

A Dissertation Submatted to the Faculty of the DEPARTMENT OF ELECTRICAL ENGINEERING

In Partial Fulrillment of the Requirements
For the Degree of
DOCTOR OF PHILOSOPHY
In the Graduate College
\checkmark THE UNIVERSITY OF ARIZONA万 NGL-03-002-024

1970

ACKNOWLEDGMENTS

The author washes to thank Professor Granino A. Morn for his suggestion of the dissertation topic and for his helpful guidance during the research and writing. This project is part of a continuing study of hybrid analog-dıgıtal computation directed by Professor Morn and supported by the National Aeronautics and Space Admınıstratron under NASA Grant NGR-03-002-024. The author as also grateful for support of has Ph . D. program through a NASA Pre-doctoral Traıneeship, a General Electric Foundtron Graduate Fellowship, and a Graduate Associateship an Research in the Engineering Experiment Station of The University of Arizona.

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arızona and is deposited in the University Labrary to be made avallable to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable wathout special permission, provided that accurate acknowledgment of source as made. Requests for permission for extended quotation from or reproduction of thas manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material as in the anterests of scholarship. In all other instances, however, permission must be obtained from the author.

SIGNED: \qquad

TABLE OF CONTENTS
Page
LIST OF TLLUSTRATIONS vi
LIST OF TABLES vユユi
ABSTRACT ix
CHAPTER

1. INTRODUCTION 1
1.1 Problem Defination 2
1.2 Previous Work 5
1.3 Solution Approach 6
2. A SURVEY OF PARAMETER OPTIMIZATION TECHNIQUES 9
2.1 Introduction and Notation 9
2.2 Gradient Descent Methods 13
2.2.1 Steepest Descent 13
2.2.2 Parallel Tangents (Partan) 17
2.3 Conjugate Search-Dırection Methods 21
2.3.1 Conjugate Direction Properties 22
2.3.2 Conjugate Direction Algorithms 23
2.4 Quadratic Fit Methods 30
2.5 Direct Search Methods 32
2.6 Random Search Methods 37
2.6.1 Theoretucal Developments 38
2.6.2 Specifıc Algorıthms and
Applacations 45
2.7 Stochastic Approximation 54
2.8 Constrannts 64
2.8.1 Gradient Projectıon Method 65
2.8.2 Created Response-Surface
Method 67
2.8.3 Penalty Functaons 68
2.8.4 Restract to Feasible Region 69
2.9 A Comparison of Methods and Some Remarks 69

TABLE OF CONTENTS--Contanued

CHAPTER
 Page

3. OPTIMIZATION IN THE PRESENCE OF NOISE • • • • 75
3.1 The Choice of a Strategy 75
3.2 A Random-Search Algorithm for Noisy

Criterion Functions 79
3.3 Constrannts, Modelang the Distribu-
tions of the System Parameters . . . 91
3.4 Sequential Estimatıon of $F(\underline{\mu}, \underline{\sigma})$ • 94
4. AN OPTIMIZATION EXPERTMENT 103
4.1 A Radar-Homing Massile Problem 104
4.2 The Simulation 108
4.3 The Optimization 114
4.4 Operation of the Optimization Program . . 124
4.5 Experiments and Results 129
5. CONCLUSIONS AND DISCUSSION 142

APPENDIX A. THE EFFECTS OF LIMITING A GAUSSIAN RANDOM VARIABLE 146

REFERENCES . 150

LIST OF ILLUSTRATIONS

Figure Page
1.1 Three samples ${ }^{1} \mathrm{~S},{ }^{2} \mathrm{~S},{ }^{3} \mathrm{~S}$ from an ensemble of systems 3
2.1 An example of non-convergence wath the
Newton-Raphson method 15
2.2 An example showing avoldance of a local manımum wath the Newton-Raphson method 16
2.3 Schematıc dıagram of steepest descent
Partan 19
2.4 Schematic dıagram of general Partan 20
2.5 Operation of the simplex method in two dimensions 35
2.6 The behavior of a "discrete-direction" random search algorithm 49
2.7 Creeping random search with hyperconacal search regions 53
2.8 A stochastıc approximation algorithm with a small step size 58
2.9 A stochastuc approximation algorithm with a large step size 59
2.10 A function for specifying the step size in a stochastic approxımation algorıthm 62
2.1l The gradient projection method at the boundary of a nonlinear constraint 66
3.1 Flow diagram for the basic creeping- random-search algorıthm 81
3.2 A creeping random search in a region of small gradient for a nolsy criterion function 85

LIST OF ILLUSTRATIONS --Contanued

Figure Page
3.3 A flow diagram for the optimization algorithm 87
3.4 The Gaussian density function limıted at one end 95
3.5 The Gaussian density function limıted at both ends 96
3.6 Flow diagram for the shaft operation an Eq. (3.18) 101
4.1 The motion of the missile in a plane 105
4.2 Radar-homang massile navigatang in a plane 107
4.3 Analog computer diagram of the radar- homang massile simulation 109
4.4 Control logic for the simulation 112
4.5 A flow diagram for the optimization algorzthm 1.7
4.6 CRT output for a benchmark test fallure 123
4.7 CRT dısplays during the optamazation 127
4.8 Contours of constant hit probabilıty asa function of μ_{K}, and μ_{τ}, (mean valuesof unknown parameters) 130
4.9 Contours of constant hit probabılaty as a function of σ_{K}, and σ_{T}, (dispersions of unknown parameters) 131
4.10 The effect of radar-tracking nouse on the missile trajectories 132

LIST OF TABLES

Table Page
3.1 The effects of limıtang a Gaussian random varıable 97
3.2 Divisors used an the three recursive estimation algorıthms 102
4.1 Confidence-interval half-widths,
$\sqrt{\frac{p(1-p)}{N}} z_{\alpha / 2}$, for $\alpha=.05$ 116
4.2 Data for automatic optimızatıons from the starting point $\left(\mu_{K},, \mu_{\tau}, \sigma_{K},, \sigma_{T}\right)=$ (0.9,0.6,0.0,0.2) 134
4.3 Data for automatic optimizations from the starting point $\left(\mu_{K}, \mu_{\tau}, \sigma_{K}, \sigma_{\tau}\right)=$ ($0.5,0.95,0.3,0.0$) 137
4.4 Data for automatic optimizations from starting points chosen by the pure- random search 138
4.5 Data for automatic optimizations with lower bound constraints on σ_{K}, and σ_{T}, 140

Abstract

This thesis presents a hybrid-computer Monte-Carlo method for the optimization of systems containing random parameters. In the design of a dynamical system, the values of a set of system parameters may be chosen so as to optamıze a performance craterıon. If, however, the manufacturıng process results in production varıations in these parameters, the optimal system becomes an idealization which cannot, an general, be realized by the systems actually manufactured. In this case it may be advantageous to treat the system parameters as random varıables having, for example, Gaussian probabilıty distributions. Then parameter mean values and varlances can be chosen so as to optımıze a crıterıon function whıch ıncludes average system performance and also the cost of manufacturing systems with certain parameter variances.

In order to solve thas type of problem, the dynamıcal system, uncluding the random varıations in the system parameters, as simulated on a fast repetituve analog computer (The Unıversaty of Arızona's ASTRAC-II) and the average system performance is estimated by the Monte-Carlo method. A small digital computer (Digital Equapment Corporation PDP-9) controls the operation of the analog

machone and implements an optimızation algorithm for determining the optimal parameter means and varıances.

Since an estamate of the average system performance Is a random varıable, the optimızatıon algorıthm must operate wath noısy measurements of the craterion function. A review of the Iュterature on parameter optimızation led to the development of a creepang-random-search algorithm for optamization an the presence of nozse. Incorporated in the optimization program are provisions for interaction between the operator and the algorıthm by way of a cathode-ray-tube display console and the accumulator switches on the PDP-9.

The method is applied to the optimazation of the means and varıances of two guidance-unit parameters in a hypothetical radax-homing massile. Wıth differential equation solution rates of approximately 500 runs per second, typıcal optimization tımes are on the order of 6-7 minutes. It $1 s$ found that optimizations with lower bound constraunts on the parameter variances result an optimal mean values different from those for the unconstrained case.

CHAPTER I

INTRODUCTION

A common approach to the design of an engineering system is furst to choose a general confuguxation in whach the values of several parameters are left undetermined; these values are then chosen so as to optımıze some cxiterion of performance. If many of these systems are to be manufactured, however, it may be difficult and/or costly to ensure that the parameter values are very close to the optamum. The system with optimum parameter values then becomes only an idealızation which is not, in general, realized by the systems that are manufactured. In such a situation it may be advantageous to model the output of the manufacturing process as a statıstıcal ensemble of systems whth parameters having, for example, Gaussian probabalaty distributıons. Then, parameter mean values and variances could be chosen to optimıze a criterion function which would mnclude average system performance as well as the cost of manufacturang systems wath certann parameter varıances.

In thas thesis, a hybrid-computer method employing a fast repetative analog computex (ASTRAC-II) and a digital computer (PDP-9), us developed for the simulation and
optimızatıon of an ensemble of systems with random parameters. The method $1 s$ applied to the simultaneous optimization of the means and varlances of two parameters un a hypothetical radar-homang missile.

1.1 Problem Definition

Let us consider an ensemble of systems identical except for the values of a set of k system parameters $\underline{p}=$ $\left(p_{1}, p_{2}, \cdots, p_{k}\right)^{t}$. These parameters are assumed to be statastacally independent random variables. A sample system from the ensemble is defined by a specific ordered set $\left(p_{1}, p_{2}, \cdots, p_{k}\right)$. The situataon as pactured $2 n$ Fig. 1.1.

It is assumed that the type of probabılıty dustribution for each random parameter as specıfaed, but that the constants whach precisely defane these distributions may be varied. These constants are termed distribution constants and are represented by $\underline{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{t}$. For example, suppose the parameters p_{j} are Gaussian with respective means μ_{J} and standard deviations σ_{J}, where the $\mu_{J}{ }^{\prime} s$ and $\sigma_{J}{ }^{\prime} s$ may be chosen by the desugn engıneer. Then $\underline{x}=(\underline{\mu}, \underline{\sigma})=\left(\mu_{1}, \ldots, \mu_{k} ; \sigma_{1}, \ldots, \sigma_{k}\right)^{t}$ and $n=2 k$.

For any sample system in the ensemble, we define a measure of system performance, a performance index J, which is a function of the random parameters and 2 , therefore, a random variable:

Fag. 1.I Three samples ${ }^{1} S,{ }^{2} S,{ }^{3} S$ from an ensemble of systems.

$$
\begin{equation*}
J=J\left(p_{1}, p_{2}, \cdots, p_{k}\right) \tag{1.1.}
\end{equation*}
$$

The ensemble average (expected value) of J is a measure of the average system performance. Thas expectation of J, $\mathrm{E}\{J\}=\Psi$, termed the average performance index, is a function of the distribution constants of the random parameters:

$$
\begin{equation*}
E\{J\}=\Psi=\Psi\left(x_{1}, \cdots, x_{n}\right) \tag{1.2}
\end{equation*}
$$

For a given set of distribution constants we may also define a cost function, $C(\underline{x})$, as a measure of the cost assoclated wisth manufacturing systems with these distrıbution constants. Typically, $C(\underline{x})$ wall depend specifically on the parameter tolerances, σ_{1}. The cost function and the average performance undex are summed to form the criterion function, $F(\underline{x})$.

$$
\begin{equation*}
F(\underline{x})=\Psi(\underline{x})+C(\underline{x}) \tag{1.3}
\end{equation*}
$$

The problem to be solved as that of optimızang (manımızang or maximizing) F with respect to x_{l}, \ldots, x_{n}, subject to a set of m nnequaluty constrannts on the x_{1} 's.

$$
\begin{equation*}
\varnothing_{1}(\underline{x}) \leq 0 \quad 1=1, \cdots, m \tag{1.4}
\end{equation*}
$$

The inequality constrants may represent restractions mposed by the design enganeer or constraints required for proper defination of the dastribution functions of the system parameters. For example, $1 f p_{\perp}$ is Gaussian wath
mean μ_{I} and variance σ_{I}^{2}, then the designex may requare $-10 \leq \mu_{2} \leq 5$, and we must have $\sigma_{1} \geq 0$.

1.2 Previous Work

The problem of optimazing an ensemble of systems whth respect to parameter variances as well as parameter mean values has been recognized for some tume, but luttle work in this area has been accomplıshed. The exceedingly large number of system simulations necessary to evaluate and optamaze the criterion function for a dynamıc system with random parameters makes the solution to such problems impractical without the use of very fast hybrid computers, which have become available only an recent years. In 1959 McGhee and Levine (1964) employed Monte-Carlo simulation an the optimazation of production tolerances for two Gaussian parameters in a radar-homing missile (thus paper us discussed more thoroughly in Chapter 4). Parameter mean values wexe selected prior to the simulation, and the crıterion function was then estimated for sixteen combinatıons of tolerance values. Wuth a slow analog computer, approximately one week of computing tame was required, demonstratang the need for a fast repetatave machine in solvang a problem of any complexity. Korn (1966) has outlined the problem of hybrad-computer optimization of systems with parameters subject to production varıatıons. Note that simultaneous optimization or mean values as well

```
as variances will, an general, result an optımum mean
values dufferent from those for the case where all vari--
ances are set to zero.
```

Recently Bohling and O'Neill (1970) have presented a hybrıd-computer approach to parameter tolerance analysis. Wath the aid of an interactave display system, the operator can quickly evaluate the effects of parameter tolerances on system performance and reject unsatusfactory designs wıthout waltang for the accumulatıon of large statistıcal samples. Thas type of operator-program anteraction, which provides insaght into system behavaor as well as a saving In computer time, could be equally beneficial in parameter optamızation.

1. 3 Solution Approach

The solution of the parametex optamızation problem outlined in Section $1 . l$ may be divided anto two parts: evaluatang the craterion function $F(\underline{x})$ and choosing the x_{z} 's to optimize $F(\underline{x})$.

The mann problem an evaluating F as the calculation of $\Psi=E\left\{J\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right\}$. This expectation may be calculated analytıcally for only the samplest of systems and performance andıces. For systems of any complexity, a natural method of calculating Ψ is to estimate $1 t$ by MonteCarlo simulation. With this approach, the mathematical model of the system is amplemented by a computer. For a
given set of distribution constants sample values of the random system parameters are obtanned from noise generators, and the system $1 s$ operated or "run" many times to obtann an estimate of the average performance index Ψ For systems described by differentıal equations, this task Is a natural one for a hıgh-speed iteratıve analog computer, whıch as capable of solving differentıal equations much more quackly than a dıgıtal machone.

The job of optimizing the Monte-Carlo estimate of F is most easily handled by a digutal computer, which can examıne the performance index estımate and implement sophistacated strategues for locating the optamal parameter values. The main difficulty in solving the parametex optamization problem results from our anabilaty to measure $\Psi(\underline{x})$ exactly. The estimate of Ψ from many analog computer runs wall, in general, contain an exror which can lead to a wrong decision in the search for the optimum parameters. For the reasons discussed in Chapter 3, a creeping random search algorıthm was chosen for the optimzzation strategy.

The divasion of the problem anto these two tasks, estimation of $\Psi(\underline{x})$ and optimization, suggests the use of a hybrid computer consisting of a small digatal computer ıntexfaced to a hagh-speed analog machıne. Such a computing system $1 s$ employed for the problem solved here. The digatal computer is a Digıtal Equapment Corporation PNP-9, which has an 18 -bit word length and 16 K of core
memory. The Unıversity of Arizona's ASTRAC-II is a ± 10. volt repetıtıve analog computer capable of differentialequation solution rates of 1000 runs per second.

A review of the literature on parameter optimizatıon was undertaken $1 n$ preparation for selecting an effective search strategy for nolsy criterion functions. This survey as the subject of Chapter 2. The algorithms developed for the estamation of the criterion function and optimazation are discussed an Chapter 3. Chapter 4 describes the applacation of the method to the radarhoming massile problem, and some general remarks and conclusions are gaven $2 n$ Chapter 5.

CHAPTER 2

A SURVEY OF PARAMETER OPTIMIZATION TECHNIQUES

2.1 Introduction and Notation

Durang the past fifteen years the fields of optimum systems design and optimal control have produced a large number of parameter optimization technaques. Thas survey reviews the $1 m p o r t a n t ~ t e c h n ı q u e s ~ a v a l l a b l e ~ a n d ~$ attempts to evaluate thear relatave worth. Since no one method is best for all situations, attention is focused on factors which determine the suatabulaty of a method for a partıcular class of problems. These factors include the type of criterion function to be manamızed, constraants on the parameters, errors $\nsim n$ measurang the craterion functaon, and the computing equipment to be used. The techniques discussed have been chosen for theur applicabilıty to the wade range of craterion functions found in enganeering problems. Thus, algorithms designed for rather specific functions are not treated here. Such methods anclude linear programmang, Gauss's least squares, and geometric programming, which are discussed by Walde and Beightlex (1967).

There are several references which review or discuss parameter optimization methods in detail. The most
comprehensive and thorough treatment is found in WIlde and Beightler (1967), which covers most of the methods mentioned here, wath the exception of the creeping random technaques and stochastic approximation. The latter topic is discussed by Wilde (1964). Creeping random methods are treated by Rastrıgın (1967), Korn (1966), and Bekey and Karplus (1968). McGhee (1967) gaves an antroduction to gradient methods. Technaques especially suitable for analog or hybrad computers are descrıbed by Korn and Korn (1964), Bekey (1964), and Bekey and Karplus (1968). A more mathematıcal treatment of parameter optimization, specifically of the nonlınear programming problem, may be found in Saaty and Bram (1964), which contans a full treatment of techniques for handling constrannts. Some other general refexences wath discussions of several parameter optimazation methods are Leon (1964), Lavi and Vogl (1966), Carnahan (1966), Fleascher (1966), Kopp (1967), Hague and Glatt (1968), and Spang (1962). A bibllography of hybrid-computer parameter optamization methods as given by Gilbert (1.967).

Formal definztions of the general parameter optimization (nonlinear programming) problem and related mathematical concepts are given by Korn and Korn (1968) and Saaty and Bram (1964). The notation to be used here us antroduced in the following problem statement.

Determine the ordered set of n unknown parameters $\underline{x} \equiv\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\text {r which optımızes (manımızes or }}$
maxımızes) the criterion function (objective function, performance index)

$$
\begin{equation*}
F(\underline{x}) \tag{2.1}
\end{equation*}
$$

subject to the m inequalaty constrannts

$$
\begin{equation*}
\phi_{1}(\underline{x}) \geq 0 \quad(\text { or } \leq) \quad(1=1, \ldots, m) \tag{2.2}
\end{equation*}
$$

The optamal parameter values and assoclated criterion function value will be denoted by $x^{*}=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right)^{t}$ and F^{*}. The set of all x satusfyang the constraints (2.2) defines a region R called the feasibleregion. For convenıence, all optimazation problems are considered here as manimızation problems. In some situations, constraznts are not present or may be effectuvely elmmated (unconstramed optimization).

In the evaluation of optimization algorithms the notion of convergence as used to descrabe how quackly the search proceeds to the optimum point. In partıcular, some algorıthms are said to exhıbıt quadratıc convergence, which has been defmed an several ways an the lıterature. Walde and Berghtler (1967) state that an algorithm capable of finding the minimum of a quadratic function of n variables after measuring n gradients as said to converge quadratıcally. McGhee (1967) defines quadratic convergence in the following way. Let Δx be the parameter step vector computed by the algorıthm. Then quadratac convergence amplies
that as $\delta \underline{x}=\underline{x}^{*}-\underline{x}$ approaches zero, the ratios of the components of $\Delta \underline{x}$ and $\delta \underline{x}, \Delta x_{X} / \delta \underline{x}_{J}$, approach 1 for $\mathcal{I}=J$ and approach zero for $\neq \mathrm{J}$. According to Box (1966) and Fletcher and Reeves (1964), an algorıthm enjoyang quadratıc convergence wall locate the manımum of a quadratic function In a finnte number of steps. Unless otherwise stated, this last definıtion will be adopted for discussions here.

The notions of quasl-quadratic functions and quasiquadratic convergence are used by Wilde and Berghtler (1967). Let $F(\underline{x})$ be a quadratic function of x, and let h be a monotonac function. Then

$$
y(\underline{x})=h[F(\underline{x})]
$$

1s sald to be quasi-quadratıc, and we shall describe an algorıthm capable of mınımızing a quası-quadratıc function in a finnte number of steps as converging quasiquadratacally.

The optamızation techniques descxabed here have been grouped under the headıngs: gradient descent methods, conjugate search-direction methods, quadratac fit methods, direct search methods, x andom methods, and stochastıc approximations. The discussions are carried out for the unconstrained case, Section 2.8 describes methods for handling constraints. Comparatıve evaluatıons of the methods on the basis of results from test functions and practical problems are given un Section 2.9.

2.2 Gradient Descent Methods

The technaques discussed in this section assume a smooth objective function and make use of first-oxder partıal derıvataves to determine the optimnzang steps. These methods mnclude steepest descent schemes and Partan (McGhee, 1967, WIlde, 1964).

2.2.1 Steepest Descent

A smooth function $F(\underline{x})$ may be represented locally about any point x° by a Taylor serıes.

$$
\begin{equation*}
F\left(\underline{x}^{o}+\Delta \underline{x}\right)=F\left(\underline{x}^{o}\right)+\nabla F\left(\underline{x}^{o}\right)^{t} \Delta \underline{x}+0\left(\Delta \underline{x}^{2}\right) \tag{2.3}
\end{equation*}
$$

where
and $O\left(\Delta x^{2}\right)$ andicates a remainder consisting of terms of second-order and hagher in the Δx_{1}. For small $\Delta \underline{x}$, the term lanear $1 n \Delta \underline{x}$ is dommant, and to make $F\left(\underline{x}^{0}+\Delta x\right)<$ $F\left(\underline{x}^{\circ}\right)$ we take a step in the direction $-g\left(x^{\circ}\right)$. To show that
$F(\underline{x})$ can be decreased by such a step, we let $\Delta x=-\alpha g\left(\underline{x}^{\circ}\right)$, $\alpha>0 . \quad$ Then,

$$
\begin{aligned}
F\left(\underline{x}^{o}+\Delta \underline{x}\right)-F\left(\underline{x}^{0}\right) & =-\alpha \underline{g}\left(\underline{x}^{0}\right)^{t} \underline{g}\left(\underline{x}^{0}\right)+o\left[\left(-\alpha \underline{g}\left(\underline{x}^{0}\right)\right)^{2}\right] \\
& <0 \text { for small } \alpha
\end{aligned}
$$

The chomce of α is critical in determaning the speed of convergence; for small α, convergence is slow, and too large an α may result in no convergence. Whale there are many schemes for choosing α, probably the most used are the Newton-Raphson and "optimum gradient" methods.

The Newton-Raphson technnque (McGhee, 1967) uses the representation of Eq. (2.3) and, neglecting the hagher order terms, finds $\alpha=\alpha_{0}$ such that $F\left(\underline{x}^{0}+\Delta \underline{x}\right)=0$. Thus,

$$
\alpha_{0}=\frac{F\left(x^{0}\right)}{g^{o t} \underline{g}^{0}}
$$

This step size may locate a ponnt x^{0} r $\Delta \underline{x}$ such that $F\left(\underline{x}^{0}+\Delta \underline{x}\right)>F\left(\underline{x}^{0}\right)$, and at $1 s$ possuble for the NewtonRaphson method never to converge, as shown an the example of Fig. 2.1. On the other hand, this technique can be effectave in avoiding local mınima (Fıg. 2.2).

The problem of $\operatorname{mistabılıty~can~be~avoided~by~}$ determining α by the optimum gradient method (McGhee, 1967; Bekey and McGhee, 1964). Sunce $F(x)$ is known to decrease min the megative gradient darection for some small α, there exists an α^{*} on $\left(0, \alpha_{0}\right]$ such that $F\left(\underline{x}^{0}+\alpha^{*} \Delta \underline{x}\right) \leq F\left(\underline{x}^{0}+\alpha \Delta \underline{x}\right)$

Fig. 2.I An example of non-convergence with the NewtonRaphson method.

Fig. 2.2 An example showing avozdance of a local manımum wath the Newton-Raphson method.
where α is any other scale factor on ($\left.0, \alpha_{0}\right]$. The optamum gradıent method uses a one-dimensional search to locate α^{*} for each step in the steepest-descent durection.

Steepest-descent methods were of the furst to be used in optimızatıon and have been applied successfully to many problems, especially an the 1 nitial stages of the search. Convergence, however, tends to be very slow near the optimum, and the method may fall altogether for functions wath urregular parameter landscapes. In addıtion, since the direction of the gradient vector depends on the scaling of the parameters, x_{1}, the performance is strongly dependent on this scaling, problems with long, narrow contours whll be more dirficult to solve than ones with nearly curcular contours. When gradient anformation. us avallable, more modern methods such as Partan or the conjugate directıon techniques are superıor.

2.2.2 Parallel Tangents (Partan)

An attempt to speed up the convergence of gradient descent algorithms led to the method of parallel tangents (Partan), which was developed by Shah, Buehler, and Kempthorne (1964) after Forsythe and Motzkin's (1951) suggestion of a steepest descent acceleration technique in two dimensions. The two versions, steepest-descent (or gradient) Partan and general Partan, are dıscussed in
detall by Buehler, Shah, and Kempthorne (1964), Shah et al. (1964), and Wilde (1964).

Steepest-descent Partan alternates steepest descent steps wath acceleratıon steps as shown in Fig. 2.3. [In this discussion of Partan a "step" implies a mınımızation of $F(\underline{x})$ along a line.] For general Partan acceleration steps alternate wath steps along lanes parallel to planes which are tangent to $F(\underline{x})$ at previous even-numbered points ${ }^{J_{x}}$ (Fig. 2.4. $\pi_{J}=$ tangent plane at ${ }^{J_{x}}$). General Partan has the property of scale invarıance, which is usually considered an advantage in mınimazing general functions. With either method a quasi-quadratic function of n varlables is manimized in $2 n$ or less steps. To carry on the algorithms for general functions after $2 n$ steps eather method can be restarted at the pount ${ }^{2 n} \underset{x}{ }$ (Iterated Partan), or steepest descent Partan may simply be contunued (continued Partan). The partial derivatives $\partial F / \partial x_{i}$ must be evaluated or approximated before alternate steps to obtain the graduent for steepest descent Partan or the tangent plane for general Partan. Harkins (1964) has found the very interesting result that convergence can be improved by anaccuracies in determinang the minimum along a line. He suggested using only one to five points wath a golden sectuon search.

Fig. 2.3 Schematic diagram of steepest descent Partan.

Fig. 2.4 Schematic diagram of general Partan.

2. 3 Conjugate Search-Direction Methods

The technıques discussed in this section are designed to mınamıze a quadratic function by a series of one-dimensional mınımızations along lines termed conjugate directions. For most of the methods, a quadratic function of n variables $1 s$ mınımızed with n one-dimensional minimizatıons. To the extent that a non-quadratic function to be minmmized can be approximately represented by a quadratıc, these methods provide rapad convergence, especially in a reglon near the optamum, where the farst- and second-order terms of a Taylor series expansion of a smooth function dominate. The conjugate-durection algoxithms perform well on difficult test functions and have been used successfully in the solutaon of optzmal control problems (Burta and Trushel, 1969, Lasdon, Mytter, and Waren, 1967). An introduction to some general properties of conjugate durectaons us followed by discussions of several algorıthms. Let $F(\underline{x})$ be a quadratıc function of n varıables x_{1},

$$
\begin{equation*}
F(\underline{x})=\frac{1}{2} \underline{x}^{t} A x+\underline{b}^{t} \underline{x}+c \tag{2.5}
\end{equation*}
$$

whth gradient

$$
\begin{equation*}
\underline{g}(\underline{x})=A \underline{x}+\underline{b} \tag{2.6}
\end{equation*}
$$

where A as positive definite and symmetric.

2.3.1 Conjugate Direction Properties

A set of n independent darections ${ }^{\circ}{ }_{d},{ }^{l_{d}}, \ldots,{ }^{n-1} \underline{d}$ are conjugate wath respect to a posituve semı-defingte matrax B (B-conjugate) af

$$
\begin{aligned}
& \underline{d}^{i^{t} B^{j} d=0 \quad i \neq J} \\
& { }^{1} \underline{d}^{t_{B}^{1}} \underline{d}=0
\end{aligned}
$$

The importance of conjugate directaons deraves from the property that n successive minimizations in the A conjugate directaons will locate the manimum of $F(\underline{x})$.
To see this (Fletcher and Reeves, 1964), let ${ }^{\circ}{ }_{d},{ }^{1}{ }^{d}, \ldots$, $n^{-1} \underline{d}$ be A-conjugate, and let a step from ${ }^{1} \underline{x}$ to ${ }^{1+1} \underline{x}$ be determaned by

$$
\begin{equation*}
i^{i+l_{\underline{x}}}=^{I} \underline{x}+{ }^{I} \alpha^{I} \underline{d} \tag{2.8}
\end{equation*}
$$

where ${ }^{I} \alpha$ us chosen such that

$$
\begin{equation*}
\underline{g}^{t}\left(\underline{x}^{1+1} \underline{x}\right)^{I} \underline{d} \underline{g}^{I+1} \underline{g}^{1} \underline{d}=0 \tag{2.9}
\end{equation*}
$$

(ı.e., ${ }^{I} \alpha$ manımızes F along the direction ${ }^{\prime}$ d). Iteration on (2.8) from $J^{+1} x$ to ${ }^{n} x$ yuelds

$$
\begin{equation*}
n_{\underline{x}}={ }^{j+1} \underline{x}+\sum_{x=j+1}^{n-1} I_{\alpha}^{1} \underline{d} \quad(0 \leq j \leq n-1) \tag{2.10}
\end{equation*}
$$

As a convenience, let us assume a change of varıables so
that $\underline{b}=\underline{0}$. It then follows from (2.6) that

$$
\begin{equation*}
n_{\underline{g}}=3^{+1} \underline{g}+\sum_{\beth=j+1}^{n-1} \eta_{\alpha} A^{i} \underline{d} \tag{2.11}
\end{equation*}
$$

From (2.9) we have

$$
\begin{equation*}
\underline{n}^{t} \underline{\mathrm{~J}}_{\underline{d}}=\sum_{\mathrm{m}=\mathrm{J}+1}^{\mathrm{n}-1}{ }^{\mathrm{I}} \alpha^{\mathrm{I}} \underline{\mathrm{~d}}^{t^{\mathrm{J}}} \underline{d} \tag{2.12}
\end{equation*}
$$

and as ${ }^{\circ} \underline{d},{ }^{1_{d}}, \ldots,{ }^{n-1_{d}}$ are $A-c o n j u g a t e$,

$$
\begin{equation*}
\mathrm{n}_{\underline{\mathrm{g}}}{ }^{t} \mathrm{~J}_{\underline{\mathrm{d}}}=0 \tag{2.13}
\end{equation*}
$$

Since the n independent ${ }^{\mathrm{J}}{ }^{\mathrm{d}}$'s constutute a basas for E^{n}, $n_{\underline{g}}=\underline{O}$, which as the condition for $n_{\underline{x}}$ to be the minnmum of (2.5).

This same property may be demonstrated in a slughtly different way. Pearson (1.968) shows that since ${ }^{\circ}{ }_{\underline{d}},{ }^{l_{d}}{ }_{\underline{d}}$, $\ldots,{ }^{n-1} \underline{d}$ constitute a basis, any $\underset{\underline{x} \in E^{n}}{ }$ can be represented In terms of the ${ }^{i_{d}}{ }^{\prime} s$, and $F(\underline{x})=F\left({ }^{0} \underline{d},{ }^{1} \underline{d}, \ldots,{ }^{n-1} \underline{d}\right)$ may be decomposed into n independent terms (each depending on only one ${ }^{3}$ d) to be manimazed separately.

2.3.2 Conjugate Direction Algorithms

Pearson (1968) has presented a unffied treatment of a class of conjugate-darection algorathms. One, the projected-gradient algorıthm, us based on the fact that conjugate directions may be generated by requarang that successave steps, ${ }^{1} \underline{s}={ }^{1+1} \underline{x}-{ }^{1} \underline{x}$, be made orthogonal to previous gradient dafferences, ュ.e.,

$$
\begin{equation*}
\left({ }^{J^{+1} \underline{g}}-{ }^{J_{g}}\right)^{t}{ }^{1} \underline{s}=J_{\underline{y}}{ }^{1} \underline{s}=0 \quad(J \leq 1-1) \tag{2.14}
\end{equation*}
$$

Thas leads to the following method. (Pearson's numbering of the algorithms as retanned here.)

AIgorithm I--Projected Gradient
Choose an inntial poznt ${ }^{\circ} x$ and an initıal positivedefinnte symmetric matrıx ${ }^{\circ} \mathrm{H} . \quad$ Set $I=0$.

1. Compute the search direction

$$
\begin{equation*}
{ }^{\mathrm{I}} \underline{\mathrm{~d}}=-{ }^{\mathrm{I}_{\mathrm{H}}}{ }^{\mathrm{i}} \underline{g} \tag{2.15}
\end{equation*}
$$

2. Locate the next point ${ }^{1+I} \underline{x}$ by manimazing $F\left({ }^{i} \underline{x}+{ }^{I_{\alpha}} \underline{d}\right)$ wath respect to ${ }^{I} \alpha\left({ }^{I} \alpha>0\right)$.

$$
\begin{align*}
{ }^{1+1} \underline{x} & ={ }^{1} \underline{x}+{ }^{1} \alpha^{1} \underline{d} \\
& ={ }^{1} \underline{x}+{ }^{1} \underline{s} \tag{2.16}
\end{align*}
$$

3. Update the matrix ${ }^{1} H$ by
and return to step 1 wath 1 replaced by $1+1$.
Aftex not more than n iterations (each consisting of steps $1-3$), ${ }^{1} \underline{x}=\underline{x}^{*}$ and ${ }^{\mathrm{I}_{\mathrm{H}}}=0$.

The other algorithms considered by Pearson, ancluding the well-known Fletcher-Powell-Davidon variable metrac method, are based on the following idea.

$$
\text { Let }{ }^{\chi_{S}}=\left[{ }^{0} \underline{\underline{s}},{ }^{1} \underline{\underline{S}}, \ldots,{ }^{i-1} \underline{s}\right] \text { be a matrix whose }
$$

columns are the search steps ${ }^{J_{\underline{S}}}$, and $\operatorname{let}^{{ }^{\prime}} \mathbf{Y}=\left[{ }^{0} \underline{y},{ }^{1} \underline{y}, \ldots\right.$, $\left.{ }^{-1} \underline{y}\right]$ be a matrix whose columns are the gradient differ-
 Independent, the next search step ${ }^{2}$ s wall be A-conjugate to the $\mathrm{j}_{\underline{\mathrm{S}}}(0<\mathrm{J} \leq 1-1)$ If

$$
\begin{equation*}
{ }^{1} \underline{d}={ }^{I_{H}} t^{\mathrm{I}_{\underline{g}}} \tag{2.18}
\end{equation*}
$$

where ${ }^{J_{H}}$ as chosen to satusfy

$$
\begin{equation*}
{ }^{I_{H}}{ }^{I_{Y}}={ }^{I} S \tag{2.19}
\end{equation*}
$$

Equation (2.19) has the following general solution for an arbatrary $n x^{n}$ matrix Z.

$$
\begin{equation*}
{ }^{I_{H}}={ }^{I_{S}} S^{i} Y^{+}+Z\left(I_{-}{ }^{1} Y^{I_{Y}} Y^{+}\right) \tag{2.20}
\end{equation*}
$$

where ${ }^{I_{Y}}{ }^{+}$is the genexalized inverse of ${ }^{{ }^{1}} \mathrm{Y}$. Different choices of Z in (2.20) yield didferent solutions for ${ }^{I_{H}}$ corresponding to different methods of choosing the Aconjugate darections ${ }^{\text {ª }}$. Pearson derıves four algorithms In this way, three of which lead to readily computable formulas gaven below. Each algorithm proceeds from an anctial point ${ }^{\circ} x$ according to steps $1-3$ above with the proper formula for ${ }^{3} H$ unserted for Eq. (2.17).

Algorithm 2

$$
\begin{equation*}
{ }^{1+1} H={ }^{I} H+\frac{\left(I_{s}-H^{I} y\right)^{I} \underline{S}}{I_{\underline{S}} t^{I} \underline{y}} \tag{2.21}
\end{equation*}
$$

Algorathm 3

Algorathm 4 Fletcher-Powell-Davidon (F-P-D)

$$
\begin{equation*}
{ }^{I+1} \mathrm{H}={ }^{I_{H}}{ }^{I} \mathrm{~A}+{ }^{I} \mathrm{~B} \tag{2.23}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{A}=\frac{{ }^{1} \underline{s}^{i} S^{t}}{i_{s}{ }^{t} y}
\end{aligned}
$$

For a quadratic $F(\underline{x})$ each algorıthm converges in n steps or less to the optamum poant x^{*}, and this convergemce as stable in the sense that $\left.F\left({ }^{1+1} \underline{x}\right) \leq F^{1} \underline{x}\right)$. At $x^{*},{ }^{n} H=A^{-1}$, the anverse (Hessian) matrix of the second partial derivatuves of $F(\underline{x})$. Thas anformation c an be helpful an practacal design problems, since at indicates the sensituvaty of $F(x)$ to small deviations of x from x^{*}. Note that for each ュteration the major computatuonal effort consists of:
evaluating the gradient of $F\left({ }^{I} \underline{x}\right)$, performing a linear search for the optimum scale factor ${ }^{1} \alpha$, and updating ${ }^{{ }^{1}} \mathrm{H}$. Algorathm 4 is the modification by Fietcher and Powell (1963) of Davidon's (1959) varıable metrac algorıthm.

Fletcher and Reeves (1964) have investigated the conjugate gradient algorithm, whach is a modification of a technique due to Hestenes and Stiefel (1952) for ıteratavely solving a set of n linear equations in n varıables u_{z}.

$$
\begin{equation*}
\mathrm{B} \underline{\mathrm{u}}=\underline{\mathrm{k}} \tag{2.24}
\end{equation*}
$$

An excellent description of the conjugate-gradient method for solving Eq. (2.24) is gaven by Beckman (1960). The applicatzon to the problem of mınımazang a quadratic function (2.5) as made clear by writang the condition for x to be the optamum point.

$$
\begin{gather*}
g(\underline{x})=A \underline{x}+\underline{b}=0 \\
A \underline{x}=-\underline{b} \tag{2.25}
\end{gather*}
$$

Thus, the problem of manamızing $F(\underline{x})$ is equivalent to solvang the set of linear equations (2.25) when A and b are not known explacitly.

The Fletcher-Reeves ($F-R$) algorithm proceeds as follows. Choose a startang poznt ${ }^{\circ} \mathrm{x}$ and anctlally let ${ }^{\circ} \underline{d}=-{ }^{\circ} \underline{g} . \quad$ Set $i=0$.

1. Locate the next point by minimazang $F\left({ }^{1} \underline{x}+{ }^{1} \alpha^{1} d\right)$ wath respect to ${ }^{I} \alpha$.

$$
\begin{aligned}
\mathcal{I r l}_{x} & ={ }^{1} \underline{x}+{ }^{1} \alpha{ }^{1} \underline{d} \\
& ={ }^{1} \underline{x}+{ }^{1} \underline{s}
\end{aligned}
$$

2. Compute the next search darection ${ }^{\text {It1 }}$ d by

$$
{ }^{1+1} \underline{d}=-{ }^{1+1} \underline{g}+\beta^{1} \underline{d}
$$

where

$$
I_{\beta}=\frac{(x+1 \underline{g})^{2}}{\left({ }^{1} \underline{g}\right)^{2}}
$$

and return to step 1 wath $1+1$ replacing 2.

In the origanal method for linear equation solving,
 must be evaluated by computing the partıals of $F(\underline{x})$, and ${ }^{l_{\alpha}}$ is determaned by the lınear manımızatıon of step l. Convergence is stable, and for quadratic functions, the optimum point as obtained in at most n interations. Unlike in the Fletcher-Powell-Davidon method, A^{-1} is not explacatly available at the end of the search, but the computational effort for this algorithm 1.5 less.

Results of applying the algorithms to test functions have been publashed by Box (1966), Fletcher and Powell. (1963), Fletcher and Reeves (1964), and Pearson (1968). Pearson found that in using these algorathms to minimaze functions where x^{*} is located on the boundary of a
constraint, convergence was improved by setting ${ }^{1} H={ }^{0}{ }_{H}$ every $n+1$ steps for Algorithms $1-4$ and resetting ${ }^{1} \underline{d}=-^{1} \underline{g}$ in the Fletcher-Reeves algorithm. (The constrained manimizations were performed using the created response-surface technique dascussed in Section 2.8.) Acceleration of convergence by resetting ${ }^{{ }^{1}} \mathrm{H}$ an arregular parameter landscapes has also been reported by Huelsman (1968).

A conjugate-direction method for minimazing a function wathout calculatang the gradıent has been invented by Powell (1964). Beginmang with an mitial point ${ }^{\circ} \underline{x}$ and n linearly independent darections ${ }^{1}{ }_{\underline{d}},{ }^{2} \underline{d}, \ldots,{ }^{n} \underline{d}$, has basic procedure minımizes $F(\underline{x})$ sequentially along ${ }^{1} \underset{\underline{d},}{ }{ }^{2}{ }_{\underline{d}}$, $\ldots,{ }^{n}$ d. Let ${ }^{n} x$ be the point determined by the last onedimensional minimization. Then ${ }^{n} \underline{x}-{ }^{o} \underline{x}$ is taken as the dixection for another one-dimensional manimızation. For the next iteration of the procedure, ${ }^{\text {a }}$ d is replaced by ${ }^{1+1}{ }_{\underline{d}}$ for $1=1,2, \ldots, n-1$, and ${ }^{n}{ }_{d}$ is replaced by $\left(^{n} \underline{x}-\right.$ o_{x}). Thus, at each iteration a new search direction is defined, and Powell proves that for a quadratuc $F(\underline{x})$ these directions are conjugate. Thus, the manımum as located an n ıterations. A difficulty wath this method arises because, in discarding the old ${ }^{l}{ }^{d}$ at each iteration, the algorithm may be left wath a new set of directions which does not span the parameter space. Powell's modification to elimınate this problem results in an algorathm requiring more than n mterations to minmmze a quadratic.

Zangwall (1967) considered this same problem and proposed his own modification of Powell's basic procedure. Has algorithm as shown to converge for the case of $F(\underline{x})$ strictly convex and to converge in n or less iterations (or in $2 n^{2}$ or less one-dimensional manamizations) for a quadratic $F(x)$.

Powell's method has been applıed to several test functions with good results (Box, 1966; Fletcher, 1965; Powell, 1964). Similar data for Zangwll's algorithm are not avallable, although the author has used it successfully an minimizing Rosenbrock's function (Section 3.1).

2.4 Quadratuc Fit Methods

It is again assumed that the function to be minımızed can be represented adequately by a quadratic (Eq. [2.5]) an the neaghborhood of the optamum. Using. Eq. (2.6) for the gradient of $F(\underline{x})$, we can solve for the parameter change $\Delta \underline{x}=\underline{x}^{*}-\underline{x}$ whach yields $\underline{g}(\underline{x})=\underline{0}$.

$$
\begin{equation*}
\Delta \underline{x}=-A^{-1} \underline{g}(\underline{x}) \tag{2.26}
\end{equation*}
$$

Newton's method (Bekey and McGhee, 1964, McGhee, 1967) consists of evaluating g and A and computing the optimizing steps by Eq. (2.26). For problems which can be expressed an the framework of a least-squares regression, the GaussNerton method approximates A by a regression matrix, whach requares only first-derıvative information (McGhee, 1967).

Note that for either method consaderable computational effort is requared at each step--evaluatang g and A (or ats approximation) and inverting A. Furthermore, if g and A are calculated from perturbations, care must be taken in selecting the step saze (Section 2.9). Although convergence may be very rapıd with eather method, a poor starting point may result in divergence. This disadvantage makes methods of this type more desirable when incorporated in a strategy including a more stable search method. The following technlque may be more sulted to this type of strategy. Rather than evaluating g and A durectly, we may fit a second-order regression surface to a set of N observataons of $F(\underline{x})$. The regression surface is defined by

$$
\begin{equation*}
\Psi(\underline{x})=\frac{1}{2} \underline{x}^{t} \Gamma \underline{x}+\underline{\beta}^{t} \underline{x}+\alpha \tag{2.27}
\end{equation*}
$$

Performing the manimazation

$$
\begin{equation*}
\gamma_{J, k}^{\min }, \beta_{J}, \alpha \sum_{x=1}^{N}\left[F\left(^{1} \underline{x}\right)-\Psi\left({ }^{1} \underline{x}\right)\right]^{2} \tag{2.28}
\end{equation*}
$$

results $\min \left(n^{2}+3 n+2\right) / 2$ equations which determine $\Gamma, \underline{\beta}$, and α. The estimate for the optimum point is obtained by solvang

$$
\begin{equation*}
\underline{\nabla} \underline{\Psi}(\underline{x})=\Gamma \underline{x}+\underline{\beta}=0 \tag{2.29}
\end{equation*}
$$

Since the N observations may be taken at any values of x (although they must be sufficaent to defane $\Gamma, \underline{\beta}$, and α),
this technique could be combined with another clambing method, for example, a pattern search (Section 2.5) or a creeping random search (Section 2.6), ı.e., observations made during the clambing method are also stored for use In Eq. (2.28).

2.5 Direct Search Methods

Gradient descent methods and the conjugate durection methods utalazing the gradıent expend a large amount of effort in obtamning information (the gradient) at a single poant; thas anformation is extrapolated to search for a bettex polnt. Notang this considerable effort at one point and the anefficaency of steepest descent techniques on many problems, Hooke and Jeeves (1961) proposed making exploratory moves and always moving the base of the search when an improvement was found. Algorythms of thas type have become known as direct search methods.

Hooke and Jeeves' pattern search is a durect method designed to follow a descent path to the optimum by searching in previously successful durections (pattern moves). (Explicit anstructions for the algorithm are gaven by Walde and Beaghtler [1967].) Following each pattern move, exploratory moves are made wath each coordinate separately to detect changes of durection of the descent path. The programmer sets the exploratory move step length (whych may be reduced later by the
algorithm); the lengths of pattern moves are determined by exploratory step lengths and previous pattern-move lengths. Thus, there as no effort expended in minimizing along a search durection. The search 1 s ended when successive failures lead to a reduction an the exploxatory step length below a preset minamum. Note that the progress of a pattern search depends only on whether each function measurement $1 s$ greater than or less than some prevlous observation, the magnitude of differences an function values are ignored. The fact that convergence does not depend on accurate measurements of function differences (as in the case of algorıthms requaring gradients or lınear minlmızations) may be an advantage in problems with nozsy observations of the cxiterion function. (The problem of optamazing an the presence of noise as dascussed an Sectuon 2.7.)

Rosenbrock's method of rotating coordinates (Rosenbrock, 1960 , Walde, 1964) and ats altexation by Swann (Swann, 1964, FIetcher, 1965) are also designed to recognize a direction of descent and to search along it. However, the fixed-length steps of pattern search are replaced by successive limear manmmazations in n orthogonal directions. The net progress in parametex space resulting from n such mznmmzations establashes a new search direction, whach as analogous to a "pattern" direction. The
remaxnung n-l darections fox the next serles of manimizatıons axe made orthogonal to the newly established one.

A unlque approach to optamızation was borrowed from the sequential simplex or simplicial method of Spendly, Hext, and Hamsworth (1962) for locatang a nearby optimum pount and following $1 t$ in the presence of nozse. The method is begun by placing n+l measurements at the vertices of an n-dimensional simplex (Fig. 2.5). The poant on the simplex whth the largest function value is determined, and a new point is located by rerlectang thas "worst" point through the center of the samplex. Thus, a ner simplex is created, consastang of the old one, but wath the new poant replacing the previous worst one. This movement of the simplex tends to track the optamum point. In order to speed the progress of the search from a starting pount far from the optımum, Nelder and Mead (1965) modified the original method to allow for expanslon and contraction of the simplex. With this provision 1 t was found that the multial size of the simplex did not greably affect the speed of convergence. Sance the movement of the search depends only on finding the worst point of the samplex, the method is not disturbed by small observation exrors. Spendly, Hext, and Himswoxth noted that the rate of advance was anvexsely proportional to the standard deviation of Gaussian measurement nomse--an andicatuon that averagang observations at a poant would not be beneficial, sance the standard devaation

Fig. 2.5 Operation of the simplex method an two dimensions.

Is reduced in proportion to the square root of the number of observations.

Data on the performance of the simplicial and rotating coordinates algorathms have been publushed by Fletcher (1965) and Box (1966). Simılar data for pattern search are not known to the author, although it has been applaed successfully to network-design optimızation by Huelsman (1968). Walde and Beaghtler (1967) report that for pattern search the number of function evaluations for optimization tends to be only a linear function of the number of parameters, n, rather than a quadratic or cubic function as for most other methods (another exception as the creeping-random search of Section 2.6).

The direct search methods are designed to find the best search directions and to proceed in these directions wathout wasting time evaluating derivatives. This tends to make their performance favorable un the early stages of the search. However, an the neaghborhood of the optamum the derıvative information acquired by the quadraticallyconvergent conjugate-darection algorıthms accelerates their progress. Thas behavaor was notaced by Fletcher an comparang the performance of Swann's version of the rotating coordinates method wath the conjugate direction method of Powell (1964). The results of Box indicate that the samplicial and rotatang coordmate methods become
aneffectuve compared to the conjugate durection algorithms as n increases beyond 5 .

2.6 Random Search Methods

The development of random search optimization was motuvated mannly by the need for methods whach were sumple to program and effectave an mrregular parameter landscapes. Before the avaılabılıty of true analog-dugital hybrad computers simple random search algorıthms could be amplemented by hard-wired optzmazers attached to analog machanes. Random search methods are still especially attractive for hybrid computers consustang of hıgh-speed repetitave analog machunes capable of evaluating the criterion function quickly and small digltal computers wathout the floatingpoınt hardware necessary to make complicated algorithms fast enough to be advantageous. Furthexmore, the complex, nonlinear dynamıc systems which are most advantageously sımulated on analog machines often have parameter landscapes with the sharp ridges, dascontınuous first derivatıves, etc., whach can cause determinıstac algorathms to fall. There as also evadence to suggest that random methods are superıor an oplimızing smooth functions of many parameters (Schumer and Stelglatz, l968).

The literature revaewed hexe has been loosely
grouped anto the categories of theoretical developments and specific algorithms wath applications.
2.6.1 Theoretical Developments

Brooks (1958) suggested choosing observation points from a uniform distribution over the entare parameter space. After N such points have been tested, the one with the smallest craterion function value $1 s$ taken as the best approximation to the optamum. To evaluate the effectiveness of thas method, let the parameter space be an ndimensional hypercube with sides of unat length, and amagane the optamum point to be enclosed by a smaller hypercube with sides of length δ and volume $v=\delta^{n}$. We would lake to ensure that the search wall place at least one poant an the smaller hypercube wath a specafied probabılıty. Brooks showed that the number of trials necessary to have probability p of casting at least one point anto the smallex hypercube is

$$
\begin{equation*}
N=\frac{\log (1-p)}{\log (1-v)} \tag{2.30}
\end{equation*}
$$

Takang v to be constant in Eq. (2.30), at was concluded that the number of trials required for random search does not depend on the number of parameters. However, as ponnted out by Hooke and Jeeves (1958) and Spang (1962), for v to x emain constant, δ must increase exponentaally, so that for a faxed number of trials the uncertanty in the parameter values, δ, increases exponentially wath n. Spang showed that substrtution of δ^{n} for v in Eq. (2.30) yuelds

$$
\begin{align*}
N & \approx-\log (1-p) / \delta^{n} \\
& \approx 2 \cdot 3 / \delta^{n} \tag{2.31}
\end{align*}
$$

for $p=.9$, whereas the number of points requixed for a determanıstic grad test (pounts located equal distances δ apart) $2 s \mathrm{~s} 1 \delta^{\mathrm{n}}$. Such a large number of trials obviates the use of either method as a means to locate the optimum accurately. But in the absence of any information regardang the location of the optimum, a grad search maght be used to choose a startang poznt for some sequential search algorithm.

Rastrigan (1963) has studued the convergence properties of a fixed step-size, creepang random search algorithm (FSSRS). Beginning from a point ${ }^{l}$ x, exploratory steps Δx are made with fixed length and random direction. When a point as found such that $F\left({ }^{I} \underline{x}+\Delta x\right)<F\left({ }^{\prime} \underline{x}\right)$, the corxesponding increment is labeled ${ }^{I+1} \Delta x$ and the search is moved to the new base point

$$
\begin{equation*}
{ }^{1+1_{x}}={ }^{1} \underline{x}+{ }^{1+1} \Delta x \tag{2.32}
\end{equation*}
$$

(Wath this notation, I indexes only successful trials.) The algorithm was compared to a steepest descent method in which at each Iteration a step of the same magnitude was made $i n$ the durection of the gradient at ${ }^{I} \underset{\sim}{X}$. Rastragin untroduced the concept of search loss, defined as the number of critexion function evaluations required for a
displacement in the negative-gradient direction equal to the step length Δx, or equavalently, the reciprocal of the average displacement in the negative-gradient direction per function evaluation. The search loss was computed for both algorıthms applıed to a linear test function and a distance function $F(\underline{x})=\left(\sum_{1=1}^{n} x_{1}^{2}\right)^{1 / 2}$. For both functions It was found that as the number of parameters uncreased, the creeping random algorathm was superior to the steepest descent method on the basis of search loss. The limatations of thas comparison maght be noted here. The steepest descent algorithm $1 s$ made very inefficient by requiring a gradient evaluation ($n+1$ function evaluations) at each Iteration and allowang only constant step sazes. A more practacal steepest descent program could make more efficient use of the gradient information (for example, the optimum gradient method of Section 2.2). Thus, an practice the relative advantage of the creeping random strategy might not be as great.

The convergence of the creeping random method in the presence of nouse has been studied by Guran and Rastrigin (1965). For a linear criterion function, measurements wexe corrupted by Gaussian noase wath zero mean and variance σ^{2}. The random search algorathm used a "testang step" of faxed length α and random direction. When such a testing step resulted in an improvement in the measured value of $F(\underline{x})$, a step of length Δx was taken in
the same darection. The progress of this algorithm was compared to that of a steepest descent method, which used 2n perturbations of length α to determine the gradient and then took a working step of length Δx in the estimated negatave-gradient direction. Comparısons were made on the basis of search loss, and as a function of the number of parameters n and a signal-to-nozse ratuo

$$
\delta=\frac{|\nabla \mathrm{F}| \alpha}{\sigma \sqrt{2}}
$$

For any fixed value of δ search loss is a luncar function of n for the random method. For $\delta=\infty$ (no nozse) the gradıent method has a search loss linear in n, büt for $\delta=l$ the search loss is greater than $c n \sqrt{n-1}$, where c is a constant. For $\delta=1$ and $\delta=\infty$ the random search method was superior for $n \geq 6$. For $n=6$ the ancrease of nouse level from $\delta=\infty$ to $\delta=1$ caused the search loss for both methods to ancrease from 12 to approximately 32 (function evaluations necessary for a net progress of Δx in the negatuve-gradient direction). Brooks and Mickey (1961) hare studied the fixed step-size steepest-descent algorithm for a linear criterion function with Gaussian nonse. Thear results indicate that in order to minmmze search loss, a manimum number of function evaluations should be expended on estamating the gradient. Thus, had Gurin and Rastrigin used $n+1$ steps (rathor than 2n) to
estamate $\nabla \mathrm{F}$, the relatıve advantage of the creeping random method over steepest descent maght have been diminıshed.

Beginnıng rith Rastrigin's fixed step-size random search (Eq. [2.32]), Schumer and Steıglıtz (1968) developed an algorithm with adaptave step suze. Fox the criterion function $F(\underline{x})=\sum_{i=1}^{n} x_{l}^{2}=\rho^{2}$, the expected improvement pex step, normalızed by the present value of F, was computed as a function of n and $\eta=s / \rho$, the ratio of the step suze to the distance to the optamum, i.e.,

$$
\begin{equation*}
I(n, \eta)=\frac{-E\{\Delta F\}}{F} \tag{2.33}
\end{equation*}
$$

$I(n, \eta)$ was maximızed with respect to η, and the optimum $\tau(n)$ was evaluated for large n. This led to the result that the average number of function evaluations necessary to manamıze F within a faxed accuracy is asymptotically laneax $\neq n$. A practical algorıthm, which attempts to adjust the step saze to the optimum durang the minlmization process, was developed and compared to two determınistic algorathms. These were the simplacial method of Nelder and Mead (1965) and a second-order method whych evaluates farst and second partial derıvatives at each iteratıon. Performances were compared on the basis of the average number of function evaluations required for mınımızatıon. For a quadratic function, the second-order method was superior for $n \leq 78$, but for the function $F(\underline{x})=\sum_{I=1}^{n} x_{i}^{4}$ the adaptive
random search algorıthm was superıor to the second order method for $n>2$ and superior to the simplicial method for $n>10$. The adaptuve search was also tested for $F=\sum_{i=1}^{n} a_{i} x_{1}^{2}$ where the a_{i} wexe chosen from a probabılity distribution unfform on [.I,I.]. For each of these three test functions the number of function evaluations required by the adaptive random search method was proportional to n. Thas compares wath results reported for pattern search (Section 2.5). For other methods, function evaluations are usually proportional to the second or thard power of n. Adaptation of a creeping random search with respect to search darection has been dascussed at length by Rastrigin (1967). He has proposed several learning algorithms which adjust $k_{p_{1}}$, the probabilıty of selecting a posituve increment for the 1 th parameter at the kth step, as a function of past performance. Adjustment is accomplashed by making $k_{p_{1}}=k_{p_{1}}\left(k_{w_{1}}\right)$, a monotonic, nondecreasing function of the memory parameter $k_{w_{1}}$. One example of Rastrigin's schemes for adjusting $k_{w_{I}}$ is the followng algorithm.

$$
\begin{equation*}
\mathrm{k}^{+1_{w_{1}}}=_{\mathrm{w}_{3}}-\delta^{\mathrm{k}_{\Delta \mathrm{x}_{i}}{ }^{\mathrm{k}}{ }_{\Delta F} .} \tag{2.34}
\end{equation*}
$$

where

$$
k_{\Delta x_{1}}={ }^{k} x_{x_{1}}-k-x_{x_{1}}
$$

$$
k_{\Delta F}=F\left({ }^{k} \underline{x}\right)-F\left({ }^{k-1} \underline{x}\right)
$$

and

$$
c_{1} \leq w_{1} \leq c_{2} .
$$

The adjustment of ${ }^{k_{w_{1}}}$ is proportional to the magnatude of ${ }^{k_{\Delta F}}$, the step size causing ${ }^{k_{\Delta F}}$ and a positave coefficient, ס. For example, a posituve ${ }^{k} \Delta x_{i}$ causing an improvement $\left({ }^{k} \Delta \mathrm{~F}<0\right)$ brings about an increase in $\mathrm{k}_{\mathrm{w}_{\mathrm{I}}}$ and thereby an ancrease $\ln ^{k+1} p_{1}$, the probabilıty of ancreasing x_{I} at the next step. Rastrigin antroduces other algorithms simılar to Eq. (2.34), whach allow for a discarding anformation collected in the distant past ("forgetting") and which provide for better adaptation to the best of possuble successful directions.

An anteresting aspect of Rastrigin's work is his Idea of separating the search algorithm from the learning algorithm. The learning algorathm (Eq. [2.34]) collects anformation on past performance and adjusts the durections for future exploratory steps. It is the function of the search algorathm to decade whether or not to actually move the center of the search as a result of an exploratory step. One possabllity is to move only when such a step results in a reduction of F, e.g., Eq. (2.32). Rastrigin also suggests the possabalaty of moving the search wath every exploratory step. This places the learning algorithm
in complete control of the search. Such a polacy might be beneficial $u n$ stepping over local minima or local flat regions and in problems with observation error.
2.6.2 Specific Algorithms and Applications

Experiments wath creeping random search strategies on analog computers were reported as early as 1958-59. Favreau and Franks (1958) descrabed a creeping random method for optimizing dynamic systems, and Munson and Rubin (1959) optimized a system of nonlinear algebraic equations by a contanuous creepang random perturbation of parameters. A hard-wared creeping random optimızer, including provasions for expanding and reducing step size and correlating future trial-step directions whth past successful directıons, was built by Mitchell (1964) for use with a fast repetıtıve hybrid computer. Thas was employed by Maybach (1966a) to solve minumum-tame bang-bang optimal control problems.

The avaılabjlıty of true analog-digital hybrid computers has made at possible to employ more sophasticated random search strategies than could be implemented by hardware optimazers attached to analog machınes. Here we shall discuss alterations to the basic creeping random search which were introduced and applaed chiefly by Bekey et al. (1966) and by Stewart, Kavanaugh, and Brockex (1967).

One modification concerms the classification of a trial step as a success or fallure. Let $F\left({ }^{(} \underline{x}\right)$ be the current value of the craterion function and $F\left({ }^{2} \underline{X}+\Delta x\right)$ the value at a trial step. Stewart et al. use a threshold strategy to define a success for a manamization problem.

$$
\begin{equation*}
F\left({ }^{\prime} \underline{x}+\Delta \underline{x}\right)-F\left({ }^{1} \underline{x}\right) \leq \eta F\left({ }^{x} \underline{x}\right)(\eta>0) \tag{2.35}
\end{equation*}
$$

In the begamming of the seaxch, when $F\left({ }^{\prime} \underline{x}\right)$ is large, a relatavely large improvement is required for a success, whale near the end of the search smaller amprovements are requared. Stewart et al. found that the average number of steps requared for solution could be reduced by approximately one-thard for $\eta=.3$ and $\eta=.7$ as opposed to $\eta=0$, while $\eta=1$ resulted in a sharp increase in requared steps. Another possibilaty is a constant threshold level:

$$
\begin{equation*}
F\left({ }^{1} \underline{x}+\Delta \underline{x}\right)-F\left({ }^{1} \underline{x}\right) \leq \varepsilon \tag{2.35}
\end{equation*}
$$

For example, \in maght be taken just large enough to overcome errors in measurang $F(\underline{x})$.

A vector-valued criterion function was employed by Stewart et al. \ln a creeping random algorathm to solve the two-point boundary value problem resulting from a MaxımumPrinciple optimization of an orbut transfer problem. Boundary condatıons were to be matched for state vara ables representang displacement and velocity, \underline{x}_{d} and \underline{x}_{v}, and
adjount variables, p. The craterion function was defaned as

$$
\underline{F}=\left(F_{d}, F_{V}, F_{p}\right)
$$

where each component of F is the sum of the errors in matching the boundary conditıons for one class of variables. For a trial to be regarded as a success, it was required that all three components of F be reduced (the threshold strategy [Eq. (2.35)] was applzed to each component). This more restractave success criterion maght be useful an avoiding a local manimum where only one or two components of F are small. Gonzalez (1969) employed a vectox-valued function an a Maxamum-Principle optimazation of the same systems solved by Maybach (1966a). The number of evaluations requared for convergence was reduced on the average, the most strikang reductions being obtained for difficult staxting poants in the parameter space.

A modification for directional adaptation is the mentroduction of absolute positive and negative biasing (Bekey et al., l966) mino the basic creepang random algorathm, which as repeated here.

$$
\begin{equation*}
{ }^{1+I_{\underline{x}}}=^{I} \underline{x}+{ }^{1+I_{\Delta x}} \tag{2.37}
\end{equation*}
$$

If the last increment resulted in a success, it is used again for the next trial step, i.e., $\Delta \underline{x}={ }^{1} \Delta \underline{x}$ (posituve blasang). If the last mncrement Δx resulted $\perp n$ a faslure,
$-\Delta x$ ns used for the next trial step (negatave baasang). Of course, negative blasing is not used follownig two successuve fallures, or the algorithm wall loop endlessly. Also, at is wastefull to use at after the first falluxe following a success. Bekey et al. reported that absolute blasing was effectuve un umproving convergence. Stewaxt et al. used only posituve buasing and found that it decreased the average number of steps requared by approxamately 40% compared to the search wathout biasing.

Another element of randomness may be antroduced by using a random ancrement for each variable, rathex than an ancrement of fixed length and random sugn only. Thas results $1 n$ a step Δx which $1 s$ random in length and direction, and all directions are possible. For the algorithm with only random $s ⿲ g n$ for each varıable, only 2^{n} discrete durectuons are possuble. The disadvantage of this can be seen an Fig. 2.6, where a zig-zag path must be followed from the anataal poant ${ }^{\circ} \mathrm{x}$ to the optamum. Bekey et al. chose the increments Δx_{I} as Independent Gaussian random varıables wath zero mean. Gonzalez (1969) chose the ancrements from a uniform dastrabutaon, whach as usually easier to gemerate on a digital computer.

If random uncrements Δx_{j} are used, the average step size can be adjusted by changing the varxance of the dastribution of the ancrements. If the step size as small, a large proportion (asymptotic to 50%) of the trials result

Fig. 2.6 The behavior of a "discrete-direction" random
search algorithm.
in success (assumang no threshold strategy), but the average improvement per step is small. On the other hand, a large step size results in a small railo of mprovements to trial steps. Karnopp (1963) suggests increasing the variance $1 f$ an amprovement occurs whthan two trials and decreasing the variance if no amprovement occurs wathan three trials. Stewart et al. provide for varıance reduction by some factor after a number of consecutive failures. Bekey et al. used a constant variance of 4% of the range of each parameter durang the entare local search. It was reported that their work and the results of a further study (Adams and Lew, 1966) faュled to find a varıance adjustment strategy yıelding faster convergence than the constant varıance method. Thıs result is especially interesting when contrasted wath the work of Schumer and Steaglutz (1968) on an adaptive step-size algorıthm. It should be noted that the adaptive algorithm was developed for the criterion function $F=\sum_{n=1}^{n} x_{\perp}^{2}$ and was tested on other smooth functions, whereas the results of Bekey et al. are based on a nonlinear dynamic system with minjmum-time and mınamum-fuel cxiteria, which could lead to an arregular parameter landscape.

An algorithm for directional adaptation of the creepang random search has been proposed by Matyas (1965). From the point ${ }^{l}$ x a trial step ${ }^{1+1} \Delta x$ as taken.

$$
{ }^{1+1} \underline{x}={ }^{1} \underline{x}+{ }^{1+1} \Delta \underline{x}
$$

If $F\left({ }^{1+1} \underline{x}\right)<F\left({ }^{1} x\right)$, the center of the search is moved to the point ${ }^{1+1} x$. Otherwise the center of the search remans at ${ }^{\prime} \underline{x}$, and another traal step is taken. The trial steps are given by

$$
{ }^{1+1} \underline{\Delta x}={ }^{1+1} \underline{d}+{ }^{1+1} T^{1+1} \underline{\underline{\xi}}
$$

where ${ }^{\prime+1} \underline{\xi}$ as an n-dimensional Gaussian random vector with zero mean and unit correlation matrix, ${ }^{1+1}$ d specifies the mean of ${ }^{1+1} \Delta x$, and ${ }^{1+1} T$ as an $n \times n$ matrix. Adaptation is accomplished by adjusting ${ }^{1+1}$ d as a function of past trial steps and past successes and fazlures. Let

$$
{ }^{1+1} \underline{d}=c_{0}^{{ }^{x}} \underline{d}+c_{1}^{i} \Delta \underline{x},
$$

where c_{0} and c_{1} satusfy the followang conditions. If the last step ${ }^{1} \Delta \underline{x}$ resulted \ln an improvement $\left[F\left({ }^{1} \underline{x}\right)<F\left({ }^{1-1} \underline{x}\right)\right]$,

$$
0 \leq c_{0} \leq l, c_{1}>0, c_{0}+c_{1}>1
$$

Otherwise,

$$
0 \leq c_{0} \leq 1, c_{1} \leq 0,\left|c_{0}+c_{1}\right|<1 .
$$

Thus, the mean value for the next trial step ls weighted posatuvely by the present mean value and weaghted posutavely or negatively by the last traal step. The transformation matrix ${ }^{I+1} T$ maght be used to antroduce correlation between the trial step components ${ }^{1+1} x_{j}$. But for a simple
algorithm, Matyas specified ${ }^{j+1} T$ by

$$
{ }^{1+1} T={ }^{1+1} b I
$$

where I is the Identity matrax. The coefficient ${ }^{3+1} b$ may be adjusted to control the variance of the trial steps.

A somewhat dirferent approach to random search has been described by Rastrigin (1967) and is currently beang investugated by Heydt (1969). A search is made about an inctial point ${ }^{\circ} \underline{x}$ for an improved point ${ }^{l_{x}}\left[F\left({ }^{1} \underline{x}\right)<F\left({ }^{\circ} \underline{x}\right)\right]$. The lane ${ }^{I} \underline{X}$ - ${ }^{\circ} \underline{x}$ as used to determine the axis of symmetry of a hypercone in parameter space with focus at ${ }^{\circ} \underline{x}$ (Fig. 2.7). The hypercone is constructed wath angle θ and Iength h. Observations are made at poants unfformly dastrabuted anside the cone. The best of these $\left({ }^{2} \underset{x}{x}\right.$ as selected, and the line ${ }^{2} \underline{x}-{ }^{1} \underline{x}$ defines the axis of symmetry of the next hypercone. Thus, past successes are used to determine the search direction. If no ${ }^{1+1} \underline{x}$ whth $F\left({ }^{2+1} \underline{x}\right)<F\left({ }^{I} \underline{x}\right)$ is found in some number of observations, θ and h are increased to enlarge the search regaon. Thas method would seem to be effectave in jumping over some local minima. On the other hand a hyperconical search region may make the algorithm anefficient in turnang sharp corners, and Heydt has proposed experamentang with hyperparabolozds and hypex-hyperbolozds. His algorathm wath the hyperconical search region was successful in optimizang a satellıte attatude acquisition problem, which was solved by

Fig. 2.7 Creepang random search wath hyperconical search regions.

Kavanaugh, Stewart, and Brocker (1968) with the creepang random algorıthm descrıbed by Stewart et al. (1967).

2.7 Stochastic Approxumation

Most of the optimization techniques discussed in previous sectıons assume that the criterion function $1 s$ evaluated wathout error. If exror or "nozse" is present, these methods are reduced in efficiency or may faュl altogether. Stochastıc approximation 1 s a technıque for optimization in the presence of nolse.

Let us assume that the observations $f(x)$ of a unamodal criterion function are contamanated by additave nolse:

$$
\begin{equation*}
f(\underline{x})=F(\underline{x})+v, \tag{2.38}
\end{equation*}
$$

where the random variable v has zero mean and finite varıance. A stochastic approximation minimızation algorıthm (satısfying cextain condations dascussed below) wall converge to the optimum, x^{x}, un mean square and with probability 1 as the number of observations, 1 , of $f(\underline{x})$ tends to infinity. Sunce the exastang theorems of stochastic approximation guarantee convergence only as $1 \Rightarrow \infty$, $2 t$ ıs necessaxy to refer to specific applacations for speed of convergence. Unfortunately, publıshed experimental results obtained wath these algorıthms are few.

The mathematical requirements which the algorithm must satisfy in order to converge were discovered and developed mainly by Robbins and Nunro (1951), Kıefer and Wolfowitz (1952), Blum (1952), and Dvoretsky (1956). Chapter 6 of WIlde (1964) contanns a Iucid introduction to stochastic approximation; other readable treatments are given by Hampton (1968) and Chang (1961). In this section we shall discuss briefly the algorithm of Kıefer and Wolfowatz, the general theorem gaven by Dvoretsky, and some practical algorithms with applicatzons.

The Kiefer-Wolfowitz (K-W) algorathm described here is for a function of one variable; the extension to the multidimensional case is straıghtforward. The technıque 3 s simalar to a determinastac steepest doscent. From a point ${ }^{2} x$, the norsy objective function $1 s$ evaluated at two points ${ }^{1} x+{ }^{3} c$ and ${ }^{3} x-{ }^{I} c$ to obtann an estamate of the slope of $F\left({ }^{I} x\right)$.

$$
\begin{equation*}
\frac{\left.r\left({ }^{1} x+{ }^{3} c\right)-f^{1} x-{ }^{1} c\right)}{2^{3} c} \tag{2.39}
\end{equation*}
$$

Then a working step is taken according to thas estamate and a step-size factor, $2^{3} a$
${ }^{\prime} a$ and ${ }^{1} c$ are elements of sequences of real numbers which must satisfy the following conditions an order that Eq. (2.40) converges to tho manamum of $F(x)$ as $2 \Rightarrow \infty$.

$$
\begin{align*}
& \lim _{1 \rightarrow \infty} \operatorname{li}^{l} a=0 \tag{2.41a}\\
& \lim _{1>-\infty} x^{x}=0
\end{align*}
$$

$$
\begin{align*}
& \sum_{\perp=1}^{\infty} I_{a}=\infty \tag{2.41c}\\
& \sum_{i=1}^{\infty}\left(\frac{1}{I_{c}}\right)^{2}<\infty
\end{align*}
$$

Note that, as wath all stochastic approximation schemes, convergence $u s$ guaranteed only as 1 approaches anfinity, the movement toward the optimum may be very slow. It may be seen from Eq. (2.40) that $1 f$ the true differences $\left[F\left({ }^{1} x+{ }^{I} c\right)-F\left({ }^{1} x-{ }^{1} c\right)\right]$ are not large compared to the nolse varıance, many steps wall be taken in the wrong darection.

Dvoretsky (1956) has treated stochastic approximation from the polnt of view of a very general algorithm, whach ancludes those of Robbans and Munro and Kıeffer and Wolfowatz as special cases and from which other specific methods have been developed. Has basic algoxithm as
 $\ldots,{ }^{\prime} x$) and a random term ${ }^{I_{r}}$, whach includes the effects
of nozse:

$$
\begin{equation*}
{ }^{1+1} \underline{x}=T\left({ }^{1} \underline{x},{ }^{2} \underline{x}, \ldots,{ }^{1} \underline{x}\right)+{ }^{n_{x}} \tag{2.42}
\end{equation*}
$$

Equation (2.40) could be expressed an thas form by wxiting $f\left({ }^{x} x\right)=F\left({ }^{I} x\right)+i_{v}$ and separating out the terms contanning r_{v}. It may be noted that the algorithm allows ${ }^{1+1} \underline{x}$ to be a function of all previous x's. Although Dvoretsky's theorem is important in the mathematical development of stochastic approximation, $1 t$ is not stated here, as at provides no specific algorithm for optimization.

The problem of optimazation in the presence of noise has been ınvestıgated by Kushnex (1963), who used the K-W algorathm as a basis for several search procedures. A feature of Kushner's methods as the use of information obtaned during the search to estimate the "best" sequences $\left\{{ }^{2} a\right\}$ and $\left\{{ }^{l} c\right\}$, whose optimum values depend on the unknown function to be minimized. This information as extracted from the sequence of angles ${ }^{1} \varnothing$ formed by successive steps in the parameter space, as illustrated in Figs. 2.8 and 2.9. In Fig. 2.8 there 1 s a sequence of predominantly large angles, indicating that the ratio of the step size to the dastance from the optamum is small. In Fig. 2.9 the angles are small, indicating that the process is overshootang the optamum. This information $1 s$ used to adapt $\left\{{ }^{I} a\right\}$ and $\left\{{ }^{3} c\right\}$ to the local behavior of the objective function.

Fig. 2.8 A stochastic approximation algorithm wath a small step saze.

Fig. 2.9 A stochastic approximation algorıthm with a large
step size.

Fıve search procedures were investıgated, each ancorporatıng the $K-W$ algorithm with adaptıve coefficient sequences. The fırst (a) is the basic n-dimensional $K-W$ algorithm. whach estimates the graduent for every working step. The other four procedures sequentially choose single darections $u n$ parameter space and apply the one-dimensional K-W algorıthm to search for a manimum along these lines. For these four methods the search dırections are selected as follows.
(b) the coordinate directions
(c) the estamated gradient direction
(d) a randomly chosen durection
(e) the direction determaned by the current poant and the point correspondıng to the lowest objectave function measurement for a number of local, randomly placed observations.

Method (b) was suggested as an improvement over (a), sunce a pair of sequences $\left\{{ }^{1} a_{j}\right\}$ and $\left\{{ }^{1} c_{j}\right\}(j=1, \ldots, n)$ can be assigned to and adapted for each coordinate durection. However, the efficiencies of both (a) and (b) were thought to decrease rapadly as the number of parameters as increased. Methods (c), (d), and (e) are attempts to ancrease effacaency for problems wath many parameters, especially an the matial stages of the search. Methods (c) and (e) were found superzor to (d) for quadratic objectave functaons with addıtıve, unfformly-distrıbuted
nolse whenever the true function value $1 s$ large compared to the noise varıance. This advantage is greatly reduced close to the optimum, rhere the signal-to-nozse ratzo becomes small. Close to the optimum, attempts al consistently choosang profatable search directions are unsuccessful, but the propertaes of the stochastic approximation algorıthm ensure convergence, although it may be very slow.

Janac (1967, 1969) has proposed an algorzthm consustıng of the basic K-W formula wath two modıfıcations:

$$
\begin{equation*}
{ }^{1+I_{X}}={ }^{1} \underline{x}-\frac{I_{a}^{a}}{I_{c}}\left({ }^{1} h-1\right) \underline{w}\left({ }^{1} \underline{Y}\right) \tag{2.43}
\end{equation*}
$$

where.
${ }^{1} h$ is an integer equal to the first unsuccessful
"working" step in the estimated gradient direction, subject to $\left({ }^{I} h-1\right) \geq 1$,
 ($\quad \mathrm{F}=1, \ldots, n$) ;
$\left.W^{(1} \underline{Y}\right)$ I.s a vector with the same durection as ${ }^{1} \underline{Y}$ and
 the sequences $\left\{^{1} a\right\}$ and $\left\{^{2} c\right\}$ satusfy

$$
\begin{aligned}
& { }^{x} a,{ }^{x} c>0 \\
& \lim _{x \rightarrow \infty}{ }^{x}{ }_{c}=0
\end{aligned}
$$

Fig. 2.10 A function for specifyang the step size in a stochastac approximation algorithm.

$$
\begin{aligned}
& \sum_{i=1}^{\infty} i_{a}=\infty \\
& \sum_{1=1}^{\infty} i_{a}{ }^{1} c<\infty \\
& \sum_{1=1}^{\infty}\left|\frac{x_{a}}{\lambda_{c}}\right|^{2}<\infty
\end{aligned}
$$

In Eq. (2.43) ${ }^{I} x$ and ${ }^{i+1} x$ are points at which a new gradient is measured. Followang a gradient estimate, steps are taken in the negatıve-gradient direction until such a step results in an ancrease of the criterion function measurement. This strategy as designed to make maximum use of each gradxent estimate. The nonlineax function w constrazns the step size α by $\frac{k^{2} a}{l_{c}} \leq \alpha \leq \frac{{ }^{1} a}{I_{c}}$. This algorıthm was applıed to a 4-parameter optimızation of the suspension system of a trazler truck riding on a random road surface (Janac, 1969). Whale the optamızation was completed in only 30 workang steps (not ancluding function evaluatıons for gradient estimates), ut as ampossible to Judge the value of the algorithm, because no anformation is given concerning the vaxiance of the nouse.

Stochastic approximation us an attractuve approach to the nozsy optamızation problem, because convergence as guaranteed as $\quad \rightarrow \infty$ under very general conditions. However, 3-t may be that other methods are more effectave an reaching
a small neaghborhood of the optamum in a finnte number of steps--a moxe practical type of convergence to seek.

2. 8 Constraints

The optimization techniques which have been discussed here are sultable for unconstranned problems or problems where the optamum $1 s$ located fax enough from the constrannt boundarıes so that the search procedure does not encounter them. But for many enganeerang problems the optimum may lue on or close to a constrannt boundary. Most of the methods duscussed above must be altered to allow for thas possubilıty.

The problem of manmmazing $F(x)$ subject to anequalaty constraints ancludes the nonlunear programming problem

Minimize the criterion function

$$
\begin{equation*}
F\left(x_{1}, x_{2}, \cdots, x_{n}\right) \tag{2.44}
\end{equation*}
$$

subject to the m anequalaty constraunts

$$
\begin{equation*}
\phi_{1}(x) \leq 0 \quad(1=1, \ldots, m) \tag{2.45}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{3} \geq 0 \quad(j=1, \ldots, n) \tag{2.46}
\end{equation*}
$$

Elegant methods for solving thas problem are descrabed by Saaty and Bram (1964) and WIlde and Beaghtler (1967). Most of these require assumptions such as the convexity of $F(x)$ and of the $\phi_{2}(\underline{x})$ and many are deszgned for a quadratac

F(즈) and/or linear constraints. The methods descrabed here are applacable to less restrictave cases, and do not require the conditzons (2.46).

2.8.1 Gradient Prozection Method

The gradıent projection method (Rosen, 1960, 1961, Saaty and Bram, 1.964; Wılde and Belghtler, 1967) alter the gradient of $F(\underline{x})$ at constraint boundaries, so that a modified steepest-descent manamazation can be employed. The constrannts are only requared to be convex.

When the search reaches the boundary of a nonlanear constrannt, the negatuve graduent vector is projected onto a plane tangent to the constraint boundary at that point (Fig. 2.ll). A move in thas negative projected-gradient darection results in an anfeasible point which must be moved onto the constraint boundary. For linear constrannts the gradient projection is onto the constraint boundary ıtself, a modified steepest-descent move results in a feasible point. For the case of simple range constraints,

$$
\begin{equation*}
a_{1} \leq x_{1} \leq b_{1} \quad(1=1, \cdots, n) \tag{2.47}
\end{equation*}
$$

there is a simplafied method for obtaining the projected gradient. This has been incorporated into the optimum gradient procedure and as described by McGhee (1967).

Frg. 2.ll The gradient projection method at the boundary of a nonlinear constraint.

2.8.2 Created Response-Surface Method

The created response-surface method (Faacco and McCormick, 1964, 1963, Saaty and Bram, 1964; Wבl de and Beaghtler, 1967) as based on the definition of a modafied objectave function:

$$
\begin{equation*}
\Phi(\underline{x}, x)=F(\underline{x})+x \sum_{i=1}^{m} 1 / \phi_{1}(\underline{x})(x>0) \tag{2.48}
\end{equation*}
$$

Note that for any $r>0, \Phi(x, r)$ increases rapadly as \underline{x} moves toward a constrannt boundary $\left(\varnothing_{1}(\underline{x}) \Rightarrow 0\right)$. The technique selects values of r from a monotone decreasing sequence and optimazes $\underline{\underline{\sigma}}(\underline{x}, x)$ for each value of r. Thus, the constrained minimızation problem is converted into a sequence of unconstramed minimizatıons. If the optimum point of $F(\underline{x})$ is on the boundary, the manimum of $\bar{\Phi}(\underline{x}, r)$ approaches the boundary as $r>0$. In order to have $\delta(\underline{x}, r)$ well-behaved near the boundary, It is requared that $F(x)$ and each of $\varphi_{1}(\underline{x})$ be continuously twace differentiable and $\Phi(\underline{x}, r)$ be strictly convex for each r.

Fiacco and McCormick (1964) hare used the created response-surface technaque wath the optamum gradient method (Section 2.2) and Newton's method (Section 2.4) for manamizang $\Phi(x, r)$. Box (1965) reports that the Fletcher-Powell-Davidon method (Section 2.3) also has been employed successfully with this technique.

2.8.3 Penalty Functions

An optimization problem subject to constraints can be converted into a single unconstramed one by modafying the criterion function with the addition of penalty functıons, $p_{1}\left(\varnothing_{1}\right)$ (Korn and Korn, 1968).

$$
\begin{equation*}
\Phi(\underline{x})=F(\underline{x})+\sum_{1=1}^{m} c_{1} p_{1}\left(\phi_{1}\right) \tag{2.49}
\end{equation*}
$$

where $c_{1}>0$ and

$$
p_{i}\left(\phi_{1}\right)=\begin{array}{cc}
h_{1}\left(\phi_{1}\right) & \phi_{I}>0 \\
0 & \phi_{I} \leq 0
\end{array}
$$

and where $h_{1}\left(\varnothing_{1}\right)$ is a strictly monotone increasing function of \varnothing_{1}. For \underline{x} in the feasible region $R, \bar{\varnothing}(\underline{x})=F(\underline{x})$, but as x moves outside R, $\Phi(\underline{x})$ is made to increase rapidly. During the optimization x as allowed to violate the constrannts, but such a move is penalized by a large value of the modified craterion functions. Note that here, in contrast to the created response-surface method, the minimum of $\Phi(\underline{x})$ as found only once. The simplacity of this approach us offset by disadvantages in certain situations. It may be that $F(\underline{x})$ as undefined for x outside R--for example, $x_{1}<0$ where x_{1} is a length or a spring constant. In such a case we maght redefine $\bar{\Phi}(\underline{x})$

$$
\overline{q(\underline{x})=} \quad \begin{array}{cl}
\mathrm{F}(\underline{x}) & \underline{x} \in R \\
K+\sum_{I=1}^{m} c_{\beth} p_{I}\left(\phi_{3}\right) & \underline{x} \notin R \tag{2.50}
\end{array}
$$

where $K \geq F(x)$ for x on the constraint boundary. In exther case, unless $F(\underline{x})$ is known analytacally and $h_{i}\left(\varnothing_{1}\right)$ can be chosen carefully, $\Phi(\underline{x})$ and/or $1 t s$ derıvatives wall be discontanuous at the boundaries. Thas as detramental to search algorithms, such as the conjugate direction methods, wath quadratac convergence properties.

2.8.4 Restrict to Feasible Region

For direct search methods and random methods anequalaty constraints may be handled by simply restricting \underline{x} to the feasible region R. Before any step $\Delta \underline{x}$ is made, the values of the proposed new point x are checked, and if any constraints are violated, a different point is chosen. The search can be made to move very close to the boundary If the step size Δx is reduced until no constrant is vaolated. The simplicity of thas scheme makes direct and random search methods attractuve for problems where the optamum may lıe close to or on a constrannt boundary.

2.9 A Comparison of Methods and Some Remarks

Whale most of the techmiques dascussed an thas chapter are designed to locate local minamum poznts, the enganeer $1 s$ usually seekang the best of these, the global
optimum. If the value of $F(\underline{x})$ at the global optimum, F^{*}, is known, the optimizing algorithm can automatically escape from local manama wath $F>F t$ by expanding the search about the local manimum or jumping to a new startang point. For the more difficult case in which F^{*} is unknown, local minnma must be detected and the values of $F(\underline{x})$ compared. Automatıc search for the global optimum may be inefficient, and anteraction by the operator could be valuable.

The value of easy anteractaon between the operator and the algorathm has been recognized by Bohlang and Chernalk (1965) and Carlson (1967). Displays of the performance of the system being optamized and anformation concerning the progress of the search help the engineer to gaun ansught anto the behavior of the system. Wath thas information and has own experience he may be able to help guide the search toward a solution, by changing parameters of the optimization strategy or selecting different startlng polnts. Bohling and Chernak point out that anformation about the system gained during the optimızation may be more valuable than the rinal solution. The opportunnty for this kind of muteraction has made hybrıd computatıon attractave for optımızataon. However, display systems anterfaced with small digutal computexs or time-shared computers are maling easy unteraction possible with all-digltal optimizations as well (Korn, 1969).

The cholce of a parameter optimzzation method for a specific problem should be guided by the computing equipment avallable, what $1 s$ expected about the nature of the criterion function--a smooth or arregular landscape, noisy or nolse-free--and the number of parameters. If the time to measure the craterion function as relatavely long, then the computational effort requared by complex methods wall not increase the optimization tame appreciably. But if the tume to evaluate $F(\underline{x})$ us small compared to the time for calculations, as in the case of a high-speed analog machine anterfaced to a manıcomputer without floatıng-point hardware, then a simple durect search method or random search may be faster, even though at as less efficient an terms of function evaluatıons. For very urregular craterion functuons deruvatuves may not exist at some poants, and the cholce of a perturbation step size for deravative measurement as dafficult. Too large a step suze gives a poor approximation for a deravative at a point; a step size too small may cause problems due to accuracy limıtatzons \quad m computing $F(\underline{x})$. Noıse can cause large exrors in derivative measurement. For problems wath many parameters the results of Rastrigın (1963), Gurin and Rastrigin (1965), and Schumer and Steiglitz (1968) Indicate that the creeping random methods are lakely to requare ferer functaon evaluations. In addition, for large n the computation tames for creepang random search methods do not ancrease as rapıdly as for
algorıthms requaring matrix manıpulatıons. Korn and Kosako (1970) have successfully employed a creeping random algorithm in a 200-parameter functional-optimızation problem.

If the criterion function is smooth, or if derivataves can be obtanned wathout using the perturbation method, the conjugate direction algorathms appear to be the most effacient and most relable. The extremely rapid convergence of Newton's method $\left[\underline{\Delta x}=-A^{-1} g(\underline{x})\right]$ from favorable starting points as offset by the computational effort for calculation of A^{-1} and the tendency of the algorathm to diverge. When gradient measurements are easily obtained, the Fletcher-Povell-Davidon algorithm is superior. Thas conclusion as based on the results of Box (1966) for a sexies of test functıons and the results of Barta and Trushel (1969), who found the F-P-D algorithm more efficient than the Fletcher-Reeves algorithm in solvjng optamal control problems via the Maxımum Prancaple. Lasdon et al. (1967) found the $F-\mathrm{R}$ algorathm far superior to a steepest descent scheme for simalar optimal control problems. The calculations for the $F-R$ algorithm are sampler than for the $F-P-D$ method, while the latter requares fewer function evaluations. A comparison of Partan with the conjugate direction algorithms is difficult, because there is a lack of published data for the performance of Partan on test functions and practical
problems which have been solved by the conjugate-durection algorathms. Wilde and Belghtler (1967) found the F-P-D algorithm more efficient in manımizang Rosenbrock's function. If the gradient of F is not readily obtained, Powell's conjugate-darection method wathout gradients appeaxs to be the most efficient (Fletcher, 1965; Box, 1966). Although no published data have appeared for Zangwall's modifacation of Powell's method, the author has found the two to be roughly equivalent in manamızing Rosenbrock's function.

For the case of irregular criterion functions wath discontanuous deravataves and possibly measurement norse, durect search methods, creeping random search and stochastic approximation are more practical. The directsearch and creepang random search algorithms decide on the next step Δx simply by comparang function values at dıfferent points rather than using function differences to calculate precise search directions and step sizes. Again, there $2 s$ a lack of comparatave data from which to judge the relatave merıts of the varıous direct-search and creeping random algorıthms. But the theoretical and practacal results obtaned for the creeping random algorithms make a strong case for this method as an efficient and reliable technıque. For nolsy craterion functaons the stochastac approximation algorithms have the attractive feature of convergence as the number of steps tends to anfanaty, but
more results for test functions and practical problems are required to inducate how quickly they reach a reasonable nelghborhood of the optimum.

The most obvious conclusion from a study of parametex optimization methods is that no one technique is best sulted for all types of problems. An algorıthm designed to be capable of manamızing all types of criterion functaons wall probably be aneffucient for the majoraty of induvidual functions. It seems necessary to be armed wath a varuety of techniques $u n$ ordex to attack efficiently a problem with a completely unknown cxiterion function. Some optimization software packages, including AESOP (Hague and Glatt, 1968) and GOSPEL (Huelsman, 1968), have been developed. Such a batiery of algorithms, coupled wath a computer system having easy operator-machine unteraction, could comprise a fruatful approach to the solution of a varıety of parameter optimazatıon problems.

CHAPTER 3

OPTIMIZATION IN THE PRESENCE OF NOISE

The problems of optimazang a nolsy criterion function have been pointed out in Chapter 2. Thas chapter considers the evidence from the literature and some experimental results leading to the development of a strategy for optimmzing noisy criteraon functions (Sections 3.1 and 3.2). Constraints and the problem of estimating the criterion function are discussed an Sections 3.3 and 3.4. A specific optimization algorıthm for the example problem treated $\nsim n$ this study is descrabed in Chaptex 4 .

3.1 The Cholce of a Strategy

From the discussion of search methods an Chapter 2, the strategies best surted for noisy optimization appear to be stochastıc approximation, direct search, and random search. However, the powerful convergence properties of the conjugate-durection methods also seem to warrant an unvestigation of therr effucuency un the presence of nolse. The only results known for gradient algorithms on a nolsy function are those of Guxin and Rastrigin (1965), who concluded that a steepest-descent method is inferior to a creeping-random-search algoxıthm. It was felt that a
conjugate-direction algorıthm ınvolving no gradıent measurements but only linear manamazations maght still perform well in the presence of nouse.

The algorathm developed by Zangwall (1967) combined with a quadratac-interpolation method for the Innear minimizations was programmed in FORTRAN for the PDP-9 computer. Gaussian nozse was added to the craterion function, with the standard deviation chosen as a fraction of the value of $F(\underline{x})$. The observed function values are

$$
\begin{equation*}
f(\underline{x})=F(\underline{x})+[\sigma \cdot F(\underline{x})] z \tag{3.1}
\end{equation*}
$$

where z is a Gaussian random variable with zero mean and unit variance, and σ as the coefficient speczfyang the standard deviation of the nozse added to $F(\underline{x})$. The algorıthm was applied to two test functions with given starting points, as follows

$$
\begin{align*}
& F(\underline{x})=\sum_{1=1}^{n} x_{1}^{2}, o_{\underline{x}}=(1,1, \ldots 1) \tag{3.2}\\
& F(\underline{x})=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}, o_{\underline{x}}=(-1.2,1)
\end{align*}
$$

After each linear minimazation the (nolsy) function value as compared to $F_{\text {man }}=10^{-4}$; If $f(\underline{x})<F_{\text {min }}$, the search is ended. Zangwall's algorithm also termanates the search if n successive manimizations in the coordinate darections lead to no improvement--an indication that the gradient is zero.

To minimize the quadratic function (3.2) for $\sigma=0 ., 9$ and 20 function evaluations were requaxed for $\mathrm{n}=2$ and $\mathrm{n}=4$, respectavely. For $\sigma=0.1$ and $\mathrm{n}=2,5$ of 10 traals fazled to converge, because observation errors resulted in a false indzcation of zero gradıent. For the 5 successful trials, an average of 18 function evaluations were requared. For $n=4$, there were no fallures an 10 trials, and an average of 74 function evaluatzons were requared. For large n, there is less chance of nolsy observations leading to n successave coordinate minumizations wath no improvement.

For Rosenbrock's function (3.3), 135 evaluatıons were required to converge for $\mathrm{F}_{\mathrm{man}}=10^{-4}$ and $\sigma=0$. However, no convergence could be obtamed for nouse levels as small as $\sigma=$.01. Again, the algorıthm termınated prematurely due to a zero-gradient andication.

These results indicate that for Zangwili's algorithm to be effectuve un the presence of nolse, the premature terminations due to false zero-gradient indications would have to be eliminated, and/or the linear-minimization
algorithm would have to be improved. One possibility would be to use a stochastac-approximation algorathm, such as Kushner's (1963), for the lanear search.

Modification of thas algorithm was abandoned, and a creeping-random-search strategy was chosen for this study. The reasons for this selection are summarızed here.

1. Unless the varıance of the measurement noase is very small, estimating the gradıent of $F(\underline{x})$ by small perturbations is impractical. Gurin and Rastrigin (1965) have shown a random search algorıthm to be more effectave than steepest descent in the presence of nouse.
2. While stochastic approximation algorithms have the attractuve feature of guaranteed convergence as the number of optamazang steps tends to infinnty, actual progress toward the optamum may be slow.
3. Creeping random search has been found effectave in optimizung very "irregulax" parameter landscapes (Maybach, l966a, Stewart et al., I967; Kavanaugh et al., 1968, Bekey et al., 1966).
4. The results of Rastrigin (1963) and Schumer and Steiglitz (1968) indicate that creeping random search is especially effectuve for problems with many parameters.
5. Creepang-random-search algorithms permit the use of a "vector-valued" criterion function (Stewart et al., 1967).
6. Constraints are easily handled by simply restrictIng trial steps to the feasible region of parameter space.
7. The comparatively modest computations requaxed for random search algorithms can be programmed easily
small digatal computer. This results in a fast digital program, which $i s$ better sulted for operatıon wath a hugh-speed analog machıne.

3.2 A Random-Search Algorithm for Nozsy Cxiterion Functions

For the class of problems considered in thas study, the parameter vector x consists of the dastribution constants introduced an Section l.l. It is assumed that each system parameter p_{1} is Gaussian with mean μ_{1} and varıance σ_{1}^{2}, so that x appears as a columm vector ($\mu, \underline{\sigma}$).

$$
\begin{equation*}
\underline{x} \equiv(\underline{\mu}, \underline{\sigma}) \tag{3.4}
\end{equation*}
$$

We also assume constrants of the form

$$
\begin{align*}
a_{1} & \leq p_{1} \leq b_{I} \tag{3.5}\\
\sigma_{I} & \geq c_{1}\left|\mu_{1}\right| \geq 0 \tag{3.6}\\
(\ldots & =1,2, \ldots, n / 2)
\end{align*}
$$

These are dascussed an Section 3.3.
To axrive at an effectave search proceduxe for
nolsy criterion functions, a basic creepang-random-search algorithm us combined with a strategy for averaging measurements of the criterion function so as to reduce the nouse variance. The observations of the criterıon function are represented by

$$
\begin{equation*}
f(\underline{x})=F(\underline{x})+v \tag{3.7}
\end{equation*}
$$

where $F(x)$ is the true value of the criterion function, and v us a zero-mean random varabic. Our estamate of $F(x)$ wall be denoted by $\bar{f}(\underline{x})$. At a point \underline{x} observations of the function are averaged until the variance of $\bar{f}(\underline{x})$, denoted by s^{2}, is less than some specified value. (A sequential estumation scheme for this is described in Section 3.4.) Before discussing the strategy for choosing s^{2}, the creepang random algorathm as described.

Figure 3.1 illustrates a basic creeping-randomsearch algorıthm, which searches for a local minimum. (In the followning paragraphs, numbers enclosed by brackets, [], refer to corresponding numbers in the flow diagrams.) Exploratory steps, $\Delta \underline{\mu}$ and $\Delta \underline{\sigma}[1]$, are random in magnitude and direction. When the criterion function estimate $\overline{\mathrm{f}}$ at an exploxatory poant is an improvement over the current optamum vaiue ($\bar{f}<\bar{f}_{o}$) [2], the center of the search is moved to the corresponding new point [3]. Following some integral number, LF, of consecutave fallures, the search range is then reduced [4], and after LF faulures with minamum search range, the algorithm is finıshed [5]. Other features of the algorathm may be noted:

1. The random parameter perturbations, $\Delta \mu_{1}$ and $\Delta \sigma_{1}$, are chosen from a uniform distribution, which has a variance proportional to the current optimum value of $\mu_{\text {a }}$. For most problems this method of choosing the variance of the perturbations appears

Fig. 3.l Flow diagram for the basic creepang-randomscarch algorathm.

Fig. 3.1--Continued
more logical than having a fixed parameterperturbation variance. In the latter case, the same perturbation, $\Delta \mu_{1}$, can represent a very large or a very small percentage change an the parameter value, dependıng on the current optimal value of μ_{2}. For the same reason, the standard deviations σ_{I} are expressed in the program as percentages of the corresponding mean values.
2. The algorıthm employs absolute positıve buasing [6] and absolute negatave biasing [7] as described in Section 2.6.
3. During the optimazation the program keeps track of both the prevaous optimum point ($\underline{\mu}_{00}, \underline{\sigma}_{00} ; \overline{\mathrm{f}}_{00}$) [3] and the point with the smallest function value sunce the last success $\left(\underline{\mu}_{+}, \underline{g}_{+} ; \bar{f}_{+}: \overline{\mathrm{f}}_{0}<\overline{\mathrm{f}}_{+}<\overline{\mathrm{f}}_{1}\right.$, where i undexes all of the other fanlure ponnts since the last success) [8 and 9]. Saving these values has no effect on the basic creeping-randomsearch algorzthm, but they wall be used in the overall strategy described below.

To implement the creeping-random-search method, the variance s^{2} allowed in the estimate \bar{f} of F, must be specified. Let us assume that the optimization must be accomplished wath some number N of criterion function observations. If s^{2} is chosen to be small, then there will
be few errors in deciding whether a trial step as a success or failure, $1 n$ spıte of the nozse, but we wall be able to take only a small number of trual steps. For a large value of s^{2}, more trial steps are possible, but many of our success-fallure decisions are lakely to be erroneous. In partıcular, the sıtuation pactured an Fıg. 3.2 may result. The optimızation has proceeded to the point ${ }^{\prime} x$, at whach the estamate $\vec{f}\left(\mathcal{I}_{x}\right)$ as unusually moxsy. From thas ponnt, at Is difficult to find a successful step; ezther another unusually nolsy observation will have to occur, which may require many trials, or else a large trial step toward x^{*} must be generated. These considerations suggest that the chonce of the varıance s^{2} as an amportant one in determinIng the success of the optimization.

If the starting point for the search is in a
"smooth" region of the criterion surface where there as an appreczable gradient, the creeping-random-search algoxithm can progress well, even when the variance of $\overline{\mathrm{f}}$ ls large. Thus, in the mntial search our estimates of F are allowed to be rather coarse. If many exploratory-step fallures occur consecutively, andicating that the search has encountered a ridge, entered a region of small gradient, or (later in the search) approached the optimum, then the estimation algorithm should be made to reduce the variance of \bar{x}

Fig. 3.2 A creeping random search in a region of small gradient for a nozsy criterion function.

The flow diagram for the algorithm is shown in Fig. 3.3. The "Inltial search" is executed with coarse estimates of $F(\underline{\mu}, \underline{\sigma})$. When $L F$ consecutave trial steps result In no improvement, the algorithm proceeds to the "final search" [1]. At this point, a better estamate of $F\left(\mu_{0}, \underline{\sigma}_{0}\right)$ IS computed [2]. More observations are taken at the poant ($\mu_{0}, \underline{\sigma}_{0}$) untıl the varıance of the estımate \bar{f}_{o} is less than or equal to $s_{0}^{2}\left(s_{0}^{2}<s^{2}\right)$. The recalculation of \bar{f}_{0} is designed to avoid the type of difficulty $u l l u s t r a t e d$ in Fig. 3.2. In general, note that whenever a more accurate estımate of $F(\underline{u}, \underline{\sigma})$ Is computed, previous observations at (μ, σ) are utılized, thus saving computer time. Followang the recalculation of \bar{f}_{0}, the algorithm proceeds by the following steps:

1. \vec{F}_{o} as compared to the previous optimum $\overrightarrow{\mathbf{F}}_{00}$, in case the move from ($\underline{\mu}_{00}, \underline{\sigma}_{00}$) to ($\mu_{0}, \underline{\sigma}_{0}$) was erroneous [3].
2. The minimum of \bar{f}_{0} and \bar{X}_{00} us also compared to the "best" of the fanlures $\left(\bar{f}_{+}\right)$, un case a very nousy observation at $\left(\underline{\mu}_{0}, \underline{\sigma}_{0}\right)$ had resulted in rejecting an amproved point [4].
3. After the manimum of $\bar{f}_{O}, \bar{f}_{0 O}$, and \bar{f}_{+}is determined and labeled \bar{f}_{0}, the creeping random algorithm us contınued [5]. For trial steps ($\left.\underline{\mu}_{0}+\Delta \mu, \underline{\sigma}_{0}+\Delta \underline{\sigma}\right)$ the variance of \bar{f} is still only required to be less than s^{2}. But if an improvement is indicated,

Fig. 3.3 A flow diagram for the optimization algorithm.

Fig. 3.3-Continued A flow diagram for the optimazation algorithm.

$$
\text { Fig. 3.3-- Continued } \frac{\text { A flow diagram for the optimization }}{\text { algorithm. }}
$$

$\left(\overline{\mathrm{f}}<\overline{\mathrm{f}}_{0}\right), \overline{\mathrm{f}}$ is recalculated and again compared to \bar{f} o [6]. This strategy allows for a greater number of trial steps to be taken.
4. Following KF successive fallures in the final search, the search range is reduced [7], and the algorithm returns to recalculate \bar{f}_{0} agaln.
5. When KF consecutive fallures occur wath so ${ }_{0}^{2}$ at its minimum value ($s_{m \ldots n}^{2}$), the seaxch is terminated [8]. In order to use this random-search method, a staxting point ($\underline{\mu}_{0}, \sigma_{0}$), starting and minimum values of the search range, and values for $\mathrm{LF}, \mathrm{KF}, \mathrm{s}^{2}, \mathrm{~s}_{0}{ }^{2}$, and $\mathrm{s}_{\text {min }}^{2}$ must be specafied. In the absence of any prior knowledge of the nature of the craterion function, $1 t$ ls likely that unatial choices for these values may result in an inefficient search. It is felt that a solution to this problem lies in a provision for communication between the search algorithm and the operator. Such a facilaty for interaction with the computing system employed for thas study as descrabed in Section 4. 3.

3.3 Constraints, Modeling the Distributions of the System Parameters

The constrannts on the system parameters p_{2} and the distribution constants σ_{1} are specified by the anequalaties (3.5) and (3.6). The constrannts on p_{I} may arase from desagn lamats set by the enganeer or from considerations of
realizabilaty of the physacal system beang modeled. for example, uf p_{i} is the mass of a flywheel, the deslgn enganeer may place an upper lamat on p_{1}, and physical realizability requires $p_{1} \geq 0$. The constraints on σ_{1} may be necessary in a situation where it is known that production tolerances cannot be held below a certann percentage of the design values μ_{I}.

In the form of (3.5), the constraints on the p_{i} 's are anconvencent to enforce. After values of $\underline{\mu}$ and $\underline{\sigma}$ for a trial step are selected by the optimazation program, many values of p_{I} are generated in order to estimate $F(\underline{\mu}, \underline{\sigma})$. Checking each value of p_{i} is time consuming. Furthermore, if, after many observations of the criterion function, a value of p_{i} valates the constrannts, new values of μ and $\underline{\sigma}$ must be selected and the estimation of $F(\underline{\mu}, \underline{\sigma})$ begun again. To avold thıs waste of computer time, the constraints of (3.5) are replaced by

$$
\begin{align*}
& \mu_{1}-r \sigma_{1} \geq a_{2} \\
& \mu_{1}+r \sigma_{1} \leq b_{2} \tag{3.8}
\end{align*}
$$

For $r=3$, only 0.27% of the sample values of a Gussian random variable will violate the constraints of (3.5) when $\mu_{I}-r \sigma_{1}=a_{1}$ and $\mu_{1}+r \sigma_{I}=b_{I}$. WIth thas form of the constraints, feasible values of μ and $\underline{\sigma}$ may be selected before the estimation of $F(\mu, \sigma)$ as begun.

Pseudo-Gaussian samples for the random vaxiables p_{1} are generated by adding and normalizing ten uniformlydustributed random numbers from a hardware random-nozse generator interfaced to the digıtal computer (Belt, 1969). This provides for deviations from the mean as large as 5.5 . We introduce negative correlation into oux randomparameter sample (Korn, 1966) by selecting ${ }^{2} p_{1},{ }^{4} p_{1}, \ldots$, ${ }^{n} p_{1}$ with deviations about μ_{1} which are equal and opposite to the deviations of ${ }^{1} p_{1},{ }^{3} p_{1}, \ldots,{ }^{n-1} p_{1}$, ュ.e.,

$$
k+1 p_{1}=\mu_{1}-\left({ }^{k} p_{1}-\mu_{1}\right) \quad(k=1,3,5, \ldots, n-1)
$$

This ensures that the sample mean is equal to μ_{1}, and time us saved, sunce only $n / 2$ pseudo-Gaussian random numbers are generated.

Although the anequalıtıes (3.8) are a practical way of enforcing constrannts on almost all of the $p_{\perp}{ }^{\prime}$, values of p_{z} which violate (3.8) must still be accommodated by the analog machane used to estumate $F(\mu, \underline{\sigma})$. Thus, all values of p_{1} are limıted to the range of the analog computer to produce a new random varıable $p_{\beth}{ }^{\prime}$.
l m.u. If $p_{\mathrm{I}}>1 \mathrm{~m} \cdot \mathrm{u}$.

$$
\begin{equation*}
p_{1}^{\prime}=-1 \mathrm{~m} \cdot \mathrm{u} \cdot \text { دf } \mathrm{p}_{1}<-1 \mathrm{~m} \cdot \mathrm{u} \tag{3.9}
\end{equation*}
$$

P_{1} otherwase
where $1 \mathrm{~m} . \mathrm{u}$. denotes one machnne undt for the analog computer. In general, the lımıted random varıable p_{1} ' will
have a new mean μ_{I}^{\prime} and standard deviation σ_{I} ' different from μ_{I} and σ_{I}. The effect on μ_{I} is most severe if p_{I} is limited on only one side of the distrabution. If b_{1} corresponds to I machine unit, as shown in Fig. 3.4, all values of $p_{1}>\mu_{1}+r \sigma_{1}$ will be set equal to l machine unit. The effect on σ_{1} is greatest when p_{1} is limited on both sides of the distrabutaon, a_{I} and b_{I} correspond to -l m.u. and 1 m.u. respectively (Fig. 3.5). The effects of these two cases of limiting are calculated in Appendax A, and results are shown in Table 3.1. For the problem described in Chapter 4, $a_{1}=0$ and $b_{I}=1 \mathrm{~m} \cdot \mathrm{u}$. The values of μ_{1} and σ_{1} (satasfyang the constraints) which result in maximum σ_{1} are $\mu_{1}=0.5$ m.u. and $\sigma_{1}=.5 / 3 \mathrm{~m} . \mathrm{u}$. For this worst case and for $r=3, \mu_{1}^{\prime}=\mu_{1}-.00051 \mathrm{~m} . \mathrm{u} .=\mu_{1}-$.0051 volts for the ± 10 volt range of ASTRAC-II. Thas 5 mv . worst case error is approxmately equal to the accuracy of setting the values of p_{1}^{\prime} by the digital-analog converters on ASTRAC-II. The worst case error an the standard devaation σ_{1} Is approximately 0.13%.

3.4 Sequential Estimation of $F(\mu, \sigma)$

The criterion function $F(\underline{\mu}, \underline{\sigma})$ as estzmated from observations denoted by $f(\underline{\mu}, \underline{\sigma})=F(\underline{\mu}, \underline{\sigma})+v$, where v is a zero-mean random varıable. An unbiased estimate of F based on n observations is

$$
\begin{equation*}
n_{f}=\frac{1}{n} \sum_{x=1}^{n} i_{f} \tag{3.10}
\end{equation*}
$$

Fig. 3.4 The Gaussian density function limıted at one end.

Fig. 3.5 The Gaussian density function limated at both ends.

Table 3.1 The effects of limating a Gaussian random variable.

r	μ^{\prime}	σ^{\prime}
Limitang at $r \sigma$ at one end of a Gaussian distribution		
1	$\mu-.0833 \sigma$. 8667σ
2	$\mu-.0312 \sigma$. 97940
3	$\mu-.00308 \sigma$. 99870
4	$\mu-.00010 \sigma$. 99997σ
Limiting at ro at both ends of a Gaussian distribution		
1		. 7183σ
2		. 95946
3		. 99750
4		. 99990

The sample variance

$$
\begin{equation*}
n_{s}^{2}=\frac{1}{n-1} \sum_{n=1}^{n}\left({ }^{2} f-n_{\bar{f}}\right)^{2} \tag{3.1.1}
\end{equation*}
$$

is an unbiased estrmate of Var\{f\}. If f has a Gaussian distributzon then

$$
\begin{equation*}
\frac{\left(n^{\underline{f}}-F\right) \sqrt{n}}{n_{S}}=t_{n-1} \tag{3.12}
\end{equation*}
$$

where t_{n-1} has the Student-t distrabution with $n-l$ degrees of freedom. This allows us to make a confidence statement about our estamate of F. Before sampling, we can state that the probabilıty that our estamate ${ }^{n} \bar{f}$ wıll differ from F by some amount less than d is given by

$$
\begin{equation*}
P\left[\left|n_{\bar{f}}-F\right| \leq d\right]=1-\alpha \tag{3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
d=\frac{{ }^{n} S t_{n-1 ; \alpha / 2}}{\sqrt{n}} \tag{3.14}
\end{equation*}
$$

and $t_{n-1 ; \alpha / 2}$ is the value of the Student-t varıable such that

$$
\int_{\mathrm{t}-1 ; \alpha / 2}^{\infty} \phi(z) \mathrm{dz}=\alpha / 2
$$

(\varnothing is the density function for the Student-t variable with n-l degrees of freedom). To use this statement in deciding
the number of observations to make for our estimate, samples of f are taken until ${ }^{n} S / \sqrt{n}$ is small enough so that $\left({ }^{n_{S}} t_{n-1} ; \alpha / 2\right) / \sqrt{n} \leq d$.

In order to umplement such a sequential estimation scheme, it x s convenıent to have recursive estimates of $\underset{f}{n}$ and ${ }^{n} S^{2}$ rathex than performang the summations of Eqns. (3.1.0) and (3.11) after each observation. Recurrence relations axe given by Korn (1966). Let ${ }^{n} S^{2}=\frac{n-1}{n}{ }^{n} S^{2}$.

$$
\begin{gather*}
n-\frac{n-1 \bar{f}}{f}+\frac{1}{n}\left(n^{n}-n-1 \bar{f}\right) \tag{3.15}\\
n_{s} 2^{n} \approx n^{n-1} 2^{2}+\frac{1}{n}\left[\left(n_{f}-n_{f}\right)^{2}-n_{s}{ }^{n-1}\right] \tag{3.16}
\end{gather*}
$$

Note that for large $n,{ }_{n}{ }_{s}{ }^{2} \approx{ }^{n} S^{2}$. Updating ${ }^{n}-$ and $n_{s}{ }^{2}$ wath these relations requires a division by n, which may be time consumang when floatıng-pount or double-precision fixedpoint arıthmetıc is necessary to obtann accurate estimates. Deardorff and Trimble (1968) replace the division by n by a division by a power of two to obtain the so-called "stableaveragang" algorıthm.

$$
\begin{equation*}
{ }^{n} \hat{f}={ }^{n-1} \hat{f}+\frac{1}{2^{N_{n}}}\left({ }^{n_{f}}-{ }^{n-1} \hat{f}\right)\left(2^{N_{n}-1}<n \leq 2^{N_{n}}\right) \tag{3.17}
\end{equation*}
$$

This algorathm $1 . s$ considerably faster than Eq. (3.1.5), because the division can be accomplished by a sample shift operation in a binary computer. However, N
$2^{n} \leq n$ for all n, so that the variance of ${ }^{n} \hat{f}$ as greater
than the varlance of ${ }^{n} \bar{f}$ (the minimum-varlance linear unbzased estimate of the expected value of f).

The varıance of the "stable-averaging" estamate can be reduced by modifyang the chorce of N_{n} so that $2^{N_{n}}$ is more nearly equal to n (Whate, 1970). The modified estamate is defined by

$$
\begin{equation*}
n_{\widetilde{x}}=n^{n-I_{\tilde{f}}}+\frac{1}{2^{M}}\left({ }^{n_{f}}-{ }^{n-I_{\tilde{f}}}\right) \quad\left(2^{M_{n}-1} \leq n \leq 2^{M_{n}}\right) \tag{3.18}
\end{equation*}
$$

The method of uniquely determinang M_{n} is most easily shown by a flow dıagram (Fig. 3.6). Table 3.2 lısts the resulting sequences $\{n\},\left\{2^{N} n^{n}\right\},\left\{2^{M_{n}}\right\}$. It is seen that thas method of choosing the power of two in Eq. (3.18) yields a divasor closer to the Ideal value n than Eq. (3.17), and the ancreased time needed to generate M_{n} rather than N_{n} is small. Whate (1970) shows that for $n \geq 100$ only about 5% more observations are required wath the modified algorithm (3.18) to reduce the standard deviation of ${ }^{n_{\tilde{f}}}$ to that of ${ }^{n} \underset{f}{x}$ in Eq. (3.15). Thas should be compared wath 15-20 per cent moxe observations required wath the "stable averaging" estimate ${ }^{n} \hat{f}$. The improvement appears modest, but represents a very substantıal saving an cases where $E\{f\}$ must be estumated many times at best possible speed.

Fig. 3.6 Flow diagram for the shaft operation in Eq. (3.18).

Table 3.2 Divisors used an the three recursive estimation algorıthms.

n	$\frac{N_{n}}{}$	2^{M}
1	1	1
2	2	2
3	4	2
4	4	4
5	8	4
6	8	4
7	8	8
8	8	8
9	1.6	8
-	-	-
-	-	
\cdot	$\dot{\square}$	
12	16	8
13	16	16
-	-	
-	-	
-	-	
17	32	16
-	-	
-	-	
-	-	

CHAPTER 4

AN OPTIMIZATION EXPERIMENT

In 1959, McGhee and Levine (1964) studied the problem of the determination of optimum production tolerances for a hypothetical radar-homing massale. Their experıment was performed before fast analog-digital hybrad computers were generally avallable. An analog computer was used to simulate flights of massiles having production variations in two guidance-unlt parameters, a gain K and a tıme constant T, which were modeled as Gaussian random variables with means μ_{K} and μ_{T} and variances σ_{K}^{2} and σ_{τ}^{2}. Values of μ_{K} and μ_{τ} were selected prior to the simulation and were held constant duxang their experments. For sixteen combinatıons of values of σ_{K} and σ_{τ}, an average performance andex (the probabilaty of hatting a target) was estimated by Monte-Carlo simulation. A digatal computer then performed a quadratic regression analysis on these data $u n$ order to arrive at an expression for the hat probability as a function of σ_{K} and σ_{τ}. Surprisingly, it was found that for σ_{τ} equal to 20% or 30% of μ_{τ}, ancreasing σ_{K} from 10% of μ_{K} to 20% caused an nencrease in the hit probability, Thus, the popular assumption that performance

Thas chapter discusses the simulatıon and optimızation of a slmilar massile system. In this experiment the mean values, μ_{K} and μ_{\uparrow}, are optimized simultaneously with the variances, σ_{K}^{2} and σ_{τ}^{2}.

4.1 A Radar-Homang Missile Problem

Figure 4.l illustrates the motion an one plane of a hypothetical radar-homing missile. In the diagram we consuder a small change $\delta \underline{v}$ an the missile velocity vector \underline{v}. For a small angle $\delta r,|\underline{v}+\underline{v}| \approx|\underline{v}|=v_{m}$. The acceleratıon normal to \underline{v} is

$$
\begin{equation*}
v_{m} \frac{d r}{d t}=v_{m} \dot{r} \tag{4.1}
\end{equation*}
$$

or

$$
\begin{gather*}
\ddot{\mathrm{y}}=\mathrm{v}_{\mathrm{m}} \dot{\mathrm{r}} \\
\dot{\mathrm{y}}(\mathrm{t})=\int_{0}^{t} v_{\mathrm{m}} \dot{r}(s) \mathrm{ds}-\mathrm{v}_{\mathrm{m}} r_{0} \tag{4.2}
\end{gather*}
$$

Equation (4.2) descrıbes the kinematacs of the massile. For a small angle σ,

$$
\begin{equation*}
\sigma=\arctan \frac{\mathrm{y}}{\mathrm{v}_{\mathrm{c}} \mathrm{~T}} \approx \frac{\mathrm{y}}{\mathrm{v}_{\mathrm{c}} \mathrm{~T}} \tag{4.3}
\end{equation*}
$$

$$
\begin{aligned}
\mathrm{y} & =\text { missile position normal to inıtıal line of sught (ft.) } \\
\mathrm{v}_{\mathrm{c}}= & \text { mıssile-to-target closing velocity (ft./sec.) } \\
\mathrm{T} & =\text { time to go untıl impact (sec.) } \\
r= & \text { angle between massile velocity vector and inıtial line } \\
& \text { of sight (rad.) } \\
\sigma= & \text { true lane of sight angle } \\
\underline{v}= & \text { mıssile velocity vector } ;|\underline{v}|=v_{m} \text { (ft./sec.) }
\end{aligned}
$$

Fig. 4.I The motion of the massale an a plane.

The lane-of-sight angle σ as used by the guidance unit to steer the massile toward the target, as shown in the block diagram of Fig. 4.2. The guidance-unat output is a commanded turning rate \dot{r}_{c}, and the missile aerodynamics produce an actual turning rate \dot{r}. At time $t=0$, the missile is given a random heading angle, $r(0)=r_{0}$, which is chosen from a Gaussian distribution with zero mean and a standard deviatıon of 0.1 radians. At $t=t_{f}=7$. sec, the missile positıon normal to the inıtial line of sight, y, is measured. If $\left|y\left(t_{f}\right)\right| \leq=30$. ft., we say that the massile has hit the target. The line-of-sight angle σ is corrupted by wideband radar-tracking noıse with $\underline{(0)}=.0155 \mathrm{deg} .{ }^{2} / \mathrm{Hz}$, where $\stackrel{o}{(}(\omega)$ is the two-sided power spectral density. The navigation gain, K, and the prancıpal missile filterang time constant, τ, are assumed to be Gaussian with mean μ_{K} and variance σ_{K}^{2}, and Gaussian with mean μ_{τ} and varıance σ_{τ}^{2}, respectuvely. The problem is to choose the values of μ_{K}, μ_{T}, σ_{K}, and σ_{T} which maximize the probability of hitting the target.

In the notation of Chapter l, the system parameters are $p \equiv(K, \tau)$, and the distribution constants are $\underline{x}=$ $\left(\mu_{K}, \mu_{\tau}, \sigma_{K}, \sigma_{\tau}\right)$. The performance index ıs given by:

Fig. 4.2 Radar-homıng massile navigating in a plane.

The average performance undex is the hit probabulıty

$$
\Psi=\mathrm{E}\{\mathrm{~J}\}=\text { probabılity of a hit. }
$$

Sunce a cost function is not included for this problem, the criterion function simply equals the average performance Index

$$
\left.F(\underline{x})=\Psi=\operatorname{probab} \perp l _t y \text { of } a \mathrm{~h}\right\lrcorner t .
$$

The $\not n e q u a l ı t y$ constrannts are:

$$
\begin{aligned}
\mathrm{K} & \geq 0 \\
T & \geq 0 \\
\sigma_{K} & \geq c_{K}\left|\mu_{K}\right| \geq 0 \\
\sigma_{T} & \geq c_{\tau}\left|\mu_{\tau}\right| \geq 0
\end{aligned}
$$

K and τ must be greater than zero for the system to be stable. Positive values of c_{K} and/or c_{τ} may be used to determane the best performance obtainable when production varıatıons are allowed in K and/or T.

4.2 The Sumulation

Fagures 4.3 and 4.4 show the analog computer diagram and control logic for the simulation. The time scale is, given by

$$
t=\frac{1}{250 \times 10^{-6}} t^{\prime}
$$

where t is the problem time $\left(0 \leq t \leq t_{f}=7 . \sec \right)$ and t^{\prime} is the computer tame $\left(0 \leq i^{\prime} \leq 1.75 \mathrm{msec}\right)$. Thas allows for

Guydance

Aerodynamics

Fig. 4.3 Analog computer dıagram of the radar-homang
mısile simulation.

Kinematics

Steepest-descent division curcuat
Fig. 4.3-Continued Analog computex diagram of the radarhoming missile samulataon.

Hyt-miss decasion curcuit

Radar tracking-noise generation

Fig. 4 3--Continued Analog computer diagram of the radarhoming missile simulation.

Fag. 4.4 Control logic for the simulation.
solution rates of 500 runs per second. The digital inputs, α_{K} and α_{τ}, to the multiplying D / A converters provide the followang ranges for K and τ.

$$
\begin{aligned}
& 0 \leq K \leq 6 \\
& 0 \leq \tau \leq 1 \cdot 3 \mathrm{sec}
\end{aligned}
$$

The awkward division by v_{c} T, which approaches zero together with the numerator $y(t)$ as t approaches t_{f}, is implemented by a very fast steepest-descent curcuit (Maybach, 1966b). Potentiometers p_{1} and p_{2} compensate for the fact that the actual divisor $1 s v_{c} T+\beta$, where $\beta=3$. volts. This constant is added to manntann a reasonably large input to the quarter-square multıplıers, whach are less accurate for small inputs.

A missile-firing simulation is begun with a random anntial condition x_{o}. At $t=t_{f}$, the track-hold carcuit holds $y\left(t_{f}\right)$, which is compared to $\pm d$ by the two comparators. The $I \mu f$ capacitor and the summing amplıfıer constitute a d.c. blocking circuit for filtexing out draft voltages. The comparator outputs are gated and applied to a read-in gate on the analog-digital interface for hit-miss detection by the digatal computer. The antegrators are controlled by a logic signal \hat{R} (Fig. 4.4). This is essentially the normal compute-reset sagnal (R) modified for automatic resetting at the occurrence of an overload or upon a command from PDP-9 by way of the control regaster. The
track-hold logic signal $\hat{\mathrm{S}}_{2}$ is S_{2} augmented by a provision for specafylng the track mode with PDP-9 at an overload conditıon and during adle pexiods. Samulations are Initrated by Free Pulse \#2. The end of a simulation is signaled by Flag I, which is raised upon the occurrence of an overload or at the completion of the 1.75 msec COMPUTE period. If an analog computer overload occurs durang a simulation, that simulation is regarded as a miss.

Usually overloads occur for parameter values and/or an anitial condition which would result in a mass. It as possible, however, for an overload to occur even during a simulation which would result in a hit; in thas case, assigning a mass is erroneous. If ℓ such errors are made In a hat-probability estamate of N simulations, the error in probabilaty is $\Delta p=-2 \ell / \mathbb{N}$. The optimization program allows three overloads per 1024 simulations before volding the estimate of the hat probabllity. Thus, the worst-case error is gaven by $\Delta p=-.0059$.

4.3 The Optimization

The basic optimazation strategy has been discussed an Section 3.2. A modification and some additional features are described here.

Sance the criterion function for the example problem
Is a probability p, and separate runs are considered to be statistically independent, the variance of an estimate of p

Is known a priori. Let our estimate of p be given by

$$
\begin{equation*}
\overline{\mathrm{f}}=\frac{1}{\mathrm{~N}} \sum_{I \pm 1}^{N} I_{f} \tag{4.4}
\end{equation*}
$$

where

$$
I_{f}=\begin{aligned}
& 1 \text { if }\left|y\left(t_{f}\right)\right| \leq 30 . f t . \\
& 0 \text { otherwise }
\end{aligned}
$$

I has a binomial distribution with mean p and variance $p(1-p) / N$. For $N p$ and $N(I-p)$ both at least 5, the distribution may be approximated reasonably as Gaussian (Hahn and Shapiro, 1967). Then, we can make the following probabalaty statement concerning our estimate of p :

$$
P\left[|\bar{f}-p| \leq \sqrt{\frac{p(I-p)}{N}} z_{\alpha / 2}\right]=1-\alpha
$$

where

$$
\int_{z_{\alpha / 2}}^{\infty} \phi(z) d z=\alpha / 2
$$

and $\varnothing(z)$ is the standardized Gaussian density function (zero mean, unat variance). Table 4.l lısts values of the confidence-menterval half-wadth as a function of p and N for $\alpha=0.05$. In the optimization program for the example problem (Fig. 4.5), the variance of our estamate of p is controlled by adjusting N. Otherwase, the strategy is the same as discussed an Section 3.2. In order to estimate the

Table 4.1 Confidence-nnterval half-widths, $\sqrt{\frac{p(1-p)}{N}} z_{\alpha / 2}$,
for $\alpha=.05$

Number of	sımulations, N	Hzt probabılıty, p		
		0.1	0.25	0.5
	128	. 0520	. 0750	. 0866
	256	. 0367	. 0530	. 0613
	512	. 0260	. 0375	. 0433
	1.024	. 0184	. 0255	. 0306
	2048	. 0130	. 0187	. 0216
	4096	. 00919	. 0133	. 0153
	8192	. 00649	. 00915	. 0108

Fig. 4.5 A flow diagram for the optimazation algorithm.

Fig. 4.5-- Contanued A flow diagram for the optimization

Fig. 4.5-- Continued A flow diagram for the optimazation

Fig. 4.5-- Continued A flow diagram for the optimization
hit probabılity for the fınal optimal parametexs within approximately $\pm .01$ for the worst case of $p_{0}=0.5$, the maximum number of simulations per estimate $\mathrm{N}_{\mathrm{max}}$ in Fig. 4.5) was chosen as 8192.

In order to find a reasonable starting point for
the creeping random algorıthm, an anltıal pure-random search is provided. The criterion function $1 s$ estimated at some specified number of points chosen from a distrabution which as unnform over the entıre parameter space. The point wath the largest estimate of the function is returned for use as a starting point for the creeping random search Alternatively, the operator may specify any startang point humself.

An optimlzation study involving searches from several startang points, each requirıng five to ten manutes, may take an hour or more of computing tame in spite of the fast analog computatıons. In this case, up to two million computer runs could be made. For this reason, malfunction or drift of an analog computer component should be detected before a large amount of spurlous data is collected. For this purpose a "benchmark test" is includedin the optimization program. Upon loading the program and begannang an optimization, the cxiterıon function is measured at a point $\left(\underline{\mu}_{B}, \underline{\sigma}_{B}\right)$. Durıng subsequent optimızations, the program periodically returns to the same point and reevaluates the criterion function. If an estimate $\vec{f}\left(\underline{\mu}_{B}, \underline{\sigma}_{B}\right)$ differs from
the original measurement by an amount which causes the rejectaon of the hypothesis that the criterion function $1 s$ unchanged, the operator $u s$ notified by a message on a cathode-ray-tube display console (CRT), as shown in Fig. 4.6. For the benchmark tests, 8192 simulations are used to estimate the criterion function. Let \bar{f}_{1} be the estimate of the hat probability p_{1} at the initial benchmark evaluation, and let \bar{f}_{2} and p_{2} be the estumate and the hit probability at some later test. We want to test the hypothesus $H_{0}: p_{1}=p_{2}=p \cdot \bar{f}_{1}$ and \bar{f}_{2} are approximately Gaussian with mean p_{1} and varıance $p_{1}\left(1-p_{1}\right) / n$, for $I=1,2$ and $n=8192$. Under the hypothesis H_{0}, the distrabution of $\overline{\mathrm{f}}_{1}-\overline{\mathrm{f}}_{2}$ is approximately Gaussian with zero mean and variance $2 p(1-p) / n$, and the followng probabılıty statement applies:

$$
\begin{equation*}
P\left[\left|\overline{\mathrm{f}}_{1}-\overline{\mathrm{f}}_{2}\right| \leq \sqrt{\frac{2 p(1-p)}{-n}} z_{\alpha / 2}\right]=1-\alpha \tag{4.5}
\end{equation*}
$$

Since p is unknown, the variance $2 p(1-p) / n$ is replaced by the sample varzance.

$$
\begin{equation*}
P\left[\left|\overline{\mathrm{f}}_{1}-\overline{\mathrm{f}}_{2}\right| \leq \sqrt{\frac{\overline{\mathrm{f}}_{1}\left(1-\overline{\mathrm{f}}_{1}\right)+\overline{\mathrm{f}}_{2}\left(1-\overline{\mathrm{f}}_{2}\right)}{n}} z_{\alpha / 2}\right]=1-\alpha \tag{4.6}
\end{equation*}
$$

(The new statistic has a Student-t distribution, but is approximately Gaussian for large n.) Equation (4.6) is used to test the hypothesis H_{o} at the 0.95 level of significance.

Fig. 4.6 CRT output for a benchmark test fazlure.
4.4 Operation of the Optamızation Program

This section briefly describes the procedure for
performang an optimization and the facilzty for operatorprogram interaction.

The differential equatıons for the simulation are patched on ASTRAC-II's analog and digital patchbays. ASTRAC-II is placed in the SINGLE RUN mode, whach allows for inataation of compute periods on command from the PDP-9 by way of the linkage patchbay.

After the digital program is loaded from magnetac tape anto core memory, the program enters a "command mode," and the followang andex is displayed on the CRT.

1. Read input data
2. Display input data
3. Begin optimization

The operator can select the desired mode of operation by typang the corresponding andex number on the CRT keyboard. Typing a "l" results in a display of an andex to the program variables whach must be assigned values by the operator:
l. M, the number of system parameters.
2. MODE, a number specifying one of three operating modes: $0--a$ single evaluation of the criterion function for specified parameter values; I--the creeping-random-search algorathm; 2--the unaformrandom search.
3. NSHIFT, a number specafying the anytial searchrange for the creeping-random search.
4. MAXS, a number specifyang the minimum search-range for the creepang-random search.
5. NRAN, the number of criterion function evaluations for the unnform-random search.
6. LF, the number of consecutive fallures allowed in the mitial search (Fig. 4.5).
7. KF, the number of consecutive fallures allowed in the final search (Fig. 4.5).
8. N, the number of ASTRAC-II runs per function evaluation for trial steps.
9. MAXN, the maximum number of runs per function evaluation in the final search (Fig. 4.5).
10. NPRINT, the number of tralal steps between CRT printouts of the progress of the optimızation.
11. PMIN(I), PMAX(I), the mınimum and maximum allowable values for the system parameters $\left(a_{1}\right.$ and b_{1} in Eq. [3.5]).

SLIM(I), the lower bound on the percentage standard deviations of the parameters ($c_{\text {I }}$ un Eq. [3.6]).
12. $U(I), S(I)$, inntial values of μ_{1} and σ_{1}.
13. UB(I), SB(I), values for the "benchmark" parameters. Displayed on the CRT screen below the index is a request for the operator to type the number corresponding to the anput variable he wishes to enter. When the number is
typed, the screen $I s$ cleared, and the input variable name followed by an "equal" sign is displayed. The operator then types an the value for the input varıable. When the value is read by the computer, the input data index is displayed again. After the $m p u t$ data have been entered, the operator may return to the command mode by typing a special-code $S(\uparrow S)$. For verafication of the anput data. the operator can type a "2" while in command mode to obtann a CRT display of the data. Typing a "3" in the, command mode inftiates an optimization according to the specified value of MODE (No. 2 above).

As the optimization proceeds, the CRT displays the number of steps taken, the number of these steps resulting $1 n$ an $_m p r o v e m e n t$ of the craterion function, and the parameter values and criterion function value at the current optimal point (Fig. 4.7). A summary of the optimization 1 s displayed upon completion (Fig. 4.7).

The operator can affect the course of the optimization by communicating with the algorithm through accumulator swatches. Whale the search proceeds, he can control the search range, hold any parameters constant while the program contanues to optamıze wath respect to the other parameters, suppress the fallure counters (K or L) in order to remain in one part of the search, request any CRT output duplicated in hard copy by a Teletype, or request a texmination of the search. This kind of algorathm-operator

a. Inztial search.

b. Begannang of the final search.

Fag. 4.7 CRT displays during the optamization.

c. End of the search.

Fig. 4.7--Contınued
interaction can provide the engineer whth unsight unto the
behavior of the system and might enable him to speed the search for the optimum.

In the inverest of execution speed, the programs for estimating the craterion function and for the optimization were written in MACRO-9, the PDP-9 assembly language. Input-output routines were programmed in FORTRAN. The program-interrupt facilıty enables efficient use of computang tame by allowing the digatal computer to perform computatıons durang ASTRAC-II's compute perıod. Whale one simulation is under way, the PDP-9 averages the results of the previous simulatıon and selects the random parameter values and anıtıal conditions for the next simulation.

4.5 Experaments and Results

Contours of constant hat probabiluty are shown in
Figs. 4.8 and 4.9. Results are expressed in terms of scaled parameter values, $K^{\prime}=K / 6$ and $T^{\prime}=T / 1.3$, which are \ln the range $(0,1)$. In $F \perp g .4 .8$, contours are plotted as a function of the scaled parameter mean values for $\sigma_{K}{ }^{\prime}=\sigma_{T^{\prime}}=0$. The maxımum hュt probabılıty, $p_{0} \approx .750$, occurs at approximately $\left(\mu_{\mathrm{K}}, \mu_{\tau}, \sigma_{\mathrm{K}}:, \sigma_{\tau}\right)=(0.42,0.22$, 0.0, 0.0). In Fıg. 4.9, the contours are plotted agalnst the dispersions σ_{K}, and σ_{T}, for $\mu_{K},=0.42$ and $\mu_{T},=0.22$. For the optimal parameter values, $F ュ g .4 .10$ shows sample trajectorles with and wathout the radar-tracking nozse.

Fig. 4.8 Contours of constant hat probabilıty as a function of μ_{K}, and μ_{T}, (mean values of unknown parameters).

Fig. 4.9 Contours of constant hit probability as a function of σ_{K}, and σ_{τ}, (dispersions of unknown parameters).

b. Trajectories wathout nolse.

Vertacal: massale position normal to line of sight, $y / 400$, I volt/cm; horizontal: problem tame, $t^{\prime}, 0.2 \mathrm{msec} / \mathrm{cm}$.

Fig. 4.lo The effect of radax-tracking nozse on the missile trajectorzes.

In order to study the effectaveness of the optamızation strategy, searches were begun from preselected starting points as well as from points chosen by the pure-random search. The results of these searches are summarized 1 n Tables $4.2-4.5 . \quad W_{1} t h N_{\max }=8192$, a 95% confidence-interval half-width for the hit-probability estımate as approxımately $\pm .01$. Thus, for optimızatıons writhout constraints on σ_{K} or σ_{τ}, searches yuelding an "optimal" point with $\overline{\mathrm{f}}<.74$ are considered fallures. An asterısk precedes the data for these searches.

Searches were begun from the point (μ_{K}, μ_{T}, , $\left.\sigma_{K},, \sigma_{T},\right)=(0.9,0.6,0.0,0.2)$ wב.th LF $=20$ and $K F=40 \mathrm{ln}$ order to study the behavior of the algorithm as a function of N, the number of simulations used to estimate p at trial points (Table 4.2).

This starting point is in a region where the

 gradient of the critexion function $1 s$ small; nouse an the estımates of the hit probability can easily obscure the gradient. Note that for the successful searches, the ranges of the final values of μ_{T}, and σ_{T}, are much larger than the ranges of μ_{K}, and σ_{K}, Thas behavior as to be expected from the shape of the contours in Figs. 4.8 and 4.9. In general, as N decreases, so do the average number of simulataons and the computer time per optimization while the number of unsuccessful searches ancreases. An exception l.s the case of $N=64$, where the average number ofTable 4.2 Data for automatic optamizations from the starting point $\left(\mu_{K}, \mu_{T^{\prime}}, \sigma_{K}, \sigma_{\tau}\right)=(0.9,0.6,0.0$,
$0.2)$.

$$
L F=20 \quad \mathrm{KF}=40 \quad N_{0}=4096 \quad N_{\max }=8192
$$

N	\bar{f}_{0}	μ_{K},	μ_{τ},	σ_{K},	σ_{τ},	Trial steps	$\begin{aligned} & \text { ASTRAC-II } \\ & \text { runs } \end{aligned}$
64	.741	. 450	.169	. 005	. 067	174	234000
	. 750	. 421	. 253	. 028	. 128	187	177000
	. 744	. 406	. 268	. 015	. 172	174	213000
	*.715	. 429	. 371	. 024	. 038	146	133000
,	*.739	. 438	. 217	. 010	. 227	151	248000
	*. 706	. 431	. 393	. 023	. 234	117	119000
	*.716	. 412	. 367	. 011	. 148	161	237000
	. 742	. 421	. 265	. 014	. 121	208	375000
					Average:	165	217000
Average tume $=7 \mathrm{~min} 23 \mathrm{sec}$,							
128	.748	. 407	. 212	. 014	. 010	240	267000
	*.707	. 428	. 440	. 006	. 120	157	118000
	. 751	. 427	. 259	. 020	.111	132	136000
	*. 672	. 457	. 784	. 010	. 073	115	117000
	*.738	. 427	. 247	. 029	. 130	148	165000
	*.733	. 424	. 300	. 017	. 066	127	135000
	. 754	. 422	. 203	. 011	. 113	174	120000
	*. 688	. 436	. 513	. 026	.193	152	105000
					Average:	: 156	145000
Average time $=5 \mathrm{~mm} 0 \mathrm{sec}$							
256	. 752	. 425	. 239	. 019	. 054	167	189000
	. 747	. 431	. 269	. 003	. 020	173	211000
	*.721	. 424	. 393	. 024	. 034	149	176000
	. 740	. 420	. 277	. 035	. 142	140	109000
	*.719	. 429	. 367	. 029	. 220	119	117000
	*. 705	. 419	. 402	. 018	. 151	142	114000
	. 756	. 422	. 194	. 005	. 056	229	345000
	. 748	. 41.3	. 226	. 040	. 109	195	497000
					Average:	: 140	198000

Average time $=6 \mathrm{mmn} 36 \mathrm{sec}$

Table 4.2-Continued

$512 \begin{array}{ll} \\ & *\end{array}$. 416	. 208	. 039	. 077	210	216000
	. 4111	. 245	. 015	. 145	162	212000
	. 424	. 504	. 004	. 061	120	146000
	. 413	. 317	. 009	. 296	141	182000
	. 435	. 209	. 021	. 152	222	229000
	. 421	. 214	. 009	. 043	202	220000
	. 422	. 254	. 026	. 121	154	183000
	. 437	. 214	. 046	. 020	159	165000
				Average:	171	185000
Average time $=6 \mathrm{man} 20 \mathrm{sec}$						
$1024 \begin{array}{rl} \\ & .745 \\ & .747 \\ & .739 \\ * & .732 \\ & .745 \\ & .758 \\ & .740 \\ & .743\end{array}$. 425	. 286	. 028	. 052	111	152000
	. 435	. 199	. 017	. 112	137	186000
	. 421	. 282	. 028	. 195	125	201000
	. 422	. 309	. 028	. 169	169	304000
	. 426	. 307	. 007	. 176	226	393000
	. 414	. 245	. 010	. 034	238	359000
	. 4.12	. 189	. 009	. 198	125	200000
	. 421	. 323	. 020	. 166	169	230000
				Average:	162	246000
Average time $=8 \mathrm{~min} 23 \mathrm{sec}$						
2048 .7461 $*$ 7730	. 419	. 305	. 003	. 223		650000
	. 422	. 267	. 002	. 065	133	331000
	. 424	. 363	. 005	. 298	112	237000
	. 420	. 231	:002	. 075	209	424000
				Average.	178	447000
Average time $=15 \mathrm{man} 3 \mathrm{sec}$						

simulations and computer time increases. This is caused by the relatıvely large varıance in the estimates of hıt probabilaty for trial steps in the final search. The "nolsy" estimates lead to many false indications of amprovements in the hıt probabılıty; each undication of an umprovement is followed by a reevaluation requiring many simulations. From the data of Table 4.2, It was decided that the best compromise between performance of the algorathm and computex time occurred for $N=512$. This value was used for the remander of the study.

Table 4.3 shows results for searches begun from the point $\left(\mu_{K}, \mu_{\tau}, \sigma_{K}, \sigma_{\tau},\right)=(0.5,0.9,0.3,0.0)$. Th1s 1s a particularly difficult startang point, because here the search must clumb a narrow ridge, whach has steep sides and a very small slope in the direction or the optimum. In order to have the search reach the optimum, it was necessary to increase LF and KF, the number of consecutive failures allowed in the inatial and final searches.

To illustrate a more practical method for locating the optamum, the algorithm was next started from the best point chosen from the pure-random search descrabed above. Estimates of p based on 512 simulations were calculated for 45 random points. Data for the creeping random searches are listed in Table 4.4. Note that the two unsuccessful searches stopped at poants on the ridge.

Table 4.3 Data for automatic optamizations from the starting point $\left(\mu_{K}, \mu_{\tau},, \sigma_{K}, \sigma_{\tau}\right)=(0.5,0.95$, $0.3,0.0$).

$$
N=512 \quad N_{0}=4096 \quad N_{\max }=8192
$$

	\bar{f}_{0}	μ_{K},	$\mu_{T}{ }^{\prime}$	σ_{K},	σ_{T};	Trial steps	$\begin{aligned} & \text { ASTRAC-II } \\ & \text { runs } \end{aligned}$
$\begin{aligned} & \mathrm{LF}=20 \\ & \mathrm{KF}=40 \end{aligned}$							
	*. 694	. 421	. 519	. 004	. 107	133	117000
	*. 698	. 415	. 497	. 019	. 030	140	161000
	*.681	. 447	. 706	. 026	. 059	129	131000
- *	*. 683	. 449	.675	. 01.5	. 046	139	155000
					Average:	135	147000
Average time $=5 \mathrm{man} 4 \mathrm{sec}$							
LF $=40$							
$\mathrm{KF}=40$							
	. 751	. 419	. 222	. 010	. 173	215	249000
	*. 720	. 430	. 434	. 005	. 243	144	142000
	. 753	. 409	. 245	. 022	. 016	187	208000
	*.725	. 434	. 374	. 001	. 215	204	171000
					Average:	: 187	197000
Average tıme $=6 \mathrm{mmn} 35 \mathrm{sec}$							
$\mathrm{LF}=60$							
$K \mathrm{~F}=30$							
	*. 739	. 41.9	. 255	. 025	. 268	187	224000
	. 764	. 427	. 209	. 005	. 005	294	287000
	*. 684	. 460	. 752	. 003	. 043	202	205000
	. 762	. 415	. 239	. 013	. 044	160	1.40000
	*.705	. 424	. 51.1	. 025	. 004	265	238000
					Average:	: 222	219000
Average tame $=7 \mathrm{mmg} 28 \mathrm{sec}$							

Table 4.4 Data for automatic optimizations from starting pounts chosen by the pure-random search.

$$
\mathrm{LF}=20 \quad \mathrm{KF}=40 \quad \mathrm{~N}=512 \quad \mathrm{~N}_{\mathrm{o}}=4096 \quad \mathrm{~N}_{\max }=8192
$$

$\overline{\mathbf{f}}_{0}$	μ_{K},	$\mu_{T}{ }^{\text {, }}$	σ_{K},	$\sigma_{\tau}{ }^{\prime}$	Trial steps	$\begin{aligned} & \text { ASTRAC-II } \\ & \text { runs } \end{aligned}$
. 748	. 420	. 223	. 048	. 003	121	143000
*.721	. 424	. 423	. 014	. 165	112	129000
. 754	. 419	. 205	. 001	. 048	123	175000
. 747	. 432	. 201	. 019	. 143	111	160000
. 747	. 416	. 187	. 002	. 022	154	165000
. 756	. 422	. 223	. 01.2	. 138	213	266000
*.723	. 425	. 381	. 001	. 258	147	163000
. 753	. 424	. 228	. 014	. 106	181	255000
				Average:	143	1.72000

A pure-random search followed by the creeping-random-search algorıthm was applıed to optimizations wath lower-bound constraints on σ_{K}, and σ_{τ}, (Table 4.5). Thas ıs intended to model a situation where $1 t$ is known that holding production tolerances below a certann level is very difficult and/or costly. Note that a lower bound on σ_{K}, causes an increase in the optimal mean value μ_{K}. For the case of $\sigma_{K}, \geq .2$ and $\sigma_{T}, \geq .2$, the maximum hit probabılaty appears to be about 0.625 . This should be compared with a value of 0.600 for the pount $\left(\mu_{K},, \mu_{\tau}, \sigma_{K}, \sigma_{\tau}\right.$,) $=(0.42,0.22$, $0.2,0.2$) an Fig. 4.9.

Optimazations wexe performed with several other combinations of lower-bound constraints on σ_{K}, and σ_{τ}, as well as with equality constraints on σ_{K}, and σ_{T}, In no case, however, was it observed that increasing σ_{K}, or σ_{T}, resulted in an increase in the hit probability. It is believed that McGhee and Levine's observation of the hit probabilıty uncreasing as σ_{K}, is increased is a result of holding μ_{K}, and μ_{T}, constant, unstead of locating new optimal values.

From the results for this example problem, it could be concluded that production variations in the gain K wall have a significant effect on the hit probability, while large variations in T degrade the performance only slightly. Also, for lower bounds on σ_{K}, and σ_{τ}, the mean value μ_{K}, must be increased to obtann optimal performance. Note that

Table 4.5 Data for automatic optimizations with lower bound constralnts on σ_{K}, and σ_{T}, \cdot

$$
\mathrm{LF}=20 \quad \mathrm{KF}=40 \quad \mathrm{~N}=512 \quad \mathrm{~N}_{\mathrm{o}}=4096 \quad \mathrm{~N}_{\max }=8192
$$

	\bar{f}_{0}	$\mu_{K}{ }^{\prime}$	μ_{T},	$\sigma_{\mathrm{K}}{ }^{\prime}$	σ_{τ},	$\begin{aligned} & \text { Trıal } \\ & \text { steps } \end{aligned}$	$\begin{aligned} & \text { ASTRAC-II } \\ & \text { runs } \end{aligned}$
$\sigma_{\mathrm{K}} \geq 0.1$							
	. 700	. 441	. 268	. 113	. 243	120	164000
	. 708	. 473	. 172	. 101	. 004	150	232000
	. 707	. 432	. 282	. 101	. 043	131.	179000
	.706	. 457	. 187	. 104	.094	148	198000
					Average:	137	193000
Average tame $=6 \mathrm{mmn} 26 \mathrm{sec}$							
$\sigma_{\mathrm{K}} \geq .2$							
$\sigma_{\tau} \geq$ - 2	。						
	. 610	. 458	. 174	. 217	. 233	123	154000
	. 613	. 479	. 182	. 208	. 297	115	176000
	. 623	. 461	. 206	. 206	. 236	149	195000
	.618	. 488	. 228	. 208	. 248	149	191000
	. 628	. 487	. 194	. 203	. 222	1.75	224000
	. 624	. 501	. 221	. 205	. 200	125	198000
	. 631	. 451	. 186	. 205	. 212	158	212000
	. 631	. 456	. 187	. 201	. 251	199	215000
				Average: 149			191000
Average tame $=6 \mathrm{man} 32 \mathrm{sec}$							

thas latter effect us revealed by the simulation of
relatively laxge random variations in K; it would not be
predicted from a small perturbation analysis.

CHAPTER 5

CONCLUSIONTS AND DISCUSSION

Abstract

In spite of the very large number of system simulations requixed for the optimization of the example problem, it is belıeved that thas hybrıd-computer approach to the optimazation of systems with random parameters is a feasable one $1 f$ a fast dıgıtally controlled analog computer ıs avaılable. Certaınly, the large number of simulatıons demonstrates that an all-dıgıtal optımızatıon of a dynamical system with random parameters by the Monte Carlo method would be mmpractacal at this time.

It maght be noted that the type of criterion function optimlzed in the example (a probability) is one requiring a very large number of simulations in order to obtaın a reasonable criterıon-functıon estimate. For example, $I f$ the hıt probabılıty is 0.5 , our estımate $1 s$ approximately Gaussian wıth mean 0.5 and standard deviation $1 / 2 \sqrt{n}$, where n as the number of simulations used for the estımate of p. Then 100 simulations are required just to obtaın an estımate wrュth a standard deviation which 1 s 10% of the mean. Criterion-function measurements for other types of problems may well have a more favorable signal-tonoise ratio.

With a computing speed of approximately 500 simulations per second, typical optamazation times were on the order of 6-7 manutes for the 4-parameter example problem SImulated on ASTRAC-II. For a commercially-available machine capable of about 200 simulations per second, a typical optimization time of about 16 manutes does not appear prohibative. The results of Schumer and Stezglitz (1968) andicate that function evaluations (and computer time) should be expected to increase linearly as a function of the dimension of the parameter space.

The data presented in Chapter 4 were for completely automatic optimızation in order to evaluate the effectaveness of the search algorithm. Operator-program interaction can save much computer time and provide more insight into the nature of the system. The automatic search 1s, however, the most important factor in devising an effective optimization system.

Parameter optimization in the presence of noise is surely an area requiring further research. The creeping-random-search algorithm described here is effective but wants umprovement. The addition of a scheme for biasing the search in the durection of past successful steps should speed the progress along a radge (Matchell, 1964; Matyas, 1965, Rastrigin, 1967).

Two other approaches to "nolsy" parameter optimızation maght be anvestıgated. The digatal computer is adle
for much of the time durang the antegration of the differential equations on the analog machine. For the problem solved here, some of this time was used to generate parameter values for the next simulation. The opportunity for using this "ıdle time" would be ancreased with commercıally-avanlable hybrıd computers, which have analog machines with slower computing speeds than ASTRAC-II and, typically, faster floatang-point arıthmetic than the PDP-9. Durang this time, the dagatal machine might make use of previous criterıon-function measurements in order to fit a second-order regression surface to the criterion function, as brıefly descrıbed \ln Section 2.4. If a measurement of the craterion function at the manimum point of the regression surface $I s$ an mprovement over the current best pount obtained by the creepung random search, the center of the search could be placed at the new pount. Computing the regression surface and solving for the mınımum point would, practically speaking, require floating-poınt computatıons. Another possible approach to optimuzing noxsy criterion functions is to combine the conjugate-gradient algorithm of Powell (1964) or Zangrill (1967) wath a stochastic-approximation method for the one-dimensional. minimlzatuons. It may not be necessary to locate the manima along the search durections whth great accuracy; Harkins (1964) has noted that wath the Partan method,

```
convergence could be improved by inaccuracies an determin-
lng these minuma.
```


APPENDIX A

THE EFFECTS OF LIMITTING A GAUSSIAN RANDOM VARIABLE

Let the random varıable X be Gaussian wath mean μ and variance σ^{2}. The distribution function for X is given by

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(z) d z \\
& =\int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-(z-\mu)^{2} / 2 \sigma^{2}\right] d z
\end{aligned}
$$

We "lımıt" the random variable X at $+r \sigma$ and at $\pm r \sigma(r>0)$ and show how the mean and variance of X are changed by these two limıtang operations.
A. 1 Limıtıng at r ro

Wathout loss of generalaty, we can assume $\mu=0$.
Let the new random variable U be given by

$$
\begin{array}{ll}
\mathrm{X} & \text { for } \mathrm{X} \leq r \sigma \\
& r_{\sigma} \text { for } \mathrm{X}>r \sigma
\end{array}
$$

The distribution function for U is gaven by

$$
G(u)=\begin{aligned}
& F(u) \text { for } u<r \sigma \\
& 1 \quad \text { for } u \geq r \sigma
\end{aligned}
$$

The expected value of U us

$$
\begin{align*}
E\{U\} & =\int_{-\infty}^{\infty} u d G(u) \\
& =\int_{-\infty}^{r \sigma} u f(u) d u+r \sigma \int_{r \sigma}^{\infty} f(u) d u \\
& =\frac{-\sigma \exp \left(-r^{2} / 2\right)}{\sqrt{2 \pi}}+r \sigma \int_{r \sigma}^{\infty} f(u) d u \tag{A.1}
\end{align*}
$$

The variance of U is

$$
\begin{aligned}
\operatorname{Var}\{U\} & =E\left\{(U-E\{U\})^{2}\right\} \\
& =E\left\{U^{2}\right\}-[E\{U\}]^{2} \\
& =\int_{-\infty}^{r \sigma} u^{2} f(u) d u+(r \sigma)^{2} \int_{r \sigma}^{\infty} f(u) d u-[E\{U\}]^{2}
\end{aligned}
$$

A. 2 Limxting at $\pm r o$

Again we assume $\mu=0$. Let V be gaven by

$$
V=\quad \begin{aligned}
& -r \sigma \text { for } X<-r \sigma \\
& X \quad \text { for }-r \sigma \leq X \leq r \sigma \\
& r \sigma \text { for } X>r \sigma
\end{aligned}
$$

The distribution function for V is given by

$$
H(v)=\quad \begin{aligned}
& 0 \text { for } v<-r \sigma \\
& \mathrm{~F}(\mathrm{v}) \text { for }-r \sigma \leq \mathrm{v}<\mathrm{r} \sigma \\
& 1 \text { for } \mathrm{v} \geq r \sigma
\end{aligned}
$$

Since the lamatang operation as symmetric about the mean,

$$
\begin{equation*}
\mathrm{E}\{\mathrm{~V}\}=\mathrm{E}\{\mathrm{X}\} \tag{A.3}
\end{equation*}
$$

The variance of V is

$$
\begin{align*}
& \operatorname{Var}\{v\}=E\left\{v^{2}\right\}-[E\{v\}]^{2} \\
&=E\left\{v^{2}\right\} \\
&=(r \sigma)^{2} \int_{-\infty}^{-r \sigma} f(v) d v+\int_{-r \sigma}^{r} v^{2} f(v) d v+(r \sigma)^{2} \int_{r \sigma}^{\infty} f(v) d v \\
&= \int_{-r \sigma}^{r \sigma} v^{2} f(v) d v+2(r \sigma)^{2} \int_{r \sigma}^{\infty} f(v) d v \\
&= \sigma^{2}\left\{I+2\left[\left(r^{2}-1\right) \int_{r \sigma}^{\infty} f(v) d v-\frac{r \exp \left(-r^{2} / 2\right)}{\sqrt{2 \pi}}\right]\right\} \tag{A.4}
\end{align*}
$$

Equations (A.I)-(A.4) give the means and variances of the lumited random variables U and V as functions of r and σ. Table 3.1 lısts the numerıcal values for $r=1,2$, 3, and 4.

REFERENCES

Adams, R. J., and A. Y. Lew
1966 "Modifıed Sequentıal Random Search Using a Hybrıd Computer, "Universıty of Southern Calıfornia, Electrical Engineering Department Report, May, 1966.

Beckman, F. S.
1960 "The Solution of Lanear Equations by the Conjugate Gradient Method, " Mathematıcal Methods for Digital Computers, A. Ralston and H. F. Wilf (Eds.), Waley, New York, 1960.

Bekey, G. A.
1964 "Optamization of Multiparameter Systems by Hybrid Computer Techniques, "Simulation, vol. 3 , no. 2 and no. 3, 1964.

Bekey, G. A., and W. J. Karplus
1968 Hybrad Computatıon, Wıley, New York, 1968.
Bekey, G. A., and R. B. McGhee
1964 "Gradient Methods for the Optimızation of Dynamac System Paxameters by Hybrad Computation, " Computing Methods in Optimization Problems, A. V. Balakrishnan and L..W. Neustadt (Eds.), Academıc, New York, 1964.

Bekey, G. A., M. H. Gran, A. E. Sabroff, and A. Wong
1966 "Parameter Optimazation by Random Search Using Hybrid Computer Technaques," AFIPS Conference Proceedings, vol. 29, 1966.

Belt, J. E.
1969 "A Random Nolse Generator for a Digutal Computer, " M.S. Thesis, Department of Electrical Enganeering, University of Arızona, 1969.

Birta, L. G., and P.J. Trushel
1969 "A Comparatıve Study of Four Implementations of a Dynamıc Optimizatıon Scheme," Simulation, vol. 13, no. 2, 1969.

Blum, J. R.
1952 "Multidumensional Stochastic Approximation Methods," Annals of Mathematical Statistics, vol. 23, pp. 462-466, 1952.

Bohling, D., and J. Chernak
1965 "A Hybrid Computer Technaque for Optimazation, " Simulation, vol. 5, no. 4, 1965.

Bohling, D., and L. A. O'Neill
1970 "An Interactave Approach to Tolerance Analysis," IEEE-TC, vol. C-19, no. 1, 1970 .

Box, M. J.
1965 "A New Method of Constrained Optimlzation and a Comparison with Other Methods," The Computer Journal, vol. 8, no. 1, 1965.

1966 "A Comparison of Several Current Optimazation Methods, and the Use of Transformations in. Constranned Problems," The Computer Journal, vol. 9, no. 1, 1966.

Brooks, S. H.
1958 "A Discussion of Random Methods for Seeking Maxima," The Computer Journal, vol. 6, no. 2, 1958.

Brooks, S. H., and M. R. Mackey
1961 "Optimum Estimation of Gradient Direction in Steepest Ascent Experıments," Biometrics, vol. 17, no. I, 1961.

Buehler, R. J., B. V. Shah, and O. Kempthorne
1964 "Methods of Parallel Tangents," Optimization Technıques, Chemıcal Engıneering Progress Symposium Serıes, vol. 60, 1964.

Carlson, A. M.
1967 "A Partan Optimızation Program," PCC Report, Princeton Computation Center, Electronics Assoclates, Inc., Princeton, New Jersey, August 18, 1967.

Carnahan, B.
1966 "Optimization Methods--A Review and Some Example Applıcatıons, " Computers in Enganeerıng Design Education, Unıversity of Michıgan, March, 1966.

Carroll, C. W.
1961 "The Created Response Surface Technique for Optimizing Nonlunear Restraıned Systems," Operations Research, vol. 9, no. 2, 1961.

Chang, S. S. L.
1961 Synthesis of Optamum Control Systems, McGrawHıll, 1961.

Davidon, W. C.
1959 "Varıable Metrıc Method for Mınımızation," AEC Research and Development Report Anl-5990, December, 1959.

Deardorff, J. E., and C. R. Trimble
1968 "Calıbrated Real-Time Signal Averaging," Hewlett-Packard Journal, April, 1968.

Dvoretsky, A.
1956 "On Stochastic Approximation, " Proceedings Third Berkeley Symposium on Mathematical Statistics and Probabılıty, J. Neyman (Ed.), University of Calıfornia Press, 1956.

Favreau, R. R., and R. G. Franks
1958 "Statistical Optimızation," Proceedings Second International Analog Computer Conference, 1958.

Fiacco, A. V., and G. P. McCormack
1964 "Computational Algorithm for the Sequential Unconstrained Minzmazation Technique for Nonlınear Programming, "Management Scıence, vol. 10, pp. 360-366, 1964.

1968 Nonlinear Progxamming: Sequential Unconstrained Mınımızatıon Technıques, Wıley, New York, 1968 .

Flezscher, P. E.
1966 "Optimazation Techniques," Chapter 6 in System Analysus by Digital Computer, F. F. Kuo and J. F. Kaiser (Eds.), Wıley, New York, 1966.

Fletcher, R.
1965 "Punction Manımızation without Dexivatıves--A Review," The Computer Journal, vol. 8, pp. 33-41, 1965 。

Fletcher, R., and M. J. D. Powell
1963 "A Rapidly Convergent Descent Method for Minimızation," The Computer Journal, vol. 6, no. 2, July, 1963.

Fletcher, R., and C. M. Reeves
1964 "Function Minamazation by Conjugate Gradients," The Computer Journal, vol. 7, pp. 149-154, 1964.

Forsythe, G. E., and T. S. Motzkin
1951 "Acceleration of the Optimum Gradient Method," Bulletin of the American Mathematical Society, vol. 47, pp. 304-315, 1951.

GュIbert, E. G.
1967 "A Selected Biblıography on Parameter Optimization Methods Surtable for Hybrid Computation," Simulation, vol. 8, no. 6, 1967.

Gonzalez, R. S.
1969 "An Optimization Study on a Hybrid Computer," M.S. Thesis, Department of Electrical Engıneering, The Unıversity of Arızona, 1969.

Gurin, L. S., and L. A. Rastrigın
1965 "Convergence of the Random Search Method in the Presence of Noise," Automation and Remote Control, vol. 26, pp.1505-1511, 1965.

Hague, D. S., and C. R. Glatt
1968 "An Introduction to Multivariable Search Techniques for Parameter Optimızation (and Program AESOP), " NASA CR-73200, Aprı1, 1968.

Hahn, G. J., and S. S. Shapıro
1967 Statastical Models in Enganeering, Wiley, New York, 1967.

Hampton, R. L. T.
1968 "Survey of Stochastic Approximation and Its Applications," Term Paper, Department of Electracal Engineerıng, The Unıversıty of Arızona, January, 1968 .

Harkins, Alvin
1964 "The Use of Parallel Tangents in Optamazation," Optimızatıon Technıques, Chemıcal Engıneering Symposium Series, vol. 60, 1964.
Hestenes, M. R., and E. Stiefel
1952 Method of Conjugate Gradients for Solving Linear Systems," Journal of Research, National Bureau of Standards, vol. 59, pp. 409-436, 1952.

Heydt, G. T.
1969 "Random Search Using Hyperconacal Search Regions," Ph. D. Thesis Proposal, Purdue Unıversity, February, 1969.

Hooke, R., and T. A. Jeeves
1958 "Comments on Brooks' Discussion of Random Methods," Operatıons Research, vol. 6, no. 6, 1958.

1961 "Direct Search Solution of Numerical and Statastical Problems," Journal of the Association of Computing Machunery, vol. 8, no. 2, 1961.

Huelsman, L. P.
1968 "GOSPEL--A General Optimization Software Package for Electrıcal Network Design," Dept. of Electrical Enganeering, The Unaversity of Arızona, 1968.

Janac, Karel
1967 "Parameter Optimization of Dynamic Systems," Presented at the Fifth International Conference AICA, Lausanne, September, 1967.

1969 "Adaptıve Stochastıc Approxımatıons," Electronzc Associates, Inc., Pranceton, New Jersey, 1969.

Karnopp, D. C.
1963 "Random Search Technıques for Optimization Problems," Automatica, vol. I, pp. lll-lil, 1963.

Kavanaugh, W. P., E. C. Stewart, and D. H. Brocker
1968 "Optimal Control of Satellate Attıtude Acquisition by a Random Search Algorithm on a Hybrid Computer," Proceedıngs Sprang Jount Computex Conference, 1968.

Kıefer, J., and J. Wolfowntz
1952 "Stochastuc Estimatıon of the Maxımum of a Regression Function," Annals of Mathematical Statıstics, vol. 23, pp. 462-466, 1952.

Kopp, R. E.
1967 "Computational Algorithms in Optamal Control," Research Department, Grumman Aırcraft EngıneerIng Corp. Bethpage, New York, 1967.

Korn, G. A.
1966 Random-Process Simulation and Measurements, McGraw-Hall, New York, 1966.

1969 "Project DARE Differential Analyzer REplacement by On-lıne Digital Simulatıon, " Proceedangs Fall Joint Computer Conference, 1969 .

Korn, G. A., and T. M. Korn
1964 Electronic Analog and Hybrad Computers, McGrawHill, New York, 1964 .

1968 Mathematical Handbook for Scientists and Engineers, McGrar-Hı11, New York, 1968 .

Korn, G. A., and H. Kosako
1970 "A Proposed Hybrad-Computer Method for Functional Optımızatıon," IEEE-TC, vol. C-19, no. 2, 1970.

Kushner, H. J.
1963 HHall Climbing Methods for the Optimazation of Multiparameter Noıse Dısturbed Systems," Journal of Basic Engineerıng (Transactions of the ASME), Vol. 85, series D, no. 2, 1963.

Lasdon, L. S., S. ${ }^{\circ}$ K. Mitter, and A. D. Waren
1967 "The Conjugate Gradient Method for Optimal Control Problems," IEEE-TAC, vol. AC-12, no. 2, 1967.

Lavi, A., and T. P. Vogl (Eds.)
$1966 \frac{\text { Recent Advances in Optamızation Techniques, }}{\text { Wiley New York }}$ Wiley, New York, 1966 .

Leon, A.
1964 "A Comparison Among Eight Known Optimization Procedures," Internal Working Paper No. 20, Space Sciences Laboratory. University of Calıfornia, Berkeley, August, 1964.

Matyas, J.
1965 "Random Optimization, "Automation and Remote Control, vol. 26 , no. $2,1965$.

Maybach, R. L.
1966a "Solution of Optimal Control Problems on a HighSpeed Analog Computer," Simulation, vol. 7, no. 5, 1966.

Maybach, R. L.
1966b "Generation of Inverse Functions by the Method of Steepest Descent," Annales de l'Assoclation Internationale pour le Calcul Analogique, vol. VIII, no. 4, 1966.

McGhee, R. B.
1967 "Some Parameter Optimazation Technıques," Chapter 4.8 in Digital Computer User's Handbook, Melvin Klerer and G. A. Korn (Eds.), McGrawHall, 1967.

McGhee, R. B., and A. Levane
1964 "Determanation of Optimum Production Tolerances by Combined Analog-Dıgatal Computation," Simulation, vol. 3, no. 5, 1964.

Matchell, B. A.
1964 "A Hybrıd Analog Diging^{2} tal Parameter Optimızer for ASTRAC-II, " Proceedıngs Spring Joint Computer Conference, 1964.

Munson, J. K., and A. I. Rubin
1959 "Optamization by Random Search on the Analog Computer," IRE-TEC, vol. EC-8, no. 2, 1959.

Nelder, J. A., and R. Mead
1965 "A Simplex Method for Function Manamization, " The Computer Journal, vol. 7, no. 4, 1965.

Pearson, J. D.
1968 "On Vara able Metrac Methods of Minamization, " RAC-TP-302, Research Analysis Corp., McClean, Virganza, May, 1968.

Powell, M. J. D.
1964 "An Efficient Method of Finding the Minimum of a Function of Several Variables Without Calculatıng Derıvatıves, " The Computer Journal, vol. 7, pp. 155-162, 1964.

Rastrıgin, L. A.
1963 "The Convergence of the Random Search Method in the Extremal Control of a Many Parameter System," Automation and Remote Control, vol. 24, pp. 1337-1342, 1963.

1967 Random Search in Optimization Problems for Multıparameter Systems, Aır Force Systems Command, Foreign Technology Division, August, 1967.

Robbins, H., and S. Munro
1951 "A Stochastic Approximation Method," Annals of Mathematical Statustics, vol. 22, pp. 400-407, 1951 .

Rosen, J. B.
1960 "The Gradient Projection Method for Nonlinear Programmang, Part I, Linear Constraints," SIAM Journal, vol. VIII, no. l, 1960.
1961. "The Gradient Projection Method for Nonlınear Programmang, Part II, Nonlanear Constraints," SIAM Journal, vol. IX, no. 4, 1961.

Rosenbrock, H. H.
1960 "An Automatic Method for Finding the Greatest or Least Value of a Function," The Computer Journal, vol. 3, no. 3, 1960.

Saaty, T. L., and J. Bram
$1964 \frac{\text { Nonlınear Mathematics, McGraw-Hıll, New York, }}{1964 .}$
Schumer, M. A., and K. Stelglitz
1968 "Adaptıve Step Size Random Search," IEEE-TAC, vol. AC-13, no. 3, 1968.

Shah, B. V., R. J. Buehler, and O. Kempthorne
1964 "Some Algorithms for Minimizing a Function of Several Variables," Journal of SIAM, vol. 12, pp. 74-92, 1964.

Spang, H. A., III
1962 "A Review of Mınımızation Technıques for Non-. linear Functions," SIAM Review, vol. 4, no. 4, 1962.

Spendly, W., G. R. Hext, and F. R. Hzmsworth
1962 "Sequential Applications of Simplex Designs in Optimızation and Evolutionary Operation," Technometrics, vol. 4, no. 4, 1962.

Stewart, E. C., W. P. Kavanaugh, and D. H. Brocker
1967 "Study of a Global Search Algorithm for Optimal Control, " Presented at the Fifth International Congress AICA, Lausanne, 1967.

Swann, W. H.
1964 "Report on the Development of a New Direct Search Method of Optimization, " Imperial Chemical Industries Ltd., Central Instrument Laboratory Research Note 64/3, 1964.

Whate, R. C.
1970 "A Fast Digital-Computer Method for Recursive Estimation of the Mean," to be published, IEEE= TC, 1970 .

Wilde, D. J.
1964 Optimum Seekıng Methods, Prentace-Hall, Englewood Cliffs, New Jersey, 1964.
whlde, D. J., and C. S. Beaghtler
1967 Foundations of Optimzzation, Prentice-Hall, Englewood Cliffs, New Jersey, 1967.

Zangwill, W. I.
1967 Minimizing a Function Without Calculating Deravatıves, " The Computer Journal, vol. 10, no. 3, 1967.

