

AND

COMPUTER PROGRAM FOR DEFINITION OF TRANSONIC AXIAL-FLOW **COMPRESSOR BLADE ROWS**

NASA TECHNICAL NOTE

by James E. Crouse Lewis Research Center Cleveland, Obio 44135

Ň

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . FEBRUARY 1974

	Report No	2. Government Access	ion No	3 Recipient's Catalog No
	NASA_TN D-7345			
4	Title and Sublitle COMPUTER PROGRAM FOI	R DEFINITION OF T	RANSONIC	5 Report Date February 1974
	AXIAL-FLOW COMPRESSO ? BLADE ROWS			6 Performing Organization Code
7	Authorisi			8 Performing Organization Report No. E-7094
				10 Work Unit No
9	Performing Organization Name and Addre	55		501-24
	Lewis Research Center			11 Contract or Grant No
	-ational Aeronautics and Sp	ace Administration		
	Cleveland, Onio 44135			13. Type of Report and Pariod Covered
12	Sponsoring Agency Name and Address			Technical Note
	Washington, D.C. 20546		14. Sponsoring Agency Code	
15.	Supplementary Notes	·····		
	A MEUROU IS DEPSEMENTED TOP O	$\Delta \alpha (T R T R T \alpha V) \alpha T = V (A R T r)$	aommeneuron blad	ing from blade elements defined
	on cones which pass through line is composed of two seg of each segment have consta elements can be leaned in b program gives coordinates blade sections. These coor blade elements. The progr	esigning axia-flow of a the blade-edge stree ments which are tan- ant change of angle w oth the axial and tan for fabrication and p dinates and properti am is structured to	compressor blad eamline locations gent to each othe with path distance gential directions properties for aes ies are obtained l be coupled with a	ing from blade elements defined Each blade-element center- r. The centerline and surfaces The stacking line for the blade s. The output of the computer roelastic analysis for planar by interpolation across conical an aerodynamic design program.
17	on cones which pass through line is composed of two seg of each segment have consta elements can be leaned in b program gives coordinates blade sections. These coor blade elements. The progr	esigning axia-flow of the blade-edge stro- ments which are tan- ant change of angle w oth the axial and tan for fabrication and p dinates and properti am is structured to	compressor blad eamline locations gent to each othe with path distance gential directions properties for ae ies are obtained l be coupled with a	ing from blade elements defined Each blade-element center- r. The centerline and surfaces The stacking line for the blade s. The output of the computer roelastic analysis for planar by interpolation across conical in aerodynamic design program.
17.	on cones which pass through line is composed of two segn of each segment have constant elements can be leaned in b program gives coordinates blade sections. These coordinates blade elements. The program blade elements. The program Key Words (Suggested by Author(s)) Compressor design Tur	bomachinery	compressor blad eamline locations gent to each othe with path distance gential directions properties for ae ies are obtained l be coupled with a 18. Distribution State Unclassified	ing from blade elements defined Each blade-element center- r. The centerline and surfaces The stacking line for the blade s. The output of the computer roelastic analysis for planar by interpolation across conical in aerodynamic design program.
17.	on cones which pass through line is composed of two seg of each segment have consta elements can be leaned in b program gives coordinates blade sections. These coor blade elements. The progr blade elements. The progr Key Words (Suggested by Author(s)) Compressor design Tur Blade design Bla	bomachinery	compressor blad eamline locations gent to each othe with path distance gential directions properties for aes ies are obtained l be coupled with a 18. Distribution States Unclassified	ing from blade elements defined Each blade-element center- r. The centerline and surfaces The stacking line for the blade s. The output of the computer roelastic analysis for planar by interpolation across conical an aerodynamic design program.
17.	on cones which pass through line is composed of two segn of each segment have constant elements can be leaned in b program gives coordinates blade sections. These coordinates blade elements. The program blade elements. The program Key Words (Suggested by Author(s)) Compressor design Tur Blade design Bla	bomachinery de stacking	compressor blad eamline locations gent to each othe with path distance gential directions properties for aes be are obtained l be coupled with a 18. Distribution States Unclassified	ing from blade elements defined Each blade-element center- r. The centerline and surfaces The stacking line for the blade The output of the computer roelastic analysis for planar by interpolation across conical an aerodynamic design program.

.

۰,

19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No of Pages	22 Price"
Unclassified	Unclassified	224	Domestic, \$5.50 Foreign, \$8.00

* For sale by the National Technical Information Service, Springfield, Virginia 22151

The second se

CONTENTS

											F	age
SUMMARY				• •		•			•			1
INTRODUCTION										•		2
DESCRIPTION OF BLADE DESIGN PROCEDURES	• •										•	3
Blade-Element Definition												3
Conic radius R as a function of κ and s \ldots .						•			•	•		4
Conic angular coordinate ϵ as a function of κ an	d s							•	•			. 5
Blade-element layout parameters						•			•			. 8
Definition of blade-element centerline				• •						•	• •	9
Definition of blade-element surfaces				. .							•	10
Blade-Element Stacking	• •		•		•							. 11
Stacking-line lean to balance stress	. .			• •				•	•			. 11
Reference locations for blade sections in stacking									•		•	. 11
Blade section points by interpolation across blade	eler	nei	nt						•		•	. 12
Spine fit of blade-section surface points		•			•			•	•	•	• •	. 13
Stacking adjustments to blade elements on cone										•	• •	. 15
Balancing of bending moments								•				. 17
Interfacing to Blade Edges									•	•		. 17
Velocity diagram corrections to blade edges	• •				•							. 17
Incidence and deviation angles	• •			. .							•	. 18
Blade-edge-angle corrections to layout cone												. 19
Terminal Calculations								•			•	. 19
Aerodynamic parameters						•					•	. 19
Blade-section forces					•							. 22
Location of output blade sections								•				. 22
Output blade-section coordinates												. 22
Output blade-section properties		•	•	. .	•		•	•	•	•	•	. 23
DISCUSSION OF COMPUTER PROGRAM	• •										•	. 24
Input Data		•	,		•			•	•		•	. 25
Printed Output Data		•	•	• •		•	•	•	•	•	•	· 2 6
APPENDIXES												
A - SYMBOLS			•						•	•	•	. 29
B - DEVELOPMENT OF EQUATIONS FOR CONIC A	NGU	LA	R	co	OR	DI	NA	T	Е		•	. 34
C - DEVELOPMENT OF CUBIC INTERPOLATION E	QUA	TI	ON			•			•	•	•	. 64
D - DEVELOPMENT OF INTEGRATION EQUATION	s fc	R .	A C	UE	BIC	S	PL	IN	Έ			
FIT OF BLADE-SECTION POINTS								-				. 66

Contractor (terre 1)

î.

E - DEVELOPMENT OF EQUATIONS FOR BLADE-SECTION END AREA AND			
MOMENTS CORRECTIONS	•	•	77
F - DEVELOPMENT OF BLADE BENDING MOMENT EQUATIONS			88
G · BLADE-ANGLE CORRECTION FROM LOCAL STREAMLINE SLOPE TO			
LAYOUT-CONE SLOPE		•	96
H - DEVELOPMENT OF EQUATIONS FOR TORSION CONSTANT	•		98
I - PROGRAM INFORMATION	•	•	105
J - MICROFILM SUBROUTINES FROM LEWIS LIBRARY	•	•	203
REFERENCES			200
	٠	•	209

Constraint State

COMPUTER PROGRAM FOR DEFINITION OF TRANSONIC AXIAL-FLOW COMPRESSOR BLADE ROWS by James E. Crouse

Lewis Research Center

SUMMARY

A method is presented for designing axial-flow compressor blading from blade elements defined on cones which pass through the blade-edge streamline locations. A blade-element centerline is composed of two segments which are tangent to each other. The centerline and surfaces of each segment have constant change of mean-camber-line angle with path distance. The blade elements are stacked along a line which can be leaned in both the axial and tangential directions. The output of the computer program gives coordinates for fabrication and properties for aeroelastic analysis for planar blade sections. These coordinates and properties are defined by interpolation across conical blade elements to the planes perpendicular to a radial line through the hub stacking point. The output blade-section properties are area, center-of-area location, stacking-point location, maximum and minimum moments of inertia along with their orientation, torsion constant, and twist stiffness.

The computer program uses velocity diagrams that have been established from some aerodynamic design process. The velocity diagrams are applicable to some fixed locations near the blade edges. Blade-element angles are obtained from the velocity diagrams (1) by correcting the velocity diagrams from the fixed locations to the edges of the blade as stacking adjustments are made, (2) by determining and applying incidence and deviation angles at the edges of the blade with one of several common methods chosen with optional controls, and (3) by correcting the inlet and outlet blade-edge angles on a streamline of revolution to the blade-element layout cone with the use of appropriate direction derivatives. The iterative stacking adjustments are made by translating the blade elements along the cone so that the center of area of the associated blade section is alined on the stacking axis.

INTRODUCTION

In an axial-flow compressor design method, the general objectiv is to define hardware which will give suitable and predictable flow conditions. For subsonic and transonic flows, the solidity of blade elements is generally low enough so that blade elements at most locations in a blade row can more reasonably be treated as a cascade of airfoils rather than channel flow. Also, since the axial dimension in axial-flow compressor stages is usually short with respect to blade height, there is reasonable freedom in the selection of blade-element shapes which, when stacked, will define a structurally sound blade. Where possible, those blade-element shapes which have demonstrated good performance with enough experimental data to yield useful parametric correlations are usually selected. One shape commonly used in present-day aircraft compressors is some variation of the circular-arc type of blade element.

Most compressor design systems utilize experimental data correlated from similar blade shapes in either two-dimensional or three-dimensional flow. In order to have a meaningful relation between the correlated data and the design application, the bladeelement definition properties should be as nearly alike as possible. It is regnized, for example, that all the blade-element properties of a two-diment distribution. So some decisions must be made as to which properties fundamentally control the data correlations. The most desirable properties to preserve are blade-element thickness distribution and blade-edge angles along streamlines of the compressor.

The camber distribution used to achieve the prescribed turning is a property which has significant effect on the blade-surface pressure distribution. The camber distribution can be simulated in various ways. For example, an element can be laid out directly on the surface of revolution, or it can be laid out on a plane or cylinder and then projected to the streamline. In reference 1 it was shown that these methods produce varying rates of change of blade angle with blade-element centerline-path distance at significant streamline slopes. From strictly a geometric point of view, the rate of change of blade angle with blade-element centerline-path distance is most directly related to the local chordwise rate of aerodynamic loading. So there appears to be some merit in preserving the rate of change of blade angle with blade-element centerline-path distance in the flow direction. This concept was developed and programmed in reference 1 for the simulation of a circular-arc blade element which has a constant rate of change of blade angle with blade-element centerline-path distance. The computer program of reference 1 mathematically describes and then stacks blade elements to define a blade after the blade-edge angles are established.

The coupling of an aerodynamic program with such a blade design program avoids iterative computer entries by the designer; but for the design of multistage compressors, program coupling places particular premium on speed, reliability, and accuracy. It was

apparent that, to use the concepts of reference 1 in a coupled program, improved mathematical procedures were desirable. The rework of those concepts, which is described in this report, provides major gains in accuracy, reliability, and speed. The computer program presented is internally structured for use as a part of a composite compressor design program. But, in the form presented, the program is set up to run as a separate entity so that it can be used in conjunction with different aerodynamic design programs. Thus, this program is presumed to start with velocity diagrams at fixed locations near the edges of the blades. These velocity diagrams are corrected to the edges of the blades as the edge locations are defined through the stacking iteration. Incidenceand deviation-angle prediction methods are included to establish the blade-element edge angles from the velocity diagrams.

DESCRIPTION OF BLADE DESIGN PROCEDURES

The general blade design system can be divided into four rather distinct parts: (1) blade-element definition, (2) blade-element stacking, (3) interfacing of the reference velocity diagrams to the blade-element edges, and (4) terminal calculations. The first three parts are used in an iterative procedure in the computer program to establish the blade for the terminal calculations. The iterative loop through these parts occurs because the blade-edge locations for the velocity diagrams are known only as accurately as the blade elements are stacked. Most of the computer program information of interest to the user is given in the section entitled DISCUSSION OF COMPUTER PROGRAM; but occasionally, computer subroutines are mentioned in this section when a procedure is the specific function of a subroutine. The following discussion covers the development of concepts that are used in the computer program.

Blade-Element Definition

It is desired that a blade element lie on the surface of revolution generated by revolving the flow streamline about the compressor axis. For the purposes of bladeelement definition, this surface is simplified to the cone passing through the intersections of the streamline surface with the blade leading and trailing edges. (The conical coordinate system for blade-element layout is illustrated in fig. 1.) Since the difference of streamline slope from a blade-row inlet to an outlet is usually relatively low, the blade properties along the streamline of revolution will closely approximate those laid out on the cone. The advantage of the conic approximation is that a cone is a single curved surface which is undistorted when unwrapped for layout.

All centerline and surface curves used to lay out a blade element on a cone rebased on the concept of constant rate of change of local blade angle with path distance; that is, the paths are defined as functions of the κ and s shown in figure 1. (All symbols are defined in appendix A.) At any point on one of these paths, the angle of the tangent to the path is defined with respect to the local conic ray to the point. Since κ is defined with respect to a conic ray, it is convenient to define the blade element in the conic coordinate system associated with that layout-cone half-angle α and leading-edge radius r_{le} . General equations for representing these conic coordinates, R and ϵ , as functions of κ and s were originally developed and presented in reference 1. For some ranges of parameters, these functions have computational accuracy problems caused by the subtraction of nearly equal numbers. In the following redevelopment of R and ϵ as functions of κ and s, a different mathematical approach was used to in:prove computational accuracy.

Conic radius R as a function of κ and s. - In the conic coordinate system shown in figure 1, the basic principle can be expressed as

$$\frac{\mathrm{d}\kappa}{\mathrm{d}s} = \mathbf{C} \tag{1}$$

where C is a constant. Integration of equation (1) from a reference point to some general point gives

$$\kappa - \kappa_0 = C(s - s_0) \tag{2}$$

The differential relation for conic radius is

$$d\mathbf{R} = \cos \kappa \, d\mathbf{s} \tag{3}$$

Substitution of equation (2) and integration from a reference point to a general point gives

$$R - R_0 = \frac{1}{C} \int_{s_0}^{s} \cos\left[\kappa_0 + C(s - s_0)\right] C \, ds = \frac{1}{C} \sin\left[\kappa_0 + C(s - s_0)\right] \Big|_{s_0}^{s}$$

$$R - R_0 = \frac{1}{C} (\sin \kappa - \sin \kappa_0) \qquad (4)$$

This form of equation has poor accuracy on a computer for small C (i.e., $\kappa - \kappa_0$). And the computation fails for C equals zero. The following development illustrates how this problem can be eliminated: Substitute for C in equation (4) to give

$$R = R_0 - \frac{\frac{3 - 5_0}{5 - 5_0}}{\frac{5 - 5_0}{5 - 5_0}} \sin x - \sin x_0 + \frac{5 - \frac{5_0}{2}}{1 - \frac{5_0}{2}} 2 \sin \left(\frac{1 - \frac{1}{2}}{2}\right) \cos \left(\frac{5 - \frac{1}{2}}{2}\right)$$
(5)

The series form for the sine function of ∞ is

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$
 (6)

which can be rewritten as

$$\sin x = x \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \dots \right)$$
(7)

For the present application, x is $(\kappa - \kappa_0)/2$. Thus, the substitution of equation (7) into equation (5) and the subsequent cancellation of the $(\kappa - \kappa_0)/2$ terms yields a form that is accurate for small and zero C values (low $\kappa - \kappa_0$).

The series form can also be accurate for relatively large $(\kappa - \kappa_0)/2$, provided enough series terms are used. If terms through $x^8/9!$ are used, the first term dropped is $x^{10}/11!$. If this term is to be kept to 10^{-8} as compared to the first term of the series (1.0), the limit on $(\kappa - \kappa_0)/2$ is ± 0.9122 radian. That is, $(\kappa - \kappa_0)/2$ would be limited to 52.27° and $\kappa - \kappa_0$ to 104.5° to satisfy the criterion. Thus, series terms through x^8 are sufficient for our turbomachinery application. Therefore, the form of the equation for $R - R_0$ that is used for computation can be expressed as

$$R - R_{0} = (s - s_{0})\cos\left(\frac{\kappa + \kappa_{0}}{2}\right) \left[1 - \frac{1}{6}\left(\frac{\kappa - \kappa_{0}}{2}\right)^{2} \left(1 - \frac{1}{20}\left(\frac{\kappa - \kappa_{0}}{2}\right)^{2} \left\{1 - \frac{1}{42}\left(\frac{\kappa - \kappa_{0}}{2}\right)^{2} \left[1 - \frac{1}{72}\left(\frac{\kappa - \kappa_{0}}{2}\right)^{2}\right]\right\}\right)\right]$$
(8)

Conic angular coordinate ϵ as a function of κ and s. - The differential form for the conic angular coordinate is

$$\mathbf{R} \, \mathbf{d}_{\mathbf{\epsilon}} = \sin \kappa \, \mathbf{d} \mathbf{s}$$

or

$$d_{\ell} = \frac{\sin \kappa}{R} ds$$
 (9)

5

-

With the substitution of equation, (4) and (2), equation (9) becomes

$$d_{e} = \frac{\sin \left[\kappa_{0} + C(s - s_{0})\right] C ds}{R_{0}C - \sin \kappa_{0} + \sin \left[\kappa_{0} + C(s - s_{0})\right]}$$
(10)

The integral of equation (10) is of the form

$$\int \frac{\sin x \, dx}{a + b \sin x} = \frac{x}{b} - \frac{a}{b} \int \frac{dx}{a + b \sin x}$$
(11)

where the solution of

$$\int \frac{\mathrm{d}x}{a+b\,\sin\,x}$$

is dependent on the ratio of the constants a and b. The solutions of the latter integral and the subsequent treatments of them are given in appendix B because of the complexity.

The computational difficulty encountered with the direct use of equation (11) can be explained when our specific variables are substituted into the x/b term. The equation for ϵ can be expressed as

$$\epsilon - \epsilon_0 = \frac{\left[\kappa_0 + C(s - s_0)\right]_{s_0}^s}{1} - \frac{a}{b} \int \frac{dx}{a + b \sin x} = \kappa - \kappa_0 - \frac{a}{b} \int \frac{dx}{a + b \sin x}$$
(12)

From figure 1, it can be seen that $\epsilon - \epsilon_0$ must be very small for large R. However, $\kappa - \kappa_0$ usually is not small. With the mathematical form shown in equation (11), $\epsilon - \epsilon_0$ is obtained by subtraction of nearly equal numbers. This, of course, leads to poorer accuracy with increasing R and a totally inaccurate value for the degenerate case of a cone becoming a cylinder.

In appendix B, it is shown that the solutions of the integral term in equation (12) all reduce to the same infinite but convergent series. Computational accuracy with this form is improved because the first term of this series practically cancels the $\kappa - \kappa_0$ term in equation (12). The remaining terms are then of the order $\epsilon - \epsilon_0$. The resulting equations for ϵ as developed in appendix B are

$$\epsilon - \epsilon_{0} = \frac{(\kappa - \kappa_{0}) \left[\sin \kappa_{0} + \sin \frac{\kappa + \kappa_{0}}{2} + CR_{0} \left(\sqrt{\frac{R}{R_{0}}} - 1 \right) - X_{1} - 4(R_{0}C - \sin \kappa_{0}) \sin \frac{\kappa - \kappa_{0}}{2} \left(\frac{X_{2}^{2}}{3} + \frac{X_{2}^{4}}{5} + \frac{X_{2}^{6}}{7} + \dots + \frac{X_{2}^{2n}}{2n+1} \right) \right]}{(R_{0}C - \sin \kappa_{0}) \cos \frac{\kappa - \kappa_{0}}{2} + \sin \frac{\kappa + \kappa_{0}}{2} + CR_{0} \sqrt{\frac{R}{R_{0}}}$$
(13)

where

$$X_{1} = (R_{0}C - \sin \kappa_{0}) \left(\frac{2}{3} \left(\frac{\kappa - \kappa_{0}}{4} \right)^{2} \left\{ 1 - \frac{3}{5} \left(\frac{\kappa - \kappa_{0}}{4} \right)^{2} \left[1 - \frac{10}{63} \left(\frac{\kappa - \kappa_{0}}{4} \right)^{2} \left(1 - \frac{7}{90} \left(\frac{\kappa - \kappa_{0}}{4} \right)^{2} \left\{ - \frac{18}{365} \left(\frac{\kappa - \kappa_{0}}{4} \right)^{2} \left[1 - \frac{11}{351} \left(\frac{\kappa - \kappa_{0}}{4} \right)^{2} \right] \right\} \right) \right\}$$

(B32)

$$X_{2}^{2} = \frac{\left[1 - (R_{0}C - \sin\kappa_{0})^{2}\right]\sin^{2}\frac{\kappa - \kappa_{0}}{2}}{\left[(R_{0}C - \sin\kappa_{0})\cos\frac{\kappa - \kappa_{0}}{2} + \sin\frac{\kappa + \kappa_{0}}{2} + CR_{0}\sqrt{\frac{R}{R_{0}}}\right]^{2}}$$
(B26)

and

$$C = \frac{\kappa - \kappa_0}{s - s_0}$$

The number of terms in the converging X_2^2 series used to limit the relative error to a maximum of 10⁻⁸ is

$$n = 35 \left| X_2^2 \right| + 5 \tag{14}$$

For $(R - R_0)/R_0^+ \le 0.21$, the following series form should be used to calculate the $\sqrt{R/R_0} = 1$ term in equation (13)

- 🏹

$$\sqrt{\frac{R}{R_{0}}} = 1 + \frac{1}{2} \left(\frac{R - R_{0}}{R_{0}} \right) \left[1 + \frac{1}{4} \frac{R - R_{0}}{R_{0}} \left(1 - \frac{1}{2} \frac{R - R_{0}}{R_{0}} \left\{ 1 - \frac{5}{8} \frac{R - R_{0}}{R_{0}} \left[1 - \frac{5}{10} \frac{R - R_{0}}{R_{0}} \left(1 - \frac{5}{8} \frac{R - R_{0}}{R_{0}} \left(1 - \frac{5}{8} \frac{R - R_{0}}{R_{0}} \right) \right] \right] \right) \right]$$
(B30)

For the special case of very small |C|,

$$\epsilon - \epsilon_0 = \tan \kappa_0 \ln \frac{R}{R_0}$$
 (B12)

۰,

Finally, for the special c se of very small $|(R - R_0)/R_0|$,

$$\epsilon - \epsilon_0 = \frac{2(s - s_0)}{R + R_0} \sin \frac{\kappa + \kappa_0}{2} \left[1 - \frac{1}{6} \left(\frac{\kappa - \kappa_0}{2} \right)^2 \left(1 - \frac{1}{20} \left(\frac{\kappa - \kappa_0}{2} \right)^2 \left\{ 1 - \frac{1}{42} \left(\frac{\kappa - \kappa_0}{2} \right)^2 \left[1 - \frac{1}{72} \left(\frac{\kappa - \kappa_0}{2} \right)^2 \right] \right\} \right) \right]$$
(B36)

In the limiting case of a cone becoming a cylinder, the preceding equation breaks down even though there is a physically meaningful path component perpendicular to R. The problem can be eliminated by multiplying both sides of equation (B36) by R so that a physically meaningful component in the same units as R can be computed directly. Thus, in the general subroutine EPSLON the calculated components are always ΔR and R $\Delta \epsilon$, where the radius associated with $\Delta \epsilon$ is the conic radius at the terminal end of the path (end opposite the path reference or beginning).

<u>Blade-element layout parameters</u>. - Subroutine CONIC contains the logic for layout of a two-segment blade element on a cone. The information for a blade-element layout comes from input data and the velocity diagram interfacing calculations. The parameters specifically used for a layout are listed here and illustrated in figures 1 to 3:

- (1) Layout-cone half-angle, α
- (2) Blade-element chord c, where the chord line is tangent to the blade-edge circles on the pressure side and the chord length is measured to the outer tangency points of the edge circles
- (3) Cylindrical coordinate radius at the most forward axial point on the leading-edge circle, r_{le}
- (4) Leading-edge blade angle on the cone, κ_{le}
- (5) Trailing-edge blade angle on the cone, κ_{te}
- (6) Ratio of leading-edge-circle radius to chord, t_{1e}/c
- (7) Ratio of trailing-edge-circle radius to chord, t_{te}/c

- (8) Ratio of maximum thickness to chord, $t_{m'}c_{-}$
- (9) Chordwise coordinate location of element centerline transition point as a fraction of chord, $c_{t'}c$
- (10) Chordwise coordinate location of element centerline maximum-thickness point as a fraction of chord, $c_{m'}c$
- (11) Ratio of first- to second-segment path distance derivatives (dk/ds), C_1/C_2

Definition of blade-element centerline. - The objective of the first phase of iayout is to establish the centerline between the edge-circle centers (figs. 2 and 3). The length of a blade element is only known initially through the input chord; so the centerline-path length to the transition point and the trailing-edge-circle center are not known. The chord could be expressed as a function of R and ϵ , but the angular coordinate ϵ is a complicated function of κ and s. Thus, there would be no direct way of solving for the desired centerline-path length s. So a different approach is required.

The approach used is to estimate the centerline-path lengths so that s becomes the independent variable in the computation of chord. Adjustments are then made in the s values to converge the chord and transition-point locations to the specified values. Thus, the general procedure, which is in subroutine CONIC, is an iterative predictor-corrector method on the first-segment and overall centerline paths to give the input transit on-point location and chord for the specified κ_{1e} , κ_{te} , and C_1/C_2 .

The first estimate of the blade-element centerline-path length is essentially that of a circular arc laid on the cone to meet the specified end angles in this unwrapped state. The path length corrections for succeeding iterations are the transition-point-location and chord relative errors, which are simply linear corrections. Since the initial path length approximation is a good one, only three or four iterations are required to converge the computed chord to within the relative error tolerance of 10^{-6} .

Within the iterative procedure, some specialized computer subprograms are called. Subroutine EPSLON gives the conic coordinate changes ΔR and $R \Delta \epsilon$ associated with a path length s and the κ angles at the ends of the path. To relate the path distances to chordwise component distances, two other subroutines were used. One is TANKAP, which calculates the constant-angle path between two points in the conic coordinates R and ϵ . It is used here for the purpose of establishing the chordwise direction. The other subroutine is RPOINT, which finds the intersection of a constant-angle path through a point at a given slope with a perpendicular path line through a second point. This routine is used here to find the chordwise component of the element transition point.

When the centerline path is established, the next step is to locate the maximumthickness point on the centerline with respect to the transition point (fig. 3). The relation of c_m/c with respect to c_t/c establishes on which segment the maximumthickness point is located. In addition, it gives an approximation of the path distance to the maximum-thickness point. Subroutine RPOINT is used to locate the maximumthickness point in an iterative setup similar to that used to locate the transition point. Convergence to the path distance which places the maximum-thickness point at the specified location takes about three i craticas.

Definition of blade-element surfaces. - The first point is be established on either blade-element surface lies at the end of the maximum-thickness path. This point is onehalf the element maximum thickness in length along a curved path of constant κ angle which is normal to the centerline at the maximum-thickness point (see fig. 3). A general thickness path is likewise perpendicular to the blade-element centerline and is a curved path of constant κ angle. Only at the maximum-thickness point, however, is the surface path angle perpendicular to the thickness path.

At the ends of a blade element, the surface curves are tangent to the end circles. The conditions of a k vn surface angle at a fixed point and tangency to a specified side of a given fixed circle are sufficient to establish a surface path. In this case, the particular path is the one from the surface maximum-thickness point to the end circle of the same segment.

The surface curve constants are established through an iterative procedure in subroutine SURF. In it, a good first approximation of the surface camber difference from that of the centerline is used. In essence, this approximation is a circular-arc representation of the change of thickness for the path. With a good first approximation of the surface curve end κ , the end-circle tangency point is usually located within a 10⁻⁶ relative error tolerance in three iterations.

The transition point on a surface lies on a thickness path through the centerline transition point. It is located at the intersection of a surface curve with this thickness path. Sufficient information exists to calculate the intersection coordinates and surface angle by using only the established surface curve through the surface maximum-thickness point. This calculation is a de in subroutine TRAN. Since the segment end-point coordinates and angles are common to both segments at the transition point, sufficient information is then available to establish the surface curve for the other segment. Subroutine SURF is again called for this computation.

With appropriate signs on the thickness-path directions, these procedures are used to calculate both the suction- and pressure-surface curve constants $d\kappa/ds$ for each blade element. In each case, it is necessary to begin the surface calculations with the segment on which the maximum-thickness point is located to have sufficient definition conditions. When the maximum-thickness point is specified to be coincident with the transition point, the procedure simplifies because the surface transition-point calculation is not needed.

. 4

Blade-Element Stacking

<u>Stacking-line lean to balance stress</u>. - The mechanical as well as aerodynamic aspects of design must be considered in blade-element design - and especially in stacking. The centrifugal force associated with the rotative speed of turbomachinery imposes significant tensile stress. Additional stresses are produced by bending and torsional moments with steady flow conditions. When bending and torsional oscillations are also considered, the combined stress is often too high for adequate life at some locations in turbomachinery blading. It behooves the designer to do what he can to generally lower any component of the combined stress to minimize the amount of aerodynamic configuration compromise for stress reduction in specific applications.

The one component of stress which can be changed with little or no aerodynamic compromise is the component from steady-state bending moments. These bending moments have two principal sources. A moment results from the blade forces associated with the change of angular momentum of flow acting with a lever arm in the spanwise direction. This moment, for the most part, is established by the weight flow and the change in momentum. So it cannot readily be changed to control bending moments. The other bending moment in rotors results from the centrifugal force on each element of blade mass acting with a lever arm, which is offset from the radial projection of the attachment or root area. Since the centrifugal forces are high, significant moments occur with small offset. Thus, by stacking to control an "average" centrifugal-force lever arm in rotors, it is possible to minimize either the bending moment from centrifugal forces or the combined centrifugal-force and gas bending moment for some operating point.

For moment calculation, it is convenient to have blade forces which are resultant components for a blade cross section. If the type of blade cross section selected is described by a constant cylindrical coordinate radius, the centrifugal force per unit of mass is constant. So the resultant radial force (centrifugal force) acts at the center of area of the blade section with an incremental but constant radial thickness. The moments resulting from the blade forces are then established by lever arms associated with the location of the blade-section center of area with respect to the reference stacking point at the blade-root attachment point. For a blade, the path or line through the reference stacking point and the blade-section centers of area is the stacking line.

Reference locations for blade sections in stacking. - The "stacking line" reference point is the center of area of the hub section. In the computer program, it is set by the input data. The radial line in the turbomachinery cylindrical coordinate system which passes through this stacking-line reference point is called the "stacking ray" for bladesection location. Notice that the stacking ray is always radial, while the stacking line can be leaned in both the z and θ directions.

The axial and tangential coordinate origins of the cylindrical coordinate system are on the stacking ray. The axial coordinate z is positive in the turbomachinery throughflow direction. The angular coordinate z is positive in the same direction as $R\epsilon$ in the conic coordinate system used for blade-element definition.

In the blade-element-definition computer subroutines, the input angles are relative values for rotors and absolute values for stators. These blade-element-definition subroutines operate with no distinction between rotors and stators. So the conic coordinate ϵ is positive in the same direction as the blade input angles. Since the relative and absolute blade angles are defined to be positive in opposite directions from the axial reference, the ϵ values for rotors and stators are also positive in opposite directions. This difference must be recognized in stacking. For rotor blade elements, θ decreases in the direction of rotation; but for stator blade elements, θ increases in the direction.

<u>Blade-section points by interpolation across blade element</u>. - The previously discussed blade sections of constant centrifugal force would be defined on cylinders. The actual blade sections used in the program are defined on planes perpendicular to the stacking ray. There are two reasons for this. First, the annular extent of axial-flow compressor blading is low enough so that the layout part of the cylinder is at most only an incremental distance from the tangential plane. Second, the output fabrication coordinates are desired on planes. So by using planes for stacking alinement too, only one type of blade section needs to be found.

The blade-section planes used for stacking alinement purposes pass through the intersection points of the blade elements with the stacking line. The blade-section shapes on the eplaner are described by interpolation across blade elements. The preparation steps for the interpolation are (1) conversion of the conic coordinates, which are normalized to chord, to actual size; (2) selection of points on the blade-element surfaces across which the interpolation will be made; and (3) conversion of the blade-element points from their defining conic coordinates to a common coordinate system for all blade elements. The coordinate system used is the cylindrical coordinate system with the stacking ray as the origin of the θ and z directions. The coordinate conversions to this system are the function of subroutine POINTS.

The blade-element points used for interpolation are located at the following fractions of surface distance from the tangency point of the leading-edge circle to the tangency point of the trailing-edge circle: 0.0, 0.05, 0.12, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.88, 0.95, and 1.0. The coordinates of the transition point between segments on each surface are also included. The interpolation curve used is a piecewise cubic across four blade elements. With the exception of the transition point, each curve fit is through points of the same fraction of surface distance. Thus, for each blade-section point, separate interpolations are made in the axial and tangential directions. In the interpola-

tion process, the tangential coordinate is converted to a Cartesian coordinate on the blade-section plane.

The form of the cubic equation is specialized in the sense that one of the interior known points is used as a zero reference for the independent variable. The reason for it is that there is much better computational accuracy and much less change of computational difficulty when a curve-fit interpolation can be made near the independent variable origin. The development of this cubic interpolation equation is shown in appendix C.

A sequence of four adjacent blade elements is always used for each interpolation. Whenever possible the interpolation is between the center two points of the set of four for the cubic fit. Near the ends of the blade, it is necessary to interpolate between the outermost points and in some cases to extrapolate when the blade section is outside all blade elements. The interpolation routine is INTERP.

Spline fit of blade-section surface points. - A blade-section surface is defined by a complete set of 28 interpolated points on a plane normal to the stacking ray. One advantage of interpolation in both the z and θ directions is that the end points of a surface set on the blade-section plane can be considered as the intersections of the surface curve with the end circles. To determine good blade-section area and moment values, it is necessary to curve fit these points. A spline curve fit was selected for its characteristic smoothness at the junction points of the piecewise-fit curve through the points. The experience has been that the points are indeed smooth enough for a nonwavy spline fit of each surface individually. A number of things were done, however, to help ensure a good spline fit. A discussion of the concepts follows; but a more detailed discussion, along with the development of equations, is given in appendix D.

A spline fit maintains a linear second derivative between points, not a linear curvature. As long as the slope of the curve is reasonably low, the difference is not very significant. So to maintain nearly the linear relation on curvature too, it is desirable to spline curve fit only where slopes are low. To help facilitate this concept, before curve fitting, the blade-section coordinates are rotated to an independent axis which is parallel to the line which passes through the first and last pressure-surface points. At the same time, the blade-section coordinates are translated to the coordinate origin, which is at the stacking-line intersection. The blade-section coordinate systems are illustrated in figure 4.

The spline curve fit uses separate cubic equations between adjacent points of a set, with the joining condition being continuous slope and second derivative at the points. To have sufficient conditions to define a spline, it is necessary to specify a condition at each end. The blade elements have constant-curvature paths by definition. So unless the cone angle is quite large in magnitude, the blade sections will also have nearly constant curvature. Thus, it would seem reasonable to use constant curvature as the end conditions. The first and second derivatives were not available in a direct way from the matrix solution for the splic coefficients, so a relation was approximated beforehand. To set

nearly constant-curvature ends for the spline, a circular-arc fit of the three end points in the rotated coordinates was used to establish the ratio of second derivatives between the last two increments. This is the function of subroutine ARCS.

In general, blade elements have a discontinuity in curvature at the surface transition point, so an interpolated blade section should have a corresponding discontinuity. The allowance for this capability with a spline curve fit requires a modification because a general spline has continuous curvature from beginning to end. The modification was accomplished by placing the transition point in its proper place in each of the surface arrays and then replacing the condition of continuous curvature at that point with a substitute condition. The resulting conditions imposed at the transition point are continuous slope and a curvature ratio based on a three-point finite difference calculation for each side of the transition point. The curvatures are for the adjacent points on either side of the transition point. Since the curvatures are relatively constant along a segment in the plane section, the situation of unequal distance from the adjacent points to the transition point is not of major consequence. The curvature ratio relation across the transition point by this technique is

$$C_{R} = \frac{y_{k+1}'}{y_{k-1}'} \left[\frac{1 + (y_{k-1}')^{2}}{1 + (y_{k+1}')^{2}} \right]^{3/2} = \frac{y_{t(+)}'}{y_{t(-)}'}$$
(15)

The ratio $y'_{t(+)}/y'_{t(-)}$ is also the curvature ratio since the slope is the same on both sides of the transition point. In actual usage in the program (subroutine SPITG), the value C_R was smoothed by using the 0.7 power with the same sign.

The imposition of this condition in the center of a spline makes the usual tridiagonal matrix solution more complicated. The usual Gauss elimination of variables from one end of the curve to the other end, followed by backward substitution to get the y'' array, is unsatisfactory for a general location of the transition point. A way to avoid most of the complication is to use the Gauss elimination from both ends to the transition point. Then equation (15) supplies the added condition needed to fix the two y'' values at the transition point. The rest of the y'' values can then be calculated by backward substitution in each direction from the transition point.

Once the spline coefficients are established, mathematical expressions exist for general surface-point definition. Areas and moments for the spline pieces can then be determined from the appropriate integrals of the surface equations. A separate integration is performed for each surface curve from y = 0 to the curve. The integrations and the resulting equations are presented in appendix D. The major part of a blade section's areas and moments are accounted for by subtracting all the pressure-surface integrals from the suction-surface ones. However, to get accurate section values, the end-circle

contribution must be included. The specific pieces used in the end region are shown in figure 5. The twice-covered areas in the figure are areas cancelled in summation.

Lines perpendicular to the surfaces through their respective end points do not necessarily intersect at a point equidistant from the surface end points. For the purposes of describing an end-circle center, surface continuity, which implies the center point is equidistant from each of the surface points, is desired. Surface tangency to both surfaces at the end points, however, cannot then be satisfied. The compromise used is an equal-angle discrepancy between the end circle and each of the surface curves at the surface end points, as noted in figure 5.

The end adjustment consists of the sector of an end circle plus the two trapezoidal shapes which fill in the part between the spline segments and the end circle. Area and first-moment corrections for a blade-section end are made in subroutine ENDS. The routine gives positive numbers for the leading-edge correction but negative numbers for the trailing-edge correction. The equations used in the subroutine are developed in appendix E.

Stacking adjustments to blade elements on cone. - The blade-section area and first moments obtained from the piecewise summations are used to determine a new center of area for the blade section. The location of the center of area from the stacking-line intersection of the blade section is a stacking adjustment increment. The actual adjusting is done by translating blade elements on the surface of the cone. So it is necessary to relate the blade-section adjustment increment on the plane to the blade element on the cone. From the definition of a blade section, the blade-section plane and the associated blade-element surface are known to intersect the stacking line at a common point. The common stacking point simplifies the stacking adjustment relations to the application of direction derivatives to suitable components. The geometry associated with the stacking shift equations is shown in figure 6.

On a blade section, $\Delta \bar{x}$ and $\Delta \bar{y}$ (fig. 6) are directly known from the area and moment equations. The axial and normal components are

$$\Delta \overline{z} = \Delta \overline{x} \cos \gamma - \Delta \overline{y} \sin \gamma$$
 (16)

$$\Delta \overline{n} = \Delta \overline{x} \sin \gamma + \Delta \overline{y} \cos \gamma \tag{17}$$

The axial blade-element shift is related to the similar blade-section shift in figure 6 by

$$\Delta \overline{z} = \Delta \overline{z}_{\rho} (1 - \tan \alpha \tan \lambda)$$

so that

s,

$$\Delta \overline{z}_{e} = \frac{\Delta \overline{z}}{1 - \tan \alpha \tan \lambda}$$
(18)

In the tangential direction, the normal component on the blade section Δn is applied directly to the blade element (r $\Delta \overline{+}$ in fig. 6). This application is not mathematically correct, but it is sufficiently accurate to be used in an iterative adjustment procedure. One assumption in the tangential adjustment procedure is that a small distance along the tangent in the circumferential direction is the same as the projected distance in the vdirection on the blade element. A second and less satisfactory assumption is the neglect of tangential-stacking-axis lean. With such lean, the blade section will not be tangent to the blade element at the stacking point. However, because of high centrifugal force, the stacking-axis lean of rotors must be small; so this angular difference is small. Thus, for rotors for which good stacking control is desired, the tangential shift assumptions are always good. For stators, the main concern is the convergence of the iterative procedure for stacking adjustment. The shift increment is in the correct direction and is of satisfactory magnitude for at least moderate lean angles. One stator design with 45⁰ tip-tangential-stacking-axis lean still had good stacking-axis convergence.

The stacking adjustments are used in two different ways. First, both the leadingand trailing-edge axial and radial coordinates are adjusted. The axial coordinates are shifted by $\Delta \bar{z}_e$, and the radial coordinates by $\Delta \bar{r}_e$ where

$$\Delta \bar{\mathbf{r}}_{e} = \Delta \bar{\mathbf{z}}_{e} \tan \alpha \tag{19}$$

The second shift application is to the blade-element chordwise and normal component distances from the leading-edge-circle center to the stacking point. These component distances normalized to chord are maintained during iteration. The reason for them is that the iteration loop between stacking includes several other blade-angle or stackingaxis-lean adjustments which influence the blade-element edge locations. The normalized chordwise and normal coordinates are useful for the next iteration location of a blade element on the cone because these shifts are relatively invariant with the other shifts.

The adjustment procedure is based on the assumption that the shift of a blade element has the dominant effect on its associated blade section. In general, this dominance exists to a high degree, and the iterative procedure is highly convergent. However, this dominance no longer exists when a blade section crosses the ends of neighboring blade elements since, through interpolation, the r.eighboring blade element controls the blade-section end. So when a neighboring blade element intersects a blade section, the stacking procedure is nonconvergent. Such a situation can exist if closely spaced streamlines with large slopes are used.

Since nonconvergence of a possible design case is not desirable, some effort was made to extend the range of convergence. The approach was to make the blade-element shifts a function of the local and neighboring blade-section shifts. The influence coefficients were based on blade-section piecewise area and relative distances to adjacent blade elements. For the most part, the effort was unsuccessful and, consequently, it is not used in the program.

Stacking convergence problems can generally be avoided by judicial spacing of the blade elements in the design. As long as the ends of blade elements do not extend more than approximately one-half the distance to the next blade section, there is good stacking convergence. Once the blade is stacked, however, coordinates for closely spaced blade sections can be calculated for terminal calculations.

Balancing of bending moments. - The blade-element stacking procedure is controlled in subroutine STACK. One other major function of STACK is the balancing of bending momer 3. If the balance option is exercised by the specification of a blade material density, the steady-state rotor gas bending moments in the axial and tangential directions will be balanced by a centrifueal-force-on-blade-mass moment which is induced by stacking-axis rean. (Moments in the meridional plane are illustrated in figure 7.) In the balancing procedure, the blade mass moment is set up as a functional relation of blade lean. The equations for this are developed in appendix F. The major moment contribution is usually the blade-section center-of-area offset from a radial line. However, with a tapered tip the wedge-shaped excess and decrement masses from the tip blade section make significant contributions because their centers are relatively much farther from the stacking axis.

The steady-state gas bending moments to be balanced are calculated in subroutine GASMNT. The approach used is the change-in-momentum principle. The momentum boundaries in the meridional plane are the edge of the blade and the nonattached end of the blade (fig. 7). The state conditions and velocities on the boundaries are drawn from the input and interfacing calculation. The moment arm for both the gas-bending and blade-mass-centrifugal-force moments is referenced to the blade-element midradius value $r_{\rm h}$ on the blade attachment end.

Interfacing to Blade Edges

<u>Velocity diagram corrections to blade edges</u>. - Input fluid-state properties and velocities are given for fixed locations near the edges of blade rows. Streamline slope and/or streamtube convergence cause flow conditions to change from the input reference locations to the blade edges. To maintain the desired degree of design control over specification of blade-element edge angles, it is necessary to account for the flow changes between locations. The two assumptions used for those velocity diagram cor-

rections were (1) conservation of angular momentum along a streamline with local slope between a reference station and a blade edge and (2) flow continuity from local streamtube convergence. The blade-edge locations are not firmly established until the final stacking iteration, so the velocity diagram corrections are made for every iteration. Velocity diagrams at the reference locations are used for the first iteration.

Incidence and deviation angles. - In subroutine BLADE the inlet blade-edge velocity diagram is related to the physical blade through an incidence angle, and similarly the outlet blade-edge velocity diagram is related to the blade trailing edge through a deviation angle. The incidence angle can be specified through input options in five different ways, and the deviation angle can be specified in four ways. Two of the respective incidence and deviation options are the two- and three-dimensional values of reference 2. The parametric curves in reference 2 that are used for the determination of the incider ce and deviation values were fit with equations which yield values within at least 3 percent of those from the curve. The third incidence option is a specified zero incidence on the suction surface at the edge-circle tangency point. The remaining two incidence options are tabulated values which can be referenced to either the leading-edge centerline angle or the aforementioned suction-surface angle.

The input incidence angles in some cases can be overriden during iteration by chokemargin option considerations. Since the inlet area of the blade-to-blade channel is a function of incidence angle, a specified choke margin can sometimes be achieved through a reasonable variation of incidence. If the blade-to-blade channel inlet choke margin is less than a specified (greater than zero) value, the input incidence angles will be adjusted to a limit of $\pm 2.0^{\circ}$ on the suction surface to achieve the specified choke margin.

The third deviation-angle option uses tabulated values referenced to the trailingedge centerline angle. The remaining deviation-angle option is a modified application of Carter's rule

$$\delta = \frac{m}{\sqrt{\sigma}}\varphi \tag{20}$$

4. apr

where φ is the camber of the blade element which has an exit axial velocity equal to the inlet axial velocity and an equivalent angular momentum change at a constant radius r_{le} . The definition of m is

m =
$$(0.219 + 0.0008916 \gamma + 0.00002708 \gamma^2) \left(\frac{2c_a}{c}\right)^{2.175 - 0.03552 \gamma + 0.0001917 \gamma^2}$$
 (21)

where the blade setting angle γ is in degrees and the ratio c_a/c is the fraction of chordwise distance to the maximum camber height point. The modification of m ac-

counts for the deviation-angle enange associated with the different turning rates on the two segments of a blade element. For a double-circular-arc-type element, in has the same value as that determined by the classical Carter's rule.

Blade-edge-angle corrections to layout cone. - The last interfacing step relates a blade-edge angle at local streamline slope to a blade-edge angle on the layout cone at that same point. When the inlet and outlet streamline slopes differ significantly, the layout-cone slope must also differ significantly from at least one of the edge slopes. The angle difference can be properly accounted for through the use of two nonparallel direction derivatives. The selected directions as viewed in the meridional plane are the streamline meridional and the radial. The direction derivative in the streamline meridional direction is obtained directly from the blade angle. However, to get the radial derivative it is necessary to fit across adjacent blade elements. The desired derivative could have been calculated from a curve fit of points from interpolated and extrapolated blade-element definition curves for a common axial location, but the interpolations and extrapolations were avoided with another approach. The blade-end-circle centers are already calculated with a common reference in subroutine POINTS so that they can be curve fit directly and converted to the radial directional derivatives by the methods shown in appendix G. In the program, the curve fit for the edge derivative in the meridional plane was done in subroutine POINTS, and the conversion to the radial direction was done in MAIN. For the first iteration, the radial direction derivative is set to zero.

Terminal Calculations

Once the blade geometry is established, the terminal calculations convert the information into a more convenient form for further analysis and further application. First, the computed flow parameters at the blade edges can be analyzed by the user to judge the practical'ty of the obtained aerodynamic design. Second, the output gives good aerodynamic forces and geometry parameters for mechanical design analysis of stresses and natural frequencies. Finally, suitable coordinates for blade fabrication are given.

<u>Aerodynamic parameters.</u> - Most of the aerodynamic parameters of interest are available from the last blade design iteration. The design-point choke margin is the major terminal calculation of an aerodynamic nature. The choke margin at the bladechannel inlet has been calculated and possibly was adjusted during the iterations if the choke-margin option was exercised. Adjustments for better margin at other channel locations were not programmed because, in general, it was not obvious what adjustments the designer would have chosen. Thus, the minimum blade-element-channel choke margins along with their locations are calculated and printed as terminal calculations so that such evaluations and adjustments can be made external to the program. A local whole margin is defined as the ratio of available flow area above the choke flow area to the choked flow area, or $(A A^*) = 1$. Thus, the minimum choke margin for a blade element corresponds to the local minimum $A A^*$ for the covered channel formed by two adjacent blades. The local minimum $A A^*$ is calculated with an iterative procedure in subroutine MARGIN. The first two calculations for A/A^* and its derivative with meridional distance are at the channel ends. The next location for an A/A^* calculation is the minimum of a cubic curve fit to the conditions of two values A/A^* and the two slopes $d(A/A^*)/ds$ at the end points. Succeeding iterations use the value and slope of the last calculated point along with the corresponding values of an end point. An A/A^* value is accepted as a minimum $\sim n$ the magnitude of the slope is below a tolerance of 0.001.

The ratio A/A^* is obtained from three other area ratios.

$$\frac{\mathbf{A}}{\mathbf{A}^*} = \left(\frac{\mathbf{A}}{\mathbf{A}_{1e}}\right) \left(\frac{\mathbf{A}_{1e}}{\mathbf{A}_{1e}^*}\right) \left(\frac{\mathbf{A}_{1e}^*}{\mathbf{A}^*}\right)$$
(22)

The choke areas are based on relative flow conditions for rotors since the rotating channel is controlling the choke situation.

The term A/A_{le} is a ratio of physical areas. It is obtained from ratios of dimensions in two directions. The first dimension direction is normal to the flow direction on the blade-element layout cone. At the inlet it is the product of blade inlet spacing and the cosine of the relative flow angle. In the channel the distance is measured on the layout cone from the suction surface of a blade element to the pressure surface of the adjacent blade element. The path is normal to the average of the local blade-surface angles.

The second ratio of dimensions needed for A/A_{le} comes from the rate of streamline convergence. The ratio is obtained from the radial spacing of blade elements and the direction-angle differences of adjacent layout cones. The local application point for this ratio is the midpoint of the blade-to-blade distance path.

The second area ratio in equation (22), A_{le}/A_{le}^* , is obtained directly from the inlet relative Mach number and the associated equation for compressible gas flow (ref. 3).

$$\frac{A_{le}}{A_{le}^{*}} = \frac{1}{M_{le}^{*}} \left[\frac{1 + \frac{\gamma - 1}{2} (M_{le}^{*})^{2}}{\frac{\gamma + 1}{2}} \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$
(23)

The approach to the value of the third area term of equation (22), A^{\bullet}_{1e} , A^{\bullet}_{1e} , is to begin with relative flow continuity

$$\rho \mathbf{V}^{\dagger} \mathbf{A} = \rho^{\dagger} \mathbf{V}^{\dagger \dagger} \mathbf{A}^{\dagger} = \rho^{\dagger}_{\mathbf{le}} \mathbf{V}^{\dagger \dagger}_{\mathbf{le}} \mathbf{A}^{\dagger}_{\mathbf{le}}$$
(24)

with the result that

$$\frac{\mathbf{A}_{1e}^{*}}{\mathbf{A}^{*}} = \frac{p^{*}\mathbf{V}^{**}}{p_{1e}^{*}\mathbf{V}_{1e}^{**}} = \frac{\begin{pmatrix} \mathbf{p}^{*} \\ \mathbf{Rt}^{*} \end{pmatrix} \sqrt{\frac{2_{\tau}\mathbf{g}\mathbf{R}\mathbf{T}^{*}}{\gamma + 1}}}{\begin{pmatrix} \mathbf{p}_{1e}^{*} \\ \mathbf{Rt}_{1e}^{*} \end{pmatrix} \sqrt{\frac{2_{\tau}\mathbf{g}\mathbf{R}\mathbf{T}^{*}_{1e}}{\gamma + 1}}}$$

The next step is the introduction of stagnation-state values by multiplication and division, so that all static properties can be expressed as ratios of static to stagnation values. These ratios can then be expressed in terms of local Mach number, which is 1 for the choke values. After cancellation, the equation reduces to

$$\frac{A_{le}^*}{A^*} = \frac{P'}{P'_{le}} \sqrt{\frac{T'_{le}}{T'}}$$
(25)

From the definition of relative stagnation temperature, the temperature ratio is

$$\frac{T'}{T'_{le}} = 1 + \frac{(\gamma - 1)\omega^2 \left(r^2 - r_{le}^2\right)}{2\gamma g R T'_{le}}$$
(26)

The pressure ratio can be expressed as

$$\frac{\mathbf{P'}}{\mathbf{P'_{le}}} = \frac{\mathbf{P'_{i}}}{\mathbf{P'_{le}}} - \frac{\mathbf{P'_{i}}}{\mathbf{P'_{le}}} + \frac{\mathbf{P'}}{\mathbf{P'_{le}}} = \left(\frac{\mathbf{T'}}{\mathbf{T'_{le}}}\right)^{\gamma-1} - 1 + \left(1 - \frac{\mathbf{P'_{i}} - \mathbf{P'}}{\mathbf{P'_{le}}}\right)$$
(27)

The last term in parentheses represents the blade-element losses from the inlet to the local point.

The overall blade-element losses can be calculated from the input-data stagnation temperature and pressure values at the inlet and outlet. The accumulated loss from the inlet to a local point was presumed to be some part of the total. The approach used was to break the total loss into shock and profile components. The shock loss was applied at the blade-element channel entrance, and the profile loss was made a linear function of the distance along the blade element. The shock loss was calculated by methods similar to those of reference 4, but with a modification. The methods of reference 4 approximate normal shock strength at the channel inlet. At the higher transonic and supersonic Mach numbers, this model tends to overestimate the actual shock strength for two reasons. First, the actual shock often becomes somewhat oblique, and so its strength is lowered. And secondly, the blade-surface pressure gradient will not support a strong shock. So an apparent strong shock in real flow develops the weaker structure of a shock foot. Consequently, the relative stagnation pressure loss at the channel entrance would be expected to be less than that indicated by a normal shock. In an effort to partially spread the shock loss through the channel, the loss at the channel inlet was calculated as the shock loss reduced by the empirical factor $1 \left(M_{sh}^*\right)^2$. No effort was made to quantitatively verify this factor from experimental data. It can easily be changed by the user in subroutine LOSS.

Blade-section forces. - The blade forces, which are computed in the terminal calculations, are of interest for blade stress analysis. Blade forces are determined by the principle of change of momentum across the boundaries of the surface formed by the edges of a blade through one revolution. The principle is essentially the same as that used to calculate the gas force: in the section <u>Balancing of bending moments</u>. However, the calculation is slightly different in this case because a local value of force for a radial blade increment is desired rather than the contribution to a total force or moment. The radial blade increment is located at the average of the inlet and outlet blade-element radii. The change of momentum associated with a blade element is considered applicable for the radial blade increment, but the static pressures at the blade-element edges are interpolated to the radial blade increment radius. Blade force components in the axial and tangential directions are calculated in MAIN and are given in units of force per blade and per unit of radial height.

Location of output blade sections. - The terminal blade geometry calculations are either made in or controlled by subroutine COORD. In general, blade-section data can be requested by the user where information is desired. There are three optional methods available for this. With one option, the user tabulates the radial locations of the desired blade sections. With the other two options, the blade-section locations are selected within the program. With one the user chooses the number of blade sections desired, but with the other the number is selected within the program on the basis of aspect ratio. For either option, a blade section is located at the intersection of the stacking axis with the casing on the blade attachment end. The other blade sections are spread across the blade span.

<u>Output blade-section coordinates</u>. - The coordinates of blade sections for general radial locations are described with the use of subroutine INTERP in the same way as those at the specific locations used for stacking alinement purposes. However, coor-

· 神子 · · · · · · · · · ·

dinates for fabrication purposes are desired on a coordinate system with a length axis tangent to the end circles on the pressure side of the blade and a corresponding height axis tangent to the leading-edge circle. The coordinate values in this translated and rotated system are found directly from the appropriate spline-curve-fit segment of the blade-section definition points.

To ease fabrication layout, the suctions and pressure-surface height coordinates are given at rounded-number length increments. Height coordinates are also given at the end of the blade and for the end-circle centers. The height values are obtained by using the desired independent variable values in the appropriate surface-definition equation.

For fabrication, the blade sections are oriented with respect to the radial line, the stacking ray, through the hub stacking point. As noted earlier in the section <u>Reference</u> <u>locations for blade sections in stacking</u>, this ray is not necessarily the stacking line. The coordinates that are used for the alignment of blade sections during fabrication are those of the stacking-ray intersection with the blade-section plane. Those coordinates, along with the blade setting angle with respect to the axial direction, are the output given for blade-section alignment. The coordinates for the blade-section center of area, which is the stacking-line intersection of the blade-section plane. are also given because they are the reference point for the output moments of inertia.

For some applications a user may prefer coordinates for the blade sections in the turbomachinery orientation, so the original blade-section surface-definition points are also printed in subroutine BCOORD.

Output blade-section properties. - The blade geometry properties needed for stress analysis are computed from the blade-section coordinates. The blade-section area and first-moment values are calculated in subroutines SPLITG and EDGES as they were in the stacking iterations. The higher moments estired are the minimum moment of inertia and the section twist stiffness, which is defined in reference 5 as

B =
$$\iint (x^2 + y^2 - k^2)(x^2 + y^2) dx dy$$
 (28)

where k is the polar radius of gyration. Since x is the chordwise direction and y its normal on the blade section, the minimum moment of inertia can be found from I_{xx} , I_{yy} , and I_{xy} with

$$I_{\min} = I_{xx} \cos^2 \gamma_I + I_{yy} \sin^2 \gamma_I - 2I_{xy} \sin \gamma_I \cos \gamma_I$$
(29)

where

$$\gamma_{\rm T} = \frac{1}{2} \tan^{-1} \frac{2I_{\rm XY}}{I_{\rm yy} - I_{\rm XX}}$$
 (30)

By expansion of equation (28) into a sum of integrals, it is seen that B can be determined from the moments of inertia and I_{xxxx} , I_{yyyy} , and I_{xxyy} . The equations for these moments are developed in appendix D for the spline pieces. The values are calculated in subroutine IMOM. The corresponding end-circle moment corrections are calculated in subroutine ENDS with the equations developed in appendix E.

The other calculated blade geometry parameter is the torsion constant, which is defined in reference 6 as

$$K = \frac{\frac{1}{3}F}{1 + \frac{4}{3}\frac{F}{AU^2}}$$
(31)

>

where

$$F = \int_0^u t^3 du$$

The variable t is the blade-section thickness normal to the blade-section centerline path u. The equations for expressing t as a general function of u on a blade section are developed in appendix H. The calculation of F is done in subroutine TORSN.

DISCUSSION OF COMPUTER PROGRAM

The blade design computer program as presented in appendix I is run as a separate entity from a compressor aerodynamic design, but it is structured to be run in conjunction with a compressor aerodynamic design program. The point is made to explain, first, the double dimensioning where only one dimension is needed and, second, the failure to save many computed blade-element values. The need for doubly dimensioned variables arises when this program is run as a part of a composite multistage compressor design program. Enough information must be prescribed to define blade parameters for an array of blade elements within an array of blade rows. On the other hand the number of variables dimensioned was minimized because of computer storage limitations for the broader mode of operation. Just enough information to fully describe the blade elements is stored, and all other parameters are calculated from the basic information as needed.

The overall operation of this program is controlled in MAIN. The other subroutines of major control are CONIC for the blade-element design, STACK for blade-section definition and the stacking adjustment shift, and COORD for the terminal calculations and printing. The call sequences of the subroutines are detailed in figure 8. The program variables for the commons and the individual routines are described in appendix I. The core storage is about 29 500 words. The breakdown is 21 200 words for coding, 5000 words for undimensioned and dimensioned variable storage, and 3300 words for systems. On an IBM 7094 the running time is about 1 minute for a blade row with eight stacking iterations.

For the first few iterations the stacking shifts for each iteration decrease in size by almost an order of magnitude. Usually the stacking shifts for all blade elements are less than 10^{-5} of blade-element chord within five iterations. However, a specification of close blade elements with significant streamline slope (see section Stacking adjustments to blade elements on cone) can cause convergence difficulties. Even though the stacking process for a troublesome case may not end up convergent, the blade-element shifts in the beginning usually become smaller for the first few iterations and then diverge. The stacking shifts may be low enough after some iteration that the user may want to consider the stacking well enough converged. To give the user the freedom to make this judgement, the program is set up to always run eight iterations with the bladeelement stacking shifts printed for each iteration. The shifts relative to the bladeelement chord are DM in the meridional direction, which is along the ray of the layout cone, and DY in the tangential direction. If the user decides to terminate the iteration process at some other number of iterations, he can most easily do it in MAIN by changing ICONV to 2 on the desired ITER number. The particular statement lies between the statements with external formula numbers 900 and 920. When the logical parameter ICONV is set to 2, the terminal calculations are activated on the next iteration.

١.

Input Data

The input data are read and processed in subroutine INPUT. The card format for the data is shown in appendix I. The input parameters and the options they represent are listed and described together as a group in appendix I, even though the parameters are mentioned again in the description of variables for the routines. The input data essentially consist of inlet and outlet station information for describing velocity diagrams and parameters for blade-element description. The velocity diagrams are located and described with radius, axial location, axial velocity, tangential velocity, streamline slope, stagnation temperature, stagnation pressure, and rotational speed. The molecular weight of the gas and the coefficients for a fifth-degree polynomial of specific heat as a function of temperature are input for the velocity diagram corrections to the blade edges.

The blade stacking axis is initially located by the user with coordinates at the hub and tip in the meridional plane and a tilt angle in the tangential direction. The stacking line may later be adjusted for rotors by using an option to balance gas bending moments with the bending moment induced by centrifugal force on a leaned blade. The blade chord at the tip is specified indirectly through the number of blades and the solidity at the tip radius. The chords at other radii are specified through a cubic polynomial of chord to tip chord as a function of the fraction of passage height. The blade-element leadingand trailing-edge radii and the maximum thickness are input as a fraction of chord. The radial distributions of these parameters are specified as cubic polynomial functions of the local fraction of passage height. The blade-element incidence angle, the deviation angle, the location of the segment transition point, the turning-rate ratio of the segments, and the location of the blade-element maximum point are controlled by input options. The available options for these variables are described in the discussion of input data parameters AA, AB, BB, CC, DD, EE, and EB in appendix I.

Printed Output Data

The printed output includes the input data with the associated options selected, the blade-element stacking shifts during iteration, and the results of the terminal calculations (see the example in appendix I). For the most part the information is printed shortly after the calculations are made, so the output data appear in the order of the program steps. The input data and the stacking shift information have previously been sufficiently discussed, so only the terminal calculation output is further explained.

The first page of terminal calculation data gives the blade-element edge locations in the meridional plane and the velocity component corrections at the blade edges. The second page of terminal calculation data gives blade-element parameters and blade force distributions. The blade-element parameters are listed here. Some of them are shown in figure 3.

(1) Ratio of leading-edge radius to chord. $r_{c, ie}/c$

- (2) Ratio of maximum thickness to chord, t_m/c
- (3) Ratio of trailing-edge radius to chord, $r_{c,te}/c$
- (4) Ratio of maximum-thickness location to chord, c_m/c
- (5) Ratio of transition-point location to chord, c_t/c_t
- (6) Ratio of segment inlet to outlet curvature, C_1/C_2
- (7) Suction-surface change of angle of the first segment, $K_{1s} K_{ts}$, deg

 $\mathbf{26}$

- (8) Blade setting angle, γ , deg
- (9) Blade-element solidity, σ
- (10) Blade-element aerodynamic chord, c, in.
- (11) Ratio of maximum-camber-point location to chord, c_{α}/c
- (12) Incidence angle, i, deg
- (13) Incidence angle to suction surface at leading edge, i_{e} , deg
- (14) Inlet relative flow angle, β_{le} , deg
- (15) Inlet blade angle on streamline, $\kappa_{le, st}$, deg
- (16) Inlet blade angle corrected to layout cone, κ_{le} , deg
- (17) Deviation angle, δ , deg
- (18) Outlet relative flow angle, β_{te} , deg
- (19) Outlet blade angle on streamline, $\kappa_{\text{te, st}}$, deg
- (20) Outlet blade angle converted to layout cone, κ_{te} , deg
- (21) Centerline blade angle at transition point, κ_t , deg
- (22) Shock location as fraction of suction surface, f_{g}
- (23) Covered channel as fraction of suction surface, f_{r}
- (24) Minimum choke-area margin in covered channel, $\left(\frac{A}{A^*} 1\right)_{min}$
- (25) Location of minimum choke point as a fraction of covered-channel centerline path, f
- (26) Blade force components (axial and tangential tabulated with radius), lbf/(radial in.)(blade)

The blade-section properties are given in two forms. First, blade-section coordinates in the chordwise and normal directions are listed in a form suitable for fabrication layouts. And second, the blade-section definition points are listed in the turbomachinery orientation. In the headings for the first set of coordinates the following blade-section properties are given. The coordinate system for the blade-section output data is illustrated in figure 9.

- (1) Radial location of blade section, r_{sp} , in.
- (2) Stacking-point coordinates
 - (a) Length along chord, L, in.
 - (b) Height from chord line, H, in.
- (3) Blade setting angle from axial direction, γ , deg
- (4) Center-of-area coordinates
 - (a) Length along chord, L_{ca} , in.
 - (b) Height from chord line, H_{ca} , in.
- (5) Area, A, sq in.
- (6) Minimum moment of inertia through center of area, I_{min} , in.⁴

(7) Maximum moment of inertia through center of area, I_{max} , in.⁴

(8) Minimum-moment-of-inertia setting angle with respect to axial direction, γ_1 , deg

(9) Section torsion constant, K. in. 4

(10) Section twist stiffness, B, in.⁶

In addition to printed output, it is sometimes convenient to get output in other forms with the use of available computer peripheral equipment. On the NASA Lewis computer the program is set up with output options through the input variable OPO to give the fabrication coordinates on punched cards and on microfilm. Subroutine BLUEPT has the coding which controls the microfilm plotting. It was originally developed for the program in reference 1 by David Janetzke and Gerald Lenhart. Since the system microfilm subroutines called will not be applicable on another computer, a discussion of the specific function of these systems library subroutines is given in appendix J to help in the conversion to another facility.

大きな

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, June 29, 1973, 501-24.

APPENDIX A

SYMBOLS

- A blade-section area, sq in.; also channel cross-sectional area normal to flow, sq in.; also a constant during a mathematical operation
- a constant during a mathematical operation; also acceleration, ft/sec^2
- B blade-section twist stiffness, in. 6 ; also a constant during a mathematical operation
- b constant during a mathematical operation
- C segment blade angle with path distance derivative $d\kappa/ds$ or curvature which is constant for the segment, in.⁻¹; also a constant during a mathematical operation
- c blade-element chord on layou cone (includes edge-circle radii), in.; also a constant during a mathematical operation
- D constant during a mathematical operation
- d constant during a mathematical operation
- e development constant in appendix D
- F blade-section property integral, $\int_0^U t^3 du$, in.⁴; also force, lbf
- f fraction of total su ion-surface path; also constant expressed by eq. (D13)
- f location of minimum choke point as fraction of covered-channel centerline path
- g gravitation constant, 32.1740 $lbm-ft/lbf-sec^2$
- H height (normal) coordinate on blade section, in.
- h development constant in appendix D; also blade-section effective thickness for mass moment, in.
- I moment of inertia, in.⁴
- i incidence angle, deg
- J total number of streamlines
- j streamline index
- K blade-section torsion constant, in.⁴
- k radius of gyration, in.
- L length (chordwise) coordinate on blade section, in.

with a state

- *l* moment lever arm, in.; also path of stacked-blade-element end-circle centers, in.
- M Mach number; also total moment, in. -lbf
- m coefficient for Carter's rule for deviation angle; also mass, siugs; also meridional component distance, in.
- n number of series terms; also coordinate in tangential direction, in.
- **P** stagnation pressure, lbf/ft^2
- p static pressure, lbf/ft^2
- R radial coordinate on blade-element layout cone, in.; also gas constant, lbm-ft/ lbf-⁰R
- r radius coordinate in cylindrical coordinate system, in.; also end-circle radius, in.
- s path distance on blace-element layout cone, in.
- T stagnation temperature, ^OR
- t static temperature, ^OR; also blade-section local thickness, in.
- U blade-section centerline length, in.
- u increment along blade-section centerline, in.; also functional variable
- V velocity, ft/sec
- v functional variable
- X functional variable expressed by eq. (B9); also a redefined independent variable
- \mathcal{X} functional variable expressed by eq. (B7)
- X₁ value expressed by eq. (B31)
- X_2 value expressed by eq. (B25)
- x functional variable, usually the independent variable; also blade-section coordinate in chordwise direction, in.
- y dependent functional variable; also blade-section coordinate normal to chordwise direction, in.

A Construction of

- z axial coordinate in cylindrical coordinate system, in.
- α layout-cone half-angle, deg; also functional angle variable, deg
- β relative flow angle, deg
- γ blade setting angle, deg; also ratio of specific heats

- δ deviation angle, deg
- ϵ angular coordinate on blade-element layout cone, rad
- η stacking-axis lean in circumferential direction, deg
- θ angular coordinate in cylindrical coordinate system, deg; also angular coordinate on end circle, deg
- κ local blade angle with respect to conic ray on blade-element layout cone, deg
- λ stacking-axis lean angle in meridional plane, deg; also angle of line through corresponding points on suction and pressure surfaces of a blade section with respect to normal to chord line (fig. 19)
- ξ dummy angle variable, rad
- ρ gas density, lbm/ft³; also blade material density, lbm/ft³
- σ blade-element solidity
- φ camber of blade element which has equivalent angular momentum change at constant radius, r_{le} , deg
- ω angular rate of rotation, rad/sec

Subscripts:

- a moment associated with axial and radial forces acting with lever arms in meridional plane (fig. 7); also chordwise location of maximum camber point of bladeelement centerline
- ba moment produced by axial gas bending forces acting with radial lever arm from hub
- bt moment produced by tangential gas bending forces acting with radial lever arm from hub
- c end-circle center; also blade-element centerline on layout cone; also channel formed by adjacent blade elements
- ca blade-section center of area
- da moment correction (resulting from tip slope) to moment obtained by summation of centrifugal force acting at blade-section centers of area in meridional plane
- dt moment correction (resulting from tip slope) to moment obtained by summation of centrifugal force acting at blade-section centers of area in $r-\theta$ plane
- e blade-element, blade-section end
- h hub
- I minimum moment of inertia of blade section

få.

- i isentropic flow process
- k local point in array
- L intersection of blade-section pressure surface with end circle
- le leading edge of blade element
- m maximum thickness point
- max maximum value
- min minimum value
- n next iteration
- p pressure surface
- R ratio
- s suction surface
- sh shock
- sp blade-section stacking point
- st streamline
- t transition point; also moment associated with tangential and radial forces acting with lever arms in $r-\theta$ plane

- te trailing edge of blade element
- U intersection of blade-section suction surface with end circle
- x axis about which a moment is taken
- y axis about which a moment is taken
- 0 initial or reference point
- 1 first segment; also first point in a set of sequence points
- 2 second segment; also second point in a set of sequence points
- 3 third point in a set of sequence points
- 4 fourth point in a set of sequence points
- (-) upstream side of transition point
- (+) downstream side of transition point

Superscripts:

- ' first derivative; also relative to a rotating blade
- " second derivative
- center-of-area shift increment; also average value
- choke value

.

APPENDIX B

DEVELOPMENT OF EQUATIONS FOR CONIC ANGULAR COORDINATE

The differential form for the conic angular coordinate $|\epsilon|$ is

 $\mathbf{R} \, \mathbf{d}_{\mathbf{k}} = \sin \kappa \, \mathbf{d} \mathbf{s}$

or

$$d\epsilon = \frac{\sin \kappa}{R} ds$$

$$= \frac{\sin[\kappa_0 + C(s - s_0)]ds}{R_0 + \frac{1}{C}\sin[\kappa_0 + C(s - s_0)] - \frac{1}{C}\sin\kappa_0}$$
(9)

$$d\epsilon = \frac{\sin[\kappa_0 + C(s - s_0)]C ds}{R_0 C - \sin \kappa_0 + \sin[\kappa_0 + C(s - s_0)]}$$
(10)

The integral of equation (10) is of the form

$$\int \frac{\sin x \, dx}{a + b \sin x} = \frac{x}{b} - \frac{a}{b} \int \frac{dx}{a + b \sin x}$$
(11)

When equation (11) is applied to equation (10), note that b = +1. Also, the variable x is $\kappa_0 + C(s - s_0)$ and the constant a is $R_0C - \sin \kappa_0$.

The second integral in equation (11), $\int dx/(a + b \sin x)$, takes different forms dependent on the relation of a to b. If $a^2 = b^2 = 1$,

$$\int \frac{\mathrm{dx}}{1 \pm \sin x} = \mp \tan\left(\frac{\pi}{4} \mp \frac{x}{2}\right) \tag{B1}$$

If
$$a^2 > b^2$$
,

$$\int \frac{dx}{a + b \sin x} = \frac{2}{\sqrt{a^2 - b^2}} \tan^{-1} \frac{a \tan \frac{x}{2} + b}{\sqrt{a^2 - b^2}}$$
(B2)

If
$$b^2 > a^2$$
,

$$\int \frac{dx}{a+b\sin x} = \frac{1}{\sqrt{b^2 - a^2}} \ln \left| \frac{a \tan(\frac{x}{2}) + b - \sqrt{b^2 - a^2}}{a \tan(\frac{x}{2}) + b + \sqrt{b^2 - a^2}} \right|$$
(B3)

or alternately,

$$\int \frac{\mathrm{d}x}{a+b\sin x} = \frac{-2}{\sqrt{b^2 - a^2}} \tanh^{-1} \left[\frac{a \tan\left(\frac{x}{2}\right) + b}{\sqrt{b^2 - a^2}} \right] \quad \text{for } \left| a \tan\left(\frac{x}{2}\right) + b \right| < \sqrt{b^2 - a^2}$$
(B3a)

and

$$\int \frac{dx}{a+b\sin x} = \frac{-2}{\sqrt{b^2 - a^2}} \operatorname{coth}^{-1} \left[\frac{a \tan\left(\frac{x}{2}\right) + b}{\sqrt{b^2 - a^2}} \right] \quad \text{for} \quad \left| a \tan\left(\frac{x}{2}\right) + b \right| > \sqrt{b^2 - a^2}$$
(B3b)

The next step is substitution of the turbomachinery nomenclature into the general integral forms. First, consider the case of a = b = +1.

Case of
$$a - b - 1$$
 in General Integral $\int \frac{\sin x \, dx}{a + b \sin x} x$
 $x - \epsilon_0 = \left[\kappa_0 + C(s - s_0)\right] \left| \begin{matrix} s \\ s_0 \end{matrix} + (R_0C - \sin \kappa_0) \tan \left[\frac{\pi}{4} - \frac{\kappa_0 + C(s - s_0)}{2} \right] \right| \begin{matrix} s \\ s_0 \end{matrix}$
 $= \kappa_0 + C(s - s_0) - \kappa_0 + (1) \left\{ \tan \left[\frac{\pi}{4} - \frac{\kappa_0 + C(s - s_0)}{2} \right] - \tan \left(\frac{\pi}{4} - \frac{\kappa_0}{2} \right) \right\}$
 $= \kappa - \kappa_0 + \left[\tan \left(\frac{\pi}{4} - \frac{\kappa}{2} \right) - \tan \left(\frac{\pi}{4} - \frac{\kappa_0}{2} \right) \right]$
 $= \kappa - \kappa_0 + \left(\frac{\tan \left(\frac{\pi}{4} - \frac{\kappa}{2} \right) - \tan \left(\frac{\pi}{4} - \frac{\kappa_0}{2} \right) \right]$
 $= \kappa - \kappa_0 + \left(\frac{\tan \frac{\pi}{4} - \tan \frac{\kappa}{2}}{1 + \tan \frac{\pi}{4} \tan \frac{\kappa}{2}} - \frac{\tan \frac{\pi}{4} - \tan \frac{\kappa}{2}}{1 + \tan \frac{\pi}{4} \tan \frac{\kappa}{2}} \right)$
 $= \kappa - \kappa_0 + \left(\frac{1 - \tan \frac{\kappa}{2}}{1 + \tan \frac{\kappa}{2}} - \frac{1 - \tan \frac{\kappa_0}{2}}{1 + \tan \frac{\kappa}{2}} \right)$
 $= \kappa - \kappa_0 - \frac{2\left(\tan \frac{\kappa}{2} - \tan \frac{\kappa_0}{2}\right)}{1 + \tan \frac{\kappa}{2} + \tan \frac{\kappa_0}{2} + \tan \frac{\kappa}{2} \tan \frac{\kappa}{2}}$

(B4)

.

14 - - 242

Case of
$$a + b = -1$$
 in General Integral $\int \frac{\sin x \, dx}{a + b \sin x}$
 $= \kappa - \kappa_0 - \frac{(-1)}{(1)} \int \frac{dx}{(-1) + (1)\sin x} = \kappa - \kappa_0 - \int \frac{dx}{1 - \sin x}$
 $= \kappa - \kappa_0 - \tan\left(\frac{\pi}{4} + \frac{x}{2}\right) \Big|_{x_0}^x = \kappa - \kappa_0 - \tan\left[\frac{\pi}{4} + \frac{\kappa_0 + C(s - s_0)}{2}\right]_{s_0}^s$
 $= \kappa - \kappa_0 - \left[\tan\left(\frac{\pi}{4} + \frac{\kappa}{2}\right) - \tan\left(\frac{\pi}{4} + \frac{\kappa_0}{2}\right)\right]$
 $= \kappa - \kappa_0 - \left[\frac{\tan\left(\frac{\pi}{4} + \frac{\kappa}{2}\right) - \tan\left(\frac{\pi}{4} + \frac{\kappa_0}{2}\right)}{1 - \tan\frac{\pi}{4}\tan\frac{\kappa}{2}} - \frac{\tan\frac{\pi}{4} + \tan\frac{\kappa_0}{2}}{1 - \tan\frac{\pi}{4}\tan\frac{\kappa_0}{2}}\right]$
 $= \kappa - \kappa_0 - \left(\frac{\left(1 + \tan\frac{\kappa}{2} - \frac{1 + \tan\frac{\kappa}{2}}{1 - \tan\frac{\kappa}{2}} - \frac{1 + \tan\frac{\kappa}{2}}{1 - \tan\frac{\kappa}{2}}\right)\right]$

 $= \kappa - \kappa_0 - \frac{2\left(\tan\frac{\kappa}{2} - \tan\frac{\kappa_0}{2}\right)}{1 - \tan\frac{\kappa}{2} - \tan\frac{\kappa_0}{2} + \tan\frac{\kappa}{2}\tan\frac{\kappa_0}{2}}$

E

(B5)

Case of
$$a^2 > b^2$$
 in the General Integral $\int \frac{\sin x \, dx}{a + b \sin x}$

For the case $a^2 = b^2$ apply equation (B2), to give

where \mathscr{I} is defined as

$$\mathcal{N} = \frac{\sqrt{(R_0 C - \sin \kappa_0)^2 - 1} \left(\tan \frac{\kappa}{2} - \tan \frac{\kappa_0}{2} \right)}{(R_0 C - \sin \kappa_0) \left(1 + \tan \frac{\kappa}{2} \tan \frac{\kappa_0}{2} \right) + \tan \frac{\kappa}{2} + \tan \frac{\kappa_0}{2}}$$
(B7)
Case of $b^2 > a^2$ and $\left| a \tan \left(\frac{x}{2} \right) + b \right| < \sqrt{b^2 - a^2}$

For $b^2 > a^2$, there is a choice of either equation (B3) or the alternate forms given by equations (B3a) and (B3b). The alternate forms were chosen because the results are equations similar to equations (B6) and (B7). This similarity will be used to further advantage later in the development. Equation (B3a), which is applicable for $b^2 > a^2$ and $\left|a \tan\left(\frac{x}{2}\right) + b\right| < \sqrt{b^2 - a^2}$, gives

$$= \kappa_{0} + \kappa_{0} + \frac{2(R_{0}C - \sin \kappa_{0})}{\sqrt{1 - (R_{0}C - \sin \kappa_{0})^{2}}} \left\{ \tan^{-1} \frac{(R_{0}C - \sin \kappa_{0})\tan\left[\frac{1}{2} + \frac{(C - s_{0})}{2}\right] + 1}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} \right\}_{s_{0}}^{s}$$

$$= \kappa - \kappa_{0} + \frac{2(R_{0}C - \sin \kappa_{0})}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} \left[\tan^{-1} \frac{(R_{0}C - \sin \kappa_{0})\tan\frac{s}{2} + 1}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} + \tan^{-1} \frac{(R_{0}C - s_{0})\tan\frac{s}{2} + 1}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} \right]$$

$$= \kappa - \kappa_{0} + \frac{2(R_{0}C - \sin \kappa_{0})}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} \tan^{-1} \left\{ \tan^{-1} \frac{(R_{0}C - s_{0})\tan\frac{s}{2} + 1}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} - \tan^{-1} \frac{(R_{0}C - s_{0})\tan\frac{s}{2} + 1}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} \right]$$

$$= \kappa - \kappa_{0} + \frac{2(R_{0}C - s_{0})}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} \tan^{-1} \left\{ \frac{\tan^{-1} \frac{(R_{0}C - s_{0})\tan\frac{s}{2} + 1}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} - \tan^{-1} \frac{(R_{0}C - s_{0})\tan\frac{s}{2} + 1}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} \right]$$

$$= \kappa - \kappa_{0} + \frac{2(R_{0}C - s_{0})}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} \tan^{-1} \left\{ \frac{\tan^{-1} \frac{(R_{0}C - s_{0})\cos\frac{s}{2} + 1}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} - \tan^{-1} \frac{(R_{0}C - s_{0})\tan\frac{s}{2} + 1}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} \right]$$

$$= \kappa - \kappa_{0} + \frac{2(R_{0}C - s_{0})\cos\frac{s}{2}}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} \tan^{-1} \left\{ \frac{\tan^{-1} \frac{(R_{0}C - s_{0})\cos\frac{s}{2} + 1}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} - \tan^{-1} \frac{(R_{0}C - s_{0})\cos\frac{s}{2}}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} \right]$$

$$= \kappa - \kappa_{0} + \frac{2(R_{0}C - s_{0})\cos\frac{s}{2}}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} \tan^{-1} \left\{ \frac{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0}}(s_{0})^{2}}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} - \frac{s}{2} \tan\frac{s}{2} - \frac{s}{2} - \frac{c}{\kappa_{0}} + \frac{2(R_{0}C - s_{0})\kappa_{0}}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0})^{2}}} \tan^{-1} \frac{1}{1 - (R_{0}C - s_{0})\kappa_{0})^{2}} - (R_{0}C - s_{0})\kappa_{0} + \frac{s}{2} - \frac{s}{2} - \frac{s}{2} - \frac{s}{2} - \frac{s}{2} - \frac{s}{2} - \frac{2(R_{0}C - s_{0})\kappa_{0}}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0}^{2}}} \tan^{-1} \frac{1}{1 - (R_{0}C - s_{0})\kappa_{0}^{2}} - \frac{s}{2} - \frac{s}{2} - \frac{2(R_{0}C - s_{0})\kappa_{0}}{\sqrt{1 - (R_{0}C - s_{0})\kappa_{0}^{2}}} \tan^{-1} \frac{1}{1 - (R_{0}C - s_{0})^{2}} - \frac{s}{2} - \frac{s}{2} - \frac{s}{2} - \frac{s}$$

where \mathbf{X} is defined as

$$X = \frac{\sqrt{1 - (R_0 C - \sin \kappa_0)^2} \left(\tan \frac{\kappa}{2} - \tan \frac{\kappa_0}{2} \right)}{(R_0 C - \sin \kappa_0) \left(1 + \tan \frac{\kappa}{2} \tan \frac{\kappa_0}{2} \right) + \tan \frac{\kappa}{2} \tan \frac{\kappa_0}{2}}$$
(B9)

Investigation of $\tanh^{-1} X = \pm^{\infty}$

Equation (B8) does not appear practical because $\tanh^{-1} X$ approaches $+\infty$ and $-\infty$ at X = 1 and X = -1, respectively. To investigate the conditions which lead to this result, solve for $\kappa/2$ at $X = \pm 1$.

$$X = \frac{\sqrt{1 - (R_0 C - \sin \kappa_0)^2} \left(\tan \frac{\kappa}{2} - \tan \frac{\kappa_0}{2} \right)}{(R_0 C - \sin \kappa_0) \left(1 + \tan \frac{\kappa}{2} \tan \frac{\kappa_0}{2} \right) + \tan \frac{\kappa}{2} + \tan \frac{\kappa_0}{2}} = \pm 1$$

$$\therefore \quad \pm \sqrt{1 - (R_0 C - \sin \kappa_0)^2} \left(\tan \frac{\kappa}{2} - \tan \frac{\kappa_0}{2} \right) = (R_0 C - \sin \kappa_0) \left(1 + \tan \frac{\kappa}{2} \tan \frac{\kappa_0}{2} \right) + \tan \frac{\kappa}{2} + \tan \frac{\kappa_0}{2}$$

Square both sides and solve for $tan(\kappa/2)$. The result is

$$\tan \frac{\kappa}{2} = \frac{-1 \pm \sqrt{1 - (R_0 C - \sin \kappa_0)^2}}{R_0 C - \sin \kappa_0}$$
(B10)

By using equation (B10) in (B9) it can be shown that the plus sign in equation (B10) is the solution for X = -1 and that the minus sign in equation (B10) is the solution for X = 1.

Table I lists $\kappa/2$ values which make $\tanh^{-1} X$ equal to \pm^{∞} over the hyperbolic function range $-1 < (R_0C - \sin\kappa_0) < 1$. The κ values associated with X = -1 are clearly in the turbomachinery range of interest. So there is a need to investigate what causes $\tanh^{-1} \mathcal{X}$ to approach $-\infty$. Start with the equation for conic radius

$$R - R_0 = \frac{1}{C} (\sin \kappa - \sin \kappa_0)$$
(4)

$$RC = (R_0C - \sin \kappa_0) + \sin \kappa = (R_0C - \sin \kappa_0) + 2 \sin \frac{\kappa}{2} \cos \frac{\kappa}{2}$$

$$= (R_0C - \sin \kappa_0) + 2 \frac{\frac{\sin \frac{\kappa}{2}}{2}}{\cos \frac{\kappa}{2}} \cos^2 \frac{\kappa}{2} = (R_0C - \sin \kappa_0) + 2 \frac{\frac{\tan \frac{\kappa}{2}}{2}}{1 + \tan^2 \frac{\kappa}{2}}$$

Substitute equation (B10) with the plus sign. The result is RC = 0. So, either C = 0 or R = 0.

First consider C = 0. Since $d\kappa/ds = C$, $\kappa = \kappa_0$ for all s when C = 0. Thus, equation (8) for the conic radius reduces to

$$R = R_0 + (s - s_0) \cos \kappa_0$$

When κ is constant, the equation for ϵ (eq. (9)) can be expressed as

€

$$d\epsilon = \frac{\sin \kappa_0 \, ds}{R} = \frac{\sin \kappa_0 \, ds}{R_0 + \cos \kappa_0 (s - s_0)}$$
(B11)
$$- \epsilon_0 = \frac{\sin \kappa_0}{\cos \kappa_0} \ln \left[R_0 + \cos \kappa_0 (s - s_0) \right]_{s_0}^{s}$$
$$= \tan \kappa_0 (\ln R - \ln R_0) = \tan \kappa_0 \ln \left(\frac{R}{R_0} \right)$$
(B12)

All κ_0 of interest lie inside the range $-\pi/2$ to $\pi/2$. So $\epsilon - \epsilon_0$ approaches $-\infty$ only as R approaches zero. Therefore, the conclusion is that R = 0 is the condition which makes $\tanh^{-1} x$ approach $-\infty$, whether or not C = 0. This, in essence, means the curve spirals infinite revolutions as R approaches zero for $\pi/2 < |\kappa_0| < 0$.

Fortunately, R never approaches zero in the turbomachinery application, so $\tanh^{-1} X$ remains finite. Thus, the $\tanh^{-1} X$ form of solution could be satisfactory, but it remains to be shown if and when the $\tanh^{-1} X$ form is usable. Basically, it is applicable only when |X| < 1 because the $\coth^{-1} X$ form of equation (B3b) is used when |X| > 1. Thus, the next consideration is an investigation of the possible range of X for the turbomachinery application.

- **14** 448-1

Investigation of Range of X

Let us begin with equation (4), which in general can be expressed as

Constant =
$$R_0C - \sin \kappa_0 = RC - \sin \kappa$$

As a convenience, define κ_c as the κ value in the range $-\pi/2$ to $\pi/2$ for R = 0. So the preceding equation can be extended to

$$Constant = R_0 C - \sin \kappa_0 = RC - \sin \kappa = -\sin \kappa_0$$
(B13)

......

The defined value of κ_c and the other κ_c values which satisfy equation (B13) are the κ values which make $X = \pm 1$. (This can be shown by substituting $-\sin \kappa_c$ for $R_0C - \sin \kappa_c$ in equation (B10) and applying the tangent half-angle formula.) Thus, X can cross between the |X| > 1 and |X| < 1 regimes only when κ equals the κ_c values. Since X is a single-valued function of κ , all X values between consecutive κ_c values must be in the same |X| regime. This characteristic is shown graphically in figure 10, which has plots of X against κ for the two sample κ_c values are shown to illustrate the nature of the function.

The κ range of interest for turbomachinery is from $-\pi/2$ to $\pi/2$. The defined κ_c is the only κ_c value in this range because $\sin \kappa_c$ is single valued between $-\pi/2$ and $\pi/2$. Thus, observations of whether regimes of |X| are greater or less than 1 can be made vith respect to this particular κ_c . A first observation from figure 10 is that the κ curves switch between the |X| > 1 and |X| < 1 regimes as κ_0 crosses κ_c . A study of the X = 0 points is an indirect way of showing that the X-against- κ curves switch regimes precisely at $\kappa_0 = \kappa_c$. From equation (B9), note that X = 0 when $\kappa = \kappa_0$. Thus, as κ_0 is moved closer and across κ_c , the X = 0 point moves with κ_0 and hence with κ . Since X = 0 is in the |X| < 1 regime and stays in that regime as κ_0 crosses κ_c . Since no other κ_c can lie in the range $-\pi/2$ to $\pi/2$, only the one switch of regime can occur in the $-\pi/2$ to $\pi/2$ range of κ . So κ stays in the |X| < 1 regime when on the κ_0 side of κ_c . The preceding reasoning leads to the general conclusion that X is always in the |X| < 1 regime when κ and κ_0 are on the same side of κ_c within the $-\pi/2$ to $\pi/2$ range of κ .

So far it has been shown that the regime of |X| is tied to the relation of κ and κ_0 to κ_c . To further investigate these κ relations in the turbomachinery application, rewrite equation (B13) to show κ and κ_0 as functions of κ_c , C, and R.

 $\sin \kappa = \sin \kappa_c + CR$

$$\sin \kappa_0 = \sin \kappa_c + CR_0 \tag{B15}$$

By definition C is a constant for a curve, so the remaining information needed is the limits of the variation of R with respect to R_0 . When the cone angle α of figure 1 is positive, R_0 is positive; but when α is negative, R_0 is defined as negative. However, whether the blade-element cone is defined by a positive or negative α , a blade element for turbomachinery is always completely defined on the cone without ever approaching R = 0. Thus, R always has the same sign as R_0 . This means that, by equations (B14) and (B15), κ and κ_0 are always on the same side of κ_c . So |X| is always less than 1 in the range $-\pi/2$ to $\pi/2$ for κ_0 and κ .

The conditions imposed along the way to the preceding conclusion can be summarized as follows: For $|R_0C - \sin \kappa_0| \le 1$, the X defined by e_1 ation (B9) has an absolute value less than 1 when κ and κ_0 are in the range $-\pi/2$ to $\pi/2$ and R has the same sign as R_0 . Since the turbomachinery application falls within these κ and R restrictions, the conclusion is rather significant because it is not necessary to consider the $\coth^{-1} X$ form of equation (B3b) at all. This means that the natural logarithm form of equation (B3) can be replaced with only the alternate form (B3a), which was developed to equations (B8) and (B9). The alternate form is selected because of the similarity of the arguments with those of equations (B6) and (B7). Later it will be shown that this similarity leads to further simplification.

Consideration of Accuracy of Computation

Equations (B4) to (B9) are a complete set of equations for $\epsilon - \epsilon_0$, which also is expressed as $\Delta \epsilon$ in the text. For a blade-element path Δs , $\Delta \epsilon$ is the conic angular coordinate in the circumferential direction; and $R \Delta \epsilon$ is the circumferential component distance in the units of s. As long as the conic half-angle α is several degrees from zero, R and $\Delta \epsilon$ can readily be calculated and used to accurately define a blade element. However, as α approaches zero, R approaches \pm^{∞} and $\Delta \epsilon$ approaches zero. This means that conic coordinates cannot be directly used for the degenerate case of a cone to a cylinder or radius r. As α approaches zero the conic coordinate R approaches independence from Δs and κ (see fig. 1 and eq. (8)). So $R \Delta \epsilon$ approaches the circumferential component of Δs . Since R can be considered as a constant for the degenerate case of a cone to a cylinder, a simple equation for the circumferential component can, and later will be, derived from equation (9).

In the preceding discussion it was shown that, at some point in the α approach to zero, it is necessary to switch from the conic coordinate system to the cylindrical. The condition for a switch most logically comes from an accuracy criterion. From equation (8) it can be observed that the relative error by which R is not constant is approxi-

mately $\Delta s/R$. In general, this means that to keep an accuracy of more than a few significant figures in a computed circumferential component of Δs , the switch to the cylindrical coordinates must be made at α 's very near zero. Thus, the mathematically accurate conic coordinate system is needed to nearly zero α 's. The problem is that sufficient computational accuracy with conic coordinate systems is not always attained with normal procedures. The nature of the problem and its remedy are the subject of the following discussion.

Each of the equations for the computation of $\Delta \epsilon$ in the conic coordinate system is expressed as $\kappa - \kappa_0$ plus another term. As α approaches zero, $\Delta \epsilon$ also approaches zero; so in general, $|\Delta \epsilon|$ becomes much less than $|\Delta \kappa|$. When $|\Delta \epsilon| << |\Delta \kappa|$, the computational accuracy of $\Delta \epsilon$ becomes poor because $\Delta \epsilon$ is determined by the subtraction of a term nearly equal to $\Delta \kappa$ from $\Delta \kappa$. One way to improve accuracy is to reduce or eliminate the subtraction of nearly equal terms in the computation of a $\Delta \epsilon$ value. For the turbomachinery application, the computational accuracy of $\Delta \epsilon$ can be improved considerably with the application of infinite series forms for the functions of equations (B4), (B5), (B6), and (B8).

Series Forms for $\Delta \epsilon$ Equations

The series for
$$\tan^{-1} \mathcal{N}$$
 is

$$\tan^{-1} \mathcal{N} = \mathcal{N} - \frac{1}{3} \mathcal{N}^{-3} + \frac{1}{5} \mathcal{N}^{-5} - \frac{1}{7} \mathcal{N}^{-7} + \dots$$
$$= \mathcal{N} \left[1 - \frac{1}{3} \mathcal{N}^{-2} + \frac{1}{5} \mathcal{N}^{-4} - \frac{1}{7} \mathcal{N}^{-6} + \dots \right] \quad \text{for } \mathcal{N}^{-2} < 1 \qquad (B16)$$

where \mathscr{Y} is defined by equation (B7) for application of equation (B16) to equation (B6). The absolute value of \mathscr{X} can be greater than 1, but a rather easy way to handle that will be shown later. For equation (B6),

$$-\epsilon_{0} = \kappa - \kappa_{0} - \frac{2(R_{0}C - \sin\kappa_{0})}{\sqrt{(R_{0}C - \sin\kappa_{0})^{2} - 1}} tan^{-1} t^{2}$$

$$= \kappa - \kappa_{0} - \frac{2(R_{0}C - \sin\kappa_{0})}{\sqrt{(R_{0}C - \sin\kappa_{0})^{2} - 1}} t^{2} \left(1 - \frac{t^{2}}{3} + \frac{t^{4}}{5} - \frac{t^{6}}{7} + \dots\right)$$

$$= \kappa - \kappa_{0} - \frac{2(R_{0}C - \sin\kappa_{0})}{\sqrt{(R_{0}C - \sin\kappa_{0})^{2} - 1} \left[(R_{0}C - \sin\kappa_{0})^{2} - 1 \left(\tan\frac{\kappa}{2} - \tan\frac{\kappa_{0}}{2}\right) - \frac{t^{2}}{2} \left(1 - \frac{t^{2}}{3} + \frac{t^{4}}{5} - \frac{t^{6}}{7} + \dots\right)$$

$$= \kappa - \kappa_{0} - \frac{2(R_{0}C - \sin\kappa_{0})^{2} - 1 \left[(R_{0}C - \sin\kappa_{0})\left(1 + \tan\frac{\kappa}{2}\tan\frac{\kappa_{0}}{2}\right) + \tan\frac{\kappa}{2} + \tan\frac{\kappa_{0}}{2}\right]}{\sqrt{(R_{0}C - \sin\kappa_{0})^{2} - 1} \left[(R_{0}C - \sin\frac{\kappa}{2})\left(1 - \frac{t^{2}}{3} + \frac{t^{4}}{5} - \frac{t^{6}}{7} + \dots\right)\right]}$$

$$= \kappa - \kappa_{0} - \frac{2(R_{0}C - \sin\kappa_{0})\left(\tan\frac{\kappa}{2} - \tan\frac{\kappa_{0}}{2}\right)}{(R_{0}C - \sin\kappa_{0})\left(1 + \tan\frac{\kappa}{2}\tan\frac{\kappa_{0}}{2}\right) + \tan\frac{\kappa}{2} + \tan\frac{\kappa_{0}}{2}} \left(1 - \frac{t^{2}}{3} + \frac{t^{4}}{7} - \frac{t^{6}}{3} + \dots\right)}$$
(B17)

At this point note that for $R_0^C - \sin \kappa_0 = 1$, which is the special case covered by equation (B4), $\mathcal{J} = 0$ and equation (B17) reduces to equation (B4). Likewise for $R_0^C - \sin \kappa_0 = -1$, which is the special case covered by equation (B5), equation (B17) reduces to equation (B5). Thus, equation (B17) can be used in place of equations (B4) to (B6).

The remaining equation of the set for $\Delta \epsilon$ is (B8). The series form for $\tanh^{-1} X$ in it is

$$\tanh^{-1} x = x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} \dots = x \left[1 + \frac{x^2}{3} + \frac{x^4}{5} + \frac{x^6}{7} + \dots \right]$$
 for $x^2 < 1$
(B18)

where \mathbf{X} is defined by equation (B9).

We have already shown that the absolute value of X is always less than 1 for the turbomachinery application, so this series is always applicable. For equation (B8)

$$\epsilon - \epsilon_{0} = x - \kappa_{0} - \frac{2(R_{0}C - \sin\kappa_{0})}{\sqrt{1 - (R_{0}C - \sin\kappa_{0})^{2}}} \tan^{-1}x = \kappa - \kappa_{0} - \frac{2(R_{0}C - \sin\kappa_{0})}{\sqrt{1 - (R_{0}C - \sin\kappa_{0})^{2}}} \times \left(1 + \frac{x^{2}}{3} + \frac{x^{4}}{5} + \frac{x^{6}}{7} + \dots\right)$$

$$= \kappa - \kappa_{0} - \frac{2(R_{0}C - \sin\kappa_{0})}{\sqrt{1 - (R_{0}C - \sin\kappa_{0})^{2}} \left[(R_{0}C - \sin\kappa_{0})^{2} \left(\tan\frac{\kappa}{2} - \tan\frac{\kappa_{0}}{2}\right) + \tan\frac{\kappa}{2} + \tan\frac{\kappa_{0}}{2}\right]}{\sqrt{1 - (R_{0}C - \sin\kappa_{0})^{2}} \left[(R_{0}C - \sin\kappa_{0})\left(1 + \tan\frac{\kappa}{2}\tan\frac{\kappa_{0}}{2}\right) + \tan\frac{\kappa}{2} + \tan\frac{\kappa_{0}}{2}\right]} \left(1 - \frac{x^{2}}{3} - \frac{x^{4}}{5} + \frac{x^{6}}{7} + \dots\right)$$

$$= \kappa - \kappa_{0} - \frac{2(R_{0}C - \sin\kappa_{0})\left(\tan\frac{\kappa}{2} - \tan\frac{\kappa_{0}}{2}\right)}{(R_{0}C - \sin\kappa_{0})\left(1 + \tan\frac{\kappa}{2}\tan\frac{\kappa_{0}}{2}\right) + \tan\frac{\kappa}{2} + \tan\frac{\kappa_{0}}{2}} \left(1 + \frac{x^{2}}{3} + \frac{x^{4}}{5} + \frac{x^{6}}{7} + \dots\right)$$
(B19)

Single-Series Form of Equation

Equations (B17) and (B19) look similar, and upon examination it can be determined that they are in fact the same. Note that the \mathscr{Y}^2 of equation (B7) is the negative of the X^2 of equation (B9). This difference of sign accounts for the sign differences of the series. Thus, equation (B19) can be used for all values of $R_0C - \sin \kappa_0$, so long as $X^2 < 1$. For $|R_0C - \sin \kappa_0| < 1$, which produced the $\tanh^{-1} X$ form of equation, it has been shown that $X^2 < 1$; but for $|R_0C - \sin \kappa_0| > 1$, which produced the $\tan^{-1} \mathscr{Y}$ form of equation, \mathscr{Y}^2 can be greater than 1. When \mathscr{Y}^2 is greater than 1, either an alternate series for $\tan^{-1} \mathscr{Y}$ needs to be used for convergence or a $\cot^{-1} \mathscr{Y}$ function can be used. However, with the use of half angles, it is possible to keep the argument in the convergent range so that only the one form of equation is retained.

Application of Half-Angle Formulas

An inverse function can be expressed in terms of a half-angle as follows:

$$\tan^{-1} \mathscr{Y} = \xi = 2\left(\frac{\xi}{2}\right)$$

The $\xi/2$ can be expressed in terms of \mathscr{Y} as follows

$$\tan \frac{\xi}{2} = \frac{\sin \xi}{1 + \cos \xi} = \frac{\frac{\sin \xi}{\cos \xi}}{\frac{1 + \cos \xi}{\cos \xi}}$$

$$=\frac{\tan\xi}{1+\sec\xi} - \frac{\tan\xi}{1+\sqrt{1+\tan^2\xi}}$$

For $|\xi| < \pi/2$,

$$\tan \frac{\xi}{2} = \frac{y}{1 + \sqrt{1 + y^2}}$$

$$\frac{\xi}{2} = \tan^{-1} \tan(\frac{\xi}{2}) = \tan^{-1} \frac{y}{1 + \sqrt{1 + y^2}}$$

$$\therefore \quad \tan^{-1} y = 2 \tan^{-1} \frac{y}{1 + \sqrt{1 + y^2}} = 2 \tan^{-1} X_2 \quad (B20)$$

where by definition

$$X_{2} = \frac{y}{1 + \sqrt{1 + y^{2}}}$$
(B21)

The maximum value of $|\xi|$ is $\pi/2$ for turbomachinery so the maximum value of $|\xi/2|$ is $\pi/4$. Therefore,

$$\left|\frac{.!!}{1+\sqrt{1+.!!\cdot 2}}\right| \leq 1$$

So the half-angle procedure reduces the argument of the series enough to make the $\tan^{-1} \mathscr{Y}$ series always converge; thus, the series in equation (B19) always converges.

Before applying the half-angle procedure to the general equation, let us check the procedure with the hyperbolic functions to see if the procedure is completely general.

$$\tanh^{-1} X = \xi = 2\left(\frac{\xi}{2}\right) = 2 \tanh^{-1} \left(\tanh \frac{\xi}{2}\right)$$

$$= 2 \tanh^{-1} \frac{\sinh \xi}{\cosh \xi + 1} = 2 \tanh^{-1} \frac{\cosh \xi}{\cosh \xi + 1}$$
$$= 2 \tanh^{-1} \frac{\cosh \xi}{\cosh \xi + 1}$$

$$= 2 \tanh^{-1} \frac{\tanh \xi}{1 + \operatorname{sech} \xi} = 2 \tanh^{-1} \frac{\tanh \xi}{1 + \sqrt{1 - \tanh^2 \xi}}$$

For $|\xi| < \pi/2$,

$$\tanh^{-1} x = 2 \tanh^{-1} \frac{x}{1 + \sqrt{1 - x^2}} = 2 \tanh^{-1} x_2$$
 (B22)

where by definition

$$X_2 = \frac{X}{1 + \sqrt{1 - X^2}}$$
(B23)

Equations (B20) and (B22) are the same in application to the general equation when the x's are defined the same. Remember the \mathcal{N}^2 in equations (B20) and (B21) is the negative of the χ^2 in equations (B22) and (B23). Thus, the half-angle formulation in general can be substituted into the general equation (B19).

$$\epsilon - \epsilon_{0} = \kappa - \kappa_{0} - \frac{4(R_{0}C - \sin\kappa_{0})\left(\tan\frac{\kappa}{2} - \tan\frac{\kappa_{0}}{2}\right)}{\left(1 + \sqrt{1 - X^{2}}\right)\left[(R_{0}C - \sin\kappa_{0})\left(1 + \tan\frac{\kappa}{2}\tan\frac{\kappa_{0}}{2}\right) + \tan\frac{\kappa}{2} + \tan\frac{\kappa_{0}}{2}\right]} \times \left(1 + \frac{X^{2}_{2}}{3} + \frac{X^{4}_{2}}{5} + \frac{X^{6}_{2}}{7} + \dots\right)$$
(B24)

where X^2 is defined by equation (B9) and X^2_2 by equation (B23). The term $1 + \sqrt{1 - X^2}$ in turbomachinery nonnenclature is

$$1 + \sqrt{1 - x^{2}} = 1 + \sqrt{1 - \left[1 - (R_{0}C - \sin \kappa_{0})^{2}\right]} \left[\frac{\tan \frac{\kappa}{2} - \tan \frac{\kappa_{0}}{2}}{(R_{0}C - \sin \kappa_{0})\left(1 + \tan \frac{\kappa}{2} \tan \frac{\kappa_{0}}{2}\right) + \tan \frac{\kappa}{2} + \tan \frac{\kappa_{0}}{2}}\right]^{2}$$

With some trigometric manipulation, the preceding equation becomes

$$1 + \sqrt{1 - x^2} = 1 + \frac{\sqrt{\left[R_0 C + \frac{1}{2}(\sin \kappa - \sin \kappa_0)\right]^2 - \left[\frac{1}{2}(\sin \kappa_0 - \sin \kappa)\right]^2}}{\left[(R_0 C - \sin \kappa_0)\left(1 + \tan \frac{\kappa}{2} \tan \frac{\kappa_0}{2}\right) - \tan \frac{\kappa}{2} + \tan \frac{\kappa_0}{2}\right] \cos \frac{\kappa}{2} \cos \frac{\kappa_0}{2}}$$

With the substitution of equation (4), the preceding equation becomes

-

$$1 + \sqrt{1 - x^{2}} = \frac{\left[(R_{0}C - \sin\kappa_{0}) \left(1 + \tan\frac{\kappa}{2} \tan\frac{\kappa_{0}}{2} \right) + \tan\frac{\kappa}{2} + \tan\frac{\kappa_{0}}{2} \right] \cos\frac{\kappa}{2} \cos\frac{\kappa_{0}}{2} + CR_{0} \sqrt{\frac{R}{R_{0}}} }{\left[(R_{0}C - \sin\kappa_{0}) \left(1 + \tan\frac{\kappa}{2} \tan\frac{\kappa_{0}}{2} \right) + \tan\frac{\kappa}{2} + \tan\frac{\kappa_{0}}{2} \right] \cos\frac{\kappa}{2} \cos\frac{\kappa_{0}}{2} \cos\frac{\kappa_{0}}{2}}$$
(B25)

The term $CR_0\sqrt{R/F_0}$ as shown, yields the proper sign for the square root. The X for the half-angle form can be expressed as

$$X_{2}^{2} = \left(\frac{x}{1+\sqrt{1-x^{2}}}\right)^{2}$$

$$= \frac{\left[\frac{\sqrt{1-(R_{0}C - \sin\kappa_{0})^{2}}\left(\tan\frac{\kappa}{2} - \tan\frac{\kappa_{0}}{2}\right)}{(R_{0}C - \sin\kappa_{0})\left(1 + \tan\frac{\kappa}{2}\tan\frac{\kappa_{0}}{2}\right) + \tan\frac{\kappa}{2} + \tan\frac{\kappa_{0}}{2}}\right]^{2}}{\left[\frac{\left(R_{0}C - \sin\kappa_{0}\right)\left(1 + \tan\frac{\kappa}{2}\tan\frac{\kappa_{0}}{2}\right) + \tan\frac{\kappa}{2} + \tan\frac{\kappa_{0}}{2}\right]\cos\frac{\kappa}{2}\cos\frac{\kappa_{0}}{2} + CR_{0}\sqrt{\frac{R}{R_{0}}}\right]^{2}}{\left[(R_{0}C - \sin\kappa_{0})\left(1 + \tan\frac{\kappa}{2}\tan\frac{\kappa_{0}}{2}\right) + \tan\frac{\kappa}{2} + \tan\frac{\kappa_{0}}{2}\right]\cos\frac{\kappa}{2}\cos\frac{\kappa_{0}}{2}}\right]^{2}}$$

$$= \frac{\left[1 - (R_{0}C - \sin\kappa_{0})^{2}\right]\sin^{2}\frac{\kappa - \kappa_{0}}{2}}{\left[(R_{0}C - \sin\kappa_{0})\cos\frac{\kappa - \kappa_{0}}{2} + \sin\frac{\kappa + \kappa_{0}}{2} + CR_{0}\sqrt{\frac{R}{R_{0}}}\right]^{2}}$$
(B26)

Now substitute equation (B25) into (B24) and reduce as follows:

After all the manipulation, the half-angle form of equation (B27) is no more complicated than equation (B19). It also has the advantage of the need of fewer series terms to converge to a desired precision in calculation. The half-angle procedure can be repeated to further reduce the number of series terms needed. However, a further reduction of the number of series terms complicates the coefficient term for the series to a much greater extent than the first application of half-angles. So it was not considered useful to carry it further. The number of series terms needed will be shown later when the operating form of the equation is finally established.

Use of a Sine Series to Effectively Cancel Large Terms

At this point, let us readdress ourselves to the problem of finding $\epsilon - \epsilon_0$ by the subtraction of two nearly equal numbers. The problem can, to a large extent, be eliminated by further series treatment and cancellation of the large terms. Begin by rewritting equation (B27) as

$$\epsilon - \epsilon_0 = \kappa - \kappa_0 - \frac{4(R_0 C - \sin \kappa_0) \left(2 \sin \frac{\kappa - \kappa_0}{4} \cos \frac{\kappa - \kappa_0}{4}\right)}{(R_0 C - \sin \kappa_0) \cos \frac{\kappa - \kappa_0}{2} + \sin \frac{\kappa + \kappa_0}{2} + CR_0 \sqrt{\frac{R}{R_0}}$$

$$-\frac{4(R_0C - \sin \kappa_0)\sin \frac{\kappa - \kappa_0}{2}}{(R_0C - \sin \kappa_0)\cos \frac{\kappa - \kappa_0}{2} + \sin \frac{\kappa + \kappa_0}{2} + CR_0 \sqrt{\frac{R}{R_0}}} \left(\frac{x_2^2}{3} + \frac{x_2^4}{5} + \frac{x_2^6}{7} + \dots\right)$$

Application of equation (7) for the sine series gives

•

$$\frac{1}{10} \frac{1}{10} \frac$$

$$\frac{(x - x_0)\left\{(R_0C - \sin x_0)\left(2 - \cos^2 \frac{x - x_0}{4} - 1\right) - \sin^2 \frac{x - x_0}{2} - CR_0\sqrt{\frac{R}{R_0}} - 2(R_0C - \sin x_0)\cos\frac{x - x_0}{4} \left[1 - \frac{1}{3!}\left(\frac{x - x_0}{4}\right)^2 + \frac{1}{5!}\left(\frac{x - x_0}{4}\right)^4 - 1\right]\right\}}{D}$$

$$\frac{4R_{0}(1-\sin x_{0}+\frac{1}{2})\left(1-\frac{1}{2},\frac{1}{$$

An example best illustrates the superiority of equation (B28) over (B27) for computational accuracy when R is relatively large. Let $R_0 = 1000$, $\Delta s = 2$, $\kappa_0 = 4\bar{\mathfrak{o}}^0$, and $\kappa = 35^0$. In equation (B27) the numbers combine as follows:

$$\epsilon - \epsilon_0 = (\kappa - \kappa_0) - \frac{4(R_0C - \sin \kappa_0)\sin \frac{\kappa - \kappa_0}{2}}{(R_0C + \sin \kappa_0)\cos \frac{\kappa - \kappa_0}{2} + \sin \frac{\kappa + \kappa_0}{2} + CR_0\sqrt{\frac{R}{R_0}}} \left(1 + \frac{x_2^2}{3} + \frac{x_2^4}{5} + \frac{x_2^6}{7} + \frac{x_2^8}{9}\right)$$

 $= -0.1745329252 - \frac{30.66960712}{-174.3292180} (0.9993560159)$

= -0. 1745329252 + 0. 1758159460 = 0. 00128302 radian

Two orders of magnitude of precision are lost in the final operation, since the answer is obtained by subtraction of nearly equal numbers.

In equation (B28), the numbers combine better, as shown in the following:

$$\frac{(n - n_0) \left((\sin n_0) + \left(\sin \frac{\pi + n_0}{2} \right) + \left[CP_0 \left(\sqrt{\frac{1}{P_{n_0}}} \right) \right] \left\{ \frac{2}{2} P_{n_0} + \sin n_0 + \sin n_0 + \sin n_0 + \sin n_0 + \frac{1}{2} + \left[\frac{2}{2} + \frac{\pi}{2} + \frac{1}{2} + \frac{1}{$$

-174 3292180

= -0. 2434187554 + 0. 01975073743 = 0. 00128302083 -174. 3292180

١,

Series Representation of $\sqrt{\frac{R}{R_0}}$ - 1

If the cone radius becomes larger than that given in the example, a point will be reached where computations by equation (B27) will not give a satisfactory engineering answer. While equation (B28) as shown is much better, it is not foolproof either. At large R the term $\sqrt{R/R_0}$ - 1 is the subtraction of nearly equal numbers. A series representation can help this term too.

$$\sqrt{\frac{R}{R_0}} - 1 = \sqrt{\frac{R_0 + R - R_0}{R_0}} - 1 = \left(1 + \frac{R - R_0}{R_0}\right)^{1/2} - 1$$

Now using a binomial series expansion on the square-root term,

$$\sqrt{\frac{R}{R_{0}}} - 1 = \left[1 + \frac{1}{2} \left(\frac{R - R_{0}}{R_{0}}\right) + \frac{\frac{1}{2} \left(-\frac{1}{2}\right)}{2!} \left(\frac{R - R_{0}}{R_{0}}\right)^{2} + \frac{\frac{1}{2} \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right)}{3!} \left(\frac{R - R_{0}}{R_{0}}\right)^{3} + \frac{\frac{1}{2} \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right) \left(-\frac{3}{2}\right) \left(-\frac{3}{2}\right)}{4!} \left(\frac{R - R_{0}}{R_{0}}\right)^{4} + \dots + \frac{1}{2} \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right)}{1} \left(\frac{R - R_{0}}{R_{0}}\right)^{2} + \frac{\frac{1}{2} \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right) \left(\frac{R - R_{0}}{R_{0}}\right)^{3} + \frac{\frac{1}{2} \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right) \left(-\frac{5}{2}\right)}{4!} \left(\frac{R - R_{0}}{R_{0}}\right)^{4} + \dots + \frac{\left(\frac{3 - 2n}{2}\right)!}{n!} \left(\frac{R - R_{0}}{R_{0}}\right)^{n}\right]$$
for
$$\left|\frac{R - R_{0}}{R_{0}}\right| \leq 1$$
(B29)

53

Materia Sta

In equation (B29) the factorial

$$\left(\frac{3-2n}{2}\right)^{*}$$

is defined as the product of n terms which are represented by (3 - 2n) = 2 for all integers n from 1 to n.

The ratio between series terms is

$$\frac{2n-3}{2n} \frac{R-R_0}{R_0}$$

so the series obviously has poor convergence properties as $(R - R_0)/R_0$ approaches 1. However, as $(R - R_0)/R_0$ approaches 1, the normal procedure of evaluating $\sqrt{R/R_0} - 1$ gives good precision, since 1.414 - 1 = 0.414. Therefore, if a limit criterion on the loss of precision is set at one significant figure, the range of $\sqrt{R/R_0}$ is $0.9 \le \sqrt{R/R_0} \le 1.1$ to keep $(\sqrt{R/R_0} - 1) > 0.1$. This restriction on $\sqrt{R/R_0}$ corresponds to a maximum

$$\frac{R-R_0}{R_0} = 0.21$$

With a limit on the variable in the series, an evaluation of the number of series terms for a desired computational precision can be made. The series coefficients for the first nine terms are shown in table II. For $(R - R_0)/R_0 = 0.21$, the first term is 0.5 (0.21) = 0.105. The ninth term is $0.01091(0.21)^9 = 0.867 \times 10^{-8}$. This gives a ratio of about 10⁷ between the first and last terms for the worst case. Therefore, an appropriate equation for the stated criterion on an eight-significant-figure computer is

$$\sqrt{\frac{R}{R_{0}}} - 1 = \frac{1}{2} \left(\frac{R - R_{0}}{R_{0}} \right) \left[1 - \frac{1}{4} \frac{R - R_{0}}{R_{0}} \left(1 - \frac{1}{2} \frac{R - R_{0}}{R_{0}} \left\{ 1 - \frac{5}{8} \frac{R - R_{0}}{R_{0}} \left[1 - \frac{7}{10} \frac{R - R_{0}}{R_{0}} \left(1 - \frac{3}{4} \frac{R - R_{0}}{R_{0}} \left\{ 1 - \frac{11}{14} \frac{R - R_{0}}{R_{0}} \left[1 - \frac{13}{16} \frac{R - R_{0}}{R_{0}} \left(1 - \frac{5}{6} \frac{R - R_{0}}{R_{0}} \right) \right] \right] \right] \right] \right]$$
for
$$\left| \frac{R - R_{0}}{R_{0}} \right| < 0.21 \quad (B30)$$

Combination of Terms with Further Use of Trigonometric Series

Equation (B28) is in a form that can give adequate precision provided we use enough terms in the series representations. Let us look at the sine series term

$$2(\mathbf{R}_{0}\mathbf{C} - \sin\kappa_{0})\cos\frac{\kappa - \kappa_{0}}{4} \left[2\sin^{2}\frac{\kappa - \kappa_{0}}{8} - \frac{1}{3!}\left(\frac{\kappa - \kappa_{0}}{4}\right)^{2} + \frac{1}{5!}\left(\frac{\kappa - \kappa_{0}}{4}\right)^{4} - \frac{1}{7!}\left(\frac{\kappa - \kappa_{0}}{4}\right)^{6} + \dots \right]$$
(B31)

At no other place in equation (B28) are the trignometric functions of $(\kappa - \kappa_0)/4$ or $(\kappa - \kappa_0)/8$ used, so they can be expressed in series form too if they combine in a decent manner. Note that

$$2 \sin^2 \frac{\kappa - \kappa_0}{8} = 1 - \cos \frac{\kappa - \kappa_0}{4}$$
$$= 1 - \left[1 - \frac{1}{2} \left(\frac{\kappa - \kappa_0}{4}\right)^2 + \frac{1}{4!} \left(\frac{\kappa - \kappa_0}{4}\right)^4 - \frac{1}{6!} \left(\frac{\kappa - \kappa_0}{4}\right)^6 + \dots\right]$$
$$= \left[\frac{1}{2} \left(\frac{\kappa - \kappa_0}{4}\right)^2 - \frac{1}{4!} \left(\frac{\kappa - \kappa_0}{4}\right)^4 + \frac{1}{6!} \left(\frac{\kappa - \kappa_0}{4}\right)^6 + \dots\right]$$

Substituting this series into equation (B31) yields

$$2(\mathbf{R}_{0}\mathbf{C} - \sin\kappa_{0})\cos\frac{\kappa - \kappa_{0}}{4} \left[\left(\frac{1}{2!} - \frac{1}{3!}\right) \left(\frac{\kappa - \kappa_{0}}{4}\right)^{2} - \left(\frac{1}{4!} - \frac{1}{5!}\right) \left(\frac{\kappa - \kappa_{0}}{4}\right)^{4} + \left(\frac{1}{6!} - \frac{1}{7!}\right) \left(\frac{\kappa - \kappa_{0}}{4}\right)^{6} - \left(\frac{1}{8!} - \frac{1}{9!}\right) \left(\frac{\kappa - \kappa_{0}}{4}\right)^{8} + \dots \right]$$

$$= 2(\mathbf{R}_{0}\mathbf{C} - \sin\kappa_{0})\cos\frac{\kappa - \kappa_{0}}{4} \left[\frac{3 - 1}{3!} \left(\frac{\kappa - \kappa_{0}}{4}\right)^{2} - \frac{5 - 1}{5!} \left(\frac{\kappa - \kappa_{0}}{4}\right)^{4} + \frac{7 - 1}{7!} \left(\frac{\kappa - \kappa_{0}}{4}\right)^{6} - \frac{9 - 1}{9!} \left(\frac{\kappa - \kappa_{0}}{4}\right)^{8} + \dots \right]$$

Expressing $\cos(\kappa - \kappa_0)/4$ in series form too yields

they we set as

$$2(R_{0}C - \sin \kappa_{0}) \left[1 - \frac{1}{2^{*}} \left(\frac{n - \kappa_{0}}{4} \right)^{2} + \frac{1}{4^{*}} \left(\frac{n - \kappa_{0}}{4} \right)^{4} - \frac{1}{6^{*}} \left(\frac{n - \kappa_{0}}{4} \right)^{6} + \frac{1}{n^{*}} \left(\frac{n - \kappa_{0}}{4} \right)^{6} + \frac{1}{n^{*}} \left(\frac{n - \kappa_{0}}{4} \right)^{2} - \frac{4}{5^{*}} \left(\frac{n - \kappa_{0}}{4} \right)^{4} + \frac{6}{5^{*}} \left(\frac{n - \kappa_{0}}{4} \right)^{6} + \frac{1}{2^{*}} \left(\frac{n - \kappa_{0}}{4} \right)^{6} + \frac{1}{n^{*}} \left(\frac{n - \kappa_{0}}{4} \right)^{6} + \frac{1}{n^{*}} \left(\frac{n - \kappa_{0}}{4} \right)^{2} - \frac{4}{5^{*}} \left(\frac{n - \kappa_{0}}{4} \right)^{6} + \frac{1}{2^{*}} \left(\frac{$$

Number of Trignometric Series Terms Needed

The number of series terms needed for a desired computational precision is dependent on the magnitude of the series variable $(\kappa - \kappa_0)/4$. For a selected precision criterion, the maximum magnitude of $(\kappa - \kappa_0)/4$ can be computed for a specific number of series terms. For example, the sixth series term is

$$\frac{11\cdot 2^{11}}{13!} \left(\frac{\kappa-\kappa_0}{4}\right)^{12}$$

The ratio of the sixth series term to the first term

$$\frac{2}{3!}\left(\frac{\kappa-\kappa_0}{4}\right)$$

is

$$\frac{11\cdot 2^{10}\cdot 3!}{13!}\left(\frac{\kappa-\kappa_0}{4}\right)$$

For an eight-significant-figure computer, a maximum relative error of 10^{-7} should be a reasonable precision criterion. So for

$$\frac{11 \cdot 2^{10} \cdot 3!}{13!} \left(\frac{\kappa - \kappa_0}{4}\right)^{10} \le 10^{-7}$$
$$\left| \frac{\kappa - \kappa_0}{4} \right| \le 0.6258 \text{ rad}$$

that is, $|\kappa - \kappa_0| \le 143.4^\circ$. For turbomachinery, $\kappa - \kappa_0$ will almost always be less than 140° , so fewer than six series terms usually will be needed for the selected precision criterion. However, the potential saving is hardly worth the extra logic, so six series terms are always used.

The nesting principle is used in calculation. A specific coefficient can be determined as the ratio of the n to n - 1 series terms

$$\frac{(-1)^{n+1} \frac{(2n-1) \cdot 2^{(2n-1)}}{(2n+1)!} \left(\frac{\kappa - \kappa_0}{4}\right)^{2n}}{(-1)^n \frac{(2n-3) \cdot 2^{(2n-3)}}{(2n-1)!} \left(\frac{\kappa - \kappa_0}{4}\right)^{2n-2}} = -\frac{(2n-1) \cdot 2^2}{(2n-3)(2n+1)(2n)} \left(\frac{\kappa - \kappa_0}{4}\right)^{2n-2}$$

The series can be expressed as

$$2(R_0C - \sin\kappa_0)\cos\frac{\kappa - \kappa_0}{4} \left[2\sin^2\left(\frac{\kappa - \kappa_0}{8}\right) - \frac{1}{3!}\left(\frac{\kappa - \kappa_0}{4}\right)^2 + \frac{1}{5!}\left(\frac{\kappa - \kappa_0}{4}\right)^4 - \frac{1}{7!}\left(\frac{\kappa - \kappa_0}{4}\right)^6 + \dots \right]$$
$$= (R_0C - \sin\kappa_0) \frac{2}{3}\left(\frac{\kappa - \kappa_0}{4}\right)^2 \left\{ 1 - \frac{3}{5}\left(\frac{\kappa - \kappa_0}{4}\right)^2 \left[1 - \frac{10}{63}\left(\frac{\kappa - \kappa_0}{4}\right)^2 \left(1 - \frac{7}{90}\left(\frac{\kappa - \kappa_0}{4}\right)^2 \left\{ 1 - \frac{18}{385}\left(\frac{\kappa - \kappa_0}{4}\right)^2 \left[1 - \frac{11}{351}\left(\frac{\kappa - \kappa_0}{4}\right)^2 \right] \right\} \right) \right]$$

With the application of the preceding equation, the working equation for the sine series term of equation (B28) becomes

$$\sum_{n=1}^{6} \left[(-1)^{n+1} \frac{(2n-1) \cdot 2^{(2n-1)}}{(2n+1)!} x^{2n} \right] = \frac{2}{2 \cdot 3} x^2 \left[1 - \frac{4 \cdot 3}{4 \cdot 5} x^2 \left(1 - \frac{4 \cdot 5}{3 \cdot 6 \cdot 7} x^2 \left\{ 1 - \frac{4 \cdot 7}{5 \cdot 8 \cdot 9} x^2 \left[1 - \frac{4 \cdot 9}{7 \cdot 10 \cdot 11} x^2 \left(1 - \frac{4 \cdot 11}{9 \cdot 12 \cdot 13} x^2 \right) \right] \right\} \right) \right]$$
$$= \frac{x^2}{3} \left[1 - \frac{3}{5} x^2 \left(1 - \frac{10}{63} x^2 \left\{ 1 - \frac{7}{90} x^2 \left[1 - \frac{13}{385} x^2 \left(1 - \frac{11}{351} x^2 \right) \right] \right\} \right) \right]$$
(E32)

Number of X_2 Series Terms Needed

The remaining series in equation (B28) to be investigated from a precision standpoint is the one containing the X_2^2 terms, where X_2^2 is defined by equation (B26). The series is of the form

$$\frac{x_{\frac{1}{2}}^{2}}{3} + \frac{x_{2}^{4}}{5} + \frac{x_{2}^{6}}{7} + \frac{x_{2}^{8}}{9} + \dots + \frac{x_{2}^{2n}}{2n+1}$$
(B33)

The ratio of one term to the previous one is $(2n - 1)/(2n + 1)X_2^2$. At large values of n, the coefficient approaches 1. So for the series to converge to a finite value, $|X_2^2|$ must be less than 1. However, if $|X_2^2|$ is less than 1/2, the series converges to a value no larger than twice the magnitude of the first term. The number of terms reeded in the series to meet a precision criterion depende upon how much less than 1/2 the magnitude of X_2^2 is. To get an idea of the magnitude of X_2^2 in turbomachinery, a search for a maximum value of $|X_2^2|$ can be made.

Since X_2^2 is a function of several variables, it would be helpful to have more information about the variation of X_2^2 in order to conduct an appropriate search for a maximum value of $|X_2^2|$. For a start, note that C always will be finite for turbomachinery. Then by equation (4), $\kappa = \kappa_0$ when $R = R_0$. When $\kappa = \kappa_0$, $X_2^2 = 0$ by equation (B26); so it is shown that $X_2^2 = 0$ when $R = R_0$. Thus, a maximum $|X_2^2|$ never occurs at $R = R_0$. Also, by implication, an effective way to search for maximum $|X_2^2|$ may be to differentiate X_2^2 with respect to R and inspect for the location of any zero slopes.

Before differentiation of X_2^2 with respect to R, note that κ is a function of R. A differential relation between them can be obtained from a combination of equations (1) and (3).

$$\frac{d\kappa}{dR} = \frac{C}{\cos \kappa}$$
(B34)

Now proceeding with the differentiation of X_2^2 as defined in equation (B26)

$$\begin{split} & \prod_{k=1}^{N-1} \left[1 - \frac{\mu_{k}(1 - m)}{2} + \frac{1}{2} \right]_{2R}^{2} \left[\frac{1 - \frac{\mu_{k}(1 - m)}{2} + \frac{1}{2} + \frac{1}{2}$$

۰.

- **R**

7 - J

5

and the second

200

107 m 10

59

a seeningen titteratuur

However, from equation (4)

$$C = \frac{\sin \kappa - \sin \kappa_0}{R - R_0} = \frac{2 \sin \frac{\kappa - \kappa_0}{2} \cos \frac{\kappa + \kappa_0}{2}}{R - R_0}$$

$$\frac{dx_{1}^{2}}{dR} = \frac{\left[1 - (R_{0}C - \sin \kappa_{0})^{2}\right]\sin^{\kappa} - \frac{\kappa_{0}}{2} \frac{2R_{0} \sin \frac{\kappa - \kappa_{0}}{2} \cos \frac{\kappa + \kappa_{0}}{2}}{(R - R_{0})\cos \kappa} \left[\frac{2 \sin \frac{\kappa - \kappa_{0}}{2} \cos \frac{\kappa + \kappa_{0}}{2}}{R - R_{0}} \left(1 + \cos \frac{\kappa - \kappa_{0}}{2} \sqrt{\frac{\kappa}{R_{0}}}\right) - \sin \frac{\kappa - \kappa_{0}}{2}\cos \kappa + \frac{1}{\sqrt{R_{0}R_{0}}}\right]}{\left[\sin \frac{\kappa - \kappa_{0}}{2} \cos \kappa_{0} + \frac{2R_{0}}{R - R_{0}} \sin \frac{\kappa - \kappa_{0}}{2} \cos \frac{\kappa + \kappa_{0}}{2} \left(\cos \frac{\kappa - \kappa_{0}}{2} + \sqrt{\frac{R}{R_{0}}}\right)\right]^{3}} - \frac{\left[1 - (R_{0}C - \sin \kappa_{0})^{2}\right]\sin^{3} \frac{\kappa - \kappa_{0}}{2} \frac{2R_{0}\cos \frac{\kappa + \kappa_{0}}{2}}{(R - R_{0})\cos \kappa} \left[\frac{2 \cos \frac{\kappa + \kappa_{0}}{2}}{R - R_{0}} \left(1 + \cos \frac{\kappa - \kappa_{0}}{2} \sqrt{\frac{R}{R_{0}}}\right) - \frac{2\cos \kappa}{\sqrt{R_{0}R_{0}}}\right]^{3}} - \frac{\sin^{3} \frac{\kappa - \kappa_{0}}{2} \left[\cos \kappa_{0} + \frac{2R_{0}}{R - R_{0}}\cos \frac{\kappa + \kappa_{0}}{2} \left(\cos \frac{\kappa - \kappa_{0}}{2} + \sqrt{\frac{R}{R_{0}}}\right)^{3}\right]}{\sin^{3} \frac{\kappa - \kappa_{0}}{2} \left[\cos \kappa_{0} + \frac{2R_{0}}{R - R_{0}}\cos \frac{\kappa + \kappa_{0}}{2} \left(\cos \frac{\kappa - \kappa_{0}}{2} + \sqrt{\frac{R}{R_{0}}}\right)^{3}\right]^{3}} - \frac{2R_{0}(R - R_{0})^{2} \left[\cos \kappa_{0} + \frac{2R_{0}}{R - R_{0}}\cos \frac{\kappa + \kappa_{0}}{2} \left(\cos \frac{\kappa - \kappa_{0}}{2} + \sqrt{\frac{R}{R_{0}}}\right)^{3}\right]}{\left[(R - R_{0})\cos \kappa_{0} + 2R_{0}\cos \frac{\kappa + \kappa_{0}}{2} \left(\cos \frac{\kappa - \kappa_{0}}{2} + \sqrt{\frac{R}{R_{0}}}\right)^{3}\right]^{3}}$$

$$(B35)$$

When R is within the practical turbomachinery limits of $R_0/2 < R < 2R_0$, the values of the group of terms in either the numerator or the denominator of the last term in equation (B35) will never be zero. The conditions $R = R_0$ and $|R_0C - \sin \kappa_0| = 1$ yield zeros for dX_2^2/dR , but these both occur at $X_2^2 = 0$. Therefore, the conclusion is that the variation of X_2^2 with R has no maximum or minimum at $R \neq R_0$. Since X_2^2 is also zero at $R = R_0$, the maximum $|X_2^2|$ occurs at minimum or maximum R. This means that the maximum magnitude X_2^2 can always be found at minimum or maximum R for any combination of the two constants R_0C and κ_0 .

In table III, maximum values of $|X_2^2|$ are shown over the complete spectrum of $R_0C - \sin \kappa_0$ for a κ_0 of 70°. The constant C is negative, as it usually is in turbomachinery, because κ normally decreases with path distance from the inlet reference. At the lower magnitude values of $R_0C - \sin \kappa_0$, the radius ratio reaches a limit first; so $\Delta \kappa$ is less than the imposed limit of 140°. At the higher magnitude values of $R_0C - \sin \kappa_0$, the tadius ratio limits. The use of such a large $\Delta \kappa$ limit requires the choice of a relatively high κ_0 to keep both κ_0 and κ within the $|\pi/2|$ limit. It turns out, however, that the choice of κ_0 is not important.

The overall maximum value of $|X_2^2|$ occurs at the very large $|R_0C - \sin \kappa_0|$ values. And at these very large $|R_0C - \sin \kappa_0|$ values, the R_0C term completely dominates the trigonometric functions of κ_0 . So the overall maximum value of $|X_2^2|$ is 0.4903 for any value of κ_0 that can give a $\kappa - \kappa_0$ of -140°. Since the maximum value of $|X_2^2|$ is less than 1/2, the series (B33) is known to al-

Since the maximum value of $|X_2^2|$ is less than 1/2, the series (B33) is known to always converge to a finite value which is less than twice the magnitude of the first series term. The number of series terms needed for a specified precision, of course, depends on the magnitude of X_2^2 . The number of terms needed to give a relative error of about 10^{-8} is shown in table IV for the range of X_2^2 . For normal usage, $|X_2^2|$ usually will be quite low; so not many series terms are

For normal usage, $|X_2^2|$ usually will be quite low; so not many series terms are needed. However, as many as 23 may be desirable for special cases. For good program efficiency, the number of series terms used was made a function of the magnitude of X_2^2 .

Range of Applicability for the ϵ Equations

Equation (B28) is a satisfactory form to use for the vast majority of $\epsilon - \epsilon_0$ calculations. However, it eventually becomes plagued with the subtraction-of-nearly-equal-numbers problem for certain parameter combinations. Fortunately, this occurs as very simple solution forms are approached. The first of these is |C| << 1, for which equation (B12) is the solution. The second is

$$\left|\frac{\mathbf{R}-\mathbf{R}_0}{\mathbf{R}_0}\right| << 1$$

In this case, equation (9) becomes

$$d\epsilon \approx \frac{\sin \kappa}{R_{\rm m}} ds$$
$$= \sin \frac{\kappa_0 + C(s - s_0)}{R_{\rm m}} ds$$

where

$$R_{\rm m} = \frac{R + R_0}{2}$$

$$\epsilon - \epsilon_{0} = \int_{s_{0}}^{s} \frac{\sin[\kappa_{0} + C(s - s_{0})]C \, ds}{CR_{m}} = -\frac{\cos[\kappa_{0} + C(s - s_{0})]}{CR_{m}} \Big|_{s_{0}}^{s}$$
$$= -\frac{\cos[\kappa_{0} + C(s - s_{0})] - \cos\kappa_{0}}{CR_{m}} = -\frac{\cos(\kappa_{0} + \kappa - \kappa_{0}) - \cos\kappa_{0}}{CR_{m}}$$
$$= \frac{2 \sin\left(\frac{\kappa - \kappa_{0}}{2}\right) \sin\left(\frac{\kappa + \kappa_{0}}{2}\right)}{CR_{m}}$$

Using the sine series of equation (7) yields

$$\begin{aligned} &= \kappa_{0} = \frac{2 \sin\left(\frac{\kappa + \kappa_{0}}{2}\right)}{\frac{\kappa - \kappa_{0}}{s - s_{0}} R_{m}} \left(\frac{\kappa - \kappa_{0}}{2}\right) \left[1 - \frac{1}{3!} \left(\frac{\kappa - \kappa_{0}}{2}\right)^{2} + \frac{1}{5!} \left(\frac{\kappa - \kappa_{0}}{2}\right)^{4} - \frac{1}{7!} \left(\frac{\kappa - \kappa_{0}}{2}\right)^{6} + \frac{1}{9!} \left(\frac{\kappa - \kappa_{0}}{2}\right)^{8}\right] \\ &= \frac{s - s_{0}}{R_{m}} \sin \frac{\kappa + \kappa_{0}}{2} \left[1 - \frac{1}{6} \left(\frac{\kappa - \kappa_{0}}{2}\right)^{2} \left(1 - \frac{1}{20} \left(\frac{\kappa - \kappa_{0}}{2}\right)^{2} \left\{1 - \frac{1}{42} \left(\frac{\kappa - \kappa_{0}}{2}\right)^{2} \left[1 - \frac{1}{72} \left(\frac{\kappa - \kappa_{0}}{2}\right)^{2}\right]\right\}\right)\right] \end{aligned}$$
(B36)

The approach used to establish when to use equations (B12) or (B36) in place of equation (B28) was simply to set up a computer program and calculate $\epsilon - \epsilon_0$ with each of the equations over the spectrum of constants. The reference value at each point was equation (B28) calculated in double precision with the necessary extra terms in the series. Equation (B28) gives the best accuracy except for very low $\Delta \kappa$ and very high $R_0/\Delta s$. However, enough points were used in these questionable regimes to reasonably well define parameter values at which a switch of equation should be made for better accuracy of computation. The study showed that by the choice of the best accuracy form of equation, $\epsilon - \epsilon_0$ can always be calculated with a relative error of 10⁻⁶ or less on an eight-significant-figure computer. The specific parametric values for the switches are shown in table V. In the program the computation is for R $\Delta \epsilon$ rather than $\Delta \epsilon$. Thus, even though R approaches infinity, a physically meaningful and accurate value of the circumferential component of a path can be obtained from equation (B36) with R_m

transferred to the left side of the equation. The computation of the conic radial (meridional) and circumferential (γ components for a Δs path are made in subroutine EPSLON.

> . An and the second second

Š.,

ŝ.

 \sim

APPENDIX C

DEVELOPMENT OF CUBIC INTERPOLATION EQUATION

Let y be the dependent variable at some independent variable location x. The general cubic polynomial for y is

$$y = a + bx + cx^2 + dx^3$$
 (C1)

To keep the cubic coefficients small in applications, redefine the independent variable as

$$X = \frac{x}{x_2} - 1$$
 (C2)

where x_2 is the independent variable at the second point of the four-point sequence to be curve fit. Thus, the general equation used becomes

$$y = A + BX + CX^2 + DX^3$$
 (C3)

The dependent variable y is known at the four points, so there are four equations in the four unknown coefficients. At the second point, when $x = x_2$, $X_2 = 0$; so

$$A = y_2 \tag{C4}$$

The other equations are

$$y_1 = A + BX_1 + CX_1^2 + DX_1^3$$
 (C5)

$$y_3 = A + BX_3 + CX_3^2 + DX_3^3$$
 (C6)

$$y_4 = A + BX_4 + CX_4^2 + DX_4^3$$
 (C7)

Subtraction of equation (C4) from each equation (C5) to (C7) gives

$$\frac{y_1 - y_2}{x_1} = B + CX_1 + DX_1^2$$
(C8)

$$\frac{y_3 - y_2}{x_3} = B + CX_3 + DX_3^2$$
(C9)

$$\frac{y_4 - y_2}{x_4} = B + CX_4 + DX_4^2$$
 (C10)

Using equation (C9) for each B elimination gives

$$\left(\frac{y_1 - y_2}{x_1} - \frac{y_3 - y_2}{x_3}\right) \frac{1}{x_1 - x_3} = C + D(X_1 + X_3)$$
$$\left(\frac{y_3 - y_2}{x_3} - \frac{y_4 - y_2}{x_4}\right) \frac{1}{x_3 - x_4} = C + D(X_3 + X_4)$$

The equations for the cubic coefficients can be expressed as

and the second

المار مستعنها المستحق

الديرة الاين الاسراب

فيتراجر مر

- C -

Ż

$$D = \frac{\left(\frac{y_1 - y_2}{x_1} - \frac{y_3 - y_2}{x_3}\right) \frac{1}{x_1 - x_3} - \left(\frac{y_3 - y_2}{x_3} - \frac{y_4 - y_2}{x_4}\right) \frac{1}{x_3 - x_4}}{x_1 - x_4}$$

$$C = \left(\frac{y_1 - y_2}{x_1} - \frac{y_3 - y_2}{x_3}\right) \frac{1}{x_1 - x_3} - D(x_1 + x_3)$$

$$B = \frac{y_3 - y_2}{x_3} - (C + Dx_3)x_3$$

$$A = y_2$$

65

a.R.

4

.....

APPENDIX D

DEVELOPMENT OF INTEGRATION EQUATIONS FOR A CUBIC SPLINE

FIT OF BLADE-SECTION POINTS

Development of Spline Equations

The spline curve fit used in this application is a specialized form of that presented in reference 7. For completeness, this particular development begins with a summary of the basics from reference 7. The knowns are x_k and y_k for k systematically spaced points on a blade surface, where x_k is a coordinate approximately along the biade-segment chord and y_k is the normal coordinate. The coordinates of the transition point, x_t and y_t , are also known. The transition point is used in its proper place in the surface array if its relative distance to the nearest surface point is greater than 10 percent of the corresponding increment between the systematically spaced points.

The surface points are fit with piecewise cubics between the points. The joining conditions between cubics at the points are continuous first and second derivatives, except at the transition point, where the second derivative is allowed to be discontinuous. Between points the second derivative is varied linearly so that a general y'' can be expressed as

$$y'' = y''_{k-1} \frac{x_k - x}{x_k - x_{k-1}} + y''_k \frac{x - x_{k-1}}{x_k - x_{k-1}}$$
 for $x_{k-1} \le x \le x_k$ (D1)

Integration of equation (D1) gives

$$y' = \frac{1}{x_{k} - x_{k-1}} \left[y''_{k-1} \left(xx_{k} - \frac{x^{2}}{2} \right) + y''_{k} \left(\frac{x^{2}}{2} - xx_{k-1} \right) \right] + C_{1}$$
(D2)

Integration of (D2) gives

$$y = \frac{1}{x_{k} - x_{k-1}} \left[y_{k-1}'' \left(\frac{x^{2}}{2} x_{k} - \frac{x^{3}}{6} \right) + y_{k}'' \left(\frac{x^{3}}{6} - \frac{x^{2}}{2} x_{k-1} \right) \right] + C_{1} x + C_{2}$$
(D3)

In equation (D3) $y = y_{k-1}$ at $x = x_{k-1}$ and $y = y_k$ at $x = x_k$. Substitution of these values in equation (D3) and subtraction of the resulting equations yields

. 66

$$C_{1} = \frac{1}{x_{k} - x_{k-1}} \left[y_{k} - y_{k-1} - y_{k-1}'' \left(\frac{x_{k}^{3}}{2} + \frac{x_{k}'' k - 1}{3} - \frac{x_{k-1}^{2}}{6} \right) - y_{k}'' \left(\frac{x_{k}^{2}}{6} - \frac{x_{k} x_{k-1}}{3} - \frac{x_{k-1}^{2}}{3} \right) \right]$$
(D4)

and

$$C_{2} = \frac{1}{x_{k} - x_{k-1}} \left\{ x_{k} y_{k-1} - x_{k-1} y_{k} + \frac{x_{k} x_{k-1}}{3} \left[y_{k-1}'' \left(x_{k} - \frac{x_{k-1}}{2} \right) + y_{k}'' \left(\frac{x_{k}}{2} - x_{k-1} \right) \right] \right\}$$
(D5)

Substitution of equation (D4) into (D2) yields the general equation for y'

$$y' = \frac{1}{x_{k} - x_{k-1}} \left[y_{k} - y_{k-1} - y_{k-1}'' \frac{(x_{k} - x)^{2}}{2} + y_{k}'' \frac{(x - x_{k-1})^{2}}{2} \right] + (x_{k} - x_{k-1}) \frac{y_{k-1}'' - y_{k}''}{6}$$
(D6)

Substitution of equations (D4) and (D5) into (D3) yields the general equation for y

$$y = \frac{y_{k-1}'(x_k - x)^3 + y_k''(x - x_{k-1})^3}{6(x_k - x_{k-1})} + \left[\frac{y_k}{x_k - x_{k-1}} - \frac{y_k''(x_k - x_{k-1})}{6}\right](x - x_{k-1}) + \left[\frac{y_{k-1}}{x_k - x_{k-1}} - \frac{y_{k-1}'(x_k - x_{k-1})}{6}\right](x_k - x)$$
(D7)

Joining Conditions for Curve Segments

At the junctions between the cubic pieces, the slopes are the same; that is, $y'(x_{k(-)}) = y'(x_{k(+)})$. Also $y''(x_{k(-)}) = y''(x_{k(+)})$, except at the transition point. So at a point x_k other than the transition point,

$$y'_{k} = \frac{1}{x_{k} - x_{k-1}} \left[y_{k} - y_{k-1} - y''_{k-1} \frac{(x_{k} - x_{k})^{2}}{2} + y''_{k} \frac{(x_{k} - x_{k-1})^{2}}{2} \right] + (x_{k} - x_{k-1}) \frac{y''_{k-1} - y''_{k}}{6}$$
$$= \frac{1}{x_{k+1} - x_{k}} \left[y_{k+1} - y_{k} - y''_{k} \frac{(x_{k+1} - x_{k})^{2}}{2} + y''_{k+1} \frac{(x_{k} - x_{k})^{2}}{2} \right] + (x_{k+1} - x_{k}) \frac{y''_{k} - y''_{k+1}}{6}$$

67

Therefore,

$$\left(\frac{x_{k} - x_{k-1}}{6}\right)y_{k-1}'' + \left(\frac{x_{k+1} - x_{k-1}}{3}\right)y_{k}'' + \left(\frac{x_{k+1} - x_{k}}{6}\right)y_{k+1}'' = \left(\frac{y_{k+1} - y_{k}}{x_{k+1} - x_{k}} - \frac{y_{k} - y_{k-1}}{x_{k} - x_{k-1}}\right)$$
$$a_{k-1}y_{k-1}'' + b_{k-1}y_{k}'' + c_{k-1}y_{k+1}'' = d_{k-1}$$
(D8)

When the transition point is considered as one of the points of the array k, the equation for the cubic junction at the transition point is

$$\left(\frac{x_{t} - x_{k-1}}{6}\right)y_{k-1}'' + \left(\frac{x_{t} - x_{k-1}}{3}\right)y_{t(-)}'' + \left(\frac{x_{k+1} - x_{t}}{3}\right)y_{t(+)}'' + \left(\frac{x_{k+1} - x_{t}}{6}\right)y_{k+1}'' = \left(\frac{y_{k+1} - y_{t}}{x_{k+1} - x_{t}} - \frac{y_{t} - y_{k-1}}{x_{t} - x_{k-1}}\right)$$
$$a_{t}y_{k-1}'' + 2a_{t}y_{t(-)}'' + 2b_{t}y_{t(+)}'' + b_{t}y_{k+1}'' = d_{t}$$
(D9)

Additional Conditions Imposed

The unknowns in equations (D8) and (D9) are the second derivatives at the known points. For the k points, there are k - 2 cubic equations. Also at the transition point, there are two y' values at one point; so three more equations are needed for a solvable set. The normal procedure is to specify end restrictions for two of the equations. For this application, it is probably best to specify a curvature relation. Since the blade elements are circular arc-type segments, the blade sections normally also will be nearly circular arcs. Thus, a reasonable end condition should be specification of end-point curvature equal to that of the adjacent point. However, curvature is $y'' / [1 + (y')^2]^{3/2}$, where y' is an unknown too. So a direct solution, if possible, is a little more complicated than is justifiable. Alternatively, a three-point circular-arc fit of the end points was used initially to determine a factor relation between the end two y'' values so that the set of equations could be solved with the direct approach.

The equation for a circle is

$$(x - a)^2 + (y - b)^2 = R^2$$
 (D10)

From differentiation of equation (D10), the slope is

$$y' = -\frac{x-a}{y-b}$$
(D11)
Since only the equation for y' is needed, it is not necessary to solve for R. However, the known conditions are coordinates of the three points, so R must be eliminated from the three equations in the three unknowns a, b, and R. When the squared terms in equation (D10) are expanded, R, a^2 , and b^2 are eliminated by subtraction of the equations applied at the three points. If the equation for the center point of the set is used in both subtractions, the resulting equations for the desired constants can be expressed as

$$2b = \frac{(x_3^2 - x_2^2)(x_1 - x_2) - (x_1^2 - x_2^2)(x_3 - x_2) + (y_3^2 - y_2^2)(x_1 - x_2) - (y_1^2 - y_2^2)(x_3 - x_2)}{(y_3 - y_2)(x_1 - x_2) - (y_1 - y_2)(x_3 - x_2)}$$
$$2a = \frac{x_1^2 - x_2^2 + y_1^2 - y_2^2 - 2b(y_1 - y_2)}{x_1 - x_2}$$

When the constants are substituted into equation (D11), the general slope equation can be expressed as

$$y' = \frac{(x_2 - x_1)(y_3 - y_2)(2x - x_1 - x_2) - (x_3 - x_2)(y_2 - y_1)(2x - x_3 - x_2) + (y_3 - y_1)(y_2 - y_1)(y_3 - y_2)}{(x_3 - x_2)(y_2 - y_1)(2y - y_1 - y_2) - (x_2 - x_1)(y_3 - y_2)(2y - y_2 - y_3) + (x_3 - x_1)(x_2 - x_1)(x_3 - x_2)}$$
(D12)

The application of y' is in the factor relation between y'' values which yields constant curvature. So for $C_1 = C_2$

$$\frac{y_1''}{\left[1+(y_1')^2\right]^{3/2}} = \frac{y_2''}{\left[1+(y_2')^2\right]^{3/2}}$$

and

 $y_1'' = y_2''[f_1]$

where

-

$$f_{1} = \left[\frac{1 + (y_{1}')^{2}}{1 + (y_{2}')^{2}}\right]^{3/2}$$
(D13)

The same procedure, of course, is used at each end of the surface curve.

The third additional equation is needed at the transition point, where there is a different curvature on each side of the point. The condition is imposed through a curvature ratio at the transition point. The particular curvature ratio is calculated from a threepoint finite difference calculation on each side of the transition point.

$$C_{R} = \frac{C_{k+1}}{C_{k-1}} = \frac{y_{k+1}''}{y_{k-1}''} \left[\frac{1 + (y_{k-1}')^{2}}{1 + (y_{k+1}')^{2}} \right]^{3/2}$$

$$C_{R} = \frac{\frac{y_{t} - y_{k+1}}{x_{t} - x_{k+1}} - \frac{y_{k+1} - y_{k+2}}{x_{t} - x_{k+2}}}{\frac{y_{t} - x_{k+2}}{x_{t} - x_{k+2}} - \frac{y_{t} - y_{k-1}}{x_{t} - x_{k-1}}}{\frac{y_{t} - y_{k-1}}{x_{t} - x_{t}} - \frac{y_{t} - y_{k-1}}{x_{t} - x_{t}}}{\frac{y_{t+1} - y_{t}}{x_{t} - x_{t}}} \left(1 - 0 + \left\{ \frac{y_{t} - y_{k-1}}{x_{t} - x_{k-1}} + \frac{y_{k-1} - y_{k-2}}{x_{k-1} - x_{k-2}} + \frac{y_{t} - y_{k-2}}{x_{k-1} - x_{k-2}} + \frac{y_{t} - y_{t}}{x_{t} - x_{t}}} \right) = \frac{y_{t}''}{y_{t}'(-)} = \frac{y_{t}''}{y_{t}'(-)}$$

$$(D14)$$

The curvature ratio is equal to $y_{t(+)}^{\prime\prime}/y_{t(-)}^{\prime\prime}$ because the slope is the same on both sides of the transition point. Since this curvature discontinuity is computed by finite difference methods for interpolated points, it was judged that a better overall surface curve representation of a blade section is obtained with some smoothing of the discontinuity. In the program, the magnitude of the C_R used is the 0.7 power of the C_R obtained from equation (D14).

Method of Solving for Unknown y"

There are now enough equations to determine all the unknown y". Usually, the tridiagonal matrix is solved by Gauss elimination of variables from one end of the curve to the other end, followed by backward substitution. However, the imposition of the unusual condition at the transition point of the curve can cause some complication. To allow for some versatility for each change of the transition-point condition, a modified approach was used. With the modified approach, Gauss elimination is used from both

ends to the transition point, the transition condition is applied, and backward substitution is used to each end. In parametric equation form, the equations from an end are

$$y_{1}^{''} = f_{1}y_{2}^{''}$$

$$a_{1}y_{1}^{''} + b_{1}y_{2}^{''} + c_{1}y_{3}^{''} = d_{1}$$

$$a_{2}y_{2}^{''} + b_{2}y_{3}^{''} + c_{2}y_{4}^{''} = d_{2}$$

$$a_{3}y_{3}^{''} + b_{3}y_{4}^{''} + c_{3}y_{5}^{''} = d_{3}$$

$$a_{k}y_{k}^{''} + b_{k}y_{k+1}^{''} + c_{k}y_{k+2}^{''} = d_{k}$$
(D15)

For the Gauss elimination, it is desirable to set up a standard form. Let it be

$$y''_{k} + e_{k}y''_{k+1} = h_{k}$$
 (D16)

Therefore, for k = 1, $e_1 = -f_1$ and $h_1 = 0$. Application of equation (D16) to (D15) gives

$$a_{k}(h_{k} - e_{k}y_{k+1}'') + b_{k}y_{k+1}'' + c_{k}y_{k+2}'' = d_{k}$$

So,

$$(b_{k} - a_{k}e_{k})y_{k+1}'' + c_{k}y_{k+2}'' = d_{k} - a_{k}h_{k}$$
$$y_{k+1}'' + \left(\frac{c_{k}}{b_{k} - a_{k}e_{k}}\right)y_{k+2}'' = \frac{d_{k} - a_{k}h_{k}}{b_{k} - a_{k}e_{k}}$$
$$y_{k+1}'' + (e_{k+1})y_{k+2}'' = h_{k+1}$$

So,

$$e_{k+1} = \frac{c_k}{b_k - a_k e_k}$$

and

$$h_{k+1} = \frac{d_k - a_k h_k}{b_k - a_k e_k}$$

The same procedure is used from each end, so at the transition point the equations are

$$y''_{k-1} + e_{k-1}y''_{t-1} = h_{k-1}$$
 (D17)

and

$$y_{k+1}'' + e_{k+1}y_{t+1}'' = h_{k+1}$$
 (D18)

ŧ.

÷.

Using equations (D17) and (D18) in equation (D9) gives

$$a_t(2 - e_{k-1})y''_{t(-)} + b_t(2 - e_{k+1})y''_{t(+)} = d_t - a_th_{k-1} - b_th_{k+1}$$
 (D19)

Equations (D14) and (D19) are two linear equations in the unknowns $y''_{t(-)}$ and $y''_{t(+)}$, so they can be readily calculated. The other y'' values are found by back substitution through the (D16) sets.

Area and Moments Integrals

Once the spline-curve coefficients, y'' values, are established, general surface points then can be located by using equation (D7) for the appropriate interval. The general equation can also be integrated to give areas and moments for the piecewise segments. These can then be summed to locate the blade-section center of area. The developments for the following integrals are for a segment with the y distance being from the y = 0 axis to the curve.

$$A = \int_{\mathbf{x}_{k-1}}^{\mathbf{x}_{k}} \int_{0}^{\mathbf{y}} d\mathbf{y} d\mathbf{x} : \int_{\mathbf{x}_{k-1}}^{\mathbf{x}_{k}} \mathbf{y} d\mathbf{x}$$

$$= \int_{\mathbf{x}_{k-1}}^{\mathbf{x}_{k}} \left\{ \frac{\mathbf{y}_{k-1}^{(i)}(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{3} + \mathbf{y}_{k}^{(i)}(\mathbf{x} - \mathbf{x}_{k-1})^{3}}{6(\mathbf{x}_{k} - \mathbf{x}_{k-1})} + \left[\frac{\mathbf{y}_{k}}{\mathbf{x}_{k} - \mathbf{x}_{k-1}} + \frac{\mathbf{y}_{k-1}^{(i)}(\mathbf{x}_{k} - \mathbf{x}_{k-1})}{6} \right] (\mathbf{x} - \mathbf{x}_{k-1}) + \left[\frac{\mathbf{y}_{k-1}}{\mathbf{x}_{k} - \mathbf{x}_{k-1}} - \frac{\mathbf{y}_{k-1}^{(i)}(\mathbf{x}_{k} - \mathbf{x}_{k-1})}{6} \right] (\mathbf{x}_{k} - \mathbf{x}_{k-1})^{3} + \left[\frac{\mathbf{y}_{k}}{\mathbf{x}_{k} - \mathbf{x}_{k-1}} - \frac{\mathbf{y}_{k-1}^{(i)}(\mathbf{x}_{k} - \mathbf{x}_{k-1})}{6} \right] (\mathbf{x} - \mathbf{x}_{k-1})^{2} - \left[\frac{\mathbf{y}_{k-1}}{\mathbf{x}_{k} - \mathbf{x}_{k-1}} - \frac{\mathbf{y}_{k-1}^{(i)}(\mathbf{x}_{k} - \mathbf{x}_{k-1})}{6} \right] \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{2}}{2} - \left[\frac{\mathbf{y}_{k-1}}{\mathbf{x}_{k} - \mathbf{x}_{k-1}} - \frac{\mathbf{y}_{k-1}^{(i)}(\mathbf{x}_{k} - \mathbf{x}_{k-1})}{6} \right] \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{2}}{2} \right] \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{2}}{2} + \left[\frac{\mathbf{y}_{k-1}}{\mathbf{x}_{k} - \mathbf{x}_{k-1}} - \frac{\mathbf{y}_{k-1}^{(i)}(\mathbf{x}_{k} - \mathbf{x}_{k-1})}{6} \right] \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{2}}{2} \right] \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{2}}{2} + \left[\frac{\mathbf{y}_{k} + \mathbf{y}_{k-1}}{\mathbf{x}_{k} - \mathbf{x}_{k-1}} - \frac{\mathbf{y}_{k-1}^{(i)}(\mathbf{x}_{k} - \mathbf{x}_{k-1})}{6} \right] \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{2}}{2} \right] \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{2}}{2} + \left[\frac{\mathbf{y}_{k} + \mathbf{y}_{k-1}}{\mathbf{x}_{k} - \mathbf{x}_{k-1}} - \frac{\mathbf{y}_{k}^{(i)}(\mathbf{x}_{k} - \mathbf{x}_{k-1})}{2} \right] \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{2}}{2} \right] \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{2}}{2} + \left[\frac{\mathbf{y}_{k} + \mathbf{y}_{k-1}}{\mathbf{x}_{k} - \mathbf{x}_{k-1} - \frac{\mathbf{y}_{k}^{(i)}(\mathbf{x}_{k} - \mathbf{x}_{k-1})}{2} \right] \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{2}}{2} \right] \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{2}}{2} + \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{2}}{2} + \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{2}}{2} \right] \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{2}}{2} + \frac{(\mathbf{x}_{k}$$

$$\begin{split} \mathbf{A} \widetilde{\mathbf{x}} &= \int_{\mathbf{x}_{k-1}}^{\mathbf{x}_{k}} \int_{0}^{\mathbf{y}} \mathbf{x} \, \mathrm{d}\mathbf{y} \, \mathrm{d}\mathbf{x} - \int_{\mathbf{x}_{k-1}}^{\mathbf{x}_{k}} \mathbf{y} \, \mathrm{d}\mathbf{x} \\ &= \int_{\mathbf{x}_{k-1}}^{\mathbf{x}_{k}} \left\{ \frac{\mathbf{y}_{k-1}^{''}(\mathbf{x}_{k}-\mathbf{x})^{3} + \mathbf{y}_{k}^{''}(\mathbf{x}-\mathbf{x}_{k-1})^{3}}{6(\mathbf{x}_{k}-\mathbf{x}_{k-1})^{3}} + \left[\frac{\mathbf{y}_{k}}{\mathbf{x}_{k}-\mathbf{x}_{k-1}} - \frac{\mathbf{y}_{k}^{''}(\mathbf{x}_{k}-\mathbf{x}_{k-1})}{6} \right] (\mathbf{x}-\mathbf{x}_{k-1})^{3} + \left[\frac{\mathbf{y}_{k-1}}{\mathbf{x}_{k}-\mathbf{x}_{k-1}} - \frac{\mathbf{y}_{k-1}^{''}(\mathbf{x}_{k}-\mathbf{x}_{k-1})}{6} \right] (\mathbf{x}-\mathbf{x}_{k-1})^{3} + \left[\frac{\mathbf{y}_{k}}{\mathbf{x}_{k}-\mathbf{x}_{k-1}} - \frac{\mathbf{y}_{k-1}^{''}(\mathbf{x}_{k}-\mathbf{x}_{k-1})}{6} \right] (\mathbf{x}-\mathbf{x}_{k-1})^{3} + \left[\frac{\mathbf{y}_{k}}{\mathbf{x}_{k}-\mathbf{x}_{k-1}} - \frac{\mathbf{y}_{k}^{''}(\mathbf{x}_{k}-\mathbf{x}_{k-1})}{6} \right] (\mathbf{x}-\mathbf{x}_{k-1})^{3} + \left[\frac{\mathbf{y}_{k}}{\mathbf{x}_{k}-\mathbf{x}_{k-1}} - \frac{\mathbf{y}_{k}^{''}(\mathbf{x}_{k}-\mathbf{x}_{k-1})}{6} \right] (\mathbf{x}-\mathbf{x}_{k}-\mathbf{x}_{k-1})^{3} + \left[\frac{\mathbf{y}_{k}}{\mathbf{x}_{k}-\mathbf{x}_{k-1}} - \frac{\mathbf{y}_{k}^{''}(\mathbf{x}_{k}-\mathbf{x}_{k-1})}{6} \right] (\mathbf{x}-\mathbf{x}_{k}-\mathbf{x}_{k-1})^{3} + \left[\frac{\mathbf{y}_{k}}{\mathbf{x}_{k}-\mathbf{x}_{k-1}} - \frac{\mathbf{y}_{k}^{''}(\mathbf{x}_{k}-\mathbf{x}_{k-1})}{6} \right] (\mathbf{x}-\mathbf{x}_{k}-\mathbf{x}_{k-1}) + \left[\frac{\mathbf{y}_{k}}{\mathbf{x}_{k}-\mathbf{x}_{k-1}} - \frac{\mathbf{y}_{k}^{''}(\mathbf{x}_{k}-\mathbf{x}_{k-1})}{6} \right] (\mathbf{x}-\mathbf{x}_{k}-\mathbf{x}_{k-1}) + \left[\frac{\mathbf{y}_{k}}{\mathbf{x}_{k}-\mathbf{x}_{k-1}} - \frac{\mathbf{y}_{k}}{6} \right] (\mathbf{x}-\mathbf{x}_{k}-\mathbf{x}_{k-1}) + \left[\frac{\mathbf{y}_{k}}{\mathbf{x}_{k}-\mathbf{x}_{k}-\mathbf{x}_{k-1}} - \frac{\mathbf{y}_{k}}{6} \right] (\mathbf{x}-\mathbf{x}_{k}-\mathbf{x}_{k}-\mathbf{x}_{k}-\mathbf{x}_{k-1}) + \left[\frac{\mathbf{y}_{k}}{\mathbf{x}_{k}-\mathbf{x}$$

$$\begin{split} A\bar{y} &= \int_{x_{k-1}}^{x_{k}} \int_{0}^{y} y \, dy \, dx = \int_{x_{k-1}}^{x_{k}} \frac{y^{2}}{2} \, dx \\ &= \frac{1}{2} \int_{x_{k-1}}^{x_{k}} \left\{ \frac{y_{k-1}^{''}(x_{k}-x_{k})^{3} + y_{k}^{''}(x-x_{k-1})^{3}}{6(x_{k}-x_{k-1})} + \left[\frac{y_{k}}{x_{k}-x_{k-1}} - \frac{y_{k}^{''}(x_{k}-x_{k-1})}{6} \right] (x-x_{k-1}) + \left[\frac{y_{k-1}}{x_{k}-x_{k-1}} - \frac{y_{k-1}^{''}(x_{k}-x_{k-1})}{6} \right] (x_{k}-x_{k}) \right\}^{2} \, dx \\ &= \frac{x_{k}-x_{k-1}}{6} \left(y_{k}^{2} + y_{k}y_{k-1} + y_{k-1}^{2} - \left[8(y_{k}y_{k}^{''} + y_{k-1}y_{k-1}^{''}) + 7(y_{k}y_{k-1}^{''} + y_{k-1}y_{k}^{''}) \right] \frac{(x_{k}-x_{k-1})^{2}}{60} + \frac{1}{7} \left\{ 16 \left[(y_{k}^{''})^{2} + (y_{k-1}^{''})^{2} \right] + 31y_{k}^{''}y_{k-1}^{''} \right\} \frac{(x_{k}-x_{k-1})^{4}}{360} \right) \end{split}$$
(D22)

Other spline segment integrals that are needed for the terminal calculations are

وروا المراجع

73

يتأثنه وق

\$

ц,

$$\begin{split} \mathbf{I}_{yy} &= \int_{\mathbf{x}_{k-1}}^{\mathbf{x}_{k}} \int_{0}^{y} \mathbf{x}^{2} \, \mathrm{d}y \, \mathrm{d}x = \int_{\mathbf{x}_{k-1}}^{\mathbf{x}_{k}} \mathbf{yx}^{2} \, \mathrm{d}x \\ &= (\mathbf{x}_{k} - \mathbf{x}_{k-1}) \left[\mathbf{y}_{k-1} \left(\frac{\mathbf{x}_{k}^{2}}{12} + \frac{\mathbf{x}_{k}\mathbf{x}_{k-1}}{6} + \frac{\mathbf{x}_{k}^{2}}{4} \right) + \mathbf{y}_{k} \left(\frac{\mathbf{x}_{k}^{2}}{4} + \frac{\mathbf{x}_{k}\mathbf{x}_{k-1}}{5} + \frac{\mathbf{x}_{k-1}^{2}}{12} \right) \right] \\ &- \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{3}}{6} \left[\mathbf{y}_{k-1}^{''} \left(\frac{\mathbf{x}_{k}^{2}}{15} + \frac{\mathbf{x}_{k}\mathbf{x}_{k-1}}{10} + \frac{\mathbf{x}_{k-1}^{2}}{12} \right) + \mathbf{y}_{k}^{''} \left(\frac{\mathbf{x}_{k}^{2}}{12} + \frac{\mathbf{x}_{k}\mathbf{x}_{k-1}}{10} + \frac{\mathbf{x}_{k-1}^{2}}{12} \right) \right] \end{split}$$
(D23)
$$\mathbf{I}_{\mathbf{x}\mathbf{x}} = \int_{\mathbf{x}_{k-1}}^{\mathbf{x}_{k}} \int_{0}^{y} \mathbf{y}^{2} \, \mathrm{d}y \, \mathrm{d}x = \int_{\mathbf{x}_{k-1}}^{\mathbf{x}_{k}} \frac{\mathbf{y}_{3}^{3}}{3} \, \mathrm{d}x \\ &= \frac{\mathbf{x}_{k} - \mathbf{x}_{k-1}}{12} \left\{ \mathbf{y}_{k-1}^{3} + \mathbf{y}_{k} \left[\mathbf{y}_{k-1}^{2} + \mathbf{y}_{k} (\mathbf{y}_{k-1} + \mathbf{y}_{k}) \right] - \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{3}}{84} \left[\mathbf{y}_{k-1}^{''} \left[5\mathbf{y}_{k-1}^{2} + \mathbf{y}_{k} (6\mathbf{y}_{k-1} + 4\mathbf{y}_{k}) \right] \\ &+ \mathbf{y}_{k}^{''} \left[4\mathbf{y}_{k-1}^{2} + \mathbf{y}_{k} (6\mathbf{y}_{k-1} + 5\mathbf{y}_{k}) \right] - \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{2}}{84} \left(\mathbf{y}_{k-1} \left[35(\mathbf{y}_{k-1}^{''})^{2} + \mathbf{y}_{k}^{''} (62\mathbf{y}_{k-1}^{''} + 29\mathbf{y}_{k}^{''}) \right] \right) \end{split}$$
(D24)
$$&+ \mathbf{y}_{k}^{''} \left[29(\mathbf{y}_{k-1}^{''})^{2} + \mathbf{y}_{k}^{''} (62\mathbf{y}_{k-1}^{''} + 35\mathbf{y}_{k}^{''}) \right] - \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{2}}{6} \left\{ 7(\mathbf{y}_{k-1}^{''})^{3} + \mathbf{y}_{k}^{''} \left[20(\mathbf{y}_{k-1}^{''})^{2} + \mathbf{y}_{k}^{''} (20\mathbf{y}_{k-1}^{''} + 7\mathbf{y}_{k}^{''}) \right] \right\} \right) \Biggr\}$$

$$\begin{split} I_{xy} &= \int_{x_{k-1}}^{x_{k}} \int_{0}^{y} xy \, dy \, dx = \int_{x_{k-1}}^{x_{k}} \frac{y^{2}}{2} x \, dx \\ &= \frac{x_{k-1}}{24} \left[y_{k-1}^{2} (3x_{k-1} + x_{k}) + y_{k} \left[2(x_{k-1} + x_{k})y_{k-1} + y_{k}(x_{k-1} + 3x_{k}) \right] - \frac{(x_{k} - x_{k-1})^{2}}{15} \left(y_{k-1} \left[x_{k-1}^{*} (5y_{k-1}^{**} + 4y_{k}^{**}) + 3x_{k}(y_{k-1}^{**} + y_{k}^{**}) \right] + y_{k} \left[3x_{k-1}^{*} (y_{k-1}^{**} + y_{k}^{**}) + x_{k}^{*} (4y_{k-1}^{**} + 5y_{k}^{**}) \right] - \frac{(x_{k} - x_{k-1})^{2}}{168} \left\{ (y_{k-1}^{**})^{2} (35x_{k-1} + 29x_{k}) + y_{k}^{**} \left[62y_{k-1}^{**} (x_{k-1} + x_{k}) + y_{k}^{**} (29x_{k-1} + 35x_{k}) \right] \right\} \end{split}$$

(D25)

2.1

. Strings

5

74

4 3 1

· ,

$$I_{yyvv} = \int_{x_{k-1}}^{x_{k-1}} \int_{0}^{x_{k-1}} dy dx = \int_{x_{k-1}}^{x_{k-1}} yx^{4} dx$$

$$= \frac{x_{k-1} - x_{k-1}}{30} \left\{ y_{k} \left(5x_{k}^{4} + 4x_{k}^{3}x_{k-1} + 3x_{k}^{2}x_{k-1}^{2} + 2x_{k}x_{k-1}^{3} + x_{k-1}^{4} \right) + y_{k-1} \left(x_{k}^{4} + 2x_{k}^{3}x_{k-1} + 3x_{k}^{2}x_{k-1}^{2} + 4x_{k}x_{k-1}^{3} + 5x_{k-1}^{4} \right) \right\}$$

$$= \frac{(x_{k} - x_{k-1})^{2}}{168} \left[y_{k-1}^{**} \left(25x_{k}^{4} + 44x_{k}^{3}x_{k-1} + 54x_{k}^{2}x_{k-1}^{2} + 52x_{k}x_{k-1}^{3} + 35x_{k-1}^{4} \right) + y_{k}^{**} \left(35x_{k}^{4} + 54x_{k}^{2}x_{k-1}^{2} + 44x_{k}x_{k-1}^{3} + 25x_{k-1}^{4} \right) \right] \right\}$$

$$(D26)$$

$$\begin{split} I_{xx,yy} &= \int_{x_{k-1}}^{x_{k}} \int_{0}^{y} y^{2} x^{2} \, dy \, dx = \int_{x_{k-1}}^{x_{k}} \frac{1}{3} x^{2} \, dx \\ &= \frac{x_{k} - 4_{k-1}}{16^{3}} \left[\int_{-1}^{3} \frac{1}{1} (x_{k}^{2} + 4x_{k}x_{k-1} + 10x_{k-1}^{2}) + (x_{k-1}^{2}x_{k}^{2} + 6x_{k}x_{k-1} + 6x_{k-1}^{2}) + y_{k-1}y_{k}^{2} (6x_{k}^{2} + 6x_{k}x_{k-1} + 3x_{k-1}^{2}) + y_{k}^{3} (10x_{k}^{2} + 4x_{k}x_{k-1} + x_{k-1}^{2}) \right] \\ &= \frac{(x_{k} - x_{k-1})^{2}}{26} \left(y_{k-1}^{2} y_{k-1}^{2} (y_{k-1}^{2} + 26x_{k}x_{k-1} + 35x_{k-1}^{2}) + y_{k-1}^{2} y_{k}^{2} (9x_{k}^{2} + 22x_{k}x_{k-1} + 25x_{k-1}^{2}) + y_{k-1}y_{k}y_{k+1}^{2} (22x_{k}^{2} + 36x_{k}x_{k-1} + 26x_{k-1}^{2}) \right) \\ &+ y_{k-1}y_{k}y_{k}^{*} (26x_{k}^{2} + 36x_{k}x_{k-1} + 22x_{k-1}^{2}) + y_{k}^{2}y_{k-1}^{*} (25x_{k}^{2} + 22x_{k}x_{k-1} + 9x_{k-1}^{2}) + y_{k}^{2}y_{k}^{*} (35x_{k}^{2} + 26x_{k}x_{k-1} + 9x_{k-1}^{2}) \\ &+ y_{k-1}y_{k}y_{k}^{*} (26x_{k}^{2} + 36x_{k}x_{k-1} + 22x_{k-1}^{2}) + y_{k}^{2}y_{k}^{*} (12x_{k}^{2} + 22x_{k}x_{k-1} + 9x_{k-1}^{2}) + y_{k}^{2}y_{k}^{*} (35x_{k}^{2} + 26x_{k}x_{k-1} + 9x_{k-1}^{2}) \\ &+ y_{k-1}y_{k}y_{k}^{*} (26x_{k}^{2} + 36x_{k}x_{k-1} + 22x_{k-1}^{2}) + y_{k}^{2}y_{k}^{*} (12x_{k}^{2} + 38x_{k}x_{k-1} + 22x_{k-1}^{2}) + y_{k-1}y_{k}^{*}y_{k-1}^{*} (40x_{k}^{2} + 80x_{k}x_{k-1} + 66x_{k-1}^{2}) \\ &+ y_{k}y_{k-1}y_{k}^{*} (66x_{k}^{2} + 80x_{k}x_{k-1} + 40x_{k-1}^{2}) + y_{k}(y_{k}^{*})^{2} (22x_{k}^{2} - 33x_{k}x_{k-1} + 27x_{k-1}^{2}) + y_{k}(y_{k}^{*})^{2} (42x_{k}^{2} + 44x_{k}x_{k-1} + 19x_{k-1}^{2}) \\ &+ y_{k}y_{k-1}^{*}y_{k}^{*} (66x_{k}^{2} + 80x_{k}x_{k-1} + 40x_{k-1}^{2}) + y_{k-1}(y_{k}^{*})^{2} (22x_{k}^{2} - 33x_{k}x_{k-1} + 27x_{k-1}^{2}) + y_{k}(y_{k}^{*})^{2} (42x_{k}^{2} + 44x_{k}x_{k-1} + 19x_{k-1}^{2}) \\ &+ y_{k}y_{k}^{*} (77x_{k}^{2} + 102x_{k}x_{k-1} + 77x_{k-1}^{2}) + (y_{k-1}^{*})^{2}y_{k} (171x_{k}^{2} - 294x_{k}x_{k-1} + 195x_{k-1}^{2}) + y_{k-1}^{*}(y_{k}^{*})^{2} (195x_{k}^{2} - 294x_{k}x_{k-1} + 171x_{k-1}^{2}) \\ &+ (y_{k}^{*})^{3} (77x_{k}^{2} + 102x_{k}x_{k-1} + 52x_{k-1}^{2}) \right] \right\} \right) \right\}$$

$$I_{xxxx} = \int_{x_{k-1}}^{x_k} \int_{0}^{y} y^4 \, dy \, dx = \int_{x_{k-1}}^{x_k} \frac{y^5}{5} \, dx$$

where

2.2.2

75

:

й. Э. С. К.

$$y = \frac{y_{k-1}'(x_k - x)^3 + y_k'(x - x_{k-1})^3}{6(x_k - x_{k-1})} + \left[\frac{y_k}{x_k - x_{k-1}} - \frac{y_k''(x_k - x_{k-1})}{6}\right](x - x_{k-1}) + \left[\frac{y_{k-1}}{x_k - x_{k-1}} - \frac{y_{k-1}'(x_k - x_{k-1})}{6}\right](x_k - x)$$
(D7)

Since expansion and integration of this equation is very complicated, a simplification was used. Note that for axial-flow compressor blade sections, the maximum value of x (chordwise direction) with respect to the center-of-area reference is always greater than the maximum magnitude of y. So x^4 dx dy will be larger than y^4 dy dx. Consequently, $\iint x^4$ dx dy over the blade will always be greater than $\iint y^4$ dx dy. Thus, the integral under consideration is essentially a second-order term for the blade-section twist stiffness calculation. The use of a reasonable approximation in the computed twist stiffness. The approximation used is an average y'' for the increment.

$$y'' = \frac{1}{2} (y''_{k-1} + y''_{k})$$

The general equation for y by substituting y'' for $y_{k-1}^{\prime\prime}$ and $y_k^{\prime\prime}$ in equation (D7) then reduces to

$$y = \frac{y_k(x - x_{k-1}) + y_{k-1}(x_k - x)}{x_k - x_{k-1}} - \frac{y''(x - x_{k-1})(x_k - x)}{2}$$

Integration for I_{XXXX} gives

$$I_{xxxxx} = \frac{x_{k} - x_{k-1}}{30} \left\{ y_{k}^{5} + y_{k}^{4} y_{k-1} + y_{k}^{3} y_{k-1}^{2} + y_{k}^{2} y_{k-1}^{3} + y_{k} y_{k-1}^{4} + y_{k-1}^{5} - \frac{y''(x_{k} - x_{k-1})^{2}}{14} \left[5y_{k}^{4} + 8y_{k}^{3} y_{k-1} + 9y_{k}^{2} y_{k-1}^{2} + 8y_{k} y_{k-1}^{3} + 5y_{k-1}^{4} - \frac{y''(x_{k} - x_{k-1})^{2}}{4} \left[5y_{k}^{2} + 8y_{k} y_{k-1} + 9y_{k}^{2} y_{k-1}^{2} + 8y_{k} y_{k-1}^{3} - \frac{y''(x_{k} - x_{k-1})^{2}}{6} \left[5y_{k}^{2} + 8y_{k} y_{k-1} - \frac{y''(x_{k} - x_{k-1})^{2}}{2} \left[y_{k} + y_{k-1} - \frac{y''(x_{k} - x_{k-1})^{2}}{2} \right] \right\} \right] \right\}$$

(D28)

APPENDIX E

DEVELOPMENT OF EQUATIONS FOR **bLADE-SECTION** END AREA

AND MOMENT CORRECTIONS

The spline integrals properly summed give the major part of the moment values for a blade section. The remaining parts needed are obtained from end-circle corrections. The geometric shapes used for the end corrections are the sector of a circle and two trapezoids (fig. 5).

Area and Moments of End-Circle Sector

The blade-end-circle size and location are determined from the blade-section surface end-point coordinates and slopes, which are known from the spline curve fit of the interpolated surface points. In general, the four conditions of two points and the slopes at the points are an overspecification for a circle, which is a second-degree equation with three constants. Since preservation of surface continuity is of first-order priority, the compromise is made with slope. The condition imposed is equal slope difference between the end circle and the surface at the suction- and pressure-surface end points. The geometric placement of the blade-section end circle is shown in figure 11.

To give $r_{L} = r_{U}$; the equations for the end-circle center coordinates are

$$x_{c} = x_{U} + r_{U} \sin(\kappa_{U} + \Delta \kappa)$$
$$y_{c} = y_{U} - r_{U} \cos(\kappa_{U} + \Delta \kappa)$$

and

$$x_{c} = x_{L} - r_{L} \sin(\kappa_{L} + \Delta \kappa)$$
$$y_{c} = y_{r} + r_{r} \cos(\kappa_{r} + \Delta \kappa)$$

Eliminate x_c and y_c by subtraction:

$$\begin{aligned} \mathbf{x}_{\mathrm{U}} &- \mathbf{x}_{\mathrm{L}} = -\mathbf{r}_{\mathrm{U}} \Big[\sin(\kappa_{\mathrm{U}} + \Delta \kappa) + \sin(\kappa_{\mathrm{L}} + \Delta \kappa) \Big] \\ \mathbf{y}_{\mathrm{U}} &- \mathbf{y}_{\mathrm{L}} = \mathbf{r}_{\mathrm{U}} \Big[\cos(\kappa_{\mathrm{U}} + \Delta \kappa) + \cos(\kappa_{\mathrm{L}} + \Delta \kappa) \Big] \end{aligned}$$

Eliminate \mathbf{r}_U by division:

$$(\mathbf{x}_{U} - \mathbf{x}_{L}) \left[\cos(\kappa_{U} + \Delta \kappa) + \cos(\kappa_{L} + \Delta \kappa) \right] = -(\mathbf{y}_{U} - \mathbf{y}_{L}) \left[\sin(\kappa_{U} + \Delta \kappa) + \sin(\kappa_{L} + \Delta \kappa) \right]$$

Expand the trigometric function to get the solution for $\Delta \kappa$:

$$\begin{aligned} (\mathbf{x}_{U} - \mathbf{x}_{L}) \left(\cos \kappa_{U} \cos \Delta \kappa - \sin \kappa_{U} \sin \Delta \kappa + \cos \kappa_{L} \cos \Delta \kappa - \sin \kappa_{L} \sin \Delta \kappa\right) \\ &= -(\mathbf{y}_{U} - \mathbf{y}_{L}) \left(\sin \kappa_{U} \cos \Delta \kappa + \cos \kappa_{U} \sin \Delta \kappa + \sin \kappa_{L} \cos \Delta \kappa + \cos \kappa_{L} \sin \Delta \kappa\right) \end{aligned}$$

$$[(y_U - y_L)(\cos \kappa_U + \cos \kappa_L) - (x_U - x_L)(\sin \kappa_U + \sin \kappa_L)] \sin \Delta \kappa$$
$$= -[(x_U - x_L)(\cos \kappa_U + \cos \kappa_L) + (y_U - y_L)(\sin \kappa_U + \sin \kappa_L)] \cos \Delta \kappa$$

$$\tan \Delta \kappa = \frac{\sin \Delta \kappa}{\cos \Delta \kappa} = \frac{(x_U - x_L)(\cos \kappa_U + \cos \kappa_L) + (y_U - y_L)(\sin \kappa_U + \sin \kappa_L)}{(x_U - x_L)(\sin \kappa_U + \sin \kappa_L) - (y_U - y_L)(\cos \kappa_U + \cos \kappa_L)}$$
(E1)

For computing purposes, the more appropriate equation for \mathbf{r}_U is

$$\mathbf{r} = \mathbf{r}_{\mathbf{U}} = \frac{\mathbf{y}_{\mathbf{U}} - \mathbf{y}_{\mathbf{L}}}{(\cos \kappa_{\mathbf{U}} + \cos \kappa_{\mathbf{L}})\cos \Delta \kappa - (\sin \kappa_{\mathbf{U}} + \sin \kappa_{\mathbf{L}})\sin \Delta \kappa}$$
(E2)

because y_U is never equal to y_L , whereas x_U may equal x_L . The area of the leading-edge end-circle sector, which is shown in figure 31, is

$$A = \int_{\theta_{U}}^{\pi+\theta_{L}} \int_{0}^{r} r \, dr \, d\theta = \int_{\theta_{U}}^{\pi+\theta_{L}} \frac{r^{2}}{2} \, d\theta = \frac{r^{2}}{2} (\pi + \theta_{L} - \theta_{U})$$
(E3)

where $\theta_L = \kappa_L + \Delta \kappa$ and $\theta_U = \kappa_U + \Delta \kappa$. The first moments of the end-circle sector are

$$\begin{aligned} \mathbf{A}\overline{\mathbf{x}} &= \int_{-\mathcal{U}}^{\pi+\mathcal{U}} \mathbf{L} \int_{0}^{\mathbf{T}} (\mathbf{x}_{\mathrm{C}} - \mathbf{r} \sin \psi) \mathbf{r} \, \mathrm{d}\mathbf{r} \, \mathrm{d}\psi = \int_{0}^{\pi+\mathcal{U}} \mathbf{L} \frac{\mathrm{r}^{2}}{2} \left\{ \mathbf{x}_{\mathrm{C}} - \frac{2\mathbf{r}}{3} \sin \psi \right\} \mathrm{d}\psi \\ &= \mathbf{x}_{\mathrm{C}} \frac{\mathbf{r}^{2}}{2} \psi \left| \frac{\pi+\mathcal{U}}{\mathcal{U}} + \frac{\mathbf{r}^{3}}{3} \cos \psi \right| \frac{\pi+\mathcal{U}}{\mathcal{U}} = \Delta \mathbf{x}_{\mathrm{C}} - \frac{\mathbf{r}^{3}}{3} \left(\cos \psi \psi + \cos \psi \psi \right) \right. \end{aligned} \tag{E4}$$
$$\begin{aligned} \mathbf{A}\overline{\mathbf{y}} &= \int_{\theta_{\mathrm{U}}}^{\pi+\theta} \mathbf{L} = \int_{0}^{\pi+\theta} \mathbf{L} \int_{0}^{\mathbf{r}} (\mathbf{y}_{\mathrm{C}} + \mathbf{r} \cos \psi) \mathbf{r} \, \mathrm{d}\mathbf{r} \, \mathrm{d}\theta = \int_{\theta_{\mathrm{U}}}^{\pi+\mathcal{U}} \frac{\mathbf{r}^{2}}{2} \left(\mathbf{y}_{\mathrm{C}} + \frac{2}{3} \mathbf{r} \cos \psi \right) \mathrm{d}\psi \end{aligned}$$

$$= \mathbf{y}_{\mathbf{C}} \frac{\mathbf{r}^{2}}{2} \theta \begin{vmatrix} \mathbf{r}^{\mathbf{H}+\theta} \mathbf{L} \\ \mathbf{r}^{3} \\ \mathbf{U} \end{vmatrix} + \frac{\mathbf{r}^{3}}{3} \sin \theta \begin{vmatrix} \mathbf{r}^{\mathbf{H}+\theta} \mathbf{L} \\ \mathbf{r}^{\mathbf{H}+\theta} \mathbf{L} \end{vmatrix} = \mathbf{A} \mathbf{y}_{\mathbf{C}} - \frac{\mathbf{r}^{3}}{3} (\sin \theta_{\mathbf{U}} + \sin \theta_{\mathbf{L}})$$
(E5)

A similar development for the trailing edge gives slightly different results. However, a general similarity is restored by using the negative of the trailing-edge area,

$$\mathbf{A} = \frac{\mathbf{r}^2}{2} \left(\theta_{\mathbf{L}} - \theta_{\mathbf{U}} - \pi \right)$$
(E6)

in the preceding and following moment equations. This procedure gives negative values for all trailing-edge area and moment values, but it is a convenience in the program to use the same coding for both ends.

For the terminal calculations, higher moments are also used. Such equations for the end circle follow:

12

79

Sec. 2

$$I_{yy} = \int_{\mathcal{T}_{U}}^{\pi+3} L \int_{0}^{\mathbf{r}} (x_{c} - \mathbf{r} \sin \theta)^{2} \mathbf{r} \, d\mathbf{r} \, d\theta$$

$$= \int_{\theta_{U}}^{\pi+3} L \left(\frac{x_{c}^{2} \mathbf{r}^{2}}{2} - \frac{2x_{c} \mathbf{r}^{3} \sin \theta}{3} + \frac{\mathbf{r}^{4} \sin^{2} \theta}{4} \right) d\theta$$

$$= \left(\frac{x_{c}^{2} \mathbf{r}^{2}}{2} \theta \right)_{\theta_{U}}^{\pi+\theta} L + \left(\frac{2x_{c} \mathbf{r}^{3} \cos \theta}{3} \cos \theta \right)_{U}^{\pi+\theta} L + \frac{\mathbf{r}^{2}}{4} \left(\frac{\pi}{2} - \frac{\sin 2\theta}{4} \right)_{\theta_{U}}^{\pi+\theta} L$$

$$= \left(x_{c}^{2} + \frac{\mathbf{r}^{2}}{4} \right) \mathbf{A} - \frac{2\mathbf{r}^{3} x_{c}}{3} \cos \theta + \cos \theta_{L} - \frac{\mathbf{r}^{4}}{8} \sin (\theta_{L} - \theta_{U}) \cos(\theta_{U} + \theta_{L})$$
(E7)

$$I_{xx} = \int_{\theta_{U}}^{\pi+\theta_{L}} \int_{0}^{r} (y_{c} + r \cos \theta)^{2} r \, dr \, d\theta$$

$$= \int_{\theta_{U}}^{\pi+\theta_{L}} \left(\frac{y_{c}^{2} r^{2}}{2} + \frac{2r^{3} y_{c}}{3} \cos \theta + \frac{r^{4}}{4} \cos^{2} \theta \right) d\theta$$

$$= \left(\frac{y_{c}^{2} r^{2}}{2} \theta \right)_{\theta_{U}}^{\pi+\theta_{L}} + \left(\frac{2r^{3} y_{c}}{3} \sin \theta \right)_{\theta_{U}}^{\pi+\theta_{L}} + \frac{r^{4}}{4} \left(\frac{\theta}{2} + \frac{\sin 2\theta}{4} \right)_{\theta_{U}}^{\pi+\theta_{L}}$$

$$= \left(y_{c} + \frac{r^{2}}{4} \right) A - \frac{2r^{3} y_{c}}{3} (\sin \theta_{U} + \sin \theta_{L}) + \frac{r^{4}}{8} \sin(\theta_{L} - \theta_{U}) \cos(\theta_{U} + \theta_{L})$$
(E8)

$$\begin{split} \mathbf{L}_{\mathbf{x}\mathbf{y}} &= \int_{\partial_{\mathbf{U}}}^{\pi+\theta} \mathbf{L} \int_{0}^{\mathbf{r}} (\mathbf{x}_{\mathbf{c}} - \operatorname{rin} \psi) (\mathbf{y}_{\mathbf{c}} + \mathbf{r} \cos \psi) \mathbf{r} \, d\mathbf{r} \, d\psi \\ &= \int_{\partial_{\mathbf{U}}}^{\pi+\theta} \mathbf{L} \left[\frac{\mathbf{x}_{\mathbf{c}} \mathbf{y}_{\mathbf{c}} \mathbf{r}^{2}}{2} + \frac{(\mathbf{x}_{\mathbf{c}} \cos \psi - \mathbf{y}_{\mathbf{c}} \sin \psi) \mathbf{r}^{3}}{3} - \frac{\mathbf{r}^{4}}{4} \sin \psi \cos \psi \right] d\psi \\ &= \left(\frac{\mathbf{x}_{\mathbf{c}} \mathbf{y}_{\mathbf{c}} \mathbf{r}^{2}}{2} \theta \right)_{\theta_{\mathbf{U}}}^{\pi+\theta} \mathbf{L} + \left(\frac{\mathbf{x}_{\mathbf{c}} \mathbf{r}^{3}}{3} \sin \theta \right)_{\theta_{\mathbf{U}}}^{\pi+\theta} \mathbf{L} + \left(\frac{\mathbf{y}_{\mathbf{c}} \mathbf{r}^{3} \cos \theta}{3} \right)_{\theta_{\mathbf{U}}}^{\pi+\theta} - \left(\frac{\mathbf{r}^{4}}{4} \frac{\sin^{2} \theta}{2} \right)_{\theta_{\mathbf{U}}}^{\pi+\theta} \mathbf{L} \\ &= \left(\mathbf{x}_{\mathbf{c}} \mathbf{y}_{\mathbf{c}} \mathbf{A} - \frac{\mathbf{r}^{3}}{3} \left[\mathbf{x}_{\mathbf{c}} (\sin \psi_{\mathbf{L}} + \sin \theta_{\mathbf{U}}) + \mathbf{y}_{\mathbf{c}} (\cos \theta_{\mathbf{L}} + \cos \theta_{\mathbf{U}}) \right] - \frac{\mathbf{r}^{4}}{8} (\sin \theta_{\mathbf{L}} - \sin \theta_{\mathbf{U}}) (\sin \theta_{\mathbf{L}} + \sin \theta_{\mathbf{U}}) \end{split}$$
(E9)

$$\begin{split} I_{yyyy} &= \int_{\theta_{U}}^{\pi+\theta_{L}} \int_{0}^{T} (x_{c} - r \sin \psi)^{4} r \, dr \, d\psi \\ &= \int_{\theta_{U}}^{\pi+\theta_{L}} \left(x_{c}^{4} \frac{r^{2}}{2} - 4x_{c}^{3} \frac{r^{3}}{3} \sin \psi + 6x_{c}^{2} \frac{r^{4}}{4} \sin^{2} \psi - 4x_{c} \frac{r^{5}}{5} \sin^{3} \psi + \frac{r^{6}}{6} \sin^{4} \psi \right) d\psi \\ &= \left(x_{c}^{4} \frac{r^{2}}{2} \psi \right)_{\theta_{U}}^{\pi+\psi_{L}} + 4 \left(x_{c}^{3} \frac{r^{3}}{3} \cos \psi \right)_{\psi_{U}}^{\pi+\theta_{L}} + 6x_{c}^{2} \frac{r^{4}}{4} \left(\frac{\psi}{2} - \frac{\sin 2\psi}{4} \right)_{\psi_{U}}^{\pi+\theta_{L}} + 4x_{c} \frac{r^{5}}{5} \left[\frac{\cos \psi}{3} \left(2 + \sin^{2} \psi \right) \right]_{\psi_{U}}^{\pi+\psi_{L}} + \frac{r^{6}}{6} \left(\frac{3\psi}{8} - \frac{\sin 2\psi}{4} + \frac{\sin 4\psi}{32} \right)_{\psi_{U}}^{\pi+\theta_{L}} \\ &= \left(x_{c}^{4} + \frac{3}{2} x_{c}^{2} r^{2} + \frac{r^{4}}{8} \right) A - r^{3} \left(\frac{2x_{c}}{15} \left[(10x_{c}^{2} + 4r^{2}) (\cos \psi_{U} + \cos \psi_{L}) + r^{2} (\sin 2\kappa_{U} \sin \kappa_{L} + \sin \kappa_{U} \sin 2\kappa_{U}) \right] \\ &+ \frac{r}{8} \left[\left(3x_{c}^{2} + \frac{r^{2}}{3} \right) (\sin 2\psi_{L} - \sin 2\psi_{U}) - \frac{r}{24} \left(\sin 4\psi_{L} - \sin 4\psi_{U} \right) \right] \right] \end{split}$$

$$\begin{split} I_{XXXX} &= \int_{0}^{\pi+2} L \int_{0}^{\pi} (y_{e} + r \cos w)^{4} r dr dt \\ &= \int_{0}^{\pi+3} L \left(y_{e}^{4} \frac{r^{2}}{2} + 4y_{e}^{3} \frac{r}{3} \cos w + 6y_{e}^{2} \frac{r^{4}}{4} \cos^{2} w + 4y_{e} \frac{r^{5}}{5} \cos^{3} w + \frac{r^{6}}{6} \cos^{4} w \right) dw \\ &= \int_{0}^{\pi+3} L \left(y_{e}^{4} \frac{r^{2}}{2} + 4y_{e}^{3} \frac{r}{3} \cos w + 6y_{e}^{2} \frac{r^{4}}{4} \cos^{2} w + 4y_{e} \frac{r^{5}}{5} \cos^{3} w + \frac{r^{6}}{6} \cos^{4} w \right) dw \\ &= \left(y_{e}^{4} \frac{r^{2}}{2} w \right)_{-\frac{1}{2}U}^{\pi+3} L + \frac{4}{3} y_{e}^{3} r^{3} \left(\sin w \right)_{-\frac{1}{2}U}^{\pi+3} L + \frac{3}{2} y_{e}^{2} r^{4} \left(\frac{w}{2} + \frac{\sin 2w}{4} \right)_{-\frac{1}{2}U}^{\pi+3} L + \frac{4}{5} y_{e} r^{5} \left[\frac{\sin w}{3} (w)^{2} + 2 \right]_{-\frac{1}{2}U}^{\pi+3} L + \frac{r^{6}}{6} \left(\frac{3w}{3} + \frac{\sin 2w}{4} + \frac{\sin 4w}{32} \right)_{-\frac{1}{2}U}^{\pi+3} L \\ &= \left(y_{e}^{4} + \frac{3}{2} y_{e}^{2} r^{2} + \frac{r^{4}}{8} \right) A - r^{3} \left\{ \frac{2y_{e}}{15} \left[(10y_{e}^{2} + 4r^{2})(\sin w_{L} + \sin w_{U}) + r^{2}(\sin 2w_{L} \cos w_{L} + \sin 2w_{U} \cos w_{U}) \right] \\ &- \frac{r}{6} \left[\left(3y_{e}^{2} + \frac{r^{2}}{3} \right) (\sin 2w_{L} - \sin 2w_{U}) + \frac{r^{2}}{24} (\sin 4w_{L} - \sin 4w_{U}) \right] \right\} \end{split}$$
(E11)

$$\begin{split} I_{xxyy} &= \int_{\theta_{U}}^{\pi+\theta_{L}} \int_{0}^{T} (x_{c} - r \sin \theta)^{2} (y_{c} + r \cos \theta)^{2} r dr d\theta \\ &= \int_{\theta_{U}}^{\pi+\theta_{L}} \left[x_{c}^{2} y_{c}^{2} \frac{r^{2}}{2} + 2x_{c}^{2} y_{c} \frac{r^{3}}{3} \cos \theta - 2x_{c} y_{c}^{2} \frac{r^{3}}{3} \sin \theta + x_{c}^{2} \frac{r^{4}}{4} \cos^{2} \theta + y_{c}^{2} \frac{r^{4}}{4} \sin^{2} \theta \\ &- x_{c} y_{c} r^{4} \sin \theta \cos \theta + \frac{2}{5} r^{5} (y_{c} \sin^{2} \theta \cos \theta - x_{c} \cos^{2} \theta \sin \theta) + \frac{r^{6}}{6} \sin^{2} \theta \cos^{2} \theta \right] d\theta \\ &= x_{c}^{2} y_{c}^{2} \frac{r^{2}}{2} (\theta)_{\theta_{U}}^{\pi+\theta_{L}} + \frac{2}{3} x_{c}^{2} y_{c} r^{3} (\sin \theta)_{\theta_{U}}^{\pi+\theta_{L}} + \frac{2}{3} x_{c} y_{c}^{2} r^{3} (\cos \theta)_{\theta_{U}}^{\pi+\theta_{L}} + \frac{x_{c}^{2} r^{4}}{4} \left(\frac{\theta}{2} + \frac{\sin 2\theta}{4} \right)_{\theta_{U}}^{\pi+\theta_{L}} + \frac{y_{c} r^{4}}{4} \left(\frac{\theta}{2} - \frac{\sin 2\theta}{4} \right)_{\theta_{U}}^{\pi+\theta_{L}} \\ &- \frac{x_{c} y_{c} r^{4}}{2} (\sin^{2} \theta)_{\theta_{U}}^{\pi+\theta_{L}} + \frac{2}{15} y_{c} r^{5} (\sin^{3} \theta)_{\theta_{U}}^{\pi+\theta_{L}} + \frac{2}{15} \lambda_{c} r^{5} (\cos^{3} \theta)_{\theta_{U}}^{\pi+\theta_{L}} + \frac{r^{6}}{48} \left(\frac{2\theta}{2} - \frac{\sin 4\theta}{4} \right)_{\theta_{U}}^{\pi+\theta_{L}} \\ &- \left[x_{c}^{2} y_{c}^{2} + \frac{r^{2}}{4} \left(x_{c}^{2} + y_{c}^{2} + \frac{r^{2}}{6} \right) \right] A - r^{3} \left(x_{c} y_{c} \left(\frac{2}{3} \left[x_{c} (\sin \theta_{L} + \sin \theta_{U}) + y_{c} (\cos \theta_{L} + \cos \theta_{U}) \right] + \frac{r}{2} (\sin 2\theta_{L} - \sin 2\theta_{U}) \right\} \\ &+ \frac{2}{15} r^{2} \left[x_{c} (\cos^{3} \theta_{L} + \cos^{3} \theta_{U}) + y_{c} \left(\sin^{3} \theta_{L} + \sin^{3} \theta_{U} \right) \right] - \frac{r}{16} \left[\left(x_{c}^{2} - y_{c}^{2} \right) \left(\sin^{2} \theta_{L} - \sin^{2} \theta_{U} \right) - \frac{r^{2}}{12} (\sin 4\theta_{L} - \sin 4\theta_{U}) \right] \right] \end{split}$$

(E12)

É. in

1

`

82

3. A. 4

Area and Moments of Trapezoias

In addition to the end circles, values for the two trapezoidal pieces (as shown in fig. 5) are also needed to properly account for the blade-section ends left from the spline integrals. The following equations for the trapezoids use the nomenclature of figure 11:

$$A = \frac{1}{2} (x_{c} - x_{U})(y_{U} + y_{c}) + \frac{1}{2} (x_{L} - x_{c})(y_{L} + y_{c})$$
$$= \frac{1}{2} (x_{c} - x_{U})(y_{U} - y_{L}) + \frac{1}{2} (x_{L} - x_{U})(y_{L} + y_{c})$$
(E13)

$$A\bar{x} = (x_{c} - x_{U})y_{c} \frac{x_{c} + x_{U}}{2} + \frac{1}{2}(x_{c} - x_{U})(y_{U} - y_{c})\frac{2x_{U} + x_{c}}{3} + (x_{L} - x_{c})y_{L}\frac{x_{c} + x_{L}}{2} + \frac{1}{2}(x_{L} - x_{c})(y_{c} - y_{L})\frac{2x_{c} + x_{L}}{3}$$

$$=\frac{x_{c}-x_{U}}{6}\left[y_{c}(2x_{c}+x_{U})+y_{U}(2x_{U}+x_{c})\right]+\frac{x_{L}-x_{c}}{6}\left[y_{L}(x_{c}+2x_{L})+y_{c}(2x_{c}+x_{L})\right]$$
(E14)

$$\overline{Ay} = (x_{c} - x_{U})y_{c} \frac{y_{c}}{2} + \frac{1}{2}(x_{c} - x_{U})(y_{U} - y_{c}) \frac{y_{U} + 2y_{c}}{3} + (x_{L} - x_{c})y_{L} \frac{y_{L}}{2} + \frac{1}{2}(x_{L} - x_{c}) \times (y_{c} - y_{L}) \frac{y_{c} + 2y_{L}}{3}$$

$$=\frac{x_{c}-x_{U}}{6}\left(y_{U}^{2}+y_{U}y_{c}+y_{c}^{2}\right)+\frac{x_{L}-x_{c}}{6}\left(y_{L}^{2}+y_{c}y_{L}+y_{c}^{2}\right)$$
(E15)

Higher moments for the trapezoidal-shaped pieces are needed in the terminal calculations. The values of these higher moments were found by integration. For the trapezoid with a corner at the suction-surface-curve end point,

$$y = y_{c} + (x - x_{c}) \frac{y_{U} - y_{c}}{x_{U} - x_{c}}$$

0	2
9	J

12.43

The form of this equation for integration is a + bx where

$$\mathbf{a} = \mathbf{y}_{c} - \mathbf{x}_{c} \frac{\mathbf{y}_{U} - \mathbf{y}_{c}}{\mathbf{x}_{U} - \mathbf{x}_{c}}$$

and

$$\mathbf{b} = \frac{\mathbf{y}_{\mathrm{U}} - \mathbf{y}_{\mathrm{c}}}{\mathbf{x}_{\mathrm{U}} - \mathbf{x}_{\mathrm{c}}}$$

$$\begin{split} I_{yy} &= \int_{x_{U}}^{x_{C}} \int_{0}^{y} x^{2} \, dy \, dx + \int_{x_{c}}^{x_{L}} \int_{0}^{y} x^{2} \, dy \, dx = \int_{x_{U}}^{x_{C}} yx^{2} \, dx + \int_{x_{c}}^{x_{L}} yx^{2} \, dx \\ &= \int_{x_{U}}^{x_{c}} \left(y_{c} - x_{c} \frac{y_{U} - y_{c}}{x_{U} - x_{c}} \right) x^{2} \, dx + \int_{x_{U}}^{x_{c}} \left(\frac{y_{U} - y_{c}}{x_{U} - x_{c}} \right) x^{3} \, dx + \int_{x_{c}}^{x_{L}} \left(y_{c} - x_{c} \frac{y_{L} - y_{c}}{x_{L} - x_{c}} \right) x^{2} \, dx + \int_{x_{c}}^{x_{L}} \frac{y_{L} - y_{c}}{x_{L} - x_{c}} \, x^{3} \, dx \\ &= \left[\left(y_{c} - x_{c} \frac{y_{U} - y_{c}}{x_{U} - x_{c}} \right) \frac{x^{3}}{3} \right]_{x_{U}}^{x_{c}} + \left(\frac{y_{U} - y_{c}}{x_{U} - x_{c}} \frac{x^{4}}{4} \right)_{x_{U}}^{x_{c}} + \left[\left(y_{c} - x_{c} \frac{y_{L} - y_{c}}{x_{L} - x_{c}} \right) \frac{x^{3}}{3} \right]_{x_{c}}^{x_{L}} + \left(\frac{y_{L} - y_{c}}{x_{L} - x_{c}} \frac{x^{4}}{4} \right)_{x_{c}}^{x_{L}} \right] \\ &= \left(x_{c} - x_{U} \right) \left\{ \frac{1}{3} \left(y_{c} - x_{c} \frac{y_{U} - y_{c}}{x_{U} - x_{c}} \right) \left(x_{c}^{2} + x_{c} x_{U} + x_{U}^{2} \right) + \frac{1}{4} \frac{y_{U} - y_{c}}{x_{U} - x_{c}} \left[x_{c} \left(x_{c}^{2} + x_{c} x_{U} + x_{U}^{2} \right) + x_{U}^{3} \right] \right\} \\ &+ \left(x_{L} - x_{c} \left\{ \frac{1}{3} \left(y_{c} - x_{c} \frac{y_{L} - y_{c}}{x_{L} - x_{c}} \right) \left(x_{c}^{2} + x_{c} x_{U} + x_{c}^{2} \right) \right\} + \frac{1}{4} \frac{y_{U} - y_{c}}{x_{U} - x_{c}} \left[x_{c} \left(x_{c}^{2} + x_{c} x_{U} + x_{U}^{2} \right) + x_{U}^{3} \right] \right\} \\ &+ \left(x_{L} - x_{c} \left\{ \frac{1}{3} \left(y_{c} - x_{c} \frac{y_{L} - y_{c}}{x_{L} - x_{c}} \right) \left(x_{c}^{2} + x_{c} x_{U} + x_{c}^{2} \right) - \frac{y_{U} - y_{c}}{4} \left[x_{L}^{3} + \left(x_{L}^{2} + x_{L} x_{c} + x_{c}^{2} \right) x_{c}^{3} \right] \right] \right\} \\ &= \frac{\left(x_{c} - x_{U} \right) y_{c}}{3} \left(x_{c}^{2} + x_{c} x_{U} + x_{U}^{2} \right) + \frac{x_{c} \left(y_{U} - y_{c} \right)}{12} \left(x_{c}^{2} + x_{c} x_{U} + x_{c}^{2} \right) - \frac{y_{U} - y_{c}}{4} x_{U}^{3} \right] \\ &+ \frac{\left(x_{L} - x_{c} \right) y_{c}}{3} \left(x_{c}^{2} + x_{c} x_{L} + x_{L}^{2} \right) - \frac{x_{c} \left(y_{L} - y_{c} \right)}{12} \left(x_{c}^{2} + x_{c} x_{L} + x_{L}^{2} \right) + \frac{y_{L} - y_{c}}{4} x_{L}^{3} \right) \\ &+ \frac{\left(x_{L} - x_{c} \right) y_{c}}{3} \left(x_{c}^{2} + x_{c} x_{L} + x_{L}^{2} \right) - \frac{x_{c} \left(y_{L} - y_{c} - y_{c} \right)}{12} \left(x_{c}^{2} + x_{c} x_{L} + x_{L}^{2} \right) \right) \\$$

1-2

$$I_{XX} = \int_{X_U}^{X_C} \int_{0}^{y} y^2 \, dy \, dx + \int_{X_C}^{X_L} \int_{0}^{y} y^2 \, dy \, dx = \int_{X_U}^{X_C} \frac{y^3}{3} \, dx - \int_{X_C}^{X_L} \frac{y^3}{3} \, dx = \int_{X_C}^{X_L} \frac{y^3}{3} \, dx + \int_{X_C}^{X_L} \frac{(a_L + b_L x)^3}{3} \, dx - \left[\frac{(a_U + b_U x)^4}{12b} \right]_{X_U}^{X_C} + \left[\frac{(a_L + b_L x)^4}{12b} \right]_{X_C}^{X_L}$$

$$= \left\{ \underbrace{ \left[y_c + (x - x_c) \frac{y_U - y_c}{x_U - x_c} \right]_{X_U}^4}_{12 \frac{y_U - y_c}{x_U - x_c}} \right]_{X_U}^4 + \left\{ \underbrace{ \left[y_c + (x - x_c) \frac{y_L - y_c}{x_L - x_c} \right]_{X_C}^4}_{12 \frac{y_L - y_c}{x_L - x_c}} \right]_{X_C}^4 \right\}_{X_C}$$

$$= \frac{(x_U - x_c)(y_c^4 - y_U^4)}{12(y_U - y_c)} + \frac{(x_L - x_c)(y_L^4 - y_c^4)}{12(y_L - y_c)} = -\frac{x_U - x_c}{12} \left(y_c^3 + y_c^2 y_U + y_c v_U^2 + y_U^3 \right) + \frac{x_L - x_c}{12} \left(y_c^3 + y_c^2 y_L + y_c y_L^2 + y_L^3 \right) \right\}_{X_C}$$

$$(E17)$$

$$I_{xy} = \int_{x_{U}}^{x_{C}} \int_{0}^{y} xy \, dy \, dx + \int_{x_{C}}^{x_{U}} \int_{0}^{y} xy \, dy \, dx$$

$$= \int_{x_{U}}^{x_{C}} \frac{(a_{U} + b_{U}x)^{2}}{2} x \, dx + \int_{x_{U}}^{x_{U}} \frac{(a_{L} + b_{L}x)^{2}}{2} x \, dx = \left[\frac{(a_{U} + b_{U}x)^{4}}{6b^{2}} - \frac{4(a_{U} + b_{U}x)^{3}}{6b^{2}}\right]_{x_{U}}^{x_{U}} + \left[\frac{(a_{L} + b_{L}x)^{4}}{6b^{2}} - \frac{4(a_{L} + b_{L}x)^{4}}{6b^{2}} - \frac{4(a_{L} + b_{L}x)^{4}}{6b^{2}}\right]_{x_{C}}^{x_{U}}$$

$$= \left\{ \frac{\left[\sum_{v=1}^{v} + (x - v_{v})\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right]^{4}}{e\left(\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right)\left[y_{v} + (x - x_{v})\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right]^{3}}{e\left(\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right)^{2}}\right]_{x_{U}}^{x_{U}} + \left[\frac{\left[\sum_{v=1}^{v} + (x - v_{v})\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right]^{4}}{e\left(\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right)\left[y_{v} + (x - x_{v})\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right]^{4}}{e\left(\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right)^{2}} + \frac{\left[\sum_{v=1}^{v} + (x - v_{v})\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right]^{4}}{e\left(\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right)\left[y_{v} + (x - x_{v})\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right]^{4}}{e\left(\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right)^{2}} + \frac{\left[\sum_{v=1}^{v} + (x - v_{v})\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right]^{4}}{e\left(\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right)\left[y_{v} + (x - x_{v})\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right]^{4}}{e\left(\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right)^{2}} + \frac{\left[\sum_{v=1}^{v} + (x - v_{v})\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right]^{4}}{e\left(\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right)\left[y_{v} + (x - v_{v})\frac{y_{U} - y_{v}}{x_{U} - x_{v}}\right]^{4}}$$

$$= -\frac{\mathbf{x}_{U} - \mathbf{x}_{c}}{24} \left[\mathbf{x}_{U} \left(3y_{U}^{2} + 2y_{U}y_{c} + y_{c}^{2} \right) + \mathbf{x}_{c} \left(y_{U}^{2} + 2y_{U}y_{c} + 3y_{c}^{2} \right) \right] + \frac{\mathbf{x}_{L} - \mathbf{x}_{c}}{24} \left[\mathbf{x}_{L} \left(3y_{L}^{2} + 2y_{L}y_{c} + y_{c}^{2} \right) + \mathbf{x}_{c} \left(y_{L}^{2} + 2y_{L}y_{c} + 3y_{c}^{2} \right) \right]$$
(E18)

85

ŧ

THE PARTY

$$I_{yvyy} = \int_{x_{U}}^{x_{U}} \int_{0}^{y} x^{4} dy dx + \int_{x_{U}}^{x_{L}} \int_{0}^{v} x^{4} dy dx$$

$$= \int_{x_{U}}^{v_{U}} (a_{U} + b_{U}x)x^{4} dx + \int_{x_{U}}^{x_{L}} (a_{L} + b_{L}x)x^{4} dx - \frac{a_{U}}{5} (x_{c}^{5} + x_{1}^{5}) + \frac{b_{U}}{c} (x_{c}^{6} + x_{1}^{c}) + \frac{a_{L}}{5} (x_{1}^{5} + x_{c}^{5}) + \frac{b_{L}}{6} (x_{L}^{6} + x_{c}^{6})$$

$$= \frac{y_{c}}{5} (x_{c} - x_{U}) (x_{c}^{4} + x_{c}^{3}x_{U} + x_{c}^{2}x_{U}^{2} + x_{c}x_{U}^{3} + x_{U}^{4}) + \frac{v_{U} + y_{c}}{30} x_{c} (x_{c}^{4} + x_{c}^{3}x_{U} + x_{c}^{2}x_{U}^{2} + x_{c}x_{1}^{3} + x_{U}^{4})$$

$$= \frac{y_{U} - y_{c}}{6} x_{U}^{5} + \frac{y_{c}}{5} (x_{L} - x_{c}) (x_{L}^{4} + x_{L}^{3}x_{c} + x_{L}^{2}x_{c}^{2} + x_{L}x_{c}^{3} + x_{L}^{4}) - \frac{y_{L} - y_{c}}{30} x_{c} (x_{L}^{4} + x_{L}^{3}x_{c} + x_{L}^{2}x_{c}^{2} + x_{L}x_{c}^{3} + x_{L}^{4}) + \frac{y_{L} - y_{c}}{30} x_{c} (x_{L}^{4} + x_{L}^{3}x_{c} + x_{L}^{2}x_{c}^{2} + x_{L}x_{c}^{3} + x_{L}^{4}) + \frac{y_{L} - y_{c}}{30} x_{c} (x_{L}^{4} + x_{L}^{3}x_{c} + x_{L}^{2}x_{c}^{2} + x_{L}x_{c}^{3} + x_{C}^{4}) + \frac{y_{L} - y_{c}}{6} x_{L}^{5}$$

$$(E19)$$

$$I_{XXXX} = \int_{x_U}^{x_C} \int_{0}^{y} y^4 \, dy \, dx + \int_{x_C}^{x_L} \int_{0}^{y} y^4 \, dy \, dx = \int_{x_U}^{x_C} \frac{(a_U + b_U x)^5}{5} \, dx + \int_{x_C}^{x_L} \frac{(a_L + b_L x)^5}{5} \, dx$$

$$= \left[\frac{(a_U + b_U x)^6}{30b} \right]_{x_U}^{x_C} + \left[\frac{(a_L + b_L x)^6}{30b} \right]_{x_C}^{x_L} = \left\{ \frac{\left[y_C + (x - x_C) \frac{y_U - y_C}{x_U - x_C} \right]_{x_U - x_C}^{x_C}}{30 \frac{y_U - y_C}{x_U - x_C}} \right\}_{x_U}^{x_C} + \left[\frac{y_C + (x - x_C) \frac{y_L - y_C}{x_L - x_C}}{30 \frac{y_L - y_C}{x_L - x_C}} \right]_{x_C}^{x_L}$$

$$= -\frac{(x_U - x_C) \left(y_C^5 + y_C^4 y_U + y_C^3 y_U^2 + y_C^2 y_U^3 + y_C y_U^4 y_U^5 \right)}{30} + \frac{(x_L - x_C) \left(y_L^5 + y_L^4 y_C + y_L^3 y_C^2 + y_L^2 y_C^3 + y_L y_C^4 + y_C^5 \right)}{30}$$
(E20)

$$\begin{split} \mathbf{1}_{\mathbf{X}\mathbf{X}\mathbf{Y}} &= \int_{-\mathbf{U}}^{-\mathbf{V}_{\mathbf{U}}} \int_{0}^{\mathbf{Y}_{\mathbf{U}}} \mathbf{x}^{2} \mathbf{y}^{2} \, \mathrm{d}y_{\mathbf{U}} \mathbf{x}_{\mathbf{v}} + \int_{-\mathbf{U}}^{-\mathbf{V}_{\mathbf{U}}} \int_{0}^{-\mathbf{V}_{\mathbf{U}}} \mathbf{y}^{2} \mathbf{y}^{2} \, \mathrm{d}y_{\mathbf{U}} \mathbf{x}_{\mathbf{v}} + \int_{-\mathbf{U}}^{-\mathbf{V}_{\mathbf{U}}} \int_{0}^{\mathbf{V}_{\mathbf{U}}} \mathbf{y}^{2} \mathbf{y}^{2} \, \mathrm{d}y_{\mathbf{U}} \mathbf{x}_{\mathbf{v}} + \int_{-\mathbf{U}}^{-\mathbf{V}_{\mathbf{U}}} \int_{0}^{-\mathbf{V}_{\mathbf{U}}} \mathbf{y}^{2} \mathbf{y}^{2} \, \mathrm{d}y_{\mathbf{U}} \mathbf{x}_{\mathbf{v}} + \int_{-\mathbf{U}}^{-\mathbf{V}_{\mathbf{U}}} \int_{-\mathbf{U}_{\mathbf{U}}}^{-\mathbf{V}_{\mathbf{U}}} \mathbf{y}^{2} \mathbf{y}^{2} \, \mathrm{d}y_{\mathbf{U}} \mathbf{x}_{\mathbf{v}} + \int_{-\mathbf{U}_{\mathbf{U}}}^{-\mathbf{V}_{\mathbf{U}}} \int_{-\mathbf{U}_{\mathbf{U}}}^{-\mathbf{V}_{\mathbf{U}}} \mathbf{y}^{2} \mathbf{y}^{2} \, \mathrm{d}y_{\mathbf{U}} \mathbf{x}_{\mathbf{v}} + \int_{-\mathbf{U}_{\mathbf{U}}}^{-\mathbf{V}_{\mathbf{U}}} \int_{-\mathbf{U}_{\mathbf{U}}}^{-\mathbf{V}_{\mathbf{U}}} \mathbf{y}^{2} \mathbf{y}^{2} \, \mathrm{d}y_{\mathbf{U}} \mathbf{x}_{\mathbf{v}} + \int_{-\mathbf{U}_{\mathbf{U}}}^{-\mathbf{V}_{\mathbf{U}}} \int_{-\mathbf{U}_{\mathbf{U}}}^{-\mathbf{U}_{\mathbf{U}}} \mathbf{y}^{2} \mathbf{y}^{2} \, \mathrm{d}y_{\mathbf{U}} \mathbf{x}_{\mathbf{U}} \mathbf{y}^{2} + \frac{\mathbf{U}_{\mathbf{U}} \mathbf{y}^{2}}{\mathbf{y}^{2}} \mathbf{y}^{2} \, \mathrm{d}y_{\mathbf{U}} \mathbf{y}^{2} \mathbf{y}^{2} \, \mathrm{d}y_{\mathbf{U}} \mathbf{y}^{2} + \frac{\mathbf{U}_{\mathbf{U}} \mathbf{y}^{2}}{\mathbf{y}^{2}} \mathbf{y}^{2} \, \mathrm{d}y_{\mathbf{U}} \mathbf{y}^{2} \mathbf{y}^{2} + \frac{\mathbf{U}_{\mathbf{U}} \mathbf{y}^{2}}{\mathbf{y}^{2}} \mathbf{y}^{2} \, \mathrm{d}y_{\mathbf{U}} \mathbf{y}^{2} \mathbf{y}^{2} \, \mathrm{d}y_{\mathbf{$$

P

(E21)

4 . . .

APPENDIX F

DEVELOPMENT OF BLADE BENDING MOMENT EQUATIONS

The centrifugal force on a blade mass element dm is

$$d\mathbf{F} = d\mathbf{m} + \omega^2 + \mathbf{r}$$
 (F1)

For a thin blade section, this force is approximated by

$$d\mathbf{F} = \frac{\rho \mathbf{A} \, d\mathbf{r}}{12g} \, \omega^2 \mathbf{r} \tag{F2}$$

A corresponding bending moment on this blade element is

$$d\mathbf{M} = d\mathbf{F} \cdot \boldsymbol{l} \tag{F3}$$

Bending Moment from Centrifugal Force Acting with a Meridional Plane Lever

The net effect of centrifugal force on a thin blade section can be considered as a summed force acting at the center of area of the blade section. This force acting with a lever arm in the meridional plane can be expressed as

$$d\mathbf{M} = d\mathbf{F} \frac{\mathbf{r} - \mathbf{r}_h}{12} \tan \lambda$$

where λ is the stacking-axis lean shown in figure 12.

$$\mathbf{M}_{\mathbf{a}} = \int_{\mathbf{r}_{\mathbf{h}}}^{\mathbf{r}_{\mathbf{t}}} \frac{\rho \omega^{2} \tan \lambda}{144g} \operatorname{Ar}(\mathbf{r} - \mathbf{r}_{\mathbf{h}}) d\mathbf{r} = \left[\frac{\rho \omega^{2}}{144g} \sum_{j=1}^{J} \operatorname{Ar}(\mathbf{r} - \mathbf{r}_{\mathbf{h}}) \mathbf{h} \right] \tan \lambda = (\mathbf{C}_{\mathbf{a}}) \tan \lambda$$
(F4)

Definition of Tip Volume Element for Moment Corrections

When the end streamlines are sloped, the previous summation is not complete. The wedge-shaped excess and decrement masses from the tip blade section should be accounted for because their centers of mass are far from the stacking axis (fig. 7). The material at the hub, for practical purposes, can be considered as part of the blade base; so no moment correction is made for the offset hub material.

The reference plane for excess volume definition passes through the stacking-line intersection of the end of the blade at the tip (fig. 12). The height of an element of excess volume is the radial distance from the local tip edge of the blade to the reference plane. The side surfaces of an element of volume are approximated by radial projection of the reference section shape. In the tip region, the blade camber is usually quite small; so a simple linear fit between the blade-section definition points was used. The resulting equation for the path between surface points is a line

$$y = \frac{y_{k}(x - x_{k-1}) + y_{k-1}(x_{k} - x)}{x_{k} - x_{k-1}}$$
(F5)

The moments are needed in the axial and tangential directions. Since the wedge elements are also more naturally defined in an axial-normal coordinate system, the surface definition equations are redefined in the rotated coordinates shown in figure 13.

$$z = x \cos \gamma - y \sin \gamma$$
 (F6)

$$\mathbf{n} = \mathbf{x} \, \sin \gamma + \mathbf{y} \, \cos \gamma \tag{F7}$$

The coordinate z is the new independent variable, and n is the new dependent variable. To get a relation between x and z, use equation (F5) in (F6). The result is

$$x = \frac{z(x_{k} - x_{k-1}) - (y_{k}x_{k-1} - y_{k-1}x_{k})\sin\gamma}{(x_{k} - x_{k-1})\cos\gamma - (y_{k} - y_{k-1})\sin\gamma}$$
(F8)

Substitution of equations (F5) and (F8) into (F7) gives the rotated form for n in terms of knowns and the independent variable

. 3

$$n = \frac{\left[(x_{k} - x_{k-1}) \sin \gamma + (y_{k} - y_{k-1}) \cos \gamma \right] z + y_{k-1} x_{k} - y_{k} x_{k-1}}{(x_{k} - x_{k-1}) \cos \gamma - (y_{k} - y_{k-1}) \sin \gamma}$$
(F9)

-89

For integration purposes, equation (F9) is expressed as

n = Az + B

where

$$A = \frac{(x_k - x_{k-1})\sin\gamma + (y_k - y_{k-1})\cos\gamma}{(x_k - x_{k-1})\cos\gamma - (y_k - y_{k-1})\sin\gamma}$$

and

$$\mathbf{B} = \frac{\mathbf{y}_{\mathbf{k}-1}\mathbf{x}_{\mathbf{k}} - \mathbf{y}_{\mathbf{k}}\mathbf{x}_{\mathbf{k}-1}}{(\mathbf{x}_{\mathbf{k}} - \mathbf{x}_{\mathbf{k}-1})\cos\gamma - (\mathbf{y}_{\mathbf{k}} - \mathbf{y}_{\mathbf{k}-1})\sin\gamma}$$

Tip Correction Moment for Centrifugal Force Acting in Meridional Plane

The bending moment associated with forces acting in the meridional plane is defined as positive in the counterclockwise direction in figure 12. The differential moment for the tip correction can be expressed as

$$\mathrm{d}\mathbf{M} = \mathrm{d}\mathbf{m} \ \omega^2 \overline{\mathbf{r}} l$$

where \overline{r} is the average element radius

$$\therefore \quad dM \stackrel{\rho}{=} d(Vol)\omega^2 \overline{r}l$$

$$dM = \frac{\rho}{144g} (n_s - n_p) z \tan \alpha \, dz \, \omega^2 \overline{r} [z + (r_t - r_h) \tan \lambda]$$
(F10)

The tip correction from the center of the leading-edge circle to the center of the trailingedge circle is

$$\mathbf{M}_{da} = \int_{z_{1e}}^{z_{1e}} \frac{p\omega^2}{144g} \tan \alpha (\mathbf{n}_s - \mathbf{n}_p) \mathbf{\bar{r}} z \left[z + (\mathbf{r}_t - \mathbf{r}_h) \tan \beta \right] dz$$
$$= \frac{p\omega^2 \tan \alpha}{144g} \sum_{n=1}^{N} \left[\mathbf{\bar{r}} - \int_{z_{n-1}}^{z_n} \left[\mathbf{A}_s z + \mathbf{B}_s - (\mathbf{A}_p z + \mathbf{B}_p) \right] z \left[z + (\mathbf{r}_t - \mathbf{r}_h)^{t_d n - s} \right] dz$$

The integral is applicable between surface points after the equations for line segments have been substituted. Since the constants change for a point on either surface, the number of summation terms is 2k - 2, where k is the number of points on each surface. The term \bar{r} was removed from the integral because it is relatively independent of z for the integration increment between surface points.

$$\begin{split} \mathbf{M}_{da} &= \frac{z^{2} (\tan \phi)}{144g} \sum_{n=1}^{N} \left[\tilde{\mathbf{r}} + \int_{z_{n+1}}^{y_{n}} \left[(\mathbf{A}_{s} + \mathbf{A}_{p}) z^{3} + (\mathbf{B}_{s} + \mathbf{B}_{p}) z^{2} \right] dz + (\mathbf{r}_{t} + \mathbf{r}_{h}) \tan \phi \int_{z_{n+1}}^{y_{n}} \left[(\mathbf{A}_{s} - \mathbf{A}_{p})^{2} z^{2} + (\mathbf{B}_{s} + \mathbf{B}_{p})^{2} \right] dz \\ &= \frac{z^{2} (\tan \phi)}{144g} \sum_{n=1}^{N} \left[\tilde{\mathbf{r}} \int_{1}^{y} \left[(\mathbf{A}_{s} + \mathbf{A}_{p}) \frac{z^{4}}{4} \right]_{z_{n+1}}^{z_{n}} + \left[(\mathbf{B}_{s} + \mathbf{B}_{p}) \frac{z^{3}}{3} \right]_{z_{n+1}}^{y_{n}} + (\mathbf{r}_{t} + \mathbf{r}_{h}) \tan \phi \left[(\mathbf{A}_{s} + \mathbf{A}_{p}) \frac{z^{4}}{3} + (\mathbf{B}_{s} - \mathbf{B}_{p}) \frac{z^{3}}{2} \right]_{z_{n+1}}^{z_{n+1}} \\ &= \frac{z^{2} (\tan \phi)}{144g} \sum_{n=1}^{N} \left[(\mathbf{I}_{s} + \mathbf{A}_{p}) \frac{z^{4}}{4} \right]_{z_{n+1}}^{z_{n}} + \left[(\mathbf{B}_{s} + \mathbf{B}_{p}) \frac{z^{3}}{3} \right]_{z_{n+1}}^{z_{n+1}} + (\mathbf{r}_{t} + \mathbf{r}_{h}) \tan \phi \left[(\mathbf{A}_{s} + \mathbf{A}_{p}) \frac{z^{4}}{3} + (\mathbf{B}_{s} - \mathbf{B}_{p}) \frac{z^{2}}{2} \right]_{z_{n+1}}^{z_{n+1}} \\ &= \frac{z^{2} (\tan \phi)}{144g} \sum_{n=1}^{N} \left[(\mathbf{I}_{s} + \frac{z_{n} + z_{n+1}}{4} \tan \phi) (z_{n} + z_{n+1}) \right]_{z_{n+1}}^{z_{n+1}} \\ &+ \left[\frac{(\mathbf{A}_{s} - \mathbf{A}_{p}) (z_{n}^{3} z_{n}^{2} z_{n+1} + z_{n}^{2} z_{n+1}) - \frac{\mathbf{B}_{s} - \mathbf{B}_{p}}{3} (z_{n}^{2} + z_{n}^{2} z_{n+1} + z_{n+1}^{2}) \right]_{z_{n+1}}^{z_{n+1}} + \left[(\mathbf{B}_{s} - \mathbf{A}_{p}) (z_{n}^{2} + z_{n+1} + z_{n+1}) + (\mathbf{B}_{s} - \mathbf{B}_{p}) (z_{n}^{3} + z_{n+1}) \right]_{z_{n+1}}^{z_{n+1}} \\ &= \frac{z^{2} (2\pi e^{2} z_{n}) (z_{n}^{2} + z_{n+1}) (z_{n}^{2} + z_{n+1}) - (z_{n+1}) - (z_{n+1}) (z_{n}^{2} + z_{n+1}) + (z_{n}^{2} + z_{n+1}) (z_{n}^{2} + z_{n+1}) - (z_{n}^{2} + z_{n+1}) (z_{n}^{2} + z_{n+1}) - (z_{n}^{2} + z_{n+1}) - (z_{n}^{2} + z_{n+1}) - (z_{n}^{2} + z_{n+1}) (z_{n}^{2} + z_{n+1}) - (z_{n}^{2} + z_{n+1}) + (z_{n}^{2} + z_{n+1}) - (z_{$$

The previous summation carried from the leading-edge-circle center to the trailingedge-circle center. The edge circles have the largest element height, so they are accounted for too. The approximations used are illustrated in figure 14. An end semicircle is used, with the shaded areas considered to approximately compensate each other. The center of area of the end semicircle is $4r_e^{-/3\pi}$ from the circle center. The end-circle moment additions are expressed as

$$M_{da} = \frac{\mu \omega^2 \bar{r}}{144g} \frac{\pi r_e^2}{2} (z_e \tan \alpha) \left[z_e \pm \frac{4r_e}{3\pi} + (r_t - r_h) \tan \lambda \right]$$
(F12)

The minus sign is used for the leading-edge circle, and the plus sign for the trailingedge circle.

Stacking-Axis Lean Angle from a Moment Balance in Meridional Plane

When equations (F4), (F11), and (F12) are summed, the bending moment due to centrifugal force of the blade mass is expressed in terms of the lean angle λ as

$$\mathbf{M}_{\mathbf{a}} = \mathbf{D}_{\mathbf{a}} + \mathbf{C}_{\mathbf{a}} \tan \lambda \tag{F13}$$

The lean angle which will balance the axial component of the steady-state gas bending moment M_{ha} is then readily available from the moment balance

$$\mathbf{M}_{ba} + \mathbf{M}_{a} = 0$$
$$\mathbf{M}_{ba} + \mathbf{D}_{a} + \mathbf{C}_{a} \tan \lambda = 0$$

S0

$$\tan \lambda = -\frac{\mathbf{M}_{\mathbf{b}\mathbf{a}} + \mathbf{D}_{\mathbf{a}}}{\mathbf{C}_{\mathbf{a}}}$$
(F14)

Stacking-Axis Lean Angle from a Moment Balance in $r-\theta$ Plane

The procedure of determining a stacking-axis lean angle in the $r-\theta$ plane is similar to that used in the meridional plane. The bending moment produced in the $r-\theta$ plane by centrifugal force acting at the center of area of blade sections has the same form as equation (F4),

$$\mathbf{M}_{t} = (\mathbf{C}_{t}) \tan \eta \tag{F15}$$

where C_t is equal to the C_a of equation (F4). The moment is positive in the counterrotational direction.

For the tip correction moment, the differential moment arm is expressed with a different equation; so it is necessary to go through a separate development.

$$d\mathbf{M} = \frac{p}{144g} \left(\mathbf{n}_{S} - \mathbf{n}_{p} \right) z \tan \alpha dz \ \omega^{2} \mathbf{r} \left[-\frac{\mathbf{n}_{S} + \mathbf{n}_{p}}{2} + (\mathbf{r}_{t} - \mathbf{r}_{h}) \tan z \right]$$

$$\mathbf{M}_{dt} = \frac{e^{2} \tan z}{144g} \sum_{n=1}^{N} \mathbf{r} - \int_{z_{n+1}}^{z_{n+1}} \left[\mathbf{A}_{s} z + \mathbf{B}_{s} + \mathbf{A}_{p} + \mathbf{B}_{p} z \right] z \left[-\frac{\mathbf{A}_{s} z + \mathbf{B}_{s} + \mathbf{A}_{p} z + \mathbf{B}_{p}}{2} + \mathbf{r}_{s} + \mathbf{r}_{s} + \mathbf{r}_{h} + \mathbf{r}_{h} \right] dz$$

$$= -\frac{e^{2} \tan z}{144g} \sum_{n=1}^{N} \left[\mathbf{r}_{t} + \frac{z_{n+1}}{4} \tan z \right] (z_{n} + z_{n-1}) \left\{ \frac{\mathbf{A}_{s}^{2} + \mathbf{A}_{p}^{2}}{z} (z_{n}^{3} + z_{n'n-1}^{2} + z_{n'n-1}^{2} + z_{n'n-1}^{3}) + \frac{\mathbf{A}_{s} \mathbf{B}_{s} - \mathbf{A}_{p} \mathbf{B}_{p}}{1} (z_{1}^{2} + z_{n'n-1} + z_{n-1}^{2}) + \frac{\mathbf{B}_{s}^{2} - \mathbf{B}_{p}^{2}}{1} (z_{n}^{2} + z_{n-1}) \left\{ \frac{\mathbf{A}_{s}^{2} + \mathbf{A}_{p}^{2}}{z} (z_{n}^{3} + z_{n'n-1}^{2} + z_{n'n-1}^{2} + z_{n'n-1}^{3}) + \frac{\mathbf{A}_{s} \mathbf{B}_{s} - \mathbf{A}_{p} \mathbf{B}_{p}}{1} (z_{1}^{2} + z_{n'n-1} + z_{n-1}^{2}) + \frac{\mathbf{B}_{s}^{2} - \mathbf{B}_{p}^{2}}{1} (z_{n}^{2} + z_{n'n-1} + z_{n-1}^{2}) + \frac{\mathbf{B}_{s}^{2} - \mathbf{B}_{p}^{2}}{2} (z_{n}^{2} + z_{n-1}) \left[\mathbf{B}_{s} - \mathbf{B}_{p} \mathbf{B}_{p} (z_{1}^{2} + z_{n'n-1} + z_{n-1}) \right] (\mathbf{r}_{t} + \mathbf{r}_{h}) \tan \gamma \right\}$$

$$= \mathbf{D}_{t} + \mathbf{C}_{dt} \tan \gamma$$
(F16)

For the end semicircles, the equation is

$$\mathbf{M}_{dt} = \frac{\rho \omega^2 \mathbf{r}}{144g} \frac{\pi \mathbf{r}_e^2}{2} \mathbf{z}_e \tan \alpha \left[-\mathbf{n}_e + (\mathbf{r}_t - \mathbf{r}_h) \tan \eta \right]$$
(F17)

When equations (F15), (F16), and (F17) are summed, the moment equation in terms of the tangential lean angle is

$$\mathbf{M}_{\mathbf{t}} = \mathbf{D}_{\mathbf{t}} + \mathbf{C}_{\mathbf{t}} \tan \eta$$

The gas bending mom nt M_{bt} is calculated with the opposite sign convention of the moment produced by centrifugal force. Thus, the moment balancing equation in the $r-\theta$ plane is

$$M_{t} - M_{bt} = 0$$

$$D_{t} + C_{t} \tan \eta = M_{bt}$$

$$\tan \eta = \frac{M_{bt} - D_{t}}{C_{t}}$$
(F18)

25 million 100

3. 4. 3. 19

Stacking-Axis Lean Adjustments

The blade-edge coordinates change with changes in stacking-axis lean. These changes can be approximated by blade-element translations on the cone. Thus, the shift of blade-edge coordinates for a blade element is assumed to be the same as the shift of the stacking-axis intersection with the blade element. The geometry associated with the shifts is shown in figure 15, where λ_n is the new stacking-axis lean in the meridional plane and λ_0 is the stacking-axis lean from the previous iteration. The equations for the three lines are

$$r_{n} - r_{0} = (z_{n} - z_{0}) \tan \alpha$$
 (F19)

$$z_0 - z_h = (\mathbf{r}_0 - \mathbf{r}_h) \tan \lambda_0 \tag{F20}$$

$$z_n - z_h = (r_n - r_h) \tan \lambda_n$$
 (F21)

To eliminate z_h, subtract equation (F20) from (F21).

$$z_n - z_0 = (r_n - r_h) \tan \lambda_n - (r_0 - r_h) \tan \lambda_0$$

Then, to eliminate r_n , use equation (F19) in the preceding equation. The z shift can be expressed as

$$z_n - z_0 - \frac{(r_0 - r_h)(\tan \lambda_n - \tan \lambda_0)}{1 - \tan \alpha \tan \lambda_n}$$
(F22)

The r shift from the use of equation (F22) in (F19) is

$$\mathbf{r}_{n} - \mathbf{r}_{0} = \frac{(\mathbf{r}_{0} - \mathbf{r}_{h})(\tan \lambda_{n} - \tan \lambda_{0})}{1 - \tan \alpha \tan \lambda_{n}} \tan \alpha$$
(F23)

The blade stacking-axis lean angle λ is not directly stored in the program. It is calculated from stacking reference points at the hub and tip. Since the hub point is the fixed reference stacking point, it is necessary to relocate a point at the tip to conform with the new λ . The new tip reference point will be assumed to lie on a line which passes through the old reference point with the slope of the tip blade-element cone.

Since the tip casing wall may be curved, the new tip reference point may be slightly off the physical wall; but this is of no consequence since the point is only used for a stacking-point reference. The equation used for $z_n - z_0$ in the program appears different from equation (F22), but it is the one obtained by using equation (F20) in (F22) to eliminate λ_0 .

C - 20

APPENDIX G

BLADE-ANGLE CORRECTION FROM LOCAL STREAMLINE

SLOPE TO LAYOUT-CONE SLOPE

The differential blade-element-edge angle correction from a local direction α to the layout-cone direction α_c is illustrated in figure 16. The equation used to express the relation is

$$\tan \kappa_{\rm c} = \frac{\mathbf{r} \, \mathrm{d}\vartheta}{\mathrm{d}\mathbf{m}_{\rm c}} = \frac{\mathbf{r} \, \mathrm{d}\vartheta}{\mathrm{d}\mathbf{m}_{\rm c}} = \frac{\mathbf{r} \, \mathrm{d}\vartheta}{\mathrm{d}\mathbf{m}_{\rm c}} \left(\frac{\mathrm{d}\mathbf{m}}{\mathrm{d}\mathbf{m}_{\rm c}} \right) - \mathbf{r} \, \frac{\partial\vartheta}{\partial \mathbf{r}} \frac{(\mathrm{d}\mathbf{m})\mathrm{sin} \, \alpha - (\mathrm{d}\mathbf{m}_{\rm c})\mathrm{sin} \, \alpha_{\rm c}}{\mathrm{d}\mathbf{m}_{\rm c}}$$
$$= \frac{\mathbf{r} \, \mathrm{d}\vartheta}{\mathrm{d}\mathbf{m}} \left(\frac{\mathrm{d}\mathbf{z}}{\mathrm{d}\mathbf{m}_{\rm c}} \right) - \mathbf{r} \, \frac{\partial\vartheta}{\partial \mathbf{r}} \frac{(\mathrm{d}\mathbf{m})\mathrm{sin} \, \alpha - (\mathrm{d}\mathbf{m}_{\rm c})\mathrm{sin} \, \alpha_{\rm c}}{\mathrm{d}\mathbf{m}_{\rm c}}$$
$$= \frac{\mathbf{r} \, \mathrm{d}\vartheta}{\mathrm{d}\mathbf{m}} \left(\frac{\mathrm{d}\mathbf{z}}{\mathrm{cos} \, \alpha_{\rm c}} \right) - \mathbf{r} \, \frac{\partial\vartheta}{\partial \mathbf{r}} \frac{(\mathrm{d}\mathbf{z})\mathrm{sin} \, \alpha - (\mathrm{d}\mathbf{m}_{\rm c})\mathrm{sin} \, \alpha_{\rm c}}{\mathrm{cos} \, \alpha_{\rm c}} \right)$$
$$= \tan \kappa_{\rm st} \frac{\cos \alpha_{\rm c}}{\cos \alpha_{\rm c}} - \mathbf{r} \, \frac{\partial\vartheta}{\partial \mathbf{r}} \frac{\cos \alpha_{\rm c} \sin \alpha - \cos \alpha \sin \alpha_{\rm c}}{\cos \alpha}$$
$$= \tan \kappa_{\rm st} \frac{\cos \alpha_{\rm c}}{\cos \alpha} - \mathbf{r} \, \frac{\partial\vartheta}{\partial \mathbf{r}} \frac{\sin(\alpha - \alpha_{\rm c})}{\cos \alpha}$$
(G1)

In equation (G1) the blade angle on the layout cone is expressed in terms of the α direction angles, the blade-edge angle on the local streamline, and $r(\partial \theta / \partial r)$. The only unknown is $r(\partial \theta / \partial r)$, which must be determined from a fit of blade-element end points across stacked adjacent blade elements. Since the blade-element end points were set up in a common coordinate system in subroutine POINTS, the end points are curve fit directly for the slope $r(d\theta / d\ell)$. Since for normal blading the slope is relatively low, a simple three-point parabolic curve fit was considered adequate.

The curve-fit value, $r(d\theta/dl)$, can be related to $r(\partial\theta/\partial r)$ through the directional derivatives associated with the geometry shown in figure 17.

and the factor of the

. . Constant States .

96

i

$$\mathbf{r} \frac{\mathrm{d}\sigma}{\mathrm{d}t} = \mathbf{r} \frac{\partial \sigma}{\partial \mathbf{r}} \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} + \mathbf{r} \frac{\partial \sigma}{\partial z} \frac{\mathrm{d}z}{\mathrm{d}t} = \mathbf{r} \frac{\partial \sigma}{\partial \mathbf{r}} \cos \lambda + \mathbf{r} \frac{\partial \theta}{\partial z} \sin \lambda$$
(G2)

Another equation in terms of the known partials is the one for the definition of the blade angle on the cone.

$$\tan \kappa_{c} = r \frac{d\theta}{dm_{c}} = r \frac{\partial \theta}{\partial r} \frac{dr}{dm_{c}} + r \frac{\partial \theta}{\partial z} \frac{dr}{dm_{c}} = r \frac{\partial \theta}{\partial r} \sin \alpha_{c} + r \frac{\partial \theta}{\partial z} \cos \alpha_{c}$$
(G3)

The elimination of $\partial \theta / \partial z$ between equations (G2) and (G3) yields an expression for $r(\partial \theta / \partial r)$. After some trigonometric manipulation, the equation can be expressed as

$$\mathbf{r} \frac{\partial \theta}{\partial \mathbf{r}} = \mathbf{r} \frac{d\theta}{dl} \frac{\cos \alpha_c}{\cos(\alpha_c + \lambda)} - \tan \kappa_c \frac{\lambda}{\cos(\alpha_c + \lambda)}$$
(G4)

Now there is a choice either of substituting equation (G4) into (G1) so that $r(d\theta/dt)$ is stored and used directly or of using these equations separately so that $r(d\theta/dt)$ is stored. The latter approach was used in the program because of procedural considerations. First, note that it is not desirable to compute $r(d\theta/dt)$ as needed when calculating successive streamlines because a different level of iteration would have been made on the ends of the curve used for the fit. So instead, curve fits for $r(d\theta/dt)$ are made after the same level of iterative adjustments has been made for all blade elements. Secondly, the direction of l changes during stacking-axis lean adjustments, so it was considered fundamentally better to save $r(d\theta/dr)$ between iterations since the derivative direction is constant. Thus, the procedure in the program is to obtain $r(d\theta/dr)$ values are stored between stacking iterations so that they can be used in equation (G1) when needed.

APPENDIX H

DEVELOPMENT OF EQUATIONS FOR TORSION CONSTANT

The torsion constant is a geometry parameter which is used for both stress and blacte untwist deflection calculations. It is defined in reference 6 as

$$K = \frac{\frac{1}{3}F}{1 + \frac{4}{3}\frac{F}{AU^2}}$$
(31)

where

 $\mathbf{F} = \int_0^U t^3 \, \mathrm{d} U$

Unfortunately, the blade sections are not defined in terms of a median line and thickness. They are defined by 13 points on each surface. These points, however, have already been curve fit for the purposes of determining blade-section areas and moments. The surface curves provide sufficient information to calculate a blade-section thickness everywhere. The trace of the median points of these thickness paths defines the median line.

While this approach is good in principle, it is difficult to apply in the full differential form because the general equation for t is too complicated for the subsequent integrations. So instead, the principles are applied in a piecewise way from the surface definition points. Specific thickness paths are calculated at the surface definition points. The median path passes through the midpoints of these thickness paths. The slope of the median line at these points is the average of the surface curve slopes at the end points of the thickness path. Then using the centerline path as the independent variable, a general thickness is defined by a cubic curve fit of the end thicknesses and the slope differences between the suction and pressure slopes at the ends of the segment-end thickness paths. A more detailed description of the procedure follows.

Definition of Blade-Section Thickness at Pressure-Surface Points

Let the piecewise segment junctions be at the pressure-surface definition points. At these points, the thickness path t, which is shown in figure 19, satisfies the angle condition

$$\alpha_{a} = \frac{\alpha_{s} + \alpha_{p}}{2} \tag{H1}$$

On the suction surface, the point which satisfies this condition will generally be offset from the corresponding suction-surface definition point. The suction-surface point which satisfies the angle condition is found with a simple iterative procedure. For the first trial, the suction-surface point corresponding to the current pressure-surface point is used. The angle λ is defined from a trial suction-surface point as

$$\tan \lambda = \frac{x_p - x_s}{y_s - y_p}$$
(H2)

The convergence criterion is then expressed as $|\alpha_{a} - \lambda| \leq 0.0001$.

When the convergence criterion is not satisfied, the point adjustment mechanism is derived from an assumption of negligible suction-surface slope change for the adjustment increment. An equation for the new point along the suction surface is

$$\tan \alpha_{s} = \frac{y_{s} - y_{sn}}{x_{s} - x_{sn}}$$
(H3)

An equation for the new point along the thickness path is

ì

$$\tan \alpha_{a} = \frac{x_{p} - x_{sn}}{y_{sn} - y_{p}}$$
(H4)

Upon elimination of y_{sn} between equations (H3) and (H4), the equation for x_{sn} is

$$x_{sn} = x_s + \frac{(y_p - y_s)\tan \alpha_a + (x_p - x_s)}{1 + \tan \alpha_a \tan \alpha_s}$$
(H5)

This value of x_{sn} is used in the spline equation for the appropriate suction-surface segment to get y_{sn} and α_s for the new point.

99

When the convergence criterion is satisfied, t is expressed as

$$t = \sqrt{(x_{sn} - x_p)^2 + (y_{sn} - y_p)^2}$$
(H6)

Median Line Length of a Segment

The thicknesses and their associated directions at the end points of a segment are used to define the segment centerline-path length shown in figure 20. The centerline path passes through the midpoints of the segment-end thicknesses. The straightline length between the points is

$$l = \frac{\sqrt{(x_{p,k} + x_{s,k} - x_{p,k-1} - x_{s,k-1})^{2} + (y_{p,k} + y_{s,k} - y_{p,k-1} - y_{s,k-1})^{2}}}{2}$$
(H7)

The path u_k has an angle difference of $\alpha_{a, k-1} - \alpha_{a, k}$ between the ends. If it is assumed that the path is a circular arc, the path u_k is expressed as

$$u_{k} = 2R \frac{\alpha_{a, k-1} - \alpha_{a, k}}{2} = 2 \frac{\frac{l}{2}}{\sin \frac{\alpha_{a, k-1} - \alpha_{a, k}}{2}} \frac{\alpha_{a, k-1} - \alpha_{a, k}}{2}$$

$$= l \frac{\frac{\alpha_{a, k-1} - \alpha_{a, k}}{2}}{\frac{\alpha_{a, k-1} - \alpha_{a, k}}{2} - \frac{1}{6} \left(\frac{\alpha_{a, k-1} - \alpha_{a, k}}{2}\right)^{3} + \frac{1}{120} \left(\frac{\alpha_{a, k-1} - \alpha_{a, k}}{2}\right)^{5} + \dots$$

$$\approx \frac{l}{1 - \frac{1}{6} \left(\frac{\alpha_{a, k-1} - \alpha_{a, k}}{2}\right)^{2} + \frac{1}{120} \left(\frac{\alpha_{a, k-1} - \alpha_{a, k}}{2}\right)^{4}}$$
(H8)

Definition of a General Blade-Section Thickness

A general cubic equation for the thickness of a segment is

$$t = a + bu + cu^2 + du^3$$
 (H9)

Two conditions for the evaluation of the four constants are known thickness at the ends, or

$$t = t_{k-1}$$
 at $u = 0$ (H10)

and

$$t = t_k$$
 at $u = u_k$ (H11)

The other two conditions come from the slope difference between the surfaces at the segment ends.

$$\mathbf{s}_{\mathbf{k}} = \tan(\alpha_{\mathbf{s}, \mathbf{k}} - \alpha_{\mathbf{p}, \mathbf{k}}) = \frac{\tan \alpha_{\mathbf{s}, \mathbf{k}} - \tan \alpha_{\mathbf{p}, \mathbf{k}}}{1 + \tan \alpha_{\mathbf{s}, \mathbf{k}} \tan \alpha_{\mathbf{p}, \mathbf{k}}}$$
(H12)

They are expressed as

$$\mathbf{s} = \mathbf{s}_{k-1} \qquad \text{at } \mathbf{u} = \mathbf{0} \tag{H13}$$

$$\mathbf{s} = \mathbf{s}_{\mathbf{k}}$$
 at $\mathbf{u} = \mathbf{u}_{\mathbf{k}}$ (H14)

Application of the condition expressed by equation (H10) directly gives

$$a = t_{k-1} \tag{H15}$$

The derivative of equation (H9) is

$$\frac{dt}{du} = b + 2cu + 3du^2$$
(H16)

Application of the condition expressed by equation (H13) directly gives

$$\mathbf{b} = \mathbf{s}_{\mathbf{k}-\mathbf{1}} \tag{H17}$$

When the other two conditions are applied, the equations for the other two constants are

ĩ

$$c = -\frac{2s_{k-1} + s_k}{u_k} - \frac{3u_{k-1} - t_k}{u_k}$$
(H18)

and

$$d = \frac{s_{k-1} + s_k}{u_k^2} + \frac{2(t_{k-1} - t_k)}{u_k^3}$$
(H19)

The general equation for t, therefore, is expressed as

$$t = t_{k-1} + s_{k-1} u - \left[\frac{2s_{k-1} + s_k}{u_k} + \frac{3(t_{k-1} - t_k)}{u_k^2}\right] u^2 + \left[\frac{s_{k-1} + s_k}{u_k^2} + \frac{2(t_{k-1} - t_k)}{u_k^3}\right] u^3$$
(H20)

Integrals of t with Respect to du

For the area of a segment, the integral is

A =
$$\int_0^{u_k} t \, du = \left(\frac{t_{k-1} + t_k}{2}\right) u_k + \left(\frac{s_{k-1} - s_k}{12}\right) u_k^2$$
 (H21)

The integral for F for a segment is

$$\int_{0}^{u_{k}} t^{3} du = \int_{0}^{u_{k}} \left(a + bu + cu^{2} + du^{3}\right)^{3} du$$

Some of the integration bookkeeping can be reduced by use of integration by parts.

$$\int w \, dv = wv - \int v \, dw$$

Let $w = t^3$

$$dw = 3t^2 dt = 3t^2(b + 2cu + 3du^2)du$$

v = u, and dv = du. Therefore,

$$\int_{0}^{u_{k}} t^{3} dv = (t^{3}u)_{0}^{u_{k}} - \int_{0}^{u_{k}} 3t^{2}(bu + 2cu^{2} + 3du^{3})du$$

The same procedure could be used on the remaining integral; however, at some point an integral has to be evaluated. The resulting equation is

$$\int_{0}^{u_{k}} t^{3} du = \left(43t_{k-1}^{3} + 27t_{k-1}^{2}t_{k} + 27t_{k-1}t_{k}^{2} + 43t_{k}^{3}\right)\frac{u_{k}}{140} + \left[\left(97t_{k-1}^{2} + 70t_{k-1}t_{k} + 43t_{k}^{2}\right)s_{k-1} - \left(43t_{k-1}^{2} + 70t_{k-1}t_{k} + 97t_{k}^{2}\right)s_{k}\right]\frac{u_{k}^{2}}{840} + \left[\left(16t_{k-1} + 8t_{k}\right)s_{k-1}^{2} - 18(t_{k-1} + t_{k})s_{k-1}s_{k} + \left(8t_{k-1} + 16t_{k}\right)s_{k}^{2}\right]\frac{u_{k}^{3}}{840} + \left[\left(s_{k-1}^{2} - s_{k-1}s_{k} + s_{k}^{2}\right)(s_{k-1} - s_{k})\right]\frac{u_{k}^{4}}{840} + \left[\left(s_{k-1}^{2} - s_{k}s_{k} + s_{k}^{2}\right)(s_{k-1} - s_{k})\right]\frac{u_{k}^{4}}{840} + \left[\left(s_{k-1}^{4} - s_{k}s_{k}\right)\left(s_{k-1} - s_{k}s_{k}\right)\left(s_{k-1} - s_{k}s_{k}\right)\left(s_{k} - s_{k}s_{k}$$

End-Circle Contributions to Integral F

The major part of F for a blade section is obtained from a summation of the segment contributions as determined from equation (H22). A minor addition is made for the end circles. The geometry for this is shown in figure 21. The independent variable for the end-circle integration u is referenced from the end-circle center. The limits of the integration are from r sin($\alpha_s - \alpha_p$)/2 to r. The local thickness is

$$t = 2\sqrt{r^2 - u^2}$$

So the integral for an end-circle contribution to F is

$$\int_{r \sin \frac{\alpha_{s} - \alpha_{p}}{2}}^{r} t^{3} du = 8 \int_{r \sin \frac{\alpha_{s} - \alpha_{p}}{2}}^{r} (r^{2} - u^{2})^{3/2} du$$

Let $u = r \sin \theta$, so $du = r \cos \theta d\theta$ and

$$\int_{\mathbf{r}}^{\mathbf{r}} \mathbf{r} \int_{\mathbf{r}}^{\mathbf{r}} \frac{\alpha_{s} - \alpha_{p}}{2} t^{3} du = 8 \int_{\frac{\alpha_{s} - \alpha_{p}}{2}}^{\frac{\pi}{2}} \left[\mathbf{r}^{2} - (\mathbf{r} \sin \theta)^{2} \right]^{3/2} \mathbf{r} \cos \theta d\theta = 8\mathbf{r}^{4} \int_{\frac{\alpha_{s} - \alpha_{p}}{2}}^{\frac{\pi}{2}} \cos^{4}\theta d\theta$$
$$= \frac{\mathbf{r}^{4}}{8} \left\{ 3(\pi - \alpha_{s} + \alpha_{p}) - \sin(\alpha_{s} - \alpha_{p}) \left[4 + \cos(\alpha_{s} - \alpha_{p}) \right] \right\}$$
(H23)

S mark

S Second Street

104
APPENDIX I

PROGRAM INFORMATION

The program information presented is (1) a description of the input parameters, (2) a description of the variables in the program commons, and (3) a listing of the program.

Description of Input Parameters for Blade Design Program

The format for the input data described below is given in figure 22.

Parameter symbol	Description	Format
AA	Incidence-angle option for blade design purposes. Inter- pretable options are 2-D, 3-D, SUCTION, and TABLE. A noninterpretable incidence option word is set to the 2-D eption. The 2-D and 3-D options mean incidence angles are determined by reference 2 procedures for the respective option. The SUCTION option gives zero incidence to the suction surface of the blade at the lead- ing edge. The TABLE option means the blade incidence angles for the blade element will be input in tabular form, INC(IROW, J), at the end of the data set.	A4
AB	Completes the incidence TABLE option. Tc reference in- cidence to the suction surface at the leading edge, the eight columns of the card for AA and AB must read <u>TABLE SS</u> . (If AB is anything other than E SS, the in- AA AB cidence angles will be referenced to the leading-edge centerline.)	A4
BB	Deviation-angle option for blade design purposes. Inter- pretable options are 2-D, 3-D, TABLE, CARTER, and MODIFY. Noninterpretable input is set to the 2-D op- tion. For the 2-D and 3-D options, deviation angles are determined by reference 2 procedures for the corre- sponding option. The CARTER and MODIFY options are now the same in the program. They indicate the use of	A4

Parameter symbol	Description	Format
	Carter's rule with a modification when blade elements have different camber rates on the front and rear seg- ments of a blade element (eq. (21)). The TABLE option means the blade deviation angles for the blade elements will be input in tabular form, DEV(ROW, J), at the end of the data set.	
BMATL(IROTOR)	Rotor material density, lbm/in. ³ . If a positive nonzero number is input, the blade will be stacked so as to bal- ance gas bending moments with the centrifugal force moment for the material density (see section Balancing of Bending Moments on p. 31). The hub stacking point stays fixed, so the tip location is moved if necessary.	F10.4
BLADES(IROW)	Number of blades in each rotor or stator blade row	F10.4
CC	Blade-element geometry option for blade design purposes. Interpretable options are CIRCULAR, OPTIMUM, and TABLE. The CIRCULAR option gives equal segment turning rates. Noninterpretable input will be set to the CIRCULAR option. The OPTIMUM option means that the ratio of blade-element segment turning rates will be set by an empirical function of inlet relative Mach num- ber M'_1 . Below a M'_1 of 0.8, the blade element will be a circular arc. As M'_1 is increased, the ratio of front-segment turning rate to rear-segment turning rate is reduced. A limit of zero camber on the suction surface of the front segment is approached at a M'_1 of about 1.60. The TABLE option means the ratio of blade-segment turning rates will be input in tabular form, PHI(IROW, J), at the end of the data set.	A4
	Constants to define ratio of blade-element chord to tip chord on projected plane.	F1C. 4
CHORDA(IROW) CHORDB(IROW) CHORDC(IROW)	$\frac{c}{c_t} = 1.0 + R \cdot CHORDA(IROW) + R^2 \cdot CHORDB(IROW) + R^3 \cdot CHORDC(IROW)$	
	where $R = (r_t - r)/(r_t - r_h)$ or a fraction of the annulus height at the blade mean.	

-

-

Parameter symbol	Description	Forma
CHOKE(IROW)	Desired minimum value of excess science to choke area within a blade passage. If zero is input, no adjustment will be attempted within the program. For input values greater than zero, incidence angle will be increased as necessary to a maximum of $\pm 2.0^{\circ}$ on the leading edge of the suction surface in an attempt to give the specified choke margin at the covered channel entrance.	F 1 - 4
CPCO(I) for I=1, 6	Constants for the specific-heat polynomial function of tem- perature.	E20.8
	$C_{p} = CPCO(1) + CPCO(2) \cdot T + CPCO(3) \cdot T^{2} + CPCO(4) \cdot T^{3}$	
	+ CPCO(5) T^4 + CPCO(6) T^5	
DD	Option control of location of transition point between seg- ments of a blade element. The interpretable options are CIRCULAR, SHOCK, and TAELE. The SHOCK option lo- cates the transition point on the suction surface at the nor- mal shock impingement point from the leading edge of the adjacent blade. The TABLE option means the location of the transition point will be input in tabular form, TRANS(IROW, J), at the end of the data set. The CIRCULAR option and noninterpretable data put the tran- sition point at midchord.	A4
DEV(IROW, J)	Deviation angle (deg), which may be specified by option. If the tabular option is used, a value is expected for each streamline starting from the tip.	F10.4
EE	Option control of location of maximum -thickness point of a blade element. The interpretable options are TRAN and TABLE. The TRAN option and noninterpretable options will set the maximum -thickness point at the transition point. The TABLE option means the maximum -thickness- point location will be input in tabular form, ZMAX(IROW, J), at the end of the data set.	A4
₽B	Completes the TABLE option of the maximum-thickness location. If the eight format spaces in figure 22 appear as <u>TABLE LE</u> , the input values of ZMAX(IROW, J) will EE EB	A4

\$] a

107

Same and

「調査」

Parameter symbol	Description	Format	
	be used as the fraction of chord distance from the leading edge. If EB is not as shown, the values of ZMAX(IROW, J) will be used as the fraction of chord distance behind the transition point.		
I	Calculating station index. Each blade row accounts for two calculating stations, one at the leading edge of the blade and the other at the trailing edge.	(not in- put)	
INC(IROW, J)	Incidence angle (deg), which may be input by option. If the tabular option is used, a value is expected for each streamline starting from the tip.		
IROW	Blade-row index		
J	Streamline index. Streamlines are numbered from 1 at the tip.	(not in- put)	
MOLE	Molecular weight of gas (28.97 for dry air).	F10.4	
NXCUT(IRO₩)	Number of sections across a blade for which fabrication co- ordinates are desired. If zero, the program will set the number of XCUT's on the basis of aspect ratio. For all positive values, the program will set appropriate loca- tions to represent the blade. Negative values of NXCUT(IROW) activate an option to read cards for the XCUT values. The number of values expected for a blade row is the absolute value of NXCUT(IROW).	110	
NSTRM	Number of streamlines (maximum of 21)		
OP	Option controlling amount of output information desired. Interpretable options are APPROX., VEL. DIA., DE- SIGN, COOR., PUNCH, and ALL. The program as pre- ser*** d in this report is not run in conjunction with an aerodynamic design; so it essentially always uses the COORD option, which gives the printout of blade-section properties and coordinates for fabrication.		
оро	Option controlling output from systems peripheral equip- ment. Options to get blade-section coordinates on punched cards and on microfilm exist for the NASA	A4	

ting were

٠.

×.

Parameter symbol	Description			
	Lewis System. The option is specified by only a single letter in card column 18 of the 17-20 column field for OPO. M gives microfilm coordinates. P gives punched cards. B gives both microfilm and punched cards. Any- thing else gives neither.			
РІЛ(IROW, J)	Ratio of inlet-segment turning to outlet-segment turning (ratio of $d\kappa/ds$'s) for a blade element. If input values are expected by use of the tabular option, the data cards go within the optional cards at the end of the data set for each blade row (fig. 22). A value is expected for each streamline beginning from the tip.	F10.4		
PO(I , J)	Stagnation pressure for each streamline starting from the tip, psia	F10.4		
	When blade edge coordinates are input, PO(I, J) is a tem- porary storage location for the radial coordinate of the points.	F8. 4		
R(I, J)	Radius of each streamline at blade-edge reference stations, in.			
RBHUB(IROW)	Radius coordinate of hub stacking point, in.	F10.4		
RBTIP(IROW)	Radius coordinate of tip stacking point, in.	F10.4		
ROT	Compressor rotational speed, rpm	F10.4		
SLOPE(I, J)	Streamline slope angle at blade-edge stations, deg			
SOLID(IROW)	Tip solidity of a blade row (chord/circumferential spacing)	F10.4		
TALE(IROW) TBLE(IROW) TCLE(IROW) TDLE(IROW)	Polynomial coefficients for ratio of blade-element leading- edge radius to chord $\frac{t_{1e}}{c} = TALE + TBLE \cdot R + TCLE \cdot R^2 + TDLE \cdot R^3$ where R is $(r_t - r)/(r_t - r_h)$ or the fraction of passage height at blade leading edge	F10.4		

and the second second

· ····

and the set

Description

Parameter symbol

TAMAX(IROW) TBMAX(IROW) TCMAX(IROW) TDMAX(IROW)

TATE(IROW)

F10.4 Polynomial coefficients for ratio of blade-element maxinium thickness to chord $T_{max} = TAMAX + TBMAX \cdot R + TCMAX \cdot R^2 + TDMAX \cdot R^3$ Polynomial coefficients for ratio of blade-element trailing-F10.4 edge radius to chord

^oR

where R is $(r_t - r)/(r_t - r_h)$ at the blade trailing edge

 $\frac{t_{te}}{c} = TATE + TBTE \cdot R + TCTE \cdot R^2 + TCTE \cdot R^3$

TILT(IROW)

- Circumferential direction angle of stacking-axis tilt at hub, deg. The angle is positive in the direction of rotor rotation. If |TII.T(IROW)| is greater than 100.0, a curved stacking line is specified according to $\mathbf{r} - \mathbf{r}_{h} = C \sin \gamma$, where γ is the local stacking-line slope with respect to a local radial line. The code of the digits of TILT(IROW) is $-x \underline{xx} \underline{xx} . \underline{xx}$, where \underline{xx} is the γ angle at the hub in degrees with the sign of the overall TILT(IROW) number, and $\underline{xx. xx}$ is γ at the tip in degrees. Description of blade row for printout and later identification 18A4 TITLE(I) Total temperature for each streamline starting from the tip, F10.4 TO(I, J)
- F10.4 Location of transition point on blade-element centerline as TRANS(IROW, J) a fraction of the blade-element chord. If input values are expected by use of the tabular option, the data cards go with the optional cards at the end of the data set for each blade row (fig. 22). A value is expected for each streamline beginning from the tip.

Tangential velocity component at blade-edge stations, ft/sec F10.4 VTH(IROW, J) F10.4 Axial velocity component at blade-edge stations, ft/sec

VZ(IROW, J)Radial location of blade-section planes. Whether or not F10.4 XCUT(IC) data cards are read for values of XCUT(IC) for a blade row is controlled by the value of NXCUT(IROW). Any XCUT(IC) cards are read in an output routine so they

the second of the

Format

Ante Alteria a

F10.4

Parameter symbol	Description			
	must follow all cards read in subroutine INPUT. It is preferable, but not necessary, to list the XCUTS(IC) for a blade row in order starting from the tip.			
Z(I, J)	Axial location of blade-edge reference velocity diagrams, in.	F10.4		
ZBHUB(IROW)	Axial location of hub stacking point, in.			
ZBTIP(IROW)	Initial axial location of tip stacking point, in.	F10. 4		
ZMAX(IROW, J)	Location of maximum-thickness point on the centerline as a fraction of blade-element chord. If input values are expected by use of the tabular options, the data cards go with the optional cards at the end of the data set for each blade row (fig. 22). A value is expected for each streamline beginning from the tip with a leading-edge or transition-point reference according to option (see EB). With a transition point reference, the values input are $(c_m - c_t)/c$	F10. 4		

۶,

1

Description of Program Variables in Commons

Symbol	Common	Description
AC	RCUT	Area of blade-section end-circle sector
AL	MARG	AOAS value for some other location in blade-element channel
АМАСН	BLADES	Average inlet relative Mach number for shock at a blade- element channel entrance
AOAS	MARG	Ratio of blade-element area to choke area at some chan- nel location
AOA1	MARG	Ratio of a local blade-element channel area to blade- element inlet relative flow area

111

Symbol	Common	Description
AOC	BLADES	Fraction of chord location of blade-element maximum camber point
AISOAS	BLADES	Ratio of blade-element inlet to local choke areas
A1SOA1	BLADES	Ratio of blade-element iniet choke to actual areas
BETA	SCALAR	Blade-section setting angle
BETAS(IROW, J)	VECTOR	Relative flow angle at blade-element channel entrance shock
BETA1(J)	Blank	Blade-element-inlet relative flow angle
BETA2(J)	Blank	Blade-element-ou'llet relative flow angle
BINC	BLADES	Streamline incidence angle to blade centerline
BLADES(IROW)	VECTOR	Number of blades in a rotor or stator
BMATL(IROTOR)	VECTOR	Rotor blade material density
CALP	BLADES	Cosine of blade-element layout-cone angle
CCC	BLADES	Ratio of distance between edge-circle centers to overall blade-element chord
CCHORD	MARG	Product of CALP and CHORD
CEPE	BLADES	Cosine of angle that line between blade-element edge- circle centers makes with chord line
CGBL	BLADES	Cosine of blade-element setting angle for chord
CHD(J)	EQUIV	Blade-element chord as measured along a constant-angle path tangent to end circles on pressure side. The chord length is measured from the outer tangency points to the end circles.
СНК(Ј)	EQUIV	Ratio of the minimum blade-element-channel-area margin to choke area
CHOKE(IROW)	VECTOR	Desired minimum blade-element-channel-area choke margin
CHORD	BLADES	CHD(J) for local element
CHORDA(IROW)	VECTOR	Coefficient for linear term of a polynomial representation of radial variation of blade-element chord projected to a blade-section plane

Symbol	Common	Description
CHORDB(IROW)	VECTOR	Coefficient for quadratic term of chord polynomial
CHORDC(IROW)	VECTOR	Coefficient for cubic term of chord polynomial
CINC	BLADES	Streamline incidence angle without influence of incidence on deviation
CKTC	BLADES	Cosine of blade-element centerline angle at transition point of segments
CKTS	BLADES	Cosine of blade-element surface angle at transition point of segments
COSA(J)	Blank	Cosine of blade-element streamline inlet slope angle
COSA2(J)	EQUIV	Cosine of blade-element streamline outlet slope angle
COSKL	RCUT	Cosine of blade-section edge-circle angle at joining point with pressure (lower) surface
COSKU	RCUT	Cosine of blade-section edge-circle angle at joining point with suction (upper) surface
COSL(J)	Blank	Cosine of blade-edge angle in meridional plane with ref- erence to radial direction
СР	SCALAR	Specific heat at constant pressure
CPCO(6)	VECTOR	Polynomial coefficients for specific-heat function of tem- perature
CPH2	SCALAR	CPCO(?)/2.0
СРНЗ	SCALAR	CPCO(3)/3.0 (Polynomial coefficients for an enthalpy
CPH4	SCALAR	CPCO(4)/4.0 change as derived from integration of
CPH5	SCALAR	CPCO(5)/5.0 specific-heat polynomial c dt
СРНб	SCALAR	CPCO(6)/6.0
CPP3	SCALAR	CPCO(3)/2.0 (Polynomial coefficient for an isentropic
CPP4	SCALAR	CPCO(4)/3.0 pressure change as derived from in-
CPP5	SCALAR	CPCO(5)/4.0 tegration of specific-heat polynomial
CPP6	SCALAR	$CPCO(6)/5.0$ $c_p(dt/t)$
CP1	SCALAR	Approximation to $\gamma/(\gamma - 1)$ with use of only first term of specific-heat polynomial
CV	SCALAR	Specific heat at constant volume

A CONTRACTOR OF THE PARTY OF

Symbol	Common	Description
Cl	BLADES	Chordwise component distance of leading-edge center circle to centerline transition point as a fraction of blade-element chord
C2	BLADES	Chordwise component distance of centerline transition point to trailing-edge center circle as a fraction of blade-element chord
DAL	MARG	DAOAS value for some other location in blade-element channel
DAOAS	MARG	Derivative of AOAS in blade-element channel throughflow direction
DCP	SCALAR	Specific-heat difference, CP - CV
DEV(IROW, J)	VECTOR	Blade-element deviation angle on streamline-of- revolution surface
DF	SCALAR	Diffusion factor, a blade-element aerodynamic loading parameter
DHC	SCALAR	Compressor enthalpy rise
DHCI	SCALAR	Compressor enthalpy rise required by an isentropic proc- ess
DKAPPA	BLADES	Inlet- to outlet-blade-angle change on streamline-of- revolution surface
DKLE(IROW)	Blank	Blade-element angle difference between suction surface and centerline at leading edge
DL(J)	Blank	Meridional plane distance between end-circle centers of adjacent blade elements
DLOSC	SCALAR	The part of the pressura loss correlated with diffusion factor
DPW	MARG	Normalized-to-chord distance of a point on blade-element pressure surface from pressure-surface transition point
DPWL	MARG	DPW value for some other location in blade-element channel

ž

Symbol	Common	Description
DRCE	BLADES	Normalized-to-chord conic radius component from a made-element end-circle center to the tangency point of the edge circle with a carface curve
DRCGI	BLADES	Normalized-to-chord come radius component from the leading-edge end-circle center to the blade-clement stacking reference point
DRCLEP	MARG	DPCE for leading-udge circle to the pressure surface
DRCM	MAEG	Normalized-to-chord component for maximum-thickness path from centerline to surface; also used as the same type of radius component from the leading edge to a mid-channel point
DRCMST	BLADES	Normalized-to-chord conic radius component from cen- terline transition point to surface maximum-thickness point
DRCMT	BLADES	Normalized-to-chord conic radius component from tran- sition point to maximum-thickness point on the center- line
DRCOI	BLADES	Normalized-to-chord conic radius component from leading-edge circle center to trailing-edge circle cen- ter
DRCT	BLALES	Normalized-to-chord conic radius component of transition-point thickness path which is perpendicular to the centerline and which goes from the centerline to a surface
DRCTI	BLADES	Normalized-to-chord conic radius component from leading-edge circle center to transition point on the centerline
DRCTPI	MARG	Normalized-to-chord conic radius component from leading-edge circle center to pressure-surface tran- sition point
DRCTSI	MARG	Normalized-to-chord conic radius component from leading-edge circle center to suction-surface transition point

ġ.

Symbol	Common	Description
DRCWT	MARG	Normalized-to-chord conic radius component from suction-surface transition point to a point on the pres- sure surface of the blade element on the other side of the flow channel
DR1	BLADES	Reference streamtube thickness at leading edge of a blade element
DSA	MARG	Average of two blade-surface path distances normalized to chord
DSME	BLADES	Normalized-to-chord centerline-path distance from the end-circle center on which maximum thickness occurs to the maximum-thickness point
DSMT	BLADES	Normalized-to-chord centerline-path distance from the transition point to the maximum-thickness point
DSOI	BLADES	Normalized-to-chord centerline-path distance from the leading-edge circle center to the trailing-edge circle center
DSOT	BLADES	Normalized-to-chord centerline-path distance from the transition point to the trailing-edge circle center
DSP	MARG	Normalized-to-chord pressure-surface path length
DSP1	MARG	Normalized-to-chord pressure-surface path length of first segment
DSP2	MARG	Normalized-to-chord pressure-surface path length of second segment
DSS	MARG	Normalized-to-chord suction-surface path length
DSSE	BLADES	Normalized-to-chord surface path distance from either the maximum-thickness point or the transition point to the surface end which is in the opposite direction of the other point
DSS1	MARG	Normalized-to-chord suction-surface path length of the first segment
DSS2	MARG	Normalized-to-chord suction-surface path length of the second segment

Sec.

4 J.

Section 201

116

Symbol	Common	Description
DST	BLADES	Normalized-to-chord transition-point blade thickness path from the centerline to a surface
DSTI	BLADES	Normalized-to-chord centerline-path distance from the leading-edge circle center to the transition point
DSW	MARG	Normalized-to-chord distance of a point on the blade- element suction surface from the suction-surface tran- sition point
DX(K)	RCUT	Chordwise increment between blade-section surface points
EB	MARG	Conic angle between repeated blade elements of a blade row
E M(K)	RCUT	Second derivatives of a spline-fit blade-section surface curve
EMT	BLADES	Conic angular component from centerline transition point to a surface maximum-thickness point
EMTM	RCUT	EM(K) value for the transition point on the first-segment side
EWC	MARG	Conic angular component of a channel width path
F	MARG	Fraction of total suction-surface distance
FSB(K)	PTS	Blade-element surface distance fractions at which points are obtained for blade-section definition
FSM(J)	EQUIV	Fraction of covered-channel through-flow distance at which minimum choke margin occurs
F1	BLADES	F at the covered-channel entrance
F2	BLADES	F at the covered-channel exit
G	SCALAR	Gravitational acceleration conversion constant, 32.1740 lbm-ft/lbf-sec ²
GAMM(J)	Blank	Ratio of specific heats, CP/CV
GAMMA	SCALAR	Local value of GAMM(J), γ
GBL	BLADES	Angle of a blade-element chord line with respect to a conic ray
GJ	SCALAR	Product of G and the mechanical equivalent of heat, 25035.24 ft ² -lbm/sec ² -Btu

2015-22

en jul

100

312 K 2

Window 3

Symbol	Common	Description
GJ2	SCALAR	2. 0. GJ = 50070. 47 ft ² -lbn: sco^2 -Btu
GR1	SCALAR	Combination of specific-heat terms, $(\gamma + 1)$ $(\gamma + 1)$
GR2	SCALAR	Combination of specific-heat terms, $\gamma_{ij}(i = 1)$
GR3	SCALAR	Combination of specific-heat terms, $1 \in (-1)$
GR4	SCALAR	Combination of specific-heat terms, $(\gamma + 1)/2$
GR5	SCALAR	Combination of specific-heat terms, $(7 - 1)/2$
Н	SCALAR	General enthalpy change
HC	MARG	Ratio of a local channel to inlet streamtube thickness
I	SCALAR	Calculating station index
ICHOKE	MARG	Index for location in blade-element channel
ICL	BLADES	Integer routing device used in blade-element centerline iteration
ICONV	SCALAR	Integer parameter for highest level program routing
ICOUNT	SCALAR	Line counter for printout of input data
IDEV(IROW)	VECTOR	Integer designation of the deviation angle option: for 2-D value of reference 2 for 3-D value of reference 2 for Carter's rule for Carter's rule modified by equation (21) tabular
IERROR	SCALAR	Integer parameter which controls the exit when incom- patible input data are discovered
IGEO(IROW)	VECTOR	Integer designation of the option for PHI(IROW, J): 1 for midpoint 2 for optimum (see CC of input parameter list) 3 for tabulated
IGO	BLADES	Integer routing parameter
ΠN	SCALAR	Temporary storage location of an index

Symbol	Control	Description
HNC(IROW)	VECTOR	Integer designation of the incidency of the whom 1 for 2 D value of reference 1 2 for 3-D value of reference 2 3 for zero incidence to leading other suction surface 4 for tabular with centerline reference 5 for tabular with suction-surface reference
ILOSS(IROW)	VECTOR	Integer designation of loss data set associated with a blade row
IMAX(IROW)	VECTOR	 Integer designation of option for blade-element maximum- thickness-point location: 1 for midpoint 2 for tabular with transition-point reference 3 for tabular with leading-edge reference
INC(IROW)	VECTOR	Blade-element incidence angle on streamling-of- revolution surface (a real variable)
IOUT	RCUT	Counter of number of variables of an array diminated for a particular calculation (not used in this setup of pro- gram)
IPASS	BLADES	Integer routing parameter used for blade-element center- line calculation
IPR	SCALAR	Temporary storage location of an index
IR	SCALAR	Read tape number of computer facility
IROTOR	SCALAR	Rotor index
IROW	SCALAR	Blade-row index
ISTN(I)	VECTOR	Integer designation of calculating station type. 1 for rotor inlet 2 for rotor outlet -1 for stator inlet -2 for stator outlet 0 for annular
IT	RCUT	Counter of blade-section surface points
ITTED	SCALAR	Reration counter

ż

rodin vie Voorse vielen 119

and a subscript of the subscript of the

÷

.

Symbol	Common	Description
ITRANS(IROW)	VEC TOR	 Integer designation of the option for the blade-element transition point; 1 for midpoint 2 for covered-channel inlet point on suction surface 3 for tabular
IW	SCALAR	Write tape number of computer facility
J	SCALAR	Streamline index
JM	SCALAR	Index for mean streamline
KIC(J)	EQUIV	Centerline blade inlet angle on layout cone (a real vari- able)
KIP	MARG	Blade-element pressure-surface blade angle at inlet (a real variable)
KIS	BLADES	Blade-element suction-surface blade angle at inlet (a real variable)
КМ	BLADES	Centerline and surface blade angle at blade-element maximum-thickness point (a real variable)
KOC(J)	EQUIV	Centerline blade outlet angle on layout cone (a real vari- able)
КОР	MARG	Blade-element pressure-surface blade angle at outlet (a real variable)
KOS	MARG	Blade-element suction-surface blade angle at outlet (a real variable)
КР	MARG	Blade angle at some general pressure-surface point (a real variable)
KS	MARG	Blade angle at some general suction-surface point (a real variable)
ктс	BLADES	Blade-element centerline angle at segment transition point (a real variable)
КТР	MARG	Pressure-surface blade angle at transition point (a real variable)
KTS	BLADES	Suction-surface blade angle at transition pc'nt (a real variable)

120

manan anang dita manan

H

Symbol	Common	Description
KWC	MARG	Angle of the path across a blade-element channel with re- spect to the tangential direction (a real variable)
MACH	SCALAR	Relative Mach number (a real variable)
NAL	SCALAR	Number of input blade rows and annular stations (not used in this setup of the program)
NBROWS	SCALAR	Number of blade rows (not relevant in this setup of the program)
NHUB	SCALAR	Number of hub contour definition points (not used in this setup of the program)
NOPT(IROW)	VECTOR	Index designation of the option which controls the program output. In this program setup, the coordinate option is essentially always in effect.
NP	RCUT	Number of blade-section points that are spline curve fit
NROTOR	SCALAR	Number of rotors (not used in this setup of the program)
NSTN	SCALAR	Total number of calculating stations, I (not used in this setup of the program)
NSTRM	SCALAR	Total number of streamlines, J
NTIP	SCALAR	Number of tip contour definition points (not used in this setup of the program)
NTUBES	SCALAR	Number of streamtubes (NSTRM - 1)
NXCUT(IC)	VECTOR	Number of blade sections desired in the terminal calcula- tion
OBAR(J)	Blank	Relative pressure-loss coefficient for the losses correlated with DF, $(P_{2i}' - P_2')/(P_1' - p_1)$
OMEGA	SCALAR	Rotational speed, rad/sec
Р	BLADES	Specific PHI(IROW, J) in current use
PFLOS	BLADES	Relative pressure-loss coefficient for the losses correlated with DF, $(P_{2^{\pm}}^{\dagger} - P_{2}^{\dagger})/P_{1}^{\dagger}$
PHI(IROW, J)	VECTOR	Ratio of inlet-segment turning rate to outlet-segment turning rate (ratio of $d\kappa/ds$) for a blade element
PI	SCALAR	$\pi = 3.1415927$
PI2	MARG	One-half pi. $\pi/2$

1 m

Symbol	Common	Description
PO(I , J)	VECTOR	Total pressure at blade-edge stations (input and output in psia, but converted to lbf/ft ² for internal calculations)
POA1	SCALAR	Average inlet total pressure (not used in this setup of the program)
PR	SCALAR	Pressure ratio (not used in this setup of the program)
R(I, J)	VECTOR	Cylindrical-coordinate radius at blade-edge stations, in.
RADIAN	SCALAR	Conversion factor from radians to degrees, 57.29578
RBHUB(IROW)	VECTOR	Radius coordinate of hub stacking point, in.
RBTIP(IROW)	VECTOR	Radius coordinate of tip stacking point, in.
RCA(J)	EQUIV	Cylindrical-coordinate radius of a blade-element stack- ing point
RCG	BLADES	Normalized-to-chord conic radius of a blade-element stacking point
RCI	MARG	Normalized-to-chord conic radius of a blade-element leading-edge circle center
RCM	BLADES	Normalized-to-chord conic radius of the maximum- thickness point on the centerline of a blade element
RCMS	BLADES	Normalized-to-chord conic radius of the maximum- thickness point on the surface of a blade element
RCO	MARG	Normalized-to-chord conic radius of a blade-element trailing-edge circle center
RCP	MÁRG	Normalized-to-chord conic radius of a point on the pres- sure surface of a blade element
RCS	MARG	Normalized-to-chord conic radius of a point on the suc- tion surface of a blade element
RCT	BLADES	Normalized-to-chord conic radius of the transition point on the centerline of a blade element
RCTP	MARG	Normalized-to-chord conic radius of the transition point on the pressure surface of a blade element
RCTS	MARG	Normalized-to-chord conic radius of the transition point on the suction surface of a blade element

•

Symbol	Common	Description
RD1	BLADES	Inlet station radius difference of the blade elements which define the local channel convergence
REC(I, J)	EQUIV	Cylindrical-coordinate radius coordinate of the blade- element end-circle centers
RECGI	BLADES	Circumferential direction coordinate from the inlet circle center to the blade-element stacking point (RCG times the conic angle difference)
REE	BLADES	Circumferential direction coordinate from an end-circle center to the end-circle tangency point with a surface (RCS times the conic angle difference)
RELEP	MARG	Special REE value, the one to the pressure surface at the leading edge
RELM(J)	Plank	Blade-element inlet relative Mach number
REMT	MARG	Circumferential direction coordinate from the transition point to the maximum-thickness point along the center- line (RCM times the conic-angle difference)
REOI	MARG	Circumferential direction coordinate from the leading- edge circle center to the trailing-edge circle center (RCO times the conic-angle difference)
REP	MARG	Circumferential direction coordinate from the leading- edge circle center to a point on the pressure surface of the following blade (RCP times the conic-angle differ- ence)
RES	MARG	Circumferential direction coordinate of a point on the suc- tion surface referenced to the suction-surface transi- tion point (RCS times the conic-angle difference)
RET	BLADES	Circumferential direction coordinate from the centerline transition point to a surface transition point (RCTS times the conic-angle difference)
RETI	BLADES	Circumferential direction coordinate from the leading- edge circle center to the centerline transition point (RCT times the conic-angle difference)

ta la **b**ina an**t**a

Symbol	Common	Description
RETP	MARG	Circumferential direction coordinate from the leading- edge circle center to the pressure-surface transition point (RCTP times the conic-angle difference)
RETS	MARG	Circumferential direction coordinate from the leading- edge circle center to the suction-surface transition point (RCTS times the conic-angle difference)
REWT	MARG	Circumferential direction coordinate from the suction- surface transition point to a point on the pressure sur- face of the next blade (RCP times the conic-angle dif- ference)
RE1(J)	Blank	Temporary storage location for an array
RE2(J)	Blank	Temporary storage location for an array
RE3(J)	Blank	Temporary storage location for an array
RE4(J)	Blank	Temporary storage location for an array
RE5(J)	Blank	Temporary storage location for an array
RF	SCALAR	Gas constant for the fluid, lbf-ft/lbm- ⁰ R
RG	SCALAR	Product of G and RF, $ft^2/sec^2-{}^{0}R$
RMSJ	BLADES	Product of blade-element solidity with the mean radius normalized to chord
ROT	SCALAR	Rotational speed, rpm
RPR1(J)	Blank	Relative total pressure ratio, $(P'_1 - p_1)/P'$ (not used in this setup of the program)
RPTE(I, J)	EQUIV	$r(\partial \theta / \partial l)$ at a blade-element end-circle center
RTR	MARG	Ratio of a local relative total temperature to the blade- element inlet relative total temperature
RTRC	BLADES	Constant for computing RTR, $\left[(\gamma - 1)\omega^2 c^2/144\gamma g R_f T_1'\right]$
RTRD	MARG	Constant used for estimation of the derivative of RTR with bladg-element path distance, RTRC $\times \sin \alpha \times$ (Bladg-element path distance)
P.TRQ	MARG	Square root of RTR
RVTH(J)	Blank	$\mathtt{rV}_{ heta}$ (not used in this setup of the program)
R1	BLADES	Particular value of R(I, J) at blade-element inlet

Symbol	Common	Description
R1C	BLADES	R1 normalized to chord
R2	BLADES	Particular value of $R(I, J)$ at blade-element exit
SALP	BLADES	Sine of blade-element layout-cone angle
SECGBL	MARG	Secant of blade-element setting angle for chord
SEPE	BLADES	Sine of angle that the line between the blade-element edge-circle centers makes with the chord line
SGAM	BLADES	Sine of blade-element setting angle for the line between the edge-circle centers
SGBL	BLADES	Sine of blade-element setting angle for the chord
SINA(J)	Blank	Sine of blade-element streamline inlet slope angle
SINA2(J)	EQUIV	Sine of the blade-element streamline outlet slope angle
SINKL	RCUT	Sine of blade-section edge-circle angle at the joining point with the pressure (lower) surface
SINKU	RCUT	Sine of blade-section edge-circle angle at the joining point with the suction (upper) surface
SINL(J)	Blank	Sine of blade-edge angle in meridional plane with refer- ence to the radial direction
SJ	BLADES	Blade-element solidity (chord/tangential spacing)
SKIC(J)	EQUIV	Blade inlet angle on a streamline of revolution
SKOC(J)	EQUIV	Blade outlet angle on a streamline of revolution
SKTC	BLADES	Sine of blade-element centerline angle at the transition point of the segments
SKTS	BLADES	Sine of blade-element surface angle at the transition point of the segments
SLJD	BLADES	Difference of slope between the neighboring cones used to define changes of streamtube thickness
SLOPE(I, J)	VECTOR	Streamline slope at the blade-edge stations
SLOS(J)	Blank	Ratio of relative total pressures behind a shock to that ahead of the shock
SOLID(IROW)	VECTOR	Tip solidity of a blade . ow

ł

٩,

125

A house her can see

Symbol	Cunnon	Description
SONIC(J)	Blank	Square of the local speed of sound (not used in this pro- gram setup)
Т	BLADES	Specific TRANS(IROW, J) in current use
TALE(IROW)	VECTOR	Constant term in the polynomial representation of the normalized-to-chord leading->dge radius function of fraction of passage height
TALP(J)	EQUIV	Tangent of the blade-element layout-cone angle
TAMAX(IROW)	VECTOR	Constant term in polynomial representation of the normalized-to-chord maximum-thickness function of fraction of passage height
TATE(IROW)	VECTOR	Constant term in polynomial representation of the normalized-to-chord trailing-edge radius function of fraction of passage height
TBLE(IROW)	VECTOR	Constant for linear term in the polynomial associated with TALE(IROW)
TBMAX(IROW)	VECTOR	Constant for linear term in the polynomial associated with TAMAX(IROW)
TBTE(IROW)	VECTOR	Constant for linear term in the polynomial associated with TATE(IROW)
TCA(J)	EQUIV	Angular cylindrical coordinate displacement of a blade- element stacking point from the reference hub element (positive in direction of rotor rotation)
TCGI	MARG	Angular cylindrical coordinate from a blade-element leading-edge circle center to the stacking point
TCLE(IROW)	VECTOR	Constant for quadratic term in the polynomial associated with TALE(IROW)
TCMAX(IROW)	VECTOR	Constant for quadratic term in the polynomial associated with TAMAX(IROW)
TCTE(IROW)	VECTOR	Constant for quadratic term in the polynomial associated with TATE(IROW)
TDLE(IROW)	VECTOR	Constant for cubic term in the polynomial associated with TALE(IROW)

the subschedule of

A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A

- All Carlos

an N

.

-

126

- 10

Sec.

Symbol	Common	Description
TDMAX(IROW)	VECTOR	Constant for cubic term in the polynomial associated with TAMAX(IROW)
TDTE(IROW)	VECTOR	Constant for cubic term in the polynomial associated with TATE(IROW)
TEC(I, J)	EQUIV	Angular cylindrical coordinate of an end-circle center referenced to the hub-element stacking point
TEPE	BLADES	Tangent of angle that the line between the blade-element edge-circle centers makes with the chord line
TGB(J)	EQUIV	Tangent of blade-element setting angle for the chord
TGBL	MARG	Same as TGB(J) for the current blade element
TGBLL	BLADES	Value of TGBL on the previous iteration
THD	BLADES	Normalized-to-chord radius difference of trailing-edge circle from leading-edge circle
THETAP(J, K)	Blank	Angular cylindrical coordinate of point on the pressure surface of a blade element referenced to the hub- element stacking point
THETAS(J, K)	Blank	Angular cylindrical coordinate of point on the suction sur- face of a blade element referenced to the hub-element stacking point
THLE	BLADES	Ratio of blade-element leading-edge circle radius to chord
THMAX	BLADES	Ratio of blade-element maximum thickness to chord
THTE	BLADES	Ratio of blade-element trailing-edge circle radius to chord
TILT(IROW)	VECTOR	Stacking-axis lean angle in the circumferential direction (complete description given in input variable list)
TITLE(I)	LABEL	Input alphanumeric title of the data set
TKTN	BLADES	Tangent of angle for the transition thickness path which is normal to the local centerline
TL	SCALAR	Lower temperature for a thermodynamic-change-of-state calculation

Ť

١.

Ľ,

127

3. P.

Symbol	Common	Description
TLS	BLADES	Tangent of stacking-axis lean from radial direction in meridional (r, z) plane
TO(I, J)	VECTOR	Total temperature at blade-edge stations, ${}^{0}R$
TOA1	SCALAR	Average inlet total temperature (not used in this setup of the program)
TRANS(IROW, J)	VECTOR	Chordwise component of centerline transition-point loca- tion normalized by the chord
TREL1(J)	Blank	Blade-element inlet relative total temperature, ^O R
TSTAT(J)	Blank	Static temperature, ^O R
TTRP(J)	EQUIV	Angular cylindrical coordinate of transition point on pres- sure surface of a blade element (hub stacking-point reference)
TTRS(J)	EQUIV	Angular cylindrical coordinate of transition point on suc- tion surface of a blade element (hub stacking-point reference)
TU	SCALAR	Upper temperature for a thermodynamic-change-of-state calculation
VM(J)	Blank	Meridional component of velocity, ft/sec
VTH(I, J)	VECTOR	Circumferential (ϑ) component of velocity, ft/sec
VTSQ(J)	Blank	VTH(I, J) squared at a station, ft^2/sec^2
VZ(I, J)	VECTOR	Axial (z) component of velocity, ft/sec
WC	MARG	Ratio of a local blade-to-blade channel width to chord
WC1	BLADES	Inlet streamline channel width in the blade-to-blade plane
XBAR(IROW, J)	Blank	Normalized-to-chord chordwise component of the distance from the leading-edge circle center to the blade- element stacking point
YBAR(IROW, J)	Blank	Corresponding perpendicular component to XBAR(IROW, J)
YBP(K)	RCUT	Pressure-surface blade-section coordinate normal to chord, in.
YBS(K)	RCUT	Suction-surface blade-section coordinate normal to chord, in.

and the second states -

. Ceis

5.7 NG

128

- Stern

S....

. .

20

Long.

Symbol	Common	Description
YB1	BLADES	Average of the two blade-element end-circle radii nor- malized to chord
YB2	BLADES	Constant for first approximation calculation of YBAR(IROW, J)
YCCLE(J)	EQUIV	Tangential-direction coordinate of blade-section leading- edge circle center, in.
YCCTE(J)	EQUIV	Tangential-direction coordinate of blade-section trailing- edge circle center, in.
Z(I, J)	VECTOR	Axial location of blade-edge stations, in.
ZBHUB(IROW)	VECTOR	Axial location of hub stacking point, in.
ZBP(K)	RCUT	Chordwise blade-section coordinate on pressure surface, in.
ZBS(K)	RCUT	Chordwise blade-section coordinate on suction surface, in.
ZBTIP(IROW)	VECTOR	Axial location of tip stacking point, in.
ZCCLE(J)	EQUIV	Axial coordinate of blade-section leading-edge circle center, in.
ZCCTE(J)	EQUIV	Axial coordinate of blade-section trailing-edge circle center, in.
ZCDA(J)	EQUIV	Axial displacement of blade-element stacking points from hub-element stacking point
ZEC(I, J)	EQUIV	Axial location of blade-element end-circle centers
ZM		Chordwise component of centerline maximum-thickness- point location normalized by the chord
ZMAX(IROW, J)	VECTOR	General array of ZM, but referenced either to blade- element leading edge or transition point
ZMT	MARG	Location of maximum-thickness point with respect to transition point normalized to chord
ZP(J, K)	Blank	Axial coordinate of blade-element pressure-surface points, in.
ZS(J, K)	Blank	Axial coordinate of blade-element suction-surface points, in.

129

7.18

Symbol	Common	Description
{J. }	EQUIV	Axial location of plade-section transition point on pres-
$(\mathbf{RS}[\mathbf{J}))$	EQUIV	Axial location of blade-section transition point on suction surface, in.

Listing of Computer Program

C *** THIS ROUTINE SERVES AS A CENTRAL CONTROL	1
REAL INC. KIC, KIP, KIS, KM, KOC, KOP, KOS, KP, KS, KTC, KTP, KTS,	2
X KHC. MACH	3
CEMMON /VECTOR/	4
1 BETAS(1.21). BMATL(1), ELADES(1), CHOKE(1), CHORDA(1), CHORDB(1),	5
2 CHCRDC(1), CPCD(6), CEV(1,21), IDEV(1), IGEO(1), IINC(1),	6
3 [[[SS(1], [MAX(1], INC(1,2]), [STN(2], [TRANS(1], NOPT(1),	7
4 NXCUT(1), PHI(1,21), PO(2,21), R(2,21), RBHUB(1), RBTIP(1),	8
5 SICPE(2,21), SUID(1), TALE(1), TAMAX(1), TATE(1), TBLE(1),	9
A TRWAX(1), INTE(1), TCLE(1), TCMAX(1), TCTE(1), TDLE(1), TDMAX(1),	10
7 TOTE(1), THIT(1), TC(2,21), TRANS(1,21), VTH(2,21), VZ(2,21),	11
8 7(2-21), 7HHUN(1), 78TIP(1), ZMAX(1,21)	12
	13
1 PETA, CP. CPH2, CPH3, CPH4, CPH5, CPH6, CPP3, CPP4, CPP5, CPP6,	14
2 CPT. CV. CCP. DF. DHC. CHCI. DLOSC. G. GAMMA, GJ, GJ2, GR1, GR2,	15
3 CR3. CR4. GR5. H. I. ICCNV. ICOUNT, IERROR, IIN, IPR, IROTOR, IR,	16
4 TRIW, ITER, IW, J. JM. MACH. NAB. NBROWS. NHUB, NROTOR, NSTN, NSTRM,	17
5 NTID. NTURES. OMEGA. PL. POAL. PR. RADIAN. RF. RG. ROT.TL.TOALTU	18
COMMON	19
L RETAIL(21), RETA2(21), CCSA(21), CDSL(21), DKLE(1,21), DL(21),	20
2 CANN(21), ()BAR(21), RELM(21), RPR1(21), RE1(21), RE2(21),	21
3 252(21), $854(21)$, $855(21)$, $8VTH(21)$, $SINA(21)$, $SINL(21)$, $SLOS(21)$	22
$\Delta = c_{1} + c_{2} + c_{1} + c_{2} + c_{1} + c_{2} + $	23
5 W(21), VIS(21), XFAR(1,21), YBAR(1,21), ZP(21,13), ZS(21,13)	24
	25
$1 \in (1, 1)$, $(1, 1)$, $(1, 1)$, $(1, 2)$,	26
2 0FC(2)-211, RPTF(2,21), SINA2(21), SKIC(21), SKOC(21), TALP(21),	27
3 TCA(2), TEC(2,2), TGB(2), TTRP(2), TTRS(2), YCCLE(25), YCCTE(25)	28
4.7C(1F(25), 7C(1F(25), 7CDA(21), ZEC(2,21), ZTRP(21), ZTRS(21)	29
COMPANY AND STATEST	30
I ANACH- ACC. ALSOAS. ALSCAL. BINC. CALP. CCC. CEPE, CGBL, CHORD,	31
2 CINC, CKTC, CKTS, CI, C2, DKAPPA, DRCE, DRCGI, DRCMST, DRCMT,	32
3 CRECI, DRCI, DRCII, CRI, DSME, DSMI, DSOI, DSOT, DSSE, DST, DSTI,	33
4 ENT. FI. FZ. GRI. ICL. IGG. (PASS. KIS. KM. KTC. KTS. P. PFLOS.	34
5 RCG. RCM. RCMS. RCT. RD1. RECGI. REE. RENT, RET, RETI, RMSJ, RTRC	35
6.81. BIC. P2. SALP. SEPE. SGAM. SGBL. SJ. SKTC. SKTS. SLJD. T.	36
7 TEPE, TOBIL, THD. THLE, THMAX, THTE, TKTN, TLS, WC1, YB1, YB2, ZM	37
COMMON /MARG/	38
1 AL, ADAS, ACAL, CCHCRD, DAL, DADAS, DPW, DPWL, DRCLEP, DRCM,	39
2 DRCTPL, DRCTSL, DRCWT, DSA, DSP, DSP1, DSP2, DSS, DSS1, DSS2, DSW	40
3. FR. IWC. F. HC. ICHCKE, KIP, KOP, KOS, KP, KS, KTP, KWC, P12, RCI	41
4. RCL. RCP. ACS. ACTP, RCTS, RELEP, REDI, REP, RES, RETP, RETS,	42
5 REWT. RTR. RTRD. RTRC. SECGBL. TCGI. TGBL. WC, ZMT	43
DIMENSION HI(21), BKTC(21), CF(21), FA(21), FT(21), PS1(21),	- 44
1 PS2(21), R8F(21), SF(21), SMACH(21), TLOS(21), ZEL(2,21)	45
• • • • • • • • • • • • • • • • • • • •	

indicates of

State State Sector

in the second second

I

```
46
C *** DERIVATIVE OF A FUNCTION FROM A PARABOLIC FIT.
     \frac{\text{DEDH}[\text{R},\text{F1},\text{F2},\text{F3},\text{R1},\text{R2},\text{R3})}{\text{x} + (\text{F2} - \text{F1}) + (\text{R2} + \text{R3} - 2.0 + \text{R})/(\text{R2} - \text{R3})}
                                                                                      47
                                                                                       48
C +++ LCCAL VALUE OF A FUNCTION FROM A PARABOLIC FIT OF NEARBY POINTS
                                                                                       49
      PRESS(R,P1,P2,P3,R1,R2,R3) = P2 + (R - R2)/(R1 - R3)*((P1 - P2)*)
                                                                                       50
                                                                                       51
     x (R - R3)/(R1 - R2) - (P2 - P3)*(R - R1)/(R2 - R3))
                                                                                       52
      IR = 5
                                                                                       53
      IW = 6
                                                                                       54
      IROb = 1
                                                                                       55
      ILOSS(IRCW) = 1
                                                                                       56
      IROTOR = 1
                                                                                       57
   10 CALL INPUT
                                                                                       58
      ICCNV = 0
                                                                                       59
       ITER = 0
                                                                                       60
      NTUBES = NSTRM -1
                                                                                       61
       JH = NTUBES/2 + 1
                                                                                       62
      PI2 = PI/2.0
C *** CALCULATE PARAMETERS THAT ARE NOT ITERATION DEPENDENT
                                                                                       63
                                                                                       64
       RTA = R(I,1) + R(I-1,1)
                                                                                       65
       RHTA = RTA - (R(I,NSTRM) + R(I-1,NSTRM))
                                                                                       66
       CHD(1) = PI*RTA*SOLID(IRCW)/BLADES(IROW)
                                                                                       67
       DC 690 J=1,NSTRM
                                                                                       68
       SINA(J) = SLOPE(I-1, J)/SQRT(1.0 + SLOPE(I-1, J) ++2)
                                                                                       69
       COSA(J) = SQRT(1.0 - SINA(J) + 2)
       SINA2(J) = SLOPE(I,J)/SQRT(1.0 + SLOPE(1,J)**2)
                                                                                       70
                                                                                       71
       CCSA2(J) = SQRT(1.0 - SINA2(J) + 2)
                                                                                       72
       RPTE(I-1,J) = 0.0
                                                                                       73
  690 RPTE(1,J) = 0.0
                                                                                       74
C ### THE MAIN CPERATING LOCP
                                                                                       75
  7CC ITER = ITER + 1
       IF (ICONV.NE.2) GO TO 708
                                                                                       76
C *** COMPUTE STATIC PRESSURES ON STREAMIINES AT THE BLADE EDGES
                                                                                       77
                                                                                       78
       WRITE (IW,2540)
                                                                                       79
       DC 701 JI = 1.3
       HR = ((VZ(I-1,JI)/COSA(JI))**2 + VTH(I-1,JI)**2)/GJZ
                                                                                       80
                                                                                       81
       TU = TO(I-1,JI)
                                                                                       82
       TL = TEMP(HR)
                                                                                       83
       TSTAT(JI) = TL
       PS1(JI) = PO(I-1, JI)/144.0/PRATIO(TU)
                                                                                       84
                                                                                       85
       HR = ((VZ(I,JI)/CUSA2(JI))**2 + VTH(I,JI)**2)/GJ2
                                                                                       86
       TU = TO(1, JI)
                                                                                       87
       TL - TEMP(HR)
                                                                                       88
   701 PS2(JI) = PO(1,JI)/144.0/PRATIO(TU)
                                                                                       89
       JJ = 2
                                                                                       90
       IFIN = 0
                                                                                       91
       DC 705 J=1,NSTRM
                                                                                       92
       RBF(J) = (R(I-1,J) + R(I,J))/2.0
                                                                                       93
   702 IF (JJ.EQ.NTUBES) GO TO 704
                                                                                       94
       IF (RBF(J).GE.(R(I-1,JJ) + R(I-1,JJ+1))/2.0) GO TO 704
                                                                                       95
   7C3 JJ = JJ + 1
                                                                                       96
       HR = ((VZ(I-1,JJ+1)/CCSA(JJ+1))**2 + VTH(I-1,JJ+1)**2)/GJ2
                                                                                       97
       TU = TC(I-I+JJ+1)
                                                                                       98
       TL = TEMP(HR)
                                                                                       99
       TSTAT(JJ+1) = TL
       PS1(JJ+1) = PO(I-1,JJ+1)/144.0/PRATIO(TU)
                                                                                      100
       HR = ((VZ(I,JJ+1)/COSA2(JJ+1))**2 + VTH(I,JJ+1)**2)/GJ2
                                                                                      101
                                                                                      102
       TU = TO(1+JJ+1)
                                                                                      103
       TL = TEMP(HR)
       PS2(JJ+1) = PC(I, JJ+1)/144.0/PRATID(TU)
                                                                                      104
                                                                                      105
       IF (IFIN.EC.1) GO TO 705
                                                                                      106
       GC TC 702
```

107 7C4 FA(J) = PRF55(RBF(J), PS1(JJ-1), PS1(JJ), PS1(JJ+1), R(I-1, JJ-1), 108 X R(I-1,JJ),R(I+1,JJ+1)) IF (J.NE.NSTRM.CR.JJ.CC.NTUBES) GU TO 705 109 110 IFIN = 1111 GC TC 703 7C5 WRITE (IW, 2550) R(I-1, J), Z(I-1, J), VZ(I-1, J), VTH(I-1, J), R(I, J), 112 113 x Z(I,J), VZ(I,J), VTH(I,J)114 WRITE (IW, 2560) 115 JJ = 2ORATIO = PI*(PS1(1)/TSTAT(1)*VZ(I-1,1)*R(I-1,1) + PS1(2)/TSTAT(2)* 116 X VZ(I-1,2)*R(I-1,2))/RF*(R(I-1,1) - R(I-1,2))/(RBF(1) - RBF(2)) 117 118 708 DC 900 J=1,NSIRM 119 IF (ICCNV.GE.2) GC TC 895 120 IF (ITER.EQ.1) GO TO 780 C *** CORRECT THE VELOCITY CIACRAMS TO THE EDGES OF THE BLADE 121 122 1F (J.EC.1) GD TO 710 123 JU = J - 1124 JI = J - 1125 JZ = J126 **J**3 = J + 1 127 IF (J.NE.NSTRM) GO TE 723 128 JL = J129 JU = J - 1130 J1 = J - 2131 J2 = J - 1132 J3 = J133 GC TC 731 134 710 JU ⇒ J 135 JI = J136 J2 = J + 1137 J3 = J + 2138 72C JL = J + 1139 730 DC 770 I=1,2 140 IF (1.GT.1) GC TD 740 141 TANKE = TAN(KIC(J))142 CCSAE = CCSA(J)143 GC 1C 750 144 740 TANKE = TAN(KOC(J)) 145 CCSAE = CCSA2(J)146 750 DRI = (2(1,J) - 2E'(1,J))*SLCPE(1,J) 147 VTH(I,J) = VTH(I,J)*(1.0 - DRI/R(I,J)) DADR = (SLCPE(1,JU) - SLCPE(1,JL))/(1.0 + SLOPE(1,JU)*SLOPE(1,JL)) 148 1 /(R(I,JU) - R(I,JL) + (Z(I,JU) - Z(I,J))*SLOPE(I,JU) - (Z(I,JL) -149 150 2 Z(I,J))*SLOPE(I,JL)) ARATIO = (1.0 + DRI/R(I,J))*(1.0 - DADR*(Z(I,J) - ZEL(I,J))) 151 152 HR = ((VZ(I,J)/COSAE) * * 2 + VTH(I,J) * * 2)/GJ2153 $TU = TO(I_{+}J)$ 154 TL = TEMP(HR)155 RHC = PC(I,J)/(TL*RF*PRATIO(TU)) 156 RVZC = RHC + V?(I, J)/ARATIC157 VZ(I,J) = VZ(I,J)*(1.2 + (1.C/ARATIO - 1.0)/(1.0 - (VZ(I,J)/158 X CCSAE) ##2/(GAMM(J) #RC#TL))) 159 760 HR = ((VZ(1,J)/COSAE)**2 + VTH(1,J)**2)/GJ2 160 TL = TEMP(HR)161 RVZ = VZ(I,J) + PU(I,J)/(TL + RF + PRATIO(TU))IF (ABS(RVZ/RVZC - 1.0).LT.0.0001) G0 T0 765 VZ(1,J) = VZ(1,J)*(1.0 + (1.0 - RVZ/RVZC)/(1.0 - (VZ(1,J)/COSAE)** 162 163 164 X 2/(GAMM(J)+RG+TL))) 165 GC TC 761

the second second second

c	*** SET THE EDGE DERIVATIVE. P*PARTIAL OF THETA WITH RESPECT TO R	166
č	765 TANLD = CFDR(REC(1,J), ZEC(1,J1), ZEC(1,J2), ZEC(1,J3), REC(1,J1),	16?
	X REC(1, J2), REC(1, J3))	168
	SINLD = TANLD/SQRT(1, C + TANLD **2)	169
	TANLA = (TANLU + TALP(J))/(1.0 - TANLD*TALP(J))	170
	CESLA = 1.0 / SQRT(1.0 + TANLA * * 2)	171
	CALP = 1.0/SQRT(1.0 + TALP(J)**2)	172
	RPTE(I,J) = DFDR(REC(I,J),TEC(I,J1),TEC(I,J2),TEC(I,J3),REC(I,J1),	173
	X REC([,J2],REC([,J3])	174
	770 RPTE(I,J) = (REC(I,J)*RPTE(I,J)*CALP - TANKE*SINLD)/CUSLA	175
		1/0
	780 $ZEL(I-I,J) = Z(I-I,J)$	179
_	$ZEL(I_{\phi}J) = Z(I_{\phi}J)$	179
C	WHEN A VELUE IN DIAGRAM PARAPETERS FOR THE DEADE ELEMENT DESIGN	180
	$VP(J) = VZ(I-I_{T}J)/(USA(J))$	181
	$\mathbf{MI} = \mathbf{J}\mathbf{M} + \mathbf{M} + $	182
	$\pi M = M M M M M M M M M M M M M M M M M $	183
	TL = TFMP(HQ)	194
	CP = CPF(TL)	185
	GAMP(J) = CP/(CP - DCP)	186
	SCNIC(J) = RG+GAMM(J)+TL	187
	VMC = VZ(I,J)/COSA2(J)	188
	IF (ISTN(I).GT.O) GO TO 790	189
	TREL1(J) = TC(I-1,J)	190
	$\mathbf{WTHI} = \mathbf{VTH}(\mathbf{I} - \mathbf{I} + \mathbf{J})$	103
	WTH2 = VTH(I,J)	192
	f(L)(J) = [.0 - P0(1, J)/P0(1-1, J)	194
	GL 10 800 700 H - OMECA+9/J-1 1 (12 0	195
	$H_{D} = \frac{1}{2} \frac{1}$	196
	TU = TO(1-1, J)	197
	TREL1(J) = TEMP(HR)	198
	WTH1 = U - VTH(I-1,J)	199
	W1 = SQRT(VM(J) + +2 + WTH(+ +2)	200
	$WTH2 = R\{I,J\} + OMEGA/12.0 - VTH(I,J)$	201
	GR2 = GAMM(J)/(GAMM(J) - 1.0)	202
	TLCS(J) = (1.0 - PO(1, J)/PU(1-1, J)/(10(1, J)/10(1-1, J)) + CR2) + (1.0)	203
	1 + (CMEGE*R(1,J))**2/(28%.0*GR2*RG*TREL1(J))*(1.0 - (R(1*1,J))	204
	$2 K(1,J) + 2 Z + V K \Delta $	206
	$RFTAI(I) = \Delta TAN(WTHI/VM(J))$	207
		208
	RELM(J) = W1/SQRT(SONIC(J))	209
	RJA = R(I,J) + R(I-I,J)	210
	DR = (R(1,J) - X(1-1,J)) + 2	211
	CR = SQRT(1.0 - (1.0 + (VM(J)*VM0 - WTH1*WTH2)/(W1*W2))*DR/(2.0*	212
	X (DR + (Z(I,J) - Z(I-1,J))**2))	213
	RRA = (RTA - RJA)/RHTA	214
	IF (J.NE.1) GO TO 810	210
		217
	810 CR = CRT+(1.0 + RKA+(CHORDA(IROW) + RRA+(CHORDB(IROW) + RRA+	218
	X CHCRDC(IRCW))))/CR	219
	CHD(J) = CHD(1) + CR	220
	820 IF (ITER.NE.1) GO TO 825	221
	BETAS(IROW,J) = 0.8*BETA1(J) + 0.2*BETA2(J)	222
	IF (ITRANS(IROW).NE.2) GC TO 825	223
	TRANS(IRCW,J) = SIN(PETA1(J)) * RJA/(RTA*SOLID(IROW) * (1.0 + RRA*)	224
	X (CHCRDA(IROW) + RRA*(CHCRDB(IROW) + RRA*CHORDC(IROW))))	225
	IF (TRANS(IRCW,J).GT.C.9) TRANS(IROW,J) = 0.9	226

c	* * *	TAUTHATE THE SHEEK LESS PARAMETER	227
U	477 1475		228
	620		229
		(F) = (AFF(J) = 1, J	230
		G(1) = SOR((GPI/GPI))	231
		GR2 = GAMM(J)/GM1	221
		GR3 = 1.0/GM1	2.52
		GR4 = GP1/2.0	233
		$G_{B5} = GM1/2_{2}O$	234
		SSB(TA = BETAT(1) - BETAS(IROW-J)	235
~			236
L	***	TEST FUR SUPERSUME VELOCITY	237
		[F {RELM(J).LI.I.U) GU HU 030	238
		$SMM = SQPT(RELM(J) + 2 - 1 \cdot 0)$	2 20
		PMEYER = GR1+ATAN(SMM/GR1) - ATAN(SMM)	237
		GC TO 840	240
	830	PMFYFR = 0.0	Z41
	940	DNEVED = DNEVER + SSRFTA	242
	040		243
		IF (PHETERILE, UV) GUITE CUERCE MACH MUMBER	244
С	***	ITERATE FUR THE SUCTION SURFACE HACH NUMBER	245
		$TEMPM = 1 \cdot \mathbf{C} + 3 \cdot 0 = PMEYER$	244
	850	SM = SQRT(TEMPM**2 - 1.0)	240
		SMG = SM/GR1	241
		V = GRI + ATAN(SMG) - ATAN(SM)	248
		DIES - DHEVED - VV	249
		TCHON - TCHOM & DIFEASH/ITEMPM/(1.0 + SHG##2) - 1.0/TEMPM)	250
			251
		IT (ABS(DIFF)-LE-U-UUI) GU TU UTU	252
		GC TC 850	251
	860	$TEPPM = 1 \cdot C$	272
	270	AMACH = (RELM/J) + TEMPM1/2+0	224
		1F (AMACH.GT.1.C) GO TC 889	255
		5(-5(1) = 1.0)	256
			257
		$G_{1} = G_{2} = G_{2}$	258
	880	$\Delta f_{3} = AFACHT + 2$	259
		S[US(J)] = ([GK4#AHSQ/[1.]] + GK3#AHSQ/[1+GK2]+(GK4)(GK4)(GK4)))	260
		X GP5))**GR3	261
		SLOS(J) = 1.0 - (1.0 - SLOS(J))/AMSQ	20
	890	GHAR(J) = (TLCS(J) - 1.0 + SLOS(J))/(1.0 - (1.0 + GM1/2.0+RELM(J)	204
	-	x **2)**{-GR2))	26.
	855	CALL BLADE	264
		TE A TERROR EC. 1 AND, ICONV. (T_2) GD TO 10	26
		IF LIENKEN LEGITARDE ICENTELIEF CO. IC. IC.	260
		VALL SBETA	26
		17 (ICCNV-LI-2) GU IL 900	26
		IF (IGO.NE.2) CALL MARGIN	20
C	***	COMPUTE THE BLADE FORCES	20
-	896	SIF (JJ-EQ-NTUBES) GO TC 897	27
	•••	15 (RHEL1)_GF. (R(1.1.)) + R(1.JJ+1))/2.0) GO TO 897	27
			27
		CC 10 896	27
	0.01	0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27
	0.4	f = f = f = f = f = f = f = f = f = f =	27
		X K (1, J)-1), K (1, J), K (1, J)-1// -FA(J///DLADES(1KOW)	27
		IF (J.NE.NSIRM) GU IL 898	21
		RATIC = CRATIC	21
		GC TC 899	21
	891	B RATIC = PI*(PS1(J)/TSTAT(J)*VZ(I-1,J)*R(I-1,J) + PS1(J+1)/	27
	• • •	x TSTAT(J+1)*VZ(I-1,J+1)*R(I-1,J+1))/RF*(R(I-1,J) - R(I-1,J+1))/	28
		2 (pp(1)) - pp(1))	28
	0.04	2 (NET 137 - NET 137 A F) 2 ET 13 - FDATTC A CDATTC)//2 (#C#8) ANES/TDOUS	28
	92,	f = f + f = f + f + f = f + f + f + f = f + f = f + f = f + f = f + f +	29
		FA(J) = FA(J) + F(J)F(V(L), J) = V(L-L, J)	20
		FT(J) = FT(J) * (VTH(I-I,J) - VTH(I,J))	20
		CRATIO = RATIC	28

ł.

the start

	204
; ### SET UP CALCULATED BEALE ELEMENT PARAMETERS FUR PRINTOUT	200
THMAX = 2.0*THMAX	23:
SSCAMB = (KIS - KTS)*RADIAN	288
GBL = GBL*RADIAN	289
INCLIROW, J) = BINC	290
BI(J) = BINC#RADIAN	291
DEV(IROW, J) = BETA2(J) - SKOC(J)	292
$BKTC(J) = KTC^{-1}ACIAN$	293
SF(.1) = F1	294
$(F(1) = F_2 - F_1)$	295
WDITE (14-2570) THIE, (HMAX, THTE, 7M. T. P. SSCAMB, GBL, SJ	1. 296
Y CHCLIN, ACC. BEALL, EALIN, FILL	297
	298
YEU CALL FUINIS	299
LALL STAIN	300
	301
IF (ITER, EG.8) ICCNV = 2	301
6C 10 7C0	302
920 WRITE(IW, 2580)	303
DC 930 J=1,NSTRM	304
B1 = BETA1(J)*RADIAN	305
B2 = BETA2(J)*RADIAN	306
SSI = BI(J) - DKLE(IRCW,J)*RADIAN	307
KIC(J) = KIC(J)*RADIAN	308
DV = DEV(IROW, J)*RADIAN	309
KOC(J) = KCC(J) + RADIAN	310
SKIC(J) ⇒ SKIC(J)≠RADIAN	311
SKCC(J) ⇒ SKCC(J)≠RADIAN	312
93C WRITE (IW,2590) BI(J), SSI, B1, SKIC(J), KIC(J), DV, B2	313
X.SKOC(J), KOC(J), BKTC(J), SF(J), CF(J), CHK(J), FSM(J)	314
	315
	316
2540 COMAT (1H1 //// 40X-52H*** TERMINAL CALCULATIONS WITH THE	STACKED 317
2 JUST CAMPANE THE TATA CONDECTED TO THE READ	E EDGES 318
$1 \text{ELADE} \forall $	22(1H-1 319
$2 + 77 - 3x_{1}2 + 10$ in the result of sharts of sharts is 10 the result of the res	NTIAL 320
3 // (A;2(2A;10H3)KEAPEINE; /A;3HAAIAL;7A;3HAAIAL;7A;A;0HAAIAL;	1112 321
4 8X) / $X_1 \ge (4X_1 \circ n x A \square U \cup (1 + 0 \square U \square U \square U \cup (1 + 0 \square U \square$	322
5 9X = 7X + 7X + 2(3X + 8H(INCFES) + 0X + 8H(INCFES) + 8H(INC	322
6 8H(F1/SEC),9X) //)	323
2550 FERMAI (3X,2+14.4,1X,2+14.3,5X,2+14.4,1X,2+14.3)	327
256C FERMAT (1H1 /// 2X,8HL.E.RAU.,2X,7HMAX.TH.,1X,8HT.E.RAU.,2X	1 JZJ
1 7HMAX.TH., 1X, 8HTRAN.PT., 1X, 7HSEGMENT, 2X, 8H1ST SEG., 1X, 7HBL	Desel 320
2 2X, THELEMENT, 3X, SHAERC., 2X, 10HLOC.OF MAX, 6X, 18HLUCAL BLADE	FURLES 3/7
3 / 3X,6P/CHORD,2(3X,6F/CHORD),3X,7HP1.LUC.,1X,8HLUCATION,2X	, 320
4 6HIN/OUT, 2X, 8HS.S.CAM., 2X, 5HANGLE, 3X, 8HSOLIDITY, 2X, 5HCHORD	, 3X, 329
5 BHCAMB.PT., 3X, 6HRADILS, 2X, 9HFOR.AXIAL, 3X, 5HTANG. / 27X, 2(3	X, 330
6 6H/CHORD),2X,9HTURN.RATE,1X,5H(DEG),4X,5H(DEG),13X,5H(IN.)	,4X, 331
7 6H/CHORD,4X,5H(IN.),3X,8H(L8S/IN),2X,8H(L8S/IN) //)	332
2570 FORMAT (2X,F7.4,5F9.4,F8.2,F9.2,F10.4,2F9.4,F10.3,2F10.4)	333
258C FCRMAT (/// 4X,4HINC.,1X,8HS.S.INC.,1X,7HIN.FLOW,2X,	334
1 8HIN.BLADE, 2X, 8HIN.ANGLE, 3X, 4HDEV., 1X, 8HOUT.FLOW, 2X, 9HOUT.	BLADE, 335
2X,8HOUT.ANG.,2X,8HTRAN.PT.,2X,7HSH.LOC.,2X,	336
3 SHCCV.CHAN.,2X,BHMIN.CHK.,2X,BHMIN.CHK. / 3X,5HANGLE,3X,5H	ANGLE, 337
4 3X, SHANGLE, 4X, SHANGLE, 4X, 7HCN CONE, 3X, SHANGLE, 3X, SHANGLE, 5	X, 338
5 SHANGLE.4X.7HON CONE,2X.8HBL.ANGLE.2X.8HAS FRACT.	339
6 2X. BHAS FRACT. 4X. 4HAREA. 3X. 9HPT.LDC. IN / 3X. 5H(DEG). 3X. 5H(DEG), 340
7 3X.5H(DEG).4X.5H(DEG).5X.5H(DEG).4X.5H(DEG).3X.5H(DEG).5X.	5H(DEG) 341
8.5Y.5H(DEG).5X.5H(DEG).4X.7H(DE S.S. 3X.7H(DE S.S. 3X-	342
a AUNARGIN. 3X.9HCNV.CHAN. // 1	343
	344
2370 FURPAI (CANIDOCICIONCII 78641 108641 78641 086751 1086771 1084 7 END	345

aio Sea

.

135

ter the trace

```
1
      SUBROUTINE INPUT
C *** REAL AND PRUCESS THE INPUT BATA
                                                                                       2
      REAL INC, MACH, MOLE
      CENNICA /VECTOR/
     1 BETAS(1,21), AMATE(1), ALAUF (1), CHOR (1), CHORDA(1), CHOROB(1),
2 CHEROC(1), CPUC(6), UFV(1,21), FUEV(1), TOPO(1), TINC(1),
3 ILCSS(1), IMAX(1), INC(1,21), ISTN(2), ITRANS(1), NOPT(1),
     4 NXCUT(1), PHI(1,21), PU(2,21), R(2,21), RBHUD(1), RBTIP(1),
     5 SUCPE(2, 21), SOULD(1), TALE(1), TAMAX(1), TATE(1), TOLE(1),
       TRMAX(1), EDTE(1), TOLE(1), TOMAX(1), TOFF(1), TOLE(1), TOMAX(1),
                                                                                      10
     6
     7 TOTE(1), TILT(1), TC(2,21), TRANS(1,21), VTH(2,21), VZ(2,21),
                                                                                      11
                                                                                      12
     8 Z(2,21), 78HU8(1), Z8T1P(1), ZMAX(1,21)
      CEMMEN /SCALAR/
                                                                                      13
     1 BETA, CP, CPH2, CPH3, CPH4, CPH5, CPH6, CPP3, CPP4, CPP5, CPPo,
                                                                                      14
     2 CP1, CV, CCP, DF, DFC, EHCI, DLOSC, S, SAMMA, GJ, GJ2, GR1, GR2,
                                                                                      15
     3 GR3, GR4, JR5, H, I, ICENV, ICUUNT, IERROR, IIN, IPR, IROTOR, IR,
                                                                                      16
      4 IRCW, ITER, IW, J. J., MACH, NAB, NBROWS, NHUB, NRCTOR, NSTN, NSTRM,
                                                                                      17
     5 NTIP, NTURES, CMEGA, PI, POAL, PR, RADIAN, RF, RG, ROT, TL, TOAL, TU
                                                                                      18
      DIMENSION WORD(20)
                                                                                      19
                                                                                      20
      COMMON /LAPEL/ TITLE(19)
      DATA WORD / 4HVEL., 4FDESI, 4HCUOR, 4HPUNC, 4HALL , 4H2-D , 4H3-D
                                                                                      21
                                                                                      22
      X, 4HTABL, 4HSUCT, 4HCAPT, 4HMODI, 4HCIRC, 4HOPTI, 4HSHOC, 4HAPPR,
                                                                                      23
      X 4HE SS, 4HE LF, 4H B , 4H M , 4H P
                                                  1
                                                                                      24
   10 READ (IR,1000) (TITLE(I),I=1,18)
                                                                                      25
      WRITE (IW, 2000) (TITLE(I), I=1,18)
C *** READ THE SPECIFIC HEAT COEFFICIENTS
                                                                                      26
                                                                                      27
      READ (IR,1727) (CPCO(1), I=1,6)
                                                                                      28
      WRITE (IW,2060) (CPCC(I),I=1,6)
      READ (IR,1010) NSTRM, MOLE, ROT, ZBTIP(IROW), RBTIP(IROW),
                                                                                      29
      X ZBFUB(IRCW), RBHUB(IRCW), NYCUT(IROW)
                                                                                      30
                                                                                      31
       1 = 2
                                                                                      32
       PI = 3.141597
                                                                                      33
      RADIAN =57.29578
                                                                                      34
      G = 32.174^{\circ}
                                                                                      35
       GJ = 25035.24
                                                                                      36
       GJ2 = 50071.47
      CMEGA = RCT+6.2231854/60.0
                                                                                      37
                                                                                      38
       RF = 1545.447MCLE
       RG = RF#C
                                                                                      39
                                                                                      40
       DCP = RE/7'3.12
       CPH2 = CPC((2)/2.0
                                                                                      41
                                                                                      42
       CPH3 = CPCE(3)/3.0
                                                                                      43
       CPH4 = CPC((4)/4.0)
                                                                                       44
       CPH5 = CPCC(5)/5.0
                                                                                      45
       CPH6 = CPCC(6)/6.0
                                                                                       46
       CPP3 = CPC((3)/2.0)
                                                                                       47
       CPP4 = CFCC(4)/3.0
                                                                                       48
       CPP5 = CPCC(5)/4.0
                                                                                       49
       CPP6 = CPCC(6)/5.0
                                                                                       50
       CP1 = CPCC(1)/CCP
       CP = 0.24
                                                                                       51
       READ (IR,1:30) BLADES(TRUW), SOLID(IROW), TILT(IROW),
                                                                                       52
                                                                                       53
      X PMATL(IRETGR), CHOKE(IREW)
                                                                                       54
       IF (ROT.GT.J.J) GC TC 20
                                                                                       55
       ISTN(I) = -2
       GC TC 30
                                                                                       56
                                                                                       57
    20 \text{ ISTN(1)} = 2
    3C READ (IR,1030) TALE(IROW), TRLE(IROW), TOLE(IROW), TOLE(IROW),
                                                                                       58
                                                                                       59
      x TATE(IROW), THTE(IROW), TOTE(IROW), TOTE(IROW)
       READ (IR, 1030) TAMAX(IROW), TBMAX(IROW), TCMAX(IROW),
                                                                                       60
```

4

9

÷

「「「「「」」 Contraction of the

1

	X	TOMAX(IRCW), CHORDA(IROW), CHORDB(IROW), CHORDC(IROW)	61
		READ (IR.1040) CP. OPC, AA, AB, 88, CC, DD, EE, EB	62
		WRITE (IW.2010) NSTRM. MCLE. ROT. ZBTIP(IROW), RBTIP(IROW),	63
	,	ZELIRITECENT, REHERITECENT, BLADESITEOW), SULLILEOW), THIT(IROW)	64
	•	= 1 = 1 = 2 = 2 = 1 = 1 = 1 = 1 = 1 = 1	65
		$\mathbf{H}_{\mathbf{T}} = \{\mathbf{H}_{\mathbf{T}}, \mathbf{U}_{\mathbf{T}}, \mathbf{U}, $	66
	1	TOTAL RUNT, TOPAATIRUNT, COURTAILANT, TOELIKONT, TOTAL SOUT	67
	2	- ICMAX(IRLW), CHURDB(IRLW), IDECIROWI, IDECIROWI, IDMAX(IROW),	
	3	CHURDC(IRCW)	60
C 4	***	SET OPTION WHICH CONTROLS THE AMOUNT OF INFORMATION DESIRED	09
		IF (OP-NE-WORD(5)) GC TO 40	70
		NCPY(IRCW) = 6	71
		GC TC 60	72
	40	IF (CP.NE.WORD(4)) GC TO 50	73
		NCPT(IROW) = 5	74
		GC 10 120	75
	50	1E (CP-NE-WORD(3)) GC TC 99	76
	20	$\mathbf{x} = \mathbf{x} + $	71
		$\frac{1}{1000} = \frac{1}{1000} = 1$	78
	ou	$\frac{1}{10} \frac{1}{1000} = \frac{1}{1000} \frac{1}{1000} = \frac{1}{1000} \frac{1}{1000} = \frac{1}{1000} \frac{1}{10000} = \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	79
		NCPT(IRCH) = NCPT(IRCH) + 30	80
			ा ।
	70	IF (APO.NE.HORD(20)) GC 10 8C	01
		NOPT(IROW) = NOPT(IROW) + 20	04
		GC TC 120	8:
	80	IF (CPO.NE.WORD(19)) GC TO 120	
		NCPT(IRCW) = NOPT(IRCW) + 10	8
		GC TC 120	80
	90	IF (CP.NE.WORU(2)) GC TO 100	8.
		NCPT(IRCW) = 3	8
		GC 10 120	8
	100	TE (CP.NE.WORD(1)) GO TO 110	9
	100		9
			9
			9
		NCP((IKUW) = 1	á
	12C	IF (ABS(TIET(IRUW)).LI.I.U.U) TIET(IRUW) - TIET(IRUW/RADIAN	á
		IF (ISIN(I)-LI-0) GJ IL 140	,
		WRITE (IW,2355)	,
		IF (CHOKE(IRCw).LE.O.G) CO TC 130	9
		WRITE (IW,236u) CHOKE(IRCW), BMATL(IROTOR)	9
		GC TC 160	9
	130	WRITE (IW,2370) BMATL(IRCTOR)	10
		GC 10 160	10
	140	IF (CHOKE(IROW).LE.0.0) CO TC 150	10
		WRITE (IW-2360) CHOKE(IRGW)	10
			10
	160		10
	120	$\frac{1}{16} \frac{1}{100} \frac{1}{$	10
	100	IT INCHILICUTION CONTRACTORY	10
~		LIACLE - U For a are compared decical contone and been necessary induit.	10
L	***	SET BLADE ELEMENT DESIGN CONTROL OPTIONS AND READ NECESSART INFO	10
	41C	IF (AA.EQ.WORD(7)) GL 10 420	10
		IF (AA.EQ.WORU(9)) GC TO 430	11
		IF (AA.EQ.WORD(8)) GO TC 440	11
		IINC(JRGW) = 1	11
		WRITE (IW,2375)	11
		GC 10 434	11
	420	IINC(IROW) = 2	11
		WRITE (IW.2380)	11
			11
	420		11
	430		11
		NKLIC LIN(2070)	13
	444		12

たのの日本のでの

· · · · ·

476	$1 \times (1120 \text{m}_{-} 1) = -(-0)$	121
• •		122
440	1997 - 19	123
440	READ (1R,10)37 (1000100000000000000000000000000000000	124
		125
	15 (AB:EW-WURD(16)) GU IU 445	125
	1 INC (189, W) = 4	126
	WRITE ([W,2392]	127
	SC TC 459	128
445	11NC(LROW) = 5	129
	HRITE ([H,2394]	130
450	IF (3B.EC.WCRD(7)) GC TC 460	131
	IE (BB - EQ - WORD(10)) GF TE 470	132
		133
		134
		125
	10EV(IKUN) = 1	125
	W(1)E (1W,2400)	130
	GC 10 484	137
46 J	IDEV(IRGW) = 2	138
	WRITE (IW,2410)	139
	GC TC 484	140
470	ICEV(IRCW) = 3	141
	WRITE (IW,2420)	142
	GC 10 484	143
680		144
400		145
491		146
404		140
480	Dev(1kUw, j) = -0.0	140
	GC 10 500	148
45C	ICEV(IROW) = 5	149
	WRITE (IW,2435)	150
	READ (IR,1030) (DEV(IROW,J),J=1,NSTRM)	151
	ITABLE = 1	152
500	IF (CC.EQ.WCRD(13)) GC TC 510	153
	1F (CC_F9_WORD(8)) GC TO 520	154
	IGEC(IRCW) = 1	155
	CC SOS LELANSTRM	156
505		157
100		158
		150
- · •		140
510	IGEL(IROW) = 2	100
_	WRITE (IW, 2450)	161
514	DC 516 J=1.NSIRM	102
516	PH1(IROW, J) = -0.0	103
	GE TE 530	164
520	IGEC(IROW) = 3	165
	READ (IR,1030) (PHI(IROW,J),J=1,NSTRM)	166
	ITABLE = 1	167
	WRITE (1W,2455)	168
530	IF (DD.EQ.WORU(14).ANC.IGEO(IROW).NE.1) GO TO 540	169
	$IE_{(DD-EQ-WCBC(6))}$ GC TO 550	170
	$T_{DANS}(T_{DCW}) = 1$	171
		172
535	TDALS(IDCM A) = 0.5	172
232	INANOLIKUM9JJ = 000 Unite Jiu 0/801	174
	WK1/C (1W)/2408/	114
	GC 1U 560	175
540	$ITRANS(I^{n}CW) = 2$	176
	WRITE (IW,2460)	177
	CC 545 J=1,NSTRM	178
545	TRANS(IRCW,J) = -0.0	179
	GC TC 569	180

Carles .

1. 1. A. 1.

		101
550	ITRANS(IREW) = 3	171
	READ (IR,1030) (TRANS(IRCW,J),J=1,NSTRM)	112
	TTAPLE = 1	133
	WRITE (1W.2462)	184
		185
	$U_{1} = 222 J = 1 + 12 I = 1 + 12 = 0 + 12 + 12 + 12 + 12 + 12 + 12 + 12 + $	186
	IF $(TRANS([R(W,J),L],C,U,UR,TRANS([R(W,J),G],I,U),G))$	100
552	CONTINUE	187
	GC TC 560	188
554	WRITE (IW-2465) IRCW- J	189
		190
		191
	REICRN	102
560	IF (EE.EQ.WURL(8)) GU (G >70	172
	IMAX(IROW) = 1	193
	DC 565 J=1,NSTR₩	194
565	7MAX(IROW+J) = 0.0	195
	WRITE (IN. 2470)	196
		197
6 7 0	00 10 200	198
210	READ (IR, ICOV) (ZFAKTIKUW, J) (J-I) (J) (K)	100
	ITAULE = I	200
	IF (EB.EQ.WORD(17)) GC TC 572	200
	IMAX(IROW) = 2	201
	WRITE (1W,2472) "	202
	GP 10 574	203
672		204
212		205
	WELLE $\lambda H H (2777)$	206
574	IF (IIKANSIIKUW)-EQ.2.AND.IMAXIKUW)-EQ.27 GU TU 300	207
	DC 576 J=1,NSTRM	201
	ZT = ZMAX(IROW, J)	208
	IF (IMAX(IROW).EQ.2) ZT = ZT + TRANS(IROW,J)	209
	IF (ZT.LT.C.1.CR.ZT.GT.O.9) GO TO 578	210
574	CONTINUE	211
510		212
		213
215	SWRITE (IN)24/31 INUW, J	214
	IERROR = I	217
	RETURN	215
580	CIF (ITABLE.EG.O) GO TC 620	216
	WRITE (IW,2480)	217
	IF (IINC(IRCW)_EC.5) WRITE(IW+2482)	218
	TE (IMAX(IROW)-E0-3) CO TO 582	219
		220
	WRLIE (1W)2404)	221
	GL TL 584	201
582	2 WP:IE (1Wy2486)	222
584	4 WRITE (IW,2488)	223
	CC 590 J=1,NSTRM	224
	WRITE (IW,2490) J, INC(IROW,J), DEV(IROW,J), PHI(IROW,J),	225
	X TRANS(IRCW.J). ZMAX(IROW.J)	226
	TAC(TROW, I) = TAC(TROW, I)/RACIAN	227
500	1 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	228
291	U DEVILLOND A DEVILLOND THE CAND OUTLET CONDITIONS	229
는 부부	T KEAL IN BLAUE ELEMENT INLET AND UDILET CONDITIONS	220
62	C DC 630 J=1,NSIRM	2 30
630	C REAC (IR,1030) R(I-1,J), Z(I-1,J), VZ(I-1,J), VTH(I-1,J),	231
	x SLCPE(I-1,J), TO(I-1,J), PO(I-1,J)	232
	DC 640 J=1+NSTRM	233
64	0 READ (18.1030) R(I.J). Z(I.J). VZ(I.J). VTH(I.J). SLOPE(I.J).	234
040		235
		236
	WKLIE (1W)/2000)	220
	WRITE (IW)252VJ	271
	DC 650 J=1,NSTRM	238

ستنح

65C WRITE (IW, 2530) J, R(I-1,J), Z(I-1,J), VZ(I-1,J), VIM(I-1,J),	4
y = (0 + (1 + 1), 1) = 1 + (1 + 1) + P((1 + 1))	-
	2
WRITE (IW) 2010)	:
WRITE (IW,2520)	
DC 660 J=1+NSTRM	1
UPITE (14,2530) J. R(1.J). Z(1.J). VZ(1.J), VTH(1,J), SLOPE(1,J),	
WALLE (INTERFORM OF CONTRACTOR OF CONTRACTON	
PC(1-1,J) = P0(1-1,J) = 144+0	
PC(I,J) = PC(I,J) + 144.0	
s(npe(t-1, J) = Tan(SLCPE(I-1, J)/RADIAN)	
f(a) =	
BOU SLUPELING - TANGED CUTYOF REDUCT	
WRITE (IW,2540)	
RETURN	
IGCO FORMAT (1884)	
1010 ECRWAT (15-5Y-6E10-4-110)	
102C FURPAT (SE20-8)	
1030 FCRPAT (8F10.4)	
1040 FORPAT (A4,2X,A4,2A4,2X,3(A4,6X),2A4,2X)	
2000 FORMAT (1H) //// 41X,48H### INPUT DATA FOR COMPRESSOR DESIGN PROG	
10 AM +++ /// 30Y-1846 1	
IRAP THE /// SURVINES OF AN OUNDE FOULAD, AY, 10HPGTATIONAL 3X.	
2010 FURFAT (3X, SHNUHDER UF 144, SHHUE COLOR STATISTICS AND	
1 9HTIP AXIAL,4X, 10HTIP RADIAL, 3X, SHOUD AATAL, 4X, 10HOD RADIAL	
2 9HNUMBER OF,7X, 3HTIP,6X,10HSTACK LINE / ZX,11HSTREAMLINES,5X,	
3 6HHEIGHT.7X.5HSPEED.6X.4(10HSTACK LOC.,3X),2X,6HBLADES,6X,	
4 ANEON TOTTY, 34- JOHTANG, THET / 31X-5H(RPM) -7X-4(BH(INCHES) -5X) -	
4 ONSULIDITY, SATISTIANS, TET, 2 E13 1, 4E13, 4, E12, 1, E16, 4, E12, 3)	
5 25X,9H(DEGREES) // /A,12,113-3,113-144 13-44 14 EDI (ONTIO	
2020 FORMAT (// 22X,91H* PCLYNOMIAL CUNSTANTS FUR THE FUELOWING FONCTION	
INS OF RADIUS WITH TIP = 0 AND HUB = 1 + // 25X, 17HL.E. RADIUS/	
2CHORD, 8Y-17HT-E. RADIUS/CHORD.6X.20HMAX. THICKNESS/CHORD,8X,	
2010/07/07/11/0 CHORD // 11Y, 84/00/STANT, 10X-3(F10-4-15X) / 11X-	
3 ISHCHURD/IIP CHURD // IIA/SHCHURSHARTIC OV 61510 4.15Y1 /	
4 6HLINEAR,12X,4(F10.4,15X) / 11X,9HQUADRATIC,9A,4(F10.4)13A7 /	
5 11x.5HCUBIC,13X,4(F1C.4,15X) ///)	
2060 FORNAT 1///39X-53HTHE SPECIFIC HEAT POLYNOMIAL IS IN THE FOLLOWING	
1 FORM // OV AUCH = E12.5.3H + F12.5.5H+T + E12.5.8H+T++2 + +	
2 E12.5,8H#1##3 + ,E12.5,8H#1##4 + ,E12.5,5HH (# //	
2355 FORMAT (/ 45%,42H* INPUT BLACE ELEMENT DEFINITION OPTIONS - //	
1 8X.9HINCIDENCE,9X,9HCEVIATICN,7X,12HTURNING RATE,7X,10HTRANSITION	
2 4Y 14HMAY THICKNESS 9X SHCHOKE 4X 22HBLADE MATERIAL DENSITY /	
2,00, 114 AAA THICKNESSY AATTA 2113Y SHOATNIL 12X 6HMARGIN.10X.	
3 10X,2(5HANGLE,13X), 5FRATTU,2(13X, 5FF01),7712A,000,000,000	
4 10HLB/(IN)**3 //)	
2356 FCRMAT (/ 45X,42H* INPUT BLACE ELEMENT DEFINITION LPTIONS * //	
1 AY OHING ICENCE, 9X. OHEEVIATION. 7X. 12HTURNING RATE, 7X, 10HTRANSITION	
2 4Y JAHMAN THICKNESS 9Y SHCHOKE / 10X-2(5HANGLE-13X)-5HRATIO	
2 j 0 k j 1 T i m A B = 1 T 1 0 K i L 0 S J (S J N S COL) + 2 K S C L 0 S C	
3 2(13X, 5HPLINI), 12A, 6FMARGIN, 10A // /	
236C FCRMAT (58X,F7.4,10X,+8.5)	
237C FORMAT (1COX,4HNONE,12X,F8.5)	
2375 FCRMAT (1H+.10X.3H2-C)	
2380 ECONAT (1H+-10X-3H3-D)	
2300 FORMAT FILLS OF THE STORE	
239C FURFAT (TH+, 8X, 7HSUCTION)	
2392 FORMAT (1H+,9X,5HTABLE)	
2394 FCRMAT (1H+,4X,16HTABLE (S.S.REF.))	
24CO FORMAT (1H+-28X-3H2-C)	
241C ECRWAT (1H+-28X-3H3-D)	
2420 PURPAL LINT, 228, LENUARIERS RULL	
2430 FCRMAT (1H+,21X,16HMLLIFIED CARTERS)	
2435 FCRMAT (1++,27X,5HTABLE)	
244C FCRMAT (1H++41X+12HC IRCULAR ARC)	
2430 FURFAL LITT HTA FINGELLAND C	
2455 FURMAN (1H++45X+7H)ABLE1	
2458 FCRMAT (1H+,59X,12HCIHCULAR ARC)	
246C FCRMAT (1H+,60X,10HS.S. SHOCK)	
2462 FORMAT (1H++63X,5HTABLE)	

v

1.444

aven

-

17 C -

140

1. 19. 11
| 2465 FORMAT (/// 12X,53HTHE INPUT TRANSITION POINT LOCATION OF BLADE RO | 301 |
|---|-------|
| IN NCIZ.2CH. ON STREAMLINE NOIZ.3GH. IS NOT ON THE BLADE ELEMEN | 302 |
| 21.) | 303 |
| 2470 EDRMAT (1H+-78X-10HTRANS- PT-) | 304 |
| 2470 CONFERT (104 744 1941 ARI E (TDANS DEE 1) | 305 |
| ZYTZ FORMAT (11) JEV 1441401 HULL (TANGARLAS) | 306 |
| 24/4 FURPAL (IM+)/DA, ICHIADLE (L.E. KET.)) | 307 |
| 2475 FURPAL (7/7 3X, 55FTHE INPUT MAX, THICKNESS FILL CUCATION OF BLADE | 307 |
| 1ROW NO.,12,20H, ON STREAMLINE NO.,12,49H, IS NOT WITHIN THE REQUIR | 308 |
| 2ED 10 TC 90 PCT. CHARC.) | 309 |
| 2480 FCRMAT (1H1 //// 41X,49F# TABLE OF BLADE SECTION DESIGN VARIABLES | 310 |
| 1 INPUT * //26X,80H(VARIABLES CONTROLLED BY OTHER OPTIONS WILL APPE | 311 |
| 2AR AS MINUS ZEROS IN THE TABLE.) //) | 312 |
| 2482 FORMAT (29%-15HSUCTION SURFACE) | 313 |
| 2494 FORMAT (1) Y, JOHSTREAM INF. AX. JSHINGIDENCE ANGLE.5X. | 314 |
| 1 REPORT ALL AND AND A CONTRACT AND | 315 |
| 1 LINUCALATION ANGLESCASCONTACT/OUTECT/OWNINGSCAS | 316 |
| 2 IOMIRANSITIUM/LAURU, JAJIGATAAA - TRANSITION// | 217 |
| 2486 FURPAI (IIX, JUHSIREAPLINE, 8X, ISHINGIDENCE ANGLE, 5A, | 210 |
| 1 150 DEVIATION ANGLE, 2X, 200 INCETTOUTCET TORNING, 2X, | 210 |
| 2 16HTRANSITICN/CHORD, 5%, 14HMAX. THICKNESS) | 319 |
| 2488 FORMAT (13X,6HNUMBER,2X,2(11X,9H(DEGREES)),10X,10HRATE RATIO,11X, | 320 |
| 1 8HLOCATICN,9X,14HLOCATION/CHORD //) | 321 |
| 2490 FORPAT (15X,12,2X,5(12X,F8.4)) | 322 |
| 2500 FCRPAT (1H1 // 51X, 3CH+* INLET STATION INPUT DATA **) | 323 |
| 2510 FORMAT (// 51X-31+** CUTLET STATION INPUT DATA **) | 324 |
| 2520 FERMAT (/ 1X.2(3X.10)STREAMLINE).9X.5HAXIAL.11X.5HAXIAL.8X. | 325 |
| 1 10L TANGENTIAL AY 10LSTREAM INE 2(6X.10HSTAGNATION) / 6X.6HNUMBER. | 326 |
| 2 TV ANDADATING AV AND ATTEN 2/AV ANVELOTITY, 104, 5451 ADE. AV. | 327 |
| 2 [A) DIRADIUS; 7A; 0 EU(A) [UA] (UA) (UA) (UC) (UA) (UC) (UA) (UC) (UA) (UA) (UA) (UA) (UA) (UA) (UA) (UA | 229 |
| 3 ILTIENTERALUKE, OA, OMTRE SSURE / IOA, ZIONIINUTESI, OAJ, ZIONETI/SEUI, | 220 |
| 4 8x),9H(DEGREES), /X,8H(DEG.R.),9X,0H(PSIA) //) | 329 |
| 253C FCRMAT (7X,13,5X,F10.4,F16.4,F17.3,F16.3,F16.5,F15.2,F16.3) | 3 3 0 |
| 254C FCRMAT (1H1 // 49X,35+*** PRINTOUT FOR EACH ITERATION ***) | 331 |
| END | 332 |

1 FUNCTION CPF(TL) ;*** CALCULATES CP(T) OF THE FLUID AT TEMPERATURE,T 2 3 REAL INC COMMON /VECTOR/ 4 5 1 BETAS(1,21), BMATL(1), BLADES(1), CHOKE(1), CHORDA(1), CHORDB(1), 2 CHCRDC(1), CPCO(6), CEV(1,21), IDEV(1), IGEO(1), IINC(1), 3 ILCSS(1), IMAX(1), INC(1,21), ISTN(2), ITRANS(1), NOPT(1), 6 7 4 NXCUT(1), PH1(1,21), PO(2,21), R(2,21), RBHUB(1), RBTIP(1), 5 SLCPE(2,21), SOLID(1), TALE(1), TAMAX(1), TATE(1), TBLE(1), 6 TBMAX(1), TBTE(1), TCLE(1), TCMAX(1), TCTE(1), TDLE(1), TDMAX(1), 7 TDTE(1), TILT(1), TC(2,21), TRANS(1,21), VTH(2,21), VZ(2,21), 8 9 10 11 8 Z(2,21), Z8HUB(1), Z8TIP(1), ZMAX(1,21) 12 CPF = CPCC(1)+(CPCO(2)+(CPCO(3)+(CPCO(4)+(CPCO(5)+ CPCO(6)*TL)*TL) 13 14 X *TL)*TL)*TL 15 RETURN 16 END

141

a the second second

È

```
FUNCT (ON TEMPEHD)
C*** CALCULATES TEMPERATURE ASSOCIATED WITH AN ENTHALPY CHANGE, HD.
      REAL INC, MACH
       COMMON /VECTOR/
     1 BETAS(1,21), BMATL(1), BLADES(1), CHOKE(1), CHORDA(1), CHORDB(1),
2 CHORDC(1), CPCO(6), DEV(1,21), IDEV(1), IGFD(1), IINC(1),
3 ILUSS(1), IMAX(1), INC(1,21), ISTN(2), ITRANS(1), NOPT(1),
      4 NXCUT(1), PHI(1,21), PO(2,21), R(2,21), RBHUB(1), RBTIP(1),
      5 SLOPE(2,21), SOLID(1), TALE(1), TAMAX(1), TATE(1), TBLE(1),
      6 TBMAX(1), TBTE(1), TCLE(1), TCMAX(1), TCTE(1), TDLE(1), TDMAX(1),
                                                                                           10
      7 TDTE(1), TILT(1), TO(2,21), TRANS(1,21), VT+(2,21), V7(2,21),
                                                                                           11
      8 Z(2,21), 78HUB(1), 78TIP(1), 7MAX(1,21)
                                                                                           12
      COMMON /SCALAR/
                                                                                           13
      1 BETA, CP, CPH2, CPH3, CPH4, CPH5, CPH6, CPP3, CPP4, CPP5, CPP6,
2 CP1, CV, DCP, DF, DHC, DHC1, Di , G, GAMM4, GJ, GJ2, GR1, GR2,
                                                                                           14
                                                                                           15
      3 GR3, GR4, GR5, H, I, ICONV, IC
                                               , IERROR, IIN, IPR, IROTOR, IR,
                                                                                           16
      4 IROW, ITER, IW, J. JM, MACH, NAU, NBROWS, NHUB, NROTOR, NSTN, NSTRM,
                                                                                           17
      5 NTIP, NTUBES, OMEGA, PI, POAI, PR, RADIAN, RF, RG, ROT, TL, TOAL, TU
                                                                                           18
       IF (ABS(HD/TU).LT.0.001) GO TO 15
                                                                                           19
       IC = 0
                                                                                           20
       CVC = 5.0E - 09/48S(H0/TU)
                                                                                           21
       IF (CVC.LT.0.00001) CVC = 0.00001
                                                                                           22
    10 TEMP = TU - HD/CP
                                                                                           23
       TSUM = TU+TEMP
                                                                                           24
       SU4 = CPCO(1) + CPH2+TSUM
                                                                                           25
       PROD = TEMP*TEMP
                                                                                           26
       TSUM = TSUM+TU+PROD
                                                                                           27
       SUM = SUM+CPH3+TSUM
                                                                                           28
       PROD = PROD*TEMP
                                                                                           29
       TSUM = TSUM+TU+PROD
                                                                                           30
       SUM = SUM+CPH4+TSUM
                                                                                           31
       PROD = PROD*TEMP
                                                                                           32
       TSUM = TSUM#TU+PROD
                                                                                           33
       DT= TU-TEMP
                                                                                           34
       HN= DT+(SUM+CPH5+TSUM+CPH6+(TSUM+TU+PROD+TEMP))
                                                                                           35
       IF (ABS(1.0 - HN/HD).LT.CVC) GO TO 20
                                                                                           36
                                                                                           37
       IC = IC + 1
       IF (IC.GT.10) WPITE (IW,2000) J. TU, HD, HN
                                                                                           38
       IF (IC.GT.15) GO TO 18
                                                                                           39
                                                                                           40
       CP = HN/DT
                                                                                           41
       GO TO 10
    15 \text{ TEMP} = TU - HO/CP
                                                                                           42
       GO TO 20
                                                                                           43
    18 \text{ IEPROR} = 1
                                                                                           44
                                                                                           45
    20 RETURN
 2000 FORMAT (//14x,34HINSTABILITY IN FUNCTION TEMP
                                                               J =,I3,15H
                                                                              IPPER
                                                                                           46
      1 TEMP =, F8.2, 13H INPUT DH =, F8.4, 12H PRES.DH =, F8.4 )
                                                                                           47
       END
                                                                                           48
```

3

5 6 7

8

9

1

2

3

5

6

7

```
FUNCTION PRATID(TH)
      CALCULATES PRESSURE RATIO BY ISENTROPIC PROCESS FOR A
C ***
£
      TEMPERATURE DIFFERENCE
      REAL INC, MACH
      COMMON /VECTOR/
     1 BETAS(1,21), BMATL(1), BLADES(1), CHOKE(1), CHORDA(1), CHORDB(1),
     2 CHORDC(1), CPCO(6), DEV(1,21), IDEV(1), IGED(1), IINC(1),
     3 ILOSS(1), IMAX(1), INC(1,21), ISTN(2), ITRANS(1), NOPT(1),
```

4 NXCUT(1), PHI(1,21), PO(2,21), R(2,21), PAHJB(1), RBTIP(1), €, 10 5 SLOPE(2,21), SOLID(L), TALE(L), TAMAX(L) TATE(1), TRLE(1), 6 TBMAX(1), T9TE(1), TCLE(1), TCMAX(1),(1), TDLE(1), TDMAX(1), 11 7 TDTE(1), TILT(1), TO(2,21), TRANS(1,21), VT4(2 21), VZ(2,21), 12 13 8 7(2,21), 78HUB(1), 78T1P(1), ZMAX(1,21) 14 COMMON /SCALAR/ 1 BETA, CP, CPH2, CPH3, CPH4, CPH5, CPH6, CPP3, CPP4, CPP5, CPP6, 15 2 CP1, CV, DCP, DF, DHC, DHCI, DLOSC, G, GAMMA, GJ, GJ2, GR1, GR2, 16 3 GR 3, GR 4, GR 5, H, I, ICONV, ICOUNT, IERROR, IIN, IPP, IROTOR, IR, 17 4 IROW, ITER, IW, J, JM, MACH, NAB, NBROWS, NHUB, NROTOR, NST N, NST RM, 18 5 NTIP, NTUBES, OMEGA, PI, POAL, PR, RADIAN, RF, RG, ROT, TL, TOAL, TU 19 20 TSUM = TH + TL21 SUM = CPCO(2) + CPP3+TSUM 22 PROD = TL = TL23 TSUM = TSUM+TH + PROD 24 SIN = SUN + CPP4+TSUM 25 PROD = PROD*TL 26 TSUN = TSUM+TH + PROD PRATIO = (TH/TL)++CP1+EXP((TH-TL)/DCP+(SUM+CPP5+TSUM+CPP6+(TSUM+TH 27 28 + PRCC+TL))) X 29 RETURN 30 END

BLCCK DATA CCMMON /PTS/ FSB(13) DATA (FSB(K),K=1,13) /.0,.05,.12,.2,.3,.4,.5,.6,.7,.8,.88,.95,1.0/ ENC 4

1 SUBRCUTINE BLADE THIS RULTINE SERVES AS A CONTROL OF THE BLADE ELEMENT DESIGN. 2 *** INCIDENCE AND DEVIATION ANGLES ARE SET IN THIS SUBROUTINE. 3 4 REAL INC, 12010, 130, KD, KI, KIC, KIS, KM, KOC, KTC, KTS, MACH, MD, NI 5 COMMON /VECTOR/ 6 1 BETAS(1,21), RMATL(1), BLADES(1), CHOKE(1), CHORDA(1), CHURDB(1), 2 CHCRDC(1), CPCC(6), CEV(1,21), IDEV(1), IGEO(1), IINC(1), 3 ILCSS(1), IMAX(1), INC(1,21), ISTN(2), ITRANS(1), NOPT(1), 7 8 9 4 NXCUT(1), PHI(1,21), PC(2,21), R(2,21), RBHUB(1), RBTIP(1), 5 SLCPE(2,21), SOLID(1), TALE(1), TAMAX(1), TATE(1), TBLE(1), 10 6 TBMAX(1), TBTE(1), TCLE(1), TCMAX(1), TCTE(1), TDLE(1), TDMAX(1), 11 7 TETE(1), TILT(1), TE(2,21), TRANS(1,21), VTH(2,21), VZ(2,21), 12 13 8 Z(2,21), ZBHUB(1), ZETIF(1), ZMAX(1,21) 14 CEMMEN /SCALAR/ 1 BETA, CP, CPH2, CPH3, CPH4, CPH5, CPH6, CPP3, CPP4, CPP5, CPP6, 15 2 CP1, CV, CCP, DF, DHC, CHCI, DLOSC, G, GAMMA, GJ, GJ2, GR1, GR2, 16 17 3 GR3, GR4, GR5, H, I, ICCNV, ICOUNT, IERROR, IIN, IPR, IROTOR, IR, 4 IRCW, ITER, IW, J. JM, MACH, NAB, NBROWS, NHUB, NROTOR, NSTN, NSTRM, 18 19 5 NTIP, NTUPES, OMEGA, PI, POAL, PR, RADIAN, RF, RG, ROT, TL, TOAL, TU 20 CCMMON 1 BETA1(21), BETA2(21), CCSA(21), COSL(21), DKLE(1,21), DL(21), 21 2 GAMM(21), GHAR(21), RELM(21), RPR1(21), RE1(21), RE2(21), 22 3 RE3(21), RE4(21), RE5(21), RVTH(21), SINA(21), SINL(21), SLOS(21) 23 4, SONIC(21), THETAP(21,13), THETAS(21,13), TREL1(21), TSTAT(21), 24

143

144 - A 144

```
5 VM(21), VTSG(21), XPAR(1,21), YBAR(1,21), ZP(21,13), ZS(21,13)
  CCMMCN /EQUIV/
 1 CHD(21), CHK(21), CCSA2(21), FSM(21), KIC(21), KOC(21), RUA(21),
 2 REC(2,21), RPTE(2,21), SINA2(21), SKIC(21), SKUC(21), TALP(21),
 3 TCA(21), TEC(2,21), TGB(21), TTRP(21), TTRS(21), YCCLE(25), YCCTE(25)
 4, ZCCLE(25), ZCCTE(25), ZCDA(21), ZEC(2,21), ZTRP(21), ZTRS(21)
  CCMMON /BLACES/
 1 AMACH, ACC, AISCAS, AISCAI, BINC, CALP, CCC, CEPE, CGBL, CHORD,
 2 CINC, CKTC, CKTS, C1, C2, DKAPPA, DRCE, DRCGI, DRCMST, DRCMT,
 3 CRCOI, DRCT, DRCTI, DRI, DSME, DSMT, DSMI, DSOT, DSSE, DST. DSTI,
 4 EMT, F1, F2, GBL, ICL, IGC, IPASS, KIS, KM, KTC, KTS, P, PFLOS,
 5 RCG, RCM, RCMS, RCT, RD1, RECGI, REE, REMT, RET, RETI, RMSJ, RTRC
 6,R1, R1C, R2, SALP, SEPE, SGAM, SGAL, SJ, SKTC, SKTS, SLJU, T,
 7 TEPE, TGBLL, THC, THLE, THMAX, THTE, TKTN, TLS, WC1, YB1, YB2, ZM
  IGC = 0
  RT1 = R(I-1,1)
  RT2 = R(1,1)
  RCI = RT1 - R(I-1,NSTR♥)
  RC2 = RT2 - R(I, NSTRM)
  CHERDT = CHE(1)
  TLS= (ZBTIP(IROW) - ZEHUB(IROW))/(RBTIP(IROW) - RBHUB(IROW))
  IF (ABS(TILT(IROW)).GE.100.0) GD TO 4
  STILT = SIN(TILT(IROW))
  CTILT= SCRT(1.0- STILT+*2)
  GC TC 6
4 HUBT = TILT(IROW)/100.0
  IH = HUBT
  TIPT = TAN((TILT(IROW) - 100.0*FLOAT(IH))/RACIAN)
  IH = IH - (IH/100)*1CC
  HUBT = TAN(FLCAT(IH)/RADIAN)
6 R1 = R(I-1,J)
  R2 = R(I,J)
  RR1 = (RT1 - R1)/RDI
  RR2 = (RT2 - R2)/RC2
  THLE= TALE(IROW)+(TBLE(IROW)+(TCLE(IROW)+TDLE(IROW)+RR1)+RR1)*RR1
  THMAX = (TAMAX(IROW) + (TBMAX(IROW) + (TCMAX(IROW) + TDMAX(IROW)*
 X RR1)*RR1)*RR1)/2.0
  THTE= TATE(IROW)+(TBTE(IROW)+;TCTE(IROW)+TDTE(IROW)+RR2)+RR2)+RR2)
  CHCRD = CHC(J)
  R1C = R1/CYCRC
1C P = PHI(IRC, J)
   T = TRANS(IROW, J)
  ZM = ZMAX(IRCW,J)
   IF (IMAX(IPOW).NE.3) ZM = ZM + T
  B1 = BETA1(J)
   B2 = BETA2(J)
   B2EC = R2 \neq VTH(I,J)/R1
   IF (ISTN(I).GT.0) B2EC = R1*CMEGA/12.0 - B2EQ
   B2EC = ATAN(B2EQ/(V2(I-1,J)*SQRT(1.0 + SLOPE(I-1,J)**2)))
   SJ = SOLID(IRCW)*(RT1 + RT2)/(R1 + R2)*CHORD/CHORDT
   CCC= 1.0 - THLE - THTE
   C1 = T - THLE
   C2 = 1.0 - T - THTE
   THE = THEE - THTE
   TALP(J) = (R2-R1)/(Z(I,J) - Z(I-1,J))
   CALP = SQRT(1.0/(TALP(J)**2+1.0))
   SALP = TALP(J) *CALP
   TEPE = THD/LCC
   CEPE = 1.0/SCRT(1.0+TEPE**2)
   SEPE = TEPE*CEPE
```

26

27

28

29

30 31

32

33

34

35

36 37

38 39

40

41 42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60 61

62

63

64

65

66

67

68

69

70

71

72

73

74 75

76

77

78

79

80

81

82

83

84

Assos hand

ć	##3	INCATE THE BLADE ELEMENT STACKING POINT REFERENCE WITH	85
<u>.</u>			86
í		RESPECT TO THE HUD WALL STACKING POINT.	00
	1	RCA(J)= (R1-RBHUB(IRCW) + (ZEHUB(IRCW) - Z(I-I,J))=(ALP(J))/	87
	X	$(1 \cdot 0 - TALP(J) + TLS)$	88
		7 CDA(I) = RCA(I) + TIS	89
			00
		RCA(J) = RCA(J) + RBHUE(IRUW)	,0
		PR= RBHU9(IRCW)/RCA(J)	91
		IF (ABS(TILT(IROW)), CE, 1:0.0) GO TO 12	92
		TCA(1) = ACSIN(STITTS(SCRT(1), C) = (RR+ST(1)T)++2) = -RR+(T(1)T)	93
			40
		GC 10 14	74
	12	TCA(J) = (RCA(J) - R8FU8(IROW))/(R8TIP(IROW) - R8HU8(IROW))=(TIP)	95
	X	- HUBT) + (HUBT - RBFUB(IROW)/(RBTIP(IROW) - RBHUB(IROW))*(TIPT -	96
	Ŷ		97
	^		00
	14	$IF (ISIN(I) \cdot LI \cdot U) + CA(J) = -ICA(J)$	70
		IF (ITER.GT.1) GO TO 15	99
		AN APPROXIMATION OF THE LOCATION OF THE STACKING POINT WITH	100
ć		DECASCE TO THE BLADE ELEMENT LEADING EDGE CENTER FOR INITIAL STACK	101
U		RESPECT TO THE DEADL LELPENT CENTRE CONTRACTOR INTERPECTION	102
		AREA = (2.0*1HMAX + 1FTE + 2FTTHU)/3.0	102
		A = ZM+(2.0+THMAX - 2.0+THTE + ZM+THD)/12.0 + (THMAX + THTE)/4.0	103
		$x par(trow_J) = \Delta/ARFA ~ THLE$	104
			105
		$\mathbf{TO} = \mathbf{TO} + TO$	104
		YB2 = CCCT(4.0 - (4.0+1.07)) HMAAJTYBL/10.0	100
	15	IF (CHOKE(IROW).EQ.O.C.AND.ILUNV.NE.2) GU IU OU	107
		IF (ICONV.GT.2) GC TC 60	108
r	***	CALCULATE STREAMTURE CONVERGENCE CONSTANTS	109
ž			110
			111
		RJM= R1	111
		ZJM = Z(I-1,J)	112
		SLIN= TALP(1)	113
			114
			115
	20	RJM = R(1-1,J-1)	115
		ZJM = Z(I-1,J-1)	116
		SIJV = TAIP(J-1)	117
	20	TE () IT NSTRM) GO TE 40	118
	20		110
		K]h= KI	117
		ZJP = Z(I-1, NSTRM)	120
		SLJP= TALP(NSTRM)	121
		6C TC 50	122
			123
	40		134
		ZJP = Z(1-1, J+1)	124
		SLJP = (R(I,J+1) - R(I-1,J+1))/(Z(I,J+1)) - Z(I-1,J+1))	125
	50	RC1 = RJM - RJP	126
		001 - 001 - 7 IN#SI IN + 7 ID#SI ID	127
			128
		SCIC= SCIP - SCIM	120
		GMI = GAMM(J) - 1.0	127
		GR2 = GAMM(J)/GM1	130
		GR4 = (GAMM(1) + 1.0)/2.0	131
			132
		GRI = GR470FI	122
		$RPR = 1 \cdot 0 + GMI/2 \cdot 0 + KELP(J) + 2$	133
		AISCAI = RELM(J) *(GR4/RMR)**GR1	134
		PFLCS= DFAR(J)*(1.0 ~ RMR#*(-GR2))	135
			136
		$\mathbf{R}_{\mathbf{R}} = \mathbf{V}_{\mathbf{R}} \mathbf{U}$	137
		IF (ISIN(I).LI.U) GU IU GU	1.21
		RTRC = (CMEGA+CHORD)++2/(GR2+RG+TREL1(J)+144+0)	138
	40	IF (IINC(IRCW) .GT.2) GO TC 90	139
		TE TACTORNOR AND OFVIATION ANGLES ARE TO BE DETERMINED BY THE	140
	~ 7 7	IT INCIDENCE AND DETENTION ANDERS ARE TO BE DETENTIONED OF THE	141
		METHUDS LE NASA SP-30, VALUES FRUM SEVERAL PARAMETRIC CORVES ARE	140
		NEEDED. ALGEBRAIC EQUATIONS WHICH MATCH THE PARAMETER CURVES	142
		WITHIN A FEW PERCENT ARE USED.	143
		TE (TENC(TROW) FO.1) CC TO 7C	144

í í

ï

145

and a second second

```
*** CALCULATE THE 3-D INCIDENCE CORRECTION FACTOR.
                                                                                  145
      I3C = (2.55*RR1 - 2.8 + ((7.5 - 2.5*RR1)*RR1 +5.275)*RELM(J)**(((
                                                                                  146
     X 0.1563*RR1 - 0.344)*RR1 + 1.0828)/RELM(J))**((0.4375*RR1 - 1.1375
                                                                                  147
     X )*RR1 + 2.7094)))/RAEIAN
                                                                                  148
  *** CALCULATE SLOPE OF DEVIATION WITH 2-D INCIDENCE FACTOR.
                                                                                  149
                                                                                  150
      A = 3.35 - B1 (0.71 + C.29 + B1)
                                                                                  151
      B = (0.0446 \neq B1 - 0.04C5) \neq S1 + 0.0070
                                                                                  152
      C = SIN(PI + SJ/1.2)
      CDEVDI = EXP(-A*SJ) + B*(C/SJ)**2
                                                                                  153
      GC TO 80
                                                                                  154
                                                                                  155
   70 I3D = 0.0
 *** CALCULATE KI, THE BLACE THICKNESS FACTOR ON INCIDENCE.
                                                                                  156
                                                                                  157
   80 KI = ((1514.4+THMAX - 312.24)+THMAX + 26.0)+THMAX
U *** CALCULATE 2-D INCIDENCE FACTOR FOR 10 PERCENT THICK AIRFOIL
                                                                                  158
                                                                                  159
      12010 = 5j + B1 + (0.080 - B1 + + 5 + 0.001442)
                                                                                  160
      CINC = I3D + KI \neq I2D10
. *** CALCULATE, NI, INCIDENCE FACTOR ON BLADE CAMBER.
                                                                                  161
      AA = (0.1959 - 0.03757*SJ)*SJ - 0.2205 - 0.02638/SJ EB = (0.02833*(1.2 - SJ)**2 - 0.55653)*0.1882
                                                                                   162
                                                                                   163
      CC = 1.427 + 7.288 * (SJ - 0.4)/SJ**5.2
                                                                                   164
                                                                                  165
      CD = \{0.00025 \pm SJ - 0.0438\} \pm SJ \pm 0.0165
      EE = ABS(B1 + RADIAN - 40.0)/30.0
                                                                                   166
      NI = -0.025*(2.4 - SJ) + (AA+88*B1**2) *B1 + (0.5+(ATAN(B1*
                                                                                   167
     X RACIAN- 40.0))/PI)*(0.0278*EE**1.65 + DD*EE**CC)
                                                                                   168
                                                                                   169
      CC TC 150
                                                                                   170
   90 IF (IINCTIRGW).EQ.4) GC TO 130
                                                                                   171
      IF (ITER_GT.1) GC TO 120
      DKLE(IROW, J) = 2.0*ATAN((THM&X - THLE)/ZM)
                                                                                   172
                                                                                   173
  120 CINC= DKLE(IROW, J)
                                                                                   174
      IF (IINC(IROW).EQ.5) CINC = CINC + INC(IROW,J)
                                                                                   175
      GE TO 140
                                                                                   176
  13C CINC= INC(IROW, J)
                                                                                   177
  140 NI= 0.0
                                                                                   178
      130 = 0.9
                                                                                   179
  150 \text{ IPASS} = 0
                                                                                   180
       IF (IDEV(IPCW).GT.2) CC TO 180
      IF (IDEV(TROW).EQ.1) GC TO 160
                                                                                   181
                                                                                   182
  *** CALCULATE D3D, THE 3-E DEVIATION CORRECTION FACTOR
      A = -1.75 + 2.5 + RR2 + RR2 + 3.58
                                                                                   183
      B = ((60.2 - RR2+46.25)+RR2 - 5.558)+RR2
                                                                                   184
                                                                                   185
      C= 5.0*(ABS(RR2 - 0.C5))*+0.166667
                                                                                   186
      D3D = (A + B*(RELM(J) - C.45 + KR2/6.0)**C)/RADIAN
                                                                                   187
      GC TO 170
                                                                                   188
  160 D3D= 0.U
  ADD CALCULATE C2D10, THE 2-D DEVIATION FACTOR FOR 10 PERCENT THICKNESS
                                                                                   189
                                                                                   190
  170 D2D10 = ((((0.6812*$J + 1.325)*$J - 0.3895)*81 + (0.4937- $J*(
     X 0.837 + 1.0185*SJ)))*B1 + ((0.00825*SJ + 1.473)*SJ - 0.1049))*B1/
                                                                                   191
                                                                                   192
     X RADIAN
  *** CALCULATE KD, THE BLACE THICKNESS FACTOR ON DEVIATION.
                                                                                   193
                                                                                   194
       KC = THMAX*(9.333 + 97.8*THMAX)
  *** CALCULATE MD, DEVIATION FACTOR ON BLADE CAMBER.
                                                                                   195
                                                                                   196
       MC= ((0.05842+81 -0.04221)+81 + 0.04046)+81 + 0.25
  *** CALCULATE P, THE SCLICITY EXPONENT.
                                                                                   197
       B = 0.966 + B1*(-0.17475 + B1*(0.2034 - B1*0.2781))
                                                                                   198
                                                                                   199
       CDEV = KD*C2D1C + I3C*CDEVCI + D3D
                                                                                   200
       GC TC 240
                                                                                   201
  180 IF (IUEV(IRCW).NE.5) GC TO 190
                                                                                   202
       ML= 0.0
       6 = 1.0
                                                                                   203
                                                                                   204
       CDEV = DEV(IROW, J)
       GC TC C40
                                                                                   205
```

#44 DENIATION NUCLEY CARTERS BUILT	206
190 B = 0.5	207
G3L = 0.37 + 51 + 0.63 + 2	80a
IF (IGG.EQ.2.CR IGEO(IRCK).NF.2) GD TU 195	209
DK = 2.0*(THMAX - THLE)/2M/(B1 - B2)	210
$CM = (RELM(J) - I_{*}O) + RELM(J) + *6$	211
P = (1.0 - DK + CM + (1.C - T) / T) / (1.0 + (1.0 + DK) + CM)	212
195 GAMPHI = $0.5*(P*C2**2/C1 - C1)/CCC$	213
1F (GAMPHI) 200,220,210	214
2CC ACC = T & C1+GAMPHI	215
GC TC 230	216
210 ACC = T 4 CEECAMPHE/P	217
GC TO 230	218
22C ACC = T	219
23C MD == (0,010 + GB14(0,05)0005 + G,0889154GBL))+(2,04AU)**(2,175 +	220
X GBL+(2.0354 - 0.62922+GEL))	721
CCEV= G.O	222
IPASS = IPASS + 1	223
240 CN = B1 - B2EQ + CDEV - CINC	224
DVC = MD/SJ**8	225
CC = 1.0 - UVC + NI	226
DKAPPA = CN/CD	221
BINC = CINC + NI+DKAPPA	228
SKIC(J) = B1 - BINC	229
SKOC(J) = P2 - CDEV - DVC+DKAPPA	230
KIC(J) = ATAN((TAN(SKIC(J))*CAEP - (SINA(J)*CAEP - SAEP*CUSA(J))*	221
X RPTE(I-1,J)//CUSA(J))	222
KCC(J) = ATAN(TAN(SFEC(J))+CAEP - TSINA2TJ)+CAEP - SAEP+CUSA2TJ)	232
x *RPTE(I,J))/COSA2(J))	234
DRAPPA = R[C(J) - RUC(J)	232
SGAP = SIN((KIC(J) + KC(J))/2.0)	230
IF (IGEC(IRGW).NE.2) GC TO 250	231
SET SEGMENT TORNING RATE RATIO FOR OPTIMUM OPTION	230
IF (RELM(J)-61-01-8) (L 1L 242	237
P = 1.0	240
GL IC 248	242
242 IF (IIER.GI.I) GU TU 244	242
DR = 2.04(THEAX - THLE)/2m	244
	245
244 DK = DKLETIKOW	246
246 CP = 0.157(RELM(J) - 0.6)*RELM(J)**0	247
DR = K[C(J) - KUC(J) $DR = K[C(J) - KUC(J)$ $DR = K[C(J) - KUC(J)$	248
$P = \{DKI - DK+(P+(I+U - I))\} \{DKI + (DKI + UK)\}$	249
	250
200 UALE UUNIU TE ATERRAR EO D'AND ICENN IT 20 RETURN	251
IF TIERKUK.EW.I.AND.ILLIVV.LI.Z/ KETUKN 15. (100 IN 200 220 IAC	252
17 (160-17 280)23V)14v	252
COU KETUKN	254
ENL	6,4

÷.

. a at 3......

```
1 BETAS(1,21), BMATL(1), BLADES(1), CHOKE(1), CHORDA(1), CHORDB(1),
   2 CHCRDC(1), CPCO(6), CEV(1,21), IOEV(1), IGEO(1), IINC(1),
   3 ILESS(1), IMAX(1), INC(1,21), ISTN(2), ITRANS(1), NOPT(1),
                                                                               10
   4 NXCUT(1), PHI(1,21), PC(2,21), R(2,21), RBHUB(1), RBTIP(1),
                                                                               11
   5 SLCPE(2,21), SOLID(1), TALE(1), TAMAX(1), TATE(1), TBLE(1),
                                                                               12
   6 TBMAX(1), THTE(1), TCLE(1), TCMAX(1), TCTE(1), TDLE(1), TDMAX(1),
                                                                               13
   7 TDTE(1), TILT(1), TC(2,21), TRANS(1,21), VTH(2,21), VZ(2,21),
                                                                               14
   8 Z(2,21), ZEHUB(1), ZETIP(1), ZMAX(1,21)
                                                                               15
    CCMMON /SCALAR/
                                                                               16
   1 EETA, CP, CPH2, CPH3, CPH4, CPH5, CPH6, CPP3, CPP4, CPP5, CPP6,
                                                                               17
   2 CP1, CV, CCP, CF, DFC, DHCI, DLOSC, G, GAMMA, GJ, GJ2, GR1, GR2,
                                                                               18
   3 GR3, GR4, GR5, H, I, ICCNV, ICOUNT, IERROR, IIN, IPR, IROTOR, IR,
                                                                               19
   4 IRCW, ITER, IW, J, JM, MACH, NAR, NBROWS, NHUB, NROTOR, NSTN, NSTRM,
                                                                               20
   5 NTIP, NTUBES, OMEGA, PI, POAL, PR, RADIAN, RF, RG, ROT, TL, TOAL, TU
                                                                               21
    CCPMON
                                                                               22
   1 BETA1(21), BETA2(21), CCSA(21), COSL(21), DKLE(1,21), DL(21),
                                                                               23
   2 GAMM(21), CBAR(21), RELM(21), RPR1(21), RE1(21), RE2(21),
                                                                               24
   3 RE3(21), RE4(21), RE5(21), RVTH(21), SINA(21), SINL(21), SLOS(21)
                                                                               25
   4,SCNIC(21), THETAP(21,13), THETAS(21,13), TREL1(21), TSTAT(21),
                                                                               26
   5 VM(21), VTSQ(21), XBAR(1,21), YBAR(1,21), ZP(21,13), ZS(21,13)
                                                                               27
    CEMMEN /EQUIV/
                                                                               28
   1 CHE(21), CHK(21), CESA2(21), FSM(21), KIE(21), KOE(21), REA(21),
                                                                               29
   2 REC(2,21), RPTE(2,21), SINA2(21), SKIC(21), SKOC(21), TALP(21),
                                                                               30
   3 TCA(21), TEC(2,21), TGB(21), TTRP(21), TTRS(21), YCCLE(25), YCCTE(25)
                                                                               31
   4,ZCCLE(25), ZCCTE(25), ZCDA(21), ZEC(2,21), ZTRP(21), ZTRS(21)
                                                                               32
    CCMMON /BLADES/
                                                                               33
   1 AMACH, ACC, AISOAS, AISCAI, BINC, CALP, CCC, CEPE, CGBL, CHORD,
                                                                               34
   2 CINC, CKTC, CKTS, CI, C2, DKAPPA, DRCE, DRCGI, DRCMST, DRCMT,
                                                                               35
   3 DRCCI, DRCT, DRCTI, DR1, DSME, DSMT, DSOI, DSDT, DSSE, DST, DSTI,
                                                                               36
   4 EMT, F1, F2, GBL, ICL, IGO, IPASS, KIS, KM, KTC, KTS, P, PFLOS,
                                                                               37
   5 RCG, RCM, RCMS, RCT, RD1, RECGI, REE, REMT, RET, RETI, RMSJ, RTRC
                                                                               38
   6,R1, R1C, R2, SALP, SEPE, SGAM, SGBL, SJ, SKTC, SKTS, SLJD, T,
                                                                               39
   7 TEPE, TGBLL, THD, THLE, THMAX, THTE, TKTN, TLS, WC1, YB1, YB2, ZM
                                                                               40
    CCMMON /MARG/
                                                                               41
   1 AL, ANAS, ACAI, CCHCRE, DAL, DADAS, DPW, DPWL, DRCLEP, DRCM,
                                                                               42
   2 DRCTPI, CRCTSI, DRCWT, ESA, DSP, DSP1, DSP2, DSS, DSS1, DSS2, DSW
                                                                               43
   3,EB, EWC, F, HC, ICHCKE, KIP, KOP, KOS, KP, XS, KTP, KWC, PI2, RCI
                                                                               44
   4,RCC, RCP, RCS, RCTP, RCTS, RELEP, REDI, REP, RES, RETP, RETS,
                                                                               45
   5 RENT, RTR, RTRD, RTRC, SECGEL, TCGI, TGBL, WC, ZMT
                                                                               46
    160=0
                                                                               47
.....
         ESTABLISH BLADE ELEMENT CENTERLINE TO SATISFY CAMBER, CHORD
                                                                               48
*** AND TRANSITION POINT REQUIREMENTS.
                                                                               49
    CCAM= SCRT(1.0 - SGAM++2)
                                                                               50
    DK2 = DKAPPA/(1.0 + P*C1/C2)
                                                                               51
    CCHERD = CALP+CHORD
                                                                               52
    IF (IPASS.GT.1) GO TC 30
                                                                               53
    ICL = 1
                                                                               54
    EPS= CCC+SGAM+SALP/(R1C + (THLE + CCC+CGAM)+SALP)
                                                                               55
    DPHI = DKAPPA - EPS
                                                                               56
    DPHI4 = DPHI/4.0
                                                                               57
    DPHIHS = DPHI#DPHI4
                                                                               58
    DSCI = CCC/(1.0 - DPHIHS/6.0*(1.0 - DPHIHS/20.0))
                                                                               59
    DSTI= C1/CCC*DSOI
                                                                               60
    DSCT= USCI - LSTI
                                                                               61
    IF (ITER.GT.1) GC TO 10
                                                                               62
    SINCP4 = CPHI4*SRS(DP+I4)
                                                                               63
    YBAR(IRCW, J) = YB1 + YB2+SINCP4/SQRT(1.0 - SINCP4++2) - THLE
                                                                               64
 10 IF (ABS(SALP/RIC).LT.1.0E-08) GO TO 20
                                                                               65
    RCI = RIC/SALP + THLE
                                                                               66
    GC TC 25
                                                                               67
 20 RCI= 1.0E+08
                                                                               68
```

Q

2	5 RCG = RCI - THLE + (ZCCA(J) + ZBHUB(IROW) - Z(I-1,J))/CCHORD	69
3	C DK1 = DKAPPA - DK2	70
	CALL EPSLEN(KIC(J),-DK1,RC1,CST1,DRCT1,RETI)	71
	KTC = KT(J) - DKI	72
	RCT = RCT + DRCTI	73
1	REFERENCE - DREFE - DREFE DESTE DEST	74
3		75
		10
	REUI= RCU/RCI#REII + REUI	10
	DRCCI= DRCTI + DRCOT	17
	CALL TANKAP(RCI,DRCDI,RECI,TANCCO)	78
	TGBL= (TANCCC + TEPE)/(1.0 - TANCCO*TEPE)	79
	CALL RPCINT(RCI,DRCTI,RETI,TGBL,JRCTP)	80
	SECGBL= SQRT(1.0 + TGEL++2)	81
	CC1 = DRCTP + SECGRI - C1	82
	$DC2 = DCC1 \pm SOPT(1, 0) + TANCC0 \pm 2) \pm CEPE - CCC$	83
	$\mathbf{I} = \mathbf{I} + $	84
	IF TILLOUTATANDARDITUDE - TODELJALTATALEUT OU TO AJ	95
	GOL = ATAN(TGOL) A A DET VOAD(TOOM AN DOCHT OFMIN	(C)
	CALL EPSLEN(GBL,0.0, RCI, XBAR(IRUW, J), DRCHI, REHI)	00
	RCM = RCI + DRCMT	87
	CALL EPSLCN(GBL+PI2,0.0,RCM,YBAR(IROW,J),DRCGI,RECGI)	88
	DRCGI = DRCGI + DRCMT	89
	RCI = RCG - CRCGI	90
	1CL = 2	91
	TGRIL = TGRI	92
	$S = [ABS(D(1)), (T_1), (D_2, 05), (C_1, T_1), (D_2, 05), (C_1, T_1), (D_2, 05), (D_2, $	93
-		94
		05
	DSO(= DSO(= CSO(=DC2)/(CCC + DC2) + CS)	90
	DSOI = DSTI + DSOT	91
	$DK2 = DKAPPA/(1_0 + P*CSTI/CSOT)$	98
	GC TC 30	99
4	0 IF (ABS(DC2).LT.1 0E-C6) GO TO 50	100
	DSCT= DSOT - CSCT+DC2/(CCC + DC2)	101
	DSOI = DSTI + DSOT	102
	GC TC 35	103
5	C 15 (19ASS E0.2) CO TC 10C	104
		105
	$\frac{1}{10} = \frac{1}{10} $	106
	IF (IDEVILLEVILLEVILLEVILLEVILLEVILLEVILLEVI	107
; **	CALCULATION OF A HETTER VALUE OF MAXIMUM CAMBER HEIGHT ABOVE	107
; **	* THE CONSTANT ANGLE LINE CONNECTING BLADE ELEMENT EDGE CIRCLE	100
; **	* CENTERS. IT IS USED FOR A MORE REFINED VALUE OF DEVIATION ANGLE	109
; **	* BY MODIFIED CARTERS RULE.	110
5	5 IF (ABS(DKAPPA).LT.O.CO1) GO TO 80	111
	GCCC= ATAN(TANCCO)	112
	DGAM= KTC - GCCO	113
	TE (ABS(DGAM/CKAPPA) LT.C.Q01) GO TO 90	114
	$I \in (DGAW/EKAPPA_GT_0, C) = GE TO = 60$	115
		116
		117
		110
e	DO DATE DEUTEDGAMEDRZ	110
7	O CALL EPSLCN(KIC,-DGAP, RCI, LSAI, DRCAI, REALI	117
	CALL RPCINT(RCT,DRCAT,REAT,TGBL,DRCAP)	120
	ACC= T + DRCAP*SECGBL	121
	GC TO 95	122
1	3C ACC= 0.5	123
	GG T0 95	124
		125
	36 TE (10ΕV(10CW).)T_3_CP.(ΓΕV(10CW).CT_4) GO TO 100	126
•	10 I I ULVIKCHJELEJECKEICEVIKOW/60107/00/10 100	127
		126
		130
14	<u>10 RECGI = RECGI + (I+U + DRUGI/RUM)=REMI</u>	101

1.00

149

in sin in si

```
130
           RESET BLACE EDGE COURDINATES
. ***
                                                                                  131
      R(I-I,J) = RCA(J) - (CRCVE + THLE)*SALP*CHORD
      R(I,J) = R(I-1,J) + (CRC(I + THLF + THTE)*SALP*CHURD 
Z(I-1,J) = Z8HUB(IRDW) + ZCDA(J) - (CRCGI + THLE)*CCHURD
                                                                                  132
                                                                                  133
      Z(I,J) = Z(I-1,J) + (ERC(I + THLE + THTE)*CCHORD
                                                                                  134
                                                                                  135
      R1C = R(I-1,J)/CHORD
      TCGI = PECCI/(RIC + (ERCGI + THLE)*SALP)
                                                                                   136
                                                                                   137
          CONIC COORDINATES OF THE MAXIMUM THICKNESS POINT
; ***
                                                                                   138
      ZMT = ZM - T
                                                                                   139
      IF (ZMT.NE.G.U) GC TC 120
                                                                                   140
      DRCMT = C_0
                                                                                   141
      REMT= 0.0
                                                                                   142
      DK = 0.0
                                                                                   143
      DSMT = C.C
                                                                                   144
      DSME= DSTI
                                                                                   145
      GC TC 150
                                                                                   146
  120 HKTC= KTC/2.0
                                                                                   147
      SHKTC= HKTC+SRS(HKTC)
                                                                                   148
      SHKTCQ= SHKTC++2
                                                                                   149
      SKTC= 2.0+SHKTC+SCRT(1.0 - SHKTCC)
                                                                                   150
      IF (ABS(SKTC).LT.1.0E-07) SKTC = 1.0E-07
                                                                                   151
      CKTC= 1.0 - 2.0*SHKTCC
                                                                                   152
      TKTN= -CKTC/SKTC
                                                                                   153
      IF (ZMT.GT.C.C) GE TC 130
                                                                                   154
      DSMT= DSTI*ZMT/C1
                                                                                   155
      DKCS= DK1/DST1
                                                                                   156
      DSME= DSTI
                                                                                   157
      GC TC 140
                                                                                   158
  13C DSMT= DSCT+ZMT/C2
                                                                                   159
      DKDS = DK2/LSLT
                                                                                   160
      DSME= -DSCT
                                                                                   161
  14C DK= -DSMT*EKDS
      CALL EPSLEN(KTC, DK, RCT, DSMT, DRCMT, REMT)
                                                                                   162
                                                                                   163
      CALL RPCINT(RCT, CRCMT, REMT, TGBL, DRCMP)
                                                                                   164
       ZNTCAL= ERCMP#SECGPL
                                                                                   165
       IF (ABS(ZMTCAL - ZMT).LT.1.0E-05) GD TO 150
      DSMT = DSMT + ZMT/ZMTCAL
                                                                                   166
                                                                                   167
      GC TC 140
                                                                                   168
  15C RCM= RCT + URCMT
                                                                                   169
      REMI= (1.0 + LRCMT/RCT)*RETI + REMT
                                                                                   170
      KM= KTC + DK
                                                                                   171
      HKM= KM/2.
                                                                                   172
       SHKN= HKM#SRS(HKM)
                                                                                   173
       SHKNG= SHKN**2
                                                                                   174
       CHKM= SCRT(1.0 - SHKMC)
                                                                                   175
       SKM= 2.0*SHKM*CHKM
                                                                                   176
       CKM= 1.0 - 2.0*SHKMQ
                                                                                   177
       DSME= DSME + USMT
                                                                                   178
            DEFINITION OF SUCTION SURFACE MAX. THICKNESS POINT
 3 ***
       CALL EPSLEN(KM+PI2,0.C,RCM,THMAX,DRCM,REM)
                                                                                   179
                                                                                   180
       RCMS= RCM + DRCM
       IF (ZMT.GT....) GC TC 180
                                                                                    181
            DEFINITION OF SUCTION SURFACE CURVE FOR MAXIMUM THICKNESS
                                                                                    182
  ***
  *** POINT ON OR AHEAD OF THE TRANSITION POINT
                                                                                    183
                                                                                    184
       DK= 2.0*(THMAX - THLE)/DSME
                                                                                    185
       KIS= KIC(J) + CK
                                                                                    186
       KIP= KIC(J) - DK
       DRCIM= -DRCTI - DRCMT - DRCM
                                                                                    187
       EMSI = REMI/RCM + REM/RCMS
                                                                                    188
                                                                                    189
       CALL SURF(KIS, KM, SKM, CKM, RCI, DOCIM, THLE, EMSI, DSSE)
                                                                                    190
       IF (7MT.EC....) GC TE 160
```

Activity to

		DRCMST = DRCMT + DRCM	191
		ENT= REM/RCNS + RENT/RCM	192
		CALL TRAN(KIS, THLE, THMAX, KTS, RCTS, RETS, DSS1)	193
		DHKT= (KTC - KTS)/2.0	194
		DK = 2.0*(DST - THTE - DS(T*DHKT)/(DSCT + (DST - THTE)*DHKT)	195
		DRCCTS= DRCCT - DRCT	196
		EMSC= RET/RCTS - REAT/RCC	197
		DRCTSI = DRCTI + DRCT	198
		GC TC 170	199
	160	RCTS= RCMS	200
		KTS= KM	201
		RETS = RCMS+EMSI	202
		DSS1 = -DSSE	203
		SKTS= SKM	274
		CKTS= CKM	205
		$DK = 2 \cdot 0 + (THMAX - THTE)/CSOT$	206
		DRCCTS = DRCOT - DRCM	207
		EMSC = REM/RCMS - REGI/RCC	208
		ORCISI = CRCII + CRCM	209
	170	K(S) = K(C(J)) - DK	210
	•••		210
		CALL SURFIXES & KTS-SKTS-CKTS-RCD-DRCDTS-THTE-ENSD-DSS2)	212
			212
-	***	DEFINITION OF SUCTION SUPPORE CURVE FOR MAXIMUM THICKNESS	213
-	***	DETAT REMAN THE TRANSITION DOTAT	214
-	180	$\mathbf{r} \mathbf{c} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} r$	212
	LCC	WAS = VACINIA THILI/USHC	210
		KOP = KCC(1) = DK	219
		NDF - NCCTJ - DA	210
		$DRCC^{-} DRCC^{+} = DRC^{+} = 0RC^{+}$	217
		CALL SUPERVISE WE SAW SAW SAN AND AND AND AND AND AND AND AND AND A	220
		URLE SURFINDSINFICKTINGUNUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	221
		URUFSI- DRUFI 7 URUM	222
		CALL TRANSFORMERS Y REFLIXED	223
		CALL = IKAN(KU3) (F(E) + F(FAA)(K(S)KC(S)(KE(S)))) = 0	224
		URKI = (KIST KIC/ZeU)	222
		DR = 2.07(D3) = TELE = 0.311*DERT7(D3)1 + (D3) = TELE7*DERT7	220
		$\mathbf{N} \mathbf{I} \mathbf{S} = \mathbf{N} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{S} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{S} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{S} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$	221
		$\mathbf{N} \mathbf{P}^{-} \mathbf{N} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{J} = \mathbf{U} \mathbf{K}$	223
		br(1) = br(1) + br(1)	229
		CALL CLOBERVIS WEST CATS OFT DOFTST THE ENST DSSEL	2.50
		CALL = CRETERISTERISTERISTERISTERISTERISTERISTER	271
~	***	DEETNITICN OF DRESSINGE SUBFACE NAVIMUM THICKNESS DOTAT	232
-	100	CALL EQUICAL UNIT OF PRESSURE SURFACE MAXIMUM INTURNESS PUTNI	2.35
	190	CALL CFSLININTFIZIO.GINUMI TIPMAAJUNUMIKEMI Demes dem a norm	234
		NUMBER	230
~		IF LEFELGELE GUIL ZZU Destrution of describe subsace curve for mayimum thissubsec	230
ž	***	DEFINITION OF PRESSURE SURFACE CURVE FUR MAXIMUM INIGENESS	231
-		POINT ON OR AREAD OF THE TRANSITION POINT	200
		DK C P = -DK C	2 3 9
		EPSIE REPI/RUP T REP/RUPS	240
		UALL SURFINIE, ME, SNE, CNE, KUL, UKUIM, MILLE, ESU, USSE)	241
		URUEP = URUE	2.42
		$\mathbf{KE} = \mathbf{KE} \mathbf{F}$	243
		$\frac{1}{1} \frac{1}{1} \frac{1}$	244
		UKUMOTE UKUMI + UKUM Sht - Dentacki - Dentadek	245
		EFT = KLEZKUES + KEMIZKUE CALL TOANZELD -TREE -TRAAV KTO ACTO OFTD DEDIN	240
		LALL TRANICLESTIMLSSTIMPASKIPSKULPSKULPSUSPI)	241
		UKULISTI HUUT – UKUL UKUC – DETA CTAL – DEGTARAO	248
		175) - NUT/SUTM - KELT/KED Doctor - UNIT - KELT/KED	249
		URUTEL = U'UTL + U'UT CE TC 210	250
		(jt () (21))	251

-

1000

Sec.

151

.

N,

Ľ

÷

officer and the

14. ¹. 14. Alia

```
252
2CC RCTP = RCMS
                                                                                253
    KTP= KM
                                                                                254
    RETP= RCMS * EMSI
                                                                                255
    DSP1 = -CSSE
                                                                                256
    DRCCTS= DRCCT - DRCM
                                                                                257
    EMSC = REM/KCMS - RECT/R(P)
                                                                                258
    DRCTPI = DRCTI + DRCM
                                                                                259
21C CALL SURF(KOP, KTP, SKTS, CKTS, RCP, DRCDTS, -THTE, EMSC, DSP2)
                                                                                260
    GC TO 230
         DEFINITION OF PRESSURE SURFACE CURVE FOR THE MAXIMUM
                                                                                261
***
                                                                                262
*** THICKNESS POINT BEHIND THE TRANSITION POINT
                                                                                263
220 DRCCM= DRCCT - DRCMT - DRCM
                                                                                264
    EMSC = REMT/RCM - RECT/RCO + REM/RCMS
                                                                                265
    CALL SURF(KOP,KM,SKM,CKM,RCO,DRCOM,-THTE,EMSO,DSSE)
                                                                                266
    DRCMST= DRCMT + DRCM
                                                                                267
     ENT = REM/RCMS + REMT/RCM
                                                                                268
    CALL TRANIKOP, -THTE, -THMAX, KTP, RCTP, RETP, DSP2)
                                                                                269
     DRCTPI = CRCTI + CRCT
                                                                                270
     E#SI = RETI/RCT + RET/RCTP
     CALL SURF(KIP,KTP,SKTS,CKTS,RCI,-DRCTPI,-THLE,EMSI,DSSE)
                                                                                271
                                                                                272
     DRCLEP = DRCE
                                                                                273
     RELEP = REE
                                                                                274
     DSP1 = -DSSF
                                                                                275
230 DSS = DSS1 + DSS2
                                                                                276
     DSP = DSP1 + DSP2
                                                                                277
     E8 = 1.C/(SJ*(RCI + DRCCI/2.C))
                                                                                278
     IF (ICCNV.GT.2) RETURN
                                                                                279
     DSA = (DSS + USP)/2.C
                                                                                280
     DKLE(IRCW, J) = KIS - KIC(J)
                                                                                281
     IF (DKLE(IRGW,J).GE.C.0) GC TO 232
                                                                                282
     WRITE (IW, 2000) J, IRCW, ITER
                                                                                283
     GC TC 233
                                                                                284
 232 IF ((KOS - KCC(J)).LE.0.0) GC TO 234
                                                                                285
     WRITE (IW,2010) J, IRCW, ITER
                                                                                286
 233 THMAX = 2.0+THMAX
                                                                                287
     WRITE (IW, 2020) THLE, THMAX, THTE, ZM
                                                                                288
     IERROR = 1
                                                                                289
     IF (ICONV.LT.2) RETURN
                                                                                290
 234 RTRC = RTRC*SALP*DSA
                                                                                291
     RMSJ = (R1C + R2/CHORE) * SJ/2.0
                                                                                292
     WC1 = R1C*CLS(BETA1(J))/RMSJ
                                                                                293
     ICHCKE = 1
                                                                                294
     \mathbf{KP} = \mathbf{KIP}
                                                                                295
     DPW = -USP1
                                                                                296
     RCP = RCI + ERCLEP
                                                                                297
     REP = RCP*EB + RELEP
                                                                                298
     DRCWT = DRCLEP - DRCTSI
                                                                                299
     REWT = REP - RETS*RCP/RCTS
                                                                                 300
     CALL CHAN
                                                                                301
     RETURN
2000 FORMAT (/// 6X,74HTHE BLADE ELEMENT THICKNESS DECREASES FROM THE L
                                                                                302
    1EACING EDGE OF ELEMENT NC., 13, 17H DE BLADE ROW NO., 13, 17H ON ITERA
                                                                                303
                                                                                 304
    2TICN NO., 13 )
2010 FORMAT (/// 6X,75HTHE BLADE ELEMENT THICKNESS DECREASES FROM THE T
                                                                                 305
    IRAILING EDGL OF ELEMENT NO., 13, 17H OF BLADE ROW NO., 13, 17H ON ITER
                                                                                306
                                                                                 307
    2ATION NO., 13 )
2020 FORMAT (// 1X,47HACJUST SOME OF THIS INPUT DATA L.E.RAD/CHORD =,
                                                                                 308
                                                                                 309
    1 F7.4,17H MAX.TH./CHCRU =,F7.4,17H T.E.RAD/CHORD =,F7.4,
                                                                                 310
    2 21H MAX.TH.LOC./CHERE =, F7.4 1
                                                                                 311
     ENC
```

-

		SUBROUTINE EPSICN(KO.CK.PG.DS.CR.RE)
C	***	CALCHATICS OF CIVIC RACIAL AND CIDEUNEEDENTIAL COMPUNENTS OF
č	***	A CLADE FLEMENT SCOMENT WITH CLAD CIRCOMPERENTIAL COMPONENTS OF
Ŭ		REAL FOR THE SECONDARY WITH GIVEN PAIR DISTANCE AND END ANGLES
		SKE SKS(HUK)
		SHDK= HDK+SR
		SHDKQ= SHEK++2
		CHDK= SCRT(1.0 - SHDKL)
		HKC= K0/2.0
		IF (HK0.GT.U.78539816) GC TC 4
		SHKC= HKO*SRS(HKO)
	4	HKU = 0.78535816 - HKC
		SHKC = HKO+SRS(HKO)
		SHKCQ = SHKC++2
		CHKO = SQRT(1.0 - SHKCC)
		SKU = 1.0 - 2.0 + SHKDC
		$CKC = 2.0 \pm SHKO \pm CHKO$
	6	SKA= SHDN+CKC + SKC+CK
		CKA = CHDK + CKB - SKB + CK
C	***	
•		
		$\frac{1}{12} \frac{1}{12} \frac$
~		IF (#BS(RE), GI, ICO, U+LS) GU (U 60
L	***	CIRCUMPERENTIAL COMP. WHEN PATH ANGLE IS ESSENTIALLY CONSTANT
		RE= (RU + DR)*SKA/CKA*ALCG(1.0 + DR/RD)
		RETURN
	10	IF (ABS(RC).GT.10000.C*DS) GC TO 60
		RS= RO/CS
		IF (RS**2/ABS(DK).GT.1.7E+09) GO TO 60
C	***	CONIC CIRCUMPERENTIAL COMPONENT OF PATH BY GENERAL EQUATION
		RCK= RS*CK - SKO
		QCKS = HDK + 2/4 = 0
		$SFS = 0.6666667 \pm 0.000 \pm 0.0000 \pm 0.00000 \pm 0.00000000$
	¥	(1) 0 = (0.777777777777777777777777777777777777
	Û	+0.040755247+00.54(1.0) - 0.040755247+00.54(1.0) - 0.031330903
		IF (ABS(CRR), GI, U-21) GE 10 20
		$RRM = 0.5 \pm DRR \pm (1.0 - C.25 \pm DRR \pm (1.0 - 0.5 \pm DRR \pm (1.0 - 0.625 \pm DRR \pm (1.0))$
	X	(- C.7*DRR*(1.0 - C.75*DRR*(1.0 - C.78571429*DRR*(1.0 - C.8125*DRR
	X	(+(1.0 - C.83333333*CRR))))))
		RRG = RRM + 1.0
		GC TC 30
	2 C	RRC= SQRT(1.0 + DRR)
		RRM= RRC - 1.C
	30	R≠= RRO≉RS
		D = RCK + CHDK + SKA + EK + PM
		2.22=
		XPS= 1.0
		DKN= 1.0
		DC 40 KN=1,N

water and

ĺ.

14.

1.5

•

	$IE_{ABS}(XPS) = IT_{1}OE = 12$, $ANC_{C}KN_{N}NE_{1}I_{1}O$	62
		63
		64
		65
	40 SAS# SAS + APS7DRN 50 RE= (RI) + DR)*(DR*(SKC + SKA + DK*RS*RRM - SES) + 4.0*RCK*SHDK*	66
	x sxs)/0	67
	RETURN	68
С	*** CONIC CIRCUMFERENTIAL COMPUNENT WHEN PATH DISTANCE IS A VERY	69
Č.	*** SMALL FRACTION OF THE DISTANCE TO THE CONE VERTEX.	70
~	60 DBR = DR/BC	71
	$RF = (1_0 + DRR)/(1_0 + C_5 + DRR + (1_0 - O_25 + DRR + (1_0 - O_5 + DRR + O$	72
	x = (1 - 0) - (2 - 5 + 0 - 6 - 5 + 0 - 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5	73
	PETI PN	74
		75
		76
		77
	END	78

FUNCTION SRS(ANG) C *** SERIES FOR (SIN(ANG))/ANG WHEN THE MAGNITUDE OF ANG IS LESS C *** THAN PI/4 IF (ABS(ANG).LT.1.0E-C5) GC TO 10 AC = ANG**2 SRS = 1.0 - AQ/6.G*(1.C - AQ/20.0*(1.0 - AQ/42.0*(1.0 - AQ/72.0))) RETURN 1C SRS = 1.0 RETURN END 1

2

3

4 5

6 7

8

9

1

2 3

4 5 6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

* Sr.

· Section Sect

34. -

```
SUBROUTINE TANKAP(RO, CR, RE, TK)
C ***
            CALCULATION OF THE SLOPE OF THE CONSTANT ANGLE PATH BETWEEN
C *** TWO POINTS IN CONIC RACIUS AND EPSILON COORDINATES
      R = DR/RO
      IF (ABS(R).LT.0.1) GC TC 20
      TK = RE/((RO + DR) + ALCG(1 + R))
      RETURN
   2C SUM = 1.0
      IF (ABS(R).GT.1.0E-08) GC TO 25
      IF (ABS(DR/RE).GT.1.0E-OE) GC TO 35
      TK = 1.0E+08
      RETURN
   25 PRCC = 1.0
      DN = 8.0/(-ALCG10(ABS(R)))
      NT = DN
      DC 39 I=1+NT
      N = I + I
      CN = N
      PRCC = -PRCC*R
   3C SUM = SUM + PROD/DN
   35 TK = RE/((RC + DR)*R*SUM)
      RETURN
      END
```

	SUBRCUTINE RPCINT(RO,CR,RE,TK,DRP)	,
***	THIS SUBROUTINE CALCULATES THE CONTO RADIAL COOPDINATE AT THE	1
***	INTERSECTION OF PERPENDICULAR CONSTANT ANCLE LINES COON THE AT THE	2
***	PCINTS IN A CINE THE INE THROUGH THE SECONDER OF THE WITHIN N	3
***	TNDET SERVE THE THE THROUGH THE REFERENCE PLINT HAS THE	4
		5
		6
	UK = SQRT(1.07(1.0 + TK**2))	7
	SK = TK*CK	â
	IF (ABS(R).LT.0.01) GC TC 20	
	$ORP = RC + (EXP((RE + SK/(RC + CR) + \Delta LOG(1, 2 + P) + CK) + CK) = 1 OL$	
	RETURN	10
2C	$C = (R_{=} + SK/(R_{+} + C_{+}) + R_{+} + (1 + C_{-} - 0 + S + R_{+} + 1 + 0 - 0) + (5 + (2 + C_{+} + 1 + 0))$	11
	X 0.75+R)))+(K)+(K	12
	DRP = C	13
30		14
20	$C_3 = D_{RP} + (1 \cdot J = C_{*} - J_{RP} + (1 \cdot U = J_{*} - S_{*} - S_$	15
	IF (ABSTICS - C)/C).LT.1.0E-06) GG TO 40	16
	DRP = DRP + C/CS	17
	GC TO 30	17
40	DRP = DRP + RC	18
		19
		20

SLERCUTINE TRAN(KE, TE, TM, KT, RT, RE, DS) C *** THIS SUBROUTINE CALCULATES THE BLADE ELEMENT SURFACE CURVE C *** TRANSITION POINT COORDINATES FROM THE INTERSECTION OF THE C *** ESTABLISHED SURFACE CURVE OVER THE MAXIMUM THICKNESS POINT WITH A C *** PATH PERPENDICULAR TO THE CENTERLINE AT THE TRANSITION POINT. REAL KE, KIS, KM, KT, KTC, KTS CCMMON /PLADES/ 1 AMACH, ACC, AISOAS, AISCA1, BINC, CALP, CCC, CEPE, CGBL, CHORD, 2 CINC, CKTC, CKTS, C1, C2, DKAPPA, DRCE, DRCGI, DRCMST, DRCMT, 3 CRCCI, DRCI, DRCTI, ER1, DSME, DSMT, DSDI, DSDT, DSSE, DST, DSTI, 4 EMT, F1, F2, CBL, ICL, IGC, IPASS, KIS, KM, KTC, KTS, P, PFLOS, 5 RCC, RCM, RCMS, RCT, RE1, RECGI, REE, REMT, RET, RETI, RMSJ, RTRC 6,R1, R1C, R2, SALP, SEPE, SGAM, SGRL, SJ, SKTC, SKTS, SLJD, T, 7 TEPE, TGBLL, THC, THLE, THMAX, THTE, TKTN, TLS, WC1, YB1, YB2, ZM DST = TM - (TM - TE) + (DSMT/DSME) + 2DSS = DST*(KM - KTC) - DSMT CS = (KE - KM)/DSSE 1C DK = CS + DSSCALL EPSLON(KM, DK, RCMS, DSS, DRCS, RES) DRCT = DRCMST + DRCS RT = RCMS + DRCS RET = RES + RT*EMT CALL TANKAP(RCT, DRCT, RET, TK) TKD = (TK - TKTN)/(1.C + TK+TKTN)IF (ABS(DST#TKD).LT.1.GE-06) GC TO 20 DST = RET/(CKTC - SKTC*TKD) DSS = DSS + DST+TKD+SCRT(1.0 + TKD++2)/(1.0 -(DK +KM -KTC)++2/2.0) GC TC 10 20 KT = KM + CK RE = RT*RETI/RCT + RET DS = DSS - USSE

ENC

SHKTS = HKTS#SRS(HKTS)

С

С

С

С

155

21

1

2

3

4

5

6

7

8

9

10

11

12

13 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 33

SHKTSD = SHKTS++2	35
CHKTS = SCRT11.0 - SHKTSG)	36
SKTS = 2.0+SHKTS+CHKTS	37
CKTS = 1.0 - 2.0 * SHKTSQ	38
RETURN	39
ENC	40

3

4

5 6

7

89

10

11 12

13 14 15

16

17

19

20

21 22

23

24

25

26

27 28

29

30

31 32

33

34 35

36

1

2

3 4

5

6 7

Sime (s)

12. 200

Contraction of the second s

S States

```
SUBRDUTINE SUPFIKE, KMM, SKM, CKM, RD, DRC, TE, EMS, DSS)
             THIS SUBPOUTINE CALCULATES THE BLADE ELEMENT SURFACE CURVE
C ***
C *** END PRINT COORDINATES. THE SURFACE CURVE IS NORMAL TO THE END
C *** POINT THICKNESS PATH AND TANGENT TO A SURFACE REFERENCE POINT
C *** WHICH IS EITHER THE TRANSITION OR MAXIMUM THICKNESS POINT.
       REAL KE, KEI, KIS, KM, KMM, KTC, KTS
       COMMON /BLADES/
      1 AMACH, ANC, AISOAS, AISOA1, RINC, CALP, CCC, CEPE, CGBL, CHORD,
2 CINC, CKTC, CKTS, C1, C2, DKAPPA, DRCE, DRCGI, DRCMST, DRCMT,
      3 NR CO I, DRCT, DRCTI, NP1, DSME, NSMT, DSOI, DSNT, DSSE, DST, DSTI,
      4 ENT, F1, F2, GBL, ICL, IGO, IPASS, KIS, KM, KTC, KTS, P, PFLOS,
5 RCG, RCM, RCMS, RCT, RD1, RECGI, REE, REMT, RET, RETI, RMSJ, RTRC
      6, R1, R1C, R2, SALP, SEPE, SGAM, SGBL, SJ, SKTC, SKTS, SLJD, T,
7 TEPE, TGBLL, THD, THLE, THMAX, THTE, TKTN, TLS, WC1, VB1, VB2, ZM
       RMS = RO - DRC
       IT = 1
    10 CALL EPSLONIKE + 1.5707963,0.0,R0,TE,DRCE,REE)
       DRCS = DRC + DRCE
       DK = KE - KMM
       HDK = CK/2.0
       SR = SRS(HDK)
       SHDK = HDK*SR
       CHOK = SOFT(1.0 - SHOK**2)
       DSS = DPCS/(SR*(CHDK*CKM - SHDK*SKM))
       CALL EPSLON(KMM, DK, RMS, DSS, DPCS, RES)
       DRE = (RO + DRCE) *EMS + RES - REE
       IF (ABS(CRE).LT.1.0F-06) RETURN
       IF (IT.FO.2) GO TO 20
       KFI = KF
       OPE1 = DPE
       KF = KF - ?.J*CPE*(CKM*(1.0 -2.0*SHDK**2) -2.0*SKM*SHDK*CHDK)/DSS
       1T = 2
       SO TO 10
    20 KE = KE + (KE1 - KE1*DRE/(DRE - DRE1)
       GO TO 10
        -ND
```

SUBROUTINE CHAN C *** CALCULATION OF CHANNEL AREA TO CHOKE AREA REAL ING, MIC, KIP, KIS, KM, KOC, KOP, KOS, KP, KS, KTC, KTP, 1 KTS, KWC, MACH COMMON /VECTOR/ 1 BETAS(1,21), BMATL(1), PLADES(1), CHOKE(1), CHORDA(1), CHORDB(1), 2 CHORDC(1), CPCC(6), DEV(1,21), IDEV(1), IGEO(1), IINC(1),

3 ILCSS(1), IMAX(1), INC(1,21), ISTN(2), ITRANS(1), NOPT(1), 4 NXCUT(1), PHI(1,21), PC(2,21), R(2,21), RBHUB(1), RBTIP(1), 5 SLCPE(2,21), SOLID(1), TALE(1), TAMAX(1), TATE(1), TBLE(1), 10 6 TBMAX(1), TBTE(1), TCLE(1), TCMAX(1), TCTE(1), TDLE(1), TDMAX(1), 7 TCTE(1), TILT(1), TC(2,21), TRANS(1,21), VTH(2,21), V7(2,21), 11 12 8 Z(2,21), 7BHUB(1), ZETIP(1), ZMAX(1,21) 13 CEPPON /SCALAR/ 14 1 BETA, CP, CPH2, CPH3, CPH4, CPH5, CPH6, CPP3, CPP4, CPP5, CPP6, 15 2 CP1, CV, CCP, DF, DFC, LHCI, DLOSC, G, GAMMA, GJ, GJ2, GR1, GR2, 16 3 GR3, GR4, GR5, H, I, ICCNV, ICOUNT, IERROR, IIN, IPR, IROTOR, IR, 17 4 IRCW, ITER, IW, J, JM, MACH, NAB, NBROWS, NHUB, NROTOR, NSTN, NSTRM, 18 5 NTIP, NTUBES, OMEGA, PI, POA1, PR, RADIAN, RF, RG, ROT, TL, TOA1, TU 19 COPPON 20 1 BETA1(21), BETA2(21), CCSA(21), COSL(21), DKLE(1,21), DL(21), 21 2 GAMM(21), OBAR(21), RELM(21), RPR1(21), RE1(21), RE2(21), 22 3 RE3(21), RE4(21), RE5(21), RVTH(21), SINA(21), SINL(21), SLOS(21) 23 4,SCNIC(21), THETAP(21,13), THETAS(21,13), TREL1(21), TSTAT(21), 24 5 VM(21), VTSQ(21), XEAR(1,21), YBAR(1,21), ZP(21,13), ZS(21,13) 25 CCMMON /EQUIV/ 26 1 CHC(21), CHK(21), COSA2(21), FSM(21), KIC(21), KOC(21), RCA(21), 27 2 REC(2,21), RPTE(2,21), SINA2(21), SKIC(21), SKOC(21), TALP(21), 28 3 TCA(21), TEC(2,21), TGB(21), TTRP(21), TTRS(21), YCCLE(25), YCCTE(25) 29 4, ZCCLE(25), ZCCTE(25), ZCDA(21), ZEC(2,21), ZTRP(21), ZTRS(21) 30 CCMMON /BLACES/ 31 1 AMACH, ACC, Alsoas, Alsoai, Binc, Calp, CCC, Cepe, CGBL, CHORD, 32 2 CINC, CKTC, CKTS, C1, C2, DKAPPA, DRCE, DRCGI, DRCMST, DRCMT, 33 3 CRCOI, CRCT, DRCTI, CR1, DSME, DSMT, DSOI, DSOT, DSSE, DST, DSTI, 34 4 EMT, F1, F2, GBL, ICL, IGO, IPASS, KIS, KM, KTC, KTS, P, PFLOS, 35 5 RCG, RCM, RCMS, RCT, RD1, RECGI, REE, REMT, RET, RETI, RMSJ, RTRC 36 6,R1, R1C, R2, SALP, SEPE, SGAM, SGBL, SJ, SKTC, SKTS, SLJD, T, 37 7 TEPE, TGBLL, THD, THLE, THMAX, THTE, TKTN, TLS, WC1, YB1, YB2, ZM 38 CCMMON /MARG/ 39 1 AL, AOAS, AOA1, CCHCRC, DAL, DAOAS, DPW, DPWL, DRCLEP, DRCM, 40 2 CRCTPI, DRCTSI, DRCWT, CSA, DSP, DSP1, DSP2, DSS, DSS1, DSS2, DSW 41 3, EB, EWC, F, HC, ICHCKE, KIP, KOP, KOS, KP, KS, KTP, KWC, PI2, RCI 4, RCC, RCP, RCS, RCTP, RCTS, RELEP, REOI, REP, RES, RETP, RETS, 42 43 5 REWT, RTR, RTRD, RTRC, SECGBL, TCGI, TGBL, WC, ZMT 44 IF (IGO.EC.2) GO TO 310 45 C *** CALCULATION OF CHANNEL WIDTH 46 ICI = 147 DSW = 0.048 DRCWC = CRCWT 49 REWC = REWT50 RCS = RCTS51 KS = KTS52 250 CALL TANKAP(RCS, DRCWC, REWC, TK) 53 WC = SQRT(1.0 + TK**2) 54 IF (ABS(TK).GT.100.0) GO TC 260 55 WC = WC*ABS(DRCWC) 56 GC TC 270 57 26C WC = WC*ABS(REWC/TK) 58 270 KWC = ATAN(-1.0/TK)59 IF (REWC.GT.0.0) GO TC 275 60 IF (DRCWC.GT.0.0) GO TO 272 61 KWC = PI + KWC 62 GC TC 275 63 272 KWC = KWC - PI64 275 DK = KS + KP - 2.0*KWC 65 IF (ABS(DK).LT.0.0001) GC TO 300 66 IF (ICL.ST.1) GO TO 290 67 ICL = 268

157

8

		69
		70
		71
200		72
200	$D_{KG} = T_{KG} + D_{KC} + D_{KC} + D_{KG}$	73
270	DV = DV/C4/DV DV = DV/C4/DV	74
	DN = DDS TOSH	75
	$\nabla \mathbf{x} = \nabla \mathbf{x} + \mathbf{x} + \mathbf{x}$	76
	NG - K-S - UN NGC - DECAT - DECS	77
		78
	$\mathbf{R}(\mathbf{S}) = \mathbf{R}(\mathbf{S}) = \mathbf{R}(\mathbf{S}) + \mathbf{R}(\mathbf{S})$	79
	$\mathbf{R}_{\mathbf{L}} = \mathbf{R}_{\mathbf{L}} + $	80
200	TE (CHOKE(THOW) - EQ.D. O. AND - (CONV-NE-2) RETURN	81
360		82
	$ P_{\text{D}} = P_{\text{D}} + T_{\text{H}} = P_{\text{D}}$	83
210	$HC = 1 \cap - DRCM + SLID + CCHERD/(DR1 - Z(I-1,J) + SLID)$	84
210		85
	F = (DSST + DSW)/DSS	86
	$P_1 P_2 = S(P_2) + (F + (CSP1 + DPW)/DSP)/2.0 = PELOS$	87
	RTR = 1.0 + RTRC+ORC++SALP+(R1C + DRCM+SALP/2.0)	88
	RTRC = SQRT(RTR)	89
	A15CAS = (RTR * * GR2 - 1.0 + PLCSS)/RTRQ	90
320	ACAS = ACA1+A1SOAS/A1SCA1	91
	IF (ICHCKE.GT.I.OR.CHCKE(IROW).EQ.J.O) RETURN	92
	IF (ABAS - 1.0.GE.CHCKE(IROW).OR.IINC(IROW).GT.3) RETURN	93
	IF (BINC.GT.(CKLE(IRCW,J) + C.033)) RETURN	94
C +++	READJUSTMENT OF INCIDENCE ANGLE TO RELIEVE L.E. CHANNEL CHOKE	95
•	AI = (1.0/(1.0 + P) + CKCS*DSW/(KIC(J) -KOC(J)))/(1.0-WC*DKDS/2.0)	96
	DSS = DSS1 + ESW	97
	BI = DSS + (DSS - WC*(KP + EWC - KS)/2.0)*AI	98
	A1 = W(+A1+(1.0 + 2.0+A1))	99
	DI = (BI -SGRT(BI**2 -4.0*AI*(1.0 +CHOKE(IROW)-AOAS)*WC))/AI+0.001	100
	DIE = BINC + CI - DKLE(IROW, J) - 0.0349	101
C ***	LIMIT INCIDENCE ANGLE TC +2 DEG. ON L.E. OF PRESS. SURF.	102
•	IF (DIE.GT.0.6) DI = DI - DIE	103
	CINC = BINC + DI	104
	100 = 2	105
	RETURN	100
	END	107

PESET OF SUCTION SURFACE BLADE ANGLE AT SHOCK C ### SUBROUTINE SHETA REAL INC, KIC, KIP, KIS, KM, KOC, KOP, KOS, KP, KS, KTC, KTP, KTS, 1 KWC, MACH COMMON /VECTOR/ 1 BETAS(1,21), BMATL(1), BLADES(1), CHOKE(1), CHORDA(1), CHOROB(1), 2 CHCRDC(1), CPCO(6), CEV(1,21), IDEV(1), IGEO(1), IINC(1), 3 ILUSS(1), IMAX(1), INC(1,21), ISTN(2), ITRANS(1), NOPT(1), 4 NXCUT(1), PHI(1,21), PU(2,21), R(2,21), RBHUB(1), RBTIP(1), 5 SLCPE(2,21), SOLID(1), TALE(1), TAMAX(1), TATE(1), TBLE(1), 6 TPMAX(1), IBTE(1), TCLE(1), TCMAX(1), TCTE(1), TDLE(1), TDMAX(1), 7 TCTE(1), TILT(1), TC(2,21), TRANS(1,21), VTH(2,21), VZ(2,21), 8 2(2,21), ZBHUB(1), ZETIP(1), ZMAX(1,21) COMMON ISCALARI 1 BETS, CP, CPH2, CPH3, CPH4, CPH5, CPH6, CPP3, CPP4, CPP5, CPP6, 2 191, SV, DCP, DF, DHC, CHCI, DLOSC, G, GAMMA, GJ, GJZ, GR1, GR2,

1

2

3 4

5

6

7

8

9

10

11 12 13

14

15

16

to a second seco

1. 1. 1. 1. 1. 1.

 \checkmark

States and a second second

3-6

```
3 GR3, GR4, GR5, H, I, ICCNV, ICOUNT, IERROR, IIN, IPR, IRCTUR, IR,
                                                                                      17
     4 IRCW, ITER, IW, J. JM, MACH, NAB, NBROWS, NHUB,NROTOR,NSTN,NSTRM,
                                                                                      18
     5 NTIP, NTURES, OMEGA, PI, POAL, PR, RADIAN, RF, RG, ROT, TL, TOAL, TU
                                                                                      19
      COMMON
                                                                                      20
     1 BETA1(21), BETA2(21), GCSA(21), COSL(21), DKLE(1,21), DL(21),
                                                                                      21
     2 GAMM(211, GBAR(21), RELM(21), RPR1(21), RE1(21), RE2(21),
                                                                                      22
     3 RE3(21), RE4(21), RE5(21), RVTH(21), SINA(21), SINL(21), SLOS(21)
                                                                                      23
     4, SCNIC(21), THETAP(21,13), THETAS(21,13), TREL1(21), TSTAT(21),
                                                                                      24
     5 VM(21), VTSQ(21), XEAR(1,21), YBAR(1,21), ZP(21,13), ZS(21,13)
                                                                                      25
      CCMMON /EQUIV/
                                                                                      26
     1 CHC(21), CHK(21), CCSA2(21), FSM(21), KIC(21), KOC(21), RCA(21),
                                                                                      27
     2 REC(2,21), RPTE(2,21), SINA2(21), SKIC(21), SKOC(21), TALP(21),
                                                                                      28
     3 TCA(21), TEC(2,21), TGB(21), TTRP(21), TTRS(21), YCCLE(25), YCCTE(25)
                                                                                      29
     4, ZCCLE(25), ZCCTE(25), ZCDA(21), ZEC(2,21), ZTRP(21), ZTRS(21)
                                                                                      30
      CCMMGN /BLADES/
                                                                                      31
     1 AMACH, AOC, AISOAS, AISOA1, BINC, CALP, CCC, CEPE, CGBL, CHORO,
                                                                                      32
     2 CINC, CKTC, CKTS, Cl, C2, DKAPPA, DRCE, DRCGI, DRCMST, DRCMT,
                                                                                      33
     3 DRCOI, DRCT, DRCTI, CR1, DSME, DSMT, DSOI, DSOT, DSSE, DST, DSTI,
                                                                                      34
     4 EMT, F1, F2, GBL, ICL, IGO, IPASS, KIS, KM, KTC, KTS, P, PFLOS,
                                                                                      35
     5 RCG, RCM, RCMS, RCT, RD1, RECGI, REE, REMT, RET, TI, RMSJ, RTRC
                                                                                      36
     6,R1, R1C, R2, SALP, SEPE, SGAM, SGBL, SJ, SKTC, SKTS, SLJD, T,
7 TEPE, TGBLL, THD, THLE, THMAX, THTE, TKTN, TLS, WC1, YB1, YB2, ZM
                                                                                      37
                                                                                      38
      CEMMEN /MARG/
                                                                                      39
     1 AL, AOAS, AOA1, CCHCRD, DAL, DAOAS, DPW, DPWL, DRCLEP, DRCM,
                                                                                      40
     2 DRCTPI, DRCTSI, DRCWT, ESA, DSP, DSP1, DSP2, DSS, DSS1, DSS2, DSW
3,EB, EWC, F, HC, ICHCKE, KIP, KOP, KOS, KP, KS, KTP, KWC, PI2, RCI
                                                                                      41
                                                                                      42
     4.RCC, RCP, RCS, RCTP, RCTS, RELEP, REDI, REP, RES, RETP, RETS,
                                                                                      43
     5 REWT, RTR, RTRD, RTRC, SECGBL, TCGI, TGBL, WC, ZMT
                                                                                      44
      BETAS(IRCW,J) = KS
                                                                                      45
      IF (DSW.LE.USS2) GC TC 336
                                                                                      46
      IF (ITRANS(IROW).EQ.2) TRANS(IROW,J) = 0.9
                                                                                      47
      CHK(J) = 0.0
                                                                                      48
      FSM(J) = 1.1
                                                                                      49
      IGC = 2
                                                                                      50
      RETLRN
                                                                                      51
                                                                                      52
  336 IF (ITRANS(IROW).NE.2) RETURN
C +++
            RESET THE TRANSITION POINT AT THE SHOCK IMPINGEMENT POINT
                                                                                      53
      IF (DSW) 337,339,338
                                                                                      54
  337 DK = KOC(J) - KOS
                                                                                      55
      DSW = DSW/(DSS2 - THTE*DK*(1.0 + DK*DK/3.0*(1.0 + 0.4*DK*DK)))
                                                                                      56
      DK = DSW*(KOC(J) - KTC)
                                                                                      57
      DSW = DSW + CSCT
                                                                                      58
      CALL EPSLEN(KTC, DK, RCT, DSW, DR, RE)
                                                                                      59
      CALL RPOINT(RCI, DRCTI+CR, RETI+RE, TGBLL, DR)
                                                                                      60
      TRANS(IROW, J) = DR*SECOBL + THLE
                                                                                      61
      RETLRN
                                                                                      62
  338 DK = KIS - KIC(J)
                                                                                      63
      DSW = DSW/(DSS1 - THLE+CK+(1.0 + DK+DK/3.0+(1.0 + 0.4+DK+DK)))
                                                                                      64
      DK = (KTC - KIC(J)) + (1.0 + DSW)
                                                                                      65
      DSW = DSTI + (1.0 + DSW)
                                                                                      66
      CALL EPSLCN(KIC(J), DK, RCI, CSW, DR, RE)
                                                                                      67
      CALL RPOINT(RCI, DR, RE, TGHLL, CR)
                                                                                      68
      TRANS(IRCW, J) = DR*SECCEL + THLE
                                                                                      69
  339 RETLRN
                                                                                      70
      ENC
                                                                                      71
```

and the second second

SUBROUTINE POINTS REAL INC. KIC, KIP, KIS, KM, KOC, KOP, KOS, KP, KS, KTC, KTP, KTS, X KWC, MACH CENNEN /VECTOR/ I BETAS(1,21), BMATL(1), PLADES(1), CHOKE(1), CHORDA(1), CHORDB(1), 2 CHERDE(1), CPC0(6), CEV(1,21), IDEV(1), IGEO(1), IINC(1), 3 ILCSS(1), IMAX(1), INC(1,21), ISTN(2), ITRANS(1), NOPT(1), 4 NXCUT(1), PHI(1,21), PC(2,21), R(2,21), RBHUB(1), RBTIP(1), 5 SL(PE(2,21), SOLID(1), TALE(1), TAMAX(1), TATE(1), TBLE(1), 6 TBMAX(1), TBTE(1), TCLE(1), TCMAX(1), TCTE(1), TDLE(1), TDMAX(1), 7 TCTE(1), TILT(1), TC(2,21), TRANS(1,21), VTH(2,21), VZ(2,21), 8 Z(2,21), ZBHUB(1), ZBTIP(1), ZMAX(1,21) CEMMON 1 BETA1(21), BETA2(21), CCSA(21), COSL(21), DKLE(1,21), DL(21), 2 GAMM(21), CBAR(21), RELM(21), RPR1(21), RE1(21), RE2(21), 3 RE3(21), RE4(21), RE5(21), RVTH(21), SINA(21), SINL(21), SLOS(21) 4, SCNIC(21), THETAP(21,13), THETAS(21,13), TREL1(21), TSTAT(21), 5 VM(21), VTSG(21), XBAR(1,21), YBAR(1,21), 2P(21,13), 2S(21,13) CEMMON /EQUIV/ 1 CHC(?1), CHK(21), CCSA2(21), FSM(21), KIC(21), KOC(21), RCA(21), 2 REC(2,21), RPTE(2,21), SINA2(21), SKIC(21), SKOC(21), TALP(21), 3 TCA(21), TEC(2,21), TGB(21), TTRP(21), TTRS(21), YCCLE(25), YCCTE(25) 4,ZCCLE(25), ZCCTE(25), ZCDA(21), ZEC(2,21), ZTRP(21), ZTRS(21) CCMMEN /PTS/ FSB(13) CEMMEN /SCALAR/ 1 BETA, CP, CPH2, CPH3, CPH4, CPH5, CPH6, CPP3, CPP4, CPP5, CPP6, 2 CP1, CV, ECP, EF, DHC, EHCI, DLOSC, G, GAMMA- GJ, GJ2, GR1, GR2, 3 GR3, GR4, CR5, H, I, ICCNV, ICOUNT, IERROR, . IN, IPR, IROTOR, IR, 4 IRCW, ITER, IW, J, J", MACH, NAB, NBROWS, NHUB, NROTOR, NSTN, NSTRM, 5 NTIP, NTUPES, OMEGA, PI, POAL, PR, RADIAN, RF, RG, RUT, TL, TOAL, TU COMMON /READES/ 1 AMACH, ACC, AISOAS, AISCAI, BINC, CALP, CCC, CEPE, CGBL, CHORD, 2 CINC, CKTC, CKTS, C1, C2, DKAPPA, DRCE, DRCGI, DRCMST, DRCMT, 3 CRCOI, DRCT, DRCTI, CR1, CSME, DSMT, DSDI, DSOT, DSSE, DST, DSTI, 4 EMT, F1, F2, GBL, ICL, IGC, IPASS, KIS, KM, KTC, KTS, P, PFLOS, 5 RCG, RCM, RCMS, RCT. RD1, RECGI, REE, REMT, RET, RETI, RMSJ, RTRC 6,R1, R1C, R2, SALP, SEPE, SGAM, SGBL, SJ, SKTC, SKTS, SLJD, T, 7 TEPE, TGBLL, THD, TELE, THMAX, THTE, TKIN, TLS, WC1, YB1, YB2, ZM CENNEN /MARG/ 1 AL, ACAS, ADA1, CCHCRC, DAL, DADAS, DPW, DPWL, DRCLEP, DRCM, 2 CRCTPI, CRCTSI, CRCWT, LSA, DSP, DSP1, DSP2, DSS, DSS1, DSS2, DSW 3, EB, EWC, F, HC, ICHCKE, KIP, KOP, KOS, KP, KS, KTP, KWC, PI2, RCI 4, RCL, RCP, RCS, RCTP, RCTS, RELEP, REDI, REP, RES, RETP, RETS, REWT, RTR, RIRD, RTRC, SECGPL, TCGI, TGRL, WC, ZMT 5 BLADE ELEMENT SUCTION SURFACE Z AND THETA ARRAYS REFERENCED C *** C *** TO THE BLACE HUB STACKING POINT 5CC ZTRS(J) = ZCDA(J) + (ERCTS1 - DRCCT)*CCHORD RTC = RIC + (URCTSI + THLE)*SALP TTRS(J) = RETS/RTC - TCA(J) - TCGI ZEC(I-I,J) = ZCCA(J) - CNCGI+CCHORD ZEC(I,J) = ZCCA(J) + (DRODI - URCGI)*CCHORD TEC(I-1,J) = +TCA(J) - TCGITEC(I,J) = RECI/(RIC + (THLE + DRCOI)*SALP) + TEC(I-1,J) REC(I-1,J) = R(I-1,J) + THLE + CCHORDREC(I,J) = R(I,J) - TFTE CCHCRCFST = DSS1/LSSDC 550 K=1,13 FS = FSB(K) - FSTIF (F5.GT. ".0) GC TO 520 DSS = 05S1+FS/FST DK = (KTS - KIS) * CSS/CSS1

1

23

5 6

7

8 9

10

12

14

15

16 17

18

20

21

22

23 24

25

26

27

28

29

30 31

32

33

34 35

36

37 38 39

40 41

42 43

44

45

46

47

48 49

50 51

52

53

54 55

56

57

58

59

60

61

		GC 10 530	62
	52C	DSS = DSS2*FS/(1.0 - FST)	63
		$DK = (KCS - KTS) * DSS / CSS ^{2}$	64
	530	CALL EPSLEN(KTS, DK, RCTS, (SS, CR(TS, RES)	65
		ZS(J,K) = ZTRS(J) + ERCTS#CCFORD	66
	550	THETAS(J,K) = TTRS(J) + FES/(RTC + DRCTS*SALP)	67
С	***	BLADE ELEMENT PRESSIRE SURFACE Z AND THETA ARRAYS REFERENCED	68
С	***	TO THE BLADE HUB STACKING POINT	69
		ZTRP(J) = ZCDA(J) + (ERCTPI - DRCGI)*CCHORD	70
		RTC = R1C + (DRCTPI + THE)*SALP	71
		TTRP(J) = RETP/RTC - TCA(J) - TCGI	72
		FST = DSP1/DSP	73
		DC 600 K=1,13	74
		FS = FSB(K) - FST	75
		IF (FS.GT.C.O) GO TO 570	76
		DSS = DSP1*FS/FST	77
		DK = (KTP - KIP) * CSS/CSP1	78
		GC TO 580	79
	570	DSS = DSP2*FS/(1.0 - FST)	80
		DK = (KOP - KTP) * 0SS/CSP2	81
	580	CALL EPSLCN(KTP, DK, RCTP, ESS, DRCTS, RES)	82
		ZP(J,K) = ZTRP(J) + DRCTS * CCHORD	83
	600	THETAP(J,K) = TTRP(J) + RES/(RTC + DRCTS*SALP)	84
		TGB(J) = TGAL	85
		RETLRN	86
		END	87

	SUBROUTINE STACK
C ***	THIS ROUTINE FINDS THE CENTERS OF AREA OF BLADE SECTIONS
; **;	WHICH PASS THROUGH THE INTERSECTIONS OF THE BLADE ELEMENTS WITH
***	THE STACKING LINE. BLADE ELEMENTS ARE TRANSLATED ON THE CONE TO
***	GET THE BLADE SECTION CENTERS NEARER THE STACKING AXIS.
	REAL INC, KIC, KIS, KM, KOC, KTC, KTS, MACH, MCA, MCT, MDA, MDT
	CCMMCN /VECTOR/
	1 BETAS(1,21), BMATL(1), PLADES(1), CHOKE(1), CHORDA(1), CHORDB(1).
	2 CHCRDC(1), CPCC(6), CEV(1,21), IDEV(1), IGEO(1), IINC(1).
	3 ILCSS(1), IMAX(1), INC(1,21), ISTN(2), ITRANS(1), NOPT(1).
	4 NXCUT(1), PHI(1,21), PU(2,21), R(2,21), RBHUB(1), RBTIP(1).
	5 SLCPE(2,21), SOLID(1), TALE(1), TAMAX(1), TATE(1), TBLE(1),
	6 TBMAX(1), TBTE(1), TCLE(1), TCMAX(1), TCTE(1), TDLE(1), TDMAX(1).
	7 TDTE(1), TILT(1), TC(2,21), TRANS(1,21), VTH(2,21), VZ(2,21).
	8 Z(2,21), ZBHUB(1), ZPTIP(1), ZMAX(1,21)
	CCMMON /SCALAR/
	1 BETA, CP, CPH2, CPH3, CPH4, CPH5, CPH6, CPP3, CPP4, CPP5, CPP6,
	2 CP1, CV, ECP, DF, DHC, LHCI, DLOSC, G, GAMMA, GJ, GJ2, GR1, GR2.
	3 GR3, GR4, GR5, H, I, ICCNV, ICOUNT, IERROR, IIN, IPR, IROTOR, IR.
	4 IRCW, ITER, IW, J. JM, MACH, NAB, NBROWS, NHUB, NROTOR, NSTN, NSTRM.
	5 NTIP, NTUBES, OMEGA, PI, POAI, PR, RADIAN, RF, RG, ROT, TL, TOAI, TU
	CEMMEN
	1 BETA1(21), BETA2(21), CCSA(21), COSL(21), DKLE(1,21), DL(21),
	2 CAMM(21), CBAR(21), RELM(21), RPR1(21), RE1(21), RE2(21),
	3 RE3(21), RE4(21), RE5(21), RVTH(21), SINA(21), SINL(21), SLOS(21)
	4, SCNIC(21), THETAP(21,13), THETAS(21,13), TREL1(21), TSTAT(21),
	5 VM(21), VTSC(21), XPAR(1,21), YBAR(1,21), ZP(21,13). ZS(21.13)
	CCMMUN VEGUIV/
	1 CHD(21), CHK(21), CCSA2(21), FSM(21), KIC(21), KOC(21). RCA(21).
	2 RECE2.211. RET. (2.2)1. STAA2(2)1. SHIC(2)1. SHOC(2)1. TALDADIN

- C.

100

2.5

1. 18 CA F

```
3 TCA(21), TEC(2,21), TCB(21), TTRP(21), TTRS(21), YCCLE(25), YCCTE(25)
                                                                                          31
     4,200LE(25), 700TE(25), 20DA(21), ZEC(2,21), ZTRP(21), ZTRS(21)
                                                                                           32
                                                                                           33
      COMMON /BLAUES/
     1 AMACH, ACC, AISCAS, AISCAI, BINC, CALP, CCC, CEPE, CGRL, CHORD,
2 CINC, CKTC, CKTS, C1, C2, DKAPPA, DRCE, DRCGI, DRCMST, DRCMT,
                                                                                           34
                                                                                           35
     3 DRCOI, DRCI, DRCTI, CRI, DSME, DSMT, DSDI, DSUT, DSSE, DST, DSTI,
                                                                                           36
     4 EMT, F1, F2, GBL, ICL, IGC, IPASS, KIS, KM, KTC, KTS, P, PFLDS,
5 RCG, RCM, RCMS, RCT, RD1, RECGI, REE, REMT, RET, RETI, RMSJ, RTRC
                                                                                           37
                                                                                           38
     6,R1, R1C R2, SALP, SEPE, SGAM, SGBL, SJ, SKTC, SKTS, SLJD, T,
7 TEPE, TGRLL, THC, THLE, THMAX, THTE, TKTN, TLS, WC1, YB1, YB2, ZM
                                                                                           20
                                                                                           40
                                                                                           41
      CCMMON /RCUT/ AC, COSKL, COSKU, EMTM, IOUT, IT, NP, SINKL, SINKU,
     1 CX(13), EM(14), YBP(14), YBS(14), ZBP(14), ZBS(14)
                                                                                           42
                                                                                           43
      EQUIVALENCE (JL, ICL)
                                                                                           44
      IF (ICCNV.LT.2) WRITE (IW, 2000)
                                                                                           45
      T \Gamma U T = 0
                                                                                           46
      DC 290 J=1,NSTRM
                                                                                           47
      JL = J
                                                                                           48
      STC = TCA(J) * SRS(TCA(J))
                                                                                           49
      XCUT = RCA(J)+SQRT(1.C - STC++2)
                                                                                           50
       IF (TALP(J).GT_0.0) JL = JL - 1
                                                                                           51
      IF (JL.LT.2) JL = 2
                                                                                           52
      IF (JL.GT.NSTRM-2) JL = NSTRM - 2
                                                                                           53
       JL1 = JL
                                                                                           54
      CC 20 K=1,13
                                                                                           55
   20 CALL INTERP(XCUT, 2,K, Y8S(K); Z8S(K))
                                                                                           56
       TANE = (YBS(13) - YBS(1))/(Z3S(13) - ZBS(1))
                                                                                           57
      CALL INTERP(XCUT, 2,0, YES(14), ZES(14))
            TRANSLATE BLAUE SECTION COORDINATES TO THE STACKING POINT
                                                                                           58
C ***
C *** ORIGIN AND ROTATE TO LIE ALONG THE BLADE SECTION CHORD.
                                                                                           59
                                                                                           60
       CCSE = 1.0/SQRT(1.0 + TANB**2)
                                                                                           61
       SINE = TANE*CCSB
                                                                                           62
       DZ = ZCCA(J) + COSB - RCA(J) + STC + SINB
                                                                                           63
       DY = RCA(J) + STC + CCSB + ZCDA(J) + SINB
                                                                                           64
       DC 24 K=1,14
                                                                                           65
       YBT = YBS(K)
                                                                                           66
       YES(K) = YES(K)+COSB - ZES(K)+SINB + DY
                                                                                           67
   24 ZPS(K) = ZRS(K)+COSB + YRT+SINB - DZ
                                                                                           68
       ZBP(1) = ZBS(1)
                                                                                           69
       YEP(1) = YES(1)
                                                                                           70
       Z \exp(13) = Z BS(13)
                                                                                            71
       YEP(13) = YBS(13)
                                                                                            72
       IF (J.NE.1.CR.ICCNV.GE.2) GO TC 28
                                                                                            73
       IF (ISTN(1).LT.O.OR.BMATL(IRCTOR).LE.O.O) GO TO 28
                                                                                            74
       DC 26 K=2,12
                                                                                            75
       Y \in P(K) = Y \in S(K)
                                                                                            76
    26 ZEP(K) = ZPS(K)
                                                                                            77
    28 CALL SPLITG(ZBS,YBS,14,AP,AXP,AYP,SP1,SP2)
                                                                                            78
        JL = JL1
                                                                                            79
       DC 210 K=1,13
                                                                                            80
   210 CALL INTERP(XCUT, 1, K, YBS(K), ZBS(K))
                                                                                            81
       CALL INTERP(XCUT, 1,0, YES(14), ZBS(14))
                                                                                            82
        K = 14
                                                                                            83
       DC 315 K=1,14
                                                                                            84
        YET = YES(K)
                                                                                            85
        YES(K) = YES(K)*COSB - ZES(K)*SINB + DY
                                                                                            86
   215 ZPS(K) = ZPS(K)*COSB + YBT*SINB - DZ
                                                                                            87
        ZS2 = ZES(13)
                                                                                            88
        YS2 = YES(13)
                                                                                            89
        CALL SPLITC(ZBS, YBS, 14, AS, AXS, AYS, SS1, SS2)
                                                                                            90
        CALL FUGES(/S2, YS2, SS2, Z"P(13), YRP(13), SP2, AT, AXT, AYT, RTE, ZCTE,
                                                                                            91
       X YCTE)
```

```
162
```

```
CALL EDGES(ZBS(1),YBS(1),SS1,ZBP(1),YBP(1),SP1,A,AX,AY,RLE,ZCLE,
                                                                                   92
     X YCLE)
                                                                                   93
      A = A + AS - AP - AT
                                                                                   94
      AX = AX + AXS - AXP - AXT
                                                                                   36
      AY = AY + AYS - AYP - AYT
                                                                                   76
      XB = AX/A
                                                                                   97
      Y8 = AY/A
                                                                                   98
            READJUSTMENT OF XEAR, YEAR AND BLADE EDGE LOCATION.
C ***
                                                                                   99
      DZ = (XB + CCSB - YB + SINB)/(1 \cdot C - TLS + TALP(J))
                                                                                  100
      Z(I-1,J) = Z(I-1,J) - CZ
                                                                                  101
      Z(I,J) = Z(I,J) - DZ
                                                                                  102
      R(I-1,J) = R(I-1,J) - CZ * TALP(J)
                                                                                  103
      R(I,J) = R(I,J) - DZ * TALP(J)
                                                                                  104
      DF = DZ*SCRT(1.0 + TALP(J)**2)/CHD(J)
                                                                                  105
      DY = (XB*SINB + YB*CCSB)/CHD(J)
                                                                                  106
      CGBL = 1.0/SQRT(1.0 + TGE(J) ++2)
                                                                                  107
      SGBL = CGBL*TGB(J)
                                                                                  108
      XBAR(IROW, J) = XBAR(IRCW, J) + DM*CGBL + DY*SGBL
                                                                                  109
      YEAR(IRCW, J) = YEAR(IRCW, J) - DM+SGBL + DY+CGBL
                                                                                  110
      IF (ICCNV.LT.2) WRITE (IW+2010) ITER, J, BETAL(J), BETA2(J),
                                                                                  111
     x SKIC(J), SKOC(J), KIC(J), KCC(J), DM, DY, SINB, DZ, A
                                                                                  112
      IF (ISTN(I).LT.O.GR.BMATL(IRCTOR).LE.O.O) GO TO 290
                                                                                  113
      IF (J.GT.1) GC TO 280
                                                                                  114
      AL = A
                                                                                  115
      XU = XCUT
                                                                                  116
      MCA = G.O
                                                                                  117
      MCT = 0.0
                                                                                  118
      MCA = 0.0
                                                                                  119
      MET = 0.0
                                                                                  120
      IF (ABS(TALP(1)).LT.0.01) GO TO 290
                                                                                  121
C ***
           TAPERED ROTOR TIP MATL. CENTRIFUGAL BENDING MOMENT CORRECTION
                                                                                 122
      ZPLE = ZCLE*CGSB - YCLE*SINB
                                                                                 123
      ZPTE = ZCTE*CCSB - YCTE*SINB
                                                                                 124
      ZPL = ZPLE
                                                                                 125
      DC 240 K=2,13
                                                                                 126
      0Z = ZBP(K) - ZBP(K-1)
                                                                                 127
      DY = YBP(K) - YBP(K-1)
                                                                                 128
      D = DZ \neq COSP - DY \neq SINE
                                                                                 129
      AP = (DZ*SINB + DY*CCSP)/D
                                                                                 130
      BP = (Z6P(K)*Y8P(K-1) - Z8P(K-1)*Y8P(K))/D
                                                                                 131
      IF (K.NE.13) GC TC 220
                                                                                 132
      ZPP = ZPTE
                                                                                 133
      GC TC 230
                                                                                 134
 22C ZPP = ZEP(K) *COSB - YPP(K)*SINB
                                                                                 135
 23C ZFS1 = ZPP + ZPL
                                                                                 136
      ZPS2 = ZPS1+ZPP + ZPL++2
                                                                                 137
      ZPS3 = ZPS2*ZPP + ZPL**3
                                                                                 138
      CM = (XCUT + ZPS1*TALP(1)/4.C)*(ZPP - 2PL)
                                                                                 139
      APT = AP*ZPS2/3.0 + 8P*ZPS1/2.0
                                                                                 140
      MDA = MDA - CM*(AP*ZPS3/4.0 + BP*ZPS2/3.0)
                                                                                 141
      MCA = MCA - CM * APT
                                                                                 142
      MCT = MDT + CM*(AP**2*ZPS3/8.0 + BP*(AP*ZPS2/3.0 + BP*ZPS1/4.0))
                                                                                 143
      MCT = MCT - CM * APT
                                                                                 144
 240 ZPL = ZPP
                                                                                 145
      ZPL = ZPLE
                                                                                 146
      KL = 14
                                                                                 147
      IF (785(14).LE.285(13)) KL = 13
                                                                                 148
     DC 270 K=2,KL
                                                                                 149
     PZ = ZPS(K) - ZPS(K-1)
                                                                                 150
     DY = YRS(K) - YES(K-1)
                                                                                 151
     D = LZ*COSP - LY*SINE
                                                                                 152
```

and the second and the second s

ALL LL

```
153
     AS - (DZ*SINB + DY*CESB)/D
                                                                               154
     BS = (ZBS(K)*YBS(K-1) - ZBS(K-1)*YBS(K))/D
                                                                               155
     IF (K.NF.KL) GC TC 250
                                                                               156
     ZPP = ZPTE
                                                                               157
     GC TC 260
                                                                               158
 250 ZPP = ZBS(K)*COSB - YPS(K)*SINB
                                                                               159
 26C ZPS1 = ZPP + ZPL
                                                                               160
     ZPS2 = ZPS1+ZPP + ZPL++2
                                                                               161
     ZPS3 = ZPS2*ZPP + ZPL**3
                                                                               162
     CM = (XCLT + 2PS1*TALP(1)/4.C)*(2PP - 2PL)
                                                                               163
     APT = AS*ZPS2/3.0 + BS*ZPS1/2.0
                                                                                164
     MCA = MCA + CM*(AS*ZPS3/4.0 + BS*ZPS2/3.0)
                                                                                165
     MCA = MCA + CM#APT
     MCT = MCT - CM+(AS++2+ZPS3/8.0 + BS+(AS+ZPS2/3.0 + BS+ZPS1/4.0))
                                                                                166
                                                                                167
     MCT = MCT + CM*APT
                                                                                168
 27C ZPL = ZPP
                                                                                169
     CM = PI*(XCUT + ZPLE*TALP(1)/2.0)*ZPLE*RLE**2/2.0
                                                                                170
     MDT = MDT - CM+(ZCLE+SINB + YCLE+COSB)
                                                                                171
     MCT = MCT + CM
                                                                                172
     MCA = MDA + CM*(ZPLE - 4.0*RLE/(3.0*PI))
                                                                                173
     MCA = MCA + CM
                                                                                174
     CP = PI*(XCUT + ZPTE*TALP(1)/2.J)*ZPTE*RTE**2/2.0
                                                                                175
     MCT = MDT - CM*(ZCTE*SINB + YCTE*COSB)
                                                                                176
     MCT = MCT + CM
                                                                                177
     MDA = MDA + CM+(ZPTE + 4.0+RTE/(3.0+PI))
                                                                                178
      MCA = MCA + CM
                                                                                179
      MCA = MDA + TALP(1)
                                                                                180
      MCA = MCF+TALP(1)+(XCLT - RCA(NSTRM))
                                                                                181
      MCT = MDT + TALP(1)
                                                                                182
      MCA = MCA*TALP(1)*(XCUT - RCA(NSTRM))
                                                                                183
      GC TC 290
           SUMMATICN FOR RCTCR MATERIAL CENTRIFUGAL BENDING NOMENT
                                                                                184
C ***
                                                                                185
  280 \text{ RM} = (XU + XCUT)/2.0
                                                                                186
      DMC = (A + AU)*RM*(RM - RCA(NSTRM))*(XU - XCUT)/2.0
                                                                                187
      MCA = MCA + DMC
                                                                                188
      MCT = MCT + DMC
                                                                                189
      \Delta L = A
                                                                                190
      XU = XCUT
                                                                                191
  29C CENTINUE
                                                                                192
      IF (ICCNV.GE.2) RETURN
                                                                                193
      IF (ISTN(I).LT.O.OR.EMATL(IRCTOR).LE.O.O) RETURN
                                                                                 194
      CALL GASMNT(GBA,GBT)
                                                                                 195
      TANE = BMATL(IRCTER)*CMEGA**2/(144.0*G)
                                                                                 196
      TANL = - (MCA + GBA/TANE)/MCA
                                                                                 197
      TANE = (GBT/TANE - MET)/MCT
                                                                                 198
      TILT(IROW) = ATAN(TANE)
      DZ = ((RETIP(IRCW) - REHUB(IROW))*TANL + ZEHUB(IROW) - ZETIP(IROW)
                                                                                 199
                                                                                 200
     X )/(1.0 - TANL*TALP(1))
                                                                                 201
       ZETIP(IRCW) = ZBTIP(IRCW) + DZ
                                                                                 202
      RETIP(IRCW) = RETIP(IROW) + CZ*TALP(1)
            READJUSTMENT OF ELACE ECGE LOCATION FOR CHANGE IN STACK LINE.
                                                                                 203
C ***
                                                                                 204
       DC 310 J=1+NTUBES
                                                                                 205
       DZ =(RCA(J) - RCA(NSTRM))*(TANL - TLS)/(1.0 - TALP(J)*TANL)
                                                                                 206
       Z(I-1,J) = Z(I-1,J) + CZ
                                                                                 207
       Z(1,J) = Z(1,J) + CZ
                                                                                 208
       R(I-1,J) = R(I-1,J) + CZ*TALP(J)
                                                                                 209
   31^{\circ} R(I,J) = R(I,J) + DZ + TALP(J)
                                                                                 210
       RETURN
  2000 FORMAT (/// 1X,4HITER, 3X,1HJ,4X,8HBETA1(J),3X,8HBETA2(J),4X,
                                                                                 211
      1 7HSKIC(J),4X,7HSKOC(J),4X,6HNIC(J),5X,6HKOC(J),7X,2HDM,9X,2HDY,
                                                                                 212
                                                                                 213
      2 8X,4HSINB,8X,2HDZ,10X,1HA //)
```

and the state

```
2010 FCRMAT (1X,13,2X,13,F12.6,5F11.6,2F11.7,F11.6,+11.7,F11.6) 214
ENC 215
```

```
1
      SUBROUTINE INTERPIXC, ISURF, K, YC, ZC)
C *** FOR A GIVEN X (BLACE SECTION) THIS ROUTINE FINDS BLADE SURF.
C *** CARTESIAN CUORDINATES, Y AND Z, AT A GIVEN K (FRACTION OF BLADE
                                                                                      2
                                                                                      3
C *** ELEMENT SURFACE DISTANCE). THIS IS DONE BY INTERPOLATION FROM
                                                                                      4
C *** PIECEWISE CUBIC FITS OF APPROPRIATE BLADE ELEMENT SURFACE COORD.
                                                                                      5
C *** INTERPOLATIONS ARE BETWEEN THE 2 INNERMOST CUBIC POINTS WHENEVER
                                                                                       6
                                                                                      7
C *** FCSSIBLE.
                                                                                       8
      REAL KIC, KIS, KM, KCC, KTC, KTS, MACH
                                                                                       9
      CEMPEN /SCALAR/
                                                                                     10
     1 BETA, CP, CPH2, CPH3, CPH4, CPH5, CPH6, CPP3, CPP4, CPP5, CPP6,
     2 CP1, CV, CCP, DF, DHC, CHCI, DLOSC, G, GAMMA, GJ, GJ2, GR1, GR2,
                                                                                     11
     3 GR3, GR4, GR5, H, I, ICCNV, ICOUNT, IERROR, IIN, IPR, IROTOR, IR,
                                                                                     12
      4 IRCW, ITER, IW, J, JM, MACH, NAB, NBROWS, NHUB,NROTOR,NSTN,NSTRM,
                                                                                     13
      5 NTIP, NTURES, OMEGA, PI, PCA1, PR, RADIAN, RF, RG, ROT, TL, TOA1, TU
                                                                                     14
                                                                                     15
      CEMPEN
      1 BETAL(21), BETA2(21), CESA(21), COSL(21), DKLE(1,21), DL(21),
                                                                                      16
      2 GAPP(21), CEAR(21), RELP(21), RPR1(21), RE1(21), RE2(21),
                                                                                      17
      3 RE3(21), RE4(21), RE5(21), RVTH(21), SINA(21), SINL(21), SLOS(21)
                                                                                      18
      4, SCNIC(21), THETAP(21,13), THETAS(21,13), TREL1(21), TSTAT(21),
                                                                                      19
                                                                                      20
      5 VM(21), VTSG(21), XBAR(1, 31), YBAR(1,21), ZP(21,13), ZS(21,13)
                                                                                      21
      CEMMEN /EQUIV/
      1 CHC(21), CHK(21), CESA2(21), FSM(21), KIC(21), KOC(21), RCA(21),
                                                                                      22
                                                                                      23
      2 REC(2,21), RPTE(2,21), SINA2(21), SKIC(21), SKOC(21), TALP(21),
      3 TCA(21), TEC(2,21), TGB(21), TTRP(21), TTRS(21), YCCLE(25), YCCTE(25)
                                                                                      24
                                                                                      25
      4, ZCCLE(25), ZCCTE(25), ZCDA(21), ZEC(2,21), ZTRP(21), ZTRS(21)
                                                                                      26
       CCMMON /BLADES/
      1 AMACH, ACC, AISCAS, AISCAI, BINC, CALP, CCC, CEPE, CGBL, CHORD,
                                                                                      27
      2 CINC, CKTC, CKTS, C1, C2, DKAPPA, DRCE, DRCGI, DRCMST, DRCMT,
                                                                                      28
      3 DRCCI, DRCT, DRCTI, DR1, DSME, DSMT, DSOI, DSOT, DSSE, DST, DSTI,
                                                                                      29
                                                                                      30
      4 EMT, F1, F2, GBL, ICL, IGC, IPASS, KIS, KM, KTC, KTS, P, PFLOS,
      5 RCG, RCM, RCMS, RCT, RDI, RECGI, REE, REMT, RET, RETI, RMSJ, RTRC
                                                                                      31
      6,R1, RIC, P2, SALP, SEPE, SGAM, SGBL, SJ, SKTC, SKTS, SLJD, T,
7 TEPE, TGBLL, THD, THLE, THMAX, THTE, TKTN, TLS, WC1, YB1, YB2, ZM
                                                                                      32
                                                                                      33
                                                                                      34
       CEMMEN /LECATE/ XX, X1, X2, X3, X4
                                                                                      35
       EQUIVALENCE (JL, ICL)
                                                                                      36
       IF (ISURF.EG.2) SC TC 40
                                                                                      37
       IF (K.EC.0) GD TO 70
                                                                                      38
            CARTESIAN CECRDINATES OF THE SUCTION SURFACE BLADE ELEMENT
C ***
                                                                                      39
C *** PCINTS USED FLR INTERPOLATION.
                                                                                      40
    1C R2 = RCA(JL) + (ZS(JL,K) - ZCDA(JL)) + TALP(JL)
                                                                                      41
       ST2 = THETAS(JL,K)*SRS(THETAS(JL,K))
                                                                                      42
       x_2 = R_2 + SCPT(1.0 - ST_2 + 2)
                                                                                      43
       1F (X2.SE.XC) GO TO 20
                                                                                      44
       IF (JL.EC.2) GC TC 20
                                                                                      45
       JL = JL - 1
                                                                                      46
       GE TE 10
    2C R3 = RCA(JL+1) + (2S(JL+1,K) - ZCDA(JL+1))*TALP(JL+1)
                                                                                      47
                                                                                      48
       ST3 = THETAS(JL+1,K) +SRS(THETAS(JL+1,K))
                                                                                      49
       X3 = R3+SQPT(1.0 - ST3++2)
                                                                                      50
       IF ( X3.LT.XC) GO TO 20
                                                                                      51
       IF (JL. & G. NSTRM - 2) GC TO 3?
                                                                                      52
        JL = JL + 1
                                                                                      53
       R2 = R3
                                                                                      54
        ST2 = ST3
```

```
X2 = X3
                                                                                   55
      GC TC 20
                                                                                   56
   30 R1 = RCA(JL-1) + (ZS(JL-1,K) - ZCDA(JL-1))*:4LP(JL-1)
                                                                                   57
      STL = THETAS(JL-1,K) +SRS(THETAS(JL-1,K))
                                                                                   58
      Z1 = ZS(JL-1,K)
                                                                                   59
      Z2 = ZS(JL,K)
                                                                                   60
      Z3 = ZS(JL+1,K)
                                                                                   61
      R4 = RCA(JL+2) + (ZS(JL+2,K) - ZCDA(JL+2)) + TALP(JL+2)
                                                                                   62
      ST4 = THETAS(JL+2,K) * SRS(THETAS(JL+2,K))
                                                                                   63
      Z4 = ZS(JL+2,K)
                                                                                   64
      GC TC 130
                                                                                   65
   40 IF (K.EQ.0) GC TC 10C
                                                                                   66
           CARTESIAN CCCRDINATES OF THE PRESSURE SURFACE BLADE ELEMENT
C ***
                                                                                   67
C *** PCINTS USED FUR INTERPOLATION.
                                                                                   68
      R2 = RCA(JL) + (ZP(JL,K) - ZCDA(JL)) * TAL?(JL)
                                                                                   69
      ST2 = THETAP(JL,K)*SRS(THETAP(JL,K))
                                                                                   70
      X2 = R2 + SCRT(1.0 - ST2 + 2)
                                                                                   71
      IF (X2.GE.XC) GO TO 5C
                                                                                   72
      IF (JL.EQ.2) GC TC 50
                                                                                   73
      JL = JL - 1
                                                                                   74
      GC TC 4C
                                                                                   75
   50 R3 = RCA(JL+1) + (ZP(JL+1,K) - ZCCA(JL+1)) + TALP(JL+1)
                                                                                   76
      ST3 = THETAP(JL+1,K) *SRS(THETAP(JL+1,K))
                                                                                   77
      X3 = R3 + SCRT(1.0 - ST3 + 2)
                                                                                   78
      IF ( X3.LT.XC) GO TO 60
                                                                                   79
      IF (JL.EQ.NSTRM - 2) CC TO 60
                                                                                   80
      JL = JL + 1
                                                                                   81
      R2 = R3
                                                                                   82
      ST2 = ST3
                                                                                   83
      X2 = X3
                                                                                   84
      GC TC 50
                                                                                   85
   60 R1 = RCA(JL-1) + (ZP(JL+1,K) - ZCDA(JL-1))*TALP(JL-1)
                                                                                   86
      ST1 = THETAP(JL-1,K)*SRS(THETAP(JL-1,K))
                                                                                   87
      Z1 = ZP(JL-1,K)
                                                                                   88
      Z2 = ZP(JL,K)
                                                                                   89
      Z3 = ZP(JL+1,K)
                                                                                   90
      R4 = RCA(JL+2) + (ZP(JL+2,K) - ZCDA(JL+2)) * TALP(JL+2)
                                                                                   91
      ST4 = THETAP(JL+2,K) + SRS(THETAP(JL+2,K))
                                                                                   92
      Z4 = ZP(JL+2,K)
                                                                                   93
      GC TC 130
                                                                                   94
C ***
           CARTESIAN COORDINATES OF THE SUCTION SURFACE BLADE ELEMENT
                                                                                   95
C *** TRANSITION POINTS USED FOR INTERPOLATION
                                                                                   96
   70 R2 = RCA(JL) + (2TRS(JL) - 2CDA(JL)) + TALP(JL)
                                                                                   97
      ST2 = TTRS(JL)+SRS(TTRS(JL))
                                                                                   98
      X2 = R2 + SQRT(1.0 - ST2 + 2)
                                                                                   99
      IF (X2.GE.XC) GC TC 8C
                                                                                  100
      IF (JL.EQ.2) GO TO 80
                                                                                  101
      J_{\rm e}^{\rm L}=JL=1
                                                                                  102
      GC TC 70
                                                                                  103
   80 R3 = RCA(JL+1) + (ZTRS(JL+1) - ZCDA(JL+1))*TALP(JL+1)
                                                                                  104
      ST3 = TTRS(JL+1) + SRS(TTRS(JL+1))
                                                                                  105
      X3 = R3*SCRT(1.0 - ST3**2)
                                                                                  106
      IF
         (X3.LT.XC) G0 T0 90
                                                                                  107
      IF (JL.EQ.NSTRM-2) GC TO 90
                                                                                  108
      JL = JL + 1
                                                                                  109
      R2 = R3
                                                                                  110
      ST2 = ST3
                                                                                  111
      X2 = X3
                                                                                  112
      GC TC 80
                                                                                  113
   90 R1 = RCA(JL-1) + (ZTRS(JL-1) - ZCCA(JL-1))*TALP(JL-1)
                                                                                  114
      ST1 = TTPS(JL-1)*SRS(TTRS(JL-1))
                                                                                  115
```

nin dia 1

166

```
116
      Z1 = ZTRS(JL-1)
                                                                                    117
      72 = ZTRS(JL)
                                                                                    118
      Z3 = ZTRS(JL+1)
                                                                                    119
      R4 = RCA(JL+2) + (ZTRS(JL+2) - ZCDA(JL+2))*TALP(JL+2)
                                                                                    120
      ST4 = TTRS(JL+2)*SRS(TTRS(JL+2))
                                                                                    121
      Z4 = ZTRS(JL+2)
                                                                                    122
      GC TC 130
            CARTESIAN COORDINATES OF THE PRESSURE SURFACE BLADE ELEMENT
                                                                                    123
C ***
                                                                                    124
C *** TRANSITION POINTS USED FOR INTERPOLATION
                                                                                    125
  1CC R2 = RCA(JL) + (ZTRP(JL) - ZCDA(JL))*TALP(JL)
                                                                                    126
      ST2 = TTRP(JL) * SRS(TTRP(JL))
                                                                                    127
      X2 = R2*SCRT(1.0 - ST2**2)
                                                                                    128
      IF (X2.GE.XC) GC TO 110
                                                                                    129
      IF (JL.EQ.2) GO TO 110
                                                                                    130
      JL = JL - I
                                                                                    131
      GC TC 100
  11C R3 = RCA(JL+1) + (ZTRP(JL+1) - ZCDA(JL+1))*TALP(JL+1)
                                                                                     132
                                                                                     133
      ST3 = TTRP(JL+1)*SRS(TTRP(JL+1))
                                                                                     134
      X3 = R3 + SCRT(1.0 - ST3 + 2)
                                                                                     135
      IF (X3.LT.XC) GG TO 120
                                                                                     136
       IF (JL.EQ.NSTRM-2) GC TO 120
                                                                                     137
       JL = JL + 1
                                                                                     138
       R2 = R3
                                                                                     139
       ST2 = ST3
                                                                                     140
       X2 = X3
                                                                                     141
       GC TG 110
  120 R1 = RCA(JL-1) + (ZTRP(JL-1) - ZCDA(JL-1))*TALP(JL-1)
                                                                                     142
                                                                                     143
       ST1 = TTRP(JL-1)*SRS(TTRP(JL-1))
                                                                                     144
       Z1 = ZTRP(JL-1)
                                                                                     145
       22 = ZTRP(JL)
                                                                                     146
       Z3 = ZTRP(JL+1)
                                                                                     147
       R4 = RCA(JL+2) + (ZTRP(JL+2) - ZCDA(JL+2))*TALP(JL+2)
                                                                                     148
       ST4 = TTRP(JL+2)*SRS(TTRP(JL+2))
                                                                                     149
       Z4 = ZTRP(JL+2)
                                                                                     150
   130 X1 = R1+SGRT(1.0 - ST1++2) - X2
                                                                                     151
       Y1 = R1 \neq ST1
                                                                                     152
       Y_2 = R_2 * ST_2
                                                                                     153
       Y3 = 83 \pm 513
                                                                                     154
       x4 = R4*SCRT(1.0 - ST4**2) - X2
                                                                                     155
       Y4 = R4 \pm ST4
                                                                                     156
       x_3 = x_3 - x_2
                                                                                     157
       xx = xC - x2
                                                                                     158
       T1 = (Y3 - Y2)/X3
                                                                                     159
       T_2 = ((Y_1 - Y_2)/X_1 - T_1)/(X_1 - X_3)
                                                                                     160
       C4 = (T2 - (T1 - (Y4 - Y2)/X4)/(X3 - X4))/(X1 - X4)
                                                                                     161
       C3 = T2 - C4*(X1 + X3)
                                                                                      162
       C2 = T1 - (C3 + C4 \times 3) \times 3
                                                                                      163
        YC = Y2 + XX + (C2 + XX + (C3 + XX + C4))
                                                                                      164
       T1 = (Z3 - Z2)/X3

T2 = ((Z1 - Z2)/X1 - T1)/(X1 - X3)
                                                                                      165
                                                                                      166
        C4 = (T2 - (T1 - (Z4 - Z2)/X4)/(X3 - X4))/(X1 - X4)
                                                                                      167
        C3 = T2 - C4 * (X1 + X3)
                                                                                      168
        C2 = T1 - (C3 + C4 \times 3) \times 3
                                                                                      169
          - Z2 + XX*(C2 + XX*(C3 + XX*C4))
        2 C
                                                                                      170
        RETURN
                                                                                      171
        END
```

Ι

in i serie

F.

167

27.15

SUBREUTINE SPLITG(X, Y, N, A, AX, AY, S1, 32) C *** THIS ROUTINE INTEGRATES UNDER A CUBIC SPLINE FIT OF BLADE C *** SECTION SURFACE CCORCINATES. THE END POINT CURVATURES ARE SET *** EQUAL TO THE NEXT POINT CURVATURE AS DETERMINED FROM A CIRCULAR С C *** ARC FIT OF THE 3 ENC PCINTS. SLOPE BUT NOT CURVATURE IS C *** CENTINUEUS AT THE TRANSITION POINT. THE GURVE FIT IS USED TO GET C *** AREA, XBAR, AND YEAR. CCMMON /RCUT/ AC, CCSKL, COSKU, EMTM, IOUT, IT, NP, SINKL, SINKU, 1 DX(13), EM(14), YBP(14), YBS(14), ZBF(14), ZBS(14) DIMENSION H(14), X(N), Y(N) CALL ARCS(X(1),X(2), X(3), Y(1), Y(2), Y(3), F1,DI) CALL ARCS(X(N-1), X(N-2,, X(N-3), Y(N-1), Y;N-2), Y(N-3), F2, D1) C ### LOCATE TRANSITION POINT IN THE ALMAY OF SURFACE POINTS. NP = N NF = N - 3DI = 1.0 + FLOAT(NF) + (X(N) - X(1))/(X(N-1) - X(1))IT = DI(X(N).GE.X(IT)) GC TC 20 10 IF IT = IT - 1GC TO 10 20 IF (X(N).LE.X(IT+1)) GC TO 30 IT = IT + 1GC TO 20 3C FXI = (X(N) - X(IT))/(X(IT+1) - X(IT))IF (FXI.LT.G.1) GC TC 60 IF (FXI.GT.0.9) GC TC 50 C *** PLACE TRANSITION POINT IN THE ARRAY. $XT = X{N}$ YT = Y(N) NI = N - IT - 1NN = N + 1DC 40 I=1,NI II = NN - IX(II) = X(II-1)4C Y(11) = Y(11-1)II = N - NIX(II) = XTY(II) = YTIT = IT + 1GC TC 70 50 IT = IT + 1 6C NP = N - 1SOLVE FOR SECOND DERIVATIVE VALUES AT THE SURFACE ARRAY POINTS. C *** 7C DX(1) = X(2) - X(1)DS = (Y(2) - Y(1))/DX(1)EP(1) = -F1H(1) = 0.CIF (IT.EQ.2) GD TO 90 ITM = IT - 1DC 80 I=2,ITM DSL = DSDX(I) = X(I+1) - X(I)DS = (Y(I+1) - Y(I))/CX(I)D = 2.0*(1.0 + DX(I)/CX(I-1)) - EM(I-1)EM(I) = DX(I)/(D*DX(I-1))8C H(I) = (6.0*(CS - DSL)/CX(I-1) - H(I-1))/DCM = (DS - USL)/(DX(ITM) + DX(ITM-1))90 NC = NP - 1 DX(NC) = X(NP) - X(NC)DS2 = (Y(NP) - Y(NC))/CX(NC)EM(NP) = -F2

Contraction in the

1

2

3

4

5 6

7

8

10

11 12

1 2

14

15

16

17

18

19

20

21

22

23

24 25 26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62 H(NP) = 0.0IF (IT.EG.NC) GC TO 110 63 64 ITP = NC - IT65 DC 100 18=1, ITP 66 $\mathbf{I} = \mathbf{N}\mathbf{0} - \mathbf{I}\mathbf{B}$ 67 DSL2 = DS268 DX(I) = X(I+1) - X(I) DS2 = (Y(I+1) - Y(I))/CX(I)69 70 5 = 2.0*(1.0 + CX(I)/CX(I+1)) - EM(I+2)71 EM(I+1) = DX(I)/(D*DX(I+1))72 1C0 H(I+1) = (6.0+(DSL2 - DS2)/DX(I+1) - H(I+2))/U 73 CP = (DSL2 - US2)/(DX(IT+1) + DX(IT))74 IF (IT.LE.2) GO TO 110 75 IF (CM.EQ.C.O) GC TO 13C C = CP/CM*((1.0 + ((CSL2*DX(IT) + DS2*DX(IT+1))/(DX(IT) + 76 77 X CX(IT+1)))**2)/(1.0 + ((DS*DX(ITM-1) + DSL*DX(ITM))/(DX(ITM) + X CX(ITM-1)))++2))++1.5 78 79 C = C/(ABS(C)) + 0.380 GC TC 120 81 110 C = 1.0120 EMTW = (6.0*(DS2 - DS)/DX(IT-1) - H(IT-1) - H(IT+1)*DX(IT)/ X CX(IT-1))/(2.0 - EM(IT-1) + (2.0 - EM(IT+1))*DX(IT)/DX(IT-1)*C) 82 83 84 EMTP = EMTM*C 85 GC TC 150 86 13C EFTF = 0.0 87 EFTP = (6.0+(DS2 - DS)/DX(IT-1) - H(IT-1) - H(IT+1)+DX(IT)/ X CX(IT-1))/((2.0 - EP(IT+1))+DX(IT)/DX(IT-1)) 88 89 150 EM(IT) = EMTM90 IF (IT.EQ.2) GC TC 170 91 ITM = IT - 2 $DC \ 160 \ IB = 1, ITM$ 93 1 = 17 - 1816C EP(I) = H(I) - EP(I) + EP(I+1)95 170 EP(1) = EP(2) + F196 EM(IT) = EMTPIF (IT.EQ.NO) GC TC 190 98 1B = IT + 1DC 180 1=18,NC 100 18C EM(I) = H(I) - EM(I) + EM(I-I)101 190 EM(NP) = EM(NC) + F2S1 = (Y(2) - Y(1))/DX(1) - DX(1)*(2.0*EM(1) + EM(2))/6.0102 103 S2 = (Y(NP) - Y(NO))/CX(NO) + DX(NO)*(2.0*EM(NP) + EM(NO))/6.0104 $A = C_0$ 105 AX = 0.0106 AY = 0.0 DC 240 I=1,NC 107 108 EML = EM(I)IF (1T.EC.I+1) GO TO 22C 109 110 EPU = EV(I+1)111 GC TC 230 112 220 EMU = EMTM 230 A = A + (Y(I) + Y(I+1) - (EMU + EML)*DX(I)**2/12.0)*DX(I)/2.0 113 114 $DXS = DX(I) + 2/6C_0$ AX = AX + (Y(I+1)*(2.C*X(I+1) + X(I)) + Y(I)*(X(I+1) + 2.0*X(I)) -115 X EXS*(EMU*(8.0*X(I+1) + 7.3*X(I)) + EML*(7.0*X(I+1) + 8.0*X(I)))* 116 117 X CX(1)/6.0 AY = AY + (Y(I+1)**2 + Y(I)*(Y(I+1) + Y(I)) - DXS*((8.0*(Y(I+1)*118 X EML + Y(I)*EML) + 7.C*(Y(I+1)*EML + Y(I)*EMU)) - (15.C*(EMU**2 + 119 X EML##2) + 31.0*EMU#EML)#DXS/7.0))#DX(I)/6.0 120 121 24C CENTINUE 122 RETURN 123 ENC

the second s

ľ

169

92

94

97

```
THIS RELTINE MAKES & CIRCULAR ARC FIT OF 3 POINTS TO FIND
C ***
                                                                                  1
C *** SLOPES AT THE POINTS. THESE ARE USED TO DETERMINE SPLINE END
                                                                                  2
C *** PCINT FACTORS FUR THE SECUND DERIVATIVE TERMS WHICH KEEP THE
                                                                                  3
C *** CURVATURE CENSTANT FOR THE END POINTS.
                                                                                  4
      SUBRCUTINE ARCS(X1,X2,X3,Y1,Y2,Y3,F,Y01)
                                                                                  5
      DX1 = X2 - X1
                                                                                  6
      DX2 = X3 - X2
                                                                                  7
      DY1 = Y2 - Y1
                                                                                  8
      DY2 = Y3 - Y2
                                                                                  9
      DXY1 = EX1+CY2
                                                                                 10
      DXA5 = LK5+PAT
                                                                                 11
      DXXX = EX1*6x2*(X3 - X1)
                                                                                 12
      DYYY = DY1 + UY2 + (Y3 - Y1)
                                                                                 13
      YE1 = (CYYY - DXY1+DX1 + DXY2*(DX1 + X3 - X1))/(DXXX + DXY1*(DY1 +
                                                                                 14
     X Y3 - Y1) - DXY2 + DY1)
                                                                                 15
      YC2 = (EYYY + DXY1*DX1 + DXY2*DX2)/(DXXX + DXY1*DY2 + DXY2*DY1)
                                                                                 16
      F = ((1.0 + Y01**2)/(1.0 + Y02**2))**1.5
                                                                                 17
      RETLRN
                                                                                 18
      ENC
```

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

1

and the second s

```
THIS REMITING FINDS THE BLADE SECTION AREA AND MOMENT
 *** ADDITIONS OF A PLADE LOGE CIRCLE.
٢
      SUPROUT IN E EDCESCINI, YH, SI, XE, YE, SE, A, AX, AY, R, XC, YC)
      CONMIN /FCHT/ AC, COSKE, COSKE, EMTM, IDUT, IT, NP, SINKE, SINKU,
     1 9x(13), TM(14), YRP(14), YRS(14), 7PP(14), 7BS(14)
      COSU = 1.0/SORT(1.0 + SU**2)
      STNU = SU*COSU
      ( 051 = 1.0/SQFT(1.0 + SL**2)
      STAL = SL#COSE
      SS = SINU + SINL
      SC = COSH + COSL
      XD = XU - XL
      \gamma Y = YU - YI
      TAVDX = (XD + DY + SS)/(XD + SS - DY + SC)
      COSOK = 1.0/SORT(1.0 + TANDK**2)
      STNCK = TATOK +COSOK
      R = DY/(SC#C)SDK - SS#SINDK)
      SINKU = SINU#COSOK + SINOK*COSU
      STNKE = SINE*JASOK + SINAK*COSE
      COSKIL = COSHACOSOK - SINOK* SINU
      CISKE = COSE*COSOK - STUDK*SINE
     DYC = R#STNKI
      YC = XII + PXC
      YC = R#COSKL + YL
      IF (TOLT. PO.L) RETURN
      ASHM = 46 STN (STNKL*CISKU + STNKU*CUSKL)
      IF (XH.L. .0.0) G. TA 10
      15'1'4 = Δ$1'M - 3.1415927
     -90 T' 20
  10 4517 = 2500 + 3.1415727
  20 AC = P*#2*#5:14/2.0
      A = AC + (YD^{2}(YC + YL) - CXC*(Y)/2.0
      Ax = 3(*)( - 0***3*(CISKI) + CESKE)/3.0 - (DXC*((2.0*XC + XU)*YC +
    1 (2.0*XI) + XC)*Y() - (XT + NYC)*((XC + 2.0*XL)*YL + (XL + 2.0*XC)*
     2 4211/4.3
     ΔΥ = Δ(*ΥC - R**3*(SINK!) + SINKL)/3.0 - (DXC*(YC**2 + YU*(YI) + YC)
    1 ) - (XD + DXC)*(YC**2 + YF*(YL + YC)))/6.0
     PETIEN
```

170

1113

(***

```
SUBROUTINE GASMNT(GBA, CBT)
            CALCULATION OF RETOR GAS BENDING MOMENTS ABOUT HUB STACK PT.
                                                                                         2
( ***
      REAL INC, MACH
      CEMMEN /VECTOR/
     1 BETAS(1,21), BMATL(1), PLADES(1), CHOKE(1), CHORDA(1), CHORDB(1),
      2 CHCRDC(1), CPCC(6), CEV(1,21), IDEV(1), IGEO(1), IINC(1),
                                                                                         6
                                                                                         7
      3 ILCSS(1), IMAX(1), INC(1,21), ISTN(2), ITRANS(1), NOPT(1),
      4 NXCUT(1), PH1(1,21), PO(2,21), R(2,21), RBHUB(1), RBTIP(1),
                                                                                         8
      5 SLCPE(2,21), SCLID(1), TALE(1), TAMAX(1), TATE(1), TBLE(1),
                                                                                         9
      6 TBMAX(1), TBTE(1), TCLE(1), TCMAX(1), TCTE(1), TDLE(1), TDMAX(1),
7 IDTE(1), TILT(1), TC(2,21), TRANS(1,21), VTH(2,21), VZ(2,21),
                                                                                        10
                                                                                        11
                                                                                        12
      8 Z(2,21), ZUHUB(1), ZETIP(1), ZMAX(1,21)
                                                                                        13
      1 BETA, CP, CPH2, CPH3, CPH4, CPH5, CPH6, CPP3, CPP4, CPP5, CPP6,
2 CP1, CV, DCP, DF, DHC, LHCI, DLOSC, G, GAMMA, GJ, GJ2, GR1, GR2,
3 GR3, GR4, GR5, H, I, ICCNV, ICOUNT, IERROR, IIN, IPR, IROTOR, IR,
       COMMON /SCALAR/
                                                                                        14
                                                                                         15
                                                                                         16
      4 IRCW, ITER, IW, J. JM, MACH, NAB, NBROWS, NHUB, NROTOR, NSTN, NSTRM,
                                                                                         17
      5 NTIP, NTUBES, OMEGA, PI, POAL, PR, RADIAN, RF, RG, ROT, TL, TOAL, TU
                                                                                         18
                                                                                         19
       RHS = 2.0*RBHUB(IROW)
                                                                                         20
       G81 = 0.9
                                                                                         21
       G82 = 0.0
                                                                                         22
       GBVX = 0.0
                                                                                         23
       HR = (VZ(I-1,1)**2*(1.0 + SLCPE(I-1,1)**2) + VTH(I-1,1)**2)/GJ2
       GBVT = 0.0
                                                                                         24
                                                                                         25
        TU = TO(1-1,1)
                                                                                         26
        TL = TEMP(HR)
                                                                                         27
        PS1U = PC(I-1,1)/PRATIC(TO(I-1,1))
                                                                                         28
        RVZRU = PS1L+VZ(I-1,1)+R(I-1,1)/(RF+TL)
       HR = (V7(I,1)**2*(1.0 + SLCPE(I,1)**2) + VTH(I,1)**2)/GJ2
                                                                                         29
                                                                                         30
        TL = TO(I, 1)
                                                                                         31
        TL = TEMP(HR)
                                                                                         32
        PS2U = PC(I, 1)/PRATIC(TO(I, 1))
                                                                                         33
        PT1 = PS10
                                                                                          34
        PT2 = PS2U
                                                                                          35
        DC 10 J=1.NTUBES
        HR = (VZ(I-1,J+1)**2*(1.C + SLOPE(I-1,J+1)**2) + VTH(I-1,J+1)**2)/
                                                                                          36
                                                                                          37
       X GJ2
                                                                                          38
        TU = TO(I-1, J+1)
                                                                                          39
        TL = TEMP(HR)
                                                                                          40
        PS1L = PO(I-1,J+1)/PRATIC(TO(I-1,J+1))
                                                                                          41
        RV7RL = PS1L#VZ(I-1,J+1)#R(I-1,J+1)/(RF#TL)
                                                                                          42
        DFF1 = (PS1U + PS1L)*(R(I-1,J)**2 - R(I-1,J+1)**2)
                                                                                          43
        GP1 = GB1 + DPF1*(R(I-1,J) + R(I-1,J+1) - RHS)
                                                                                          44
        PSIL = PSIL
        HR = (V7([,J+1)**2*(1.C + SLCPE([,J+1)**2) + VTH([,J+1)**2)/GJ2
                                                                                          45
                                                                                          46
        TL = TO(1, J+1)
                                                                                          47
        TL = TEMP(HR)
                                                                                          68
        PS2L = PC(I, J+1)/PRATIC(TO(I, J+1))
                                                                                          49
         DPF2 = (PS2U + PS2L) + (R(I,J) +2 - R(I,J+1) +2)
                                                                                          50
         GE2 = GE2 + DPF2*(R(I,J) + R(I,J+1) - RHS)
                                                                                          51
         PS2L = PS2L
                                                                                          52
        RMA = ((R(I-1,J) + R(I-1,J+1) + R(I,J) + R(I,J+1))/2.0 - RHS)*
                                                                                          53
        X (RVZRU + RVZRL)*(R(I-1,J) - R(I-1,J+1))
         GBVX = GBVX + (VZ(I,J) + VZ(I,J+1) - VZ(I-1,J) - VZ(I-1,J+1)) * RMA
                                                                                          54
         GEVT = GBVT + (VTH(I,J) + VTH(I,J+1) - VTH(I-1,J) - VTH(I-1,J+1))*
        X RMA
     10 RVZRU = RV7RL
         GPA = PI*(GBVX/G + GB1 - GB2 + (PT1 + PT2)*(R(I-1,1)**2 - R(I,1)
        x **2)*(R(I-1,1) + R(I,1) - RES)/(6912.0*BLADES(IRDW)))
         GBT = -GRVT*PI/(6912.0*G*BLACES(IROW))
         RETURN
         END
```

Ť

171

55 56

57

58

59 60

61

62

```
SUBREUTINE MARGIN
C ***
       CALC. OF LUCATION AND VALUE OF BLADE ELEMENT MINIMUM CHOKE MARGIN
      REAL KIC, KIP, KIS, KM, KOC, KOP, KOS, KP, KS, KTC, KTP, KTS, KWC,
     X MACH
      CCMMCN
     1 BETA1(21), BETA2(21), CCSA(21), COSL(21), DKLE(1,21), DL(21),
     2 GAMM(21), OBAR(21), RELM(21), RPR1(21), RE1(21), RE2(21),
     3 RE3(21), RE4(21), RE5(21), RVTH(21), SINA(21), SINL(21), SLOS(21)
     4,SCNIC(21), THETAP(21,13), THETAS(21,13), TREL1(21), TSTAT(21),
     5 VM(21), VTSC(21), XBAR(1,21), YBAR(1,21), ZP(21,13), ZS(21,13)
      CCMMCN /ECUIV/
     1 CHC(21), CHK(21), COSA2(21), FSM(21), KIC(21), KOC(21), RCA(21),
     2 REC(2,21), RPTE(2,21), SINA2(21), SKIC(21), SKOC(21), TALP(21),
     3 TCA(21), TEC(2,21), TGB(21), TTRP(21), TTRS(21), YCCLE(25), YCCTE(25)
     4, ZCCLE(25), ZCCTE(25), ZCDA(21), ZEC(2,21), ZTRP(21), ZTRS(21)
      CCMMON /SCALAR/
     1 BETA, CP, CPH2, CPH3, CPH4, CPH5, CPH6, CPP3, CPP4, CPP5, CPP6,
     2 CP1, CV, DCP, DF, DHC, CHCI, DLOSC, G, GAMMA, GJ, GJ2, GR1, GR2,
     3 GR3, GR4, GR5, H, I, ICCNV, ICOUNT, IERROR, IIN, IPR, IROTOR, IR,
     4 IRCW, ITER, IW, J, JM, MACH, NAB, NBROWS, NHUB, NROTOR, NSTN, NSTRM,
     5 NTIP, NTUBES, CHEGA, PI, POA1, PR, RADIAN, RF, RG, ROT, TL, TOA1, TU
      CCMMON /BLACES/
     1 AMACH, ACC, AISOAS, AISCAI, BINC, CALP, CCC, CEPE, CGBL, CHORD,
     2 CINC, CKTC, CKTS, CI, C2, DKAPPA, DRCE, DRCGI, DRCMST, DRCMT,
     3 CRCOI, DRCT, DRCTI, CR1, DSME, DSMT, DSOI, DSOT, DSSE, DST, DSTI,
     4 EMT, F1, F2, GBL, ICL, IGC, IPASS, KIS, KM, KTC, KTS, P, PFLOS,
     5 RCG, RCM, RCMS, RCT, RDI, RECGI, REE, REMT, RET, RETI, RMSJ, RTRC
     6,R1, R1C, R2, SALP, SEPE, SGAM, SGBL, SJ, SKTC, SKTS, SLJD, T,
     7 TEPE, TGBLL, THD, THLE, THMAX, THTE, TKTN, TLS, WC1, YB1, YB2, ZM
      CCMMCN /MARG/
     1 AL, ADAS, ADA1, CCHCRC, DAL, DADAS, DPW, DPWL, DRCLEP, DRCM,
     2 CRCTPI, DRCTSI, ERCWT, ESA, USP, DSP1, DSP2, DSS, DSS1, DSS2, DSW
     3, EB, EWC, F, HC, ICHCKE, KIP, KOP, KOS, KP, KS, KTP, KWC, PI2, RCI
     4,RCC, RCP, RCS, RCTP, RCTS, RELEP, REDI, REP, RES, RETP, RETS,
     5 REWT, RTR, RTRD, RTRC, SECGBL, TCGI, TGBL, WC, 2MT
  320 IGC = 0
          ESTIMATE DERIVATIVE OF ADAS WITH RESPECT TO F
C ***
      CKM = CCS((KP + KS)/2.0)
      DACA1 = DSA+(+C*(KP + EWC - KS) - WC+CCHORD+SLJD+CKM/RD1)/WC1
      DRTR = RTRD#(RIC + DRCM#SALP)*CKM
      DAISAS = (GR2*RTR**GR1 - AISCAS/2.0)*DRTR/RTR - PFLOS/RTRQ
      DACAS = (AISCAS*DACA1 + AOA1*DAISAS)/AISOA1
      IF (ICHOKE-2) 330,430,440
  330 F1 = F
      DPW1 = DPW
      GC TC 445
C ###
           SETUP OF CALCULATION FOR TRAILING EDGE CHANNEL WIDTH
  340 IF (KOS + KOP) 345,420,350
  345 KP = KAP
      CALL EPSLCN(KOP+PI2, 0.C, RCO, -THTE, DRCLEP, RELEP)
      RCP = RCC + DRCLEP
      REP = RCP*EB + RELEP + REOI*RCP/RCO
      DRCLEP = DRCLEP + DRCCI
      DRCWT = CRCLEP - DRCTSI
      REWT = REP - RETS + RCP/RCTS
      DPh = DSP2
      CALL CHAN
      GC TC 320
C ***
          CAL. CF T.E. CHANNEL WIDTH WHEN BLADE EXIT ANGLE IS POSITIVE
 350 KS = KOS
      KP = KTP
```

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

ŧ.

```
62
    CALL EPSLEN(KOS+P12,0.0,RC0,THTE,DRCLEP,RELEP)
                                                                                  63
    RCS = RCG + DRCLEP
                                                                                  64
    RES = RELEP + REDI*RCS/RCU
                                                                                  65
    DRCWT = DRCCI + DRCLEP - DRCTPI
                                                                                  66
    REWT = RES - RETP*RCS/RCTP - RCS*EB
                                                                                  67
    DRCWC = DRCWT
                                                                                  68
     REWC = REWT
                                                                                   69
     DSW = DSS2
                                                                                   70
     DPW = 0.0
                                                                                   71
     ICL = 1
                                                                                   72
     RCP = RCTP
                                                                                   73
360 CALL TANKAP(RCP, DRCWC, REWC, TK)
                                                                                   74
     WC = SQRT(1.0 + TK**2)
                                                                                   75
     IF (ABS(TK).GT.100.0) GG TO 370
                                                                                   76
     WC = WC*ABS(DRCWC)
                                                                                   77
     GO TO 389
                                                                                   78
 370 WC = WC*ABS(REWC/TK)
                                                                                   79
 380 KWC = ATAN(-1.0/TK)
                                                                                   80
     IF (REWC.GT.0.0) KWC = PI + KWC
                                                                                   81
     DK = 2.0*KWC - KS - KP
                                                                                   82
     IF (ABS(DK).LT.0.0001) GC TO 410
                                                                                   83
     IF (ICL.GT.1) G0 TC 400
                                                                                   84
     ICL = 2
                                                                                   85
     IF (DK.GT.C.0) GO TO 390
                                                                                   86
     DKDS = (KTP - KIP)/DSP1
                                                                                   87
     GC TO 400
                                                                                   88
 39C DKDS = (KCP - KTP)/DSP2
                                                                                   89
 4CC DPW = DK*WC/(2.0 + DKES*WC) + DPW
                                                                                   90
     DK = DKCS+CPW
                                                                                   91
     CALL EPSLCN(KTP, DK, RCTP, CPW, DRCP, REP)
                                                                                   92
     \mathbf{KP} = \mathbf{KTP} + \mathbf{DK}
                                                                                   93
     DRCWC = CRCWT - DRCP
                                                                                   94
     RCP = RCTP + DRCP
                                                                                   95
     REWC = REWT - REP*RCS/RCP
                                                                                   96
     GC TO 360
                                                                                   97
 410 DRCM = DRCCI + THLE - DRCWC/2.0 +DRCLEP
                                                                                   98
     EWC = - REWC/RCS
                                                                                   99
     GC TO 500
                                                                                   100
 42C DSW = DSS2
                                                                                   101
      DPW = DSP2
                                                                                   102
      SKCP = KOP+SRS(KOP)
                                                                                   103
      DRCM = CRCC1 + THLE + THLE+SKOP
                                                                                   104
      EWC = RCO + THTE*SKOP
                                                                                   105
      WC = EWC*EB - 2.0*THTE*SCRT(1.0 - SKOP**2)
                                                                                   106
      EWC = WC/EWC
GC TC 500
                                                                                   107
                                                                                   108
           SEARCH FOR MINIMUM CHANNEL AREA TO CHOKE AREA
C ***
                                                                                   109
  430 F2 = F
                                                                                   110
      DPW2 = DPW
                                                                                   111
      IF (ADAS.GE.AL) GC TC 432
                                                                                   112
      ALCH = AUAS
                                                                                   113
      DPLCW = DPW
                                                                                   114
      IF (DANAS.LE.G.C) GO TC 433
                                                                                   115
      GC TC 434
                                                                                   116
  432 \text{ ALCh} = \text{AL}
                                                                                   117
      DPWLOW = DPWL
                                                                                   118
      IF (DAL.LT.C.J) GO TC 434
                                                                                   119
  433 IF (DAL- DACAS.GE.-0.3001) GC TO 478
                                                                                   120
  434 CI = DPWL - CPW
      DI = (DAL + DAGAS - 2.C*(AL - AGAS)/CI)/CI**2
                                                                                   121
      CI = (UACAS - DAL)/(2.0*CI) + 1.5*DI*(DPWL + DPW)
                                                                                   122
```

ŝ

173

A STATE OF A

```
BI = UACAS + (2.0*CI - 3.0*DI*DPW)*DPW
                                                                                  123
     IF (D1.FQ.0.0) GC TO 435
                                                                                  124
     BG - CI**2 - 3.0*DI*81
IF (BU.LT.".C) GO TO 478
                                                                                  125
                                                                                  126
     BC = SQRT(PC)/(3.0*D1)
                                                                                  127
     CG : CI/(3.0*DI)
                                                                                  128
     DPWN = CQ + PQ
                                                                                  129
     IF (3.0*CI*DPWN - CI.GT...0) GU TU 438
                                                                                  130
     \mathsf{DPWN} = \mathsf{CC} - \mathsf{PC}
                                                                                  131
     GC TC 438
                                                                                  132
435 DPWN = BI/(2.0*CI)
                                                                                  133
438 IF (ICHCKE.EG.3) GO TC 444
                                                                                  134
     IF (DPWN.LE.DPWL.OR.CPWN.GE.CPW) GO TO 478
                                                                                  135
     A = AL + (DPWN - DPWL)*(EI - CI* : 'IN + DPWL) + DI*(DPWN*(DPWN +
                                                                                  136
    X DPWL) + DPWL**2))
                                                                                  137
     IF (A.GT.ACAS.OR.A.GT.AL) GO TO 4.
                                                                                  138
     IF (ADAS.LT.AL) GO TO 450
                                                                                  139
     GC TC 445
                                                                                  140
44C IF (ICHOKE.GT.3) GO TE 442
                                                                                  141
     IF (ABS(DACAS).GT.O.CC1) GO TO 434
                                                                                  142
     ICHCKE = 4
                                                                                  143
442 IF (ADAS.LT.ALCW + 0.00001) GD TO 480
                                                                                  144
    DPWN = (DPW + DPWLCW)/2.0
                                                                                  145
    GC TC 445
                                                                                  146
444 IF (DPWN.LE.DPW1) CPWN = (DPW + DPW1)/2.0
                                                                                  147
     IF (DPWN.GE.DPW2) DPWN = (CPW + DPW2)/2.0
                                                                                  148
     IF (ADAS.GT.ALOW) GO TC 445
                                                                                  149
    ALCH = ACAS
                                                                                  150
    DPWLOW = DPW
                                                                                  151
445 \text{ AL} = AOAS
                                                                                  152
    DAL = DACAS
                                                                                  153
    DPWL = DPW
                                                                                  154
450 IF (ICHOKE.LT.3) ICHCKE = ICHOKE + 1
                                                                                  155
    IF (ICHUKE.EC.2) GO TE 340
                                                                                  156
    DPW = DPWN
                                                                                  157
    IF (DPW) 455,470,460
                                                                                  158
455 DKCS = (KTP - KIP)/DSP1
                                                                                  159
    GC TC 465
                                                                                  160
460 DKDS = (KCP - KTP)/DSP2
                                                                                  161
465 DK = UPW*EKUS
                                                                                  162
    KP = KTP + UK
                                                                                  163
    CALL EPSLEN (KTP, DK, RCTP, DPW, DRCP, REP)
                                                                                  164
    RCP = RCTP + ERCP
                                                                                  165
    REP = RCP+EB + RETP+RCP/RCTP + REP
                                                                                  166
    DRCLEP = DRCTPI + DRCP
                                                                                  167
    DRCWT = DRCLEP - DRCTSI
                                                                                  168
    GC TG 490
                                                                                  169
470 KP = KTP
                                                                                  170
    RCP = RCTP
                                                                                  171
    REP = RCP+EB + RETP
                                                                                  172
    DRCHT = CRCTPI - DRCTSI
                                                                                  173
    GC TC 490
                                                                                 174
478 IF (ADAS.LT.AL) GC TC 48:
                                                                                  175
    ACAS = AL
                                                                                 176
    F = F1
                                                                                 177
480 CHK(J) = ACAS - 1.0
                                                                                 178
    FSM(J) = (F - F1)/(F2 - F1)
                                                                                 179
    RETURN
                                                                                 180
490 REWL = REP - RETS +RCP/RCTS
                                                                                 181
    CALL LHAN
                                                                                 182
    GC TC 320
                                                                                 193
```

and the second second

174

and the foreign of the second

 5CC IGC = 2
 1%4

 CALL CHAN
 1%5

 GC TL 320
 1%6

 END
 1%7

SUBROUTINE CECRE. GENERATILN OF THE CUTPUT BLADE SECTION PROPERTIES AND COURD. 2 C *** 3 REAL INC, KIC, KIS, KM, KOC, KTC, KTS, MACH 4 CEMMEN /VECTOR/ 1 BETAS(1,21), BMATL(1), FLADES(1), CHOKE(1), CHORDA(1), CHORDB(1), 5 6 2 CHCRUC(1), CPCC(6), FFV(1,21), IDEV(1), IGEO(1), IINC(1), 3 ILCSS(1), IMAX(1), INC(1,21), ISTN(2), ITRANS(1), NOPT(1), 7 4 NXCUT(1), PHI(1,21), PU(2,21), R(2,21), RBHUB(1), RBTIP(1), В 5 SLCPE(2,21), SCLID(1), TALE(1), TAMAX(1), TATE(1), TBLE(1), 9 6 TBMAX(1), FBTE(1), TCLE(1), TCMAX(1), TCTE(1), TDLE(1), TDMAX(1), 7 TDTE(1), TILT(1), TC(2,21), TRANS(1,21), VTH(2,21), VZ(2,21), 10 11 12 8 Z(2,21), ZEHUB(1), ZETIP(1), ZMAX(1,21) 13 COMMEN /SCALAR/ 1 BETA, CP, CPH2, CPH3, CPH4, CPH5, CPH6, CPP3, CPP4, CPP5, CPP6, 14 2 CP1, CV, ECP, EF, DHC, UHCI, DLCSC, G, GAMMA, GJ, GJ2, GR1, GR2, 15 3 GR3, G24, UR5, H. I, IGENV, ICOUNT, IERROR, IIN, IPR, IROTOR, IR, 16 4 IRCW, ITCP, IN, J. JM, MACH, NAB, NBROWS, NHUB, NROTOR, NSTN, NSTRM, 17 5 NTIP, NTU-LS, CMEGA, FI, POAL, PR, PADIAN, RF, RG, RUT, TL, TUAL, TU 18 19 CENNEN 1 BETA1(21), BETA2(21), CCSA(21), COSL(21), DKLE(1,21), DL(21), 20 2 CANN(21), CPAR(21), RELN(21), RPR1(21), RE1(21), RE2(21), 21 3 RE3(21), RE4(21), RE5(21), RVTH(21), SINA(21), SINL(21), SLOS(21) 22 4.SCNIC(21), THETAP(21,13), THETAS(21,13), TREL1(21), TSTAT(21), 23 5 VM(21), VT3G(21), KBAR(1,21), YBAR(1,21), ZP(21,13), ZS(21,13) 24 25 CONNEY /FGUIV/ 1 CHE(21), CHK(21), CESA2(21), FSM(21), KIC(21), KUC(21), RCA(21), 26 2 REC(2,21), PPTE(2,21), SINA2(21), SKIC(21), SKUC(21), TALP(21), 27 3 TCA(21), 1EC(2,21), TCE(21), TTRP(21), TTRS(21), YCCLE(25), YCCTE(25) 28 4, ZCCLE(25), /CCTE(25), ZCDA(21), ZFC(2,21), ZTRP(21), ZTRS(21) 29 30 CEMMEN /PLALES/ 1 AMACH, ACC, AISCAS, AISCAL, BINC, CALP, CCC, CEPE, CGBL, CHORD, 31 2 CINC, CHIC, LKTS, C1, C2, DKAPPA, DRCE, DRCGI, DRCMST, DRCMT, 32 3 DRCCI, EPCI, DRCTI, ERI, ESME, DSMT, DSOI, DSUT, DSSE, UST, DSTI, 33 4 EMI, F1, F2, GBL, ICL, IGC, IPASS, KIS, KM, KTC, KTS, P, PFLOS, 34 5 RCG, RCM, RCMS, RCT, HD1, RECGI, REE, REMT, RET, RETI, RMSJ, RTRC 35 6,R1, R1C, P2, SALP, SEPE, SGAM, SGBL, SJ, SKTC, SKTS, SLJD, T, 7 TEPE, TGHLL, THE, THLE, THMAX, THTE, TKTN, TLS, WC1, YB1, YB2, 2M CCMMCN /RCUT/ AC, CCSKL, COSKU, EMTM, IOUT, IT, NP, SINKL, SINKU, 36 37 38 39 1 CX(13), EM(14), YBP(14), YBS(14), ZEP(14), ZBS(14) 40 CEMMEN /LAPEL/ TITLE(1*) DIMENSION EMS(14), FMC(13), FMS(10), NSP(4), SHP(43), SHS(43), 41 1 SL(43), WCRL(1), XCUT(21), YCP(43,4), YCS(43,4), ZC(43,4) 42 43 ECUIVALENCE (JL, ICL) 44 4+(5x,, 4+3F9., 4+4 , 4+,4X,, 4+3F9., 4+4 DATA FMC / 1 4H, 4X,, 4H3F9,, 4H4 , 4H, 4X,, 4H3F9,, 4H4 , 4H) 45 4H1(4X, 4H2(4X, 4H3(4X, 4H4(4X, 4H3(9X, 4H) 46 DATA EMS / 47 1 4H:A4+, 4H15X , 4H3E5+, 4H4 1 48 1 DATA WORD / 4H 49 ICCNV = * 50 15 - 1

175

the state of

			5.1
		ΟΛΕΕ ΑΕΛΟ:	71
	46	S CALL POINTS	52
C	***	FSTARLISH THE RACIAL LUCATION OF THE DEALS SECTION OF THE	53
		NO - NXITTION - A	54
			55
			56
		$r_{\rm eff} = -\gamma_{\rm e}$	57
		$REA(-(IR,L_{CC})) - (X(LT(J),J=I,NC)$	58
		GE TE 260	59
	50	CALL KOUTS(NO, XOUT)	60
	26C		00 61
		TES \approx (7PTTP(1RCW) - 2REUB((ROW))/(RBTTP(TROW) - RBEDGATP(CE))	61
		IF (ABS(TIL)(IRUW)). (F.1)(0.0) 6(TO 264	52
		ΤΑΝΤ - ΓΙΙΤΙΙΒΟΨΙΣΟ ΕΣΤΤΙΤΟΡΟΨΙΣ	63
		TAN I = TAN I A S (R I A O - TAN I + 2)	64
			65
		$\begin{array}{cccc} & (1) & $	66
	741		67
	204	HCBT = {ILF(IROW)/10G."	68
		IF = HUBT	69
		TIPT = TAN((TILT(IROW) - 100.0*FLUAT(IH))/RADIAN)	70
		IH = IH - (IH/100) * 1CJ	71
		HLBT = TAN(FLCAT(IH)/RADIAN)	71
	266	J = 1	12
	268	$I \rho = 1$	73
			74
		NAX - 72	75
			76
		$w_{R,1} = (1w_{1}/2CU) + (11) = (1J), (J=1,18)$	77
~		WRITE (IW, 2020) BLADES(IROW), ZBHUB(IROW)	78
C	***	INTERPOLATION FOR REF. COORDINATES ON THE DESIRED BLADE SECTIONS.	79
	290	DC 300 K=1,13	80
		CALL INTERP(XCUT(J),1,K,YBS(K),ZBS(K))	81
	3 C C	CALL INTERP(XCUT(J),2,K,YBP(K),ZBP(K))	82
		CALL INTERP(XCUT(J), 1, C, YBS(14), 7BS(14))	02
		CALL INTERPLACUTION. 2.C. VRP114). ZRP1141	6.0
С	***	CALCULATION OF THE BLACE SECTION CHORE ANDLE	84
		CALL ARCSIZASII), ZASIZI ZASIZI WASILI WASILI WASIZI AND	85
		CALL ARCS(740)(1), 2012/7203(3), 403(1), 483(2), 483(3), 591, 551)	86
		Trit = 1	87
			88
		CALL + DEF (285(1),YB5(1),SS1,ZBP(1),Y6P(1),SP1,A,AX,AY,RLE,	89
		X 200LL(J),Y00LE(J))	90
		CALL ARCS(/HS(13),ZBS(12),ZBS(11),YBS(13),YBS(12),YBS(11),SP1.SS1)	91
		CALL ARCS (20P(13), ZBP(12), ZBP(11), YUP(13), YBP(12), YBP(11), TANB.	02
		x (p);	
		CALL EDGES(295(13), YRS(14), SS1, ZPP(13), YRP(13), SD1_A, AV AV DTC	20
		X 2001+(J), Y001+(J))	94
		$\Theta Y = Y C (T E (J)) - Y C (J E (J))$	95
		$Z_{1} = Z_{1} + Z_{1} + Z_{2} + Z_{3} + Z_{3$	96
		$D_2 = D_1 C_1 = D_2 C_2 C_2 C_2 C_3 C_3 C_3 C_3 C_3 C_3 C_3 C_3 C_3 C_3$	97
		$D_{\rm eff} = -\Delta E_{\rm eff} = -\Delta E_{\rm$	98
		$C\Gamma(G) = -5(R)(LVYZ + L/YZ - CRYZ)$	9 9
~		IANY = (VY*CHORD + DR#DZ)/(D7*CHORD - DR#DY)	100
C	***	TRANSLATE THE BLALE SECTION COORDINATES TO THE STACKING POINT	101
С	* * *	ORIGIN AND ROTATE TO LIE ALONG THE BLADE SECTION CHORD	102
		CCSH = 1.7 + TANB*2	103
		SINT = TANP*CLSB	104
		D7 = XCUT(J) - RBEUB(IRCW)	104
		IF (AdS(TITT(IRCW)), $GF_{-1}(0, b)$ GU TO 206	105
		DTH = 0/2 + TANT	106
			107
	314		108
	764		109
	a . c		110
	7U 7	SPECT COLLER - REFURCTATATA)//(RETIP(IROW) - REFUB(IROW))*(TIPT -HORT)	111

a a station for the state

.

176

The States 1

1

ene.

¢.

4
DTH = GT + (HUBT - RBEUB(IROW)/(RBTIP(IROW) - RBHUB(IROW))*(TIPT -112 113 1 HUBT))*ALCG(RCCG/RBHUB(IRCW)) 114 IF (ABS(DTH - DTHL).LT.1.0E-7) GO TO 306 115 RCCG = RCCG + (XCUT(J)/CCS(DTH) - RCCG)/(1.0 - DTH*(GT + HUBT)) 116 DTHL = DTH 117 GC TC 305 118 3C6 DTH = XCUT(J)+TAN(CTH) 119 IF (ISTN(I).LT.O) DTH = -DTH 120 3C8 DZ = TLS*CZ 121 DY = DTH*CCS8 + DZ*SIN8 122 DZ = DZ*CCSB - DTH*SINB 123 DC 310 K=1,14 124 YBT = YBS(K)125 YBS(K) = YBS(K)*COSB - Z8S(K)*SINB + DY 310 ZBS(K) = ZBS(K)*COSB + YPT*SINB - DZ 126 127 ZS2 = ZBS(13)128 YS2 = YES(13)129 CALL SPLITG(ZBS, YBS, 14, AS, AXS, AYS, SS1, SS2) 130 NPS = NP131 ITS = IT132 ENTS = ENTN 133 DC 320 K=1,NP 134 320 EMS(K) = EM(K)CALL INCM(ZBS,YBS,NP,AXXS,AXYS,AYYS,AXXXS, AXXYYS,AYYYYS) 135 136 DC 360 K=1,14 137 YBT = YBP(K)138 YBP(K) = YBP(K) + COSB - ZPP(K) + SINB + DY139 360 ZBP(K) = ZBP(K)*COSB + YET*SINB - DZ 140 ZP2 = Z8P(13)141 $\gamma P2 = \gamma BP(13)$ 142 CALL SPLITG(ZBP, YBP, 14, AP, AXP, AYP, SP1, SP2) CALL IMOM(ZBP, YBP, NP, AXX, AXY, AYY, AXXXX, AXXYY, AYYYY) 143 144 370 AXXS = AXXS - AXX145 AXYS = AXYS - AXY 146 AYYS = AYYS - AYY 147 $\Delta X X X X S = \Delta X X X X S - \Delta X X X X$ 148 $\mathbf{A}\mathbf{X}\mathbf{X}\mathbf{Y}\mathbf{Y}\mathbf{S} = \mathbf{A}\mathbf{X}\mathbf{X}\mathbf{Y}\mathbf{Y}\mathbf{S} - \mathbf{A}\mathbf{X}\mathbf{X}\mathbf{Y}\mathbf{Y}$ 149 AYYYYS = AYYYYS - AYYYY 150 ICUT = 0151 CALL EDGES(ZS2,YS2,SS2,ZP2,YP2,SP2,AT,AXT,AYT,RTE,ZCTE,YCTE) CALL ENCS(7.52, YS2, ZP2, YP7, ZCTE, YCTE, RTE, AC, AXXT, AXYT, AYYT, AXXXXT, 152 153 X AXXYYT, AYYYYI) CALL EDGES(28S(1), Y8S(1), SS1, Z8P(1), Y8P(1), SP1, A, AX, AY, RLE, ZCLE, 154 155 X YCLE) CALL ENDS(Z8S(1),Y8S(1),Z8P(1),Y8P(1),ZCLE,YCLE,RLE,AC,AXX,AXY, 156 157 X AYY, AXXXX, AXXYY, AYYYY) 158 A = A + AS - AP - AT159 AX = AX + AXS - AXP - AXT160 AY = AY + AYS - AYP - AYT 161 $\Delta X X = \Delta X X + \Delta X X S - A X X T$ 162 163 164 $\Delta X X X X = \Delta X X X X + \Delta X X X X - \Delta X X X X T$ $\mathbf{A}\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{A} - \mathbf{Z}\mathbf{Y}\mathbf{Y}\mathbf{X}\mathbf{X}\mathbf{A} + \mathbf{Y}\mathbf{Y}\mathbf{X}\mathbf{X}\mathbf{A} = \mathbf{Y}\mathbf{Y}\mathbf{X}\mathbf{X}\mathbf{A}$ 165 $\Delta Y Y Y Y = \Lambda Y Y Y Y + \Delta Y Y Y Y S - \Delta Y Y Y Y T$ 166 167 $XR = \Lambda X / \Lambda$ 168 YB = AY/A169 AIP = AXX + AYY170 BETA = RADIAN#ARSIN(SINB) 171 $TANIHI = 2.J \neq AXY/(AXX - AYY)$ TAN 41 - TANTHI/(1.0 + SGRT(1.0 + TANTBI##2)) 172

177

w w hydroder allowed

ŧ

```
BETAL = RADIAN*ATAN(TANBI) + BETA
                                                                                    173
       CCS01 = 1.3/SQRT(1.0 + TANHI**2)
                                                                                    174
       SINHE = TANBI*COSBI
       AIMIN = AYY#CCSBI##2 + SINBI#(AXX#SINBI - 2.0#AXY#COSBI)
                                                                                    175
       AIMAX = AIP - AININ
                                                                                    176
       CALL TORSNIITS, NPS, EMS, EMTS, RLE, SS1, SP1, SS2, SP2, U, TORS)
                                                                                    177
                                                                                   178
       TERS = TORS/(3.0 + 4.3*TERS/(4*U**2))
                                                                                   179
       TWIST = \Delta x X x X + \Delta X X Y Y + \Delta Y Y Y - A I P + 2/A
                                                                                   180
       YCC = RLE - YCLE
       203 = REF - 20LE
                                                                                   181
                                                                                   192
       YST = YCG + BY
       ZST = ZCG - DZ
                                                                                   193
       WRITE (TW, 2030) J, XCUT(J), ZST, YST, BETA, ZCG, YCG, A, AIMIN,
                                                                                   184
      X AIMAX, BETAI, TORS, TWIST
                                                                                   185
                                                                                   186
C ***
           SET THE BLADE CCCRD. DEFINITION INCREMENT TO GIVE BETWEEN 20
C +++ AND 40 POINTS AT A ROUND DECIMAL VALUE
                                                                                   187
                                                                                   188
       CHORD = RTE + ZOTE - ZOLE + RLE
                                                                                   189
       DI = CHCRC/20.0
                                                                                   190
      DIL = ALOGIO(DI)
                                                                                   191
       ICIL = DIL
                                                                                   192
       IF (DI.LT.1.0) IDIL = ICIL - 1
                                                                                   193
      RL = DIL - FLGAT(ICIL)
                                                                                   194
      IF (RL.GE.0.30103) GC TO 430
                                                                                   195
      DI = 1.0
                                                                                   196
      GC TC 455
                                                                                   197
  430 IF (RL.GE.0.39794) GC TO 440
      DI = 2.0
                                                                                   198
                                                                                   199
      GC IC 455
                                                                                   200
  440 IF (RL.GE.0.69897) GC TO 450
                                                                                   201
      DI = 2.5
                                                                                   202
      GC TC 455
  450 DI = 5.0
                                                                                   293
                                                                                   204
  455 DI = DI*10.0**IDIL
                                                                                   205
      PN = CHORD/DI - 0.00001
                                                                                   206
      NPT = PN
                                                                                   207
      NPT = NPT + 4
C *** INTERPOLATION FOR BLACE SECTION SURF. COORD. AT THE DESIRED LOCS.
                                                                                   208
                                                                                   209
      ZC(1, IP) = 0.0
                                                                                   210
      YCS(1, IP) = RLE
                                                                                   211
      YCP(1, IP) = RLE
                                                                                   212
      ZCTE = 2CTE + 2CG
      ZLE = RLE - ZCLE + ZBS(1)
                                                                                   213
                                                                                   214
      ZTE = ZCG + ZS2
                                                                                   215
      DC 460 K=1,14
                                                                                   216
      ZBS(K) = ZBS(K) + ZCG
                                                                                  217
  460 ZBP(K) = ZEP(K) + ZCG
                                                                                  218
      K = 2
                                                                                  219
      KS = 2
                                                                                  220
      IE = 0
                                                                                  221
  465 IF (RLE.GE.ZC(K-1, IP) + UI) CO TO 470
                                                                                  222
      ZC(K, IP) = RLE
                                                                                  223
      IE = 1
                                                                                  224
      KLE = K
                                                                                  225
      GC TC 480
                                                                                  226
 470 ZC(K, IP) = ZC(X-1, IP) + CI
 480 IF (ZC(K, IP).GT.ZLE) CC TO 450
                                                                                  227
      YCS(K, IP) = RLE + SQRT((2.C*RLE - ZC(K, IP))*ZC(K, ! ...)
                                                                                  228
                                                                                  229
     CC TC 531
                                                                                  230
 490 IF (ZC(K, IP).LT.ZTE) 00 TO 500
                                                                                  231
     YCS(K, IP) = YCTE + YCC + SCRT(RTE**2 - (ZC(K, IP) - ZCTE)**2)
                                                                                  232
     GC TC 531
                                                                                  233
```

500	IF (7C(K.IP), (F.ZBS(KS)) G0 TO 505	234
		235
		236
		227
505	EPU = EM(KS)	231
	IF (KS.EG.ITS) EMU = EMIS	238
	DZ = ZBS(KS) - ZBS(KS-1)	239
	DZM = ZC(K, IP) - ZBS(KS-1)	240
	ZR = DZM/DZ	241
	IF (ZR.GT.C.COO1) GO TO 510	242
	$YCS(K_{TP}) = YCG + YBS(KS-1) + ZR*(YBS(KS) + YBS(KS-1)) - DZM*DZ*$	243
	(1) (1)	244
		245
c 1 A	0 = 10 = 100	246
210	DZP = ZDS(NS) - ZC(N, 1P)	241
	ZK = DZP/LZ	241
	IF (ZR.GT.C.3001) GO TL 320	240
	YCS(K, IP) = YCG + YBS(KS) - ZR + (YBS(KS) - YBS(KS-I)) + DZH +	243
	X 2.C*EMU + EMS(KS-1))/6.C	250
	GC TO 530	251
520	YCS(K,IP) = YCG + DZP*(YBS(KS)/DZ + EMU*(DZM**2/DZ - DZ)/6.0)	252
	x + CZP*(YBS(KS-1)/DZ + EMS(KS-1)*(DZP**2/DZ - DZ)/6.0)	253
530	K = K + 1	254
	IF (IF-1) 465-540-550	255
540		256
540	1C - 2 7C(K-10) - 7C(K-2.10) + PI	257
343	$\frac{2U(R)I(I) - 2U(R-2)I(I) + U(R-2)I(I)}{2U(R-2)I(R-2)I(I)}$	258
	G_{1} G_{2} G_{3} G_{4} G_{4	250
220	$1F (2CTE \cdot GE \cdot 2CTE \cdot T, 1P) + D1 = 0 = 10 + 10$	240
	IF (K.EQ.NPI) GU IU 570	200
	IF (IE.GE.3) GO TC 560	201
	$ZC(K_{*}IP) = ZCTE$	262
	IE = 3	263
	KTE = K	264
	GC TC 490	265
560	IF (IF-NF-3) GC TC 470	266
200		267
		268
670		269
510		270
		27
	Z1E = ZCG + ZPZ	211
58C	IF (2C(K,1P).GT.ZBP(1)) 60 10 590	214
	YCP(K,IP) = RLE - SQRT((2.0*RLE - ZC(K,IP))*ZC(K,IP))	21:
	GC TO 630	214
590	: IF (ZC(K,IP).LT.ZTE) ©0 TO 600	27
	YCP(K,IP) = YCTE + YCE - SQRT(RTE + 2 - (ZC(K,IP) - ZCTE) + 2)	27
	GC TC 630	27
600	1 E (7C(K, 19), 1 E, 7BP(KS)) GO TO 605	27
		27
		28
		20
605	$2 \text{ CPU} = \text{CM}(\mathbf{x})$	20.
	$IF (KS_{\bullet}EU_{\bullet}II) EFU = EFIM$	£0.
	DZ = ZBP(KS) - ZBP(KS-1)	28
	DZM = ZC(K, IP) - ZBP(KS-1)	28
	ZR = DZM/DZ	28
	IF (ZR.GT.0.0001) GO TC 610	28
	YCP(K,IP) = YCG + YBP(KS-1) + ZR*(YBP(KS) - YBP(KS-1)) - DZM*DZ*	28
	x = (2 - 0 + EM(KS - 1)) + EMU)/(6 - C)	28
		28
	$0 = 10 0 p^{-1}$	29
c1 (UZY = ZDY(NZ) - ZU(N)(T)	20
	$(\mathbf{K} = \mathbf{D}\mathbf{Z}\mathbf{Y}/\mathbf{D}\mathbf{Z})$	27
	IF (/R.GT.C.CUGI) GU IL 62C	29
	YCP(K,IP) = YCG + YBP(KS) - ZR+(YBP(KS) - YBP(KS+1)) + DZM+DZ+	29
	x (2.0+EMU + EM(KS-1))/6."	29

179

The second second second

		205
020	J YEP(K,IP) = YEG + DZM*(YEP(KS)/DZ + FMU*(DZM**2/DZ - DZ)/(O) .	295
	$A = DZP \neq (YBP(KS-1)/DZ + FM(KS-1) \neq (DZP \neq Z/DZ = DZ)/(2.0) + FM(KS-1) \neq (DZP \neq Z/DZ = DZ)/(2.0) + FM(KS-1) \neq (DZP \neq Z/DZ = DZ)/(2.0) + FM(KS-1) = (DZP \neq Z/DZ = DZ)/(2.0) = (DZP = DZ)$	296
630	$C_{1} \in \{K, EC, NPI-1\} \in C_{1} \in \{A_{1}\}$	297
		298
		290
	GU 10 580	200
640	J ZC(NPT,IP) = CHORD	500
	VCS(NPT, IP) = VCTF + VCC	301
	Y P (NPT, TP) = Y C (NPT, TO)	302
		303
	10 (ADF)(IROW).L1.19) at 10 648	304
	NPS = NP1 - 2	205
	DC = 642 K = 1, NPS	505
	KS = K+1	306
	$IF(K_{-} T_{-}K F)KS = K$	307
		308
	$ \begin{array}{c} \mathbf{x} \\ \mathbf$	309
	SL(K) = Z((KS, IP))	310
	$SHP(K) = ACD(KS^{1}D)$	210
642	$SHS(K) = ACS(KS^{1}b)$	311
	IF (NOPT(IRGW), IT.20) CO TO 646	312
	PUNCH 1900 - YOUT IN COULD FOR THE FEET OF	313
		314
	THE ISTON APS, BETA, 251, YST, RLE, RLE, RTE, ZCTE	315
	$PUNCH 192^{\circ}$, (SL(K),SHF(K),SHS(K),K=1,NPS)	214
	IF (NOPT(IRCW)-LT-30) GO TO 648	510
646	CONTINUE	317
648	IF (NPT.GT. NMAX) NMAY - NDT	318
		319
	AT ANTI-LI-MMINE AMEN = APE	320
	NSP(IP) = NPI	221
	IF (IP-NE-4) GC TC 790	221
	JS = J + 1 - IP	322
	JF = J	323
	WRITE (TW. 2. 7.) () in the second	324
450		325
0.00		326
000	WRITE (IW, FMC) (2C(K, IJ), YCP(K, IJ), YCS(K, IJ), II=1, IP)	20
	IPI = 1	521
	IF (NMAX.NE.NMIN) GO TC 665	328
	IF (IP-NE-4) GC TC 775	329
	GE LE 780	330
665		331
00)		332
	DC 770 KENMIN, NMAX	222
	GC TC (760,720,680,670), IP	333
67C	IF (NSP(4)-GE-K) GC TC 685	534
	IP = 3	335
	FMC(11) = FMS(5)	336
	EMP(12) = EMP(1)	337
400	$r_{1} = r_{1} = r_{1$	338
οει	IF (13P(3)+GE+K) GC TC 720	220
	IF (IP+EQ+3) GO TU 700	339
	IF (IPI-LT-3) GC TC 710	340
	IPI = 4	341
596	FMC(R) = ENS(S)	342
		343
	$r_{F}(3) = r_{F}(6)$	344
	GL (L 72)	244
/C 0	IP = 2	242
	GC TC 691	346
710	FMD(8) = FMS(7)	347
		348
		340
	$\mathcal{L}(I \cap p J) = W(R(I))$	250
	$TUP(K_{F}A) = WCRD(1)$	320
	YCS(K,3) = WCRD(1)	351
720	IF (NSP(2), GE, K, OR, IPI, GT, 2) CO TO 700	352
	IF (10-00-2) 60 TO 740	353
		354
		355
	1 - 1 - 2	254

Sec. 445 Sec.

Ņ

2. 10.00

 \mathcal{Q}

180

730	FMC(5) = FMS(5)	357
	FMC(6) = FMS(6)	358
	GC 10 769	359
740	IP = 1	360
	GC 10 730	361
750	EMD(5) = EMS(7)	362
	END(6) = ENN(8)	363
	7(14.2) = W(RO(1))	364
		365
	$V(S(k_2)) = W(B(k_1))$	366
760	$F_{\rm e}$ (NSP(1) - GE-K - GE-1PI-GT-1) GO TO 770	367
100		368
	$F_{1} = C$	369
		370
770	$P_{1} = (1, 1, 1, 2, 1, 1) + (1, 1, 1) + (1, 1, 2, 1, 1) + (1, 1, 1, 1) + (1$	371
110	WRITE (INFINITY (LEURYLITY)), (x,y,z) , $($	372
		373
775		374
112	FPU(2) = FP3(7) END(1) = CND(1)	375
	FFUID) - FFUID) ENDID) - ENDID	376
	$\frac{\mathbf{F}}{\mathbf{F}} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} $	377
	FFU(Y) = FFS(U)	378
	FFU(11) = FFS(7)	379
-	$\mathbf{F}_{\mathbf{F}}(1,2) = \mathbf{F}_{\mathbf{F}}(1,2)$	380
180	IF (J.CU.NU) UU IU OHU	381
	$J \neq J + I$	382
	GC 10 268	383
790	IF (J.EQ.NC) GU IN BUC	384
	$\mathbf{J} = \mathbf{J} + \mathbf{I}$	385
	IP = IP + I	386
	GC TC 290	397
acc	$\mathbf{FPU}(11) = \mathbf{FP}(5)$	388
	FWD(12) = FWS(6)	300
	JS = J + I - IP	307
	JF = J	201
	1F (1P-LY-3) GC 1C 810	302
	WRITE (IW,2060) (J,J=JS,JF)	202
		395
810	FWC(8) = FWS(5)	205
	FWD(9) = FWS(6)	396
	IF (IP.LT.2) GD TO 82C	390
	WRITE (IW, 2050) JS, JF	309
	GC 1C 650	300
82C	FMD(5) = FMS(5)	277
	FMC(6) = FMS(6)	400
	WRITE (IW,2040) J	401
	GC TC 650	402
840	CALL BCOURD(IS,NC,XCU), TCCLE,ZCCLE,TCCTE,ZCCTE)	404
850	RETURN	404
1000	FCRMAT (8F10.4)	405
1900	FCRMAT (3X, 3HX =, FI0.4, 2X, 4A6)	400
1910	FCRMAT (15,5X,7F10+5)	407
1920	FCRMAT (9F8.4)	400
2000	FCRMAT (1H1 / 27X, 32H** BLADE SECTION PROPERTIES UF , 1844)	409
2020	FORMAT (/ 20X, 18HNUMEER OF BLADES =, F6.1, 10X, 47HAXIAL LUCATION OF	410
	1 STACKING LINE IN COMPRESSER =, F7.3, 4H IN.// 4X, 13HBLADE SECTION,	411
	2 5X, 14HSTACKING POINT, 5X, 7HSECTION, 5X, 13HBLADE SECTION, 4X,	412
	3 THSECTION, 3X, 18HNOMENTS OF INERTIA, 4X, 4HIMAX, 4X, THSECTION, 3X,	413
	4 7HSECTICN / 13X, 4HRAC., 7X, 11HCOORDINATES, 6X, 7HSETTING, 3X,	414
	5 16HC.G. CCLRUINATES, 4X, 4HAREA, 8X, 12HTHROUGH C.G., 6X, 7HSETTING, 2X,	415
	6 7HTCRSICN,4X,5HTWIST / EX,3HNO.,5X,4HLOC.,6X,1HL,9X,1HH,8X,	416
	7 5HANGLE,6X,1HL,9X,1HF,17X,4HIMIN,6X,4HIMAX,7X,5HANGLE,3X,	417

÷

964 - 1 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 1 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160

181

Carl Carl

U BHCCRSTANT,1X,9HSTIFIN,SS / COMBHCTN.)+4X,SH(IN.),5X,5H(IN.),5X, 9 6H(RES.),4X,5H(IN.),5X,CH(IN.) BF STIN 1##2 17 2128 8471 1##2
. 3X,6H(L+G.), 3X, AH(IN.) + +4, 7X, +4 (+***)
1 F11.6.F10.5)
2040 FERMAT (/ TX, 11+SECTION NO., 13, 1 COURTINATES / 10X.
$\frac{1}{2050} \frac{1}{100} 1$
$1 1 + 1 + 3 \times 2 + + P_{1} \times 2 + + S_{1} \times 1 / 2 + (4 \times 3 (4 \times 3 (4 \times 3 + 1 + 1 \times 3 \times 3 \times$
2060 FORMAT (/ 2X,3(5X,11HSECTION NO.,13,126 (DORDINATES) / 6X,3(4X,
2070 FERMAT (/ 2X,4(5X,11+5*(TICN NP_13,12H C()))
1 1+L+8X+2++P+7X+2++S+1X+ / 4(4X+3(4X+5+(1N, 1))
ENU

2

3

4

5

6

7

8

9

10 11

12

13

14

15 16

17

18 19

20

21

22

23

24 25

26

27

28

29

30 31

32

33 34

35 36

37

38

39

40

41 42

. .

```
SUBRCUTINE XCUTS(NC, XCUT)
            THIS ROUTINE SETS THE RADIAL LOCATION OF THE BLADE SUFFICE
C ***
C *** PLAINS TO COVER THE BLADE SPAN IN ROUND DECIMAL INCREMEN "
      REAL INC, KIC, KCC, MACH
      CCMMEN /VECTOR/
     1 BETAS(1,21), BMATL(1), BLADES(1), CHOKE(1), CHORF #(3); CHORDB(1),
     2 CHCRDC(1), CPCO(6), CEV(1,21), IDEV(1), IGEO(1), IINC(1),
     3 ILCSS(1), IMAX(1), INC(1,21), ISTN(2), ITRANS(1), NUPT(1),
     4 NXCUT(11, PHI(1,21), PC(2,21), R(2,21), RBHUB(1), RBTIP(1),
      SLCPE(2,21), SOLID(1), TALE(1), TAMAX(1), TATE(1), TBLE(1),
     6 TBMAX(1), TBTE(1), TCLE(1), TCMAX(1), TCTE(1), TDLE(1), TDMAX(1),
7 TDTE(1), TILT(1), TO(2,21), TRANS(1,21), VTH(2,21), VZ(2,21),
     8 Z(2,21), ZBHUB(1), ZETIP(1), ZMAX(1,21)
      CEMMEN /SCALAR/
     1 BETA, CP, CPH2, CPH3, CPH4, CPH5, CPH6, CPP3, CPP4, CPP5, CPP6,
     2 CP1, CV, CCP, DF, DHC, EHCI, DLOSC, G, GAMMA, GJ, GJ2, GR1, GR2,
3 GR3, GR4, GR5, H, I, ICCNV, ICOUNT, IERROR, IIN, IPR, IROTOR, IR,
     4 IRCW, ITER, IW, J. JM, MACH, NAB, NBROWS, NHUB, NROTOR, NSTN, NSTRM,
     5 NTIP, NTURES, CMEGA, PI, POAL, PR, RADIAN, RF, RG, ROT, TL, TOAL, TU
      CEMMEN
     1 BETA1(21), BETA2(21), CCSA(21), COSL(21), DKLE(1,21), DL(21),
     2 GANN(21), UBAR(21), RELN(21), RPR1(21), RE1(21), RE2(21),
     3 RE3(21), RE4(21), RE5(21), RVTH(21), SINA(21), SINL(21), SLOS(21)
     4, SCNIC(21), THETAP(21,13), THETAS(21,13), TREL1(21), TSTAT(21),
    5 VM(21), VTSQ(21), XBAR(1,21), YBAR(1,21), ZP(21,13), ZS(21,13)
     CEMMON JEQUIV/
    1 CHE(21), CHK(21), CESA2(21), FSM(21), KIC(21), KUC(21), RCA(21),
    2 REC(2,21), RPTE(2,21), SINA2(21), SKIC(21), SKOC(21), TALP(21),
     3 TCA(21), TEC(2,21), TGB(21), TTRP(21), TTRS(21), YCCLE(25), YCCTE(25)
    4, 2CCLE(25), 2CCTE(25), 2CDA(21), ZEC(2,21), ZTRP(21), ZTRS(21)
     DIMENSION XCUT(25)
     IF (NC.GT.C) GO TC 60
     XN = 20.1*(1.0 - EXP(-C.5*(RBTIP(IROW) - RBHUB(IROW))/CHD(JM))) +
    X 5.J
     NC = XN
  60 IF (NC.LT.5) NC = 5
     IF (NC.GT.24) NC = 24
     NI = NC - 1
     IF (R(I,1).GE.R(I-1,1)) CO TC 70
     XEIGP = P(I+1,1)
     DXHIGH = R(1-1,1) - R(1,1)
     GC 1C 30
```

70	XHICH = R(I,1)	43
	DXHIGH = R(I,1) - R(I-1,1)	44
23	XLCW = R(I-1,NSTRM) + CCS(THETAP(NSTRM, 1))	45
	DXLOW = R(I,NSTRM) CCS(THETAS(NSTRM,13)) - XLOW	46
	1F (DXLCW.GE.0.0) GO TC 90	47
	XLCW = XLCW + DXLCW	48
	DXLEW = -OXLOW	49
90	DX = XHIGH - XLCW	50
	DIL = ALOGIO(DX)	51
	ICIL = CIL	52
	IF $(DX_{-1}T_{-1}, 0)$ IDIL = IDIL - 1	53
	RL = DIL - FLGAT(IDIL)	54
	IF (RL.GE.C.30103) GC TO 1CO	55
	$\mathbf{DI} = 1 \cdot 0$	56
	GC TC 130	57
100	IF (RL.GE.0.39794) GC TO 110	58
•••	$DI = 2_{0}O$	59
	GC TO 130	60
110	IF (RL.GE.0.69897) GC TC 120	61
	DI = 2.5	62
	GC TO 130	63
120	01 = 5.0	64
130	DI = DI * 10.0* * (IDIL - 2)	65
	XCUT(1) = XHIGH/DI	66
	ICUT = XCUT(1)	67
	XCUT(1) = CI*(FLOAT(ICUT) + 1.0)	68
	XN = (XCUT(1) - XLOW)/C1 + 1.0	69
	NX = XN	70
	$XCUT(NC) = XCUT(1) - CI \neq FLCAT(NX)$	71
	1F (NC.LT.7) GO TO 215	72
	XNI = NI	73
	FN = 1.0	74
	DXCLT = XCUT(1) - XCUT(NC)	75
140	F = DXCUT + (FN + 0.2)/XNI	76
	IF (DXHIGH-LT-F) GG TC 150	77
	FN = FN + 1.0	78
	GC TC 140	79
150	XT = DXHIGH/DI + 1.0	80
• - •	NT = XT	81
	IF (NT.LE.NX/NI/5) GC TO 170	82
	NF = FN	83
	XCUT(NF+1) = XCUT(1) - DI*FLCAT(NT)	84
	IT = 1	85
	IF (NF.E0.1) GO TC 180	86
	NTI = (NT + 1)/NF	87
160	$\mathbf{IT} = \mathbf{IT} + 1$	88
	XCUT(IT) = XCUT(IT-1) - CI+FLOAT(NTI)	89
	IF (IT.EQ.NF) GC TO 180	90
	GC TC 160	91
170	NT = 0	92
	IT = 0	93
180	FN = 1.0	94
190	F = DXCUT * (FN + 0.2) / XNI	95
-	IF (DXLCW.LT.F) GO TC 200	96
	FN = FN + 1.0	97
	6C TC 190	98
200	XT = DXLCW/CI + 1.0	99
	NH = XT	100
	IF (NH.LF.NX/NI/5) GC TO 220	101
	NF = FN	102
	NFH = NC - NF	103

183

4.5

- <u>(</u>.....

```
104
    XCUT(NFH) = XCUT(NC) + E1*FLCAT(NH)
                                                                                       105
    IH = 1
    IF (NF.FG.1) CC TC 230
                                                                                       1^6
    NTI = (NH + 1)/NF
                                                                                       107
210 IF = IH + 1
                                                                                        108
    INH = NC + 1 - IH
                                                                                       109
    XCUT(INH) = XCUT(INH+1) + DI*FLUAT(NTI)
                                                                                       110
    IF (IH.EO.NF) GC TC 230
                                                                                       111
    GC 10 210
                                                                                       112
215 \text{ NT} = 0
                                                                                       113
    IT = 0
                                                                                       114
220 NH = 0
                                                                                       115
    I = 0
                                                                                       116
230 \text{ NX} = \text{NX} - \text{NT} - \text{NH}
                                                                                       117
    NI = NI - IT - IH
                                                                                       118
24C II = NX/NI
                                                                                       119
    NL = NX - II \neq NI
                                                                                       120
    JL = 1T + 2
                                                                                       121
    N = NI + IT
                                                                                       122
    IC = G
                                                                                       123
    DC 250 J=JL,N
                                                                                       124
    IC = IC + II
                                                                                        125
    IF (J_{\bullet}LT_{\bullet}JL_{\bullet}NL) IC = IC + 1
                                                                                       126
25C XCUT(J) = XCUT(IT+1) - FLOAT(IC)+DI
                                                                                        127
    NC = NC + 1
                                                                                        128
    XCLT(NC) = RETIP(IROW)
                                                                                        129
    IF (ISTN(I).GT.O) XCUT(NC) = RBHUB(IROW)
                                                                                        130
    RETURN
                                                                                       131
    END
                                                                                        132
```

```
SUBROUTINE IMOM(Z,Y,N,AXX,AXY,AYY,AXXX,AXXY,AYYY)
C *** MEMENTS OF INERTIA USING THE SPLINE CURVE AS THE SURFACE BOUNDARY
     CEMMEN /PCUT/ AC, CCSKL, COSKU, EMTM, IOUT, IT, NP, SINKL, SINKU,
1 EX(13), EM(14), YBP(14), YBS(14), ZBP(14), ZBS(14)
      DIMENSION Y(N), Z(N)
       AXX = 0.0
       AXY = 0.9
       AYY = 0.0
       A \times X \times X = 0.7
       A \times X \vee Y = 0.0
       AYYYY = 0.0
       NI = NP - I
       DE ?? K=1,NI
       EL = EM(K)
       IF (IT.EQ.K+1) GC TO 10
       EL = EM(K+1)
       GC TC 20
   10 EL = EMTM
   2C DXS = DX(K)**2
       DXSE = DXS*(EL + EU)/2.0
       YM = Y(K)
       YP = Y(K+1)
       YS = YM+YN
       YC = YS+YM
       YC = YS \neq YS
       ES = FL*FL
```

2

3 4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

184

27 EC = ES*EL 28 ZM = 2(K) 29 7 P = 2(K+1) 30 25 = 2N+7N 31 ZC = 75≠ZM 32 26 = 75+75 AXX = XXY + UX(K)+((>>+2/2+(20 + 2.9+2M) + 3.J+25) + YP+(25 + 2P+ 33 1 (2.0#2M + 3.0#2P)))/2.0 - 0xu*((L*(ZP*(ZP/15.u + 'M/10.0) + 25/ 34 2 12.0) + EU*(ZP*(ZP/10.0 + ZM/10.0) + ZS/15.0)))/6.0 35 AXY = AXY + UX(K)/24.1+(YS+(3.3+ZM + 2P) + YP+(2.0+(7M + 2P)+YM + 36 1 YP+(7M + 3.0+ZP)) - (XS/15.0+(YM+(7M+(5.0+EL + 4.0+EU) + 3.3+ZP+ 37 2 (EL + EU)) * YP*(3.5*7M*(EL * EU) + ZP*(4.0*EL + 5.1*EJ)) - DXS/ 38 3 168.0*(ES*(35.3*ZM + 29.0*20) + EU*(62.0*EL*(ZM + 2P) + EU*(29.0* 39 40 4 ZN + 35.0*ZP)))) 41 AYY = AYY + DX(K)/12.D*(YC + (YS + (YM + YP)*YP)*YP - DX5/30.0*((1 5.C+YS + (0.C*YM + 4.C+YP)*YP)*EL + (4.C*YS + (6.C+YM + 5.0+YP)* 42 43 2 YP)*EU - CXS/84.0*((35.,*ES + (62.0*EL + 29.0*EU)*EU)*YM + (29.0* 3 ES + (62.0*EL + 35.0*EU)*EU)*YP - UXS/6.0*(7.0*EC + (20.0*ES + 44 45 4 (23.0*EL + 7.3*EU)*EU)*EU))))) AXXXX = AXXXX + CX(K)*(YP*((((5.^*ZP + 4.0*ZM)*ZP + 3.0*ZS)*ZP + 46 1 2.0+ZC)+ZP + ZQ) + YM+((({ZP + 2.0+ZM)+ZP + 3.0+ZS)+ZP + 4.0+ZC)+ 47 2 ZP + 5.9+74) - DXS*(EL*(35. + 24 + 2P*(52.)+20 + 2P*(54.0+25 + 2P* 48 49 3 (44.0+ZM + 25.0+ZP)))) + EU*((((35.0+ZP + 52.0+ZM)+ZP + 54.0+ZS)* 50 4 ZP + 44.0+ZC)+ZP + 25.0+ZC))/168.0)/30.0 AXXYY = AXXYY + DX(K) + (YC*(ZP+(ZP + 4.0+ZM) + 10.0+ZS) + YP*(YS*(51 1 3.J*ZP*(ZP + 2.J*ZM) + c.J*ZS) + YP*(YM*(6.0*ZP*(ZP + ZM) + 3.0* 52 2 ZS) + YP*(ZP*(10.)*ZF + 4.0*ZM) + ZS))) - DXS*(YS*(EL*(ZP*(9...*ZP 53 54 3 + 26.3*ZM) + 35.0*ZS) + EU*(ZP*(9.3*ZP + 22.3*ZM) + 25.3*ZS)) +YP *(YM*(EL*(ZP*(22.)*ZP + 36.0*ZM) + 26.0*ZS) + EU*(ZP*(26.0*ZP + 55 5 36.^*ZM) + 22.J*ZS)) + YP*(FL*(ZP*(25.0*ZP + 22.0*ZM) + 9.0*ZS) + 56 6 EU*(ZP*(35.1*ZP + 26.0*ZM) + 9.0*ZS))) - DXS*(ES*(YM*(ZP*(19.0*ZP 57 7 + 44.0*ZN) + 42.0*ZS) + YP*(ZP*(27.0*ZP + 38.0*ZM) + 22.0*ZS)) + 58 EU*(EL+(YN*(40.)*70+(70 + 2.0*2M) + 66.**ZS) + YP*(ZP*(66.0*ZP + 59 8 9 80.0*ZM) + 40.0*ZS)) + EU+(YM*(ZP*(22.0*ZP + 38.0*ZM) + 27.0*ZS)+ 60 YP+(ZP+(42.0+2P + 44.1+7M) + 19.0+ZS))) - DXS+(EC+(2P+(52.0+2P + 61 1 100.0*7M) + 77.0*ZS) + EU+(ES+(ZP*(171.0*ZP + 294.0*ZM) + 195.0* 62 63 2 ZS) + 56*(EL*(ZP*(195.0+20 + 204.0*2M) + 171.J*ZS) + EU*(ZP*(77.0 3 #7P + 102.3#ZM) + 52.3#75)))/06.0)/18.0)/28.0)/90.0 64 3C AYYYY = AYYYY + UX(K)+(((((YP + YM)+YP + YS)+YP + YC)+YP + YQ)+YP 65 1 + YM*YQ) - DXSE*(((((5."*YP + 6.0*YM)*YP + 9.0*YS)*YP + 8.0*YC)* 66 2 YP + 5.7*YC) - DXSE*((((5.0*YP + 9.(*YM)*YP + 9.0*YS)*YP + 5.0*YC 67 3) - DXSE*(((5.0*YP + 3...*YM)*YP + 5.0*YS) - UXSE*((YP + YM) -68 69 4 DXSE/22.0)/2.0)/6.0)/4.1)/14.0)/30.0 70 RETURN 71 FND

c c	*** ***	THIS ROUTINE CALCULATES THE MOMENT OF INERTIA CORRECTIONS ASSUCIATED WITH THE PROPER TREATMENT OF THE READE END CIRCLES.
		SUBPOUTINE CONDICESTINE AND STRATE AND
		CEMMER / ROUT/ AC, CESKL, CUSKU, EMTM, LOUT, IT, NP, SINKL, SINKU,
		1 EX(13), EM(14), YBP(14), YBS(14), ZBP(14), ZBS(14) EZL = 70 - 75
		$D_{7}U = 70 - 20$
		DYL = YC - YS DYL = YC - YP

10 M 10 M

185

```
RS : R≠₽
RC
   - ₹*₹$
YCS = YC + 2
265 = 26**2
YCC = YC*YCS
YCG = YCS #YCS
2CC = 7C * 2CS
ZCC = ZCS * 7CS
SINS = SINKL + SINKU
CCS5 = COSKE + CCSKU
SIN2KL = 2.J#SINKL#CESKL
SIN2KU = 2.0+SINKU+CESKU
SINC = SIN2KL - SIN2KU
RT = R*(SIN2KL - SIN2KU)/16.C
RC = RS*(SIN2KL*(1.0 - 2.0*SINKL**2) - SIN2KU*(1.0 - 2.0*SINKU**2)
x ))/48.0
AXX = (ZCS + RS/4.0)*A - RC*(2.0*ZC*COSS/3.0 + RT) -
1 (DZU+YC/3.0 - ZC+DYU/12.0)+(ZCS + ZS+(ZC + ZS)) + (DZL+YC/3.0 -
2 ZC+DYL/12.J)+(ZCS + ZP?(ZC + ZP)) - (DYU+ZS++3 - DYL+ZP++3)/4.0
AXY = ZC+YC+A - RC+((ZC+SINS + YC+COSS)/3.0 +
1 R*(SINKL - SINKU)*SINS/9.0) - (DZU*(ZS*(YS*(3.0*YS +
2 2.C*YC) + YCS) + ZC*(YS*(YS + 2.0*YC) + 3.0*YCS)) - UZL*(ZP*(YP*
3 (3.0*YP + 2.0*YC) + YCS) + ZC*(YP*(YP + 2.0*YC) + 3.0*YCS)))/24.0
AYY = (YCS + RS/4.0)*A - RC*(2.0*YC*SINS/3.0 - RT) -
1 (DZU+(YCS + YS++Z)+(YC + YS) - DZL+(YCS + YP++Z)+(YC + YP))/12.0
 AXXXX = {7C4 + RS+(1.5+2C5 + RS/8.0))*A - RC+(2C+((10.0+2C5 + 4.0+
1 RS)*COSS + RS*(SIN2KL*SINKL + SIN2KU*SINKU))/7.5 + R*((3.0*ZCS +
2 RS/3.0)*SIND - RD)/8.0) - ((6.0*YC*DZU - ZC*DYU)*(ZCQ + ZS*(ZCC +
3 ZS*(ZCS + ZS*(ZC + ZS)))) - (6.C*YC*DZL - ZC*DYL)*(ZCQ + ZP*(ZCC
4 + ZP*(ZCS + ZP*(ZC + ZP))))/30.0 + (DYL*ZP**5 - DYU*ZS**5)/6.0
 AXXYY = (2CS+YCS + RS+(2CS + YCS + RS/6.0)/4.0)*A - RC+(2C+YC+((2C
1 *SINS + YC*CCSS)/1.5 + R*SINS*(SINKE - SINKU)/2.0) + RS*(ZC*(
2 COSKL**3 + COSKU**3) + YC*(SINKL**3 + SINKU**3))/7.5 - R*((ZCS -
3 YCS)*SIND - 2.0*RD)/16.0) + (DZL*(ZP*(ZP*(YCC + YP*(3.0*YCS + YP*
4 (6.0*YC + 10.0*YP))) + 2C*(4.0*YCC + YP*(6.0*YCS + YP*(6.0*YC +
5 4.0*YP)))) + ZCS*(10.0*YCC + YP*(6.0*YCS + YP*(3.0*YC + YP)))) -
6 CZL+(ZS+(ZS+(YCC + YS+(3.0+YCS + YS+(6.0+YC + 10.0+YS))) + ZC+(
7 4.0*YCC + YS*(6.0*YCS + YS*(6.0*YC + 4.0*YS)))) + ZCS*(10.0*YCC +
8 YS*(6.0*YCS + YS*(3.C*YC + YS))))/180.0
 AYYYY = (YCQ + RS*(1.5*YCS + RS/8.0))*A - RC*(YC*((10.0*YCS + 4.0*
1 RS)*SINS + RS*(SIN2KL*CCSKL + SIN2KU*COSKU))/7.5 - R*((3.0*YCS +
2 RS/3.0)*SINC + RD)/8.C) + (CZL*(YCQ*YC + YP*(YCQ + YP*(YCC + YP*)
3 YCS + YP+(YC + YP)))) - DZU+(YCQ+YC + YS+(YCQ + YS+(YCC+ YS+(
4 YCS + YS*(YC + YS)))))/30.0
 RETURN
 ENC
```

12

13

14

15

16

17

18

19

29 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

1

2

3

4

5

6

7

8

9

10

ų,

SUBREUTINE TORSN(ITS,NPS,EMS,EMTS,RLE,SS1,SP1,SS2,SP2,U,TORS) C *** CALCULATION OF THE PLADE SECTION TORSION CONSTANT CEMMEN /RCUT/ AC, DESKL, COSKU, EMTM, IOUT, IT, NP, SINKL, SINKU, 1 Dx(13), EM(14), YBP(14), YBS(14), ZBP(14), ZBS(14) DIMENSION EMS(NPS) U = 0.0 TORS = 0.0 TALEAL = (7-2(1) - ZEC(1))/(YBS(1) - YBP(1)) XAL = (ZBP(1) + ZES(1))//.0 YAL = (YPP(1) + YBS(1))/2.0

	TE = SQPT((242(1) = 2BS(1))##2 + (YRS(1) = YRP(1)}##2)	11
	SOL = (SS1 - SP1)/(1.0 + SS1*SP1)	12
* * *	INTEGRATEIN OF TAXIEOU FOR THE SPLINE SEGMENTS	13
	1 = 2 +	14
) 1 1:0 K=2,NP	15
	IF (KINEIIT) OG TO 25	16
	-MI - EMTM	17
	15 (NPS-NP) 10,30,20	19
10	IF (KS.LT.2) KS = 2	19
	?○ T [→] 40	20
<u>2</u> 0	K2 = K2 + 5	21
	50 TC 40	22
25	ίνι = {ν(κ)	23
30	$\kappa S = \kappa c + 1$	24
40	xt = 7PStKS)	25
	$A\Gamma = Aug(kz)$	26
	IF (K. EC.NP) GO TO BO	27
	TALPL = (YBP(K) - YBP(K-1))/(ZBP(K) - ZBP(K-1)) + (2.0+E46) +	28
)	K EM(K-1))*(78P(K) - 78P(K-1))/6.0	29
	ENI = ENS(KS)	30
	IF (KS,EO,ITS) EMU = EMTS	31
	$TALPU = (YRS(KS) - YRS(KS-1))/(ZRS(KS) - ZRS(KS-1)) + (2.3 \pm EM)$	32
)	x + FMS(KS-1)I + (ZBS(KS) - 7BS(KS-1))/6.0	33
50	TLAM = (7RP(X) - XL)/(YL - YRP(K))	34
	TALPA = (TALPU + TALPL)/(1.0 - TALPU+TALPL + SOPT((1.0 + TALPU+*2))	35
)	$K = \{1, C + TAL^{2}(++2)\}$	36
	IF (ABS(TALPA - TLAM).LE.0.0001) G0 TO 90	37
	$xL = xL + ((\gamma PP(K) - \gamma L) * TALPA + 7PP(K) - xL)/(1.0 + TALPU + TALPA)$	38
	1+ (xL.LE.ZHS(KS)) G) TO 60	39
	CI = KS + I	40
		41
	E MULE E MANARUJ	42
	1 + (k) + 0 + 1(5) + E(0) = E(15)	43
		44
00	$\mathbf{K}_{\mathbf{J}} = \mathbf{K}_{\mathbf{J}}$	45
		46
	ETTE FTAINAT	41
20	$1 r + r > r (v + 1 + 2) = C^{-1} r = C^{-1} > 0$	48
10		49
	UXU = ZMOTKUI - XL	50

ì

DXL = XL - 795(KL)	51
YL = DXL+(YBS(KU)/D7 + EMU+(DXL++2/D7 - D7)/5.0) + DXU+	52
x (YRS(KL)/D7 + EMS(KL)*(0XU**2/D7 - D7)/6.0)	53
TALPIJ = (YBS(KU) - YBS(KL) + (EMJ + DX) + 2 - EMS(KL) + 0XI + 2)/	54
x = 2 - 01/07 + (EMS(K1) - EMU) + 07/6 - 0	55
	56
$80 \text{ SD} = \{(S^2) - (S^2)/(1_0) + (S^2)/(1_0) \}$	57
$TA P A = (SS2 + SP2)/(1_0) - SS2 + SP2 + SORT((1_0) + SS2 + 2) + (1_0) +$	58
x \$ 2* 2* 2))	59
S0 T0 100	60
$90.50 = (TALPL - TALPL)/(L_0 + TALPLI)$	61
$100 \text{ y}_{A} = (789 (k) + x) 1/2.0$	62
$y = (y B P (K) + y I)/2 \cdot 0$	63
T = SORT((2RP)(K) - X(1++2 + (Y) - YRP(K))++2)	64
ANG = (AATAN (ATA) PA) = TA (PA) (1 - 0 + TA (PA) + TA (PA)) (2 - 0) + 2	65
$d_{1} = (1 + 1) + (1 + 1$	66
	67
	68
TOPS = TOPS + UK/140.0#((43.0#T) + 27.0#T)#T)##7 + (27.0#T) +	69
$\frac{1}{1} + \frac{1}{2} + \frac{1}$	70
$1 \rightarrow 1$ (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	71
$2 \left(\left(4\right) * 0 * 1 + 10 * 0 * 11 + 11 + 21 * 0 + 1 + 21 * 00 + 11 + 120 * 0 * 11 + 10 * 0 * 10 * 1$	11

187

ner Street of

1.

124

52.0

```
3 SFE - 13.2*(TE + T)*SC)*SCE + (8.0*TE + 16.0*T)*SD**2 + UK*
     4 (((SDE - SD)*SDE + SE**2)*(SDE - SD))))
      X \Lambda L = X \Lambda
      Y \Delta L = Y \Delta
      TALPAL = TALPA
      TL = T
  110 SDL = SD
          END CIRCLE INTEGRATIONS FOR T##3#DU
C ***
      SIN2A = SINKU*CCSKL - SINKL*COSKU
      CCS2A = CCSKU*CDSKL + SINKL*SINKU
      UK = RLE*(1.0 - SIN2A/SCRT(2.0*(1.0 + COS2A)))
      U = U + UK
      TERS = TORS + RLE++4+((3.1415927 - ARSIN(SIN2A))+3.0 - SIN2A+(4.0
     X + CCS2A))/8.0
      ICUT = 1
      CALL EDGES(ZBS(NPS), YES(NPS), SS2, ZBP(NP), YBP(NP), SP2, UK, UK, UK, RTE,
     X UK .UK)
      SIN2A = SINKL*CCSKU - SINKU*COSKL
      CCS2A = COSKU+COSKL + SINKL+SINKU
      UK = RTE*(1.0 - SIN2A/SQRT(2.0*(1.0 + COS2A)))
      U = U + UK
      TCRS = TORS + RTE++4+((3.1415927 - ARSIN(SIN2A))+3.0 - SIN2A+(4.0
     x + (CS2A))/8.0
      RETURN
      END
```

73

74

75

76

77

78

79

80

81

82

83

94

95

96

87

88

89

90

91

92

93

94

95

96

l

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

20. 10

A STATE OF

```
SUBROUTINE BCCORD(IS,NC,XCUT,YLE,ZLE,YTE,ZTE)
C *** PRINTOUT OF UNROTATED COCRDINATES WITH HUB STACKING POINT REF.
      REAL INC, KIS, KM, KTS, MACH
      CCMMCN /VECTOR/
     1 BETAS(1,21), BMATL(1), BLADES(1), CHOKE(1), CHORDA(1), CHORDB(1),
     2 CHCRDC(1), CPCO(6), CEV(1,21), IDEV(1), IGEO(1), IINC(1),
     3 ILLSS(1), IMAX(1), INC(1,21), ISTN(2), ITRANS(1), NOPT(1),
     4 NXCUT(1), PHI(1,21), PO(2,21), R(2,21), RBHUB(1), RBTIP(1),
     5 SLOPE(2,21), SCLID(1), TALE(1), TAMAX(1), TATE(1), TBLE(1),
     6 TBMAX(1), TBTE(1), TCLE(1), TCMAX(1), TCTE(1), TDLE(1), TDMAX(1),
     7 TDIE(1), TILT(1), TC(2,21), TRANS(1,21), VTH(2,21), VZ(2,21),
     8 Z(2,21), ZBHUB(1), ZETIP(1), ZMAX(1,21)
      CCMMCN /SCALAR/
     1 HEIA, CP, CPH2, CPH3, CPH4, CPH5, CPH6, CPP3, CPP4, CPP5, CPP6,
     2 CP1, CV, CCP, DF, DHC, CHCI, DLOSC, G, GAMMA, GJ, GJ2, GR1, GR2,
     3 GR3, GR4, GR5, H, I, ICCNV, ICOUNT, IERROR, IIN, IPR, IROTOR, IR,
     4 IRCW, ITER, IW, J, JM, MACH, NAB, NBROWS, NHUB, NROTOR, NSTN, NSTRM,
     5 NTIP, NTUPES, CMEGA, PI, PUAL, PR, RADIAN, RF, RG, ROT, TL, TOAL, TU
      CCMMEN /BLADES/ DUM(35), ICL, DUMM(44)
      CEMMEN /PTS/ FSB(13)
      COMMON /LAPEL/ TITLE(18)
      DIMENSION XCUT(25), YCP(14,3), YCS(14,3), YLE(25), YTE(25),
     1 7C(28,3), ZLE(25), ZTE(25)
      EQUIVALENCE (JL, ICL)
      .1 = 1
      JI. : 2
      1^{\rho} : 1
      IC
   10 IF (IP.NF.1) GO TO 39
      WPII (IW, PLLL) (TITL([]), IJ=1, 18)
```

- Le Bern

188

In Sec.

- 30	DC 40 K=1,13	31
	CALL INTERP(XCUT(J),1,K,YCS(K,IC),ZC(K,IC))	32
40	CALL INTERP(XCUT(J),2,K,YCP(K,IC),ZC(K+14,IC))	33
	IF (IC.NE.3) GC TC 8C	34
	JS = J - 2	35
	JF = J	35
	WRITE (IW,2020) (J,XCUT(J),J=JS,JF)	37
60	DC 70 K=1,13	48
70	WRITE (IW,2030) FSP(K), (ZC(K,IJ), YCS(K,IJ), ZC(K+14,IJ),	39
	1 YCP(K,[J),[J=1,[C]	40
	WRITE (IW, 2040) (ZLE(J), YLE(J), J=JS, JF)	41
	WRITE (IW,2050) (ZTE(J),YTE(J),J=JS,JF)	42
	0 = 0	43
	IP = IP + 1	44
	IF (IP.GT.2) IP = 1	45
80	IF (J.EC.NC) GC TC 1CC	46
	IC = IC + 1	47
	J = J + 1	48
	IF (IC.EQ.1) GC TC 10	49
	GC TC 30	50
160	IF (IC.EG.D) RETURN	51
	JF = NC	52
	IF (IC.NE.2) GC TC 110	53
	JS = J - 1	54
	WRITE (IW.2015) JS. $XCUT(JS)$. NC. $XCUT(NC)$	55
	GC 1C 60	56
110	WRITE (IW.2G1G) NC. XCLT(NC)	57
	JS = JF	58
	GC TC 60	59
2000	FCRMAT (1H1 /// 1X.58H** BLACE SECTION COORDINATES IN TURBOMACHINE	60
	1 CRIENTATION - 1844)	61
2010	FCRMAT (// 4X.6HFRACT., 4X.7HSECTION.I3.12H FOR XCUT OF.F8.4.	62
	1 4H IN., 2X / 5X, 2HOF, 6X, 15H SUCTION SURFACE, 4X, 16H PRESSURE SU	63
	2RFACE / 4X,5HSURF., 7X,1H2,8X,1HY,9X,1HZ,8X,1HY,4X / 14X,	64
	$3.5H(1N_{*}), 4X_{*}, 5H(1N_{*}), 5X_{*}, 5H(1N_{*}), 4X_{*}, 5H(1N_{*})$ //)	65
2015	FCRMAT (// 4X,6HFRACT.,2(4X,7HSECTION,I3,12H FUR XCUT OF,F8.4,	66
	1 4H IN. (2X) / 5X, 2HOF, 1X, 2(5X, 15HSUCTION SUFFACE, 4X, 16HPRESSURE SU	67
	2RFACE) / 4X-5HSURF2(7X-1HZ-8X-1HY-9X-1HZ-8X-1HY-4X) / 7X-2(7X-	68
	$3.5H(1N_{*}) \cdot 4X \cdot 5H(1N_{*}) \cdot 5X \cdot 5H(1N_{*}) \cdot 4X \cdot 5H(1N_{*}) \cdot 1/1$	69
2020	FCRMAT (// 4X.6HFRACT3(4X.7HSECTION.13.12H FOR XCUT OF.F8.4.	70
	1 4H IN. 2X) / 5X. 2HOF. 1X. 3(5X. 15HSUCTION SURFACE. 4X. 16HPRESSURE SU	71
	2REACE1 / 4X.5HSURF3(7X.1H7.8X.1HY.9X.1H7.8X.1HY.4X) / 7X.3(7X.	72
	3 5+(IN.).4X.5+(IN.).5X.5+(IN.).4X.5+(IN.) 1 //)	73
2030	FCRMAT (4x.F4.2.2x.3(2F9.4.1x.2F5.4.3X))	74
2040	FCRMAT (/4X,18HL.E. CIRCLE CENTER.7X.2F9.4.2(22X.2F9.4))	75
250	FERMAT (4x,18HT.E. CIRCLE CENTER,7X.2F9.4.2(22X.2F9.4))	76
		77

.

*** INPUT GATA FOR COMPRESSOR DESIGN PROGRAM ***

•

A RUTOR TEST CASE

THE SPICIFIC HEAT POLYNOMIAL IS IN THE FOLLOWING FORM

: <*2³⁷⁴7***06 + 5**1³⁶2E=04*E + -6*8779LE=07*T**2 + 0*1399LE=09*T**3 + -0*78056E=13*T**4 + 0*15043E=16*T**5

STACK LINE TANG. TILT (DEGREES)	U
11P Sol 1011Y	1.3000
NUMBER OF Blades	38.0
HUB RADIAL STACK LDC. (INCHES)	5.5300
HUB AKIAL STACK LOC. (INCHES)	6.8400
TIP RADIAL STACK LUC. LINCHESI	10.0000
TIP AXIAL STACK LNC. LINCHESI	6.R400
PCTATICNAL SPEEE CRPM}	1:042.P
שרב יכטבאג שונהרד	210.55

PCLYAC™IAL CONSTANTS FOR THE FULLINING FUNCTIONS OF RADIUS WITH TIP = C AND HUB = 1 ●

CHORU/TIP CHORD

MAX. THICKNESS/CHORD

T.L. RADIUS/CHORD

L.E. & ADIUS/CHORD

ှုစု

0.0340 0.0490 -0.

0.0360 0.0390 -c.

0, 1060 0, 0090 -0.

2 01857 ART 1 1 VE AR 1 1 AR 1 1 AR 1 1 AL 1 AL 1 AT 1 C

IN JURITON DEVIATION IN 113 ANGLE	TURNING RATE Rafin	TRANSI TION POINT	MAX. THICKNESS POINT	CHOKE MAKGIN	ELADE MATERIAL DENSITY LB/(IN)++3
TITE MCUTFLED CARTERS	0.PT [MUM	5+ 5+ SHOCK	TABLE (L.E.REF.)	NONE	. .

MAX, THICKNESS LCCATION/CHORE DEVIATION ANGLÉ INLITZOUTLET TURNING TRANSITION/CHORD Idegrefs) arte ratio Location INCIPENDE ANGLE (Degrees) STREAMLINE Nomerk

- -

99999999999999 ခု**ဓု**ဓု**ဓုဓု**ဓုဓုဝု 23700270050

**13

Sec.

----5

190

STAGNATION PRE SSURE (PSIA)	23.476 23.532 23.532 23.559 23.69 23.69 23.090 23.735	STAGNAT [:Jh PRESSUR[PSIA] 35.759 35.759 35.759 35.759 35.759 35.759 35.759 35.759 35.759 35.759
STAGNATION TEMPERATURE (DEG.R.)	611,44 607,13 602,65 602,69 601,99 601,28 601,28 601,28 601,28 601,28 601,28 601,28	5 TACMATION TEMPERATUR (DEC.R.) 700.96 693.66 693.69 683.493 683.493 683.479 683.479 687.79
S TRE AML I NE SLOPE (DEGREES)	-5.16000 -3.61000 -2.45000 -1.07000 1.67700 1.67700 3.51000 7.5.10000 7.5.10000	STREAMLINE SLOPE (DEGREES) -5.42000 -3.72000 -1.11000 0.20000 0.20000 2.95000 2.95000 7.13000 7.10000 7.10000
TANGENTIAL VELOCITY (FT/SEC)	0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	TANGENTIAL VELOCITY (FT/SEC) 412,660 412,210 413,660 413,560 413,560 414,330 424,330 454,330 474,430 598,620 598,620 598,760
AXIAL Velocity (FT/SEC)	629.890 641.430 641.430 653.440 653.440 652.650 652.590 632.570 612.590 612.5000 612.5000 612.5000 612.5000 612.5000 612.5000 612.5000 612.5000 612.5000 612.5000 612.5000 612.5000 612.50000 612.5000000000000000000000000000000000000	AXIAL VELDCITY (FT/SFC) 521.320 523.570 533.650 533.670 534.670 534.670 541.670 541.670 541.670 541.670
AXIAL LCCATION (INCHES)	6.3220 6.3220 6.2980 6.24730 6.2470 6.1500 6.1500 6.1500 6.0570 6.0120	AXIAL LCCATION (INCHES) 7.3760 7.4420 7.4420 7.4420 7.4420 7.4420 7.4420 7.4420 7.4420 7.4420 7.4420 7.4400 7.4400 7.4400 7.4400 7.4400
STREAMLINE RADIUS (INCMES)	6 6 8 8 8 4 4 6 9 9 9 4 4 0 5 4 6 5 4 6 9 4 7 4 4 0 5 4 6 5 4 6 5 7 4 4 0 5 6 6 7 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6	57REAMLINE RADIUS (INCHES) 9.3010 9.7160 9.7160 9.7160 7.735 7.735 7.735 7.735 7.735 7.735 7.735 7.735 7.735 7.735 7.735 7.7250 5.2470
STREAMLINE Number		11 A A A A A A A A A A A A A A A A A A A

*** PRINTOUT FOR EACH ITERATION ***

٩	0.105966		0.143538	0.156404	0.170517	0.145475	6.239211	0.11444	0.234800	0.264275
C 2		0033179		019226	.0006664	.0.11717	0.0041053	.0089.465	.0165171	1204160.
SING	5.863464 5.5555		0.818561	0.748969	0.175120	C. 745740	C. 101655	C.654655	112212.1	450722
٨Q	-0-001001	-0-000015	0.0004574	0.0008 301	0.0009906	0.0009570	0.000 h c 43	n.0000328	-0.00141.5	-0.0039423
10	1+6+100*0-	-0.00161515	16/6100.0-	-0.0009571	-0.0003322	0.0005841	0.0020492	0.0044997	0.0482337	~ 2268310 ° ·
(1)204	0.961833	0.408175	0.877279	0.636550	0.786868	0.723733	0.643220	0.529233	0.362342	0.116873
(LIJI)	1.078591	1.030267	1.006954	0.783507	0.959684	0.935169	0.910026	0.885811	C.865705	C.878539
SKOC (1)	0.962065	0.908321	0.877318	0.836550	0.786910	0.723906	0.643730	0.530142	0,364188	0.119859
(1)))	1.078972	1.030393	1.006895	0.983499	C.959639	0.435064	0.909902	0.865814	C.866431	0.886176
8ETA21J!	1.035364	0.984042	C.9535C6	0.914705	0.867934	0.805204	0.135724	0-634764	591.054.7	0.286107
hf tal(J)	1.122965 2012121	1.044/24	1.065851	1. 47765	91 46 2	19/0121	015155*5	6694/5*	647696.0	110255
٦	- ~			'n,	۰ م		ь	ۍ د •		-
ITER							- . .			-

3 191

. :

** INLET STATION INPUT DATA **

ŝ

١,

4	0.105945 0.118215 0.119215 0.130649 0.156772 0.185217 0.185237 0.28855 0.28855 0.28855 0.25855 0.25855 0.25855 0.25855 0.25855 0.25855 0.25855 0.25855 0.255555 0.2555555 0.25555555 0.25555555 0.2555555 0.2555555 0.2555555 0.2555555 0.255555555 0.255555555 0.25555555 0.25555555555	•	0.105461 0.118240 0.115724	0.14350 0.156824 0.170647 0.170647	0.261005 0.214473 0.238621 0.265632	٩	0.135700 0.114.55 0.114.55 0.140724 0.144724	0.1.9 4.0 4.0 4.0 4.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	۲	
C1	-6.6007960 -0.0002582 .0002122 .000212269 .0002192 .0002192 .0002193 .0002375 .0002375	20	0110500*1- 9500000*1		- 6560441 - 5251471 - 0002296 - 0005296	20	-(.576046- 0560004 0260356 0360356		23	102030 102020 102000 102000 102000 102000 102000 102000
SIND	0.802768 849729 0.819729 0.819923 0.8199415 0.779757 0.779757 0.779757 0.759759 0.4697182 0.467182	5 I N B	0.862721 0.869626 1.899626	. 814010 . 7994C . 77575C . 746334	0.03796 0.055240 0.555240 0.553152	8 N I S	- 862727 - 844685 - 1515121 - 19025 - 19025		81 MB	
01	0.0003409 0.0022378 0.0022378 0.0001034 0.0000249 -0.0000249 -0.000249 -0.001265 -0.001265 -0.002451 -0.002451	40	- 0. 000082 - 0. 0000155	-0.0000128 -0.0000128 -0.0000128	-0.0005519 0.0000487 0.0002522 0.0017152	٨Q	-9.000000 -9.000000 0.0009000 9.000012		DV).00000000 0.0000000 0.0000000 0.0000000 0.000000
10	-0.0001288 -0.0001288 0.0001288 0.0001057 0.0001092 0.0001197 0.0001092 0.00011377 0.00011377 0.00011377 0.0001137	ł	0.0000178 0.000069 0.000069	0110000-0- 0110000-0- 9410000-0- 112000-0-	-0.000476 -0.000986 -0.0001152 0.0002952	1	- 2100000-0 - 2100000-0 - 2100000-0 - 2100000-0 - 2100000-0 - 2100000-0	0.000000 0.000071 0.0000171 0.0000108 0.0000295	WQ	01100000 0000000 0000000 0000000 0000000 00100000 00100000 00100000 001000000 001000000 001000000 001000000 0000000 00000000 00000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 00000000 00000000 00000000 00000000 000000000 000000000 000000000 0000000000
FUC (1)	0.95100 0.99500 0.919550 0.919155 0.919155 0.91812500000000000000000000000000000000000	KUC (J.)	0.957064 0.935494 0.935494	0.636503 0.636503 0.798552 0.759552	0.949450 0.32466 0.328932 0.143341	KUCTU	840739.0 0.935501 0.40110 548378.0 548378.0 548378.0	0.789.65 0.725551 0.555511 0.555511 0.555511 0.153259 0.143322	(f))0)	0.457368 0.497500 0.8704109 0.8784209 0.8784509 0.8725544 0.545451 0.545451 0.545451 0.545451 0.545491 0.144736
KICTJI	1. 078104 1. 0787944 1. 0784470 0. 948677 0. 948677 7. 948677 7. 949604 5. 949604 5. 949604 5. 949604	([1])	1.053281 1.053281 1.029475	0.958730 0.958736 0.958736 0.958736	141444 14141414 1414141414141414141414141414111111	K [C (1)	1.07976. 1.059276 1.059276 1.1.29465 1.1.5956	0.454670 0.454239 0.4962539 0.402538 0.465565 0.8663741 0.9663741	KICLIN	1.77363 1.353277 1.353277 1.025966 1.025966 0.985911 0.934246 0.934246 0.886769 0.886769 0.886769 0.886769
SKOCIJI	0.457944 0.495026 0.495024 0.495024 0.495024 0.47542 0.47542 0.4752 0.47752 0.45442 0.45442 0.45424 0.45424 0.4550734 0.45521 0.4552	אנוכ ניו	0.957392 0.935909 0.909403	0.788440	0-11-24 0-12-484 0-11-240	SKUC (1)	146739.0 19369.0 19369.0 546979.0 545958.0	0.788459 0.725307 0.644759 0.5464754 0.530514 0.115374	SKOCIJI	0.957J91 0.9559J0 0.9559J0 0.9799J0 0.9799J 7.9992 0.98457 0.4755J0 0.45314 0.55314 0.953140 0.115248 0.115248
SKICLU	1.078290 1.026475 1.026475 1.026475 0.09910 0.98555 0.99855 0.99855 0.885678 0.866124 0.866124 0.866124	SKIC(J)	1.078273 1.053361 1.029497	0.9929592 0.958592 0.934070	1.400100 1.886199 1.8861995 1.8661995 1.8661995 1.8661990000000000000000000	(F)))XS	1.079272 1.029485 1.029485 1.005922 0.982436	C.959561 C.959223 C.909223 C.895267 C.869741 C.869741 C.869741	SKIC(J)	1
BETA2(J)	1.0055357 1.0016141 0.954640 0.953555 0.914757 0.9167793 0.867793 0.867793 0.497325 0.497325	8ET42(J)	1.035432 1.01144 0.984265	0.867802 0.867897	0.28585	8ETA2(J)	1.035431 1.001144 0.994075 0.955521 0.914724	0.867895 0.83521 0.735710 0.634730 0.634730 0.646163 0.28637	8ET A2(J)	1.035431 1.011440 0.9984C75 0.9595475 0.914724 0.9657899 0.8657899 0.735728 0.634728 0.634728 0.286064
RE 7 A 1 (J)	894521.1 16101.1 16101.1 18880.1 18880.1 18880.1 18880.1 204199.0 204199.0 12199.0 12199.0	BFTAL(J)	1.122955 1.103029 1.064211	1.017795	0.992341 0.992341	461411)	1.122951 1.173258 1.084210 1.765860 1.047750	1.024480 1.010797 0.591460 0.974662 0.974662 0.963452 0.992119	8ETA1(J)	1.122952 1.103286 1.055860 1.055860 1.055860 1.055860 1.07996 1.01399 0.91399 0.91399 0.91299 0.92295 0.92276
٦	まのよう 4 m 4 m 9 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1	7		. W O C O		-		9 M 9 9 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4	7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I TEA	~~~~~	1768	~~~		3 M M M	ITER	*****	* * * * * *	1768	

with the second

•	0.109960 0.118237 0.118237 0.119596 0.119566 0.110684 0.110684 0.110684 0.18910 0.18910 0.18910 0.2009410000000000000000000000000000000000	٩	0.1001001001001001001001001001001000100
10	-0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000010 -0.0000010 -0.0000010 -0.0000010 -0.0000010 -0.0000010	10	4,0000000 10000000 100000 1000000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 10000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 1000000 10000000 10000000 10000000 10000000 100000000
8 I MB	00000000000000000000000000000000000000	SINB	0.8592727 0.864286 0.819121 0.819121 0.819121 0.819121 0.819121 0.899209 0.8992019 0.89229 0.89229 0.89229 0.89229 0.89229 0.89229 0.89229
70	0.00000000 0.00000000 0.00000000 0.000000	٥v	0.00000000 0.00000000 0.00000000 0.000000
NO		MO	0.00000000 0.0000000000000000000000000
(f)))	0.95706 0.935506 0.935506 0.878990 0.878990 0.875594 0.75559 0.55549 0.55549 0.55549 0.552480 0.552480 0.552589 0.552589 0.552589 0.552589 0.552589 0.555289 0.555289	(r 1 20 X	0.935500 0.935500 0.935500 0.935500 0.935500 0.755549 0.755549 0.555491 0.555491 0.555491 0.935900 0.878990 0.878990 0.878990 0.532490 0.5425500 0.5425500 0.5425500 0.5425500 0.5425500 0.5425500 0.5425500 0.5425500 0.54255000000000000000000000000000000000
KICIJI	1.0778065 1.0778065 1.029466 0.982512 0.982512 0.934246 0.934246 0.934246 0.98474 0.88975 0.98975 0.98975 0.98975 0.98975 0.98975 0.98975 0.98975 0.98975 0.98975 0.98975 0.98975 0.98975 0.98975 0.98975 0.98975 0.98975 0.98975 0.98975 0.98555 0.98555 0.99555 0.99555 0.99555 0.99555 0.99555 0.99555 0.99555 0.99555 0.99555 0.99555 0.99555 0.99555 0.9955555 0.9955555 0.9955555 0.9955555 0.9955555 0.9955555 0.9955555 0.995555555555	(LICIJ)	1.023806 1.023806 1.024806 1.024806 0.958251 0.958251 0.958251 0.958251 1.02380 1.00366 1.00366 1.00366 0.958261 1.00366 0.958261 0.958266 0.958666 0.958666 0.958666 0.958666 0.9586666 0.9586666 0.958666666666666666666666666666666666666
(r) SKOC ())	0.457141 0.909407 0.909407 0.81979036 0.81979036 0.518182 0.525104 0.525104 0.52550 0.525104 0.52552 0.525104 0.115777	(() 2035	0.9959220 0.9959220 0.9959220 0.9959220 0.9959220 0.9952520 0.9952520 0.9952520 0.9952520 0.9959520 0.9959520 0.9959520 0.9959520 0.9959520 0.9959520 0.9959520 0.9959520 0.9959520 0.95595200 0.95595200 0.95595200 0.955952000 0.95595200000000000000000000000000000000
SKICIJI	L.079272 L.0593976 L.0593976 L.0592642 J.982442 C.986462 C.966231 C.966231 C.866175 C.866175 C.866175 C.866175 C.866175 C.866175 C.866745	(L))) XS	1.078272 1.078272 1.059487 1.729487 0.982441 0.99229 0.889743 0.889743 0.889743 0.889743 1.029487 1.029487 1.029487 0.994041 0.994041 0.99743 0.889743 0.889743 0.99743
8ET A2(J)	1.035431 1.011440 0.984070 0.914724 0.867724 0.867729 0.867729 0.735716 0.286055 0.286055	8ET & 2 (J)	1.035431 1.011445 0.9914724 0.9914724 0.8914724 0.8914728 0.8914728 0.4914728 0.4914728 0.994932 0.994932 0.914424 0.914728 0.914
HETA1(J)	1.12952 1.103428 1.065860 1.065860 1.07750 1.07469 1.012796 0.991939 0.992125	(C)1414)	1.122952 1.1034210 1.065964 1.065964 1.047756 1.0794939 1.010796 0.991939 0.992115 1.122992 1.1229922 1.1229922 1.1229922 1.1229922 1.010796 0.991939 0.992113 0.992113
n		-	NA & KO POPO
1168		111	

ł

Y,

*** TERMINAL CALCULATIONS WITH THE STACKED BLADE ***

.. INPUT DATA CONNECTED TO THE BLADE EDGES SO

	STREAMLIN	V	X TAL	AKIAL	TAN	46EM LIAL	~	TRE AML I NE	AXL	Ĭ	AX 1 A1	TANCENT	_
	I I NCHES			VELOCITY		/ELOCITY		ADIUS	LOCA	NOIL	ELOCITY	VEL OC I	
				1336 11 14	_	173671		(INCHES)	I INCI	HES) (F1/SEC1	1F1/SE	
	9.4345	ė.	3456	629.914		.0		- 100 - 0	:				
	0685.6	÷.	717E	641.449	_					2	122.126	4.914	28
	8.7690	•	2517	648.851							529.547	413.4	19
	9.4393		2132	652.916	_	52			~	802	533.202	417.2	-1
	9.0950		2467	661.662		,		0114-9		*	535.232	423.3	2
	7.7350		2181			;		0460 8		124	536.029	127.5	04
	7. 1550							1.17.30	7.50	96	536.875		
		5.						7.4330	7.54	101	100.055		
		•	5061	632.941		•		7.0780		00			
	941.6.0	••	1075	612.630		•		6101.4					2
	0.000.0	••	0571	576.290		••		6.2970				536.6	.
	1604.4	••	0125	484.793		•		5.8649	54 ° 4		587.104		~ ~
L.E.RAD.	MAX.TH.	TERAD	MAKATH	TO AN . OT									
/CHCRD	/CHORD	/ CHCRO	PTALOC	I DCATION			. 110.581	ELEMENT	AFRO.	LOC. CF MAK	LOC A	L BLADE FO	ACES
			/ CHURC	/CHOND	TURN R	ATE (DEG)	. ATGLE	201 101 14	CHORD	CAMP.PT.	RADILS	FOR AN LAL	TANG.
0400-0	0150 0	0,00 0										11110011	IN1/SATI
0.0067	0.0178	00000		0.6653	0.293	3.98	59.13	1.3000	6610.5	0.6562	9,352	1112.51	- 3606
0.0014	0.0418	0.0016			0.312	10.0	57.92	1 • 3429	2.0094	0.6452	010.0		
0.0082	0.7454	0.0003	0001-0			02.0	14.95	1.3898	2.0087	0.6243	9.741	12.5357	
0.0089	0.070	0001	0.5000			0	54.80	1.4417	2.0183	0.6018	9.424	11.5185	- 7.80.00
0.0098	44 50 * 0	0.0100	0.5000				69°26	6664"	2.9061	0.5771	8. C97	11.2370	C168.7-
0.0106	0.0591	0.0109	0.5000	0.4405			90.00	1.5665	\$ 800 ° 2	0.553	1.754	10.5255	-1.7726
0.0115	0.0641	8110.0	0.5000	E164-C	14467.0				\$6.0.2	0.5313	7.394	9.7686	-7.7183
0.0125	0.0695	0.0128	0.5000	E06E.0	1056.0	11.22			4110-2	6 1 1 5 " 0	7.013	8.4541	-7.0300
0.0136	0.0756	0.0139	0.5020	0.3462	0.9641	13.16	19.25	1000	2010-2	0.5056	6.403	7.98 38	-7.5678
0610-0	0.030	0.0150	0.5000	0.3042	1.000	15.62	29.40				6.15C	6.7686	-7.3481
										1642.0		5.3788	-1.565.
IAC. S	1 JYL 3												
ANGLE			N. BLAUE Angle	IN ANGLE	DEV. D	UT.FLON 0	UT. ALADE	OUT.ANG.	TRAV. PT.	SPALCC.	COV. CHAN.	NIN. CAR	
(DEC)	(DEG)	(DEG)	10561			ANCLE	ANGLE	ON CONE	BL.ANGLE	AS FRACT	AS FRACT		
					10201	10161	(066)	(050)	(066)	OF 5.5.	CF 5.5.	MARGIN	CUV CHAN.
2,56	9 00.0-	54.34	61.78	61.17	4.47	50.13							
2.84	-0.00	53.20 (tC.35	60.35		57.45			C2*66	0.4466	4226.0	C.0 199	0.3884
41°E	9 60.01	52.12	58.99	58.98	9.24	56. 18			96.15	0.6362	4696.0	C.0315	0.3800
	-0.00 6	51.07	57.64	57.64	4.27			AC. 9 2 C	50.03	0.6.)52	0.3445	C.0239	J. 3642
4.4	-0.00	5 ED.J	96.29	56.29		14.05		00.00	E0***	9.5734	0.426	0190	0.1198
4.06	-0.0	56.98 5	54.52	54.93		49.73			53.30	C • 2 • 0 1	544.0	C.0161	0.2433
4.40	-0-69 5	51.91 5	53.52	53.53	1.8.4					0 • 5 · 5 3	0.4547	6410.0	***/*0
4.74	• •	16.83 5	52.10	52.11	10.5	5 Y	00.11		10.24	· · · · · · · · · · ·	1.5.1	0810-3	0.1444
5.07	5 00°0	15.84 5	11.11	50.17	5.97	14.17		87.07	40°45	0.4296	0.510	222 Ca.	0.1512
5.35	5 60°0-	15.18 4	En. 21	49.78				10.91	43.46	P7 86. C	0.6121	4660.0	0.014
5.43	0.00 5	6.84 5	11.41	50.96	0, 78		10.02	21.15	40.18	0.34.3	1.6567	0.998	0.000
			1			10.01		8.27	10.01	414F D	0.64H	1.00	· · · · · · · · · · · · · · · · · · ·

Contraction of the second

•• ULACE SELTION PROPERTIES OF

A ROTOR TEST CASE

.

-

٦,

	31 I S
l h .	SECTION TORSION CUNSTANT
. 6.840	IMAK SETTINC NNGLE
IG LINE IN COMPRESSOR	MOMENTS OF INERTIA THRINGH C.G. IMIN IMAN
UF STACKIN	SECTION AREA
AXIAL LOCATION	HEADE SECTION (CHORDENALES C CHORDENALES C
j, h	SECT104 NC1104 ANGLE CO1641
NUMMER CF HLACES +	STACKING POLIN LCONCLANES L L

	THIST	STIFFNESS	(1h.)	0.007107	0. C07457	0.008155	0. 008851				1410-0	10, 11	0.017	0.4400	0.1.36	L. (¢ D)	0	· · · 0	0. 743	U. 74	161 . 0	U., 205	0.,805	6.2461	0. 763	0. 155	L. 708	1. 252	H2		104			
SECTION	TORSTON	CUNSTANT	* • • 1 • N 1 >	0.000108	C.000125	0.00016	P020001					-0.000	00.1	- 0.014	0.920	0.0.25	+200*-	-0.01	11 0 0	0.0 24		5100.0-	2100.1-	1000°0	• • : 0 •	.00.1	0.0326	1200.	0.0275	.002.	1100.0	1000	0,010	- 1 J
IMAX	SETTINC	NUCL E	(DE G.)	60.146	19.94	58.350	440 × 1 4			(IN)		.0146	0.1000	2000	· 1009	000	.50.0	- 60° C	. 7360	0.0	0.02.	0.00.1	1.10 1	0 07*1	1.30.0	0.04.5	1.501.1	(-24-1	1.73 /6	1.40.0	1.90.0	0766.1	000	
F INERIIA	H C.G.		~ [2.] • • 4	0.02657	0.027 P3	C.03052	-1110°u	2 2 4 4 4 4			5110	C14C.	144	. 2426	1447.	. 7: 54	.2604	1050	-0584		.1.0	. 7 2 4 4	.0.14	1.4.0		2010	144 J	106.	0.44	2442	5465		1.44	rt lu
MOMEN'S O	THROUG	2		160000.	910000.0	\$ *0000 ° c	H61 CAD -L					. 0 00rr .	1 91 1 1 1	1	HIUC.	J	1	·					· · ·	· · · ·	· · · · · ·			• • • •	12 0.		·C +10C.	• C	. 14	. 11/ 3.
SECTION	ARE A		2 * * (* N] }	J.10412	0-10414	U. 114 10	0***1**	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		•	· · · · · · ·	- (11)	V				1. DE . 4.	- non -				1.1.					1.55	1.7370		L.4.1.	· ••• ••• •	uci0	2. 24 54 - 5
51.5.1.0%	HULNALES	T .		0.0243	1.32.1	5 1 6 (-	3666.1	NA11 5	HS		1124	5247	1.1.			2475	1554		• • •			11.	1		<pre></pre>		2				. 4 4 1	: < +1). i''	H114
107-16	шр • СШ	-		C	J. 14 '5	0	1.000	1.			. 0124 .	: :	· · · · · · · · ·	·0. /)			• • • • • • • • • • • • • • • • • • • •						• J 2 2 2 2 4 •					••••••••••••••••••••••••••••••••••••••	• 10 + 6 - 2 •	• • • • • • • • • • •		•1, U.U.U.	. 2100.	
SECTION.	SVILS VACES				7.15 7.1	111.44	54 · 15	SCOUNT V.		(14.)	ċ	0.71/4		0 - 000 ·				0.6000			0.4000 -0		1.1100 0				• • • • • • •	5 5700 · 1		1.4000	1.9000	1.9449 O.	2.0000 0	2.0067 0.
Alled of	- 114-11. -	-				• 11 5	(st * •	. 14	<u>.</u> ~	-	.1.				۲. i	7). r	r	, .	520												561	7 4	3	
STACK IN	LITING L						7. JU • T	L CCC3, IN	•	() () ()	114 0.						• 0 • • • •															0.00		. 0 . 11
21 G T L C N							•	11-12 NO.	-		-	•								•														0.0 7.000
HI ACH	20-	•	~		•••	•, .	J	۶t.			ر ٿ ،				• •	•	:,	•.	• •	;,	•-		•	: -	-				•	•	:.			Ċ

1 - 5 - 1 - 1	1. 1	
- N.J	1- 11- COMP4	
	ALACKING LIN	
	Localler F	
UPERTIES F	141+4	
SECTION PR	34.0	
10118	HLADE S	
:	R CF	
	NUMPE	

		NUMPER CF	F HLADES =	34.0	41 1 1 1 T T	CALLOD	JE STACKIN	11 - NI 1- 9	AL VE ANAMED	- 5.84C	;	
ELADE SI	FUTICA	STACKIN	N. FOLKT	SECTION	11.15 1.6 1.6		SECTION	MINENT'S	Healts		R 16.3	5 11.3
NC.		1		ANGLE	L • U • · · · · · · · · · · · · · · · · ·	~	A4! A	1 M L M	••••••••••••••••••••••••••••••••••••••	2 1 1 1 V C		
1		("N] }	11.1	(Df G.)	(1,1)	11	(**)**S	1.1.1.				
<u>.</u>	9.550	1.0072	. 363.	55.644	1.0072 5.				1.015 ZA			
÷	9.300	1.0035	1 3 5 1	54. ZHO	1. 12 ¹¹ 3.	1.12.		16.77.5.				
- a	5000		6 4 4 2 4 2 4 4 5 4	52.783	1+0.0-1	1 = T ~ •	J. 4 4 7 1	11000°C	· ***	(26.2)		5 . P(13 *
v		5c.3.3 • 1		HH1.10	1 JJK		·-16420	0.011.03.0	J. C4 914	11.11	17 50'0	

÷.

A

٠.

COURDINATES	нS	1 . N. J	2 0.0192	986 C * D	6 0.0301	4 0.0629	1 0.0744	0.00%6	4 0.0929	1 0.1003	8 0.1 C58	• 0.1104	2 0.1131	9 0.1150	6 U.I 148	0.1134	9 0.1096	5 0.1047	9 0.0475	1690.0 2	7 0.0786	2 0.3667	e u.0531	C n.0400	1 0.0341	5 C.0199	
	4 I	(IN -)	610.0	-C.	000,0	- C - 00 F	0.002	00.7 0	600°0 0	400 ⁻ 004	400.0 0	300°0 0	0.000	00 C -00 6	200.0	900-5 D	00 0 001	200 C .00 Z	0.000	C C.005	+00-0 D	0 C.003	100.0	1000-1	C 0.035	510.0 0	
SECTIO	ب	(IN.)	•	0.014	0.100	0	0	0.400	0.500	0.400	0.700	0.000	0.6.0	000-1	1.100	1.200	1.300	1.400	1.500	1.400	1.700	1.80	006-1	986.1	2.000	2.006	
ORD INATES	E E	("N]	0.0180	0.0342	0.0446	0.0541	0.0483	0.0773	0.0847	C100.0	0.0442	0.1003	0.1027	1101.0	0.1046	0.1034	0.1001	0.0956	6480.0	0.0819	0.0724	0.0416	0.0493	6160.0	0°0324	0.0185	
NO. 7 CO	Ì	(I N.)	0.0100	0.0000	0.000	00000.0	0.0001	0.0002	0.0004	0.0001	0.0010	0.0015	0.0021	0.0028	0.0036	0,0043	0-0046	0*00*0	** 00 * 0	0.0039	0.0011	0.0022	0.0011	0000000	0.0047	0.0105	
SECTION	-	(IN.)	••	0910*0	0.1000	0.2000	0.3000	0.44000	0.5000	0.000	0.7000	0.8000	0.0000	1.0000	1.1000	1.2000	1.3000	1.4000	0005-1	1.6000	1.7000	1.8000	1.9000	1.9876	2.0000	2.0362	
ORUINATES	SH	(0.0169	6660°0	4640.0	0.0536	0.7627	0.1708	0.0774	0.0833	0.0876	0.0413	0.0434	0.0950	2~60.0	0.3943	0.0415	0.0878	0.3823	0.0754	0.3667	0.3569	0.3458	0.0345	n.0305	2110.0	
NO. 6 CO	đi	1.1.1	0.0164	-0*0000	-00.00-	-0.0044	-0.0014	-0.0016	-0.0017	-0.0018	-0.0016	-100.0-	-0.000-0-	-0.0003	10001	0.0016	0.0022	0.0026	U.0027	0,0025	0.0022	0.0016	0.0009		0.0039	0.0172	
SECTION		(14.)	•	0.0169	0.1000	0.0200	0006-0	0.4000	0.5300	0.0000	0.7000	0.8000	0.9000	1.0000	1.1000	1.2000	1.3000	1.4000	1.5000	1.6000	1.7000	1.8000	1.9000	1.9991	2.0000	2.0063	
SRUINATES	+ 5	(1 1)	0.4158	0.7316	E040.0	0.496	0.0579	0.0652	0.0711	0.7765	0.CR04	0.083P	0.0357	0.3472	0.2875	0.4468	0.0945	0.2613	0.0761	0.0700	0.6621	0.0531	0.0425	0.0318	0.4286	0.015e	
NC. 5 CC	Ţ	(- 1 -)	0.2158	-0.0000	-0.001	-0.0014	-0.1620	-r.024	-0.0027	-1.0029	-7.0029	-0.5427	-0.0022	-0.0016	-0.0001	3.0434	0.0014	0.5020	0.0023	0.24	0.0022	0.001	0000.0	-0.000	0.0031	0.0158	
SECTION 1	-	(1).)	.0	0.1158	0.1000	C. 2000	C. 1100	0.4000	C. >000	C. 6000	C. 1000	C. 8000	0.000	1.2000	1.1000	1.2000	1.3000	1.4000	1.5000	1.0000	1.7000	1.8005	1.5000	1.9906	2.0000	2.0064	

** BLACE SECTION PROPERTIES OF

A ROTOR TEST CASE

	E SECTION THIST	11 STIFFWESS	0 3.012246	3 3.013665	14 014356	ICRD I VATE S			v237	0. 481	U., the	C.)885		0.1256	0.1490	L.1527	C.1421	0.1 1.0	0×1 1×2
I.	56CT 1CN TORSI CN	CCNSTAN LTN. D.	0.00056	C.00.7	000	NC. 12 CC	Ĩ	("N")	1120.37	ŗ.	1,00.	0.0127	1610.	C-0247	0.0241	094C	4160-0		6740.0
- 6.640	IMAX SETTINC	ANGLE I DEG.)	49.562	45.595	43.269	SECTION	-	('N')	Ĵ	0237	0.01.0	0.002.0	0.06.	000+*7		1000	. 70:0	. 8000	000
N COMPRESSOR	OF INERTIA UGH C.G.	1 11W.) 004	3 0.04621	10.05146	1 0.05414	RDINATES	ž	(IN.)	0.0225	0.0456	0.0618	0.0808	0.0978	0.1127	0.1251	0.1360	0.1441	0.1509	1551.0
NG LINE I	MONENTS THRO	1 N N N	0.00017	0.0026	0.00014	0. 11 000	4 I	(I N I)	0.0225	0.000	9.00.0	3.0066	0.0128	0.0167	0.0200	0.0229	0.0254	4120-0	7.0289
OF STACKI	SECTION AREA	11N.) ++2	0.17892	0.19936	0.20979	SECTION N	ہ۔	(IN.)		0.0225	u.107	9.2%	0.306.	0.4000	0.5000	0.6000	0.7000	0.8000	0.9000
NEIAL LOCATION	ADE SECTION		068 0.0567		100 0.3869	DORDINATES	SH	(IN.)	0.0214	0.0432	0.0576	0.0742	0.0893	0.1021	0.1129	0.1224	0.1295	0.1354	1961.0
•	NG C. G.	ה ר 11,	0.1		5 1.0	ND. 10 LC	đ	("N")	0.0214	•	0.0025	0.0056	0.0043	0.0138	0.0130	0.0149	0.0166	0.0180	0.0192
0.86 .	SECT I SETT I	ANGL (DEG.	44.64	4	43.13	SEC T10N	ب	([N")	•••	0.0214	0.1000	0.2000	0.3000	0004-0	0.5000	0.6000	0.1000	0.8000	0.9000
BLADES -	G POINT	1	:.0567	0400.0	0.0869	ATES	Ś		E 0 2	409	537	683	619	92 K	023	107	169	221	255
NUMBER CF	STACK IN CODRC		1-0068	1.0069	0010-1	9 COCRDIN	- -		203 0.0	0	015 0.0	032 0.0	048 0.0	0.0 640	076 0.1	0 000	1.0 990	1.0 901	119 0.1
	SECTICN RAD-	LCC.	7.550	7.050	6.800	TION NC.	<u>۲</u>	V.1 (IN	0.0	C233 -0.	1000 0.0	2000 0.0	0000 0000	1000 0.0	5000 C.0	6000 0.0	7000 0.0	8000 7.0	0.0 0009
	BLADE	.0N	•	22	:2	3EC		Ξ		0	5							.0	

÷

.

-

,

•

0.1771	0-1741	0.1733	0.1449	0.1586	141.0	0.1328	0.1153	0.0952	0.0722	0.0522	0.0365	0.0257
16+0-2	0.04.30	C.042D	C.0399	0.0360	C.0327	0.0276	C.0216	0.0146	C.0066	0.0000	C.0248	0.0257
1,0000	1.1000	1.2000	1.3000	1.4000	1.5000	1.4000	1.7000	1.8000	1.9000	1.9768	2.0000	2.0024
0.1571	0.1562	0.1534	0.1401	0.1409	0.1305	0.1104	0.1033	0.0861	0.0445	0.0489	0.0376	C.0241
0.0297	0.0277	0.0240	0.0274	0.0254	0.0226	1010.0	0.0149	0.0101	0.0047	0.000	0.0107	0,0241
1.0000	1.1000	1.2000	1.3000	1.4000	1.5000	1.6000	1.7000	1.8000	1.9000	1.9799	2.0000	1400.5
0.1480	0.1403	0.1382	2661.0	0.1268	0.1176	0.1071	0.0938	9.0787	0.0616	0.0458	0.037U	0.0227
0.0200	0.0203	0.0199	0.0190	0.0176	0.0156	0.0132	0.0103	0.0010	0.0033	0.0000	0.0083	0.0221
1.0000	1.1000	1.2000	1.3000	1.4000	1.5000	1.6000	1.7000	1.8000	1.9000	1.9824	2.0000	2.0051
0.1272	0.1267	0.1250	0.1206	0.115C	0.1068	0.0975	0.0857	0.0724	0.0572	0.0429	0.0356	0.6213
0.0127	J.0134	1610.0	0.0127	9110.0	0.0100	0.00.0	0.0010	C.0C48	0.0023	0.0000	r.0u68	0.0213
1.0000	1.1000	1.2000	1.3000	1.4000	1.5000	1.6000	1.1000	1.8000	1.5000	1.9844	2.0000	2.3057

ŝ

5

ŀ

noren Note N

.

A ROTOR TEST CASE

** BLADE SECTION PROPERTIES OF

	SECTION THEFT	T STIFFNESS	1 (h.)	0 0.015053	9 3.015746	3 0.616380	0.017023	RDINATES	, 1	("N])	0.0279	0.0587	0.0686	+070 °C	0.1110	0.1304	0.1490	0.1661	0.1824	0.1578	0.4119	0.2249	0.2369	0.2478	0.2573	0.2659	0.2730	U.2808	U.2861	0.2403	0.2536	0.2560	0.2966	0.2463	0.250	8262.0
	SECTION 2002 CON			0.00104	0.00119	C.00136	0.00155	VD. 16 COC	đ	(IN.)	C.0279	.º.	6.0046	C.0165	0.0280	9860.0	6640.0	1960.0	0.0684	C.0772	0.0656	0.0434	C.1004	c.1044	0.1115	1170	0.1219	.1262	0.1296	6261.	0.1343	9961.J	0.1363	[1]	0.1356	1461.7
. 6.840	IMAK Setting	ANGLE	1066.1	140.04	37.701	34.957	32.252	SECTION 1		(IN.)	•	9.20.0	0.0500	0.1000	0.1500	0.002.0	0.2500	0.3000	0.3500	0004.0	0.4500	0.05.0	0.4500	0009	0.6500	0.1000	0.7500	0.00.0	0,8500	0.9000	0.9500	1.0000	1.0500	1.1000	1.1530	1.2000
COMPRE SSOR	F INERTIA	->-) ->-)	1 I.N. 1 004	0.05688	0.05945	0.06226	0.06502	SNATES	HS H	IN.)	.0269	.0558	.0649	.0839	.1018	.1166	.1350	.1499	.1640	.1775	.1495	.2006	.2111	.2208	.2293	.2367	.2432	.2489	.2532	. 2567	.2594	.2613	.2616	.2410	.2546	.2574
AG LINE IN	MOMENTS O		(1N.	0.000447	0.000597	0.000787	0.001051	. 15 COORD	41	11N.) (0.0269 0	• •	0 0400 0	0.0136 0	0.0227 0	0.0314 0	0 1960.0	0.0476 0	0.0550.0	0.0620 0	0-0685 0	0.0746 0	0.0802 0	0 6580 0	0.0448 0	0 6660.0	0.0975 0	0.1006 0	0.1032 0	0.1052 0	0 1901.0	0.1077 0	0.1080 0	0.1079 0	C 1101.0	0-1057 0
OF STACKIN	SECTION		(IN.) **2	0.22047	E4162.0	0.24191	0.25318	SECTION NO	.,	(IN.)	•	0.0269 -	0.0500	0.1000	0.1500	0.2000	0.2500	0.3000	0.3500	0.4000	U.4500	0.5000	0.5500	0.6000	0.6500	0.1000	0.7500	0.6000	0.6500	0.9000	0.9500	1.0000	1.0500	1.1000	1.1500	1.2000
L LICATION	SECTION		(11.)	0.1031	0.1226	0.1430	0.1666	INATE S	HS	IN.)	.0259	.0533	.0615	.0780	.0935	.1083	.1224	+SE1 -	.1476	.1593	.1696	.1792	.1882	.1969	- 2042	.2108	.2162	. 2209	.2244	. 2273	. 2295	1162.	1162.	.2304	. 2290	.2269
AXIA	BLADE	••••	(IN.)	1110-1	1.0119	1.0126	1.0132	14 COORD	e I	IN.) (.0259 0	•	.0034 0	.0108 0	0 6110.	.0247 0	.0312 0	.0373 0.	.0431 C	.0486 0	•0536 0	.0583 0	.0626 0.	.D666 0.	.0704 0	.0737 0.	.0764 0.	.0786 0.	.0845 0	.0820 0.	.0831 0.	.0838 0	.0840 0	.0838 0	.0830 0.	.0 4180.
38.0	SECTION	ANCI F	(DEG.)	40.451	37.426	34.537	31.608	ECTION NO.		(IN.)	•	0.0259 -0	0.0500 0	0.1000 0	0.1500 0	0.2003 0	0.2500 0	0.3000 0	0.3500 0	0.4000 0	0.4500 0	0.5000 0	0.5500 0	0.6000 0	0.6500 0	0.7000 0	0.7500 0	0.8000 0	0.8500 0	0.9000 0	0.9500 0	1.0000 0	1.0500 0	1.1000 0	1.1500 0	1.2000 0
BLADES -	1N104 9		(INT)	1E01-0	0.1226	C.1430	3.1666	ATES S	~	~	248	506	579	719	851	976	097	207	116	014	498	579	65c	729	191	846	964	683	963	987	005	916	017	004	9 9 6	97.P
NUMBER CF	STACK JA		111.1	1110-1	1.0119	1.0126	1.0132	3 CCCRDIN	4	(I) (I)	248 0.0	0.0	026 0.3	0.0 0.0	0.0 IEF	180 0.0	227 0.1	272 0.1	1.0 416	353 0.1	1.0 0.1	424 0.1	456 0.1	485 0.1	512 0.1	536 0.1	557 0.1	574 0.1	588 0.1	400 0°1	608 0.2	613 0.2	614 0.2	612 0.2	606 0.1	1.0 192
	SECTION			6.550	6.100	6.075	5.850	TION NC. 1	<u>ن</u> د ب	N.) (.N	0.0	0248 -0.	0.0 0.0	1000 0.0	1500 7.0	2000 0.0	2500 0.6	3000 0.0	1500 0.5	0004	1200 0.0	5000 0.0	5500 P.C	5000 0.G	6500 0.G	2000 0.0	7500 0.0	0.0 0008	8500 C.G	0000 0.0	9500 0.6	0000 0.0	0500 C.Q	1000 0.0	1500 0.0	2000 9.0
	el ade			11	-	5	16	SEC		Ĵ	.0		0		•	.0	•		•	0	0		0	õ	ō	•	•			•	0	1			-	

197

ž

£ 4.5

		4 CB 2 . 0	0.2770	1040			0.2492	0.2371	7166.0			0.1902	0.1711			0.1253	0.0000		2400.0	0.0689	0.0317	
		A 227"D	0.1250	1201			2.001.0	9.1007	0.002			C.0719	0.0600			2260.0	0140		0000.0	0.0000	1160.3	
. 1600		1- 2000		1 - ADOP			1.5000	1.5500	1.4000				1.7500	1 4000		0061.1	1. 1000		3061 1	1.9904		
0.2534			0.2420	0.234.2	1.224			0-2075	0.1959	1.012			0.1515	0.1112		0.11.0	0.0923			0.0639	2010.0	
0,1038			0.0480	0.0941	0.0804			0.0785	0.0718	0.0444			0.0471	0.0371			0.0145	100 0		0000000	0.0302	
1.2500	1 1000		0.0cc • 1	1 - 4000	1.4500	E A MAR		0044.1	1 • 6000	1.4500			1.1300	1.6000			1.000	1.9500		1.9600	1.9403	
0.2232	0.2188		0512.0	0.2078	0.2002	0.101.0		0791-0	0.1726	0.1608	0.1482			0.1194	10.10		0.0857	00665		8650-0	0.0289	
0.0802	0.0741	0.076		0.0724	0.0689	1.0447		1000.0	0.0549	0.0492	0.0429		1000.0	U.0287	0-0207		0.0120	0.00.7		0.000	0.0268	
1.2500	1.3030	1 26.00		1.4000	1.4500	1.5000			1.6000	1.6500	1,7000			1.8000	1.8500		1.4000	1.9500		A004 * 1	1.9957	
· * * 1 · 0	0.1005			0.181.0	3.1744	0.1671			0.1509	5041.0	0.1303		*****	0-1064	0.0929			0.4631			0.0272	
0.0564	~.0568	8440 0		6260*1	C.U498	0.0468	0.0414		9560.0	0.0355	0.0310	1400.0		6020.0	0.0152	0000	2600.0	0.0028	0000		2/20.0	
1.2500	1.1000	1 4500		1.1000	1.4500	1.5000	1.5500		0000.0	1.6500	1.7030	1.7500		1.4000	1.8500	1 6000		1.9500	1 0736		8,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

0F
531
ROPERT
ECT TON
BLACE S
:

A ROTON TEST CASE

	SECTION	12141	STIFFMESS			0.0179529																								
[N.	SEC TION	TORS I ON	CONSTANT			0.001681																								
- 6.64 C	IMAX	SETTING	ANGLE		010 90	26.665																								
NONPRESSOR	OF INENTLA	16H C.6.	ITAK	0.040.20		0.06922		CINALES							95110	0.1719	0.1928	0.1126	0.7113	0.2465	0	0.7793	0.2926	0. 045	0.4154	0.3253	0.5339	0,3408	0.3465	1166.0
NG LINE I	MOMENTS	THRO		0.00147	0.00210	0.00162	10,000				0.0033	0.0053	0.001	0.0164	0.0511	0.0650	0.0783	0.090	0.1026	0.1137	0.1240	0.1335	0.1423	0.1502	0.15.4	0.1638	0.1695	0.1743	0.1783	0.1815
UF STAUKI	SECT TON	AREA	11 N. 1 447	0.26641	0.28179	0.27087	SECTION N				0.0285		0001-0	0.1500	0.2000	0.2500	0.3000	0.3500	0.4000	0.4500	0.5000	0.5500	0.6000	0.6500	0.1000	0.7500	0.8000	0.8500	0.9000	0~3500
IAL LOCATION	DE SECTION	CURDINALES	(1 N -)	0.1976	0.2346	E102-0 0	COLNATES		((W , 1	0.010	0.0663	0.0781	0.1077	0.1353	0.1617	0.1867	0.2100	0.2321	0.2529	0.2722	0.2902	0.3067	0.3216	0.3351	0.3475	0.3569	2.5687	0.3767	0.3834	C.389C
AX	BLA	 - -	(TNT)	1.013.	1.011	1.0130	. 18 000		(IN -)	0.0305		0.0053	0.0239	0-0418	0.0589	0.0752	0.0907	0.1053	0.1192	0.1321	0.1442	0.1554	0.1657	0.1751	0.1837	+ 1 + 1 • 0	.1983	0.2042	1.2092	1.2132
38.0	SECTION	ANGLE	(DEG.)	28.417	25.397	27.550	SECTION NO	_	(EN. I		0.0305 -	0.0500	0.1000	0.1500	0.2000	0.2500	0.3000	0.3500	0004-0	0.4500	0.5000	0.5500	0.6000	0.6500	0.1000	0-7500	0.8000	0.8500	0.000	0.4500
F BLADES .	NG POINT	L L L L L L L L L L L L L L L L L L L	(18.)	0.1976	ú.2346	0.2073	A AT ES	HS.	<u>.</u> .	1292	C622	C731	2985	1223	1450	1666	1866	2055	2235	2400	553		1282	424	Dae	132	1214	1279	1332	52E
NUMBER C	STACKI	L	(IN.)	1.0132	1.0115	1.0130	17 COORD 1	4 H	N.1 <[-	0 2620	••	0051 0.	0201 0.1	0345 0.	0482 0.	0013 0.	0738 0.	0926 0.	0967 0.	1071 0.	1167 0.	0 0021			0 0041	1540 0.	1592 0.	1637 0.		E 103 0*3
	SECTION PAD		(IN.)	5.600	5.350	5.530	CTION NO.		1) ("N]	• c	.0292 -0.	.0500 0.	.1000 0.	.1500 0.	-2000 0.	-500 0.	0000	3500 0.	-000 0 ···	4900 0.	0000	•D 0000		00000		•0 00c/	-C 000A	.0028.	10000	*D 0064
	BLACE	.DN		11		19	SE		Ĵ	Ö	Ŏ	Ö	Ö	Ó	Ó	ő	ő	ó	ŏ	ő (Š	50	ō	5	5			•	ە د	5

.

.

Lard The A

0.3540 0.3560 0.3560 0.3550	0.3532	0.3361 0.3275 0.3163	0.2884	0.2550	0.1750	6090°0
0.1838	0.1774	0.1726 0.1665 0.1591	0.1400	0.0986	0000 0000 0000 0000	000000
1.0000	1.2000	1.4500	1.5500	1.7300	1.8500	1.9292 1.9292 1.9500 1.9632
0.3930 0.3952 0.3952 0.3950	0.3933	0. 1755 0. 3662 0. 3539	0.3395	0.2839 0.2549	0.1894	0.0890 0.0890 0.0357
0.2162 C.2182 0.2190	0.2172	0.2048 0.1978 0.1891	0.1785	0.1343	0.00 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.010U -0.010U C.0357
1.0000	1-2000	1.3500 1.4000 1.4500	1.5500	1. 7000	1.8500	1.9463 1.9463
0.3407 0.3420 0.3421 0.3421	0.3346	0.3221 0.3137 9226_0	0.2934	0.2415	0.1992	001-00 001-00 001-00 001-00 000-00 00
0.1736 0.1736 0.1739	0.1693	0.1612 7.1554 3.1494	0.1402	7.1145 7.1068 7.6925	1460°C	
1.0000 1.0500 1.1000	1.2500	1.4500	1-5500	1.6500	1. 3500	1.9000 1.95349 1.9590 1.9684

•• BLADE SECTION COORDINATES IN TURBOMACHINE ORIENTATION -

A RUTOR TEST CASE

SECTIC	A 1 FOR	XCLT OF 5	9.4250 IN.	SECTIO	N 2 FOR	XCUT OF	. 3000 IN.	S ECT 101	N 3 FCP	ICLT OF 9	- 05 CO IN-
	SURFACE	PRESSUL	4E SURFACE Y	SUCTION 2	SURFACE	PRESSUL 2	RE SURFACE Y	SUCTION 2	SUR FACE Y		E SLRFACE Y
(IN.)	(IN.)	(IN.)	(IN.)	(IN.)	(14.)	(IN.)	()	1 IN. 1	(IN)	(IN.)	(IN.)
-0.48A7	-0.8562	-0.4677	-0.9670	2864-0-	-3.8513	-0.4763	-0.8678	-0.5169	-0-8405	-0-494	-0.8541
-0.4460	-0.7662	-0.4179	-0.7812	-0.4547	-0.7617	-0.4255	-0.7777	-0.4721	-0.7522	-0.4406	-0.7703
-0.384B	-0.6407	-0.3481	-0.6609	-3.3926	-3.6369	-0.3543	-0.6584	-0.4080	-0.6286	-0.3668	-0.6529
-0.31	-0.4982	-0.2684	-0.5234	-0.3197	-0.4951	-0.2730	-2.5220	-3.3328	-0.4484	-0.2825	-0.5186
-0.2279	-0.3215	-0.1690	-0.3514	-0.2259	+015-0-	-0.1718	-0.3513	-0-2360	-0.3146	-0.1777	-0.3535
-0.1259	-0.1463	-0.0699	-0.1742	- J. 1292	-0.1452	-0.0710	-0.1803	-0.1362	-0.1425	-0.0733	-1.1820
-0.0292	0.0273	0.0286	-0.0068	-0.0300	0.0274	0.0293	-0-00-0-	-0.0336	0.0275	0.0304	1610.1-
0.0718	0.1994	ù.1265	0.1658	0.0718	0.1983	0.1289	0.1626	0.0716	0.1465	6.651.0	2+1562
0.1743	0.3699	0.2238	9.3386	0.1765	0.3676	0.2277	0.3343	3.1797	9.3632	U.2357	0.3257
0.2817	0.5375	0.3223	0.5105	J.2843	0.5339	0.3279	0.5052	3.2921	0.5266	4 66 2 * 0	146410
0.3691	U.6692	044026	0.6470	U.3742	·).6646	0.4093	0.6438	L. 3851	0.6550	: 624.0	. 6282
0.4489	0.7926	0.4739	0.7655	3.4552	0.7771	0.4814	0.7588	0.4684	0.7655	C 1 9 4 9 7 3	0.7448
0.5072	0.8625	n.5254	0.8496	0-5142	0.8563	0.5335	0.8426	0.5294	0.8434	0.5506	U.8278
CLE CENT	E R	-0.4780	-].8611			-3.4870	-3.8566			-0.5048	-0.8469
CLE CENT	5	0.5160	9.8557			0.5235	1648°C			0.5347	0.8351

1**9**9

, 1

٩.

in the

- Andread and a second second

.

1.3000 IN. 16 Surace 7 ([N.]	-0.8244	-0.5054	040100- 042000- 042000- 042000-	0.5960	-0.8144
xcur of I Pressur (IN.)	-0-5437	-0.4049 -0.3124 -0.1972	0,042 0 0,041 9 0,260 1 0,260 1 0,260 1 0,260 1	0.5492 0.5492 0.5492	-0.5574 0.5936
SURFACE	-0.8042	-0 • 599 6 -0 • 6 3 9 -0 • 296 1	0.1936	0. 7269 0. 7269 0. 7269	
5 EC 7 104 5 UCT 1 OH 2 (1 Ne)	-0.5722	-0. 3721	0.01629	0.5139	
• 5500 IN. E SUNFACE Y (IN.)	-0.8350	-0.404	0.1437	0.7144	-0-8260
XCUT OF 6 PRESSUR 2 ([N.)	-0.5268 -0.4705	-0. 3918	0.2518	0.5875	-0.5398 0.5746
N 5 FOR SURFACE Y (IN.)	-0.8185	-0.6102 -0.4729 -0.3033	6461-0 6461-0	0.7405	
SECTION SUCTION Z (IN.)	-0.5537 -0.5064	-0.3591	-0.0410 0.0714 0.1878	0.5628	
.8000 IN. E SURFACE Y IIN.)	-0.8447 -0.7624	-0.5148 -0.3492 -0.3492	-0.0169 0.1500 0.3168	0.6148 0.7300 0.8119	-0.8367 0.8261
XCUT OF 8 Pressur 2 11%.)	-0.5102	1426-0- 1438-0- 1420-0-	0.1375	0.4378 0.5141 0.5668	-0.5225 0.5569
N 4 FOR SURFACE Y (1N.)	-0.8300	1600 - 0- 1600 - 0- 1600 - 0-	0.0290 0.1951 0.3588 0.5192	0.6450 0.7532 0.8295	4 . 4 .
SECTIC SUCTION 2 11N. F	-0.5355	-0-3460 -0-2462 -0-2462	-0-0- 0-0715 0-0715 0-0505-0	0,3966 0.4830 0.5458	IRCLE CENTE IRCLE CENTE
FRACT. CF SURF.	:0: 		00000	0.88 0.95 1.00	1.E. C

** BLADE SECTION CODADIMATES IN TURBOMACHINE DRIENTATION -

.

A ROTOR TEST CASE

2F 7.9500 IN. ESSURE SURFACE 2 Y IN.1 (IN.)	100
N 9 FOI SURFACI	
SECTIO SUCTION 2 1 IN.)	
7. 8000 15. 26 Surface 414.1	10000000000000000000000000000000000000
XCUT OF PRESSU	-0.5794 -0.5186 -0.5186 -0.5186 -0.5114 -0.5114 -0.5114 0.5500 0.5500 0.5500 0.5518 0.5518
N B FOR SURFACE (IN.)	-0.7783 -0.6934 -0.6934 -0.69795 -0.6795 -0.1795 -0.1916 -1916 -1916 -0.1916 -5828 -0.1916 -5828 -0.1916 -5971 -0.5988 -0.59888 -0.59888 -0.5988 -0.5988 -0.59888 -0.5988 -0.5988 -0.5988 -0.59
SECTION SUCTION 2 11N.)	
0500 IN. E SURFACE Y (IN.)	-0.8127 -0.1345 -0.7345 -0.6248 -0.6248 -0.6273 -0.1850 -0.1877 0.44430000000000
ACUT OF 8 PRESSUA (IN.)	-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
N 7 FOR Surface Y (1N.)	
SECTICN SUCTION 2 11N.)	-0.5914 -0.5419 -0.38709 -0.38709 -0.38709 -0.38709 -0.37733 -0.1978 0.1978 0.43373 0.43373 0.43373 0.43373 0.6072 0.6072 0.6072 0.6072 0.6072
FRACT. CF Surf.	11. 100.000.000 11. 100.000.000 11. 100.000.000 11. 100.000 11. 100 11. 100 10

 $\mathbf{N}_{\mathbf{x}}$

I subtract to

,

8000 IN.	SURFACE	~	(IN.)	-0.7368	-0.6653	-0.5659	-0.4532	1616.1-	-0.1760	-0.34Ub	1.0923	.2224	1646.		0414.0	2044.	-0.1205 2.6161
ہ ت ن	PRESSURE	~	('N')	-0-6594	-0.5937	-0.5010	1696.0-	-3.2579	-0.1196	0.0207	0-1040	01110	0.4.86	0.5193	0.646.	0.7032	
12 FOP X	SURFACE	>		-0.7074	-0.6248	-0.5111	-0.3842	-0.2306	5200-0-	0.0581	0.1914	(. 315C	0.4411	0.5201	0.5412	0.6396	
S EC 7 10%	SUCTION	~		-0.6962	-0.6420	-0.5630	-0.4681	-9.3427	-0.2100	-0.0499	0.0777	0.2324	0.3436	0.5275	0.6477	0.7353	
.0500 IN.	E SURFACE	>	(.NI)	-0.7548	-0.6821	-2.5826	-0.4653	-0.321-	-0.1796	-0.0385	0.1007	0.2360	0.3735	0.4806	0.5735	0.6393	-0.7396 0.6572
XCUT OF 7	PRESSUR	2		-0. 6379	-0.5733	-0.4822	-0. 3772	-0.2447	-0.1108	0.0248	0.1625	0, 3023	0+++0	0.5588	0.6600	0.7328	-0.6546 J.7166
4 11 FOR	SURFACE	>	("N)	-0.7274	-0.6443	-0.5297	-0.4014	-0.2452	040.0-	9.0517	0.1410	0.3235	0.4489	0.5440	7.6233	0.6776	
SECTION	SUCTION	7	(14.)	-0.6735	-0.6232	-0.5426	-0.4510	-0.3292	-0.1949	-0.0652	J.0763	U.2243	0.3784	3.5459	6223°N	U. 7037	
. 3000 IN.	E SURFACE	*	(IN.)	-0.7711	-0.6471	-0.5935	-0.4755	-0.3285	-0.1819	-9.3360	0.1088	0.2521	0.3942	0.5070	0.6451	0.6749	-0.7579 0.6909
acut uF 7,	PHESSUM	~	("N])	-7.6177	-0.5542	-0.4649	-0.3623	6662.0-	-0.1033	0.0275	0.1600	2+62.0	9.4298	0.5292	0.6356	0.7548	-0.6338 0.6487
V 10 FDR	SURFAC E	>	(IN.)	-0.7456	-0.6620	-0.5464	-1.4166	-0.2579	+6~1.0-	0.0465	0.1910	1938.0	0.4624	0.5641	0.6499	0.7092	e. x
SECTICA	SUCTION	2	(11)	-0.6514	-0 .5 945	-0.5236	1164.3-	-0.314H	1.61.0-	-F-96-7-	0+0750	-916-0	0.3645	0.4854	9.5954	0.6753	ACLE CFNTE HCLE CFNTE
FRACT.	Ĵ	SLRF.		• • •	c.cs	c.12	0.20	c. 30	C.40	C.50	C.60	c. 70	c.80	C.AB	C.55	1.00	1.6. CI 7.6. CI

,

۰

٩.

++ BLADE SECTION CCORDINATE* IN TURBOMACHINE ORIENTATION -

4 ROTOR TEST CALE

NI 0-10-9 11.	RISSURE NHEAC	(1.4.) (1.4.)	-1.11.1.	.598 - 6054	1112 194.	1.504 . 1.844	1011 - 1111	1512 - 151	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1011	714[(1)	1441	(h/f			.1402 -0.1545
N 15 FOR ACLT	SURFACE P	(W)	0- 386 -0-		0. 2444.0-	-1.56.(0 + 5 - 6		1.2.135				0	() +
SECTIO	SUCTION	(IN.)	-0.7681	-0.1117	-0.4281	-3.5262	-0. 3891	-0.2416	-0. CB37	9.0840	0.261	0.4404	0.+334	1961.0	166- •0	
.3000 IN.	E SURFACE	(IN.)	-0.6946	-3.6253	-0.5295	-0.4220	-0.2910	-2.1642	-0.0421	3.0749	0.1861	0.2912	0. 1705	0.4.959	0.4873	-9.4161
XCUT OF 6	PRESSUR	1 . N 1	-0.1062	-0.6384	-0. 4432	-0.4317	-0-2894	-0-142	0.0040	0.1643	0.3234	0.4878	0.6221	0.7419	0.9281	-0.7243
N 14 FOR	SURFACE	(IN)	-3.6612	-0.5190	-0.4666	-0.3423	-7.1438	-0.0541	0.0757	9.1943	3.3008	9.3438	7724-0	0.5050	7.5335	
SFCTIO	SUCTION	(I N I	1455	- 1.6891	6076	-0.5075	-0.3745	- 3. 2317	-0.0795	J. 0814	U.2517	1024-0	3.5174	11 J J	0.8473	
. 5500 IN.	E SURFACE	[[N.]	-0.7169	-0.6466	- 3.5491	-0.4390	-0.3036	-0.1710	-0.0419	0.0835	0.2050	0.3222	0.4129	0.489A	0.5433	-0.6995
XCLT DF 6	PRESSUR	(IN.)	-0.6R21	-0.6156	-0.5213	-0.4119	-0.2720	-0.1303	0.0154	0.1646	0.3173	0.4734	0.6007	0.7134	0.7958	-0-6594
N 13 FOR	SURFACE	(IN.)	-0.6855	-0.5032	E064 0-	-0.3648	-0.2137	-0.0697	C.0659	0.1924	C - 3093	0.4144	4167.0	0.5519	0.5412	г. Э
SPCT1C	SUCTION	(IN.)	-9.7202	- 3.6652	-7.5846	-0.4874	-0.3542	1022.0-	9760-0-	0.0745	0.2415	0.4110	0.5515	0.6730	6-77-0	ACLE CENTI
FRACT.	SURF.		:	0.05	0.12	c.20	c. 30	0.40	0.50	C.60	c. 70	0.80	0.88	C.95	1.00	L.E. C1

201

F P AC 1	. SECTION	16 FUR	XCLT OF 5.	8500 IN.	SECTION	17 FOR	ACUT OF 5	.6000 IN.	SECTION	104 91 1	KCUT DF 5.	3500 IN.
ະ	SUCTION	SURFACE	PRE SSURF	SURFACF	SUCTION	SURFACE	PRESSUR	L SUR ALT	1010-1010	VORTRUE	7 × 5 × 7	A A A A A A A A A A A A A A A A A A A
SLRF.	(14.)	([N.]	(IN.)	(IN.)	(IN.)	(.NI)	- IIV.)	-11.	(.NE)	(11.)	((. NI)
			1471 07	-0.4440	-0-800-	-0.5004	-0-7653	-0-6377	-0.8236	-0.5076	-0.7776	-0.6272
د د			-0.4707	-0.58AR	7520	- 1.5162	-0-6974	-0.5697	-0.7671	-0.5029	-0.7104	-0.5584
			-0.581A	-0.4936	-4.6667	-0.4032	-0.5596	-0.4768	-0.6820	-0.3881	-0.6133	-0.4648
			0.00	1066-0-		7975.0-	-0.4841	-0.3745	-0.5760	-0.2020	-0.4979	-9.3623
			-0.4185		6114-1-1	-0-1353	-0.3337	-0.2533	-0.4307	-0.1170	-0.3467	-0.2421
2 9 9					7146	0400-0-	-0-1769	-0-1+0+	-0.2713	0.0141	-0.1883	-0.1318
		- 20 · · ·		HPF 7.0-	-0.9431	2.1115	-0.0137	-0.0369	-0.0983	0.1271	-0.0231	-0.0327
				0.7612	1.90.0	0.2080	0.1550	0.0558	0.0071	0.2183	C.1488	0.0526
				1523	ú. 2776	0.2839	1166.0	Ú.1354	0.2833	0.2825	122.0	0.1211
				0.2118	1.4771	5666.C	0.5126	0+01-0	0.4881	0.3144	0.5114	0.1682
			0.6578	0.2855	0.6610	9446.0	0.6619	0.2359	0.6559	4016-0	0.6628	0.1864
	977L U		8647.0	0.1239	1.1879	7.3446	0. 7955	C. 25 55	0.6030	0.280C	3197.0	6+81.0
	5191°C	0.4280	0.8772	0.3458	168.0	1.3275	0.8924	0.2610	0.9082	0.2400	0.4450	0.170
بر . بر .	CIACLE CFNTE CIACLE CENTE	م ه	-0.7664 0.8691	-0.6345 n.3764			-0.7853 U.8889	-0.6165 0.2943			-0-1997 -0-420	-] .6051 0.2060

** BLADE LECTION COUNCINATES IN TURBOMACHINE ORIENTATION -

A RUTCH FEST CASE

. 5300 1N. F SURFACE	("NI)	.4E9*L+	-0.5654	-3.4729	-0.3767	-0*2*0-	-0.1380	-0, C35B	0*60*0	1161.0	0.1952	0.2223	0.2355	0.2361	-0.4125	1015.0
ACLT DF 5 PRESCUR	(11.)	-9.7694	-0.7C16	0409-0-	-0.4093	-0.3776	-0.1802	-0.nl63	PE71.0	+0:6.0	0.5129	0.5631	1197.0	0.8945	-0.7847	0.8525
SECTION 19 FOR Suction Surface	(NI) (NI)	-0.4137 -0.5953	-0.7568 -0.5118	-n_6715 -C.3983	-0.5658 -C.2745	-9.4217 -0.1299	-0.2645 0.0011	-0.0945 C.1157	0.0673 0.2113	6885.0 CP75.0	0.4806 0.3277	P.6463 U.3387	9.7932 0.3268	0.89843936	ACLE CENTER	RCLE CENTER
FRACT.	SLRF.	;	c.05	c.12	c.20	C • 30	0.40	C.50	09.0	C. 70	C. EO	C.88	C.95	1.00	L.E. Cl	T.E. CI

5

202

- -

APPENDIX J

MICROFILM SUBROUTINES FROM LEWIS LIBRARY

The following NASA Lewis Library subroutines - LRMRGN, LRSIZE, LRGRID, LRANGE, LRCURV, LREON, LRCPLT, LRCHSZ, LRLEGN, LRION, LRIOFF, LRCNVT - are called in program subroutine BLUEPT to produce tables of blade-section coordinates that can be attached to blueprint drawings. These systems routines are a part of a microfilm plotting package called CINEMATIC, which is described in reference 8. The following descriptions of the subroutines are condensed from those given in the reference.

Subroutine LRMRGN

Purpose. - LRMRGN is used to change the width of plot margins.

Using CALL LRMRGN (XLEFT, XRIGHT, YBOTM, YTOP). XLEFT (floating point) is the left margin width in absolute positioning units. XRICHT (floating point) is the right margin width in absolute positioning units. YBOTM (floating point) is the lower margin width in absolute positioning units. YTOP (floating point) is the upper margin width in absolute positioning units.

<u>Method.</u> - A frame of film contains 10 absolute positioning units in the horizontal direction and 10 in the vertical direction. CINEMATIC sets margins around the plotting area as follows: LEFT and BOTTOM, 1.0 absolute positioning unit; RIGHT and TOP, 0.4 of an absolute positioning unit. A call to LRMRGN before LRCURV will change the width of the margins.

Subroutine LRSIZE

Purpose. - LRSIZE is used to change the size of a plot.

Usage. - CALL LRGIZE (XLEFT, XRIGHT, YBOTM, YTOP). XLEFT is the left end point of a plot in absolute positioning units. XRIGHT is the right end point of a plot in absolute positioning units. YBOTM is the lower end point of a plot in absolute positioning units. YTOP is the upper end point of a plot in absolute positioning units.

<u>Method.</u> - CINEMATIC uses one frame of film as the size of a plot (including margins). A call to LRSIZE before a curve-plotting routine will change the size of the plot. Plot size may be expanded in the X (horizontal) direction to be several frames wide.

Restrictions. - LRSIZE must be called before the plotting routine it applies to. The

settings of LRSIZE remain in effect until charged by another call to LRSIZE. CALL LPSIZE(9.0, 10.0, 0.0, 10.0) will set the size back to one frame of film.

Subroutine LRGRID

Purpose. - LRGRID is used to specify grid-line changes.

Usage. - CALL LRGRID (IXCODE, IYCODE, DX, DY). IXCODE (fixed point) is a switch which applies to vertical grid lines and is used as follows:

IXCODE=0 means return to using CINEMATIC's built-in grid format (11 grid lines). IXCODE=±1 means DX specifies how many grid lines; IXCODE=-1 suppresses grid

labels.

IXCODE=±2 means DX specifies grid intervals; IXCODE=-2 suppresses grid labels.

IXCODE=±3 means DX specifies how many "tick marks" instead of grid lines; IXCODE=-3 suppresses grid labels.

EXCODE=±4 means DX specifies the interval between "tick marks"; **IXCODE**=-4 suppresses grid labels.

DX (floating point) specifies grid-line or "tick mark" frequency or intervals, depending on how IXCODE is set. IYCODE (fixed point) is the same as IXCODE, but it applies to horizontal grid lines. DY (floating point) is the same as DX but for horizontal grid lines.

<u>Method.</u> - CINEMATIC puts 11 horizontal and 11 vertical grid lines on every plot, unless LRGRID is called. When a grid-line frequency is specified, CINEMATIC sets the interval between the specified number of grid lines to be equal to $Z \times 10^{11}$, where Z =1.0, ? ?, 2.5, or 5.0 and n depends on the magnitude of the user's data. To get these intervals, CINEMATIC will adjust the end points of the plot, if necessary.

Subroutine LRANGE

Purpose. - LRANGE is used to set the range of (X, Y) curve points.

<u>Usage</u>. - CALL LRANGE (XLEFT, XRIGHT, YBOTM, YTOP). XLEFT is the left end point of a plot in the user's units. XRIGHT is the right end point of a plot in the user's units. YBOTM is the lower end point of a plot in the user's units. YTOP is the upper end point of a plot in the user's units.

<u>Method</u>. - The curve-plotting subroutine LRCURV searches the (X, Y) coordinates for maximums and minimums and scales the rest of the user's points to fit between them. A call to LRANGE before LRCURV suppresses the search. The scittings of LRANGE remain in effect for all successive plots until changed by another call to LRANGE.

ļ

ことの

Subroutine LRCURV

Purpose. - LRCURV is used to plot one curve of a multiple-curve plot.

<u>Usage</u>. - CALL LRCURV (X, Y, N, ITYPE, SYMBOL, EOP). X (floating point) is an array of X-coordinates for the curve. Y (floating point) is an array of Y-coordinates for the curve. N (fixed point) is the number of (X, Y) points to be plotted. ITYPE is a switch that indicates the type of plot desired:

ITYPE=1 specifies a dot plot; each (X, Y) point is represented by a dot.

- ITYPE=2 specifies a vector plot; successive (X, Y) points are joined by straight lines.
- ITYPE=3 specifies a symbol plot; each (X, Y) point is represented by a symbol. The FORTRAN character in SYMBOL specifies the symbol used.
- ITYPE=4 specifies a special symbol plot; each (X, Y) point is represented by a special symbol taken from a SPECIAL CHARACTER TABLE.

SYMBOL specifies the plotting symbol when ITYPE=3 or 4. EOP is a switch that indicates when the last subroutine call for a given plot is being made:

- EOP=0.0 means the current plot is not yet complete. More subroutine calls for this plot will follow.
- EOP=1.0 means the current plot is complete. No more printing or plotting subroutines will be called for this plot.

<u>Method.</u> - LRCURV provides greater flexibility in drawing curves. LRCURV is useful for the plotting situation in which not all (X, Y) points for a plot are in the computer memory at the same time. Several calls to LRCURV may be made for the same plot.

'The X and Y arrays are in whatever units the user is working with. LRCURV scales his data range to fit the size of the plot on film. The user should call LRANGE before LRCURV to supply the range of his data points to CINEMATIC. If the user does not call LRANGE, LRCURV will take the user's data range from the first call to LRCURV for any given plot.

LRCURV does not destroy the contents of X, Y, N, ITYPE, SYMBOL, or EOP during plotting.

Subroutine LREON

LREON is used to expand a frame in all directions so that the edges of adjacent frames touch.

Subroutine LRCPLT

Purpose. - LRCPLT is used to specify a multiple-curve plot.

Usage. - CALL LRCPLT (X, Y, KKK). X (floating point) is an array of Xcoordinates for all the curves. Y (floating point) is an array of Y-coordinates for all the curves. KKK (fixed point) is an array at least six words long. It is used as follows: KKK(1) is a switch that indicates whether CINEMATIC should duplicate any of the coordinates in the X or Y arrays:

KKK(1)=1 means duplicate X-coordinates.

KKK(1)=2 means duplicate Y-coordiant

KKK(1)=3 means no duplication.

KKK(2) indicates the type of plot desired:

- KKK(2)=0 means that all successive points on a curve are connected by straight lines (a vector plot).
- KKK(2)=N specifies a vector plot with a plotting symbol placed at every Nth point. KKK(5) indicates the symbol.
- KKK(2)=-N means that every Nth point is represented by a plotting symbol. KKK(5) indicates the symbol.
- KKK(2)=999 means that several curves with different KKK(2) numbers are being plotted. Let KN be the number of such curves. Then the KKK(2) number for each curve is supplied in KKK(KN+6) through KKK(2KN+5)

KKK(3) is the number of curves to be plotted.

KKK(4) is a switch that indicates whether a call to LRLABL will follow this call to LRCPLT. LRLABL labels a curve point.

KKK(4)=0 means no call to LRLABL will follow (moves to next frame).

KKK(4)=1 means a call to LRLABL will follow (holds a frame).

Whenever symbols are plotted, KKK(5) equals the number of the symbol used to plot the first curve. Symbols for successive curves are chosen in order.

KKK(6) gives the number of points in each curve when KKK(1) equals 1 or 2. KKK(6) gives the number of points in the first curve when KKK(1) equals 3. The number of points for successive curves appear in KKK(7) through KKK(KN+5), where KN is the number of curves being plotted.

Duplication of coordinates: When the set of X-coordinates for all the curves is the same, it may appear only once in the X array. KKK(1)=1 indicates this arrangement of the user's data. LRCPLT will use the one set of X's for all the curves to be plotted. The Y-coordinates for all the curves must appear in the Y array. LRCPLT does not destroy the contents of X and Y during plotting.

Grid: Ten grid intervals are specified in each direction. Grid intervals are equal to $Z \times 10^{n}$ where Z = 1, 2, 2.5, or 5 and n depends on the range of the user's data.

LRCPLT will adjust the range of the user's data to get 10 equal intervals of $Z \times 10^{11}$. Use **LRGRID** to change the grid.

Margins: A margin of 0. 10 frame is allowed at the left and bottom, 0. 04 frame at the right and top. These margins allow enough space for a title and legends, which are printed by LRTLEG, LRXLEG, AND LRYLEG. Use LRMRGN to change margins.

Plot size: The size of the entire plot is one frame of film. If needed, the size may be expanded to several continuous frames of film by a call to LRSIZE. With the previously described margins, the user's data range is scaled to a coordinate system of 981×981 distinct points.

Subroutine LRCHSZ

Purpose. - LRCHSZ is used to change the size of printed characters.

Use - CALL LRCHSZ (ISIZE), where ISIZE (fixed point) gives the size:

ISIZE=0 means let CINEMATIC resume selecting the size.

ISIZE=1 means miniature characters.

ISIZE=2 means small characters.

ISIZE=3 means medium characters.

ISIZE=4 means large characters.

<u>Method.</u> - LRCHSZ changes the character size for all character printing that follows. The specified size remains in effect until changed by another call to LRCHSZ.

Large: 43 characters per line, 22 lines per frame.

Medium: 64 characters per line, 32 lines per frame.

Small: 86 characters per line, 43 lines per frame.

Miniature: 128 characters per line, 64 lines per frame.

Subroutine LRLEGN

Purpose. - LRLEGN is used to print a legend anywhere on a plot.

Usage. - CALI, LRLEGN (CHARS, N, IORIEN, XY, EOP). CHARS is an array of characters to be printed. N (fixed point) is the number of characters to be printed. IORIEN (fixed point) is a switch:

IORIEN=0 causes horizontal printing.

IORIEN=1 causes vertical printing.

X (floating point) is the X-coordinate of the starting point in absolute positioning units. Y (floating point) is the Y-ccordinate of the starting point in absolute positioning units. EOP (floating point) is a switch: EOP=0 indicates the current plot is not yet complete.

EOP=1 indicates the current plot is complete. No more calls to plotting or printing subroutines for this plot will occur.

<u>Method</u>. - The user expresses the (X, Y) starting point of a line of printing in absolute positioning units. LRLEGN prints medium-size characters. The user may also get other character sizes, italics, lower case, and special symbols.

Subroutines LRION and LRIOFF

Purpose. - These subroutines italicize printed characters.

<u>Usage</u>. - CALL LRION causes all printed characters that follow to be italicized. CALL LRIOFF turns off the italicized mode of printing.

Subroutine LRCNVT

<u>Purpose</u>. - LRCNVT converts a fixed- or floating-point number into printable characters.

Usage. - CALL LRCNVT (X, ITYPE, CHARS, IFORM, N, M). X is the number to be converted. ITYPE specifies X:

ITYPE=1 means X is fixed point.

ITYPE=2 means X is INTEGER*2

ITYPE=3 means X is floating point.

CHARS is the array to receive printable characters. CHARS must be dimensioned large enough to hold the N characters requested. IFORM is a switch that describes the format of the characters:

IFORM=1 means convert to FORTRAN "I" format.

IFORM=2 means convert to FORTRAN "Z" format.

IFORM=3 means convert to FORTRAN "F" format.

IFORM=4 means convert to FORTRAN "E" format.

N is the total number of characters desired. M is the number of characters to the right of the decimal point. M=0 for "I" or "Z" format.

、「大学の調報報報

REFERENCES

- 1. Crouse, James E.; Janetzke, David C.; and Schwirian, R. E.: A Computer Program for Composing Compressor Blading from Simulated Circular-Arc Elements on Conical Surfaces. NASA TN D-5437, 1969.
- 2. Johnsen, Irving A.; and Bullock, Robert O.; eds.: Aerodynamic Design of Axial-Flow Compressors. NASA SP-36, 1965.
- 3. Ames Research Staff: Equations, Tables, and Charts for Compressible Flow. NACA Rep. 1135, 1953.
- 4. Schwenk, Francis C.; Lewis, George W.; and Hartmann, Melvin J.: A Preliminary Analysis of the Magnitude of Shock Losses in Transonic Compressors. NACA RM E57A30, 1957.
- 5. Lakson, G. J.; and Eisley, J. G.: Natural Frequencies in Coupled Bending and Torsion of Twisted and Nonrotating Blades. NASA CR-65, 1964.
- 6. Roark, Raymond J.: Formulas for Stress and Strain. Third ed., McGraw-Hill Book Co., Inc., Table IX, p. 176, case 15.
- 7. Walsh, J. L.; Ahlberg, J. H.; and Nilson, E. N.: Best Approximation Properties of the Spline Fit. J. Math. Mech., vol. 11, no. 2, 1962, pp. 225-234.
- 8. Kannenberg, Robert G.: CINEMATIC FORTRAN Subprograms for Automatic Computer Microfilm Plotting. NASA TM X-1866, 1969.

TABLE I. - VALUES OF $\frac{\alpha}{2}$ WHICH MAKE $\tan^{-1} X$

.

EQUAL TO +** OR -**

	2 0																							
$\tan \frac{\pi_0}{2}$	an <u>+</u> + tan 2	-1	deg	45, 00	32.03	26.57	22.21	18.43	15.00	1.79	8.73	5.77	2.87	0	-2.87	-5.77	-8.73	-11.79	-15,00	-18.43	-22.21	-26.57	-32.08	-45.00
$\left(\frac{1}{2}\right)^{2}\left(\tan \frac{h}{2}\right)^{2}$	$\tan \frac{\kappa_0}{2} + t_i$	= X	tan <u>*</u> 2	1. 0000	. 6268	5000	4084	. 3333	. 2679	. 2087	. 1535	. 1010	.0501	0	0501	-, 1010	1535	2087	-, 2679	3333	1084	5000	6268	-1.0000
t ₀ C - sin κ ₁	$\left(1 + \tan \frac{5}{2}\right)$	1	deg deg	45.00	57.92	63.43	67.79	71.57	75.00	78.21	81.27	84.23	87.13	±90, 00	-87.13	-84.23	-81.27	-78.21	-75.00	-71.57	-67.79	-63.43	-57.92	-45.00
•(I) - (I)	R ₀ C - sin k ₍	= X	tan <u>*</u> 2	1. 0000	1. 5954	2.0000	2.4488	3.0000	3.7321	4.7913	6.5131	9.8990	19.950	90 T	-19.950	-9, 8990	-6.5131	-4.7913	-3.7321	-3.0000	-2.4488	-2.0000	-1.5954	-1.0000
h ⁻¹ x = tanh ⁻¹		$R_0C - \sin \kappa_0$	L	-1.0	6	8	7	9	5	- 4	۰. ع	2	- 1	0	. 1	. 2	б.	4.	. 3	9.		8.	<i>в</i> .	1.0
an																								

.

4 Y ...

TABLE II. - COEFFICIENTS FOR SERIES

RI	SPRESENTA'		$\frac{R}{R_0}$ - 1
Series	Series	Ratio of c	oefficients
term	coefficient	Decimal	Fractional
		form	form
-	0.5		2
8	125	-0.25	7
e	. 0625	- 50	3 6
4	039063	625	5 H
ŝ	. 027344	- 70	7 10
9	020508	75	9 12
2	.016113	73571	11 14
30	013092	8125	13 16
6	.010910	83333	15 18

210

1.101.1	MAN (1917-24	•ALCE	5 OF X	- 107 F.B. B		2013
2		1 = 12 U =	sin k _u	$p^2 = \frac{2}{2} \frac{1}{2} \frac{1}{2}$	- 11 2	
	$(\mathbf{k}_0^{\mathbb{C}} + \mathbf{s})$	^{i k} O ^{leos}	<u>* *0</u> . 2	$\sin \frac{1}{2} \frac{1}{2}$	$\cdot CR_{0}\sqrt{\frac{R}{R_{0}}}$	-]2
$R_0 c^2 = \sin \beta_0$	R _O C	0 deg	n. deg	R R _C	x ² ₂	Turbontarnmets limit imposed
1.010.000.0	1 000 000 9	70 00	70 00	6 99:198	-0. 4903	146
10 000 0	10 000, 94	1		99981		
1 000 0	1.000 940			. 99212		1
10-0. (1	.00.9597			9813d	İ İ	
10.0	10, 9397			d2820	- 4886	
5.0	5, 9397			68359	- 4334	
. 0	3, 9397			52296	- 4704	
2 3191	3 7583		•	. 56990	- 46760	
2.21*1	3 7504	70.00	.70.00	0.50000	-0 4676	
2.5	3 7397		GH 46	1	1 - 0. 10 19 1 - 44 87	1 n m 0 v 2
2.7	3 6396	1	-61 66		3713	
2.5	3 4397		-51 27		2732	
2.2	3 1397		-39 96		- 1798	
1.8	2.7397		-25.48		- 0986	
1.4	2.3397		-13.31		0421	
1.0	1.9397		-1.73		0	
0.6	1. 5397		9.78		. 0318	
0.2	1.1397		21.71		. 0552	
-0.2	0.7397		34.74		. 0697	
-0.5	0. 4397		46.04		. 0720	
-0.7	0.2397		55.07		. 06 54	
-0.9	0.0397	}	66.90		. 0405	
-0. 9396	0.0001	•	66.99	i 🕴	. 0295	
-0. 9397	-0.0000	70.00	70,00	2.0000	0.0294	$L/R_{-} = 2.0$
-0. 95	-0.0103		68.34		. 0230	<i>m</i> n 0 - n 0
-0. 97	-0.0303		65.42		. 0125	
-1.0	-0.0603		61.57		0	
-1 2	-0. 2603		42.80		0494	
-1.4	-0. 4603		28.64		0830	
-1.8	-0. 8603		4. 55		1449	
-2.2	~1.2603		-18, 70		2197	
-2.5	-1 5603		-38.36		2991	
-2.7	-1.7603		-55, 15		3815	
-2.8	-1.8603		-67. 02		4492	
-2.8191	-1,8794	*	-70, 00	•	4676	
-2.8191	-1.8794	70.00	-70.00	2.0000	-0. 4676	$A = K_0 = -140^{\circ}$
-3.0	-2.0603		1	1.9122	- 4704	
-5.0	-4 0603			1 4629	4834	
-10.0	-9 0603			1.2074	4886	
- 100. 0	-99 0603			1.1.1.0	4903	
~1.000.0	-999. 06			1.0019	1	
- 10 000.0	-9999.06			1.0002		
-1 000 000.0	-995-999, 1		•	1.0000	•	

SUPPLY MANUAR MAALUES OF INCOMPRESS OF SPECIFIC SUPPLY OF

TABLE V. - RANGE OF ϵ EQUATION APPLICABILITY

Conditions	<i>κ</i> - κ ₀ ≤ 0.00001	and $\frac{ R_0 }{8-s_0} \leq 100.0$	$\frac{ R_0 }{s-s_0} > 10\ 000.0$	$ \kappa - \kappa_0 < 0.0001$	and $\frac{ R_0 }{s-s_0} > 100.0$	$\left(\frac{R_0}{s-s_0}\right)^2 \frac{1}{ \kappa-\kappa_0 } > 1.7 \times 10^9$	Everything else
Equation	B12		B36				B28

TABLE IV. - NUMBER OF TERMS FOR SERIES

6

N

to and the first

 $\frac{x_2^2}{3} + \frac{x_2^4}{5} + \frac{x_2^6}{7} + \frac{x_2^8}{9} + \dots + \frac{x_2^{2n}}{2n+1}$ NEEDED TO

KEEP RELATIVE ERROR TO 10⁻⁸

ç	X 1 (
	VARIOUS
	FOR

			7	
Independent	Number	First series	nth series	Relative
variable,	of series	term,	term,	error, a
X22	terms,	X V V	x ²ⁿ	$3X_{9}^{2(n-1)}$
•	u	3	2n + 1	2n + 1
0.5	23	0. 1667	0. 2536×10 ⁻⁸	1. $522 \cdot 10^{-8}$
4	18	. 1333	. 1×57	1. 393
۶. ۲	14	. 1000	¢.	1.649
67	11	. 06667	. 08904	1. 336
	30	. 03333	05882	1. 765
. 05	~	. 01667	005208	. 3125
.01	S	. 003333	1606000	2727
100.	•	. 0003333	. 00001111	. 03333

^aThe nth series term divided by the first series term.

n so donate de terres en la compañía de la compañía de la compañía de la compañía de la compañía de la compañía

こうちょう ちょうちょう ちょうちょう

Figure 1. - Conical coordinate system for blade-element layout.

Figure 4. - Blade-section coordinate systems.

Figure 5. - Breakdown of blade-section end area for area and moment calculations.

۰ •

一日十五十五

ł,

(a) Blade-section coordinates between center of area and stacking point.

Tiplexcess mass

sts + rig Line ____ Tip decrement

mass

Figure 7. - Moments in meridional plane.

(c) Blade-element center-of-area chordwise and normal coordinate component adjustments.

Figure 6. - Stacking adjustment components between center of area and stacking point.

- 2

and the second second

Figure 9. - Coordinate system for blade-section output data.

È

٩,

Figure $11, \ldots, \text{Geometric placement of blade-section end}$ circle.

Figure 12. - Meridional plane stacking-axis lean.

and the second

Figure 13. - Coordinate rotation about blade-section stacking point,

• . . • .

Figure 14. – Treatment of blade-section ends for excess end mass moment,

Eloure 15. - Blade-element coordinate shifts due to change in meridional stacking-axis likan,

Figure 16. - Blade-angle correction from local streamline slope to cone slope.

Figure 17. - Differential components at blade edge.

and show the state of

Figure 18, - Blade-section geometry parameters for torsion constant integration,

Figure 19. - Parameters for blade-section thickness definition.

Figure 20. - Geometry of blade-section segment.

Figure 21. - End-circle geometry for torsion constant.

いい いい 修え合い

						•	
·····		TITLE.	<u></u>				
(1) (1) (1) (1) (1) (1) (1) (1)		3P30(,) JP00(,)		2 2		1	
NSTEM	NOLE.	POT.	THE LEVAL	alfile is d.	1 12 12 18 A.	Land the second	1.6
ELADES THOW	JOLID INC.	TILL (INCA.	EMATL (IB	BUGELLOW.			
TALE TRUE	THEAT THURS	TILE(IROW)	TELE IRLAD	Think Land	THE STAR	LITE THE	2
TANAX TROW	TRMANITEIN	TIMAK (JEON)	TIMAL TELAL	HECHTA: 19 14	ETL. IS.	And Street	
OP OF:	64 . AF .	it is a second					
INCELEDW. 1)	THATTRON 21	<u></u>	- IPC(Ikow,N	CT5M, 111	s. 1918)	- •	
DEV(INGW.1)	DEV(IBOW.:)	<u></u>	t 19V,∎EC k, ≣	latem, tet i	ie reist	1111	
PHILIRDA.11	PHILIROW.21	<u></u>	- PHILIROA, N	CTRM) 12	. calls }	;time; c	•
TRANS (TROW 1)	TRANS(IROAL2)	<u></u>	TRANSLING.	NOTEX: 12	il - TABLE	th 20 heads	i ir.
ZMAZ(IRW.1)	ZMAX(IROW.2)	• • • • • • • •	· · · MAXUEROA.	SUTPAN IT	a mand	te morene	- 19 F
R(1,1)	La distal	72(3.1)	JTH(1.1)	LOPHILL		2014	Li Leti I
R(1)		VELAN)	WITH LA J	<u> 31.078(1, 1)</u>	1. 75 1.	F 0 1	1.27 5 1
			· · ·	•		•	<pre>} rutilize</pre>
				• • • • • • • • • • • • • • • • • • • •			
R(1, NSTRM)	C(1,NSTRM)	VZ(1, NSTRM)	MTH(1, NOTRM)	LOPE: NOTEY	T. L. WATER	FO.1, N3TLV.	P i
<u> </u>		V2(1,1)	VTE(T. PF	70.	₽●\ .	<u>1</u>
Bick			in the second	CLOPEC		•	
				•			1
i	····				· · · · · · · · · · · · · · · · · · ·	:	tron tip
R(C.NSTRM)	RIGINSTRM)	VZ(: NSTRM)	VTH(2.NDTRM.	ELOPE (NOTEY)	TO LOS TRA	101 .N3TEM	μ
xcur(1)		L(<u>*)</u>	A TIT (A	2007(All All all	1. 1. 1. 1. 1	
(+)	••••• <u>•</u> •	TINXEUT(INC.	<u> </u>	<u></u>	<u>ati 99</u>	• <u></u>	1
	L	2252675272	n in strategie oberege	a sester an and			

Bhabel (Leon Sation trp), Sata the Source works personal

SU.S. GOVERNMENT PRINTING OFFICE: 1974-739-157/84

1

7.42.3470.347

FILMED

APR 19 1974

. .

Structure constructions for the factors and