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Overview of Final Report 

The final report on the Space Shuttle Booster Data Management System (DMS) 

for NASA contract NAS8-30186 is in two volumes. The major items covered 

in Volume I are a discussion of the study results, a description of the
 

booster mission, and a description of the functional requirements of the
 

assumed avionics system. Volume II is devoted to subsystem interface 

description, subsystem computational requirements and a description of 

an analysis program generated and used during the study. 

The reader should first read section 1 for a summary of the study, the 

major study conclusions and booster mission description. Section 2
 

provides a detailed discussion of the DMS configuration and sizing 

analysis. The reader interested in the detailed description of a parti­

cular subsystem is directed to the functional requirements in section 

3, the interface requirements in section 4 and the computational require­

ments in section 5. Section 6 presents evaluation program, reliability 

analysis and configuration mechanization details. The table of contents 

will direct the reader to the particular subsystem of interest.
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4.0 BOOSTER SYSTEMS INTERFACE DESCRIPTIONS 

The development of the DMS requires detailed definitions of afl subsystems 

it interfaces with. This section is concerned with the data flow between 

the DMS and other subsystems while section 5 is concerned with the action of 

the DMS upon this data. The method of transmission of data between the DMS 

and other subsystems is highly dependent'upon the DMS configuration. There 

are certain interface parameters which can be defined independent of the DMS 

configuration. Data transferred between the DMS and other subsystem equipment
 

will be data representing the numerical magnitude of a parameter or coded data 

indicating the state or an action, or the command of a state or action within 

subsystem equipment of the DMS. Discrete inputs and outputs are a special 

form of coded data. Numerical values may originate in or be required by sub­

system equipment as analog voltages, modulated ac voltages, or special encoded 

parallel or serial digital data.. Much of this data will require conversion 

before it can be used internally in any DMS computer. The electronics required 

for conversion will be assumed part of the DMS and not part of the subsystem 

equipment. If the DMS is a centralized system then all interface data will 

be through the data bus system and conversions -will occur at .the subsystem end 

of the data bus., If the DMS is decentralized withlocal computers at the major 

subsystem elements then special input/output conversion -equipment could be 

implemented.as part of the local computer. The requirements to interface 

directly with a digital computer will be different from the requiiements to inter­

face with the ,data bus system.-

In this section those parameters delineated for each interface data element 

transmitting numerical values &re: 

-1­
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range- This is the difference between the minimum and maximum values 

that the transmitted parameter may portray, e.g.,, whole value gyro 

outputs will have minimum and maximum values of -180 and +180 degrees 

respectively producing a range of 360 degrees.
 

resolution - This is the size of the smallest change in the parameter 

which must be transmitted. This is different than accuracy which is a 

measurement of' how closely the transmitted data represents the parameter 

being measured. For example a rate gyro could have a scale factor error 

causing measuremnt.-naccuracies of 1/s at large rates but have a res­

olution requirement of .1is. The 10/s scale factor inaccuracy would 

cause a minor variation of the attitude control loop short-period time 

constant while if the resolution were increased toi0 /s the attitude 

control loop would develop a limit cycle oscillation of possibly in­

tolerable magnitude. Resojution is a measurement of the least significant 

bit value which must be transmitted. 

sampling rate - This is a measurement of the rate at which the data 

must be updated either by the DNS or for use by the DMS. This measurement 

is dependent upon the intended use of the data. Iata items may be used 

by more than one system and their rate requirements may vary with mission­

phase. For example the attitude gyros are used by both the strapdown 

navigation computations and the attitude control system. The sampling 

rate requirements will be determined from that system having the highest 

rate requirements. An example of data rate requirements restricted to 

particular mission phases occurs with the valve commands to the reaction 

jet system which is used only during coast and the early portion of reentry. 



Data Subsystem source or destination -:The orginating source pr final 

destination of all data indicates the type of conversion electronics
 

required. 

The parameters delineated for each interface data element transmitting
 

coded states is:
 

Number of possible subsystem states
 

This is the informati6n required&to determine the nbmber of, binary 

bits needed to transmit the status of a subsystem. In any subsystem 

there is the possibility for some modes to operate only exclusively 

of other modes, e.g., the TACAN Distance Measuring Equipment (12E) 

cannot be in a track mode simultaneously with a search mode. There 

are other modes which may operate independent of one another, e.g , 

the- TACAN may or may not be delivering'good bearing data independent 

of the DMS operation.
 

Required response time
 

A change in subsystem status requests an, action by the DMS. The
 

action required of the DMS must occur within a set time after the
 

status change. 'This set time results in specifying either the rate -at 

which status data must be sampled or in some instances specifies that 

the status must be transmitted on a special priority interrupt line. 
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This section delineates all of the input/output requirements of the. 

Structures
 

Propulsion
 

Electrical power generation and distribution
 

Navigation and guidance
 
Flight control
 

Operations management
 

systems. The parameters. listed for each input/output data item are those listed 

Above. 

4.1 STRUCTURES 

qtruotures include performance monitoring, landing gear deployment, and 

separation control and monitoring. 

4.1.1 PE. 

Structural ,performance is monitored by vibration, stress, and temperature 

sensors. This data will be recorded during the mission flight phases for post 

flight analysis and data reduction. The I will be responsible for: 

1. Sensor checkout during M-launch 
2. Control of data recording during flight 

3. Post flight data reduction 

During flight the data generated by the majority of these sensors will not 

iterface with the IMS but only with the recorder through the data bus system. 

Recording of the sensor outputs are of primary interest during periods of 

large sensor output values. The data rate requirements for the transmission 

of vibration data to the recorder will be very high if the numberiof sensors 

is large. It is possible for some IAS configurations to have large data rate 

rqtiirements on the main data bus system which will make the addition of 



vibration data to the main data bus system prohibitive. Since the 

recording of vibration data is not critical to the mission (except initial 

flight test missions where mission objectives are the gathering of vehicle 

data) redundancy requirements do not apply. For these reasons it is 

probabl that a separate data bus system win be constructed for the 

purposes of collecting and recording special vehicle data. Such a con­

figuration has the additional advantage of being a nearly independent sub­

system with A minimum interface with other systems so that it can easily 

be removed if its use is found no longer necessary.
 

Figure 4-i shows the configuration adapted for this study for the recording 

of special vehicle data as applied to the vibration sensors. Digital 

rather than analog recording is assumed because it allows for the use of 

identical equipment as that required by the EMS data bus system, it exhibits 

better noise rejection than, analog multiplexing, allows for the insertion 

of sensor identification codes, and provides compatability with data reduction 

equipment. Each vibration -sensor output is connected directly to an analog-­

to digital converter. The converter output is connected through switching 

and control electronics to the recorder data bus. There are several methods 

of mechanizing the recorder data bus, however these mechanization details 

will not significantly effect the DMS. Data bus addressing and control 

electronics wil communicate with the individual vibration sensor A/D 

converter and data bus interface electronics through the recorder data bus 

to command the time shared multiplexing of the converted sensor outputs 

onto the recorder data bus. The data bus addressing and control electronics 

is commanded from the main data bus through data bus interface electronics. 

The commands which can be issued to the data bus addressing and control 

electronics are 
. Standby * Test Record Fast 
* Record (slow speed . Test Record Slow 
" Record (fast speed) 

-5-­
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These commands will originate± in the IMSocomputers and will be issued as 

a function of mission phase and r~quired recording rate as determined from 

sensor measurements. The commands will not be issued at a set iteration rate
 

but only as required. 

Figure 4-2 shows typical acceleration power spectral density vibration levels 

for a liquid fueled booster. The fast recording speed should be capable of 

accumulating vibration data out to 1300 Hz. which will require at a minimum 

2600 samples per second. The range required for each sensor output is +25g's
 

and a resolution of .05g's. The slow recording speed should be capable of
 

covering the frequency range where the majority of subsystem equipment
 

resonances occur, 30 to TOHz which will require a minimum sampling rate of 

300 samples per second.' A convenient ratio between fast and slow recording 

speeds would be &1l. For the purposes of this study it will be assumed that 

there are a total of 15 vibration sensors to be recorded which will be sampled 

at' 3200 samples per second for high speed recording and 400 samples per second­

for slbw speed recording. Each sampling will result in a 10 bit data word. 

Every 16th sample will be used to accumulate non-vibration data such as 

temperature and stress sensor outputs which are sampled at a much lower rate. 

The high speed data rate requirements are then 512,000 bits per second and the. 

low speed rates are 64,000 bits per second.
 

The determination of recording speed is dependent upon several-measurements. 

One of thee measurements is vibration magnitude. Several of the vibration 

sensors (for this study three are assumed) will have an interface directly 

with the main data bus in addition to the recorder data.bus. When interfacing 

with the main data bus the sensor outputwill-be-a-dnvdrted to a pseudo 'RM&Jvalue 

by full wave rectification and filtering. This RMS value will be converted 
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to 	a digital number and transmitted to the 1MM computers upon request of.the
 

DMS. Figure 4-3 shows a typical RMS vibration history of a liquid fueled
 

booster Collection of vibration data will be of most interest during
 

periods of large vibration activity. One criteria for determining when high
 

speed recording should occur is when vibration magnitudes exceed a fixed
 

threshold value. If this threshold value could be predetermined early in the
 

space shuttle design phase then the A/D converter in the interface electronics
 

between the vibration sensors and main data bus could consist of a threshold
 

detector producing a single bit conversion, i.e., discrete output. In the
 

interest of flexibility it is assumed that an A/D conversion with a range
 

of 0-16 g's and a resolution of .5resulting in a 5 bit output word will be.
 

used.
 

When DMS computer issues commands to-control the recorder data bus it must also
 

issue commands to control the recorder. The commands which can be issued to
 

the recorder from the DMS for use in this application are:.
 

* 	 Standby 

* 	 Record Fast 

* 	 Record Slow 

Rewind 

• 	Playback
 

When ever commands for recording are issued to the data bus addressing and
 

control electonics, commands must also be issued to the recorder'so that the
 

data bus and recorder are operating at compatable speeds. These commands are
 

thus also issued as required and not at a fixed iteration rate.
 

Checkout of this system requires first the recording of data and then the play­

back and analysis of the recorded data. The major events necessary for
 

checkout are:
 

-9­
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on the booster that would cause at least some low magnitude
 

sensor output, such as fueling the booster main propulsion
 

tanks or mating the orbiter to the booster.
 

Playback Playback compatability with the DMS is primarily contingent
 

upon the ability to read the recorded data at'a rate slow 

enough to allow the computer to process the data. The 

usual method of providing speed compatability is to record 

data in records which are short enough to be read into memory 

in their entirety. 
After each record 'isread it is processed
 

with intermediate results stored in a reduced fr& or outputted. 

The recorder is stopped after reading each'record and waits 

for the computer to finish its computation and command a new 

record to be read before the recorder-is started again. This 

requires a gap in the data on the tape to allow room for stopping 

and starting the tape. To generate a 
true gap during the
 

recording process requires a loss in data during the gap generation 

time. A method of writing continous data on the tape and yet 

allow reading operations to occur as if data was written in 

records spaced with stop/start gaps is to insert an end of 

record mark after each record when recording and thm immediately 

start the next record leaving no gaps. Assuming initially the 

tape is stopped in the middle of a record a read operation is 

performed after issuance of a read command by ignoring all data 

from the read electronics until the first 
 end of record mark
 

is found at which time data is read and transmitted to the DMS 
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until the next end of record mark is encointered at which
 

time the recorder is stopped. Before reading the next 

record the recorder is commanded to read in reverse until 

an end of record mark is encountered and the stops. The
 

issuance of the reverse command can be done automatically 

by the recorder electronics after the recorder stops at the 

completion of each read command. 

As described above data will be recorded at two different 

speeds. A finite time will be required during the record 

operation to change the recorder speed during which time 

no data will be recorded. These gaps will be marked with 

an extra end of record mark at the beginning of the gap and
 

an end of record mark at the end of the gap. The extra end
 

of record mark at the beginning of the gap will inhibit the
 

reverse read operation associated with the re&ding of the
 

data record just prior to the gap. Data recorded at high or
 

low speed will appear the same on the tape'. When the tape
 

speed is reduced for low speed recording the pulse width of
 

each data bit will be increased so that each data bit occupies
 

the same linear tape length. All data can thus be read at
 

the same speed. The DMS program for reducing the recorded
 

data will required the speed at.which the datawaspt'eaoded.,s 

The recording speed can be indicated by special codes in the 

end of record mark. 

The temperature and stress sensors are treated primarily in the same manner 

as the vibration sensors. The outputs from these sensors is sampled at a slow­

et rate than the vibration sensors and the data recorded interspersed with
 

-12­



the vibration data. The actual recording rates for each sensor will be a
 

function of the number of sensors and the recorder capabilities. Select
 

vibration sensor outputs converted to RMS values along with select temperature
 

and stress sensor outputs will be used by the DMS in determining the speed at 

which data is to be recorded. For the purposes of this study the following 

assumptions xwillbe made concerning data flow required for the recording 

of structural sensor data. 

Vibration Sensors 

Number to be recorded 15 

Range for recorder -25g to +25g 

Resolution for recorder .059 

Word length for recorder 10 bits 

Fast recording samples per sensor per second 3200 

Slow recording samples per sensor per second 400 

RMS outputs to the M 3 

RMS range Og to 16g 

RMS resolution .5g 

RMS samples per sensor per second 10 

RMS word length to WhS 5 bits 

Temperature Sensors 

Number to be recorded 15 

Range for recorder 00F to 2500°F 

Resolution for recorder 20°F 

Word length for recorder 7 bits 

Fast recording samples per sensor per second 40 

Slow recording samples per sensor per seonnd 5 
Sensor outputsb DM 3 

Range to DMS oOF to 2500OF 

Resolution to EMS 200Y 

Word length to DMS 7 bits 

Samples per sensor per second to DMS 10 

-13­



Stress Sensors
 

Number to be recorded 5 

Range for recorder* 

Resolution for recorder* 

Word length for recorder 7bits 

Fast recording samples per sensor per second 40 

Slow recording samples per sensor per second 5 

Sensor outputs to I2S 3 

Word length to EMS 7 bits 

Samples per sensor per second to IMS 10 

DMS/Recorder Data Bus Controller
 

Command word length to Data Bus Controller 3 bits 

Command word rate to Data Bus Controller as required 

ES/Structural Recorder Interface 

Command word length to Data Recorder 3 bits 

Command word rate to Data Recorder as required 

Record length from recorder 3210 bits 

The record assumed here is composed of 321, lObit words which are divided into 

20, 16 word fields plus 1 end of record word. Each field contains 15 vibration 

sensor samples and 1.temperature, stress, or other sensor sample. In order 

to meet the sampling rate requirements of the temperature and stress sensors eac 

densor must be sampled only every fourth record. The end of record word will 

contain codes indicating whether temperature and stress sensors are recorded 

in that record. 

*Note: Range and resolction of the stress sensors is dependent upon the sensor
 
chosen and the method and location of mounting. It is assumed tn t 
measurements should be made to 1%of full scale. 
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4.1.2 Landing Gear System
 

The space shuttle booster has three landing gears; a nose gear, a right
 

main gear, and a left main gear. The landing gear are used during the
 

landing phases of either a normal or ferry mission and-during the takeoff
 

phase during a ferry mission. Prelaunch ground checkout of the landing
 

gear system must occur after the vehicle is lifted for placement in a
 

vertical position. The signal interface with the DMS for each landing
 

gear is assumed identical. Figure 4-4 
 shows this signal interface
 

for the nose wheel landing gear system. The primary power source for
 

operating the landing gear system is hydraulic. Modern aircraft some­

times employ a pneumatic supply system for backup, however, with
 

redundant hydraulic systems on the space shuttle it is assumed that a
 

backup pneumatic system will not be required. Each landing gear when
 

stowed is covered by a door to protect the gear from the environment
 

and to give the booster a smooth aerodynamic shape. The doors are
 

automatically locked in position when fully open or.fully closed. 
The
 

DMS can monitor the locked condition and must give an unlock command 

before the doors can be opened or closed. After the doors ar unlocked 

an open or closed command must be issued by the DMS. The DMS checks 

door operation by monitoring the door position and the hydraulic 

actuator hydraulic fluid temperature and pressure. Each landing gear 

is lowered or raised by the procedure the doors .aresame as opened or 

closed, i.e., an unlock'command is issued and then a raise or lower 

command. Monitoring of the gear up and locked or the gear down and 

locked, the gear position, and the hfdraulic actuator fluid temperature
 

and pressure is provided. It is assumed for this study that each landing 

gear will have four wheels. The four wheels are mounted on a bogie which 

must be rotated into a stowed position before the landing gear is raised, 
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and rotated into the operational position after the Tanding gear is lowered.
 

Before issuing the stow or deploy bogie command a release lock command
 

must be issued. The DMS is provided with signals indicating a locked con­

dition in the stowed or deployed position, the bogie position, and hydraulic
 

actuator fluid temperature and pressure. Each landing gear is capable of
 

being steered. Nose wheel steering is used during the taxi operation.
 

Main gear steering is employed to reduce in magnitude or eliminate the need
 

for the decrab manuever. The DMS is provided with the capability of
 

issuing a steering command and receives signals for monitoring of the
 

steering position and hydraulic actuator fluid temperature and pressure.
 

Each wheel has its own brake which is activated by the DMS. Brake
 

temperature and pressure plus hydrualic actuation fluid temperature and 

pressure measurements are sent to the DMS. Each wheel has an accurate 

tachometer attached which measures the rotational speed of each wheel.
 

The speed of each wheel is used to verify touchdown, to activate the
 

anti-skid system, and to determine taxi velocity. Each gear has a shock
 

absorber with its,position monitored for the purpose of determining
 

touchdown. If the shock absorber bottoms-during landing a warning is 

displayed indicating a possible overstress of the vehicle during landing.
 

The electrical supply voltage and temperature of -the.landing gear
 

electronics is monitored. The DMS has control over determining which
 

redundant hydraulic system supplies the landing gear system and can
 

monitor the hydraulic supply pressure to the landing gear system.
 

Each brake has an associate anti-skid bypass valve to remove braking
 

power from any wheel which has stopped while the others are rotating
 

' or is slowing more rapidly than the others. Figure 4 5 is a complete 

list of all interface signals between the DM and the Landing Gear 

System. 
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SIGNAL SOURCE %YPE RAE RESOLU-TION WORD IOTH(BITS) RATE/SEf 

Doors, (Hose, Lart-and Right Gear) 

Open Command (3) DMS DIS 1 AR 

Close Command (3) DMS DIS 1 AR 

Hydraulic Actuator Pressure (3) LGS AN, O-3 00 0 psi 25psi 1 4 

Hydraulic Actuator Temp (3) LGS AN 0-10OF 20"° 6 2 
° 

Position (3) LOS AN 090 '' 3 - 5 2 

Closed and Locked (3) ,LGS DI V AR 

Open and Locked (3) LOS ,DIS 1 AR 

Release Lock Command (3) DMS DIS I AR 

Gear. (Nose, Left and Right) 

Raise Command (3) INS DIS 1 'AR 

Lower Command (3) DMS DIS 1 AR 

Hydraulic Actuator Pressure (3) LOS AN 0-3000psi 25psi 7 4 

Hydraulic Actuator Temp (3) LOS AN 0-1000°F 20F 6 2 

Lowering Position (3) LOS AN 0-90 30 5, - 2 

Up and'Locked (3) LOS DIS 1 AR 

Down and Locked - (3) LOS CIS 1 AR 

Release Lock Command (3) DM3 DIS 1 AR 

Bogie (Nose, Left and.Right) 

Deploy Coumand (3) DMS DIS" AR 

Stow commad (3) DM3 D1S 1 AR 

Hydraulic Actuator Pressure (3) LGS AN O-3 0 0 psi 25ps1 7 4 

Hydraulic Actuator Tamp (3) LOS AN 0-1000F 200F 6 2 

Position (3) LOS AN 0-90P 30 5 2 

Deployed and Looked (3) LOS DIS I A 

Stored and Locked (3) LOS DIS 1. AR 

Release Bogie Lock (3) DMS DIS 1 AR 

Steering (Nose, Left and Ripht) 

Nose Wheel Steering, (I) DMS AN -900 to 490P .25' - 10 8S 
° Main Gear Steering (2) DMS AN -20 to +200 .250 8 4 

Hydraulic Actuator Pressure (3) LOS AN 0-3 00 0 psi 25psi - 7 '4 

Hydraulic Actuator Temp. (3) LOS AN 0-1000°F 20°F 6 2 

Nose Wheel Feedback (1) LOS AN -90 ° to 982 .250 10' 8 

Main Gear Feedback (2) LOS AN -200 to 200 .250 8 4 

rahe gach on Nose, Left 
anflRight Gear) 

Command (12) DmS AN 0-100- 1% 7- 4 

Hydraulic Actuator Preasure(12) LOS AN 0-3000psi 25psi '7 4 

Hydraulic Actuator Temp (12) LOS AN 0O10000F 20 F 5 2 

Pressure (12) LOS AN 0-1000% 1% 7 4 
Temperature (12) LOS AN 0-1500OF 20'F " 7 2 

Figure 4-5 Landing.Gear System (LGS)/DMS Interface 



4.1-;3: SEPARATION CONTROL 

The orbiter has primary responsibility'for orbiter/ooster
 

separation. The booster activity with this function under nominal
 

operating conditions is entirely one of monitoring. The booster and
 

orbiter are attached during the boost phase by 3 explosive bolts. The
 

squibs for these bolts are tested and ignited by the orbiter. The
 

booster monitors the separation procedure by communications from the orbiter
 

and by measurements of the resistance of a wire which becomes severed at
 

separation and the temperature of the squibs. In an emergency abort
 

situation the booster will also have the capability of igniting the explosive 

bolts. The abort conditions under which the booster has the authority to
 

initiate separation are of the following types. If during powered boost 

a potentially catastrophic failure in the booster occurs such as a ruptured
 

oxidizer tr fuel tankor line where it becomes critical that 'separation 

occurs immediately to protect the orbiter from a booster e!xplo ionthe booster
 

will initiate separation. This bypasses the time delay requi'rd tdocommunicate 

a separation command to the orbiter to have the orbiter execute. the ccamand.
 

If during powered boost a failure occurs calling for separation rhich is 

less time critical and booster/orbiter communications have failed the booster
 

will initiate the separation. A failure which shuts down the booster main
 

engines would be of this type. Iftat the end of powered boost with the 

orbiter/ooster communications failed,and the orbiter fails to initiate the
 

separation or If the orbiter initiates separation either under abort or 

nominal conditions and separation does not occur the booster will initiate
 

separation. The signal interface between the DMS and separationsystem in the 

booster is shown in figure 4-6. The DMS can issue an arming and separation 

command to the squib system of each bolt. From each bolt the DMS receives 

the results of the separation command by discretes indicating the occuremce­
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of a temperature pulse caused by the explosion of the squib and by the severance or wire 

occurs. The booster also monitors,when physical separation of the orbiter and booster 

the temperature of each squib during prelaunch, launch and boost to determine if some heat 

cource has zaused the squib temperature to rise to a critical value. It is assumed that 

al three explosive bolts are serviced by the came electronic package; the MS has control 

the supply voltage and electronic temperature.of electrical power on/off and can measure 

For test purposes the IFZ can assume a test configurain in which the electronics simulate 

all separation rsponses upon receiving an arming and separation coand if the built 

n test- .n,,Isnt determines that the senration system is operable. 

RANGE IfWORDSIGNAL SOURCE TM PRRLU- WTH RATE 
-I=_O TION (BITS) /snZ 

Bolt #1. #2, #3 

Arming Command (3) DS DIS AR 

Separation Command (3) -- . .j)M .S. AR_ 

Temperature Pulse (3) S8 DIS 16 

Separation Resistance (3) SS DIS 16
 

Temperature (3) SS AN 0-5000F 100F 6 1 

Electrical Power on Command DS DII AN 

Electrical Supply Voltage SS AN 0-30vdc .3vdc 7 1 

Electronic Temperature SS AN 0-500°F 20F 5 1 

Test Configuration Command DNS DIS AR] 

Test Configuration Accomplished SS IDIS 

Figure 4- 6 Separation System (SS)/ftM Interface 
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/.2 Propulsion Systems
 

The booster has 3 separate propulsion systems. These are the main boost 

rocket engines, the reaction jet system used during coast and the cruise
 

air breathing engines. Each of these propulsion systems interface with 

the lMS. 

4.2.1- Main Rocket Engines
 

It is assumed that the booster will contain 12 main rocket engines. Various
 

techniques are being suggested for closed-loop control of the staged com­

bustion cycle for these engines. No single approach has been proven at this
 

time, but the following interface description is consistent-with preliminary
 

recommendations made by Pratt and Whitney Aircraft. Potential control'points
 

are shown in Figure 4 -7. The control technique is to establish an open­

loop program which sets the preburner oxidizer valve, main chamber oxidizer 

valve, and preburner fuel valve in accordance with a stored program that 

relates valve area and hence valve position with required thrust and mixture 

ratio. The control system interface in terms of sensor and control signal
 

data rates and accuracies is shown in Figure 4-S. 

In addition to controlling the engines the DMS will have control of propellant 

management and utilization. This function includes sensing the level, tempera­

ture aad pressure in each tank and controlling solenoid valves. Figure 4-9 

lists the interface requirements between the fuel management systems and the 

DMS.
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SIGNAL SOURC TYPE RANE RS. 

Main Chamber Oxidizer Valve Command TMS AN 0-100% .1% 
Main Chamber Oxidizer Valve Position MPS AN 0-100% .1% 

Preburner Oxidizer Valve Command EmS 0-100%
AN .1% 

Preburner Oxidizer Valve Position MPS 0100%
AN .1% 
Preburnor Fuel Valve Command DMS AN 0-100% .1% -

Prebilner Fuel Valve Position MPS AN 0-100% .1% 

LOX Speed Inducer Oxidizer Valve Command 4ms AN 0-100% .1% 
LOX Speed Inducer Oxidizer Valve Position MIS AN 0-100% .1% 

LOX Turbopump Speed MPS AN 0-100% .1% 
LH2 Turbopump Speed MRS - AN' 0-100% .1% 
LOX Flow MPS AN 0-100% .1% 
IN Flow MPS AN 0-100% .1% 
Main Pump Inlet Lox Temperature MPS AN 0-100% .25% 
Main Pump Inlet LH Temperature MPS AN 0-100% .25% 
Main Pump Inlet Fuel Pressure MPS AN 0-100% .1% 
LOX Low Speed Inducer Exit Pressure MPS AM 0-10o% .1% 
Heat Exchanger Exit Temperature MPS AN 0-100% .25% 
Eight Preburner Temperatures MPS AN 0-100% .25% 
Main Chamber Skin Temperature MPS AN 0-100% .25% 
Nozzle Coolant Temperature MPS AN 0-100% .25% 
Fifteen Solenoid Valves DMS DIS 

2 

Figure 4- 8 Main Propulsion SystemAMS Interface 

fmjeive I Isolation Disconnect Valves ThS DIS 

Twelve LOX Isolation Disconnect Valves EIMS DIS 

Six TM Vent Valves DNS- DIS 

Six Lox

2 
Vent Valvles TMS DIS 


Four IR2 Fill and Drain Valves UAS DIS 

Four Lox Fill and Drain Valves INS DIE 

Ten LH Pressurization Valves In DIS 

Ten Lox 

2 
Pressurization Valves DRS DIS 


Two 1H2 Squib Actuated Pre-Valves Ems OrS 

Two Lox Squib Actuated Pre-Valves EMS DIS 

Valve Position Feedback PMs DIS 

ren Lox Level Sensor Otuputs PM4S AN 0-100% .25% 


AN .25% 
an LR2 Level Sensor Outputs PMS 0-100% 

PMS AN 0-100% .25% 

Ten LH2 Pressure Sensor Outputs PHs AN '0-100% .25% 
Five Lox Pressure Switch Outputs PMS DIS 
FivP IH2 Pressure Switch Outputs PMS DIS 
Four Lox Temperatures PMS AN 0-100% .25% 

PMS AN 0-100% .25% 

an Lox Pressure Sensor Outputs 

Four LH Temperatures2 

Figure 4- 9 Propellant Management System/UMS Interface 
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4.2.2 Reaction Jet Propulsion System
 

Figure 4 -10 is a schematic of the reaction jet propulsion system. The
 

figure shows only the hydrogen system; the oxygen system is identical. The
 

reaction jet system uses a gas generator driven turbopump to supply pressur­

ized gaseous hydrogen and oxygen to the reaction jets. There are 16 reaction
 

jets on the booster contained in two rings.
 

For redundancy three gas generator systems are used to supply the 16 reaction
 

jets. The 02 and H2 solenoid valves shown bn the rockets are controlled by
 

the flight control system and are not considered part of the reaction jet
 

propulsion system control. Figure 4 -11 shows the interface requirements
 

between the reaction jet propulsion system and DMS.
 

4.2.3 Cruise Engine System
 

The booster is assumed to have six cruise engines. Thrust level commands
 

to each engine are provided by the autothrottle control law in the flight
 

control system.- In addition to throttle commands it will'ie the responsi­

bility of the DMS to issue start and shutdown discretes, control the fuel
 

air supply to the engines, and to monitor engine performance. Figure 4 -12
 

shows the interface requirements between the cruise engines and DMS.
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SIGNAL SOURCE TYPE RANGE 
WORD 
ESBNGT RATE 

Three GH2 Gas Generator OH2 Control Valves 
Three GH2 Gas Generator 002 Control Valves 
Three GH2 Gas Generator Ignition Voltages 
Three GH2 Gas Generator Turbine Speed 
Nine GH Gas Generator Temperatures 
Three G12 Gas Generator Pressures 
Three
Three G02 Gas G02The 0G2-,Gas GeneratorGenerator 002 ControlControl ValvesValves 

Three GO2 Gas Generator Ipnition Voltages 
Three HO2 Gas Generator Turbine Speeds 
Mine GO Gas Generator Temperature 
Three Go Gas Generator Pressures 

?orty-Ei ht Propellant Control Valves 
Sixteen Rocket Chamber Temperatures 
Sixteen Rocket hasmber Pressures 
OH2 Tank Pressure 
G02 Tank Pressure 
OH2 Flow 
G2 Flow 
Feed Line Temperatures and Pressures (5) 

I4S 
DMS 
DMS 
RPS 
RJP 
RJP 

DMSThiS 

TMS 
RP 
RJP 
RAP 
ThIS 
RJP 
RS? 
Rp 
R ? 
RP? 
RTP 
33P 

DIS 
DIS 
DIS 
AN 
AN 
AN 

DISPIS3 

DIS 
AN 
AN 
AN 
DIS 
AN 
AN 
AN 
AN 
AN 
AN 
AN 

0-100% 
0-100% 
0-100% 

0-100% 
0-100% 
0-100% 

0-100% 
0-100% 
0-100% 
0-100% 
0-100% 
0-100% 
0-100% 

.25% 

.25% 

.25% 

.25% 

.25% 

.25% 

.25% 

.25% 

.25% 

.25% 

.25% 

.25% 

.25% 

3 
3 
3 

24 
72 
24 

3 
3 

24 
72 
24 
48 

128 
128 

S 
a 
a 
8 

40 

2 
2 
2 
2 
2" 
2 

2 
2 
2 
2 
2 
AR 
a 
8 
2 
2 
2 
2 
2 

Figure 4-11 Reaction Set Propulsion SystemiDMS Interface 

,ntne Start Discretes 
gngireTest Discrete 

Fel Control Valve Command 
Air Control Valve Command 
-gaition Voltage Command 
ten Flow Control Valves 
Four Vent Control Valves 
Control Valve Position 
Engine Inlet Pressure 
Engine Inlet Temperature 
Two Turbine Temperatures Per Engine. 
Engine Speed 
Two GH2 Flow 
Two O2 Tank Level -

go OH2 Tank Pressure 

TIS 
ES 

DMS 
PMS 
EMS 
DMS 
EiS 
CES 
CES 
CBS 
CES 
CES 
C8S 
CES 
CES 

DIS 
DIS 
AN 
AN 
DIS 
DIS 
DIS 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 

, 

0-100% 
0-100%, 

0-100% 
- 0-100% 
0-100% 
0-100% 
0-100% 
0-100% 
0-100% . 

0-100% 

-

.25%' 

.25% 
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.25% 

.25% 

.25% 

.25% 
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.25% 
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Figure 4- 12 Cruise Engine System/bMS Interface, 
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4.3 Electrical Power Generation and Distribution
 

Electrical power is, supplied from two sources, umbilical power during 

prelaunch and a generator driven from a hot gas generator supplied
 

turbine. The generator produces 115/208V; 400 hertz power which 

feeds an so distribution system and converters which generate 28
 

volts do which is fed to a do distribution system.
 

4.3.1 Electrical Power Generation
 

Figure 4-13 is a block diagram of the major elements of, the electrical 

generation system. Hydrogen and oxygen are supplied to the system from 

the main propellent tanks through quad redundant -shut off valves and 

pressure regulators. 'The hydrogen supply is additionally controlled by 

a regenerator bypass. Excess hydrogen is collected from the turbine 

exhaust and mixed with the main supply hydrogen in the preheater. The 

regenerator bypass controls. the total hydrogen supply to the system by 

limiting the hydrogen supplied from the main supply tanks. The hydrogen 

and oxygen are preheated before combustion in order to change the hydrogen 

and oxgyen to the gaseous state and to insure total consumption of the
 

oxygen in the combustion process. The supply's of oxygen and hydrogen 

from the preheater are controlled by a servo valve which accurately 

controls the quantity of each to the combustor. The combustor is supplied 

by an overly rich hydrogen mixture in order to guarantee complete oxygen 

consumption thus reducing oxidation of the turbine parts during operation. 

Excess hydrogen is also used to control the combustion temperature. The
 

hot gas is used to drive the turbine. The turbine is connected to the 
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generator through a constant speed drive transmission. The 

transmission compensates for variable turbine drive speeds and
 

generator load variations.- Constant speed is required to provide 

a fixed frequency output from the generator. Figure 4-15isa list 

of the monitoring and control signal,interface between the electrical
 

generation system and the DMS. On the space shuttle booster there
 

are three identical electrical generation systems. The signal in­

terface shownmin Figure 4-15 is for one system -only. 

4.3.2 Electrical Distribution System
 

A diagram of the electrical distribution system including do converters
 

is shown in Figure 4-14 Each of the three generators .and umbilical 

power is capable of being connected to any one of three essential AC 

buses through circuit breakers controllable by the DMS. Each of the 

essential ac buses it capable of being cohnected to any one of three 

ac to dc power converters and any one of three non-essential'ac busses 

through DMS controlled circuit breakers. The outputs of each converter 

are capable of being connected to any one of three essential dc buses 

through DMS controlled circuit breakers. Each subsystem is connected 

through DMS ontrolled circuit breakers to the appropriate ac or dc
 

bus. Critical subsystems are capable of being supplied from more than­

one bus, though not simultaneously. No provision is provided to parallel 

gdnerators or converter outputs however, generator speed control will
 

attempt-to keep all generators synchronized such that an. inadvertant 

paralleling of generators due to circuit failures will not demand 

excessive currents from the paralleled generators. Protective diodes
 

-29-­



will be provided to the IM between umbilical power 'and each generator 

in order to parallel each generator with umbilical power for a short 

period during the switch from external to internal power' in order to 

avoid switching transients. Figure 4-16 is a list of the interface 

signals betweef the electrical distribution system and the EIS. 

Frequency measurements are synchronized to the computer clock. Two 

words are read into the DMS for each frequency measurement. These 

two words are generated from the 400 cycle power line. One input
 

word is the contents of a counter register which continuously counts 

the positive slope zero crossings of the ac voltage. This counter 

runs continously, is not reset and overflows are ignored. The 

second word is a counter counting 4OKc clock signals and reset every
 

time the first counter counts. These two words are sampled four times 

every second. If the ac supply frequency is exactly 400 cps then the 

difference in two .samples of the first word will be counts and the 

difference in two samples of the second word will be 0 counts.
 

The synchronizing voltage is derived by registering the maximum 

difference between umbilical and generator voltage occuring between any 

two DMS samplings. If the maamnum voltage between the umbilical and 

generator is small, over + second (i.e., the time between two samplings) 
it is known that the two sources are nearly synchronized in frequency 

and phase and the switching from one source to the other can occur 

with little switching transients.
 

30­



S0A TESOLU- WORD LGTl RATESIGNAL - SOICE TYPE RANGE •TIONL (BITS) /SEC 

Circuit Breaker Commands 

Umbilical to EACE (3) DMS DIS AR 

Generator to EACH (9) DMS DIS AR 

EACB to Converter (9) DMS DIS AR 

EACB to NEACB (9) DMS DIS AR 

Converter to EDG (9) DMS DIS AR 

EDCB to EDG () DM3 DIS AR 

Monitoring Signals 

EACE Current (3) EDS AN 0-1OO% 5% 5 4 

NEAC Current (3) -ES AN 0-100% 1% 5 .4 

EDOB Current (3) EDS AN 0-100% 1% 5 4 

NEDGB Current (3) EDS 'AN 0-100% 1% 5 14 

Generator Sync Voltage (3) E S AN -30Otot300V 5v 6 4 

UmbilicalFrequency Coarse BUS 1'AN 0-128ccunts Icount 7 4 

Umbilical'Frequency Fine EDS AN 0-10ccunts Icount 7 4 

Converter Temperature (3) Eas AN -20 to +859( 5O 5 .4 

Converter Voltage (3) HIS AN 0 to 30v .5V 6 .4 

Figure 4-16 Electrical Distribution System (EDS)/ODS Signal Interface 

02 and H2 Shut Off Valve I 
Commands (8) MS DIS ,AR 

02 and H2 Preheater Pressure (2) BGS AN 300-400psi ipsi 7 4 

02 and reheater Temperatore(2 EGS AN O-100F 1 OF. 7 42 

Regenerator Bypass Valve Command DMS AN Closed-open 1% ' 7 

02 and H2 Servo Valve Command (2) DMS AN Closed-open 1% - - 7' 4 
0 2 andH Heater (2) DMS .DIS I4 
O0 and H. Combustor Inlet2 Pressure (2) BS AN 300-4GOpsi psi 7 4 

02 and H2 Combustor Inlet Temp.(2 W AN 4F} 7 4InS 1000-1400°F 

Combustor Outpat Temperature EGS AN 1000-140OF 40F 7 4 
Turbine Speed EGS .AN 0-70CO rpm 6 00rpm. 7 4 

Turbine Exhaust Temperature EGS AN 200-500°F 4F 7 4 

Oil Temperature EGS AN 150-190F 1°F 6 4 
Oil Pump Output Temperature ES AN O-O00opsi lOpsi 7 4 

Oil Quantity EGS AN 0-100% 2% 6 4 

Oil Control Valve DME AN 0-100% 1% 7 4 

Generator Gross Speed DOS AN 0-128counts Icount - 7 4 
Generator Fine Speed ES AN 0-10Ocounts I count 7 4 

Generator Voltage,'Phase A,B,C.(3 EGS AN4 0-150vac vac a 4 

Generator Current Phase A.;B;C.(3) BUS AN 0-50 amps lamp 6 4 
Generator Field Current Control DMS AN 0-100% 1% 7 4 

Turbine rms Vibration EGS AN 0-8.107in 2.1- 31n 6 

Figure 4-1 Electrical Generation System (EGS)/iS Interface 
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4.4 Navigation and Guidance 

Navigation is the process of determining the location and velocity 

of the vehicle while guidance is the process of determining the 

desired vehicle position and velocity and the generation of commands
 

to force the desired and actual position and velocity to coincide. 

Navigation requires sensors which measure either the vehicle's 

position and/or velocity with respect to a known reference or the
 

vehiclets change in position and/or velocity with respect to its 

known position and velocity0 To perform navigation the DMS computers 

must interface with navigation instruments. The only interface with 

external equipment required by the guidance system is an interface with 

data entry whereby the pilot can enter the values required to specify 

the desired mission flight path. Data entry is discussed under 

section 4.7 and thus only the navigation sensor interface requirements 

will be discussed in this section. 

4.4.1 Strapdown Inertial Navigation
 

The sensors required for inertial navigation(using a strapdown con­

figuration capable of murviving any three sensor failures)are 6 linear 

accelerometers and 6 single degree of freedom gyros. Figure 4-17 is a 

block diagram of a single degree of freedom gyro and its torquing and 

W4S interface electronics. The gyro contains a balanced rotor driven 

by a spin motor supplied from the 3 phase 400 cycle essential so bu. 

The rotor is mounted in a single gimbal having a pickoff and a torque 

motor. During operation the pickoff angle is continuously driven to
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Figure 4-17 Single Degree cf FreedomGyro Mechanization 
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Figure 4-18 Vibrating String Accelerometer 

-33­



zero by the torquer through an electronic servo loop. If the gyro 

was perfect the rotational rate about the input axis would be pro­

portional to the torquing current. In an actual instrument there are 

numerous error sources which are partially corrected in the torquing 

loop mechanization. In order to provide a digital interface and 

eliminate effects of torquer nonlinearities the gyro is pulse torqued 

rather than proportionally torqued. A high precision reference clock
 

is generated. At each clock pulse a decision is made to command either 

a constant positive, constant negative or zero torque pulse for the 

next clock period. This decision is based upon the -magnitudeof the
 

filtered pickoff output. The instrument output is the ;accumulated
 

algebraic count of the torquing pulses. Special provisions are provided 

for the elimination of two major error sources, scale factor and bias 

errors. 
Scale factor errors originate in torquer nonlinearities and
 

tolerances in the electronic generation of the torquer current. 

Correction of scale factor errors is accomplished by adjusting the
 

positive and negative torquing pulse current magnitude. Pickoff and 

torquing current null errors produce a continuous steady state bias
 

while mass unbalance in the gyro causes biases proportional to 

accelerations experienced by the instrument.' These biases are removed 

by constantly supplying a computed torquing current to the gyro. 

Scale factor and bias errors are sensitive to temperature which is 

therefore controlled within narrow margins. 
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There are several types of accelerometers used in inertial navigation
 

systems. The most commonly used accelerometer in stabilized platform
 

applications in a pendulous integrating gyro accelerometer (PIGA).
 

This instrument has inherent disadvantages when applied to a strapdown
 

navigation system. The instrument output is proportioned to both
 

linear acceleration and angular rates. When mounted on a platform
 

stabilized to inertial spaceangular rate inputs to the instrument
 

are zero. In a strapdown application the instrument output would have
 

large angular rate components which would have to be subtracted in
 

order to obtain pure linear accelerations. In designing an 

accelerometer' each design decision is based upon obtaining highly
 

accurate acceleration outputs. If the design is also constrained 

by a requirement to obtain accurate angular rate outputs a sacrifice 

in linear acceleration will result. Because of the limitations of 

the PIGA, a vibrating string accelerometer will be assumed as the 

strapdown linear acceleration instrument on the space shuttle booster. 

Figure 4-18 shows the internal mechanization of a vibrating string 

accelerometer. The heart of the instrument are the two masses, M1 and 

M2 separated by a spring and supported along the instrument sensitive
 

axis by two taut strings, S1 and S2 . Each mass is also supported by
 

four ligaments, two as shown in the plane of Figure 4'1tand two
 

normal to the plane of figure 4-18. The two masses and strings are
 

made as identical as possible. When the instrument is not being
 

subjected to an acceleration along its sensitive axis the tension on
 

the two strings is the same. An acceleration along the instruments
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sensitive axis causes an increase in the tension on one string and a
 

decrease in the tension on the other string. The two strings are
 

made to vibrate at their resonant frequency. To do this ,permanent 

magnets are built into the instrument such that each string passes
 

through a strong magnetic field. As the strings vibrate they move
 

in this magnetic field causing a current to be induced in the string. 

This current is amplified and fed back to the string in such a manner 

that a sustained vibration at the natural frequency of the string
 

bbcrs. If T1 is the tension in string 1, T2 is the tension in'string 2, 

T3 the tension in the interconnecting string,and a the acceleration being
 

experienced by both masses aiong the sensitive axis directionthen the 

equations relating tension to acceleration for the two masses are: 

T 3 - T1 = Ma (1) 

2- 3 M2a (2) 

These two equations assumed that both masses are being simultaneously 

acted upon by the same accelerations. This is a reasonable approximation
 

in the frequency bandwidth of interest for the instrument-being employed as 

an accelerometer in that the two masses are constrained by the strings 

to remain with the instrument. Adding equations 1 and 2 yields: 

T2- T1= CM1 + M2)a (3) 

If the tension in the strings under static unaccelerated conditions is TO
 

&nd the change in tension due to an acceleration of magnitude a is A T2 
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and - T1 then 

T1 =T 0 - A T1 (4) 

= +
T2 0 T2 (5)
 

and equation 3 becomes
 

+ M2 )aAT 1 + AT 2 (M1 (6) 

In the linear range of the accelerometer 

AT 1 = K1a (7) 

A T2 = K2a (8) 

The resonant frequency of a niform vibrating string is proportional to 

the square root of the,tension on the string thus 

£ 0 TI (9)
 

f2 =02FT (10) 

substituting equations 4,5,7 and 8 into 9 and 10 yields 

f 1 01 4 To - Ka 

f2 =02 TO 1 a0 + K

By Taylor's expansibn
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These series are rapidly convergent if K1a and K2a are small. 

From equations 7 and 8 these terms T0 To 

become AT'1 and AT 2 The accelerometer is manufactured so that the 

pre-stress on the strings is very high compared to the operating range
 

stress changes making the above series rapidly convergent. SUbtracting
 

equations 11 and 12 yields
 

"~~~~ 'r. " 'T"
 
T7, C~~-Kq K4C
7> %-, C - 2 

2 'C 

If the instrument is built symmetrical, i.e., the two masses and two strings 

are identical the
 

M1 =M2 =M (14) 

01 = C2 C (15)
 

K = K (16)1 2 K
 

qnd the equation 13 becomes
 

f2 - 1l- - CK a + CK3 aa3 (17)
0 8T0

2 f0
 

ith a perfect instrument acceleration would be measured using the equation 

a =FT0 (f2- fl) - K2 a3 (18)
 
cK 8T02
 

1 0
 
The output of the amplifiers supplying excitation current to the vibrating
 

sltrings is a sine wave. The frequency difference of the two sine waves is
 

generated by taking the difference in the number of zero crossings on the 
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two amplifier outputs over a specified constant time increment. The
 

input to the computer isthis accumulated zero crossing difference.
 

With the computer, compensation is made for instrument nonsymmetry are
 

the a3 term of equation 18 by applying the computation below
 

AV = A l - - A2,2 - A313 (19) 

The values of'A1 , A2 and A3 are determined from laboratory calibrations 

pf the instrument and A from laboratory and prelaunch calibrations. I 

thd instrument output and & V the measured change in velocity over the 

time interval between samplings. 

The instrument is highly sensitive to temperature end has .its temperature
 

controlled in the same manner as the gyros. Interface signals between
 

the accelerometer and computer include DC power supply monitoring and contro"
 

signals as are used for the gyro.
 

The sampling rate and resolution required in interrogating the strapdown 

accelerometer and gyros and solving the strapdown equations has a major 

influence on the speed -requirements of the D4S.,, In order to ,determine -the 

sampling rate and resolution requirements a-simplified error ,analysis-on 

each error source is performed below. 

GYRO RESOLUTION In strapdown navigation the gyros are used to determine
 

the direction of all forces acting upon the vehicle.
 

An estimate of the velocity error generated by gyro res­

olution is given by the'formula
 

R --tf a(t) sin (Om- Q)dt 
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where the integration limits cover the time from launch to thrust 

termination and a(t) is total acceleration and Gm - § is the difference 

between measured and actual orientation. The formula represents a 

Worst case estimate of velocity error in that rather than total
 

acpeleration only the component of acceleration normal to the gyros
 

sensitive axis should appear in the formula. Errors in measured
 

orientation, i.e., Gm - 9 due to gyro resolution will vary throughout 

Aj# in the range -R to Rt. A worst case analysis assumes that 

- 9 is always at an extreme value R0. Assuming small values of Re 

such that the sine R is similar to R9 expressed in radians then performing 

the integration in the above formula yields 

v/R VfVRg 

where Vf is the vehicle final velocity. Expressing R9 in degrees and 

assuming a value of Vf = 15000 ft/sec yields 

E/Ro = 262 Rt0 ft/sec 

ACCELEROMETER RESOLUTION The accelerometer outputs to the computer at 

each sampling are a measurement of the change in velocity along the 

instrument sensitive axis direction since the last sampling. An error 

source in these measurements is the resolution in measuring the velocity
 

change defined as Rv . The navigation solution in the computer resolves the
 

velocity change into inertial coordinates and accumulates the velocities in
 

each inertial direction according to the formula 

V ZAVm cos 0 

where A'V is the measured velocity change. The accelerometer mechanization 
m 

which accumulates the difference in the number of zero crossings of two sine 
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waves does not contribute to an accumulating velocity resolution error.
 

The resolution error is generated such that the sum of A Vm- pulses 

accumulated in the EMS will never differ more than 2R from a sum 

obtained from an instrument having no resolution error. Thus the
 

velocity error due to accelerometer resolution is
 

E/ 2R ft/sec
 
v 

SANPLING RATE Errors caused by a finite sampling rate are due to the 

integrations required in the strapdown navigation solution. The basic 

navigation computation requires the integration of a resolved acceleration. 

The integration is approximated in the ffS by a summation process. Several 

integration approdnations exist. Rectangular integration will be used 

to determine the errors caused by sampling because it is the simplest to 

analyze and will lead to a conservative answer in that other integration 

schemes have in general increased accuracy. In order to analyze the 

effects of sampling, a simple boost trajectory must be assumed. The 

resolved acceleration of the sample trajectory is then integrated over 

one sampling period and the approximate integral valae developed by the 

DMS subtracted from the true integral result to generate the error accumulated 

during one sampling period. This error is then summed over the total 

number of samples in the boost trajectory. The error over a single sampling 

period is given by 

where the assumed trajectory is caused by the vehicle experiencing an 

acceleration composed of a constant term, ao, plus a constant acceleration 

rate, A, andturning at a constant rate,6. The sampling interval is T. 



Performing the integration yields & 
E=S. " 'r(#-T & osS- .... cos - 5;)s,'6t--e--

using trig identities and assuming that 0 T is small such that cos 6 T­

1 and sin 0 T = 0 'yields: 

2'
E -T a cosot 

To accumulate the velocity error due to sampling over the entire boost
 

flight this error must be evaluated for each sampling instant and summed 

over all sampling periods. A worst case evaluation results if 0t is 

assumed to be zero resulting in 
Fv/Z 

=1r
(/ z4 Y•c 

where Tf is the total boost time from launch to thrust termination. The 

change in acceleration, a , is caused by the expenditure of vehicle mass 

as fuel is used while thrust is maintained near constant. A worst case 

assumption is that the initial acceleration at launch is zero and thus the 

total achieved final velocity can be attributed to the a: term. If this 

is assumed with a final velocity of 15000 ft/sec and a total flight time, 

T. of. 200 seconds then 

EY'T = 150T ftsec 

Th determining the values of Rv, RO and T both practical instrumentation
 

constraints and allowable navigation errors must be considered. Any velocity 

and position errors existing at booster thrust termination can be corrected 

by the orbiter. The correction must be paid for by a weight penalty in 

additional fuel expended by the orbiter. 
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One phase A orbiter design has vehicle properties of 

separation weight W 730,000 lbs
 

fuel weight Wf 500,000 lbs
 

thrust F 900,000 lbs
 

specific impulse I 451 seconds
sp
 

The total velocity increment capabilities of this vehicle is given by 

v~~" -r-9Frrm 

Evaluating this integral using the above numbers gives 

VT = 16,670 ft/sec. 

Practical numbers for Rv, R. and T are .2 ft/sec., .02 degrees and 1/64 sec., 

respectively. According to the above analysis these numbers will result 

in a total additive error of 8.0 ft/sec. This results in a loss of .05% 

of the orbiter velocity capability. This is a very small portion of the 

total available orbiter velocity capabilities and is assumed acceptable.
 

Figure 4-19 is a list of all interface signals between a single gyro and 

accelerometer and the W.MS.There are a total of 6 gyros and, 6 accelerometers 

on the booster and thus- the total list for the vehicle is 6 times that 

shown in Figure 4-19 
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RESOLU- WORD RATELGTH 
SIGNAL SOURCE TYPE RANGE TION (bITS) /sg 

Rotor Speed (Gyro) sss N o- 4ooV/s 1 t/s 9, 4 
ACCircuit Breaker Commands (2) DMS DIS 2 AR 

DOCircuit Breaker Commands (2) DMS DIS 2 AR 

Heater Command (2) DMO DIS 1 4 

-Scale Factor (Gyro) DMS AN 0-1 .005% 15 AR 

t3cale Factor (Gyro) DMS AN 0-1 .005% 15 AR 

DC Supply Voltage (2) SSS AN 0-3Ovdc .3vdc 7 4 

AC Supply Voltage, Phase A (2) SSS AN O-127v IV 7 

AC Supply Voltage, Phase B (2) SSS AN 0-127v IV 7 4 

AC Supply Voltage, Phase C (2) SSS AN 0-127v Iv 7 4 
° A e 0tpat (Gyro) SSS . AN -I°-+i .02v 7 64 

Bias (yro) MIS AN 0-1 .005% 15 64 

Temperature (2) SSS AN 75-125°F .50% 7 4 
& V Output (Accelerometer) SSS AN I-3-t3fps .2fps 5 64 

Figure4-19 Strapdown Sensor System (SSS)/DMS Interface 

Pitot Pressure ADS AN O-23psi .O12psi 11 '8 
Static Pressure ADS AN 0-23psi .O12psi 11 8 

Angle of Attack Top Pressure ADS AN 0- 2 3psi .012psi 11 . 8 
Angle of Attack Bottom Pressure ADS AN O- 2 3psi .012psi 11 8 

Angle of Attack Right Pressure ADS AN 0- 2 3psi .O12psi 11 8.-

Angle of Attack Left Pressure ADS AN 0-23psi .012psi 11 8 

Probe Temperature ADS AN -100 to 500 .25°C 10 8 

Supply Voltage ADS AN 0 to 30v .5v 6 aRl 
Electronic Temperature ADS - AN 75 to 125°F 1°F 6 AR. 

Power on Command DM5 AN 75 to 12504 1°F 6 AR 
Figure 4-20 Air Data Sensor (ADS)/DMS Interface 

AC Power on Command DM DIS AR 

Do Power on Command DMS DIS AR 

AD Supply. Voltage, Phase A MFG AN 0-127, IV 7 1 
AC Supply Voltage, Phase B M AN 0-127v Iv 7 1 

ACSupply Voltage, Phase C MC AN 0-127v Iv 7 1 
Do Supply Voltage IFC AN 0-30v .3v 7 1 

Gyro Rotor Speed Me. AN 0-127count Icount 7 1 
XAxis Gyro Pickoff MPG AN -90 to 900 10 8 4 

Y Axis Gyro Fickoff NFC AN -95 to 950 10 8 4 

X Axis Gyro Torquer Dfo -AN -90 to 90, 10 8 4 

Y Axis Gyro Torquer DMS AN -95 to 950 100 8 4 
Oscillator Frequency eP AN 0-127 count 1 count 7 1 
Bearing Output Ksin'mh MG AN -10 to 10 .02v 10 4 

Bearing Output Kcos Tmh MG AN -10 to 1v .02v 10 4 

Electronic Temperature MFG AN '75-125-F .5,F 7 1 

Heater Command -"VMS DIS I I 
Figure 4-21 Magnetic Flux Gate Compass (MFC)/DMS Interface 
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44.2 Air Data Sensors 

The air data sensors consist of probes into the atmosphere, measuring 

static atmospheric conditions and the disturbance of the atmosphere
 

caused by the vehicle motion. All atmospheric data is measured using 

two probes, combined into a :unit called* a pitot-static tube which 

will be placed on the nose of the booster. This probe is used to
 

sense two pressures and a temperature. Pitot pressure is the pressure 

of the air rammed into a port on the front of the probe. The ports 

for the static pressure measurement are along the side of the probe 

and thus provide still air pressure. The temperature sensor measures 

the heating effect of the compression of the air in front of the probe.
 

The second probe measures the four pressures used to determine angle 

of attack and side slip angle. This is a cylindrical probe having 

four slots, one on each side, one on the top, and one on the bottom.
 

The difference in pressure between the top and bottom slots is used
 

to measure angle of attack, and the difference in pressure between 

the two side slots is used to measure side slip angle.
 

Pressure tranducers-are used to convert the-pressures sensed by the­

two probes to an analog votlage. An analog to digital converter is
 

then used to convert these voltages and the temperature.probe output
 

to a digital format. Figure 4--20is a list of the signals which inter­

face between the air data probes and the 24S. 



4.4.3 Magnetic Flux Gate Compass
 

The magnetic flux gate compass provides data to the DMS regarding the
 

bearing angle with respect to the earth's north magnetic pole. The
 

output of the magnetic flux gate signal is a typical three wire synchro 

signal. Thus magnetic heading m is in the form of two voltages
 

and r&2 related to magnetic heading by the formulas: 

r,= KSINtpJm (1
 

hnd
 

= KCOSUJ (2) 

The magnetic flux gate compass has a sensing element consisting of a 

triangular soft iron core stabilized in the earth's tangent plane
 

by a gyro. Two magnetic windings, primary and secondary, are wound 

about the soft iron core. The primary winding is excited by an AC 

current of 487T cycles per second and drives the core into magnetic 

saturation in both directions with desaturation periods between each
 

saturation drive. The secondary winding is connected so that any 

induction from the primary is suppressed. 

The earth's magnetic field is alternately excluded and admitted to the
 

core as the core is alternately saturated and desaturated by the primary. 

This modulation of the earth's magnetic field is picked up by the second­

ary winding. The modulation frequency is 975 cycles per second, filtering
 

allows for further rejection of any t87j cycle per second primary
 

induction into the secondary. The secondary coils are arranged so that
 

a unique output occurs for each angle with which earth's magnetic field
 

intersects the core. Figure 4-21 is a list of thefDMSiMagnetic flux
 

gate compass interface signals.
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The interface signals consist of commands to switch the ac and dc
 

supply voltages. Analog signals are required to monitor the ac and
 

dc supply voltages. The gyro rotor speed is monitored by a -counter
 

which counts pulses which are generated-once each rotor revolution.
 

The counter is 7 bits long and read by the DMS once per second.
 

The counter will overflow several times during the second between
 

interrogations by the DMS. The DMS will assume that the rotor spoe is
 

within a wide speed band and thus receives a fine measurement within
 

the assumed speed band.
 

The magnetic flux gate compass gyro is -avertical seeking gyro in a
 

normal aircraft application. Vertical seeking gyros are constructed,
 

such that mechanical torques and the gyro automatically keep the gyro's
 

angular momentum vector aligned with the total acceleration vector on
 

the gyro case. The only acceleration sensed by the gyro is the reaction
 

force between the aircraft and gyro oppos~ing gravity in a typical air­

craft application during constant velocity cruise. Thus the gyro's
 

angular momentum vector is automatically aligned with the vertical.
 

A vertical seeking gyro is inadequate for the magnetic flux gate compass.
 

to be available on the space shuttle during reentry when large aero 

dynamic accelerations are experienced. Thus for the space shuttle 

application a standard two axis gyro will be used having pickoffs­

and torques on the sensitive-gyro axis. The DMS will slave the gyro 

to the outputs of the inertial navigation Euler angle attitudes at a 

4 per second rate. The frequency of the 487o cps oscillator is measured 

by a counter and read into the DM3 at a 1/second rate. The temperature 

of the electronics and gyro is measured and controlled by a heater command, 

The two voltages represented by equations I and 2 are read by the DMS at 

four times per second. -47­



4.4.4 TACAN Receiver 

The Tactical Air Navigation System (TACAN) is designed to give a
 

continous indication of bearing and distance from an aircraft to a
 

TACAN ground station. There are 126 frequency channels assigned for
 

TACAN usage. Each operational ground TACAN station is,assigned a 

single channel, If more than a single TACAN station is operating on
 

the same channelthe geographic separation will be such as to eliminate
 

All possible ambiquities between the two stations.
 

The TACAN ground station produces a theoretically infinite number of
 

bourses or radials which radiate from the station like spokes from the
 

hub of a wheel. These radials are pm vided with azimuth intelligence
 

by a comparison of the phase difference between two radiated signals.
 

These signals consist of a pulsed reference phase signal and a variable
 

phase signal which is directional and exhibits a variable phase versus
 

azimuth relationship. The reference and variable phase signal are
 

tadiated from an antenna array consisting of a central abtenna and two 

4ylinders. The entire antenna rotates at 15 revolutions per- second. 

The inner cylinder has an embedded reflector to distort the radiation 

pattern of the central antenna into a cardioid pattern. The outer 

6ylinder has nine embedded reflectors resulting in a modulation of 

the basic sine wave nine times for each 3600 phase difference. This 

modulation technique results in nine electrical degrees being equated 

to one azimuth degree.
 

A pulsed reference signal is utilized for comparison with the variable 

signal (sine wave). This signal is transmitted each time the maximum 
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lobe of the cardioid is at a bearing of magentic east.' Within the 

receiver the phase measurement is made with respect to a variable
 

signal zero crossing point. The output of the receiver phase 

measurement electronics is the magentic bearing angle from the
 

transmitter to the receiver.
 

The measurement of distances from the vehicle to the TACAN ground 

station is accomplished through utilization of an interrogation/response 

technique. The vehicle transmitts an interrogation pulse to the ground 

station transponder. The vehicle receiver determines the time required
 

between the original pulse transmission and the receipt of the transponded
 

pulse. Slant range is then computed by knowing the propogation speed of 

electromagnetic radiation.
 

Special features are designed into the distance measurement system to enable 

simultaneous usage by up to 100 vehicles. The vehicle transmitted inter­

rogation pulses occur at .arandom frequency. The distance measurement 

receiver operates in a search or track mbde. In both modes the receiver 

looks at a narrow time slot for the transponded return. In the search 

mode this time slot is adjusted until the ratio of received returns to 

transmitted pulses is high at which time the track mode is entered. In 

track the time slot is slowly moved so as to keep the return pulses always
 

centered in the time slot. Because the pulse transmission rate from each
 

vehicle is random the probability of receiving a large number of replies 

initiated by other aircraft during the time slot period is low. 
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Figure 4-22 shows the interface requirements between the TACAN and
 

the DMS. The interface'includes the normal AC and DC power on commands
 

and primary power monitoring returns. The transmitter required of the
 

distance measuring equipment (DME) will have its frequency crystal
 

controlled. The crystal will be mounted in a temperature controlled oven.
 

The receiver transmitter channel selected by the pilot will be indicated
 

to the DMS. The bearing measuring equipment will return bearing to the 

DMS and a signal indicating that the system has achieved phase lock on.
 

the received bearing signals. The bearing measuring equipment can be
 

tested by commanding a test and supplying a bearing value. The normal
 

bearing output from the TACAN should indicate the test value within some
 

small tolerance band after the bearing valid discrete is set.
 

Slant range is determined from two TACAN returns: the center of the slot
 

position and the position of the return in the slot. The center of.the
 

slot is measured as a time from the transmission of the interrogation 

ulse. Under normal operation,multiple returns will be received in. he 

slot during the period between two EMS samplings .of the'position of the 

return in the slot. The data generated as the return slot position is the 

algebraic sum of the position of all returns accumulated since the last 

DMS sampling. The TACAN distance measuring system also delivers the total 

number of interrogations transmitted and replies received since the last 

,IMSsampling. The DMS commands the center of ,slot position and a test
 

configuration. In the test configuration a fixed delay of the transmitted
 

interrogation pulse is inserted into the receiver channel creating a known
 

pulse return.
 

-50­



4.4.5 Landing Systems 

The space shuttle booster avionics system will include an Advanced 

Instrument Landing System (AILS) receiver and a standard Instrument
 

Landing System (ILS) receiver. The AILS is included to fulfill the 

zero-zero landing requirements and the ILS to extend the number of 

landing fields available for use by the booster.
 

AILS 

The AILS system provides azimuth, elevation and range from the vehicle 

to the end of the runway. Figure 4-23 gives the AILS/DMS interface 

requirements. The power to the AILS is controlled by two discretes,
 

one for DC and one for Ad power. The supply power voltages and 

electronics temperature is made .available to the EMS for.monitoring 

purposes. Range is obtained by the vehiclesAILS transmitting a pulse 

and receiving a transponded return from the ground statiod. The
 

operation of the AILS Range equipment is similar to the operation of 

the TACAN DME. The ground station returns are tracked by a narrow time 

slot. The DMS has control of positioning the time slot center. The
 

accumulated sum of the position of the returns in the time slot and the 

total number of returns received are available to the ES. The number 

of pulses transmitted by the AILS is also sent to the DMS. 

The AILS operates on an iterative bases. Each 1/5 of a second is divided 

into 6 equal parts, each 1/30 of a second long. During one of the 1/30 

second periods elevation dita is received, during another azimuth, and 

during another range. Elevation data is received by the AILS as a series 

of pulse pairs. The two pulses constituting a pulse pair are separated 
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by 12 microseconds. The separation between each pulse pair is 40
 

microseconds when the elevation angle is 0 degrees and the separation
 

increases by 8 microseconds for each degree of elevation angle up to
 

010
 

Azimuth data is also received as a series of pulse pairs. The sep­

aration between the two pulses constituting a pulse pair is 14 micro­

seconds when the vehicle is left of the runway center line and 10 

microseconds when right of the center line. The separation between 

pulse pairs is 40 microseconds when the vehicle is above the extended 

runway center line and increases by 8 microseconds for each degree 

in azimuth that the vehicle is off the center line up to 5 left or 

right. 

A five per second rate is incompatible with the selected DMS iteration 

rates. A valid discrete is associated with range, elevation and simuth 

returns. These discretes are set when data is being received by the 

DMS at the end of the 1/30th of a second period associated with the 

particular data type. The discrete is reset when the data is re&d in to 

the DMS. The discrete thus informs the DMS if data is being received 

by the AILS and if the data is fresh. 

Two discretes are available to command the AILS into one of two different 

test configurations. AILS operation is tested by comparing range, ele­

vation and azimuth values received with the test configuration commanded
 

against expected results.
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2 

IS
 

The Instrument Landing System (ILS) is much less sophisticated then
 

the AILS system. The precision of the system disallows a zero-zero
 

landing capability. All major airports have IL$ ground installations.
 

The space shuttle booster is provided with an ILS to assist landing
 

operat'ons for those airports where AILS is not available. The ILS
 

providgs azimuth and elevation data plus outer, middle and inner
 

marker beacon range data. Continuous range data is obtained if the
 

airport also has TACAN DME. Figure 4-24 shows the ILS/DMS interface
 

requirements. The interface includes AC and DC power on discretes,
 

monitoring of the supply voltages and the temperature of the electronics,
 

The elevation angle is measured with respect to a line inclined at
 

with the horizontal. The aximuth angle is measured with respect
 

to the extended runway center line. The marker beacons are three trans­

mitters located along the extended runway centerline which radiate a
 

fan shaped pattern. The vehicle ILS delivers a discrete to the DMS
 

as it passes over the marker beacon. If the signal strength being
 

received by the ILS is sufficient for good reception,a discrete is
 

issued to the DMS. The DMS has the capability of commanding the ILS
 

to assume one of two different test configurations. Each test config­

uration exercises the ILS equipment producing a fixed elevation azimuth
 

and marker beacon output to the 1S.
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LGTHRESOLU- WORD RTSINA 

SIGNAL SOURCE TYPE RANGE IO0 (BITS) " /SEC. 

DO Power on Discrete Ds DIS I AR 

AC Power on Discrete DM5 DIS 1 AR 

DO Supply Voltage ILS AN 0-30V .3v 7 1 

AG Supply Voltage, Phase A ILE AN O-127v 1V' 7 1 

AC Supply Voltage, Phase B ILS AN 0-127v Iv 7 1 

ADSupply Voltage, Phase C ILS AN O-127v-" Iv 7 1 

Electrbnics Temperature ILS AN 75-1250F i 6 1 

Elevation Angle IS AN +10 .250 7 1 

Azimuth Angle ILS DIS 1 1 

Outer Marker Beacon ILS DIS 1 1 

Middle Marker Beacon ILS DIS 1 1 

Inner Marker Beacon ILS DIS - 1 1 

Test Configuration Discretes IS DIS 1 AR 

Figure 4-24 ILiDM Interface 

AC Power on Command IN I - .1 AR 

DO Power on Command MS DIE 1 AR 

AD Supply Voltage, Phase A HAL .AN O-127v Iv, 7 1 

AD Supply Voltage, Phase B HAL AN 0-127v Iv 7 11 

ADSupply Voltage, Phase G HAL . AN 0-127v 1v, 7 :1 

DC Supply Voltage HAL AN 0-30v .3v 7 .1 

Electronics Temperature HAL AN, 75-125°F .5c? 7 1 

Altitude HAL AN -80, OOOFt 1Oft 13 11-
Signal Strength HAL AN 0-100% 1%. 1117 

Bite Output HAL - AN - 12 0  

Test Configuration Command EMS DIS 1 AR 

Oven Temperature HAL AN 75-1250F .5*F 7 i 

Heater Command IMS DIS'1 1 

Figure 4-25 Radar Altimeter (RAL)/DM Interface 

AC Power on Command INS DIr 1 AR 

DC Power on Command WRA DIS 1 AR 

ACSupply Voltage, Phase A WRA AN 0-127v Iv - 1 1 
AC Supply Voltage, Phase B VA AN O-127v lV 7 1 

ACSupply Voltage, Phase C WRA AN 0-127v Iv 7" 1 

DC Supply Voltage WRA - AN 0-30v .3v 7' 1 

Electronics Temperature WRA 01 7 5 - 1 2 5 F .5F 7 1 

Oven Temperature WRA AN 75-1250F .5F 7 1 

Heater Command DS DIS 1 1 

Test Configuration Command INS DIS 1 _I AR 

Bite Output WRA AN F 30 1 

Figure 4-26 Weather Rudar (WRA)/DMS Interface Requirements 



4.4.6 Radar Sensors 

The space shuttle booster will contain two radar sensors. These
 

are a radar altimeter and a weather radar. The radar altimeter
 

will be used during the final reentry phase, cruise and landing. 

During reentry the radar altimeter is used to determine when to 

deploy the air breathing engines and to control the flight path.
 

During cruise the radar altimeter will be used for possible in­

ertial navigation updates (the pilot must supply local terrain 

elevation through keyboard entry), and in establishing a minimum 

altitude. During landing the radar altimeter will be used to estab­

lish a minimum altitude and an altitude display to the pilot. 

Figure 4- 25 is a 3int of the Radar Altimeter/DMS interface re­

quirements. The signals include the AG and DC power on commands, 

and monitoring signals providing measurements of the AC and DO 

supply voltages to the Radar Altimeter. The temperature of the 

Radar Altimeter electronics is also returned. The measured al­

titude above the terrain and the signal strength of the radar 

returns are provided to the DMS. The radar altimeter will include 

built-in test equipment (BITE), which will generate a 20 bit status 

word for testing by the DS. For ground checkout, the IMS can 

command the radar altimeter into a test configuration and test all 

of its outputs to the iS against expected values. The radar al­

an accurate time sourcein order to measure altitude.timeter requires 

This time source is generated by a crystal controlled oscillator 

which is mounted in a temperature controlled oven. The EMS controls 

the oven temperature by turning a heater on and off. 
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The DM interfaces withthe weather radar only for the purpose of 

checkout, temperature control, and operation monitoring. Figure 4- 26
 

is a list of the weather radar/DMS interface requirements. The inter­

face signals include an AC and DC power command from the DMS. 
Supply
 

voltage magnitudes and the electronics and oven temperatures are made
 

available to the DM3. A heater command from the DMS is; used to control
 

the oven temperature. The EMS has the capability of commanding the
 

weather radar into a test configuration. In both the test and
 

operational configuration, a built-in test equipment (BITE) output is
 

generated by the weather radar.
 

44..7Miscellaneous Flight Instruments 

There may exist several independent flight instruments which interface
 

with the DMS only for the purpose of ground checkout and inflight
 

monitoring. The interface assumed for this function will be 7 discrete 

inputs and 14 analog inputs. The discretes will indicate if the associated 

instrument has been turned on. Power switches for these instruments 

will be located on the instrument. Each of the analog inputs will be 

7 bits long. The inputs will be sampled at a 1 per second iteration
 

rate.
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4.5 Flight Control 

The primary function of the flight control system is to maintain the 

vehicle at the desired attitude. The desired vehicle attitude is
 

determined either from the guidance system or directly from pilot
 

commands. Attitude is controlled by commanding torques on the vehicle.
 

The manner in which torques are produced is dependent upon the mission
 

flight phase; during boost thrust vector control of the main rocket 

engines is used, during coast the reaction jet control system is used,
 

and during reentry, cruise, and landing aerodynamic control is used.
 

A secondary system generally considered part of the flight control 

system is the throttle control of the cruise air breathing engines. 

Figure 4-27 is a list of the flight control input/output requirements. 

The pilot and copilot are each provided with a sidestick. controller used
 

to command pitch and roll rate. A detent switch is closed when either
 

a pitch or roll input to the sidestick is greater than a set value.'
 

If the sidestick controller is below the detent value the pilot commands
 

are added to the automatic guidance commands allowing minor variations
 

about the guidance flight path. If the pilot command is above the 

detent value, the guidance commands are zeroed giving the pilot un­

obstructed control of the vehicle. 

The pilot and copilot both have access to throttle controls for the 

cruise air breathing engines (six engines are assumed for the booster).
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SIGNAL ISOURCE TYPE RANGE RES. WORD RATE 
ILENGTH
 

Sidestick Controller Pitch Rte Command (2) FOS AN +100% .2% 10 16 
Sidestick Controller Roll Rate Command (2) FCS AN +100% .2% 10 16 
Sidestick Contoler htent iscretes (2) FCS DIS 4 16 
Engine Thrust Commands (6) INS AN - 0-100% .1% 10 8 
Engime Response Signals (6) FCS AN O-1O0% .4% 8 8 
Throttle Detent Discretes FOS DIS 12 8 
Rudder Pedal Command (4) FOS AN 0-100% .1% 10 16 
Rudder Detent Discretes (2) FOS DIS 2 16 
Pitch, Roll Yaw (PRY) Beep Trim FCs DIS 12 8 
PRY 9t. (4 FOS AN +200A .010;s 12 32 
PRY Rate Gyro Test Command (4) DoS DIS , 4 1 
PRY Rate Gryo DO Voltage PCs AN 0-30v .3v 7 1 
PRY Rate Gyro AD Voltage (Phase A, B,& C)(4) FOS AN - 0-127v 1v 7 1

]
PRY Rate Gryo Tomporaturo (4) FCS AN 75-125O 101 6 1 
PRY Rate Gyro Poeer on Discretes (4) MS CIS 2 AR 
PRY Rate Gyro Rotor Speed Status (4) FOS DIS 1 1 
Acceleration (2) FOS AN ±256F/S" .125F/S2 12 32 
Accelerometer Test Command (2) EMS DIS 2 1 
Accelerometer Status (2) FCs DIS 2 1 
Pitch + Roll Thrust Vetor Sae Command ThiS AR +50 .010 10 32 
Pitch - Roll Thrust Vector Servo Command -T , AN 450 .010 10 32 
Yaw + RollThrust Vector Servo Command ,IMS AN ±5% .010 10 32 
Yaw - Roll Thrust Vector Servo Command A 4%545 .010 .10 32

_% .1
n ANAN ;5% .1. 1010 3232 
Thrust Vector Servo Power On Discretes MS DIS .14 AR 
Twelve (12) Thrust Vector Servo DO Supply F0S AN 0-30v .3v 7 1 
Thrust Vector Servo Status FOS uES 28 ,.1 
Reaction Jet Commands EMS DIS 16 32 
Reaction 'JetReturn Statues FGM DIS 16 32 
Elevon Comands (2) EMS AN ±100% .2% 10 32 
Rudder Command TUB AN +100% .2% 10 32 
Flap Command DMS AN -0-100% .4%' 8 8 
elsvon Position (2) FS AN +100% .8% 8 1 

Rudder Position FOS AN +100% .8% *8 1 
Flap Position POW AN 0-100% .4% 8 1 
Aerodynamic Controls Power On Discretes DMS DIS 5 AR 
Elevon DO Supply Voltage (2) FOS AN 0-30v .3v - 7 1 
Rudder DC Supply Voltage FOS AN .0-30v .Jv. .7 1 
Flap DO Supply Voltage FOS AN -30v .3v 7- , 1 
Trim Motor Commands W1S DIS 6 8 
Trim Motor Status. F0S DIS 6 8 
Pilot/Copilot Station Select Switch FCS DIS " 1 16 
Throttle Positions (6) FOS AN 0-100% .1% 10 8 

Twelve (12) Thrust Vector Position Feedback Fes 


Figure4-27 Flight Control System (FCS)/hS Interface
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Each individual throttle position is input to the M4 computers.
 

Each throttle has two detent positions, idle and maximum power, which
 

are made available to the 32C as discretes.
 

The position of both of the pilotts and copilot's rudder pedals are 

input to the computer. The difference in the rudder pedal position 

of the controlling station acts as a command to the rudder during aero­

dynamic flight. A rudder detent position determines if the pilot 

command is added to the guidance command or if the guidance command 

is zeroed. 

Trim discretes from switch positions at both the pilot and copilot
 

stations are inputs to the ENS. There are two bits from each station
 

for each vehicle attitude, i.e., pitch, roll and yaw. The two bits
 

contain coding for t,- and 0 commands. The DM3 issues commands to the
 

trim motors and tests the trim motor status.
 

There are four angular rate instruments on the booster, one for sensing
 

roll rate, one for yaw rate, and two forpitch. rate. Two pitch rate 

gyros are used for better suppression of body bending in the pitch axis. 

Each rate gyro output is made available to the DMS. Four test command 

discretes can be issued to each rate gyro which cause calibrated torques 

to be applied to the gyro. The ac and dc supply voltages and electronics 

temperature for each gyro are input to the DMS. The DMS issues ac and 
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do power on discretes. An indication of proper gyro rotor speed is
 

input to the IMS as a discrete status bit.
 

The booster contains two linear accelerometers as special flight con­

trol sensors. These instruments are mounted at body stations having the
 

most desirable bending characteristics. One instrument is mounted with 

its sensitive axis normal to the body X axis and in the vehicle pitch
 

plane. This instrument is referred to as the normal accelerometer.
 

The other instrument is mounted with the sensitive axis normal to the
 

body X axis and in the vehicle yaw plane. This instrument is referred
 

to as the lateral accelerometer.. The outputs of each accelerometer are 

input to the 24S. The DMS can command the accelerometers into a test 

configuration and receives a status indication from built-in test 

equipment. 

It is assumed that the booster has 12 main rocket engines and that each 

rocket engine is capable of being vectored. A hydraulic servo on 

each rocket engine is used to vector the engine. Each engine when vectored 

causes torque about two axis, either pitch and roll ot pitch and yaw. 

The commands to each thrust vector servo is one of four types, either 

pitch plus roll, pitch minus roll, yaw plus roll, or yaw minus roll. 

The IMS issues these four commands which are routed to the appropriate 

engine. Position feedback signals from each thrust vector servo are 

returned to the DMS for comparison with the commanded position for test
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purposes. The computer issues power on discretes and receives dc supply
 

voltage values. A two bit status indicator is returned to the DMS
 

from each servo.
 

The reaction jet system consists of 16 reaction jets. Each jet receives
 

an on-off command from the MS and returns an on-off status to the DMS. 

There are four aerodynamic surfaces controlled by the DMS. These are 

the right and left elevon, the rudder, and the flaps. An individual 

command is issued to each surface by the EM and the position of the sur­

face returned for testing purposes. A power on command isissued by
 

the EM5 to each surface servo and the dc supply voltage value returned 

to the EMS for testing.
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I 4.6 COMMNICATIONS 

The communication subsystem equipment, outlined in Section 3.6 , provides 

for two-way flow of information between the booster and ground facilities,
 

booster and orbiter, and booster flight crew. The equipment used is comparable
 

to that found in current spacecraft and large commercial aircraft. The
 

autonomy requirement and the desire to simplify flight crew functions for
 

the short booster mission tends to minimize the external communications.
 

However, during the development and qualification tests of the booster, voice,
 

data, and command capability to the ground will be required for all mission
 

phases. This will assist in the ground personnel tasks-of monitoring and
 

analyzing booster performance to confirm the design or to determine required
 

modifications (7). For the operational missions, the booster, if unmanned,
 

will require data and command capability from the ground at all times.
 

This section discusses interface requirements between the communication 

subsystem equipment and the data bus and data management computers. Inter­

face details developed in this section are then used,in later: sections for 

determining total system input/output, computer memory, and software require­

ment.
 

Frequencies for the communications equipment discussed will either be given 

as an exact figure, or by an abbreviation or letter designation. Abbreviations 

for radio frequencies follow established t1andards (2). 
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14.6.1 VOICE CON ICATIONS 

The primary voice communications equipment are the VHF and UEF transceivers
 

necessary to talk to MSFN or FAA stations. Voice reception is also avail­

able on frequencies associated with the navigation and landing aids; AILS,
 

ILS, and TACAN. The audio tones and identification signals associated with 

these aids are considered as belonging to the voice communications subsystem.
 

Voice communications capabilities of the S-band transponder are described
 

in Sections 4.6.2 and 4.6.3. 

It is anticipated that there will be no requirement to digitize voice signals 

and carry them on the data bus. This will, thenj limit DMS functions as 

regards the voice communication subsystems to testing, monitoring, and control
 

operations. As complete automatic checkout of the voice communication
 

spbsystem and the associated antennas could involve signal simulators that
 

surpass the complexity of the equipment being tested (7), it is assumed that
 

only a gross onboard checkout of communication units will be performed. A 

detailed checkout will be conducted on the ground during the maintenance cycle
 

using adequate test equipment. Preflight and onboard checkout will use the
 

minimm equipment necessary to provide reasonable assurance of satisfactory
 

equipment operations. The booster checkout system will have the capability 

of performing RF parameter checks, ranging calibrations, and other similar 

typeTunftions through DMS programs and onboard test equipment ( I). Switch 

and connector checks are also performed under DMO control. Monitoring functions 

consist of verifying, displaying or recording the positions of on/off switches 

controls, frequency selectors, headset connections, and-antenna or voice 

recorder switches. Control functions consist of the remote operation of 

these communications as required by operational modes 
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A modification of current Apollo communication equipment (8) will satisfy 

voice requirements for 

* booster to and from MSFN 

* booster to and from orbiter 

o intercomnuications 

Figure 4 -28 shows an arrangement which emphasizes the role of the data bus 

and the MM computer in monitoring and controlling communication functions. 

The following table lists a frequency assignment -of Vh'A and VHF B trans­

ceivers for pre-flight, boost and separation voice:
 

From To VHF Mode XMIT 
 ROV
 

Booster MSFN Simplex A 296.8 296.8 

MSFN Booster Simplex A 296.8 296.8 
Booster Orbiter Simplex B 259.7 
 259.7
 
Orbiter Booster Simplex B 259.7- 259.7
 
Booster MSFN Duplex A 296.8 259.7
 

3econdary 	 MSFN Booster Duplex A 296.8 259.7
 
Booster. Orbiter Duplex B 259.7 
 296.8
 
Orbiter Booster Duplex B 259.7 296.8
 

The intercommunication equipment permits in-flight communication between 

the crew members, and preflight communication between the flight crew and 

booster servicing personnel. Communication is conducted using hand-held
 

(MIKE 1 and 2) or oxygen mask (MEKB 3 and 4) micrdphones, and headsets.
 

To use the intercom (I/d), the microphone selector switch is set to I/C and
 

the push-to-talk (PTT) button activated.
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Figure 4-28 Voice Communications Block Diagram 

Antenna 
Selector 25. 

296.8 259.7 
Me me 

Display ad 

Controls I 

|Headset omad" P e Modulation 

MkProcessor S-Bad 

PitRecoer 

SIGNAL ' [ISOURCE TYPE RANGE . TION - WCO L T THTRATE-'(BITS) - A/E 

Voice Communications 

Volume Controls (12) C0S AN 0-28v .2v 6 

Mike Audio (4) CHS AN 0 - .Sv .002v S - 1 

Radio Master Control (3) DMS DIS 1 '1 

Headset Jack (2) OHS - DIS 1 1 

VHF XM T Cont (2) DNS DIS 1 1 

VHF RSVR Cont (2) DMS DS 1 1 

Comm el (5) DM3 DS 1 " 

Audio Selector (4) DMS DIS . 1 1 

Norm-Aux. (7) DNS D)S 1 1 

Range Voice Select (2) DMS DIG 2 1 

VHF Freq. Select (3) DKS DIG 5 1 

UIF Frequency Select - (2) DMS DIG 7 1 

Comm Test (5) DMS CIS 1 1 

YLCN Broad/Sharp (2) CMS DIS 1 1 

NCNControl (2) DMS DIS 1 1 

Mike PTT (4) CMS DIS 1 

Intercom Control (2) DM8 DIS 1 1 

Figure 4-29 - Voice Omcuncations/M Interface 
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An additional VBF communications system will meet voice requirements with 

MSFN during flyback and is also compatible with FAA enroute and landing 

facilities This system provides a capability for 360 channels in the 

frequency range from 118.0 to 135.95MHz.. It is anticipated that three 

independent VHF transceivers will be provided: VHF1, VHF2, and VHF3. 

Control panels for each of these units will become part of the audio center. 

Current control functions, which will be supervised by the booster DMS, 

consist of the.following:
 

" 	COMM SEL switch - Two frequencies can be pre-selected on each 

VHF unit' (making it possible to -have a total of six different 

frequencies selected at one time-). On each VHF unit, only one
 

frequency can be used at a time,, but. the COMM SEL feature permits 

switching in the other frequency when desired., This eliminates 

having to dial a new frequency at a critical time.
 

" 	Frequency Ih-use Lights - Indicate the position of the COMM SEL 

switch (light illuminates on side corresponding to switch position 

and other light goes out). 

* 	Frequency Selectors - Each of these consist of a window,aid two 

knobs. The first digit ("i") of the frequency is permantly marked 

in the window. The next two digits (18 thru 36) are set by one knob, 

and the decimal portion (.00 to .95 in increments of .05) is set 

by the other knob. 

o 	 COMM TEST - This pushbutton momentarily disables the squelch control 

circuits, causing background noise to be heard, thus giving an 

indication that the receiver section is still functioning. 
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" NORM - SAT'- This switch will have no function for booster operation 

and should be kept in the NORM position. SAT position pertains 

to VHF communications via satellite.
 

* VOL - A knob for volume control of each VHF unit. 

o Audio selector - Are On-OFF toggle switches marked to indicate 

the radio unit to which each pertains.
 

" NORM - AUX - In case of amplifier failure, moving this switch to 

the AUX position cuts in a standby amplifier thus restoring inter­

phone communications and radio receiver outputs. 

* RANGE-BOTH-VOICE - A three position switch which permits selection 

of either range or voice signals, or both, from the selected
 

VHF NAV (navigation) receiver.
 

* Radio Master - Three radio master switches which control the 115V A.C. 

or 28V D.C. power to (for example): 

(a)TAAN, Marker Beacon 1, Weather Radar
 

(b) VHF-2, VHF-B, Marker Beacon 2, DME 
(c) VHF-3, UHF-2, VHF NAV-2, Glide Slope 2 

Normally, someunit's power supply is independent of Master Radio 

switch position (circuit breakers being. the only contro& oVer power 

as long as power is supplied to booster systems). These units 

typically include:
 

Intercom, VHF A, VHF 1, VHF NAV & GSIi, ATO Transponder
 

Two UHF units, UHF-i and UHF-2, are the primary means for voice
 

communications with military agencies. Channels are also avail­

able to FAA facilities. This system has a capability of 3500
 

channels in the frequency range from 225.0 to 399.95 MHz with
 

incremental changes of .05 MHz. Ten of the available channels
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(those most likely to be used) are preset into each UHF unit.
 

Controls associated with the UHF communications are:
 

• 	CHAN SEL - Selects a preset channel and displays its frequency
 

* 	CONM SEL - Same function as VHF comm.
 

o 	VOL - Volume control
 

When either of the VHF NAV sets are in operation and the RANGE-BOTH-

VOICE switch is set to BOTH or VOICE, ground to air voice communications 

or aural identification of VHF navigation facilities being monitored 

is 	possible. The characteristics of these received signals are (-,)­

" 	The simultaneous ground to air signals are on the same frequency
 

as the ILS localizer( .all.50 KHz spaced channels from 108.0
 

to 119.95).
 

* 	The peak modulation depth of the carrier of'this communication 

channel shall not be greater than 40 per cent. 

" 	The audio frequency characteristic of the speech channel shall be
 

flat to within 3 db relative to the level at 1000 hertz over
 

the range 300 to 3000 hertz.
 

.	 The localizer provides an identification signal using two or
 

three-signals of the Morse code sent at a speed of 7 words per
 

minute. 

.	 The identification signal is repeated six times per minute and
 

its modulating tone is 1020 hertz plus or minus 50 hertz.
 

@ 	The depth to which the radio frequency is modulated by the
 

identification signal shall be between the limits of 7 and 15
 

nereent.
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* 	 The transmission of speech or the identification signal 

should not interfere with the basic localizer function. 

When speech is being radiated, the identification signal 

is 	suppressed.
 

* The receivers utilize a two cut of five frequency selection
 

systemL Frequency selection
 

can be tested and verified by the DMS in comparing A to E
 

pin connections with code requirements for each frequency.
 

Ground to air communications is also possible from enroute TACAN
 

stations. Each of the 126 TACAN channels is paired with- VHF 

navigational facility in the 108.0 to 117.9 MHz frequency band 

(10) as in the following example: 

TACAN Channel 	 VHF Channel
 

97 115.0 
98 115.1 
99 115.2 
100 115.3, 

DMS tables will provide the complete list of matching frequencies 

and will set a VHF channel to match the selected TACAN channel. 

Vocie signals from AILS ground stations to the booster will 

be provided on UBF channels associated with each AILS Distanc 

Measuring Equipment (M4E) transponder channel. EMS will provide 

information on matching frequencies.
 

As described in Section 3.6, the marker beacon-receiver is pretunec
 

to receive only a single frequency of 75 MHz, the frequency-of airway
 

markers, and ILS outer and middle markers. Both aural and visual
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indications of aircraft passage over a marker are provided. Current 

indicators and controls consist of: 

Marker lights - Two sets of indicator lights (one for pilot, 

one for copilot). Each set consists of an amber, a purple, and 

a white light. The amber lights respond to ILS middle markers, 

purple lights to ILS outer markers, and white lights to inner 

markers or airway markers. 

* 	BROAD/SHARP - A two position switch which governs sensitivity of 

the marker lights. Normally, a fan marker station is identified 

when the marker light comes on with the sensitivity control in 

SHARP position. At the lower altitudes, the light remains on for 

a relatively short time, but the time it stays on increases with 

increase in altitude. BROAD position is even more sensitive 

than SHARP position, receiving signals at a greater distance from 

the station, and reacting in the. same manner with respect to 

altitude.
 

MARKER -ON-OFF control
 

o 	 VOL - Volume control for beacon audio: 

In the ILS, the glide path marker beacons are identified by dots, or 

dashes repeated at fixed time intervals. 

DMS requirements for the voice communications subsystdm are summarized
 

in 	Figure 4-29. 
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4.6.2 COMMAND SUBSYSTEM 

The booster uses, as part of its communication system, a subset of the
 

Apollo S-band communications system. Figure 4-39 lists the typical functional 

kequirements (13) of this Apollo system (used on the Block II Command and 

Service module), and indicates those capabilities anticipated for inclusion 

in the booster vehicle. The onboard communications equipment communicates
 

*ith the Manned Space Flight Network (MSFN) consisting of unified S-band 

(USB) antenna systems located at remote site data processing (RSDP) units
 

all under the Control of Goddard Space Flight Center (GSFC). It is antic­

ipated that sufficient MSFN sites will remain in operation for command and 

6ontrol of shuttle operations (7).
 

The USB antenna system uses a single carrier frequencyrin 6ach direction to 

yrovide tracking'as well as communications with the booster. C6mmunications
 

to both the booster and the orbiter; when mated, can be, provided simultaneously 

tithin the beamwidth of the single antenna. The system will pack all data 

acquisition, telemetry, and command control in a single radio frequency band 

which is 2270 to 2300 MHz for telemetry (down link) and 2090 to 2120 MHz for 

command (up link). To accomplish this, two sets of frequehcies are used, 

separated by 5 MHZ on each up and down link spectrum. 

The remote site data processing organizations have the functions of sampling 

and handling instrumentation data from the vehicles; adcepting, handling, and 

transmitting digital commands to the booster or orbiter; and processing and 

disp3ying mission.informatio. GSFC acts as the primary switching center for the 
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FUNCTION PERF 4 CEm QUIRrD BOOSTER
REQUIMEDNT 

Two way 
Voice 

Gapability shall exist at all times when in line of 
sight of station 
- Normal voice: 90% word intelligibility 
- Back up voice: 70% word intelligibilJty 

yeu I 

Telemetry Continuous capability when in line of sight of station 
Uses Pulse Code Modulation (poM) with design goal of 
maimtm bit error rate of I in I million. 

Yes 

Up Data Continuous capability to transmit discrete commands 
and complex digital information from earth to space­
craft when in line of sight of station. Probability 
of rejecting or not properly receiving a correctly 
transmitted message (decoding, failure) shall be 
not greater than 1 in a thousand. I 

Probability of accepting an incorrect or false 
message (decoding error) shall be no greater than ' 
1 in I billion. I 

Yes 

-

Trajectory 
Measurement 

Television 

By phase - coherent turn around of pseudo-random 
noise (RRN) range code. Used when necessary to 
update trajectory data. 

Justified as a means of giving the public a pictorlal 
real-time account of the progress of Apollo luar 
missions. 

Yes 

No 

I 

Scientific, 
Biomedical 
Telemetry 

Three channels. As required by scientific community 
on a non interference basis to the mission. 

NO 

Data and 
Voice Dump 

Capability to record operational data, voice, and 
scientific data, and playback stored data when 
in line of sight of station, simultaneously with 
real time operational telemetry and voice. 

n Flight Play-, 
ck Not Required 

. 

Data and 
Voice Relay 

Capability to relay voice or data from other veicles 
to earth. 

Yes 

Emergency 
Key 

Continuous capability when in line of. sight of station 
in event of equipment failure precluding other' 
communication. At a inaxmum rate of 25 characters 
per minute, copy accuracy shall be at least 70% 

Yes 

Figure 4-30 Apollo S-Band Communications 
Functional Requirements 
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flaw of data to RSDP's, range instrumentation aircraft, communication 

satellites and Mission Control Center (MCC), Houston. 

The booster S-band equipment, the data flow, and interfaces with the
 

data bus and EMS are shown in Figure 4-31. The functions of 

the S-band switches are outlined in Figure 4-32. The word 

lengths (bit requirements) of these switches are also listed. This 

information is used as a portion of the total S-band and EMS inter­

faces requirements.
 

In addition to control and monitoring of switches listed in Figure 4.21, 

additional up, link functions which have an impact on interface require­

ments include: 

* Circuit margin calculations
 

. Modes of operation control
 

o Acceptance and management of up-data 

-The performance of a communication channel depends largely on a judicious 

bhoice of modulating parameters (phase deviations, modulation indices, etc.) 

and system parameters such as transmitter power, receiver sensitivity, and 

bandwidths. With these parameters, the communication system's performance can
 

be assessed and predicted. The simplest measurement of channel performance 
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PW 	 6 u Si al SBn 

S9 Recorder Pro M1odulation S7 	 Transponder 

Fiile -3 SBa o mmand ad Teemtr mokAgram 



NUMBER NAME 

SI 	 Antenna 

Selector 


52 	 Power Ampli-

fier Control 


S3 	 Power Amnli-
fier select 

S4 	 S-Hand Trans-

ponder Control 


S5 	 Pre Modulation 

Processor Power 


S6 	 Pre Modulation 

Processor UP 

Control 


$7 	 Pro Modulation 

Processor 

Down Control
 

88 	 Up Data 
Link Control 

$9 	 Telemetry 

Tape Control 


-10 	 Signal Con-
ditioning 

Equipment 
Control
 

811 	 S-Band 
Operation 
Control 

S12 Up Data Link 
Telemetry
 

$13 	 Pulse Code 

Modulation 

Telemetry 

Inputs 


814 	 Pulse Code 
Modulation 
Mode Controls 

S15 	 Ranging 

FUNCTIONAL DESCRIPTION WORD LENGTH
 

(BITS) 

2
Selects one of the four fixed omnidirectional 

S-band antennas 

4 
power mode or 20 watts in high power mode 
Controls power - output levels: 5 watts in low 

Select primary or secondary power amplifier 1 
unit 

Selects S-band transponder to be used .2
I 

Controls 28 VIC input to 18VC power 2
 
regulator
 

Selects either data or voice back up in- I
 
formation from command link. Voice back
 
up is primarily designed for contigency

situations 

Selects down link tape or voice back up 2
 
information as required
 

Resets the relay assembly associated with 2 
the command decoder and controls 28VDC
 
power supply input to up data link unit
 

Controls tape motion, circuit enabling, 4
 
and tape functions
 

Controls power supply to signal condition- 2 
ing equipment
 

Selects S-band voice function for pilot - 4 
or copilot ­

* Controls 	 volume with analog range of 12 
0-28V with resolution of .2V
 

Controls up data link depoder outputs to INS 1 

Sets telemetry high or low bit rates. Used 1 
in conjunction with switches S7 and S14 to
 
select different data modulation levels. -
Used in conjunction with switch S9 to record
 
telemetry data at high or low speeds 

Used to select primary voice or PCM functions, 4 
or secondary relay or key capabilities 

Controls RF 	track output 1 

Figure 4-32 Command and Telemetry Switch Functions 
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is a -comparison of the required signal-to- noise (SIN) ratio in a given 

bandwidth to yield adequate performance and the actual signal-to-noise 

ratio in that bandwidth. 

The required signal to noise ratio is that SIN necessary to provide the 

output intelligence of adequate quality. Figure 4-30 defines this quality, 

for e7ample~in terms of maximum bit error rate for telemetry and miminum 

word intelligibility for voice0 The circuit performance margin (signal 

margin) is the difference, stated in decibels (db), between the actual 

signal to noise ratio and the signal to noise ratio required. The equation 

(SIN) actual - (SI) required > 0 

should be satisfied for sati factory communications performance. 

The db margin calculations fdr C-band' up-signals summarize the system 

transmitted powers gains, losses, poise spectr 6l dens4ties, 

predication noise bandwidths, and modulations losses. The equations and the
 

computer program to generate the dl margin summaries for each communication 

mode of operation are described in Section 5.6.2. This program is used during 

preflight test, and inflight when shifting communication modes or experiencing
 

communications troubles. The parameters required, and their characteristics are
 

listed in Figure 4-33.
 

Communication modes of operation are designed to aid in conservation of power
 

and optimization of signal margins by transmitting only the intelligence 

required by the operational situation. Figure 4-34, summarizes the up-link 

combinations. In mode 6, for example, the PRN code is -phase-modulated directly 

on the carrier and requires approximately 3MHz of bandwidth. The voice is 

frequency modulated onto a 30kHz subcarrier which in turn is pbae modulated 

onto the carrier. 
Fir, 
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Validity 

Up Data Out of Sync 


Time Word 

GND Word 


HTC Word 

SPO Word 

Test Request Word 
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Voltage (6 steps) 

Calibration Start 


EnableADisable 


Message Accept 


Frame Sync 

Word Sync 


End of Message 

Serial Start 


Serial Bit Sync 


Serial Stop 


PCM Coder A 

PCM Coder B 

PCM Output Reg -

Check Voltage "On 

Check Voltage "1" 

POM Power Supply 

S-Band Switches 

S-Band Vol Control-

DB Magia Suar
 

B9T Power Booster Systems 


MIT Power Ground Systems 

Traunmitter System Circ. Loss 

Transmttter Antenna Gain 

Antenna Pointing Loss 


Slant Range 


Carrier Frequency 


Receiver Antenna Gain 


Receiver Circuit Losses 


Antenna Noise. Temperature 

Recetver Notse Temperature 

Noise Bandwidth 


Modulation Index 


Figure 4-33 

RFOl-WORD 10TH 

URCE T=f RANGE lIO (BITS) 

04 DIS -I 1 

CMS DIS I 

0MS DIG 25 1 

GMS DIG 16 

CMS DIG 6 

OHS DIG 27 

DM3 DIG 24 

DM3 DIS 1 

DM6 DIG 0-28v 3 

ONE; DIS 0128v 

DMS DIS 1-

GMS DIS 1 

0mS DIG 32 

0MS DIS 1 

CMS DIS 1 

CS DIS, 1 

OS 

CMS. 

DIS 

DIS 

1 

1 S 

0C14 AN 6v lv 3 

CML AN 0 .5v 2 

bN AN O-6v 1v -3, 

ems AN 0 .5V 2 

COM AN 6v 1v 

CMS AN 20.0 2v 5 

DMS DIG - - 33 

OMS AN 0-28v 0.2v 12 

CML AN 0-20" .1w 9 

01S AN 0:20kw .1kw 9 

(IS AN -20 to +20d .1db 9 

ONE AN -60 to i6odb .5db 8 

C0S AN -60 to _60db .5db 8 

DMS DIG 0-100n mile lIt 10 

CMs AN 0-2500 diz 2.5 MHz 10 

OHS AN -40 ,to+40db .5 a 

CM , AN -5 to +5 db .1db 7 

Cms AN 200-300K 1k .9 

0 AN 2000,3000K 10k 9 

CKS AN 0-10 Mz .1MzMai 

-CMS DIG 0-2 ,.01 9 

Communications System (CMS)/DMS Interface 
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Similarly, the up-data is frequency-modulated onto a 70 kHz subcarrier and
 

-then phase-modulated onto the carrier. Mode S is an emergency mode in which 

the backup voice is frequency-modulated onto the up-data channel and then
 

-phase-modulated onto the carrier. A computer program correlates communication 

mode and equipment configuration with the booster operational mission modes. 

The acceptance and management of up-data requires a knowledge of command word 

structure, transmission rates and specific types of commands expected during 

the booster mission. It is assumed that the command word structure will be 

similar to the Apollo/Saturn format (8) shown in Figure 4-36 with the 

iformation bit interpretation adapted to shuttle mission. requirements. 

In order to ensure that nonvalid command rejection ratios are met, each in­

formation bit is encoded into five sub-bits by the RSDP ground station prior to 

transmission. The sub-bit scheme shown, in the command word structure of 

Figure 4 -36 is one of the possible arrangements. Here the VA:'cddeas
 

different from the SA and data codes. 
 The SA and the data bodes are the same 

with a "1"sub-bit code the complement of the "0" sub-bit code. 

Data is tiamsmitted .to the vehicle at a -rate of 200 information bits per 

second or 1000 sub bits per second. A phase shift keyed (PSK) frequency 

modulation (FM,) technique is used to transmit the data. The transmitted 

signal is composed of a reference and an information signal. The information'
 

$s in phase with the reference for a "f1"and 180 degrees out' of phase 

for a "O". Figure 4-37 shows the major equipment of the up-data link unit 

of the S-band system. The sub bit detector examines five bits and-, if coding 

requirements are met, sends a "1" or "0"to the dbcoder unit. If the infor­

mation tone does not match the reference tone, an out of synchronization
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Figure , -36 Commftnl Word Structure 

Test 

GTE 

VA S SA- 190 

1 0 03J01j100 o 11 011 1 o 1111- 017 0 10 	0j 1°0110 

I - Thfom±&Cf Bits
 

1 10 0 0 1 0 1 0 1 0 1 Sub Bits
 

VA Code SA Code 
 Data Code
 

VA; Vehicle Address -GCD; Guidance and Navigation Data 

SA; System Address CTE; Central Timing Equipment 

SP01 Stored Program CommandRTC: Real Time 	 Command. 

entral Tiin -	 AudioS-Band EquipmentReceiver 


(Voice rFack-up) 
 D
 

70 ,Hz rate Sub Bita
 
Disr atr Dector Dcer Buffer
 

Pre Modulation 
s s o r
Poc
 

We Sn 

Figure 4-37 	 Up Data Link Processing 
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condition is detected and the DM5 is notified to initiate recovery procedures. 

The decoder unit assembles the bits according to codes, and shifts them into 

the buffer storage until the end of message at which time the information 

bits are put into the data bus along with a valid message discrete. If
 

coding format requirements are not satisfied, then the DMS initiates a
 

request for retransmission of message. Upon receipt of a valid message, the
 

EMS performs reasonableness tests before telemetering a message acceptance
 

discrete to the ground station.
 

The command word is configured so that each command will only be accepted
 

if it has the correct vehicle address, systems address, bit structure, and
 

word length. The vehicle address code could be used for example to distinguish 

between the master, front, middle and rear data processors of the orbiter and
 

booster (7). The system address is used to distinguish between the RTC, 

GND, TEST, CTE and SPC codes, The additional bits are data bits having
 

a predetermined meaning.
 

Guidance and navigation (GND) data are commands designed to provide updated 

information to the selected vehicle. The GND codes can be interpreted as 

keyboard symbols. T~e corresponding keys can then be activated to update
 

or vary computer memory contents.
 

The Test code is a request fromground stations for information such as self­

test results, computer memory contents, or status of indicated equipment. 

Whenever the ground station receives an indication that the booster's timing
 

system is not accurate (possible in reply to a Test request), the ground
 

station will provide correct timing data to the central tining equipment (CTE)
 

and the DM. The GTE code has the appropriate number of bits assigned to give
 

seconds, minutes, hours, and days information.
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Real time commands (RTC) are commands used to control booster equipment. 

They are of the ON/OFF variety, such as: Landing Gear UP/OWN, PCM Mode 

VOIOE/MMEAY, Power Amplifier HIGHAOW, or Ranging ON/OF. A stored 

program command (SPC) will incorporate timing and computer instructions. 

For e ample: Leave holding pattern at 123452 GMT. (This example illustrates 

the assumption that MSFN or a FAA system equivalent to USB is available 

throughout the mission - including control of an'unmanned landing). 

Figure 4-33 lists interface requirements for both 

the up and down link data functions. Section 5.6 describes the computer 

programs required for the validation, processing, and management of up­

link information. 
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4.6.3 TELEMETRY 

The telemetry subsystems uses the S-band equipment shown in Figure 4,31 

Data flow follows the down signal paths indicated in the diagram. Figure
 

4-32 shows the combined requirements for command and telemetry switch 

functions. Analogous to the information provided on up-link functions in 

section 4,6.2 , this section provides details on the down-link characterstics
 

of 

* S-band Down-link spectrum 

* Margin Calculations for S-band Down Signals
 

" Down Link S-band Modes of Operation
 

Following a discussion of telemetry formatting, synchronization, and data 

requirements, a list of combined up and down link interface specifications 

is provided.
 

The design of
 

spectra to accomodate multiple channelk is based on consideration of channel 

performance, interferences, and equipment limitations. The down link is 

generally power limited in comparison with the up link. The pseudorandom 

noise range code (PRN) is transmitted as baseband, directly phase modulating 

the carrier. It is important to locate the voice and telemetry intelligence 

in the spectrum for minimum interference to and from the range code. The 

use of subcarriers permits control of the carrier power reduction and provides 

the necessary isolation among range code, telemetry, and voice. The optimum 

location of the subcarriers is in the first null (at 1 MHz) of the range code. 

Phe digital PCM, being more susceptible to interference, is placed close to 

bhe first null at 1.024 MHa where the total PRN code power is relatively lOw. 

he voice subcarrier is located at 1.25 MHz. 

-84­



The margin calculations for S-band down link signals are shown in 

Figure 4-38. The discussion in section 4.6.2 of circuit margin 

calculations and parameters for db margin summaries applies to down link 

transmissions. 

The down link S-band modes of operation are listed in Figure 4,35 All 

these modes are made available to conserve power by using only that spectrum 

necessary to satisfy the requirements at the time, and to assure at least 

some limited form of communications in the event of degraded system performance 

(caused, for example, by failure of a power amplifier or an antenna). Mode 

2 is the primary high -data mode designed for critical phases of the mission. 

In this mode, the PRN code phase modulates the carrier, and the voice' 

frequency modulates a 1.25 MHz subcarrier which then phase modulates the carrier. 

The telemetry data is a 51.2 kilobit per second (KBPS) PCOMwave train which 

phase modulates a 1.024 MHz subcarrier, which in turn phase modulates the 

carrier. Mode 3 has essentially the same function with only a 1.6 KBPS 

telemetry stream on a 1.024 MHz subcarrier. Mode 4 is a reduced activity mode 

where a minimum amount of data is required by the ground stations for monitoring. 

The other modes are possible transmission combinations which can be used to 

optimize circuit margins in contingency situations. The emergency key 

capability is provided by amplitude modulating a 512 kHz subcarrier which 

phase modulates the carrier. The backup voice capability is provided by 

directly phase modulating the carrier with the backup voice signal. (It 

is anticipated that the orbiter will, in addition to the phase modulated modes 

of transmission, have a requirement for frequency modulated (FM) modes of 

S-band transmission. As these modes apply to television, biomedical, and 

recorder playback transmissions, it is assumed FM communication modes are not 

required for the booster.)
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Booster to MSFN
 

Transmitter Power (20w) .13 dbm 
Transmitter Circuit"Loss 
 6 db
 
Antenna Gain -3 db 
Polarization Loss 
 3 db
 
Path Loss (2500 n= at 2282.5 MHz) 172.8db'
 
Receiver Antenna Gain 44 db 
Receiver Circuit Loss 
 1 db 
Noise Spectral Density 204 dbw/Hz 

Composite S/N Ratio 75.2 dbw/Hz
 

Down Voice Down Telemetry 

composite SIN Ratio 
Modulation Loss 
Bandwidth (20kHz) 

Received S4 Ratio 

75.2 
9.8 

43.0 
22.4 

Composite SIN Ratio 
Modulation Loss 
Bandwidth (150kHz) 
Received SIN Ratio 

75.2 
9.8 

51.8 
13.6 

Desired SIN Ratio 
Signal Margin 

10.0 
14.4 

Desired S/N Ratio 
Signal Margin. 

13.0 
.6 

Down Range Code Down Carrier 

Composite SIN Ratio 75.2 
 Composite SIN Ratio 75.2

Modulation Loss 18.7 Modulation Loss 12.6
 
Band*idth (1.5 MHz) 17.0 Bandwidth (8o iz)- 29.0-
Received SIN Ratio 
 39.5 Received S4 Ratio 33.6
Desired SIN Ratio 
 6.0 Desired SN Ratio 12.0 

Signal Margin 3M5 21.6 

Figure 4r38 Margin Calculations for S-Band Down Signals 
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Pulse code modulation (POM) telemetry is used.because of its many
 

advantages: excellent noise rejection properties, very high data accuracy,
 

digital format versatility in handling different data rates, and high
 

bandwidth efficiency. POM uses time division multiplexing procedures.
 

Following signal conditioning, multiple data channels are sampled sequentially
 

on a repetitive basis for transmission over a single channel. Some definitions
 

applicable to time division multiplexing are: (12)
 

* 	 Commutation: Sequential sampling, pn a repetitive time-sharing 

basis.,of multiple data sources for transmission on a single channel. 

o 	 Frame: One complete commutator cycle, including synchronizing
 

signal.
 

" Frame rate: Number of frames per second.
 

" Commutation rate: Number of commutator inputs sampled per second.
 

o 	Channel sampling rate: Number of times an individual channel (time
 

slot) is sampled per second.
 

o 	Sub commutation: Commutation of a channel or time slot to carry a
 

number of parameters that are sampled at a rate that is slower then the
 

frame rate.
 

o 	 Super commutation: Commutation at a higher rate to carry parameters 

sampled faster than the frame rate. 

Main frame: Each parameter is transmitted in a distinct time.slot 

referenced to a synchronizing word or channel. A group of these para­

meters, with its syhc words, is called a mainframe. 

Master frame: A set of main frames long enough to include one cycle 

of the slowest sub commutated channel. 
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Many combinations of the various levels of commutation are possible and 

have been used in spacecraft applications. Figure 4-39 illustrates the 

principles involved (16), and is a combination which fits this study's 

use of sampling rates of powers of 2. Another example is the Gemini 

format. Apollo formats are designed to output the data in a master frame 

in 	 one second (51,200 or 1600 bits). The booster telemetry programs will 

have the capability to shift telemetry formats as required by communication 

modes and ground station capabilities.
 

Three elements of synchronization are necessary for POM systems: 

1 . Frame synchonization word which marks the beginning of the frame. 

2. 	 Word synchronization, provided by a synchronizing bit which marks 

the beginning of a word. 

3. 	 Bit synchronization, required to mark the time for identifying the 

sense of the digit , and implicit in the pulse train. 

Computer programs recognize synchronization discretes or -signals and control 

inputs into the telemetry bit stream as required by the selected format: 

* Apollo high speed - 51,200 bits in 1 second
 

" Apollo low speed - 1600 bits in 1 second
 

o 	 Gemini - 122,880 bits in 2.4 seconds
 

Model - 16,384 bits in 2 seconds
 

Also associated with the control of down link data is the construction and
 

monitoring of a map for each frame. This map indicates the lobation of sync
 

words, digital information from the data bus (and its original form of 

discrete, serial, or analog), and parallel digital or analog words not used 

by the DMS. A typical example of this map, required for ground decommutation 

purposes, is shown in Figure 4-40. 
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S
 

S
 

Synchronizing words 

Main Frame 32 words (16 frames per second) 

Master Frame 64 frames (2 seconds long)-

Supercommutation One 4-word superframe (words6;14 22,30 are 
tied together to sample sensor 65. 64 words/sec. 

Subcommutation One S-word subframe (to channel 4) 2 subframes/sec 

Sub-subcommutation One S-word sub-subframe (to channel 28) 
4 subframes/sec. -

Figure 4-39 Model for P0M Telemetry Format 
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II 
123 124 12511 11 126 127 1280 

~~ 26 symchroization bits 
6 frame identification bits 

±I i = word number in frame 

=channel (or subsystem) nmber D 

Dta Tres 

Discretes Off 

k = data type • DS Digital Serial DataBus 
1 word number in channel AD Aalog/bigital 

SA Signal Conditioned Analog 

PA 
PD 

Pre Conditioned Analog 
Parallel Digital 

By Pass 
Bus 

Figure 440 Typical PCM Format for a Telemetry Frae 



To minimize the total down link requirements, various data compression 

algorithms are used. Data compression routines may be grouped into 

three general classes: (i)compression by an encoding or curve fitting 

method whereby the data may be reconstructed after compression, (2) 

compression by computing some statistical properties of the data (such 

as mean or variance) and transmitting this statistical property only, 

and (3)compression by complete data reduction (performing computations 

onboard and transmitting only the results of a particular test). The 

optimal routines are used as dictated by EMS functions. 

Telemetry calibration is used during flight and prelaunch checkout to 

assist in determination of telemetry equipment accuracy. Computer routines 

can control the Calibrator - Controller assembly which furnishes the cal­

ibration inputs to the telemetry components. Control signals under DMS 

supervision consist of: Calibrator-Controller Assembly ON, Select Calibration 

voltage (6-steps), Calibration Start, and Calibration gate Enable/Disable. 

Figure 4r33 lists the interface requirements for the S-band command and 

telemetry subsystem. Section 5.6. describes the programs used to: 

" Control the formatting and timing of down link data 

* Compress data to be telemetered 

* Test and calibratetelemetry equipment 

. Control communication modes
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4.6.4 RECORDING 

The recording subsystem uses currently available magnetic tape equipment 

and techniques to record
 

Voice communications from the flight crew to a ground station,
 

to the orbiter,or between the booster pilot and copilot
 

o 	 Down link data transmitted by the telemetry subsystem for post' 

flight verification of S-band equipment 

" 	Flight data required to satisfy the regulation of the Federal
 

Aviation Administration
 

* 	Maintenance data to assist in reconstructing flight history and 

performing post flight diagnostics 

* 	 Flight qualification data to verify structural strain, and vibration 

parameters for initial flights
 

* 	 Standard check lists and special symbols for display subsystems 

-. in contrast to the above information which is recorded in 

flight and read back after flight, the display data is assembled 

prior to flight and is used during preflight and inflight operations. 

This mass storage function is included in this section in order to 

combine the read/write and other characteristics of tape system. 

For initial booster flights, flight qualification data will require the use 

of an assigned tape transport while the telemetry, maintenance and flight 

data records will time share the other tape unit. When the need for flight 

qualification data becomes minimal, the tape units used for recording digital 

data can be time shared among the existing requirements. 

Recent proposed rules of the Federal Aviation Administration have recommended 

changes to Federal Aviation Regulations which would: (26) 
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(i) Increase the recorded flight data required for large jet aircraft
 

certified for flight above 25,000 feet. Figure 4-41 lists these
 

requirements.
 

(2) 	 Require a device which automatically prevents data erasure after 

crash impact on flight recorders which erase and re-use tape 

(3) 	 Require a device to assist in the location of flight recorders under 

water 

(4) 	 Require a means to correlate the time of recorded data with the time 

of radio communications between the airplane and air traffic control 

Current large commercial aircraft use a cockpit voice recorder system as an
 

aid for incident or accident investigative purposes. It is anticipated that
 

the booster's voice communications will be recorded on a similar system.
 

Inputs to the magnetic tape of the recorder are the pilot's and copilot's
 

microphone inputs plus the general cockpit sound inputs from an area 

microphone contained in the voice recorder control panbl. The control 

panel is normally located on the overhead panel and includes an area micro­

phone, test meter, test.switch and erase switch. The test meter has a pointer 

and a dial with a green range. When the test switch is pushed, the meter 

point reads in the green range to indicate that the three input channels 
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SIGNAL "OURZ TYPE RANGE 
RESOLU-
TION 

WORD lWTH 
(BITS) 

FATE
/SEC 

Flight Recorder 

Elapsed Timo Dy3 DIG ± 4 se0 13 1 

Altitude DM DIG -1000ft - max + lOOft 11 , 

Airspeed 

Vertical Acceleration 

DM3 
ThM 

AN 
AN 

6oknots-1.2VD 

-3g -
6 g 

± 3knots 

± .g 

9 
7 

1 
2 3 

Heading DMS AN 3600 220 8+ 

Angle of Attack DM3 AN -200 - 400 + .53 i 2 

Pitch Attitude DM 'AN + 900 + 1s 7 1 

Pitch Rate DMS ,AN 3 °seo +30 /see 5 '1 
° 

Roll Attitude DMS AN -.1800 +2 7 1 

Roll Rate D3 -N ± 1-0A/Nec8/ ± - 6 11 

Yaw Attitude DM -- AN 
00

1r300. + go 5 2 

Yaw Rate RMS AN + 190/sec" ±3/see 6 1 

Pitch Trim DNS AN Full Range t 50 8 1 

Pitch Control DMS AN Full Range t1 0 7 2 

Lateral Control DMS tAN Full Range ± 0 6 1 

Yaw Control DM ,AN FullRange 7 2 

Engine Thrut 

High Lift Devices 

W 

DMS 

AN 

AN 

Full Range 

Full Range I 

_2% 
*0 

+ 3 

6 

5. 

i1 
1 

Ambient Air Temp DM .. AN -60e -55°c +2 6 1 

Voice Recorder 

Parking Brake ON/OFF DMS DIS I AR 

RCOD/PLAY/OFF Switch DM5 DIG - _-_2 AR 

Microphone Uosure (2) Ras DIS 1 !AR 

Magnetic Tae Unit 
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Figure 4-41 Recorder System (RsO)IDs Interface .......
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Figure 4-42 shows a block diagram of the magnetic tape subsystem (MTS). 

The data prepared for magnetic tape storage is recorded using standard
 

recording techniques. Figure 4-43 lists characteristics of the MTS assumed 

for this study. 

In addition, a function and 

a status word are required to describe the characteristics and capabilities 

of the tape system. The DMS issues commands to the MTS by means of the 

function word and control signals-. The MTS inspects the function word and 

performs the specified operations.: These operations are of five basic types:
 

read, write, backspace, rewind, and master clear. These basic commands are 

modified by format, address and other designators. Figure 4-44 describes the
 

characteristics of.the function word option. These characteristics are .the 

MTS repertoire of instructions assumed for this study 

At the end of each function performed by the MTS, the -MTS control unit will 

form a status word and put it on the data bus for interpretation by EMS programs. 

The bit structure of the status,word enables the computer program to determine 

the status of the magnetic tape unit and whether or not the requested operation 

was completed successfully. If errors occur, then MTS routines will perform
 

the appropriate recovery procedures. Figure /4-45describes the conditions
 

indicated by the status word.
 

Figure 4 41 lists the MTS and data bus interface requirements. Computer 

programs are required to read check list and other information into display 

memory, and to record telemetry:, flight data, maintenance, and flight 

qualification data. Computer programs are also used for testing the function­

al capabilities of the MTS. 



Magnetic Tape Subsystem 

Function 

Identifier i Transport #1 

Data 

E S Control
 

Computer Control unit T o 

Status -

BusyI Trasport #3 

Data Tape 

STransport #4 

Monitor " 

-.--

Figure 4-42 Magnetic Tape Subsystem-Block Diagram 

Modes Read/write 

Tape Speed 80 inches petosecond
 

Density 800 bytes per inch/200 bytes per inch
 

Intorblock Gap 0.6 inch
 

Format 9-track NRZI
 

Start-Stop Time 5 milliseconds
 

Tape Length 2400 feet
 

Rewind Time less than 180 seconds
 

Transfer Rate 64,000 8-bit bytes per second (maximum)
 

Data Capacity 3 x 108 bits
 

Figure 4-43 Magnetic Tape Characteristics 
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FUNCTION 

Master 

Clear 


Read 

Forward 

Read 
Backward 

Write 
Normal Gaf 

Hrite 
E.tended Cap 


Backspace 

Hewlnd 

Rapeat 

Search 
Forwamrd 

Search 
Backward 

Bequest Transport 
status 

Rewind-Clear Write 
Enable 

Figure4-U/, 

OPERATION
 

Stops tape motion toxcept rewind). Sets the tape unit 
in ready tate to accept a new function word. Used when 
MTS.ie in illogical state.
 

Reads one recording according to the format stated in
 
function word. Moves tape in forwaid direction and trans­
fare 8-bit frames from the tape to MTS control unit.
 
The frames are chocked for parity and assembled into
 
proper bit stream for placing computer words on the data 
bus. 

Reads one record backward to the next interrecord gap
(beck one record) according to format in the function 
word. Characters are assembled in the same position as 
in a forward read. Computer words are transmitted in 
reverse order. 

Moves the tape forward and records the normal inter­
record gap (IRG). Control unit disassembles the data bus 
information to be written. If the request is answered,
 
the writing process is continued. Otherwise, an end of 
write is recognized and recording is terminated. CRG 1 
and LRC characaters are added to assist in the reading! 
process.
 

The selected transport records an extended interrecord!
 
gap (XIRG). Other operations am the sace as in the 
normal write.
 

Tape moves in the reverse direction one recod. The tape
is then properly positioned in the IRG 'for reading or
 
writing. Parity is checked while backspacing and, if an 
error occurs, hoted in the status word. 

Rewinds the tape backward.to the load point at rewind 
speed. " 

Indicates to the MTS that tape motion should continue in
anticipation of a future comhand of like function, format 
and transport selection. Used with read and write, the 
repeat permits handling more than one record at a time. 
Used with rewind, the repeat provides automatic recovery 
as the tape is rewound to the load point then continues 
to read the first record.
 

Reads records from the tape in the forward direction and
 
compares the first word of each tape record with an 
identifier word which is transmitted to the MTS control­
unit. When a compare is affirmative, the record found 
is sent to the MS as in the read forward operation: 

Reads records from the tape in the backward direction and 
compares the first word encountered (the last word of 
each record) with an identifier word. When a find is made,

the read backward operation is performed. 

No tape operation is performed. MfTS send, status word. 

Performs a normal rewind of the tape to load point and 
clears the write enable. Selected transport can no 
longer periorn a write function without manual inter­vention. 

Magnetic Tape Function Word Instn+-­
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CONDITION 

Improper 
Condition 


Transport 
Ready 


No Write 
Enable 

XING 

Detected 

Output Timing 
Error 

Input Timing
Error 

i 

Incorrect Fram 

Count 


CRC 
Error 

LNC 
Error 

Last Tape

Motion 

End of Tape 


'Low Tape 

Load Point 

Parity Error 

Figure4-45 

DESCRIPTION 

The improper condition bit is set whenever 
. Tape transport is not in ready condition
 
.	 Forward command issued when tape is positioned 

at end-of-tape 
. A reverse command is sent when tape is at load point
 
. A write instruction is issued to a tape transport

that has no write enable 

The transport ready bit is set if 
. Power is ON
 
. Magnetic tape reel is mounted and tape is properly 

loaded 
. Tape mark detector lamp is operating 

Informs DMS that attempt was made to write on tape with 
a write enable lockout 

Indicates that extended interrecord gap has been sensed
 
during the tape read operation 

Indicates that data, identifier or code words not 
received during preset time period following receipt of 
function word by MIS control unit 

Indicates that TMS has failed to accept a word placed 
on the data bus by the MIS control before the next word 
is ready for transmission to the INS 

Indicates that the final word of the record was in­
complete. Caused by:
 
* One or more characters not properly read or recorded . Bad spots in the tape caused characters to be lost 
. Reading a record with the wrong format 

The Cyclic Redundancy Check (CRC) character is written 
at the end of each tape block for the possible recovery
of single track errors. - If a track in error indication 
is encountered, the CRC error bit is set 

The Longitudinal Redundancy Check (LRC) character is 
written following the CRC as an aid in the detection of
 
read errors. A longitudinal redundancy check bit is
 
written in a track if the longitudinal count is other­
wise odd,
 

At the completion of an operation, the status word
 
indicates the direction of last tape motion (forward
 
or backward).
 

When the end of tape reflective marker is sensed end
 
of tape bit is set
 

A pressure-sensitive detector has sensed less than 100 
feet of tape remaining on the selected transport reel 

Indicates that an operation requesting backward Motion 
of the tape is being attempted with the selected tapepositioned at load point 

A parity bit is foemed in each character frame. If 
this vertical redundance check is in error, the parity. 
error bit is set. 

Magnetic Tape Status Word Indicators 
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4.5 BEACONS
 

The existing air traffic control (ATC) system gathers data on the position of 

tIt aircraft by means of an L-band secondary radar system. This system, 

an outgrowth of the identification, friend or foe (IFF) systems, is 

known as the air traffic control radar beacon system (ATCRBS). Aircraft 

transponders are presently required in positive controlled airspace, and the 

airspace in which transponders are becoming mandatory is being increased. 

In addition, improvements to the present system are being,planned to 

prevent overload and saturation of current ATCRBS facilities (3). 

Characteristics of'_the present ATORBS are described in Section 3. 5. and 

in references 2 and 4 ATORBS is a radar beacon system 

in which a ground interrogator transmit's a pair of tikd-coded pulses from 

a highly directional,antenna at 1030 MHZ. The booster t.ransponder in turn 

replies at 1090 MHZ. The reply consists of up to'1/+codes,and' two framing, 

pulses radiated non-diractionally., This reply is received by the ground 

facility and istransmitted to its'associated didplay azd digital signal 

processing equipment. The system isused in conjunction with the primary 

(skin return) radar. In order that simultaneous presentation of beacon and 

radar information' caff be achieved on the same control center display, the 

radar and beacon antennas are mounted on the same pedestal at' the radar site. 

Range correlation is achieved by transmitting the beacon interrogations in 

synchronism with the radar at a predetermined time before the radar time­

to allow for the rquired beacon processing time. Booster aziiuth information 

is derived from an antenna mounted azimuth pulse generator. 
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Interrogation pulse-pair combinations (P and P3 ) are shown in Figure 

4-46. These are referred to as transponder modes. A pulse (P2) 

is transmitted on a omnidirectional antenna in conjunction with the
 

directional pulse pair. P2 is designed to suppress aircraft responses
 

to interrogator sidelobes, and its effective radiated power is greater
 

than any sidelobe at any azimuth. Transponder modes 3/A and C are used 

extensively for FAA operated systems. The other modes are used at 

military or civil sites, or are available for expansion purposes.
 

Any detected-pulse pair which has the correct spacing will cause the 

booster transponder to reply with a code containing the requested data, 

identity or altitude. Figure 4. 47 defines the pulse nomenclature 

and spacing, and lists the pulse values for an identification reply code. 

The delay between the receipt of the interrogation and the transmission of
 

the reply is- 3 microseconds. A special position identification pulse 

is manually-initiate by the pilot at the request of the ground controller 

to resolve ambiguity between identity codes. 

Improvements in ATCRBS will evolve from the current beacon system and will 

have a high degree of compatibility with the present system. Reply require­

ments from airborne transponders will include azimuth and range information 

as well as identity and barometric altitude codes.. 

The identification code functions is independent of the 2fS, except for 

testing. The primary function of the DMS as related to ATRBS is to 

encode altitude, range and azimuth information and make it available 

to the ATC transponder when a request is sent by ground facilities. 
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1 

2 

3/A 

B 

a 
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Military (IF?) 
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*-21 - " 

,-j 2 
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Figure 4-46 
- . 

Air Traffic Control Radar Beacon System 
eInterogation Modes (UP Link) 

(AORBS) 

F C1 

Pulse Nomenclature 

Al 2 A2 04 A4 X B1 D1 B2 D2 B4 D4 F2 SP1 

Pulse Spacing 

02.9 
1 1 .45 

Pulse Value 

(Microseconds) 

5.$ 
4.35 7.25 

(Yode A) 

10.15 

8.74 11.6 

13.05 1 J.95 

145-

18.85 

17.4, 20 

. 65 

Figure 4-47 Transponder Reply Codes (Down Link) 
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Altitude accuracy (3)is limited by the quality of the barometric
 

transducer system, its placement on-board, and the maintenance of 

the system. Altitude reporting accuracy of 250 feet can currently 

be expected from transport aircraft. Range accuracy is currently 

±370 feet, and is due primarily to lack of precise delay control in 

aircraft transponder systems. For both altitude and range data a 

resolution of 100 feet can be specified. A height transmission code
 

(5)uses 11 of the transponder reply pulses to encode altitudes from
 

r
1000 feet to 127,000 feet. Coarse (500') and Fine (100t) increments
 

are used in reporting altitude. A reflected grey code is used to
 

minimize the effects of errors in pulse transmissions. A similar 

code could be developed for range data to give a maximum value of 

approximately 20 nautical miles. A resolution of .1758 degrees/bit 

will provide 3600 of azimuth information on the 12 transponder reply 

codes.
 

Sampling rates are determined by the sweep rate of the air surveillance
 

aadar to which the beacon interrogator is tied. Current systems use
 

a 4-second rate. This 4-second time period could also be used as a 

response time in which the air data or navigation functions gather,
 

extrapolate and encode requested data to be transmitted at the next
 

radar sweep. An update of requested data each second should provide
 

the accuracy required for ATC control functions.
 

Figure 4-48 lists flight and maintenance switch functions. 

Figure 4-49 shows a block diagram of the ATO transponder system. 

Figure 4-50 lists interface requirements. 
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CONTROL 	 FUNCTION 

HEATER-FOWFR 	 Supplies 115 volts so to the receiver-transmitter when set 
at the POWER position. In the HEATER position, power is
 
applied to the internal heaters. 

LOTE CONTROL OFF position: placed receiver-,transmitter in standby
POWER condition. 

RF PROBE .	 Permits a small amount of outgoing r-f energy to be tapped 
from the antenna transmission line,
 

TUNING INDICATOR 	 Provides a convenient test point for chec g receiver 
frequency 

MONITOR 	 Reads voltage and current of circuits selected by VOLTAGE-
CURRENT SELECTOR switch 

VOLTAGE-CURRENT OFF -. disconnect MONITOR meter from all circuits 
SELECTOR CRYSTAL - measures the current output of the crystal mixer 

REPLY IND RELAY - measures 	the plate and screen current drawn
 
by the i-f amplifiers 

REC OSO - measures plate current drawn by local oscillator 
XMTR - measures average current drawn by transmitter i 

oscillator
 
DETECTOR - measures a portion of the detector do output ­

voltage
IF BIAS - meaures positive voltages delivered by B+ I 

rectifier I 
MOD BIAS - measures positive voltages delivered to modulator 

by bias rectifier 
MOD HV - measures high voltage applied to modulator 
MOD SCREEN - measures screen voltage of modulator 

ATC TR 	 Selects primary or secondary transponder I 

FUNCTION 	 Four position switch: OFF-STY-ON-LO SENS. In Off, the trans­
ponder is inoperative. In STBY the transponder is warned up. 
LO SENS is used when requested by ground controller. 

CODE SELECTION-	 Sets identificatioh code number. 

IDENT 	 Operates the special position identification pulse. When 
pushed, it causes the boosterrs display on the'ground facility 
radar display to brighten sharply. 

MODE SELECT 	 Selects one of four different identification pulse time inter­
val.. 

TEST/MONITOR 	 TEST position causes the transponder to be interrogated by. 
a simulated ground signal. Monitorposition shows transpond­
er operation enroute. 

Figure 148 ATC Transponder Controls 
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Figure 4-49 ATC Transponder System Block Diagram 
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Tracking Beacons
 

Two subsystems, currently in use in the Apollo program, provide tracking 

information to ground stations. These consist of the PRN (pseudo random 

noise) ranging subsystem and the C-band radar subsystem. The C-band 

beacon is intended for use during the launch phase, and the PRN following 

separation and flyback. These systems, in addition to the ATC transponder, 

surface radars, and telemetered navigation data from the DMS, provide 

sufficient equipment to meet redundancy requirements for pinpointing the 

booster ts position during all mission phases.
 

Pseudo Random Noise Ranging 

Ranging consists of filling the up-link and down-link paths between the booster 

and tracking station with uniformly transmitted cycles of known period, 

determining the number of cycles in space at the start of ranging acquisition, 

and subsequently adding or subtracting cycles in accordance with the motion­

of the booster. The ground based ranging system measures the round-trip 

propagation time of a signal from the ground transmitter to the booster S-band 

The S-bandtransponder and back to a ground receiver. 

carrier transmission phase modulated by the PRN range code. This code 

modulation is detected by the transponder and is used 'to remodulate a down­

link S-band carrier (shifted in frequency), which is then received by the 

ground receiver using the same antenna as used for transmitting. 

For the purpose of precisely determining the number of clock cycles, n, a 

modulation pattern is desired having the following characteristics (14): 
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(a) 	A detectable overall periodicity greater than the maximum
 

anticipated round-trip to prevent ambiguous results.
 

(b) 	 A detectable, fixed, high-frequency periodicity within the
 

overall modulation pattern. This requirement gives high
 

measurement precision.
 

( c) A two level autocorrelation scheme in which the overall pattern 

is required to be such that if the pattern is compared with the 

same pattern displaied by an integral number of bits, the two 

patterns will match exactly in one relative position, and they
 

will 	fail to match in all other relative positions. 

(d) An essentially balanced transmission having as many T's as Os in 

it (this is not an absolute requirement but balanced use of power
 

in the carrier sidebands gives higher efficiency and better system 

design). 

Requirement (b) above is met by the use of 500 kHz square wave clock trans­

mitting a continuous clock code (CL = 101010...) at a period of 2 microseconds.
 

Requirement (a) is met by generating the long code required by combining the 

clock code with other subcodes of relatively prime length. ,The suboodes 

(x,a,b,c) have lngths of x = 11, a = 31, b = 7, c = 15. The composite code 

lis length of­

(2)(11)(31)(7)(15) = 71, 610 bits 

which for a bit time of 1 microsecond gives a period of .0716 seconds. This 

gves a maxinm one-way distance between the booster and tracking station of 

approximately 6700 miles (which is more than sufficient to handle any 

ahticipated booster mission). . A transmitter code generator forms a pseudo 

rAndom code by combining the component codes using a boolean equation. 
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Requirement (c) is met by matching the transmitted PRN code with the
 

received code. This matching is accomplished by digitally shifting the
 

code components and measuring the correlation indication at each relative
 

shift position until .amaximum is obtained1 This reading is a measure
 

of the initial range at the start of acquisition. Following acquisition,
 

the tracking station may disable the full code modulationand modulate the
 

S-band carrier with the 2 bit clock code only. This permits a reduction in
 

the required sideband power while continuing to update the range equation:
 
t
 

Rt R + R t
 
t 0
 

*0
 

Where.R is the initial range found at acquisitionusing the PRN code.
 
0.
 

Figure 4.51 shbws the portion of the S-band .transponder involved in the
 

turnaround of the PRN code or the clock code transmitted by the tracking
 

station. The received frequency is designated 221 f and is nominally
 

2106.4 MHz so that f equals 9.53 MHz. From the diagram it is seen that the
 

received and transmitted" frequencies are internally related by a ratio of
 

240 to 221. The operation of the S-band transponder can be monitored by test
 

points at the inputs to the first intermediate frequetcy(IF"),,'the second
 

intermediate frequency (.IF2), and the voltage controlled oscillator (VC0) and
 

verifying the ratio
 

120VO = 120V0 2287.5 240
 
108Vlo+1 110VcO + IF2 2106.4 221
 

The phase modulator (MOD) of the transmitter has two modulation inputs, the
 

PRN range code and the down-link telemtery sub-carrier. -The transmitter section
 

of the transponder also receives 2f from the VC0, uses a auxiliary oscillator
 

(AUX OSC) to provide a noise-free carrier, and has an automatic gain control
 

(AGO) to maintain'signal input.
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C-Band Radar 

During launch,-the booster C-band radar subsystem is interrogated by 

ground based FPS-16 and similar precision instrumentation radars. These 

radars have resolutions of 5 meters in range and 0.1 mrad in azimuth and
 

elevation (13). The booster has four C-band flush mounted antennas.
 

A single comparison technique uses portions ,of four receivers, each
 

connected to a single antenna. The circuitry on the on-board C-band
 

transponder equipment is such that the single transmitter is switched
 

to the antenna receiving the highest signal. The up signal consists 

of 5690 MHz interrogation pulses received by the four C-band receivers.
 

The signal is combined, compared and decoded (interrogation pulses are
 

coded for a particular vehicle's acceptance) by C-band electronic
 

circuitry equipment. After a 3 microsecond delay, 5765 MHz reply
 

pulses are transmitted. Figure 4-50lists C-band interface requirements.
 

Figure 4-52 lists characters of the C-Band radar beacon (17). 

Recovery Beacon
 

The recovery beacon is primarily intended as a crash locator. It is
 

anticipated that the equipment used in the booster will be similar
 

to the MA/URT-26 installed in current aircraft such as the C-141 and
 

C-5A (15). The beacon can be ejected from the aircraft manually by the
 

pilot or is ejected automatically through activation of frangible 

crash detector switches, water activated switches or other devices,
 

mounted in strategic locations in the aircraft. Associated with the
 

recovery beacon are voice and crash data recorders designed to meet
 
C-

FAA recommendations. Figure 4- 50 lists beacon subsystem and DMS 

interfaces. A data request discrete will result in the DMS supplying 

the information required for crash analysis as described in Section 4.6.4 

The beacon ejection discrete will separate the beacon housing panel 

in the airframe and will also turn on the beacon transmitter if it 

has not-previously been activated. 
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4.7 DISPLAYS AND CONTROLS 

Section 3.7 presented the general functional requirements and a pre­

l)ninary list of parameters for a display and control subsystem for the 

booster vehicle; Figure 4,53 shows a functional display and control 

subsystem. It is anticipated that the displays used on the booster will 

consist of (7); 

" Electronic Attitude Director Indicator (EADI)
 

" Heads Up Display (HUD)
 

o Horizontal Situation Display (HSD)
 

° Multifunction Display (MFD)
 

* Electronic-moving Bargraphs 

* Dedicated Instruments
 

and that controls will include
 

. Flight controllers
 

o Reprotrammable Swit~hes 

* Alphanumeric display keyboard
 

o Data Entry keyboaA
 

. Secondary controls
 

The actual location of these units is a function of human factor engineering 

and is considered here only to the degree of depicting a possible general 

arrangement as shown in Figure 4-54' This symmetrical arrangement meets 

the requirement for operation y one man, and makes it possible to display 

to the copilot the same information as the pilot sees during periods of 

critical activity. During other mission phases, the copilot displays can 

be used to perform subsystem checkout, malfunction isolation, configuration 
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monitoring, and other housekeeping activities. The displays can be programmed
 

to present different information during various modes of shuttle flight.
 

Critical events or events can be programmed to take precedence over a non­

critical display. Other modes may be controlled manually by the crew, or
 

the formats can be changed automatically by the computer. Programmable
 

redundancy can be incorporated to improve reliability and conform to the
 

redundancy requirements of booster operations. A display usage plan gives
 

the primary dedication of each display in each mission phase, and lists
 

a backup display to take the place of the primary one in case of a display
 

failure. The specific parameters used or functions performed are outlined
 

in sections on each display. The differences in the application of the displays
 

imply different mode and feature selections for the displays. Sections on
 

e&ch display describe these differences. However, the CRT displays have
 

many properties in common. Also existing displays have optional hardware
 

devices. Figure 4-55 lists the characteristics assumed for this study in
 

order to pinpoint hardware and software t&sks. The-folowing paragraphs
 

discuss the selected parameters and controls applicable to all displays.
 

A typical display area for a CRT ie 12 inches square; A 10-bit X and Y
 

magnetic deflection system locates the beam at the intersection of a grid
 

of 1024 by 1024 raster points.
 

C&pacity is defines as the amount of information that can be shown on a CRT
 

during a refresh period. For example, the basic character size is 0.161
 

in height and 0.12" in width with a spacing of 0.04" between alphanumerics and a
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spacfig of 0.07" between lines. This gives 74 positions on each line and
 

52 lines as the capacity required for a completely alphanumeric display.
 

This can be expressed in terms of the number of characters, bits, or storage
 

words. The CRT beam positioning times and the individual generation times
 

for each type of character are the most significant parameters which affect
 

display capacity. Display capacity is normally less than the storage capacity
 

of the display refresh buffer unit.
 

Display commands are instructions to generate a presentation on a CRT viewing
 

surface. They specify such things as coordinate end points, modifiers (size,
 

brightness, color of symbols), memory limits, control'and sync bits, and
 

conic parameters.
 

The CRT's are the refresh type which must be regenerated periodically to sus­

tain a flicker free image for the viewer. It is an advantage to use the lowest
 

refresh rate which does not produce any adverse observable effects. The current
 

display is stored in the display refresh buffer unit. No functions, other
 

than read or write, are required of the buffer unit.
 

The CRT display unit has various monitor status and control functions which
 

will be indicated to the IMS. These include:
 

Overflow indicator - which is activated when the display refresh
 

buffer unit does not encounter an end-of-message word during a given
 

display frame period.
 

" 	Video gain controls
 

* 	 Focus controls
 

Character space controls
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* Master clear controls
 

* Power supply controls
 

. Protection circuit status
 

* Compensation circuit controls
 

The rate of updating the parameters being displayed on the CRT will be 

a submultiple of the refresh rate of 32 hertz. Each basic parameter (such 

as rate of climb, airspeed, angle of attack, etc.) is sampled at a rate 

necessary to provide a smooth transistion of the display parameter (runway 

centerline, horizon, airspeed or altitude index). 

Ab the Displays and Controls subsystem is indispensable for mission success,
 

system status indication, and flight maneuver efficiency, the equipment
 

of the subsystem will be tested and monitored to ensure proper operation 

and fault isolation (7). The test points listed in Figure 4-56 are monitored 

for confidence checks and preflight checkouts. For fault isolation and
 

system performance, program generated test patterns will detect malfunctions
 

oi suboptimal performance by display engineering parameters. 

Mnufactures of CRT's list specifications for testing cathode ray tubes. 

'Tstsinclude visual checks; pattern distortion tests, brightness and resistence
 

masurements, alignment tolerances and line width tests. Pattern distortion
 

measurements are made to check the effects of non orthogonality, keystoning,
 

and pincushion and barrel distortion. This test draws a rectangle on the 

screen, and measures the trace variation from a perfect rectangle.
 

Brightness requirements are, given in individual test specifications for each 

t~be type. The measurements are made using a standard scanning pattern. Light 

output is measured by a foot-lambert light meter. Persistence test are also
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made on a scanned raster. In this test the light intensity is observed
 

at a given number of seconds after applying the raster. Another bright­

ness related test is that of determining buildup factor, e.g., the ratio of the 

light intensity one second after the fifth raster to the intensity one 

second after the first raster. 

Two line width measurements are made; one ih the center of the screen and 

one near the edge. These measurements are compared to check line width 

and accuracy and distortion effects. 

Tests are made to verify both the absolute and relative accuracy of CRT 

beam positioning. The absolute accuracy of location of the CRT.beam in 

response to known inputs is specified as a percentage of full scale deflection. 

If the full scale deflection covers 12 inches and the absolute accuracy 

required is .5% then the beam must be located within .06 inches of expected 

value for any input to meet this specification. Similarly, if two beam 

positions are expected to differ by 2 inches with a relative accuracy of .1% 

then the difference must be less than .2 (these accuracy tests apply to the 

position of visual results - other tests will verify that when a specific 

input is called for) it is displayed).
 

Repeatibility tests measure the extent to which an element of the visual 

presentation appears at the same location each time the same positioning 

information is introduced into the system. 'Repeatibility errors contribute 

to both jitter and legibility of the display. Repeatibility is specified 
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as a percentage of funi scale defletion (normally in the order of halr a line idth). 
By repeating a test pattern, statistics arm compiled to determine the repeatibility of 

each display.
 

Capacity is tested using other patterns. These patterns verify that a given amount of in­

forntion can or cannot be generated in the refresh period. These tests also verify the 

generation time for characters and vectors. Figure 46 lss the interface reqUremeuts for 

displays and controls. This list includes the parameters common to all displays, and those 

for the individual units described in the following sections. 

Viewing Surface 12- by 12' 

Number of Raster Points 1024 both X,Y 

Displayable Elements Capacity 2480 

Number of Display Commands 16 

Comand Types: Single Operand Yes 

Multiple Operand No 

Minimum Interface Word Size 16 bits 

Character Generator Yes 

Repertoire (max.) 48 
Character Sizes 2-

Character Orientations 2 

Character Spacing 2 

Character Fonts 1 

Vector Generator Yes 

Generator Technique End point 

'Brightness Levels 4 
Line Wdths 2 

Colors 3 
Rotation Hardware No 

Perspective Hardware No 

Conic Generator Hardware No 

Symbol Blink -Yes 

Input Device: Light Pen No 

Table andStyles No 
Alphanumeric Keyboard Yes 

Cursor Control Yes 

Function Keys Yes 

Overlay Plates No 

Refresh Memory Yes 

Refresh Rate 32 hertz 

Memory Module 4096-32 bit words 

Memory Functions Read, Write 

Hard Copy No 

Figure 4.-55 Graphic Display Characteristics 
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REOLU- WRD)10Th RATE 
SIGNAL SOURCE TYPE RANGE TION (BITS) /MEG 

CRT Power Supply DOS AN 5vdc .05vdc S 1 

CRT Power Supply DOS AN 28vdc .28vdc 8 1 

CRT Power Supply DOS AN 14vdc .15vdc 8 1 

CRT Power Supply DOS AN -15vdc .15vdo S 1 

GET Power Supply DOS AN 10kvdc 200bdc 7 1 

Focus Control (7) DMS AN 1 
A/N Video Gain Control (7) DM2 AN 0-100021 10l1 8 1 
Vector Video Cain Control (7) DMS AN 0-1000fl 1021 8 1 

CRT Power Control (7) DCS AN 1 AR 

CRT Master Clear (7) DOS DIS 1 AR 
Blank/nblank (7) DOS DIS 1 AR 

Overflow (7) - DOS DIS 1 AR 

Frame Sync (7) DM3 DIG 2 AR 
CRT Protect (7) DOS DIS 1 AR-

Data Interrupt Enable DMS DIS I AR 

Data Interrupt DOS DIS 1 AR 

Input Data Request - DOS DIS 1 AR 

Input Acknowledge DMS DIS 1 AR 

External Functions Request DOS DIS .I AR 

Erternal Functfon DMS DIS 1 AR 

Output Data Request DOS DIS 1 AN 

Output Acknowledge DMS DIS 1 AR 

Parity Fault DMS DIS_ - AR. 
Vertical Tape Control DMS AN 3600 10 10 1 
Scan Converter Control DNS DIS 1 1 
Scan Converter Radar Select DMS DIG 2 1 

Scan Converter Power DOS AN 
Mode Control DMS DIG 4 1 

Airspeed Reference DMS DIG 11 1 

Path Selector DMS DIG 2 1 

Film Transport Control DMS DIS 1 1 

Filmslide Control - DNS DIS 1 1 

Filaslide Or3ent*Select DMS DIS 1 1 

Filmslide Course Control DmS AN 360a 10 10 1 
El lamp Power DOS AN 22vdo lvdc 6 1 

EL Circuit Power DOS AN 4.5vdc .25vdc 6 1 

El Control DMS DIS 1 AR 

Function Key (16) DOS DIG 4 1 

Eater DOS DIS 4 1 

Clear Enter DOS DIS 1 1 
Keyset Select DOS DIS 1 1 
Inhibit RTI DMS DIS 1 AN" 
Computer Power Monitor DMS AN 28vdc + 2 5 1 
MSD Select DMS DIG 2 AR 

Figuro 4-56 Displays and Controls System (DOS)/lMS Interface
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4.7.1 ELECTRONIC ATTITUDE DIRECTOR INDICATOR (EADI)
 

The EADI integrates into one instrument the electromechanical 8-ball,
 

altitude, vertical speed, airspeed, and Mach number instruments. Through
 

the use of electronically generated symbology, it provides a simultaneous
 

display of critical flight information; heading, airspeed, attitude, altitude,
 

and command and rate information in clar, immediately recognizable form.
 

In addition, radar inputs can be displayed on the EADI.
 

Figure 4-57 is a functional block diagram of the EADI showing its inputs
 

when the display is being used in a flight director mode during approach to
 

a landing. Information from air data, attitude, and navigation sensors
 

is combined and the appropriate symbology is generated on the CRT. Pitch,
 

roll, and -ylaw - information combines to display an artifical horizon.
 

Altitude and airspeed data update the fixed symbology used to portray runways
 

and traffic patterns. Inputs from the instrument landing system equipment
 

provide flight path data. All this information is validated and, if valid,
 

is used to generate flight director commands to.the crew. Failure warning
 

may also be displayed using inputs from the Built in Test Equipment (BITE),
 

or data from software analysis.
 

Air speed and altitude are the type of data that can be displayed using
 

vertical tape displays. In this display, a fixed pointer is set next to a 

movable tape which is of sufficient length to contain all likely variations
 

in- the parameter being measured. In,addition to controlling the movement of 

the tape a's required to display the actual value of the parameter, recommended, 

caution, and warning indicatioxds are also displayed. 
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Figure 4.,57 EADI Funtional BlockDiagram 



Meather or doppler radar pictures can be displayed on the EADI. This
 

:is 	made possible by the use of scan converter tubes. The scan converter
 

storage tube is an electrical input-electrical output storage device which
 

enables conversion of slow data rate signals, such as radar scan patterns,
 

into signals read out at high data rates. The high data rate signal
 

(CRT refresh rate) is then used to modulate the electron beam of the EADI
 

'CRT.
 

Special modes and feature selection associated with the EADI are:
 

* 	EADI mode control
 

* 	Air speed and altitude markers
 

Flight command markers
 

Vertical tape control
 

Scan converter ON/OFF
 

o 	 Scan converter radar select 

* 	Scan converter voltage monitor
 

Computer programs associated with the EADI consist primarily of application 

routines which organize the inputs for a particular mission phase and display 

the appropriate symbols. Other routines provide control and monitor functions. 

Interface requirements are listed in Figure 4,56. 
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4.7.2 HEADS UP DISPLAYS (HUD)
 

HUD is a windshield projection display which provides collimated virtual
 

images at optical infinity projected within the pilot's field of view as
 

he looks through the windshi ld. This display permits the superposition 

of information on the pilot's external vision field in a form that is 

compatible with his view of the real world through the windshield. 

Figure 4558 shows a possible format for HUD display during an approach. 

Symbology may very from that shown. In addition, alphaenumerics may be 

added for critical parameters such as altitude or air speed. In this 

figure, the symbols are defined as follows: 

" Horizon line - is a horizontal reference line that represents a 

trace of a plane normal to the vertical at the cnrrent aircraft 

altitude. It is space stabilized in pitch and bank to maintain its 

horizontal orientation at an elevation angle of zero. 

" 	 Heading index -representa th§ runway or reference heading in the 

proper visual relationship with the actual heading of the aircraft. 

When the nose of the aircraft moves one degree to the left, the 

heading index will move one degree to the right. The horizon line
 

and heading index provides an external visual reference to the pilot
 

fimm which he can obtain pitch, roll, and heading information as in
 

visual flight. These images continudusly overlay their counterparts 

in the real world. 
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Runway image - represents the real runway, and is consistent with
 

the runway in position, perspective shape, and size. The runway
 

image overlays the real runway when visibility conditions allow it 

to be seen. 

Aim Point - is a point on the runway where the ILS on-course (or 

AILS touch down point) intersects the ground plane.
 

Deviation image - represents the deviation of the aircraft from the 

on-course in azimuth and elevation, -which is measured- by the dis­

placement of the deviation dot from the aim point. In part (a) 

of Figure 4,58, the aircraft is on-course but is above the glide 

path by an angle equal to the visual angle between the deviation 

dot and the aim point.
 

Altitude scale - indicates the actual altitude above the runway. 

The horizon line is the reference against which the altitude is
 

read on the scale. In part (a) of Figure 4-58 , the aircraft is 

about 150 feet above the runway. Alphanumerics are used to display 

the precise radar altitude. (In other modes, such as IFR enroute,
 

the barometric altitude is displayed). -

Flight path marker - uas:a miniature airplane -to indicate the direction 

of the velocity vector of the aircraft. If the direction of flight 

were to remain constant, the aircraft would strike the ground at 

the point indicated by the center of the path marker image. In 

part (a) of Figure 4-58 , the aircraft is undershooting the runway. 
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* Airspeed index - presents the departure of the actual airpseed 

from the reference value. The top and bottom indices are 

slaved to the path marker, and represent plus and minus 10 

knot limits. In part (a) of Figure 4-5 . , the aircraft is 

5 knots fast. 

* 	 Director image - presents lateral and vertical flight control 

commands. The commands are satisfied when the pilot (or auto­

pilot system) flies the circle so that it overlays the aim point 

on the runway image. 

Figure 4-58 shows additional applications of a HUD display. In part (d), 

the aircraft is maneuvering toward the runway in a left bank. The altitude 

is between 400 and 450 feet. The aircraft is high and to the right of the 

on-course and is undershooting the runway. It is below the reference 

airspeed by about 5 knots. At the flare altitude (b), the runway image 

configuration changes to eliminate the aim point and the horizontal glide 

slope intersection line through this point. The centerline of the runway, 

positioned by the localizer signal, and,the runway edges remain. Elevation 

guidance is provided by the &ltitude scale and the perspective of the runway 

edges. For go-around (c)a command circle is shown at the reference climb­

out angle above the horizon line. The pilot raises his flight path marker to 

this circle to increase his flight path angle, while increasing his airspeed 

to the climb-out reference speed commanded by the airspeed index. The hor­

izontal line above the command circle represents the altitude at which to 

level out (20). 

Software programs are required to activate and control the HUD. Processing 

and application routines position, rotate, translate, or emphasize symbols 

for the display. For example, vector en points can be specified by the 
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X and I 	 coordinate chart.Controls associated with the HUD consist of: 

a means 	of selecting the psrameters to be 

Modes used in a current application 
* Mode 	 selector - vhich provides 

displayed in a particular flight mode. 

consist of: (1) OFF, (2) localizer flying outbound, (3) heading, (4) VOR, 

Additional modes will be added to(5) localizer, (6) approach, and (7) go around. 


satisfy 	other booster modes. 

" Airspeed reference selector - sets the recommended airspeed for all flight modes. 

* Path selector - for selecting one of three IIS glide paths. 

Figure 4-56 shows these interface requirements together ith those in common with the 

other display units. 

(a) 	 Display 
for Final 
Approach Altitude (h) Display for 

Landing 	 Flre
Scale 	 -2Heading Index 

Horizon 

Aoin
Deviation 

Air Speed - -	 - Runvay 

Flight Pati e 
Director 

j . Heading Index 

Horizon 

(C) Display. f 
Go-Around 

M poit
Altitude 

kviatil 

D" 1 4 

Air Speed 

- (d) .pprochl
Altitude Co d Flight ath 
Maneuver/ circle 

2 

ligsr" 4-58 HUD Display 
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4.7.3 HORIZONTAL SITUATION DISPLAY (HSD)
 

The horizontal situation display offers the capability to display useful 

information concerning the booster situation in all phases of flight. 

The HSD also offers the capability to display check lists, procedural 

instructions . and maintenance information during other periods of shuttle 

activity. During periods of minimal utilization or during emergencies, the 

HSD can be used either as a backup for othert CRT displays or to display 

information supplementary to that on other displays, such as during check­

out or fault isolation activities (7),
 

The HSD is primarily a moving map display which can be implemented by 

various meansi such as optronic, remote TV, electronic, or optical. The 

optronic has the most desirable features in respect to flexibilty and the
 

generation of map, symbol and data information. The optionic display 

is a rear proj6ction CRT with the ability to present, filmslides
 

placed in the transport unit. 

Possible display applications for the HSD are maps outlining: 

* Launch ground track 

* Reentry footprint' 

* Approach and holding patterns 

* Landing and taxi patterns 

* Go around patterns 

* Takeoff and departure patterns 

Film slides are included for primary and alternate fields and can be selected 

by the drew or by computer signals. 
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Computer programs will add character, vector and symbolic information to 

the maps to increase the effective navigational performance and provide 

positive orientation. This information continously updates the position
 

and path of the booster on the selected map, and provides navigational 

information such as present position, time to primary and alternate fields,
 

and fuel reserves. Weather radar information can also be displayed on the 

HSD using the scan converter technique described for the EADI. 

Special modes and features applicable to the HSD consist-oftfilm transport
 

and filmslide controls: 

* Film transport ON/OFF 

. Filmslide control: FORWARf/REVERSE
 

* Filmslide orient - NORTH/COURSE. This control gives th flight 

crew the option of orienting the selected map with magnetic north 

at the top, or aligning the direction of the map with the magnetic 

heading of the booster. 

Computer programs are required to display the symbol6g ass6ciated with each 

chart and to answer requests by the flight crew for navigational information. 

Interface requirements are shown in Figure 4,-56. 
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4.7.4 Multifunction Display (MFD) 

The size and complexity of the booster vehicle, and the rapid changes in 

mission phases and vehicle configuration place many demands on the flight 

crew in anticipating events and making appropriate decisions. The MFD
 

is 	 planned to aid in the task of processing and displaying information 

so that the crews decision-making capabilities-are increased and their 

workload is decreased. The WFD is a general purpose, time shared, optronic 

(rear projection CRT) placed conveniently to. both the pilot and copilot. 

The major applications planned for the MFD are (7); 

* Presentation of optimum flight profile information and energy 

management parameters'
 

* 	Presentation of vertical profiles for ascent and descent corridors
 

* 	Presentation of situation data from onboardsystems for crew
 

monitoring of operational perfokmance
 

* 	Aid in crew/computer interface in determining alternate courses
 

of action
 

Suitable graphics, alpha­

numerics and special symbols are used to present operational data such as the
 

ollowing:
 

. Vertical navigation aids
 

Ascent profiles
 

o 	 Emergency descent profiles 

Range and cross range landing capabilities 

... 'Descent profiles 
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Fuel management
 

* Center of gravity
 

* Propellant utilization 

General information 

* Time references
 

" Flight data
 

Check lists
 

Radar data
 

Safety aids
 

* Engine restart envelope
 

* Emergency procedures
 

* Aerodynamic and heating loads
 

* Subsystem failure display
 

. Circuit breaker monitoring 

Visual and aural alert devices in the form of flashing lights and buzzers 

are provided to direct the attention of the flight crew to status changes.
 

For example, monitoring and control of system circuit breakers is performed
 

by the displays and controls subsystem. If a circuit breaker is tripped, a
 

buzzer and flashing light near the MFD are activated. The MFD then displays
 

the information on which circuit breaker is involved (as determined by BITE
 

or 24S diagnostics), its location, and the address code for resetting.
 

Weather or doppler radar pictures can be displayed on the MFD if desired.
 

The display can show the radar video by itself or in connection with flight
 

profiles. Filmslides used with the NFD are primarily the framework (abscissa,
 

ordinate, fixed legends) for graphs and charts used during the mission, but
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the capability for using the map displays of the HSD exists. Interface 

requirements are similar to those required for general CRT operations 

plus the scan converter and film transport controls described in the EADI
 

and HSD sections. Figure 4-56 lists these requirements.
 

Computer program requirements consist of the application .routines associated
 

with check list management, presentation of alternate, emergency, or abort
 

procedures, and updating of flight profile and status charts and graphs.
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4.7.5 Electronic-Moving Bargraphs
 

Some measurements may required continous monitoring and disply on dedicated
 

instruments. A computer driven electroluminescent vertical scale indicator
 

(VSI) is a bargraph with scale and parameter indicators. which can be 

controlled and updated by IMS signals. These bargraphs are used for dis­

playing temperatures, pressures, flow rates, and propellant and fuel quan­

tities.
 

The VSI receive signal data inputs from the IMS. These signals consist of 

(23): 

" A number (7 bits) representing the value of the variable used for 

the bargraph function 

* A scale indication(2 bits)
 

* A parameter indication (2 bits)
 

* A data strobe signal 

The input signals are gated by a computer command strobe signal into a buffer 

memory which retains the data until the next updating strobe signal is re­

ceived. Current circuitry used in VSI's permit the updating at a maximum 

rate of 40 times per second. 

The electronic logic design of the VSI consists of the three functions: (1) 

bargraph, (2) scale, and (3) parameter. The bargraph is generated from the 

variable value by decoding it into signalsw~i hwactivate a segmented electro­

luminescent lamp (EL). The height of the lighted segments (top segment and 

all below it) is proportional to the value of the variable indicated by the 

input signal. A single segment pointer capability is also available to light 

only the top segment if desired. 
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The scale or multiplier function illuminates various EL areas to show
 

the scale factor selected for the parameter being measured. A 2-bit
 

code permits the selection of a low/medium/high (or Xi,XI,XiO0) scale 

factor. In addition one of the scale codes can be used to activate a 

warning lamp if the measurement becomes critical 

The parameter indicator code is used to illuminate one of four lamps, 

each of which is labeled with the name of a parameter which can be 

measured using the VSI bargraph. This function permits reprogramming of 

the VSI depending on mission phase. For example, VSI's dedicated to boost 

engine parameters during launch can be used for jet engine performance 

parameters during cruise and landing approaches. 

For use in program sizing estimates, a total of 8 VSI's 'are assumed. As 

each VSI can be reprogrammed to measure 4 different parameters, a total
 

of 32 measurements can be displayed by these bargraphs. In addition, 

multiple bargraphs can be placed next to VSI scales to indicate. repeated 

parameters. For example, the exhaust temperatures for jet engines 1,2 

and 3 could be indicated in adjacent columns using the same scale.
 

Computer programs are required to activate and control the VSI's in accordance 

with a mission phase and bargraph usage schedule. Formatting and scaling 

of IMS input data, together with verification and control of parameter, is 

performed. Testing of VSI's is conducted using a signal simulator which 

permits exercising the VSIXs statically in all modes witt all pbssible 

combinations of input signals. A test routine steps through each VSI
 

checking each instrument for proper operation. 

-131­



4.7.6 Dedicated Instruments
 

The computer driven paragraphs of the previous section are dedicated
 

to a particular parameter during a specified mission phase. 
I is
 

anticipated that limited number of metersa and indicators will be 

dedicated to one particular measurement throughout the booster mission. 

These will cintinuously monitor the status of essential combustibles,
 

power supplies- and pressures. It is assumed that 8 meters will be 

used for this purpose in the booster.
 

Computer program requirements are limited to test, monitor, and alarm 

indicating functions.
 

4.7.7 Flight Controllers
 

Flight controller devices consist of the various pedals, sticks,
 

yokes, levers or knobs used to control the attitude, direction and
 

speed of flight. Current tests being conducted will resolve the
 

question of whether current aircraft yoke and rudder pedal systems can
 

be replaced by a hand controller similar to that used for space flight.
 

To eliminate cockpit clutter, the control design replaces conventional
 

levers (such as speed brake, wing flap, and landing gear controls) with
 

pushbutton switches which become part of the reprogrammable switch
 

control unit.
 

Regardless of the physical design of the flight control device, the 

function of the displays and control subsystem is to indicate the current 

position of the unit being controlled, provide a means to change its 

position, monitor the change and provide status and warning information 

as required. 
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4.7.8 Reprogrammable Switches 

Dedicating a separate switch to every function overcrowds panels, 

causes operator difficulities, and is, in general, wasteful and 

inefficient. It is more effective to perform the multitude of switch 

functions with a small number of switches. To make this possible, each 

switch must be reprogrammable to perform several functions in such a 

way that all the choices that the pilot might wish to uake at any one 

time are available to him (22). 

Implicit in this concept is that, at any one moment, the pilot's actions 

are by nature limited to a relatively small number of options, even 

when he performs complicated tasks. Complicated tasks usually are 

separated into a sequence of simpler steps. Several solutions to reducing 

the number of switches are available. In each, the switch function is 

changed by having the switch interact with the computer. Switch closures 

are coded inputs to the computer. When an operator depresses one of the 

switches, a coded pulse is transmitted to the computer. The computer 

identifies the switch position, interprets its intended function, and performs 

the indicated operation. Reprogramming of switch functions may be performed 

manually by flight crew request, or automatically under computer control. 

Computer control is particularly advantageous for long operational or test 

sequences requiring the use of many switches. 

There are three general methods for organizing switch functions and displaying
 

their title (22):
 

(1) 	Display on Face of Pushbutton - whibh displays the programmable 

functions directly on the pushbutton faces. This method uses a 
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filmslide that contains the titles for the switch functions. 

The 	switch legend is changed by activating appropriate optics
 

and 	controlling filmslide motion. 

(2) 	Display Next to Pushbutton - which displays the switch function
 

on a CRT adjacent to a vertical column of pushbuttons.
 

Each message is close enough to its corresponding pushbutton
 

so that the face of the button can be left blank. The quantity
 

of messages is not limited as in the first method.
 

(3) 	Keyboard Concept - which uses a keyboard similar to the computer
 

or function word display keyboards w hich identifies the changed
 

switch function on a display near the keyboard. The push­

button has a fixed legend on its face, usually an alphanumeric 

or symbolic code. The CRT display shows the switch legend 

with the switch function spelled out next to it. 

Method 2 is assumed to be the primary method to be used in the booster 

for 	system switch control. The HSD's of the pilot and the copilot are
 

used 	as the switch function CRT display. Figure 4-59 shows the use of this' 

technique on assisting check list functions. The techniques of method 1 

are 	used to label the function keys of alphanumeric keyboard. These 

function keys, used to call up switch function groups or display application
 

programs, vary in their meaning depending on the mission phase. The key­

board concept, method 3, is not used except as dedicated to the data entry
 

keyboard and the alphanumeric and editing keys of the display keyboard.. 

Computer routines are required to activate and control filmslide usage on 

the function keys of the display keyboard, and to correlate and display
 

the various switch groupings.
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NIultifunction Display (WD)Horizontal Situation Display (15D) 

Switch Group 6 	 Shutdown and Parking Check List 

El Stabilizer Trim Zero 

E Wing Flaps Up 

Pitot Static Heat OF 	 'Select Switch Group 6 

Boost Pumps OFF
 

D System B Electric Pump OFF 

[] Instrument Lights OFF 

F- Anti Collision Lights OFF 

El Oxygen Regulator Supply OFF 

IElh:~ihSequence of Eents 
1. 	 Reprogram AIN keyboard at start of checklist. 

2. 	 Pilot pushes' switch Group 6 button on AIN when Alphanumeric (A/W) Keyboard 
request appears in WD check list. 

3. 	 Pushbuttons next to HSD are reprogrammed it response 
to stop 2.­

4. 	 Pushbutton on HSD are depressed from top to bottom 
giving the indicated results.
 

5. 	 When last HSD pushbutton is activated, next stop in 
checklist appears on ND 

Figure 4-59 Display Next to Pushbutton Usage 



4.7.9 Alphanumeric Display Keyboard
 

The alphanumeric display keyboard consists of three major divisions.
 

" 	Data keyboard - which generates new data using 43 standard 

typewriter characters. 

* 	Control keyboard - 12 keys which provide the operator with local 

control of the console, including editing keys and cursor control 

keys. 

* 	 Function keyboard - 16 function keys are provided which generate 

computer interrupts. By using upper and lower case codes a total
 

of 32 function codes at a time can be made available. By using
 

a technique similar to that used for reprogrammable switches, 

these keys can specify different functions depending upon mission 

mode. 

A typical coding scheme uses a modified 7-bit ASCII code 

for data, control, and function inputs from the keyboard and for external 

functions from the computer.Figure 4-60% shows a basic block diagram of 

the keyboard interfacing with character generator, storage, CRT deflection 

circuits, and control units. Data transfer, timing, and control signal 

lines are also indicated. 

The cursor (1) is a displayable character. It is used (instead of light 

pens or other devices) to indicate a particular location on the display. 

The operator can enable, clear, or position the cursor by means of the 
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cursor control keys. These functions can also be performed by means ofI 
external function code words from the computer. The cursor coordinates 

may be transferred from the display to the computer or from the computer
 

to the display.
 

The cursor indicates where the next entry from the keyboard is to be
 

displayed. As characters are selected at the keyboard (or controlled
 

by computer input of keyboard codes), the cursor is advanced one position
 

to the right. At the end of each line, the cursor automatically advances
 

to the beginning of the next line. At the end of the last line, the cursor
 

returns to the home position (line 2 and column 1). Old data appearing
 

at the cursor location is deleted as new data is entered from the keyboard
 

or the computer.
 

Software programs are required to answer keyboard interrupts, to accept
 

and process keyboard inputs, and to route -alphanumeric data from the
 

computer to the appropriate display. For example, when the copilot calls
 

for the takeoff checklist by depressing the proper function code button,
 

the title is displayed on line 1 and the first step in the checkout
 

procedure on line 2 as follows:
 

1 TAKEOFF CHECKLIST 

2 SET FLAPS TO 15 DEGREES 

3 r 

After the first step is performed, the operation is verified and the 

next step is displayed for flight crew action. If a device, or instrument 

does not papa verification tests then the display indicates this. In 

addition, the options available are also displayed. By positioning the 

cursor to the line having the desired option, the pilot can select his
 

course of action.
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Figure 4-60 Alphanumeric. Display Functional Diagras 
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4.7.10 Data Entry Keyboard
 

The data entry keyboard provides means for the flight crew to interface
 

with the computer. 
The keyboard contains function keys which activitate
 

computer programs applicable to mission and inflight testing requirements.
 

Some of these programs need parametric values to complete the function.
 

For this purpose, decimal keys are used to enter numerical data into the 

computer.
 

The available CRT's in the display and control subsystem are used as an
 

aid in monitoring flight crew activation of the data entry keyboard, and
 

as a display for the output of various function keys. For example, a portion 

of the FD is reserved for Greenwich Mean Time (GMT) and Mission Time (MT) 

displays. 
The HSD is used to inform the pilot of action necessary to complete 

the requested function. The HSD also displays the data which the crew has 

selected so that it may be verified prior to being entered into the computer. 

Figure +,-61 shows an arrangement of the data entry keyboard with its function 

and data keys, and its interface with the MFD and HSD. 

The MFD shows the area reserved for time displAys. The ESD shows the display 

output in response to the flight crew depressing the Destination button. 

The latitude and longitude is then shown on the HSD as the desired decimal 

buttons are pushed. 
If the displayed values are incorrect, depressing the
 

Clear button will remove the numerical parts of the display, and the operator 

can repeat the selection of the parameter values. When the data is correct, 

the Enter button is pushed and the numerical data is entered into the computer. 

Computer software programs perform the tasks of responding to interrupts caused 

by data entry keyboard usage, displaying flight crew cues and requested in­

formation, controlling peripheral equipment, and formatting and storing data 

at the proper address. Interface requirements are listed in Figure 4. 
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4.7.11 Secondary Controls
 

Various other infrequently used levers, dials, buttons, or knobs are
 

dedicated to miscellaneous subsystem control functions. In general,
 

these devices will be located on the side, overhead or rear panel
 

areas of the cockpit. They include:
 

Circuit breakers 

Emergency levers
 

Maintenance panel controls
 

Communication dials
 

Cabin environment controls
 

The circuit breakers are solid state devices with automatic as well as
 

remote reset and trip capability (7). For each load, the breakers will
 

provide an on-off status which can be programmed through the computer 

system. Each load has a separate breaker providing overload protection 

for equipment and wire runs from the power bus to the load. It is es­

timated that approximately 150 circuit breakers (programmable discretes) 

will be required for the booster system. 

Emergency controls, such as fire extinguisher levers and emergency exit 

handles, are installed as backup means to ensure crew safety or survival. 

No interface with the EMS or data bus in anticipated. 

Maintenance panel controls may be provided for some onboard maintenance 

functions which are not integrated with the preflight and operational 

avionics system. These controls are associated with special test equipment
 

such as oscilloscopes. Interface requirements are limited to controlling
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and verifying proper positioning of operational or maintenance switching
 

(discretes). It is anticipated that each of the 8 major subsystems will
 

have a small number of controls associated with test points for special 

checkout procedures.
 

Twist knobs and thumb wheels arq currently the preferred method for 

communication equipment operation and cabin environment control. 

The sections on communication and environment describe the interface 

requirements for these devices.
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5.0 DATA MN-AGEkFNT SYSTM DESCRIPTION 

This section describes in detail the requirements of the DMS in
 

performing the mission functions. The computational requirements
 

of the DMS to satisfy the subsystem functional requirements are 

developed, and software modules are described. 
As each software 

module is developed it is assigned a nemonic name for use as future 

reference. The DMS is required to solve all of the equations and
 

perform all logical decisions needed for the completion of a
 

successful mission. In accomplishing this a computer program is 

executed within the DMS.
 

In order to meet the avionic system functional requirements the DMS must 

perform computational tasks for each major booster subsystem. 
The soft­

ware requirements of the DMS pertaining to the booster systems are described
 

below by flow diagrams, logic diagrams, mathematical equations and verbal
 

description. The requirements of the DMS vary with mission phase. Each 

of the subprograms described below are required only during certain mission 

phases as specified in the discussion. It is the task of an executive
 

program to schedule these subprograms during the proper mission phases
 

and at the proper iteration rates. Major mission commitments can only 

be initiated through the executive by manual command. Certain properties
 

of the overall programming task are dependent upon the DMS configuration, 

-. g., self test, failure monitoring and reconfiguration, and data bus 

,ontrol. The major booster systems described below are:
'-

Structures - Navigation and Guidance
 

Propulsion 
 Flight Control
 

Electrical power generation Communications
 

and diitribution Operations Management
 



5.1 	 STRUCTURES
 

Structures include performance monitoring, landing gear deployment, 

and separation control and monitoring. 

5.1. 1 PERFORMANCE MONITORING 

The performance monitoring task computational requirements include 

checkout of the sensors, recorder data bus, and interface electronics
 

during the prelaunch mission phase, control of the recording speed
 

during the flight phases, and reduction of the collected data during 

the post flight phase. The data reduction program required during 

the post flight phase will be stored in mass storage and will not 

effect the DM design. It is assumed that prelaunch checkout programs 

and in-flight programs will remain resident in the DMS main memory 

throughout the operational mission. Diagnostic programs and programs 

to reduce data collected during the mission will reside in mass storage
 

until they are specifically called for by an operator at which time 

they will overwrite the operational programs. The performance moni­

toring function requires two software modules which are described
 

below.
 

A. 	 Performance Monitoring Checkout Program (PMCp) 

This program will be scheduled through the executive by the master 

checkout scheduling program. It will be executed at an iteration 

rate of 8 times per second. The time at which the program is 

scheduled during prelaunch is not critical in that loss of the 

total performance monitoring function is not- critical to mission 

success. However, a better test environment would be present if 

the performance monitoring testing would occur simultaneously with 

the occurrence of some prelaunch activity which would stimulate the 

vibration sensors such as fueling the booster, attaching the orbiter,
 

-143­



erecting the booster, testing the landing gear system, etc.
 

There are four types of recordings which must be tested by
 

this program:
 

Test Record Fast
 

Test Record Slow
 

Record Fast
 

Record Slow
 

In the test record fast and slow tests a known test signal is
 

recorded on the tape. In the standard record mode actual sensor
 

outputs are recorded. Figure5-1 is a flow diagram of the total 

requirements of this program. Program initiation includes the 

setting of flags and index registers to control the flow through
 

the program. At the beginning of the program electrical power is 

turned on to the recorder and recorder data bus electronics and a 

test made to determine if the electrical voltage to the units is 

within limits. At the end of the program the reverse function is 

provided of turning the power off and testing for power off. In 

the rewind operation a timer is set up and the recorder continuously 

tested for rewind until the timer runs out. If the timer runs out 

before rewind indication is received an error message is displayed 

indicating the inability to rewind and the program descheduled. A
 

timer is set for the record operation of sufficient length to
 

allow for the recording of the number of records desired for testing.
 

In the test recorded data functions a timer is set and the replay
 

command issued. If replay is not finished before the timer has 

run out an error message indicating the inability to replay is 

issued and the program is descheduled. In testing the recorded data
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the 	vibration data is tested, the end of record word tested for
 

stress and temperature sensor data present which, in turn is
 

tested if indicated present, and the end of record word tested
 

for indication of the proper recorder speed. A counter is set
 

to control the number of records tested. A test is made of the
 

direct input vibration, stress, and temperature sensors. A error
 

indication is issued whenever any test fails which is displayed on
 

one 	of the multipurpose CRT displays and/or printed. If any test
 

results indicate the inability to control the performance moni­

toring equipment sufficiently to proceed with the test the program 

is descheduled. If all tests show proper operation a test completed
 

with 	proper operation message.is issued. A flag is issued to the
 

performance monitoring flight program indicating the ability or 

inability to record during flight.
 

B. 	 Performance Monitoring Flight Program (PFP) 

The performance monitoring flight program is scheduled just prior 

to rocket tngine ignition. Its function is to initially turn on 

the recorders and then to control recorder speed during the flight 

mission phases, increasing recorder speed during periods of high 

sensor activity and decreasing redorder speed during periods of 

lw sensor activity. Figure5-2 is a flow diagram of the Performance 

Monitoring Flight Program. The program contains an initial and normal 

entry point. In the initial entry the program is initialized by 

descheduling the initial entry point and scheduling the normal 

entry point, the test results of the checkout program are tested, 

the power turned on and tested, and the recorder and recorder data
 

bus started at a slow speed. In the normal entry program the mission
 

phase is tested to determine if the flight phase is over and the 
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vibration, stress and temperature sensors tested. There are
 

three vibration sensors, three stress sensors, and three tempera­

ture sensors. In testing for recorder speed the median sensor
 

output value of each sensor type is selected and compared against
 

limit values. If any one of the sensor types is above the limit
 

value the fast recording speed is commanded. If all of them are
 

below the limit values the slow record speed is commanded. If the
 

initial entry tests show that the prelaunch checkout indicated in­

operative equipment or that the power cannot be turned on or if the 

normal entry program indicates that the mission flight phases are 

finished the power to the recorder and recorder data bus is turned 

off and the performance monitoring flight program descheduled. This 

program is run at an 8 per second rate. 
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5.1.2 LANDING GEAR SYSTEM 

The landing gear system computational task includes a full prelaunch 

checkout of the landing gear system, a partial checkout of the system 

during flight, the sequence required to lower the gear for landing, 

and the sequence required to raise the gear after takeoff on a ferry
 

mission. The computational tasks also include nose gear and main 

gear steering. There are three landing gear, the nose gear, the night
 

main gear, and the left main gear on the space shuttle booster. Thee
 

operation of all three landing gear is the same except for the steering
 

function. This identity of operation of the three landing gear allows
 

for the sharing of some program functions. A description of each program
 

modub is given below.
 

A. Landing Gear System Full Checkout Program (LGFC)
 

At some point prior to launch the booster must be lifted from its 

normal horizontal landing position and errected in a vertical position 

on the launch pad. During this period the landing gear are not re­

quired to support the booster, and can be tested while being commanded 

through a full raise and lower cycle. Figure 5- 3 is a flow diagram 

of the landing gear system full checkout program. It is assumed that 

when the program is entered the landing gear will be in a fully 

lowered condition and that when testing is over the landing gear
 

will be fully raised. The first step-upon entry to the program is 

to initialize the program. Initialization includes setting a counter 

and a program control flag. The counter is used to determine the 

number of cycles through which the gear is to be tested. If the 

counter is initialized to 1 the gear will be raised only, if to 2
 

it will be raised, lowered and raised, etc. The flow diagram shows
 

a straight line flow through the program, however, when actually 

programmed for the computer many exits to the executive will be inter­
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leaved with the program. The program control flag will be
 

advanced as portions of the program are completed and used to
 

determine where to continue computing with each return from the
 

executive. After program initialization electrical power is sup­

plied to all three landing gear and tested. It is assumed that
 

during this portion of the prelaunch testing electrical power will
 

be provided from umbilical ground power and a failure indicates an 

inability to switch power to the system. 
If the test fails an
 

error message is issued and testing halted on the failed landing 

gear. A test philosophy is assumed that testing will continue to 

what ever degree possible in the event of a failure for the purpose
 

of possibly uncovering additional faflts. Next hydraulic supply 

number 1 is commanded to supply each landing gear system. A delay 

is then programmed to allow for hydraulic supply transients to decay
 

after which time the supply pressure to each landing gear is tested.
 

Hydraulic supply #1is then commanded to disconnect and a time delay 

programmed to allow for the disconnect. The same test sequence is 

then repeated for hydraulic supply #2 and #3. An operating hydraulic
 

supply is then selected for each landing gear. The steering mechanism
 

for each landing gear is then commanded to 0 -and a time delay coded 

to allow sufficient time for the steering to achieve 00. After the 

time delay has elapsed the steering feedback is tested for 00. If 

the steering for any gear cannot be commanded to 00 the testing of 

that gear is halted and an error message issued. Each landing gear 

steering mechanism is then commanded to turn at a constant right 

turning rate by continuously incrementing a positioning command. The 

rate error of each steering mechanism is tested by comparing the 
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commanded position to the feedback position. 
At the same
 

time the steering mechanism hydraulic pressure and temperature 

is tested. 
This test is conducted for a predetermined period
 

of time as controlled by a programmed timer. This test is then 

repeated for a constant left turning rate. 
The steering mechanism
 

is then commanded to return to 0 
 in preparation for a step command
 

test. 
In the step command test a step steering command to a full
 

right position os applied. 
Upper and lower bounds as a function of
 

time are developed in the fMS and compared with the actual feedback
 

position. This test thus themeasures time response- and final 

positioning error of the steering servo system. 
The steering system
 

for each landing gear is then tested for its step response to a full
 

left position command in samethe manner that the right step command
 

test was performed. 
 The steering mechanism for each gear is then
 

commanded to zero degrees and tested after a 
 time delay. The brakes on 

each wheel of each landing gear are then commanded off and after a 

tine delay to allow for brake pressure to be removed the hydraulic 

pressure and temperature and brake pressure and temperature for each 

brake is tested within limits. A brake rate command of constantly 

increasing pressure is then commanded with the hydraulic and brake 

pressures tested to computer generated boundaries over a period of
 

time. The brakes are then commanded to full on and after a delay 

sufficient to allow for transients to decay the brake and hydraulic 

pressure and temperature are tested against limit values. The anti­

skid valves for each brake of each landing gear are then commanded 

open and after a delay of sufficient time for transients to decay the 

brake and hydraulic temperature and pressure tested. anti­is The 
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skid valves are then commanded to close and a delay sufficient to 

allow for closure awaited before the hydraulic and brake pressure is 

again tested. The shock absorber position and the temperature of 

the electronics for each landing gear is then tested. A test is
 

then made of the ability to stow the bogie. The procedure for
 

this test is to set a timer and then issue an unlock command to the 

bogies of each landing gear. The bogie deployed and locked signal is 

then interrogated until an unlocked condition occurs or until the 

timer runs out. If the timer runs out first the test fails and 

further testing of the failed landing gear is discontinued. After 

receiving an unlocked indication the stow bogie command is issued and
 

another programmed timer initiated. The bogie position is then
 

continuously compared against computer generated upper and lower
 

limits. At the same time hydraulic pressure and temperature are 

measured. The timer and bogie stowed and locked signal are continu­

ously monitored. If the timer runs out before the locked signal occurs 

the test has failed and further testing of the failed landing gear is 

discontinued. If the locked signal occurs first a check is made to 

determine if the lock signal occurred between the proper time limits. 

Tests are then made of the ability to raise each landing gear and 

close each door. These tests are conducted by the same procedure 

as the stow bogie test. The counter set up in the program initiali­

zation is then decremented and tested to determine if a further cycling
 

of landing gear testing is desired. If further testing is desired 

a test of opening the doors, lowering the gear and deploying the 

bogie for each landing gear is conducted in the same manner as the 

stow bogie test. The program is then returned to the point where 

the steering system was first commanded to 00 . If no further 
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testing is desired a command is issued to remove the hydraulic supply
 

from each landing gear and after a time delay of sufficient length to
 

allow for the hydraulic supply to be removed a test is conducted to
 

insure its removal. The electric power to each landing gear system is then
 

removed and tested for removal. If all landing gear tests passed a massage
 

is issued indicating total test success and the landing gear system full
 

checkout program descheduled.
 

This tests the total landing gear system except for the wheel speed sensors.
 

To test the wheel speed sensors at this time would require special equipment
 

to rotate the wheels at a fixed rate. This test will be incorporated in
 

the steering programs and thus, automatically tested whenever the vehicle
 

is taxied.
 

Tfis program is executed at a 4 per second rate. 

B. Landing Gear System Partial Checkout Program (LGPC)
 

This program tests all landing gear functions which can be tested while
 

the landing gear remains in a stowed position. Its primary function is
 

to provide increased confidence in the braking system prior to landing.
 

Figure 5-4 is a flow diagram of the landing gear system partial checkout 

program. The block diagram depicts the program as a straight line flow 

with a single entry and exit. The actual program will have multiple entries 

from the executive program. K control flag will be used to route the flow
 

through the program at each entry from the executive. The initialization
 

program initializes this flag. This test program can be selected by the 

pilot during any mission phase where the landing gear are raised. The 

program checks the brakes by applying brake command signals and could result in a 
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accident if run during ]Landing or horizontal .takeoff. For
 

this reason at every entry from the executive to this program,
 

a test will be made that the doors are closed and locked; if they 

are not the program will be automatically deschedule. After 

initialization the electrical power is turned on and tested in
 

the same manner as done in the Landing Gear System Full Checkout
 

Program (LGFC). The availability of each hydraulic supply and the 

selection of one supply is tested in the same manner as was done in
 

the LGFO program with the 
exception that the results of the hydraulic 

supply system checkout program are tested first to determine if any 

hydraulic system failure has occured before a hydraulic valve is 

opened. A hydraulic supply system failure could be caused by a loss 

of hydraulic fluid or contamination of the hydraulic fluid. By not 

opening a supply valve to a failed hydraulic system will avoid 

bleeding the hydraulic fluid from the landing gear system or contamina­

ting the landing gear system hydraulic fluid. After a hydraulic 

supply has been chosen and connected to the brake system, the brakes 

and anti-skid valves are tested in the same manner as was done in the 

LGFC program. After the brakes have been tested, all outputs from 

the landing gear system to the DMS are tested. The hydraulic supply
 

and electrical power is then turned off and tested for off as was
 

done in the LGFC program. If all tests passed, a message indicating
 

successful results is issued and the program descheduled. Messages 

for failures are issued as failures are encountered. This program is 

run at a repitition rate of 4 times per second. 
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C. 	 Lower Landing Gear Program (LLGP) 

This program is initiated by the pilot during approach and remains 

scheduled through the landing and taxi phases. This program con­

trols the lowering of the landing gear and braking the vehicle once 

on the ground, including the anti-skid operation. As soon as the 

landing gear is lowered, this program schedules the landing gear 

steering program. Figure5-5 is a flow diagram of the Lower Landing 

Gear Program. The program as shown in the flow diagram has a con­

tinuous straight line flow; when programmed returns to the executive 

must be inserted wherever a wait is indicated, and after each pass
 

through the brake/anti-skid control program loop. Points of return 

to the program from the executive are controlled by a flag which is 

initially set in the initialization program. After initialization, 

an 	electrical power on command is issued, and a test made for the
 

power on. A hydraulic supply is selected and turned on. The hydraulic 

supply selected is that operating supply haviig the least load. After 

waiting for transients caused by connecting the supply to decay the 

supply pressure is tested. If the test indicates a failure, a dif-

Lerent supply is selected. An unlock door command is then issued and 

the doors closed and locked discrete interrogated. A timer is set at 

the time of the issuance of each command in the landing gear lowering 

sequence. If the timer runs down before the commanded event is com­

pleted, an alarm is issued to the pilot and the command continuously
 

reissued. If the commanded event then occurs, the alarm is removed.
 

After the doors are unlocked, an open door command is issued. The
 

door position feedback is continuously monitored and if the opening
 

rate drops below a specified value, the command is reissued. As soon
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as the door is locked, the commands unlock gears, lower gears,
 

unlock bogie and deploy bogie are issued in sequence, as each issued 

command is indicated completed. Tests are made and alarms are issued 

for the lowering of the gears and bogie deployment in the same manner 

as done for the door opening function. As soon as the doors, gears, 

and bogies are fully extended and locked, a command is issued to re­

lease the brakes and close the anti-skid valves. If the brakes will 

not release as measured by brake pressure a warning is issued and
 

the anti-skid valves opened. Opening the anti-skid valves causes
 

a hydraulic bypass which should release the brakes. If they still
 

do not release, an alarm is issued. If the brakes do not release
 

except by opening the anti-skid valves, braking during landing will 

be provided by pulse width modulation of the anti-skid valves. After 

releasing the brakes, the program waits for a touchdown indication. 

Touchdown is determined by shock absorber position. After touch­

down wheel speed is observed until the rotational speed of the 

wheels reaches a minimum value at which time the program enters a 

brake control loop. The normal mode in this loop is to interrogate
 

the pilot's braking command from the rudder pedals and apply a pro­

portional command to the brakes. The speed of each wheel is then 

interrogated and if any wheel is slowing much more rapidly than the 

average, or is rotating much more slowly than the average, its anti­

skid valve is opened until its rotational speed again assumes a value
 

closer to the average. During the braking operation, the integral 

of wheel speed times brake pressure is accumulated. After the 

vehicle is stopped, this accumulated integral for each wheel is used
 

in computing the time required for the brakes to cool before further 

braking should be applied. Differential braking will be applied to the 

main landing gear wheels if uneven rudder pedal pressure is applied.
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If the brakes for any wheel could not be released except through 

use of the anti-skid valve, when the wheels were first lowered, 

the anti-skid valve for that wheel will be pulse width modulated 

in order to obtain proportional braking pressure. This program 

will be run at 4 times per second. A special entry point to the 

braking program is provided for use in ground taxi operations. 

D. 	 Landing Gear Up Warning Program 

This is a short monitoring program automatically scheduled at the 

start of the powered cruise mission phase after the airbreathing 

engines have been deployed and started. It is used to sound'an
 

audio alarm to the pilot in the event a landing configuration is
 

commanded before the landing gear are fully lowered. A flow diagram
 

of this program is shown in Figure 5-6 . If .either the engines are 

commanded to idle speed or the flaps are lowered, a test is made to
 

determine if all landing gear doors are open and locked, the gears
 

down and locked, and the bogie deployed and locked, and if not, a
 

command is issued to sound the audio alarm. This program is 

scheduled at a once per second iteration rate.
 

E. 	 Raise Landing Gear Program (RLGP) 

This 	program is scheduled by the pilot prior to horizontal takeoff
 

for 	a ferry mission. The function of the program is to provide braking 

if needed during takeoff, and to raise the landing gear after takeoff.
 

A flow diagram of the program is shown in FigureS-7. Upon initial 

entry to the program, a flag is set to control flow through the 

program. A loop similar to the braking loop in the lower landing
 

gear 	program is then entered in which brake commands are applied 

proportional to pilot rudder pedal deflection, anti-skid valves are
 

opened based upon wheel speed and-rate of change of wheel speed, and
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the 	integral of wheel speed times brake pressure for each wheel
 

is accumulated. A test for vehicle takeoff is used to exit the 

loop. It is assumed that takeoff has occurred when the shock 

absorber position shows a fully extended shock absorber and a 

sufficient delay is awaited to allow for any vehicle bounce at 

takeoff. After takeoff, the time for the braks to cool is computed
 

and unless a pilot override command is issued, this time is allowed
 

to elapse before the normal raise gear command from the pilot is
 

recognized. Upon recognizing a raise gear command, the nose and
 

main gear steering is commanded to zero and the brakes on all wheels
 

are 	applied to full pressure to stop wheel rotation before raising
 

the 	gear. After the wheel rotation has stopped, the sequence of
 

unlock bogie, stow bogie, unlock gear, raise gear, unlock doors, and
 

close doors is commanded with each command issued only after the
 

completion of the previously commanded event. 
A warning is issued
 

to the pilot if any commanded function fails to perform. 
This 

program is run at a 4 per second iteration rate.
 

F. 	Landing Gear Steering Program (NWSP & MGSP) 

This program is scheduled at the same time the lower landing gear 

program is scheduled, and deschedules itself when takeoff occurs.
 

The 	steering system for each landing gear is controlled by a closed
 

loop 	servo system as shown in Figure 5- 8. The feedback signal is 

subtracted from the steering command to form a steering error signal. 

The 	error signal is digitally filtered and multiplied by a gain.
 

The 	 assumed filter has a first order numerator and denominator. The 

filter output is placed on the data bus system and forms the hydraulic
 

value command to the landing gear hydraulic steering servo. Before 

touchdown the steering command to each landing gear is equal to the
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crab angle of the vehicle. The crab angle is the angle between
 

the vehicle longitudinal body axis and the vehicle velocity with
 

respect to the ground. 
 This aligns the wheels of all three landing 

gear with the vehicle ground velocity eliminating any side or 

turning forces at touchdown. After touchdown, this steering command 

is slowly driven to zero as a function of time. For the nose wheel 

the pilot's steering command from the yoke is added to the decaying 

pre-touchdown command. Figure 5- 9,is a flow diagram of the nose
 

wheel steering program. 
 Upon entry to the program a test is made of 

the status of the lower landing gear program to determine if the
 

landing gear have been lowered. If not, the program exits to the
 

executive. If the gear has been lowered, a 
test of the status of 

the lower landing gear program is made to determine if touchdown has 

occurred. If touchdown has not occurred, the crab angle steering 

command is computed. If touchdown has occurrred the crab angle
 

stbering command is reduced toward zero and the pilot's steering
 

command added to it. After generating a steering command the 

steering error is computed by subtracting the steering feedback 

signal. The steering error is then filtered, a gain applied and 

output to the landing gear system. The status of the raise landing 

gear program is then tested to determine if takeoff has occurred. If 

takeoff has occurred, the landing gear steering program is descheduled.
 

The main wheel steering program is identical to the nose wheel steering
 

program except that the pilot steering command is not added to the
 

steering command after touchdown and two steering errors and filters
 

must be computed, one for each main gear. 
The nose wheel steering 

program is run at an 8 per second iteration rate and the main gear 

steering at a 4 per second iteration rate. 

-162­



5.1 .3 SEPARATION CONTROL 

The separation control computational requirements include checkout,
 

monitoring and abort functions. A description of the programs required 

for separation control is given below0
 

Prelaunch Checkout (SSPC) 

Figure 5-1 0 is a flow diagram of the prelaunch checkout program for the 

separation control system. This progran is scheduled by the master pre­

launch checkout scheduling routine at an 8 per second rate. The flow diagam 

indicates a straight flow through the program. In the DMW the program will 

be executed with intermediate returns to the executive program. After 

the issue of a command at least one return to the executive will occur
 

before the program is reentered. Control of the flow through the program
 

is accomplished with a flag initialized with the first entry to the program.
 

The testing sequence is turned on to test the electrical supply voltage
 

to the electronics. Test..for a separation indication on all three bolts
 

by testing the temperature pulse and resistance indicators. Command and
 

test for the test configuration. Issue arming and separation commands and
 

test for test configuration indications of temperature pulse and resistance
 

separation signals. Test squib and electronic temperatures. Turn off 

separation command, arming command and electrical power. All three bolts
 

are tested simultaneously. If any test fails a message indicating the type 

of failure is displayed and the turn off procedure of turning off the separation 

command turning off the arming command, and turning off the power. immediately 

performed. Any indication of a fault in the system will cause an immediate 

shutdown of the system in an attempt to avoid a possible squib ignition
 

during prelaunch. 
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Boost Monitoring (SSBM)
 

The separation system boost monitoring program is a portion of an 

overall boost system monitoring program initially scheduled just prior to
 

main engine ignition- and descheduled at main engine thrust termination 

time. The program is run at an iteration rate of once per second. A 

flow diagram of the program is shown in Figure 5-11. On the initial pass 

through the program the electrical power is turned on. On subsequent passes 

squib temperature, electronics temperature, and supply voltage is tested.
 

A failure in any of these tests causes the issuance of a warning message
 

and the electrical power to be turned off. Electrical power is turned off
 

in the event of excessive electronics temperature or an out of tolerance
 

supply voltage in order to halt a possible faulty issuance of a separation
 

signal. The temperature pulse and resistance separation indicators are 

tested with warning messages issued if any separation indications exist. 

In this program the squib temperatures and separation indicators allon 

three explosite bolts are checked. 

Boost Separation Abort (SSBA)
 

If any of the monitoring programs show cause for an immediate separation of
 

booster and orbiter the monitoring programs will issue an arm and separation
 

command and schedule the boost separation abort program at a 16/sec 
iteration
 

rate. The boost separation abort program is shown in Figure 5-12. 
 Upon
 

initial entry to the program a flag is initialized to control the flow ofS 

the program with repeated returns from the executive and a timer is set. 

The supply voltage is then tested to assu 
that voltage has been applied
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to the separation system electronics. If the voltage is absent it
 

is turned on and the arm and separation commands reissued. The normal
 

path through the program tests the separation temperature pulse and 

resistance indicators for all three explosive bolts descheduling the 

program if all separation indications are present. If separation has 

not occurred the timer is decremented and tested& If the time has 

run out the arm and separation commands are reissued and the timer reset. 

Thrust Termination Separation (SSTS) 

At the time of thrust termination when normal separation should occur
 

the orbiter will have primary control of the separation task. If the
 

orbiter equipment fails to accomplish a complete separation the booster
 

will issue separation commands. Figure 5-13 is a flow diagram of the booster 

program used to monitor the separation sequence and issue separation commands 

upon failure of the orbiters system. Upon initial entry to the program a
 

flag is set to control flow through the program with multiple returns from 

the executive and a timer is set. The electrical supply voltage to the
 

separation system electronics is then tested and turned on if absent. The
 

existance of temperature pulse and resistance separation indicators of all
 

three explosive bolts are then tested, If separation has occurred a message
 

is issued and this program descheduled. If separation has not occurred 

the timer is counted down. When the timer is counted to zero . arm and 

separation command are then issued and the Boost Separation Abort program
 

scheduled. This program is then descheduled letting the abort program 

complete the separation testing. This program is scheduled at a 4/sec
 

rate.
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5.2 Propulsion System
 

The booster has 3 propulsion systems, the main boost rocket engines, the
 

reaction jet system and the cruise engine system.
 

5.2.1 Main Rocket Engines
 

Each rocket engine has four primary control points which are the low speed
 

inducer LOX valve, the main burner LOX valve, the preburner fuel valve, and
 

the preburner LOX valve. Each of these valve positions are controlled by
 

proportional controlled actuators. The commands to each primary control
 

point are designated X1 , X2, X3 and X4 respectively. The engine control
 

equations are non linear functions of the thrust and mixture ratio commands
 

and sensed engine parameters. The non linear functions will be obtained
 

through a table look-up process. Each equation as presented will include a
 

reference to the interation rate required for the equation solution and if a
 

table look-up is required, the number -of points which must be stored in the
 

table.
 

Thrust Command and Mixture Ratio Development
 

The thrust command and mixture ratio are computed as a non linear function of
 

vehicle velocity and altitude from the formulas
 

2V= Vf '/4V (2/sec) (i) 

-J: [lv') (10 points) (2/sec) (2) 

4 = L(h) (8 points) (2/sec) (3) 
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where Vx, Vy and Vz are inertial velocity components and h inertial altitude
 

from the navigation system.
 

Main Pump Overspeed Protection
 

A parameter 0(13 which contributes to the X1 command is computed from the
 

process
 

Y 	 NpL- NPLMAX (64/see) (4) 

N(9Np - NPNAX (64/sec) (5) 

Y-n K,Yi, + 3K2 Y+n- K.3- .3,-, (64/sec) (6) 

Y4: Kt0a+K Y2hI+ K4.Yq._ (64/sec) (7) 

y[45: f 3-" (64/sec) (8) 

,{,CK7.Y' +KaY' + K (,	 (64/sec)5-, 9 13 0_ 	 (9) 

where Npl is the LOX turbopump speed and Np the 'Lh2 turbopump speed. Nplmax 

Np , KS1,K2 ...and K9 are constants. 

Maximum Preburner Temperature Limiting
 

A parameter X43 is computed which limits the preburner temperature through
 

its contribution to X4. X is determined from the process

4.43 

Tp8 = NAA(Tp8 3Thn, ...7nB8) (2/see) - (10) 

L.e., TpB, is the maximum value of Tp, thru TpB8 where TpB thru TpB8
 

ire the preburner temperature sensor outputs.
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Y f3 (NP) (4 points) (64/see) (11)
 

Y7="Pb - Y6 (64/see) (12)
 

Ygs K, Y7 + Kz Y7-, + Ks Y,-j (64/sec) (13) 

<43n Kqn+ K+5- 4,t KX. 3 _ (64/see) (14) 

Open Loop Command
 

The basic open loop command in determined from TR and MR by the process
 

- %NOM,('21 NO "aNoM, .) (2/seec) (15)K, 

(2/see) (16)
4NOiMn 4 [Kz NoMn]+L.+ K3-TR 

where L1 and L2 are limit valves on the bracketed quantities. q'NOMn 

and (NOMn 1 are initially set to a constant valve.
 

-+(iot) for IGsoM ,4 
f <AN01< 

TZ K/(-5) 

Y-IK 

6 NOMY = K3 S -K-P, )3 /4omn-g 

Y6 n= (i -8) MR t K Yo,,_, 


13 fom : tY0 + a L 


Main Pump Speed Control
 

(6 points)(2/sec) (17)
 

(2/sec) (18) 

(2/see) (19)
 

(2/see) (20)
 

(2/sec) (21") 

(2/sec) (22) 

The main pump speed control contribution is computed from
 

WPREF f (V0 )AHO) (24 points)(2/see) (23)
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Yi= t'PREF- NP (6 4/sec) (24) 

Y KjK,', •K2Y_,_'K3 x'Z, (64/see) (25) 

fx13 'f X43 < X*-MAX (64/see)
A+%3 XH43 X X > X4 8AX 

(26) 

X 2 Xq.z Xif: 3x+ '4ZX3MA (64/see) (27) 

XI3MA_)('iFX* 3 +1X42 >Xl+SMAA 

LOX Flow Trim 

Trim compensation for LOX trim is computed from the procedure 

vsj kL~flK~vLflt~s~fl.~.( S/see) (28) 

where WL is the sensed LOX flaw 

V/EF N0M() Y,40 M) (24 points)(2/sec) (29) 

V,4.= L V 1--VL' (S/sec) (30) 

A16= 91Yan -+K2 Y2ar. (8/see)- ('31) 

Azz,g Ai, (S/see) (32) 

LOX to GH2 Ratio Trim 

Trim compensation for oxidizer-fuel ratio trim is computed from the 

procedure 

W% = K WF+K , KrV- 3WF 9- (8/sec) (33) 

3a,-= K/WFn+K5­. n., tK&Yi3.n., (8/sec) (34) 

X3.2 Y3sh+ Vt-MIIL (S/see) (35) 

L32 is limited for both positive and negative values. 
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Main LOX Pump Protection 

A control term to protect the main LOX pump is computed from 

4:47(NPL ) (24 points) (64/sec) 

1yi(T) (6 points) ( 4/sea) 

where TL is the main LOX pump inlet temperature 

Yt yY~ty f LI (64/sea) 

where PLL is the low speed inducer pressure 

,r _ 16,-, +K3 YY 7 -, (64/sec) 

(36) 

(37) 

(38), 

(39) 

Aj I7'FY17 (64/sea) (4+0) 

Main Fuel Pump Protection 

A control term to protect the main fuel pump is computed from 

(32 points) (64/sec) 

Y/7 - o (TF- ( 6 points) (4/sec) 

where TF is the main pump inlet fuel temperature. 

(41) 

(42) 

Yo- 2 Y,7 -P (64/sea) (43) 

where P. is the main fuel inlet pressure 

YI = F,(o1, 3,6NoM,) 

Y.. -r. - Y%1 

(24 points) (64/sec) 

(64/sec) 

(44) 

(45) 
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where T is the heat exchanger exit temperatutre
I 

Y 3 { YzzA. ,f0<y . X 6/e)(6
 
Y = i 0 - Y2.2 (64/sec) (46)
Yo aF YIAX 

0 eyW3>Y2.<2 0
 

= 
, KYa ±K3 , -+, (64/sec)
4n +_ 2 , + K4 o(,_t (48) 

Control Output Computations
 

The above control computations are summed through a non linear process to
 

construct the primary control outputs to the engines. This process is
 

achieved by computing
 

0G iom0 12(,1to4, 3 (64/see) (49) 

A,/ F12 ( p;o<) (24 points)* (64/sec) (50) 

A21=fq(oNomsOAM) (24 points) ( 2/sec) (51) 

A3-= i-f,,((,OM ) (24 points) ( 2/sec) (52) 

A4-=f15(0 NOM,6RO/¢) (24 points) ( 2/sec) (53) 

A, A,=\+A,2 + A,3 (64/sec) (54) 

Iz A2 +Az ( 8/sec) (55) 

X1 =FI (A,) (6 points) (64/sec) (56) 

<2= F,7(Az) ( 8 points) (8/seec) (57) 

X31t= 8 (As) ( 8 points) ( 2/sec) (58) 

Y4, F19 (A i ( 8 points) ( 2/sec) (59) 

X3 X31 +X32  ( 8/see) (60) 

Xq4 A4, tX 4 2 +XS . (64/see) (61) 
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The above control equations are solved by four computer programs with 2, 4, 

8 and 64 per second iteration rates. In addition these four programs must
 

perform monitoring and program initilization functions. Figure 5 

is a flow diagram of the Main Propulsion System Two per second iteration 

rate program (NPST). On ±he initial entry to the program the variables 

for all the main propulsion system programs are initialized and the other
 

main propulsion system programs scheduled. On a normal entry the main 

chamber skin temperature and nozzle coolant temperature is tested with error 

messages and error procedures performed if limits are exceeded. All control
 

equations requiring a 2 per second iteration rate are then solved.
 

Figure 5-15 is a flow diagram of the Main Propulsion System Four per
 

second iteration rate program (MPSF). 
This program solves those equations
 

which are indicated as requiring a 4 per second iteration rats.
 

Figure 5-16 is a flow diagram of the Main Propulsion System Eight per 

second iteration rate program. This program solves those equations which
 

are indicated as requiring an 8 per second iteration rate.
 

Figure 5-17 is a flow diagram of the Main Propulsion System Sixty-four per 

second iteration rate program. This program solves those equations which 

are indicated as requiring a 64 per second iteration rate. 

During boost the DMS must control the propellant management system. The 

performance of this task consists of the continuous monitoring of propellant 

system valve positions, pressures, temperatures and tank levels and of con­

trolling various time sequenced propellant system configuration changes.
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The major propellant system configuration sequences which must be per­

formed during the mission are:
 

prepare for filling
 

prepare for prelaunch standby
 

ignition sequence
 

boost
 

thrust termination
 

Time sequenced changes are also required in the event of system failures 

and for draining the tanks after landing or for inflight fuel dump. 

Figure 5-18 is a flow diagram of the Propulsion Management System 

(PRMS). Upon entry to the program all propulsion system inputs are tested
 

which includes 68 valve positions, 20 level sensor outputs, 20 pressure
 

valves, 10 pressure switch positions and 64 temperatures. These are
 

tested against an expected value matrix. If an error is detected
 

error flags are established which are used to determine the desired correct­

ive action sequence and error messages to alert the crew are issued. If
 

no errors are encountered a test is performed to determine if any time
 

sequence operation is being performed. Time sequence operations are stored
 

in the memory in a compacted and encoded form. These are decoded and the
 

next required event performed if requested. The test matrix is modified as
 

sequence events are performed. If a sequence is not being performed a test
 

to determine if any new sequences are requested and the new sequence codes
 

set up if a request exists.
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5.2.2 Reaction Jet Propulsion System
 

The reaction jet propulsion systems consists 6f three redundant gas
 

generator systems which drive turbines supplying fuel and oxidizer to
 

16 thrust chambers. The DMS controls the operation of each gas generator
 

system by controlling 20 valves and two ignitor voltages and monitoring
 

10 speeds, temperatures and pressures. Also included in the reaction
 

jet propulsion system is the control and monitoring of fuel and oxidizer to
 

the gas generator and monitoring of the thrust chamber temperatures and
 

pressures. Control of fuel and oxidizer to the thrust chambers is per­

formed by the coast flight control program. The GH2 and GO2 gas generator
 

control valves are modulated controlling the pressure by the flow of oxidizer
 

and the temperature by the flow of GH2 A fuel rich mixture is maintained,
. 


to prevent oxidation of generator equipment surfaces. Figure 5-19 is 

a flow diagram of the Reaction Jet Propulsion System Gas Generator Control
 

Program (RJGG). The program first tests the speeds, temperaturespressues
 

and flows of the system against a matrix of desired values. If an error
 

exists error flags are set and the system reconfigured if required. The
 

desired value matrix is changed with any reconfiguration and error messages
 

are issued. The fuel and oxidizer commands are then computed for each
 

operating generator.
 

A thrust chamber monitoring program determines if each thrust chamber is
 

capable of proper operation and sets control flags for the coast flight
 

control program. Figure 5-20 is a flow diagram of the Thrust Chamber
 

Monitoring Pvogram (TCMO).
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5.2.3 Cruise Engine-System 

The flight control autothrottle equation requests a thrust command from 

the engines. This thrust command in combination with engine speed and
 

temperature and inlet pressure and temperature is used through a-non­

linear table look-up process to determine the commands to the fuel and
 

air control valves. It is assumed that six 2 dimensional table look-up 

functions are sufficient to perform this function. Monitoring functions 

must be performed in addition to the control function. A total of 42 

analog inputs must be monitored for the six engines (i.e., 6 per engine 

plus 6 fuel flow measurements). The name of the program to perform this 

function is the Cruise Engine Control and Monitoring Program (CECM).
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5.3 Electrical Power Generation and Distribution
 

The DMS must be capable of starting, controlling, testing and monitoring 

the electrical power generation. In the distribution system the TMS
 

must control the supply route from the generators to the essential ac
 

buses, the non essential as buses, the converters, the essential dc buses
 

and the non essential do buses. The following programs are those required
 

for this task.
 

5.3.1 Electrical Generator Start Program (EGSP) (Figure 5-21) 

Upon initial entry to this program a flag is set to control the computational 

path through the program with multiple exists to and return from the executive. 

This program is processed at a 4 per second iteration rate. At entry to the 

program all valves will be closed and heaters turned off. Initially the
 

preheaters will be commanded on and starting value commands issued to the 

regeneration bypass valve, the 02 servo valve and the H servo valve. A 

timer is then initialized and the preheater temperature monitored. If 

the preheater temperature does not arrive at a predetermined value before the 

timer runs out the generator is shut down and a heater failure message issued. 

After achieAng the desired temperature the quad H2 and 02 valves are tested. 

Figure 5-22 shows the arrangement of a quad valve set. In order to test a 

quad valve each valve must be tested to determine that it can be both opened 

and closed. This is accomplished by commanding a sequence of opening and 

closing valves and testing for fluid flow. Figure 5-.23 shows the command 

sequence and the desired flow. Flow is tested by measuring the preheater 

pressure. If the testing detects a faulty valve an error message will be 

issued, all valves closed and the generator shut down. If both H2 and 02 

valve quads pads the test all valves in both quads will be commanded open and 

a timer started which controls the turn on sequence of the turbine and the
 

generator. The H2 and 02 preheater temperature is then controlled by 
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Figure 5-21 Electrical Generation Start Program (EGSP) 
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measuring the temperature of each heater and turning off the. heater if 

the temperature is abbve a narrow desired range, and turning the heater 

on if it is below the desired range. Heater control is adjusted at each
 

return from the executive. In addition to applying heater control the
 

perheater 02 and H2 temperature is tested for being outside of a wider 

range bounding the narrow control ranges with an error message issued
 

and the turbine shut down if the preheater temperature gets out of the 

wider monitoring range. The total hydrogen supply to the preheater is then
 

controlled by adjusting the Regenerator Bypass valve. The valve position
 

is computed from the value of preheater H 2pressure. The amount of 02 to 

the combustor is then adjusted by commanding the 02K servo valve. The 

oxygen supplied to the combustor is based upon turbine speed. Figure 5-24 

is a block diagram of the computations required to control the 0z servo 

valve. A desired speed (Sd) is generated as a function of time. Speed
 

error between desired and actual speed is computed. The rate of change of 

actual speed is computer and a valve position error generated as a proportional
 

sum of speed error and actual speed rate. A gain (g) is. computed as a 

polynomial function of actual speed and applied to the valve position error 

which is then digitaly filtered to form the actual valve command. 

The command for the H2 servo valve must then be computed. The combustor 

must be supplied with sufficient hydrogen to guarantee complete use of the 

oxygen in the combustion process. First the quantity -of hydrogen required 

to meet this criteria is computed as a function of the oxygen servo valve 

command and the combustor oxygen input pressure and temperature. It is 

assumed that this is done as a' two dimensional polynomial curve fit which 

can mathematicallly be expressed in the form: 



where P is the.combustor oxygen input pressure, T the combustor oxygen 

input temperature and V the oxygen servo valve position. The A's 

are stored constants. HR is the computed required hydrogen. This value of 

HR represents the minimum hydrogen that can be supplied in units of servo
 

valve position. To this is added enough additional hydrogen to achieve
 

a desired combustor output temperature. The computation of the H2. servo
 

valve position is based upon the solution of the following difference equation:
 

where Ta is the desired temperature, U the measured temperature and the sub­

scripts n and n-1 are standard difference equation notation for present and 

past parameter values. The 2 servo valve command is then set equal to V 

unless V is smaller than HR in which case it is set equal to HR. 

The process of adjusting preheater temperature, and the 02 and H, servo
 

valve positions is continued until the turbine speed is built up to the desired
 

level at which time the turbine control and monitoring program is scheduled.
 

If the turbine does not reach the desired speed within a preset time or if
 

combustor presgure and temperature profiles exceed limit values an error message
 

will be generated and the generation system shut down.
 

After arriving at the desired turbine speed the generator will slowly be added
 

as a load to the turbine. This is done by making the generator speed follow
 

a desired speed function computed as a function of time using a polynomial
 

curve fit of the form
 
3Sd A4 t4 +At t 2 +A 1 t +A 0 
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Oil pump pressure is used to control the generator speed. A command
 

magnitude to the oil pump valve is computed from the difference
 

equation
 

V = V- + K1 (Sd - S) + K2 (Sn - .Sn-1 ) 

where V is the valve command and S the measured generator speed. During 

the speed buildup the oil temperature and speed profile are tested against 

limits and the generation system shut down if a malfunction is indicated
 

with appropriate error messages generated. After achieving the desired
 

generator speed as measured by the generator tachometer more accurate
 

speed control is initiated by using the generator frequency output as a 

speed measurement. The generator output voltage is then adjusted by
 

commanding the generator field current to a value determined from the 

difference equation
 

I = 1 + K (V - V) + K2 (V = Vi 
n n-i ­

where I is the field current, Vd the desired generator output voltage and 

V the measured generator voltage.- If voltage or frequency control within 

prescribed limits can not be reached within a prescribed time the generation 

system is shut down and an error message issued. Upon achieving voltage and 

frequency control the generator control program is scheduled and this program
 

descheduled.
 

53.2 Turbine Control and Monitoring Program (TOMP) 

Figure 5- 25is a block diagram of the turbine control and monitoring program. 

This program is scheduled at a 4/sec iteration rate. All program functions are
 

performed with each entry from the executive. First the preheater 0 and 

temperature and pressure are tested against extreme maximum and minimum bounds. 
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Figure 5-25 Turbine Control and Monitoring Figure 5-26 Generator Control Program
 



If any bounds are exceeded the turbine/generator shutdown program is
 

scheduled, an error message issued, and this program descheduled. The
 

0'2and H 2preheater temperatures are tested against a narrow temperature
 

range. If either temperature is above its range the associate 02 or
 

preheater pressure is then used to determine the regenerator bypass value
 

position according to the formula:
 

V7=7V +I (P - P ) + X (P -P)
 
n n-i I d n 12 n n-i
 

where P is the measured preheater 2.pressure, Pd the desired pressure, V 

the value command and n the standard differenc equation subscript. 

The combustor inlet and -outlet temperatures and inlet pressures are then
 

tested against extreme limits with an error message issued, the turbine/
 

generator shutdownprogram scheduled and this program descheduled if any
 

limit is violated. Turbine speed and exhaust temperature and turbine vibration
 

is then monitored against extreme limits with the error message, shutdown 

scheduling and this program descheduling sequence followed if any limit is 

violated. 

The C servo valve position is computed as a function of turbine speed and 

the load on the turbine using the equations: 

(r,+EqEj 4~T)/~ 

D is a measure of the electrical load on the generator computed as the average 

voltage on each phase output times the average current on each phase output. 
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It is assumed that the power factor for each generator will lie within 

narrow bounds (most of the electrical power will be supplied from the
 

DO buses-) and can be assumed a constant for all loads. The servo valve02 

position Vn is determined from the sum of its old position Vn-1, plus the 

desired position change. The position change is computed from the sum of 4 

terms which are the error between the desired and actual tirbine speed 

(Sd - Sn) , the time rate of change of turbine speed (Sn - Sn_1 ), the 

error between the desired and actual generator oil pumps control valve 

positio% (Pd - P) and the rate of change in electrical load on the gen­

erator (Dn - 1). 

The H2 servo valve position is computed as a function of the 02 servo
 

valve position and the combustor temperature by the-equations
 

where H is the 1 servo valve position required to assure complete oxygen con­

sumption computed from the 0 servo -valve position V. T is the combustor 

outlet temperature and Td the desired combustor outlet temperature. The 

B2 servo valve will be commanded to a position H unless H is less than 

in which case the valve will be commanded to a position H. 

5.3.3 Generator Control Program (EGOP) 

A flow diagram of the Generator Control program is shown in figure 5-26.
 

This program is run at an iteration rate of 4 per second. Monitoring, frequency
 

control, and voltage control are performed at each call from the executive.
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Monitoring is performed by comparing oil temperature, oil pressure,
 

oil quantity, generator speed, generator voltage, and generator
 

current against extreme limits. " An error message is
 

issued, the turbine/generator shutdown program scheduled and this
 

program descheduled if any of the limit values are exceeded.
 

Generation speed is controlled by controlling the oil pump pressure.
 

Generator speed is measured accurately be measuring the frequency 

of the generated voltage. The equation used to determine the oil 

pressure control valve position is
 

P -1 + K1(Sd - Sn) 4.2(Sn - Sn-1 ) + K3(V - V- ) + K4( Dn-Dn1) + Q 

where Sd - Sn is the error between desired and measured generator speed,
 

S - S is the rate of change of generator speed, Vn - V is the 

change in turbine speed since the last iterative pass, Dn - Dn-1 is the 

change in the electrical load on the generator, and Q is a synchronizing 

command generated by the power. distribution program. D is obtained from
 

the turbine control and monitoring program.
 

The generator output voltage is controlled by adjusting the generator
 

field current using the equation 

In n-1 + K1 (Vd V) + K2 (V - V ) 

where Vd is the desired generator voltage, V the average measured generator
 

voltage, and I the computed field current..
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5.3.4 Turbine/Generator Shutdown Program (TGSP) 

Figure 5-27 is a flow diagram of the turbine/generator shutdown program. 

Upon entry to the program the generator field current is set to zero, the 

oil pump is shut down, the hydrogen supply quad valves commanded close, and 

the 0 servo valve reduced to a minimum setting which will still support 

combustion. This is done tobhrn off as much as possible the excess hydrogen 

in the system. As soon as the H'preheater pressure drops below a preset 

value the 02 supply valve is closed. As soon as the H and 02 preheater
 

pressures drop below a lower preset value the H 2 and 02 servo valves are 

closed and the preheater heaters turned off. All turbine and generator functions 

are monitored and shutdown commands reissued if monitoring indicates a
 

failure to shutdown. Monitoring continues until the turbine speed falls 

below a preset value at which time a message is issued indicating successful
 

shutdown and this program descheduled. This program is run at an iteration
 

rate of 4 per second.
 

5.3.5 Electrical Distribution Monitoring and Control (EDMS) 

Figure 5Z28 is a flow diagram of the electrical distribution monitoring and 

dontrol program; This program is run at a 4 per second iteration rate. This
 

program includes data tables indicating nominal expected loads for each 

subsystem, which subsystems are being supplied with power, a priority list 

indicating the order in which systems can be dropped in case of a shortage 

in electrical power, and the present status of the distribution system. The 

program first tests-the loads on each supply bus by the procedure shown in 

Figure 5-29. This testing is conducted on each non essential de bus, essential 

dc bus, non essential ac bus and essential ac bus. The converters are then 

tested by comparing their output voltage and their temperature against limit 
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values. If the limits are exceeded the loads in the converter are re­

distributed by transferring the total bus load to a different converter 

if any converter is capable of handling the increased load, otherwise
 

the total do load is redistributed.
 

Distribution of the load to the various power busses is controlled by
 

tables stored in the DMS. There is a set of 4 tables, one for each power bus,
 

for, each major flight mission phase, i.e., boost, coast, reentry, cruise,
 

and landing. The tables contain a data field for each subsystem requiring
 

electrical power. The data fields are arranged in the order of their
 

priority in being connected. Each data field contains the following
 

information:
 

1. 	The current required by the system.
 

2. 	 Codes which indicate what discretes must be issued in order 

to connect and disconnect the system, determine how the voltage 

and/or current to the system can be monitored if possible, and 

pointers to error message data to be displayed if the system 

,cannot be supplied with power. 

3. 	Status codes which indicate whether or not the system is connected, 

whether or not connection is desired, which busses the system
 

can be connected to, and why the system is not connected when
 

connection is desired, e. g., power bus loads are too high to
 

allow for connection, connection has been attempted but cannot
 

be 	connected, or when connected system appears to be shorted.
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Figure 5-30 is a flow diagram of the program required to determine how the 

systems will be connected to the power busses based upon the table data. 

The data in the table is listed in the order of system priority. At the 

start of executing the flow diagram of figure 5-30 a pointer is set to the 

top of the table associated with the data bus and mission phase under consider­

ation. Each system is tested to determine if it should be connected and 

if it is connected. If it is connected and should not be the system is 

disconnected; if it should be connected and is not, its error codes are 

checked to determine if an attempt to previously connect the system has 

failed or if the system has previously indicated a short circuit. If the 

error codes do not show that the system cannot be connected the unused power 

capabilities of the desired bus are compared with the nominal load of the 

system to be connected. If capability exists for connecting the system to 

the power bus the system is connected. If not the code word is interrogated 

to determine if the system can be connected to another-power bus of the same 

type and if so, whether the other bus has power capabilities of handling 

the system in which case it is connected to the other bus. If it can not 

be connected to another bus an investigation is made to-determine if enough 

power capability can be made available by disconnecting lower priority systems. 

If this can be done the lower priority systems are disconnected and the higher 

priority system connected. 'This total test sequence is performed fbr all 

systems in each table associated with the mission phase being performed. 

Referring to figure 5-28 after distributing the load a test is made to deter­

mine if the vehicle is being supplied power from the umbilical system and a 

command to go to internal power has been issued. If this is the case a test 

for each generator being in. sync with the umbilical power is made. 
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If the generato is-not in synchronism with the umbilical power a
 

command to either increase or decrease the generator speed is issued.
 

The command is generated from accurate generator and umbilical frequency
 

measurements and constructed so as to command the generator into sync 

with the umbilical. When sync is achieved the generator and umbilical are 

paralleled. Commands to increase the generator speed are then issued. 

As long as the generator and umbilical power are parallel a command to
 

increase the generator speed will not increase the generator speed but 

will cause the generator to assume a larger portion of the electrical load. 

As soon as the generator has assumed most of the electrical load the umbilical 

power is disconnected from the electrical distribution system. This pro­

cedure eliminates electrical transients in switching from umbilinal to 

generator power. After switching to internal power on all three generators 

sync signals are generated to keep all three generator outputs in synchronism. 

Referring to figure 5-29, the procedure used in testing each electrical bus 

system isto first accumulate the expected load on the bus and comparing this 

value with the actual load. Based upon this testing one of four decision 

paths are taken; the actual and expected loads are equal within bounds 

indicating a properly operating system. The actual load is much higher than 

the expected load indicating an overload condition caused by a malfunctioning 

system, the actual load is much less than the expected load but not zero 

indicating one or more subsystems have become disconnected or are malfunctioning, 

or the actual load is zero and the expected load is non zero indicating that 

the entire bus has become disconnectid.
 

Figure 5-31 shows the proceduie used if testing indicates an overload on an
 

electrical bus. It is possible that the overload is only temporary being
 

caused by a subsystem transient demand, therefore a time delay is incorporated
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to allow for any transient demands to disappear. The tme delay allowed 

is dependent 'upon the overload magnitude. Upon determining that the
 

areoverload is still present after the time delay has elapsed tests 

made to determine if the system causing the overload can- be found directly. 

The capability will exist of directly monitoring the current to some subsystems 

but not to all subsystems. If an overload is determined to exist in a part­

icular subsystem as determined by measuring the current to that subsystem a 

command to disconnect the indicated subsystem is issued. A test is then
 

made to insure that the system was disconnected; if the disconnect did not
 

occur all systems wherever possible are redistributed to-another bus and
 

the total bus disconntected, and if the disconnect did occur the bus is
 

rechecked to determine if any further overloads exist. If the overlaod
 

exists among those systems that do not have the capability of having their
 

individual currents measured a move complex procedure to isolate the over­

load is used. The systems are divided into two types, critical and non­

critical. The non-critical systems are disconnected and'a test for overlaod
 

made. If the overload has vanished the non-critical systems are reconnected
 

one at a time with a check for overload made after each system is reconnected
 

and thos systems dropped which cause the reappearance of an overload when 

reconnected. If disconnecting the non-critical systems does not eliminate the 

overload then non-critical systems are reconnected and all critical systems 

having the capability of being connected to another bus are connected to an­

other bus system. If this transfers the overload to another bus then the systems 

transferred to that bus are transferred back one at a time until the overloading 

system ortsystems are discovered and eliminated at which time all other systems
 

are returned to their original bus. If the 

-198­



overload remained on the original bus after distributing all possible
 

systems the remaining critical systems are disconnected one at a time
 

and a test made to determine if the overload is eliminated. As each 

system is disconnected it is left disconnected if an overload in the 

system is indicated, otherwise it is reconnected. If after testing all 

systems and determining that no individual system is causing an overload 

yet an overload on the bus still existsits load is redistributed and the 

bus disconnected.
 

Figure5-32 shows the program flow required if testing indicates that the 

bus is completely disconnected. There-are two possible causes of a-dis­

connected bus which are a failure in the- circuit breaker supplying the bus 

or-a major short circuit on the bus or subsystem supplied by the bus which 

has caused an automatic disconnect of the bus. The procedure used in analyzing 

the fault is to first disconnect all subsystems from the bus and issue a 

command to reconnect the bus. If the bus does not reconnect then either 

the circuit breaker has failed or a short on the bus itself exists. The-

bus is then commanded to be connected to another available soura and tested
 

to determine if the connection was accomplished. If the bus is still dis­

connected a short to the bus is assumed and its load is redistributed to
 

another bus wherever-possible. If the bus can be reconnected either to its 

original source or a secondary source its loads are then reconnected one 

at a time. As each load is reconnected a test is made to determine if the
 

bus remains connected. If the bus becomes disconnected a short in the last 

system to be connected is suspect and that system is dropped -from operational 

status. The bus with its previously tested loads is then reconnected and the 

procedure af reconnecting a single system at-a time continued. 
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Error messages are generated as each fault is analyzed. Flags are
 

issued to various subsystem programs to indicate temporary or total
 

disruption of operation.
 

Figure 5-33 is the program flow executed if a below nominal load is en­

countered on any power bus. First a time delay is programmed to allow for 

possible transients indicating low power drain to decay. The assumption 

made upon finding a permanent below nominal load is that some subsystem 

has become disconnected from the bus. This disconnect could be caused by 

a faulty subsystem circuit breaker or a short in a subsystem activating
 

the circuit breaker. Those subsystems having a test point available for 

monitoring their supply power are first tested. If any are found to be 

disconnected a command to reconnect them is generated. If they remain
 

disconnected a command to connect them to a different bus is issued for 

those subsystems having this capability. If the system cannot be re­

connected to the original bus or a second bus the system is dropped from 

operational status. For those syslnms where primary supply power cannot 

be monitored a reconnect command is issued. For these systems it is 

impossible to determine directly if the system is reconnected unless the 

below nominal load on the bus disappears. If it is impossible to correct 

the below nominal load it can be expected that some subsystem program will 

obtain a fault indication and deschedule the faulting system. 
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5.4 Navigation and Guidance 

Navigation and guidance requirements upon the DMS vary greatly with 

mission flight phase. During boost, navigation is based entirely upon 

the strapdown inertial navigation system and trajectory guidance is used.
 

During reentry inertial navigation is updated through use of air d ata 

inputs and energy management guidance employed. During cruise and landing,, 

ground based navigation aids are used as a primary navigation source by 

continously updating the strapdown inertial navigation system with guidance 

Limited to a route point steering system.
 

5.4.1 Strapdown Inertial Navigation 

The sensors for the strapdown inertial navigation system are six acceleo­

meters and six single degree of freedom gyros. These are mounted in a 

configuration such that the instrument sensitive axis are directed to the 

verticies of a regular dodecahedron. Figure 5-34 shows the orientation 

of the sensitive axis of each instrument. The angle c/ shown in the figure 

is a constant defined byS = Smh(J= (1) 

C Cos = 
--rCOS (2)= "f-i--

An acceleration in the X body axis direction is sensed by accelerometers 

1,2,3 and 4 and a rotation about X by gyros 1,2,3 and 4. Before the normal 

strapdown equations can be solved,the instrument outputs must be trans­

formed to the orthogonal body axis coordinates. Because both sets of 

instruments are mounted identicallythe transformations from the non­

orthogknal dodecahedron axes to orthogonal body axes is the same for both 
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instrument types, i.e., accelerometers and gyros. The accelerometer.
 

(or gyro) outputs can be represented as a six vector defined as
 
• II 

13 

and the transformed body 	axis output as a three-vector
 

r Oy 	 (4) 

Referring to figure 5-34 the geometric relationship between the accelerometer 

(or gyro) outputs and the body axis outputs is given by the matrix equation 

Nro 	 (5) 
where 	 s a C 

o0Cr 
=VI C - S 0 (6 

0* C S 
Co C-

A solution for the three components ofO'can be obtained using the outputs of 

ny three instruments. With more than three instruments operating a more 

accurate solution is achieved by taking a weighted average of the solutions 

obtained from each set of three instruments. The process of achieving a 

ireighted average can be incorporated into the solution of the output vector,
 

0, by using the equation 

where 	 0 o 
'St 0o0 

0 00
 
0 0 
 0' 0 01' (8­

-0C 
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and Si equals either 1 or 0 dependent upon whether instrument '- is 

functioning or not respectively. 

Defining the matrix TKS MY T 

reduces equation 7 to 

0 I(-10) 

There are 42 different ways in which 3 or less instruments can fail 

resulting in the matrix P having 42 possible values-. Figure 5-35 

gives six possible values of P. In order to determine which trans­

formation should be used at any given time a method must 

be mechanized which will determine failed instruments. Several methods 

are available" for fault detection. Before a method can be selected the 

probability of multiple simultaneous failures must be considereq along 

with the methods capable ofjaandlIxfg :multiple:simultaneous, failures. The 

methods available for fault detection can be classified into two types, 

either trend analysis or voting. An error analysis will show that trend
 

analysis methods do not have sufficient response or accuracy to determine 

instrument failures and still achieve mission success. This leaves ,only 

voting methods available for the space shuttle booster application in 

determining the first two failures. If instrument failures are random),
 

multiple simultaneous failures should occur with very low- probability. 

Simultaneous is defined to mean a second (and third) failure occurring 

before the detection and elimination of the first failure has been accomplished. 

The probability of two simultaneous random failures occurring is 
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and of three simultaneous failures occurring is


(,%)~ (p# )3 

where Td is the time required to detect and eliminate a failed
 

instrument, Pf the probability of a single instrument failing, and
 

Tm the total mission time over which Pf is computed. If,Td is one
 

second and T is 30 minutes then the probability of two simultaneous random
m
 

failures is .00056 times the probability of two non-simultaneous
 

failures and the probability of 3 simultaneous random failures is
 

.00000031 times the probability of three non-simultaneous failures.
 

With failure probabilities as small as the above analysis indicates random
 

simultaneous failures can be ignored. Failures on a boost vehicle are
 

not always random but are caused by some electrical or environmental
 

occurrence. An environmental occurrence, such as a shock force on the
 

vehicle, which would cause failures to occur in the gyros and accelerometers
 

is very likely to affect other major booster systems with catastrophic
 

results. The most common occurrence which will cause simultaneous instrument
 

failures is a transient or failure in an electrical supply source. Since
 

there are three redundant electrical sourcestwo instruments of each type
 

will be connected to each source. Thus an electrical-caused simultaneous
 

failure will effect only two instruments. For this reason the method used
 

to detect failures should be capable of recognizing two simultaneous failures.
 

The failure detection mechanization changes as failures occur, i.e., a different
 

mechanization is used with no failures detected, with one failure detected,
 

and with two failures detected. Figure 5-36 is a set of error equations
 

with one error equation for each possible combination of four instruments.
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If all instruments are operating perfectly the values of E1 through E1 5 

will be zero. Since the instruments are not perfect but contain small 

bias, resolution, and scalefactor errors,the values of E through E15 

will not be zero. Since the instrument inputs are incremental changes 

in velocity and attitudeIvery large scalefactor and bias errors must exist
 

before any Ei would have a value larger than produced by an acceptable
 

resolution error. The summation of the resolution errors over several
 

samples will never be larger than twice the instrument resolution 

, while the summation of the errors caused by bias and scalefactor will
 

increase. The summation implemented will be time weightedjincreasing the
 

influence of the most recent instrument inputs. The form of time weighted
 

summation which will be used is 

F, (11) 

where a is the weighting factor, Fi is the weighted summation of Ei and the
 

subscripts n and n-1 the standard differenceequation notation. This difference 

equation has a Z transformation representation of 

I 7 - _ , (12) 

Referring to figure 5-36 each error equation is the form
 

Ei, -" (1,,+JT C € T 'e)S (13) 

where b,c,d, and e take on various integer values from I through 6. Sub­

stituting equation 13 inta .12 and noting that S and C are constants and 

that Z transforms are distributive yields: 

(14.) 
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Defining Ji such that 

i -> (15) 

and substituting into equation 14 yields
 

F 14J C( J.UJleS (16) 

By implementing equation 16 rather than equation T2, reduces the number
 

of filters which must be mechanized from 15 (one for each Ei) to 6
 

(one for each instrument). The equation mechanized are thenrthose of
 

figure 5-36 with each i replaced by Ji where.Ji is the weighted summation
 

of li
.
 

If recognition of two simultaneous failures was not required only 4 of the
 

error equations'of figure 5-36 would have to be mechanized. Since two
 

simultaneous failures must be recognized afl 15-equations of figure 5-36 

must be mechanized. The mechanization must perform two functions which
 

are failure detection and failure isolation. Failure detection can be
 

mechanized using only two of the equations of figure 5-36. The two
 

equations used must contain inputs from all ;six instruments. An equation­

pair of this type is the first and sixth equation. These two equations
 

implemented using the weighted summation-of instrument outputs are
 

1-. C-0.:3 

-6(J,--DC-(,f,+J-T, (18) 

F,= T Ja-) 5 (17). 

A failure is detected when F and/or F2 become significantly different 
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from zero. A parameter Gi is mechanized using the equation
 

rIF >f 
Ge= ifiF-il <F (19) 

A failure is detected if either G1 or G6 is 1. Upon detecting a failure
 

the failure must be isolated to one or two instruments. To isolate the
 

failure all 15 valxes of G. are computed. Figure 5-37 shows the expected
 

values of Gi for each single instrument failure and two instrument failure
 

combinations. With very soft failures initially,only a few values of Gi
 

will become a 1. If the value of f in equation 19 is set small enough very
 

soft failures which do not produce one of the Gi patterns of figure 5-37
 

will not create a navigation error of enough significance to be detri­

mental to mission success. The mechanization will thus isolate a failure
 

only if one of the Gi patterns of figure 5-37 is generated.
 

Upon detecting and isolating a failure using the above procedure either one
 

or two instruments will be eliminated as inputs to the navigation equations
 

by selecting a new P matrix This leaves either five or
 

four instruments on which failure detection and isolation must be performed.
 

A different procedure will be used for the two situations, i.e., four
 

or five instruments remaining.
 

If five instruments are still operating fault detection is based upon
 

computing two values of Gi. The values of Gi computed are dependent upon
 

which five instruments remain operational. Figure 5-38 gives which
 

values of Gi are computed for each possible combination of five operating
 

instruments. One or.more failures in the remaining five instruments will
 

cause either one or both computed values of Gi to become 1. Upon detecting
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Failed Values of Gi for i = 

Instruments 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Operating Instrments 1,2,3,4,6
1 1 1 1 1 1 11 1 0 0 0 0 0
 

2 1 1 1 1 0 0 0 1 1 1 1 1 Compute G1,,G ,G8, G,5 12 
3 111 0 0 1 1 1 0 1 1 1 0 1
 

4 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 Failed Expected Patterni 
5 0 1O 1 0 1 1 0 1 1 1 0 1 1 1 Instruments GI G 5 GQ3 G2I 
6 0 0 1 0 1 1 0 1 11 1 1 1111 0 

1,2 1 	 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2 1 1 1 0 1 
1,3 1 1 1 1 1 1 1 1 1 0 1 3 1 1 010 1 1 
1,4 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 4 1 0 1 1 1 
1,5 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 6 0 1 1 1 1 
1.6 1 	 1 1 1 1 1 1 1 0 1 1 11 Multiply 11111
 
2,3 1 1 1 1 1 1 1 0 1 
 1 11
 
2,4 1 	 1 1 1 1 1 1 1 01 1 1 1 1 1 Figure5-39 Isolation Patterns 
2,5 1 1 2 for Five Instruments1 1 1 1 0 1 1 1 1 1 11
 
2,6 1 1 1 1 1 
 0 1 11 1 1 1 1 1
 
3,4 1 1 1 1 0 1 1 1 1 1 1 1 1
 
3,5 1 1 1 001 1 1 11 1 1 1 1 1
 
3,6 11 1011 11 1 11 111 

4,5 1 1 1 1 1 1 1 1 1 1 11
 
4,6 10 1 1 1 1 1 
 1 1 1 1 1 11
 
5,6 0 1 1 1 1 1 1 1 11 1 1 1 1 
 1 

Figure 5-37 	 Expected Values of Gi for all Single and 
Dual Instrument Failures Operating G required for 

Instruments Fault detection 

1,2,3,4 G1
 

1,2,3,5 
 G2
 
Operating Detection 	 1,2,3,6 G3
Instruments Equations 	 1,2-,4,5 G4 

1,2,3,4,5 
 Gi, G2 	 1,2,4,6 . G5
 
1,2,3,4,6 
 G, 03 	 1,2,5,6 
 G6
 
1,2,3,5,6 
 G2, 03 	 1,3,4,5 
 r7 
1,2,4,5,6 G4, G5 1,3,4,6 Qt
 
1,3,4,5,6 7, G8 1,3,5,6 G9
 
2,3,4,5,6 G11,G12 	 1,4,5,6 G10
 

2,3,4,5 Gll
 

o 	 2,3,4,6 G12

Figure 5-38 
 Error Detection Equations Required 2,3,5,6 "G1 

for Each Five Operating Instrument 2,4,5,6 
Comobinaion ,,, 

3,4,5,6 G15 

Figure 5-40 Gi Required for Fault Detection 
11 uith four Op.rating Instruments 
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a fault, the faulty instrument or instruments must be isolated. With 

five instruments it is ,ipossible(without external aidsilto isolate two 

failed instruments. A trend analysis will be used to determine fault
 

isolation if two out of five instruments fail. It is possible by inves­

tigating only instrument outputs to isolate a single failure if only one 

failure exists, and to detect the existance of multiply failures. Figure 

5-39 indicates which values of Gi must be computed for a possible 

combination of five operating instruments in order to perform single 

failed instrument isolation and multiple failed instrument detection. 

The figure also shows the values of each G. required to isolate a single 

instrument failure or detect a multiple instrument failure. There are 

five values of Gi which must be computed for each possible combination of
 

five operating instruments. With a single failure four of the five -values 

of Gi will be equal 1 and the other value 0. If testing determines that less 

than four values of Gi have a value of 1 then the failure is very soft and 

no action is taken until at least four values of Gi become 1. A multiple 

failure has occurred if all five computed values of G are I. Upon isolatingi 

a single failure the failed instrument is eliminated -and the proper P matrix 

chosen. - -

If a multiple failure is detected the failed instruments must be isolated 

by measurements directly on the instrument and trend analysis. This same 

procedure must be used to isolate a single failed instrument. from four remaining 

instruments. With four remaining instruments,,a failure is detected by computing 

.asingle value of Gi . The value of Gi used for failure detection for each 

possible combination of four instruments is shown in figure 5-40. A failure 

is detected if the single value of Gi computed is 1. If a multiple failure 

,ith five operating instruments or a single failure with four operating 
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instruments is detected a third failure has occurred reducing the mission
 

from operational status to that of safely returning the booster and crew.
 

This reduction in mission status reduces the overall accuracy requirements 

of the navigation system. The action taken in isolating the failed
 

instrument is dependent upon mission phase. The first action taken in any
 

mission phase is to look at the individual instrument outputs and test 

points. The most common failure mode for any instrument will cause either
 

a zero output or a full scale output., All four or five instruments will 

be investigated for the occurdice of this type failure. If the orbiter is
 

still attached,communication with the orbiter can provide sufficient data
 

to isolate the failure. The data transmitted from the orbiter will be 

body axis delta velocities or delta attitude changes, i.e., the outputs of 

equation 10 as mechanized in the orbiter. Body axis for the orbiter and 

booster are defined independently for each vehicle. When the vehicles are 

attached to one another during boost these two axis will not coincide. A 

constant transformation matrix from orbiter body axis to booster body axis will 

be applied to the delta velocities or delta attitudes received from the 

orbiter.- All'possible combinations of three operating instruments are used
 

with their appropriate P matrix transformations to obtain a set of transformed
 

instrument output vectors for comparison with the expected values received 

from the orbiter. * There are 10 possible combinations of three instruments
 

for a multiple failure among five instruments and 4 possible combinations
 

of three instruments for a single failure out of four instruments. If the
 

detected failures ekist~only one instrument combination will correlate with
 

the orbiter values. The correlation should be very close if the instrument
 

failures being isolated are gyros. The correlation will not be as close if the 

failed instruments being investigated are accelerometers. The reduction in
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correlation for the accelerometers is caused by rotational coupling
 

through the separation distance between the orbiter and booster
 

instrument packages.- The major components of rotational coupling
 

can be removed by filtering, since large magnitude rotational rates
 

will be of short duration.
 

If failure isolation cannot be established by direct measurements upon
 

the instruments and orbiter/booster separation has already occurred,
 

failure isolation will be performed by trend analysis. Trend analysis is
 

achieved by-mathematically constructinga.model of the vehicle, applying 

approximations to all forces and torques on the vehicle to the model,
 

computing body axis rates and velocities, and comparing these with the
 

instrument outputs. The general six degree of freedom equations of
 

motion for a rigid body in body axis coordinates are
 

FF= Vt WXV (20) 

ZTZLI-tW [J-1 (21) 

where I F is the total force vector in the vehicle having components (Z F, 

F ,F z),m is the vehicle mass, V is the vehicle vector velocity having 

components (u,v,w),Z is the vehicle angular velocity vector with respect 

to inertial space having components (p,q,r) 1ZT is the total torques on 

the vehicle having components T,-T Ty,I Tz ) and Ellis the vehicle 

inertia dyadic. All vectors are expressed in body axis components. Due 

to symmetry of the vehicle inertia dydie is assumed to.h&vethe form 

Jry 0 
 (22)
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Expanding equations 20 and 21 yields:
 

:' =n (d -a- rv) (23)
 
F r (;,+ ru-nw) (24)
 

F =M (0+PV-,u .(25)
 
£T .- r -" r (26)
XXY +-hP+F$ 

Y 
 (2)
 
~7>2 r PX XX7PtICV +YY~i(8 

The vehicle and mission maneuvers are usually designed to minimize the 

coupling between longitudinal and lateral motions. This allows the bove 

equations to be simplified and separated into two groups; one dscribing 

longitudinal motion and the other lateral. motion. The longitudinal 

equations are generated by setting v = r = p = 0 in equations 23, 25, 

and 27. This results in the equations 

SF i (29)m (Lk ) 
m ((30) 

T. Ty Cj(31t) 
The lateral equations are generated 'by setting ii uo, '=W, and 

q 0 in equations 24, 26 and 28 yielding: 

YF =rn A/o(32)--ru, - (, 

TX =_rXX(33) 

TX (34) 

Equations 29 through 34 must be integrated in order t6 obtain estimates of 

u,v,w,p,q and r. In order to integrate the equations the forces and 

torques must be computed and the equations must be solved for u,vwp,,
 

and r. Solving the equations for the highest order derivatives yields:
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L ,X& P'- (35)
 

J, (36) 

V .-ErFz+ o (37) 

I I - I (38) 

€-- %-(39)
 

- _JX (40)
 

Forces and torques on the vehicle have their source from gravity, aero­

dynamics, and.engine thrust. Gravity produces no torques on the vehicle
 

and produces the same acceleration forces on the accelerometer test masses
 

as it does on the vehicle. Even through gravity has a major influence upon
 

the vehicle motion it does not contribute to either the acceleromter
 

or gyro outputs. Since the object of solving equations 35 through 40 is 

to simulate instrument outputs,)the gravitational force is notifeluded in 

the force model. Aerodynamic and engine thrust forces however must be 

included.
 

Aerodynamic forces and t~oques are defined as functions of dynamic pressure, 

qi' angle of attack,O( , and side slip angle,)8. Three velocity components 

, and W are used to define these parameters. 1 , I and VI are 

the components of the vehicle velocity with respect to the air mass expressed 

in body axis components. Then 

-
• oZt: ,
j wYd(41)
 

-'.&<tr ' V /U (42) 

)
. -- ,,- , 
W' (43)
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7 

The strapdown navigation equations are solved in an earth centered inertial 

coordinate frame. The navigation solution results in a vecocity vecotr, V

and a position vector, r Defining V and r. as having components 
r 

Vr T.z (44) 

YX (45) 

then 

Q [CT rc)X (46) 

where f17C.is the earth's rotational rate and I]is the transformation matrix 

from body to inertial coordinates.' Winds are not included in equation 46. 

It is possible that the final mechanization may include winds in the model 

with wind data being supplied through pilot inputs, air data computations 

or filtered steering error data. Angle of attack during reentry will be 

large, requiring the arctangent computation indicated in equation 41. Side 

slip angle will always be small allowing for equation 42 to be replaced with: 
ySZ= v,'/u' 

(47) 

The term q0 in equation 43 must be computed from the vehicle altitude, h. 

Altitude is obtained from the equation set. 

(48)
L=.t 

(I r-f1(COSL)±COc S L)J (49) 
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hz 4 -'--- 4 (50) 

Equation 48 computes the veblaIe 1s geocentric latitude from inertial 

position. Equation 49 is used to determine the local geoid radius 

based upon local geocentric latitude, the earth's equational radius, 

re, and the earthfs ellipticity, e Once h is obtained o is 

found from 

K, (51) 

where K1 and K2 are constants.-


The aerodynamic contributions to body axis forces and torques are
 

described by
 

(,Cx +Q xu),: Sed (52) 

Euatios 

coerot C 

( cludeparyr) 

+So4 C IrtCyr) 

(5rou(53) 

-­ 4IrC) 
- -(56) 

(55) 

T~er =7/S(Ocnp. +pCnlp+rCr)(7 
Equations 52 through 57 include 17 aerodynamic coefficients which are highly 

dependent upon Mach number. The values of these coefficients will be 

approximated using curve fit functions of Mach number. Mach number is 

computed from 

M
 
(58) 

A secondary marable~a,wifl be formed from
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a will be limited to a maximum value of q a in the region of 

M = 1. For simplicity only the curve fit formula for CGis given 

here. The formulas for the other 16 coefficients are of' similar form. 

For C×' the formula is 

CC= C O+'I CX C qZC (60) 

If a third accelerometer or gyro failure is encountered while the main 

iocket engines are burning, isolation of the failed instrument is-achieved. 

by coimuncationwith the orbiter as has been previously described. Thus 

trend analysis for the purpose of Tailed instrument isolation will not be 

required during main engine thrustingeliminating the need for including 

main engine forces in the vehicle model.' The air breathing ingines produce 

forces along the X body axis and torques about the Z body axis. The 

engine control computers will generate estimates of the thrust of each 

engine. These estimates are transmitted to the EMS computers where 

the computations
 

E-T+T (61) 

7;-e,, (7 --T (62) 

are made to generate the Fx and Tz engine contributions. T1 and T2 are
 

the received engine thrust estimates and J, is 'half the. separation distance 

between the two engines.
 

The only additional terms which must be added to the vehicle model are the 

torques generated by the attitude control system. The attitude control
 

system computes pitch, roll and yaw commands (defined as q' 'Pc and r c 

respectively), multiplies these commands by a variable gain, and issues
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the commands to the reaction jets or the areodynamic control surfaces.
 

The variable gain is adjusted to maintain a nearly constant control
 

effectiveness. The torque on the vehicle lags the generation of the
 

torque command. These torques will be added to the vehicle model as
 

a solution to the equations.
 

7_Conf' X( Qdcfltn" Nx Pc (63) 

Thc, - T,7 on4/y qa (64) 

& T + 1V7Z r (65) 

The subscripts n and n-1 are standard difference equation notations.
 

The values of Kx, Ky, Kz, IM, My, and M are chosen differently if the
 

actual torques are generated using reaction jets or aerodynamic surfaces.
 

To adjust for gain variations in aerodynamic surface control effectiveness
 

the values of MXMy and M will each be formed from a formula of the type:z 

'= AK0+ 1Ax, + 2Axz (66) 

where Axo, Axl, and A., are constants and M is Mach number as previously 

given.
 

The above equations representing a model of the navigation instrument outputs 

for use in trend analysis isolation of a failed instrument are only represent­

ative of the equations which must be used during flight. They are included 

for the purpose of sizing the computational requirements of the strapdown 

navigation task. A lengthy development and simulation study will be required
 

to define the equation set to be mechanized. 

A solution to the equations is formed by evaluating the right hand side 

of equations 35 through 40 and integrating. A solution is developed every 

T seconds. An estimate of the value of T to be used is i/8 second. To 

evaluate the right hand side first,the forces and torques are evaluated
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using the above described procedure. Values of mass, inertias,
 

Qo and W. vary slowly and will be evaluated at a slow rate which will
 

be assumed to be once per second for the purposes of this sizing study. 

Mass and inertias will be formed as polynomial curve fit functions of 

fuel remaining or expended as determined by the propulsion programs. 

Curve fitting for mass is
 

where m0 is launch mass and 4 is fuel expended. For the inertias each curve 

fit formula will be of the form: 

SX= IX fF + +1 S (68) 

and W. are obtained from: 

LI (68) 

The values of p,q,and r required in the evaluation of the rigthand 

side of equations 35 through 40 are the values resulting from the previous 

integration of the equations. The qquations will be integrated using the 

digital integration formula:
 

for the integration of A and similar formulas for the integration of 4, 

w, p, q, and r. The subscripts n and n-i are standard difference equation 

notation and Unl and Un-2 are the present and previous right hand side 

evaluation of equation 35. 

The outputs of the accelerometers and gyros are transformed to body axis 

multiplying each output set by their appropriate P matrix. Defining these 

body asis components asAljAV6 ,A\A6 ' AG6 and(9 the trend analysis 
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outputs used for comparison with each body axis instrument output are 

computed from the formulas 

A C4- T 7 (70) 

Av= (V, - T /T (71) 

A,',(,/WT/-T v', ,) (72) 

% )S--(3Ti A T (74) 

;1- _T (75) 

where T is the time interval between trend analysis solutions and Ti 

is the time interval between instrument processing. The trend analysis 

program will be executed continously even with all instruments functioning. 

While the instruments are operating properly, i.e., before a failure detection 

indicates there are three or less instruments of either type operating 

properly , an error for each term will be generated by the equations 

ct AQ-AU (76) 

V -A V -(77) 

E'3= A\,-AVV (78) 

,-A¢ - A0 (79) 

&=Ae,-A0 (8o) 

Q -. ,b 4 V (81) 

,lhile the instruments are operating properlyas defined above, force and 

torque correction terms to the trend analysis model will be generated using 

the formulas: 

Fxcorr, Fxorrn.., + K~q E, (82) 

Fycorr,- Fcorr.., -Kg 8±. (83-) 

Fzcorr, Feo,., 4 <t E3 (84) 
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)X'corr T+ K2 E -4(85) 

Tcor T 4-K1 ES '(86) 

TZcorrrn r h-orr,-j + K3 E4 87 

These force and torque corrections will be added to the force and torques 

used in evaluating the right hand side of equations 35 through 40. K and a
 

K are constants. When a failure is detected which indicates only three
 
g 

accelerometers or gyros are operating each possible combination of three 

instruments are formed for the failed instrument type. The outputs of 

each combination is transformed independently to body axis. Kg is set 

.equal to zero if the failure is a gyro and Ka if the failure is an 

accelerometer. For each possible combination of three instruments an 

error value is computed from either= Fo, + (88) 

or
 

dependent upon an accelerometer or gyro failure repsectively. The 

combination having the smallest value of Ea or E,g,isused in the strapdown 

computations. This procedure is repeated each sampling period until all 

but one value of % or E exceeds a limit value. When this occurs all 

instruments except those three contributing to the value of E Or E whicha g
 

does not exceed -thelimit are eliminated and K or K reset to their proper
a g 

value.
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The output of the dodecahedron to body axis transformations are two vectors 

having components (AM(LLh ) and (A j A8h 5 A4 ) whereAb,WA 

[and 
A04 (+ttr gb
Ae0I, (91)

3P6I II 
T is the time between instrument outputs and the right hand side vector 

of equations 90 abd 91 are the vehicles acceleration and angular rotational 

rates with respect to inertial space expressed in a body axis coordinate 

system. Inertial navigation requires the solution of the equation 

(92) 

where a is the ac6elerometer'smeasured acceleration in inertial coordinates, 

A the vehicle's position in inertial coordinates and G the gravitational accel­

eration in inertial coordinates. The solution of equation 92 requires the 

transformation of the accelerometer outputs from body to inertial coordinates
 

which is given by 

- -(93)
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where [C] is the direction cosine transformation matrix. In terms of
 

Euler angles the direction cosine matrix is given by
 

Ico~s SIN 0SIN o cSe[c] = _SIoY cos p 3]0cs SN (94)
0 1 0 s,14¢ COS01J NG 0 cosej 

Performing the indicated matrix multiplications yields
 

roSYCase-S1OiNSSiyIIWO SixYcos95 - S1IHb/n- smwysrXcosG 
[C]:= S icose 3iNacosOSINO CoScosO S11 V cOse -CO$S9PKNcose' cososvo "siN COScos 9se (95) 

In order to simplify the notation the elements of [C are defined as
 

[c]c, c' c ,-/
1 


LC/ 3 sj (96) 

The matrix [a] represents the transformation between body coordinates and 

inertial coordinates thus for any vector 35 

XI [C]X5 (97) 

taking the derivitive of equation 97 yields 

74 =+ [C] X- (98) 
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It is also true that XI expressed in body axis coordinates is given by 

Lel Xt(99) X, 

where 

1W] = r o0-J[ (100) 

Iand LU] b is termed the contribution due to Coriolis. Multiplying
 

equation 99 to L0)and equating the result to equation 98 yields
 

1c]IX,+ [CE JwL ?b LC]Xy+FC]X4 (10o) 
rT 

simplifying equation 101 noting that [J LWJV -[J£C] yields 

[61= -M] Lc1T (102) 

Equation 102 is used to propogate the direction cosine matrix [Cduring
 

CJ7
flight. Expanding using Taylor's series and difference equation
 

notation yields:
 

[C: t[C Lc],,T .. 
(103)
 

Taking the derivitive of equation (102) yields
 

LOP -
TT. 

I CC- W (104) 

Substituting equation 104 into equation 103 for LQJ'and equation 102
 

into the result forO yields:

rTT
T T 

[C].,= .ci~w] j /cj- t Ec.-']J[c174rr4- (LdJLw70 LcJa' (105) 
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Approximating WJby 

[LbA>] = f~2~ [c1,Ar (106) 

and defining 

LA7 A&0J 1 4T4-0rAT f/if0 z[Wj (107) 
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then equationT 105 becomesT_ T
 

[C 
 A 15(108) 

the matrix [At$J is constructed from the incremental instrument outputs after
 
T
 

they have been transformed to body axis coordinates. The matrix [direpresents
 

a rotational transformation between two orthogonal coordinate systems and 

should exhibit the property 

[c]CJT ­ [-] (109) 

where 

1t 00 (110) 

Because of computational errors caused by a finite computer word length
 

(round off errors) and integration approximations (truncation errors) the­

matrix Cawill not exhibit the properties of equation 109. Using equation 109
 

to define an error matrix yields
 

[61 = [e] LC]1 - 1 - (111) 

A better approximation of the true transformation matrix from body to inertial
 

coordinates is formed from
 

[CrL ctr] (112)
 

The process of propogating the transformation matrix then becomes
 

r 'A4[Lc']2,={uc~JP( A101 ]-]L3(113) 
rcii JC(T1OWV 

[cj~~=j EU, 
-

fc't'J 




Equation 113 is formed by replacing [with ['n+1 on the left hand side 

and partitioning the right hand side of equation 108. The partitioning 

reduces the number of steps required in a general purpose computer solution. 

Equation 114 is formed by setting expression 112 equal to [ and sub­

stituting equation 111 into the result.
 

The transformation matrix I0] is applied to the incremental accelerometer 

-outputs after they have been transformed to body axis by use of the appropriate 

[Plmatrix. This transformation yields: 

tZ£Ti4 VVP4C] 4A"b1 (115)L4WJ 

Navigation requires the solution of equation 92 for I and R. Solving equation 

92 for R yields
 

(116)
 

The Taylor's series expansion for R using difference equation notation is: 

n+ n 4-T+ . -(117) 

Approximating'rin equation 117 by 
=I-F'' ; n.l /3T (118) 

yields
 

+ Rn + (119) 

Substituting equation 116 into 119 yields
 

n~iR,+ - -I (3 (-120_,3a i 2 (120) 

The best available approximation to 9 is ZUIAT 
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Thus equation 120 becomes 

IA t.-4 %-tt 3 -W T ~ (121) 

In order to solve equation 121 gravitational acceleration, G, must be evaluated in inertial 

coordinates. The solution for t ifl be generated at a very fast rate, estimates used for 

this study are 64 times per second. 0 will change very little between two sequential 

solutions of R ma.g 

4 

5 n I (122) 

an approximation having little effect upon the solution accuracy of I. 

Substitutingequation 122 into 121 yields 

I. R, 4k4 ~ 44a 
I ~ (123) 

I "Greenwih 

Meridian 

Figure 5-41 , Inertial and Navigational Relationships 

Figure 5-/41 shows the geometric relationship between inertial coordinates and geocentric 

latitude and longitue. The inertial coordinate frame is represented by the adis system 

X, Y, Z. This coordinate frame is established at a point in time prior to vehicle launch 

such that he Greenwich meridian and the inertial I axis coincide. The Greenwich meridian 
1 

will rotate toward the east as the mission progresses due to earth rate, . - e" The-

R vector.gravitational acaleraion, G, is dfrected toward the cntr of the earth along the 

The gravity vector is 

here go is the arths gravtat~onak attraction on the earth's surface at the equator and 

re is the earth's equatorial radius. The generation of the 

-230­



absolute value of R requires the square root of the dot produce R
 

Since the magnitude of G varys slowly the interation rate used for its
 

solution will be slower than that used for navigation integrations. At
 

a 2 per second rate the value of g. defined as
 

e(125)
 

will generated. The integration to propagate R at a 64 per second rate
 

will be mechanized using the formula:
 

= n-. 3~h-ati &~RA7 (126) 

The value of R is obtained by integrating R using the formula
 

R+ AT - 0'R 

During boost the primary navigation parameters required by the guidance
 

system are R and k. During the reentry, cruise, and landing flight phases the 

the navigation parameters required are latitude, L, longitude A , altitude, h, 

vertical velocity, Vz, horizontal velocity, Vh, and horizontal velocity vector 

heading angle Yv. The components of H and R are defined as 

P (128)
 

and
 

R4­
(129)
 

An earth fixed coordinate set is defined as a right hand cartesian set having 

the positive 4e axis along the earths north polar axi's and the 
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Xe axis in the equatorial plane intersecting the equator at the Greenwich
 

meridian. The space shuttle position and velocity in the earth's
 

coordinate frame are determined from
 

XeFXCot_± +Ysw-J 2ei­

" SIN-(Ye (130)
 

and
 

fe L4LZCOSJt+VCSAt 4-fle±;lX~ 
R tT (131)
 

Longitude is determined from
 

-
,X= ta Y1/Xe (132) 

3Latitude is determined from
 

L = t(n-1

Xe COS,+Ye SIX >, (133) 

Altitude, h, is determined by subtracting the local earth radius from the
 

magnitude of Re. The earth's shape is closely approximated as an oblate
 

spheroid having a local geocentric radius of
 

r,= re ( /-esuilzL ) (134) 

where re is the equatorial radius and e the earth's ellipticity. The
 

magnitude of Re can be determined from
 

IFeh 2 sNL+ (Xe CO.SX + Y s/A/A)CosL (135) 

Then the altitude, h, is given by:
 

-2(136)
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Defining the velocities V. , VE, V. as the northerly horizontal
 

velocity, easternly horizontal velocity and vertical velocity respect­

ively with the vertical velocity positive when the vehicle is decending then
 

[V17 -SINLCoS% -SiNLS4>, COSL] Ltj 1317)
_S1Ug CosX>1 lte
 

-I -CSLSINY, e
coSLCOS -SINL [Je 

The horizontal velocity heading angle, t4, is then 

0 =ton - (138)VA( 
and the horizontal velocity magnitude-is
 

VhrnV4sli+ N~ (139) 

Latitude and longitude coordinates used in maps are geodetic rather than
 

geocentric. Therefore all displays of latitude and longitude to the pilot
 

should be in geodetic coordinates. The transformation between geocentric
 

latitude and longitude ( L and ) and geodetic latitude and longitude
 

(L andAg) is 
g -g 
L= a7,U I-e)tnL (140) 

(141) 

The strapdown inertial navigation system must also provide various attitude 

references to the flight control system. These are Euler angle attitudes 

between inertial coordinates and body axis during boost and between earth 

fixed locally lejel axis and body axis during reentry, cruise and landing. 

Also angle of attack, o(, and side slip angle,S, must be computed. During 

boost Euler angles are computed from the direction cosine matrix. By in­

spection from equation 95 and 96 the Euler angles are: 
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V=- )-tar C2//CZZ (142) 

G= tan-' C3/CS3 (143) 

&z=tar-/ Cz3/(c,3 SmNa+ c" Os 0) (144) 

During reentry, cruise, and landing a direction cosine matrix between 

body axis and locally level coordinate frame is constructed from: 

'INL osx -SINLSNX Cos Lif1cosn-t stI fld
 

[D]=4-SIN N, CosX !SIflet cos-Qef 0I[C(
 14 5) 

Lcos , _-cosLSINX -SjNLJL 0 o ii 

The only components of CDI that must be computed are D21 , D1 3 , D2 3 , and 

D33. The values of ,G and are then 

S±atF'Dz,/Diza (146) 

S=~an-ID/3/ , (147) 

O =tOn-'Dn/(D1 S/NO 4D3 os 9) (148) 

To generate the angle-of attack and side slip angle the vehicle velocity 

iith respect tothe earth, Rep must be transformed to body aids coordinates. 

This is achieved by 

V, . et+cXC.s& e "(149)5 i)_$ t. 

Ueblf t KECL-YSIb$ ,th± flXCS/Niet 

Then
 

oer= t r. wb/u e6 (150) 

ind
 

, ='4 t Ve /u (151) 
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During reentry, cruise and landing other navigational aids will be used to 

update the strapdown inertial navigation solution. The measurements made by 

other navigation systems will provide new values of A , L, h, v$, ( ,,LR 

and V The strapdon inertial navigation system contains 15 integrators. 

These integrators contain 9 direction cosine values, 3 velocity vector 

components, and 3 position components. Significant errors in the strapdown 

inertial navigation system will exist as errors in the integrator outputs. 

Each parameter which can be determined by some navigational aid other than the 

strapdowm system can also be developed from the strapdown system integrator 

outputs. Using longitude as an example this can be expressed as 

%=i~rtk~)(152) 

A matrix, EQI can be constructed from partial derivitives of each navigation 

parameter with respect to each integrator output. Thb matrix til be of the form 
S2x ....- >" ,- )N, -

Qc) (153)S 

S --

The equations for each parameter in the matrix are: 

a_ x i ­0 (154) 

A.1X = -Xe '51---e-±-.I- -Yi-- Cos"L't] (155) 

___X, _-X cosiet - -- S)N-Cet 2 (156) 

XY A.Xet*Ye2 
A___ = L = 0 (157) 

-L _ XeCCSX-Ye-SNX [XctSfl_.-f- YesiN__tJ (158) 
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".=XS9,--yALN- (X SI flet+YeCOs--e*) (159) 

5L.Xcos%± $tt (160) 

2C L >_Aoh.=, _uL 
&v aw 

9 
(161) 

~ (162) 

c)X Jme(X ' ec0Sn1-Y N-seCfls)+2CSINLCOSL "L 

5y Iy a(163) 

a- 7Ae= so(164)
-0 

(165) 

x- "/w TIw CoS +CO--SSINQt+YASIUL (SIN)LSINPet-Cos,\ CoS.flef) (166) 

IV .VX_ cosCosfe.t -SNA S -Vg SiL(COSSl ine+SmiaCosfte)] (167) 

COSL 
dw vj-eV;z (168) 

ax j-fNW l7WCOtOJNX4CCS+L&COSC 

+VeCOSLsIU~ktWeSIN9+ILVoskSI) ~ I SLS'3} (169) 

#W iL) y*SLV co %S/N )-----e su' L cosX jj
1U+OSLSLSXVCOSLSJNAWS/t/GINA 

•~ 3 w 

--csN)L-t-ILV CO-S,\ -q sl,)I -_as cs] 

(170) 

10 
- (171) 

-­ 2= = =(172) 

=-W T,U- (173) 

(V-fl2e VSNf'et+J-eXcosle-) (174) 

;2 _ -
aC,3 

- W WeL 
-- + (175) 

-1(Q- CeYcosf-e-1exs2SW/et) (176) 

-.- U (v- Y -+ -xcosa ) (177) 
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o(: -.w/-v..T(178) 

(179) , ,C31-M4 

- e (ca - c- (18o))v & Lue b C12)V/AT 
ATL_= q .,A -( 

(181)S-3 -e ,-3--)
-C 


"- 2eb(Csz OS.Qe'-¢; e'. )+, (C1, stld -C 2 COSJ%-L)] (182) 

Wdg +YLUt'4q ,.3c, e 2 S C + I )] (183) 

_6 _z V-9 -o (184) 

31 cC aC32-3 Yi81 
V.. f,Ycos £%± - 0 x swi ) 

-.-Vej (v-teY'sINLt flexcosfle) (185) 

cCj2 t+V42---= , -- )(186) 

(197) 
_Ds - Y___v f 

= & (188) 
1Ve fes.NtI,~csti 

t -
C2 Ltvek

--/ - aCs - (2e-t* - X - ' O-SLef--t (189) 

C23 exb+ Ve(190) 

- 3 =~+eh~ - v 
N aet co (191) 

Ue (193)Ue 

3Xy .g Vet (194)(C2NJ1&t)C, COS-3et 

C). b41QC6(193)6'--237­

3-eC2 =Ue~a-tDn SM26tSIAoJefC)+ i(cosn~tT, S~+Q 

+ snvljne-t n) 
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-J _ tSIN L (cos llct sjpq+S-j-SIflefCO5Y)
 
,~+ L4, D/'NnsM cstcs 
 ](1) 

D_,,cosL­
3c2 1 2 z (199)
 

- W LNLSI(+cosNet-c w %.-_N) -jt 
4Pa CS X+ Csietia Sma cnSLSrn>_L (200)

2. _--z
-51iVLcozX} t- j2:-LsinNA1 ) - CzS NLjLL] ­

*~c~,csnet+CfSINI12e) 	 .- SINLS) N~p ---	 -"LCSA~ PX 

+ 	Ccs LS(201)
 

~SINCOS +Pv.SIN)L~yh) C03. SJNL)4')
cY L / 

Usin t [Q matrlxsSdefined2 by eqaioOLS 5 a eiitv a incnbScosLcoS%\ (cICOSale-4C.2191IQct (202) 

~C6SLS/I (c2 2cos f2C 	 W- C.2aiIn-Q1ei) SiL]y 

Using the LQI matrix as defined by equation 153 a derivitive equation can be 

written as: 

dL cv 

_ F 	 (203) 

ciV 

to update the strapdon navigation system the vector d 
is formed by evaluating
 

the functions
 

( L=f(x 3 LM' 

* 	 (204) 

there ) is longitude developed from the strapdown system and Nm is longitude
 

determined from some other independent nav-aid source. The errors of the
 

tarious navigation sources have different characteristics. Strapdown errors
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have the characteristic of increasing with time while other navigation 

sources on the space shuttle have limits on their total error magnitude.
 

The function required by equation 204 will be mechanized in the form
 

'x.I m)KxJ1(xMi-A (N>-') (205) 

where KX is a constant selected according to the navigation source of Xm. 

This makes the magnitude of the function proportional to the square of the 

difference between the two navigation system solutions while maintaining 

the sign of the difference. In order to apply an update to the navigation 

system equation 203 must be solved for 3. Since equation 203 represents 7 

linear equations in 15 unknowns many. solutions to equation 203 exist. The 

one which will be used for this application is 

".1 L O (206) 

Matrix [Q]T contains many zero terms which will reduce the time required to 

compute equation 206.­
2 

q is evaluated by taking the sum of the squares of all non zero elements of 

The output of a single degree of freedom gyro is (207) 
Wjm= (I+AIK 3 ) + 652 

where U is the measured angular rate, (j is the angular rate of the instrument
 
m 

with respect to inertial space about the instruments sensitive axis, K
 g 

represents the instruments scale factor error and B the instruments bias error,

g 

In a similar manner the accelerometer output is given by:
 

=(/+AzxKa0aQ8+(208) 
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where an is measured acceleration, a actual acceleration, Ka scale
 

factor error, and Ba bias error. During prelaunch the angular rate input 

to each gyro is given by
 

0L)= 4 f-/,O (209) 

where .f2 is the componeni of earth rate along the gyros sensitive axis and ,s 

is the angular rate component-of the vehicle with respect to the earth along the 

instruments sensitive axis. Os is caused by movement of the vehicle due to
 

launch site winds and loading of fuel, passengers, and stores on the vehicle. 

The acceleration experienced by the vehicle Is given by
 

z(210) 

where gs is the acceleration due to gravity and as the distrubance accelerations.
 

A negative sign on gs is used because the accelerometer does not measure the
 

acceleration due to gravity but the opposing force of the earth stopping
 

the vehicle from being accelerated by gravity. 

During prelaunch and pre ferry mission phases the strapdown inertial navigation 

system must be initialized and calbratea. At the launch site ground 

equipment is used to measure and transmit accurate values of vehicle attitude 

with respect to a local earth coordinate system. The attitude data transmitted 

to the vehicle is in the form of three Euler angles 0L' &L. and VL" 

In addition to vehicle attitude with respect to locally level coordinates launch 

site latitude and longitude and time are available from keyboard entry. Time
 

is accumulated in the computer by the executive program but initial keyboard 

entires are used to sync the computer time with Greenwich standard time.
 

From these inputs the direction cosine matrix is initialized by using
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the equation:
 

[C] = [Lt ] ;3: (211)
 
-'it -S:NfXL+a


"SIN.I-cosa-t oJ 
0 0 11(212) 

LOS S SL>, 

D 0 IJcosy4-siww 01(24 (213)!31 WL C -cOSL] 
L 0 0 LJ 
r-O L, .VL -1 (214)
 

PsosUL0 SIN0 , 01L1 (215) 

0 cosO; -_s)1V 
10 SINOL cOsO;. (216). 

Net,cose',0 (217) 

The values of. L OL and OL are derived from LL, AL and eL respectively, 

by filtering. The filtering is accomplished by mechanizing the difference equations 

)>= K q K (218) 

'K, +46 0 (219) 

and (220)
 

During the initialization and calibration procedure the direction cosine matrix 

must be continously updated as 'L, 9L and t changes. Earth rate and gravity 

are transformed to body axis using the formulas­

(221)01 

--7))1 



and 

(222)
[= 00 

where g is the local acceleration due to gravity found from
 

e 
r2 (223) 

andfLis earth rate. re and ge are the same as defined for equation 124,
 

0 is found from equation 134 and h is the launch site altitude above sea
 r 

level obtained from data entry through the keyboard. The components of gb 

and h b along each instruments sensitive axis is then generated by the 

equations: 

5S= [M1I (224) 

and 

L M ] (225)LS = f 


where the matrix [M]is defined by equation 6. Bias and scale factor errors
 

are removed from the outpufr of each instrument during flight. For the gyros
 

this error removal.is accomplished by loading a bias, Bg, and a positive
 

and negative scale factor Sg+, Sg. register in the gyro. The accelerometer
 

errors are removed by applying the formula
 

T A,i - Ao -A21; -A3 I, (226) 

where fin is the raw incremental accelerometer imput to the computer and I
 

is the corrected accelerometer output. For each gyro the bias value is
 

computer from
 

6~,=~,i-g~q~B~q ~(227) 

where Bo, B1,.and B2 are constants with different values for each gyro and
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a
n is equal to AVb for gyros 1 and 2, AWb for gyros 3 and 4, and Au for gyros
 

5 and 6. Initially A0, Al, A2, A3, B0, B1, B2 
Sg+and S are set to
 

values determined from laboratory calibrations of each instrument. During
 

prelaunch and pre-ferry navigation calibration the values of Bo, Sg+, Sg-,
 

AO, and A1 are adjusted. Equations 224 and 225 represent the expected
 

instrument outputs. For each accelerometer a 
sum of N errors between actual
 

and expected outputs are accumulated by
 

6 
1 (3 5 ATI) (228) 

-and likewise-for the gyros using formulas of the type
 

where I and Ig are the corrected accelerometer and gyro incremental inputs.
 

From equations 208 and 207 the accumulated errors are
 

,- ++ &'NAT (229)
 
and 

and 
 (230)
 
=3-(Af n.s+ 55 )TA 

Because g8 and Ai. are constants unless the vehicle is moving with respect
 

* to the earth,there are no characteristics to distinguish between error 

contributions from scale factor and bias errors.In a platform system,the plat­

form. 
can be torqued to a new orientation to change the values of gs and a­

for each system. This cannot be done for a strapdown system. Analysis of
 

expected error sources will be used to determine the proportioning of the
 

accumulated error to bias and gcale 
factor sources. The instruments will be
 

calibrated using the formul&a:
 

A4- NAT $ 
(231)
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Lat . (232)F3 = IVAT 

A5- K2 E (233)
NAT 

(234)C-T -AK ns 
NAT 

where K1 and K2 are constants having a value between 0 and 1.
 

This completes the description of the computations required by the strapdown 

inertial navigation systems. These equations are distributed between several 

programs dependent upon mission phase and solution rate requirements. 

Figure 5-42 is a flow diagram of the Strap Down inertial navigation start 

up program which is scheduled during pre launch or pre ferry and run at 

a 16 times per second rate. Upon entry to the program,power is commanded 

to the gyros and accelerometers and then tested. The Gyro bias and scale 

factor registers are then loaded and the temperature control program scheduled. 

A wait is then programmed to allow the gyro rotor to come up to speed and 

then the.gyro rotor speed, tested. If either power supply voltage or rotor 

speed tests indicate a failed instrument, appropriate error messages are issued 

and flags set to select the proper P matrix. Pre calibration and calibration 

computations are then performed. Figure 5-43 is a flow diagram of the pre 

calibration and calibration procedure. Before calibration is started, the 

accelerometers and gyros are tested to determine if they have reached their 

nominal temperature valve.If a nominal temperature for all instruments
 

is not achieved within a preset period, appropriate error messages are generated. 

Vehicle attitude readings from ground equipment optics(or keyboard entries 

for a ferry mission) are sampled and used to initialize the VL' L' and 

filter equations. Duing prelaunch, a wait is then programmed during which 
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time the optical attitude inputs are filtered. The direction cosine 

matrix [ C]is ther generated by computing the individual rotational 

transformation matrices from inertial coordinates to body axis coor-


The gravitational and
dinates, forming the matrix product. 


earth rate vectors are then formed and transformed to the body axis
 

system. The gravity and earth rate components along each instruments
 

are then formed. A wait is then programmed during whichsensitive axis 

time the SD64 program accumulates Ea and E . During this time, the 

direction cosine matrix and the gravitational and earth rate vectors
 

the bias andare continously updated. At the end of the wait periodi 

scale factor errors for each instrument are computed and corrections
 

made to the initialized valves. The inertial position and velocity 

vectors i and R are computed and initialized. 

Figure 5-44 is a flow diagram of the main strapdown inertial navigation 

program. This program is executed at a 64 times per second iteration
 

rate. First bias and scale factor corrections are applied to each
 

accelerometer output. A flag is then tested to determine if the system 

is in the process of being calibrated or in flight program usage. During 

calibration, Ea and Eg for each instrument is computed and the program 

exited. If the program is being pxecuted for the flight mission, each 

instrument output is filtered to provide fault detection inputs. Body 

axis outputs 0a and 6 are then generated by multipying each set of 
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instrument outputs by the appropriate tPjmatrix. Fault detection 

parameters are then computed and tests performed to determine if a
 

fault exists. If a fault does existfault isolation computations 

are performed. If the fault can be isolateda new 1PJ matrix is 

selected and a new set of body axis outputs computed. The body 

axis gyro outputs are then used to generate the updated direction 

dosine matrix. - The accelerometers body axis outputs are then rotated 

to inertial space using the direction cosine matrix and integrated 

twice to form R and R. 

Figure 5-45 shows a more detailed flow diagram of the failure detection 

and isolation computations required of the main strapdown inertial
 

navigation program. The program indicated by Figure 5-45 must be executed 

twice, once for detection and isolation of gyro failures and once for 

accelerometer failures. First a test is made to determine if all six 

instruments are operating or if previous tests have reduced the number 

to 5 or 4. If six instruments are operating F1 , F6 , G and G6are computed 

and G and G6 tested. A fault is detected if either 0I or G6 is a 1. 

If a fault is detected,direct measurements on each instrument are made. 

These direct measurements-include power supply voltages, output magnitudes 

to determine if the instrument output is zero or full scale, measurements 

of rotor speed for the gyros, and comparison with the orbiter outputs if the 

mission phase is boost. If a fault cannot be isolated by direct measure­

mentsthen all 15 values of Gi are computed and tested to determine if 

their values match one of the patterns of Figure 5-37. If a fault cannot 

be isolatedan appropriate error message is issued. If a fault is isolated
 

a new TY] martix is selected and an error message issued.
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If the original testing showed only 5 instruments operatingthen
 

two values of F are evaluated. The values of F evaluated are chosen
 

according to which instruments are operating as described by Figure
 

5-138 Two values of G are constructed from the two F values and 

tested. If either value is 1,a fault has been detected and direct
 

measurements oii the instrument are first performed to isolate 

the fault. If the fault cannot be isolated in this manier,5 values 

of G are computed. The 5 values of G computed are dependent upon 

which instrument has been previously isolated as indicated by Figure 

5-39. If all six values of G are one, a multiple failure is indicated 

and a branch to the four instrument fault isolation procedure is made. 

If the failed instrument is isolated,a new P martix is selected and
 

an error message generated.
 

If the initial testing showed only 4 instruments operating,one value
 

df F is generated according to Figure 5-40. A value of G is computed
 

from the value of F and tested. If the value of G is 1 a fault is 

detected. Fault isolation cca sists of first performing direct measure­

rients upon the 4 remaining instruments. If the fault cannot be isolated 

by direct measurements then al possible three instrument outputs are 

transformed to body axis and compared with the trend analysis outputs. 

The errors between trend analysis and instrument outputs are used to 

select a[P] matrix and isolate the failed instrument. 
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Figure 5-46 is the flow diagram of the program (SD32) required to 

generate attitude reference data from the Strapdown system. The
 

program will be run at a 32 per second iteration rate. On entering
 

the program, a test is made to determine which mission phase exists. 

If the mission phase is boost or coast the Euler angle attitudes 0, 

and $ with respect to inertial space are generated. If the mission 

phase is reentry cruise or landing, the direction cosine matrix terms
 

from body to locally level coordinates are computed and the Euler 

angle attitudes 01, and 0 with respect to local level coordinates 

are evaluated. The velocity of the vehicle with respect to the earth is 

then computed and angle of attack o( and side slip angle ' generated. 

Figure 5- 47is a flow diagram of the program (SD16).required to generate 

trend analysis values for fault isolation of a failed instrument with 

only four instruments operating. The program will be 'executed at a 

'16 per second iteration rate.. Upon entering the program dynamic pressure 

Mach number and aerodynamic coefficients are computed. Then the aero­

dynamic and airbreathing engine forces and torques are computed. The
 

control surface effectiveness is then computed, followed by computations
 

of the aerodynamic control torques. The vehicles mass and inertia and
 

correction forces and torques are computed to make the strapdown system
 

and trend analysis outputs converge. The vehicle forces and torques are 

then summed and the linear and angular accelerations formed. These 

are integrated and'the angle of attack, side slip angle and altitude 

computed. 
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Figure 5-48 is a flow diagram of the program (SD02) required to form 

navigation parameters and achieve strapdown system updating. The
 

program is run at a 2 per second iteration rate. Upon entry to the
 

program the local gravitational constant g, is computed. Mission
 

phase is then tested and the program exited if the mission phase is 

boost. If the mission phase is coast, reentry, cruise, or landing the
 

vehicle position and velocity is transformed to an earth fixed coor­

dinate frame . Geocentric latitude and longitude and the vehicle.'s 

altitude is then computed. The vehicle's velocity is then transformed 

to a locally level coordinate system. Heading and vertical velocity
 

are then generated. Geodetic latitude and longitude is computed. The
 

[Q] matrix is then generated by forming the required partial derivitives. 

The j vector is evaluted and the strapdown navigation integrators are 

updated. 

Figure 5-49 is a flow diagram of the program (SD01) required to control 

the temperature of the strapdown gyros and accelerometers. This program 

is executed at a one per second iteration rate. Upon entering the 

programindexes are set up to pick up the temperatures of each instrument 

one at a time. These temperatures are compared with tvo limit values. 

The instruments heater is turned on if the temperature is below a lower 

limit and turned off if the temperature is above an upper limit. Each 

instrument is tested in the same manner. 
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5.4.2 Air Data System 

The air data system converts the air data sensor pressures and tempersture
 

to altitude, velocity, angle of attack, and side slip angle data for
 

use in updating the strapdown inertial navigation system and for
 

various pilot displays. The raw data from the pressure sensors must
 

be corrected for installation anomalies. This correction is achieved
 

using the formulas
 

'= ?s c. (1) 

PPF jO Q-+ P + , , (2) 

P~fr a-;4T6 4-aoil r -rtcb 2 5ftQcJ8fr (3) 

f + (5) 

+ aOL,7(6) 

Where PI is corrected static pressure, P corrected pitot pressure,
 
a p 

PgT corrected pressure from the top angle of attack probe slot, P,
 

corrected pressure from the right slot, and PSL corrected pressure
 

from the left slot. The "barred"f pressures are raw sensor data and the
 

a's are calibration constants. Static pressure must be corrected for
 

speed and angle of attack. This correction is achieved using the
 

formula
 

F '(1 -- 2Mf1+P lla, a,M)(I+a,,c<+c 
(7' 

where M is speed expressed in Mach number and oc is computed angle of 

attack. 
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True dynamic pressure, Q, is obtained from: 

:PF 5(8) 

True dynamic pressure is a measure of the local change in pressure 

caused by the vehicle distrubance upon the air mass. 

Altitude is computed from one of two formulas dependent upon the 

vehicle altitude. These two formulas are 

H=*ISff7-7188.? P' For -2000(H<360? (9) 

and
 

H=756-I/.7-20o.7Jnpfor3(O89<H (10) 

Mach number is computed from one of two formulas dependent upon the
 

value of Mach number. These two formulas are 

n=[s(*+_ +) ' For -,<1 (11) 

and
 

"- t += o for f i (12) 

where
 

-and 


z .0-1917 (q.;. (14) 
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If M is greater than 1 then equation'12 must be solved forM. A
 

solution for M is achieved by estimating the value of M and improving
 

the estimate using the formula
 

Mo+f2PM= f (15) 

M0',.-2f, Pt, 
where Mo is the estimated value of M. Normally the estimated value of 

M will be the previous value of M determined on the last iterative pass 

through the program. On the first pass through the program during 

reentry an initial estimate of Mo 44 will be made. During the initial 

pass through the program equation 15 will be solved several times using 

the former solution as the estimated value Of Mo-fr each subsequent
 

solution. Whenever IM.- Mo>.01 multiple solutions of equation 15 will
 

be used. The number of multiple solutions used during any one program
 

pass will be limited to five.
 

An air data computer generally has severalair.speed outputs. For the
 

space shuttle booster,it is assumed that indicated air speed, equivalent
 

air speed and true air speed will be computed. Each of these speed
 

calculations are employed for different purposes in the mission.
 

Calibrated air speed, Vc, is computed in a manner~very similar to that
 
employed in obtaining Mach number. If-V is below 661.47 knots it is 

c 

computed from the formula 

vc \1~25 os= 2\5.8 'Q \'/0
"2 .921)35-1 

1 
(16) 

and if V,'is,greater than 661.47 knots it is obtained by solving the
 

equation
 

(17)C2.8 
-25 7­



where 

r2z9.92-1 

and 

°
Sx 6.10 (19)2 


The calibrated air speed at which the booster will stall is the same at
 

any altitude or temperature. Thus Vc is compared against the stall
 

speed constant, Vcs, and a warning issued if the vehicle approaches
 

stall. 

Equivalent air speed is computed from the formula 

Ve =KM (20) 

Vehicle safety limits are generally expressed as tabulations of
 

equivalent airspeed versus temperature and Mach number versus temp­

erature. These limits will be-computed using the formulas 

, +4V 77 -a%, 7 " (21)VeL z = v 2

and 

ML. Qo + QM,T +aQ&(± aMS1 (22) 

If either V or M exceed their computed Limit value a warning will be
 

issued. Ti is the temperature sensor input.
 

True air speed is computed from the formula
 

V7 _+1 (23)-K 

True air speed is displayed to the pilot and used for inertial
 

navigation updates.
 

Indicated angle of attack and side slip angles are computed from the
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formulas: 

0i=K Icr-qB (24) 

and, 

/ K: RO- P4 (25) 

Indicated angle of attack and side slip angle are then corrected
 

for installation anomalies by the formulas:
 

o=t +K tKoz (26)+iK ." 

and, 

K~o + KoI&)+ Ytz 62 (27) 

Figure 5-50 is a flow diagram of the program (DCP) used to generate,
 

air data outputs. This program is run at an 8 per second iteration
 

rate.
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5.43 Magnetic Flux Gate Compass 

The magnetic flux gate compass provides a measure of the angle
 

between the vehicle body X axis and the earth's north magnetic pole.
 

The following tasks are performed by the EMS system in monitoring
 

and controlling the magnetic flux gate compass
 

1. Ground checkout
 

2. In-flight monitoring
 

3. Temperature control
 

4. Magnetic heading computations
 

5. Magnetic declination correction
 

6. 'Gyro torquing
 

Magnetic heading, Wmh, is delivered to the EMS as two data input
 

items f andrL which are related to m by the equations. 

V, K s(imh 

and
 

"i.K co6s" h (2)
 

The angle ni is thus determined from
 

YPmh = t L (3) 

This angle must be corrected for magnetic declination.' -Magnetic declination
 

is a complex empirical function of latitude -and Iongitude. Near the poles
 

magnetic declination experiences significant daily, seasonal and random
 

changes resulting in unpredictable declination values. Because of the
 

complexity of the magnetic declination function of latitude and longitude
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correction values must be generated in the DMS by table look up. 

Because of the unpredictability of magnetic declination in the polar 

regions not all of the earth's surface can be covered. However, over 

85% of the earth's surface can be covered to'within .10 accuracy using 

a table having 2500 entries or over 70% of the earth's surface covered to 

1 accuracy with a table having 250 entries. It is assumed that two look 

up tables will be used, one containing 100 points covering the expected 

mission area to .10 accuncy. One hundred points will allow a square 

coverage area having approximately 2500 mile sides. The second look up 

table will contain 250 entries generating 10 accuracy over 70% of the 

earth's surface. The magnetic flux gate compass will not be used in the 

polar regions due to itsinaccuracy. 

In order to define the table loop up operation the following parameters
 

must be defined: 

X longitude of the space shuttle location 

L latitude of the space shuttle location 

Ln North latitude limit of coarse table entries 

Lmi,, South latitude limit of five table entries 

LmQx North latitude limit of five table entries 

Amta West longitude limit of five table entires 

NMax East longitude limit of five table entries 

AL latitude difference between table entries 

A\ longitude difference between table entries 

Lo closest table entry latitude value less than 

closest table entry longitude value less than 
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There are different-values of AL,A9,Le, and .Xcfor each table and
 

the value of L0 and oare dependent upon the values of L and > 

respectively. If the magneti5 declination is a function of A 'nd L it 

can be represented by the functiorial notation 

L) (4) 

The differential of W is.given,by: 

C)A L (5) 

The value of P at the point X,L is determined by an approximate 

application of equation 5 which is 

=l Q+')+ Qx-,L QA0 
AX 

+ F(XOLo+A L)-F oL6)(L-L-) (6)A.L
 

The heading angle Wh is then determined from 

Before equation 6 is employed tests must be made to-determine which table
 

should be used.
 

Figure 5-51 is a flow diagram of the magnetic flux gate compass ground
 

checkout program (MCGc). Upon entry to the program the-ac and dc power
 

5iscretes are issued. A wait is then programmed'allowing sufficient delay
 

eor power turn on transients to decay and the supply 'voltagesto the magnetic
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flux gate compass system then tested. An additional wait is then
 

programmed to allow for the gyro rotor speed and temperature to 

reach nominal value. The rotor speed, temperature and oscillator
 

frequency are then tested. The X torquer loop is then commanded to
 

0° .  A test is then made to approximately determine th6 vehicle attitude
 

by testing mission phase for prelaunch or preferry. If the mission phase 

is prelaunch, the Y torquer loop is commanded to 900, if preferry to 

0°. A wait is then programmed to allow for torquer loop transient decay. 

The X and Y torquer loop pickoff values are then read and tested. The 

compass outputs V andqfr are read and vehicle heading computed and tested. 

The local magnetic declination and actual vehicle heading are inut through 

the keyboard for this test. The gyro torquer loop responseis then tested 

by issuing a set of step commands and reading the torquer loop pickoff 

outputs at selected time points and testing against stored response data. 

Mission mode is then tested and the power to the magnetic flux gate compass 

commanded off if-the mode is prelaunch. If any of the tests fail, error 

messages are issued and the power turned off. This program is run at a 1 

per second iteration rate. 

Figure 5-52 is a flow diagram of the magnetic flux gate compass temperature
 

control and monitoring program (MCTM). This program is scheduled for both 

prelaunch and preferry checkout and during the flight modes using the magnetic 

flux gate compass. The program is run at a 1 per second iteration rate.
 

A temperature control cycle is run with every entry to the program. This
 

cycle consists of comparing the measured temperature with an upper and lower 

temperature value, T1 and T0.
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Figare 5-51 Magneti Plux Gate Compass 1heklout (mccc) 
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If the temperature is above the upper level T1, the heater is turned off 

and if below the lower level To, the heater is turned on. The mission 

mode is then tested and if the mode is prelaunch or preferry, the 

program is exited. If it is a flight mode a test is made to determine 

if this is an initial entry to the program. If it is an initial entry, 

the power is turned on and a wait programmed to allow the gyro rotor speed 

and temperature to achieve nominal values. Otherwise the power, rotor 

speed and oscillator frequency is tested. If any test fails an error
 

message is issued and the power commanded off.
 

Figure 5-53 is the flow diagram of the magnetic flux gate compass heading 

program (MCHP) run at a 4 per second iteration rate. This program is 

assigned the tasks of slaving the compass gyro to the inertial navigation 

gyro outputs and computing the vehicle heading. In order to test the 

gyro torquing loops a model output is computed and compared with the
 

gyro pickoff outputs. If the comparison fails an error message is issued
 

and the power to the magnetic flux gate compass is turned off. With
 

proper operation determined, the values of 0 and 0 from the strapdown
 

inertial navigation systems are issued as commands to the two torquing
 

loops. The model outputs for the next pass comparison are then generated
 

using the formulas for the pitch torquing loop of:
 

E= G r (8) 
Tn= K ,-i + K2 En (9) 

Gpo, = Upon_,+ K(T (1O) 
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where 0po is the modeled pickoff output, and K , K2 and K 3 are constants
 

defined by the torquing loop dynamics. Magnetic heading, tp, is 

then computed according to equation 3. A test is then made to determine 

if the vehicle latitude and longitude is within the fine magnetic declination 

table. Actual latitude and longitude, % and L , are tested against the 

table limits of Amax' Amin , max, and Lmi n in making this determination. 

If the vehicle is determined to be outside the fine table area, a test 

is made to determine if it is in the coarse table area. It is assumed that 

the coarse table covers the entire earth except for the two polar regions. 

Thus only a test of latitude is required. If the vehicle position is not 

covered by either table a message is issued. The magnetic flux gate compass 

is maintained operable so that outputs will automatically be generated. 

if the vehicle enters either table area. 

Upon determining that the vehicle is within a table area the value of magentic 

declination for the vehicle position must be computed. The same table look 

up procedure is used for the fine and coarse tables. Values of f(A . L 

are stored in sequential memory locations starting at location AOwith the 

following order: 

f(Xmrnn Lmn )
 
f
 
f(Xm;n-+X L )in) 

fC(\i,3 LMjrh±AL) 

f(X\Mgx1 Lmax) -268­



Using the bracket notation [X] to denote the largest integer less the"
 

X then 

L= [,L/ALJAL (11) 

X0 ELX/AAJAX 

and the address of f(, L0 ) is 

ACQ Ao4L n+ J3f1L -Lr) (12) 
L
C_ 

where
 

8 EMAX nj+I (13) 

and the addresses of f(X0+4XL) and-f(X, L,+AL) are: 

A(fo =A(fo) (14) 

(15) 

The value of 4 is then formed according to equation'6 and VI,, according
 

to equation 7.
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5.4.4 TACAN Receiver 

The TACAN receiver is a major navigational source during -cruise flight. 

Its output is used to continously update the inertial navigation system 

and is a primary navigation source. The navigation data produced by 

the TACAN receiver is bearing and slant range to a TACAN ground station.
 

This raw navigation data is converted to vehicle latitude,, longitude and
 

horizontal velocity. The tasks required of the DMS by the TACAN are:
 

1. Checkout
 

2. Station identification
 

3. Bearing determination
 

4. Slant range determination 

5. Horizontal range determination 

6. Return Pulse tracking 

7. Navigation Data Generation
 

Figure 5-54 is a flow diagram of the TACAN ground checkout program (TONC). 

Upon entering the program the power is turned on and a wait programmed to 

allow for power transients to decay before testing the supply power. Another 

wait is then programmed to allow for the temperature of the crystal oven and 

electronics to stabilize before testing. The bearing thentest command is 

issued and a programming loop initialized to test the TACAN bearing system 

at several bearing values. The loop consists of issuing a bearing test 

value, waiting a length of time for the bearing electronics to phase lock 

on the test signal, testing for the existance of the bearing valid discrete, 

comparing the returned bearing value with issued alue, and testing for loop
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completion. The distance measuring equipment is tested in a manner 

similar to the bearing equipment test. The range test discrete is 

issued to command the distance measuring equipment into a test con­

figuration and a program loop initialized. Within the 18op the slot 

center position is commanded to a preset value and a wait programmed. 

The number of interrogations transmitted and the number of replies 

received are then tested against a prestored value. The position of the 

slot center and the position of the return within the slot is tested. 

After completion of the distance measuring equipment testing loop a 

mission mode test is performed. If the mission mode is prelaunch,
 

power is turned off. The failure of any test causes an error message to
 

be issued and the power to be turned off. The program is run at a 1
 

per second iteration rate.
 

Figure 5-55 is the TACAN monitoring and temperature control program (TCNM). 

This program is scheduled at a 1 per second iteration rate whenever the
 

TAQAN checkout program or the TACAN Navigation program is scheduled. The 

program has two entries, a normal entry and an initial entry point. The 

initial entry is not used with the TACAN checkout program. Entering 

the program at the initial entry causes the power on discretes to be issued­

followed by a programmed wait to allow for power transients to decay. The 

initial entry program then joins with the normal entry program and the 

supply voltages and electronics temperature are tested. The crystal oven 

temperature is then tested against extreme bounds to determine a possible 

failure in the heater control. If any of these tests fail, an error
 

message is generated and the TACAN power turned off. If the tests indicate
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Figure 5-54 TACAN ChockouL (TCNC)
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Figure 5-55 TACAN Monitoring and Temperature Control (TC) 
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the TACAN eqt4pment is properly functioningoven temperature control
 

programming is executed. Temperature is controlled by turning
 

the heaters off if the oven temperature is above a value T. and on
 

if below a: value T2.
 

Figure 5-56 is a flow diagram of the TACAN navigation program (TCNN) 

which is run at a four per second iteration rate. Upon entering the 

program,a test is made to determine if the channel select knobs on 

the receiver have changed since the last pass through the program. If 

they have changed,the program is forced to the search mode. The channel 

number is then used to select station parameters from a table. The
 

data stored for each station in the table is:
 

L latitude of'the stations 

)( longitude of the station 

h altitude of the station above sea level 

WVd magnetic, declination at ground station­

plus the channel number. It isassumed that a mission plus 'Iternatives 

for the booster will not require more than 30 stations in the table.
 

There may be more than one station in the ,table with the same channel 

number. To locate the desired table entry a search through all table 

entries is made for those stations having the same, channel number as that 

selected by the receiver. If the search determines that there are no 

table entries having the receiver channel number it is assumed that the 

pilot is in the process of selecting a channel with the channel selector 

setting on some intermediate value when sampled. 
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The TACAN ground station receives a pulse from the aircraft and 

retransmitts the pulse. The time between the transmission of the
 

original pulse by the TACAN set on the vehicle and the reception 

of the return slot is given by:
 

r VC= j (5) 

where C is the speed of light and Td is the time between the ground 

station reception of the pulse and its retransmission. 

Two timers, T1 and T2 are also set in the program branch executed after
 

finding a new receiver channel has been selected. Testing is then
 

performed which generates a three way branch. One branch is taken if
 

the operating mode is search and the ratio of return pulses to inter­

rogation pulses is less than a constant value)r, . If this branch is taken 

the receiver is in the process of.looking for the return time slot. The 

timer T2 controls how long the receiver searches each possible slot 

position before trying a new slot position. If the return to interrogation
 

pulse ratio is not found to be larger than r by the time T2 seconds have 

elapsed a new slot position is commanded. If Ts is the original slot 

position as computed .byequation 5 then the sequence of slot positions is 

T, +AT, -AT, +2AT, T - 2AT, ... etc. A maximum andTs Ts Ts 

minimum slot position limit is tested and only those slot positions between 

the limits are issued to the TACAN receiver. If the entire range is 

covered without finding a sufficient return to interrogation pulse ratio 

an.error message is issued and the process is restarted. 
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If the operation mode is track and an insufficient return to inter­

rogation ratio is found for a period of T seconds the search mode 

is entered. If the return to interrogation pulse ratio is greater 

than r. the mode is set to track and the T counter is reset. A 

test is performed to determine if bearing is valid. If bearing is 

valid both range and bearing is available and all TACAN navigation 

outputs can be computed. ' The bearing angle is read from the TACAN 

receiver and corrected for magnetic declination by computing:
 

Wk + Wd (6) 

where q is the bearing angle from the TACAN receiver and 1/d is the
 

ground station magnetic declination angle.
 

Slant range is computer from the formula
 

I . (7) 

where T is the position of the slot center, T is the accumulated return
 

position within the slot, NR the number of returns received, Td the delay
 

time between the ground station receiving the pulse and transmitting a 

return, and C the speed of light. Horizontal range is computed and 

converted to a central earth angle using the formula: 

0- (8)
 

here the local radius I7 is found from
 

re (9)
 
+SI _NP7 
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The longitude of the vehicle is found from,
 

A=~+Sirrjj-SIN IN J (1 ,, S+s ir I COSLS 1 (oQ 

and the latitude of the vehicle from
 
• r CagO- 1 

LI-s 
 -~ .SIN L~sNvhISIW' J rJ (11) 

The vehicle horizontal velocity is then computed using a flat earth model,
 

The velocity magnitude is found from
 
V= 

V.-( -n-+(L -Ln-,) (12) 

where the subscripts n and n-1 are standard' difference equation notation.
 

Vehicle heading is determined from
 

#'= L ('13) 

On each pass through the program the TACAN receiver DME time slot is
 

adjusted so that it will track the returns. 
 The slot center position 

T is computed by solving the two difference equations.
a 

1IV= [ - 4-aR (14)
 

and
 

T + (15)
 

If the ratio of the number of returns to interrogations is less than
 

ro then TN R is assumed zero.
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For this case a wait is programmed and if the same channel remains 

selected after the wait is over, an error message is issued. The
 

closest station is selected if it is determined that more than one
 

table entry has the same channel number as the receiver. The clos­

est station is the one which has the minimum value of: 

5- 9 + ( L - Ls)2 1 

where A and L is the longitude and latitude of the vehicle as determined 

from the inertial navigation program.
 

The expected line of sight distance from the vehicle to the station is then 

computed for use in estimating the position of the receiver return slot.
 

To accomplish this, first the earth's central angle between the vehicle 

and ground station is computed from:
 

a-=Cos'[SJNLILs+ COSL CqSL, cos-jy3 (2) 

A spherical earth model having a radius equal to the local earth radius
 

at the ground station plus the ground station elevation is used to deter­

mine the ground distance between the vehicle and ground station. This
 

is determined by computing:
,,= L--Ih..eswZs19 re (3) 

where r.is the earth's equatorial radius and E is the ellipticity of the 

earth. The line of sight distance is then computed from 
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5.4.5 Landing Systems
 

The space shuttle booster avionics system will include,an Advanced
 

Instrument Landing System (AILS) and an Instrument Landing System
 

(ILS). The AILS is the more sophisticated system providing zero­

zero landing capabilities. The ILS system is included to assist
 

landing at airports not equipped with. AILS ground equipment. Only 

one of the two systems will be used for any particular landing. 

The systems are activated during landing approach. Both systems are
 

checked out during pre-launch and pre-ferry. These systems are the
 

primary source of navigation data during final approach and landing. 

AILS
 

Three programs are used in conjunction with the AILS. These are a 

ground checkout program, an inflight monitoring program, and the 

landing systems navigation program. Figure 5-57 is a representation of 

the parameters associated with landing navigation. The output of 

the AILS is the elevation angle7. , the azimuth angle 7' and line of 

sight range from the vehicle to the end of the runway R. The location 

of the end of the runway in coordinates of longitude*)\,, latitude L., 

elevation k5, and the bearing of the runway center line Yc will be 

stored in the computer. It is assumed that 20 values is sufficient
 

for all the airports required of any mission plus mission alternates.
 

It is required that the EMS compute the vehicle position in navigation 

coordinates N, L , and h'and with respect to the desired landing 

flight path E and A. The inertial navigation system will be updated 

so that it can provide a reference during final approach in the event
 

of a sudden AILS failure. 
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Figure 5-57 Landing Navigation Parameters 
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Because of the short range of operation of the AILS (25 nautical
 

miles) a flat earth model can be used for the required computations.
 

To convert distance values to earth central angles a local radius
 

value is required. This is determined from
 

• 	 h_+ _= (1) 
/ I+ aES!NzL 

5 

The longitude, of the vehicle is determined from: 

P'cosYlcos (V,, - T)+ r COsL s 	 (2) 

and the latitude from:
 

L = Ls + 	 )P­
r 	 (3 

The altitude of the vehicle is given by,:
 

h hs -I-R StNN 	 (4) 

The two control parameters are determined from
 

A= RsmYr 	 (5) 

and
 

F= R cos n (9? -77) 	 (6) 

where is the commanded flight path angle. The desired flight
 

path is not a straight line but becomes tangent to the runway at zero
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range and tangent to a constant descent line at intermediate and 

large ranges from the runway. A function which exhibits these 

properties is: 

K, R( 

In the event of the AILS failing during final approach, the inertial 

navigation system can be used for landing. The AILS failure must 

have occurred after an accurate inertial navigation update has been 

obtained using the AILS. Landing must occur within a short time after 

this update to insure that inertial navigation system drifts are 

not significant. To provide this capability, the landing system 

parameters E, A, and R must be computed from inertial navigation 

outputs. This is done using the formulas: 

R- 4 r 1 (LL)r(,\ ,\ ) 2+(-s) (8) 

A= (x-Xs)cosLs IN4/, - (L-L.) cos4 (9) 
and (L'L-Ls) + ( Xs)T coszLs 

E [(A . COSLs cOS1+ (L-Ls) ssNQ SIN J 0) o) 

Figure 5-58 is a flow diagram of the AILS ground checkout program 

(AILS); Upon entry to the program power on discretes are issued. A 

wait is then programmed to allow for power transients to decay and the 

3upply power tested. Test configuration number I is then commanded 

ind a pointer established to reference test configuration number 1 

est limits. The range slot center position is commanded to the expected
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return position and a wait programmed to give sufficient time for
 

the AILS to generate the proper returns. A test is then made of
 

.the range valid discrete, the elevation valid discrete, the azimuth
 

angle, the left right azimuth discrete, the position of the range
 

return in the slot, the number of range pulse transmissions, and the
 

number of range pulse returns. A test is then made to determine if 

the AILS is commanded to test configuration number 1. If it is, test
 

configuration number 2 is commanded, a pointer established to reference
 

test configuration number 2 test limitsand a branch made to the point 

in the program where the range slot center position is set. If the test
 

shows that the AILS is not commanded to test configuration number 1.the 

electronics temperature is tested and the AILS is commanded back to 

the 'operational configuration. The power is then commanded off and 

the program exited. If any test in the program indicates a failure, 

an error message is issued and the power is turned off. This program 

is run-at a 1 per second iteration rate. 

Figure 5-59 is-a flow diagram of the AILS inflight monitoring program
 

(AILM). This program is run at a 1-per-second iteration rate. -Upon
 

entry to the program the power on discretes are issued and await
 

programmed to allow for power transients to decay. The AILS is
 

then commanded to an operational configuration and the power and 

electronics temperature tested. If either test fails an error message 

is issued and the power turned off.
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Figure 5-60 is a flow diagram of the main AILS navigation program. 

This program is run at a 4 per second iteration rate. The program 

has an initial and normal entry point. Figure 5-64 includes a 

flow diagram of the initialization program. The airport parameters 

of latitude, longitude, elevation, and runway bearing are extracted 

from the airport data table. The data extracted is for the closest
 

airport to the vehicle when the AILS is energized. Pilot override to 

select a different airport will be available. The center of the range 

slot position is then commanded according to the formula: 

where R is the range between the vehicle and the airport, C the speed 

of light and 
-d
T the time delay between the ground station reception 

of a range pulse and its retransmission. Four timers are then initial­

ized, T1 which is used to control the time allowed for the testing 

of each range -slot position for an acceptable return before the next 

slot position is tested, and TA, TE, and TR which are used to time the 

maximum period allowable between valid azimuth, elevation and range 

returns respectively. Four flags are then initialized, F1 , FA, FE and 

FR. F1 is used to indicate whether or not the.inertial navigation system
 

has been sufficiently updated for use in the event of an AILS- failure. 

FA has three possible states 0, 1, and 2 used to indicate respectively 

that azimuth data has not been received since entry to the .program, 
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Figure 5-60 AILS Navigation (ALN) 
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azimuth data is OK, and azimuth data has previously been received but
 

not recently enough to be accurate. FE and FR are identical to FA
 

exbept they are associated with elevation and range respectively,
 

rather than azimuth. A mode flag is set to indicate the range equip­

ment is in a search mode and a wait programmed to allow for the AILS
 

to start generating outputs.
 

Referring to Figure 5-60 upon completing the initialization programming,
 

the initial entry and normal entry programming coincide. The collect­

ion and testing of range data is then performed. A detailed flow
 

diagram of the collection and testing of range data is shown in Figure
 

5-61. First a test is performed to determine if the operational mode
 

is search or track. If the mode is track a test of the range valid
 

discrete is made. If the range is valid the ratio of return pulses
 

to interrogation pulses is compared against a prestored constant.
 

If the ratio is above the constant value,range is computed from
 

IV (12) 

where T is the commanded range slot center position, Tc is the acc­

umulated position of the returns in the slot, NR s the number of returns, 

Td is the ground station delay between reception and transmission of 

the pulse, and C is the speed of light. The slot center is then
 

moved to track the return if the range flag (FR) is 1. The range slot
 

is tracked using the formula
 

2 

TS'n= k.,I - (13) 
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If the range flag is not equal to 1 the value of Rnl" is not known, 

and thus ,insufficient data is available to evaluate the new range
 

slot position. In either case the timer TR is reset and the range
 

flag set -to 1. 

If the initial track mode testing indicated either range invalid or,
 

the return to interrogation ratio inadequate, the range timer (TR) 

is decremented ,and tested. 
If the timer has not run outno further
 

action is taken until -the next pass through the program., If the timer 

has run out, the mode is changed to search, and the nprml- search path 

with no range data available is taken. 

If the initial test showed that the operating mode ,as track, a test
 

of the 'range valid discrete and the return to interrogation pulse 

ratio is performed. If good range data is available the mode is set
 

to track, the T1 counter is reset ,and the previously described com­

putation of range ,and range slot tracking is performed,. If valid range 

data is not available the timer T is decremented and tested. If the
 

timer has not run out no further action is taken until the next pass 

through the program. If the T timer has run out the slot is moved 

to a new position. If the position of the slot determined by,the 

initialization programming or the position of the slot when track was 

lost is Tso, then the -slot is repositioned according to the sequence: 

Tso, To+ Ts Tso-ATs, To+2A T, etc. 
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The T timer is then reset and the TR timer decremented and tested. 

If the timer TR has run out and the range flag FR is 1, the range 

flag is set to 2. 

Figure 5-62 is a detailed flow diagram of the testing required to 

determine if the AILS generated Elevation and Azimuth data is valid. 

First the elevation valid discrete is tested. If elevation data is 

valid the timer TE is reset and the flag FE set to 1. The elevation 

angle from the AILS is then picked up and stored for later use in the 

navigation calculations. If the elevation data is not valid the timer 

T is decremented and tested. If the timer has run out the flag FE 

is tested and set equal to 2 if it was previously 1. The azimuth 

angle is treated the same as the elevation angle with the exception 

of a signed azimuth angle constructed from the azimuth magnitude input 

and the left-right discrete input. 

Figure 5-63 is a detailed flow diagram of the AILS navigation computa­

tions and testing required by the remaining portion of the program of 

Figure 5-60. First the flags FR, FA, and FE are tested. If any flag 

is. set to zero the AILS is still in an initial operating configuration 

and no navigation data can be generated. If all three flags are 1, 

navigation data is available and values of A , L, h , A, IcI And E 

are generated by computing equations 2,3.4,5,7, and 6 respectively. 

The error between the AILS and inertial navigator data is compared
 

with a small value Eo . The inertial navigation update program will 
0 
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Figure 5-62 AILS Elevation and Azimuth Valid Testing (AEAV) 
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drive the inertial navigation outputs to coincide with the AILS
 

outputs such that after a few AILS inputs the comparison should
 

be less than E . When this occurs the flag F1 is set to 1 and the 

timer T2 is set. If any of the flags FR, FA or FE are equal to 

2, an indication that the AILS has stopped receiving data, a test
 

is made of flag FI to determine if the inertial navigation outputs 

are sufficiently updated for use as landing data. If 1 is a , 

a message is issued to inform the pilot that landing navigation data 

is now being provided from the inertial navigation system. Values
 

of R, A, and E are then computed using equations 8,9 and 10 respect­

ively. The timer T2 is then decremented and tested. If T2 is less
 

than zero or if F1 is zer an error message is issued indicating 

landing navigation data is unavailable. 

ILS
 

Since the ILS does not offer enough accuracy to achieve zero-zero 

landings a completely automatic landing cannot be made using ILS. 

The ILS will provide data to the pilot and commands to the pitch and
 

yaw control systems. Two programs are required for control and use 

of the ILS. These are a ground checkout program and an in-flight 

program. Both programs are run at a 1 per second iteration rate.
 

Figure 5-64 is a flow diagram of the ILS ground checkout program (ILSC). 

Upon entry to the program the AC and DC power on discretes are issued
 

and a wait programmed to allow for power transients to decay. The
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Figure 5-64 ILS Ground Checkout (ILSO) 
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supply voltages are then tested. The ILS is commanded to test
 

configuration number 1 and a pointer established to expected test 

values for test configuration number I outputs. The elevation angle, 

azimuth angle, marker beacon discretes, and signal strength discrete
 

are then tested against expected values. A test is then made to 

determine if test configuration number 1 is commanded. If it is, 

test configuration number 2 is commanded and elevation, azimuth, 

marker beacon discretes and the signal strength discrete tested
 

against configuration number 2 expected values. The electronics
 

temperature is then tested and the power turned off. If-any test 

indicates improper operation an error message is issued and the power
 

is turned off.
 

Figure 5-65 is a flow diagram of the ILS monitoring and navigation 

program (ILSN). The program has a normal and an initial entry point. 

Entering the program at the initial entry point causes the power on 

discretes to be issued. A wait is then .programmedto allow for power
 

transients to decay. The elevation and azimuth angles measured by 

the ILS are presented to the pilot on a displayand issued to the control 

system as pitch and yaw attitude commands. A gain is applied to these 

commands and in order to regulate the vehicle response this gain is 

decreased as the vehicle approaches the runway. The gain setting 

and reduction is controlled by setting the gain to a fixed value at 

each marker beacon crossing, and then decrementing the gain as a function 

of time in between the marker beacons. A lower limit on the gain value 

is used to keep the gain from becoming too small. The initialization 

program assigns an initial value to the gain, K, and the lower limit, L. 
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The initialization program also sets a flag indicating that ILS 

landing data is available to the control system. 

The power supply voltages and electronics temperature are first tested 

upon entering the program at the initial entry point. If either 

of these tests fail the power is turned off, and an error message issued 

to the pilot and the control system. The control system will dis­

engage the ILS steering commands when the signal strength is inade­

quate. 

A test is then performed to determine if any marker beacon discrete 

is on. The gain value and.gain limit value are set to the appropriate 

values if a marker beacon discrete is on. A flag indicating which 

marker beacon is being crossed is output to the pilot. If the inner 

marker beacon discrete is on, the attitude commands are disengaged 

from the control system. If no marker beacon discrete is onthe gain 

is decremented and tested against the limit value. If the gain is below 

the limit value it will be set equal to the limit value.
 

Pitch and yaw commands ( 0, and V ) are then computed by multiplying 

the programmed gain times the sensed elevation and azimuth angles 

respectively. These commands are then displayed and made available 

to the control system.
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54.6 Radar Sensors
 

The space shuttle booster contains two radar sensors, a radar
 

altimeter and a weather radar. Two programs within the UMS 

control the operation of the radar altimeter. Figure 5- is
 

a flow diagram of the radar altimeter ground checkout program
 

(RALC). This program is run at a 1 per second iteration rate.
 

Upon entering the program the power on discretes are issued, 

and a wait programmed to allow for all power transients to decay. 

The supply voltages are then tested. A timer is set to allow suff­

icient time for the temperature of the crystal controlled oscill­

ator oven to stabilize. While the timer is runningthe oven 

temperature is controlled by turning the heater off if the tem­

perature is above an upper limit T ,and on if the temperature is 

below a lower limit TL. The test configuration is commanded when 

the timer runs out. The radar altimeter altitude, signal.strength 

BITE output, oven temperature, and electronics temperature is 

tested against expected values. The power is then turned off and 

the program exited. In any of the tests indicate faulty operation 

an error message is generated-and the power turned off. 

Figure 5- 67is a flow diagram of the radar altimeter flight program 

(RALF). This program is run at a 1 per second iteration rate.- The 

program contains an initial and a normal entry point. In the initial
 

entry, the power is turned on and a delay programmed to allow for power 

transient decay. The radar altimeter is then commanded to an oper­

ational mode. A timer is set to allow sufficient time for the crystal
 

oven to achieve operating temperature. The oven temperature is then 
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Figue 5-66 Radar Altimeter Ground Checkout (RLO) 
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requested a navigation update using radar altimeter data. 
The
 

pilot must insert through the keyboard the value of the local.
 

terrain elevation along with his update request- The altitude
 

of the booster above sea level is then computed by adding the
 

local terrain elevation to the radar altimeter measured altitude.
 

Two programs are used in conjunction with the weather radar, a
 

ground checkout program, and an inflight monitoring program. 

Figure 5-68 is a flow diagram of the Weather Radar Ground Check­

out Program (WRAC).- This program is run at a 1 per second in­

eration rate. Upon entry to the program the AC and DC power on 

discretes are issued and a delay programmed to allow for power
 

transients to decay. The test configuration is then commanded.
 

A timer is set of sufficient length to allow the temperature of
 

the oven to stabilize at its nominal value. As the time is de­

cremented and testedthe oven temperature is controlled by turning 

the heater on if the temperature is below a lower limit value, and 

off if above an upper limit value. The supply voltage, oven tem­

perature, electronic temperature, and BITE output are then tested. 

If a failure is indicatedan error message is issued. After testing 

the power is turned off. 

Figure 5-69 is a flow diagramof the weather radar flight program (WRAF) 

rhis program is run at a 1 per second iteration rate. The program has 

an initial and normal entry-point. Upon entering the program at the 
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Figure 5-68 Weather Radar Ground Checkout (WRAC)A'o
 
OoKfiguroCio
 

Tempp
 

output x 
 NOutputsI nstrument I 

H Y s Osff No- No o No 

No SeaoC
 

t Y Neater
 

re Oes TY 


J
 
J= I+j NoEro 

And TestNo
 

IssueWRA 

-
VodeatDec 


flight ProF'rm(WRA?) Figure 5-70 Miscellaneo0us Instrument Monitor-Figure 5-69 Weather Radar 

-298­



initial entry point the power on "discretes are issued and delay
 

programmed to allow for power transients to decay. The operational
 

configuration is then commanded and a timer set. Control is then 

transferred to the normal entry point of the program. Upon en­

tering the program at the normal entry pointan oven temperature 

control cycle is performed where the heater is turned off if the 

oven temperature is above an upper limit,and off if below a lower 

limit. The timer set by the initialization program is then de­

cremented and tested. Until the timer runs out only the oven 

temperature is performed at each entry to the program. After 

the timer runs outthe supply voltages, oven temperature, elect­

ronics temperature and BITE output are tested along with the 

performance of a temperature control cycle. If testing indicates
 

a failure, an error message is issued and the power turned off.
 

-299­



5.4.7 Miscellaneous Flight Instruments
 

The ground checkout and inflight monitoring of the miscellaneous 

flight instruments shall be performed by the same program. It
 

is assumed that the inputs from the flight instruments will be 

parameters already developed by the navigation system within the 

124 making comparison with existing data the only testing required. 

Figure 5-70 is a flow diagram of the miscellaneous flight instrument 

monitoring program(mFm). This program is run at a 1 per second 

.iteration rate. On each entry to the program a counter I Is set. 

The counter indicates which instrument is being tested and acts as 

a pointer to gather the data required to test each instrument. A 

test of the discrete input for the Ith instrument is then made. 

This discrete is turned on whenever power is being supplied to the 

Ith instrument. If the instrument is operating a counter J is set
 

equal. to the number of outputs from the Ith,instrument. These output 

are then tested one at a time against appropriate navigation data. 

The testing limits are also established for each instrument output. 

An error message is issued if a failure is indicated. J is then
 

decremented and tested. When all outputs of the Ith instrument
 

have been tested I is incremented and tested. When-all instruments 

have been tested (7 instruments are assumed) the program is exited.
 

-300­



5.4.8 Guidance 

The booster flight program guidance is divided into five parts: 

boost, coast, reentry, cruise, and landing.
 

5.4.8.1 Boost
 

Boost guidance starts at launch and continues through rocket engine 

thrust termination. The primary concern of boost guidance immediately 

after launch is to insure that the vehicle clears the launch tower. 

Immediately after launch a small pitch angle command ( LTC) is generated 

to tilt the vehicle away from the launch tower. After sufficient elapsed 

time this pitch command is removed.
 

The alignment of the booster on the launch pad is dictated by the physical 

requirements of umbilical attachments. Before the pitch over maneuver is 

initiated the booster must perform a roll maneuver so that the body X - Z 

plane becomes coincident with the desired orbital plane. The roll maneuver 

is initiated when the booster has reached a sufficient altitude (T) to be 

above the launch tower. The primary coordinate systems for boost guidance 

have their X - Z planes coincident with the desired orbit plane. The roll 

maneuver command angle in guidance coordinates in thus zero degrees. Prior 

to the roll maneuver initiation a roll command angle equal to the launch 

roll angle is used. This keeps the vehicle from performing any roll attitude 

change until roll maneuver initiation. During the first portion of the 

boost trajectory the major constraints upon the vehicle are imposed by 

aerodynamic loading. The pitch guidance during this period is an open loop 

function of time. During this period the guidance equations are: 
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FCt, -For 1X*i,
 

4r±Lk-t,), for t,<-<t
 

ti(&-s)LtwttY.forfor "t3 <t<'tjt3g<tkt< (1) 

The booster is equipped with multiple rocket engines. It is assumed that
 

the mission can be completed in the event of up to four rocket engine
 

failures. The guidance trajectory must be modified in the event of an
 

engine failure. The trajectory modification is achieved by computing
 

a incremented time LTf in the event of a failure from the formula
 

,ANfBtB(+-t,)] For t< tt 

AN b1B11-+Bsz(t'tA)] For f2.<- <f 3 (2) 

AN1B1+8 4.jz(t-ts)] for t 3 <t<t . 

ATf is computed for each engine failure. If there is a multiple simultaneous 

engine failure AN is the number of simultaneous engine failures. The value 

of 0 is held constant at its previously computed value for nk Tf seconds 
c 

after an engine failure. The values of t1 , t 2 , t 3 , and t are increased 

by tTf in the event of a failure. 

Open loop guidance is discontinued and iterative guidance initiated upon
 

achieving an altitude where aerodynamic effects are 'negligible. The iterative
 

guidance described below is a modification of the guidance used on the
 

qaturn V vehicle. Iterative guidance makes use of several coordinate systemg.
 

O± primary importance are:
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Tangent Plane Coordinate System (X4 , Y4, z4 )
 

The tangent plane coordinate system is a right hand orthogonal space
 

fixed system with origin at the geocentric center of the earth. The
 

X4 axis lies along the intersection of the desired orbital plane and the
 

earth's equatorial plane and is positive toward the descending node of
 

the.desired orbit. The positive Z axis lies in the desired orbit plane­

900 downrange from the X4 axis. 

Injection Plane Coordinate System(X, Y Z) 

The injection plane coordinate system is a space fixed system with origin 

at the goecentric center of-the earth. The positive Xv axis lies-in the 

desired orbit plane at an angle - T from the 4 xls, and passes through 

the predicted injection point. The Zv axis lies in the desired orbit
 

plane 900 downrange from the Xv axis. 

Navigation Coordinate System (XC, Ysy Zs) 

This navigation coordinate system is a space fixed coordinate system defined 

at time t by the launch site position. The time t occurs shortly
0 .0 

before launchat which time strapdown inertial navigation begins. The 
positive Z6 axis lies along the north polar earth axis. The positive Xs 

axis lies in the equatorial plane intersecting the equator at the Greenwich. 

meridian at time t 
0 

The iterative guidance equations must be initialized at time t o . This 

initialization requires the establishement of the transformation martix 

between the navigation coordinate system and tangent plane coordinate 

system. This transformation matrix is given by 
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cos% SIN, 1 
[MS4,] SINLNX £1NLCOSX -Cosi 

COSSIN, CosLCOSX SINiJ (3) 

where N is the latitude of the descending node of the desired orbit at 

t and i is the inclination angle of the desired orbit. 

The boost mission from launch to the insertion of the orbiter into orbit
 

is divided into two phases, which are the period of booster and ortiter
 

thrusting. The iterative guidance mechanization requires the initial­

ization of the following constants before the main guidance program can 

be entered.
 

Tj - estimation of time between end of open loop guidance and
 

boost thrust termination 

Tc - estimation of zero thrust period during separation 

T2i - estimation of. duration of orbiter thrusting 

Vex, - estimate of booster engine exhaust velocity 

Vexz - estimate of orbiter engine exhaust velocity 

- estimate of the booster specific impulse, i.e., mass to 
mass flow rate ratio 

- estimate of the orbiter specific impulse 

(N/F) - estimate of the reciprocal of the booster acceleration 

(flF)0- estimate of the reciprocal of the orbiter acceleration 

In addition tothese parameters the constants specifying the desired orbit 

must be inserted in the program. These values are 
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RT - vector position of injection point 

V1 - vector vehicle velocity at injection point 

- earth central angle between launch site and injection point 

A reciprocal acceleration filter is mechanized throughout powered boost 

flight. The filter requires an input value of vehicle acceleration
 

determined from the navigation system. Defining the navigation velocity
 

output as the vector having components Vx, Vy, and Vz a characteristic
 

velocity change is computed from
 

*5V--I(vxV-_v,)+(v -vy_,)+(vE°-vf,)J (4) 

The filter reciprocal acceleration is then computed from
 

(NF)5 K (AI&/SVOn +K (Ar/sVj-n 
+K3(4Ar/S\1Vfl-iK 4 (A-r/svcn 3 
+K(AT/S Vc) . t ( M/F) (5) 

+f ((M/F)r/IF)_ 

where AT is the period between guidance iterations (.5 seconds).
 

Booster thrust termination is determined normally by a test of the chara­

cteristic velbity which is determined from
 

vC = Xv +v (6). 

When V - is greater than the-termination value, thrust is terminatec. 
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The iterative guidance calculation used by the booster are performed
 

in the following sequence:
 

(1)Compute booster time-to-go (TIj and specific impulse (7/) from
 

tPic = co e-V/VCXI (7)
 

FC Mc/(MIF) .(8)
 

jV, = VcN - V (9) 

T, Ve, (M/F (10) 

(11)
T,7m - _ vl e,) 

where Mco is the total booster/orbiter lift off mass and Vein is 

.the total booster .velocityto be gained. A backup thrust termination is 

peiTormed if.M is less than a preset value. c 

(2)Transform the vehicle position and velocity from navigation to
 

target plane coordinates by,
 

R4 IM41 WS(12) 

(3)Compute the following set of intermediate parameters
 

k e= inE ) (14)i 

, LT -Vex, T (15) 

S, L - (16)
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, SIT,--±Ve, Tlt (17)
 

P,'71 ,VeAIT) (18)
 

U,r ,, -Ve,T (19)
 

S1i --S,+ L1 T i (20) 

LI = Vex2 (nT_ (21)) 

L),= L,+L (22) 
=
Ji 2 r Ve.Xz i (23) 

(4) Compute the predicted total time to go from
 

=
i T, +Tci (24) 

T- =lc++ 2 (25) 

(5) The current range angle (0i) is calculated from the position -vector
 

components in the target plane system by
 

4= rA -'4j (26) 

(6) The terminal range angle (OT) is then predicted from vehicle state
 

variables, projected future performance, and desi-rd terminal conditions
 

from
 

vyVVTK - (21) 
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S = T* - J2 + L; T, -(K/Ve 2)[ (W,-Ti L, (28) 

t(> -Ti)!.z(L Vc,V.) 

RT- Rr,+P + r (29) 

It"Rr.os (S, + S2) (30) 

Or: Oi * (.31) 

The angle 8T is the desired terminal path angle and must be initialized
 

with the value of YT prior to launch. 

(7)The components of the desired terminal position, velocity, and gravit3 

vectors are obtained by orienting the injection system so that the ter­

minal position vector is coincident with the XV axis. -This is done 

by computing: 

XVT Rr (32)
 

hvr - SIN (3) 

=v VT.. CaO, (34 
I. = i-, 2. 
)v3, -(35)
 

2 vgr = 0 (36) 

Where JA is the gravitational constant. Equations 32 through 36 re­

present components of vectors RVT, VVT and GVT" The additional com­

ponents of these vectors not included in equations 32 through 36 re­

main zero throughout flight. 

-308­



(8)The current position, velocity, and gravitational vectors are
 

transformed to the injection coordinate system by computing
 

rcosor 0 SIN'rI, Or 
[rJ S %r 0 COS 1r]7 

MV43 R4(38) 

V=1111v41 V*(39) 

6V MV* I NJ(/0) 

The vector G is the gravitational vector developed in the navigation
 

system.
 

(9) As estimated velocity-to-be-gained vector ( &v. ) is computed.
 

This is done by computing an average gravitational acceleration vector
 

(G ) for the remaining flight time. The estimated velocity-to-be­

gained vector is then computed by subtracting the current acquired 

velocity vector and the vector representing the velocity loss during 

the remaining time due to gravitational acceleration from the desired 

terminal veloity vector. The computations are: 

AV - T*\4zTF* (42)
 

(10) An improved estimate of T based on the new information now
 

available for velocity-to-be-gained is computed from 

LY =(43)
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A 72'= ZL ?' - TIi)Ve xz (44) 

Tj = Tzi +4#A (45) 

k= Tc * -zi (46) 

(11) Equations 14 through 46 are based on a time-to-go value which is
 

normally computed during a previous computation cycle. If the vehicle
 

performs as predicted, then the predicted time to go and intermediate
 

parameter values of equations 14 through 25 are very close to the'
 

corrected values of equations 43 through 46. The vehicle performance
 

is often not this -predictable, and a second iteration of equations
 

27 through 46 is made to improve accuracy. Before doing this it is
 

necessary to executef
 

LZ L; + A L (47) 

- y A Lz (48) 

J= - T.a Lp (49) 

(12) 'After performing a second iteration of equations 27 through 46
 

an improved estimate of velocity to be gained is made based ,on the
 

new T value and the average gravitational acceleration by computing
 

* = - -A2G* (50) 



(13) Preliminary guidance commands relative to the target plane
 

system are then calculated from:
 

y= TAN Av) (51) 

X4= TAN (52) 

(14/) In order to generate guidance commands which satisfy the position 

constraints while meeting the necessary velocity constraints, position 

correction terms are-added to the velocity constraint guidance commands 

by computing: 

L = L2_ t& Lv. (53) 

J2. + TZi AL2 .(54) 

S,y L2 7TZ -3;.~ (55) 

Q.2:So72 V-eX Tvt (56) 

LY Li + L2 (57) 

J,, + Z-J (58)+ L, T, 

SY S,2 -J2 + LVTi (59) 

Qy QI, S7+ t,) (60)+ S.,c + ( 

k)/.JTy(61)
Ky Ly 

Dy: Sy- KyQy (62)
 

AY =VY+ Yt T+ Y4 T*+ Sy SINX (63) 

K3 = Avl(, COS 1 (64) 



Kq = Ky Ks (6*5) 

P = jz(7O+2 TIC) - VexzT-21 (66) 

Us8 = Q2 (7r2+2 Tjc)- ez (67) 

Lp= Ly COS X' (68) 

C;- COS XF + K'3 SJNXf (69) 

C4 =K3 SIN/X4 -(70) 

JTp JC- C(P, Pa + LTt) (.71) 

-SPS 5yc2 -Q C4 (72) 

-rCI)PI(73) 

Kp= LpJ, (74) 

Pp= Sp-KpQ, (75) 

AXv= Xv -Xvr +vT *+ xt* 2 +3 /x, (76) 

K, AXv /(DpCOSX ) (77) 

Kp K, (78) 

(15) Velocity commands which will cause the vehicle to satisfy both
 

the position and velocity constraints are computed in the target plane
 

system by suming the commands needed to satisfy the constraints sep­

arately by
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-0 L03 4A (80) 

(16) These commands must then be transformed to the navigation 

coordinate system for use in the control syste as a pitch command 

(0 and yaw command ( )c). 'This is done by computiig: 

rCOSXY4 COSX 1M'-- SIX,,, ('8 

)c-"TAIq-1C Fs'/FSX (82) 

i) rAN F -sy 83) 

Once the iterative guidance mode is entered a complete guidance
 

computation set is performed each pass through the program. The
 

initialization of the guidance parameters prior to launch represents 

a major computational task. On.vehicles such as the Saturn V this
 

task is performed by a ground computer complex requiring in the vicinity
 

of 40,000 words of memory for program and data storage. It is antici­

pated that for the space shuttle this program will be executed by the 

flight computers during the prelaunch activities. This program will be 

stored in-the system mass memory and loaded into the flight computers 

for execution at the appropriate time during prelaunch activities. The 

total program does not have to reside in core at the same time,,i.e., 
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the program can be executed as an overlay job. For this reason the pre­

flight computations of guidance coefficients will not influence the
 

flight computer requirements and is thus not investigated in this study.
 
1 11 

Figure 5-71 is a flow diagram of the boost guidance flight program (BGFP). 

This program is run at a 2 per second iteration rate. The program has an 

initial and normal entry. The initial entry point includes programming 

to initialize all boost guidance parameters not initialized by the pre­

launch guidance program. Figure 5-71 includes the flow diagram of the 

initialization programming. The timer used to hold constant attitude 

commands (A TF) in the event of an engine failure is set equal to zero. 
IF
 

N is set equal to the number of booster rocket engines. The attitude 

commands c' Yc, and are initialized. The magnitude of the desired 

terminal position and velocity vectors are determined, and the transformation
 

matrix between the navigation and target plane coordinate systems is formed. 

A flag used to control the execution path through the boost guidance flight 

program is set equal to zero. Control is then transferred to the normal
 

entry point.
 

Upon entry to the program at the normal entry point, time is. incremented 

and a multiple branch made upon the value of the program control flag. 

When the control flag is Oa test is made to determine if launch time (t 0 ) 

has arrived. In not, the program is exited until the next iteration pass. 

If launch time. has arrived, a launch command is issued and any launch time 
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dependent guidance parameters initialized. The control flag is then
 

set equal to I and the program exited. 

If the control flag is 1,a test to determine if the time
 

to generate the launch tower clearance pitch command has arrived. 

If not, the program is exited. If the time has arrived the pitch
 

:attitude command is 
set equal to the constant value 0LTC and the control 

flag set equal to 2 before the program is exited. 

If the control flag is 2, a test of time is made to determine, if the 

launch tower clearance- pitch command should be removed. If the time 

for removal has arrived, the pitch attitude command is set equal to 

zero and the control flag set equal to 3. 

if the control flag is equal to 3 the vehicle altitude is .tested to det­

brmine if sufficient altitude for pitchover has been achieved. If the 

altitude is sufficient, the roll attitude command is set equal- to zero, 

the open loop boost guidance program is scheduled and the control flag
 

is set equal to 4. 

if the control flag is 4, a test is made to determine ir the time to 

;top open loop guidance has arrived. If the ti'nhas arrived the open loop 

guidance program is dedcheduled and the boost iterative guidance program 

scheduled. The control flag is set equal to 5. 
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If the control flag is 5, tests are made to determine if the vehicle
 

characteristic velocity has reached the terminal velocity or if the total 

vehicle mass has been reduced below a prestored value. If either 

condition is present the iterative guidance program is desocheduled,
 

coast guidance is scheduled, thrust termination is commanded and
 

this program descheduled.
 

Figure 5-72 is a flow diagram of the boost open loop guidance program 

(BOLG). This program is run at a 2 per second iteration rate. With 

each entry to the program time is tested and a pointer (J) set equal 

to 1,2,3 or 4 dependent upon t < t 1 , t 1 Ct< t 2 <tt(t 3 . and t3 < t2 , <

respectively. The value of AN is then obtained by subtracting the 

number of operating booster rocket engines from the number of engines 

operating on the previous pass through the program. The value of AN 

is then tested and if not zero, a constant attitude command period (AT ) 

is computed. -The number of failed engines is then updated-and the newly 

computed constant attitude command period -added to any remaining con­

stant attitude command period from previous passes through the program. 

The time test limits t1, t2, t3 and t are then increased by ATF .
 

A test bf & TFis then made to determine if a constant -attitude command 

period exists. If it does, A TF is decremented by A T and the program 

exited. If TF is less than zero 0 is computed and the program exited. 
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Figure 5-73 is a flow diagram of the Boost Iterative Guidance Program
 

(BIGP). This program is run at a 2 per second iteration rate. The
 

program follows the previous description of the inerative guidance
 

equations. The numbers indicated in the flow diagram are the equation 

numbers of those equations which must be computed at each flow diagram 

step. 

5.4.8.2 Coast
 

Coast guidance is initiated at the time of the issuance of the booster 

thrust termination command. After thrust termination, the booster must 

maintain the attitude present at the end of boost guidance until sep­

aration has occurred and the orbiter has achieved a sufficient separation
 

distance to be clear of any booster attitude changes. The booster then 

assumes a pitch attitude which minimizes .orbiter plume impingement while 

the orbiter ignites its main rocket engines and accelerates out of the
 

area of the booster.
 

The booster then assumed a reentry attitude. A proper reentry attitude
 

maintains the body y axis in the earth's tangent plane, maintains the y 

body axis component of the relative velocity between the booster and
 

the atmosphere zero and maintains a constant pitch attitude with respect
 

to the earth's local tangent plane. During coast the inertial navigation
 

system is generating a .position and velocity vector with respect to an
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inertial coordinft ,'ysLnm established at launch, The rotational coordinate transformtion 

between the body nXIMd Inertial coordinnte system in also generated by the inertial 

navigation systom. Figare 5-41 shows the inertial coordinate ,ystem used by the inertial 

-navigation system.
 

IZ UI 

XX 

Figure 5-74 Parameters Required for Reentry Attitude 

unit vector normal to the earth's tangent plane must be 

transformed to body ads. Figure 5-74 shows various parameters required to generate this 

unit vector. The X, Y, Z coordinate system is. the inertial system used by the strapdown 

inertial navigation system. H is the position vector of the booster having components 

To determine reentry attitude a 

R, R, and R . The vector R is first transformed to the X, T', Z coordinate axis result­

ing in the components of R being 

1= 2 2 (i) 

R' =0y (2) 

H'a R.a (3) 

In the X , Y , Z coordinate system a unit vector normal to the local earth's tangent plane 

has components 

U' =COS L (4) 
'U g (5) 

= SIN Lg (6) 

where L is the geodetic latitude of the booster. Ceodetic and geocentric -. latitude are 

related by 

TA = (1-0) TA () 
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where e is the earth's ellipticity. However
 

TAN L = ait. x (8) 

Using ttigonometric relationships equations 4,5, and 6 become
 

, RR2 ? (9) 

Uy =o (10) 

U 
t-

0-e)' ¢",zP% R;,(11 

Transforming the U vector to the inertial coordinate system yields:
 

-U- x . K2/ (12) 

Y,t4 I RX +JR?51Y (13) 

[.) -- .LJ;(14)
 

The computations required for obtaining the U vector can be obtained by
 

combining equations 1,2,3,9,10, 11, 12, 13 and 14 to yield
 

U,/ V4/0"-) '.l- *Rk.-t (15) 

. =y /,(/-,R - (16) 

R.,2-+R,2 (17)1 

The direction cosine matrix [0] defined in section 5.1.4.1 transforms
 

body axis vectors to the inertial coordinate system. The above unit
 

vector transformed to body axis is
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CI 

The roll attitude command angle is determined from
 

t 
KIUby:+ j Ub, dt (19) 

where K1 and K2 are constant gain factors and the integral term is
 

approximated by
 

f-Uyt Iz,_,UyAT (26) 

The strapdown inertial navigation program provides the booster velocity, 

V-with respect to inertial space in inertial coordinates., The velocity
 

of the air mass in inertial coordinates has components ,of
 

-vWs= RY 
 (21)
 

Vw RXfL (22)
 

VWz o (23) 

where n -isearth rate. The relative velocity of the booster with
 

respecb to the air mass.in body axis coordinates is
 

The yaw attitude command is generated from 
 -


V)= K,VRe.+,,K, fVnR dt (25) 
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where the integral term is approximated by: 

f VRea s i,, =ItVn- , BAT (26) 

If the desired angle between the booster X body axis and the local
 

earth's tangent plane at reentry is GE then proper reentry attitude
 

is established when
 

eE = TAN-' Ub(7) 

If the relationship of equation 27 is not true, then a reentry pitch 

attitude error exists of
 

-TAN- UbX (28) 

A pitch attitude command will be generated from this error by: 

K#-GEIO+K2f e'.wi (29) 

where the integral term is approximated by 

fPs±f I=-=i01-- e6 AT, (30) 
Figure 5-75 is a flow diagram of the coast guidance program (COGP). This 

program is run at a 2 per second iteration rate. The program has both 

an initial and normal entry point. In the initial entry a time counter is 
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set to zero, a control flag initialized to zero, an initial time limit set, 

the desired reentry pitch attitude established, and the three attitude 

command integrators initialized to zero. In the normal entry a multiple 

branch is performed based upon the value of the control flag. 

If the control flag is zero, the value established by the initial entry
 

program, the timer is incremented and a test performed to determine if 

separation has occurred. Separation is tested by a continuity test of the 

booster/orbiter connection. If separation has not occurred the timer 

is tested against the timer limit tI. If the timer has exceeded the t 

value, an abort situation exists in that booster/orbiter separation has 

apparently failed. Under this condition the control flag is set equal to 

3 and the desired reentry command angle changed to an abort value. If
 

the separAtion test indicated separation has occurred,the timer limit t 

is set to the present timer value plus a constant T and the control flag 

to 1.
 

If the control flag isl ,the timer is incremented and tested against the
 

limit value. If the limit value has been exceeded, the pitch attitude
 

command is increased by the plume impengment avoidance value, the control
 

flag set equal to 2 and the timer limit set equal to the present time plus
 

a constant T3.
 

If the control flag is 2,the timer is incremented and tested against the 

time limit t i . If the timer is greater than t1 the control flag is set 

pqual to 3. 
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If the control flag is 3, the reentry attitude commands are computed.
 

Figure 5-75 also shows 
 the program required to compute the
 

reentry attitude commands. 
First the reentry attitude commands are
 

computed using the equations described above. 
A test is then made to
 

determine if reentry has occurred. 
This test is based upon vehicle
 

skin temperature. If reentry has occurred, reentry guidance is snlprlbAla 

and coast guidance descheduled. 
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5.4.8.3 REENTRY GUIDANCE 

At the point of reentry the navigation system starts computing position and velocity of the 

frame and establishes a coordinate transformation matrix
booster in a navigation coordinate 


navigation coordinate systems

D bAeen the nivigation system and body axis system. The 


has.its X, Y plane locally tangent to the earth with the X axis pointing north, the Y axis
 

and the Z axis directed downward. The navigation system also generates the Eler 
east, 


angles between the body axis and the navigation coordinates.
 

of reentry guidance is the maintenance of vehicle heating and
Initially the primary function 

termed the survival reentry phase.
loading within tolerable limtis. This initial period ,is 


to heat.

During this phase the vehicle 'a large potential and kinetic energy is converted 


is reduced, it becomes moe difficult

As the vehicle velocity with respect to the air mass 


to exceed 
 heating and load limits allowing the guidance system to control the vehicle toward 

termed the controlability reentry phase.the desired flight path. This phase of reentry is 

The relationship between lift and drag forces are used to control the vehicle during reentry 

- (see Figure 5-76 ). 

X b
 FL 


Reentry Aerodynamic RelationshipsFigure 5-76 

The 
The X, I, Z axis are the navigation coordinates and Xb is the vehicle X body axis. 

vehicle total velocity vector)V and the navi­
flight path angle, 'y is measured between the 

c , is measured between the
gation system X, Y coordinate plane. The angle of attack, 

velocity vector and the 

-328­



X body axis. Drag force FD is a vector having a direction opposite
 

to the velocity vector. Lift force FL acts in a direction normal
 

to the velocity vector and in the vehicle Xb' Zb plane.
 

The magnitude of the lift and drag vectors are given by:
 

= Kz/V o CcosoC (1) 

, = pv(K3 K* siNc) (2) 

The drag force opposes the velocity and thus decreases the velocity.
 

The lift force being normal to the velocity vector causes the velocity
 

vector to rotatebut does not effect its length.
 

The heating rate.of the vehicle is given by:
 

= VW V3 3) 

where Q is the heating rate per unit area.
 

At thrust termination the booster is in a suborbital ballistic trajectory. 

At reentry the vehicle has passed the apogee and thus has a positive 

flight path angle Y . The survival reentry phase lasts until the 

velocity magnitude is less than-a constant Vo . The vertical plane 

equations governing the motion of the vehicle are: 

X' fCOS Y+ LWSNYCOA (4) 

_ . _ F0 - Cos ,COSO +y (5) 
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where $ is the vehicle roll angle and X is a horizontal axis along 

the direction of flight. If a roll angle exists the lift force will
 

not be in the vertical plane and thus must be multiplied by cos 0.
 

Reentry guidance during the survival period employs a vehicle model.
 

This model is integrated faster than real time from the vehicle's
 

instantaneous position to a position where V is less than or equal
 

The model consists of first determining atmospheric density
to V o .
 

by 

e (6)
 

where/° o and K are constants and h is the vehicle altitude 
obtained
 

from the navigation program. The navigation program also delivers
 

the initial values of the velocity vector components Vx, V and V 

The flight path angle -is computed from
 

" TAN-' ,,.X_ , (7) 

and velocity magnitude from
 

V V,, +Vy..v (8) 

The instantaneous lift and drag forces are computed from
 

(9)
FL= K,/ V' ss,oCos 0' 

and
 

tK O) (10)FD=r0V (Ks 1sN 



K2y K3 and K4 are constants and it is assumed that the vehicle will 

fly a constant angle of attack trajectory during the survival phase
 

which for nominal conditions will be c< o" The acceleration on the
 

vehicle is then computed from
 

-- L (FFsCOSN± ) (i)+ SIN 

(F,, NY +r=-'+ cos+F) (12) 

where m is the nominal vehicle mass. 
A zero roll angle is assumed.
 

The accelerations are then integrated using the formula 

= x'. + (3Qx- CxC_,) (13) 

V w',, -,- (3 q,,e_) (14) 

On the initial integration iteration past and present acceleration
 

values are assumed constant. The initial integration iteration
 

assumes 

'n-= x (15) 

,v(16) _ -

Flight path angle and total velocity are propagated using
 

S=TAN-' v14 
W' (17) 
xn
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altitude is propagated using
 

On the initial integration iteration present and past velocity values
 

are assumed equal and the altitude past value is initialized to the
 

navigation altitude output. At each iteration the heating and loads
 

on the vehicle are computed from
 

L FSIoSItFL COSco (20) 

•jy K,PVV -K ( -, ) (21) 

T ,+ N3T -t-,' (22) 

For the initial integrationiteration T is initialized from a skin
n-1 

temperature -sensor and it is assumed that the present and past temp­

ature rates are the same. The maximum load and temperature point is
 

determined as the model equations are integrated. If the maximum
 

load or temperature exceeds a maximum limit valuethe angle of attack
 

is commanded to reduce the above limit parameter.
 

It is anticipated that the shuttle booster will reenter using a very
 

large angle of attack (approximately 600). Temperature and loads produce
 

opposing requirements on angle of attack. Increasing the angle of attack
 

increases the drag and decreases the lift forces. This causes a more
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rapid decay in velocity decreasing the total temperature rise,how­

ever the normal force loads are increased. The maximum load value,
 

L2 and the maximum temperature T determined from the model are used
 

to determine an angle of attack command from the formula:
 

[Kr (1-gTmqx) for Trm >Tmax 
0-or'o F Tm<Tma, Lm< Lmnc× (23) 

-KL(Lm - Lrx) for Lm>Lmox 

where Tmax and Lnax are constant limit values. Pitch command is then
 

computed from
 

% n = ecn i +K & T (24) 

Roll and yaw command remain zero during the survival period. As
 

soon as the total velocity from the navigation system is less than
 

a preset value the survival phase computations are halted and control­

ability phase computations initiated.
 

The vehicle is controlled to fly over a target point which is on the
 

desired route to the return landing field. The required range and cross
 

range to reach the target point is first computed. The great circle arc
 

between the vehicle present position and the desired target point is
 

computed from
 

9 AR =COS'LSIJNL.SINLTt*COSLCOSLTCOS(XAI-j) - (25) 
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where L and %are the vehicle's latitude and longitude as determined 

by ihe navigation program and LT and NT the target point latitude 

and longitude. The cross range angle 0cR is computed from 

SIN (LT -L) 
G"= IN SIN&AR(26) 

4 _IN, 
Sl~"COS(tP 

where \V is the horizontal heading angle from the navigation system.
 

The required range is then estimated from
 

RR,=re (GAR 4-jeCR) (27) 

where r is the earth's equatorial radius.
 

An-average geocentric radius to the vehicle's position during the
 

remaining reentry phas'e is computed from
 

rV e[- h+k-I (28)
e(sIN-L+SINLT) 


where e is the earth's ellipticity, h the vehicle's present position
 

altitude from the navigation system and h2 the desired vehicle altitude­

at the target point.
 

A lift to-drag ratio command (L/D)e is then obtained from an equilibrium
 

glide range formula: 

-.2 RR
 

(9)
r 
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where 

Q - rV+ (r 1cos L)2 ('30) 

b ZrAV- COS L SIN (L~v7rf-v) (31), 

(32) 

V = vr tv'f+vj (33) 

q= VbVr +t (3) 
V'+bV t O 

_.{F2V-+b -I2V+b+lr) (35) 

where A is the gravitational constant, .ILthe earth rate and qvT
 

the desired heading at the target point.
 

A-command flight path angle Y is determined by applying the formula:
 

V d dt 
- r (36)
dh
 

where ,/ is the atmospheric density. Equation 36 is evaluated by
 

computing
 

d oOV(L/[)¢ ( V -lVt (3'7) 

LV_ VFp (8
t _L/D)c
 

and 

000 K3 e-Kh 
(39)
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where 

F= - V 2r'lcosLSIN(yvj-Pv) r"-f-C5cosL (40)
r'v r V 

01 F (41)­
dv 

and 

r= rc(:-eswzL) (42) 

B is the vehicle's ballistic coefficient at the nominal angle of attack
 

and g0 the surface gravitational acceleration.
 

Attitude commands are computed from the command flight -path angle by
 

computing:
 

M 1 %y2 V(YTAN-V 


2V A _-V)+VD
AT (43) 
t= V- S IN- (LT-L) (44) 

IN
~~_'v'SL)A 
- "s 
C1 =V( IL ) (45) 

L,,= VVx.,_,+ VyVy,.+Vz,,., (46)VAT 

o, TAN/' - G (47) 

k ___(_ _ - L,)(_-o1_,) (48) 
A- (L, - Ln-, 

s~TAN-'(jCH4 (49) 
AT
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a = ecn- ckC AT (50) 

+ AT (51) 

Yaw command is maintained zero by the guidance system. The control
 

system will automatically command a yaw rate that will generate
 

a coordinated turn.
 

Figure 5-77 is a flow diagram of the reentry guidance program (REGP). 

This program is run at a 2 per second iteration rate. Upon entry to
 

the program those parameters which are common to both the survival and 

controlability reentry phases are computed. A test of which reentry 

phase exists is made,based upon total vehicle velocity. In the survival 

phase the reentry model is integrated and 0c computed. It is assumed 

that the model equations must be computed 20 times in order to predict 

the vehicle maximum loading and heating during the survival phase. 

At the finish of each iteration through the controlability phase 

guidance equations a test for the end of the reentry guidancecomputations 

is made based upon vehicle velocity and altitude. As soon as the 

velocity or altitude drop below a preset valuethe reentry guidance
 

program is descheduled and cruise guidance scheduled. 
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5.4.8.4 CRUISE GUIDANCE 

At the beginning of cruise the booster will be at an altitude above 

the normal cruise altitude and at a velocity below nominal cruise 

velocity. Initially the cruise engines will be deployed and at the
 

same time a pitch down attitude command issued. The booster will
 

dive until it reaches cruise altitude which should approximately 

coencide with reaching cruise velocity.
 

During cruise the pilot can select one of several steering modes.
 

Within the DMS computers will be stored a table of route points.
 

The data stored for each route point will be latitude (Li), longitude
 

( ) and altitude (hi) of the flight leg which should be maintained
 

when flying to the route point. In addition to the route point table,
 

there is also a sequence table which determines the order in which
 

the route points should be flown. 

Two automatic modes exist for flying between route points. In the 

first mode a steering command is generated to maintain the vehicle-on 

the flight leg defined by two route points. In the second modesteering 

commands are generated to cause the booster to fly a great circle route 

between its present position and the next route point. If the vehicle 

is at latitude - longitude coordinates L, A\ flying between route points 

having coordinates L1. \1 and L 2' / 2 then the central angle arc distance 

between the vehicle and the first route point is given by
 

=o= Cos'-LSINLSIN L,+Cos LCOS L, cos(,-MJ (1) 
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and between the vehicle and the second route point given by 

os= 2Join L sin L2 + .os L2 co-1oo( -2 (2) 

The central angle arc distance between the two route points is given. by 

12 S-1 sin L sin L2 + cos L cost 2 cos. (:-()I-­ ). 

Route 
Point 1 'North 

x d12 

dd1
 

Point 2
Present d 

Posittion 2r 

Route
 
point 3
 

. -Fi~gure 5-78 Route Point Steering Geometry-

Figure 5-78 shows the geometric relationship required to generate the steering commands 

for route point steering. Applying the law of cosines 'to the spherical right triangle 

having sides with central angle arc lengths of X, d 1 , and e yields 

cos d = cos x cose + sfn x sinecos ­

in like manner for the triangle having sides d1 2 - x, d2 and e yields 

coo d2 = can (d1 2 - x) a + sin (d12 -x) sin cos- - (5) 

Eiminating x between equations 4 and 5 and solving for e yields 

a =cos2d2 -2 cos d12 cOnd1 cos d2 + Cos 3"
=sos-- (6)
t Sit d12 

The steering command generated depends upon the magnitude of e. All major steering turns 

are ade at a constant turning rate which produces a circular flight path which is the arc 

of a circle of radius r. If a is less then r/re a roll command is generated from 
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Ac if- 0,< Koe< 0,if 0, < K95.e 

If C is larger than r/r the vehicle will be commanded to fly normal to 

the desired route path until it gets within a distance of r from the 

desired route path. In order to determine the desired heading angle, 

Ye the following computations must be made 

-I [d1 2 -x = cos cos d2/cose] (8) 

-1
=-sin , cosL 1 sin( X 1 -) 2 )Ain d1 2 3 (9) 

= cos- 1[cos(d1 2 -x) sinL 2 +sin(d1 2 -x) cosL- coso (10) 

4/z1= SIN-'[coS CsIu/sWL'J (11) 

Yt (12) 

The desired heading is achieved by commanding a roll angle proportional
 

to the error in the actual aircraft heading and the desired heading.
 

The error is computed from
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Where is the hroizontal heading angle from the inertail navigation
 

system. The roll command angle is generated from
 

;f 0& 1PsE(&(# 

in the second automatic mode a yaw error is established from the formula
 

roll command angle is generated by equation 14 for thb second automatic
 

mode.
 

I 

The pilot can select a heading reference derived from the magnetic flux
 

gate compass or the TACAN receiver instead of the inertial navigation 

system. When a different reference is selected, qJin equation 13 and 15 

is substituted with-the new reference. A new leg of the route is selected 

*hen d2 becomes less than r 

Altitude control is achieved by commanding pitch attitudeas a.function of
 

the error between the vehicle's actual and desired altitudes. An altitude
 

ieference can be selected from either the inertial navigation system, the
 

air data computer (i.e., pressure altitude), or the radar altimeter. The
 

attitude command is determined-from
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if;VL Kh(hC-MYV
V c"=Kh hc- if VL)KV(hc-hP>~VL 

(16)- VL i -VL>K(hc-h) 

KQz~( Vfc-Vj (17) 

ec @,_+ 6,: AT (18) 

In the automatic mode the commanded altitude (h.) is found in the
 

route point tables. Both an altitude and heading command can be
 

selected manually in one of two different ways. A value of desired
 

heading or altitude can be entered numerically by the pilot or the
 

pilot can issue a command to hold the present altitude or heading.
 

Another cruise steering function which can be selected is to fly an
 

automatic holding pattern. Upon selecting the holding pattern mode
 

the booster will be commanded to fly a circular path having a radius 

of r. . The circle will be tangent to the flight path at the point where 

the holding pattern mode was commanded. To compute the steering commands
 

required to keep the vehicle on the holding pattern flight path it is
 

necessary to compute the latitude and longitude of the circular flight
 

path center. This is done by computing 

Lp SIN-' [cos r, SINL + COSL ,/SJ-Nr-CosAJh] (19) 

Ap SSW- s, r co sW/cosLPj (20) 
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where rj is the radius of the holding pattern circle expressed in
 

bentral angle arc units, and Lp and p the latitude and longitude
 

of the center of the circle. At each iteration through the program the
 

distance from the vehicle to the holding pattern center is computed
 

from
 

r= cos' [sIILsINLp+COSLCoSLcos(\')1P (21) 

A-roll rate command is then computed from 

-- Cr1-r) (22) 

A roll command is then computed from 

(2cJ Oc,4+ c AT (23) 

and limited by 

0-4 ,,>-. (24)
 

Figure 5-79 is a flow diagram of the cruise guidance program (ORGP). 

This program is run at a 2 per second iteration rate. The program has an 

initial and normal entry point. In the iniital entry the first automatic 

flight leg is established. This is done by picking up the first and 
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second route point as determined by the sequence table. The first route
 

oint will normally be the desired reentry target point. The pilot has 

the ability to modify both the sequence table and route point table. 

After establishing the first flight leg the program proceeds to the 

normal entry point.
 

At the normal entry point the heading and altitude reference value is
 

selected. The heading references that can be selected by the pilot
 

are
 

Inertial Navigation System
 

Magnetic Flux Gate Compass 

TACAN
 

The altitude references that can be selected by the pilot are:
 

Inertial Navigation System
 

Air Data Computer 

Radar Altimeter 

rhe desired reference is determined by a switch setting on the pilot's
 

zonsole. A test is then performed to determine if the holding pattern
 

nbde is selected. If the pilot has selected the holding pattern mode
 

i flag (HPFLG), which is set to zero whenever the holding pattern mode
 

Ls not selected, is tested. If the flag is 0 this is the first pass
 

through the program with the holding pattern mode selected and the 
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latitude and longitude of the circular flight path center is cal­

culated and the flag is set equal to 1. The computation of a roll
 

command based upon the distance from the holding pattern center is then
 

computed for either a normal or initial holding pattern entry.
 

If the holding.pattern mode is not selected, the holding pattern flag
 

*(HFFLG) is set equal to zero and a test made to determine if the pilot
 

has selected a hold heading mode. If a hold heading mode is selected
 

a flag (HI-FLG), which is set equal to zero whenever the hold heading mode
 

is not selected, is tested. If the flag is zero indicating hold
 

heading has just been selected, the heading command is set equal to the
 

present heading reference value and the hold heading flag set equal to 1.
 

If the hold heading flag was 1 when tested or after being set to 1,a
 

heading error is computed and converted to a roll guidance command.
 

If the hold heading is not selected, the hold heading flag is set equal
 

to zero and a test is made to determine if the pilot has~selected a
 

pilot commanded heading. If a pilot commanded heading is selected the
 

latest pilot heading entry is picked up and used as a heading command.
 

A-heading error is then computed and converted to a roll command by the
 

same set of instructions used'in the hold heading mode.
 

If a pilot command heading is not selected then an automatic heading mode
 

must be selected. The distance to the next route point is computed and
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a test made to determine which automatic mode is selected. If automatic
 

mode number 1 is selected the distance from the booster to the desired
 

flight path is computed. This distance is then tested against a pre­

stored constant. If the distance is less than the prestored constant,
 

a roll command proportional to the distance from the desired flight 

kath is computed. If the distance is greater than the prestored con­

btant a heading command is computed which will require the booster to 

ly normal to, and toward the desired flight path. The heading command 

is used to compute a heading error and roll command by the same instructions 

usid in the hold.heading modes. 

If automatic mode number .2is selected, a heading command.is computed
 

which will cause the booster to fly toward the desired route point. A
 

test is then performed to determine if the booster is within a distance
 

r of the desired route point. This same test is performed on that branch 

of the program where automatic mode number 1 is selected and the booster 

is within the prestored distance from the desired flight path. If the 

booster is within the distance r of the next route point,a new flight 

ieg is selected by taking the next point in the sequence table. At the 

time of selecting a new flight leg the flight leg distance (d12) is computed. 

A test is then made to separate the program path for the automatic mode 

number 2 program. -Ifautomatic mode number 2 is selected, a heading 

error and roll command is computed using the same instruction set used 

for the hold heading program.
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After computing the roll command, a test to determine if hold altitude
 

-isselected. If hold altitude is selected, a test of a flag (HAFLG),
 

which is 
set equal to zero whenever hold altitude is not selected, is
 

made. If the flag is 'zero the altitude command is set equal to the present 

altitude and the flag set equal to 1. If hold altitude is not selected
 

the hold altitude flag is set equal to zero and a test made to determine
 

if pilot command altitude is selected. If pilot command altitude is
 

selected the latest entered altitude command is picked up.. If pilot
 

,
command altitude is not selected an automatic altitude mode must be
 

selected and the altitude command is obtained from the next route point
 

in the route point tables. 

A pitch command is computed from the altitude command. A test is then
 

performed. to determine if the landing mode should be entered. This test 

is based on either a pilot input command or a flag stored in the route 

point at which landing sequence should be initiated. If.the landing 

flag is set, landing guidance is scheduled by scheduling the Advanced 

Instrument Landing System program. As soon as this program indicates that 

it is receiving inputs from the AILS receiver, the cruise guidance program
 

is descheduled. The AILS provides guidance inputs for the-remainder of the 

flight.
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5.5 Flight Control
 

The primary function of the flight control system is to control the
 

attitude of the booster. The flight control system receives attitude
 

commands from the guidance system or pilot controls, generates attitude
 

errors between the commanded attitude and actual attitude received
 

from sensors, and issues commands to systems which produce torques
 

on the vehicle which change the vehicle attitude reducing the attitude
 

errors. In performing this function the flight control-system must
 

guarantee system stability and maintain acceptable attitude responses
 

which maintain forces and torques on the vehicle below a maximum
 

value where structural damage to the vehicle or physical damage to
 

the crew would result. The commands generated by the flight control
 

system are a highly filtered combination of command and sensor signals.
 

In a digital computer filters are mechanized through the use of
 

difference equations. An enample of a difference equation is
 

Y 0,,( n +Oz Xn- + q3 X,- b Y1-1- b;. Yn-() 

whereY n is the filter output and X is the input to the filter. 

The filter output is calculated at a fixed iteration rate of 1/T times 

per second, i.e., a solution is calculated every T seconds. If X is 
n 

the value of the input at some time t then Xn-1Ois the value of the
 

input at t - T, n-2 at t - 2T, etc. This same relationship holds for
 

Yn2 Yn-i' Yn-2' etc. The parameters al, a2 , a3, b, and b2 are constants 
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which determine the filter characteristics. The computational require­

ments of mechanizing a digital filter is dependent upon the number of
 

past values required by the filter. 
In the above example four past
 

values (2 past values of X and 2 past values of Y) are required. In
 

the flight control equations given below the symbol F will be used to
 m
 
represent a filter requiring m past values. 
Statistics on computer
 

requirements for mechanizing a digital filter are
 

multiply and/or divide instructions 
 m + 1 

all ,other instructions 4m + 1 

total number of instructions 5m + 2
 

constant storage area 
 M + 1 

variable storage area 
 m 

The flight control equations are dependent upon the method used to
 

produce torques upon the vehicle. Torques are produced by thrust vector
 

control during boost, reaction jets during coast and initial reentry,
 

and areodynamic surfaces during reentry, cruise, landing and ferry
 

operations. 
During boost the flight control computational requirements
 

in equation form are
 

(2) 

¢ OC (4,)

(3) 

Ip, 9,F F + Kp2 Az Fz.- - Kp.. CF-+ Kp, q-2 F- (5)
 

1 OE(6) 
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EaZXy, V - 2 r 07) 

5rvc. I = E& F (8) 

STVCZ -5 (9) 

5rVC 4= EP- E 
STVC - 6VJ EO(10) 

(11) 

±1F4 F55E KE GE FS + KE Az F±K-k cffs KE* (12) 

Equations 2, 3 and 4 generate pitch yaw and roll attitude errors by 

subtracting the guidance commands from the vehicle attitude. Equations 

5, 6 and 7 are used to calculate the desired thrust vector deflections 

for each vehicle axis. Desired pitch deflection is computed as the 

proportional -sum of filtered pitch attitude error, 9E' normal accel­

eration, Az, and the two pitch rate gyro outputs q, and q2 . Each term 

is filtered separately by a fifth order filter (represented in each case 

by F ). The filter constants (6 for each filter) are 'changed four 

different times during the boost flight. The gains Kpl, Kp2' Kp3 and 

Kp are contin6usly varied thoughout boost by interpolating a 10 point 

lookup table for each gain. Desired roll deflection is computed in the
 

same manner as pitch deflection however only two terms, roll attitude
 

error, OE' and the roll rate gyro output, p, are used. Desired yaw
 

deflection is calculated in the same manner using three'terms, yaw error,
 

WE.lateral acceleration, Ay, and yaw rate, r. Equations 8, 9, 10
 

and 11 are used to calculate the four engine command outputs. During the
 

-352­



atmospheric portion of boost it is assumed that the elevons are used
 

to supplement pitch attitude control. The control effectiveness of the
 

elevons is proportional to dynamic pressure. By-using the elevons for
 

load relief, the control of loads on the vehicle is automatically
 

phased in and out during high dynamic pressure regions where loads are
 

most severe. The elevon command is calculated using the same terms
 

used in determining E0 with different filter coefficients and gains.
 

During coast and the initial reentry phase the reaction jet system
 

is used to control the vehicle attitude. Figure 5- 80 shows the ass­

umed reaction control jet arrangement. There are 16 Jets mounted in
 

two rings, one located in the forward portion of the vehicle and the
 

other in the aft. Each jet when activated causes torques about two
 

.vehicle axis and a linear acceleration along one of the vehicle axis.
 

Figure 5-81 shows the angular and linear accelerations produced by each
 

jet. The JMS computes a desired torque about each axis on each iteration
 

pass through the program. The desired torques are based upon the mag­

nitude of an error computation for each axis. These error equations
 

are
 

Eara(6-6c)+Kg +K<C7F (13) 

JFw: K~y '+4 r *KirdO- F (14) 

FO K O K*pt Kpa,-F. (15) 

where c c and 0c are the guidance system attitude commands, Q9 9!, 
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Figure 540 Reaction Control Jet%Arrangement 

.Accelerations 

JSIS p q r 1 2 

F1 + 0 + + 0 
F2 - 0 - - 0 
F3 + - 0 0 + 

F4 - + 0 0 + 

F5 + 0 - - 0 
F6 - 0 + + 0 
F7 + + 0 0
 
F8 - - 0 0 + 
Al + 0 - + 0 
A2 0 - + O 

A3 + + 0 0 +
 
A4 0 0 -

A5 + 0 + - 0 
A6 - 0 - + 0 
A7 + - 0 0.-
A8 - + 0 0 + 

Fiiure 5- 81 Accelerations Caused by Each Reaction A0t 
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and 0 are the vehicle attitude reference outputs from the strapdown' 

system,- q, r and p the rate gyro outputs (only one of the pitch rate 

gyro outputs is used with the reaction jet system), and cr-, 0, and 

0-0 are the pilot commands. The pilot commands are filtered by a 

first order-filter. The detent switches on the pilot's sidestick 

controller and rudder pedals cause K0, KT and Kg to be zeroed when 

they are activated.
 

Reaction jet produced accelerations are requested when ever the cal­

culated error exceeds a constant value. The requested angutlar accel­

erations-are determined according to:
 

request + if E /-60 

request - if EO > E
 

request +4 if E 

request - if E > 

request + if E4 ( t q. 

request - if EW E 

where g, E' and are constants. The reaction jets which are 

activated at any time is dependent upon the combination of requests. 

Figure 5-82. inhdicates the reaction jets that are fired for each possible 
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request combination. The selection logic which must be performed by
 

the DMS as determined from Figure 5-82: is
 

1= 4(±j -t') p •(t (16) 

F2 ( + + P*- k. ) (17) 

F, t*r4l.C+) (18) 

F5 .(tt0)+P+.( + ) (20) 

F6- 4.(Po +o+ A (21) 

F7 +(±+~)i'~(.t (22) 

F8 7 .i P±t..(±t (23) 

M('_ tA = + (2+)
 

A2 K.ya9 (25) 

A3 t&+ + (26) 

A, = +'4,± r, (27) 

A5= (28) 

A6 = hi(4i-kP ' (29) 

A8 N+ -+(31) 
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The reaction jet system remains effective until dynamic pressure, Q,
 

exceeds a preset value, lax. at which time the reaction jet system is
 

shut down.
 

The aerodynamic surface control system is activated at the same time that
 

the reaction jet system is turned on, i.e., at the end of powered boost.
 

The control system errorsfor each axis for the aerodynamic control inputs 

for pitch and roll are given by the formulas: 

A 6=K (e-Gc)+K 4 $ + Kan-F(2
 

AO= %O(O-0)+K-p-o- F (33)
 

The control system gains K0 and Kg are set equal to zero if the pitch or 

roll pilot command values are greater than the detent position. The 

gain K0 is derived from a three dimensional table lookup procedure as a 

function of o( , angle of attack, M, Mach number and Q, dynamic pressure. 

The gain KG is -constant until dynamic pressure is greater than Qx and 

then is determined as q function of i/V where V is the vehicle total 

velocity. 

The yaw aerodynamic error is determined from
 

AW = Hp, r F, + X - K: P + q- F38­
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if Mach is less than 4 and for Mach greater than 4 is is computed 

from 

Ay = KR2r+x- KcFP- -C L (35) 

The gains Kp2 and KRi are determined from a three dimensional table 

lookup procedure as a function of o , M, and Q. The gain KOF is 

computed as a function of o( . 

The parameter X is equal to the side slip angle ,e when Q is less than 

Cmax and equal to lateral acceleration when Q is greater than Qmax
 

The commands to the elevons are computed from the filtered aerodynamic
 

errors determined from the formulas
 

Kp Ea F9 (36) 

g= KR EO F (37) 

SR= KY (Ep- 04 -yF( 

SER 4- (39) 

SL 50 -So (40) 

The gains K KR and Ky are each computed from a table lookup as functions 

of M, o( and Q. The magnitudes of $@, g, 5 R and 0 are each 

limited in absolute magnitude before being used. 
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Included in the flight control system is automatic throttle control 

of the cruise air breathing engines. The throttle position is computed
 

from
 

,rc K)F-+KZVR-" v(VR-V)+(V,,-V/ +9 F, (1 

where F is the throttle feedback position and VR the commanded reference 

velocity. The term (VR - V) F1 is Limited before being applied in the 

above equation.
 

The flight control function is accomplished through the use of several 

programs in the DMS. Figure 5-83' is a flow diagram of the flight control 

ground checkout program (FCGC). The program sequentially tests all of 

the flight control systems. Upon entering the program the pilot and
 

copilot sidestick controller and rudder pedal functions are tested. 

Figure 5-84 is a detailed flow diagram of the testing required for this 

function. By use of the display system the DMS makes a request for the 

station select switch to be placed in the pilot position. A flag is 

then set to zero for use in the program for selection of pilot inputs
 

and a wait programmed to allow for the crew to respond to the request.
 

Upon completion of the wait the station select switch is tested and a
 

request issued to place the sidestick controller and rudders in the zero
 

position. Another wait is then programmed to allow the crew to respond 

and all inputs from the sidestick controller and rudders tested for proper
 

outputs. The detent switches are then tested and should be off. A 
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request is then issued to place the rudders and sidestick controller
 

into the detent position for right rudder, pitch down and roll right.
 

A wait'is programmed to allow for the crew to respond and then all
 

inputs including detent switches tested. A request of detent position
 

for left rudder, pitch up and left roll is then made, a wait programmed
 

and then all inputs tested for proper value. The flag is then tested
 

and if zero a request for the station switch to be placed into the co­

pilot position is made. The flag is then set to one and a wait prog­

rammed. The station switch is then tested for copilot position and the
 

program transferred to the controls testing programming for tests of
 

the copilot station. With the flag equal to one at the flag test, the
 

control- section of the flight control ground checkout program is exited. 

If any test fails an error message is displayed. 

Upon completion of the testing of the pilot and copilot controls a 

test is made to determine if the cruise air breathing engines are op­

erating. If they are not operating the test of the autothrottle in~er­

face must be bypassed. If they are operating the testing shown in Figure 

5-85 is conducted. First a display request is made to place the throttles 

for all six engines in the idle detent position. A wait is then programmed 

to allow sufficient time for the crew to respond to the request. A test 

is then made to determine if the throttles have been placed in detent; 

A test of both the detent discretes and throttle position is made. A 

command of idle thrust is then issued to each engine and a wait prog­

rammed to allow for the engines to respond. Each engine response signal 
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is then tested to determine if each engine is idling. A display 

request is then made for the crew to place the throttles in the maximum 

power position. A wait is then programmed to Allow for crew response 

and then the throttle positions and detente are tested for each engine. 

The engines are then commanded to maximum thrust and their response 

compared with expected response values stored in the computer. An 

error message is issued if any test fails. 

Referring to Figure 5-83 the next test performed is a test of the four 

rate gyros. Each rate gyro is tested by the procedure shown in the flow 

diagram of Figure 5-86. The testing on all four rate gyros is per­

formed simultaneously. The power on discretes for both the AC and
 

DG power are issued and a wait programmed to allow for power transients
 

to decay and rotor speed to build up to its operating value. The AC
 

and DC supply voltages and the rotor speed are then tested.
 

A counter is then initialized to count the seven test command outputs.
 

A loop is then executed where each test configuration is commanded and
 

the resultant rate gyro output tested for being within desired limit
 

values. Upon completion of the test configuration testing the tempera­

ture of the rate gyro electronics is tested.
 

The next flight control ground checkout tests to be performed is the 

checkout of the linear accelerometers and the main engines thrust-vector 
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control servos. A detailed flow diagram of this testing is shown in 

Figure 5-87 . A counter is set which initializes a loop for testing 

both accelerometers in each of'three test configurations. With each
 

pass through the testing loop both the normal and lateral accelerometers
 

are commanded to a test configuration and their outputs and status
 

tested. The thrust vector control (TVC) servos are tested by first
 

issuing a power on discrete to each of the tgelte TVC systems and wait­

ing for power turn on transients to decay. The DC supply voltages to
 

each servo and the status indications from each servo are then tested. 

All twelve servos are then commanded to a zero position which requires 

the 'issuance of four command words. A wait is then programmed to allow 

the servos to achieve zero position. The position of each of the twelve
 

servos is then tested to determine .if its position is within a 
minimum range about zero degrees. Al servos are then commanded to 

a maximum positive deflection. Their response is tested by comparing
 

their sampled instantaneous positions with prestored limits. All servos 

are then commanded to their maximum negative position and their response 

tested. If any errors are encountered an error message is issued.
 

The remaining preflight flight control ground checkout includes the 

testing of the reaction Jet system, the servos for the aerodynamic control 

surfaces, the flaps system and the trim system. Figure 5-88 is a detailed 

flow diagram of the program required for this testing. All of the reaction 
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jets are commanded on and a test made of their returned status to deter­

mine that they are on. All reaction jets are then commanded off and
 

tested for being off. A power on discrete is then issued to the elevens
 

and rudder servo systems. A wait is then programmed to allow for power
 

transients to decay and then the supply voltages tested. Both elevens
 

and the rudder are commanded to zero position and a wait programmed to
 

allow the servos to respond to the command. Their positions are then
 

tested for being at zero within a preset limit. The elevon and rudder 

servos are then commanded to their maximum positive position and their
 

output compared with prestored values as they respond to the command.
 

The servos are then commanded to their maximum negative position and their 

response tested. A power on discrete is issued to the flap system and
 

a wait programmed to allow for power transients to decay. The flaps
 

are then commanded to zero degrees and a wait programmed to allow the
 

flaps to respond. The flaps are then commanded to full deflection and 

a test performed to determine that the time required to reach full 

deflection is within preset limits. The flaps are then commanded to 

zero deflection and their response time again tested. The trim system 

is tested by commanding all surfaces to zero trim, then positive trim and 

then negative trim and testing for the correct return status for each case. 

During boost there are three programs which perform all of the flight 

control computations. One program performs all of the slow iteration rate
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flight control functions require that 13 gains be continously varied 

as a function of time with each gain being constructed by interpolation 

between values in a 10 point table lookup array. There exists a different 

table lookup array for each of the 13 gains. Generation of each gain
 

value is achieved by the process of first computing the integer A which
 

is the largest integer contained in the ratio t/T where T is the time 

increment between table values. Each gain is then computed by applying 

the formula
 

GGA+ r GAk(-AT) 
,42)
 

thth
 
where GA and GA+l are the A h and (A+I)-h table entry. This formula 

is computed once for each gain value. Testing is then performed to
 

determine if t is between 0 and T1, T, and T2, or T2 and T3 or greater
 

than T3 and a pointer set for the filter coefficients dependent upon the 

region in which t appears. The gain values and filter pointer are passed 

to the Main Boost Flight Control Program.
 

Figure 5-91 is a flow diagram of the Main Boost Flight Control Program 

(MBFC). The program first tests the thrust vector control servos to
 

determine if they have properly responded to the previous command outputs 

and then performs the boost flight control computations -previously des­

cribed. Errors in TVO position cause an error message to be displayed
 

and an abort to be initiated if multiple failures are indicated. 
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Several programs are used by the flight control system during coast, 
'5­

reentry, cruise and landing. Figure 5-92 is a flow diagram of the 

Reaction Jet Control Program (RJCP). The program computes reaction 

jet pitch, roll and yaw error from the rate gyro inputs, the attitude
 

data provided from the strapdown system, the attitude command from the 

guidance program and filtered pilot inputs received from a lower
 

iteration rate control program. The attitude errors are tested against
 

limit values to determine attitude commands. The attitude commands 

are-used in the jet selection logic to generate individual jet commands, 

Before the jet commands are issued a test is made to determine if the 

previous response of the reaction jets was as commanded. An error 

message is generated if any reaction jet failure is indicated. This 

program is run at a 32 per second iteration rate. 

Figure 5-"93 is a flow diagram of the Aerodynamic Control Surface Program
 

(ACSP). This program is run at a 32 per second iteration rate. The
 

program computes pitch and roll errors as a function of pitch and roll
 

rate, pitch and roll attitude reference, pitch and roll attitude command
 

inputs. The pilot command filtering is done by a slower iteration rate
 

flight control program. Yaw error is computed by one of two different 

formulas, dependent upon the value of Mach number. Yaw error is a function 

of yaw rate, roll rate, filtered pilot roll input command and either side,
 

slip angle or lateral acceleration dependent upon aerodynamic pressure. 

Aerodynamic surface commands are then generated by filtering and limiting and 

then subtracting directly from yaw error. Right and left elevon commands
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are formed from pitch plus roll and pitch minus roll commands. The
 

major control gains used in the computations are functions of sensed
 

aerodynamic parameters and are generated by lower iteration rate
 

flight control programs.
 

Figure 5-94 is a flow diagram of the Pilot Command Filtering and Gain 

Generation Program (CFGG). This program is run at a 16 per second 

iteration rate. Dynamic pressure is tested and if below a preset 

value pitch, roll and yaw reaction jet position gains are set to pre­

stored values, pilot inputs are filtered', the yaw error X term set 

equal to the side slip angle, and the KG gain set equal to a constant
 

value. If Q is greater than max the reaction jet control program is
 

descheduled, XG is computed as a curve fit function of i/V and the yaw 

error X term set equal to lateral acceleration. Aerodynamic control 

system gains and filtered pilot command outputs for the aerodynamic
 

control system are then formed. The pilot command detent switches are
 

then tested and position gains set equal to zero for both the reaction
 

jet and aerodynamic control systems if the pilot command input is above
 

the detent value.
 

Figure 5-95 is a flow diagram of the Throttle, Trim, and 'Flap Control 

Program (TTFC). This program is run at an 8 per second iteration rate. 

The pilot selects either manual or automatic throttle control which the 

program tests and either sets the engine thrust command to the throttle 
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position or the computed automatic value. The automatic value is
 

a computed velocity command system compensated with vehicle attitude.
 

The trim system is tested to determine if the system has responded
 

to previous commands. The pilot trim input is then tested and the
 

trim system activated according to the commanded input. The landing
 

system is then interrogated and the flaps commanded down if the app­

ropriate landing condition exists. 

Figure 5- 96 is a flow diagram of the Cruise Flight Control Monitoring 

Program (CFCM). This program is run at a 1 per second iteration rate. 

This program tests the rate gyro power supply voltages, rate gyro tem­

peratures, the rate gyro rotor status, the lateral accelerometer status, 

the elevon and rudder position, the elevon and rudder power supply 

voltages, the flap position, and the flap power supply voltage issuing 

an error message upon the detection of out-of-tolerance indication.
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5.6 COMMUNICATIONS
 

5.6.1 VOICE COMMUNICATIONS
 

Voice Communications Executive (VCEX) routines are used to supervise
 

voice communication unit usage and provide information required 

by the Voice Communications Equipment Tester (VCET) routine in
 

performing its functions of testing, initiating, and recording t.est 

results and status data. Figure 5-97 is a- low diagram of VCEX. 

VCEX is entered under the following situations:
 

* During the prelaunch checkout 

* When a change in voice communication mode is required 

W request for a status display is made by the flight
When a 


crew
 

When a request for a Voice Frequency Select and Display
 
(VFSD) is made by the flight crew
 

During inflight testing
 

VCEX answers these entries by adjusting the bit patterns of the request
 

and frequency link words. During the prelaunch check­

out, all units are tested and an initial status display is formed for
 

the flight crew evaluation. Units scheduled for use during the boost
 

mode are designated by setting the appropriate bits of the request
 

word.
 

A change in voice lnit usage may be required due to a change in 

mission phase or to failure of a unit in use. For a scheduled change, 

VOEX has access to a mission phase/communications mode plan which 
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designates primary and alternate units to be used. VCEX dets the request 

and frequency link codes as required to establish the schedule. For 

degraded mode, VCEX examines the status table prepared by VCET, and 

assigns available units for use.
 

At any time during the flight, the crew may request a status report 

through the use of the function keys of the display keyboard. VCEX 

answers this request by setting the status report bit of the request
 

word and clearing the remainder of the word. VCET then assembles 

the latest status information and forwards it to the display file. 

Another function key request activates the VFSD routine. The crew
 

positions the cursor symbol over a geographic location and makes a
 

request to bet and display the frequency of the station located at 

the cursor point. VFSD determines the latitude and longitude of 

the point and forwards the information to VOEX. VCEX examines the 

prestored frequency table, correlates the position
 

information with frequency and station name data, 'and assembles the 

request words for use by VCET. Name aid frequency clraQters are 

displayed on the assigned CRT and the appropriate voice unit is switched 

to the requested station.
 

Inflight tests are scheduled periodically and VOEX is entered during this 

time in order to test voice communications equipment. VCEX sets all 

bits of the test portion of the request word and leaves the initiali­

zation bits in their present status so that current communications
 

is not disrupted. VOET then processes this request, reporting any
 

change in status.
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Voice Communications Fuipment Tester (VCET) procedures are used to test 

voice communications units, to initialize units according to requests
 

and to assemble test and status data for recording and display. Figure 5-98
 

is a flow chart of VOET.
 

VOET is entered from VCEX when action on test, initialization, or
 

status display requests are required. VCEX provides a variable which
 

has bits set in accordance with unit testing or initialization require­

ments, and status reporting desires. This variable is also used as a
 

link to a table established by VOEX for frequency settings of the units 

to be activated. VOET first checks to see if status reporting is the
 

only service required, and, if this is the case, assembles the data
 

on the status of voice communication units., and provides a display 

format for this status reporting. VOET checks switch and frequency
 

settings. Data for units turned on are obtained from prestored
 

tables or from maintenance records updated by VOET. The .COM/SEL 

switch position indicates which of the two settings for each unit 

is available for use. VCET then moves the information to the specified 

display file area.
 

The variable input from VCEX specifies the units to be tested. VCET 

masks this word and sets up a loop for conducting the testing 

operations. Static checks are performed initially to verify resistance
 

measurements, circuit continuity, and circuit impedance at signal 

inputs. The static checks and the functional tests make use of inputs 
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from the onboard checkout system and prestored limit criteria and
 

parameters. The head phone audio output functional capability is
 

evaluated for a specified amplitude and frequency using prestored
 

modulation index values. Volume control is checked by having the
 

knob set to a maximum position. The audio output amplitude is then
 

measured and evaluated for a specified minimum at the maximum
 

volume setting. Tone squelch operation will mute an otherwise
 

active receiver audio output. The receiver RF carrier must contain
 

both tone and voice modulation components to enable the audio output.
 

The tone squelch function is tested for its capability to sense and
 

react to the tone component at each of two separate RF carrier fre­

quencies. The receiver output is monitored for the presence and then
 

absence of audio signal when the tone modulation is respectively
 

present and then absent from the receiver carrier.
 

Receiver sensitivity tests are made at the maximum and minimum
 

frequencies of the unit being tested, as well as four other frequencies
 

chosen at random across the units operating band. Transmitter fre­

quencies accuracy and power output checks are also made at these same
 

frequencies. All these tests are conducted without light crew
 

-
intervention. Following completion of the tests for particular
 

unit, VOET checks to see if other units are required to be tested.
 

The procedures are repeated if additional checks are required.
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When the tests are completed, VCET assembles the test results for
 

maintenance and post flight diagnostic purposes. If a status report
 

is requested, the test data is also used to provide qualitative
 

unit status information and to pin-point LRU's inoperative or in
 

marginal condition. VOET checks the initialization portion of the request
 

word. The units specified are activated and set to the frequencies
 

designated by a table updated by VOEX. Other units not required are
 

deactivated and the information for the voice communication status
 

report is revised.
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5.6.2 Command Communications-

Up Link Executive (UPEX) _procedures perform general supervision 

of the initialization and testing of command communications equipment,
 

and the processing and execution of messages transmitted to the booster.
 

Figure 5.99 presents a normal mission command communications mode 

schedule and a flow diagram of UPEX. UPEK is entered when a message 

is being transmitted from a ground station, a change in mission phase 

occurs, or a request for equipment testing is sent by the systems executive
 

A command decoder interrupt is generated by the uplink equipment when a 

message is received. UPEX recognizes this interrupt and calls on the 

Up Link Command Processor (UPCP) to process and verify the information. 

If the message meets the specified criteria, UPOP returns control to UPEX
 

providing information on the type of command received. The .command 

execution procedure is dependent on the booster flight mode. If the 

booster is unmanned, UPEX prepares the commands for execution by addressing 

the appropriate subsystem and putting the command information on the 

data bus. If the booster is manned, UPEX first checks to see if crew
 

execution is desired or required. For both automatic or manual modes, 

UEl provides the Displays and Controls routines with the information 

necessary for message display and reprpgamable switch operation. 

If a change in mission phase ol' a request for equipment test is received,
 

the Up Link Communications Initializor (UPCI) routine is entered. UPCI
 

performs functions associated with the communications mode schedule.
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After initialization and testing equipment, UPCI prepares status 

messages for crew display interpretation and forwards maintenance 

data for recording or telemetering. 

Up Link Command Processor (UPCP) procedures are used to interpret, 

process and verify uplink messages. UPCP formats status and error messages 

for telemetry and provides information to UPEX for completion of the requested 

command. Figure 5-100 are examples of formats specified for command 

words. Verification of uplink messages is dependent upon information being 

received in the exact format required for a particular command word. 

Figure 5-101 is a general flow chart of UPCP. UPCP is entered from UPEX
 

when a command decoder interrupt occurs. UPEK also has responsibility 

for maintaining or recovering uplink synchronization. 

UPCP first validates the vehicle and system address bits against its list 

of acceptable ones. UPOP branches to verify the particular command word 

format being sent on the uplink. Figure 5-101 shows the flow for stored
 

program (SPa) verification. (The requirements for real-time command, 

guidance and navigation data, and central timing verification are similar 

to those shown for SPc). Up link messages may require more than one 

30-bit word. Figure 5-102 lists some possible uplink message types. The 

first word in each message is-a mode command whose information bits refer 

to the desired mode to be executed. UPOP tests to determine if the mode 

word is being received. (Mode or data words are distinguished by logical 

combinations of two of the message control bits). Tests are then made
 

on the format of the mode word. 
If any of the tests fail, a coded error 

message is formulated for interpretation by the ground station. Figure 5-103 
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Figure 5-102Mode Command Description and 
- , 

Mode 
Command Name 

Terminate1 

2 	 Memory flup 

3 	 Single Memory 

Location 

4 	 Mission Time-
line Update 

5 	 Inhibit Event 
k 

6 	 Update Event 
k 

7 Execute Event 
k 

S 	 Aflternate 
Sequence m 

9 	 Switch 
Selector 

Bits 1-3 not a 

2 	 Bits 4-6 not a 

Data Word Requirements 

Data Words 
Description Required 

Terminate routines whose data word 0
 
requirements have not been met.
 
Terminate memory dump if in progress
 
Prepare for new mode.
 

Telemeter the contents of the 2
 
memory modules specified by the
 
data words.
 

Telemeter the contents of one 3
 
specified I4S memory location. 

Increments or decrements start- 1 
ing times for future mission 
phases. 

Stop prformance of the maneuver 0 
specified by the mode command. 

Increment or decrement initiation 1 
time for event k. 

Perform computations for and execute 0 
maneuver specified by mode covmnd. 

Add or omit functions in the pre- 0 
planned mission schedule as specified 
by the alternate schedule. 

Activate or deactivate the switches 2 
specified by the data command format. 

legal vehicle address 

legal system address 

3 

4 

5 

6 

Information bits 15-22 are not the complement of bits 23-30 

Sequence bit (7) incorrect. Should be 0 for mode command 

Mode command received when a data word is required to complete 

the requirements of a previous mode command 

Another uplink routine is presently being processed 

7 

8 

9 

10 

11 

12 

The mode commend is not defined for the mission 

The node command is not acceptable at the time it is received 

(e.g., event to be modified has occurred) 

Data command received when a mode command is expected 

Data bits 15-22 are not the complement of bits 23-30 

Sequence hit (7) does not meet requirements. 1 for odd­

numbered date words, 0 for even-nuamberod data words 

Data does not meet reasonableness criteria 

Peare 5-10 Command Coomuncations Error Messages 
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lists the error messages assumed for UPOP validation of SP messages. 

UPCP maintains a count of consecutive failures. An exit will be made 

to UPEX to wait for the next word. Upon return to UPCP, processing is 

continued until the number Of consecutive failures reaches a prespecified 

number. If- this occurs, UPCP originates a terminate command to inform 

the ground station of communication status. 

UPOP first tests if bits 23 to 30 are the i's complement of the mode 

If this test fails, UPOP does not attemptcommand information bits. 


Processing of the message is discontinued and the
 error correction. 


to wait for repeM tA nnis formed and an exit is madeappropriate error message 

One of the message. control bits is called the sequence bit. This bit 

must be a 0 for the mode command word. 

command has been received..UPCP next checks to see if a terminate 

If this command is received, other verification tests are bypassed
 

and the ground station is informed of its acceptance. As the terminate 

command does not require data words, an exit is made to UPEX, where
 

If the mode command is not the
the appropriate action is initiated. 


terminate command, the checks continue with the mode expected test.
 

checks to see if the currect number of data words
For each mode, UPCP 

are received. If a new mode word is received before all the data word 

requirements are met, then the mode expected test checks to see if the 

time acceptance test verifiesmode is defined for the current flight. The 

be cancelledthat time criteria are satisfied. For example, if an event to 
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has already occurred, the time acceptance test fails.
 

After all tests have passed, UPCP forms a mode status word 

consisting of the information bits received plus code bits.
 

The Telemetrv Formatting and Timing (TMFT) routine is then used to
 

transmit the mode acceptance to the ground station. UPCP checks the 

mode and data word requirements table to determine the number of 

data words associated with the accepted mode. If no data words are
 

required, then the information, required by UPE for mode execution, is
 

assembled. If data words are required, an exit is made to UPE to
 

wait for the next word.
 

Testing of data words is similar to that performed for mode words.
 

The message control bits inform UPOP that a data word is to be processed. 

A data legal test checks to see if a data word is expected. If all data 

word requirements for the current mode have been met, then the next word
 

should be another mode command. The complement test is the same as that 

conducted for the mode command. For a data wrd, the sequence bit should
 

bea 1 for odd-numbered words and a 0 for even-numbered words. Finally,
 

reasonableness tests are performed on the data. 
These tests are primarily
 

logical ones (e.g., time changes illogical, etc.). When the data word 

passes all the tests, a data status word is formed and telemetered. UPOP 

repeats this loop if more data words are required. When all the specified 

number of data words are received, UPEX is provided information necessary to
 

initiate execution of the command message.
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Up Link Message Execution (UPME) procedures are used to provide a
 

flow of information to support command messages. Following Verification
 

of the uplink messages, UPCP forwards the mode command number and other
 

information to UPME. UHME uses this command number to set a table index 

as shown in Figure 5-104 , a general flow chart of UPME. A prestored 

table contains all necessary data for linking the command number with
 

the address of the subsystem responsible for completion of the command.
 

For both automatic and manual modes, the table- lists what type of media is 

used for storing messages, what the address or record number of the message 

is, and to what display file storage area the message is to be moved. 

Using this table index, UPME finds the address of the system scheduled to 

perform the requested operation. The information necessary for the
 

command is then outputted to the proper subsystem. If the flight is 

unmanned or the command does not require assistance from or notification
 

to the flight crew, all action necessary for command ei'scution is conducted 

at the scheduled time. For a manned flight, crew intervention may be 

required or desired. In this case, UPME returns to the table and determines 

the source and destination for the display message associated with the 

command. If the message is on tape, UPME forms a read request for use by 

the Tape Transport Executive (TTEX) and then exits to this routine. If the 

message is stored in memory, it is obtained and moved to the designated, 

display file memory area. 
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Up Link Communications Initializor (UPo1) routines are used to 

initialize equipment required for the current communications mode, 

to test and validate this equipment, and to provide status displays 

for crew evaluation and maintenance records for post flight diagnostics.
 

Figure 5-105 is a general flow chart of UPCI. 

UP0I is entered during the prelaunch checkout, whenever a change in 

communication mode occurs, or when a request for circuit margin
 

calculations or communication subsystem status display is initiated. 

During the prelaunch checkout, all the uplink equipment is tested and 

the capability to switch from one communication mode to another is 

verified. Figure 4-34 lists the various uplink S-band modes of operation 

and provides information on the equipment required, the modulation 

techniques used, and the frequencies of the subcarriers. The Comm­

unications Equipment Checkout (CECO) routine uses this data as it cycles
 

through the switching from one mode to the next. As crew interface is 

required for some of the modes, check lists are also employed using
 

tape handler and display subsystem capabilities. Following th6 com­

pletion of CECO functions, the Communication Equipment Margin Summary 

(CEMS) routine is entered. CEMS established a link with the spacecraft 

checkout facility or adjacent MSFN facility. Then using standard range
 

equations, the circuit performance margin is computed. C4S analyzes the 

results, and prepares a summary for display and recording. UPCI then 

establishes the uplink equipment for the boost phase communication mode. 
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Communication mode changes may be required following a change in mission
 

phase, through a request from a ground station or by equipment failure
 

necessitating'a degraded mode. For any of these cases; UPOI is entered
 

with the appropriate flags and variables so that the required switching
 

can be performed. CECO activates and tests equipment required for the
 

new mode and assembles status display information. Equipment not re­

quired for the new communication mode is shut down.
 

A circuit performance margin summary is performed when communications 

are initiated with a different ground link, when requested by the flight 

crew, or scheduled as part of inflight testing. CEMS is entered with the 

information required to specify the link for which the summary is desired.
 

CEMS then obtains the parameters required for its calculations and assembles 

the results -in summary form. Prior to exiting, UPOI updates the equip­

ment status and maintenance history files and makes them available for 

display and recording. 

Communications Equipment Margin Summary (CEMS) routines are used to com~pute 

circuit performance margins for radio links, to analyze the results of 

its calculations, and to assemble the results in summary format for display
 

or post flight diagnostics. Figure 5-106 is a flow chart of GEMS. 

Parameters required for margin calculations are obtained from prestored
 

tables, CECO, or other subsystem routines such as navigation or onboard 
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carried
checkout. The computation of the circuit performance margin is 

out in two essentially independent calculations: (1) calculation 
of
 

received signal power, and (2) calculation of noise 
power.
 

(1) Calculation of received signal power is performed 
using the equation:
 

Pr 	 = 10 logPt 10OlgG+l og Gr - 10 log L
 

- 20 logR - 20 log f - 37.8
 

where 

Pr = received signal power in -dBW 

Pt = transmitter power output in dBW 

Gt = transmitter antenna gain in db
 

G = receiver antenna gain in db
 

decibels (antenna pointing, antenna
L = system losses in 

* polarization, transmission line loses, power divider 
losses, etc 

+ 37.8 = space loss factor in decibels, where 
20 log R + 20 log f 


R = range in nautical miles
 

f = carrier frequency in megahertz 

(2) Calculation of noise power uses the equation:
 

noise 	(dBW) = -228.6 + 10 log T + 10 log B 

where
 

T = system temperature (aK)
 

B = 	 noise bandwidth (hertz) 
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The system noise temperature is computed from the equation:
 

T Ta + (1-I)290 + TrLL 

where,
 

T = antenna temperature (0 K) 

Tr = receiver temperature (OK)
 

L = circuit losses from antenna terminal to receiver input 

in ratio form 

T is obtained from prestored tables for systems likely to be linked a 
to the booster. Tr is the noise generated within the receiver itself
 

and is specified by the noise figure (Nf) given in decibels. isTr 


computed from the equation:
 

Tr = (Nf -1) 2900 

Using the above equations an actual SIN (signal to noise) ratio is
 

computed. Associated with each link is a required S4 ratio for receiver
 

threshold, high intelligibility, low error rate or other performance
 

criteria. Tolerances are also specified for each performance factor.
 

CEMS compares computed and required ratios to determine if system.
 

performance is within allowable tolerances. The computations are then 
I? 

summarized in a format similar to Figure 5-107 and made available for 

display. The results are also formatted for recording.
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5.6.3 TELMETRY 

Telemetry programs are required to control the formatting and timing of
 

down link data. Associated with this requirement are data compression
 

routines and communication mode control. Test and calibration routines
 

check the operability and accuracy of telemetry subsystem equipment. (Tdle­

metry programs associated with up link routines, such as verification loop
 

and test request, are described in Section 5.6.2
 

It is anticipated that thlemetry requirements will be a function of mission 

phases and flight mode (manned or unmanned). For each mission phase a 

down link communicatiom mode is specified. This mode establishes a tele­

metry bit transmission rate. This bit rate along with requirements for 

outputting data at varying sample rates will dictate the TIM format used. 

Finally, a TIM list organizes the data and fits it into the proper time slots. 

Fig 5-108 shows a possible relationship between these considerations. 

Normally, telemetry output requirements will be less for the manned flight 

than for the unmanned fIght, but the type datarequired will be similar.' 

This implies that a reduced telemetry list can be used during most of the 

mission phases of manned flights. Thee contents of the telemetry list 

primarily depend on mission phases. Three possible arrangements of telemetry 

list requirements are: 1, used in boost and staging phases; 2, used in the 

coast, reentry, and transistion to aerodynamic flight phases; and 3, used 

in ferry flight, cruise, and approach and landing phases. Associated with 

each of these lists is a reduced list. Telemetry programs select a subset 

of a telemetry list if transmitted in a reduced state. 
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Figure 5-108 Telemetry ane Mission Phases for 
Manned and Unmanned Booster 

Mission Phase Boost Staging] Coast Reentry Transistion Cruise Approach Ferry 

TIM Co Mode 3 3 3 3 3 4 4 4 
TLM Format 4 4 4 4 4 1 -- 1 1 
TUM List iR I1R 2R 2R 2R 3R 3R 3R 

TI Co= Mode 2* 2* 2* 2* 2* 1* 1* 1* 
TiM Format 3 3 3 3 3 2 2 2 
TIM List 1 1 2 2 2 3 3 3 

* Less Voice 

TIM Coan Modes (I thru 9) defined in Figure 441' 

TiM Formats (1, Model; 2, Gemini; 3, Apollo High Rate; 4, Apollo Low Rate). 
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Program DLCI (Down Link Communications Initializor) is used to initializeiand 

establish the requirements of Figure 5-108 , telemetry and mission phages 

for manned and unmanned booster. The functions of the routine are! 

* 	 Determine, or receive notification of, a change in mission phase., 

* 	 Activate and test equipment called for by new down link communication 

mode. 

* 	 Shut down equipment no longer required. 

* 	 Update communication status for display and maintenance record. 

Adjust indices, counters and other variables for associated telemetry 

format and telemetry list. 

Figure 5-109 shows the general flow of DLCI procedures. A change in mission 

phase can be determined by the occurrence of a particular event (boost and 

orbiter separation, etc.) or by a point in the mission time line. When a
 

missLon phase change occurs, DLCI is entered from the EXEC. DLCI determines 

which mission phase is current from a variable set by EXEC, calls up 

the matching communication mode and telemetry format,and lists numbers from
 

a 	 table. An additional table contains information on communication equip"­

ment associated with each down link mode. If a change in equipment status is
 

required, the new equipment is turned on and the appropriate test subroutine 

is entered. Equipment not required is shut down. The, results of any tests 

performed and an indication of change in the status of ,communication equip­

ment is prepared for maintenance history tape recording. The appropriate 

information is also prepared to notify the flight crew of changes made. Varia­

bles associated with different telemetry formats and lists are initialized. 

These variables, consisting of appropriate flags, counters, indicators, addresses 



and other parameters, are used by the telemetry formatting and timing 

(TMFT) routine to control and monitor the output of information via the 

telemetry equipment. 

Program TMFT (Telemetry Formatting and Timing)., using the information provided 

by DLCI, supervises the flow of the various data types into the telemetry 

is some 	 e.g.,subsystem. (It assumed that data will bypass the data bus ­

computer memory dumps, flight qualification test points, etc.) The functions
 

of TMFT are:
 

* Establish operating procedures as required by telemetry format and
 

list, and initiate flow of data in response to start and synchronization 

signals. 

to POM output register.* 	 Monitor and control data flow from data bus 

Load and update parallel digital words for sequencing to telemetry" 


buffer. 

• 	 Verify time slot reservation for analog data. 

" 	Monitor synchronization signals and initiate out of sync recovery 

procedures if required. 

* 	 Recognize telemetry stop discretes and inform interested systems of 

end of transmission.
 

Figure 5-110 is a general flow chart of TMFT. Although control of the various 

types of-data is shown sequentially, logic, as dictated by format and list
 

requirements, will manage interleaving of data. 

Program TMFT, folloldg initialization by DLCI, waits for the occurrence of a 

telemetry start discrete. It then initiates action required to ensure that 

data is ready for transmission at the time of frame sync discretes, and that a 

steady bit flow is maintained. Data from the data bus consists of address,
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parity,sync, and information bits. TMFT verifies that the data is in­

tended for transmission, :checks the information and parity bits (by a
 

COUNT ONES subroutine) to ensure that errors did not occur in data bus,
 

transmission, and tests synchronization with the established time standards.
 

If digital data (computer words) are to be transferred directly to the
 

telemetry equipment, a telemetry buffer (memory area) is loaded with the
 

appropriate parameters.TMFT provides packing and formatting functions. These 

words will be shifted into the telemetry output register at a fixed rate (e.g., 

1600 microseconds for one 32-bit word at 51.2 KBPS rate). TMFT reloads 

the buffer as required for repeating of the transfer process-. Care must be 

taken in loading the buffer so that telemetry words will not be loaded into an 

area which is currently being transferred. In addition, it is necessary to 

maintain synchronization between the transfer cycles and the telemetry cycle. 

If analog data, which has not been previously converted and put on the data
 

bus, is to be telemetered, then TMFT verifies its timing and synchronization 

to ensure there is no interference by other data being transmitted.
 

Sync bits are'tested at specified intervals. If these discretes do not satisfy
 

their required 'condition at a particular time, then an out of sync condition 

exists and TMFT will initiate recovery procedures. This primarily results 

in a delay of valid telemetry data until the proper discrete settings and' 

time considerations are met.
 

Telemetry is terminated either by completion of a predetermined amount of data 

transmissions or by the receipt of a telemetry stop discrete indicating that
 

receiving station is out of range. TMFT sets a flag to indicate end of trans­

mission and then waits for start of next down link output. 
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Program DCPI is'an executive routine to handle requests for a particular
 

computational algorithm for data compression requirements. Prior to putting
 

data onto the data bus for telemetry transmission, the routine computing,
 

testing, or inputting the data to be transmitted requests the appropriate
 

data compression routine. The function of DCPX is to initialize and swit&e
 

to the requested routine, and to insert the parity bit on the compressed
 

data prior to return to the requesting routine.
 

Program DOBP provides a bit packing of discrete, bi-level, or event information
 

into a single status word. Its function is to determine the answer to the
 

UP/DOUN, ON/OFF, or YES/1O condition, and put a "I" or "0" in the appropriate
 

status word position.
 

Program DCDB provides debiasing for a specified signal. If the signal is
 

expected to have a small dynamic range with a large magnitude, it may be
 

advantageous to subtract a bias value from each sample and transmit the
 

deviation from this bias value. An example of the use of DCDB is in the
 

monitoring of a power supply voltage where its value is expected to have small
 

variations about some, RMS value (e.g., 28 volts). It will required a fewer
 

number of bits to represent the signal if 28 volts is subtracted from each
 

sample. The function of DCDB is to perform the computation
 

Tn Yn -7
 

where,
 

Yn is the actual value of the n-th sample
 

K is the bias cbnstant for the signal Y 

Tn is the transmitted value for the sample
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Program DODO uses a difference coding algorithm for data compression.
 

Instead of transmitting the value of the sample, the difference between
 

successive samples is transmitted. This transmission of first order
 

differences is similar to DCDB in its application to samples having a small
 

dynamic range or to signals which are relatively smooth. Neither DODB or DCDC 

introduce errors by their compression algorithm. The function of DCDC is
 

to perform the computation 

Tn -


where 

Yn is the value of the sample at time n 

Y is the value of the sample at time n-1 

T is the transmitted value. n 

Program DCZ uses a zero order polynomial predictor algorithm. DCZP 

transmits the difference between samples if the differences exceed some preset 

value. Ifno value of the difference is transmitted at time t, the value of 

the sample is assumed to be the same as at t-1. The function of DCZP is 

to perform the comparison 

I Yn-li I>K 

and indicate to the requesting routine the result of the computation.
 

Program DCZI uses a zero order polynomial interpolator algorithm. DOZI 

is similar to DCZP with the difference being that instead of predicting succeeding
 

values from past values, successive data points are examined and a horizontal
 

line fitted to as many consecutive points as possible without creating errors
 

NOTE: 	 Telemetry data compression may be done external to the DMS with special
 
purpose hardware.
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greater than the established criteria. DCZI performs the comparisons
 

and computations necessary to determine the value to be transmitted, and
 

to adjust the upper and lower bounds about the horizontal line. Given
 

that 

Yi is the current sample
 

K is the upper boundu
 

K is the lower bound
 
e
 

A is the aperture width
 

Yt is the transmitted difference 

then
 

K -K
Yt = u e Yt-12 

if 

Y> K - 2A 

or 

Y(<K + 2A 

If these inequalities are not satisfied no adjusted transmitted value is
 

required. The bounds are adjusted (to Yi) if the change in sample values is
 

greater than the error bound. 

Fig 5-111 As a flow diagram of the above data compression routines. Due
 

to the short mission time and no flight crew experiment requirements, it is
 

assumed that more sophisticated data reduction techniques, such as higher 

order predictors or interpolations, statistical algorithms and complete data 

reduction schemes, will not be required. In addition, as there will not be 

significant time intervals in which the booster will be out &f line of sight 

to a ground telemetry *facility, there is no requirement for data compression 

in the processing and storing of data for later transmission. 

-404­



flCDC 

Return 
jcom utejTurn On 
I~ar~tY~Calibrator-

Controller 
DGZP
 

IC Calibration 
x.y IC Gate 

ClibrationObta~hDiscree Info T. 4V 1Start 
Pack Status 
Word 	 Select 

Calibration 
Return Voltage
 

Return
 

Read And Compa 
Calibration 

naZI output 

-KCompare ial 
Bouinds and Calibration 
Sam I0 Gate 

-Compute 	 Rtr 

Adjust 
Limits 

Piguro 5-112 Tel1atrY Calibration 

Return 

Figure 5-111 Data Compression 

-405­



Program TMCC controls the Calibrator-Controller assembly and interprets
 

the results of tests. The functions of TMCC are
 

" Output discretes to control the assembly
 

* Read calibration outputs and compare with prestored values for
 

each calibration step
 

* Return assembly to operational mode
 

TMCC starts by supplying 28VDC power to the Calibrator-Controller assembly
 

Then an Enable/Disable switch is set to the Enable position which permits data
 

flow through the calibration gates. (Disable position is for use by normal 

operational telemetry data). The calibration start command resets the cal­

ibration voltage to the first of six steps. The output of -the calibration
 

gate is then read and the results noted (A message - Telemetry out of 

Calibration - is displayed if bits other then the least significant bit 

disagree with the prestored value). TMCC then steps through the other five
 

steps (using Calibrator - Controller Advance discrete). When the test is 

completed, the calibration gate is disabled and the assembly turned off. 

Figure 5-112 shows the general flow of TMCC. 

Booster telemetry operations are verified with the help of the:ground based 

facilities with which it is communicating. A test pattern word can be in­

cluded in down link transmissions. Also the verification loop, test request 

and margin calculation routines described in Section 5.6.2. are an indication 

of satisfactory telemetry operations. 
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5.6.4 Recording! 

Recording programs are required to perform preflight tests of write
 

and read units and to provide operational control and monitoring of
 

these units in flight. The basic software method for interpreting
 

and controlling the magnetic tape units are through the status and
 

function words. A preselected tape
 

transport ,assignment is required for program organization. The
 

following assignment is used for this study:
 

* TT #1 - primary: record telemetry, FAA, and maintenance data 

secondary: record flight qualification data 

* TT #2 - primary: record flight qualification data 

secondary: record telemetry, FAA and maintenance data
 

* TT #3 - read checklists 

* TT #4 - read copy of checklists 

* Voice recorder - record voice 

Functional Tests of Write Units (FTWU) routines are used to provide
 

a complete verification of the capabilities and characteristics of the
 

write units (TT #1 and TT #2) of the magnetic tape subsystem (MTS).
 

FTWU cycles through various'subtests, controls Ithe display of error
 

messages if required, resets and initializes the tapds for operational 

use, and records the results of the functional tests.
 

Figure 5-113 is a flow chart of FTWU. FTWU first sets up for the sub­

tests by initializing TT #1 and TT #2. A request for transport statu
 

is issued, and the status word received is examined by FTWU. If the. 
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transports are ready, the first subtest is started. 
If a.transport
 

is not ready, an advisory message is displayed on the CRT assigned
 

for magnetic tape subsystem testing. As FTWU cycles through the
 

tests, it maintains a table of results for recording at the conclusion 

of the tests. If test criteria are not satisfied during each sub­

test evaluation, an exit is made to FTWU for error message display
 

and advisory cues to the flight crew for recovery. When discrepancies
 

have been corrected, FTWU will continue the tests.
 

The Tape Transport Subtest (TTST) routine tests the formatting capabilities 

of the selected transport by cycling the tape unit through the writing, 

reading and verifying a record for all legitimate combinations of density
 

and modulus. Records are verified by comparing data read back from
 

the MTS with data sent to the MTS. TTST will inform FTWU which data, 

if any, fails to meet the comparison test. The repeat and rewind function 

word bits are then set so that the Rewind Read Subtest(RRST) routine 

can be conducted. The returned status word is analyzed and the record 

which is read is verified. The Search Subtest (SRCH) routine is then 

used to test the forward and backward search and read functions. 

Identifier words are transmitted to the MTS control unit. The record, 

when found, is- read into memory and verified. 

The Check Output Timing Error (COTE) routine forces a condition where an 

output timing error should be noted by the MTS control. After sending 
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a write instruction, COTE goes into a test MTS busy loop instead of 

giving data required by the write instruction. When the MTS is no 

longer busy, the status word is examined for the output timing error
 

discrete. If found, the test is successful. The input timing error 

test is conducted in a similar manner by the Check Input Timing Error 

(CITE) routine. The Improper Frame Count Subtest (IFCS) routine is 

used to verify the operation of the frame count error discrete. The
 

frame count error is generated by writing a fixed length record in 

one niodulus and reading this record in another modulus so that the 

record is incomplete. IFCS then repeats the reading operation using
 

the same modulus as during the writing of the record. This will verify 

that the frame count error was generated by an incomplete record and 

not by conditions, such as a bad spot on the tape, which would cause 

characters to be lost. 

The Redundancy Check Subtests (RCST) routine verifies the operation 

of the Vertical Redundancy Check (VRC), Cyclic Redundancy Check (CRC) 

and Longitudinal Redundancy Check (LRC) information placed on the 

tape by the MTS control unit. Figure 5-114 shows the configuration 

of check and data bits on the 9-channel magnetic tape. The VRO is an 

odd parity bit added to each tape frame. The CRC is computed by the 

MTS control unit during writing and recorded at the end of each tape 

record preceding the longitudinal check frame. The nine bits of the 

CRC character are generated by an algorithm involving exclusive or 

addition, shifting and imversion of predesignated bits. The LRC is
 

added to insure that the number of one bits in each channel is even.
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This frame is generated by the tape control during writing and checked
 

on reading. RCST creates conditions in which redundancy check
 

errors will exist, verifies the proper status word response, and then
 

uses its recovery subroutines to correct the bits in error.
 

The Rewind Clear Write Enable (ROWE) routine rewinds the tape to the, 

load point and then attempts to write .arecord. As this is an im­

proper condition, RCWE tests the status word for the proper setting
 

of both the improper condition and the no write enable discretes.
 

Low tape and end of tape conditions are evaluated by the LTET routine. 

LTET also ensures that the improper condition, forward command at end 

of tape, is recognized by the control mechanism. Similar procedures are 

evaluated by the Load Point and Beginning of Tape (LPBT) routine. An 

attempt is made to backspace over the load point. In this situation 

both the load point and improper condition bits should be set in the
 

status word. The Test Direction Indication (TDIN) routine tests the
 

last motion of tape bit of the status word. A record is written on
 

tape and the status word is checked for proper indication of .forward 

motion of tape. TDIN then backspaces over the record and tests the 

status word for backward motion indication. The Interrecord Gap Length 

Subtest (IGLS) routine tests the operation of writing both the XIRG 

and IRG, and recognition of the gaps by the status words. A check 

of the gap lengths is made by IGLS by a time counting procedure which 

recognizes first and last characters of a sequence of records, and 

reads through the interrecord gap to maintain tape speed. The backspace 

function is evaluated by the Backspace Subtest (BCKT) routine, and the
 

Rewind Subtest (RWST) routine tests the rewind function and resets the
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tapes to the position required for the start of operational recording.
 

FTWU then completes the assembly of data concerning the functional
 

testing of the write units and writes a record on the assigned tape.
 

The data recorded consists of status word configuration after each 

test, operation timing information, and other information of use 

during post flight diagnostic analysis. 

Functional Tests of Read Units (FTRU) routines are used to verify 

the check list and special symbology records contained in the tapes 

of TT #3 and #4, and to check the operational characteristics and 

capabilities of these units. 

Figure 5-115 is a general flow diagram of FTRU. The Tape Transport 

Read Initialize (TTR!) routine readies the transports for testing. 

Power is turned on, blower operation is monitored, and the over temp­

erature alarm is tested. Status words are examfnedto verify that the 

no write enable and transport ready bits are set. TTRI then initialize 

indices, flags and counters used in the test loop. 

FTRU verifies records by searching for, reading into a preassigned 

storage area, and comparing word for word the information contained on 

the two tapes. As one tape is a copy of the other,corresponding words 

in the two storage areas should be the same. An additional check is 

made (to ensure that both words from tape do not have the same error) 
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by a comparison test with a prestored table. This table contains one
 

word from each record (the word has been preselected randomly and
 

verified). If comparison tests and status words indicate that the
 

read operation has been performed successfully and that stored 

information is accurate, FTRU then repeats the procedure for the next
 

record. FTRU proceeds through the records first in a search and forward
 

read operation. When all records have been checked in this manner, the 

operation is repeated using search and backward read instructions. 

The Tape Read Error Correction (TREC) routine is entered if an indicatioz 

of character error is received. During a tape read operation, the CRC 

frame is computed again and compared to the CRC frame recorded when
 

the check list records were written. The VRO and LRC characters which 

were written are also checked during the reading process. Under control 

of TREC, the error correction capability is designed to correct almost 

any pattern of erroneous bits along a single channel within any record. 

Joint use of the CRC and VRO can locate the channel in error when an 

erroneous record is read. Error correction is performed by the MTS 

control unit when TREC backspaces and rereads the erroneous record.
 

When the VRC determines during the reread that a frame is in error, 

the bit in that frame in the channel that contained errors during the 

original read is corrected. TREC then rejoins the verification process
 

under FTRU control.
 

-414­



Functional Test of Voice Recorder (FTVR) procedures are designed to test 

and verify the operational requirements of the voice recorder equipment. 

The functions of FTVR are to: 

Verify the operation of the record, playback and erase features 

of the voice recorder 

Test the data time tag function of microphone closure 

Test the voice and flight data recorder operations associated with
 

the recovery beacon
 

Figure 5-116 is a general flow diagram of FTVR. FTVR works in conjunction 

with the preflight checklist being displayed on the assigned CRT. The 

displayed check list provides cues to the flight crew for verifying the 

voice recorder functions. The crew operates the reprogrammable switches 

associated with the test to initialize the voice recorder. Pilot, copilot
 

and area microphones are checked by having a message from each recorded on the
 

tape. At the same time the operation of the microphone closure discretes 

is verified. The tape is then reversed and the messages played back. If 

the crew is satisfied with the quality of the recording, the tape is again 

reversed and the erase feature is tested.
 

To test the recording requirements associated with beacon operations,the 

voice recorder is turned OFF, and a simulated excessive acceleration data 

word is placed on the data bus. FTVR verifies that the voice recorder 

is turned ON following receipt of this over limits information and that the 

magnetic tape unit associated with flight data recording is activated and 

has recorded the required flight data. 
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Tape Transport Executive (TTEX) procedures provide supervision of the 

magnetic tape read and write units. The timing of the data to be recorded 

can be prescheduled as a function of mission phase requirements and known 

flight qualification, telemetry and maintenance requirements. Additional
 

recording may be required in response to uplink requests or emergency 

situations. These additional requirements will fit into available time 

slots or take precedence over current tape usage. Record lengths for each 

recording requirement are determined by the parameter to be recorded, 

its sample rate and number of bits. For example, a record of 120 S-bit 

characters each 6 seconds would satisfy the flight data -requirements of 

Figure 4-41. The display file data on tape transports 3 and 4 are 

arranged in normal mission sequential order to minimize tape access time. 

Figure 5-117 is a general flow chart of TTEX. The Write Flag is set if' 

writing of data is required. If this flag is set, TTEX 'continues input 

functions associated with the data bus interface. A variable word associated
 

with the record requirements is formed and an exit is made. to the Operational 

Use of Write Units (OUWU) routine for further processing. OUWU returns 

to TTEX where the Read Busy flag is checked. This flag is set when the tape 

units are supplying data from the read transports. If the flag is not.busy,
 

the condition of the Magnetic Tape subsystem (MTS) is verified. This 

test checks blower operation, transport temperatures, and status words for
 

conditions which might require reassignment of the read or write units. 

If reassignment- is necessary, TTEX revises the lists it maintains and sets 

appropriate flags for use by other tape handling routines. TTEX recognizes 

read requests from the Displays and Controls programs, and, after checking
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to determine if the transports are not currently busy reading, will form 

a read request word containing a record number and usage information.
 

.TTEX then exits tb Operational Use of Read Units (OURU) where the 

reading operation is performed. OURU returns to TTEX where a schedule 

of writing requirements is checked. If it is time to start a new write 

record, TTEX formuLLtes requests for the parameters to be included in 

the record. After setting the Write Flag, TTEX exits- until the next 

assigned entry time. 

Operational Use of Write Units (OUWU) procedures are used to record
 

scheduled and requested data and to monitor the 
status of the assigned
 

tape units. The functions of OUWU are to:
 

Format and store flight qualification, maintenance, telemetry 

and flight data in their assigned buffer areas 

Provide identifier, codes, time tags and other data as required to 

complete a record
 

Write a record at specified time.intervals on the designated tape 

Figure 5-118 is a general flow diagram of OUWU. The Tape Transport 

Executive (TTEX) interfaces with the fM and the data bus for required inputs. 

At each entrance to OUWU, TTEX advises OUWU on the number of the inputs 

destined for each record. OUWU formats the data (removes addressing 

or parity bits and forms into 8-bit bytes) and stores the data into the buffer 

area associated with each data type. If the current inputs complete the
 

data words required for a record, OUWU will add forward and backward search 

words, time tag, and other information words required to assist in the reading 

and identification of tape records during post flight analysis. OUWU then 

forms the instruction word (specifying format and transport address) for 
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writing. After repeating these steps for other records being formed, the 

Write a Record (WREC) subroutine is entered. WREC performs the output of 

the instruction word, monitoring of the status word, and reporting of results 

of the write operation. 

Operational Use of Read Units (OURU) routines are used to input check list 

or displays.symbology characters into the specified display file memory area 

and to monitor the status of the assigned tape units. Figure 5-119 is 

a general flow chart of OURU. GURU operates in conjunction with Displays 

and Controls routines to provide display characters. OURU receives a
 

request for a specific record number. A table look up is made to find the
 

identifier code and display file address for the requested record. GURU
 

maintains information on the current position of the read tapes, so that 

data from the record table is sufficient to determine if a search and read 

forward or backward is required. (The tapes have beenwritten in a sequential 

manner for a normal mission so that a minimum of time is required for
 

access to the record. However, records may have to be taken out of sequence
 

or repeated if events, determined by the systems executive, require changes in
 

procedures). The instruction word is formed and the Search and Read (SHAR) 

routine is entered. SHAR performs the functions of issuing the read 

commands, monitoring the status words from the MTS control unit, and reporting
 

the results of the search and read operation. If the read operation was 

successful,p the copy of the display file data is read into the tape buffer 

in order to put the tape transports at the same positions and to provide the 

copy for verification purposes as desired by Displays and Controls routines. 

The display file data may be required for use if the read operation on TT#3 

was unsuccessful. In this case, the instruction word is reformed to call on 

rT#4 to provide the data for use by the assigned CRT. Prior to exiting, OURU 

apdates its data -on- tape positioning and tape transport stat'us. 
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5.6.5 Beacon Subsystems 

Beacon Executive (BaN) routines supervise the testing, initializing and 

usage of beacon subsystem units. Figure 5-120 is a general flow chart 

of BCNX. BONX calls on routines for testing the radar beacon (ATe 

transponder), PRN (pseudo random noise) ranging subsystem, C-band radar, 

and recovery beacon units during prelaunch or inflight testing. Comm­

unication mode changes may require reassignment of C or S-band equipment, 

and operational requirements may ask for activation and usage of the radar 

or recovery beacons. In these cases, BONX recognizes the requests generated 

by other programs and enters the appropriate program. 

When BONX is entered during the prelaunch mode, BONX initiates the cycling 

through the Radar Beacon Test Initializer (RBTI), the FRN Ranging Thst 

Initialize (PRTI), the C-Band Radar Test Initialize (CRTI), and the 

Recovery Beacon Test (RBNT) routines. These routines test the various
 

beacon components, establish the condition dictated by.communication mode
 

schedules, and report the equipment status to BCNX. These routines are
 

also entered if inflight testing is desired. Changes in S-band communication
 

modes scheduled as a function of mission phase or required by equipment 

degraded operation may cause a reassignment of PRN ranging. PRTI is 

entered to activate or deactive units as required and to test the equipment 

being activated. If a shift in C-band radar usage is also scheduled, ORTI
 

performs the necessary functions. 

BOXN is alerted when an air traffic control (ATC) station requests position 

or identification data. BCNX calls on the Radar Beacon Response (RBNR) 

routine to input necessary data from other programs, and to verify and 
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format the information for output by the ATC transponder. BONX also 

monitors the recovery beacon subsystem, and, if emergency situations
 

require, calls on the Recovery Beacon Activate (RBNA) routine to turn on 

and verify the recovery beacon.
 

Radar Beacon Test Initialize (RBTI) procedures are used to verify beacon 

voltage levels, switch and adjustment settings, frequency and power output
 

parameters, and code response operation; to initializethe ATC transponder
 

units as required by the mission schedule; and to provide status information 

to CRT's for flight crew use, and test results for post flight diagnostics.
 

Figure 5-121 is s flow diagram of RBTI. 

On entry to RBTI during the prelaunch checkout, initialization
 

procedures are performed. These procedures consist of starting the equip­

ment and performing a routine check in order to determine if gross dis­

crepancies such as blower motor failure, power failure, or circuit breaker­

openings have occurred. When the equipment is ready, the functional and
 

adjustment checks are started. 
Power and heater voltages are first checked
 

against their allowable tolerances. If these measurements are out 6f limits,
 

the Radar Beacon Status Message (RBSM) routine is entered to prepare an
 

appropriate status message. RBSM uses a prestored message table and in­

formation form the calling routine to fill in the blanks of the message.
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When all tests are completed, RBSM assembles all the status messages
 

and informs the Displays and Controls subsystem that the data is ready 

for display and flight crew analysis.
 

Some transponder functions require the presetting or adjustment of various
 

circuits. The echo suppression switch is set to ON in areas where echo
 

interference is more troublesome than pulse-type jamming, and OFF for 

the reverse condition. This setting is preselected to provide the most
 

consistently satisfactory operation of the equipment. The transmitter
 

dead time (TDT) circuit disables the transponder set for 225 or 500 

microseconds after the transmission of each reply pulse. -This dead time 

limits the maximum repetition rate of the transponder set to either 4000 

or 2000' pulses per second. The IR suppression circuits shaire the-. 

same time constant components supplying pulses of equal durations. IR 

suppression prevents mutual interference between transponder sets. The 

radar suppression circuit prevents other booster radar from interfering 

with transponder set operation. When a radar is connected to the radar 

suppression input the transponder is insensitive for about 18 microseconds
 

at the start of each radar transmission. The transponder set may be rendered 

insensitive except when enabling pulses from a separate receiving system 

are present. RBTI checks this enabler link if this optional circuitry is 

used. An automatic gain stabilization (AGS) circuit performs an anti­

jamming function if extremely high pulse recurrence frequencies are received. 

AGS can be turned off, permitting an increase in noise level and thereby 

serving as an operational check of the equipment. RBTI gathers measurements 
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and settings of these special functions, compares them with their pre­

assigned requirements, and calls on RBSM to assemble advisory messages,
 

if required.
 

RBTI then cycles through the voltage and current measurements available
 

from the voltage current selector switch-. All the measurements are
 

compared against their upper and lower limits. Receiver frequency, and
 

transmitter frequency and power output are checked using data from the
 

onboard checkout equipment. The normal triggering level is the minimum,
 

peak voltage required to cause full firing of the transponder set. The
 

triggering level is checked at 1010 and 1030 megahertz to insure that full
 

firing can occur at both ends of the receiver band. RBTI'next checks the
 

-code functions of the transponder. The preassigned identification code
 

is tested to verify that the associated pulses are activated. Two other
 

codes are also checked to ensure the capability to switch to other iden­

tification codes if requested by ATC ground stations. Altitude,.range
 

and azimuth codes are checked by inputting a known value into the transponder"
 

and verifying that the expected (according to prestored tables) pulses
 

are activated. Following the completion of the radar beacon tests, RBTI
 

completes the table of test results for recording Purposes. RBTI then
 

requests RBSM to move the status record to the assigned display file area.
 

Radar Beacon Response (RBNR) procedures are used to input, format and store
 

navigation data in the proper transponder buffer, and.to verify correct
 

radar beacon operation following ground radar triggering of transponder
 

circuits. Figure 5-122 is a flow chart of RBNR. 
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RBNR is entered from BCX when a request for radar beacon information is 

detected. BONX then sets a flag so that entry to RBNR continues at one 

second intervals. When there are no longer any requests, RBNR clears 

-this flag, discontinues requests for navigation data inputs, and sets the 

radar beacon equipment in a standby condition. Upon entry to RBNR, data 

bus input functions are performed. The information from the navigation 

system is decoded and address, parity and insignificant bits are masked 

out. The data is then stored in the transponder output registers reserved 

for each particular request. At the next ground radar sweep, the data 

is transmitted by the transponder circuitry. RBNR then verifies the 

operation of the equipment. The identification code is verified by 

checking the setting of the pilot's control unit against the transponder 

pulse output. Verification of the navigation data outputs are performed 

by matching the transmission code outputs with the data received from 

the navigation subsystem. A table lookup on the output code (tables 

correspond to that shown for the altitude transmission code> 

is performed and compared with the inputs to ensure that outputs are 

within the code resolutions.
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5.7 OPERATIONS MANAGEMENT 
I, 

5.7.1 Data Management Computer
 

Data Management Computer Executive (DM0X) routines are used to check­

out, monitorand isolate faults for the data management subsystem's
 

digital computer; to provide recovery procedures in the event of failures;
 

and to reconfigure digital computer equipment as required to maintain 

optimal computational and redundancy capabilities. Figure 5-123 is a
 

flow chart of DMCX. 

DM0X is entered when a request for computer self-check is made, when
 

periodic monitoring is,scheduled, when a faul-t is detected, or when
 

reconfiguration of the computer subsystem units is required. The self­

check 'testismade during the prelaunch checkout and inflight if requested
 

or scheduled. As part of the prelaunch preparations, the computer units
 

are powered up and made ready for testing. Then the Digital Computer
 

Command Test (DCCT) routine is entered. DOCT cycles through various
 

subtests which verify the complete repertoire of command and arithmetic
 

instructions. The Memory and Register Test (MART) routine verifies input
 

and output operations. If faults are detected by these test routines, the
 

Digital Computer Fault Isolation (DCEI) routine is entered and the failure 

symptom catalog is examined to determine the appropriate action. 

DM0X responds to program fault interrupts such as computer power failures,
 

illegal codes and addresses, and computational overflows. DCFI attempts 

to isolate the fault and then the Program Recovery (PRGY) routine is entered 

to take the appropriate remedial action. 
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If a central processor, memory unit, or Input/Output controller fails, the 

Reconfiguration Management (RFMG) routine performs the functions of 

scheduling the various computer units so that computational efficiency and 

redundancy requirements are maintained. RFMG provides necessary information 

to maintain data flow between the booster subsytems. The Data Man&ge­

ment Computer Monitor (EMCM) routine provides monitoring capability for
 

functional and environmental parameters essential for status reporting.
 

DMCM is entered periodically under executive control at the request
 

of the flight crew for status information, or from the onboard checkout 

subsystem following an out of tolerance measurement. 

Digital Computer Command Test (DCT) procedures are used to test the 

control and arithmetic sections of the computers. Figure 5-124 is a flow
 

chart of DCCT. Tests performed by DOOT are organized into subtests which
 

involve similar instruction types. These subtests check the legal
 

combinations allowed by the instruction word format (function codes, index
 

designators, Jump indicators, and operand addresses). If errors are 

encountered during the tests, a table is assembled for use by DOFI in 

isolating the cause. The final subtest of DOCT checks the operation of 

program faults and interrupts to ensure entry to DCFI and PRGY in order 

to recover from operational program errors. 

Subtest 1 checks instructions concerned with data transfers to and from 

storage. These include instructions such as: 

Store A ; Store Q ; Store A Complement 

* Enter A ; Enter Y-A ; Enter Y+A 
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Subtest 1 uses preinitialized memory areas, cycles through its assigned
 

instructions (in more than one way), and arrives at final results which
 

can be compared with predetermined values for deciding whether an error 

has occurred. Similar schemes are used for the other ifistruction repertoire 

subtests. 

Subtest 2 tests the various shift instructions including operations such
 

as: 

* Shift Left Circular ; Shift Left Circular Double­

* Shift Right Fill Zeros ; Shift Right Fill Sign' 

Skips and jumps are checked in subtest 3. Typical instructions in this 

group are:
 

Unconditional jump ; unconditional skip 

. Jump A positive (negative, Lzero)
 

Jump equal (greater than, less than,)
 

Jump within (outside) limits
 

Skip B zero (negative, equal)
 

Both of these subtests exercise all the function codes of their groups
 
/ 

together with the indexing, jump, and operand designator capabilities. 

The end results of the tests determine if an error has been detected. 

Subtests 4 and 5 are the primary ones used for evaluating arithmetic
 

operations. In addition to standard add, subtract, multiply ahd divide
 

instructions, fixed point arithmetic operations may include other functions
 

such as
 

* Replace add (subtract)
 

* Partial add (halves or thirds of registers)
 

* Double precision add (subtract)
 

-433­



Floating point arithmetic includes add, subtract, multiply and divide 

with optional rounding and double precision operations. DOCT validates
 

the precise functioning of all arithmetic instructions in the repertoire.
 

Subtest 6 verifies scale factor instructions. The single scale factor
 

the shift countinstruction normalizes the accumulator register and stores 

in an index register. The Double scale factor instruction performs the 

same function for a double length register. DCCT cycles through a
 

table of known bit patterns, and verifies the shift counts generated. 

Subtest 7 is used to check the instructions which perform logical operations
 

such as:
 

Selective set (clear, substitute, complement)
 

* Logical AND (Exclusive OR, inclusive OR)
 

Replace selective set (clear, substitute, complement)
 

Return jumps, both conditional and unconditional, are validated by subtest 8.
 

Subtest 9 checks special or miscellaneous instructions not included in the
 

other subtests. Typical instructions consist of:
 

.	 Square root
 

Masked search for equal (not equal, greater, less than)
 

Count Ones; Test parity (odd, even)
 

Following completion of subtest 9, DOCT assembles the results of all the tests.
 

If an error has occurred, the fault detected flag is set and DOFI is entered
 

when memory and input/output tests are finished.
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Subtest is used to check the functioning of program recovery aids
 

following illegal operations such as the use of illegal codes or addresses,
 

and computational faults such as arithmetic overflow. DOCT verifies that.
 

the appropriate subroutines of Program Recovery (PRGY) are entered and
 

that returns are made at the proper points following recovery. 

Memory and Register Test (MART) procedures are used to verify memory per­

formance, and to test fault indicators and control registers. Figure 5-1.25
 

is a flow chart of MART. The tests conducted by MART are designed to 

provide the information necessary for the Digital Computer Fault Isolation 

(DCFI) routine to determine the cause of computer malfunctions that 

directly affect memory operation.
 

Memory tests are performed to verify core storage and associated circuitry. 

Test I does a search instruction which reads every core address. If a 

parity error is encountered, MART records the -address at which it occurs. 

Test 1 also check sums programs storage areas to provide a high confidence 

in storage reliability. Test 2 provides data to isolate malfunctions
 

in main memory timing and enabling circuits. Test 3 verifies the address 

selectors in main memory. 

Control register tests are designed to exercise arithmetic, index, program 

control, and special registers under worst case conditions which may cause
 

failures in marginal control memory areas. This section of MART is
 

organized in subtests for different bit patterns. Test I checks the-cap­

abilities of the control memory to retain ana all zeros pattern. Test 2
 

performs the same check using an all one's pattern. Test 3 checks the control
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memories ability to retain a single bit shifted through all the registerst 

bit positions. For test 4, random data is generated with check sums used
 

to verify the data. Using this same random data, test 5 does a sum check
 

by converging from either exterme in addresses, thus exercising the
 

address register and associated line drivers. Test 6 uses an alternate
 

pattern of zeros and ones in exercising the control memory. A checkout
 

of critical write-in and read-out timing functions is performed by test
 

7. MART then assembles test data for use by DCFI in analyzing the condition
 

of register enable; inhibit driver, sense amplifier and other memory circuits.
 

Some registers are reserved for special functions. These registers are
 

tested to ensure that the assigned functions are performed. Function
 

test 1 verifies the operation of the central processor clock register. 

A typical clock register is decremented at a rate of 1024 counts per second
 

with an accuracy of 2 counts during a 10 second period. The clock may be
 

deactivated by setting the most significant bit negative. Upon cycling
 

through zero, an interrupt is generated so that precise timing of computer
 

programs is possible. Function test2 examines the power status register.
 

To onboard checkout system and BITE units provide the information to set
 

the bits of this register. Figure5-126shows a typical format used. Test 

2 cycles through the possible combinations to ensure the capability of the 

power status register to perform its functions. Test 3 exercises designator
 

storage word registers. These special registers provide necessary in­

formation such as interrupt status codes, entrance and return addresses
 

and indirect addressing data. Test 4 verifies the operation of the
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functionalstatus register. This register; like the power status 

register, has bits set to indicate various out of tolerance or error
 

conditions.. Figure 5-126 shows a typical format used for this function. 

Function 5 verifies the correct operation of all interrupts which have 

not been tested by other fMOX routines. Interrupts used vary in number 

and characteristics depending on the computer subsystem. Typically, 

the interrupts are organized in four classes. 

* Fault and hardware interrupts - such as the power tolerance fault 

Program error interrupts - such as illegal instructions 

Input/output interrupts - such as external function monitors 

Executive interrupts - which turns control over to the executive 

program
 

Test 5 checks the interrupt processing scheme designed for the data manage­

ment computer, including the proper activation of various registers and 

the setting of interrupt lockouts if specified. Test 6 checks the operation 

of the master clear feature. This signal normally clears hardware and 

program fault indicators and assists in program recovery techniques. Test 

6 verifies that the appropriate bits are cleared and that the specified 

registers are activated.
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Input Output Instruction Test (1IT)procedures are used to check­

out input/output (10) instructions, and to verify IO data paths 

and control circuits used for communications with the central 

processors (CP) and peripheral equipment. (Other 10 functions 

are tested by additional checkout routines - for example, the man­

machine interface is verified by the Display Tester (DITR) routine). 

Figure 5-127 is a flow chart of IOIT. 

Typical input and output instructions include 

* 	 -Enable (disable) interrupts 

* 	 Set (clear) discretes 

* 	 Jump on channel busy (not busy) 

* 	 Read monitor clock
 

Initiate external function buffer
 

Terminate data buffer
 

Control signals between 10 controllers, and central processors or 

peripheral equipment commonly use a technique described in Figure 5 -128. 

The tests performed by IOIT verify the 10 instructions and communications 

procedures used. 

Test 1 checks the ability of any of the central processors to select 

any of the 10 controllers in the data management computer subsystem. 

Cross data paths between the OP's and the IOC's, the circuitry associated 

with status and assignment registers, and function code translation 

logic is verified. Test 2 performs a checkout of the interrupt generation 

and sense circuitry. The ability of the interrupt registers to hold 
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all necessary data configurations is tested. Interrupt instructions
 

are exercised and verified. Test 3 checks and verifies the operation
 

of the circuitry associated with the control memories in each of the 

10 controllers. The ability of the memories to be set to specific
 

data configurations, register translation logic, and associated 

control memory logical enables and timing are tested. Test / checks 

the channel active network. Instructions requiring a test of the 

channel active condition are evaluated. Test 5 examines the function 

hold registers of the 10 controllers, checking bank selection circuitry 

and 1O parity networks. Test 6 is concerned with validating function 

enable circuitry and function termination logic, and the instructions 

used to activa-tethe applicable networks. 

Test 7 examines the circuitry and instructions associated with data 

transfer via an 10 controller. This test results in a verification 

of buffer storage, acknowledge timing, request sense logic, input data 

amplifiers, and output data amplifiers. The buffer comparator is also 

checked using specific data combinations for proper termination control
 

enables. Test 8 is concerned with the setting and clearing of interrupt 

lockout logic, the ability of the I0 controllers to transfer interrupts 

to the proper central processor, the generation of external functions,
 

and the timing of interrupt acknowledges. Test 9 checks and verifies 

the operation of the circuitry associated with prioritynetworks. IOIT 

cycles through the list of interrupts for the computer system, and deter­
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mines that priority requirements are satisfied. These requirements
 

normally consist of interrupts listed in priority order, interrupts 

which are locked out under some conditions, interrupts which are 

never locked out, and other interrupt processing conditions. The 

remainder of IOIT tests are concerned with signal conditioning and 

interface verification. Test 10 checks digital to analog conversion 

techniques. Test 11 verfies the operation and accuracy oflanalog 

to digital procedures. Test 12 tests discrete output logic and 

circuitry. Following completion of its tests, IOIT assembles the 

results and forwards the information to DCFI for fault analysis. 
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Digital Comnuter Fault Isolation (DeFI) procedures are used to provide
 

information for updating computer status, performing onboard repairs, or
 

reconfiguring computer subystem units. FigureS9-129 is a flow chart of
 

DFI. Prestored tables used by DFI, and display input generated by 

DCFI are also showm in Figure 5-129., 

DOFI is entered if failures are detected by the computer test routines, DCT, 

MART, or IOIT. These routines input variables to DCFI specifying which test 

failed and on which central processor, 10 controller, or memory unit the 

fault occurred. Using this information, DCFI can initialize table search 

counters and indices, and enter the fault catalog table to determine the 

corrective action required.
 

The fault isolation catalog is a prestored table which is developed
 

through various diagnostic and fault isolation techniques. Simulation 

methods are commonly used to generate a catalog. The logic equations
 

which define the equipment are adjusted to simulated failures and the 

effects of the failures are noted. Functional level checking is also 

simulated in a manner similar to that done at the logic level. The 

register, gates, and transmission paths of a device are anticipated,
 

the sequence of operations necessary to use these elements is established,
 

and the effects of a failure are predicted.
 

For a short mission such as anticipated foi the booster, a complete
 

fault catalog is not required. The table will provide sufficient in­

formation to replace some of the more critical replacement cards in the 

computer subsystem. Other table information will indicate that the use 
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of additional test procedures or equipment is required'to pinpoint the
 

discrepancy. If this type failure is detected during the prelaunch
 

checkout, a hold in the mission may be ordered to perform additional
 

maintenance procedures.
 

As DCFI cycles through the catalog, it assembles the data gathered into
 

a format suitable for status display. When all the faults reported­

by the test routines have been diagnosed, DCFI informs the display
 

subsystem that the status and repair message is ready. If an onboard
 

fix can be made by a card replacement, then the flight crew informs the
 

computer subsystem (via the alphanumeric keyboard) whether an attempt to
 

perform the card replacement operation is desired. If a fix is desired,
 

DOFI sets a'variable containing all necessary informati6n and exits to
 

the Reconfiguration Management (RFMG) routine. RFMG then monitors the fix
 

until the applicable unit -is either back in operation or declared inoper­

ative. For unmanned flight, an onboard'fix is not possible, so that-in
 

this case shutdown procedures for the failing unit is indicated. In
 

addition for failures during manned flight where no card replacement
 

fix.is specified, shutdown procedures are initiated. DCFI again provides
 

a data word for use by RFMG in reconfiguring to a degraded mode of
 

operation.
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Program Recovery (PRGY) procedures are used to provide techniques for 

continuing program operation in the event of various hardware or
 

software faults. Figure 5-130 is a flow chart of PRGY. 

PRGY is entered in response to faults or abnormal interrupts requiring 

software recovery techniques. PRGY is primarily concerned with recog­

nizing the fault, taking any immediate action necessary, setting up an 

appropriate variable so that tests required can be conducted, and setting
 

a flag so that RFMG can monitor the testing or supervise the shutdown
 

of the unit at fault.
 

If a primary input power failure is sensed to be imminent, a hardware
 

interrupt will cause a jump to PRGY. Typically, this interrupt occurs
 

a minimum of 250 microseconds prior to power failure. During this time
 

PRGY will store essential information which will be of value to RFMG 

in the event of the return of normal power to the unit. PRGY sates
 

the contents of arithmetic and index registers, the time of entry into
 

PRGY, the address at which the imminent power failure was detected, and any 

other vital :information to the routine that was interrupted. FIGY 

determines ahich data is vital by means of a table correlating interrupt 

addresses and storage locations. PRGY then sets a power failure flag
 

which is used by RFMG in reconfiguring the computer subsystem. 

Abnormal internal interrupts are generated by the 10 controllers ;(iC) 

when variouq timing, buffer initiation, or memory reference criteria are 

not satisfied. Associated with each of these interrupts is a list of 

possible causes. Using this list PRGY forms a test request word for the 

indicated IqC. PRGY then sets a flag for use by RFMG in evaluating the 
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computer subsystem. Similarly, the encounter of an illegal code or an
 

illegal address in a-routine indicates a probable memory failure as it
 

is assumed that the software has been extensively debugged prior to
 

operational use. PRGY is entered if illegal operations are detected.
 

A test request word is formed and an illegal operations flag is bet for
 

RFMG monitoring. 

Various coding techniques can be used to assist in determining subsystem
 

discrepancies. Common methods include setting a time limit on computa-' 

tional loops, or magnitude limits on input data. Discrepancies of these 

types may indicate computer or other subsystem failures. PRGY sets up 

a test request and an error flag for use by RFMG. PRGY then goes to any 

of the test routines requested, determines if an onboard fix is possible 

and sets the appropriate flags for RFMG. 
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Reconfiguration Management (RFMG) procedures are used to supervise the
 

computer subsystem configuration. Figure 5-131 is a flow chhrt of RFMG. 

RFMG receives information on the status of central processors, memories,
 

10 controllers, interface units, and data transmission systems from other
 

DMOX routines. Using this information, RFMG updates a table which main­

tains a status record and history of abnormal conditions or power failure
 

for each unit.
 

If a power failure occurred, PRGY was entered where a flag was set and
 

data was saved. RFMG checks this flag and, if set, the input power
 

status to the-specified unit is monitored. If power returns to normal,
 

the unit involved is put back into the sydtem unless RFMG's table shows
 

that the power failure has been a recurring one. If the unit is acceptable
 

after a power failure, a request for retesting of the unit is formed, the
 

power failure flag is cleared, RFMG table isupdated, and the data saved
 

by PRGY is restored. On the next cycle through DMX, the unit is retested
 

and if the test is .passedthe output of the unit is considered valid. If
 

the power failure is a recurrent one, or if the power does not return to 

normal within a prescribed time interval, the unit is taken out of the 

system. The shutdown flag for the unit involved is set and its power 

failure flag is cleared.
 

RFMG monitors attempts to repair computer units for which onboard card 

replacements are provided. Other ZMCX routines have determined that an­

onboard fix is possible, have set the unit'd fix flag and informed the 

crew by way of a CRT of the steps necessary to repair the unit. When the
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card is replaced, the crew informs the system by means of the alphanumeric 

keyboard. RFMG recognizes this action by updating its table, clearing 

various flags, and requesting a retest of the unit which has been put 

back into the system. If, due to time or other constraints, a fix of a 

particular unit is not desired, the crew activates the appropiiate 

alphanumeric key. RFMG will then remove the unit from the system by 

setting the shutdown flag and clearing the fix flag. The RFMG table will 

maintain information of the repairable unit for status reporting or 

future emergency use.
 

RFMG performs shutdown operations for a unit if its associated shutdown
 

flag is set. Reconfiguration consists either of adding units to, or
 

removing units from the computer subsystem. Units which have recovered
 

from a power failure, or have had a successful card replacement made are
 

added to the system. Units which have been shutdown, have had a power 

failure, or are in the process of being repaired are removed from the
 

system. RFMG monitors status to ensure that only units providing valid 

data are included in the current reconfigured system. 
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5.7.3 Displays and Controls
 

Displays and Controls Executive. (DCEX). The displays and controls7 
executive program uses the information on data content, display formats,. 

disply control, special processing functions, interface data fbrmats, and
 

manua4 methods and procedures presented in section 4. 7 to supervise 

the dsplays and controls subsystem tasks. The functions of DCEX 

are t :
 

. Process requests for display functions and information 

. Process EMS input data
 

Provide data storage and retrieval capabilities.
 

Provide means for controlling the distribution, updating, testing 

and scheduling of displays 

Provide display formats to meet display requirements 

Present the display output in a complete, accurate and easily 

interpreted form 

Figur 5,132 relates these general requirements to the specific tasks 

anticipated for the booster, and Figure 5-133 presents a flow diagram of the
 

ispllys and Controls Subsystems Executive program.
 

I 

DCEX #s entered every 31.25 milliseconds (at refresh rate). When the
 

displqys and controls subsystem is first powered up, the Display Control
 

(DTRL) routine initializes the displays to ensure their readiness for service 

A flag is set when the equipment is ready for use, so that subsequent program 

flow jill be thrhugh the Input Processing (IPRO) routine. IPRC'examines the 

matriI of current display requirements, obtains the desired information 

from 14e DMS, verifies its reasonableness, and then converts the data to
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Routines 

-Request 
Proaeasing 

Data Storage 

and 

Retrieval 


Input 

Processing 


Display 
Control 

Display 

Formatting 


Display 
Output 

a 

Program Purpose 

This function responds to . 

standard or special display 
requests. A standard display 

is requested by a simple push 
button. Special display requests 
provide greater flexibility
in selecting display content, 
formats and controls. With
 
preprocessing and automatic 
mode, displays are routinely 
generated and updated. 

This function provides means for . 

locating and retrieving various 
types of information from diverse 

locations in the data base. When . 
any program or display request 
requires certain types of data, 
the criteria defining the data 
desired is provided. The data
 
retrieval processes will then
 
provide data by means of indexing, 
linking, and searching.
 

This function performs the tasks * 

necessary to ensure that the MS . 
information is compatible with . 
display system requirements. These . 
tasks include verification, unpacking 
and reformatting. 

This function deals mainly with . 
the distribution, updating and . 
priorities of display data. Test- . 
ing and rescheduling, if required, . 
are additional requirements. Re- . 
generation of displays is initiated . 
at the specified refresh rate. Display
records are set up and maintained in 
the display file while it is in view. 

This function determines the . 
position, form and coding of * 

information in a display. . 
Combinations'of symbolic, . 
graphical and alphanumeric . 
forms provide display formats . 
in various predetermined . 
position. When updating in- . 
formation is received the form . 
and location of the data is 
determined and the record in
 
the display file is modified 

This function performs the . 
detailed steps which expands . 
the data from the compact form . 
in which they were stored and 
processed to the level of detail . 
necessary to complete the display . 
Initiates and controls-the trans- . 
mission of display to the display 
equipment. . 

Subroutines 

Eergency and Abort Procedures 
Phase Change Display 

Initialization
 
Uplink Data Display 
Alphanumeric Xeyboard 

Code Processor 
Data Entry Keyboard Codes 

mergency Procedures Call Up 
Check List Call Up" 
Parameter Table Look up
 
Filmslide Manager 

Input Data Management 
Display Data, Preprocessor 
Data Unpack and Verify, 
Display Data Code Conversion 
Input Buffer, Storage 

Timeline Management 
Display Initializor 
Display Application Scheduler 
Time Display Ujdate 
Display Tester 
Display Activate and Position 

Vector Generetdr
 
Conic Generator
 
Cursor Retrieval 
BarChart Construction
 
Trend Analysis- Chrt 
Display Scaling 
Display Translation and Rotation 
Display Perspective 
Symbol Positioning ­

Scan-Converter Management 
Vertical Tape Controller 
Electronic-oving Bargraph 

Application 
Flight Controller Management 
Reprogramablo Switch pplication 
Circuit Breaker Monitor Applica­

tion 
Navigation Map Orientation 
Refresh Memory Area Designator 

Figure 5-132 Displays and Controls Functions, and Subroutins 
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the format required for the current display file. DTRL then
 

distributes this information in accordance with the timeline
 

(Figure 5-134) and the current display usage schedule. Display
 

commands, consisting of bit fields, are formulated into optimum word
 

structures, and are used to initiate and control the various operations
 

shown in Figure 5-135 These words are thea formed into messages and 

transmissions. Display commands
 

for functions, such as time displays, which do not require additional
 

processing are completed by DTRL. The Display Formatting (IUG)routine
 

performs the major tasks in positioning the alphanumeric, graphic and
 

symbolic features of the displays. -The Display Output (DOUT) routine then
 

performs any additional details required to ensure the generation of the
 

-complete and accurate display.
 

Flight crew operations at the alphanumeric or data entry keyboards result 

in interrupts which are recognized by the Request Processing (RPRC) routine. 

RPRC performs software tasks as necessary to satisfy these requests. In 

addition, the system Executive program informs DCEX-when phase changes 

or abnormal -conditions; requiring display usage revisions, occur. RPRC 

initiates the action necessary to answer these alerts. The Dats Storage 

and Retrieval (DSAR) routine assists by obtaining data contained in mass 

storage units, filmslides, or memory tables. DSAR also sets up the frame 

work for display usage schedule plans and data parameter matrices. 

Display Control (DTRL) The display control (DTRL) routine :is concerned
 
i
 

with the distribution, updating, testing and scheduling of the displays.
 

The functions of DTRL are:
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FUNCTION 

Beam Control 
Mode 

Blink 

Character Size 


Character Orientation 


Character Spacing 

Character Brightness 

Character Color 

Bea Position 

Beam Position 

Line Widths 

Vector Brightness 

Vector Color 

Pages in Checklist 

Start Of Message 

End Of Message 

End of Transmission 
Frame Sync 

Display Identification Number 

EADI Mode, 

BUD Mode 

Vertical Tape Control 

Scan Converter Control 


HOD Airspeed Reference 

ILS Path Select 

Film Transport Control 

Map Orient 
Fimlide, Number 

Filmslide Course Control 

Dedidated Instrument Value 

VSI Parameter Value 

Controller Positions 
A/P Keyboard Filmslide Group 

A/P -Keyboard Control 

A/P Line Number 

A/P Column Number, 

A/P Charaater 
A/P Functions 

AM Control and Editing 
Data Entry Keyboard Controls 

Data Entry Functions 

OPTIONS BITS 

ON/OFF 1
 

Oraphio/Alphanumeric 1
 

Start/Stop 1
 

Basic/targe 1
 

Normal/gO0 Left 1
 

Normal/Large 1
 

4 levels 2
 

White/Red/Iefow 2
 

X - Coordinate 10
 

y - Coordinate 10
 

No=slimphasize I
 

4 Levels
 

White/Red/yelow 2
 

Mamun 8 Pages 3
 

Digital Code 4
 

Digital Code 4
 

Digital Code -4
 

Digital Code - 4
 

7 CRT, 8 VS!, 8 Ded. 5
 

S Options/Phase 3
 

8 Options/PhasA 3
 

Direction and Dist. 5'.
 

ON/OF/Select 2
 

Set HU reference . 4
 

Shallow/ormal/Step 2
 

ON/OFF/orward/feverse 2
 

North/Course 2
 

100 Maximum -7­

3600 Max to 10 10
 

Variable 7
 

Variable plus Control 11
 

Variable 7
 
2/Phase 1
 

Lock/Unlock .1
 

1 to 52 7
 

1 to 74 8
 

43 ASCII Codes 7
 
32 ASCII/Phase 7" 

12 ASCII Codes 7
 
5 Discretes 5.­

1 to 15 4
 

Figure 5-l35Display Commends 
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Perform display warm up and initial activation 

* Provide tests to ensure display readiness and accuracy. 

* Maintain, revise and manage the display usage plan 

* Update the current display file as required by the timeline 

schedule
 

* Control, activate or position display devices 

* Maintain the GMT and mission time displays 

The flow chart for DTRL is shown in Fig. 5-136 DTRL is initially entered 

early in the preflight check sequence. As the displays ard a primary tool 

for the bo6ster checkout, the displays themselves are first initialized
 

and tested& The Display Initializor (DINR) protects the CRT circuitry
 

duringlits initial activation, and then presents a test pattern on each
 

CRT display. The test pattern can be manually adjusted and focused by
 

the flight crew as desired. The other display and control equipment Are set 

to their priff ght settlngsi- The Display Tester (.DITR)is then entered 

and each displays operational capability is verified. Special test patterns, 

verify the persistence, capacity and accuracy of each CRT. Other tehts 

check the 6lectronic-moving bargraphs, the dedicated instruments, key­

boards and film transport units. DITR may also be entered during the 

operationai mission if degraded display performance is detected, or if a 

request fof' display testing is made by manual .operation of a keyboard function 

key. If DTTR determines that a display is not operating properly, the 

Display Aplication Scheduler (DASC)routine is entered and the master 

display uaige plan is revised. DASC informs the flight crew of,revisions 

in display usage, records the discrepancy for post-flight maintenance analysis, 
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and performs shut down or degraded mode procedures on the effected 

equipment. 

The timelihe management (TMGR) routine is responsible for the timing
 

requirements shown in Figure 5-134. If reprogramming, of the displays 

is required because of a phase change or equipment malfunction, the 

change in each display task is accomplished in the allocated 125 

millisecona time slot for each reprogramming group of displays.; The 

displays aie also divided into update groups so that the. prograining 

tasks are more evenly divided across the timeline. TMGR then tdkes the 

data'from the input buffer memory area (data preprocessed by the Input
 

Processing routine) and moves it into the display file area reserved for 

each displ~y. More detailed processing and combination of data is then
 

performed by the Display.Formatting and the Display Output routines. 

If reprogrimming calls for the activation or the assignment of new tasks r 

to a particular display, the Display Activate and Position (DACP) routind 

performs the necessary tasks. These include functions such as centering 

of CRT beais, and initial positioning of vertical tapes and map course 

settings. DACP sets, clears, and maintains a record of discretes pertaiiiing
 

to the disblays and controls subsystems.. The tme display is a function 

which does 'not require additional processing prior to display generation. 

If the GMT or mission time.displayshave been requested,' the Ti~e Display 

Update (TDIP) routine uses the time count data maintained by TMGR to revise 

the messages to generate new time display output. If a revised time 

signal is eceived from a ground-based station, this information is received 

by TDUP and used to reset the appropriate display. 
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Request Processing (RPR) routines respond to manual interrupts generated 

by the flight crew at the alphanumeric or data entry keyb6ards, and toI 

flags or signals which indicate a change or special application for the 

displays. The functions of RPRC include: 

Processing alphanumeric (A/N)keyboard function code 

interrupts 

Processing AN keyboard alphabetical and numerical finputs 

Processing AAN keyboard editing and cursor control requests 

* 	 Processing data entry keyboard function code interruptsa 

Initializing display rescheduling in response to change 

of phase 

Establishing priority and performing initializing in response 

to an emergency or abort procedures alarm 

Perform interpretation and initialization for accepting and 

presenting uplink command and informative data
 

Figure 5-137 is a general flow diagram of RPRC. - If a dangerous or potentially 

dangerous situation is encountered, through BITE or system diagnostic routine s 

an alarm flag is set by the system Executive and the Emergency and Abort
 

Procedures (EAAP) routine is entered:. EAAP first provides an aural alert 

signal and then displays a short notice which indicates the general nature
 

of the emergency. The appropriate check lists are then obtained, and 

emergency procedures are initiiated. The execution of these procedures
 

may 	 require crew/keyboard interface. In this case, RPRG continues with 

the 	processing of requests. If the emergency is of such a nature that
 

time 	requires automation of recovery procedures, or abort procedures are 

required, then other display requests are ignored until the emergency has
 

passed.
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The system-Executive program maintains a record of events and when a
 

new mission phase begins a variable is set. The Phase Change Display
 

Initialization (PCDI) routine recognizes the change in phase and sets
 

appropriate flags and indices so that the Display Control routine can
 

perform the required reprogramming. PODI is aware of any emergency 

underEAAp's supervision so that initialization procedures may be 

revised as required., 

Commands and information sent by ground stations are ptocesed by uplink
 

routines. The Uplink Data Display (UPDD) routine is informed when messages 

are received. UPDD matches a list of anticipated messages with its' 

associated alphanumerics and displays thetinformation. , Normally,. these 

messages are presented on a reserved portion of a particular display. 

For example, if the booster has been ordered to hold prior to a landing 

approach, the position of the booster in the holding pattern is shown on
 

the Horizontal Situation Display (HSD). When the ground station pattern 

departure message is received, UPDD will perform the set up steps required 

to display the alphanumerics "LEAVE HOLDING PATTERN AT 072618 GMT" adjacent 

to the holding pattern outline. Similar procedures are initiated by UPDD 

for other message types.
 

A display keyboard is provided as the primary means for flight crew 

communication with the displays and controls subsystem.. The Alphanumeric

*1
 

Keyboard Code Processor (AKCP) routine answers the request generated by
 

-

manual operation of the keys-. AKCP has three subroutines which handle 

the function, alphanumeric, or control and editing keys respectively. The 

primary group for operational use are the function keys which initiate
 

a particular program applicable to the displays when a key is depressed 
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AI{CP recognizei
 

the code asbocated with the button, provides a brief message to indicate
 

which function is to be activatedand, when this message is verified and 

accepted by the crew, activates the designated program.. The alphanumeric
 

editing and cursor control keys are'used, primarily, by programming and 

maintenance personnel for on-line debugging and diagnostic purposes. 

Some limitea use of these keys is anticipated for the operational boostbr. 

For example, the cursor control can be used to point to one of multiple 

choice options presented by a check list, and query or function key
 

completion ioutines will require the use of alphanumeric characters. 

The data entry keyboard is used to enter data into, obtain data from, 

and request tests of the T4S computers. The Data Entry Keyboard 

Codes (DEKC) routine associates the function key operated by the pilot 

or copilot ith a particular program. If the programrequires manual 

entry of parlameter values, DEK will initiate the display of cues, 

accept the tumerical data and convert it to the format required for 

storage in computer memory. For all programs initiated by keyboard 

request, DEkC provides any necessary display cues and provides a summary 

of program 1esults. 
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Input Processing (IPRC) routines interface with the data bus and 

computer subsystems to provide display data as required to generate 

current updated displays. The functions of IPRC are to: 

Input data from the data bus or computer at the
 

specified update rates 

Perform initial preprocessing of the input data 

o Verify the reasonableness of data and perform unpacking tasks 

* Complete conversion to display codes and provide information 

for display command structures 

Move the converted data to an input buffer storage area
 

for use by other DCEX routines 

Figure 5-138 is a general flow diagram of IPRC routines. The Input Data 

Management (IDMT) performs the input control tasks required in interfacing 

with the data bus and computer subsystem. IPRC outputs requests for data, 

and verifies address, parity and synchronization bits prior to accepting
 

input information. IPRC uses the information contained in the current 

display usage plan to maintain a matrix containing source of input data 

and update rates. Input timing is controlled through counters and indices 

which match the specified update rates and groups as shown in the Display 

Control Timsline.
 

The input data then goes through various steps to prepare it for display 

generation. In the first step, the address, parity and sync bits are 

masked out of the data word. If the data word contains more bits than 

required for display resolution, the appropriate number of least significant 

bits are also removed. Some data to be displayed may be transmitted on the 
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data bus or be available in computer memory in a packed or data compressed 

format. The Data UVnpack and Verify (DUVY) routine maintains a list of 

these data types with an associated switch table to the appropriate un­

packing procedure. These procedures are normally the reverse of the 

operations described for the data compression routines of section
 

5.1.6.3. For example, if the transmitted value of the sample is 

T 
n 

=Y 
n 

-K 
y 

where 

Yn is the actual value of the n-th sample and, Ky is the bias 

constant for the signal Y then, the data word for display purposes is
 

Y =T +K n n y 
The value of the bias constant can be obtained from the tables maintained
 

by the data compression routines. DUVY also conducts reasonableness tests
 

as an aid in reducing the possibility of displaying erroneous information. 

Code conversion is performed by the Display Data Code Conversion (DDCC) 

routine. DDCO converts, for example, octal data or 2-out-of-5 frequency
 

codes to the ASCII code used for display generation. DDCC will also add 

various, information bits which can be used by other DCEX routines to construct 

the display command framework. For example, if the reasonableness tests
 

of DUVY show that a parameter to be displayed is in a caution area, bits 

indicating blink yellow can be included in the data word. The final step 

is to store the data word in its assigned memory location. This function 

is performed by the Input Buffer Storage (IBST) routine which maintains 

a current table for display data storage. 
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Data Storage and Retrieval (DSAR) routines are used to .obtain information 

contained in the data base, computer memory, and special peripheral
 

equipment. The functions of DSAR are to:
 

Provide emergency check lists and initiate the .check
 

procedures
 

Provide standard check lists and initiate the check procedures
 

Maintain tables of parameter locations and provide directory 

service
 

Provide map, procedural, and chart filmslides on request 

Fig 5-139 is a general flow chart of the Data Storage and Retrieval 

(DSAR) routines. Priority is given to requests for emergency procedure 

lists. The Emergency Procedures Call Up (EPCU) routine is -requested 

by EAAP to provide a specific list to be used in resolving the emergency.
 

The emergehcy procedure mass storage file is searched for the rdquested
 

list. Wheh it is obtained it is moved into the display file fof the CRT 

assigned to present the procedures. Verification tests are used to ensure 

that no errors occur in the movement of the list. If errors occur, a copy 

of the list is obtained from the mass storage area. The title and first
 

step of the procedures are then moved to the display.refresh memory
 

unit of thb assigned ORT. Table length counters and indices are set for
 

the use of EAAP in continuing emergency check procedures.
 

Standard checklists are normally required at the start of each new mission 

phase to initialize a new booster configuration and to prepare for operational 
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modes. The Check List Call Up (CLaU) routine is flagged by PODI 

to dbtain a specific list. Checklists may also be required'following 

keyboard function key operation. CLCU uses the information-contained 

in calling routine information words to search for the required list 

on the magnetic tape storage units. The check lists normally contain 

more words then a CRT display refresh memory can hold. CLCU will move 

the first page of the checklist into the display file of the CRT assigned 

to present the checklist and will also move the title and first step 

of the check procedures to the appropriate display refresh memory unit. 

CLCU maintains a record of the page numbers in each checklist. CLCU 

is informed as each page is executed and, if additional pages exist,
 

the next page is loaded, into the display file. 

Some data entry keyboard functions result in the loading of computer 

memory locations with numerical data entered by the flight crew. The 

Parameter Table Lookup (PTLU) routine assists in the execution of these 

functions by providing memory address and other information 'required 

to complete the data entry functions. 

Filmslides are used to provide the basic framework for navigation maps, 

departure and approach procedures, charts and graphs. Additional.'alpha­

numerics and graphics are added by other DCEX routines to complete the 

display. As in the case of prestored checklists, the use of filmslides 

wifl reduce the requirement for bulky maps, handbooks, and operational 

manuals aboard the booster. The Filmslide Manager (FSMR) routine maintains 

a list of filmslide numbers and contents. When a request for a filmslide 

is received this list is searched and the appropriate film transport
 

unit is operated to show the requested slide. 
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Display Formatting (DFMG) routines are used to construct and position 

CRT display features prior to display generation. The functions of 

DFMG are: 

Generate coordinates for vector and lines
G 


S 	 enerate parameters for specifying arcs , circles or ellipses 

o 	 6btain cursor position information and perform functions' 

using this data 

onstruct and maintain bar charts displayed on CRTts 

Construct and maintain trend analysis diagrams 

Provide scaling to optimize presentation of display features
 

Provide two dimensional perspective to maintain pictorial 

realism 

Position alphanumeric, warning or other special symbols as
 

required to complete the display
 

DMG routines are concerned with the tasks required to maintain the CRT
 

maintain
application programs associated with the display usage plan, and t o 


any special symbology required as a result of manual input requests -or 

alert condition requirements. The Display Output (DOUT) routines-then 

complete the- CRT display9 if required, in addition to completing the 

displays using the dedicated instruments. 

Fig 5-140 is a general flow chart of the Display Formatting (DFMG) 

provides the starting pointroutines. The Vector Generator (VGTR) routine 

(X1 ' Y1) and the stopping point (X2 ,-Y2 ) for lines and vectors. Vectors 

are used for horizon lines, runway centerlines, heading and velocity 

vectors, and other applications specified for the CRT application programs. 
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Algorithms using system inputs are required to generate each vector.
 

For example, a runway centerline is computed from distance to the field, 

aircraft heading, map scaling, and runway length information. The 

Conic Gendrator (CGTR) provides arcs, circles and ellipses for CRT 

application programs. For a circle, CGTR obtains the center point
 

and radius information from prespecified application program requirements.
 

For example, the flight director circle for approach to a landing may
 

be specified to have a radius -J the runway width, and a center at the 

point where the commanded heading intersects the ground. CGTR then 

constructs a circle from line segments using an iterative, tecb ique 

to advance starting and stopping points. The number of line segments 

per octant is a function of the radius 6f the circle and is designed to 

give a smooth curve appearance on the CRT. Ellipses are similarly
 

constructed from information obtained on the lengths of the major and
 

minor axis and the positioning requirements for the conic. Arcs may
 

be specified for some application programs. For example, half circles 

are drawn for holding pattern magnification. For this task the center
 

point, radius, Start and stop point information can be derived from
 

prestored information on the holding pattern characteristics. VGTR
 

can be used to complete the pattern by constructing the parallel lines 

of the pattern. 

The cursor of the display keyboard can be used to supply raster points
 

to the conhole memory. Using this capability the flight crew can request 

various information from the system. The Cursor Retrieval (CRVL) routinb
 

-472­



maintains the daplay of the requested information. For example, 

the crew may position the cursor at a point on the HSD map and 

request estimated time of arrival. CRVL will compute the requested
 

information from current data on ground speed, position and heading, 

and then position the data at the optimum piace on the assigned display.
 

ORVL then updates the display until the request is terminated.
 

In addition to the electronic moving bargraphs which are dedicated to 

various parameters, the CRT's -can be used to generate bar charts from 

the parameter values available to. the displays and ,contrqls subsystem. 

The Bar Chart Construction (BCCN) routine determines the position of the
 

end points of the bars. Bar charts are used in conjunction with filmslides 

which contain legend, abseissa, ordinates and other fixed information. 

BCCN maintains a record of parameters required for each chart along with 

a listing of initial points for each bar. The CRT has 1024 raster points 

in-the vertical (Yi and horizontal (X) directions. If the largest
 

parameter value exceeds 1024, then the Display Scaling (DSLG) is called 

upon to rescale the bar chart, When the four cjoordinates are found for 

each parameter, BCCN sets up the display command mord for line generation. 

Trend analysis charts provide predication and extrapolation information
 

to the flight crew. For example, the Trend Analysis Chart (TACH) routine' 

uses fuel consumption data to predict times at which fu l reserves 

are sufficient to reach an alternate. TACH updates the end point on the 

charts curve as the current sample is received, refreshes the past his tory,
 

and predicts future values using dashed vectors. As in BCCN, fixed legends
 

are shown using filmslides. 
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The Display Scaling (DSLG) provides assistance to BCCN for bar chart
 

scaling, adjusts features on navigation maps as required by map scaling,
 

and performs magnification of patterns and features when requested.
 

The bar chart scaling ensures that parameter values do not exceed the
 

available 1024 raster points. Rescaling is performed by assigning the
 

largest parameter a value near the maximum of 1024 and then provides
 

a proportional value for the other parameters being displayed. For
 

map scaling, DSLG maintains a list of scalings used for each map in 

the filmslide library. Each adjustable parameter to be displayed on
 

the associated CRT is checked against this list and -its relative value
 

maintained by DSLG. Magnification of any feature on a display may be
 

requested by the crew throgh the use of the cursor to point to the area
 

to be magfied following activation of the appropriate function key
 

.on the display keyboard. DSLG reads the cursor points using the CRVL 

routine,tests whether the requested magnification (by optional powers 

of 2).will overflow the display, and repositions the diplay if required. 

The Display Translation and Rotation (DTAR)-routine is used to assist DSLG 

in.display repositioning. For example, if the crew is ordered into a hold­

ing pattern, a request for magnification of the pattern ay be inputted. 

The patterp is then translate& so that the center of the pattern is at the 

display center. Rotation is accomplished so that magnetic north or heading
 

of the inbound leg (at the crew's option) is at the top of the display. DTAR 

is also used to maintain the attitude displays. 

Some special displays, such as runway outlines, use two dimensional perspective 

to enhance the realism of the display. The Display Perspective (DPSP) routine 
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uses information on runway lengths and widths, altitude and distance 

to the field in order to adjust the coordinates of the end points 

of the runway edges. 

As a final step in completing the display commands for ORT generation­

special alphanumerics or graphics are added by the Symbol Positioning 

(SYPG) routine. Display commands for generating some special symbols 

are prestored. SYPG generates the position commands for these display 

features (in general, these are unusual shapes which would required 

excessive software to generate). SYPG maintains a record of the relative 

positions of alphanumeric data and graphical information and generates 

the appropriate position commands. 
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Display Output (DOUT) routines are used to complete CRT displays prior
 

to 	regeneiation at each refresh period, to perform special functions,
 

and to complete dedicated instruments prior to each updating period.
 

The functions of DOUT are to: 

o 	 Provide control of the radar switching and scan converter units 

when radar displays are requested
 

* 	 Control and maintain the operation of, vertical tape indicators 

used with CRT displays 

* 	 Update electronic-moving'bargraphs and other dedi6ated instruments 

Display movements of control devices 

* 	 Manage the assignments of reprbgrammabie switches' 

* 	 -Monitor the circuit breaker status program and provide 

recovery information 

* 	 'Maintain the orientation of navigation map filmalides 

S-Designate the areas of the CRT display refresh meories to be 

regenerated andLprovide beam control commands 

Fig 5-141 is a general flow diagram of DOUT. The scan converter management 

(SCMT) routine is entered if a doppler or weather radar display is desired.
 

SCMT manages the superimposition of the designated radar picture on the 

specified CRT by performing switching, and monitoring tasks. Vertical tape
 

indicators are associated with the CRT's in the display of parameters such 

as altitude and airspeed. The Vertical Tape Controller (VTCR) routine 

obtains the current parameter value, and compares it to the current tape 

setting. If the change in the parameter is greater than the resolution Of 

the tape, then VTCR activates the tape in the appropriate direction to put 

the n6w tae value next to the fixed pointer. VTCR then clears the tape 
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INfREASE: or DECREASE dliscretes until the next update peri6d. The 

co'puter driven electroluminescent vertical scale indicator (VSI) 

isan bargraph whose indicators are controlled and updated by the Elect­

ro .c-moving Bargraph (EMBH) routine. EKBH maintains a record of the 

cTent assignments of the VSI's, obtains the parameter values from the 

diiplay file memory, and formats this data to meet the VSI- requirements. 

E H also performs similar functions for instruments which are dedicated 

toindividual parameters throughout the mission. The display of flight 

cortrol devices require special indicators. Control of these indicators 

is ) the function of the Flight Controller Management (FCMT) routine 

FC also initiates any aural or visual warning signal required. 

T e Reprogramnable Switch Application (RPSA) routine correlates the 

o Irations of the alphanumeric (A/N) keyboard and the ORT's involved in 

reprogrammable switch functioning. RPSA controls filmslide usage on 

tle function keys of.the AIN keyboard, verifies the sequence of operations 

o\.push button switches and provides display information to the crew for 

n mal and recovery functions. The Circuit Breaker Monitor (CBMR) 

rjutine provides the flight crew with status information. Onboard checkout 

rcutines will notify CBMR when a circuit breaker is tripped. CBMR then 

altivates an aural alert signal, prepares the alphanumeric message associated 

ith theparticular circuit breaker that has opened, and moves the message 

irto the display file and display refresh memory area reserved for caution
 

m ssages. When the circuit breaker is pushed, CBMR clears the message.
 

CIAMR also provides status messages of all system circuit breakers upon
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flight crew request. Navigation maps may be oriented with magnetic 

north or booster magnetic heading at the top of the filmslide. The 

Navigation Map Orientation (NMPO) routine tests the option selected 

by the crew, and uses the magnetic heading information in the display 

file to control the film transport's rotation mechanism.-

To save time involved in the refresh memory operation only those portions
 

of memory yhich are to be displayed are refreshed. The Refresh Memory 

Area Designator (RMAD) routine maintains a record of the areas of each 

CRT which are to be regenerated at each refresh period. RMAD sets up 

Jump instructions and controls CRT beam operation so that only the 

required areas are refreshed. For example, in a checklist operation 

only the title line and the current check line are required to be displayed. 
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Check List Call Up (CLOU) procedures are used to obtain the normal
 

procedure check lists on request of RPRC. Where a new checklist is 

required, RPRO initiates the request to CLCU by providing a checklist 

number. CLCU sets table lookup indices and obtains search code, page 

and line information from a prestored table. TTEI is entered with the 

search code request and the first page of the checklist is read into the 

magnetic tape buffer storage area. 

The checklist page is then moved into the designated display file area 

where RPRC will supervise the presentation and execution of the checklist 

steps. When a page is completed a return is made to CLCU to provide the 

next page. On this entrance, CLCU restores link table indices and repeats 

the operations with TTEX and the display file area. A test is made to 

determine if the last page of the checklist has been processed. If more 

pages are required, CLCU saves necessary data and exits for RPRC action. 

When the last page has been obtained, CLOU provides RPRO with line count 

information and completes its functions until the next request. Figure 

5-142 is a flowchart of CLCU, and also provides information on normal 

procedure checklist requirements and link table format. 

Emergency Procedures Call Up (EPaU) routine is used to 

* Find a requested emergency checklist 

* Verify and move the checklist to the designated display-files and CRT's
 

* Provide information to EAAP for use in the supervision of checklist 

execution.
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EPCU is entered initially when a need for an emergency checklist is 

determined by the system's executive program. To provide redundancy 

and confidence in the checklist accuracy two copies of each list are 

stored in memory and an additional copy is available on magnetic tape 

if required to resolve conflicts between the copies in memory. When
 

EPCU is first entered the emergency number is provided and EPCU conducts
 

its initialization procedures. The table lookup index is set and check­

list word and line item counters are initialized. Entering the table, 

the checklist starting addresses obtained. Theare tape search code is 

also obtained for later search procedures if required. Figure 5 -14-3 

illustrates these initialization procedures. Using the address in­

formation obtained from the link table, the first word, 01, is obtained 

from its prestored memory area, and the copy of this word, C1 , is obtained 

from its storage area (which is a known increment from the storage area 

of the original checklist). These two words (the first four characters 

of the checklist title line) are compared and, if they are the same; 01 

is used in assembling the title line. If they do not compare, a third 

copy of the checklist is obtained from the mass storage on magnetic tape 

by calling on TTEX using the search code found in the link table. This 

copy is then used as a majority voter in resolving conflicts between the 

checklists stored in memory.
 

After each word is read, compared and assembled as part of the current
 

checklist line item, a test is made to determine if the word being processed
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is an end of line code (the 7777 of Figure 5-144 ). If it is not the 

end of a line, the word counter is incremented, the next word in the 

checklist is obtained and the process is repeated. When the end of line 

code is encountered, the line item is moved so that it can be displayed 

under EAAP control. If the item is the emergency checklist title line, 

it ismoved to the designated CRT. EAAP clears the remainder of the 

display and waits for the checklist lines form EPCU. As each checklist 

item is completed, EPCU sends it to the designated display file. When 

the required action has been completed by the flight crew, EAAP reenters 

EPCU with a request for the next item in the checklist.. EPOU restores 

its word and line indices and assembles the next line. A test is made 

to determine if the current line being processed is in the last one in­

the checklist. If it is, an end'of checklist flag is set for EAAP's in­

formation and EPCU has completed its functions for the current request. 
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5.7.3 Executive Program
 

Each computer contains an executive program which controls the sequence
 

and timing of the execution of all other programs in the computer except
 

interrupt routines. Executive programs, in general, reduce computer
 

efficiency since they require the execution of instructions which are
 

non-productive to the primary computer tasks. 
In an avionics application
 

the computational requirements upon the computer are well specified which
 

allows a minimal executive program to be used. Each program required
 

by the avionics system is executed at its specified rate which is either 

1, 2, 4- 8, 16, 32, or 64 times per second. Thus each program can be 

classified into one of 7 groups associated with its execution iteration rate. 

The assumed executive program contains several tables used in the control
 

of the progrwi execution flow. These tables are:
 

Atry Address Tables There is an entry address table for each rate
 

group. Each table contains the entry addresses of all of the programs
 

in the computer to be executed at the associated execution rate. The
 

first location in each entry address table is designated EAT013 EAT02,
 

EAT04, etc., for the rate groups 1, 2, 4, etc., respectively.
 

Address Table Pointer Table This is a table with 7 entries, one
 

for each rate group. Each entry is a single word containing the add­

ress of the word in its associate entry address table which contains
 

the entry address of the program presently being executed in that rate
 

group. Each entry in the address Table Pointer Table is given its
 

own designator, ATP01, ATP02, ATPO4, etc. Figure 5-145 shows the
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relationship between the Address Table Pointer Table and the Entry
 

Address Tables.
 

Schedule Table The schedule table has seven entries, one for each
 

rate group. Each entry consists of two words. There is one for
 

one correspondence between the words in the Entry Address Table, and
 

the bits in the first word of the schedule table for each rate group.
 

The most significant bit in the first word in the schedule table is
 

associated with the last entry in the entry address table for the
 

corresponding rate group. If the bit is a "1" the program with the
 

corresponding entry address is scheduled, and if tr0 not scheduled.
 

The second word in each Schedule Table entry is the value that
 

the first word had on the previous iteration through the same rate
 

group program.
 

Temporar Storage Schedule Table During execution of the programs 

in a rate group the data within the schedule table is shifted. The 

Temporary Storage Schedule Table is used to store the shifted results. 

Rate Group Status Table The rate group status table contains one word
 

for each rate group. Each word contains the execution status of its
 

rate group in the following manner:
 

Status Word Negative - rate group has not yet been run 
Status Word Zero - rate group has been completed 

Status Word + 1 - rate group is being run and is uninterrupted 

Status Word + 2 - rate group is being run and is interrupted 
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Registet Storage Tables The Executive program has an associate
 

Executive interrupt routine which establishes the timing of all 

program based upon interrupts derived from a clock signal. The 

interrupt routine must have available a storage area for each rate 

group in which to store all computer registers when an interrupt occurs. 

The status word for each rate group will be stored in the Register 

Storage Table for that rate group, therefore the Rate Group Status 

Table i6 a part of the Register Storage Table. 

There are tWo programs used to perform the executive function, dn interrupt 

routine whidh is executed every time a clock interrupt occurs,and the main 

executive program. A transfer to the main executive-program occurs at 

the completion of each- scheduled computer program and from the interrupt 

routine. The interrupt routine is shown in detail in Figure 5-1 46. Upon 

entering the interrupt program the interrupt system id temporarilyj disabled.
 

The point at which the interrupt system is reenabled 'is dependent upon the 

relationship between this and other computer interrupts. All of the compute 

registers ate then stored in main memory. The area in main memory used to 

store the cdmputer registers is dependent upon the rate group that was 

being executed when the interrupt occurred. The main executive routine 

stores the beginning address of the memory area to be used in a location 

available to the interrupt routine (this location is -given the designation 

IRRGA in thd example). In the example shown in Figure 5-146, the registers 

are stored By first temporarily storing the contents of index register 1.
 

Index register 1 is then loaded with the main memory storage area location. 

The accumulator (A) and lower accumulator (B) is then stored into the first
 

-4bt5­



two locations of the main memory area by a double length store command.
 

The temporarily stored contents of index register 1 are then loaded
 

into the accumulator and stored into the main memory area. Each add­

itional index register is then transferred to the accumulator and from
 

the accumulator to the main memory storage area. Seven index registers
 

are assumed in the example. The status word for the interrupted rate
 

group is then set to a value of plus two. In the example the main memory
 

storage area for each rate group is ten words and contains the following
 

stored data.
 

1. accumulator
 

2. lower accumulator
 

3. index register 1
 

4. index register 2
 

5. index register 3
 

6. index register 4
 

.7. index register 5
 

8. index register 6
 

9. index -register7
 

10. status word
 

The fastest rate group is 64/sec and the interrupt occurs at 64 times
 

per second. Thus all of the 64/sec programs that are scheduled must be
 

executed each time the interrupt occurs. The main executive program causes
 

all the programs in a rate group to be exeucted once if the status word
 

-489­



is negative. Upon completing the execution of all the programs in a
 

rate group the main executive program stores a zero in the status word
 

for that'rate group. The 64/sec rate group status word is first tested
 

for zero. If the status word is not zero, a computer timing overload
 

has occurred and appropriate action such as issuing error messagea,
 

descheduling now critical tasks, etc., must be taken. If the status word
 

is zero, indicating normal program operation, it is loaded with a minus
 

value causing the 64/sec rate group to be rerun. The main program timer
 

is then incremented by 1. A typical binary counter incremented by 1
| 

every 64th of a second and the rate groups that should be scheduled are
 

0000001 64 

0000010 -64,32 

0000011 64 

0000100 64,32,16 

0000101 64 

etc 

From this example it can be seen that the 64/sec rate group is scheduled
 

every time, the 32/sec rate group is scheduled whenever the least signif­

icant bit is zero, the 16/sec rate group whenever the last two least
 

significant bits are zero, etc. 
The example also shows that whenever a
 

rate group is scheduled all other faster iteration rate groups are also
 

scheduled. The timer is used to determine which rate groups are scheduled
 

by executing a series of short right cycle shifts and testing the accumu­

lator sign bit after each shift. Each rate group is rescheduledi by testing 
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iti status word to determine if a computer timing overload has occurred
 

anj then loading the status word tth a negative number. 

Th time and storage required by the executive interrupt routine is 

deiendent upon the number of registers to be stored, the number of rate
 

gr ips to be run, and computer instruction repertoire. The example
 

prqpram requires the execution of 2201 instructions each second and
 

58 Iemory locations for instruction storage not including the error
 

roultines which are executed in the event of a computer timing overload.
 

Thq main executive program determines the order in which allt scheduled 

pro rams are run. The fastest rate group programs are always first. Each
 

scheduled program returns to the executive upon completion of its tasks.
 

Figure 5-147 shows example coding of a main executive program. Upon
 

en1pring the program, the interrupt system is disabled. The'64/sec rate
 

grop status word (SW64) is then tested with one of four possible branches 

takrn dependent upon the value of SW64 being negative, zero, plus one, or 

plUI two. If the value is zero the 32/sec rate group status word (SW32) 

is ested in the same manner. This process of testing status words con­

tinyes until a non-zero status word is encountered. The status words are 

tested in the order of fastest to slowest rate group. If all status 

worfls are zero the example program contains programming to place the com­

putrr in a wait mode. This programming, shown with an entry address of 
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TSTOO, first enables the interrupt system and then executes,a transfer 

instruction,z transferring to itselfwhich placed the computer in a 

ope word loop waiting for the next timing ,interrupt. in the actual
 

flight program an additional rate group will probably be defined. This 

is a background rate group which is executed whenever all othhr rate 

group programs have been completed. If a background rate group exists 

the computer is never placed in a wait mode. 

The example program of Figure 5-147 shows only that programming required 

by the 32/sec rate group when the status word is non-zero. The program­

ming for the other rate groups is identical except for the data addresses. 

If the status word is negative then none of the programs in the rate group 

have yet been run. The new and old schedule table entries are loaded in­

to the accumulator and lower accumulator with a double length load in­

struction. The new schedule value in the accumulator is then stored into
 

the old value position it the schedule table to'update the old value for
 

the next time the rate group is to be run. Index register 2 is then loaded
 

with the address of the last word in the entry address table for the rate
 

group being processed. A transfer to the loop test for deterining which
 

program is to be run next is then executed.
 

If the status word is plus one, the rate group is in the process of being
 

scheduled and has not been interrupted in the middle of executing,a program.
 

The address table pointer is loaded into index register 2. Ndte that the
 

negative status word branch loaded the initial address table pointer value
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into index register 2. The partially processed schedule word and its
 

old value is loaded into the accumulator and lower accumulator from the
 

temporary storage schedule table by a double length load instruction.
 

Index register 2 is then decremented by one and the combined acbumulator/
 

The most significant bit
lower accumulator shifted left one bit position. 

a one, the asbociatedof the adcuulator is then tested. If the bit is 


zero, the associated program is not-scheduled.
 program is scheduled and if 


zero, a transfer back to the decrement index instruction
If the bit Is 


A three instruction loop of decrement index,shift~and test
is executed. 


is thus performed until a one bit is encountered in the most siknificant
 

The program branch taken with a negative status
bit of the hccumulator. 

this loop at the test instruction after initializing the.word enters 


and index register. Upon encountering aaccumulator/lower accumulator 

,one in the ccumulatqr most significant bit position, the index register 

stored back into the address table pointer table and the accumulatoris 

The address of the
and lower a6cumulator into the temporary storage table, 


area in whi6h the interrupt routine stores the computer registers for this
 

rate group is stored into the proper interrupt routine word. The status
 

word for this rate group is then set to plus one, the interrupt jsystem., 

enabled , and a transfer to the beginning location of the. scheduled program 

indirect transfer onis executed. .In.the example this transfer is an 

index register 2.
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Each rate group has a special program which is always scheduled as the 

last program to be executed in the rate group. This program when executed 

stores a zero into the status word for that rate signaling thegroup 

executive program that the rate group is completed until it is recalled 

by the interrupt routine. 

If the status word is plus two, the rate group was interrupted during its 

last execution. If this is the case, the computer register storage
 

area is set for the proper rate group. The status word is set to plus
 

one, the computer registers loaded from the register storage area, the 

interrupt system enabled, and a transfer to the interrupt return address 

executed. In the example it is assumed that the return address is left 

in index register number 1 when an interrupt occurs. 

The loading and storage required by the executive program is dependent 

upon the total number of programs in the computer and the number of 

programs scheduled at any one time. The example program described above 

made no provision for the number of programs in any rate group being 

greater than the number of bits in a word. To provide for more programs 

per rate group than bits per word requires that the programs in each rate 

group be divided into subgroups with each subgroup containing the number 

of programs equal to the number of bits in a word. The last program 

executed in each subgroup reinitializes the address table pointer and 

temporary storage schedule table for the next subgroup. Defining the 

parameters T64 , and T1 to be theT3 2 . . . . . total number of programs in 
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each rate group and N64 , N32 ... and N the number of programs scheduled 

at a particular time in each rate group excluding the special end pro­

grams, then the number of short instructions executed per second by the
 

executive is approximately
 

.4385+ 1024N64 + 576N32 + 320N16 + 176N8 i96N4 +52N2 + 29N1
 

+ 192T64 96T32 + 
48T16 24T8 + 12T4 6T2 + 3T1
 

Combining the overall requirements of both the main executive-program
 

and the executive interrupt program yields 

Execution Cycles per second
 
6586+1 024N64 +576N3 2 +320NS6+1 76N%+96N +52N2+29NS 

+192T6 4 .96T3 2 +48T+24T8 S2T +6T2+3T 
Instruction Storage Area
 

341 + Overload error routines 550 locations 

Constant Storage Area
 

25 '+ T 

Variable.Storage Area
 

108
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5.7.4 Subroutines 

The mathematical subroutines of sine, cosine, tangent, arcsine, ar­
cosine, aretangent, exponential, logarithm and matrix multiply are 
required by the TMS programs. These functions are generated by poly­

nominal approximation to least significant bit accuracy. For all pro­
grams except navigation and guidance the required accuracy is 16 binary 
digits; for navigation and guidance 32 binary digits are required. The 
computational requirements for each function are given below.
 

Sine and Cosine
 

The sine and cosine are generated by a double entry subroutine by
 

applying the formula
 

COS ()= SINQr'-XK)(1 

The input argument to the subroutine will be scaled in semicircles at 

binary zero which automatically restricts the range of the input ar­
gument in radian measure to be between -IT -n0 +fr. Upon entry to 
the cosine subroutine the argument is subtracted from j (i.e. Trdians 
scaled in semicircles at binary zero) reducing the cosine generation 

to that of generating the sine function. In generating the sine functio 

the input argument range is first restricted to positive arguments by
 

use of the identity
 

SIN (-)= -SIN(Y.) (2)
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The output argument is then generated by
 

++ 2(3)
&3(X_.4W _ )"p be if !E<xI,:fI5 110,X 

for 16 binary bit accuracy. For 32 bit accuracy an additional 2 

terms must be added to each polynominal of equation 3. The ayerage 

sine and cosine subroutine characteristics are -

Single Precision Doubie Precision 

Total Instructions 28 32
 

Short Constants 11 2
 

Long Constants, 0 13
 

Short Variable 3 ,0
 

Long Variable 0 3 

Fast Normal Path Instructions 26 28
 

Slow Normal Path Instructions 4 6 

Tangent 

Input arguments to the tangent subroutine will be restricted to lie 

between -IT and f' radians. Within the subroutine an argument range 

reduction will be made by employing the identities 

TAV (-)K) = -'TAN (x) (4)' 

YkNCj+X) - (5)
TAA/('X 
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= 2. TAN('x)TAN(ZX) I - TANt(x) (6) 
Equation 4 is used to restrict the argument to between 0 and 7r radians,
 
equation 5 to between 0 and 
z radians, and equation 6 to between 0 and 

1 radians. The tangent is then developed from the formula
 

TAN(X) = X (,q X 2+ 0 3 X( + atq, X2 ­t a.o) 

(7) 
for16 bit accuracy.For 32 bit accuracy four more terms must be added to
 

equation 7. The computer requirements for tangent become 

Single Precision Double Precision 

Total Instructions 51 59 

Short Constants 8 0 
Long Constants 0 12 

Short Variable 3 0 

Long Variable 0 3 

Fast Normal Path Instructions 37 41 

Slow Normal Path Instructions 8 12 

Arctangent
 

The arctangent subroutine has two input arguments, X and Y. 
The sub­

-
routine generates TAN ' (Y4). Within the subroutine an argument Z 
is constructed from
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x /," i I 

This limits the value of Z to the range -I < Z 5 1 The subroutine 

output is determined from 

if" lX, YITAN Z.TA-I+_x-rN-(1x [ (f- TAN-'Z) i-F IYI;IX 	 (9) 

with the appropriate sign chosen dependent upon the signs of X and Y. 

The value of TAN Z is evaluated from 

TAN-'Z a±24+az 2 +Lh 
(10)b z4 + b,Zklr bo 

for 16 bit accuracy and 

TAN-1 z = Z 9'QZ t' 2 Z (0+02 Z,/tazl ta 0
 
rA W+Z 2-Z :,L; 


for 32 bit accuracy. 

The computer requirements for the arctangent subroutine are
 

Single Precision Double Precision
 

52
Total Instructions 	 46 


0Short Constants 	 7 

0 10Long Constants 
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Single Precision Double Precision 
Short Variable 6 1 

Long Variable 0 5 

Fast Normal Path Instructions 31 34 

Long Normal Path Instructions 8 11 

Square Root
 

The square root subroutine consists of three parts, range reduction,
 

initial estimate, and an accurate convergence. Upon entry to the
 

subroutine the input argument, X, is tested for zero and if zero an
 

immediate zero square root value is returned. If X is not zero its
 

range is reduced by a normalizing process. A binary number scaled at
 

binary zero having 2 n + K leading binary zeros can be represented by
 

X= X0 +K) (12) 

where -<X 0(I and K is either 0 or 1. 

The 4-X is then given by
 

1-x FlX2 / *(13) 

The normalization process determines the value of n and
 

x 
 0(4) 
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An initiAl estimate of the value of V is obtained from
 

Y,.= Qz2 + aX,+4a, (15) 

This initial estimate is improved to 16 bit accuracy by performing
 

a single Newton - Raphson iteration of the form
 

±~-± ,) (6) 

By applying a second Newton - Rophson iteration, 32 bit accuracy is
 

obtained6 The final result is obtained by shifting y right mplaces.
 

The compUter requirements for the square root are:
 

Single Precision Double Precision 

Total Inhtructions 29 33 

Short Constants 4 4 

Long Constants 0 0 

Short Vaiiables 3 1 

Long Variables 0 2 

Fast Normal Path Instructions 22 25 

Slow Normal Path Instructions 4 5 

Arcsine
 

The arcsine subroutine applies the formula
 

SIN-' = (17)
:TAN-" 
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which is solved by using both the square root and arctangent sub­

routines. The total requirements of the arcsine subroutine are then
 

Single Precision Double Precision 

Total Instructions 11 11 

Short Constants 1 0 

Long Constants 0 1 

Short Variables 1 0 

Long Variables 0 1 

Fast Normal Path Instructions 63 69 

Slow Normal Path Instructions 13 17 

The instructions required in executing the arctangent and square root
 

subroutines have been added to the Normal Path instructions.
 

Exponential
 

The exponential subroutine first restricts the input argument to the
 

range 0 to 1 by use of the formula
 

-X= IS ex (18) 

The exponential function to 16 bit accuracy is determined from 

x=q4.xq+Q.3 X3 + Q7zXZ+ a q19X t4[o 

(19) 
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For 32 bit accuracy three more terms must be added. The computer
 

requirements for the exponential function are 

Single Precision Double Precision 

Total Instructions 18 24 

Short Constants 5 0
 

Long Constants 0 8
 

Short Variables 2 1. 

Long Variables 0" 1 

Fast Normal Path Instructions- 14 17
 

Slow Normal Path Instructions 4 7 

Logaarith 

The logarithm subroutine generates an output y for the input argument 

X where 

Y= IOe X (20) 

For an output to exist X must be greater than Q. For a 16 bit'word 

the smallest possible value 1' X which is greater than 0 is 2- 15 

2- 1 5and for a 32 bit word it is 2- 31. Thus if X <1 'thew--10.40 

3 1< Y < 0 and if 2 < X 11 then -21.49 < Y 0. The 16 bit 

accuracy-output will be scaled at binary 4 and the 32 bit output at
 

binary 5; 
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Representing X as 

X Xo' n where I<XO(I (21) 

allows y to be written as 

, Iose(X)= Iose (X,2- = Io(Xo - n Jo?, (2) (22) 

The range of Xo is further restricted by defining 

X0SX.OX0 if, A- <YXo <­ (23) 

making 

X (IoeX,-oe'-ino~eo 0/oe xi ifVT,'c -)z <,, <<I (24) 

an intermediate value is 

X, - I 
7- 7T+F 

For 16 bit accuracy 

lose , Q,z- qo 

formed from 

(25) 

(26) 

and for 32 bit accuracy 

loge X, = C(., Z a Z 4 4Q Z +a, 2o
(27) 
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The computer requirements of the logarithm subroutine is then 

Single Precision Double Precision 

Total Instructions 37 41 
Short Constants 7 1 

Long Condtants 0 8
 

Short Variables 3 1
 

Long Variables 0 2 

Fast Normal Path Instructions 28 30 

Slow Normal Path Instructions 6 8 

Matrix Multiply 

The matrix multiply subroutine is used only by the 32 bit accuracy 

programs. The subroutine can be written either for rapid execution­

or for minimum storage requirements. Because the routine is used 

by a 64 per second rate group program, the sizing estimates are based 

upon a minimum execution time program. These estimates are:
 

Double Precision 

Total Instructions 102 

Short Constants 0 

Long Constants 0 

Short Variables 0 

Long Variables 0 

Fast Normal Path Instructions 75 

Slow Normal Path Instructions 27
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Summar
 

A summary of the memory storage requirements of each.-subroutine
 

package is:
 

Single Precision Double Precision
 

Total Instructions 220 54
 

Short Constants 43 7
 

Long Constants 0 52
 

Short Variables 21 4
 

Long Variables 0 17
 

A summary of the required execution times is given in Figure 5-148
 

SI4GLE PRECISIfON DOUBLE PRECISION 
,FAST SLOW FA.S SLOW 

SIN -co5 z 9- 2 86 

TAN 37 / /2 

7/Al" 3 13 3- / 

EXP. . 7-. 7 
LOG (a 30 8 

YZ 2- S, 
MATRIX MULTIPLY' 75- 2 7 

Figure 5-148 Subroutine Execution Times 
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6.0 DATA MANAGEMENT SYSTEM EVALUATION TOOLS 

This section presents details of two techniques used to evaluate the data 

management system. The first tool is the Evaluation of Shuttle Computational 

and Processihg Events (ESCAPE) program. The significant results of this 

program were presented in Volume I. This section gives information of 

value to a uher of the program. Included are program variable descriptions, 

card deck chracteristics and instructions for initializing and funning 

the program. Program flow charts, listing, and printouts of sample 

runs are provided.
 

The second e%aluation tool uses standard reliability techniques to compare
 

the three DMb computer configurations basic to this study.
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6.1 EVALUXTION OF SHUTTLE COMPUTATIONAL AND PRCESSING EVENTS L(ESCAPE) PROGRhM 

6.1 .1 Program Objectives
 

The aims of the simulation program described below may.be summarized as 

follows: 

- To generate processor and data network loading time lines 

- To simplify the task of estimating the effects on processor and I/O loading 

of changes in program modules and I/O characteristics ­

- To allow an easy comparison of configurations of the DMS with different 

numbers of processors 

- To permit easy collection of data on processor and I/0 loading with 

various program module arrangements within each processor configuration
 

- To determine the processor capabilities necessary to handle the loads
 

for various configurations 

- To determine the I/0 network capacity to handle the loads required f4 

each- configuration 

- To determine the DMS system required to handle different program 

implementations. 

.These objectives will be- discussed below; 

As the system evolves, new program modules and data points will appear 

and others will disappear. To keep 'ip to date on the performance required 

to meet these needs, the changes are inserted into the program initialization
 

deck and a re-estimation of processor capabilities and network loadings is 

made. There may also be some further system experimentation. 

Each of the configurations can be tested to determine how much processor
 

and how capable a data transfer scheme are required to handle the tasks
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imposed upon them by the mission. This will be done for a given program
 

and sensor ihplementation.
 

Within a given configuration there is another degree of freedom - the 

arrangement of programs. Program modules may be moved around in a
 

attempt to achieve minimal CPU and network loadings. The current im­

plementation of the program requires that the analyst change a few
 

processor assignment data cards to effect this change.
 

Each of these steps assumed a fixed processor capability, which is
 

specified in the program as the number of processor cycles required for
 

the fast and slow instructions, program parameters which have been devel­

oped elsewhere in this document, and which include instructions executed 

in math routines. These processor characteristics may also be changed 

to reflect advances in technology or to permit the evaluation of different 

processors.
 

The utilization of the tool may follow some such scheme. A program and
 

data description are placed on data cards. For this realization a pro­

cessor configuration is chosen and the simulations of several program
 

arrangements are made. This step may be done in one computer run by 

stacking varouS arrangement decks. A new processor configuration may be 

chosen and the iteration repeated. The object is to give the analyst 

enough data to look at to make a good decision concerning the number of 

processors aid the type of data transfer scheme . data bus, hardwire etc ­

most appropriate. The total process or some part of it may be repeated
 

for various program and data point changes and for various processor 

instruction 6haracteristics. 
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The intention is that the program remain a tool throughout the period 

of development of the computational algorithms 'and the vehicle con­

figuration. 

It should be mentioned that the program may be described as a static 

simulation of.the system. The term static implies that the dynamic 

aspects of system.operation such as memory access conflicts anddata 

flow have been replaced by constant descriptors which may represent 

average, worst-case, etc estimates. The dynamic aspects of system
 

performance only become visible after further decisions have been 

made in the system realization, such as processor instructions and'
 

channel characteristics, data transfer network and so on.
 

In the listing included here a worst-case assumption has been made 

concerning memory conflicts - each I/O transfer represents a cycle steal 

from the processor. 

The program has been written in Fortran V, an enhancement of Fortran 

IV available on the Univac 1108. 
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6.1..2 Program Description 

The structure of the 
ESCAPE program has been designed to achieve 

the objectivds stated above. The program has been designed as a series
 

of concentric loops. The outer loop is the configuration loop. The
 

user specifies a program arrangement within a set of processors (from 

two to six processors are currently available) and a simulation is run. 

The user may then re-arrange the program modules via input cards in the
 

original run deck and re-execute the simulation. We see- that the outer
 

loop consists of the configuration changes (changes in the number of
 

processors) ahd the inner loop consists of the n program rearrangements
 

99) within a given processor configuration. All of tbase nhsnae 

are effected through the run deck.
 

The innermost loop contains the simulation portion of the program. This
 

section is event oriented, with the program module start and stop times
 

forming the e-'ent list items. 
At each time on the event list the processors'
 

loadings are calculated by summing the fast and slow instructions executed 

by each activb program module and the I/0 transfer rates of these programs. 

The processors' loadings are expressed in number of processor busy cycles, 

including memry conflicts, and the inter-processor I/O rates. 

The outputs ifclude the processor and program summaries at each event time
 

and the processor summary table and maxima, which are printed after all 

events have occurred. The latter two summaries are printed once for each 

program arrangement.
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6.1 .p Initialization Section
 

The ;nitialization section is used for three purposes: 1. First pass
 

through the program. 2. For each program re-arrangement. 3. For each
 

new processor configuration.
 

1 First. ass 

- Tle first card read specifies the number of configurations which are 

to 1 simulated in the run, the number of program arrangements for each 

of tiese processor configurations and the number of processor cycles
 

for the fast and slow instructions. The data on this card determines
 

the pumber of passes through the initialization section since a new
 

initialization is necessary for each configuration and each re-arrangement.
 

The Last two fields on the card indicate the processor characteristics to
 

be sfmulated throughout the run. This card is unique to each run and
 

is read on first pass only.
 

- Thp REPORT card(s) indicate whether or not the program report is to be
 

printed and, if so, which programs are to be reported on. This card(s)
 

appeprs for each new configuration, allowing the user to vary his selection 

duripg the run. 

- The processor assignment cards appear next. First there is a processor
 

number card with the format given in section 6.1.5 This card is followed 

by ope or more arrangement cards listing the program modules assigned to
 

procpssor 1. Then comes the processor 2 card and its arrangement cards,
 

etc.
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- The program module data cards come next. These cards are read once
 

per simulation run and contain data which generally does not change
 

very frequently - is invariant for a number of runs. The fields contain
 

the four-letter program mnemonic (listed elsewhere), the number 6f slow
 

instructions executed per program cycle, the number of fast instluctions
 

per program cycle, the program frequency in cps, the start and stop times
 

of the module and the number of data cells -,number of cells not accounted
 

for by fields two and three. Note that the numbers in fields No and three
 

may be the average number of instructions executed per .pass, worst-case
 

.estimates, etc. The data cell number should be adjusted to account for
 

program sizi-ig. 

- The I/0 data cards are read last. These cards are like the pr6gram data 

cards in that they are .read just once per simulation and should be
 

relatively slowly varying for a vehicle configuration. The fields include 

a six letter mnemonic for the data point, the data frequency in cps, the­

data word length in bits, the data source module and the destination module(s).
 

The latter miemonics are the four-letter program module mnemonics.-

The program iodule and I/0 data cards will form a rather sizable deck - a 

thousand cards or so. At a later date, when the system -is more accurately
 

known, this data may be put in the program in DATA statements to obviate the 

execution of Fortran READ statements. This scheme will be particularly ­

useful when executing the program using an object deck.
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2. Program rearrangement
 

For each configuration there may be one or more program arrangements 

used. To simulate this situation cards similar to the processor 

arrangement cards are read. The difference is that only those programs 

being moved need be listed after their new processor. If the rearrange­

ment only involves transfers to one processor then only that processor's
 

cards need be included. In any case these cards are read at the time of
 

a new simulation i.e. the input deck is not read together but rather in
 

batches, after the events list is exhausted and as directed by the
 

configuration card.
 

3. Configuration Change
 

For each configuration specified by field one of the configuration card
 

there is a report card(s) and a complete set of processor arrangement
 

cards. A complete set means that each program module in the program data
 

deck should be listed under one. (and only one) processor card.
 

Another function of the initialization is the establishment of the events
 

list TEVENT(I). The program module switch-on and switch-off times are 

placed, non-redundantly, on the events list in increasing time order. 

This task must be performed for each program arrangement simulated since 

the same set of events occur for each arrangement and in the execution of
 

the program the events list gets wiped out.
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There are at present several limitations on system initialization which
 

should be mentioned. These limitations were made to conserve space in 

the program and can be changed without major programming effort.
 

One limitation is on the number of destination modules of a piece of 

data. At present 'the maximum number of destination modules is nine,
 

which represqnts the number of available fields on the I/O data cards. 

As the system determination evolves this limitation will be tested.
 

Another limitation on the system is the number of processors which are
 

permitted. The arrays FROGS and PROCSM have been set up to allow, space 

for six procdssors. This constraint can be changed if there is a need 

to do so. 

Those arrays whose dimensions have been set using PARAMETER statements 

should be noted. The use of parameters was to minimize re-punching which 

will be necessitated when the-number of programs, number, of data points, 

number of events etc. are better known. As the system evolves these 

parameters will probably change. The description of the arrays in Figure 

6,i indicates the interpretation of these parameters. 

Another important point is the treatment of the external data sources. 

To take advantage of the symmetry between the transfer of data between 

program modules and between program modules and external devices the following 
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convention has been established - one (or more) program modules re­

presenting the external data sources are assigned to an additional 

processor. These modules do not execute instructions, all they do 

is transfer data. In the examples in the output section it is seen 

that all I/0 data from external devices comes from (or goes to) a 

single module called EXTF. This module has been assigned to the last
 

(pseudo) processor and is scheduled at time zero and runs to the end
 

of the simulation since data from the external devices is generally
 

present when a program module switches on. This convention means that 

a one central processor system will be simulated using two processors 

etc. 

It is worth noting that this convention concerning external devices 

allows the generation of data concerning specific data types by assigning 

to them their own module names and switching times. Normally, however, 

the external data sources are treated as being lumped in a single module 

which operates during the whole mission. 
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XODATA(X) - A linear array holding I/O data 

Cell I - Pointer to next data set
 

Call 2 - Six letter data point mnemonic e.g. ABCDEF
 
- Cell 3 - Frequency of data - transfers/sc.
 

Cell 4 - Data length per transfer, in bits
 
Cell 5 - Four letter origin program rodule mnemonic e.g. ABCD
 

Cl 6 - Four letter destination program module mnemonic e.g. FGH
 
X destination modules 

Cel 6K -Pointer to next data point 

1TE() - Linear array wed for temporary storage 

ITEMP(I) - Linear array used for temporary storage
 

Eqivalenced to TEMP(I).
 

NOPRO(I) - Contains a alphabetic form of processor numbers i.e 

NOPROC(i )= ONE, NOPROC(2)= TWO, etc. 

NP(I)" - Linear array used to contain status indicator for programs 
Involved in 1/0 data transfers. 

NRRNG(I-) - Number of arrangements for each configuration. NMNG(1) 
contains number of program arrangements for processor 

configuration 1, etc. 

OPTP(I,J) - A two dimensional array. Each row corresponds to a 

processor. The columns are as follows: 
Column 1 - Processor number
 

Column 2 - Maximum input rate for that processor
 
Column 3 - Time of occurrence of maximum
 
Column 4 - Nanum output rate for that processor
 
Column 5 - Time of occurrence
 
Column 6 - Maximum number of busy cycles 

Column 7 - Time of occurrence 
TE2(1) - - Array used for temporary storage 

Equivalenced to PROCSM. 

T4P(1) - Array used for temporary storage. Equivalenced to ITlP(I) 

TEVENT(I) - Array used for event times. 

-TEVfl1 < MT(r2) < 

Figure 6-1 ESCAPE Prozram Variables 
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PROCS(I,J) - Two dimensional array containing processor information. 

Each row corresponds to a different processor. The'
 

columns are as follows: 

Column 1 - Processor number 

Column 2 - Total number of slow instructions executed 

Column 3 - Total number of fast instruction executed 

Column 4 - Number of bits per second input from processor 1 

Column 5 - Number of bits per second output to processor I 

Column 6 -15 - Similar to 4 and 5 for processors 2 through 6 

Column 16 - Number of I/O memory cycle steals 

,Column 17 - Total number of processor busy cycles 

Column 18 - Number of cells occupied 

PROCM(-,J,K) - Three dimensional array. First index corresponds to 

processor. Second index corresponds to the event 

times. The columns are: 

Column I - Timo 

Column 2 - Number of busy cycles for processor I 

Col 3-14 - Correspond to columns 4-15 of PROS(I,J) 

PRODAT(I,J) - Two dimensional array containing program module information. 

Each row corresponds to a program module. Each column 

is as follows: 

Column I - Four letter program module mnemonic e.g., ABD, left justified 
= Column 2 - Activity flag. 1.= ON, O. OFF
 

Column 3 - Processor number that program is assigned to.
 

Column 4 - Number of slow instructions executed
 

Column 5 - Number of fast instructions executed
 
Column 6 - Frequency of Execution
 

Column 7 - Program start time
 

Column 8 - Program stop time
 

Column 9 - Number of data cells of program
 

FROGS(I,J) - Two dimensional array containing information for 

the optional program reports.
 

Column I - Four letter program module mnemonic, left justified
 

Column 2 - Processor number program is assigned to
 
Column 3 - Number of processor cycles used for instructions
 

Col1n 4 - Number of processor cycles used for I/0 transfers
 

Column 5 - Sum of 3 and 4
 

Column 6 - Output bitrate
 

Colun 7 - Input bitrate 

Figure 6-1 (Continued:
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Immortant Program Scaler Variables 

ABRANG Current arrangement number 

GONFIG Current configuration number 

FASTSY Number of processor cycles for a fast instruction. 
If this field is blank on configuration card the 
hardwired value is used. 

NARRNG Number of program arrangements for current configuration 

NCONG Number of processor configurations to be simulated ­

an input parameter. 

NDATAP Number of data points in input card deck. 

NLIST Number of event tines currently in TEVENT(I) 

NOFT Number of programs to be reported on. 

NPROC Number of processors in current configuration. 

NPROC Number of programs in input deck. 

NTIM Current index setting for secofid dimension of 
PROCSM (I,J,K).
 

SLOWCY 	 Number of processor cycles for a slow instruction
 
(see FASTSY).
 

T 	 Current simulation time. This is successively set
 
to each item in TBENT(I).
 

Program Parameters
 

KOPT 	 Number of rows in FROGS - maximum-number of 
program options.
 

KPROC 	 Number of rows in FROGS. 

XPROG 	 Number of rows in PRODAT - maximum number of 
programs allowed in input deck. 

NDATA 	 Length of array IODATA. This constrains nmber of 
data points allowed in input deck.
 

EVENT Length of array TEVENT(I) - maidmum number of 
events allowed. 

NPCOL Number of columns In FROGS. 

NPCOL Number of columns in PRODAT 

NffM 	 Size of the second dimensionof PROCSM.
 
This should be equal to NEVENT, since 
for each event a row of PROCSM is written
 

NSMOOL Size of third dimension of PROSM. 

OPTC Number of columns in FROGS. 

SFigure 6-1 (Continued) 
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6.1.4 Execution Section
 

The first task performed by the program is calculating and printing 

the number of cells occupied for each processor and the listing of 

the program modules stored in each processor memory. This summary 

is illustrated in the section on output formats.
 

The flight-time is set to the top time on the events list and the list 

is pushed-up one storage location.
 

The program list is scanned to determine the number of fast and slow 

instructions executed per processor at the flight time being simulated. 

This requires including only those programs which are currently active. 

The array NP(I) is used for temporary storage of the program statuses.
 

Next the I/0 data points are scanned. The object is to determine the 

I/0 transfers between each pair of processors. To achieve this deter­

mination, it must be checked that the origin program module is currently 

active and that the destination module(s) are also active. Also, redun­

dancies must be filtered out. These redundancies include the case in
 

which origin and destination modules are in the same processor or two 

or more destination modules are in the same processor. These data 

transfers are not included in the processor summaries since they do not 

add to the I/O network loading and the processor cbannel loading. 

Next the processor busy cycles are calculated, assuming that each I/0 

transfer involves a cycle steal by the I/O unit. This assumption is a 
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worst case one and could easily be modified using ,a (constant) conflict 

ratio as a multiplier. A more adequate simulation requires the inclusion 

of more detailed program descriptions and the use of dynamic simulation
 

models.
 

The arrays FROCS and PROCSM are used for storing the processor information. 

PROGS is written over at each time on the events list TEVENT, but PROSM 

is used to store data throughout the time-of-flight of a specific program 

arrangement. 

The next phase of the program is collecting data for the optional report. 

Each program module to be reported on uses a row in the array PROGS for 

storing its current operational data. The calculation of a program's 

-data rates depends on whether or not the programs with which it communi­

cates are operational at each specific time point. The coding in this 

section is piiarily concerned with this factor.
 

The last opetational section of the program which lies within the time­

step loop is determining whether new processor maxima have been achieved
 

and, if so, updating the array OPTP(IJ) which stores this data. This 

information is used for a summary at the end of the simulation of an
 

arrangement.
 

At this point the processor and program data is printed out. Exm~ples of
 

these formats are given in the output section of this description. In 

the processor summary are included the input and output bitrates,, in bits
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per second, for each processor and the total number of processor cycles
 

used. The program summary includes input and output bitrates, and number
 

of processor cycles used and the percentage of the processor'load which
 

this program accounts for. 

Currently, these reports are generated at each event time. However, a
 

minor change in coding would allow each of them to be printed on a 

switched or time basis. 

When the events list is exhausted i.e. the largest time on the program
 

data cards has been reached, several more reports are printed out. One
 

report is a time-tabular summary of the processor loading and the other
 

report indicate the maximum bitrates and busy cycles during Ithe run and 

the times at which these maxima occurred. 

The program branches back to the initialization section at this point if
 

either another program arrangement has been scheduled or another processor
 

configuration has been scheduled. Various arrays are initialized to zero 

before branching back to initialization. For a new program arrangement
 

only the program assignment change cards need be read. For a new con­

figuration, the report card(s) and a totally new set of program assign­

ment cards are read. There is currently no provision for changing program 

or I/0 data characteristics after the original initialization, since the 

object of the program is to evaluate processor and I/0 loads for a specific
 

set of program modules and data points.
 

It should be noted that the executive load will depend on the number of 

processors, so this data should be added into the numbers generated by 

the simulation program. 
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6.1.5 Input Deck Description
 

The types of cards used by the program are: (i)Configuration Card
 

(2)Report Selection Cards (3)Processor Number Cards (4) Program 

Data Cards (6) Input/OutputArrangement Cards (5) Program Module 

Data Cards.
 

Of these cards, the latter two categories constitute a description
 

of the system which will be changing relatively slowly - the programs 

used and the data points - so that only the first four categories 

will be oftprimary concern in generating a run deck. 

It should be noted that in changing the number of cards in (5) or 

(6) a check should be made on the dimensions of various arrays in 

the program, in particular the arrays IODATA(I) and PRODAT(I,J), to 

not beenoverrun.make sure that the limits of these arrays have 
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Confi uration Card
 

This card contains the number of configurations to be simulated 

(up to a maximum of ten), the number of program arrangements for 

each of these configurations, the number of processor cycles used 

by a fast instruction and the number of processor cycles used by 

a slow instruction.
 

The format is:
 

Column 	 Format 
 Contents
 

1-2 XX 	 6fNumber configurations 

(right-Justified)
 

4-5 	 XX Number of arrangements 

for configuration 1 

7-8 	 XX. 
 Same, for configuration 2
 

31-32 	 XX Same, for configuration-10 

35-40 
 XXX.XX 	 Number of processor cycles
 

for a fast instruction
 

43-48 XXX.XX 	 Number of processor cycles 

for a slow instruction 
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Report Cards
 

The first field of the first card indicates whether or not the
 
I
 

optional piogram report is desired and, if it is desired, the names
 

of the program modules to be reported on.
 

The format is:
 

Column 	 Format Contents
 

1-4 YES or NO Whether report is
 

(starting in column i) desired or not
 

If fi~ld one is YES
 

6-9 ABCD 	 Program module
 

mnemonic
 

11-14 EFGH 	 Same
 

If more than 15 programs are to be reported on card two and others 

have the same format, with the first mnemonic starting in column 1. 

The second and following cards have 16 program fields rather than 15. 

The first pair of blank cblumns terminates processing of a card. 
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Processor Number Cards
 

This card contains the mnemonic PROC and the processor number
 

field. These cards should be in serial order and each card must
 

be followed by the program arrangement cards for that processor.
 

Column 	 Format Contents
 

1-4 PROC 	 Designates aprocessor
 

card
 

7-10 XXX. 	 Processor number.
 

Use floating point
 

integer e.g. 1., 2., 3. etc,
 

Program Arrangement Cards
 

Contain the mnemonics for the program modules assigned to the last­

encountered processor card. The fields are four letter program
 

mnemonics followed by a comma if there are more module names. When
 

a blank is encountered after a comma the processing of that card
 

terminates and the next card is read. A blank after a module name
 

terminates reading of these cards. The following card must either
 

be another PROC card or an END card (starting in column i), designat­

ing the end of the processor arrangement cards.
 

Column 	 Format Contents
 

1-5 ABCD(,) Four letter program
 

(comma indicates more module mnemonic
 
programs to come)
 

6-10 EFGH(,) 	 Same
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Program Module Cards
 

These cards contain the program module mnemonic, the number of blow
 

instruction's executed by the program, the number of fast instructions 

executed by the program, the frequency of execution in bps, the program 

module start-up time, the program module stop time and the numb6r 

of data cells occupied. The last card in the set is an END cart. END 

begins in column 1. 

Column Format Contents 

1-4 ABCD Program module
 

.eft justified) mnemonic
 

6-16 XXXXX.XXX Number of slow instructions 

executed per cycle 

18-28 Same 	 Numberof fast ins'tructions.
 

per cycle
 

30-40 Same Number of program executions
 

per second
 

42-52 Same Start time of program
 

module
 

54-64 Same Stop time of-prodram
 

module
 

66-76 Same Number of data cells
 

occupied,by program
 

-528­



I/0 Data Cards
 

These cards contain the six letter data point mnemonic, the data
 

frequency in transfers per second, the number of bits per transfer,
 

the source program mnemonic and the destination program mnemonics. 

The program labels are all four letters, as seen elsewhere. The 

last card in the set is an END card. END begins in column 1. 

Column 	 Format Contents 

1-6 ABCDEF 	 Six letter data point
 

mnemonic 

9-19 XXX XXXXXX 	 Frequency of data
 

transfer
 

22-27 XXX. Number of bits per 

transfer 

30-33 ABOD Four letter origin program 

module mnemonic 

36-39 EFGH 	 Four letter destination 

modules mnemonic 

41-4 IJEL 	 Same 

The first blank field of four characters terminates the card. Fields 

separated by a single space. 
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INTEXE IKLPUI( IbLA.NKENUYES
 
Ii.TrL.,.CU,JFI-G. AKdlANG
 
HtML IQUAIA,Nu.PI(OC,NP

PAUAKLETEn CAR.)Z5 ,PRINT =6 
PAdiAMLTLR Ki'k06 20 , WICVL =9 , NUATA = 100, KPROC =10, 
" 4iPCLOL =1a, (OPT 10ii , rJLVU.T =.20 oOPIC =7 
* LPRUv ,W.Ol m'C0L *LPROC = ISPROC. W~CCIL *LOPT =KOPT*OPTC 
PARA.:lfTUt NSU=30, N4SMCOL14 

DI~bMI~g.PR0CSM,(o,NSUfA,NSMCOL) 
L.4 (2)VI,'iE~bII; 


LULVALL;ILE CTEMCI), PROCSA4(1,I,1))
 
DIM"ENSION fEI.I(40), ITE,4P(4u)
 
EUULIVALEltC.E CTE.MPCI) ITc'il'(1I)

UI.ME.6S10I. PaUOLAT (ISPHOG. .PCLIL), IOATA (IJATA) 
SPHUC~irPtWC, IPCCOL),PROGS(AORT,OPTC),TU4LNTC NEVENIT)
 

UWiEI4SIui, OPIP(KPti0C. 7) ,NP(10) ,NOPROC(IU)
 
DI.*ENSIoll I.HiJClii)
 
uAIA CU~jrIG /0/, ARKANG/U/ *YES/3I-YS/.NO/ H.NO/
 
OATA LOMMA/Iri. /.ILAI'1 /6H /,PROC/4HPROC/.ENO/3HE14D/
 
DAfA C10PRC(I),I1.1O)/HONE , 3HTWO , HTIHRLE , 'HFOUR
 
'.4tIFIVC , 5HSIX , bI-IEvLN , !3RE1I-T .4HI1E ,3HTEN I 

DATA 14PRUG//, F4PROCh/Ua NOPT/0/ 
DATA FASTCY/2./.SLOCY/1O./
 
tIATA [.LIST/1/u iJOATAP/0/ 

C ItTIALIZE THESE ARRAYS TO ZERO 
OATA ((PkuLJAT(Ld.,) ,L=I,KPROG),IAZ1,NPCOL)/LPROG*0./
 
S((Pk{CS(L,,M),L=1,KPI(OC),M11.PCCO[)/LR0C*O./,
 

Cr(PlOGS(,M)LI,KOPT),MlI,OPTCJ/LOPT*0./p

~(IOOAIA(L),L=I.NDLATA)/NOATA4U./

TEVENTCI) =99999.
 

* NLUrt'Eht OF COHPUTE R CONFICURpTION4S SI.UtLATFO 
C FJUI'LE.R OF PROGRAM ARRANGEMENTS FOR THIS COFIG1URATION 

REAO(CARU). 9000) NCONFG,(N(RG(),K1,10),TEM'P(1),TEMP(2)
 
"iILTE(PRIijT.9002)­
"ItTE(PRIi4TD 9001) IJCONFb,(NRRNG(K),K=1,10), TEMF'Ci),TEMP(2)
 
LF(li:hP(1)) 3.6
 
FASTCY =IEMP(1)
 

SLO,JCY = lEt4P12) 
5 CLiITINUE
 
10 CONFI6 C'OWFIG + I
 

I4AXRWj, =IJRRI4G (COHIG10
 
CLAU(LARug9UUO) ,,VORT,(ITEMP'(K),K=I,15)
 
hRiTL(Pi.r, 90U21) RLPUKI,(ITL.PNt)tK 1,I5)
 
IF(RUL0lfl .L. 14O) GO TO 70
 
14OPT =0
 
DL) .50 l=1,lb
 
Ir-(ITLmP(,).EQ.dLAIK) GO 70 55,
 
NOPT = NuIT +1,
 

Ptsbb.IOl. = TErAP(I 
350 CONTINUE 
4U CuwTiI.UJC 

RLMD(LMRLI,9020x) t1Ioe~I($K)K16)
 
wfc,lLCPRiijI,902I) (ITLr4.P(K),K1I,1o) 
Ut, 3b1l1,In
 
lb (Ilhvi'() .LQ.LLAlJK) 60 TO 55 

c ao0Pr 1lUST Ui LES.S ihAN OR< EQUAL Tr0 KOPI a 

C IL DIlcrJbsIO W4J IUbSON 

NOPT = 14Ojt'r +i 
PROCSCNOPT,I) =TEMPCI) 

Figur 6-3 lsting of Program ESCAPE 
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biOCONTINUE
 
GU TO 40
 

5b COiWTiiiUE
 
70 ARAANG = AHRAlhG + 1
 

IF 	ARIRANG .Lu. 1) .0 TO 150
 
C. CHAI4GL OF PROuRAM Aid4Ai.,CrIENT
 

bb 	 RIAOCLARU , 904U ) Ters(l1). F1 OC:O 
,R1TL(PRitTVd41) TEP(l?,PROChO
 
IFIrEiMP(i) .LU. Elit. ) G TO
1130U 

90 	REWO(CAko,9030) (TCIP(f),=I,32)
 
ARI rE(PRImNT,-jU31) (TEMP(N ).,132)
 
DO 120 1lu
 
IF(IIEP(&*I-1) *r4E. ULANK) 60 TO 100
 
IF(ItLiiP(2*I-2) .EO. bLANk)0GO TO 80
 
bU To 90
 

1UO 00 110 KZI,NPR0G

IF (TENP(211-0} -PRODAT(K,I)) 110,,110
 

PkOUA1 (K,) = PlROCEJO 
bO TO 115 

110 CONTIIUE 
115 IF(ITEvP(*I) oEQ. BLANK) GO 0 60 
120 C014TI1IUE 

C END OF REARRANGEMENT CAR{DS - Go TO START OF COMPUTATION 
lDS NLIST = I 

DO 145 I=I,NPHOG
 
DO 140 d=7,8
 
IF(NLIST .GT.l) GO TO 131
 
TEVENT (1)=PROuAT (IrJ)
 
60 TO 137 ­

131 CONTINUE
 
DO 135 K=I,jLIST
 

C NO RLOLUNDANT ITEMS ON LIST
 
tIFtWROAT(I.-J)-TEVENT(K)) ,140,135
 

DO 132 L=K,1NLIST
 
SM=L-K
 

152 	TEVENI (NLIST+I-M)= TEVEIT(NLIST-M)
 
TEVENTA).= PtuUAT(IJ)
 
GO TO 137
 

135 COJTINUE
 
TEVENT(IILISI+) = PRODAT(L,J)
 

1$7 COJTINUV-

NLIST = hLISf t 1
 

1402 CONTINUE
 
14b COTINUE
 

DO To 350
 
150 CcTINUL
 

KzU
 
1.bb 	RLAD(CARU, 90Ll0) L.NP(1),POCNO
 

a.,11E(Pr{l, 90ul) .t,'(1) ,MROChO
 
IF-ITL,4P{~ .E,.ENW ) GO TO 230
 
LL:P,iOC..O
 
PtlJC5(LL.4) = PrvCtJO
 
NP-'OC = I+rjfpitC
 

IbO REAJ(CAf,9'3J) (1E.P(IJ),ris2)
 
-k ITEA(PkR1IJ9U.51) (ILP([J),NI,32)
 
D0 22U 1=1,16
 
1F(ITFI.P((.*I-) ME. ULAh.K) GO TO 200
 
lr(1TL[-1h,,cI-2) ,LJ. bLAIK) 0o TO 155
 

- GO TO 16U
 
200 KK+1
 

IF(CONFI6 LE. I) GO TO 210
 

6

Figure -3 (Continued) 
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DU 20b JJ=I,KPROG 
I'F(T.MP(2*1-) - pKOUAT(JJ'l)) 2,05,9205 

pF'UJAT (J~ 6)J)-i'UCN0
 
,O IU 2It
 

4U5 CUVTINUE
 
lu 	CONI iNUF
 

PtoJAIJK -) = fE-,P(2+I-1)
 
PfUaA1 (K5') = PROCNO
 

15 	 CUNF.Jvl 
XF(ITIAPH d) .E.O. BLANK) GO TO 155
 

22U COiINUE
 
23U 	 CONTINUE 
240 UO 24b .--. KPRJU,
 

I (PHA f(I 1)) 245,,245
 
NItROG i -1 

GO 	TO 250
 
245 	CONTINUE 

IJIPI<O6- PQOG
 
250 CO..TINUE
 

LFCCUNFIb . Gf. 1) 60 TO 130 
55 	CONTLHU 

RE,I(CAKU,9050) (TEMP(I),I-±,7) 
,RITE(PR1IUT, 9051) (TEMAPCI),I=1,7) 
1F(ITEP() *Eo. END) GO TO 295 

D0 275 .=K5,6 
1F(NLIST .GT. 1 ) GO TO 257 
TEVEWT(1)=TEM P(K) 
GO 	10 272
 

257 	 COiTTIUE 
0O 270 lfl.NLIST 

C 140 RLOUrWuANT. ITEMS - .ON LIST 

IF(TEMP(.)-TEVFNT(I)) .275,270
 

tOd 	 201 LZI,FJLISI 
J=L- 1
 

260 TLVEI (ILIST+-J) = TEVENT(NLIST -J)
 
TLVEI4T() = [EP(K)
 
GO TO '272
 

270 COWfINUE
 
Lf~vln(ILisl+1) =TEHP(K) 

27 	 CONTINUE
 
tLIST = iLlST + 1
 

475 	CONTINUE
 
DO 	 290 I -. MPROG 
IF(TE.4P(1)-PRULAT(1,I)) 290,,290
 
,30 2bU J=,,7
 

280 	PKObAT(I,0+2) = TEMP(J). 
29u 	 co.ArturAI 

cO 	 TO 255 
-9s CU,TiNUE 

L1l
 
600 	KLMO(LAD(.9060) (TEtP(),1=1,13)
 

1F(LTL'IPi) .E . ENO ) GO TO 350 
Ut .520 I=b.13 

f (If .P(L) .NC. bLANK) GO TO 32.U 
K1l 
.0 	TO 3U
 

.20 	 CG.Tlfa[ 

.63U 	CO4TIKvUE
 
:ttsTAi' = LMUTAP + I
 
IOOATA(L)-K4 1
 

Figure 6-3 (Continued) 
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00 Z40 IZ1,K 
IOUATA(L+I) = TLM4P(I)
 

340 	 CONTINUE 
L=L+K+I
 
GO TO 300
 

6bO IF(LOhl .E. ',O) GO TO 360
 
DL 3/0 1-1, vPT
 
DO 3tb K=1,1tNPROG

IF ('OOAI(K,1)-PhtOS~lgl)) .jub, .ZoS
 

STVOE PIUCESSUR NUMER IN PROGS COLUMN a
 
PkGS(ip2) = F'ROAT(K,6) 
GO TO 37u
 

3b5 CONTINUE
 
370 CU,4TINUE
 
.50U 	 DO 400 Ii,4POG 

K = PRODATLI,3)
 
L IAULATE NUMuER OF CELLS OCCUPIED FOR This PROGRAM 
C Ak"AI0 LINEif 

PkQCS (K , ac) =PjRuCS (I•.b).PkOUMI (I, 1)4PkCOAT (I, 5) +PRODAT(I' 9) 
400 COiNTINUE 

vhLTE(PRiNT 9065) 
Uri 420 I=1,4PROC 
RITL(PRI4I, 9070 ) NUPROC(1) , PROCS(I, 1s),NOPRUC(COgFIG), 

* NOPROC LJRRAI4G) 
KK=O
 
UO 410 J=1.4PROG
 
L =PRODAT(J.3)
 

IF(L.NE. I) 60 TO 410
 
KK = KK t-1
 
TEM(KK) = PROUAT(J.1)
 

410 CONTINUE
 
nRITEW(PRIT,9080) NOPROC(I) 
WRITL(PRIJT,9090) (TEN(K)=,nKK)
 

.420 CONTINUE 
WRITE(PRINT4, 9110) NOPROC (CONFIG). NOPROC(ARRAjG)
 

C ULGIN - EVENT CALCULATIONS 
500 	 CONTINUE 

T = TFVEIT(I)
 
NLiSTVi NLISI -1
 
UO 520 1=,hNLIST1
 
fEVENT(I) = TLVENT(I+1) 

520 	CONTINUE.
 
NI4ME = ITIME +1
 

C JECRLNUNT Trlt EVENTS LIST 

u juu I.iNPi<UC
 
-I {T.Ll.P,(UOAI(I,1)) GO F-0 GOO
 

jI(I.bC.I'rtOUAf(lo)) GO 10 5JO 
L SL- ACrIVITY FLlkV 

pPUJDAT(I,) = 1. 
C COWIAIIS PHOCESSOR NUMIEI, 

K = PROL)AT(Ij) 
PRCS(Ke) = PICCS(K,2) + PIcOUAI(I,4)*PROvACI(,6) 

L CALCULATE .JUMjE< OF LNSTRULTIUrS PER SUCONO ,EINIG 
C At.CUl EL bf hAL, 

PRCS(K,3) = I'dOCb(t,,a) + PI.OAT(I,bJ*PR(,OAT(Io)
C ;(LuEr ACIIVirY FLA(b 

.v IV ZdO
 
b9' FROOAT(IF2) - 0.
 
oUU CONJTIIUL 

C DO . DATA TRANSFER CALCULATIU. FOR EACH DATA POINT 

Fig=uo b-3 (Oontizkuoa) 



C 

L 


L 

C 

K-­
00 BOO I 1-,IiATAP

&K=U "
 

J = 	 Iu&ATAj(K) 
bITRAl = IUATA(K+2)*IUDATA(K+3)
 
J4 = J -4
 
bO 700 L=,4
 

OU 620 LLtI,iPROG
 
I-(IUOATAk(A*L+. )-PiOAT(L.,1)) 6201,u2O 
'CtKCK rO.,JLE LIST
 
CHECK MODULt ACTIVITY
 
IF(PkOOAT(LL,2)-1.) 6j01163U
 
LLL = LL
 
O TO 64U
 

b2 CONJTINUE 
o5O NF-(L) = 0. 

IF(L.O.i) o To 740
 
,uU Tu 7UO 

CibURE illAi PROCLbSOR ,5i rkAES AR'tECOUNTEO ONL( ONCE 

b40 iF(L CU. 1) 60 TO bbO 
Ci = L-i 

uO 650 M.=1Li 
IF(NPC1)YQI(OuAT(LLL.5)) 50,,650 

jHP(L) r 0.
 
GO TO 700
 

b20 CONTIINUE
 
6b0 NP(L) = PROOAT(LLL,3)
 
700 	 CoU.TiNUE 

IF(NP(I)) 8u80 
~J4=J-

DO 720 L=eJ4
 
IF(hJP(L)) .72U
 
1F(NP(L)-NPCI)) e20
 
KK-KK" I
 
IINP -- P(1)
 

IhPP -2*,P(L)+3
 
PROCS(INPrINPP) = PROCS(IFP,INqPP) + BITRAT
 
IF(Kw. GT.I) 60 To 71U
 
PROCS(INP,17)=PROCS(INP,17) + IODATA(K+2)
 

710 CONTINUE
 
INP=NP L) 
INPP = 2*NP(lj + 2 
ADO BITIHAT TO THE OUTPUT AND INPUT PROCESSOR SUAS 
PROCS(IlrP,14PP) = PROCS(ILJPIIJPP) + BITRAT 
PKCS(IrWF',17)=PNOCS(INP,17) + IODATA(K+2) 

72U L(Or.Tt,1Jt 
740 COiT1NUE 

K = K+J 
oUO .ONTINUE 

1O 830 i21NFIROC 
PHUCS(lu7) = PROCSCI,2)*SLUiCY + PROCS(1,3)*FAbTCY 
*- + PROCS(I17) 

r, PROC$C 1.1)
 
PROCSCK,h I Ir, I )=T
 
PRuCSM(K,,*IIML, rPROCS(I, 17)
 
uO 4L0 J=;.,$i.;,.COL
 

oej 	CviNT IwCU"
 

o0 	COiTI.JC
 
IF(, L.ORI *LO. NO) GO TO 1000
 
00 97t0 1=1.h401T
 

Figur 6-3 (Continued) ­
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UO 840M-1 rIJPRUG 

IF(PRODAIi,eP-I.) 97U,,970
 
GO TO 845
 

uqO CONTINUE
 
t4b CU,4TIMJE.
 

K=l
 
DO 950 J=I.NUATAP
 
IF(PKO3St.,1l) - IOL)ATA(K+4)) .890
 
KK = L0VATACK)
 
KKb KK-5
 
O0 bbO L-I--,5
 

C DOES ililS REPRESENT A TRANSFER OF DATA? 
IF(PROGS(1,) - IUUATA(K+L+4)) b60
 

850 CONTINUE 
GO TO 950
 

660 	D 865 MI,NPROG
 
IF(PRLfDAI(intf)-IOOATA(K+4)) 865.d65
 
IF(PRUUAI r4,a.)-1.) 95U1 9bO
0 

IF(PRUDAT(flj)-PROGS(1,2I) b7O,r870
 

8b5 COiTI14UE
 
GO TO 950
 

d7v PROGS(Ib) = IOUATA(K+2)*10[ATA(K+3) + PROGS(1r6)
 
PROuSi ,4)'PRUGS I,4)IODATA(K+2)
 
PROGS(1,5) = IODATA(K+2) + POGSI-(,5)
 

C. CALCULATE UATA IPUT RAIE IN BPS 
C CALCULATE NUMBER OF CYCLE STEALS FOR INPUT DATA TRANSFER 

Go TO 95U
 
890 CONTINUE
 

KK=IODATA(K)
 
KK5=KK-5
 
00 '910 L1I,KKS
 
DO 900 MnIFX0OG
 
IF(PHOOAT(MAI)-IODATA(K+Li4)) 960,,900
 
IF(PRiDATU.4,2)-1.) 910,,910
 
M1 = , 
GO TO 905
 

900 CONTINUc­
90n CONTINUE 

IFtPdOUAT(tMN.,6)-PROGSCI,2)) 920..920
 
910 CONTINUE 

GO TO 950
 
920 PP(US0(,7) = PROGS(I,7) + IODATA(K+2)*IODATA(K+3)
 

PROGS(i.4)=PROGS( I,4)+IODATA(K+2)
 
PlODS(I,:,) = PROGS(I,5) + IOATA(K+2)
 

950 K = K + hr,
 
DO 9o 1,IJhPROG 
IF(PROJA1 (i.J,1-PROGS(1s)) 9o00,9b0
 
.'ROGS( I ,.)I'ItUdAl (,.4) bPAODAI (h,) tSLOeCY 

*- "'PROu, T(li5)*PROUAT (N,6)FASTCY
 
PROGSt ,b)=PRuS (1,3)-fPR OGS(1.5)
 
8U TO 97U
 

9uU 	 CU.,TINJrE 
970 	CGWTIIhJE
 

1000 COtTIhaL 
C CALCULA) iu., OF MAXIMUM I/O BITRATES AND uUSY CYCLLS rOR EACH 
C P;0.hss U 

00 106U.=5ItNVmOC 
Tt',P(1) z 1'RuC (It'q)'llROC(Itl + P}ROCS(rL} 4 PtiUCS(I.1O) 

* 4ri OCL,( I, ?)+ pi'tCSC(i,14q) 
IF(TL.P(1) .L.. OPTP(1,2)) G0 16 1010
 
OJPIP(1, ) = TEtIPCI)
 
OPTP(I,3) = T
 

UIU CUnTIhtJV Figure 6-. (Continued)
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IAP(1) = pIkoC;(I,b) + PRUCS(1,7) + PROCS(I.9)" + PdtOCS(I,11) 
* + pRo(,CS(I'IS) + PtOCS(I,15) 

LF(OPIP(1,4) .6E.TEMP(I)) 00 10 IU20 
uprP(1,'4) = TL.0I'(I) 
OF4P(1.5) T,UZU 	 IFuI L')u°RCSI1 O. la IUSU. 

UPTP(Ito) = pOCS(1,17)
 
OPTP(1,7) = T
 

1u3U CONT ±AJNuL
 
c. 	 Pt(UCLSSO,( Lfrl;AKY 

w.RITL(P1.1 920U) I1 i otVHC UMAYI ,TE
C SKIP THt. PRuCSSUR NU4U[.R FOh WHICH SUNMARY IS vhITTEN 

FIELUATA Or EACH PROCLSSuR roUhMiEiIC NOPROC CvIITAI;1S 
iKIlL(pHIliT 9220) NUPROC(1) 

riPi(OCI = i.{11OC -1
 
DO iO,0 jI,l'HOCl
 
KJi
 
IF( K .GL. 1 ) K = K+l
 
TL,'P(2*J-i) : JOPROC(K)
 
TE;IP(4tJ) PROCS(I ,2*Kt-+1)
 

lOo CON! II4UE
 
NPROCI =.t,lPROC-i)

IFPMV, ru. 2) Go 1O 1070
 
wRITE(PRINT,9240) (TEMP(L),L=I,NPROCI)
 
,GO TO 10b
 

1U70 	 iRITE(PRITi 9260) (TEMP(L) ,L=1,1PROC1) 
10,30 	CONTIojIE
 

,IITE(PRINT , 928u I PROCSI. 17) 
1100 	 CONTIN4UE -


IF(REPORT -EO. NO) GO TO 1250
 
C 	 OPTIOINAL REPORT(S) GENERATED HERE
 

wRITE(PRlhT, 9300
 
D 1200 1=.WOPT
 
K- PROGS(11,)
 

3Y THIS PROGRAMC 	 CALCULATt PERCL;OTAGE OF PROCESSOR CYCLES USED 

TE.,P(1) = IOU.* P,OGS(I5)/ PIOCS K,17)
 
WRITE(I'RlI,1 19320) PRubS(I,1), POGS(17)
 
t(I~mTL(PHiI,,f.30) PRUGS(i',), PROGS(L,6)
 
,j-I(PjjlF, 9340 ) PR( GS(I,1) , PROGS(I,5)
 
iRIT.(PRl11,1 9350 I PROGS(I1)' , TEMP(I1) 

1ieO 	CO1TINUE
 
0D1220 1=1,J0I'T0 IC2U u:3,,OP 

piaAS (I ,..) :0, 

1210 CGIT Ii'UE
 
12U CONTINUE
 
1e±,U 	 C., rIIJL' 

L=N'PCCOL- .
 
,,u 1270 i=1,PROC
 
,O 12bO J- .L
 
PROCS (1J= 1:O,
 

lcvU 	CQIJTIIJUL
 

l&70 CU.TINME
 
1600-11-(r Lf. rtAL.T(2 ) O rO bOO
 

IuIMI' L- tl' 1 

i1L vI	 
)1 ~t [I.4E 

ITEMP(2)tbfuPS
 

Figure 6-3 (Continumd) 
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00 ilf rZ,ln'PaUCl
 

IF(KK.0L.UJ) NKhtI
 

ITLAP (rb+,)z N 

I1,.P (6+.4)Z6IIOUT f
 

1TEMP(~Kb+b) ZAK 

R1TE(PR1IT, 94101 NOPROC(J)
 
NPRO(CIzo4M-hWCI+
whITE(PRifr,9+20) (1TEAP(K) .k=1.l,PRUCI)
 
00 161611.iA
 

NIPr(OC 1:1JPI,OC- 1
 
uC lt,1 4 h1,=.NPkOCI
 
KIS =ifEM(K)
 

1614 	C0,414TN'E
 

UtRLWtRII4T,9q5U) (TEMP(K),K=1,NPROCZ)
 
101±6 	CGIJTIFAJL 
1o2U 	 C&,,Ti1.A
 

1411tL =0
 

00 1610 inl1r4PROC
 

in]0 CijlNUE 
oKLTL(P1hT,S99s)

C FUR A WL4 PR~OGRAM ARgAIlsENIEF~ ZERO OUT THE ARR~AYS TEVENT. 
c AND PROCs, 

DO 1640 iZ2,NLIST
 
TEVENT(I) = 0.
 

lbi4O CONTINUE
 
1,LIST =1 
DO 1660 LflsM'PROC
 
U0GlbMa 0 ,IPCCOL
 
Pli0CS(1.J) a. 

-lobO 
 CO, TINUE 
1660 CONTIIUC
 

IL'4E14(1) 999.
 

U0G It ? J=2,7
uF IP(Ii,J)zU.
 

loo,! Ctugd1rU
 

iF (AUtiSMS .LT.* AHNIJG I G0 TO 70
 
AI4IANb =0
 

l'tjt(107 :0.14ho 

Ao71) 	 CUqTI4tJC 
qHOC =0
 
00 1690 .irl,OPlC
 
DO totOi)j:,I U!t
 

C whbrl OUt $1W4($ It0 PRUrAL FOU1l4Lt., hLPUN1S, IFI4LUUCSTEU, 
c FURs (Il NE11 LOAPOTLIR CU.v*IowUATO 

Ph~ibS(I,J) .0.
 
loho tWi't11404~
 
lOSOi 	CuNTl1tJ
 

Fig=n 6-.$ (Contituad) 
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O TO 5 

9000 Fi,,AATtl1u10(tX'l 
2 ),2t2XF6.-2)) 

9001 FOWi4AT( IUX, 12 ,i0(lX.I )' cA2XPFo.2) ) 
9002 FU,,4AT(5bA' 2ONH*** 114PUT CA'-. **, /) 

902U FOvi.4AT(1(A4,1A)) 
9021 FUN4AT(1UX. 10 (A4.IX) 
9005 FOSAAT(lo(AqIAl)) 
9031 FORMAT(1Xi.o(A4 l)) 
9U40 FO.IATA42X' F4.0) 
90 i FOKCrIAT(1QA' A4, 2X, F4.0 
9050 FURMAT(A4,I1,bt(Fll.Z3X)) 
9Ubl FORAA(IOX, A'q iX, b(Fl.3,1X)) 4

If-CUNFIo .LT. NCONFG ) 

,lX)
9goO FORtAT(A,2XFll.4,2XF6.0,2XeAII2X*9(AB fA 4 2 X B {A X ) )
"B X F O 2 , 4,J
.
9uol FORMAT(1GX,A, 2XDFII ,2

INITIALIZATION SUMAI(Y * * /}

90o5 FU,,IAT(IliL,dX 3,i1*** 	
, AS. 7H HAS FDO.01 

9070 FORtIMT(ir40. isX, 19IPROCL-SSOI, ImudER 
ibl1 APRANGEMENT

* 39H CCLLS uCCUPILD FOR COIFIGURATION ,AS 
* AS//) 

NUMbER tAS,21ti CONTAINS PROGRAMS 
9uibO FORMAl (10, 43A, iaIPROCESSOR 

* /I 
9090 FOIMAT(IUA,20(A4* X))
 

PROCESSOR MAXI.,A ***** "//)
9100 Fud,4AI(1Hl,// 48X,.34H**** 


, 40H,A SUMMARY FOR COhFIGUWATION NUM[;tR AS, 
9110 FORAAT(IHUV27X 


* 	29H ANO PRUbRAA ARRAGEMLNT , AS-)
 
NUbUER .2XA6 I/


9120 FOR AT(CHOI;,5SX.11rIPROCESSO( 
 AT. TIME
 
I4PUT BITRAIE OF ,F9.0,211i OCCURRED 

*32X'2BHMAXblQtS 

OUTPUT fLTRATE OF .F9.021H OCCURRE 

* F9.0 //3X,291iAXIUM 
*0 AT TIME tF9.0 //32x, 

OF BUSY CYCLES, ",FO.U26H CPS. OCCURRED 
*3T*TIAXIMUM NUrBEK 
* AT TIME iF9.0) 

="	 AT TWE-OF-FLIGHT

9200 FOR kT(HO' 4 0X.4 tiPROCESSOR SUM,,ARY 


* F10.0 ),
 

,9?.o FORMAI(n1O S*X, 11HPRUCESSOR , A6 
I 
FRO(SPSI SX,5(A6,IXtF9.0,2X) /,X,ISHIP.PdT-9240 FUr(IAT(lH 1 

" 3bX. 5tA.IX, F9.0,2X))
 
9260 FORAAT(IH 15X,15HI-OUIPUT TO(bPS) ,5X,S(A6,IXF9,02X) /
 

" 35X, S(AwlX' F9.0W2X))
 F10.0
OF BUSY CYCLES , F 
9280 FOR.AAT(l l bX, 36ITOTAL NUYEER 	

*****)PROGRAM DATA SUMMARY 
93UO FOk.IAT(1h0 *44X , 44ri**** OPTIONAL 

BITRATE(bS) =,FlO.O), A. 22rOUTPUT
9320 FG(KOAT(110' 40X, 9riPROGRAM 

,A ,22HI.JPUT OITRArEWPS) =,FU.O)

9330 FOGtrAT(1Is , 'OX, 9HPROSRAM 
* 40X, 9rPROGRAM t A6 ,3$HNUMBER OF PROCESSOR CYCLES 

9340 FOiR.AT(1ti 

-* USED = i F10.0 

,4U/ ,1f'KQ(,RAH , AG 48HtIPFRLENT,GL OF PROCESSOR BU 
oab0 F-GiRMAI(lii 


)
*SlY'CICLLS USED Fl.l 

4


9400 FbkkAT(1tA9X,.rt*** PR0CSSOI FLI I SUIAARY **. //) 
u
,
b	 ,AS I)
94u1 FC:WAAT( 4Xt19 lP0RCtiSb l 	 NUAER 


94.10I-IrA(BA4X,3,A1(hihh1) 
9430 f-GMiltbx,1FdO2X!A)
 
9999 FVR,A1 (Ihl)
 

wO DIAGHOSTICS.
CO;-PILAT1'JN 


Fig 6-3 (Contlnvd) 
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*** 11PUI CARDS ** 

a a 1 0 Ui 0 U 0 0 0 0 .00 .00 coretArO CAA 
REPOP1?r C41xOYtS AAA/A AAAU AAAII

PROC 1.•
 

MAA., A AMO. AAA( ,AAAD
, AAAt ,AAAF
 

PROC 4. ?
 
A AOAAAI-IAAAI.AAAJ . ,lo&-4A' Aee RnCe&.'rJ' C,'..4CSf$GA 

.3 ZO-AC-EXTF DATA 

2.000 000 ?0.000 10.000
AAAA 10.000 I0.000 

20.00 20.000
AAAt3 10.000 10.000 2.000 .0001 

2.000 .000 20.000 3U.000
AAAC 10.000 I0.000 

2.00b 3.000 15.000 40.000
AAAL) 1.U000 I0.000 


AAA. 1O.000 Q..0 2.000 3.000 17.000 50.000
 

AAAF 10.000 f6.000 3.000 
 3.000 19.000 60.000
 
5.000 22.000 70.000


AAAG 10.000 10.000 3.060 

80.00U
AAAH 10.000 10.000 3.000 5.000 24.000 

-ARAI 1.OUU 10.000 3.000 5.000 26.000 90.000 

3.000 5.000 28.000 100.O00,AAJ ±O.uO0 10.000 
.000 .00 .000 28.000 .000EAIF .000 

EjiD 
AAAAAA 10.0000 5. EXTF AAAC AAAG-


AAAAAB 20.0000 -10. EXIF AAAA AAAb
 

AAAAAC 30.0000 15. EXYF AAAC AAAG 
 / bATJ CARD5
 
AAAAAD 4o.0000 20. EXTF AAA.
 
AAAAAE 5U.0000 40. AAA AAAB AAAD AAAF
 

AAAAAF bO.0000 40e AAAI AAAH AAAE 
END 

Figur6 6-4 Printout of Sample F rst Pass Crds 

P. VC 1. YLS AAAC AAAO 

Proc 1,
AAAAt#AA i#AAACAAAD,tAAIXAAI 

AAAA AC, AAAc 
PROC 2.

PtR0C 2." 

AAAFAA-iJAAAHAAAJ 

AAABAAAO
PRUC 3. 

PROC 6.
LAW 
SAAF IAAA3, AAAH, iAA , JLqNu PKOC 4
 

LXTF

LNUO 

Figure 6-5 

±nout of Sample Rearrangement Deck 

Figure 6-6 Printout of Sample Configuration Deck
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PROC SSOk SUMMARY AT TIME-OF-FLIGHT 5. 

.,jiPUT hCOM(dPS) 
OUTPUT ro(BIS) 
IUTAL NUMbeR OF 

T.a 
Trio 

BUSY 

1200. 
U. 

CYCLES Z 

PROCESSOR OE 

THREE. 1500. 
THREE 0. 

1720. 

I, dUf FxOM(dPS) 
UUTPUT TUuPS) 
TIoTAL t4U(baR OF 

I,IVUT FrMB(LPS) 
OUFPUT T)(bPS) 
TvTAL Nui4bER OF 

OUt 
ON.-

BUSI 

ONE 
ONE 

BUSY 

PROCESSOR TOO 

0. THSEE 500. 
1200. THIREE 0. 

CYCLES 1540. 

PROCESSOR THREE 

0. TWO 0. 
150. TWO 500. 

CYCLES 1c0. 

*.*** OPTIONAL PROGRAM DATA SUMMARY **** 

PROGAV,
PROGRAM 
PROGRAM 
PROGRAM 

AAAA 
AAAA 
AAAA 
AAAA 

OUTPUT BITRATE(BPS) = 0. 
11PUT BITHATL(BPS) 200. 
NUMdER OF PROCESSOR CYCLES USED 
PERCENTAGE OF PROCESSOR BUSY CYCLES 

260. 
USED 15.1 

PROGRAM AAAB 
PROGRAMI AAAE 
PROGRMM, AAAB 
PROGRAM AAAd 

OUTPUT BITRATE(BPS) = 0. 
INPUT BITRATE(BPS) = 200. 
'UM'1Bl OF PROCESSOR CYCLES USED 
PER.ENTAGE OF PROCESSOR BUSY CYCLES 

260. 
USED 15.1 

PROGKAM 
PROGRAM 
PR0 w Am 
PROGRAM 

AAArI 
AAAI 
AAA 
AAAH 

OUTPUT BLTRATE(UPS) = 0. 
INPUT BITRATE(BPS) = 0. 
NUMdCR OF PROCESSOR CYCLES USED 
PERCENTAGE OF PROCESSOR BUSY CYCLES 

360. 
USED Z 23.4 

Figure 6-7 Event Semple Printout 



Figum, 6-8 TnItiaization Printt~ 

7N st ,kV "ITIAtLIJqlTOL4 ...
 

*istOCtS A it jLW OtIL IHAS 30, CELLS OLttt t't CGNF$SuPArtO1 

. MA AAIPUT 4AR AAAF "APU 

MASh4Uro .s vCtut't aT CONIIUT*0UT0. -CELLS 

~t6fPJIOCE$sou Tho CO..TAW.S P't0RSI? 

CCCUPXEU ?'OA COflGMtATlIfls'ttuCtstI tib.4's r..HC HAS 0. CELLS 

PMOCSOUM tUFLR T.4Et OYEts-l.ES POCRRAS 
01 ONE gomPROCSOR NuguI.5n 1 

.tn PROCESSOR MAXIMA **** 

PROCESSOR NUMBER ONE
 

MAXIMUM INPUT RITRATE OF 700. OCCURRED AT TIME 


MAXIMIV4U OUTPUT bITRATE OF 0. OCCURkD AT TIME 


MAXIMUM IUMB LR OF BUSY CYCLES. 1720. CPS, OCCURRED 


PROCESSOR NUMBER TRhO 

MAXIMUM ii;UT NITRATE OF 5OO. OCCURRED AT TIME 

P4AX1MUM OUTPUT bITRMTE Of: 1200. OCCURki&D AT TIAE 

MA#IMLJM NUABER OF BUSY CYCLES. 1b40, CPS, 'OCCURRED 

PROCCSbOR NktJriER TtREE 

MAXIMUM IJPUT 6ITRATE OF 0. OCCURRED AT TIK~E 

MAXt-KUA OU[PJ *TRATE OF ZOO0. OCCUFtEO, AT TIME 

I4AAIU NUNU ftl OF BUSY CYCLES, 100, CPS, OCCURRED 

Figiure 6-9 Sample Frocessor MaAia Pritout 
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Ott AtRtA,UCtfl 01,E 

E A RO.G le 

OLE AWlAflG"CTGt SHE 

6.
 

0.
 

AT TIME 5.
 

S.
 

S. 

AT TIME 5. 

0. 

5
 

AT TIME 3. 

http:NuguI.5n
http:OYEts-l.ES


pROCEsSOR FLIGHT SUM)MAhY 4* 

PROCESSOR NUMBER ONE 

TIME CPb IN FROM e OUT TO 2 IW FHOM 3 OUT TO 3 
0. 760. 0. 0. 700. 0. 
0. 760. 0. 0. 700. 0.
 
3. jouu. U. U. 1500. 0. 
b. 1720. 1200. 0. I50. 0.
 
15. 1440. 100. 0. 700. 0. 
17. 1140. 0. U. 700. 0. 
19. 7dO. 0. 0. 7O0. 0. 
20. 0. 0. 0. 0. 0.
 
ea. 0. 0. 0. 0. 0.
 
2:4. 0. 0. 0i. 0. 0. 
20. 0. 0. 0. 0. 0. 
a ,0. 0. U. 0. 0. 

PROCESSOR NUMBER TWO 

TINE CPS iN FROM I OUT TO 1 IN FROM 3 OUT TO 3 
0. 0. 0. 0. 0., 0. 
0. 0. U. 0. 0. 0. 

10. 0. 20. 0. 0. 
5. 1540. 0. 120U. 500. 0. 
P., 14lC. 0. 0.~u 500. O,11. ±l.uG. 0. 120. 500. 0. 

1,9. 14U. 0. 0. bOO. 0.
 
L0. 14dO. U. - G. 5O0. 0.
 
22. .10bO,. 0. 0. 0. 0. 
24. 720. 0. 0. 0. 0. 

o. 3o00. 0. 0. 0. 0.
 
2b.. 0. 0. 0. 0. 0.1
 

PROCESSOR HUMBER THREE
 

I iFp cPS IN FROM I O[f TO I IN FR(OM 2 OUT To 2 
U. 60. 0. 700. 0. 0. 
U. 	 uO. 0. 700. 0. 0.,
 
, 100. 0. 1500. 0. 0.
 

5 100. 0. 1500. 0. 500.
 
1i. bO. . 700. 0. 500,
 
17. 60. 0. 700. 0. 500. 
19. bA. 0. 700. 0. 500. 

0. 40. 0. 0. a. bo.
 
e2. 0. 0. 0. 0. 0,
 
e4. 0. 0. 0. 0. 0.
 
?o. 0. 0. 0. 0. d.
 
eb. 0. 0. 0. 0. 0.
 

Yiegir 6-10 Sample Processor S&mary Prittout 
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6.2 CONFIGURATION RELIABILITY EVALUATION 

In this section the probability of failure, the reliability and the mean time to failure 

I are examined. The, reliability
(MTTF) of the three configurations described in Volume of 

the data transfer network is not considered. The discussion will be limited to the major 

to follow a negative exponential 
processors. The reliability of a component will be assumed 

as a worst case situation after burn-in of the 
distribution, which is generally regarded 

components. This distribution is 
-Z
 

The probability of failure is given by 

Qc(k) 1 P-~) 

with constant failure rate, which 
The negative exponential distribution describes equipment 

usually applies to electronic components after burn-in. 

the product rule for reliability
For a series connection of n pieces of equipment we -have 

and for probability of failures we have 

(k) I - TR (t)= -*tr (I -Q.(M: - (2)c~C) ~~ 
in series the reliability decreases.An more elements are added 

have the following expressions:For a parallel connection of n elements we 

and
 

added in parallel the probability of failure decreases
In this case, as more elements are 

and therefore the reliability increases. 

given by the integral of 
The last quantity is the mean time to failure (WITT). This is 


the reliability:
 

For negative exponential we have 

M. -e & t­
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6.2.1 GE ThALIZED LINKED UNIT PROCESSORS 

system shown in Figure 6-12 , has four computers inThe centraltzed linked unit processor 

parallel. The reliability of the series connection of a processor, memory and I/0 unit is 

given by: 

R(k) 4z _-Q:ci e (5) 

Using the ezpression (4) for a parallel connection of these computers we get
 

and therefore
 

RNC a- . (7) 

Then equation (7)may be expanded using the binomial expansion
Write Xc kv-l-tX 
to give: ij A 

k~o 

The 1M4F can he calculated quite readily from equation (8)to get: 

Al-t 

2tI 
-5 

The four-fold redundancy has -enhanced the MTTF by a factor of = 2, since for the single 

processor:
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6.2.2 CNTRALIZED MILTIPROCESSOR SYSTEM
 

In this system the processors are four-fold redundant and are connected via switching units 

to the memories and 1/0 units, each of which are also four-fold redundant. Thus the redundan­

cy is at the module rather than the computer level. The switches are ignored in the 

reliability calculations. This assumpticn is probably less valid than in the preceding case 

since there are now three switching elements in series. These elements will have to be 

considered when a detailed trade off is performed on the competing systems. 

The reliability can be written as a product of the reliabilities of the series connection of 

far-fold redundant procbeasors, memories and I/ units. 

-j Z(y IAPt5 F4y 'AktZ Zx4 f x 
= / k - (10) 

* :4 k)- .(1 
The HiTF Is given by 

= (L4t t e 

14' Vh=/-t'iW~l 

6.3.3 DEOE NT ZED LI ITPPRD OF 

This system resembles the centralized linked unit processors. The reliability of the 

system will be calculated for n processors. All processors are assumed identical, with 

each computer connected in four-fold redundancy. SettingA ivee: 

p0 - F- ( - t)4J " 

(12) 

( r--54• j<. f .. .­
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--

The HMTF in given by: 

j, a 

•~; / 548­



6.2.4 COMPARISON OF THE RELIABILITIES 

(a) The configurations are first compared for the special case in which the processor, mem­

ory and I/O units all have the same HTF. For the centralized systems let k1 4:'k->=, and 
for the decentralized case 'X&,NW), The centralized systems are assumed to uselet . 
the same computers (approximately), whereas the decentralized system will probably use 

,less complex equipment. The decentralized system will be assumed to consist of three 
computers for this comparison. 

For the centralized unit processor case:
 

Z5_____ 25 (14) 

/ZO
), + N' 

For the centralized multiprocessor system: 

C) 
For the decentralized case: L/
 

MT I1...~ A La­(16) LE 

The ratio of the =lp's for the centralized systems is 

M, = .z , _ ;7 "(17)
 

Mr ZS134A
 

so the multiprocessor configuration has am rmTF about 1.7 times that of the centralized 

unit processor system. The ratio 

NH7 l. 3X . A (is) 

indicates that for ),,3Atthe MTF of the decentralized system is longer than that of the 

centralized multiprocessor system.
 

(b) Another limiting case is that in which one component amongst processor, memoryband 

I/0 unit is far less reliable than the other tqo. This is most easily achieved by going 

back to the expressions for the total reliability for each configuration. For the 
centralized systems let stand for the largest time constant and in the decentralized 

system donotathis by A2. Equation (8) becoes 

4 .l(19) 
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and 

andN. = U(20) 

Equation (19) becomes 

Which leads to 

(22)
M t i v7 

system, by equation (12) using a three processor system,Similarly for the decentralized 

R;~LI(I~ctk~u(23) 

Iu A)LA-L3 (24) 

The two centralized systems have approximately the same MTTF, which corresponds to the MTTF 

of the -wakest link. The four-fold r ndnne has doubled the MTTF of this element. 

the I4TTF of the system is only 1.2 times
For the decentralized system with three computers 

that of itd weakest unit. 
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6.3 	 CONFIGURATION MECHANIZATIONS AND REDUNDANCY CRITERIA 

In generating a DMS configuration for the space shuttle booster two primary
 

criteria must be met: 

1. 	The configuration must be capable of performing the required
 

computational tasks.
 

2. 	Mission success must be capable of being achieved after 2 failures 

and crew safety preserved after 3 failures, i.e., a Fail Operational 

Fail Operational - Fail Safe (FOFOFS) redundancy criteria. 

Required computational capability can be expressed in terms of memory size, 

memory speed, and processor speed. The most difficult requirement to in­

corporate in the configuration is the redundancy requirement. For the
 

purpose of discussing some of the implications of the redundancy requirement 

a configuration as shown in Figure 6-11 will be considered and some of the 

short-comings of this configuration discussed. This example configuration 

consists of four linked unit computers tied through switches to four data 

buses with all computers functioning. All switches are open except those in­

dicated by an X. If there is a failure the failed computer will be switched 

from its associated data bus and one of the other operating computers required 

to supply the failed computers data bus in addition to its own. 

To mechanize such a configuration a method of recognizing failures must be
 

incorporated. Methods of failure detection can be catagorized as:
 

1. 	 Each computer is capable of determining if a failure has occurred 

within itself and generating an output signal indicating a failure. 

2. 	The computers are capable of determining if any of the other computers
 

have failed and generating a special output signal indicating which
 

other computer or computers has failed.
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A 

Flgure 6-11 Example Config ation 
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3. 	Hardware external to the computers monitor the computers operation
 

and determine if and which computers have failed.
 

4. 	 A combination of the above methods,. 

Before the method of failure detection and method of'implementation can 

be determined the required response time to a failure must be known. There 

are some failures which must be recognized immediately and other failures 

which would have minimal influence upon the mission operation if they 

were not immediately recognized. A failure which causes premature issuance 

of the booster/orbiter separation command is an example of a failure which 

must be recognized and corrected immediately. 

There are several methods available for mechanizing the first type of failure 

detection method where each computer is capable of recognizing a failure 

within itself. The method which is most straight forward and'provides the 

highest confidence in the detection of all failures is a dual redundant 

configuration for each computer tiere a failure is indicated whenever a 

difference occurs in the outputs of the redundant computers. It is possible. 

to reduce the amount of hardware required of a dual redundant mechanization 

by replacing some functions with simpler error detecting devices. This would 

include such items as the addition of parity to the memory system and the 

mechanization of error detecting algorithms in the processor and I/0 units.
 

Another method commonly employed is to use software selftest routines in
 

the computer. In software selftest all computer outputs are calculated and
 

the 	 selftest is performed. Selftest involves executing a known program with
 

known input parameters where the program has been written so that a failure
 

in any computer device will generate a selftest error. Upon successful 

completion of selftest the previously calculated computer outputs are issued.
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In order to test the entire computer including the I/0 section and'
 

to guard thb system against a runaway computer several safeguards would 

have to be incorporated. During selftest the I/O equipment would have to 

be disconnebted,from the data bus and connected to itself, i.e.; the 

computer output connected to the computer input. This-would allow the 

selftest program to test the computer I/0 section. The computer would 

also be provided with a special register for protection against a run­

away computer. 'This register is loaded with a number at each successful 

completion of the selftest program. In between loadings the register 

is counted down and a computer failed indication given if the register ever 

reaches zerb. Thus if selftest is not completed at its planned rate a 

failure indication is given. Each of the above proposed schemes have 

certain disadvantages which are: 

1. 	Dual Redundant This method of mechanization is the m6st complex
 

thus having the highest cost, lowest reliability, greatest weight,­

and greatest power consumption. The occurrence of a comparison'
 

logic failure disabling the issuance of fault indications followed
 

b a computer failure could produce bad data on the data bus.
 

2. 	B ilt in Test Equipment In this method a failure in the built in
 

test 	equipment followed by a computer failure could produce bad 

data 	on the data bus.
 

3. Software Self Test This method is incapable of recognizing all
 

types of failures. An intermittent error occuting during the out­

put .generation portion of the program would possibly not be detected 

with selftest. It is also generally impossible to design a selftest 

program that is capable of detecting all possible comluter failures
 

and a 	program which would detect the majority of failures would 

require a considerable portion of the total computer speed capacity.
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Em loyment of the failure detection method where each computer is tested 

by the other computers can be rejected rather rapidly as a candidate 

foy the space shuttle booster application. If a single computer is 

giTen the capability of shutting down another ,then a failure due to a bad 

cofputer. could possibly cause the shut down of a good computer. To guard 

against this possibility more than one functioning comwter would have to 

vote against a failed computer before the failed computer could be disabled. 

To achieve the voting with software in the computers would require excessive 

q4ntities of data transferred from one computer to another and would generate 

nurous insolvable timing problems if failures must be detected rapidly. 

Th? external logic required to achieve voting between computers is simple and 

hs. immediate response. Systems employing such logic are cikssified under 

th? third category described below. 

One of the most common techniques considered for redundancy applications is
 

majority voting. A majority voter is a device which receives inputs from
 

multiple sources and generates an output equal to the value found on the
 

mafority of the inputs. One of the requirements imposed by simple majority 

vo~ing is that the outputs of the computers voted upon must be identical which 

me ns that the computers must be synchronized. For the space shuttle booster 

ap lication, computational capabilities, must be preserved after three fail­

rs have occurred. In the most straight forward mechanization of majority 

voting for this application,seven computers would be required to guarantee 

a rjority of correct computer outputs after three failures. If an assumption 

is made concerning the way in which failures occur this number can be reduced 

to five. The assumption made is that identical failures wifl not occur
 

siiultaneously. If this assumption can be made then several mechanizations
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using five computers are available for achieving an operating system
 

after ihree failures. The simplest mechanization would have ail five 

comput'rs operating but only three would have their outputs connected 

to a mIJority voter with the majority voter output routed to all four
 

a failure occurred in any one of the three computers
data s systems. If 


drivinf the majority voter it would be removed from the majority voter
 

input jnd replaced by one of the computers whose output was not being used.
 

Failur would be assumed with two computers voting against the third.
 

After The second failure of a computer into the majority voter system the
 

remaining unconnected computer would be substituted for the second failed
 

After the third failure no further substitutions are made.,
computr. 


The .mqfority voter would have to be quadruply -mechanized. This system 

will flt-be acceptable if a strict interpretation of the redundancy require­

used because it does not allow for the occurrunce of Identical­ment 

failures. From a reliability standpoint, the, probabilitysimu.2jneous 

multiple failures will be much much less than the probabilityof si ,taneous 

of no simultantous multiple failures. Simultaneous is-defined to mean 

durinj the same computer cycle time. 

The cvdidate -redundancy configurations are then defined as:
 

1, Dual redundant configuration - this is the system where each compuer
 

a computerindicates its own failure by having dual redundant 

mechanization. 

2, Built in test equipment configuration - this is the same -type of 

system as the dual redundant configuration except the second computer
 

is replaced by parity and built in test equipment wherever possible.
 

3, Majority voting system - this is the last system described where
 

majority voters are mechanized to distinguish a failure.
 



The equipment required to mechanize a system which will survive 3 

failures is either 4 dual redundant systems, 4 built in test equip­

ment (BITE) systems, or a majority voting system with 5 computers. 

To mechanize each system requires 

Dual Redundant 8 computers + failure switching 

BITE 4 computers + 4 BITE units + failure switching 

Voting 5 computers + voters + failure switching 

The amount of hardware required to mechanize failure switching and voters 

is so very much smaller than a computer that it can be neglected in comparing 

the systems. Basing the comparison on the amount of hardware required it is 

obvious that the voting system ranks above the dual redundant system. The 

tradeoff must then be made between the voting system and the BITE system. 

The tradeoff point where the two systems are equivalent from the standpoint
 

of the amount of hardware is where each BITE unit is equivalent to j of a
 

computer. Using LSI to mechanized the computer central processor units
 

(CPU) and I/0 sections, the memory will represent the major portion of the 

cdmputer. BITE for memory failure detection consists of the addition of 

parity generation and interrogation logic and additional memory bits for each 

memory word to store the parity bits for that word. If 2 parity bits are 

added to each memory word a total of 4 bits in the word must change state 

before an error will be undetected. If the computer word length is 16 bits 

(it is assumed that this is a minimum value to be considered for the space shuttle
 

booster),the addition of two parity bits increases the memory size by 12.5%.
 

This is half of the 25% increase which is the tradeoff point between the BITE
 

and voting mechanizations. Since the major portion of the computer is the
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memory, a detailed tradeoff analysis will probably indicate that the BITE 

system requires the least amount of hardware. The tradeoff parameters 

considered 5when comparing the amount of hardware required to mechanize
 

the DMS are weight, reliability, and cost. Making a simplifying assumption 

that the type of hardware required to mechanize the BITE is the same as 

that used to mechanize the basic computer then the tradeoff point of equal
 

cost and weight between the BITE and voting mechanizations is when the BITE
 

is equivalent to -jof a computer. Because of the differences in mechanization
 

this is not the same tradeoff point for reliability. The reliability tradeoff
 

point is determined from the formula 

S ) ] = 5 Pf 1-Pf) +Pf 

where Pf is the probability of failure of a single computer and K the amount 

of hardware required to mechanize the BITE measured as a percent of a full 

computer. Solving the equation for K yields 

K =100IV5-O 

assuming Pf <-- 5/4 then K = 49.5%. Thus the reliability tradeoff point 

occurs when the BITE approaches j of a computer in size. As a result of this 

simplified tradeoff the BITE mechanization is chosen for the comparative 

evaluation study. 

Using this method of failure detection three configurations must be 

mechanized. These are:
 

" centralized linked unit system 

* centralized multiprocessor system 

* decentralized linked unit systems 

In order to mechanize the two centralized configurations the number of computers 

required to perform the Dl computational tasks excluding redundancy requirements 

must be known. Computer capability is measured by three values: memory size, 
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memory speed, and processor speed. Technology constraints place an upper 

bound on memory speed and processor speed. Memory speed must be adequate 

to supply the demands of the I/O equipment and processor. Processor speed 

must be adequate to perform the required computational tasks. Limits on
 

memory and processor speed for a particular computer are due to a com­

bination of hardware limitations and computer design. It is assumed for
 

the space shuttle booster that hardware limitations can be overcome by
 

proper computer design so that a single computer will be capable of per­

forming the non redundant DMS requirements. Hardware limitations on memory 

speed can be overcome by designing memories to operate in a modular fashion 

so that several words can be read and written simultaneously. Processor
 

speed is increased by reducing instruction execution times gnd mechanizing. 

special instructions which have multiple operation capability. Figure 6-12 

is a block diagram of the assumed Centralized linked unit system. It is 

composed of four identical computers each monitored by its own BITE. The,
 

'output of each computer is connected to -aswitch with each switch connected'
 

to a different data bus. With all-computers operating each data bus will
 

be supplied from a different computer. When a computer failsits associated
 

data bus will be supplied from another computer which has not failed. With 

three computer failures all four data bus systems will be supplied from the
 

same computer. All four computers are operating in perfect synchronism with 

parallel to serial conversion for data supplied to the data bus system occur­

ring in the computer I/O equipment. The logic equation for tmechanizing each 

switch is 

0.= A a + B.Fa'Pb + Fb c +C" Fa D- Fa Fb • Fc 

where 0 is the switch output, A,BC, and D the four outputs of the four 

computers,and Fa, Fb ,Fc, and Fd the four BITE outputs of the four computers. 
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of two lines,In the actual mechanization each data bus will consist 

one carrying address, command and synchronization data and the other line 

carrying the data transmitted between systems. If the DMS computers are 

given the task of generating the address line data, a second set of switches 

as shown in Figure 6-12 will have to be included for the address line inter­

face. All four data bus systems interface as inputs to each computer. The 

data and address information on each data bus line will include parity bits. 

Each computer I/0 section will serial to parallel convert all four data 

bus inputs, reject those imputs having parity errors, and majority vote the 

remaining inputs in obtaining the actual computer input. Data flow between 

the computer and data bus system will primarily enter and exit the DMS througi 

memory cycle steals initiated by the I/0 section. Special high pri6rity data 

will be transferred directly from the I/0 section to the CPU as an interrupt. 

Before'a description of the centralized multiprocessor can be described
 

the elements of a computer must be described in more detail. Figure 6-13
 

is a detailed block diagram of a memory system. It is assumed that the 

memory is a destructive readout (DRO) device. A clock controls the basic 

memory cycling of reading a word out of memory into a data register and then 

writing the contents of the data register into memory in a cyclic fashion. 

The contents of an address register determines which memory word is read 

from and written into. To read datathe contents of the data register is read 

after the memory read cycle. To write data into memorythe data register 

is filled with the data to be written between the data read cycle and data 

write cycle. The memory system used in the space shuttle booster must 

communicate with both the processor and I/0 computer sections. Each request 

given to the memory must include the address of the desired memory word and 

a read or write request. In addition if a write is requested input data to 

the memory must also be provided. The memory contains logic which looks 

at the read and write request lines from both the processor and I/0 inputs. 
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This logic resolves a conflict if two requests are received simultaneously 

and sends out switching commands to route either the processor or I/0 

data into the memory. Upon completing the requested operation the memory 

issues a completion signal to the proper unit. 

Figure6-14 is a block diagram of a typical CPU. The CPU 

performs the process of reading an instruction and executing it. Starting 

this process with an instruction in the instruction register the CPU 

performs the following sequence: 

1. 	 The control logic interprets the instruction. Instructions can be 

classified into one of three major groups: the instruction requires 

data 	from memory, the instruction requires data be sent to memory,
 

or the instruction requires no memory function. If data is required 

from memory a command is sent from the control logic to toggle the 

switch on the memory data lines to the number register and an
 

address is generated within the control logic which specifies the 

memory location to be read. A read request is then issued to the
 

memory. For any instruction the control logic determines if an 

arithmetic logic function is to be performed and transmits the 

information to the arithmetic logic. If the instruction requires 

data to be written in memory,the address is formed from the instruct­

ion, index and/or base registers and a write command issued to the
 

memory. A transfer instruction takes the address from the instruction 

as modified by index and/or base registers and copies it into the 

instruction register. 
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2. 	 With the completion of,the instruction execution the control logic 

checks the interrupt lines. If the interrupts are enabled and an 

interrupt exists the control logic stores the instruction counter in 

a special register or in some computer designs goes through a memory 

store sequence storing the instruction register into a special 

memory location. The control logic then forces the instruction 

register to a value dependent upon which interrupt has occurred. 

The control logic also disables the interrupts either temporarily 

or until an enable interrupt instruction is executed dependent upon 

the computer mechanization. 

3. 	 The control logic causes the output lines from the memory to
 

be switched to the instruction registers, causes the instruction
 

counter to be fed to the memory address lines and issues a read
 

request to the memory. Upon receiving a completion signal from
 

the memory the new instruction has been placed in the instruction
 

register and the process is repeated starting with step 1.
 

Figure6-15 is a block diagram of a typical Input/Output mechanization. 

Data enters the I/0 section from four redundant data bus address lines 

and four redundant data bus data lines. The sequence .of an input or output 

operation starts with serial digital data appearing on the address lines.
 

This data is accumulated in four registers, one for each data bus address 

line and the parity tested with those inputs showing bad parity rejected. 

The remaining inputs are majority voted and the majority results transferred 

to a 	register from the parity verification and synchronization circuitry.
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A portion of the contents of this register is made available to the 

control logic and is interpreted as a command by the control logic. 

One of four possible interpretations is made by the control logic: 

1) the next data to be received over the data bus data lines is to be 

stored in the computer memory, 2) data is to be read from memory and 

transferred to the data bus data lines, 3) the next data to be received 

over the data bus data lines is to be transferred to the computer 

interrupt lines, 4) the next data on the data bus lines requires no 

action from the computer. If the next data from the data bus lines is to 

be written into memory-or interpreted as computer interrupts, the cohtrol 

logic waits until the parity verification and data generation logic signals 

the completion of its reception of data. The parity verification and 

data generation logic receives its inputs from four redundant data bus data 

lines rejecting that data with bad parity and majority voting,the rest 

generating a parallel output to a data register. Upon filling the data 

register it issues a completion signal to the control logic. If this is 

input data to the computer it will be either stored in memory or directed 

to the processor as interrupts. To read the data into memory a portion of 

the register receiving inputs from the data address lines is used as the 

memory address and a write command issued to the memory. An interrogate 

interrupt signal is issued to the special code recognition logic if the data 

are interrupts. The data register will be written into memory. If the inpul 

data are interrupts the special code recognition logic will extract the 

interrupt bits from the data register and transmit them to the *:OPU. If the 

control logic determines that the computer is to supply data to the data bus 

it releases the address from the parity verification and sync logic output 

register to the memory address lines and issues a read command to memory. 

The output data from memory is read into a register. 
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The control logic upon receiving a completion signal from the memory issues
 

a command to the parity generation logic which shifts the output register
 

a bit at a time into the parity generation circuitry causing parity to 

be generated and a serial output directed to the data bus data lines. 

Figure6-16.is a block diagram of the centralized multiprocessor system.
 

In this system the I/0 units and central processor units are capable of
 

operating into and out of any memory. In normal operation with no failures 

each memory will be connected to a different CPU and a different I/0 

section making the operation appear as four independent computers each
 

doing the same operation in synchronism. In the event of a failure the 

output of A failed section will be removed from the system by the switching 

.networks shown and its outputs replaced by an identical operating section. 

For example if a CPU fails the memory normally fed by the failed CPU 

will be fed by one of the other operating CPU's, This means that the other 

selected CPU will feed twomemory's simultaneously. Since the computers are 

synchronized the memory will be fed the identical data that it would have 

normally received from its own CPU had it not failed. This keeps the 

memory coninously updated and available as a replacement if some other 

memory fails. The switches shown are the same used in the centralized 

linked unit system. A switch must be mechanized on each line carrying 

data from a computer section including each line of a,parallel data transfer.
 

The advantage of this mechanization is a possible large increase in reliability 

over the centralized linked unit system. If P 1 0n' and P are the failure 

probabilities of the I/O section, memory, and CPU respectively (and it is 

assumed thkt -teswitches have very low failure probabiliities in comparison 

to the computer section failure probabilities )then the probability of total 
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system failure for the centralized linked unit system to 

= +)+Pf (PI +P +Pc0 

and for the centralized multiprocessor system
 

Pf =P 4 + P 4 +PC 

If the failure probability for each section is the same, i.e., PI = Pm 

PC = P then the centralized linked unit system failure probability is 

Pf = 81P 4 

and the centralized multiprocessor system failure probbility is
 

Pf = 3P4 

This shows that under the condition of identical failure rates on the memory,
 

I/0 sectibn and CPU, the centralized multiprocessor system will be 27 times 

as reliable as the centralized linked unit system.- If-the failure pro­

bability for one of the sections (e.g., the memory) is much greater than 

the other two-failure probabilities the reliability of the two systems wifl 

be nearly -identical.
 

Figure 6-17 is a block diagram of one section o f a decentralized linked unit 

processor. Each unit is similar to a centralized linked utit systems, the 

difference being in the size of the computer, those used in the decentralized
 

linked unit system are much smaller, and in an addition a direct interface 

between the computer and subsystem equipment. These computer units are 

located ini the vicinity of subsystems equipments allowing direct electrical 

connection with those subsystems. The number of units is dependent upon
 

the size of the computer selected and total' computational task. The various 

units -will communicate with each other through the data bus system. One 

of the results of this mechanization is an overall reduction in data bus 

data rate requirements.
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