely difficult to construct. There­

fore, the control policy of [] was used because of its simplicity.
 

Reference [1] calculated the control vector by setting i = 0 and
 

solving for u (see Appendix 5 for the equations). This control would not
 

return the aircraft to its original position, but would control the air­

craft to some steady-state reference. For example, ifa disturbance caused
 

the-aircraft to roll, the present control would seek to drive the roll
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acceleration, p, to zero. This meant that the roll rate would be a con­

stant and that the roll angle, 4, would continue to increase at a constant
 

rate until the critical roll angle was exceeded. Using this type of con­

trol would tend to give results on the conservative side for the calcula­

tion of maximum permissible gusts.
 

The pilot introduces a time delay into the system due to his time
 

response, which includes his reaction time and the time required for the
 

pilot's response to be transmitted to the physical control system through
 

servos [6]. Reference [7] gave a nominal reaction time delay of 0.15
 

seconds. A neuromuscular lag of 0.10 seconds was also given.
 

The pilot represented the majority of the time delay, The response
 

of the control to a command input was taken to be 0.05 seconds. Equation
 

(6)was then written as
 

= f{t;x(t),(x(t-t),w(t)} . (111-6) 

where T was the time delay. 

The control system just mentionea was affected by the time delay of 

the pilot. The control vector u was calculated every 0.30 seconds. During 

this response time interval, the aircraft was assumed to be in a state of
 

flight infree conditions with locked controls.
 

A second control was used inwhich the pilot was assumed to apply
 

full control when a disturbance was sensed. Full control inthis sense
 

meant that full control effort was available to him through the stability
 

augmentation system. The throttle for the thrust was assumed to be con­

trolled just enough to keep the airplane flying. The thrust and the vane
 

angle(s) were calculated for i = 0.
 

This type of control, %ax' was more representative of a pilot's re­

£ action to disturbances. The design was very basic innature and could not
 

be regarded as sophisticated enough to be useful inother applications.
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Figure 4 shows a schematic of the control policy using pitch as an example.
 

A disturbance (inthe form of a step) was introduced to the system and the
 

pilot reacted (after the time delay) by applying full control effort to
 

counteract the disturbance. This should have resulted inan immediate
 

cnange in sign of the pitch acceleration. Full control effort was applied
 

until the pitcn rate passed through zero. Then the control was returned
 

to the "other" control. The pitch angle was then watched to see if it ex­

ceeded its critical value.
 

Tne preceeding Umax control sequence was only applied to step dis­

turbances. A simpler sequence of applying _max was used for disturbances
 

other than steps. Whenever the aircraft exceeded a certain attitude, usu­

ally one half the critical value, the control was changed from =O to
 

Umax. When the attitude dropped below one half its critical value, then
 

a was returned to u-0.
 -max
 

For the remainder of this study, the two control "schemes" will be
 

designated as
 

reference control
 

0 U. (III-7a)
 

maximum control effort 1max (III-7b)
 

The nine parameters of the control vector were the net engine thrust
 

(Tnet)s the two diverter angles (,X), the three reaction control angles 

(6X y,6 z), and the three aerodynamic control angles (6a,6e,6 r). For hover 

and low speed flight the aerodynamic controls have negligible effect on
 

controlling the aircraft.
 

The exhaust side vane angle, X,was set to zero because the present
 

aircraft does not use it. Since the primary function of the side vane was
 

to produce lateral forces for lateral translation, some simulations were
 

conducted with it present. These simulations were restricted to the case
 

of lateral disturbances only. Also, only the hover condition was considered.
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Therefore, for the major part of this study, the nine-dimensional control
 

vector was actually a vector of only five dimensions.
 

The disturbance inputs represented the three orthogonal components
 

of the wind and the three orthogonal components of the gusts. As discussed
 

in more detail in the next chapter, the airplane was assumed to be facing
 

into a headwind with no crosswinds or vertical winds. Therefore, the dis­

turbance vector was reduced by two dimensions to a four-dimensional vector. 

The valid range of the model was dependent on four variables []6]. 

The variables with their limits were 

forward velocity (u) - +101 fps (+60 knots), 

-17 fps (-10 knots), 

side velocity (v) - z5l fps (±30 knots), 

angle of attack (a) - ±20 degrees, and 

sideslip angle (s) - ±90 degrees 

The conditions for hover were defined as
 

forward velocity (u) +30 fps,
 

-10 fps,
 

side velocity (v) ±30 fps, and
 

vertical velocity (w) ±10 fps
 

2.5 Stability Criteria.
 

The objective of this project was to find an envelope of wind gusts
 

inwhich the aircraft could operate safely. Therefore, certain criteria
 

for instability were established. In hover, close to the ground, the at­

titude of the aircraft is always very critical. Itwas assumed that the
 

aircraft would be considered unstable, or unable to recover to its refer­

ence flying condition, ifeither the roll or pitch angle exceeded 25 de­

grees.
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Since the control effort available was limited, the aircraft was also
 

considered unstable whenever itexceeded its maximum control effort. The
 

maximum available control efforts were
 

(roll) 1.361 rad-sec "2 , 

6 (pitch) - 0.698 rad-sec 2 , and 

(yaw) - 0.332 rad-sec "2 

The altitude for the aircraft was initially set at 100 feet. This
 

gave the aircraft reasonable room to operate vertically and eliminated the
 

altitude as a critical criterion in determining unsafe flying conditions.
 

A change in altitude would be an important factor to watch since this would
 

be critical at lower altitudes on the order of a few feet. Also, this al­

titude was assumed to be great enough to eliminate any effect the ground
 

might have on a hovering VTOL (e.g., re-ingestion of engine exhausts).
 

2.6 Comment on the Aircraft Model.
 

As stated in Section 2.2, the aircraft model was based on the work of
 

[1] which in turn was based on the work of [16]. One aspect of the latter 

work raised certain questions regarding the aerodynamic forces and moments 

that appeared in some of the equations. In particular; the points in 

question concerned the angle of attack, a. Reference [16] included the 

pitching moment due to a in its model, but it neglected the lift and drag 

due to a. Figure 5 was reproduced from [16] and shows the moment, lift, 

and drag coefficients with respect to a. Three things were immediately 

obvious. First, unlike most aerodynamic procedures, these coefficients 

were given as functions of relative velocities and not as functions of a. 

Secondly, the drag coefficient had a negative value which indicated that 

the drag force acts as a propulsive force (i.e., a contribution to the 

thrust) and not as a resistive force. Thirdly, there existed some ambi­



X-14A Longitudinal Aerodynamics 

Static Data 40'x80' Wind Tunnel =ody Axes 

"Power Off" a=O Controls Neutral 

Cxo rad- -

lrad­

-2 

-3 -
Ct rad1 (-CL) 

* A notation refers 

to the aircraft 
before the new en­
gines were install­
ed. 

-5 

-6 
0 10 

I 
20 

I 
30 

Vo (knots) 

I 
40 

I 
50 60 

Figure 5. Copy of CLa, CDa, CM, from [16]. 



158.
 

guity in the heading of the graph. The statements "a=O" and "body axes"
 

were left to be defined by the user. Digressing slightly in order to inter­

pret this, [15] showed that the wings were at an incidence of 11 degrees
 

at the root and 6 degrees at the tip with respect to the aircraft center
 

line (body axes). This then meant the statement "c=O" implied that the 

aircraft was "pitched down" at an angle of 6 to 11 degrees (11 degrees 

will be used for the illustration). To the author, the statement "body 

axes" implied that the forces and moments represented by the coefficients 

were defined to be parallel to the body axes. However, the forces of lift 

and drag, L and k,, were generated perpendicular and parallel to the rela­

tive velocity vector (Figure 6). For a=O, this then meant that lift and 

drag were defined with respect to the mean aerodynamic chord. Therefore, 

lift and drag had to be rotated into the body axes system through an angle 

equal to the incidence of the wing with respect to the body axes (i.e., 11 

degrees). Rotation of these forces, L. and D., showed that drag with re­

spect to the body axes was a positive quantity (Figure 6). This contra­

dicted the information presented inFigure 5. At the present time, only 

a partial copy of [16] isavailable. The previous discrepancies may be 

resolved when a complete copy is referred to. 

For this study, the original equations as defined in [1] were used
 

inwhich C was included and CLa and CDwere neglected. However, a set
 

of simulations, with CLa and CDa included inthe aircraft model, was con­

ducted. Also, since the atmosphere and aircraft reference frames were
 

parallel (see Chapter 4), the angle of attack had an initial value of 11
 

degrees. Therefore, another set of simulations was conducted where 11 de­

grees was added to the angle of attack. The results of both sets of simu­

lations are presented in Section 5.3.c.
 



159.
 

aircraft
 

mean 
0 aerodynamicchord
 

-

positive drag - -x direction 
positive lift -z direction 

Lbody axes = 
LL -
LDO 

Dbody axes = DL + Do 

Figure 6. Interpretation of "ctO" and "body axes".
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CHAPTER 3
 

WIND MODEL
 

3.1 Background.
 

A hovering aircraft, either a VTOL or a helicopter, is limited to
 

hovering within the so-called Earth boundary layer. This boundary layer
 

extends from the surface of the Earth through the lowest few hundred feet
 

of the atmosphere. Due to the nature of many factors present in the
 

planetary boundary layer, turbulence is nearly always present [9].
 

Turbulence isdefined by [8] to be rotational, dissipative, three­

dimensional, nonlinear, stochastic, diffusive, and a continuum phenomenon.
 

Turbulence can then be defined as a random process that cannot be described
 

by explicit functions of time; only a statistical, probabilistic approach
 

can be taken [5]. Therein lies the problem of modeling the wind.
 

Reference [5] stated that much of the extensive information avail­

able on wind-induced turbulence near the ground is inconclusive and even
 

contradictory. This made a low altitude turbulence model seemingly im­

possible to derive. However, with certain assumptions, a reasonable re­

presentation of presently available information was constructed.
 

The first assumption was that turbulence can be broken down into a 

slowly-time-varying component and a rapidly-time-varying component. This 

was seen by observing a typical spectrum of wind speed near the ground 

(Figure 7). The spectrum showed that measured winds contain high-frequency 

and low-frequency modes with a wide gap of frequency where the wind con­

tains little energy. Because of the long periods associated with the low­

frequency mode (on the order of hours), this low-frequency mode was assumed
 

to be constant over the relative short period of time (10 seconds) of the
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computer simulation. This then defines a constant velocity mean wind.
 

The high-frequency mode was assumed to represent the irregularly fluctua­

ting wind gusts.
 

Another assumption was that there was no dependence of the statis­

tical properties of turbulence on time. Turbulence was therefore assumed
 

to be a stationary process. Turbulence was also assumed to be homogeneous
 

(i.e., the statistical properties were the same at each point in the gust
 

field). The last assumption was that the gust velocity components were
 

Gaussian. This was necessary in the development of the gust part of the
 

model in Section 3.3.
 

3.2 Wind.
 

Itwas stated in Section 3.1 that the low-frequency wind was assumed
 

to be a constant because of the short time period of the simulation. This
 

was also carried over and used to assume that the direction of the wind
 

would be constant over the time period of the simulation.
 

The reference frame of the wind was an atmosphere-fixed reference
 

frame (see Chapter 4), the axes of which point north, east, and vertically
 

down. The wind model assumed the mean wind to be blowing from north to
 

south (anegative direction) parallel to the north-south axis of the re­

ference frame. Therefore, the crosswind and vertical wind were zero.
 

The mean wind was assumed to be constant over the entire width and 

height of operation of the aircraft (see Figure 15).
 

3.3 Gusts.
 

A discrete model of gust velocity is described in [13]. The discrete
 

model has the "I - cosine" shape and is shown in Figure 8. The equation
 

of the discrete gust model is
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Figure 8. Discrete Gust Velocity Profile.
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V X 
v(x) = * V{ - cos(r . -)1 (8) 

2 d 
m
 

This model is an arbitrary model that relates the gust magnitude in a
 

rational manner to the expected intensity of continuous random turbulence.
 

The model has a gust velocity v(x) defined spatially in terms of a magni­

tude v, which occurs at a distance x=dm, where dm is a physical dimension
 

of the gust velocity field. This model can be applied to any of the three
 

gust components [13]. This model describes an average of all conditions
 

for clear air turbulence. The model neglects the effects on turbulence
 

of terrain roughness, atmospheric stability (lapse rate), mean wind mag­

nitude, and all other meteorlogical factors, except altitude. Too few
 

data are available to incorporate these factors into the model.
 

The validity of a discrete model for gust magnitudes was discussed
 

in [2] and [13]. Reference [13] stated that a discrete gust provides
 

spike-type inputs that may not be apparent in the simulated Gaussian ran­

dom turbulence. These gusts affected a vehicle in a specific way, but
 

one which was likely to be encountered.
 

The discrete gust model jointly considers gust magnitude and gust
 

gradient, both of which are important parameters. A study of these para­

meters was the objective of this research.
 

The discrete model was a function of three parameters, d., already
 

mentioned, L,the scale length of turbulence, and'o, the root-mean-square
 

intensity of continuous random turbulence. The last two parameters were
 

functions of altitude. A conditional probability density function of the
 

random turbulence was the key to the discrete model. The derivation of the
 

model ispresented in[13]. However, a basic description and some of the
 

assumptions used will be repeated here.
 

The discrete model was developed by arbitrarily choosing reasonable
 

values of the scales and then determining values for the intensities so
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that the mathematical spectral form matched the measured spectra data.
 

The root-mean-square intensity of vertical velocity, aw, was the basis
 

for the model. The statistical properties of aw were developed in [13].
 

First, the discrete probability (PI) of encountering turbulence was
 

obtained from Figure 9 (Figure 3, page 443 of [13]). As can be seen, it
 

isa function of altitude. The value of aw at a particular altitude was
 

taken to be that rms turbulence which was exceeded with a probability of
 

exactly a.01 (i.e., 99 percent of all time spent in flight at a given al­

titude will be spent in either turbulence with less than the specified aw
 

or inturbulent free air). IfP(w) is the probability that aw equals or
 

exceeds a given value, then by definition of awS
 

P(aw) = P P(ow) = 0.01 (111-9)A 

where P(aw) and P1 are defined as above and P(aw) is the conditional prob­

ability of equalling or exceeding a given aw once turbulence has been en­

countered. The function P(aw)was obtained from Figure 10 (Figure 2, page
 

442 of [13]), which was based on fitting a Rayleigh distribution to known 

gust data. From the graph, the value of P(aw) necessary to make P(w = 

0.01 was found and the corresponding aw, as a function of altitude, was
 

found.
 

The vertical scale of turbulence, Lw, had been established to a
 

reasonably good approximation as a function of altitude. Reference [13)
 

cites two different scales for clear air turbulence, the preferred von
 

Kannan scales and the Dryden scales. The vertical scale of turbulence was
 

found from one of the following equations, 

L = 2500 feet altitude (h) > 2500 feet , (III-10a) 

or L = h feet altitude (h) < 2500 feet . (III-10b) 

The scales of turbulence for longitudinal, Lu, and lateral, Lv, turbulence 

were calculated from one of the following equations, 
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L
U 

= L 
v
= 2500 feet altitude (h)> 2500 feet, (hII-lc) 

or LU = LvV 184 . h1 3 feet altitude (h)< 2500 feet . (1ll-lOd) 

The root-mean-square intensities for the longitudinal and lateral clear 

air turbulence were derived from the von Karman relationship 

2 
 2 2
 

,2-/3 7-2/3

L
u Lv L
w
 

For any component of clear air turbulence, the scale of turbulence and the
 

rms intensities were known. By arbitrarily selecting several values of
 

d , corresponding values of v were obtained from Figure 11 (Figure 7, page
m m
 

429 of [13]). Figure 11 was derived by cross-plotting the values of Vm/Cr
 

and d /L from Figure 12 that corresponded to a probability of occurrence
 

of 0.01. Figure 12mmis a Gaussian cumulative distribution, P(vM/AY), in
 

a normalized form. The variable dm/L was a parameter used incalculating
 

P(vm/0). Therefore, for a given altitude and a given probability of being
 

in a specific turbulent field, a discrete model was found.
 

This was a partial solution to the problem of determining the maxi­

mum gust fields inwhich the aircraft can safely fly. The approach taken
 

in this research was to find the envelope of maximum v's and, then,
 

knowing the lengths, dm, from basic relationships regarding each vm
 

working back to find the probabilities of encountering such turbulence.
 

A change was made in the discrete equation (8)in order to apply
 

it to the problem. The procedure used in [13] was for an aircraft flying
 

through the velocity field. The total time the aircraft was subjected
 

to the turbulence was the length of the gust field, 2dm, divided by the
 

airspeed of the aircraft. For this project, the length of time the X-14
 

was subjected to the turbulence was the distance traveled by the gust
 

divided by the speed at which the gust field was traveling. The length of
 

time was specified based on previous knowledge about gusts [10]. The pro­
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duct of the time and the speed of the gust field then gave an appoximation
 

to the length 2d (see Figure 30).
 

Examination of Figure 7 shows that the period associated with the
 

peak of the high-frequency component occurs around 0.05 hours (3minutes).
 

However, [10] stated that analysis suggests at least two-thirds of tur­

bulent energy is associated with fluctuations lasting less than five
 

seconds. This latter information was used as a basis for establishing
 

testing frequencies of the gusts. Another conclusion was that, at mod­

erate heights, the eddying energy was equally divided along all three
 

axes. This then was the basis for modifying the discrete equation to be
 

a function of time rather than length, and for it to be equally repre­

sentative of any one of the three gust components. Therefore, equation
 

(8)became
 

v t 
v(t) m fIf - CosOr -)I , qII-12) 

2 t 
m 

where the distances were replaced by times. The time t was any instant
 

of time during the simulation between t0 and t=l0 seconds. The time t
m 

was the "half-life" of the gust frequency and was when v occurred.
 

Three "base" times, tm , were selected for the model. Times were
 

limited to the length of the simulation or less. The "base" times were
 

ten, five, and three seconds. These times corresponded to frequencies of
 

0.10, 0.20. and 0.33 cycles-sec-1 (cps) respectively. The fourth repre­

sentation of a gust, the step, was also used since a step represents the
 

most severe type of turbulence an aircraft may encounter [2], [14].
 

3.4 Equations of the Wind Model.
 

The final model of the wind consisted of a mean wind with gusts in
 

the three component directions. The gust opposite in direction to the
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mean wind was omitted for the reason that this condition would violate the
 

validity of the model inthat itwould force 0 to be greater than 90 de­

grees. The mean wind was considered to blow from the north at a constant
 

velocity of UWI fps. The gusts were considered positive ifthey blew in
 

the direction of the positive body axes. The mean wind was transformed
 

from the atmosphere-fixed reference frame into the body-fixed reference frame
 

by the Euler angles. The equations were
 

UWbf = UW af-Cos( ).cos () , 	 (III-13a) 

VWbf a 	 .UWlaf.{cos(@).sin(o).sin(@)-cos(j).sin()} (III-13b)
 

WWbf = UWI af{cos(O).cos(p)'sin(e)+sin()-sin(0)) (III-13c) 

where the subscripts bf and af referred to body reference and atmospheric 

reference frames respectively. 

The gust components were also transformed into the body reference 

frame of the aircraft by the Euler angles. The equations were 

UGbf = UGoafCos().cos() + VGaf.oCOS().sin() - tII-14a> 

WGafsin(e) 

V~of = VGaf.{cos( ).cos(f)+sin(q).sin( )-sin(O)} -

UGaft cos(f)-sin(i)-cos(p).sin()'sin(e)} + (III-14b) 

WGaf.Cos().sin() , 

WGbf = UGaf.{cos(p).cos().sin()+sin(C)-sin(p)} ­

(III-14c)VGaf {cos(p).sin(p)-cos(k).sin(i).sin(e)1 + 


WGafCOSC-)-cos(e) ,
 

where 	 UGaf l1/2.vmu{l - cos(p.t/tmu)} , (I-15a 

VG = 1/2vmv.{l - cos(ir.t/tmv)} , (III-15b) 

WG = l/2.Vmw.{l - cos(7.t/tn)1 . (II-15c) 

3.5 Input to the Aircraft Model.
 

The approach to this study is illustrated in Figure 13. The wind
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model described the atmospheric turbulence, the output of which was a velo­

city field. This velocity field acted as a disturbance on the aircraft in
 

the form of changes inaerodynamic forces and moments. These forces and mo­

ments were then fed into the aircraft model. The stability of the output,
 

or the vehicle motion, of the aircraft model was used indetermining the
 

maximum gust field the aircraft could withstand.
 

The velocity field of the atmosphere may be regarded, over the time
 

and space intervals of interest, as composed of a steady mean value with
 

turbulent fluctuations superposed. This leads to the assumption that the
 

structure of turbulence takes the form of individual patches, ineach of
 

which the turbulence isapproximately random, homogeneous, and isotropic.
 

This isbased on the fact that the statistical properties of the distur­

bance input to an airplane flying through a turbulent field are not appre­

ciably affected by the variation of that field with time. Essentially,
 

turbulence may be treated as a frozen pattern inspace.
 

Another assumption must be made in order to deal with a hovering
 

VTOL aircraft like the X-14. Reference [5] stated that an assumption of
 

a frozen turbulence model was invalid for a stationary point. However,
 

[8] and [12] stated that the hypothesis of a gust field frozen in time
 

moving downwind with the mean wind speed (known as Taylor's hypothesis)
 

was acceptable at low airspeeds. The lower limit of airspeed at which
 

this assumption was valid was put at one-third the mean wind speed.
 

Therefore, the model of the aircraft was assumed to have a forward air­

speed equal to one-third the mean wind speed. This does not violate the
 

definition of the hover conditions as a 30 fps forward velocity was de­

fined as the limiting forward velocity for the hover mode.
 

Itwas assumed that there was no variation of the gusts over the
 

physical dimensions of the aircraft. The longitudinal gust was assumed
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constant along the wing span, the lateral gust was assumed constant along 

the fuselage, and the vertical gust was assumed constant along the wing span 

and fuselage. The aircraft was ineffect treated as a point [5]. 

Treating the airplane as a point simplified the model as far as defin­

ing the input to the aircraft. However, it restricted the usefulness in 

calculating certain responses. The point approximation was valid provided 

the wavelengths of the gusts were much greater than the physical dimensions 

of the aircraft. This was valid for lower frequencies only. Reference [5]
 

limited the upper frequency for validity to 2/(wing span) which, for the
 

X-14, was 0.059 cps. This was the upper limit for considering the plane 

vanishingly small compared to the gust wavelength. The smallest frequency 

used in the model was O.10o cps, or almost twice the limiting value. This
 

would indicate that the point approximation assumed in this study would
 

yield somewhat limited results.
 

To consider the higher frequencies would then require treating the
 

airplane as a finite plane inspace where the gusts vary along the dimen­

sions of the aircraft. Variations in longitudinal gusts along the wing span
 

would result in induced rolling moments and pitching moments. Variations
 

invertical gusts along the wing span and fuselage would result in pitching
 

and rolling moments also. Variations inlateral gusts along the fuselage
 

would result inyawing moments.
 

The gust model would need to be modified in order to produce these
 

variations. The modifications would entail splitting thb gust velocity
 

field into smaller parts, each of which possessed different magnitudes and,
 

each of which acted on a separate section of the aircraft. The aircraft
 

model would then also need modification inorder to calculate the response
 

of the aircraft to each gust input. These modifications would increase
 

the complexity of each model, which, at this time, is beyond the scope of
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this project.
 

Treating the aircraft as a point also neglects the effect of gust
 

penetration (i.e., wing-to-tail delays). Gust penetration is important
 

for high gust magnitude to airspeed ratios, which was the case for this
 

project. However, this would require that the response of the tail to
 

gusts be known. At the present time these responses are not available.
 

For the altitude considered in this project, 100 feet, this model
 

derived in the foregoing was assumed to be a reasonable representation
 

of clear air random turbulence.
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CHAPTER 4
 

METHOD OF ANALYSIS
 

4.1 Reference Frames.
 

Four frames of reference were needed for the definition of this prob­

lem. An inertial reference frame was needed inwhich Newton's Second Law
 

isvalid for motion of a particle or a rigid body. The inertial frame
 

chosen was as Earth-fixed reference, Fe, with Earth surface axes OeXeYeZe
 

(Figure 14). The origin of this frame was placed near the vehicle with
 

the OeZe axis pointing vertically down, the OeXe axis pointing north, and
 

the OeYe axis pointing east. The rotation of the Earth and its curvature
 

were neglected, thus being called a Flat-Earth approximation (i.e., treat­

ing the Earth as a stationary plane in inertial space).
 

A reference frame defining the aircraft was also needed. Inthis
 

case, two were defined. First, a vehicle-carried vertical frame,'Fv, with
 

axes OvXvYvZv was attached to the aircraft at the mass center. The 0vz v
 

axis was directed vertically down and the remaining axes, Ovxv and OvYv,
 

were chosen to point north and east respectively. For hover, the movement
 

of the aircraft from its original position was small enough to consider
 

the origin of Fv near enough to the origin of Fe so that the axes of each
 

could be considered parallel.
 

The second reference frame associated with the airplane was a body­

fixed reference frame, Fb$ with body axes Oxyz. The origin of this frame
 

was located at the aircraft mass center (see Figure 1). The axes were the
 

same as those defined in Chapter 2. As mentioned previously, the Euler
 

angles gave the orientation of the body axes relative to Fv. However,
 

by considering the origins of Fe and Fv to be coincidental, or nearly so,
 

because of hover, the Euler angles also gave the orientation of the aircraft
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relative to the inertial reference frame, Fb relative to F
 

The fourth reference needed to define the problem was one to be used 

with the motion of the atmosphere. The atmosphere-fixed reference frame, 

Fa ,with axes 0axaYaz, was necessary to define the relative velocity be­

tween the aircraft and the atmosphere for the calculation of aerodynamic 

forces and moments. When the atmosphere was at rest relative to the Earth, 

F and Fe were the same. When the atmosphere was in non-uniform motiona 

relative to the Earth, F was chosen so that the average motion of the
a 

atmosphere relative to F was zero [5]. Therefore, non-uniform and uniform
a 

motion of the atmosphere relative to the Earth resulted in motion of Fa 

relative to Fe . By selecting Faaeparallel to F initially, Fa then moved 

parallel to Fe at constant velocity. 

All reference frames were assumed to have the same origin at the start 

of the simulation, or at time zero, as shown in Figure 15. The changes in 

the references for an incremental time At are shown in Figure 16. Reference 

F has moved a distance of UWI.At feet in the negative x-direction. The 
a 

aircraft has flown along a trajectory path P and has undergone angular dis­

placements in roll, pitch, and yaw. For purposes of derivations to follow,
 

these displacements were assumed to be positive. The aircraft was no longer
 

orthogonal to the other three reference frames. Disturbances parallel to
 

The aircraft now saw"
Fa were transformed into Fb by the Euler angles. 


orthogonal components of the wind and the gusts.
 

The transformations were carried out in a particular sequence as shown
 

in Figure 17 [5]. The sequence was 1) a rotation i about OvZv carrying the 

axes to a temporary position OvX2y2Z2, 2) a rotation * about OvY2 carrying
 

the axes to another temporary position Ovx3y 3z3, and 3) a rotation 0 about
 

Ovx3 carrying the axes tb their final position Ox z.
 

4.2 Method of Solution.
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Figure 15. Relative Positions of the Reference Frames for Initial Conditions.
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The objective of this research was to find the largest gust field the 

aircraft could encounter and still maintain a stable flying condition. The
 

stability of the aircraft was defined by certain constraints or limits on
 

some of the state variables and control parameters.
 

The procedure was to solve equation (6)
 

x f{t;x(t),a(x(t-T)),w(t)}, 

for maximum w with constraints and limits imposed on x and u. Due to the
 

nonlinearity and time variance of the equations, w could not be solved for
 

directly.
 

A simple iteration technique to solve for w indirectly was used. An
 

arbitrary wind model was selected and introduced into the aircraft model.
 

Ifthe airplane flew in a stable manner for ten seconds, the wind model was
 

increased inmagnitude. Ifthe airplane could not recover, the magnitude
 

was decreased. The iteration was carried out until the largest values of
 

wind and gusts the aircraft could withstand were found.
 

The problem was then an initial value problem with a known set of
 

initial conditions and a set of 12 first-order differential equations that
 

could be integrated by numerical methods.
 

The initial conditions of the aircraft represented the hover mode.
 

The forward velocity, u,was set equal to one-third the mean wind speed, a
 

necessary condition for Taylor's hypothesis. The remaining state variables,
 

except for the altitude, were set to zero.
 

The length of time for the observation of the aircraft was arbitrarily
 

set at ten seconds. The solution of the differential equations was obtained
 

by integrating over the time interval in steps of 0.10 seconds. The inte­

gration routine used a fourth-order Runga-Kutta iteration to calculate the
 

initial values of the integration and a four-point Adams-Bashforth-Moulton 

predictor-corrector method to continue the integration.
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The first part of the solution to the problem was to determine the
 

maximum steady-state headwind the airplane could withstand. No other 

components of the wind were calculated because of the assumption that the
 

aircraft was always facing initially into the steady-state headwind. The
 

second part of the solution consisted of finding operational envelopes of
 

maximum gust magnitude for various gust frequencies, headwinds, and con­

trol policies.
 

4.3 Computer Program.
 

The flow chart for the program WINDY, used to calculate the opera­

tional envelopes, isshown in Figure 18. The program was given the initial
 

conditions for hover and the velocity of the headwind. For these condi­

tions, the aerodynamic coefficients used incalculating the aerodynamic
 

forces were calculated. These aerodynamic coefficients changed instantan­

eously for each change in relative velocity of the atmosphere with respect
 

to the aircraft.
 

At some time to the gust disturbances were introduced. These gusts
 

were parallel to the atmosphere-fixed reference frame. The program trans­

formed the gusts and the wind into the aircraft reference frame.
 

The initial values of the control vector were then calculated by
 

WINDY. These values were stored by the program. They represented the
 

state of the aircraft before any disturbance was encountered.
 

The solutions of the system of differential equations describing the 

aircraft motion were obtained and stored for a particular instant of time. 

Next, the angular accelerations were calculated and stored. These values 

were obtained by treating the equations involving angular motion (i.e., 

the j, q and r equations) as algebraic equations. For the particular 

time (of the simulation) inquestion, these equations take the form 



185.
 

Read initial
 
wind conditions;
 
UWI, GSMAGU,
 
GSMAGV, GSMAGW,
 
DENOM, JGUST.
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Figure 18. Flow Chart for Windy.
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j f ,1 ,w) , (Ii-16a) 

4j = f(j,j,wj) , and (Ill-16b) 

=j f(=jujwj) (III-16c) 

The current values of the state variables, xj, the control parameters, LP
 

and the disturbances, ±j, were substituted directly into the above equa­

tions. These equations also gave the control effort requirements since
 

these requirements and the angular accelerations were equivalent.
 

The stability criteria were checked as the program proceeded to the 

next part. Ifthe aircraft was found to be unstable, the program printed 

the time history of the motion up to that point and then stopped. The time, 

the state variables, the control parameters, and the angular accelerations 

were printed for every 0.10 seconds. If the aircraft was stable, the time 

was checked to see if it was time to calculate new values for the control 

parameters. The control parameters were calculated every third step after 

the introduction of the disturbances. This simulated the time lag due to
 

the pilot.
 

Upon every calculation of a new control vector, the program checked
 

the saturation limits of the various parameters. Any control parameter
 

exceeding its saturation point was set equal to that saturation point.
 

The time was then incremented by 0.10 seconds. Ifthe time was less
 

than ten seconds, the program introduced the gusts with their new velo­

cities and then went through the same procedure as just outlined. Ifthe
 

simulation was complete (ten seconds) the program printed the complete
 

time history.
 

A copy of WINDY ispresented inAppendix 6.
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CHAPTER 5
 

RESULTS, DISCUSSIONS, AND CONCLUSIONS
 

5.1 Steady-state Wind (Headwind).
 

The first part of the project was to find the maximum headwind (with
 

no gusts) inwhich the aircraft could maintain a hovering flight condition.
 

The computer simulations found the maximum headwind to be 61 fps (36 knots).
 

The aircraft was found to remain virtually motionless with only the thrust
 

and the pitch control nozzle angle, 6y, differing from hover conditions.
 

The net thrust was lower by 449 pounds (obviously due to the lift created
 

by the wind) and 6 y was nearly saturated at -19.2 degrees.
 

The next higher value of headwind, 62 fps, resulted inthe aircraft
 

being unable to counteract the pitching moment created by the lift due to
 

the wind. The pitch control angle was saturated (-20 degrees) for the en­

tire simulation. The aircraft exceeded +25 degrees in pitch attitude after
 

5.6 seconds.
 

5.2 Maximum Gust Envelope.
 

Table 1 presents the maximum gust envelope for the X-14. The values
 

inthis table represent the variable vm of equation (12) inChapter 3.
 

5.2.a Analysis of Longitudinal Gusts.
 

Table 1 shows the longitudinal gust magnitude (UG) to be independ­

ent of frequency. All three frequencies have nearly the same magnitude,
 

52 fps. The computer simulations showed that 5y became saturated whenever
 

the gust magnitudes approached their maximum values (52 fps).
 

An analysis of the next higher magnitude for each frequency showed
 



HEADWIND LONGITUDINAL GUST LATERAL GUST 
 VERTICAL GUST FREQUENCY 

UWI -UG +VG -VG +WG -WG 

-10 -52 +65 -67 +23 -19 0.10 cps
 

-10 -52 +65 
 -66 +23 -17 0.20 cps 

-10 -53 +72 -74 +23 -21 0.33 cps 

-10 --- +27 -27 +16 -15 step 

-61 maximum headwind 

All magnitudes are fps.
 

Table 1. Maximum Permissible Gust Envelope.
 

co 
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the aircraft to exceed +25 degrees inpitch for the two lower frequencies
 

(0.10 and 0.20 cps). The pitch control effort, equivalent to 4,was ex­

ceeded inthe third case.
 

5.2.b Analysis of Lateral Gusts.
 

Examination of Table 1 shows that the permissible magnitudes for the
 

lateral gusts to be the largest of the three component magnitudes. The
 

limiting factors were the aircraft side velocity and the pitch angle, de­

pending on the frequency content of the gust. At 0.10 and 0.20 cps, the
 

side velocity exceeded the definition of hover for all gust magnitudes in
 

excess of 65 fps. At 0.33 cps the pitch angle exceeded +25 degrees for
 

gusts inexcess of 72 fps. It should be noted that ifthe side velocity
 

was ignored, the maximum permissible gusts were 88 and 73 fps for 0.10
 

and 0.20 cps respectively.
 

Detailed analysis showed that a large yaw angle, i, was indirectly
 

responsible for the large pitch angle (0.33 cps case and for the two cases
 

where side velocity was ignored). For a large i, typically 50 to 60 de­

grees, the lateral gust provides a component which resembles longitudinal
 

velocity, Uo. Figure 19 shows the relationship between U0 and 0 for a
 

longitudinal gust of 53 fps and 0.10 cps (minimum case of instability).
 

Also shown are Uo and e for a lateral gust of 89 fps and 0.10 cps (minimum
 

case of instability also--one fps above the limiting case). The figure
 

shows a close resemblance between the two sets of curves as increases.
 

This substantiates p as being indirectly responsible for e exceeding its
 

critical value.
 

The lateral gusts in the form of a step function resulted inmore 

limited responses because of excessive yaw control effort (, or r)demanded 

by the aircraft. The permissible magnitude was 27 fps. Ignoring aircraft 
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side velocity, the permissible magnitude was 53 fps.
 

5.2.c Analysis of Vertical Gusts.
 

Table I shows the aircraft to be the most sensitive to the vertical 

gusts. In all cases the critical parameter in determining instability was 

e. For both positive (down) and negative (up) vertical gusts, the pitch 

angle exceeded +25 degrees before any of the other hover criteria were vio­

lated. The maximum gust magnitudes were +23 and -19 fps for 0.10 cps, +23 

and -17 fps for 0.20 cps, +23 and -21 fps for 0.33 cps, and +16 and -15 fps 

for the steps. 

Figure 20 shows the time history for e for +23 and -19 fps (0.10 cps),
 

the limiting hover case. The responses were normal for the first half of
 

the simulation. Normal responses meant positive pitch from a down gust
 

(gust striking a larger surface area behind the center of gravity of the 

aircraft and thus forcing the nose up) and negative pitch from an up gust
 

(same reasoning, nose down). The initial -0 created by the up gust resulted
 

in an increase in u, forward velocity. This increase results in a larger
 

positive pitching moment which should tend to return the aircraft to an
 

"even keel". Figure 20 shows this to be the case over the first six seconds
 

of the simulation. However, at that time, the aircraft acquired a large
 

positive pitch rate which rapidly drove the aircraft unstable. The pitch
 

control effort did not respond as would be expected for this situation.
 

Figure 21 shows 6y for both cases. As can be seen, 6y never approached
 

saturation at any time for the up gust case. The reason for this can be
 

found by examining the equation for 6y (equation (A5-5), Appendix 5). In
 

detailed analysis itwas found that the angle of attack exceeded its valid
 

range for the model, ±20 degrees. Typically a approached 50 to 60 de­

grees. This was the cause for the unusual results.
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Figure 21. 6y for Positive and Negative Vertical Gusts.
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increased through term (iii) which resulted in an increasingly larger
 

e. As e increased (positively), a increased again and the cycle started
 

again. This phenomenon can be seen by examining the equation for 5,
 
af= sin- I(Orel /Vjet - A/Tnet(J) - AA-sin(a)) . (III-17a]
 

The second term, A/Tnet(j), was the dominating term of the equation.
 

Examining it more closely revealed that a and a were closely related. 

The term, with the proper substitution for A, was
 
.,...m.(v-r-w-q-g-sin(e))+I/2.p.U2.S.(C Lo'sin(a)-CD.COS(a))}/Tne().
 

The dominant part of this expression was m.g.sin(8)/Tnet(J). This term
 

reduced essentially to sin(s) since m-g/Tnet(J) was nearly unity because
 

meg, the weight, was canceled by the thrust, which, for hover, was slightly
 

less than the weight. Therefore, the expression for a was approximately
 

d sin-'( ...sin(e) ...) (ll-17b
 

which reduced to 

& e (III-17c 

for large positive 0. 

This showed the model to be inherently unstable for any condition 

that resulted in a positive pitch angle. Itmust be remembered that 

this occurred because of the way the control vector, of which & was a part, 

was defined. The next two subsections attempted to alleviate this problem 

with a by restricting a through gust combinations and by utilizing more of 

the control effort available. 

5.2.c.l Analysis of Longitudinal and Vertical Gust Combinations.
 

The large angles of attack were responsible for the initial positive
 

pitching motion. These large angles resulted when the vertical relative
 

velocity component, Wrel, was large compared to the relative longitudinal
 

velocity, Uo. The equation for a,
 

http:m.(v-r-w-q-g-sin(e))+I/2.p.U2
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a = sin- (Wrel/Uo) , (111-18) 

then forced the ratio Wrel/Uo to be restricted to a value less than ±0.342 

inorder for a to be within ±20 degrees. Placing a restriction on Wrel/Uo 

complicated the iterative procedure used to find the vertical gusts of the 

gust envelope. This was abandoned infavor of observing the response of 

the aircraft to "typical" gust fields. In these gust fields the longitudi­

nal gust was also considered since itwas an integral part of U. (i.e., 

)11 2).
Uo = Urel2 + Wrel2

Reference [8] stated that the only successful non-zero cross-corre­

lation between different velocity components recorded at the same points 

involved the longitudinal and vertical gust components. The procedure 

of Section 3.3 was used to find "typical" gusts for both components. These 

combinations were used to give an estimate of the maximum magnitude of a. 

Only the combinations that kept a close to ±20 degrees or less were used. 

Table 2 gives the 10 combinations that were used. The gust combinations 

were calculated on probabilities of occurrence of 0.10, 0.01. and 0.001. 

Two different headwinds, 10 and 25 fps, were used indetermining the 

gust combinations. The total effects of the two headwinds will be dis­

cussed inmore detail in a later subsection. 

The aircraft was unable to withstand the gust field for the last
 

three cases of Table 2. In all three situations, the pitch angle exceeded
 

+25 degrees. Table 3 gives the maximum values of the pitch angle for the
 

10 cases. The data showed the aircraft to be more stable for the combina­

tions with positive vertical gusts than those with negative vertical gusts. 

This was true only for the lower value of headwind (cases a to d, Table 2).
 

The behavior of the aircraft "switches" for the higher headwind as the
 

aircraft was more stable for those combinations with negative vertical gusts
 

than for those with the positive vertical gusts. The degrees of stability
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HEADWIND LONGITUDINAL VERTICAL PROBABILITY Or APPROXIMATION ACTUAL
 
GUST GUST OCCURRENCE OF ALPHA ALPHA
 

a. -10 -8.4 -7.2 0.10 210 160
 
b. -10 -8.4 +7.2 0.10 -210 -16.50
 
C. -10 -19.1 -16.3 0.01 280 210 

°
d. -10 -19.1 +16.3 0.01 -280 -22.5
 
e. -10 -29.8 -25.4 0.001 300 *
 
f. -10 -29.8 +25.4 0.001 -300 * 
g. -25 -11.5 -7.2 0.10 110 7.50
 
h. -25 -11.5 +7.2 0.10 -1l1 -70
 
i. -25 -25.7 -16.3 0.01 180 16.50
 
j. -25 -25.7 +16.3 0.01 -180 -11.50
 
k. -25 -40.0 -25.4 0.001 210 37.50
 
1. -25 -40.0 +25.4 0.001 -210 -130
 

* these two were not used.
 
all gust frequencies were 0.10 cps; all magnitudes were fps.
 

Table 2. "Typical" gusts, longitudinal and vertical combinations.
 

CASE MAXIMUM PITCH ANGLE CHANGE INALTITUDE MAXIMUM 6y
 

a. -.041 to .117 rad +0.51 ft +30 to -4"
 
b. .083 rad +1.26 ft -6.70
 
c. -.084 to .379 rad +4.22 ft +130 to -120
 
d. .202 rad +3.10 ft -15.20
 
g. -.040 rad -0.64 ft +20 to -10
 
h. .098 rad +4.81 ft -9.10
 
i. -.016 to .060 rad +4.53 ft +1.50 to -90
 
j. >25" at 6.4 secs +5.45 ft -200 3.9-6.4*
 
k. >25° at 6.2 secs +6.20 ft -200 3.9-6.2*
 
1. >25° at 4.6 secs +3.41 ft -200 3.0-4.6*
 

*time during which 6y was saturated.
 

Table 3. 0,Az, and 6y for "Typical" Gust Combinations.
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here were based upon the relative absolute magnitudes of e, which was the
 

critical parameter. The three conditions at which the aircraft became un­

stable were characterized by a rapid increase ina over the Tast few sec­

onds of the simulations, Table 4. Again the aircraft model was shown to
 

be inherently unstable due to the interdependence between a and e. For
 

these cases, the larger magnitude for the headwind created the positive
 

pitch which led to the instability of the aircraft.
 

5.2.c.2 Use of All Available Control Effort, -ax"
 

Since the unstable cases for vertical gusts (limiting cases) involved
 

0,Umax was applied only to ay. Whenever e exceeded 12.5 degrees (1/2 of
 

its critical value), the control switched from a- to aax (i.e., 6 =±20
 

degrees depending on the sign of 6). Table 5b compares the results of
 

using*ax against not using it for the gusts of Table 5a. The effect of
 

Mmax was to reduce the maximum pitch rate and thus, allow the operational
 

envelope to be expanded. The control was more effective for up gusts than 

down gusts. Figure 23 shows that max did a better job incontrolling S 

by using more of the control effort available. The other control, U~0 , 

never reached a saturated state and therefore, did a poorer job incontrol­

ling e. At this point itmust be stated again that these limiting condi­

tions of vertical gusts were beyond the valid range of the model inthat a 

exceeded ±20 degrees. 

The results of using Tmax indetermining maximum vertical gust mag­

nitudes are presented inTable 6,which shows relative values between the 

vertical gusts of Table I and those using U-a. The results were affected 

by the fact a exceeded 20 degrees for a good portion of the time. However, 

Table 6 does demonstrate the effectiveness of using all the control effort 

available.
 



201.
 

CASE TIME
 

j. 3.3 secs .111 rad
 
6.4 secs .474 rad
 

k. 4.8 secs .121 rad
 
6.2 secs .411 rad
 

1. 2.7 secs .117 rad
 
4.6 secs .501 rad
 

Table 4. Rapid Increase of a for Unstable Cases j, k' and 1.
 

CASE HEADWIND VERTICAL GUST FREQUENCY 

a'. 
b'. 

-10 fps 
-10 fps 

+23 fps 
-19 fps 

0.10 cps 
0.10 cps 

c'. 
d'. 

-10 fps 
-10 fps 

+23 fps 
-17 fps 

0.20 cps 
0.20 cps 

e'. -10 fps +23 fps 0.33 cps 
f'. 
g'. 
h'. 

-10 fps 
-10 fps 
-10 fps 

-21 fps 
+16 fps 
-15 fps 

0.33 cps 
step 
step 

Table 5a. Vertical Gust Magnitudes (repeated from Table 1).
 

CASE MAXIMUM 8 AND TIME, 40 MAXIMUM e AND TIME, umax
 

a'. .425 rad at 10 secs .335 rad at 7.3 secs
 
b'. .413 rad at 10 secs .266 rad at 9.1 secs
 
ct. .365 rad at 10 secs .328 rad at 8.9 secs
 
d'. .401 rad at 10 secs .223 rad at 7.3 secs
 
e'. .324 rad at 10 secs .290 rad at 8.5 secs
 
f'. .411 rad at 10 secs .236 rad at 7.3 secs*
 
g'. .432 rad at 10 secs .240 rad at 4.9 secs
 
h'. .402 rad at 10 secs .238 rad at 7.5 secs
 

*q exceeded -0.698 rad/sec2 at 7.3 secs.
 

Table 5b. Comparison of 6max between and
_-
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The analysis of Table 6 showed that, with the use of max, the air­

craft became less sensitive to positive gusts and more sensitive to nega­

tive gusts (step functions excluded) as the gust frequency increased. The
 

results for the negative gusts showed the aircraft to call for more thrust
 

than itwas capable of producing (thrust saturation), to acquire a high for­

ward velocity, and to call for radical changes in-%ax'Figure 24. As the
 

figure shows, the forward velocity and the pitch angle diverge while the
 

net thrust and the reaction control angle change radically.
 

Step functions for vertical gusts were also investigated. The con­

trol policy for max described inSection 2.4 was applied to this type of
 

disturbance. Table 7 compares the maximum vertical gusts for Mmax (dif­
.ferent than the Max used with the step functions of Table 6) and t_.
 

Tables 6 and 7 show that some form of control by a -%axtype of policy was
 

definitely beneficial.
 

5.3.a Model Variation, the Effect of the Side Vane Angle, X.
 

The present configuration for the X-14 does not include the side vane
 

angle. The side vane angle was introduced inthe study to see its effect
 

incombatting the high side velocities induced by lateral gusts. The la­

teral gusts were limited to positive-valued step functions and the control
 

was Ri_ .
 

The resulting analysis ispresented inTable 8. The maximum gust mag­

nitude dropped slightly from 53 to 45 fps. The side vane angle reduced the
 

side velocity of the aircraft considerably at a consequence of increased
 

rolling and yawing moments. A slight loss of lift was noted since the
 

aircraft required higher thrusts with X.
 

5.3.b Model Variation, the Effect of Increasing the Magnitude of the Headwind.
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FREQUENCY MAXIMUM VERTICAL GUST MAXIMUM VERTICAL GUST
 

= 14flax 
0.10 cps +23 fps +23 fps

0.10 cps -19 fps -35 fps
 
0.20 cps +23 fps +28 fps
 
0.20 cps -17 fps -26 fps

0.33 cps +23 fps +30 fps
 
0.33 cps -21 fps -26 fps
 

step +16 fps +16 fps
 
step -15 fps -15 fps
 

Table 6. Maximum Vertical Gusts for a_-O and
 

MAXIMUM VERTICAL GUSTS (STEP FUNCTION)
 

S;=0 +16 fps -15 fps 

-mnax +22 fps -19 fps
 

Table 7. Maximum Vertical Gusts (Step Function) for =0 and ax.
 

X INCLUDED WITHOUT X 

Maximum lateral gust velocity (step)
Maximum aircraft side velocity, v 

+45 fps 
+3.23 fps 

+53 fps 
+58.34 fps 

Maximum roll angle, $ 
Maximum yaw angle, t 

.402 rad 
-.453 rad 

.201 rad 
-.250 rad 

Change in lateral displacement, Ay 12.5 ft 265 ft 
Change in altitude, Az 
Maximum yaw control effort, i 
and time of occurrence 

3.2 ft 2 
-.195 rad/sec 

0.2 secs 

24.2 ft 2 
-.322 rad/sec 

0.2 secs 
Minimum net thrust 4194 lbs 4122 lbs 

Table 8. Comparison of Lateral Mode Parameters for Control
 
With and Without the Side Vane Angle.
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Table 9 compares the maximum allowable lateral gusts (ignoring the
 

limitations on aircraft side velocity) and vertical gusts for two headwinds,
 

10 and 25 fps. Increasing the headwind had little effect on the verti­

cal gusts, except for the step functions which showed slight decreases in
 

magnitude. The pitch angle was the limiting factor indetermining sta­

bility. Again, as with the other simulations involving vertical gusts,
 

itmust be remembered that a plays an important role when interpreting
 

results.
 

The larger-valued headwind increased slightly the operational enve­

lope of the aircraft when itwas subjected to lateral gusts. The excep­

tion was the step functions where an increase inheadwind resulted in a
 

big decrease in gust magnitude. For the step functions, the limiting fac­

tor for stability was the yaw control effort. Large requirements for it
 

occurred during the time delay before the control was initiated.
 

The 25 fps headwind was felt to be a practical maximum which would
 

be encountered inactual conditions. Hence, itwas felt that there was
 

no need for analyzing aircraft responses at still higher magnitudes.
 

5.3.c Considerations of CL., CD., and (c+1I°). 

Section 2.6 pointed out the ambiguities and uncertainties of CLa'
 

CDa, C,,, and a as used by [16]. The major concern was centered on the
 

fact that [16] used CMY inits model, but neglected CLa and CD. The fol­

lowing simulations were run to test the effects of adding these two coeffi­

cients to the model. These coefficients appeared inthe equations for
 

forward and vertical velocities and were present incalculating the thrust
 

requirements (see Appendix 7).
 

The first simulation was concerned with the effect of CL, and CD,
 

on the response of the aircraft to longitudinal gusts. The effect was
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GUST HEADWIND (-lOfps) (Table 1) HEADWIND (-25 fps)
 

+VG (step) +53 fps +10 fps
 

+WG (step) +16 fps +ll fps
 

-WG (step) -15 fps -13 fps
 

+VG (0.10 cps)* +88 fps +95 fps
 

+VG (0.20 cps)* +73 fps +78 fps
 

+VG (0.33 cps) +72 fps +76 fps
 

+WG (0.10 cps) +23 fps +22 fps
 

+WG (0.20 cps) +23 fps +23 fps
 

-WG (0.10 cps) -19 fps -19 fps
 

*ignores aircraft side velocity.
 

Table 9. Comparison of the Limiting Lateral and Vertical
 

Gusts for Two Different Headwinds.
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negligible. The same result occurred when CL. and CDa were added to the
 

simulations involving gust combinations. Results of these two series of
 

simulations are presented in Table 10.
 

Section 2.6 mentioned that the aircraft possessed an initial angle of
 

attack of 11 degrees when the anrcraft and atmosphere reference frames were
 

parallel. The last series of simulations were conducted with CL. and CDa
 

included in the model and with the angle of attack increased by a constant
 

of 11 degrees [5]. The simulation with the longitudinal gusts showed that
 

the addition of 11 degrees to a resulted in slightly higher forward and
 

vertical velocities and significantly lower thrust requirements (Table 11).
 

The lower thrusts were a result of higher lift generated by the wing due
 

to the higher angle of attack. As a consequence, the simulation also re­

sulted in a slightly larger pitch angle which in turn required more pitch
 

control effort (see Figure 25).
 

The gust combinations that were considered were combinations (i) 

and (j) of Table 2, longitudinal gust of 25.7 fps and 0.10 cps and vertical 

gusts of ±16.3 fps and 0.10 cps The effect of (a+I1 °) was to reverse the 

responses from the original responses (without a+I°). The aircraft remain­

ed stable when subjected to the down gust and it became unstable when sub­

jected to the up gust. Table 1? compares the simulations without the addi­

tions of CLa, C., and (u+ll), the simulations with CLa and CDa only, and 

the simulations with CL., CD, and (a+ll°). Figures 26a and 26b show 0 

for the positive and negative vertical gusts. The figures show the re­

versed responses due to (a+ll°). Figures 27a and 27b show the effects of 

(c+ll °) on the net thrusts for each case. 

5.4 Interpretation of Wind Gusts.
 

The data presented in the first three subsections of this chapter
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LONGITUDINAL GUST ONLY GUST COMBINATIONS
 

MAGNITUDE, 19 fps LONGITUDINAL MAGNITUDE, 25.7 fps
 
FREQUENCY, 0.20 cps VERTICAL MAGNITUDE, ±16.3 fps
 
HEADWIND, 20 fps FREQUENCY, 0.10 cps


HEADWIND, 25 fps
 

No significant differences 
in
 

any parameters between using The most significant differences
 
or not using CLa and CDa. occurred inTnet'
 

25.7, +16.3 25.7, -16.3
 

time without with without with 
(sec) (lbf) (lbf) (lbf) (lbf) 
0.0 4130 4130 4130 4130
 
4.2 3942 -4402
 
5.1 	 3720<­
5.4 	 -3022
 
6.1 -3861 
6.4 40954­
10 	 41194- e3985 

Table 10. 	 Effects of CLa and CDa on Longitudinal
 

Gusts and Combination Gusts.
 

LONGITUDINAL GUST ONLY: MAGNITUDE, 19 fps; FREQUENCY, 0.20 cps
 

HEADWIND, 20 fps
 

without CLa' CDa' (a+110) with CLa, CDa' (a+11 °)
 

umax: 6.67 fps 7.38 fps 

W, -.285 fps at 2.8 secs 
.000 fps at 5.2 secs 

-.496 fps at 2.7 secs 
.008 fps at 5.2 secs 

(minimums) 
(maximums) 

-.286 fps at 7.6 secs -.577 fps at 7.6 secs (minimums) 
-.002 fps at 10 secs -.041 fps at 10 secs (maximums) 

net: 4182 Ibf at 0.0 secs
3994 ILbf at 2.7 secs 

4046 lbf at 0.0 secs 
3716 lbf at 2.7 secs 

(initially)
(minimums) 

4182 lbf at 5.1 secs 4056 Ilbf at 5.1 secs (maximumx) 
3993 ilbf at 7.5 secs 3664 ilbf at 7.5 secs (minimums) 
4180 Ilbf at 10 secs 4032 Ilbf at 10 secs (maximums) 

Table 11. Comparison of Relative Maximums and Minimums
 

of u, w, and Tnet With Regard to (c+1II).
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(rad) 
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0
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note. Longitudinal gusts only.
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40
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0 2 	 4 6 8 10
 

Time (seconds)
 

Figure 25. Effect of (c+ll °) on 9 and 6Y,
 

-40 
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A: 	 LONGITUDINAL GUST: 25.7 fps and 0.10 cps
 
VERTICAL GUST: -16.3 fps and 0.10 cps
 

B: 	 LONGITUDINAL GUST: 25.7 fps and 0.10 cps
 

VERTICAL GUST: +16.3 fps and 0.10 cps
 

°
 without CL., Cl, (a+11); with CL, CD only; with CLa, CDa (a+11 )
 

A. ok 	 ok o>250 at 8.3 secs
 

B. 0>250 at 6.4 secs 6>250 at 6.1 secs 	 ok
 

A. 	(umax) 8.33 fps 10.2 fps 17,8 fps
 

B. 	(umax) 8.33 fps 8.33 fps 8.33 fps
 

A. 	(Wmax) -.62 fps -1.67 fps -3.00 fps
 

B. 	(Wmax) -.74 fps -1.07 fps -.595 fps
 

A. 	(Tnet) 4130 at 0.0 secs 4130 at 0.0 secs 3927 at 0.0 secs
 
3720 at 5.1 secs 3022 at 5.4 secs 2246 at 6.0 secs
 
4119 at 10 secs 3985 at 10 secs 3190 at 8.3 secs
 

B. 	CTnet) 4130 0.0 secs 4130 at 0.0 secs 3927 at 0.0 secs
3942 	atat 4.2 secs 
 4402 at 4.2 secs 
 3650 at 6.6 secs
 
4095 at 6.4 secs 3861 at 6.0 secs 3788 at 10 secs
 

A. (6Ymax) -8.9o at 5.7 secs 9.20 at 5.1 secs +200, 3.6 to 6.5
 

B (Ymax) -20', 3.9 to 6.4 -20', 3.9 to 6.1 -200, 4.8 to 5.6
 

Table 12. Effects of CL , CD, and (a+110 ) on Combination Gusts.
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(rad)
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10 

(a) Longitudinal gust. -25.7 fps, 0.10 cps 
Vertical gust: +16.3 fps, 0.10 cps 

(rad) 
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0.2 

eoriginal 

-0.2 

0 

Figure 26. 

I I I I 

2 4 6 8 10 

Time (seconds) 

(b) Longitudinal gust: same as (a) 
vertical gust: -16.3 fps, 0.10 cps

Effect of (a+110) on 0 for Combination Gusts (±vertical qusts). 
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8 

Figure 26(a). 
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Figure 26(b). 

10 

Figure 27. Effect of (c+ll) on Net Thrust for Combination Gusts
 

(Lvertical gusts).
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represented the maximum magnitudes of gusts for the discrete model. Real
 

world wind gusts do not appear in such a well-behaved manner. Section 3.3
 

defined a method for determining root-mean-square intensities from the
 

discrete model. The only detail lacking was some measure of the variable
 

2dm . This variable was interpreted as the distance between the points
 

where the gust velocities were zero (see Figure 8). The measure of this
 

length was affected to a great extent by the speed at which the frozen gust
 

field was moving. By considering the airplane as a point, only the move­

ment of the gust field past that point was needed. A first approximation
 

to 2dm would.be the velocity of the gust field times the time duration of
 

that field (Figure 28a). However, the point moves also and its displace­

ment must be taken into account (Figure 28b). The last figure shows that
 

ifthe displacement was in the same direction as the gust field was moving,
 

the displacement was subtracted from the first approximation. For the oppo­

site case, the displacement (of the point) was added.
 

Now, at this point the speed at which the gust field ismoving takes 

importance. For longitudinal gusts, this speed was assumed to be the mean 

wind speed. The longitudinal displacement of the aircraft was then needed 

to completely determine 2d . Once 2dm was obtained, the rms intensities 

for longitudinal gusts could be determined. Table 13 presents the rms in­

tensities for the longitudinal gusts of Table 1. The rms intensities were
 

calculated for probabilities of occurrence (for 100 feet inaltitude) of
 

0.10, 0.01, and 0.001. This meant, for example, that for a rms intensity
 

of 41.6 fps (24.7 knots), which was the lowest rms intensity for longitud­

inal gusts, a gust with a magnitude of 52 fps (vm from Table 1)would occur
 

only 0.10 percent of the time. The conclusion drawn was that the aircraft
 

could withstand a severe longitudinal gust environment. A sample calculation
 

for rms intensity ispresented inAppendix 8.
 

http:would.be
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l0 fps* 10 fps-*
 

h- 2d.--* 

t=O seconds 
 t=1o seconds
 

2dm = 10 fps 110 seconds 

= 100 feet 

(a)P stationary.
 

10 fps I0 fps
 

/\
 Py P 

2
f*- d~" .2j 

t=O seconds 
 t=10 seconds
 

To pass P, in 10 seconds, 2d '=00feet.
m
 

If 2dm=1O0 feet, point P will not be completely
 

passed in 10 seconds.
 

Therefore, 2d must be altered inorder to com­
pletely pass P in 10 seconds.
 

The displacement of P must be subtracted from
 

2d '(i.e., 2d. = 2d I - x).m


(b)P mobile.
 

Figure 28. Interpretation of 2d
m
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v,, (of Table 1) rms Intensity
 

.10 (10%) .01 (1%) .001(0.1%)
 

52 fps 0.1 cps 84.0 54.7 41.6
 

52 fps 0.2 cps 115.5 74.3 57.7
 

53 fps 0.33 cps 151.5 88.4 75.7
 

Table 13. nms Intensities for Longitudinal Gusts.
 

PROBABILITY OF OCCURRENCE
 

0.10 (10%) 0.01 (1%) 0.001 (0.1%) 

u v w u 'v 'w u (T Ow 

84.0 60.0 39.0 54.7 39.2 25.4 41.6 29.8 19.3 

115.5 82.5 53.6 74.3 53.0 34.5 57.7 41.2 26.8 

151.5 108.1 70.4 88.4 63.1 41.0 75.7 54.1 35.2 

Table 14. Lateral and Vertical rms Intensities, Based
 

on Longitudinal Intensities, Using au/av/aw=2.8/2.O/l.3.
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The length 2dm did not exist for the lateral and vertical gusts be­

cause of the assumption that there did not exist any mean winds in these 

directions to transport the gust fields. Therefore, the rms intensities 

cannot be calculated for these gusts. Reference [12] stated that nominal 

values for component gust intensity ratios differ among the various liter­

ature. However, [12] picked nominal values for the longitudinal/lateral/ 

vertical (au/av/c w) gust ratio of 2.8/2.0/1.3 to agree with available data. 

Table 14 presents the lateral and vertical gust intensities based on this 

ratio and on the a 'sof Table 13. The smallest intensity for a verticalu 

gust was 19.3 fps rms. From Figure 10 it was determined that the proba­
bility of aw equalling 19.3 fps rms was much smaller than lO-5 . There­

fore it was concluded that the likelihood of the aircraft encountering a
 

velocity field possessing enough energy to upset itwas very remote.
 

5.5 Closing.
 

The results presented above must be compared against some standard
 

in order to assess them. The pilots of the X-14 have arbitrarily set
 

limits on wind conditions. They will not fly in winds over 12 knots (20.3
 

fps--longitudinal direction) and they would prefer not to fly in winds over
 

eight knots (13.5 fps). On research flights, data measurements will not be
 

taken if the winds exceed five to eight knots [17].
 

Based on the assumptions made for this project (listed in Table 15),
 

the following conclusion was made. The arbitrary limits set on the wind
 

conditions by the pilots were within the limits determined by this study.
 

The limits were
 

52 fps, 0.10 cps
 

52 fps, 0.20 cps
 

53 fps, 0.33 cps for longitudinal gusts;
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+65 and -67 fps, 0.10 cps 

+65 and -66 fps, 0.20 cps 

+72 and -74 fps, 0.33 cps
 

±27 fps, step for lateral gusts; and
 

+23 and -19 fps, 0.10 cps
 

+23 and -17 fps, 0.20 cps 

+23 and -21 fps, 0.33 cps
 

+16 and -15 fps, step for vertical gusts.
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Assumptions, Aircraft Model
 

1. Rigid body.
 

2. Forward velocity equals one-third the mean wind velocity (initially).
 

3. No variations inthe gusts over the physical dimensions of the
 

aircraft.
 

4. No gust penetration effects.
 

5. C constant over the entire range of operating speeds of the en­

gines.
 

6. Considering the angular accelerations equivalent to the reaction
 

control efforts required.
 

7. Excluding C and C in the model (as does [1] and [16]) has
 

negligible effect.
 

8. A 0.30 second delay exists between the introduction of a distur­

bance and the application of control.
 

Assumptions, Wind Model
 

1. Turbulence isstationary, homogeneous, and isotropic.
 

2. Turbulence is a frozen pattern inspace.
 

3. Gust velocity components are Gaussian.
 

4. The direction and velocity of the headwind are constant.
 

5. Effects of terrain roughness, lapse rate, mean wind magnitude,
 

etc. on turbulence are neglected.
 

6. Periods of less than ten seconds represent most of the turbulent
 

energy.
 

7. Gust fields move at a speed equal to the mean wind speed
 

8. No crosswinds or vertical winds (steady-state winds) exist.
 

9. Estimation of 2dm isreasonable.
 

Table 15. Assumptions Concerning Aircraft and Wind Models.
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APPENDIX 1
 

Modification of the Rolling Moment Equation.
 

The rolling moment, L,due to side velocity, v,was omitted from the
 

set of original equations for the X-14. This characteristic of the airplane,
 

known-as the dihedral effect, isrepresented by the stability derivative
 

C in the roll equation ( equation).
 

The derivation of C followed a procedure used in [2]. The stability
 

derivative is a function of five parameters: 1)influence of sweepback,
 

2)influence of fuselage, 3) influence of the tail fin, 4) contribution of
 

the wing planform, and 5) influence of dihedral.
 

1. Influence of sweepback of the wings.
 

The X-14's wings are swept forward 4.60 at the quarter-chord line [15].
 

The interpretation of the effect of sweepforward (or sweepback, depending
 

on the situation) isthat a change in lift between the two wings occurs
 

when the aircraft isyawed with respect to the wind. The derivative C
 

is then a function of the lift coefficient CL.
 

The difference in lift of two panels between the two wings is
 

V2
AL = CL 11/2 - p - 1/2 - S - . {cos2(e- A) - cos2 ( + A)D 0II-Al-I) 

where AL is the change in lift between the two panels, 

CL is the local lift coefficient for the panels, 

p is the density of the atmosphere at sea level,
 

S is the wing area,
 

V is the local relative velocity between the panels and the atmosphere,
 

a isthe angle of sideslip, and
 

A is the sweepforward at the quarter-chord.
 

Assuming 1 a small angle, equation (Al-l) reduces to
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AL = 	CL .1/2 • p • S V . sin(2A) . (III-A1-2) 

The rolling moment produced by the ppnels will be 1/2 the difference
 

AL multiplied by the distance between the centers of pressure of the two
 

panels
 

V2
L = 1/2 - d * CL • 1/? * p * S * * *• sin(2A) (III-Al-3) 

The corresponding rolling moment coefficient is 

1/2 •d - CL 112 • p • S • V2 . s * sin(2A) 

V21/2• p * S • b 

which reduces to
 

1/2 * d * CL • • sin(2A) 

L b 

where d is the distance between the centers of pressure of the panels and
 

b is the wing span.
 

The stability derivative C is
 

aCL 1 2 d • CL • sin(2A) 	 (IIUA14)
- =@C = 
 b 
 II-I6
 
aB 	 b
 

The total effect would be the integration of the changes inlift over
 

the entire wing span. For purposes of this derivation, itwill be assumed
 

that C is a representative average of the Ct 'sof all the panels. The
 

d for this average will be assumed to be the distance between the mean 

aerodynamic chords (approximately 2/5 of jhe wing span). Therefore 

1/2 • 2/5 . b , CL * sin(2 - 4.60) 
C 	=
 Cis 	 b
 

- 0.031976 * CL 	 (III-A1-7) 

2. 	Influence of the fuselage.
 

The wing-body interference effect on C can be calculated from
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A1/ 2 AC = 1.2 - . h + w (III-Al-8)
b b
 

where A is the aspect ratio of the wings,
 

zw isthe vertical distance the wing-root quarter-chord point isbelow
 

the fuselage center line,
 

b is the wing span,
 

h is the average fuselage height at the wing root, and
 

w is the average fuselage width at the wing root.
 

The parameters zw, h, and.w were estimated from drawings in [15] to have
 

values of 1 foot, 3.36 feet, and 4.38 feet respectively. Therefore
 

4.38 + 3.36
ACB =1.2. ..2' l'(6.2)/2 1. .
 
33.83 
 33.83 

= 0.0202 (III-Al-g) 

3. Influence of the tail fin.
 

When the aerodynamic center of the vertical tail fin is appreciably
 

offset from the roll axis (x-axis of the aircraft), the side force on the
 

vertical surface (side force due to sideslip) may produce a significant
 

contribution to the roll moment. For hover, this contribution was assumed
 

to be negligible.
 

4. Contribution of wing planform.
 

The contribution of wing planform on C isfound from the lower
 

figure of Figure B.l1.2, page 489 of [2]. The lower figure is for taper
 

ratios (X)of 0.50. The taper ratio of the X-14 is0.48. For A equal to
 

6.2 and AI/ 4 (sweepforward of the wings at the quarter-chord) of -4.6'
 

,(negative for sweepforward), the value of -(Cik )w/CL isapproximately
 

0.0275. Therefore 

C = -0.0275 * C1 . (III-Al-lO) 
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5. Influence of dihedral.
 

The influence of dihedral on C. is found from Figure 11.3, page 490
 

of [2]. The top curve gives C for zero sweepback. This can be convert­

ed to C for the dihedral angle involved by using the formulas
 

(Ckor)partial span rF
 

C8 (C full span r 

where C is given by the equation
 
A + 4 • cos(A)
 

C = • (Ck O)A=0 (III-Al-12)A *Cr+ 4) cos(A) 

A is the aspect ratio, and
 

IT is the dihedral of the partial span.
 

For the X-14 rT is zero. Therefore, for A equal to 6.2 and a taper
 

ratio of 0.50, the top figure gives a value of (C9)A=O of -0.0162.
 

Then
 

6.2 + 4 • cos(-4.6 °)
C = •__________(-0.0162)
£8 (6.2 + 4) * cos(-4.60) 

= -0.0162 (III-A1-13) 

and 

C = -0.0162 (2 - 0) 

= -0.0324 (III-Al-14) 

6. C 

The total of all contributions on C is
 

C = 0.032 CL + 0.0202 - 0.0275 - CL - 0.0324
 

C = 0.0045 CL - 0.0122 (Il-Al-15) 

http:cos(-4.60
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APPENDIX 2
 

Calculation of the Diverter Vane Efficiency Factor.
 

The comparison of results for the hover mode (no disturbances) between
 

the simulated and the actual results showed a discrepancy in the engine
 

speeds. Simulation results gave an engine speed at 90.02 percent of maxi­

mum speed whereas actual results gave the engine speed at 98 to 99 percent
 

of the maximum speed. Itwas then concluded that the efficiency factor for
 

the diverter vane had been omitted from the model.
 

Reference [1] calculated this factor by simply dividing the theoreti­

cal speed by the actual speed. Hence
 

90.02
 
9= - 0.9139 (III-A2-])
 

9S 98.50
 

However, the equations of the model calculate the engine-speed from
 

the engine thrusts since the thrust was solved for explicitly as one of the
 

control parameters. Therefore, if the efficiency factor was based on the
 

thrusts, the value was
 

4194 
CT 5- = 0.80654 . (III-A2-2J 

The thrusts 4194 and 5200 were obtained from Figure 29, which shows
 

the total thrust as a function of engine speed. Figure 29 was derived from
 

Figure 30, which shows the thrust curves of each engine.
 

The model uses this efficiency factor in that it takes the calculated
 

net thrust (obtained from the control vector) and multiplies it by the in­

verse of E. (1.23986). This thrust is then sent to a subroutine which
 

calculates the engine speed from the total gross thrust. The equations are
 

Tgross = 1.23986 -Tnet (III-A2-3)
 

for the gross thrust,
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(pounds) 
5700 

5300 

Total thrust 

4900 -

4500 

Ttot 

4100 
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3300 

80 90 
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100 

Figure 29. Total Thrust vs. Percent Maximum Engine Speed
 



228.
 

(pounds)
2800 

2600 

2400 

2200 

T 

2000 -

1800 -

1600 -

Figure 30. 
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= 4.52xlo-9.(T-4370)3-9.31xlO' 6.(T-4370) 2 +1.25xlO-2.(T-4370)+g2 (III-A2-4)
 

for the engine speed of gross thrusts greater than 4370 pounds, and
 

= (T- 3305)/88.75 + 80 UII-A2-5)
 

for the engine speed of gross thrusts greater than 3305 pounds, but
 

less than 4370 pounds.
 

The exit velocity, V., of the engine exhausts was 2000 fps. The
 

diverter vane efficiency also reduces this value to gT*V., or 1613 fps.
 

This isbased on 

Tgross V•jII-A2-6) C 

at the engine exhausts. The net thrust is Tgross-% T so thatTgross =gross 0 T 

T 
gross 

-T = Tne 
af net 

( • VV 
T 

• (II-A2-7) 

The mass flow rate, m, isconstant. Therefore 

Te t m Vjo qII-A2-8) 

where VJo is1613 fps. 

http:3305)/88.75
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APPENDIX 3
 

Modification of ACL dnd ACMo of the Aircraft Model.
 

The aerodynamic coefficients ACL and ACMo were defined initially by
 

[16) to be functions of U0, relative longitudinal velocity, and Tc, thrust
 

coefficient, which, inturn, was a function of Tnet' the net thrust. The
 

equations for ACL and ACMo were
 

ACL = Tc • f(U ) and (III-A3-1)
 

ACMO Tc fl(U 0 ) (IIT-A3-2)
 

where T = Tt/(l/2.p.U .S) (III-A3-3)
 

Therefore, Thet must be known in order to calculate ACL and ACMo.
 

However, the net thrust contained, among other things, the term ACL. This
 

posed a problem inthat Tnet could not be calculated without first knowing
 

ACL9 and also, ACL and ACMo were to be calculated before Tne t was to be
 

calculated. The procedure through the program was:
 

i)Define initial conditions; !_(O) = -o"
 

ii)Calculate the aerodynamic coefficients for (O).
 

iii) Calculate the control vector for the initial conditions;
 

U(O) = U(x(0)).
 

iv)Introduce the disturbances w(l).
 

v)Calculate the new values for the state variable vector;
 

X1) = f(x(0).cdO)s(l)).
 

vi) And so on.
 

Tnet was not calculated until (iii) whereas ACL and ACMo were calculated
 

at (ii). One way to solve this dilemma was to estimate Tnet at (i). This
 

would then require that Tnet be estimated for each different set of wind
 

conditions. A second solution was found through algebraic manipulation of
 

the equations involving ACL and ACMo These equations were, for ACLS
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forward velocity, = v-r-w-qg.sin()+(Tnet/m).{sin().cos(X)-

Ur /Ve±+(1/2)'(I/m)PU 'S{CLpo+ACL) qII-A3-4) 

sin(ct)-CD'cos()} , and 

vertical velocity, * = U.q-v.p+g.cos(Q).cos(f)-(T net/m){cos(6). 

cos(X)-W /V.j-(/2)'(I/m)°p'U2.S'{(CL+ CII-A3-5) 

ACL).cos(U)+CD.sin(a)}
 

For ACMo,
 

pitch rate, 
 = (Iz-x)/Iy}-pr+(I xz/y)(r2_p2 _2.(I e/Iy)..r+ 

(Tnet/Iy).{(Wrel Xl-UrelZl)/Vjet+cos()-(z2"sin()+
 

x2"cos(d)}+(Mq/Iy)q+(M6y/Iy).ay+(/2).(I/ly )'p'U" (II-A3-6)
 

S'c(CMopo+ACMo +(Ctpo+AC M)'c+(/2)'(I/Uo)'CCMq"
 

q+CMe.6e)
 

By substituting equation (A3-3) into equations (A3-2) and (A3-1), and then
 

substituting (A3-1) into equations (A3-4) and (A3-5) and then (A3-2) into
 

equation (A3-6), the equations for u,w, and 4 
were
 

u = ...+(1/2).(1/m).p.U2.S.{{c 
 +Tnet/(1/2-p-U2 -S).f(U)}-sin(a).UII.A3_7)
 
=...-(I/2).(I/m).p.U2.S.{{C~p +Tne/(l/Z-p.U2.S).f(U
o)}.cos(a).qII A3_8,
 

=...+(1/2).(I/l ).p.U2.Sc.C. 
 +{17 ./(I/2-p.U2.S).fl(U )}+--"qII-A3-9) 
y 0 Mopo+ net 0 0 

The quantity (1/2).p.U2.Scancelled and the resulting expressions, 

(Tnet*ACL-sin(c))/m and (Tnet*ACMo.c)/Iy, were incorporated into the net 

thrust terms of the equations. The resulting equations were 
u= ...(Te/m).{...+AC.sin(a)}+(l/2).(/m).p.tU..{Co.Sin(c)... 

QII-A3-10)
 
:-.'(Tne/ {..aL-O j)-(I/2).(l/m).p.U2.S.{C -cos(a)+.-.

iv *~(net/m).{...+ACL'cos(a) }-02 .0r) 0 ~ { Lp CO* ( O f 

2 2I-A3-11)
 
..(T net/Iy) -.-+ CMo.C}+...+(I/2).(I/l y) ..U Sc (CMopo + ... 

II-A3-12)
 

where ACL and ACMo were no longer functions of Tc and Uo, but Uo only,
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that is ACL = f(U) and ACMo = fI (U). Therefore, the estimation of Te
t
 

was not needed now.
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APPENDIX 4
 

Equations of the System and Terms of the Equations.
 

The equations of the twelfth-order system are presented in this ap­

pendix.
 



= vr-wq-gsin({)+(Tnet/m).{sin(a).cos(X)-Urel/Vjet+ACL-sin(a)1+(1/2)o(i/m),p u2.s.{CL. sin()-c..cos(a)1 

(III-A4-1) 

V = wsp-u-r+g-sin(O)cos(e)+(Tnet/m)(sin(X)-Vrel/Vjet)+ci/2)(i/m).p.U-.Scy 

= u~q-v~p+g'cos(f).cos(e)-(Tnet/m).{cos()cs(x)-w rel/Vjet+ACLCcs(a)}-(l/2)(l/m)-p-U2S{CLpocos(a)+cD*sin(a)}
 

(III-4-3)
 
p . ={xI/(Ix~iz- 2z)}-f({ly-Iz}/Ix)-q~r+(Ixz/Ix)-p-q+(Tne/Ix)N(zl )Vjetsin(x)-{z +P.l-cos(&)}}+(Lp/Ix)-p+
 

(L x/Ix).ax+(1/2).(1/1x).P.S-.b.(C +C .6a+C a.)+{Ixz/Ix}.{({Ix-ly}/Iz).p-q-(Ixz/Iz).q-r+2.(le/I z .i.q+ 

z - zxntx zz 0rl/j r 

(Tne/I )'fsin(X)'{x zlsin(a)}-(x 'r-/jt}(rI)r+(N /1z).6z+(1/2).(I/1z).pU-o-S-b.(Cn+Cn -6 +
 

a 
 (III-A4-4)
 

= (I I{/Iy)-p'r+(Ixz/Iy)-(r2-p2)-2-(1e/Iy)Qr+(Tnet/Iy)-f(Wrelxl-Urel zi)/Vjet+cos(X) {z2.sin(a)+x 2.cos(a)}+ 

CAC }l+(Mq/Iy)*q+(M0 /Iy)Sy+(1/2).(l/Iy)P'peU§Sc*CMp+(CMap+ACMa)+(1/2)(l/U)cCMqq+CMS6*e}
 
y e 

(III-A4-5)
 

{Ix.Iz/(IxIz-Ix) {I xz/Izlh{({y-I z}/Ix)-qr+(I z/Ix)pq+(Tn /I)(zl.Vrel)/Vjet-s~n(x)*{z2+xlcos(a)}}+
 

(L/I )yp+(L× ).s +(1/2).(1/1)).P.UpS.b.(c +c .6 +C .01+(fl×Iy}/Iz),p-q-(I /I ).q-r+2-(I /z )'Qq+
 

http:1z).6z+(1/2).(I/1z).pU


(Tn /Iz)• sin(X) •{x2-91 .sin(a)}-(xI Vre )Ve}(Nr/l'z) r+(N. /I ),S z+(1/2'). (1/1 ).p. oS-b .(Cn+cn r6 +
 

Cna' a)l} (III-A4-6)
 

e q-cos(O) - r-sin(p) (III-A4-7) 

= p + q-sin(f)tan(e) + rcos()tan(e) (III-A4-8) 

: (rcos( ) + q-sin())/cos(e) (III-A4-9) 

z= vsin(f)cos(a) + w-cos()cos(e) - u-sin(e) (III-A4-10) 

x = u-cos(e)cos() + v{sin(4)sin(e)cos(t) - cos(f)sin(*)1 + w{cs()sin(O)-cos(p) + sin(fl-sin(b)1 (III-A4-11) 

y = ucos(e)sin() + v{sin(4)sin()-sin() + cos(p)-cos(lp)} + w{cos(O)sin(e)sin(p) - sin(f)-cos(p)} (III-A4-12) 

where a = sin'1 (Wrel/uo) (III-A4-13) 

a = sin1 (Vrel/T o ) (III-A4-14) 

Uo =(U2ei +W2 1 /2 (III-A4-15) 

o = (Uel +Ve +W2e) 1/
rel re "rel 
2 (III-A4-16) 

= u - UW - UG III-A4-17)
 

VreI = v - VW - VG (III-A4-18)
 

WreI =w - WW - WG 
 (III-A4-19)
 

The equations for Tnet, X,6x, 6y' and 6z are presented in Appendix 5.
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APPENDIX 5
 

Equations for the Control Vector.
 

The equations for the six control parameters were derived in [1] and 

will be restated here. The equations were derived by setting the i vector 

equal to the 0 vector and solving for the control vector, u. 

The het thrust equation was 

Tnet = {-E + (E2 + D F)1/21/D (II-A5-1) 

where E = (A.UreI + 8-Vre + CWrel)/Vjet - ACL.(A'sin(a) - C'cos(a)) 

D = I -/Ve 2 - AC + 2.ACL.{Urel-Sin(a) - Wrel.cos(a)I/Viet 
- ao jet 1 +2A 

F = A2 + B2 + C2
 

A = m.{v-r-w-q-g.sin(O)}+(l/2).p.U2.S.JCLpQ.sin(a)-Co.cos(a)1
 

B = m-wp-u-r+g-sin( ).cos(e)}+(1/2).P. o.S.Cy and
 

C = m-i{u-q-v'p+g'cos( )'cos()}-(l/2).p.US{C~pcosO(a)+CD-sin(a)}
 

The diverter vane angles were
 

A = sin- {VrLi/Vjet - B/Tnet} and (III-A5-2)
 

6 = sin-'{fUrel/Vjet - A/Tnet - ACL.sin(c)1/cos(X)} (III-A5-3)
 

The reaction control angles and the aerodynamic control angles were 

ax = a = i(I z-Iy)-qr-Tnetf(Vrel z)/Vjet-Sin(X)'{z2+9l- cos(&)T}-

L *-P-(I/2)-p'U2'S'b-(Cn+C ")-1 *p'ql/{L +(1/2)-p- (III-A5-4) 

a
 

6y = e (IxlIz)p'r+Ixz(p 2-r2)+2"Ie.' r-Tnet*{(Wrel Xl'Urel Zl)/ 

Vjet+cos(A)'{z2 .sin(C)+x2.cos()}+c.ACMo}-Mq-q-(I/2)-p • (III-A5-5)
 

U2. Sc-(CMopo+(CMpo+ C~a)'a+(/2)"(l/U)-C'CMq-q I 

http:cos()}-(l/2).p.US
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{M +(1/2)p.Uo-S.c-CMse and
 

6z =6r = (ly-Ix).p.q+Ixz.q.r-2.e. .q+Tnet(Vrelxl)/Vet-in(X)' 

{x291 -sin{a)}}N r-r(i/2)pU2o.S-b(Cno+Cnaa)- {NS + (III-AS-6 

(1/2)'p'U2 S*b'CnSr
 

The control parameters had certain bounds or saturation points.
 

They were
 

T max 5515 pounds
 

a = 0 to 700 ,
 

X = -25' to +250 when used, otherwise 0'
 

6x' 6y,6z'	6a = -20 to +200 ,
 

Se = -25o to +15* , and
 

Sr = -300 to +300
 



__ 
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APPENDIX 6
 

WINDY. 

/7s 



-239.
 

C THIS PRIGRAM SIMULATES A VTOL AIRCRAFT (IN HOVER) WHICH IS
 
-C- SUBJE-TEOO- A-isUSF- F-IELD.-- THE PRUOGRA HI-READS-THE-INITIAt
 
C 	 WIND CONITINS-'UqIp HEADwINO MAGNITUDE - GSMAGCUP V OR 4), 
-------THE MAX'IU4i MAGNITUuE OF THE CDMPONENI GUST - OENOms THE PERIOD 
C OF THE 'UST (DFNMzO--PERIODuIO SECONDS, uENOM=25--PERIOD=5 
C0...SECONDS, DENOM=1b'-pEIOD=3 SECONDS) - AND JGUSTP AN IDENTIFIER 
C TO SPECIFY WHICH CUmpUNENT GUST IS sEING CONSIDERED (1. LONGI­
-C- DI INA-GUST--)-r-Us TIVE-l.ATERAL-GUST- 3p NEGATIVE"-ATERALYGUST 
C 4p POSITIVE VFRrICAL GUST 5, 'JEGATIVE VERTICAL GUST), THE
 
W hROGRA I TREN TANES THESE PARAMETERS AND ITERATES UNTIL THE ....
 
C MAXIMU:A MAGNITUIA OF (HE GUST THE AIRCRAFT CAN wITHSTANn IS FOUND,
 

-C . . . . .. .. .. . .. . . . .. . .. . . .. . .. . .. . .. 	 . . . . . ...	 .C
 

REAL MASS* IxITYR IZiIXZsLONEiIEJG,LDxIxLPIx, HDYTY, 14QIYNDOTZNRIL, 
INUN0IH LAMROA, YII Ci, I)YYC IplUI), TIME( 101 )'LS rAR( 101 , SAR(101)2,P[}uRi(I )l),QnT('tOI)pk[)I)T{tOI),YA(60IOI)jYH(8)1IOI),THRSTG(IOI)
 

-COI-4MfN/ESCUM/NXI y I(99),XY(9y),TrHHKSTPDY(99)
 

COMH0N/F UIC I,, AtNtJST( 1Ot ).t MASS,S IGA (101 LAMBA(t 01),TUOrwAREAACLPn9OELCL,ALPHA~cD*VRE[.,UuHAR,CYIX,IZ,IXZ,Iy,.....
 

2ZTwU L'INIC 7ONEA Lf4 K LUXIXP OELx( 101), SPAN, WREL CLO, CLDELA, 
3DELACL3ETA, IENGfMIEGA,XT;4nX014 ,NRIZ,NDZIZ,ELZC InI )'CNO, 
4CNDELR)ELRCNDELA,4DYIYDELY(IUI)PIQIYCHORDCf4UPO,#
 

... 5DELCHOP CHALJPO, DELCHA, C1h, QMDELE. DELE, UETA, J.UREL, VJETjRHO - --

6,CDAI.P-iCLALPH
 
DATA 	Gi lASSJVJETPRrtWARA,SPAt4,CORDIxTYIZIX.ZONETENG,XINE, 
IXTWtJPZTO(IlUJNELXIXPLPIxiMYIY.MQIY,OELCMA.CMDELNOZI,NRIr(;(,
 

.... 	2ANG FLILA,'3)A.C ALPH,CLALPH/32.174v130.3537hI6t3.,n.oO2? I882.6
 
333.e83'5.56'234O.' 340u.' 5J ,1$O.80,,oO.583'6,0,O,0133,0.916,0,1 6,
 

-6I.-o.
4 D 40pq*Of 50lpO . SmO.576p00f18,0. 166,-O,0,f.11 72 .)
 
5101"*)0.000,0*01/
 

-------~A~-VI,WIP1.I,TRAI, PHIPS 1-PSI/*---..................
 
100 REpD(5,10'END=9oUG) UdI*GSMAGUi(SHIAGVGSAGWPDENOM,.JGUST
 

---.-10 	FOPHAT(9F10.2uI5Y ..... . . ...-... .... ... ..........-.. ...
 
UI=ABS(U.aI)/3,0
 
ITAmO .................................................
 

ITR=O
 

80 	H=IO
 
ITC=O- -.-


ITF=
 
TIHE(I)=nO.O
 
TIfEX=IrIE(I)
 

Ju1
 

L=2
 

V=V1
v=Vl
 

R=RI 
-- - TH ETA= rHETA I- ..... .. . . . . ... - -­-- -.........- . ..... .... ... -

PHI=PHIl' 
-pSEPS I-f---

UG=0,O 
--­



- -

- --------.- -- - -240. 

GO TO 0 

~~~Is-fl20s 

c----REPLACL Tt{E APPROPRIATE EQUATION BY$ F0f. EXAHPLE s GWUGSMAGW. 

30 PJE=3*4eJ159 
J1KvJ-I1 -

GU4O.5*(S'4AGUkC I O-COSCPIE*JIK/UENflt)) 
-- V=0.5*rS?4AQV*0 ,O.C0S(C3IE*JIK/nENij,4)V
 

GW=0.5*GS~tAGN*( I.0-CUS(PIL'*JI/vENCJo,
 

C ROTATION OF Tf4F GUST VELOCITY FIELD FROt' THE ATMOSPHERE-FIXED
 
_-_C_ REFtRE4E FRAME INTO THE AIRCRAFT eRErERCCE VRAI4E.
 

c 
------ UtGU*CUS(PS -)*cflscYNFTA+,G*s!NcpsI )*Cffl(TNETA)'GwISINCT)IETA, ­

VGGV*(4fl3PS )*COS(pl)45stNCeS1I)*SINC4(TA*sI(PH!)nru*Sp 

WGs'GW*C~jS(PHI )*CJSCTNETA,4GU*(CQS(P61 )*SIPNCTf4ETA)*COJS(PHI)45IN(PS1
 

I tiv:tU4I*C(S(PSI)*CUS(Tt4ErA)- --- - - -

URELI. U-uw- uG 
- VHFLvV"Vvi-VG-- ---- - - - - * - --

L'04AR=ek u(?RI *24 vRQ,* *24 WHEL **2)$4( * 


-- AtPN4A=ARSINCWRFL/Ut))
 
BETAmARSI1NtVHEL/UU$&AR)
 

c CALCIJLATIJN OF T14EAERODYNAMIC COEFFICIENTS 

rFC(OLt.51,d CLP'OuO.6140.002763*JO 
1F(U'I.GE,51.) CLPI~O.Pa5
 
DELCLr2.433009E05*Jn**2-2.243398E.Q7*to*3a1 *332149E103'ti)O 

* CUlu. 11+ t./C?' 1521 ,*utJ*12.5) 
-- F(ikqS(QrNr)v,r.O.1) CY=-1B52*9E rA 

- -ICAAiSqETA) 4 0F.C-1 6gArJD;ARSCETA)LT-0.*I8)CY=CnO,354-;s-9 3 *----­
1CA9ScBETA)-JO,189)l*(ABs(t1ETA)/bEIA)
 

- - - Ir(A(4S(CfCA).oF'.0.4' 8.AtJD.A85(MEtAI.LT.1.22) Cvr(-O.26wo*362*­
1(ABS(BLTAl)M).418) )*CArIS~flETA)/lE A)
fA-IS(CLI).iC1.) 


IFCAsIS(n,-,ETA ).LT.U. ii') CLu='0.O63*BoTA
 
- ~ F (- CY! -0.s5*(AS(eBETAy)/BETA) 

- Itt4,s(DLT4).Gr'.o169AND*ARSoi4J.A)Lr*(o.4r) C102 0,0O14+Q.0066* 

- Ili A~S~LTA.GiU.41 .ND.IISSLT).L.1.95)CLU.2('"O.0I 2O0065* 

CL(. I)FLA-() .OJ*CU$CRETA)**2 

IF t~t~d
10.)CMOPIO. 019 

http:A~S~LTA.GiU.41
http:Itt4,s(DLT4).Gr'.o169AND*ARSoi4J.A)Lr*(o.4r
http:8.AtJD.A85(MEtAI.LT.1.22


--

ZFCUOoLE.51.) CMALPOnmIO 24L.
 
.......... rFCAPS(8ETA),LT.O,1945) CNkO.*113*4ETA -"
 

IF(AeS(QtETA).GE.0,1945,ANU.ABS(BETA).LT.0594) CNOu.O22*(ARS(BETA)
 

IF(ARS(ETA).GEO.5-'*4ANoAS(BETA)oLT, 1395) CNOn(O.022+0 1348
 
" 	 (-AAS(BETA)-Q.594))*CASS(PETA)/BETA)
 
IFCASS($IETA).GE,1*3451 CNUmO,13*(ABS(ETA)/BETA)
 

....... CNDE1Ro.O0I18COS(8ErA).*2 -. 	 .. .
 
CNDEl.A*O,.00014*COSCBETA)*'2 	 _..

C 
C INCLUDE THE LIFT ANU DRAG CnEFFIcIENTS WITH RESPECT TO THE
 
.. . .Aw LE-.Fr A TrACK'AT THIS .....- ...
i PuTNT 

C IF(UO.LT.34.0) CUALPH=O.O
 
C--... IF(Iu.Lt.34.o) CLALPH5.3-n.03235*UO . .... .. ..
 
C rF(Il'(,E,34.0 CVALPH'0.4
 

C IFCIJOGE,51.0) CL.ALPH:3.,2
 
C
 
C INCLUDt ALPHA*IIOEGREES (UR WHATEVER ANGLE) AT THIS POINT,
 

-ALPHA=ALPHA+O,192 ....
 
C
 

..... 
IFCIr)ENT.Eo.I) U0 TJ 

. . ..YI l ,1)= Ul . . . 
50 
. . .. . . . . . ... . . . . . . 

YlIC2pi)=Vt 
- YII(3,1W)tP! 

... ... . c/T TI ) br- . .. .. . .. -- . " . 

YII(6pi)=R! 
- YII(7-1ImTHETAT

YI3(8:1 )=PHI I .. 

..... . ..- -YII(QI)=PSII--------... . .... . ...... . ....--- .. ....... .. .. 

VII1(10.1 u-100,Q 

IJeI+l

YI( 1)M YII{ , ) . . .. .. . . . .. . . . .. . ... . . 
Y'Y(lJJ'l)=YII(II) 

.. .. .- -....... ..-... -.....	 .
60 	CONTINUE .. .. . ... ..-- ... ..... . ... . .

YI(11)s0.O
 

yy(II)=714E(I
 
-	 .-..N=12 .. . .. .. . .. . . . . . . . . .. .. . . 

Xl=0.0
 
" - KSTP=O - ... 	 . . . . . -

KODE-1 

C ESrDFQ cALCULATES THE STATE vECIOR* THE OUTPUT OF ESOPEQ
 
C ARL JHF Y(I)'S. .. ............... ... . . . .. ... . .. ...
 
C 

-	 - -50 UALI ESODEO(KODE,i . ........ . ...-... .... . . ....
 
RO(DE=3 

..---. J=J I----­
JI=J-1
 
J 	.AST = J ... - - - - . .- - -....... ------. . . .. . . - ..-
T1MAEJ)sTIME(JI)+H 

. . .YY(- ,J)aTIHE(J) ................ .. ......... ....
 
TIMEXrTIME(J)
 

C STORAGE OF THE STATE vECTOR IN THE ARRAY YY
 
C-- - - - - -.-- ---------	 - - - - - - - - - - ­

http:ZFCUOoLE.51


--

D0 70 	 1=1#10 242. 

YY(IKJ)Y(I) 

U=y (1) .. .. 	 .. . . .. . . . . . . .. . . . 

U=Y¢5)
W=Y(3)
P=Y'(a) ... . . . .. . . . . . . . .........
 

____ Q=Yc5, __ 

THETA=YC7)
 
-PHTiYV(8) 	 -.....
 
PSI=Y(9) 

NN=L-ITC
 
--	 THRUST(L)=THRIJST(NN ..
N4 -

SIGMA(L)=SIG A(NN)
 
DELX(L)=ELX(NN) 


DELY(L3 DELY(NN)
 
DELZ(L)=(ELl(NN) -


C
 
-- c-- -STORAGE OF THC-CONTROL- vFCTOR'IN THE ARRAY YB 
C 

YB(tL)IMiEL) - ­

YB(2,L)=tP lST(L)
 
- YBC3,L)=THRUST(L)*1 .23986
 

YBt4,L ):SIGMA(L)
y8( ;n'iOELk(L) ­

Y6(7jL)=DELY(L)
 
YB(8L)=OELZ(L)
 

C 
S- CALCJULATUN OF- ANGULAR ACCELERATIONS (EQUIVALENT Tn THE

C 	 CONTROL EFFORTS3, 

LSTARL)=(TY-IZ)*Q*/IX+IX7*P*Q/X+VHRST(L)/IX(ZNE*VREL/VJFT

I"STN(LAIRA(L))*cZT4+LDNE*COS(STGMACL)))) LPIX*P+LDXIX*OELX(L)+

20,5/IX*RHO*UOSAR**2iWAHEA*SPAN*CCLO4CLDELA*DELA+CLRETA*RETA)
 

....... NSTAR(L)={IX. IY),p,&/IZ.IXZQri/IZ+2,,IENGDMEGAQ/IZ
 

I+THRIST(I.)/IZ*(SIN(LA.ifDA(t))*CXTWO-LGNF*SIN(SIGMA(L)))-XOUtE
 
- *VREL/VjET)+NRI *R+NfZ IZ*0FLZ(L )+0.5/I Z*RHOkUOAR*k2*WAREA
 
3*SPAN*(CN +CNDFLR*OELK+CNDFLA*DELA)
 
PDOTL)=I-X*Ij/(I)*IZ-IXl**?)*CLSTAR(L)+IXZ* ISTAR(L)/IX)

ROOT(L)=IX*IZ/IX*Il-IXZ**2)*(IxZ*L$TAR(L)Z+NSTAR(L))
 

...... -ODOT(L)=(IZ'IX)*F*R/IY+IYZ*(R**2eP**2)/IY'2.*IENG*DIEGA*R/Iy
 
I+THRhJsT(L)/IY*((kREL*XONEfUJREL*ZONF)/VJCT+CDSCLAMfA(L))
. *2(ZTWUSIN(S1GHACL))+XTWO*CUS(SIGI'A(L)))4OELCH[OCHORD)+HOYTY*
 

3DELY(L)+HQIY+0+O.5 /Ty*RHD*UO**2*WAREA*CHORO+(CM0PO+(CMALPO+
 
- 4OfLCMA)*ALPHA+0.5*CHORD*CMQ*Q/UU+CMUELE*DELE) -


YA(1,L)=TIML(L)
 

C 	 STORAGE OF THE ANGULAR ACCELERATIONS IN THE ARRAY YA, yA(5)

AND-YAT STORE -THE-_AST T1O-STATE VATIIABLESP LONGTTUDINAL
 

C 	 AND LATERAL DISFLACEMEN4T RESPECTIVEt.
 

YA(2,L)=POOT(L)
 
YA(3pL)=QDflTC"
 
YA(4,L)=RflOIc
 

---	 YA(5,L)=Y(11) 
YAC(6L)=Y'I;) 
PDOTA=PoO (,. 



GOOTAmODUT(L)
 
RDOTAvRDOT(L) 

c 
c c RM-7 PU--sTTBT[-rT- Rn Ek-T-V.­

lF(AFS(THETA).GTO,4363A) TTF=2-''­
IF(A8S(PHDvGT,0s43634) ITF=2
 
IF'C4FiS (POEfTA)oGToloJ61)-ITr22 
IFCA8S(Q0OTA)*GTO,6q8) ITF=2
 
I F CA R S ( R0 0 TA jiT ffff; ' 
L=L-+t 
I r( !-TV. EQ . GE-o101 ---GO_,Tb 10,00 
IDENY=l 
K=K 

c PUICATCNE I I ME DELA YoF THt PI LOY 
___c_. IFCITCoLT,3) GO TO 36 

KmK-1- -

c CALCULATTUN [IF THE CONTROL VECTOR. THE FIRST TImE THROilGH THE
 
_C______PROGRAMp__THfS VECIOR. IS CALCULATED ImmEDIATELY AFTER THE 

AERODYNAMIC COEFFICIENTS ARE CALCULATED- AFTER THATs THIS VECTOR
 
C IS CALCULATEO WHENEVER ITC=3,
 
c 

4V A=4ASS4( V*P-W*Q--G*STN( THETA ))+0#5*RtiU*,JLl** R*WAREA*( ( CLF'o+tLALPH* 
IALPHA)*SIN(ALPHA)-(CD+CUALPII*ALPHA)*CUS(AtP14A))
 

I*WARFA*CY
 
-- C=MASS*(U*Q-V*P+(i*CGSC PHI )*CGS( THETA) )-095*RHO*UO**-2
t*WAREAk((CLPO+CLALP14*ALPHA)*COS(ALI'HA)+(Cf)+CDALPH*ALPIIA)*SIN
 

------ 2(ALFf;A)) 
AA=ijrLCL


---- apt -UUt4AR**2/VJET*-*2-AA**242s*AA*( SIN( ALPRA )*UREL-COS 
ICALPHA)*vIREL)/VJET
 

-------- E=CAAUREL+B*VREL+C*4REL)/VJET-AA*(A*SIN(ALPHA)-C
 
I*C0!>(ALPHA))
 

-FAA**2+fi**2+C**2 
THRUST(K)=(-E+SORT(E**2+[)*F))/D


_THRSTG(K)=THRUST(K)*I-#23966
 

THRST=rHRSTG(K)
 
---- CALL Ef4GRPM(THRSTpOmEuPCpUHEGA) 

C 
-C--IF- LAMBOA- IS- TO BE -cALCULATFOP INSFjiT 

C LAMBOA(K)=AHSIN(VREL/V,)ET-B/TiiRUST(K))
 

SIGNA(K)=ARSIN((UREL/V.IET-A/THkUST(K)'AA*SIN(ALPHA))
 
t-/COS(LAHHOA(K))) 
DE:LX(K)=((IZ-IY)*Q*R.THR(JST(K)*(VR L*ZO i--/V,)ET-SIN(I.AMBDA(K))
 

.------ I*(ZTWO+LONE*COS(SJ(,,4A(K))))"[131X*['*]X-Ot-)' R',40*UOBAR**2*dAREA 
2*SPAN*(CLf)+CLgETA*3LTA)-TXZ*P*Q)/(LI)XIY IX4-0, )*RliO*UDBAR**2k
 

---- 3WAREA*SPAN*CLDELA)---­
DELY(K)=((IX-17)*P*R+(fl**2-R**2)*IX/4-2.+IENG*Ot4EGA*R-THdU$T(K)
 

--lA(-(wRFL-XONE-URELA ZONE )/VJET+COS(LAt4HDA ( ; ) )* ( ZTWO*SIN(SIGMA (K ) 
2+XTWG*CnS(SIG IA(K)))+CHCjRU*Df.LCt4O)-t!OIY*""TY-0,5*RHG*UO**2*WAREA
 

--- 3*CHORD*(CM IPQ+(Cf4ALP()+ULLCMA)*ALPHA+0,54' 'lif]RD*CMG*Q/UO))/ 
4Ct4DYTY*TY+0,5*RHU*(JU**2*WAREA*CHORL;*CMOFLF) 

- -DLLZ(K)=((TY-IX)*P*Q+IXZ*Q*R-2,*IFf4t AOt4'- ,A*Q-THRUST(K)*(-VREL*XONE
 
i/VJET+SIN(LAMBf)A(K))*(XTWO-LOt4F*51.'i(Slrf!,*,(I,,))))-NRIZ*R*IZ-O.S*RIIO 

---- 2*UDBAR**2*WAREA*SPAN*(CNO+CNI)CLA*I)PLA))/('41)71/*IZ+0,5*RHO
 



-----

- -

- ---
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3*OBAR**2*WAREA*SPA*CNOELR) 

. -..YB(IK)=TIHECK) 
Y8(2K)=THPUST(K) 

.------ -YB(3,K)THRSTGCK) 

YB(4fK)sSIGf4A(K)
 

--	 Y(6#K)=DELX(K) 
YB(CTK)xDELY(K) 

c----- E-CFK-FOR-SATURA-T-ION-F--OVttJT-RO-PARAMETERS ,-
C 

......- IF(DLX(K)GT20.O) DELX(K)s20,O ....
 
IF(&ELX(K).LT, 20.0) OELX(K)=:20.O

IF(DELY(K),GT,20,0) DELYCK)=20,O 	 ­

IF(UELY(K).LT.-20O.) OELY(K)=-20.O
 
------- IF(L)ELZ(K).GT,204 0) OELZCK)=20,O-------- ....
 

IF(DELZ(K)4LTo-20.0) OELZ(K)=-20,O
 
DLLA=DELX(K) ..... .
 
DLLE=DLLY(K)
 

.. ... . tEzRELZ(k) 	 ... .... .. -- .. 

IF(OFLE.G .15.0) DELEt15.0 
-IF(SIGMA(K).GT,I.2213)-SIGHAK-)=I221 3 -­

IF(SIGtA(K)LT.0.0) SIGMA(K)=oo 
F(THRSTG(),GT,5515,) THRUST(K)=5515,/I,23986 
ITC=O 

GO TO 30
 

C ITERATION PROCEDURE FINUS THE RANGE A TO A+10 FIRST; THEN IT 

--C--..-.FINDS THE RANGE A TU A+2, AND FINALLY THE EXACT VALUF. 

C IT CAN 1 0 TO EITHER GREATER OR LESSER VALUES FROM THE INITIAL 
-C-------.VALUES GF THE GUST i4AGNITUDES. 

q4t -GI rw-9a--r OO - (IT F r 	
_ 

-
IF(ITS.EQ.1) GO TO 996
 
IFCJGUST.EQ.I) GSMAGU=G-SMAGCI4I0.O ..
 

IFCJGUSTE0.2.ORJGIJST.EQ.3) GSMAGV:GSIAGV+10.0
 
IF(JrUST.LQo4.ORHJGUSt.EQo5) GSMAGN=GSMAGW+10,0
 
ITA=
 

996 	IF(JGlJST.E4.I) GSMAGU=GSMAGU+1,0
 
IF(JUST.EO2.QR.JqtjST.EQ.3) GSMAGV=GSMAGV+1,0
 
IF(JGUST.EQ,alR.JGISI.EQ,5) GSMAGW=GSMAGW+1.0
 

-ITD=x ... . ..... ..... .
 

GO TO 80
 ----	&-IF(CI A.E'9. ) GO TO- 99?----. ..
 

IF(JGUST.EoI) GSMAGU=.SHAU-I0.O 
...... IF(JGUSTEQ.2.fR.JGiJST.EQ.3) GSMACVzGSMAGV-1O0O 

IFJGUSt.EQfalR.JGfIST,EQ,5) GSt4AGv4=GSAG-I0.0 
.. ... ..
-......TO--80 .. ... ... - -. 	 .....GO-- -. 

997 IF(JGUSTEQ,I) GSMAGU=GSMAGU'2.0
 
-IFJGUST.EQ.-.OR.JG4SF.kQ3) GSMAGV=GSMAGV2,Q .---.......­
IF(JGUST.Et,4.RJJUST.EQ,5) GSHAGA=GSMAGW-2.0
 
I-TSI - - - -- - - - - - - - - - -

IF(ITD.EO.1) GO TO 1001 
GO TO 80 -.---.. . 

1001 WRITE(b.800)((YY(Ij),I=II).J=IJLAST) 
-- 800 FORMHAT(IPIII1.4) - -- -- --.-. . . . .... 

WRITE(6,8OU)(CYACIJ),I=I,6),.=I,JLAST) 
- 801 FORMAT(IP6EI1,4) - ... 

http:IF(&ELX(K).LT


--
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iliTTF.(6,802)((YB(IPJ);I=IjB)PJ=IPJLAST)
 

,902 FOR PAT( I P(3E It .4 
(20 TO 100
 

gooo s r o P 
END
 
FONCI ION F( I jpXNY)
 

C
 
C FUNCTION SUUROIJrINE -FOR- EsOoEv-o
 
c
 

COH119WESUM0811
 
REAL Y(99)
 
CUm:!0N/FUf4Cl /(;.o THRkfST( I 01-);MASS-,p SJG A C 101 )pCA,48oA( 1.01 j-0--
IUUPWAREAPCLPOPOELCLPALPHAPCDPVRELPUOBARjFCYPIXPIZIXZlYjp
 
2ZTW') LONEZONEPI.PIXPLDXlx..nELXCIOI)ASPANAWREI.PCLO.vCLOELA-J---

3DEL4pCLnETAPIFNGOAEGAOXTWnPXDNEPNRIZPNDZIZPDELZCIOI).*CNOP
 
4 C N D F L R s n ELP P C N D I LA, m0 y I y p 0F L y C 10 1 ) j, 14 0 1 Yo CH0 RD 0 C MU PO p-
51)ELCMUPC-'4ALPO#DELCMAPC,'IWPCMDELEPOELLPBETAPJPURELPVJETPRHO
 
6ACDALPHCLALPH
 
IF(I*EQ*I) F=Y(2)*Y(6)-Y(3)*Y(5)-G*SIN(Y(?))+THRUST(J)/t4ASS
 

1*(SIN( ,IGMA(J))*CDS(LAHBDACJ))wUREL/VJET+DELCL*SIN(ALPHA))+0#5/
 
2MASS*Rt4r)*Un**2*WAIEA*CCCLPO+CLALPH*ALPHA)*SIN(ALPHA)-(CD+CI)ALPH*
 
3 ALPHA) *Cn S ( AL 
IF(I.FGI) RETURN
 
IF(I.EQ.2) F=Y(3)*Y(4)-Y(I)*Y(6)+G*SIN(Y(B))*CDSCY(T))
 

1+[HhtiST(J)/mASs*(SINCLAMBDA(J))-VREL/VJET)+Oo5/MASS*RHO*UOBAR
 
2**2*WAREA*CY
 
117(1.1:14.2) RETURN
 
IF CI. Eq. i )--F=Y (-I-) *YC-5-)-YC2 )WY-C4 )-+G*CIDS (Y C8 *COS (Y(7 

I-rHvljSr(J)/rIASS*(CUS(SIGNA(J))*COSCLAt4RDA(J))+WREL/VJET+DELCL*
 
?Ci)S(ALPHA)).O.S/MASS*RHU*Ufl**2*wAREA*(CCLPO+CLALPH*4LPHA)*CCS
 
J(At-rHA)+(CD+CDALPH*ALPHA)*SIN(ALPHA))
 

IF( I &EQ. 3) RETURN 
IF(I.E0,4) F=(IX*IZ/(IX*IZ-TXZ**2))*((IY-TZ)*Y(5)*Y(6)/IX
 

-I+IXZ*Y(4)*Y(5)/IX*THRLJST(J)/IX*(ZONE*VRFL/VJET-SIN(LAMBf)A(J))*
 
2(LTwr)+Ll)NE*COSCS164A(J))))4LPIX*Y(4)+LDXIX*I)ELX(J)+0,511X
 
3*RiIU*IJURAR**2*WAREA*SPAt4*(CLO+CLOELA*DELA+CLOETA*BETA) 

4+IXZ/IA*((IX-Iy)*Y(4)*Y(5)/IZ-IXZ*Y(5)*Y(6)/IZ+2,*IENG
 
5*UMEGA*V(5)/IZ+THRIJ$T(J)/17*(Sll,(LAMBL)A(J))*(XTWO-LONE*SJN-­
6(SI(i 4A(i))) XONF*VREL/V,)ET)+NRIZ*YC6)+NP71Z*DELZ(J)+0*5/IZ*RHO
 

-------7-*lJOf3A R** 2 * wA REA *SPA,4* ( G40+CN0EL-R*DELR+CNDELA * DELA 
IF(i.EQ.4) RFTURN
 

F=(TZ-IX)*Y(4)*Y(6)/IY*TXZ*(Y(6)**2-Y(4)**2)----

I/IY-2**IENG*OMFGA*Y(6)/IY+THRUST(J)/IY*((WREL*XONE:mUREL
 
2-kZOfJF )/VJET+rOS(LAAi3oA( J) )*CZTWD*SIN( SIGHA( J) )+XTW(I*COS-
3(SIGMA(J)))+CHORD*OFLCHU)+ iDYIY*DELY(J)+t'91Y*Y(5)+0,5/ly*RHO*1)0**2
 
4*WAREA*CHORf)*(CML)PO+(CMALPD+f)ELCMA-)*ALPliA+'G*5*CHORI)*CMQ*Y(57/UD----

5+04DELE*DELE)
 

IF( I - EQ, 5) RETURN 
lFGEQ,6) F=(IX*IZ)/(IX*IZ-IXZ**2)*CIXZ/IZ*((IY-IZ)*Y(5)
 

I*Y(6)/IX-%IXZ*Y(A)*Y(5)/IX+THRUST(J)/IX*(ZONE*VREL/VJET-SINCLAMFIDAC
 
21))*(ZFiitl+LONE*Ct)S(,SIGMA(i))))+LPIX*Y(4)+Lt))(IX*DELX(j)+0.5/IX*

3RHO*L]OtiAg**2*WAREA*SPANi*(-"iJ+CL4)ELA*UELA+CL6ETA*BETA) )+( IX-ly )*---
4Y(4)*Y(5)/T/--lk7*Y(5)*Y(6)/IZ*2.*IENG*nt)EGA*Y(5)/IZ+THRUST(J)/IZ*
 
5(SIN(LAmpt)A(i))*(XTNO-LONE*S]N(SlGf4A(J)))-XONE*VRF-L/VJET)+NRIZ*
 
6Y(6)+NL)ZIZ*UELZ(J)+i),5/17*RHO*UDBAR**2*WAREA*SPAN*(CNC+CNDELR*
 
7OELR+CNOELA*OELA))
 
IF(IsE*,6) RETURN
 

IF(I.EQ*?) RETURN
 
-IF(l EQ,-a)- Fay-( 4 )+Y( 5)*STN( Y( 8) )*TAN( Y( M +Y( 6)*CDS( Y(8) 
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-rC17EQ 8)-RETURN
 
IF(I.EQ.9) F=(Y(6)*COS(Y(8))+Y(5)*SIN(YS) ))/COS(Y(C))
 

IF(I.EQ.1O) F=YC2)*SlIN(Y{8))*COS(yCT))+Y(3)*COS(YC8))*Cos(Y(l))­
--- - t-l-*S IN( YCr)y 

IF(IEQiO) RETURN
 
F(CIEEQ;1IV)-OF=YCI*COSCYC))*COSY) Y4YC2)*SIN(yc))*SrN Y())*
 

1COS(Y(9)).COS(Y())*SINCYC9)))+Y(3)*(COSCY())*sIN(Y,(7))*COS(Y(9)) 
2T3- NfY'tP")y S IN Yr797-­
IF(I.EO.1j) RETURN 

-- -IF(I-,Ea.12) F=Y(l)*COSCYc7)-)*SIN(YC9))+YC2)*cSIN(Y())*SIN(Y(,))* 
ISIN(Y(9))+CDS(Y(8))*CCsCY(Q)))+Y(3)*(COs(Y(8))*SINcYc())*SIN(Y(9))
 
2-S1N(Y()COS(YC9)
 
RETURN
 
EN 0--_ 
SUBROUTINE ENGRPM(THRSTJOMEGPCOMEGA)
 

- - c -. . . .	 . . . . . . . . . . . . . ..-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

C SUBROUTINE TO CALCULATE THE ENGINE ANGULAR 
---C----VELOCITY FROM THE- THRUSTr- . 

C
 
-NGVFLV t 72Rr
 
IF(THRST.LE.437O.) GO TO 300
 

---- -TO-30 t ....... . . . .... . .. - G0 	 . ... .. ...... ....
 
300 OMEUPC=CTHRSTw33O5.)/88,?5+80*
 
-----00 T0-302 ....
 
301 BAu=A5244673E-09
 

------- B!97 -yr3978E-6-­
BC:.#2498497E-02
 
BD3HRST-4370. ... .. ... . .
 
OMEGPC=IIA*RO**3"HB*sD**2+BC*R+92,0
 

-- - 302 	OMEGA=OHLGPC*ANGVEL/1O0..--...
 
RET URN
 
END
 
SUBROUTINE ESODLQ(KL]DENRU)_
 
COM IN/ESO/i1fI 1 ...
 
COHHON/LSOCOM/N XI PYI (99)* X 'y(99),TRP H'KSTP' DY(99)
 

---REAL XCYC(99),OYPCU,99),6(99) .. 	 .. .
 
DATA H/O/,DYp/396*0/ 
0DAr-AST,--N STP---IIf-r--1N3---N t---I- 2--3 -- t .. 

TR = (1.10) 
__ 

IF(NGT.99) GO TO 77T7
 
- GO -TI"(lOOi0 2000P 3O031P KODE.. ......----­

1000 D0 1001 r:itJ
 

1001 DY(C) = F(T,XIYI)

-X a X l U . . . . . . . . . . . . . . . . .. . . . . ... .. 

INI Ij
 
- IN2"=-~2----- ---­

1N3 3 
I Nd--4
 

1050 14STP = wSTP
 
NSTP -a 0.
 
HO c H 

--GO TO-..4000 -. . .. 
2000 GO TO 1050 

- 00-- (HarEE0 - 0 T-OTO5-0orF 

GO TO 4000
 
3001 RETURN­

http:IF(NGT.99
http:IF(I-,Ea.12
http:IF(I.EO.1j
http:IF(I.EQ.1O


- -

-- 

.. 


-
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4000 	DO 4001 I= IN 

4001 	OYP(INII) =DYC1) . . . . . ... .
 

IF ('FSfPLE.2) GO TO 4500
 
DO 4002 I=t N
 

4002 	Y(I Y(1) + H*(55,0*DYP(INIP1)'59,0*oYPCIN2pl)+ibo*YP(IN3J)I "-y.o0"* YP(IN4J)/24,0.. 	 .." . . .
 

MSTP i
ISTP-1

1F (14TpU;LEO))--U-T-W-TI OW
 

00 4003 IlN
 
a4 0XT-Y X-H-_-CT)..
-


-t0 480O
 
4100 X X + H
DO00. 4101-lV-N 
 .
 
4101 QYfl) =- F(I, X, YC)
 

blU 4TO 2 11 W-N - . . .
 
4102 Y() =Y(i) + H*C9.O*OY(T)+19.0*DYP(INIPI)n5.0*DYP(IN2,I)
 

-.F '+DYP(IN3iI )')/24,0 ........
 
MSTP 2 KSTP
 

. -...- - o;o--- . .. . ......-.. 	 -T-- 0 --......... .-...- -­

00 4103 I=IN 

TR = SWqT(TR) 
-GO Trf4j o... . . . . 

4500 00 4501 I=I,N 
S(II )* D( ) .... . .. ......-. ..-. . .. 

45b01 YC(I) a Y(I) + $(I)12t0
 
_X C,--- T-H7
 
DO 4502 I=I N
 

--- -DY(1) FCI' XC1Y
 
S€I) S(I) + 2.0*H*OY(I)


4502 	YC(1) u Y(j) + (s*Of(I))/2,. ...... ..... .. . .. ..... .... .. 
DO 4503 I*IN 
VY (I) -a F (I, -XCr - YC- - . ......-. . .............. .... .. ..-
S(I) S(1) + 2,0*H*OY(I)M 


4503 	YC(T) 2 Y(l) + H*DY(I)----- . ...
 
XC = X + H
 
00 4504 I=IPN -- .- - --...-.------­

DY(I) F(I1 XCo YC)
 
---S(-I-)--"-(-I-) -+ -H*O&Y(V&
 

4504 	Y(I) Y(I) + S(/6.0
2 

... . .X -= -- XC .. .. 	 . . .. .. . . . . ..... 	 . .. .. .. . . .
 

NSTP = NSTP + I
 
4800 00 4601 I4I0N... . ..
 
4801 DY(1) 2 F(fl X, Y)
 

-
= 
-	 I - N4
IN4 =IN3
 

IN2 INI 

GO Tf 3001
 --TT11--W tTE-(4n---77f) 

CALL EXIT
 
777 FORMAT(1Hl 9H-TOO--ttUC)
 

END
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APPENDIX 7
 

Inclusion of CLa and CDa In the Aircraft Model.
 

CL and C0 are to be included in equations (A4-1) and (A4-3) in
 

Appendix 4. The altered equations are
 

u = ...+ (1/2)*• p • • S Cpo + CL * a) * sin() ­

(CD + CDa a) • cos(a)} -(I/m) (III-A7-1 

and
 

w = .... (1/2) * p • S • {(CLpo + Cia a) . cos() +
 

a) • sin(a)J *(1/m)(CD + CDa a (III-A7-2) 

These two coefficients are also included inthe terms A and C
 

of the thrust equation (AS-i) of Appendix 5. These terms are altered
 

inthe same manner as above with the exception that (1/m) does not appear.
 

A = + (1/2) p U S {Lpo + CL a) sin(a) ­

(CD + CDo • a) • cos(a)l (III-A7-3)
 

C = (112) • p U2 • S {C + C a) cos(a) +
 

0 Lpo La
 

(CD + CDa * a) * sir(a)}l III-A7-4) 
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APPENDIX 8
 

Determinationof Gust RMS Intensity.
 

The longitudinal gust will be used in this example. The value of
 

vm from WINDY was 52 fps. The gust field was moving at a speed equal to
 

the headwind, 10 fps and the gust frequency was 0.10 cps. The displace­

ment of the aircraft was 23.9 feet in the positive x-direction. The dis­

placement was in the opposite direction to the movement of the gust field.
 

Therefore, 

2dm = (10) * 1 = 123.9 feet.(1/0.10) + 23.9 100 + 23.9 

Also Lu = 854 feet which implies that 

dm/L = (123.9)/(2 - 854) - 0.0724
 

Using the probabilities of occurrence of 10, 1, and 0.10 percent of exceed­

ing vm (52 fps) for a specific dm/L (0.0724), the ratios (vm/a) for each
 

probability can be found from Figure 12.
 

P(vm/a) vM
 

0.10 1 0.62
10% 


0.01 + 1% 0.95 

0.001 0.1% 1.25
 

The corresponding intensities are 

a10 = 52/0.62 = 84.0 fps rms , 

a1 = 52/0.95 = 54.7 fps rms , and 

= 52/1.25 = 41.6 fps rms 
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