INVESTIGATION OF CHARACTERISTICS OF FEED SYSTEM INSTABILITIES

Prepared by
R. J) Vaage
i. E Fidier
R. A. Zehnte

Prepared for
National Aeronautics atad Space Adminnstration
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 85×12

MARTIN MARIETTA CORPORATION
P. O. Box 179

Denver, Colorado 80201

FOREWORD

This final report is submitted in accordance with the requirements of the Statement of Work for Contract NAS8-26266, and documents the work accomplished during the contract period 1 July 1970 through 1 June 1972. This study was performed for the George C. Marshall Space Flight Center of the National Aeronautics and Space Administration, and was administered technically by Mr. Raymond Spink of the Science and Engineering Directorate, Astronautics Laboratory.

ABS'LRACT

In the investigation of structure-propulsion system coupled longitudinal oscillations (POGO), the relationship between the structural and feed system natural frequencies is of major importance. The structural frequencies can be adequately defined by existing analytical techniques. The feed system frequenctes are usually very dependent upon the compressibility (compliance) of cavitation bubbles that exist to some extent in all operating turbopumps. The lack of an accurate analytical prediction method for determining cavitation compliance has delayed the completion of POGO stability analyses until after turbopumps have been built and tested.

This document includes: a complete review of cavitation mechanisms; development of a turbopump cavitation compliance model; an accumulation and analysis of all available cavitation compliance test data; and a correlation of empirical-analytical results. The analytical model is based on the analysis of flow relative to a set of cascaded blades, having any described shape, and assumes phase changes occur under conditions of isentropic equilibrium. The model is restricted to incipient blade cavitation and does not include the effects of blade tip clearance or back flow.

Analytical cavitation compliance predictions for the J-2 LOX, F-1 LOX, H-1 LOX and LR87 oxidizer turbopump inducers do not compare favorably with test data. The model predicts much less cavitation than is derived from the test data. This implies that mechanisms other than blade cavitation contribute significantly to the total amount of turbopump cavitation. A current related technology contract (NAS8-27731) is extending the empirical evaluation of test data presented in this document.
-

TABLE OF CONTENTS

Page
Foreword ii
Abstract iii
Table of Contents iv
List of Tables v
List of Figures vi

1. INTRODUCTTON 1
1.1 Purpose 1
1.2 Objectives 2
1.3 Scope 2
1.4 General Approach 3
2. REVIEW OF CAVITATION MECHANISM 5
2.1 Turbopump Operation 5
2.2 Sources of Cavitation 6
2.3 Previous Cavitation Analyses 8
2.4 A General Cavitation Analysis 16
3. TURBOPUMP CAVITATION MODEL 19
3.1 Model Requirements 19
3.2 Model Assumptions 20
3.3 Equation Development 23
3.4 Solution Technique 29
3.5 Model Applications 31
4. EMPIRICAL CAVITATION DATA 37
4.1 Test Data Analysis 37
4.2 Empirical Data Evaluation 58
5. EMPIRICAL-ANALYTICAL CORRELATION 91
5.1 Analytical Results 91
5.2 Comparison With Test Data 100
6. CONCLUSIONS AND RECOMMENDATIONS 133
7. REFERENCES 135
Appendix A Equations of Motion in Impeller Meridional Plane 141
Appendix B Growth of a Thermal Cavitation Bubble 152
Appendix C Simplified Test Feed System Transfer Functions 157
Appendix D Turbopump Program Users Instructions 160
Appendix E Turbopump Program Listing 173
Appendix F Input Data Interpolation Program 202
Table Page
4.1 Turbopump Configurations 38
4.2 Turbopump Data 63
4.3 PVC Annulus Compliance ($C_{x} \sim 1 n .{ }^{2}$) 64
$4.4 \mathrm{~J}-2$ LOX Suction Duct and Fluld Compliance 63
4.5 J-2 LOX Physical Model Parameters for $G(S)_{2}$ 65
4.6 Suction Pressure Power 66
5.1 Inducer Streamsheet Parameter 103
5.2 J-2 LOX Streamsheet Cavitation Compliance 103
5.3 Factors Affecting Minimum Inducer Pressure 104

LIST OF FIGURES

pisure Page
2.1 Variation of Isothermal Velocity of Sound in Water Containing Air Bubbles 18
3.1 Meridional Plane of Pump Impeller 32
3.2 Segment Streamtube of Revolution for Continuity Equation 32
3.3 Segment Streamtube of Revolution for Irrota- tional Flow 33
3.4 E, F Surface Relative to r, Z and θ Coordinates 33
3.5 Pump Blades in E, F Plane 34
3.6 Pump Fluid Property Diagram 34
3.7 LOX Density for Isentropic Phase Change 35
4.1 Comparison of Spring-Mass and Fluid Systems 67
4.2 Analytical Model of S-II LOX Test Suction Systems 68
4.3 S-II LOX Suction Transfer Function 69
4.4 S-IC LOX PVC Volume Change With Pressure 70
4.5 S-IC LOX PVC Length Change With Pressure 71
4.6 S-IC LOX Feed System Frequency Variation 72
4.7 S-IC LOX Non-Flow Feed System Data 73
4.8 S-IC LOX Feed System Data 74
4.9 F-1 LOX Turbopump Cavitation Complaince 75
4.10 F-1 Fuel Turbopump Cavitation Compliance 76
4.i1 F-1 Fuel Feed System Frequency Data 77
4.12 J-2 LOX Feed System Resonance 78
4.13 J-2 LOX Analytical Turbopump Models 79
4.14 J-2 LOX Cavitation Compliance Derived by Brown Engineering 80
4.15 Effect of J-2 LOX Turbopump Model on Cavitation Compliance 81
Figure Page
4.16 J-2 LOX Cavitation Compliance 82
4.17 J-2 Fuel Turbopump Cavitation Compliance 83
4.18 $\mathrm{H}-1$ Oxidizer and Euel Turbopump Cavitation Compliance 84
4.19 MB-3 Cavitation Compliance 85
4.20 Titan Turbopump Cavitation Compliance 86
4.21 Oxidizer and Fuel Turbopump Cavitation Compliance 87
4.22 Nondimensionalized Turbopump Cavitation Compliance 88
4.23 Nondimensionalized Turbopump Cavitation Compliance 89
5.1 J-2 LOX Inducer 105
$5.2 \quad \mathrm{~F}-1$ LOX Inducer 107
5.3 $\mathrm{H}-1$ LOX Inducer 109
5.4 LR87 Oxidizer Inducer 111
$5.5 \mathrm{~J}-2$ LOX Inducer Blade Sections 113
5.6 F-1 LOX Inducer Blade Sections 114
5.7 H-1 LOX Inducer Blade Sections 115
5.8 LR87 Oxidizer Inducer Blade Sections 116
5.9 J-2 LOX Inducer Interpolated Blade Sectional Data 117
5.10 F-1 LOX Inducer Interpolated Blade Sectional Data 118
5.11 H-1 LOX Inducer Interpolated Blade Sectional Data 119
5.12 LR87 Oxidizer Inducer Interpolated Blade Sectional Data 120
5.13 J-2 LOX Inducer Streamlines 121
5.14 J-2 LOX Inducer Streamsheet Compliance 122
5.15 F-1 LOX Inducer Streamsheet Compliance 123
5.16 H-1 LOX Minimum Predicted Inducer Pressure 124
5.17 LR87 Oxidizer Minimum Predicted Inducer Pressure 125
5.18 Effect of Inlet Boundary Conditions 126
5.19 Effect of Prerotation on Inlet Flow Vector 127
5.20 J-2 LOX Inducer Suction Performance 128
Figure Page
S. 21 J-2 Tnducer Pressure Profiles 129
5.22 J-2 LOX Analytical-Empirical Comparison 130
5.23 F-1 LoX Analytical-Empirical Comparison 131
A. 1 Fluid Element Coordinates 142
A.2 Axial View of Impeller 144
A. 3 Projection of Streamsheet on Meridional Plane 145
A. 4 Meridional Plane of Impeller 146
A. 5 Meridional Streamline 146
C.l Simplified Suction Line Model for Pulse Test 159
D. 1 Turbopump Program Computation Sequence 169
D. 2 THETA, E Dimensions 170
D. 3 Grid Increment Number 171
D. 4 Grid Increment for Extrapolation to Blade Surface 172
F. 1 Typical Inducer Showing Blade Sections 217
F. 2 Input Blade Sectional Data 218
F. 3 Input Data Normalized to Trailing Edge 219
F. 4 Nondimensionalized Input Data 220
F. 5 Nondimensionalized Data for 5 Blade Sections 221
F. 6 J-2 LOX Data for 5 Blade Sections Normalized to Trailing Edge 222

1. Introduction

1. INTRODUCTION

1.1 Purpose - Longitudinal oscillation instabilities (POGO) due to closed loop coupling between structural modes and propulsion feed system modes have been encountered on most liquid propellant launch vehicles (Reference 1). Experimental evaluation of feed system dynamics in these vehicles has shown that turbopump cavitation is usually the major source of feed system compliance which, along with the effective fluid mass, determines the feed system resonant frequencies. Compliance (C) is defined as the rate of change of fluid mass (W) with respect to pressure (P) for a constant volume; i.e.,

$$
\begin{equation*}
C=\frac{\partial W}{\partial P} \quad \frac{\mathrm{lb}_{\mathrm{m}} \mathrm{in} .^{2}}{\mathrm{lb}_{\mathrm{f}}} \quad \text { or in. }{ }^{2} \tag{1.1}
\end{equation*}
$$

Cavitation bubble compliance (C_{b}) is given by the rate of change of the mass of propellant stored in the turbopump (W_{p}) with respect to inlet pressure $\left(P_{s}\right)$. Changes in W_{p} can be related to changes in cavitation vapor volume $\left(V_{v}\right)$ by

$$
\begin{equation*}
c_{b}=\frac{\partial W_{p}}{\partial P_{s}} \approx-\frac{\rho \partial v_{v}}{\partial P_{s}} \tag{1.2}
\end{equation*}
$$

where ρ is the liquid density and the mass of vapor is small relative to the mass of liquid.* Some previous analytical and semi-empirical attempts (Section 2.3) have been made, usually using average geometry parameters and flow conditions through the turbopump, to predict the amount of cavitation. Confidence in these methods has never been sufficient to eliminate the requirement to perform dynamic response tests on new turbopump

* In some of the literature C_{b} is defined as $\partial V_{v} / \partial P_{s}$ which can be related to the values presented in this report by multiplying by the appropriate propellant density.
configurations. The lack of available test hardware during design phases is one of the major reasons that POGO suppression has been worked as a post flight effort on all past launch vehicles. The technology effort documented in this report is aimed at producing increased confidence in pre-test pocio stability analysis on future launch vehicle programs like the Space Shuttle Vehicle. This study is closely related to three other current Space Shuttle Technology programs: contract NASB-26250,
"Research on Cavitating Pump Instabilities", Hydronautics Incorporated; contract NAS8-25919, "Analysis of Propellant Feedline Dynamics", South West Research Institute; and contract NAS8-27731, "Empirical Evaluation of Pump Inlet Compiiance", Aerospace Corporation.
1.2 Objectives - The intent of this investigation is to establish the relationships between turbopump inlet compliance and the pump parameters and fluid properties that control or define the compliance mechanism. The correlation is to be established with an analytical and/or semi-empirical model which is verified with existing test data. It is desired that the correlations be formulated and presented such that the frequency response characteristics of a cryogenic feed system can be evaluated for a given vehicle configuration. It is desired that the deviation in feed system resonant frequency between analytical and empirical results not exceed $\pm 10 \%$.
1.3 Scope - This study deals primarily with the determination of turbopump cavitation compliance, the largest element of uncertainty in dynamic modeling of feed systems. Feed system models, incorporating cavitation compliance, are well understood and range from very simple models (Paragraph 4.1.3) to
fairly complicated models (References 2 and 3). A general feed system computer model was provided to NASA under contract NAS823511. Also, detailed feed system modeling is currently being performed under contract NAS8-25919. For these reasons, no complex feed system models are presented in this report.
1.3.1 Since cavitation compliance is required for determination of feed system frequency response characteristics for use in POGO stability analysis, only linear response characteristics are of interest. Also, only the normal flight operating range of a turbopump is considered. These two conditions permit the analysis of turbopump cavitation to be restricted to the region of incipient cavitation, and does not consider the region of gross cavitation where turbopump operating performance is significantly reduced. The analytical model developed deals with thermal vapor cavitation between the turbopump blades. It does not include gaseous cavitation, or cavitation resulting from back flow or blade tip clearance flow, although these effects are discussed.
1.4 General Approach - The general approach takfn to meet' the study objectives within the scope specified was to:
a. Review all litorature relative to turbolimp cavitation;
b. Develon an analytical model to predict cavitation compliance;
s. Analyze all available cavitation compliance test data;
d. Perform an evaluation of the test data;
e. Correlate the analytical and test results.

The model development portion of this study is a continuation of a portion of a general POGO technology contract conducted for the Air Force Rocket Propulsion Lab (References 4 and 5).

The analytical cavitation model is a fluid dynamic/thermodynamic model which employs the compressible flow equations in finite difference form and solves them iteratively. Isentropic conditions of thermodynamic equilibrium between the vapor (cavitation) and liquid phases are assumed. The solution yields the amount of vapor at many grid points in a turbopump streamsheet of revolution (an annulus between two blades). A combination of several streamsheets at different blade radif gives the total turbopump cavitation, which when related to a change in inlet pressure, results in cavitation compliance. This approach accounts for varying conditions of fluid flow and blade geometry throughout the turbopump.
2. Review of Cavitation Mechanism

2. REVIEW OF CAVITATION MECHANISM

2.1 Turbopump Operation - Turbopumps used in prisent rocket propulsion systems are generally of the mixed flow design. The pump fluid while in the impeller has, in addition to angular velocities, both axial and radial velocity components as opposed to the predominantly radial velocitios associated with centrifugal water pumps. In most cases, the turbopump will have an inducer section upstream of the main impeller that improves fluid angle of attack and increases the pressure at the inlet to the impeller. This allows further reduction in NPSH before blade stall and a loss in head rise (pressure increase from inlet to discharge) occurs. In some configurations, the impeller and inducer are of one piece construction, the inducer blades transitioning into impeller blades with additional impeller blades starting at some distance into the turbopump. The pressure rise through the inducer makes it probable that the majority of the turbopump cavitation occurs in the inducer. This is because the average pressure at the impeller inlet is generally too high for any local blade surface prossure to be reduced to the vapor pressure.
2.1.1 Shrouded blades of proper design, operating at the design point and free of vapor represent an analytical idealization in that channel type flow exists between the blades. Most turbopumps, however, are not designed with completely shrouded blades, and the channel flow idealization cannot be realized. In this situation, the flow picture is complicated by a tip clearance flow between the moving blades and the stationary shroud. The tip clearance flow, which is from the pressure side of a blade to the suction side, often induces a vortex
 blades are improoerly designoel or are beine operated off the d. sign condition', A ligqu-iflifi stparat ar cavity may be attached to the fradshe dge. This is mor: blely when the blade leading edges are quite harp. Although the impellor will still pump [luis with an associated prescore ris, it is arcomplishod at a roducd officiency.
2.1.2 The eomelexity of the flow sitution increasos with the appearance of vamor phases. It the wheity gradients are not large and tho :nducer blades have larer yarli of curvature associated with the lading edes region, the vapor phases, which consist of discolved gas coming out of snlution and/or a change in phase of the pump fluid, will appear as argion of bubbles moving with the iluid. On the other hand, il a liquid-filled separation cavity wists befor the appearance of vapor, the cavity may fill with vapor when it evolves and expand with further reduction in suction pessure. Bubl ouvities that originate near tho lading edge of the blade may reattach on the downstram side of the blade or, if suvery low pressures exist, extend downstram into the discharg portion of the pump. Although separation cavitios may not exisi forfore the apprarance of vapor, the donsity chang and disturbances associated with the evolution of vapir may induce separation of the boundary layor and create a cavity. In both types of two-phase flow, the variations of density add considerable complexity to the analysis problom.
2.2 Sources of Cavitation - Cavities may exist in the turbopump 1 iquid propellant dur to the prosno of either vapor bubbles produced by liquid boiling, hereafter referred to as thermal cavitation; or contaminant gas bubblos, hreafter referred to as gascous cavitation.
2.2.1 Thermal Cavitation - Thermal cavitation results when the ambient pressure drops below the saturation pressure, or the fluid temerature rises above the saturation temperature. Pressure changes may be associated with quasi-steady fluid motion, transicnt iluid motion, or acoustic excitation. Temperature changes can result from heat transfer across the boundaries of the system, fluid motion, and phase changes of the fluid (latent hrat of vaporization and condensation). For an ismotropic procuss, a change in pressure produces a phase change, which results in a change in fluid temperature, which in turn tends to impede the phase change. With sufficient time, thermodynamic equilibrium is reached and there exists a given amount of vapor for a given pressure. For bubble growth and decay under conditions of non-thermodynamic equilibrium, the mathomatics defining the rate of change of bubble size are given in Appendix A.
2.2.2 Gascous Cavitation - Gascous cavitation can occur from the following sources:
a. Dissolved gases coming out of solution;
b. Undissolved gases mixed with the propellant;
c. Chemical reaction (corrosion) between the propellant and the turbopump.

Substantial concentrations of both dissolved and undissolved foroign gases, such as atmospheric air or blanket gases used to hold the fluid under pressure before entrance to the pump, may also be present in propellants which have been stored for rither long periods of time or under very low gravity conditions. Changes in the ratio of dissolved to undissolved gas can result from changes in fluid velocity, acoustic excitation, or heat
transfer. Undissolved gas may also exist as a result of a Gas Bubbling POGO Suppression Devicr (Reforences 6 and 7). The problem of corrosion is not normally oncountered in current propulsion systems. Even if storage and utilization of propellants are controlled so that an insignificant amount of gascous cavitation occurs, small amounts of dissolved gases may be instrumental in the initial formation of a thermal cavitation vapor bubble (Paragraph 2.3.2).
2.3 Previous Gavitation Analyses - Analysis of turbopump cavitation compliance was initiated with a review of existing knowledge on cavitation. Discussion of this review and the conclusions derived follow.
2.3.1 Turbopump vs Other Types of Cavitation - Considerable
investigation has been performed in the ficld of cavitation.
Areas that haye recoivod tho most attontion have boon pump
cavitation, hydrofoil and hydrodynamic propeller cavitation,
cavitation on such underwater vehicles as submarines and torpedos,
and cavitation induced by sound waves. The majority of investiga-
tions associated with pumps have bene experimental or semiempirical
with the objective of preventing cavitation damage by determination
of incipient cavitation condition: (Fיierencos b and 9). Investi-
gations of hydrofoils, propellers, and undorwater vehicles have
been aimed at predicting lift and drag cocfficionts and reducing
noise associated with cavitation bubble collapse. Ultrasonic
cavitation research has been directed primarily toward assessing
sound energy and frequency requirements to induce cavitation, and
examining the attenuation and distortion of sound waves caused
by the cavitation bubbles.
2.3.2 Nucleation - If gas-filled voids exist in a fluid (References 10 and 11), changes in the concentration of dissolved gases and changes in phase within the fluid will take place at the boundary of the voids as well as at the fluid surface. The presence of voids in a fluid is suggested by the cohcsive strength of water. Predictions of cohesive strength based on breaking the van der Waals intermolecular bonds exceed experimental observations by several orders of magnitude. The source of this large discrepancy is attributed to the presence of contaminants in the water that form voids of nuclei on the order of 10^{-5} to $10^{-2} \mathrm{~cm}$ in diameter. Since it is known that large amounts of air can be dissolved in water, it is hypothesized that the voids of nuclei are filled with contaminant gases such as air or mixtures of gas and fluid vapor. This hypothesis only partially cxplains the observed fracture strength of water. A nucleus containing contaminant gas and vapor will be in static equilibrium in the fluid if

$$
\begin{equation*}
P_{v}+P_{G}-P_{\infty}=2 \sigma / R \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{P}_{\mathrm{v}} & =\text { vapor pressure } \\
\mathrm{P}_{\mathrm{G}} & =\text { sum of partial pressures of contaminant gases } \\
\mathrm{P}_{\infty} & =\text { ambient pressure } \\
\sigma & =\text { surface tension constant } \\
\mathrm{R} & =\text { radius of nucleus }
\end{aligned}
$$

If the nucleus contains only vapor and its radius is given by Equation (2.1), it is in a condition of unstable equilibrium and will either grow or collapse upon being disturbed.
2.3.2.1 Gas-filled nuclei on the order of 10^{-5} to $10^{-2} \mathrm{~cm}$ in diameter present in an undersaturated or saturated solution of
water (saturation in this context rofire to the concontration of dissolved gos) dissolve in a for minat.. or ; cond denonding on the radius of the nuclei and the disentori atis concentralion. The dissolving prosess is assisted by thr surface tension force. 2o/R. A nucleus of toiss sizo, if prosent in a suporsaturatod solution of water, grows by diffusion ot was into the nucleus and floats to the surface of the water where it wsapes. The rate of rise of a nucleus of 10^{-5} em in dimetry is vory show and may take several hundred hours to ascap from the liquid. Wator that has been allowed to set a long time still itils womonstrate the expected cohosive strength. A mechanism or mechanisms, thorefore, that provents the diffusion of gats mut of the nuclei and/or prevents nuclei from rising to the surface of the fluid must b, acting. Two lyppoticses advanced aro:
a. Surface films composed of alpat or other contaminants form around the nuclei and act as barriers to the diffusion procese;
b. The nuclei are held in surface cracks of the fiuid containur or on dust particles suspended in the fluid.

The first hypothesis has beon demonstrata by Bernd (Reference 12) in experiments where the colnsive strencti of various fluids has been manipulated by control of the algae content. Rosenberg (Reference 13) has shown analytically and exporimentally that the walls of the fluid containers can have cracks in which nuclei can be attached in a stable condition. In tho same work, it was shown that dust particles or colloidal matter in the fluid can have cracks upon which the nuclei can be stabilized. An aspect of Rosenberg's investigation that will roquir. furthor attention is the observed dillorence in suscoptibijity ol various liquids to contamination by diust.
2.3.2.2 The nuclei are the focal points that govern changes in dissolved gas concentration and changes in phase (Reference 14). Regarding changes in phases, nucleation action occurs not only for the growth of vapor bubbles, but also for their collapse. The presence of contaminant dust particles in the bubble and on its surface serve as nuclei upon which additional condensation can take place.
2.3.2.3 The preceding discussion shows that cavitation in a turbopump will depend on the number of nuclei present in the fluid, their size, and conditions that will affect their dynamic bchavior. It is important, therefore, that methods be developed for assessing the effects of fluid characteristics on nucleation.
2.3.3 Diffusion - A decrease in the concentration of dissolved gas in the pump fluid will result from diffusion of dissolved gas into nuclei present in the fluid. If the diffusion process continucs, the nuclei will grow into gas bubbles and the phenomenon of gaseous cavitation will be observed. The diffusion process in a pump can be driven by changes in either pressure or tomperature. Once the temperature and pressure conditions have been altered to a condition that favors diffusion of gas out of the cavitation bubble, the bubble will decrease in size. Although conditions return to those existing at inception of bubble growth, the contracting bubble may reach an equilibrium volume substantially greater than that of the original nucleus. This phenomenon is demonstrated by tests of the cohesive strength of water. Water that has been subjected to gaseous cavitation has a fracture strength considerably less than it had before cavitation. This results from the presence of nuclei after cavitation that are larger than those that existed before cavitation. Plesset and Epstein (Reference 15),
ignoring the effects of the motion of the bubble boundary on the concentration gradient in the liquid, have derived the equation governing the diffusion of gas into and out of a static bubble. Their results, if applied directly to turbopumps, show that the characteristic time for bubble growth is too large to cauge cavitation. The boundary conditions for the derivation, however, differ considerably from those that will exist in a turbopump. The effects of bubble boundary motion and turbulence on the gaseous concentration gradient serve to accelerate the bubble growth. Future work, therefore, should incorporate these effects into a more accurate description of the diffusion process.
2.3.4 Acoustic Cavitation - As previously stated, changes in the ratio of dissolved to undissolved gas in a fluid can occur due to acoustic excitation. The generation of sound in a fluid results in an oscillatory pressure throughout the fluid. The pressure disturbances in turn result in an oscillation of the boundary of nuclei in the fluid. With a fluid saturated or supersaturated with dissolved gas, the nuclei may grow into gas bubbles given the proper amplitude and frequency of acoustic excitation. The growth is achieved through the rectified diffusion of gas into the bubble. During the low-pressure or expansion phasc of bubble oscillation, conditions result in diffusion of gas into the bubble. During compression of the bubble, gas diffuses out; however, due to the large time surface area associated with the bubble expansion, a net inflow of gas occurs. Because of the extreme noises associated with rocket engines, this type of cavitation should not be ignored when analyzing rocket turbopumps.
2.3.5 Thermodynamics - The cavitation problem requires consideration of many thermodynamic effects. Litcrature on the subject of thermal cavitation may be divided into two areas. The first of these deals with the effect of heat transfer on cavitation bubble growth. The nonsteady heat diffusion problem with moving boundaries has been solved by Plesset and Zwick (Reference 16). The same authors have combined the results of the heat diffusion problem with the equations of motion for bubble growth to obtain a solution for the case of constant ambient pressure (Reference 17). Skinner and Bankoff (Reference 18) as well as Forster and Zuber (Reference 19) have taken slightly different approaches and obtained similar results. The bubble growth problem with variable ambient pressure and inclusion of terms containing P_{v} is still unsolved.
2.3.5.1 Other investigators such as Stepanoff (References 20 and 21) and Jakobsen (Reference 22), rather than examine thermal cavitation on a microscopic basis, choose to derive semiempirical macroscopic descriptions. The results of this approach suffer from inability to correlate a particular value of pump head dropoff with volume of vapor present over a wide range of operating conditions. Furthermore, the results cannot justifiably be used to predict the vapor volume, because a number of assumptions and empirical factors do not accurately describe the vapor formation process.
2.3.5.2 Future work on thermal cavitation should take two directions. The first, referred to as the equilibrium approach, should examine the thermal cavitation phenomenon assuming thermal equilibrium phase changes. For pumps that have gradual changes in pressure through the system and low fluid velocities, the
 and, thoreby, nogat, lly nuid for a microsmaic xamination.
 tation in which lace prossure gradionts and volocitios produce metastable change of phase. For cryogeri Ilufts, the ffect: of heat transfer across the boundarier of the syetem should be included in both methods of analysis. Thu tormodynamic nooperties of the fluid should be examina mbely in dotermine whether cortain characturistic: simelify or ermplicat. the solution of the thermal cavitation rquat fons.
2.3.6 Fluid Mchanics - Like thermodymamies, therr aro many branches of fluid mechanios drawn on ownination of turbopump cavitabion. The Slow of liquid througt a turbopump to the inception of cavitation can be examirad with the incompressible flow equations. In the pum, cavitation may appear
 blades are very sharp, a separation cavity may be attachod to the suction side of tho blade. Depending on the fluid volocity, pressure, and boundary layar conditions, the cavity may close on the downstream suction side of the blade a may extend through the pump in a condition known as supreavitution. Fxaminations of separation cavitios as related to turbommp ravitation have been made by Stripling and Acosta (Refereness 23 and 24). This method predicts the geomotry of tho cavity up to the point of maximum height based on fluid momontum consillerations; howevor, the reattachment or cavity closure conditions romin arbitrary. The work of Wade (Reference 25) applies to the conditions of cavities closing on the blade. The most recont and most degant application of the Stripling and Acosta method is that developod by Davis, Coons and Scheor (Reforence 26). Thi: aplication
couples the Stripling-Acosta model to a two dimensional impeller flow field including boundary layer displacement effects. The primary objective of this model was to predict blade loading under cavitating conditions. Comparing its results with test data showed that it accomplished this purpose very well. Its use for predicting cavitation compliance is much more questionable due to a greater sensitivity to the assumed closure conditions. After documentation of the Stripling and Acosta work, different investigators have claimed that various pieces of experimental data (mostly photographic data, e.g., Reference 32) support either the separation cavity theory or the thermal equilibrium mixed flow concept. Our own review of this data suggests that it is inconclusive for the most part in offering substantial supporting evidence for either theory.
2.3.6.1 Unfortunately, the assumptions for the mathematical models, such as a blade leading edge radius of curvature equal to zero are scldom if ever physically realizable. If the blade is very thick and has a large leading edge radius of curvature, the flow may remain attached, and cavitation will appear as a mixture of vapor bubbles and liquid that demonstrates compressible flow characteristics. In this type of cavitation, the growth and collapse of vapor bubbles require fluid-mechanic examination. Plesset (References 17,27 and 28) has examined the growth phenomena under conditions of constant ambient pressure and bubble vapor density. Both Gilmore (Reference 29) and Hunter (Reference 30) have taken into account compressibility and shock effects encountered during bubble collapse.
2.3.6.2 The effect of gas bubbles on the sonic velocity in a fluid represents another area that has received attention in
cavitation investigations. Figure 2.1 shows the variation in sonic velocity as a function of gas content for a mixture of water and air. It is scen that the sonic velocity can drop to a very low value that may result in sonic chokjing in the turbopump. Ghahremani (Reference 31) uses the work of Jakobsen (Reference 22) and assumes that iully choked flow exists at head breakdown (no pressure rise through the turbopump). Somewhat arbitrary assumptions, requiring empirical correlation, are then made to relate the fully choked conditions to normal operating conditions of unchoked or partially choked flow. The Ghahremani approach is unique in that the theory includes the effects of blade tip clearance backflow which, according to his results, produce more cavitation than occurs on the blade suction surface.
2.3.6.3 Attention in future fluid-mechanic investigations of cavitation should be given to determination of the conditions necessary for and which influence the geonetry of separation cavities; and development of the flow equations for a vaporliquid mixture in a turbopump. Incorporated into these equations should be the effects of bubble growth and collapse on the surrounding fluid. Also, the approacl rolated to sonic choking at head breakdown should be refined,

2.4 A General Cavitation Analysis - From the preceding

 review of existing investigations of cavitation, it is possible to construct a plan for solution to the general cavitation compliance problem. This plan, which itemizes the various areas of investigation and integrates these areas into a completely general analysis, is outlined in the following paragraphs. The analytical investigations conducted during this program were restricted to fluid-mechanics with thermodynamic cavitation, which occurs on an equilibrium basis.
2.4.1 Nucleation

a. Number of nuclei;
b. Size distribution of nuclei;
c. Conditions in fluid or vapor that affect the dynamic behavior of nuclei.

2.4.2 Acoustic Cavitation

a. Identification of sound sources;
b. Assessment of power and frequency characteristics of each source;
c. Wave transmission in the fluid mechanic system.

2.4.3 Diffusion

a. Identification of dissolved gas species and assessment of their relative concentrations;
b. Evaluation of diffusion rates into nuclei or out of gas bubbles under both laminar and turbulent flow conditions;
c. Determine effects of contaminants on diffusion rates.

2.4.4 Thermodynamics

a. Examination of thermal cavitation on a microscopic or dynamic basis;
b. Examination of thermal cavitation on a thermal equilibrium basis;
c. Thermodynamic properties of fluids;
d. Heat transfer across system boundaries.

2.4.5 Fluid Mechanics

a. Hydrodynamics of turbomachinery without cavitation;
b. Hydrodynamics of turbomachinery with cavitation, but without separation cavities;
c. Bubble hydrodynamics;
d. Hydrodynamics of turbomachinery with separation cavities attached to blades;
e. Compressibility effects in fluid including shock phenomena;
f. Effects of tip clearance flow and backflow.

Figure $2.1 \quad \begin{aligned} & \text { Variation of Isothermal Velocity of Sound in } \\ & \text { Water Containing Air Bubbles }\end{aligned}$

3. Turbopump Cavitation Model

3.1 Mode1 Requirements - As outlined in Section 2.4, a complete analysis of turbopump cavitation compliance will require a complex model of the turbopump based upon the physical equations describing the fluid mechanic and thermodynamic phenomena occuring in the pump. The purpose of this program was to develop such a model; but, on a very fundamental basis, in order to evaluate the validity of such a model and identify the associated programming and numerical analysis problems. If the feasibility and enginecring uscfulness of a basic program could be demonstrated the more complex effects of fluid viscosity, gas diffusion, and nonequilibrium thermodynamics could be added to the program with considerably more confidence of success.
3.1.1 A prime objective of the cavitation compliance model development was to derive mathematical descriptions that could be related directly to the physical situation in a turbopump. Semiempirical approaches were discarded because of their inability to account for all the different design considerations. This is particularly true considering the lack of any empirical data which relates changes in cavitation compliance to changes in specific turbopump geometry parameters. The required mathematical descriptions, which are consistent with the objectives and scope of this study, are:
a. Basic turbopump flow equations into which two-phase flow phenomena can be incorporated and which could later be expanded to include more complex flow situations;
b. A thermal cavitation model which is independent of time and conditions of nucleation and which can be
combined with the flow duations to give a description of turbopump cavitation compliance;
c. A finite difforence iteration algorithe which allows solution of the flow and cavitation equations for any given blade geonetry and flow conditions.
3.2 Mode1 Assumptions - The assumptions made in the development of the turbopump model pertain to the cavitation process, the fluid-mechanics, and the turbopump configuration. The assumptions were required in order to obtain a solution for cavitation compliance within the scope of this study. The first two assumptions related to the cavitation process determine the basic approach of the analytical effort.
3.2.1 Channel Flow - The fundamental assumption of the turbopump model is that channel flow exists approximately between the pump inducer and impeller blades. This assumption can be used to separate the three-dimensional flow problems into two-dimensional problems. The first problem is that of defining the flow streamlines in the meridional planc. This can be accomplished by the method described in Appendix A, or by a mor approximate method wherein the streamlines and associated streamtub width (b in Figure 3.2) is related to the inducer or impeller hub and shroud geometry by a suitable function. With a meridional plane description of the streamlines, onc can proced with the development of the blade to blade flow equations along a surtace generated by rotating a meridional plane streamline about the impeller axis. This development is presented below in Sretion 3.3.
3.2.2 Thermal and Velocity Equilibrium - Tie 1iquid-vapor phase change is assumed to occur under isentropic conditions of
thermodynamic equilibrium with both phases in velocity equilibrium. An equation that deals with noncquilibrium changes of phase (vapor bubble growth) for a single bubble is presented in Appendix B. This derivation includes the effects of heat transfer at the bubble wall, varying ambient pressure, and variable density of the vapor within the bubble. Unfortunately, a complete solution to the resulting integro-differential cquation was not obtained. Solutions were found in the literature for simplified versions of the equation; however, the solutions sacrificed the inertial effects to gain a description of the thermodynamic effects or vice versa. The assumed condition of equilibrium applies to the bubble growth and decay both as the fluid passes through the turbopump encountering different local pressures, and as the local pressures change as a result of changes in the turbopump inlet pressure. Some test results (Reference 4) at very low static inlet pressure (6 to 10 psi) and large pressure oscillation amplitudes (10 to 20 psi peak to peak) indicate that the cavitation process is not in equilibrium, and that the amount of compliance is a function of the frequency of the pressure oscillations. The extrapolation of this data to small amplitudes and flight pressures is not possible. Since this model is more concerned with cavitation compliance (rate of change of cavitation with respect to pressure) than with the amount of cavitation, the equilibrium assumption should be more valid because the perioc of pressure oscillation is greater than the average bubble life (Paragraph 3.2.5).
3.2.3 Tip Clearance and Backflow - An additional restriction which is implied by the channel flow assumption is that there is no tip clearance flow or backflow within the pump.

The model only craputis exvitation as a rusili wi channel flow betwedn cascaded blatw and does not consid r cavitation which may ofeur from eitiot lilwe tip clearance flow or from backflow into the suction lint backflow is produced by tip clearance flow). These other sources may have a significant effect when considering unshrouded blades. Based on analysis, Ghahremani (Reference 31) thoorizes that tip flow cavitation is much larger than blade cavitation. Jhe only tosts concerned with tip clearance flow evaluated the effect on performance for a gas medium (Referenes 3) instod of a licuid, and tor a variation in the axial cluarance of the imptller Lip (Referenct 34) instead of a radial clearance ot the inducer tip. A test program to investigate the eEfect of Lip cloaranct flow and backflow would be very bencficial ic the understamping of the complete turbopump cavitation process.
3.2.4 Incipiunt Cavitation - The modu! is developed for conditions of incipient cavitation only. Ihis restriction is necessary because in dep cavitation local lluid velocities may approach the local speed of sound, whereupon the finite difference solution schome becomes invalid. Sinc: turbopumps do not usually operate in tho region wf deep cavitaion, this is not considered to be a sirire restriction.
3.2.5 Stcady Flow - Sinco cavitation compliance is related to an oscillatory change in inlet pressure, unsteady flow conditions are implied. However, since the period of oscillation is typically 50 times greater than the time required for a fluid clement to pass through the cavitation region, it is valid to assume quasi-steady L low; i.e., cavitation compliance can be obtained from a steady state solution at different turbopump inlet pressures.
3.2.6 Inviscid Flow - A further assumption which must be used is that the flow is inviscid. A solution of the complete viscous flow equations would compound the overall computational problems and is not warranted until the usefulness of the basic inviscid approach is demonstrated.
3.2.7 Scparation Cavities - The computer model of turbopump cavitation was developed on the basis that no separation cavities were present in the blade system. This restriction is actually necessary only when the vapor phase is present in the pump. Solutions can be obtained with separation cavities for incompressible or non-cavitating flow; however, diverging solutions appear whenever two phase flow is encountered.
3.2.8 Identical Blades - The final assumption of the model development requires that all blades within the pump inducer or impeller are identical. This restriction was necessary in order to simplify the computer programming and to meet core limitations on the computer. In most pumps, the inducer section where most cavitation occurs is made up of identical blades. In the impeller section, however, partial blades are quite often placed between the main blades. The capability of treating non-identical blade systems can be added to tho program, but would require an overlay technique and, consequently, some re-programming.
3.3 Equation Development - The development of the nonseparated, thermal equilibrium cavitation flow equations for a blade-to-blade analysis are discussed below along with the pump blade coordinate transformations used to simplify the numerical solutions. Figure A. 1 shows the coordinate system used for
derivation of the 1 low equations. The coordinate system is rotating about the Z axis with angular velocity w. The velocities shown, therofore, are relative to the pump blades. The equation development derives two basic enuations: a fluid flow equation, and an energy equation. Tho flow equation is derived from potential theory utilizing a continuty :quation and the condition of irrotational flow. The energy equation is derived by relating the fluid energy to the inlit encrgy and the work done by the turbopump. Changes in thormal onorgy aro obtained from the assumed condition of thermal equilibrium. The final form of the two equations is written in terms of the stream function, ψ, and the density ρ.
3.3.1 Flow Equation - From a solution to tio flow problco in the meridional plane (Appendix A), a streamline and its associated streamtube can be defined as shown graphically in Figure 3.1. Rotation of the streamtubr about tho impeller axis results in a streamtube of revolution while a stream surface is generated by the meridional streamlinc. With reference to Figure 3.2 , which shows a segment of the streamtube, the flow continuity rquation is derived as follow; Using the segment of the streamtabe as a control volume, the conservation of mass is expressce by

$$
\begin{equation*}
\sum\left(\dot{W}_{\text {in }}-\dot{W}_{\text {out }}\right)=\frac{d}{d t}(W)=0 \tag{3.1}
\end{equation*}
$$

where \dot{W} is the flowrate. $\frac{d}{d t}(W)$ is the time rate of change of the weight of fluid in the control volume, which is zero for steady flow. In the M direction,

$$
\begin{align*}
\dot{\mathrm{W}}_{\text {in }}-\dot{\mathrm{W}}_{\text {out }} & =\left(\rho \mathrm{V}_{M} \mathrm{~b}\right) \mathrm{r} d \theta-\left[\rho \mathrm{V}_{M} \mathrm{~b}+\frac{\partial}{\partial r}\left(\rho \mathrm{~V}_{M} \mathrm{~b}\right) \mathrm{dr}\right](\mathrm{r}+\mathrm{dr}) \mathrm{d} \theta \\
& =-\left[\rho \mathrm{V}_{M} \mathrm{~b} d r d \theta+\frac{\partial}{\partial r}\left(\rho \mathrm{~V}_{M} \mathrm{~b}\right) \mathrm{dr} \mathrm{r} \mathrm{~d} \theta+\frac{\partial}{\partial r}\left(\rho \mathrm{~V}_{M} \mathrm{~b}\right) \mathrm{dr}\right. \tag{3.2}
\end{align*}
$$

In the θ direction,

$$
\begin{align*}
\dot{\mathrm{W}}_{\text {in }}-\dot{\mathrm{W}}_{\text {out }} & =\rho \mathrm{V}_{\theta} \mathrm{b} \frac{\mathrm{dr}}{\sin \alpha}-\left[\rho \mathrm{V}_{\theta}+\frac{\partial}{\partial \theta}\left(\rho \mathrm{V}_{\theta}\right) \mathrm{d} \theta\right] \mathrm{b} \frac{\mathrm{dr}}{\sin \alpha} \\
& =-\frac{\partial}{\partial \theta}\left(\frac{\rho \mathrm{V}_{\theta} \mathrm{b}}{\sin \alpha}\right) \mathrm{d} \theta \mathrm{dr} \tag{3.3}
\end{align*}
$$

Using the above relationship, Equation (3.1) becomes:

$$
\begin{align*}
& \rho V_{M} b \operatorname{dr} d \theta+\frac{\partial}{\partial r}\left(\rho V_{M} b\right) d r r d \theta+\frac{\partial}{\partial r}\left(\rho V_{M} b\right) d r^{2} d \theta \\
& +\frac{\partial}{\partial \theta}\left(\frac{\rho V_{\theta} b}{\sin \alpha}\right) d r d \theta=0 \tag{3.4}
\end{align*}
$$

Dividing through by $\mathrm{r} d \theta \mathrm{~b} \frac{\mathrm{r}}{\sin \alpha}$, and taking the 1 imit as dr and $\mathrm{d} \theta$ approach zero, Equation (3.4) becomes

$$
\begin{equation*}
\frac{\partial}{\partial r}\left(\rho V_{M} b r\right)+\frac{\partial}{\partial \theta}\left(\frac{\rho V_{\theta} b}{\sin \alpha}\right)=0 \tag{3.5}
\end{equation*}
$$

A stream function ψ that satisfics Equation (3.5) is then defined by

$$
\begin{align*}
& \frac{\partial \psi}{\partial \theta}=\rho \mathrm{V}_{\mathrm{M}} \mathrm{br} \tag{3.6}\\
& \frac{\partial \psi}{\partial \mathrm{r}}=-\frac{\rho \mathrm{V}_{\theta} \mathrm{b}}{\sin \boldsymbol{\alpha}} \tag{3.7}
\end{align*}
$$

With the further assumptions that the fluid is inviscid and that its absolute motion is irrotational, another equation for
fluid motion can be derived. For aboulut frotational flow ctor circulation, I, around the fluid swement (figure 3.3) must br zern.

II $I=0$, then $d \Gamma=0$, or

$$
\begin{equation*}
d \Gamma=0=\left[\frac{\partial}{\partial r}\left(r_{\omega}+V_{\theta}\right) r \theta\right] d r-\frac{\partial}{\partial \theta}\left(\frac{\Delta r}{\sin \alpha}\right) d H \tag{3.8}
\end{equation*}
$$

Differentiating:

$$
\begin{equation*}
2 r m+V_{\theta}+r \frac{\partial V_{\theta}}{\partial r}-\frac{\partial V_{M}}{\partial \theta} \frac{1}{\sin \alpha}=0 \tag{3.9}
\end{equation*}
$$

At this point, a transiormation of the pump blade coordinates facilitatos programing of the problem ior computer solution. The transformation will depond on the blat shape. However, the objoctive of the transformation is te straighten the blade such that the leading edge becomes the maximum of the blade angular coordinates and the trajling we tho minimum. For an inducer a transformation such as de $=d Z$ and $d F=d \theta$ may be the most appropriate. For an impeller having logarithmic spiral blades, the [ollowing transformation is most convenient.

$$
\begin{align*}
& \mathrm{dF}=\frac{1}{\sin \alpha} \frac{\mathrm{ar}}{\mathrm{r}} \tag{3.10}\\
& \mathrm{dF}=\mathrm{d} \theta \tag{3.11}
\end{align*}
$$

Carrying the "quation development through, using this last transformation, Equation (3.9) becomes

$$
\begin{equation*}
2 r_{(1)}+V_{\theta}+\frac{1}{\sin \alpha}\left[\frac{\partial}{\partial E}\left(V_{\theta}\right)-\frac{\lambda}{\partial F}\left(V_{A}\right)\right]=0 \tag{3.12}
\end{equation*}
$$

Combining Equations (3.6), (3.7) and (3.12) results in

$$
\begin{align*}
2 \mathrm{r} \omega \sin \alpha & -\frac{\sin \alpha}{\rho \mathrm{br}} \frac{\partial \psi}{\partial \mathrm{E}}+\frac{1}{\rho^{2} \mathrm{rb}} \frac{\partial \rho}{\partial \mathrm{E}} \frac{\partial \psi}{\partial \mathrm{E}}+\frac{\sin \alpha}{\mathrm{b} \rho \mathrm{r}} \frac{\partial \psi}{\partial \mathrm{E}} \\
& +\frac{1}{\mathrm{~b}^{2} \rho \mathrm{r}} \frac{\partial \mathrm{~b}}{\partial \mathrm{E}} \frac{\partial \psi}{\partial \mathrm{E}}-\frac{1}{\rho \mathrm{br}} \frac{\partial^{2} \psi}{\partial \mathrm{E}^{2}}-\frac{1}{\rho \mathrm{br}} \frac{\partial^{2} \psi}{\partial \mathrm{~F}^{2}} \\
& +\frac{1}{\rho^{2} r b} \frac{\partial \psi}{\partial \mathrm{~F}} \frac{\partial \rho}{\partial F}=0 \tag{3.13}
\end{align*}
$$

which in turn reduces to

$$
\begin{align*}
2 r^{2}{ }_{m \rho \rho} \sin \alpha & +\frac{\partial \psi}{\partial E}\left[\frac{\partial}{\partial E}(\ln \rho)\right]+\frac{\partial \psi}{\partial E}\left[\frac{\partial}{\partial E}(l n b)\right]-\frac{\partial^{2} \psi}{\partial E^{2}}-\frac{\partial^{2} \psi}{\partial F^{2}} \\
& +\frac{\partial \psi}{\partial F}\left[\frac{\partial}{\partial F}(\ln \rho)\right]=0 \tag{3.14}
\end{align*}
$$

From the meridional plane solution a relationship between α, b, and r can be defined. Equation (3.10) can then be integrated to give E as a function of r with the condition that $E=0$ at $r=r_{t}$. Also, from Equation (3.11) $F=\theta$. The relationship between the stream surface on which E and F lie and the r, θ, Z coordinate system is shown for the general case in Figure 3.4. In the E, F plane, the pump blades are as shown in Figure 3.5 . With a relationship between fluid density, stream function, and known inlet conditions, Equation (3.14) can be solved numerically in the E, F plane and the results transformed back to the $\mathrm{r}, \theta, \mathbf{Z}$ physical plane.
3.3.2 Energy Equation - The completion of the solution to Equation (3.14) depends on a relationship between the fluid density, ρ, the streamfunction, ψ, and known pump inlet conditions. The encrgy equation for a steady flow fluid system such as a turbopump is given by

$$
\begin{equation*}
h+\frac{V^{2}}{2 g}=h_{o_{u}}+W \tag{3.15}
\end{equation*}
$$

where
$h=$ static enthalpy/lb
$V^{\prime}=$ absolute fluid velocity
$h_{o_{u}}=$ total enthalpy/lb at the nump inlet
$W \quad=$ work done on the fluid per pound of tuid/unit tine

Equation (3.15) expressed in terms of components of the absolnto: velocity is

$$
\begin{equation*}
h+\frac{1}{2 g}\left[\left(\Leftrightarrow r+V_{\theta}\right)^{2}+V_{M}^{2}\right]=h_{o_{u}}+w \tag{3.16}
\end{equation*}
$$

But the rate of work addition between a station, u, upstream (where all flow properties are known) and the station being considered is equal to the rate of change in moment of angular momentum between the stations or

$$
\begin{equation*}
W=\frac{\omega}{g}\left[r\left(r \omega+V_{\theta}\right)-r_{u}\left(r_{u{ }_{u}^{(w)}}+V_{\theta}\right)\right] \tag{3.17}
\end{equation*}
$$

The quantity $r_{u}\left(r_{u}{ }^{\omega}+V_{\theta_{u}}\right)$ is commonly referred to as the pump prewhirl, which is either specified for the problem or is obtained from a viscous flow solution to the upstream flow problem. If it is assumed that the flow in the impeller undergoes isentropic changes of state ansl that for cavitation conditions the vapor and liquid phases are in thermal and velocity equilibrium, a relationship between pressure and average fluid density, ρ, can be obtained fron a state diagram for the working fluid. Referring to Figure 3.6 , which represents a temperature-entropy diagram for a typical pump fluid,
the isentropic compression process might be represented by the vertical line $C A B$. Assuming the inlet properties of the fluid correspond to Point A, the $f l u i d$ experiences a decreasing pressure as it enters the pump and ultimately reaches conditions corresponding to Point B in the vicinity of the blade leading edge. Cavitation is fully developed at this point. Downstream of the blade leading edge region, the work input to the pump goes into compressing the fluid that exists from the pump having properties corresponding to Point C. Using oxygen as the pump fluid and assuming that the flow process in the pump is isentropic and that velocity and thermal equilibrium exist throughout, the variation of density with pressure is shown in Figure 3.7. The data of the figure is based on a saturation temperature corresponding to 15 psia. The data from which the curve was derived were taken from Reference 35. Similar relationships can be obtained for different saturation temperatures as well as different fluids. Combining Equations (3.16), (3.17), and relating h to P / ρ yields

$$
\begin{equation*}
h(P / \rho)-\frac{(\omega r)^{2}}{2 g}+\frac{1}{2 g}\left(V_{\theta}^{2}+V_{M}^{2}\right)=\operatorname{CONST} \tag{3.18}
\end{equation*}
$$

where CONST = inlet energy conditions. Upon application of Equation (3.6), (3.7), (3.10) and (3.11), Equation (3.18) is transformed to its final form

$$
\begin{equation*}
\mathrm{h}(\mathrm{p} / \rho)+\frac{1}{2 g}\left(\frac{1}{\rho \mathrm{br}}\right)\left[\left(\frac{\partial \psi}{\partial \mathrm{F}}\right)^{2}+\left(\frac{\partial \psi}{\partial \mathrm{E}}\right)^{2}\right]-\frac{(\mathrm{r} \omega)^{2}}{2 \mathrm{~g}}=\mathrm{CONST} \tag{3.19}
\end{equation*}
$$

3.4 Solution Technique - In order to define the turbopump cavitation flow field, Equations (3.14) and (3.19) must be solved throughout the field between two blades of the pump and for a number of streamtubes selected from the meridional plane.

The results are then integrated throughout the pump to obtain the total cavitation compliance. The solution of Equations (3.14) and (3.19) is accomplished in a finite difference form on the CDC 6000 series computer. The problem is initiated by transforming the pumn blades from the pliysical plane (Figure 3.4) to the E, F plane (Figure 3.5) through riquations (3.10) and (3.11). Next, a gridwork is established between the blades as shown in Figure 3.5. Equations (3.14) and (3.19) are written in finite difference form at each grid point and a relaxation method of solution employed. Solution of the problem is accomplished by specifying the upstream and downstream boundary conditions, assuming values of ψ at each grid point within the boundaries, and checked to see if Equations (3.14) and (3.19) are satisfied at each point. If it is nct, the left hand side of Equation (3.14) will be equal to a residual R. Then, values of ψ at each grid point are systematically adjusted until the residuals are reduced to an acceptable level. (ince this condition is reached, a solution is achieved. This initial solution may not correspond to the correct angular velocity on the upstream boundary. A scheme is included in the program for adjusting the upstream boundary and reapplying the relaxation solution until the correct value of angular velocity is ohtained. A complete discussion of the relaxation method of solving systems of partial differential equations is given in Reference 36 . The equations and solution technique described above have been developed into a computer program known as the turbopump cavitation flow program. User instructions for the computer model are given in Appendix D, and program listings are given in Appendix E. The analysis of the computer results required to obtain the cavitation compliance of the total turbopump is given in Section 5.1.
3.5 Model Applications - In addition to cavitation compliance, the turbopump model is capable of generating other information which is of interest in the analysis of turbopump response and the design of turbopump blades. Turbopump discharge dynamic pressure gain can be determined as a function of inlet pressure (pump gain, $\partial P d / \partial P s$), exit flow (pump resistance, $\partial P d / \lambda w d$), and blade speed (speed gain, $\partial P d / \partial N$). These parameters are also important in POGO stability analysis. Unlike cavitation compliance, there are currently methods available for estimating these parameters; however, the use of a cavitating turbopump model may result in a significant improvement. This model can also be used for design analysis of turbopump blades. This could include blade pressure loading, and the influence of blade shape on cavitation, separation, etc.

Figure 3.1 Meridional Plane of Pump Impeller

Figure 3.2 Segment Streamtube of Revolution for Continuity Equation

Figure 3.3 Segment Streamtube of Revolution for Irrotational Flow

Figure 3.4 E, F Surface Relative to r, Z and θ Coordinates

Figure 3.6 Pump Fluid Property biagran

(This page intentionally left blank)

4. Empirical Cavitation Data

4. EMPIRICAL CAVITATION DATA

4.1 Test Data Analysis

4.1.1 Objectives - The objectives of the test data analysis are:
a. Determine the true cavitation compliance from all available test data on as many different turbopump configurations as possible;
b. Considering turbopump and propellant parameters which influence cavitation, attempt to present all the test data in a nondimensional correlated form;
c. Provide test results of specific turbopump configurations for verification of the analytical model.

Completion of the first objective will provide all currently available turbopump cavitation data in a single document. An empirical evaluation of the data, in terms of nondimensional parameters, is a parallel approach to the purely analytical turbopump cavitation model. The pump configurations selected for verification of the analytical model should meet the following requirements:
a. Accurate determination of cavitation compliance from test data;
b. Controlled and known test conditions;
c. The turbopump should be typical of those of interest in POGO analysis;

```
d. Thw aurbopmyy should be constshwh with the
    assumptions uf the analytival motel.
```

Considering those requirements, the J-2 lox and F-1 LoX turbopumps were originaily selected for model ctification. In addition, the $11-1$ iUN and LRét oxidizei pumps were selected for less detailed study. These selections wre based on both compatibility with the analyuical mode: wod cofidence in existing test data, dis disuasand in the finlloung sections.
4.1.2 Data Sources - Lable 4.i shows ail the different turbopump configurations for which cavitation data is known to exist. In all of these cases, cavitacjon data was derived from tests whose wojectives vere to deleminc the natural frequencies of the propulsion leed system lor use in POGO analysis. Although turbopump cavitation usually has an important influence on feed systom fropuary, testing and data reduction was only concerned with determining an equivaient cavitation compliance. For determination or feed system frequency it was not required to separate the true cavitation compliance from wther sources of mochanial compliance in the vicinity of the Lurbopump.

Tasle 4. 1 Turbopump Con igurations

Vehicle	Stage	Engine	Oxidizer	Fue 1
Saturn	$5-115$	H-1	1.OX	RP-1
Saturn	S-10	F-1	1,OX	RP-1
Saturn	S-I]/S-INB	J-2	Lox	LH_{2}
Titan	1	LR87	$\therefore_{2} \mathrm{O}_{4}$	Aerozine 50\%
'Titan	11	LR9]	$\mathrm{X}_{2} \mathrm{O}_{4}$	Aerozine 50\%
Thor	1	MB-3	LOX	RP-1

Tust data related to this study comes from one of the following sources:
a. System tests with flowing propellant and an operating turbopump;
b. Feed system tests with non-flow propellant in the absence of an operating turbopump;
c. Feed line component tests on segments whose compliance can not be accuracely calculated;
d. Flight data.

Almost all of the available ground system test data is pulsed; i.e., the system response is measured relative to some known forcing function. The only test results which include the effects of turbopump cavitation are the flow system tests and the flight data. 'lhese test results required separation of the cavitation effects from other compliance effects. Some flow system tests have flight feed systems while others have facility feed systems; and some have hot firing engines while others are "bobtailed" (turbopump is driven in normal mode of operation but propellants are not mixed and burned in the main thrust chamber).
4.1.3 Determination of Cavitation Compliance From Natural Frequency - Cavitation compliance cannot be measured directly during a turbopump test and must be determined through use of analysis. A typical procedure for this determination is as follows:
a. Run a flow systems test;
b. Assume an analytical model of the test configuration;
c. Calculate, estimate, or determine from separate tests all model inputs except cavitation compliance;
d. Determine value of cavitation compliance for which model best fits test data.

Since cavitation compliance has its strongest influence on feed system natural frequency (as opposed to gain, damping, etc.) the above procedure is normally reduced to a correlation between test and analytical natural frequencies. These frequencies are a function of the inertance and compliance of the total system. For those unfamiliar with these hydraulic terms an analogy with a spring mass system is given in Figure 4.1. Inertance can be accurately calculated from the geometry of the feed line. The system compliance includes the distributed compressibility of the fluid and the radial flexibility of the suction line, axial flexibility due to a feed line area change, local flexibility of a line joint or bellows, and the compressibility of the cavitation vapor bubbles in the turbopump. Only the combined effect of all the system compliances can be determined from a dynamic systems test; thus, the line and fluid compliance must be known before cavitation compliance can be accurately determined. The distributed fluid and line compliance can be calculated fairly accurately. Local flexibilities can be determined from analysis, component tests, and/ or system tests without the turbopump operating. Suction line bellows are local flexibilities which often represent a significant portion of the feed system compliance but cannot be determined accurately due to insufficient test data and a lack of analytical methods. A current technology contract (NAS8-25919)
should result in improved analytical methods for determination of all suction line elements. The exact equations relating cavitation compliance to natural frequency are a function of the analytical model used. The more representative the model the more accurate the derived cavitation compliance. Two computer programs which were developed for Titan and Saturn V POGO analysis were modified for general test analysis in this study. These programs consist of: 1) a modal analysis program (Reference 37) for determination of natural frequencies for any distribution of line inertance and compliance; and 2) a transfer function program (unpublished) which utilizes the modal data to generate the transfer function of suction pressure per excitation as a function of excitation frequency. For a lightly damped system with negligible feed line and fluid compliance the cavitation bubble compliance, C_{b}, can be approximated by

$$
\begin{equation*}
C_{b}=I /\left(I \omega_{1}^{2}\right) \tag{4.1}
\end{equation*}
$$

where I is the feed system inertance and ω_{1} is the first natural frequency of the feed system. For a uniformly distributed suction line and fluid compliance, which yields an open-closed organ pipe frequency $\left(\omega_{0}\right)$, and a lumped duct compliance near the pump inlet $\left(C_{d}\right)$, the cavitation bubble compliance can be approximated by

$$
\begin{equation*}
C_{b}=\frac{1}{I \omega_{1}} 2\left[\frac{\left({ }^{\omega} 1 /{ }^{\omega} 0\right)^{2}-1}{\left(\omega_{1} / 2 \omega_{0}\right)^{2}-1}\right]-C_{d} \tag{4.2}
\end{equation*}
$$

```
    4.1.4 Defermmetion of Naturdl Frequency from Test Data
A fairly stamlard proceciur for determining rofed system
natural frequenc, fromi cest data is as Lullows:
    a. Concigure a test set up whicin resembles the
        flint tooc sustum as closel: as possible;
    b. Excitr the feed system dynamic response with a
        measured forcing function;
    c. Generate trequency domain prerturbation transfer
        function (amplitufte vatio and phase) of response
        per axcitation from the measured results;
        d. Natura! Erequency occurs near frequency of
        maximum amplitude ratio and phase shift of 90.
```

For most of tiou best resulis analyed frrein, the excitation has been some type of noar sinusoidal wave pulsing of suction flowrate. In this case the pulsor frequency has been changed in steps (or in very slow ramp) and the resulting pressure oscillations rocorded at each irequency i'crement. This, together with the measured cxcitation, yiolds a perturbative transfer function of turbopump inlet pressure per excitation. Another type of excitation winich has been suceessfully used (Reference 38) is the random noisc associated with the engine combustion process. In this case auto- andfor cross-spectral analysis is required to determine the frequency domain response of the systam. In most feed system configurations the first natural frequency is very near the frequency at which the amplitude ratio is maximum simultaneous with a phase shift of
90° for an appropriate feed system transfer function. In POGO analysis the most important transfer function is turbopump inlet pressuro oscillation per turbopump acceleration perturbation $\left(\partial P_{s} / \partial g_{p}\right)$. Any transfer function which has the same natural frequency as $\partial \mathrm{P}_{\mathrm{S}} / \partial \mathrm{g}_{\mathrm{P}}$ is an appropriate transfer function. Pulser acceleration and flow acceleration are legitimate excitations whereas transfer functions with respect to pulser pressure can yield significant errors in natural frequency. This cffect is shown in the analysis of the J-2 test results. If additional information besides natural frequency (e.g. static gain and damping) are desired from the test results, it is required that a best fit between an analytical and test transfor function be obtained.

4.1.4.1 Test Frequency Correction - In reviewing test data

 two possible situations were recognized which could cause small errors in the test results. First is the determination of the system natural frequency from a transfer function of suction pressure per pulser pressure $\left(\partial P_{s} / \partial P_{p}\right)$ in lieu of suction pressure per pulser flow $\left(\partial P_{S} / \partial \dot{W}_{p}\right)$. Second is the presence of facility lines which do not exist in the flight configuration. Both of these conditions existed on the S-II LOX line tests and each represents an error in frequency determination of about 5% in opposite directions. The effect of using the $\partial \mathrm{P}_{\mathrm{s}} / \partial \mathrm{P}_{\mathrm{p}}$ transfer function is shown in Appendix C for a simplified system and results in a frequency which is 5% too high. The S-II LOX line test set up had a facility line running from the sump to the facility tank. This line was isolated from the suction line by a large accumulator at the sump; however, the residual effect of the facility line yields a systemnatural frequency which is 5% too low. A model of the test and flight configuration is shown in Figure 4.2. A comparison of the $\partial p_{s} / \partial p_{p}$ transfer function for the test set up with the correct $\partial P_{s} / \partial g_{p}$ transfer function for the flight configuration is shown in Figure 4.3. Neither of the two possible discrepancies are known to exist in any other test data.
4.1.5 Test Results - No attempt has boen made to duplicate previous analysis of pertinent test results. However, in many cases the analysis had to be extended in order to separate cavitation compliance from other sources of compliance. Also, in several instances independent tests on the same configuration produced conflicting results. In these cases, if a review of both results could not favor one over the other, the discrepancy was carried through the analysis and yields a tolerance on the results. Cavitation compliance is a function of many propellant and turbopump parameters; however, for a given configuration at a fixed operating point the only significant parameter which undergoes a planned variation during tests is turbopump inlet static pressure (P_{s}). Thus, the cavitation results presented in the following paragraphs are given as either a function of P_{S} or a non-dimensional form of P_{S} detined by

$$
\begin{equation*}
K=\frac{\mathrm{P}_{\mathrm{s}}-\mathrm{P}_{\mathrm{V}}}{1 / 2 \rho \mathrm{~V}_{\mathrm{r}}^{2}} \tag{4.3}
\end{equation*}
$$

$$
\text { where } \begin{aligned}
\mathrm{K} & =\text { cavitation index } \\
\mathrm{P}_{\mathrm{V}} & =\text { propellant vapor pressure } \\
\rho & =\text { propellant mass density } \\
\mathrm{V}_{\mathrm{r}} & =\text { inducer relative tip velocity }
\end{aligned}
$$

This is a convenient parameter since it has been found that for most turbopump configurations cavitation compliance is a linear function of a constant raised to a power which is proportional to K , i.e., a straight line on semi-log graph paper. Whenever the scatter in the test data allows, this functional relationship will be observed in the presentation of the following test data. The data necessary for calculation of cavitation index is presented in Table 4.2.

4.1.5.1 F-1 LOX Cavitation Compliance - The F-1 LOX turbopump

 was tested with a S-IC outboard feed line and an outboard Arrowhead PVC (Pressure-Volume Compensator) duct. The feed line properties were taken from Reference 39. A LOX compressibility of $.135 \times 10^{6} \mathrm{psi}\left(\mathrm{T}=-296^{\circ} \mathrm{F}\right)$ was calculated from velocity of sound data given in Reference 40 . The compliance of the main line area change (above the prevalve) was investigated and found to be negligible. The PVC compliance was calculated from component test by Aerrowhead, MSFC and Boeing; and from non-flow system dynamic tests by MSFC and Boeing. These data were then used in a model in which cavitation compliance was varied to match Bobtail (Reference 41) and Single Engine (Reference 42) tests results.4.1.5.1.1 F-1 LOX PVC Component Test Results - The total PVC compliance, $C_{P V C}$, includes the combined effect of the fluid compressibility and radial expansion $\left(C_{f}\right)$ and axial flexibility of the upper and lower annulus area (C_{x}).

$$
\begin{equation*}
U_{u}-\frac{d W}{d P}=\frac{d(\rho Y)}{d P}=G_{a}+a \tag{4.4}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{X}=r A \frac{d X}{d P}=\rho A^{2} / K \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
O_{f}=p l \frac{d A}{d P}+A \ell \frac{d \rho}{d P} \tag{4,0}
\end{equation*}
$$

 distributed corpliance of the fow lime model. The results of the component tost are sumariped in Tably 4.3 , and discussed below. Figures 4.4 and 4.5 contain mpulilished results, supplied ty MEC, of PVC component tests run by Aerrowhead. From Figure 4.4 total PV compliance can io calculated from $\mathrm{dV} / \mathrm{dP}$; however, this result is cumsideraty ton large compared with all other dati. This wat wily be eqiained by the presence of air in the system. Ww obsorvations can still be made from these dusults. 1) $d V / d p$ appears to be nonlinear with respect $t \omega$ pressire, and 2) W / dP is approximate? \because the same whether or not the PVC ends are restrained (this agrees with an analysis of the areas and spring rates). A more reliable estimet: ol puc compliance can bo ade using Equation
 independent of the ammant of trapped air in the system. Component tests run at MSFC (Reference 43) rave a value of $\mathrm{dX} / \mathrm{dP}$ of .0056 (2 x .0028 for both the uppri anc lower annulus) for an Aerrowhead inboard PVC, and .OO7 Eer Plexonics outboard PVC. The results were very linear over the prossure range of 40 to 130 psig. The corresponding values of C_{x} are .060 and .075 in 2 respectively. An equivalent VO spring rate of $K=34250 \mathrm{lb} / \mathrm{in}$ was detorminod from Bowing component tests on a Aerrowhead outboard PVO (keference 39), and this was also
fairly linear over the pressure range of 50 to 125 psia. This yields (Equation 4.5) a C_{X} value of .081 in 2. An analysis of tle flexibility of supporting structure used in the Boeing water tests (Reforence 39) showed that for the PVC installed in the 1 ine C_{x} could increase to $.096 \mathrm{in}^{2}$; however, it could never decrease below. 081 (a completely rigid mounting of the uppor spool and lower flange). Component tests ($\Delta \mathrm{X} / \Delta \mathrm{P}$) show that the outboard Aerrowhead and Flexonics PVC's have approximately the same compliance while inboard Aerrowhead PVC has about 25% less compliance.
4.1.5.1.2 F-1 LOX PVC Systems Test Results - Analytical feed system natural frequencies as a function of the sum of the cavitation bubble compliance (C_{b}) and the PVC annulus compliance ($C_{\text {) }}$) are given in Figure 4.6. Since these two compliances are located fairly close together, the frequencies are practically independent of the distribution between C_{b} and C_{x}. The second resonance of a pressure/pulser flow transfer function is shown to be a function of the location of the pulser line. Figure 4.7 gives MSFC dynamic test data with the turbopump isolated from the feedline. Some non-flow tests were run with a Flexonics outboard PVC and some with an Aerrowhead PVC; however, since the component tests indicate they have essentially the same compliance no attempt was made to differentiate between the two. A similar method of obtaining C_{x} from the Boeing water Tests (Reference 39) yielded a C_{X} of $.125 \mathrm{in}^{2}$ at 80 psia and .086 at 140 psia. This compliance is high enough to suspect that there may be some air trapped in the system, which is always a possibility in non-flow tests.
4.1.5.1.3 F-1 LOX Cavitation Compliance - Figure 4.8 shows MSFC dynamic test results (References 41 and 42) with the turbopump running. Also shown is the sum of the cavitation and PVC annulus compliance, C_{b} and C_{x}, required to make the analytical results match the test results. The resulting cavitation compliance is shown in Figure 4.9 for two different C_{x} functions. One is the maximum C_{x} variation as derived from a best fit of the MSFC non-flow tests (figure 4.7). This variation is much more than can be justified by any component tests, and also results in a cavitation compliance which shows less variation with pressure than is expected. The other C_{x} function used is a constant value of $.081 \mathrm{in}^{2}$, as derived from some of the component tests. Since some of the component tests indicate some variation in C_{x} with pressure, a constant value is probably conservative. The true cavitation compliance should lie between the limits shown in Figure 4.9 .
4.1.5.2 F-1 Fue1 Cavitation Compliance - The Rocketclyne evaluation of fuel pump inlet compliance (Reference 44) from the F-1 Bobtail Test results (Reference 41) are presented in Figure 4.10. Also shown are cavitation data derived from feed system frequencies obtained from the F-1 Bobtail tests and the S-IC Single Engine Test (Reference 42). The results of this analysis yield higher values of pump inlet compliance than were obtained by Rocketdyne. The variation in test frequency data presented in Figure 4.11 accounts for the lower values of pump inlet compliance analytically derived from the S-1C Single Engine Tests. The only differences between the Bobtail and Single Engine Test are that the Bobtail Test configuration had an outboard PVC and used discharge pulsing, whereas the Single Engine

Test configuration had an inboard $P V C$ and used suction pulsing. Discharge pulsing should yield the same results as suction pulsing; however, obtaining good reliable feed system frequencies by discharge pulsing usually presents severe data reduction problems. The differences in results are larger than the anticipated differences due to changing PVC ducts. It was concluded that the S-IC Engine Test data was more reliable because it was derived from suction line pulsing, it is more recent data, and it showed less scatter. Since compliance derived from the S-IC Engine Test is less than that derived from the F-1 Bobtail Tests it should contain less PVC duct compliance. Since no PVC duct compliance was available it is assumed that turbopump inlet compliance derived from the F-1 Engine Tests is equal to cavitation compliance.
4.1.5.3 J-2 LOX Cavitation Compliance - Dynamic test data exists for four different $J-2$ LOX feed systems. They are the S-II inboard test facility feed system, the S-II outboard test facility feed system, the S-IVB test facility feed system, and the Rocketdyne turbopump test facility feed system. These tests were run for a range of turbopump inlet pressures and three different PU (propellant utilization) settings. As expected, the feed system natural frequencies (and thus turbopump cavitation) varied greatly with inlet pressure; however, the effect of PU setting was within the scatter of the data. Thus, for a given inlet pressure, reduced test results from all the different J-2 LOX feed systems should yield the same cavitation compliance. Two independent detailed analyses of test results have been performed. Brown Engineering analyzed the results of the $S-I I$ and $S-I V B$ feed system tests (Reference 45) and Rocketdyne analyzed their test facility results
(Reforonces fis ant +7!. Both analyses i le approximatoly the

 feed systems (mioh is comewhat difformen than the test facility Feed systems. Bamplmincoring assimat a single compliance turbopump mad 1 hroras Rocketdyno aerived a turbopump flow impedance transfus function, $G(S)$, frow thar test data which implits a diat compliance urbopump mole . For the same test
 two ifil rent brompmp molel: villy yold difforent values of cavitation compliance.
4.1.5.3.1 J-2 LUX Duct Complituce - Also of importance is the amount of Ilsid and duct compliance present in the suction Line. The Brow hagincoring analysis torivod a lumped compliance from dynamie tosts when hot the suction line isolated
 test derivod tirmoperp impodance function to flight suction line models and added suction line compliance until the analytical friquencios agreed with flight observed resonances. These resllll: ar comparet in lable t. 4 and in both cases represent equivalont limper palues at, w near, the turbopump inlet. Botly of thec approaches are valil and should yield approximatily the sum results, wereas, the differences shown represent a very significant portion of the total feed system compliance.
4.1.5.3.2 J-2 LoX Turiopump Model - The single compliance model (s.e Figure 4.13a) used in the Brown Engineering analysis has a low impedance given by

$$
\begin{equation*}
G(S)_{1}=\frac{P_{0}}{W_{0}}=\frac{R}{K_{P}\left[\frac{\left[\frac{L}{R}\right.}{K_{p}} S^{2}+\frac{C R}{K_{p}}\right.} \operatorname{S+1]} \tag{4.7}
\end{equation*}
$$

In this case the resistance, R, and inertance, L, were calculated; and the pump gain, K_{p}, and the cavitation compliance, c, were derived from test data. This impedance function and Brown Engincering duct compliance shown in Table 4.4 yield cavitation compliances shown in Figure 4.14 .

The Rocketdyno analysis fit an impedance function to test data. The form required to give good correlation is given by

$$
\begin{equation*}
\mathrm{G}(\mathrm{~S})_{2}=\frac{\mathrm{P}_{\mathrm{O}}}{\mathrm{~W}_{\mathrm{o}}}=\frac{\mathrm{K}\left[\left(\frac{\mathrm{~S}}{\omega_{2}}\right)^{2}+\left(\frac{2 \zeta_{2}}{\omega_{2}}\right) \mathrm{S}+1\right]}{\left(\frac{\mathrm{S}}{\omega_{1}}+1\right)\left[\left(\frac{\mathrm{S}}{\omega_{3}}\right)^{2}+\left(\frac{2 \zeta_{3}}{\omega_{3}}\right) \mathrm{S}+1\right]} \tag{4.8}
\end{equation*}
$$

One possible physical representation which gives this type of response is given in Figure 4.13b. In terms of the physical parameters, the impedance functions become

$$
G(S)_{2}=\frac{P_{0}}{W_{0}}=\frac{K_{0}\left[\left(\frac{L_{2} R_{2}}{K_{p}}\right) S^{2}+\left(\frac{L_{1}+R_{1} R_{2} R_{2}}{R_{2} C_{2} R_{2}}\right) S^{3}+\frac{C_{1}}{K_{p}}\left(L+R_{1} R_{2} C_{2}\right) S^{2}+\left(\frac{C_{1} R}{K_{p}}+C_{2} R_{2}\right) S+1\right]}{\text { (4.9) }}
$$

Equating coefficients of liquations (4.8) and (4.9) will yjeld the physical model parametors in torms wh the fremag and damping parameters. Table 4.5 gives these results for the latest frequency and damping data given iu Reference 4 7. In this model, C_{1} is the main inlet cavitation compliance. It is the most important turbopump parameter in determining the predominate feed system frequency and is independent of pump gain (K_{p}). To illustrate the effect of the other tarbopump parameters consider the case where the jupedance beyond the cavitation compliance is very high. Then beth of the abovo turbopump models approach an impedance function given by

$$
\mathrm{G}(\mathrm{~S})_{3}=\frac{1}{\mathrm{CS}}
$$

where C is the cavitation compliance. Using Rocketdyne feed system frequencies (Figure 4.12) and duct compliances (Table 4.4) cavitation compliances for both $G(S)_{2}$ and $G(S)_{3}$ are shown in Figure 4.15. Although $G(S)_{3}$ is not a good pump model, the effect of different turbopump models is illustrated.
4.1.5.3.3 J-2 LOX Test Cavitation Compliance - The difference in the Brown Engineering and the Rocketyno derived cavitation compliance can be attributed to different suction duct compliances and different pump impedance functions. There is considerable test data which indicates that a double compliance model, $G(S)_{2}$, is a better representation of the turbopump than a single compliance model, $G(S)_{1}$. From this point of view the Rocketdyne data should be more accurate; however, the Brown Engineering analysis is a more conventional approach which has been used on several other turbopump configurations.

For purposes of this study, both of these results (as shown in Figure 4.16) are considered to be equally valid. It is thus assumed that the true inlet cavitation compliance can be anywhere between these limits.
4.1.5.3.4 S-II Flight Data - AS-509 S-II Stage Flight data (Reference 48) were reviewed and the observed LOX feed system oscillations compared with test results. Two things were evident from the flight data. First, the obscrved S-Il outboard feed system contourgram frequency was higher than anticipated; and, second, there was an observed frequency change at engine mixture ratio ($\mathrm{E} M \mathbb{R}$) shift. Prior to EMR shift, the observed outboard frequency was approximately 33% higher than the predicted value which was based on S-II "bobtai1" and $J-2$ test results for inlet NPSH in the vicinity of 60 ft . Furthermore, if the 65 to 75 Hz inboard suction pressure oscillation, observed during and after accumulator fill, represents a response of the second inboard line ("short stack") mode, this result is approximately 28% higher than would be analytically predicted. The following theories have been advanced by different Saturn V POGO analysts as to the reason for these apparent frequency discrepancies:
a. The observed oscillation is not a natural frequency of the feed system but a $1 / 3$ subharmonic of a 90 Hz turbopump self-induced oscillation;

$$
\begin{aligned}
& \text { 11ja!! : …! isurat ar: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { txists in tite ilight veinicle than in the ground } \\
& \text { tret. }
\end{aligned}
$$

 both tho $S-l \perp$ inhoord and outhodid feod systoms imply that C_{b} is at least 70% oner than procifotod from cost data. This possiblu discr mancध misel mansiderec wan aidilizing the test resuits. In lhe latur portion $\because E S$ - Il burn, the engine

 reduced thw rustuiont rusults in the Lurbopump inlet flow cotering the inficer blades with a larger angle of attack. 'Jhis should produc: increased cavitation compliance and result in a lomer furi sytom irucuency. Jho winorved flight rusults
 the S-1. onthoad $!$ wontourgram froquone appeared to increase tron 20. Lu 33 . H\%. Hit raason tor this sontradiction is unknown.
4.1.5.4 J-2 Fucl Cavitation Compliance - Turbopump cavitation compliano firr tio $1-2$ axiaj flow fut pump is shown in figure 4.17. This data was dirived from a Rocketdync single compliance math model (Rotrienct 46). Sinco thes\% tosts were run at
a Rocketdyne test facility it is assumed that rigid suction lines were vaed, and thus the results do not contain any pump inlet duct compliance. An analytical model of the $\mathrm{S}-\mathrm{II}$ outboard feed system was used to determine J-2 fuel pump inlet compliance from a frequency data point $\left(9.5 \mathrm{H}_{\mathrm{z}}\right)$ supplied by MSFC for Saturn POGO analysis. Although present available data on fuel bellows compliance is incomplete, a value of .004 in 2 was assumed after a review of the J-2 oxidizer configuration and inlet duct compliance test values. The resulting pump inlet compliance derived from this datum falls within the scatter of pump compliance data derived by Rocketdyne as shown in Figure 4.17.

4.1.5.5 $\mathrm{H}-\mathrm{L}$ LOX and Fucl Cavitation Compliance - Brown

Engineering and Rocketdyne derived values of pump inlet compliance (Reference 49) based on $\mathrm{S}-\mathrm{IB}$ Bobtail Tests (Reference 50) are show in Figure 4.18. The mathematical models differed only in the suction line representation while turbopump and discharge line representation were comparable. The characteristic resonant frequencies derived from the test data by Brown Engineering and Rocketdyne also differed since the method employed by each in the interpretation of the test data varied. Both suction line and discharge line pulsing data were available. The use of spectral analysis of the test results by Brown Enginecring has shown that discharge line pulsing did not give the correct characteristic frequencies (Reference 51). Lack of data points for the fuel pump inlet compliance in the Brown Engincering analysis is due to the inability of their data reduction procedure to always determine values of feed
system frequonero. Sinco Roobrtome did not indicater this to be a problem, tlow procobore wat ronsworm more rifable and
 figuration dons not have any suction line hellows located at the pump inlet. Sinco there are small lime bellous located at several points in the fuel and oxidizer lines, it is assumed that their compiance is acoonted for in the distributed compliance of the surtion lines. Thns, for the H-1 ferd systems, the derived pump inlet compliance shom in ligure 4.18 is assumed to result axclusively from mobonmp cavitation.

4.1.5.6 $\mathrm{MB}-3 \mathrm{LOX}$ and Fucl Cavitation Compliance - MB-3

 cavitation compliance data was obtained irm an Aerospace Corporation evaluation of leed systom fre quencies on thu THOK vehicle (Reference 52). These data are shown in Figure 4.19 as a function of cavitation indes (K). The are prosented in thie report for reference only, as $M B-3$ turbopunp gennetry and operating parametors were not available to permit dvaluation of the data.4.1.5.7 LR87 and LK91 Oxidizer and Fucl Vavitation Compliance Cavitation compliance of the Titan stane 1 and 11 turbopumps is shown in Figure 4.20. This data was determincd by combined Martin Marietta Corporation and Acrospace Corporation analysis of pulsed and/or non-pulsed hot firing ragine tests, bobtailed turbopump tests, suction line non-flow tests, and flight data. The final results have evolved over several evaluations (particularly in the case of the LR87 data) and no concise documentation exists. The Martin results, presented here, agree closely (oxcept for a density scalc Factor) with the

Aerospace results given in Reference 31 . The LR 87 oxidizer feed system contains the largest amount of non-cavitation compliance. In this case the suction line distributed compliance was calculated and compared with non-flow test results (unpublished results of Martin Marietta Corporation tests). These results indicated that the line bellows located near the pump inlet contain very little compliance. This is assumed to be true for the other Titan lines which use similar line bellows.

4.1.6 General Test Data Assessment - The preceding cavitation

 compliance test data generally have large uncertainties associated with the results. In most cases this can be related to the fact that the objective of these tests was to determine feed system frequency, not cavitation compliance. In several cases the results even show large dispersions in feed system frequency for a given test series and unexplained disagreement between results of different tests of the same feed system. Assuming the feed system frequency is accurately known the following error sources exist for determining cavitation compliance.a. Unknown feed line compliance;
b. Frequency insensitive to cavitation compliance, conversely cavitation compliance is very sensitive to frequency dispersions;
c. Unknown turbopump model (test data will not fit a physical model).
In addition to dispersions in the results there are unknowns associated with parameters which affect the amount of cavitation which occurs. Some of these unknown factors are:

```
A. LNG:y djsivibution at ifN turbopump inlet;
```



```
d. mamm: ul absorbred gas in {lac propellant;
\therefore.Fact frupellant temporature at the turbopump
    in!61;
1. Hifer af P| (Propeliant Uti& attion) recirculation
ILOw.
Thw acomulatad olfoct of all tho whonowns must be carefully
```



``` analytical prodiction tuchnimu.
```


4.2 Empirical Data Evaluation

4.2.1 Influential parameters - In order 10 evaluate all the different turbopmp cavitatime compliance test data one has to
 to group these jnto mon-dimensional paramelers which will yield the same cavitation complianco for all wisting turbopump configurations. 11 this could be accomplished with some degree of success, it wodil provide a method for predicting the anount of ravitation compliance that will secur on a new turbopump design. The turbonmp operating and geonetry parameters, and propellant varianles ohich could aftect the amount of turbopump cavitatjor ana:
$P_{G}=$ pump inlet static pressure
$\dot{b}=$ propulant flow rate
$H_{i}=$ indurer head rise
$\mathrm{N}=$ inducor speed
$\alpha_{i}=$ inducer angle of attack

```
n}\mp@subsup{\textrm{i}}{~}{= number of inducer blades
D = induccr tip diameter
D}\mp@subsup{h}{1}{}= inducer hub diameter
\ell i
P
\rho = propellant density
h = propellant latent heat of vaporization
```

The ideal method of assessing the effect of these variables is to conduct cavitation tests where only one parameter is varied at a time. The available test results are for different turbopump configurations (all geometry parameters changed together), each run with a single propellant, at normal operating conditions (usually only inlet pressure is varied). This approach does not give specific empirical dependence of cavitation compliance on parameters other than P_{S}. The other parameters do vary for different turbopump configurations, but the effects cannot be scparated. Thus, only a qualitative empirical evaluation of the results can be performed. This is accomplished by comparing non-dimensional cavitation compliance against non-dimensional turbopump and propellant parameters.

4.2.2 Non-Dimensional Parameters - Ideally there exists a non-

 dimensional combination of parameters which uniquely describes a cavitation parameter as a function of operating and configuration parameters for all conditions and configurations. The most generally used non-dimensional cavitation parameter is cavitation index, K (Equation 4.3), which combines P_{s}, P_{v}, and V_{r}. The data required to compute cavitation index is given in Table 4.2 for several turbopump configurations. A11 of the available cavitation compliance data is shown in Figure 4.21 vs cavitation index. When two sources of equally validdata owist, an avere of the two walues was assumed for com-

 variation is mach too large to ulininate hef need for ohtaining cavitation tost mata on a neto mrboptom antagration. humb-
 cavitation comiliace (C_{b}) with respect to size variables. $C_{b} / n_{i} D_{i}^{2}$ vs k is shom in Figure 4.22. This in general naxrows the band of data uncept for the IR-9 oxidizar data. Thr in-
 swirl at the pump inlet, can be calculated by

$$
\begin{equation*}
\alpha_{i}=\beta_{i}-\tan ^{-1} \phi \tag{4.4}
\end{equation*}
$$

where β_{i} is the zoducer blade angle and \emptyset is the fow coefficient. Comparing the voluce of r_{i} given in Table t. 2 with the cavitation data given in figure 4.2 A and 4.22 shows no purticular correlation. This may be partly due to the fact that all af the $L R$ series turbopumps have cambered intucers wich operate at near zero leading edge angle of attacks. Atl the athor turbopumps have flat inducor hlades wion require a leading edge angle of attach to generate a prossure rist. Thus, α_{i} is not a good miversal cavitation masurument parameter. A turbopump performance parameter, pump specific speed (SS), defined in non-dimensional Eurm as

$$
S S=8136\left[1-\frac{D_{h}^{2}}{D_{i}^{2}}\right]^{\frac{1}{2}} 01 /[]^{3 / 4}
$$

(Reference 31), was considered as a means for correlating cavitation compliance. Figure 4.23 shows non-dinensional cavitation compliance (related to inducer inlct area ${ }^{1}{ }_{i}^{2}-\mathrm{D}_{\mathrm{h}}{ }^{2}$; as a function of $1 / S S$. Comparison of Figures 4.22 and 4.23 shows that $1 / S S$ is not significantly better than K. Thor (MB-3) data is not shown because the necessary geometry parameters were not known. Information on other influential parameters given in the preceding paragraph was not obtained for enough turbopump configurations to permit non-dimensional evaluation of their affect. However, it is doubtful if the existing spread in data shown in Figures 4.22 and 4.23 can be significantly reduced. Simple non-dimensional parameters cannot account for such important affects as blade shape, flow separation, and propellant phase change. The non-dimensional data presented here could be used to predict an order of magnitude cavitation compliance on a new turbopump configuration.
4.2.3 Effect of Inlet Pressure - It is of interest to note what the functional relationship is between inlet pressure (P_{s}) and cavitation compliance $\left(\mathrm{C}_{\mathrm{b}}\right)$ as observed from the test data. Assuming that

$$
\mathrm{C}_{\mathrm{b}}=\text { Constant } / \mathrm{P}_{\mathrm{s}}^{\mathrm{n}}
$$

then

$$
n=-\frac{P_{s}}{C_{b}} \frac{\partial C_{b}}{\partial P_{s}}=-\frac{\left(K+P_{v / q}\right)}{C_{b}} \quad \frac{\partial C_{b}}{\partial K}
$$

where

$$
\begin{aligned}
& K=\left(P_{s}-P_{v}\right) / q \\
& q=v_{r}^{2 / 2 q}
\end{aligned}
$$

and

Measuring averare values of K, C_{b}, and C_{b} / j from the test results (Figure 4.2l), values of " n " were calculated (see Table 4.6). The results show that for the Aerojet turbopumps, "n" fall in the range of 2 to 4. For several other turbopumps, " n " falls in the range of .5 to 1 . Due to scatter in the test data, there $i s$ fairly large tolerance associated with $\partial C_{b} / \partial k$; however, if the trend is correct, these results imply that cavitation comnlianer, in different turbopumps, is proportional to different powers of P_{s}. This indicates that an analytical derivation of cavitation compliance, in terms of average flow field parameters, cannot yield sood agreement with test results for all configurations. The work of F. Ghahremani (Reference 31) indicates that inade cavitation is inversely proportional to $P_{S}{ }^{2}$, while backflow savitation is inversely proportional to $P_{s}{ }^{3}$. For the Aerojet turbopumps, this formulation should show good slope agreement (which it does) with test results; however, poor slope agrement could result for some of the other pumps. Current studies are being performed under Contract NAS8-27731 to evaluate this approach with respect to additional turbopump configurations (Reference 56).
Table 4.2

Vehicle	TITAN				SATURN					
Vehicle Stage	Stage I		Stage II		S-IC		S-II/S-IVb		S-IB	
	OXID	FUEL								
Engine Identification	LR-87		LR-91		F1		J2		H1	
Mixture Ratio	1.917		1.67		2.22		4.95		2.41	
Propellant	$\mathrm{N}_{2} \mathrm{O}_{4}$	A-50	$\mathrm{N}_{2} \mathrm{O}_{4}$	A-50	LOX	RP-1	LOX	LH_{2}	LOX	RF-1
Density (ρ) $1 \mathrm{~b} / \mathrm{in}^{3}$. 0525	. 033	. 0525	. 033	. 041	. 029	. 041	. 00255	. 041	. 029
Suction Line Area in ${ }^{2}$	37.2	27.2	27.1	12.2	227	226	49.6	49.6		
Pump Dimensional Parameters										
Diameter-Inducer Eye (D_{i}) in	7.10	6.64	5.10	3.80	15.75	15.71	6.75	7.80	7.60	6.12
Diameter-Inducer Hub (D_{h}) in	2.15	2.24	1.73	0.84	3.51	6.61	1.375	2.93	2.0	2.00
Area Inducer Inlet in ${ }^{2}$	36.0	30.7	18.0	10.8	185.0	159.6	34.3	41.0	42.3	26.3
Desj.gn Clearance (ℓ) in	. 045	. 045	. 045	. 045						
Number of Inducer Blades (n)	3	3	3	3	3	4	3	4	4	4
Diameter of Impellertip in	9.42	10.75	8.75	4.93	19.50	23.42	10.20	Axial	11.0	13.75
Blade Angle (β) deg. at tip	5.7	5.7	5.7	5.7	9.0	8.6	9.9	7.0	11.3	10.4
Pump Performance Parameters										
Pump Speed (N) RPM	8350	9175	8366	23576	5550	5550	8050	25800	6750	6750
Inducer Tip Velocity (V_{i}) $\mathrm{ft} / \mathrm{sec}$	258	266	186	390	381	380	237	876	224	180
Propellant Velocity (U) $\mathrm{ft} / \mathrm{sec}$	23.0	22.4	17.2	27.3	41.4	30.6	22.9	62.3	24.7	26.6
$\text { Relative Velocity }{ }^{2}\left(\mathrm{v}_{\mathrm{r}}^{2}\right) \mathrm{ft}^{2} / \mathrm{sec}^{2}$	67093.	71258.	34892.	152845.	146875.	145336.	56693.	771257.	50787.	32943
Flow Rate (W) 1b/sec	522.55	272.57	195.05	116.9	3765.	1697.	386.	78.	514.4	
Flow Coefficient ($\phi=\mathrm{U} / \mathrm{Vi}$)	. 089	. 084	. 093	. 070	. 109	. 081	. 097	. 071	. 110	1475
Inducer Tip Angle of Attack (α_{i})	. 0.6	0.9	0.4	1.7	3.6	4.0	5.1	3.7	6.5	3.1

Tatae 4
PVC Annulus Compliance ($\mathrm{C}_{\mathrm{x}} \sim \mathrm{in}^{2}$)

Test Conductor	Source	Press=80psia	Presss=140psia
(Aerrowhead Inboard PVC)			
Aerrowhead	$\Delta \mathrm{X} / \Delta \mathrm{P}$. 073	. 046
MSFC	$\Delta \mathrm{X} / \Delta \mathrm{P}$. 060	. 060
MSFC	(1)	. 062	. 060

(Aerrowhead Outboard PVC)

Aerrowhead	$\Delta \mathrm{X} / \Delta \mathrm{P}$.085	.060
Boeing	$\Delta \mathrm{X} / \Delta \mathrm{P}$.081	.081
Boeing	(2)	.096	.096
Boeing	(1) (3)	.125	.086
MSFC	(1)	.068	.025

(Flexonics Outboard PVC)
MSFC
$\Delta X / \Delta P$
.075
.075
(1) Match to no flow dynamic test results.
(2) $\Delta X / \Delta P$ results plus mounting flexibility.
(3) Possibility of air in the system.

Table 4.4
J-2 LOX Suction Duct and Fluid Compliance

Compliance (in ${ }^{2}$)
Feed System
Compliance (in ${ }^{2}$)
$\left.\begin{array}{c}\text { Rocketdyne** } \\ \text { Brown Eng* } \\ \text { (Reference 45) }\end{array}\right)$ (Reference 47)

S-II Inboard
.0112
.0031

S-II Outboard
.0077 . 0055
.0055
.0015
S-IVB
above turbopump inlet
** Located at turbopump inlet

Table 4.5
J-2 LOX Physical Model Parameters For $G(S){ }_{2}$

NPSH	Ps	C_{1}	$\mathrm{C}_{2} \mathrm{Kp}$	$\mathrm{R}_{1} / \mathrm{Kp}$	$\mathrm{R}_{2} / \mathrm{Kp}$	L / Kp
40	33.7	.0189	.0158	.418	3.47	.016
45	36.2	.0175	.0173	.371	3.18	.014
50	38.1	.0142	.0163	.376	3.29	.014
55	41.1	.0134	.0140	.346	3.22	.014
60	43.6	.0123	.0119	.318	3.15	.015
65	46.0	.0102	.0112	.304	3.23	.014
70	48.4	.00813	.0105	.327	3.22	.014

```
Table 4.6
Suction Pressure Power
```

Turbopump Configuration	C_{b}	Average Test Parameters			
LR87 Fuel	. 019	. 08			
LR87 Ox	. 014	$.07$	$-.54$	$.004$	2.37
LR91 0x	.027	. 10	-. 90	. 035	4
F-1 Fuel	. 088	. 06			
F-1 Ox	. 095	$.07$	$\begin{aligned} & -.94 \\ & -.95 \end{aligned}$	$.000$. 64
J-2 Fuel	. 019	. 036			
$\mathrm{J}-2 \mathrm{Ox}$. 011	.036 .044	$\begin{array}{r} -.40 \\ -.30 \end{array}$	$\begin{array}{r} .041 \\ .035 \end{array}$	1.62
H-1 Fuel	. 012	. 26			
$\mathrm{H}-1 \quad 0 \mathrm{x}$. 014	.26 .13	-.023 -.075	.000 .039	. 49
MB-3 Fuel	. 0023				
MB-3 Ox	. 027	. 048	-.011 -.60	. 000	1.01

Substitute (1) into (2) or (3) gives:
Inertance, $I=m / \rho \mathrm{A}^{2}=\ell / \mathrm{Ag}_{c}$
Resistance, $R=d / \rho A^{2}$
Compliance, $C=\rho A^{2} / \mathrm{k}$
where $A=1$ ine area,
$x=$ line length ,
$g_{c}=$ gravitational constant,
${ }_{\rho}^{C}=$ fluid density.

Figure 4.1 Comparison of Spring-Mass and Fluid Systems

Figure 4.4 S-IC LOX PVC Volume Change with Pressure

Figure 4.5 S-IC LOX PVC Length Change with Pressure

Figure 4.7 S-IC LOX Non-Flow Feed System Data

Figure 4.9 F-1 LOX Turbopump Cavitation Compliance

Figure 4.10 F-l Fuel Turbopump Cavitation Compliance

Figure 4.12 J-2 LOX Feed System Resonance

a. Single Compliance Model

b. Double Compliance Model

Figure 4.15 Effect of J-2 LOX Turbopump Model on Cavitation Compliance

Figure 4.16 J-2 LOX Cavitation Compliance

Figure 4.17 J-2 Fuel Turbopump Cavitation Compliance

Figure 4.18 H-1 Oxidizer and Fuel Turbopump Cavitation Compliance

Figure 4.19 MB-3 Cavitation Compliance

Figure 4.20 Titan Turbopump Cavitation Compliance

Figure 4.21 Oxidizer and Fuel Turbopump Cavitation Compliance

Figure 4.22 Nondimensionalized Turbopump Cavitation Compliance

Figure 4.23
5. Empirical-Analytical Correlation
5. EMPIRICAL - ANALYTICAL CORRLLATION
5.1 Analytical Results - The turbopump cavitation model described in Section 3. was used to analyze the J-2 LOX, F-1 LOX, H-1 LOX, and LR87 oxidizer turbopumps. These four configurations were selected because they are typical of those of interest in the determination of cavitation compliance for POGO analysis. Also, considerable test data exists for these configurations and their geometry and operation are in reasonable agreement with the assumptions of the analytical model. Because of the large pressure rise which occurs through the inducers (for example, 100 psi through the J-2 inducer and 300 psi through the $\mathrm{F}-1$ inducer) it is assumed that any mismatch between the inducer exit flow and the impeller blades is not sufficient to produce a significant amount of cavitation in the impeller. For this reason only the inducers were analyzed.
5.1.1 Blade Section Analysis - The complete analysis of an inducer requires that the computer model be run for different streamsheets corresponding to different blade cross sections at different inducer radii. These results are then interpolated and integrated to yield the total cavitation compliance for all the inducer blades from the hub to the tip. Initial analyses performed for the J-2 and F-1 inducers employed the blade sectional data as tabulated on the inducer design drawings (Figures 5.1 and 5.2 , respectively). This data defines the blade geometry for a constant distance off the inducer hub, and is normally only given for a few blade sections. The turbopump cavitation compliance program was thus restricted by both the limited amount of input data and the fact that the data supplied for a given blade section was associated with a constant distance off the inducer hub, and not a fixed percent of the distance between the hub and the feedline wall. The results of these
analyses indicated significantly different behavior of the cavitation phenomenon between the hub and blade tip, and did not agree favorably with test data. Recent analyses performed for all four inducers have utilized a different form of input blade geometrical data. A computer program was written to interpolate the supplied data and calculate blade geometrical data for five blade sections located at $10 \%, 30 \%, 50 \%, 70 \%$, and 90% of the blade span. Details of this computer program are given in Appendix F. This simulation improvement resulted in an order of magnitude reduction in predicted cavitation.
5.1.1.1 Figures 5.5 through 5.8 show the blade sectional data derived from the inducer design drawings (Figures 5.1 through 5.4) for the J-2 LOX, F-1 LOX, H-1 LOX, and LR87 oxidizer turbopumps. It is noted that this data has been normalized to the trailing edge. Figures 5.3 through 5.12 show the results of interpolating this data to five blade sections, each at a constant percent of blade span. As shown by these figures, $\Delta Z / \Delta \theta$ is constant and independent of r for the $J-2, F-1$, and H-1 inducers. These inducers are a constant pitch helical screw design and are symmetrical about the chord. In contrast, the LR87 inducer is a twisted flat plate cambered in the vicinity of the leading edge.
5.1.2 Calculation Procedure - Because most of the inducers analyzed exhibit a linear relationship between blade coordinates Z and θ, the most suitable transformation from the inducer coordinates (r, θ, Z) to the streamsheet coordinates (E, Z) is simply

$$
\begin{align*}
& \mathrm{E}=\mathrm{Z} \tag{5.1}\\
& \mathrm{~F}=\boldsymbol{\theta} \tag{5.2}
\end{align*}
$$

This transformation is used in lieu of the logarithmic spiral transformation, Equations (3.10), which is more suitable for the impeller portions of a turbopump. For channel flow the streamsheet width varies as a function of 7 and is defined by

$$
\begin{equation*}
b(Z)=b\left(Z_{0}\right)\left(r_{t}(7)-r_{h}(Z)\right) / C \tag{5.3}
\end{equation*}
$$

where: $\quad r_{t}=$ the blade tip radius
$r_{h}=$ the hub radius
$b\left(Z_{o}\right)=\operatorname{selected}$ streamsheet width at 7_{0}

$$
c=\left(r_{t}\left(Z_{o}\right)-r_{h}\left(Z_{o}\right)\right)
$$

The feedline axial velocity, U, can have any radial distribution provided that continuity is satisfied, i.e.,

$$
\begin{equation*}
\dot{W}=2 \pi \rho_{\ell} \int_{r_{h}}^{\mathrm{r}} \mathrm{t} \quad \mathrm{Urdr} \tag{5.4}
\end{equation*}
$$

where $f(i s$ the inlet fluid density. For a uniform inlet fluid velocity distribution the flow in a streamsheet annulus is given by

$$
\begin{equation*}
\dot{W}_{\mathrm{ss}}=2-r\left(Z_{o}\right) b\left(Z_{o}\right) \rho_{l} \mathrm{U} \tag{5.5}
\end{equation*}
$$

For this analysis, a constant value of $b\left(Z_{o}\right)$ was used for $a l l$ streamsheets in each inducer, causing $\dot{W}_{S S}$ to vary as a function of radius. Other local angles such as the blade angle, β, the inlet flow angle, \varnothing, and the angle of attack relative to the upstream undistrubed flow, α, are defined by

$$
\begin{align*}
& \beta=\tan ^{-1}\left(\begin{array}{ll}
\frac{1}{r} & \frac{\partial Z}{\partial \theta}
\end{array}\right) \tag{5.6}\\
& \phi=\tan ^{-1}\left(\begin{array}{ll}
\frac{1}{r} & \frac{U}{"}
\end{array}\right) \tag{5.7}\\
& \alpha=\beta-\phi \tag{5.8}
\end{align*}
$$

In the (F, F) coordinate system the blade angle is $\Delta Z / \Delta \theta$ and the flow angle is U / \ldots, both of which tend to be independent of the radius or of which streamsheet is under consideration. All of these parameters are given in Table 5.1. Each pump inducer was analyzed for two inlet flow angles, U / ω, and a range of inlet pressures, P_{s}, for the streamsheets described above. Each calculation produced a description of the flow field in the particular streamsheet in terms of the streamfunction, ψ, pressure field, P, and the weight of propellant in the streamsheet, $W_{\text {ss }}$. Figure 5.13 shows a computer output plot of the streamlines in a J-2 LOX inducer streamsheet which corresponds to a 30% blade section. For the purpose of calculating cavitation compliance the prime model output is $W_{s s}$, which is computed by

$$
\begin{equation*}
W_{s s}=\sum_{i}{ }_{i} \quad A_{i} b_{i} \tag{5.9}
\end{equation*}
$$

where $\quad p_{i}=$ density of the two phase fluid at grid point i
$A_{i}=$ area between grid points
$b_{i}=$ streamsheet width at grid point 1
From Equation (1.2) the cavitation complfance in a streamsheet
between two blades is given by

$$
\begin{equation*}
c_{s s}=\frac{\Delta W_{s s}}{\Delta P_{s}} \tag{5.10}
\end{equation*}
$$

An example of $C_{\text {ss }}$ derived from computer output is shown in Table 5.2. The total turbopump cavitation compliance for N blades is given by

$$
\begin{equation*}
C_{b}=N \int_{r_{h}}^{r} \frac{\partial C_{s s}}{\partial r} d r \tag{5.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\partial C_{s s}}{\partial r}=\frac{C_{s s}}{b} \tag{5.12}
\end{equation*}
$$

Since most of the cavitation occurs near the inlet; $b=b\left(7_{o}\right)$ which was chosen to be the same at each radius section. Equation (5.11) thus becomes

$$
\begin{equation*}
C_{b}=\frac{N}{b\left(Z_{o}\right)} \int_{r_{h}}^{r_{h}} C_{s s} d r \tag{5.13}
\end{equation*}
$$

5.1.3 J-2 Results - Analytical values of $W_{S S}$ were obtained from the computer model for inlet pressures from 32 to 50 psia, values of U / ω (inlet flow direction) of .33 and .20 , and five blade sections. The resulting streamsheet compliance is shown in Figure 5.14 for five inlet pressures and the nominal flow direction of $U / \omega=.33$. These results are relatively well be-
haved and exnibit the expected trend with variations in inlet pressure. Also, thr varlation along the blade appears to be reasonable in vier of the following factors:
a. For constant streamsheet inlet thickness the tip streamsheet has a larger fluid flow (Equation 5.5);
b. The blades are thinner at the t ip which results in a sharper leading edge;
c. The blades are thinner at the tip which also results in less venturi effect between the blades;
d. The angle of attack at the $t i p$ is lower than at the hub (Equations 5.6, 5.7, and 5.8).
The first two factors would tend to produce higher streamsheet compliance at the tip than at the hub while the last two factors have the opposite effect. The graphical integration of these results (Figure 5.14), along with similar results for an inlet flow direction of $U / \omega=.20$, according to Equation (5.13) give the following values of cavitation compliance.

U/w (in/rad)	.33	.20	Inlet Press (psia)
	.0044	.0063	33.
Cavitation $\sim \mathrm{in}^{2}$.0023	.0053	36.
Compliance	.0012	.0039	40.
	.0005	.0023	44.
		48.	

5.1.3.1 The sensitivity to inlet flow direction requires consideration of the factors involved. The actual analytical inlet flow direction is determined from the slope of the computed streamlines upstream of the blades. The upstream boundary conditions are then automatically adjusted until the computed slope matches the desired slope calculated with respect to the
undisturbed flow. Computation of the potential flow solution at different distances into the suction line (Figure 5.18) showed that propogation of blade disturbances extend approximately one inch upstream. This was found to be true for all the inducers analyzed. The pressure field upstream of this point remains essentially constant (+1 psi). An additional error source, not included in the model, is fluid prerotation produced by fluid viscosity (Figure 5.19). As stated previously, all flow was assumed to be inviscid. An upper bound of viscous produced prerotation of 67% of the turbopump speed ($\omega_{r}=2 / 3 \cdots$) was assumed for analytical evaluation. This yielded a new inlet flow direction of $U /\left(\omega+w_{r}\right)$, or 60% of the nominal U / ω computed without considering prerotation. This effect is not intended to be representative of actual prerotation values, but is only used to demonstrate the influence on cavitation results.
5.1.4 $\mathrm{F}-1$ Results - Analytical values of streamsheet fluid weight, $W_{s s}$, were obtained from the computer model for inlet pressures from 60 to 140 psia, U / ω values of .86 and .52 , and five blade sections. For the nominal value of inlet flow direction $(U / \omega=.86)$, computed without consideration for viscous induced prerotation, the model predicted no cavitation at any of the blade sections for the range of inlet pressures considered. That is, the minimum pressure predicted by the potential flow solution was always greater than the LOX vapor pressure. Reducing the flow direction to 60% of nominal to account for neglected prerotation resulted in small amounts of blade cavitation for inlet pressures below 100 psia. As shown in Figure 5.15 cavitation was observed at the $30 \%, 50 \%$, and 70% blade sections. Reasons for variations at different blade sections are the same as discussed in Paragraph 5.1.3. Initial predictions, based only on the two blade sections
defined on the drawing (Figure 5.2), assumed that the amount of cavitation increased toward the blade tin. rhece results indicate that was a bad assumption. Local conditions can produce cavitation at a mid section, while for the same inlet conditions none occurs at either the hub or the hlade $t i p$. Applying Equation (5.13) to the results in Figure 5.15 , and to the computed results for $U / 0=.86$, gives the following values of cavitation compliance.

$\mathrm{U} / \mathrm{\omega}$ (in/rad)	.86	.52	Inlet Press. (psia)
	0	.0020	65
Cavitation \sim in 2	0	.0009	75
Compliance	0	.0005	85
	0	.0002	95
	0	0	105

$5.1 .5 \quad \mathrm{H}-1$ Results - Analytical values of streamsheet fluid weight, $W_{s s}$, were computed for inlet pressures from 40 to 90 psia, U / ω values of .42 and .25 , and five blade sections. The results showed that essentially no cavitation was predicted for the nominal flow direction of $U /==.42$, and very little cavitation for the flow direction reduced to account for possible viscous pre-rotation effects. Figure 5.16 shows the minimum pressure obtained in the $H-1$ LOX inducer which occurs at a grid point near the blade leading edge of the 30% section. For non-cavitating conditions the pressure increment between the inlet static pressure and the minimum pressuce grid point is essentially constant for fixed flow conditions. This is reasonable since compressibility effects should be minimal if there is no cavitation vapor present. Figure 5.16 shows that
cavitation starts at an inlet pressure of 46 psia for nominal U/" and 59 psia for U / \cdots reduced to 60% of numina. However, even for pressures below these values, so few grid points reach vapor pressure that no significant cavitation is produced. At blade sections other than the 30% sections no cavitation was predicted.
5.1.6 LR87 Oxidizer Results - The computer model generated values of streamsheet fluid weight, $W_{s S}$, for inlet pressures from 40 to 90 psia, U / σ values of .32 (nominal) and .19 , and five blade sections. The results showed no measurable change in $W_{\text {ss }}$ implying no blade cavitation. For the nominal inlet flow direction the potential flow solution predicts that the minimum pressure grid point is only 17 psi below the inlet pressure (Figure 5.17). This means that the inlet pressure would have to be reduced to 31 psia before the minimum pressure reaches the vapor pressure resulting in cavitation. This computed pressure reduction from the inlet to the minimum pressure point is considerably less for the LR87 than the other inducers.

These values, along with some of the influential parameters, are shown in Table 5.3 for comparison. Not all of the parameters are in the right direction (lower angle of attack, thinner blade, and lower dynamic pressure); however, the combination could justify the smaller pressure increment for the LR87. For the inlet flow direction reduced by $60 \%(\mathrm{U} / \omega=.19)$ to simulate a worst case viscous pre-rotation, the minimum pressure point is 36 psi lower than the inlet pressure (Figure 5.17). In this case cavitation just begins for an inlet pressure of 49 psia. For the lowest pressure case analyzed, 40 psia, no significant cavitation had developed.
5.2 Comparison With Test Data - The first task performed in the comparison of the analytical and test results was to compare the predicted inducer pressure rise with available test data. Figure 5.20 shows J-2 LOX inducer head rise test data (Reference 53) using water as the test fluid. This indicates a head rise of 172 ft (75 psi for water) for the nominal operating flow rate of $2540 \mathrm{gal} / \mathrm{min}$ $(U / \omega=.33 \mathrm{in} / \mathrm{rad})$. Figure 5.21 shows the corresponding pressure profiles predicted by the computer model at the 50% blade section for an inlet pressure of 100 psia (230 ft NPSH). This shows a predicted pressure rise of greater than 60 psi , and it could easily be 75 psi depending on where the measurement is taken. The model predicts slightly greater pressure rises at a hub blade section (10\%) and slightly less pressure rises at a tip blade section (90\%). In the actual case, radial mixing will occur and tend to give a uniform pressure rise (in the radial direction) through the inducer. Thus the 50% blade section is felt to be most representative even though the pressure measurement is assumed to be taken on the pump housing nearest to a tip blade section. The J-2 LOX inducer head rise test data was the only pressure data available for comparison with analytical predictions. This single point comparison tends to confirm the overall accuracy of the potential flow equations used to compute pressures through the inducer blades. Analytical-empirical correlation of the cavitation compliance is obviously not as good as the pressure correlation since little or no cavitation was predicted in three out of the four inducers analyzed. On the other hand, test data (Figure 4.21) indicates that a significant amount of cavitation occurs in all turbopumps. Figures 5.22 and 5.23 present a comparison between test data and the cavitation compliance predicted by the analytical model for the J-2 and F-1 LOX inducers, respectively. Since no cavitation was predicted for efther the H-1 or LR87 inducers, comparative plots are not presented. Plots of test data for these inducers were presented in Figures 4.18 and 4.20 , respectively.

No model assumptions have been identified which could account for the lack of correlation observed. Reasonable variations in inlet flow direction to simulate viscous prerotation tended to improve predictions but failed to yield adequate correlation. Also, since no cavitation was predicted in some inducers, the analytical results can not be simply scaled to agree with test data. The entire results of this analysis indicate that some other mechanism besides blade cavitation contributes significantly to total turbopump compliance. Other mechanisms presented (Section 2.) as having potential significance are: blade tip clearance flow, circulation flow within the turbopump, and circulation flow back into the feedline.
5.2.1 Since the effect of cavitation compliance on feed system natural frequency is of prime interest, it is important to determine how uncertainties in one propagate into uncertainties in the other. The first feed system natural frequency, ω_{1}, can be defined by

$$
\begin{equation*}
\omega_{1}=\sqrt{\frac{1}{I\left(C_{b}+C_{\ell}\right)}} \tag{5.14}
\end{equation*}
$$

where $\quad I=$ suction line fluid inertance
$C_{b}=$ cavitation compliance
$C_{\ell}=\underset{\text { (except pump }}{ } \quad$ cavitation) related to the pump inlet.
Differentiating Equation (5.14) yields

$$
\begin{equation*}
\frac{\mathrm{d} \omega_{1}}{\omega_{1}}=-\frac{\mathrm{C}_{\mathrm{b}}}{2\left(\mathrm{C}_{\ell}+\mathrm{C}_{\mathrm{b}}\right)} \frac{\mathrm{dC}_{\mathrm{b}}}{\mathrm{C}_{\mathrm{b}}} \tag{5.15}
\end{equation*}
$$

which shows that the percentage change in ω_{1} is at most $1 / 2$ the percentage change in C_{b}, and may be much less if C_{ℓ} is large relative to C_{b}. For the $S-I I / J-2$ LOX feed system, C_{ℓ} is . 003 to . 005 in. 2 (Rocketdyne results, Table 4.4). Using
these values of C_{ℓ} and test values of C_{b} in Equation (5.15), it may be concluded that for a maximum uncertainty of 10% in S-II feed system natural frequency cavitation compliance must be known to within 25%. A similar evaluation on the other systems of concern results in the following required accuracies in cavitation compliance for a 10% accuracy in frequency: 70% for S-IC/F-1 LOX; 25\% for S-IB/H-1 LOX; and 35\% for Titan/LR87 0x. As previously stated, an objective of the cavitation model development is that it be capable of predicting feed system frequency to within a 10% accuracy. The results predicted by the current model clearly do not meet this objective. Although additional refinements and extensions to the existing model framework could be recommended, it is felt that none of them have a high probability of resulting in adequate correlation with test data.

Table 5.1 Inducer Streamsheet Parareters

Inducer	J-2 LOX	F-1 LOX	H-1 LOX	LR-870X
No. of Blades	3	3	4	3
Flow Rate (${ }_{\text {W }}$) $1 \mathrm{~b} / \mathrm{sec}$	386.	3765.	514.	522.
Pump Speed (11) rad/sec	841.	581.	706.	874.
Inlet Velocity (U) in/sec	275.	497.	294.	276.
U/(1) in	. 33	.86	. 42	. 32
Chord $\Delta Z / \Delta \theta$ in	. 59	1.25	. 76	Fig. 5.12
Inlet Thickness (b($\left.\mathrm{Z}_{\mathrm{o}}\right)$) in	. 323	. 331	. 317	. 294
Tip Radius (r_{t}) in	3.375	7.875	3.80	3.55
Tip Blade Angle (β) deg	9.0	9.9	11.3	5.7
Tip Flow Angle (\emptyset) deg	5.6	6.2	6.3	5.2
Tip Angle of Attack (α) deg	3.4	3.7	5.0	0.5
Table 5.2 Streamsheet Cavitation Compliance J-2 LoX Inducer, 50% Section, $U / \omega=.33$				
$\mathrm{P}_{\mathrm{S}} \quad \mathrm{W}_{\mathbf{S S}}$	${ }^{\Delta W_{s s}}$	ΔP	${ }^{\text {C }}$ Ss	
50.17938				
48	. 000015	4	. 00	
46 . 17923				
44	.00026	4	. 00	
42 . 17897				
4)	.00042	4	. 00	
38 . 17855				
36	.00056	4	. 00	
34 . 17799				
33	. 00038	2		
32 . 17761				

Table 5,3 Faciors Affecting Minimum Inducer Pressure

Inducer	$\begin{aligned} & \left.{ }^{\circ} \operatorname{tip}_{(\mathrm{deg}}\right) \end{aligned}$	$\begin{gathered} \text { " hub } \\ (\mathrm{deg}) \end{gathered}$	```Blade Thickness (1) (% of channel)```	$\begin{aligned} & 1 / 2 \rho V_{r} \\ & (\mathrm{psi}) \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{s}}-\mathrm{P}_{\mathrm{min}}^{(2)} \\ & (\mathrm{psi}) \end{aligned}$
J-2 LOX	3.4	15.1	32	433.	(3)
F-1 LOX	3.7	9.4	18	1120.	59
H-1 LOX	5.0	14.5	26	388.	30
LR87 0x	. 5	8.9	19	655.	17

(1) At the 50% blade section
(2) Nominal inlet flow direction
(3) $P_{\text {min }}=$ vapor pressure

Figure $5.1 \mathrm{~J}-2 \mathrm{LOX}$ ir

iducer

Figure 5.2

 mainums cossornie olades

Figure

5.4 LR87 Oxidizer Inducer

Figure 5.5 J-2 LOX Inducer Blade Sections

114

Figure 5.6 F-1 LoX Inducer Blade Sections

Figure 5.7 H-1 LoX Inducer Plade Sections

Figure 5.8 LR87 Oxidizer Inducer Blade Sections

Figure $5.9 \mathrm{~J}-2$ LoX Inducer Interpolated Blade Sections

Figure 5.10 F-1 LOX Inducer Interpolated Blade Sections

Figure $5.11 \mathrm{H}-1$ LOX Inducer Interpolated Blade Sections

Figure 5.12 LR87 Oxidizer Inducer Interpolated Blade Sections

Figure 5.13 J-2 LOX Inducer Streamlines

Figure 5.16 H-1 LOX Minimum Predicted Inducer Pressure

Fifure j.17 LK37 0xidizer Minimum Predicted Inducer Pressure

Figure 5.19 Effect of Prerotation on Inlet Flow Vector

Figure 5.20 J-2 Lox Inducer Suction Performance

Figure 5.21 J-2 Inducer Pressure Profiles

Figure 5.22 J-2 Lox Analytical-Empirical Comparison

6. Conclusions and

 Recommendations

The following onactheions and reconmendacions ate hamed ow the analysis of available test data, the turhopump cavitation model development, the analvisis of the molel results, and the correlation between test data am model prodictions.
a. Large uncertainties exjst in most cavitation combliance values derived from test dati. This is because the objective of the tests was to de. determine natural frequency, and cavitation compliance must usually be derived from an assumed relationship.
b. Cavitation compliance test results for all available turbopump configurations do not correlate with any simple nondimensional combination of turhopumps and fluid parameters.
c. Compliance derived from a plase change process is a function of the local flow conditions and, unlike compressibility of a gas, is not necessarily directly proportional to the vapor volume.
d. The turbopump pressure field, derived from a potential. solution, will not predict a large enough blade surface cavitation reqion to vield anreement with cest results.
e. Mechanisms other than blade cavitation contribute the major amount of total turbopump compliance.
f. Turbopump pulse tests, using accurate inlet and outlet dynamic flow meters, should be conducted for the purpose of investigating, cavitation compliance. These tests sinuld vaty the following parameters

```
    one at a time: test fluid, dissolved gas,
    operating conditions (pressure, speed, and flow),
    tip clearance, natural frequency and oscillation
    amplitude (effect of nonequilibrium phase changes),
    etc.
g. Precise analytical simulation of the cavitation
process can not be obtained until a dedicated
test program (item f.) is performed.
```


7. References

tration, !elober: 1970 .

 B, 1timore, Marybund, wn, 1969.

- K. . Van, and k. A. \%obniu: binear Equeion Devion-

 whorm, My, latis.

4. F. F. Bikle, L. F. Fidler and J. B. Rohrs: A Study of Systom Counlod Imstability Analysis Tochniques. Technical Remort AFill-TR-66-143. Air Force Rocket Propulsion Ghornory, litwards Air Force Baso, California, July, 1966.
5. F. R. Biki, I.E. Fietor and T. C. Hendricks: System
 and LValutionioind Buport. Tochnical Roport AFRPL-1R-68-4. Air Fores Rocket Propulsion Laboratory, Whard, Air fored Base, California, March, 1968.
6. A. L. Worlunt, al: "The Roduction of PogO Effects by (ias Injuction." AlAA Second Propulsion Joint Confornere, Colorado Springs, Colocado, June, 1966.
7. K. L. Rici: "Baturn V POOO and a Bolution. ${ }^{\text {B }}$ ALAA Strucural Dymaics and Aeroclasticity Specialist Conferucn, Nw Otlens, Louisiana, April, 1969.
8. F. G. Hammit: Impact and Cavitation Erosion and Material Mochanical Properties. Report No. 03371-1-T. Cavitation and Multiphase Flow Lab, Michigan University, Ann Arbor, Niichigan, November, 1969.
9. Frederick G. Hammitt: Collapsing Bubble Damage to Solids. AROD-6310:10-E. Cavitation and Multiphase Flow lab, Michigan University, Ann Arbor, Michigan, 1969.
10. Frederick G. Hammitt and David M. Ericson, Jr.: Scale Effects Including Gas Content Upon Cavitation in a Flowing System. Technical Report 01357-11-T. Cavitation and Multiphase Flow Lab, Michigan Universicy, Ann Arbor, Michigan, May, 1969.
11. Frank R. Schiebe: The Influence of Gas Nuclei Size Distribution on Transient Cavitation Near Inception. Report No. 107. St. Anthony Falls Hydraulic Lab, Minnesota University, Minneapolis, Minnesota, May, 1969.
12. L. H. Bernd: Study of the Surface Filnis of Gas Nuclei
(As Related to Cavitation and Tonsil. Strengtl in Water).
Report T1S64GL143. Advanced Technology Laboratories, General Electric Co., Scptember, 1964.
13. M. D. Rosenberg: Gaseous-Type Cavitation in Liquids. Technical Memorandum 26. Acoustics Resparch Laboratory, Harvard University, Cambridge, Massachusetts, August, 1953.
14. D. M. Ericson, Jr.: Observations and Analyses of Cavitating Flow in Venturi Systems. NASA-CR-106115. Dept. of Mechanical Engineering, Michigan University, Ann Arbor, Michigan, July, 1969.
15. M. S. Plesset and P. S. Epstein: '"The Stability of Gas Bubblos in Liquid-Gas Solution." Journal of Chemical Physics. Vol. 18, No. 11, November, 1950.
16. M. S. Plesset and S. A. Zwich: HA Nonsteady theat Diffusion Problem With Spherical Symm try." Journal of Applied Physics, Voi. 23, No. 1, Jamuary, 1952.
17. M. S. Plesset and S. A. Zwick: "The Growth of Vapor Bubbles in Superheated Liquids." Journal of Applied Physics, Vol. 25, No. 1, April, 1954.
18. L. A. Skinner and S. G. Bankoff: "Dynamics of Vapor Bubbles in Spherically Symetric Tumperature Ficlds of Gencral Variation." The Physics of Fluids, Vol. 7, No. 1, January, 1964.
19. H. K. Forster and N. Zuber: "Growth of a Vapor Bubble. in a Superheated Liquid." Journal of Applied Physics, Vo1. 25, No. 1, April, 1954.
20. A. J. Stopanofe: "Gavitation in Contrifugal Pumpo win Liquids othor Than Wator." Journal at metmoring for Powas, Janmary, 106l.
21. A. J. Stopanoff: "Cavitation Properlís of Liupids." Journal of Enginooring for Powor. Papor 63-AllGT-22.
22. J. K. Jakobson: "On tho Mechanism al Hoad Braakdown in Cavitating Inducars." Journal of basic king incoring, Paper 63-AHCT-29.
23. L. B. Stripling and A. J. Acosta: "Caytation in Turbopumps." Journal of Basic Fingineuring, Part 1 , September, 1962.
24. L. B. Stripling: "Cavitation in Turbopumps." Jourad of Basic Engineering, Part 2, Soptombur, 1962.
25. R. B. Wade: Flow Past a Partially Cavitating Cascade of Flat Plate Hydrotoils. Report E-79-4. California Institute of Technology, Pasadena, California, January, 1963.
26. R.E. Davis, L. L. Coons and D. D. Scheor: "Internal Streamlinc Flow Analysis for Turbopump Inducers linder Cavitating and Noncavitation Conditions." AlAA Paper No. 70-629, June, 1970.
27. Mo S. Plesset: "The Dynamics of Cavitation Bubblos." Journal of Applied Mechanics, Sopternber, 1949.
28. M. S. Plesset: Bubblo Dynamics. Report 85-23. California Institute of Tochnology, Pasadena, California, February, 1963.
29. F. R. Gilmore: The Growth or Collapse of a Spherical Bubble in a Viscous Compressiblc Fluid. Report 26-4. Hydrodynamics Laboratory, California Institute of Technology, Pasadena, California, April, 1952.
30. C. Hunter: "On the Collapse of an Empty Cavity in Water." Eluid Mochanics, Vol. 8, August, 1960.
31. F. Ghahremani: Turbopump Cavitation Compliance. Report TOR-0059 (6531-01)-2, The Aerospace Corporation, E1 Segundo, California, Septomber, 1970.
32. R. F. Solti:i and M. J. Miller: Visual Observations of Elow Through a Radial-Bladed Centrifugal Impeller. NASA TN T-4282. National Aeronautics and Space Administration, Wasilington, J. C.
33. S. M. Futral, Jr., and D. F. Holeski: Experimental Results of Varying the Blade-Shroud Clearance in a 6.02 Inch Radial-Inflow Turbine. NASA TN D-5513. National Aoronautics and Space Administration, Washington, D. C., January, 1970.
34. L. W. Norquist, et al: "Development of Close-Coupled Accumulators for Suppressing Missile Longitudinal Oscillations (POGO)." Paper No. 69-547, AIAA Fifth Propulsion Joint Specialists Conference (Colorado Springs, (Colorado), June 9-13, 1969.
35. L. A. Weber: Thermodynamics and Related Properties of Oxygen From the Triple Point to $300^{\circ} \mathrm{K}$ at Pressures to 330 Atmospheres. NBS Report 9710A. National Bureau of Standards, Boulder, Colorado, August, 1968.
36. R. V. Southwell: Relaxation Methods in Theoretical Physics. Oxford University Press, London, England, 1952.
37. R. Zehnle and J. Knapp: POGO Linear Stability Analysis Tochniques and Computer Programs. TM 0472-10-70-03. Martin Marictta Corporation, Denver, Colorado, April, 1970.
38. R. G. Wagner and S. Rubin: Detection of Titan POGO Characturistics by Analysis of Random Data. Report
No. TR-0066(5305)-3. Aerospace Corporation, E1 Segundo, California, February, 1970.
39. LOX Suction Duct Dynamic Evaluation, D13339, Summary of Test Results. D5-14061. The Boeing Company, Southeast Division, Launch Vehicle Branch, May, 1970.
40. A Compendium of the Properties of Materials at Low Temperatures. WADD-TR-60-56. National Bureau of Standards, Cryogenic Engineering Laboratory, Boulder, Colorado, December, 1961.
```
'f. &. A||r|e|: S-IC Proptllant Feod System PoCO Study.
    jMtarna! Noti: - Tost 3-67. Fluirl Mechanics Tost Soction,
```



```
    Man!:!
42. J. O. Poarson: S-IC Singlo Enginc POGO Tests. Momorandur,
    Sut-AS&N-TS+-F28-70. Marshall Space Flight Contor, Alabama,
    May, 1970.
43. S-IC LOX Jnboard and Outboard PVC Pressure Testing. Memo-
    randum R-NES'T-CT-69-68. Marshall Space Fliglit Center,
    Alnbama, October, 1968.
4. Lncine Sustum Transfor Functions for Support oi S-V
    Vohicle longitudinal Stability (POGO) Analysis Program.
    R-6929. Rockutdym, North American Kockwell, Canoga
    Park, Caljlornia, March, 1967.
13. (.. L. Murphy: Summary Report - POGO Suppression Analysis
    Of the S-II and S-IVB LOX Feed Systems. ASD-ASTN-1040.
    Brown Cngineering Company, Huntsville, Alabama, November,
    1969.
'6. Invostigation of 17 Hortz Closed-Loop Instability on S-II
    Stagn of Saturn V. R-7970. Rocketdyne, North American
    Am\mp@code{wll, Canoga Park, California, August, 1969.}
47. "Current J-2 Engine Transfer Functions and LOX Pump
    Turmination lmpodance, C(S)." Letter S&E-ASTN-A-70-113.
    NASA, Marshall Space Flight Center, Alabama, September,
    1970.
i8. "Siturn V POGO Working Group Meeting Presentation (Booing)."
    Marshall Space Flight Center, Alabama, Fobruary 18, 1971.
49. Comparison Betweon Brown's and Rocketdyne's Pump Cavitation
    Complianed Results for H-1 Fucl and LOX Bobtail Test Stand
    Runs. Memorandum TD-D1-PTF-021-50. Brown Engineering
    Company, Huntsvillo, Alabama, March 1, 1967.
50. S-IB Prope11ant Feed System "POGO" Study. Internal Note-
    Tust-15-67. Marshall Space Flight Center, Alabama, 1967.
51. R. 1, Hil1: Frequency Response of Propellant Fecd Lines
    and Turbopump by Pulsing Either Below the Pump or Above
    tha Pumip on tho Bobtail Tost Stand. Brown Engineering
    Company, Hunc:ville, Alabama, June, 1968.
```

52. ATM66(6182-03)-866-2433, 3-22, Aerospace Corporation, E1 Segundo, California, March 25, 1966 (Unpublished).
53. F. C. O'Hern: 'J-2 Oxidizer Inducer Performance", Internal Letter No. D/596/115, North American Rockwell, 29 January 1971.
54. Chung-Hua Wu: A General Theory of Three Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial, Radial, and Mixed Flow Types. NACA TN 2604. National Advisory Committee for Aeronautics, January, 1952.
55. "CDC 280 Software Package" Appendix A, Report A-69-27, Martin Marietta Corporation, Denver, Colorado.
56. F. Ghahremani: "Empirical Evaluation of Pump Inlet Compliance" - Monthly Status Reports (September 1971 through March 1972). Aerospace Corporation, El Segundo, California.

Appendixes

For a (r, θ, z) coordinate system (Figure A.l), the equations of relative motion for a turbopump impeller roteting with angular velocity w about z (Reference 53) are:

$$
\begin{align*}
& {\left[\frac{V_{r}}{t}+V_{r} \frac{V_{r}}{r}+\frac{V_{\theta}}{r} \frac{V_{r}}{\theta}+V_{z} \frac{V_{r}}{Z}-\frac{\left(V_{\theta}+w r\right)^{Z}}{r}\right]} \\
& =-\frac{P}{\partial r}-\left[\frac{1}{r} \frac{\partial}{r}\left(r \cdot \tau_{r r}\right)+\frac{1}{r} \frac{\tau_{1}}{\theta}-\frac{1}{r} \tau_{\theta 0}+\frac{r}{\gamma}\right]+\varepsilon_{r} \\
& \left(\frac{V_{\theta}}{\partial t}+V_{r} \frac{V_{\theta}}{r}+\frac{V_{\theta}}{r} \frac{V_{\theta}}{i \theta}+V_{z} \frac{V_{U}}{z}+\frac{V_{R} V_{\theta}}{r}+2 \omega V_{r}\right) \\
& =-\frac{1}{r} \frac{P}{\partial \theta}-\left[\frac{1}{r^{2}} \frac{\partial r}{\partial r}\left(r^{2} r \theta+\frac{1}{r} \frac{\theta \theta}{\partial \theta}+\frac{r_{\theta z}}{\partial z}\right)\right]+p g_{\theta} \\
& \left(\frac{V_{z}}{\partial t}+V_{r} \frac{\partial V_{z}}{\partial r}+\frac{V_{\theta}}{r} \frac{\partial V_{z}}{\partial \theta}+V_{z} \frac{V_{z}}{\partial z}\right) \\
& =-\frac{\partial P}{\partial z}-\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \tau_{r z}\right)+\frac{1}{r} \frac{\partial \tau}{\theta z}+\frac{r \tau_{z Z}}{\partial z}\right]+\rho g_{z} \tag{4.3}
\end{align*}
$$

where $\cdot V_{\theta}^{2} / r$ is the centrifugal force. It gives the effective force in the r direction due to fluidmotion in the directinn. The term $\cdot V_{r} \cdot V_{\theta} / r$ is the coriolis force. It is the effective force in the θ direction when there is flow in both the r and θ directions. For steady inviscid flow in the absence of gravity equations (A.1) through (A.3) can be written

$$
\frac{d V_{r}}{d t}-\frac{\left(V_{\theta}+\omega r\right)^{2}}{r}=-\frac{1}{\rho} \frac{P}{r}=V_{r} \frac{\Delta V_{r}}{r}+\frac{V_{\theta}}{r} \frac{\partial V_{r}}{\theta}+V_{z} \frac{\partial V_{r}}{Z_{z}}-\frac{\left(V_{\theta}+\omega r\right)^{2}}{r}(A .4)
$$

Figure A. 1 Fluid Element Coordinates

$$
\begin{align*}
& \frac{d V}{d i}+\frac{V V^{2}}{r}+2 N V_{r}=-\frac{1}{r} \frac{P}{t} \\
& =v_{r} \frac{v_{\theta}}{r}+\frac{V_{\theta}}{r} \frac{v_{\theta}}{\Delta \theta}+v_{2} \frac{v_{\theta}}{z}+\frac{v_{r} V_{\theta}}{r}+2 \omega v_{r} \tag{A.5}\\
& \frac{d V_{z}}{d t}=-\frac{L}{r} \frac{P}{z}=V_{r} \frac{V_{z}}{r}+\frac{V_{\theta}}{r} \frac{V_{z}}{U}+V_{z} \frac{V_{z}}{z z} \tag{A.6}
\end{align*}
$$

As,imatho the vates at the impeller guide the fluid or that chamel the wint armonimotely, a strem surface may be constructed hali way between ilades (Figure A.2). The stream surface S can ce described by

$$
\begin{equation*}
S=S(r, \theta, z) \tag{A.7}
\end{equation*}
$$

Sulving tor ",

$$
\begin{equation*}
y=(r, z) \tag{A.8}
\end{equation*}
$$

The static presiure in a turbopump is generally a function of r, - and $厶$:

$$
\begin{equation*}
P=P(r, \forall, z) . \tag{A.9}
\end{equation*}
$$

On S

$$
\begin{equation*}
\mathrm{P}^{*}=P(\mathrm{r}, \theta(\mathrm{r}, \mathrm{z}), \mathrm{z}) \tag{A.10}
\end{equation*}
$$

since : on the surface is specified by Equation (A. 8). The relatoon butwen the partial derivatives of static pressure in the Ahw-dimenoional Lield to that on the stream surface "S" is:

$$
\begin{align*}
& \frac{P^{*}}{\partial r}=\frac{\partial P}{\partial r}+\frac{\partial P}{\partial \theta} \frac{\partial \theta}{\partial r} \tag{A.11}\\
& \frac{\partial P^{*}}{\partial z}=\frac{\partial P}{\partial z}+\frac{\partial P}{\partial \theta} \frac{\partial \theta}{\partial z} \tag{A.12}
\end{align*}
$$

Substituting Equations (A.11) and (A.12) into (A.4) and (A.6),

$$
\begin{equation*}
\frac{d V_{r}}{d t}-\frac{\left(V_{r}+r \omega\right)^{2}}{r}=-\frac{1}{\rho}\left(\frac{P^{*}}{r r}-r \frac{\partial \theta}{d r} \cdot \frac{1}{r} \frac{\partial P}{d \theta}\right) \tag{A.23}
\end{equation*}
$$

$$
\begin{align*}
& \frac{d V_{\theta}}{d t}+\frac{V_{r} V_{\theta}}{r}+2 u V_{r}=-\frac{1}{\partial r} \frac{P}{\partial \theta} \tag{A.14}\\
& \frac{d V_{z}}{d t}=-\frac{1}{\rho}\left(\frac{\partial P^{*}}{\partial z}-r \frac{\partial \theta}{\partial z} \cdot \frac{1}{r} \frac{P}{\partial \theta}\right) \tag{A.15}
\end{align*}
$$

Figure A. 2 Axial View of Impeller
The circumferential pressure gradient $\frac{1}{r} \frac{\mathrm{jP}}{\mathrm{y}}$ can be eliminated from Equations (A.13) and (A.15) by (A.14)

$$
\begin{align*}
\frac{d V_{r}}{d t}-\frac{\left(V_{\theta}+\omega r\right)^{2}}{r} & =-\frac{1}{\rho}\left[\frac{\partial P^{*}}{\partial r}+r \frac{\rho \theta}{\partial r}\left(\frac{d V_{\theta}}{d t}+\frac{V_{r} V_{\theta}}{r}+2 \omega V_{r}\right)\right] \\
\frac{d V_{r}}{d t}-\frac{V_{\theta}^{\prime 2}}{r} & =-\frac{1}{\rho}\left[\frac{\partial P^{\%}}{\partial r}+r^{\rho} \frac{\theta}{r}\left(\frac{1}{r} \frac{1}{r t}\left(r V_{\theta}^{!}\right)\right)\right] \tag{A.16}
\end{align*}
$$

where $V_{\theta}^{\prime}=V_{\theta}+\omega r$ and $d r / d t=V_{r}$.

$$
\begin{align*}
& \frac{d V_{z}}{d t}=-\frac{1}{\rho}\left[\frac{P^{*}}{z}+r^{\rho}-\left(\frac{d V}{d i}+\frac{V V}{r}+\therefore V_{i}\right)\right] \\
& \frac{d V}{d t}=-\frac{1}{\rho}\left[\frac{\partial P^{*}}{\partial z}+1 \frac{\rho}{R}\left(\frac{1}{r} \frac{d}{d t}\left(r V^{\prime}\right)\right)\right] \tag{A.17}
\end{align*}
$$

If the flow is restricted to a streamline on the stream sheet and the streamline is projected on the meridional plane (Figures A. 3 and A.4), the tangent to the projected streamline at any point makes an angle α with the impeller axis.

Figure A. 3 Projection of Stream Sheet on Meridional Plane

Figure A. 4 Meridional Flane of Impeller

Figure A. 5 Meridional Streamline

The velocity components V_{r} and V_{z} of the stream sheet streamine 1.at to wheny H_{a} in the meridiona! plane where:

$$
\begin{align*}
& V_{m}^{2}=V_{r}^{2}+v_{z}^{2} \tag{A.18}\\
& V_{r}=V_{m} \sin u \tag{A.19}\\
& v_{z}=V_{m} \cos , \tag{1.20}
\end{align*}
$$

bitl: xatiating,

$$
\begin{align*}
& \frac{d V}{d t}=\frac{d V_{M}}{d t} \sin \alpha+V_{M} \frac{d u}{d t} \cos \alpha \tag{A.21}\\
& \frac{d V_{Z}}{d t}=\frac{d V_{M}}{d t} \cos \alpha-V_{M} \frac{d u}{d t} \sin \tag{A.22}
\end{align*}
$$

\therefore is related to the radius of curvature of the projected stream1inc by

$$
\begin{equation*}
\mathrm{d} M=r_{C} \mathrm{~d}_{\mathrm{t}} \tag{A.23}
\end{equation*}
$$

ur

$$
\begin{gather*}
\frac{1}{r_{c}}=\frac{d L}{d M}=\frac{\frac{d}{d t}}{\frac{d M}{d t}}=\frac{1}{V_{M}} \frac{d x}{d t} \tag{A.24}\\
\therefore \frac{d t}{d t}=\frac{V_{M}}{r_{c}} \tag{k.25}
\end{gather*}
$$

Combining Equations (A.16) through (A.25),

$$
\begin{equation*}
\frac{d V_{M}}{d t} \cos a-\frac{V^{2}}{r_{c}} \sin :=-\frac{1}{\rho}\left\{\frac{p^{*}}{\partial z}+r^{\rho} \frac{\partial \theta}{\partial z}\left[\frac{1}{r} \frac{d\left(r V_{\theta}^{\prime}\right)}{d t}\right]\right\} \tag{A.26}
\end{equation*}
$$

$$
\begin{gather*}
\frac{d V_{M}}{d t} \sin +\frac{V_{M}^{2}}{r_{c}} \cos u=\frac{V_{\theta}^{\prime 2}}{r}-\frac{1}{r}\left\{\frac{d P^{*}}{r}+r^{\rho \frac{\rho \theta}{r}}\left[\frac{1}{r} \frac{\left(r V_{\theta}^{\prime}\right)}{r}\right]\right\} \tag{A.27}\\
\frac{d P^{*}}{d N}=\frac{\partial P^{*}}{r} \frac{r r}{J N}+\frac{p^{*}}{z} \frac{z}{N} \tag{A.28}\\
\frac{r}{N}=\cos \text { and } \frac{z}{N}=-\sin \tag{A.29}\\
\therefore \frac{d P^{*}}{d N}=\frac{P^{*}}{r} \cos -\frac{p^{*}}{z} \sin \tag{A.30}
\end{gather*}
$$

where $\frac{d}{d N}$ is the derivative with respect to the normal to the streamline.

Muitiplying Equation (A.26) by $\sin \alpha$ and substituting Equation
(A.30)

$$
\begin{align*}
\frac{d V_{M}}{d t} \sin \alpha \cdot \cos & -\frac{\left(V_{M} \sin x\right)^{2}}{r_{C}}= \\
& -\frac{1}{2}\left[\frac{P^{*}}{r} \cos -\frac{P^{*}}{N}+r^{\rho} \frac{1 \theta}{z}\left(\frac{1}{r} \frac{d\left(r V_{\theta}^{\prime}\right)}{d t}\right) \sin \alpha\right] \tag{A.31}
\end{align*}
$$

Multiplying Equation (A.27) by $\cos \alpha$
$\frac{d V_{M}}{d t} \sin u \cdot \cos +\frac{\left(V_{M} \cos u\right)^{2}}{r_{C}}-\frac{V_{\theta}{ }^{2}}{r} \cos \alpha=$

$$
\begin{equation*}
-\frac{1}{r}\left[\frac{\rho^{*}}{r r} \cos \theta+r^{\rho} \frac{\beta}{r}\left(\frac{1}{r} \frac{\left(r^{\prime}\right)}{t}\right) \cos u\right] \tag{A.32}
\end{equation*}
$$

Subtracting Equation (A.31) from (A.32)
$\frac{v_{M}^{2}}{r_{c}}-\frac{v_{\theta}^{2}}{r} \cos \alpha=-\frac{1}{r} \frac{P^{*}}{N}+\frac{1}{\rho r}\left(r^{\rho} \frac{\rho \theta}{z} \sin -r^{\rho} \frac{\rho \theta}{r} \cos \right)\left(\frac{d\left(r V^{\prime}\right)}{d t}\right)$
From Figure $A .3$ the velocity along the stream sheet streamline V is related to the projected velocity V_{M} and the velocity V_{θ}^{\prime} by

$$
\begin{gather*}
V_{M}=V \cos \beta \tag{A.34}\\
V_{\theta}=V \sin 3 \text { or } V_{e}^{\prime}=v \sin 3+i v r
\end{gather*}
$$

($\because 30)$
Equation (A.33) becomes

$$
\begin{gather*}
\frac{(V \cos \beta)^{2}}{r_{c}}-\frac{(V \sin B+w)^{2}}{r} \cos u=-\frac{1}{N}+\left\{\frac{P \cos \}}{n}\right\} \\
{\left[\left(r^{\rho} \frac{\theta \theta}{z} \sin a-r \frac{\rho \theta}{r} \cos 0\right)\left(\frac{d v_{\theta}}{d M}+\frac{V \sin r \cdot \sin \theta}{r}+2 \theta \sin \right)\right]} \tag{A.36}
\end{gather*}
$$

Multiplying Equation (A.4) by $V_{r}=\frac{d r}{d t}$, Equation (A.5) by $V_{\theta}=r \frac{d \theta}{d t}$, and Equation (A.6) by $V_{z}=\frac{d z}{d t}$ yields:

$$
\begin{align*}
& v_{r} \frac{d v_{r}}{d t}-\frac{v_{r}\left(v_{\theta}+u r\right)^{2}}{r}=-\frac{1}{r} \frac{p p}{\partial t} \tag{A.37}\\
& V_{\theta} \frac{d V_{\theta}}{d t}+\frac{V_{r} V_{\theta}^{2}}{r}+2 \omega V_{r} V_{\theta}=-\frac{1}{r} \frac{\mathrm{P}}{t} \tag{A.38}\\
& V_{z} \frac{\Delta V_{z}}{t}=-\frac{1}{t} \tag{A.39}
\end{align*}
$$

Adding the above three equations,

$$
\begin{gather*}
v_{r} \frac{d v_{r}}{d t}-\frac{v_{r} \omega^{2} r^{2}}{r}+v_{\theta} \frac{d v_{\theta}}{d t}+v_{z} \frac{d v_{z}}{d t}=-\frac{3}{r t} \tag{A.40}\\
v^{2}=v_{r}^{2}+v_{\theta}^{2}+v_{z}^{2} \tag{A.41}
\end{gather*}
$$

and

$$
\begin{align*}
& \frac{d V^{2}}{d t}= 2 V_{r} \frac{d V_{r}}{d t}+2 V_{\theta} \frac{d V_{\theta}}{d t}+2 V_{z} \frac{d V_{z}}{d t} \tag{A.42}\\
& \therefore \frac{1}{2} \frac{d V^{2}}{d t}-V_{r} w^{2} r=-\frac{3}{\rho} \frac{d P}{d t} \tag{A.43}
\end{align*}
$$

Integrating Equations (A.42) and (A.43) along a streamline between a station in the rump inlet, i, and a point in the pump

$$
\begin{equation*}
\frac{1}{2}\left(v^{2}-v_{i}^{2}\right)-\frac{\omega^{2}}{2}\left(r^{2}-r_{i}^{2}\right)=-3 \int_{i} \frac{d P}{\rho} \tag{A.44}
\end{equation*}
$$

But

$$
\begin{align*}
v^{\prime} & =v_{\theta}^{\prime 2}+v_{r}^{2}+v_{z}^{2} \tag{A.45}\\
v_{t}^{\prime} & =v_{\theta}^{\prime}+\omega r \tag{A.46}\\
\therefore V^{\prime 2} & =v_{t}^{2}+v_{r}^{2}+v_{z}^{2}+2 \omega r V_{\theta}+\omega^{2} r^{2} \tag{A.47}\\
v^{\prime 2} & =v^{2}+2 \omega r V_{\theta}+\omega_{r}^{2} r^{2} \tag{A.48}\\
v^{\prime 2} & =v^{2}+2 \omega r V_{\theta}^{\prime}-\omega^{2} r^{2} \tag{A.49}
\end{align*}
$$

and along a streanline Bernoulli's equation is

$$
\begin{equation*}
P_{t}=P+\frac{1}{2} \rho V^{2} \tag{A.50}
\end{equation*}
$$

II: = const: Fquation (A.44) can be written

$$
\begin{equation*}
\frac{V^{2}}{2}-\frac{L^{2} r^{2}}{2}+\frac{{ }^{2}+r V_{\theta}}{2}-\frac{3 P_{t_{i}}}{\rho}=-\frac{3 P}{\rho} \tag{A.51}
\end{equation*}
$$

Taking the derivative of Equation (A.S1) with respect to N

$$
\begin{equation*}
V \frac{d V}{d N}-\omega^{2} r \frac{d r}{d N}+\omega \frac{d}{d N}\left(r V_{\theta}^{\prime}\right)-\frac{3}{2} \frac{t_{i}}{\partial N}=-\frac{3}{\rho} \frac{\partial P}{\partial N} \tag{A.52}
\end{equation*}
$$

Substituting Equation (A.52) into Equation (A.36)

$-3 \frac{V \cos }{\sigma}\left(r \frac{\rho \theta}{d z} \sin \alpha-r \frac{\rho \theta}{\partial r} \cos \theta\right)\left(\frac{d V}{d M}+\frac{V \sin \beta \sin \theta}{r}+2 \sin \alpha\right)(A .53)$

Equation (A.53) combined with hub ard shroud boundary conditions, inlet conditions, and the continuity equation in the form:

$$
\begin{equation*}
\frac{\dot{W}}{N_{b}}=\int_{N_{1}}^{N_{2}} \int_{\theta_{S}}^{\theta} \mathrm{P} \tag{A.54}
\end{equation*}
$$

where: $\dot{W}=$ Lotal pump flow rate
$N_{1}, N_{2}=$ streamline numbers
${ }_{\mathrm{A}}=\theta$ on pressure surface of blade
$u_{s}=H$ on suction surface of adjacent blade
$\mathrm{N}_{\mathrm{L}} \quad=$ number of blades
provides a solution to the incompressible flow problem in the meridional plane. The solution involves the numerical integration of Equations (A.53) and (A.54) from streamline to streamline in the meridional plane.

APPENDIX B

Growth of a Thermal Cavitation Bubble

A thermal cavitation bubble appears in a turbopump when the local static pressure drops below the vapor pressure of the $1 \mathrm{iq}-$ uid. The bubble growth begins either on a small gas nucleus lodged in the walls of the fluid container, on dust and colloidal matter suspended in the media, or on a small bubtole of contaminant gas free in the iluid. Bubble growth is dur to ossentialiy three mechanisms. Eirst, additional contaminant gas can diftuse into the bubble; second the bubble grows because of a decrease in ambient pressure; and third, growth results from a phase change occurring at the bubble wall.

The initial nucleus is composed solely of contaminant gases or a mixture of contaminant gas and liquid vapor. The effect of the initial contaminant gas and the additional contaminant gas that diffuses into the nucleus during its growth is important only during the initial stages of growth. Due to the large surface tension force, the initial growth of tiv bubible is slow. However, once the bubble radius has increased by an order of magnitude, the presence of the contaminant gases is relatively unimportant.

The flow of fluid surrounding a single bubble can be treated as incompressible and irrotational and, hence, can be described by a potential function, γ

$$
\begin{equation*}
-\frac{r}{r}=\dot{r} \tag{B.1}
\end{equation*}
$$

where r is the radius from the center of the bubble to any point in the fluid and \dot{r} is the velocity of the fluid at that point. The boundary conditions $\dot{x}=\dot{R}$ at $r=R$, where R is the bubble radius, and $\dot{r}=0$ at $r=\infty$ establish the potential function to be

$$
\begin{equation*}
V=\frac{\mathrm{R}^{2} \cdot \dot{\mathrm{R}}}{\mathrm{r}} \tag{B.2}
\end{equation*}
$$

Since the fluid is considered incompressible with gravita-
 pears oniy as a chatnge in kinetic entrgy ol the thad bramodiat the bubble. The inctement of work done by the bubble in expand ing from R to $R+\Delta R$ is

$$
\begin{equation*}
\Delta W=\Delta P \cdot 41 \cdot R^{2} \cdot A R \tag{B.3}
\end{equation*}
$$

where

$$
A P=P_{R}-P_{\infty}
$$

In terms of the rate of change of work with respuct to k

$$
\begin{equation*}
\frac{d W}{d R}=\left(P_{R}-P_{\infty}\right) \cdot 4 \pi R^{2} \tag{B.4}
\end{equation*}
$$

The kinetic energy of the fluid between k and r is

$$
\begin{equation*}
K E=\frac{1}{2} m v^{2}=\frac{1}{2} \int_{R}^{r} 4 \pi \mu L^{2} r^{2} d r \tag{B.5}
\end{equation*}
$$

where p_{L} is the mass density of the liquid.
But from Equation (B.2)

$$
\begin{gather*}
\dot{\mathrm{r}}=-\frac{\mathrm{r}}{\mathrm{r}}=\frac{\mathrm{R}^{2} \dot{\mathrm{R}}}{\mathrm{r}^{2}} \tag{5.6}\\
\therefore K E=2 \pi L_{L} R^{4} \dot{R}^{2} \int_{R}^{r} \frac{\mathrm{dr}}{r^{2}} \tag{3.7}
\end{gather*}
$$

or

$$
\begin{equation*}
K E=2 \pi \rho_{L} R^{4} \dot{R}^{2}\left(\frac{1}{R}-\frac{1}{r}\right) \tag{B.8}
\end{equation*}
$$

letting $r \rightarrow \infty$

$$
\begin{equation*}
K L=2 \pi_{\mathrm{L}} \mathrm{R}^{3} \dot{R}^{2} \tag{3.9}
\end{equation*}
$$

The rate of change ol kinetic energy with respect to R is:

$$
\begin{equation*}
\frac{d}{d R}(K E)=2 \pi \mathrm{~L} \frac{\mathrm{~d}}{\mathrm{dR}}\left(\mathrm{R}^{3} \mathrm{R}^{2}\right) \tag{B.10}
\end{equation*}
$$

Setting Equation (B.4) fqual to Equation (B.10)

$$
\begin{equation*}
\left(\mathrm{P}_{\mathrm{R}}-\mathrm{P}_{\mathrm{B}}\right) 4 \pi \mathrm{R}^{2}=2 \pi \mu \mathrm{~L} \frac{\mathrm{~d}}{\mathrm{dR}}\left(\mathrm{R}^{3} \mathrm{R}^{2}\right) \tag{B.11}
\end{equation*}
$$

But

$$
\begin{align*}
\frac{d}{d R} & =\frac{d t}{d R} \cdot \frac{d}{d t}=\frac{1}{R} \frac{d}{d t} \\
\therefore \frac{P_{R}-P}{L} & =\frac{1}{2 R^{2} \dot{R}} \frac{d}{d t}\left(R^{3} \dot{R}^{2}\right) \tag{B.12}
\end{align*}
$$

Equation (B.12) theretore, is the equation of motion governing bubble growth. The same results can be obtained starting with the Bernoulli equation

$$
\begin{equation*}
\frac{P-P_{x}}{\rho_{L}}=\frac{2}{2} \dot{r}^{2}+\frac{\mu^{\prime}}{t} \tag{B.13}
\end{equation*}
$$

The temperature at the bubble wall will be controlled by the evaporation process. Jf it is assumed that the pressure in the bubble is uniform and at the vapor pressure, P_{V}, of the liquid corresponding to the lemperature at the bubble wall, then P_{R} is related to P_{v} by:

$$
\begin{equation*}
P_{R}=P_{V}-2 \frac{S}{R} \tag{B.14}
\end{equation*}
$$

where a is the surface tension of the fluid

$$
\begin{equation*}
\therefore \frac{1}{2 R^{2} \dot{R}} \frac{d}{d!}\left(R^{3} \dot{R}^{2}\right)=\frac{1}{L_{L}}\left(P_{v}-P_{\infty}-\frac{20}{R}\right) \tag{B.15}
\end{equation*}
$$

If the boiling curve of a fluid is linear or nearly so over the region in which bubble growth takes place, the saturation pressure P_{S} can be related to the saturation temperature T_{S} by

$$
\begin{equation*}
\mathrm{P}_{\mathrm{s}}=\mathrm{A} \cdot \mathrm{~T}_{s}+\mathrm{B} \tag{B.16}
\end{equation*}
$$

r. . Pr be expresed as

$$
\begin{equation*}
P_{v}-P_{N}=A\left(T_{K}-T_{0}\right)+A\left(T_{0}-T_{P_{01}}\right) \tag{B.17}
\end{equation*}
$$

Whr: 1_{0} is the fluid temperature a great distance from the bubte ind T_{i}, is the saturat ion temperature corresponding to Abr : bne dumadent ambent mossume.

Equation (B .15) then becomes

$$
\begin{equation*}
\frac{i}{2 R^{2} \dot{R}} \frac{d}{d t}\left(R^{3} \cdot \dot{R}^{2}\right)=\frac{A}{L}\left[\left(T_{R}-T_{0}\right)+\left(T_{0}-T_{P_{\infty}}\right)\right]-\frac{2 \sigma}{P_{L} R} \tag{B.18}
\end{equation*}
$$

If it is assumed that the temperature a great distance from the bubble, T_{o}, remains constant during bubble growth the quantity Γ_{R}. I_{0} can be obtained from the solution to the problem of nonsteady heat diffusion with boundary motion of Plesset and Zwick (Reference 16). The equations will not be derived here. However, the firal resul.ts can be expressed by the following equation:

$$
\begin{equation*}
T_{R}-T_{0}=-\left(\frac{D}{x}\right)^{\frac{i}{2}} \int_{0}^{t} \frac{R^{2}(x) \cdot(0 T / 0 r)_{r=R}(x)}{\left[\int_{x}^{L} R^{4}(y) d y\right]^{\frac{L}{2}}} d x \tag{B.19}
\end{equation*}
$$

wher. I is the thermal diffusivity of the fluid and the variable y is associated with a translation of the time axis. The derivative (M / r) is the temperature gradient at the bubble wall. Equation (B.18) is then

$$
\begin{equation*}
\frac{1}{2 R^{2} R} \frac{d}{d t}\left(R^{3} R^{2}\right)=\frac{A}{Q_{L}}\left(T_{0}-T_{p_{\infty}}\right)-\frac{A}{p_{L}}\left(\frac{1}{t}\right)^{\frac{1}{2}} \int_{0}^{t} \frac{R^{2}(x) \cdot(\partial T / \partial r)_{r=R(x)}}{\left[\int_{x}^{t} R^{4}(y) \cdot d y\right]^{\frac{L}{2}}} d x-\frac{2 \sigma}{\rho_{L} R} \tag{B.20}
\end{equation*}
$$

The temperature gradient at the bubble wall can be oblained
 bubble wall per unit time is:

$$
\begin{equation*}
\dot{Q}=4 \pi R^{2} k\left(\frac{T}{1 .}\right)_{r=R} \tag{B.21}
\end{equation*}
$$

where k is the thermal conductivity.
This heat goes into vaporizing liguid at a rate

$$
\begin{equation*}
\frac{d m}{d t}=\frac{\dot{Q}}{L} \tag{B.22}
\end{equation*}
$$

where L is the latent heat of vaporization.

The rate at which liquid is evaporated is equal to the rate of mass addition to the bubble:

$$
\begin{equation*}
\frac{\mathrm{dm}_{\mathrm{L}}}{\mathrm{dt}}=\frac{\mathrm{dm}}{\mathrm{dt}} \tag{B.23}
\end{equation*}
$$

where $m_{v}=$ mass of vapor
but

$$
\begin{equation*}
u_{v}=(4 / 3) v R^{3} v \tag{B.24}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{d m}{d t}=(4 / 3) \cdot \frac{d}{d t}\left(R^{3} P_{v}\right)=(4 / 3):\left(3 R^{2} \cdot \dot{R} \cdot 0_{v}+R^{3} \dot{b}_{v}\right) \tag{B.25}\\
& \therefore \frac{4 \pi R^{2} k}{L}\left(\frac{T}{r}\right)_{r=R}=(4 / 3) \pi\left(3 R^{2} \cdot \dot{K} \cdot v_{v}+R_{v}^{3}\right) \tag{B.26}
\end{align*}
$$

or

$$
\begin{equation*}
\left(\frac{\mathrm{T}}{\mathrm{r}}\right)_{r=R}=\frac{L}{k} \rho_{v} \cdot \dot{R}+\frac{L R}{3 k} \dot{\rho}_{v} \tag{B.27}
\end{equation*}
$$

The growth of a vapor bubble under conditions of variable ambient pressure and variable vapor density is described by a solution to Equations (B.20) and (B.27).

APPENDIX C
 Simplified Post Pod System Transfer Factions

A simplified analytical model of the S-II inboard LOX suction line with the bypass pulse line is shown in Figure C.1. Solution of these equations give the following transfer functions:

$$
\begin{align*}
& \frac{\partial \mathrm{P}_{\mathrm{s}}}{\partial \dot{\mathrm{~W}} \mathrm{p}}=\frac{-\mathrm{I}_{1}}{\left(1+2 \frac{\mathrm{~S}}{\omega}+\frac{\mathrm{s}^{2}}{\omega^{2}}\right)} \tag{C.1}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial P_{1}}{\partial P \mathrm{P}}=\frac{\partial P_{s}}{\partial P_{p}}\left(1+\frac{\mathrm{S}^{2}}{\omega_{0}^{2}}\right) \tag{0.3}
\end{align*}
$$

$$
\begin{aligned}
& \text { where } I=\ell / \mathrm{Agc} \\
& \text { (1) }^{2}=1 /\left[\mathrm{C}\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)\right] \\
& \omega_{1}^{2}=1 /\left[\mathrm{C}\left(\mathrm{I}_{1 \mathrm{p}}+\mathrm{I}_{2}\right)\right] \\
& { }_{0}{ }^{2}{ }^{2}=1 / \mathrm{CI}_{2} \\
& I_{1 p}=I_{1} I_{p} /\left(I_{1}+I_{p}\right) \\
& \varepsilon=1 / 2 \omega\left(I_{1}+I_{2}\right) \frac{\partial \mathrm{Wu}}{\partial \mathrm{Ps}}
\end{aligned}
$$

$$
\begin{aligned}
\ddots_{1} & =1 / 2 \omega_{1}\left(I_{1 p}+I_{2}\right) \frac{\partial \dot{W} d}{\partial \mathrm{Ps}} \\
\frac{\partial \dot{W} d}{\partial \mathrm{Ps}} & =\text { engine flow transfer function }
\end{aligned}
$$

The true system transfer function of suction pressure with rospect to pump accoleration is:

$$
\begin{equation*}
\frac{\partial \rho_{5}}{\partial 5}=\frac{-\left(1+I_{2}\right) \rho \mathrm{Agc}}{\left(1+26 \frac{S}{\omega}+\frac{\mathrm{S}_{2}^{2}}{\omega^{2}}\right)} \tag{C.4}
\end{equation*}
$$

and, thorefore, the only test transfer function that has the right dynamics (correct natural frequency) is $\partial P s / \partial \dot{W} p$. However, sinco pulsur flow accoloration is not easy to measure accurately, frequency can also be determined from ∂ Ps/ ∂P p if the proper corroction is applior. For tho S-II inboard LOX line, the natural resonance of thw $\partial \mathrm{Ps} / \partial \mathrm{Pp}$ transfer function will be approximately 5\% too high. This is judependent of where the line pressure is measurad except as the pressure transducer moves up the line an anti-rusonance will approach the resonance from above.

For other tost configurations, the $\partial \mathrm{Ps} / \partial \mathrm{Pp}$ transfer function will give approximatoly the correct natural frequency provided that the pulser line inertance (from the suction line to the pressure transducor) is large relative to the inertance in the suction line between the tank and pulser line.

FIGURE C. 1 Siaplified Suction Line Model for Pulse Test

$$
\begin{aligned}
& \text { Equations } \\
& I_{1} w_{1} s^{2}=-P_{1} \\
& I_{p} w_{P} s^{2}=P_{1}-P_{p} \\
& I_{2} w_{2} s^{2}=P_{1}-P_{s} \\
& w_{2}-w_{d}=C P_{s} \\
& w_{1}=w p+w_{2} \\
& \text { Approximate } V_{\text {alues }} \\
& I_{1}=.0173 \mathrm{sec}^{2} / \mathrm{in}^{2} \\
& I_{2}=.00107 \mathrm{sec}^{2} / \mathrm{in}^{2} \\
& I_{p}=.01 \mathrm{sec}^{2} / \mathrm{in}^{2}
\end{aligned}
$$

APPENDIX 1

The turbopump cavitation Elow progran has been written in the Fortran IV program language for the Col ouno serjes computer. The program is made up of a main contsolling program and seven subroutines. The main program contro!s the sequence of solution steps and the adjustment or landary conditions to meet proper inlet and exit tlow conditions.
 data, sets up the grid systom, and establisios initan wstimates of the streamfunction at each grid point. Subroutino RELAX is used next to solve the llow and thergy equations throughout the field. This solution is accomplished by applying relaxation techmiques to a finite difference form of the equations. The first series of relaxatim solutions is done with the density throughout the field set rqual to the liquid density. This solution is referred to as the incompressible or uncoupled solution. The relaxation solution is then continued with the completely coupled two phase fow equations. Following this solution, boundary conditions are checked, adjusted, and the relaxation solution repeated antil the proper inlet and exit conditions are satisfica. The last operation of the programprepares and print ont tine outpnt data.

Subroutine TABL is an interpolation subroatine used by the main program and many of the subrount incs. Subroutine PREWRT prepares the output data for printing mile subroutine SETUP prepares the output data For compater plotiong. Subroutines WRTOUT and PLOTY rosperiturl do the riting and plotting of the output.

A flow diagram for the program is given in Figure D.l. With the exception of the plotting capabilitius, this program should be compatible with any computer wich has a FORTRAN IV compiler. The plotting routines are documentrd in Reference 55. The routine ALIFILE is required on the CDC 6000 computer so that the LAPE9 buffer area may also be msod for TAPE10 through TAPE99.

The problem solution is initiated by plottimg the inducer or impeller blade sections (Figures 5.3 and 5.4) and the relationship between density and pressure for equilibrium
phase changes (Figure 3.7). All input variables are defined in the program listing of subroutine PEFR (Appendixit). Inpet dimensions and intemal program variables are stmotry tiguxes D. 2 through D.4.

Parts of a sample output from the turbopump cavitation flow program are presented at the end of this Appendix. jhe first data printed is the input data. Next is a tabulation of the iterations required for solution along with the value of the maximum residual (RESIM) throughout the field for fach iteration. Following the last iteration, which corresponds to the uncoupled solution, the pressure and density is printed wat at each grid point in the system. The next item to he prineed (volume) is the weight of propellant in the streansheet analyzed. Finally, for the uncoupled solution the values of the stemfunction, \forall, theta, θ, potential [unction, ϕ, circumerential velocity, V, and meridional velocity, U, are printed for increments along the E axis. At this point the solution is continued on a coupled basis and the pressure data printed out for each iteration. After the final iteration of the coupled solution the pressure field, the weight of fluid in the streamsheet, and the streamfunction - velocity fields are printed out.

$R P=$	0.	THETP =	2.0944	$E P 2=$	0.
$R P=$.1530	THETP \#	2.1681	$E P 2=$. 1530
$R P=$. 2430	THETP $=$	2.2818	$E P 2=$	- 2430
QP =	.3300	THETP	2.3756	EP2 $=$	- 3300
RW =	.4090	THETP $=$	2.4693	EP2 =	. 4090
RP $=$.4840	THETP $=$	2.5630	$E P 2=$	- 4840
RP $=$.5510	THETP =	2.6568	$E P 2=$. 5510
RP $=$.6180	THETP =	2.7505	$E P 2=$. 6180
RF $=$.6810	THETP =	2.8442	$E P 2=$. 6810
$R P=$.7440	THETP =	2.9379	EP2 =	- 7440
$R P=$.8050	THETP =	3.0317	$E P 2=$. 8050
$R P=$.8670	THETP	3.1254	EP2 $=$	- 8670
$R P=$.9280	THETP =	3. 2191	$E P 2=$	-9280
$R P=$.9890	THETP =	3.3128	EP2 =	-9890
$R P=$	1.0500	THETP $=$	3.4066	EP2 =	1.0500
$R P=$	1.1100	THETP $=$	3.5003	$E P 2=$	1. 1100
$R P=$	1.1710	THETP =	3.5940	$E P 2=$	1.1710
$R P=$	1.2310	THETP $=$	3.6878	$E P 2=$	1. 2310
$R P=$	1.2910	THETP $=$	3.7815	$E P 2=$	1.2910
$R P=$	1.3510	THETP $=$	3.8752	$E P 2=$	1.3510
$R P=$	1.4100	THETP \times	3.9689	EP2 =	1.4100
$R P=$	1.4700	THETP =	4.0627	$E P 2=$	1.4700
RF $=$	1. 5290	THETP =	4.1564	$E P 2=$	1.5290
$R P=$	1.5880	THETP *	4.2501	EP2 =	1.5880
$R P=$	1.6470	THETP =	4.3438	$E P 2=$	1.6470
$R P=$	1.7050	THETP \ddagger	4.4376	$E P 2=$	1.7050
$R P=$	1.7640	THETP $=$	4.5313	$E P 2=$	1.7640
$R P=$	1.8220	THETP *	4.6250	$E P 2=$	1.8220
$R \mathrm{P}=$	1.8800	THETP =	4.7188	$E P 2=$	1.8800
$R P=$	1.9380	THETP =	4.8125	$E P 2=$	1.9380
$R P=$	1.9960	THETP $=$	4.9062	EP2 $=$	1. 9960
$R P=$	2.0540	THETP	4.9999	EP2 =	2. 0540
RF $=$	2.1120	THETP =	5.0937	$E P 2=$	2. 1120
$R P=$	2.1690	THETP $=$	5.1874	$E P 2=$	2.1690
$R P=$	2.2270	THETP =	5.2811	EP2 =	2. 2270
$R P=$	2.2840	THETP	5.3748	$E P 2=$	2. 2840
$R P=$	2.3410	THETP =	5.4686	$E P 2=$	2.3410
$R P=$	2.3980	THETP $=$	5.5623	$E P 2=$	2.3980
$R P=$	2.4540	THETP	5.6560	$E P 2=$	2.4540
$R P=$	2.5070	THETP \pm	5.7498	$E P 2=$	2. 5070
$R P=$	2.5590	THETP =	5.8435	$E P 2=$	2. 5590
$R P=$	2.6100	THETP F	5.9372	$E P 2=$	2.6100
$R P=$	2.6560	$\text { THETP }=$	6.0309	$E P 2=$	2. 6560
$R P=$	2.6990	$\text { THETP }=$	6.1247	$E P 2=$	2.6990
$R P=$	2.7370	$\text { THETP }=$	6.2184	EP2 =	2.7370
$R P=$	2.7720	THETP $=$	6.3121	$E P 2=$	2.7720
$R P=$	2.8010	THETP $=$	6.4058	$E P 2=$	2.8010
$R P=$	2.8270	THETP $=$	$6.499 E$	EP2 =	2.8270
$R P=$	2.8510	THETP $=$	6.5933	EP2 $=$	2.8510
R $\boldsymbol{P}=$	2.8710	THETP =	6.6870	$E P 2=$	2.8710
$8 \%=$	2.8880	THETP =	6.7808	$E P 2=$	2.8880

$\mathrm{RC}=$	0.	THETC =	0.	EC1	0.
$\mathrm{RC}=$. 0920	THETC =	.0937	EC1 $=$. 0920
$R \mathrm{C}=$.1540	THETC \#	. 1874	EC1 $=$. 1540
$\mathrm{RC}=$.2170	THETC	. 2812	ECI	. 21.70
RC =	. 2790	THETC =	. 3749	EC1	. 2790
RC $=$.3400	THETC =	. 4686	EC1 $=$. 3400
RC $=$.4000	THETC =	. 5624	EC1	. 4000
RC $=$. 4620	THETC =	. 6561	EC1	- 4620
$\mathrm{RC}=$. 5220	THETC $=$. 7498	EC1	. 5220
$\mathrm{RC}=$. 5820	THETC $=$. 8436	EC1	. 5820
$\mathrm{RC}=$. 6430	THETC \#	. 9373	EC1	. 6430
RC $=$. 7030	THETC =	1.0310	EC1	. 7030
$\mathrm{RC}=$. 7630	THETC =	1.1247	EC1	. 7630
RC $=$. 8230	THETC $=$	1.2184	EC1	- 8230
RC $=$. 8820	THETC =	1.3122	ECi	- 8820
RC	.9420	THETC =	1.4059	EC1	- 9420
$\mathrm{RC}=$	1.0010	THETC =	1.4996	EC1	1.0010
$\mathrm{RC}=$	1.0590	THETC =	1.5934	EC1	1. 0590
$\mathrm{RC}=$	1.1180	THETC $=$	1.6871	EC1	1.1180
$\mathrm{RC}=$	1.1760	THETC =	1.7808	EC1 =	1. 1760
RC =	1.2350	THETC =	1.8746	EC1 $=$	1. 2350
$\mathrm{RC}=$	1.2930	THETC =	1.9683	EC1 $=$	1.2930
$\mathrm{RC}=$	1.3500	THETC =	2.0620	EC1 $=$	1.3500
RC	1.4080	THETC =	2.1557	EC1 $=$	1.4080
$\mathrm{RC}=$	1.4650	THETC \#	2.2494	EC1 $=$	1.4650
$\mathrm{RC}=$	1.5220	THETC =	2.3432	EC1 =	1.5220
$\mathrm{RC}=$	1.5790	THETC -	2.436 c	EC1	1.5790
$\mathrm{RC}=$	1.6360	THETC =	2.5306	EC1 $=$	1.6360
RC	1.6930	THETC =	2.6244	EC1 $=$	1.6930
$\mathrm{RC}=$	1.7490	THETC =	2.7181	EC1 $=$	1.7490
$\mathbf{R C}=$	1.8050	THETC =	2.8118	EC1 $=$	1.8050
$\mathrm{RC}=$	1.8610	THETC =	2.9056	EC1 $=$	1.8610
$\mathrm{RC}=$	1.9170	THETC =	2.9993	EC1 $=$	1.9170
RC	1.9730	THETC =	3.0930	EC1	1.9730
$\mathrm{RC}=$	2.0290	THETC =	3.1867	EC1 $=$	2.0290
$\mathrm{RC}=$	2.0840	THETC =	3.2804	EC1 $=$	2. 0840
RC	2.1390	THETC =	3.3742	EC1 $=$	2. 1390
RC	2.1940	THETC $=$	3.4679	EC1 =	2. 1940
$\mathrm{RC}=$	2.2490	THETC	3.5616	EC1 $=$	2.2490
	2.3020	THETC =	3.6554	EC1 $=$	2. 3020
RC $=$	2.3540	THETC =	3.7491	EC1 $=$	2.3540
$\mathrm{RC}=$	2.4080	THETC =	3.8428	EC1 $=$	2.4080
$\mathrm{RC}=$	2.4600	THETC =	3.9366	EC1 $=$	2.4600
RC =	2.5110	THETC =	4.0303	EC1 $=$	2.5110
RC =	2.5630	THETC =	4.1240	EC1 $=$	2.5630
RC $=$	2.6140	THETC =	4.2177	EC1 $=$	2.6140
$\mathrm{RC}=$	2.6650	THETC =	4.3115	EC1 $=$	2.6650
RC $=$	2.7180	THETC =	4.4052	EC1 $=$	2. 7180
RC =	2.7710	THETC =	4.4989	$E C_{1}=$	2.7710
$\mathrm{RC}=$	2.8260	THETC =	4.5926	EC1 $=$	2.8260
$\mathrm{RC}=$	2.8880	THETC =	4.6854	EC1 $=$	2.8880

$R \mathrm{O}=$	2.4920	BD	$=$	． 1818	SIAJ	$=$.1057	EJ	＝	－1．0830
RO $=$	2.4780	B0	\pm	． 1846	SIAD	$=$	． 1057	ED	＝	－． 9533
RD	2.4640	BD	$=$.1874	SIAD	$=$	． 1057	ED	$=$	－． 8233
RD	2.4500	80	＊	.1903	SIAD	$=$	． 1057	ED	$=$	－． 6.693
RJ＝	2.4370	80	$=$.1931	SIAD	$=$	． 1057	ED	$=$	－． 5633
RD $=$	2.4230	BD	I	.1960	SIAD	＝	.1057	ED	＝	－． 4333
$R \mathrm{R}=$	2.4090	80	＊	.1988	SIAD	$=$.1057	ED	$=$	－． 3033
RD	2.3950	BJ	$=$.2017	SIAJ	$=$	． 1057	EO	$=$	－． 1733
RD $=$	2.3810	BD	＝	． 2045	SIAD	$=$.1057	ED	＝	－． 0433
RD $=$	2.3670	80	I	． 2074	SIAD	$=$.1057	ED	$=$	． 0867
RD	2.3540	80	＝	． 2102	SIAD	$=$.1057	ED	＝	． 2167
RJ $=$	2.3400	80	E	． 2130	SIAD	$=$.1057	ED	＝	． 3467
RO $=$	2.3260	80	$=$	． 2159	SIAD	$=$	． 1057	ED	＝	． 4767
RD $=$	2.3120	80	＝	． 2187	SIAD	$=$.1057	ED	＝	． 6067
RD $=$	2.2980	80	＊	． 2216	SIAJ	$=$.1057	EO	$=$.7367
$\mathrm{RD}=$	2.2850	BD	\pm	． 2244	SIAD	$=$.1057	ED	$=$	． 8667
RD $=$	2.2710	BD	$=$.2273	SIAD	$=$.1057	ED	＝	． 9967
$R \mathrm{D}=$	2.2570	80	$=$.2301	SIAJ	$=$	． 1057	EJ	$=$	1.1270
$R \mathrm{D}=$	2.2430	BD	＊	． 2329	SIAD	$=$	． 1057	ED	＝	1.2570
RD $=$	2.2290	日	＝	． 2358	SIAO	$=$	． 1057	ED	$=$	1.3870
$R \mathrm{D}=$	2.2150	B0	$=$	． 2386	SIAD	$=$	． 1057	ED	＝	1.5170
RJ $=$	2.2020	日	I	． 2415	SIAD	$=$	． 1057	ED	$=$	1.6470
$R \mathrm{D}=$	2.1880	BD	$=$	． 2443	SIAD	$=$	． 1057	ED	$=$	1.7770
RO $=$	2.1740	8D	＝	． 2472	SIAD	$=$	． 1057	ED	＝	1.9070
$R \mathrm{D}=$	2.1600	RD	＝	.2500	SIAD	$=$	． 1057	ED	$=$	2.0370
RJ $=$	2.1460	80	z	． 2528	SIAD	$=$	． 1057	ED	$=$	2.1670
RO＝	2.1330	BD	\＃	． 2557	SIAD	$=$	． 1057	ED	$=$	2.2970
$\mathrm{RD}=$	2.1190	80	ε	． 2585	SIAD	$=$	． 1057	ED	$=$	2.4270
RJ $=$	2.1050	8）	＝	． 2614	SIAJ	$=$.1057	ED	$=$	2.5570
RD $=$	2.0910	BD	＝	． 2642	SIAD	$=$	． 1057	ED	$=$	2.6870
RO $=$	2.0770	B0	＝	． 2671	SIAD	$=$	． 1057	ED	$=$	2.8170
$R \mathrm{D}=$	2.0630	BD	$=$	． 2699	SIAD	$=$	． 1057	ED	$=$	2．9470
$\mathrm{RD}=$	2.0500	日	$=$	． 2727	SIAD	$=$.1057	ED	$=$	3.0770
$\mathrm{RD}=$	2.0360	8D	$=$	． 2756	SIAD	$=$	． 1057	ED	$=$	3.2070
RD $=$	2.0220	BD	$=$	． 2784	SIAD	$=$.1057	ED	$=$	3.3370
RO $=$	2.0080	8）	$=$	． 2813	SIAJ	$=$	． 1057	EJ	$=$	3.4670
RO $=$	1.9940	80	＝	． 2841	SIAD	$=$	． 1057	ED	$=$	3.5970
$\mathrm{RD}=$	1.9810	80	$=$.2870	SIAD	$=$	． 1057	ED	＝	3.7270
$R D=$	1.9670	80	＝	． 2898	SIAD	$=$	． 1057	ED	$=$	3.8570
RO $=$	1.9530	80	\pm	． 2926	SIAD	$=$	． 1057	ED	$=$	3.9870
RO $=$	1.9390	80	＝	． 2955	SIAD	$=$	． 1057	ED	＝	4.1170
$R \mathrm{D}=$	1.9250	8 D	$=$.2983	SIAD	$=$	． 1057	ED	$=$	4.2470
$R \mathrm{D}=$	1.9120	BD	＝	.3012	SIAD	$=$	． 1057	EO	$=$	4.3770
RJ $=$	1.8980	80	$=$	． 3040	SIAO	$=$.1057	ED	$=$	4.5070
RD x	1.8840	BD	$=$.3069	SIAD	$=$.1057	ED	$=$	4.6370
$R \mathrm{D}=$	1.8700	80	$=$	． 3097	SIAD	$=$.1057	ED	$=$	4.7670
$R D=$	1.8560	BD	$=$	． 3126	SIAD		.1057	ED	$=$	4.8970
RJ $=$	1.8420	BJ	＝	． 3154	SIAO	$=$	． 1057	ED	$=$	5.0270
RD $=$	1.8290	BD	＊	． 3182	SIAD	$=$.1057	ED	$=$	5.1570
RD $=$	1.8150	日	$=$	． 3211	SIAD	$=$	． 1057	ED	$=$	5.2870
$R \mathrm{D}=$	1.8010	90	$=$	． 3239	SIAD	$=$	． 1057	ED	$=$	5.4170

GEGIN MA	N PROGRAM I	INCREMENT	THETA	AND	THEN E
STEP NO.	ONE COMPLETE	E I NCREME	ENT E	AND	THEN THETA
ITERATION	NUMBER =	1	RESIM	$=$	11.5183
TEREYTON	NLJMER =	2	RESIM	$=$	2.6713
ITERATION	NUMEER	3	RESIM	=	. 9615
ITERATION	NUMBER	4	RESIM	$=$.6371
ITERATION	NUMBER	5	RESIM	\pm	. 4649
IYERATION	NUMBER	6	RESIM	$=$	-3882
ITERATION	NUMEER	7	RES IM	\#	. 3439
ITERATION	NUMBER	8	RES IM	$=$	- 3052
ITERATION	NUMEER	9	RES IM	$=$. 2712
ITERATION	NUMBER	10	RESIM	$=$. 2415
ITERATIOA	NUMEER	11	RES IM	$=$. 2154
ITERATION	NUMBER	12	RESIM	$=$. 1925
	VTHTA =	440.59			
ITERATION	NUMBER =	13	RESIM	$=$	-2308
ITERATION	NUMBER =	14	RESIM	$=$. 2106
ITERATION	NUMEER	15	RES IM	$=$. 1729
	VTHT2 =	477.00			
ITERATION	NUMBER =	16 R	RES IM	$=$	1.9332
ITERATION	NUMBER =	17 R	RESIM	=	1.2643
ITERATION	NUMBER	18 R	RESIM	$=$. 8813
ITERATION	NUMBER	19 R	RESIM	$=$.6690
ITERATION	NUMBER	20 R	RESIM	=	. 5466
ITERATION	NUMBER	21 R	RESIM	$=$. 4789
ITERATION	NUMEER	22 R	RESIM	$=$	-4181
ITERATION	NUMBER	23 R	RESIM	$=$	-3659
ITERATION	NUMEER	24 R	RESIM	=	-3219
ITERATION	NUMBER =	25 R	RESIM	$=$. 2852
ITERATION	NUMBER	26 R	RES IM	$=$. 2607
ITERATION	NUMBER	27 R	RESIM	$=$. 2377
ITERATION	NOMEER	28 R	RESIM	$=$. 2166
ITERATION	NUMEER =	29 R	RESIM	$=$. 1974
ITERATION	NUMEER =	30 R	RESIM $=$	$=$. 1801
	VTHT2 =	683.58			
ITERATION	NUMBER =	31 R	RESIM	$=$	1.4799
ITERATION	NUMBER	$32 \cdot \mathrm{R}$	RESIM	$=$. 9777
ITERATION	NUMBER	33 R	RESIM	$=$. 6876
ITERATION	NUMBER	34 R	RESIM	$=$. 5268
ITERATION	NUMBER	35	RESIM	=	. 4431
ITERATION	NUMBER	36 R	RESIM	$=$. 3907
ITERATION	NUMBER	37 R	RESIM	$=$	- 3433
ITERATION	NUMBER	38 R	RESIM	$=$	- 3025
ITERATION	NUMBER	39 R	RESIM	$=$. 2680
ITERATION	NUMBER	40 R	RESIM	$=$. 2430
ITERATION	NUMBER	41 R	RESIM	$=$. 2230
ITERATION	NUMBER	42	RESIM	$=$.2043
ITERATION	NOMEER =	43 R	RESIM		. 1871

P	$=$	$4.6675702 \mathrm{E}+01$	IN	$=$	55	JC		23
p	$=$	-3.4023753E+02	IN	$=$	50	JC	$=$	24
P	$=$	-3.4023753E+02	IN	$=$	50	JC		24
P	$=$	-3.4023753E+02	IN	$=$	50	JC	$=$	24
P	$=$	$3.0468643 E+01$	IN	$=$	51	JC		24
P	$=$	$3.0468643 \mathrm{E}+01$	IN	$=$	51	JC		24
P	$=$	$6.4769333 \mathrm{E}+01$	IN	$=$	52	JC	$=$	24
P	$=$	6.1914359E+01	IN	$=$	53	JC	$=$	24
P	$=$	5.5674399E+ 01	IN	$=$	54	JC	$=$	24
P	=	$5.2196954 \mathrm{E}+01$	IN	$=$	55	JC		24
P	$=$	$5.2196954 \mathrm{E}+01$	IM	$=$	55	JC		24
P	$=$	-3.6635503E+ 02	IN	$=$	50	JC	$=$	25
P	$=$	-3.6635503E+02	IN	$=$	50	JC	$=$	25
P	$=$	-3.6635503E+02	IM	$=$	50	JC	-	25
P	$=$	7.1561888E+01	IN	$=$	51	JC		25
P	$=$	$8.8397838 \mathrm{E}+01$	IN	$=$	52	JC	$=$	25
P	$=$	$7.2384835 E+01$	IN	$=$	53	JC	$=$	25
P	$=$	6.0701382E+01	IN	$=$	54	JC	$=$	25
P	$=$	$5.5440809 \mathrm{E}+01$	IN	$=$	55	J	$=$	25
P	$=$	$5.5440809 \mathrm{E}+01$	IN	$=$	55	JC		25
P	$=$	-1.0906847E+03	IN	$=$	50	JC	$=$	26
P	$=$	$-1.0906847 E+03$	IN	$=$	50	JC	$=$	26
P	=	$-1.0906847 \mathrm{E}+03$	IN	$=$	50	JC	$=$	26
P	$=$	$1.4466197 \mathrm{E}+01$	IN	$=$	51	JC		26
P	$=$	$1.4466197 \mathrm{E}+01$	IN	$=$	51	JC	$=$	26
P	$=$	$1.4466197 E+01$	IN	$=$	51	JC	$=$	26
P	$=$	$7.5372255 E+01$	IN	$=$	52	JC	$=$	26
P	=	$6.7070811 \mathrm{E}+01$	IN	$=$	53	JC	$=$	26
P	$=$	5.8513096E+01	IM	$=$	54	JC		26
P	$=$	$5.4855696 \mathrm{E}+01$	IN	$=$	55	JC		26
P	$=$	$5.4855696 E+01$	IN	$=$	55	Jc	$=$	26
P	$=$	-1.3379538E+03	IN	$=$	50	JC	$=$	27
P	$=$	-1.3379538E+03	IN	$=$	50	JC		27
P	$=$	-1.3379538E+03	IN	$=$	50	JC		27
p	$=$	-7.7274892E+01	IN	$=$	51	JC	$=$	27
P	$=$	-7.7274892E+01	IN	$=$	51	JC	$=$	27
P	$=$	-7.7274892E+01	IN	$=$	51	JC		27
P	=	3.2876837E+01	IN	$=$	52	JC		27
P	$=$	$3.2876837 \mathrm{E}+01$	IN	=	52	JC		27
P	$=$	$4.8862768 \mathrm{E}+01$	IN	$=$	53	JC		27
P	$=$	$4.8862768 \mathrm{E}+01$	IN	$=$	53	JC	$=$	27
P	$=$	$5.0418879 E+01$	IN	$=$	54	JC	$=$	27
P	$=$	$5.0983057 \mathrm{E}+01$	IN	$=$	55	JC		27
P	$=$	$5.0983057 \mathrm{E}+01$	IN	=	55	JC	$=$	27
	TER	TION NUMBER =	44			$M=$		0.

RHO		$4.1000000 \mathrm{E}-02$
RHO	$=$	$4.1000000 \mathrm{E}-02$
RHO	$=$	$4.1000000 \mathrm{E}-02$
RHO	$=$	6.0000000E-06
RHO	=	$4.1000000 \mathrm{E}-02$
RHO	$=$	$4.1000000 \mathrm{E}-02$
RHO	$=$	$4.1000000 \mathrm{E}=02$
RH 0	$=$	4.1000000 C -02
RHO	$=$	$4.1000000 \mathrm{E}-02$
RHO	$=$	$4.1000000 \mathrm{E}-02$
RHO	$=$	$4.1000000 \mathrm{E}-02$
0	$=$	$4.1000000 \mathrm{E}-02$
RHO		$4.1000000 \mathrm{E}-02$
RHO	$=$	6.0000000E-06
RHO	$=$	$4.1000000 \mathrm{E}-02$
H0	$=$	$4.1000000 \mathrm{E}-02$
RHO	$=$	$4.1000000 \mathrm{E}-02$
RHO	$=$	$4.1000000 \mathrm{E}-02$
RHO		$4.1000000 \mathrm{E}-02$
RHO	$=$	$4.1000000 \mathrm{E}-02$
H0	$=$	$4.1000000 \mathrm{E}-02$
RHO	$=$	$4.1000000 \mathrm{E}-02$
RHO	$=$	$6.0000000 \mathrm{E}-06$
RH 0	$=$	$4.1000000 \mathrm{E}-02$
RHO	$=$	4.1000000E-02
0	$=$	2.2156833E-02
RHO	$=$	$4.1000000 \mathrm{E}-02$
RHO		$4.1000000 \mathrm{E}-02$
0	$=$	$4.1000000 \mathrm{E}-02$
0	$=$	$4.1000000 \mathrm{E}-02$
RHO	$=$	$4.1000000 \mathrm{E}-02$
RHO	$=$	$4.1000000 \mathrm{E}-02$
RH 0		$4.1000000 \mathrm{E}-02$
RHO	$=$	$6.0000000 \mathrm{E}-06$
RHO		$4.1000000 \mathrm{E}-02$
RHO		$4.1000000 \mathrm{E}-02$
RHO	$=$	$6.0000000 \mathrm{E}-06$
RHO	$=$	$4.1000000 \mathrm{E}-02$
RHO	$=$	$4.1000000 \mathrm{E}-02$
RHO		$4.1000000 \mathrm{E}-02$
RHO	$=$	$4.100000 \mathrm{E}-02$
RHO	$=$	$4.1000000 \mathrm{E}-02$
RHO	$=$	$4.1000000 \mathrm{E}-02$
\%		$4.1000000 \mathrm{E}-$

Figure D. 1 Turbopump Program Computation Sequence

Figure D. 2 THETA, E Dimensions

Figure D. 3 Grid Increment Number

Figure D. 4 Grid Increment For Extrapolation to Blade Surfaces

APPENDIX F

Turbopump Program Listing

```
            PROGRAM MAIN I INPUT, CUTPUT, TAPES = INPUT, TAFEG = OUTPUT,
```

 * TAPEG, FILMPL)
 C
C
C
COMPRESSIPLE - INCOMPRESSIGLE FLOW TURBO PUMF PROGfAM
COMMON ISIL(150), IPI日(150), $W(150), X(150), Y(150), Z(150)$,
JTHL(150), JTH日(150), PSI(100,100),
RS(100), RP(100), ESi(100), RC(100),
EO(150), RO(150), BO(150), SIAD(150), MNM, IL, JL, IIB,
IIE, B, DELTA, RESIM, DPSIP, KK, DEX, ACC, JLE, BN,
PSIPR, RHO (100, 100), G, WDOT, WH, KKL, RHOIN, POIN, HOIN,
RCIN, VTHIN, VMOIN, PS, RR(150), B2(150), SIA(150), RT,
INPUF, RRL, ITRIP,PDEL, JDPL
C
C
ZERO OUT ARRAYS
ITRIP $=0$
JO $100 \mathrm{JJ}=1,150$
$W(\downarrow J)=0$.
Y(JJ) $=0$ 。
100 CONTINUE
C
DO 150 II $=1,150$
$X(I I)=0$.
Z(II) $=0$.
150 CONTINUE
C
$00250 \mathrm{JJ}=1,100$
00200 II $=1,100$
PSI(II,JJ) $=0$.
200 CONTINUE
250 CONTINUE
C
C CALL PER TO READ INPUT DATA AND SET UP GRID
C
300 CALL PEER
ER $\quad=$ PSIPR/ 70°
$A C C=E R$
C
C
C
CALL RELAX
C
JEPSI $=-\operatorname{PSIPR} / 50$.
ILMI=IL-I
VTHTA = (PSI (ILMI,1)-PSI (IL, 1)) /DELTA
VTHTA = VTHTA/(RHOIN*BZ(IL)*RR(IL))
WRITE(6,399) VTHTA
399 FORMAT(10X,* VTHTA $=$ *F10.2)
400 IF (ABS (VTHTA-WW).LT.15.0) GO TO 900
JTB=JTHB(IL)
$J T L=J T H L(I L)$
$J J=0$
OO BOO JN=JTB,JTL
$J J=J J+1$

```
            PSI(IL,JJ)=PSI(IL;JJ)+DEPSI
    800 CONTINUE
            CALL RELAX
            ILMI=IL-I
            VTHTZ=(PSI(ILMI,1)-PSI(IL,1))/DELTA
            VTHT?=VIHTZ/(RHOIN*RZ(IL)*RR(IL))
            HRITE{6,899% VTHYZ
    899 FORMAT(10X,VTHT2 = *,F10.2)
            DVTHO=(VTHT2-VTHTA)/DEPSI
            DEFSI=(WM-VTHTZ)/JVTHD
            VTHTA=VTHT2
            GO TO 400
C WRITE OUT FIRST RELAXATION
C
    900 ITRIP=1
            OO 1000 JOELP=1,JDPL
            POIN=PCIN-PDEL
            WRITE (6,989) POIN
989 FORMAT(10X,* PCIN = *F10.3)
            CALL RELAX
            CALL PREHRT
            CALL WRTOUT
1000 CONTINUE
            GO TO 300
            END
```

SUBROUTINE TABL (AI, BO, CI, DC, M, J, K)
C
C. MONO-VARIANT TABLE LOOK UP ROUTIME
C. EXTRAPOLATICN = LINEAR BASED ON FIRST OR LAST TWO POINTS
C. INTERPCLATICN = LINEAR, QUADRATIC, OR CURIC

C
C. SUBROUTINE ARGUNENTS
C. $A I=$ GIVEN INDEPENDENT VARIABLE
C. $B D=$ DESIRED DEPENOENT VARIABLE
C. CI = SET OF INJEPENJENT VARIABLES
C. $O D=$ SET OF DEPENDENT VARIABLES
C. $\quad M=$ ORDER OF INTERPOLATION $(1,2,3)$
C. $J=$ FIRST POINT IN TABLE (USUALLY 1)
C. $K=$ LAST POINT IN TABLE

C
OIMENSION CI(1), OO(1)
C
8001 FORMAT (UNSUCCESFUL TABLE LCCK UP *)
C
C. is ai inside range of table

C

IF	1	AI	-GT.	CI(K))	GO	T	0		00
IF	'	I	.LT.	CI(J)	$)$	GO	1	0		00

GO TO 300
C
C. EXTRAPOLATE If AI outside table range

C
$10080=D D(K)+(D O(K)-D O(K-1)) *(A I-C I(K)) /(C I(K)$ - CI (K-1))

GO TO 1700
200 日J $=$ JJ(J) + (JJ(J+1) - JJ(J)) * (AI - CI(J)) /
*
60 10 1700
C
C. JOES AI $=$ POINT IN TABLE

30000400 IN $=\mathrm{J}, \mathrm{K}$
I $=I N$
IF ((ABS (AI-CI(I)) , LT. O.00001) G0 TO 500
400 CONTINUE
GC TO EOO
$500 \mathrm{BD}=\mathrm{DO}(\mathrm{I})$
GOTO 1700
C
c. locate position in table

C
$6003070010=J, K$
$I \quad=10$
IF (CI(I).GT.AI) GOTO 800
700 CONTINUE WRITE (648001) CALL EXIF
C
800 GOTO (900, 1000, 1300), M
C

```
C. LINEAR INTERPOLATION
C
    900 Y1 rllol
C
C. GUADRATIC INTERPOLATION
C
1000 IF ( I .EQ.K) GO TO 1100
            Y1 = OD(I-1)
            Y2 = DO(I)
            Y3 =OD(I+1)
            X1 =CI(I-1)
            X2 =CI(I)
            x3 =CI(I+1)
        GOTO 1200
1100 Y1 = = (I-2)
    Y2 = DO(I-1)
    Y3 = OO(I)
    X1 =CI(I-2)
    X2 =CI(I-1)
    X3 =CI(I)
    1200B1 = Y1 * (AI - X2)* (AI - X3) ( ( (X1 - X2 )*
```



```
        * ( X2 - X3 ) )
        = Y3*(AI - XI )* (AI- X2) ( ( ( X3 - X1 )*
        * ( x3 - x2 ) )
            BJ = B1 + 82 + B3
                GOTO 1700
C
C. CUBIC INTERPOAATION
C
1300 IF ( I .EQ. K)
                                    GO TO 1400
            IF ( (I - 1 ) .EQ. J)
                                    GO TO 1500
            Y1 = DD(I-2)
            Y2 = JO(I-1)
            Y3 = OO(I)
            Y4 = OD(I+1)
            XI =CI (I-2)
            X2 =CI(I-1)
            X3 = CI (I)
            X4 =CI(I+1)
            GOTO 1600
C
    1400 Y1 = OO(I-3)
            Y2
                        =00(I-2)
    Y3 =OD(I-1)
    Y4 = JO(I)
    X1 =CI (I-3)
```


SUAROUTY期 PEE:

C
C.
C.
C. C
C. C.
input and setuf routine
SETUP INCLUOES INITIALIZATION, TRANSFORMATION, GRIO SET UP, AND FIRST GUESS AT STREAM FUNCTION ANJ JENSITY VALUES

InPUT CEFTNITIOR
N = NO. OF INPUT BLADE COOROINATES (SUCTION SURFACE)
L = NO. OF INPUT 日LADE COORJINATES (PRESSURE SURFACE)
K = NO. OF INPUT BLADE COORDINATES (CORD LINE)
NN = NOT USED
LL \quad NOT USED
MNM = NO. OF INPUT STREAM TUBE COORDINATES
B (\quad ANGLE BETHEEN BLAJES (RAD) $=6.28 / B N$
0 = NO. OF F (THETA) GRID INCREMENTS FRCM TRAILING TO
leading edge of blace
RT $=$ ELADE TIP RADIUS (IN)
ENC = LENGTH OF FLOW FIELJ
INFRONT ANO BEHINE BLADE (IN)
RP(I) $\quad=R$ OR Z COOROINATE OF PRESSURE SURFACE ($I=1, L$) (IN)
RS(I) $\quad=R$ OR Z COORDINATE OF SUCTION SURFACE ($I=1, N$) (IN)
RC(I) $=$ R OR 2 COOROINATE OF CORD LINE (I=1,K) (IN)
THETS(I) = THETA COORJINATE OF SUCTION SURFACE (I=1,N) (DEG)
THETP(I) = THETA COORDINATE OF PRESSURE SURFACE ($I=1, L$) (DEG)
THETC(I) = THETA COORDINATE OF CORD LINE (I=1,K) (OEG)
RD(I) = RADIUS COORD. OF STREAM TUBE CENTER LINE (I=1,MNM) (IA)
BO(I) = WIJTH COORD. OF STREAM TUBE RADIAL DIR. (I=1,MNM) (IA)
SLAD(I) $=$ SIN(A) COORD. OF STREAM TUBE CENTER LINE(I=1, MNM) (ND)
A = ANGLE BETHEEN IMPELLER C.L. AND STREAM TUBE C.
ED(I) = AXIAL COORD. OF STREAM TUBE CENTER LINE (I=I, MNM) (IN)
NOTE *** ALL BLAJE ANJ STREAM TUBE COOROINATE DATA STARTS AT
at blade trailing eoge and goes + Ve in upstream dir.
KKL $\quad=$ NO. OF POINTS IN RHO-H-P TABLE
INPUF CONOIFICNS OR INTERIOR POINTS OEPENOING ON FLAG (INPUF
INPUF = FLAG FOR JIFFERENT INLET ANJ EXIT BOUNDARY CONDITIONS
= O FOR STREAM LINES PARALLEL TO BLADE CORD LINE
1 EQUIVALENT TO 2 AT INLET AND O AT EXIT
2 INPUT STREAM FUNCTION AT ALL GRID POINTS
= 3 Inpur bottom stream function value
4 EQUIVALENT TO
BN = NO. OF IMPELLER BLADES
WW \quad PUMP SPEED (RAD/SEC)
Woor $\quad=$ FLOW RATE IN STREAM TUBE ANULUS (LB/SEC)
ROHIN = PROPELLANT DENSITY AT INLET (LB/IN**3)
PCIN = STATIC FRESSURE AT INLET (LB/IN**2)
HOIN = ENTHALPY AT INLET (FT/SEC)
VTHIA = CIRCUMFERENTIAL FLUID VELOCITY AT INLET (IN/SEC)
VMOIN = PROPELLANT LINE VELCCITY AT INLET (IN/SEC)
PS $\quad=$ PROPELLANT VAPOR PRESSURE (LB/IN**2)
RCIN = RAOIUS OF CENTER OF STREAM TUBE ANULUS AT INLET (IN) $=R J$ (MNM)
RHOT (I) = PROP. DENSITY VALUES NEAR SATURATION (Ix $1, K K L$) ILB/IN3
HY(I) = PROP. ENTHALPY VALUES REF. TO HOIN (I=1,KKL) (FT/SEC
PT(I) = PROP. PRESSURE VALUES NEAR SATURATION (I=1,KKL) (LB/IN2
PSI(I,J) = STREAM FUNCTION VALLES AT GRID POINTS, BOUNDARY
CONOITIONS OR INTERIOR POINTS DEPENOING ON FLAG (INPUF)

```
C
    7997 FORMAT (8A10)
    7998 FORMAT(1H1,10X, 8A10)
    7999 FORMAT (18X,8 A1O)
    8000 FORMAT (6I5,5F10.4)
    8001 FORMAT (4E10.3)
    8002 FORMAT (3E10.3)
    8003 FORMAT (3I5,f,(10E 8,3))
    8004 FORMAT(10F8.3)
    8009 FORMAT(1X5HRS = F10.4,10H THETS = F10.4,8H ES1 = F10.4)
    8010 FORMAT(1X5HRP = F10.4,10H THETP = F10.4,8H EP2 = F10.4)
    8012 FORMAT(1K5HRC = F10.4,10H THETC=F10.4,8H EC1 = F10.4)
    8011 FORMAT(5MON = I2,7H L = I2,7H K = I2,8H NN=I2,8H LL=,
        II2,8H MNM=,I2,/75H B=F10.4,7H D = F10.4,8H RT=F10.4,
        28H ENC =,F10.4,8H PNC =,F10.4 //)
    8013 FORMAT(1K 5HRJ = F10.4,10H BJ =F10.4,10H SIAD=F10.4,
        * 10H ED = F10.4,
    8014 FORMAT(1X8HDELTA = F10.4,9H THESL =F10.4,5HE=F10.4,8HTHJL=F
        110.4,6H JL=I4,6HIL=I4,7HIIA=I4/7HIIE= = = = = %,7H JLE= I4)
    8015 FORMAT (8E10.4)
    8016 FORMAT 1 1X8H KKL =,I2,10H INPUF =, I2,8H BN = F10.4,7H WW=
        1F10.4,9H HDOT =,F10.4,10N RHOIN =,F1O.4,9H POIN =,F10.4,9H
        2HOIN = FF10.4,//,11H VTHIN =,F10.4,10H VMOIN = F10.4,7H PS
        3 =,F10.4,9H ROIN =,F10.4,10H PSINU =,F10.4,10H PSIND =,
        4F10.4)
    0017 FORMAT(1R9H RHOT =, F10.4,7H HT =,F10.4,7H PT =,F10.4)
    8018 FORMAT (//)
    8019 FORMAT (1X46HBEGIN MAIN PRCGRAM INCREMENT THETA AND THEN E)
    8020 FORMAT (1X49HSTEP NO. ONE COMPLETE INCREMENT E AND THEN THETA)
    CO30 FORMAT(1X5HII = I4,7H JN = I4/EH W=F10.4,EH X=F10.4,
        16H Y = F10.4,6H Z = F10.4)
    8035 FORMAT{1X5HJJ=I4,9H IPIE = I4,9H ISIL = I4/GH ESLI= F10.4,
        1 9H ESLII= F10.4,9H EPBI=F10.4,10H EPBII = F10.4)
    8040 FORMAT(1X5HJJ=I4,GH IPIB=I4,9H ISIL=I4/9H ESLI=F10.4,
        110H ESLII=F10.41
C
\begin{tabular}{|c|c|}
\hline COMMON & / ABC/ \\
\hline * & RHOT(100), HT(100), PT(100) \\
\hline COMAON & / CBA/ \\
\hline \(\cdots\) & ENC \\
\hline COMMON & / NOG/ \\
\hline * & NNDG, LNOG, KNOG, ILNDG, THETMIN, THETMAX, EMIN, \\
\hline * & EMAX, ICNT(99), THETS(100), THETC(100), THETP(100), \\
\hline * & EC1(100), EP2(100), ESS1(100), KNT1, KNT2 \\
\hline COMMON & ISIL(150), IPIE(150), W(150), X(150), Y(150), Z (150), \\
\hline * & JTHL (150), JTHC(150), PSI (100, 100), \\
\hline * & RS(100), RP(100), ESI(100), RC(100), \\
\hline * & ED(150), RD(150), EJ(150), SIAJ(150), MNM, IL, JL, IIE, \\
\hline * & IIE, B, DELTA, RESIM, DPSIP, KK, DEX, ACC, JLE, BN, \\
\hline * & PSIPR, RHO (100,100), G, HOOT, WH, KKL, RHOIN, POIN, HOIN, \\
\hline \(*\) & ROIN, VTHIN, VMOIN, PS, RR(150), BZ(150), SIA(150), RT, \\
\hline * & INPUF, RRL, ITRIP, PJEL, JJPL \\
\hline
\end{tabular}
```

 REDO&S,7907,11,16,13,14,15,16,4%,15
 IF(EOF,5) 50,60
 CALL EXIT
 WRITE(6,7938:11,I2,I3,I4,I5,I6,I7,I8
 READ(5,7997)I1,I2,I3,I4,I5,I6,I7,I8
 WRITE{6,7999)I1,I2,I3,I4,I5,I6,I7,I8
 REAO (5,8000) N,L, k, NN,LL, HNM, R, -, RT, ENC, ENL
 WRIJE (6$8011) N,L,K,NN,LL,MNM, B, D, RI, ENC, BNC
 READ (5,8004) (RP(I),I=1,L)
 READ (5,8004) (RS(I),I=1,N)
 REAJ (5,8004) (RC(I),I=1,K)
 READ (5,8004) (THETS(I),I=1,N)
 READ (5,8004) (THETP(I),I=1,L)
 READ (5,8004) (THETC(I),I=1,K)
 C
READ (5,8001) (RD(I),BD(I),SIAO(I),EO(IT,I=1,MNM)
READ (5,8003) KKL, INPUF,JOPL, BN, WW, HDOT, RHOIN, POIN,
*
REAJ (5,8002)
HOIN, VTHIN, VMOIN, PS, ROIN, PSINU, PSIND,PDEL
(RHOT (I),HT(I),PT{I),I=1,KKL)
C
C. TRANSFORM fRCM R,THETA PLANE TO E,THETA PLANE
C. FOR THIS CASE BOTH ARE LINEAR TRANSFORMATIONS
C
DO 100I = 1,N
ES1(I) = RS(I)
THETS(I) = THETS(I) / 57.2958
100 CONTINUE
JO 200 I = 1, L
EP2(I) = RP(I)
THETP(I) = THETP(I) / 57.2958
200 CONTINUE
30 300 I = 1, K
EC1(I) = RC(I)
THETC(I) = THETC(I) / 57.2958
300 CONTINUE
C
C. OVER RIDE BO INPUT
CALL TABL (ESI(N), RRL, ED, RD, 1, 1, MNM)
DELTA = THETC(K) / D
WRITE OUT INPUT DATA AND VALUES CALCULATED FROM INFUT

```

WRITE (6,8009)
WRITE \((6,8018)\)
WRITE \((6,8010)\)
WRITE \((6,8018)\)
WRITE \((6,8012)\)
WRITE \((6,8018)\)
WRITE \((6 ; 8013)\)
WRITE (E,8018) WRITE (6,8016) *
WRITE (6,8017)
((RS(I), THETS(I), ESI(I)), I=1,N)
((RP(I), THETP(I), EPZ(I)), \(I=1, L)\)
((RC(I), THETC(I), EC1(I)), I=1,K)
((RD(I), BD(I),SIAD(I),ED(I)),I=1,MNM)
KKL, INPUF, BN, WW, WDOT, RHOIN, PCIN, HCIN, VTHIN, UMOIN, PS, ROIN, PSINL, PSINJ (RHOT(I), MT(I), PT(I), I=I,KKL)
```

 THESL = O% GELTA
 JL = IFXX (THETP(L) / DELTA) & 1
 THJL = FLOAT (JL - 1) * DELTA
 E = ELOAT (IFIX (ENC/ DELTA) + 1) * DELTA
 IL = IFIX (IECI(K) & ENC)/ OELTA) & IFIX (BNC/
 *
 DELTA) + 1
 NNOG = N
 LNJG = L
 KNOG =K
 ILNDG = IL
 THETMIN = AMIN1 (THETS(1), THETP(1), THETC(1))
 THETMAX = AMAXI (THETS(N), THETP(L), THETC(K))
 PSIPR = WDOT / EN
 DELPS = PSIPR * DELTA/8
 C
J0 500 IJK=1,N
ESSI(IJK) = ESI(IJK)
500 CONTINUE
C

```

```

C
600 PEX = JELTA
7 0 0 DEX = PEX/ DELTA
IF (THJL .EQ. THETP(L)) GOTO 800
GOTO 900
C
800\Omega=JL-1
THJL = THJL - DELTA
900 THETA = -DELTA
WRITE (6,8014) JELTA, THESL, E, THJL, JL, IL, IIB, IIE, JLE
WRITE (6;8019)
C
C. INCREMENT FHETA AND CALCULATE E DIMENSION BETWEEN GRID POINTS ANO
C. glaJE SURFACES
C
00 2100 JJ=1, JL
THETA = THETA \& DELTA
IF (ABS (1. - (THETA / THESL)) - .0001) 1300, 1300, 1000
1000 IF (THETA.GT.THESL) GO TO 1300
C
C. E INCRENENT NEXT TC SUCTION SURFACE = Z(JJ)
1100 CALL TABL (THETA, ESLI, THETS, ESI, 2, 1,N)
ISIL(JJ) = IFIX (ESLI / DELTA) + IFIX (ENC / DELTA) + }
ESLII = FLOAY (IFIX (ESLI / DELTA)) * DELTA

```
```

 1% Esx% E0. (Sat% 60 T0 1200
 C
120\ TSTIMSN - ISILIJN - 1
ESLII = ESLII - DELTA
6% 16 1400
C
13004STLIN* - IT* *
ESLII= = 0
ESLI = DELTA
C
1400 IF (THETA GT. B) GOTO 1500
IPIB(JJ)=2
GO 10 1600
C
C. E INCREMENY NEXT TO PRESSURE SURFACE = X(JJ)
C
1500 CALL TABL (THETA, EPBI, THETP, EP2, 2, 1, L '
IPIP(JJ) = IFIX EPBI/ JELTA , +IFIX (ENC/ JELTA) + 2
EPBII = (FLOAT (IFIX (EPGI (OELTA) + 1,) DELTA
1600IPB = IPIB(JJ)
ISL =ISIL(JJ)
X(JJ) = 1.
Z(JJ) = 1.
00 2000 IN= IPB, ISL
IF (IN.EQ.ISIL (JJ) GO TO 1700
GOTO 1800
C
1700 Z(JJ) = (ESLI - ESLII) / DELTA
GOTO 2000
1800 IF ((TMETA.GT. B).ANO. (IN.EQ.IPIB(JJ),) GOTO 1900
GOTC 2000
C
1900 x(JJ) = (EPBII - EPBI)/ DELTA
2000 CONTINUE
2100 CONTINUE
WRITE (E,8020)
C
C. INCREMENT E AND 1) LOOK UP STREAM TUBE DIMENSIONS, 2) CALCULATE THET
C. DIMENSION BETHEEN GRIJ PCINTS ANJ BLAJE SURFACES, AND 3) PROVIDE
C. FIRST GUESS OF STREAM FUNCTION AND DENSITY AT GRIC POINTS
C
00 3800 II=1, IL
W(II) = 1.
Y(II) = 1.
E = E + DELTA
CALL TABL (E, RRR, ED, RD, 1, 1, MNM)
RR(II) = RRR
CALL TABE (E, BZZ, EJ, 8J, 1, 1, MNM)
BZIIII= =IL
C BZ(II) = (BO(MNN)/(RRR**2.))*(RD(MNM)**2.)
C
CA!l TAPi (E, SIJJ, EJ, SIAJ, 1, 1, MNM)
SIA(II) = SIOD
IF(E.GT. O.) GO TO 2800

```

C
C. REGION DOWN STREAK OF BLADES

C
THETA = -DELTA
C
C. EXTRAPOLATE BACK ALONG blade CORD line

C
CALL TABL (E, THEC, ECi, THETC, \(1,1, K\) ) JTHL(II) = IFIX ( \(\quad\) / DELTA) +1
BJL \(=\) FLOAT (JTHL(II) - 1) * DELTA
JTHB(II) \(=1\)
IF ( BJL.EQ. B) GO TO 2200
GOTO 2300
C
2200 JTHL(II) = JTHL(II) - 1
BJL = B - JELTA
2300 IF ( (ABS(E)), LT. 0.0001 ) GO TO 2400 GC TO 2500

C
2400 THETA \(=0\).
JTHE(II) \(=2\)
2500 JTB \(=\) JTHB(II)
JTL \(=\) JTHL(II)
JJ \(=0\)
C
\(002700 \mathrm{JN}=\mathrm{JTB}, \mathrm{JTL}\)
JJ = JJ + 1
THETA \(=\) THETA + JELTA
PSI(II, JJ) \(=\) (THETA - THEC) *PSIPR / 日
RHO(II,JJ) \(=\) RHOIN
IF (JN.EQ. JTHL (II) ) GO TO 2600 GOTO 2700

C
```

 2600 Y(II) = (B - 日JL) / DELTA
 2700 CONTINUE
 GOTO 3800
    ```
C
    2800 IF ( E GT. ECI(K) ) GO TO 3500
C
C. REGION BEWEEN BLADES
C
    CALL TABh ( E, THEIS, ES1, THETS, 2, 1, N)
C
C. Theta increment next to pressufe surface = y(il)
C
    CALL TABL (E, THEIP, EP2, THETP, 2, 1, L )
        JTHL(II) \(=\) IFIX (THEIF / DELTA) +1
        THL = FLOAT (JTHL(II) - 1) * DELTA
        IF ( THL .EQ. THEIP) GO TO 2900
        GOTO 3000
C
    2900 THL \(=\) THL - DELTA
        JTHL(II) \(=\) JTHL(II) - 1
C
c. theta increment next to suction surface = wili)
```

C
3000 JTHB(II) = IFIX (THEIS (DELIA) +2
THB = FLOAT (JTHB(II) - 1) * DELTA
THETA = THP - DELTA
DELTH = THEIP - THEIS
JTB = JTHBEII)
JTL = ITHL\IIF
JJ =0
C
00 3400 JN= JTB, JTL
JJ = JJ + 1
THETA = THETA * DELTA
PSI(II,JJ)= (THETA - THEIS) * PSIPR / DELTH
RHO(II,JJ)= RHOIN
IF (JN.EQ.JTHB(II)) GOTO 3100
GOTO 3200
C
3100 W(II) = THB - THEIS) / DELTA
3200 IF (JN.EQ. JTHL(II)) GO TO 3300
GOTO 3400
C
3300Y(II) = (THEIP - THL) / DELTA
3400 CONTINUE
GOTO 3BOO
C
C. REGION GP STREAM OF BLADES
C
3500 JTHL(II) = JL
C
C. EXTRAPOLATE FORHARD ALONG BLADE CORD LINE
C
CALL TABL (E, THEC, EC1, THETC, 1, 1,K)
C J2 BLADE AND INLET FLOW SLOPE
JTJE = 1.7
DWDU = 3.0
DELD = OWOU - DTOE
IF(E.LT.(ECI(K) + .5)) THEC = THEC + 1.*DELD*(E - EC 1(K))**2
IF (E.GE.(ECI (K)*.5)) THEC=THEC +. 25*JELJ + JELO*(E -EC1(K)-.5)
JTHB(II) = IFIX (D) + 1
THETA = (D - 1.) * DELTA
JTB = JTHB(II)
JTL = JTHL(II)
JJ = 0
C
DO 3700 JN=JTB,JTL
JJ = JJ +1
THETA = THETA \& JELTA
PSI(II,JJ)=(THETA - THEC) *PSIPR / B
RHO(II;JJ)= RHOIN
IF (JN.EQ. JTHL(III) GO TO 3600
GOTO 3700
C
3600 Y(II) = {THETP(L) - THJL)/ OELTA
3700 CONTINUE
JLIM = JTL - JTA + 1

```
```

 IF (INPUF eEQ. (REAO (5,8015) (PSI(II,JJ),JJ=1, JLIM)
 3800 CONTINUE
 C
IF (INPNF.GT. 1 .ANO. INPUF.LT. 4, GO TO 4000
3900 IF (INPUF.GE, 3) GO TO 4200
GOTO4400
4000 PSIUP = PSINU
C
DO 4100 JJ=1, JLIM
PSIUP = PSIUP + JELPS
PSI(IL,JJ)= PSIUP
4100 CONTINUE
GOTO 3900
C
4200 PSIDN = PSINO
DO 4300 JJ=1, JPTE
PSIDN = PSIDN + DELPS
PSI(1,JJ)= PSIDN
4300 CONTINUE
C
440000 4600I=1, 110
004500 J=1,55
RHO(I,J)= RHOIN
4500 CONTINUE
4600 CONTINUE
C
RE TURN
END

```

GPROUTIME FELAX
    8001 FORMAT ( 20 H ITERATION NUMBER \(=\), I4, 14 H RESIM =, F10.4)
 PCKL \(=\) * E 12.5 ) BOOS FORMAT : RHOCM \(=*, E 12.5, * \quad P=*, E 12.5, *\) IN \(=*\), I5, C
\begin{tabular}{|c|c|}
\hline COMMON & /PLT/ \\
\hline & R(100,100), RESID(100) \\
\hline COMMON & ISIL(150), IPIB(150), W(150), X(150), Y(150), Z(150), \\
\hline * & JTHL(150), JTHB (150), PSI (100, 100), \\
\hline * & RS(100), RP(100), ESI(100), RC(100), \\
\hline * & EC(150), RD(150), \(\mathrm{BO}(150), \mathrm{SIAO}(150), \mathrm{MNM}, \mathrm{IL}, \mathrm{JL}, \mathrm{IIB}\), \\
\hline * & IIE, B, DELIA, RESIM, DPSIP, KK, DEX, ACC, JLE, BN, \\
\hline * & PSIFR, RHO 100,100\(), G, W\) OOT, WW, KKL, RHOIN, POIN, HOI \\
\hline * & ROIN, VTHIN, VMOIN, PS, RR(150), BZ(150), SIA(150), RT, \\
\hline * & IAPUF, RRL, ITRIP, PDEL, JDPL \\
\hline COMMON & / ABC/ \\
\hline & RHOT(100), HT(1003, PT(100) \\
\hline oata & NUM \(10 \%\) \\
\hline
\end{tabular}
c

0
```

 RESIR = 0000.
 ILM1 = IL - 1
 CKK =1.
 CCC =1.
 100 OPSII = (-11.*PSI(IL,1) +18.*PSI(IL-1,1) -9.
 * PSI(IL-2,1) + 2. * PSI(IL-3,1)) / DELTA
 VTHC = - CCC * DPSI1 ((RHO(IL,1)*BZ(IL)*RR(IL)* 6.)
 JENO = i./(RHOIN*BZ(IL)*RR(IL))**2.
    ```


C
\begin{tabular}{rlrl} 
JO \(3400 J J\) & \(=1, J L\) \\
IPB & \(=I P I B(J J)\) \\
ISL & & ISIL(JJ) \\
II & & \(=0\)
\end{tabular}
c
\begin{tabular}{rl}
\(003300 T N\) & \(=\) IPQ, ISL \\
II & \(=\) II +1 \\
K & \(=J J-J T H B(I N)+1\) \\
JOIFI & \(=J J-J T H B(I N+1)+1\)
\end{tabular}
```

 JCIM1 = JJ - ITHB([N-1) + 1
 C
IF((IN .LT.IIB),OR.(IN.GT.IIE)) GCTO2100
GOTO 500

```
C
    300 PSIJ \(=0\) 。

        IF (IN.EQ. ISIL(JJ), GO TO 400
        GOTO 2100
C
    400 PSII \(=0\).
        RHII \(=\) RHO(IN,JC) * \(1 .+Z(J J)\)-RHO(IN-1,JCIM1) * Z(JJ)
        BIJ \(\quad=\quad\) QZ (IN)
        BII \(=(1 .-Z(J J)) \quad 8 Z(I N)+2(J J) * 8 Z(I N+1)\)
        GOTO 2200
C
    500 IF (IN.EQ.IPIA(JJ) , GO 10600
        GOTO 700
C
    600 PSI(IN-1ヶJCIM1) \(=P S I P R\)
        BII \(=8 Z(I N+1)\)
        BIJ \(=\) EZ (IN)
        RHO (IN-1, JCIMI) \(=(1 .+X(J J)) * R H O(I N, J C)-X(J J) *\)
        *
            RHO (IN+1,JCIP1)
        PSIJ \(\quad=\) PSI(IN.JC-1)
        RHIJ \(\quad=\) RHO (IN,JC-1)
        PSII \(\quad=\) PSI(IN+1,JCIP1)
        RHII \(\quad=\) RHO(IN+1,JCIP1)
        IF (IN .GT. IIE GO TO 2100
C
    700 IF (JJ.EC. JTHL (IN) )
                                    GO 10800
        GOTO 900
    800 PSI(IN,JC+1) \(=P S I P R\)
        \(R H O(I N, J C+1)=R H O(I N, J C) *(1 *+Y(I N),-R H O(I N, J C-1) * Y(I N)\)
    900 IF (IN.EQ. ISIL (JJ) ) GO TO 1000
        IF (IN.EQ. IPIB(JJ) GO TO 2200
        GOTO 2000
C
    1000 IF (IN.GT.IIE) GO TO 2000
        PSII \(=0\).
        BII \(=(1 \cdot-2(J J)) * B Z(I N)+Z(J J) * B Z(I N+1)\)
        BIJ \(=\) 日Z (IN)
        RHII \(=\) RHO(IN,JC) * (1. + Z(JJ) ) - RHO (IN-1,JCIM1)* Z(JJ)
        RHIJ \(=\) RHO(IN,JC)*(1.tW(IN))-RHO(IN,JC+1)*W(IN)
        PSIJ \(\quad=\) FSI (IN,JC-1)
        GOTO 2200
C
    1100 IF (JJ.EQ. JTHB(IN) ) GOTO 1200
        GOTO 1600
    \(1200 \mathrm{JJL}=\mathrm{JTHL}(I N)-J T H B(I N)+1\)
    PSIJ \(=\) PSI(IN,JJL) - PSIPR
    RHIJ \(=\) RHO\{IN,JJL)
    W(IN) \(=Y(1)\)
    IF (IN .LT. IIB) GO TO 1300
```

 G0 10 1400
    ```
    C

1400 IF (IN.EG.ISL) AND. (IN.LT.IIB: , INOTO 1500
        GOTO 2100
C
    \(\begin{aligned} 1500 \text { PSII } & =0 \cdot \\ \text { RHII } & =R H O(I N, J C) *(1 .+2(J J) \geqslant-R H O(I N-1, J C I M 1) * Z(J J)\end{aligned}\)

    BIJ \(=B Z(I N)\)
        GOTO 2200
    \(1600 \mathrm{IF}(J J . E Q . J T H L(I N))\)
        GO TO 1700
        GOTO 2000
C
    \(1700 \operatorname{PSI}(I N, J C+1)=\operatorname{PSI}(I N, 1)+P S I P R\)
        \(\operatorname{RHO}(I N, J C+1)=\operatorname{RHO}(I N, 1)\)
        IF (IN.LT.IIB) GO TO 1800
        GOTO 1900
C
    1800 DEX \(=Y(1)\)
        *PSI(IN,JC+1)=AA(DEX)*PSI(IN,JC-3) + BB(DEX) *PSI(IN,
        * \(J C-2) ~+C C(D E X) * P S I(I N, J C-1)\) * DD(DEX) * PSI(
                            IN,JC)
            RHO(IN, JC + 1) =AA(DEX) *RHO (IN, JC-3) + BB(DEX) *RHO(IN,JC-2) +
            * CC(DEX) * RHO (IN,JC-1) + DD(DEX) * RHO (IN,JC)
C
    1900 IF ( (IN.EQ. IPIB(JJ) ) ANJ. (IN.GT. IIE) , GOTO200
    2000 PSIJ \(\quad=\) PSI (IN,JC-1)
    RHIJ \(\quad=\) RHO (IN,JC-1)
    2100 PSII \(=\) PSI(IN+1,JCIP1)
        BII \(=B Z(I N+1)\)
        BIJ \(=\) BZ(IN)
        RHII \(=\operatorname{RHO}(I N+1, J C I P 1)\)
C
    2200 WHH \(=1.0\)
        \(X X X=1.0\)
        YYY \(=1.0\)
        Z2Z \(=1.0\)
        IF (JJ.EQ. JTHL(IN) ) YYY \(=Y(I N)\)
        IF (JJ.EQ. JTHB(IN) ) WWW \(=W(I N)\)
        IF (IN.EG.IPIB(JJ)) \(X X X=X(J J)\)
        IF (IN.EQ. ISIL(JJ) ) \(222=2(J J)\)
C

```

C
C IF((IN.EQ.ISL).AND.(ISL.EQ.ILM1).AND.(JC.EQ.3)) GO TO 2210
C GO TO 222O
C2210 BOIN = DENC* (()
2220 IF (ITRIP.EO. O) GO TO 2600
WRSO = (WH*RR(IN))** 2
DENO = 1. (RHOIN * BZ(IN) * RR(IN)) ** 2.
IF(IN.LT.IIE) GO ro 2300
COIN = BOIN - ((RR(IN)*WH)**2.)
GO TO 2400
C
2300 COIN = BOIN - ((RRL*WW)**2.)
2400 JOIN = COIN + (POIN * 2. * G / RHOIN)
P = RHOIN * (DENO * (1 (DI + D2) / DELTA) ** 2 +
** ('E1 + E2)',
WRITE(6,8002)P,IN,JC,RHO(IN,JC)
IF((IN.EQ.ISL).AND.(ISL.EQ.ILM1))GO TO 2510
IF(P.LT.POIN) GO TO 2510
GO TO 2500
2510 WRITE(6,8002IP,IN,JC,RHO(IN,JC)
C
2500 IF (P.LT. PS) GO TO 2700
GO TO 3300
2600 RHIJ = AMAX1 (RHIJ, 0.000006)
RHO(IN,JC+1)= AMAX1(RHO(IN,JC+1), 0.000006)
RHII = AMAXI (RHII, O.OOOOO6)
RHO(IN-1;JCIM1)= MMAXI (RHO(IN-1,JCIM1), 0.000006)
c
A1 = (2.* (RR(IN) ** 2) *WH* BZ(IN) * RHO(IN,JC)
* SIA(IN)) * DELTA * DELTA
= 222 * (ALOG (RHO(IN-1,JCIM1) * BIJ) - ALOG (RHO(IN
,JC) * 日Z(IN))) / (xxx * (xxx + ZZZ))
= XXX * (ALOG (RHO(IN,JC) * BZ(IN)) - ALOG (RHII *
EII)) ((ZZZ * (XXX + ZZZ))
= (PSI(IN-1,JCIM1) - PSI(IN,JC)) , (XXX * (
XXX + 2ZZ))
=(PSI(IN,JC)-PSII) ((ZZZ + (ZZZ + XXX))
= (PSI(IN,JC+1) - PSI(IN,JC)) (YYY * (YYY +
WWW))
= (PSI(IN,JC) - PSIJ) / (WWW * (WWW + YYY))
= WHH* (ALOG (RHIJ) - ALOG (RHO(IN,JC))) / (YYY*
(YYY + WWW))
= YYY (ALOG (RHO(IN,JC)) - ALOG (RHO(IN,JC+1))) /
(WHW * (YYY + WWW))
C
R(IN,JC)=-(A1+(D1+D2)*(C1+C2)*CCC - 2.* ((R1
* -R2 1+CCC+(R3-R4)*CKK)+(E1 +E2) * (
* C3 + C4) * CKK)
c
IF (ITRIP .EQ. 0)
GO TO 3300
IF{P.GT.POIN) GO TO 3300
C WRITE (6;800 <) F, IN, JC, RHC(IN,JC)
GO TO 3300
C

```

```

 IF (RHIP.L(.0000005) RHIP=.000006
 HRITE (E,8002) P,IN,JC,RHIP
 RHO(INGJH)= RHSP
 6O 10 3300
 60 TO 2710
 :4m************* PELAX
    ```

```

 RHO(IN,.JC)=.5*(RHO(IN,JC)&RHIP)
 RHOCM=RHO(IN,JC)
 DENO=1*/(RHOCM*R2(IN)*RR(IN))**2
    ```

```

 |(2.*G)
 GO TO 2700
 2705 WRITE(6,8002) P,IN,JC,RHIP
 GO TO 2800
 2710 WRITE(E,8002) P,IN,JC,RHO(IN,JC)
 GO TO 2600
 IF (RHIP.LE.O.) RHIP = 0.000006
 C
 ********************* RELAX
2800 RHOCM = RHIP
IF (ITRIP.EQ. 1) RHO(IN,JC) = RHOCM
WRITE (6;8003) RHOCM,P, IN, JC
IF (ITRIP.EQ. 1) GO TO 3300
C
JENO =1. (RHCCN BZ(IN) * RR(IN) ,** 2.
PCAL = RHOCM * (DENO * (((D1 * O2) / DELTA) ** 2 + ((
* E1 + EZ) / DELTA)** 2, - WRSQ - OOIN) * (-1. 1
** / (2.*G)
IF (ITRTP EQ. 0) GOTO 2900
WRITE (E;8002) P,IN, JC, RHO(IN,JC), PCAL
C
2900 IF ((A8S (PCAL/P) - 1.).LT.0.0001) GOTO 3100
IF (FCAL ILT.PSAV) GOTO 3000
RHO(IN,JC)= RHOCM
GC TO 3100
3000 RHO(IN,JC)= RHOIN - 0.05 * (RHO(IN,JC) - RHOCM)
IF (RHC(IN,JC) LT. 0.00002) RHO(IN,JC)= RHOIN
GO TO 2600
C
3100 IF (RHCCM.LE. O.) RHOCM = 0.000006
3200 RHO(IN,JC)= RHOCM
GOTO 2600
3300 CONTINUE
3400 CONTINUE
IF(ITRIP.NE.0) GO TO 4800
3500 DO 4300 JJ=1, JL
IPB = IPIB(JJ)
ISL = ISIL(JJ)
II =0
C
00 4200 IN- IPB, ISL
II =II + 1

```


C
JC
\(\mathcal{K I P 1}=J J-J T H B(I N+1)+1\)
\(J C I M 1=J J-J T H B(I N-1)+1\)

* ) + (1. (2Z2) )

R(IN,JC) \(=0\).
PSI(IN;JC)=FSI(IN,JC) + JPSI
C


C
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 3600 & IF & ( & & JTHE (IN) & - E & & ) & & G0 & & 0 & 3700 \\
\hline & IF & \((\) & & JTHL (IN) & - EQ & J.J & ) & 1 & G0 & & 10 & 3800 \\
\hline & & & & 390 & & & & & & & & \\
\hline
\end{tabular}
\(3700 \mathrm{JJL}=\mathrm{JTHL}(I N)-J T H B(I N)+1\)
\(J B=J T H L(I N)\)
R(IN,JJL) \(=\) R(IN,JJL) + JPSI * (1./YYY)
IF (IN.EQ.ISIL(JJ) GO TO 4100
            GOTO 4000
C
3800 JJB = JTHB(II)
\(R(I N, 1)=R(I N, 1)+D P S I\)
\(R(I N, J C-I)=R(I N, J C-1)+D P S I *(1 . / h W W)\)
            GOTO 4000
C
    \(3900 \mathrm{R}(I N, J C-1)=R(I N, J C-1)+D P S I *(1.1 W W W)\)
    \(4000 \mathrm{R}(I N+1, J C I P 1)=R(I N+1, J C I P 1)+D P S I+(10 / 2 Z 2)\)
    \(4100 R(I N, J C+1)=R(I N, J C+1)+D P S I * 11 . / Y Y Y)\)
    \(R(I N-1, J C I M 1)=R(I N-1, J C I M 1)+D P S I *(1, / X X X)\)
    4200 CONTINUE
    4300 CONTINUE
C
    ILM1 \(=I L-1\)
    004500 II \(=2\), ILM1
    RESID(II) \(=0\) 。
    JJ \(=0\)
    JTE \(\quad=\) JTHB(II)
    JTL = JTHL(II)

C
DO \(4400 \mathrm{JN}=\mathrm{JTB}, \mathrm{JTL}\)
JJ \(=J J+1\)
IF ( (ABS (R(II,JJ)) ) •GT. RESIO(II)) RESIC(II)=ABS(R(II,JJ))
```

 4500 CONTINUE
 C
DO 4600 II= 2, ILM1
IF (RESID(II) .GT. RESIM) RESIM = RESID(II)
460B CONTINUE
IF(RESIM.GT.RESI2) STOP
RESI2=2.0*RESIM
IF (RESIM.GT. ACC) GO TO 4700
GO TO 4800
C
4700 NUM = NUM + 1
WRITE (6,8001) NUM, RESIM
RESIM = 0.
IF (NUM.EQ.50) GO TO 4710
GO TO 100
4710 CALL PREMRT
CALL WRTOUT
GC TO 100
C
4800 NUM = NUM + 1
WRITE (6,8001) NUM, RESIM
RESIM = 0.
RETURN
END

```

SUBRDUTINE PREWRT
```

C
C
C
C
8001 FORMAT (////**++++** VOLUME =*, E12.5)
C
COMMON ISIL(150),IPIB(150),W(150), X(150), Y(150), Z(150),
* JTHL(150), JTHB(150), PSI(100,100),
RS(100), RP(100), ES1(100), RC(100),
ED(150), RO(150), BD(150), SIAD(150), MNM, IL, JL, IIB,
IIE, B, DELTA, RESIM, OPSIP, KK, DEX, ACC, JLE, BN,
PSIPR, RHO(100,100), G, WOOT, WH, KKL, RHOIN, POIN, HOIN,
ROIN, VTHIN, YMOIN, PS, RR(150), BZ(150), SIA(150), RT,
INPUF, RRL,ITRIP,PDEL,JDPL
CRA /
ENC
COMMON /NDG/

* NNOG
EMAX, ICNT(99), THETS(100), THETC(100), THETP(100),
* EC1(100), EP2(100), ESSI(100), KNT1, KNT2
C
HOELTA = DELTA* 0.5
SUM = 0.
ILL = IL - 1
E = -(FLOAT (IFIX (ENC / DELTA)) * DELTA) - DELTA
C
J0 3000 II= 1, ILL
E = E + OELTA
JTE = JTHB(II)
JTL = JTHL(II)
JJ = 0
C
00 2900 JN= JTB, JTL
JJ = JJ + 1
C
2100 COSA = COS (ASIN (SIA(II)))
THETA = FLOAT (JN-1) * DELTA
IF (II .LE. IIB) GO TO 2200
IF (JN .EG. JTB) GO TO 2400
IF (JN .EQ. JTL) GO TO 2600
C
vOLUME = DELTA / COSA * DELTA * RR(II) * BZ(II)
GOTO 2800
C
2200 DELT = OELTA
DELE = DELTA
IF (II .EQ. 1) OELE = HOELTA
IF (JN .EO. JTL) DELT = HDELTA + DELTA * Y(1)
IF (JN .EG. 1), DELT = HDELTA
vOLUME = DELE / COSA * RR(II) * DELT * BZ(II)
GOTO 2800
C
2300 DELE = DELTA
IF (II .EQ. ISIL(1)) DELE = HDELTA * OELTA * Z(1)

```
```

 VOLUAEE = DELE/ COSA*RR(II) * HDELTA * BZ(II)
 GO TO 2800
 C
24001F (II GT. IIE) GO TO 2500
EU1 = E + HDELTA
Fl: = E HOELTA
GALE TABE (EUL, THETUI, ESSN, THETS, 2, 1, NNOG (
CALL TABL (EL1, THETL1, ESS1, THETS, 2, 1, NNDG)
C
THETU2 = THETA \& HJELTA
THETL2 = THETA - HDELTA
GALL TABL (THETUZ, EU2, THETS, ESS1, 2, 1, NNDG)
CALL TABL (THETL2, EL2, THETS, ESS1, 2, 1, NNDG (
C
E|LC = AMIN1 (EU1, EU2)
THEILC = AMIN1 (THETUI, THETUZ '
EHGT = (EULC-EL1)/ COSA
TLNGTH = (f THETU2 - THETLC) * (THETU2 - THETL1)) / 2.0
VOLUME = EHGT * RR(II) * BZ(II) * TLNGTH
GOTO 2800
C
2500 VOLUME = DELTA / COSA * RR(II) * HOELTA* BZ(II)
GOTO2800
C
2600 IF (II.GT. IIE) GOTO 2700
EU1 = E + HJELTA
EL1 = E - HDELTA
CALL TAEL (EU1, THETU1, EP2, THETP, 2, 1, LNDG)
CALL TABL (EL1, THETL1, EP2, THETP, 2, 1, LNDG)
C
THETU2 = THETA + HDELTA
THETL2 = THETA - HDELTA
CALL TABL (THETUZ, EU2, THETP, EP2, 2, 1, LNDG)
CALL TABL (THETL2, EL2, THETP, EP2, 2, 1, LNDG)
C
EULC = AMAX1 (ELI,EL2)
THETLC = AMAXI (THETLI, THETLZ)
EHGT = (EU1 - EULC) / COSA
TLNGTH = ((THETU1 - THETL2) + (THETLC - THETL2) / 2.0
VOLUME = EHGT * RR(II) * TLNGTH * BZ(II)
GOTO 2800
C
2700 DELT = HDELTA \& DELTA * Y(IL)
VOLUME = DELTA / COSA * RR(II) * DELT * BZ(II)
C
2800 VOLUME = VOLUME * RHO(III,JJ)
SUM = SUM + VOLUME
2900 CONTINUE
3000 CONTINUE
WRITE (6;8001) SUM
RE TURN
ENO

```

SUBROUTIME WRTOUT
 *4,9H SIA =,F10.6)
8002 FORMAT (1XGHPSI \(=\) F10.4, 10 H THETA \(=\) F10.4,8H PHI \(=F 10.4,6 \mathrm{H} \quad \mathrm{V}\) *F10.4,6H U = Fin.4)
8003 FORMATI * IJK IS GREATER THAN 25 *)


ARITHMETIC STATEMENT FUNCTIONS FOR INTERPOLATION


C
\begin{tabular}{ll} 
E & \(=-(\) FLOAT (IFIX (ENC \(/\) DELTA) ) * DELTA \()\) - DELTA \\
EMIN & \(=E+\) OELTA \\
ECCI & \(=\) ECI(KNOG) \\
THETCC & \(=\) THETC(KNJG) \\
THETPP & \(=\) THETP(LNDG)
\end{tabular}
IJKNDG \(=160\)
SIMIN \(=-1.05 *\) PSIPR
KNT1 \(=0\)
KNT2 \(=0\)

LFILE \(=9\)
ILL \(=\) IL - 1
C
\(00700 \mathrm{II}=1\), ILL
\(E \quad=E+D E L T A\)
CALL TABL (E, RPRNT, EJ, RD, 3, 1, MNM ) CALL TAEL (E, BPRNT, ED, BD, 3, 1, MNM )

\begin{tabular}{ll} 
KKK & \(=0\) \\
LLL & \(=0\) \\
JTB & \(=J T H B(I I)\) \\
JTL & \(=J T H L(I I)\) \\
\(J J\) & \(=0\) \\
MM & \(=0\)
\end{tabular}

DO 500 JN= JTB, JTL


C
100 THTA(MM) \(=(\) (FLOAT \((J N-1))-W(I I))\) *DELTA
DEX \(=W(I I)\)
\(R C(H M)=A A(D E X) * P S I(I I, J J+3) * B B(D E X) * P S I(I I, J J+2)+\)
\(\operatorname{CC}(D E X) * P S I(I I, J J+1)\) + DD(DEX) * PSI(II, JJ)
\(M M \quad=M M+1\)
GOTO 300
C
\(200 \mathrm{MM} \quad=\mathrm{MM}+1\)
THTA(MM) \(=(\) FLOAT \((J N-1))+Y(I I)) *\) DELTA
\(D E X=Y(I I)\)
\(R C(M M)=A A(D E X) * P S I(I I, J J-3)+B B(D E X) * P S I(I I, J J-2)+\)
* CC(DEX) *PSI(II, JJ-i) + DO(DEX) *PSI(II, JJ)

C
300 THTA(MM) = (FLOAT(JN-1) ) * JELTA
\(\operatorname{RC}(M M) \quad=\operatorname{PSI}(I I, J J)\)
IF (JN EEQ. JTL)
GOTO 200
\(400 \mathrm{~K}=\mathrm{MM}\)
500 CONTINUE
C
\begin{tabular}{ll} 
PSIP & \(=\) SIMIN \\
JJK & \(=0\)
\end{tabular}

C
00600 IJK=1, IJKNDG
PSIP \(=\) PSIP + DPSIP
IF (PSIP -LT. -0.0001.ANO.E.LT.ECC1)
IF (FSIP .GT. PSIPR •AND.E.GT. O.)
GOTO 600
IF (FSIP GG. PSIPR AND.EEGTO O. D
C
CALL TABL (PSIP, THETA, RC, THTA, 3, 1, K )
IF (THETA.LT. O. OOR. THETA.GT. THETPP)
IF (E.GE.ECCI .ANO. THETA.LT. THETCC)
6010600
IF (E.LE.ESSI(1).AND. THETA.GT. THETP(1), GOTO 600
C
IF (MOD (IJK,2) EEQ. O) GOTO 600
C
IFILE \(=\operatorname{IFIX}(\) (PSIP + PSIPR) / (DPSIP*2.0) * 9.25) ICNT(IFILE) \(=\) ICNT(IFILE) +1
IF (IFIEE.EQ. 44 ) IFILE \(=2\)
```

 GAll altfile & lfile, ifile, ndum (
 LFILE = IFILE
 HRITE (IFILE) E, THETA, PSIP
 600 CONTINUE
 700 CONTINUE
 CALl al tFilE (lfile, g, noum)
 EMAX = E
 CALL PLOTT
KK = 1
RE TURN
END

```

SURROLTINE PLO:T
C
C SURRCUTINE TO PLOT DUTPUT DATA
\(c\)
COMMON /PLT/
- E(203), ThETA(200), PSI(200)

Gotand *Nat
* MATE LNJG, KNDG, ILNUG, THETMIN, THETMAX, EMIN,
* EMAX, ICNT (99), THETS(100), THETC(100), THETP(100).
\(C\)
JATA KNYO/0/
IF (KNTO.NE. 0 ) GO TO 100
CALL INIT280
KNYO \(=1\)
100 CONTINUE
C
EMIN \(\quad\) AMIN1 (EMIN: ESI(1), EP2(1), ECI(1))
EMAX \(\quad\) - \(A M A X 1\) (EMAX, ESI (NNDG), EPZ(LNDG), EC1 (KNDG))
THETPP \(=\) THETP(1)
CRLL SETUP
C
\(00200 I=1\), NNDG
E(I) \(=\) THETS(I) + THETPP
\(200 E(I+100)=E M A X-(E S I(I)-E M I N)\)
DO \(300 \mathrm{I}=1\), LNDG
THETA(I) \(=\) THETP(I) - THETPP
300 THETA(I+100) = EMAX - (EPZ (I) - EMIN)
\(304001=1 . \mathrm{KNJG}\)
C
DO \(500 \mathrm{I}=1,2\)
CALL LINES (E(101), THETS(1), NNDG)
CALL LINES (THETA(101), THETP(1), LNDG)
CALL LINES (PSI(1), THETC(1), KNOG)
CALL LINES (E (101), E(1), NNDG)
CALL LINES (HETA(IO1), THETA(1), LNJG)
CALL LINE (E(101), THETPP, EMAX, THETPP)
CALL LIME (EMAX, THETFP, EMAX, THETMIN)
CALL LINE (EMIN, THETP(LNDG), THETA(LNDG+100), THETP (LNDG) )
CALL LIAE (EMIN, THETC(KNJG), PSI (KNJG), THETC(KNOG))
500 CONTINUE
C
LFILE \(=9\)
J0 800I \(=9,99\)
IJK \(=\) ICNT(I)
ICNT(I) \(=0\)
IF (IJK.EQ. 0 ) GOTO 800
II \(=I\)
IF 1 I EQ. \(44, \quad\) II \(=2\)
GALL ALTFILE (LFILE, II, NOUM)
LFILE \(=I I\)
REWINJ II
IF (IJK.EQ. 1) GO TO 800
C
```

 DO 600 J = 1, IJK
 READ (II) E(J), THETA(J), FSI:J)
 E(J) = EMAX - (E(J) - EMIN)
 600 CONTINUE
 REWIND II
 C
00 700J J=1, 2
CALL LINES (E(1), THETA(1), IJK)
700 CONTINUE
C
600 CONTINUE
call altFilE (lfilE, 9, NJum)
CALL FRANE
RETURN
END

```

SUAROUTINE SETUF
C
C C

SUAROUTINE TO SETUP GRID FGR PLOTS COMMON NOG/
* NAJG,
 EC1 1100\()\), EP2(100), ES1(100), KNTI, KAT?
C
CALL CHAROPT ( \(0,0,1,0,0\) )
CALL LINEOPT ( 0, 1)
CALL ABSBEAM (.15,.993)
CALL ABSUECT (.15,.214)
CALL ABSVECT (.930,.214)
C
CALL LINEOPT ( 0,0 )
CALL MAP (EMIN, EMAX, THETMIN, THETMAX, . 15, .930,. 214, .993)
DO \(100 \mathrm{~K}=1,2\)
CALL ABSBEAM (.5,.15)
CALL SYMBOL ( 3 HEE.)
CALL ABSBEAM (.05,.6)
CALL SYMBOL ( \(3 H F!\) )
CALL ABSBEAM (.4, .08)
100 CALL SYMBOL ( 27 HCOOROINATES INE,F PLANES.)
RETURN
END

\section*{Infut Data Interpolation Program}

For all of the turbopump inducers analyzed in this study, blade geometrical data was derived from inducer design drawings. This data is normally tabulated on the drawing for only a few blade sections at a constant distance off the inducer hub. A computer program was written to provide input data for additional blade sections located at a constant percent of blade span. Figure \(F\).l illustrates this procedure. Sections \(R_{1}\) and \(R_{2}\) represent typical blade sections for which blade geometrical data is supplied. This data is linearized to yield associated geometry for blade sections at \(10 \%, 30 \%, 50 \%, 70 \%\), and \(90 \%\) of the blade span, shown as dashed lines in this figure.

Figures F. 2 through F. 6 show a typical sequence of data manipulation for the \(J-2\) LOX inducer. Figure \(F .2\) is a plot of the tabulated data given on the inducer design drawing (Figure 5.1). This data is normalized to the blade leading edge (Figure F.3), non-dimensionalized (Figure F.4), and linearly interpolated (Figure F.5) to yield the required input data for the five blade sections (Figure F.6). The final form of the data is then punched on computer cards for input to the turbopump cavitation compliance program.

The following pages of this appendix present a listing of the input data interpolation program. The liberal use of comment cards makes the program operation self-explanatory. Sample input/output listings are also provided.

PRJGRAM BLAGEZ（INPUT，OUTPUT，TAPEラ＝INPUT，TAFES＝OUTPUT，FILMFL，PUNCH）BD2

 2 「EY（5），XLEOG（5），X3S（5，51），YLEDG（5），XT（51），Y（11151），YT12（51）B0？
 4：3），YR1（5），YR2（3），Y1（5，51），Y2（5，51），YCC（51），YPAC（51），AX（j1）E

        - =initily of aypul jata
        SAR) : TITLL = TITLE こOMMON TO ALL CASES (9A1J FJRMAT) 302
        SARE : TITLL = TITLE JOMMON TO ALL CASES (9A1J FJRMAT) 302
        802
        GARO ? TITL? = FITLE DEOJLIAR TO EACH ZASE (AA10 FORMAT) BOZ
        GAQ: 3 IPJMCT, \(W\) NERP (1015 FJRMAT) BOZ
            ZOUNCH= FLAG TJ JOYTROL PUNOHING OF OJTPUT DATA 302
                INTERP= FIGG TJ JONTROL INTERPOLATION JF INPJT DATA
            302
\(B 02\)
        SARJ 4 ALF1, AL F2,FSR,HL,HX (5F10.4 FORMAT) BO2
            ALFI = HALF-GJNE ANGLE OF HJB (OEG) BOZ
            \(\begin{array}{lll}A L F Z & =A N I E E J F \text { BLADE LEAJING EOGE LJOUS } & \text { IOES) BDZ }\end{array}\)
            1 Se = FESDITE JOSTREAMRAJIUS (IN) BD2
            \(H_{1}=\) FORWARU HJ3 RADIUS (IN) BO2
            HX = HJB EQUIVALENT LENOTH (IN) QO2
        SAR) 3 S1, 2 , KSOLFO (5F10.4 FORMAF) 302
            S1 = LQこATIJN JF INNERMJST aLADE SECTIOV (IN) BOZ
            S? = LOこATIJN JF OUTEZMJST BLADE SECTIOV (IN) BO2
                xSGlF = FIGG TO CORRECT INPUT JATA IF 2 MEASURED
                FIAG TD CORRECT INPUT JATA IF 2 MCASURED (NJ) BD2
PARALLEL TO CENTERLINE
                FIAG TO CORRECT INPUT JATA IF 2 MEASUREO (NJ) BD2
PARALLEL TO CENTERLINE
        こARJ 6 GNJY,DSINC,ENC,BNC,STWNOM (5F10.4 FORMAT) BD2
        こARJ 6 GNJY,DSINC,ENC,BNC,STWNOM (5F10.4 FORMAT) BD2
                BNUY = NUMBER OF 3LADES
                OGINC = NUMGER OF GRID IVCREMENTS
                ENC = UPSTREAM EXTENSION OF FLOWFIELJ SOLUTION
                BV: = OJWNSR ZEAM EXTENSIJN JF FLOWFIELO SOLUTION
                STWNOM = NJMINA. WIDTH OF STREAMTUBE
            GARD I \(x, r 11, r 12, r \geq 1, r 22\)
    マミAD (う,255) IIT.1
    READ (5, 255) 1IT.?
    IF (TITLZ.E2.5TOP) GO TO 205
    READ (3,280) IPUNEH,INTERP
        KEAO IN INJUCER GEJMETRY OATA
        REAO (5,260) ALFL, QL=? \(, F S Q, H L, H X\)
    रA \(0=57.29578\)
    ANGL1 = ALF1/RAJ
    ANJL? =aLFZ/RAD
    (MMLTA. \(=\) as (TAV(AVGL1))
    TMLCSN=ASS(COS(AVJil))
    FSL=FJR-HL
    \(H I=H X+I M L T A N+H L\)
    FST=FSR-HT
    マミA (5, 200) 31, j2, Xランし=0
        READ IN INJUCEマ AVALYSIS DATA
    REAO (5,26J) 3NU4, JOIVL, EVC, BNC,STWNOM
    00 15 \(I=1,50\)

    IF (X(I).LI.0.) 30 「J とう
    CUMINDE
    vers \(=1-1\)
        2- input compate - prouvce esho printout
    NVITE (6,205) TIrLi,IIT-2
    NRIT \(=(6,273)\) 5i,5?
                    (5F1.J. 4 FORMAT)
            10
            12

            BD2
                    BD2
                            BD?
                            802
                            B02
                            \(B 02\)
                            302
                        B02
                                    BD2
                                    B02
                                    802
                    (SFLJ.4 FORMAT)

WRIT
    IF \{XSCLFC.LE.O.) GO TO 3J
C.
२. MAX =FSL/TMLCSN

२MIN=FST/TMLCSN
\(X L S Q(1)=x(1)\)
\(X\) LSQ(2) \(=x(N P T S)\)
YLSQ(1) \(=\) RMAX
YLSQ(?) =RMIN
こALL LSQ1 \(12, X L S Q, Y L S Q, R N A U T, R S L O P E, D E, S R S Q 1\)
LINEARIZATION OJMPLETE***R(PHI) = RNAUT + RS.OPE*PHI
PGJt input jara nun-normalizej
ZALL PLOTR1 ( \(\mathrm{X}, \mathrm{Y} 11, \mathrm{r} 12, \mathrm{r} 21, \mathrm{Y} 22, \mathrm{NPTS}, \mathrm{T} 1 \mathrm{TL} 1, \mathrm{TITL} 2,1)\)
nJrMalize all inpui to trailinj goge ojurjinates
JO \(35 \mathrm{I}=1\),NPTS
JEND=NPTS+1-I
X1(I) \(=x(N P T S)-x(J E V D)\)
Y1OUY(I) \(=\) Y12(NPTS)-Y11(JEND)
r? JUY(I) =Y12(YFTS)-Y1? (JEND)
Y 3 JUY(I) \(=\mathrm{r} 22(\) VPTS) \(-Y 21(\) JEND)
r40U.Y(I) \(=\mathrm{Y} 22(\) VPTS) \(-Y \geq ?(J E N D)\)
sontivue
OO \(40 \mathrm{I}=1\), NPTS
\(x(I)=x 1(I)\)
r11(I) = YIDUM(I)
Y12(I) = Y \(20 J M(I)\)
r21(I) = Y30UM(I)
r22(I) = Y40UM(I)
continue
WRITE NORMALIIEO INOUT OATA
WRITE (6,265) TITL1, TITL?
WRITE \((6,215)\)
WRITE ( 6,260 ) (X(I),Y11(I),Y12(I),Y21(I),Y22(I),I=1,NPTS) NORMALIZATION COMPLETE
plot normalizej input data
CALL PLOTR1 (X,Y11, r12, r21, Y22,NPTS,TITL1,TIT_2,2)
IF (INTERP.LE.D) GJ 10150

```

 RSTREAM(2)=RNAUT+RSLOPE*XT(I)*X(NPAIRS2)
 2AD(1)=S1/RSTREAM(1)
 RAD(2)=S2/RSTREAM(2)
 rLSQ(1)=YT11(I)
 HLSQ(?)=rT21(1)
 GALL LSQ1 (2,RAD,YLS2,YGER1,YSLP1,PE,SRSQ)
 MLS2(1)=YT12(1)
 YLSQ(2)=rT22(1)
 CALL LSQ1 (2,RAD,Y SQ,YZERZ,YSLP2,PE,SRSQ)
 00 100 J=1,5
 RINC=J-1
 RADIJS=.1J+. 20*RINC
 Y1(J,I)=YZER1+YSLPI*RADIUS
 YZ(J,I)=YZER2+YSIP?FRAUIUS
 WRITE (6,265) TITL1,IITL?
 WRITE (6,235)
 DO 11J I=1,NSEX
 WRITE (6,24J) (XI(I),Y1(J,I),Y2(J,I),J=1,5)
 YLSQ(1)=X(NPAIRS1)
 YLSQ(2)=x(NPAIRS?)
 RSTREAM(1)=RNAUT+RSL)PE*(NPAIRS1)
 RSTREAM(2)=RNAJT+RSLJつE*X(NPAIRS2)
 XLSQ(1)=S1/RSTREAM(1)
 XLSQ(2)=52/RSTREAM(2)
 OALL LSQ1 (2,XLSQ,Y_S2,YLEZ,YLES,PE,SRSQ)
 30 11j J=1,5
 XM=J-1
 XINC=.10+.20*XM
 XLEDG(J)=YLEZ+YLES*XINC
 SONTINUE
 LS2 FIT TO LEADIN; EJGE AXIAL COOROINATES
 YLSQ(1)=YLOG1
 YLSQ(2)=YLDG2
 CALL LSQ1 (2,XLSQ,YLSQ,rLOZ,YLUS,DE,SRSQ)
 DO 120 J=1,5
 XM=J-1
 XINC=.10+.20* XM
 YLEOG(J)= YLOZ+YLDS*XIVC
 cONTINUE
C. COMPUIE INTERJJ.ATEO G.ADE SECTIONS
00 13J J=1,5
DJ 1?う I=1,NSEX
x\&S(J,I)=XI(I)*X,EJG(J)
00 1+0 J=1,5
DO 135 I=1,NSEX
Y1iJ,I)=r1(J,I)* rLEJG(J)
r2(J,I)=r2(J,I)*rLEJS(J)
WRITE (6,255) TITLI,TITL?
B02 363
BD2 362
BD2 364
BD2 366
802 368
BD2 }37
BD2 372
BD2 374
B02 376
BD2 378
302 380
BO2 382
BD2 384
BD2 386
BD2 388
BO2 390
B02 392
802 394
802 39E
B02 398
IONTI VUE
Plot NON-dIMENSIOVALIZED JATA FOR INTERPOLATED BLADE SECTIONS
CALL PLOTR3 (XT,Y1,YZ,NSEX,TITL1,TITL2,1)
LSQ FIT TO LETDING EOGE COOROINATES
xM=J=1
BD2 400
802 402
802 404
BO2 40E
B02 408
BD2 }41
BD2 412
BD2 }41
BO2 416
BO2 418
BD2 42J
BO2 }42
BD2 424
302426
802428
BD2 430
BD2 }43
BD2 434
BD2 436
BD2 438
BD2 440
B02 442
802444
BD2 }44
B02 448
002450
BD2 }45
BO2 }45
BD2 }45
BD2 458
BD2 }46
BO2 46́2
302464
BD2 46E
802 468
802 46E
BDC 470
BO2 47%
BO2 474
B02 47E
BO2 47E

```
100 CONTINUE
135 CUNTINUE
110
c.
C.
C.
C.
125 CONIIVUE
130 CONTINUE
135 contivue
140 Sowrinue

WRITE（0，245）
30 1－j \(I=1\) ，NJヒX
WRITE（E，250）（XBS（J，I），Y1（J，I），Y2（J，I），J＝1，5）
\(\therefore\) 91 1 14


SUNTI AJE

NSEX＝NPTS

LINEAREZE \(\because Z\) VERJJS AXIAL OISPLACEMENY
\(x \operatorname{OQ(1)}=0\).
\(x \operatorname{LST}(2)=H x\)
\(Y \operatorname{BQ}(1)=F S T\)
\(Y L G Q(2)=f 3\)
GALL LSQ：（R，XLSQ，Y SQQ，RAXZ，RAXS，PE，SRSQ）
LIN：ARIZAIION SOMP－ETE＊＊＊R（AXI＝RAXZ＋RAXS＊AX
JEI \(1: \operatorname{AD}\) MATRIX OF \(A X I A L\) DISPGSEMENTS （－33 2RCNT TJ＋ 66 PR：NT SECTIONAL SPAN）
\(A x(1)=-H x / i\) ．
\(4 \times(N z . X)=5 . * H K / 3\).
\(X \mathcal{A P I}=N S E X-1\)
\(A \times D E=T=(A \times(A S E X)-A \times(1)) /(X N P T)\)
DO \(1.55 \mathrm{I}=2\) ，NSEX
\(A \times(I)=A \times(I-1)+A \times D E L T\)
OONI I DJE
CJPUTE RX AATRIX OF FZEESTREA1 RADIAL DIMENSIJNS AS F（AX） \(30160 \quad \mathrm{I}=1, N 5 \times x\) \(R \times(I)=\alpha A \times L+2 A \times S * A \times(I)\)
SU SONTIVUE
```

 PJYCH INPUT FJR JAVITATIOV PRJ;RA1*** Y1=PRESSURE,YZ=SUCTION
 3रम0=2.*\#g<
NOUM=1
BANT2=5.28318/3NU4
PUNCA1255,TITL1
PUNCH2ち5,IIT\&?
<STP2I=5
IF (IWTE゙2P.GY.J) GJ 「つ 170
<SIPQI=?
k=1
i) 165 I=1%M01S
Y1(K,1)=Y11.1)
YZ(K,I)=Y12(I)
xBS(K,T)=X:I)
CONTINUE
< =2
w\ 17J I*!,MPTS
Y1(K,I)=\21(I)
Y2(K,I)=:\therefore:(I)
O SONTTNim
30 2U0 \because?, %SPPRI
INC=17+(K-1)*20
3N,0+?%5,1NC
HWLHER],NSEX,NSEX,NSEX,NOUM,NDUY,NSEX,BANG,JSINC,JRAD,EVC,GNC
PJVH PRoSS.HE R,L JJORDINAIES
PJNCH{年,(rLix,I;,I=1,NSEX)

```
BO2 480
BD2 482
B02 484
Bח2 480
M12 48 \&
RO2 490
80? 492
102494
E02 496
802498
00? 500
302512
BDC 504
802506
B02 5.38
802510
BD2 512
BO2 514
EO2 516
BDZ 518
BO2 520
BD2 522
B02 524
BO2 526
802528
BD2 530
BD2 532
BD2 534
BD2 536
BO2 538
802543
802542
BO2 544
BD2 546
BO2 548
302550
802552
802554
802556
RO2 558
B02 560
BO2 562
B02 564
B0? 566
802568
802570
BO2 572
BO2 574
BD2 576
802578
BO2 580
BD2 582
802584
B02 586
BO2 588
BD2 590
302592
BO2 594
B02 596
ED2 598

208
\(\therefore\) 。

PUNGH SUCTION \(\quad, Z\) COORDINATES
B02
－JNCH295，（Y2（K，I），I＝1，NSEX）
COHPUTE CHORD COURDIVATES
3u \(175 \mathrm{I}=1\) ，NSEX
YこC（I）\(=(\mathrm{r} 1(\mathrm{~K}, \mathrm{I})+\mathrm{r} 2(\mathrm{~K}, \mathrm{l}) 1 / \geq\) ．
zONIINUE
PUNCH CHORD ₹，Z cOJROINATES
PJNCH2 35 ，（YCC（I），I＝1，VSEX）
PUVCH SUCTION TtEIA COORDINATES
PUNCH295，（XBS（K，I），I＝1，VSEX）
CJHPUTE PRESSURE AVJULAR GOORDINATES
Јכ \(130 \mathrm{I}=1\) ，NSEX
TPAC（I）＝XBS（K，I）＋3ju．／3NJM
cont inué
PJVCH PRESSURE THETA CJJRDINATES
PJNCH295，（TPAC（I），I＝1，NSEX）
PUN二H CHORD THETA CJJROINATES
PUNCH295，（XBS（K，I），I＝1，VSEX）
CJMPUIE RD MATRIX OF STREAMTUBE RAOII FOR PRCNT BLADE SECTION \(x J=k-1\)
XINC＝．10＋．20＊xJ
DJ 18j \(I=1\) ，NSEX
२כ（I）\(=\) RX（I）＊XINC＋H＿＋（－XX－AX（I））＊TMLTAN
CJNTINUE
COMPUTE BD（I）＝STREAMTUBE WIUTH AS f（AX）
VMID＝NSEX／2
RMID \(=2 X(\) NMID）
DO \(1 \nexists \mathrm{I}=1, \mathrm{NS} \equiv \mathrm{X}\)
\(30(I)=S T W N O M * R X(I) / R 1 I O\)
GONTINUE
OYBETA＝RD（1）－RD（NSEX）
DXBETA＝2．＊HX
BETA＝ATAN2（DYBETA，DX3ミTA）
SIAD＝SIN（BETA）
30 19；\(I=1\) ，NSEX
دUNCH3JJ，RO（I），BJ（I），SIAD，AX（I）
continue
continue
GO TO 1 J
stop
1）FORMAT（／2X51HCORRECTEO INPUT DATA FOR \(Z\) MEASJRED PARALLEL TO \(\operatorname{INLIBOZ}\)
FORMAT I 2X4JHVORYALIZEQ INPUT DATA FJR SESTIJNAL JATA， \(16 \times 2 H \times, 218 \times 302\) E 12HY1，3×24Y2）／）

802 E
EORMAT ：2X7BHVON－JIMENSIJNALIZED INPUT DATA VJRMALIZED TJ TRAILINGBDZ E
1 EOGE＝OR SECTIONAL INPUT，\(/ 2(8 \times 2 H X, 8 \times 2 H Y 1,8 \times 2 H Y 2) / 1\) BDZ \(\varepsilon\)
FORMAT（SF10．4）
FORMAT I \(2 \times 45 H\) IVCRE1ENTAL دERCENT JHJRO DERIVEJ OAJA PUINTS，／8×2HX BDZ E
```

1，2（8×2HY1，8×2HY2）／）
ED2 E

```

FORMAT \(12 \times 48\) HBLADE SECTIJNAL DATA EXTRAPOLATEJ FOR j SECTIONS，\(/ 560 B D 2 \gamma\) \(1 \times 2 \mathrm{HXT,5} \mathrm{\times 2HY} 1,6 \times 2 \mathrm{HYZ1/)}\) EO2
＝ORMAT（15F8．4）
＝JRMAT（う（F8．2，2F8．4））
－JRMAT（8A10）
FORMAT（5F1］．4）
FORMAT（1H1，8A1J／／BALJ／／）

FORMAT（4X53HINPJT JAIA FOR こONTINUJUS BLADE SECTIOVS AT LJCATIONSED2
```

 1./16\times5HR1= F5.3.10\times5HR2=,F5.3./5\times3HPHI.2:8\times2HY1.8\times2HY2)/1, BD2 72O
    ```














    SUBROUTINE LSOL (N,X,Y,A,B.PE.SRSQ)
LINEAR LEAST SQUARES SUBROUTINE FIT
    LQ1 1
    SUBROUTINE LSOL (N.X.Y.A.B.PE.SRSQ)
LINEAR LEAST SQUARES SUBROUTINE FIT
    R A ZEHNLE..... NOVEMOER 1968
    1012
    1.013
    EQUATION...Y \(=A+B X\)
    1014
    PROGRAM VARIABLES
            N NUMBCR OF PAIRS OF DATA POINTS (X,YI
        \(X\) ARRAY OF INDEPENDENT VARIABLES
                \(Y\) ARRAY OF DEPENDENT VARIABLES
                A. 3 CONSTANTS OF STANDARD FIRST OREER EOUATION
                PE PROBAELE ERROR OF FIT OF UATA TO CURVE
                SRSO SUM OF THE RESIDUALS SQUARED
    LQ1 5
    LQ1 6
    16
        LQ1 7
    LQ1 8
    LQ1 9
    LQ1 10
    10111
    DIMENSION X(1). Y(I)
    LQ1 12
    IF (N.LE.1) GO TO 15
    10113
    \(S X=0\).
    \(S X S Q=0\).
    \(S Y=0\).
    \(S X Y=0\).
    SRSQ \(=0\).
    DO \(5 I=1, N\)
    \(S Y=5 Y+Y(I)\)
    \(S X Y=S X Y+X(I) * Y(I)\)
    \(5 X=5 X+X(I)\)
    \(S \times 5 Q=5 \times 5 Q+X(I) * * 2\)
    \(D=N * S X S Q-S X * S X\)
    \(A=(5 X 50 * S Y-S X * S X Y) / 0\)
    \(B=(N * S X Y-S X * S Y) / 0\)
    10114
    LQ1 15

PLTI
DIMENSION X(1),Y11(1).Y12(1),Y21(1),Y22(1).



CALL INIT280
DO 1 I二1.8
TLI(I)=TITLI(I)
1 TLZ(I)=TITLZITi
XMIN=U.
YMIN \(=0\).
\(X M A X=X(1)\)
YMAX \(=\mathrm{Y} 12\) (1)
DO \(2 \mathrm{I}=2, N\)
IF (XII). GY. XMAX) \(X M A X=X(1)\)
IF(Y12(I).GT.YMAX) YMAXZY12(I)
2 CONTINUL
CALL MAPG IXMIN.XMAX.YMIN.YMAX..1..9..15..91
CALL LINLOPT(C.1)
CALL CHAROPT(O,C.1.0.0)
CALL AESBEAMI.01..98)
CALL SYM3OL(TLI)
CALL ABSBEAM(.01,.94)
CALL SYMUOL (TL2)
CALL AESBEAM(.5..07)
CALL SYMBOL (XSYMO)
CALL ABSEEAM (.10..02)
IF IIS.EQ. 1 ) CALL SYMBOL (3GHECHO PLOT OF INPT DATA SECTIONS
IF (IS.EG.2) CALL SYMEOL (3GHDATA NORMALIZED TO TRLNG EDGE
CALL CHAROPT(0.0.1.1.0)
CALL ABSEEAM(.01..5)
CALL SYMUOL (YSYMA )
NST \(=\mathrm{N}-1\)
DO 45 I=1.NST
IF( Y Y11(I).EQ.O.).OR. (Y11(I+1).EQ.Q.) GO TO 44
IF (Y11(I).EQ.Y12(I)) GO Y0 44
CALL LINE(X(I),Y11(I),X4I+1),Y11(I+1))
CALL LINE(X(I), Y12(I),X(I+1),Y12II+1))
44 CONTINUE
45 CONTINUE
\(0047 I=1 . N S T\)
IF (IY21(I).EQ.O.I.OR.IYZ1(I+1).EQ.D.)) GO TO 46
IF (Y21(I). [Q.Y22(I)) GO 1046
CALL LINE (X(I),Y21(I),X(I+1),Y21(I+1))
CALL LINi (X(I),Y22(I),X(I+1),Y22(I+1))
46 CONTINUE
47 CONTINUE
CALL FRAME
RETURN
END

PLTI
PLT1
PLTI
PLII
PLII
PLTI
PLII
PLTI
PLTI
PLTI
PLTI
PLTI
PLTI
PLII
PLTI
PLTI
PLT1
PLTI
PLTI
PLTI
PLTI
PLTI
PLTI
PLTI
PLTI
PLTI
5.) PLT1
\$-IPLTI
PLTI
PLTI
PLT1
PLTI
PLTI
PLT1
PLTI
PLII
PLTI
PLTI
PLTI
PLTI
PLTI
PLTI
PLIL
PLTI
PLYI
PLTI
PLTI
PLTI
PLTI
```

 SUBROUTINE PLOTRZIX1.Y11,Y12.X2,Y21,Y22,N1,N2.T1.T2.IS)
 DIMENSION X1(1),Y11(1),Y12(1),X2(1),Y21(1),Y22(1),T1(8),T2(8),
 *:3194+112(3)

```

```

 DATA XSYMB,YSYME/1OHTHEYA $.,IOHAXIAL }2\mathrm{ $:/
 CALL INIT28O
 OU 1 1-1.8
 TL1(I)=T1(I)
 I TL?(I)T?1?!
RMJNこ0.
YMIN=0!.
XMAX=X1(11)
ymax=Y12!1.)
OO2 I=2,N1
IF(XI|I).CT.XMAX) XMAX=XI(I)
IF(Y1Z(I).GI.YMAX) YMAX=Y12(I)
2 CONTINUE
CALL MAP!' (XHIN:XMAX:YMIN:YMAX.-1.,9.=15..9)
CALL LINEOPT\C.1)
CALL CHAROPY:O,0.1.0.0)
CALL AESEEAM(.0I..38)
CALL SYMSOLIMLI)
CALL ABSBLAM(.01..34)
CALL SYMSOLITLZ)
CALL ABSEEAMP.E.O7)
CALL SYMSOL(XSYMB)
CALL ABSEEAM (.10..02)
IF IIS.EG.I) CALL SYMBOL (3GHNON-DIMEN DATA =OR INPUT DATA PTS S.IPLT2 28
IF (IS.EQ.21 CALL SYMEOL (3GHNON-DIMEN DATA FOR 51 DATA POINTS S.IPLT2 29
CALL CHAROPYIO.0.1.1.0)
CALL AESBLAMI.OI..5)
CALL SYMBOL(YSYMU)
CALL LINES{X1,Y11:N1)
CALL LINES(X1,Y12,N1)
CALL LINES(X2,Y21;N2)
CALL LINES(X2,Y22,N2)
CALL FRAME
RETURN
END

```

PLT2 01
PLT2 02
Ph T2 03
PLT2 C4
PLT2 05
PLT2 06
PLY2 07
PLT2 08
PLT2 09
PLT2 10
PLTZ 11
PLT2 12
PLT2 13
PLT2 14
PLT2 15
PLT2 16
PLT2 17
PLT2 18
FLT2 19
PLT2 20
PLT2 21
PLT2 22
PLT2 23
PLT2 24
PLT2 25
PLYZ 26
PLI2 27
\$.IPLT2 28
PLT2 30
PLT2 31
PLT2 32
PLT2 33
PLT2 34
PLT2 35
PLT2 36
PLT2 37
PLT2 38
PLT2 39*
```

 SUBROUTINE PLOIR3 (X.Y1.YZ.N.TITLI,TITLZ.IS) PLT3
 DIMENSION X(1),Y1(5.1).Y2(5.1),XP(51),YP1(51),YP2(51).
 PLT3
 $TITL2(8),TITL2(8).TL1(9).TL2(9)
 CATA TLI(9),TL2(9;%H&..2Hs.j
 OATA XSYMB,YSYMB/IUHTHETA S..IUHAXLAL Z $.f
 CALL INIT2BO
 DO 1 I=1.8
 TLI(I)=TITLI(I)
 1 TLZ(I)=TITLZ(I)
XMIN=0.
YMIN=0.
XMAX=X(1)
YMAX=Y1(1,1)
DO 2 I=1.N
IF(X(I).GT.XMAX) XMAX=X(I)
IF(YI(1,I).GT.YMAX) YMAX=Y1(1,I)
2 CONTINUE
CALL MAPG (XMIN,XMAX,YMIN', YMAX..1..9..15..9)
CALL LINEOPT(O.1)
CALL CHAROPT(O.0.1.0.OI
CALL ABSBEAM(.01..98)
CALL SYMBOL(TLI)
CALL ABS8EAMI.O1..94)
CALL SYMBOLITLZI
CALL ABSBEAM(.5..07)
CALL SYMEOL(XSYMB)
CALL ABSIEAM (.10..02) PLT }
PLT3
IF (IS.EG.1) CALL SYMBOL (36HNON-DIMEN DATA FOR INTERP SECTIONS\$.IPLTS
IF (IS.EQ.2) こALL SYMBOL (36H
CALL CHAROPT(0,0,1,1,C)
CALL ABSBEAM(.01..5)
CALL SYMLOL(YSYMB)
DO 60 J=1.5
0044 I=1.N
XP(I)=X(I)
YP1(I)=Y1(J,I)
YP2(I)=Y2(J.I)
44 CONTINUE
CALL LINES(XP,YP1,N)
CALL LINES(XP,YP2,N)
6O CONTINUE
CALL FRAME
RETURN
END
\$.)PLT3
PLT3
PL\3
PLT3
PLT3
I
PLT3
PLT3
PLT3
PLT3
PLT3
PLT3
PLT
PLT3
PLT3
PLT3
PLT3

```
```

 SUBROUTINE PLOTR4 (X,Y1,YZ,N,TITLIPTITLZ.IS) PLT4 OL
 OIMENSION X(5.1),Y1(5.1).Y2(5.1),XP(51).YP1(51),YP2(51). PLT4 02
 कTITL181,TITLZI81.TL1I91.TI2!9! PLT4 0.3
    ```


```

 CALL INIT28C
 DO 1 I=1.8
 TL1(I)=TITL1(I)
 1 TL2II)=TITLZ(I)
 XMIN=0.
 YMIN=0.
 XMAX=X(1,1)
 YMAX=Y1(1,1)
 DO 2 I=1,N
 IF(X(I.I).OY.XMAX) XMAX=X(1,I)
 IF(Y1(1.I).GT.YMAX) YMAX=YI(1.I)
 2 CONTINUE
CALL MAPG (XMIN,XMAX,YMIN,YMAX,.1,.9..15..9)
EALL LINEOPTPD.1)
CALL CHAROPTiO.0.1.0.0)
CALL ABSEEAM{-01..98)
CALL SYMEOLITLII
CALL ABSBEAM(.01..94)
CALL SYMBOLITLZI
CALL ABSSEAMI.5..07)
CALL SYMBOL(XSYMS)
CALL ABS3EAM (.10..02)
IF (IS.EQ.1) CALL SYMEOL (3GHNRMLZD DATA FOR 5 INTRPLTD SECTS
CALL CHAROPT(G.0.1.1.0)
CALL AESECAM(.01,.5)
CALL SYM3OL{YSYMB)
DO 6C J=1:5
0044 I=1,N
XP(I)=X(J,I)
YP1(I)=Y1(J.I)
YP2(I)=Y2(J.I)
4 4 CONIINU二
Jこ1
45k=ut+1
IF((YRI(K)-YP1(JL)).GT.D.) GO TO 48
JL=JL+1
GO TO 45
4 CONTINUE
NP=N
IF(J.EQ.1) GO TO 50
49 IK=I+JL-1
XP(I)=XP(IK)
YF1(I)=YP1(IK)
YPZ(I)=YP2(IK)
NP=I
I=I+1
IFIIK.LT.NI GO TO 49
50 CONTINUE
CALL LINES(XP,YPI,NP)
CALL LINLS(XP,YPZONP)
go conymNuE
CALL FPAME
RETURN
END
51.%:34
PLT4 ES
PLT4 06
OLT4 D7
PLT4 08
OLT4 09
M14 i0
MEr4 11
PLT4 12
PiT4 13
PLT4 14
PLT4 i5
PLT4 16
PLT4 17
PLT4 18
\#lT4 19
PLT4 20
PLT4 21
PLT4 22
PLT4 23
PLT4}2
PLT4 25
PLT4 }2
PLT4 27
9.PPLT4 28
PLT4 29
PLT4 30
PLT4 31
PLT4 32
PLT4 33
PLT4 }3
PLT4 35
PLT4 36
PLT4}3
PLT4 3B
PLT4 39
PLT4 40
PLT4 41
PLT44}4
PLT44}4
PLT4}4
PLT4}4
PLT44}4
PLT4 }4
PLT448
PLT449
PLT4 50
PLT4 51
PLT4 52
PLT4 53
PLT4 54
PLT4 55
PLI4 56
PLT4}5
PLT4 50
PLT4 59*

```

TUR3JPU1P INJJCER CAVITATION ANALYSIS FOR NASB-26256 F/O, 17 JAN 1972 F-1 LOX, 2 INPUT HAOE FTYION: INTERPJLATED IJ 10, 30,50,70,90 PRCNT SECTION

INPUT DATA FOR GONTI JJOUS BLAOE SECTIONS AT LOCATIONS \(? 1=.750\)
PHI
\(Y 1 \quad Y 2\)
\(Q 2=4.500\)
\begin{tabular}{|c|c|c|c|c|}
\hline PHI & r2 & \(Y 2\) & Y1 & Y2 \\
\hline 13.0000 & - 3 ? 00 & . 5253 & 0. & 0. \\
\hline 15.0000 & . 5293 & . 5953 & 0 。 & 0. \\
\hline 20.0000 & . 6705 & . 8514 & 0. & 0. \\
\hline 25.0000 & . 7343 & 1.0031 & 0. & 0. \\
\hline 30.0000 & . 8224 & 1. 1502 & 0 . & 0 . \\
\hline 35.0000 & .3333 & 1.2927 & 0. & 0. \\
\hline 40.0000 & -9578 & 1.4307 & 0. & 0 . \\
\hline 45.0000 & 1.340 & 1.5640 & 0. & 1. \\
\hline 50.0000 & 1.1283 & 1.6927 & 0 . & 0 \\
\hline 55.0000 & 1.214. & 1.8165 & 0. & 0. \\
\hline 60.0000 & 1.33\% & 1.9359 & 0. & 0. \\
\hline 65.0000 & 1.4015 & 2.0505 & 0. & 0. \\
\hline 70.0030 & 1.5022 & 2.1502 & 1.8300 & 1.8300 \\
\hline 75.0000 & 1.6081 & 2.2580 & 1.8806 & 1.9973 \\
\hline 80.0000 & 1.715 & 2.3760 & 1.9489 & 2.1452 \\
\hline 85.0000 & 1.3257 & 2.4343 & 2.0280 & 2.2841 \\
\hline 90.0000 & 1.3350 & 2.5930 & 2.1181 & 2.4110 \\
\hline 95.0000 & 2.3445 & 2.7119 & 2.2196 & 2.5269 \\
\hline 100.0000 & 2.1343 & 2.8111 & 2.3289 & 2.6364 \\
\hline 105.0000 & 2.2543 & 2.9206 & 2.4397 & 2.7452 \\
\hline 120.0030 & 2.3955 & 3.2508 & 2.7699 & 3.0773 \\
\hline 135.0000 & 2.9309 & 3.5838 & 3.1037 & 3.4111 \\
\hline 150.0000 & 3.2582 & 3.9197 & 3.4403 & 3.7476 \\
\hline 165.0000 & 3.0083 & 4.2583 & 3.7797 & 4.0870 \\
\hline 180.0000 & 3.3513 & 4.6000 & 4.1220 & 4.4293 \\
\hline 195.0030 & 4.2972 & 4.9447 & 4.4673 & 4.7746 \\
\hline 210.0000 & 4.6453 & 5.2926 & 4.8158 & 5.1231 \\
\hline 225.0000 & 4.9985 & 5.6439 & 5.1676 & 5.4749 \\
\hline 240.0090 & 5.3543 & 5.9985 & 5.5229 & 5.8300 \\
\hline 255.0000 & 5.7135 & 5.3569 & 5.8816 & 6.1313 \\
\hline 270.0030 & 6.3765 & b. 7190 & 6.2441 & 6.5514 \\
\hline 285.0000 & 6.4435 & 7.0853 & 6.6108 & 6.9190 \\
\hline 300.0000 & 6.3147 & 7.4545 & 6.9817 & 7.2870 \\
\hline 305.0000 & 6.3433 & 7.5701 & 7.1063 & 7.4136 \\
\hline 310.0000 & 7.0811 & 7.6779 & 7.2320 & 7.5379 \\
\hline 315.0000 & 7.2286 & 7.7778 & 7.3694 & 7.6508 \\
\hline 320.0000 & 7.3700 & 7.8699 & 7.5100 & 7.7433 \\
\hline 325.0000 & 7.5150 & 7.9500 & 7.6350 & 7.8550 \\
\hline 330.0000 & 7.5350 & 3. 0150 & 7.7500 & 7.9500 \\
\hline 335.0000 & 7.830 J & 3.0750 & 7.9000 & 3.0300 \\
\hline 340.0030 & 8.0300 & 3. 1250 & 8. 0500 & 8.1150 \\
\hline
\end{tabular}

INPUT TRAILING EOGE GOOROINATES
340.0000
340.0000

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ： & \(\because\) & ． & & － 1944 & 41.1 & 35 & \(!\) & 290 & \(\therefore .0000\) \\
\hline .176 & .243 & ． 5 － & － 761 & － 95 ： & －．142 & 1． 317 & 2．402 & 1．647 & 1.810 \\
\hline .373 & \(\because 135\) & \(\therefore \therefore 3\) & ？．4\％ & \(\therefore 5: 9\) & \(\therefore\) ？ 14 & 2.932 & 3．［3］ & 3.247 & 3.493 \\
\hline ． \(5 \%\) &  & S．\(\therefore\) \％ & 4.12. & 4.27 & \(4.32 \%\) & 4.479 & 4.631 & 4.701 & 4.932 \\
\hline ． 731 & 7．3： & －i79 & 303 & 7．\(\square^{7}\) & \(5 \cdot 322\) & 5．969 & a． 115 & 6.261 & 6.406 \\
\hline －1 & 1．6．9 & －\({ }^{3}\) & \(\therefore n \cdots \cdots\) & 7． 08 & 2．：79 & 7．379 & 7.274 & ？．464 & 7.549 \\
\hline & ． 1768 & ． 1 \％ & ．29 & －311 & .503 & －653 & ．820 & ． 983 & 1.145 \\
\hline ． 377 & 1.459 & 1．53 & 2．39 & 1． 345 & 2.115 & 2.253 & 2.420 & \(\therefore .576\) & 2.751 \\
\hline ． 93 ？ & 3．919 & \(\cdots .154\) & \(\therefore\)－517 & \(\therefore 1400\) & 3．i．5i & 3． 602 & 3.952 & 4.152 & 4.252 \\
\hline ． 47.3 & \(\because 540\) & ＋．5） & 4．84？ & 4.332 & 3.136 & 5．\＆3」 & 5.420 & 5．571 & 5.715 \\
\hline ． 3.3 & E． 019 & 1.240 & －\(\because 9\) & 3．402 & 6.632 & 6.812 & 6.093 & 7.153 & 7.595 \\
\hline ．63） & & & & & & & & & \\
\hline ． 037 & .235 & － 55 & ． 505 & ． 6.12 & ． 825 & .387 & 1.151 & 1． 315 & 1．479 \\
\hline ．64．3 & \．बı： & ． \(3 \%\) & \(\therefore\)－ 2 ； & \(\therefore 23\) & \(\therefore 440\) & 2.538 & 2.755 & 2.912 & 3.067 \\
\hline 93 & 3．37\％ & \(\because 31\) & －C644 & 二小s？ & 3.969 & 4.540 & 4.292 & 4.442 & 4.592 \\
\hline 74： & 4.3 .1 & \(\because: 39\) & 5.11 & 2．333 & 3．4．9 & 5.625 & 5.771 & 5.3 .6 & 6.061 \\
\hline 204 & C． 54 ？ & 6.49 ？ & 6．6．25， & －．76؟ & 6．c05 & 7.1145 & 3．186 & 7．3： 9 & 7.472 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & ： 3.85 & 20 & こ & 14 & 39.850 & 46.499 & 53.542 & 59.785 \\
\hline 93 & 73.270 & 7：．7： 3 & 30．355 & \(96 \cdot 303\) & 39.641 & 105.284 & 112.927 & 119．569 & 120.212 \\
\hline 855 & 330.498 & 24． 146 & 15：．735 & 159．426 & 160.0168 & 172．711 & 179．354 & 185．997 & 192.639 \\
\hline 232 & \(275 \cdot 235\) & ？1込 5 & 219．210 & 203．0r？ & 23． 435 & 239.139 & 245.701 & 252．424 & 259.067 \\
\hline \(? 10\) & 270．352 & 276.95 & 20．， 5 S & 252．as： & 230．8ここ & 305．560 & 312.209 & 316．951 & 325.494 \\
\hline \multicolumn{10}{|l|}{137} \\
\hline 000 & 125．64？ & & 130．93 & 145．57？ & 153．214 & 150．85 & 165．403 & 173.142 & 179.785 \\
\hline ． 427 & 133.373 & 197.71 & ． 55 & 12.300 & 229064： & 225．234 & 232．327 & 235.559 & 245012 \\
\hline 855 & 259.498 & 26e．145 & 27：．783 & 279.425 & 230．6． & 202．712 & 299.354 & \(35{ }^{5} .937\) & 31 \\
\hline 232 & 3？ 3.375 & 3？ 3.56 & 3：3．213 & 7＋5．152 & 352．423 & 359.134 & 355．731 & 372．424 & 379 \\
\hline 710 & 392. & 30．6．int & S 3 & 412.231 & & 4．5．56E & \(43 こ .265\) & 438．851 & 445. \\
\hline
\end{tabular} 1： 1 137


\(15+601.913-011.030[-61-2.951 i+60\)
2－\(+101.3445-31.373-32-1.6436+0]\)



\(75+301.35-\therefore 21.379-3:-4 \cdot 157-31\)








\(1!+\cdots\)
```

2.903こ+J0 2.4305-31 . 913--01 4.2035+03

```




```

2.EL\&r+G0 2.504E-1, 1.27nE-U1 5.749!+110
2.549-+50 ?.525E-01 1.373=-U1 6.057T+00
2.450[+00 \therefore. E50[-0i 1.279[-0] <. 36r[+00
2.431F+00 2.63?E-J1 :. %70%-315.073[+0'j
2.372R+CG 2.7ISE-51 1.8.75E-01 E.981E+00
2.314:+00 ?.75\Omega5-51 :.373:-41 7.230E+0]
2.2555+C0 ?.7.1E-01 1.970%-U1 7.5975+00

```

```

2.1375+00 2.344E-01 \&.679t-0! ?.2:j\&+00
2.3192+00 2. 8755-21 1.371%-01 9.5215+02
2.0195+00 \therefore.g[IGE-01 1.ع79E-U1 8.82CE+00
1.3605+コ0 \therefore.337F-0. :.97)--11 3.1375+76
1.9015+00 2.5095-5: 1.870E-63 2.4455+100

```




```

1.60?こ+0コ 3.125E-0. 1.37, --J1 1.03:5+01
1.5485+[0 3.15GE-01 1.879E-C1 1.125H+01

```

```

1.430E+50 j. 21n[-EI 1.573:-j1 1.141!+01
1.3712+U0 3.2505-0: 1.375-0! 1.2225+01
1.?]25+00 3.231[-5] 1.87@[-0] 1.253[+01
1.253E+0] }.31?5-01 1.37%-21 1.20!5+J1

```


Figure F. 1 Typical Inducer Showing Blade Sections


Figure F. 2 Input Blade Sectional Data


Figure F. 3 Input Data Normalized To Trailing Edge


Figure F. 4 Non-Dimensionalized Input Data


Figure F. 5 Non-Dimensionalized Data For 5 Blade Sections


Figure F. 6 J-2 LoX Data For 5 Blade Sections Normalized To Trailing Edge```

