## MULTI-COLOR PHOTOMETRY OF SUPERGIANTS AND CEPHEIDS

## THOMAS KELSALL



GREENBELT, MARYLAND


48


# MULTI-COLOR PHOTOMETRY OF SUPERGIANTS AND CEPHEIDS 

by
Thomas Kelsall

Dissertation submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1971

Title of Thesis: Multi-color Photometry of Supergiants and Cepheids Thomas Kelsall, Doctor of Philosophy, 1971

Thesis directed by: Roger A. Bell,'Associate Professor of Astronomy

The results of photometry of supergiants and cepheids in a seven filter system are presented. A color index is used in combination with other colors to produce four indices freed from the effects of interstellar reddening. These four indices give measures of the Balmer discontinuity, effects of the metallic line absorption in the violet region of the spectra, break in the spectrum across the G-band, and the strength of the cyanogen band head at 4216 A.

The separation of supergiants from stars of other luminosity classes is possible. This is performed by a non-linear mapping of the colors onto an $\mathrm{M}_{\mathrm{V}}, \operatorname{logT}_{e} \mathrm{H}-\mathrm{R}$ diagram.

Population discrimination for cepheids appears impossible from a study of the colors. However, it is shown that the values of various color-color loop areas can be used to distinguish cepheids of Pop. I and Pop. II. This procedure is superior as it is independent of interstellar reddening.

The Balmer discontinuity index for supergiants and cepheids is insensitive to the effects of line blanketing. We speculate that this will allow for a precise calibration in terms of gravity. The strengths of the metallic line absorption and CN absorption are strongly correlated.

No obvious correlation is found between galactic position and
and chemical composition, as indicated from the strength of the metallic line index.

## DEDICATION

I dedicate this thesis to two gentlemen who gave me much for which I am thankful --
my father
Mr. Bernard Kelsall
my teacher and friend
Dr. Uco Van Wijk

## ACKINOWLEDGEMENIS

I offer sincere thanks to Dr. Roger A. Bell, my advisor, for the giving of his critical insights, time, and patience.

I am grateful to Dr. Nicholas U. Mayall, Director of Kitti Peak National Observatory ${ }^{+}$, for the opportunity to use the facilities of his observatory. I also thank the observatory staff for their assistance and friendliness, and in particular, Dr. David L. Crawford, Mris'* Jeannette Barnes, and Mr. J. C. Golson.

For the reading of the manuscript and helpful advice $I$ thank the Drs. Donat Wentzel and Michael A'Hearn.

Acknowledgement is made to Dr. Richard J. Drachman and Dr. Bengt Strömgren for their many useful discussions.

Mr. Andrew Butz and Mr. Charles Mahaffey gave aid in the reading of the charts, proof reading of the punched data, and numerous other assistances for which I am thankful.

To my wife Ann I offer appreciation for the aid given, both direct and indirect.

- Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.


## TABIE OF CONTENTS

Chapter Page
DEDICATION ..... ii
ACKNOWLEDGEMENTS ..... iii
I. INTRODUCETON ..... 1
1-1. Preamble ..... 1
l-2. Theoretical Work and Its Motivational Basis ..... 1
1-3. Basic Cepheid Parameters from Observations ..... 16
1-4. Intrinsic Colors ..... 33
1-5. Aims of the Investigation. ..... 37
II. THE OBSERVATIONS ..... 49
2-1. The Filters ..... 49
2-2. Equipment and Data Gathering ..... 50
IIT. THE STARNDARD SYSTEM. ..... 58
3-1. Photometric Quantities ..... 58
3-2. Basic Processing Procedure ..... 59
3-3. Construction of the Observational System's Standards ..... 61
3-4. Final Comments ..... 63
IV. ORDINARY. STAR RESULTS ..... 76
4-1. Reduction and Results. ..... 76
4-2. Mode of Analysis ..... 76
4-3. Color Excess Ratios ..... 79
4-4. Bracketed Colors Versus Spectral Type ..... 82
4-5. Intrinsic Values for (b-y) and $G$. ..... 83
4-6. Physical Meaning of [G] and [N] ..... 84
Chapter Page
V. LUMINOSTTY CLASSIFICATION ..... 107
5-1. Objective and Procedure ..... 107
5-2. Source of the Data. ..... 107
5-3. Color-Spectral Type Relationships ..... 109
5-4. Supergiant Discriminants ..... 111
VI. BASIC CEPHEID RESULTS ..... 129
6-1. Photometry and Data. ..... 129
6-2. The Periods ..... 129
6-3. Color-Phase Results. ..... 132
6-4. Comparison with the Supergiants ..... 132
6-5. A Population II Discriminant ..... 133
6-6. (b-y) Color Excesses ..... 134
6-7. $(b-y)_{0}$ and the Effective Temperature ..... 136
VII. COMBINED CEPHEID-SUPERGIANI RESUIIS ..... 169
7-1. The 'Supercolor' Method ..... 169
7-2. Comparison of the Cepheid and Supergiant Mean Colors ..... 172
7-3. Metal Content and Galactic Stmucture. ..... 173
7-4. Comments on Williams' Work. ..... 173
7-5. Conclusions ..... 175
APPENDIX A. STAR IDENTIFICATIONS ..... 195
APPENDIX B. DATA FROM WILLIAMS AND STRÖMGREN ..... 205
APPENDIX C. COEFFICIENTS OF THE SUPERCOLORS. ..... 216
IITERATURF CITED ..... 218

## LIST OF TABLES

Table Page
1.1. Slope of the P-L relation for SMC cepheids ..... 42
1.2. Physical properties of classical cepheids. ..... 43
2.1. Transmission characteristics of the filters used in this investigation. ..... 53
2.2. Comparison of the transmission characteristics of uvby filter sets No. 1 and No. 2. ..... 54
2.3. Summary of the observarional runs at Kitt Peak National Observatory. ..... 55
3.1. The color-extinction coefficients ..... 65
3.2. Observations of the standard stars ..... 66
3.3. Standard star probable errors. ..... 70
4.1. Observations of the ordinary stars ..... 86
4.2. Effective wavelengths ..... 98
4.3. Color excess ratios from external sources ..... 98
4.4. Color excess ratios determined from cepheids at maximum light ..... 99
4.5. Color excess ratios determined from free parameter fitting ..... 99
4.6. Final adopted color excess ratios ..... 99
5.1. The mean reddening-free colors for all luminosity classes. ..... 114
5.2. RMS dispersions in the mean colors at any spectral type ..... 118
6.1. Observations of the cepheids. ..... 138
6.2. Cepheid periods. ..... 149
6.3. Cepheid color excesses determined from using the relation $-G_{0}=0.543 *(b-y)_{0}{ }^{\prime} 0.110$ ..... 151
7.1. Deviations of the $F O$ to KO supergiants about the mean color lines defined with [G] as independent coordinate ..... 178
7.2. Average deviations of the Pop. I cepheids about the mean color lines defined with [G] as independent coordinate ..... 182
7.3. Reanalysis of Williams' long period cepheid data. ..... 184
A.I. Catalog of identification data for the program stars ..... 196
B.1. Comparison of Williams' original and transformed reddening-free colors to those of Kelsall's. ..... 206
B.2. Comparison of strömgren's original and transformed reddening-free colors to those of Kelsall's ..... 210
C.1. The $M_{V}=$ supercolor coefficients for the various [G] regions. ..... 217
Figure Page
1.1. Magnitude differences versus relative surface displacements at points of equal color for $\delta$ Cep ..... 44
1.2. Comparison of the observed and computed light curves for $\delta$ Cep. ..... 44
1.3. Observed and computed line profiles for weak Fe I lines in $\eta$ Aql ..... 45
1.4. Contribution of various regions in a star to the maintenance of pulsation ..... 45
1.5. Variation with temperature of the $V$ and $B$ magnitudes for black-bodies. The observed dependence of the mean $V$ and B magnitudes with period ..... 46
1.6. Location of the $F, G$ and $K$ supergiants and the cepheid $S$ Sge in a six-color ( $V-B$ ), ( $\mathrm{R}-\mathrm{I}$ ) diagram ..... 47
1.7. Determination of the ( $B-V$ ) color excess through the use of $\Gamma$ photometry ..... 48
2.1. Transmission scans for the filters used in this investigation ..... 56
2.2. A replica of the strip chart recording representing the observation of a single star ..... 57
3.1. Variation of the extinction coefficient with wavelength. The solid curve is the Rayleigh extinction curve normalized to the observations at 4375月. ..... 71
3.2. Comparison of the $V$ from the YBS to the $y$ observed in this investigation. ..... 72
3.3. Comparison of the $c_{1}{ }^{\text {r }}$ s from the Strömgren-Perry catalog to those observed in this investigation. ..... 73
3.4. Comparison of the $m_{I}$ 's from the Strömgren-Perry catalog to those observed in this investigation. ..... 74
3.5. Comparison of the (b-y)'s from the Strömgren-Perry catalog to those observed in this investigation ..... 75
4.1. The $c_{1},(b-y)$ diagram for $A-K$ supergiants ..... 100
Figure Page
4.2. Variation of the normalized sum of the deviations squared with the interstellar extinction coefficient, $\alpha$, for the reddening-free colors ..... 101
4.3. The adopted reddening-free colors for the supergiants as a function of spectral type ..... 102
4.4. The $G,(b-y)$ diagram for supergiants. The adopted thermal locus is shown as a dashed line ..... 104
4.5. Relationship between the intrinsic colors $G_{0}$ and $\left(b-y_{i}\right)_{0}$ for supergiants and spectral type. ..... 105
4.6. Comparison between the Griffin-Redman cyanogen index, $n$, and our [N]. ..... 106
5.1. Strömgren to Kelsall transformations for $\left[c_{1}\right]$ and $\left[m_{1}\right]$ ..... 119
5.2. Williams to Kelsall transformations for $\left[c_{1}\right]$, $\left[m_{1}\right]$, [G], and [N] ..... 120
5.3. Dependence of $\left[c_{7}\right],[G]$ and $[N]$ on spectral type for luminosity class $V$ stars ..... 121
5.4. Dependence of $\left[c_{1}\right],\left[m_{7}\right],[G]$ and $[\mathbb{N}]$ on spectral type for luminosity class IV stars ..... 122
5.5. Dependence of [G] and [N] on spectral type for luminosity class III stars ..... 123
5.6. Dependence of $\left[c_{2}\right],\left[m_{1}\right],[G]$ and $[N]$ on spectral type for Iuminosity class II stars ..... 124
5.7. Variation of $\left[c_{1}\right]$ and $\left[m_{1}\right]$ with spectral type for all luminosity classes ..... 125
5.8. Variation of [G] and [N] with spectral type for all luminosity classes ..... 126
5.9. Various color-color diagrams useful in discriminating between luminosity classes ..... 127
5.10. The supercolor H-R diagram. The symbols are the supercolors resulting from using the mean colors at each spectral type over the range A5-K5 ..... 128
6.1. Variation of the sum of the deviations squared for $V$ with period for X Lacertae ..... 153
6.2. The fits of the visual magnitudes for four represent- ative cepheids ..... 154
6.3. Light and color variations with phase for SU Cas ..... 155
6.4. Light and color variations with phase for AU Peg ..... 156
6.5. Light and color variations with phase for $R T$ Aur ..... 157
6.6. Light and color variations with phase for ST Tau. ..... 158
6.7. Light and color variations with phase for $\delta$ Cep ..... 159
6.8. Jight and color variations with phase for $\eta$ Agl ..... 160
6.9. Light and color variations with phase for $\zeta$ Gem. ..... 161
6.10. Light and color variations with phase for AL Vir ..... 162
6.11. Comparison of cepheids at maximum and minimum light to the mean supergiant results in various color-color plots. ..... 163
6.12. Color-color Lissajous figures for three cepheids in the UBV, six-color, and uvby;ABC systems ..... 164
6.13. Total areas of color-color loops versus period in three photometric systems ..... 165
6.14. The best total and signed color-color areas for popu- lation discrimination in our photometric system. ..... 166
6.15. $(B-V)$ and $(b-y)$ for $\eta A q 1$ and $\delta$ Cep, with $\langle b-y\rangle=\langle B-V\rangle$ for convenience. ..... 167
6.16. Relation of the intrinsic colors $(B-V)_{O}$ and $(b-y)_{0}$ ..... 168
 versus [G]. ..... 187
7.2. The average $M_{V}$, logTe-supercolor diagram for cepheids. The location of the instability strip is by Fernie (1967c) ..... 188
7.3. The supercolor $H-R$ diagram created from data on individ- ual stars of all luminosity classes ..... 189
7.4. A comparison between the mean color results for the cepheids and the supergiants ..... 190
Figure Page
7.5. Gorrelation plots of deviations in $\left[\mathrm{m}_{1}\right.$ ] and [ N ] from the mean for supergiants and cepheids. ..... 191
7.6. Diagrams showing the insensitivity of $\left[c_{1}\right]$ on line blanketing in supergiants and cepheids. ..... 192
7.7. Galactic distribution of deviations in $\left[\mathrm{m}_{1}\right.$ ] from the mean. ..... 193
7.8. Mean $m_{1}$ versus (b-y) relation for Williams' long period cepheids ( $\mathrm{P} \geq 1 \mathrm{I}^{\text {d }}$ ) ..... 194

## CHAPIER I

## INTRODUCTION

## 1-1. Preamble

The study of cepheids starts with the visual recognition of the variability of $\delta$ Cep by Goodricke in 1784, and continues through the present day. The data is of great usefulness, and is applied to a variety of problems - determination of galactic structure, compositional discrimination between galactic systems, evaluation of the extragalactic distance scale, verification of evolutionary stellar models, etcetera. In this introductory chapter no attempt is made to summarize all the available data and their interpretations. We limit ourselves tò an abbreviated discussion of a selected set of facts, observational and theoretical, representative of our knowledge; and, to a statement of this investigation's goals. A more complete picture of cepheid research is given in the works of Aller (1954), Christy (1966a, 1968), Kraft (1960, 1963, 1965), Ledoux and Walraven (1958), Payne-Gaposchkin (1954), Rosseland (1954), and Zhevakin (1963).

## 1-2. Theoretical Work and Its Motivational Basis

We begin with a review of cepheid theory, as it gives us an understanding of the type of stars involved and introduces concepts utilized in the interpretation of the raw observational data.

As is characteristic of astronomy the first attempts to explain variable star phenomena were geometric in structure. A main contender was the binary star hypothesis. However, by the 1920's the body of observational data could not be explained by a singlé, encompassing,
goemetric theory. A correct theory must explain the following:
(a) the nearly linear relationship between absolute magnitude and the log of the period;
(b) the Doppler shifting of the spectral lines with phase;
(c) the mirror image in time and structure of the light and velocity curves (maximum light at minimum recessional velocity, and the converse);
(d) in the mean a smooth progression of light curve forms with period;
(e) the time invariance of the periods;
$(f)$ the phase-dependent changes in the spectrum, which closeily mimic at each phase a class of sharp-line, non-variable stars (the pseudo-cepheids which we refer to today as supergiants);
(g) the correlation of light amplitude with period;
(h) the strong, linear correlation between light and velocity amplitudes;
(i) the restriction of the cepheids to a narrow region in the H-R diagram.

On the basis of these data the main theoretical thrust was directed toward a pulsational solution. With the strengthening of the concept that stars doubtless possess spherical symmetry, the main emphasïs was directed toward pure radial pulsational theories. The major credit in. promulgating these ideas must be given to Eddington.

On relatively simple arguments we can relate the expected periods of pulsating stars with their internal structure. The period should be related to a characteristic length, the diameter of the star, and the
time needed for a compressional wave to traverse that distance --

$$
\begin{equation*}
P \propto 2 R / \bar{v} \tag{1-1}
\end{equation*}
$$

where $P$ is the period, $R$ the radius, and $\bar{v}$ a mean sound velocity in the star. In the quasi-static, adiabatic limit we have --

$$
\begin{equation*}
v=\sqrt{Y p / \rho}, \tag{1-2}
\end{equation*}
$$

where $\gamma$ is the ratio of specific heats, $p$ is the pressure, and $\rho$ the gas density. For an equilibrium, gaseous sphere with zero pressure at the surface, so surface integrals vanish, the virial theorem gives for the potential enexgy --

$$
-\mathrm{W}=3 \int \mathrm{p} d \mathrm{~V}=3 \int^{\prime 2}(\mathrm{p} / \mathrm{p}) \mathrm{dm}=3 \int^{2}\left(\mathrm{v}^{2} / \gamma\right) \mathrm{dm}
$$

or

$$
\begin{equation*}
-W \sim 3 \dot{\mathrm{v}}^{2} \mathrm{M} / \mathrm{Y} \tag{1-3}
\end{equation*}
$$

where $M$ is the mass of the star. From simple potential theory we have --

$$
\begin{equation*}
-W=3 G M^{2} /((5-n) * R)=k G M^{2} / R, \tag{1-4}
\end{equation*}
$$

where $n$ is the polytropic index, and $G$ the constant of gravity. Using Eqs. (1-3) and (1-4) in Eq. (1-1) gives --

$$
\begin{equation*}
P \propto 2 \sqrt{ }(3 / \gamma G) * \sqrt{(1 / k) * R^{3 / 2}} M^{-1 / 2} . \tag{1-5}
\end{equation*}
$$

As $k$ increases with the degree of central concentration, Eq. (1-5) predicts that $P$ decreases for a fixed $M$ and R. Substituting the equality --

$$
M=4 \pi R^{3} \ddot{\rho}_{\odot} \bar{\rho} / 3 \ddot{\rho_{\odot}}
$$

in Eq. (1-5) we develop the well-known period density relationship --

$$
\begin{equation*}
P \sqrt{ }\left(\bar{\rho} / \bar{\rho}_{\odot}\right) \propto 2 \sqrt{ }(3 / \gamma k) / \sqrt{ }\left(4 \pi G \bar{\rho}_{\odot} / 3\right)=Q . \tag{1-6}
\end{equation*}
$$

The constant $Q$ is often referred to as the pulsation constant. With $\rho_{\odot}$ equal to $1.5 \mathrm{gr} / \mathrm{cm}^{3}, \mathrm{n}$ equal to $3\left(\rho_{\mathrm{c}} / \bar{\rho}=55\right)$, and $\gamma$ equal to $5 / 3$, we find $Q=0.039$. This value is very close to results from the most sophisticated calculations for the cepheids.

Dimensional arguments, while powerful in their ability to illuminate basic physical relationships, are incapable of demonstrating the dynamical causes of pulsation. The demand of the dynamics for a periodic solution is shown by a crude first order theory as applied to a homogeneous star. For any point $r$ in the star undergoing small, radially synchronous pulsations, Newton's equation of motion is --

$$
\begin{equation*}
\ddot{r}=-g-\rho^{-1} \partial p / \partial r, \tag{1-7}
\end{equation*}
$$

g being the instantaneous value of the gravitational acceleration. Expanding $r$ about its equilibrium value ( $r_{0}$ ), recognizing the assumed homogeneous configuration, and assuming adiabatic pulsations so $p \sim \rho^{\gamma}$ we have --

$$
\begin{aligned}
& r=r_{0}(1+\delta(t)) \\
& g=g_{0}(1+\delta)^{-2} \sim g_{0}(1-2 \delta) \\
& \rho=\rho_{0}(1+\delta)^{-3} \sim \rho_{0}(1-3 \delta) \\
& p=p_{0}(1+\delta)^{-3 \gamma} \sim p_{0}(1-3 \gamma \delta),
\end{aligned}
$$

where $\delta(t)$ is a time-dependent function. Substituting in Eq. (1-7), and dropping terms of order $\delta^{2}$ and higher gives --

$$
\ddot{\delta}+\left[g_{0}(3 \gamma-4) / r_{0}\right] \delta=0
$$

or

$$
\begin{equation*}
\ddot{\delta}+K \delta=0, \tag{1-8}
\end{equation*}
$$

where use is made of the equilibrium relation --

$$
d p_{0} / d r_{0}=-g_{0} \rho_{0}
$$

The general solution to Eq. (1-8) is of the periodic form --

$$
a e^{i \sqrt{k^{*} t}}+b e^{-i \sqrt{k^{*} t}}
$$

but considering only real displacements we can write --

$$
\delta=\text { const. } * \sin \left(\sqrt{k^{*} t}\right)=\text { const. } * \sin (2 \pi t / P)
$$

Here $P$, the period of the oscillations, is given by --

$$
\begin{equation*}
P=\left[3 \pi /\left(\mathrm{G}_{0}(3 \gamma-4)\right)\right]^{\frac{1}{2}} \tag{1-9}
\end{equation*}
$$

as $g_{0} / r_{0}=4 \pi G \rho_{0} / 3$. In this case, an evaluation gives a $Q$ of the order of 0.10. A more rigorous analysis using for the star model a polytrope of index 3 gives a value for $Q$ of 0.039 .

A multiplicity of investigations of adiabatic pulsations was
performed from 1874 (the time of Ritter's original suggestion that gaseous spheres might be pulsationally unstable) up through the early 1950's. A classic and virtually terminal discussion along these lines is well represented by Epstein's work (1950). Epstein incorporated a number of features into his models corresponding to the increased awareness of the physical characteristics of giant stars. The models possess large radii and luminosities, and high central temperatures and degrees of central concentration. In addition, distinct from the older models, the chemical composition more nearly approximates present day estimates for the mass fractions of hydrogen, helium, and the heavy elements. The investigation shows beyond doubt that only the external portions of the star are effective in governing the basic form of the pulsations. The pulsational amplitudes are virtually zero at the center, and largest at $r \sim R$. As the stars are of a centrally condensed type, the mass involved in the larger amplitude excursions is one-tenth or less of the total mass of the star. For a wide range of reasonable physical parameters the pulsational constant, Q, is nearly invariant, and of value $0.035 \pm 0.005$. The ratio of first harmonic period to the fundamental period is 0.69 , in good agreement with the existing data.

A salient feature of Epstein's work, and all prior investigations, is its inability to account for the persistence of the pulsations. That the escapement mechanism is the variation of nuclear energy release is untenable because of the non-participation of the central regions in the oscillations. Damping times are so precipitously short, amounting to hundreds of years, the possibility of ever observing a variable star is excluded. And all these calculations fail in explaining the "cepheid phase lag", the occurrence of light maximum a quarter
of a period after minimum radius.
What motivated theorists to continue their labors, as the returns while exciting were meager? To be sure, geometric model solutions to the problem could in no way account for the list of observational characteristics, but neither could the preliminary theoretical pulsational models. The impetus to continue was the fruitful observational search for corroborative evidence of the pulsational hypothesis.

One of the most compelling pieces of direct evidence for pulsations is the observational verification of the $P \sqrt{\rho}=Q$ relation. The ingredients needed are the masses, radii, and periods of the stars. We can determine the masses and radii by using the relations --

$$
\begin{aligned}
\left(R / R_{\odot}\right)^{2} & =\left(I / I_{\odot}\right)\left(T_{e} \odot / T_{e}\right)^{4} \\
M / M_{\odot} & =\left(I / L_{\odot}\right)^{-3-b}
\end{aligned}
$$

to give

$$
\bar{\rho} / \bar{\rho}_{\odot}=M / M_{\odot} /\left(R / R_{\odot}\right)^{3}
$$

Where the constant $b$ in the mass-luminosity equation is usually taken to be near zero (see, for example, Payne-Gaposchkin and Gaposchkin (1938)). The values of $T_{e}$ and $L$ are observables, although some assumptions are required to obtain them from the raw observational data. From the determined values of $\rho$ and $P$ we find a $Q$ of approximately 0.09 for the cepheids, and a wide variety of other variables. While this value is in disagreement with most theoretical determinations, it is noted that the discrepancy can easily result from minor errors in the values assigned to $T_{e}$, and less critically, to the luminosity.

Baade (1926) proposed a test of the pulsational hypothesis using color, light, and velocity measures. From the color observations it is possible to obtain bolometric corrections (BC's) and effective temperatures. From the measured visual light magnitudes (m) at any two phase points the ratio of the radii at the two points is given by --

$$
\begin{equation*}
\mathrm{R}_{2} / \mathrm{R}_{1}=\operatorname{Anti}-\log \left(\left(\mathrm{m}_{1}+\mathrm{BC}_{1}-\mathrm{m}_{2}-\mathrm{BC}_{2}-10 * \log \left(\mathrm{~T}_{\mathrm{e}_{2}} / \mathrm{T}_{\mathrm{e}_{1}}\right)\right) / 5\right) \tag{1-10}
\end{equation*}
$$

From the velocity curve, assuming the star to be a radial pulsator, we have --

$$
R_{2} / R_{1}=\left(R_{1}+\delta R_{12}\right) / R_{1}=\left[R_{1}+d \int_{\phi_{1}}^{\phi_{2}}\left(v_{r} \sim \vec{v}_{r}\right) d \phi\right] / R_{1},
$$

where $d$ is the limb-darkening correction term (usually taken as 24/17), and $v_{r}, \bar{v}_{r}$ are the observed and the average observed radial velocities, respectively. Using $R_{1}$ as the unit of length, the results from Eqs. (1-10) and (1-11) are comparable, and if equal, the idea of radial pulsation is supported. The first attempts were inconclusive, and the realization grew that the primary difficulty resides in the evaluations of the $B C^{t} s$ and $T_{e}$ 's. Wesselink (1946) modified Baade's method by pointing out that if the two phase points are points of equal color, which are assumed to represent points of equal temperatures, the difference in light can be attributed purely to radius variations. Under this assumption Eqs. (1-10) and (1-11) are combined to give --

$$
\left(m_{1}-m_{2}\right)=2.17^{*}\left[d \int_{\phi_{1}}^{\phi_{2}}\left(v_{r}-\bar{v}_{r}\right) d \phi\right] / \bar{R}
$$

$$
\begin{equation*}
\Delta m=2.17^{*} \Delta D /(\overline{\mathrm{R}} / \mathrm{d}) . \tag{1-12}
\end{equation*}
$$

Wesselink's formulation gives, with few exceptions, excellent confirmatory results. For illustration, the application to $\delta$ Cep is shown in Fig. 1.I. From the slope of the curve, and with $d=24 / 17$, the mean radius of $\delta$ Cep is found equal to thirty-nine solar radii.

Schwarzschild (1938) argued that a strenuous test of the pulsation hypothesis would be the demonstration that the light curve can be directly predicted from a knowledge of the velocity curve. His derivation of the test is not amenable to simplified presentation. Suffice it to say that starting from the fundamental equation --

$$
I=-\left(16 \pi r^{2} \sigma T^{3} / 3 h \rho\right) d T / d r,
$$

and using the equation of motion to give the density variations in terms of the radius variations, we are able to find an expression relating the luminosity $L(\phi)$, in units of $\bar{I}$, to quantities derivable from the velocity curve $-\dot{r}, \ddot{r}$, and $r-\bar{r}$. The final expression contains three free parameters, which fortunately can be specified with reasonable precision by recourse to simple physical arguments. The application of this method to $\delta$ Cep is shown in Fig. 1.2. The observed and predicted curves are in excellent agreement.

In 1919 Shapley and Nicholson (1919) argued that an unambiguous test of pulsation would be found in observations showing a tight relationship between line asymmetries and Doppler velocities. The definitive application of the idea was delayed for thirty-three years,
but finally given in the excellent work of van Hoof and Deurinck (1952). They devised, from a reduction of high dispersion ( $2.9 \mathrm{~A} / \mathrm{mm}$ ) spectra of $\eta$ Agl, two independent tests from studying two separate sub-groups of the weak Fe I lines. The first test is the consideration of the weak Fe I lines lying on the linear portion of the curve of growth. At each phase point, seven weak, narrow lines in the range 4376 A to 4587 A are reduced, normalized, and averaged. The averaging procedure greatly reduces measurement errors. On visual inspection alone the correspondence between predictions - blue excess on expansion, red on contraction - and observations is good. Detailed calculations, which incorporate the effects of the pulsation hypothesis, strengthen the impression of an agreement to present the fact of ${ }^{\prime \prime}$ agreement. In addition the line. shapes for equal but opposite velocities are mirror images of one another. IIlustrative results are shown in Fig. 1.3. As a check, a repeat of the above is performed on the Fe I lines situated on the horizontal portion of the curve of growth. In this case, profile averaging is impossible, so lines must be considered individually. The results are as satisfactory as in the first test.

As the observations inexarably point to the correcteness of the pulsational hypothesis, the theories must be deficient in some essential ingredient. A physical process that is, as Eddington (1930) said, "fantastic in an ordinary engine but not necessarily so in a star". The resolution came through the works of Zhevakin (see Zhevakin (1963) for a comprehensive review), and Cox and Whitney (1958) who found that the necessary destabilization results from the conversion of thermal energy into mechanical energy in the surface ionization zones of hydrogen and helium ( $10^{4} \widetilde{<} T \approx 10^{5} O_{K}$ ).

In the main body of a star ( $T \mathrm{~F}_{10^{5}}{ }^{\circ} \mathrm{K}$ ) the opacity obeys a

Kramer's type law --

$$
x=\mu_{0} \rho^{\alpha} T^{\beta},
$$

where $\alpha \sim+1$ and $\beta \sim-3.5$. Upon compression the temperature rises, the opacity decreases, and heat energy leaks out. This loss of heat on compression reduces the pressure during the expansion stage, and subsequently damps out the pulsation - a mechanism referred to as "radiative damping". The process in the hydrogen and helium ionization zones is most different, as the contribution of these zones to the pulsations is to balance the negative dissipation of the deeper adiabatic layers. The valving action of the ionization zones results from two distinct processes. Compressional heating goes not into the raising of the temperature but into the ionization of the medium. Thus, these regions are cooler than their surroundings and can absorb heat. This process is signaled by a decrease in the ratio of the specific heats $(\gamma \rightarrow 4 / 3)$, and is called the "gamma effect". It might better be called the "C $C_{p}$ effect", as it is the increased heat capacity of the ionization regions that aid in the driving. The $C_{p}$ or gamma effect is most pronounced in the second helium ionization zone, and is unimportant in the hydrogen ionization zone, which is closer to the surface, thinner, and contains appreciably less mass. In addition, on compression the opacity increases, $\alpha$ and $\beta$ are both positive, and energy is stored up in these zones. This is called the "kappa effect". Both the gamma and kappa effects work in unison to increase the pressure upon subsequent expansion, and thus help maintain the pulsations. The relative dissipative effects of the deep adiabatic layers and the outer
ionization zones, for a particular model taken from Christy (1968), are shown in Fig. 1.4.

The complete set of equations, in Lagrangian form and standard aotation, governing the pulsations are
equation of motion: $\quad \partial^{2} r / \partial t^{2}=-G M_{r} / r^{2}-\left(4 \pi r^{2}\right) \partial P / \partial M_{r}$
continuity equation: $\quad \partial r / \partial M_{r}=1 /\left(4 \pi r^{2} \rho\right)$
radiative diffusion:

$$
\begin{equation*}
I_{r}=-\left(64 \pi^{2} a c r^{4} T^{3} / 3 x\right) \partial T / \partial M_{r} \tag{1-15}
\end{equation*}
$$

energy equation:

$$
\begin{equation*}
\partial I_{r} / \partial M_{r}=\left(P / \rho^{2}\right) \partial \rho / \partial T-\partial E / \partial t \tag{1-16}
\end{equation*}
$$

equation of state:

$$
\begin{equation*}
P=k \rho T / \mu H+a T^{4} / 3 \tag{1-17}
\end{equation*}
$$

internal energy/gram: $\quad E=3 \mathrm{kT} / 2 \mu \mathrm{H}+\mathrm{aT}^{4} / \rho+I$,
where $I$ is the ionization energy. The subsidiary relation giving kappa as a function of $\rho, T$ and composition is usually in the form of a table. It is important to note that while the equations are coupled, the first two are related to the mechanicalfeatures and the second two to the thermal features of the stellar configuration. In the energy equation the nuclear energy generation is not included, because all studies show the region of interest is only the outer envelope ( $T \widetilde{\sim} 10^{\circ}{ }^{\circ} \mathrm{K}$ ). The complement to the radiative transport equation, the convective transport equation, is not shown. The question of the inclusion of time dependent convection is most complex, and an adequate prescription
is yet to be formulated. A recent attempt is that by Unno (1967). A normal set of surface boundary conditions are --

$$
M_{r}=M ; \quad P=0 ; \alpha\left(T^{4}\right) / \bar{d} T=T^{4} / A,
$$

where $T$ is the optical depth ( $\alpha T=-r \mathrm{CM}_{\mathrm{r}} / 4 \pi r^{2}$ ) and the constant $A$ is usually taken to be $2 / 3$ so the temperature distribution satisfies Eddington's gray atmosphere approximation. The interior boundary is defined by --
$T=$ constant $\left(\sim 10^{6} O_{K}\right)$ or $M_{r}=$ constant $(\sim 0.5 \mathrm{M}): \partial r / \partial t=0 ; L=I_{O}$,
where $I_{0}$ is the luminosity emanating from the interior.
The methods of abstracting information from Eqs. (1-13) through (1-16) are referred to in the literature by a useful, descriptive nomenclature. The names, major features, and a particular modern study of these procedures are as follows;
(a) Linear, adiabatic - The structure equations are linearized $\left(r(t)=r_{0}(1+\delta r(t))\right.$, etc. $)$, the ones describing the thermal properties are eliminated by imposing the adiabatic condition $P \propto \rho^{\gamma}$, and a single second-order differential equation developed for the pulsations - Epstein (1950);
(b) Linear, quasi-adiabatic - The same as in (a), except that the adiabatic solutions are used to estimate the nonadiabatic effects by substituting into the thermal equations - Baker and Kippenhahn (1965);
(c) Linear, non-adiabatic - The four linearized structure equations are solved in their entirety - Cox (1963);
(d) Full, non-adiabatic - The structure equations are attacked without approximation - Christy (1964).

A full review of all the theoretical work is not feasible. We limit our discussion below to a single, current, comprehensive investigation.

Recently, stobie (1969a, b, c), in a series of beautifully presented papers, has studied the effects of variations in the five prime parameters - mass, luminosity, effective temperature, helium content (Y), and heavy metal content (Z) - on theoretical cepheid models. The parameter list really contains only four, as the effects of $Z$ variations are minor, and any reasonable ( $0.02 \widetilde{<} \mathrm{z} \widetilde{<} 0.06$ ) value is adequate to the discussion. The calculations include radiation pressure and the three ionization zones of hydrogen and helium, but neglect convective transport. The ommission of convection restricts commentary to the high and mid-T region of the cepheid instability strip in the $H-R$ diagram. There are seven observational controls imposed on the theoretical models --
(a) location of the strip's high $T_{e}$ boundary;
(b) position of the strip in the $M_{V},(B-V)$ diagram;
(c) form of the $M_{V}$-logP relation;
(d) dependence of the velocity amplitude with period;
(e) correlation of ( $B-V$ ) with period;
(f) location of secondary bumps on the light curves;
(G) occurence of the famous cepheid phase lag.

The choice of the basic parameters in ref. (1969b) is taken from: evolutionary model calculations. For this choice the cepheid model
results disagree with the observational data, and no adjustment of the parameters, within the framework of the evolutionary calculations, can achieve consistency. However, the results can be made compatible with the observations by increasing the light to mass ratio. In ref. (1969c) a reduction of approximately two in mass from the evolutionary calculations is made, and the effects on the cepheid models analyzed. The mass is the most likely candidate for change as it is the one parameter not accessible to observational evaluation. The results of the new study are most encouraging.

The controls sensitive to $Y$ - the strip's high-Te boundary, its overall location in the $M_{v},(B-V)$ diagram and the positioning of the equal-period lines, $M_{V}-\log P$ relation (mainly the zero point), and the $(B-V)-\log P$ correlation $-a l l$ indicate $a \operatorname{lf}$ approximately 0.45 . In fact, the compaxison between the theory and the observations is improved for a $Y$ of 0.45 in the $M_{V}-\log P$ case, if use is made of Geyer's (1970) recent re~evaluation of the zero point. Stobie compared his results with Kraft's older $M_{V}-\log P$ relation. The location of the secondary bump is fine - bump on the descending portion for $7^{\mathrm{d}}<\mathrm{P}<10^{\mathrm{d}}$, at light maximum for $P \sim 10^{\mathrm{d}}$, and on the ascending part of the light curve for $P>10^{\mathrm{d}}$. The velocity amplitudes and their inter-relationship with period is improved. The famous cepheid phase lag test is inconclusive. This feature is the most difficult to match theoretically, but the situation is satisfactory.

This reduction in mass from that expected from evolutionary calculations has also been noted by Christy (1966b), who studied pulsational models for $\delta$ Gep and $\eta$ Aql. He could get good agreement with the observations only for masses $\sim 2$ times smallex than those
predicted from evolutionary models. The justification for this mass reduction is usually made by invoking mass loss during a star's evolution. But is this absolutely essential? We note that even for the sun the effects of line absorption translate into an equivalent reduction in $g$ of approximately thirty percent in the cool photosphere, as has been calculated for the Fe II ions by Lambert (1968). In the cepheid ionization zones the temperature is appreciably higher, the upper atomic levels of hydrogen and helium are populated, and resulting line absorption may easily account for some of the needed reduction in g. Obviously, this effect is restricted to the outer layers as it is negligible in the deeper, hotter, adiabatic regions. It should also be noted that part of the difficulty may arise from errors in the opacities used in the model calculations.

1-3. Basic Cephei.d Parameters from Observations
We understand a group of variable stars if we can interpret observational measures to give us period, luminosity, radius, mass, composition, and evolutionary status. In this section we describe the evaluations of these prime characteristics, along with some derived inter-relationships. We discuss the pure photometric observations in 1-4.

The periods of well observed cepheids are specified to a remarkable precision, seven to nine significant figures. This stems from the long time of study as compared to the characteristic pulsational periods - e.g., eighty years as compared to ten days. As is usual we define the period as the time between sucessive light maxima. If we let $T$ be the time of maximum light (Julian days), $T_{0}$ be an arbitrary time of initial maximum, $P_{I}$ be a first approximation to the period,
then a predicted time of maximum after No cycles is --

$$
T=T_{0}+P_{1} * N
$$

A study of the residuals, $T_{o b s}-T_{c a l}$, as a function of time gives us all the data necessary for correcting $P_{3}$. In practice this procedure is sufficient for a majority of the cepheids. For a small number, a better fit to the time of maxima is --

$$
T=T_{O}+P_{1} * \mathbb{N}+a^{*} \mathbb{N}^{2},
$$

so

$$
P=T_{N+1}-T_{N}=P_{1}+2 a^{*} N+a
$$

Again a study of the residuals allow for the evaluation of the constants $P_{1}$ and $a$. In the main a is very $\operatorname{small}\left(\sim 1.0 \times 10^{-6}\right)$. We note that neither of the above representations is a physical statement, they are just convenient fitting expressions. However, a secular term is reasonable. The cepheid phenomena is an evolutionary stage of a short-Iived massive star. The evolutionary studies indicate a star traverses the instability strip in $10^{7}$ to $10^{4}$ years, depending on the star's mass ( 4 to $9 M_{\odot}$ ). During the traversal the period varies by approximately a third. Thus, detectable secular changes in the period of the order of seconds per year are to be expected.

A most striking cepheid relationship is the correlation between Iuminosity and period, the period-Iuminosity (P-L) law. This was first noted by Miss Leavitt around the the turn of the century in her study of cepheids in the Small Magellanic Cloud (SMC). The P-I relation for
almost any magnitude - photovisual, photographic, the B, V magnitudes of the UBV system, etc. - is of the form --

$$
\begin{equation*}
m=a+b * \log P, \tag{1.-19}
\end{equation*}
$$

for a wide range in logP. The magnitude $m$ is most often taken as the magnitude of the intergrated mean intensity. Non-linear loge terms in Eq. (1-19) should be small. We can demonstrate this by a crude calculation. We assume that in the mean a cepheid can be represented by a black-body at a particular temperature ( $T_{b b}$ ). As cepheids of longer period are in the mean cooler, decreasing $\operatorname{logT}_{\mathrm{bb}}$ is equivalent, in a rough sense, to increasing $\log P$. We calculate for values of $\log T_{b b}$ the bolometric, B, and V magnitudes. Now physically Eq. (1-19) probably best represents the variation of $M_{b o l}$ with period. If such is the case and the B Iuminosity is a constant fraction of the bolometric $\operatorname{lum}$ inosity for all $\log \mathrm{T}_{\mathrm{bb}}$ (logP), then the B magnitude would also vary linearly with logP. For pure black-bodies this is an impossibility. The true change of the $B$ magnitude with $\log _{\mathrm{bb}}$, assuming $M_{b o l}=$ const. $\operatorname{logr}_{\mathrm{bb}}$, is shown in upper left panel of Fig. 1.5 as the solid line, with arbitrary normalization so the $M_{b o l}$, dashed line, and the $B$ curves are equal at $T=7000{ }^{\circ} \mathrm{K}$. In the lower left panel of Fig. 1.5 the results for $V$ are shown. The prediction from this simple calculation is that there should be a discernible downward turn at low $\log _{\mathrm{bb}}$ (large $\log P$ ) values. This is in good agreement with the photometric $P-I$ relations for $V$ and $B$ determined from a combined study of cepheids in our galaxy, SMC, IMC, M31, and NGC 6822 by Sandage and Tammann (1968). 'lhe Sandage-Tammann results are shown in the right panels
of Fig. 1.5, where the dashed line represents the straight line which passes through the greatest segment of the respective P-I curves. The usefulness of the P-L relation is contingent upon precise evaluations of the zero point, a, and slope, b, in Eq. (1-19). The paucity of absolute magnitudes, in any photometric system, for cepheids in our galaxy precludes the simultaneous determination of these constants. The usual assumption has been that the slope can be taken from the extensive observations of cepheids in the SMC. This ad hoc assumption is now reasonably well `supported by the observational (Sandage and Tammann 1968) and theoretical (Stobie 1969b) results. Though the observational results are still a little unsettled, especially for $V$, as can be seen in Table 1.1.

Some of the deviation in the slope determinations results from the small samples, the assumed form of internal absorption corrections in the SMC, and the intrinsic difficulties working with faint stars. But the major problem is probably the presently impossible task of selecting a homogeneous and representative sampling of cepheids - i.e., cepheids which are chemically similar, pulsating in the same mode or combination of modes, and are non-binaries. This problem is most likely illustrated by the differing results found by the Gaposchkin's (1966) when they separately analyzed cepheids with maxima preceding the minima by $0.3 P(=\Phi-\phi)$ and less, and cepheids with $\Phi-\phi>0.3$ (solutions $\# 2$ and ${ }^{\#} 3$ in their Table 9).

Once the slope of the P-L relation is known the galactic cepheids can be employed in two methods to give the zero point. The first and older method is through the study of the proper motions and radial velocities. A recent investigation is by Geyer (1970). Geyer first
analyzed the proper motions of one hundred and eighteen cepheids, broken up into five distance groupings. From each grouping the solar motion, $S_{\odot}(P M)$, is found. The analysis incorporates into its structure a distance scale determined by an assumed value of the zero point. As a second step the solar motion is evaluated from the radial velocities, $S_{\odot}(R V)$, a procedure which is distance scale independent. If the distance scale, based on the assumed zero point value, in finding $S_{\odot}(P M)$ is correct, the $S_{\odot}(P M)$ should equal $S_{\odot}(R V)$. If the equality is not found, the distance scale must be corrected by the factor $S_{\odot}(P M) / S_{\odot}(R V)$ $=\lambda$, or equivalently a correction made to the zero point of $5 \log \lambda$. A second method, by Kraft (see Kraft (1960) and references therein), is constructed from UBV data on the five cepheids in five different galactic clusters. Assuming chemical homogeneity the mainsequences of the clusters are fitted to the Hyades standard, thus giving the clusters' (B-V) reddening excesses. Assuming a ratio for the total to selective absorption, we find the distance moduli. These data give directly the absolute magnitudes for the associated cepheids. On the further assumption that the slope of the mean P-I relation is the same as for cepheids in the SMC the zero point is easily evaluated from the data on the five cluster cepheids to give the P-I relation --

$$
M_{v}=-1.67-2.54^{*} \log P
$$

Geyer would modiry the zero point to -1.88 .
A variation on the use of the cluster cepheids in our galaxy is that employed by Sandage and Tarmann (1968). Their analysis is not governed by considering Eq. (1-19) as being fundamental. They determine
a best mean P-L relation for cepheids in our and other galaxies, using the cluster cepheids in our galaxy as a control on the distance moduli of the external galaxies. The control procedure is to adjust the moduli until the scatter in the P-I diagram shows no systematic differences relative to the cluster cepheids. Their results have already been presented in the right panels of Fig。l.5.

A third, and rather novel, approach is that taken by Fernie (1964, 1965, 1967c). Starting with the prime equation --

$$
M_{b o l}=M_{b o l}-5 \log \left(R / R_{\odot}\right)-10 \log T_{e}+10 \log T_{e_{\odot}},
$$

he introduces observable quantities through a series of substitutions. These substitutions are as follows:

$$
\text { (1) } \quad \log \mathrm{T}_{\mathrm{e}}=-0.168 *(\mathrm{~B}-\mathrm{V})+3.87
$$

and

$$
M_{b o l}=M_{v}-0.36^{*}(B-V)-0.09
$$

which are derived from a combination of spectrophotometry and a study of model atmospheres (Oke 1961);
(2) $\log \left(R / R_{\odot}\right)=0.558 * \log P+1.260$,
a result of studying the radii derived from use of Wesselink's method (Fernie 1968b);

$$
\text { (3) } \mathrm{T}_{e_{\odot}}=58000^{\circ} \mathrm{K}
$$

and

$$
M_{b o I_{C}}=4 \cdot m^{m},
$$

the solar constants (Allen 1963). Using these secondary relations in the expression for $M_{b o l}$ gives --

$$
\begin{equation*}
M_{V}=-2.56+2.04 *(B-V)-2.79^{*} \log P . \tag{1-20}
\end{equation*}
$$

However, the observations indicate a $\partial V / \partial(B-V)$ which is color dependent, and of value 2.79-1.55* ( $B-V$ ). Using this as the coefficient for (B-V) in the above gives --

$$
\begin{equation*}
M_{V}=-2.56+2.79^{*}(B-V)-1.55^{*}(B-V)^{2}-2.79^{*} \log P . \tag{1-21-21}
\end{equation*}
$$

Applying Eq. (l-21) to the eight cepheids with well determined $M_{v}$ 's in binaries, associations, and clusters it is found that the average residual is not zero. However, minor improvements in the coefficients of Eq; (I-21) can be made to force the average residual to zero. The final period-Iuminosity-color (P-L-C) equation is --

$$
\begin{equation*}
M_{V}=-2.55+2.73^{*}(B-V)-1.60^{*}(B-V)^{2}-2.85^{*} \log P . \tag{1-22}
\end{equation*}
$$

Fernie makes a series of secondary checks on Eq. (1-22) and finds it is in excellent agreement with observations. To reduce Eq. (1-22) to a simple P-I relation we use the correlation --

$$
(B-V)=0.24+0.49 * \log P,
$$

so Eq. (1-2?) becomes --

$$
\begin{equation*}
M_{V}=-1.99-1.89 * \log P-0.38 *(\log P)^{2} \tag{1-23}
\end{equation*}
$$

Geyer's investigation indicates a small change in the zero point to -2.05 is needed. The non-Iinearity in Eq. (1-23) is obvious, but is it real? In form it produces a curvature opposite from our simple black-body analog to the cepheids, and it is in disagreement with the results of Sandage and Tammann (1968). It does agree with the results of Payne-Gaposchkin and Gaposchkin (1966). However, Sandage and Tammann consider the Gaposchkins' results to be vitiated by their over correcting for internal reddening in the SMC. A final resolution will have to await the time when the number of cepheids with good $M_{v}$ 's and intrinsic colors is sufficient to calculate from them alone the form of the P-L-C and P-I relations.

A resume of the $M_{v}$ evaluations is shown in columns two, three, and four of Table 1.2.

A major source of information on radii is from the application of Wesselink's method. The method is not without difficulties, and sometimes gives startling and ambiguous answers. The procedure rests on two suppositions that are not necessarily met in every case. The first assumption is that points of equal color are identical to points of equal temperature. But this is refuted by the observation that colorcolor plots in any photometric system are not lines, but loops. It is incumbent on us to make a most judicious choice of color. Invariably,
in the UBV system the color ( $B-V$ ) is the one chosen, as all observational data indicate this to be better than ( $U-B$ ) as an index of temperature. A second assumption is that the relative separation of the photosphere and the line-forming reversing layer remains constant during the pulsation. Abt (1959b) considers this condition is satisfied only if the pulsational expansion is twenty to hundred times the atmospheric scale height, an expected situation for the bulk of the classical cepheids. However, Christy (1968) finds from his non-linear model representation for $\beta$ Dor that the motion of the photospheric layers is approximately ten percent less than for the line forming region. This differential motion requires the Wesselink radius be reduced by ten percent. A third obstacle in utilization is observational, as the radial velocity and photometric observation are almost inevitably performed at different epochs, and by different observérs. This difficulty is surmountable only if the velocity and photometric results can be matched in phase to within 0 P 0 , otherwise the radius determinations are severely degraded (Fernie and Hube 1967). Overall the expected accuracy of Wesselink radii is of the order of ten to, fifteen percent.

As stressed by Reddish (1955), a fundamental relation should exist between period and radius. Fernie (1964, 1965, 1968b) has analyzed the set of best determined radii and finds a strong correiation between period and radius (this relation was used above in deriving Eq. (I-20)) --

$$
\begin{equation*}
\log \left(R / R_{\odot}\right)=0.558 * \log P+1.260 \tag{1-24}
\end{equation*}
$$

The dispersion about this linear relation is markedly larger for a fraction (1/3) of the cepheids than would be expected on any set of reasonable premises. Fernie then makes the ad hoc assumption that the stars with large deviations - $\eta$ Aql, W Sgr, $\beta$ Dor, X Cyg - are pulsating in other than the fundamental mode, and adjusts their periods by dividing by 0.71, the ratio of the first overtone to the fundamental. For one star, U Car, the adjustment is made assuming the star is pulsating in the third overtone. This process greatly reduces the scatter, but whether any legerdemain of this nature is a valid indicator of overtone pulsation is, we believe, debatable. In fact, in one instance, for $\beta$ Dor, the situation is ambiguous. Fernie gives a value of $79 \mathrm{R}_{\odot}$. Christy (1968) using recent data finds a radius of $69 \mathrm{R}_{\odot}$, which he further reduces by ten percent as mentioned above, to give a final value of $62 R_{\odot}$. Evading the issue whether the ten percent reduction is applicable to all cepheids with periods near ten days, Christy's evaluation are both very close to the value of $65 R_{\odot}$ predicted by Fernie's P-R relation (Eq. (1-24)).

A period-radius relation can be derived reasoning as Fernie did in creating his P-I relation. From the usual expression for $M_{b o l}$ we have the instantaneous relation --

$$
\begin{equation*}
5^{*} \log \left(R / R_{\odot}\right)=-M_{b o l}-10^{*} \log \mathrm{~T}_{\mathrm{e}}+\text { Const. }_{\odot}, \tag{1-25}
\end{equation*}
$$

into which we substitute

$$
M_{b o l}=M_{v}+a_{1}^{*}(B-V)+a_{2}
$$

and

$$
\log _{e}=b_{1}^{*} *(B-V)+b_{2} .
$$

Averaging over a pulsational cycle gives --
$5^{*}\left\langle\log \left(R / R_{\odot}\right)\right\rangle=-\left\langle M_{v}\right\rangle-\left(a_{1}+10 b_{1}\right) *\langle B-v\rangle+\left(\right.$ Const $\left._{\odot}-\mathrm{a}_{2}-10 b_{2}\right)$.

Assuming an ensemble average is obtained upon substituting the mean relations .-.

$$
\left\langle M_{v}\right\rangle=c_{1} * \log P+c_{2}
$$

and

$$
\langle B-V\rangle=d_{1} * \log P+d_{2},
$$

we have

$$
\begin{equation*}
5 *\left\langle\log \left(R / R_{\odot}\right)\right\rangle=\left(-c_{1}-a_{1} d_{1}-10 b_{1} d_{1}\right) * \log P+\left(\text { Const } \cdot C^{\left.-a_{2}-10 b_{2}-c_{2}-a_{1} d_{2}-10 b_{1} d_{2}\right) . . . . ~}\right. \tag{1-27}
\end{equation*}
$$

Accepting Sandage and Tammann's expressions for $M_{b o l}$ and $\operatorname{logT}_{e}$, correcting their Eq. (7) for $\langle B\rangle-\langle V\rangle$ by 0.02 to make it correspond more closely to $\langle B-V\rangle$ (Kraft 1961), and linearizing their $\left\langle M_{V}\right\rangle-\log P$ ridge line $\left(\left\langle M_{v}\right\rangle=-1.50-2.73 * \log P\right)$ we find upon substituting into Eq. (I-27) that --

$$
\begin{equation*}
\left\langle\log \left(R / R_{\odot}\right)\right\rangle=0.655^{*} \log P+1.131 \tag{1-28}
\end{equation*}
$$

Investigators often give rather small error estimates for their values of the coefficients $a_{1}$, $a_{2}$, etc.; but a comparison of results between equally competent researchers reveals that systematic errors can be larger than the quoted internal errors. It is expectea that the mean errors of the constants in Eq. $(1-28)$ can easily be of the order of
+0.1. A comparison between Eqs. (1-24) and (1-28) is shown in columns five and six of Table lo2。

The masses of the cepheids can be inferred from the pulsational equation ---

$$
P_{*} / \sqrt{ }\left(\rho_{\rho} / \rho_{\odot}\right)=P^{*}\left(M / M_{\odot}\right)^{\frac{1}{2}}(R / R /)^{-\frac{3}{2}} .
$$

Christy's (1968) theoretical results indicate that a reasonable expression for $Q$ is of the form --

$$
\begin{equation*}
\left.Q=A *\left(M / M_{\odot}\right)^{-\frac{1}{4} *(R / R}\right)_{\odot}^{\frac{1}{4}} . \tag{1-29}
\end{equation*}
$$

Substituting Eq. (1-29) into the pulsational equation, and letting $\log \left(R / R_{\odot}\right)=a_{1} * \log P+a_{2}$ gives --

$$
\begin{equation*}
\log \left(M / M_{\odot}\right)=\left(7 / 3 * a_{1}-4 / 3\right) * \log P+7 / 3 * a_{2}+4 / 3 * \log A . \tag{1-30}
\end{equation*}
$$

We note that Eq. (1-30) predicts a decrease in mass with period for all $a_{1}$ less than $4 / 7$ ( 0.571 )。 If we accept Fernie 's P-R relation, we would have this result; and the same would occur whether $Q$ is a pure constant, or obeys the observational relationship with period as determined by Kraft (1963) [logQ $\sim 0.1 * \log P+$ Const.]. To circumvent this difficulty, and as the radius results are comparable to those found by Fernie, we use Eq. (1-28) for the variation for logR with logP. To fix the constant $A$ in Eq. (1-29) we take $Q=0.042$ at a period of two days, forcing agreement with the observed ratio (Oosterhoff 1964, Leotta-Janin 1967) of first overtone to fundamental $\left(P_{1} / P_{0}=0.71\right)$ for short period cepheids.

The final expression for $\log \left(M / M_{\odot}\right)$ is -

$$
\begin{equation*}
\log \left(M / M_{\odot}\right)=0.195^{*} \log P+0.570 \tag{1-31}
\end{equation*}
$$

An alternative estimation procedure is to make use of the massluminosity relationship. For the zero-age-main sequence we have, from the work of Kelsall and Strömgren (1966), for a composition appropriate for young Pop. I stars $(X=0.60, Y=0.36, Z=0.04)$--

$$
M_{b o l}=3.53-8.44 * \log \left(M / M_{\odot}\right)
$$

Assuming the cepheids lie one magnitude above their initial ZAMS position, and using the appropriate subsidiary equations from Sandage and Tammann we find the above equation results in the relation.--

$$
\begin{equation*}
\log \left(M / M_{\odot}\right)=0.344^{*} \log P+0.475 \tag{1-32}
\end{equation*}
$$

A comparison of the mass estimates derived from the equations developed here, the evolutionary calculations of Iben (1965, 1966a, b, c) and the pulsational calculations for a helium content of 0.45 by Stobie (1969c) is shown in columns seven through ten of Table 1.2. On the whole the discrepancies at any period are tolerable, never exceeding forty one percent.

The more direct method of mass determination from the study of binary motions can not presently be carried out for cepheids. Thiessen (1956) interpreted the 27 day variation in the light of the A5 supergiant BM Cas as arising from a cepheid companion. Under this
assumption the cepheid mass would be approximately twenty three times that of the sun. The data is scant, and the analysis therefore of doubtfulu quality. For those cepheids with distinquishable physical companions ( $\delta$ Cep (Fernie I966a, Worley 1966, Vitrichenko and Tsarevskii 1969), $\alpha$ UMi (Fernie 1966b), $\ell$ Car (Fernie 1967b)) the separations are so great that the orbital periods are too long to be useful in mass determinations. There is the exciting double cepheid CE Cas a and CE Cas b in the galactic cluster NGG 7790. Both are cepheids with the nearly equal pulsational periods of 5.14 (a) and 4.47 (b). But here the orbital period is minimally hundred thousand years. An analysis by Sandage and Tammann (1969) incorporating a study of the stars' magnitudes and colors, and a comparison with evolutionary tracks, is only capable of indicating a mass ratio $-M_{b} / M_{a} \cong 1.007$.

However, the observational determination of cepheid masses looks promising. Lloyd Evans (1968) has recently re-evaluated. the frequency of spectroscopic binaries among classical cepheids. The study makes use of the variability of the radial velocity, and the verified correlation between photometric anomalies and binary occurrence. Lloyd Evans finds that at least fifteen percent of all cepheids are spectroscopic binaries. This estimate is almost an order of magnitude larger than that suggested by Abt (1959a) in an earlier discussion.

To capitalize on this situation will require a substantial amount of observational work. Two new techniques can be of great aid. Griffin (1967, 1969) has constructed a photoelectric radial-velocity spectrometer capable of determining six to eight velocity measures per hour, with a precision of approximately one kilometer per second. This tremendous enhancement of the data gathering rate is such as to make a
large, systematic program feasible. In addition, it may be possible to rise above the statistical limitation of spectroscopic binary mass analysis by the use of space-scanning photometers (Rakos 1965, Franz 1966). With a scanning photometer we could detect close, faint binaries which are "Iost" in more conventional procedures due to the intrinsic brightness of the cepheids.

The growth of photographic spectroscopy, and the desire to fathom the complexities of cepheid behavior were coeval. Much of the spectroscopic results for the cepheids was, however, of a transitory nature, but a significant portion of the researches were of such merit that they are still cited in the most current investigations. We here briefly review the more salient findings. For a more complete review, with extensive reference citations, see Kraft (1960).

Radial velocities have been determined by workers since the 1890 's. Large, ambitious, and precise programs have been carried out by men such as Joy, Jacobsen, Sanford, and Stibbs (see Lloyd Evans (1968) for detailed references). At present there is data for some two hundred cepheids of all types. There is a strong linear correlation between light and velocity amplitude up to a velocity amplitude of ${ }^{-} \sim 50 \mathrm{~km} / \mathrm{sec}$ and light amplitude of $\sim 1 . \frac{m}{5}$, after this point the velocity amplitude increases more slowly with the light amplitude (maximam light . amplitude is $\sim 2.0$ ). The velocity and light curves are virtual•mirror images of one another, with maximum velocity at minimum light, etcetera. Though there does appear a systematic phase lag in the velocity of $\sim 0.1$ with respect to the light variations. The radial velocity data in conjunction with photometry allows for the determination of radii, as we have seen above. A second major use of the velocity data is the
detection of companions.
At classification dispersions ( $\sim 100 \mathrm{~A} / \mathrm{mm}$ ) the spectra of cepheids very closely resembles that of their non-variable counterparts, the supergiants. This feature is agreed upon by even the most astute observers. At light maximum the cepheids, independent of period, are equivalent to $F 5$ - F8 Ib stars. Anomalies are noticeable, particularly in stars with periods greatex than five days, in that the hydrogen lines are conspicuously stronger than expected from the estimate of the spectral type from the metal lines. There is also a slight enhancement in the Ti II and $F e$ II lines. At light minimum the spectral types go toward the later types smoothly with period.

High dispersion ( $2-20 \mathrm{~A} / \mathrm{mm}$ ) work gives much data on line shapes. It is found that the profiles can be accounted for by invoking the effects arising from the geometry of pulsation, "level effects" resulting from a velocity gradient in the atmosphere, and phase dependent turbulence (micro and macro) strengths. The inclusion of rotational effects appears unnecessary on the basis of evolutionary arguments (Kraft 1966). The model atmosphere analyses utilizing the high dispersion results show that the physical parameters $T_{e x c}, T_{i o n}, P_{e}$ and turbulent velocities are similar to those of supergiants at the same equivalent spectral type. There are two interesting transitory instances during the pulsational cycle where the cepheids differ markedly from the supergiants. One is the peculiar doublings in the low excitation lines of Fe I, Ti II and H , which apparently indicates that material is falling back onto the star. Second is the anomalous behavior of the Ca II emission. In essence the emission is just totally distinct from that observed in the supexgiants. This is most puzzling
for it is then difficult to argue for a common mode of origin, yet every other indicator points to the great similarities in the atmospheric structures. As an example of the divergence, if we calculate the absolute magnitudes for cepheids via the Wilson-Bappu procedure the prediction is that the cepheids are two to three magnitudes brighter than is conceivable by any other mode of magnitude evaluation.

Our more pressing interest in the elemental abundances for cepheids is not well satisfied by the present literature. An indirect argument that indicates solar or Hyades like metal abundances is the virtual similarity of the cepheid spectra as compared to normal supergiants. More substantive work during the last decade is slight. Three southern cepheid variables have been meticulously studied by Bell and Rodgers. While their analyses do incorporate the assumption of approximate solar metal abundances, by a system of ingenious checks and balances they are able to insure that a systematic indication of over or under abundance will be correct. For $x$ Pav, which is probably of old Pop. I type, they find a deficiency in [Fe/H] of -0.42, and for elements synthesized by slow neutron capture the [s.n.c./Fe] is $\approx-1.0$ (Rodgers and Bell 1963, 1968b). For B Dor they find no inconsistency with the idea of solar abundances, though the line strengths for Eu II are anomalous (Rodgers and Bell 1964). In a first paper on $\&$ Car they report finding a lithium line at 6707 A, a "first" for cepheids. The strength of the line indicates a [Li] of -0.4 (Rodgers and Bell 1968a). This implies an abbreviated extent for the photospheric convection layer, otherwise the lithium would have been burned up. In a second paper (Bell and Rodgers 1969), heralding for them the use of computer synthesized spectra, they are able to determine differentially the near
equivalence in metal abundances for $i$ Car and $\delta \mathrm{CMa}$, with some likelihood that $\ell$ Car possesses a higher abundance of metals, but still in the Hyades range. Abt et al. (1966) have analyzed the short period cepheid IV Cam. In IV Cam the metal lines appear weak. In addition, the star's light amplitude is large for its period. This combination led some to propose that if the SMC cepheids were similar to IV Cam, their large light amplitudes relative to their periods could be explained on the basis of chemical anomalies. This appears to be incorrect from the Abt et al. work, for they find IV Cam is of normal metal abundance. The weakening of the metal lines can be explained by a low value for the micro-turbulent velocity. However, it is admitted by them that the erection or rejection of an hypothesis on the basis of a single star is of dubious value.

## 1-4. Intrinsic Colors

The precise removal of interstellar-reddening effects is of paramount importance, if observed colors are to attain their maximum usefulness. There are numerous methods used by observers, but we here described briefly the four predominant procedures.

A useful assumption is that a particular color for the cepheids is constant at maximum light, independent of period. This is reasonable as it reflects the observed constancy of spectral type at light maximum. The determination of a color excess is simply obtained from the observations under this assumption, if we know, either by analysis or substantial qualitative evidence, the value of the particular color at light maximum. Once a color excess is found, all other excesses maybe deduced if color excess ratios are known. This procedure has been used by Gascoigne and Eggen (1957) for classical cepheids. They
took $(P-V)=0.25$ at light maximum, a value indicated by the SMC cepheids.
An interesting study which indpendently demonstrates the reasonableness of near color constancy of ( $P-V$ ) at light maximum is that of Stibbs (1955). The distance modulus of a cepheid is given by --

$$
(m-M)=5 * \log (r)+X_{1} * E_{1}(r, b)-5,
$$

where $E_{1}$ is the selective absorption in the six-color system as a function of distance and galactic latitude, and $X_{1}$ is the known ratio of total to selective absorption in the six-color system. The functional dependence of $E_{1}$ on distance and galactic latitude can be found from a galactic obscuration model (Stibbs chose a model by Parenago). Given an obscuration model, we have all that is needed for a self-consistent, boot-strap determination of $\mathbb{E}_{2}$. We first determine the distance modulus using the $m$ from the observations and the calculated absolute magnitude, assuming the correctness of the P-L relation. The second step is to guess at $r$, derive $E_{1}$ from the obscuration model, and calculate an ( $m-M$ ). We compare the calculated ( $m-M$ ) to the observational evaluation, and continue to guess at $r$ until the two determinations for $(m \sim M)$ are identical. The resultant $E_{1}$ is only as precise as the obscuration model, and the assumption that the P-I relation is valid, for any particular star. Once $\mathbb{E}_{I}$ is given we use it in the relation --

$$
(P-V)=(P-V)_{o b s}-\left(X_{1} / X\right) * E_{1},
$$

where $X$ is the ratio of total to selective extinction in the $P, V$ system.

From a study of approximately thirty cepheids it is found that --

$$
(P-V)_{\max }=0.17+0.18 * \log P
$$

In the range $1.2 \leq \log P \leq 2.0$ the above relation gives a $(P-V)_{\max }$ close to the observed SMC value of 0.25 .

A second method is that employed by Kron (1958), and Kron and Svolopoulos (1959). In the six-color system (UVBGRI) the $F$ through K5 supergiants are dispersed in a (V-B) versus (R-I) diagram by reddening, which moves a star's color away from the thermal locus, as is shown in Fig. l.6. Breaking the stars up into subgroups the evaluation of an adequate mean reddening line in the diagram is possible. To fix the position of the thermal locus as simply the blue boundaxy of the scattered points is imprecise, as even the brightest and nearest supergiants are probably reddened. Kron emphasizes the idea that stars at the higher galactic latitudes are the least reddened, and thus a best choice is to position the thermal locus slightly to the blue side of these high latitude stars. His thermal locus is shown in Fig. 1.6 as the solid line. On the assumption that at each phase point a cepheid's colors are equivalent to those of a supergiant, the color excess at any phase point can be estimated. The final color excess for a cepheid is the average value of all excesses at a number of phase points (usually ten evenly spaced points are sufficient).

A third procedure is that proposed by Kraft (1963). The combination of $\Gamma$ and UBV photometry in a two step process is capable of giving accurate intrinsic colors for cepheids. Gamma photometry measures the G-band strength in a manner insensitive to the effects of reddening.

There is a smooth and strong correlation between the $\Gamma$ magnitude and the MK spectral type for supergiants. To derive an intrinsic ( $B-V$ ), $(B-V)_{0}$, relationship with respect to spectral type, use is made of the cepheids in galactic clusters. At many phases $\Gamma$ and ( $B-V$ ) are observed. From a knowledge of the $E_{B-V}$, as derived from the $B$ stars in the clusters, the observed ( $B-V$ ) is simply converted to $(B-V)_{O}$. The spectral type at each phase is assigned from the observed value of $\Gamma$. By this procedure Kraft developes a (B-V) ${ }_{0}$ versus spectral type relation. To determine the $E_{B-V}$ for any cepheid, or supergiant, we first assign a spectral type from the value of $\Gamma$; second, we read off the associated $(B-V)_{O}$, and then simply take the difference between the observed ( $B-V$ ) and (B-V) ${ }_{0}$. This procedure is illustrated in F'ig. 1.7. A criticism of Kraft's results is that the ( $B-V$ ) excesses found from the $B$ stars in the clusters are not directly applicable to the cepheids. This is an inherent problem in a broad-band system where the color excesses are a function of spectral type. Corrections to Kraft's work taking into account the variation of $E_{B-V}$ with spectral type are given by Fernie (1963). A additional refinement is the allowance for the variation of $E_{B-V}$ with phase for a cepheid. This improvement has been performed by Nikolov (1967a,b). In these last investigations attempts are also made to determine ( $\mathrm{U}-\mathrm{B})_{o}$ for both cepheids and supergiants through a relationship connecting $E_{B-V}$ to $E_{V-B}$.

A final method is one, originally proposed by Becker (1938), which tries to eliminate the effects of reddening by an appropriate combination of colors. The procedure is best recognized by the construction of $Q$ in the UBV system --

$$
Q=(U-B)-0.72^{*}(B-V),
$$

where the coefficient of ( $B-V$ ) is simply the slope of the reddening line in the ( $\mathrm{U}-\mathrm{B}$ ), $(\mathrm{B}-\mathrm{V})$ diagram. By this process $Q$ becomes statistically independent of reddening. Similar reddening free colors have been used by the WaIravens (1960) in their five-color system, and by Strömgren (1966) in his four-color work. This is the method used in our investigation and is discussed subsequently.

## 1-5. Aims of the Investigation

Having determined intrinsic colors in a photometric system we search for internal systematics, and for correlations with stellar properties. In the UBV system the internal relations linking color and period, and blue amplitude and position in the instability strip are primary findings. Deviations from the mean relations are useful as indicators of chemical anomalies, and in detecting unseen companions. Using external information we are able to calibrate ( $B-V$ ) with $\log T$, and form a meaningful P-I relation, so as to give us the unambiguous location of the cepheid strip in the $H-R$ diagram. This information is of great use in creating theoretical pulsation models, and in evaluating the correctness of theoretical evolutionary tracks. Much similar information is gathered by other broad pass-band photometric systems.

Further ground based photometry is justified only if it is performed within the framework of a photometric system designed primarily to evaluate basic physical parameters in a reasonably direct manner. The composite photometric system of this investigation satisfies this prime condition. We have four major objectives for a further investigation of the photometric properties of cepheids and supergiants.

The four-color system of Strömgren (1966) allows one color to be used to eliminate the effects of interstellar reddening, and uses'the remaining two color indices to give data on the strength of the Balmer discontinuity (gravity) and the abundance of metals. This system is used here in conjunction with the three-color system of Crawford (1961). Crawford's system gives two colors relevant to the study of supergiant and cepheid stars. The colors measure the strength of the G-band and the break in the spectrum caused by the CN band head at 4215 A. With this composite system we try to do the following:
(1) Find where the cepheids and supergiants fit in the Strömgren system, in order to complement the careful studies for main-sequence stars;
(2) Ascertain whether the composite system is an adequate survey tool, in the sense that it is possible to segregate stars, particularly supergiants, into their respective luminosity classes;
(3) Determine if the strong, unexplained, correlation between metal, and $C$ and $N$ abundances for main sequence stars as found by van den Bergh and Sackmann (1965) is also evidenced in supergiants and cepheids;
(4) Use the Strömgren metal index to investigate variations. in relative metal abundances in cepheids and supergiantis as a function of galactic location.

The complete satisfaction of the first point is not possible. The colors of this investigation are neither identical to or transformable to the standard strömgren system. However, the range in the Balmer and metal indices for the stars studied are far larger than the
deviations between our systems at any fixed color, or spectral type. Thus, the difficulty is of little importance for delineating gross features and in the interpretation of the indices, but it is bothersome when comparing minor details.

Relevant to the last objective, Conti and Deutsch (1966, 1967) raise the issue that differences of Strömgren's metal index between similar stars do not necessarily arise solely from relative metal abundance differences. Their objection is that the differences can arise from variations in the micro-turbulent velocities. This point is critical, for if true it vitiates the use of the metal index. The micro-turbulent velocities for the supergiants are appreciable, have strengths correlated with spectral type, possess a substantial dispersion at any one spectral type, and vary in a quasi-periodic manner for any one star (Rosendhal 1970). The micro-turbulent velocities are phase dependent for the cepheids. Strömgren points out that even if the Conti and Deutsch proposition is true, the trouble can be unimportant if the micro-turbulence is not an independent parameter. The problem is addressed in a quantitative manner in the studies by Barry (1967), McNamara (1967), Kraft et al. (1968), and Chaffee (1970) for main-sequence stars. Their sum opinion refutes, except in a few cases, the Conti and Deutsch hypothesis. As Rosendahl (1970) finds much qualitative similarity in his rough model of micro-turbulent motion in supergiants as compared to Chaffee's for main-sequence stars, we are encouraged to believe that use of Strömgren's metal index is viable.

The body of this study is broken up into six self-contained chapters. In Chapter II we discuss the characteristics of the filters
and the method of data gathering. Chapter III is devoted to the data reduction process. Particular emphasis is placed on the method of.the meshing of the various observational runs, which were carried out over a period of two and one-half years. The reduction procedure is designed to give the best possible results for the standard stars. The standard star results are graphed to show the difficulty of any transformations between the observational system and the standard. Strömgren system.

Chapter IV gives the primary results for the supergiants stars in terms of colors freed from the effects of inter-stellar reddening. In addition, the color excess for each star is determined by reference to a simple linear thermal locus in a particular color-color diagram. Some comments are made on the difficulty of the physical interpretation of the colors on the Crawford photometric system.

A major aim of this investigation is the possibility of separating the supergiant stars from those of other luminosity classes. This problem is attacked in Chapter $V$. The mean color curves for luminosity classes $V$ through I are developed. The data on the supergiants come from this investigation alone. Data on the other Iuminosity classes are implemented by transformation of data from the work of other investigators. A study of various color-color curves indicate that precise separation of I-II stars is impossible. However, we find that a mapping of the mean color curves over into a H-R diagram gives.some improvement in luminosity class discrimination. This mapping is called the 'supercolor' method.

The basic cepheid results are presented in Chapter VI. New. periods are determined from analysis of published $V$ data in combination
with our visual magnitude results. The periods for five of the program cepheids have discernably varied from the values listed in the General Catalog of Variable Stars (Kukarkin et al., 1958). The cepheid colors are shown to be similar to those for the supergiants. A new and novel population discriminant is found through a study of selected color-color loop areas. This discriminant has the advantage of being unaffected by interstellar absorption. Color excesses are determined from an analysis of the location of the color-color loops in a $G,(b-y)$ diagram relative to a simple linear thermal locus. This thermal locus is virtually identical to that found independently for the supergiants. The correlation between Strömgren's (b-y) color and ( $B-V$ ) is linear, and indicates that effective temperatures can be well determined.

Chapter VII concludes the presentation with interpretations relying on the combination of supergiant and cepheid data. The supercolor method is re-introduced and applied to the data of individual stars. The method is found to locate the average position of a cepheid in the vicinity of the instability strip, and to separate approximately two-thirds of supergiants from all other classes of stars. The correlation between metallic and $C N$ absorption is pronounced. The value of the Balmer discontinuity index is shown to be insensitive to the effects of line blanketing. No clear correlation between galactic location and chemical composition is shown by the supergiants or cepheids.

## TABLE 1.1

SLOPE OF THE P-L RELATION FOR SMC CEPHEIDS.

Source V B

Arp (1961)
Kron \& Gascoigne (1965)
Payne-Gasposchkin \& Gasposchkin (1966)
Sandage \& Tammann (1968)
${ }_{5}{ }^{5}$
Slope of the straight line which best fits the P-I ridge line data given in their Table Al.

TABLE 1.2

PHYSICAL PROPERTIES OF CLASSICAL CEPHEIDS.



Fig. I. 1 Magnitude differences versus relative surface displacements at points of equal color for $\delta \mathrm{Cep}$.


Fig. 1.2. Comparison of the observed and computed light curves for $\delta$ Cep.


Fig. 1.3. Observed and computed line profiles for weak Fe I lines in $\eta$ Aql.


Fig. 1.4. Contribution of various regions in a star to the maintenance of pulsation.


Fig. 1.5. Variation with temperature of the $V$ and $B$ magnitudes for black-bodies (left panels). The observed dependence of the mean $V$ and $B$ magnitudes with period (right panels).


Fig. 1.6. Location of the $F, G$ and $K$ supergiants and the cepheid $S$ Sge in a six-color ( $V-B$ ), ( $R-I$ ) diagram.


Fig. 1.7. Determination of the ( $\mathrm{B}-\mathrm{V}$ ) color excess through the use of $\Gamma$ photometry.

THE OBSERVATIONS

2-1. The Filters
The observational system contains seven filters. Four are similar to those forming the StrOmgren uvby photometric system. These include an ultra-violet glass filter (u), and three - violet (v), blue (b), and yellow (y) - interference filters. The remaining three filters are those of Crawford's photometric system. These last filters (A, B, and C) are narrow pass-band interference filters, all located within the short wavelength base of $200 \AA$ extent centered about $4275 \AA$.

The transmission characteristics of the filters were measured twice during the period of the observations. The measurements were taken in June 1964 and November 1966 on the Cary spectrometer at the Kitt Peak National Observatory (KPNO) office in Tucson, Arizona. The two transmission scans indicate no evidence of aging effects, which sometimes are bothersome when dealing with interference filters. The transmission curves for the seven filters are shown in Fig. 2.1. The figures show only the regions where the transmission is measurable, but the full scan for each filter covers the range from $3000 \AA$ to $7500 \AA$ to make sure there exist no red leaks, etcetera. Pertinent filter characteristics are presented in Table 2.1.

The uvby filters, KPNO uvby set 非2, are not those used by StrOmgren, KPNO uvby set \#1, in defining his photometric system. In fact, they are not even 'duplicates' in the sense of being ordered from the initial
source to the original specifications. They are close facsimiles produced by Baird-Atomic, Inc. of Cambridge, Massachusetts. In Table 2.2 the two sets of uvby filters are compared. The $b$ filter is the most different, but it is the differences in the $v$ filter which, as we shall see in section 3.4 , cause the two uvby systems to be linked by non-linear transformations.

## 2-2. Equipment and Data Gathering

The observations were carried out over a period of approximately two and a half years, starting in June of 1964. The dates of the individual observational runs and other related information is compiled in Table 2.3. All the observations were made at the Kitt Peak installation of the KPNO.

Two different sixteen inch telescopes were used. Both instruments are off-axis mounted, possess Cassegrain optical systems, and are manufactured by Boller and Chivens. They are scaled down versions!of the \#1 thirty six inch and the eighty two inch Kitt Peak telescopes, with focal ratios of 13.5 and 7.6 , respectively.

The optical arrangement of the single-channel photometers isl of a standard format - focal plane diaphragm, movable beam-interceptor mirror with its associated small angle microscope, field lens, filter ;bolt, fuzed quartz window, and photomultiplier in a dry ice, refrigerated box (see Johnson (1962), Fig. 1, for the standard instrument arrangement).

The focal plane diaphragms were selected each night on the basis of seeing conditions. It was sometimes necessary, if the seeing improved or deteriorated, to change the diaphragm during the course of a night. As the star fields are not dense the changing of the diaphragm size had no detectable effects, except on the magnitude of the sky readings. The
majority of the observations were made with a diaphragm diameter of approximately fifteen seconds of arc, with an occasional use of diaphragms of eight or thirty seconds of arc diameter.

The detectors used were RCA 1P21 photomultipliers, cooled with dry ice. The dry ice was packed into the refrigeration box at least two hours before the beginning of each night's run, and replenished throughout the night as needed. The tubes were operated at a working voltage of nine hundred volts.

The constant-amplified photomultiplier output is accumulated for a preset time interval by a discretized, variable-gain, integrator module, and the resultant value of the integrated charge on an RC circuit is recorded on a standard twelve inch Honeywell strip chart recorder. The gain steps on the integrator module are in units of 0.500 magnitudes, with a total range of 10 magnitudes. Response settings are designated $\mathrm{A} 1, \mathrm{~A} 2, \ldots, \mathrm{~A} 6 ; \mathrm{Bl}, \ldots . . \mathrm{B} 6 ; \mathrm{Cl}, . . . ., \mathrm{C} 6 ; \mathrm{Dl}, \ldots . . \mathrm{D} 6$. The response at A 6 is approximately equal to that at B1, etc.. The gain calibration of the integrator module consists of determining the difference in the response at A6 as compared to that at B 1 , at B 6 compared to Cl , and at C 6 as compared to D1. This is easily implemented, and was done twice during each observational run and average values of the gain calibration used in the reduction of that run.

The observation of a star was executed in the following manner: integrated star readings (ten seconds) of filters $y, b, v, u, A, B, C ;$ sky readings on $C, B, A$; hour angle and MST noted on the chart; sky readings on $u, v, b, y$; star readings of $y, b, v, u, A, B, C . F$ For bright stars the sky readings are eliminated. For faint stars double-symmetric readings for each filter are made. The gain step for each filter is
chosen so that the height of the chart response is greater than, or equal to sixty percent of the maximum reading possible on the chart. The sky readings were taken at a single gain setting ten times more sensitive then the most sensitive filter gain setting, or at the maximum possible gain (D6) when this ten times ratio was impossible. This procedure in effect reduces the chart reading errors ( $\pm 0.1 \%$ ) in the sky deflections by a factor of ten relative to chart reading errors in star deflections, and thus are more appropriate to the level of the sky contribution. The larger sky deflections also aid in detecting instances when a faint star has been inadvertently positioned in the diaphragm. It is also easier to discern from the telescope anomalous behavior in the sky deflections.

A cleaned up replica of an observation of a single star is shown in Fig. 2.2.

A total of 1619 observations were made, of which 701,303 , and 615 are on standard, ordinary, and variable stars, respectively. The average number of star and sky deflections per observation are 16.2 and 3.7, respectively. This number of deflections indicates that the telescope. was devoted exclusively to observations approximately forty percent of each night. The remainder of the time was spent in choosing the next star to be observed, locating and centering the star in the diaphragm, annotating the strip chart, etc.. The reduction procedure is disc̣ussed in the next chapter.

## TABLE 2.1

TRANSMISSION CHARACJERISTICS OF THE FILITERS USED IN THIS INVESTIGATION.

|  |  | Half Power | Full Power |
| :---: | :---: | :---: | :---: |
| Filter | $<\lambda>$ | Mid-wavelength | Half-width |
| y | $5493 \AA$ | $5492 \AA$ | $118 \AA \AA$ |
| b | 4700 | 4700 | 48 |
| v | 4108 | 4106 | 71 |
| u | 3455 | 3453 | 192 |
| A | 4377 | 4375 | 40 |
| B | 4279 | 4277 | 43 |
| C | 4166 | 4165 | 27 |

## TABLE 2.2

COMPARISON OF THE TRANSMISSION CHARACIERISTICS OF uvby FIITTER SETS NO. 1 AND NO. 2.

Filter Peak Wavelength of Half-trans. Central Full Trans. Set Trans. Peak Trans. Points Wavelength Halfwidth --- y Filtex ---
$15 \quad 52 \% \quad 5355,5598 \AA \quad 5476 \AA \quad 243 \AA$
$2 \quad 72$

5498
5378, 5612
54.95 234
--- b Filter ---

1
47
4668
4588, 4762
4675
174

2
85
4700
4655., 4745

4700 90
--- v Filter ---
1
4094
4007, 4205
4106
198

2
60
$4110 \quad 4038,4169$
4104
131
--- u Filter ---

1
44
3433
3267, 3647
3457
380

2
37
3451
3267, 3641
3454
374

TABLE 2.3

SUMMARY OF THE OBSERVAITONAL RUNS AT KITT PEAK NATIONAL OBSERVATORY.

|  | - |  | Obse | rvation Da |  |  | --------- |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | June '64 |  | Dec. '64 | Feb. '65 |  |  |  |  |
|  | 6/3-15 | Oct. '64 | Jan. '65 | Mar. '65 | Oct. '65 | Feb. '66 | Nov. '66 |  |
|  | 6/18-21 | 10/17-26 | 12/29-1/10 | $2 / 26-3 / 7$ | 10/12-22 | 2/17-26 | 11/2-16 | Totals |
| Total Nights in Run | 17 | 10 | 13 | 10 | 11 | 10 | 15 | 86 |
| Expected Useful Nights | 12 | 7 | 6 | 6 | 8 | 6 | 9 | 54 |
| Useful Nights | 12 | 6六 | 0 | $7 \frac{1}{2}$ | 6 | 5 $\frac{1}{2}$ | 6 | 43妾 |
| Useful/Total | 0.71 | 0.65 | 0.00 | 0.75 | 0.54 | 0.55 | 0.40 | 0.51 |



Fig. 2.1. Transmission scans for the fillters used in this investigation.


CHAPTER III．

THE STANDARD SYSTEM

## 3－1．Photometric Quantities

Initially，we hoped to reduce our data making direct use of the uvby standards listed in the StrOmgren－Perry catalog（1962），and in the supple－ mental standard star data lists prepared by KPNO．For the ABC system it is necessary to construct a standard system，as no standard values have been published by Crawford．However，after a preliminary reduction of the first observational results（June 1964）it became obvious that the uvby data gathered using the four－color filter set $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 2 is not directly com－ parable with the StrOmgren system as defined by the StrOmgren－Perry catalog．The transformations connecting the observational system to the Strßmgren system are non－1inear，of high dispersion，and strongly（b－y）－ color dependent．These difficulties preclude the usefulness of the Str8mgren system＇s results in the data reduction，and demand that the ob－ servational system be totally self－contained．

We need a reduction procedure which incorporates the disjointed ob－ servation runs into a coherent body of observational quantities．To accomplish this a variety of schemes were tried，all of which produce observational systems which agree within the determined mean error of a single observation for any specified color．The two－stage，bootstrap process described below is the one that produces the smallest error per observation for every color．

The observational quantities are the following:
y - a photovisual magnitude determined totally by the response of the $y$ filter. It is adjusted so as to agree in the mean with the $V$ given in the Yale Bright Star (YBS) catalog (1964).
$c_{1}$ - a color index created from the difference of two colors, $c_{1}=(u-v)-(v-b)$. The value of $c_{1}$ is strongly correlated to the strength of the Balmer discontinuity.
$m_{1}$ - a color index which measures the effects of metal line absorption in the violet band as compared to the essentially metal clear regions in the blue and yellow bands. The index is formed by the difference (v-b) - (b-y).
$\mathrm{b}-\mathrm{y}-\mathrm{a}$ blue minus yellow color, similar to ( $B-V$ ), which is relatively insensitive to metal content.

G - a color formed from (B-A), which measures the break in the spectrum across the G-band.
$N$ - the color defined by ( $C-B$ ), which detects the break in the spectrum arising from the CN -band head at $4216 \AA$.

## 3-2. Basic Processing Procedure

Prior to discussing the overall reduction procedure, we describe the mechanism of reducing the data for a single star, and the reduction of all the star data on a single night.

For a single star the individual filter intensity readings are transformed to a common gain setting (A1) via the gain calibration of the integrator module. This is also done for the sky deflections. The sky deflections are then subtracted from the appropriate filter deflections.

For example, the raw data depicted in Fig. 2.2 give the following skycorrected filter deflections - 2 for $y, v$, and $b ; 4$ for $u ; 2$ for $A$ and B; and 4 for $C$. Each of these deflections are converted into magnitudes, and the filter magnitudes are averaged. The magnitudes are averaged as the major source of the differences in the deflections for a single filter result from variations in the optical depth of the atmosphere. These optical depth variations are reflected as linear perturbations in the magnitudes, this is not true for the deflections. The average magnitudes are utilized in forming the desired photometric quantities. These quantities are corrected to zero air mass in the manner described below.

To reduce a night's data the first step is the formation of single star data in the manner outlined above. After all star colors are reduced to zero air mass the individual differences between the calculated colors and the standard colors are determined. These differences are averaged to produce the commonly-called night corrections. Strymgren and KPNO observers find it is often possible to detect a time variation in the night corrections. These variations can be quite discontinuous. For example, it might be hetter to use one set of night corrections for all observations between 8 PM and 1 AM , and another set from 1 AM to dawn. We find no obvious time discontinuities in the night corrections, probably a result of using a minimum number of standard star observations per night. For each night we use only a single, gross set of night corrections. Once the set of night corrections are determined, all individual colors of the standard stars are improved by the addition of the appropriate night correction to the zero air mass color.

We note that in the first stage of the homogenization process the correction to zero air mass is performed using average extinction coefficients, and not the extinction coefficients determined for a particular night. These coefficients are the averages determined from all the extinction star observations gathered in the six runs from June 1964 to November 1966. At a high altitude observatory with clear skies it is better to use average extinction coefficients. In Table 3.1 the average coefficients are displayed. The results in row two of the table are those formed from the average magnitude coefficients. It is noteworthy that these are virtually identical to the color coefficient averages found from the extinction star, or the total standard star color data. This equivalence is a strong indicator of the stability of the absolute sensitivity in the photometric equipment, and the superb quality of the photometric nights at KPNO. The variation of the average magnitude coefficients with wavelength is smooth, and agrees reasonably well with a Rayleigh like $\lambda^{-4}$ dependence. This is illustrated in Fig. 3.I, where a $\lambda^{-4}$ dependent extinction coefficient is shown by the solid line (normalized to agree with the observational results at $4375 \AA$, the $A$ filter). The large value of $k$ at $5480 \AA$ (y) is discordant with the KPNO average and the Rayleigh curve. No simple explanation is possible, but it is true that a recent re-evaluation of $k(y)$ by KPNO does indicate a higher value is more appropriate, something of the order of 0.14 to 0.16 . In the first stage of the overall reduction the averages shown in row three of Table 3.1 are the relevant ones.

3-3. Construction of the Observational System's Standards
To start the homogenization of the runs, a particular initial group
is chosen. This is found to be a non-critical choice, and the FebruaryMarch run of 1965 was used. The nights in this run are reduced following the scheme given above. At the end of the run's reduction the colors for each star are averaged over all the nights observed. To these averages a constant is added so that in the mean they agree with the standards in common with the Strbmgren uvby system, and the $V$ system given in the YBS. The resulting colors and magnitude are then retained as those standard values which are the basis for the determination of the night corrections. The whole procedure is repeated, and new provisional standard values produced. This iterative boot-strapping is ceased when the ( $n-1$ )-iterate's standard values agree with the $n$-iterate's standard values to better than 0.001 in all quantities for all stars.

The next step is to meld this run with yet another. The June 1964 run is chosen. The average values of the February-March 1965 run are used in the first iteration as the standard values. At the end of the first iteration standard values are formed from the June 1964 stars alone. These are adjusted so that in the mean, as determined from stars observed at least three times in February-March 1965 and three times in June 1964, they are in agreement with the February-March 1965 run. Using these June 1964 results as the standards the whole procedure is iterated until the 0.001 level of agreement is reached.

At this juncture the February-March 1965 run and the June 1964 run standards are joined into a weighted standard star system, and used as the basis for coalescing the October 1964 run. The mean zero point adjustment is made only through stars observed at least three times in October 1964 and three times in the combined February-March 1965 plus June 1964 standard star catalog.

The above process slowly meshes the runs in the following order: February-March 1965, June 1964, October 1964, October 1965, February 1966, and November 1966. After this leve1 of coherence is obtained, all the runs are processed at a single time and iterated three times to produce a single smoothed standard star catalog. This preliminary smoothed total catalog of standard values differs in the mean from the six run merged total catalog by less than $0^{\mathrm{m}} .001$ in all quantities.

To obtain the final standard star results the following last stage of the boot-strap reduction procedure is performed. The stars from all the runs were processed in a single group. The only distinction from the previous stage is that on each night both the night corrections and the extinction coefficients for all quantities are determined from the standard star data. The average of these coefficients for all the nights in all the runs is listed in row four of Table 3.1. This total reduction of all the data was iterated three times to yield the final standard photometric quantities. The final results are presented in Table 3.2.

## 3-4. Final Comments

Some general supplemental comments are relevant. The two stage reduction procedure described was written by the author in Fortran IV language, and run on the IBM 360/91 at GSFC.

The probable errors for the observational quantities are listed in Table 3.3. It is encouraging that the accuracy attained in this study is comparable to that of the Str\|mgren-Perry results, for in the latter case observational nights of dubious quality could be totally removed as they were working with a much more extensive set of data than in this investigation, where it is essential to use every bit of information
gathered. It is to be stressed that no subjective weighting factors were used in the reduction, and all indications are that any such manipulation are ineffective in changing the results Iisted in Table 3.2.

In Figs. 3.2 through 3.5 comparisons between the observational photometric system and that of Stromgren's uvby system, and the $V$ system in the YBS are shown. The differences in the $\delta$ versus ( $b-y$ ) plots are in all cases formed by subtracting this investigation's results from. those of the external system's. It is impossible, as has been remarkedrbefore, to make transformations of high accuracy from this system to the Strbmgren system, except perhaps for the color $(b-y)$. The case of representing $V$ by the $y$ magnitude is quite satisfactory. However, there is the striking anomalous point for the G5 V star HR 7504. This star was observed on eight nights, and its value of $y$ is $5.990 \pm 0.003$ pe. There is no possibility of misidentification, which leads us to the conclusion the star has significantly varied since the YBS catalog was compiled. The entry in the YBS catalog does not appear to be in error as the value of 6.2 is given in other contemporary sources. The average difference of ( $V-y$ ) is -0.0094 if the non-photoelectric $V$ observations are included (+'s in Fig. 3.2), and -0.0067 if only the photoelectric determinations of $V$ are considered. Thus, some improvement in making $y$ match $V$ could be made by the systematic subtraction of 0.0067 . However, as this is below the listed accuracy of the YBS catalog, the y results remain as machine computed throughout the discussion.

## TABLE 3.1

THE COLOR-EXIINCTION COEFFICIENTS.

|  | $k(y)$ | $k\left(c_{1}\right)$ | $k\left(m_{1}\right)$ | $k(b-y)$ | $k(G)$ | $k(\mathbb{N})$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| kPNo Averages Determined Using <br> uvby Set No. 1. | 0.12 | 0.181 | 0.052 | 0.060 |  |  |
| Averages Developed from the <br> Average Magnitude Coefficients. | 0.161 | 0.180 | 0.066 | 0.054 | 0.020 | 0.032 |
| Averages Formed from the <br> Extinction Star Color Data. | 0.160 | 0.178 | 0.067 | 0.052 | 0.021 | 0.031 |
| Averages Formed from the Total <br> Standard Star Color Data. | 0.156 | 0.180 | 0.067 | 0.058 | 0.018 | 0.036 |

TABLE 3．2

| HD | SPECTRAL tYpe | OBSERVATIONS OF |  | THE STANDARD |  | Stars | NOT REPRODUCIBLE |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $Y$ | C1 | M1 | B－Y | $\begin{aligned} & \text { NO。 } \\ & \text { OBS。 } \end{aligned}$ | G | N | $\begin{aligned} & \text { NO. } \\ & \text { OBS. } \end{aligned}$ |
| 571 | F2II | 5.038 | 1.074 | 0.138 | 0.269 | 12 | 0.001 | 0.396 | 10 |
| 6961 | A7V | 4.357 | 0.957 | 0.234 | 0.085 | 10 | －0．105 | 0.352 | 1 |
| 9826 | F8V | 4.110 | 0.437 | 0． 158 | 0.348 | 82 | 0.079 | 0.360 | 82 |
| 10476 | KıV | 5． 239 | 0.378 | 0.300 | 0.512 | 4 | 0.216 | 0.385 | 4 |
| 18331 | Aiv | 5.188 | 1.040 | 0.163 | 0.054 | 4 |  |  |  |
| 19373 | GOV | 4.065 | 0.418 | 0.168 | 0.385 | 14 | 0.108 | 0.353 | 14 |
| 21120 | G8111 | 3.616 | 0.472 | 0.328 | 0.538 | 3 | 0.188 | 0.537 | 2 |
| 26574 | F2III | 40082 | 0.765 | 0.249 | 0.177 | 2 |  |  |  |
| 27022 | 65111 | 50.281 | 0.443 | 0.279 | 0.509 | 17 | 0.169 | 0.487 | 16 |
| 27309 | A SI | 5.392 | 0.521 | 0.210 | －0．092 | 7 |  |  |  |
| 30552 | F6V | 3.198 | 0.396 | 0.185 | 0.287 | 6 | 0.039 | 0.386 | 6 |
| 31398 | K31 1 | 2.681 | 0.229 | 0.817 | 0.941 | 17 | 0.407 | 0.814 | 16 |
| 39587 | G0V | 4.405 | 0.333 | 0.178 | 0.378 | 19 | 0.114 | 0.357 | 17 |
| 48329 | G8IB | 3．0021 | 0.213 | 0.702 | 0.855 | 17 | $0 \cdot 326$ | 0.868 | 16 |

TABLE 3.2


TABLE 3.2

## (CONTINUED)

| HD | SPECTRAL TYPE | $Y$ | C1 | M1 | $B-Y$ | $\begin{aligned} & \text { NO. } \\ & \text { OBS. } \end{aligned}$ | G | $N$ | $\begin{gathered} \text { NO. } \\ \text { OBS. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 103095 | G8VI | 6.442 | 0.198 | 0.215 | 0.477 | 10 | 0.172 | 0.339 | 8 |
| 103287 | AOV | 2.465 | 1.076 | 0.163 | 0.00 .9 | 2 |  |  |  |
| 103578 | A 3V | 5.556 | 1.072 | Vi. 194 | 0.059 | 9 |  |  |  |
| 107328 | K1III | 4.979 | 0.532 | 0.505 | 0.701 | 3 | 0.267 | 0.594 | 3 |
| 111812 | GOII I | 4.942 | 0.442 | 0.173 | 0.438 | 29 | 0.120 | 0.381 | 29 |
| 113139 | F 2 V | 4.940 | 0.565 | \%. 177 | 0.239 | 19 | -0.012 | 0.392 | 8 |
| 120315 | B3V | 1.893 | 0.279 | 0.089 | $-0.071$ | 4 |  |  |  |
| 122563 | GOVI | 6.222 | 0.542 | 0.109 | 0.629 | 2 | 0.120 | 0.442 | -2 |
| 127762 | A7III | 3.069 | 0.979 | 0.204 | 0.106 | 5 |  |  |  |
| 130109 | AOV | 3.756 | 1.044 | 0.153 | 0.004 | 17 | $-0.123$ | $0 \cdot 336$ | 2 |
| 142860 | F6IV-V | 3.859 | 0.412 | 0.146 | 0.318 | 17 | 0.051 | 0.372 | 5 |
| 143197 | K3III | 4.145 | 0.428 | 0.577 | 0.745 | 11 | 0.317 | 0.667 | 11 |
| 143761 | G2V | 5.418 | 0.373 | 0.156 | 0.391 | 11 | 0.113 | 0.338 | 11 |
| 159181 | G2II | 2.809 | 0.451 | 0.319 | 0.597 | 13 | 0.190 | 0.500 | 13 |

TABLE 3.2

## (CONT INUED)

| HD | SPECTR TYPE | $Y$ | Cl | M1 | B-Y | $\begin{aligned} & \text { NQ. } \\ & \text { OBS。 } \end{aligned}$ | G | N | $\begin{aligned} & \text { NO. } \\ & \text { OBS. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 182640 | For V | 3.368 | 0.710 | 0.187 | 0.193 | 4 | -0.030 | 0.388 | 2 |
| 182835 | $F 218$ | 4.651 | 1.465 | 0.093 | 0.406 | 12 | -0.004 | 0.424 | 12 |
| 185758 | GOII | 4.397 | 0.499 | 0.255 | 0.431 | 70 | 0.143 | 0.481 | 70 |
| 186427 | G5V | 5.789 | 0.401 | 0.188 | 0.409 | 8 | 0.139 | 0.356 | 8 |
| 186791 | K3I I | 2.708 | 0.209 | 0.779 | 0.935 | 13 | 0.401 | 0.790 | 13 |
| 187013 | F5V | 5.005 | 0.450 | 0.147 | 0.311 | 4 | 0.029 | 0.395 | 4 |
| 192514 | A $こ$ III | . 4.84 .3 | 1.283 | 0.157 | 0.067 | 11 |  |  |  |
| 192713 | G2IB | $5 \cdot 165$ | 0.317 | 0.404 | 0.631 | 3 | 0.193 | 0.618 | 3 |
| 194093 | F8IB | 2.230 | 0.912 | 0.317 | 0.375 | 4 | 0.077 | 0.477 | 4 |
| 202109 | GEII | 3.215 | 0.298 | 0.428 | 0.602 | 23 | 0.217 | 0.688 | 23 |
| 215027 | F5V | 3.772 | 0.440 | 0.175 | 0.284 | 5 | 0.028 | 0.390 | 5 |
| 211336 | FoIV | 4.198 | 0.752 | 0.206 | 0.170 | 13 | -0.053 | 0.382 | 9 |
| 212943 | Kotit | $4 \cdot 788$ | 0.457 | 0.415 | 0.634 | 2 | 0.244 | 0.531 | 2 |
| 217914 | G5V | 5.453 | 0.396 | $0 \cdot 234$ | 0.407 | 4 | 0.144 | 0.388 | 4 |

## TABLE 3.3

## STANDARD STAR PROBABIE ERRORS.

| Quantity | Kelsall | Strömgren-Perry |
| :---: | :--- | :---: |
| y | 0.0070 |  |
| $\mathrm{c}_{1}$ | 0.0089 | 0.0085 |
| $\mathrm{~m}_{I}$ | 0.0082 | 0.0071 |
| $\mathrm{~b}-\mathrm{y}$ | 0.0044 | 0.0057 |
| G | 0.0055 |  |
| N | 0.0051 |  |



Fig. 3.1 Variation of the extinction coefficient with wavelength. The solid curve is the Rayleigh extinction curve normaiized to the observations at 4375 R.


Fig. 3.2 Comparison of $V$ from YBS to the $y$ observed in this investigation.


Fig. 3.3 Comparison of $c_{1}{ }^{\text {i }} \mathrm{s}$ from the Strömgren-Perry catalog to those observed in this investigation.


Fig. 3.4 Comparison of the $m_{1}{ }^{\text {s }}$ s from the Strömgren-Perry catalog to those observed in this investigation.


Fig. 3.5 . Comparison of the (b-y)'s from the Strögren-Perry cat. alog to those observed in this investigation.

## CHAPTER IV

ORDINARY STAR RESULTS

## 4-1. Reduction and Resultis

Once the standard system is established, data reduction is straightforward. For each night the intensity readings are transformed into the basic photometric quantities by the procedure described in section 3-2. To these quantities air mass and night corrections are added. The appropriate extinction coefficients and night corrections are obtained from the analysis of the standard star data on that night.

Table 4.1 lists the final results for the ordinary (i.e., nonvariable) stars in this program. The spectral types are from the compilation by Jaschek et al. (1964). A number of stars require individual discussion, and this specific commentary is contained in the notes appended to the table.

## 4-2. Mode of Analysis

The major body of the ordinary star results is devoted to supergiant stars. These stars suffer much interstellar reddening. The effects of the interstellar reddening on supergiants is seen as the scater in the plot of $c_{1}$ versus ( $b-y$ ) shown in Fig. 4.1. For the $G$ and $K$ stars there is a discernible envelope, which probakly delineates the reddening-free, thermal locus. This simple pattern is immediately confused by the configuration of the interwoven $A$ and $F$ stars. As we shall see later, $c_{1}$ is a parabolic function of $(b-y)$, or spectral type. The question that must be settled is how best to eliminate the effects of reddening.

As mentioned in section 1-4 a standard technique used in eliminating the reddening from a multi-color program is to plot a particular color-color diagram. Then from an analysis of the least reddened stars (near-by or high latitude stars), and those for which the reddening is reasonably well-known (cluster or association members), a thermal locus can be determined. Once the thermal locus is known, color excesses can be procured for any one of the chosen colors. The deduction of all other color excesses is possible, if the color excess ratios are known with respect to one of the chosen colors. This last step requires external knowledge of the nature of the interstellar reddening as a function of wavelength, or spectral type information so reddening lines can be deduced from the photometric data itself. This procedure is quite adequate, but it does introduce a number of systematic effects which we wish to circumvent. Firstly, the thermal locus is a line delineating an unreddened boundary presumed to be true for all stars. This assumption that the thermal- locus is dispersionless is not necessarily correct. Secondly, the shape of the thermal locus cannot be well defined unless the distribution of unreddened, or slightly reddened, stars is sufficiently dense along its total path in the color-color diagram. Finally, the positioning of the locus is often subjective. These three effects can introduce hidden systematic errors in the deduced color excesses for the other colors.

Another method of suppressing reddening effects is exemplified by the construction of $Q$ in the UBV system. To illustrate this procedure we consider a system composed of the three observed quantities $c_{1}, c_{2}$, and $c_{3}$. Any $c$ is a composite of $c_{0}$, the intrinsic value of $c, E(c)$, the
c's color excess, and $e(c)$, the observational error. We drop $e(c)$ from the discussion for convenience. If the color excess ratios, $E\left(c_{1}\right) / E\left(c_{3}\right)$ and $E\left(c_{2}\right) / E\left(c_{3}\right)$, are known, we can construct two reddening free quantities. We denote these by bracketed symbols. The unreddened quantity associated with $\mathrm{c}_{1}$ is --
or

$$
\begin{aligned}
& {\left[c_{1}\right]=c_{1}-E\left(c_{1}\right) / E\left(c_{3}\right) * c_{3}} \\
& {\left[c_{1}\right]=c_{1}-\alpha * c_{3}}
\end{aligned}
$$

As each color is equal to its intrinsic value plus the reddening excess we have --

$$
\left[c_{1}\right]=c_{1_{0}}-\alpha * c_{3_{0}}+\left(E\left(c_{1}\right)-\alpha * E\left(c_{3}\right)\right),
$$

which reduces to --

$$
\left[c_{1}\right]=c_{1_{0}}-\alpha * c_{3_{0}} .
$$

Similarly for the other color we have --

$$
\left[c_{2}\right]=c_{2_{0}}-\beta * c_{3_{0}},
$$

where $\beta$ is the ratio $E\left(c_{2}\right) / E\left(c_{3}\right)$. The bracketed quantities contain the effects of the interstellar reddening only through the coefficients $\alpha$ and $\beta$. In the construction of the bracketed colors no reliance is made on knowing the location of a thermal locus. This process sacrifices one color to remove the interstellar reddening effects. The desirable characteristics of $c_{3}$, the sacrificed color, are that it be reasonably neutral as an indicator of stellar physical variables, and that the needed reddening excess ratios be less than unity. The color (b-y) of this investigation satisfies these demands, being mainly determined by stellar effective temperature.

The virtues of forming the bracketed quantities are that the dispersionless thermal locus is not introduced, mean lines can be determined statistically, and all stars regardless of their amounts of reddening can be included in the analysis of fundamental relationships. While it is difficult to argue for the overall superiority of this procedure on strong grounds, its intuitive neatness is very appealing.

## 4-3. Color Excess Ratios

The determination of the color excess ratios is carried out in three different ways - firstly, through use of the wavelength dependence of interstellar reddening and the filter characteristics; secondly, by an analysis of the cepheid colors at maximum light as functions of (b-y); and, finally, by the fitting of the bracketed quantities for the Ib supergiants with the color excess ratios left as free parameters. These three methods give rather dispersive answers, indicating the difficulty of obtaining good color excess ratios. Our hope is that an average of the results is meaningful, as the three methods are distinct, and each contains errors of different kinds.We discuss each of these methods in more detail below.

The effective wavelength of a filter, $\lambda_{e}$, is defined by the standard relation --

$$
\lambda_{e}=\int \lambda * F(\lambda) * T(\lambda) * S(\lambda) * d \lambda / \int F * T * S * d \lambda,
$$

where $F(\lambda)$ is the filter transmission, $T(\lambda)$ is the telescope plus photometric equipment response function, and $S(\lambda)$ is the stellar distribution function. In our case $F(\lambda)$ is well known from the spectrometer scans. Using reasonable functions for $T$ and $S$ it is found by numerical experimen-
tation that effective *wavength is most insensitive ( $\pm 3 \AA$ ) to these functions, except for the $u$ filter. The difficulty with the $u$ filter is that it lies in the region where the photomultiplier response is rapidly varying, and thus the determination of the effective wavelength is rather difficult as the responses of the individual tubes used are unknown. As a compromise we define $\lambda_{e}(u)$ with $T$ and $S$ set equal to one at all wavelengths. The values of the effective wavelengths are listed in, Table 4.2. The color excess ratios are determined by coupling a knowledge of the effective wavelengths with the results of Nandy (1964, 1965, 1966, 1967), and of Boggess and Borgman (1964) on the variation of the interstellar reddening with wavelength. The results of this are presented in Table 4.3. The large scatter in the ratios for $c_{1}$ and $\mathrm{m}_{1}$ is disappointing. The scatter in the ratios for $G$ and $N$ are much smaller, a reflection of the appreciably shorter wavelength baselines for these colors.

At maximum light the cepheids represent a class of stars of nearly identical spectral characteristics, independent of period. Thus, the scatter of cepheid colors at maximum light in any color-(b-y) diagram can be mainly attributed to the effects of interstellar reddening. We take advantage of this situation by determining the best linear relations between the various colors and (b-y). Clearly, the slopes of these straight lines are the desired color excess ratios. The findings of such a study for the program cepheids are given in Table 4.4. .

A final method is to employ all the supergiant data. The procedure is the following. The spectral types are taken as reliable, independent information. This is a judicious choice as the assignment of spectral type has the desired advantage of being relatively unaffected by interstellar reddening. Digitizing the spectral types so $\mathrm{A} 0=0.0, \mathrm{AI}=\mathrm{I} .0$,
...., K5 $=35.0$ transforms them to a numerical coordinate, X . The reddening free colors we use in the analysis are --

$$
\begin{aligned}
& {\left[c_{1}\right]=c_{1}-\alpha_{c_{1}} *(b-y),} \\
& {\left[m_{1}\right]=m_{1}-\alpha_{m_{1}} *(b-y),} \\
& {[G]=G-\alpha_{G} *(b-y),}
\end{aligned}
$$

and

$$
[\mathrm{N}]=\mathbb{N}-\alpha_{N} *(b-y),
$$

where $\alpha_{c_{1}}=E\left(c_{1}\right) / E(b-y)$, etcetera. Each of the bracketed quantities are fitted by an eighth order power series in $X$, with the alphas left as free parameters. The dispersions about the fitting lines are investigated as functions of the alphas. The normalized sum of the deviations squared about the fitting lines are shown as functions of alpha in Fig 4.2. The graph demonstrates that for each of the bracketed colors there is a "best" alpha. These best alphas are indicated by arrows on the graphs and are listed in Table 4.5. The broadness of the curves of normalized $S$ with alpha for $\left[c_{1}\right]$ and $\left[m_{1}\right]$, and the sharpness in the curves for the cases of [G] and [N] are directly understandable in terms of the broadness and narrowness of the associated wavelength baselines. We accept these alphas as representative of the most appropriate statistical values for the color excess ratios.

The final adopted values for the color excess ratios are the weighted averages of the above three sets of results. The subjective weightings applied are - 2 for the cepheid results, 1 for the interstellar- $\lambda_{e}$
findings, and 1 for the free parameter fitting answers. These adopted values and those used by Stromgren (1966), and Williams (1966), in their investigations are shown in Table 4.6.

## 4-4. Bracketed Colors Versus Spectral Type

Using the adopted color excess ratios the Ib supergiant results are fitted by an eighth order power series in the digitized spectral type coordinate, $X$, by the method of least squares. There are two reasons for using an eighth,order power series fit. First, the order introduces a degree of high frequency smoothing. Second, in the free parameter variation method of section 4-3 it was found that a high order fit was needed to ensure a smooth relation of $S$ with alpha, and make the best alphas independent of the order of the fitting series. A least squares fitting procedure is invalid in the strict sense, as X is both disjoint in nature and not error free. We use the method as a convenience. While there have been some attempts to formulate a meaningful method of fitting in a double error coordinate system, we employ the heuristic method of reversal for final smoothing. That is, we fit the spectral type as a function of the color within the workable limits $F O$ to $K 0$ where the data is sufficient, 'and combine these results with the reversed fit, the colors as functions of the spectral type. The final curve for any color is the weighted average ( $W=2$ for the color as a function of spectral type, and $W=1$ for the spectral type as a function of color) of the two results, with a little assist from the scanty data for stars earlier than F0. The adopted relations are shown as solid lines in Fig. 4.3; the crosses are the fit of the color as a power series in $X$; the filled ellipses are the fit of the spectral type by a power series in the color. The rms
dispersions at any spectral type are $0.081,0.064,0.021$ and 0.030 for $\left[c_{1}\right],\left[m_{1}\right],[G]$ and $[N]$, respectively.

4-5. Intrinsic Values for ( $\mathrm{b}-\mathrm{y}$ ) and G
The recovery of the intrinsic values for ( $b-y$ ) and $G$ as functions of spectral type can be made using the ( $B-V$ ) color excess data from the UBV results. Buscombe (1964) lists in a catalog of supergiant and cepheid results the $E(B-V)$ 's for seventy-two of the supergiant stars observed in this program. This data is sufficient to position a thermal locus in a $G$, (b-y) diagram.

In Fig. 4.4 G is plotted against (b-y). The figure indicates that a suitable thermal locus is a straight line. But its position cannot be precisely specified. To locate the zero point of a straight thermal locus we assume that $\mathrm{E}(\mathrm{b}-\mathrm{y})=0.70 * \mathrm{E}(\mathrm{B}-\mathrm{V})$. Such a relationship is consistent with our present understanding of the variation of the interstellar extinction with wavelength. For the seventy-two stars with known $\mathrm{E}(\mathrm{B}-\mathrm{V})$ we can calculate $(b-y)_{o}$ and $G_{o}$, as $E(G)=0.105 \% E(B-V)$. Fitting the data for these seventy-two stars to a linear relation gives the dashed line in Fig. 4.4. This line has a slope of 0.532 , which is close to the value of 0.510 found by Williams in his study of long period ( $P \geq 10^{d}$ ) cepheids. For the dependence of $(b-y)_{o}$ and $G_{0}$ on spectral type we process the reddening-free colors in a manner commonly used in nuclear physics. Regarding the spectral type as a channel entry we perform a smoothing of the insufficient and "noisy" data by forming the averages over a number of channels, and position this average value at the weighted mean channel location. While the use of moving averages eliminates fine detail, its advantage is to enhance systematic trends which might otherwise be lost
in the bouncy data. As a check, the run of the moving averages are compared for consistency with the single channel averages where there are sufficient points in a single channel. In Fig. 4.5 the mean eye-fitted $(b-y)_{0}$ and $G_{0}$ lines are shown. The triangles in the figure are single channel averages, while the squares are the moving averages. It is clear that there is no glaring inconsistency between the two averaging processes. In fact, in this case the moving averages are probably not essential to the discussion, but as this procedure is used later, its introduction here is warranted. The mean line results are not entirely in accord with the straight line thermal locus found in the $G$ ( $b-y$ ) plot, as transferral of the separately determined $(b-y)_{o}$ and $G_{o}$ points onto this plot produces a slight bulge to the left of the straight line near Ko. However, this discord is not significant. The point here is that adequate color excesses are retrievable. These excesses calculated using the thermal locus of Fig. 4.4 are listed in the last column of Table 4.1.

4-6. Physical Meaning of [G] and [N]
The physical interpretation of the photometric parameters associated with the Str8mgren system is well supported by the investigations of Strbmgren and his collaborators. Such an admirable situation does not exist for the case of the colors [G] and [N].

In a recent study of atmospheric simulation models by Bell and Rodgers (1969) it is pointed out that the Griffin and Redman (1960) photómetric index $n$ is a satisfactory cyanogen strength criterion. Thus, to reduce the proverbial multiplicity of correlative graphs, so common to photometric studies, we substantiate our claim that [ N ] is a CN strength indicator by a plot of $n$ versus [ $N$ ] in Fig. 4.6. On the whole the agreement
is satisfying, though the scatter is quite large. The mean $n$ and [ $N$ ] curves with spectral type are similar in shape, though n peaks at an earlier type (G8) than does [N] (KO).

Photometric studies of the G-band strength for supergiants are lacking, except for Kraft's Gamma photometry. Kraft notes that a perusal of the MK standard spectra indicates the G-band strength reaches a maximum in the middle $G$ stars for luminosity class I. His Gamma photometry reproduces this characteristic quite well. The color [G] is a measure of the CH contribution to the G-band as shown by Bell and Rodgers. However, its variation with spectral type is not well correlated with the visual aspects of the spectra used as the classification criteria in the MK scheme. In particular, [G] has not attained a maximum even by spectral type K5. We note, however, that the G-band strength is often determined from plates of. low dispersion, and the contrast on these plates is muted by the spectrograph's instrumental profile and the background of weak lines. In lieu of any objective G-band criterion we will retain the suggestive $G$ notation for the color, but stress that it probably is not an indicator of what many observers would call the G-band strength.

TABLE 4.1

OBSERVATIONS OF THE ORDINARY STARS.

| HD/日D |  | SPECTRAL |  |  |  | NO. |  |  | NO. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | TYPE | $Y$ | Cl | M 1 | $B-Y$ | oss. | G | $N$ | OBS. | $E(B-Y)$ |
| HD | 4362 | GOIB | 6.414 | 0.502 | 0.308 | 0.682 | 3 | 0.198 | 0.492 | 3 | 0.152 |
| HD | 6474 | GOIA | 7.639 | 0.647 | 0.353 | 1.089 | 2 | 0.250 | 0.575 | 2 | 0.585 |
| Ho | 7927 | FOIA | 4.998 | 1.467 | 0.049 | 0.479 | 3 | 0.035 | 0.391 | 3 | 0.299 |
| HD | 8906 | F3I日 | 7.127 | 1. 294 | 0.145 | 0.493 | 2 | 0.046 | 0.423 | 2 | 0.289 |
| HiD | 8992 | Fón | 7.780 | 0.970 | 0.179 | 0.595 | 2 | 0.055 | 0.512 | 2 | 0.406 |
| HO | 9022 | K3111 | 6.899 | 0.489 | 0.644 | 0.915 | 1 | 0.391 | 0.675 | 1 | - |
| HD | 9250 | GOIB | 7.183 | 0.632 | 0.247 | 0.929 | 3 | 0.200 | 0.530 | 3 | 0.493 |
| HD | 9366 | K318 | 6.915 | 0.242 | 0.804 | 1.242 | 2 | 0.421 | 0.850 | 2 | 0.351 |
| HD | 10494 | F5IA | 7.283 | 1.511 | 0.009 | 0.870 | 2 | 0.087 | 0.462 | 2 | 0.706 |
| HD | 11092 | KSIABB | 6.569 | 0.173 | 0.812 | 1.396 | 1 | 0.496 | 0.821 | 1 | 0.369 |
| HD | 11800 | K5IB | 7.794 | 0. 292 | 0.651 | 1.360 | 1 | 0.507 | 0.800 | 1 | 0.288 |
| BD 59 | 366 | AOIB.- | 8.623 | 0.629 | 0.047 | . 0.161 | 3 | - | * |  |  |
| HD | 12014 | KOIB | 7.719 | 0.279 | 0.703 | 1.307 | 2 | 0.424 | 0.873 | 2 | 0.433 |
| BD 59 | 389 | FOIB | 9.048 | 1.601 | $-0.030$ | 0.776 | 1 | 0.001 | 0.417 | 1 | 0.800 |

## TABLE 4.1

## (CONTINUED)

| HD/BD |  | SPECTRAL |  |  |  | NO. |  |  | NO. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | TYPE | $Y$ | C 1 | M 1 | $B-Y$ | OBS. | G | $N$ | O8S。 | $E(B-Y)$ |
| HD | 14662 | F718 | 6.282 | 0.872 | 0.211 | 0.552 | 3 | 0.094 | 0.479 | 3 | 0.246 |
| HD | 16901 | GOIB | 5.452 | 0.624 | 0.315 | 0.556 | 3 | 0.140 | 0.486 | 3 | 0.130 |
| HD | 17378 | A5IA | 6.251 | 1.366 | $-0.075$ | 0.677 | 3 | 0.025 | 0.422 | 1 | 0.601 |
| HD | 17506 | K3IB | 3.771 | 0.217 | 0.789 | 1.075 | 3 | 0.421 | 0.835 | 2 | 0.119 |
| HD | 17958 | K 3 IA | 6.223 | 0.145 | 0.797 | 1.379 | 2 | 0.491 | 0.805 | 2 | 0. 358 |
| HD | 17971 | FSIA | 7.738 | 1.385 | 0.056 | 0.740 | 2 | 0.079 | 0.475 | 2 | 0.547 |
| HD | 18391 | Gli A | 6.936 | 0.531 | 0.360 | 1.304 | 2 | 0.280 | 0.624 | 2 | 0.806 |
| HD | 20123 | G5 I I | 5.048 | 0.431 | 0.308 | 0.742 | 2 | 0.219 | 0.579 | 2 | 0.183 |
| HO | 20902 | FSIB | 1.809 | 1.090 | 0.190 | 0.304 | 2 | 0.019 | 0.423 | 2 | 0.096 |
| HD | 23230 | FSII | 3.798 | 0.968 | $0.197$ | 0.266 | 3 | 0.002 | 0.413 | 3 | 0.087 |
| HD | 250.39 | K1IB | 8.605 | 0.498 | 0.624 | 0.945 | 2 | 0.392 | 0.768 | 1 | 0.012 |
| -D | 25056 | GOI ${ }^{\text {a }}$ | 7.949 | 0.752 | 0.201 | 0.799 | 3 | 0.170 | 0.474 | 3 | 0.391 |
| HD | 25305 | A2IE | 8.909 | 0.828 | 0.238 | 0.175 | 2 |  |  |  |  |
| HD | 25291 | FOII | 5.053 | 1.459 | 0.132 | 0.336 | 4 | -0.017 | 0.406 | 4 | 0.235 |

TABLE 4•1
(CONTINUED)

| HD/BD |  | SPECTRAL TYPE | $Y$ | C1 | M1 | B-Y | $\begin{aligned} & \text { NO. } \\ & \text { OBS. } \end{aligned}$ | G | N | $\begin{aligned} & \text { NO. } \\ & \text { OBS. } \end{aligned}$ | $E(B-Y)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| nd | 26630 | G01B | 4.148 | 0. 556. | 0.273 | 0.608 | 2 | 0.156 | 0.503 | 2 | 0.162 |
| HO | 31118 | K5IB | 7.087 | 0.284 | 0.848 | 1.121 | 4 | 0.471 , | 0.695 | 4 | 0.052 |
| HD | 31964 | FOIAP | 3.053 | 1.274 | 0.061 | 0.395 | 5 | 0.018 | 0.389 | 2 | 0.225 |
| Ho | 31910 | G0Ib | 4.046 | 0.525 | 0.323 | 0.548 | 5 | 0,166 | 0.499 | 4 | 0.052 |
| Ho | 33299 | K1IB | 6.722 | 0.348 | 0.545 | 1.037 | 3 | 0.335 | 0.823 | 3 | 0.289 |
| HD | 36673 | FOIB | 2.590 | 1.476 | 0.193 | 0.104 | 2 | -0.034 | 0.344 | 2 | 0.000 |
| HD | 36891 | G3IB | 6.113 | 0.417 | $0.365^{\circ}$ | 0.630 | 3 | 0.197 | 0.570 | 3 | 0.085 |
| HD | 37819 | F5I8 | 8.120 | 0.667 | 0.238 | 0.371 | 2 | 0.015 | 0.475 | 1 | 0.201 |
| HD | 38247 | G8IAB | 6.635 | 0.215 | 0.693 | 1.019 | 3 | 0.346 | -0.862 | 3 | 0.235 |
| HD | 38808 | G318iI | 7.554 | 0.453 | 0.306 | 0.649 | 3 | 0.208 | 0.536 | 3 | 0.081 |
| $H D$ | 39416 | G3IPII | 7.516 | 0.383 | 0.382 | 0.650 | 2 | 0.183 | 0.566 | 2 | 0.148 |
| HD | 39866 | A2IB | 6.360 | 1.498 | 0.028 | 0.257 | - 2 |  |  |  |  |
| HD | 39970 | ADIA | 6.000 | 0.557 | -0.042 | 0.345 | 2 |  |  |  |  |
| HD | 39949 | G2IB | 7. 251 | 0.531 | 0.292 | 0.705 | 2 | 0.174 | 0.545 | 2 | 0.248 |

TABLE 4.1
(CONTINUED)

| H) /BD |  | SPECTRAL |  |  |  | NO. |  |  | NO. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | TYPE | $Y$ | $C 1$ | M 1 | $B-Y$ | OBS. | $G$ | N | OBS. | $E(B-Y)$ |
| HD | 40297 | ADIB | 7.267 | 0.953 | -0.017 | 0.256 | 2 |  |  |  |  |
| HO | 43232 | G5IBII | 7.744 | 0.373 | 0.444 | 0.848 | 2 | 0.252 | 0.718 | 1 | 0.243 |
| HD | 44033 | K318 | 5.652 | 0.381 | 0.870 | 0.974 | 2 | 0.470 | 0.688 | 1 | 0.000 |
| HD | 44990 | F7IAB | 6.066 | 0.388 | 0.456 | 0.752 | 3 | 0.192 | 0.625 | 2 | 0.266 |
| Ho | 45829 | KOIAB | 6.661 | 0.236 | 0.714 | 1.004 | 2 | 0.363 | 0.863 | 2 | 0.170 |
| HD | 46300 | AOIB | $4 \cdot 522$ | 0.982 | 0.085 | 0.042 | 4 | $-0.057$ | 0.366 | 1 |  |
| HD | 47731 | G5IE | 6.442 | 0.383 | 0.430 | 0.667 | 3 | 0.22 .4 | 0.630 | 3 | 0.064 |
| HD | 48616 | F51B | 6.952 | 1.039 | 0.186 | 0.513 | 2 | 0.041 | 0.479 | 2 | 0.329 |
| HD | 58439 | A2IB | 6.242 | 1.257 | 0.035 | 0.240 | 2 |  |  |  |  |
| Ho | 58526 | G31日 | 5.991 | 0.472 | 0.380 | 0.547 | 2 | 0.170 | 0.511 | 2 | 0.039 |
| HD | 59057 | G81B | 5.864 | $-10.004$ | 0.096 | 0.430 | 2 | 0.040 | 0.449 | 1 | 0.218 |
| HD | 67594 | G2IB | 4.368 | 0.413 | 0.435 | 0.561 | 2 | 0.203 | 0.546 | 2 | 0.000 |
| HD | 71952 | KGIV | 6.247 | 0.458 | 0.391 | 0.619 | 4 | 0.247 | 0.5211 | 3 | 0.000 |
| HD | 74395 | G2IB | 4.640 | 0.492 | 0.298 | 0.507 | 2 | 0.132 | 0.498 | 1 | 0.085 |

TABLE 4.1
( CONTINUED)

|  | H/BD | SPECTRAL TYPE | $Y$ | . C. 1 | M1 | E-Y | $\begin{aligned} & \text { NO. } \\ & \text { OSS. } \end{aligned}$ | G | N | $\begin{gathered} \text { NO. } \\ \text { OBS. } \end{gathered}$ | $E(B-Y)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HD | 77912 | g8IbII | 4.565 | 0.387 | 0.419 | 0.632 | 4 | 0.223 | 0.648 | 14 | 0.018 |
| HD | 84441 | GOII | 20973 | 0. 484 | $0 \cdot 268$ | 0.505 | 4 | 0.149 | 0.479 | 3 | 0.036 |
| HD | $\cdot 87737$ | A0IB | 3.533 | 0.963 | $0.060^{\circ}$ | 0.036 | 2 |  |  |  |  |
| HD | 96436 | 67 | 5.528 | 0.421 | .0.339 | 0.588 | 5 | 0.215 | 0.453 | 4 |  |
| HD | 111631 | MO, 5 V | 8.472 | 0.083 | .0.730 | 0.813 | 3 |  |  |  |  |
| HD | 128750 | K2 | 5.929 | 0.41 .8 | 0.463 | 0.671 | 4 | 0.265 | 0.585 | 4 |  |
| HD | 134083 | F5V | 4.954 | 0.455 | 0.143 | 0.295 | 1 | 0.032 | 0.394 | 1 |  |
| HD | $148743$ | A7IB | 6. 519 | 1.539 | 0.115 | 0.247 | 3 | -0.029 | 0.391 | 2 | 0.142 |
| HO | 1.49757 | 09.5 V | 2.579 | $-0.081$ | -0.013 | 0.104 | 1 | -0.041 | 0.401 | 1 |  |
| HD | 161796 | F3IB | 7.111 | 1.526 | 0.199 | 0.287 | 4 | 0.041 | 0.411 | 4 | 0.015 |
| H.D | 163506 | F2IA | 50448 | 1.418 | 0.119 | 0.227 | 2 | 0.014 | 0.407 | 2 | 0.003 |
| HD | 163800 | 08 | 6.985 | $-0.084$ | $-0.038$ | 0.270 | 1 | $-0.020$ | 0.424 | 1 |  |
| HD | 168913 | F918 | 5.615 | 0.722 | 0.233 | 0.136 | 1 | -0.067 | 0.386 | 1 | 0.088 |
| HD | 171635 | 'F7IB | 4.778 | 0.898 | 0.272 | 0.357 | 2 | 0.070 | 0.457 | 2 | 0.037 |

TABLE 4.1

## (CONT INUED)

|  | HD/BD | SPECTRAL TYPE | $Y$ | C1' | M1 | $B-Y$ | $\begin{gathered} \text { NO. } \\ \text { OBS. } \end{gathered}$ | G | N | $\begin{aligned} & \text { NO. } \\ & \text { OBS。 } \end{aligned}$ | $E(B-Y)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HD | 172365 | F918 | 6.362 | 0.724 | 0.232 | 0.499 | 2 | 0.102 | 0.463 | 2 | 0.149 |
| HD | 173638 | FarbII | 5.716 | 1.489 | 0.110 | 0.404 | 1 | -0.021 | 0.444 | 1 | 0.339 |
| Ho | 174104 | GUIB | 8.370 | 0.549 | 0.204 | 0.458 | 1 | 0.120 | 0.435 | 1 | 0.046 |
| 1-D | 179784 | G5IB | 6.685 | 0.409 | 0.363 | 0.921 | 1 | 0.273 | 0.697 | 1 | 0.289 |
| HD | 180028 | F6IB | 6.934 | 0.929 | 0.147 | 0.549 | 1 | 0.078 | 0.460 | 1 | 0.282 |
| HD | 180583 | FGIBII | 6.055 | 0.814 | 0.205 | 0.361 | 1 | 0.027 | 0.449 | 1 | 0.156 |
| HO | 182296 | G318 | 7.023 | 0.458 | 0.367 | 0.868 | 2 | 0.228 | 0.708 | 2 | 0.334 |
| HD | 183864 | G2IB | 7.329 | 0.579 | 0.204 | 0.839 | 2 | 0.181 | 0.524 | 2 | 0.418 |
| HD | 187203 | GOIB | 6.445 | 0.714 | 0.227 | 0.609 | 2 | 0.152 | 0.491 | 2 | 0.173 |
| HO | 187299 | G5 I ABB | 7.136 | 0.198 | 0.410 | 1.080 | 2 | 0.280 | 0.751 | 2 | 0.494 |
| HD | 226223 | F6IB | 9.159 | 0.848 | 0.187 | 0.406 | 1 | $-0.010$ | 0.484 | 1 | 0.313 |
| HD | 190113 | G516 | 7.839 | 0.404 | 0.438 | 0.954 | 1 | 0.308 | 0.728 | 1 | 0.244 |
|  | 331777 | F8IA | 7.923 | 0.970 | 0.304 | 0.942 | 2 | 0.186 | 0.526 | 2 | 0.548 |
| HD | 190446 | F6IB | 8.219 | 0.794 | 0.202 | 0.345 | 2 | 0.050 | 0.392 | 2 | 0.073 |

## TABLE 4.1

(CONTINUED)

| HD/RD | SPECTRAL type | $Y$ | C1 | M1 | B-Y | $\begin{aligned} & \text { NO. } \\ & \text { OBS. } \end{aligned}$ | G | $N$ | $\begin{aligned} & \text { NO. } \\ & \text { OBS. } \end{aligned}$ | $E(B-Y)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HD 190323 | GOI AAB | 8. 849 | 0.880 | 0.344 | 0.514 | 2 | 0.115 | 0.518 | 2 | 0.138 |
| HD 190403 | G5IBII | 5.731 | 0.416 | 0.239 | 0.470 | 2 | 0.175 | 0.418 | 2 | 0.000 |
| HD 191010 | G3ifb | 8.171 | 0.424 | 0.318 | 0.623 | 2 | . 0.203 | 0.558 | 2 | 0.059 |
| HD 191423 | 09 V. | 8.060 | -0.085 | -0.022 | 0.188 | 1 | -0.038 | 0.392 | 1 |  |
| BD 373827 | F3IB | 8.134 | 1.427 | 0.074 | 0.649 | 1 | 0.059 | 0.456 | 1 | 0.473 |
| HD 192909 | K318II | 3.959 | -0.242 | 0.544 | 0.989 | 2 | 0.335 | 0.618 | 2 | 0.222 |
| HD 192876 | G3IB | 4.248 | 0.450 | 0.361 | 0.672 | 1 | 0.194 | 0.581 | 1 | 0.151 |
| HD 193370 | F5IB | 5.160 | 1.019 | 0.204 | 0.413 | 3 | 0.054 | 0.443 | 3 | 0.157 |
| HD 193469 | K518 | 6.375 | 0.067 | 0.656 | 1.250 | 1 | 0.409 | 0.715 | 1 | 0.393 |
| HD 195295 | FSII | 4.014 | 1.068 | 0.189 | 0.250 | 2 | 0.010 | 0.414 | 2 | 0.045 |
| HD. 195324 | A118 | 5.864 | - 2.193 | -0.032 | 0.384 | 2 | . |  |  |  |
| HD 195593 | F5IAB | 6.214 | 1.106 | 0.103 | 0.684 | 3 | 0.047 | 0.503 | '3 | 0.551 |
| FD 196093 | K21B | 4.588 | -0.550 | 0.428 | 1.073 | 2 | 0.298 | $0.640^{\circ}$ | 2 | 0.437 |
| HD 196.725 | K318 | 5.659 | 0.232 | 0.769 | 0.940 | 2 | 0.378 | 0.796 | 2 | 0.041 |

TABLE 4.1
(CONT INUED)

|  | H0/B0 | SPECTRA TYPE | Y | Cl | M1 | B-Y | $\begin{aligned} & \text { NO. } \\ & \text { OBS. } \end{aligned}$ | G | $N$ | $\begin{aligned} & \text { NOO } \\ & \text { OBSe } \end{aligned}$ | $E(B-Y)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HD | 2円ワ1)2. | G11 ${ }^{\text {P }}$ | 6.629 | 0.479 | 0.301 | 0.654 | 2 | 0.192 | 0.527 | 2 | 0.129 |
| HD | 20.3305 | FSIS | 8.312 | 1.304 | 0.162 | 0.498 | 2 | 0.025 | 0.442 | 2 | 0 0.349 |
| HD | 200905 | K51B | 3.683 | 0.138 | 0.794 | 1.026 | 3 | 0.421 | 0.724 | 3 | 0.049 |
| HD | 202314 | G2IH | 6.163 | 0.367 | 0.418 | 0.699 | 2 | 0.242 | 0.644 | 2 | 0.062 |
| Fo | 204022 | GCI I | 7.430 | 0.609 | 0.307 | 0.973 | 2 | 0.245 | 0.570 | 2 | 0.437 |
| HD | 244867 | GOIH | $2 \cdot 914$ | 0.572 | 0.303 | 0.511 | 1 | 0.146 | 0.498 | 1 | 0.052 |
| FD | 205349 | K1IB | 6.229 | 0.207 | 0.752 | 1.180 | 2 | 0.411 | $0: 883$ | 2 | 0.290 |
| Ho | 296312 | KIII | 7.127 | 0.387 | 0.520 | 0.772 | 1 | 0.271 | 0.797 | 1 | 0.087 |
| HD | 246778 | K2IB | $2 \cdot 377$ | 0.170 | 0.82 .3 | 0.938 | 2 | 0.397 | 0.807 | 2 | 0.000 |
| HD | 266859 | G5IB | 4.336 | 0.348 | 0.479 | 0.710 | 2 | 0.254 | 0.708 | 2 | 0.047 |
| HC | 207089 | Kú ${ }^{\text {a }}$ | 5.272 | 0.250 | 0.587 | 0.876 | 2 | 0.317 | 0.772 | 2 | 0.113 |
| Fo | 267260 | A2IA | $4 \cdot 265$ | 0.965 | -0.035 | 0.426 | 2 |  |  |  |  |
| HD | 207489 | FbIB | 7.229 | 1.062 | 0.177 | 0.430 | 4 | 0.072 | 0.458 | 4 | 0.160 |
| -0 | 207647 | G4[B] | 7.017 | 0.381 | 0.388 | 0.749 | 2 | 0.195 | 0.649 | 2 | 0.256 |

TABLEE4．1
（CONTINUED）

| HD／BD | SPECTRAL TYPE | $Y$ | C1 | M1 | $B-Y$ | $\begin{aligned} & \text { NO. } \\ & \text { obs. } \end{aligned}$ | G | N | $\begin{aligned} & \text { NO. } \\ & \text { OBS. } \end{aligned}$ | $E(B-Y)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HD 207673 | A2I日 | 6.480 | 1.054 | －0．015 | 0.355 | 2 |  |  |  |  |
| HD 208606 | G8IB | 6.125 | 0.277 | 0.565 | 1.042 | 2 | 0.314. | 0.831 | 2 | 0.350 |
| HO 209481 | 09 V | 5.542 | －0．110 | －0．028 | 0.138 | 1 | －0．038 | 0.367 | 1 |  |
| 10 209750 | G218 | 2.938 | 0.474 | D． 404 | 0.571 | 2 | 0.194 | 0.538 | 2 | 0.009 |
| ho 210221 | A318 | 6.116 | 1.332 | 0.018 | 0.327 | 2 |  |  |  |  |
| HD 210745 | K1I日 | 3.370 | 0.190 | 0.778 | 0.992 | 4 | 0.384 | 0.893 | 4 | 0.098 |
| HD 214680 | OYV | 4.927 | －0．150 | 0.030 | －0．054 | 1 | －0．068 | 0.360 | 1 |  |
| HD 216206 | 6418 | 6.246 | 0.398 | 0.406 | 0.696 | 3 | 0.234 | 0.636 | 3 | 0.081 |
| HD 216946 | K5I日 | 4.981 | 0.196 | 0.838 | 1.156 | 2 | 0.461 | 0.775 | 2 | 0.126 |
| HD 217476 | GOIA | 4.998 | 0.487 | 0.431 | 0.960 | 12 | 0.207 | 0.591 | 12 | 0.519 |
| HD 218358 | K0IBP | 4.761 | 0.144 | 0.549 | 0.834 | 3 | 0.294 | 0.675 | 3 | 0.114 |
| HD 219135 | G0IB | 7.620 | 0.622. | 0.242 | 0.67 .7 | － 3 | 0.174 | 0.502 | 3 | 0.210 |
| BL 682532 | F7I8 | 8.305 | D． 849 | 0.154 | 0.751 | 3 | 0.100 | 0.503 | 3 | 0.508 |
| HD 221861 | KOIAB | 5.835 | 0.288 | 0.540 | 1.176 | 3 | 0.333 | 0.826 | 3 | 0.489 |

TABLE 4.1
(CONTINUED)

| $\mathrm{HD} / \mathrm{BD}$ |  | SPECTRAL |  |  |  | NO. |  |  | NO. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | TYPE | $Y$ | C1 | M1 | $\mathrm{B}-\mathrm{Y}$ | OBS. | G | $N$ | ORS。 | $E(B-Y)$ |
| HD | 222574 | GOII | 4.805 | 0.523 | 0.297 | 0.493 | 2 | 0.156 | 0.453 | 2 | 0.000 |
| HD | 223047 | G518 | 40964 | 0.285 | 0.425 | 0.696 | 3 | 0.208 | 0.656 | 3 | 0.147 |
| HO | 224014 | FSIAP | 4.584 | 0.861 | 0.350 | 0.680 | 3 | 0.146 | 0.504 | 3 | 0.288 |
| HD | 224155 | G818 | 6.005 | 0.320 | 0.495 | 0.731 | 2 | 0.257 | 0.718 | 2 | 9.068 |

COMMENTS

## (CONTINUED)

```
HD 26630 - SPECTROSCDPIC GINARY ANO DOUBLE (DELTA-M = 7.5, D = 15"), BUT
    PHOTOMETRICALLY IT APPEARS AS AN ORDINARY GOIB STAR.
HD 37819 - PHOTOMETRY IS OF GOOD QUALITY, CIO LOW AND M10 HIGH FOR A FSII STAR.
HD 38247 - PHOTOMETRY SHQWS LARGER SCATYER THAN EXPECTED FOR A STAR WITH A
    Y = 6.6. ALL INDICES WOULD GE BETTER UNDERSTOOD IF THE SPECTRAL
    type were changed from gs to ko.
HD 44990 - THIS IS THE CEPHEID T MON, P = 27 DAYS.
HD 59067 - LNDICES ASKEW FROM EFFECTS OF B COMPANTON (DELTA-M = 2. D = 1w),
HD 163506 - LISTED IN GCVS AS V441 HER, A SEMIREGULAR VARIABLE WITH A POSSIble
    PERIOD OF 7O DAYS. NO EVIDENCE IN THE PHOTOMETRY WHICH IS OF GOOD
    QUALITY AND IN ACCORD WITH THE GIVEN CLASSIFICATION, FZIA.
HD 16B913 - GIVEN AS EITHER AGV DR F9IB IN J IA M IN YESI. PHOTOMETRICALLY CIO
    AND M10 ARE COMPATIBLE WITH EITHER ASSIGNMENT, WHILE THE VALUES FOR
    (B-Y)O, GO, AND NO ARE IN BETTER ACCORD WITH AGV.
HD 182296 - THE INDICES NO AND M1D ARE HIGH FOR ITS SPECTRAL TYPE. POSSIBLY
    OVER ABUNDANT IN METALS, G, AND N.
HO 187299 - THE CIO 1S LOW FOR ITS SPECTRAL TYPE, ALL OTHER INDICES ARE NORMAL.
HD 190113 - LISTED AS G5IG OR GQV IN J. PHOTOMETRY SUPPORTS THE GSIB LISTING.
HD 190323 - THE VALUE OF ClO IS APPROXIMATELY 0.3 TOD &ARGE FOR ITS SPECTRAL,
    TYPE, ALL OTHER COLORS ARE WITHIN REASONABEE LIMITS FROM ONORMAL'.
```


## TABLE 4.1

## ( CONT INUED)

```
HD 1904&3 - LISTED AS G5IB-II, G5II, OR KIV IN J* THE RESULTS HERE ARE MQRE CONSISTENT WITH THE LUMINOSITY CLASS V ASSIGNMENT, GUT NOT GITH A SPECTRAL TYPE AS LATE AS K1.
HD 192909 - ALGOL TYPE VARIABLE LISFED AS K3IB-II \& B IN J. THE EFFECTS OF THE COMPANION ARE PRONDUNCED. PARTICULARLY ON CIO AND NO WHICH ARE LOV.
HD 196093 - LISTED AS K2IE & B IN J, QUITE QBVIOUS FROM THE PHOTOMETRY.
HD 200905 - A SPECTROSCOPIC EINARY. NO EFFECTS QBVIOUS IN THE RESULTSO
HD 2O2314 - ALL COLORS WOULD BE MORE CONSISTENT IF THE SPECTRAL TYPE WERE
    CHANGED FROM G2 TO GS.
HD 208606 - A SPECTROSCOPIC BINARY, NO EFFECTS OGVIOUS IN THE RESULTSO
HD 210745 - A SPECTROSCOPIC EINARY, NO EFFECTS OBVIOUS IN THE RESULTS.
HD 2:6946 - SUSPECTED VARIABLE IN GCVS, PHOTOMETRICALLY IT APPEARS NORMAL.
HO 217476 - DEFINITELY VARIAGLE, DATA IS INSUFFICIENT TO DETERMINE A PERIOD BUT
    IT IS OF THE ORDER OF HUNDRFDS OF DAYS.
HO 222574-LESTED AS VARIABLE IN J. AND A POSSIBLE VARIABLE IN GCVS. LOOKS
    NORMAL PHOTOMETRICALLY.
HD 224014, THE VARIABLE STAR 7 RHO CAS, PHOTOMETRICALLY IT APPEARS AS A NORMAL
    FEIA STAR.
```

TABLE 4.2

EFPECTIVE WAVETFENGTHS

| Filter | $\lambda_{e}$ | $\lambda_{e}^{-1}$ |
| :---: | :---: | :---: |
| u | $0.3455 \mu$ | $2.894 \mu^{-1}$ |
| v | 0.4108 | 2.434 |
| b | 0.4700 | 2.128 |
| y | 0.5482 | 1.824 |
| A | 0.4377 | 2.285 |
| B | 0.4279 | 2.337 |
| C | 0.4166 | 2.400 |

## TABIE 4.3

## COLOR EXCESS RATIOS FROM EXITERNAL SOURCES.

Source/Region

$$
\mathbb{E}\left(c_{1}\right) / \mathbb{E}(b-y) \quad E\left(m_{1}\right) / E(b-y) \quad E(G) / E(b-y) \quad E(\mathbb{N}) / E(b-y)
$$ Nandy

| Cygnus | +0.142 | -0.129 | +0.142 | +0.156 |
| :---: | :---: | :---: | :---: | :---: |
| Perseus | -0.065 | -0.274 | +0.087 | +0.134 |
| Cassiopeia | +0.050 | -0.014 | +0.114 | +0.200 |
| Cepheus | +0.016 | -0.192 | +0.135 | +0.129 |
| Boggess \& Borgman | +0.242 | -0.098 | +0.151 | +0.170 |
| Averages | $+0.077 \pm 0.105$ | $-0.141 \pm 0.088$ | $+0.126 \pm 0.023$ | $+0.158 \pm 0.026$ |

## TPABLE 4.4

COLOR EXCESS RATIOS DETERMINED
FROM CEPHEIDS AT MAXIMUM EIGHT

$$
\begin{aligned}
E\left(c_{1}\right) / E(b-y) & =+0.188 \\
E\left(m_{1}\right) / E(b-y) & =-0.145 \\
E(G) / E(b-y) & =+0.150 \\
E(\mathbb{N}) / E(b-y) & =+0.124
\end{aligned}
$$

## TABLE 4.5

COIOR EXCESS RATIOS DETERMINED FROM FRER PARAMETER FITITING

$$
\begin{aligned}
& E\left(c_{1}\right) / E(b-y)=+0.084 \\
& E\left(m_{I}\right) / E(b-y)=-0.076 \\
& E(G) / E(b-y)=+0.173 \\
& E(\mathbb{N}) / E(b-y)=+0.178
\end{aligned}
$$

TABLE 4.6

FINAL ADOPTED COLOR EXCESS RATIOS.

| Source | $E\left(c_{1}\right) / E(b-y)$ | $E\left(m_{1}\right) / E(b-y)$ | $E(G) / E(b-y)$ | $E(\mathbb{N}) / E(b-y)$ |
| :---: | :---: | :---: | :---: | :---: |
| Kelsa1l | +0.135 | -0.125 | +0.150 | +0.145 |
| Strömgren | +0.20 | -0.18 |  |  |
| Williams | -0.009 | -0.261 | +0.106 | +0.109 |



Fig. 4.2 The $c_{1}(b-y)$ diagram for $A-K$ supergiants.


Fig. 4.2 Variation of the normalized sum of the deviations squared with the interstellar extinction coefficient, $\alpha$, for the reddening-free colors.


Fig. 4.3(a) The adoptea reddening-free colors for the supergiants as a function of


Fig. 4.3(b)


Fig. 4.4 The $G$, (b-y) diagram for supergiants. The adopted thermal locus is shown as a


Fig. 4.5 Relationskip between the intrinsic colors $G_{0}$ and (b-y) for supergiants and spectral type.


Fig. 4.6 Comparison between the Griffin-Redman cyanogen index, $n$, and our [N].

## CHAPTER V

## LUMINOSITY CLASSIFICATION

## 5-1. Objective and Procedure

One goal of the present investigation is to determine the capability of this photometric system in distinguishing the supergiants from the other luminosity classes. The system's usefulness as a galactic survey tool is greatly enhanced, if this is possible.

We find for each luminosity class the mean color relations with spectral type. A comparison of the separations between the mean color curves, either as functions of spectral type or anyone color, and the errors of measurement show that at least the classes I and II cannot be distinguished. Construction of "supercolors" from quadratic expressions in the mean colors produces a discrimination level superior to that from the use of any pair of colors.

## 5-2. Source of the Data

The data contained in this study on stars of luminosity classes V through II is insufficient to yield satisfactory color-spectral type relationships. To extend the data on these luminosity classes we incorporate by transformation the data contained in the studies by Strßmgren, and Williams. Previously we noted that transformations of high quality are impossible. However, here we restrict the use of the transformed quantities to the simple determination of mean colors, and do not use them in a search for internal correlations. The transformations are adequate for this more limited task.

The best procedure is to transform the bracketed quantities directly. The transformation relations for $\left[c_{1}\right]$ and $\left[m_{1}\right]$ for StrbmgrenPerry catalog stars are shown in Fig. 5.1. The expressions for the transformation curves are --

$$
\left[c_{1}\right]_{K}=0.016+0.981 *\left[c_{1}\right]_{S}-0.012 *\left[c_{1}\right]_{S}^{2}
$$

and

$$
\left[\mathrm{m}_{1}\right]_{\mathrm{K}}=0.027+0.825 *\left[\mathrm{~m}_{1}\right]_{\mathrm{S}}+0.205 *\left[\mathrm{~m}_{1}\right]_{\mathrm{S}}^{2}
$$

The transformation probable errors are 0.022 and 0.013 , respectively. We note the smallness of the zero point and the coefficient of the nonlinear term in the $\left[c_{1}\right]$-transformation. As the range in $\left[c_{1}\right]$ is large these aspects of the transformation indicate that our values for [ $c_{1}$ ] will be close to those on StrBmgren's standard system. This is clearly not true for the value of $\left[m_{1}\right]$. The relations between $\left[c_{1}\right],\left[m_{1}\right]$, $[G]$, and [N] of Williams and those of this study are illustrated in Fig. 5.2. The transformation equations are --

$$
\begin{aligned}
{\left[c_{1}\right]_{K} } & =0.090+0.637 *\left[c_{1}\right]_{W}+0.268 *\left[c_{1}\right]_{W}^{2}, \\
{\left[m_{1}\right]_{K} } & =0.654+1.069 *\left[m_{1}\right]_{W}+0.343 *\left[m_{1}\right]_{W}^{2}, \\
{[G]_{K} } & =0.151+0.929 *[G]_{W}-0.572 *[G]_{W}^{2},
\end{aligned}
$$

and

$$
[\mathrm{N}]_{\mathrm{K}}=0.128+1.027 *[\mathrm{~N}]_{\mathrm{W}}+0.1 .30 *[\mathrm{~N}]_{\mathrm{W}}^{2}
$$

The probable errors of transformation are $0.055,0.024,0.007$, and $0 . \mathrm{m}^{\mathrm{m}} 009$, respectively. The error in the [ $c_{1}$ ] transformation is so large that Williams' results are dropped from the discussion; except for the luminosity class II stars where the data is so scant that every point must
be preserved. The transformation difficulties reflect the complexity of the stellar spectra. The difficulties also emphasize the necessity of carefully matching filters when using an intermediate band-pass system.

A listing of the information used from the StrOmgren-Perry catalog and Williams' article is given in an appendix.

It is obvious that color-spectral type relationships for luminosity classes $V$ through II will be less certain than the trends found for supergiants, whose data comes from this investigation alone. However, the uncertainties introduced through the transformations of the external data are within tolerable limits, and the resulting curves are doubtless adequate.

## 5-3. Color-Spectral Type Relationships

For the supergiant colors the data is sufficient over the spectral type range A5 through K 5 so a power series fit in the digitized spectral type coordinate, $X$, can be made. For the other luminosity class colors it is necessary to make use of moving averages, as in section 4-5. The exceptions to this restriction are the following:
(1) $\left[c_{1}\right]$ for class $V$ stars in the spectral type range $A 8$ to $K 5$ is adequately represented by an eighth order power series in $X$;
(2) $\left[m_{1}\right]$ for class $V$ stars is suitably given by an eighth order power series in $X$;
(3) $\left[c_{1}\right]$ and $\left[m_{1}\right]$ for class III stars are matched by an eighth order power series in $X$.

As the handling of some of the data is subjective, we give the details below.

The smoothing curves (solid lines) for $\left[c_{1}\right],[G]$, and $[N]$ for luminosity class $V$ stars are shown in Fig. 5.3. The power series fit to the full data is denoted by the dots. In the [N] case we see how a high power series fit minimizing the rms deviations introduces bumps, which are probably spurious and need to be smoothed by some sensible intuitive process.

For class IV stars the values of $\left[c_{1}\right]$ and $\left[m_{1}\right]$ cannot be assigned on the basis of the photometric data at the later spectral types. Here an additional expediency is used. The KO IV - K5 IV results are simply the values found by averaging the class $V$ and class III values (crosses). For [G] and [N] the data is totally inadequate. As the average values formed from the class $V$ and class III results fit the situation as well as any other set of values, these average values are accepted for the class IV stars. The curves are presented in Fig. 5.4.

The smoothed [G] and [N] curves for class III stars are plotted in Fig. 5.5. The turnover in [ N ] at K 3.5 is weakly indicated by the data. This turnover is in accord with the results of Griffin and Redman (1960).

For the class II stars the data is so meager that use of moving averages is of no help, so eye-fitted curves through the raw data are made. In each of the color plots in Fig. 5.6 the class Ib results are shown as a dashed curve. The data points for the class II stars do not distribute themselves about the class Ib line, indicating that photometrically these two classes are distinguishable, if only marginally.

The final over-all results are presented in Table 5.1, and Figs. 5.7 and 5.8. The dispersions about the mean curves are listed in Table 5.2. The $\left[c_{1}\right]$ and $\left[m_{1}\right]$ dispersions for the luminosity class II stars are of doubtful value as the eye-fitted curves stressed the author's results,
while the dispersions are calculated from all the data.

## 5-4. Supergiant Discriminants

To determine photometric discriminants, all possible color-color graphs were made using the mean colors for the spectral type range A5 through K5. These graphs also included the two constructed colors [u-v] and [u-b]. These two colors are formed using the relations --

$$
[u-v]=\left[c_{1}\right]+\left[m_{1}\right]
$$

and

$$
[\mathrm{u}-\mathrm{b}]=\left[\mathrm{c}_{1}\right]+2.0 *\left[\mathrm{~m}_{1}\right]
$$

The four best segregating curves are shown in Fig. 5.9. In all curves the I-II segregation is virtually impossible to make, and the I-II-III confusion is in many regions quite pronounced. The $\left[c_{1}\right]$ versus [G] curve is the most superior single curve, and when combined with the [u-v] versus [G] curve good discrimination can be made in the ranges $-0.05 \leq$. $[G] \leq 0.10$, and $0.175 \leq[G] \leq 0.300$. For the Iater spectral types the [G] versus [ $N$ ] and/or the $\left[\mathrm{m}_{1}\right.$ ] versus [ $N$ ] curves are useful adjuncts. However, segregation on the basis of the colors alone is below expectations. As all the data was used in making up these curves, it is impossible to determine by any meaningful internal means how well luminosity class segregation can be performed on the basis of the color-color discriminants alone.

Luminosity class segregation can be performed by mapping the mean color curves into the disjointed, luminosity-class, lines in an $\mathrm{M}_{\mathrm{V}}, \mathrm{logT}_{\mathrm{e}}$ HR diagram. Such a mapping is possible through an equation quadratic in the mean colors.

We first break the mean color-spectral type information up into three segments - A5-F7, F7-G7, and G7-K5. The need for partitioning results from the number of confluences in the mean color lines. For example, in the $A 5-F 7$ range the $\left[c_{1}\right]$ lines are cleanly separate for the various Iuminosity classes, the [G] lines are close through out the range, and the $\left[\mathrm{m}_{1}\right]$ and $[\mathrm{N}]$ curves are entangled in the neighborhood of FO. The desire that the mapping results be clean demands that there be a limited number of muddying complications contained in the mean color data. For each of these segments we fit $M_{v}$ simultaneously for all luminosity classes by a single expression in the mean colors $\left[c_{1}\right],\left[m_{1}\right],[G]$, and [N]. That is --
$M_{v}\left(\right.$ spectral type, luminosity class) $=a_{o}+\sum_{i=1}^{4} a_{i} *^{\text {color }_{i}}$

$$
\begin{equation*}
+\sum_{i=1}^{4} \sum_{j=i}^{4} c_{i j}{ }^{*} \operatorname{color}_{i}{ }^{*} \operatorname{color}_{j} \tag{5-1}
\end{equation*}
$$

In Eq. (5-1), color ${ }_{i}$ stands for a mean color at a particular spectral type, and for a particular luminosity class. The color ${ }_{1}$ is [ $c_{1}$ ], etcetera. An equation equivalent to that for $M_{v}$ is found for $\log T_{e}$. As these mappings are not calibrations in a strict sense, for convenience and clarity we refer to the results as "supercolors". The results from these rather peculiar constructions are shown in Fig. 5.10. The solid curves represent the $M_{v}$ data of Biaauw (1963), and the $\log T_{e}$ calibration of Johnson (1966). The solid curves cover the spectral range A5 through K5 for each luminosity class. The points are the fits achieved using the mean colors for $A 5$ to $K 5$ in a single equation in each of the
three spectral type segments. The agreement is most encouraging. The fitting dispersions are approximately 0.7 and 0.008 in $M_{v}$ and $\log T_{e}$, respectively. The I-II-III confusion evidenced in the mean color graphs is eliminated in the supercolor diagram. This is a partial vindication of a procedure which might at first appear to be an overly extensive use of the mean colors. However, it is clear that the coefficients in the supercolor equations are basically amplifying terms which enhance small differences in the colors, in order that the results match the imposed calibration conditions. As the calibrations are the disjoint, luminosityclass magnitude and effective temperature curves, the mappings are expected to be unstable to minor perturbations relative to the mean color lines. This feature is probably further magnified by the lack of physical content in the form of the supercolor equations. A redeeming aspect may be the inclusion of the cross-color terms, the utilization of a feature which is hard to grasp through color-color plots. Though the expected sensitivity of supercolor equations to input is a restrictive limitation, the procedure may still be worthwhile when applied to indiscriminantly gathered survey photometry data. We return to this supercolor method in Chapter VII, where we give the results of the method when it is applied to individual stars.

TABLE 5.1

THE MEAN REDDENING-FREE COLORS FOR ALL LUMINOSITY CLASSES.


TABLE 5.1
(CONTINUED)

| SPECTRAL |  | LUMINOSITY |  | CLASS |  |  | LUM | SITY | ASS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TYPE | V | IV | III | II | I | $v$ | IV | III | II | I |
| Fo | 0.693 | 0.728 | 0.837 | 1.325 | 1.495 | 0.201 | 0.205 | 0.209 | 0.165 | 2.132 |
| Fi | 0.630 | 0.680 | 0.779 | 1. 257 | 1.450 | 0.197 | 0.202 | 0.207 | 0.175 | 0.145 |
| F2 | 0.570 | c. 640 | 0.723 | 1.170 | 1.376 | 0.194 | v. 199 | 0.206 | c. 186 | 0.160 |
| F3 | 0.516 | 0.590 | 0.668 | 1.060 | 1.293 | 0.191 | 0.196 | 0.206 | 0.210 | 0.178 |
| F4 | 0.468 | 0.540 | 0.617 | 0.952 | 1.191 | 0.191 | 0.191 | 0.206 | 0.227 | 0.197 |
| F5 | 0.427 | 0.495 | 0.570 | 0.844 | 1.033 | 0.192 | 0.191 | 0.209 | 0.248 | 0.220 |
| F6 | 0.391 | 0.455 | 0.526 | 0.735 | 0.912 | 0.196 | 0.195 | 0.214 | n. 264 | 0.245 |
| F7 | 0.362 | 0.422 | 0.486 | 0.633 | 0.804 | 0.202 | 0.204 | 0.220 | 0.283 | 0.275 |
| F8 | 0.338 | 0.395 | 0.452 | 0.556 | 0.701 | 0.210 | 0.220 | 0.228 | 0.300 | 0.305 |
| F9 | 0.319 | 0.365 | 0.423 | 0.494 | 0.603 | 0.219 | 0.234 | 0.237 | 0.319 | 0.339 |
| G0 | 0.305 | 0.355 | 0.398 | 0.445 | 0.511 | 0.228 | 0.248 | 0.248 | 0.338 | 0.375 |
| G1 | 0.297 | C. 340 | 0.377 | 0.408 | 0.436 | 0.238 | 0.262 | 0.260 | 0.354 | 0.408 |
| G2 | 0.292 | T. 335 | 0.362 | 0.378 | 0.379 | 0.245 | 0.270 | 0.273 | 0.372 | 0.439 |
| G3 | 0.292 | 0.329 | 0.350 | 0.352 | 0.331 | 0.253 | 0.277 | 0.288 | 0.390 | 0.466 |
| G4 | 0.294 | 0.324 | 0.344 | 0.327 | 0.291 | 0.260 | 0.280 | 0.304 | 0.407 | 0.492 |
| G5 | ?. 298 | 50319. | 0.341 | 0.304 | $0 \cdot 2.54$ | 0.272 | 0.283 | 0.323 | 0.428 | 0.518 |
| G6 | 0.302 | 0.310 | 0.340 | 0.284 | $0 \cdot 220$ | 0.276 | 0.288 | 0.346 | 0.455 | 0.545 |
| G7 | 0.306 | 0.305 | 0.342 | 0.265 | 0.186 | 0.288 | 0.304 | 0.375 | 0.490 | 0.577 |
| G8 | \%.309 | 0.305 | 0.343 | 0.248 | 0.152 | 0.304 | 0.330 | 0.410 | 0.535 | 0.616 |
| G9 | 0.309 | 0.302 | 0.343 | 0.232 | 0.121 | 0.328 | 0.384 | 0.455 | 0.580 | 0.664 |
| Ko | 0.306 | 0.301 | 0.338 | 0.217 | 0.095 | 0.362 | 0.437 | 0.511 | 0.637 | 0.722 |
| K1 | 0.292 | 0.370 | 0.328 | '0.202 | 0.078 | 0.408 | 0.503 | 0.579 | 0.697 | 0.795 |
| K2 | 0.281 | 0.296 | 0.311 | 0.187 | 0.062 | \%.468 | 0.564 | 0.660 | 0.757 | 0.862 |
| K3 | 0.258 | 0.271 | 0.284 | 0.173 | 0.049 | 0.545 | 0.650 | 0.754 | 0.820 | 0.913 |
| K4 | 0.226 | c. 238 | 0.249 | 0.155 | 0.041 | 0.636 | 0.746 | 0.857 | 0.886 | 0.956 |
| K5 | 30185 | 0.195 | 13.206 | 0.142 | 0.037 | 0.735 | 0.850 | 0.965 | 0.950 | 0.996 |

TABLE 5.1

## (CONTINUED)

| SPECTRAL TYPE |  | LUMINOSITY CLASS |  |  | I | ---- | LUMINOSITY CLASS |  |  | I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $V$ | I V | III | IE |  | V | IV | III | I I |  |
|  |  | $\mathrm{G}=$ | $G-0.1$ | $50 *(B-Y)$ |  |  | $\mathrm{N}=$ | $N-0.14$ | 45* (B-Y) |  |
| BD | -0.0.03 |  |  |  |  | 0.364 |  |  |  |  |
| B1 | $-0.0109$ |  |  |  |  | 0.362 |  |  |  |  |
| 82 | -0.077 |  |  |  |  | 0.360 |  |  |  |  |
| 83 | -0.687 |  |  |  |  | 0.357 |  |  |  |  |
| E4 | -0. 0.297 |  |  |  |  | 0.354 |  |  |  |  |
| 85 | -7. 105 |  |  |  |  | 0.351 |  |  |  |  |
| 86 | -0.112 |  |  |  |  | 0.348 |  |  |  |  |
| B7 | -0.117 |  |  |  |  | 0.345 |  |  |  |  |
| 88 | -0.122 |  |  |  |  | 0.343 |  |  |  |  |
| 89 | $-3.125$ |  |  |  |  | 0.342 |  |  |  |  |
| AO | -0.128 | $-0.120$ | $-0.111$ |  |  | 0.340 | 0.341 | 0.342 |  |  |
| A1 | $-8.130$ | -0.121 | -0.112 |  |  | 0.340 | 0.341 | 0.342 |  |  |
| A2 | $-1.130$ | - 5.122 | -0.113 |  |  | 0.340 | 0.341 | 0.342 |  |  |
| A3 | -0.129 | -0.122 | -0.115 |  |  | 0.341 | 0.341 | 0.341 |  |  |
| A4 | $-0.127$ | -C.120 | -0.112 |  |  | 0.342 | 0.341 | 0.340 |  |  |
| A5 | -0.123 | $-0.115$ | -0.110 | -0.066 | -0.052 | 0.344 | 0.341 | 0.339 | 0.350 | 0.322 |
| A6 | -0.116 | -0.110 | -0.105 | -0.066 | -0.053 | 0.345 | 0.342 | 0.338 | 0.351 | 0.325 |
| A7 | -0.109 | -0.104 | -0.099 | -0.065 | -0.054 | 0.348 | 0.343 | 0.338 | 0.352 | 0.328 |
| A 8 | $-0.101$ | -0.1996 | $-0.090$ | -0.064 | -0.055 | 0.352 | 0.344 | 0.337 | 10.352 | 0.331 |
| A9 | -0.090 | $-0.085$ | -0.080 | -0.062 | -0.056 | 0.356 | 0.345 | 0.337 | 0.353 | 0.334 |

TABLE 501
(CONT INUED)


## TABIE 5.2

RMS DISPERSIONS IN THE MEAN COLORS
AT ANY SPECTRAL TYPE

Luminosity

| Class | $\left[c_{1}\right]$ | $\left[m_{1}\right]$ | $[G]$ | $[N]$ |
| :---: | :---: | :---: | :---: | :---: |
| I | 0.081 | 0.064 | 0.021 | 0.030 |
| II | 0.126 | 0.067 | 0.021 | 0.034 |
| III | 0.053 | 0.034 | 0.013 | 0.056 |
| IV | 0.067 | 0.017 | 0.021 | 0.036 |
| V | 0.054 | 0.017 | 0.007 | 0.007 |



Fig. 5.1 Strömgren to Kelsall transformations for $\left[c_{1}\right]$ and $\left[m_{1}\right]$.


Fig. 5.2 Williams to Kelsall transformations for $\left[c_{1}\right]$, $\left[m_{1}\right]$, [c] and [ $\left.N\right]$.


Fig. 5.3 Dependence of [ $\left.c_{1}\right]$, [G] and [n] on spectral type for luminosity class $V$ stars.


Fig. 5.4 Dependence of $\left[c_{1}\right],\left[m_{1}\right],[G]$ and [IN] on spectral type for luminosity class IV staxs.


Fig. 5.5 Dependence of [G] and [N] on spectral type for luminosity class III stars.


Fig. 5.6 Dependence of $\left[c_{1}\right],\left[m_{1}\right],[G]$ and $[N]$ on spectral type for luminosity


Fig. 5.7 Variation of $\left[c_{1}\right]$ and $\left[m_{1}\right]$ with spectral type for all luminosity classes.


Fig. 5.8 Variation of [G] and [N] with spectral type for all luminosity classes.


Fig. 5.9 Various color-color diagrams useful in discriminating between luminosity classes.


Fig. 5.10 The supercoior H-R diagram. The symbols are the supercolors resulting from using the mean colors at each spectral type over the range $\mathrm{A} 5-\mathrm{K} 5$.

## CHAPIER VI

## BASIC CEPHEID RBSULTS

## 6-1. Photometry and Data

The cepheid data is collected and reduced in a manner identical to that for the supergiants. Whilst higher accuracy may be obtained using comparison stars, the gain would not warrant the additional observing time. The results are given in Table 6.1. The phases listed are those calculated using the photometric periods and epochs determined from a combination of $V$ and $y$ data as described below. There is on the average 13.1 observations per star.

## 6-2. The Periods

It is recognized that the cepheid periods are not rigidly time invariant. The compilation of periods in the General Catalog of Variable Stars (GCVS; 1958) is derived basically from photographic results up to 1958. Since 1952 thexe have been extensive observations made on the UBV system. These results through 1964, transformed to - the standard UBV system, are listed in the very fine catalog prepared by Mitchell, Iriarte, Steinmetz, and Johnson (MISJ; 1964). A combination of the $V$ data from MISJ and the $y$ data from this investigation gives new periods of high accuracy.

The method of period determination is to fit the visual magnitude by a Fourier series --

$$
V_{i}=a_{0}+\sum_{\substack{-n=1}}^{\mathbb{N}}\left[a_{n} * \sin \left(2 m \frac{t_{i}-t_{0}}{P}\right)+a_{n+1} * \cos \left(2 m \frac{t_{i}-t_{o}}{P}\right)\right],
$$

where n is the harmonic index, $\mathbb{N}$ is the maximum number of harmonics in the fit, $t_{o}$ is the time of the first observation, $t_{i}$ is the $i$-th observation time, and $P$ is the period. In the analysis the period is left as a free parameter. For each period the fitting coefficients are calculated by the method of least squares. The best period is defined as that one which minimizes the sum of the deviations squared, S .

We illustrate the procedure by example. In Fig. 6.1 S is plotted against period for the cepheid $X$ Lacertae, using MISJ data only. The interval size in the period scan, $\Delta P$, is chosen so the relative phase change between the first and last observation is less than 0.05 as the period is changed from $P$ to $P+\Delta P$. The upper panel of Fig. 6.1 indicates a minimum in $S$ at approximately 5.44 days. The deep satellite minima result mainly from the blocking of the data into groups, each group being associated with a particular observational program. The computer program, designed by the author to do this analysis, finds the point of deepest minimum. The program then automatically repeats the period scanning in the neighborhood of the deepest minimum with an ever increasing period resolution. This process is continued until the period producing the deepest minimum in $S$ is determined to within five parts in a hundred million. The fine detail is shown in the lower panel of Fig. 6.1, where an unambiguous minimum is found for a period of 5.44389 days.

The following technique is used to combine the $V$ from MISJ with the $y$ of this investigation. The $y$ data is analyzed using the period found from the analysis of the MISJ data alone. From the separate $V$ and $y$ analyses the mean values of the fits, $\langle v\rangle$ and $\langle y\rangle$, are known. To bring $y$ into accord with $V$, to each $y$ is added the correction term
$(\langle v\rangle-\langle y\rangle)$. This process is substantially the best that can be done. For while $y$ and V are well correlated for unreddened stars, the broadness of $V$ precludes using this simple correlation for stars as strongly reddened as are the cepheids. Once $y$ is so adjusted the period analysis is repeated using the combined $V$ and $y$ data. The results of this combinational process are shown for four stars in Fig. 6.2. The stars well represent the full range of situations. As can be seen the y and V data are compatible.

There is no rigorous manner that can specify the accuracy of the determined free-parameter period. However, intuitively we expect the precision to be commensurate with the difficulty of phase positioning arising from the size of the observational error. For example, if the range in $V$ is 0.6 , and the observational error is 0.012 , the phase location is uncertain to 0.01 . This estimate is simply the result of setting $\Delta \phi=(d \phi / \partial V) * V$-error. Thus, the expected relative period precision, $\Delta \mathrm{P} / \mathrm{P}$, for a set of data covering $\mathbb{N}$ cycles will be given by --

$$
\begin{equation*}
\frac{\Delta \mathrm{P}}{\mathrm{P}}=\frac{\mathrm{d} \phi / \mathrm{dV} * \mathrm{~V} \text {-error }}{\mathrm{no} \cdot \Delta \mathrm{of} \text { cycles }}=\frac{\Delta \phi}{\mathrm{N}} . \tag{6-2}
\end{equation*}
$$

This intuitive argument for accuracy was checked by performing a number of numerical experiments. The fitting curve for $\eta$ AqI was taken as true. Random points from this curve were selected, positioned randomly over a time baseline of N cycles, assigned exrors of known dispersion, and then analyzed for period. The results for period accuracy bore out the simple argument given above, if the points sufficiently covered the range in phase from 0 to 1.

The results of the period determinations for the thirty program
cepheids are shown in'Table 6.2. The data fits in all cases contained three harmonics, i.e:, seven fitting coefficients. The accuracy listed in column four of the table probably represents a best situation. The MISJ data contains not only observational errors, but also errors of system transformations. Even making allowances for these difficulties, cepheids W Gem, SZ Tau, SW Tau, and AU Peg have had period decreases, while AL Vir's period has increased over the GCVS periods. The marked variation of AU Peg's period has been noted recently by Kwee (1967).

## 6-3. Color-Phase Results

The color-phase plots for eight representative cepheids are shown in Figs. 6.3 through 6.10. The phases are those determined from the epochs and periods listed in Table 6.2. The fitting curves for $y$ are not necessarily at a maximum at phase 0.0 as the fits are the results of Fourier analyses of the $y$ data alone, and the $y$ data is often insufficient in determining the time of maximum light. The data appears to be most adequate in delineating the variation of the photometric quantities with phase.

## 6-4. Comparison with the Supergiants

Photometric comparisons between the cepheids and the supergiants are shown in the graphs of Fig. 6.11, where the photometric data for the cepheids at maximum and minimum light are taken from the fitting curves so as to place all cepheids on an equal footing. On the whole the cepheids duplicate the supergiant results. An exception is the results for $\left[c_{1}\right]$. This discord is most pronounced at maximum light. It is known that the hydrogen lines are strongest then. As $\left[c_{1}\right]$ contains the $v$ magnitude twice, and as the $v$ filter contains H-delta,
part of the trouble with $\left[c_{1}\right]$ may result from the enhancement of H-delta in the cepheids ar maximum light over their supergiant equivalents.

Fig. 6.11 also shows that there is no clear photometric discrimination between the classical (c $\delta$ ), galactic (C), and Pop. II (CW) cepheids. For while four of the five CW cepheids stand out at maximum light in the $\left[c_{1}\right]$ versus $\left[m_{1}\right]$ plot, the result for AU Peg ( $\left[c_{1}\right]=0.662$, $\left[m_{1}\right]=0.281$ ) shows that some of the CW cepheids would be lost photometrically.

## 6-5. A Population II Discriminant

In the literature cepheid color-color curves are often distinquished by their openness or closedness. This characteristic of the loops is illustrated in Fig. 6.12, where the color-color Lissajous figures in the UBV, six-color, and our composite system are shown. A quantitative measure of a loop's openness would be its area. The index could be either the total or the "signed" area, where the signed area is the area calculated taking into account the direction of circulation around the area's border as the phase goes from 0 to 1.

In Fig. 6.13 the total areas for particular color-color loops in the various systems versus the log of the cepheid periods are shown. We designate the total area of the $U$ versus ( $B-V$ ) loop by ( $U, B-V$ ), etcetera. The data shown are the best results for the various photometric systems. For UBV we find no positive population discriminant. The ( $(\mathrm{U}, \mathrm{B}-\mathrm{V}$ ) plot does indicate that the CW cepheids possess systematically larger areas than most of the Pop. I cepheids. Good population discrimination is apparently possible in the six-color and our composite system. The most useful segregation results in our system are
shown in Fig. 6.14. We note that this segregation method is independent of the amounts"'of interstellar reddening.

One impetus in investigating the color-color areas was a hope that they could be interpreted as thermodynamics-work cycles. The results can not be given a simple quantitative interpretation along such lines. Dr. R. A. Bell (private communication) points out that (b-y) is a temperature indicator, while $G$ depends on pressure and temperature through molecular equilibria. Thus, the ( $b-y, G$ ) is in a complex manner the area of a ( $P, T$ ) work cycle。 The $\left(c_{1}, G\right)$ is similar, as $c_{1}$ is gravity (pressure) dependent. A complete analysis of the results would be most complex.

6-6. (b-y) Color Excesses
The (b-y)-color excesses are calculable once the intrinsic $G$, (b-y) relation is known. We assume the simple linear relationship --

$$
\begin{equation*}
G_{0} \doteq A^{*}(b-y)_{0}+B, \tag{6-3}
\end{equation*}
$$

and obtain A and B through a two step procedure. The first step is to assume that $B$ is zero in Eq. $(6-3)$, and to take $A$ as a free parameter. For each of the twenty-one Pop. I cepheids the $G,(b-y)$ color-color loop is calculated, at forty phase points, using the Fourier fits to the colors. Each phase point of a particular loop is translated along the $G,(b-y)$ reddening line until it intersects the assumed $G_{o},(b-y)_{o}$ line. The $(b-y)$ translation is the $E(b-y)$ for that point. The true $E(b-y)$ for a star is taken to be the average of the $E(b-y)$ 's at all phase points. This average $\mathrm{E}(\mathrm{b}-\mathrm{y})$ is applied to each phase point. After all the stars' points are so translated, the rms deviation of the totality of points relative to the assumed $G_{0},(b-y)_{o}$ relation is determined.

The best value for the constant $A$ is that for which the rms deviation is least.

The value for $B$ is fixed by imposing the condition that the average value of $E(b-y) / E(B-V)$ be 0.70 . This is identical to the adjustment made to fix the zero point for the supergiants. The values for $E(B-V)$ for the twenty-one cepheids are taken from the compliation by Fernie (1967a). The final $G_{o}$, $(b-y)$ relation is --

$$
\begin{equation*}
G_{0}^{c e p}=0.543^{*}(b-y)_{0}-0.110 \tag{6-4}
\end{equation*}
$$

This relationship is very close to the supergiant thermal locus given in Fig. 4.4 --

$$
G_{0}^{s \cdot g \cdot}=0.532^{*}(b-y)_{0}-0.106
$$

The $E(b-y)$ 's calculated with either equation differ at most by seven thousandths for any of the twenty-one cepheids.

The slope of the $G_{0},(b-y)_{o}$ relation is in essence the best statistical representation of the orientation of the semi-major axis of the $\mathrm{G},(\mathrm{b}-\mathrm{y})$ color-color loops. As a check on the suitableness of the simple Inear relation of $G_{0}$ with $(b-y)_{O}$, the orientations of the semi-major axes for individual stars were determined. All determinations gave slopes close to the 0.543 value.

The $E(b-y)$ 's calculated using Eq. (6-4) are listed in Table 6.3. No values for the Pop. II cepheids are given. These stars appear to obey the relation --

$$
G_{0}=0.403^{*}(b-y)_{0}+B,
$$

nt here a precise specification for $B$ is impossible.
j-7. $\quad(\mathrm{b}-\mathrm{y})$ and the Effective Temperature
Two of the best studied cepheids are $\delta$ Cep and $\uparrow$ Aqu. They constitute the basis for oke.'s (1961) calibration of (B-V) to $\theta$ eff. A comparison of $(b-y)$ and $(B-V)$ as function of phase for these two stars is shown in Fig. 6.15. The (b-y) results have been adjusted so that $\langle b-y\rangle$ equals $\langle B-V\rangle$. The two panels demonstrate the near similar phase variations of $(b-y)^{\prime}$ and $(B-V)$. In Fig. $6.16(B-V)_{o}$ is plotted. against $(b-y)_{0}$. The $\delta$ cep and If Aql data give the relation $\sim-$

$$
\begin{equation*}
(B-V)_{0}=0.021+1.606 *(b-y)_{0} \tag{6-5}
\end{equation*}
$$

with a fitting probable error of 0.021 . Fig. 6.16 also includes the . points for $X$ Cyg, the longest period cepheid in the program. While the points for $X$ Cyg lie systematically above the $(B-V)_{0} /(b-y)_{0}$ line, the Iinearity of the relation is obviously preserved even for large $(B-V)_{0}$. The $X$ Cyg points would lie on the line if the $E(B-V)$ were increased from 0.36, Fernie's value, to 0.42 . This value for $\mathrm{E}(\mathrm{B}-\mathrm{V})$ is within reason as the $E(b-y)$ is 0.283 , which predicts an $E(B-V)$ of 0.40 .

Oke's calibration relating $(B-V)_{0}^{\text {t }}$ to $\theta_{\text {eff' }}$, modified to include more recent reddening results (Rodgers and Bell 1967), is .-

$$
\begin{equation*}
\theta_{\text {eff }}=0.651+0.337 *(B-V)_{0} . \tag{6-6}
\end{equation*}
$$

Substituting Eq. (6-5) into Eq. (6-6) gives --

$$
\begin{equation*}
\theta_{\text {eff }}=0.672+0.541^{*}(b-y)_{0} . \tag{6-7}
\end{equation*}
$$

The larger coefficient for ( $b-y)_{o}$ over that for ( $\left.B-V\right)_{o}$ in the expression
for $\theta_{\text {eff }}$ is compensated for by the higher observational precision possible in the determination of (b-y), and its associated reddening excess.

TABLE 6.1

## OBSERVATIONS OF THE CEPHEIDS.



FF AQL $\rightarrow 4.4709$ DAYS
8553. 801
8554. 812
3555. 763
8556. 764
8557.754
8558.753
8559. 744
8560. 752
8561.760
8564.748
8565.758
8566.746

$$
\begin{aligned}
& 0.940 \\
& 0.166 \\
& 0.379 \\
& 0.603 \\
& 0.324 \\
& 0.048 \\
& 0.269 \\
& 0.495 \\
& 0.720 \\
& 0.389 \\
& 0.615 \\
& 0.835
\end{aligned}
$$

$\begin{array}{lll}5.208 & 1.025 & 0.183 \\ 5.301 & 0.947 & 0.195 \\ 5.468 & 0.862 & 0.185 \\ 5.525 & 0.820 & 0.232 \\ 5.367 & 0.913 & 0.192 \\ 5.215 & 1.049 & 0.153 \\ 5.381 & 0.926 & 0.179 \\ 5.503 & 0.796 & 0.226 \\ 5.481 & 0.860 & 0.232 \\ 5.476 & 0.848 & 0.268 \\ 5.516 & 0.847 & 0.207 \\ 5.353 & 0.918 & 0.210\end{array}$

| 0.444 | 0 |
| :--- | :--- |
| 0.483 | 0 |
| 0.542 | 0 |
| 0.515 | 0 |
| 0.480 | 0 |
| 0.456 | 0 |
| 0.516 | 0 |
| 0.545 | 0 |
| 0.490 | 0 |
| 0.526 | 0 |
| 0.527 | 0 |
| 0.466 | 0 |

TABLE 6.1

## (CONTINUED)

JD

| JD | PHASE | Y | C1 | M1 | B-Y | $G$ | N |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(2430000+)$ | PHASE |  |  |  |  |  |  |  |
| 8688.623 | 0.095 | 5.242 | 1.027 | 0.191 | 0.444 | 0.056 | 0.449 |  |
| 8689.629 | 0.321 | 5.455 | 0.887 | 0.218 | 0.516 | 0.083 | 0.466 |  |
| 8692.604 | 0.985 | 5.199 | 1.044 | 0.188 | 0.441 | 0.055 | 0.441 |  |
| 8694.607 | -0.434 | 5.490 | 0.804 | 0.199 | 0.553 | 0.096 | 0.461 |  |

FM AQL -- 5.1142 DAYS

| 8555.926 | 0.756 | 8.595 | 0.634 | 0.134 | 1.009 | 0.143 | 0.589 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8556.820 | 0.902 | 8.124 | 0.913 | 0.091 | 0.816 | 0.149 | 0.449 |
| 8557.822 | 0.066 | 7.986 | 0.906 | 0.094 | 0.804 | 0.078 | 0.508 |
| 8558.858 | 0.236 | 8.206 | 0.754 | 0.122 | 0.906 | 0.127 | 0.525 |
| 8559.812 | 0.392 | 8.343 | 0.729 | 0.163 | 0.949 | 0.145 | 0.621 |
| 8560.920 | 0.573 | 8.542 | 0.499 | 0.213 | 1.006 | 0.267 | 0.536 |
| 8561.801 | 0.717 | 8.634 | 0.534 | 0.185 | 1.009 | 0.238 | 0.625 |
| 8564.796 | 0.207 | 8.154 | 0.816 | 0.117 | 0.894 | 0.119 | 0.570 |
| 8565.793 | 0.370 | 8.327 | 0.582 | 0.196 | 0.936 | 0.193 | 0.547 |
| 8566.772 | 0.530 | 8.529 | 0.594 | 0.193 | 0.971 | 0.117 | 0.596 |
| 8689.612 | 0.621 | 8.649 | 0.558 | 0.246 | 0.981 | 0.220 | 0.546 |
| 8591.611 | 0.948 | 7.920 | 0.967 | 0.095 | 0.796 | 0.084 | 0.494 |
| 8692.591 | 0.108 | 8.061 | 0.826 | 0.166 | 0.818 | 0.148 | 0.508 |
| 8693.587 | 0.271 | 8.221 | 0.738 | 0.131 | 0.921 | 0.182 | 0.536 |

V496 AQL - 6.8072 DAYS

| 8555.897 | 0.947 | 7 |
| :--- | :--- | :--- |
| 8556.374 | 0.090 | 7 |
| 8557.858 | 0.235 | 7 |
| 8558.812 | 0.375 | 7 |
| 8559.852 | 0.528 | 7 |
| 8560.869 | 0.677 | 7 |
| 8561.872 | 0.825 | 7 |
| 8564.843 | 0.261 | 7 |
| 8565.867 | 0.412 | 7 |
| 8566.858 | 0.557 | 7 | -

RT AUR -- 3.7281 DAYS
8589.003 8689.972 8689.997 8692.938 8820.763 8822.744 8823.754 8825.775
0.007
0.267
0.274
0.063
0.349
0.881
0.152
0.694

5.423
5.435
5.126
5.541
5.360
5.258
5.822

| 0.193 | 0.703 |
| :--- | :--- |
| 0.221 | 0.710 |
| 0.253 | 0.765 |
| 0.275 | 0.783 |
| 0.294 | 0.820 |
| 0.243 | 0.827 |
| 0.264 | 0.735 |
| 0.303 | 0.724 |
| 0.303 | 0.792 |
| 0.347 | 0.789 |


| 7.603 | 0.800 |
| :--- | :--- |
| 7.642 | 0.752 |
| 7.725 | 0.658 |
| 7.827 | 0.644 |
| 7.940 | 0.519 |
| 7.925 | 0.635 |
| 7.773 | 0.619 |
| 7.748 | 0.676 |
| 7.845 | 0.593 |
| 7.975 | 0.575 |

$$
\begin{array}{ll}
0.110 & 0.506 \\
0.201 & 0.446 \\
0.157 & 0.503 \\
0.204 & 0.494 \\
0.222 & 0.563 \\
0.240 & 0.487 \\
0.151 & 0.485 \\
0.157 & 0.501 \\
0.217 & 0.518 \\
0.227 & 0.553
\end{array}
$$

TABLE 6.1

## (CONTINUED)

| JD ${ }^{\text {d }}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (2430000t) | Phase | $Y$ | C1 | M1 | B-Y | G | $N$ |
| 8826.742 | 0.953 | 5.017 | 1.122 | 0.167 | '0.261 | -0.008 | 0.406 |
| 9045.985 | 0.761 | 5.792 | 0.617 | 0.292 | 0.45 .3 | 0.103 | 0.472 |
| 9053.005 | 0.544 | 5.803 | 0.628 | 0.297 | 0.472 | 0.123 | 0.455 |
| 9175.757 | 0.570 | 5.755 | 0.627 | 0.291 | 0.472 | 0.130 | 0.474 |
| 9177.791 | 0.115 | 5.215 | 0.974 | 0.216 | 0.308 | 0.023 | 0.434 |
| 9440.944 | 0.701 | 5.817 | 0.678 | 0.250 | . 0.484 | 0.133 | 0.465 |
| 9443.958 | 0.509 | 5.721 | 0.633 | 0.278 | 0.472 | 0.134 | 0.458 |
| RX CAM $=-\quad 3.9124$ DAY'S |  |  |  |  |  |  |  |
| 8687.977 | 0.494 | 7.862 | 0.697 | 0.235 | 0.917 | 0.181 | 0.551 |
| 8688. 894 | 0.609 | 8.030 | 0.632. | 0.288 | 0.945 | 0.155 | 0.589 |
| 8689.903 | 0.737 | 8.055 | 0.608 | 0.280 | 0.917 | 0.187 | 0.520 |
| 8691.847 | 0.983 | 7.367 | 1.055 | 0.108 | 0.724 | 0.087 | 0.499 |
| 8692.810 | 0.104 | 7.500 | 0.934 | 0.152 | 0.785 | 0.121 | 0.515 |
| 8820.641 | 0.260 | 7.494 | 0.839 | 0.196 | 0.785 | 0.140 | 0.498 |
| 8822.637 | 0.512 | 7.916 | 6.590 | 0.266 | 0.929 | 0.232 | 0.551 |
| 8823.613 | 0.636 | 8.036 | 0.599 | 0.236 | 0.969 | 0.178 | 0.619 |
| 8824.625 | 0.764 | 7.997 | 0.619 | 0.231 | 0.912 | 0.179 | 0.528 |
| 8826.615 | 0.015 | 7.363 | 1.046 | 0.135 | 0.731 | 0.091 | 0.509 |
| 9045.931 | 0.733 | 8.059 | 0.523 | 0.223 , | 0.922 | 0.168 | 0.542 |
| 9051.917 | $0 \times 489$ | 7.842 | 0.654 | 0.247 | 0.928 | 0.205 | 0.543 |
| 9052.987 | 0.612 | 8.030 | 0.597 | 0.264 | 0.952 | 0.183 | 0.560 |
| 9053.906 | 0.741 | 8.053 | 0.606 | 0.229 | 0.925 | 0.198 | 0.539 |
| 9054.904 | 0.867 | 7.702 | 0.784 | 0.171 | 0.803 | 0.156 | 0.474 |
| 9175.610 | 0.122 | 7.496 | 0.835 | 0.178 | 0.791 | 0.163 | 0. |

## RY CMA -- 406784 DAYS

8820.683 8823.692 8825.669 9177.724 9178.708 9440.976 9445.967
0.774
0.204
0.417
0.840
0.091
0.302
0.361
0.428

| 8.426 | 0.594 | 0.275 | 0.620 | 0.122 | 0.482 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 8.036 | 0.788 | 0.214 | 0.541 | 0.067 | 0.503 |
| 8.255 | 0.634 | 0.262 | 0.613 | 0.101 | 0.501 |
| 8.252 | 0.736 | 0.216 | 0.563 | 0.138 | 0.443 |
| 7.846 | 0.958 | 0.211 | 0.466 | 0.027 | 0.441 |
| 8.076 | 0.649 | 0.273 | 0.572 | 0.105 | 0.479 |
| 8.176 | 0.667 | 0.309 | 0.583 | 0.111 | 0.477 |
| 8.235 | 0.660 | 0.236 | 0.627 | 0.120 | 0.500 |

SU CAS . -1.9493 DAYS
$\begin{array}{ll}8687.938 & 0.557 \\ 8688.817 & 0.008 \\ 8689.890 & 0.559 \\ 8691.831 & 0.555 \\ 8692.792 & 0.048\end{array}$

| 6.171 | 0.859 | 0.122 | 0.546 | 0.077 | 0.433 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 5.774 | 1.127 | 0.137 | 0.421 | 0.008 | 0.443 |
| 6.172 | 0.878 | 0.142 | 0.530 | 0.056 | 0.443 |
| 6.179 | 0.866 | 0.159 | 0.524 | 0.065 | 0.466 |
| 5.798 | 1.113 | 0.124 | 0.437 | 0.028 | 0.419 |

TABLE 6.I
(CONTINUED)

| JD |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (2430000 +) | PHASE | $Y$ | C1 | M1 | B-Y | G | $N$ |
| 8693.935 | 0.634 | 6.157 | 0.861 | 0.149 | 0.528 | 0.043 | 0.462 |
| 90450892 | 0.186 | 5.900 | 1.062 | 0.119 | 0.481 | 0.031 | 0.433 |
| 9051.872 | 0.253 | . 5.971 | 0.960 | 0.155 | 0.480 | 0.041 | 0.438 |
| 9052.863 | 0.762 | 6.029 | 0.926 | 0.178 | 0.470 | 0.029 | 0.433 |
| 90530897 | 0.292 | 6.006 | 0.938 | 0.173 | 0.483 | 0.057 | 0.431 |
| 90540856 | 0.784 | 5.979 | 0.991 | 0.142 | 0.468 | 0.041 | 0.410 |
| 9176.627 | 0.252 | 5.944 | 1.003 | 0.153 | 0.478 | 0.0 | 0.0 |
| 9177.638 | 0.771 | 5.986 | 0.952 | 0.154 | 0.478 | 0.035 | 0.447 |
| 9440.770 | 0.756 | 6.033 | 0.971 | 0.131 | 0.485 | 0.037 | 0.423 |
| 94440794 | 0.820 | 5.937 | 0.992 | 0.108 | 0.487 | C.034 | 0.420 |
|  | TU CAS |  | 2.1394 DAYS |  |  |  |  |
| 8687.888 | 0.687 | 7.946 | 0.718 | 0.215 | 0.441 | 0.123 | 0.408 |
| 8688.808 | 0.117 | 7.620 | 0.915 | 0.196 | 0.343 | 0.038 | 0.425 |
| 8689.852 | 0.605 | 8.005 | 0.732 | 0.222 | 0.459 | 0.089 | 0.427 |
| 8691.786 | 0.509 | 8.061 | $0.701^{\circ}$ | 0.269 | 0.449 | 0.090 | 0.452 |
| 8692.747 | 0.958 | 7.515 | 1.017 | 0.193 | 0.308 | 0.012 | 0.415 |
| 8693.813 | 0.456 | 7.904 | 0.767 | 0.208 | 0.432 | 0.098 | 0.427 |
| 9045.813 | 0.985 | 7.197 | 1.183 | 0.182 | 0.223 | -0.017 | 0.364 |
| 9046.821 | 0.457 | 7.994 | 0.726 | 0.242 | 0.462 | 0.103 | 0.440 |
| 9051.790 | 0.779 | 8.025 | 0.724 | 0.211 | 0.442 | 0.063 | 0.466 |
| 9052.775 | 0.240 | 7.834 | 0.794 | $0 \cdot 215$ | 6.433 | 0.665 | 0.434 |
| 9053.784 | 0.711 | 7.888 | 0.769 | 0.189 | 0.424 | 0.059 | 0.436 |
| 9054.837 | 0.204 | 7.716 | 0.835 | 0.224 | 0.364 | 0.608 | 0.438 |
| 9440.713 | 0.567 | 8.060 | 0.759 | 0.222 | 0.468 | 0.109 | 0.443 |
| 9443.731 | 0.977 | 7.180 | 1.244 | 0.174 | 0.222 | -0.024 | 0.391 |
| 9444.712 | 0.436 | 8.015 | 0.768 | 0.216 | 0.484 | 0.129 | 0.412 |
| 94450740 | 0.916 | 7.461 | 1.052 | 0.180 | 0.296 | 0.047 | 0.387 |

## DL CAS $=-8.0054$ DAYS

| 8691.800 | 0.975 |
| :--- | :--- |
| 8692.762 | 0.095 |
| 8693.823 | 0.228 |
| 9045.802 | 0.223 |
| 9051.799 | 0.973 |
| 9053.805 | 0.224 |
| 9443.740 | 0.963 |
| 9444.724 | 0.086 |
| 9445.767 | 0.216 |

8.707
8.771
8.867
8.842
8.712
8.829
8.714
8.761
8.823
8. 823

| 0.882 | 0 |
| :--- | :--- |
| 0.862 | 0 |
| 0.800 | 0 |
| 0.804 | 0 |
| 0.896 | 0 |
| 0.731 | 0 |
| 0.912 | 0 |
| 0.836 | 0 |
| 0.769 | 0 |

0.122

| 0.742 | 0.017 | 0.524 |
| :---: | :---: | :---: |
| 0.765 | 0.141 | 0.463 |
| 0.743 | 0.156 | 0.520 |
| 0.806 | 0.148 | 0.533 |
| 0.714 | 0.090 | 0.469 |
| 0.817 | 0.111 | 0.535 |
| 0.732 | 0.105 | 0.523 |
| 0.779 | 0.120 | 0.521 |
| 0.792 | 0.125 | 0.604 |

.TABLE 6.1
(CONTINUED)
(2430000+) PHASE Y C1 MI. B-Y G G

DELTA CEP -- 5. 3662 DAYS

| 8553.979 | 0.850 | 4.037 | 0.757 | 0.240 | 0.431 | 0.079 | 0.453 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8554.961 | 0.032 | 3.542 | 1.084 | 0.185 | 0.311 | 0.015 | 0.437 |
| 8555.972 | 0.221 | 3.856 | 0.844 | 0.214 | 0.430 | 0.086 | 0.456 |
| 8587.783 | 0.784 | 40268 | 0.626 | 0.294. | 0.493 | 0.138 | 0.462 |
| 8688.760 | 0.966 | 3.493 | 1.116 | 0.193 | 0.273 | 0.005 | 0.421 |
| 8689.775 | 0.155 | 3.755 | 0.891 | 0.212 | 0.394 | 0.040 | 0.452 |
| 8691.733 | 0.520 | 4.195 | 0.655 | 0.279 | 0.526 | 0.134 | 0.498 |
| 8692.691 | 0.699 | 4.357 | 0.597 | 0.314 | 0.542 | 0.152 | 0.503 |
| 8694.706 | 0.074 | 3.622 | 1.003 | 0.193 | 0.340 | 0.042 | 0.428 |
| 9046.738 | 0.675 | 4.331 | 0.599 | 0.308 | 0.554 | 0.160 | 0.510 |
| 9051.729 | 0.605 | 40286 | 0.593 | 0.321 | 0.537 | 0.146 | 0.494 |
| 9052.744 | 0.795 | 4.236 | 0.628 | 0.289 | 0.499 | 0.120 | 0.482 |
| 9053.728 | 0.978 | 3.485 | 1.136 | 0.181 | 0.284 | 0.005 | 0.419 |
| 9054.702 | 0.159 | 3.743 | 0.875 | 0.216 | 0.396 | 0.071 | 0.437 |
| 9444.680 | 0.832 | 4.119 | 0.729 | 0.248 | 0.450 | 0.093 | 0.460 |
| 9445.676 | 0.018 | 3.517 | 1.101 | 0.196 | 0.293 | 0.029 | 0.409 |

$X$ CYG -- 1603854 DAYS
8688.697
8691.672
8692.645
9045.665
9046.692
9051.679
9053.681
9054.622
9440.626
9443.622
9444.622
9445.624
0.185
0.366
0.426
0.970
0.033
0.337
0.460
0.517
0.075
0.258
0.319
0.380

| 6.193 | 0.645 | 0.306 | 0.743 | 0.173 | 0.574 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 6.494 | 0.490 | 0.432 | 0.855 | 0.237 | 0.658 |
| 6.613 | 0.404 | 0.478 | 0.886 | 0.263 | 0.697 |
| 5.853 | 0.952 | 0.188 | 0.554 | 0.096 | 0.453 |
| 5.937 | 0.851 | 0.228 | 0.595 | 0.114 | 0.497 |
| 6.439 | 0.485 | 0.407 | 0.852 | 0.239 | 0.687 |
| 6.659 | 0.425 | 0.478 | 0.911 | 0.268 | 0.767 |
| 6.758 | 0.375 | 0.519 | 0.931 | 0.263 | 0.829 |
| 6.001 | 0.777 | 0.228 | 0.658 | 0.129 | 0.486 |
| 6.302 | 0.556 | 0.366 | 0.804 | 0.214 | 0.618 |
| 6.394 | 0.501 | 0.414 | 0.848 | 0.245 | 0.697 |
| 6.493 | 0.417 | 0.443 | 0.879 | 0.245 | 0.724 |

SU CYG -- 3.8455 DAYS
$\begin{array}{ll}8553.854 & 0.305 \\ 8554.894 & 0.575 \\ 8555.774 & 0.804 \\ 8556.773 & 0.064 \\ 8557.784 & 0.327 \\ 8558.763 & 0.581 \\ 8559.781 & 0.846 \\ 8560.781 & 0.106 \\ 8561.767 & 0.362\end{array}$

| 6.909 | 0.695 |
| :--- | :--- |
| 7.107 | 0.516 |
| 7.080 | 0.604 |
| 6.540 | 0.985 |
| 6.954 | 0.656 |
| 7.151 | 0.543 |
| 6.944 | 0.678 |
| 6.625 | 0.887 |
| 6.994 | 0.638 |

0.403
0.0820 .418
0.1730 .4590 .00 .0
$0.185 \quad 0.415 \quad 0.042 \quad 0.474$
$0.137 \quad 0.319 \quad 0.004 \quad 0.403$
0.1880 .407
0.0560 .475
0.0910 .422
$\begin{array}{lll}0.440 & 0.091 & 0.422 \\ 0.368 & 0.065 & 0.437\end{array}$
$0.301 \quad 0.020 \quad 0.451$

## TABLE 6.1

## (CONTINUED)

| 10 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (2430000 4 ) | PhASE | $Y$ | C1 | M1 | $8-8$ | $G$ | $N$ |
| 8564.758 | 0.140 | 6.680 | 0.834 | 0.196 | 0.328 | 0.019 | 0.445 |
| 8565.782 | 0.407 | 7.030 | 0.594 | 0.203 | 0.424 | 0.066 | 0.438 |
| 8566.801 | 0.672 | 7.190 | 0.521 | 0.204 | 0.454 | 0.089 | 0.446 |
| 8693.642 | 0.656 | 7.173 | 0.541 | 0.195 | 0.450 | 0.102 | 0.456 |
|  | $V Z$ CYG |  | 4.8646 DAYS |  |  |  |  |
| 8555.957 | 0.479 | 8.832 | 0.440 | 0.315 | 0.562 | 0.120 | 0.534 |
| 8556.951 | 0.683 | 9.289 | 0.575 | 0.321 | 0.651 | 0.217 | 0.437 |
| 8557.962 | 0.891 | 8.830 | 0.794 | 0.240 | 0.490 | 0.006 | 0.510 |
| 8558.931 | 0.090 | 8.717 | 0.920 | 0. 204 | 0.494 | 0.110 | 0.444 |
| 8559.941 | 0.298 | 8.958 | 0.685 | 0.231 | 0.637 | 0.156 | 0.403 |
| 8560.950 | 0.505 | 9.147 | 0.707 | 0.301 | 0.646 | 0.112 | $0.577^{\circ}$ |
| 8561.944 | 0.710 | 9.288 | 0.608 | 0.256 | 0.680 | 0.095 | 0.588 |
| 8565.942 | 0.531 | 9.175 | 0.596 | 0.271 | 0.679 | 0.163 | 0.484 |
| 8566.910 | 0.730 | 9.259 | 0.586 | 0.349 | 0.527 | 0.152 | 0.455 |
| 8689.760 | 0.984 | 8.623 | 0.956 | 0.207 | 0.448 | -0.002 | 0.484 |
| 8691.699 | 0.383 | 9.055 | 0.622 | 0.263 | 0.648 | 0.201 | 0.452 |

DTCYG -- 2.4993 DAYS
8553. 875
8554.926
8555.855
8556.848
8557.935
3558.895
8559.924
8560.824
8561.841
8564.915
8565.922
8687.740 8688.674 8689.665 8691.649 8692.653 8694.639 9443.633 9445.646
0.066
0.486
0.858
0.255
0.690
0.074
0.486
0.846
0.253
0.483
0.886
0.627
0.000
0.397
0.191
0.593
0.387
0.068
0.873

| 5.526 | 0.963 |
| :--- | :--- |
| 5.896 | 0.790 |
| 5.713 | 0.901 |
| 5.759 | 0.863 |
| 5.883 | 0.842 |
| 5.661 | 0.942 |
| 5.911 | 0.816 |
| 5.720 | 0.897 |
| 5.774 | 0.856 |
| 5.902 | 0.809 |
| 5.711 | 0.917 |
| 5.853 | 0.809 |
| 5.648 | 0.965 |
| 5.873 | 0.826 |
| 5.721 | 0.919 |
| 5.940 | 0.791 |
| 5.862 | 0.835 |
| 5.653 | 0.946 |
| 5.681 | 0.924 |

0.1940 .303

| 0.1220 | 0.373 |
| :--- | :--- |
| 0.191 | 0.319 |
| 0.197 | 0.348 |
| 0.209 | 0.352 |
| 0.198 | 0.304 |
| 0.198 | 0.392 |
| 0.187 | 0.326 |

$0.026 \quad 0.421$
0.0120 .494
0.0280 .420
$0.039 \quad 0.416$
$0.054 \quad 0.441$
$0.010 \quad 0.437$
0.0690 .454
$\begin{array}{rr}0.0003 & 0.454 \\ 0.051 & 0.438\end{array}$
$0.2020 .374 \quad 0.048 \quad 0.452$
$0.190 \quad 0.312 \quad 0.034 \quad 0.424$
$0.189 \quad 0.383 \quad 0.064 \quad 0.434$
$0.209 \quad 0.2860 .033 \quad 0.412$
$\begin{array}{llll}0.210 & 0.369 & 0.055 & 0.437 \\ 0.224 & 0.311 & 0.038 & 0.423\end{array}$
$\begin{array}{ll}0.038 & 0.423 \\ 0.079 & 0.425\end{array}$
$0.040 \quad 0.447$
$0.024 \quad 0.437$
0.0250 .411

TABLE 6.1

## (CONTINUED)

JD
PHASE
$Y$
C
M1
$B-Y$
G
$N$

ZETA GEM -- 10.1514 DAYS

| 9052.983 | 0.714 | 3.917 | 0.561 | 0.333 | 0.482 | 0.120 | 0.484 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9173.707 | 0.606 | 4.016 | 0.500 | 0.354 | 0.511 | 0.155 | 0.512 |
| 9174.765 | 0.710 | 3.906 | 0.627 | 0.317 | 0.471 | 0.132 | 0.482 |
| 9175.769 | 0.809 | 3.790 | 0.725 | 0.296 | 0.430 | 0.107 | 0.482 |
| 9177.814 | 0.011 | 3.706 | 0.712 | 0.319 | 0.410 | 0.109 | 0.471 |
| 9178.788 | 0.107 | 3.743 | 0.641 | 0.329 | 0.467 | 0.139 | 0.488 |
| 9432.008 | 0.051 | 3.720 | 0.671 | 0.328 | 0.434 | 0.111 | 0.472 |
| 9440.967 | 0.933 | 3.687 | 0.729 | 0.331 | 0.390 | 0.095 | 0.485 |
| 9441.969 | 0.032 | 3.705 | 0.719 | 0.271 | 0.450 | 0.0 | 0.0 |
| 9443.988 | 0.231 | 3.934 | 0.542 | 0.422 | 0.510 | 0.148 | 0.540 |
| 9444.950 | 0.326 | 4.060 | 0.490 | 0.443 | 0.559 | 0.197 | 0.570 |
| 9445.960 | 0.425 | 4.157 | 0.500 | 0.418 | 0.581 | 0.182 | 0.602 |

8692.973 8820.747 8822.733 8823.740 8824.747 8825.692 8826.721 9045.999 91740722 92759730 9177.784 9176.766 9444.984 94450937

## W GEM $-\quad 7.9136$ DAYS

| 0.668 | 7.378 | 0.598 | 0.311 | 0.730 | 0.148 | 0.576 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.814 | 7.200 | 0.708 | 0.260 | 0.633 | 0.129 | 0.506 |
| 0.065 | 6.690 | 0.986 | 0.164 | 0.533 | 0.064 | 0.468 |
| 0.192 | 6.780 | 0.853 | 0.214 | 0.564 | 0.073 | 0.492 |
| 0.319 | 6.936 | 0.822 | 0.273 | 0.541 | 0.128 | 0.481 |
| 0.439 | 7.090 | 0.680 | 0.243 | 0.694 | 0.152 | 0.525 |
| 0.569 | 7.244 | 0.581 | 0.287 | 0.742 | 0.169 | 0.551 |
| 0.278 | 6.751 | 0.869 | 0.186 | 0.590 | 0.112 | 0.480 |
| 0.544 | 7.212 | 0.513 | 0.303 | 0.713 | 0.191 | 0.517 |
| 0.671 | 7.365 | 0.619 | 0.290 | 0.744 | 0.189 | 0.531 |
| 0.931 | 6.688 | 10016 | 0.162 | 0.503 | 0.057 | 0.464 |
| 0.055 | 6.634 | 0.992 | 0.177 | 0.519 | 0.052 | 0.473 |
| 0.695 | 7.400 | 0.494 | 0.395 | 0.699 | 0.144 | 0.582 |
| 0.816 | 7.222 | 0.667 | 0.244 | 0.643 | 0.139 | 0.496 |


|  |  | $\times \operatorname{LAC}$ | 5.4448 DAYS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ' |  |  |  |  |  |  |
| 8555.965 | 0.9225 | 8.276 | +10105 | 0.152 | 0.564 | $0 \cdot 0$ | 0.0 |
| 8687.794 | 0.137 | 8.262 | 0.884 | 0.175 | 0.573 | 0.068 | 0.415 |
| 8688.759 | 0.316 | 8.426 | 0.761 | $0 \cdot 205$ | 0.530 | 0.123 | 0.515 |
| 8691.746 | 0.863 | 8.350 | 0.935 | .0.136 | 0.590 | 0.086 | 0.464 |
| 8692.699 | 0.038 | 8.236 | 0.956 | 0.187 | 0.532 | 0.033 | 0.483 |
| 90460749 | 0.064 | 8.201 | 0.992 | 0.144 | 0.570 | 0.067 | 0.450 |
| 9051.736 | 0.980 | 8.189 | 0.983 | 0.107 | 0.585 | 0.060 | 0.437 |
| 9052.751 | 0.166 | 8.279 | 0.958 | 0.185 | 0.577 | 0.070 | 0.475 |
| 90530754 | 0.350 | 8.472 | 0.867 | 0.174 | 0.635 | 0.129 | 0.434 |
| 9054.742 | 0.532 | '80.571 | 0.796 | 0.277 | 0.681 | 0.139 | 0.474 |
| 9440.701 | 0.418 | 8.498 | 0.822 | 0.195 | 0.653 | 0.116 | 0.468 |

TABLE 6.1
(CONTINUED)

| JD |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (2430000t) | PHASE | $\boldsymbol{Y}$ | C1 | M1 | $B-Y$ | $G$ | N |
| 9444.689 | 0.151 | 8. 286 | 0.877 | 0.190 | 0.577 | 0.025 | 0.451 |
| 9445.690 | 0.334 | 8.414 | 0.879 | 0.165 | 0.655 | 0.104 | 0.475 |
|  | RS ORI |  | 705668 DAYS |  |  |  |  |
| 8691.967 | 0.342 | 8.403 | 0.772 | 0.123 | 0.721 | 0.132 | 0.434 |
| 8692.962 | 0.474 | 8.613 | 0.650 | 0.240 | 0.744 | 0.156 | 0.543 |
| 8820.731 | 0.359 | 8. 467 | 0.723 | 0.225 | 0.684 | 0.135 | 0.451 |
| 8822.724 | 0.623 | 8.796 | 0.637 | 0.215 | 0.800 | 0.156 | 0.509 |
| 8823.724 | 0.755 | 8.775 | 0.722 | 0.213 | 0.749 | 0.140 | 0.526 |
| 8824.735 | 0.888 | 8.347 | 0.883 | 0.161 | 0.611 | 0.047 | 0.462 |
| 8825.685 | 0.014 | 8.049 | 1.107 | 0.146 | 0.525 | 0.020 | 0.488 |
| 8826.705 | 0.149 | 8. 230 | 0.955 | 0.153 | 0.615 | 0.067 | 0.479 |
| 9174.709 | 0.140 | 8.227 | 0.905 | 0.173 | 0.611 | 0.083 | 0.470 |
| 9175.702 | 0.271 | 8.212 | 0.826 | 0.187 | 0.636 | 0.081 | 0.511 |
| 9178.756 | 0.674 | 8.8,14 | 0.556 | C. 260 | 0.781 | 0.163 | 0.566 |
| 9444.973 | 0.857 | 8. 489 | 0.648 | 0.262 | 0.518 | 0.096 | 0.525 |
| 9445*919 | 0.982 | 8. 034 | 1.131 | 0.106 | 0.548 | 0.016 | 0.468 |

AU PEG $\quad 2.3911$ DAYS

| 8555.947 | 0.062 | 9.010 | 0.744 | 0.218 | 0.498 | 0.085 | 0.532 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8556.931 | 0.474 | 9.285 | 0.518 | 0.277 | 0.613 | 0.183 | 0.625 |
| 8557.910 | 0.883 | 9.189 | 0.707 | 0.192 | 0.532 | 0.095 | 0.539 |
| 8558.874 | 0.287 | 9.166 | 0.530 | 0.293 | 0.562 | 0.225 | 0.523 |
| 8559.909 | 0.719 | 9.417 | 0.535 | 0.264 | 0.600 | 0.124 | 0.568 |
| 8560.938 | 0.149 | 9.070 | 0.617 | 0.307 | 0.494 | 0.141 | 0.517 |
| 8561.917 | 0.559 | 9.387 | 0.626 | 0.202 | 0.656 | 0.190 | 0.583 |
| 8564.886 | 0.801 | 9.350 | 0.566 | 0.252 | 0.560 | 0.167 | 0.585 |
| 8565.954 | 0.247 | 9.142 | 0.588 | 0.264 | 0.528 | 0.142 | 0.518 |
| 8566.929 | 0.655 | 9.410 | 0.492 | 0.266 | 0.601 | 0.235 | 0.480 |
| 8688.651 | 0.561 | 9.419 | 0.507 | 0.313 | 0.577 | 0.044 | 0.661 |
| 8689.658 | 0.982 | 9.147 | 0.693 | 0.216 | 0.461 | 0.123 | 0.450 |


8687.989
8688.939
8689.962
8691.913
8692.909
8693.981
8820.659
8822.658
8823.662
0.870 0.017 0.175 0.477 0.631 0.797 0.396 0.706 0.861
7.446
7.1221 .1010 .072
7.315
7.698
7.817
7.762
7.512
7.888
7.472
0.7980 .051
0.739
0.628
0.706
0.850
0.842
0.797
0.796
0.829
0.738

| 0.078 | 0.470 |
| :--- | :--- |
| 0.033 | 0.459 |
| 0.091 | 0.474 |
| 0.141 | 0.512 |
| 0.154 | 0.476 |
| 0.085 | 0.533 |
| 0.083 | 0.502 |
| 0.133 | 0.558 |
| 0.105 | 0.443 |

TABLE 6.1
(CONTINUED)

| $\begin{gathered} \text { J0 } \\ (2430000+1) \end{gathered}$ | PHASE | $\mathbf{Y}$ | C1 | M1 | B-Y | $G$ | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8824.665 | 0.016 | 7.088 | 1.068 | 0.056 | 0.653 | 0.049 | 0.446 |
| 8825.624 | 0.165 | 7.308 | 0.858 | 0.092 | 0.723 | 0.099 | 0.501 |
| 8826.657 | 0.324 | 7.454 | 0.762 | 0.090 | 0.774 | 0.075 | 0.506 |
| 9045.967 | 0.255 | 7.417 | 0.747 | 0.103 | 0.760 | 0.087 | 0.479 |
| 9052.936 | 0.333 | 7.456 | 0.675 | 0.118 | 0.778 | 0.112 | 0.486 |
| 9053.989 | 0.496 | 7.702 | 0.557 | O. 105 | 0.842 | 0.110 | 0.504 |
| 9174.641 | 0.163 | 7.286 | 0.870 | 0.061 | 0.731 | 0.075 | 0.455 |
| 9175.619 | 0.314 | 7.435 | $0.749^{\circ}$ | 0.102 | 0.758 | 0.137 | 0.472 |


| 8555.886 | 0.578 |
| :--- | :--- |
| 8556.865 | 0.844 |
| 8557.849 | 0.112 |
| 8558.801 | 0.372 |
| 8559.844 | 0.656 |
| 8560.859 | 0.932 |
| 8561.863 | 0.206 |
| 8564.831 | 0.014 |
| 8565.856 | 0.293 |
| 8566.849 | 0.564 |

SS SCT -- 3.6713 DAYS

| 8.407 | 0.609 | 0.205 | 0.726 | 0.189 | 0.439 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 8.205 | 0.747 | 0.170 | 0.619 | 0.112 | 0.442 |
| 8.058 | 0.782 | 0.212 | 0.578 | 0.102 | 0.466 |
| 8.323 | 0.673 | 0.224 | 0.576 | 0.126 | 0.529 |
| 8.468 | 0.682 | 0.232 | 0.674 | 0.165 | 0.537 |
| 7.977 | 0.926 | 0.160 | 0.534 | 0.059 | 0.467 |
| 8.145 | 0.754 | 0.165 | 0.649 | 0.152 | 0.468 |
| 7.919 | 0.900 | 0.130 | 0.566 | 0.074 | 0.474 |
| 8.246 | 0.701 | 0.200 | 0.666 | 0.166 | 0.481 |
| 8.413 | 0.648 | 0.210 | 0.712 | 0.197 | 0.479 |

.$S$ SGE $\quad 8.3821$ DAYS

| 8553.831 | 0.873 |
| :--- | :--- |
| 8554.833 | 0.993 |
| 8555.806 | 0.109 |
| 8556.810 | 0.229 |
| 8557.815 | 0.348 |
| 8558.850 | 0.472 |
| 8559.789 | 0.584 |
| 8560.810 | 0.706 |
| 8561.824 | 0.827 |
| 8564.785 | 0.180 |
| 85650.839 | 0.306 |
| 8566.787 | 0.419 |
| 8688.640 | 0.956 |
| 8689.649 | 0.076 |
| 9045.633 | 0.546 |

5.616
5.267
5.452
5.372
5.643
5.777
5.940
5.037
5.790
5.409
5.537
5.716
5.318
5.400
5.866

ST TAU -- 400342 DAYS
$7.8131 .1730 .108 \quad 0.475 \quad 0.0120 .434$
$801850.8060 .158 \quad 0.594 \quad 0.0830 .479$
$7.948 \quad 1.037 \quad 0.137 \quad 0.484-0.003 \quad 0.477$

TABLE 6.1
(CONTINUED)

| JD |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (2430000+) | Phase | $\boldsymbol{Y}$ | C1 | M 1 | B-Y | 6 | N |
| 8822.711 | 0.409 | 8.356 | 0.734 | 0.150 | 0.681 | 0.140 | 0.484 |
| 8823.712 | 0.657 | 8.547 | 0.633 | 0.192 | 0.701 | 0.166 | 0.463 |
| 8824.703 | 0.902 | 7.985 | 1.023 | 0.134 | 0.493 | 0.013 | 0.426 |
| 8825.642 | 0.135 | 8.025 | 0.978 | 0.161 | 0.533 | 0.660 | 0.482 |
| 8826.679 | 0.392 | 8.342 | 0.677 | 0.231 | 0.640 | 0.130 | 0.446 |
| 9051.951 | 0.232 | 8.170 | 0.870 | 0.172 | 0.584 | 0.095 | 0.482 |
| 9173 e 662 | 0.402 | 8.312 | 0.644 | 0.219 | 0.655 | 0.0 | 0.0 |
| 9174.674 | 0.652 | 8.526 | 0.688 | 0.224 | 0.676 | 0.100 | 0.477 |
| 9175.679 | 0.901 | 7.982 | 1.008 | 0.119 | 0.509 | 0.042 | 0.452 |
| 9178.690 | 0.648 | 8.531 | 0.601 | 0.228 | 0.688 | 0.139 | 0.477 |
| $9444 \cdot 906$ | 0.637 | 8.555 | 0.653 | 0.247 | 0.673 | 0.0 | 0.0 |

SW TAU -- 1.5836 DAYS

| 8692.883 | 0.843 |
| :--- | :--- |
| 8820.623 | 0.507 |
| 8822.626 | 0.772 |
| 9053.957 | 0.851 |
| 9176.667 | 0.339 |
| 9177.659 | 0.966 |
| 9440.864 | 0.173 |


| 90596 | 1.186 | 0.041 | 0.412 | -0.012 | 0.402 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 9.980 | 0.816 | 0.169 | 0.529 | 0.037 | 0.614 |
| 10.140 | 0.846 | 0.144 | 0.497 | -0.018 | 0.417 |
| 9.548 | 1.272 | 0.090 | 0.366 | -0.043 | 0.369 |
| 9.801 | 1.022 | 0.150 | 0.441 | 0.0 | 0.0 |
| 9.380 | 1.438 | 0.090 | 0.331 | -0.038 | 0.394 |
| 9.572 | 1.199 | 0.207 | 0.343 | 0.065 | 0.325 |

$S Z$ TAU $=-3.1487$ DAYS

| 8688.007 | 0.234 | 6.535 | 0.803 | 0.157 | 0.587 | 0.103 | 0.456 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8689.989 | 0.863 | 6.406 | 0.901 | 0.189 | 0.506 | 0.048 | 0.466 |
| 8691.948 | 0.486 | 6.713 | 0.716 | 0.188 | 0.626 | 0.119 | 0.481 |
| 8822.676 | 0.003 | 6.402 | 0.935 | 0.164 | 0.506 | 0.050 | 0.461 |
| 8823.648 | 0.312 | 6.592 | 0.750 | 0.211 | 0.591 | 0.102 | 0.462 |
| 8824.649 | 0.530 | 6.642 | 0.796 | 0.184 | 0.578 | 0.096 | 0.480 |
| 8825.618 | 0.938 | 6.379 | 0.954 | 0.179 | 0.500 | 0.046 | 0.464 |
| 8826.633 | 0.260 | 6.574 | 0.776 | 0.193 | 0.583 | 0.097 | 0.468 |
| 9045.960 | 0.916 | 6.364 | 0.950 | 0.134 | 0.531 | 0.063 | 0.462 |
| 9051.933 | 0.813 | 6.454 | 0.895 | 0.163 | 0.524 | 0.058 | 0.460 |
| 9052.964 | 0.140 | 6.446 | 0.880 | 0.135 | 0.579 | 0.067 | 0.449 |
| 9053.981 | 0.463 | 6.683 | 0.746 | 0.207 | 0.617 | 0.119 | 0.495 |
| 9174.624 | 0.778 | 6.469 | 0.871 | 0.194 | 0.518 | 0.070 | 0.465 |
| 9175.656 | 0.106 | 6.408 | 0.905 | 0.164 | 0.545 | 0.078 | 0.464 |
| 9177.669 | 0.745 | 6.504 | 0.840 | 0.189 | 0.535 | 0.062 | 0.443 |
| 9178.629 | 0.050 | 6.388 | 0.940 | 0.158 | 0.533 | 0.066 | 0.448 |
| 9440.874 | 0.336 | 5.645 | 0.704 | 0.279 | 0.568 | 0.105 | 0.487 |

TABLE 6.1
(CONTINUED)

| JD |  |
| :---: | :---: |
| $(2430000+)$ | PHASE |
|  |  |
| 8819.971 | 0.728 |
| 8822.973 | 0.019 |
| 8823.996 | 0.118 |
| 8824.965 | 0.212 |
| 8825.994 | 0.312 |
| 8826.964 | 0.406 |
| 9176.004 | 0.284 |
| 9177.987 | 0.476 |


| $\mathbf{Y}$ | C1 | M1 | B-Y | G | $\mathbf{N}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AL VIR | --10.3030 DAYS |  |  |  |  |
| 9.824 | 1.046 | 0.099 | 0.400 | 0.108 | 0.343 |
| 9.183 | 1.247 | 0.131 | 0.265 | -0.017 | 0.376 |
| 9.292 | 1. 158 | 0.128 | 0.329 | 0.016 | 0.434 |
| 9.475 | 0.967 | 0.180 | .0.411 | 0.049 | 0.465 |
| 9.651 | 0.895 | 0.150 | 0.482 | 0.090 | 0.472 |
| 9.788 | 0.829 | 0.233 | 0.473 | Q.061 | 0.481 |
| 9.673 | 1.005 | 0.182 | 0.427 | 0.084 | 0.435 |
| 9.943 | 0.749 | 0.220 | 0.486 | 0.134 | 0.441 |

T VUL - $\quad 4.4355$ DAYS

| 8553.865 | 0.501 | 5.944 | 0.643 | 0.277 | 0.470 | 0.127 | 0.466 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8554.917 | 0.738 | 6.937 | 0.630 | 0.319 | 0.439 | 0.149 | 0.489 |
| 8555.847 | 0.947 | 5.442 | 1.053 | 0.161 | 0.298 | 0.015 | 0.422 |
| 8556.840 | 0.171 | 5.627 | 0.827 | 0.227 | 0.373 | 0.063 | 0.435 |
| 8557.928 | 0.417 | 5.887 | 0.665 | 0.271 | 0.458 | 0.113 | 0.462 |
| 8558.889 | 0.633 | 6.039 | 0.646 | 0.269 | 0.485 | 0.109 | 0.475 |
| 8559.917 | 0.865 | 5.718 | 0.832 | 0.224 | 0.352 | 0.047 | 0.429 |
| 8560.817 | 0.068 | 5.468 | 0.950 | 0.207 | 0.323 | 0.032 | 0.421 |
| 8561.833 | 0.297 | 5.787 | 0.715 | 0.261 | 0.421 | 0.079 | 0.450 |
| 8564.904 | 0.989 | 5.430 | 1.030 | 0.196 | 0.281 | 0.042 | 0.404 |
| 8565.915 | 0.217 | 5.704 | 0.783 | 0.236 | 0.392 | 0.080 | 0.440 |
| 8687.729 | 0.680 | 6.011 | 0.634 | 0.273 | 0.476 | 0.128 | 9.442 |
| 8688.667 | 0.892 | 5.583 | 0.940 | 0.208 | 0.306 | 0.044 | 0.404 |
| 9045.720 | 0.391 | 5.877 | 0.687 | 0.252 | 0.461 | 0.105 | 0.466 |
| 9445.632 | 0.552 | 5.980 | 0.666 | 0.290 | 0.465 | 0.126 | 0.482 |

U VUL $-\infty \quad 7.9905$ DAYS

| 8555.825 | 0.107 |
| :--- | :--- |
| 8556.803 | 0.230 |
| 8557.808 | 0.356 |
| 8558.792 | 0.479 |
| 8559.773 | 0.602 |
| 8560.763 | 0.726 |
| 8561.790 | 0.855 |
| 8564.768 | 0.227 |
| 8565.767 | 0.352 |
| 8693.606 | 0.351 |


| 6.916 | 0.960 | 0.121 | 0.826 | 0.106 | 0.491 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 6.943 | 0.810 | 0.163 | 0.852 | 0.150 | 0.568 |
| 7.161 | 0.726 | 0.177 | 0.940 | 0.184 | 0.507 |
| 7.316 | 0.605 | 0.232 | 0.982 | 0.204 | 0.499 |
| 7.464 | 0.640 | 0.217 | 1.008 | 0.213 | 0.510 |
| 7.497 | 0.659 | 0.234 | 0.958 | 0.222 | 0.525 |
| 7.158 | 0.725 | 0.194 | 0.870 | 0.104 | 0.497 |
| 6.946 | 0.923 | 0.119 | 0.854 | 0.091 | 0.578 |
| 7.139 | 0.717 | 0.169 | 0.938 | 0.179 | 0.522 |
| 7.138 | 0.710. | 0.207 | 0.916 | 0.166 | 0.533 |

## TABLE 6.2

## CEPHEID PERIODS

Photometric Results
Epoch Accuracy*10 GCVS Period Period Change

| Star | $(+2430000 J D)$ | $\mathrm{P}_{\mathrm{p}}$ | [ $=0.01 \mathrm{P} /$ cycles] | $\mathrm{P}_{\mathrm{c}}$ | $\left(\mathrm{P}_{\mathrm{p}}-\mathrm{P}_{\mathrm{c}}\right) * 10^{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | co Cepheids |  |  |


| SU Cas | 9445.144 | 1.949338 | $\pm 15$ | 1.949319 | +19 |
| :---: | :--- | :--- | :--- | :--- | :--- |
| DT Cyg | 9445.962 | 2.499303 | $\pm 9$ | 2.49934 | -40 |
| SS Sct | 8568.450 | 3.671272 | $\pm 25$ | 3.671253 | +19 |
| RT Aur | 9445.787 | 3.728134 | $\pm 21$ | 3.728261 | -127 |
| SU Cyg | 8694.965 | 3.845485 | $\pm 26$ | 3.845664 | -179 |
| FF AqI | 8692.667 | 4.470908 | $\pm 34$ | 4.470959 | -51 |
| RY CMa | 9448.643 | 4.678383 | $\pm 51$ | 4.67804 | +340 |
| VZ Cyg | 8694.701 | 4.864512 | $\pm 121$ | 4.864603 | -91 |
| ס Cep | 9450.948 | 5.366235 | $\pm 43$ | 5.366341 | -106 |
| X Lac | 9449.314 | 5.444753 | $\pm 109$ | 5.44442 | +330 |
| FM AqI | 8698.044 | 6.114191 | $\pm 63$ | 6.11423 | -40 |
| AW Per | 9180.053 | 6.463493 | $\pm 176$ | 6.46338 | +110 |
| V496 AqI | 8569.872 | 6.807162 | $\pm 115$ | 6.8069 | +300 |
| U AqI | 8567.947 | 7.024011 | $\pm 85$ | 7.02393 | +80 |
| I AqI | 9048.601. | 7.176712 | $\pm 82$ | 7.176641 | +71 |
| RS Ori | 9446.056 | 7.566781 | $\pm 117$ | 7.56681 | -30 |
| RX Cam | 9182.555 | 7.912424 | $\pm 98$ | 7.911848 | +576 |
| W Gem | 9447.395 | 7.913602 | $\pm 134$ | 7.91467 | -1070 |
| DL Cas | 9452.037 | 8.000406 | $\pm 192$ | 8.0003 | +100 |
| S Sge | 9049.440 | 8.382126 | $\pm 112$ | 8.38216 | -30 |

## TABLE 6.2

(CONTINUED)
------- Photometric Results

|  | Epoch |  |  | Accuracy $* 10^{6}$ | GCVS Period | Period Change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Star | $(+2430000 J D)$ | $P_{p}$ | $[=0.01 P /$ cycles $]$ | $P_{c}$ | $\left(P_{p}-P_{c}\right) * 10^{6}$ |  |
| $S$ Gem | 9451.794 | 10.151384 | $\pm 156$ | 10.15172 | -330 |  |
| X Cyg | 9455.784 | 16.386080 | $\pm 401$ | 16.3866 | -500 |  |

----- C Cepheids

| SZ Tau | 9442.965 | 3.148729 | $\pm 15$ | 3.148987 | -258 |
| :---: | :--- | :--- | :--- | :--- | :--- |
| T VuI | 9447.620 | 4.435521 | $\pm 29$ | 4.435578 | -57 |
| U VuI | 8698.790 | 7.990491 | $\pm 188$ | 7.990676 | -185 |


| SW Tau | 9442.174 | 1.583598 | $\pm 4$ | 1.583648 | -50 |
| :--- | :--- | :--- | :--- | :--- | ---: |
| TU Cas | 9445.919 | 2.139438 | $\pm 17$ | 2.13930 | +140 |
| AU Peg | 8689.701 | 2.387012 | $\pm 10$ | 2.39787 | -10860 |
| ST Tau 9446.370 | 4.034239 | $\pm 35$ | 4.034229 | +10 |  |
| AI Vir 9183.384 | 10.303022 | $\pm 170$ | .10 .299971 | +3051 |  |

## table 6.3

CEPHEID COIOR EXCESSES DEITRMINED USING THE RELATION

$$
G_{0}=0.54 .3 *(b-y)_{0}-0.110
$$

Kelsall Williams Fernie

| Star | Type | Period | $E(b-y)$ | $E(b-y)$ | $0.7 * E(B-V)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 介 AqI | 8C | 7.177 | 0.156 | 0.100 | 0.15 |
| U AqI | סc | 7.024 | 0.359 |  | 0.29 |
| FF AqI | 8 C | 4.471 | 0.218 | 0.208 | 0.22 |
| FM AqL | 8 C | 6.114 | 0.581 |  | 0.46 |
| V496 AqI | 8C | 6.807 | 0.300 |  | 0.44 |
| RT Aur | $\delta \mathrm{C}$ | 3.728 | 0.069 | 0.055 | 0.09 |
| RX Cam | SC | 7.912 | 0.474 | 0.409 | 0.40 |
| RY CMa | SC | 4.678 | 0.249 |  | 0.20 |
| SU Cas | ¢C | 1.949 | 0.273 |  | 0.21 |
| $\delta \mathrm{Cep}$ | $\delta \mathrm{C}$ | 5.366 | 0.102 | 0.075 | 0.10 |
| X Cyg | ¢C | 16.385 | 0.283 | 0.241 | 0.25 |
| Su Cyg | SC | 3.846 | 0.112 | 0.112 | 0.13 |
| VZ Cyg | $\delta \mathrm{C}$ | 4.865 | 0.234 |  | 0.28 |
| DT Cyg | SC | 2.499 | 0.084 |  |  |
| $\zeta \mathrm{Gem}$ | $\delta \mathrm{C}$ | 10.151 | 0.035 | 0.029 | 0.10 |
| W Gem | $\delta \mathrm{C}$ | 7.914 | 0.269 |  | 0.28 |
| X Lac | SC | 5.445 | 0.327 |  | 0.27 |
| RS Ori | $\delta \mathrm{C}$ | 7.567 | 0.385 |  | 0.26: |
| AW Per | 8C | 6.464 | 0.526 |  | 0.21 |
| S Sge | 8 C | 8.382 | 0.112 | 0.113 | 0.14 |
| SS sct | $\delta \mathrm{C}$ | 3.671 | 0.263 |  | 0.26 |

TABEE 6.3
(CONTINUED)

|  |  |  | Kelsall | Williams | Fernie |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Star Type | Period | E(b-y) | $\mathrm{E}(\mathrm{b}-\mathrm{y})$ | $0.7 * \mathrm{E}(\mathrm{B}-\mathrm{V})$ |  |
| SZ Tau | C | 3.149 | 0.285 | 0.243 |  |
| T Vul | C | 4.436 | 0.059 | 0.058 |  |
| U Vul C | 7.990 | 0.586 |  |  |  |




Fig. 6.1 Variation of the sum of the deviations squared for $V$ with period for X Lacertae.


Fig. 6.2 The fits of the visual magnitudes for four representative cepheids.


Fig. 6.3 Iight and color variations with phase for SU Cas.


Fig. 6.4 Light and color variations with phase for AU Peg.


Fig. 6.5 Light and color variations with phase for RT Aur.


Fig. 6.6 Light and color variations with phase for ST Tau.


Fig. 6.7 Light and color variations with phase for $\delta$ Cep.


Fig. 6.8 Light and color variations with phase for $\eta$ Aql.


Fig. 6.9 Light and color variations with phase for 5 Gem.


Fig. 6.10 Light and color variations with phase for AL Vir.


Fig. 6.1. Comparison of cepheids at maximum and minimum light to
the mean supergiant results in various color-color plots.
 and uvby;ABC systems.


Fig. 6.13 Total areas of colorwcolor loops versus period in three photometric systems.


Fig. 6. 24 The best total and signed color-color areas for population discrimination in our photometric system.




Fig. 6.16 Relation of the intrinsic colors $(B-v)_{0}$ and $(b-y)_{0}$.

## CHAPTER VII

## COMBINED CEPHEID-SUPERGIANT RESULIS

## 7-1. The 'Supercolor' Method

In section 5-4 we found it possible to construct two equations that map the mean, bracket-color lines over to the mean luminosity-class lines in a standard $M_{v}$, $\operatorname{logT}_{e} H-R$ diagram. We termed the results from these equations the $M_{v}$-supercolor and the $\operatorname{logT}_{e}$-supercolor. The structure of the supercolor equations contain no physical insight. In section 5-4 they are simple, fully-quadratic (color-color cross terms are included) expressions in all four, reddening-free colors: The co efficients for the color terms are found by least squares, using for data the mean colors at each spectral type for all luminosity classes. The information on $M_{v}$ and $\log T$ e comes from other investigations. The lack of good $M_{v}$ data for particular supergiants forces our use of the mean colors. Restrictive as this is, the procedure at least complements the statistical nature of the cilass $I b M_{V}$ data. When the supercolor equations are applied to individual stars with colors near to the means for its spectral type and luminosity class, the supercolors resemble the physical quantities, $M_{v}$ or $\operatorname{logT}_{e}$. Application to stars with colors, all or some, lying off the means for their spectral types and luminosity classes gives results beyond physical credence, particularly for $M_{V}$ 。 This unstable characteristic of the supercolors would be more controlled if individual star data, covering the full range in spectral types and luminosity classes, could be used in determining the supercolor coefficients. For then dispersions in the colors and their relation to
the calibrating quantities is automatically included. However, we emphasize that the use of the supercolors is purely for discriminatory reasons, so that the colors can be used over their full range without necessary recourse to external information, such as spectral type or Iuminosity class. We feel this ability to discriminate is essential for a viable sky survey photometric system, which should be a totally selfcontained entity. We also feel that the system of this investigation warrants consideration on this level.

A search was made for an $M_{V}$-supercolor, using the cepheids as a form of control. The idea was to find an $M_{v}$-supercolor which preserved luminosity class discrimination and also reasonably tracked the variatior. of $M_{v}$ with phase for a group of representative cepheids. No such desirable situation was found. As the spectral type is not determined photometrically, the final decision is to create for a set of ranges in [G] an associated set of $M_{V}$-supercolor equations which minimize the dispersion in $M_{V}$ for supergiants alone.

The full range of [G], -0.055 to 0.300 , is broken up into segments of fixed length. The ( $n+1$ ) segment overlaps the $n^{\text {th }}$ segment by half. The length of the segments is varied over a wide range. For each segment length and position an $M_{V}$-supercolor equation is found, and the rms dispersion for the class Ib stars is found. From this analysis a set of contiguous [G] segments is selected that covers the full range in [G] such that the rms dispersion in $M_{V}$ for the class Ib stars is in every segment less than 0.2 . To span the total range in [G] under this restriction requires six segments. The comparison of the $M_{V}$-supercolor (solid line) results to the $M_{V}$ calibration (dashed curve) for the class Ib stars is shown in the left panel of Fig. 7.l. The application to all
luminosity classes is shown in the right panel of Fig. 7.1.
The $\log T_{e}$-supercolor is of much reduced form as compared to the $M_{v}$-supercolor. A single, fourth-order expression in [G] for the full range in [G] is sufficient.

The $M_{V}$-supercolor for a cepheid at any phase point can be striking. Answers ranging from -9 to +4 are found for a single cepheid. The logT $\mathrm{e}^{\text {-supercolor makes no such wild excursions. The results are accept- }}$ able if the two supercolors are averaged over a full cycle. In Fig. 7.2 the averaged supercolors for the twenty-one Pop. I cepheids are shown in comparison with the cepheid instability strip given by Fernie (1967c). In detail the comparison is poor, but the basic positioning is correct - the cepheids appear to be what they really are. Most of the scatter results from the crudity of the $M_{V}$-supercolor. The logT ${ }^{\text {-supercolor }}$ introduces a minor systematic effect arising from the differences between Fernie's and our temperature scale (Johnson 1966).

A full $\mathrm{H}-\mathrm{R}$ diagram is created by applying the supercolor formulas directly to the data of the individual stars. This is shown in Fig. 7.3, where the solid lines are the supercolor results when the mean bracket colors are used as input. Fig. 7.3 demonstrates the viability of the supercolor method as a supergiant discriminant, if applied to nonselective survey photometry. Even in this crude form better than two-thirds of the supergiants are separated from the other Iuminosity class stars. And the separation is effectively without bias to selected spectral type regions, a situation not realizable through use of the colors alone. The class $V$ stars are also well separated. The IrII-III confusion is not resolved, but this may be amenable to a more sophisticated application of the supercolor idea.

## 7-2. Comparison of the Cepheid and Supergiant Mean Colors

For the cepheids we need to determine the mean bracket colors relative to some suitable photometric quantity as independent parameter. Following Williams' (1966) suggestion we choose as independent parameter the color $[G]$. The mean color lines for $\left[c_{1}\right]$, $\left[m_{1}\right]$, and $[N]$ are constructed by a least squares analysis using a polynomial up to sixth order in [G]. In this analysis each cepheid is represented by twentyfive equally spaced phase points, and the colors at these points are calculated from the Fourier fits to the colors. The results are shown in Fig. 7.4. In these plots the Ib mean lines are shown for comparison. Except for $\left[c_{1}\right]$ the cepheid mean lines are strikingly similar to those of the supergiants.

Using the mean lines various correlations from the norm can be found in the deviations. The deviations from the mean lines are given in Tables 7.1 and 7.2 for the supergiants and cepheids, respectively. A most interesting correlation is that between $\delta\left[m_{l}\right]=\left[m_{1}\right]_{*}-\left[m_{l}\right]_{\text {mean }}$ and $\delta[N]=[N]_{*}-[N]_{\text {mean }}$ ( a positive $\delta$ implies a greater, than normal metallic or CN absorption). The correlations for the supergiants and cepheids are shown in the two panels of Fig. 7.5. The solid lines in the graphs represent the orientation of the semi-major axis of the correlation ellipses. This correlation was also noted by Williams for long period cepheid.s. He also notes the fact that it lacks theoretical . basis. A second interesting finding is the lack of correlations between $\delta\left[c_{1}\right], \delta\left[m_{1}\right]$ and $\delta\left[c_{1}\right]$, $\delta[N]$ for both supergiants and cepheids. The correlation plots are shown in Fig. 7.6. The fortunate insensitivity of $\left[c_{1}\right]$ to the strength of line blanketing enhances the possibility of calibration purely in terms of gravity, at any fixed temperature. This
point is also stressed by McNamara and Colton (1969) in their study of line blanketing effects on the uvby system for main-sequence stars and RR Lyrae variables.

## 7-3. Metal Content and Galactic Structure

One primary aim is to see if the metal index could delineate variations of metal content with galactic location. Plots of the $\delta\left[m_{1}\right]^{\prime}$ s wersus galactic position are shown for supergiants and cepheids in the two panels of Fig. 7.7. As can be seen there is no obvious relationship between various groupings of the magnitudes of $\delta\left[m_{1}\right]$ and galactic position. In fact, for the cepheids there is no one star which greatly. deviates from the mean. The radial distribution of the stars in this program is different from the distribution of the long period cepheids studied by Williams; and our conclusion is also different in that we find no great metallic differences, as indicated by deviations in [m], as a function of galactic position.

## 7-4. Comments on Williams ${ }^{\text { }}$ Work

The discrepancy in our results can arise purely from differences in radial distribution, and some inherent characteristics of long period cepheids. In pariticular, there is the known correlation of long period cepheids ( $P \geq 11^{\text {d }}$ ) with galactic arm location, which is distinct from the anti-correlation for shorter period cepheids (Fernie 1968a, Tammann 1970). However, on looking at Williams's listing of his data a number of peculiarities become obvious. For example, for $K X$ Cyg the variations in $c_{1}$, $N$ and $G$ at nearby phase points, $\phi=0.174$ and 0.220 , are fantastically large. We decided then to do a re-analysis of his data for cepheids with periods greater than eleven days.

As a first step the $E(b-y)^{\text {is }}$ are calculated using his $G_{0},(b-y)_{o}$ relationship. A nuriber of errors are present here, as is clear upon comparing columns two and three of Table 7.3. Continuing, $m_{\mathcal{I}}$ is corrected at each data point for the effects of interstellar reddening. using both his interstellar reddening line and, as the filters in our two programs are nearly equivalent, the line used in this study. As can be noted in Table 4.6 Williams ${ }^{1} m_{1}$ reddening line differs from ours in slope by a factor of two. From these results new $m_{1}$ versus (b-y) relationships are developed using the stars SZ Aq1, TT Aq1, RX Aur, RW Cam, RW Cas, TY Cas, X Cyg, CD Cyg, W Sgr, A Sct, UZ Sct, and SV Vul。 The results are given in Fig. 7.8, and as can be seen no glaring discrepancy exists. Once the mean $m_{I},(b-y)$ relation is known the average $\delta m_{1}{ }^{\prime}$ s for each cepheid are lound, and these are shown in colums four through six of Table 7.3. The same procedure is repeated for $\mathbb{N}$, and these results are listed in columns seven through nine. The major points to be noted on the ten stars which show large $\delta \mathrm{m}_{\mathrm{I}}{ }^{\text {i }} \mathrm{s}$ in Williams ${ }^{\text { }}$ original analysis are as follows:

YZ Aur - $\mathrm{E}(\mathrm{b}-\mathrm{y})$ is poorly determined, and of the two data points only one is far from the norm;

CP Cep - still looks strange and there is good correlation between $\delta m_{1}$, and $\delta \mathbb{N}$, but there are only two data points;

SZ Cyg - comment same as for CP Cep;
V396 Cyg - only one of the two data points is far from the norm;
V609 Cyg - comment same as for CP Cep;
VY Sgr - poor $E(b-y)$, and the data show very large amplitude changes in the colors for nearby phase points, which is rather hard to understand;

AV $\operatorname{sgr}-\delta \mathrm{m}_{\mathrm{l}}$, $\delta \mathbb{N}$ correlation is not so definite, and both become
"normal" when our reddening line is used;
RU Sct - still strange but the effect is reduced to high normal
for $\delta \mathrm{m}_{\mathrm{l}}$ and $\delta \mathrm{N}$ if our reddening line is used;
TY Sct - comment same as for RU Sct;
DG Vul - $\delta \mathrm{m}_{\perp}$ large but not correlated with $\delta \mathrm{N}$.
So of the ten stars three can be dropped - YZ Aur, V396 Cyg, and
VY Sgr - three have a high likelihood of being normal - AV Sgr, RU Sct, and TY Sct - and three rest on a paucity of data - CP Cep, SZ Cyg, and v609 Cyg. It thus appears that the discrepancy between our studies is probably not that pronounced.

## 7-5. Conclusions

The primary aims of this investigation are satisfied. Through an analysis and interpretation of the data we have developed eight distinct conclusions.
(1) The intrinsic $G$, (b-y) relations for both the supergiants and cepheids are found in Chapters IV and VI, respectively. These relations are adequately represented by simple linear equations. The simplicity of the relationships, and the accuracy of the photometry allow for precise determinations for the color excesses. These excesses are listed in Tables 4.1 and 6.3 for the supergiants and cepheids, respectively.
(2) In Chapter IV we developed our definition of the reddening free colors. From the present data the reddening free color relations for the supergiants with respect to spectral type are found. In Chapter V the comparison of the supergiant colors relative to those for all other luminosity classes is made. These color relations for all
luminosity classes as functions of spectral type are shown in Figs. 5.7 and 5.8. In Chapter VII we obtain the mean color relations for the cepheids. The cepheid mean colors are similar to those for the supergiants, as is shown in Fig. 7.4.
(3) The problem of distinguishing supergiants from other luminosity classes through a study of color-color plots is attacked in Chapter V. It is evident from the data that the positive separation of I from II is impossible. The segregation of I-II in the spectral type range FO, to GO from the other luminosity classes is good using the plots [ $c_{1}$ ], [G] and [unv], [G]. The confusion of luminosity classes is complete in the range GO to G6. From $G 6$ to $K 5$ the discrimination of I-II is possible through the plots $[\mathbb{N}],\left[m_{1}\right]$ and $[N]$, [ $G$ ].
(4) In Chapters V and VII the concept of supercolors is introduced. An application of the supercolor equations representing $M_{V}$ and $\operatorname{logT} \mathrm{P}_{\mathrm{e}}$ to the raw data produces a level of discrimination for the supergiants which is superior to the discrimination resulting from a study of colors. The procedure has the virtue of eliminating the I-II-III confusion to the point that approximately two-thirds of the supergiant stars are clearly separated, regardless of their spectral type through the whole range $F O$ to $K 5$. The average values of $M_{v}$ and $\operatorname{logT}_{e}$ derived from the supercolors for the cepheids are compatible with our current knowledge. These results are presented in Fig. 7.3.
(5) The population typing of cepheids does not appear possible on the basis of color information. However, in section 6-5 we find that the population type of cepheids can be deduced from an analysis of the areas of particular color-color loops. This is true both for the color system of this investigation, and the wide band six-color system. The
results of this study are given in Figs. 6.12 and 6.13. An advantage of the procedure is that it is unaffected by the amounts of interstellar reddening.
(6) There is a strong correlation between metallic line absorption and CN absorption for both supergiants and cepheids. The correlation lines are virtually identical for the two types of stars, as is seen in Fig. 7.6.
(7) The Balmer discontinuity index, $\left[c_{1}\right]$, for supergiants and cepheids is insensitive to the extent of line blanketing by metallic line or CN absorption (Fig. 7.6). We speculate that this feature will enable us to calibrate $\left[c_{1}\right]$ in terms of gravity with some precision.
(8) Fjnally, in Chapter VII we find no strong galactic position dependent features in the deviations from the mean $\left[\mathrm{m}_{1}\right.$ ] values for supergiants or cepheids. This is shown in Fig. 7.7. We interpret the result to indicate that within the sampling volume there are no large scale regions, where stars are formed, which have distinctive metal anomalies. While the findings are in contradiction to the work of Williams, we show that most of the discrepancy is removed upon reinterpretation of Williams' data.

One unfortunate shortcoming of the investigation is our inability to calibrate the photometric quantities to physical parameters. This defect should disappear with further work similar to the investigations made by Bell (1970), Bell and Rodgers (1969), and Parsons (1970).

## TABLE 7.1

DEVIATIONS OF THE FO TO KO SUPERGIANTS ABOUT THE MEAN COLOR IINES DEFINED WITHE [G] AS INDEPENDENT COORDINATE

## Spectral

| HD/BD | Type | $e^{I I}$ | $b^{\text {II }}$ | $r^{\ddagger}$ | $\delta\left[\mathrm{c}_{7}\right]$ | $\delta\left[m_{1}\right]$ | $\delta[\mathrm{N}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4362 | GOIb | 122.4 | $-3^{\circ} .3$ | 0.9 kpc | $0 \cdot 0.040$ | -0.052 | -0.0.065 |
| 64.74 | GOIa | 124.7 | 1.0 | 4.2 | 0.092 | 0.066 | -0.026 |
| 7927. | FOIa | 126.7 | -4.4 | 2.3 | 0.190 | -0.084 | -0.048 |
| 8906 | F310 | 127.6 | -2.5 | 1.3 | 0.126 | -0.004 | -0.024 |
| 8992 | F6Ib | 127.9 | -3.7 | 1.7 | -0.286 | 0.054 | 0.054 |
| 9250 | GOIb | 127.5 | 1.1 | 1.0 | -0.021 | -0.006 | -0.020 |
| 10494 | F5Ia | 129.1 | -0.4 | 3.8 | 0.116 | -0.063 | -0.027 |
| 14662 | Fr Ia | 135.9 | -5.2 | 0.96 | 0.010 | 0.001 | 0.006 |
| 16901 | GOIb | 143.3 | -14.1 | 0.76 | 0.003 | 0.023 | -0.007 |
| 17971 | F5Ia | 137.8 | 1.2 |  | 0.131 | -0.054 | -0.005 |
| 18391. | GOIa | 139.5 | -1.0 |  | -0.061 | 0.104 | -0.005 |
| 20902 | F5Ib | 146.6 | -5.9 | 0.16 | -0.028 | 0.014 | 0.002 |
| 25056 | GOIb | 148.8 | 0.8 | 1.6 | 0.065 | -0.044 | -0.050 |
| 26630 | GOIb | 154.0 | -1.8 | 0.36 | -0.025 | -0.027 | -0.003 |
| 31964 | FOIap | 162.8 | 2.2 |  | -0.031 | -0.075 | -0.034 |
| 31910 | GOIb | 349.6 | 11.4 | 0.4 | 0.033 | -0.026 | -0.020 |
| 36673 | FOIb | 219.2 | $-24.5$ | 0.26 | 0.086 | 0.046 | $\sim 0.024$ |
| 36891 | G3Tb | 169.5 | 4.4 |  | -0.011 | -0.016 | 0.005 |
| 37819 | F5Ib | 179.6 | -0.5 | 2.6 | -0.635 | 0.099 | 0.056 |
| 38247 | G8Iab | 188.7 | -5.4 | 2.1 | -0.021 | 0.106 | 0.048 |
| 38808 | G3Ib-II | 184.5 | -7. 7 |  | 0.058 | -0.094 | -0.058 |

TABLE 7.1
(CONIINUED)

Spectral

| HD/BD | Type | $2^{\text {II }}$ | $b^{\text {II }}$ | $\mathrm{r}^{\text {中 }}$ | $\delta\left[c_{1}\right]$ | $\delta\left[m_{1}\right]$ | ¢[N] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 39416 | G3Ib-II | 184.2 | -0.5 |  | -0.115 | 0.042 | 0.030 |
| 39949 | G2Ib | 182.7 | 1.3 | 1.7 | -0.053. | -0.005 | 0.021 |
| 43282 | $65 \mathrm{Ib}-\mathrm{II}$ | 192.0 | 1.2 | 1.9 | 0.009 | 0.029 | 0.027 |
| 47731 | G5Ib | 186.5 | 10.4 |  | 0.039 | -0.005 | -0.032 |
| 48616 | F5Ib | 209.4 | -0.1 |  | -0.226 | 0.054 | 0.035 |
| 58526 | G3Ib | 220.8 | 5.6 |  | -0.003 | 0.022 | -0.014 |
| 67594 | G2Ib | 223.1 | 16.5 | . | 0.061 | 0.003 | -0.069 |
| 74395 | G2Ib | 233.1 | 21.1 | 0.63 | -0.129 | 0.003 | 0.013 |
| 77912 | G8Ib-II | 184.4 | 42.2 |  | 0.063 | -0.032 | -0.023 |
| 161796 | F3Ib | 77.2 | 30.9 | 1.8 | 0.615 | -0.020 | -0.018 |
| 163506 | F2Ia | 51.4 | 23.2 | 5.2, | 0.376 | -0.077 | -0.006 |
| 171635 | F7Ib | 86.2 | 25.0 | 0.60 | 0.093 | 0.028 | 0.010 |
| 172365 | F'9Ib | 36.3 | 5.0 | 1.3 | -0.037 | -0.014 | -0.009 |
| 174104 | GOIb | 58.6 | 13.4 | 3.8 | $-0.083$ | -0.090 | -0.041 |
| 179784 | G5Ib | 48.8 | 2.1 |  | 0.069 | -0.071 | -0.036 |
| 180028 | F6Ib | 41.0 | $-2.4$ | 1.4 | -0.032 | -0.036 | -0.007 |
| 180583 | F6Ib-II | 60.6 | 7.4 | 0.9 | -0.328 | 0.039 | 0.021 |
| 182296 | G3Ib | 44.3 | -3.1 | 1.4 | -0.020 | 0.027 | 0.119 |
| 183864 | G2Ib | 59.6 | 3.2 | 2.9 | -0.089 | -0.049 | -0.010 |
| 187203 | GOIb | 49.1 | -7.5 | 1.2 | 0.105 | -0.065 | -0.012 |
| 187299 | G5Iab-Ib | 61.5 | -0.3 | 2 | -0.227 | 0.045 | 0.065 |
| 190113 | G5IB | 72.1 | 2.7 | 1.4 | 0.133 | -0.074 | -0.058 |

TABIE 7.1.
(CONITNUED)

Spectral

| HD/BD | Type | $\ell^{I I}$ | $b^{\text {II }}$ | $\mathrm{r}^{\ddagger}$ | $\delta\left[c_{1}\right]$ | $\delta\left[m_{1}\right]$ | $\delta[\mathbb{N}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 331777 | F8Ia | 69.1 | 0.5 | 5.2 | 0.237 | 0.084 | -0.017 |
| 190446 | F67b | 76.2 | 4.9 | 3.5 | -0.124 | -0.010 | -0.046 |
| 190323 | GOIa-Iab | 54.7 | -8.6 | 1.1 | 0.171 | 0.082 | 0.040 |
| 191010 | G37b | 64.2 | -3.5 | 2.8 | 0.027 | -0.083 | -0.027 |
| $37^{\circ} 3827$ | F3Ib | 75.6 | 2.3 | 1.7 | 0.110 | -0.035 | -0.005 |
| 192713 | G2.7b | 63.5 | -6.4 | 0.7 | -0.128 | 0.033 | 0.063 |
| 192876 | G3Ib | 32.3 | -24.2 | 0.5 | -0.023 | 0.008. | 0.031 |
| 193370 | F5Ib | 73.4 | -0.5 | 1.0 | 0.049 | 0.011 | -0.003 |
| 194093 | F8Ib | 78.2 | 1.9 | 0.22 | 0.135 | 0.067 | 0.026 |
| 200102 | GlID | 86.2 | -0.7 | 1.1 | 0.013 | -0.057 | -0.022 |
| 200805 | F5Ib | 86.8 | -1.2 | 2.5 | -0.129 | 0.062 | 0.015 |
| 202314 | G2Ib | 76.7 | -12.9 |  | 0.062 | -0.048 | -0.061 |
| 204022 | GOIb | 92.9 | 0.1 | 1.0 | 0.120 | -0.022 | -0.036 |
| 204867 | GOIb | 49.6 | -37.1 | 0.3 | 0.020 | -0.020 | 0.001 |
| 206859 | G5Ib | 72.0 | $-26.5$ | 0.4 | 0.070 | -0.014 | -0.021 |
| 207089 | KOIb | 76.6 | -22.8 | 0.6 | 0.022 | 0.007 | -0.017 |
| 207489 | F5Ib | 88.3 | -11.3 | 1.5 | 0.176 | -0.035 | 0.002 |
| 207647 | G4Ib | 95.4 | -3.2 | 1.4 | -0.143 | 0.067 | 0.103 |
| 208606 | G8ID | 103.5 | 5.5 |  | -0.020 | 0.085 | 0.040 |
| 209750 | G2Tb | 61.0 | $-41.4$ | 0.3 | 0.081 | -0.001 | -0.038 |
| 216206 | G47b | 104.1 | -7.7 | 1.0 | 0.068 | -0.039 | -0.047 |
| 218356 | KOIbp | 95.1 | -31.7 | 0.5 | -0.104 | 0.011 | -0.096 |

TABLE 7.1
(CONTINUED)

## Spectral

| HD/BD | Type | $\ell^{I I}$ | $\mathrm{b}^{\text {II }}$ | $r^{\ddagger}$ | $\delta\left[c_{1}\right]$ | $\delta\left[m_{7}\right]$ | $\delta[\mathrm{N}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21.9135 | GOIb | 109.6 | -3.8 | 1.7 | 0.062 | -0.067 | -0.022 |
| $60^{\circ} 2532$ | F7Ib | 112.8 | 0.4 | 1.4 | -0.204 | 0.011 | 0.012 |
| 221861 | KOIab | 116.9 | 9.7 | 1.2 | -0.032 | 0.081 | 0.017 |
| 223047 | G5Ib | 111.4 | -15.0 | 0.7 | -0.146 | 0.050 | 0.079 |
| 224165 | G8Ib | 113.2 | -14.5 |  | 0.038 | 0.006 | -0.013 |

\$istances [Buscombe (1964)] are only assigned to stars of good photometric quality.

AVERAGF DEVIATIONS OF THE POP. I GEPHEIDS ABOUT THE INEAN COIOR
ITNES DEFINED WITTE [G] AS INDEPENDENT COORDINEATE


TABLE 7.2
(COMIIMED)

| Star | $i^{I I}$ | $\mathrm{~b}^{I I}$ | r | $\left\langle\delta\left[\mathrm{c}_{1}\right]\right\rangle$ | $\left\langle\delta\left[\mathrm{m}_{1}\right]\right\rangle$ | $\langle\delta[\mathrm{N}]\rangle$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| TVUI | 72.2 | -10.0 | $0.6:$ | 0.052 | 0.003 | -0.009 |
| UVuI | 56.1 | -0.3 | $0.6:$ | -0.086 | 0.015 | -0.014 |

REANAIYSIS OF WTITIAMS' LONG PERIOD CEPHEID DATA.

Williams Recalculated

| Star | $\mathrm{E}(\mathrm{b}-\mathrm{y})$ | $E(\mathrm{~b}-\mathrm{y})$ | $\sigma(\mathbb{E}(\mathrm{b}-\mathrm{y})$ ) | $-\delta m_{1}^{W}$ | $\delta \mathrm{m}_{1}^{K}$ | $\delta m_{1}^{K 1}$ | $-8 \mathrm{~N}^{\mathrm{N}}$ | $\delta N^{K}$ | $8 N^{K^{\prime}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SZ Aq1 | 0.476 | 0.475 | $\pm 0.041$ | -0.036 | -0.034 | -0.041 | -0.044 | -0.048 | -0.050 |
| TYI AqI | 0.394 | 0.393 | $\pm 0.017$ | -0.005 | -0.011 | -0.011 | -0.001 | -0.005 | -0.007 |
| RX Aur | 0.264 | 0.263 | $\pm 0.030$ | 0.028 | 0.020 | 0.028 | 0.018 | 0.014 | 0.016 |
| YZ Aur | 0.505 | 0.608 | $\pm 0.207$ | 0.122 | 0.162 | 0.144 | 0.030 | 0.052 | 0.058 |
| ER Aur | 0.504 | 0.602 | $\pm 0.199$ | 0.013 | -0.029 | -0.045 | -0.175 | 0.446 | 0.510 |
| RW Cam | 0.668 | 0.644 | $\pm 0.056$ | 0.028 | 0.013 | 0.000 | 0.069 | 0.087 | 0.081 |
| RW Cas | 0.252 | 0.252 | $\pm 0.080$ | -0.056 | -0.068 | -0.059 | -0.057 | -0.058 | -0.052 |
| RY Cas | 0.486 | 0.486 | $\pm 0.050$ | 0.001 | -0.002 | -0.005 | -0.022 | -0.017 | -0.014 |
| SZ Cas | 0.682 | 0.681 | $\pm 0.105$ | -0.013 | -0.019 | -0.037 | 0.000 | -0.005 | -0.007 |
| CY Cas | 0.756 | 0.756 | $\pm 0.104$ | -0.046 | -0.053 | -0.083 | -0.020 | 0.000 | 0.009 |
| CP Cep | 0.473 | 0.473 | $\pm 0.04 .1$ | -0.093 | -0.095 | -0.094 | -0.136 | -0.108 | -0.099 |
| X Cyg | 0.241 | 0.240 | $\pm 0.040$ | 0.006 | 0.000 | 0.005 | 0.001 | -0.002 | -0.002 |
| SZ Cyg | 0.395 | 0.395 | $\pm 0.030$ | -0.128 | -0.107 | -0.113 | -0.169 | -0.109 | -0.111 |

TABLE 7.3
(CONTINUED)

```
Williams Recalculated
```

| Star | $\pm(\mathrm{b}-\mathrm{y})$ | $\pm(\mathrm{b}-\mathrm{y})$ | $\sigma(\mathrm{E}(\mathrm{b}-\mathrm{y})$ ) | $-\delta m_{1}^{W}$ | $\delta_{\text {m }}{ }^{\mathrm{K}}$ | $\delta_{1} \mathrm{~K}^{\prime \prime}$ | $-80 \mathrm{~N}^{\mathrm{W}}$ | $8 \mathrm{~N}^{\mathrm{K}}$ | $8 N^{K 1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IX Cyg | 0.995 | 0.937 | $\pm 0.097$ | 0.044 | 0.020 | 0.018 | -0.003 | 0.019 | 0.047 |
| vx Cyg | 0.595 | 0.594 | $\pm 0.028$ | -0.020 | -0.028 | -0.033 | -0.038 | -0.045 | -0.047 |
| CD Cyg | 0.386 | 0.386 | $\pm 0.033$ | 0.028 | 0.028 | 0.028 | -0.038 | -0.020 | -0.017 |
| KX Cyg | 1.274 | 1.273 | $\pm 0.317$ | -0.065 | 0.108 | -0.003 | 0.093 | 0.066 | 0.092 |
| V396 Cyg | 0.849 | 0.848 | $\pm 0.084$ | -0.076 | -0.072 | -0.075 | -0.114 | -0.090 | -0.068 |
| v609 Cyg | 0.955 | 0.954 | $\pm 0.013$ | -0.110 | -0.118 | -0.128 | -0.069 | -0.059 | -0.063 |
| AA Gem | 0.399 | 0.399 |  | 0.042 | 0.036 | 0.034 | 0.030 | 0.010 | 0.005 |
| T Mon | 0.216 | 0.216 | $\pm 0.069$ | -0.004 | 0.045 | 0.046 | -0.001 | 0.026 | 0.021 |
| SV Mon | 0.201 | 0.201 |  | -0.020 | -0.026 | -0.013 | -0.019 | -0.041 | -0.038 |
| Y Oph | 0.494 | 0.493 | $\pm 0.033$ | 0.014 | -0.016 | -0.017 | 0.006 | -0.018 | -0.016 |
| BM Per | 0.897 | 0.992 | $\pm 0.289$ | 0.016 | 0.237 | 0.128 | -0.051 | 0.350 | 0.442 |
| VY Sgr | 1.076 | 1.074 | $\pm 0.203$ | 0.091 | 0.224 | 0.129 | -0.080 | 0.100 | 0.194 |
| WZ Sgr | 0.353 | 0.353 | $\pm 0.045$ | -0.022 | 0.061 | 0.060 | -0.006 | 0.071 | 0.070 |

TABIE 7.3
(CONTINUED)

| Star | Williams Recslculated |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $E(b-y)$ | $E(b-y)$ | $\sigma(E(b-y))$ | $-8 m_{1}^{W}$ | $\delta \mathrm{m}_{1}^{\mathrm{K}}$ | $\delta_{\text {In }} \mathrm{K}_{1}{ }^{+}$ | $-8 \mathrm{~N}^{W /}$ | $5 \mathrm{~N}^{35}$ | $8 \mathrm{H}^{\text {K }}$ |
| AV Sgr | 0.922 | 0.920 | $\pm 0.017$ | 0.087 | 0.079 | 0.044 | 0.021 | 0.014 | 0.006 |
| Z Set | 0.453 | 0.452 | $\pm 0.157$ | -0.030 | -0.049 | -0.055 | 0.002 | 0.004 | 0.000 |
| RU Sct | 0.816 | 0.788 | $\pm 0.052$ | 0.106 | 0.084 | 0.061 | 0.066 | 0.028 | 0.020 |
| TY Set | 0.352 | 0.851 | $\pm 0.087$ | 0.085 | 0.078 | 0.065 | 0.046 | 0.054 | 0.059 |
| UZ Sct | 0.784 | 0.753 | $\pm 0.157$ | 0.030 | 0.018 | 0.002 | 0.035 | 0.049 | 0.061 |
| SV Vul | 0.470 | 0.470 | $\pm 0.064$ | -0.002 | 0.003 | -0.002 | -0.052 | -0.036 | -0.038 |
| DG VuI | 0.951 | 0.954 | $\pm 0.026$ | -0.127 | -0.115 | -0.130 | -0.026 | -0.007 | 0.007 |

$-\delta m{ }^{W}$ and $-\delta N^{W}$ are from Wilyiams (1966).
$\delta m_{1}^{K}$ and $\delta N^{K}$ are recalculated values using Williams data and his $E\left(m_{1}\right) / E(0-y)$. $\delta m^{\frac{1}{2}}$ and $8 H^{K^{\prime}}$ are calculated from Williams data using $E\left(4{ }_{1}\right) / E(b m y)=-0.125$.



Fig. 7.1 $M_{V}$-supcrcolor for supergiants (left) and ail luminosity classes (right) versus [G].


Fig. 7.2 The average $M_{v}$, $\operatorname{logT}_{e}$-supercolor diagram for cepheids. The location of the instabillty strip is by Fernie (1967c).


Fig. 7.3 The supercolor $H R$ diagram created from data on individual stars of all luminosity classes.


Fig. 7.4 A comparison between the mean color results for the cepheids and the supergiants.


Fig. 7.5 Correlation plots of deviations in [ $\mathrm{m}_{\mathrm{I}}$ ] and [ N ] from the mean for supergiants and cepheids.


Fig. 7.6 Diagrams showing the insensitivity of [ $c_{1}$ ] on line blanketing


Tig. 7.7 Galactic distribution of deviations in [ $\mathrm{m}_{1}$ ] from the mean.


Fig. 7.8 Mean $m_{1}$ versus ( $b-y$ ) relation for Williams: long period cepheids ( $p=a l^{d}$ ).

## APPENDIX A

## STAR IDENTIFICATIONS

We list in Table A.l data which identifies each star in the observational program. The table gives the name, catalog numbers, spectral class, and equatorial and galactic coordinates for Epoch 1965.

TABLE A. 1

CATALOG OF IDENTIFICATION DATA FOR THE PROGRAM STARS.


TABLE AOI

## (CONT INUED)

| NAME |  |  |  | CATALOG NUMBERS |  |  | HR | SPECTRAL | R.A. |  | (1965) |  | EC |  | LII | BII |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | HD |  | D | GC |  | CLASS | H | M | s | D | M | 5 | DEGO. | DEGO. |
| 47 | $\gamma$ | LEO | 89484-5 | 20 | 2467 | 14177 | 4057 | KOIIIP, | 10 | 17 | 59 | 20 | 1 | 27 | 21606 | 54.6 |
|  | $\rho$ | LEO | 91316 | 10 | 2166 | 14487 | 4133 | B1IB | 10 | 30 | 55 | 9 | 29 | 32 | 23409 | 52.8 |
| 5 | $\beta$ | VIR | 102870 | 2 | 2489 | 16215 | 4540 | F8V. | 11 | 48 | 46 | 1 | 58 | 24 | 270.5 | 60.8 |
|  |  |  | 103095 | 38 | 2285 | 16253 | 4550. | G8VI | 11 | 50 | . 55 | 37 | 58 | 36 | 1580.5 | 73.7 |
| 64 | $Y$ | UM I | 103287 | 54 | 1475 | 16268 | 4554 | AOV | 11 | 51 | 51 | 53 | 53 | 22 | 140.9 | 61.4. |
| 95 |  | LEO | 10.3578 | 16 | 2319 | 16311 | 4564 | A3V | 11 | 53 | 52 | 15 | 50 | 29 | 251.7 | 7207 |
| 16 |  | VIR | 107328 | 4 | 2604 | 16828 | 4695 | K1III | 12 | 18 | 34 | 3 | 30 | 27 | , 28403 | 65.0 : |
| 31 |  | COM | 111812 | 28 | 2156 | 17455 | 4883 | GOIII | 12 | 50 | 0 | 27 | 45 | 31 | 115.4 | 89.6 |
| 78 |  | UMA | 113139 | 57 | 1408 | 17664 | 4931 | F2V | 12 | 59 | 9 | 56 | 33 | 54 | 120.4. | 60.7 |
| 85 | ท | UMA | 120315 | 50 | 2027 | 18643 | 5191 | B $3 V$ | 13 | 46 | 8 | 49 | 29 | 30 | 100.7. | 65.3 |
|  |  |  | 122563 | 10 | 2617 | 18965 | 5270 | GOVI | 14 | 0 | 5 | 9 | 51 | 17 | 349.9 | 65.9 |
| 27 | $\gamma$ | BJO | 127762 | 38 | 2565 | 19607 | 5435 | ATIII | 14 | 30 | 40 | 38 | 27 | 38 | 67.3 | 66.2 |
|  |  |  | 130109 | 2 | 286 | 19884 | 5511 | AOV | 14 | 44 | 23 | 2 | 2 | 54 | 355.3 | 52.7. |
| 41 | $\gamma$ | SER | 142860 | 16 | 2849 | 21408 | 5933 | F6IV-V | 15 | 54 | 45 | 15 | 46 | 54 | 27.8 | 4507 |
| 13 | ¢, | CRE | 143107 | 27 | 2558 | 21440 | 5947 | K311I | 15 | 56 | 6 | 26 | 59 | 0 | 43.7 . | 48.8 |
| 15 | $\rho$ | CマB | 143761 | 33 | 2663 | 21527 | 5968 | G2V | 15 | 59 | 38 | 33 | 24 | 48 | 53.5 | 48.9 |
| 23 | $\beta$ | DRA | 159181 | 52 | 2065 | 23741 | 6536 | G2II | 17 | 29 | 37 | 52 | 19 | 38 | 79.6 | 33.3 |
| 30 | $\delta$ | AQL | 182640 | 2 | 3879 | 26816 | 7377 | FOIV | 19 | 23 | . 38 | 3 | 2 | 12 | 39.6 | -6.1 |
| 32 | $v$ | AQL | 182835 | 0 | 4206 | 26838 | 7387 | F218 | 19 | 24 | 41 | 0 | 15 | 55 | 37.3 | -7.6 |
| 5 | $\alpha$ | SGE | 185758 | 17 | 4042 | 27215 | 7479 | GOII | 19 | 38 | 26 | 17 | 55 | 48 | 54.5 | -2.1 |
|  |  |  | 186427 | 50 | 2848 | 27285 | 7504 | G5V | 19 | 40 | 53 | 50 | 25 | 54 | 83.4 | 13.2 |
| 50 | $\gamma$ | AQL | 186791 | 10 | 4043 | 27354 | 7525 | K3II | 19 | 44 | 30 | 10 | 31 | 0 | 48.7 | $-7.1$ |
| 17 |  | CYG | 187013 | 33 | 3587 | 27369 | 7534 | F5V | 19 | 45 | 1 | 33 | 38 | 30 | 68:8 | 40\% |
| 30 | 01 | CYG | 192514 | 46 | 2881 | 28091 | 7730 | A3III | 20 | 12 | 8 | 46 | 42 | 6 | 82.7 | 6.9 |
| 22 |  | VUL | 192713 | 23 | 3944 | 28144 | 7741 | G218 | 20 | 13 | 57 | 23 | 23 | 51 | 6.3 .5 | -6.4 |
| 37 | $\gamma$ | CYG | 194093 | 39 | 4159 | 28338 | 7796 | F818 | 20 | 20 | 56 | 40 | 8 | 26 | 78.2 | 1.9 |

TABLE A. 1
(CONT INUED)

-- ORDINARY STARS --

|  |  |  | 4362 | 58 | 101 | 926 | 207 | G01B | 0 | 44 | 36 | 59 | 22 | 41 | 122.4 | -3.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . |  | . | 6474 | 63 | 141 | 1332 |  | GOIA | 1 | 4 | 45 | 63 | 35 | 12 | 124.7. | 1.0 |
| 34 | $\varphi$ | CAS | 7927 | 57 | 260 | 1594 | 382 | FOIA | 1 | 17 | 52 | 58 | 2 | 54 | 126.7 | -4.4 |
|  |  |  | 8906 | 59 | 258 | 1784 |  | F31B | 1 | 26 | 53 | 59 | 51 | 1 | 127.6 | -2. 5 |
|  |  |  | 8992 | 58 | 249 |  |  | F6IE | 1 | 27 | 32 | 58 | 35 | 0 | 127.9 | -3.7 |
|  |  |  | 9022 | 59 | 261 | 1803 |  | K3III | 1 | 28 | 0 | 59 | 36 | 6 | 127.8 | -2.7 |
|  |  |  | 9250 | 62 | 264 | 1851 |  | GOIB | 1 | 30 | 15 | 63 | 24 | 33 | 127.5 | 1.1 |
|  |  |  | 9366 | 54 | 315 | 1873 |  | K318 | 1 | 31 | 13 | 54 | 45 | 57 | 129.0 | -7.4 |
|  |  | . | 10494 | 61 | 316 |  |  | FSIA | 1 | 41 | 45 | 61 | 40 | 42 | 129.1 | -0.4. |
|  |  |  | 110.92 | . 64 | 2.43 | 2218 |  | K5IAB-IB | 1 | 48 | 44 | 64 | 40 | 55 | 129.3 | 2.7 |
|  |  |  | 11800 | 59 | 363 |  |  | K5IB | 1 | 55 | 13 | 60 | 2 | B | 131.1 | $-1.6$ |
|  |  |  |  | 59 | 366 | 1 |  | AOIB | 1 | 55 | 56 | 59 | 52 | 8 | 131.2 | -1.8 |
| - |  |  | 12014 | 58 | 345 |  |  | KOIB | 1 | 57 | 23 | 58 | 59 | 2 | 131.6 | $-2.6$ |
|  |  |  | - | 59 | 389 |  | - | FOIB | 1 | 55 | 56 | 59 | 52 | 8 | 131.2 | -1.8 |
|  |  |  | 14662 | 54 | 535 | 2863 | 690 | F718 | 2 | 21 | 21 | 55 | 12 | 7 | 135.9 | $-5.2$ |
| 14 |  | PEP. | 16901 | 43 | 566 | 3278 | 800 | GOIB | 2 | 41 | 44 | 44 | 8 | 43 | 143.3 | -14.1 |
|  | $\cdots$ | $\cdots$ | -17378 | 56 | 718 | 3370 | 825 | A5IA | 2 | 46 | 50 | 56 | 56 | 8 | 138.05 | -2.2 |
| 15 | 1 | PER | 17506 | 55 | .714 | 3390 | 834 | K3IB | 2 | 48 | 8 | 55 | 45 | 6 | 139.2 | $-3.2$ |

TABLE A: 1
(CONTINUED)


TABLE A. 1

## (CONT INUED)



TABLE A．I
（CONTINUED）

| NAME |  |  |  | CATAL | OGG N | MBERS | －－－ | spectral |  | R．A。 |  | 5） | EC． |  | $\begin{aligned} & \text { LII } \\ & \text { DEG。 } \end{aligned}$ | $\begin{aligned} & \text { BII } \\ & \text { DEG. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | HD |  | D | GC | HR | CLASS | H | M | S | D | M | s |  |  |
|  |  |  | 172365 | 5 | 3891 | 25520 | 7008 | F918 | 18 | 37 | 50 | 5 | 13 | 48 | 36． 3 | 5.0 |
|  |  |  | 173638 | －10 | 4797 | 25718 | 7055 | F2IB－II | 18 | 44 | 44 | $-10$ | 9 | 54 | 23.7 | －3．4 |
|  |  |  | 174104 | 28 | 3085 |  |  | GOIB | 18 | 46 | 21 | 28 | 41 | 3 | 58．6 | 13.4 |
|  |  |  | 179784 | 14 | 3829 | 26483 |  | G5IB | 19 | 11 | 40 | 14 | 58 | 29 | 48.8 | 2.1 |
|  |  |  | 180028 | 5 | 41087 | 26514 |  | FEIB | 19 | 12 | 59 | 5 | 59 | 5 | 41.0 | －2．4 |
|  |  |  | 180583 | 27 | 3314 | 26562 | 7308 | F6IB－II | 19 | 14 | 33. | 27 | 51 | 43 | 60.6 | 7.4 |
|  |  |  | 182296 | 8 | 4072 |  |  | G3IB | 19 | 22 | 0 | 8 | 35 | 28 | 44.3 | －3．1 |
|  |  |  | 183864 | 24 | 3768 |  |  | G218 | 19 | 29 | 10 | 25 | 1 | 54 | 59.6 | 3.2 |
|  |  |  | 137203 | 10 | 4058 | 27413 | 7542 | GOIB | 19 | 46 | 48 | 10 | 36 | 12 | 49.1 | －7．5 |
|  |  |  | 187299 | 24 | 3889 |  |  | G5IAB－IB | 19 | 46 | 56 | 24 | 54 | 52 | 61.5 | －0．3 |
|  |  |  | 226223 | 38 | 3790 |  |  | FGIb | 19 | 50 | 22 | 38 | 39 | 42 | 73.7 | 6.0 |
|  |  |  | 190113 | 35 | 3920 |  |  | G51B | 20 | 0 | 40 | 35 | 31 | 36 | 72．1 | 2.7 |
|  |  |  | 331777 | 31 | 3907 |  |  | F8IA | 20 | 1 | 49 | 31 | 49 | 8 | 69.1 | 0.5 |
|  |  |  | 190446 | 39 | 4020 |  |  | F6IB | 20 | 2 | 7 | 40 | 9 | 42 | 76.2 | 409 |
|  |  |  | 190323 | 14 | 4158 | 27819 |  | GOIA－IAB | 20 | 2 | 10 | 14 | 52 | 49 | 54.7 | －8．6 |
|  |  |  | 190403 | 29 | 3873 | 27825 |  | G5IB－II | 20 | 2 | 19 | 29 | 53 | 23 | 67.5 | －0．6 |
|  |  |  | 191010 | 25 | 4103 |  |  | 6318 | 20 | 5 | 22 | 25 | 34 | 6 | 64.2 | －3．5 |
|  |  |  | 191423 | 42 | 3599 |  |  | O9V | 20 | 6 | 50 | 42 | 30 | 0 | 78.6 | 5.4 |
|  |  |  |  | 37 | 3827 |  |  | F3I日 | 20 | 11 | 28 | 38 | 16 | 40 | 75.6 | 2.3 |
| 32 | 02 | CYG | 192909 | 47 | 3059 | 28160 | 7751 | K3Ib－II | 20 | 14 | 24 | 47 | 36 | 21 | 83.7 | 7.0 |
|  | $\alpha^{1}$ | cap | 192876 | －12 | 5683 | 28189 | 7747 | G3IB | 20 | 15 | 39 | －12 | 37 | 15 | 32.3 | －24．2 |
| 35 |  | CYG | 193370 | 34 | 3967 | 28242 | 7770 | F51B | 20 | 17 | 16 | 34 | 52 | 9 | 73.4 | －0．5 |
|  |  |  | 193469 | 38 | 4003 | 28255 |  | K5IB | 20 | 17 | 41 | 38 | 53 | 36 | 76.8 | 1.7 |
| 41 |  | CYG | 195295 | 29 | 4057 | 28513 | 7834 | FSII | 20 | 27 | 55 | 30 | 14 | 50 | 70.9 | $-5.0$ |
| 42 |  | CYG | 195324 | 35 | 4141 | 28515 | 7835 | Alib | 20 | 28. | 0 | 36 | 20 | 14 | 75.9 | －1．5 |
| 44 |  | CYG | 195593 | 36 | 4105 | 28551 | 7847 | FSIAB | 20 | 29 | 37 | 36 | 48 | 49 | 76.4 | －1．4 |

(CONTINUED)

| NAME |  |  | - | CATALOG NUMBERS |  |  | $H R$ | SPECTRAL CLASS | R. A. |  | (1965) |  | DEC. |  | LII DEG. | $\begin{aligned} & B I I \\ & D E G . \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | HO |  | 30 | GC |  |  | H | M | S | D | M | S |  |  |
| 47 |  | CYG | 196093 | 34 | 4079 | 28630 | 7866 | K218 | 20 | 32 | 32 | 35 | 7 | 48 | 75.4 | -2.9 |
|  | $\theta$ | DEL. | 196725 | 12 | 4411 | 28743 | 7892 | K31日 | 20 | 37 | 4 | 13 | 11 | 28 | 58.0 | -16.6. |
|  |  |  | 200102 | 44 | 3661 | 29323 |  | G1IB | 20 | 58 | 37 | 44 | 51 | 33 | 86.2 | -0.7 |
|  |  |  | 200805 | 44 | 3688 |  |  | F51B | 21 | 2 | 53 | 45 | 0 | 12 | 86.8 | -1.2 |
|  | $\xi$ | CYG | 200905 | 43 | 3800 | 29459 | 8079 | K518 | 21 | 3 | 39 | 43 | 47 | 15 | 86.0 | -2.1 |
|  |  |  | 202314 | 29 | 4354 | 29695 | 8126 | G2IB | 21 | 12 | 40 | 29 | 45 | 20 | 76.7 | -12.9 |
|  |  |  | 204022 | 49 | 3516 |  |  | Gol8 | 21 | 22 | 55 | 50 | 17 | 45 | 92.9 | 0.1 |
| 22 | $\beta$ | $A Q R$ | 204867 | -6 | 5770 | 30137 | 8232 | GOIB | 21 | 29 | 40 | -5 | 43 | 50 | 49.6 | -37.1 |
|  |  |  | 205349 | 45 | 3584 | 30189 | 8248 | K1IB | 21 | 31 | 57 | 45 | 41 | 37 | 90.8 | -4.3 |
|  |  |  | 206312 | 48 | 3457 | 30.335 |  | K1II | 21 | 38 | 37. | 48 | 58 | 8 | 93.9 | -2.6 |
| 8 | $\varepsilon$ | PEG | 206778 | 9 | 4891 | 30431 | 8308 | K218 | 21 | 42 | 28 | 9 | 42 | 49 | 65.6 | -31.5 |
| 9 |  | PEG | 206859 | 16 | 4582 | 30444 | 8313. | G518 | 21 | 42 | 48 | 17 | 11 | 2 | 72.0 | -26.5 |
| 12 |  | PEG | 207589 | 22 | 4472 | 30479 | 8321 | KOIB | 21 | 44 | 25 | 22 | 46 | 55 | 76.6 | -22.8 |
| 10 | $v$ | CEP | 207260 | 50 | 2288 | 30483 | 8334 | A 21 A | 21 | 44 | 26 | 60 | 57 | 31 | 102.3 | 5.9 |
|  |  |  | 207489 | 38 | 4611 | 30534 |  | F5IB | 21 | 46 | 49 | 38 | 47 | 17 | 88.3 | -11.3 |
|  |  |  | 207647 | 49 | 3631 | 30557 |  | G4IB | 21 | 47 | 47 | 49 | 30 | 49 | 95.4 | -3.2 |
|  |  |  | 207673 | 40 | 4648 | 30566 | 8345 | A2IB | 21 | 48 | 15 | 40 | 59 | 6 | 90.0 | -9.8 |
|  |  |  | 20.3606 | 60 | 2318 | 30702 | 8374 | G8IB | 21 | 54 | 18 | 61 | 22 | 31 | 103.5 | 5.5 |
| 14 |  | CEP | 209481 | 57 | 2441 | 30837 | 8406 | O9V | 22 | 1 | 2 | 57 | 49 | 0 | 102.0 | 2.2 |
|  |  | AQR | 2199750 | -1 | 4246 | 30896 | 8414 | G2IB | 22 | 3 | 56 | 0 | 29 | 44 | 61.0 | -41.4 |
|  |  |  | 210221 | 52 | 3114 | 30958 | 8443 | A318 | 22 | 6 | 7 | 53 | 8 | 9 | 99.8 | -2,0 |
| 21 | 5 | CEP | 210745 | 57 | 2475 | 31044 | 8465 | K1IB | 22 | 9 | 36 | 58 : | 1 | 24 | 103.1 | 1.7 |
| 10 |  | LAC | 214680 | 38 | 4826 | 31626 | 8622 | O9V | 22 | 37 | 37 | 38 | 51 | 0 | 96.6 | -17.0 |
|  |  |  | -216206 | 49 | 3954 | 31858 | 8692 | G4IB | 22 | 48 | 37 | 50 | 29 | 9 | 104.1 | $-7.7$ |
|  |  |  | 216946 | 48 | 3887 | 31989 | 8726 | K518 | 22 | 54 | 53 | 49 | 32 | 46 | 104.6 | -9.0 |
|  |  |  | 217476 | 56 | 2923 | 32063 | 8752 | GOIA | 22 | 58 | 34 | 56 | 45 | 7 | 108.2 | $-2.7$ |

Table A.1

## \{CONTINUED

| NAME |  |  | CATALOG NUMBERS |  |  | - | SPECTRAL. | R.A. |  | (1965) DEC. |  |  |  | $\begin{aligned} & \text { LII } \\ & \text { DEG. } \end{aligned}$ | $\begin{aligned} & \text { BII } \\ & \text { DEG. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | HD |  | 30. | GC | HR | CLASS | H | M | S | D | M | S |  |  |
| 56 | PEG | 218356 | 24 | 4716 | 32201 | 8796 | KOIBP | 23 | 5 | 21 | 25 | 16 | 25 | 95.1 | -31.7 |
|  |  | 219135 | 55 | 2919 | 32.322 |  | GOIB | 23 | 11 | 17 | 56 | 20 | 26 | 109.6 | -3.8 |
|  |  |  | 60 | 2532 |  |  | F71B | 23 | 22 | . 42 | 61 | 24 | 0 - | 112.8 | 0.4 |
| . |  | 221861 | 70 | 1327 | 32793 | 8952 | KOIAB | 23 | 33 | 24 | 71 | 26 | 35 | 116.9 | 9.7 |
| $\cdots$ |  | 222574 | -18 | 6358 | 32911 | 8982 | GOII | 23 | 39 | 54 | -18 | 0 | 59 | 59.5 | -72.4 |
| $\begin{array}{r} 20 \\ 7 \end{array}$ | AND | 223047 | 45 | 4321 | 32988 | 9003 | 6518 | 23 | 44 | 14 | 46 | 13 | 13 | 111.4 | $-15.0$ |
|  | CAS | 224014 | 56 | 3111 | 33160 | 9045 | FEIAP | 23 | 52 | 37 | 57 | 18 | 16 | 115.3 | -4.5 |
|  |  | 224165 | 46 | 4214 | 33183 | 9053 | G8IB | 23 | 53 | 47 | 47 | 9 | 40 | 113.2 | -1405 |

-- VARI ABLE STARS --

| TU | CAS | 2207 | 5.3 | 72 |  |  | CW | 0 | 24 | 22 | 51 | 4 | 48 | 118.9 | -11.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DL | CAS |  | 59 | 65 |  |  | C-DELTA | 0 | 27 | 58 | 60 | 1 | 14 | 120.3 | -2.6 |
| SU | CAS | 17463 | 68 | 200 | 3403 | 829 | C-DELTA | 2 | 48 | 44 | 68 | 44 | 24 | 133.5 | 8.5 |
| RX | CAM | 25361 | 58 | 694 |  |  | C-DELTA | 4 | 1 | 59 | 58 | 33 | 48 | 145.9 | $4 \cdot 7$ |
| SW | - TAU |  | 3 | 601 |  |  | CW | 4 | 22 | 39 | 4 | 2 | 33 | 190.2 | -29.9 |
| SZ | tau | 29260 | 18 | 661 | 5621 |  | c | 4 | 35 | 9 | 18 | 28 | 18 | 179.5 | -18.8 |
| AW | PER | 30282 | 36 | 937 |  |  | C-DELTA | 4 | 45 | 22 | 26 | 39 | 54 | 166.6 | -5.4 |
| ST | TAU . | 38262 | 13 | 971 |  |  | CW | 5 | 43 | 1 | 13 | 33 | 42 | 193.1 | -8.1 |
| RS | ORI | 44415 | 14 | 1259 |  |  | C-DELTA | 6 | 20 | 10 | 14 | 41 | 48 | 196.6 | 0.3 |
| RT | AUR | 45412 | 30 | 1238 | 8371 | 2332 | C-DELTA | 6 | 26 | 15 | 30 | 31 | 6 | 183.2 | 8.9 |
| $W$ | GEM | 46595 | 15 | 1246 | 8560 |  | C-DELTA | 6 | 32 | 54 | 15 | 21 | 42 | 197.4 | 3.4 |
| 5 | GEM | 52973 | 20 | 1687 | 9313 | 2650 | C-DELTA | 7 | 2 | 2 | 20 | 38 | 23 | 195.8 | 11.9 |
| R'Y | CMA | 56450 | -11 | 1867 |  |  | C-DELTA | 7 | 14 | 57 | -11 | 25 | 18 | 225.3 | 0.7 |
| AL | VIR | 123984 | -12 | 3993 |  |  | CW | 14 | 9 | 15 | $-13$ | 8 | 49 | 331.2 | 45.4 |
| SS | SCT | 173058 | -7 | 4683 |  |  | C-DELTA | 18 | 41 | 46 | -7 | 46 | 12 | 26.6 | $-1.1$ |

## TABLE A. 1

## (CONTINUED)



## APPENDIX B

DATA FROM WIIITAMS AND STRÖMGREN

In Table B.I we give data for the stars taken from Williams' (1966) study that were used in determining the mean color lines for Iuminosity classes V, IV, III and II. For each star we give its Henry Draper number, and its spectral type. The reddening-free color data is that derived from the original work, the same quantities transformed to our system according to the equations given in Chapter $V$, and the results from this investigation. The Table B. 2 is of identical form, but here the data comes from the Strơmgren-Perry catalog (1962).

## TABLE B. 1

## COMPARISON OF WILLIAMS' QRIGINAL AND TRANSFORMED

 REDDENING-FREE COLORS TO THOSE OF KELSALL'S.| HD | SPECTRAL TYPE | STATE OF the data | (C1) | (M1) | ( G) | (N) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 571 | F2II | ORIGINAL | 1.022 | -0.54.6 | -0.185 | 0.217 |
|  |  | TR ANSFORMED | 1.022 | 0.173 | -0.041 | 0.357 |
|  |  | kelsall | 1.038 | 0.172 | -0.039 | 0.357 |
| 7927 | FOIA | ORIGINAL | 1.152 | -0.553 | -0.185, | 0.197 |
|  |  | TR ANSFORMED | 1. 180 | 0.168 | -0.041 | 0.336 |
|  |  | KELSALL | $1.403^{\circ}$ | 0.109 | -0.037 | 0.321 |
| 18331 | AIV | ORIGINAL | 1.161 | -0.516 | -0.262 | 0. 208 |
|  |  | TRANSFORMED | 1.192 | 0.194 | -0.132 | 0.348 |
|  |  | KELSALL | 1.033 | 0.170 |  |  |
| 18391 | G6I A | ORIGINAL | 0.202 | -0.172 | -0.050 | 0.299 |
|  |  | TRANSFDRMED | 0.230 | 0.481 | 0.103 | 0.447 |
|  |  | kelsall | 0.355 | 0.523 | 0.084 | 0.435 |
| 20902 | F51b | ORIGINAL | 1.002 | -0.459 | -0.162 | 0.242 |
|  |  | TR ANSFORMED | 0.998 | 0.236 | -0.015 | 0.384 |
|  |  | KĖLSALL | 1.049 | 0.228 | -0.026 | 0.379 |
| 21120. | GBIIİ | ORIGINAL | 0.368 | -0.289 | -0.050 | 0.303 |
|  |  | TRANSF GRMED | 0.361 | 0.374. | 0.103 | 0. 451 |
|  |  | kelsall | 0.399 | 0.396 | 0.107 | 0.459 |
| 27022 | G5111 | ORIGINAL | 0.362 | -0.323 | -0.076 | 0.284 |
|  |  | TRANSFORMED | 0.356 | 0.345 | 0.077 | 0.430 |
|  |  | KELSALL | 0.375 | 0.343 | 0.093 | 0.414 |
| 30652 | F6V | ORIGINAL | 0.476 | -0.499 | -0. 155 | 0.201 |
|  |  | TRANSFORMED | 0.454 | 0.207 | -0.007 | 0.340 |
|  |  | KELSALE | 0.357 | 0.221 | -0.004 | 0.344 |
| 36673 | FOIB | ORIGINAL | 1.385 | -0.501 | -0.193 | 0.229 |
|  |  | TRANSFORMED | 1.488 | 0.205 | -0.050 | 0.370 |
|  |  | kelsall | 1. 462 | 0.206 | -0.050 | 0.329 |
| $3824{ }^{\circ}$ | G8IAB | ORIGINAL | -0.057 | 0.160 | 0.066 | 0.543 |
|  |  | TRANSFORMED | 0.055 | 0.834 | 0.210 | 0.724 |
|  |  | KELSALL | 0.077 | 0.820 | 0.193 | 0.715 |
| 46300 | AOIB | ORIGINAL | 0.990 | -0.646 | -0. 213 | 0.212 |
|  |  | TRANSFORMED | 0.984 | 0.107 | -0.073 | 0.352 |
|  |  | KELSALL | 0.976 | 0.090 | -0.064 | 0.360 |

## TABLE Bol

## (CONTINUED)

| HD | SPECTRAL STATE OF |  | (C1) | (M1) | ( G) | ( N ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TYPE | THE DATA |  |  |  |  |
| 48329. | G8IB | ORIGINAL | 0.029 | 0.139 | 0.066 | 0.559 |
|  |  | TRANSFDRMED | 0.109 | 0.810 | 0.210 | 0.743 |
|  |  | KELSALL | 0.098 | 0.810 | 0.198 | 0.744 |
| 58946 | Fov | ORIGINAL | 0.682 | -0.513 | -0. 204 | 0:223 |
|  |  | TR ANSFORMED | 0.650 | 0.196 | -0.0.63 | 0.364 |
|  |  | KELSALL | 0.587 | 0.178 | $-0.062$ | 0. 362 |
| 67594 | G2IB | ORIGINAL | 0.343 | -0.226 | -0.041 | 0.320 |
|  |  | TRANSF ORMED | 0.345 | 0.430 | 0.112 | 0.470 |
|  |  | KELSALL | 0.337 | 0.505 | 0.119 | 0.465 |
| 73262 | AOV | ORIGINAL - | 1.197 | -0.540 | -0.247 | 0.205 |
|  |  | TR ANSFORMED | 1. 237 | 0.177 | -0. 114 | Co344 |
|  |  | KELSALL | 1.062 | 0.171 |  |  |
| 111812 | GOIII | 'ORIGINAL. | 0.362 | -0.411 | $-0.103$ | 0.180 |
|  |  | TRANSF ORMED | $0.356$ | 0.273 | 0.049 | 0.317 |
|  |  | KELSALL | $0.383$ | 0.228 | 0.055 | 0.318 |
| 113139 | F2V | ORIGINAL | 0.667 | -0.503 | -0.183 | 0.215 |
|  |  | TRANSFORMED | 0.635 | 0.204 | -0.038 | 9. 355 |
|  |  | KELSALL | 0.533 | 0.208 | -0.047 | 0.358 |
| 122563 | GOVI | ORIGINAL | 0.373 | -0.493 | -5.131 | 0.211 |
|  |  | TRANSFORMED | 0.365 | 0.211 | 0.019 | 0.351 |
|  |  | KELSALL | 0.458 | 0.189 | 0.026 | O-351 |
| 142860 | F6IV-V | ORIGINAI | 0.483 | $-6.506$ | -0.143 | $0.190$ |
|  |  | TRANSFORMED | 0.460 | 0.201 | 0.006 | C. 328 |
|  |  | KELSALL | 0.370 | 0.186 | 0.004 | 0.327 |
| 159181 | G2II | ORIGINAL | 0.338 | -0.283 | -0.056 | 0.265 |
|  |  | TRANSFORMED | 0.336 | 0.379 | 0.097 | 0.410 |
|  |  | KELSALL | 0.371 | 0.394 | 0.101 | 大.414 |
| 182835 | F2IB | ORIGINAL | 1. 252 | $-0.551$ | $-0.194$ | 0.219 |
|  |  | TR ANSFORMED | 1.309 | 0.170 | -0.051 | \%.359 |
|  |  | KELSALL | 10410 | 0.144 | -0.065 | 0.365 |
| 185758 | GOI I | ORIGINAL | 0.424 | -0.363 | -0.085 | -. 262 |
|  |  | TRANSFORMED | 0.409 | 0.312 | $0.068^{\circ}$ | 0.406 |
|  |  | KELSALL | 0.434 | 0.315 | 0.071 | 0.411 |

TABLE B.1
(CONTINUED)

| , | SPECTRAL TYPE | STATE OF THE DATA | (C1) | (M1) | (G) | (N) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | - |  |  |
| 186427 | G5V. | ORIGINAL. | 0.408 | -0.445 | $-0.076$ | 0.159 |
|  |  | TRANSFORMED | 0.395 | 0.247 | 0.077 | 0.295 |
|  |  | KELSALL | 0.345 | 0.239 | 0.078 | 0.297 |
| 186791 | K3II | ORIGINAL | 0.001 | 0.243 | 0.119 | 0.479 |
|  |  | TR ANSFORMED | 0.091 | 0.935 | 0.253 | 0.650 |
|  |  | KELSALL | 0.084 | 0.896 | 0.251 | 0.655 |
| 192713 | G2IB | ORIGINAL | 0.236 | -0.195 | -0.058 | 0.345 |
|  |  | TRANSFORMED | 0.255 | 0.459 | 0.095 | 0. 498 |
|  |  | KELSALL | 0.232 | $0 \cdot 483$ | 0.098 | 0.527 |
| 193370 | FSIB | ORIGINAL | C. 873 | -0.426 | -0.148 | 0.248 |
|  |  | TRANSFORMED | 0.851 | 0.261 | 0.001 | 0.391 |
|  |  | KELSALL | 0.964 | $0 \cdot 256$ | $-0.008$ | 0.383 |
| 200905 | K5IB | ORIGINAL | -0.063 | 0.279 | 0.143 | 0.423 |
|  |  | TRANSFGRMED | 0.051 | 0.979 | 0.272 | 0.586 |
|  |  | KELSALL | -0.0ci | 0.923 | 0.267 | 0.575 |
| 204867. | GOIB | ORIGINAL | 0.477 | -0.285 | -0.069 | 0.270 |
|  | " | TRANSF ORMED | 0.455 | 0.378 | 0.084 | 0.415 |
|  |  | KELSALL | 0.503 | 0.367 | 0.670 | C. 424 |
| 206778 | K2IB | ORIGINAL. | -0.008 | 0.204 | 0.106 | 0.496 |
|  |  | TRANSF ORMED | 0.985 | 0.897 | C. 243 | 0.670 |
|  |  | KELSALL | 0.043 | 0.940 | 0.256 | 0.671 |
| 206859 | G5IB | ORIGINAL | $0.191$ | $-0.101$ | -0.014 | 0.433 |
|  |  | TRANSF ORMED | 0.222 | 0.550 | 0.138 | 0.597 |
|  | - | KELSALL | 0.252 | 0.568 | 0.148 | 0.605 |
| 207673 | A2IB | ORIGINAL | 0.036 | -0.549 | -0.187 | 0.198 |
|  |  | TR ANSF ORMED | $0.922$ | 0.125 | -0.0.43 | 0.337 |
|  |  | KELSALL. | $1.007$ | 0.029 |  |  |
| 211336 | FOIV | ORIGINAL | 0.853 | $-0.481$ | -0. 223 | 0.227 |
|  |  | TRANSFORMED | 0.829 | 0.220 | -0.085 | 0.368 |
|  |  | KELSALL | 0.729 | 0.228 | -0.079 | 0.357 |
| 217014 | G4V | ORIGINAL | 0.437 | -0.44.4 | -0.089 | $0.167$ |
|  |  | TRANSFORMED | C. 420 | 0.248 | 0.063 | 0.303 |
|  |  | KELSALL | $0 \cdot 341$ | 0.285 | 0.083 | 0.330 |

## TABLE Bo1

## (CONTINUED)

|  | SPEC TRAL TYPE | STATE OF THE DATA | (C1) | (M1) | (G) | (N) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 217476 | GOIA | ORIGINAL | 0.326 | -0.141 | -0.070 | c. 287 |
|  |  | TRANSFORMED | 0.326 | 0.511 | 0.083 | 0.434 |
|  |  | KELSALL | 0.358 | 0.551 | 0.063 | 0.451 |

TABLE B.2

COMPARISON OF STROMGREN:S ORIGINAL AND TRANSFORMED REDDENING-FREE COLDRS TO THOSE OF KELSALL'S.

| HD | SPECTRAL - STATE OF |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | TYPE | THE DATA | (C1) | (M1) |
| 571 | F2II | ORIGINAL | 1.050 | 0.156 |
|  |  | TRANSF ORMED | 1.034 | 0.161 |
|  |  | KELSALL. | 1.038 | 0. 172 |
| 6961 | ATV | ORIGINAL | 0.985 | 0.224 |
|  |  | TRANSF GRMED | 0.971 | 0.222 |
|  |  | KELSALL | 0.946 | 0.245 |
| 9826 | F8V | ORIGINAL | 0.361 | 0.221 |
|  |  | TR ANSF ORMED | 0.369 | 0.22n |
|  |  | KELSTALL | 0.390 | 0.202 |
| 10476 | K2V | ORIGINAL. | 0.226 | 0.428 |
|  |  | TRANSF ORMED | 0.238 | 0.418 |
|  |  | KELSALL | 0.309 | *) 364 |
| 17378 | ASIA | ORIGINAL | 1.321 | -0.0.34 |
|  |  | TR ANSF ORMED | 1.292 | -0.000 |
|  |  | KELSALL | 1.274 | 0.010 |
| 18331. | Alv | ORIGINAL | 1.054 | 0.172 |
|  |  | TR ANSF ORMED | 1.038 | 0.175 |
|  | $\stackrel{\square}{*}$ | KELSALL | 1.033 | ) 170 |
| 19373 | GOV | ORIGINAL | - 0.325 | .0.248 |
|  |  | TR ANSF ORMED | 0.334 | 0.244 |
|  |  | KELSALL | 0.366 | 0.217 |
| 21120 | G8III | ORIGINAL | 0.348 | 0.402 |
|  |  | TR ANSF ORMED | 0.356 | D. 392 |
|  |  | KEL.SALL | V.399 | 9. 396 |
| 23230 | F5II | ORIGINAL | 0.936 | O. 218 |
|  |  | TR ANSF ORMED | 0.924 | 0.217 |
|  |  | KELSALL | 0.932 | 0.231 |
| 25291 | FOII | ORIGINAL | 1.440 | Q. 1.55 |
|  |  | TR ANSF ORMED | 1.405 | 0. 160 |
|  |  | KELSALL | 1.414 | 0,174 |
| 26574 | F2III | ORIGINAL | 0.766 | 0.222 |
|  |  | TRANSF ORMED | 0.761 | 0.221 |
|  |  | KELSALL | 0.742 | 心. 271 |

TABLE Bo2

## (CONTINUED)

| HD | SPECTRAL TYPE | STATE OF |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | THE DATA | (C1) | (M1) |
| 27022 | G5III | ORIGINAL | 0.334 | 0.354 |
|  |  | TRANSF ORMED | 0.343 | 0.345 |
|  |  | KELSALL | 0.375 | 0.343 |
| 27309 | A SI | ORIGINAL | 0.553 | 0.196 |
|  |  | TR ANSF ORMEO | 0.555 | 0.197 |
|  |  | KELSALL | 0.535 | G. 198 |
| 30652 | F6V | ORIGINAL | 0.373 | 0.199 |
|  |  | TRANSF ORMED | 0.381 | 0.200 |
|  | - | KELSALL | 0.357 | 0.221 |
| 31398, | K3I I | ORIGINAL | 0.181 | 0.892 |
|  |  | TRANSF ORMED | 0.194 | 0.926 |
|  |  | KELSALL | 0.102 | 0.935 |
| 39587 | GOV | ORIGINAL | 0.256 | 0.240 |
|  |  | TR ANSF ORMED | 3.267 | 0.237 |
|  |  | KELSALL | $0: 283$ | 0.226 |
| - |  |  |  |  |
| 39866 | A2IB | ORIGINAL | $1 \Rightarrow 436$ | 0.046 |
|  |  | TRANSF ORMED | $1=401$ | 0.066 |
|  |  | KELSALL | 1.463 | 0.061 |
| 48329 | G8IB | ORIGINAL | 0.163 | 0.769 |
|  |  | TRANSF ORMED | 0.176 | 0.783 |
|  |  | KELSALL | 0.098 | 0.810 |
| 58715 | $B 7 \mathrm{~V}$ | ORIGINAL | 0.806 | 0.198 |
|  |  | TRANSF ORMED | 0.800 | 0.119 |
|  |  | KELSALL | 9.787 | 0.109 |
| 58946 | F9V | ORIGINAL | 0.582 | 0.183 |
|  |  | TRANSF ORMED | 0.583 | 0.185 |
|  |  | KELSALL | 0.587 | 0.178 |
| 62345 | G8I I I | ORIGINAL | 0.321 | 0.452 |
|  |  | TR ANSFORMED | 0.330 | 0.442 |
|  |  | KELSALL. | 0.348 | 0.435 |
| 62721 | K5I I I | ORIGINAL | 3.318 | 0.861 |
|  |  | TRANSF GRMED | 0.327 | 0.890 |
|  |  | KELSALL | 0.3 C 8 | 0.881 |

TABLE B. 2
(CONTINUED)

| HD | SPECTRAL TYPE | STATE OF THE DATA | (C1) | (M1) |
| :---: | :---: | :---: | :---: | :---: |
| 67006 | A2V | ORIGINAL | 1.096 | 0.153 |
|  |  | TR ANSF ORMED | 1.078 | 0.158 |
|  |  | KELSALL | 1.066 | 0.176 |
| 78362 | $F 5+45$ | ORIGINAL | 0.694 | 0.265 |
|  |  | TRANSF ORMED | 0.692 | 0.260 |
|  |  | KELSALL | 0.658 | 0.288 |
| 79439 | ASV | ORIGINAL | 0.877 | 0.210 |
|  |  | TR ANSF ORMED | 0.868 | 0.210 |
|  |  | KELSALL | 0.845 | 0.225 |
| 82885 | G8IV-V | ORIGINAL | 0.312 | 0.369 |
|  |  | TRANSF ORMED | 0.321 | 0.360 |
|  | - | KELSALL | 0.356 | 0.304 |
| 84441 | GOII | ORIGENAL | 0.388 | 0.338 |
|  |  | TRANSFORMED | 0.395 | 0. 330 |
|  |  | KELSALL | 0.416 | 0.332 |
|  | 「 |  |  |  |
| D89484 | KOIIIP | ORIGINAL. | 0. 281 | 0.543 |
|  |  | TRANSFORMED | 0.291 | 0.536 |
|  | $z$ | KELSALL | 4.308 | 0.533 |
| 91316 | B1I日 | ORIGINAL | -0.037 | 0.028 |
|  |  | TRANSF ORMED | -0.020 | 0.051 |
|  |  | KELSALL | -0.058 | 0.014 |
| 102870 | F8V | ORIGINAL | 0.366 | 0.232 |
|  |  | TRANSF ORMED | 0.374 | 0.230 |
|  |  | KELSALL | 0.397 | 0.206 |
| 103095 | G8VI | ORIGINAL | 0.124 | 0.272 |
|  |  | TRANSF ORMED | 0.138 | 0.267 |
|  |  | KELSALL | 0.134 | 0.275 |
| 103287 | AOV | ORIGINAL | 1.110 | 0.171 |
|  |  | TRANSFORMED | 1.091 | 0.174 |
|  |  | KELSALL | 1.075 | 0.165 |
| .103578 | A3V | ORIGINAL | 1.099 | 0.176 |
|  |  | TRANSF ORMED | 1.081 | 0.179 |
|  |  | KEl.SALL. | 1.054 | 9.202 |

TAble B. 2
(CONTINUED)

| HD | SPECTRAL TYPE | State of |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | THE DATA | (C1) | (M1) |
| 107328 | K1III | ORIGINAL | 0.418 | 0.572 |
|  |  | TRANSF ORMED | 0.424 | 0.566 |
|  |  | KELSALL | \%.438 | 0.593 |
| 111812 | GOIII | ORIGINAL | 0.349 | 0.247 |
|  |  | TRANSF ORMED | 0.357 | 0.244 |
|  |  | KELSALL | 0.383 | 0.228 |
| 113139 | F2V | ORIGINAL | 0.544 | 0.200 |
|  |  | TRANSFORMED | 0.547 | 0.200 |
|  |  | KELSALL | 0.533 | 0.208 |
| 120315 | B3V | ORIGINAL | 0.309 | 0.086 |
|  |  | TRANSF ORMED | 0.318 | 0.100 |
|  |  | KELSALL | 0.289 | 0.081 |
| 122563 | GOVI | ORIGINAL | 0.472 | 0.169 |
|  |  | TR ANSF ORMED | 0.477 | ¢, 173 |
|  |  | KELSALL | 0.458 | 9.189 |
| 127762 | A7III | ORIGINAL. | 0.992 | 0.205 |
|  |  | TRANSF ORMED | 0.978 | 0.205 |
|  |  | KELSALL | 0.965 | 0.218 |
| 130109 | ADV | ORIGINAL | 1.080 | De 134 |
|  |  | TR ANSF ORMED | 1.062 | 0.142 |
|  |  | KELSALL | 1.044 | 0.154 |
| 134083 | F5V | ORIGINAL | 0.411 | 0.201 |
|  |  | TRANSF ORMED | 0.418 | 0.201 |
|  |  | KELSALL | 0.415 | 0.180 |
| 142860 | FGIV-V | ORIGINAL | 0.360 | 0.193 |
|  |  | TRANSF ORMED | 0.368 | 0.194 |
|  |  | KELSALL | 0.370 | 0.186 |
| 143107 | K3III | ORIGINAL | 0.313 | 0.666 |
|  |  | TR ANSF ORMED | 0.322 | 0.668 |
|  |  | KELSALL | 0.328 | 0.670 |
| 143761 | G2V | ORIGINAL. | 0.269 | 0.232 |
|  |  | TRANSF ORMED | 0.279 | 0.230 |
|  |  | KELSALL | $0 \cdot 321$ | 0.205 |

TABLE B. 2

## ( CONTINUED)

| HD | SPECTRAL TYPE | STATE OF THE DATA. | (C1) | (M1) |
| :---: | :---: | :---: | :---: | :---: |
| 159181 | G2II | ORIGINAL | 0.341 | 0.399 |
|  |  | TRANSF ORMED | 0.350 | 0.389 |
|  |  | KELSALL | 0.371 | 0.394 |
| 182640 | FOIV | ORIGINAL | 0.685 | Q. 191 |
|  |  | TR ANSF ORMED | 0.683 | $0 \cdot 192$ |
|  |  | KELSALL | 0.685 | 0.212 |
| 185758 | GGII | ORIGINAL | 0.398 | 0.323 |
|  |  | TR ANSF ORMED | 0.405 | 0.315 |
|  |  | KELSALL | 0.434 | 0.315 |
| 186427 | G5v | ORIGINAL | 0.298 | 0.278 |
|  |  | TRANSF ORMED | 0.308 | 0.272 |
|  |  | KELSALL | 0.346 | 0.239 |
| 186791 | K31 1 | ORIGINAL | 0.173 | 0.880 |
|  |  | TRANSF ORMED | 0.186 | 0.912 |
|  |  | KELSALL | 0.084 | 0.896 |
| 187013 | F5V | ORIGINAL | 0.392 | 0.194 |
|  |  | TR ANSFORMED | 0.399 | 0.195 |
|  |  | KELSALL | 0.408 | 0.187 |
| $192514$ | A3III | ORIGINAL | 10301 | 0. 158 |
|  |  | TR ANSF ORMED | 1.273 | 0.163 |
|  |  | KELSALL | 1.275 | 0.166 |
| 194093 | FEIB | ORIGINAL | 0.824 | 0.345 |
|  |  | TRANSFORMED | 0.817 | 0.336 |
|  |  | KELSALL | 0.862 | 9.365 |
| 207260 | A2 IA | ORIGINAL | 0.958 | -0.005 |
|  |  | TRANSF ORMED | 0.946 | 0.023 |
|  |  | KELSALL | 0.908 | 0.018 |
| 210027 | F5V | ORIGINAL | 0.406 | 0.196 |
|  |  | TR ANSF ORMED | 0.413 | 0.197 |
|  |  | KELSALL | 0.402 | 0.211 |
| 210221 | A3 IB | QRIGINAL | 1.294 | 9.044 |
|  |  | TRANSFORMED | 1.266 | 0.064 |
|  |  | KELSALL | 1.288 | 0.059 |


|  |  | table B. 2 |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | (COntinued) |  |  |
| HD | SPECTRAL TYPE | STATE OF the data | (C1) | (M1) |
| 211336 | FOIV | ORIGINAL. | 3.768 | 0.216 |
|  |  | TRANSF ORMED | 0.763 | c. 215 |
|  |  | KELSALL | 0.729 | 0. 228 |
| 212943 | KOIII | ORIGINAL. | 0.322 | 0.507 |
|  |  | TRANSF ORMED | 0.331 | 0.498 |
|  |  | kelsall | 0.372 | 0.495 |
| 217014 | GSV | ORIGINAL | 0.308 | 0.284 |
|  |  | TRANSF ORMED | 0.317 | 0.278 |
|  |  | KELSALL | 0.341 | 0. 285 |

## APPENDIX C

## COBFFICIENTS OF THE SUPERCOLORS

We give here the coefficients for the supercolor expansions as they were used in Chapter VII. The LogT $e^{-s u p e r c o l o r ~ i s ~ a ~ s i m p l e ~ q u a r t i c ~}$ in [G] --
$\operatorname{LogT} \mathrm{e}^{- \text {supercolor }}=3.812-1.024[G]+0.5973[G]^{2}+19.82[G]^{3}-66.67[G]^{4}$. The form of the $M_{v}$-supercolor is given in Eq. (5-1). The coefficients of the various terms in the expansion are listed in Table c.l.

THE MV-SUPERCOLOR COEFFICIENTS FOR THE VARIOUS (G) REGIONS.

|  | $\begin{gathered} -0.06 \\ -0.0 \end{gathered}$ | $\begin{gathered} 0.03 \\ \text { ro } \end{gathered}$ | $\begin{aligned} & \text { RANGES } \\ & 0.05 \\ & 10 \end{aligned}$ | $\begin{gathered} \text { IN }(G) \\ 0.10 \\ \text { TO } \end{gathered}$ | $\begin{gathered} 0.17 \\ \text { To } \end{gathered}$ | $\begin{gathered} 0.27 \\ \text { TO } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| THE TERG | 0.03 | 0.05 | 0.10 | 0.17 | 0.27 | 0.30 |
| 1.0 | 48.544 | 73.167 | 99.720 | 39.131 | -58.784 | 160.364 |
| (C1) | -41.279 | 196.14 | -191.97 | -66.904 | 171.97 | 237.28 |
| (M1) | -49.856 | -547.80 | 261.39 | -1.5944 | -125.86 | 179.28 |
| (G) | -5.3417 | 2220.6 | -770.13 | 47.952 | 668.52 | -497.84 |
| (N) | -117.12 | . -455.08 | -391.94 | -117.82 | 72.125 | -123.52 |
| (C1)**2 | 6.0328 | 41.535 | -61.474 | 0.1357 | -88.885 | $-238.77$ |
| (C1)(M1) | 38.875 | 838.79 | -614.72 | 210.60 | 357.48 | 121.82 |
| (C1)(G) | -106.40 | -1295.4 | 547.72 | -388.63 | -122906 | -616.34 |
| (C1)(N) | 24.484 | -1223.7 | 1046.5 | 23.059 | -216.55 | -167.98 |
| (M1)**2 | -342.08 | -1597.1 | -327.76 | -361.74 | 72.439 | -44.310 |
| (M1)(G) | 879.86 | 11291. | -616.03 | 1045.1 | 1.5574 | -159.57 |
| (M1)(N) | 555.30 | 1586.5 | '542.70 | 212.41 | -100047 | -100.46 |
| (G)**2 | -755.49 | -14400. | 3425.4 | -1385.2 | $-883.73$ | 824.24 |
| (G)(N) | -606.93 | -10231. | 855.83 | 212.98 | -24.561 | 362.45 |
| (N)**2 | -89.422 | 1405.4 | -342.04 | -31.594 | 22.614 | 94.076 |

Abt, H. A. 1959a, Ap. J. 130, 769.
Abt, 'H. A. 1959b, Ap. J. 130, 824.
Abt, H. A., Osmer, P. S., and Kraft, R. P. 1966, Ap. J. 145, 479.
Allen, C. W. 1963., Astrophysical Quantities, (London: Athlone Press), p. 103.

Aller, L. H.. 1954, Astrophysics: Nuclear Transformations, Stellar Interiors, and Nebulae, (New York: Ronald Press Company), p. 98.

Arp, H. C. 1961, A. J. 65, 404.
Baade, W. 1926, Astr. Nachr. 228, 359.
Baker, N. and Kippenhahn, R. 1965, Ap. J. 142, 868.
Barry, D. C. 1967, Ap. J. Lett. 148, I87.
Becker, W. 1938, Z. Astrophys. 15, 225.
Be.ll, R. A. 1970, M. N. 148, 25.
Bell, R. A. and Rodgers, A. W. 1969, M. N. 142, 161.
Blauuw, A. 1963, Basic Astronomical Data, ed. K. Aa. Strand (Chicago: University of Chicago Press), p. 383 .

Boggess, A. and Borgman, J. 1964, Ap. J. 140, 1636.
Buscombe, W. 2964, Mount Stromlo Observatory Mimeograph No. 8.
Chaffee, F. H. 1970, Astron. Astrophys. 4, 291.
Christy, R. T. 1964, Rev. Mod. Phys. 36, 555.
Christy, R. F. 1966a, Ann. Rev. Astron. Astrophys. 4, 353.
Christy, R. F. 1966b, Ap. J. 145, 340.
Christy, R. F. 1968, Quart. J. Roy. Astron. Soc. 2, 13.
Conti, P. S. and Deutsch, A. J. 1966, Ap. J. 145, 742.
Conti, P. S. and Deutsch, A. J. 1967, Ap. J. 147, 368.
Cox, J. P. 1963, Ap. J. 138, 487.
Cox, J. P. and Whitney, C. A. 1958, Ap. J. 127, 561.

Crawford, D. 1961, A. J. 66, 281.
Eddington, A. 1930, The Internal Constitution of the Stars, (Cambriage: Cambridge University Press), p. 202.

Epstein, I. 1950, Ap. J. 112, 6.
Fernie, J. D. 1963, A. J. 68, 780.
Fernie, J. D. 1964, Ap. J. 140, 1482.
Fernie, J. D. 1965, Ap. J. $242,1072$.
Fernie, J. D. 1966a, A. J. 71, 119.
Fernie, J. D. 1966b, A. J. 71, 732.
Fernie, J. D. 1967a, A. J. 72, 422.
Fernie, J. D. 1967b, A. J. 72, 708.
Fernie, J. D. 1967 c, A. J. 72, 1327.
Fernie, J. D. 1968a, A. J. 73, 995.
Fernie, J. D. 1968b, Ap. J. 151, 197.
Fernie, J. D. and Hube, J. O. 1967, P.A. S. P. 79, 95.
Franz, O. G. 1966, Lowell Obs. Bull. 6, 251.
Gascoigne, S. C. B. and Eggen, O. J. 1957, M. N. 117, 430.
Gascoigne, S. C. B. and Kron, G. E. 1965, M. N. 130, 333.
Geyer, U. 1970, Astron. Astrophys. 5, 116。
Griffin, R. F. 1967, Ap. J. 148, 465.
Griffin, R. F. I969, M. N. 148, 211.
Griffin, R. F. and Redman, R. O. 1960, M. N. 120, 287.
Iben, I. 1965, Ap. J. 142, 1447.
Iben, I. 1966a, Ap. J. 143, 483.
Iben, I. 1966b, Ap. J. 143, 505.
Ioen, I. 1966c, Ap. J. I43, 516.
Jaschek, C., Conde, H. and de Sierra, A. C. 1964, Observatorio Astronomico de la Universidad Nacional de la Plata 28, No. 2.

Johnson, H. L. 1962, Astronomical Techniques, ed. W. A. Hiltner (Chicago: University of Chicago Press), p. 157.

Johnson, H. L. 1966, Ann. Rev. Astron. Astrophys. 4, 193.
Kelsall, T. and Strömgren, B. 1966, Vistas in Astronomy, Vol. 8, ed. A. Beer and K. Aa. Strand (Oxford: Pergamon Press), p. 159.

Kraft, R. P. 1960, Stellar Atmospheres, ed. J. I. Greenstein (Chicago: University of Chicago Press), p. 370.

Kraft, R. P. 1961, Ap. J. 133, 39.
Kraft, R. P. 1963, Basic Astronomical Data, ed. K. Aa. Strand (Chicago: University of Chicago Press), p. 421.

Kraft, R. P. 1965, Galactic Structure, ed. A. Blaauw and M. Schmidt (Chicago: University of Chicago Press), p. 157.

Kraft, R. P. 1966, Ap. J. 144, 1008.
Kraft, R. P., Kuhi, L. V. and Kuhi, P. S. I968, A. J. 73, 221.
Kron, G. E. 1958, P. A. S. P. 70, 561.
Kron, G. E. and Svolopoulos, S. 1959, P. A. S. P. 7 , 126.
Kukarkin, B. V., Parenago, P. P., Ephremov, Y. I. and Kholopov, P. Ni. 1958, General Catalogue of Variable Stars, (MOscow: USSR Academy of Science).

Kwee, K. K. 1967, B. A. N. Suppl. 2, 97.
Lambert, D. I. 1968, Astrophys. Lett. 2, 37.
Ledoux, P. and Walraven, T. 1958, Handbuch der Physik, Vol. 51, ed. S. Flugge (Berlin: Springer), p. 353.

Leotta-Janin, C. 1967, B. A. N. 12, 169.
Lloyd Evans, T. 1968, M. N. 141, 109.
McNamara, D. H. 1967, P. A. S. P. 79, 434.
McNamara, D. H. and Colton, D. J. 1969, P. A. S. P. 81, 826.
Mitchell, R. I., Iriarte, B., Steinmetz, D. and Johnson, H. L. 1964, Tonantzintla Bulletin 3, 153.

Nandy, K. 1964, Publ. Roy. Obs. Edinburgh 3, 142.
Nandy, K. 1965, Publ. Roy. Obs. Edinburgh 5, 13.

Nandy, K. 1966, Publ. Roy. Obs. Edinburgh 5, 233.
Nandy, K. 1967, Publ. Roy. Obs. Edinburgh 6, 25.
Nikolov, N. S. 1967a, Soviet Astron. 10, 623.
Nikolov, N. S. 1967b, Soviet Astron. 11, 92.
Oke, J. B. 1961, Ap. J. 134, 214.
Oosterhofi, P. Th. 1964, B. A. N. 17, 448.
Parsons, S. B. 1970, Ap. J. 159, 951.
Payne-Gaposchkin, C. 1954, Variable Stars and Galactic Structure, (Iondon: Athlone Press).

Payne-Gaposchkin, C. and Gaposchkin, S. 1938, Variable Stars,
(Cambridge: The Observatory), p. 153.
Payne-Gaposchkin, C. and Gaposchkin, S. 1966, Smithsonian Contrib. Astrophys. 2, 1.

Rakos, K. D. 1965, Applied Optics 4, 1453.
Reddish, V. C. 1955, M. N. 115, 480 .
Rodgers, A. W. and Bell, R. A. 1963, M. N. 125, 487.
Rodgers, A. W. and Bell, R. A. 1964, M. N. 127, 471.
Rodgers, A. W. and Bell, R. A. 1967, M. N. 136, 91.
Rodgers, A. W. and Bell, R. A. 1968a, M. N. 138, 23.
Rodgers, A. W. and Bell, R.A. 1968b, M. N. 139, 175.
Rosiendhal, J. D. 1970, Ap. J. 160, 627.
Rosseland, S. 1954, The Pulsation Theory of Variable Stars, (Oxford: Clarendon Press).

Sandage, A. and Tammann, G. A. 1968, Ap. J. 151, 531.
Sandage, A. and Tammann, G. A. 1969, Ap. J. 157, 683.
Schwarzschild, M. 1938, Harvard Circ. 431.
Shapley, H. and Nicholson, S. B. 1919, Proc. Nat. Acad. Sci. 2, 417. Stibbs, D. W. N. 1955, M. N. 115 , 323.

Stobie, R. S. 1969a, M. N. 144, 461.

Stobie, R. S. $1969 \mathrm{~b}, \mathrm{M} . \mathbb{N} .144,485$.
Stobie, R. S. 1969c, M. N. 144, 511.
Strömgren, B. 1966, Ann. Rev. Astron. Astrophys. 4, 433.
Strömgren, B. and Perry, C. 1962, Institute for Advanced Study Preprint.
Tammann, G. A. 1970, I.A.U. Symposium No. 38, The Spiral Structure of Our Galaxy, ed. G. Contopoulos (Dordrecht: D. Reidel Publishing Company), p. 236.

Thiessen, G. 1956, Z. Astrophys. 39, 65.
Unno, W. 1967, P.A. S. Japan 12, 140.
Van den Bergh, S. and Sackmann, I. J. 1965, A. J. 70, 353.
Van Hoof, A. and Deurinck, R. 1952, Ap. J. 115, 166.
Vitrichenko, E. A. and Tsarevskii, G. S. 1969, Soviet Astron. 13, 159.
Walraven, T. and Walraven, J. K. 1960, B. A. N. 15, 67.
Wesselink, A. J. 1946, B. A. N. 10, 91.
Williams, J. A. 1966, A. J. 71, 615.
Worley, C. E. 1966, P. A. S. P. 78, 485.
Yale Catalog of Bright Stars 1964, ed. D. Hoffleit (New Haven: Yale University Observatory).

Zhevakin, S. A. 1963, Ann. Rev. Astron. Astrophys. 1, 367.

