Development of

Atmospheric Gust Criteria for

Supersonic Inlet Design

By Frank W. Barry

DECEMBER 1968

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of NASA.

A Final Report for Contract NAS 2-4515 by
HAMILTON STANDARD Division of United Aircraft Corporation Windsor Locks, Connecticut
for
AMES RESEARCH CENTER
National Aeronautics and Space Administration

DEVELOPMENT OF ATMOSPHERIC GUST CRITERIA

FOR SUPERSONIC INLET DESIGN

By Frank W. Barry

December 1968

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Issued by Originator as HSER 5195

Prepared under Contract No. NAS2-4515 by
HAMILTON STANDARD
Division of United Aircraft Corporation
Windsor Locks, Connecticut
for
AMES RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Abstract

A method is developed for relating transient tolerances in inlet throat Mach number and shock position to the frequency of unstarts of a supersonic inlet due to atmospheric disturbances. Data on high-altitude atmospheric turbulence is collected and evaluated. A general linear analytical model is developed to compute changes in inlet throat Mach number and shock position. The relation of inlet transient tolerances to propulsion system performance is presented. A stepwise procedure for relating frequency of inlet unstarts to transient tolerances is presented and applied to a representative example.

CONTENTS

Page
SUMMARY 1
INTRODUCTION 2
SYMBOLS 3
ATMOSPHERIC TURBULENCE DATA 8
Probability of Atmospheric Turbulence 8
Discrete Gust Model 9
Power Spectral Density 10
Atmospheric Temperature Gradients 15
HICAT Program 16
Summary 17
ANALYTICAL INLET MODEL 18
Analytical Model of Local Conditions Ahead of Inlet 19
Analytical Model of Flow at Inlet Throat 21
Analytical Models of Normal Shock Position 24
First analytical model of shock position 27
Second analytical model of shock position 28
Third analytical model of shock position 29
Fourth analytical model of shock position 29
Comparison of analytical models of shock position 30
Analytical Model of Propulsion System Performance 35
FREQUENCY OF INLET UNSTARTS 39
Power Spectrum of Output Disturbances 40
Exceedance Statistics 44
STEPWISE PROCEDURE FOR CALCULATING FREQUENCY OF INLET UNSTARTS 46
APPLICATION OF PROCEDURE TO REPRESENTATIVE INLET 49
CONCLUDING REMARKS 53
APPENDIXES
A - FIRST ANALYTICAL MODEL OF SHOCK POSITION 56
B - Sicicond ANALYTICAL MODEL OF SHOCK POSITION 58
C - THIRD ANALYTICAL MODEL OF SHOCK POSITION 62
D - FOURTH ANALYTICAL MODEL OF SHOCK POSITION 65
E - DIGITAL PROGRAM TO DERIVE EQUATION FOR SQUARE OF FREQUENCY-RESPONSE FUNCTION 71
F - DIGITAL PROGRAM TO EVALUATE POWER SPECTRAL DENSITY PARAMETERS 81
G - DIGITAL PROGRAM TO EVALUATE EXCEEDANCE PARAMETERS 84
REFERENCES 87
Page
TABLES
I - Probability of Atmospheric Turbulence 92
II - Theoretical Power Spectral Density of Atmospheric Turbulence 93
III - Atmospheric Turbulence Models 94
IV - Equations for Changes in Flow Parameters Downstream of Normal Shock 96
V - Equations for Steady-State Normal Shock Displacement 97
VI - Equations for Square of Transfer Function 98
FIGURES
1 - Probability of Atmospheric Turbulence 99
2 - Representations of Atmospheric Turbulence 100
3 - Cumulative Frequency of Exceeding Derived Gust Mach Number 101
4 - Derived Gust Mach Numbers in Specifications 102
5 - Typical Power Spectral Density Data for Vertical Gust Velocity 103
6 - Normalized Longitudinal Spectra 104
7 - Normalized Vertical Spectra 105
8 - Integrals of Longitudinal Spectra 106
9 - Integrals of Vertical Spectra 107
10 - Probability of Primary Turbulence, P_{1} 108
11 - Probability of Secondary Turbulence, P_{2} 109
12 - Amplitude of Primary Turbulence, b_{1} 110
13 - Amplitude of Secondary Turbulence, b2 111
14 - Exceedance Models 112
15 - Horizontal Atmospheric Temperature Changes 113
16 - Rate of Change of Flight Mach Number Versus Amplitude 114
17 - Rate of Change of Angle of Attack Versus Amplitude 115
18 - Schematic of Analytical Inlet Model 116
19 - Factors K_{u} and K_{W} 117
$20-$ Factor $f_{\text {th }}$ in Equation for $\Delta \mathrm{M}_{\text {th }}$ 118
21 - Change of Relative Airflow with Mach Number 119
22 - Effect of Inlet Angle of Attack on Inlet Unstart 120
23 - Sketch of Diffuser Illustrating Nomenclature for Analytical Model of Normal Shock Position 121
24 - Representative Inlet Area Distribution 122
25 - Frequency Response of Normal Shock to Diffuser Exit Mach Number 123
26 - Frequency Response of Normal Shock to Mach Number Upistream of Shock 124
Page
27 - Frequency Response of Normal Shock to Area at Shock 125
28 - Frequency Response of Normal Shock to Upstream Total Pressure 126
29 - Frequency Response of Normal Shock to Upstream Total Temperature 127
30 - Frequency Response of Diffuser Exit Static Pressure to Diffuser Exit Mach Number 128
31 - Inlet Performance Characteristics 129
32 - Engine Performance Characteristics 130
33 - Performance Penalties Due to Throat Mach Number Tolerance 131
34 - Performance Penalties Due to Shock Position Tolerance 132
35 - Block Diagram of Inlet and Control 133
36 - Ratio $\emptyset_{\mathrm{M}_{\mathrm{th}}} / \varnothing_{\mathrm{M}_{\mathrm{L}}}$ for Single Integral Throat Mach Control 134
37 - Ratio $\phi_{\mathrm{M}_{\mathrm{th}}} / \phi_{\mathrm{M}_{\mathrm{L}}}$ for Throat Mach Control 135
38 - Ratio $\phi_{\mathrm{S}} / \phi \mathrm{ML}_{\mathrm{L}}$ for Shock Position 136
39 - Block Diagram of Representative Inlet for $M_{0}=2.7$ at 60000 ft Altitude 137
40 - Normalized Power Spectra of Free-Stream Longitudinal Turbulence and of Throat Mach Number Change Due to Longitudinal Turbulence 138
41 - Normalized Shock-Position Power Spectrum Due to Longitudinal Turbulence 139
42- Effect of Throat Mach Number Transient Tolerance on Frequency of Inlet Unstarts Due to Longitudinal Turbulence 140
43 - Effect of Shock Position Transient Tolerance on Frequency of Inlet Unstarts Due to Longitudinal Turbulence 141
44 - Effect of Throat Mach Number Transient Tolerance on
Frequency of Inlet Unstarts 142
45 - Effect of Shock Position Transient Tolerance on Frequency of Inlet Unstarts 143
46 - Effect of Combined Transient Range Penalty on Frequency of Inlet Unstarts 144
47 - Listing of Digital Program to Derive Equation for Square of Frequency Response Function 145
48 - Listing of Input Cards for Four Sample Cases 171
49 - Output of Program to Derive Equation for Square of Frequency Response Function for Four Sample Cases 173
50 - Listing of Digital Program to Evaluate Power Spectral Density Parameters 185

Page

51 - Listing of Function $\operatorname{PSD}(\mathrm{W}, \mathrm{J})$ and Input Cards for Two Sample Cases 187
52 - Output of Program to Evaluate Power Spectral Density Parameters for Two Sample Cases 188
53 - Listing of Digital Program to Compute Exceedance Parameters 191
54 - Listing of Input Cards for Sample Cases 194
55 - Output of Program to Compute Exceedance Parameters for
Four Sample Cases 195

DEVELOPMENT OF ATMOSPHERIC GUST CRITERIA

FOR SUPERSONIC INLET DESIGN
by Frank W. Barry
Hamilton Standard

SUMMARY

A theoretical method is presented for relating the frequency of unstarts of a supersonic inlet, due to atmospheric gusts, to transient tolerances in inlet throat Mach number and normal shock position. The purpose of this study was to develop a method for relating frequency of inlet unstarts to propulsion-system performance losses for aircraft flying at high Mach numbers where inlets with internal contraction are used. Published test data on atmospheric turbulence at altitudes over 30000 ft are collected and evaluated, general linearized analytical models for changes in throat Mach number and shock position are developed, a new method for relating propulsion system performance to inlet tolerances is presented, and a stepwise procedure for relating frequency of inlet unstarts to transient performance penalties is presented and applied to a representative example. The most significant conclusions are that flight data are not adequate yet to provide a reliable statistical model of turbulence at altitudes above about 60000 ft , that ambient temperature changes which occur over short distances are as significant in causing an inlet unstart as atmospheric turbulence, and that significant performance penalties may be required to keep the frequency of inlet unstarts to an acceptable level.

INTRODUCTION

The role of atmospheric gust criteria in the design of aircraft structures has been recognized for many years. Procedures have been established in design specifications which use experience and measurements to specify maximum single atmospheric gust and cyclic (fatigue) gust environments. Recently (e. g. , see ref. 1) similar procedures were applied to supersonic inlets. It was shown that atmospheric gusts could cause undesirable unstarts of internal-contraction inlets operating at supersonic speeds. The frequency of unstarts was related to the propulsion system performance.

Hamilton Standard contracted with the Ames Research Center of the National Aeronautics and Space Administration to develop atmospheric gust criteria for supersonic inlet design, that is, to develop a method for relating frequency of inlet unstarts due to atmospheric turbulence to transient tolerances in inlet throat Mach number and shock position. With this method the designer can select the transient inlet control tolerances required for a preselected interval between inlet unstarts. Reference 2 is the final report on the classified task of the contract. Theoretical predictions of the analytical inlet models developed in this report are compared in ref. 2 to experimental data supplied by NASA. The experimental data include steady-state and transient changes in shock position due to exit airflow disturbances and to upstream disturbances induced by an airfoil ahead of the inlet.

This report is the final report on the unclassified tasks of the contract. The primary objective of the study was to develop a procedure for relating the frequency of inlet unstarts, due to atmospheric turbulence (gusts), to transient tolerances in inlet throat Mach number and normal shock position. The procedure for estimating frequency of unstarts is summarized in ten steps. Secondary tasks necessary to complete development of the procedure included compilation and discussion of data on high-altitude atmospheric turbulence; development of several general models for changes in inlet throat Mach number and shock position due to changes in flight and ambient atmospheric conditions, inlet geometry, and exit corrected airflow; development of relations between changes in propulsion system performance and changes in inlet and engine operating conditions; writing of several digital computer programs; and demonstration of the developed procedure by applying it to a representative inlet.

Readers who are interested only in predicting the frequency of inlet unstarts may turn directly to the section STEPWISE PROCEDURE FOR CALCULATING FREQUENCY OF INLET UNSTARTS.

A

A
a
b
b_{1}, b_{2}, b_{3}

C
C
C
C_{D}
$C_{d}, C_{d}{ }^{\prime}$
C_{ij}
D
e
F
F_{n}
f
$\mathrm{f}_{\text {th }}$

G
g

H
duct cross-sectional area, ft^{2}
ratio of rms amplitude of output disturbance to rms amplitude of free-stream disturbance (see equation (54))
speed of sound, $\mathrm{ft} / \mathrm{sec}$
rms amplitude of turbulence
rms amplitude of primary, secondary, and tertiary turbulence (see Table III and figs. 12 and 13)
constant in case 6 spectra (see Table II)
constant
mean wing chord in equation (1), ft
drag coefficient
duct pressure loss coefficients (see equations (44) and (45))
functions of M_{1} in Table IV, $i=1$ to $7, j=4$ to 6
drag, lb
2.718 .., base of natural logarithms
thrust, lb
engine net thrust, 1 b
frequency, Hertz, $\omega / 2 \pi$
function of $\mathrm{M}_{\text {th }}$ (see fig. 20)
number of times disturbance crosses 0 while increasing per unit distance
standard acceleration of gravity, $\mathrm{ft} / \mathrm{sec}^{2}$
transfer function, frequency-response function
i
$K_{A_{1}}, K_{M_{i}}, K_{M_{1}}$,
$\mathrm{K}_{\mathrm{M}_{2}}, \mathrm{~K}_{\mathrm{w}_{\mathrm{ci}}}$
K_{u}, K_{v}, K_{w} K_{1} to K_{11}

L

L

M
m

N
$N_{s}, N_{t h}, N_{0}$
n

P

P
$\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$
\mathbf{P}_{R}
$\mathrm{p}(\sigma)$

R

S

S
$\sqrt{-1}$
coefficients defined by equations (A6), (B20), (A5), (A3), and (A4) respectively
coefficients in equation (13) (see fig. 19)
coefficients defined by equations (D16) to (D26), also K_{1} and K_{2} are coefficients in fig 39.
duct length (see fig. 23), ft
scale of turbulence, ft
length of Helmholtz volume (see fig. 23), ft

Mach number
mass stored in volume (see fig. 23), lb
number of times disturbance amplitude X is exceeded per unit time
number of times disturbance crosses 0 while increasing per unit time, GV
parameter in Taylor-Bullen spectra (see Table II)
absolute pressure, psf
probability of atmospheric turbulence (see Table I and fig. 1)
probability of primary, secondary, and tertiary turbulence (see Table III and figs. 10 and 11)
total pressure recovery factor
probability density of σ
gas constant, $\mathrm{ft}-\mathrm{lb} / \mathrm{lb}-{ }^{\circ} \mathrm{R}$
Laplace variable,/sec
specific entropy, $\mathrm{ft}-\mathrm{lb} / \mathrm{lb}-{ }^{\circ} \mathrm{R}$
absolute temperature, ${ }^{\circ} \mathrm{R}$ thrust specific fuel consumption, $\mathrm{w}_{\mathrm{f}} / \mathrm{F}, / \mathrm{hr}$ time, sec
longitudinal velocity, positive downstream, fps derived equivalent vertical gust velocity in equation (1), fps shock velocity, positive downstream, fps
longitudinal, lateral, and vertical components of free-stream gust, true airspeed, fps
flight velocity, fps volume of duct downstream of shock (see fig. 23), ft^{3}
relative airflow, ratio of airflow rate to airflow rate through reference area, e.g. A_{ℓ}, at flight velocity and free-stream density, $w / A \ell V \rho_{0}$
airflow rate, $\mathrm{lb} / \mathrm{sec}$
corrected airflow rate, $\mathrm{lb} / \mathrm{sec}$
engine fuel flow rate, $\mathrm{lb} / \mathrm{hr}$
amplitude of disturbance
distance along duct, positive downstream, ft
distance from beginning of gust in equation (1), ft
normal shock station, positive downstream, ft
angle of attack, deg
parameter in equations (5) to (9)
angle of sideslip, deg
change in quantity
angle between lower surface of wing and free stream in fig. 19, deg ramp or cone half angle, deg
parameter defined by equation (7)
lip angle, rad
shock-wave angle, rad
wavelength, ft.
density, $\mathrm{lb} / \mathrm{ft}^{3}$
complete rms amplitude
truncated rms amplitude
time constants defined by equations (B16), (B15), (A1), (B19), and (B14), sec
duct dead time, sec
time constant defined by equation (B13) or (D32), sec
time constant defined by equation (C13) or (D33), sec
coefficients defined in Appendices B, C and D
power spectral density
spatial frequency, rad/ft
cutoff spatial frequency, $\mathrm{rad} / \mathrm{ft}$
frequency, rad/sec, $2 \pi \mathrm{f}$
cutoff frequency, rad/sec
bleed spillage
bypass spillage

D

DE
d

EXT
e
H
IN
i
L
ℓ
s
t
th
UN
u, v, w
z

0

1
2

1 to 11

27
derived from acceleration measurements, also drag in C_{D} derived from acceleration measurements, equivalent airspeed duct volume (see fig. 23), also see C_{d} and $\mathrm{C}_{\mathrm{d}}{ }^{\prime}$ on page 3 external spillage
engine face
Helmholtz volume (see fig. 23)
installed
diffuser exit (see fig. 23)
local conditions ahead of inlet
inlet lip
shock
total or stagnation
throat
uninstalled
longitudinal, lateral and vertical components
downstream end of Helmholtz volume (see fig. 23)
atmospheric ambient, flight
fixed station just upstream of normal shock (see fig. 23)
fixed station just downstream of normal shock (see fig. 23)
subscripts denoting different members of a group, otherwise no specific significance
static pressure at exit (see fig. 24)

ATMOSPHERIC TURBULENCE DATA

The objectives of this section are to summarize and evaluate available data on highaltitude atmospheric turbulence. Over 280 references were located with the help of Scientific and Technical Aerospace Reports, International Aerospace Abstracts, Technical Abstract Bulletin Indexes, U.S. Government Research and Development Reports Indexes and refs. $3,4,5$, and 6 . These references exclude those concerned primarily with meteorological aspects of turbulence. For the purposes of this study, only atmospheric turbulence data for altitudes above $30000 \mathrm{ft}(9.14 \mathrm{~km})$ will be reported. The NASA VGH program, initiated in the early 1930's to collect operational experiences of commercial transport aircraft, has accumulated data from nearly 150 million flight miles, of which only 2.5 million were recorded on turbojet transports mostly at the higher altitudes. In more recent years the USAF has conducted a similar program. These data have served as a basis for determining aircraft gust and maneuver loading requirements.

References 7 to 11 are proceedings of five recent conferences on atmospheric turbulence.

Probability Of Atmospheric Turbulence

VGH data records, which are time traces of aircraft velocity, V, vertical acceleration, G, and altitude, H, have been analysed by several organizations to determine the portion of the flight distance (or time) that the aircraft encounters turbulence. Data from refs. 12 to 23 are shown in figure 1 and/or Table I. The following factors should be considered in assessing these data:

1. Size of sample (see Table I). For example, data from ref. 13 should be more reliable than that from ref. 12 because the sample includes nearly three times the flight distance.
2. Turbulence avoidance procedures employed. The probability from ref. 15 is high because the flights were made near thunderstorms. The probabilities from refs. 14 and 18 are high because the HICAT U-2 aircraft deliberately flew into areas of expected turbulence. For ferry flights the probability is about 0.02 . Generally, standard commercial procedures of turbulence avoidance provide the more realistic probabilities.
3. Aircraft speed and size. VGH data from a large high-speed aircraft, such as the B-70 (ref. 17), in long wavelength turbulence would be classified as turbulence whereas that from a small slow aircraft, such as the U-2, could be classified as pilot maneuver. Moreover, Steiner in ref. 11 suggests that some of the B-70 data classified as due to turbulence may be due to other sources,
such as the inlets. These conditions will result in the B-70 data showing a higher probability of turbulence than the U-2 data.
4. Acceleration threshold (minimum acceleration level at which turbulence is recorded). The Russian balloon radiosonde data (ref. 22 in figure 1) shows a high probability because of the relatively low threshold used compared to airplane data from other references. Reference 20 shows a low probability because of the relatively large $(0.2 \mathrm{~g})$ threshold used.
5. Terrain. Probabilities obtained over rough terrain, e.g. Japan (see refs. 12 and 13) and the western United States (ref. 17), are expected to be high compared to probabilities over plains or oceans. Since the probabilities listed in Table I are for flights over various types of terrain, they would generally be higher than would be experienced for flights over oceans only. Variation of probability with location and season over the United States is shown in ref. 21.

Based on the data presented in figure 1 and Table I, the probability of atmospheric turbulence varies from roughly 0.01 to 0.15 above 30000 ft . That the range is quite large at any altitude suggests the difficulty of obtaining meaningful statistical data. However, even the lowest (0.01) probability of encountering turbulence is significant and warrants development of an atmospheric gust criteria for supersonic inlet design.

Discrete Gust Model

The amplitude of the turbulence is as important as the probability of turbulence for selecting the design operating condition of the inlet. An increased amplitude requires that the inlet performance be reduced by increasing the design transient tolerance in order to prevent an unstart. Relations between gust probability and amplitude have been derived from measured VGH data. The gust amplitude is derived from acceleration measurements by assuming that each acceleration peak is produced by a discrete gust of known shape.

The magnitudes of the discrete acceleration peaks from the VGH records may be counted. The results are plotted typically as the logarithm of the cumulative frequency per flight mile against incremental vertical acceleration (e.g., see ref. 19). These acceleration peaks are related linearly to a derived equivalent gust velocity UDE by an equation which includes as parameters the slope of the lift curve, aircraft equivalent airspeed, wing loading and a gust factor which depends on the airplane mass ratio. The equation was derived in ref. 24 by assuming that the acceleration peak is produced by a single vertical discrete gust defined by the equation

$$
\begin{equation*}
\mathrm{w}_{\mathrm{DE}}=\frac{\mathrm{U}_{\mathrm{DE}}}{2}\left(1-\cos \frac{2 \pi \mathrm{X}}{25 \mathrm{C}}\right) \tag{1}
\end{equation*}
$$

where X is the distance from the beginning of the gust ($0 \leq X \leq 25 C$) and C is the mean aircraft wing chord. This gust shape is shown in the top of figure 2. The number of times per flight mile that a given value of vertical acceleration is exceeded is read from VGH records. The value of UDE corresponding to this acceleration is computed and the frequency (times per mile) is plotted against $U_{D E}$. Some high-altitude data from ref. 13 are shown in figure 3. In this figure the derived equivalent gust velocity UDE normally used as the abscissa has been converted to a derived true gust velocity and then to a derived gust Mach number by dividing by the standard altitude speed of sound. This data, like most published data, is concave to the right. Because of the assumptions inherent in the use of a single discrete gust of arbitrary shape, values of derived gust velocity have little relation to the maximum true velocity producing the acceleration peak. For example, the maximum derived gust velocity recorded during the National Severe Storms Project in 1960 was 50 fps but the maximum true vertical gust was 208 fps . The reason for the discrepancy is that the wavelength of the actual gust was larger than 25 chords and therefore it produced a relatively small acceleration. The amplitude of the true gust will differ from that of a derived gust because the wavelength and aircraft response used for the derived gust calculation are not correct.

In spite of the shortcomings of the concept of derived gust velocity, it is still being used for structural design purposes. Specifications for the military (ref. 25), the American SST (ref. 26) and the Anglo-French SST (ref. 27) at cruise speed were converted into terms of derived gust Mach number and are plotted in figure 4. In America, for subsonic aircraft the specification derived equivalent gust velocity at a speed for maximum gust loads is 66 fps up to an altitude of 20000 ft and decreases linearly with altitude above 20000 ft to 38 fps at 50000 ft altitude. For supersonic cruise speeds (ref. 26), the specification derived true gust velocity is 82.2 fps above 20000 ft . Inlet upstarts can occur only at high Mach numbers which are achieved at altitudes above about 50000 ft . NASA has obtained nearly 10 million miles of VGH data from turbojetand turboprop-powered commercial aircraft. From this large sample they estimate that a UDE of 66 fps would be exceeded once in 2.78 million nautical miles if normal storm avoidance procedures are employed. This distance reduces to only 1820 miles if all the flying is in thunderstorms.

Power Spectral Density

The derived gust velocity data obtained with the discrete gust model discussed above has several disadvantages. First, atmospheric turbulence does not consist of discrete gusts but of a continuous variation as shown in the center of figure 2. Second, gusts do not have a single wavelength dependent on the aircraft size but actually are a continuous velocity variation which may be represented as the sum of many components each with a different wavelength, as suggested at the bottom of figure 2. Third, the derived gust velocity bears little relation to the true gust velocity, as mentioned above.

Fourth, only vertical and lateral gusts are considered and longitudinal gusts are not considered. Fifth, as pointed out in ref. 13, the relatively high speed and large size of an SST causes it to respond to disturbances with a longer wavelength than those affecting the high-altitude gust data now available. Last, for an analysis of an inlet with an inlet control, it is necessary to have data relating the gust amplitude to gust wavelength in order to assess the capability of the inlet control to reduce the probability of an unstart. For long wavelengths, and therefore low disturbance rates, the inlet control can reduce the transient disturbances in the inlet significantly, whereas for short wavelengths a practicable inlet control cannot respond, and therefore cannot reduce the transient disturbances in the inlet.

Because of these disadvantages of the discrete gust model, it is desirable to have data which relate true amplitude of the vertical, lateral, and longitudinal gust components to wavelength. Such data have been obtained with a few specially-instrumented aircraft (e.g., see refs. 18 and 28) for wavelengths in the range 0.1 to 40000 ft . The short wavelength limit is determined by instrument response limitations and the long wavelength limit is determined by instrument drift limitations and the size of the patch of turbulence. The data are reduced digitally and presented in the form of power spectral density distributions, such as figure 5. The ratio of the square of the gust amplitude to the spatial frequency bandwidth is plotted against spatial frequency, which is related to wavelength as shown. For a given flight velocity the spatial frequency is also proportional to the frequency ω. The values of σ_{1} indicate the severity of the turbulence. The slope of the spectra at short wavelengths ranges from -1.2 to -3. (ref. 29). The theoretical slope is $-5 / 3$. It is believed that inherent inadequacies in the data reduction procedures used are responsible for the large variations of the slope obtained.

Several assumptions are usually made in deriving analytical equations for power spectra. One is the assumption of homogeneity, that is, that the statistical properties of the turbulence do not change with translation of the coordinate axes on which measurement is based. This assumption is limited to small translations since a typical patch of turbulent air is a few thousand feet thick and about 10 miles across. The assumption of isotropy requires that the statistical properties be invariant with rotation of the axes. This assumption is good at short wavelengths but may not be good at long wavelengths such as occur in mountain waves, for example. Equations for five families of power spectra which satisfy these two assumptions are presented in Table II. The variables are the complete rms amplitude σ_{u} or σ_{w}, the scale of turbulence L , and the spatial frequency Ω. Useful relationships between the various parameters are indicated in the notes under Table II. The Von Karman and Dryden spectra represent special cases of the TaylorBullen spectra. The Von Karman spectra have the advantage of having the theoretical slope at large frequency and the Dryden spectra have the advantage of a simpler mathematical form. Both spectra are commonly used. The case 6 spectra represent a modification of the Dryden spectra which have a finite value of G_{0} (see page 12).

The case 2 spectra have a less sharp knee than the others. The latter two spectra have not been used except in reference 30. Normalized spectra for the last four families are plotted in figures 6 and 7. The normalized spectra have a corner at a referred frequency of 0.5 for the longitudinal component and of 1.0 for the vertical and lateral components. Other equations for vertical spectra which are contained in the literature do not satisfy the assumptions of homogeneity and isotropy.

Two integrals of the spectra are of interest (e.g., see ref. 31). The complete rms amplitude is defined by the integral

$$
\begin{equation*}
\sigma=\sqrt{\int_{0}^{\infty} \phi(\Omega) \mathrm{d} \Omega}=\sqrt{\int_{0}^{\infty} \phi(\omega) \mathrm{d} \omega} \tag{2}
\end{equation*}
$$

A truncated rms amplitude, defined by

$$
\sigma_{1}=\sqrt{\int_{0}^{\Omega} \mathrm{c} \phi(\Omega) \mathrm{d} \Omega}
$$

indicates the contribution to σ up to a finite cutoff spatial frequency Ω_{c}. The quantity $1-(\sigma 1 / \sigma)$ is plotted in figures 8 and 9 by lines sloping down to the right. As the plots indicate, the truncated rms amplitude σ_{1} will equal 99% of the complete rms amplitude σ for all referred frequencies of 100 radians or more.

The number of times that the increasing gust velocity crosses zero per unit flight distance is

$$
\begin{equation*}
\mathrm{G}_{0}=\frac{\sqrt{\int_{0}^{\infty} \Omega^{2} \phi(\Omega) \mathrm{d} \Omega}}{2 \pi \sqrt{\int_{0}^{\infty} \phi(\Omega) \mathrm{d} \Omega}} \tag{3}
\end{equation*}
$$

As with σ, truncated values of G_{0} may be obtained by integrating from 0 to Ω_{c} rather than from 0 to ∞ in equation (3). Values of the truncated G_{0} are plotted in figures 8 and 9 by lines sloping up to the right. Examination of equation (3) shows that G_{0} approaches infinity as Ω_{c} increases unless the slope of \varnothing is greater than -2 as Ω becomes large. Of the spectral families shown in Table II, only the Taylor-Bullen family with $n>1 / 2$ or the case 6 family have the large slope and, therefore, a finite value of G_{0}. For the longitudinal case 6 spectra,

$$
\mathrm{G}_{0} \mathrm{~L}=\frac{\mathrm{N}_{0} \mathrm{~L}}{\mathrm{~V}} \leq \frac{\left(1+\mathrm{C}^{2}\right) \sqrt{2 \mathrm{C}-1}}{2 \pi \mathrm{C}^{2}}
$$

and for the vertical and lateral spectra,

$$
G_{0} L=\frac{N_{0} L}{V} \leq \frac{\left(1+C^{2}\right) \sqrt{4 \mathrm{C}-2}}{2 \pi \mathrm{C}^{2}}
$$

With $C=50$, as suggested in ref. 30, these maximum values of $G_{0} L$ are 1.584 and 2.240, respectively. Usually the problem of an infinite value of G_{0} with the other spectra is resolved by reducing the upper limit of the integrals in equation (3). Certainly the integration should not be carried to wavelengths less than some significant dimension such as the wing chord or the inlet diameter. For aircraft structural calculations the upper frequency limit used is about 10 Hz (cps). Dr. Houbolt has suggested that the upper frequency limit be that for which the truncated σ_{1} is 95% of σ.

Several reports use the concept of power spectral density to relate aircraft vertical acceleration to a vertical gust environment. These reports present exceedance models of the atmospheric turbulence environment which fit the observed aircraft loads experience. That is, the models predict the frequency at which an aircraft load, or any similar parameter, is exceeded. The model is expressed in terms of 1 , 2 or 3 probabilities of encountering turbulence P and the corresponding rms amplitudes b . Thus, statistically, aircraft loads experience is considered to be the sum of up to four patches. The first patch has insignificant turbulence. In the second patch, representing P_{1} of the flight distance, the aircraft encounters turbulence with an rms amplitude of b_{1}. In the third patch, representing a smaller portion P_{2} of the flight distance, the aircraft encounters more severe turbulence with an rms amplitude of b_{2}. For this model the number of times a disturbance amplitude X is exceeded per unit time is given by the equation

$$
\begin{equation*}
N=N_{0}\left(P_{1} e^{-\frac{x}{b_{1} A}}+P_{2} e^{-\frac{x}{b_{2} A}}+P_{3} e^{-\frac{X}{b_{3} A}}\right) \tag{4}
\end{equation*}
$$

where N_{0} and A are computed by integrating the power spectral density of the output disturbance (see page 42). The values of the P's and b's are determined by curve fitting plots of cumulative frequency of gust velocity (e.g., see ref. 24). In the earlier literature, e.g. ref. 32, the terms "clear-air" and "storm" are used to designate the patches associated with P_{1} and P_{2}. In order to avoid any implication of the absence or presence of clouds, the terms "primary", "secondary", and "tertiary" are employed here to designate the three terms used to fit loads experience data. Values for the P's and b 's from 13 references are collected in Table III and figures 10 to 13 . In figures 12 and 13 the b's are expressed in units of Mach number obtained by dividing the b's in Table III by the standard atmosphere speed of sound a_{0} shown at the bottom of Table III.

Examination of Table III shows that most of the references were written in a $21 / 2$ year period. Since little new high-altitude loads data became available during this period, differences between the models are due mainly to the individual author's interpretation of the available data and approach to fitting the data. For example, Firebaugh (ref. 43) keeps b_{1} constant and uses a large variation in the scale of turbulence L to fit the data. Dr. Houbolt (ref. 42) uses a single probability which is greater for day than night, lets the rms amplitude b depend on L, and uses different exceedance models than the other authors (see page 15). Austin in ref. 41 repeats the values from ref. 35 except at low altitudes. Each model is associated with a specific power spectral density family. Based largely on a discussion with Dr. Houbolt the following comments are made:

1. Values of P in the models of atmospheric turbulence are quite accurate. Dr. Houbolt, in ref. 42, shows that errors in P have little effect on the frequency of load exceedance. Therefore, by analogy, the small errors in P have a small effect on the computed frequency of inlet unstarts.
2. Values of b in the models of atmospheric turbulence are inaccurate. Dr. Houbolt, in ref. 42 , shows that errors in b have a large effect on the frequency of load exceedance. Therefore, the errors in b have a large effect on the computed frequency of inlet unstarts.
3. The Von Karman family (see Table II) is the best spectral family to use. At long wavelengths, in what is called the inertial subrange, the slope of the Von Karman spectra is the theoretical slope of $-5 / 3$. This range of wavelengths is of most interest in a study of the frequency of inlet unstarts. At very short wavelengths, less than about $1 \mathrm{~cm}, \phi$ should vary as Ω^{-7} because of viscous effects. However these extreme wavelengths are too small to be of interest. At the other extreme of very large wavelengths, in the buoyant subrange, the Von Karman spectra are nearly constant whereas theoretical slopes of $-11 / 5$ and -3 have been proposed. However, extremely long wavelengths are not of concern because of the finite size of turbulence patches and because disturbances with a long wavelength present no real problem to an inlet control.
4. The value of b should vary as the cube root of L.
5. The numerical filtering procedure used to compute the power spectral density, and the length of the turbulence patch, affect the computed value of the scale of turbulence L. Dr. Houbolt recommends L = 1000 to 2000 ft .
6. Considering ref. 42, for high altitudes Dr. Houbolt prefers case " j " with $\alpha=8$ to 9 . A second choice is case " m " with $\alpha=0.002$ to 0.005 and a third choice is case " k " with $\alpha=0.0005$.

For his case " j^{\prime},

$$
\begin{array}{ll}
\mathrm{N}=\mathrm{PN}_{0} \mathrm{e}^{-\sqrt{(1+\epsilon)} \mathrm{X} / \mathrm{bA}} & \mathrm{X} \leq \alpha \mathrm{bA} / \sqrt{1+\epsilon} \\
\mathrm{N}=\mathrm{PN}_{0}\left(\frac{\alpha \mathrm{bA}}{\mathrm{e} \sqrt{1+\epsilon \mathrm{X}}}\right)^{\alpha} & , \quad \mathrm{X} \geq \chi \mathrm{bA} / \sqrt{1+\epsilon}
\end{array}
$$

where

$$
\begin{equation*}
\epsilon=\frac{\alpha+2}{\alpha-2} \mathrm{e}^{-\alpha} \tag{7}
\end{equation*}
$$

For his case "m",

$$
\begin{equation*}
N=P N_{0}\left[(1-\alpha) e^{-\frac{X}{b A}}+\frac{\alpha b A}{3.17 X}\left(e^{-\frac{0.289 X}{b A}}-e^{-\frac{3.46 X}{b A}}\right)\right] \tag{8}
\end{equation*}
$$

For his case " k ",

$$
\begin{align*}
& \prime \mathrm{k} ", \tag{9}\\
& N=\mathrm{PN}_{0}\left[(1-\alpha) \mathrm{e}^{-\frac{\sqrt{1+5.25 u} \mathrm{X}}{\mathrm{bA}}}+\alpha \mathrm{e}^{-\frac{0.4 \sqrt{1+5.25 \alpha} \mathrm{X}}{\mathrm{bA}}}\right]
\end{align*}
$$

The four exceedance models are shown in figure 14. Curvature in the straight line for case " a " can be introduced by including secondary and tertiary turbulence in equation (4).
7. The best model of high-altitude atmospheric turbulence probably is provided by refs. 35 and 41 , although it is believed to be conservative by AFFDL personnel.

Atmospheric Temperature Gradients

Changes in ambient temperature as well as gusts present a disturbance to a supersonic aircraft, as shown by equation (12) developed on page 20. Although an examination of temperature transients is not included in the work statement of the contract under which this report was prepared, some data has been collected and is presented here.

Equation (12) shows that the change in flight Mach number is proportional to the product of flight Mach number and ambient temperature change. The refore, ambient temperature changes produce a larger effect on a high-speed aircraft, such as an SST, than
on subsonic aircraft. Analysis of data from thirteen cases from references 18 and 44 showed that the Mach number change resulted from the addition of temperature and longitudinal gust effects in nine cases and the difference in four cases. The case sample size is too small to predict the percentage of time the temperature change would produce a significant change in flight Mach number. It is interesting to note that for a flight Mach number of 2.7 the effect of temperature change on flight Mach number exceeded that of the longitudinal gust in several cases.

The severity of the flight Mach number change due to an ambient temperature change depends on both the magnitude of the temperature change and the distance along the flight path in which the temperature change occurs. A large temperature change over a short distance will. increase the requirements of the inlet control. Some available data on the relationship between horizontal distance and ambient temperature change are shown in figure 15. The circles show data obtained over storms at 45000 ft altitude by the National Severe Storms Laboratory. The squares show data presented by the Canadian National Aeronautical Establishment for a flight at 39000 ft altitude in a mountain wave over the Sierras. Data from several flights of the HICAT aircraft showing large temperature changes are shown by triangles. The two diamonds represent data from a British research aircraft in standing-wave conditions over the Sierra Nevadas. The quartercircle symbols come from B-70 data and the half-circle symbols from U-2 data, both at 60000 ft . The line comes from the airworthiness standards for the Concorde and represents the best advice available at the time it was prepared. To illustrate the importance of the temperature changes shown, a change in ambient temperature of $12^{\circ} \mathrm{F}$ will change the Mach number of a Mach 2.7 aircraft by 0.075 units. The same Mach number change requires a gust of 73 fps true air speed. This is a severe gust which is encountered very infrequently.

HICAT Program

Table I shows that all the atmospheric turbulence data for altitudes over 45000 ft were obtained by U-2 and B-70 aircraft. By far the largest sample was obtained by NASA U-2 aircraft with a VGH recorder or by a WU-2 aircraft for the HICAT program supported by the AFFDL. The latter aircraft was extensively instrumented to measure total temperature, airspeed, true gust velocities and altitude (see refs. 14, 18 and 28). The HICAT flight program terminated in Feb. 1968 and a final report is scheduled to be published.

The objective of the HICAT program "is to determine the statistical characteristics of high altitude CAT so as to improve structural design criteria." Because of the purpose and because of instrumentation limitations, the reported HICAT data has several shortcomings when application to predicting inlet unstarts is considered.

Two Lockheed vane sensors with a high natural frequency were used to sense vertical and lateral components of gusts relative to the aircraft. The longitudinal component was sensed by a dynamic pressure transducer connected to the nose pitot-static boom. Absolute gust velocities were determined by adding the absolute aircraft velocities provided by an inertial platform to the relative velocities. The maximum wavelength at which power spectra can be presented is limited to roughly 40000 ft by drift of the platform with time and by the size of the turbulence patches. The minimum wavelength of roughly 200 ft is limited by the response of the instrumentation and by a cutoff frequency of 1 to 5 hertz used to process the raw data. An examination of the published instrumentation characteristics showed that the response of the total temperature sensor may be unsatisfactory. According to ref. 18, the total temperature probe 'has a frequency response which is flat within 1 percent to about 5.7 Hz ". But in ref. 49 , the authors state that "it does not adequately follow changes of temperature whose frequencies are greater than one cycle/sec." Reference 51 presents data on time constants for the sensor. The longer time constant, associated with the support structure, is about 2.5 sec and the shorter time constant, associated with the sensing element, is about 0.03 sec . Therefore, significant errors occur at frequencies over 0.06 Hz . Mr. Boone, of AFFDL, was contacted regarding this discrepancy but he was unable to resolve the problem at the time this report was written. However, it is believed that the response of the total temperature sensor may be inadequate to permit the cross-correlation function between ambient static temperature and longitudinal gust velocity being calculated with meaningful precision. Also, the accuracy of some of the temperature gradient data presented in figure 15 is suspect over short distances.

Because the atmospheric turbulence data required to predict loads or inlet unstart experience is statistical rather than deterministic, many flight hours are required to obtain significant results. The HICAT program did not reach a significant level of flight hours and is especially deficient in presenting the effects of terrain on turbulence. Effects of terrain on P and b can be found in ref. 49.

Summary

The available data on the random vertical turbulence environment at high altitudes is very limited. Because it uses the Von Karman power spectrum and because it is the result of the most comprehensive analysis of the data, the definition of this environment in ref. 35 is believed to be the best available. The assumption of isotropy is required to obtain comparable definitions for longitudinal and lateral turbulence. Longitudinal temperature gradients have been measured and can contribute significantly to changes in flight Mach number.

Several references present specifications for disturbances applicable to a supersonic aircraft. From four of these references the rate of change of flight Mach number and the amplitude of the Mach number change were computed and are plotted in figure 16. The relation between these two parameters for longitudinal gusts with a Von Karman spectrum, $L=2500 \mathrm{ft}$, a band width of 1 Hz , and $\sigma_{u}=48 \mathrm{fps}$, is shown by the dashed curve. The larger rates of change shown are generally associated with smaller changes in flight Mach number. Therefore the envelope of the disturbances shown represents roughly a constant transient error. Vertical gusts are considered in figure 17 for changes in angle of attack. The word "draught" is used in ref. 49 to refer to a quasi-steady vertical wind shear with a true velocity of up to $\pm 200 \mathrm{fps}$ and a width of 1000 to 20000 ft . The disturbances in the Boeing AIC specification (ref. 53) appear to be conservative with the exception of an ambient temperature change shown in figure 16.

ANALYTICAL INLET MODEL

An analytical inlet model is required to relate changes in the inlet performance to the imposed upstream atmospheric disturbances. This model must give the time-dependent change in throat Mach number and in shock position due to changes in free-stream conditions (flight velocity, angles of attack and sideslip, ambient pressure and temperature), inlet geometry (spike position, throat area), and diffuser exit flow (bypass and engine corrected airflows). Existing inlet models (e.g., ref. 54) are not complete enough to be used here. Among the omissions are no model of change in flow conditions ahead of inlet due to changes in free-stream conditions, no linear model of change in inlet throat flow conditions due to changes in flow conditions ahead of inlet and in inlet geometry, and model not linearized. Therefore, the necessary analytical inlet models are developed in this section. An overall schematic of the inlet model is presented in figure 18. The blocks shown for the throat Mach number and shock position controls include the signal gain and pneumatic transmission line dynamics as well as the control gains and dynamics.

For convenience, the model is divided into three groups:

1. A model which relates changes in local flow conditions ahead of the inlet to changes in free-stream conditions (three components of a gust, ambient temperature and pressure).
2. A model which relates changes in inlet throat flow conditions to changes in local flow conditions and inlet geometry.
3. Four models, of varying complexity, which relate transient and steady-state changes in normal shock position to transient and steady-state changes in throat flow, throat area and exit corrected airflow.

These three groups are represented by the three large blocks in figure 18 and are discussed in the following three subsections. The third subsection includes a comparison of four models of normal shock position with each other and with digital method-ofcharacteristics calculations for a representative inlet configuration. A fourth subsection presents a discussion of the affects of changes in throat Mach number and shock position on the installed performance of a propulsion system.

The following assumptions are made:

1. Air is a perfect gas with a ratio of specific heats equal to 1.4 .
2. Small disturbances from an average steady-state condition occur. Therefore, the flow equations may be linearized.
3. The effects of viscosity are not included explicitly. Therefore, the normal shock inside the diffuser has zero thickness and there is no steady-state loss in total pressure downstream of the normal shock.
4. The flow at each station inside the inlet is uniform across the inlet flow area and is a function of time only.
5. Internal bleed flows near the normal shock are not included explicitly in the models for the normal shock position, although only a simple modification would be required to include the effects of bleed.

Analytical Model of Local Conditions Ahead of Inlet

The purpose of this section is to derive and present equations for changes in the local flow upstream of the inlet due to changes in ambient atmospheric conditions. The changes in local flow conditions ($\Delta \mathrm{P}_{\mathrm{tL}}, \Delta \mathrm{T}_{\mathrm{tL}}, \Delta \mathrm{M}_{\mathrm{L}}$, and flow angle) are used as disturbances for the analytical model of the flow at the inlet throat, page 21. The changes in ambient conditions are temperature $\Delta \mathrm{T}_{0}$, pressure $\Delta \mathrm{P}_{0}$, and the three gust components u, v, and w.

Changes in the local flow total pressure and temperature are given by the following two equations:

$$
\begin{align*}
& \frac{\Delta \mathrm{P}_{\mathrm{tL}}}{\mathrm{P}_{\mathrm{tL}}}=\frac{\Delta \mathrm{P}_{0}}{\mathrm{P}_{0}}+\frac{\Delta \mathrm{P}_{\mathrm{R}_{\mathrm{L}}}}{\mathrm{P}_{\mathrm{R}_{\mathrm{L}}}+\frac{1.4 \mathrm{M}_{0}}{1+0.2 \mathrm{M}_{0}^{2}} \Delta \mathrm{M}_{0}} \tag{10}\\
& \frac{\Delta \mathrm{~T}_{\mathrm{tL}}}{\mathrm{~T}_{\mathrm{tL}}}=\frac{\Delta \mathrm{T}_{0}}{\mathrm{~T}_{0}}+\frac{0.4 \mathrm{M}_{0}}{1+0.2 \mathrm{M}_{0}^{2}} \Delta \mathrm{M}_{0} \tag{11}
\end{align*}
$$

The $\Delta P_{R L} / P_{R L}$ term allows for any change in total pressure recovery between the free stream and the local flow ahead of the inlet due to shock waves from the fuselage, for example. The assumption is made that the aircraft absolute flight velocity is constant for the short time intervals of interest. Therefore, the aircraft relative Mach number changes are due to changes in ambient speed of sound (temperature) and in relative velocity due to a longitudinal gust (u). Thus,

$$
\begin{equation*}
\Delta M_{0}=\frac{u}{a_{0}}-\frac{\mathrm{M}_{0}}{2} \frac{\Delta \mathrm{~T}_{0}}{\mathrm{~T}_{0}} \tag{12}
\end{equation*}
$$

where a positive longitudinal gust is rearwards.
An analytical model for the change in local Mach number is dependent on the aircraft configuration. The input disturbances are $\Delta \mathrm{M}_{0}$ from equation (12), the vertical gust component w and the lateral gust component v. The following equation defines the three coefficients $\mathrm{K}_{\mathrm{u}}, \mathrm{K}_{\mathrm{V}}$ and K_{w} :

$$
\begin{equation*}
\Delta M_{L}=K_{u} \Delta M_{0}+K_{v} \frac{v}{a_{0}}+K_{w} \frac{w}{a_{0}} \tag{13}
\end{equation*}
$$

A vertical gust velocity w changes M_{L} by the same amount as an increase in aircraft angle of attack of $\frac{\mathrm{W}}{\mathrm{M}_{0}{ }^{\mathrm{a}} 0}$. Likewise, a lateral gust produces an angle of sideslip of $\frac{\mathrm{V}}{\mathrm{M}_{0}{ }_{0}}$. Therefore, the three coefficients $\mathrm{K}_{\mathrm{u}}, \mathrm{K}_{\mathrm{v}}$ and K_{w} may be calculated by determining the effects on M_{L} of changes in flight Mach number, angle of sideslip and angle of attack, respectively. The values of these coefficients are dependent on the aircraft configuration. If the inlet is underneath an unswept wing whose lower surface is flat, the equations for oblique shock waves in ref. 55 may be used to calculate K_{u} and K_{w}. A graphical approach to determine the change in Mach number behind an oblique shock wave due to a change in upstream Mach number and in shock deflection angle may be used to calculate K_{u} and K_{w} respectively. Alternatively, the theory and equations in ref. 56 may be adapted. The latter approach was used to calculate the values of K_{u} and K_{w} plotted in figure 19. The value of δ is the angle between the lower surface of the wing and the free stream. For other aircraft geometries, with the inlet not in the shadow of an unswept wing, the values of K_{u} and K_{W} will vary from those shown in figure 19. However, it is expected that $K_{\mathfrak{u}}$ will remain near unity. In general, it is expected that K_{V} is small.

As discussed on page 11, atmospheric turbulence is generally considered to be isotropic. That is, the rms amplitudes of the three components ($\sigma_{\mathrm{u}}, \sigma_{\mathrm{V}}$ and σ_{W}) are equal Also, all directions for the gust have equal probability. For this case, considering only gusts and not temperature changes, the rms amplitude of the change in local Mach number is

$$
\begin{equation*}
\Delta M_{L}=\sqrt{\frac{K_{u}^{2}+K_{v}^{2}+K_{w}^{2}}{3}}\left(\frac{b_{o}}{b_{o}}\right) \tag{14}
\end{equation*}
$$

where b_{0} is the rms amplitude of the gusts. The above equation (14) applies to a time average whereas equations (10) to (13) apply at any instant of time. The rms vertical gust components b reported in the literature (see Table Π II) equal $\mathrm{b}_{0} / \sqrt{3}$.

No attempt is made to derive a general model for the change in local flow angle because any model is very dependent on the aircraft geometry.

Analytical Model of Flow at Inlet Throat

The purpose of this section is to derive equations for changes in the flow conditions at the inlet throat due to changes in local flow upstream of the inlet. The changes in inlet throat flow ($\Delta \mathrm{P}_{\mathrm{tth}}, \Delta \mathrm{T}_{\mathrm{t} \text { th }}$, and $\Delta \mathrm{M}_{\mathrm{th}}$) of interest are the upstream disturbances for the analytical models of normal shock position presented on page 24. The input disturbances of $\Delta \mathrm{P}_{\mathrm{tL}}, \Delta \mathrm{T}_{\mathrm{tL}}, \Delta \mathrm{M}_{\mathrm{L}}$ and local flow angle ahead of the inlet are presented in the preceding section.

The fact that the flow from upstream of the inlet to the throat is supersonic justifies exclusion of any internal dynamic effects in the analysis. Any dead time would be very small and would only be considered if the inlet control senses local flow conditions. The assumption that dynamic effects may be neglected permits using the steady-state flow equation. Therefore,
and

$$
\begin{align*}
& \mathrm{P}_{\mathrm{t} 1}=\mathrm{P}_{\mathrm{tth}}=\mathrm{P}_{\mathrm{R}_{\mathrm{th}}} \mathrm{P}_{\mathrm{t} \mathrm{~L}}=\mathrm{P}_{\mathrm{R}_{\mathrm{th}}} \mathrm{P}_{\mathrm{R}_{\mathrm{L}}} P_{\mathrm{t} 0} \tag{15}\\
& \mathrm{~T}_{\mathrm{t} 1}=\mathrm{T}_{\mathrm{t} \text { th }}=\mathrm{T}_{\mathrm{tL}} \tag{16}
\end{align*}
$$

where the factor $P_{R_{t h}}$ accounts for losses in total pressure from ahead of the inlet to the throat. Locations of $P_{t 1}$ and $T_{t 1}$ are presented in figure 23.

The steady-state continuity equation between the local and throat flows is

$$
\begin{equation*}
\mathrm{W}_{\mathrm{R}} \mathrm{~A}_{\mathrm{L}} \frac{\mathrm{M}_{\mathrm{L}}}{\left(1+0.2 \mathrm{M}_{\mathrm{L}}^{2}\right)^{3}} \frac{\mathrm{P}_{\mathrm{th}}}{\sqrt{\mathrm{~T}_{\mathrm{t}_{\mathrm{L}}}}}=\mathrm{A}_{\mathrm{th}} \frac{\mathrm{M}_{\mathrm{th}}}{\left(1+0.2 \mathrm{M}_{\left.\mathrm{th}^{2}\right)^{3}}\right.} \frac{\mathrm{P}_{\mathrm{t}_{\mathrm{th}}}}{\sqrt{\mathrm{~T}_{\mathrm{t}_{\mathrm{th}}}}} \tag{17}
\end{equation*}
$$

The following equation for the change in throat Mach number is obtained by differentiating equation (17) and substituting equations (15) and (16):

$$
\begin{array}{r}
\Delta M_{t h}=f_{t h}\left[\frac{\Delta A_{L}}{A_{L}}+\left(\frac{A_{t h} \partial W_{R}}{W_{R} \partial A_{t h}}-\frac{A_{t h} \partial P_{R_{t h}}}{P_{R_{t h}} \partial A_{t h}}-1\right) \frac{\Delta A_{t h}}{A_{t h}}+\left(\frac{1-M_{L}{ }^{2}}{\left.M_{L}{ }^{\left(1+0.2 M_{L}\right.}{ }_{L}{ }^{2}\right)}+\right.\right. \\
\left.\left.\frac{\partial W_{R}}{W_{R} \partial M_{L}}-\frac{\partial P_{R_{t h}}}{P_{R_{t h} \partial M_{L}}}\right) \Delta M_{L}\right] \tag{18}
\end{array}
$$

The $\Delta A_{L} / A_{L}$ term allows for a change in the geometric inlet lip area; for most inlets this term is zero. The next term allows for changes in relative airflow due to changes in external geometry associated with a change in throat area, such as for a translatingspike inlet. The two terms with partial derivatives of $\mathrm{P}_{\mathrm{Rth}}$ are generally small compared to the other terms in the brackets. The factor $f_{\text {th }}$ is plotted in figure 20. It becomes large and varies rapidly as $\mathrm{M}_{\text {th }}$ approaches unity. An equation for the average value of $f_{\text {th }}$ between $M_{\text {th }}=M$ and $M_{t h}=M_{\text {th }}$ is obtained by integrating equation (19):

$$
\begin{equation*}
\mathrm{f}_{\mathrm{th}}=\frac{\mathrm{M}_{\mathrm{th}}-\mathrm{M}}{\ln \left(\frac{\mathrm{M}_{\mathrm{th}}\left(1+0.2 \mathrm{M}^{2}\right)^{3}}{\mathrm{M}\left(1+0.2 \mathrm{M}_{\left.\mathrm{th}^{2}\right)^{3}}\right.}\right)} \tag{20}
\end{equation*}
$$

Average values of f th for $\mathrm{M}=1.0$ and 1.3 are shown by dashed lines in figure 20 . Use of an average fth usually will provide acceptable accuracy.

The $\partial W_{R} / W_{R} \partial M_{L}$ term allows for the change in supercritical relative airflow with local Mach number for a fixed inlet geometry. For a two-dimensional wedge inlet an exact analytical solution may be obtained. Consideration of the inlet geometry leads to the following equation for relative airflow

$$
\begin{equation*}
\mathrm{W}_{\mathrm{R}}=\frac{\mathrm{W}_{\mathrm{R}}{ }^{\mathrm{A}} \ell}{\mathrm{~A}_{\ell}}=\frac{\cot \theta_{\ell}-\cot \delta}{\cot \theta_{\mathrm{w}}-\cot \delta} \tag{21}
\end{equation*}
$$

where the terms are defined in the following sketch.

Upon differentiation, with constant δ and θ_{ℓ}

$$
\begin{equation*}
\frac{\partial \mathrm{W}_{\mathrm{R}}}{\mathrm{~W}_{\mathrm{R}} \partial \theta_{\mathrm{W}}}=\cot \theta_{\mathrm{w}}-\cot \left(\theta_{\mathrm{w}}-\delta\right) \tag{22}
\end{equation*}
$$

An equation for $\partial \theta_{\mathrm{w}} / \partial \mathrm{M}_{\mathrm{L}}$ was obtained from ref. 56 and, therefore,
$\frac{\partial \mathrm{W}_{\mathrm{R}}}{\mathrm{W}_{\mathrm{R}} \partial^{\mathrm{M}_{\mathrm{L}}}}=\frac{4 \tan \delta\left(\cot \theta_{\mathrm{w}}+\tan \delta\right)}{\mathrm{M}_{\mathrm{L}} \sin 2 \theta_{\mathrm{w}}\left(\mathrm{M}_{\mathrm{L}}{ }^{2}\left(\cos 2 \theta_{\mathrm{w}}+\tan \delta \sin 2 \theta_{\mathrm{w}}\right)+\csc ^{2} \theta_{\mathrm{w}}\right)\left(\tan \theta_{\mathrm{w}}-\tan \delta\right)}$

This equation has been evaluated numerically for several wedge angles and the results are shown in the lower part of figure 21 . One should note that the lip angle $\theta \ell$ is not involved. For an axially-symmetric conical inlet an analytical solution is not available. Hartsell presents the following equation in ref. 57 which he states is valid

$$
\begin{equation*}
\mathrm{w}_{\mathrm{R}}=\frac{\cot ^{2} \theta \ell-\cot ^{2} \delta}{\cot ^{2} \theta_{\mathrm{w}}-\cot ^{2} \delta} \tag{24}
\end{equation*}
$$

for $\quad \delta \geq 10^{\circ}$ and $\mathrm{M}_{\mathrm{L}} \geq 1.5$. Upon differentiation, one obtains

$$
\begin{equation*}
\frac{\partial W_{R}}{W_{R} \partial M_{L}}=\frac{-2 \cos \theta_{W}}{\sin ^{3} \theta_{W}\left(\cot ^{2} \delta-\cot ^{2} \theta_{w}\right)} \frac{\partial \theta_{W}}{\partial M_{L}} \tag{25}
\end{equation*}
$$

Several approximate equations for θ_{W} were found in the literature. However, the best results are obtained by using tabulated values of θ_{W} and $\partial \theta_{\mathrm{W}} / \partial \mathrm{M}_{\mathrm{L}}$ in refs. 58 and 59 . These values were used to compute the results plotted in the upper part of figure 21. Also, the relative airflow was plotted against M_{L} from computations described in ref. 60 and the slope determined. Somewhat different values of $\partial W_{R} / W_{R} \partial M_{L}$ were obtained which, unlike those shown in figure 21, depend on the lip angle θ_{l}. However the curves in figure 21 should be adequate. More precise values of $\partial \mathrm{W}_{\mathrm{R}} / \mathrm{W}_{\mathrm{R}} \partial \mathrm{M}_{\mathrm{L}}$ may be obtained for a given geometry by plotting theoretical values of W_{R} from refs. 60 and 61.

The effect of local or free-stream flow direction on the throat Mach number is not as amenable to a theoretical analysis because internal flow distortion is so significant a factor. Therefore experimental data on axially-symmetric inlets with internal compression are used from refs. 62 to 68 . In these references, the inlet unstart spike position is plotted against Mach number at zero angle of attack and against angle of attack at several local Mach numbers. Data at $M_{L}=2.0,2.5$ and 3.0 were selected for use in this report.

From these data the inlet unstart events are plotted as functions of local Mach number and angle of attack in figure 22 for different spike positions. Symbols corresponding to different spike positions for one M_{L} and one reference are joined. For each spike position, either increasing the inlet angle of attack to the abscissa value or reducing the local Mach number to the ordinate value will cause an unstart. Thus, these two changes, one in local flow direction and one in local Mach number, produce the same decrease in throat Mach number. This decrease in throat Mach number is related to the decrease in local Mach number by equation (18). With the aid of figure 22 , therefore, it is possible to relate the decrease in throat Mach number due to local flow angle. For example, at $\mathrm{M}_{\mathrm{L}}=3.0$, let $\Delta \mathrm{M}_{\text {th }}=1.8 \Delta \mathrm{M}_{\mathrm{L}}$ according to equation (18). From figure 22, with $M_{L}=3.0$, the average slope of the lines is roughly $-0.08 \Delta \mathrm{M}_{\mathrm{L}} / \mathrm{deg}$. Therefore, $\Delta \mathrm{M}_{\mathrm{th}}=1.8(-0.08) \Delta \alpha=-0.14 \Delta \alpha$ or, in words, a onedegree increase in local flow angle reduces the minimum throat Mach by 0.14 units. Inspection of figure 22 shows that the slope of the lines increases with local Mach numbers. Therefore, the change of throat Mach number with flow angle increases with local Mach number.

The change in Mach number ahead of the shock ΔM_{1} required in the next section may be obtained from equation (18) by simply replacing the subscript "th" by " 1 ". Thus, in equation (19) M_{1} is used in place of M_{th}.

Analytical Models of Normal Shock Position

The third group of models is one which predicts the change in normal shock position due to various upstream disturbances at the inlet throat or downstream disturbances at the exit. The upstream disturbances considered are changes in total pressure, total temperature, duct area (due to action of an inlet control), and Mach number. The downstream disturbances are changes in either exit Mach number or corrected airflow. Corrected airflow is a function of Mach number for a given area. If this functional relation

$$
\mathrm{w}_{\mathrm{c}} \quad 85.384 \frac{\mathrm{AM}}{\left(1+0.2 \mathrm{M}^{2}\right)^{3}}
$$

is differentiated, the following relation between these two downstream disturbances is obtained:

$$
\begin{equation*}
\Delta \mathrm{M}_{\mathrm{i}}=\frac{\mathrm{M}_{\mathrm{i}}\left(1+0.2 \mathrm{M}_{\mathrm{i}}^{2}\right)}{1-\mathrm{M}_{\mathrm{i}}^{2}} \frac{\Delta \mathrm{w}_{\mathrm{c}_{\mathrm{i}}}}{\mathrm{w}_{\mathrm{c}_{\mathrm{i}}}} \tag{26}
\end{equation*}
$$

The substitution implied by this equation may be made into the equations (32), (33), (34), (35) and (D14) for the four models of normal shock position.

The first task is to derive equations for the change in selected flow parameters at a fixed station downstream of the shock (subscript " 2 ") caused by changes in flow parameters at a fixed station upstream of the shock (subscript " 1 "), a displacement of the shock, or change in shock velocity. For convenience, the two fixed stations are considered to be separated by an insignificant distance. The two stations are fixed relative to the inlet, not the normal shock. If the shock is displaced downstream of station " 2 " the actual flow there changes from subsonic to supersonic. The properties of a fictitious subsonic flow at station " 2 " are obtained by using the theoretical stream-tube-area relations in ref. 55 and the flow properties at any station behind the shock. This fictitious subsonic flow at station " 2 " is consistent with that existing downstream of the shock if the shock were not present between the two stations.

Equations for the change in downstream flow parameters due to a change in upstream Mach number M_{1} are obtained by differentiating the relations for a normal shock with respect to M_{1}. Thus, for $M_{2}, M_{2}{ }^{2}=\left(M_{1}{ }^{2}+5\right) /\left(7 M_{1}{ }^{2}-1\right)$ and

$$
\Delta \mathrm{M}_{2}=\frac{\partial \mathrm{M}_{2}}{\partial \mathrm{M}_{1}} \Delta \mathrm{M}_{1}=-\frac{36 \mathrm{M}_{1}}{\sqrt{\mathrm{M}_{1}^{2}+5}\left(7 \mathrm{M}_{1}^{2}-1\right)^{1.5}} \Delta \mathrm{M}_{1}
$$

The other flow parameters are treated similarly. The coefficients, which are functions of M_{1}, are shown in column ($\mathrm{j}=4$) of Table IV. The coefficients for the other three upstream parameters ($\mathrm{P}_{\mathrm{t} 1}, \mathrm{~T}_{\mathrm{t} 1}$ and A_{1}) are shown in columns $\mathrm{j}=1,2$ and 3 .

Equations for the change in downstream flow parameters due to a change in shock position are derived in the following manner. Differentiating the stream-tube-area relations in ref. 55 produces the following equation relating Mach number gradient to duct area gradient:

$$
\begin{equation*}
\frac{d M}{d X}=\frac{M\left(1+0.2 M^{2}\right)}{1-M^{2}} \frac{d A}{A d X} \tag{27}
\end{equation*}
$$

This equation, with $M=M_{1}$, is used to determine the change in the Mach number upstream of the shock due to the shock displacement ΔX_{S}. The changes in downstream flow parameters behind the shock because of the change in upstream Mach number are computed by the procedure described in the preceding paragraph. The change in static pressure P_{2} and Mach number M_{2} at the fixed station are computed by theoretical extrapolation forward using $\mathrm{M}=\mathrm{M}_{2}$ in equation (27). The resulting terms are shown in one column ($j=5$) of Table IV.

Equations for the change in downstream flow parameters due to shock velocity are derived in ref. 69 by differentiating the normal shock relations in terms of an upstream relative Mach number. This Mach number is the difference between the absolute upstream Mach number M_{1} and a dimensionless shock velocity $U_{S} / a l$. By an appropriate change of coordinates between a system moving with the shock and a fixed system (e.g., see refs. 54 and 69) the terms in column $(j=6)$ of Table IV are obtained.

A matrix of equations for the changes in seven downstream flow parameters is presented in Table IV. The downstream flow parameters are listed in the first column and the terms associated with the six quantities which may change are listed in the next six columns. As an example, consider changes in downstream corrected airflow. This is the fifth downstream flow parameter and the equation is on the line labeled $\mathrm{i}=5$. It may be written as

$$
\begin{align*}
\frac{\Delta w_{c_{2}}}{W_{\mathrm{c} 2}}= & \frac{\Delta \mathrm{A}_{1}}{A_{1}}-\frac{30\left(\mathrm{M}_{1}^{2}-1\right)}{\mathrm{M}_{1}\left(7 \mathrm{M}_{1}^{2}-1\right)\left(\mathrm{M}_{1}^{2}+5\right)} \Delta \mathrm{M}_{1}+\frac{7\left(\mathrm{M}_{1}^{2}-1\right)}{7 \mathrm{M}_{1}^{2}-1} \frac{d A}{A d X} \Delta \mathrm{X}_{\mathrm{S}}+ \\
& \frac{\left(\mathrm{M}_{1}^{2}-1\right)\left(7 \mathrm{M}_{1}^{2}+5\right)}{\mathrm{M}_{1}\left(7 \mathrm{M}_{1}^{2}-1\right) \sqrt{1+0.2 \mathrm{M}_{1}^{2}}} \frac{\mathrm{U}_{\mathrm{S}}}{\mathrm{a}_{\mathrm{t}}} \tag{28}
\end{align*}
$$

Downstream corrected airflow is independent of upstream $P_{t l}$ and $T_{t l}$ (as shown by the coefficient " 0.0 " in Table IV) and increases with increasing duct area A_{1}, decreasing upstream Mach number M_{1}, downstream shock displacement ΔX_{S} (if $d A / A d X>0$) and downstream shock velocity U_{S}. For convenience, the Mach number functions in Table IV are denoted by C_{i}, where i and j represent the line and column in Table IV. Thus, equation (28) may be written as

$$
\begin{equation*}
\frac{\Delta \mathrm{w}_{\mathrm{C}_{2}}}{\mathrm{w}_{\mathrm{C}_{2}}}=\frac{\Delta \mathrm{A}_{1}}{\mathrm{~A}_{1}}-\mathrm{C}_{54} \Delta \mathrm{M}_{1}+\mathrm{C}_{55} \frac{\mathrm{dA}}{\mathrm{AdX}} \Delta \mathrm{X}_{\mathrm{S}}+\mathrm{C}_{56} \frac{\mathrm{U}_{\mathrm{S}}}{\mathrm{at}_{\mathrm{t}}} \tag{29}
\end{equation*}
$$

With the exception of C_{14} for $\mathrm{M}_{1}<1.484$, all C_{ij} are positive functions of M_{1}.

A useful result which can be obtained easily from the equations in Table IV is a set of equations for the steady-state displacement of the normal shock due to several disturbances. As an example, consider that the upstream Mach number M_{1} and duct area A_{1} are constant, i.e., $\Delta \mathrm{M}_{1}=\Delta \mathrm{A}_{1}=0$. For steady-state disturbances $\mathrm{U}_{\mathrm{S}}=0$. Therefore, by rearranging equation (28), the following equation for the steady-state shock displacement due to a change in downstream corrected airflow is obtained:

$$
\Delta \mathrm{X}_{\mathrm{S}}=\frac{7 \mathrm{M}_{1}^{2}-1}{7\left(\mathrm{M}_{1}^{2}-1\right)} \frac{\mathrm{AdX}}{\mathrm{dA}} \frac{\Delta \mathrm{w}_{\mathrm{c}_{2}}}{\mathrm{w}_{\mathrm{c}} 2}
$$

One may note that $\Delta \mathrm{w}_{\mathrm{Ci}} / \mathrm{w}_{\mathrm{C}_{\mathrm{i}}}=\Delta \mathrm{w}_{\mathrm{c} 2} / \mathrm{w}_{\mathrm{c} 2}$. This equation and five others are collected in Table V. The first three equations apply to changes in three downstream flow parameters with constant upstream conditions, and the last three equations apply to changes in upstream conditions with constant downstream corrected airflow. For coordinated changes in duct area and upstream Mach number at constant airflow which would be produced by a throat Mach number control, the bottom equation shows that the normal shock remains at a constant duct area.

The second task is to derive four equations, representing four models, for the transient displacement of the normal shock due to transient changes in diffuser exit corrected airflow or Mach number, upstream total pressure or temperature, upstream Mach number and duct area near the shock. The nomenclature used for these four analytical models of normal shock position is illustrated in figure 23. Many of the quantities shown are not required for the simpler models. The discussion of the models is arranged in order to the complexity of the model, starting with the simplest. Detailed derivations of these four models are contained in Appendices A through D. Equations for the time-dependent change in shock position are expressed in Laplace notation. Readers who are not familiar with the Laplace operator S may think of it as the operator for the time derivative. Thus, the shock velocity U_{S} may be written as $S \Delta X_{S}$. The steady-state shock displacement is obtained by setting $S=0$.

First analytical model of shock position. - It is shown in ref. 70 that a first-order lag relation for shock position results from the assumption that the disturbance is a linear function of shock position and of shock velocity. This assumption is made in the analysis leading to the equations shown in Tables IV and V. Therefore, these equations are used to derive a first-order lag relation for shock position in Appendix A.

If a step change in a downstream flow parameter is imposed, a step change in shock velocity must occur to balance the disturbance. This shock velocity can be predicted by using the coefficient shown in the right-hand column ($j=6$) of Table $I V$ on the appropriate line, depending on the flow parameter disturbed. At a much later time, the shock reaches an equilibrium stationary position, and the steady-state displacement can be predicted by using the preceding coefficient $(j=5)$ on the same line of Table IV
or by using the appropriate equation in Table V. For any time, the shock displacement can be represented by a first-order lag relationship involving a gain (steady-state displacement) and a shock time constant. This time constant is the ratio of the last two coefficients in the equation shown in Table IV. For example, for a disturbance in either downstream corrected airflow ($i=5$) or Mach number ($i=6$) the time constant is
or

$$
\begin{align*}
& \tau_{S}=\frac{\mathrm{C}_{56}}{\mathrm{C}_{55}} \frac{\mathrm{AdX}}{\mathrm{dA}} \frac{1}{\mathrm{at}_{t}}=\frac{\mathrm{C}_{66}}{\mathrm{C}_{65}} \frac{\mathrm{AdX}}{\mathrm{dA}} \frac{1}{\mathrm{at}} \\
& \tau_{\mathrm{S}}=\frac{7 \mathrm{M}_{1}^{2}+5}{7 \mathrm{M}_{1} \sqrt{1+0.2 \mathrm{M}_{1}^{2}}} \frac{\mathrm{AdX}}{\mathrm{dA}} \frac{1}{\mathrm{at}} \tag{31}
\end{align*}
$$

The steady-state displacements are given by the equations in Table V. The following equation for the shock displacement is derived in Appendix A:

$$
\begin{equation*}
\Delta X_{S}=\frac{K_{W_{c_{i}}} e^{-\tau_{d} S} \frac{\Delta w_{c_{i}}}{w_{c_{i}}}+K_{M_{1}} \Delta M_{1}+K_{A_{1}} \frac{\Delta A_{1}}{A_{1}}}{1+\tau_{S} S} \tag{32}
\end{equation*}
$$

where τ_{S} is given by equation (31), τ_{d} is a dead time introduced to account for the time required for a sound wave to move upstream against the flow from the exit to the shock wave, and the gains K are defined in Appendix A in terms of the Mach number M_{1} and the duct area gradient at the shock $d A / A d X$. Equation (32) represents the first analytical model for shock position.

Second analytical model of shock position. - The first analytical model, expressed by equation (32), is especially applicable to short inlets. For inlets with a long diffuser, however, allowance should be made for the effect of changes in the mass of air stored in the volume between the normal shock and the diffuser exit on the shock dynamics. The change of this mass stored in the volume is proportional to the diffuser volume and to changes in the stagnation density and average Mach number M_{d} in the volume (see figure 23). The details of the analysis, which is based on that in ref. 69, are presented in Appendix B. The following equation represents the second analytical model of shock position:

$$
\begin{array}{r}
\mathrm{K}_{\mathrm{W}_{\mathrm{C}}}\left(1+\tau_{\left.\mathrm{w}_{\mathrm{c}_{i}} \mathrm{~S}\right) \mathrm{e}^{-\tau \mathrm{d}} \frac{\Delta \mathrm{w}_{\mathrm{i}}}{}}^{\mathrm{w}_{\mathrm{c}_{\mathrm{i}}}}+\mathrm{K}_{\mathrm{M}_{1}\left(1+\tau_{\mathrm{M}_{1}} \mathrm{~S}_{)} \Delta \mathrm{M}_{1}\right.}+\right. \\
\Delta \mathrm{X}_{\mathrm{S}}= \tag{33}\\
\mathrm{K}_{\mathrm{A}_{1}\left(1+\tau \mathrm{A}_{1} \mathrm{~S}\right) \frac{\Delta \mathrm{A}_{1}}{\mathrm{~A}_{1}}+{ }_{\mathrm{T}_{\mathrm{t}} \mathrm{~S}}\left(\frac{\Delta \mathrm{Pt}_{1}}{\mathrm{P}_{\mathrm{t}_{1}}}-\frac{\Delta \mathrm{T}_{\mathrm{t}_{1}}}{\mathrm{~T}_{\mathrm{t}_{1}}}\right)}^{1+\tau_{1} \mathrm{~S}+\frac{\tau_{2} \mathrm{~S}^{2}}{}}
\end{array}
$$

It differs from equation (32) of the first model by having a quadratic lag, by having lead time constants in the $\Delta w_{c_{i}}, \Delta M_{1}$ and ΔA_{1} terms, and by including a term proportional to the rate of change of upstream total pressure and temperature. These changes result from including a volume behind the shock. Equations for the coefficients are contained in Appendix B.

Third analytical model of shock position. - Several analyses of supersonic inlets have included the pressure differential required to accelerate the mass in the Helmholtz volume (see fig. 23) behind the shock. Appendix C presents an analysis which introduces the Helmholtz mass into the second model. The following equation for the resulting third analytical model of shock position is derived:

$$
\begin{array}{r}
\mathrm{K}_{\mathrm{W}_{\mathrm{ci}}}\left(1+\tau_{\mathrm{w}_{\mathrm{ci}}} \mathrm{~S}\right) \mathrm{e}^{-\tau_{\mathrm{d}} \mathrm{~S}} \frac{\Delta_{\mathrm{w}_{\mathrm{ci}}}}{\mathrm{w}_{\mathrm{ci}}}+\mathrm{K}_{\mathrm{M}_{1}}\left(1+\tau_{1} \mathrm{~S}+\tau_{2} \mathrm{~S}^{2}\right) \Delta \mathrm{M}_{1}+\mathrm{K}_{\mathrm{A}_{1}}\left(1+\tau_{\mathrm{A}_{1}} \mathrm{~S}\right) \frac{\Delta \mathrm{A}_{1}}{\mathrm{~A}_{1}} \\
\Delta \mathrm{X}_{\mathrm{s}}=\frac{+\tau_{\mathrm{P}_{\mathrm{t}}} \mathrm{~S} \frac{\Delta \mathrm{P}_{\mathrm{t} 1}}{\mathrm{P}_{\mathrm{t} 1}}+\tau_{\mathrm{T}_{\mathrm{t}}} \mathrm{~S}\left(1+\tau_{3} \mathrm{~S}\right) \frac{\Delta \mathrm{T}_{\mathrm{t} 1}}{\mathrm{~T}_{\mathrm{t} 1}}}{1+\tau_{4} \mathrm{~S}+\tau_{5} \mathrm{~S}^{2}+\tau_{6} \mathrm{~S}^{3}} \tag{34}
\end{array}
$$

It differs from equation (33) of the second model by having a first-order plus a quadratic lag, a quadratic lead in the $\Delta \mathrm{M}_{1}$ term and a lead in the $\Delta \mathrm{T}_{\mathrm{t} 1}$ term. These changes result from including the inertia of the air in a Helmholtz volume behind the shock. Equations for the coefficients are contained in Appendix C.

Fourth analytical model of shock position. - A nonlinear representation of a supersonic inlet is presented by North American Aviation in ref. 54. Both storage volume and Helmholtz mass effects are included. An analytical model is derived in Appendix D by linearizing the equations in ref. 54 for started inlet operation. This fourth analytical model of shock position is expressed by the equation

$$
\begin{array}{r}
\mathrm{K}_{\mathrm{w}_{\mathrm{ci}}}\left(1+\tau_{\mathrm{V}} \mathrm{~S}\right) \mathrm{e}^{-\tau_{\mathrm{d}} \mathrm{~S} \frac{\Delta \mathrm{w}_{\mathrm{ci}}}{\mathrm{w}_{\mathrm{ci}}}+\mathrm{K}_{\mathrm{M}_{1}}\left(1+\tau_{1} \mathrm{~S}+\tau_{2} \mathrm{~S}^{2}\right) \Delta \mathrm{M}_{1}} \\
+\mathrm{K}_{\mathrm{A}_{1}}\left(1+\tau_{3} \mathrm{~S}+\tau_{4} \mathrm{~S}^{2}\right) \frac{\Delta \mathrm{A}_{1}}{\mathrm{~A}_{1}}+\tau_{\mathrm{P}_{\mathrm{t}}}\left(1+\tau_{\mathrm{V}} \mathrm{~S}\right) \mathrm{S} \frac{\Delta \mathrm{P}_{\mathrm{t} 1}}{\mathrm{P}_{\mathrm{t} 1}} \\
\Delta \mathrm{X}_{\mathrm{S}}=\frac{+\tau_{\mathrm{T}_{\mathrm{t}}}\left(1+\tau_{5} \mathrm{~S}\right) \mathrm{S}-\frac{\Delta \mathrm{T}_{\mathrm{t} 1}}{\mathrm{~T}_{\mathrm{t} 1}}}{1+\tau_{6} \mathrm{~S}+\tau_{7} \mathrm{~S}^{2}+\tau_{8} \mathrm{~S}^{3}+\tau_{9} \mathrm{~S}^{4}}
\end{array}
$$

It differs from equation (34) of the third model by having two quadratic lags, a quadratic lead in the $\Delta \mathrm{A}_{1}$ term and a lead in the $\Delta \mathrm{P}_{\mathrm{t} 1}$ term. Equations for the coefficients are contained in Appendix D. If one desires to evaluate changes in other aerodynamic parameters, such as a pressure in the diffuser, equation (35) must be replaced by a set of equations such as (D3), (D13), (D14) and (D15) in Appendix D.

Comparison of analytical models of shock position. - This subsection has three objectives:

1. to illustrate the response of the shock wave to various sinusoidal disturbances.
2. to compare the predictions of the four analytical models of shock position with each other.
3. to compare these predictions with calculations made by a method-of-characteristics procedure.

The area distribution of the inlet configuration selected for the purpose of achieving these objectives is presented in figure 24. The following values for the required parameters are used (in this section the dimensions of some parameters are not consistent with those shown in the section SYMBOLS because distance along the duct is measured in inches rather than feet):

$$
\begin{aligned}
\mathrm{X}_{\mathrm{s}} & =1.5 \mathrm{in} . \\
\mathrm{M}_{1} & =1.32 \\
\mathrm{a}_{\mathrm{t} 1} & =14200 \mathrm{in} . / \mathrm{sec} \\
\frac{\mathrm{dA}}{\mathrm{AdX}} & =0.008 / \mathrm{in} . \\
\ell & =4 \mathrm{in} . \\
\ell & =0.634 \mathrm{ft}^{2} \\
\mathrm{~A} & \\
\mathrm{M}_{\mathrm{z}} & =0.644 \\
\mathrm{~V}^{\mathrm{z}} & =36 \mathrm{ft}-\mathrm{in} . \\
\mathrm{L} & =35 \mathrm{in} . \\
\mathrm{M}_{\mathrm{d}} & =0.334 \\
\mathrm{M}_{\mathrm{i}} & =0.25 \\
\text { and } \tau_{\mathrm{d}} & =0.004 \mathrm{sec}
\end{aligned}
$$

For the first analytical model of shock position, equation (32) becomes

$$
\begin{equation*}
\Delta \mathrm{X}_{\mathrm{S}}=\frac{269.3 \mathrm{e}^{-0.004 \mathrm{~S}} \frac{\Delta \mathrm{w}_{\mathrm{ci}}}{\mathrm{w}_{\mathrm{ci}}}+60.19 \Delta \mathrm{M}_{1}-269.3 \frac{\Delta \mathrm{~A}_{1}}{\mathrm{~A}_{1}}}{1+0.01411 \mathrm{~S}} \tag{36}
\end{equation*}
$$

The product $269.3 \Delta \mathrm{w}_{\mathrm{ci}} / \mathrm{w}_{\mathrm{ci}}$ may be replaced by $997.1 \Delta \mathrm{M}_{\mathrm{i}}$ as per equation (26) in this and the following three equations. The shock time constant is 0.01411 sec .

For the second analytical model, which includes the volume effect, equation (33) becomes

$$
\begin{align*}
& 269.3(1-0.000469 \mathrm{~S}) \mathrm{e}^{-0.004 \mathrm{~S}} \frac{\Delta \mathrm{w}_{\mathrm{ci}}}{\mathrm{w}_{\mathrm{ci}}}+60.19(1-0.00599 \mathrm{~S}) \Delta \mathrm{M}_{1} \\
& \Delta \mathrm{X}_{\mathrm{S}}= \frac{-269.3(1+0.000469 \mathrm{~S}) \frac{\Delta \mathrm{A}_{1}}{\mathrm{~A}_{1}}+2.009 \mathrm{~S}\left(\frac{\Delta \mathrm{P}_{\mathrm{t} 1}}{\mathrm{P}_{\mathrm{t} 1}}-\frac{\Delta \mathrm{T}_{\mathrm{t} 1}}{\mathrm{~T}_{\mathrm{t} 1}}\right)}{1+0.01393 \mathrm{~S}+0.0000319 \mathrm{~S}^{2}} \tag{37}
\end{align*}
$$

For the third analytical model, which includes the Helmholtz mass effect, equation (34) becomes

$$
\begin{aligned}
& 269.3(1-0.000469 \mathrm{~S}) \mathrm{e}^{-0.004 \mathrm{~S}} \frac{\Delta \mathrm{w}_{\mathrm{ci}}}{\mathrm{w}_{\mathrm{ci}}}+60.19\left(1-0.00518 \mathrm{~S}+0.0000061 \mathrm{~S}^{2}\right) \Delta \mathrm{M}_{1} \\
\Delta \mathrm{X}_{\mathrm{S}}= & \frac{-269.3(1+0.000469 \mathrm{~S}) \frac{\Delta \mathrm{A}_{1}}{\mathrm{~A}_{1}}+2.009 \mathrm{~S} \frac{\Delta \mathrm{P}_{\mathrm{t} 1}}{\mathrm{P}_{\mathrm{t} 1}}-2.053 \mathrm{~S}(1+0.000159 \mathrm{~S}) \frac{\Delta \mathrm{T}_{\mathrm{t} 1}}{\mathrm{~T}_{\mathrm{t} 1}}}{1+0.01475 \mathrm{~S}+0.0000490 \mathrm{~S}^{2}+0.000000082 \mathrm{~S}^{3}}
\end{aligned}
$$

For the fourth analytical model, which is a linearized version of the North American analysis, equation (35) becomes

$$
\begin{array}{r}
269.3(1+0.00746 \mathrm{~S}) \mathrm{e}^{-0.004 \mathrm{~S} \frac{\Delta \mathrm{w}_{\mathrm{ci}}}{\mathrm{w}_{\mathrm{ci}}}+60.19\left(1+0.00194 \mathrm{~S}-0.0000412 \mathrm{~S}^{2}\right) \Delta \mathrm{M}_{1}} \\
-269.3\left(1+0.008397 \mathrm{~S}+0.00000699 \mathrm{~S}^{2}\right) \frac{\Delta \mathrm{A}_{1}}{\mathrm{~A}_{1}}+2.009(1+0.00746 \mathrm{~S}) \frac{\Delta \mathrm{P}_{\mathrm{t} 1}}{\mathrm{P} \frac{\mathrm{t} 1}{}-1.505 \mathrm{~S}} \\
\Delta \mathrm{X}_{\mathrm{S}}= \\
1+0.02640 \mathrm{~S}+0.0002126 \mathrm{~S}^{2}+0.000000415 \mathrm{~S}^{3}+0.00000000023 \mathrm{~S}^{4} \tag{39}
\end{array}
$$

Gains and phase lags were computed from the preceding four equations for sinusoidal disturbances in

1. Diffuser-exit Mach number, $\Delta \mathrm{M}_{\mathrm{i}}$
2. Upstream Mach number, $\Delta \mathrm{M}_{1}$
3. Upstream duct area, $\Delta \mathrm{A}_{1}$
4. Upstream total pressure, $\Delta \mathrm{P}_{\mathrm{t} 1}$
5. Upstream total temperature, $\Delta \mathrm{T}_{\mathrm{t} 1}$

Bode plots showing the computed results are shown in figures 25 through 29 for frequencies between 1 and $1000 \mathrm{rad} / \mathrm{sec}$. The results for the four analytical models are shown by the four sets of lines. In addition, calculations of shock position for four frequencies from 5 to 30 Hz were made using a digital program (number H200) developed by Hamilton Standard. This program uses a method-of-characteristics method at the nine stations downstream of the shock shown by circles in figure 24. The results from this program are shown by the circles in figures 25 through 30 and are believed to be the most accurate theoretical results available. Therefore, results from the four models will be compared to the method-of-characteristics results.

For disturbances in diffuser exit Mach number (or corrected airflow) shown in figure 25 the gain is nearly constant below 10 Hz . At higher frequencies the four models give similar decreasing gains but the fourth ("linearized NAA") model agrees best with the circles. The two lines of phase angle for the "linearized NAA" model indicate that a dead time should be included, contrary to the recommendation of ref. 54. The results for disturbances in upstream Mach number shown in figure 26 are similar. The fourth model, shown by the solid lines, shows best agreement with the circles. Results for a disturbance in area at the shock (or throat) are presented in figure 27. Again the gain decreases with increasing frequency but the phase lag at low frequencies is 180° rather than 0 . No method-of-characteristics calculations for this disturbance are available for comparison because the digital program used did not allow for changes in duct areas with time. The gain for a disturbance in upstream total pressure shown in figure 28 reaches a maximum at about 20 Hz . At low frequencies the phase lag is larger than at high frequencies, that is, about 270°, or about 90° lead. An upstream disturbance in entropy was used for the method-of-characteristics solutions and was converted to an equivalent total pressure or total temperature disturbance using the relation

$$
\frac{\Delta \mathrm{s}_{1}}{\mathrm{R}}=-\frac{\Delta \mathrm{P}_{\mathrm{t} 1}}{\mathrm{P}_{\mathrm{t} 1}}+3.5 \frac{\Delta \mathrm{~T}_{\mathrm{t} 1}}{\mathrm{~T}_{\mathrm{t} 1}}
$$

Again, agreement with the fourth model (solid lines) is best. Results for an upstream disturbance in total temperature are shown in figure 29. The largest gains are obtained from the method-of-characteristics solution and the smallest gain is obtained from the fourth model. At low frequencies the phase shift is 90°. Best agreement with phase shift is provided by the fourth model. It should be noted that the first model does not
include disturbances in either upstream total pressure or temperature and, therefore, results are not shown in figures 28 and 29. Inspection of figures 25 to 29 leads to the following conclusions:

1. All four models predict nearly the same gains and phase shifts at low frequencies but the scatter of the predictions increases with frequency.
2. With one exception, best agreement with a method-of-characteristics solution is provided by the fourth model (solid line).
3. An increase in the gain for an upstream total temperature change would improve agreement for the fourth model.
4. A dead time should be included for an airflow disturbance at the diffuser exit.
5. The first model does not allow for upstream total pressure and temperature disturbances.
The change in diffuser exit static pressure also was computed using the four models and the method-of-characteristics program for a disturbance in diffuser exit Mach number. The change in this static pressure is

$$
\begin{equation*}
\frac{\Delta \mathrm{P}_{27}}{\mathrm{P}_{27}}=\frac{\Delta \mathrm{P}_{\mathrm{td}}}{\mathrm{P}_{\mathrm{td}}}+\frac{\partial\left(\mathrm{P}_{27} / \mathrm{P}_{\mathrm{td}}\right)}{\mathrm{P}_{27} / \mathrm{P}_{\mathrm{td}} \partial \mathrm{M}_{\mathrm{i}}} \Delta \mathrm{M}_{\mathrm{i}} \tag{40}
\end{equation*}
$$

For the first two models $\Delta \mathrm{P}_{\mathrm{td}} / \mathrm{P}_{\mathrm{td}}=\Delta \mathrm{P}_{\mathrm{t} 2} / \mathrm{P}_{\mathrm{t} 2}$ and, using the equation in Table IV for $\Delta \mathrm{P}_{\mathrm{t} 2} / \mathrm{P}_{\mathrm{t} 2}(\mathrm{i}=2)$,

$$
\begin{equation*}
\frac{\Delta \mathrm{P}_{27}}{\mathrm{P}_{27}}=-0.003813 \Delta \mathrm{X}_{\mathrm{s}}-0.000024 \mathrm{~S} \Delta \mathrm{X}_{\mathrm{s}}-0.345 \Delta \mathrm{M}_{\mathrm{i}} \tag{41}
\end{equation*}
$$

For the third model $\Delta \mathrm{P}_{\mathrm{td}} / \mathrm{P}_{\mathrm{td}}$ is computed from equation (C9) and, therefore,

$$
\begin{array}{r}
\frac{\Delta \mathrm{P}_{27}}{\mathrm{P}_{27}}=-0.003813 \Delta \mathrm{X}_{\mathrm{s}}-0.000027 \mathrm{~S} \Delta \mathrm{X}_{\mathrm{s}}-0.000000004 \mathrm{~S}^{2} \Delta \mathrm{X}_{\mathrm{s}} \\
-0.345 \Delta \mathrm{M}_{\mathrm{i}} \tag{42}
\end{array}
$$

For the fourth model, equation (40) is used and equation (39) is replaced by the following equivalent four equations (see (D3), (D13), (D14) and (D15)):

$$
\begin{align*}
& \frac{\Delta \mathrm{w}_{2}}{\mathrm{w}_{2}}+0.00000402 \mathrm{~S} \Delta \mathrm{X}_{\mathrm{S}}=0 \tag{43a}\\
& (1+0.00746 \mathrm{~S}) \frac{\Delta \mathrm{T}_{\mathrm{td}}}{\mathrm{~T}_{\mathrm{td}}}-0.0000175 \mathrm{~S} \Delta \mathrm{X}_{\mathrm{S}}=0 \tag{43b}\\
& \mathrm{~S}(0.0000211+0.00000022 \mathrm{~S}) \Delta \mathrm{X}_{\mathrm{s}}+(1+0.000937 \mathrm{~S}) \frac{\Delta \mathrm{w}_{2}}{\mathrm{w}_{2}}+(0.5+0.00793 \mathrm{~S}) \\
& \tag{43c}\\
& \frac{\Delta \mathrm{T}_{\mathrm{td}}}{\mathrm{~T}_{\mathrm{td}}}-(1+0.00746 \mathrm{~S}) \frac{\Delta \mathrm{P}_{\mathrm{td}}}{\mathrm{P}_{\mathrm{td}}}=3.704 \Delta \mathrm{M}_{\mathrm{i}} \tag{43d}\\
& \left(245940+1400 \mathrm{~S}+\mathrm{S}^{2}\right) \Delta \mathrm{X}_{\mathrm{s}}-16493000 \frac{\Delta \mathrm{~T}_{\mathrm{td}}}{\mathrm{~T}_{\mathrm{td}}}+66236000 \frac{\Delta \mathrm{P}_{\mathrm{td}}}{\mathrm{P}_{\mathrm{td}}}=0
\end{align*}
$$

The results are presented in figure 30. As in the previous four figures, the best agreement with the method-of-characteristics program is provided by the fourth model.

It was anticipated that the third and fourth models of shock position would give the best results because they both include volume and Helmholtz mass effects. This expectation is confirmed by the results. However, the fourth model is generally better than the third model. Therefore, the fourth analytical model of shock position is recommended.

The predictions of the four analytical models of shock position are compared in ref. 2 to test data. In order to allow for the effects of internal bleed near the throat, the area-gradient factor $\mathrm{dA} / \mathrm{AdX}$ in the analytical models is adjusted to match steady-state data for the variation of shock position with diffuser-exit static and total pressures. For a sinusoidal variation in diffuser-exit Mach number, close agreement between the four models and test data is demonstrated. For a variation in upstream flow conditions, agreement is poor because the actual test conditions are poorly defined.

Analytical Model of Propulsion System Performance

The performance characteristics of a mixed-compression supersonic inlet are generally expressed in terms of four parameters: engine-face pressure recovery, relative airflow, spillage drag coefficient, and engine-face flow distortion. A typical relationship between the first three of these parameters for an inlet with bleed near the throat is shown in figure 31. The maximum pressure recovery usually is obtained with the minimum throat area which permits supersonic flow past the throat and with the minimum bypass area which permits the normal shock to be just downstream of the throat. A slight reduction in throat area or bypass area will cause an inlet unstart with a sudden large decrease in pressure recovery and thrust, and possibly unstable airflow which causes vibrational problems throughout the propulsion system. In practice, both the throat area and bypass area are increased from the minimum values by steady-state and transient tolerances to establish the mean operating areas. The steady-state tolerances allow for inlet control tolerances, scheduling compromises and inlet fabrication tolerances. The transient tolerances depend on the inlet and control dynamics and the disturbance rates.

A line of constant engine corrected airflow is shown in the upper part of figure 31. If, with a closed bypass, the throat area is increased from the minimum area to the operating area, the inlet operating condition changes from that indicated by the circle to that indicated by the triangle. The engine-face pressure recovery drops and the inlet drag increases. Both these changes reduce the propulsion system performance. In addition, because the shock moves forward in the throat, the shock-position tolerance is reduced. An acceptable shock-position tolerance is obtained by opening the bypass so that the inlet operates at the condition indicated by the diamond. The pressure recovery and bleed drag decrease but the bypass drag increases. The net change in drag is shown as a decrease. Depending on the relative magnitudes of the changes in pressure recovery and net drag, the thrust specific fuel consumption decreases or increases.

The turbojet manufacturer specifies the uninstalled engine per formance for a standard inlet pressure recovery, PRUN, with no inlet drag. A deviation from this standard inlet pressure recovery to a value of $P_{R_{e}}$ produces a change in the uninstalled thrust and engine fuel flow w_{f}. Duct loss coefficients C_{d} and $C_{d}{ }^{\prime}$ are presented in engine specifications to permit calculation of these changes from the following two equations:

$$
\begin{equation*}
\frac{\mathrm{F}_{\mathrm{UN}}-\mathrm{F}_{\mathrm{n}}}{\mathrm{~F}_{\mathrm{n}}}=\left(1+\mathrm{C}_{\mathrm{d}}\right) \frac{\mathrm{P}_{\mathrm{R}_{\mathrm{e}}}-\mathrm{P}_{\mathrm{R}_{\mathrm{UN}}}}{\mathrm{P}_{\mathrm{R}_{U N}}} \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{{ }_{\mathrm{f}_{\mathrm{UN}}}{ }^{-\mathrm{w}_{\mathrm{f}}}}{\mathrm{w}_{\mathrm{f}}}=\left(1+\mathrm{C}_{\mathrm{d}}^{\prime}\right) \frac{{ }_{\mathrm{P}_{\mathrm{e}}}-\mathrm{P}_{\mathrm{R}_{\mathrm{UN}}}}{\mathrm{P}_{\mathrm{R}_{\mathrm{UN}}}} \tag{45}
\end{equation*}
$$

Values of C_{d} are usually between 0.2 and 1.0 and values of C_{d} are usually zero, so that the change in uninstalled thrust specific fuel consumption is:

$$
\begin{equation*}
\frac{\Delta T S F C_{U N}}{\mathrm{TSFC}_{U N}}=-\mathrm{C}_{\mathrm{d}} \frac{\mathrm{P}_{\mathrm{R}_{\mathrm{e}}}-\mathrm{P}_{\mathrm{R}_{\mathrm{UN}}}}{\mathrm{P}_{\mathrm{R}_{\mathrm{UN}}}} \tag{46}
\end{equation*}
$$

If the inlet pressure recovery is greater than the standard value, the specific fuel consumption is reduced and the thrust is increased, the effect on the thrust being several times greater than that on the specific fuel consumption. The thrust is increased both by increased airflow and by increased efficiency. The installed thrust is computed by subtracting the external spillage drag, the throat bleed drag, and the bypass bleed drag from the uninstalled thrust corrected for pressure recovery by equation (44).

$$
\begin{equation*}
\mathrm{F}_{\mathrm{IN}}=\mathrm{F}_{\mathrm{UN}}-\mathrm{D}_{\mathrm{EXT}}-\mathrm{D}_{\mathrm{BL}}-\mathrm{D}_{\mathrm{BY}} \tag{47}
\end{equation*}
$$

The installed thrust specific fuel consumption is computed from

$$
\begin{equation*}
\mathrm{TSFC}_{\mathrm{IN}}=\frac{{ }^{\mathrm{w}_{\mathrm{f}}}}{\mathrm{~F}_{\mathrm{UN}}} \tag{48}
\end{equation*}
$$

where $\mathrm{w}_{\mathrm{U}}{ }$ is evaluated from equation (45).
Several reports (e.g., refs. 1, 71 and 72) which present studies of the effects of inlet operating conditions on propulsion system performance have been published. For the purposes of this report, the inlet and engine sizes are constant and only inlet geometry (e.g. A A_{th}), bypass area and engine throttle position are variable. The results of a representative study of the effects of control tolerances on performance with fixed power lever position are presented in ref. 1. For some applications it is desirable to keep a fixed flight altitude. Consequently, the installed thrust must not be altered by changes in inlet geometry. Changes in the three drag terms in equation (47) must be offset by a corresponding change in the uninstalled thrust caused by a change in throttle position. Figure 32 presents uninstalled performance data for a typical turbojet at fixed altitude, flight Mach number, and pressure recovery. A change in the engine net thrust is accompanied by a change in engine fuel flow and, at low thrusts, by a change in engine corrected airflow. Assume that the performance has been corrected for installation
effects at a particular operating condition. Then, for constant installed thrust, the change in engine fuel flow is:

$$
\begin{equation*}
\Delta w_{f}=\frac{\mathrm{dw}_{f}}{d F_{n}}\left(\Delta D_{E X T}+\Delta D_{B L}+\Delta D_{B Y}-\left(1+C_{d}\right) F_{n} \frac{\Delta P_{R}}{P_{R}}\right)+w_{f}\left(1+C_{d}\right) \frac{\Delta P_{R}}{P_{R}} \tag{49}
\end{equation*}
$$

and the change is thrust specific fuel consumption is:

$$
\begin{equation*}
\frac{\Delta \mathrm{TSFC}}{\mathrm{TSFC}}=\frac{\Delta \mathrm{w}_{\mathrm{f}}}{\mathrm{w}_{\mathrm{f}}} \tag{50}
\end{equation*}
$$

In these two equations the changes are from the initial corrected performance and are due to changes in inlet geometry and bypass area, for example.

An example will illustrate the concepts discussed above. The inlet performance characteristics are shown in figure 31. The following assumptions are made:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{n}} & =2370 \mathrm{lb} \\
\mathrm{w}_{\mathrm{f}} & =3560 \mathrm{lb} / \mathrm{hr} \\
\mathrm{C}_{\mathrm{d}} & =0.3 \\
\mathrm{C}_{\mathrm{d}}^{\prime} & =0.0 \\
\mathrm{w}_{\mathrm{c}_{\mathrm{e}}} & =\text { constant } \\
\mathrm{dwf}_{\mathrm{f}} / \mathrm{dF}_{\mathrm{n}} & =2.3 \mathrm{lb} / \mathrm{hr} / \mathrm{lb} \\
\mathrm{D} & =2410 \mathrm{C}_{\mathrm{D}} \mathrm{lb} \\
\mathrm{dC}_{\mathrm{D}_{\mathrm{BL}}} / \mathrm{dW}_{\mathrm{RB}_{\mathrm{L}}} & =1.6 \\
\mathrm{dC}_{\mathrm{DBY}} / \mathrm{dW}_{\mathrm{R}_{\mathrm{BY}}} & =1.0 \\
\mathrm{C}_{\mathrm{DEXT}} & =0.0055
\end{aligned}
$$

Then, using equations (44), (45), (47) and (48), the installed thrust specific fuel consumption was calculated for several points on the minimum $A_{t h}$ inlet characteristic with $\mathrm{D}_{\mathrm{BY}}=$ zero. The point for minimum TSFCIN is taken as the reference condition from which the transient tolerances apply. Five cases are discussed.

For the first case the throat area is increased so that the inlet pressure recovery curve is displaced downward, in a similar manner to that shown in figure 31. Because the bypass is assumed to remain closed, the inlet relative airflow decreases and the terminal normal shock moves upstream. Thus, for example, the operating point changes
from the circle to the triangle in figure 31. The decreases in installed thrust $F_{\text {IN }}$ and in pressure recovery P_{R} and the increase in $T S F C_{I N}$ are shown as a function of the throat Mach number tolerance by solid lines in figure 33. Thus, increasing the throat Mach number by 0.103 to 1.303 reduces P_{R} by 0.27%, reduces F_{IN} by 0.75% and increases TSFC ${ }_{\text {IN }}$ by 0.48%.

Unfortunately, for case 1 the shock position tolerance decreases as the throat Mach number tolerance increases. For case 2, the bypass opens as the throat Mach number increases in order to maintain a fixed inlet relative airflow. Thereby the shock position tolerance remains nearly constant. Opening the bypass moves the operating point from the triangle to near the diamond in figure 31. The changes in performance are shown by short-dashed lines in figure 33. The performance losses for case 2 are significantly larger than those for case 1.

Case 3 demonstrates the results of increasing the engine thrust by advancing the engine power lever in order to maintain the reference installed thrust. For this case there is no loss in $F_{\text {IN }}$ and the pressure recovery loss is the same as that for case 2. However, because of the increased fuel flow required, the increase in $\mathrm{TSFC}_{\mathrm{IN}}$ is much greater than that for case 2, as shown by the long-dashed line in figure 33 .

Case 4 in fig. 34 shows the effects of increasing the bypass area in order to increase the shock-position tolerance, $i_{\text {. }}$ e., to move the shock back from the throat. In figure 31, for example, the operating condition is changed from the circle to the square. The decreases in pressure recovery and in installed thrust and the increase in $\mathrm{TSFC}_{\text {IN }}$ are shown by the solid lines in figure 34 as a function of shock position tolerance, which is expressed as a percent of corrected airflow.

The fifth case, like case 3, assumes that the engine power lever is advanced to maintain a constant installed thrust. The loss in pressure is the same as for case 4 but the increase in TSFC IN is nearly double, as shown by the dashed line in figure 34.

The following table lists a representative set of parameters computed for each of the five cases discussed above. For each case, several such sets were computed in order to produce the curves in figures 33 and 34.

Case	Reference	1	2	3	4	5
M_{th}	1.200	1.303	1.300	1.300	1.200	1.200
P_{Re}	0.8765	0.8741	0.8646	0.8646	0.8600	0.8600
$\mathrm{~W}_{\mathrm{Ri}}$	0.9200	0.9175	0.9200	0.9200	0.9210	0.9210
$\mathrm{D}_{\mathrm{EXT}}, \mathrm{lb}$	13.2	13.2	13.2	13.2	13.2	13.2
$\mathrm{D}_{\mathrm{BL}}, \mathrm{lb}$	3.8	13.5	3.8	3.8	0.0	0.0
$\mathrm{D}_{\mathrm{BY}}, \mathrm{lb}$	0.0	0.0	30.0	30.0	44.2	44.2
$\mathrm{~F}_{\mathrm{IN}}, \mathrm{lb}$		2449.0	2430.7	2376.1	2449.0	2348.9
$\mathrm{wf}_{\mathrm{IN}}, \mathrm{lb} / \mathrm{hr}$	3671.0	3661.0	3621.3	3789.0	3601.9	3832.1
$\mathrm{TSFC}_{\mathrm{IN}}, \mathrm{lb} / \mathrm{hr} / \mathrm{lb}$	1.499	1.506	1.524	1.547	1.533	1.565
$\mathrm{w}_{\mathrm{c}}, \%$						

The values of the performance losses computed from equations (44) to (50) depend on the throat Mach number and shock position tolerances used. In addition, the losses depend on the inlet and engine performance characteristics used. For this reason, the losses shown in figure 4 of ref. 1 differ from the losses shown in figures 33 and 34 of this report. However, given the inlet and engine performance characteristics, such as shown in figures 31 and 32 , the performance losses can be calculated from the equations in this section. The performance losses depend on the ground rules assumed, for example on whether the inlet size or the power lever position may be varied or are fixed. These ground rules are likely to change as the aircraft design progresses from the preliminary design phase to the flight operational phase.

FREQUENCY OF INLET UNSTARTS

Previous sections present data on the atmospheric turbulence environment and on a linearized model of a supersonic inlet. This section develops a procedure for estimating the frequency of inlet unstarts. This is done by deriving an equation for the frequency of a given change in throat Mach number or shock position. These given changes, the transient control tolerances, are assumed to be just enough to cause an inlet unstart due to choking the throat or the shock moving upstream of the throat, respectively. Transient disturbances in the other direction are presumed to cause no harm. Plots of flight miles between unstarts against the transient control tolerances, which are related to performance penalties, are the final result. Similar plots are shown in ref. 1.

The inlet model shown in figure 18 is simplified to produce the schematic in figure 35. Only longitudinal gusts are considered at this point. Here the C's are constants and the H's are functions of frequency ω which, with the exception of H_{1}, are unity at zero frequency. Values for the six constants and equations for the seven frequencyresponse functions H are determined by the inlet model, such as that developed in a preceding section, and the characteristics of the throat Mach control and shock position control. The equations in figure 35 relating the changes in throat Mach number and shock position to the change in flight Mach number are functions of frequency because of the " H " terms. Both $\Delta \mathrm{M}_{\mathrm{th}}$ and $\Delta \mathrm{X}_{\mathrm{S}}$ are linear functions of the upstream disturbances.

The power spectrum ϕ_{0} of $\Delta \mathrm{M}_{0}$ is selected. The Von Karman spectrum (see Table II) is recommended. It can be shown (e.g., see refs. 31 and 42) that the power spectra of $\Delta \mathrm{M}_{\text {th }}$ and $\Delta \mathrm{X}_{\mathrm{S}}$ are given by the equation

$$
\begin{equation*}
\phi(\omega)=|H(\omega)|^{2} \phi_{0}(\omega) \tag{51}
\end{equation*}
$$

where the appropriate subscript "th" or "s" is appended to $\phi(\omega)$ on the left and $H(\omega)$ is the appropriate linear frequency-response function. For example, H (ω) is a coefficient of $\Delta \mathrm{M}_{0}$ on the right of one of the equations in figure 35. Usually, the frequencyresponse functions are available as functions of the Laplace variable S rather than frequency ω. Therefore, it is necessary to convert an equation for $H(S)$ to an equation for $|H(\omega)|^{2}$. This may be done by using the following equation.

$$
\begin{equation*}
|\mathrm{H}(\omega)|^{2}=\mathrm{H}(\mathrm{i} \omega) \mathrm{H}(-\mathrm{i} \omega)=\mathrm{H}(\mathrm{~S}) \mathrm{H}(-\mathrm{S}) \tag{52}
\end{equation*}
$$

That is, $H(S)$ is multiplied by $H(-S)$ and then S is replaced by i ω to obtain the desired equation, which must have only real terms. For example, if $\mathrm{H}(\mathrm{S})=1+\tau \mathrm{S}$,

$$
\begin{aligned}
|\mathrm{H}(\omega)|^{2} & =(1+\tau \mathrm{S})(1-\tau \mathrm{S})=1-\tau^{2} \mathrm{~S}^{2} \\
& =1-\tau_{(\mathrm{i} \omega)^{2}=1+\tau^{2} \omega^{2}}
\end{aligned}
$$

While the algebraic processes performed above are straightforward, the actual execution for more complicated functions $H(S)$ can be very difficult because several hundred terms may occur. Consequently, a digital program was written to read an equation for the frequency-response function $\mathrm{H}(\mathrm{S})$ and to derive and print the equation for the amplitude of the square of the frequency-response function $|H(\omega)|^{2}$. This program is described in Appendix E. The complete frequency-response function may be considered to be the product of a number of functions in the numerator and in the denominator, each of which may be considered separately and the final equations combined.

Thus from figure 35,

$$
\Delta \mathrm{M}_{\mathrm{th}}=\frac{\mathrm{C}_{1} \mathrm{H}_{2}}{-\mathrm{f}_{\mathrm{th}} \mathrm{C}_{2}+\mathrm{H}_{2}} \Delta \mathrm{M}_{0}
$$

and from equation (51) with $H(\omega)$ replace by the factor of ΔM above:

$$
\begin{equation*}
\phi_{\mathrm{M}_{\mathrm{th}}}(\omega)=\frac{\mathrm{C}_{1}^{2}\left|\mathrm{H}_{2}(\omega)\right|^{2}}{\left.\right|^{-\mathrm{f}_{\mathrm{th}} \mathrm{C}_{2}+\left.\mathrm{H}_{2}(\omega)\right|^{2}}} \quad \phi_{\mathrm{M}_{0}}(\omega) \tag{53}
\end{equation*}
$$

That is, the terms $\mathrm{C}_{1}, \mathrm{H}_{2}$, and $-\mathrm{f}_{\mathrm{th}} \mathrm{C}_{2}+\mathrm{H}_{2}$ are converted separately to equations for the square of the frequency response and then combined in equation (53). Several simple functions of S appear frequently in $\mathrm{H}(\mathrm{S})$. Some of these are shown in Table VI alongside the corresponding equation for $|\mathrm{H}(\omega)|$ 2. Table VI and the program described in Appendix E may be used to develop an equation for the square of the frequency-response function in equation (51).

Several representative examples for the square of the frequency-response function have been worked out. The results are shown in figures 36,37 and 38 . Figure 36 is drawn for a simple throat Mach control consisting of an ideal integrator. Curves are drawn for loop velocity constants ($-\mathrm{f}_{\mathrm{th}} \mathrm{C}_{2}$) of 0 (no control), $5,10,20$, and $40 / \mathrm{sec}$. At low frequencies ω, the throat Mach number power spectral density is significantly reduced by the control. In practice, H_{2} should be a more complicated function of S in order to account for the dynamics of pneumatic transmission lines, a sensor, and a servo valve. Figure 37 is drawn for a representative function $H_{2}(S)$. Compared to figure 36 , a resonance peak is introduced near $25 \mathrm{rad} / \mathrm{sec}$. Three curves are drawn for a loop velocity constant of $20 / \mathrm{sec}$. The dashed curve, when compared to the solid curve, shows the result of changed dynamic characteristics caused by lowering the pressure level (increasing altitude). The resonant peak is accentuated and moves to a lower frequency. The dash-dot curve shows that adding a lead term reduces the resonant peak and moves it to a higher frequency. Figure 38 is drawn for the power spectrum of the shock position. The ratio is nearly constant at about 300 if neither the throat Mach number nor the shock position controls operate. If just the throat Mach control operates, ϕ_{S} is increased by about a factor of 3 at low frequencies and dips sharply near 45 $\mathrm{rad} / \mathrm{sec}$. With the shock-position control also operating, ϕ_{S} is reduced at low frequencies and peaks about $15 \mathrm{rad} / \mathrm{sec}$. The parameters in the block diagram in figure 35 are:

$$
\begin{array}{ll}
\mathrm{C}_{1}=1.85 & \mathrm{H}_{1}=0.34 \mathrm{~S} \\
\mathrm{f}_{\mathrm{th}}=-2.23 & \mathrm{C}_{2}=8.9686 \\
\mathrm{C}_{3}=-40.842 & \mathrm{C}_{4}=9.3062
\end{array}
$$

$$
\begin{aligned}
& \mathrm{H}_{2}=\left(1+0.015 \mathrm{~S}+0.0001 \mathrm{~S}^{2}\right)(1+0.002 \mathrm{~S})(1+0.01 \mathrm{~S}) \mathrm{S} \\
& \mathrm{H}_{3}=1+0.0009367 \mathrm{~S} \\
& \mathrm{H}_{4}=1-0.0045075 \mathrm{~S}+0.000013281 \mathrm{~S}^{2} \\
& \mathrm{H}_{5}=1+0.01899 \mathrm{~S}+0.000105 \mathrm{~S}^{2}+0.00000027 \mathrm{~S}^{3}
\end{aligned}
$$

The dash and dash-dot lines show the effects of adding one and two lead terms, respectively, to the shock-position control simulation in order to minimize the resonant peak.

Two parameters A and N are used in the following subsection to compute exceedance statistics. They may be computed by integrating the power spectrum of the change in throat Mach number or shock position. The first parameter is the ratio of the rms amplitude of the output disturbance to the rms amplitude of the free-stream disturbance:

$$
\begin{equation*}
\mathrm{A}=\sqrt{\frac{\int_{0}^{\infty} \phi \mathrm{d} \omega}{\int_{0}^{\infty} \phi_{0} \mathrm{~d} \omega}}=\frac{\sqrt{\int_{0}^{\infty} \phi \mathrm{d} \omega}}{\sigma_{0}}=\frac{\sigma}{\sigma_{0}} \tag{54}
\end{equation*}
$$

where the appropriate subscript, "th" or " s ", should be appended to A and to ϕ and σ in the numerator. The digital program described in Appendix F was written to compute ϕ as a function of frequency and to perform the integration in equation (54). Actually, the upper limit of the integration in this program is a variable rather than infinity. However, as discussed in connection with equation (2), the contribution to the integral above some cutoff frequency ω_{c} is small and may be neglected.

The second parameter is the number of times the disturbance crosses zero with positive slope per unit time. This parameter, called N_{th} for throat Mach number, is computed from the equation

$$
\begin{equation*}
N_{\mathrm{th}}=\frac{\sqrt{\int_{0}^{\infty} \omega^{2} \phi_{\mathrm{th}} \mathrm{~d} \omega}}{2 \pi \sqrt{\int_{0}^{\infty} \phi_{\mathrm{th}} \mathrm{~d} \omega}}=\mathrm{VG}_{\mathrm{th}} \tag{55}
\end{equation*}
$$

Likewise, N_{S} for the shock position is:

$$
\begin{equation*}
\mathrm{N}_{\mathrm{s}}=\frac{\sqrt{\int_{0}^{\infty} \omega^{2} \phi_{\mathrm{S}} \mathrm{~d} \omega}}{\sqrt[2 \pi]{\sqrt{\int_{0}^{\infty} \phi_{\mathrm{s}} \mathrm{~d} \omega}}}=\mathrm{VG}_{\mathrm{s}} \tag{56}
\end{equation*}
$$

This parameter is also computed by the program described in Appendix F as a function of the upper limit of the integration. For most spectra this parameter becomes infinite if the upper limit is infinite. This effect is discussed in connection with equation (3). A solution to this problem which results in a finite value is described there and is recommended. As noted in refs. 42 and 73 , the validity of equations (55) and (56) depends on the assumption that the probability distribution of σ is locally Gaussian. That is, that

$$
\begin{equation*}
p(\sigma)=\sqrt{\frac{2}{\pi}} \frac{1}{b} e^{-\sigma^{2} / 2 b^{2}} \tag{57}
\end{equation*}
$$

where

$$
\int_{0}^{\infty} \mathrm{p}(\sigma) \mathrm{d} \sigma=1
$$

Available data (e.g., see ref. 73) indicate that this assumption is not satisfied. However, since no better assumption is known, since the resulting error in equations (55) and (56) is not known but should be small, and since these equations are universally used in loads calculations, equations (55) and (56) will be considered valid.

Values for $A_{t h}, A_{S}, N_{t h}$, and N_{S} depend only on the shape of the power spectra $\phi_{t h}$ and ϕ_{S} and on the cutoff frequency ω_{c}. To illustrate representative results, the program described in Appendix F was used for the inlet models of figures 37 and 38. A Von Karman longitudinal spectra with $L=2500 \mathrm{ft}$ and $\mathrm{V}=2613.82 \mathrm{fps}$ was used for $\phi_{\mathrm{M}_{\mathrm{L}}}$.
The results are presented in the following two tabulations for a cutoff frequency of 102.4 rad/sec.

Case, figure 37	$-\mathrm{f}_{\mathrm{th}} \mathrm{C}_{2}$	$\mathrm{~A}_{\mathrm{th}}$	$\mathrm{N}_{\mathrm{th}}, / \mathrm{hr}$	$\mathrm{G}_{\mathrm{th}}, / \mathrm{mile}$
	0	1.85000	6982	4.508
	10	0.85277	16444	10.618
low pressure	20	0.82379	19153	12.368
with lead	20	1.12642	14185	9.160
	20	0.69159	22681	14.645
	30	0.91657	20446	13.202

Case, figure 38	C_{5}	$\mathrm{~A}_{\mathrm{S}}, \mathrm{ft}$	$\mathrm{N}_{\mathrm{S}}, / \mathrm{hr}$	$\mathrm{G}_{\mathrm{S}}, / \mathrm{mile}$
	5	17.18305	8135	5.253
one lead	10	15.54177	9954	6.427
two leads	10	13.66904	10664	6.886
	10	11.23797	12004	7.751
	15	16.14338	11130	7.187

It is apparent that changes in the shape of the power spectral density curve change the values of A, N and G . Generally an increase in A is associated with a decrease in N and G. As will be shown in the following subsection, low values for both A and G are desirable.

Exceedance Statistics

In this section there is derived an equation for the frequency of inlet unstarts. In order to simplify the discussion, only unstarts due to a decrease in throat Mach number will be considered. However, the discussion is also valid for an unstart due to an upstream shock displacement. The problem, then, is to determine the frequency (per flight mile or hour) that a level of $\Delta \mathrm{M}_{\mathrm{th}}$ is exceeded. This level is the throat Mach number transient tolerance; that is, the amount that the throat Mach number is increased above the minimum value for started operation in order to reduce the frequency of inlet unstarts due to transient disturbances such as atmospheric gusts. The procedure used is the same as that for calculating aircraft load exceedance curves (e.g., see refs. $31,32,35$ and 42). Several assumptions are made:

1. The transfer function between a free-steam disturbance and $\Delta \mathrm{M}_{\mathrm{th}}$ is linear.
2. The shape of the power spectrum ϕ_{th} is fixed, although the level depends on σ th.
3. Values of $A_{t h}$ and $N_{\text {th }}$ are computed by equations (54) and (55).
4. A statistical description of atmospheric turbulence is available in terms of \mathbf{P} and b .
5. The probability density distribution of the rms amplitude of the atmospheric turbulence in the many patches encountered is $\mathrm{p}\left(\sigma_{0}\right)$.

The frequency of crossings of a level $\Delta M_{\text {th }}$ with positive slope is (e.g., see refs. 31, 42, and 73):

$$
\begin{equation*}
N=P N_{t h} \int_{0}^{\infty} \mathrm{p}\left(\sigma_{0}\right) e^{-\frac{\Delta \mathrm{M}_{\mathrm{th}}}{2 \mathrm{~A}_{\operatorname{th}} \sigma_{0}}} \mathrm{~d} \sigma_{0} \tag{58}
\end{equation*}
$$

Usually, $p\left(\sigma_{0}\right)$ is assumed to be Gaussian with a variance of b^{2}, so that

$$
\begin{equation*}
\mathrm{p}\left(\sigma_{0}\right)=\sqrt{\frac{2}{\pi}} \frac{1}{\mathrm{~b}} \mathrm{e}^{-\sigma^{2 / 2 \mathrm{~b}^{2}}} \tag{59}
\end{equation*}
$$

For this probability density distribution, the integration in equation (58) can be performed analytically with the simple result

$$
N=\mathrm{PN}_{\text {th }} \mathrm{e}^{-\Delta \mathrm{M}_{\mathrm{th}} / \mathrm{A}_{\mathrm{th}} \mathrm{~b}}
$$

This equation, case " a " of ref. 42, results in a straight line on a semilog plot like figure 14. Experience, however, shows that the line should be curved. Usually this curvature is introduced by summing two or three terms to produce the following equation

$$
\begin{equation*}
N=N_{t h}\left(P_{1} e^{-\frac{\Delta \mathrm{M}_{t h}}{\mathrm{~A}_{\text {th }} \mathrm{b}_{1}}}+\mathrm{P}_{2} \mathrm{e}^{-\frac{\Delta \mathrm{M}_{t h}}{\mathrm{Ath}^{\mathrm{b}_{2}}}}+\mathrm{P}_{3} \mathrm{e}^{\left.-\frac{\Delta \mathrm{M}_{t h}}{\mathrm{~A}_{\mathrm{th}} \mathrm{~b}_{3}}\right)}\right. \tag{61}
\end{equation*}
$$

Values of P_{1}, P_{2} and P_{3} may be found in Table III and figures 10 and 11.
Values of b_{1}, b_{2} and b_{3} may be found in Table III and figures 12 and 13 .
Generally, $P_{1}>P_{2}>P_{3}$ and $b_{1}<b_{2}<b_{3}$. Equations (60) and (61) determine the frequency (e.g., times per hour) that the throat Mach number decreases (or increases) by at least $\Delta \mathrm{M}_{\text {th }}$ units or, in other words, the frequency that a tolerance $\Delta \mathrm{M}_{\text {th }}$ is exceeded. In equation (60) the frequency is proportional to $\mathrm{PN}_{\text {th }}$ and, for a given frequency, $\Delta \mathrm{M}_{\text {th }}$ is proportional to $A_{t h} b$. Therefore, it is desirable that $N_{\text {th }}$ and $A_{\text {th }}$ be small. Dr. Houbolt (see ref. 42) investigated several probability density functions in place of that in equation (59), and obtained equations (5) to (9) in place of equation (60). The curvature of the exceedance curve provided by these equations depends on one parameter, α. The curvature required to fit some particular data is provided either by using two or three terms in equation (61); or by using equations (5-7), (8), or (9) with an appropriate value of α. At high exceedance probabilities (large N, low $\Delta \mathrm{M}_{\mathrm{th}}$), all exceedance curves from these equations can coincide. Only at small exceedance probabilities (large $\Delta \mathrm{M}_{\mathrm{th}}$) do they differ, as shown in figure 14. However, it is in this area that the available data on which the exceedance curves are based are most limited. Thus, to estimate the inlet transient tolerance which is exceeded once in 10 million miles is risky, because, as earlier discussion and Table I show, available experience barely extends to 1 million miles. An extrapolation to large distances between unstarts is very questionable.

STEPWISE PROCEDURE FOR CALCULATING FREQUENCY OF INLET UNSTARTS

The procedure for computing an exceedance curve of N , frequency of crossings, versus $\Delta \mathrm{M}_{\text {th }}$ may be outlined in the following steps:

1. Select an analytical model of the inlet which expresses changes in $\Delta \mathrm{M}_{\mathrm{th}}$ as a linear function of the upstream disturbances u, v and w 。 These functions may be in terms of the Laplace variable S which must be converted into functions of ω. Suggested models are described in the section ANALYTICAL INLET MODEL.
2. Compute the PSD ratios $\phi_{\mathrm{th}} / \phi_{\mathrm{u}}, \phi_{\mathrm{th}} / \phi_{\mathrm{V}}$ and $\phi_{\mathrm{th}} / \phi_{\mathrm{W}}$ as functions of frequency ω from the functions in step 1. Preferably, these three ratios are analytical functions obtained by using Table VI and the digital program described in Appendix E.
3. Select an atmospheric turbulence model and corresponding power spectral density family from Table III. A model associated with the Von Karman family is preferable. Select the appropriate scale length L from Table III. The atmospheric turbulence model from refs. 35 and 41 is recommended.
4. Determine coefficients in equations for $\phi_{\mathrm{u}}(\omega) / \sigma_{\mathrm{u}}{ }^{2}$ and $\phi_{\mathrm{w}}(\omega) / \sigma_{\mathrm{w}}{ }^{2}$ (see Table II) which depend on L and flight velocity V.
5. Compute $\phi_{\mathrm{th}} / \sigma_{\mathrm{u}}^{2}, \mathrm{Ath}_{\mathrm{u}}$, and Gthu with the digital program described in Appendix F. The function PSD required by the digital program uses the equations for $\phi_{\mathrm{th}} / \phi_{\mathrm{u}}$ from step 2 and for $\phi_{\mathrm{u}}(\omega) / \sigma_{\mathrm{u}}^{2}$ from step 4. Ath is the bottom number in the ninth column (headed "SIGMA UNITS") of the program output. The value of the $\mathrm{G}_{\mathrm{th}_{\mathrm{u}}}$ is read from column 10 on the line in which the number in the ninth column is 95 percent of $A_{t h_{u}}$. Interpolation between lines may be employed.
6. Compute $\phi_{\mathrm{th}} / \sigma_{\mathrm{v}}^{2}, \mathrm{~A}_{\mathrm{th}}{ }_{\mathrm{v}}$, and G_{th} as in step 5 using $\phi_{\mathrm{th}} / \phi_{\mathrm{v}}$ and $\phi_{\mathrm{W}}(\omega) / \sigma_{\mathrm{w}}{ }^{2}$.
7. Compute $\phi_{\mathrm{th}} / \sigma_{\mathrm{w}}{ }^{2}, \mathrm{~A}_{\mathrm{th}}$, and $\mathrm{G}_{\mathrm{th}}{ }_{\mathrm{W}}$ as in step 5 using $\phi_{\mathrm{th}} / \phi_{\mathrm{w}}$ and $\phi_{\mathrm{w}}(\omega) / \sigma_{\mathrm{w}}{ }^{2}$.
8. Compute $A_{\text {th }}$ from the equation

$$
\begin{equation*}
A_{t h}=\sqrt{A_{t h_{u}}^{2}+A_{t h_{w}}^{2}+A_{t h_{v}}^{2}} \tag{62}
\end{equation*}
$$

For $G_{t h}$, an average seems reasonable

$$
\begin{equation*}
\mathrm{G}_{\mathrm{th}}=\left(\mathrm{G}_{\mathrm{th}} \mathrm{u}_{\mathrm{u}}+\mathrm{G}_{\mathrm{th}}^{\mathrm{w}} \text { }+\mathrm{G}_{\mathrm{th}_{\mathrm{v}}}\right) / 3 \tag{63}
\end{equation*}
$$

9. For the atmospheric turbulence model selected in step 3, determine the parameters P and b for the given altitude from Table III or figures 10 to 13 .
10. Compute the exceedance curve for $\Delta M_{\text {th }}$ by using the digital program described in Appendix G. Use exceedance model based on equation (4). If the atmospheric turbulence model is from ref. 42 use the exceedance model based on equations (5), (6) and (7) with $\alpha=8$ to 9 。 Input parameters include $A_{\text {th }}$ and $G_{\text {th }}$ from step 8 and P_{1}, P_{2}, b_{1} and b_{2} from step 9. The amplitude $\mathrm{X}=\Delta \mathrm{M}_{\text {th }}$ may be plotted against either the number of nautical miles between exceedances (unstarts) or the number of hours between unstarts.

In addition, the performance penalties resulting from the transient tolerances in throat Mach number ($\Delta \mathrm{M}_{\mathrm{th}}$) may be obtained by using the procedure already described in the Analytical Model of Propulsion System Performance section.

A similar analysis to that outlined above may be performed for the change in shock position $\Delta \mathrm{X}_{\mathrm{S}}$. The results of the two analyses are expressed in two curves of miles (or hours) between unstarts against performance penalties, such as range. The two results, one for unstarts due to choking the throat and one for unstarts due to the shock moving upstream past the throat, may be combined if the throat Mach number and shock position transient tolerances are selected to give equal frequency of unstarts due to the two causes. For a given number of miles between inlet unstarts, the performance penalty associated with throat Mach number and the performance penalty associated with shock position are read from the two curves. The sum of these two penalties, or the total performance penalty, may be plotted against the given number of miles between inlet unstarts. This plot shows the relation between frequency of inlet unstarts at a given flight speed and altitude to the performance penalty required. With this relation available, it will be possible to select the required transient control tolerances based upon a particular mission profile and a preselected interval between inlet unstarts. The interval may be selected based upon a qualitative and quantitative assessment of the consequences of an inlet unstart to aircraft safety and passenger comfort.

The procedure presented above calculates the frequency of inlet unstarts for a selected altitude and flight speed. Actually, each flight will include a range of altitudes and flight speeds at which inlet unstarts are undesirable. Therefore, calculations should be performed for several sets of altitudes and flight speeds and the results combined by using weighting factors proportional to the flight time at each set of conditions. The result could be a plot of the number of trips between unstarts against some performance penalty, such as dollars per trip. It must be emphasized that this plot, like figures 42 to 46 of this report, is based on statistical theory. Thus, although the theory might predict one unstart in 1000 flights, several unstarts could occur in one flight through a large patch of severe turbulence.

If the performance penalties are too severe, several possible solutions may be investigated:

1. Change geometry of airplane and inlet to reduce sensitivity of throat Mach number and shock position to atmospheric turbulence.
2. Change inlet geometry to reduce performance penalties resulting from inlet transient tolerances.
3. Increase speed of response of inlet controls.
4. Use two levels of transient tolerances: one for normal operation, and a larger level when turbulence is expected. At present, a practical means for detecting turbulence far enough ahead of the aircraft to avoid it or to reset the transient tolerances is not available (see ref. 10).

APPLICATION OF PROCEDURE TO REPRESENTATIVE INLET

The procedure for relating the interval between unstarts to performance penalties will be illustrated by applying it to a representative inlet. The characteristics of this inlet were supplied by the Boeing Company and are shown in figure 39. The inlet representation is the result of independent studies by Boeing and does not reflect the model developed in this report. This block diagram contains some significant differences from that in figure 35 which complicate the analysis. First, on the left, terms involving the absolute value of a disturbance $(|\Delta \alpha|$ and $|\Delta \beta|)$ rather than the signed value of the disturbance are used. Second, in a block associated with shock position, $\mathrm{K}_{1}=45$ and $\mathrm{K}_{2}=0$ so that the gain depends on the sign of ΔX_{s}. Because of the limited time available for this part of the contract the following approach was used to resolve these two problems. The inlet and control shown schematically in figure 39 , with $\mathrm{K}_{1}=45$ and $\mathrm{K}_{2}=0$, was simulated by a MIMIC digital program. Sinusoidal changes in M_{0} were input at frequencies of 1,10 , and $100 \mathrm{rad} / \mathrm{sec}$. In addition, the frequency response was calculated by a frequency-response program with several values of $\mathrm{K}_{1}=\mathrm{K}_{2}$. The amplitude of $\Delta \mathrm{M}_{\text {th }}$, which is independent of K_{1} and K_{2}, agreed exactly with the amplitude computed by the frequency-response program. Satisfactory agreement for the amplitude of ΔX_{S} was obtained with $\mathrm{K}_{1}=\mathrm{K}_{2}=22.5$. Therefore, the gain calculations for $\Delta \mathrm{X}_{\mathrm{S}}$ with $\mathrm{K}_{1}=\mathrm{K}_{2}=$ 22.5 are used. A sinusoidal change in α was input to the MIMIC program at a frequency of $10 \mathrm{rad} / \mathrm{sec}$. Reasonable agreement for the gains of $\Delta \mathrm{M}_{\text {th }}$ and $\Delta \mathrm{X}_{\mathrm{S}}$ computed by the MIMIC program was obtained from the frequency-response program with the $|\Delta \alpha|$ input term omitted. Therefore, only the $\Delta \alpha$ and not the $|\Delta \alpha|$ input is used for the frequency-response function. A sinusoidal change in β was input to the MIMIC program at a frequency of $10 \mathrm{rad} / \mathrm{sec}$. Reasonable agreement for the gains of $\Delta \mathrm{M}_{\text {th }}$ and $\Delta \mathrm{X}_{\mathrm{S}}$ was obtained from the frequency-response program for half the input amplitude and twice the frequency. Therefore, the frequency-response functions for $\Delta \beta$ were obtained by halving the gain evaluated at twice the frequency.

The normalized longitudinal Von Karman spectrum with $\mathrm{L}=2500 \mathrm{ft}$ is shown in figure 40. The normalized spectrum of the throat Mach number change due to longitudinal gusts also is plotted in figure 40. Because the throat Mach number control cannot reduce throat Mach number disturbances at frequencies over roughly $20 \mathrm{rad} / \mathrm{sec}$, the two spectra are parallel at high frequencies and have a ratio of 4.997^{2}. Figure 41 shows the corresponding spectrum for shock position. The shock-position spectrum has maxima at 4 and 90 $\mathrm{rad} / \mathrm{sec}$ and a minimum near $38 \mathrm{rad} / \mathrm{sec}$. It is apparent by comparing this spectrum with that of free-stream longitudinal turbulence in figure 40 that the shock-position transfer function has maxima near 10 and over $100 \mathrm{rad} / \mathrm{sec}$ and a minimum near $38 \mathrm{rad} / \mathrm{sec}$.

The exceedance curves for an unstart due to choking the throat because of a longitudinal gust are shown in figure 42. This figure is for the representative inlet at a flight Mach number of 2.7 and an altitude of 60000 ft . The parameters used to compute these curves are presented in the following tabulation:

Ref.	Ath	ω_{c}, $\mathrm{rad} / \mathrm{sec}$	Gth, $/ \mathrm{n} . \mathrm{mi}$.	P_{1}	P_{2}	$\mathrm{~b}_{1}$	$\mathrm{~b}_{2}$	α
33	2.87	62.	7.1	0.019	0.000075	0.00276	0.0134	
34	2.87	62.	7.1	0.0021	0.000135	0.0037	0.00595	
$35 \& 41$	2.36	82.	9.352	0.0012	0.000062	0.00382	0.00594	
36	2.14	62.	6.7	0.008	0.000027	0.00243	0.00806	
37	2.36	82.	9.352	0.008		0.0031		6.74
39	2.87	62.	7.1	0.008	0.000027	0.00243	0.00806	
$42, \mathrm{a}$	2.36	82.	9.352	0.002946		0.00561		
$42, \mathrm{k}$	2.36	82.	9.352	0.002945	0.0000015	0.00560	0.01400	0.0005
$42, \mathrm{j}$	2.36	82.	9.352	0.002946		0.00561		8.0
$42, \mathrm{~m}$	2.36	82.	9.352	0.002946		0.00561		0.003

The value of $G_{\text {th }}$ was evaluated at a frequency ω_{c} at which the truncated value of $\sigma_{\text {th }}$ was 95 percent of the largest $\sigma_{\text {th }}$ computed (at $\omega_{c}=655 \mathrm{rad} / \mathrm{sec}$). The value of $A_{\text {th }}$ corresponds to $\omega_{\mathrm{c}}=655 \mathrm{rad} / \mathrm{sec}$. The exceedance curve for ref. 33 shows that a large tolerance is required because a relatively large value for b_{2} is involved. The remaining exceedance curves fall in a group with considerable scatter. Figure 43 presents curves for an unstart due to displacement of the shock upstream. The curves shown represent approximately the same extent of scatter illustrated in figure 42.

Figures 42 and 43 are for longitudinal gust disturbances only. Two exceedance models, those in ref. 35 and 42 (case " j ", $\alpha=8$) were selected for an analysis which includes all three components of a gust; namely: longitudinal, vertical (resulting in a change in angle of attack), and lateral (resulting in a change in angle of sideslip). The Von Karman family with $\mathrm{L}=2500 \mathrm{ft}$ is used for the free-stream turbulence spectra. Calculations of the output power spectral densities $\phi_{\text {th }}$ and ϕ_{S} are based on the assumptions described previously and the stepwise procedure presented in the preceding section. Some intermediate numerical results are presented in the following table:

Disturbance	$A_{\text {th }}$	$G_{\text {th }}$	A_{S}	G_{S}
Longitudinal	2.36	9.35	3.31	3.18
Vertical	1.44	11.0	1.97	3.20
Lateral	0.71	6.5	0.75	1.50
Combined	2.854	8.95	3.924	2.63

The combined values for A and G are computed from equations (62) and (63) respectively. The exceedance curves for combined gusts are presented in figures 44 and 45. Because vertical and lateral gusts are included, the curves in figures 44 and 45 lie to the right of the corresponding curves in figures 42 and 43 , respectively. In other words, inclusion of three gust components rather than just the longitudinal gust component increases the transient tolerance required for a given number of nautical miles between unstarts.

Linear relations between range penalty and transient tolerances in throat Mach number and in shock position, provided by the Boeing Company, were used to plot the horizontal scales of range penalty at the bottom of figures 42 through 45 . It should be pointed out that these relations need not be linear. The range penalties are used to combine the throat Mach number and shock position tolerances. The final combined result is presented in figure 46. A comparison of figures 44 and 45 shows that the range penalty due to the shock position tolerance is roughly one-quarter of that due to the throat Mach number tolerance. Boundary layer bleed near the inlet throat can enhance the stability of the normal shock and thereby reduce its displacement due to atmospheric turbulence. However, little can be done to diminish the change in throat Mach number. Therefore, the throat Mach number transient tolerances required to reduce the frequency of inlet unstarts are the major contributors to the overall range penalty shown in figure 46.

Reference 53 specifies certain discrete gusts as disturbances. Two disturbances are defined by the equations:

$$
\begin{aligned}
& \Delta \mathrm{M}_{0}=-0.04275(1-\cos 16.45 \mathrm{t}) \\
& \Delta \boldsymbol{\alpha}=0.908(1-\cos 16.45 \mathrm{t})
\end{aligned}
$$

By analogy, the following equation for a disturbance in angle of sideslip is used:

$$
\Delta \beta=0.908 \quad(1-\cos 16.45 t)
$$

These three disturbances were used separately as inputs to the MIMIC simulation described previously and the maximum decrease in $M_{\text {th }}$ and upstream displacement of the shock were determined. These amplitudes are shown by the vertical lines in figures 44 and 45 . The combined range penalty is shown in figure 46 . The angle of sideslip disturbance is the least severe and the flight Mach number disturbance is the most severe. The flight Mach number disturbance requires a range penalty about equal to that for 100 million miles between unstarts according to the model of ref. 42, but exceeds that according to the model of refs. 35 and 41.

The analysis of the representative inlet presented above uses assumed values for the cutoff frequency ω_{c} and the scale of turbulence. The effects of these assumptions are discussed briefly in the rest of this section. The discussion is limited to the effects of longitudinal gusts on throat Mach number. First, the effect of varying cutoff frequency $\boldsymbol{\omega}_{\mathrm{c}}$ is discussed. A Von Karman spectrum with $\mathrm{L}=2500 \mathrm{ft}$ is used. The results are expressed in the following tabulation:

$\omega_{\mathrm{c}} \mathrm{rad} / \mathrm{sec}$	$\mathrm{A}_{\text {th }}$	$\mathrm{G}_{\text {th }}$	$\Delta \mathrm{M}_{\text {th }}$
10.24	1.371	2.327	0.0613
40.96	2.097	6.367	0.1051
86.00	2.240	9.600	0.1173
163.84	2.292	13.842	0.1248
655.36	2.358	32.770	0.1398

As would be expected, both $A_{\text {th }}$ and $G_{\text {th }}$ increase with increasing $\omega_{C \text {. However, }} A_{\text {th }}$ is approaching a finite limit while $G_{\text {th }}$ is increasing without a limit. The right-hand th column lists the throat Mach number tolerance for 10 million miles between inlet unstarts, based on the atmospheric turbulence model in ref. 35. The exceedance curves presented in figures 42 to 46 are calculated from the largest value of A (2.358 in tabulation above) and from a value of G corresponding to an A equal to 95 percent of the maximum $A(G=$ 9.6 in tabulation above). For this set of $A_{\text {th }}$ and $G_{\text {th, }} \Delta \mathrm{M}_{\text {th }}$ is 0.1235 . It is apparent that G, and perhaps A, must be based on a truncated integration to a frequency ω_{c}. Selection of G based on a 95 percent factor for A is recommended, but A may be either the full or truncated (95 percent) value.

Secondly, the effect of varying the scale of turbulence, L, is considered. Both $A_{\text {th }}$ and $G_{\text {th }}$ are based on a truncated $\boldsymbol{\omega}_{\mathrm{c}}$. The results are presented in the following tabulation:

L, ft	$\omega_{\mathrm{c}}, \mathrm{rad} / \mathrm{sec}$	$\mathrm{A}_{\text {th }}$	$\mathrm{G}_{\text {th }}$	$\Delta \mathrm{M}_{\text {th }}$
1000	240	3.06	17.9	0.262
2000	95	2.40	10.2	0.191
2500	86	2.24	9.6	0.177
3500	83	2.01	9.4	0.158
5000	92	1.79	9.8	0.142

The right-hand column is the throat Mach number tolerance for 10 million miles between inlet unstarts, based on the case " j " exceedance model in ref. 42 with $\mathrm{b}=0.005597$. Increasing the scale of turbulence, for a fixed value of b, decreases the transient tolerance. However, Dr. Houbolt (ref. 42) recommends that b vary as the cube root of L. The results in the following tabulation are obtained with this variation of b.

L, ft	b	$\Delta \mathrm{M}_{\text {th }}$
1000	0.004124	0.193
2000	0.005196	0.178
2500	0.005597	0.177
3500	0.006262	0.178
5000	0.007052	0.179

Use of a value of b which depends on L reduces the variation of $\Delta M_{t h}$ considerably.
Thirdly, the effect of changing from the Von Karman spectrum to the Dryden spectrum is shown in the following tabulation:

L, ft	$\omega_{\mathrm{c}}, \mathrm{rad} / \mathrm{sec}$	$\mathrm{A}_{\text {th }}$	$\mathrm{G}_{\text {th }}$	b	$\Delta \mathrm{M}_{\text {th }}$
1000	52	2.72	6.6	0.004124	0.151
2000	42	2.03	5.7	0.005196	0.140

Compared to the quantities listed in the two preceding tabulations, $\omega_{c}, A_{t h}, G$ th, and $\Delta \mathrm{M}_{\text {th }}$ are all reduced significantly by using the Dryden spectrum. A conchusion from these th studies is that the proper power spectral density family and scale of turbulence, as shown in Table III, must be used in connection with the atmospheric turbulence model selected. The proper family and scale are those used to derive the model from measured loads data.

CONCLUDING REMARKS

A method is developed for relating transient tolerances in inlet throat Mach number and shock position to the frequency of unstarts of a supersonic inlet due to atmospheric turbulence. This method is an adaptation of standard statistical methods used to predict aircraft structural fatigue loads with a power spectral density analysis. The investigation included the collection and evaluation of data on high-altitude atmospheric turbulence; development of a general linearized analytical inlet model for changes in throat Mach number and shock position due to changes in flight conditions, inlet geometry, and exit corrected airflow; development of a method for relating propulsion system performance to inlet transient tolerances; and writing of three digital computer programs to facilitate required algebraic and numerical procedures. One large computer program reads an equation for a frequency-response function in terms of the Laplace variable and derives and prints the corresponding equation for the amplitude of the square of the frequencyresponse function in terms of the frequency ($\mathrm{rad} / \mathrm{sec}$). A stepwise procedure for relating frequency of inlet unstarts to transient tolerances is described and applied to an inlet configuration representative of that on an SST.

The investigation has led to the following conclusions:

1. The aircraft loads experience data collected at high altitudes (about 60000 ft) is not adequate yet to provide a reliable statistical model of turbulence at these altitudes. At present, there is no firm program to collect more flight data.
2. Atmospheric turbulence models based on continuous turbulence provide a better description of atmospheric turbulence for studies of the frequency of inlet unstarts than models based on discrete gusts.
3. Each atmospheric turbulence model is derived from loads data by assuming a specific power spectral density family and scale of turbulence. Therefore, the family and scale used to develop the model selected should be used to compute frequency of inlet unstarts.
4. The atmospheric turbulence model in refs. 35 and 41 is the most suitable for computing frequency of inlet unstarts.
5. Changes in atmospheric temperature which occur over short distances are as significant in causing an inlet unstart as atmospheric turbulence.
6. The four linear analytical models of shock position developed agree with each other at low disturbance frequencies, but differ at high frequencies. The predicted amplitude and phase shift based on these models, especially the model based on ref. 54,show good agreement with method-of-characteristics solutions and with test data.
7. Performance penalties depend on the assumptions made. The predicted penalty in thrust specific fuel consumption due to inlet transient tolerances increases if it is assumed that the installed thrust is maintained constant by moving the engine throttle.
8. Combining longitudinal, vertical, and lateral components of atmospheric turbulence appreciably increases the predicted frequency of inlet unstarts compared to a prediction based on only the longitudinal component.
9. For the representative inlet studied, significant penalties in range are required to keep the frequency of inlet unstarts to small values.

The work described in this report leads to the recommendation that further investigations be undertaken in the following areas:

1. Study effects of atmospheric turbulence combined with rapid ambient temperature changes on supersonic inlets. The problem is largely that of establishing a statistical model of ambient temperature changes and of combining this model with one for longitudinal turbulence. A comprehensive analysis of flight data, such as that obtained during the HICAT program, is required to establish correlations between ambient temperature changes and gusts.
2. Investigate methods and effects of introducing inlet and control nonlinearities into the linear frequency-response function required by a power spectral density analysis.
3. Compare the theoretical predictions of the generalized inlet model developed in this report with experimental data obtained recently at the Ames and Lewis Research Centers. In addition, the analytical inlet model recently developed at the Lewis Research Center should be evaluated.
4. It has been assumed that the diffuser-exit Mach number, or corrected airflow, is constant for the calculations with the four upstream disturbances presented in figures 26 to 29 . This assumption is valid for tests with a choked throttle downstream of the inlet. However, the corrected airflow of a turbojet engine will vary due to rapid changes in engine-face total temperature. These temperature changes will occur due to changes in upstream total temperature, shock motion, and compression of the air in the diffuser volume and are predicted by the shock-position models. Therefore, the change in engine corrected airflow due to these temperature changes should be evaluated and the effects of this change introduced into the calculations leading to figures 26 to 29.

APPENDIX A

FIRST ANALYTICAL MODEL OF SHOCK POSITION

The first analytical model of shock position uses the concept of a first-order lag relation suggested in ref. 70. As discussed on page 28 of this report, for a disturbance in downstream corrected airflow or Mach number the first-order lag relation involves a gain and shock time constant computed from

$$
\begin{equation*}
\tau_{\mathrm{s}}=\frac{7 \mathrm{M}_{1}^{2}+5}{7 \mathrm{M}_{1} \sqrt{1+0.2 \mathrm{M}_{1}^{2}}} \quad \frac{\mathrm{AdX}}{\mathrm{dA}} \quad \frac{1}{\mathrm{a}_{\mathrm{t}}} \tag{A1}
\end{equation*}
$$

The parameter M_{1} is the Mach number at a fixed station immediately upstream of the shock (see figure 23). It is noted in ref. 70 that this time constant is larger than the time constant for a downstream static pressure disturbance which can be derived from the first equation of Table IV $(i=1)$ as:

$$
\begin{equation*}
\tau_{\mathrm{s}}=\frac{12 \mathrm{M}_{1} \sqrt{1+0.2 \mathrm{M}_{1}^{2}}}{1+7.4 \mathrm{M}_{1}^{2}} \quad \frac{\operatorname{AdX}}{\mathrm{dA}} \quad \frac{1}{\mathrm{a}_{\mathrm{t}}} \tag{A2}
\end{equation*}
$$

The steady-state gains are given by the equations in Table V. Thus, for a disturbance in Mach number downstream of the shock:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{M}_{2}}=\frac{\left(7 \mathrm{M}_{1}^{2}-1\right)^{1.5}}{8.4 \mathrm{M}_{1} \sqrt{5+\mathrm{M}_{1}^{2}}} \quad \frac{\mathrm{AdX}}{\mathrm{dA}} \tag{A3}
\end{equation*}
$$

for a disturbance in corrected airflow downstream of the shock:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{w}_{\mathrm{ci}}}=\frac{7 \mathrm{M}_{1}^{2}-1}{7\left(\mathrm{M}_{1}^{2}-1\right)} \quad \frac{\mathrm{AdX}}{\mathrm{dA}} \tag{A4}
\end{equation*}
$$

for a disturbance in Mach number upstream of the shock:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{M}_{1}}=\frac{30}{7 \mathrm{M}_{1}\left(\mathrm{M}_{1}^{2}+5\right)} \quad \frac{\mathrm{AdX}}{\mathrm{dA}} \tag{A5}
\end{equation*}
$$

and, for a disturbance in duct area at the shock:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{A}_{1}}=-\frac{7 \mathrm{M}_{1}^{2}-1}{7\left(\mathrm{M}_{1}^{2}-1\right)} \quad \frac{\mathrm{AdX}}{\mathrm{dA}}=-\mathrm{K}_{\mathrm{w}_{\mathrm{ci}}} \tag{A6}
\end{equation*}
$$

For a disturbance originating at the diffuser exit, a dead time τ_{d} is introduced to account for the time required for a sound wave to move upstream against the flow from the exit to the shock wave.

The first-order lag relationship for normal shock position is given by the following equation, in Laplace notation:

$$
\begin{equation*}
\Delta X_{S}=\frac{K_{W_{c i}} e^{-} \frac{\tau \mathrm{d}}{\mathrm{~d}} \frac{\Delta \mathrm{w}_{\mathrm{ci}}}{\mathrm{w}_{\mathrm{ci}}}+K_{M_{1}} \Delta \mathrm{M}_{1}+K_{A_{1}} \frac{\Delta^{A_{1}}}{A_{1}}}{1+\tau_{\mathrm{s}} \mathrm{~S}} \tag{A7}
\end{equation*}
$$

The first term, $K_{W_{c_{i}}} e^{-\boldsymbol{T}_{d} S} \frac{\Delta w_{c_{i}}}{w_{c_{i}}}$, may be replaced by $K_{M_{2}} \Delta M_{2}$ for a disturbance in Mach number just downstream of the shock. For given time-dependent disturbances $\Delta W_{c_{i}}, \Delta M_{1}$ and ΔA_{1}, singly or combined, equation (A7) gives the time-dependent shock displacement $\Delta \mathrm{X}_{\mathrm{S}}$. The shock time constant τ_{S} is computed from equation (A1).

APPENDIX B

SECOND ANALYTICAL MODEL OF SHOCK POSITION

For inlets with a long diffuser, allowance should be made for changes in the mass of air stored in the volume between the normal shock and the diffuser exit. The derivation herein of an analytical model which allows for this volume follows the analysis in ref. 69 except that the derivatives are replaced by functions of Mach number and the duct area gradient at the shock. A linearized, lumped-constant analysis is used.

The flow conditions in the fixed volume between a fixed station downstream of the shock (subscript ' 2 ", see figure 23) and the diffuser exit are represented by the flow conditions at an intermediate station (subscript " d "). Note that for this model the Helmholtz volume shown in figure 23 is not included and therefore $\ell=0$. Although the selection of the intermediate station is arbitrary, the following equation for the area is used:

$$
\begin{equation*}
A_{d}=V / L \tag{B1}
\end{equation*}
$$

The difference between the mass flow rate entering the volume and leaving the volume is proportional to the rate of change of mass stored in the volume. The mass stored is proportional to the air density at the intermediate station. Therefore, in Laplace notation,

$$
\begin{equation*}
\Delta w_{2}-\Delta w_{i}=\operatorname{vs} \Delta \rho_{\mathrm{d}} \tag{B2}
\end{equation*}
$$

The change in the flow rate entering the volume is given by the fourth equation in Table IV ($\mathrm{i}=4$), which may be written in the form

$$
\begin{equation*}
\frac{\Delta w_{2}}{w_{2}}=\frac{\Delta \mathrm{P}_{\mathrm{t} 1}}{\mathrm{P}_{\mathrm{t} 1}}-\frac{1}{2} \frac{\Delta \mathrm{~T}_{\mathrm{t} 1}}{\mathrm{~T}_{\mathrm{t} 1}}+\frac{\Delta \mathrm{A}_{1}}{\mathrm{~A}_{1}}-\mathrm{C}_{44} \Delta \mathrm{M}_{1}-\frac{\mathrm{C}_{46}}{a_{t}} \mathrm{~S} \Delta \mathrm{X}_{\mathrm{s}} \tag{B3}
\end{equation*}
$$

The change in the flow rate leaving the volume at the exit is given by the equation

$$
\begin{equation*}
\frac{\Delta w_{i}}{w_{i}}=\frac{\Delta w_{c i}}{w_{c i}}+\frac{\Delta \mathrm{P}_{\mathrm{ti}}}{\mathrm{P}_{\mathrm{ti}}}-\frac{1}{2} \frac{\Delta \mathrm{~T}_{\mathrm{ti}}}{\mathrm{~T}_{\mathrm{ti}}} \tag{B4}
\end{equation*}
$$

or, alternatively, by

$$
\frac{\Delta w_{i}}{w_{i}}=\frac{1-M_{i}^{2}}{M_{i}\left(1+0.2 M_{i}^{2}\right)} \Delta M_{i}+\frac{\Delta P_{t i}}{P_{t i}}-\frac{1}{2} \frac{\Delta T_{t i}}{T_{t i}}
$$

The change in the average density in the volume is

$$
\begin{equation*}
\frac{\Delta \rho_{d}}{\rho_{d}}=-\frac{M_{d}}{1+0.2 \mathrm{M}_{\mathrm{d}}{ }^{2}} \Delta \mathrm{M}_{\mathrm{d}}+\frac{\Delta \mathrm{P}_{\mathrm{td}}}{\mathrm{P}_{\mathrm{td}}}-\frac{\Delta \mathrm{T}_{\mathrm{td}}}{\mathrm{~T}_{\mathrm{td}}} \tag{B5}
\end{equation*}
$$

The change in the Mach number M_{d} is assumed to the determined by

$$
\begin{align*}
\Delta w_{c d} & =\frac{1}{2}\left(\Delta w_{c 2}+\Delta w_{c i}\right) \\
\text { or } \quad \Delta M_{d} & =\frac{1}{2} \cdot \frac{w_{c d} \partial M_{d}}{\partial w_{c d}}\left(\frac{\Delta w_{c 2}}{w_{c 2}}+\frac{\Delta w_{c i}}{w_{c i}}\right) \tag{B6}
\end{align*}
$$

Furthermore,

$$
\begin{align*}
& \frac{w_{c d} \partial M_{d}}{\partial w_{c d}}=\frac{M_{d}\left(1+0.2 M_{d}^{2}\right)}{1-M_{d}^{2}} \tag{B7}\\
& \frac{\Delta P_{t i}}{P_{t i}}=\frac{\Delta P_{t d}}{P_{t d}}=\frac{\Delta P_{t 1}}{P_{t 1}}-C_{24} \Delta M_{1}-C_{25} \frac{d A}{A d X} \Delta X_{s}-\frac{C_{26}}{a_{t}} S \Delta X_{s} \tag{B8}\\
& \frac{\Delta T_{t i}}{T_{t i}}=\frac{\Delta T_{t d}}{T_{t d}}=\frac{\Delta T_{t 1}}{T_{t 1}}-\frac{C_{36}}{a_{t}} S \Delta X_{s} \tag{B9}\\
& \frac{\Delta w_{c 2}}{w_{c 2}}=\frac{\Delta A_{1}}{A_{1}}-C_{54} \Delta M_{1}+C_{55} \frac{d A}{A d X} \Delta X_{s}+\frac{C_{56}}{a_{t}} \mathrm{~S} \Delta X_{s} \tag{B10}\\
& w_{2}=w_{i}=w_{d}=\frac{\rho M_{d} M_{t} A_{d}}{\sqrt{1+0.2 M_{d}^{2}}} \tag{B11}
\end{align*}
$$

An equation for the second analytical model of shock position is obtained by combining equations (B1) through (B11), and is

$$
\begin{array}{r}
\mathrm{K}_{\mathrm{W}_{\mathrm{ci}}}\left(1+\tau_{\mathrm{w}_{\mathrm{ci}}} \mathrm{~S}\right) \mathrm{e}^{-\tau_{\mathrm{d}} \mathrm{~S}} \frac{\Delta \mathrm{w}_{\mathrm{ci}}}{\mathrm{w}_{\mathrm{ci}}}+\mathrm{K}_{\mathrm{M}_{1}}\left(1+\tau_{\mathrm{M}_{1} \mathrm{~S}}\right) \Delta \mathrm{M}_{1} \\
\Delta \mathrm{X}_{\mathrm{S}}= \tag{B12}\\
\frac{+\mathrm{K}_{\mathrm{A}_{1}}\left(1+\tau_{\mathrm{A}_{1}} \mathrm{~S}\right) \frac{\Delta \mathrm{A}_{1}}{\mathrm{~A}_{1}}+\tau_{\mathrm{P}_{\mathrm{t}} \mathrm{~S}}\left(\frac{\Delta \mathrm{P}_{\mathrm{t} 1}}{\mathrm{P}_{\mathrm{t} 1}}-\frac{\Delta \mathrm{T}_{\mathrm{t} 1}}{\mathrm{~T}_{\mathrm{t} 1}}\right)}{1+\tau_{1} \mathrm{~S}+\tau_{2} \mathrm{~S}^{2}}
\end{array}
$$

where $\mathrm{K}_{\mathrm{W}_{\mathrm{ci}}}$, $\mathrm{K}_{\mathrm{M} 1}$, and $\mathrm{K}_{\mathrm{A}_{1}}$ are given by equations (A4) to (A6).

$$
\begin{align*}
& \tau_{P_{\mathrm{t}}}=\tau_{\mathrm{V}} \frac{\mathrm{AdX}}{\mathrm{dA}} \frac{7 \mathrm{M}_{1}^{2}-1}{7\left(\mathrm{M}_{1}^{2}-1\right)} \tag{B13}\\
& \tau_{\mathrm{w}_{\mathrm{Ci}}}=-\tau_{\mathrm{V}} \frac{\mathrm{Md}^{2}}{2-2 \mathrm{M}_{\mathrm{d}}^{2}} \tag{B14}\\
& \tau_{\mathrm{M}_{1}}=\tau_{\mathrm{V}}\left(\frac{\mathrm{M}_{\mathrm{d}}^{2}}{2-2 \mathrm{M}_{\mathrm{d}}^{2}}-\frac{7}{6}\left(\mathrm{M}_{1}^{2}-1\right)\right) \tag{B15}\\
& \tau_{\mathrm{A}_{1}}=-\tau_{\mathrm{w}_{\mathrm{C}_{\mathrm{i}}}} \tag{B16}\\
& \tau_{1}=\frac{\mathrm{AdX}}{\mathrm{dA}} \frac{1}{\mathrm{at}} \frac{\mathrm{M}_{1}+6}{7 \mathrm{M}_{1} \sqrt{1+0.2 \mathrm{M}_{1}^{2}}}+\tau_{\mathrm{V}} \frac{2-\mathrm{Md}^{2}}{2-2 \mathrm{M}_{\mathrm{d}}^{2}} \tag{B17}\\
& \tau_{2}=\frac{\tau_{\mathrm{V}}}{\mathrm{at}_{\mathrm{t}}} \frac{\mathrm{AdX}}{\mathrm{dA}} \frac{1}{14 \mathrm{M}_{1} \sqrt{1+0.2 \mathrm{M}_{1}^{2}}}\left(\frac{37-7 \mathrm{M}_{1}^{2}}{3}+\frac{\mathrm{M}_{\mathrm{d}}^{2}}{1-\mathrm{M}_{\mathrm{d}}^{2}}\left(7 \mathrm{M}^{2}{ }^{2}+5\right)\right) \tag{B18}\\
& \tau_{\mathrm{V}}=\frac{\mathrm{V}}{\mathrm{~A}_{\mathrm{d}} \mathrm{U}_{\mathrm{d}}} \tag{B19}
\end{align*}
$$

This is a quadratic relation in which the term τ_{2} may be thought of as the reciprocal of the square of a natural frequency and the term τ_{1} as twice the ratio of the damping constant to the natural frequency. The steady-state shock displacement is obtained by setting the Laplace operator $S=0$ in equation (B12).

Equation (B12) for the shock displacement represents the second analytical model. The $\Delta_{\mathrm{wci}}, \Delta \mathrm{M}_{1}$ and $\Delta \mathrm{A}_{1}$ terms each contain lead time constants. The shock displacement is proportional to the rate of change of upstream total pressure and temperature. The effects of bleed near the shock may be introduced, if desired, by including a negative term $-\mathrm{C}_{45} \Delta \mathrm{X}_{\mathrm{S}}$ on the right of equation (B3), where C_{45} depends on the bleed geometry. This change would alter the time constants $\quad \tau_{1}, \quad \tau_{2}$ and $\tau_{\mathrm{P}_{\mathrm{t}}}$ and the gains K_{w} ci, $\mathrm{K}_{\mathrm{M}_{1}}$ and $\mathrm{K}_{\mathrm{A}_{1}}$. However, nearly the same effect can be obtained by adjusting the area gradient dA/AdX.

The product $\mathrm{K}_{\mathrm{Wci}} \Delta \mathrm{w}_{\mathrm{ci}} / \mathrm{w}_{\mathrm{ci}}$ in equation (B12) may be replaced by either $\mathrm{K}_{\mathrm{wci}}$ $\Delta \mathrm{w}_{\mathrm{c} 2} / \mathrm{w}_{\mathrm{c} 2}$ or $\mathrm{K}_{\mathrm{M}_{\mathrm{i}}} \Delta \mathrm{M}_{\mathrm{i}}$, where

$$
\begin{equation*}
\mathrm{K}_{\mathrm{M}_{\mathrm{i}}}=\mathrm{K}_{\mathrm{W}_{\mathrm{Ci}}} \frac{1-\mathrm{M}_{\mathrm{i}}^{2}}{\mathrm{M}_{\mathrm{i}}\left(1+0.2 \mathrm{M}_{\mathrm{i}}^{2}\right)} \tag{B20}
\end{equation*}
$$

as desired.

APPENDIX C

THIRD ANALYTICAL MODEL OF SHOCK POSITION

Several analyses of supersonic inlets have considered the pressure differential required to change the average velocity of the mass of air behind the shock. This inertia effect is introduced into the model developed in Appendix B to obtain the third analytical model. The mass contained in a Helmholtz volume of length ℓ (see figure 23) is considered to be the mass whose inertia is included. Equations (B1) to (B7) and (B9) to (B11) are used for this model.

From Newton's law,

$$
\begin{equation*}
\left(\Delta P_{2}-\Delta P_{z}\right) A_{1}=\frac{{ }^{m} H}{g} S \Delta U_{2}=\frac{\rho_{2} A_{1} \ell}{g} S \Delta U_{2} \tag{C1}
\end{equation*}
$$

The pressure change providing the accelerative force is

$$
\begin{equation*}
\Delta \mathrm{P}_{2}-\Delta \mathrm{P}_{\mathrm{z}}=\frac{1}{\left(1+0.2 \mathrm{M}_{2}^{2}\right)^{3.5}}\left(\Delta \mathrm{P}_{\mathrm{t} 2}-\Delta \mathrm{P}_{\mathrm{tz}}\right) \tag{C2}
\end{equation*}
$$

Also,

$$
\begin{align*}
& \Delta P_{t z}=\Delta P_{t d}=\Delta P_{t i} \tag{C3}\\
& \rho_{2}=\frac{P_{t 2}}{\operatorname{RT}_{\mathrm{t} 2}\left(1+0.2 \mathrm{M}_{2}{ }^{2}\right)^{2.5}} \tag{C4}\\
& \Delta U_{2}=\frac{\mathrm{a}_{\mathrm{t}}}{\sqrt{1+0.2 \mathrm{M}_{2}{ }^{2}}}\left(\frac{\mathrm{M}_{2} \Delta \mathrm{~T}_{\mathrm{t} 2}}{2 \mathrm{~T}_{\mathrm{t} 2}}+\frac{\Delta \mathrm{M}_{2}}{1+0.2 \mathrm{M}_{2}{ }^{2}}\right) \tag{C5}\\
& \frac{\Delta \mathrm{P}_{\mathrm{t} 2}}{\mathrm{P}_{\mathrm{t} 2}}=\frac{\Delta \mathrm{P}_{\mathrm{t} 1}}{\mathrm{P}_{\mathrm{t} 1}}-\mathrm{C}_{24} \Delta \mathrm{M}_{1}-\mathrm{C}_{25} \frac{\mathrm{~d} \dot{\mathrm{~A}}}{\operatorname{AdX}} \Delta \mathrm{X}_{\mathrm{s}}-\frac{\mathrm{C}_{26}}{\mathrm{a}_{\mathrm{t}}} \mathrm{~S} \Delta \mathrm{X}_{\mathrm{s}} \tag{C6}\\
& \Delta \mathrm{M}_{2}=-\mathrm{C}_{64} \Delta \mathrm{M}_{1}+\mathrm{C}_{65} \frac{\mathrm{dA}}{\operatorname{AdX}} \Delta \mathrm{X}_{\mathrm{s}}+\frac{\mathrm{C}_{66}}{\mathrm{a}_{\mathrm{t}}} \mathrm{~S} \Delta \mathrm{X}_{\mathrm{s}} \tag{C7}\\
& M_{2}^{2}=\frac{M_{1}^{2}+5}{7 M_{1}^{2}-1} \tag{C8}
\end{align*}
$$

Equations (C1) to (C5) may be combined to produce the equation

$$
\begin{array}{r}
\frac{\Delta \mathrm{P}_{\mathrm{td}}}{\mathrm{Ptd}_{t d}=\frac{\Delta \mathrm{P}_{\mathrm{t} 2}}{\mathrm{P}_{\mathrm{t} 2}}-\frac{1.4 \ell}{\mathrm{a}_{\mathrm{t}}}\left(\frac{\sqrt{1.8} \mathrm{M} 1 \sqrt{\mathrm{M}_{1}^{2}+5}}{7 \mathrm{M}_{1}^{2}-1}\right.} \mathrm{S} \frac{\Delta \mathrm{~T}_{\mathrm{t} 2}}{\mathrm{~T}_{\mathrm{t} 2}}+ \\
 \tag{C9}\\
\left.\sqrt{\frac{7 \mathrm{M}_{1}^{2}-1}{7.2 \mathrm{M}_{1}^{2}}} \mathrm{~S} \Delta \mathrm{M}_{2}\right)
\end{array}
$$

Equations (C6), (C7) and (C9) replace equation (B8) of the second model. The second term on the right of equation (C9), which is proportional to the length ℓ, accounts for the Helmholtz mass.

By combining the three equations above and the ten equations from Appendix B, following equation for the third analytical model of shock position is obtained:

$$
\begin{align*}
& \mathrm{K}_{\mathrm{Wci}}\left(1+\tau_{\mathrm{w}_{\mathrm{Ci}}} \mathrm{~S}\right) \mathrm{e}^{-\tau_{\mathrm{d}} \mathrm{~S}} \frac{\Delta \mathrm{w}_{\mathrm{ci}}}{\mathrm{w}_{\mathrm{ci}}}+\mathrm{K}_{\mathrm{M} 1}\left(1+\tau_{1} \mathrm{~S}+\tau_{2} \mathrm{~S}^{2}\right) \Delta \mathrm{M}_{1}+ \\
& \Delta \mathrm{X}_{\mathrm{S}}=\frac{\mathrm{K}_{\mathrm{A}_{1}}\left(1+\tau_{\mathrm{A}_{1}} \mathrm{~S}\right) \frac{\Delta \mathrm{A}_{1}}{\mathrm{~A}_{1}}+\tau_{\mathrm{P}_{\mathrm{t}}} \mathrm{~S} \frac{\Delta \mathrm{P}_{\mathrm{t} 1}}{\mathrm{P}_{\mathrm{t} 1}}+\tau_{\mathrm{T}_{\mathrm{t}}} \mathrm{~S}\left(1+\tau_{3} \mathrm{~S}\right) \frac{\Delta \mathrm{T}_{\mathrm{t} 1}}{\mathrm{~T}_{\mathrm{t} 1}}}{1+\tau_{4} \mathrm{~S}+\tau_{5} \mathrm{~S}^{2}+\tau_{6} \mathrm{~S}^{3}} \tag{C10}
\end{align*}
$$

where $\mathrm{K}_{\mathrm{W}_{\mathrm{ci}}}, \mathrm{K}_{\mathrm{M}_{1}}, \mathrm{~K}_{\mathrm{A}_{1}}, \tau_{\mathrm{M}_{1}}, \tau_{\mathrm{A}_{1}}, \tau_{\mathrm{w}_{\mathrm{ci}}}, \tau_{\mathrm{P}_{\mathrm{t}}}$, and τ_{V} are expressed by equations (A4), (A5), (A6), (B15), (B16), (B14), (B13), and (B19), respectively, and

$$
\begin{align*}
& \tau_{1}=\tau_{\mathrm{M}_{1}}+\frac{\tau_{2}}{\tau_{\mathrm{V}}} \tag{C11}\\
& \tau_{2}=\tau_{\mathrm{V}} \frac{1.68 \ell \mathrm{M}_{1} \sqrt{\mathrm{M}_{1}^{2}+5}}{\sqrt{7.2} \mathrm{a}_{\mathrm{t}}\left(\mathrm{M}_{1}^{2}-1\right)} \tag{C12}\\
& \tau_{\mathrm{T}}=-\tau_{\mathrm{P}_{\mathrm{t}}}-\frac{0.6 \mathrm{M}_{1} \ell \sqrt{1+0.2 \mathrm{M}_{1}^{2}}}{\mathrm{a}_{\mathrm{t}}\left(\mathrm{M}_{1}^{2}-1\right)} \quad \mathrm{AdX} \tag{C13}\\
& \mathrm{dA}
\end{align*}
$$

$$
\begin{align*}
& \tau_{3}=-\tau_{\mathrm{V}} \frac{0.6 /}{\mathrm{a}_{\mathrm{t}}\left(\mathrm{M}_{1}{ }^{2}-1\right) \sqrt{1+0.2 \mathrm{M}_{1}{ }^{2}}} \frac{\mathrm{AdX}}{\mathrm{~T}} \mathrm{dA} \tag{C14}\\
& \tau_{4}=\frac{\mathrm{M}_{1}+6}{7 \mathrm{a}_{\mathrm{t}} \mathrm{M}_{1} \sqrt{1+0.2 \mathrm{M}_{1}{ }^{2}}} \frac{\mathrm{AdX}}{\mathrm{dA}}+\tau_{\mathrm{V}} \frac{2-\mathrm{Md}_{\mathrm{d}}{ }^{2}}{2-2 \mathrm{M}_{\mathrm{d}}{ }^{2}}+\frac{\tau_{2}}{\tau_{\mathrm{V}}} \\
& \tau_{5}=\frac{\tau_{V}}{a_{t}}-\frac{1}{14 M_{1} \sqrt{1+0.2 M_{1}^{2}}}\left(\frac{37-7 M_{1}{ }^{2}}{3}+\frac{M_{d}^{2}}{1-M_{d}^{2}}\left(7 M_{1}^{2}+5\right)\right) \\
& \frac{\mathrm{AdX}}{\mathrm{dA}}+\tau_{2}+\frac{\tau_{6}}{\tau_{\mathrm{V}}} \tag{C16}\\
& \tau_{6}=\frac{1.2 \ell^{\tau} \mathrm{V}}{\mathrm{at}^{2}} \frac{\mathrm{M}_{1}{ }^{2}+1}{\mathrm{M}_{1}{ }^{2}-1} \frac{\mathrm{AdX}}{\mathrm{dA}} \tag{C17}
\end{align*}
$$

If $\ell=0$, the transfer function represented by equation (C10) is identical to the function represented by equation (B12).

APPENDIX D

FOURTH ANALYTICAL MODEL OF SHOCK POSITION

A propulsion system dynamic simulation, which includes both volume and Helmholtz mass effects, is developed in ref. 54. The simulation is designed for calculations in timewise steps on a digital computer and includes five phases of inlet operation. Equations for the fourth analytical model of shock position are derived herein by linearizing the equations in ref. 54 for the started phase. Thus, as in the other three models, small disturbances about an average condition are assumed. Internal bleeds and total pressure losses considered in the simulation are neglected. The nomenclature, which is illustrated in figure 23, closely follows that in ref. 54. In order to aid the reader who wishes to compare this analysis with that in ref. 54, the initial set of equations used (D1 to D12) are related to the figures in ref. 54 from which they are derived.

From figure 13 of ref. 54, the conditions behind the normal shock are given by (see Table IV).

$$
\begin{align*}
& \frac{\Delta \mathrm{P}_{\mathrm{t} 2}}{\mathrm{P}_{\mathrm{t} 2}}=\frac{\Delta \mathrm{P}_{\mathrm{t} 1}}{\mathrm{P}_{\mathrm{t} 1}}-\mathrm{C}_{24} \Delta \mathrm{M}_{1}-\mathrm{C}_{25} \frac{\mathrm{dA}}{\mathrm{Adx}} \Delta \mathrm{X}_{\mathrm{S}}-\frac{\mathrm{C}_{26}}{\mathrm{at}} \mathrm{~S} \Delta \mathrm{X}_{\mathrm{S}} \tag{D1}\\
& \frac{\Delta \mathrm{~T}_{\mathrm{t}_{2}}}{\mathrm{~T}_{\mathrm{t}_{2}}}=\frac{\Delta \mathrm{T}_{\mathrm{t} 1}}{\mathrm{~T}_{\mathrm{t}}}-\frac{\mathrm{C}_{36}}{\mathrm{a}_{\mathrm{t}}} \mathrm{~S} \Delta \mathrm{X}_{\mathrm{S}} \tag{D2}\\
& \frac{\Delta \mathrm{w} 2}{\mathrm{w} 2}=\frac{\Delta \mathrm{P}_{\mathrm{t} 1}}{\mathrm{P}_{\mathrm{t} 1}}-\frac{1}{2} \frac{\Delta \mathrm{~T}_{\mathrm{t} 1}}{\mathrm{~T}_{\mathrm{t} 1}}+\frac{\Delta \mathrm{A}_{1}}{\mathrm{~A}_{1}}-\mathrm{C}_{44 \Delta \mathrm{M}_{1}}-\frac{\mathrm{C}_{46}}{\mathrm{a}_{\mathrm{t}}} \mathrm{~S} \Delta \mathrm{X}_{\mathrm{S}} \tag{D3}
\end{align*}
$$

From figure 19, the change in the mass in the duct volume is

$$
\begin{equation*}
\frac{\Delta \mathrm{m}_{\mathrm{d}}}{\mathrm{w}_{1}}=\frac{1}{\mathrm{~S}}\left(\frac{\Delta \mathrm{w}_{2}}{\mathrm{w}_{2}}-\frac{\Delta \mathrm{w}_{\mathrm{i}}}{\mathrm{w}_{\mathrm{i}}}-\frac{1}{\mathrm{U}_{\mathrm{z}}} \mathrm{~S} \Delta \mathrm{X}_{\mathrm{S}}\right) \tag{D4}
\end{equation*}
$$

From figure 20, the change in the volume total temperature is:

$$
\begin{equation*}
\frac{\Delta \mathrm{T}_{\mathrm{td}}}{\mathrm{~T}_{\mathrm{td}}}=\frac{\Delta \mathrm{T}_{\mathrm{ti}}}{\mathrm{~T}_{\mathrm{ti}}}=\left(\frac{\Delta \mathrm{T}_{\mathrm{t} 2}}{\mathrm{~T}_{\mathrm{t} 2}}+\frac{\mathrm{T}_{\mathrm{z}}}{\mathrm{~T}_{\mathrm{t}}} \frac{1}{3.5 \mathrm{U}_{\mathrm{z}}} \mathrm{~S} \Delta \mathrm{X}_{\mathrm{s}}\right) /\left(\frac{\mathrm{m}_{\mathrm{d}}}{\mathrm{w}_{1}} \mathrm{~S}+1\right) \tag{D5}
\end{equation*}
$$

From figure 21, the change in the volume total pressure is:

$$
\begin{equation*}
\frac{\Delta P_{t d}}{P_{t d}}=\frac{\Delta P_{t i}}{P_{t i}}=\frac{\Delta m_{d}}{m_{d}}+\frac{\Delta T_{t d}}{T_{t d}}+\frac{M_{d}}{1+0.2 M_{d}^{2}} \Delta M_{d}+\frac{A_{z}}{V} \Delta X_{s} \tag{D6}
\end{equation*}
$$

where $\Delta M_{d}=\frac{M_{d}\left(1+0.2 M_{d}^{2}\right)}{1-M_{d}^{2}}\left(\frac{\Delta w_{2}}{w_{2}}+\frac{1}{2} \frac{\Delta T_{t d}}{T_{t d}}-\frac{\Delta P_{t 2}}{P_{t 2}}\right)$

Also, the change in the static pressure downstream of station " z " is:

$$
\begin{equation*}
\frac{\Delta \mathrm{P}_{\mathrm{zd}}}{\mathrm{P}_{\mathrm{z}}}=\frac{1+0.4 \mathrm{M}_{\mathrm{z}}^{2}}{1-\mathrm{M}_{\mathrm{z}}^{2}} \frac{\Delta \mathrm{P}_{\mathrm{td}}}{\mathrm{P}_{\mathrm{td}}}+\frac{1.4 \mathrm{M}_{\mathrm{z}}{ }^{2}}{1-\mathrm{M}_{\mathrm{z}}^{2}}\left(-\frac{\Delta \mathrm{w}_{2}}{\mathrm{w}_{2}}-\frac{1}{2} \frac{\Delta \mathrm{~T}_{\mathrm{td}}}{\mathrm{~T}}+\frac{\Delta \mathrm{A}_{\mathrm{zd}}}{\mathrm{~A}_{\mathrm{z}}}\right) \tag{D8}
\end{equation*}
$$

In place of the relations shown in figure 23, the following equations for the change in exit airflow are used:

$$
\begin{align*}
& \frac{\Delta w_{i}}{w_{i}}=\frac{\Delta w_{c i}}{w_{c i}}+\frac{\Delta P_{t i}}{P_{t i}}-\frac{1}{2} \frac{\Delta T_{t i}}{T_{t i}} \tag{D9}\\
& \frac{\Delta w_{i}}{w_{i}}=\frac{1-M_{i}^{2}}{M_{i}\left(1+0.2 M_{i}^{2}\right)} \Delta M_{i}+\frac{\Delta P_{t i}}{P_{t i}}-\frac{1}{2} \frac{\Delta T_{t i}}{T_{t i}} \tag{D10}
\end{align*}
$$

From figure 24, the change in the static pressure upstream of station " z " is:

$$
\begin{equation*}
\frac{\Delta \mathrm{P}_{\mathrm{zH}}}{\mathrm{P}_{\mathrm{z}}}=\frac{1+0.4 \mathrm{M}_{\mathrm{z}}^{2}}{1-\mathrm{M}_{\mathrm{z}}^{2}} \frac{\Delta \mathrm{P}_{\mathrm{t} 2}}{\mathrm{P}_{\mathrm{t} 2}}+\frac{1.4 \mathrm{M}_{\mathrm{z}}^{2}}{1-\mathrm{M}_{\mathrm{z}}^{2}}\left(-\frac{\Delta \mathrm{w}_{2}}{\mathrm{w}_{2}}-\frac{1}{2} \frac{\Delta \mathrm{~T}_{\mathrm{t} 2}}{\mathrm{~T}_{\mathrm{t} 2}}+\frac{\Delta \mathrm{A}_{\mathrm{z}}}{\mathrm{~A}_{\mathrm{z}}}\right) \tag{D11}
\end{equation*}
$$

Finally, from figure 25, the Helmholtz volume acceleration is:

$$
\begin{equation*}
s^{2} \Delta X_{s}=\frac{g A_{z} \rho_{z}}{m_{H}}\left(\frac{\Delta P_{z H}}{P_{z}}-\frac{\Delta P_{z d}}{P_{z}}\right) \tag{D12}
\end{equation*}
$$

The preceding twelve equations may be combined algebraically to produce the following four equations which must be used if changes in flow conditions within the diffuser are desired.

$$
\begin{align*}
& \frac{\Delta \mathrm{w}_{2}}{\mathrm{w}_{2}}=\frac{\Delta \mathrm{P}_{\mathrm{t} 1}}{\mathrm{P}_{\mathrm{t} 1}}-\frac{1}{2} \frac{\Delta \mathrm{~T}_{\mathrm{t} 1}}{\mathrm{~T}_{\mathrm{t} 1}}+\frac{\Delta \mathrm{A}_{1}}{\mathrm{~A}_{1}}-\mathrm{C}_{44} \Delta \mathrm{M}_{1}-\frac{\mathrm{C}_{46}}{\mathrm{a}_{\mathrm{t}}} \mathrm{~S} \Delta \mathrm{X}_{\mathrm{S}} \tag{D3}\\
& (1+\tau \mathrm{V}) \frac{\Delta \mathrm{T}_{\mathrm{td}}}{\mathrm{~T}_{\mathrm{td}}}+\mathrm{K}_{1} \mathrm{~S} \Delta \mathrm{X}_{\mathrm{S}}=\frac{\Delta \mathrm{T}_{\mathrm{t} 1}}{\mathrm{~T}_{\mathrm{t} 1}} \tag{D13}\\
& \left(\mathrm{~K}_{2}+\mathrm{K}_{3} \mathrm{~S}\right) \mathrm{S} \Delta \mathrm{X}_{\mathrm{s}}+\left(1+\mathrm{K}_{4} \mathrm{~S}\right) \frac{\Delta \mathrm{w}_{2}}{\mathrm{w}_{2}}+\left(0.5+\mathrm{K}_{5} \mathrm{~S}\right) \frac{\Delta \mathrm{T}_{\mathrm{td}}}{\mathrm{~T}_{\mathrm{td}}}-\left(1+\tau \mathrm{V}^{\mathrm{S})} \frac{\Delta \mathrm{P}_{\mathrm{td}}}{\mathrm{P}_{\mathrm{td}}}=\right. \\
& (\mathrm{D} 3) \\
& \left(\mathrm{K}_{7}+\mathrm{K}_{8} \mathrm{~S}+\mathrm{S}^{2}\right) \Delta \mathrm{X}_{\mathrm{S}}+\mathrm{K}_{9} \frac{\Delta \mathrm{~T}_{\mathrm{td}}}{\mathrm{~T}_{\mathrm{td}}}+\mathrm{K}_{10} \frac{\Delta \mathrm{P}_{\mathrm{td}}}{\mathrm{P}_{\mathrm{td}}}=\mathrm{K}_{9} \frac{\Delta \mathrm{~T}_{\mathrm{t} 1}}{\mathrm{~T}_{\mathrm{t} 1}}+\mathrm{K}_{10} \frac{\Delta \mathrm{P}_{\mathrm{t} 1}}{\mathrm{P}_{\mathrm{t} 1}}+ \\
& \mathrm{K}_{4} \mathrm{~S} \frac{\Delta \mathrm{P}_{\mathrm{t} 1}}{\mathrm{P}_{\mathrm{t} 1}}+\mathrm{K}_{6} \mathrm{~S} \Delta \mathrm{M}_{1}+\frac{\Delta \mathrm{w}_{\mathrm{ci}}}{\mathrm{w}_{\mathrm{ci}}} \tag{D15}\\
& \text { (D14) }
\end{align*}
$$

where $C_{i j}$ are positive functions of M_{1} shown in Table $\mathrm{IV}, \tau_{\mathrm{V}}$ is given by equation (B19), and

$$
\begin{equation*}
\mathrm{K}_{1}=\frac{1}{\mathrm{a}_{\mathrm{t}}}\left(\frac{\mathrm{M}_{1}^{2}-1}{3 \mathrm{M}_{1} \sqrt{1+0.2 \mathrm{M}_{1}^{2}}}-\frac{1}{3.5 \mathrm{M}_{\mathrm{z}} \sqrt{1+0.2 \mathrm{M}_{\mathrm{z}}^{2}}}\right) \tag{D16}
\end{equation*}
$$

$$
\mathrm{K}_{8}=\frac{\mathrm{a}_{\mathrm{t}}\left(\mathrm{M}_{1}^{2}-1\right)}{4.2 \ell \mathrm{M}_{1} \sqrt{\left(1+0.2 \mathrm{M}_{1}^{2}\right)\left(1-\mathrm{M}_{\mathrm{z}}^{2}\right)\left(1+0.2 \mathrm{M}_{\mathrm{z}}^{2}\right)}}\left(\frac{35\left(1+0.2 \mathrm{M}_{1}^{2}\right)\left(1+0.4 \mathrm{M}_{\mathrm{z}}^{2}\right)}{2\left(7 \mathrm{M}_{1}^{2}-1\right)}\right.
$$

$$
\begin{equation*}
\left.-0.7 \mathrm{M}_{\mathrm{z}}{ }^{2}\right) \tag{D23}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{K}_{9}=-\frac{\mathrm{a}_{\mathrm{t}}^{2} \mathrm{M}_{\mathrm{z}}^{2}}{2 \ell\left(1-\mathrm{M}_{\mathrm{z}}^{2}\right)\left(1+0.2 \mathrm{M}_{\mathrm{z}}^{2}\right)} \tag{D24}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{K}_{10}=\frac{\mathrm{a}_{\mathrm{t}}^{2}\left(1+0.4 \mathrm{M}_{\mathrm{z}}^{2}\right)}{1.4 \ell\left(1+0.2 \mathrm{M}_{\mathrm{z}}^{2}\right)\left(1-\mathrm{M}_{\mathrm{z}}^{2}\right)} \tag{D25}
\end{equation*}
$$

$$
\begin{align*}
& K_{2}=\tau_{V}\left(\frac{7 M_{d}^{2}}{1-M_{d}{ }^{2}} \frac{M_{1}^{2}-1}{7 M_{1}{ }^{2}-1} \frac{d A}{A d X}+\frac{A}{V}\right)-\frac{\sqrt{1+0.2 M_{z}^{2}}}{a_{t} M_{z}} \tag{D17}\\
& K_{3}=\frac{35 \tau_{V^{M}}{ }^{2}{ }^{\left(M_{1}{ }^{2}-1\right)} \sqrt{1+0.2 M_{1}{ }^{2}}}{6 a_{t}\left(1-M_{d}{ }^{2}\right) M_{1}\left(7 M_{1}{ }^{2}-1\right)} \tag{D18}\\
& \mathrm{K}_{4}=\tau_{\mathrm{V}} \frac{\mathrm{M}_{\mathrm{d}}{ }^{2}}{1-\mathrm{M}_{\mathrm{d}}{ }^{2}} \tag{D19}\\
& K_{5}=\tau_{V} \frac{2-M_{d}{ }^{2}}{2-2 M_{d}{ }^{2}} \tag{D20}\\
& K_{6}=-\mathrm{K}_{4} \mathrm{C}_{24} \tag{D21}\\
& K_{7}=\frac{a_{t}^{2}\left(M_{1}^{2}-1\right)}{0.2 \ell\left(7 M_{1}^{2}-1\right)} \quad \frac{1+0.4 M_{z}^{2}}{\left(1-M_{z}^{2}\right)\left(1+0.2 M_{z}^{2}\right)} \quad \frac{d A}{A d X} \tag{D22}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{K}_{11}=-\mathrm{K}_{10} \mathrm{C}_{24} \tag{D26}
\end{equation*}
$$

The four equations (D3) and (D13) to (D15) may be combined into the following single equation:

$$
\begin{align*}
& \mathrm{K}_{\mathrm{W}_{\mathrm{Ci}}}\left(1+\tau_{\mathrm{V}} \mathrm{~S}\right) \mathrm{e}-\tau_{\mathrm{d}} \mathrm{~S} \frac{\Delta \mathrm{w}_{\mathrm{ci}}}{\mathrm{w}_{\mathrm{ci}}}+\mathrm{K}_{\mathrm{M}_{1}}\left(1+\tau_{1} \mathrm{~S}+\tau_{2} \mathrm{~S}^{2}\right) \Delta \mathrm{M}_{1}+\mathrm{K}_{\mathrm{A}_{1}}\left(1+\tau_{3} \mathrm{~S}+\right. \\
& \Delta \mathrm{X}_{\mathrm{S}}= \\
& \left.\tau_{4} \mathrm{~S}^{2}\right) \frac{\Delta \mathrm{A}_{1}}{\mathrm{~A}_{1}}+\tau_{\mathrm{P}_{\mathrm{t}}} \mathrm{~S}\left(1+\tau_{\mathrm{V}} \mathrm{~S}\right) \frac{\Delta \mathrm{P}_{\mathrm{t} 1}}{\mathrm{P}_{\mathrm{t} 1}}+\tau_{\mathrm{T}_{\mathrm{t}} \mathrm{~S}\left(1+\tau_{5} \mathrm{~S}\right) \frac{\Delta \mathrm{T}_{\mathrm{t} 1}}{\mathrm{~T}_{\mathrm{t} 1}}}^{1+\tau_{6} \mathrm{~S}+\tau_{7} \mathrm{~S}^{2}+\tau_{8} \mathrm{~S}^{3}+\tau_{9} \mathrm{~S}^{4}} \tag{D27}
\end{align*}
$$

where $\mathrm{K}_{\mathrm{W}_{\mathrm{Ci}}}, \mathrm{K}_{\mathrm{M}_{1}}, \mathrm{~K}_{\mathrm{A}_{1}}$ and τ_{V} are given by equations (A4) to (A6) and (B19), the K 's are given by equations (D16) - (D25), and

$$
\begin{align*}
& \tau_{1}=\tau_{\mathrm{V}} \frac{7 \mathrm{M}_{1}{ }^{2}-1}{6\left(1-\mathrm{M}_{\mathrm{d}}{ }^{2}\right)}\left[1+\frac{7\left(\mathrm{M}_{1}{ }^{2}-1\right)}{\left(7 \mathrm{M}_{1}{ }^{2}-1\right)} \quad\left(\mathrm{M}_{\mathrm{d}}{ }^{2}-2\right)\right] \tag{D28}\\
& \tau_{2}=\tau_{V}{ }^{2} \frac{\left(7 \mathrm{M}_{1}{ }^{2}-1\right)}{6\left(1-\mathrm{M}_{\mathrm{d}}{ }^{2}\right)}\left(\mathrm{M}_{\mathrm{d}}{ }^{2}-\frac{7\left(\mathrm{M}_{1}{ }^{2}-1\right)}{\left(7 \mathrm{M}_{1}{ }^{2}-1\right)}\right) \tag{D29}\\
& \tau_{3}=\frac{\tau_{\mathrm{V}}}{1-\mathrm{M}_{\mathrm{d}}{ }^{2}} \tag{D30}\\
& \tau_{4}=\frac{\tau_{\mathrm{V}}{ }^{2}{ }^{M_{\mathrm{d}}}{ }^{2}}{1-\mathrm{M}_{\mathrm{d}}{ }^{2}} \tag{D31}\\
& \tau_{\mathrm{P}_{\mathrm{t}}}=\tau_{\mathrm{V}} \mathrm{~K}_{\mathrm{w}_{\mathrm{ci}}} \tag{D32}
\end{align*}
$$

$$
\begin{align*}
& \tau_{\mathrm{T}_{\mathrm{t}}}=-\tau_{\mathrm{V}}\left(0.5+\frac{0.7 \mathrm{M}_{\mathrm{z}}^{2}}{1+0.4 \mathrm{M}_{\mathrm{z}}^{2}}\right) \mathrm{K}_{\mathrm{w}_{\mathrm{ci}}} \tag{D33}\\
& \tau_{5}=-\tau_{\mathrm{V}}\left(\frac{\mathrm{M}_{\mathrm{d}}^{2}}{1-\mathrm{M}_{\mathrm{d}}^{2}}-\frac{1.4 \mathrm{M}_{\mathrm{z}}^{2}}{1+0.4 \mathrm{M}_{\mathrm{z}}^{2}}\right) \frac{1+0.4 \mathrm{M}_{\mathrm{z}}^{2}}{1-\mathrm{M}_{\mathrm{z}}^{2}} \tag{D34}\\
& \tau_{6}=\mathrm{K}_{\mathrm{w}_{\mathrm{ci}}}\left(\mathrm{~K}_{2}-\frac{\mathrm{C}_{46}}{\mathrm{a}_{\mathrm{t}}}-\frac{\mathrm{K}_{1}}{2}+\frac{\left.\mathrm{K}_{8}+2 \tau_{\mathrm{V}^{2} \mathrm{~K}_{7}-\mathrm{K}_{1} \mathrm{~K}_{9}}^{\mathrm{K}_{10}}\right)}{\tau_{7}}=\mathrm{K}_{\mathrm{w}_{\mathrm{ci}}}\left(\mathrm{~K}_{3}+\tau_{\mathrm{V}} \mathrm{~K}_{2}-\mathrm{K}_{1} \mathrm{~K}_{5}-\frac{\mathrm{C}_{46} \tau_{\mathrm{V}}}{\mathrm{a}_{\mathrm{t}}\left(1-\mathrm{M}_{\mathrm{d}}{ }^{2}\right)}+\frac{\tau_{\mathrm{V}}\left(\tau_{\mathrm{V}} \mathrm{~K}_{7}+2 \mathrm{~K}_{8}+\mathrm{K}_{1} \mathrm{~K}_{9}\right)+1}{\mathrm{~K}_{10}}\right)\right. \tag{D35}\\
& \tau_{8}=\mathrm{K}_{\mathrm{w}_{\mathrm{ci}}} \tau_{\mathrm{V}}\left(\mathrm{~K}_{3}-\frac{\mathrm{C}_{46} \mathrm{~K}_{4}}{\mathrm{a}_{\mathrm{t}}}\right. \tag{D36}\\
& \tau_{9}=\frac{\tau_{\mathrm{V}}}{\mathrm{~K}_{7}} \tag{D37}
\end{align*}
$$

APPENDIX E
 DIGITAL PROGRAM TO DERIVE EQUATION FOR SQUARE OF
 FREQUENCY - RESPONSE FUNCTION

This appendix describes a digital algebraic program which derives the equation for the amplitude of the square of a frequency-response function, expressed in terms of the frequency ω, from an equation for the frequency response function $\mathrm{H}(\mathrm{S})$. The program was written by the United Aircraft Corporation Research Laboratories in the AED-0 (see ref. 74) language for the UAC UNIVAC 1108 computer. The derived equation relates the power spectral density of an output parameter, such as throat Mach number, to the power spectral density of an input parameter, such as a disturbance in flight Mach number. The derived equation may be used in the subroutine required by the program described in Appendix F.

Description of the Program

The program does the following:

1) It accepts a symbolic expression called $H(S)$, where S is a Laplace operator, and prints it. $\mathrm{H}(\mathrm{S})$ is a frequency-response function.
2) It forms the expression $\mathrm{H}(\mathrm{i} \omega) \cdot \mathrm{H}(-\mathrm{i} \omega)$, expands it algebraically, and prints it. Here $i=\sqrt{-1}$, and ω is in frequency of rad/sec. Note that the printer writes " ω " as 'W". This is the expression for the amplitude of the square of the fre-quency-response function.
3) It substitutes arbitrary numerical values for any of the variables (except ω) in $H(i \omega) \cdot H(-i \omega)$ and prints the result as a function of the remaining variables and ω. By convention $H(i \omega) \cdot H(-i \omega)$ will be referred to as $H(\omega) \cdot H(\omega)$.

The permissible expressions for $\mathrm{H}(\mathrm{S})$ are given by the following rules:

1) The following symbols are permissible: S ; $\mathrm{T} 1, \mathrm{~T} 2, \ldots . \mathrm{T} 10$; $\mathrm{C} 1, \mathrm{C} 2, \ldots \mathrm{C} 10$; $\mathrm{W} 1, \mathrm{~W} 2, \ldots \mathrm{~W} 10 ; \mathrm{Z} 1 \mathrm{~W}, \mathrm{Z} 2 \mathrm{~W}, \ldots \mathrm{Z} 9 \mathrm{~W}$, and any real constant k where $10^{-38}<|k|<10^{38}$.
2) $\mathrm{H}(\mathrm{S})$ is formed by combining the sumbols in 1) by the " + " and "." operators.
3) The exponential term $e^{-Q \cdot S}$ is permissible, where Q is a dead-time constant. However, in any one $H(S)$, only one Q may be used. Q may be any of the symbols in 1).

Some examples of $\mathrm{H}(\mathrm{S})$ are:

1) $\mathrm{T} 1 \cdot \mathrm{~S}+1$
2) S
3) $((((\mathrm{T} 1 \cdot \mathrm{~S}+((\mathrm{C} 1))))))$
4) $(\mathrm{T} 1 \cdot \mathrm{~S}+1) \cdot(\mathrm{T} 2 \cdot \mathrm{~S}+3.5) \cdot((\mathrm{S}))+\mathrm{C} 1$
5) $\mathrm{T} 1 \cdot \mathrm{~S}+1+\mathrm{C} 1 \cdot \mathrm{e}^{-\mathrm{T} 2 \cdot \mathrm{~S}}$
6) $\mathrm{S} \cdot(1+\mathrm{S} \cdot(\mathrm{C} 1+\mathrm{S} \cdot(\mathrm{C} 2+(-4.0))))$
7) $(\mathrm{T} 1 \cdot \mathrm{~S}+(-1) \cdot \mathrm{C} 1)+\mathrm{C} 2 \cdot \mathrm{e}^{-\mathrm{T} 5 \cdot \mathrm{~S}}$

Although subtraction is not a permissible operation, 6) and 7) show how it can be achieved, albeit awkwardly. The maximum size of $H(S)$ is limited only by core storage in the UNIVAC 1108, and the amount of computer time the user wishes to expend.

The program is written in the AED-0 (Algol Extended for Design, or Automated Engineering Design) language. Because it permits easy manipulation of pointers and, consequently, internal tree structures, AED-0 is especially convenient for this problem. The program is divided into ten decks, namely MAIN, RDCARD, PARSE, ALGEB, COLECT, GPOL, PRNT, SUBST, DOUBML, and STAKS. Each of these will now be discussed in detail.

MAIN - This deck controls the calling of the other subroutines. It also computes the time in seconds taken by each of the subroutines, plus the total time for the problem.

RDCARD - In order to read input from cards, the card must be read one column at a time. Since AED-0 has no FORTRAN-type implied do-loop for input statements, it is necessary to write a lengthy input statement. RDCARD was written to avoid writing the input statement out several times. What is more important, it also saves several hundred locations of core storage. When RDCARD reads a card with a "\$" punch in col. 1, it terminates the run. RDCARD also looks for comment cards ("C" in column 1), and prints them.

PARSE - This routine takes the input expression $H(S)$, checks it for obvious errors, and then constructs the internal binary tree structure which represents $\mathrm{H}(\mathrm{S})$.

The meaning of the last third of the above sentence can be best explained by an example. Let $\mathrm{H}(\mathrm{S})$ be the expression $(\mathrm{T} 1 \cdot \mathrm{~S}+1) \cdot(\mathrm{T} 2 \cdot \mathrm{~S}+\mathrm{C} 1) \cdot(\mathrm{T} 3 \cdot \mathrm{~S} \cdot \mathrm{~S}+\mathrm{S}+1)+\mathrm{C} 2$.

Then the binary tree structure which represents $H(S)$ is:

For a detailed discussion of how PARSE builds the tree structure from the card input, the AED-0 source language listing of PARSE should be consulted, but the following is a generalized description.

All items in $\mathrm{H}(\mathrm{S})$ are classified and put into a list type structure which contains a pointer to the item, rather than the item itself. The list structure here is similar to a FORTRAN array, the main difference being that each item in the list has associated with it a pointer to the next item in the list. List structures are especially convenient when deletions or insertions are made. The classification assigns a " 1 " to operators $(\cdot,+$, and exponentiation), a ' 2 " to symbols belonging to Q and pointers and a " 3 " to left and right parentheses. The termination symbol "\$" is arbitrarily assigned a " 1 ".

The list is scanned from left to right for occurrences of "(" and the pointers to this symbol are placed on a push-down stack as they are encountered. The "(" symbol is then removed from the list. Now the push-down stack is popped so the first pointer from the stack gives the beginning of the innermost parenthesized expression. This expression is scanned until the first ' η ' symbol for occurrences of pl op p 2 where pl and p 2 are pointers and op is one of the operators ($\cdot,+$, and exp). Occurrences of pl op p2 are replaced by a pointer to a structure which represents pl op p 2 . The expression is scanned twice - first for op $=" \cdot "$, then for $o p="+"$. These are both binary
operators: since "exp" is a unary operator, it is handled in a special way. The " 7 " is then removed from the list.

This whole process is repeated for all pointers on the push-down stack. When the stack is empty, we will have a pointer to the top of the internal binary tree structure which represents $\mathrm{H}(\mathrm{S})$.

ALGEB - This routine first takes the internal tree structure for $H(S)$ and constructs another tree representing $H(-S)$, by replacing each occurrence of " S " by " -S ". It then joins these two trees with a "." operator, giving the tree for $H(S) \cdot H(-S)$. Next, occurrences of $e^{Q \cdot S}$ are replaced by $\cos (Q \cdot \omega)+i \sin (Q \cdot \omega)$. The substitution of $i \cdot \omega$ for occurrences of S outside the "exp" operator is postponed until the COLECT routine where it is more conveniently handled.

ALGEB then takes the tree and expands it algebraically. An algebraic expansion may be thought of as a process which transforms products of sums into sums of products. For example, the algebraic expansion of $(a+b) \cdot(c+d)$ is $a \cdot c+a \cdot d+b \cdot c+b \cdot d$. ALGEB does this by repeated applications of the distributive law of multiplication and addition. The law is applied by having the program look for the following pattern and transforming it as indicated.

The transformation is applied repeatedly until the expression represented by the tree is completely expanded.

COLECT - When the binary tree has been expanded into sums of products, this routine will go through the tree and collect like terms. Each symbol used in $\mathrm{H}(\mathrm{S})$ is assigned a unique prime integer (see Operating Instructions, card input (3)). COLECT then scans the expanded binary tree. When it encounters a term (defined here as a symbol, or a set of symbols connected by - operators; e.g., S•T1•S•T2 and S are each terms, while $\mathrm{T} 1+1$ is not a term), COLECT does three things. First, each occurrence of "S" is replaced by " $\mathrm{i} \cdot \omega$ ". Second, if the term contains i to an odd power, COLECT rejects the term and continues on because the answer must be real. Third, a Goedel
number is computed for the term. The Goedel number is computed by multiplying together the primes associated with each of the symbols in the term. A numerical coefficient is also computed by multiplying together all real numerics in the term. For example, let the set of symbols in $H(S)$ be $S, T 1$, and T2. The primes assigned to these symbols would be 2, 7, and 11. Suppose the term being considered is S•3•T1•S•2•T2• T1. The Goedel number for this term is $2 \cdot 7 \cdot 2 \cdot 11 \cdot 7=2156$, while the numerical coefficient is $3 \cdot 2=6$. By the unique factorization theorem, any other term which has a Goedel number of 2156 is identical to the given term even though the order of the factors is different. Conversely, any term with a Goedel number different from 2156 is different from the given term.

It now becomes a simple matter to collect like terms. For each term a Goedel number and numerical coefficient is computed. A table of previously encountered Goedel numbers and coefficients is searched. If a match is found between Goedel numbers, the two numerical coefficients are added. If no match is found, the Goedel number is appended to the table. Since sin and cos always refer to the same angle, they are treated as symbols, and always assigned the primes 3 and 5. The detection of the following situation then is quite easy:

$$
\mathrm{f} \cdot \sin ^{2} \theta+\mathrm{f} \cdot \cos ^{2} \theta
$$

If the quotients left by dividing each of the Goedel numbers first by 9 and 25 , then by 25 and 9 are identical, the expression is reduced to ' f '.

The only difficulty with this method of collecting terms occurs when a Goedel number exceeds $2^{35}-1$. When this happens, two or more storage locations must be used to hold the Goedel number. To compare Goedel numbers which occupy more than one location, we call subroutine GPOL.

GPOL - This subroutine writes the Goedel number as the coefficients of a polynomial in powers of 2^{35}. Since the polynomial is unique, we can then compare all pairs of Goedel numbers, no matter how large.

PRNT - After all like terms have been collected, this routine decomposes each Goedel number in the table, in turn, and prints the string of symbols associated with the Goedel number, preceded by the numerical coefficient. This is the final answer, $H(\omega) \cdot H(\omega)$.

SUBST - This routine reads one or more sets of cards, each set consisting of a list of numerical values of any or all of the variables in $H(S)$. The substitution of the numerical value for the variable in $\mathrm{H}(\omega) \cdot \mathrm{H}(\omega)$ is done in the following way.

The prime associated with the variable is trial-divided into each of the Goedel numbers in the table computed by COLECT. If the division leaves a remainder, no change is made. If the division leaves no remainder, the Goedel number is replaced by the quo-
tient, and the numerical coefficient of the Goedel number is multiplied by the indicated numerical value of the variable. When all substitutions have been made, an attempt is made to collect like terms on the new Goedel number table, and then PRNT is called.

STAKS - This is a routine which permits the use of push-down stacks in the PARSE, ALGEB, and COLECT subroutines.

DOUBML - This routine is written in UNIVAC 1108 machine language. It is called from GPOL and is used to perform a double-precision (70 bit) integer multiplication.

Figure 47 is a listing of the source program for a UNIVAC 1108.

Operating Instructions

The card input to the program consists of the following:

(1) Comment Cards

Use as many comment cards as desired (including none). Each must have a "C" punch in column 1. All information punched in columns 2-72 will print out before any other information from the problem.

(2) The Expression H(S)

With one minor exception, this is punched in standard FORTRAN format. As with all card input to the program, columns 1-72 are used, with columns 73-80 reserved for user identification information. As in FORTRAN, blanks are ignored. The exponential, $e^{-\mathrm{T} 1 \cdot} \mathrm{~S}$, should be punched as $\mathrm{E}(-\mathrm{T} 1 * \mathrm{~S})$. Up to four cards can be used for $\mathrm{H}(\mathrm{S})$, which must be terminated by a "\$" punch. If $\mathrm{H}(\mathrm{S})$ uses more than one card, do not use the FORTRAN continuation card punch in column 6; just continue to the next card as shown in figure 48. Use decimal points where needed; they are optional for integers. However, the appearance of the answer will probably be enhanced if decimal points are omitted from integers. An integer (0 to 9) must precede any decimal point. Redundant parentheses cause no problem; e.g., (((T1) +((1)))) is as good as T1+1. "S" must appear at least once in $H(S)$. A minus sign must be preceded by a left parentheses and followed by a number, not by a variable or parenthesis.
(3) A List of the Variables Used in H(S)

These are strung out on the card with any number of blanks separating each variable. The list should be in the order of frequency of appearance in $\mathrm{H}(\mathrm{S})$ with the most frequently used symbol occurring first, so that " S " will probably
be the first variable on the card. This is not an essential requirement, but the program may operate more efficiently if the requirement is met. Up to four cards may be used to list the variables. A "\$" punch terminates the list. The list is limited to 35 variables.
(4) The Number of Independent Sets of Numerical Substitutions

This will be an integer punched in columns 1-3 of the card, right-justified. If there are no numerical substitutions, punch a " 0 " in column 3 (or use a blank card). Then skip to the next $\mathrm{H}(\mathrm{S})$ or to the termination card. The remainder of the card may be used for comments.
(5) The Number of Variables Which Receive Numerical Values

This card is needed for each independent set of numerical substitutions. It has the same format as card (4).
(6) The Numerical Values of the Variables

These are punched one to a card in columns 1-72. They are of the form ' $\mathrm{T} 1=$ 0.6187 ", " $\mathrm{Z} 1 \mathrm{~W}=-1.983$ ", etc. Blanks are ignored, so the substitutions may appear anywhere on the card between columns 1 and 72. As with card (2), decimal points are used where needed, and must be preceded by an integer (0 to 9). The absolute numerical value must lie between 10^{-38} and 10^{+38}. Do not use floating point notation. No "\$" punch is necessary to end the statement.

(7) Termination Card

This is the last card of the input deck and will terminate the run. It appears after the last set of input cards. It will have a "\$" punch in column 1, plus any other information desired by the user.

Sample Cases

A listing of the input cards for four sample cases is presented in figure 48. The output for these sample cases is presented in figure 49. The output from the program is selfexplanatory. The expression $\mathrm{H}(\mathrm{S})$ is printed, followed by the formula for $\mathrm{H}(\omega) * \mathrm{H}(\omega)$. If there are any numerical substitutions to be made, the variables which are to be assigned numerical values are printed together with their assigned values. The numerical values are printed to five decimal places if their absolute value lies between 10^{4} and 10^{-4}; otherwise they are printed in floating point format to five significant figures. The expression for $H(\omega)^{*}(\omega)$ after the substitution is then printed.

After $\mathrm{H}(\mathrm{S})$ and all numerical substitutions have been processed, the time taken by each of the subroutines and the total time is printed (maximum error about one second). The four sample cases serve to illustrate the time required by a UNIVAC 1108. If less than two sets of substitutions are made, it may require less machine time to run two cases with the substitutions made in the original equations, as in the last example. Another version of the first case, with two more variables and without simplification of the equation, required nearly twice as much machine time.

Diagnostics

The program will print diagnostics if it runs into difficulty during execution. The diagnostics are as follows:

PARSE routine:
a) If the left and right parentheses in $\mathrm{H}(\mathrm{S})$ do not balance, an error message to this effect will print.
b) Certain meaningless adjacent combinations of symbols in $\mathrm{H}(\mathrm{S})$ such as ") (", " + * ", etc., will give an error message.
c) An illegal character in $\mathrm{H}(\mathrm{S})$; i.e., one that does not belong to the set of permissible symbols (see Description of the Program), will give an error message.
d) An error in free storage will give an error message. This is a serious error and is probably caused by machine error, or by an $H(S)$ too big for machine storage.

COLECT routine:
a) An illegal character in the list of variables used in $\mathrm{H}(\mathrm{S})$ will give an error message.
b) If there is a variable in $\mathrm{H}(\mathrm{S})$ which is not contained in the list of variables (see card input (2)), the message "Symbol missing from admissible symbol set" will print.
c) Depending on the complexity of $\mathrm{H}(\mathrm{S})$, the program will handle an $\mathrm{H}(\omega) \cdot \mathrm{H}(\omega)$ of about 700 terms, after simplification. If the error message "Goedel number table overflows" prints, then $H(\omega) \cdot H(\omega)$ has exceeded capacity. A remedy which may work is to recompile the following decks with the dimension of GOEDEL (integer array) and REALL (real array) both increased to
a number higher than the present value of 1500 . The decks are: PARSE, ALGEB, COLECT, PRNT, and SUBST.

SUBST routine:
a) If a variable of substitution does not appear in $\mathrm{H}(\mathrm{S})$, an error message will be printed.
b) If the numerical value of a variable of substitution contains an illegal character; i.e., anything other than the digits 0 to 9 , an error message will be printed.

Machine-Dependent Instructions

The program will run on any UNIVAC 1108. Since AED compilers do exist for the IBM 7090 and 7094, the IBM 360 (most models) as well as the UNIVAC 1108, it should be possible to run the program on these computers without too many headaches*. The program was written to run successfully on the UAC UNIVAC 1108. Therefore, there are some instructions which depend on the internal representation of alphabetic characters in the 1108 or on the 1108 's 36 -bit word length. A list of these instructions and the subroutines in which they occur follows:

MAIN: DOITF is an instruction peculiar to UNIVAC 1108 AED. Its only function here is to permit calls to the FORTRAN time routine, so it is not needed for the success of the program.

PARSE:
(1) In the code between the comment "anything else must be S, T1, T2," and the label D10, the symbol is assembled from the individual alphanumeric characters in the array IN. The program assembles the symbol by masking and shifting.
(2) About halfway between labels D6 and D7, the program places $O P(Q)$ in its position in the word by shifting.

A LGEB: About ten lines after label A1, HOL(P) is compared with the internal UNIVAC representation for " S ". This is, of course, machine dependent.
*The Computer Aided Design Group at United Aircraft Research Laboratories should be consulted first.

COLECT:

(1) In the code between labels C12 and C0, the program assembles a symbol by masking and shifting the individual alphanumeric characters in the array J.
(2) Just after label C15, HOL(P) is compared with the internal UNIVAC representation for "S".
(3) Starting at label C8, the 0 's in the SYM array are changed to blanks, and the "S" symbol is changed to "W" in UNIVAC internal representation.

PRNT: Just after the comment 'First replace S in angle by W and replace 0 by blank in other symbols", the program does just that in UNIVAC internal representation.

SUBST: In the code between labels E0 and E1, the program assembles a symbol by masking and shifting the individual alphanumeric characters in the array J .

DOUBML: This is an assembly-language program which takes two 35 bit integers and outputs the 70 bit product.

In addition to the above, the program assumes that the computer has a word length of 36 bits. Since the IBM 360 series has a word length of 32 bits, packed components will almost certainly have to be redefined. There will also be some changes to the free storage cells, if the number of words used in a bead must be changed.

APPENDIX F

DIGITAL PROGRAM TO EVALUATE POWER SPECTRAL DENSITY PARAMETERS

A digital program which evaluates several power spectral density parameters was written in FORTRAN IV language and is described in this appendix. In order to run, it requires that a function $\operatorname{PSD}(\mathrm{W}, \mathrm{J})$ which evaluates the power spectral density as a function of frequency $W(\mathrm{rad} / \mathrm{sec})$ be available to the program. The integer J is 1 for the first case run, 2 for the second case, 3 for the third case, etc.

A listing of the program written for an IBM 1130 computer is presented in figure 50 . It should be noted that the values of the integer constants IR and IP can be changed to fit the installation.

Program Input

The first card read for each case executed may have any legal Hollerith punches in its 80 columns. If the card is blank the subroutine START completes execution of the job by returning control to the system monitor. If the card is not blank it is printed with a 1 eject to the top of the page. The user may need to supply a START subroutine appropriate to his own installation. The second card contains the following input data in a (4F10.5, Il0) format:

1. VF - the flight velocity in $\mathrm{ft} / \mathrm{sec}$. If this is zero it is computed from VK.
2. VK - the flight velocity in knots. This is computed from VF unless VF is zero. Thus, either VF or VK may be input and if VF is not zero the value of VK loaded is replaced by one computed from VF.
3. DW - the initial frequency ω, $\mathrm{rad} / \mathrm{sec}$.
4. WM - the program will proceed, doubling the frequency ω at each step, until $\omega \geq$ WM.
5. I - An integer which is the number of cards read next. At least one card will be read. The contents of each card are printed. Normally, the first column is not printed and should be blank.

Program Output

The initial card is printed at the top of a page by the START subroutine. The next line contains the flight velocity. The next I lines reproduce the I cards read. These
cards may contain comments, the equation for the power spectral density, or any other material the user desires to print. Column headings are printed next. The contents of each column of numbers printed next are, starting at the left:

Column No.

1. Wavelength λ in feet
2. Wavelength λ in meters
3. Spatial frequency Ω in $\mathrm{rad} / \mathrm{ft}$
4. Power spectral density, $\phi(\Omega)$
5. Frequency f in Hz
6. Frequency $\omega \cdot$ in $\mathrm{rad} / \mathrm{sec}$
7. Power spectral density, $\varnothing(\omega)$, evaluated by $\operatorname{PSD}(W, J)$
8. $\sqrt{\omega \phi(\omega)}$
9. $\sqrt{\int_{0}^{\omega} \phi(\omega) \mathrm{d} \omega}$
10. Number of zero crossings in positive direction per nautical mile G evaluated by integrating ϕ from 0 to frequency ω.
11. Number of zero crossings in positive direction per hour N_{0} evaluated by integrating ϕ from 0 to frequency ω.

A five-point Gauss integration procedure is used to compute the last three columns.
The integration used to obtain the truncated rms amplitude in column 9 may be extended from the last frequency $\omega_{\mathbf{c}}$ printed to infinity analytically if $\phi(\omega)$ varies as $\omega^{-\mathrm{n}}$ at high frequencies. Typically $\mathrm{n}=5 / 3$ or 2 . Let $\phi(\omega)=\mathrm{C} \omega^{-\mathrm{n}}$ where C may be evaluated from the last printed line using columns 6 and 7. Then, $\sqrt{\mathrm{C} /(\mathrm{n}-1) \omega_{\mathrm{c}}^{\mathrm{n}-1}}=\sqrt{\omega_{\mathrm{c}} \phi\left(\omega_{\mathrm{c}}\right) /(\mathrm{n}-1)}$ should be added to the last value in column 9 . However, if the value of WM selected is large enough this correction is small and may be neglected.

Column 9 provides a value of " A " and column 10 of " G " for use in the program described in Appendix G.

Sample Cases

A listing of the function PSD, the input cards, and the output of two sample cases run on an IBM 1130 are presented in figures 51 and 52.

APPENDIX G

digital program to evaluate exceedance parameters

A digital program which evaluates exceedance parameters was written in FORTRAN IV language and is described in this appendix. A listing of the program written for an IBM 1130 computer is presented in figure 53. It should be noted that the values of the integer constants IR and IP can be changed to fit the installation.

Program Input

Three cards are read for each case executed. The first card may have any legal Hollerith punches in its 80 columns. If the card is blank the subroutine START completes execution of the job by returning control to the system monitor. If the card is not blank it is printed with a 1 eject to the top of a page. The user may need to supply a START subroutine appropriate to his own installation. The second card contains the following input data in a ($10,7 \mathrm{~F} 10.5$) format:

1. L - an integer which controls equation used for calculating exceedances, if $L=0$ equation (4) is used, if $L<0$ equation (8) is used and if $L>0$ equations ($5,6 \& 7$) are used. These equations appear in the body of this report.
2. QG - number of zero crossings of output in positive direction per nautical mile, $G_{\text {th }}$ or G_{S}.
3. $\mathrm{A}-\mathrm{rms}$ amplitude of output/rms amplitude of input.
4. VF - the flight velocity in $\mathrm{ft} / \mathrm{sec}$. If this is zero it is computed from VK.
5. VK - the flight velocity in knots. This is computed from VF unless VF is zero. Thus, either VF or VK may be input and if VF is not zero the value of VK loaded is replaced by one computed from VF.
6. DI - maximum initial output disturbance.
7. DX - interval in output disturbance amplitude.
8. DM - program continues, increasing output disturbance by DX each cycle, until output disturbance exceeds DM.

The third card contains the following input data in a（ 8 F 10.5 ）format：
9．QNI－maximum initial nautical miles／exceedance．
10．QNM－program continues until computed miles／exceedance is greater than QNM．

11．P_{1}－fraction of flight distance in primary turbulence，see figure 10.
12．P_{2}－fraction of flight distance in secondary turbulence，see figure 11．Not required if $L \neq 0$ 。

13． P_{3}－fraction of flight distance in tertiary turbulence，see figure 11．Not required if $L \neq 0$ ．

14． B_{1}－rms amplitude of input primary turbulence，see figure 12 。
15． $\mathrm{B}_{2}-\mathrm{rms}$ amplitude of input secondary turbulence，see figure 13 ，if $\mathrm{L}=0$ ． Parameter α if $L \neq 0$ ．

16． $\mathrm{B}_{3}-\mathrm{rms}$ amplitude of input tertiary turbulence，see figure 13 ，if $\mathrm{L}=0$ ． Not required if $L \neq 0$ ．

Program Output

For each case the initial card is printed at the top of a page by the START subroutine． The next three or four lines print the equation for G used and pertinent input data．If $\mathrm{L}=0$ up to three case＂a＂of ref． 42 are summed，using equation（4）．By appropriate choice of input parameters case＂k＂（equation（9））may be solved．If $L>0$ case＂ j ＂of ref． 42 is solved，using equations（5），（6）and（7）．If $L<0$ case＂m＂of ref． 42 is solved， using equation（8）．Column headings are printed next．The columns contain，in groups of three，numerical values of：

1．Amplitude X of output disturbance，may be $\Delta \mathrm{M}_{\text {th }}$ or $\Delta \mathrm{X}_{\mathrm{S}}$ 。
2．Number of flight nautical miles between exceedances of $X, 1 / G$ ．
3．Flight hours between exceedances of X．

Sample Cases

Listings of the input cards and the output of four sample cases run on an IBM 1130 are presented in figures 54 and 55 respectively. The sample cases represent, in order, cases "a", " k ", " j ", and ' m " of ref. 42. In the second sample case a value of VK is loaded which does not match the value of VF loaded (see figure 54) but the program replaces the wrong value with one matching VF (see figure 55).

REFERENCES

1. Barry, F. W.: Effects of Atmospheric Gust Criteria on Supersonic Inlet Performance, Paper no. 66-367, AMS/AIAA, Mar. 1966.
2. Barry; F. W.: Development of Atmospheric Gust Criteria for Supersonic Inlet Design - Comparison of Analytical Inlet Models with Experiment. HSER 5196 (NASA CR-), Hamilton Standard, Dec. 1968, Confidential.
3. Peckham, C. G.: Flight-Measured Turbulence in the NATO Countries. AGARD Rept. 555, Feb. 1967.
4. Anon.: Clear Air Turbulence. NASA Literature Search no. 5180, Oct. 1967.
5. Anon.: Aircraft Gust Loads. NASA Literature Search no. 5588, Jan. 1968.
6. Bulford, D. E.: Clear Air Turbulence: A Bibliography 1950-1967. FAA National Aviation Facilities Experimental Center, Rept. NA-68-17, Mar. 1968.
7. Clear Air Turbulence Meeting. USAF (AD668080), Apr. 26-27, 1965.
8. Transactions of International Colloqium on Atmospteric Turbulence and Radio-Wave Propagation. Moscow, June 15-22, 1965.
9. National Air Meeting on Clear Air Turbulence. SAE, Feb. 23-24, 1966.
10. Symposium on Clear Air Turbulence And Its Detection. Boeing Scientific Research Laboratories, Document D1-82-0740, Aug. 14-16, 1968.
11. Meeting on Aircraft Response to Turbulence. NASA, Langley, Sept. 24-25, 1968.
12. Coleman, T. L.; and Steiner, R.: Atmospheric Turbulence Measurements Obtained from Airplane Operations at Altitudes between 20,000 and 75,000 Feet for Several Areas in the Northern Hemisphere. NASA TN D-548, Oct. 1960.
13. Steiner, R.: A Review of NASA High-Altitude Clear Air Turbulence Sampling Programs. J. of Aircraft, vol. 3, no. 1, Jan.-Feb. 1966, pp. 48-52 (Paper no. 65-13, AIAA, Jan. 1965).
14. Crooks, W.: High Altitude Clear Air Turbulence. AFFDL-TR-144, Sept. 1965.
15. Burnham, J.; and Spavins, C. S.: Some Results of a Study of Atmospheric Turbulence in Clear Air Above Thunderstorms and of its Relationship to Weather Radar Pictures. National Severe Storms Laboratory, Technical Memorandum no. 30, Dec. 1966, pp. 1-9.
16. Coy, R. G.: Atmospheric Turbulence Spectra From B-52 Flight Loads Data. AFFDL-TR-67-13, Apr. 1967.
17. Kordes, E. E.; and Love, B. J.: Preliminary Evaluation of XB-70 Airplane Encounters with High-Altitude Turbulence. NASA TN D-4209, Oct. 1967.
18. Crooks, W. M.; Hoblit, F. M.; Prophet, D. T.; et al: Project HICAT An Investigation of High Altitude Clear Air Turbulence. Rept. no. LR 20771 (AFFDL-TR-67-123), Lockheed-California Co., Nov. 1967.
19. Hunter, P. A.: An Analysis of VGH Data from One Type of Four-Engine Turbojet Transport Airplane During Commercial Operations. NASA TN D-4330, Feb. 1968.
20. Hunter, P. A.; and Brazziel, M. E.: Summary of VGH Data Collected on One Type of Twin-Engine Jet Airplane during Airline Operations. NASA TN D-4529, May 1968.
21. Endlich, R. M.; and Mancuso, R. L.: The Turbulence Climatology of the United States Between 20,000 and 45, 000 Feet Estimated From Aircraft Reports and Meteorological Data. AFCRL-68-0337, June 1968.
22. Belyayev, V. P., et al: Some Results of the Experimental Investigations of the Atmospheric Turbulence Using Radiosondes. In Pinus, N. Z.:
Atmospheric Turbulence. NASA TT F-246, Sept. 1965, pp. 1-65.
23. Vinnichenko, N. K.; Pinus, N. Z.; and Shur, G. N.: Some Data on Turbulence in the Upper Troposphere and Stratosphere Causing Airplane Buffeting. (Meteorology and Hydrology, no. 11, Nov. 1966) JPRS-39987, Feb. 21, 1967, pp. 35-47.
24. Pratt, K. G.; and Walker, W. G.: A Revised Gust-Load Formula and a Re-Evaluation of V-G Data taken on Civil Transport Airplanes From 1933 to 1950. NACA Rept. 1206, 1954.
25. Anon.: Military Specification Airplane Strength and Rigidity Flight Loads. MIL-A-8861, May 1960.
26. Anon.: Tentative Airworthiness Standards for Supersonic Transports. (rev. 1, Feb. 1966), Federal Aviation Agency, Flight Standards Service, Nov. 1, 1965.
27. Anon.: Supersonic Transport Aircraft Structures. TSS-Standard no. 8, issue 2, May 1, 1966.
28. Boone, J. P.: High Altitude Critical Atmospheric Turbulence Data System. AFFDL-TR-67-1, May 1967.
29. Pinus, N. Z.; Reiter, E. R.: Shur, G. N.; and Vinnichenko, N. K.: Power Spectra of Turbulence in the Free Atmosphere. Tellus, vol. XIX, no. 2, 1967, pp. 206-213.
30. Diederich, F. W.; and Drischler, J. A.: Effect of Spanwise Variations in Gust Intensity on the Lift Due to Atmospheric Turbulence. NACA TN 3920, Apr. 1957.
31. Houbolt, J. C.; Steiner, R.; and Pratt, K. G.: Dynamic Response of Airplanes to Atmospheric Turbulence Including Flight Data on Input and Response. NASA TR R-199, June 1964.
32. Press, H.; and Steiner, R.: An Approach to the Problem of Estimating Severe and Repeated Gust Loads for Missile Operations. NACA TN 4332, Sept. 1958.
33. Anon.: Military Specification Airplane Strength and Rigidity Reliability Requirements, Repeated Loads, and Fatigue. MIL-A-8866, May 1960.
34. Neuls, G. S.; Maier, H. G.; Lerwick, T. R.; Robb, E. A.; and Webster, I. J.: Optimum Fatigue Spectra. ASD-TR-61-235, Apr. 1962.
35. Hoblit, F. M.; Paul, N.; Shelton, J. D.; and Ashford, F. E.: Development of a Power-Spectral Gust Design Procedure for Civil Aircraft. Rept. no. 18253, rev. 2 (FAA-ADS-53, Jan. 1966), Lockheed-California Co., July 1965.
36. Pritchard, F. E.; Easterbrook, C. C.; and McVehil, G. E.: Spectral and Exceedance Probability Models of Atmospheric Turbulence for Use in Aircraft Design and Operation. AFFDL-TR-65-122, Nov. 1965.
37. Houbolt, J. C.: Preliminary Development of Gust Design Procedures Based on Power Spectral Techniques. Volume I. Theoretical and General Considerations . Rept. No. 83, vol. 1 (AFFDL-TR-66-58, vol. I), Aeronautical Research Associates of Princeton, Inc., July 1966.
38. Austin, W. H., Jr.: A Summary of Some Recent Developments in the Description of Atmospheric Turbulence Used for Aircraft Structural Design. Technical Report SEG-TR-66-45, Aug。1966.
39. Pritchard, F. E.: A Statistical Model of Atmospheric Turbulence and a Review of the Assumptions Necessary for Its Use. Presented at the AGARD Specialists' Mreting on Stability and Control (Cambridge, England), Sept. 20-23, 1966.
40. Dempster, J. B.; and Roger, K. L.: Evaluation of B-52 Structural Response to Random Turbulence with Stability Augmentation Systems. J. of Aircraft, vol. 4, no. 6, Nov.-Dec. 1967, pp. 507-512 (paper 66-998, AIAA, Dec. 1966).
41. Austin, W. H., Jr.: Development of Improved Gust Load Criteria for United States Air Force Aircraft. Technical Rept. SEG-TR-67-28, (Preprint 670617, SAE, July 1967), Sept. 1967.
42. Houbolt, J. C.: Gust Design Procedures Based on Power Spectral Techniques. Rept. No. 106 (AFFDL-TR-67-74), Aeronautical Research Associates of Princeton, Inc., Aug. 1967.
43. Firebaugh, J. M.: Evaluations of a Spectral Gust Model Using VGH and V-G Flight Data. J. of Aircraft, vol. 4, no. 6, Nov.-Dec. 1967, pp. 518-525.
44. Mather, G. K.: Some Measurements of Mountain Waves and Mountain Wave Turbulence Made Using the NAE T-33 Turbulence Research Aircraft. Canadian National Research Council, Quarterly Bulletin, issue no. 2, 1967, pp. 1-27.
45. Burns, A.; and Harrold, T. W.: An Atmospheric Disturbance Encountered by a Canberra Over Storms at Oklahoma on May 27, 1965. National Severe Storms Laboratory, Technical Memorandum no. 30, Dec. 1966, pp. 11-20.
46. Black, H. C.: The Airworthiness of Supersonic Aircraft. The Aeronautical Journal of the Royal Aeronautical Society, vol. 72, Feb. 1968, pp. 115-122 (Also AIAA Preprint no. 67-731, Oct. 1967).
47. Ehernberger, L. J.: Meteorological Aspects of High-Altitude Turbulence Encountered by the XB-70 Airplane. A.M. $\mathrm{S}_{.}$, Proc. of the 3rd National Conference on Aerospace Meteorology (New Orleans), May 1968, pp. 515-522.
48. Helvey, R. A.: Observations of Stratospheric Clear-Air Turbulence and Mountain Waves Over the Sierra Nevada Mountains - An Analysis of the U-2 Flights of 13-14 May, 1964. AFCRL-68-0001, Dec. 1967.
49. Ashburn, E. V.; Prophet, W. T.; and Waco, D. E.: High Altitude Clear Air Turbulence Models For Aircraft Design and Operation. Rept. no. LR 21501 (AFFDL-TR-68-79), Lockheed-California Co., July 1968.
50. Anon.: Supersonic Transport Aircraft -- Atmospheric Conditions.

TSS-Standard no. 6, issue 1, Mar. 9, 1966.
51. Anon.: Total Temperature Sensors. Bulletin 7637, Rev, B, Rosemount Engineering Co., 1963.
52. Chun, K. S.; and Swanson, D. B.: Dynamic Simulation of Supersonic Inlet and Engine. Paper no. 64-598, AIAA, Aug. 1964.
53. Anon.: Boeing Model 2707 Air Induction Control Subsystem Specification. Spec. D6A10118-1, rev. C, Boeing Company, Dec. 18, 1967.
54. Martin, A. W.: Propulsion System Dynamic Simulation Theory and Equations. Rept. no. NA-67-384 (NASA CR-928, Mar. 1968), North American Aviation, Inc. , Apr. 1967.
55. Ames Research Staff: Equations, Tables, and Charts for Compressible Flow. NACA Rept. 1135, 1953.
56. Barry, F. W.: Determination of Mach Number from Pressure Measurements. Trans. ASME, vol. 78, no. 3, Apr. 1956, pp. 581-589.
57. Hartsell, C. W.: Derivation of an Analytical Expression for Supersonic Spillage of Single-Cone Inlets. J. Aerospace Sci., vol. 27, no. 10, Oct. 1960, pp. 788-789.
58. Sims, J. L.: Tables For Supersonic Flow Around Right Circular Cones at Zero Angle of Attack. NASA SP-3004, 1964.
59. Crabbe, R. S.; and Campbell, G. S.: Tables of Derivatives to Extend the Zero Incidence Cone Tables to Intermediate Mach Numbers and Cone Angles. Rept. LR-451, Canadian National Research Council, May 1966.
60. Barry, F. W.: Conical Flow Properties for Use in the Design of Supersonic Inlets. Rept. M-1266-1, Research Dept., United Aircraft Corp., Nov. 1958.
61. Mascitti, V. R.: Charts of Additive Drag Coefficient and Mass-Flow Ratio for Inlets Utilizing Right Circular Cones at Zero Angle of Attack. NASA TN D-3434, 1966.
62. Bowditch, D. N.; and Anderson, B. H.: Performance of an Isentropic, All-Internal-Contraction, Axisymmetric Inlet Designed for Mach 2.50. NACA RM E58E16, 1958.
63. Anderson, B. H.; and Bowditch, D. N.: Investigation of Inlet Control Parameters for an External-Internal-Compression Inlet From Mach 2.1 to 3.0. NACA RM E58G08, 1958.
64. Stitt, L. E.; and Salami, R. J.: Performance of a Mach 3.0 External-InternalCompression Axisymmetric Inlet at Mach Numbers From 2.0 to 3.5. NASA TM X-145, 1960.
65. Anderson, B. H.; and Bowditch, D. N.: Performance of Three Isentropic All-Internal-Compression Axisymmetric Inlets Designed for Mach 2.5. NASA TM X-259, 1960.
66. Bowditch, D. N.; Anderson, B. H.; and Tabata, W. K.: Performance and Control of a Full-Scale, Axially Symmetric, External-Internal-Compression Inlet from Mach 2.0 to 3.0 . NASA TM X-471, 1961.
67. Sorensen, N. E.; and Smeltzer, D. B.: Investigation of a Large-Scale MixedCompression Axisymmetric Inlet System Capable of High Performance at Mach Numbers 0.6 to 3.0 . NASA TM X-1507, 1968.
68. Smeltzer, D. B. ; and Sorensen, N. E.: Investigation of a Nearly Isentropic Mixed-Compression Axisymmetric Inlet System at Mach Numbers 0.6 to 3.2. NASA TN D-4557, 1968.
69. Barry, F. W. : An Analysis of Transient Shock Displacement in a Diffuser. HSIR 1303, Hamilton Standard, Nov. 1959.
70. Barry, F. W.: Transient Shock Motion in a Supersonic Diffuser Having a Variable Bypass. Rep. R-0925-4, Research Dept., United Aircraft Corp., May 1959.
71. Weber, R. J.; and Luidens, R. W. : A Simplified Method for Evaluating Jet-Propulsion-System Components in Terms of Airplane Performance. NACA RM E56J26, 1956.
72. Kepler, C. E.; and Barry, F. W.: Engine Air Inlet Compatibility for the Supersonic Transport. Trans. SAE, vol. 74, 1966, pp. 971-985. (Preprint 650225, SAE, Apr. 12-15, 1965).
73. Dutton, J. A.: Broadening Horizons in Prediction of the Effects of Atmospheric Turbulence on Aeronautical Systems. Paper No. 68-1065, AIAA, Oct. 1968.
74. Anon. : AEC-0 Programming Manual. M.I. T., 1964.
TABLE I
PROBABILITY OF ATMOSPHERIC TURBULENCE

									titude,	000 ft						Sample Over	
Ref. No.	Earliest Date	Aircraft	30-35	30-40	3.5-40	40-45	40-50	4-5-50	-0-35	-50-60	-5-60	60-65	60-70	6:3-70	70-7i	Altitude	Threshold
12	10/60	V^{-2}		.079			.0164			.0189			.003. ${ }^{5}$.0013	$3031 \times 3 \mathrm{mi}$.	$\mathrm{T}_{\mathrm{DE}} \quad 2 \mathrm{f} \mathrm{f}_{\mathrm{s}}$
13	1/65	r-2		. 1112			.02.;			. 1220			. 006		.001	\$61 610 mi .	
14	9/6\%	wu-2 (Hicat)								. 14						43 hr	
1:5	12/66	Canherra				. 114										22010 mi .	(ine fips
16	4/67	1--52		. 1336		. 133										11279 rr	. 0 \%
17	10/67	B-7\%				.1064		.172	. 171		.074	.1072		.036	. 129		.196
${ }^{14}$	11/67	WU-2 (HICAT)						$199 \times$.100		.0:0)	. 127		. 129		2565000 mi .	. 10.5
19	2/6x	Commercial	.06,		.0x	.036										110 c 3 tanmi .	1bes: 2 fus
20	-7/6x	Commercial	.0.99													23301040 mi .	. $2=$
21	${ }_{6} / 6.64$	Commercial	. 044		. 13	. 022											
.		WU-2 (HICAT)						. $1 \times$. $1 \times \times 1$. 0.4	. 13		. 05		3829000 mi .	
			$9.1-$	9.1-	10.7-	12.2-	12.2-	13.:-	15.2-	15.2.	16..	$14.3-$	14.3-	19,	$21.3-$		
			10.7	12.2	12.2	13.7	15.2	15.2	16.4	14.3	14.3	19.4	21.3	21.3	22.9		
			Altitude, Km														

TABIIE II

Family	Longitudinal spectra, $\varphi_{\mathbf{u}}(\Omega)$	Vertical spectra, $\varnothing_{w}(\Omega)$	Slope for large Ω
$\begin{aligned} & \text { Traylor-Bullen } \\ & \text { (Ref. 18) } \end{aligned}$	$\frac{2 \sigma_{\mathrm{u}}^{2} \mathrm{~L}}{\pi\left[1+\frac{\Gamma^{2}(\mathrm{n}) \Omega^{2} \mathrm{~L}^{2}}{\pi \Gamma^{2}(\mathrm{n}+0.5)}\right]^{\mathrm{n}+0.5}}$	$\frac{\sigma_{\mathrm{w}}^{2} \mathrm{~L}\left[1+2(\mathrm{n}+1) \frac{\Gamma^{2}(\mathrm{n}) \Omega^{2} \mathrm{~L}^{2}}{\pi \Gamma^{2}(\mathrm{n}+0.5)}\right]}{\pi\left[1+\frac{\Gamma^{2}(\mathrm{n}) \Omega^{2} \mathrm{~L}^{2}}{\pi \Gamma^{2}(\mathrm{n}+0.5)}\right]^{\mathrm{n}+1.5}}$	-1-2n
Von Karman $(\mathrm{n}=1 / 3)$	$\frac{2 \sigma_{u}{ }^{2} \mathrm{~L}}{\pi\left[1+1.793 \Omega^{2} L^{2}\right]^{5 / 6}}$	$\frac{\sigma_{\mathrm{w}}^{2} \mathrm{~L}\left[1+4.78 \Omega^{2} \mathrm{~L}^{2}\right]}{\pi\left[1+1.793 \Omega^{2} \mathrm{~L}^{2}\right]^{11 / 6}}$	-5/3
Dryden $(n=1 / 2)$	$\frac{2 \sigma_{u}^{2} \mathrm{~L}}{\pi\left[1+\Omega^{2} L^{2}\right]}$	$\frac{\sigma_{w}^{2} L\left[1+3 \Omega^{2} L^{2}\right]}{\pi\left[1+\Omega^{2} L^{2}\right]^{2}}$	-2
Case 6 (Ref. 30)	$\begin{aligned} & \frac{2 \sigma_{\mathrm{u}}^{2} \mathrm{~L} \mathrm{C}^{2}}{\pi\left(1+\mathrm{C}^{2}\right)}\left[\frac{1}{1+\mathrm{Y}^{2}}+\frac{\mathrm{C}^{2}-\mathrm{Y}^{2}}{\left.{\left(\mathrm{C}^{2}+\mathrm{Y}^{2}\right)^{2}}^{2}\right]}\right. \\ & \mathrm{Y}=\frac{\mathrm{C}^{2} \Omega \mathrm{~L}}{1+\mathrm{C}^{2}} \end{aligned}$	$\begin{aligned} & \frac{\sigma_{W}{ }^{2} L C^{2}}{\pi\left(1+C^{2}\right)}\left[\frac{1+3 Y^{2}}{\left(1+Y^{2}\right)^{2}}+\frac{C^{4}+6 C^{2} Y^{2}-3 Y^{4}}{\left(C^{2}+Y^{2}\right)^{3}}\right] \\ & Y=\frac{C^{2} \Omega L}{1+C^{2}} \end{aligned}$	-4
$\begin{aligned} & \text { Case 2 } \\ & \text { (Ref. 30) } \end{aligned}$	$\frac{2 \sigma_{\mathrm{u}}^{2} \mathrm{~L}}{\pi}\left[1-\frac{\Omega \mathrm{L}}{2} \text { ATAN } \frac{2}{\Omega \mathrm{~L}}\right]$	$\frac{\sigma_{W}{ }^{2} \mathrm{~L}}{\pi\left[1+\frac{\Omega^{2} L^{2}}{4}\right]}$	-2

[^0]TABLE III

TABLE II－Concluded

$\begin{aligned} & \text { a } \\ & \frac{訁}{0} \\ & 0 \\ & 0 \\ & \frac{0}{3} \end{aligned}$						¢	令
						号	$\stackrel{+}{\square}$
				罂	¢	－	$\stackrel{\%}{\square}$
				令	管竞	产	
				星	言离	－	$\stackrel{\sim}{\underline{x}}$
				㫛		妾	¢
				$\stackrel{9}{3}$		－	$\stackrel{\sim}{\sim}$
				$\stackrel{\text { 免 }}{\square}$	笭旁	总	N
				缶		妾	ベ
	$\xrightarrow{\sim}$			電	¢	\％	－
				管		皆	$\stackrel{\square}{\square}$
			20 $\underbrace{2}$	$\stackrel{\vdots}{*}$		\sim°	
	$$		$\begin{gathered} \overline{\bar{v}} \\ \stackrel{\rightharpoonup}{\underline{\omega}} \end{gathered}$		$\dot{d i g}$		
	\％	言	突		$\begin{aligned} & \therefore \\ & \text { ei } \\ & \hline \end{aligned}$		
		$\begin{array}{\|l\|l\|} \hline \frac{5}{5} \\ 0 \\ \hline \end{array}$					
		8	\％	$\frac{8}{8}$	$\stackrel{3}{\square}$		
产安安	\bigcirc	$\stackrel{\square}{-}$	7	$\stackrel{7}{7}$	\％		

$* a_{0}, b_{1}, b_{2} \& b_{3}$ in fps，true
＊＊From Table 5－1，does not lie on curve in figure 5－4．
＊＊＊Day，multiply by 0.3 for night，by 0.6 for average；b depends on L ．
TABLE IV
EQUATIONS FOR CHANGES IN FLOW PARAME TERS DOWNSTREAM OF NORMAL SHOCK

TABLE V
EQUATIONS FOR STEADY-STATE NORMAL SHOCK DISPLACEMENT

$\begin{gathered} \text { Consiant } \\ \text { Parameters } \end{gathered}$	Steady-State Shock Displacement, $\Delta \mathrm{X}_{\mathrm{S}}$, $=$
$\mathrm{M}_{1}, \mathrm{P}_{\mathrm{tI}}$	$\left.-\frac{6\left(7 \mathrm{M}_{1}^{2}-1\right)}{7\left(1+7.4 \mathrm{M}_{1}\right.} 2\right) \quad \frac{\operatorname{AdX}}{\mathrm{dA}} \quad \frac{\Delta \mathrm{P}_{2}}{\mathrm{P}_{2}}$
$\mathrm{M}_{1}, \mathrm{~A}_{1}$	$\frac{\left(7 \mathrm{M}_{1}^{2}-1\right)^{1.5}}{8.4 \mathrm{M}_{1}^{2}} \sqrt{\mathrm{M}_{1}^{2}+5}-\frac{\operatorname{AdX}}{\mathrm{dA}} \Delta \mathrm{M}_{2}$
$\mathrm{M}_{1}, \mathrm{~A}_{1}$	$\frac{7 M_{1}{ }^{2}-1}{7\left(M_{1}{ }^{2}-1\right)} \quad \frac{\mathrm{AdX}}{\mathrm{dA}} \quad \frac{\Delta \mathrm{w}_{\mathrm{c} 2}}{\mathrm{w}_{\mathrm{c} 2}}$
$\mathrm{A}_{1}, \mathrm{w}_{\mathrm{c} 2}$	$\frac{30}{7 \mathrm{M}_{1}\left(\mathrm{M}_{1}{ }^{2}+5\right)} \quad \frac{\mathrm{AdX}}{\mathrm{dA}} \quad \Delta \mathrm{M}_{1}$
$\mathrm{M}_{1}, \mathrm{w}_{\mathrm{c} 2}$	$-\frac{7 M_{1}^{2}-1}{7\left(M_{1}{ }^{2}-1\right)} \quad \frac{\mathrm{AdX}}{\mathrm{dA}} \quad \frac{\Delta \mathrm{A}_{1}}{\mathrm{~A}_{1}}$
$\mathrm{w}_{1}, \mathrm{w}_{\mathrm{c} 2}$	$-\frac{\operatorname{AdX}}{\mathrm{dA}} \quad \frac{\Delta \mathrm{~A}_{1}}{\mathrm{~A}_{1}}$

TABLE VI - EQUATIONS FOR SQUARE OF TRANSFER FUNCTION

Transier Functum, il (4)	
C_{1}	c_{1}^{2}
$C_{1}{ }^{\text {er }} \mathrm{d}^{S}$	Cl_{1}^{2}
$C_{1}+\mathrm{C}_{2}{ }^{-t} \mathrm{~d}^{S}$	$c_{1}^{2}-c_{2}^{2}+2 c_{1} c_{2} \cos \left(\sigma_{d}{ }^{4}\right)$.
s^{n}	$u^{2 n}$
$\mathrm{T}_{1} \mathrm{~S}+\mathrm{C}_{1}$	${ }^{2}{ }_{1}^{2} u^{2}+c_{1}^{2}$
$\left(T_{1} S+1\right)\left(T_{2} S+1\right) S+c_{1}$	$\left(T_{1}^{2} u^{2}+1\right)\left(r_{2}^{2} \omega^{2} \cdot 1\right) u^{2}-2 c_{1}\left(T_{1}+T_{2}\right) u^{2}+\left(c_{1}^{2}-r_{1}^{2} r_{2}^{2} \omega^{6}+\left(T_{1}^{2}-r_{2}^{2}\right) u^{4}\left(1-2 c_{1}\left(T_{1}+T_{2}\right) \ \omega^{2}-c_{1}^{2}\right.\right.$
$\left(\tau_{1} S+C_{1}\right)\left(\tau_{2} S+1\right)\left(\tau_{3} \mathrm{~S}+1\right) \mathrm{S}+\mathrm{C}_{2}\left(\tau_{4} \mathrm{~S}+\mathrm{C}_{3}\right)$	$\begin{aligned} & \left(\tau_{1}^{2} u^{2}+c_{1}^{2}\right)\left(\tau_{2}^{2} \omega^{2}+1\right)\left(\tau_{3}^{2} \omega^{2}+1\right) u^{2}+c_{2}^{2}\left(\tau_{4}^{2} \omega^{2}+c_{3}^{2}\right) \cdot 2 c_{2} u^{2}\left[\left\{\tau_{1} \tau_{2}\left(\tau_{3} \tau_{1}-\tau_{1}\right)-\tau_{1} \tau_{3}\left(c_{1} \tau_{2}+\tau_{4}\right)\right\} \omega^{2}\right. \\ & \quad-c_{3}\left(c_{1} \tau_{2}+\tau_{1}\right)+\left(c_{1}\left(\tau_{1}-c_{3} \tau_{3}\right)\right\} \end{aligned}$
$\left(\tau_{1} S+C_{1}\right)+C_{2}{ }^{-}{ }^{-\tau_{d}} S$	$\left(\tau_{1}^{2} \omega^{2}+c_{1}^{2}\right)+c_{2}^{2}+2 C_{2}\left\{c_{1} \cos \left(\tau_{d} \omega\right)-\tau_{1} \omega \sin \left(\tau_{d} \omega\right)\right\}$
$\left(r_{1} S+c_{1}\right) S+C_{2} e^{-\tau_{d} S}$	$\left(\tau_{1}^{2} \omega^{2}+c_{1}^{2}\right) \omega^{2}+C_{2}^{2}-2 C_{2}\left\{\tau_{1} \omega^{2} \cos \left(\tau_{d} \omega\right)+c_{1} \omega \sin \left(\tau_{d} \omega\right)\right\}$
$\left(r_{1} \mathrm{~S}+1\right)\left(\tau_{2} \mathrm{~S}+1\right)\left(\tau_{3} \mathrm{~S}+1\right) \mathrm{S}+\mathrm{C}_{1} \mathrm{e}^{-\tau_{d} \mathrm{~S}}$	$\begin{aligned} & \left(\tau_{1}^{2} \omega^{2}+1\right)\left(\tau_{2}^{2} \omega^{2}+1\right)\left(\tau_{3}^{2} \omega^{2}+1\right) \omega^{2}+c_{1}^{2}+2 C_{1}\left[\left\{\tau_{1} \tau_{2} \tau_{3} \omega^{2}-\tau_{1} \tau_{2} \tau_{3}\right\} \omega^{2} \cos \left(\tau_{d} \omega\right)\right. \\ & \left.\quad+\left\{\left(\tau_{1} \tau_{2}+\tau_{2} \tau_{3}+\tau_{1} \tau_{3}\right) \omega^{2}-1\right\} \omega \sin \left(\tau_{d} \omega\right)\right] \end{aligned}$
$\tau_{1} \mathrm{~s}^{2}+\tau_{2} s+C_{1}$	$\tau_{1}^{4} \omega^{4}+\left(\tau_{2}^{2}-2 \tau_{1}^{2} c_{1}\right) \omega^{2}+c_{1}^{2}$
$\left(r_{1} \mathrm{~S}+\mathrm{C}_{1}\right)\left(\tau_{2} \mathrm{~S}+1\right)\left(\tau_{3} \mathrm{~S}+1\right)\left(C_{2}^{2} \mathrm{~S}^{2}+\mathrm{C}_{3} \mathrm{~S}+1\right)+\mathrm{C}_{4}$	$\begin{aligned} & \left(r_{1}^{2} \omega^{2}+C_{1}^{2}\right)\left(\tau_{2}^{2} \omega^{2}+1\right)\left(\tau_{3}^{2} \omega^{2}+1\right)\left(C_{2}^{4} \omega^{4}+\left(C_{3}^{2}-2 C_{2}^{2}\right) \omega^{2}+1\right)+C_{4}^{2}+2 C_{4}\left[\left\{\tau_{1} \tau_{2}\left(\tau_{3} C_{3}+C_{2}^{2}\right)+\tau_{3}\left(C_{1} \tau_{2}+\tau_{1}\right) C_{2}^{2}\right\} \omega^{4}\right. \\ & \left.-\left\{\tau_{1} \tau_{2}+\left(\tau_{2} C_{1}+\tau_{1}\right)\left(\tau_{3}+C_{3}\right)+C_{1} C_{3}\left(\tau_{1}+\tau_{3}\right)+C_{1}\left(\tau_{2} C_{3}+C_{2}^{2}\right)\right\} \omega^{2}+C_{1}\right] \end{aligned}$
$\left(\tau_{1} S+1\right)\left(\tau_{2} S+1\right)\left(\tau_{3}^{2} S^{2}+\tau_{4} S+1\right) S+C_{1} e^{-\tau_{d} S}$	$\begin{aligned} & \left(\tau_{1}^{2} \omega^{2}+1\right)\left(\tau_{2}^{2} \omega^{2}+1\right)\left\{\tau_{3}^{4} \omega^{4}+\left(\tau_{4}^{2}-2 \tau_{3}^{2}\right) \omega^{2}+1\right\} \omega^{2}+C_{1}^{2}-2 C_{1}\left[\left\{-\left(\tau_{1} \tau_{2} \tau_{4}+\left(\tau_{1}+\tau_{2}\right) \tau_{3}^{2}\right) \omega^{2}+\tau_{1}+\tau_{2}+\tau_{4}\right\} \omega^{2} \cos \left(\tau_{d} \omega\right)\right. \\ & \quad+\left\{\tau_{1} \tau_{2} \tau_{3}^{2} \omega^{4}-\left(\tau_{1} \tau_{2}+\tau_{4}\left(\tau_{1}+\tau_{2}\right)+\tau_{3}^{2}\right) \omega^{2}+1 \mid \omega \sin \left(\tau_{d} \omega\right)\right] \end{aligned}$
$\tau_{4} S^{4}+\tau_{3} S^{3}+\tau_{2} S^{2}+\tau_{1} S+C_{1}$	$\tau_{4}^{2} \omega^{8}+\left(\tau_{3}^{2}-2 \tau_{2} \tau_{4}\right) \omega^{6}+\left(\tau_{2}^{2}+2 \tau_{4} \mathrm{C}_{1}-2 \tau_{1} \tau_{3}\right) \omega^{4}+\left(\tau_{1}^{2}-2 \tau_{2} \mathrm{C}_{1}\right) \omega^{2}+\mathrm{c}_{1}^{2}$
$\begin{aligned} & \left\{\tau_{1}\left(\tau_{2} \mathrm{~S}+1\right)\left(\tau_{3} \mathrm{~S}+1\right) \mathrm{S}^{2}+\mathrm{C}_{1}\left(\tau_{1} \mathrm{~S}+\mathrm{C}_{2}\right)+\mathrm{C}_{3}\right\} \\ & \mathrm{S}\left(\tau_{4} \mathrm{~S}+1\right)\left(\tau_{5} \mathrm{~S}+1\right) \end{aligned}$	$\begin{aligned} & \left(\tau_{1} \tau_{2} \tau_{3} \tau_{4} \tau_{5}\right)^{2} \omega^{14}+\tau_{1}^{2}\left\{\tau_{2}^{2} \tau_{3}^{2}\left(\tau_{4}^{2}+\tau_{5}^{2}\right)+\tau_{4}^{2} \tau_{5}^{2}\left(\tau_{2}^{2}+\tau_{3}^{2}\right\} \omega^{12}+\left[\tau _ { 1 } ^ { 2 } \left\{\tau_{2}^{2}\left(\tau_{3}^{2}+\tau_{4}^{2}+\tau_{5}^{2}\right)+\tau_{3}^{2}\left(\tau_{4}^{2}+\tau_{5}^{2}\right)+\tau_{4}^{2} \tau_{5}^{2}-2 \tau_{4}^{2} \tau_{5}^{2}\right.\right.\right. \\ & \left.\left.\left(\tau_{2}+\tau_{3}\right) C_{1}\right\}+2 \tau_{1} \tau_{2} \tau_{3} \tau_{4}^{2} \tau_{5}^{2}\left(C_{1} C_{2}+C_{3}\right)\right] \omega^{10}+\left[\tau _ { 1 } ^ { 2 } \left\{\tau_{2}^{2}+\tau_{3}^{2}+\tau_{4}^{2}+\tau_{5}^{2}+\tau_{4}^{2} \tau_{5}^{2} C_{1}^{2}-2\left(\tau_{3} \tau_{4}^{2}+\tau_{3} \tau_{5}^{2}+\tau_{2} \tau_{4}^{2} C_{1}\right.\right.\right. \\ & \left.\left.\left.\quad-2 \tau_{2} \tau_{5}^{2} C_{2}\right\}+2 \tau_{1} \mid \tau_{2} \tau_{3}\left(\tau_{4}^{2}+\tau_{5}^{2}\right)-\tau_{4}^{2} \tau_{5}^{2}\right\}\left(C_{1} C_{2}+C_{3}\right)\right] \omega^{8}+\left\{\tau_{4}^{2} \tau_{5}^{2}\left(C_{1} C_{2}+C_{3}\right)^{2}-2 \tau_{1}\left(\tau_{4}^{2}+\tau_{5}^{2}-\tau_{2} \tau_{3}\right)\right. \\ & \left.\left(C_{1} C_{2}+C_{3}\right\}+\tau_{1}^{2}\left\{\left(\tau_{4}^{2}+\tau_{5}^{2}\right) C_{1}^{2}-2\left(\tau_{2}+\tau_{3}\right) C_{1}+1\right\}\right] \omega^{6}+\left\{\left(\tau_{4}^{2}+\tau_{5}^{2}\right)\left(C_{1} C_{2}+C_{3}\right)^{2}-2 \tau_{1}\left(C_{1} C_{2}+C_{3}\right)+\tau_{1}^{2} C_{1}^{2}\right\} \omega^{4} \\ & \quad\left(C_{0}^{2}\right. \end{aligned}$
$\left(\tau_{1} S+C_{1}\right)+\left(\tau_{2} S+1\right)\left(\tau_{3} S+1\right)\left(\tau_{4} S+C_{2}\right) \mathrm{S}$	$\begin{aligned} \left(\tau_{1} \omega^{2}\right. & \left.+C_{1}^{2}\right)+\left(\tau_{2}^{2} \omega^{2}+1\right)\left(\tau_{3}^{2} \omega^{2}+1\right)\left(\tau_{4}^{2} \omega^{2}+C_{2}^{2}\right) \omega^{2}+2\left(\tau_{2} \tau_{3} \tau_{4} C_{1}-\tau_{1} \tau_{2} \tau_{4}-T_{1} \tau_{3} \tau_{4}-\tau_{1} \tau_{2} \tau_{3} C_{2}\right) \omega^{4} \\ & +2\left(\tau_{1} C_{2}-T_{4} C_{1}-\left(\tau_{2}+\tau_{3}\right) C_{1} C_{2}\right) \omega^{2} \end{aligned}$
$\begin{aligned} & \mathrm{T}_{1} \mathrm{~S}\left(\mathrm{C}_{1}+\left(\tau_{2} \mathrm{~S}^{2}+\tau_{3} \mathrm{~S}+1\right)\left(\tau_{4} \mathrm{~S}+1\right)\left(\tau_{5} \mathrm{~S}+1\right) \mathrm{S}\right)+ \\ & \mathrm{C}_{2}\left[\mathrm { C } _ { 3 } (\tau _ { 2 } ^ { 2 } \mathrm { S } ^ { 2 } + \tau _ { 3 } \mathrm { S } + 1) (\tau _ { 4 } \mathrm { S } + 1) (\tau _ { 5 } \mathrm { S } + 1) \mathrm { S } \left(\tau_{6} \mathrm{~S}^{2}+\right.\right. \\ & \left.\left.\tau_{7} \mathrm{~S}+1\right)-\mathrm{C}_{4} \mathrm{C}_{5}\left(\tau_{8} \mathrm{~S}+1\right)\right] \end{aligned}$	See figure 49.
$\begin{gathered} \left(\tau_{1} S+1\right)\left(\tau_{2} S+1\right)\left(C_{1}^{2} S^{2}+C_{2} S+1\right)\left(\tau_{5} S^{3}+\tau_{4} S^{2}+\tau_{3} S+1\right) \\ S+C_{3}\left(\tau_{6} S+1\right) e^{-\tau_{7} S} \end{gathered}$	See figure 49.

Figure 1. Probability of Atmospheric Turbulence

Figure 2. Representations of Atmospheric Turbulence

Figure 3. Cumulative Frequency of Exceeding Derived Gust Mach Number

Figure 4. Derived Gust Mach Numbers in Specifications

Figure 5. Typical Power Spectral Density Data for Vertical Gust Velocity

Figure 6. Normalized Longitudinal Spectra

Figure 7. Normalized Vertical Spectra

REFERRED FREQUENCY, $L \Omega=\frac{L \omega}{V}=\frac{2 \pi L}{\lambda}=\frac{2 \pi L f}{V}$. RADIANS

Figure 8. Integrals of Longitudinal Spectra

Figure 9. Integrals of Vertical Spectra

Figure 10. Probability of Primary Turbulence, P_{1}

Figure 11. Probability of Secondary Turbulence, P_{2}

Figure 12. Amplitude of Primary Turbulence, b_{1}

Figure 13. Amplitude of Secondary Turbulence, b_{2}

Figure 14. Exceedance Models

Figure 15. Horizontal Atmospheric Temperature Changes

Figure 16. Rate of Change of Flight Mach Number Versus Amplitude

Figure 17. Rate of Change of Angle of Attack Versus Amplitude

Figure 18. Schematic of Analytical Inlet Model

Figure 19. Factors K_{u} and K_{W}

Figure 20. Factor $f_{t h}$ in Equation for $\Delta M_{t h}$

Figure 21. Change of Relative Airflow with Mach Number. Note, $\partial W_{R} / W_{R} \partial \mathrm{M}_{\mathrm{L}}=0.0$ if initial shock intercepts lip, i.e., if $\theta_{\mathrm{w}}<\boldsymbol{\theta}_{\boldsymbol{l}}$.

Figure 22. Effect of Inlet Angle of Attack on Inlet Unstart

Figure 23. Sketch of Diffuser Illustrating Nomenclature for Analytical Model of Normal Shock Position

Figure 24. Representative Inlet Area Distribution

Figure 25. Frequency Response of Normal Shock to Diffuser Exit Mach Number

Figure 26. Frequency Response of Normal Shock to Mach Number Upstream of Shock

Figure 27. Frequency Response of Normal Shock to Area at Shock

Figure 28. Frequency Response of Normal Shock to Upstream Total Pressure

Figure 29. Frequency Response of Normal Shock to Upstream Total Temperature

Tigure 30. Frequency Response of Diffuser Exit Static Pressure to Diffuser Exit Mach Number

RELATIVE AIRFLOW, W_{R}

Figure 31. Inlet Performance Characteristics

Figure 32. Engine Performance Characteristics

Figure 33. Performance Penalties Due to Throat Mach Number Tolerance

Figure 34. Performance Penalties Due to Shock Position Tolerance

Figure 35. Block Diagram of Inlet and Control

Figure 36. Ratio $\phi_{\mathrm{M}_{\mathrm{th}}} / \phi_{\mathrm{M}_{\mathrm{L}}}$ for Single Integral Throat Mach Control

Figure 37. Ratio $\phi_{\mathrm{M}_{\mathrm{th}}} / \phi \mathrm{M}_{\mathrm{L}}$ for Throat Mach Control

Figure 38. Ratio $\phi_{S} / \phi_{M_{L}}$ for Shock Position

Figure 39. Block Diagram of Representative Inlet for $M_{0}=2.7$ a: 60000 ft Altitude

........ An Normalized Power Spectra of Free-Stream Longitudinal Turbulence and of Throat Mach Number Change Due to Longitudinal Turbulence

Figure 41. Normalized Shock-Position Power Spectrum Due to Longitudinal Turbulence

Ugure 2 . Effect of Throat Mach Number Transient Tolerance on Frequency of Eiiet Unstarts Due to Longitudinal Turbulence

Figure 43. Effect of Shock Position Transient Tolerance on Frequency of Inlet Unstarts Due to Longitudinal Turbulence

Figure 44. Effect of Throat Mach Number Transient Tolerance on Frequency of Inlet Unstarts

Figure 45. Effect of Shock Position Transient Tolerance on Frequency of Inlet Unstarts

Figure 4. Effect of Combined Transient Range Penalty on Frequency of Inlet Unstarts

```
P AED MAIN
            BEGIN
COMMENT
    THIS PROGRAM WAS WRITTEN BY UNITED AIRCRAFT RESEARCH LABORATORIES FOR
    HAMILTON STANDARD, UNDER CONTRACT NAS2-4515 TASK 4. IN THE AED-O
    PROGRAMMING LANGUAGE.
$.
COMMENT
    THE MAIN PROGRAM CALLS THE vARIOUS SUBROUTINES. AND ESTIMATES THE FREE
        STORAGE USED BY THE FINAL ANSWER. IT ALSO PRINTS THE TIME TAKEN BY
        THE PROBLEM.
$0
        SYNONYMS INTEGEF = POINTER $.
        POINTER PZ $.
        INTEGER M &.
```



```
        PROCEDURE EXIT, DOITF, PARSE, ALGEB, PRNT, COLECT, SUBST $.
        REAL PROCEDURE TMINS $.
        M = M $.
        FNEWBD (27777C.50000C. M2) $,
        PRINT F1O $,
    M1$ PRINT FII$.
        DOITF(TMINS.X1) $,
        PARSE(PZ) $,
        DOITF(TMINS.X2) s.
        ALGEB(PZ) $.
        DOITF(TMINS.X3) $.
        COLECT(PZ) $.
        DOITF(TMINS.X4)$.
        PRNT() $,
        DOITF(TMINS*X5) $.
        SUBST() क.
        DOITF(TMINS.X6) $,
        PRINT F2 $.
        PRINT FG $.
        XT = (X2-X1) * 60.0 $.
        - PRINT F3. XT $.
        XT = (x3-X2) * 60.0 $.
        PRINT F4, XT $,
        XT = ( }\times4-\times3)*60.0 $.
        PRINT F5, XT $.
        XT = (X5-X4) * 60.0 $,
        PRINT F6. XT $.
        XT = (X6-X5) * 60.0 $.
        PRINT FT. XT $.
        XT = (X6-X1) * 60.0 $.
        PRINT F8. XT S.
        PRINT F2 S.
        GOTO M1 $,
    M2$ PRINT FILS.
        EXIT () $.
    F2s FORMAT (////////) $.
    F3$ FORMAT ('O PARSE' 'FG.1,' SECONDS') $.
    F4\Phi FORMAT (.O ALGEB' ,FG.1.' SECONDS')$.
    F5$ FORMAT ('O COLECT' 'FG.1,' SECONDS') $.
    FG$ FORMAT ('O PRNT' (FG.1.' SECONDS') $.
    F7S FORMAT ('O SUBST' (FG.1.' SECONDS') $.
    FQ\Phi FORMAT (//OO TOTAL', FG.1.'SECONDS') $. SBROUTINES ARE.',/) $.
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (1 of 26)

```
    F1OS FORMAT (1HI/////////IHOITHIS PROGRAM WAS WRITTEN BY UNITED AIRCRAFT RESEAR
CH LABORATORIES FOR HANILTON STANDARD, UNDER CONTRACT NAS2-4515 TO PERFORM '/
        1HO36X -CERTAIN ALGEBRAIC MANIPULATIONS OF TRANSFER FUNCTIONS', $.
    F11S FORMAT (1H1) $,
    F12\Phi FORMAT ('OTROUBLE IN FREE STORAGE. CALLED FROM FNEWBD. ''$.
        END FINI
-P AED RDCARD
        9FGIN
COMMENT
    THIS PROGRAM WAS WRITTEN BY UNITED AIRCRAFT RESEARCH LABORATORIES FOR
    HAMIL.TON STMNDARO, UNDER CONTRACT NAS2-4515 TASK 4. IN THE AED-O
    PRCGRANMING IANGUAGE.
m
COMMENT
    THIS ROUTINE REAOS 72 HOLLERITH CHARACTERS. IT WAS MADE A PROCEDURE
    SOLELY TO SAVE STORAGE SPACE. AND TO AVOIO HAVING TO WRITE IT OUT
    SEVERAL TIMES. THE ROUTINE ALSO SENSES COMMENT CARDS (.C' IN COLUMN 1)
    AND PRINTS THEM OUT.
$*
        DEFINE PROCEDURE RDCARD TOBE
        BEGIN
        INTEGER ARRAY J(72) $.
        COMMION I $.
        INTEGER 1 $.
        BOOLEAN K S.
        PROCEDURE EXIT ,SETASM, CARET, ASMBCD $.
        K = FALSE $,
    ROE READ F1, J(1), J(2), J(3), J(4), J(5), J(6), J(7), J(8), J(9).
                J(10), J(11),J(12),J(13),J(14), J(15), J(16), J(17), J(18),
                J(19), J(20), J(21), J(22), J(23), J(24), J(25), J(26), J(27).
                J(28), J(29), J(30), J(31), J(32), J(33), J(34), J(35), J(36).
                J(37), J(38), J(39), J(40),J(41), J(42), J(43), J(44), J(45).
                J(46), J(47), J(48), J(49), J(50), J(51), J(52), J(53), J(54).
                J(55), J(56), J(57),J(58),J(59), J(60),J(51), J(62), J(63),
                J(64), J(65),J(66),J(67), J(68), J(69), J(70), J(71), J(72) $.
                IF J(1) EQL .BCD. /$, THEN EXIT() $.
                IF J(i) EQL -BCD. /C/ THEN
                    BEGIN IF NOT K THEN BEGIN PRINT F2 $,
                                    SETASM (3.110.-0.-0,-0.-0) $.
                                    K = TRUE $.
                                    END $.
                        FOR I=2 STEP I UNTIL 72 DO ASMBCD (1.J(1)) $.
                        CARET () $,
                        GOTO RO $.
                END $.
        GOTO RETURN s.
    F1$ FORMAT (72A1) $.
    #こ& FCRMAT (!H1)$,
        END $,
        END FINI
            AED PARSE
            BEGIN
cchmmiNT
    THIG PROGRAM WAS WRITTEN BY UNITED AIRCRAFT RESEARCH LABORATORIES FOR
    HAMILTON STANDARD, UNDER CONTRACT NAS2-4515 TASK 4. IN THE AED-O
    PROGRAMMING LANGUAGE.
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (2 of 26)

```
$.
COMNENT
    THE PARSING ROUTINE TAKES THE EXPRESSION FOR H(S) AND SETS UP THE
    INTERNAL BINARY TREE STRUCTURE. IT EXAMINES H(S) FOR OBVIOUS ERRORS
    SUCH AS PARENTHESES IMBALANCE.ANG PRINTS ERROR MESSAGES.
$.
            DEFINE PROCEDURE PARSE(PTOP) WHERE POINTER DTOP TOEE
            BEGIN
            SYNONYMS :NTEGER = PCINTER $,
            POINTER PUSH $.
            POINTER COMPONENT RV.LV $,
            INTEGER COMPONENT OP, HOL $0
            DOINTER P,TOP,O,Z,Z3.Z4,P1,P2,Q1,ANGLE $.
            BOOLEAN COMPONENT ATOM,NUM.BSIGN S.
            BOOLEAN OFLAG,ERROR, MINFLAG क,
            REAL COMPONENT CONS S.
            REAL NUMBER , DCT $,
            INTEGER K,I,IST.M.MSK.L.PARCT, SYMST I.
            POINTER COMPONENT RVAR.LVAR I.
            INTEGER COMPONENT TYPE,ALPHA I,
            BOOLEAN COMPONENT AFLAG,NB क,
            REAL COMPONENT OEC $.
            PROCEDURE EXIT.MSEA , RDCARD - STKSX I.
            PROCEDURE SETASM.NEWPOS, ASM.C., ASMBCD, CARET &,
            INTEGER PROCEDURE SETFRI.FREEI,FRET $.
            POINTER PROCEDURE STINIT, UNSTAK 生,
            INTEGER PROCECURE FKILL $.
            PACK 7フフフ77CO.0. SPECIAL COMPONENTS RV $.
            PACK 7ア7ア77C18,18. SPECIAL COMPONENTS LV $.
            PACK 77C24.24,SPECIAL COMPONENTS OP $,
            PACK ICO,0, SPECIAL COMPONENTS ATOM $,
            PACK 77C30.30, SPECIAL COMPONENTS BSIGN $,
            PACK 777777C12,12.SPECIAL COMPONENTS HOL $,
            PACK 1C1,1,SPECIAL COMPONENTS NUMM क,
            PACK ICO.O.SPECIAL COMPONENTS ATOM &.
            RVAR $=$ O$,
            LVAR $=$ 1 $.
            TYPE $=$ 2 $,
            ALPHA $=$ O $,
            AFLAG $=$ 1 $,
            NB $=$ 2 $,
            DEC $=$ 3 $.
            OP $=$ ATOM क=$ BSIGN $=$ O $.
            LV $=$ FV $=$1 $.
            HOL $=$ NUM த=$ ATOM $=$ ESIGN $=$ O $.
            CONS $=$ 1 $.
            REAL ARRAY REALL(1500), NM(10) $.
            INTEGER ARRAY J(72), DIG(10), IN(300), GOEDEL(1500) $.
            INTEGER ARRAY SYM(35), PRIME(35) $.
            COMMON J.ERROR,ANGLE, GCEDEL, REALL. Z, SYM, PRIME. SYMST, DIG.
                    NM $.
MSEA() $.
OIG(O) = .BCD. /O/ $.
OIG(1)=:ECD. /1/$.
DIG(2) = .ECD. /2/ $.
DG(3) = .BCD. 13/ $.
DIG(4) = . BCD. /4/ 5.
OIG(5) = .BCD. /5/ क,
OG(6)=.BCD. 16/ $.
2IG(7) = .BCD. /7/ $.
```

Figure 47．Listing of Digital Program to Derive Equation for Square of Frequency Response Function（3 of 26）

```
            DIG(8) = •BCD. /8/ $.
            DIG(9) = .BCD. /9/ $.
            NM(O) = 0.0 $.
            NM(1) = 1.0 $.
            NM(2) = 2.0 $.
            NM(3) = 3.0 $.
            NM(4) = 4.0 $.
            NM(5) = 5.0 $.
            NM(6) = 6.0 5.
            NM(7) = 7.0 $.
            NM(8) = 8.0 $.
            NM(9) = 9.0 $.
            ANGLE = O $.
            ERROR = FALSE S.
            PARCT = O $.
            IST = 1 $.
            MSK = 770000000000C $,
    D1$ FOR I=0 STEP 1 UNTIL 4 DO
            BEGIN RDCARD () $,
            FOR K=1 STEP 1 UNTIL }72\mathrm{ DO
            BEGIN IF J(K) EQL •BCD./$/ THEN BEGIN IN(O) = •BCD./(/ $.
                                    IN(IST) = .BCD./)/$.
                                    IN(IST=IST+I)=
                                    -BCD. /$/ $.
                                    GOTO D2 $.
                                    END
                                    ELSE
                IF J(K) NEQ *BCD.//, THEN
                            BEGIN IF (IN(IST) = J(K)) EQL •BCD. /(/ THEN
                                    PARCT = PARCT+1 ELSE IF IN(IST) EQL
                                    -BCD. )/ TiHEN PARCT = PARCT-1 $.
                                    IST = IST+1 $.
                                    END $,
            END $.
            END $;
COMMENT
    H(S) READ IN COMPLETED. NOW PRINT IT OUT.
$.
    D2क SETASM (5.110.-0.-0.-0.-0) 5.
            CARET () $.
            CARET ()$,
            CARET () $.
            CARET ()S.
            ASM.C. (.C. /H(S) = /) $.
            NEWPOS(12) क.
            FOR I=1 STEP 1 UNTIL IST-2 DO ASMBCD (O,IN(I)) $.
            CARET () S.
            CARET () S.
            CARET () $.
            CARET () $.
COMMENT
    IF PARENTHESES DO NOT BALANCE. INDICATE AND SET ERROR FLAG.
$.
    IF PARCT NEQ O THEN BEGIN ERROR = TRUE $,
                PRINT FO &,
                    END $.
            IF Z NEO O THEN FKILL(Z ) $.
            IF Z3 NEO O THEN FKILL(Z3) $.
            IF Z4 NEO O THEN FKILL(Z4) $.
            z = SETFR1 (5000.100.0.2.0) $.
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (4 of 26)

```
        Z3 = SETFR1 (100.25.0.3.0) $4
        Z4 = SETFR1 (100,25,0.4.0) $.
        P=(TOP = FREE:(Z3)) $.
        FOR I=O STEP 1 UNTIL IST DO
            BEGIN IF IN(I) EQL •BCD. /-/ THEN
                        BEGIN FOR K=O STEP I UNTIL 9 DO IF INII+1, EQL DIG(K) AND
                        IN(I-1) EQL .BCD. /(/ THEN GOTO DIO $.
                            ERROR = TRUE $,
                            PRINT F4,IN(I-I),IN(I),IN(I+I),IN(I+2),IN(I+3),IN(I+4).
                            IN(I+5) S.
        END $,
                LVAR(P) = FREE1(Z4) $.
                RVAR;P) = FREE1(Z3) $.
                    IF IN(I) EQL •BCD. /+/ OR IN(I) EQL •BCD. /$/ OR
                            IN(I) EQL •BCD. /*/ OR IN(1) EQL •BCD. /E/ THEN
        BEGIN TYPE(P) = 1 $.
                ALPHA(LVAR(P)) = IN(I) $.
                AFLAG(LVAR(P)) = FALSE $.
                NB(LVAR(P))= FALSE $.
                P = RVAR(P) S.
                GOTO D1O $.
        END
        ELSE IF IN(I) EQL •BCD./(/ OR IN(I) EQL .BCD./)/ THEN
        BEGIN TYPE(P) = 3 $.
                ALPHA(LVAR(P)) = IN(!) $.
                AFLAG(LVAR(P)) = FALSE $.
                NB(LVAR(P)) = FALSE $.
                P = RVAR(P) $,
                GOTO DIO $,
    END
    ELSE
        FOR K=O STEP 1 UNTIL 9 DO
        BEGIN IF IN(I) EQL DIG(K) THEN
            BEGIN NUMEER = O &,
                DCT = 0.0 $.
                        DFLAG = FALSE S,
                        MINFLAG = IF IN(l-1) EQL •BCD. ノ-/ THEN
                        TRUE ELSE FALSE g.
                D4$ NUMBER = 10*NUMBER + NM(K) $,
                IF DFLAG THEN DCT = DCT+1.0 $.
                        IF IN(I+I) EQL •BCD. /.l THEN
                    BEGIN DFLAG = TRUE $,
                                    I = I+1 S,
                            END $.
                                    FOR K=O STEP 1 UNTIL 9 DO
                                    IF IN(I+1) EQL DIG(K) THEN BEGIN I=I+1 $.
                                    GOTO O4 $.
                                    END $.
COMMENT
    ADD O.O TO NORMALIZE NUMBER.
$.
                        NUMBER = 10.0**(-DCT)*NUMEER + 0.0 $.
                        TYPE(P) = 2 s,
                        AFLAG(LVAR(P)) = TRUE $,
                        NB(LVAR(P)) = TRUE S,
                                    DEC(LVAR(P)) = IF MINFLAG THEN -NUMBER ELSE NUMBER $.
                                    P= RVAR(P) $,
                                    GOTO D1O $.
            ENO
    END $,
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (5 of 26)

```
Cun#GNi
    ANYTHING ELSE MUST BE S.T1,T2.....C1,C2....,W1,W2,....ZIW,
Z2W..... ETC.
$*
    :F IN(I) EQL •BCD. /T/ OR IN(I) EQL •BCD. /C/ OR IN(I) EQL
    •BCD. /W/ OR IN(I) EQL •BCD./Z/OR IN(I) EQL •BCD./S/
    THEN
        BEGIN TYPE(P) = 2 $.
        AFLAG(LVAR(P)) = TRUE $.
        NB(LVAR(P)) = FALSE S.
        IF IN(I) EQL •BCD. /S/ THEN ALPHA(LVAR(P))
        = IN(I) .A. MSK ELSE
        IF IN(I) EQL •BCD. /Z/ THEN
            BEGIN ALPHA(LVAR(P))=(IN(1).A. MSK)
                        +(IN(I+1).A. MSK) •RS. 6
                        + (IN(I+2).A. MSK) •RS• 12 $.
                                1=I+2 $.
            END ELSE
                IF IN(1+1) EQL DIG(1) AND IN(I+2) EQL
                        DIG(O) THEN BEGIN ALPHA(LVAR(P)) =
                                    (IN(I).A. MSK) +
                                    (DIG(1).A. MSK)
                                    .RS. 6 + (DIG(O)
                                    -A. MSK) •RS* 12 $.
                                    l=t+2 $,
                                    END ELSE
                                    BEGIN. ALPHA(LVAR(P))= (IN(I).A.
                                    MSK)+(IN(1+1).A. MSK). .RS.
                                    6 $.
                                    I = I + $ $.
                                    END $.
        P=RVAR(P) $.
    END
        ELSE BEGIN PRINT F2, IN(I) &.
                ERROR = TRUE $.
            END $.
    D1O$ END $,
COMMENT
    HARAOTERS CLASSIFIED.OPERATORS (EXPONENTIATION, MULTIPLICATION, AND
    ADDITION) ARE TYPE 1. AS IS S (END OF EXPRESSION). LEFT AND RIGHT
    PARENTHESES ARE TYPE 3. ATOMIC SYMBOLS AND CONSTANTS ARE TYPE 2.
    GHECK FUH OBVIOUS ERRORS BEFORE ATTEMPTING SIMPLIFICATION. THESE
    ERRORS ARE, USING EXAMPLES. THE FOLLOWING IMPOSSIBLE ADJACENT
    CHARACTERS.
```



```
            2. S T1 OR O, T1, Z1W
            4. +.) OR * , OR E ,
#
            P - TOP $,
    R!!g IF TYPE(P) EQL 1 AND TYPE(RVAR(P)) EQL 1 AND ALPHA(LVAR(RVAR(P)))
        NEO \bulletGCD. /E/ OR TYPE (P) EQL 2 AND
        TYOF(FVAR(P)) EQL 2 OR TYPE(P) EQL 3 AND TYPE(RVAR(P)) EQL 3
        AND AI_PHA(LVAR(P)) NEQ ALPHA(LVAR(RVAR(P))) OR TYPE(P) EQL I AND
        ALPHA(LVAR(RVAR(P))) EOL •BCD. /)/ THEN
            BEGIN PRINT Fi. ALPHA(LVAR(P)). ALPHA(LVAR(RVAR(P))) $,
                        ERROR = TRUE $.
            END $,
        1F ALPHA(LVAR(RVAR(P))) NEQ .BCD. /$/ THEN BEGIN P=RVAR(P) $.
                                    GOTO DII $,
```

Fig're 47 . Listing of Digital Program to Derive Equation for Square of Frequency Response Function (6 of 26)

```
        IF ERROR THEN GOTO RETURN $.
        PUSH = STINIT () $.
        COMMENT
            STACK ALL POINTERS WHICH POINT TO .&. .
        $,
    P = TOP $,
    03$ IF ALPHA(LVAR(P)) EQL •BCD. /$/ THEN GOTO D14 $.
    IF ALPHA(LVAR(P)) EQL •BCD. /(/ THEN
        BEGIN STKSX(PUSH.P) $.
        COMMENT
            REMOVE *& FROM STRING
        $.
                    TYPE(P) = TYPE(RVAR(P)) $.
                LVAR(P) = LVAR(RVAR(P)) $.
                RVAR(P) = RVAR(RVAR(P)) $.
            END
        ELSE P=RVAR(P) $,
    GOTO D3 $.
COMMENT
    CHANGE ATOMS TO PACKED FORMAT,
$
D14SP= TOP$,
D135 IF TYPE(P) EQL 2 OR ALPHA(LVAR(P)) EQL •BCD. /$/ THEN
            BEGIN Q: = FREEI(Z) S.
                IF NB(LVAR(P)) THEN CONS(Q1) = DEC(LVAR(P)) ELSE HOL(Q1)
                = ALPHA(LVAR(P)) .RS. 18 $.
                BSIGN(QI) = TRUE $.
                ATOM(Q1) = TRUE $.
                NUM(Q1) = NB(LVAR(P)) $,
                    IF ALPHA(LVAR(P)) EOL •BCD./$/ THEN
                                    BEGIN LVAR(P) = Q1 $.
                                    GOTO DS $.
                                    END
                                    ELSE
                                    BEGIN LVAR(P) = Q1 $.
                                    P = RVAR(P) $.
                                    GOTO DI3 $.
                                    ENO $.
        END ELSE
            BEGIN P = RVAR(P) $,
                GOTO DI3 $,
            END $,
        COMMENT
        STACKING OF !(. DONE. NOW START SIMPLIFICATION. DO E.*.+ IN ORDER.
        \Phi,
D5$ P1 = UNSTAK(PUSH.DB) &,
        P = Pl $.
        FOR K = .BCD. /E/, .BCD. /*/, .BCD. /+/ DO
        BEGIN IF TYPE( RVAR(P)) EQL 3 THEN BEGIN PZ = P $.
                                    P = P1 S.
                                    GOTO D7 $.
                                    END $.
            IF TYPE(P) EQL 1 AND TYPE(RVAR(P)) EQL 2 AND
            ALPHA(LVAR(P)) EQL \bulletBCD. /E/ THEN
                BEGIN Q = FREE1(Z) $.
                        OP(Q) = •BCD. / E/ $.
                        BSIGN(Q) = TRUE $.
                        ATOM(Q) = FALSE $.
                        ANGLE = LVAR(RVAR(P)) $.
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (7 of 26)

```
                        ESIGN(ANGLE) = FALSE $.
                        LVAR(P) = O $.
                RVAR(P) = RVAR(RVAR(P)) $.
                TYPE(P) = 2 $.
    END
    ELSE
IF TYPE(P) EQL 2 AND TYPE(RVAR(P)) EQL 1 AND
ALPHA(LVAR(RVAR(P))) EQL K THEN
    BEGIN G = FREE1(Z) $.
                    OP(Q) = K .RS. 30 *.
                    LV(Q)=LVAR(P) $.
                        RV(Q) = LVAR(RVAR(RVAR(P))) $.
                        BSIGN(Q) = TRUE $.
                        ATOM(Q) = FALSE $.
                        LVAR(P) = Q $.
                        RVAR(P)= RVAR(RVAR(RVAR(P))) $.
                    TYPE(口) = 2 $.
                        END ELSE P=RVAR(P) $.
                        GOTO DG $.
    07$ END $,
    COMMENT
    REMOVE: '), FROM END OF SUIEXPRESSION
    $.
        RVAR(P2) = RVAR(RVAR(P2)) $,
            GOTO DS $.
    D8s PTOP = LVAR(TOP) $.
    GORO RETURN $.
    FOS FORMAT ('OPARENTHESES IN H(S) DO NOT BALANCE. H(S) WILL NOT BE PROCESSED IS
IJT ERROR SCAN WILL CONTINUE.') $,
    Fis FORMAT (OTHE ADJACENT CHARACTERS , AG.' AND * AG.' ARE ILLEGAL IN THIS
GONTEXT. H(S) WILL NOT BE PROCESSEO BUT ERROR SCAN WILL CONTINUE.') $.
    F2.6 FORMAT (:O THE CHARACTER IAG, IIS ILLEGAL. H(S) WILL NOT BE PROCESSED BUT
ERROR SCAN WILL CONTINUE.', $.
    F3$ FORMAT (1H1) $*
    F4历 FORMAT,'OTHE SEQUENCE , 7A1., .... IS NOT PERMITTED. REMEMBER THAT A MINU
S SIGN MUST BE, MOPRECEDED By A M(" ANO FOLLOWED BY A NUMERIC. H(S) WILL NOT B
F FROCESSED BUT ERROR SCAN WILL CONTINUE• ') $.
            END $,
            END FINI
1P AED AlGEB
            BEGIN
COMMENT
    THIS PROGRAM WAS WRITTEN BY UNITED AIRCRAFT RESEARCH LABORATORIES FOR
    HAMILTON STANDARD, UNDER CONTRACT NAS2-4515 TASK 4, IN THE AED-O
    F!に心RGMMING LANGUAGE.
$*
COMMENT
    THE ALGEBRAIC ROUTINE CONSTRUCTS H(-S) FROM H(S). IT THEN SETS UP THE
    -REF STRUCTURE FOR H(S)*H(-S). NEXT IT LOOKS FOR EXPRESSIONS OF THE
    FOPAY EXP: T*S : AND SUBSTITUTES I*W FOR S (I=SORT(-1)) GIVING THE
    FORM COS( T*W) + I*SIN(T*W ). THE SUBSTITUTION OF I*W FOR S IN THE
    FEST OF H(S)*H(-S) IS DEFERRED UNTIL THE PRINT ROUTINE WHERE IT IS
    MORE EASILY PERFORMED. NEXT H(S)*H(-S) IS SIMPLIFIED FROM PRODUCTS OF
    SUMS TO SUMS OF PRODUCTS, BY REPEATEU APPLICATIONS OF THE DISTRIBUTIVE
    IAW OF MULTIPLICATION AND ADUITION. I.E. A*(B+C) = A*B+A*C.
        DEFINE PRO(EDURE ALGEB(TOP) WHERE POINTER TOP TOBE
            BEGIN
```

Figure 47．Listing of Digital Program to Derive Equation for Square of Frequency Response Function（8 of 26）

```
        SYNONYMS INTEGER = POINTER $.
        POINTER COMPONENT RV, LV, HOL $,
        POINTER P, Y,TMP,Q1,Q2,Q3,Z, Q,PTOP,QTOP, ANGLE &.
        BOOLEAN ERROR $.
        INTEGER SYMST . I $.
        INTEGER COMPONENT OP &,
        BOOLEAN COMPONENT ATOM,NUM.BSIGN $.
        BOOLEAN COMPONENT SEALER $,
        POINTER TM1. TM2. TM3. TM4, TM5, TM6, TM7, TMB, TM9, TM10 $,
        REAL COMPONENT CONS $.
        POINTER PROCEDURE STINIT, UNSTAK S.
        PROCEDURE STKSX $.
        PROCEDURE EXIT . MSEA S.
        INTEGER PROCEDURE SETFR1, FREE1. CRSTK, POP, STACK, FRETI $.
        COMMON J.ERROR.ANGLE. GOEDEL. REALL, Z, SYM. PRIME, SYMST, DIG.
            NM - I $.
        INTEGER ARRAY GOEDEL(1500). DIG(10).J(72).SYM(35)..PRIME(35) $.
        REAL ARRAY REALL(1500), NM(10) $.
        DifINE GOOLEAN PROCEDURE EQUIV(BLI.BL2) WHERE BOOLEAN BL1.BL?
        TOBE EQUIV = IF (BL1 AND BL2) OR (NOT BLI AND NOT BL2)
                        THEN TRUE ELSE FALSE $.
        PACK 777777CO.O. SPECIAL COMPONENTS RV $.
        PACK 777777C18.18.SPECIAL COMPONENTS LV $.
        PACK 77C24,24. SPECIAL COMPONENTS OP $.
        PACK ICO.O. SPECIAL COMPONENTS ATOM $.
        PACK 77C30.30. SPECIAL COMPONENTS BSIGN $.
        PACK 777777C12.12. SPECIAL COMPONENTS HOL $.
        PACK 1C1.1. SPECIAL COMPONENTS NUM $.
        PACK 1CO.O, SPECIAL COMPONENTS ATOM $.
        PACK 1C2.2. SPECIAL COMPONENTS SEALER $*
        OP $=$ ATOM $=$ BSIGN $=$ SEALER $=$ 0 $,
        LV G=$ RV S=S 1 S.
        HOL $=$ NUM $=$ ATOM $=$ ESIGN $=$ SEALER $=$ 0 $.
        CONS $=$ 1 $,
        POINTER PUSH, QUSH S.
        IF ERROR THEN GOTO RETURN $.
        PTOP = TOP $.
        PUSH = STINIT () $.
        QUSH = STINIT () $,
        QTOP = FREE1(Z) $,
        P = PTOP$,
        O = OTOP $,
        A1$ IF ATOM(P) THEN
            BEGIN ATOM(Q) = TRUE $.
                        NUM(Q)=NUM(P) $.
                        IF NUM(P) THEN
                                    BEGIN CONS(O) = CONS(P) $.
                                    BSIGN(Q) = BSIGN(P) s.
                                    ENO
                ELSE BEGIN
                    HOL(Q)= HOL(P) $.
                    BSJGN(Q) = EQUIV(NOT(HOL(P) EQL
                    O 300000C l. BSIGN(P))S.
        END $.
COMMENT
    THE SEALER BOOLEAN COMPONENT IS USED TO SEAL OFF BRANCHES OF THE TREE
        WHICH HAVE BEEN SIMPLIFIED. SINCE THE ALGEBRAIC SIMPLIFICATION
        ROUTINE BUILDS A TREE WHICH SHARES STORAGE, THIS PREVENTS REDUNDANT
        TRIPS THROUGH THE TREE.
$.
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (9 of 26)

```
                SEALER(P) = TRUE $.
                SEALER(Q) = TRUE s.
                P = UNSTAK (PUSH,AZ) $.
                O = UNSTAK(QUSH,A2) $.
                GOTO AI $.
            END
                            Else
            BEGIN LV(Q) = FREEI(Z) $,
                RV(Q) = FREE1(Z) $.
                ATOM(Q) = FALSE $.
                OP(Q) = OP(P) $,
                BSIGN(Q) = BSIGN(P) $.
                IF OP(P) NEQ OP(.C./ E /) THEN
                BEGIN STKSX(QUSH,RV(Q)) $.
                    STKSX(PUSH,RV(P))$.
                END ELSE
                    BEGIN OP(Q)=.BCD./ M/ S.
                        P = UNSTAK(PUSH.AZ) $.
                        Q = UNSTAK(QUSH.AZ) $,
                        GOTO A! $,
                    END $,
                        SEALER(P) = FALSE $.
                        SEALER(Q) = FALSE $.
                O = LV(Q) $,
                P=LV(P) $.
                GOTO Al $,
            END s,
    COMMENT
                NOW JOIN H(S) AND H(-S) WITH * OPERATOR
    $.
    A2$ TOP = FREE1(Z) S.
        LV( TOP) = PTOP $.
        RV( TOP) = QTOP $.
        OP( TOP) = OP(.C. / * /) $.
        \triangleTOM( TOP) = FALSE $.
        BSIGN( TOP) = TRUE S.
        SEALER(TOP) = FALSE $.
    AGS P = TOP $.
    COMMENT
            SUBSTITUTE [*W FOR S WHERE I = SQRT(-1) . EXP**IW BECOMES
    COS(w)+I*SIN(w) & LEAVE OTHER TERMS INVOLVING S TO OUTPUT ROUTINE.
            $.
PUSH=STINIT() ©.
EIS IF NOT ATOM(P) ANO (OP(P) EQL OP(.C./ E /) OR OP(P) EQL
OP(.C./ M /) THEN
            BEGIN Q1 = FREEI(Z) S.
                LV(Q1) = FREE1(Z) $*
                RV(Q1)=FREE1(Z) S.
                    TMI = LV(Q1) $.
                    ATOM(TM1) = FALSE $.
                OP(TM1) = .BCD. / C/ $.
                BSIGN(TMI) = BSIGN(P) S.
                SEALER(TM1) = TRUE $.
            TM5 = RV(Q1) $.
            ATOM(TMS) = FALSE $.
            OP(TMJ) = •ECD. / */ $,
            LV(FMS) = FREE1(Z) $.
            RV(TMS) = FREE\(Z) $.
            BS!GN(TM5) = EQUIV(EQUIV(BSIGN(P),BSIGN(LV(P))),
                                    EQUIV(BSIGN(LV(LV(P))),BSIGN(RV(LV(P))))) 3.
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (10 of 26)

```
SEALER(TMS) = TRUE $.
TMG = LV(TMS) $.
ATOM(TMG) = TRUE $.
    BSIGN(TMG) = IF OP(P) EQL OP(.C./E /) THEN
    FALSE ELSE TRUE $,
NUM(TMG) = FALSE $.
HOL(TMG) = .BCD. / 1/ $,
TM7 = RV(TMS) $.
ATOM(TM7) = FALSE $.
BSIGN(TMT) = TRUE $.
OP(TMT) = .BCD. / S/ $.
    OP(P) = .BCD. / +/ $.
    LV(P)=LV(Q1) $.
    RV(P)=RV(Q1) $.
    BSIGN(P) = TRUE $.
    ATOM(P) = FALSE S.
    SEALER(P) = FALSE $.
    FRET1 (O1.Z) S.
    P = UNSTAK(PUSH,AB) $,
    GOTO B1 $,
END ELSE IF ATOM(P) OR OP(P) EOL OP(.C./ C ノ,
                        OR OP(P) EQL OP(.C./ S /) THEN P=UNSTAK(PUSH.AB
    ) ELSE
BEGIN
    STKSX(PUSH.RV(P)) $.
        P=LV(P) $.
END $.
        GOTO BI $.
AB$ P = TOP $.
    PUSH = STINIT () $.
A3s 1F NOT ATOM(P) AND OP(P) EQL OP(.C. / * /) AND SEALER(LV(P))
    AND SEALER (RV(P)) THEN BEGIN SEALER(P) = TRUE $.
        GOTO A7 $.
            END $.
    IF NOT ATOM(P) ANO OP(P) EQL OP(.C. / * /) AND NOT ATOM(RV(P))
    AND OP(RV(P)) EQL OP(.C. }++,>\mathrm{ THEN
    A5$ BEGIN O1 = FREE1(Z) $.
        Q2 = FREE1(Z) $.
        Q3 = FREE1(Z)s.
        TM2 = RV(P) $.
        LV(Q1) = Q2 $.
        RV(Q1) = Q3 s.
        LV(Q2) = LV(P) $.
        RV(Q2) = LV(TMZ) $.
        OP(Q2) = .BCD. / */$.
        ATOM(O2) = FALSE $.
        BSIGN(Q2) = EQUIV(BSIGN(P). BSIGN(TMZ)) s.
        SEALER(Q2) = SEALER(LV(P)) AND SEALER(LV(TMZ)) $,
        LV(Q3) = LV(P) $,
        RV(Q3) = RV(TM2) s.
        OP(Q3) = •BCD. / */ $,
        ATOM(Q3) = FALSE $.
        BSIGN(Q3) = BSIGN(Q2) $,
        SEALER(Q3) = SEALER(LV(P)) AND SEALER(RV(TM2)) $,
        BSIGN(P) = TRUE $.
        LV(P) = LV(Q1) $.
        RV(P)=RV(QI) $.
        OP(P) =.BCD. , +/ s.
        SEALER(P) = FALSE $.
        FRET1 (O1,Z) $.
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (11 of 26)

```
    P = UNSTAK(PUSH,AB) $,
    GOTO A3 $.
            END s.
        IF NOT AYOM(P) AND OP(P) EQL OP(.C., * /) AND NOT ATOM(LV(P))
        AND OP(LV(P)) EOL OP(.C. / + /) THEN
                        BEGIN
                        TMP = LV(P) $.
                    LV(P) = RV(P) $.
                    RV(P)=TMP $.
                    GOTO AS $.
                            END $.
        IF ATOM(P) OR OP(P) EQL OP(.C. / S O OR OP(P) EQL
        OP!.C.,C /) OR OP(P) EQL OP(.C., E / THEN
        A7$ BFGIN P = RV(UNSTAK(PUSH,RETURN)) $.
                        GOTO A3 $.
            END ELSE
            BEGIN STKSX(PUSH.P) $.
                        P = LV(P) $.
                        GOTO A3 $,
                END s.
        END $,
        END FINI
PP AED COLECT
        BEGIN
COMMENT
    THIS FROGRAM WAS WRITTEN BY UNITED AIRCRAFT RESEARCH LABORATORIES FOR
    HAMILTON STANDARD, UNDER CONTRACT NAS2-4515 TASK 4. IN THE AED-O
    FROGRAM:IING LANGUAGE.
$.
GOMMENT
    THIS ROUTINE COLLECTS LIKE TERMS IN THE SIMPLIFIED EXPRESSION. FIRST,
    EACH SYMBOL USED IN H(S) IS ASSIGNEU A UNIQUE PRIME. THEN FOR EACH
    :ERM A GOEDEL NUMBER IS COMPUTED WHICH IS THE PRODUCT OF ALL THE
    PRIMES CORRESPONDING TO THE SYMBOLS IN THE TERM. NOW BY THE UNIQUE
    FACTORIZATION THEOREM, ANY TERMS WITH THE SAME GOEDEL NUMBER CONTAIN
    THE SAME SYMBOLS AND ASSOCIATED EXPONENTS, AND TERMS WITH DIFFERENT
    GOEDEL NUMEERS ARE DIFFERENT. COLLECTING LIKE TERMS THEN IS SIMPLY A
    MATTER OF SELECTING THE TERMS WITH LIKE GOEDEL NUMBERS AND ADDING
    THEIR NUMERICAL COEFFICIENTS. SIN AND COS ARE ARBITRARILY ASSIGNED
    THE PRIMES 3 AND 5, RESPECTIVELY- SIMPLIFICATION INVOLVING THE
    IDENTITY SIN(A)**2 + COS(A)**2 = 1 ARE THEN EASILY HANDLED BY TESTING
    THE GOEDEL NUMBER FOR DIVISIBILITY BY }9\mathrm{ AND 25.
    IF A TERM HAS A GOEDEL NUMGER GREATER THAN (2**35)-1. TWO OR MORE
    LOCATIONS ARE USED. IN THIS CASE. A NEGATIVE GOEDEL NUMBER INDICATES
    that the next goedel number in the table Is the next factor. the
    GOEDEL NUMBER HERE WILL BE TRANSFORMED INTO AO+AI*2**35 + A2*2**7O
    + ... WHEN COLLECTING TERMS. IN ORDER TO KEEP THE GOEDEL NUMBER IN
    ONE IOEATION, IT IS EEST TO LIST THE SYMBOLS USED IN ORDER OF THEIR
    FREQUENCY OF USE, SINCE THE PRIMES ARE ASSIGNED SMALLEST FIRST.
    AS AN EXAMPLE, CONSIDER THE EXPRESSION.
            S*T1*TI*S*S + 2*T2*S*S + 3.0*TI*S*S*S*T1
    THE PRIMES ASSIGNED TO THE SYMBOLS ARE S=2, T1=7. T2=11. THE GOEDEL
    NUMGERS FOR THE TERMS ARE THEN 2*7*7*2*2, 11*2*2, AND 7*2*2*2*7 OR
    3YC.44. AND 392. THUS THE 1ST AND 3RD TERMS ARE THE SAME OESPITE THE
    OIF: ERENUE IN THE OROER OF THE SYMBOLS, AND CAN BE COMBINED BY ADDING
    theIR NUMERICAL COEFFICIENTS.
$.,
DEFINE PROCEDURE COLECT (TOP) WHERE POINTER TOP TOBE
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (12 of 26)

```
BEGIN
SYNONYMS INTEGER = POINTER $.
POINTER PUSH S.
OEFINE PROCEDURE GMUL(FAC) WHERE INTEGER FAC TOBE
    BEGIN IF (GT(KL)*FAC)/FAC NEQ GT(KL) THEN
                BEGIN GT(KL)=-GT(KL)$,
                                    GT(KL=KL+1)=FAC $.
            END
            ELSE GT(KL) = GT(KL)*FAC $.
    END $.
DEFINE PROCEDURE SIG TOBE IF NOT BSIGN(P) THEN RL = -RL $.
POINTER COMPONENT RV.LV S.
INTEGER COMPONENT OP, HOL , RHALF $,
BOOLEAN COMPONENT ATOM,NUM,BSIGN $,
REAL COMPONENT CONS $,
PROCEDURE EXIT,MSEA , PDUMPN S.
PROCEDURE ROCARD, ASM.C., ASMDEC. ASMBCD, CARET &.
PROCF!URE ASMFLO, SETASM, NEWPOS, STKSX $,
POINILR PROCEDURE STINIT, UNSTAK $,
INTEGER PKOCEDURE GPOL $,
REAL RL S,
INTEGER PROCEDURE SETFRI,FREEI,FRET $.
PACK 777777CO.U. SPFGIAL COMPONENTS RV $,
PACK 1CO.O. SPECIAL COMPONENTS ATOM $,
PACK 777777C18.ld. 'sPECIAL COMPONENTS LV $.
PACK 77C24.34.SPECIAL COMPONENTS OP $,
PACK 77C3U.3U, SPLCIAL COMPONENTS BSIGN $.
PACK 777717C12.12.SPLCIAL COMPONENIS HOL $.
PACK 1C1.1.SPECIAL CUMPONENTS NUM $.
PACK ICO.O.SPECIAL COMPONENTS ATOM $.
OP $=$ ATOM $=$ BSIGN $=$ O $.
-V S=: RV S=$ 1 $.
HOL : NUM $=$ ATOM &=$ BSIGN $=$ O q.
CONS &=% : $.
COMMON J,LRROR,ANGLE, GOEDEL, REALL, L, ..... PRIME, SYMST, DIG.
    NM . 1 $,
INTEGER ARRAY GOEDEL(1500). PRIME(35).SYM(35),J(7?:,G`(10) $.
INrEGER ARRAY OIG(1O) $.
REAL ARRAY REALL(1500).NM(10) $.
INTEGER ARRAY T1(10). T2(10) $,
BOOLEAN B1.B2.Y. FLIP. SW. SW1. ISIG. EKINUF %.
INTEGER I,T,K,L.M.EX.R,SYMST, MSK, N,SINDEX &,
INTEGER KK,KL,II, KN,GD ,GDT , JJ. KM &,
INTEGER JI, J2. J3. J4 $.
POINTER P, ANGLE , LL , Z $,
MSEA() $.
MSK = 770000000000C $,
FLIP = FALSE $.
FOR N=0 STEP 1 UNTIL 1499 DO GOEDEL(N)=(REALL(N)=0.0) $.
PRIME (O) = 2 $.
PRIME (1) = 7 $,
PRIME (2) = 11 $.
PRIME (3) = 13 $.
PRIME (4) = 17 $,
PRIME (5) = 19 $.
PRIME (6) = 23 $.
PRIME (7) = 29 $.
PRIME (8) = 31 $.
PRIME (9)=37 $.
PRIME(10)=41 $.
```

Figure 47. Listing of Digital Program to Derive Eauation for Square of Frequency Response Function (13 of 26)

```
        0,:1: = 43 $,
        PR(inc.(12) = 47 $,
        PRIME (13) = 53 5.
        PRIME (14) = 59 $.
```



```
        PRIME(16) = 67 $.
        PRIME (17) = 71 5,
        PRIME (18) = 73 5.
        PRIME(19) = 79 $.
        PRIME (20)=83 $,
        PRIME(21) = 89 $.
        PRIME(22) = 97 $0
        PRIME(23)=101 $.
        PRIME(24) = 103 $.
        FRIME(25) = 107 $.
        PRIME(26) = 109 $.
        PRIME(27) = 113 $0
        FOIME(28)=127 $.
        PRIMF(2O) = 131 $0
        FRIME (30) = 137 $.
        FRIME(31) = 139 $.
        PRIMF(32) = 149 $.
        FRIME (33)=151 $.
        PRIME(34) = 157 $.
        L = -1 $.
~1こ\pm FOR M=O STEP 1 UNTIL 4 DO
            BEGIN RDCARD () s.
                FOR K=1 STEP 1 UNTIL T2 DO
                IF J(K) EQL •BCD./$/ THEN GOTO CO
                ELSE IF J(K) NEQ .BCD. / / THEN IF J(K) NEQ •BCD. /T/ AND
                J(K) NEQ &BCD. /C, AND J(K) NEQ .BCD. /W, AND J(K) NEQ
                -BCD. /Z/ AND J(K) NEQ •BCD. /S/ THEN BEGIN
                                    ERROR = TRUE $.
                                    PRINT FO $.
                                    END ELSE
                            IF J(K) EQL •BCD. /S/ THEN
                BEGIN SYM(L=L+1)=(J(K) .A. MSK) $.
                        SINDEX = L $.
                END
                        ELSE IF J(K) EQL •BCD• /Z/ THEN
                        BEGIN SYM(L=L+1) = (J(K) ©A. MSK)
                                    +(J(K+1) •A. MSK) •RS• 6
                                    + (J(K+2) •A. MSK) •RS• 12 $,
                                    k=k+2$,
                    END
                        ELSE IF J(K+1) EQL •BCD• /1/ AND J(K+2) EQL •BCD. /O/
                        THEN BEGIN SYM(L=L+1)=(J(K) ©A. MSK)
                            +( (*BCD. /1/).A. MSK) •RS. 6
                            +( (•BCD. /O/) .A. MSK) \bulletRS. 12 $.
                                k=k+2 s,
                            END
                            ELSE BEGIN SYM(L=L+1)=(J(K).A. MSK)
                                    +(J(K+1) •A. MSK).RS.
                                    6 $.
                                    k=k+1 $.
                                    END $.
        END s.
\thereforeO\Psi #}=\mathrm{ TOP $.
    I= ERROR THEN GOTO RETURN $.
    SYMST = LS.
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (14 of 26)

```
        PUSH = STINIT() $.
        I = O $,
    C35 RL = 1.0 $.
        ISIG = FALSE $.
        GT(KL=O) = 1 $.
    C1\Phi IF ATOM(P) THEN GOTO C2 ELSE
                        IF OP(P) EQL OP(.C./ + /) OR OP(P) EQL
                OP(.C. / * /) THEN
            BEGIN STKSX(PUSH.P) $.
                        SIG () $,
                        P=LV(P)$.
                        GOTO C1 क.
            END
            ElSE
COMMENT
    CHECK FOR SIN OR COS OPERATOR
\Phi.
            IF OP(P) EQL OP(.C./ S /) THEN
            BEGIN GMUL(3) $,
                        SIG ()$.
                        GOTO C4 $.
                        END
            ELSE
            IF OP(P) EQL OP(.C./ C /) THEN
                BEGIN GMUL(5) $.
                        SIG () $.
                        GOTO C4 $.
                END
            ELsE
COMMENT
    P IS AN ATOM
$.
    C2$ IF NUM(P) THEN
                BEGIN SIG ()$,
                                    RL = RL*CONS(P) $.
                                    GOTO C4 $,
                    END
                        Else
COMMENT
    CHECK FOR SQRT(-1)
$.
    IF HOL(P) EQL HOL(.C./ 1 \) THEN
                                    BEGIN SIG () $.
                                    IF NOT (ISIG=NOT ISIG) THEN RL = -RL S.
                                    GOTO C4 $.
                        ENO
                ELSE
            IF HOL(P) EQL OOOOOO300000C THEN
                BEGIN GMUL(PRIME(SINDEX)) $.
                        GOTO C15 $,
                END ELSE
                FOR K=O STEP 1 UNTIL SYMST DO
                    IF HOL(P) EQL (SYM(K) .RS. 18) THEN
                    BEGIN GMUL(PRIME(K)) $.
                        SIG()$.
                        GOTO C4 $.
                        END $.
                        PRINT F3 $.
                        ERROR = TRUE $.
                        GOTO RETURN $.
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (15 of 26)

```
    C4$ P = UNSTAK(PUSH.C13) $.
COMMENT
    IF TERM IS IMAGINARY DO NOT CONSIDER IT.
$.
        IF OP(P) EQL OP(.C. / + /) THEN
        BEGIN IF ISIG THEN BEGIN P = RV(P) $.
                                    GOTO C3 $,
                                    END ELSE IF I EQL O THEN GOTO C5 ELSE
                                    GOTO IF KL EQL O THEN CG ELSE CIO $.
        END
            ELSE
            BEGIN SIG()$.
                        P = RV(P) S.
                        GOTO C: $.
            END $.
COMMENT
    LAST TERM IN EXPRESSION NEEDS SPECIAL HANOLING
$.
    C135 FLIP = TRUE $,
        IF ISIG THEN GOTO C8s.
        IF KL EQL O THEN GOTO CG ELSE GOTO CIO $.
COMMENT
    TRY COLLECTING TERMS. FIRST TEST FOR SIN**2 + COS**2 REDUCTION, THEN
    FOR COMEINING OF LIKE TERMS.
$.
    C6$ GO = GT(O) s.
        B1 = (GD,9) * 9 EQL GD $,
        E2 = (GD/25)* *2 EQL GO s.
        FOR K=0 STEP 1 UNTIL I DO
                IF (K EQL O AND GOEDEL (O) GRT O OR K NEQ O AND GOEDEL
                (K-1) GRT O) AND REALL (K) NEQ O THEN
                BEGIN GDT = GOEDEL(K) $.
                    IF BI ANO (GOT/25;*25 EQL GDT AND GDT/25 EGL GD/9
                        OR B2 AND (GDT/9)*9 EQL GOT AND GDT/9 EQL GD/25
                        THEN BEGIN REALL(K) = REALL(K)-RL $.
                                    GD = GO/IF GDT/9 EOL GD/25 THEN 25
                                    ELSE 9.$,
                                    END $.
                END $,
            GT(O) = GD S.
COMMENT
    NOW TRY TO COLLECT LIKE TERMS
$.
CIO& GPOL(GT.T1,O.J1) $,
        J2 = 0$.
    C9$ GPOL(GOEDEL.T2.J2.J3) $.
        FOR J4=O STEP 1 UNTIL 9 DO
            BEGIN IF TI (J4) LEQ O AND T2(J4) LEQ O AND T1(J4+1) LES O AND
                        T2(J4+1) LES O THEN GOTO C7 $,
                        IF T1(J4) NEQ T2(J4) THEN IF J3 GEQ I-1 THEN GOTO CS ELSE
                                BEGIN J2 = J3+1 $.
                                    GOTO C9 $.
                                END $.
            END $.
COMMENT
    TERMS CAN BE COMBINED.
$,
    C7$ FOR KK=J2 STEP I UNTIL J3 DO REALL(KK) = REALL(KK) + RL $.
            GOTO C14 $.
COMMENT
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (16 of 26)

```
    CAN:T COMBINE LIKE TERMS. ADD GOEDEL NUMBER(S) TO LIST.
$.
    C5$ FOR KK=0 STEP 1 UNTIL KL DO
        BEGIN GOEDEL(I) = GT(KK) s.
                        REALL(1) = RL $.
                        I=1+1 $.
                        IF I GRT 1500 THEN BEGIN PRINT FI S.
                        PDUMPN () $,
                        ERROR = TRUE $ .
                        GOTO RETURN $.
                                    END $.
        END $.
    C14$
    COMMENT
    REPLACE UO IN SYMBOL TABLE BY BLANK. CHANGE S SYMBOL TO W.
\Phi.
    C9$ FOR N=O STEP 1 UNTIL SYMST OO
        IF SYM(N) .A. MSK EQL 370000000000C THEN SYM(N) =
        SYM(N) + 000000050505C
        ELSE IF SYM(N) .A. 007777000000C EQL 006160000000C
        THEN SYM(N) = SYM(N) + 000000050505C
        ELSE SYM(N) = SYM(N) + 000005050505C $.
        SYM(SINDEX) = 340505050505C $.
            1 = I-1 $.
            GOTO RETURN $.
    FO$ FORMAT ('O ILLEGAL CHARACTER IN ADMISSIBLE SYMBOL SET•" ) $.
    Fls FORMAT (:O GOEDEL NUMBER TABLE OVERFLOWS.') s.
    F39 FORMAT ('O SYMBOL MISSING FROM ADMISSIBLE SYMBOL SET•!) $.
            END s.
            END FINI
PP AED GPOL
            BEGIN
COMMENT
    THIS PROGRAM WAS WRITTEN BY UNITED AIRCRAFT RESEARCH LABORATORIES FOR
    HAMILTON STANDARD. UNDER CONTRACT NAS2-4515 TASK 4. IN THE AED-O
    PROGRAMMING LANGUAGE.
$.
COMMENT
    THIS ROUTINE TAKES ALL GOEDEL NUMBERS INCLUDING THOSE OCCUPYING MORE tHAN ONE
    LOCATION AND TRANSFORMS THE GOEDEL NUMBER INTO THE COEFFICIENTS OF A POLY-
    NOMIAL IN POWERS OF 2**35. SINCE THE POLYNOMIAL IS UNIGUE. THIS LETS US TEST
    ALL GOEDEL NUMERS FOR EQUALITY.
s,
DEFINE PROCEDURE GPOL(IN.T.ISTART,IEND) WHERE INTEGER ARRAY
        IN(300), T(10). $. INTEGER ISTART, IENO TOEE
        BEGIN INTEGER ARRAY TLO(10), TUP(10)$.
                        BOOLEAN ARRAY OFLO(1O) $.
                        INTEGER KI.K2,K3.K4 $.
        FOR K1=O STEP 1 UNTIL 9 DO T(K1) = TLO(K1) = TUP(K1) = -1 $.
        IF IN(ISTART) GRT O THEN
            BEGIN T(O) = IN(ISTART) $.
                        IEND = ISTART $.
                        GOTO RETURN $.
            END $,
            DOUBML(ABS(IN(ISTART)). ABS(IN(ISTART+1)). T(I).T(O)) $.
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (17 of 26)

```
        &: IN:ISTART+1) GRT O THEN
            BEGIN IENO = ISTART+1 S.
                        GOTO RETURN $,
            END $.
        FOR K2 E STEP I UNTIL O DO
            BEGIN FOR K3=0 STEP 1 UNTIL K2-1 DO DOUBML(ABS(IN(ISTART+K2)).
                    T(K3),TUP(K3+1),TLO(K3)) $.
                        T(K2) = TUP(K2) $.
                        T(O) = TLO(O) $.
                        FOR K4=1 STEP 1 UNTIL K2-1 DO
                BEGIN T(K4) = TLO(K4) + TUP(K4) $.
                                    OFLO(K4)=TLO(K4) + TUP(K4) LES O $.
                END $.
                    FOR K4=1 STEP 1 UNTIL K2-1 DO IF OFLO(K4) THEN
                                BEGIN T(K4)= T(K4) .A. 377777777777C $.
                        T(K4+1)=T(K4+1)+1S.
                END $,
                        IF IN(ISTART+K2) GRT O THEN BEGIN IEND = ISTART+KZ $.
                                    GOTO RETURN $.
                                    ENO $,
            ENO $.
        END %.
        ENO FINI
AP AED RRNT
        BEGIN
COHMENT
    THIS PROGRAM WAS WRITTEN BY UNITED AIRCRAFT RESEARCH LABORATORIES FOR
    HAMILTON STANDARD, UNDER CONTRACT NAS2-4515 TASK 4, IN THE AED-O
    FROGRAMMITGG LANGUAGE.
$.
COMMENT
    THIS ROUTINE PRINTS THE EXPRESSION H(I*W)*H(-I*W) AFTER ALL LIKE TERMS
    HAVE BEEN COLLECTED. EACH GOEDEL NUMBER IN TURN IS DECOMPOSED INTO
    PRIMES. AND THE SYMBOL CORRESPONDING TO EACH PRIME IS PRINTED.
$.
        DEFINE PROCEDURE PRNT TOBE
        BEGIN
        SYNONYMS INTEGER = POINTER $.
        DEFINE PROCEDURE NUMPRT(Q) WHERE REAL O TOBE
        BEGIN REAL U $.
            U=0 $,
                U=U+0.0 $.
                    IF U EQL ( }K=U)\mathrm{ THEN
            GESIN KSP = IF ULES 10.0 THEN 2 ELSE (2.001+ALOG10(U)) $.
COMMENT
    IF NUMERICAL COEFFICILNT IS AN INTEGER, USE LOG EASE 1O TO COMPUTE PROPER
    SPACING. NORMALIZE NUMBER FIRST.
$.
                                    ASMDEC(KSP.K) $,
                    ASM.C. (.C. /.O/) $,
                END ELSE ASMFLO (12.U) $,
            END $,
        POINTER COMPONENT RV.LV $.
        INTEGER COMPONENT OP. HOL . RHALF &,
        BOOLEAN COMPONENT ATOM,NUM,BSIGN &.
        REAL COMPONENT CONS $,
        PROCEOURE EXIT.MSEA , PDUMPN , RWT, RTD, WTD $,
        PROCEDURE RDCARD. ASM.C.. ASMDEC. ASMBCD. CARET $.
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (18 of 26)

```
            PROCEDURE ASMFLO. SETASM. NEWPOS $,
            REAL PROCEDURE ALOG1O $,
            REAL RL.V S.
            PACK 777777CO.O, SPECIAL COMPONENTS RV $,
            PACK 1CO.0. SPECIAL COMPONENTS ATOM $.
            PACK 777777C:B,18. SPECIAL COMPONENTS LV $,
            PACK 77C24,24,SPECIAL COMPONENTS OP $.
            PACK 77C30,30, SPECIAL COMPONENTS BSIGN $.
            PACK 777777C12.12.SPECIAL COMPONENTS HOL $.
            PACK 1C1.1.SPECIAL COMPONENTS NUM $,
            PACK 1CO.O.SPECIAL COMPONENTS ATOM $.
            PACK 777777CO.O. SPECIAL COMPONENTS RHALF $,
            OP $=$ ATOM $=$ BSIGN $=$ O $.
            LV $=$ RV $=$ 1 $,
            HOL $=$ NUM $=$ ATOM $=$ BSIGN $=$ O $,
            CONS $=$ 1 $.
            RHALF $=$ 0 $.
            INTEGER ARRAY SOEDEL(1500).PRIME(35).SYM(35).J(72),GT(10) $.
            INTESER ARRAY DIG(1O) $,
            INTEGER ARRAY SV•ARRAY(6) $.
            COMMON J.ERROR.ANGLE. GOEDEL, REALL, Z, SYM, PRIME, SYMST, DIG*
                    NM , I &.
            REAL ARRAY REALL(1500). NM(10) $.
            BOOLEAN B1,B2.Y, FLIP. SW, SW1. ISIG.ERROR $.
            INTEGER I,T,K.L.M.EX.R.SYMST . MSK . N.SINDEX $.
            INTEGER KK,KL,II, KN,GD .GDT . JJ. KM $,
            INTEGER KSP , LK,LJ,LI , JZ $.
            POINTER P, ANGLE . LL, Z $.
            MSEA() S.
            IF ERROR THEN GOTO RETURN $,
            T=.BCD. / / $.
            PRINT F2 $.
            SWI = FALSE $.
            SETASM (5,-0, -0, -0, -0.-0) $.
            ASM.C. (.C. /H(w)*H(W) = l) $.
            NEWPOS(19) $.
COMMENT
    FIRST REPLACE S IN ANGLE BY W AND REPLACE O BY BLANK IN OTHER SYMBOLS*
$.
            If ANGLE NEQ O THEN
            FOR LL = LV(ANGLE), RV(ANGLE) DO
            IF HOL(LL) EOL 30000OC THEN HOL(LL) = HOL(.C./ w /)
            ELSE 1F HOL(LL) .A. 77C EOL OC THEN HOL(LL) = HOL(LL) + 5C $.
COMMENT
    SAVE GOEDEL NUMBERS AND COEFFICIENTS ON TAPE
$,
            JZ = 8 $,
            RWT(JZ) $,
            FOR N=O STEP , UNTIL I DO WTD(JZ,F3.GOEDEL(N),REALL(N)) $,
            FOR M=O STEP 1 UNTIL I DO
                    BEGIN IF REALL(M) EQL 0.0*THEN GOTO C11 $.
COMMENT
    BEFORE PRINTING CHECK ANGLE FOR SIGN. THEN APPLY SIN(-X) = -SIN(X) AND
    COS(-x)=COS(x)\cdot LOOP TWICE IN CASE OF SIN**2 OR COS**2.
$.
If ANGLE EQL O then GOTO C5 $.
FOR LI=LV(ANGLE), RV(ANGLE) DO
    BEGIN IF NOT NUM(LI) THEN GOTO CG $.
                                    FOR LJ=O STEP I UNTIL I DO
                                    BEGIN FOR LK=O STEP 1 UNTIL I DO
```

Figure 47. Listing of Digital Program to Derive Equation for Sauare of Frequency Response Function (19 of 26)

```
                        BEGIN IF (GOEDEL(M+LJ)/3)*3 EQL GOEDEL(M+LJ) THEN
                                    BEGIN IF CONS(LI) LES O.O THEN
                                    BEGIN REALL(M)=-REALL(M) $.
                                    CONS(LI) = -CONS(LI) $.
                                    END $.
                                    END $.
                                    IF (GOEDEL(M+LJ)/5)*5 EQL GOEDEL(M+LJ) THEN IF
                                    CONS(LI) LES O THEN CONS(LI) = -CONS(LI)$.
            END $.
            IF GOEDEL(M+LJ) GRT O THEN GOTO CS $.
            END $,
    C9S END $.
    C5$ IF REALL(M) LES O.O THEN ASM.C. 1.C.
        SW1 = TRUE s.
        IF Y = (V=ABS(REALL(M))) NEO 1.O OR GOEDEL(M) EQL 1
        THEN NUMPRT(V) S.
        SW = FALSE $.
        FOR L:=O STEP 1 UNTIL SYMST DO
            BEGIN EX = O $,
                FOR KN=O STEP 1 UNTIL I DO
C10$ BEGIN IF (R=GOEDEL(M+KN),PRRIME(L))*PRIME(L)
                                EQL GOEDEL(M+KN) THEN
                                    BEGIN EX = EX+1 S.
                                    GOEDEL (M+KN) = R $.
                                    GOTO C1O $.
                                    END $.
                                    IF GOEDEL(M+KN) GRT O THEN GOTO CIT $.
                            END $,
C17$
                            IF EX EQL O THEN GOTO C16 ELSE
                        BEGIN IF Y OR SW THEN ASM*C. (.C. /*/) S.
                        ASMBCD (O.SYM(L)) S.
                        SW = TRUE S.
                        IF EX GRT I THEN
                        BEGIN ASM.C. (.C. /**/) $,
                                    IF EX GRT }9\mathrm{ THEN ASMDEC(3,EX)
                                    ELSE ASMDEC(2,EX) $,
                                    ASM.C. (.C./ /) $.
                                    END $.
                            END $,
    C16s
    END s.
COMMENT
    CHECK FOR PRESENCE OF SIN AND COS TERMS.
$.
    IF ANGLE EQL O THEN GOTO C19 $,
        $.
        FOR JJ=3 STEP 2 UNTIL 5 DO
        BEGIN EX = O $.
        FOR KM=0 STEP 1 UNTIL I DO
    C20$ BEGIN IF (R=GOEDEL(M+KM)/JJ)*JJ EQL GOEDEL(M+KM) THEN
                            BEGIN EX = EX+1 S,
                                GOEDEL(M+KM) = R $.
                                GOTO C2O $.
                        END &,
                                IF GOEDEL(M+KM) GRT O THEN GOTO C18 $.
        END $,
    CI8$ IF EX EQL O THEN GOTO CI9 ELSE
    BEGIN IF Y OR SW THEN ASM.C. (.C. /*/) $.
                        IF JJEQL 3 THEN ASM\bulletC. (.C. ISIN(/) ELSE
                        ASM.C. (.C. /COS(/) $,
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (20 of 26)

```
    THE QUOTIENT IS tAKEN AS thE NEW GOEDEL NUMBER, AND THE NUMERICAL
    NUMERICAL VALUE OF THE SUBSTITUTED VARIABLE. AFTER ALL SUCH
    \becauseSTITIMT:ONS ARE MADE, ALL GOEDEL NUMBERS wH1GH WERE LARGER THFN
    -:*:5)-1 AND CONSEQUENTLY OCCUPY MORE THAN ONE LOCATION ARE TESTED
    TO SEE WHETHER THEY ARE NOW LESS THAN (2**35)-1. AN ATTEMPT IS THEN
    MALE. TO COLLECT LIKE TERMS IN THE NEW EXPRESSION FOR H(I*W)* H(-I*W).
#.
    DEFINE PROCEDURE SUBST TOBE
    BEGIN
    SYNONYMS INTEGER = POINTER $.
    FROCEDURE MSEA, RDCARD, RWT,RTD,WTD. PRNT $,
    INTEGER SYMST $,
    INTEGER ARRAY GOEDEL(1500),PR(ME (35).SYM(35),P(35).SB(35) $.
    INTEGER ARRAY T1(10), T2(10) $.
    FOINTER ANGLE .Z. LL S.
    REFLL ARRAY REALL(1500),NMB(35) I.
    PEAL ARRAY NM(10) $.
    RELL DCT. NUMBER $,
    BOCLEAN DFLAG,MFLAG,ERROR, CFLAG $,
    COMMON J.ERROR,ANGLE,GOEDEL,REALL.Z.SYM,PRIME.SYMST, DIG. NM ,
    1 $.
    INTEGLR R, NA,MSK,IA,GTEST,L,JZ,IJ,IK,IL,IM,IN,IO,IP,I,JA,JE $,
    INTEGER JC,JD,JE OJF JJG. IH $,
    INTEGER SCT, VCT, MM, MN,N S.
    INTECER !Q B.
    INTEGER ARRAY J(72), DIG(10) S.
    POINTER COMPONENT RVIV $,
    INTEGER COMPONENT OP, HOL $.
    BCOLEAN COMPONENT ATOM. NUM, BSIGN B.
    RE&L COMPONENT CONS S.
    PACK 777777CO.O. SPECIAL COMPONENTS RV $,
    PACK 1CO,O, SPECIAL COMPONENTS ATOM $.
    PACK 777777C18,18, SPECIAL COMPONENTS LV $,
    PACK 77C24.24.5PECIAL COMPONENTS OP $.
    PACK TTC30.30. SPECIAL COMPONENTS BSIGN $.
    FACK ;i/777C12.12.SPECIAL COMPONENTS HOL $.
    PACK 1CI.1.SPECIAL COMPONENTS NUM $.
    PACK :CO.O.SPECIAL COMPONENTS ATOM $.
    OP $=$ ATOM $=G BSIGN S=$ O $,
    LV $=$ RV $=$ 1 $,
    HOL S=& NUM $=$ ATOM $=$ BSIGN $=$ O $,
    CONS $=$ 1 $.
    MSEA() $.
    MSK = 770000000000C $.
E.0$ REAi) F2. SCT $.
    IF SCT EQL O THEN GOTO RETURN $.
    FOR MM=1 STEP 1 UNTIL SCT DO
BEGIN READ FZ, VCT $.
IA = - 1 $.
    FOR MN=1 STEP 1 UNTIL VCT DO
    BEGIN RDCARD() S.
        MFLAG = FALSE $.
        IA = IA+1 S,
        FOR NA=1 STEP 1 UNTIL }72\mathrm{ DO
            BEGIN IF J(NA) EQL \bulletBCD., , THEN GOTO EB $.
                        IF J(NA: EKOL •GCD. /Z/ THEN
                        BEGIN SE(IA) = (J(NA).A.MSK) + (J(NA+1)
                        -A. MSK) .RS. 6 + (J(NA+2) •A. MSK)
                        .RS. 12 + 050505C S.
                        NA=NA+2$.
```

Figure 4'7. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (22 of 26)

```
        SW = TRUE $,
COMMENT
    NOW PRINT ANGLE. CHECK FOR 2 CASES, NAMELY ONE NUMERIC.ONE SYMBOLIC
    AND BOTH SYMBOLIC.
$.
    IF NUM(RV(ANGLE)) THEN 
                                    ASM&C. (.C. /*/) $,
                                    RHALF(LOC T)= RHALF(LOC HOL(LV(ANGLE))) $.
                                    ASMBCD (O.T) $,
                                    END ELSE
            IF NUM(LV(ANGLE)) THEN
BEGIN NUMPRT(CONS(LV(ANGLE))) क.
                                    ASM.C. (.C./*/) $.
                                    RHALF(LOCT) = RHALF(LOC HOL(RV(ANGLE))) $,
                                    ASMBCD (O.T) $.
                                    ENO ELSE
                                    BEGIN RHALF(LOC T) = RHALF(LOC HOL(LV(ANGLE))) $,
                                    ASMBCD (O.T) $.
                        ASM.C. (.C. /*/) $.
                        RHALF(LOC T) = RHALF(LOC HOL(RV(ANGLE))) $*
                        ASMBCD (O.T) $.
END $.
    ASM.C. (.C./)/)$.
            IF EX GRT I THEN
                                    BEGIN ASM.C. (.C. /**/) S.
                                    IF EX GRT }9\mathrm{ THEN ASMDEC(3.EX)
                                    ELSE ASMDEC(2.EX) $.
                                    ASM.C. &.C./ /) $.
                    END s,
                    END $.
    C19$ ENO $.
                IF SV.ARRAY(O) GRT 90 THEN CARET () $.
            M=M+KN $,
    C11$ END $.
        CARET () S.
COMMENT
    RESTORE GOEDEL NUMBERS AND COEFFICIENTS
$,
            RWT(JZ) $.
            FOR N=O STEP 1 UNTIL I DO RTD(JZ,F3,GOEDEL(N),REALL(N)) $,
            GOTO RETURN $.
    F2$ FORMAT (//////) $.
    F3$ FORMAT (O12) q;
                END &,
                END FINI
P AED SUBST
            BEGIN
COMMENT
    THIS PROGRAM WAS WRITTEN BY UNITEU AIRCRAFT RESEARCH LABORATORIES FOR
    HAMILTON STANOARD, UNDER CONTRACT NAS2-4515 TASK 4, IN THE AED-O
    PROGRAMMING LANGUAGE.
$,
COMMENT
    THIS ROUTINE SUBSTITUTES NUMERICAL VALUES FOR ANY OF THE VARIABLES IN
    H(S). THE PRIME CORRESPONDING TO EACH SUCH VARIABLE IS FOUND AND
    OIVIDED INTO EACH GOEDEL NUMGER. IF THE DIVISION LEAVES NO REMAINDER.
    COEFFICIENT CORRESPONDING TO THE GOEDEL NUMBER IS MULTIPLIED BY THE
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (21 of 26)

```
        THEN PRINT F1, SEI(IJ). NMB(IJ) ELSE PRINT F4.
        SB(IJ), NMB(IJ) $,
        FOR IK=0 STEP I UNTIL SYMST DO
            IF SB(IJ) EQL SYM(IK) THEN
            BEGIN P(IJ)= PRIME(IK) S.
                    GOTO E3 s.
    END $.
    PRINT FO, SB(IJ) &.
    E3$ END $,
COMMENT
    Now substitute the given numerical value of each variable into the
    LIST OF GOEDEL NUMBERS.
\Phi.
            FOR IL=O STEP I UNTIL I DO
            BEGIN IF REALL(IL) EQL O.O THEN GOTO E9 $.
            FOR IM=0 STEP I UNTIL IA DO
    E4$ IF (R=GOEDEL(IL)/P(IM))*P(IM) EQL GOEDEL(IL) THEN
            BEGIN IH=IL $.
    E6s IF IH-1 GEO O ANO GOEDEL(IH-1) LES O THEN
                                    BEGIN IH = IH-1 $.
                                    GOTO EG $.
                END $.
    E5$ REALL(IH)= REALL(IH) * NMB(IM) $.
                                    IF GOEDEL(IH) LES O THEN BEGIN IH=IH+1 $.
                                    GOTO ES $.
                                    ENO $.
                    GOEDEL(IL)=R क.
                    GOTO E4 $.
            END s.
    E9& END $.
COMMENT
    NOW ATTEMPT TO COLLECT TERMS IN THE MODIFIED GOEDEL tABLE.
\Phi, FOR JA=O STEP 1 UNTIL I-1 DO
        BEGIN IF REALL(JA) EQL O.O THEN GOTO EI2 ELSE
            BEGIN GPOL(GOEDEL.T1,JA,JB) $.
                    IF JB GEO I THEN GOTO EI4 $,
                        FOR JC=JB+1 STEP 1 UNTIL I DO
                    BEGIN IF REALL(JC) NEO 0.0 THEN
                                    BEGIN GPOL(GOEDEL.TZ.JC.JO) $,
                                    FOR JE=0 STEP 1 UNTIL 9 DO
                                    IF T1(JE) LEQ O AND T2(JE) LEQ O AND
                                    T1(JE +1) LES O AND TZ(JE+1) LES O THEN GOTO
                                    E10 ELSE IF T1(JE) NEQ TZ(JE) THEN IF JD
                                    GEQ I THEN GOTO EII ELSE BEGIN JC = JD $.
                                    GOTO E13 $.
                                    END $.
    E139 END $
        END $.
        GOTO E:11 m,
    E:O$ FOR JF=JC STEP & UNTIL JD DO
                                    REALL(JF) = REALL (JF) + REALL(JA) $0
                                FOR JG=JA STEP 1 UNTIL JB DO REALL(JG) = 0.0 $,
    E11$ JA = JB$.
    E12$ ENO $.
COMMENT
    CHECK IF ANGLE IS INVOLVED IN SUBSTITUTION.
$.
    E14$ IF ANGLE NEO O THEN FOR IQ=O STEP I UNTIL IA DO
        FOR LL=LV(ANGLE), RV(ANGLE) DO
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (24 of 26)

```
    GOTO E1 $.
    END ELSE IF J(NA+1) EQL DIG(1) AND J(NA+2)
        EQL DIG(O) THEN
            BEGIN SB(IA) = (J(NA) .A. MSK) +
                                    (DIG(1) .A. MSK) •RS. 6
                                    +(OIG(O) .A. MSK) .RS. 12
                    + 050505C $.
                NA = NA+2 $.
                GOTO El $.
            END ELSE
            BEGIN SB(IA)=(J(NA).A. MSK) +
                (J(NA+1) •A. MSK) •RS. 6
                +05050505C $.
                NA = NA+1 $.
                GOTO El s.
            END $.
    E1$
NA = NA+1 $,
IF J(NA) EQL •BCD. / / OR J(NA) EQL •BCD. }
OR J(NA) EQL .BCD. }==/\mathrm{ THEN GOTO E1 $.
IF J(NA) EQL •BCD. /-, THEN BEGIN MFLAG =TRUE $.
                                    GOTO EL &.
                                    END $.
FOR L=O STEP 1 UNTIL 9 DO
            BEGIN IF J(NA) EQL DIG(L) THEN
            BEGIN
E2s
NUMBER = 0.0 $,
DCT = 0.0 $.
DFLAG = FALSE $.
NUMEER = 10*NUMBER + NM(L) $.
IF DFLAG THEN DCT = DCT+1.0 $.
IF J(NA+1) EOL .BCD././ THEN
    BEGIN DFLAG = TRUE $.
        NA = NA+1 I.
    END $.
FOR L=O STEP 1 UNTIL 9 DO
IF J(NA+I) EQL DIG(L) THEN BEGIN NA = NA+1 $,
                                    GOTO EL &.
                                    END $.
                                    NMB(1A)=10.O**(-DCT)*NUMBER *(IF MFLAG THEN
                                    -1.0 ELSE 1.0) $,
                                    GOTO ET $.
                    END $.
                END S.
                    PRINT F5. J(NA) $.
    E8s ENO $,
    E7S END $.
COMMENT
    AT THIS POINT, SB AND NMB ARE ARRAYS CONTAINING RESPECTIVELY, THE
    NAMES OF THE VARIABLES TO BE SUBSTITUTEO FOR. AND THEIR NUMERICAL
    valuEs. NOW sAVE gOEDEl NumBERS AND COEFFICIENTS ON tAPE.
$.
        IF ERROR THEN GOTO RETURN $,
        PRINT F3 $.
        JZ = 9 $.
        RWT(JZ) $,
        FOR N=O STEP 1 UNTIL I DO WTD(JZ,FG,GOEDEL(N),REALL(N)) $.
COMMENT
    NOW FIND THE PRIMES ASSOCIATED WITH thE VARIABLES.
$ .
    FOR IJ=O STEP I UNTIL IA DO
    BEGIN IF ABS(NMB(IJ)) GEO 10000•O OR ABS(NMB(IJ)) LES 0.0001
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (23 of 26)

```
            IF NOT NUM(LL) AND SB(IQ) \bulletRS• 18 EGL HOL(LL) THEN
            BEGIN NUM(LL) = TRUE $.
                        NUM(LL) = TRUE $'$)
            END $.
        PRNT () $.
COMMENT
    n!nw RESTORE GOEDEL TABLE TO ORIGINAL CONDITION.
\Phi.
            RWT(JZ) $.
            FOR N=O STEP 1 UNTIL 1 DO RTO(JZ,FG ,GOEDEL(N),REALL(N)) $.
            END $,
            GOTO RETURN $.
    FO& FORMAT (.OTHE SYMBOL ,AG, " DOES NOT APPEAR IN H(S). ") $.
    FIS FORMAT (.0 , AG, ( = E E 5.5) $.
    F2क FORMAT (13) $.
    F, FORMAT ///////'O THE FOLLOWING NUMERICAL SUBSTITUTIONS WILL NOW BE MADE.'
//) $.
    F4$ FORMAT (.0 ' AG. , = F15.5) $.
    FS$ FORMAT,O THE ILLEGAL CHARACTER 'AG.' APPEARED ON THE RIGHT HAND SIDE OF
THE EQUAL SIGN DURING THE SUBSTITUTION. ' , $,
    FG$ FORMAT (OI2)$,
            END $,
            END FINI
-ILP ASM DOUSML/ASM.DOUBML
\begin{tabular}{|c|c|c|c|c|}
\hline - & \multicolumn{4}{|r|}{REGNAM} \\
\hline \multirow[t]{10}{*}{DOUBML*} & \(J\) & & + +1 & \\
\hline & LMJ & & 13.SETUP\$ & \\
\hline & + & & 4.CSBD & \\
\hline & & L & AO.*AA & \\
\hline & & MI & AO.*BB & \\
\hline & & LDSC & C \(\mathrm{AO}, 1\) & \\
\hline & & SSL & A 1,1 & \\
\hline & & S & AO.*CC & \\
\hline & & S & A 1.*DD & \\
\hline & LMJ & & 311.*CSED & \\
\hline \multirow[t]{3}{*}{CSBD} & + & & 0700000000 & \\
\hline & \(+\) & & 0 & \\
\hline & + & 0 & 0 & \\
\hline AA & + & 0 & 0 & \\
\hline \(B B\) & + & 0 & 0 & \\
\hline CC & + & 0 & 0 & \\
\hline \multirow[t]{2}{*}{00} & + & 0 & 0 & \\
\hline & & END & & \\
\hline
\end{tabular}
```

Figure 47. Listing of Digital Program to Derive Equation for Square of Frequency Response Function (25 of 26)

```
.O AD STAKS
        2ッ`!!:
OMM:A**
    THIS PROGRAM WAS WRITTEN BY UNITED AIRCRAFT RESEARCH LABORATORIES FOR
    HA:i.%OR STANDARD, UNDER CONTRACT NASZ-4515 TASK 4. IN THE AED-O
```



```
8,
        POINTER FROCEDUPE STINIT. UNSTAK F.
        DROCEDURE STKSX $.
        POINTER PROCEDURE FREZI $.
        TRCCEDURS FRET1 $.
        BEGIN POINTER TEMP, STAKZON क.
                POINTER COMPONENT NEXT. STACKED &,
                SYNONYMS }777777C=ENDSTR $.
                PACK 777777C,O.SPECIAL COMPONENTS NEXT 昂
                PACK 7フフフ77C18,18.SPECIAL COMPONENTS STACKED $,
                IFXT $=\Phi STACKED $=$ O $,
        DEFIINE POINTER PROCEDURE STINIT TOBE
            BEGIN STAKZON = SETFR1(100.50.0.1.0.0) $.
                        NEXT(STINIT=FREZ1(STAKZON)) = ENDSTR $.
            END $.
        DEFINE PROCEDURE STKSX(STAK,P) WHERE POINTER P.STAK TOBE
            BEGIN NEXT(TEMP=FREZI(STAKZON)) = NEXT(STAK) S.
                        NEXT(STAK) = TEMP $.
                        STACKED(TEMP) = P$,
            END क.
        DEFI:NE PCINTER PROCEDURE UNSTAK(STAK.EMPTY) WHERE POINTER STAK &.
        POINTER PROCEDURE EMPTY TOBE
            IF NEXT(STAK) EQL ENDSTR THEN UNSTAK = EMPTY(STAK)
            ELSE BEGIN UNSTAK = STACKED(TEMP=NEXT(STAK)) $,
                        NEXT(STAK) = NEXT(TEMP) $.
                        FRETI(TEMP.STAKZON) &.
                END $,
            END s.
        END FINI
```

Figure 47．Listing of Digital Program to Derive Equation for Square of Frequency Response Function（26 of 26）

```
C H1*(-FTH*C2+H2) + C1*(C4*H2*H4 - C2*C3*H3) OF SHOCK POSITION TR. FCNe
C IN FORM H2(H1+C1*C4*H4) + H1*(-FTH)*C2 + C1*(-C2)*C3*H3
C H: =W3*S H2 = (1+21W*S+W1**2*S**2)(1+T1*S)(1+T2*S)S H3 = 1+T4*S
C H4 = 1+T5*S+T6*S**2 C6 =C1*C4 T3 =W3+C1*C4*T5 W2 =C1*C4*T6
C C5 = FTHH*C2 C6 =C1*C4 C7 =-C1*C2*C3
(1+S*Z1W+S*S*W1*w1)*(1+T1*S)*(1+T2*S)*S*(C6+T3*S+w2*S*S) + W3*C5*S +
C7*(1+T4*S) $
S zlw w1 T1 T2 C6 T3 w2 w3 C5 T4 C7 $
    !
    11
        z1w= 0.015
        w1 = 0.01
        T1 = 0.002
        T2 = 0.01
        CS = 17.21647
        T3 = 0.26239676
        w2 = 0.0002286519
        w3 = 0.34
        c5=20
        T4 = 0.0009367
        C.7 = 677.646788
CTEST CASE OF ALGEBRAIC PROGRAM FCR REPRESENTATIVE INLET
C HS*H7 + CS*HG OF SHOCK POSITION TRANSFER FUNCTION
(T1*S+1)*(T2*S+1)*(C1*C1*S*S+C2*S+1)*(TS*S*S*S+T4*S*S+T3*S+1)*S +
    C3*(T6*S+1)*E(-TT*S) S
S T1 T2 C1 C2 T5 T4 T3 C3 T6 T7 $
    5
1 0
    c3 = 5.
    T1 = 0.02
    T2 = 0.01
    C1 = 0.01
    c2 = 0.015
    T5 = 0.00000025830
    T4 = 0.00010504
    T3 = 0.018987
    T6 = -0.0009367
    T7=0.0073
10
    C3 = 10.
    T1 = 0.02
    T2 = 0.01
    C1 = 0.01
    c2 = 0.015
    TS = 0.00000026830
    T4 = 0.00010504
    T3 = 0.018987
    T6 = -0.0009367
    T7 = 0.0073
10
    c3 = 10.
    T1 = 0.002
    T2 = 0.01
    C1 = 0.01
    C2 = 0.015
    T5 = 0.00000026830
    T4 = 0.00010504
    T3 = 0.018987
    TG = -0.0009367
    T7=0.0073
```

Figure 48. Listing of Input Cards for Four Sample Cases (Page 1 of 2)

```
10
    C3 = 10.
    T1 = 0.002
    T2 = 0.01
    c1 = 0.01
    c2 = 0.015
    T5 = 0.000000258.30
    T4 = 0.00010504
    T3 = 0.018987
    T6 = 0.029
    T7 = 0.0073
1 0
    c3 = 15.
    T1 = 0.02
    T2 = 0.01
    c1 = 0.01
    c2 = 0.015
    T5 = 0.00000026830
    T4=0.00010504
    T3 = 0.018987
    T6 = -0.0009367
    T7 = 0.0073
CTEST CASE OF ALGEBRAIC PROGRAM FOR REPRESENTATIVE INLET
C REPRESENTS (H2 - FTH*C2) OF TRANSFER FUNCTION
C FIRST 2 SETS OF SUESTITUTIONS SHOW EFFECT OF VARYING VELOCITY
        CONSTANT OF THROAT MACH CONTROL, THIRD SET SHOWS EFFECT OF
        DECREASING PRESSURE LEVEL, LAST OF ADDING LEAD
    (S*S*W1*W1 + S*ZIW + 1) * (S*T1 + 1) * (S*T2 + 1) * S + C2 $
    SWl ZlW Tl T2 CZ $
    4
    w1 =0.01
    z1w=0.015
    T1 =0.02
    T2 =0.01
    C2 = 10
    5
    W1 =0.01
    z:w =0.015
    T1 =0.02
    T2 =0.01
    C2 = 30
    5
    W1 =0.0:
    ZIW=0.045
    T1 =0.03
    T2 =0.01
    cz=20
    5
    w1 =0.01
    z1w=0.015
    T1 =0.002
    T2 =0.01
    C2 = 20
CTEST CASE OF ALGEEBAIC PROGRAM FOR REPRESENTATIVE INLET
C REPRESENTS (H2 - FTH*CZ) OF TRANSFER FUNCTION
    (S*S*0.0001 + S*0.015 + 1)* (5*0.02 + 1)* (5*0.01 + 1)*5 + 20. $
    S $
    O
$
```

Figure 48. Listing of Input Cards for Four Sample Cases (Page 2 of 2)
this program was written by united aircraft research laboratories for hamilton standaro, under contract nas2-4515 to perform CERTAIN algebraic manipulations of transfer functions

Figure 49. Output of Program to Derive Equation for Square of Frequency Response Function for Four Sample Cases (Page 1 of 12)

```
H1*(-FTH*C2*H2) + CI*(C4*H2*H4 - C2*C3*H3) OF SHOCK POSITION TR. FCN.
IN FORM H2(HI+C1*C4*H4) + H1*(-FTH)*C2 + C1*(-C2)*C3*H3
H1 =w3*S H2 =(1+21W#S+W1**2*S**2)(1+T1*S)(1+T2*S)S H3 =2+T4*S
H4=1+T5*5+T6*5**2 C6 =C1*C4 T3 =W3+C1*C4*T5 W2 =C1*C4*T6
C5 =-FTH*C2 C6 =C1*C4 C7 =-C1*C2*C3
```


Figure 49. Output of Program to Derive Equation for Square of Frequency Response Function for Four Sample Cases (Page 2 of 12)
*T2*W2*T4*C7

THE FOLLOWING NUMERICAL SUBSTITUTIONS WILL NOW BE MADE.

$21 W$	$=$.01500
$W 1$	$=$.01000
$T 2$	$=$.00200
$T 2$	$=$.01000
$C 6$	$=$	17.21647
$T 3$	$=$.26240
$W 2$	$=$.00023
$W 3$	$=$.34000
$C 5$	$=$	20.00000
$T 4$	$=$.00094
$C 7$	$=$	677.64678

[^1]the times taken oy the various subroutines are:

PARSE:	1.0 SECONDS
ALGEB:	31.0 SECONDS
COLECT:	35.0 SECONDS
PRNT:	12.0 SECONDS
SUBST:	20.0 SECONDS
TOTAL:	99.0 SECONDS

Figure 49. Output of Program to Derive Equation for Square of Frequency Response Function for Four Sample Cases (Page 3 of 12)

*T4**2 2 2.0*W** $14 * T 1 * * 2 * T 2 * * 2 * C 1 * * 4 * T 5 * T 3+4.0 * W * * 12 * T 1 * * 2$ *T2**2 *C1**
$2 * T 5 * T 3-2.0 * W * * 12 * T 2 * * 2 * C 1 * * 4 * T 5 * T 3+4.0 * W * * 10 * T 2 * * 2 * C 1 * * 2 * T 5 * T 3$, 2

4 *T5*T3 + $4.0 * W * * 8 * C 1 * * 2 * T 5 * T 3-2.0 * W * * 12 * T 1 * * 2 * T 2 * * 2 * C 2 * * 2 * T 5 * T 3-2.0$

$T 5 * T 3-2.0 * W * * 10 * T 1 * * 2 * T 2 * * 2 * T 5 * T 3-2.0 * W * * 8 * T 2 * * 2 * T 5 * T 3-2 \cdot 0 * W * * 8 * T 1 * *$

$+W * 8 * C 1 * * 4 * T 3 * * 2=200 * W * 6 * C 1 * * 2 * T 3 * * 2+W * * 10 * T 1 * * 2 * T 2 * * 2 * C 2 * *$

*T4-2.0*W**10*T1**2*C1** $4 * T 4+4.0 * W * * 8 * T 1 * * 2 * C 1 * * 2 * T 4-2.0 * W * * 8 * C 1 * *$

T2**2 *C2**2*T4-2.0*W**8*T1**2*C2**2*T4-2.0*W**6*C2**2*T4-2.0*W** 8

$\cos (T 7 * W)+2 \cdot 0 * W * 77 * T 2 * C 1 * * 2 * T 5 * C 3 * S I N(T 7 * W)-2.0 * * * * * T 1 * C 1 * * 2 * T S * C 3 * T 6 * C O S($

7 *T1*T2*C2*T5*C3*SIN(T7*W) - 2.0*w** 6 *T2*C2*T5*C3*Cos(T7*W) - 2.0*W** 7*T2*C2*T5*C
TG*SIN(T7*W) - 2.0*W** 6 *T1*C2*TS*C3*COS(T7*W) - 2.0*W** 7 *T1*C2*T5*C3*T6*SIN(T7*W)

Figure 49. Output of Program to Derive Equation for Square of Frequency Response Function for Four Sample Cases (Page 4 of 12)

```
8*T1*T2*C1** 2 *T4*C3*T6*COS(TT*W) + 2.0*W** 7 *T1*T2*C1** 2 *T4*C3*SIN(TT*W) - 2.0*W
**6 *T2*C1** 2 *T4*C3*\operatorname{Cos(T7*W) - 2.0*W** 7 *T2*C1** 2 *T4*C3*TG*SIN(TT*W) - 2.0*W** 6}
*T1*C1**2 *T4*C3*CoS(TT*W) - 2.0**** 7*T1*C1**2 *T4*C3*TG*SIN(TT7*W) + 2.0*W** 6 *C1***
2*T4*C3*TO*COS(T7*W), 2.0*W** 5 & C1** 2 *T4*C3*SIN(TT**) - 2.0*W** 6 *T1*T2*C2*T4*C3* \(\cos (T 7 * W)-2 \cdot 0 * W * * 7 * T 1 * T 2 * C 2 * T 4 * C 3 * T 6 * S I N(T 7 * W)+2.0 * W * * 6\) *T2*C2*T4*C3*T6*COS(T7**) - 2.0*W**5*T2*C2*T4*C3*SIN(T7*W) + 2.0*W**6*T1*C2*T4*C3*T6*COS(T7*W) - 2.0*W** 5 *T1*C2*T4*C3*SIN(T7*W) + 2.0*W** 4*C2*T4*C3*COS(T7*W) + 2.0*W**5 *C2*T4*C3*T6*SIN(T7*W \(1+2.0 * W * * 6 * T 1 * T 2 * T 4 * C 3 * T 6 * \cos (T T * W)=2.0 * W * * 5 * T 1 * T 2 * T 4 * C 3 * S I N(T 7 * W) \quad+\quad 2.0 * W * * 4\) *T2*T4*C3*COS(T7*W) + 2.0*W**5*T2*T4*C3*T6*SIN(TT*W) + 2.0*W**4*T1*T4*C3*COS(T7*W) \(+2.0 * W * 5 * T 1 * T 4 * C 3 * T 6 * S I N(T 7 * W)-2.0 * W * * 4 * T 4 * C 3 * T 6 * \operatorname{Cos}(T 7 * W)+2.0 * W * * 3 * T 4 * C 3\) *SIN(T7*W) - 2.0*W**6*T1*T2*C1**2*T3*C3*COS(T7*W) - 2.0*W**7*T1*T2*C1**2*T3*C3* T6*SIN(TT**) + 2.0*W**6 *T2*C1**2*T3*C3*T6*COS(TT*W) - 2.0*W***5*T2*C1**2*T3*C3* SIN(T7*W) + 2.0*W**6*T1*C1**2*T3*C3*T6*COS(T7*W)-2.0*W**5*T1*C1**2*T3*C3*SIN( \(T 7 * W)+2.0 * W * * 4 * C 1 * * 2 * T 3 * C 3 * \cos (T 7 * W)+2.0 * * * * 5 * C 1 * * 2 * T 3 * C 3 * T 6 * S I N(T 7 * W)+2\) \(0 * W * * 6 * T 1 * T 2 * C 2 * T 3 * C 3 * T 6 * \operatorname{Cos}(T 7 * W)-2.0 * W * * 5 * T 1 * T 2 * C 2 * T 3 * C 3 * S I N(T 7 * W) \quad+\quad 2.0 * W * * 4\) *T2*C2*T3*C3*Cos(T7*W) + 2.0*W**5*T2*C2*T3*C3*T6*SIN(T7**) + 2.0*W** 4*T1*C2*T3*C3*
```



``` *T6*SIN(T7*W) \(\quad 2.0 * W * * 4 * T 2 * T 3 * C 3 * T 6 * \operatorname{Cos}(T 7 * W)+2.0 * W * * 3 * T 2 * T 3 * C 3 * S I N(T 7 * W)-2.0\)
```



``` *C3*T6*COS(T7*W) * 2.0*W**3*T2*C2*C3*SIN(TT*W) - 2.0*W** 4 *T1*C2*C3*T6*COS(T7*W)
```



``` w \(2.0 * * * * 4 * T 1 * T 2 * C 3 * T 6 * \cos (T 7 * W)+2.0 * W * * 3 * T 1 * T 2 * C 3 * S I N(T 7 * W)\) - \(2.0 * W * * 2 * T 2 *\)
```


THE FOLLOWING NUMERICAL SUESTITUTIONS WILL NOW BE MADE.

$C 3$	$=$	5.00000
$T 1$	$=$.02000
$T 2$	$=$.01000
$C 1$	$=$.01000
$C 2$	$=$.01500
$T 5$	$=$.00011
$T 4$	$=$.01899
$T 3$	$=$.00094
$T 7$	$=$.00730

Figure 49. Output of Program to Derive Equation for Square of Frequency Response Function for Four Sample Cases (Page 5 of 12)

THE POLLOWING NUMERICAL SUBSTITUTIONS WILL NOW BE MADE.

$C J$	$=$	10.00000
$T 1$	$=$.02000
$T Z$	$=$.01000
$C 1$	$=$.01000
$T 5$	$=$.01500
$T 4$	$=$	$.26830 \sim 06$
$T 3$	$=$.00011
$T 6$	$=$	-.00094
$T 7$	$=$.00730

$H(W) * H(W)=2.87939 E-29 * W * 16+7.69900 E-25 * W * 14+6.97393 E-20 * W * * 12 \quad+\quad 1.39316 E-15 * W * *$
 $1.00526 E-16 * W_{* *}=9$ SIN(7.29999E-03*W) + $1.76834 E-13 * W * * 8 * \operatorname{COS}(7.29999 E-03 * W) \quad+$ $9.69027 E-11 * W * * 7$ *SIN($7.29999 E-03 * W) \quad-2.84350 E-08 * W * * 6 * \operatorname{COS}(7.29999 E=03 * W) \quad-$ $4.96826 E-06 * W * 5 * \operatorname{SIN}(7.29999 E-03 * W)+5.36731 E-04 * W * * 4 * \operatorname{COS}(7.29999 E-03 * W)$ + 3.53878E-02*W** 3*SIN(7.29999E-03*W) - $1.29847 E$ 00*N** 2 * COS (7.29999E-03*W) - $2 V$.0*W*SIN(7.29999F-03*W) + 1.00008E00*W**2 + 100.0

Figure 49. Output of Program to Derive Equation for Square of Frequency Response Function for Four Sample Cases (Page 6 of 12)

$C 3$	$=$	10.00000
$T 1$	$=$.00200
$T 2$	$=$.01000
$C 1$	$=$.01000
$C 2$	$=$.01500
$T 5$	$=$.00011
$T 3$	$=$	-.00094
$T 6$	$=$.00730

```
H(W)*H(W) = 2.87939E-31*W** 16 + 7.89640E-26*W** 14 + 2.42473E-21*W** 12 + 1.82218E-16*W**
```



```
    1.00526E-17*W** 9*SIN( 7.29999E-03*W) + 2.22071E-14*W** B *COS( 7.29999E-03*W)
    1.74210E-11*W**7*SIN( 7.29999E-03*W) - % 6.81755E-09*W** 6 *COS( 7.29999E-03*W)
    1.57770E-06*W** 5*SIN(7.29999E-03*W) + 2.23201E-04*W** 4 * COS( 7.29999E-03*W) + 
```



```
    .0*W*SIN( 7.29999E-03*W) + 1.00008E 00*W** 2 + % 100.0
```

THE FOLLOWING NUMERICAL SUESTITUTIONS WILL NOW BE MADE.

$C 3$	$=$	10.00000
$T 1$	$=$.00200
$T 2$	$=$.01000
$C 1$	$=$.01000
$T 2$	$=$	$.26830-06$
$T 4$	$=$.00011
$T 3$	$=$.01899

[^2]```
O.02900
```

H(W)*H(W)=2.87939E-31*W** 16 + 7.89640E-26*W** 14 + 2.42473E-21*W** 12 + 1.82218E-16****
10 + 3.18652E-12*N** 8 + 3.32499E-08*W** 6 + 2.79426E-04*W** 4 +
3.11227E-16*W** 9*SIN( 7.29999E-03*W) - 3.44535E-13**N** 8 *COS( 7.29999E-03*W)
*) - 3.44S35E-13**** 8 *COS( 7.299g9E-03*W)
1.4784JE-10*W** 7 *SIN( 7.29999E-03*W) + 3.46367E-08*W** 6 *COS(7.29999E-03*W) +

```

```

        0*W*SIN(7.29999E-03*W) + 1.08409E 00*W**2 + 100.0
    ```
T: F FIII OwTMG INUMERICAL SUESTITUTIONS WILL NOW BE MADE.
\begin{tabular}{|c|c|c|}
\hline \(C^{*}\) & \(=\) & 15.00000 \\
\hline \(1:\) & \(=\) & .02000 \\
\hline 12 & \(=\) & .01000 \\
\hline ©: & \(\pm\) & . 01000 \\
\hline 62 & \(=\) & .01500 \\
\hline T5 & \(=\) & . 26830-06 \\
\hline 14 & \(=\) & .00011 \\
\hline T3 & \(=\) & . 01899 \\
\hline Tf & \(=\) & -. 00094 \\
\hline \(r 7\) & \(=\) & . 00730 \\
\hline
\end{tabular}
\(H(W: x H(W)=2.87939 E-29 * W * * 16+7.69900 E-25 * W * * 14+6.97393 E-20 * W * 12 \quad+\quad 1.39316 E-15 * W * *\) \(10+1.59172 \mathrm{E}-11 * W * * 8+41.42318 \mathrm{E}-07 * W * * 6+6.75426 \mathrm{E}-04 * W * * 4\) -

 \(7.45240 \mathrm{E}-06 * W * * 5 * \operatorname{SIN}(7.29999 E-03 * W)+8.05097 E-04 * W * 4 * \operatorname{COS}(7.29999 E-03 * W) \quad\) + \(5.30817 E-02 * W * * 3 * S I N(7.29999 E-03 * W) \quad-\quad 1.94771 E 00 * W * * 2 * \operatorname{COS}(7.29999 E-03 * W) \quad-\quad 30\) \(.0 * W * S I N(7.29999 E-03 * W)+1.00019 E 00 * W * 2+225.0\)
rif IIMHS línein by the various sufiroutints ake:

PARSE: 1.0 StCONUS
Digem: béu SECONUS
GUt氏T: B4.0U stCONOS
Encivt: \(\quad 2 \cup . U\) SECONOS
NU: : 101.U sECONOS

OUAL. SCU.U SECONDS

Figure 49. Output of Program to Derive Equation for Square of Frequency Response Function for Four Sample Cases (Page 8 of 12)
```

TEST CASE OF ALGEBRAIC PKOGRAM FOR REPRESENTATIVE INLET
REPRESENTS (H2 - FTH*C2) OF TRANSFER FUNCTION
L REPRESENTS (H2 - FTH*C2) OF TRANSFER FUNCTION
CONSTANT OF THROAT MACH CONTROL., THIRD SET SHOWS EFFECT OF
uecreasing pressure level. . last of adoing lead
H(S)=(S*S*W1*W1+S*Z1W+1)*(S*T1+1)*(S*T2+1)*S+C2

```


 ** 6 *W1** 2 *T1**2 + W** 6 *21W**2*T1**2 \(2+W * * 4 * T 1 * * 2\) + \(+W * * 6 * W 1 * * 4\) 2.0*W
 \(2.0 * W * * 4 * W 1 * * 2+W * * 4 * 21 W * * 2+W * * 2+2.0 * W * * 4 * 21 W * T 1 * T 2 * C 2+2.0 * W * * 4\)
 *W1** \(2 * T 2 * C 2-2.0 * W * * 2 * T 2 * C 2+2.0 * W * * 4 * W 1 * * 2 * T 1 * C 2-2.0 * W * * 2 * T 1 * C 2-W * 2\)
the following numerical substitutions will now be made.
\begin{tabular}{llr}
\(w 1\) & \(=\) & .01000 \\
\(Z 1 w\) & \(=\) & .01500 \\
\(T 1\) & \(=\) & .02000 \\
\(T 2\) & \(=\) & .01000 \\
\(C 2\) & \(=\) & 10.00000
\end{tabular}

\footnotetext{

}

Figure 49. Output of Program to Derive Equation for Square of Frequency Response Function for Four Sample Cases (Page 9 of 12)

IHE HOLLOWING NUMERICAL SUBSTITUTIONS WILL NOW BE MADE.
\begin{tabular}{llr}
N1 & \(=\) & .01000 \\
\(21 w\) & \(=\) & .01500 \\
71 & \(=\) & .02000 \\
72 & \(=\) & .01000 \\
22 & \(=\) & 30.00000
\end{tabular}

ILE GLLOWING NUMERICAL SUGSTITUTIONS WILL NOW BE MADE.
\begin{tabular}{lll}
\(W 1\) & \(=\) & .01000 \\
\(Z 1 w\) & \(=\) & .04500 \\
\(T 1\) & \(=\) & .03000 \\
\(T 2\) & \(=\) & .01000 \\
\(C\). & \(=\) & 20.00000
\end{tabular}
```

H(W)*H(W) = 8.99999E-16*W** 10 + 2.39999E 0U*W** 2 + % 4.74249E-10*W** 8 400.0 + 1.92499E-06*W** 6 + 3.52499E-03*W** 4

```

THE FOLLOWING NUMERICAL SUBSTITUTIONS WILL NOW BE MADE.
\(\because 1 \quad=\quad .01000\)

Figure 49. Output of Program to Derive Equation for Square of Frequency Response Function for Four Sample Cases (Page 10 of 12)
\begin{tabular}{llr}
\(21 w\) & \(=\) & .01500 \\
\(T 1\) & \(=\) & .00200 \\
\(T 2\) & \(=\) & .01000 \\
\(C 2\) & \(=\) & 20.00000
\end{tabular}
```

H.(W)*H(W) = 3.99999E-18*W** 10 7.99999E-02*W** + 1.04999 + 400.0

```
the times taken ar the various subroutines are:
\begin{tabular}{lr}
PARSE: & 1.0 SECCNDS \\
ALGEB: & 1.0 SECONDS \\
COLECT: & 2.0 SECONDS \\
PRNT: & 2.0 SECONOS \\
SUXST: & 10.0 SECONDS \\
& \\
TOTAL: & 16.0 SECONDS
\end{tabular}

Figure 49. Output of Program to Derive Equation for Square of Frequency Response Function for Four Sample Cases (Page 11 of 12)
```

1., T gast. of al.gEbraIc Progtam FOR REPRESENTATIVE INLET
WEPRFSENTS (H2 - FTH*C2) OF TRANSFER FUNCTION
HSS)=(5*5*0.0001+5*0.015+1)*(5*0.02+1)*(S*0.01+1)*S+20.
H(w)*H(W)= 3.99999E-16*W** 10 + 5.99999E-12*W** 8 + 6. % 24999E-08*W** 6 + 7.64999E-04*W** 4
7.99999E-01*W** 2 + 400.0

```
the times taken by the various subroutines are:
\begin{tabular}{ll}
PARSE: & 1.0 SECONDS \\
ALGEB: & 1.0 SECONDS \\
COLECT: & 2.0 SECONDS \\
BENT: & .0 SECONDS \\
GUBST: & .0 SECONDS
\end{tabular}
TOIAL: \(\quad 4.0\) SECONDS

Figure 49. Output of Program to Derive Equation for Square of Frequency Response Function for Four Sample Cases (Page 12 of 12)
```

C PROGRAM WRITTEN GY HAMILTON STANDARD A DIVISION OF UAC - UNDER CONTRACT
NAS2-4515 TASK 4. IN FORTAN V
EVALUATES POWER SPECTRAL DENSITY PARAMETERS
REQUIRES FUNCTION PSD TO COMPUTE POWER SPECTRAL DENSITY AS FUNCTION OF
WR (FREQUENCY IN RADIANSISEC)
OW INITIAL WR PAROGRAM DOUBLES WR EACH STEP . RADIANS/SEC
NUMBER OF CARDS LOADED AND PRINTED TO SHOW FORMULA FOR POWER
SPECTRAL DENSITY USED IN SUBROUTINE PSDIWR.JI
INDEX FOR CASE , USED IN SUBROUTINE PSD(WR\&J)
PS SQUARE ROOT OF (PWO*WO) = (PWR*WR) UNOTSTS
PWO POWER SPECTRAL DENSITY (WO) - UNITS**2/RAD/FT
OLF WAVELENGTH, FEET
OLM WAVELENGTH . METERS
OG NUMBER OF ZERO CROSSINGS PER NAUTICAL MILE
ON NUMBER OF ZERO CROSSINGS PER HOUR
S INTEGRAL OF PSD FROM ZERO FREQUENCY, SIGMA , UNITS
VF VELOCITY , FEET/SEC
VF VELOCITY : FEET/SE
VELOCITY , KNOTS
VELOCITY M METERS/SEC
MAXIMUM WR REQUIRED , RADIANS/SEC
REDUCED REQUENCY , RADIANS/FOOT
FREQUENCY - RADIANS/SEC
FOLLOWING 2 CARDS MAY NEED TO BE CHANGED TO FIT INSTALLATION - THEY DEFINE
UNITS USED IN READ AND WRITE STATEMENTS RESPECTIVELY
IR = 2
IP = 3
WRITE(IP.1)
1 FORMAT (IOBHIPROGRAM WRITTEN BY HAMILTON STANDARO UNDER CONTRACT NA
1S2-4515 TO EVALUATE POWER SPECTRAL DENSITY PARAMETERS)
J =O
READ COMMENT CARD, IF BLANK RETURN TO MONITOR , IF NOT BLANK PRINT WITH
1 EJECT AND RETURN TO PROGRAM
2 CALL START
J = J+1
LITHER VF OR VK , VF USED IF NOT ZERO
READ(IR,3)VF,VK,OW,WM,1
3 FORMAT(4F10.5.1:0)
IF (VF) 4.6.5
ERROR IN INPUT , TERMINATE JOHS
4 CALL EXIT
USE INPUT VELOCITY IN FEET/SEC
5 VK = VF*.5924B38
GO TO 8
6 IF (VK) 4.4.7
USE INPUT VELOCITY IN KNOTS
7 VF = VK/.5924838
8VM = VF*.3048
WRITE (IP.9)VF.VK,VM
FORMAT (1IH VELOCITY =F10.2.9H FT/SEC =F10.2.8H KNOTS =F1O.2.32H ME
1 TERS/SEC , W=RAD/SEC . WS=w*w)
READ AND PRINT I CAROS SHOWING FORMULA FOR POWER SPECTRAL DENSITY.
COLUMN 1 SHOULD EE BLANK AND IS NOT PRINTED
DO 11 K=1.1
READ(IR,10)
10 FORMAT (BOH
1
11 WRITE(IP,10)
WRITE(IP.12)

```

Figure 50. Listing of Digital Program to Evaluate Power Spectral Density Parameters (Page 1 of 2)

Figure 50. Listing of Digital Program to Evaluate Power Spectral Density Parameters. (Page 2 of 2)
```

        FUNCTION PSD(W.J)
        wS = w**2
        GO TO (1.2.3),J
    C SAMPLE CASE 1
1 DSD=.6089/(1.+1.6401*WS)**.8333333
RETURN
C SAMPLE CASE 2
2 PSD=.6089/(1•+1.6401*WS)**.8333333*3.4225*(1.E-8*WS*WS+• 25E-4*WS+
11•)*(.0004*WS+1•)*(.0001*WS+1•)*WS/(()((4.E-16*WS+6•E-12)*WS+
26.25E-8)*WS+7.65E-4)*WS-0.8)*WS+400*)
RETURN
ERROR IF J=3
3 CALL EXIT
END
SAMPLE CASE 1 VON KARMAN LONGITUOINAL SPECTRUM L=25O0 FT M=2.7 LOAD VF
2613.82 .O .05 400. 1
PSD=.6089/(1.+1.6401*WS)***8333333
SAMPLE CASE 2 WITH THROAT MACH CONTROL M=2.7 LOAD VK
.0 1548.64 .05 400. 3
PSD=.6089/(1. +1.6401*WS)**.8333333 * 1.85**2 * ((1. +. 25E-4*WS+1.E-8*WS**2) *
(1.+.0004*WS)*(1.t.0001*WS) * WS )/ (400. - . 8*WS + .000765*WS**2 +
6.25E-8*WS**3 + 6.E-12*WS**4 + 4.E-16*WS**S)

```

Figure 51. Listing of Function \(\operatorname{PSD}(\mathrm{W}, \mathrm{J}\),\() and Input Cards for Two Sample Cases\)

Figure 52. Output of Program to Evaluate Power Spectral Density Parameters for Two Sample Cases (Page 1 of 3)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
SAMPLE CASt \\
VELOCITY＝ \\
PSD＝．6089／1
\end{tabular} & \[
\begin{array}{r}
1 \text { VONK } \\
2613.82 \\
.+1.6401
\end{array}
\] & KARMAN LONGIT FT／SEC＝ ＊WS）＊＊．83333 & UDINAL SPECTR 1548.64 KNOT 33 & \[
\begin{aligned}
L & =2500 \\
& 796.6
\end{aligned}
\] & \[
\begin{aligned}
& \text { FT ME2. } 7 \\
& \theta \text { METERS }
\end{aligned}
\] & \begin{tabular}{l}
LOAD VF \\
SEC ，W＝RAD
\end{tabular} & C，wS＝w＊w & & & \\
\hline \multicolumn{2}{|l|}{WAVELENGTH} & REDUCED FREQ & PSD & \multicolumn{2}{|r|}{Frequency} & PS & & \(\triangle 1 G M A\) & \multicolumn{2}{|l|}{NU ut O CRUSSINGS} \\
\hline FEET & METERS & RAD／FT & UNITS＊＊2／R／F & CPS，H2 & RAD／SEC & UNITち＊＊2／k／S & UNIIS & UNIIS & ／NAUT Ma & ／HOUK \\
\hline 658924.7 & 200230．6 & 0．9564E－05 & 0.1590 O4 & 0.003 & 0.025 & 0．6033t U0 & U．1＜3is u & & & \\
\hline 328462.3 & 100115.3 & 0．1912E－04 & \(0.1586 E 04\) & 0.007 & 0.050 & U．OUbre Uu & U．l1415 UU & U．11430 & U．010 & 16. \\
\hline 218974．9 & 66743．5 & 0．2869E－04 & \(0.1579 E 04\) & 0.011 & 0.075 & U．6U42t Uu & U．al＜ot u & & & \\
\hline 164231．1 & 50057.6 & \(0.3825 E-04\) & \(0.1570 E 04\) & 0.015 & 0.100 & 0.6001 Uu & U－く45UE UU & U．＜40＜0 & U．0く1 & 33. \\
\hline 109487.4 & 33371.7 & 0．5738E－04 & \(0.1544 E 04\) & 0.023 & 0.150 & 0．590／t UU & U．SyIOE UV & & & \\
\hline 82115.5 & 2502日．8 & 0．7651E－04 & \(0.1509 \mathrm{E} \quad 04\) & 0.031 & 0.200 & 0.5114 E U & U．gsyet Uu & U．34308 & U．042 & 65. \\
\hline 54743.7 & 18685．8 & \(0.1147 E-03\) & 0.1419 E 04 & 0.047 & 0.300 & 0.5428 t U U & U．4U325 UU & & & \\
\hline 41057.7 & 12514.4 & 0．1530E－03 & \(0.1310 E 04\) & 0.063 & 0.400 & 0.5014 t Uu & U．4410E UU & U．41／40 & U．U日s & 12t． \\
\hline 27371．8 & 8342．9 & \(0.2295 \mathrm{E}-03\) & \(0.1081 E 04\) & 0.095 & 0.600 & \(0.4136 t\) uu & U＊4ytit uU & & & \\
\hline 20528．8 & 6257.2 & \(0.3060 \mathrm{E}-03\) & 0.8751 E 03 & 0.127 & 0.800 & 0.3348 t 00 & \(0.51 / 5 \mathrm{U}\) U & 0.02110 & U．178 & 2420 \\
\hline 13685.9 & 4171.4 & \(0.4590 E=03\) & \(0.5794 \mathrm{E} \quad 03\) & 0.190 & 1.200 & \(0.2216 t 00\) & 0．5151E UU & & & \\
\hline 10264.4 & 3128.6 & 0．6121E－03 & \(0.4029 E 03\) & 0.254 & 1.600 & \(0.1541 t\) UU & U．4y00E UU & U．15yy3 & 0.216 & 428. \\
\hline 6842.9 & 2085.7 & 0．9181E－03 & \(0.2252 E 03\) & 0.381 & 2.400 & 0．861佰－01 & U．454何U & & & \\
\hline 5132.2 & 1564.3 & 0．1224E－02 & \(0.1445 \mathrm{E} \quad 03\) & 0.509 & 3.200 & 0．5528t－01 & 0．42Ube UU & U．0．dgy & U．431 & 108． \\
\hline 3421.4 & 1042．8 & 0．1836E－02 & 0.7549 E 02 & 0.763 & 4.800 & \(0.2888 \mathrm{t}-01\) & U．3123E U & & & \\
\hline 2566.1 & 782.1 & 0．2448E－02 & 0.4718 E O2 & 1.018 & 6.400 & 0.18 U5t－01 & U．3syrt UU & U．Yuts & U．131 & 1132. \\
\hline 1710.7 & 521.4 & 0．3672E－02 & 0.2416 E 02 & 1.527 & 9.600 & 0．9246t－02 & 0．29／9E UU & & & \\
\hline 2283.0 & 391.0 & 0．4897E－02 & 0.1499 E 02 & 2.037 & 12．800 & \(0.5738 \mathrm{t}-02\) & 0.211 UE UU & J．44311 & 1.253 & 1／86． \\
\hline 855.3 & 280.7 & 0．7345E－02 & 0.7644 E Ol & 3.055 & 19.200 & 0．2924E－02 & 0.2369 UU & & & \\
\hline 641.5 & 195.5 & 0．9794E－02 & 0.4735 E O1 & 4.074 & 25.600 & 0．1811E－02 & 0.2153 t UU & 0.98451 & 1.815 & 2810. \\
\hline 427.6 & 130.3 & 0．1469E－01 & 0.2410 E O1 & 6.111 & 38.400 & 0．9221E－03 & 0.1801500 & & & \\
\hline 320.7 & 97.7 & 0．1958E－01 & 0.1492 E Ol & 8.148 & 51.200 & 0．5709E－03 & 0.17096 & 0.91783 & 2.857 & 4425. \\
\hline 213.8 & 65.1 & 0．2938E－01 & \(0.7593 E 00\) & 12.223 & 76.800 & 0．2905t－03 & 0.1483 E U & & & \\
\hline 160.3 & 48.8 & \(0.3927 E-01\) & 0.4701 E 00 & 16.297 & 102．400 & 0.11 （98E－U3 & U．13yt U U & u．vobuy & 4.508 & 6982. \\
\hline 106.9 & 32.5 & 0．5876E－01 & 0.2392 E 00 & 24.446 & 153．600 & 0．9151t－04 & 0.1163 U & & & \\
\hline 80.1 & 24.4 & \(0.7835 \mathrm{E}-01\) & \(0.1480 E 00\) & 32.594 & 204．800 & \(0.5665 t=04\) & U．1uite u & U．y 7120 & 1.126 & 11036. \\
\hline 53.4 & 26.2 & 0.1175 E 00 & 0．7534E－01 & 48.892 & 307.200 & \(0.2882 t-04\) & 0．841ut－U1 & & & \\
\hline 40.0 & 12.2 & 0.1567 E 00 & \(0.4664 \mathrm{E}-01\) & 65.189 & 409.600 & 0．1784E－04 & \(0.854 y\) t－U1 & \(0.8 ヤ 430\) & 11.214 & \(1 / 468\). \\
\hline
\end{tabular}

Figure 52．Output of Program to Evaluate Power Spectral Density Parameters for Two Sample Cases（Page 2 of 3）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { SAMP:E GASE } \\
& \text { VELOCITY }=
\end{aligned}
\] & \[
{ }^{2 \underset{2 \leqslant 13.81}{W 1 T H}}
\] & THROAT MACH FT／SEC＝ & \[
\begin{aligned}
& \text { CONTROL } \quad M=2 . \\
& 1548.64 \quad K \text { NOTS }
\end{aligned}
\] & LOAD VK 796.6 & 8 METERS／S & SEC W＝RAD／S & －WS＊W＊ & & & \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{} \\
\hline \multicolumn{2}{|l|}{WAVELENGTH} & REDUCED FREO & PSD & \multicolumn{2}{|r|}{Frequency} & 180 & SWKItrsuew） & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SGMA } \\
& \text { UNITS }
\end{aligned}
\]} & NU UF O & CRUSSINGS \\
\hline 「EヒT & METERS & RAD／FT UN & UNITS＊＊2／R／F & CPS H Hz & RAD／SEC U & UNIT5＊＊2／K／b & UNITS & & ／NAUT MI & ／HOUR \\
\hline 655922.1 & 200229．8 & 0．9564E－05 & 0．8503E－02 & 0.003 & 0.025 & \(0.3253 \mathrm{E}-05\) & \(0.2851 t-23\) & & & \\
\hline 34.5461 .0 & 100114．9 & 0．1912E－04 & 0．3392E－01 & 0.007 & 0.050 & 0．1298E－04 & 0．8056E－03 & 0.00046 & 0.014 & 22. \\
\hline 218974．0 & 66743.2 & 0．2669E－04 & 0．7601E－01 & 0.011 & 0.075 & 0．2908E－04 & 0．1476E－02 & & & \\
\hline － 4 1＊6． & 50357.4 & \(0.3825 \mathrm{E}-04\) & 0.1343 E 00 & 0.015 & 0.100 & 0．5139E－04 & \(0.2267 \mathrm{E}-02\) & 0.00132 & 0.028 & 4. \\
\hline 109497．0 & 33371.6 & \(0.5738 \mathrm{E}=04\) & \(0.2973 E 00\) & 0.023 & 0.150 & 0．1137E－03 & \(0.4130 \mathrm{E}-02\) & & & \\
\hline 82115.2 & 25028.7 & 0．7651E－04 & 0.5166 E 00 & 0.031 & 0.200 & 0．1976E－03 & \(0.6287 \mathrm{E}-02\) & 0.00366 & 0.057 & 8日． \\
\hline 54743.5 & 16685．8 & 0．1147E－03 & 0.1092 E 01 & 0.047 & 0.300 & 0．4181E－03 & \(0.1120 t-01\) & & & \\
\hline \％ 1057.8 & 12514.3 & \(0.1530 \mathrm{E}-03\) & 0.1794 E O1 & 0.063 & 0.400 & 0．6867E－03 & 0.1651 － 01 & 0.00993 & 0.113 & 175． \\
\hline 27371.7 & 8342.9 & 0．2295E－03 & 0.3333 E 01 & 0.095 & 0.600 & 0．1275E－02 & \(0.2766 \mathrm{t}-01\) & & & \\
\hline 20528.8 & 6257.1 & \(0.3060 \mathrm{E}-03\) & 0.4800 E 01 & 0.127 & 0.800 & 0．1836E－02 & \(0.3832 t-01\) & 0.02463 & 0.221 & 343. \\
\hline 13685．8 & 4171.4 & 0．4590E－03 & 0.7165 E O1 & 0.190 & 1.200 & \(0.2741 \mathrm{E}-02\) & 0．5735E－01 & & & \\
\hline 10254.4 & 3128.5 & 0．6121E－03 & 0.8883 E 01 & 0.254 & 1.600 & \(0.3398 \mathrm{E}-02\) & \(0.7374 \mathrm{E}-01\) & 0.05259 & 0.424 & 657. \\
\hline 6948.9 & 2985.7 & \(0.9181 \mathrm{E}-03\) & \(0.1126 \mathrm{E} ~ 02\) & 0.381 & 2.400 & \(0.4309 \mathrm{E}-02\) & 0.1016 E 00 & & & \\
\hline 5132.2 & 1564.2 & 0．1224E－02 & 0.1299 E 02 & 0.509 & 3.200 & 0．4971E－02 & \(0.1261 E 00\) & 0.09796 & 0.810 & 12540 \\
\hline 3421.4 & 1042.8 & 0．1836E－02 & 0.1577 E 02 & 0.763 & 4.800 & 0．6334E－02 & \(0.1101 t 00\) & & & \\
\hline 2566.1 & 782.1 & 0．2448E－02 & 0.1833 E 02 & 1.018 & 6.400 & \(0.7015 t-02\) & \(0.2118 t\) Uu & 0.16940 & 1.574 & 2438． \\
\hline 1710.7 & 521.4 & 0．3672E－02 & \(0.2402 E \quad 02\) & 1.527 & 9.600 & \(0.9181 \mathrm{t}-02\) & U．23lut uu & & & \\
\hline 1283.0 & 391.0 & 0．4897E－02 & 0.3157 E O2 & 2.037 & 12.800 & 0．120tt－01 & 0.3432 t U & U．2y／41 & 3.183 & 4929. \\
\hline 855.3 & 260.7 & － \(0.7345 \mathrm{E}-02\) & 0.5462 E 02 & 3.055 & 19.200 & 0．2089t－01 & U．6334E UU & & & \\
\hline 641.5 & 295.5 & 0．9794E－02 & 0.5537 E 02 & 4.074 & 25.600 & 0．25015－01 & 0．8Uult Uu & U．50936 & 6.688 & 10357 \\
\hline 427.6 & 130.3 & 0．1469E－01 & \(0.2106 \mathrm{E} ~ 02\) & 6.111 & 38.400 & 0．8058E－02 & \(0.5562 t\) UU & & & \\
\hline 320.7 & 97.7 & 0．1958E－01 & 0.7824 E OL & 8.148 & 51.200 & \(0.2993 \mathrm{E}-02\) & 0.3914 t UU & U．18341 & 9.191 & 15173. \\
\hline 213.8 & 65.1 & 0．2938E－01 & 0.2706 E OL & 12.223 & 76.800 & 0．1035E－02 & 0.2814500 & & & \\
\hline 150.3 & 48.8 & 0．3917E－01 & 0.1562 E OL & 16.297 & 102.400 & 0．5976E－03 & 0.2413 t 00 & 0.82319 & 12.368 & 19153. \\
\hline 108．9 & 32.5 & 0．5876E－01 & 0．8062E 00 & 24.446 & 153.600 & C．3084E－03 & 0.2176500 & & & \\
\hline 86.1 & 24.4 & \(40.7835 \mathrm{E}-01\) & 0．5045E 00 & 32.594 & 204.800 & 0．1930E－03 & 0.1988 U & 0.84435 & 16.969 & 26.278. \\
\hline 53．4 & 16.2 & 2．1175E 00 & 0．2577E 00 & 48.892 & 307.200 & －0．9860E－04 & O．1／4ut Uu & & & \\
\hline 40.0 & 12.2 & 2 0．1567E 00 & 0．2596E 00 & 65.189 & 409.600 & －0．6107E－04 & 0.15 ble 00 & 0.85128 & 25.151 & 38950. \\
\hline
\end{tabular}

\footnotetext{
Figure 52．Output of Program to Evaluate Power Spectral Density Parameters for Two Sample Cases（Page 3 of 3）
}
```

C PROGRAM WRITTEN BY MAMILTON STANDARD, A DIVISION OF UAC - UNDER CONTRACT
NAS2-4515 TASK 4, IN FORTAN V
A RMS AMPLITUDE OUTPUT, RMS AMPLITUDE INPUT
B1 RMS AMPLITUDL OF INPUT PRIMARY TURBULENCE
B2 RMS AMPLITUDL OF INPUT SECONDARY TURBULENCE
B2 ALPHA FOR CASE M IF L IS LESS THAN O
ALPHA FOR CASE J IF L IS GREATER THAN O
RMS AMPLITUDE OF INPUT TERTIARY TURBULENCE
INITIAL OUTPUT DISTURBANCE AMPLITUDE SUPPLIED
MAXIMUM OUTPUT DISTURBANCE AMPLITUDE REQUIRED
STEP CHANGE IN OUTPUT DISTURBANCE AMPLITUDE
HOURS PER EXCEEDANCE OF OUTPUT
DETERMINES EQUATION USED FOR EXCEEDANCES
=0 N=QN*(P1*EXP(-X/(A*B1))+P2*EXP(-X/(A*E2))+P3*EXP(-X/(A*B3)))
=+ CASE J OF AFFDL-TR-67-74.B2 IS ALPHA
=- CASE M OF AFFDL-TR-67-74 ,B2 IS ALPHA
FRACTION OF FLIGHT DISTANCE IN PRIMARY TURBULENCE
FRACTION OF FLIGHT DISTANCE IN SECONDARY TURBULENCE
FRACTION OF FLIGHT DISTANCE IN TERTIARY TURBULENCE
NO OF ZERO CROSSINGS OF OUTPUT IN + DIRECTION/ NAUTICAL MILE
MINIMUM MILES / EXCEEDANCE REQUIRED
MAXIMUM MILES / EXCEEDANCE REQUIRED
QNM, MAXIMUM MILES / EXCEEDANCE REQUIRED
VF VELOCITY , FEET/SEC
VK VELOCITY, KNOTS
VM VELOCITY , METERS/SEC
X( ) OUTPUT DISTURBANCE AMPLITUDE
DIMENSION H(4).OM(4), X(4)
FOLLOWING 2 CARDS MAY NEED TO BE CHANGED TO FIT INSTALLATION , tHEY DEFINE
UNITS USED IN READ AND WRITE STATEMENTS RESPECTIVELY
IR = 2
IP = 3
WRITE(IP.1)
1 FORMAT\& 95H1PROGRAM WRITTEN BY HAMILTON STANDARD UNDER CONTRACT NA
1S2-4515 TO COMPUTE EXCEEDANCE PARAMETERS)
READ COMMENT CARD, IF BLANK RETURN TO MONITOR, IF NOT BLANK PRINT WITH
I EJECT AND RETURN TO PRCGRAM
2 CALL START
READ EITHER VF OR VK . VF USED IF NOT ZERO
READ(1R,3)L,QG.A,VF,VK,DI,DX,DM,QNI,ONM,P1,P2,P3,B1,B2,B3
3 FORMAT(110.7F10.5/8F10.5)
IF (VF) 4.6.5
ERROR IN INPUT . TERMINATE JOB
4 CALL EXIT
USE INPUT VELOCITY IN FEET/SEC
5VK = VF*.5924838
GO TO B
6 IF (VK) 4,4,7
USE INPUT VELOCITY IN KNOTS
7 VF = VK/.59248.78
8VM =VF*.3048
1 = 1
y = = 1
X(1) = DI
IF(L) 200.100.300
L=O SUM OF 3 CASE A
100 WRITE(IP,101)P1,B1,QG,A,P2,B2,VF,VK,VM,P3,B3
101 FORMAT( 91HON=GO*(P1*EXP(-X/A/B1)+PZ*EXP(-X/A/B2)+P3*EXP*(-X/A/B3)
1) SUM OF 3 CASE A OF AFFOL-TR-67-74, 4H P1=F11.7.5H B1=F9.5.5H
2 GO=F9.4.4H A=F9.4,4H P2=F11.7.5H B2=F9.5.11H VELOCITY=F1O.2.9H

```

Figure 53. Listing of Digital Program to Compute Exceedance Parameters (Page 1 of 3)

```

    49.5)
        WRITE(IP,25)
        B1= E1*A
        G2 = 32*A
        B3 = E3*A
        P1 = QG*P1
        P2 =QG*P2
        P3 =QG*P3
        A = 1.01/(P1+P2+P3)
        1F (A-OH1: 1O3.103.102
    102 ONT = 4
10.3 IF (B.3) 4.104.108
104x = 2
!F (B2.) 4.106.105
10S GM(J) = 10/(P1/EXP(X(J)/B1)+N2/EXP(XPJ)/BZ))
@C to 9
100 K = 1
107 QM(J) = EXP(X(J)/B1)/PP1
GO TO 9
108 K = 3
:OO QM(J) = 10/(P1/EXP(X(J)/E1)+P2/EXP(X(J)/ES)+P3/EXP(X(J)/B3))
GH(J)=QM(J)/VK
GO TO (10.17).1
10 IF (QM(1)-GNI) 15.15.11
11 IF (x(1)-1.4*OX) 12.12.14
:2 \because!:: = x(1),2.
13 1F (L) 203.110.303
110 GO TO (107.105.109).K
14 (1) = X(1)-0x
GO TO 13
151=}=
LSx(J+1)=x(N)+Dx
J=J+1
GO TO 13
17 IF (J-4) 20.18.4
18 WRITE(1P,19)(X(M),QM(M),H(M),M=1,J)
19 FORMAT(IH,F7.4,F12.0.F9.1.3(F9.4,F12.0.FG•1))
GO to (4,20.2).1
20 1F (x(J)-DM) 21.23.23
21 1F (GM(J)-QNM) 22.23.23
22 IF (J-4) 16.24.4
3.1 = = 3
IF (J-4) 18.2.4
24\times(1)=}=(4)+D
J=1
GO TO 13 AMPL X EXCELDED EVERY * AMPL. X EXCEEDEDEV

```

```

        IERY * AMPL X EXCEEDED EVERY * AMPL NOURS N MILESCEEDEDEVER HOURS
        3 N MILES HOURS N MILES N HOURSI
    C L = CASEM
20OP2 = 1.-B2
P3 = B2/3.17
WRITE(IP.201)P2.P3.B2,P1.B1,QG,A,VF,VK,VM
201 FORMAT (9HON=GO*F*(FR.5.15H *EXP(-X/A/B) +F9.6.50H *A*B/X*(EXP(-. 28
19X/A/E)-FXP(-3.46倸A/B)), AL_PHA=F8.5/25H CASE M OF AFFOI..TR-67-74
2/3H P=F11.7.4H B=F9.5.5H GO=F9.4.4H A=F9.4.11H VELOCITY=F1O.C.
39H FT/SEC =F10.2.8H KNOTS =F10.2.6H M/SEC)
WRITE(1P.25)

```

Figure 53. Listing of Digital Program to Compute Exceedance Parameters (Page 2 of 3)
```

        B1 = B1*A
            P1 = 1./(OG*P1)
            A = 1.01*P1
            IF (A-QNI) 203,203,202
    202 QNI = A
    203 B3 = X(J)/B1
        QM(J) = P1/(P2/EXP(B3)+P3/B3*(EXP(-. 289*B3)-EXP(-3.46*B3)))
            GO TO 9
    C L = + CASE J
300 P2 = (B2+2.)/(B2-2.)/EXP(B2)
P3 = SQRT(1.+P2)
B3 = B2/P3
x(2) = B3/2.7182818
x(3) = B3*B1*A
WRITE(1P,301)P3, X(3),B3, X(2),B2, X(3),B2,P1,B1,QG,A,VF,VK,VM
301 FORMAT(12HON=GO*P/EXP(F9.6.23H X/A/B) IF X LESS THANF10.7.4H ORF
110.6.31H*A*B , CASE J OF AFFDL-TR-67-14/ 9H N=GO*P*(F9.6.9H*A*B/X)
2**F7.4.19H IF X GREATER THANF10.7.9H , ALPHA=F7.4/3H P=F11.7.4H
3B=F9.5.5H GO=F9.4.4H A=F9.4.11H VELOCITY=F10.2.9H FT/SEC =F10.2
4.8H KNOTS =F10.2.6H M/SEC)
WRITE(IP.25)
Bl = Bl*A
P1 = 1./(QG*P1)
B3 = x(3)
P3 = P3/B1
P2 = X(2)*B1
A = 1.01*P1
IF (A-QNI) 303.303.302
302 QNI = A
303 IF (X(J)-B3) 304.304.305
304 QM(J)= P1*EXP(P3*X(J))
GO TO 9
305 QM(J) = P1/(P2/X(J))**B2
GO TO 9
END

```

Figure 53. Listing of Digital Program to Compute Exceedance Parameters (Page 3 of 3)
```

AMPLE C\&SE A WITH THROAT MACH CONTROL 55OOOFT FAA-AOS-53 M=2.7 X=DNTV
012.368 .82379 2613.82 .01 .002 00,00
1000. 10000000. .00197 .0000727 .0 000395 .00727 00
SAFLE \#ASE K WITH THROAT MACH CONTROL 55OOOFT AFFOL-TR-G7-74 ALPHA=.OOOS
012.368 . 22379 2613.02 1234.56 .01 .002 06
:000. 10000000. 0045877.000002295.0 .0051831 .0129577 •00
SIMLE CASE J WITH THROAT MACH CONTROL 5500OFT AFFOL-TR-67-74 ALPHA=8.
112.366 .8237 1548.64 .01 .002 .08
1000. 10000000..00459 .00519 8.
SAMPLE CASE M WITH THROAT MACH CONTROL 55OOOFT AFFOL-TR-67-74 ALPHA=.OO3
-112.368 . 8237 1548.64 .016 .002 08
1000. 10000000..00459 .00519 .003

```

Figure 54. Listing of Input Cards for Sample Cases

\footnotetext{
Figure 55. Output of Program to Compute Exceedance Parameters for Four Sample Cases (Page 1 of 5)
}
```

SAMPLE CASE A WITH THROAT MACH CONTROL 55000FT FAA-ADS=53 M=2.7 X=DMTH
N=GO*(P1*EXP(-X/A/B1) +P2*EXP(-X/A/B2)+P3\#EXP*(-X/A/B3)) SUM OF 3 CASE A OF AFFOL-TR-67-74

```


```

AMPL	$\times$	EXCEEDED	Every	AMPL	$\times$	EXCEEDED	EVERY	AMPL	X	EXCEEDEU	EVERY HOURS	$\underset{\mathrm{X}}{\mathrm{AMPL}}$	X EXCEEDED N MILES	
X	$N$	Miles	HOURS	${ }^{\text {X }}$	N	MILES	HOUR 5	$x$	N	MILES   2400.	HOURS $1.5$	$\begin{gathered} x \\ 0.0159 \end{gathered}$	N MILES $4257 .$	HOURS $2.6$
0.0200		171.	0.4	0.0120		1367 .	0.8	0.0139		2400.				
0.0179		7092.	4.5	0.0199		11897.	7.6	0.0219		19590.	12.6	$\begin{aligned} & 0.0239 \\ & 0.0318 \end{aligned}$	$\begin{array}{r} 316360 \\ 178433 . \end{array}$	115.
0.0259		50099.	32.3	0.0279		77840 *	50.2	0.0299		5188.	361.7	0.0399	80512	519
0.0339		264244.	170.6	0.0359		386667.	249.6	0.0379		500218.	361.7	. 0479	3259708.	210
0.0419		149646 。	742.3	0.0439		633213.	1054.6	0.0459		310917.	492.2	0.0559		
0.0499		587066.	2961.9	0.0519		643097.	4160.4	0.0539		037	5835.6	0.0559	12662850.	

```

Figure 55. Output of Program to Compute Exceedance Parameters for Four Sample Cases (Page 2 of 5)

\footnotetext{
Figure 55. Output of Program to Compute Exceedance Parameters for Four Sample Cases (Page 3 of 5)
}

Figure 55. Output of Program to Compute Exceedance Parameters for Four Sample Cases (Page 4 of 5)

\footnotetext{
Figure 55. Output of Program to Compute Exceedance Parameters for Four Sample Cases (Page 5 of 5)
}```

[^0]: Notes: 1. Γ is gamma function $\quad(f) / 2 \pi=\varnothing(\lambda) / 2 \pi$
 $\Omega=\omega / V=2 \pi f / V=2 \pi / \lambda$

[^1]:

[^2]: Figure 49. Output of Program to Derive Equation for Square of Frequency Response Function for Four Sample Cases (Page 7 of 12)

