NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WAShington, D.C. 20546
reply to ATTN OF: GP

TO\& USI/Scientific \& Technical Information Division Attentions Miss Winnie M. Morgan

FROM: GP/Office of Assistant General Counsel for Patent Matters

SUBJECT: Announcement of NASA-owned U. S. Patents in STAR

In accordance with the procedures agreed upon by code GP and Code USI, the attached NASA-owned U. S. Patent is being forwarded for abstracting and announcement in $\mathbb{N A S A}$ STAR.

The following information is provided:

U. S. Patent NO.

Government or
Corporate Employee

Supplementary Corporate Source (if applicable)

NASA Patent Case NO.

: The. Govern nment

NOTE - If this patent covers an invention made by a corporate employee of a NASA Contractor, the following is applicable: Yes \square No
Pursuant to Section $305(a)$ of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent: however, the name of the actual inventor (author) appears at the heading of Column No. 1 of the specification, following the words w. . With respect to an inugntion of Babe
Elizabeth A. carter
Enclosure
Copy of patent cited above

Sheet 2 of 4

FIG. 2

FIG. 4

INVENTORS
LEON V. TAYLOR
BY

SHEET 3 OF 4

SHEET \& OF 4

3,012,240	12/1961	Klahn.	$340 / 166 \mathrm{C}$
3,035,248	5/1962	Grose et al...............	340/150X
3,205,486	9/1965	Crowley	3401413
3,391,305	7/1968	Bradwin	340/166X
3,475,750	10/1969	Howell	3401213X

Primary Examiner-Harold I. Pitts Attorneys-Howard J. Osborn and G. T. McCoy

ABSTRACT: This invention is an apparatus for checking the status of a plurality of switches. In one embodiment, a matrix of magnetic cores are connected to the common terminals of a plurality of double-throw switches. A pulse is then applied to the normally closed side of the switches. This puise energizes any of the cores that are connected to switches that are in the normally closed position. The matrix of magnetic cores is them read out. Following this, a pulse is applied to the nomally open side of the switches. This second pulse energizes any of the cores that are connected to switches that are in the normally open position and the matrix is again read out The readouts are then compared. If the readouts for any particular switch are complements, the status of the switch can be identified. If the readouts for any particular switch are the same, a defective switch condition or a defective switch wiring condition is indicated. Hence, the status and operativeness of the switches are both determined by the invention.

PMURAL POSITION SWITCMETATUS AND OPERATVENESS CHECKER

The invention described herein was made by employees of the United States Government and may be manufactured and used by or for the Government for governmental purposes without the payment of any royalties thereon or therefor.

BACKGROUND OF THE INVENTION

Pluralities of switches are utilized in numerous environments. They are utilized in telegraphy- and telephonyswiching systems and in electronic sensing systems. For example, a plurality of switches are used on a spacecraft to sense mitrometeoroid penernaion. That is, a micrometeoroidsensing satellite has large wings or appendages that are deployed when the spacecraft is in space. These wings are separated into separate regions and each region has a pressure sensitive cell that operates a switch. When a particular region is penetrated by a micrometeoroid, the switch for that region moves from its nomally closed position to its normally open posicion.
Cyclically scanning a large number of swisches on a spacecrais presents a number of problems. Not only must the switches be siamed, bu they muat be checked to determine if either they are defective or if their associated wiring is defecdive. In addition, the scamims system must be relatively uncomplicated so that it is reliable over an extended period of sime.
Prior-art apparatus for cletecting the status of a plurality of switches include mechanical means, line drivers, analogue summators, pulse counters, and pulse scanners. However, each of these prior-art systems has certain disadvantages. Specifically, mechanical means utilize a stepper switch or a relay matrix to form a scanning system and these devices are inherently unceliable and unable to withstand extreme environments such as the vibrations that occur when a spacecraft is launched into space.
Line drivers utilize flip-flops and a gating tree to sequentially generate pulses on a number of lines. The number of lines is equall to the number of switches being scammed; hence, one disadyantage of a line driver system is that for a large number of switches the gating tree places an unreasonable load on the driving fip-fiops.
Analogue summators utilize voltage-dividing resistive networks. Individual resistors are shorted by switches to provide voltage changes and these changes are summed to provide an analogue signal. This summation of signals requires an analog-to-digital conversion to convert the signal prior to transmission from the spacecraft to a ground station. In addition, this systern needs a muluiplexer when more than 100 switches are involved. Hence, analogue surmators are relatively complex.
Pulse counters count pulses each time a switch is closed. They are susceptible to transient moise pulses and there is no known way of rescaming the switches to eliminate the effects of inoise.
Pulse scanners scan each switch and generate a pulse for each ciosed switch and store a total count equal to the number of closed switches. Pulse scanners do not permit the identification of individual switches and, to that extent, are unsatisfactory for use on a spacecraft.
From the foregoing, it will be appreciated that while there are numerous prior-art methods of scanning a plurality of switches, each of them has certain disadvantages which make them undesirable for scanning a large number of switches located in an exireme environment such as on a spacecraft, for example.
Therefore, it is an object of this invention to provide a new and improved apparatus for scanning a plurality of switches.
lt is also an object of this invention to provide a new and improved apparatus for scanning a large plurality of switches that is reliable and suitable for use in an extreme enviroment.
It is another object of this invention to provide a new and improved swich scanning apparatus that scans a pluraity of switches to determine their status and the status of their associated wiring there oy determining if they are operative.

It is a further object of this invention to provide a new and improved switch scanning apparatus that is simple and reliable and utilizes a minimum number of wires to conmect the switches to the scanning apparatus.

SUMMARY OF THEINVENTION

In accordance with a principle of this invention, an apparatus for checking the status of a plurality of switches is provided. A sensing means for sensing the status of the switches is connected to the switches and an energizing means for selectively energizing the switches is also connected to the swiches. The switches are selectively energized by the energizing means and their condition or status is sensed by the sensing means. The sersing means provides an indication of the status of the switches.

In accordance with another primciple of this invention, the sensing means is a matrix of magnetizable cones which are connected to the common terminals of the switches. The energizing means is a pulse generator that is connected to both the normally closed and normally open contace of the switches. When the pulse generator pulses the switches, the magnetic cores are selectively energized and their condion is subsequently read out by an appropriate readout means.

In accordance with a further principle of this invention, first the normally closed side of the switches and then the mormally open side of the swithes are energized. A. firs readour occurs after the energization of the normally closed side of the switches. A second readout occurs after energization of the normally open side of the switches and the two readouts are compared. When both readouts for any patticular swich are the same, that switch and/or its associased wiming is defective. When the data for both readouts for any paricular switch are complements, the status of the switch is determined.

In accordance with yet another principle of this invention, the sensing means may be a solid state matrix. The matrix is selectively energized and readout to detect and indicate the status and operativeness of the switches.

It will be appreciated that the invention provides a novel apparatus for checking the status of a plurality of switches. While the apparatus is useful for checking the staus of a small number of swithes, it becomes increasingly useful as the number of switches increases. The use of either a magnevic matrix or a solid state matrix substamtially decreases the number of connecting wires necessary to check the stams of the switches. Hence, the overall system is both uncomplicated and reliable.

It will also be appreciated that while the invention as herein described has particular utility in extreme ervironments, such as on a spacecraft for example, it can also be used in other environments. Generally, the invention is useful in any environment where the status of a large number of swiches must be determined or where the presence of defective switches must be determined.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing object and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description when taken in comunction with the accompanying drawings wherein:
FIG. 1 is a partially block and partially schematic ciagram of one embodiment of the invention;
FIG. 2 is a waveform diagram of the readout for the embodiment of the invention illustrated in FIG. I;
FIG. 3 is a partially schematic and partinlly block diagram of an alternate embodiment of the invention;
FIG. 4 is a waveform diagram of the readout of the embodiment illustrated in FIG. 3;

FIG. 5 is a logic diagram of a further embodiment of the imvention; and
FIG. 6 is a variation of the embodiment ilustrated in FIG. 3.

DESCRIPTYON OF THE PREFERRED EMBODIMENTS

FIG． 1 is a parially schematic and parially block diagram of an embodiment of the invention utilizing a matrix of mag－ netizable core elements．The embodiment illustrated in FRG． comprises：nine switches designated $S W-1$ to $S W-D$ ；nine magnetic core elements designated $C-1$ to $C-9$ ，mine core set windings designaned $W-1$ to $W-Q$ ；nine cone interrogate windings designated $7-110 \mathrm{~F}-\mathrm{g}$ ，mine core sense windings designated $S-1$ to $S-9$ ，mine resistors designated $R-1$ to $R-1$ two lines desigrated 1 － 1 and $\mathbb{L}-2$ ；a puise generator $\mathbb{1} 1$ ；a pulse source 13；and，a readout system comprising an address shife register 17 having nitue stages designated SR－1 to SR－S and a sensing circuit $\frac{15}{5}$ ．Each switch is ilusirated as a single－ pole double－throw swich．For ease of discussion，the lower teminals of the swich are heremafter designated the nor－ mally open（NO）terminals and the upper temmals are designated the normally closed（NC）terminals．The center teminals are designated the common terminals

The pulse gemerator 11 has two outputs and a ground con－ rection．One output of the puise generator is connected by b－1 to the Ne temminals of the mine switches and the second oumut is conmected by $\mathrm{L}-2$ to the NO terminals of the switches．

The common teminal of $S W-1$ is connected through W W－1 in series wish $R-1$ to grownd．The common teminal of SW－2 is conmected bhrough W－2 in senies with $P-2$ to ground and Whe common terminal of $5 W-3$ is connected through $W-3$ in series with R－3 to ground．Simillarly，the common terminal of SW－A is conrected through W－A in series with $R-A$ to ground and the common cerminal of SW－5 is connected through W－5 and $\mathbb{E}-5$ to ground．The common terminal of $S W-6$ is con－ nected through $W-6$ and $R-6$ to ground and the common ter－ minal of SW－7 is connected through W－7 and R－7 to ground． Finally，the common terminal of SW－ 8 is connected through W－8 in series with R－8 to ground and the common terminal of SW－9 is connected through the series combination of W－9 and R－9 10 ground．

The mine sense windings， $\mathcal{S}-1$ to $\$-4$ ，are connected in series to the input of the sensing circuit 15.

The pulse source 13 has its output connected to the input of the address shift register 17．The outpu会 of $S \mathbb{R}-1$ is connected to T－1，the output of $S R-2$ is connected to $T-2$ and the oupput of $S R-3$ is connected to $T-3$ ．The output of $S R-4$ is connected to T－A，the output of $S R-5$ is connected to $T-5$ and the ourput of SR－6 is connected to T－6．Finally，the output of SR－7 is connected to $T-7$ ，the output of $S R-8$ is connected to $T-8$ and the output of SR－9 is connected to $T-9$ ．

At this point，it should be noted that the address system for reading out the information contained in the cores comprising the address shift register 17 ，the pulse source 13 and the sensing circuit 15 connected as described above and operative in the manner hereinalter described is merely by way of exam－ ple．There are numerous oher apparatus well known to those skilled in the an for serially reading out data from a core matrix．And，that apparatus can be used in Hieu of the ap－ paratus illustrated in FIC． 1 depending，of course，upon how the cores are energized．

Switches $S W-1, S W-2, S W-4, S W-7$ and $S W-8$ are in－ dicated in FhG． as having their common temmals connected to their nommally closed terminals．Switches SW－3，SW－5， SW－S and SW－9 are illustrated in FG．I as having common terminals comnected to their nomally open temminals．

To clanty the following discussion，two terms are defined： （a）＂set＂implies going to a logical I state；and（b）＂reset＂im－ plies going to a logical of state．

The embodiment of the imvention illustrated in FilG．有 operates as follows．The pulse generator I I applies the frat pulse along L－U．The frst pulse sets all of the cores that are conmected to swithes that are in their mormally closed posi－ sions．Specifically，with the switch confguration illustrated in FIG． 1 ，the circuits of set windings $W-1, W-2, W-A, W-7$ and W－8 are completed to set the cores $C-1, C-2, C-4, C-7$ and

C－8．After the firsi pulse，the cores are read out by the readout system and their logical states are desemined．
The readout operation occurs as follows．Ather the occur－ rence of the pulse on $1-1$ ，pulse source 17 is energized．Pulse source 13 sequentially applies pulses to the shit register 1780 that each state of the shitt register sequentially operates．That is，the first stage，SR－1 generates an output pulse upon the oc－ currence of the first pulse from the pulse source 1 ． ．the second state $S \mathbb{R}-2$ generates an output puise woon the occur－ rence of the second puise from the pulse source 13 and wo on through the nine stages of the shif register．
When $3 R-1$ generates an output pulse，it resers cote $8-1$ ． Specifically，because W－1 had previously set $C-1$ ，a puise is induced on the sense winding $\mathrm{S}-1$ due to the transition of $\mathrm{C}-1$ from the set to the reset state．However，if W－d had previously not set $C-1$ ，a pulse would not be induced on S－ 1 because he core was arready in the reset state and mo manstion would oc－ cur．Hence，when SR－1 generates a pulse，the sense winding S－1 generates an output pulse，i．e．，it generates a In and ap－ phes if to the sense circuit 15 ．A simiar sumaton ocemrs for sense winding S－2 because $\begin{aligned} & \text { W－2 had previcusly set it．How－}\end{aligned}$ even，$W-3$ has not set $C-3$ because $5 R-3$ ？ not m iws nommally closed position．Hence，when 5 R－ 3 getrerates an outpu pulse． is does not cause a rransition of core $\mathrm{C}-3$ and $5-3$ does not generate an outpui pulse．Rather，5－3gemeracs a during this readout．This serial readout occurs through the mine sages of the shift register for the nine cores to generate a complete readout waveform of the type illustrated on the line entitied FRRSTREADOUT of FIG．2．That is，sense wirdings $5-1,5-2$ ． S－4，S－7 and S－8 generate I＇s while sense windings S－3，5－5． $S-6$ and $S-9$ generate D＇s．Hence，the wavelom of the serat readout is identical to the setting of the nime switches．

As a resuit of the first readout，all cores have been reset to at 0）state．Thereafer，the pulse generator It applies a pulse to L－2．This second pulse sets all of the cores that are connected to switches that are in their normally opened position．That is． cores $\mathbb{C}-3, C-5, C-6$ and $C-9$ are set by the wecond pulse． Afier the second pulse sets these cores，he pulse sonrce 13 ， the address shift register 17 and the semsing cincuit 15 perform a second readout in the same manner as the frat readont is performed．The second readout is illustrated in TlC． 2 on the SECOND READOUT line．Specifically，sense windings $3-3$ ， S－5，S－6 and S－9 generate 1 ＇s and serse windings $S-1, S-2, S$ 4，S－7 and S－8 generate 0＇s．

It will be appreciated that the second readou should be the complement of the first readout if all of the switches and the wiring of the switches are operative．These fret and second readouts can be compared by any suitable comparison meams to determine 䄍 they are exact complements．For the embodi－ ment illustrated in FIG．A，as illustrated by the waveforms of FIG．2，the readouts are exact complements．Howryer，it one of the switches was defective either because is set a core for each readout or because it did not set a core for ether readout，the waveform readouts would not be exact comple－ ments．And，the position of the noncomplementary condhion in the waveforms designates which switch is imoperative． Hence，the invention，in addition to checking the status of the switches，also detects inoperative switches and swich witng．
It will be appreciated that the system illusarated in FIC． provides an uncomplicated and reliable means for checking the status of a plurality of switches．A pulse genemator seguer－ tially applies pulses to two limes－one line is commected to the normally open terminals of the switches and the second line is conmected to the nomally closed teminalis．The common ter－ minals of the switches are separately connected no magnetic cores．One group of magnetic cores are set when the firm pulse occurs；thereafer，the cores are read ont．Following the fres readout the second pulse occurs．The second puise sets the remaining cores and a second reacout occms．The two readouss are then compared to detamme fony of the gwhehes are defective．

White the embodiment ithustrated in FTG．only discloses use of the invention illustrated in plo as heremabove
described is merely by way of example. The invention can be whilized with a small number of switches, such as nine or with a large number such as 1,000, for example.

I will be appreciated, that the operation of the embodimemt of the invention hlustrated in FlG. I as hereinabove described is merely by way of example. Alternativety, a posicive puise could be applied to $\mathrm{L}-1$ while a nesative pulse is applied to L-E. All cores connected to switches in the NC position are then set to I state while all cores connected to switches in the No position are resef to the 0 state. The core plane is then read out by any conventional technique. Thereafer, a positive puise is applied to $\mathrm{L}-2$ and a megative pulse is applied to $\mathrm{L}-1$. All cores connected to switches in the NO position are now set to the I stase while all cores connected to NC switches are reset to the (1) state. Thereatter, the core plane is again read out. As hereimabove described, the readouts can then be compared by any conventional means to determine the status of the switches. It the compared bins are not complementary, an operative switch condition or an inoperative switch wining condition is indicated.

FIG. 3 illustrates an alternative embodiment of the invencion that comprises: four switches designated $S W-10$ to SW-13; eight magnetic cores designated $\mathbb{C}-10$ to $\mathbb{C}-17$; eight resistors designated $\mathbb{R}-10$ to $\mathbb{R}-17$; eight set windings designated $W-10$ to $W-17$; eight interrogate windings designated $T-10$ to $T-17$; eight sense windings designated $\mathbb{S}-10$ to $\mathbb{S}-17$; a line designated L; a pulse generator 19 ; a pulse source 21; an address shift regisier 23; and a sensing circuit 25 . The shift register 23 has eight stages designated SR-10 to SR-17. The switches are single-pole double-throw switches and for purposes of discussion the normally closed terminals are on the left and the nommally open terminals are on the right.

The common terminals of all of the switches are connected by the line 1 to the puise generator 19. The normally closed terminal of $S W-10$ is connected through $W-10$ in series with R-10 io ground the nomally open terminal of $S W-10$ is connected hrough $W-11$ in series with $R-11$ to ground. The normally closed terminals of $S W-11$ is connected through $W-12$ in series with $\mathrm{R}-\mathrm{T} 2$ to ground and the nomally open terminal of $S W-11$ is connected through $W-13$ in series with $R-13$ to grownd. Similanly, the normally closed terminal of SW- 2 is connected through $W-14$ in series with $R-A$ to ground and the nommily open teminal of SW-12 is connected through W- 15 in series with R-露 to ground. Finally, the normally closed termina of $S W-13$ is comnected through $W-16$ in series with $\mathbb{R}-16$ to ground and the nommally open terminal of $S W-13$ is connected through $W-17$ in series with $\mathbb{R}-7$ to ground. $\$-10$ through S-17 are connected in series and to the sensing circuit $2{ }^{2}$.

The output of the pulse source 21 is connected to the address shith register 23 . $\$ R-10$ is comected to $T-10, S R-22$ is connected to $T-11$, and $S R-12$ is connected to $T-12 . S R-13$ is connected to $T-13,5 R-14$ is connected to $T-14$ and $S R-15$ is connected to $T-15$. Finally, $S R-16$ is connected to $T-16$ and SR-17 is conmected to $T-17$.
\$W-10 has ifs common teminal connected to its normally closed temminal, SW-1 1 has ies common terminal connected co its nomally open terminal, and SW-1.3 has its common terminal connecied to its nomally open terminal, and SW-13 has its common terminal connected to its nomally closed terminal.

The embodiment illustrated in FIG. 3 operates similariy to the embodment illustrated in FIG. I except that there is only one pulse energization and only one readout. Specifically, line L is pulsed by the pulse generator and sets all cores that form a complee circuit. More specifically, core C- $\mathbb{M O}$ is set because it is connected to the nomally closed side of $S W-10$ and because SW 10 is in is nomally closed position, similarly, SW- 11 carses $C-13$ to be set, $S W-12$ causes $C-15$ to the set and $\mathbb{S W}-13$ causes $\mathrm{C}-16$ to be set, cares $\mathrm{C}-11, \mathrm{C}-12, \mathrm{C}-14$ and $C-\frac{1}{2}$ are not set and remain in a reser state because the sides of the switches so which these cores are connected are
open. The cores are now read out in a manner similar to the readout of the cores of FIG. I; that is, the pulse source 21 generates a series of puises that sequentially operate the shit register. And, the readout occurs during this saguencial operation.

The readout for the switch seting of the embodiment mustrated in FiG. 3 is illustrated by the waverom of FIC. 4 . A completed circuit is readout as a 11 and an open circuir is readout as a 0. The first two sections of the wave, $S-10$ and
$S-11$, are the status of $S W-10$, the second two sections, $S-1$. and $S-13$, are the status of $S W-11$, the third wo sections, $S-14$ and $S-15$, are the status of $S W-12$ and the fourth two sections, $S-16$ and $S-17$, are the status of $S W-13$. The frrst half of each section is the status of the nommally closed terminals and the second half is the status of the romally open terminal.
In addition to checking the status of the switches, the waveform of FIG. A can be used by an appropnate electronic circuir to determine if any of the switches or their associated wiring are defective. That is, each swich must have a 11 section and a section in the readout. If the readout for a swith is o for both sections, it designates that the switch is completely open, i.e., the common terminal is not in contact with either the normally closed or the nommally open side. On, if the readout is 1 for both sections, it indicates that the switch is shorted between all three terminals. Hence, the waveform of the embodiment of the invention illustrated in HIG. 3 deter. mines both the status and the operativeness of the switches.

FIG. 5 illusirates a second altemative embodment of the invention wherein a solid state matrix is utilized to scan the switches to determine their status. The embodiment illustrated in FIG. 5 comprises: six flip-flops designated $F \mathbb{C}-1$ to $\mathrm{FF}-6$; eight Y-axis NAND gates designated $Y-\frac{1}{1}$ to $Y-8$; eight $X-1$ axis NAND gates designated $X-1$ to $X-8$; eight inverters designated $I-1$ to $I-8$; a NOR gate 27 , and a clock source 29 . Each llip-flop has a true output designated 0 and a abse output designated \bar{O}. Each Y-axis NAND gate has three inputs and each X-axis NAND gate has four inputs. The NOR gate 27 has eight impurs.

The clack source 29 is connected to the trigeer input of FF-1. The Q output of $F F-1$ is connected to one mput of $Y-1$. $Y-3, Y-5$ and $Y-7$. The Q output of $F-1$ is connected wone input of $Y-2, Y-4, Y-6$ and $Y-8$ and to the trigger input of FF-2.

The $\overline{\mathrm{Q}}$ output of $\mathrm{FF}-2$ is connected to one impur of $\overline{\mathrm{Y}}-1$. $Y-2, Y-5$ and $Y-6$. The Q outpur of $F F-2$ is connected to one input of $Y-3, Y-4, Y-7, Y-8$ and to the trigger input of $\mathrm{EF}-3$. The Q output of $\mathrm{FF}-3$ is connected to one inpur of $Y-1, Y-2$ $Y-3$ and $Y-4$. The Q output of $F F-3$ is connected to one imput of $Y-5, Y-6, Y-7, Y-8$ and to the trigger imput of $B F-A$.
The \bar{Q} outpu of $F F-A$ is connected to one mput of $X-1$, $X-3, X-5$ and $X-7$. The Q oupput of $\mathbb{F} A$ is connected 10 imput of $X-2, X-4, X-\sqrt{6}, X-8$ and to the trigger mput of $F 5-5$. The \bar{Q} output of $\mathrm{FF}-5$ is connected to one input of $x-1, x-2$. $X-5$ and $X-6$ and the Q output of $F F-8$ is connected to one imput of $X-3, X-4, X-7 X-8$ and to the trigger input of $F F-6$. The Q output of $F F-6$ is conmected to one mput of $X-1, X-2$, $X-3$ and $X-A$ and the Q output of $F F-6$ is comnecied to one imput of $X-5, X-6, X-7$ and $X-3$.

The outputs of Y -axis NAND gates are connected to the vertical lines of a matrix arrangemen 11 ilustrated in FIG. 5 from left to might for $Y-1$ to $Y-8$, respectively. And, the inputs of I-1 to $1-8$ are connected to the horizontal lines of the matrix from top to bottom, respectively.

The output of $1-1$ is connected to one input of $X-1$, the output of -2 is connected to one inpur of $X-2$ and the ontput of 1-3 is connected to one inpur of $X-3$. The output of -4 is corm nected to one input of $X-4$, the output of 1 --b commected wo one impur of $X-5$ and the output of $1-6$ is connected to one input of $X-$. Finally, the output of I-7 is conmected to one mput of $X-7$ and the oupput of $1-8$ is connented to one input of $X-3$. The eight oupputs of $X-1$ to $X-8$ are conmected to the eight inputs of the NOR gate 27. The output of the NoR grete 27 is connected to an output temminal 33.

Each vertical line of the matrix is connected to the cathodes of eight diodes designated D. Each horizontal line of the matrix is connected to the common terminal of four switches. Further, the anodes of the diodes are connected to the sides of the switches. For ease of illustration only one diode matrix switch connection is illustrated in FIG. 5, that connection being shown at the lower right-hand side of the FIG.
From the foregoing description of the circuit connections of FIG. 5 , it will be appreciated that the flip-flops comprise a ripple counter wherein the first three flip-flops operate the vertical lines of the mannix and the second three flip-flops operate the horizontal lines of the matrix. Because of this arrangement, all of the Y NAND gates are sequentially operated before the device switches from one X NA.AD gate to a second X NAND gate. Specifically, all of the vertical lines are scanned for one horizontal line before a second horizontal line is scanned.
Turning now to a description of the operation of the embodiment of the invention illustrated in FIG. 5, assume that the first two diodes in the upper left-hand corner are connected to switch $S-\mathbb{1}$, and assume that $S-1$ is in the configuration of the switch illustrated in the switch in the lower righthand corner of the matrix. That is, the normally closed contacts are closed and normally open contacts are open. The first clock pulse triggers $\mathrm{FF}-1$ and creates a condition where all of the inputs to $Y-1$ are energized, i.e., $Y-1$ is turned on. In addition, $\mathrm{X}-1$ has all of its inputs except the input from $\mathbb{I} \mathbb{1}$ energized. Now, when $Y-1$ passes the first pulse, it continues to pass through $1-1, X-1$ and the NOR gate because the normally closed side of the switch is closed.
A second pulse from the clock source turns $Y-1$ off and Y-2 on. However, no pulse passes through $\llbracket-1$ and $X-1$ because the normally open side of the switch is open. The third pulse energizes Y - -3 to check the normally closed side of $S-2$; if that side is closed, $\mathrm{X}-1$ passes a pulse and if it is open, $X-1$ does not pass a pulse. Thereafter, $Y-\mathcal{A}$ is energized and so on through Y-3. After Y-8 has been energized, the ripple counter arrangement triggers $\mathrm{FF}-A$ so that $\mathrm{X}-2$ is made operative and $X-1$ is made inoperative. Thereafter, $Y-1$ to $Y-\$$ are sequentially operated to scan the second horizontal line of the X -axis. In this manner, each X -axis or horizontal line is sequemially scanned with a sequential or vertical Y -axis scan occuring for each line. The diodes are included to prevent ambiguous data paths from existing in the matrix-switch wiring.
The output from the system illustrated in FIG. 5 can be electronically checked to determine if any of the switches are defective. That is, the waveform of the output will be similar to the waveform illustrated in FIG. 4. Hence, by sequentially testing the first and second outputs for each switch, the existence and location of defective switches can be determined. That is, if two O's occur for a particular switch or two 1 's occur, a defective switch is indicated. Consequently, the matrix arrangement of FIG. 5 operates in a manner similar to the magnetic core arrangements of FIGS. 1 and 3 to scan a plurahity of switches to determine both their status and their operativeness.
FIG. Gillustrates a slight modification of the embodiment of the invention illustrated in FIG. 5. Specifically, FIG. 6 illusfrates a switch connection wherein a single diode is utilized with each switch. That is, the NC side of the NO side of the switches are directly connected to the Y lines of a matrix and a diode D is connected between the common terminals of the switch and the X line. As discussed above, the modification illustrated in FIG. (6 utilizes the diode in the same manner as the embodiment illustrated in FIG. 5; that is, the diode prevents ambiguous data passage through the matrix-switch wiring.
It will be appreciated that the invention has numerous advantages over the prior art. It has the ability to rescan switches, to identiiy individual switches and to reduce the effect of transient noise as well as to maintain a history of switch status. All these functions can be easily accomplished by applying the output from the scanning devices to suitable electronic means.

The invention also has the abiliyy so detece the abnommal operation of the switches. In addition, the invention utilizes a minimum number of sensing wires to connect the various switches to magnetic of solid state matrices. This minimum connection results in a considerable weight and cost savings in large systems. Further, if it is not desired to detect defective switches the status checking capacity of all embodiments can be doubled. For example, 18 rather than nime swithes can be status checked by the FIG. 1 embodiment if only the status of one side of each swirch is sensed.
It will also be appreciated that while the invention has been illustrated as connected to only a small number of switches, it can be utilized with a large number of switches. In fact, the benefts of the invention become much greater when it is used with a large rather than a small number of switches.

It will further be appreciated that the invertion cal be varied in numerous ways. The inventive embodiments ilhestrated in FIGS. I and 2 describe two fypes of core artangements for connection to switches; hovever, other types of core arrangements and conmections can also be wilized. Moreover, the sensing arrangement can be utilized with other than single-pole, double-throw switches. Hence, the imvention can be practiced other than as specifically described herein.

Iclaim:

1. Apparatus for checking the status of the positions of a plurality of multiple-position switches and for locating oper and short circuits in the switches, said switches cach having a common terminal, another terminal for cact of its positions and an armature connected to said common temmat which can be selectively positioned to contact either of said another terminals comprising:
a plurality of magnetic pulse sensing means with each imcluding first and second inputs and an output on which a pulse is produced when a pulse is applied to said second input only if a pulse has previously been applied to said first input;
said first input of each of said plurality of magnetic pulse sensing means connected in an electrical circuit with one terminal of one of said plurality of swiches;
means for applying pulses to corresponcing temminals of said plurality of swinches other than said one teminal;
scanning means for successively applying pulses to the second inputs of said plurality of magnetic pulse sensing means after each pulse is applied to said first inpuis of said magnetic pulse sensing means; and
means synchronous with said scanning means and to the pulse waveform from said magnetic pulse sensing means for determining which of said outputs of saic magnetic pulse sensing means produce a pulse when a pulise is applied to its second input.
2. Apparatus according to claim I wherein said one ter minal is said common terminal.
3. Apparatus according to claim 1 wherein said one terminal is one of said another terminals and said corresponding terminals of said plurality of switches other than said one terminal is said terminal.
4. Apparatus for checking the status of the position of a plum rality of multiple-position switches arranged in a matrix and for locating open and short circuirs in the swiches said switches each having a common terminal, another temminal for each of its positions and an armature comected to said common terminal which can be selectively positioned to contact either of said another terminals comprising:
a plurality of logic circuit means with each associated with a different row in said matrix and with each connected to receive one input from all of said common emminals in its corresponding row, each of said logic circuith means producing a predetermined signal if and only in said predetermined signal is applied to said onc input and all of its other inputs have amother signat applied to them;
means for successively applying said mother signal so said plurality of logic circuit means said another signal baing applied simultaneously to all inputs other tham said one; and
means for successively applying said predetermined signal to all of said another terminals of the switches in each column of said matrix each time and while said another signal is being applied to said logic circuit means whereby
