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DIURNAL POLAR MOTION

Paul McClure

ABSTRACT

An analytical theory is developed to describe diurnal polar motion in the

Earth which arises as a forced response due to lunisolar torques and tidal de-

formation. Doodson's expansion of the tide generating potential is used to

represent the lunisolar torques. Both the magnitudes and the rates of change

of perturbations in the Earth's inertia tensor are included in the dynamical

equations for the polar motion so as to account for rotational and tidal

deformation.

It is found that in a deformable Earth with Love's number k = 0.29, the
angular momentum vector departs by as much as 20 cm from the rotation axis

rather than remaining within 1 or 2 cm as it would in a rigid Earth. This 20 cm

separation is significant in the interpretation of sub-meter polar motion obser-
vations because it necessitates an additional coordinate transformation in order

to remove what would otherwise be a 20 cm error source in the conversion be-

tween inertial and terrestrial reference systems.
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DIURNAL POLAR MOTION

1. INTRODUCTION

Interaction of the lunar and solar tidal potentials with the Earth's equatorial
bulge generates torques on the Earth. Besides producing the well known phenom-
ena of astronomical precession and nutation the lunisolar torques cause the rota-
tion pole to travel within the Earth in a nearly diurnal epicycle which has a radius
that varies from a few centimeters to a maximum of 62 cm. The diurnal motion
of the rotation pole is superimposed upon longer period motions consisting mainly
of the 14 month Chandler wobble and the annual and semiannual polar motion.

Unlike the Chandler, annual and semiannual motions the diurnal motion of the
pole has not been observed conclusively because of its comparatively small ampli-
tude and high frequency. The astronomical methods for observing polar motion
have uncertainties that are about equal to the amplitude of the diurnal polar motion
and are able to produce pole positions only at 2 to 5 day intervals. Laser tracking
of artificial satellites is now able to give pole positions at intervals of 6 hours
[Smith et al., 19721, thus providing an opportunity to observe diurnal motion of
the rotation axis within the Earth. The satellite observations have noise levels
of about 1 m and it is expected that observational uncertainties can be reduced
to 10 cm in the future.

In order to interpret polar motion observations with sub-meter noise levels
it is necessary to model the diurnal motion of the pole. Woolard [1953] derived
expressions for the diurnal polar motion in a rigid Earth. His results do not in-
clude the effects of rotational and tidal deformation and the effect of the lunar and
solar mean motion upon the coefficients in the diurnal polar motion terms is
neglected. Melchior and Georis [1968] use Doodson's [1922] expansion of the
tide generating potential in order to obtain expressions for the lunisolar torques.
The effect of mean motion of the disturbing bodies upon the diurnal polar motion
is included as a second order correction. Their dynamical equations for the polar
motion are for the case of a rigid Earth and do not include the effects of rotational
and tidal deformation.

The theory of diurnal polar motion presented here is for the case of a deform-
able Earth. The response of the Earth to deforming potentials is characterized
by Love's number k [ Love, 19111. Terms involving both the magnitudes and the
rates of change of perturbations in the Earth's inertia tensor are included in the
dynamical equations for the polar motion so as to account for the rotational and
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tidal deformation. Doodson's expansion of the tide generating potential is used
to represent the lunisolar torques, and mean motion of the tide generating bodies
is included in the solution. The polar motion due to lunisolar torques is combined
analytically with that due to rotational and tidal deformation in order to form a
single set of coefficients for the diurnal polar motion. These coefficients along
with the corresponding tesseral diurnal tidal arguments are arranged in tabular
form so as to permit rapid computer evaluation of the diurnal polar motion at
any instant of time and for a given Love number and set of astronomical constants.

In addition to the results giving the motion of the rotation pole, solutions are
obtained for the diurnal motion within the Earth of the angular momentum vector
or principal axis of inertia. It is found that, in a deformable Earth, the angular
momentum vector departs by as much as 20 cm from the rotation axis rather
than remaining within 1 or 2 cm as it would if the Earth were rigid. The pre-
cession-nutation theory represented in the Explanatory Supplement to the Ameri-
can Ephemeris and Nautical Almanac [1961, p. 44] includes only the 1 to 2 cm
rigid-Earth correction for the departure of the rotation axis from the angular
momentum vector. An actual separation of 20 cm is significant in the interpre-
tation of sub-meter polar motion observations because it necessitates an addi-
tional coordinate transformation in order to remove what would otherwise be a
20 cm error source in the conversion between inertial and terrestrial reference
systems. Three alternative methods for making the additional coordinate trans-
formation are discussed in detail. Each method makes use of tabulated coeffi-
cients and arguments and can be readily programmed for use on an automatic
computer.

Woolard's theory of precession and nutation gives the best available repre-
sentation for the direction of the Earth's angular momentum vector in space.
The diurnal polar motion theory presented here must be used in conjunction
with such a precession-nutation model in order to give the orientation an
observatory-fixed terrestrial reference frame. It is important that Woolard's
results be understood in the context of the present development and, for this
reason, a discussion of his method of solution is included.
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2. POLAR MOTION DYNAMICS

The rotational motion of a general mass distribution M is described by

Liouville's equation

L. = H. + E .. H. k (2.1)

where

Hi = I.ij j +hi (2.2)

ij = (X Xkij .- x i x
) dm (2.3)

hi = j'ik Xj X dm (2.4)
M

Repeated indices indicate summation. The subscripts (i = 1, 2, 3) refer to a set

of axes (x, y, z) having their origin at the center of mass and an angular velocity
with components . L. and H. denote components of the net external torque
and the angular momentum respectively. Iij is the inertia tensor. h i is the
part of H. arising from motion relative to the x, y, z system.

Although Liouville's equation is valid in any coordinate system, the axes

shown in Figure (2.1) are especially useful for geophysical problems. The x, y,
z system is attached to a set of terrestrial observatories in some prescribed
manner. The x and y axes define the Earth's equator and the z axis is placed so

as to remain nearly aligned with the rotation axis.

The following perturbation scheme due to Munk and Macdonald [1960, p. 38]
serves to simplify Liouville's equation.

A + c 1 1  C1 2  C1 3

ij = c12 A + c22 c23 (2.5)

C13 C23 C + 33

S= mi n (2.6)

2 = m2 f (2.7)

W3 = (1 + m3) (2.8)

3
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Figure 2.1. Terrestrial Coordinate System.

For the Earth, the quantities m i., hi/CR, and cj /C are of order 10- 6 or smaller.
Neglecting second order terms in the small quantities therefore produces first
order equations for the polar motion that are exact to about one part in 106. Sub-
stitution of (2.5) through (2.8) into (2.1) gives

L,= A*, 0 + c 1 + h,

+ m 2 (C - A) 2 - c2 3 2 - h2 (2.9)

L 2 = Ar2 + C2 3 Q +h 2

- m, (C - A) 02 + c 3
2 + h, (2.10)

L 3 = <33  + Cm3 + h3  (2.11)

Equations (2.9) and (2.10) are written as a single complex equation in the form

S= i "r (m - /) (2.12)

4



where

i = Ji (2.13)

m = mI + i m 2  (2.14)

r = (C - A) 2/A (2.15)

The polar motion excitation function i is

iL c ic

(C-A) n2 C-A (C-A)

+ h i h (2.16)
(C - A) (C - A) n 2

where

S= + i '2 (2.17)

L = L + iL 2  (2.18)

c = C13 + i C23 (2.19)

h = h + i h 2  (2.20)

Equation (2.11) is rewritten as

m 33 (2.21)
C3 C CQ

The complex form of the polar motion equation makes solutions easier to
visualize. For example, if there is no excitation then ¢ = 0 and the solution to
(2.12) is

icr t
m = mo e r (2.22)

The motion is a counterclockwise circular path about the origin as shown in

Figure (2.2). This "free" or "Eulerian" motion has a period of 10 months. Its

amplitude and phase are determined by the initial condition

5



m(O) = m0  (2.23)

where mo is a complex constant of integration.

m

art 0

Figure 2.2. Eulerian Motion of the Pole.

The first order expansion of the angular momentum vector is

H = Aim + nc + h (2.24)

H3 = C (1 + m3 ) + c33 f + h3  (2.25)

where

H = H + i H2  (2.26)

The direction cosines of the rotation axis and the angular momentum vector are

-= (mi, m2 , 1) (2.27)

6



J1 t, - H-, (2.28)

in which second order terms are omitted. The complex numbers m and H/C
represent equatorial projections of unit vectors directed along the rotation axis
and the angular momentum vector respectively.
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3. POLAR MOTION KINEMATICS

It is necessary to define a set of coordinates to relate the terrestrial axes
x, y, z to a set of inertial axes X, Y, Z. For this purpose Woolard [1953, p. 151
defines the Euler angles shown in Figure (3.1). The XY plane is that of the
ecliptic at a prescribed epoch. The angle p is the longitude of the equinox TE
and is measured in the ecliptic of epoch eastward from X. The obliquity of the
ecliptic is denoted by 0 . The Earth's diurnal rotation is described by the angle
¢, which is measured eastward from TE to the x axis.

z

z

Y

TIE

x

Figure 3.1. Euler Angles.

The rates of change of the Euler angles are related to the angular velocity
components by Euler's kinematic equations,
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isin 8 = - w, sin - W2 Cos€ (3.1)

S= -W cos k + w sin k (3.2)

S= 3 - cos (3.3)

Equations (3.1) and (3.2) are expressed in complex form as

S+ i sin = - m ei (3.4)

A direction cosine vector -i which is nearly aligned with the z axis can be
described by the perturbations 38 and 80 in the Euler angles as shown in Fig-
ure (3.2). In order to relate the Euler angle perturbations to the direction
cosines u. , it is convenient to introduce the node axes 6, 7r, ( shown in Figure
(3.3). The 6 axis points toward the equinox E and the 77 axis lies in the
equator 900 to the east. The ( axis coincides with z. Neglecting second order
terms in 8/ and 80, the node axis components of u are

u = - 81 sin 8 (3.5)

u = 80 (3.6)

The Euler angle perturbations are defined in the sense

8p =P_ -0 '(3.7)
U

88 =. - 8 (3.8)

The x and y components of ii are related to the node axis components by

u + iU = e i (Ux + ilu Y) (3.9)

Combining (3.9), (3.5), and (3.6) gives

s8 + iS sin 0 = - ie i (u x + i. ) (3.10)
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z
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X x

Figure 3.2. Euler Angle Perturbations

Z ,z

9 Au

x

Figure 3.3. Node Axis Components of a Unit Vector Related to
Euler Angle Perturbations.
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4. LUNISOLAR TORQUES ON THE EARTH

The torque exerted on the Earth by a point-mass disturbing body with geo-
centric position rd and mass md is

(- -- (4.1)
Li =- Eijk md rdj (k

The Earth's gravitational potential V is defined as the integral

V=f Gdm (4.2)
r rd r 1

over all mass elements dm located at positions - within the Earth. V is ex-
panded in terms of Legendre functions as

V {1- J( P (sin d)

nr2 M=1 d

+ Snm sin m d (4.3)

The coordinates rd, d , and -d of the disturbing body are shown in Figure (4.1).
P m(,) is the Legendre associated function of degree n and order m defined by

Pn(l) = (1 - ,2) m/ 2 d (Pn()) (4.4)
dL.

where the Pn (A) are Legendre's polynomials,

_ 1 d1" (4.5)
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Z

rd

>Y

"d

x d

Figure 4.1. Disturbing Body Coordinates

The torque components in the x, y, z system are

L1 =-md sin d + sin dd COS d

L = Vmd O md S(V Sin d d (4.7)
L2 = d CCOS Sd +

L = - md (4.8)

The second degree zonal term in V is larger by a factor of 103 than the higher
degree zonal terms and the longitude dependent terms. Therefore, only the J2

12



term is retained for the purpose of computing torques. This simplifies the ex-

pressions for the equatorial torques L1 and L and results in zero torque about

the z axis. The torques arising from the J2 term are

mL 2  1 (sin d) (4.9)L 1 =- md Sin h d  2 2 P2 \Sin dr d r d

GmE
L - md CO S d 2 2 (sin d) (4.10)d \rd/

L3 = 0 (4.11)

In order to use expressions (4.9) and (4.10) in the analysis of polar motion

dynamics, the indicated functions of the disturbing body coordinates must be

known as explicit functions of time. The time dependence of the lunar and solar

coordinates is contained in Equation (A.22) which represents Doodson's expan-

sion of the tide generating potential. A formal spherical harmonic expansion of

the tide generating potential is compared with (A.22) in order to determine the

time dependence of the functions appearing in (4.9) and (4.10).

The tide generating potential is

G m d D (4r12)
U = P (cos d) (4.12)

n--2

The local zenith angle yd of the disturbing body is given in terms of local lati-

tude 0 and longitude X by

cos Yd = Sin sin d + COS q COS Cd cos(X - Xd) (4.13)

Equation (4.13) is substituted into (4.12) to obtain

U =n WmP(sin ) Pr(sin d) cos m( X d) (4.14)

13



where

W = 2(n-m)! (m= 1, 2, , n) (4.15)
n m (n + m)!

Wn0 =1 (4.16)

Linear independence of the spherical harmonic functions,

rn Prm (sin q5) sin mX (4.17)

implies that the corresponding coefficients in (4.14) and (A.22) are equal. Thus,

+ Wnm P m (sin d) C md

-n+1 { o[j - (n -m) (4.18)

Equation (4.18) is used to write (4.9) and (4.10) in the form

Gm
L =-3 maE J2  A21 cos(w.t +8j) (4.19)

d

L = 3 E E 2 G Aj Sin(c.t + 8) (4.20)

dj

The complex form (2.18) of the torque is

L= A. e- 1(Wi t+ i) (4.21)

14



where

Gmd
A =-3 -mEa J 2 A 2 1  (4.22)

Cd

In evaluating the torques, the variations in J2 due to rotational and tidal deforma-

tion are neglected. From (5.16) with C33 = 0,

J2 C - A (4.23)

mE Ea2

and (4.22) is written as

Gm
A. = - 3 (C -A) A,2 1  (4.24)

Cd15

15



5. TIME VARIATIONS IN THE GEOPOTENTIAL AND IN THE
INERTIA TENSOR DUE TO ROTATIONAL AND TIDAL
DEFORMATION OF THE EARTH

The Earth deforms as a result of tidal forces and the centrifugal force that

arises from its spin about a shifting axis of rotation. Such deformations enter
into the polar motion excitation function ¢ of Equation (2.16) and into the right
hand side of (2.21) by causing variations in the inertia tensor perturbations c 13 ,
c23 and c 3 3 . In order to write formulas for the inertia tensor perturbations,
the parts of the Earth's gravitational potential due to rotational and tidal defor-
mation are first found as functions of time. The inertia tensor perturbations
are then related to the geopotential coefficients by Equations (D.13) through
(D.17) and (D.26).

The Earth's rotation axis moves relative to the terrestrial reference frame
x, y, z of Figure (2.1). The resulting centrifugal force exerted on a mass ele-
ment having the position vector F shown in Figure (5.1) is derivable from the
rotational disturbing potential

S x r (5.1)
2

The components of C are, from (2.6) through (2.8),

m I, m2 , (1 + m3 ) f (5.2)

in which Q is constant and the mj are of order 10-6. Neglecting second order
terms in the m, the rotational disturbing potential (5.1) is written as

Sr 2 22 [1 -P 2 (sin )]

3

1 r 2 22 (m cos + m sin X) P (sin 4) (5.3)

16



z

-7

X

Figure 5.1. Generation of the
Rotational Disturbing Potential

The Earth responds by deforming so as to change its external potential by the
amount

V = - ks  2 3_ (Sin )3 a2 2  2(S

k aE 2 3 P2 (sin )

- k a  2() (m1 cos +m 2 sin X) P(sin ) (5.4)

The "secular" or constant part of the response takes place at a vanishingly small
frequency and is therefore written in terms of the secular Love number k [Munk
and Macdonald, 1960, p. 25]. The second and third terms on the right hand side
of (5.4) represent response occuring at frequencies associated with the polar

17



motion and are given in terms of the "tidal-effective" Love number K [Munk
and Macdonald, 1960, p. 27].

The tide generating potential evaluated at r = aE is, from (A.22),

U(aE, , ) Gd in )"
d nn=2 m=0 c

Am cos [ct +3 + mX + (n -m) (5.5)

The second degree zonal part of (5.5) contains one lunar and one solar term for
which

w. t + J. = 0 (5.6)
3

sec. sec.

The response to the secular part of U is given in terms of k rather than k. The
S

external potential arising from response to the tide generating potential is

Gmd  E- k 2 2 (sin )

+TD k P ) A2j sin
Cd sec.

Gmd f T a +1(a

n=2 m=0

S Anj cos t +/j +mk + (n -m)2 (5.7)

sec.

The external gravitational potential of the Earth is expanded as

V -m Jn P (sin )

n=2

+ ( Pmr(sin l) (Cnm cos m+ S sin mX)
n=2 m=l

(5.8)

18



The second degree zonal part of V is set equal to the combined zonal terms
in (5.4) and (5.7)

GmE (a)2

- k aE 2  p(in

2 Q2 M (-( s i n 6)
3 aE 3 2

- k () P 2(sin q) A2 0j sec

k _ P (sin q).

S A2 0 j cos (w.t + 3) (5.9)

jJsec.

The inertia tensor perturbations corresponding to J2 are found from Equations
(D.13) through (D.17) and Equation (D.26), which take the form

C- A 2c 33 - C1 1 - c 2 2-- + = J 2  (5.10)

mE E 2mE aE

c22 - c11 = 0 (5.11)

C1 2 = 0 (5.12)

c 13 = 0 (5.13)

c 2 3 = 0 (5.14)

C11 + C 2 2 + C 3 3 = 0 (5.15)

19



Equations (5.15) and (5.10) are combined to give

C-A 3c33C-A+ -3 3 J2 (5.16)

mEa 2mEa

The first term on the right hand side of (5.9) is identified with the term
(C-A)/mEa2 in J2. This effectively defines the secular Love number in terms
of C-A as

k = 3G (C - A) (5.17)

s E 2

The remaining terms on the right hand side of (5.9) are associated with the
inertia perturbation c 3 . The part of c 3 3 due to rotational deformation is

4 
k f2 m3 aE

C3 3  9 G (5.18)
RD 9 G

Equation (5.18) is written in terms of the secular Love number as

4k
33 - 3 k (C - A) m3  (5.19)

RD 3 k

The tidal contribution to c 33 is

2 md aEc = -k A3 3 TD 3 s Cd3  
2 0 sec.

+ md A2 0 j Cos (w.t +/) (5.20)

d j j sec.

Equations (5.11) through (5.15) give the remaining perturbations in the inertia
tensor as

1
C = c22 (5.21)

RD 2 2
RD 3 3 3 RD

20



c = c 1 (5.22)
1 1 TD C 2 2TD -- C 3 3TD

The second degree tesseral part of V is set equal to a constant term char-

acterized by the fixed coefficients C2ic and S 2 1 c plus time varying terms from
(5.4) and (5.7) due to rotational and tidal deformation.

GmE ( 221

P (sin ) Cos

r 2 {C1 21  i
mE 21 CO

P' (sin k)
r r 2S21 sinX

- kaE r2 (sin sin i

Gmdk (a)a)2 
(

Cd cd

sin (ot + ) cos (5.23)
SA 2 1 j Lcos (W t + Pj) sin 

(5.23)

In the case of a second degree tesseral potential, the inertia tensor relations are

C21 3  (5.24)
m E 

a
2

EE

S2, - (5.25)
mE a 2

The inertia tensor perturbations due to rotational deformation are

k
c13, RD (C - A) m (5.26)
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C2 3RD - (C - A) m2  (5.27)

In complex form,

cRD k (C - A) m (5.28)

where

CRD = C13RD + i C2 3 RD (5.29)

The tidal perturbations in the inertia tensor are

kmda 5

C TD 3 E A21 sin (w t + P ) (5.30)

d

kmdaC2 3  A21 i cos(w t + Pi) (5.31)

d

and these are written in complex form as

kind a5
CTD 3 A2 1 j e-i(w t+/8j -/2) (5.32)

where

CTD C13 + C 2 3  
(5.33)

The constant inertia perturbations are

C 1 3  - mE E 21 c (5.34)

C23 = - m E a S21 (5.35)230 E E 21

In complex form,

co = -mEE (C 21 + i S2 1 ) (5.36)

22



where

c o = co1 3 + i 2 3  (5.37)

The inertia tensor perturbations c 11, 22 and c12 do not enter explicitly
into the excitation function (2.16) and therefore they have no direct effect on the
polar motion. The lunisolar torques, however, depend ultimately upon every
term in the geopotential. Before neglecting all but the J 2 term for the purpose
of evaluating the lunisolar torques, it is necessary to know the magnitude of the
rotational and tidal contributions to the C22 and S22 terms in the geopotential.

The second degree sectorial term of V is set equal to a constant part plus
a time varying part due to tidal deformation.

GmE PC 22 cos 2 X

r S sin 2

Gm 22 cos 2X
E E p2 nq6) c

+ -k P2sin k) •Gmd

C d (r3 Cd 2

fcos(w. + 13) cos 2X

- A2 Cos 2 (5.38)
i2  - sin( + j) sin 2

In the case of a second degree sectorial potential, Equations (D.13) through
(D.17) and (D.26) take the form

C22 - C

C =22 11 (5.39)

C1 2

4mEaE

22 1 2  (5.40)
2m a 2
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2c 33 - C11 - c2 2 =0 (5.41)

13 = 0 (5.42)

c 2 3 = 0 (5.43)

C11 + c22 +33 = 0 (5.44)

Relations (5.41) and (5.44) give

3 3 = 0 (5.45)

Cli = - C 2 2  (5.46)

From (5.39),

C 22C22 C (5.47)
2mEa 2

E E

The tidal perturbations in the inertia tensor are

C22 TD- C 11TD A2 2 cos(cj t + 8j) (5.48)

d

2 kmd a 5

C1 2 TD A2 2 j sin(ct +j) (5.49)
d

The constant inertia tensor perturbations are

220 110 = 2 mE a 2 C 22  (5.50)

C120 = - 2mE E 22 (5.51)
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6. POLAR MOTION IN A RIGID EARTH WITH LUNISOLAR TORQUES

The polar motion excitation function due to lunisolar torques is, from (2.16),

iL
L (6.1)

(C - A) 02

where the complex torque L is given by (4.21).

In a rigid Earth there is no rotational or tidal deformation to affect the
inertia tensor, but constant products of inertia still enter into the excitation
function (2.16). The excitation due to the constant products of inertia co of
Equation (5.36) is

SCo (6.2)
CO- A (6.2)

The differential equation (2.12) for the polar motion takes the form

co i Aj -i(. t+63)m = iir m e (6.M C - A (C - A) 2

where A. is given by (4.24). The general solution for the position of the rotation
axis is

m = m0 e r + 0  A e (6.4)
C - A AQ(w. + 0-)

The complex constant of integration m o may be written in terms of an amplitude
yo and a phase Fo as

mo = Y0 e i  (6.5)

The axis of figure in a rigid Earth remains fixed relative to the x, y, z
coordinate system. From Equation (E.9), the axis of figure is

c
f Co (6.6)

C-A
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The direction cosines of the angular momentum vector are found by substi-

tuting the solution (6.4) for m into Equation (2.24).

H A icrt Co
--=mo e +CCd C C - A

+ iAj + e i(~i j) (6.7)
CO(w 0-r)

The solutions for the rotation axis, the axis of figure and the angular
momentum vector are shown in Figure (6.1). The axis of figure is fixed in the
x, y plane. The constant mo represents the initial displacement of the Eulerian
pole from the axis of figure. The Eulerian pole moves in a counterclockwise
circular path about the axis of figure, completing one cycle in a period of
27r/o- 2 10 months. Lunisolar excitation causes the rotation axis to move in a

r

clockwise epicycle about the Eulerian pole position. Only one term of the sum-
mation in (6.4) is represented by the circular epicycle shown in Figure (6.1).
The frequencies w. are grouped around the siderial frequency of 15.04107 de-
grees per hour and lie in the range

11.76554 deg. hr. - < w;. < 17.69937 deg. hr. -1  (6.8)

The different terms alternately reinforce and cancel one another so that the
rotation axis follows a path like the one shown in Figure (6.2). The amplitude
of the nearly diurnal epicycle reaches about 62 cm when the principal terms
are in phase.

Ultimately it is necessary to locate the rotation axis, the axis of figure and
the z axis of the "observatory-fixed" x, y, z system relative to inertially directed
axes. The position of a particular axis in inertial space is specified by the Euler
angles 6 and q defined in Figure (3.1). The Euler angles for the angular
momentum vector obtained by integrating Poisson's equations [Woolard, 1953,
p. 34] are denoted by 6H and H. The Euler angles 8r and 0, for the rotation
axis are given in complex form by

r + i r sin = 0 + i' sin 8 + Sr + i 8,r sin 8 (6.9)

where, from the kinematical relationship (3.10),

SO + i r sin ~- iei (m-H~- (6.10)
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Figure 6.1. Polar Motion in a Rigid-Earth

m

Figure 6.2. Diurnal Polar Motion
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The Euler angle perturbations for the axis of figure and the terrestrial z axis

are given respectively by

8af + i 8fsin = - i e i (k - (6.11)

8O9 + i SO sin 6 = i ei H (6.12)
. CQ

Substitution of (6.4), (6.6) and (6.7) into (6.10), (6.11) and (6.12) gives

(r, + iSSJr sin 9 = - i A m0 e

-A.
+ )LA e (6.13)

AQ(wj. + cr)

• A i(- ot+k)

86f + i Sqf sin = i m ei(t+
C O

A.-i t+p-€)
A- e ( J ) (6.14)

CQ(COj + cr)

80. + i ~0S sin = i-Am e(rt+) co ei

- A -i ( ,t+j -q) (6.15)
Cj(Co + 0r)

The arguments w + t + , + and rc. t + _. correspondingly to certain pairs
of distinct indices j+ and j- are symmetric with respect to the Greenwich mean

sidereal hour angle /M in the sense that
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C+ t + + (M + 7T) + a. (6.16)

c_ t + j _ = ( + T) - a. (6.17)

where a. denotes a linear combination of Doodson's standard variables defined
by Equation (B.13). The Euler angle perturbations (6.13) through (6.15) contain
sums of the general form

A e-i( ot+8-0) (6.18)

considered in Appendix F. The terms in (F.5) that contain sin (M - 1) involve
products of the small difference ( - 0) given by Equation (C.5) with factors the
size of the Euler angle perturbations themselves. The sin (OM - €) terms are
neglected and the resulting expressions are

SOr = o  sin(ort + 0 + 0o)

Sj+ r ) cos a. (6.19)
C A ++r -+r.

8tr sin = - Y-o A) cos ((Ort + + F0 )

+ C A 1 Aj sin a. (6.20)
C \j+ j_

8 , = - yA sin (or t + 0 + o0)

58 A.
+ 1 -- A cos a. (6.21)

C + r r29
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845f sin 6 = Y o -cos(r t + k + Fo)

1 Aj+ Aj
. .. A sin a. (6.22)

+ + + r• CQ j+ + O-r  _+ J

sx = - o sin(or t + b + o)

i n cos a. (6.23)
+ +  r + )

8t, sin 8 = Yo Cos (r + + F)

+ \c- cos - A sin (
CA CA

1 AA_ sin a. (6.24)
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7. POLAR MOTION IN A DEFORMABLE EARTH WITH LUNISOLAR

TORQUES AND TIDAL DEFORMATION

The polar motion excitation functions due to lunisolar torques and to the

constant part of the inertia tensor perturbations are

L iL (7.1)
(C - A) f2

and

=Co (7.2)
C-A

respectively, where L is given by (4.21) and co is given by (5.36). In a rigid

Earth eL and jo are the only sources of excitation and their effects are con-

sidered in Section 6.

In a non-rigid Earth rotational deformation gives rise to the products of

inertia cD given by (5.28) and tidal deformation causes the products of inertia

CTD given by (5.32). The excitation functions due to rotational and tidal defor-

mation are, from (2.16),

CRD i RD (7.3)
CD -C- A C-A A

CTDi D (7.4)

-C-A Q C-A

The rotation pole m satisfies (2.12), which takes the form

S= i "O-r (m - 00 - L - RD - TD )  (7.5)

Substituting for c RD from (5.28) into (7.3) gives

k i k
kRDk -- - m (7.6)

S S
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Since lCPD contains terms in m and ii, it is necessary to modify the form of (7.5).
Equation (7.5) becomes

r

m = io -m - ( r k o ( + L + qTD) (7.7)

where

-o  - (7.8)

+ 0r k

Separate solutions of (7.7) are first obtained for each of the excitations q0,
eL, and jTD . These solutions are then combined with the free motion to form
the complete solution. The solution due to 0 is

mfixed products k (79)
of inertia ( -

The polar motion due to lunisolar torques is

m tunisolar e (7.10)

torques j k A (coi + o0)

The coefficients A. are given by (4.24),

G m
Aj =-3 -- (C - A) A2 1j  (7.11)

d

and the A21j are related to Doodson's coefficients by Equation (A.23). The
solution due to tidal deformation is
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tidal e t )(7.12)
deformation rW k+ 0)

j 1 + k 3+ o)

where

A =k a) 2 1  (7.13)

The frequency n is defined as

nj = - wj (7.14)

and is related to Doodson's arguments by Equation (B.14). The free motion is

mfree = m e t (7.15)

where mo is a complex constant of integration which is written in terms of its
amplitude yo0 and phase F0 as

il00

mo = yo e (7.16)

It is useful to make some observations about the separate solutions before
combining them to form the complete solution. If the Love number k is zero,
Equations (7.9), (7.10) and (7.15) reduce to the corresponding terms in (6.4) for
a rigid Earth, and the polar motion (7.12) due to tidal deformation vanishes.
Each coefficient ATj is proportional to the angular rate n. by which the fre-
.quency of the jth tidal component differs from the Earth's rotation rate. When
wj = Q, the jth tidal component stands still in space and has no effect on the
polar motion. The period of the free motion is lengthened by rotational defor-
mation from 10 months to 27 /or 'o 14 months.

Tidal deformation produces polar motion having components with the same
frequencies as those for the motion excited by lunisolar torques. The ratio of
the jth coefficient in (7.12) to the corresponding coefficient in (7.10) is

mj, tidal deformation nj k (7.17)
mj, lunisolar torques ks
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Equation (7.17) shows that the motion due to tidal deformation is smaller than

that due to lunisolar torques and directed in the opposite sense.

The solutions (7.9), (7.10), (7.12) and (7.15) are combined to give

iO-t C-A i -i(.t+
m = m+ . + c + ARA e (7.18)

1 _ A2 RA

where

A.
AjRA. (7.19)

0-r

n( i k

The axis of figure is from Equation (E.9),

S=C- (7.20)
C - A

where c is the total of all perturbations in the inertia tensor.

C = C0 + CRD + CTD (7.21)

The motion of the axis of figure due solely to rotational deformation is

SC k m (7.22)
'RD C-A k

S

Substituting for m from (7.18) into (7.22) gives

co C- - An iot k i -i (W t +,j )C-A 'RD k k A2 RA
340  Ae(7.23)
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The motion of the axis of figure due to tidal deformation alone is

=CTD (7.24)
S-C - A

Substituting for cD from (5.32) into (7.23) and making use of (7.11) and (5.17)
gives

S k A e -i(j. t +)(7.25)

CTD k D2 (C - A)

The appearance of C-A in the denominator of (7.25) causes each term in ,f to
be much larger than the corresponding term in, . The jth terms of (7.25) ind
(7.23) have the ratio

j, tidal deformation A- (7.26)

j, rotational deformation 1 +

The tidal effect is therefore oppositely directed from the rotational effect and
about 300 times larger. In terms of displacement at the Earth's surface, the
amplitudes are of order

SI " 60 m (7.27)
j. tidal deformation

and

j, rotational .deformation I 20 cm (7.28)
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The combined motion of the axis of figure is, from (7.23) and (7.25),

CO

C-A k i 0 t i k -i(.t+j) (7.29)
A = +- moe r A  e )  (7.29)k\ k AG - k o C

where A.

SAk (7.30)

(-+n2 k

- --k

When k = 0, the solution (7.30) reduces to that given by (6.6) for a rigid Earth.

The direction cosines (2.28) of the angular momentum vector are found by
substituting the solution (7.18) for m into Equation (2.24).

H _ C-A + -A e i ro t)C k C __

k

+ C f2 k Aj M e (7.31)
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where

A.

A = ) (7.32)

+

n- k)

The factor (1-k/ks) 2/3 in the summation term of (7.31) causes the diurnal
terms for the angular momentum vector to be only 2/3 the size of the corre-
sponding terms in the motion of the rotation axis. The result is that the angular
momentum vector and the rotation axis are separated by as much as 1/3 x 62 cm,
or 21 cm, instead of remaining within 1 or 2 cm of each other as they do in the
case of a rigid Earth.

The solutions for m, if , and H/CQ are shown in Figure (7.1). The fixed
pole I is defined by

= (CA (7.33)

An interesting consequence of Equation (2.24) is

H = (m - 'f) (7.34)

so that the angular momentum vector, the axis of rotation and the axis of figure
all lie in the same plane, for either a rigid or a deformable Earth.

In the case of a deformable Earth, the Euler angle perturbations defined by
Equations (6.10) through (6.12) are
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H
C 6 21 cm
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k

C-A

60 m

I

Figure 7.1. Polar Motion in a Deformable Earth

or + i 8 Or s in = - i moei( 'Ot+)

r AC k

(7.35)
jA -i( . t +3j - h)
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. r

IC

88 + i 84 sin = C i + A)] m

1k )A. e- i (-i t6j (7.37)

The Euler angle perturbations contain sums of the form
-i(W t+8i-0)

AeC ( (7.38)

considered in Appendix F. The terms in Equation (F.5) that contain sin ( -

involve products of the small difference (M - q) given by (C.5) with factors the

size of the Euler angle perturbations themselves. The sin (, - €) terms are

therefore of second order. When they are neglected the resulting expressions

for the Euler angle perturbations are
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r (1 k l o sin(oo t + + 7o)

-Z {Aj+ c A),k(A +]

+ A -AM + n cos a. (7.39)

s in kjJ

r in = - - ky o cos(orot + 0+ 1o)

+ 1 A F _(c )+- A  k A +
+ A2 jAM

A m -- k - sin a (7.40)

S -1 k o sin(o t + + o)

-A) + A

+ A C- k A -) cos 0, (7.41)

40AM
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8 sin k- )Yo cos( t + + )

I Af°-r +

SA.> [CA) k A) (A%) (7.42)
- A +sin a (7.42)

A- + t A J '0o s in(,o ++ r0o)

-/ 230Cos + 130 sin

S

1 k[A A COS a(7.43)

Ssin = +s /0 cos(ob t + k + ro)

(C13 1 23 Sin

+ cos - C sin

I. kS
1Cn2 k A - A.J sin . (7.44)

The arguments aj are defined by Equation (B.13).
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8. COMPARISON OF THE PRESENT THEORY WITH WOOLARD'S
DEVELOPMENT OF THE EULERIAN AND LUNISOLAR COR-

RECTION TERMS

Doodson's [19221 expansion of the tide generating potential is based upon

Brown's [19051 lunar theory and Newcomb's [1898] theory of the sun. Woolard

[19531 also uses the theories of Brown and Newcomb in his development of the

lunisolar precession and nutation. Since the solutions obtained in Sections 6 and

7 are derived using Doodson's expansion, they may be expected to agree closely
with Woolard's equations for the Eulerian and lunisolar correction terms. Wool-

ard's paper is devoted mainly to a very elegant analytical integration of Poisson's

equations in order to obtain the Euler angles 0 H and 4,H of the angular momentum

vector. No attempt is made here to comment on this part of his procedure. Of

primary interest are the corrections S6 and 8qz that must be added to 8H and

'H in order to obtain the position of the observatory-fixed z axis.

Woolard assumes a rigid Earth, so his results must be compared with the

solutions for a rigid Earth in Section 6, or equivalently, with those of Section 7

after setting the Love number k equal to zero. In order to make a detailed com-

parison, Woolard's development of the Euler angle perturbations and the polar

motion coordinates is reproduced using the present notation. References to

equation numbers in Woolard's paper are of the form (1), (2), etc.

In a rigid Earth, the axis of figure remains fixed. Woolard takes advantage

of this at the outset by aligning the z axis of the terrestrial coordinate system
with the axis of figure. In Section 6, the axis of figure is given a fixed displace-
ment co/(C-A) relative to the z axis, and a corresponding term is carried along
in the restatement of Woolard's equations for purposes of comparison.

Woolard begins by differentiating his form (3) of Euler's kinematic equations.
In the present notation, the kinematic equations are

8 + i sin = - Qme i 4  (8.1)

and their derivative is

d d
S(0) + id ( sin 8) = - me i - mie i  (8.2)

dt dt

The time derivative i is replaced using the dynamical equation,

[ co iL (8.3)

S C - A 2(C -2A)
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which is equivalent to Woolard's (6). Substitution of (8.3) into (8.2) gives

d ( + i ( sin 8) = - Qeiim(r + ) - ei4L ie'~ c 2 (8.4)

dt dt A A

The derivative ¢ in (8.4) is eliminated using Euler's third kinematic relation,

3 = + Cos 0 (8.5)

Since there are no torques about the z axis, the third dynamical equation reduces
to

( A = 2= constant (8.6)

The polar motion m on the right hand side of (8.4) is eliminated using (8.1). The
resulting expression is written as

j'+ i'sin - iL i ()+ i d ( in
Cg c dt dt

A (6+ ' sin 0) cos 0 -c ei'¢ (8.7)
CR C

It is convenient to introduce the complex number y defined by

0X + i4 sin 0 (8.8)

In terms of X, Equation (8.7) is

-icA X + ix(f + e) L ei' + i U ei (8.9)

Equation (8.9) is equivalent to Woolard's (19).

Poisson's equations for the motion of the angular momentum vector are
stated as Woolard's Equation (30). In (8.9) the first and third terms on the left
are neglected in comparison with the second to obtain Poisson's equations in
the form
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S-i ei (8.10)AH Cf2

where the subscript H means that the corresponding Euler angles eH and 'H
refer to the angular momentum vector.

The terms "free" or "Eulerian" motion refer to the motion that would occur
in the absence of the lunisolar torque L. Woolard's derivation of the Eulerian
terms is discussed on pages 130 and 131 of his paper. The torque L is set equal
to zero and it is assumed that

4 = 2 (8.11)

in (8.9). Then

.= CO 0 2
y =- y = i - ei€  (8.12)

A A

which is the same as Woolard's (52). The solution to (8.12) is

= o e i(c/A) t _c eik (8.13)
C-A

in which Yo is a complex constant of integration and the assumption (8.11) is
used for an approximate integration of the co term. Equation (8.13) may be
written in terms of the polar motion m by making use of Euler's kinematic
equation (8.1) in the form

= - fmeid (8.14)

The polar motion solution corresponding to (8.13) is

C-A

where

mo = - e-i (0) (8.16)
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The assumption (8.11) implies that the Euler angle 0 varies linearly with time.
Thus

€ = nt + 0(0) (8.17)

Equation (8.17) is substituted into Equation (8.14) to obtain

i or t C0m = ne I t (8.18)

which agrees exactly with the Eulerian terms in Equation (6.4).

It is of interest that Equation (8.18) is in complete agreement with the
Eulerian terms of (6.4) even though the assumption (8.11) is not used at all in
deriving (6.4) while it is used twice in deriving (8.18) from (8.9). To see what
is happening, Woolard's simplified differential equation (8.12) is written in polar
motion form as

com i (or + -) m - i A (8.19)
A

Equation (8.19) differs from the Eulerian part of (6.3) by the inclusion of the
extraneous term

i(Q - ) m (8.20)

If the term iy (0 - ) in (8.9) is retained at the outset, then the polar motion
form is

com = ir m - i (8.21)
r A

which is identical with the Eulerian part of (6.3). Woolard's initial neglect of
the term i y( Q - C) in simplifying (8.9) is effectively cancelled by his assump-
tion (8.17) of a linearly varying Euler angle k .

In order to obtain the Euler angle perturbations, (8.10) is substituted for the
torque term in (8.9) and the latter equation is written as

iA .. A Co
x - x, x + - x( - )  ei' (8.22)

CH C C45
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From the definition (8.8),

y -XH = 5Z + i sz sin 0 (8.23)

where 80. and 8xz are the perturbations that must be added to the Euler angles
of the angular momentum vector in order to obtain those of the z axis. The in-
tegrals of the x and y terms on the right hand side of (8.22) are added to the
integral of the Eulerian solution (8.13) to give

8A i(C/A)t8 z + iS z sin 6 = K + i - ei(c/A) t

CQ

+ i o ei(Qt+k (o ))
C-A

A  A-i +- y( - ) dt (8.24)

In performing this integration, sine 0 is taken to be constant on the left hand side
and the assumption (8.11) is used for the co term. Equation (8.24) is equivalent
to Woolard's Equations (53). Woolard's solution (H of Poisson's equations is
then substituted for ) in Equation (8.24) in order to obtain his expressions (54)
for 8OZ and 82.

Woolard uses his solution for the Euler angle perturbations 80 and 8 p
in order to obtain the diurnal terms in the polar motion. From (2.24) the jth
diurnal term m. in the polar motion is related to the corresponding angular
momentum term by

H. = A(m. (8.25)

in the case of a rigid Earth with co = 0. ,Substituting (8.25) into (6.12) gives

m =- iCe-i¢ (80 + i8¢ sin 0) (8.26)
A i i

which is the complex form of Woolard's (69). Woolard's Equations (70) for the
main diurnal polar motion terms are obtained by substituting his solution (54)
for the Euler angle perturbations into Equation (8.26).
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The arguments in Woolard's diurnal polar motion expressions contain the
Euler angle 0. The arguments o t +,j in the polar motion solution (6.4) con-
tain the Greenwich mean sidereal time kM instead of 0 since, from (B.12),

cj t + Pi = (M + 7) + aI (8.27)

Woolard's polar motion equations contain ¢ in place of 9M because the terms
involving sin (Om - ) are neglected in his Equation (54) for the Euler angle per-
turbations upon which the polar motion is based. The same approximation in-
volving the sin ( M - ) terms is made in deriving the Euler angle perturbations
of Section 6, but there the polar motion is found first rather than being based
upon the Euler angle perturbations as it is in Woolard's paper, and so the diffi-
culty does not arise. The diurnal part of the Euler angle perturbations 80 Z and
8 ks is of the form

(8z i z i sin 0) A-- e- i( j t+ f -3j) (8.28)
J J

Substituting (8.27) for the argument gives

-0 -e e- j  (8.29)sOz + i8q) sin )= e-i(-0) e-i a (8.29)

j j

The diurnal terms in Woolard's Equations (54) are equivalent to (8.29) with

(¢M - k) neglected. Substituting (8.29) with the (M - ) term included into (8.26)
gives

Z m = i A. e-i(4'+ai (8.30)

j j

which contains t in the arguments as it should. All terms involving the dif-
ference (OM - 0) multiplied by the polar motion components or the Euler angle
perturbations are of second order and are therefore negligible in numerical
computations. However, it is more exact as well as more straightforward to
use (M in the polar motion arguments instead of the Euler angle q.

The integral term in Equation (8.24) gives rise to the secular terms in
Woolard's Equation (54) for 86~ and in his polar motion equation (70). This
integral term is effectively accounted for already by Woolard's use of the cor-
rect Eulerian solution (8.18) in place of (8.13) and therefore should not be
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included in (8.24) at all. Fortunately, the small size of the secular term makes
it negligible in numerical computations.

Of greater importance for numerical computations is the error inherent in
Woolard's procedure for combining the complementary and particular solutions
of the basic Equation (8.9). The nature of this error is readily determined by
obtaining the particular integral of (8.9) with the help of expansion (4.21) of the
lunisolar torque. Equation (8.9) is written as

X -(r + ) -t A. e i(j t+ (8.31)

where or is given by (2.15). The particular integral of (8.31) is

A -i(-it+Pi -)e = e (8.32)

Woolard's procedure is to neglect the j term in (8.31) and solve for y to obtain

S= - J e (8.33)
A(O + ur)

The effect is to replace each tidal frequency w. in the coefficients of (8.33) by
the frequency 6, thus neglecting the motion of the sun and moon. The frequency
# is

j= - cos 8 = [1 + 0(10-7)] Q (8.34)

so that solutions equivalent to Woolard's can be obtained to within 1 part in 107
by substituting

CO = j (8.35)

into the coefficients of the rigid-Earth formulas of Section 6. Equations (6.4)
and (6.7) with approximation (8.35) are used to obtain the coefficients given in
Table (8.1) for the diurnal motion of the rotation axis and the angular momentum
vector. The six largest terms in the diurnal polar motion given by Woolard's
Equations (70) correspond to the terms listed in Table (8.2). The amplitudes in
Table (8.2) agree to within the number of significant figures retained by Woolard,
thus providing a check on the rigid-Earth polar motion theory of Section 6.
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Table 8.1-(continued)

COEFFICIENTS IN SECONDS OF ARC

SINE FOR X-COMPONFNTS.
COSINE FOR Y-COMPONENTS

INDEX TIDAL ARG. DIST. COEFFICIENTS OF ROTATION AXIS OF ANGULAR

CODE NUMBER BODY .PHIM L LP F D OM ..AXIS. .FIGURE MOM ENTUM.

130 195.475 M 1 1 0 2 0 0 0.0000069 0.0 0.0000069

131 1X3.555 M 1 0 0 2 2 2 0.0000082 0.0 0.O0000R2

132 1X3.565 M 1 0 0 2 2 1 0.0000053 0.0 0.0000052

133 1X5.355 M 1 2 0 2 0 2 0.0000067 0.0 0.0000067

134 1X5.365 M 1 2 0 2 0 1 0.0000044 0.0 0.0000044

135 1E3.455 M 1 1 0 2 2 2 0.0000020 0.0 0.0000020

Explanation of symbols

PHIM Is the Greenwich mean sidertal time; o

L, LP, F, D and OM are:Brown's fAmdamental
arguments; C, ', F, D and 0

Constants

k=0

K, = -71552430 x 10' Jullan century-'

Ke = -31'484150 x 103 Julian century
-

(C-A)/C = 3.272930 x 10
- 3

0 = 360.9856 day"

(C/a,) = 2.343852 x 10'

J 
=

1.082645 x 10
- 3

(m,/m) = 3.334320 x 106
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The effect of Woolard's approximation (8.35) on numerical computations of the
diurnal variation of latitude for Goddard Space Flight Center is shown in Figure
(8.1). The diurnal terms in Equation (6.4) are substituted into Equation (9.14) in
order to compute the latitude variation. The amplitudes differ by at most 0'.'0008
which is 3.7% of the diurnal polar motion amplitude or 2.5 cm at the Earth's
surface.

Table 8.2
Comparison of Woolard's Diurnal Polar Motion Amplitudes

with Those from Table 8.1

Amplitude from Amplitude from
Tidal Argument lthe Column Headed

Code Number Woolard's Equations "Rotation Axis" in
(70) Table 8.1

135.655 -01'0012 -0'.'0011841
145.545 -0.0012 -0.0011659
145.555 -0.0062 -0.0061846
163.555 -0.0029 -0.0028913
165.555 0.0087 0.0087109
165.565 0.0012 0.0011785

The Euler angle perturbations in Table 8.3 are obtained from Equations (6.19)
through (6.24) with co. = Q so as to make the results equivalent to Woolard's Equa-
tion (54). The amplitudes of the largest terms in 80 and 5 zp sino from Table
8.3 are compared with Woolard's Equation (54) in Table 8.4. The amplitudes
agree to as many significant figures as Woolard retains, thus providing a check
on the Euler angle perturbation theory of Section 6.
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-- N.

EQUATION 6.4

--- WOOLARD'S APPROXIMATION
0.01 (EQUATION 6.4 WITHj=.Q)

0.0 -
30cm

CA9)785.0 785.5 786.0
Lu JULIAN DATE

-

-0.01

-0.02

Figure 8. 1. Effect of Woolard's Approximation on the Diurnal Variation of Latitude for
Goddard Space Flight Center. Both Curves are for a Rigid Earth.



Table 8-3

Coefficients for Perturbations in the Euler Angles of the Rotation Axis, the Axis of Figure

and the Angular Momentum Vector in a Rigid Earth with Woolard's Approximation; =

COEFFICIENTS FOR EULER ANGLE PERTURBATIONS
IN SECONDS OF ARC

COSINES FOR DELTA THETA

SINES FOR DELTA PSI * SIN(THETA)

ROTATION AXIS OF TERRESTRIAL

TIDAL ARGUMENT COEFFICIENTS OF AXIS FIGURE Z AXIS

CODE NUMBERS L LP F D OM COS SIN CnS SIN COS SIN
---------------------------------------------------------------------------------------------------------------------------

105.955 4 0 2 0 2 -0.00000001 -0.0000.001. 0. 000001880 .00000180 .00000180. O.00010RO

107.755 . 2 0 2 2 2 -0.00000002 -0.00000002 0.00000752 0.00000752 0.00000752 0.00000752

109.555 . 0 O 2 4 2 -0.00000002 -0.00000002 0.00000458 0.00000458 0.00000458 0.00000458

115.845 3 0 2 0 1 -0.00000001 -0.00000001 0.00000343 0.00000343 0.00000343 0.00000343

115.855 3 0 2 0 2 -0.00000006 -0.P00000006 0.00001766 0.00001766 0.00001766 0.00001766

117.645 1 0 2 2 1 -0.00000003 -0.00000003 0.00000867 0.00000867 0.00000867 0.00000867

117.655 1 0 2 2 2 -0.00000015 -0.00000015 0.00004547 0.00004547 0.00004547 .0.00004547

118.t54 1 -1 2 2 2 -0.00000001 -0.00000001 0.00000343 0.00000343 0.00000343 0.00000343

119.445 -1 0 2 4 1 -0.00000001 -0.00000001 0.00000164 0.00000164 0.00000164 0.00000164

119.455 • -1 0 2 4 2 -0.00000003 -0.00000003 0.00000883 0.00000883 0.00000883 0.00000883

124.756 2 1 2 0 2 0.00000001 0.00000001 -0.00000213 -0.00000213 -0.00000213 -0.00000213

125,745 1X5.365 2 0 2 0 1 -0.00000008 -0.00000011 0.00002502 0.00003386 0.00002502 0.00003386

125.755 1X5.355 2 0 2 0 2 -0.00000049 -0.00000053 0.00014949 0.00016290 0.00014949 0.00016291

126.556 . O 1 2 2 2 0.00000001 0.00000001 -0.00000262 -0.00000262 -0.00000262 -0.00000262

126.655 1 0 2 1 2 0.00000001 0.00000001 -0.00000180 -0.00000180 -0.00000180 -0.00000180

126.754 2 -1 2 0 2 -0.00000001 -0.00000001 0.00000245 0.00000245 0.00000245 0.00000245

127.545 IX3.565 0 0 2 2 1 -0.00000010 -0.00000013 0.00003042 0.0000408R 0.00003042 0.00004089

127.555 1X3.555 0 0 2 2 2 -0.00000059 -0.00000065 0.00018040 0.00019676 0.00018041 0.00019676

128.544 • 0 -1 2 2 1 -0.00000001 -0.00000001 0.00000229 0.00000229 0.00000229 0.00000229

128.550 . O -5 6 -2 6 -0.00000004 -0.00000004 0.00001292 0.00001292 0.00001292 0.00001292

129.355 -2 0 2 4 2 -0.00000002 -0.00000002 0.00000572 0.00000572 0.00000572 0.00000572

133.855 3 0 2 -2 2 0.00000001 0.00000001 -0.00000376 -0.00000376 -0.00000376 -0.00000376

134.f56 1 1 2 0 2 0.00000003 0.00000003 -0.00000998 -0.00000998 -0.00000998 -0.00000998

135.435 -1 0 4 0 2 0.00000002 0.00000002 -0.00000458 -0.00000458 -0.00000458 -0.00000458

135.635 195.475 1 0 2 0 0 0.00000005 0.0 -0.00001374 0.0 -0.00001374 0.0

135.f45 195.465 1 0 2 0 1 -0.00000062 -0.00000084 0.00018989 0.00025499 0.00018989 0.00025499

135.655 195.455 1 0 2 0 2 -0.00000371 -0.00000404 0.00112936 0.00123109 0.00112938 0.00123111

135.855 195.255 3 0 0 0 0 0.00000002 0.0 -0.00000622 0.0 -0.00000622 0.0

136.456 -1 1 2 2 2 0.00000001 0.00000001 -0.00000213 -0.00000213 -0.00000213 -0.00000213

136.555 0 0 2 1 2 0.00000002 0.00000002 -0.00000638 -0.00000638 -0.00000638 -0.00000638

136.644 * 1 -1 2 0 1 -0.00000001 -0.00000001 0.00000180 0.00000180 0.00000180 0.00000180

136.654 1 -1 2 0 2 -0.00000004 -0.00000004 0.00001112 0.00001112 0.00001112 0.00001112

137.445 193.665 -1 0 2 2 1 -0.00000012 -0.00000016 0.00003598 0.00004841 0.00003598 0.00004841

137.455 193.655 -1 0 2 2 2 -0.00000070 -0.00000077 0.00021459 0.00023389 0.00021459 0.00023389

137.655 193.455 1 0 0 2 0 0.00000008 0.0 -0.00002551 0.0 -0.00002552 0.0

137.(65 1 0 0 2 1 -0.00000001 -0.00000001 0.00000393 0.00000393 0.00000393 0.00000393

138.444 -1 -1 2 2 1 -0.00000001 -0.00000001 0.00000180 0.00000180 0.00000180 0.00000180

138.454 -1 -1 2 2 2 -0.00000003 -0.00000003 0.00001047 0.00001047 0.00001047 0.00001047

139.455 191.655 -1 0 0 4 0 0.00000002 -0.00000000 -0.00000474 0.00000016 -0.00000474 0.00000016

143.535 * 0 0 4 -2 2 0.00000001 0.00000001 -0.00000278 -0.00000278 -0.00000278 -0.00000278



Table 8-3-(continued)

COEFFICIENTS FnR EuILER ANGLE PFRTIIRRATION!S
IN SECONDS OF ARC

COSINES FOR DELTA THETA
SINES FnR DELTA PSI * SIN(THETA)

ROTATION AXIS OF TERRESTRIAL
TIDAL ARGUMENT COEFFICIENTS OF AXIS FIGURF Z AXIS
CODE NUMBERS L LP F D OM COS SI

N  
CnS SIN COS SI!

,

143.745 . 2 0 2 -2 1 0.00000001 0.00000001 -0.00000327 -0.00000327 -0.00000327 -0.00000327
143.755 . 2 0 2 -2 2 0.00000006 0.00000006 -0.00001R48 -0.0000184P -0.00001848 -0.)000184k
144.546 0. 1 2 0 1 0.00000001 0.00000001 -0.00000245 -0.00000245 -0.00000245 -0.0000 245

*144.556 . 0 1 2 0 2 0.00000007 0.00000007 -0.00002126 -0.00002126 -0.00002126 -0.00()02126
145.535 185.575 0 0 2 0 0 0.00000023 0.0 -0.00007131 0.0 -0.00007131 0.0
145.545 185.565 0 0 2 0 1 -0.00000326 -0.00000437 0.00099214 0.00133201 0.00099215 0.00133203
145.555 185.555 0 0 2 0 2 -0.00001937 -0.00002111 0.00589886 0.00642977 0.00589893 0.00642914
145.755 185.355 2 0 0 0 0 0.00000026 0.00000000 -0.00007900 -0. 00000049 -0.0007900 -0.0(000049
145.765 2 0 0 0 0 1 0.00000002 0.00000002 -0.00000654 -0.00000654 -0.00000654 -0.001000654
146.544 . O -1 2 0 1 -0.00000001 -0.00000001 0.00000196 0.00000196 0.00000196 0.00000196
146.554 0. -1 2 0 2 -0.00000006 -0.00000006 0.00001881 0.0000181 0.000018 1 0. 000 i81 I
147.355 . -2 0 2 2 2 0.00000001 0.00000001 -0.00000343 -0.00000343 -0.00000343 -0.00000343
147.545 183.565 0 0 0 2 -1 0.00000004 -0.00000006 -0.00001341 0.00001799 -0.00001341 0.00001799
147.555 183.555 0 0 0 2 0 0.00000053 -0.00000000 -0.00016078 0.00000016 -0.00016078 0.00000016
147.565 183.545 0 0 0 2 1 -0.00000005 -0.00000007 0.00001488 0.00002012 0.00001488 0.00002 )12
148.554 182.556 0 -1 0 2 0 0. 00000003 0.00000000 -0.00001063 -0.00000016 -0.00001063 - .O00001 6

152.f56 . 1 1 2 -2 2 0.00000001 0.00000001 -0.00000229 -0.00000229 -0.00000229 -0.000,0022
153.645 . 1 0 2 -2 1 0.00000003 0.00000003 -0.00001030 -0.00001030 -0.00001030 -0.00001030
153. 55 177.455 1 0 2 -2 2 0.00000014 0.00000016 -0.00004351 -0.00004743 -0.000)04351 -0.00004743
154.65( 176.454 1 1 0 0 0 -0.00000002 0.0 0.00000491 0.0 0.00000491 0.0
155.435 175.675 -1 0 2 0 0 -0.00000002 0.0 0.00000556 0.0 0.000000556 0.0
155.445 175.665 -1 0 2 0 1 0.00000009 0.0(000012 -0.00002748 -0.00003606 -0.00002748 -0.0000369'6
155.455 175.655 -1 0 2 0 2 0.00000055 0.00000060 -0.00016666 -0.00018171 -0.00016667 -0.0001P.171
155.645 175.465 1 0 0 0 -1 0.00000027 -0.00000036 -0.0000R211 0.00010991 -0.00008211 (1.00010991
155.655 175.455 1 0 0 0 0 0.00000318 0.0 -0.00096957 0.0 -0.00096958 0.0
155.665 175.445 1 0 0 0 1 0.00000027 0.00000037 -0.00008292 -0.00011138 -0.00008292 -0.0001113P
155.675 . 1 0 0 0 2 -0.00000001 -0.00000001 0.00000278 0.00000278 0.00000278 0.000()027'
156.555 174.555 0 0 0 1 0 -0.00000002 0.0 0.00000523 0.0 0.00000523 0.0
156.(54 174.456 1 -1 0 0 0 0.00000002 0.0 -0.00000589 0.0 -0.00000589 0.0
157.445 173.665 -1 0 0 2 -1 0.00000005 -0.00000007 -0.00001570 0.00002094 -0.00001570 0.00(02u94
157.455 173.655 -1 0 0 2 0 0.00000061 0.0 -0.0001515 0.0 -0.00018515 0.0
157.465 173.645 -1 0 0 2 1 0.00000006 0.00000008 -0.00001734 -0.00002323 -0.00001734 -0.00002323
158.454 172.656 -1 -1 0 2 0 0.00000003 0.0 -0.00000785 0.0 -0.00000785 0.)
161.557 . 0 2 2 -2 2 -0.00000002 -0.00000002 0.00000687 0.00000687 0.00000687 0.00000687
162.556 168.554 0 1 2 -2 2 -0.00000053 -0.00000058 0.00016140 0.00017588 0.00016140 0.00017588
163.535 167.575 0 0 2 -2 0 -0.00000002 0.0 0.00000458 0.0 0.00000458 0.0
163.545 167.565 0 0 2 -2 1 0.00000009 0.00000012 -0.00002780 -0.00003729 -0.00002781 -0.00003729
163.555 . 0 0 2 -2 2 -0.00000002 -0.00000002 0. 00000491 0. 00000491 0.00000491 0.00000491
163.555 167.555 0 0 2 -2 2 -0.00000904 -0.00000985 0.00275300 0.00300079 0.00275303 0.00300082
163.557 167.553 0 2 0 0 0 0.00000001 0.0 -0.00000362 0.0 -0.00000362 0.0



Table 8-3-(continued)

COEFFICIENTS FOR EULER ANGLE PERTURBATIONS
IN SECONDS OF ARC

COSINES FOR DELTA THETA
SINES FOR DELTA PSI * SIN(THETA)

ROTATION AXIS OF TERRESTRIAL
TIDAL ARGUMENT COEFFICIENTS OF AXIS FIGURE Z -AXIS
CObE NUMBERS L LP F D OM COS SIN COS SIN COS SIN
--------------------------------------------------------------------------------------------------- ------------------------------

163.755 167.355 2 0 0 -2 0 0.00000003 0.0 -0.00000850 0.0 -0.00000851 0.0
164.554 . 0 -1 2 -2 2 0.00000008 0.00000008 -0.00002407 -0.00002407 -0.00002407 -0.00002407
164.556 166.554 0 1 0 0 0 0.00000046 0.0- -0.00013868 0.0 -0.00013869 0.0
165.545 165.565 0 0 0 0 -1 0.00000329 -0.00000442 -0.00100293 0.00134640 -0.00100294 0.00134642
165.555 . 0 0 0 0 0 0.00000905 0.00000905 -0.00275609 -0.00275609 -0.00275613 -0.00275613
165.555 . 0 0 0 0 0.00001946 0.00001946 -0.00592617 -0.00592617 -0.00592624 -0.00592624

165.575 0 0 0 0 -2 -0.00000008 0.00000008 0.00002519 -0.00002519 .0,00002519 -0.00002519
173.445 1 0 -2 2 -1 0.00000001 -0.00000001 -0.00000278 0.00000278 -0.00000278 0.00000278
175.475 1 0 0 0 -2 -0.00000001 0.00000001 0.00000213 -0.00000213 0.00000213 -0.00000213
185.365 2 0 0 0 -1 0.00000003 ,-0.00000003 -0.00000785 0.00000785 -0.00000785 0.00000785
185.585 0 0 2 0 -1 0.00000001 -0.00000001 -0.00000229 0.00000229 -0.00000229 0.00000229
193.465 1 0 0 2 -1 0.00000001 -0.00000001 -0.00000245 0.00000245 -0.00000245 0.00000245
1E3.455 1 0 2 2 2 0.00000001 -0.00000001 -0.00000196 - 0.00q00196 -0.00000196 0.00000196

Explanation of symbols

L, LP, F, D and OM are Brown's fundamental
arguments; t,', F, D and f

Constants

k=0

K,= -7:'552430 x 10' Julian century-'

K,= -3!'484150 x 10 Julian century
-l

(C-A)/C = 3.272930 x 10
-3

0 = 3609856 day'

(C,/%) = 2.343852 x 104

J 
= 
1.082645 x10-3

(mn/m) = 3.334320 x 10'



Table 8.4
Comparison of Woolard's Euler Angle Perturbations

with those from Table 8.3

Code Numbers of Terrestrial z Axis Euler Angle Euler Angle Perturbations
Symmetric Tidal Perturbations from Table 8.3 from Woolard's Equation (54)

Arguments Soz 8bz sin 8 sz 5/z sin

117.655 0.'00004547 0.'00004547 '.'00005
125.755 1x5.355 0.00014949 0.00016291 0.00015 0.00016
127.545 1x3.565 0.00003042 0.00004089 0.00004
127.555 1x3.555 0.00018041 0.00019676 0.00018 0.00020
135.645 195.465 0.00018989 0.00025499 0.00019 0.00025
135.655 195.455 0.00112938 0.00123111 0.00113 0.00123
137.445 193.665 0.00003598 0.00004841 0.00005
137.455 193.655 0.00021459 0.00023389 0.00021 0.00023
145.545 185.565 0.00099215 0.00133203 0.00133 0.00099
145.555 185.555 0.00589893 0.00642984 0.00590 0.00643
147.555 183.555 -0.00016078 0.00000016 -0.00016
153.655 177.455 -0.00004351 -0.00004743 -0.00005
155.455 175.655 -0.00016667 -0.00018171 -0.00017 -0.00018
155.645 175.465 -0.00008211 0.00010991 -0.00011
155.655 175.455 -0.00096958 0.0 -0.00097
155.665 175.445 -0.00008292 -0.00011138 -0.00011
157.455 173.655 -0.00018515 0.0 -0.00018
162.556 168.554 0.00016140 0.00017588 0.00016 0.00018
163.555 167.555 0.00275303 0.00300082 0.00275 0.00300
164.556 166.554 -0.00013869 0.0 -0.00014
165.545 165.565 -0.00100294 0.00134642 -0.00100 -0.00135
165.555 -0.00868237 0.0 -0.00868
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9. COMPUTATIONAL FORMULAS AND APPLICATIONS

For numerical computations the diurnal terms in Equations (7.18), (7.29),
(7.31) and (7.39) to (7.44) for m, 4) , H/C n, and the Euler angle perturbations
are written in terms of the common multipliers of the lunar and solar terms
that arise in the theory of precession and nutation [Woolard, 1953, pp. 124-125] .
The common multiplier of the solar terms is

K0 = - 3 (9.1)

= - 34841'15 (Julian century)- 1

and the common multiplier of the lunar terms is

K,= -3 C ) (9.2)

=- 7552'4295(Julian century) - '

From Equation (4.24),

A - 3 M d ~ A (9.3)
A =- 3n23 A 21jd d

which is written in terms of the constants K and K, as

A = Kd -CA 2i (9.4)
A2) AQ 213

In order to make the value of the secular Love number k , given by (5.17), con-
sistent with the values (9.1) and (9.2) of K and K , k is written as. _s

k )- (9.5)

The computational form of Equation (7.18) for the polar motion is
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=0) i "\~j e x ( Coj t+Pj )

m= moe io + ( +cA) e (9.6)

ni kR

where (Aj /An2) and k. are computed from (9.4) and (9.5) respectively. The
direction cosines of the axis of figure are computed using Equation (7.29) in the
form

k i 0ot (C-A)Sf = k- me +

(k)

i ( e-i( t+ 

- k (9.7)

n k

The computational form of Equation (7.31) for the angular momentum vector is

H A C k iaot - A
,= C- ) k moe +-

C Q C k k

Ai A k e-i( Ji t+6j) (9.8)

+ ( )[3)]
+ 5

Q , k RfGkn
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The computational forms of Equations (7.39) to (7.44) for the Euler angle per-
turbations are obtained similarly in terms of the dimensionless ratio (Aj /A Q 2).

Equations (9.6), (9.7) and (9.8) are used to compute the coefficients listed in
Table 9.1 for the diurnal motion of m, tf , and H/C Q in a rigid Earth. Table 9.2
gives coefficients for evaluating the diurnal motion of m, k, , and H/C f in a de-
formable Earth with k = 0.29. The computational forms of Equations (7.39) to
(7.44) are used to obtain the coefficients given in Tables 9.3 and 9.4 for the Euler
angle perturbations. Table 9.3 is for a rigid Earth and Table 9.4 is for a de-
formable Earth with k = 0.29.

The effect of polar motion on latitude and time is shown in Figure 9.1. The
true equinox of date 'T corresponds to the ascending node of the true equator of
date on the mean ecliptic of date. The true sidereal system has its x axis directed
toward T , its y axis 900 eastward fromr in the true equator of date and its z
axis along the rotation axisZ . The transformation from the true sidereal system
into the terrestrial or "observatory-fixed" system x, y, z is given by

Xterrestrial = R 2 (-ml) Rl(m 2 ) R3 (GASTI) Xtrue siderial (9.9)

where Rj (a) denotes the rotation of a coordinate system about its j axis through
the angle a, and GAST1 is the Greenwich apparent sidereal time corrected for
polar motion. Let xT, YT, and zT correspond to the system obtained by rotating
the true sidereal system through GAST1 about Z. Then

Xterrestrial = R 2(-m,) Rl(m 2 ) _r (9.10)

Latitude and longitude are denoted respectively by T and AT in the xT, YT, z sys-
tem and by D a A in the terrestrial system. Equation (9.10) is used to obtain

cos DT Cos AT = cos Q cos A - m1 sin 4 (9.11)

cos (PT sin AT = cos D sin A - m2 sin (P (9.12)

sin 0 = sin D + cos DP(m1 cos A + m2 sin A) (9.13)

in which second and higher order terms in m, and m 2 are neglected. From
(9.13), the first order expression for the latitude variation is

DT - D = ml cos A + m2 sinA (9.14)

Equations (9.11) and (9.12) are combined to give

A T -A= tan (m 1 sin A-m 2 cos A) (9.15)
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Table 9-1-(continued)

COFFFICIENTS IN SFCoImDS OF ARC
SINE Fnfp x-COMPnNFNTS

COSINE FOR Y-CnMPnNENTS

INDEX TIDAL ARG.. DIST. CnEFFICIENTS OF. RnTATION AXIS nF ANurIILAR

CODE NUMBER ROnY PHIM L LP F I) Or AXIS FI IIRF M()MF NTIIuM

133 1X5.355 M 1 2 0 0 2 0 000 .0 000 0.0 0.0000059

134 1X5.365 M 1 2 0, 2 0 1 0 .0000039 0.0 0. (00(00

135 IE3.455 1 1 1 0 2 2 2 0.0000017 U.0 0.0000017

Explanation of symbols

PHIM is the Greenwich mean siderial time; 4

L, LP. F, D and OM are Brown's fundamental
arguments; 4, 4', F, D and

Constants

k=O

K, = -7!'552430 x 103 Julian century-'

Ke = -31'484150 x 103 Julian century
-

(C-A)/C = 3.272930 x 10
-
1

0 = 360-9856 day
-
'

(C,/a) = 2.343852 x 10'

J, 
= 

1.082645 x 10-'

(m./m1 ) = 3.334320 x 106
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Table 9-2

Coefficients for the Diurnal Motion of the Rotation Axis, the Axis of Figure
and the Angular Momentum Vector in a Deformable Earth

COFFFICIFNTS I SFCONnS OF ARC
SINF FOR X-CnMPn',FINTS

COSI N FOR Y-COMP(NINFNTS
INDEX TIDAL ARG. DIST. COEFFICIENTS (IF ROTATIOh AXIS nF ANGItLARCODE NUMBER RnDY PHIM L LP F I) nM AXIS F IIIRF (

M
FN TIINM.-----------------------------------------------------------------------------------------

I 105.995 M 1 -4 0 -2 0 -2 -(.0000022 0.0001699 -0.00000162 107.755 M 1 -2 0 -2 -2 -2 -0.0000000 0.0007105 -0.00000663 109.555 M 1 0 0 -2 -4 -2 -0.0000054 0.0004325 -0.0000404 115.845 iM 1 -3 0 -2 0 -1 -0.0000040 0.0003244 -0. (O000Q5 115.855 M 1 -3 0 -2 0 -2 -0.0000204 0.0016684 -0.00001496 117.645 M 1 -1 0 -2 -2 -1 -0.0000100 (.0008 R l8 -0. (0000737 117.655 ,M 1 -1 0 -2 -2 -2 -0.0000524 0.00429L6 -0. 00003 18 118.654 M 1 -1 1 -2 -2 -2 -n0.000 OOOo9 0.0003244 -0. 000(1(1209 119.445 M 1 1 0 -2 -4 -1 -0.0000019 0.0001545 -0.0(!00001411 119.455 M 1 1 0 -2 -4 -2 -n.0001i1 (0. 000842 -0. 00(00117&11 124.756 M1 1 -2 -1 -2 0 -2 0.0000024 -0.00 02008 0.000001712 125.745 M 1 -2 0 -2 (1 -1 -0.00030 O.0027O10 -0 . 0000?1,0913 125.755 M 1 -2 0 -2 0 -2 -0.0001751 0.0147;L5 -0.000126214 126.556 M 1 0 -1 -2 -2 -2 0.on0000029 -0. .000272 0.0000 02115 126.655 Il 1 -1 0 -2 -1 -2 0.0000020 -0.O001699 0.0(10001416 126.754 Ii 1 -2 1 -2 0 -2 -0.0000027 0.0002 1 17 -0. n(on0o;17 127.545 1 I1 0 -2 -2 -1 -0.00030 0.0033691 -0.00002818 127.555 M 1 0 0 -2 -2 -2 -0.0002105 0.01781 9 -0.n1111 1 519 128.544 M 1 0 1 -2 -2 -1 -0.0000026 0.00021 3 -(.n00001p21 128.550 M 1 0 5 -6 2 -6 '-0 .00014 0. 00122(76 -0. 0000 10321 129.355 MI 1 2 0 -2 -4 -2 -0.0000064 0.0005408 -0.000004622 133.855 M 1 -3 0 -2 2 -2 0.00000 L1 -0. (000(3 54 (.00ooo020723 134.656 M 1 -1 -1 -2 -2 0. 0000 1(;9 -0.0009625 0.000007824 1.35.43 M 1 1 0 -2 -4 .0004326 0.0 (111003f25 135.635 n 1 -1 0 -2 (1 0 0.00O00075 -0.0006490 0.0(00005326 135.645 1 -1 ( -2 ( -1 -0.0002420 0.0210140 -0.000172r27 135.655 M 1 -1 0 -2 0 -2 -0.0012840 0.1114976 -0.0009 4q2R 135.855 4 1 -3 0 0 0 O 0 . 000004 -0.0(0029Q6 0. 000024L29 136.456 M 1 1 -1 -2 -2 -- 2 0.0000023 -0.0002009 0. 0)(100 131 136.555 M 1 0 0 -2 -1 -2 0.00000A9 -0.0006026 0.000004031 136.644 M 1 -1 1 -2 ( -1 -0.OO(0020 0.00o01700 -0. ()OO(n 1432 136.654 M 1 -1 2 0 -2 -0.000(o0121 n . oo 10 n07 -0. 000096O33 137.445 M 1 1 0 -2 -2 -1 -0.000(004 7 0(.00398(5 -0.000032534 137.455 M 1 1 0 -2 -2 -2 -0.0002430 .0.121 1842 -0.0 00172935 137.655 M 1 -1 0 0 -2 0 n.00onl -0.0012052 O.nOnoogs36 137.665 t.1 1 -1 0 0 -2 -1 -0.0000043 0(.0003708 -10. 000003037 138.444 1M 1 1 1 2 -2 -1 -0.0000019 0.0001700 -0.o00001431 138.454 M 1 1 1 -2 -2 -2 -n.0000113 0. O009PA9 -0. 00100 R39 139.455 M 1 1 0 0 -4 0 0.0000025 -0.0002143 0. 0o018R40 143.535 M 1 (0 0 -4 2 -2 0. 00000 -0.002 ,27 0. 000021
41 143.745 M 1 -2 0 -2 2 -1 0.0000035 -0.0003091 0.000002542 143.755 M 1 -2 0 -2 2 -2 0.0000196 -0.00174(2 (.0n(0] 843 144.546 M 1 0 -1 -2 0 -1 0.0000026 -0.0002318 0.00001944 144.556 M 1 0 -1 -2 0 -2 0.0000225 -0.002 t0089 0.0000 11945 145.535 M 1 0 0 -2 0 0 0.0000377 -0.0033AR7 0.000024646 145.545 M 1 0 O -2 0 -1 -0.0012292 0.10979 4 -0.(1080 6o047 145.555 M 1 0 0 -2 0 -2 -0.0065109 0.R524076 -0.014592448 145.755 M 1 -2 0 0 0 0 0.0000420 -(1.0037 51 0. (n000o049 145.765 M 1 -2 0 0 0 -1 0.0000069 -0.00061n1 0.00000495( 146.544 M 1 0 1 -2 0 -1 -0.0000021 0. 0001954 -O.0Oo0001o51 146.554 M 1 0 1 -2 0 -2 -0.0000199 0.0017771 -0.000014052 147.355 M1 1 2 0 -2 -2 -2 0.00(00 6 -0.0003245 0.010002553 147.545 M 1 0 0 0 -2 1 -0.0000024 0.000213 -0.100001754 147.555 M 1 0 0 0 -2 0 n.0080066 -0.0075R75 0. 0001S9s55 147.565 M 1 0 0 0 -2 -1 -0.0000184 0.0016535 -0.000013056 148.554 M 1 0 1 0 -2 U 0.00O0n57 -0.0005100 0.000(oo 4057 152.656 M 1 -1 -1 -2 2 -2 0.0000024 -0.0002144 0.000001758 153.645 M 1 -1 0 -2 2 -1 0.0000106 -0.0009736 0.000007459 153.655 M 1 -1 0 -2 2 -2 0.0000470 -0.0042963 0.000032860 154.656 M 1 -1 -1 0 01 0 -0.0000025 0. 00023118 -0. 00000 161 155.435 M 1 1 0 -2 0 0 -0.0000029 0.0002627 -0.000002062 155.445 M 1 1 0 -2 0 -1 0.000032 -0.0030445 0.000021163 155.455 M I 1 0 -2 0 -2 0.0001794 -0.0164599 0.0001249
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Table 9-2-(continued)

COFFFICIENTS IN SFCONDS OF ARC
SINE FOR X-CnMPnlFNTS

COSINE FOP Y-COMPNFENTS

ILDEX ..- TIDAL ARG. DIST. COEFFICIENTS OF RnTATION AXIS nF ANGtILAR
CODE NUMBER BODY PHIM L LP F . nm AXIS FICUIRF MU'IFNTIIM

---------- ---------------------------------------------------------------------------------

132 1X3.565 M 1 0 0 2 2 1 0.0000048 -0.0004q47 0.0000032
133 1X5.355 M 1 2 0 2 0 2 0.0000061 -0.000639 0.0 0000 o
134 1X5.365 M 1 2 0 2 0 1 0.0000040 -0.0004174 0.0000027
135 1E3.455 m 1 1 0 2 2 2 0.0000018 -0.00018r5 0.()00012

Explanation of symbols

PHIM is the Greenwich mean siderial time; 4

L, LP, F, D and OM are Brown's fundamental
arguments; -, V', F, D and

Constants

k=0

K, = -71'552430 x 103 Julian century-

Ke = -31'484150 x 10' Julian century-'

(C-A)/C = 3.272930 x 10
-
3

0 = 360-9856 day
-

(Co/a) = 2.343852 x 104

J2 
= 

1.082645 x 10
-
1

(me/m.) = 3.334320 x 10
6

66



Table 9-3

Coefficients for Perturbations in the Euler Angles of the Rotation Axis, the Axis
of Figure and the Angular Momentum Vector in a Rigid -Earth

COEFFICIFNTS Fnk FuLFR ANILF pDFTIIPkTIOI.S
Il SFCnNS nF ARC

(CIISINS FOR) nFLTA THFTA
SINFS Fn nFLTA PSIT 1 SI

1
I(THFTA)

OATATIO~ AXIS nF TFKkFSTKr|1\L
TIDAL ARGIIENT COEFFICIFNTS OIF AXIS FIGIIF Z \XIS

CODE NUMBERS L LP F 0 U14 Cos SI N CnS SIN LS SIj

105.955 . 4 ( 2 0 2 -0.0000001 - .0~00000 1 0. n000o0230 n. non2 Ip. 0000 3 ) 11)u 
107.755 . 2 0 2 2 2 -0. 0000000 -0).00000003 0. 0955 0.(()00000955 i.ul)o oiSi 5 li.ol(Ii(i4,
109.555 . 0 0 2 4 2 -0.0000000? -n.0000n(O 0.0000057 7 .000 057). (. 07 .u 7 0.78 7II
115.845 . 3 0 2 0 1 -0. 00000001 -0 .0 0000001 0.nn00 419 0.000.00410 0. 00000419 0.00000419
115.855 . 3 0 2 0 2 -0.00000007 -0.000o(1007 Or.nun2157 1.00on012157 0. 0(llIl01-S7 i. 0(21 i7
117.645 1 0 2 2 1 -0. 00U0On003 -0.000003 0.000015n2 0.00 on1n? 0. 0000O1052 1I.00(1I01 l
117.655 . 1 0 2 2 2 -0.0000001R -0.0000001 0.no000051, n.(onnosslo o.0 1 19 Ol.11(1il
118.654 . 1 -1 2 2 2 -O. 0000nooo 1 -o .00('oo000 O.1 0.0010 0416 (.n ( 0. 001)(100416 (I .((!Oc;()4 I It
119.445 . -1 0 2 4 1 -n.00000001 - 0.o( 0001 . nnonl .0 017 0.0(0007 .00((1((917 (I . nu( 117
119.455 . -1 0 2 4 2 -0. 00101 00003 -0 000003 0. 1A 00. 00(0 11066 0.001066 0.00(01
124.756 . 2 1 2 () 2 0. ()0o0001 0.00000 01 -0.0000)240Q -0. 00002o49 -0.0000Z 49 -0.{ 100(1)OZ4
125.745 1X5.365 2 0 2 0 1 -0. 00000010 -0.0uu013 0. U000(3058 (. 0.00003829 0. (uoui3u b1H IO.OuOli,32,
125.755 IX5.355 2 0 2 0 2 -0. ( 00I n 05 -0.0(OOO(0.062 10.00017(6,1 0.(.000(1RA1 0.l1 7 tl 01.1 1.t(ll 4';"A
126.556 . 0 1 2 2 2 O. 10 n00o0 1 O. U ()000001 -0. nou000n( 5 -(. 000003(i 5 - . ,000(U 05 -( .(I I(n ) (Ilsi
126.655 . 1 O0 2 1 2 0.00000001 .00 nO -o. oOOol() -0.0(10021 -0.00u(Q 0 -0.000IIl.1 ,
126.754 . 2 -1 2 0 2 -1. o00o1(10 -0 .()00((01 02 0 2 -. 0 1 .n00 0 026 (n.0000026A 11. ()(l(i(l)Zi (I.uol( i(
127.545 1X3.565 0 0 2 2 1 -o. 0o001 1? -0.000 )0015 .0 A , 036 ( . 0.0(0 0 03 6k (I.(I ( 00, i
127.555 1X3.555 0 0 2 2 2 -0. 0000)0070 -0.0OOOO074 0.00021713 0o. 000 2264 Ft 0.00(121213 ((.(100122,4
128.544 . O -1 2 2 1 -0.000001 - 0..10000(000(1 0. (no(nahs 0.(10002 65 oo. 0.1lAes 0.I1001.0/10
128.550 0 -5 6 -2 6 -o. oo)on 10005 -O. .0(0000045 0.0001498 0.00o(0149P . .(10149 (.()I.01' '
129.355 . -2 0 2 4 2 -O1.00O000O2 -0.00000002 0.0(101662 .0000 oo(10 66 0.0(00(00 t,.2 (I. OIl(,ob2t-
133.855 . 3 0 2 -2 2 0.0no0o 1 0 .00(000o1 -1. n000(10424 -0.00000424 -0. 00010424 -. 0 4 4
134.656 . 1 1 2 0 2 0(.00)0(04 0.00(00004 -0. noo001123 -0.0000I 1.23 -(.111123 -0.(1Iull
135.435 . -1 0 4 0 2 0. 0n (000002 01.0(100000 2 -0. on00(1514 -0(. 0100 i 1 4 -10.00000 14 -0 .00000 14
135.635 195.-75 1 (I 2 0 I 0. (000 05 0.00(100000 -O. 0OU00190 -1.00oo01 5 -l). 01111 390 -(0. 000(1((I L r25
135.645 195.465 1 0 2 0 1 -(0. no(00n n7 -01.0n00nO Q2 0.00n22130 C. (1no127A8 Q (1.) 0022030 0 .I0 0.0279u,0
135.655 195.455 1 0 2 0 2 -0.00000420 -0.( On 00450 0.00127R50 0.001 3712 0.0(0127F51 .1. 11372 1
135.855 195.255 3 0 0 0 0.00000002 0.0o00000n)(0 -o0. oo100629 -O.010;:00o1n -n. 0029 -nIl.0 o
136.456 . -1 1 2 2 2 O.00o00001n 0 .0000001 -0.0000235 -0. 00(12 R -0.0 00100238 -0.(I ( o10(
136.555 . 0 2 1 2 . oo0(000(un2 0.0(00000(02 -. 00000714 -. 00000714 -. 00000714 -0.00000714
136.644 * 1 -1 2 0 1 -O. 00000011 -0. 00000)1 0.000(1020 1 0 . 0 11111 000000201 0(. i00()ll1)1l1
136.654 . 1 -1 2' 0 2 -11. oooo00004 -0.00001o0 4 0.00001244 0.00O01244 0.00001244 (1.0(i( 0 01244
137.445 193.665 -1 0 2 2 1 -0.(100000 14 -0. n00(017 . no0000414 0.00005273 0.0000414k .U 000115273
137.455 193.655 -1 0) 2 2 2 -0.000010079 -0.00(011 5 (1.00n24153 0.000(125901 0.00024153 0.0002901
137.655 193.455 1 0 0 2 0 o. 000000R 0.000010001 -0.000012579 -0.0000027 -0.00002579 -0.0000010(/ 7
137.665 1 0 0 2 1 -0. 0000101 -0.0ooo000001 0. o0043R 0. 00000431 (1.0()438 () .0010)(1438
138.444 . -1 -1 2 2 1 -0.0000(001 -0.1000001 . 00000200 0.0000 0 o.000002 (1 1.0 (.o oo200
138.454 . -1 -1 2 2 2 -0(. 00000004 -1 .(00000000 4 0.nn001165 0.000011 (65 0. 000011 65 .O 1165
139.455 191.655 -1]. 0 0 4 O 0.0(0000002 0 0000000 -0. 00001477 -0. 0000031 -0.100000477 -0.00000u31
143.535 . 0 0 4 -2 2 0.0000001 0000001 (.0(10O(0 I -0.00000302 -0. 00000(102 -0.00000302 -O.0Ol000302



Table 9-3-(continued)

COEFFICIENTS FOR EIILER ANGLE PERTURRATIO, S
IM SFCONDS nF ARC

COSINES FOR DELTA THFTA
SINES FOR DELTA PSI * SIN(THETA)

ROTATION AXIS OF TERRESTRIAL
TIDAL ,ARGUMENT COEFFICIENTS OF AXIS FICURF Z AXIS
CODE NUMBERS L LP F U OM COS SIN CDS SI N COS SI"

,

----------------------------------------------------------------------------------------------------------------------------

143.745 . 2 0 2 -2 1 0.00000001 o .0oo00 001 -. 00no0055 -0.ono0000035 -0. 0000-355 -( .00000355
143.755 . 2 0 2 -2 2 0.00000007 0.00000007 -0.00002004 -0.00002004 -0. 00002004 -0. 00002004
144.546 0. 1 2 0 1 0. (00000001 0. .O ]ooO( 1 -0. 0000Un265 -0.000n00265 -0. 0000 65 -0 .000n 6
144.556 . 0 1 2 0 2 0. 0000008 0 .00000008 -0.nnn00200 -0.nn?30n -0.0000230 0 -o 0. 00102 -0
145.535 185.575 0 0 2 0 O 0. oooon2 0.00(00no02 -0.0n07169 -0.00 0002 4 -0.0000716 9 -1.1000 5124
145.545 185.565 0 0 2 0 1 -0.00000360 -0.00000464 0.00109508 0.00141185 0.00109509 0.00141187
145.555 185.555 0 0 2 0 2 -0.00002102 -0.0000 2264 o.on64nn6n o. nnApos50 (0. )0640068 n.u ns558
145.755 185.355 2 ( 0 0 0 0.00000026 0.0(1000002 -0.00007945 -0.00000 622 -0.00007945 -0.0000to022
145.765 2 0 0 I ) 1 0. 00000002 (0.(00000002 -1.0n00705 -0. 00000)75 -0.00000705 -0.000()705
146.544 0. -1 2 0 1 -0.OU0000001 -0 .00000000 0.000211 o.n 11 000000211 0. u0(z211
146.554 . 0 -1 2 0 2 -0.00000007 -0.o00000007 0. (no(n023 0.0n00202 0l.00002023 0.10 2(0(1 23
147.355 . -2 O 2 2 2 0.00000001 0.01)1(00001 -0.0000noo69 -0.(ion0036Q -0.0000369 -0. 00(10359
147.545 183.565 0 0 0 2 -1 0(. 00000o004 -0.00000006 -0.00no01225 0. 0000 1716 -0.00001225 0.000o 1716
147.555 183.555 ( 0 0 2 0 0.0000053 0.00000004 -0.00016150 -0.0000on071 -0.00016150 -0.00001071
147.565 183.545 0 0 0 2 1 -0.00000005 -0.00000007 0.on0001631 0.0002121 0. 0000(1631 .00(10212121
148.554 182.556 0 -1 0 2 0 0.00000004 0 .00((000000 -0.00001069 -0. noooR( -0.00001069 -0 .o(n 0 )ons5
152.656 . 1 1 2 -2 2 (0. 10000001 .(00000 1 00040 -0.000onn40 -0. 000024( -0 .000) /40
153.645 . 1 0 2 -2 1 0.00000004 0.0(0000004 -- 0. 0001075 -0.00(01 07v -0.00001075 -0.0000U175
153.655 177.455 1 0 2 -2 2 0. (000011 0.00000016 -0.0000455 -(. 0004932 -0. (}00004555 -(.o0004932
154.656 176.454 1 1 0 0 0 -0.00000002 -0.00000(00 0.0000491 0.0000001 0.100000491 0. 0()0001)019
155.435 175.675 -1 0 2 0 0 -0.00000002 -0 .00000000 o0.(0000957 0.000(100021 0.00100557 0.D 00()1)21
155.445 175.665 -1 0 2 0 1 0.O0000009 0.00000012 -0.00002888 -. 0003R(3 -0.00002888 -0.000(0303
155.455 175.655 -1 0 2 0 2 0.00000057 0.0(00h062 -0. 00017357 -0. 00 1PR( -0.00017357 -O.00119m H0
155.645 175.465 1 0 0 0 -1 0.00000026 -0.0000035 -0.00007823 0.00010708 -0.00007823 0.00010708
155.655 175.455 1 0 o 0 0 0.0000319 0.00000012 -0. 00U97083 -0. 0000on50 -0. 0(1009704 -0 .000o130)?
155.665 175.445 1 0 0 0 1 0.00000029 0.00000038 -0.00008704 -0.00011451 -0.00008704 -0.00011451
155.675 . 1 0 0 0 2 -. 0000000on -0 .0OO00(0 1 0.00000288 0.0l00nR 0.00000288 0(.0(00002
156.555 174.555 0 0 0 1 0 -0.00000002 -0.00000000 0.00000524 0.00000018 0.00000524 0.000011(118
156.654 174.456 1 -1 0 0 0 0.0()000001 0.10000000 -0. 00000589 -0. cn00no020 -0. 10000589 -o .0no(i101,2 o
157.445 173.665 -1 0 0 2 -1 0.00000005 -0.00000007 -0.00001506 0.00002046 -0.00001506 .0.00002046
157.455 173.655 -1 0 0 2 0 0. 0000 0061 0.0(100002 -0.00018933 -0. 00000579 -0.00018533 -0.00000l( 57
157.465 173.645 -1 0 ( 2 1 0.00000006 0.00000008 -0.00001808 -0.00002370 -0.00001808 -(.00002379
158.454 172.656 -1 -1 0 2 0 0.000000(13 .10 000 -0. 00000786 -0. onooo0022 -0.00000786 -0.00000022
161.557 . 0 2 2 -2 2 -0.000U9002 -0.00000O02 0.00000694 O.OO 0.00000694 0.00000694 0.00U00094
162.556 168.554 0 1 2 -2 2 -0. 00000053 -0.0(000058 0.00016284 O.00017721 0.00016284 0.0)0017721
163.535 167.575 0 0 2 -2 0 -0.00000002 -0.00000000 0.0000.0458 0.(0000003 0.0000)458 -0.0000003.
163.545 167.565 0 0 2 -2 1 0.00000009 0.O0000(1 2 -0.00002801 -0.0000745 -0.00002801 -0.00003745
163.555 . O 0 2 -2 2 -0.00000002 -0.00000002 0.0000493 0.00000493 0.00000493 0.00000493
163.555 167.555 0 0 2 -2 2 -0.00000909 -0.0n000990 0.00276942 0.00301587 0.00276945 0.00,301590
163.557 167.553 O 2 0 0 0 0.00000001 0.00000000 -0.00000162 -0.00000002 -0.00000362 -0.00000002



Table 9-3-(continued)

CIIEFFICIFNITS FOR FIlLER ANGLF PFRTUPRPATI(OrS
INK SFCnNnS OF ARC

CI!Sl'FS FIIR InELTi' THFTA
SINFS FnR DFLTA PSI * SII(THFTAI

ROTTITHI AXIS OF TEKRPF TRIAL
TIDAL ARGUMENT COEFFICIFNTS OF AXIS FIGI;IIF Z aXIS

CODE NUMBIERS L LP F I) UM COS SI' CnS ST" CnS I"'

163.755 167.355 2 0 0 -2 0 O.0000UO0o03 0.oUnO()n -. nnoon51 -O.Onoinn na -(0.(U0000861 -(.u ()'oU4

164.554 . 0 -1 2 -2 2 0. 00000 00 0.0 00000o H -0.000OU02414 -0.00002414 -*. (002414 - .0)0(02414
164.556 166.554 0 1 0 0 (). . ()O 46 0.00()00000 -0.00013 R6 -0. nOO(nwip -(l.((I'M 3i9 -. ),13i
165.545 165.565 0 0 0 0 -1 0. o0000D329 -0.ono()A42 -0. 00 100274 .(;00134 A42 -(. 00100275 .0( 14 (,27
165.555 . 0 0 0 0 o 00000n0 0.0(10(0090( -007 -0. o79 -0. 0 27 AnO -0i.002759 3 -(.(75:, 1

165.555 . 0 0 0 0 0 0.00001946 0.00001946 -0.00592617 -0. 00 q92 A17 -(.1(00592624 -0 .00 592 o 4
165.575 0 0 0 0 -2 -0.0000000 O.000(00(( 0.0000261 -n.()nn0216R 0.uou)251 -0.k (I/,is

173.445 1 0 -2 2 -1 0.00000001 -0.0000001 -0.(10000270 0.00000270 -0.0(,07( 0.t00oo0070
175.475 1 0 0 0 -2 -0.00O00001 0(.00 0001 O. () -(00i(.((1 5 -0. (( ( (i.(0)0)(( -( n.lllllli) L

185.365 2 0 0 -1 0.000000002 -0.00000002 -0. (n(00732 0.0(000732 -0. 00000732 0,(100732
185.585 0 0 2 ( -1 0.0000001 -(0.00c(i00001( -0.nO( 0213 (.0.'(1(2 0. -0.(,)0O11 3 0. L ( 3
193.465 1 0 0 2 -1 0. (0000001 -0.0(%00000 1 -0.00000222 0.00000222 -(0. 0000u 22 0.0t010(z22z
1E3.455 1 0 2 2 2 0.000(000O1 -0.00(0001 -o0.00n0167 7 .n00 ,7 -j. u0(0)17 (.10l(I.7

Explanation of symbols

L, LP, F, D and OM are Brown's fundamental
arguments; ,tE', F, D and

Constants

k=0

K, = -7!'552430 x 10' Julian century'

K,= -3!'484150 x 10' Julian century'

(C-A)/C = 3.272930 x 10
-

3

0 = 360'9856 day
-
"

(C,/a) = 2.343852 x 10'

J, = 1.082645 x 10-3

(n/m_) = 3.334320 x 10'



Table 9-4

Coefficients for Perturbations in the Euler Angles of the Rotation Axis, the Axis
of Figure and the Angular Momentum Vector in a Deformable Earth

CO(EFFICIFiITS FnOR FIILFR ANGLF PFTIIRR TIONS
IN' SPCONIDS OF ARC

CHISINFS FOR nELTA THFTA
SINFS FnR nFLTA PSI : SIN(THFTA)

ROTATION AXIS nF TFRRFSTRIAL
TIOAL ARGUMENT COEFFICIENTS OF AXIS FIGIIRF Z AXIS
CODE NUMBERS L LP F 0 OM COS SIF CnS SI, COS SI"

105.955 . 4 0 2 0 2 -0.00000056 -0.00000056 0.00017149 0. non 1714Q 0.00000159 (0.0011000159
107.755 2 0 2 2 2 -0.00000235 -0.00000235 0.007713 0.0007171 1 0. 0(0000U b 01.00(00 o1t,
109.555 0. 0 2 4 2 -0.00000143 -0.00000143 0. 0003l650 O. )000i43 A50 0. 00(03Q (I . III (00 q

115.845 . 3 0 2 0 1 -0.00000107 -0.00000107 0.00032731 0.00032731 0.( 0(00290 0(.0000090

115.855 . 3 0 2 0 2 -0.00000553 -0.00000553 0.00 I6528 0.0.01) 32 0.00001490 0 .001140o
1.17.645 . 1 0 2 2 1 -0.00000271 -0.0(000271 0.00082603 0. 00O02603 0.000(0727 0.0(1000727
117.655 1 0 2 2 2 -0.000onu1423 -0.00001423 0.00431374 0.00431274 0. (00003813 n.('ow-i 13

118.654 . 1 -1 2 2 2 -0.00000107 -0.00000107 0.00012729 0.00032779 0.0000287 0 .000)0 17

119.445 . -1 0 2 4 1 -o.00.000n51 -0.00o000051 o.00015585 (). 00015 5 1 1 0(1). 36 ",. (nll011 3
119.455 -1 0 2 4 2 -0. 00000276 -0.0100276 O. 000n4158 0. 0O415 0.00000736 0.0100u0736

124.756 2 1 2 0 2 0.1)000067 0.00000067 -(). 00070257 -n. (0002257 -0.(00001172 -. 0r()((10 17
125.745 1X5.365 2 0 2 0 1 -0.00000783 -0.0(:001059 0.00238466 0.00322484 0.00002113 10.000020 45
125.755 1X5.355 2 0 2 0 2 -0.0(1004677 -0.10(00)5096 0.1424283 (. 11n 155 1 .0001215 ().000( 13i,24

126.556 . 0 1 2 2 2 0.00000082 0.000000082 -0.(100024931 -0.0 0024931 -0.00000211 -(O.0000211
126.655 . 1 0 2 1 2 0.00000056 0.1 000056 -0.00017]40 -0.0000171 140 -0.00001)45 -0.0000014

126.754 . 2 -1 2 0 2 -. 000000077 -0.00000077 (. 0no02372 0.nn023A72 0.00000198 0.000,01981

127.545 1X3.565 0 0 2 2 1 -0. 0000952 -0.01001279 0.0(029RqR6 .()01003o&A 5 O.(0(110254 ('.000)o(31 H
127.555 1)3.555 0 0 2 2 2 -0.00005644 -0.0006155 0.0171P741 0.01P74333 0(.00014655 0.000 15c4t
128. 544 . O0 -1 2 2 1 -0.0000007? -0.00000072 0.00021o14 0.000211 1 6 0.00000(i183 n..(i1lt008
128.550 0. -5 6 -2 6 -0. 00000 404 -0.00000404 0.0(123091 n.00121o1 0. 00001035 0.00(135
129.355 . -2 0 2 4 2 -0.O00001] 79 -0.000(0179 0. 0054533 0.0 )05453 (. 000()()(1457 (i.(001(i 00457

133.855 . 3 0 2 -2 2 0.0000011A 0.0000011 -0.000 13535e3. no03531 -0.00000023 -0 .01000293

134.656 . 1 1 2 0 2 0.00000312 0.00000312 -0. oo095029 -1.00095029 -0.0000776 -(. (10010077
135.435 . -1 0 4 0 2 0.00000143 0.000000143 -0.00043619 -0.0(10043619 -0.00000355 -0.00000355
135.635 195.475 1 0 2 0 0 0. 0000429 0. 0(00000000 -0.00130785 -0. 000 00070 0.10009 0 -0 0(0001()5

135.645 195.465 1 0 2 0 1 -0.00005940 -0.00007974 .n01808976 0.0242R307 0.00015219 0.(1()1 9273
135.655 195.455 1 0 2 0 2 -0.00035324 -0.0003R502 0.10757703 0.11725199 0.00088321 0.0(1094058

135.855 195.255 3 0 0 0 0 (1. 1000194 0.00000l00 -0.n o9165 -0.00no000 -0.00000434 -0.0000011,47

136.456 . -1 1 2 2 2 0.00000066 0.00000()66 -0.00020251 - .00020'251 -0.000001,64 -0.00000164

136.555 . 0 0 2 1 2 0.00000199 0.00000199 -0. 00060754 -0. 0(00160754 -0.00000493 -10.00((()0493
136.644 . 1 -1 2 0 1 -0.00000056 -0.00000056 (.00017136 0.00017136 0.00000139 0.00000139
136.654 . 1 -1 2 0 2 -0. 0000034R -0.00000348 0.00105930 0.00105930 0.00000860 0.U00000(60
137.445 193.665 -1 0 2 2 1 -0.00001126 -0.00001514 0.00342774 0.00461040 0.00002865 (. 00003643

137.455 193.655 -1 0 2 2 2 -0.00006712 -0.00007314 0.02043900 0.02227524 0.00016685 0.000(117k92
137.655 193.455 1 0 0 2 0 0.0000079A 0.00000000 -0. 1022A85 -0.0000(127 -0.00001781 -0.00000184

137.665 . 1 0 0 2 1 -0.100000123 -0.00000123 0.00037386 ().040-37 36 0.00 0100 302 (.0000(1302
138.444 . -1 -1 2 2 1 -0.00000056 -0.00000056 (1.0017135 o.n17135 (7135 0.(10000138 O. 0.(10(11)0138

138.454 . -1 -1 2 2 2 -0.00000327 -0.00000327 0.00099696 0.0n00969
AQA  

(0.00000805 (0.00(00805
139.455 191.655 -1 0 0 4 0 0.0000014 -0.0(10000005 -0.00045151 0.00001534 -0.00000330 -0.00000021
143.535 0 0 4 -2 2 0.000000R7 0.00000087 -0.00026478 -0.00026478 -0.0000208 -0.000208



Table 9-4-(continued)

COEFFICIFNTS FnR FIlLER ANGLF PERTURPATIONS
IN SFCn0n0S nF ARC

COSINFS FOR nELTA THFTA
SINFS FnR nFLTA PSI 1 SIN(THFTA)

RnTATION AXIS nF TFRRFSTRIAL

TIDAL ARGUMENT COEFFICIFNTS OF AXIS FIrIRF Z AXIS

CODE NUMBERS L LP F 0 UM COS SIN CnS SIN LS SIM

148.745 . 2 0 2 -2 1 0.00000102 0.00000102 -o.00o3r151 -0.00031151 -0.00000245 -) .0(n000 4

143.755 . 2 0 2 -2 2 0.00000578 0.00000578 -0.00176001 -0.00176001 -0.00001384 -0.U00013,J4

144. 546 . 0 1 2 0 1 .(ono00077 0.0000000077 -0. 0023363 -0.0002363 -0. 000001 3 -0.t00f(i

144.556 . O 1 2 0 2 0.00000665 0.00000665 -0.00202476 -0.00202476 -0.00001589 -0.O(((011

145.535 185. 575 0 0 2 0 0 0.00002229 0.O000000 1 -0. (0067 14 -. 000000250 -0.00004952 - .(( N

145.545 185.565 0 0 2 0 1 -0.00031027 -0.00041647 0.00448886 0.12682962 0.00U75648 (.0009727

145.555 185.555 0 0 2 0 2 -0. 00184457 -0.0020 1046 0.56174n46 0.61229q33 0.00442146 )0.(047 /27

145.755 185.355 2 0 0 0 0 0.00002469 0.00000016 -0.0075 1990 -0.00004945 -0.00005488 -0.u000(430

145.765 . 2 0 0 0 1 0. (0000205 .0.0(000205 -0.0 0062299 -0. 0006229Q -. 00000487 -0( .(000('H7

146.544 0. -1 2 0 1 -0.00000061 -0.00000061 (.00018690 0.0001n 690 0.0000146 0.00000146

146.554 . 0 -1 2 0 2 -0. 00000568 -0.00000588 0.00179108 0.001791 0 0.00001397 0.000(i)(1 i97
147.355 . -2 0 2 2 2 0.00000107 0.00000107 -0. 0032706 -0.0003270( -0.00000255 -0.UOOOI)55
147.545 183.565 01 0 0 2 -1 0. (00000 419 -0.00000562 -). 00127608 0.0017121F -0.00000846 ( .u00(01 1H

147.555 183.555 0 0 0 2 0 0.00005025 -0.00000003 -0.01530437 0.0000103P -0.00011155 -0.0000074m

147.565 183.545 0 0 ( 2 1 -(. 00000 46 -o(.0000062q 0.00141743 0.00191 547 0.00001127 (0.00001466

148.554 182.556 0 -1 0 2 0 0.00000332 0.00000005 -0.00101199 -0.0000159(0 -0.00000738 -0.000(059

152.656 . 1 1 2 -2 2 0. 00000072 0.00000072 - 0.00021R01 -0. 00021 I ) -0. 00000 5 -0 . 00016
153.645 . 1 0 2 -2 1 0.00000322 0.00000322 -0.00098104 -0.00098104 -0.00000743 -0.00000743
153.655 177.455 1 0 2 -2 2 0. 00001360 0 .0(00 1483 -0.00414225 -(0.00451.58R -0. 00003147 -0(.()00003407

154.656 176.454 1 1 0 0 0 -0. 00000153 -0.0000 000O 0.nn00046706 0.00(00000 (0.00000339 (0. (u 13

155.435 175.675 -1 () 2 0 0 . -0.00000174 -0.00000oo 00 0.0052934 0. (0(0)()(01 0.0 0000385 ( .(00000(()14
155.445 175.665 -1 0 2 0 1 0.00000859 0.00001156 -0.00261621 -0.00351904 -0.0000 1995 -0.00(00 27

155.455 175.655 -1 ( 2 0 2 ()0.00005210 0.00005681 -0.015A6778 -0.01729995 -0. 00 11989 -).0001] 242

155.645 175.465 1 0 0 0 -1 0.00002566 -0.00003435 -0.00781363 0.01046081 -0.00005403 0.00007395

155.655 175.455 1 0 0 0 0 0. 00030306 0.00000005 -0.09220195 -0.001001667 -0.00067058 -0.(000(24? 1

155.665 175.445 1 0 0 0 1 0.00002593 0.00003482 -0.00789530 -0.0106037R -0.00006012 -0.00007910

155.675 . 1 0 0 0 2 -0.00000087 -0.00000087 0.00026472 0.00026472 (0.00000199 ('.0(M000199

156.555 174.555 0 0 0 1 0 -0.00000164 -0.0000000 0.00049820 0.00000008 0.00000362 0.00000u12

156.654 174.456 1 -1 0) 0 1. 000000184 0.00000000 -0.00056048 -0.0000001(0 -0.0(000407 -0.0(000( 14

157.445 173.665 -1 0 0 2 -1 0.00000491 -0.00000654 -0.00149429 .0.00199257 -0.00001040 .. U0000ULI-L

157.455 173.655 -1 0 ( 2 0 0.00005787 0.00000001 -0.01762385 -0. 0000027 5 -0.000(1201 -0.00000400

157.465 173.6.45 -1 0 0 2 1 0.00000542 0.00000726 -0.00165064 -0.00221102 -0.0001249 -0.00001o43

158.454 172.656 -1 -1 0 2 0 0. 00000245 0.00000000 -0.00074730 -. 0n0000011 -0. 00000543 -0,.000001 5

1.61.557 . 2 2 -2 2 t-0.000.0215 -0.00000215 0.00065362. 0.00065362 0.00000479. 0.000004719
162.556 168.554 0 1 2 -2 2 -0.00005045 -0.00005498 0.01536157 0.01674252 0.00011248 0.000(12241

163.535 167. 575 0 0 2 -2 0 -0.00000143 -0.00000000 .0.00043592 0.00000001 0.0000.0316 0.. Q00.0i 0 U2.
163..545 167.565 0 0 2 -2 1 0.00000R69 0.00001166 -0.00264678 -0.00354974 -0.00001935 -0.000025H7

163.555 0 0 2 -2 2 -0.00000153 -0.00000153 0.00046707 0.00046707 0.00000341 0.00000341_

163.555 167.555 0 0 2 -2 2 -0.00086052 -0.00093797 0.26206034 0.28564650 0.00191293 o..020316
163.557 167.553 0 2 0 0 0 0.00000113 0.00000000 -0.00034475 -0.00000001 -0.00000250 -0.0000001



Table 9-4-(continued)

COEFFICIFNTS FnR FILLER ANGLF PERTIJRRATIOINS
IN SFCnNDS nF ARC

COSINES FOR DELTA THFTA
SINES FnR DELTA PSI " SIN(THFTA)

RnTATIO, AXIS OF TEkEESTRIAL
TIDAL ARGJUMENT COEFFICIENTS OF AXIS FIOIIFE Z AXIS
CODE NUMBERS L LP F D OI COS SI' Cns SI LOS SIN------------------------------------------------------------------------------------------------------------------------------

163.755 167.355 2 0 0 -2 0 0.00000266 0.OOOn o(U -0. 0008157 -0.00000002 -0.00000587 -0.0i0n(003
164.554 0 -1 2 -2 2 0.00000752 .0.00000752 -0.00229118 -0.0022911R -0.00001667 -0.00001b67164.556 166.554 0 1 0 0 . (100004335 0. 00d00000 -0.01320104 -0. Oon. 0001 -0.0009579 -. 000()002165.545 165.565 0 0 0 0 -1 0.00031348 -0.01042084 -0.09546715 0.12RIA14Q -0.00069262 Q.0192990165.555 0 0 0 0 0 0.00086146 0.00086146 -0.26234698 -0.26234A9R -(.00190371 -t.0019)371165.555 0 0 0 0 0 0.00185233 0.00185233 -0.56410116 -0.56410116 -0.00409338 -0.004U9338165.575 0 0 0 0 -2 -0.00000787 0.00000787 0.00239757 -0. 002 39757 0.00001739 -(.oo0001739173.445 1 0 -2 2 -1 0. 00000087 -0.00000087 -0.00026463 O. 00026463 -0.00000186 0.U0000186175.475 1 0 0 0 -2 -0. 0O000n66 0.00000066 0.00020236 -0.000o2023 0. 0000142 -0.00000142185.365 2 0 0 0 -1 0.00000245 -0.0(0000245 -0. 00074704 0.00074704 -0.0 (10000506 0.001)0(1t)185.585 0 0 2 0 -1 D.00000072 -0.00000072 -0.00021789 0.00021789 -(. 0000147 n.0000147193.465 1 0 0 2 -1 0. 00000077 -0.00000077 -0. 00023342 0.00023342 -0.00000154 0.00001541E3.455 1 1 2 2 2 0. 0000061 -0.000)61 -0. 00018668 0.000166

p  
-0.0000 115 0 .0(000(1 1

Explanation of symbols

L, LP, F, D and OM are Brown's fundamental
arguments; t,', F, D and Q

Constants

k=0

K,= -7!'552430 x 103 Julian century-'

K,= -31'484150 x 103 Julian century'

(C-A)/C= 3.272930 x 10
-3

0 = 360.9856 day
l
'

(Ce/a 0 ) = 2.343852 x 10'

J =1.082645 x 10-3

(ro5 /mz) = 3.334320 X 106
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Figure 9.1. The Effect of Polar Motion on Latitude and Time.

Figure 9.2 shows the diurnal part of the latitude variation for Goddard Space

Flight Center during the summer of 1970. The polar motion components m 1 and

m 2 in Equation (9.14) were computed using all of the coefficients from Table 9.2.

Of the 135 tidal constituents, those with argument numbers

135.655

145.545
145.555
163.555
165.555
165.565
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Figure 9.2. Diurnal Variation in the Latitude of Goddard Scpace Flight Center from June 22, 1970 to
August 29, 1970, The Love Number k = 0.29,



have amplitudes large enough to dominate the motion. In Figure 9.3 the diurnal

latitude variation based upon all 135 tidal constituents is compared to that ob-

tained by using only the terms with the argument numbers (9.16). The error due
to the neglected terms is at most 0'.'0009 or 2.8 cm at the Earth's surface.

0.02 -

K = 0.29

- ALL 135 SECOND DEGREE
DIURNAL TIDAL COMPONENTS

--- ONLY THE 6 MAIN TIDAL
COMPONENTS WITH ARGUMENT

0.01- NUMBERS:
135.655
145.545

30cm 145.555
u163.555

165.555
O .165.565
z
0.

785.0 785.5 786.0
W JULIAN DATE

-0.01

0.02 -

Figure 9.3. Effect of Neglecting all but the 6 Largest Tidal Components in Computing the Diurnal
Variation of Latitude for Goddard Space Flight Center. Both curves are for a Deformable Earth
with k = 0.29.

The effect of rotational and tidal deformation on the diurnal polar motion
components is shown in Figure 9.4. The diurnal motion of the rotation axis
within the Earth is affected only slightly by deformation, being decreased in
amplitude by 0'.00024 which corresponds to 0.7 cm. In contrast to this, defor-
mation has a substantial effect on the motion of the angular momentum vector
within the Earth. As shown in Figure 9.5, the diurnal motion of the angular
momentum vector is reduced in amplitude by 01'00645 or 20 cm. The shift in
the angular momentum vector is due primarily to the factor

k 2 (9.17)
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Figure 9.4. The Effect of Rotational and Tidal Deformation
on the Diurnal Motion of the Rotation Axis.
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Figure 9.5. The Effect of Rotational and -Tidal Deformation on the Diurnal
Motion of the Angular Momentum Vector.
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Figure 9.6. Diurnal Motion of the Axis of Figure Due to Rotational and Tidal Deformation.
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which appears in the diurnal part of Equation (7.31) for H/C Q but is absent from

the diurnal part of Equation (7.18) for m. Rotational and tidal deformation cause

the direction cosines of the Earth's axis of figure to oscillate with an amplitude

of 1'.9 or 58.7 m, as shown in Figure 9.6. The motion of the axis of figure is due

mainly to the mass redistribution associated with the diurnal tidal bulge. The

direction cosines of the angular momentum vector are given by Equation (2.24)

with h = 0 as

H A c (9.18)- m +-
CQ C C

and the direction cosines of the axis of figure are, from Equation (E.9),

C (9.19)

Therefore

H A M C-A (9.20)
- +m+f

C C

so that the 58.7 m diurnal motion of qjf is reduced by the factor (C-A)/C to the

20 cm departure of H/C Q from the position that it would occupy in a rigid Earth.

The theory developed in Section 7 is directly applicable to the problem of

transforming from an inertial coordinate system to a terrestrial system that is

fixed to a set of observatories in some prescribed manner. The geometry in-

volved in transforming from inertial to terrestrial coordinates is shown in

Figure 9.7. The precessional transformation is

ean of date = R3 (- z) R2(p) R3 (-) mean of epoch (9.21)

where zp, Op, and p are the precessional elements written as z, 8, and 0 in

the Explanatory Supplement to the AENA [1961, p. 29] . The transformation

from the mean sidereal system of date to the true sidereal system of date is

Xtrue of date 
= R 1(- ETD) R3(- ArD) RI(EM) mean of date (9.22)

where the true obliquity of date is given by

ETD = EM + AEr (9.23)
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Figure 9.7. Transformation From Inertial Coordinates to Terrestrial Coordinates.



The nutations in longitude and obliquity referred to the mean ecliptic of date are
denoted by A, rD and ACrD respectively. The nutation in longitude is reckoned
positive westward. The transformation from the true sidereal system of date to
the terrestrial system is

Xterrestrial = R2 (-ml) R1 (m 2 ) R3 (GASTI) Xtrue of date (9.24)

The transformations (9.21), (9.22) and (9.24) are combined to form the complete
transformation from inertial to terrestrial coordinates.

In Woolard's development of the theory of precession and nutation, the nuta-
tions AH and AEH for the angular momentum vector referred to the fixed mean
ecliptic of epoch are obtained as a result of integrating Poisson's equations and
are given in Woolard's Table 24 [1953, p. 138]. The Euler angle perturbations
AOr and AOr computed from Woolard's Equations (55) are used to convert APH
and AEH into the nutations A r and Aer corresponding to the rotation axis.

A =H r (9.25)

AE = AEH + 0 (9.26)

In (9.25), 8 r is subtracted because it is reckoned positive eastward whereas
AJr and AIH are reckoned positive westward. The values of Ar and AEr
are listed in Woolard's Table 24 as well as his values for the Euler angle per-
turbations 8or and 0, . The precession and nutation results represented in
Table 24 undergo a reduction to the mean ecliptic of date. This reduction con-
sists of adding the corrections in Woolard's Table 25 [1953, p. 1521] to the
entries in Table 24 so as to produce Table 26 [1953, p. 153].

In order to apply the deformable-Earth theory of Section 7 in connection
with Woolard's solution for the angular momentum vector, his rigid-Earth
values for 38, and 80 r must first be removed in Table 24 so as to give the
precession and nutation of the angular momentum vector referred to the mean
ecliptic of epoch. Reduction to the mean ecliptic of date is accomplished by
adding the terms listed in Woolard's Table 25 to the modified entries from
Table 24.

The rigid-Earth values of 86r and 8or from the diurnal terms in Woolard's
Equations (55) are of order 0(Y00005or 0.15 cm. They are therefore small enough to
be lost in the numerical round-off error involved in truncating the 5th decimal
place in Table 24 prior to presenting the nutation series in seconds of are to 4
decimal places as Table 26 and as Table 2.5 in the Explanatory Supplement to
the AENA [1961, p. 44] . The Eulerian terms in Woolard's (55) are of order
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(10005 or 1.5 cm and are therefore large enough to affect the 4th decimal place
in the nutation series. The Eulerian terms are not included in Woolard's nuta-
tion tables, however, because they involve the arbitrary constant of integration
mo. The nutation series as presented in Woolard's Table 26 and in Table 25 of
the Explanatory Supplement to the AENA therefore represent the direction in
space of the Earth's angular momentum vector to within the 4 decimal places
given in the tables, and subject to the understanding that the Eulerian terms in
Equations (7.39) and (7.40) are to be added to the tabular values of 80rD and

5 rD'

The Euler angle perturbations SOr and 8qr of Equations (7.39) and (7.40)
must be reduced to the mean ecliptic of date before they can be applied to the
nutation series in Table 2.5 of the Explanatory Supplement to the AENA. The
Euler angle perturbations 80rD and 8re D referred to the mean ecliptic of date
are given by

SorD + isrD sin ETD _ iei(GASTI) (m (9.27)

which is analogous to Equation (6.10). It follows from (9.27) and (6.10) that

s8 rD + 'SrD sin eTD = ( r + i'Jr in 0) ei(GASTI
- 0) (9.28)

The Greenwich apparent sidereal time is related to the Greenwich mean sidereal
time ,m by

GAST1 =M + A rD cos ETD (9.29)

and kM is related to the Euler angle € by Equation (C.4). Equations (9.29) and
(C.4) are combined to give

GAST1 - = - a + ycos(F + 0M) cot EM  (9.30)

The planetary precession a is, from Woolard's Equation (67),

a = 12'473T- 2!'3804T 2

- 0o"00133T3  (9.31)

where T is measured in Julian centuries since 1900 Jan 0.5 ET, and the polar
motion amplitude y is of order 0.'15. The reduction (9.28) of the Euler angle
perturbations to the mean ecliptic of date therefore involves adding terms of
order '.'0000004 and can be neglected in numerical computations.
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The nutations 4 rD and AErD in longitude and obliquity referred to the mean
ecliptic of date are given by

A/rD A'HD -- 'rD 
(9.32)

AErD H ArD + 0 rD (9.33)

Neglecting second order terms,

SPrD = S¢r (9.34)

86rD = F8r (9.35)

The nutations Ab HD and AEHD are taken from Table 2.5 of the Explanatory Sup-
plement to the AENA.

It is now possible to write down a transformation from inertial to terrestrial
coordinates which takes into account the diurnal motion of the rotation axis and
the angular momentum vector within a deformable Earth. The form of the trans-
formation is

Xterrestrial = R2(- ml) Rl(m2) R2(-H1/CQ + m, ) RI(H2/C - m2 )

R3 (GAST1 + 84rD COS EHD)

R 1 (- EHD) R 3 (-AvHD) Rl(EM)

R3 (- Zp) R 2 (p) R 3 (- 0) Xmean of epoch (9.36)

and the associated geometry is shown in Figure 9.7. The transformation from
the mean system of epoch to the mean system of date is the same as in Equation
(9.21). Instead of a transformation from the mean equinox of date Tr directly
to the true equinox of dateT as in Equation (9.22), (9.36) involves a transfor-
mation from TM to the ascending node of the mean ecliptic of date on the equator
normal to the angular momentum vector. The obliquity EHD is given by

EHD = EM + AHD (9.37)

The Greenwich apparent sidereal time is modified so as to account for the dis-
placement SI D cos E . The transformation from the angular momentum vector
to the rotation axis is made using the components of m - H/Cn. The diurnal
terms in m - H/C f are computed by differencing the respective components
given in Table 9.2. The Eulerian part of m - H/C Q is from (9.6) and (9.8),
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(m - H/C eran ei 0t (9.38)

The vector mo eiot must be determined from observations. As shown in Fig-
ure 9.8, it represents the displacement of the rotation pole, with diurnal motion
filtered out, relative to the mean pole position. Because of the small factor

(C 1 - 0.0023 (9.39)

in (9.38), an uncertainty of, say 1 m, in moi eiot will produce an uncertainty of
only 0.23 cm in (m - H/C Q) Eulerian

900 EAST

MEAN
m2 POLE iaot

2 moe

OBSERVED POLE PATH
WITH DIURNAL MOTION
FILTERED OUT

GREENWICH
m

I

Figure 9.8. Determination of moeio t from Observations.
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The transformation from the rotation axis to the z axis of the terrestrial
system is based upon the components of the polar motion m. There is as yet no
reliable model for the "non-diurnal" or "Eulerian" part of the polar motion and
it is certainly true that the idealized circular motion given by the terms,

mo eit + C-A) (9.40)

k.)

in (9.6), does not adequately represent non-diurnal polar motion in the real Earth.
In order to represent the polar motion a "semi-analytical" pole path is deter-
mined by adding the diurnal terms of (9.6) to an observed pole position with
diurnal motion filtered out.

mMdiurnal + non-diurnal (9.41)

The polar motion transformation is then broken into an empirical part and an
analytical part as follows:

R2 (- m) R(m 2) = R2(- ml,non-diurnal) R1(m2,non-diurnal)

R2(- ml, diurnal) Rl(m2, diurnal) (9.42)

An alternative form of the transformation (9.36) is

terrestrial 
= 
R2(-mi) Rl(m 2 ) R 3(GAST1)

RI(-TD) R3 (-A rD) RI(EM)

R3 (-zp) R2 (Op) R3 (- q) ~mean epoch (9.43)

where the true obliquity of date ETD is given in terms of the nutation AErD in
obliquity by Equation (9.23). The nutations A rD and AErD are given by Equa-
tions (9.32) and (9.33). The Euler angle perturbations S D and SqrD are com-
puted from Equations (7.37) and (7.38) with the Eulerian terms determined
empirically. The diurnal terms in S0 rD and 68rD are given in Table 9.4. The
polar motion transformation can be broken into diurnal and non-diurnal parts
as in Equation (9.42).
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A second alternative form of Equation (9.36) is

Xterrestrial = R [GAST1 - (8E.D - 8OrD) COS ET4

R (-Om) R3 (-_OAzD) R,(eM)

R3 (- zp) R2 ( ) R - (9.44)
R3(-zp) R2(P) R3 (-~ 0 ) Xmean of epoch

where the obliquity 0M of the terrestrial equator is given by

9M = EM + AEzD (9.45)

The nutations AzD and AE ZD are given by

A64zD= a"iHD - '1 zD (9.46)

6EzD= AHD+ 8 zD (9.47)

Except for second order terms, the Euler angle perturbations 86 zD and S'zD
are the same as the corresponding perturbations referred to the fixed mean
ecliptic of epoch.

84zD 80z (9.48)

80 = r (9.49)
zD z

Equations (7.43) and (7.44) are used to compute 8 ,zD and 80zD . The Eulerian
terms are determined empirically and the diurnal terms are given in Table 9.4.
No polar motion rotations are needed because the transformation goes directly
from the mean sidereal system of date to the terrestrial system, bypassing the
rotation axis altogether.

The choice of the best alternative form of the transformation from inertial
to terrestrial coordinates depends upon the particular application at hand. Equa-
tion (9.36) has the advantage that the nutational part is made using APHD and

AEHD which come directly from Table 2.5 of the Explanatory Supplement to the
AENA. Modification of an existing transformation that does not include diurnal
polar motion and deformable Earth effects is accomplished by inserting the
transformation
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R 2 (- mI, diurnal) R,(m2, diurnal)

R2(- H1 /CQ + m,) R1 (H 1/Cf - 2 )

R,(GAST1 + 8qrD COS EHD) (9.50)

in place of

R3 (GAST1) (9.51)

Equation (9.43) involves fewer individual rotations than (9.36) but the nutations

ACHD and AHD must be modified using (9.32) and (9.33) to form Aqr D and AE rD
Equation (9.44) involves still fewer individual rotations but the absence of a

polar motion transformation makes it impossible to incorporate the semi-

analytical pole path defined by Equation (9.41).
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APPENDIX A

THE FUNCTIONAL FORM OF DOODSON'S EXPANSION
OF THE TIDAL POTENTIAL

Doodson [1922] developed a formal expansion of the tide generating potential
based upon Brown's [1905] lunar theory and Newcomb's [1898] theory of the sun.
Doodson's tabulated results are represented here in functional form as

U Z [G 2 0: A2 0 j cos ( 20 ~ t +/ 8 20j)

+ G 20 2 20j cos (W2 0 jot +1320j0)]

+ i [G2 1 : A-2 1 j: sin (' 2 1.j t +/ 3 21j3 + X)

+ G A sin (w21 jt + '821j ++ G21 A21je sin (21jt +21je + )]

+ ,[G 2 2 22j COS ( 2 2 j. t +'22j + 2k)

+ G22* A22j COS (22jot +22je + 2k)]

+ GO A3,i3 0  sin( 3 0 j: t +30j)

+ G310 A31jT cos ( 3 1 j3 t +831j3 + X)

+ G 3a2ja sin(o3 2j3 t + 32j + 2k)

G333 A33j COS ( 3 3 j t + '33j + 3) (A.1)
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Solar terms of degree 3 and all terms of degree 4 and higher are neglected be-
cause they are small. The coefficients denoted by Anmj d are the numbers that
appear in Doodson's tables [1922, pp. 322-325]. The spherical harmonic degree
and order are denoted respectively by n and m. Individual tabular entries are
denoted by the index j. The subscript d stands for "disturbing body" which is
either the moon, 3 , or the sun, o.

The geodetic coefficients Gnd are functions of the latitude ¢ and Doodson's
tidal parameter GDd.

G2 0d = 1 GDd (1 - 3 sin 2 ) (A.2)

G2 1d = GDd sin 20 (A.3)

G2 2 d = GDd cos 2  (A.4)

G3 0d = 1.11803 GDd sin q(3 - 5 sin2 ) (A.5)

G31 d - 0.72618 GDd COs q(1 - 5 sin2 
o) (A.6)

G32 d = 2.59808 GDd sin € cos 2 0 (A.7)

G3 3 d = GDd CO s3  
(A.8)

where

3 md Gr2

GDd = (A.9)
4 3

d

md = mass of disturbing body

cd = mean distance of disturbing body

G = universal gravitational constant

r = geocentric radius

In order to consolidate his results, Doodson adjusts each solar coefficient
A j.0 so that it gives the correct result when multiplied by the corresponding
lunar geodetic coefficient Gnnml . This .adjustment involves the choice of specific
values for the ratio of lunar to solar mass and the ratio of lunar to solar mean
distance. If A nnj denotes the solar coefficient before adjustment, then

89



Gn A = Gm An (A.10)

By first dividing out Doodson's numerical factor so as to recover the Anjo it
is possible to incorporate revised values of the lunar and solar masses and mean

distances into subsequent calculations. The only solar terms in Doodson's table

are those of degree 2, and for these

G2  G DI (M
=6;- = ) ('3 (A.11)

Doodson [1922, p. 318] used

G2m®
2- 0.46040 (A.12)

G2m:

The solar coefficients X2mjo for use with solar geodetic coefficients are there-

fore given in terms of Doodson's tabulated coefficients, A2 mj , by

A A2mje (A.13)A2 j - 0.46040

The terms of degree 2 and order 1 in the tidal potential are the only ones
that enter into the torque components (4.19) and (4.20). The corresponding geo-
detic coefficient (A.3) is written in terms the Legendre function P2(sin ) as

1 Gr2

21d Gr2 P1 (sin €) (A.14)
21d =2-d 3 2

The arguments of the trigonometric functions appearing in (A.1) are given
by linear combinations of the following six standard variables chosen by Doodson
[1922, p. 310]

S= local mean lunar hour angle referred to lower transit

s = lunar mean longitude

h = solar mean longitude

p = longitude of lunar perigee

-N' = N = longitude of the lunar ascending node

ps = longitude of solar perigee
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The standard variables are discussed in greater detail in Appendix B. Doodson's

arguments are of the form

d,1 r + (d 2 - 5)s + (d 3 - 5)h

+ (d 4 - 5) p + (ds - 5)N' + (d 6 - 5) Ps (A.15)

where di through d 6 are the integers in a code number written as

dd 2d 3 * d4dsd 6

The integer dI is always equal to the order m of the harmonic in which the argu-
ment arises, or equivalently, to Doodson's "schedule number" 0, 1, 2, or 3. The
standard variables are given in terms of Brown's fundamental arguments by
Equations (B.1) through (B.5). When terms involving second and higher powers
of the time are neglected in Brown's arguments, the standard variables are

expressible as

Wit + Pi (A.16)

where t is the Greenwich mean solar time, W. is a frequency and Pi is a phase
angle. In the expression for the local mean lunar time T, the longitude X is
separated from the rest of the phase angle so that

7 = Wt + Pr + X (A.17)

Doodson's arguments may be written as

6

m(W, t + P,) + mX + (di - 5) (Wi t + Pi) (A.18)

i=2

The frequency and phase of an argument are defined by

6

Wnmj d = m  + (di -5) Wi (A.19)

i=2

6

P'nmjd =r
P
7 + 2 (di - 5) P (A.20)

i=2
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and the arguments are written in the form

nmjdt +18nmjd + mk (A.21)

which appears in (A.1).

For the analysis of polar motion and tidal deformation, the tide generating
potential (A.1) is rewritten as

C d n

d n-2 m= (

- Anmjd COS nmjt + nmjd + mX + (n - m) (A.22)

The tesseral diurnal coefficients A21jd in (A.21) are related to those in (A.1) by

1-
A d A1 jd (A.23)
A21jd A92jd
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APPENDIX B

DEFINITIONS OF THE STANDARD TIDAL VARIABLES

Explicit relationships are presented here between Doodson's standard var-
iables, the similar variables defined by Melchior 11966, p. 261 and Brown's
fundamental arguments as given in the Explanatory Supplement to the AENA
[1961, p. 44 ]. The astronomical variables s, h, p, N', and ps are defined in
Table B.1 and the time variables T, OM and t are defined in Table B.2.

Table B.1
Astronomical Variables

Symbols
Symbols Used by Used in

Doodson [1922, p. 3101Definition Doodson [1922, p. 310] the Expl.
and Melchior

Supp.[1966, p. 26]
[1961, p. 1071

lunar mean longitude, measured s
in the ecliptic from the mean
equinox of date to the mean as-
cending node of the lunar orbit,
and then along the orbit.

solar mean longitude, measured h L
in the ecliptic from the mean
equinox of date

mean longitude of lunar perigee, p F'
measured in the ecliptic from
the mean equinox of date to the
mean ascending node of the
lunar orbit, and then along the
orbit

longitude of the mean ascending N = -N' R
node of the lunar orbit on the
ecliptic, measured from the
mean equinox of date

mean longitude of solar perigee, p, p
measured in the ecliptic from
the mean equinox of date

93



Table B2
Time Variables

Definition This Doodson MelchiorDefinition
Paper [1922, p. 310] [1966, p. 26]

Greenwich mean sidereal e
hour angle

local mean lunar hour 7 7
angle, measured from
lower transit of the mean
moon past the local
meridian

Greenwich mean lunar
hour angle, measured
from upper transit of
the mean moon past the
Greenwich meridian

Greenwich mean solar t
hour angle, measured
from lower transit of the
mean sun past the Green-
wich meridian

Greenwich mean solar t
hour angle, measured
from upper transit of
the mean sun past the
Greenwich meridian

Greenwich mean solar t
time

Greenwich mean solar t
hour angle
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Doodson's standard variables are given in terms of Brown's fundamental
arguments, {, 4', F, D, and Q by

s =F + (B.1)

h =F-D + (B.2)

p= -+ +F+ Q (B.3)

N' = - (B.4)

p = - ' + F - D + (B.5)

and the fundamental arguments are given as polynomials in time in the Explana-
tory Supplement to the AENA [1961, p. 44].

Doodson's mean lunar time is reckoned from lower transit of the moon just
as conventional mean solar time is reckoned from lower transit of the mean sun.
The relationship between OM, T, and t s is shown in Figure B.1.

qM = T + s - 7r - (B.6)

OM = ts + h - (B.7)

From equations (B.6) and (B.7),

7 = t s +h-s +h X (B.8)

Melchior's mean lunar and solar hour angles 7 and t are each referred to
the Greenwich meridian and measured from upper transit. Thus Melchior [1966,
p. 261 writes

0 = 7 + s (B.9)

= t + h (B.10)

which have the same meaning as (B.6) and (B.7).

Doodson's standard variables are each expressible in terms of the Green-
wich mean sidereal hour angle M . Equating the forms (A.15) and (A.21) gives

nmj d t + Pnmjd + mk = d 1 + (d 2 - 5) s + (d 3 - 5)h

+ (d4 - 5)p + (d s - 5) N' + (d - 5) p (B.11)
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LOCAL MERIDIAN

S

ts +h
TM

Figure B.1. Time Variables

Substituting for 7 from (B.6) into (B.11), with n = 2 and m = d1 = 1 gives

cot + /j = (fM + 7T) + a  
(B.12)

where the subscripts 2, 1, and d are omitted and

aj = (d - 6) s + (d - 5) h + (d4 - 5)p

+ (d s - 5)N' + (d - 5)ps (B.13)

The frequency of a particular term is written in terms of the Earth's constant
nominal rotation rate Q [not the 0 in Table B.1 and Equations (B.1) through
(B.5)] as

co. - - n.
J J

where

n. =0 - -NI (B.14)
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APPENDIX C

EULER ANGLES RELATED TO THE MEAN SIDEREAL TIME

In order to apply Doodson's expansion of the tidal potential to problems in
polar motion dynamics it is necessary to relate the Greenwich mean sidereal
hour angle <M to the Euler angle ¢ defined in Figure 3.1. The difference (0 - )

is small and is due to polar motion, lunisolar precession and nutation, and
planetary precession.

As shown in Figure C.1, the Euler angle 4 is measured in the terrestrial
equator from its descending node T 1 on the fixed ecliptic. Polar motion causes
€ to depart from the angle Cr measured in the true equator of date. The differ-
ence (qr - ¢) is expressed in terms of the phase F and amplitude y of the polar
motion, shown in Figure C.2. Solution of the spherical triangle shown in Figure
C.3 gives

Or - Y =  cos ( r + ) cot E1T (C.1)

in which second order terms in y are neglected.

The true equator of date moves relative to the mean equator of date because
of the lunisolar nutation. The nutation /AqrD in longitude is responsible for the
difference between mean and apparent sidereal time. From Figure C.1,

GAST1 = M + A'PrD COS ETD (C.2)

where second order terms in A1rD are neglected.

Planetary precession of the mean ecliptic causes the true equinox'T to
move relative to the equinox '1T on the fixed ecliptic. From Figure C.1, the
angle 6r is related to the Greenwich apparent sidereal time by

0r = GAST1 + a (C.3)

where second order terms in Aq/rD are neglected. The second order terms in

A rD appear because a is measured in the mean equator of date rather than in
the true equator of date.
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.p OF DATE

X TERRESTRIAL

TRUE EQUATOR
r OF DATE

Figure C.I. Relationship Between the Greenwich Mean Sidereal Time OM and the Euler Angle~



Y 900 EAST

m

90o GREENWICH

ASCENDING NODE OF
THE TERRESTRIAL EQUATOR
ON THE TRUE EQUATOR OF
DATE

Figure C.2. Amplitude and Phase of the Polar Motion

Equations (C.1), (C.2) and (C.3) are combined to give the difference (¢M - € )

as

M -  = - lD COS ETD - a

+ y cos (F + €) cot ElT (C.4)

On the right hand side of (C.3) the replacement of ETD and E T by EM and the
replacement of ¢ by 0M introduces only additional second order terms. There-
fore, with second order terms neglected,

M - = - CrD COS EM - a

+ y cos (F + ~) cot EM (C.5)
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Figure C.3. Departure of 0 From r Due to Polar Motion

100



APPENDIX D

GEOPOTENTIAL COEFFICIENTS IN TERMS
OF THE EARTH'S INERTIA TENSOR

The Earth's gravitational potential is expanded in the form

V = 1 - J P (sin €)
n
= 

2

+i. . P"(sin 0) (Cnm COS mk + Snm sin mX) (D.1)

n= 2 m= 
1

The spherical harmonic coefficients are given by

Jn 1 rIpn (sin ) dm (D.2)

SWnm frnpcos m (D.3)

SJ m aE n~mX

where

_ 2(n - m) (m 2,..., n) (D.4)
nm (n + m)!

The origin of the x, y, z system is at the Earth's center of mass so that

J1 = C11 
= S11 = 0 (D.5)

J2 is given by

2 - ma 2 (3 sin 2  dm (D.6)
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Substituting for r and € in terms of x, y and z gives

J2 - 1a (2z 2 - x 2 - y 2 ) dm (D.7)

Equation (D.7) is written in terms of the principal moments of inertia defined in
Equation (2.3) as

J 2 - (I1+ 22 - 2133) (D.8)

2m aE

Similar developments give the other second degree geopotential coefficients in
terms of inertial integrals as

-- 1C 21 I (D.9)

S21 23 (D.10)

1
C - (22 ( - (D.11)

4m a2

1
S22 - 112 (D.12)

Equations (D.8) through (D.12) are rewritten in terms of the inertia tensor per-
turbations defined in Equation (2.5) as

J2 = C - A 2c 33 - c11 - c22 (D.13)

mE a2 2mEa

C = 13  (D.14)

102 aE
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21 -

C22 - C11

C2 2 = (D.16)

C1 2
S22 - (D.17)

2mE

The trace of the inertia tensor (2.5) is invariant under a small deformation. In
order to show this, the trace is written as

Ij =Ii 2 fr2dm (D.18)

j= 1

The mass redistribution resulting from a small deformation is treated as a sur-
face layer as shown in Figure D.1. The mass element dm is written in terms of
a surface density p(6, X) as

dm = p(X, K) ds (D.19)

where ds denotes a surface element. The density is expanded in spherical sur-
face harmonics

p(, X) = . S n (D.20)
n=

where

So = 0 (D.21)

in order that mass be conserved. If V and S denote the volume and surface
corresponding to the sphere of radius aE, then

r 2 dm= { r 2 dm+ aEp(, k) ds (D.22)

vo s
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Substituting for p from (D.20) gives

Ja p(, k) ds 4a2S = 0 (D.23)

so that

fr2dm= f r 2 dm (D.24)

V0

Therefore

(A + c, 1) + (A + c 2 2 ) + (C + c 3 3 ) = 2A+C (D.25)

from which

c, + c22 + c 3 3 = 0 (D.26)

dm

a E

x

Figure D.1. Small Deformation Represented as a Surface Layer
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APPENDIX E

DIRECTION COSINES OF THE AXIS OF FIGURE RELATED
TO PERTURBATIONS IN THE INERTIA TENSOR

The Earth's inertia tensor is written in the form

A + C 1 2  c 1 3

I = C12 A + c22 c 2 3

C13 C23 C+c 3 3

given by Equation (2.5). The perturbations cij are small in relation to the

principal moments of inertia so that the xyz system of Figure 2.1 is almost a

principal axis system. The xyz system must be rotated through the small

angles t and p shown in Figure E.1 in order to make the z' axis coincide with

the principal axis of inertia.

z Z'

P

x' P

x

Figure E.1. Rotation of the terrestrial System to Make the z axis

Coincide With the Principal Axis of Inertia
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Neglecting second order terms in t and p, the coordinate transformation
from xyz to x'y'z' is

1 0 -4

R= 0 1 - p (E.2)

The inertia tensor transforms as

I RIRT (E.3)

The transformed inertia tensor is

A + cl ci2 [2(A - C) + c.]

I' = c12 A + c22 [p(A - C) + c23 ] (E.4)

[t(A-C)+ ] [(A A - C) + c2] C + cS

The direction cosines

(E.5)
C-A

C2 3

P - (E.6)C-A

will diagonalize I' except for the c 1 2 terms. If c 12 # 0 an additional rotation
about z' is necessary to produce a principal axis system.

The direction cosines of the principal axis of inertia are combined into a
complex number k, called the axis of figure

qb, = t + ip (E.7)

In terms of the complex representation,

C = C13 + ic23 (E.8)
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of the products of inertia, the axis of figure is given by

C (E.9)
C-A
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APPENDIX F

SYMMETRIC TIDAL ARGUMENTS

Summations of the form

Ai . ji t +Pi (F.1)

arise in deriving the formulas for the Euler angle perturbations in Sections 6
and 7. The A. denote general coefficients, w. t +A3. is a tidal argument and q
is the Euler angle defined in Figure 3.1 which describes the Earth's diurnal
rotation. Two tidal arguments with distinct indices j+ and j are called sym-
metric when

0i+t + P+ =(M + ) + a (F.2)

W t + j= (M + 7T)- aJ (F.3)

where a denotes a linear combination of Doodson's arguments and OM is the
Greenwich mean sidereal hour angle.

The arguments of symmetric terms in (F.1) are

j t + ± - k = (OM - ) + 7 a (F.4)

Two symmetric terms are combined to form

1 e-i(j+t+j - )  + e-i(j t+ - €)
+ 3 + j-

= [-cos(OM -0) cos aj (j+ +

- sin(M - 0) sin a (- Aj + +A j)]

+ + i [-cos(OM - k) sin aj (-A+ + A-)

+ s in( M - 0) cos aj (A. + A-)] (F.5)
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