

INVESTIGATION OF A CLAMSHELL ROLL-OUT EJECTION CONCEPT

by Lawrence F. Hatakeyama
Goddard Space Flight Center
Greenbelt, Md. 20771

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. - NOVEMBER 1971

1. Report No. NASA TN D-6458	2. Government Accession No.
4. Title.and Subtitle	
Investigation of a Clamshell Roll-Out Ejection Concept	
7: Author(s) Lawrence F. Hatakeyama	
9. Performing Organi xation Name and Address Goddard Space Flight Center Greenbelt, Maryland 20771	
12. Sponsoring Agency Name and Address	
National Aeronautics and Space Administration	
Washington, D.C. 20546	

3. Recipient's Cotalog No.
4. Report Date November 1971
5. Performing Organization Code
6. Performing Organixation Report No. G-1033
7. Work Unit No.
8. Contract or Grant No.
9. Type of Report and Period Covered

Technical Note
14. Sponsoring Agency Code
15. Supplementary Notes
16. Abstract

The equations for the motion, forces, and couples generated by clamshells released from spinning sounding rockets in accordance with a roll-out ejection concept are presented. The application of these equations to a study of a system for the Javelin (i.e., Honest John-Nike-Nike-X248) rocket vehicle is discussed.

The roll-out ejection concept advocated requires that each deploying clamshell be pivoted about an axis at its trailing edge located in the system sectioning plane. Clamshell despinning is a consequence of this deployment since the pivotal, i.e., roll-out, rate is in opposition to the rocket vehicle spin. The energy required by the deployment is derived largely from the rotational energy of the clamshell. Thus, the rocket vehicle will not be significantly despun by this kind of clamshell deployment.

This ejection concept also permits a system design which makes it possible to limit clamshell angular motion to rotation about that one of its centroidal principal axes which is brought into parallelism with the rocket vehicle longitudinal axis. Also, by equalizing the moments of inertia about the other centroidal principal axes, the rollout motion can be decoupled from any extraneous angular motion about these axes.
17. Key Words Suggested by Author

Clamshells, Roll-Out, Nose Cone, Ejection, Sounding Rockets
19. Security Classif. (of this report) Unclassified
18. Distribution Statement

Unclassified-Unlimited
20. Security Classif. (of this page)
Unclassified
21. No. of Pages
22. Price 3.00

CONTENTS

Page
Abstract i
List of Symbols v
INTRODUCTION 1
ANALYTICAL ASSUMPTIONS 4
EQUATIONS FOR THE SYSTEM ANGULAR MOTION 5
EQUATIONS FOR THE HINGE FORCES 6
EQUATIONS FOR THE HINGE COUPLES 6
EQUATIONS FOR FREE FLIGHT 7
DISCUSSION 9
References 21
Appendix A-Source Listing of Program "ROC" and a Data Deck 23

LIST OF SYMBOLS

$A, B, C, D=$ inertial parameters (slug-ft ${ }^{2}$).
$C_{x_{1}}, C_{x_{2}}, C_{x_{3}}=$ hinge-couple components about axes parallel to the $x_{1}-, x_{2}^{-}$, and x_{3}-axes, respectively (ft-lb).
$C_{y_{1}}, C_{y_{2}}, C_{y_{3}}=$ hinge-couple components about axes parallel to the clamshell body-fixed $y_{1^{-}}, y_{2^{-}}$, and y_{3}-axes, respectively ($\mathrm{ft}-\mathrm{lb}$).
$C \psi, C \theta, C \phi=$ cosines of the Euler angles ψ, θ, and ϕ, respectively.
$d_{1}=$ clamshell hinge-axis displacement from the x_{1}-axis (the rocket vehicle longitudinal axis) (ft).
$d_{2}=$ clamshell center of mass (c.m.) displacement from the $x_{1} x_{2}$-plane (the system bisection plane) before clamshell deployment (ft).
$d_{3}=$ clamshell c.m. displacement from the system base plane (ft).
$d_{5}=$ clamshell c.m. displacement from the hinge axis (ft).
$d_{6}=$ clamshell c.m. displacement from the $x_{2} x_{3}$-plane (the rocket vehicle system transverse plane containing its barycenter) (ft).
$d_{7}=$ clamshell c.m. displacement from the x_{1}-axis during deployment (ft).
$d_{7 f}=$ terminal value of $d_{7}(\mathrm{ft})$.
$F_{x_{1}}, F_{x_{2}}, F_{x_{3}}=$ hinge-force components directed along axes parallel to the $x_{1^{-}}, x_{2^{-}}$, and x_{3}-axes, respectively (lb).
$F_{y_{1}}, F_{y_{2}}, F_{y_{3}}=$ hinge-force components directed along axes parallel to the clamshell body-fixed $y_{1^{\prime}}, y_{2^{-}}$, and y_{3}-axes, respectively (lb).
$F_{1}, F_{2}, F_{3}, F_{4}, F_{5}=$ inertial forces (lb).

$$
\left.\begin{array}{l}
J_{c y_{1}}=\int_{m}\left(y_{2}^{2}+y_{3}^{2}\right) d m \\
J_{c y_{2}}=\int_{m}\left(y_{1}^{2}+y_{3}^{2}\right) d m
\end{array}\right\} \begin{aligned}
& \text { significant elements of the clamshell inertia matrix defined in } \\
& \text { terms of the clamshell body-fixed } y \text {-frame }\left(\text { slug- } \mathrm{ft}^{2}\right)
\end{aligned}
$$

$$
\left.\begin{array}{l}
J_{c y_{3}}=\int_{m}\left(y_{1}^{2}+y_{2}^{2}\right) d m \\
J_{c y_{5}}=\int_{m} y_{1} y_{3} d m
\end{array}\right\} \begin{aligned}
& \text { significant elements of the clamshell inertia matrix defined in } \\
& \text { terms of the clamshell body-fixed } y \text {-frame (slug- } \mathrm{ft}^{2} \text {) }
\end{aligned}
$$

$J_{v x_{1}}=$ rocket vehicle (minus clamshells) spin moment of inertia (moment of inertia about the x_{1}-axis) (slug- ft^{2}).
$J_{z_{1}}, J_{z_{2}}, J_{z_{3}}=$ clamshell moments of inertia about the $z_{1^{-}}, z_{2^{-}}$, and z_{3}-axes, respectively (slug- ft^{2}).
$K=$ direction cosine matrix.
$M_{y_{1}}, M_{y_{2}}, M_{y_{3}}=$ moments about the clamshell body-fixed $y_{1^{-}}, y_{2^{-}}$, and y_{3}-axes, respectively (ft-lb).
$M_{z_{1}}, M_{z_{2}}, M_{z_{3}}=$ moments about the clamshell body-fixed $z_{1}-, z_{2}$-, and z_{3}-axes, respectively (ft-lb).
$m=$ clamshell mass (slugs).
$\mathbf{p}=$ position vector from the origin of the x-frame to the clamshell c.m. (ft).
$R_{1}=$ component of the position vector from an inertial frame origin to the x-frame origin directed along the rocket vehicle body-fixed x_{1}-axis (ft).
$S \psi, S \theta, S \phi=$ sines of the Euler angles ψ, θ, and ϕ, respectively.
$t=$ elapsed time (s).
$t_{f}=$ time at the end of the clamshell deployment phase and the beginning of the freeflight phase (s).
$U, V=$ momental parameters ($\mathrm{ft}-\mathrm{lb}$).
$W_{1}, W_{2}, W_{3}=$ clamshell free-flight rotational rate components about the $z_{1}-, z_{2}$, and z_{3}-axes, respectively (s^{-1}).
$\left\{X_{j}\right\}=$ displacement vector for the j th point on the clamshell defined in terms of the X-frame (ft).
$\left\{X_{c m}\right\}=$ clamshell c.m. displacement vector defined in terms of the inertial X-frame (ft).
$\left\{z_{j}\right\}=$ displacement vector for the j th point on the clamshell defined in terms of the x-frame (the clamshell centroidal principal axis frame) (ft).
$\alpha=$ angle between the $x_{1} x_{2}$-plane and the plane defined by the x_{1}-axis and the position vector \mathbf{p}.
$\beta=$ angle in the clamshell mass-symmetry plane between the clamshell body-fixed y-frame and the clamshell centroidal principal axis set.
$\gamma=$ clamshell roll-out angle (the angle between the $x_{1} x_{2}$-plane and the $y_{1} y_{2}$-plane). $\eta=$ angle between the $x_{1} x_{2}$-plane and the plane containing both the clamshell hinge axis and clamshell c.m.
$\eta_{0}=$ initial value of η.
$\alpha_{f}, \gamma_{f}, \eta_{f}=$ terminal values of α, γ, and η, respectively.
$\psi, \theta, \phi=$ Euler angles (see Figure 6).
$\Omega_{1}=$ rocket vehicle spin (rotational rate of the x-frame) $\left(\mathrm{s}^{-1}\right)$.
$\Omega_{1 f}=$ terminal value of $\Omega_{1}\left(\mathrm{~s}^{-1}\right)$.
$\Omega_{10}=$ initial value of $\Omega_{1}\left(\mathrm{~s}^{-1}\right)$.

INVESTIGATION OF A CLAMSHELL ROLL-OUT EJECTION CONCEPT

by
Lawrence F. Hatakeyama
Goddard Space Flight Center

INTRODUCTION

In this report, a roll-out ejection concept for the release of clamshells from spinning sounding rockets is developed and discussed. The primary aim is to establish the desirability of this particular concept for use with sounding rockets. It will be seen that the conditions under which the clamshells are ejected impose requirements not considered in other applications. These requirements affect chiefly the manner in which the clamshells are to be ejected.

At the present time, there are two general categories of ejectable payload-protection devices. The conceptually older and structurally simpler of these devices is the one piece nose cone. A nose cone is essentially a shell of revolution with its aft end faired and attached to the top stage of the rocket vehicle. The cone is tapered to a closed fore end. The payload is situated in the space bounded by the nose cone and the rocket vehicle. The nose cone is impelled at its ejection by springs or other means in the direction in which the rocket vehicle is pointed. Obviously, this is not attempted while the rocket vehicle is thrusting-it must occur under coasting conditions. If the rocket vehicle has a control system, it may be maneuvered so that the ejected nose cone does not present a collision hazard during a subsequent thrust phase. Unfortunately, sounding rockets do not now have this maneuvering capability. Hence, the nose cone cannot be ejected safely until the sounding rocket is in its final coast phase and at an altitude where post ejection collision is not likely to occur. Thus, the performance of a sounding rocket can be impaired by its acceleration of excess mass. In the case of the Javelin (i.e., Honest John-Nike-Nike-X248) rocket vehicle, nose cone ejection is timed to occur 120 seconds after liftoff, when the vehicle is at an altitude of about 700,000 feet. At this point in the flight, any residual X248 thrust and the drag deceleration difference between the ejected nose cone and rocket vehicle are considered to be negligible. It will be seen that this particular nose cone ejection is set for a time which occurs significantly later than is possible with clamshells. It can be seen also that, in general, nose cone ejection is troublesome when the payload is long and impossible when the payload compartment is bulbous. Guides or bumpers running the length of the payload and ejection actuators with long strokes are required in the former instance to avoid nose cone hang up. The nose cone can still be a source of trouble after it has cleared the rocket vehicle. It effectively continues to precede the
payload in the trajectory and may affect instrument readings by emitting particles and disturbing the environment in other ways.

Clamshell systems are like nose cones, largely in overall shape. Each clamshell may be considered to be a longitudinal section of a shell of revolution. The clamshells are held together by bands, clamps, and the like, or they are attached to skin sections which can be ruptured at ejection time. On ejection, each clamshell is projected away from the longitudinal axis of the rocket vehicle; that is, its movement characteristically has a component which soon carries the clamshell out of the path of the payload. Therefore, the ejected clamshells do not continue to be collision hazards after they have cleared the rocket vehicle and payload. Thus, the time at which clamshell ejection is set to occur may be made meaningful in that it is not necessary to wait until the drag has dropped practically to zero before ejection. In fact, a slight amount of drag will help to increase the longitudinal separation between the payload and ejected clamshells. Obviously, the application of rocket vehicle thrust can produce even greater separation.

Ejection can occur for the Javelin when it is at an altitude of about 300,000 feet. At this point in its flight, it is about halfway into its X248 thrust phase. Perturbations due to X248 ignition and separation have been damped out, and the dynamic pressure has dropped to negligibly low values despite the considerable increase in vehicle velocity. The shape of the dynamic pressure profile for the Javelin is exemplified by the curve in Figure 1. The X248 thrust phase occurs between the tick marks located at 56 and 97.9 s . In addition to permitting the recording of scientific data at lower altitudcs than it was possible previously, clamshell ejection even at this point in the final boost phase will have a significant effect on the performance of the Javelin. Because about two thirds of the vehicle velocity at final burnout is due to the X248 thrust phase, the release of clamshells earlier in the flight can improve the vehicle's performance (see Figure 2).

Unfortunately, the conditions under which sounding rocket clamshells must operate have not been sufficiently considered in a number of designs. This situation may be partly due to the established success in the release of clamshells from nonspinning rocket vehicles, in which clamshells are disengaged and simply pitched out. It should be noted that in this case, the angular motion of each clamshell is restricted to rotation about that one of its centroidal principal axes normal to its mass symmetry plane. Hence, the motion of the clamshells during and after their deployment remains uncoupled and simple. This is not the case with clamshells pitched out from a spinning rocket vehicle. Instead, such an action causes each ejecting clamshell to rotate about all of its centroidal principal axes. The resulting complication greatly increases the extraneous tendencies of these clamshells and makes it difficult to design optimal constraints to control the clamshell motion during the deployment phase of ejection.

The extraneous tendencies should be reduced, if not eliminated, by essentially limiting clamshell angular motion to rotation about a single principal axis. This requires that each clamshell be rolled out since it is rolling to begin with. This can be done by pivoting it about an axis through either its leading or trailing edge in the clamshell system sectioning planes. Extraneous rotational tendencies may yet be induced in the clamshell by reaction to constraints utilized to develop the desired rolling motion. Thus, care must still be exercised in the design of roll-out clamshell ejection mechanisms.

Figure 1-Dynamic pressure profile for a Javelin launched at $80^{\circ} \mathrm{OE}$ (quadrant elevation angle) and carrying a $\mathbf{1 2 0}-\mathrm{lb}$ gross payload.

Figure 2-Effect of clamshell release time relative to X248 ignition on Javelin flight performance.

The angular momentum of a roll-out clamshell pivoted about its leading edge is increased on its deployment. This is caused by the displacement of its center of mass (c.m.) from the rocket vehicle longitudinal axis and the increase in its angular rate, which is a summation of its roll-out rate and the vehicular spin. The rocket vehicle will be despun by such clamshell deployment unless means are adopted to preclude it. This can be a troublesome endeavor since it tends to complicate the system design and increase its weight.

A clamshell pivoted about its trailing edge, on the other hand, is despun on its deployment since its pivotal, i.e., roll-out, rate is in opposition to the rocket vehicle spin. Thus, the energy for clamshell deployment can be expected to come initially from the rotational energy of the clamshell. The rocket vehicle will experience a measure of despinning after the clamshell has pivoted to a given roll-out angle. This will definitely be the case when the clamshell is totally despun, i.e., when the magnitude of the clamshell roll-out rate equals that of the rocket vehicle spin. The clamshell may be disengaged at this point in its deployment to give its free-flight motion a purely translatory character. However, in an actual flight, it may be preferable to release the clamshell earlier, i.e., at a smaller roll-out angle to reduce the extraneous torquing of the rocket vehicle during clamshell ejection. The selection of an optimum release angle is not obvious, particularly when too small an angle can result in a collision between the clamshells and the payload (this is the case with release at zero roll-out angle, i.e., instantaneous clamshell release). The effects of various system parameters must be investigated before any determination can be made with respect to this aspect or any other aspect of this problem.

ANALYTICAL ASSUMPTIONS

The following analysis is concerned with the equations for the motion, forces, and couples generated by clamshells released from spinning sounding rockets in accordance with a roll-out ejection concept. This concept requires that each ejecting clamshell be pivoted about an axis at its trailing edge in the system bisection plane so that its pivotal, i.e., roll-out, rate is in opposition to the rocket vehicle spin. Figure 3 illustrates the ejection sequence scheme viewed head-on to a rocket vehicle with a righthand spin.

In order to facilitate resolution of the problem, it is assumed that there is a problem symmetry which permits the characterization of the system dynamics by those of a single clamshell. Thus, the

Figure 3-Trailing edge pivot type of roll-out clamshell system with right-hand vehicle spin.
clamshells are assumed to be dynamically matched, rigid bodies attached to a spinning rocket which is not coning in a significant manner when clamshell ejection is initiated. For convenience, it is assumed also that the damping and dissipative forces are negligible in comparison to the inertial forces.

Three coordinate frames are used in the analysis of the deployment phase dynamics. One of these is the x-frame, which is centered at the vehicle system barycenter and orientated so that its x_{1}-axis is coincident with the rocket vehicle longitudinal axis and its x_{2}-axis is directed in such a way that the clamshell system bisection plane is in the $x_{1} x_{2}$-plane. The x-frame may be assumed to be a rocket vehicle body-fixed frame since the barycenter may be considered to be stationary during the time required by clamshell deployment. The clamshell body-fixed y-frame is centered at the clamshell c.m. and orientated so that its $y_{1^{-}}, y_{2^{-}}$, and y_{3}-axes parallel the $x_{1^{-}}, x_{2^{-}}$, and x_{3}-axes, respectively, of the x-frame before clamshell ejection. The clamshell is constrained during its deployment to maintain the parallelism between the x_{1} and y_{1} axes. The z-frame is the clamshell centroidal principal axis set. It is oriented so that its z_{2}-axis is normal to the clamshell mass symmetry plane and coincident with the y_{2}-axis of the y-frame. The clamshell may be affixed with weights to rotate the z_{1} - and z_{3}-axes and bring them into alignment with the y_{1} - and y_{3}-axes, respectively, without changing the relationship between the z_{2} - and y_{2}-axes. When this is done, the z-frame and y-frame are identical. Figure 4 illustrates the spatial relationship between the x-, y-, and z-frames.

Figure 4-Coordinate frames.

EQUATIONS FOR THE SYSTEM ANGULAR MOTION

The equations for the angular motions of the system, derived by an application of Lagrange's equation, may be written in a form suitable for digital computer solution as follows:

$$
\dot{\Omega}_{1}=\frac{D U-B V}{A D-B C}
$$

and

$$
\ddot{\eta}=\frac{A V-C U}{A D-B C}
$$

where

$$
\begin{aligned}
& A=J_{v x_{1}}+2\left(J_{c y_{1}}+m d_{5}^{2}\right), \\
& B=-2\left(J_{c y_{1}}+m d_{5}^{2}\right)+2 m d_{5} d_{1} \cos \eta, \\
& C=B, \\
& D=2\left(J_{c y_{1}}+m d_{5}^{2}\right), \\
& U=-2\left(2 m \Omega_{1} \dot{\eta} d_{5}-m \dot{\eta}^{2} d_{5}\right) d_{1} \sin \eta, \\
& V=2 m \Omega_{1}^{2} d_{5} d_{1} \sin \eta,
\end{aligned}
$$

and

$$
\begin{aligned}
A D-B C & =2 J_{v x_{1}}\left(J_{c y_{1}}+m d_{5}^{2}\right)+4 m d_{1}^{2}\left[J_{c y_{1}}+m d_{5}^{2}\left(1-\cos ^{2} \eta\right)\right] \\
& \neq 0 .
\end{aligned}
$$

EQUATIONS FOR THE HINGE FORCES

The hinge-force components are obtained by the application of Newton's Second Law to the acceleration of the clamshell c.m. This yields
and

$$
\begin{aligned}
& F_{x_{1}}=m \ddot{R}_{1} \\
& F_{x_{2}}=F_{1} \sin \eta+\left(F_{2}-F_{3}\right) \cos \eta-F_{4} \sin \alpha-F_{5} \cos \alpha,
\end{aligned}
$$

$$
F_{x_{3}}=F_{1} \cos \eta-\left(F_{2}-F_{3}\right) \sin \eta+F_{4} \cos \alpha-F_{5} \sin \alpha,
$$

where

$$
\begin{aligned}
& F_{1}=m \ddot{\eta} d_{5}, \\
& F_{2}=m \dot{\eta}^{2} d_{5}, \\
& F_{3}=2 m \Omega_{1} \dot{\eta} d_{5}, \\
& F_{4}=m \dot{\Omega}_{1} d_{7}, \\
& F_{5}=m \Omega_{1}^{2} d_{7}
\end{aligned}
$$

and

EQUATIONS FOR THE HINGE COUPLES

From Figures 4 and 5, it can be shown that
and

$$
\begin{aligned}
& C_{x_{1}}=C_{y_{1}}, \\
& C_{x_{2}}=C_{y_{2}} \cos \gamma+C_{y_{3}} \sin \gamma, \\
& C_{x_{3}}=C_{y_{3}} \cos \gamma-C_{y_{2}} \sin \gamma, \\
& F_{y_{1}}=F_{x_{1}}, \\
& F_{y_{2}}=F_{x_{2}} \cos \gamma-F_{x_{3}} \sin \gamma,
\end{aligned}
$$

$$
F_{y_{3}}=F_{x_{3}} \cos \gamma+F_{x_{2}} \sin \gamma
$$

where

$$
\begin{aligned}
& C_{y_{1}}=M_{y_{1}}-F_{y_{2}} d_{2}-F_{y_{3}} d_{1}, \\
& C_{y_{2}}=M_{y_{2}}+F_{y_{1}} d_{2}-F_{y_{3}} d_{3}, \\
& C_{y_{3}}=M_{y_{3}}+F_{y_{1}} d_{1}+F_{y_{2}} d_{3}, \\
& M_{y_{1}}=M_{z_{1}} \cos \beta-M_{z_{3}} \sin \beta \\
& M_{y_{2}}=M_{z_{2}} \\
& M_{y_{3}}=M_{z_{3}} \cos \beta+M_{z_{1}} \sin \beta
\end{aligned}
$$

Figure 5-Deployment phase of ejection showing one ejecting clamshell.

Solution of the preceding equations requires the application of Euler's equation of motion to the problem; thus,
and

$$
\begin{aligned}
& M_{z_{1}}=J_{z_{1}}\left(\dot{\Omega}_{1}-\ddot{\eta}\right) \cos \beta \\
& M_{z_{2}}=\left(J_{z_{3}}-J_{z_{1}}\right)\left(\Omega_{1}-\dot{\eta}\right)^{2} \cos \beta \sin \beta \\
& M_{z_{3}}=-J_{z_{3}}\left(\dot{\Omega}_{1}-\ddot{\eta}\right) \sin \beta
\end{aligned}
$$

where

$$
\begin{aligned}
J_{z_{1}}= & J_{c y_{1}} \cos ^{2} \beta+J_{c y_{3}} \sin ^{2} \beta \\
& -2 J_{c y_{5}} \cos \beta \sin \beta \\
J_{z_{2}}= & J_{c y_{2}}, \\
J_{z_{3}}= & J_{c y_{1}} \sin ^{2} \beta+J_{c y_{3}} \cos ^{2} \beta \\
& +2 J_{c y_{5}} \cos \beta \sin \beta .
\end{aligned}
$$

EQUATIONS FOR FREE FLIGHT

The free-flight displacements of the j th point on the clamshell may be expressed in terms of the X-frame, an inertial frame which is orientated so that its $X_{1}^{-}, X_{2^{-}}$, and X_{3}-axes parallel the $x_{1^{-}}^{-}, x_{2^{-}}$, and x_{3}-axes of the x-frame at the instant of clamshell disengagement. This inertial frame translates at the rate established by the rocket vehicle at this time; thus,

$$
\left\{X_{j}\right\}=K\left\{z_{j}\right\}+\left\{X_{\mathrm{c} . \mathrm{m}}\right\}
$$

where

$$
K=\left[\begin{array}{ccc}
C \theta C \phi & -S \theta & C \theta S \phi \\
C \psi S \theta C \phi+S \psi S \phi & C \psi C \theta & C \psi S \theta S \phi-S \psi C \phi \\
S \psi S \theta C \phi-C \psi S \phi & S \psi C \theta & S \psi S \theta S \phi+C \psi C \phi
\end{array}\right]
$$

and

$$
\left\{X_{\mathrm{c} . \mathrm{m} .}\right\}=\left(t-t_{f}\right)\left\{\begin{array}{c}
0 \\
\dot{\eta}_{f} d_{5} \sin \eta_{f}-\Omega_{1 f} d_{7 f} \sin \alpha_{f} \\
\dot{\eta}_{f} d_{5} \cos \eta_{f}+\Omega_{1 f} d_{7 f} \cos \alpha_{f}
\end{array}\right\}+\left\{\begin{array}{c}
d_{6} \\
d_{7 f} \cos \alpha_{f} \\
d_{7 f} \sin \alpha_{f}
\end{array}\right\} .
$$

The square K-matrix is a direction cosine matrix based on the Euler angle system shown in Figure 6. This angular system is a variant of a system used widely by aeronautical engineers. It is utilized to
$11:$

Figure 6-Euler angles and free flight coordinate systems.
simplify the determination of the initial Euler angles. From the construction in Figure 6, it can be shown that

$$
\begin{aligned}
& \dot{\psi}=\frac{W_{3} \sin \phi+W_{1} \cos \phi}{\cos \theta}, \\
& \dot{\theta}=W_{3} \cos \phi-W_{1} \sin \phi, \\
& \dot{\phi}=W_{2}+\dot{\psi} \sin \theta, \\
& \psi=\int^{t} \dot{\psi} d t-\gamma_{f}, \\
& \theta=\int^{t} \dot{\theta} d t,
\end{aligned}
$$

and

$$
\phi=\int^{t} \dot{\phi} d t-\beta
$$

The z-frame components of the clamshell rotational rate may be obtained from Euler's equations of motion for the free flight; thus,

$$
\begin{aligned}
& \dot{W}_{1}=\frac{W_{2} W_{3}\left(J_{z_{2}}-J_{z_{3}}\right)}{J_{z_{1}}} \\
& \dot{W}_{2}=\frac{W_{3} W_{1}\left(J_{z_{3}}-J_{z_{1}}\right)}{J_{z_{2}}}, \\
& \dot{W}_{3}=\frac{W_{1} W_{2}\left(J_{z_{1}}-J_{z_{2}}\right)}{J_{z_{3}}}, \\
& W_{1}=\int^{t} \dot{W}_{1} d t+\left(\Omega_{1 f}-\dot{\eta}_{f}\right) \cos \beta \\
& W_{2}=\int^{t} \dot{W}_{2} d t
\end{aligned}
$$

and

$$
W_{3}=\int \dot{w}_{3} d t-\left(\Omega_{1 f}-\dot{\eta}_{f}\right) \sin \beta
$$

DISCUSSION

Figures 7 through 25 illustrate the results of a study of a roll-out clamshell system for the Javelin rocket vehicle. The digital computer program and a data deck utilized in this study are listed in Appendix A. Nominal system data, if the use of unaligned clamshells for which the β-angle is not zero is assumed, are estimated to be as follows:

$$
\begin{aligned}
J_{v x_{1}} & =7.5 \text { slug-ft } \\
m & =0.4 \text { slug }, \\
J_{c y_{1}} & =0.1178 \text { slug- } \mathrm{ft}^{2}, \\
J_{c y_{2}} & =0.3466 \text { slug- } \mathrm{ft}^{2}, \\
J_{c y_{3}} & =0.4200 \text { slug-ft }{ }^{2}, \\
J_{c y_{5}} & =0.03219 \text { slug-ft}{ }^{2}, \\
d_{1} & =0.8042 \mathrm{ft}^{2} \\
d_{2} & =0.4286 \mathrm{ft}^{2}, \\
d_{3} & =1.456 \mathrm{ft}^{2}, \\
\Omega_{10} & =9.5 \mathrm{rev} / \mathrm{s} \\
\ddot{R_{1}} & =515 \mathrm{ft-s} .
\end{aligned}
$$

When the study is applied to aligned clamshells, i.e., clamshells wherein the β-angle has been zeroed, the applicable clamshell parameters are changed as follows:

$$
\begin{aligned}
m & =0.4592 \text { slug }, \\
J_{c y_{1}} & =0.1656 \text { slug- } \mathrm{ft}^{2}, \\
J_{c y_{2}} & =0.4654 \text { slug- } \mathrm{ft}^{2}, \\
J_{c y_{3}} & =0.5676 \text { slug- } \mathrm{ft}^{2}, \\
J_{c y_{5}} & =0.0 \text { slug-ft } \\
d_{2} & =0.3733 \mathrm{ft},
\end{aligned}
$$

and

$$
d_{3}=1.268 \mathrm{ft} .
$$

These changes reflect the effects of alignment brought about by the attachment of two weights to each clamshell in a manner which results in minimum clamshell mass increase.

The system motion and the hinge forces and couples generated by clamshell deployment are shown in Figures 7 through 10. There appears to be no significant difference between systems using unaligned and aligned clamshells according to these figures.

It should be noted that the rocket vehicle is subject to slight spin-up followed by negligible despinning as the clamshells deploy. The individual and the total effects are of the order of a percent of the initial vehicular spin over the range of roll-out angles considered. No violation of angular momentum conservation is represented by the rocket vehicle spin-up because each clamshell is being despun as it rolls out. The vehicular spin-up signifies that the energy taken from the rotation of the clamshells is more than sufficient for their deployment. The excess energy is not large, so the spin-up is not significant. This observation applies also to the energy deficit which results in the rocket vehicle despinning at the larger roll-out angles. Thus, no special rocket vehicle despin avoidance devices are needed for the clamshell system simulated.

Reversing the rocket vehicle spin permitted a comparative study of a roll-out system with pivot axis at the clamshell leading edge. As expected, such a system subjects the rocket vehicle to greater despinning and generates hinge forces and couples of considerably larger magnitudes than the system with trailing edge pivot. These effects, illustrated in Figures 11 and 12, are attributed to the fact that the clamshells are spun up as they roll out. It will be seen that this spin-up also raises the minimum roll-out angle at which the clamshells can be safely disengaged. Thus, a roll-out system with pivot axis located at the clamshell trailing edge is preferable to a system with pivot axis at the leading edge.

It may be inferred from Figures 8 and 10 that the hinge couples are more significant to the system designer than the hinge forces. Thus, Figures 13 through 16 are included to illustrate the effects of rocket vehicle spin and longitudinal acceleration on $C_{x_{2}}$ and $C_{x_{3}}$, the hinge couples which oppose the clamshell pitching and yawing tendencies, respectively. As expected, the rocket vehicle spin at the higher levels investigated produces a decidely bad effect on $C_{x_{2}}$ and $C_{x_{3}}$. On the other hand, the rocket
vehicle longitudinal acceleration tends to reduce the maximum magnitude of $C_{x_{3}}$ by shifting its time trace upward. No such beneficial effect is incurred for $C_{x_{2}}$ despite a similar upward shifting of its time trace. Whatever the case may be, the magnitudes of $C_{x_{2}}$ and $C_{x_{3}}$ indicate that serious consideration should be given to reducing the rocket vehicle spin to about a half of that presently utilized. Use of a lower rocket vehicle spin can improve the X248 motor performance in addition to moderating the design requirements of the clamshell system.

The $X_{2} X_{3}$ projections of the near free-flight displacements of clamshells released at roll-out angles of $12.5,15,30$, and 60 deg are shown in Figures 17 through 23. Except in Figure 19, these projections are for aligned clamshells. Since the $X_{1} X_{2}$ and $X_{1} X_{3}$ projections for these clamshells are straight lines, and therefore of little interest, they are not presented. Figure 19 shows that the near free-flight displacements of an unaligned clamshell under the conditions considered is not markedly different from that of an aligned clamshell. It is possible that conditions beyond the scope of this study could produce effects requiring further investigation.

Figures 17 and 20 show that roll-out clamshells can be released too soon. In each case, the clamshell rotational magnitude is too high for release at the roll-out angle shown. Obviously, clamshell release can take place safely at a lower roll-out angle with the trailing edge pivot type of system because the clamshells are subject to despinning and the offending parts are displaced farther away from the payload when disengagement occurs. The rotation of each clamshell will be near zero, and its freeflight motion thereby will be almost purely translatory when the clamshell is released at a roll-out angle of 60 deg. This effect occurs near 60 deg for the system under consideration at the various vehicle spin rates shown in Figure 24. Indeed, the angular motion of the system can be characterized by the reduced forms contained in Figure 25. This figure shows that the relationship between Ω_{1} and $\dot{\eta}$ is constant for any given roll-out angle. The locus of points in X-space through which a given part of the clamshell passes is fixed therefore by the γ-angle at which disengagement occurs. The vehicular spin merely affects the rate at which such a given set of points in X-space is traversed. Thus, clamshells which can be released safely at 15 deg when vehicular spin is $9.5 \mathrm{rev} / \mathrm{s}$ can also be released safely at this angle at any other positive vehicular spin if the system can bear the loads imposed upon it. That is, clamshell release for the system under consideration can be programmed for roll-out angles between 15 and 60 deg. Choice of the lower angles will be influenced by the desire to reduce unbalanced torquing of the rocket vehicle during clamshell deployment. This torquing may arise from vehicular coning motion, clamshell mismatch, and the "yo-effect" caused by nonsimultaneous release of clamshells. On the other hand, release at a higher roll-out angle is desirable because it results in the ejection of clamshells with reduced rotational motion and lowered likelihood of collision with the payload.

The system angular motions are not affected by the rocket vehicle longitudinal acceleration. The system characteristics discussed in the preceding paragraph will therefore be independent of deviations in rocket vehicle thrust. Since the various acceleration levels are normally associated with different system mass properties, it was expected that the curves in the figures discussed would reflect this fact. This mass effect, however, tends to be a minor one since it involves the interchange of a relatively small amount of energy between the rocket vehicle and the deploying clamshells.

Figure 7-System motion with unaligned clamshells.

Figure 8-Forces and couples with unaligned clamshells.

Figure 9-System motion with aligned clamshells.

Figure 10-Forces and couples with aligned clamshells.

Figure 11-Effect of rocket-vehicle spin reversal on the system motion.

Figure 12-Effect of rocket-vehicle spin reversal on the hinge forces and couples.

Figure 13-Effect of rocket-vehicle spin on $C_{x_{3}}$.

Figure 14-Effect of rocket-vehicle acceleration on $C_{x_{3}}$.

Figure 15-Effect of rocket-vehicle spin on $C_{x_{2}}$.

Figure 16-Effect of rocket-vehicle acceleration on $C_{x_{2}}$.

Figure 17-Near free-flight displacements of an aligned roll-out clamshell released at 12.5 deg .

Figure 18-Near free-flight displacements of an aligned roll-out clamshell released at 15 deg .

Figure 19-Near free-flight displacements of an unaligned roll-out clamshell released at 15 deg.

Figure 20-Effect of rocket-vehicle spin reversal on the near free-flight of an aligned clamshell released at 15 deg.

Figure 21-Near free-flight displacements of an aligned roll-out clamshell released at 30 deg .

Figure 22-Near free-flight displacements of an aligned roll-out clamshell released at 60 deg.

Figure 23-Effect of rocket-vehicle spin reversal on the near free-flight of an aligned clamshell released at 60 deg .

Figure 24-Clamshell rotational rate.

Greenbelt, Maryland, December 24, 1970
311-07-12-02-51
Goddard Space Flight Center
\quad National Aeronautics and Space Administration

Garrison, M. L., "Single Explosive Train for Simpler, Safer Shroud Separation", Space/Aeronautics 46(1): 86-87, July 1966.

Greenwood, D. T., "Principles of Dynamics", Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1965.
Hatakeyama, L. F., "A Parametric Investigation of a Proposed Javelin Split Fairing System", Bound Volume of the AIAA Sounding Rocket Vehicle Technology Specialist Conference, Williamsburg, Va., Feb. 27-Mar. 1, 1967, pp. 430-442.

Hatakeyama, L. F., "Equations for a Study of a Roll-Out Clamshell Ejection Concept for Spinning Rocket Vehicles", NASA Technical Note D-5810, April 1970.

James, R. L., Jr., "A Three-Dimensional Trajectory Simulation Using Six Degrees of Freedom with Arbitrary Wind", NASA Technical Note D-641, March 1961.

Lucy, M. H., "Spin Acceleration Effects on Some Full Scale Solid Rockets", Bound Volume of the AIAA Sounding Rocket Vehicle Technology Specialist Conference, Williamsburg, Va., Feb. 27Mar. 1, 1967, pp. 301-312.

Rayburn, L. C., and Westburg, P. W., "Shrouds for Space Payloads", Space/Aeronautics 47 (2): 66-73, February 1967.

Shames, I. H., "Engineering Mechanics, Dynamics", Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1966.

Taeusch, D. R., "Research on the Use of Electronic and Mechanical Apparatus and Instrumentation for Rockets and Satellites", Space Physics Research Laboratory Report 04304-5-F, University of Michigan, Ann Arbor, Michigan, July 1965.

Thomson, W. T., "Introduction to Space Dynamics", John Wiley \& Sons, Inc., New York, 1963.
Wells, D. A., "Theory and Problems of Lagrangian Dynamics", McGraw-Hill Book Company, New York, 1967.

Appendix A

Source Listing of Program "ROC" and a Data Deck


```
C
            IFI JJ.EQ. O , GO TO 550
...2ND & FREE FLIGHT, PHASE...
CALL NIT2
    CALL RKI X,Y,DER,6,H,J1,4,
    X SET2,AUX3,DER2,AUX4,OUT2,
        IF(JI.GT. 4) GO TO 500
        C.ALL AUX3
        CALL DER2( X,Y,OER,b,l I
        CALL AUX4
        CALL OUT21 1 )
        GO TO 550
C
    500 WRITE( 6,120, Jl
    550 CALL TTIME( JTIME)
        RTIME = FLUATI JTIMS*2G 1/1000000.
        WRITE( 6,130 ) RTIMF
        IF( JK .NE. O) GO TO 300
        GO TO 999
C
    990 IF\ JK.EQ. 0) GO T0 999
        GO TO 300
C
    999 STUP
        END
C 2/22/67-L.F.H.
C MOD. 10/23/68-L.F.H.
C
            SURRDUTINE LDAU
C
C
...PROD. VERS...
    110 FORMAT( 2044 )
    l20 FORMAT( lX,I2,5X,20A4,2X,Z8,1X,Z8,1X,Z8 )
    130 FORMAT( 15x,'...RFAD ERROJ IN LOAD...' 1
```

ROC00530 ROCOO540 ROC00550 ROC00560 ROC00570 R OC 00580 ROC00590 ROC 00590
ROC00600 ROC00610 ROC00620 ROC00530 ROC00640 ROCOO640 ROC00650
ROC00660 ROC00660
ROC00670 ROC00680 ROC00690 ROCOO700 ROC00710 ROC00710
ROC00720 ROC00720
20C00730 ROC00740 ROC00750 ROC00760 ROC00760 ROC 00770
ROCOO780 ROC00780
LOADOO10 LOAD0010
LOADOO20
LOAD0030
LaD0040
LOAD0040
LOADO050
LOADOO50
LOADOO60
LOAD0070
LOADOJ8O
LOAD0090
LUADOI 00
LUADO100
LOADOL10
LOADOL10
LOADOL20
LOADO 130
LOADO140
LOADO 150
LOADOL60
LOADOL 60
LOADOL 70
LOADOL70
LOADO 180
LOADOL90
LOADO200
LOADO210
LOAD0220
LOADO220
LOADO230
LOADO240
LOADO250
LTADO260
LOAD0270
LDADO280
LDADO280
LOADO270


```
        CALL EDATA
        GO TO (400,450,370) 1,NL
    C
    370 IFI N2 .EQ. O I GO TO 400
        IFI PSWI1) .NE. 0.0 ) PRINT 120, N2, CARD, PSW, R4
        IF( PSWII).EQ. O.0 ) PRINT 120, N2, CARD
    400 CONTINUF
        IFI k3 -LT. I I Go To 200
    c
    450 IF( K2 .LT. Jl ) GO TO 500
    470 K2 = 0
    IF( K3 .EQ. 1 ) MI = 1
    500 RETURN
c
    600 K3 = 1
        G0 TO 320
c
    700 N4 = 32767
        PRINT 130
        GO TO 500
        END
C 2/18/69-L.F.H.
c MOD. 7/07/69 - L.F.H.
C
        SUbROUTINE NITI
    C
C
...dATA INIT. FOR the ist phaSE...
    REAL*8 2(250).
    l
DC(5),DS(5),
TWPI,CRTU,CDTR,PID2,PID4
TWPI,CRTU,CDTR,P1D2,P1D4
COMMON/ OATA/ Z,NEQ1,NFO2,J1,J2,J3,J4,J5
    EQUIVALENCE
1
( D(1),2(11) ), (JCY(1),[122) ),1 JZ(1),Z(28) l,LYITO170
( H,Z(44) ),( ETAZ,Z(46) ),1 BETA,Z(47) ), INITO180
(x,2(61) ),( y(1),2(64) ),
( DC(1),2(131) ),(DS(1),2(136))
C
C
COMMON / CONS / TWPI,CRTO,CDTR,PID2,PID4
    X= T0
    H=HO
    ETAZ = DATANI D(2)/DI1),
    O(3) = ETAZ*CRTD
    Y(1) = Q(1)*TWPI
    Y(2)=Q(2)#TWPI
    Y(3) = ETAZ
    D(5) = DSQRT( D(1)**2 + D(2)**2)

10ADOB50
LOADO860
LOAD0870
LOAD0830
LOADOB90
LOAD0900
LOADOF10
LOAD0920
LOAD0930
LOAD0940
LDAD0950
LOAD0960
LOAD0970
LOADO980
LOAD0990
LOADI000
loadiolo
LUAD1020
LOAD1030
LOAD1040
LOADI 050
INIT0010
IVITT0020
ivitoozo
iNIT0040
L.VIT0050
lNIT0060
INITOOTO
initooso
INIT0090
INITOIOO
LNIT0110
INIT0120
INITOI30
INITOL40
INITOI50
NNITO160
INIT0180
INITO190
INITO200
INIT0210
1NIT0220
INIT0230
INIT0240
INIT0240
INIT0260
INIT0270
1NITO280
1NITO290
1NIT0300
1NITO 310
NITO320
1NITO330
iNITO340
```

 IF(JCY(1) .FQ. JCY(3)) GO TO 300 INITO350
 gETA = 0.500*DATAV 2.0DO*JCY(5)/(JCY(3) - JGY(1)) INI RO360
    ```

```

 IFI RETA + PID4 .LT. O.ODO) BETA = BETA + PID2 INITO38O
 GO TO 310
 300 BETA = 0.000
 310 DC(4) = DCOS(B[TA)
 DS(4) = DSIN(BETA)
 JZ(1)=JCY(1)*DC(4)**2 +JCY(3)*DS(4)**2
 1 - 2.000*JCY(5)*DC(4)*US(4)
 JZ(2) = JCY(2)
 JZ(3)=JCY(1)*DS(4)**2 + JCY(3)*DC(4)**2
 +2.000*JCY(5)*DC(4)*OS(4)
 990 RETURN
 END
 2/14/69-L.F.H.
MOD. 8/22/69 - L.F.H.
C
SUBROUTINE RKI /X/,/Y/,/DER/,/NEQ/,/H/%/JI/,/JF/,
1 SETH,AUXI,DERIV,AUX2,DUT;
...RUNGE-KUTTA 4TH DRUER INIEGRATOR..
FIXED STEP INTEGRATIDN EXCEPT FOR THE TERMINAL PROCEDURE.
X - INDEPENDENT VARIABLE.
Y'S - DEPENDENT VARIABLES
DER'S - DERIVATIVES DF THE Y'S.
NEQ - NO. OF DERIVATIVE EQUATIONS.
H - INTEGRATION STEP SIZE.
Jl - bRANCHING PARAMETER SET BY SUBP. SETH FGR SUBP. RK.
JF - OUTPUT PRINT FREQUENCY.
SUBP. SETH - ADJUSTS H DURING THE TERMIVAL INTEGRATION PROCESS AVD
SETS JI = 1,2,3,4, OR 5 DEPENOING ON WHETHER H IS LEFT UNCHANGED OR
ADJUSTED WITHOUT THF NEFD TO RFSET X(1) AND Y(K,1), THE INTEGRATION
C PROCESS IS TO RE ENDED, H IS CHANGED AND THE PRECEDING IVTEGZATION
C STEP IS TO be REPEATED WITH THE NEWER H-VALUE AND THE RESETTED X AND
Y-VALUES, H MUST BE CHANGED BEYOND THE MAX. ALLOWEI NO. OF TIMES, OR
AN AGNORMAL END OF THE INTEGRAIION PRJCESS IS RFQUIRED,RESPECTIVELY.
SUBP. SETH DEPENDS ON J I=0 WHENEVER SUPP. RK IS CALLED.

```

```

 SUBP. AUXI - COMPUTES, I.E. UPDATES, THE RFQ'D DATA FOR SUBP. DERIV.RKOOO2SO
 SUBP. DERIV - COMPUTES THE DERIV'S OF THE Y'S AT THE SUBSTEP POINTS.RK000270
 SUBP. AUXZ - CDMPUTFS, I.E. UPDAIES, THE ADDITIONAL DATA FOR OUTPUT.RK0002BO
 SUBP. OUT - IS THF DUTPUT SUBPROGRAM.
 REAL*8
 X(3),Y(NEQ,3),DFR(NEQ,4),H,
CHH,HDG
C
JI=0
JN=0
C
400 x(2)= X(1)
OO 410 K = 1,NEQ

REAL*8

1
$J I=0$
$J N=0$
$400 \times(2)=\times(1)$
OO $410 K=1, N E O$

2K000330 RK000340 RKOOO 350 RK000360 RK000370 RK000380 RKOOO370

```
    410 Y(K,2) = Y(K,1)
2KD00400
```

 [F(J1 .NE. 3) G TC TC 415
 IF (JN .GT. 1 .AND. MOO \(\mathrm{JN}-1, \mathrm{JF}\)) . .NF. 0) \(\mathrm{JN}=\mathrm{JN}-1\)
 c
415 CALL SETH ($X, Y, 0 E R$, NEG,H,J1)
GO TO ($420,990,400,500,500$), Jl
c
CALL AUXI
CALL DERIVI X,Y,DER,NEO, 1 ,
IFI MOO JN, JF) ..NE. 0) GU TU 425
CALL AUXZ
CALL OUTI JN)
425 CONTINUE
C
C
$\mathrm{CHH}=0.500 * \mathrm{H}$
DO $440 \mathrm{~J}=2.4$
IFI J.EQ. 4) $\mathrm{CHH}=\mathrm{H}$
$X(1)=X(2)+\mathrm{CHH}$
OO $430 \mathrm{~K}=1$, VFQ
$430 Y(K, 1)=Y(K, 2)+C H H * D E R(K, J-1)$
CALL AUXI
CALL DERIV($X, Y, D E R, N E Q, J)$
440 CONTINUE
C
H06 $=$ H/6.0DO
$x(3)=x(2)$
DO $470 \mathrm{~K}=1, \mathrm{NEQ}$
$Y(K, 3)=Y(K, 2)$
$Y(K, 1)=\operatorname{DER}(K, 1)+2.0 \cap 0 *(\operatorname{DER}(K, 2)+\operatorname{DER}(K, 3))+\operatorname{DER}(K, 4)$
$470 Y(K, 1)=Y(K, 2)+H U 6 * Y(K, 1)$
c
JN = JN + 1
GO TO 400
c
500 CONTINUF
c
990 RETURN
END
C 2/14/69-L.F.H.
C MOU. 8/22/69-L.F.H.
c
SURROUTINE SETII /X/,/Y/,/DER/,/NEG/,/H/,/JI/)
C
6
C
C

RK000410
RK000420 RK000430

```
    X (YI,Z1421 1,( YFPS,Z(43) 1,
    ( ETAZ, Z(46) ),( J3,KKK(5) )
COMMON / CONS / TWPI,CRTD,CDIR,PIDZ,PID4
C
        IF| JI.EQ. O,JL=0
...CHECK FOR TERMINAL CONDITIONS...
        GAMD = {Y(3.1) - ETAL)*[RTD
        IFI GAMD .LT. 0.000, GO TO 500
        IFI DABSI ( GAMD - YT )/YT ).LE. YEPS I GO TO 200
        IFI GAMD .GT. YT I GO TO 300
        IFI Jl.EQ. O, GO TO 100
        IFI Y(2.1).LE. O.000.AND. DER(2.1).LE. 0.ODO 1 GO TU 500
C
    100 Jl = 1
        GO 10 990
C
    200 J1 = 2
        GO T0 990
C
    300 JC = JC + 1
        IF( JC.GT. J3 ) GOTO 400
        IFI Jl.EQ. O, GO TO 500
        H=0.500*H
        X(1) = X(3)
        00 330 K = 1,NFQ
    330 Y(K,1)=Y(K,3)
        JI=3
C
    400 J1 = 4
        GO TD 990
C
    500 Jl = 5
    500 Jl= = 5
        END
C 2/14/89-L.F.H.
C MOD. 7/07/69 - L.F.H.
C
        SUBROUTINE AUXI
C
...DATA upDATER FOR THE IST PHASE DERIV. SUBP...
    RFAL *8
    1
    2
    2
    4
2(250)
D(10),M,JCY(6).
JVX1,GAM,FTAZ,Y(8).
DC(5).DS(5).
F(6),F23,
QOM,QET,
A,B,C,DD,U,V
Z,NEO1,NEQ2,J1,12,J3,J14,J5
```

C
C
C
C

1SETOL60
15ETOL70 1SETOLBO
1 SETOI90
ISETO190
ISETO200
1 SET0210
1 SET0210
1 SFTO220
1 SET0230
ISETO240
1 SETO250
1 SET0260
LSETO270
LSETO270
LSETO 280
ISETO280
ISETO290
1 SETO290
1 SETO 300
1 SET0310
1 SETO 320
1 SETO330
LSETO330
1 SETO
1 SETO340
1 SETO 350
ISETO350
ISET0360
1 SETO370
1 SET0380
1 SET0390
1 SETO400
1 SET0410
1 SETO420
1 SETO430
ISETO440
15 ETO450
1 SET0460
1 SET0470
1 SET0470
1 SET0480
LSETO480
1 SET0490
1SETO500
1SET0510
ISET0520
1SETO530
1 SETOS40
1 SET0550
1 AUX0010
IAUX0020
1 AUX0030
1 AUX0040
1AUX0050
1 AUX0060
1 AUX0070
1 AUX0080
1 AUX0090
1 AUXOLOO
1 AUX0110
1 AUX0120
1 AUX0120
1 AUX0130
1 AUX0130
1AUXO140
1 AUXO150

EQUIVALFNCE
1
2
3
4
5

1 AUXO160
LAUXO170
1 AUXO180
1 AUXO190
1 AUXO200
1 AUX0210
1 AUX0220
LAUXO230
1 AUX0240
1 AUX0250
1 AUX0250
1 AUX0260
1 AUUX0260
1 AUX0270
1 AUX0280
1AUX0290
1 AUX0300
1 AUX0310
1 AUX0310
1 AJX0320
1 AJX0320
1 AUXO330
1 AUX0340
1AUX0350
1 AUX0360
1 AUXX0360
1 auk
1 AUX0370
1 AUXO3 30
1 AUX0390
1 AUX0400
1AUX0410
1 AUX0420
1 AUX0430
1AUX0440
1 AUX0450
1 AUX0460
LAUX0470
1 AUX0480
1 AUX0490
$1 \mathrm{~A} J \times 0500$
1 DER0010
1 DER0020
1DER 0030
1 DER 0040
1 DERO050
1 DER0060
1 DER0070
1 DER0080
1 DER0090
1OERO100
1DERO110
1DEROL20
10ERO130
1DERO140
lDERO140
1DEROL50
1 DEROL50
1 DERO160
1DERO170
1 DEROL 80
10ERO190

```
C MOD. 7/07/69 - L.F.H.
```

SUBROUTINE AUXZ

2 AUX0020 $2 \mathrm{AUX0030}$ 2 AUX0040 2A X00 050 2 AUX0060 2 AUX0060
2 AUX0070
2 AUX0070
2 AUX0080
2AUX0090
2AUX0100
2AUX0110
2AUXO120
2AUXO130
2AUXO140
2AUX0150
2 AUXO160
2AUXO 170
2AUXO180
2 AUXO180 $2 A U X 0190$ 2AUX0200
2AUX0210
$2 A U X 0210$
$2 A U X 0220$
2 AUX0220
2 AUX0240
2 AUXO250
AUXO250
AUX0260
2 AUX0270
2 AUX0280
2AUX0290
2AUX0300
2AUXO310
2 AUX0320
2 AUX0330
2 AUXO340

```
CY(2)=MY(2) +FY(1)*D(2)-FY(3)*D(3) +F(6)*D(4)
CY(3)=MY(3) + FY(1)*D(1) + FY(2)*D(3)
```

c
$C X(1)=C Y(1)$
$C X(2)=C Y(2) * D C(2)+C Y(3) * \operatorname{DS}(2)$
$C X(3)=C Y(3) \div U C(2)-C Y(2) * D S(2)$
C
$G A M D=G A M * C R T D$
990 RETURN
END
C 2/18/69-L.F.H.
C

SUBROUTINE FAXI
C
C
C
... DUMMY ldvgit. acceleratitin subp...
RETURN
END
C 2/18/69-L.F.11.
C MOD. 7/07/69-L.F.H.
C
SUBROUTINE FFG
C

X
COMMON / DATA/ Z,NEQL,NEQ2,J1,J2,J3,J4,J5 \times OTVALENCE

G
$300 F(6)=0.000$
C
990 RETURN
END
C 3/26/69-L.F.H.
C MOD. 9/24/69-L.F.H.
$\stackrel{C}{C}$
SUBRDUTINE DUTI(JJ)
C
C
C
C

... OUTPUT SURP. FCR THE IST PHASF...

110 FORMATI '1' / 'O', $39 \mathrm{X}, \mathrm{I}^{\prime} . . . \mathrm{BASE}$ DATA...' / 1 X
/ 5 X, 'TO - JNITIAL TIME (SEC 1.'
2 AUX0570
2 AUX0580
$2 \mathrm{AUXO590}$
2 AUX0600
2AUX0610
2AUX0620
2AUX0630
2AUX0640
2 AUX0650
$2 A U X 0650$
$2 A U X 0660$
2AUX0670
FAX00010
FAXOOO20
FAX00030
FAX00040
FAX00050
FAX00060
FAX00070
FAX00080
6FF00010 6FF00020 6 FF00030 6FF00040 6FF00050 6FF00060 6FF00070 6FF00070
6FF 00080 6FF00090 6FF00100 6FF00110 6FF00120 6FFOO130 $6 F F 00130$
$6 F F 00140$ GFFOO150 10UT0010 1JUT0020 10 TOO30 10UT0040 IOUT0050 10 TT0060 10UT0070 10UT0080 $10 \cup T 0090$
$\mathrm{X} / 5 \mathrm{X}, \mathrm{HO}$ - INITIAL INTEGRATGR TINE STEP SIZE I SEC I.' 10 UTOLOO
/ $5 X$, 'Q(1)...Q(3) -INITIAL OMEGA, ETATDOT, AND ETA M 1 OUTOI10 $10 U T O 110$
$10 U T O 120$ IDUTO130
/ 5 X, 'D(1)...i)(8) - CLANSHELL GECNETRIC PARAMETERS (FT).' IDUTO130
/ $5 \times,{ }^{\prime} N$ - CLAMSHELL MASS (SLUS).' $10 U T 0140$
/ $5 \mathrm{X}, \mathrm{JCY}(1) \ldots J C Y(6)$ - CLAMSHELL Y-FRAME IOUTO150 IOUTOL50
IOUTOL 60
 LOUTO180
$/ 5 X$, 'JVXI - CENTRAL BCDY ROLL NONENT CF INERTIA •
! SLUG\&FT\&\#).
/ 5X,YY - IFRMINALGANMA (DEG 1.' IOUTO210

```
    x / 5x,'yEPS - terminal gamma CovVERGFVCE CIItERION ( DEG ).'
    X / 5X,'AXI - SYSTFM Xl ACCELERATIUN ( FT/SEC**2 ).' )
    115 FORMAT( .1. ,0.,37X,: BASF DATA...',)
    120 FORNATI OCASE NO. 'I I.5X,10AB/IX
        / 6x,'TO,HO,Q(J)...',1PSO12.4
        /12X,'0(J)...',1P8D12.4
        / 8X,'M,JCY(J)...',1P7D12.4
        / 6x,'JZ(J),JVXI...',1P4D12.4
        / 5X,'YT,YEPS,AXI...',1P3D12.4 )
    130 FORMAT( 'l' ' OCASF NO. ',13,5X,10AE
        / 38x,'IST PHASE DUTPUT' / lx
        / 5x,'T - ELAPSED TIME | SEC I.'
        / 5x,'gamd - Clanshell roll-dut angle ( deg ).'
        / 5X,'Y(3) - CLAMSHELL ETA-ANGLE ( DEG I.''
        / 5X,'Y(2) - CLAMSHELL ROLL-DUT RATE ( RPS ).'
        / 5X,'Y(1) - SYSTEN ROLL RATE ( RPS ).'
        / 5X,'DER(2) - CLANSHELL ROLL-GUT ACCELERATICN ( RAD/SEC**2
        5x,'DER(1) - SYSTFM ROLI ACCELERATIDN ( RAD/SEC**2 )."
        / 5X,'F(J) - INERTIAL AND APPLIED FORCES ( LB ).'
        ( 5X,'FX(J) - X-FRANE HINGE FORCE COMPONENTS ( LB).'
        / 5X,'CX(J) - X-FRANE HINGE COUPLE COMPONENTS ( FT-LB ).'
        / '0' / 55x,'...'
        / '0',15X,'T',9X,'GAMD',8X,'Y(3)',
            8x,'Y(2)',8X,'Y(1)',7X,'DER(2)',6X,'DER(1)'
        , 0',25x,'F(11',8x,'F(2)%,8x,'F(3)',
            8X,'F(4)',BX,'F(5),,8X,'F(6)'
        / '0',25x,'Fx(1)',7x,'Fx(2)',7x,'FX(3)',
            7x,'CX(1)',7X,'CX(2)',7X,'CX(3)' )
    FORMAT( '1' / 'OCASE NO. ',I3,5X,10AB
        / 38X,'1ST PHASE OUTPUT' '
    150 FORMATI 1X / 10X,1P7012.4 / (22X,1P6012.4))
C
    x REAL*8
    X
    X
        REAL*8
        REAL*8
        COMMON / CONS /
        OMMON / DATA / Z,NEQ1,NEQ2,J1,J2,J3,J4,J5
        equivalence
    x
    x
```



```
    ( JZ(1),Z(28) ),( JVX1,Z(31) I,1 GAMD,Z(33)
    (Y1,Z(42),,( YEPS,Z(43),F
    (X,Z(61) ),\ Y(1,
```



```
    Fx(1),Z(151) ),1
    DATA
c
212501,
TO,HO,Q(3),D(B),M,JCY(6).
JZ(3),JVXI,GAMD.
YT,YEPS,AXI,
X,Y(3),DER(3),F(6),FX(3),CX(3),
TITLE(10)
yy(3)
TWPI,CRTD,CDTR,PID2,PID4
TWPI,CRTD,COTR,PID2,PID4
```

10 UT0220 10Ur0230 1 IOUT0240 10uT0240 10UT0250 10 UT0260 10UT0270 10UT0280
10UT0290
1UUT0300
10UT0310 lout0310 louro3z0
$10 U T 0330$
$10 U T 0340$ lourc 350 $10 \cup T 0360$ 1OUT0370 . 1 10UT0380 IOUT0390 10 T0400 10UT0410 10UT0420
1OUT0430
10UT0440
10UT0450 10UT0460
10UT0470
10 TT0480 10410490 10 UT0500 10UT0510 0uT0520 OUT0520 10 UUT0530
10 OT0540 OUT0540 10UT0550 10 UT0560 10UTD570 10UT0580 10UT0580 OUT0590 1 OUT0600 10UT0610 10UT0620
10UT0630
IOUT0640 10UT0650 10 OUT0660 10UT0670 10UT0670 1 OUT0680 10 UT0690 10 UT0700 $10 \cup 10710$ 10UT0720 $10 \cup T 0730$ $10 U T 0730$
$10 U T 0740$ $10 U T 0740$
$10 U T 0750$ 10 TOTO 60

```
        IFI JJ.NE. O ) GO IJ400
        IFI NCASE.NF. J4 ) GO TD 230
        NCASE = J4 + 1
        J4 = NCASE
    gO TO 240
    230 NCASE 240
    240 IFI JK.EQ. O) WRITEI 6,110)
    250 IF( JK .NE. O ) WRITEI 6,115)
    C
        WRITEI 6.120) NCASE,TITLE,
        X TO,HO,O,
        X D,
        M, JCY,
        J?,JVX1,
        YT,Y[PS,AXI
    300 JK = 255
C
        WRITEI 6,130) NCASE,TITLE
        JL=20
    C
    400 IFI MOD( JL,56 1 .NE. 0 ) GO TO 500
        WRITEI 6,140) NCASE ,TITLE
        J}=
    C
    500 YY(1) = Y(1)/TWPI
        YY(2) = Y(2)/TWPI
        YY(3) = Y(3)*CKTD
        WRITEI 6,150)
        X
        X F,
        X,GAMD,YY(3),YY(2),YY(1),DER(2),DER(1),
        x
        F
        FX,CX
        JL = JL + 4
    C
    9 9 0 ~ R E T U R N
        END
C 2/26/69-L.F.H.
C MOD. 9/03/69-L.F.H.
C
            SUBROUTINE NIT2
C
...dATA InIt. for the zND phase...
    REAL#8 
    ll
10UT0770
10JT0780
10UT0790
10UT0800
Oura810
0810
```

 X (D(1),Z(11)), 2NITO210
 X (GAM,Z(32)),(XT,Z(41)), 2NITO220
 (l)
 (X,2(61)),(Y(1),W(1),R(64),',
 (OTCA,Z(141)),(07SA,Z(142)),
(OXCM(1),Z(15i)),(P(1,1),2(161))
COMMON / CONS / TWPI,CRTD,CDIR,PIDL,PIO4
EQUIVALENCE (D8M3,DIM2,Y1M2,2Z2)
XF=X
...bODY pOINT OISPLAGEMENTS IN THE Z-FRAME...
D8M3 = D(8) - D(3)
P(1,1)=D8M3*DC(4)-D(2)*DS(4)
P(2,1)=0.000
P(3,1)=-D(2)*DC(4)-DBM3*DS(4)
D1M2 = D(1)-D(2)
P(1,2)= - D(3)*DC(4)+D1M2*DS(4)
P(2,2)=0.0DO
P(3,2)=DIM2*OC(4) + D(3)*DS(4)
P(1,3)= -D(3)*DC(4) - D(2)*DS(4)
P(2,3)=D(1)
P(3,3)=-D(2)*DC(4)+D(3)*DS(4)
P(1,4)=P(1,3)
P(2,4) = - D(1)
P(3,4)=P(3,3)
...bODY C.M. DISPLACEMENT RATES...
D7CA = D(7)*DC(3)
D7SA= D(7)*DS(3)
DXCM(2) = Y(2)*D(5)*DS(1) - Y(1)*D7SA
DXCM(3)=Y(2)*D(5)*DC(1) +Y(1)*D7CA
...INIT. BOUY FIXED Z-FRAME ANGULAR RATFS...
YLM2 = Y(1) - Y(2)
W(1) = Y1M2*DC(4)
W(2)}=0.00
W(3)}=-Y1M2*DS(4
C
...INIT. EULERIAN ANGLES...
SEE NOTES IN SUBP. UER2 AND SUBP. AUX4 ON ROTATIONAL TRAYSFORMATION.
W(4) = - GAM
W(5)}=0.00

```

```

 ...set up time stop arso .h....
 2NITO230
2NIT0240
2NITO250
2NITO250
2NITO270
2NITO27O
2NIT0280
2NITO280
C
C
C
C
2NITO300
2NITO310
2NITO320
2NITO320
2NITO330
2NITO340
2NTTO350
2NTTO350
2NITO360
2NITO370
2NIT0380
2NITO370
2NIT0400
2NIT0410
2NITO420
2NITO430
2N1T0440
2NIT0450
2NITO460
2NIT0460
2NITO470
2NITO480
2NIT0490
2NITO500
2NITO510
NITOS20
2NITO520
2NIT0530
2NITO540
2NITU550
2NITO560
2NIT0570
2NITO58O
2NIT0590
2NITOGOO
2NITOG10
2NIT0620
2NIT0630
2NITO640
2NITO640
\angleNIT0650
2NIT0660
2NIT0670
2NIT0680
2NIT0690
2NITO700
2NITO710
W(6) = - BETA 2NTTO720
2NITO720
2NITO730
2VITO740
2NIT0750

```
```

 ZZZ = DABS(YlMZ)
 IFI ZZZ.(T.PIO4) IZZ =PIO4
 ZZZ=PIDL/ZZZ
 XT = X + LLL
 H = LZZ/12B.000
 C
990 RETURN
FND
C 2/27/69-L.F.H.
C MOD. 8/20/69 - L.F.H.
C
SUBROUTINE SETZ(r,W,DER,N[O,H,JI 1
C
C
C ...TERMINAL H CONTRCLLER FOR THE 2\$D PHASE...
REAL*8 <(250),
x IT,H,
X

```

```

 GOMMON / DATA / Z,KKK(6),J5
 EQUIVALENCE
 X
 Tr,Z(41)
 C
IF{ Jl.EQ. 0 \ JC = 0
C
IF{ Jl.EQ. 3) GO TO 255
IFI J5.EQ. 0, GO TO 250
J5 = 0
ALL SPIE(0,
JC = JC + 1
IFI JC.GE. 5 I GO TO 500
Hl=H
H=2.000*H
T(1) = T(3)
00 200 K = 1,NFQ
200W(K,1)=W(K,3)
J1=3
C
230 IF(T(1) .EQ. TT) GO TO 300
IFi T(ll + H .LE. TT) GO TD 990
H2 = TT - T(1)
JC=0
IFI J1.EQ. 3.ANO. H1 .EQ. H2 I GO TO 500
H=H2
GO TO 990
G
250 IFI JC.EO. 0 I GO TU 255
H=H*(0.500**JC)
JC=0
255 J1 = 1
GO TO. 230
C
300 Jl = 2
C

```

2NIT0760 2NITOT7O 2NITO780 2NITOT90 2NITOBOO 2NITOBIO 2NITOB20 2NITOB30 2SETOOLO 2SET0020 2 SFT0030 2SET0040 2 SET0050 2 SET 0060 2SET0070 2SET0080 2SET0090 2SET0100 2SET0110 2SETOI20 2 SETOI30 2SETOL40 2SET0150 2SET0160 2SET0170 2SETOL80 2SET0190 2SET0200
2SET0210
2SET0220 2SET0230 2SETO240 2 SETO250 2SFTO260 2 SE T0270 2.SET0280 2SETO270 2SETO 300 2SFT0310 2 SETO320 2 SETO330 2SET0340 2SETO 350 2SETO 360 2 SETO370 2SET0380 2SETO3•0 2SET0400 2SET0400 2 SET0410 2SETO4?O 2SETO430
```

 500 Jl = 5 2SET0480
 90 RETURN
 END
 2/26/69 - L.F.H.
 C MOD. 7/07/59 - L.F.H.
C
SUBROUTINE AUX3
C
...dATA upDATER FDR THE 2ND PHASE DERIV. SUBP...
REAL\#8 Z.(250).
1
2
COMMON , DATA, DC(5),DS(5)
EQUIVALENCE
1
I,NEQ1,NEQ2,J1,J2,J3,J4,J5
(W(1),Z(64)),
(DC(1),Z(131)),(DS(1),Z(136))
...COSINES AND SINES OF THE EULF?IAN AVGLES...
00 300 J = 1,3
DC(J)= DCOS(N(J+3))
300 DS(J) = DSIN(W(J+3))
C
C ...CHECK THE COSINE OF THE 2-ANGLE...
IF(DC(2).NE. 0.0DO) GO TO 990
CALL SPIE(1
J5=255
C
9 9 0 ~ R E T U R N
END
C 2/24/69-L.F.H.
C MOD. 7/07/69-L.F.H.
C
SUBROUTINE DERZ(T,W,DER,NEQ,J)
C
C
...DERIV. FQ'S. FOR THE 2ND PHASE...
REAL *8
REAL*8
REAL\#B T,W(NEQ),DER(NEQ,4)
1
COMMON / DATA / Z,NEQL,NEQ2,J1,J2,J3,j4,J5
EQUIVALENCE
1 (JZ(1),2(28)),(DC(1).2(131)).
2
(DS{1),2(136))
C
...EULER'S EQ'S. OF MOTION FOR FREE FLIGHT....
C
C
DER(1,J)=W(2)*W(3)*(JZ(2)-JZ(3))/JZ(1)
DER(2,J)=W(3)*W(1)*(JZ(3)-JZ(1))/JZ(2)
DER(3,J) = W(1)*W(2)*(JZ(1) - JZ(2))/JZ(3)


```
    A(2,2) = DC(1)*OC(?)
    A(2,3)= - DS(1)*DC(3) + DC(1)*DS(2)*DS(3)
    A(3,1)=-DC(1)*DS(3)+DS(1)*DS(2)*DC(3)
    A (3,2)= DS (1)*DC(2)
    \Delta(3,3)=OC(1)*DC(3) + US(1)*DS(2)*OS(3)
...bODY pOINT DISPlACEmENTS...
C
    00 500 J = 1,4
    O 500 K = 1.3
    X(K,J)= XCM(K)
    00 500 L= = 1,3
500 X(K,J)=X(K,J) + A(K,L)*P(L,J)
C
    9 9 0 ~ R F T U R N
    END
    3/26/69 - L.F.H
CMOD. 9/03/60- L.F.H.
C
    SUBROUTINE OUT2( JJ)
C
C
    130 FORMAT( '1' / OCASE NO. ',13.5X,10A8
        / 38X,'2NIJ PHASE QUTPUT'/ IX
```



```
        / 5X,'XCM,YCM,ZCM - C.M. FREE FLIGHT DISPLACEMENT (FT I.'
        / 5X,'X(J),Y(J),l(J) - J-TH POINT FREE FLIGHT DISPLACEMENTS *
            '1 FT l.''
        / '0' / 55x,....'
        /.0'.14X,'T',10X,'XCM',9X,'YCM',9X,' LCM',
            9x,'X(1)',BX,'Y(1)',8X,'Z(1)'
```



```
                8X,'X(3)',8X,'Y(3)',8X,'Z(3)'
    X / '0',25X,'X(4)',8X,'Y(4)',8X,'Z(4)' )
    140 FORMAT( '1' / OCASE NO. ',I3,FX,1OAB
    X / 38X,' 2ND PHASE OUTPUT' ;
    150 FORMAT( '0',9X,1P7012.4 ( (22X,1P6012.4) )
C
    REAL*8 Z(250)
    x
    M
    x
        COMMON (TITLE(IO)
        FQUIVALENCE
    X
        X
        x
        X
                    ...OUTPUT SUBP. FOR THE 2ND PHASE...
            x,'...'
    T,
                                XCM(3), X(3,4).
                                Z,NEQ1,NEQ2,J1,J2,J3,J4,J5
                            (T,7(61) ).
                            ( XCM(1),2(i54) 1,1 X(1,1),2(201) ),
                            (TITLE(1),Z(241)).
                            (NCASE,J4)
C
        IFI JJ, NE, 0, GU TO 400
        WRITEI 6
C
400 IF( MODI JL,56 ) .NF. O I GO TO 500
```

$4 \mathrm{~A} U \times 0450$
4 AUX0460
4 AUX0470
4 AUK0470
4 AUX0480
4 AUX0490
4 AUX0500
$44 \cup \times 0510$
$4 \mathrm{~A} U \times 0520$
$4 \mathrm{AUXO530}$
$4 \mathrm{AUX0540}$
4 UUX0540
$4 A \cup \times 0550$
$4 \mathrm{~A} \cup \times 0560$
4 AUX0570
$4 \mathrm{AUXO580}$
4 AUX0590
$4 A \cup \times 0600$
20450010
20010010 $20 U T 0020$ 2OUT0030
2UUT0040 20UT0040 20UT0050 20UT0060 20UT0070 20UT0080 UT0080 OUT0090 20UTO100 20UT0110 20UT01 20
20UT0130
2OUT0140 20UT0150 20UT0160 2UUT0170 20UT0180 20UT0190 20UT0200 20UT0210 20UT0210 2UUT0220 20UT0230 2 OUT0240 20UT0250 $20 \cup T 0260$ 20UT0270 20UT0280 2OUT0280 $20 U T 0290$ 2OUT0300 20UTO310 20 UT0320 20UT0330 $20 \cup 10340$ 20UT0350 20UT0350 2OUT0360 2OUT0370 20UT0380 20UT0390

| | LR | 6,5 | | RESET \& SAVE i26... | EDAT0970 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | ST | 6,44(4) | | - | EDAT1 000 |
| | $\times \mathrm{C}$ | 176(8,4),176(4) | | CLEAR THE 'PSW' CELLS. | EDAT1010 |
| | XC | CL8.CLS | | ZERD LOP \& HOLD. | EDAT1020 |
| | LA | A, 8 | | SET UP RA, RB, RE, \& RF... | EDAT 1030 |
| | LA | B, 4402 | | ... | EDAT 1040 |
| | L.M | E,F,LOP | | - * | EDAT 1050 |
| | 01 | A408+1, $\mathrm{X}^{\prime} \mathrm{FO}$ | | FNABLE THE BR. AT A408. | EDAT1050 |
| | SPACE | 1 | | | EDAT1070 |
| A402 | CLI | O(6).C' | | COMPUTE THE LDADING OFFSET... | EDAT 1080 |
| | RE | A 407 | | | EDAT1090 |
| | N I | A $408+1, X^{\prime}$ OF' | | DISABLE THF BR. AT A408. | EDAT 1100 |
| | LA | B, A404 | | ...RESET RB. | EDAT1110 |
| A404 | CLI | 0(6),C'0' | | \bullet | EDAT1120 |
| | BL | A405 | | ... | EDAT1130 |
| | CLI | 0(6).C'9' | | - | EDAT 1140 |
| | BH | C110 | | . . - | EDAT1150 |
| | MVN | $0(1,8), 0(6)$ | | -. - | EDAT1150 |
| | M | $E, F \cdot 10^{\circ}$ | | -.. | EDAT1170 |
| | A | F. HOLU | | - - | EDAT1180 |
| | B | A407 | | | FDAT 1190 |
| 4405 | LA | B, 4406 | | ...RESET RB. | EDAT 1200 |
| A406 | CLI | 0(6).C. | | ... | EDAT1210 |
| | BNE | C110 | | . . | EDAT 1220 |
| A407 | LA | 6,1(6) | | -•• | EUAT1230 |
| | BCTR | A, B | | | EDAT 1240 |
| | SPACE | 1 | | | EDAT1250 |
| | CLI | O(6), $\mathrm{C}^{\prime \prime}$ | | CHECK THF COL. 9 CHAR. | EDAT 1260 |
| | BNE | C110 | | | EDAT1270 |
| | SPACE | 1 | | | EDAT 1280 |
| A408 | B | A409 | ** | | FDAT1290 |
| | A | F,172(4) | | SE T UP THe current load point. | EDAT 300 |
| | LR | 3,F | | -.. | EDAT1310 |
| | ST | 3,32(4) | | -. - | EDAT 1320 |
| | SPACE | 1 | | | EDAT1330 |
| A409 | SR | A, A | | SET UP RA, RB, RE, RF,... | EUAT 1340 |
| | LA | B,S100 | | -.. ${ }^{\text {a }}$ | EDAT 1350 |
| | LA | E. 4 | | - - | EDATI 360 |
| | LA | F. 24 | | - | EDAT1370 |
| | LA | 6,116) | | CHFCK THE CARD COL. 10 CHAR... | EDAT1380 |
| A410 | CLC | O(1,6),0(8) | | - | EDAT1390 |
| | BE | A500(A) | | BR. If .FQ. AN ALLOWED CHAR. | EDAT 1400 |
| | 14 | B, 1 ($\mathrm{B}^{\text {) }}$ | | INCR. RR. | EDAT1410 |
| | RXLE | $A, E, 4410$ | | LOGP... | EDAT1420 |
| | B | C110 | | | EDAT1430 |
| | SPACE | 1 | | | EDAT1440 |
| A500 | 8 | BLNK | | PR. OUT 45 REQ'O... | EDAT1450 |
| | B | CC | | -.. | EDAT 1460 |
| | B | DD | | . . . | EDAT1470 |
| | R | HH | | -.. | EDAT 1480 |
| | 8 | RRR | | . . . | EDAT1490 |
| | B | XX | | - . | FDAT 1500 |
| | TITLE | - Edata-C data, blank | ANO | RFTURV DIROC. SECTIJNS* | EDAT 1510 |
| | SPACE | 1 | | | EDAT1520 |
| * | | * \ddagger * | | | EUAT1530 |

| | SPACE | 1 | | EDAT 1540 |
| :---: | :---: | :---: | :---: | :---: |
| CC | 0 I | C $102+1, X^{\prime} \mathrm{FO}$ | FVABLE THE RR'S AT C102... | EDAT 1550 |
| | OI | C $300+1, \mathrm{X}^{\prime} \mathrm{FO}{ }^{\prime}$ | ...E C300. | EDAT1560 |
| | SPACE | 1 | | EDAT1570 |
| 6100 | LA | 6,1161 | INCR., SAVE, \& CHECK RG... | EDAT1580 |
| | ST | 6.44(4) | ... | EDAT 1590 |
| | CR | 6.7 | | EDAT 1600 |
| | PH | BLNK | 3R. OUT IF PAST CARD END. | EDAT 1610 |
| | CLI | O(6), X'70' | LOOK FOR THE MARK... | EDAT1620 |
| | BE | C300 | ..-gR. DUT WHEN FOUND. | EDAT1630 |
| | SPACE | 1 | | EDAT1640 |
| Cl 02 | AC | 15,C100 | * | EDAT1650 |
| | SPACE | 1 | | EDATL660 |
| C 103 | C | 9,7214) | CHECK FOR PRECEDING ERRDRS... | EOAT 1670 |
| | $B E$ | C100 | ...br. to avoid data loading. | EDAT1680 |
| | MVC | O(1,3),0(6) | MOVE A CHARACTER. | EDAT1690 |
| | LA | 3,1(3) | INCR. R3. | EDAT1700 |
| | B | C100 | | EDAT1710 |
| | SPACE | 1 | | EDAT 1720 |
| C110 | SR | 6,5 | SEt up trouble inoic... | EDAT 1730 |
| | LA | 6,1161 | - | EDATLT40 |
| | ST | 6,76(4) | - . - | EDAT 1750 |
| | MVI | 75(4).3 | INOTC. TROUBLE. | EDAT 1760 |
| | B | RR | | EDAT1770 |
| | SPACE | 1 | | EDAT1780 |
| C300 | EC | 15,6400 | * | EDAT 1790 |
| | SPACE | 1 | | EOAT 1800 |
| | CLC | 0 $2,61 .=x^{\prime} 7070^{\circ}$ | CHECK FOR THE * MARK. | EDAT1810 |
| | BNE | BLNK | BR. OUT IF NOT \triangle ' MARK. | H.DAT1820 |
| | LA | 6,1(6) | INCR. R6. | EDAT1830 |
| | ST | 6,44(4) | SAVE RG. | EDAT1840 |
| | B | C103 | | EDAT 1850 |
| | SPACE | 1 | | EDAT1860 |
| C400 | NI | C $102+1, X^{\prime} 0 F^{\prime}$ | 1) ${ }^{\text {SABLE }}$ THE BR. AT C102. | EDAT 1870 |
| | NI | C $300+1$, X^{\prime} OF' | DISABLE THE BR. AT C300. | EDATI880 |
| | 8 | $\mathrm{C} 100$ | | EDAT1890 |
| | SPACE | 1 | | EDAT 1900 |
| * | | * * | | EDAT1910 |
| | SPACE | 1 | | EDAT1920 |
| BLNK | MVI | 7914).0 | INDIC. NO ERROR. | EDAT 1930 |
| | ST | 3,32(4) | SAVE THE CURRENT LUAD PJINT. | EDAT 1940 |
| | SPACE | 1 | | EDAT1950 |
| RR | L | 1,24(4) | RESET RI... | EDAT 1960 |
| | SPIE | $M F=(E,(1))$ | ...TO RESET THE OLD P.I.E. | EDAT1970 |
| | L | D.4(4) | RESET RD... | EDAT1980 |
| | LM | E,C,12(D) | ...AND RESTORE THE DTHER R*S. | EDAT1990 |
| | MVI | 12(D), X'FF' | | EDAT2000 |
| | BCR | 15.E | | EDAT2010 |
| | SPACE | 1 | | EOAT2020 |
| RRR | MVI | 75(4).2 | INOIC. RETURN. | EDAT2030 |
| | B | RR | | EDAT2040 |
| | title | - Edata-d data proc. | SECTION' | EDAT2050 |
| | SPACE | 1 | | EDAT2060 |
| * | | * \ddagger | | EDAT2070 |
| | SPACE | 1 | | EDAT2080 |

| | DD | SR | A, A | SET UP RA \& RG... | EDA 12090 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | SR | B, 8 | | EDAT2100 |
| | | XC. | CL16,CL16 | ZERD HOP, LDP, HOLD, \& EXP. | EDAT2110 |
| | | MVC | | SET UP TCW. | EDAT2120 |
| | | SPACE | 2 | | EDAT 2130 |
| | 0200 | LA | 6,1(6) | INCR., SAVE, E CHECK RG... | EDAT2140 |
| | | ST | 6,44(4) | \cdots | EDAT2150 |
| | | CR | 6,7 | | EDAT2160 |
| | | BH | 0810 | ...br. dut if past card evd. | EDAT2170 |
| | | SPACE | 1 | | EDAT2180 |
| | | CLI | $0(6), C 100$ | CHECK fIR NUMERICS... | EDAT2190 |
| | | RL | 0500 | ...trR. DUT IF .LT. 0. | EDAT2200 |
| | | CLI | $0(6) .699$ | -.. | EOAT 2210 |
| | | BH | C110 | \ldots...AR. TC tROUBLE IF .GT. 9. | EDAT2220 |
| | | MVN | $0(1,8), 0(6)$ | move the numeric to 'holo'. | EDAT2230 |
| | | LA | A, l(A) | INCR. The digit count. | EDAT2240 |
| | | Space | 1 | | EDAT2250 |
| | | TM | TC1, ${ }^{\prime} 80^{\prime}$ | (0,0) | EDAT2260 |
| | | BO | D220 | | edat2270 |
| | | CH | $A^{\prime}=\mathrm{H}^{\prime \prime} 8^{\prime}$ | Check the digit count... | EDAT2280 |
| | | BL | 0220 | ...gr. AROUND IF .LT. 8. | EDAT 2290 |
| | | 01 | TC $1,{ }^{\circ} 80^{\circ}$ | discont. the digit count check. | evat 2300 |
| | | NI | TC $3, \mathrm{X}$ 'EF' | ALLOW long real storage. | EDAT2310 |
| | | NI | TC2, X'FD' | firbio an e in a long real. | EDAT2320 |
| | | SPACE | 1 | | EDAT2330 |
| | 0220 | TM | TC1, X'40' | (1,1) | EDAT 2340 |
| | | B0. | 0300 | | EDAT2350 |
| | | LA | B.1(8) | Incr. the fract. digit count. | EDat 2360 |
| | | SPACE | 2 | | EDAT2370 |
| | 0300 | TM | TC1, X'20' | (2,0) | EDAT2380 |
| | | BO | 0400 | | EDAT2390 |
| | | L | E.LOP | BUILD UP the long primitive... | FDAT2400 |
| | 0310 | LR | F, E | -.. | EDAT2410 |
| | | M | E, =F'10' | ... | EDAT2420 |
| | | A | F, HOLD | (3,0) ${ }^{\text {. }}$ | EDAT2430 |
| | | TM | TCl, ${ }^{\text {c }} 10^{\prime}$ | $(3,0)$ | EDAT2440 |
| | | B0 | 0330 | | EDAT2450 |
| | | 5 T | F,LOP | - | EDAT2460 |
| | | NI | LOP, X'03' | ... | EDAT2470 |
| | | SR | E, E | ... | EDAT2480 |
| | | SLDL | E, 6 | -. | EDAT2490 |
| | | St | E, HOL | - | EDAT2500 |
| | | $\stackrel{1}{ }$ | E, hiop | \cdots | EDAT2510 |
| | | 01 | TC1, ${ }^{\text {c }} 10^{\circ}$ | ...'OR' BIt 3. | EDAT2520 |
| | | B | D310 | | EDAT 2530 |
| | | FJECT | | | EDAT2540 |
| | 0330 | ST | F. HOP | - | EDAT2550 |
| | | NI | TCI, X'EF' | ...-2ERO BIT 3. | EDAT2560 |
| | | 8 | 0200 | | EDAT2570 |
| | | SPACE | 2 | | EDAT2580 |
| | 10400 | CH | | CHECK THE DIGIT COUVT... | EDAT2590 |
| | | BH | C110 | ...gr. to triuble if .GT. 2. | EDAT2600 |
| | | L | F,Exp | RUILD UP THE EXPOVFNT... | EDAT2610 |
| | | M | $\mathrm{EP}=\mathrm{F}^{\prime} \mathrm{lO}^{\prime}$ | ... | EDAT2620 |
| $\stackrel{+}{\sim}$ | | A | F.HOLO | ... | EDAT2630 |

| | ST | F,EXP | -•• | EDAT2640 |
| :---: | :---: | :---: | :---: | :---: |
| | B | D200 | | EDAT2650 |
| | SPACE | 2 | | EDAT2660 |
| D500 | CLI | 0(6), C*, | CHECK FOR A CJMMA... | EDAT2670 |
| | RE | D600 | ...BR. OUT IF COMMA. | EDAT2680 |
| | SPACE | 1 | | EDAT 2690 |
| | SR | 1,1 | | EDAT 2700 |
| | LA | C, 5200 | SET UP RC, RE, \& RF... | EDAT2710 |
| | LA | E. 4 | -.. | EDAT2720 |
| | LA | F, 20 | - - | EDAT2730 |
| 0510 | CLC | 0(1,6), 0(C) | CHECK FOR OTHER CHARS... | EDAT2740 |
| | BE | $0700(1)$ | ...ER. OUT AS REQ'D. | EDAT2750 |
| | LA | C, 11 C) | INCR. RC. | EDAT 2760 |
| | BXLE | 1,E,D510 | LOUP... | EDAT2770 |
| | B | C110 | ...OR RR. TO TROUBLE. | EDAT 2780 |
| | SPACE | 2 | | EDAT2790 |
| 0600 | TM | TC1, ${ }^{\prime} 0{ }^{\prime}$ | 14,1) | EDAT2800 |
| | BO | INT | | EDAT 2810 |
| | SPACE | 1 | | EDAT2820 |
| | TM | TC1, ${ }^{\prime \prime} 04^{\prime}$ | (5,1) | EDAT 2830 |
| | B0 | D620 | | EDAT 2840 |
| | SPACE | 1 | | EDAT2850 |
| | A | B, EXP | COMP. THE SCALING FACTOR.. | EDAT2860 |
| D610 | NI | TC3, X'BF' | ...ENABLE DOWNSCALING. | EDAT 2870 |
| | SPACE | 1 | | EDAT 2880 |
| D611 | SLL | B, 3 | - - | EDAT2890 |
| | ST | B, EXP | - - | EOAT2900 |
| | B | FLT | | EDAT2910 |
| | SPACE | 1 | | EDAT2920 |
| 0620 | S | B, EXP | - - | EDAT 2930 |
| | BM | 0630 | . . . | EDAT 2940 |
| | B | 0610 | . . . | EDAT2950 |
| | SPACE | 1 | | EDAT2960 |
| 0630 | LPR | 8, 8 | -•• | EDAT 2970 |
| | B | 0611 | | EDAT2980 |
| | SPACE | 2 | | EDAT2990 |
| 0700 | B | D810 | BL ANK. | EDAT3000 |
| | B | 0820 | - | EDAT3010 |
| | B | 0830 | + | EDAT3020 |
| | B | 0840 | - | EDAT3030 |
| | B | 0850 | D | EDAT3040 |
| | B | 0860 | E | EDAT 3050 |
| | FJECT | | | EDAT 3080 |
| 0810 | NI | TC 3, ${ }^{\prime} 7 F^{\prime}$ | ZERO BIT 16. | EDAT3070 |
| | B | 0600 | | EDAT3080 |
| | SPACE | 1 | | EDAT3090 |
| 0820 | TM | TClix'02' | (6,1) | EDAT 3100 |
| | PO | 0821 | | EDAT3110 |
| | B | CILO | | EDAT3120 |
| 0821 | N I | TCI, X'Ho' | ALLOW FRACT. DIGIT COUNTING... | *EDAT3130 |
| | | | *..FOREIO $2 .{ }^{\text {- }}$ S IN THE P-PART. | EDAT3140 |
| | NI | TC2, ${ }^{\prime}$ '6F' | FORBID + AFTER THE DEC. PT... | *EDAT 3150 |
| | | | ...ALSO, - AFTER THE OFC. PT. | EOAT3160 |
| 0825 | NI | TC1, X'F7' | ALLOW FLOATING. | EDAT3170 |
| | 8 | D200 | | EDAT3180 |

| 0861 | NI | TC2, X'F9* |
| :---: | :---: | :---: |
| | a | D852 |
| | SPACE | 1 |
| INT | LM | E,F,HUP |
| | C.H | E, = H'31' |
| | BH | C110 |
| | SLL | F, 6 |
| | SRDL | E, 6 |
| | TM | TC2, X'01' |
| | 30 | IN20 |
| | LNR | F,F |
| IN20 | C | 9,7214) |
| | BE | IN30 |
| | ST | F.013) |
| | LA | 3,4(3) |
| | SPACE | 1 |
| IN30 | TM | 163, ${ }^{1} 80^{\circ}$ |
| | 80 | 00 |
| | B | BLNK |
| | SPACE | 1 |
| FLT | LD | $2,=0 \cdot 0.0{ }^{\circ}$ |
| | LM | A, B, HOP |
| | LTR | E. A |
| | BL | FL50 |
| | SR | F,F |
| | SROL | E, 10 |
| | STM | E, F, HUP |
| | 01 | HIJP, $\mathrm{X'}^{\prime} \mathrm{F}^{\prime}$ |
| | AD | 2,0WD |
| FL50 | LTR | B,8 |
| | B 2 | RLI 10 |
| | SR | A, A |
| | STM | $A, B, H U P$ |
| | 01 | HOP, $\mathrm{X}^{\prime} 4 \mathrm{E}^{\prime}$ |
| | AD | 2.0WD |
| | EJECT | |
| | SPACE | 2 |
| RLI 10 | LTDR | 2,2 |
| | R 2 | RL 30 |
| | L | C. EXP |
| | 1 TR | C, C |
| | BZ | RL20 |
| | SPACE | 1 |
| | L | 1, = $\mathrm{A}^{(L L F H} 3$) |
| | TM | TC3, ${ }^{1} 40^{\circ}$ |
| | BO | RLI 15 |
| | SPACF | 1. |
| RL. 11 | CH | $\mathrm{C},=\mathrm{H}^{\prime} 608^{\circ}$ |
| | BL | RLI 3 |
| | SH | C. $=\mathrm{H}^{\prime} 600^{\circ}$ |
| | OD | 2,600(1) |
| | B | RLII |
| RLI 13 | DO | 2,0(C,1) |
| | R | RL20 |

| | SLL | C. 4 | | -. | EDAT5390 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | BR | C. $\mathrm{B}^{\text {c }}$ | | -•• | EDAT5400 |
| | ST | C.LDP | | -. \cdot | EDAT5410 |
| | R | $\times 200$ | | - - | EDAT5420 |
| | SPACE | 1 | | | EDAT5430 |
| $\times 300$ | CLI | O(6).c' | | RFCHECK THF DATA FIELD CHAR... | EDAT5440 |
| | BE | $\times 500$ | | ...AR. DUT IF BLANK. | EDAT5450 |
| | CLI | O(6), C'A' | | - | EDAT5460 |
| | BL | C110 | | ...rr. TO TROURLE IF .lT. 'A'. | EDAT5470 |
| | CLI | O(6).C'F' | | - | EDAT5480 |
| | BH | C110 | | ...br. tc trouele if .GT. 'F'. | EDAT5490 |
| | MVN | 0(1,8), 0(6) | | MOVE THE NUMERIC TO 'HOLD'. | EDAT5500 |
| | 1 | B, HULD | | PICK UP THF NUMERIC... | EDAT5510 |
| | AH | $\mathrm{B},=\mathrm{H}^{\prime}{ }^{\prime}$ | | ...E REMOVF ITS BIAS. | EDAT5520 |
| | R | X220 | | | EDAT5530 |
| | SPACE | 1 | | | EDAT5540 |
| $\times 400$ | C | 9,72(4) | | CHECK FOR PRECEDIVG ERRJRS... | EDAT5550 |
| | BE | $\times 410$ | | ...fr. TC AVOID data loading. | EOAT5560 |
| | SPACE | 1 | | | EDAT5570 |
| | 1. | B, LOP | | STASH THE DATA WHERE REQ'D... | EDAT5580 |
| | ST | B,0(3) | | - . | EDAT5590 |
| | LA | 3.4(3) | | INGR. R3. | EDAT5600 |
| | SPACE | 1 | | | EDAT5610 |
| $\times 410$ | BC | 15, XX | | | EDAT5620 |
| | 01 | X410+1, X'FO' | | ENABLE THE BR. AT $\times 410$. | EDAT5630 |
| | B | BLNK | | | EOAT5640 |
| | SPACE | 1 | | | EDAT5650 |
| $\times 500$ | NI | | | DISABLE THF BR. AT X410. | EDAT5660 |
| | B | $\times 400$ | | | EDAT5670 |
| | TITLE | - edata-erasible | Storage | AND GIJNSTANTS.' | EDAT5680 |
| | SPACE | 1 | | | EDAT5690 |
| DWD | DS | 00 | | | FDAT5700 |
| CLI 16 | DS | OCL 16 | | | EDAT5710 |
| HOP | DS | F | | | EOAT5720 |
| CL. 8 | DS | OCL8 | | | EDAT5730 |
| LOP | DS | F | | | EDAT5740 |
| HOLD | DS | OF | | | EDAT5750 |
| | DS | CL3 | | | EDAT5760 |
| LOB | DS | C | | | EDAT5770 |
| EXP | DS | F | | | EDAT5780 |
| | SPACE | 1 | | | EDAT5790 |
| TCW | DS | OF | | | FDAT5800 |
| T6. | DS | C | | | FDAT5810 |
| TC2 | DS | C | | | EDAT5820 |
| TC3 | DS | C | | | EDAT5830 |
| TC4 | DS | C | | | EDAT5840 |
| | SPACE | 1 | | | EDAT5850 |
| S 100 | DC | $C^{\prime \prime}$ | | | FDAT5860 |
| | DC | $C^{\prime} C^{\prime}$ | | | EDAT5870 |
| | DC | $C^{\prime} \mathrm{D}^{\prime}$ | | | EOAT5880 |
| | DC | $\mathrm{C}^{\prime} \mathrm{H}^{\prime}$ | | | EDAT5890 |
| | DC | $C^{\prime \prime} \mathrm{R}^{\prime \prime}$ | | | EDAT5900 |
| | DC | $C^{\prime \prime} X^{\prime \prime}$ | | | EDAT5910 |
| | SPACE | 1 | | | EDAT5920 |
| S200 | DC | $C^{\prime}{ }^{\prime}$ | | | EDAT5930 |

| DC | $C^{\prime} \cdot{ }^{\prime}$ | | EDAT5940 |
| :---: | :---: | :---: | :---: |
| DC | $C^{\prime}+1$ | | EDAT5950 |
| DC | Cl^{\prime} - | | EDAT5960 |
| DC | $C^{\prime \prime} 0^{\prime}$ | | EDAT5970 |
| DC | $C^{\prime \prime} E^{\prime \prime}$ | | EDAT5980 |
| SPACE | 1 | | EDAT5990 |
| LTORG | | | EDAT6000 |
| TITLE | 'EDATA-CSFCTS LFH2 AND LFH3.' | | EDAT6010 |
| SPACE | 1 | | EDAT6020 |
| | * * * * * * * | * | EDAT6030 |
| SPACF | I | | EDAT6040 |
| CSECT | | | EDAT6050 |
| OS | F | $+0$ | EDAT6060 |
| DS | F | +4 | EDAT 6070 |
| DS | 4F | +8 | EDAT6080 |
| DS | F | $+24$ | EDAT6090 |
| DS | F | $+28$ | EDATG100 |
| DS | F | $+32$ | EDAT6110 |
| DS | F | +36 | EDAT6120 |
| DS | F | +40 | EDAT6130 |
| DS | F | +44 | EDAT6140 |
| DS | F | +48 | EDAT6150 |
| DS | F | +52 | EDAT6160 |
| DS | F | +56 | EUAT6170 |
| DS | $3 F$ | +60 | EDAT6180 |
| 0 S | F | $+72$ | EDAT6190 |
| DS | F | +76 | EDAT6200 |
| OS | F | +80 | EDAT6210 |
| DS | F | +84 | EDAT6220 |
| DS | CL 80 | +88 | EDA T6230 |
| DC | CL4' | | EOAT6240 |
| DS | F | +172 | EDAT6250 |
| DS | 2 F | $+176$ | EDAT6260 |
| DS | 2 H | $+184$ | EDAT6270 |
| DS | 4400 F | $+188$ | EDAT6280 |
| SPACE | 1 | | EOAT6290 |
| | | * * | FDAT6300 |
| SPACE | 1 | | EDAT6310 |
| CSECT | | | EDAT6320 |
| | TABLE OF 10**N. | | EDAT6330 |
| | | | EDAT6340 |
| DC | D'1. $0 \mathrm{E}+0,1.0 \mathrm{E}+1,1 . O E+2$, | 1.OF+3, $1 . O F+4,1 . O E+5^{\prime}$ | EDAT6350 |
| DC | D'1.OE+6, 1.OE+7,1.OE+8, | $1.0 E+9,1.0 E+10^{\prime}$ | EDAT6360 |
| DC | D'1. OE+ 11, 1. $\mathrm{CE}+12.1 .0 \mathrm{E}+$ | 13,1.OE+14.1.0E+15' | EDAT6370 |
| DC | O'1.OE+16, 1. OE + 17.1.OE+ | 13,1.OE+19.1.OE+20' | EDAT6380 |
| EJEC T | | | EDAT6390 |
| DC | $D^{\prime} 1 . O E+21.1 . O F+22,1 . O E+$ | 23,1.OE +24,1.OE+25' | EDAT6400 |
| DC | $D^{\prime} 1 . O E+26,1 . O E+27.1 . O E+$ | 28,1.OE+29.1.OE+30' | EDAT6410 |
| DC | $\mathrm{D}^{\prime} 1 . O E+31,1 . O E+32,1 . O E+$ | 33,1.OE $34,1 . O E+35^{\prime}$ | EDAT6420 |
| DC | $D^{\prime} 1.0 E+36,1 . O E+37,1 . O E+$ | 38,1.OE $+39,1.0 E+40^{\prime}$ | EOAT6430 |
| DC | $D^{\prime} 1 . O E+41,1 . O E+42,1 . O E+$ | 43,1.OE+44,1.0E+45' | EDAT6440 |
| DC | $\mathrm{O}^{\prime} 1 . O E+46,1 . O E+47,1.0 E+$ | 48,1.0E+49,1.0E+50' | EDAT6450 |
| DC | $O^{\prime} 1 . O E+51.1 . O E+52.1 . O E+$ | 53,1.OE+54,1.0E+55' | EDAT6460 |
| DC | $0^{\prime} 1.0 E+56,1.0 E+57.1 .0 E+$ | 58, 1. OE+59, 1. OE+60' | EDAT6470 |
| DC | $D^{\prime} 1 . O E+61.1 . O E+62.1 . O E+$ | 63,1.0E+64,1.0E+65' | EDAT6480 | 1*

015001 Cl U 31711112 S00903DS
DEPT OF THE AIR FORCE
AF WEAPONS LAB (AFSC)
TECH LIBRARY/WLOL/
ATTN: E LOU BOWMAN, CHIEF
KIRTLAND AFB NM 87117

> The aeronautical and space activities of the United States sball be conducted so as to contribute. .to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

- National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:
SCIENTIFIC AND TECHNICAL INFORMATION OFFICE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546

