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ABSTRACT
 

Heat transfer experiments have been carried out in air on
 

a turbulent boundary layer subjected to a strongly accelerated
 

free-stream flow, with and without surface transpiration.
 

Stanton number, mean temperature and mean velocity profiles,
 

and turbulence intensity profiles were measured along the
 

accelerated region. The tests were conducted with favorable
 

pressure gradients denoted by values of the acceleration 

dU -6 6 
parameter K( = -) of 2.0 x 10 and 2.5 x 10- . The 

%2dx 

blowing fraction, F( = PoV.PpU 0 ), ranged from 0.0 to 0.004.
 

The flow was incompressible (U,max = 86 fps) with a moderate
 

temperature difference, 25 F, across the boundary layer.
 

One objective of the program was to obtain detailed
 

heat transfer data in strong accelerations, to both increase
 

understanding in this area and to provide a base for future
 

prediction procedures. A second, and equally important,
 

objective was to determine whether or not relaminarization
 

of the boundary layer occurs at K = 2.5 x 1076 .
 

The experimental results demonstrate that the Stanton
 

number, as a function of enthalpy thickness Reynolds number,
 

falls increasingly below the behavior observed in unaccelerated
 

flows as K is increased, with or without blowing. The
 

profile traverses show that, at the end of acceleration, the
 

boundary layer is still fully turbulent.
 

Further heat transfer results are presented which il

lustrate the effects of various conditions at the start of
 

acceleration (notably the thicknesses of the thermal and
 

hydrodynamic layers); step-changes in blowing within the
 

accelerated region; and an increase in the free-stream
 

turbulence intensity.
 

The experimental results reported here, as well as data
 

taken by other experimenters at lower values of K , have
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been used to calculate the distribution of turbulent Prandtl
 

number across the boundary layer. These calculations suggest

that a correlation of turbulent Prandtl number which is use

ful for flow over a flat plate is equally valid in accelerated
 

flows.
 

Using a numerical solution of the appropriate boundary
 

layer equations, the experimental results are predicted with
 

reasonable accuracy, including the effects of various initial
 

conditions and free-stream turbulence intensities.
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CHAPTER ONE
 

INTRODUCTION
 

A. General Background
 

The purpose of this research has been to gain insight,
 

through experimentation, into the heat transfer behavior of
 

turbulent boundary layers subjected to a strongly accelerated
 

free-stream flow. Recent studies in this area have clearly
 

indicated that the interactions between the hydrodynamic and
 

thermal boundary layers under these conditions are not under

stood to the point where adequate predictions of the heat
 

transfer are possible [1,2]1 . It has been demonstrated by
 

numerous experimenters that when a turbulent boundary layer
 

is subjected to a sufficiently large negative pressure gra

dient (free-stream acceleration), the layer will display
 

laminar-like characteristics, apparently experiencing a re

transition from a turbulent boundary layer to a laminar one.
 

This phenomenon is accompanied by very substantial reductions
 

in Stanton number and, for this reason, is of considerable
 

technical significance.
 

It was originally thought that the abrupt decrease in
 

the Stanton number, when a high acceleration is applied,
 

was evidence of the retransition to a laminar boundary layer,
 

and the term "laminarization", coined by Launder [3], has
 

frequently been used in connection with such decreases in
 

Stanton number. More recently it has been demonstrated [4]
 

that even a relatively mild acceleration can cause a re

duction in Stanton number, and that the degreje of reduction
 

increases continuously with the strength of the acceleration
 

even though the layer remains turbulent. It is thus impos-


References will be denoted by brackets throughout this
 
report.
 



sible to determine from heat transfer data alone whether
 

laminarization is taking place. Examination of mean velocity
 

profiles, and the success of a theoretical model of the ac

celerated boundary layer, is used by Kays, et al. [4], as
 

evidence that a turbulent equilibrium boundary layer can
 

exist even though Stanton number is decreasing virtually as
 

it would were the boundary layer entirely,laminar. It appears
 

that acceleration causes a substantial increase in the thick

ness of the sublayer (an increase that ultimately will en

velop the entire boundary layer at sufficiently strong ac

celerations), while at the same time the thermal boundary
 

layer penetrates beyond the momentum boundary layer such
 

that it encounters a region of very low or negligible eddy
 

conductivity-. The relative importance of these two different
 

phenomena to the reduction in heat transfer is unknown, but
 

it is expected that the growth of the sublayer is the dom

inating factor.
 

The ability to theoretically predict the effect of strong
 

acceleration on the heat transfer in turbulent boundary layers,
 

be it the result of relaminarization or a less dramatic
 

phenomena, is a necessary prerequisite to design applications.
 

Reasonable success in this regard has been achieved by Kays,
 

et al. [4] for boundary layers subjected to accelerations up
 
v dUm
 

to a value of the acceleration parameter K( = = d ) ofU. dx 

1.47 x 10-6 (relaminarization is thought to commence some

where between K = 2.0 x 10-6 and K 3.5 x 10-6). The'
 

most important factor in any prediction method for turbulent
 

boundary layer behavior is how one chooses to model the
 

turbulent transport terms. In flows approaching relaminariza

tion, particularly in heat transfer where the free-stream
 

turbulence level has promise of being an important parameter,
 

the simultaneous solution of the turbulent kinetic energy
 

equation in conjunction with the.momentum and energy equa

tions shows considerable promise as a prediction method
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because the turbulence is invoked explicity. In this method,
 

the turbulent transport of heat and momentum can be related
 

to the turbulent kinetic energy in several different ways.
 

One technique, which has been pursued in this study, is to
 

utilize the eddy diffusivity concept for momentum, and a
 

turbulent Prandtl number to relate the eddy diffusivity for
 

heat to that for momentum. In such a treatment, it is
 

important to know the effect of external parameters, such as
 

acceleration and transpiration, on the model for the turbulent
 

Prandtl number.
 

Because a requirement for wall cooling often accompanies
 
strong accelerations in current applications, positive tran

spiration, or blowing, at the wall is sometimes used to pro

vide thermal protection at the surface. Thielbahr, et al.
 

[6] conducted an extensive experimental investigation of the
 

combined case of transpiration, both blowing and sucking, and
 

moderate accelerations, up to K = 1.45 x 10-6. The results
 

of that study show some interesting interactions between
 

blowing and acceleration. To pursue that aspect of heat
 

transfer in accelerated flows, this study has been extended
 

to cover the combined case of strong acceleration and blow

ing. It is recognized that practical problems often include
 

variable-propert, high velocity flows, whereas the experi

mental work reported here has been taken under conditions
 

of constant properties and incompressible flow. Experience
 

with current prediction methods, however, has repeatedly
 

shown that the knowledge gained from this simpler case is
 

generally applicable to more complicated flow conditions.
 

B. Report Organization
 

The present research covers three separately definable,
 

but interrelated, topics.
 

First, the essential question of the relationship of
 

the reduction in heat transfer to the possible occurrence of
 

relaminarization has been investigated. Detailed measurements
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have been obtained of both surface heat transfer, and boundary
 

layer profiles of mean temperature, mean velocity, and stream

wise fluctuation velocity, up to a value of the acceleration
 

parameter, K , of 2.5 x 10- 6 The experimental data also
 

include a series of tests which examine the response of the
 

heat transfer in the accelerated turbulent boundary layer to
 

changes in initial conditions and to steps in boundary con

ditions. The results of this test series provide some in

sight into the importance of the laminar-like outer region,
 

where the thermal boundary layer has grown thicker than the
 

hydrodynamic boundary layer.
 

Secondly, the effect of an inlet free-stream turbulence
 

intensity of 3.9 percent on the reduction in heat transfer,
 

at an acceleration of K = 2.5 x 10-6, has been tested. The
 

measured heat transfer provides additional information about
 

the importance of the outer region. Because the theoretical
 

model has been found to adequately predict these experimental
 

results, the effect of a still higher initial free-stream turbu

lence .intensity of 10 percent is also theoretically predicted.
 

The third topic treated here is an experimental evalua

tion of turbulent Prandtl number, for no transpiration and
 

one case of strong blowing, over a full range of acceleration
 

from the flat plate boundary layer (K = 0.0) up to
 

-
K = 2.5 x 10 6. This information is necessary to provide a
 

reasonable basis for the turbulent Prandtl number model used
 

to calculate the turbulent transport of heat in the boundary
 

layer.
 
This thesis has been organized into three major chapters,
 

each treating one of the topics described above. All periph

eral information, such as a description of the experimental
 

apparatus and testing techniques, and tabulation of the
 

experimental data, is presented in supplementary sections.
 

While there will naturally be some overlap between the three
 

topics, each chapter is essentially treated as a self-contained
 

unit. In a given chapter are presented the experimental and
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theoretical background pertinent to its subject, the
 

objectives of the research, the presentation of results, and
 

conclusions.
 

C. Laminarization
 

It was in the mid-fifties that the reduction of surface
 

heat transfer in an accelerated turbulent boundary layer was
 

first noted, leading Wilson [7] in 1957 to suggest that the
 

turbulent boundary layer may revert to a laminar layer in
 

accelerated flow. Since that time there have been numerous
 

studies of this phenomenon, starting with detailed investiga

tions of the hydrodynamic aspects by Launder [3] in 1964 and
 

a basic heat transfer study by Moretti and Kays [8] in 1966.
 

One of the inherent difficulties in this subject arises
 

because laminarization, the reversion of a turbulent boundary
 

layer to a laminar boundary layer, is a vaguely defined oc

currence. Like forward transition from laminar to turbulent
 

flow, there is a range in which the boundary layer is neither
 

laminar nor turbulent, i.e., it is "in transition". Strong
 

accelerations usually take place over short distances, and
 

no experimenter has been able to maintain a laminarized
 

boundary layer. Only laminar-like characteristics, both
 

hydrodynamic and thermal, have been observed, with no distinct
 

line of demarcation between turbulent and laminar conditions.
 

It stands to reason that it is quite difficult to define the
 

onset of the reversion process.
 

Experimental hydrodynamic studies [9,10,11] have con

centrated on both the characteristics of laminarized boundary
 

layers, and on criteria for the onset of laminarization.
 

Noting the accumulated knowledge from several investigations,
 

including their own, Badri and Ramjee [11] tentatively noted
 

three states in the decidedly gradual process (1) disap

pearance of the large eddy structure near the wall at a
 

1Summarized in this form by Bradshaw [12].
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critical value of the acceleration parameter K , (2) a
 

departure from the inner law velocity profile at critical
 

values of V dP i.e. P+ V and a decay
3 (3)dx' , 'Ut 3 -r 

of turbulence intensity starting at a critical value of the 

momentum thickness Reynolds number. In regard to item (2), 

it has been observed that, in strong favorable pressure 

gradients, apparently approaching relaminarization, the shape 

factor H reaches a minimum value before increasing sharply 

[10], and the boundary layer becomes fully, but intermittently, 

turbulent [13]. Additionally, it has been shown by Julien 

[141 that departure from the inner velocity law occurs in 

moderate accelerations before any laminarization effects can 

be expected. One of the most pertinent observations remains 

that of Shraub and Kline [151, who noted, in a study of the 

turbulent structure in the sublayer, that the frequency of 

turbulent bursts, associated with the production of tur

bulence, decreases in accelerated flows. At a value of K 

of about 3.5 x 10-6 bursting ceases- entirely, leaving only 

the normal dissipation processes. 

Bradshaw [12] has recently formulated a model which dis

plays significant promise, both in its proposed explanation 

of the underlying physics in laminarization, and its agree

ment with previous observations. Bradshaw argues that tur

bulent flow will become directly dependent on viscosity when 

the shear-stress-producing and dissifpating ranges of eddy

size overlap. Laminarization will occur when the region in

dependent of viscosity has disappeared. He develops an
 

eddy Reynolds number, Jrt/p L/v , which is a measure of the
 

degree of overlap, where .t is the turbulent shear stress
 

and L is a typical length scale of the shear-stress-pro

ducing eddies. Since the edge of the sublayer in a turbulent
 

boundary layer is a region where viscous effects are just
 

appreciable, the critical value of the eddy Reynolds number
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can be evaluated there. Setting L = Ky , Bradshaw deduces
 

that when tt/p y/v is below 30 throughout the layer,
 

laminarization will occur. Launder and Jones [16], by in

corporating the Van Driest hypothesis into the length scale
 

L , find a critical value of about 15. Bradshaw shows general
 

agreement between a maximum eddy Reynolds number and such
 

earlier criteria as a minimum momentum thickness Reynolds
 

number (320) or a critical value of v d (about -0.009
 

[10]). T 

It is very difficult to deduce the onset of relaminariza
tion from observations of a reduction in the Stanton number,
 

because even in moderate accelerations a reduction in Stanton
 
number proportional to the magnitude of the acceleration
 

is evident. The acceleration parameter, K , shows no dis

tinctive promise as a criteria for laminarization, but it is
 

closely related to that phenomenon and has a marked advantage
 

in that can be externally controlled in experimentation.
 

Particularly sharp reductions in the Stanton number are noted
 

above values of K = 2.0 x 10-6.
 

D. Constant-K Boundary Layers
 

The integral momentum and energy equations can be written
 

in the form 

dReM Cf K( + H)Re F (.1) 

dRx Kl+) 

and
 
dReH
dReH = St + F (1.2)
 

dRx
 

where U~dx 
dRx 2-

PoVo
 

= o2.2
F 
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For the case where F and K are maintained constant,
 

Eqn. (1.1) shows that an asymptotic condition can be reached
 

where the momentum thickness Reynolds number will remain
 

constant if the shape factor H does not change. This state
 

is, in fact, attainable and in such a boundary layer Eqn.
 

(i.1) provides a particularly simple means to determine the
 

wall shear stress. Equation (1.2) is applicable only to
 

the case of constant surface temperature. It implies that,
 

for zero or positive F , the enthalpy thickness Reynolds
 

number will continue to increase. In view of the asymptotic
 

nature of the momentum boundary layer, one observes that the
 

thermal boundary layer will grow outside of the hydrodynamic
 

boundary layer under these conditions.
 

The state of the hydrodynamic boundary layer for constant
 

K is more precisely defined by consideration of the differ

ential equations of the boundary layer. Townsend [17] has
 

shown that a "sink" flow, which is equivalent to a constant
 

K , leads to a similarity solution of the continuity and
 

momentum equations. Launder and Jones [18] have recently
 

presented a solution to the resulting ordinary differential

equation by utilizing a Prandtl mixing length model for the
 

turbulent Reynolds stress. The important point is that com

plete similarity can be expected for prolonged accelerations 

at constant K . Launder and Lockwood [19] have also de

monstrated that a similarity solution for the energy equation 

is possible for the case where the surface temperature varies 

in a special way. For the case of constant surface tempera

ture, however, the similarity solution is the trivial case, 

St = 0 and ReH =
 

It should be noted that the asymptotic boundary layer
 

discussed-here is a particular case of the equilibrium
 

boundary layer, which in general displays self-preserving
 

outer-region defect-velocity profiles and is defined as a
 
i dP


layer in which the equilibrium parameter, = w dx
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K~eMH
 

remains constant. By definition, P = , so that 

is fixed in an asymptotic constant-K layer because each
 

variable remains separately constant. In view of all these
 

considerations, the parameters K and F were maintained
 

constant for all the experimental tests conducted in this
 

study, in an attempt to control the state of the hydrodynamic
 

behavior of the turbulent boundary layer.
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PRECEEiNq PAGE AANK NOT F..ED, 

CHAPTER TWO
 

EXPERIMENTAL SURFACE HEAT TRANSFER TO STRONGLY ACCELERATED
 

TURBULENT BOUNDARY LAYERS
 

A. Previous Experimental Findings
 

It has been well established that the Stanton number
 

markedly decreases in strongly accelerated flows. The experi

mental evidence suggests that a fundamental change in structure,
 

perhaps relaminarization of the turbulent boundary layer, occurs
 

under these conditions. In 1965, Moretti and Kays [8] conducted
 

the first detailed investigation of heat transfer in the turbu

lent boundary layer with strong favorable pressure gradients.
 

They showed that the reduction of Stanton number was propor

tional to the magnitude of the acceleration parameter, K
 

which varied from 0.52 x 10-6  to 3.51 x 10-6 in their
 

tests. At the strongest acceleration, however, the drop-off
 

in Stanton number was particularly steep in St-ReH coordinates,
 

suggesting that relaminarization of the boundary layer was
 

taking place. This conclusion was substantiated by the hydro

dynamic findings of Shraub and Kline [151, in which the turbu

lence generation near the wall was apparently completely in

hibited in a boundary layer at about K = 3.5 x 10-6 . Profile
 

data were not obtained by Moretti and Kays in conjunction with
 

the surface heat transfer data, and it was difficult to spec

ulate about the underlying mechanism for the reduction in
 

Stanton number in their experiments.
 

More recently, experimental studies in rocket nozzles
 

have also been concerned with understanding the heat transfer
 

behavior. Boldman, et al. [20] report surface heat transfer
 

data and mean profile data for average values of K up to
 

30 x 10-6 in the convergent section of a conical nozzle.
 

Using the criterion that laminarization will occur when
 

ReM 360 , in conjunction with the momentum integral equation
 

for an axisymmetric geometry, they derive a critical value for
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the acceleration parameter K equal to 2.88 x 10- . The
 

reduction in Stanton number in the nozzle, which is below
 

the level normally associated with turbulent flow, consist

ently occurs at values of K above this critical value. It
 

should be noted that the convergent portion of the nozzle
 

measured 4.7-inches along the axis, giving the boundary layer
 

very little time to respond to the imposed acceleration.
 

Short regions of acceleration, however, are to be expected
 

with high levels of K , even in an apparatus designed solely
 

for basic experimental studies of accelerating flows.
1
 

Back, et al. [2] conducted a series of tests on a cooled,
 

conical nozzle, also including surface heat transfer data,
 

mean velocity profiles, and mean temperature profiles within
 

the nozzle. Low rates of heat transfer were noted when K
 

was above 2-3 x 10-6 , lying approximately 50 percent below
 

turbulent correlations at the higher values of K . Average
 

values of K in the nozzle, which measured 10 inches along
 
1 x 10-6
 the axis in the convergent portion, ranged from 


to 8 x 10-6 . Both temperature and velocity profiles appeared 

to approach predicted laminar shapes near the wall at the 

highest levels of K . Theoretical predictions of the experi

mental results were not successful in either of the nozzle
 

studies in cases where effects attributed to laminarization
 

were observed.
 

Caldwell and Seban [1] discuss experimental and theoret

ical results dealing with boundary layer tests in a rectangular
 

IThis point is seen more readily by writing the definition
 

of K , for incompressible flow, in the form
 

-v dA

K 1 U, A dx
 

00,1 1
 

where 1 denotes the start of acceleration.
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channel. Acceleration took place over a 5-inch section in
 

which a blister was installed on one wall. Maximum values
 

of K reported in the three tests ranged from 5 x 10-6 to
 

12 x 10- 6 Surface heat transfer data were accompanied by
 

mean velocity profiles, mean temperature profiles, and stream

wise fluctuating velocity profiles. The mean profiles showed
 

the same trends reported by Back, et al. [2]. The profiles
 

of u'2/U indicate a reduction in the peak through the
 

region of acceleration in any given test. They found that
 

the measured minimum value of the peak, i.e., near the end
 

of acceleration, was approximately equal to 0.06 in all three
 

tests. To predict the experimental results, Caldwell and
 

Seban utilized a simultaneous solution of the momentum,
 

energy and turbulent kinetic energy equations. Their model,
 

however, was not able to predict the measured decrease in
 

Stanton number.
 

An extensive test program to study heat transfer in
 

moderately accelerated boundary layers, over a wide range of
 
transpiration, was reported by Thielbahr, et al. [6] in 1969.
 

This program, conducted on the same apparatus as the present
 

study, was carried out over a range of the acceleration
06 
parameter, K , from 0.57 x 10 to 1.45 x 10 , and a 

range of the transpiration parameter, F , from -0.004 (sucking) 

to +0.006 (blowing). In conjunction with the parallel work 

of Julien [14], the data included mean velocity and mean 

temperature profiles in addition to surface heat transfer. 

The acceleration was imposed over distances from 2.5 to 5 

feet, allowing the boundary layers to attain near-equilibrium 

conditions in many of the test runs. The significant feature 

of the no-blown results is that, for increasing K , the re

duction in Stanton number, and the shape of the profiles, 

displayed a gradual progression towards the behavior normally 

associated with laminarization of the turbulent boundary 

layer. For example, the profile data show a subbtantial in

crease in the thickness of the sublayer in the accelerated 

- 1-6
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region, and a growth of the thermal boundary layer outside
 

the hydrodynamic layer. The reduction in Stanton number is
 

attributed to these two features, with the expectation that
 
the sublayer growth is controlling, and a theoretical model
 

based on these observations successfully predicted the
 

experimental results [4]. For moderate blowing, acceleration
 
usually decreased the Stanton number, just as in the unblown
 

case. At certain combinations of strong blowing and moderate
 

acceleration, however, the Stanton number, at the inception
 
of acceleration, increased over the unblown St-ReH equilibrium
 

relation for unaccelerated flow. However, by incorporating
 

the experimental sublayer behavior into the theoretical model,
 

the effect of interactions between moderate accelerations and
 
transpiration on the surface heat transfer were also predicted.
 

B. Objectives
 

The present study was designed to investigate boundary
 
layers in strongly accelerated flows at levels of K where
 

relaminarization effects might be expected, but low enough
 

so that the boundary layter would be reasonably close to an
 

equilibrium state. The objectives can be enumerated as
 

follows:
 

* To obtain surface heat transfer data in conjunction
 

with mean temperature, mean velocity, and streamwise
 

fluctuation velocity profile data for the turbulent
 

boundary layer in the presence of a strongly accelerated
 

free-stream flow, with and without blowing at the wall.
 

* To determine whether, at a value of the acceleration
2 dU% 
parameter K( = v/U2- ) of 2.5 x 10-6, the sudden re-

Wdx tesder
duction in Stanton number noted in preliminary experi

ments is a result of relaminarization of the boundary
 

layer.
 

" To measure the response of the turbulent boundary layer
 

in strongly accelerated flows to changes in initial
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conditions and boundary conditions, particularly the
 

initial ratio of thermal to hydrodynamic boundary
 

layer integral parameters, the free-stream turbulence
 

intensity, and steps in blowing at the wall.
 

To investigate the use of the turbulent kinetic energy
 

equation, in conjunction with the momentum and energy
 

equations, in the prediction of boundary layer heat
 

transfer in accelerated flows.
 

C. Experimental Program
 

C.1 Test Apparatus (Figs. 2.1-2.2)
 

The boundary layer was formed on the lower surface
 

of a rectangular channel having initial cross-section dimen

sions of six inches by twenty inches. The entire channel is
 

eight feet in length. The region of acceleration, extending
 

over a distance of 20 inches, begins 16 inches downstream of
 

a 1/16-inch high, 1/4-inch wide flat boundary layer trip.
 

The height of the upper wall of the duct can be varied to
 

achieve the desired free-stream velocity; in the experiments
 

described here a linear variation of the wall was utilized
 

in order to'achieve a constant value -of the acceleration
 

parameter K
 

A schematic diagram of the experimental apparatus is
 

shown in Fig. 2.1. To illustrate the experimental setup and
 

the free-stream conditions for an acceleration of K = 2.5 x
 

10-6 , Fig. 2.2 presents a typical setting of the upper wall,
 

and the variations of free-stream velocity and K through
 

the region of acceleration.
 

The lower wall of the eight-fdot channel is comprised
 

of 24 segments of 1/4-inch thick sintered bronze, allowing
 

for tests with transpiration when desired. Surface temper

ature is measured by five thermocouples imbedded in the center
 

six-inch span of each segment. The segments are heated by
 

wires situated in grooves in the bottom surface, spaced close
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enough together that the top surface temperature perturba

tion, due to wire spacing, is less than 0.04 F. The heat
 

transfer between the surface and the boundary layer is de

duced from an energy balance based on power and temperature
 

measurements in each segment. Mean flow velocity profiles
 
were Obtained with a flattened pitot probe, while temperature
 

profiles were measured with an iron-constantan thermocouple
 

with the junction flattened. Turbulence profiles were taken
 

with a 00002-inch constant temperature platinum hot wire
 

and a linearized anemometer system. A detailed description
 

of the apparatus and the data reduction method is contained
 

in Supplement 1.
 

Prior to the experiments reported here, an extensive
 
program was undertaken to qualify the test apparatus for use
 

in strong favorable pressure gradients. The low entrance
 

velocities made it necessary to prove the development of a
 

uniform, two-dimensional boundary layer on the wall, and
 

satisfactory energy balances in heat transfer. After some
 

modification to the test rig, the uniformity of the main
 
stream flow and spanwise variations in the boundary layer
 

Were found to be within acceptable limits. Transpiration
 

qualification tests, with no main stream flow, were conducted
 
in which the net energy delivered to each plate agreed within
 

about 4 percent with the measured energy transfer to the
 

transpired air. Surface heat transfer results for the flat
 
plate turbulent boundary layer agree with accepted correlations
 

within 3 percent. Energy balances between the surface heat
 

transfer data and profile measurements were typically within
 

i0 percent in the accelerated flows.
 

C.2 Test Plan
 

The experiments can be conceptually divided into
 
two categories: those tests, with and without blowing, in
 

which the entering boundary layers are as close as possible
 
to equilibrium conditions, and a series of experiments in
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which both initial conditions and boundary conditions were
 

perturbed in order to study certain characteristics associated
 

with 	accelerated flows.
 

In the former category, tests without transpiration were
 

conducted at free-stream accelerations corresponding to
 

K = 2.0 x 10-6 and 2.5 x 10-6. At the stronger acceleration,
 

two blowing runs were carried out at values of the blowing
 

parameter, F , of 0.002 and 0.004.
 

Five additional test runs comprise the second category.
 

With no blowing, and at an acceleration of K = 2.5 x 10-6,
 

the state of the thermal boundary layer at the start of the
 

accelerated region was controlled in three tests in order to
 
study the effect of the initial condition on the surface
 

heat transfer behavior in a strong acceleration. The con

trolled parameters were the thicknesses of the entering
 

thermal and hydrodynamic boundary layers, and perhaps more
 

important, their relative size. Two test runs were also
 

conducted to investigate the response of the boundary layer
 

to a 	stepwise change in blowing during acceleration.
 

D. Eperimental Results
 

D.1 	Effects of Strong Acceleration, With and Without
 

Blowing (Figs. 2.3-2.6)
 

The surface heat transfer data, for nominal values
 
-
of the acceleration parameter K of 2.0 x 10 6 and 2.5 x
 

10-6, with no transpiration, are presented in Fig. 2.3 in
 

terms of Stanton number and the enthalpy thickness Reynolds
 

number. Since each plate is 4 inches wide, each Stanton
 

number rep-resents an average over that distance. The enthalpy
 

thickness Reynolds number is generally calculated by inte

gration of the energy equation. An alternative method, also
 

presented on that figure, is to evaluate the enthalpy thick

ness from profile measurements. The degree of agreement
 

between these two independent methods is a measure of the
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boundary layer energy balance. While the reduction in
 

Stanton number at K = 2.55 x 10-6  is quite pronounced,
 

it appears to be consistent with a mechanism whose effect
 

gradually increased with the strength of the acceleration.
 

To illustrate this point, Fig. 2.4 compares results for five
 

values of K with the unaccelerated case. No sudden change
 
in the character of the response to acceleration is dis

cernible in the surface heat transfer results.
 

Boundary layer traverses of mean temperature, mean
 
velocity, and the streamwise fluctuating velocity are pre

sented in Fig. 2.5. The hydrodynamic data shown there, as
 

well as all the hydrodynamic results discussed in this report,
 

are taken from the work of Loyd [23], who studied the fluid
 

mechanics of strongly accelerated boundary layer flows in
 

parallel with these heat transfer tests. A hydrodynamic
 
similarity solution is possible for constant-K turbulent
 

boundary layers, and the mean velocity profiles appear to
 

approach such a similarity condition near the end of ac

celeration. As expected from the momentum equation, surface
 

skin friction is nearly constant. The turbulence profiles
 
indicate that the intensity of the turbulence near the wall
 

and in the outer regions is decreasing through the acceler

ated zone. In the outer regions, the last two profiles
 

in the accelerated zone show evidence of similarity. At
 
the end of acceleration, the peak in the streamwise fluctuat

in velocity normalized by the free-stream velocity,
 
2
u /U , decreases to about 9 percent, compared to 11 per

cent prior to acceleration. For stronger accelerations,
 

other experimenters have found the peak value to be reduced
 

to 6 percent [1] and 2 percent [11]. With a constant wall
 

temperature, a thermal equivalent of the hydrodynamic similar
ity solution does not exist. The continuous reduction in
 

Stanton number through the region of acceleration is re

flected in the growth of the temperature profiles in T+-y
 

coordinates.
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Bradshaw [12] has proposed that relaminarization takes 

place when the maximum value turbulent Reynolds number, ten

tatively defined as Rt = 1 t/p falls below 30. Apply

ing an integral technique to the hydrodynamic data in Fig. 

2.5, Loyd [23] has calculated the total shear stress distribu

tion for the boundary layers in this study. Knowing t and 

the local velocity gradient, the turbulent shear stress, 

t , can be determined. Carrying out this procedure, the
 

maximum values of Rt for the profiles shown in Fig. 2.5
 

are, respectively from the start of acceleration, 115, 128,
 

100, and 68, usually occurring at about y+ = 275. The minimum
 

Rt of 68 suggests that relaminarization is not taking place.
 

On the other hand, Loyd ['23] notes trends in the hydro

dynamic data which suggest that, at K = 2.55 x 10-6  and
 

F = 0 , the final equilibrium state would indeed be a laminar
 

one, though there is little doubt that the boundary layer
 

shown in Fig. 2.5 is still turbulent. In Fig. 2.4 it can be
 

noted that the slope of the Stanton number.curve shows no
 

signs of diminishing within the accelerated region at
K= 2.55 x 10-6
 , whereas at lesser accelerations such a
 

trend is apparent. This observation may be a sign of relam

inarization, or simply a result of the fact that the boundary
 

layer has not yet attained a near-equilibrium condition at
 

K 2.55 x 10-6. Profile results demonstrate that, for
 

K = 1.99 x 10-6, an equilibrium state is nearly attained in 

the test shown in Fig. 2.4.
 

Through the accelerated region, the hydrodynamic layer
 

thickness, 5
M , decreases much more rapidly than the thermal
 

layer thickness, tH 5 resulting in a portion of the thermal
 

layer lying outside of the momentum boundary layer. It is
 

of interest to note the development of both the boundary layer
 

thicknesses and the integral parameters through the accelerated
 

region. At the start of the acceleration, the ratio 6H/6M
 

is 1.09 while A2/0 equals 1.10 . Near the end of the 
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acceleration, the enthalpy thickness is 2.55 times greater
 

than the momentum thickness, and the ratio 5H/ M has risen
 

to 1.37 Since the outer region, hereafter called the
 

"thermal superlayer", is characterized by laminar-like heat
 

transfer mechanisms, it might be expected to substantially
 

reduce the heat transfer rate. Evidence from the "recovery"
 

region seems to deny this, however. In that region, where
 

the imposed pressure gradient is removed, the Stanton number
 

in Fig. 2.3 reverts almost immediately to the flat plate 

correlation, even overshooting the expected equilibrium 

value, for both K = 2.0 x 10 and 2.5 x 10 . This 

rapid response to the relaxation of the pressure gradient
 

implies that the inner layers are controlling the heat
 

transfer rate, not the thermal superlayer.
 

The combined effects of blowing and a strongly accelerated
 

free-stream flow are shown in Fig. 2.6. Blowing affects heat
 

transfer to the surface in two ways. First, and most impor

tant, the increase in the component of velocity normal to
 

the wall convects energy away from the surface. Secondly,
 

the structure of the sublayer is changed. Physically the
 

thickness of the laminar-like region near the wall increases,
 

but on an inner region scale, y+ , the sublayer becomes
 

thinner. Since acceleration acts to thicken the sublayer,
 

the ultimate size of the sublayer thickness depends on the
 

strength of the blowing and acceleration. The local shear
 

stress and heat flux distributions through the layers are
 

also influenced in an opposing manner by blowing and accelera

tion.
 

The experimental results verify that the effect of
 

acceleration is reduced with increased blowing. Additionally,
 

the Stanton number falls away from the equilibrium correla

tion for the unaccelerated case when the imposed pressure
 

gradient ceases., Interestingly, the reduction in Stanton number
 

at high blowing is greater during the relaxation period after
 

acceleration than it is during the acceleration itself.
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Thielbahr, et al. [21] found similar behavior for accelera-

A,


tions up to K = 1.45 x d'6. They also measured temperature
 

profiles in the recovery region which indicated that the
 
-
inner layers, at a level of K as high as 1.45 x 10 6 , im

mediately returned to an equilibrium state for no accelera

tion, even at high blowing. Assuming a rapid inner layer
 

response, one possible explanation of the heat transfer be

havior is that the outer region is quite important in the
 

blown boundary layer, which is characterized by a thin sub

layer, and the' thermal superlayer becomes a substantial
 

factor in the resistance to heat transfer. It is also true
 

that, with blowing, the relative sizes of the thermal and
 

hydrodynamic boundary layers will be maintained over a longer
 

distance 2 in the recovery'region.
 

D.2 	 Response to Changes in Initial Conditions (Figs.
 

2.7-2.8)
 

Figure 2.7presents the results of four test runs,
 
- 6
nominally at K = 2.5 x 10 , which differ only in the
 

thickness of the momentum and thermal boundary layers at
 

the s~art of the accelerated region. Also shown for com

parison is the similarity solution for laminar wedge flows,
 

other than the constant-K flow, in Which the thermal boundary
 

layer has grown completely outside of the hydrodynamic layer.
 

Run 070869 was previously presented in Fig. 2.3. In run
 

071569, the hydrodynamic conditions were identical, but no
 

power was applied to the wall for the first 16-inches, re

tarding the growth of the thermal layer. In run 092469,
 

2 fDeduced from the integral equafions,
 

dG
T= 	 Cf/2 + F
 

dA
2
 
-= 	 St + F 
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the unaccelerated boundary layer was allowed to develop over
 

a longer distance before the acceleration was imposed. Run
 

100269 corresponds in hydrodynamic development to run 092469,
 

but again the thermal boundary layer growth was delayed.
 

It is apparent that theheat transfer results prse'nted
 

in Fig. 2.7 are quite dependent on the initial conditions.
 

In nozzle tests, Boldman, et al. [24] reported that different
 

inlet boundary layer thicknesses produced no appreciable
 

variation in the peak heat transfer coefficient, which roughly
 

corresponds here to comparing the minimum Stanton number in
 

the runs where A2/e 1 . In the present series of tests, 

it is possible that the significant inlet condition is the
 

ratio of the-boundary layer thicknesses. At the end of the
 

acceleration region the values of the ratio A2/e are, for
 

example, 1.75 and 3.4, respectively, for runs 071569 and
 

092469. If the thermal superlayer is important, then the
 

Stanton number in the flat plate region after the acceleration
 

should be lower for the case where the thermal boundary layer
 

is relatively thicker. However, there is no substantial dif

ference in the recovery performance (not shown in Fig. 2.7)
 
of the four runs, suggesting that it is the inner layer
 

structure which controls the heat transfer behavior through

out the accelerated region. The trends in the reduction in
 

heat transfer give the impression that, were the acceleration
 

to continue indefinitely, the Stanton number would asymptotical

ly approach a single functional relationship with the enthalpy
 

thickness Reynolds number. Consequently, it is possible that
 

the different behaviors merely reflect the degree to which
 

each boundary layer is initially out of an equilibrium state
 

associated with the imposed acceleration.
 

Figure 2.7 demonstrates the danger of identifying re

laminarization by the heat transfer behavior, since each test
 

was carried out at, nominally, K = 2.5 x 10-6. In fact, the
 

steep slope of the Stanton number curve in run 092469 appears
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very 	similar to the results of Caldwell obtained at a much
 

stronger favorable pressure gradient (peak K = 5 x 10-6), as
 

illustrated in Fig. 2.8
 

D.3 	 Response to Changes in Boundary Conditions (Figs.
 

2.9-2.10)
 

Tdni [25] summarizes the results of several hydro

dynamic studies which investigated the response of the tur

bulent boundary layer to sudden perturbations. In general,
 

the response was nearly instantaneous near the wall, but
 

lagged in the outer regions. For example, a sudden change
 

in pressure gradient immediately imposes a change in
 

T-_ , 	resulting in a change in Z , and, consequently, the
 

rate 	of production of the turbulent energy. A readjustment
 

of the turbulence and shear stress follows. Tani suggests
 

that, near the wall, the scale of turbulence is small enough
 

,so that the attainment of local equilibrium is rapid. In the
 

outer regions, however, most of the turbulent energy resides
 

in larger scale turbulence, which is associated with longer
 

life-times and is responsible for the slower outer region
 

adjustment. In all the acceleration studies reported here,
 

a near stepwise change in pressure gradient is imposed and
 

removed, respectively, at the start and end of the accelerated
 

region. The behavior in the beginning of the accelerated
 

region appears to show a substantial lag in the overall re

sponse of the boundary layer, while the recovery region, at
 

the end of acceleration, indicates a considerably faster
 

response, at least in the unblown case.
 

Some interesting results were obtained by introducing
 

a step in blowing during acceleration. In Fig. 2.9, results
 

are shown for the case where a stepwise change in blowing
 

from 	no blowing to F = 0.004 is introduced at an axial
 

distance of 32 inches (see Fig. 2.2). The Stanton number
 

immediately drops to an unusually low value, apparently due
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to the convective effect of blowing and the thick sublayer
 

resulting from acceleration. It is conjectured that the
 

blowing then acts to thin the sublayer and the behavior is
 

thereafter similar to the results shown in Fig. 2.6. A
 

similar quick response to a step in blowing is seen in Fig.
 

2.10, where the blowing is stopped at x = 32 inches. With
 

the sudden removal of substantial convection away from the
 

wall, but the residual effect of a thin sublayer due to
 

blowing, the Stanton number immediately rises to a high value,
 

then decreases rapidly at a rate reminiscent of run 092469
 

shown in Fig. 2.7 The recovery region shows no effects
 

which can be attributed to the wall blowing.
 

E. 	Prediction of Selected Experimental Results (Figs. 2.11

2.14)
 

The turbulent transport terms were modeled with a combina

tion of a kinetic energy model of turbulence in the outer
 

regions, and the Van Driest mixing-length model near the wall.
 
3
The calculations were performed by a numerical solution of
 

the following simultaneous set of equations:
 

5u 5v(.3 

Continuity - + V = 0 	 (2.3) 

M +Momentum U + =-- dUW 	 v 6 ] (2.4) 

T TEnergy 	 V _ 3 (Eu + a) r] (2.5) 

3 The numerical procedure employed is a modification of the
 
Spalding/Patankar procedure [26].
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Turbulent a )2
Kinetic + VF eM() + V +eq D 
Energy 

Z (2.6)26


To obtain closure, the following 'model of the turbulent
 

structure was assumed in the outer region
 

CM 0. 22 .t F (2.7) 

D 0.284 q3 / 2 /e t (2.8) 

EM/c q = 1.70 (2.9) 

6t = y Dv (2.10) 

A+ )  Dv = 1 - exp(-y+ [ (2.11) 

E = EM/Ptt (2.12) 

Prt = Prt(eM/v) (2.13) 

Equations (2.7) through (2.9) have been suggested by the
 

work of Spalding [26] and Wolfshtein [52].
 

The relationship for the turbulent Prandtl number as a
 

function of E/v is based on the work of Simpson, et al.
 

[27]. In the correlation used here, the values for Prt
 

ranged from 1/Pr at the wall to 0.86 in the outer layers
 

(this correlation is also presented in [4]). It will be shown 

that the effects of acceleration on the Van Driest parameter, 

A+ , can be adequately modeled in accelerated flows with 

blowing by the function A+(P , V+ ) shown in Fig. 2.11. 
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This model is based on experimental results which are fully
 

discussed by Loyd [23].
 

In the computational scheme, the wall region is handled
 

separately from the main finite-difference mesh in the outer
 

regions, primarily to avoid the necessity of a very small
 

mesh in the region of severe temperature and velocity gradients.
 

The Couette flow forms4 of Eqns. (2.3) through (2.5) are
 

utilized in the wall region, with the additional stipulation
 

that
 

M= 2 d (2.14) 

Equations (2.10) through (2.13) complete the mathematical set.
 

This mixing-length model of the turbulent boundary layer, with
 

a modification in the outer region, has been successfully used
 

by Kays, et al. [4] to predict experimental results over a
 

wide range of transpiration and favorable pressure gradients,
 

up to K = 1.45 x 10-6. Since the turbulent kinetic energy
 

equation has been incorporated into the outer region solution
 

in the current study, the boundary condition required at the
 

inner edg, of the finite-difference grid is obtained by solv

ing Eqns. (2.7), (2.10), and (2.14) for q at that point,
 

where Dv and y are known from the wall region solution.
 

Selected predictions of the present experimental results
 

are presented in Figs. 2.12-2.14. With no blowing, the near

equilibrium predictions shown in Fig. 2.12 agree reasonably
 

well with the experimental data, both in the effects of ac

celeration on heat transfer and in the behavior in the re

covery region. Figure 2.13 illustrates one case of strong
 

blowing and strong acceleration. The influence of pressure
 

gradient in the theoretical model tends to reduce the pre

4 U T
 

4The streamwise derivatives and - are neglected.
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dicted Stanton number below the experimental data, while,
 

in the recovery region, both prediction and experiment show
 

a trend away from the equilibrium flat plate case. Predictions
 

for three cases with different initial conditions at the start
 

of acceleration, at K = 2.5 x 10-6 and without blowing, are
 

presented in Fig. 2.14. The trends of the experimental data
 

are reproduced by the prediction, particularly in respect to
 

the rate at which Stanton number decreases in the accelerated
 

region. The recovery behavior, not shown, is similar in all
 

three predictions.
 

It is important to recognize that the model for 

A+( ,-- V) presented in Fig. 2.11 is crucial to the success 

of the theoretical model. The parameter A+ is proportional 

to the thickness of the sublayer, so that, for example, the
 

increase in A± with increasingly higher accelerations
 

models the observed growth of the sublayer. Since the boundary
 
layer cannot respond instantaneously to an imposed pressure
 

gradient, it is also necessary to include the influence of
 

the upstream history in the boundary layer. In the predic

tions, shown here, a lag function
 

d + 

e + 3000+ P+e (2.15)
dx + 

has been introduced, where P+ is the equilibrium pressure
 

gradient parameter for the known value of acceleration and
 

skin-friction, while e+ is the calculating, or effective,
 

A+
value used in the model which determines . The lag 

constant, 3000, was selected by comparing prediction to 

experiment for various values of lag in run 070869-1 (F = 

0.0, K = 2.5 x 10-6). Currently, no lag is associated with 

changes in blowing, but one can argue that a lag is physically 

justifiable and should, in fact, be included. 
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F. Conclusions
 

To summarize the findings from the experimental study,
 

the following conclusions are offered:
 

(a) For the acceleration parameter, K , as high as 
-2.5 x lO 6 the boundary layer displays fully
 

turbulent characteristics, and the marked reduction
 

in Stanton number is largely due to growth of the
 

sublayer.
 

(b) For the acceleration parameter, K , through
 

2.5 x 10-6 , the amount of the reduction in
 

Stanton number, at a given F , increases smoothly
 

as the magnitude of the acceleration increases.
 

The absence of any abrupt changes supports the
 

contention that relaminarization, if it is even
 

occurring, manifests itself in the growth of the
 

sublayer.
 

(c) The region of the thermal boundary layer outside
 

of the hydrodynamic boundary layer is not an impor

tant factor in the reduction of Stanton number in
 

strongly accelerated flows without transpiration,
 

but it may play a significant role in the blown
 

boundary layer.
 

(d) The initial thermal condition of the boundary layer
 

markedly influences the surface heat transfer char

acteristics during acceleration. In practical ap

plications, the length of the acceleration region
 

is almost never long enough to remove the effect
 

of the upstream thermal history. The response of
 

the strongly accelerated turbulent boundary layer
 

to steps in blowing at the wall, on the other hand,
 

is quite rapid, thus displaying the same character

istics as the turbulent boundary layer without ac

celeration.
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(e) The surface heat transfer in boundary layers sub

jected to accelerations up to K = 2.5 x 10-6 can
 

be adequately predicted by a numerical solution .of
 

the momentum, energy, and turbulent kinetic energy
 

equations, utilizing eddy-diffusivity models for
 

the turbulence transport terms. The turbulence
 

model, based on empirical equilibrium relationships,
 

accounts for the behavior of the non-equilibrium
 

flows measured in the present study, as long as
 

the effects of upstream history are considered.
 

29
 



1. FILTER
 
2. MAIN BLOWER
 
3. HONEYCOMB 
4.5. SCREENS5-PASS CROSS-COUNTERFLOW
 

HEAT EXCHANGER
 
6. COOLING WATER
 
7. BOUNDARY LAYER TRIP 
8. TEST SECTION
 
9. POROUS PLATE SURFACE 

10. 1 of 24 PLATE POWER SYSTEMS 
11. STABILIZED POWER SOURCE 
12. 1 of 24 TRANSPIRATION SYSTEMS 
13. TRANSPIRATION HEADER
 
14. TRANSPIRATION HEAT EXCHANGER 
15. TRANSPIRATION BLOWER
 

Figs 2.1 Schematic diagram of the test apparatus
 



o3 A xORI
III 
3 

Uox= 0 

2 

/I
 

2.5
2.0K xlO' - II 

,5I 
I 

i
I 

I 
I I 

o 12 24 36 48 60 
x (in) 

Fig. 2.2 Traverse locations and typical velocity dis
tribution in the test apparatus for a strong
 
acceleration
 

31
 



0.005 

0.004 

K00.003 

StK= 

0.002 	 e n 

KxlO6 F RUN in 

Xe 1L99 0.0 091069-1 
1DE 2.55 0.0 070869-I m 
SOLID SYMBOLS-TRAVERSE DATA 

0.001 	 ,
 
103,
102 

Re. 

Fig. 2.3 	 txperimental results of surface heat transfer in a 
turbulent boundary layer with a strongly accelerated 
free-stream flow. , Moffat and Kays [22]. 



0.006 
F=O.O 

THIELBAHR, 	et al. [6 J 
PRESENT STUDY
 

St 

DENOTES START K x 106 

OF ACCELERATION .99 0 

2.55 "0.77 

0.00.1 	 - --

3X1202 I0 	 10' 
ROH
 

Fig. 2.4 	 Comparison of experimental boundary layer heat
 
transfer in a favorable pressure gradient
 

33
 



0.28
 
K= 2.55 x 16- s
 

0.24 wm 	 F= 0.0 

0.20

0.16 
U 0. 12-	 in am 

0.08 	 m 

0.04
 

0
 

20
 

S Kx10 6 ReM IReM St Cf/2 
5 0 624 754 0.00290 0.00250 

5, A 2.38 990 738 0.00222 0.00260 
x 2.54 1236 595 0.00177 0.00257 

a' 0 2.53 1345 550 0.00159 0.00248 

30
 

Qr 

T+ W & I m E3 MM 

I0 m mmm
 
m ;l E3
 

01_ 

lo 	 10' IO2 1o3 2xlo 

Fig. 2.5 	 Traverse data for the unbiown turbulent boundary
 
layer with nominal free-stream acceleration of
 
K=2.5 x 10- Traverse symbols correspond to
o. 

Fig. 2.2.
 

34 



0,004 "~k -TRAVERSE DATA 

0.003
 F -"K 0 

0.002
 

St
 

0.001
 

K 2.55 x 10- 6 

F = 0.0 
RUN 070869-1
 

0.0004 I ) ii [ 	 I 

0.004
 

0.003 

0,002 
[-,.-EK=O0 

St 0 .0 0 1 

K 2.50x IO _' 

F = 0.002 

RUN 072769-I
 

0.0004 2 :2r I I 	 II 

0.004 

0.003
 

0.002 _'-K 0 

St
 

0.001 	 __ __ 

0 "6 K = 2.60Xx 


F = 0.004 & ,
 
RUN 083069-1,
 

0.000q ... 	 .___ 

2 X 2O io3 	 e 2x10 4 

ReH
 

Fig. 2.6 	 Experimental results of surface heat transfer in a 
turbulent boundary layer, with and without blowing, 
at K 2.55 x 10-6. , Moffat and Kays [22]. 

35
 



0,005 
 1 ' I I 
NOMINAL: K=2.5 x t0, F=OO 

0.004- COND ITIONS NEAR THE START OF ACCELERATIONtI
 
ReH IRqr j%2/o RUN 

K=O 338 79610.43 071569 
0.003 + 734 1327 10.54 100269 

111 901 81711.10 070869 
+ + A 1787 13661.30 092469 

St 

. KK 0A,MOFFAT [22] 

0.002 & 

\,639 \ 
t=Pr ReH 

---- FOR VISUAL AID ONLY 

0.001 

0.00071 

2 x I02 103 5 x 
ReH 

- 6
 
Fig. 2.7' Experimental results of surface heat transfer at K2.55 x 10


with various initial conditions at the start of acceleration.
 
St = O.639/(PrRe) is the similarity solution for laminar
 
wedge flows with a very thick thermal boundary layer
 

http:13661.30
http:81711.10
http:79610.43


0,006 , 	 ,
 
F= 0.0 

-K-0 

--- K 2.5 x107, RUN 092469-1; 
PRESENT STUDY 

,\ --- KMAXa 5 x 10 6 ,CALDWELLst 


0.001 	 I I I * I I 

2 10431x0 o3 


Rom
 

Fig. 2.8 	 Comparison of two runs of experimental heat
 
transfer in a strong acceleration
 

37
 



0 .0 0 5 . . , - 6 

K= 2.5 x
 
RUN 102469-1
 

F= 0.0"- F =0004
T 

St 

0.0019 

--- VISUAL AID ONLY . 

I 
3-E M 

ZXI02 

Fig. 2.9 

103 104 

ReH 

Experimental heat transfer results in a strongly accelerated 
turbulent boundary layer with a step-increase in blowing 

2 x 1 4 



0.005 
x i0 -6 

K 2.5 

RUN 111369-2 

F=0.004 F=0.0 

St
 
• •K = 0 	 K = O 

--- VISUAL AID ONLY 

0,001 

0.00071 
2 x 102 10 


Re.
 

Fig. 2.10 	 Experimental heat transfer results in a strongly accelerated
 
turbulent boundary layer with a step-decrease in blowing
 

104 



8o0 

60 

40 

20.10 

~0.20 

0.05 

01 
0 

Fig. 2.11 

0.01 0.02 0.03 
.p+ 

Correlation for the Van Driest parameter in 
accelerating flows with blowing 

40
 



0.005 
PREDICTION 

K=o- K=O, MOFFAT [221 

St 	 KDO
Kx1 - 1 F I RUN
 

x 1.99 0.0 091069-I
 
C 2.55 0.0 070869-1
 

0.00114-r4	 10 2 
 I0 	 1
 

ReH 

Fig. 2.12 	 Predictions of surface heat transfer in a turbulent
 
boundary layer with a strongly accelerated free-stream
 
flow.
 



0.005 

-PREDICTION 

K=O, MOFFAT [22] 

St 

,. K 
0.001 

RUN 083069-1 	 

, , , ,, , , 
, , , ,0 .0004 

, 


ReH
 

Fig. 2.13 	 Prediction of surface heat transfer in a turbulent boundary.
 
layer with blowing and strong acceleration
 



0.005 , 

-PREDICTION 

St 

-NOMINAL: K =2.5 x 10 
0001 =0.0 

10 3 5x 0 3 
2x10 2 

RSN 

Fig. 2.14 Predictions of the effect of various initial
 
conditions at the start of acceleration on heat
 
transfer behavior in the turbulent boundary layer
 

43
 



VPR-CrJJNG PAGE BLANK NOT FILMED. 

CHAPTER THREE
 

THE EFFECT OF FREE-STREAM TURBULENCE ON HEAT TRANSFER
 

TO A STRONGLY ACCELERATED TURBULENT BOUNDARY LAYER
 

A. Introduction
 

One premise put forth to explain the reduction in Stanton
 

number in accelerated flows is that the portion of the thermal
 

boundary layer which exists outside the hydrodynamic boundary
 

layer, the thermal superlayer, substantially contributes to
 

the resistance to heat transfer. An interesting question
 

raised by this explanation is whether or not high free-stream
 

turbulence has any substantial effect on the heat transfer
 

performance of a strongly accelerated turbulent boundary
 

layer. Most of the experiments have taken place in wind
 

tunnels where turbulence level is very small, but many of the
 

interesting technical applications (turbine blades, rocket
 

nozzles, for example) involve highly turbulent free-stream
 

environments. For non-accelerated boundary layers it seems
 

that free-stream turbulence is not particularly significant
 

[51, but this may not be the case when the outer part of the
 

boundary layer is providing any substantial part of the over

all heat transfer resistance, as it apparently does for pro

longed highly accelerated flows. The answer to this question
 

is important to the designer. For example, a rocket nozzle
 

design, with wall cooling requirements based on the experi

mental data at low turbulence levels, would be inadequate
 

if the presence of high free-stream turbulence significantly
 

raised the heat transfer to the wall.
 

The experimental results in Chapter Two suggest, in

directly, that the thermal superlayer is less important than
 

the sublayeras a cause of the reduction in Stanton number.
 

More insight into this question can be achieved by increasing
 

the free-stream turbulence level in the experimental apparatus.
 

Another justification of this program derives from considering
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the free-stream turbulence problem in its parametric sense:
 
given a turbulent boundary layer in an accelerated flow
 

field, what is the effect of free-stream turbulence on the
 

Stanton number?
 

B. Previous Experimental Work
 

In 1966, Kestin [5] discussed in considerable detail
 

the effect of free-stream turbulence on heat transfer in
 
both laminar and turbulent boundary layers. He found that
 

free-stream turbulence intensities up to 3.82 percent had no
 

effect on local heat transfer rates in the flat plate laminar
 

boundary layer, but intensities from 0 to 6.2 percent had in

creasingly noticeable effects, though modest, on the laminar
 

boundary layer in an accelerated free-stream flow. No effect
 

of turbulence intensities up to 4.5 percent were noted in a
 

turbulent boundary layer in a mild favorable pressure gradient.
 

Two experimental investigations conducted with relatively
 
high free-stream turbulence intensities are also of interest.
 

Kline, et.al. [29] carried out hydrodynamic tests on a boundary
 
layer on a flat plate with the free-stream turbulence in

tensity ranging from 0.5 to 20 percent. For free-stream
 

turbulence intensities above 5 to 10 percent, they found in

creased boundary layer thicknesses, fuller velocity profiles,
 

and higher values ,of wall shear. Boldman, et al. [51]
 

measured heat transfer in nozzle tests and observed no change
 

in the heat transfer coefficient when the inlet turbulence
 
intensity was raised from 2.8 percent to 10 percent. The
 

level of K in the nozzle was low, generally less than
 

1 x 10-6 . Consequently, the thermal superlayer was probably
 
thin, so that the effect of free-stream turbulence in that
 

region would be minimized.
 

C. Experimental Program
 

The objective of this chapter is to describe the results
 
of some experiments at relatively high acceleration
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(K = 2.5 x 10-6) taken first under low turbulence conditions, 

and then with considerably higher free-stream turbulence 

artificially induced by a crossed-rod grid. The surface heat 

transfer measurements were accompanied by mean velocity and 

temperature traverses, but more importantly by hot-wire 

traverses of u' . The experimental apparatus differs 

from the description in Chapter Two only in that, for the 

high free-stream turbulence runs, a crossed-rod grid was 

placed 13 inches upstream of the trip. The grid consisted 

of 1/4-inch round wooden dowels formed into a square, inter

locked mesh (i.e., all of the dowels were in the same plane) 

on 1-inch centers.
 

Two experiments were conducted with free-stream turbu

lence intensities, u'2/U , of 0.7 percent and 3.9 percent,
 

respectively, at the start of acceleration. The free-stream
 

turbulence intensity decayed to 0.4 percent and 0.9 percent,
 

respectively, in the recovery region. The level of high
 

free-stream turbulence employed is of the same order of
 

magnitude as used by Kestin [5] in his investigation of the
 

effects of free-stream turbulence on a boundary layer-sub

jected to a moderate acceleration. The free-stream energy
 

spectra exhibited in both runs was that of normal turbulence.
 

The grid design was based in part on the work of Uberoi and
 

Wallis [28], in which, 29 inches downstream of a similar grid,
 

the turbulence was found to be homogeneous with uI T .
 

Both tests reported here were conducted with a free-stream
 

velocity of about 23 fps.
 

In Fig. 3.1 is shown a plot of Stanton number versus
 

local enthalpy thickness Reynolds number for the two cases.
 

The differences in the data sets on Fig. 3.1 are no greater
 

than the estimated experimental uncertainty. It appears that
 

in the accelerated region, where the abrupt decrease in
 

Stanton number is taking place, there is negligible difference
 

in performance. If anything the high turbulence case yields
 

lower St , which does not seem physically plausible. In
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the recovery region, where free-stream velocity is again
 

constant, it appears that recovery is slightly more abrupt
 

with high free-stream turbulence' and this would be consist

ent with the proposed model. Thus the conclusions that one
 

can draw are that initial free-stream turbulence levels as
 

high as 3.9 percent have very little effect on Stanton number
 

for strongly accelerated flows, but this fact in itself is
 

of significance.
 

Figs. 3.2 and 3.3 are plots of traverses of t-/U
 

taken just before acceleration, and near the end of accelera

tion, for both the low free-stream turbulence case and the
 

high free-stream turbulence case. Essentially they demonstrate
 

that at this relatively high rate of acceleration the boundary
 
layer is in fact still a turbulent one, but with a lowered
 

turbulence intensity, especially in the wake. The results
 

for the higher free-stream turbulence case are similar to
 

those for low free-stream turbulence, with the differences
 

confined primarily to the wake.
 

The global characteristics of the boundary layers enter

ing the accelerated region for the two cases are quite dif

ferent in nature; the test with high free-stream turbulence
 

exhibits a very thick boundary layer with a 52 percent larger
 

momentum thickness. It is not certain whether this effect is
 

a direct result of the high turbulence on the growth of the
 

layer, or whether the grid rod nearest the wall simply intro

duces a momentum decrement into the developing boundary layer.
 

Nevertheless, the important point is that, in the accelerated
 

regions, the outer layers are affected whereas the inner
 

layers appear to display little, if any, effect of the free

stream turbulence level. In Fig. 3.4, for example, are shown
 

the velocity profiles, in inner coordinates, at the end of
 

the accelerated region for both cases. The profiles deviate
 

from the accepted law of the wall for a flat plate boundary
 

layer, as is typical of highly accelerated boundary layers,
 

but are quite similar to each other. The temperature
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profiles, also in inner coordinates, are presented in Fig.
 

3.5. This figure illustrates the development throughout
 

the entire region of acceleration, for both high and low
 

turbulence. In general, the two layers display similar
 

thermal behavior.
 

D. Prediction of Experimental Results
 

Figure 3.6 shows the results of theoretical calculations
 

made under the conditions of the experiments, using the pre

diction method described in Chapter Two. Prior to the in

clusion of the turbulent kinetic energy equation, a mixing-,
 

length model of the turbulent boundary layer, with a modi

fication in the outer region, had been successfully used to
 

predict experimental results over a wide range of conditions
 

including'transpiration and favorable pressure gradients [4].
 

It was hoped that the addition of the turbulent kinetic
 

energy model, besides providing a potential improvement in
 

the prediction method in general, would in particular permit
 

a prediction of the influence of free-stream turbulence.
 

The theoretical calculations presented in Fig. 3.6 are
 

in reasonable agreement with the experimental findings. The
 

deviation between the two theoretical curves is due to the
 

fact that the boundary conditions for the variation of the
 

free-stream velocity, i.e., the precise level and physical
 

location of the imposed acceleration, are slightly different
 

in the two cases. It will be shown next-that, were the
 

imposed experimental conditions identical, the theoretical
 

model would predict nearly identical curves for the two
 

cases.
 

A question naturally arises concerning the effect of
 

still higher initial levels of free-stream turbulence under
 

these same conditions of acceleration. To investigate the
 

theoretical aspects of this point, three predictions were
 

made utilizing the experimental boundary conditions and mean

flow starting profiles of the 3.9 percent case.
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The results are shown in Fig. 3.7 for initial free

stream turbulence levels of 0.7 percent, 3*9 percent, and 10
 
percent. The curves for the lower two intensities are in

distinguishable on the plot, whereas the highdr turbulence
 
level clearly decreases the effect of acceleration on Stanton
 

number, and significantly increases Stanton number in the
 

recovery region. Eventually, all three predictions converge
 
on the accepted correlation for the flat-plate turbulent
 

boundary layer.
 

Prior to acceleration, the free-stream turbulence for
 

the 10 percent case is on the order of the self-generated
 

turbulence within the boundary layer. It is not unreasonable
 

that the heat transfer should be affected under these con

ditions. The study by Kline, et al. [29] substantiates the
 
notion that a free-stream turbulence level of this magnitude
 

has significant effects on the characteristics of the boundary
 

layer. In the accelerated zone and thereafter, however, it
 
is believed that the influence of the high turbulence would
 

be manifested through a different mechanism. As the thermal
 

layer grows outside of the momentum layer, the higher free
stream turbulence acts to increase the apparent conductivity
 

in this laminar-like outer region, resulting in higher Stanton
 
numbers. The modest increase in Stanton number, if it is
 

in fact due to the effect of free-stream turbulence on the
 

thermal superlayer, is consistent with the findings of
 

Kestin on accelerated laminar boundary layers [5].
 

E. Conclusions
 

The following are the conclusions that may be drawn from
 

this work:
 

(a) The decrease in Stanton number observed during
 

strong acceleration is independent of initial
 

free-stream turbulence levels up to at least 4
 

percent.
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(b) Theoretical calculations for an initial free

stream turbulence level of 10 percent suggest
 

that if initial free-stream turbulence is of
 

the same order of magnitude as the self-generated
 

turbulence within the boundary layer, an increase
 

in Stanton number will be obtained throughout the
 

accelerated region. In view of the experimental
 

results of Boldman, et al. [51], however, the
 

validity of this prediction must be viewed with
 

caution.
 

51
 



0.010 II 	 I. 

INITIAL FREE-STREAM 
TURBULENCE INTENSITY 

O 0.7% 
+ 3.9% 

K=O ,K=2.5X10-6 K=O
 

St 

+
 
In 

O.O~I I I l II I I I I .1 I I
0.00)1o 2 I 	 O 

ReH
 

Fig. 3.1 	 Experimental heat transfer for low and high initial 
free-stream turbulence intensities in a strongly 
accelerated flow. , Moffat and Kays [22]. 

0.14- II]II IIIII P ; H :i ;If 1111 


INITIAL FREE- STREAM 
0.12- TURBULENCE INTENSITY 

El 0.7% 
+ 3.9% 

0.10 

v:v 0.08 

U W° 0.06 -

0.04

0.02-
,
0.0..... 	 . . . . .....,., .'II II I I 'IIII,,*
, , ,l I 	 I 


0.0 .I 
 2 3 	 4

10 10 	 10 10 10 

Y+ 

Fig. 3.2 	 Experimental turbulence intensity profiles in the
 
constant U. region prior to acceleration. ReH 60o.
 

52
 



0Q 14-	 . . . !... i ii H! 

INITIAL FREE- STREAM 
TURBULENCE 	 INTENSITY0.12 r- 0.7 %
 

0.10-- + 3.9%
 

0.08 

UO 	 0.06 

0.04

0.02 

103 104
10 10' 102 

y+
 

Fig. 3.3 	 Experimental turbulence intensity profiles near the
 
end of the accelerated,region. Re_ 1430o.
1 


24

20-

6INITIAL 	 FREE-STREAM 

12-- TURBULENCE INTENSITY 
El 0.7 % 

8- + 3.9% 

4

0' , , ,I ,I . . . . . . , a . . . . .. , , , I 1 1., . : .1 1 1 1 
I03 	

4
10
102
100 101 

y+
 

Fig. 3.4 	 Experimental velocity profiles near the end of the
 
accelerated region. ReH = 1430.
 

53 



3O INITIAL FREE-STREAM 
TURBULENCE INTENSITY 

El0.7% 
20 X 3.9% -a 

T+ 

-10 wNEAR THE END OF THE10- ACCELERATED REGION,p I "* Rei-1430 

0 .1 '4 : -:: ' '. 1 -'. '. . .i: H : "i i 1_ 

! r15 -

T+ 10 -


PRIOR TO ACCELERATION 
S ReH%:S 6 00 

0 . . .. . I i I i i 

100 1 I02 

y+ 

Fig. 3.5 Experimental temperature profiles for low and high
 
initial free-stream turbulence.
 



I0.010 	 2 1 I I I 
INITIAL FREE 	- STREAM 
TURBULENCE INTENSITY 

8 0.7% 
+ 3.9% 

St 

In 
+ 

0.001 
102 103 104 

ReH 

Fig. 3.6 	 Comparison of predicted and experimental heat transfer
 
results.
 

0.010I 	 I I . I' 

INITIAL FREE-STREAM 
TURBULENCE INTENSITY 

, 0.7, 3.9% 
10.0% 

St 

0.0 01 1 I I I I I I t I 1 , ' , , I
 

102 10 10
 

ReH 

Fig. 3.7 	 Effect of initial free-stream turbulence level on the 
predicted heat transfer performance. , Moffat and 
Kays [22]. 

55
 



PRECEDING PAGE BLANK NOT FILMED. 

CHAPTER FOUR 

AN EXPERIMENTAL STUDY OF TURBULENT PRANDTL NUMBER FOR 

AIR IN ACCELERATED TURBULENT BOUNDARY LAYERS 

A. Introduction
 

Many current prediction methods for heat transfer in the
 

turbulent boundary layer utilize the turbulent Prandtl number
 

to relate the eddy diffusivity for heat to that for momentum.
 

While it is generally acknowledged that the eddy diffusivity
 

concept is not an adequate model of the physical processes
 

occurring in the boundary layer, it is also recognized that
 

this -method, having been proven in practice, will continue
 

to be important until significant advances in turbulent
 

boundary layer theory are made. If the turbulent transport
 

terms in the boundary layer equations for momentum and energy
 

are expressed in the forms,
 

Prt U (4.1) 

and
 

4tT(42)I 


the eddy diffusivity for heat can be expressed as
 

H = M/Prt
 

thus defining the turbulent Prandtl number. There is no
 

physical reason to believe, .a priori, that Prt is not a
 

function of the molecular Prandtl number, the position in
 

the flow field, and hydrodynamic parameters such as the
 

Reynolds number. Nevertheless, it has proven adequate in
 

many calculation procedures to assume a constant value for
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turbulent Prandtl number across the boundary layer, often
 

between 0.85 and 1 [26, 30, 31]. In other cases, however,
 

it has been necessary, in order to achieve reasonable pre

dictions in boundary layers, to assume a variation in the
 

turbulent Prandtl number such that it is high near the wall
 
(on the order of 1.5 in air) and less than unity in the outer
 

region [4,32]. Even though the solution of the heat transfer
 

problem requires knowledge of both the eddy diffusivity for
 

momentum and the turbulent Prandtl number, relatively few
 

experimental studies have been directed towards the latter.
 

Simpson,, Whitten, and Moffat [27] recently reported the
 

variations of turbulent Prandtl number in the boundary layer
 

on a flat plate, with and without transpiration. It is the
 

purpose of this study to extend the experimental knowledge
 

of the turbulent Prandtl number to the case of the accelerated
 

boundary layer, with and without blowing. The range of ac

celeration in this study varies from mild (K = 0.55 x 10-6)
 

to that approaching relaminarization of the boundary layer
 

(K = 2.55 x 10-6). 

B. Theoretical Models and Previous Experimental Results
 

In this aspect of turbulent transport theory, it is dif

ficult to substantiate proposed theoretical models because
 

of the scarcity of reliable experimental results. In external
 

boundary layers, as an example, the experimental data re

quired to determine the local values of shear stress and heat
 

flux are often not available. Since these quantities are
 

more easily calculated in channel flow, most of the experi

mentation has been carried out in circular tubes, at both
 

low and high molecular Prandtl numbers. In air, however,
 

there is conflicting evidence in pipe flow on the variation
 

of turbulent Prandtl number with distance from the wall.
 

Kestin and Richardson [33] show the findings of several in

vestigators in which the turbulent Prandtl number is always be

low unity in pipe flow, but does not consistently rise or fall
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with distance from the wall. They conclude that results of
 

Ludwieg [34] are most reliable, in which Prt decreases
 

towards the center of a pipe. Azer [351, on the other hand,

notes that Ludwieg's data was taken at high subsonic Mach num

bers, and that the preponderance of evidence suggests that, in
 

a pipe, Prt increases towards the center. There is general
 

agreement, at least, that the turbulent Prandtl number is
 

not constant across a tube. In the external boundary layer,
 

Johnson [36] determined the turbulent Prandtl number from
 

fluctuation measurements of both velocity and temperature on
 

a flat plate downstream of a stepwise discontinuity in wall
 

temperature, while Simpson, et al. [27] calculated Prt from
 

mean profile data on a flat plate with and without transpira

tion. Both results are summarized in Fig. 4.1. Simpson
 

found that the turbulent Prandtl number was greater than
 

unity in the region close to the wall, and decreased to a
 

value of approximately 0.7 in the outer edge of the boundary
 

layer. No effect of transpiration, either-sucking or blowing,
 

could be detected within the uncertainty of the results.
 

Theoretical models for the turbulent Prandtl number have,
 

on the whole, relied on mixing length arguments. By taking in

to account the molecular diffusion from or to an eddy in motion,
 

the effect of the molecular Prandtl number on Prt can be mod

eled. Depending o the model, turbulent Prandtl number is also
 

found to be a function of the eddy diffusivity for momentum
 

or a hydrodynamic Reynolds number. The model of Azer and
 

Chao [35]- predicts Prt increasing with distance from the
 

wall. Jenkins [37], on the other hand, predicts turbulent
 

Prandtl numbers close to the wall greater than unity, and
 

decreasing with distance away from the wall. A new theory
 

has been proposed by Tyldesley and Silver [38] which con

siders entities of fluid in motion in a turbulent field in
 

pipe flow. In its present state, this promising approach
 

does not provide for the variation of the turbulent Prandtl
 

number across the boundary layer, but it does give results
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as a function of molecular Prandtl number which agree with
 

experiment. For Pr = 0.7 , their theory predicts Prt =
 

1.0. Tyldesley [39] has extended the theory to the case of
 

free turbulent flows, not unlike the outer region of the
 

turbulent boundary layer. In this case, a value of about
 

0.74 is predicted for Pr = 0.7 , generally agreeing with
 

earlier theories and experimental results.
 

C. Sources of Experimental Data
 

The magnitude of the accelerations utilized in this study
 

varied from moderate to that approaching relaminarization of
 

the turbulent boundary layer. The range of variables in the
 

tests were,
 

K : 0.57 x 10-6 to 2.55 x 10-6 

UT : 23.5 to 123 fps
 

Ta : 60 to 95 F 

To-TM : -20 to 43 F
 

F : o, 0.004
 

The present data were obtained on the same apparatus
 
used by Simpson, et al. [27]. The experimental data in the
 

range, K = 0.57 x 10-6 to 1.45 x 10-6 , were reported by
 

Thielbahr [6] and Julien [14]. For K > 1.99 x 10-6 , the
 
data is that of this report and the work of Loyd [23]. The
 

performance of the test apparatus has been consistent through

out the entire series of tests. Accepted flat plate cor

relations for heat transfer and hydrodynamic performance are
 

reproduced within a few percent, including skin friction,
 

surface heat transfer, and non-dimensional mean profiles.
 
With acceleration or transpiration, agreement with other
 

experimenters has been adequate where comparisons are pos

s'ible. The tests were all conducted at constant values of
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the parameters K and F , resulting in near-equilibrium
 

boundary layers at moderate accelerations, or with transpira

tion. In the accelerated flows, the velocity profile data
 

were taken isothermally, while the temperature profiles were
 

generally obtained at the same free-stream conditions and
 

with a heated wall. Exploratory tests and numerical analyses
 

established that the ratio U/U. , measured in the isothermal
 

layer, is approximately preserved in the heated layer.
 

Loyd [23] presents arguments to show that, in the hydro

dynamic studies, the Young and Maas [40] shear correction is
 

appropriate not only to his experimental data, but also to
 

the data of Julien, et al. [14] and Simpson et al. [27],
 

which were obtained with similar total pressure probes.
 

While some question exists concerning the justification for
 

this correction, it has been uniformly applied to all the
 

velocity profile data utilized in the present study of the
 

turbulent Prandtl number. No probe dorrections have been
 

applied to the temperature data, though arguments could also
 

be made for a displacement effect in a severe temperature
 

gradient. In general, application of the probe-correction
 

to the velocity profile data lowers the calculated turbulent
 

Prandtl numbers near the wall, compared to use of the un

corrected velocity data.
 

In the flat plate calculations of Simpson et al. [27],
 

the experimental observation of similarity in the inner and
 

outer regions was incorporated into the analysis of the tur

bulent Prandtl number. In moderate accelerations at constant
 

K , the velocity and temperature profiles were also shown to
 

be similar, as should be the case when the acceleration is
 

well established. In general, similar conditions could not
 
-6
 

be achieved in accelerations above K = 1.45 x 10- . For
 

this reason, the local shear and heat flux profiles were
 

computed by a method which makes no assumptions about the
 

similarity of the flow or temperature fields. For comparative
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purposes, the data of Simpson, et al. for K = 0, and F = 0
 

and 0.004, were also recalculated with the present computa

tional method.
 

C.1 Local Shear Stress and Heat Flux Profiles
 

In the course of this study, 40 pairs of velocity
 

and temperature profiles in the accelerated turbulent boundary
 

layer were considered. The cases of no transpiration and
 

moderate blowing, F = 0.004, were selected to investigate
 

both the effect of acceleration alone, and the combined
 

effect of blowing and acceleration, on the turbulent Prandtl
 

number. Noting Eqns. (4.1) through (4.3), the local velocity
 

and temperature gradients, and the local shear stress and
 

heat flux, must be calculated from the mean profile data.
 

The appropriate boundary layer equations
 

(Pu)+
(v) 0(4.4)
zX dy 

puU i1U dx (4.5)+U + dP _45 -= 

Sc)(4.6) 

are integrated with respect to y , rearranged, and non

dimensionalized, resulting in the computing forms,
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Y 2 
T+ = ± + + P+Y+[U 

y j 0 U0 1 2~10U 


i/ dU( 	 dy - dy + (4.7) 

f7 L o 	 o U J 


C/ - Y/fflTT\2 dy]0 	 0 i 
and 

+ y 

, 1+h F d pU dy 
0s,o 

Ui f - d dy.S( 0 U0 Ois0 ) (4.8) 

S (F( 	 PU dy _P__ _ +
 

Is 0 " dx 	 f pU M PU . P U~is 0' 
0 0 

As y -M , these equations assume the usual forms of
 

the integral equations with transpiration and a pressure
 

gradient,
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C d( dUW 
+( (4.9) 

and 

St + F = . 
xs4p0U -1 

The differentiations With respect to x were carried
 

out at each data point in a given profile, using a central
 

difference formulation and interpolated values in the ad

joining profiles. As pointed out by Julien [14], in the ideal
 

equilibrium boundary layer in a constantIK acceleration, theta
 

is no dependence on x , so that any terms containing x

derivatives were quite small in the moderate &ccelerations
 

where equilibrium conditions were approached. the x-depen

dence was always evident in the flat plate boundary layers,
 

and in strong accelerations where equilibrium was riot at

tained.
 

Typical temperature and ielocity profiles are presented
 

in Figs. 4.2-4.5. in strong accelerations, above K 1.45 k
 

10-6 , five profiles were obtained in the acceleratid region,,
 

spaced every four inches. In the moderate accel6rations, 

three profiles were taken, spaced either 8 Or 12 inches a

part. At K = 0 , three profile locations were spaced at 

intervals of 24 inchesi presenting a formidable test of the 

present computational procedure. It will be shown that the

results for the flat plate tutbulent boundary laret, cal
 

culated inh this manher, agree well with the resultf of
 

Simpson, et al. [27], which relied in the same data but used
 

an independent method of computation Which does tiet require
 

an explicit calculation of x-derivativesi
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C.2 Selection of Experimental Data
 

Since the temperature or velocity gradients are zero
 

at the outer edge of the thermal and hydrodynamic boundary
 

layers, respectively, Eqns. (4.7) and (4.8) should calculate
 

zero heat flux and shear stress at those locations if the
 

experimental data, and the computation techniques, are exact.
 

Since neither of these conditions is satisfied, due to both
 

uncertainty in the experimental data and to computation errors
 

(particularly where the differentiated terms are important),
 

limits of acceptability were set on the shear stress and heat
 

flux profiles by stipulating a maximum value of 10.31 at the
 

outer edge of the boundary layer. Of the 40 profile pairs
 

examined, 15 were rejected on this basis. Of the 25 remain

ing, 16 pairs consisted of heat flux and shear stress profiles
 

which were individually below 10.151 at the outer edge. In
 

order to smooth the experimental results, and to establish
 

a consistent calculation procedure, the selected pairs were
 

recalculated in a manner which forced the local shear stress
 

and heat flux t& zero at the outer boundary. To accomplish
 

this, the coefficients,
 

1 dU d)

Cf dx 
 and d (P.Uis,o)
 

02 

in Eqns. (4.7) and (4.8) were evaluated at y = from the 

equations themselves. In this way, the local heat flux and 

shear stress equations, which exactly match the known boundary 

condition at wall, are forced to satisfy the known boundary 

conditions in the free stream. Selected shear stress and 

heat flux profiles are shown in Figs. 4:2-4.5, along with 

mean temperature and velocity profile data and the calculated 

turbulent Prandtl numbers. These examples are representative 

of blown and unblown results at both moderate and strong ac

celerations. Also shown are sample values of the turbulent 
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Prandtl number which would have been computed had the outer
 

boundary condition not been forced to zero. The only signi

ficant changes occur beyond y+ of 200, where the uncertainty
 

in the results is also quite high due to normal experimental
 

uncertainty.
 

D. 	Turbulent Prandtl Number-Distribution in Accelerated
 

Flows, With and Without Blowing
 

The mean gradients required by Ejns. (4.1) and (4.2)
 

d(U/Uj)
dT 

dy analytically.
were obtained by evaluating and 


The determination of the temperature and velocity gradients
 

at each point was accomplished by applying a least-squares'
 

quadratic curve fit through five data points, fitting either
 

the normalized temperature or velocity as a function of log
 

y , and analytically taking the derivative at the center
 

point. This technique is thoroughly discussed by Simpson,
 

et al. [27], and compared to results using various analytical
 

approaches, in addition to graphical methods. It is concluded
 

by Simpson that, for the flat plate turbulent boundary layer,
 

the Prt distributions for various polynominal fits vary by
 

no more than 2 percent, and agree within 5 percent with the
 

Prt distribution obtained from graphical fits of
 

d(U/U)
dT
dy 	 dy
 

The turbulent Prandtl numbers computed from the selected
 

profiles in accelerated turbulent boundary layers are pre

sented in Figs. 4.6-4.8 as functions of y+ , y/5 ,.and,
 

eM/v An approximate uncertainty band, based on the method
 

of Kline and McClintock [41] is included on two of'the figures,,,
 

as well as a comparison to the data of Simpson, et al. for
 

the flat plate. The scatter of the experimental results,,
 

as one would expect, is greater than for the' flat plate case,.,
 

In the thinner boundary layers encountered in acceleration,
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theuncertainty in the temperature and velocity gradients
 

is proportionally higher than in the thicker flat plate
 

layers. Additionally, the computational difficulties in

herent in the evaluation of the local shear stress and heat
 

fluxes contribute to the uncertainty. The combination of
 

these effects is reflected in the uncertainty band. In view
 

of these considerations, the collapse of the experimental re

sults is encouraging in the inner regions.
 

In Figs. 4.6 and 4.7, it can be seen that the turbulent 

Prandtl number collapses on the inner region coordinate y+ 

in the range 20 < y+ < 200 , but correlates less well in 

the outer regions on y/6 . In the regions very close to 

the wall, y+ < 20 , and in the outer regions, y/b > 0.3 

where one could reasonably expect correlation on one parameter 

and not the other, the uncertainty of the results precludes 

a comparison. The diffusivity ratio, Esv , is the param

eter of the turbulent Prandtl number in the Jenkins model 

[37], and is itself well correlated by the inner coordinate 
y+ in flat plate turbulent boundary layers [42]. It is 

shown in Fig. 4.8 that the present results do not correlate 

on this coordinate. The curves fold back because EM/v rises 

to a maximum, and then decreases towards the edge of the 

boundary layer, i.e., as y/5 -41l 

In the intermediate range, the turbulent Prandtl number, 

in Fig. 7, is above unity near the wall, with a decreasing 

trend towards a value of about 0.8 at y+ of 200. The mean 

value is on the order of unity throughout this range. There 

is some indication that Prt is higher in strong accelerations 

without blowing, but the evidence is not conclusive. In gen

eral, it can be stated that no effects of blowing or accelera

tion are evident within the uncertainty band. The results 

agree reasonably well with the data of Simpson, et al. [27] 

above y+ of 30, when correlated with y+ The results 

for the flat plate turbulent boundary layer correlate in the 
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outer region as well, whereas the present results in ac

celerated flow do not.
 

In Fig. 4.6, the trend of the turbulent Prandtl number
 

very close to the wall, ignoring for a moment the uncertainty
 

band, is substantially different than the results of Simpson,
 

et al. Simpson's calculations showed a mean value of Prt
 

continually rising towards the wall, whereas Fig. 4.6 indi

cates a mean value which drops off below y+ of 30. The
 

drop off in the present results is largely due to the use
 

of the Young and Maas shear correction, which Simpson did
 

not use. Conduction error in the temperature probe would
 

also tend to reduce turbulent Prandtl number, but not to
 

the extent noted here. Figure 4.9 shows the flat plate case,
 

for F = 0 and F = 0.004 , calculated with and without a
 

probe correction applied to the data. The shift in Prt
 

very near the wall is evident. The effect of the correction,
 

decreases as y+ increases, until there is complete agree

ment above y+ 100 It is concluded that .no trends in
1 * 

Prt below y+ = 30 can be confirmed from this data or that 

of Simpson, et al. [27]. 

It is not too surprising, in view of these results and
 

those of Simpson that the assumption of a constant turbulent
 

Prandtl number on the order of 1.0 predicts heat transfer
 

data reasonably well over a wide range of turbulent boundary
 

layers. It can be stated with certainty, nevertheless, that
 

the turbulent Prandtl number is not constant across the layer,
 

and that the values presented here are not inconsistent with
 

the concept of a high turbulent Prandtl number near the wall
 

and a level approaching 0.7-0.8 in the wake. To formulate
 

a model for the turbulent Prandtl number in a prediction
 

method, the results suggest that, in the inner regions, a
 

relationship in the form Prt(y+) is most appropriate.
 

E. Conclusions
 

In summary, the conclusions of this work can be stated
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as follows:
 

(a) Experimental values of the turbulent Prandtl number
 
have been computed from data covering a wide range
 

of the acceleration parameter K , 0.55 x 10-6 to
 

2.55 x 10-6 , both with and without blowing at the
 

wall. The calculation method is discussed in detail
 

and results using this method on data for the flat
 

plate turbulent boundary layer are compared to the
 

results of Simpson, et al. [27].
 

(b) The turbulent Prandtl number for blown and unblown
 

boundary layers, with free-stream acceleration up
 

to K = 2.55 x 10-6 is on the order unity. The
 

experimental values are slightly higher than unity
 

in the inner regions, decreasing to below unity in
 

the outer regions. There is some evidence that,
 

for strong accelerations, the turbulent Prandtl
 

number remains above unity over a greater portion
 

of the boundary layer.
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Fig. 4.2 	 Boundary layer profile results in a moderate acceleration
 
with no transpiration.
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Fig. 4.3 	 Boundary layer profile results in a moderate acceleration
 
with blowing.
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SUPPLEMENT 1 

EXPERIMENTAL APPARATUS AND TECHNIQUES 

A. General Description
 

The test apparatus was designed for boundary layer
 

experiments including transpiration, variable free-stream
 

velocity, and variable surface temperature. The boundary
 

layer is formed on the lower surface of a rectangular chan

nel having cross-section dimensions of 6,inches high by 20
 

inches wide. The test channel is eight feet long, and the
 

lower wall is made of 24 segments, or plates, each 4 inches
 

long in the flow direction. The surface temperature and
 

transpiration flow are each controlled individually in each
 

plate, allowing a small-step approximation to a continuous
 

wall boundary condition. The upper wall of the channel is
 

adjusted to achieve the desired variation in free-stream
 

velocity. Mean temperature, mean velocity, and streamwise
 

fluctuation velocity profiles within the boundary layer on
 

the lower surface are taken through access holes in the top
 

wall. Substantial care has been taken to assure thermal
 

and hydrodynamic uniformity in the free-stream flow through

out the channel. Heat transfer from the surface to the
 

boundary layer, characterized by the Stanton number, is
 

obtained from an energy balance on each plate.
 

A maximum free-stream velocity of about 40 fps at the
 

inlet of the channel is available with the present installa

tion. Plate temperature can be varied between ambient and
 

approximately 140 F, while free-stream temperature ranges
 

from about 70 F, if cooled, to 95 F uncooled. Energy balances
 

on each plate which were conducted with transpiration only,
 

i.e., no free-stream flow, close within about 4 percent over
 

a wide range of blowing and sucking. Results of qualifica

tion tests of the uniform free-stream velocity case with no
 

transpiration agree within several percent of accepted cor
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relations of Stanton number. A more quantitative treatment
 

of these qualifications will be presented shortly.
 

The fabrication of the apparatus and its original
 

qualification are described in considerable detail by Moffat
 

and Kays [22]. The discussion in the following paragraphs
 

will briefly describe some of the features mentioned above,
 

and document the changes made to the test rig in the course
 

of this investigation.
 

B. Wind Tunnel
 

The wind tunnel is an open-circuit unit constructed on
 

two levels to accommodate, in a convenient manner, both the
 

transpiration system and the instrumentation connected with
 

the 24-plate test section. A schematic diagram of the wind
 

tunnel and a photograph of the test duct are presented in
 

Figs. 2.1 and S1.1 respectively. The main air flow enters
 

the blower via a felt-type filter and passes through, in
 

order, a preliminary screen pack, a turning header, a counter

crossflow water-cooled heat exchanger, a flow straightner
 

and screen set, and finally a 4:1 contraction before entering
 

the test section. The turning header prior to the heat
 

exchanger was designed according to the guidelines set forth
 

by London [43] to provide a uniform velocity at the inlet to
 

the heat exchanger. The purpose of the heat exchanger is to
 

maintain a temporally constant and spatially uniform free

stream temperature despite variations in ambient temperature
 

during a test run. Before entering the series of six screens,
 

the flow passes through an aluminum honeycomb-type straight
1 3
 ener which is iZ inches thick with hexagonal cells on -inch
 

centers. The screens are 32 x 32 mesh, 63 percent open-area
 

ratio, with a 3g -inch spacing between the last three. A
 

clear plexiglas wall is located just upstream of the first
 

screen to permit easy inspection of its condition and to
 

guard against fouling by dirt.
 

.
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The 4:1 contraction extends over 26 inches, blending
 

into an entrance section which joins the test channel. The
 
1 - nhhg,1
boundary layer is tripped by a -inch high, -inch wide
 

smooth phenolic strip located -inch before the first test
 

plate, and 36 inches downstream of the last screen.
 

The major modification to the test apparatus made during
 

the period of this investigation was a redesign of the
 

straightening-screen set, located prior to the contraction.
 

The primary reason for this modification was to improve the
 

two-dimensionality of the flow through the test channel;
 

the resulting improvement will be described in a following
 

section. One measure of the effectiveness of the entrance
 

arrangement is the uniformity of the free-stream flow at
 

the entrance to the tunnel. At a free-stream velocity of
 

about 23 fps, used for the majority of the experiments
 

described here, the velocity is uniform to within 0.05 fps
 

and the free-stream temperature to within 0.2 F.
 

C. Test Plates
 

The 24 test plates are mounted on thermal isolators in an
 

aluminum frame. They are separated from each other by a
 

0.025 -inch strip of balsa wood and plastic putty. The per

tinent physical characteristics of the plates are:
 

Material - sintered porous bronze 

Dimensions - 18.0 x 3.975 x 0.25 inches 

Particles spherical: maximum diameter 0.0070 inches 

minimum diameter 0.0023 inches 

Porosity - Approximately 40%. Uniform within -6% in
 

the center six-inch span
 

Roughness Maximum of 200 microinches (RMS) measured
 

with a stylus of radius 0.0005 inches 

Thermal conductivity - 6.5 Btu/hr-ft-F, minimum 

Surface emissivity - 0.37 average 
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Surface temperatures are measured by five iron-constantan
 

thermocouples located in the center six-inch span. The-sur

face thermocouples are epoxied into holes drilled from the
 

bottom of the segment to within 0.040 inches of the surface.
 

The plate is heated by nichrome wires located in groves in
 

the lower surface, spaced such that the surface temperature
 

variation, due to wire spacing, will be within 0.04 F under
 

all conditions of surface heat transfer and transpiration.
 

Separate power supplies, both stabilized, are available for
 

plates 1-12 and 13-24. Additionally, power to each plate is
 

individually controlled by a rheostat. To illustrate the
 

nature of the plate surface, a close-up photograph is pre

sented in Fig. S1.2.
 

D. Transpiration System
 

The transpiration system is shown in Fig. 2.1. The com

ponents of the circuit are, in order, the air filter, blower,
 

heat exchanger, header, flow control valves,. flowmeters,
 

plate underbody, and the plate itself.
 

The heat exchanger is used to cool the transpiration
 

flow to near ambient temperature, minimizing the heat transfer
 

in the lines leading to the flowmeters so that a single mea

surement in the distribution header will suffice to describe
 

the temperature at every flowmeter. Parallel circuits of
 

ball-type flow control valves and variable-area flowmeters
 

provide two ranges of control and measurement. To assure
 

accurate flow measurement, the system is periodically checked
 

for leakage. The flowmeters were individually calibrated
 

with an ASME standard orifice it preparation for the present
 

study. Each plate underbody has been developed to 1) provide
 

thermally and hydrodynamically uniform flow to the underside
 

of the entire plate and 2) allow measurement of a single
 

temperature in the transpiration fluid just beneath the plate
 

to provide -the information necessary for energy balances.
 

Figure S1.3 shows a view in cross-section of a typical plate.
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The developments leading to this design are fully discussed
 

by Moffat and Kays [22]. The plates are arranged in sets of
 

six into heavy aluminum castings, which are heated (or cooled,
 

if desired) by an auxiliary water system to reduce thermal
 

conduction between the plates and their supports during test

ing. Note in Fig. S1.3 that the conduction path for heat
 

losses to the plate support is largely limited to thin
 

phenolic webs.
 

E. Instrumentation
 

Table I contains a listing of the instrumentation used
 

in the experiments, plus the source of the calibration and
 

the estimated accuracy, where appropriate.
 

The instrumentation which is used in the measurement of
 

surface heat transfer is unchanged from previous investiga

tions on the apparatus [22,44,6]. Profile measurement tech

niques, however, have been modified in several respects. A
 

new temperature probe was fabricated of 0.004-inch iron

constantan wire, replacing the previous 0.010-inch wire, in
 

order (1) to allow measurements close to the wall (the junc

tion size was reduced from 0.009 inches to 0.005 inches in
 

thickness) and (2) to reduce conduction losses from the junc

tion. However, subsequent analysis of the probable conduction
 

error using the approach of Moffat [45] showed that func

tionally, at the same ratio of the exposed thermocouple junc

tion length to junction diameter (A/d), the conduction error
 

in cross flow is proportional to exp(-dl/3). Additionally,
 

small wires are more subject to material inhomogeneities
 

which result in measurement errors in a temperature gradient.
 

A larger wire, on the order of 0.007 inches is recommended
 

for future testing.
 

A calibration of the thermocouple probe was conducted
 

in a constant temperature oil bath using a precision mercury
 

thermometer as the standard. Even when the junction was
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Measurand 


Temperature 


Pressure 


Thermocouple 

or transducer 


O output 

0 Flowrate 


Electrical 

Power 


Fluctuating 

velocity 


TABLE I. INSTRUMENTATION LIST
 

Instrument or Sensing Device 


Probe: 	 0.004-inch iron-constantan thermocouple wire with 

tip flattened to 0.005-inches
 

Other: 	 0.010-inch iron-constantan thermocouple wire 


Probe: Total pressure probe with tip flattened to
 
0.0118-inch by 0.0355-inch
 

Static wall taps: 0.040-inch sharp-edged holes
 

Transducers: 	 Statham PM-97 and PM-5 differential pres-

sure transducers 


Hewlett Packard DYNEC Integrating Digital Voltmeter 

Model 2401C 

Beckman Electronic Counter Model 501OR-11
 
Transpiration: Fisher-Porter Rotameters; Tube Model Nos. 


B6-27-10/27 and B4-27-10/27. Float Model Nos. 

SS BSVT-64-A and SS BSVT-45-A
 

Sensitive Research Company, Reference Standard 

Wattmeter Model U-21020 


Probe: 	 Platinum hot-wire 0.0002-inch diameter, 1/lb-inch
 
long
 

Thermo-Systems Constant Temperature Anemometer Model 1010
 
Thermo-Systems Linearizer Model 1005B
 
Thermo-Systems RMS Voltmeter Model 1060
 

Quan-Tech Wave Analyzer Model 304
 

Hewlett-Packard MOSELEY Model 7001A x-y recorder
 

Source of Calibration 


(where appropriate) 


See text 


Constant temperature 

oil bath at Stanford
 
Linear Accelerator
 
Standards Facility
 

Meriam Model 34FB2 

20" Micromanometer
 

Hewlett Packard 

Standards Laboratory
 

ASME standard 


orifices
 

Stanford Linear 

Accelerator Standards
 
Facility
 

Estimated
 

Accuracy
 

See text
 

0.25 F
 

0.4-0.8%
 

+ 2V 

+ 2 percent 

1/4 percent
 



barely immersed, in an attempt to establish a sharp gradient
 

in the region of the tip, the agreement was within 0.3 F.
 

It is possible, however, that measurements very close to the
 

wall in a boundary layer, where the temperature gradients
 

are steep, could be in error by several degrees. For pur

poses of uncertainty calculations, it is assumed that the
 

accuracy is +0.4 F for the first fifteen profile points and
 

+0.25 F in the outer regions. Comparison of the temperature
 

data below a y+ of 10 to the expected correlation in that
 

region indicates that the temperature probe typically reads
 

about 2.4 F low at y+ = 2 , decreasing to 0.7 F at y+ = 10.
 

Typically, the fifteenth point in the profile occurs at a
 

y+ of about 50. It will be shown that the effect of this
 

error on integral parameters of the boundary layer is
 

negligible.
 

The probe is manually positioned with a micrometer
 

traversing mechanism, accurate to the closest 0.001-inch.
 

The wall position of the thermocouple probe is established
 

by electrical means.
 

Hydrodynamic measurements for this study are described
 

by Loyd [23]. In essence, the innovations include the use of
 

the pressure transducers in place of manometers, and the
 

verification of pitot-tube mean velocity profiles with hot

wire data. In both the temperature and velocity profile
 

measurements, the signal at each point was integrated by the
 

digital voltmeter over a period of at least ten seconds. The
 

recorded data then included both the integrated signal and
 

the time interval.
 

Standard hot-wire techniques were utilized to obtain
 

profiles of the streamwise fluctuation velocity, ju'2 , as
 

well as mean velocity. The data was obtained with a 0.0002

inch constant temperature platinum hot wire and a linearized
 

anemometer system. The calibration of the hot-wire was
 

checked frequently during testing, with a maximum estimated
 

drift of about 3 percent. The mean velocity and the mean
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square', of1 the streamwise fluctuation velocity were both re

corded by the integration method noted above.
 

.Free-stream velocity distribution was calculated with
 

Bernoulli's equation for incompressible flow from a single
 

total-pressure measurement at the entrance of the test section,
 

and 47 wall static pressure measurements made 1-inch above
 

the plate along one wall of the channel. Tests conducted
 

previously [6] indicated that the static pressures measured
 

by the wall taps were at a given x-position, constant through

out the boundary layer in moderate pressure gradients. Addi

tional tests were conducted during the present study in the
 

region of the most severe axial pressure gradient. It was
 

found that perpendicular to the wall the static pressure was
 

also constant throughout the thin boundary layer under these
 

conditions, and increased with increasing y in the potential
 

core such that the variation in velocity was less than 0.8%.
 

This point is discussed further in section F.5. Additionally,
 

the readings were identical on both sides of .the channel.
 

F. Qualification of the Apparatus
 

The test apparatus was qualified for operation in several
 

ways. An extensive set of experiments was conducted to
 

examine the closure-of efiergy balances over a wide range of
 

transpiration.. Secondly, tests were made to verify that an
 

accepted correlation could be reproduced for a turbulent
 

boundary layer with a constant free-stream velocity on an im

permeable wall. Finally, the questions of surface roughness
 

and three-dimensional flow conditions in the test section
 

were considered.
 

F.1 Transpiration Energy Balances
 

With transpiration, the electrical energy supplied
 

to the test segments can be accounted for as heat transferred
 

to the boundary layer, to the transpired flow, and to the
 

surroundings as "losses". In the first qualification of the
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test rig by Moffat and Kays [22], a series of tests was con

ducted with no main-stream flow in order to establish correct
 

models for the loss terms, and to achieve satisfactory energy
 

balances for the simplified problem of transpiration only.
 

Subsequently, these tests have been periodically conducted to
 

confirm the repeatibility of the results, with continuing
 

efforts expended on improvements in the model which purports
 

to mathematically describe the performance of the apparatus.
 

Building on the experience of the previous results, special
 

care was taken in the current series'of tests to examine some
 

irregularities which have appeared to be associated with the
 

rate of transpiration flow, particularly in the blowing mode.
 

To appreciate the discussion of the modifications which have
 

been made to the model, the modes and descriptions of the
 

energy flows will briefly be outlined here.
 

The energy supplied to each plate, ENDENI , is distributed
 

in the following manner,
 

ENDEN = HTRANS + ECONV + LOSSES (S1.1) 

where
 

HTRANS - heat transferred from the surface to the
 

boundary layer
 

ECONV - heat transferred within the plate to the
 

transpiration flow
 

LOSSES - heat transferred to the surroundings by radia

tion from the top and bottom surfaces, and by
 

conduction to the support structure.
 

It is important to recognize that the energy balance
 

control volume is restricted to the center six-inches of the
 

1The terminology of the data reduction computer program
 
STANTON (Supplement 3) will be used throughout this dis
cussion.
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plate. The upper and lower limits of the control volume in
 

the y-direction are somewhat different for blowing and suction.
 

The term LOSSES accounts for several heat transfer mechanisms:
 

top radiation from the plate to the channel walls, back radia

tion from the plate to the pre-plate and casting, conduction
 

from the plate to the casting through the web supports, con

duction to the casting and pre-plate through the'stagnant air
 

which exists when no transpiration is present, and lateral
 

conduction within the plate to or from the center six-inch
 

control volume. The development of models for these terms
 

are fully discussed in references [22,6].
 

During this study, adjustments based on experiments were
 

made to the ECONV term, resulting in improved energy balances.
 

The term is calculated from the equation
 

ECONV = A"c [T-TT][1 + f(n", KCONV)] (S1.2) 

where KCONV accounts for slight measured differences in the
 

mixed-mean temperature of the transpiration fluid leaving the
 

plate, and the indicated plate temperature. The mass flux
 

is obtained by the equation
 

m(KFLOW ± EFUDGE) 
,(51.3)
 

where KFLOW accounts for porosity variations in the plate and
 

KFUDGE is an arbitrary correction term on the order of I per

cent.
 

TFLOW is the ratio of the actual transpired mass flow,
 

passing through the center six-inch section of the plate, to
 

the flow which would pass through that section of a uniform,
 

plate. Moffat determined the value for each plate from 72
 

local flow measurements. KFUDGE was introduced into the
 

model because consistent energy unbalances existed on a
 

plate-wise basis which could best be explained by an error,
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in i". Rather than change KFLOW, which could not be justi

fied experimentally, or change the rotameter calibration,
 

which appeared acceptable when checked, the additive term
 

KFUDGE was introduced into the model.
 

Since these two correction factors are closely inter

related, action was taken along several paths in the current
 

qualification tests to investigate this problem. First, all
 

the flowmeters were individually calibrated against standard
 

ASME sharp-edged orifices (which were themselves satisfactorily
 

checked in water with a weigh tank measurement system). Two
 

orifices of different sizes were used to measure the same
 

flowmeter flow wherever possible, with good agreement in the
 

resulting calibrations.- Both large and small flowmeters were
 

consistently high by 3-5 percent at the low end of their
 

scales. In mid-range and at high flows, the flowmeters were
 

either slightly high or agreed with the orifice. The calibra

tion for each rotameter was curve-fit and entered into the
 

data reduction program. Secondly, measurements were made of
 

the flow passing through the left, right, and center six

inch portions of each plate. To do this, a small plexiglas
 

plenum was designed .which exactly covered the desired area,
 

being sealed on the lower edges, and containing orifice holes
 

in its upper surface. The measured pressure drop across the
 

orifice holes allowed the calculation of the relative flow
 

rate between each section, after suitable corrections were
 

made for the effect of the measuring device on the flow being
 

measured. From these measurements, values of KFLOW were re

computed. Generally, the new values are one to two percent
 

higher than the previous values. Thirdly, the value of
 

KFUDGE was set to zero for all plates.
 

With no main-stream flow, the term HTRANS in eqn. (Sl.l)
 

is zero, and the energy unbalance can be expressed by the
 

equation,
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EO0NV(S.) 
HTFRAC = 1 - EDEN-LOSSES (S.4) 

Tests were conducted at three rates of both blowing and
 

sucking over the full range available. As an example of the
 

magnitudes involved, at full blow the transpiration flow rate
 

is about 13 CFM per plate and the velocity of the fluid
 

leaving the plate 0.44 fps. The energy unbalances for these
 

experiments are presented in Fig. SI.4. The band of scatter
 

is reduced over the previous results of Moffat [22] and
 

Thielbahr [6], but no significant differences are noted.
 

For each transpiration rate, the mean, standard deviation,
 

and calculated uncertainty interval of the results for all
 

plates are presented on the figure. In Table II, the mean
 

and standard deviations for each plate and various combina

tions of transpiration rate are tabulated. In general, the
 

standard deviations for all plates are within uncertainty
 

ranges calculated for each transpiration rate. However, the
 

results of several tests conducted under the same conditions
 

were quite repeatable, indicating that the unbalance mea

surements might possibly be reasonable estimations of fixed
 

errors, and that the true uncertainty bands are in reality
 

not as wide as the uncertainty analysis predicts.
 

F.2 Boundary Layer Energy Balances
 

Each experimental run consists of y-traverse data,
 

including hydrodynamic and temperature profiles, in addition
 

to the surface heat transfer measurements. Using this infor

mation, the energy transferred to the boundary layer from the
 

wall, calculated from the surface heat transfer data, can be
 

compared to the increase in energy in the boundary layer as
 

determined from the measured profiles. A simple energy
 

balance on a two-dimensional boundary layer gives the
 

equation
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St 1 d (A2pUoiS) - F , (Sl.5) 

where the enthalpy thickness, A2 , is defined as 

2W= 
o 

--- dy (i6 

Operationally, Eqn. (Si.5) has been utilized in the following
 

integral form to calculate L2 at each plate,
 

x
 

A2 (x) = (+jU(PUis,oi2 + (St + F)dx 

0 

(s.7)
 

Comparing the enthalpy thickness calculated in this man

ner to the value calculated from profile measurements provides
 

a check on the performance of the apparatus. The starting
 

value required in Eqn. (SlI.7) has been calculated in all
 

test.runs by assuming that the profilemeasurement at the
 

first profile station represents the actual state of the
 

boundary layer, thereby forcing agreement between Eqns. (SL.6)
 

and (S1.7) at that x-position (where Eqn. (S1.6) is calculated
 

using profile data).' In all the runs with no transpiration,
 

the enthalpy thickness calculated from profile measurements,
 

Eqn. (S1.6), is consistently lower than the enthalpy thick

ness calculated from Eqn. (S1.7). The differences in the
 

values of enthalpy thickness vary, in these runs,.up to about
 

6 percent at the end of the accelerated region (no profile
 

measurements were taken beyond this point). This difference
 

represents a variation of approximately 10 percent between
 

the heat transfer calculated from surf-ace measurements and
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that calculated from profile data. In runs with blowing
 

and acceleration, the corresponding comparisons are 2 percent
 

and 4 percent. In test 111669, at constant free-stream
 

velocity and no transpiration, the energy unbalance over five
 

feet of the test section is about 11 percent. It is important
 

to note, in regard to these values, that the uncertainty
 

intervals calculated for the enthalpy thicknesses were on the
 

order of +3 percent and +6 percent, respectively, for
 

Eqns. (SI.7) and (S1.6). On one hand, the absolute differences
 

between the results of Eqns. (S.7) and (SI.6) are within the
 

calculated uncertainty bands, but, on the other hand, there is
 

recognizable consistency in the trend of the energy unbalance
 

with increasing x A summary of representative energy un

balances and uncertainty calculations is presented in Table
 

III.
 

Several possible explanations for a consistent energy
 

unbalance have been considered. Three-dimensional effects,
 

for example, would render the use of Eqn. (S1.7) invalid.
 

In fact, the effects of acceleration on side wall boundary
 

layers in the test channel would cause divergence of the
 

main stream flow, inducing just the trends indicated by the
 

differences noted above. However, the trend is unchanged
 

for the constant free-stream velocity run, whereas growth
 

of the side-wall boundary layers should, by this argument,
 

induce convergence of the main stream under these conditions.
 

Three-dimensional effects could be caused by other
 

phenomena, such as perturbations in the incoming flow or the
 

vortices which exist in the corners of the rectangular chan

nel. The redesign of the inlet screen pack was undertaken
 

to forestall problems of the former type. The design of the
 

screen pack was based on the wind tunnel work of Bradshaw
 

[46] and others' [47,48], and the results of this effort are
 

evident in the uniformity of the free-stream conditions (to
 

be discussed shortly) and the agreement of transverse pro

files. Transverse measurements of both velocity and tempera
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High initial 

H19 

1718 -14.5-13.2 
-17.5 

-3.7-3.9 
-5.8 

.53.54.0 
4.o 

1.81.6 
1.5 

K25l-6 6 -5.3 -1.7 3.9 2.5 101769 4 0 0.1 7.7 2.8 
FK=0.50 

F0028 
7 -79 -3.3 

-11.0 -5.4 
3.9 
3.7 

2.2 
2.0 

K=.xO6 
K=2O.5x 

6 
8 

-19.2 
-13.8 

-6.2 
-6.7 

7.0 
6.6 

2.3 
1.9 

10 
9

-8.9 
-.8'-38.3

-5.5 3.7 
.8High

1.7 Free-Stream 10 -14.7 -8.7 6.9 1.7 

Turbulence
 

All results are given in (%).
 

TABLE III. SUMMARY OF REPRESENTATIVE BOUNDARY LAYER ENERGY BALANCES 



ture taken in the region just prior to acceleration and near
 

the end of the acceleration region, with no transpiration,
 

are quite symmetric. Figure S1.5 shows both sets of profiles,
 

and Table IV lists the integral parameters associated with 

these profiles. The transverse variations in momentum and
 

enthalpy thickness correspond, approximately, to maximum
 

variations from the mean of 2 percent and 4.5 percent,
 

respectively, in the skin-friction coefficient and Stanton
 

number at plate 12. In conclusion, no obvious causes have
 

been detected which would account for the energy unbalance
 

trends noted in the experiments.
 

F.3 Flat Plate Turbulent Boundary Layer
 

A basic prerequisite to obtaining heat transfer data
 
in a strong pressure gradient is a demonstration that the
 

test rig can adequately reproduce accepted correlations for
 

TABLE IV
 

TRANSVERSE MOMENTUM THICKNESS AND 

ENTHALPY THICKNESS MEASUREMENTS 

z = Center- z = 
Quantity x Kxl0 6 +3 in. line -3 in. 

(in.) (in.)
 

e 13.81 0 0.o69o o.0636 o.o674 

A2 13.81 0 0.0535 0.0534 0.0535
 

6 33.59 2.5 0.0257 0.0229 0.0234
 

A2 33.59 2.5 0.0636 o.o600 o.o605
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the turbulent boundary layer with no transpiration and a
 
constant free-stream velocity. Such a test was conducted
 

with a free-stream velocity of 23 fps; the experimental re

sults are presented in Fig. Sl.6 a and compared to the cor

relation obtained by Moffat and Kays [22] on the same apparatus
 

in 1966 with a free-stream velocity of 43 fps. In Fig. S1.6b
 
two temperature profiles from this test run are compared to
 

another experiment. It can be seen that changes in the inlet
 
section and the mathematical data reduction model have had a
 
negligible effect on rig performance for this type of test
 

run. When corrected for variable property effects by the
 
ratio (T0/TJ9 4 , the data is adequately fitted by the
 

expression,
 

St = 0.0128 R - .25 Pr-' 5 , (S1.8)
 

obtained earlier by Moffat, and within 2 percent of accepted
 

correlations [49,50].
 

Temperature and velocity profiles were also obtained at
 

three positions along the test section (14.8, 46.8, and 78.8
 
inches). As noted in section F.2 the measured plate heat
 

transfer to the boundary layer was 10-11 percent higher than
 

the increase in energy calculated from profiles.
 

Since other experimenters have substantiated the Stanton
 

number correlations expected under these conditions, this
 

test run presented an opportunity to compare actual results
 
to expected results in an attempt to explain the small dif

ferences noted. However, careful scrutiny of,both the surface
 

heat transfer data and the profile data was again inconclusive.
 

First, examination of the Stanton number results showed that
 
they are not consistently high compared to the expected cor

relation. Next, several possible errors in the profile data,
 

and its reduction to enthalpy thickness, were'numerically
 

investigated. A low temperature reading tends to lower the
 

measured enthalpy thickness. To consider the magnitude of
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effects due to thermocouple conduction error, the laminar
 

Couette flow equation for no transpiration and zero pressure 

gradient, 
t+ ±ry 
t =PrY (Sl.9) 

was used to predict the temperature for y+ < 10 . The com
puted temperatures in the sublayer ranged from 2.4 F higher 

than the measured temperatures near the wall to 0.7 F higher 

at y+ 101 The calculated enthalpy thickness at x = 78.8
 

inches, using these new values, only changed from 0.1905

inch to 0.1907-inch, whereas the enthalpy thickness computed
 

by integration of the energy equation is 0.2079-inch. As

suming a conduction error extending into the turbulent core,
 

where the contribution to the enthalpy thickness is greater,
 

results in a new profile value on the order of 0.1970.
 

Another possibility is that an error exists in the y-position
 

in either temperature or velocity profiles, particularly due
 

to failure to locate the wall accurately. The uncertainty
 

analysis discussed in the previous section assumes a 0.0015
 

inch uncertainty in this measurement. If the y-position for
 

all temperature profile points is arbitrarily shifted 0.0025
 

inches away from the wall in the case of the profile at
 

x = 78.8 inches, the calculated enthalpy thickness becomes
 

0.1917 inches. Obviously the integral parameters of the
 

boundary layer are not overly sensitive to any of the possible
 

errors mentioned here, which is an indication of both their
 

usefulness and insensitivity in experiments. The integral
 

parameters are more sensitive to errors in-the free-stream
 

and plate temperatures, but both those measurements are much
 

more certain than the probe temperature in a steep tempera

ture gradient. The uncertainty analysis gives, at x 78.8
 

inches, an uncertainty of +0.006 for the profile measurement
 

of enthalpy thickness and +0.003 for the value obtained by
 

integrating the energy equation. For convenience, the ef

fects of the errors just discussed are tabulated in Table V.
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TABLE V 

EFFECT OF EXPERIMENTAL ERRORS ON THE CALCULATED 

ENTHALFf THICKNESS AT x = 78.8 INCHES IN 

RUN 111669 (K = 0.0, F = 0.0) 

Enthalpy
 

Case Thickness, A2
 

Experimental result (Eqn. S2-6) 	 0.1905 + o.oc6
 

Integration of energy equation (Eqn. S2-7) 0.2079 + 0.003
 

Effect of assumed errors (evaluated by
 
Eqn. S2-6)
 

1) 	Couette flow valid for y+ < 10 0.1907
 

2) 	Conduction error: Range 1.
 
Linear from 2.5 F at y+ = 0 to
 
1.0 F at y+ = 10. Range 2.
 
Linear from 1.0 F at y+ = 10 to
 
0 F at y+ = 500. 0.1970
 

3) 	y-shift of +0.0025-inch 0.1917
 

Within the uncertainty bands, the measurements of Stanton
 

number and local enthalpy thickness indicate that a small
 

percentage of the energy transferred from the wall is not
 

accounted for by boundary layer profile measurements.
 

F.4 Free-stream Conditions
 

IUniformity of the free-stream flow was measured in
 

both the streamwise and cross-sectional directions. All the
 

experiments in the study were conducted with an inlet free

stream velocity of 23 fps. At this velocity, the uniformity
 

of the free-stream velocity in the inlet plane was found to
 

be within 0.05 fps, while the free-stream temperature in the
 

same plane was constant within 0.2 F. The free-stream total
 

pressure showed a maximum streamwise variation of +0.001
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inch H20 throughout the accelerated region under the condition
 
-
of strongest acceleration, K = 2.5 x 10 6 . The free-stream
 

stagnation enthalpy was not measured under these conditions,
 

but the indicated thermocouple temperature was uniform in
 

the axial direction within +0.2 F at a constant free-stream
 

velocity.
 

The free-stream turbulence level was nominally 0.7 per

cent. One test series was conducted with a free-stream
 

turbulence intensity of 3.9 percent at the start of accelera

tion in order to examine the effect of free-stream turbulence
 

on heat transfer performance in strongly accelerated boundary
 

layers. The free-stream turbulence intensity decayed to
 

0.4 percent and 0.9 percent, respectively, in the recovery
 

region. In the high free-stream turbulence runs, a crossed

rod grid was placed 13 inches upstream of the trip. The grid
 

consisted of 1/4-inch round wooden dowels formed into a
 

square, interlocked mesh (i.e., all of the dowels were in the
 

same plane) on 1-inch centers. The grid design was based in
 

part on the work of Uberoi and Wallis [28], in which, 29

inches downstream of a similar grid, the turbulence was
 
2 v'2
found to be homogeneous with u . The free-stream 

energy spectra exhibited in both runs was that of normal
 

turbulence. The spectra were taken in the region just prior
 

to acceleration and are presented in Fig. S1.7.
 

F.5 Effect of Pressure Gradient
 

Strong pressure gradients can effect the experimental
 

velocity traverses in several ways. Streamline curvature can
 

(1) cause a probe error due to the angle of the flow to the
 

ptobe, and (2) result in a significant static pressure gra

dient normal to the flow streamlines,, so that wall measure

ments of static pressure at a fixed y-position are not suf

ficient descriptors of the static pressure at the probe.
 

With porous plates, there exists the additional problem in
 

a favorable pressure gradient of a "natural" transpiration
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into the upstream side of the plate (sucking) and out the
 

downstream side (blowing), caused by the axial pressure
 

gradient in the free-stream flow. The reversal of transpira

tion in a given plate occurs when forced transpiration is not
 

present; with forced transpiration, the effect of the pres

sure gradient is to induce non-uniformity within the plate.
 

Streamline curvature effects were examined by testing
 

the magnitude of the static pressure gradient normal to the
 

wall. Five wall static taps (0.032 inch diameter sharp

edged holes), were drilled at distances from the wall of
 

0.75, 1.0, 1.5, 2.0, and 2.5 inches, at two stations in the
 

region of the strongest pressure gradient. Static pressure
 

readings were taken at an acceleration of K = 2.5 x 10-6.
 

At the first station, where d- 2.28 (lbf/ft2 )/ft, the

dx
 

velocity varied -0.2% up to 1.5 inches and -0.7% up to 2.5
 

inches, both normalized by the velocity at 0.75 inches. At
 

the second station, where qE= -4.45(lbf/ft2)/ft the
dx 
measurements were essentially identical to those at the first 

station. The boundary layer thicknesses under these condi

tions were about 1.25 inch and 1.0 inch, respectively, at 

the'two stations. By virtue of these results, streamline 

curvature effects were considered negligible within the 

boundary layer. 

While the pressure-gradient-induced transpiration is 

undesirable in'tests where no transpiration .is desired, it 

is a desirable feature in the blowing tests conducted in this 

study. The usual objective was to achieve a boundary layer 

with a constant ratio of poV/pU. (2 F). Since U0 in

creases in the x-direction in the accelerated region, it is 

desirable if, within a given plate, the local transpiration 

has the same trend. A parametric study of the expected 

transpiration behavior at various values of K and F was 

conducted prior to the start of the study. The behavior of 

the apparatus in this regard can be modeled by assuming that 

a potential flow model describes the main stream flow, that 
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the transpiration flow is governed by laminar mechanisms in
 

the porous plates, and that the static pressure in the cavity
 

beneath the plate is uniform. The first two assumptions were
 

substantiated by simple tests. At the high blowing rate,
 

about 13 CFM, the pressure drop across a plate is approxi

mately 12 inches of water. It was decided to limit the de

viation from the desired value of the induced transpiration
 

to F = +0.0003, a value for which the effects of transpira

tion on heat transfer are known to be insignificant in con

stant velocity boundary layers. With this criteria in mind,
 

a maximum limit of K = 2.5 x 10-6 was set for strong ac

celerations with no transpiration. It is possible, with 

blowing, to go to considerably higher values of K and still 

satisfy the criteria on F . The expected distribution of 

transpiration for the conditions of this study are presented 

in Fig. SI.8.
 

F.6 	Roughness
 

The roughness criteria was one of the features of
 

the porous plate taken into consideration in the initial
 

design of the apparatus. The maximum RMS roughness, 0.0002
 

inch, is well within the laminar sublayer for the experiments
 

discussed in this thesis. While the boundary layer itself
 

becomes thinner in strong accelerations, it is also true that
 

the relative thickness of the laminar sublayer markedly in

creases. Near the end of the acceleration region, at
 

K = 2.5 x 10-6, with no transpiration, the sublayer thickness
 

is about 0.008 inches.. The maximum velocity in the test
 

section was on'the order of 80 fps. A study specifically
 

directed at the effect of surface roughness in this apparatus
 

on skin friction in a turbulent boundary layer,with constant
 

free-stream velocity is reported by Thielbahr, et al. [6].
 

The conclusions were that, for velocities up to 86 fps, the
 

experimental data shows no effect of plate roughness. The
 

conditions encountered in the present study meet this criteria.
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G. Data Reduction
 

The method of data reduction relies on a mathematical
 

model of the test apparatus which links the raw experimental
 

data to appropriate representations of the results. The
 

measurement techniques are standard, so the point of interest
 

becomes the interpretation of the measured quantities. The
 

purpose of this section is to clearly explain the assumptions
 

which were made in reducing the raw data to the form of the
 

results presented in this thesis.
 

G.1 Surface Heat Transfer
 

The surface heat flux, 40" , is presented in the
 
form of Stanton number,
 

*O II 

St - (s1.10)
 

where is,O is the stagnation enthalpy referenced to free

stream enthalpy. The determination of the surface heat flux
 

has been discussed in section F.l. Equation (S.1) is re

arranged to compute the term HTRANS, which is the heat flux,
 

40* In an attempt to reduce experimental scatter in the
 

Stanton number for the blowing runs, the transpiration
 

energy balance results were incorporated into the computations
 

in the following manner. A non-zero value of HTFRAC (Eqn.
 

SI.4) in the transpiration energy balances 'reflects an error
 

in one of the terms, ENDEN, ECONYV, or LOSSES. Because the
 

measurements associated with the transpiration itself are
 

most subject to uncertainty, the error was wholly attributed,
 

arbitrarily, to the term ECONV. The transpiration energy
 

balance results give HTFRAC at certain values of i" over
 

the full range of-transpiration in the apparatus. Kaiowing
 
T
m" for a given plate, and assuming a linear variation
 

between measured energy balance points, the value of HTFBAC
 

can be determined. HTFRAC is thus dependent both on the
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plate and mass flux. Note that Eqn. (SI.4) can be written
 

HTFRAC = HTRANS/ENNET
 

where 

ENNET = ENDEN - LOSSES
 

HTRANS = ENNET - ECONV
 

In boundary layer measurements, ENNET$ECONV, whereas in the
 

energy balances ENNET ECONV. The correction to HTRANS in
 

boundary layer measurements due to the measured energy un

balance can be expressed, approximately, by
 

HTRANSne w = HTRANSold - (HTFRAC) (ECONV) 

Since 'StHTRANS, the correct Stanton number is formed by
 

writing
 

Stnew = Stold * HTRANSnew/HTRANSold
 

or 

Stnew = Stold [1 - (HTFRAC) (ECONV)HTRANSol d ] 

The Stanton number calculations in all the blowing runs were
 

handled in this manner. The final results show less scatter
 

than would etist if the transpiration energy balance results
 

were not utilized.
 

In the test channel, the free-stream gas temperature
 

and total pressure are recorded 6-inches downstream of the
 

trip, while'side-wall static pressure measurements are read
 

every 2-inches down the channel. Assuming constant free

stream total pressure, the free-stream velocity is obtained
 

from Bernoulli's equation for incompressible flow. The free

stream stagnation enthalpy is also assumed constant through

out the channel. Both these assumptions were shown to be
 

valid in the qualification tests. The energy equation is
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integrated to obtain the enthalpy thickness at the center of
 

each plate, assuming a starting value at the first plate.
 

Subsequently, the enthalpy thickness at x = 14 inches,
 

obtained from profile data, is-used to establish the starting
 

condition.
 

No adjustment to the measured plate Stanton number is
 

applied to correct for variable property effects, since the
 

usual correction may not be applicable to flows with blowing
 

or strong acceleration. The surface heat transfer data is
 

presented as a function of enthalpy thickness Reynolds number,
 

because this dimensionless ratio has proven to be a useful
 

and valid local descriptor of the heat transfer phenomena
 

even with variable wall conditions (both transpiration and
 

temperature) in a constant velocity turbulent boundary layer
 

[44]. While this is not the case in strong acceleration, no
 

better correlating variable has been observed.
 

G.2 Profile Data
 

Profile measurements of temperature, velocity, and
 

streamwise velocity fluctuations were taken in the joint
 

investigation represented by this thesis and that of Loyd
 

[23]. A complete discussion of the hydrodynamic profile
 

data is presented by Loyd.
 

The thermocouple probe measures a temperature somewhere
 

between the static and stagnation temperatures of the f2ow.
 

Since the velocities in this study are low, the magnitude
 

of the difference between the two temperatures is, at the
 

most, 0.5 F. It has been assumed that the the-rmocouple probe
 

neasures the adiabatic wall temperature; the recovery factor,.
 

an unknown function of the probe geometry and flow conditions,
 

= Pr1/ 3 
is taken to be given by the expression, rc . Con

sequently, the static temperature is computed by the equation,
 

T = Tprob e - r c U2/2gJ (S..lJ)$ 
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No other corrections were applied to the measured thermo

couple readings. The effect of errors due to an incorrect
 

interpretation of the thermocouple reading or to thermocouple
 

position are considered in the uncertainty analysis. The
 

enthalpy thickness at each profile station is determined by
 

Eqn. (S1.6),
 

A2(x) I PU i s ddy

00 

--pjU is~ 
0o ~ 

All the hydrodynamic data were obtained under isothermal
 

conditions by Loyd [23]. Since this data is required in the
 

calculation of-enthalpy and momentum thickness for the case
 

of a 	heated wall, the form in which it should be combined
 

with 	the temperature profile data must be -considered.
 

Thielbahr et al. [6] investigated, both experimentally and
 

numerically by means of a computer solution of a boundary
 

.layer model, the possibility that one of the following
 

quantities would be preserved: 1) U/U 0 , 2) pU/pU , or 

3) APdyn He found that, under similar free-stream conAPdyn,w
 

ditions, the minimum error in the integral parameters cal

culated by mixing isothermal and non-isothermal data was 

achieved by assuming the preservation of: U/U . The dif

ferences were less than 1 percent when 0.95 < Tw(°R)/To(°R) < 

1.05 	. The same practice has been followed in this study. 

The temperature profile data are presented both in inner 

T+
region coordinates, and-y+ , and outer region coordi

nates, T and y/5 H *
 

G.3 	 Computer Programs
 

The data reduction has been accomplished entirely
 

on an IBM 360-67 computer. The programs were written in
 

Fortran IV. Extensive use has been made of computer plotting
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routines where possible. The listings of the three basic
 

programs used in the reduction procedure are included in
 

Supplement 3. In brief, the programs are:
 

STANTON - reads raw heat transfer run data in order to
 

compute surface heat transfer results and as

sociated uncertainty analysis.
 

PROFILE - reads raw temperature profile data, and cal

culated velocity profile results, in order to
 

compute temperature profile information and
 

integral parameters, plus the associated un

certainties.
 

ENERGY - reads final temperature integral results, and 

surface heat transfer results, in order to re

calculate the plate enthalpy thickness from the
 

energy equation, and to determine ,the boundary
 

layer energy balance at each profile.
 

G.4 Uncertainty Analysis
 

Errors in measured variables, such as temperature
 

or pressure, can be accidental, fixed, or simple mistakes.
 

The uncertainty in the measurement is related to the possible
 

value the error might have in a given measurement. In single

sample experiments, it is not possible to make a straight

forward calculation of statistical measurements of error,
 

such as the standard deviation. Instead, the method of
 

Kline and McClintock [29] has been utilized to determine the
 

uncertainty in the calculated results based on estimated un

-certainties in the primary measurements. The base uncer

tainties in the primary measurements have been chosen, fol

lowing [29], to be the range within which the mean value of
 

the measurement probably lies, given 20:1 odds. For example,
 

by experience it is estimated that the uncertainty interval
 

associated with the measured gas temperature is 0.25 F.
 

This statement says that the odds are 20:1 that the true
 

value of the gas temperature is the recorded value, within
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plus or minus 0.25 F. Consequently, the uncertainty inter

vals which have been selected for the primary measurements'
 

are based on experience and the confidence that, at 20:1
 

odds, the true value lies within the stated range. The
 

intervals used throughout this study are tabulated in Table
 

Vi. 

In general the reported Stanton number is certain to at
 

least +0.00010 Stanton units. The enthalpy thickness Reynolds
 

numbers calculated from the profiles and from integration of
 

the energy equation are, respectively, on the order of +6
 

percent and +3 percent uncertain. Selected samples of the
 

uncertainty results are presented in Table VII. It should
 

be noted that the results of the transpiration energy balances
 

have not been incorporated into the reported uncertainties
 

in Stanton number. To show the relation of the energy bal

ances to the measurements, modified heat transfer results
 

are presented, based on the convenient premise that the
 

energy balance results associated with a given transpiration
 

rate are completely certain and can be used to adjust the
 

measured Stanton numbers.
 

H. Test Procedure
 

By combining the continuity equation and the definition 

of the acceleration parameter, K , one obtains 

-v dh (Sl.12)
 
, h 
 dx'
 

where the subscript, 1, denotes conditions at the start of
 

acceleration. To achieve a constant value of K and to
 

obtain as long an accelerated region as possible, it is ap

parent from Eqn. (S1.12) that the slope of the top must be
 

constant and the inlet velocity low. Shakedown experiments
 

determined that 23 fps was the lowest inlet velocity, U.,I
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TABLE VI. PRIME UNCERTAINTY INTERVALS 'USED (ESTIMATED AT O:1 ODDS)
 

VARIABLE VALUE ASSIGNED 

SURFACE HEAT TRANSFER 

DOELP 0.0020 

DXX 0.016 

DCMP 2.000 

OTEMPA 0.250 

DTEMPP 0.150 

OPAMB 10.00 

DMUP 1.0 

DPSTLO 0.8000 

DP97HI 0.4000 


DPSLO 0.8000 


DP5HI 0.4000 


097MIN 0.0005 


DSMIN 0.0005 


D47MAX 0.0030 


DSMAX 0.0030 


DQRADP 25.0 


OWIND 0.25 


DENZRP 25.0 


TEMPERATURE PROFILES
 

DTEMPA C.250 

DPRTMP 0.400 

OPAMB 10.00 

DMUP 1.6 

DELY 0.0015 


VARIABLE MEANING UNITS 

MANOMETER READING IN.-H20 

STATIC TAP LOCATIONS INCHES 

ROTOMETER READING x 

GAS TEMPERATURE DEG. F. 

GAS TEMPERATURE DEG. F. 

AMBIENT PRESSURE LBF/FTZ 

ABSOLUTE VISCOSITY x 

TRANSDUCER CALIBRATION-PMST.FDR P<.05 IN.-H20 x 

TRANSDUCER CALIBRATION-PM97,FOR P>.05 IN.-H20 2 

TRANSDUCER CALIBRATION-PM5,FOR P<1.0 IN.-H20 2 

TRANSDUCER CALIBRATION-PMS,FOR P>I.'O IN.-H20 x 

MINIMUM PM97 UNCER. DUE TO ZERO SHIFT IN.-H20 

MINIMUM PM5 UNCER. DUE TO ZERO SHIFT IN.-H20 

MAXIMUM PM97 UNCER. DUE TO CALIBRATION CHECK IN.-H20 

MAXIMUM PM5 UNCER. DUE TO CALIBRATION CHECK IN.-H20 

RADIATION ENERGY TRANSFER 2 

INDICATED WATTMETER READING 'WATTS 

STARTING ENTHALPY THICKNESS ESTIMATE x 

TEMPERATURE DEG. F. 
PROBE TEMPERATURE NEAR WALL(FIRST 15 POINTS) DEG. F. 
AMBIENT PRESSURE LBF/FT2 
ABSOLUTE VISCOSITY % 
PROBE POSITION REL. TO WALL INCHES 



TABLE VII
 

SELECTED SAMPLES OF EXPERIMENTAL
 

UNCERTAINTY CALCULATIONS
 

Run Plate 	 x(in.) StxlO 5 AStxlO 5 Re H AReH
 

091069-1 4 14 287 7 726 21
 
K = 1.99 x 10-6 6 22 246 7 1054 26
 

F = 0.0 	 10 38 176 4 1781 37
 
15 58 184 3 3352 63
 

070869-1 	 4 14 290 8 631 15
 
-6
K = 2.55 x 10 6 22 249 7 886 18
 

F = 0.0 10 38 157 4 1433 26
 
15 58 191 3 2701 45
 

072769-1 	 4 14 219 8 844 21
 
6
K = 2.50 x 10- 6 22 181 8 1234 27
 

F = 0.002 10 38 139 5 2269 44
 
15 58 i14 5 4521 84
 

083069-1 4 14 151 10 1078 27
 
K = 2.60 x 10-6  6 22 i19 9 1599 35
 
F =O.004 10 38 104 7 2959 52
 

15 58 68 7 6248 104
 

092469-1 4 14 289 8 *621 16
 
K = 2.50 x 10-6 12 46 233 7 1557 30
 
F==0.0 15 58 210 6 1866 35
 

19 74 134 3 2368 43
 

101769-1 4 14 286 7 579 18
 
K = 2.56 x 10-6 6 22 255 7 846 21
 
F = 0.0 10 38 150 3 1411 29
 

15 58 198 3 2864 51
 

111669-1 4 14 297 7 620 13
 
K =0.0 10 38 236 7 1370 24
 
F =0.0 16 62 218 '6 2023 33
 

22 86 210 6 2623 42
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for which a turbulent boundary layer could be obtained at
 

the start of the test section, i.e., plates 1 or 2. The in

let height of the test channel, hI , is 6 inches. Conse

quently, dh/dx is uniquely determined for a selected K 

At K = 2.5 x 10-6 about five plates, extending over 20 

inches, were within the region of constant dh/dx . For most 

test runs, the acceleration started 18-inches from the be

ginning of the test channel. In tests 092469 and 100269, 

where a thick boundary layer was desired at the start of the 

accelerated region, the first bend in the top-was located 

53-inches'from the beginning of the test channel.
 

In a 'complete test run, the experimental data consisted
 

of surface heat transfer measurements and profile traverses'
 

with a pitot probe, hot-wire, and thermocouple probe. The
 

configuration of the test duct and the profile locations are'
 

illustrated in Fig. S1.9. The hydrodynamic data, both pitot
 

probe and hot-wire, was taken under nearly isothermal con

ditions in the test channel, usually on separate days. To
 

obtain the surface heat transfer data and the temperature
 

profiles-, care was taken to ensure that the apparatus had,
 

been operating at a steady state condition for at least an
 

hour prior to testing. The thermocouple probe was reference4
 

to the free-stream temperature. If the free-stream tempera

ture changed more than 1 F during a profile, the data wVs
 

discarded. 'Several tests with this, referencing scheme
 

showed that, for variations-up to I F, the calculated e-nthalpy
 

thickness was virtually unchanged. Surface heat transfer

runs were conducted both befor and after the'temperature
 

profiles were-obtained, in order to confirm the achlevlem'ent
 

of steady state conditions.
 

Free-stream velocity and transpiration rate meastrements
 

were taken in conjunction with both the hydrodynamic and
 

thermal tests.
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Fig. S1.1 	 Photograph of the test section entry region, showing
 
the 4:1 contraction and approximately 15 of the 24
 
test plates.
 

NOT REPRODUCIBLE 

Fig. S1.2 Closeup of plate surface (l mm squares).
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Fig. S1.3 Cross-section view of a typical compartment.
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Fig. S1.6 a. 	Surface heat transfer results for the
 
turbulent boundary layer on a flat plate.
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Fig. S1.6b. 	 Temperature profile results for the
 
turbulent boundary layer on a flat plate.
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Fig. 81.7.. Free-stream energy spectra for lOW and high turbulence.
 

Data recorded at x=-1k-inches,, just prior to the region
 
of acceleration.
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All runs except,092469 and 100269
 

Profile Plate' x(in.) Symbol 
Number 

1 4 13.81 o 
2 6 21.81 0 

3 7 25.86 

4 8 29.81 -
5 9 33.59 X 
6 0 37.46 0 

55 "23" 

Runs 092469 and 100269 

Profile Plate x(in.) Symbol 
Number P 

1 12 46.76 0 
2 15 58.94 0 

3 16 62.86 A 

4 17 66.76 + 

5 18 70.69 X 
6 19 74.58 0 

Fig. S1.9 Test duct configurations and profile locations
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NOT FILMED,fECEWING 'PAGE BLANK 

SUPPLEMENT 2 

TABULATION OF EXPERIMENTAL DATA 

A. Organization of Tables and Figures
 

General
 

The tabulation of experimental data consists of surface
 

heat transfer data, temperature-and velocity profiles, and
 

plots. Each experiment, defined as a specified set of
 

initial and boundary conditions, usually includes several
 

surface heat transfer runs (repeated under the same condi

tions) and one set of profiles. The velocity profile data
 

is taken from the work of Loyd [23]. The Stanton number
 

quoted for each profile was obtained by interpolatingfrom
 

a smoothed curve of the Stanton number results. Note that
 

selected profile information is included in the tabulation
 

of the first surface heat transfer run. It should be noted
 

that a constant surface temperature was maintained in all
 

the experiments.
 

All of the data for a given experiment are presented
 

together. The arrangement of the experime.nts is discussed
 

below. For each experiment, the following format is used:
 

* Surface 	heat transfer data
 

* Summary 	of profile results
 

* Profile 	data
 

• 	Plots:
 

St - ReH
 

T+ - y+ 

T - Y/5H
 

Q + _ Y/5+M
 

The,non-dimensional local heat flux, Q , was computed 

in connection with the calculation of turbulent Prandtl 
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number. Each plot is not presented for each experiment,
 

though the first three are shown for all but two cases.
 

Careful comparison of the tabulated velocity profile
 

data to that of Loyd [23] will reveal that the data tabulated
 

here are interpolated from Loyd's results for the y-positions
 

at which the temperature data was taken. The procedure fol

lowed was to assume that U(y)/Uis similar in
 

both the isothermal conditions of the hydrodynamic tests and 

the non-isothermal state in the heat transfer tests. The 

validity of this assumption is discussed in Supplement 1. 

One result of the temperature difference across the boundary 

layer is to slightly alter the momentum thickness Reynolds 

number, ReM , compared to its isothermal value. In referring 

to the thesis of Loyd, a velocity run number listed here as, 

for example, Run 71669-1 will be listed there as Run 71669. 

Nomenclature of Tables
 

AMB ambient
 

BARO PRES barometric pressure, in. Hg.
 

BASE refers to cast substructure of test
 

apparatus
 

COVER refers.to reflecting cover, facing test
 

surface, in the rectangular channel 

CF2 or CF/2 Cf/2 

DELH or THERMAL B.L. THICKNESS 5 in. 

DELM or HYDRO B.L. THICKNESS 6M5 in. 

DELTA2 or ENTHALPY THICKNESS 42, in. 

F ' 

GAS refers to free-stream condition
 

v dU.
 
U2 dx
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http:refers.to


PL 


Q+ 


REH or ENTHALPY RE. 


REL HUM 


REM or MOMENTUM RE. 


ST 


TBAR 


TEMP 


TGAS or TINF 


THETA or MOMENTUM THICKNESS 


TO 


TPLUS 


U/UINF 


UPLUS 


VEL or UINF 


Y 


Y/DELM 


YPLUS 


plate number
 

heat flux ratio
 
(= -'/(.u s, os ) ) 

U00A2-

ReH 2
 

relative humidity
 

ReM Uw
 

St
 

T To
T =
 

temperature, 0F
 

T., free-stream temperature, F
 

G , in.
 
0
 

T0 , wall temperature, F
 

T+ = St uwU
 

U/U
 

U+ 
 U/U
 

Um , fps
 

x-distance from start of first
 

plate, in.
 

y-distance normal to plate, in.
 

y/6M
 

YU
 
V 
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Symbols and Abbreviations 

Stanton runs: Order Symbol 

-l 8 

-2 	 X 

-3 	 A 

Profiles: 	 See Fig. S1.9 for explanation. A symbol code
 

is also shown on each plot.
 

Titles: 	 The run number consists of the date and the order
 

of the run. The acceleration parameter, K , and
 

the blowing fraction, F , are given for each
 

run. The letters following this information
 

are one of four sets:
 

NE - near-equilibrium. The experimental condi

tions are such that the momentum thickness 

Reynolds number, ReM , at the start of 

acceleration is as close as possible to 

the asymptotic value associated with the 

given K . The thermal and momentum layers 

are approximately of equal thickness, i.e., 

5H/5M 1 . See Chapters 1 and 2 for 

further details. 

IC - initial condition. The initial conditions 

at the start of acceleration were varied, 

meaning either that ReM is far away from 

the asymptotic value, or that 5H/"M 1 

BC - boundary condition. The boundary conditions 

were varied to examine a particular effect. 

The effects studies were a high free-stream 

turbulence level, and step-changes in blow

ing within the acceleration region. 

FP - flat plate boundary layer
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Purpose of Experiments
 

NE:
 

The near-equilibrium test series was conducted to examine
 

the effect of acceleration, combined with blowing, on heat
 

transfer in the turbulent boundary layeY. The experiments
 

in this series were:
 

Date K x 106 F
 

091069 1.99 0.0
 
070869 2.55 0.0
 
072769 2.50 0.002
 

083069 2.60 0.004
 

IC:
 

These tests were all conducted at nominal values of 

K = 2.5 x 10-6 and F = 0 . For Run 071569, the first 

three plates in the test apparatus were unheated, with the 

same hydrodynamic conditions as Run 070869, so that 

5H/5M < 1 . In Run 092469, the momentum thickness Reynolds 

number entering the region of acceleration is considerably 

higher than the asymptotic value. In Run 100269, the first 

ten plates were unheated, with the same hydrodynamic condi

tions as Run 092469, resulting in 5H/5M < 1 

BC:
 

This test series was conducted,at a nominal value of
 
- 6
K = 2.5 x 10 . The free-stream turbulehce level was in

creased, by means of a crossed-rod grid, in Run 101769 in
 

order to study the effect of the increased turbulence level.
 

In Run 102469, the blowing fraction, F , was stepped
 

from 0 to 0.004 in the center of the acceleration region,
 

while in Run 111369 F was stepped from 0.004 to 0 at
 

the same location.
 

PP:
 

The flat plate turbulent boundary layer experiment was
 

conducted in order to validate the performance of the apparatus.
 

131
 



B. Data
 

The experimental data is tabulated in the following
 

order:
 

Date Kxl0-6  F Designation
 

091069 1.99 0.0 NE 

070869 2.55 0.0 \NE 

072769 2.50 0.002 NE 

083069 2.60 o.oo4 NE 

071569 2.55 0.0 IC 

092469 2.50 0.0 IC 

100269 2.50 0.0 Xc 

101769 2.56 0.0 BC 

102469 2.50 0.0 BC 

111369 2.50 0.0 BC 

111669 0.0 0.0 FP 

Following these data, a table of some ratios formed
 

from the boundary layer integral parameters is presented.
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RUN 070869-1 K=2.55XIO-6 F=O.0 NE RUN 071669-1 K=2.5SX1O-6 F=0.0 NE 
DATE 70869 RUN NC. I DATE 71669 RUN NO. 1 
AND TEMP BASE TEMP GAS TEMP COVER TEMP BARD PRES REL HUN AND TEMP BASE TEMP GAS TEMP COVER TEMP BARO PRES REL HUM 
73.40 83.58 72.37 73.51 29.90 0.56 78.57 85.76 74.18 75.35 29.91 0.52 

PL X VEL K REM ST REM CF2 TC F PL x VEL K REM ST TO F 

2 6 23.31 0.103E-06 336. 0.00348 99.6 0.0000 2 6 23.25 0.412E-07 333. 0.00350 101.7 0.0000 Z 
3 10 23.21 -0.235E-06 A92. 0.00311 99.4 0.0000 3 10 23.33 0.138E-06 49C. 0.00313 101.6 0.0000 en 

4 13.8l 23.30 0.208E-06 624* 0.C0290 754. 0.00250 98.7 0.0000 4 14 23.18 0.129E-06 626. 0.00293 101.8 0.0000 
4 14 23.20 0.208E-06 631. 0.00290 99.5 0.0000 5 18 23.79 0.857E-06 762. 0.00273 I01.7 0.0000 a D 
5 18 23.87 0.774E- 06 163. 0.00269 99.5 0,0000 6 22 25.33 0.O1SE-O5 052. 0.00252 101.6 0.0000 ., ., 

6 21.81 25.00 0.205E-05 895. 0.00248 817. 0.00255 98.2 O.OOCO 7 26 28.71 0.25LE-05 1012. 0.00223 101.9 0.0000 CD 

6 22 25.54 0.205E-05 886. 0.00249 99.7 0.0000 8 20 33.46 0.253E-05 1146. 0.00189 101.7 0.0000 00 
7 25.86 28.40 0.2380-05 990. 0.00222 738. 0.00260 97.0 0.0000 9 24 40.37 0.256E-05 1285. 0.00177 101.6 0.0000 ) 
7 
E 
8 

26 
25.81 
30 

28.73 
33.C 
33.52 

0.238E-05 
0.252E-05 
0.252E-05 

1012. 
1120. 
1147. 

0.00223 
0o.0198 
0.00186 

665. 0.00260 
99.7 
95.2 
99.6 

0,0000 
0.0000 
0.0000 

10 
11 
12 

38 
42 
46 

50.57 
65.55 
67.17 

0.254E"05 
C.110E-05 
0.336E-07 

1428. 
1606. 
1024. 

0.00156 
0.00135 
0.C0198 

101.8 
101.7 
101.8 

0.0000 
0.0000 
0.0000 

03 
UD to 
I 8 

-
9 23.59 39.00 0.254E-05 1236. 0.00177 595. 0.00257 95.3 0.0000 13 50 67.07 0.102E-07 2101. 0.00212 101.8 0.0000 F'3 t 

334 40.29 0.254E-05 127. 0. C0174 99.4 0,0000 14 !4 67.22 0.220E-07 2378. 0.00194 101.7 0.0000 
10 37.46 48.30 0.253E-05 1345. 0.00159 550. 0.00246 96.0 0.0000 15 58 67.36 0.152E-07 2667. 0.00192 101.4 0.0000 
10 38 50.59 0.2536-05 1433. 0.00157 99.6 0.0000 16 62 67.46 0.910E-08 2940. 0.00191 101.2 0.0000 
11 42 65.59 O.IOE-05 1627. 0.00135 99.2 0.0000 1 66 67.52 0.5318-08 3164. 0.00186 O.5 0.0000 
12 46 67.22 -0.312E-07 1878. 0.00198 98.9 0,0000 18 70 67.59 0.000E 00 3404. 0.00181 101.6 0.0000 

13 50 67.15 0.134E-07 2144. 0.00210 98.9 0.0000 19 14 67.59 O.OOOE G0 3653. 0.00178 101.5 0.0000 0"1 
14 54 67.32 0.237E-07 242!. 0.00153 98.8 0.0000 g0 78 67.59 O.OOOE 00 3904. 0. C174 101.4 0.0000 

15 58 67.47 0.143E-07 2701. 0.0019L 58.7 0.0000 21 E2 67.59 O.OOOE 00 4114. 0.00171 101.5 0.0000 
16 k2 67.56 0.882a-08 2931. 0.C0188 98.9 0.0000 22 E6 67.59 C.O00E 00 4372. 0.00172 101.4 0.0000 to 

17 66 67.56 0.387E-08 3209. 0.00185 98.7 0.0000 23 90 67.59 O.O00E 00 46C8. 0.00168 101.3 C.OCO I 
18 70 67.71 0.350E-08 3449. 0.00181 98.8 0.0000 6-
19 74 67.66 -0.173E-07 3719. 0.00178 98.6 0.0000 
20 78 67.57 0.860E-08 3957. 0.00173 98.6 0.0000 
21 82 67.68 0.729E-08 4164. 0.00171 98.7 0.0000 
22 86 67.72 0.122E-08 4382. 0.00172 98.8 0.0000 

23 90 67.68 70.747E-08 4670. 0.00168 9S8.5 0.0000 
II 

RUN 070869-2 K=2.55X1C-6 F=0.0 NE X 
DATE 70E69 RUN NO. 2 
AM TEMP BASE TEMP GAS TEMP CUVER TEMP BARO PRES REL HUM 

78.92 82.06 69.87 71.60 29.90 0.50 CD 
I 

Pt. X VEt. K EMH SI TO F 
SUMMARY OF PROPILE RESULTS 

2 
3 

6 
10 

23.26 
23.22 

0.102E-06 
-0.233E-06 

336. 
493. 

0.00342 
0.00309 

97.4 
97.2 

0.0000 
0.0000 RUN 070869-1 K=2.5511C-6 F=0.0 NE 

4 14 23.15 0.207E-06 634. 0.00289 97.2 0.0000 
5 18 23.82 0.770E-06 166. 0.00269 97.2 0.0000 Pt X VEL K F TO TINF UELM DELH 

6 
7 

22 
26 

25.48 
28.67 

0.204E-05 
0.236E-05 

892. 
1019. 

0.C0250 
0.00219 

97.3 
97.4 

0.0000 
0.0000 4 13.81 23.30 0.208E-06 C.CCC0 e.7 71.1 0.540 0.556 

"fn 
II 

8 30 33.45 0.251E-05 1149. 0.00186 97.3 0.0000 6 21.81 25.00 0.205E-05 0.0000 98.2 70.6 0.574 0.628 C 
9 34 40.21 0.2528-05 1290. 0.00173 97.2 0.0000 7 25.86 28.40 O.238E-05 0.OOCO 97.0 69.1 0.549 0.403 
10 38 50.48 0.251E-O 1437. 0.00156 97.3 0.0000 8 29.81 33.00 0.2526-C5 C.0000 95.2 67.2 0.490 0.568 0 
11 42 65.45 0.109E-05 1629. 0.00135 97.0 0.0000 9 33.59 39.00 0.254E-05 0.0000 95.3 67.9 0.401 0.513 
12 46 67.07 -0.310E-07 1873. 0.00196 96.7 030000 10 27.46 48.30 0.253E-05 0.0000 96.0 68.3 0.323 0.443 
13 50 67.00 0.133E-07 2147. 0.00211 9b.7 0.0000 
14 54 67.18 0.235E-07 2429. 0.00191 96.6 0.0000 PL X REh ST REM CF2 OELTA2 THETA 
15 58 67.32 0.143E-07 2654. 0.C0150 96.5 0.0000 
16 62 67.41 0.877E-08 2959. 0.00189 96.5 0.0000 4 13.81 624. 0.00290 154. 0,00250 0,0536 0,0646 

17 66 67.41 0.385E-08 3219. 0.00185 96.4 0.0000 6 21.81 895. 0.00248 817. 0.00255 0.07O0 0.0635 

18 70 67.57 0.348E-08 3456. 0.00181 96.5 0.0000 1 25.86 990. 0.00222 730. 0.00260 0.0689 0.0508 
19 14 67.51 -0.172E-07 3718. 0.00178 96.4 0.0000 8 29.81 1120. 0.00198 665. C.00260 0.0670 0.0390 
20 78 67.42 O.E56E-8 3S68. 0.C0174 96.3 O.OOO 9 33.59 1236. 0.00177 595. 0.00257 0.0622 0.0291 
21 82 67.54 0.724E-b8 4100. 0.00171 96.5 0.0000 10 31.46 1345. 0.00159 550. 0.00248 0.0545 0.0214 

22 e6 67.58 0.122E-08 4395. 0.00172 96.6 0.0000 
23 90 67.54 -0.743E-08 4651. 0.00167 96.4 C.0000 
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RUN 071569-1 K=2.55X1C-6 F=0.0 IC RUN 071569-2 K=2.55XIC-6 F=0.0 ic 

PL 

2 
3 
4 
5 
6 
6 
7 
8 
8 
9 

10 
IC 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

DATE 71569 IUN 
AMD TEMP BASE TEMP 
78.40 82.27 

X VEL K 

6 23.15 -0.173E-07 
10 23.09 0.6358-0 
14 23.15 0.914E-07 
18 23.52 0.826E-06 

21.81 25.40 0.201E-05 
22 25.47 0.201E-05 
26 28.82 0.249E-05 

25.81 33.40 0.2456-05 
30 33.58 0.245E-05 
34 4C.40 0.253L-C 

27.46 49.30 0.252E-05 
38 50.71 0.252E-05 
42 65.76 0.1096-05 
46 67.40 -0.318E-07 
5C 67.30 0.103E-07 
!4 67.45 0.2286-C? 
58 67.59 0.139E-07 
62 67.68 0.876E-08 
66 67.75 0.45BE-08 
70 67.85 0.3498-08 
74 67.79 -0.184E-07 
78 67.69 0.5466-00 
E2 67.73 -0.956E-00 
Ed 67.95 0.380E-07 
90 67.92 -0.131E-07 

NC. I 
GAS TEMP CVE8R TEMP BARD PRES REL HUM 
70.78 72.33 29.96 0.51 

REM ST REM CF2 To 

502. 0.00288 72.5 

5E2. 0.0231 72.6 
372. "OCO118 74.1 
163. 0.00463 95.4 
336. O.0.308 796. 0.00255 96.5 
344. 0.00307 56.3 
497. 0.00258 96.4 
42E. 0.00226 639. 0.00260 96.5 
637. 0.00212 96.7 
198. 0.00194 96.3 
855. 0.00173 528. 0.00248 96.7 
561. 0.00173 96.6 

1164. 0.00150 96.4 
1413. 0.00216 96.3 
1728. 0.00222 96.0 
2017. 0.00203 96.0 
2212. 0.00201 95.8 
2562. 0.00198 96.0 
2822. 0.CO193 96.1 
3065. 0.00189 96.2 
3326. 0.00184 96.2 
3575. O.0100 96.1 
3796. 0.00177 96.3 
4011. 0.00176 96.5 
4305. 0.C0171 96.2 

F 

0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
O.COOO 
0.0000 
0.0000 
0.000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
OOGOd 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

DATE 71569 RUN NO. 2 
AMD TEMP BASE TEMP GAS TEMP 
80.47 82.55 70.95 

PL x VEL K 

2 6 23.19 -0.172E-07 

3 10 23.13 -0.631E-07 
4 14 23,18 C.908E-07 
5 18 23.56 0.821E-06 
6 22 25.51 C.200E-O 
7 26 28.85 0.248E-05 
8 30 33.60 0.244E-05 
9 34 40.41 0.2538-05 

10 38 50.71 0.251E-05 
11 42 65.75 0.109E-05 
12 46 67.39 -0.3172-07 
13 50 67.29 0.102E-07 
14 54 67.44 0.220E-07 
15 58 67.58 0.1386-07 
16 62 67.66 0.875 E-08 
17 66 67.74 0.457E-08 
18 70 67.84 0.3492-08 
19 1A 67.78 -0.184E-07 
20 78 67.68 0.5468-08 
21 82 67.72 -0.9568-08 
22 E6 67.94 0.3808-07 
23 90 67.90 -0.13E-Cl 

COVER TEMPF BARD PRES 
72.47 29.96 

REM ST TO 
571. 0.00290 72.6 

661. 0.00239 72.7 
412. 0.00121 74.3 
167. 0.00457 95.6 
3A4. 0.C0302 96.6 
496. 0.00256 96.6 
655. 0.00218 96.2 
810. 0.00197 96.2 
E65. C.00173 96.7 

1158. 0.00149 96.7 
14C8. 0.00214 96.6 
1707. 0.00222 96.6 
1996. 0.00204 96.6 
2287. 0.0020C 96.4 
2513. 0.00195 96;8 
2192. 0.00192 96.7 
3044. 0.00188 96.0 
3299. 0.00183 96.8 
356C. 0.00180 96.7 
3770. 0O.0176 96.9 
358b. 0.00176 97.1 
4282. O CO170 96.7 

NEL HUM 
0.39 

p 
0.0000 

0.0000 
0.0000 
0.OO00 
0.0000 
C.C000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
C.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

c 
m 

CD 
"4 
.i

u u, 
Cn 0 

I 
M Il' 

ul 

X 

H 
0 
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SUMMARY OF PROFILE RESULTS -I 
RUN 071569-1 K2.51SXIC-6 F=0.0 IC 0 

PL X VEL K F TO TIME DELK DELA 0 

6 
8 

10 

21.81 
29.81 
37.46 

25.4C 
33.40 
49.30 

0.201E-05 
0.245E-05 
0.252E-05 

C.0000 
C.0000 
0.0000 

96.5 
96.5 
96.7 

70.8 
71.4 
70.4 

0.574 
0.490 
0.323 

0.383 
0.424 
0.363 

FL X REM ST REM CF2 DELTA2 THETA 

6 
8 

1C 

21.81 
29.81 
31.46 

336. 
628. 
899. 

0.00308 
0.00226 
0.00173 

796. 
639. 
528. 

0.00255 
0.00260 
0.00248 

0.0262 
0.0373 
0.0361 

0.0616 
0.0376 
0.0206 

c') 



PLO 0366-I 002.55010-6 F-0.0 TO 0RUN071565-1 0.2.55500-6 0. eI 

TIFF. TUO 001. FUN P(0T6 0 ST 0132 UIF 1T6E 00 F TEMP. PN AOL. AUO P, 37F 170010 OF/U 054 0U
71R62 31669-I 10 37.46 0.00173 0.002,6 49.3 0. 96.0 0.0000 

11002 ,166-- 6 21.81 000308 0.00255 25.4 30.6 96.5 0.0000 

b "I"'. 0 ll I lo ,, IE J K C0 .16 .L. 80000. 06100.l 0004. 00. t.L ToK0 E,L TIK NN.K .
,"TK. ,L:,jl NN, IZK, I'll, E. E PONS# IT 0 .1. 0000. H,1 1600N. 30. 00. 60 6 6600 

0.0 054 000 0.0616 336. 096. 29 0.2010 0.30 0.323 0..60 0.0206 09H. 02L. 29 0.250-00 z 
"I's1 'PLUS OFPIO T600 U/U03F 730004 117 SF0005 UFMILLEO 00060 0/106 V/00tH in 

0.0 0.0 0.0 0.000¢ 0.00 a. coo o030 0.0 0.0 0.0 ¢0000 0.000 0.000 0.00 
1.6 0 1.6 0.0025 0.1 7 0.0 0.0o I. 3 21 .002E 0.0 0:00.1 01' 

2.2 2.6 2.3 E.031 0. 6 0 .1 0.00b 6.3 3.6 3.7 0.0035 O.030 0.17 0.000 

.
2.9 3.0 .0 0.06 0.0 01 00 4.4 40 .0EE45 0.160 .220 0.04 

36 3.1 6. 0.005 00 0.3 0.1 1.1 1 . 

0.000 61.7 6t.9, 0.096 0.790 ,0.05.3 0057 2I.9.,309.5 2.,7 051 0.0005 0.452 0.,17 0.02 '4.0 0.5 015 0.0407.20 3g.6 001455 0.232 0.422 10.4 0.362 0.03
1.2 0.0 9.4 0.007 0 .411 0.030 6.5 1.9 '2.6 0.0035 0.42 0.606 0.00 

06 . 60 21.600.0 0.,9 3. 0.00 0.0570.6 0.02 o 
. . 026 0.6 6.4 0.0257 0.000 

0.0's 0.374 0.020 09.7 9U.0 0040 0.7000.32 3. 0.In24 6932.75.4 026,2 e6.g 0.0116.05053j 0.3b9 0.36 
0.60060.790 

13.3 14.0 15.0 0.0055 0.0, 0.411 0.4 30.2 22.0 10.7 0.0t043o.0 to6 
1 30 0.9 30.4 0.0205 0.550 0.540 0.036 29.0e 02.0 03.0 0.0155 0.468 0. 6 ¢.04 0,0,S 

1. E40 IS.9 .10 0.90 0.39 0 .2042 24.3 19.5 .155 0.0"2 0.4 0.107 
11. 0.420 .0. 20.4 .4 1.404.4. V.00 0.9210.-3 0.00 0.06T3 0.06 0.025 02.5 0 055 0.110 0.136056.1 96.0 00.2 0.03 0. 0.00 0.39 0.0409 

13.045.6 15.6 .2 17.0 0.0305 0.6 0. .6 6. 0 0.0051 074 0.9 0710.3 C.00 0029 '.'36.61 11.9 20:1.0 O.060 0.96 0 0 0.08O 

600 04. 0.4 0.005 000 0.0 0.004 0"2. 0C. .0.05 040 02 0.0 

1.5 1. 16.0 0.10 0.43 0.059 0.0 6 2. 1.0. 0.1 0.46IP 

9.7 0.0 13.0 O.9356 0. 0.1 0 10.c 0.240¢ 0.647 0.97 6.309 
296. 16.2 0.0,05 O.192 0.19 0.609 . 22.0 20. 031 0.902 0.6 0 
05.4 1.2 0. 0.045 O.9v6 0.964 O.605 405 7 2.6 0.3906 0.90 97 0
 

312 16.3 19.3 0.0105 0.9 00 0 09 05 27.9 2 0 0 . 4
 
45.3 65 15.9 0.0"5 o.030 0.;S0 0.060 3 .0.. 

o.01.. *4. 60. 0,1K 9 0.97 60.9 PONT 00 :99 191 
6 0. 1 6 3 20. 0. 24:103. 2 06 90 0.0: 3 0. 0 6 

P191 3006N 1/ 06F 0 6161 00 fF000 7.;~ 
HUN10E.1.69 0.60. 0,.0. ;6 6 : 0..0 61:E61 


L1. 011:O o:.16 00 0£, % 0."4.
¢ C ' O~~~~~~~~e0, 7, 13 . 
.
0.T 5. 0 0 .006 025 0.275 0.013 1, 1 9 o4 o1.1IU5 1¢,, 0.1 2.7 1. .. 0 021" .6 14. 0 7.1~~ O, 19 .66 3.2 0.08..31 

6.0~~ 0.5 0437. .2 0.6 0.030
61:3 0..??S 0l 11,1 23.1 .. 2~q O.E1 o:1,6a. 2to 

.14:4IS, 1,1: 0:07.15 


4. .3 W.3AIS OM 0 :1
O, 6 011
,1.., 40. 1 EG 01 O09 0 


6:o: ll:,i 0*7 7 I
 
01:4 0.812 0,0297 

149 U0. 01.95- 0:.25XI0.470 0.00 0.0C0E 0.0. 09.0 0.0000 0.000 0.000 0.00 0. 
2.0 2.00 1 0.0025. 01000 01a06 0.000 


7120.06 0. 0.1 .0c24 3.074 0.60 01.0000.00
 

301 13.0 04. 0.036 0l.630 0.12 0.060 

5200 17.2 06.3, O005 0.772 0.030E 0.21 
63.7 18. 06.0 1004 .06 009 .0 

00. 10. 1:., 01004 0.097 00 0.2440 4E .1 9 . 0 0.50 


0063 003 .95 0.50 0.927 0.0
 
40. 20 3 0 . 

1. 
027 206 00. 0.2AM 0.60L 0.950 0.6007 
317.2 227. 19.0 0.01 0.954 0.03 0.71 

403.09223 1. 0.49 0.5 096 097
 
409.1~~ 22. 0.14 0.90.9 59. .100
 

374.9 22.4 09.7 0.06695 1.000 01370 0.365 
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ONTO269 LI 1-... I 010 9246 009.1-NO.. 2 

A SNN 00040 0 ~ "06040I lk00060 TOOI 60R4 0400 O. APEI' TIPP 6600 TEMP 000 NOOCOVE ROF 600N0ME 11 
10.66 E2.10 72.91 33.6k 20.97 0.55S 70.2!t 02.13 73 .0 I 42 309 0 

2 623200.04006 22. 0.0I 06.9 0:.00 23.1 00.20O I0309 ".490.4 .000 

00 226.04000 290. 0.007 90.0 0:.0000l 3 06 Ill U70C0.0007450.079.40.0 00 

7 f2l2.010.3C 997. 0.0237 90.9 0.0 3 6 0.1 0.310 99". MUM25 9.4, I.0000 

934 23.13 0.2030-0 02..03 9.0 0.000 9 34 .60-3 13. 130000 9.3 .00 

02 46 23.09 0.2000-36 1W0. 0.0OM 90.6 0.0000 02 46 3.1 0.3l1400 0 0.1032 90. 0.000 

02 5417 3.00
030 25 

0.101,
0.960 

050 004 
010 .301:4 

1520. 
204 

.. 020 99.0 0.05230 
90.9LI:0I000: 

232 
23.79 

602E-06 
095-06 

5663. 
0703. 

0.002 
2.0000 

9. 
96. 

.00 
0.0000 

14 59 3.E0 .9.0 33 0.05 9_.7 0.00 0504 0 .0 000I 00209. .00 

000093.9 .09~0 54. .0202 0366. 0.00067 9.0.0317 66 03."5 0.2476-00 20. 0.00032 90.3 0.000 
16 l6220.9 0..440:0 6930.: N.0OM 96.9 0.0000 1 30 4.52 0.3640-00 1227. 0.0000 90. 0.0000 

16 73;11.7 0.21490-00 2000OS.0.00030 16. 90. .0000 I0 "66.00 .701-00007. 0..M0 96.4 .0000 0D0C 

745.0 490.20O 3 00 0006. 90. 01.00006 

30 02' 64.75 

1*90647 

0.0170-0 
22 

6344 
66 

3302 

0.000 o 
09.06090020 

E0.40"00.00093 

Z9.3 0:.0 
6.300000 

00.7 .0050 

IORS41 

23 90I.0-.4ET 
,500 
;1 

1900. 
.M 1 AO 

0.0.0 0 62..040A ,I.IOI 606 0940. C51 

64.70.1700 74. 02 P7 00 007 CL 0 
001 40.76 .00 0,00 9.07.o.65117 to0N~0 

t09 65 36.4 0.17000 0.00. 99.0i 32TO03 .2 
2.40 000.0 093 0700 90.41-073.0. 0.0830.02 

07 46.763.40 00 720.60I42.0 0.2905"000-266""S 
0.0000
0.0000 

99.0 
90.7 

2900306005 
"2.6 0140' 0.75 

17i 66.7 0065 E.01- 11.2 016 3107 

12463 150 0.00C92 009. 0.0 0.04 .30.01 1 

00 00.94 0643. 
0603000:6. 

10032 
0.01 

0396. 
502 

0.00307T 0.539 
.0240104000 

01160 

17 10.76 3040. 0.007003 
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302. 0.0024 0.0025

9.I E.00,1, 0.005 
.07 
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0249.-

0 PLATO 
3560-1796.6 

ST 
_0-0242 

CP/2 
0.0020 

0060 
23.5 

30,00 
73.9 

TI 
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P 
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4.0 
57 

3,0
M,

40 
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RU c92469-t 8.2.50I0-6 .O IC 	 ... 09244-1 A.2o.5010-6 F0.0 IC 
VOL. 060 PLATE U SI 00.02 lIUM [GAS 00 

T8FF. 0401 581. PUS PLATE Sr CR/3 0200F MOOS 00 F TEMP. PUN 	 P 

9244-1 9256-1 86 62.6M6 0.00167 0.024 29.7 73.0 90.9 0.0000 92469-8 92569-0 18 	 10.6 0.C052 0.0243 42.0 72.6 Is.? 0.0000 

OT0LP0 E6OIIALFO 0..89769A10F 009 ENT ROMEWOU .	 IkiESAL 89000.* POPENIL8 MOPESIIO . DA188 FPAL 00000. 5 0TEM OHAIP OA 0ATA 
.t. 1, . 0.a. 6, I 01.. IA. 08. Re. Po0 S Ia . I ,. 0.A. ThE. I. TH. 00. 8E. pOlO'S K 

1.09 0.,2 C.1314 0.0800 1976. 0162. 32 0.244E-01 0.25 0.500 0.1021 0.03;4 1691. 762. 30 0.264E-05 

LfLLS 0003, 2/061. 	 TFLUS y0 10009YPLLS IPL~s I OJ'UOSF 	 YFLUS DOLLS EA 6001 M AY8LM 
0 0 0 0 0 . 0 0 00 0 0000 0 000 0 000 	 Z 

0 0 .0 0 . 0 0 0000 0.00 0. 00 0 0 CC 

0.0 0.1 L.A 0.00A2 0.077, 002 2.0 	 12.6 3.6 2.2 04 0 010 0:.0 0:.0 C/)
2.7 2.5 2.5 C0.005 0.090 0.29 0.00 	 3.6 4.0 3.3 0.0035 0.10 0.1. 0.00 
3.4 3.0 3.2 0.0045 0.O09 D.126 005 	 4.6 5.3 4*. 0OC4 0.,9' .o209 0.00D 

5.6 00 50 005 .1 .0 .0
4.0 3.6 39 0.0055 0.029 0.202 0.00 	 6.6 6.6 6.0 0.0066 0.190 0.102 0.000w
4.9 Cj3 4.1 0.0045 0.160 0.240 ¢0C 

06. 00 0011 0.234 0. 0.2.C9 IC 
0008 05256 .3 063
8.6 .0 7.6 


.9, 0C 0.0 	 0.015 0.50 010.9 .4 A.005 7 4C 0 Y 	 14. .5 00.5 0.49 0.020 
83. 9.4 80.5 0.0005 0.39 0906 0.0100 0,40 0.857 0R026
 
1A. 0 11.827.0~ 024 0.0125 0.40 0.0914. 0:00 10.3 1N
24. 10.5 04.4 0.0115 0.43 0.72 0.09
761 0064- ~ .9 0.025 	 14.4 0.0235 0.550 0.9 005CfCl 

0.0915 0.473 0:39 00 	 29.2 06.0 05.0 00205 .504 0.60 0.00495
22.2 11.4 02. 
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t12.2 04.9
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074 0.0 
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3 05.4
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0265 0.000 0-000 1.443
 
. 20.0 00 1.24 
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0 9 1000 :.0 2A 01' 04 .8,
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50.7 22.2 02.0 03 9 5 0.000 0.090 0.272 	 000 09.0 0.0 9 0.9 7I 0.16 1-.30.0.0 TCt000-00 	 442. 30.1 92469-8 K.2.50106+0.4 65 0 0T1 23.0RUN209247.4 0.40 45 0.037 0.909 0.450300. 	 6.2 0.06 0. 2 0.0. 00 0.80.459 	 4.7. 0.922 9 0.9065.6 5.0 51.5 0.0065 0.094 0.209 	 504 31.3 19.3 0.265204.5 24.6 07.9 0.5045 0.073 0.+90 0.521 

677.3 53.5 09.8 0.6505 0.960 0.952 0.024
460.2 25.6 00-2 ¢06 5 0.901 0.054 070 	 84. 80.6 0. 0 01 5 0.259.32 0 0.928 

02. 	50.4 .92 0.0045 0. 3 0 I 7 . 2 

12-2 001 0009 0427.0 0091.0 081.6 23.6 0 9.0, 0.0765 0.998 1.400 0.58
84.0 53.0 0.0065 D0 . 0.605 0.31	 1%160 00.1 0.0545 0.967 0.902 0.962803.7 27.2 00059 33.6 19.6 0.9760 0.499 1007+ 0.684

729.4 27.7 80.9 0.9845 0.93 0.994 1060 	 7 . INK. 60:TO, 2604. 00.. 08.0- '.	.A 764. 7. TOOK. 0 6.. 008 12..4 K 


36.:,2 07.67 5. 0 .5 0.529 0.700 0.00 4-0.0 20.4 17.6 0.0225 0.561 0:.. .2
 
44. 80. 05. 0.55 a" .0 	 410 10.2 0.6000 6.070 0.098
., :a 060 9 .20 	 21.9 0.0395 


2. 95 007 .4 .3 .21.4 20. 16.117.2 0.000 00.147 t.0.9 0.00 	 0.041 0.0 0 0.0000 0.000 0.0002.8 2.0 0 0.105S 0.000 021075 	 0.020 
000.1 12.5 0.0 0.003 	 1. 0.1M0078 0.01 .32.2 23.72.9 2.0 0.00250.2065 0.7740.096 0.100 0.2 	 06.D863.0 .2 2.6 0.0025.45 05 0.00 
3.0 0 1.3 0.2005 0.17 0.554 0.005 	 .5 5.2 3.1 0,035 0 0.9 0,0
 

0 5 066 TOP
39.9 0.154 060060 	 10600.80 6 6.5 ST,+2 0.32
,06 24.7 0 0.0045 0 +14 0.1a 0.006 02 P 	 9 0.5 P 65, 18 4. 0.0045 CP/20.1023 0.0100..93EM00 PLT 3. 00/2 160 

s4. 13 1 1 0.050 0.80 0..91 0.313 6.0 Z7.2 20.9 0.065 0-203 0.269 0.103 0 0
 

9 4 9R 925 9-346. 2 .66.7 000110 0a 0002.0027P 0.0144 4 29 9. .0 0 92469-1 244. 2 9.6 0..95 6 0.0 044
259 8 19. 74.50 0.00032 0. 01 53.2 72. 4 90 6 0

0242761- 0 .05 6 0.37 206- 0.6 


7.2+t 7.2 0.04659.2 0.260 0-391 0.011 .0 
 0.9 7.7 0075 0.67 0.73 
0.05410.0 210 0.005 0.419 	 2 46.43.0U16-10.4 7.540.0 0.90 60. 0.0700400.30.9 0.097 .054 000157 0.95000 6.00502.142 0.200-0 0.1 91 04 35+ 9.09. 005020,0, 0 04 9 70.324.0005 2 0. 81 0.409000 20 .258-5
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RUN I002b9-1 K=2.50XO-6 F=O.0 IC RUN 100269-2 K=2.50XIC-6 F=C. IC 
CATE 10C269 RUN NO. 1 
AND TEMP EASE TEPP GAS TEMP 
14.97 75.59 66.32 

CCVER TEMP 
67.88 

BARO PRES 
29.80 

REL HUM 
0.46 

DATE 100269 IUt NO. 2 
AND IEP BASE TEPP GAS TEMP 
75.07 15.73 67.16 

COVER TEMP 
68.68 

EARD PRES 
29.80 

REL HUM 
0.42 

PL X VEL K REV ST REM CF2 TO PL X VEL K REh ST TO F z 

2 
3 
4 
5 
6 
7 
8 
5 

10 
11 
12 
12 
13 
14 
15 
15 
16 
17 
17 
18 
19 
19 
20 
21 
22 
23 

6 
10 
14 
10 
22 
26 
30 
34 
-E 
42 
46 

46.76 
50 
54 
58 

58.94 
62 
66 

66.76 
70 
74 

74.58 
78 
82 
t6 
90 

23.11 
23.11 
23.07 
23.07 
23.07 
23.07 
23.08 
23.07 
23.C5 
23.18 
23.16 
23.50 
23.29 
23.68 
25.45 
26.40 
28.69 
33.14 
34.60 
40.18 
50.74 
S3.20 
63.45 
64.17 
64.25 
64.18 

C.OOOE CC 
OO00E 00 

-0.3526-C7 
C.0000 00 
C.O00E 00 
C.O00E C 

-0.854E-07 
0.138E-06 
C.3061-67 

-0.146E-06 
0.200E-07 
C.200E-07 
0.338E-06 
0.879F-06 
0.186E-05 
0.186E-05 
0.227E05 
0.2546-05 
0.254E-05 
0.258E-05 
0.2536-05 
0.2538-05 
0.727E-06 
0.176E-07 
0.4908-08 

-0.179E-07 

91. 
165. 
240. 
217. 
391. 
563. 
67E 
727. 
457. 
167. 
336. 
363. 
480* 
615. 
144. 
757. 
874. 

1C67. 
1015. 
1153. 
1295. 
1372. 
147f. 
1703. 
1960. 
2236. 

0.00166 
0.00146 
O.CO72 
0.6O157 
0.00157 
0.00221 
CC218 
0.00195 
0.00087 
O.CC18 
0.00304 
0. 60310 
0.C22 
0.00264 
C00251 
0.00243 
0.00223 
0.00201 
0.0095 
0.00174 
O.COL53 
0.00£51 
0.00136 
0.CC822 
0.0022 
0.00 09 

1456. 

1327. 

895. 

595. 

0.00210 

0O0267 

0.00257 

0.00217 

68.4 
68.4 
6b.4 
68.4 
68.4 
68.1 
68.0 
68.2 
69.5 
88.8 
89.0 
89.1 
88.9 
88.8 
88.8 
89.3 
68.8 
88.9 
89.6 
88.0 
89.0 
87.2 
88.8 
88.8 
89.0 
89.1 

0.0000 
O.C00 
0.0000 
0.0000 
0.0000 
O.G00 
0.0000 
0.C000 
0.0000 
0.0000 
O0.OCO 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
O.OOCO 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

6 
10 
14 
18 
22 
26 
3C 
34 
38 
42 
46 
50 
5A 
58 
62 
66 
70 
74 
7E 
82 
86 
90 

23.12 
23.12 
23.08 
23.08 
23.C8 
23.48 
23.09 
23.C8 
23.06 
23.20 
23.17 
23.30 
23.70 
25.47 
28.71 
33.16 
40.20 
50.76 
63.49 
64.21 
64.29 
64.22 

O.O00E 00 
O00E 00 

-0.3521-Cl 
0.000E 00 
C.O00E 00 
C.OOOE 00 

-0.8566-0? 
0.1386-C6 
0.306E-07 

-0.146E-06 
C.200E-07 
0.3386-06 
6.8808-6 
0.187E-05 
0.228E-05 
0.255E-05 
0 .259E-05 
0.2536-05 
0.728E-06 
0.177E-07 
0.490E-08 

-0.179E-07 

116. 0.00202 
2C5. 0.00179 
297. 0.0211 
392. 0.00192 
483. O.OO192 
677. C.C261 
786. 0.00246 
E45. C.00222 
41. C.00c 
167. 0.00 22 
334. C.C0305 
482. 0.00295 
616* 0.0269 
747. 0.00253 
874. 0.00224 

1009. 0.00201 
118. 0.00176 
1316. 0.00156 
1485. C.00137 
170. 0o.C0203 
1579. 0.00225 
2261. 0.60213 

68.8 
68.8 
68.8 
68.8 
68.8 
68.6 
68.6 
68.7 
76.1 
89.3 
89.6 
89.3 
89.4 
89.4 
89.5 
89.5 
89.3 
89.3 
89.4 
89.4 
89.5 
89.5 

0.0000 
0.0000 
C0000 
0.0000 
0.0C00 
C.CCO 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
C.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0700 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

V . 
0 C) 

C C 
P' rN 
CT C) 
Lo Lo 

I1 
V 
-

11 

%_1 
D 

x 

In 

SUMMARY OF PROFILE RESULTS "-n 

RUN 100269-1 K=2.50X10-6 F=0.0 IC 

PL X VEL K F TO TINF DELM DELH a 

12 
15 
17 
1 

46.76 
58.94 
66.76 
74.58 

23.50 
26.40 
34.60 
53.20 

C.2001-07 
0.186E-05 
0.254E-05 
0.2538-05 

0.0000 
C.0000 
0.0000 
C.0000 

89.1 
89.3 
89.6 
87.2 

66.8 
67.2 
67.2 
67.1 

1.061 
1.024 
0.743 
0.435 

0.514 
0.750 
0.670 
0.508 

PL 

12 

X 

46.76 

REM 

363. 

ST 

0.00310 

REM 

1 56. 

CF2 

0.00210 

DELTA2 

0.03C6 

THETA 

0.1231 
c' 

15 
17 
19 

5E.94 
66.76 
74.58 

757. 
1015. 
1372. 

0.00243 
0.00155 
0.00151 

1327. 
895. 
595. 

0.00267 
0.00257 
0.00217 

0.0565 
0.0576 
0.0511 

0.1022 
0.0530 
0.0230 



609 00060 6.2.5000. ..0. Is 
I0 82 .500006 001026- F. 0.0o" 

0030.~~~~~ ST LA ~~ F09. IO.t0 981. R020 0 ",a T00 01PAE S 0 0PTO 00I ~ RUN PLATE 1 10/0 056 

6..68 .1 I 11oTAO.1 000 l. 	 ..... 0.1. 111. ~ . t06. POINTS 	 00,0. 6.1 ~ I .Uo Re. MX. 000503 

YPLUS 0PLUS UPLLs I to51 6L.N030 0/61L 	 TLUS TOlS UAIt. I lAIR w/10.0 3/0610 

0. 0.0201.2 N. 0.0120 '004 0:001. 	 2,3 2.0, .0025, 0.05 000 0 .0 
0.9 2.3 0.03 204 	 ,9 3.0 0C00M ..044 0.014 /2.3 003.0 	 3b 0.0 

0.00 	 . .0 33 0045 035 0.9 .02.4 2,5 3.0 	 .05 0.090 s..4
2. 3.3 3. .0 .223 0.063 0.000 	 4.0 3,.0 0.0035 0.105 0.L97 0.0=

4.1 4.0 4 .0OP7S 0.230 0.022 0.OO 	 . , . .06 .2 .0 .0 
1. 6.0 2.0 .0130 0.,09 0.314 0.013 	 0. 7.6 7.0 .C 0.0090 0.2 0.0 0.0330 

0.0 4.t t.1 0.06 09 .71 .060.1 	 0.0 0. 0:.0001 0.9 0.46s 005 
10.0 761 0.3 0.0200 0.52742 0. 001, 	 02. 00. o . 0.040 35 0 .00 0.000C C 

0.0 	 00.0 12. 'l019 02.2 CD20 D.305.0sI 14. 0.025 0.69 .404 0.027 	 O. 0.6 .2 

10.2 9. 10.9 	 0.035 0.643 0.434 0.03 217 07 30 0040 .3 .0 .2 
0.1.39 .4 	 03.6 0.1120.I 002 . 0.03 	 23. 10. ':o 020' 0.07 0.6o0

24.0 0.2, tO .3. 0401 0.6 0.269 0.0402.0 	 0. 04.0 '002 0.9 0.4 0.04I I 
00.3 0.3 0.2 02. 0.90.065 0.0I3. 	 1.0 I4.6 007 0.:35 0.6 0050js 4.0 
30. 0000.30 .72006 	 37. 17.9 15.0 0.560 0000.703 3.3 	 0.0430 0.36 

4. 024 '. 0005 0.600 3.4 ..052 44.6 M0. 05.0 0.0325 .702 0.105 .3
 
7.0s . 13. 04. 3 0To4, 0.3 067 3.3732 23 0.2 007 0.0 034 000
 

03.4 .71 	 004.59 .0 10.7 0.10 0.03 * 1 1 0.0 0 701 	 27,2 0.0 00 0 .2 .7 .3 
02. 6.1. .20 .91 0.4 .207 	 049.0 23, 07.0 0.175 0.0668 0.393 0.21 

06. 0. 064.0 	 .309O 0.0043 t.6667 0.26 206.09 24.2 07. 0.2462 0.30 .9. 0. 
1: 0.1200.0 14.3 07.0 0.909 0.I0s 0.35o 	 202.0 22 076.f C.107. .3 .3 .2 

26 . 4.6 10. 0.4805 0.9 61 . 4 S 	 37. 20.9 17.3 0. 07 0.00, 0.04 0.602 

9206.195 5. .93 .03 073 	 27.0 0.105 0.003200 	 00.3 06.7 0.994 .5 
40. 	 5 0. 307 . 0 5 .02 6. 630 729.6 22.1 03.3 0.241 0.340 0.496 0.003
 

C W 5 099. O, 7 13,:40 61071 0 03. 0.0 0.0 1.21
.9 0.00 

Z:39
 

373. 1.' 102 0o 2.000 - 0.3 . . ..54 	 003: 00 2U1 -I.00 0 .020 
00 0. 81 0100 4 0 0 1 ST C 0 M/ 9010,O 03.0 	 . 041. 30.00 0610 5 : o0017 0 .. 1 0.0. 7 06 36r3 

0. .0 000.04.00 000 0.0 	 .0~ 01. 0J. 0.0000 0.31 .00 30.~ 0.000
 

1. P22 1. .0N 0.016 0.08t.1 0.002 	 1.5 2.4S- 0-. 0 6 0.0 .02 0.00
 

0.0 0 .22 0.002 0.005 	 6.3 4. 0.6 0.006 0.003 0. 9 0 01
 4. . .
 
2. 6. 0.06 0.o5 06.4277 0.0003 	 6.0 7.34. 	 . 021 .0035 .212 53.2367 0.0371 


0010.0 .3 	 0.0 .02 0.2 5.77
23.6~~C.600 03.0. .0 	 2 .4 11 35 0.050
 

44.6 17.0 02.0 0.09 .76 .. 100 0:000 	 60.9 23.3 100.2 0.052 0.325 0.100 0.02
 
521 0. 2. 0.06o 0.742 .11 0.00 
 4. 24. 0100030 026 .2 . 

2., 0.1..2 0.955 00 .0 2 .1 1 0.059 0.0.2 0.0 .1 0 	 I7.0 0.7 0:I5 ' .320s 

10. 02 90 . 2 5 .4221 0.600 0.02c22. 	 24.4 0.9 0.0175 0..93 0.41.9 0.5041 
66. 2.2 04.2 0.0540 01 0.4 0.4 	 203 3.9 2. .32 .00 344 .3 

34 .22 .0 102 04 4 . 5 . 3 . 4 	 2. 1.6 20.2 0. 07 0.903 t.10 0..96 

1 2 I. .0 14 5 0 . 3 8 0 . 0 0 0 O. =03 2 . 2 . 04 300"0 9 . 3 . 7 1 . 0 5 4 1 Q0 0 . 0l 0:0 tI 
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RUN L01769-1 K=2.56XIO-6 F=0.0 Bc 
CATE 1C1769 RLN NC. 1 
AMS TEMP BASE TEMP GAS TEMP COVER TEMP BARB PKES 
71.49 73.47 64.75 66.03 30.04 

BEL HUM 
0.51 

RUK 101769-2 K=2.56XI0-6 F=0.O ED 
CATE 101769 RUN NO. 2 
APB TEPF EASE TEMP GAS TEMP CCVER TEMP BARO PRES 
72.55 73.61 64.75 66.07 30.04 

8EL HUM 
0.47 

PL X VEL K REM ST REM 0F2 TO F PL X VEL K RE ST TO F 

2 
3 
4 
4 
5 
6 
6 
7 
E 
8 
9 
IC 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

6 
10 

13.81 
I 
18 

21.68 
22 
26 

25.81 
30 
34 
17.46 
38 
42 
46 
50 
54 
!8 
62 
66 
70 
74 
78 
E2 
86 
5c 

23.54 
23.49 
23.20 
23.45 
22.82 
25.60 
25.62 
29.29 
34.20 
34.73 
42.44 
52.60 
54.74 
75.23 
77.56 
17.32 
77.52 
17.62 
77.52 
77.46 
77.51 
77.45 
77.36 
77.51 
77.48 
77.23 

O.COOE 00 
-0. 166E-06 
0.208E-06 
0.208E-06 
0.7508-06 
0.200E-05 
C.200E-OS 
0.2538-05 
0.256E-05 
0.256E-05 
0.258E-05 
0.262E-05 
0.262E-05 
0.115E-05 
0.0000 00 

-O.L8E-07 
0.163E-07 
0.811E-08 

-0.807E-08 
-0.349E-08 
0.231E-C 

-0.469E-08 
-0.699E-08 
0.115E-01 

-0.2350-08 
-0.1986-07 

277. 
425, 
572. 
575. 
712. 
788. 

46. 
G81. 

1038. 
1119. 
1265. 
1275. 
1411. 
1606. 
187C. 
2103. 
2530. 
2864. 
3166. 
3457. 
3776. 
4066. 
4354. 
45e5. 
4853. 
5153, 

0.00324 
0.C310 
0.00291 
0.00286 
0.C0275 
0.00253 
0.C0255 
0.C0223 
0.00197 
0.00190 
0C.017C 
0.00151 
O.CO150 
0.00120 
0.00182 
Co0.215 
0.00203 
0. 0198 
0.C0193 
0.00188 
0.00182 
0.C0180 
0.00177 
O.00174 
0.00173 

0.00176 

1120. 

1220. 

825. 

627. 

0.00253 

0.00275 

0.00260 

0.00238 

89.4 
89.6 
89.4 
89.4 
89.5 
69.8 
89.6 
89.6 
89.9 
89.6 
85.6 
90.0 
89.9 
89.9 
89.5 
89.5 
69.4 
89.3 
89.4 
89.5 
89.4 
89.4 
89.4 
89.6 
89.7 

69.6 

0.OCO0 
0.0000 
0.000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
OO000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
O.C00 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

O.0000 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
I8 
19 
20 
21 
22 
23 

6 
10 
14 
18 
22 
26 
30 
34 
38 
42 
46 
50 
54 
58 
42 
66 
7C 
74 
78 
82 
86 
s0 

23.44 
23.40 
23.35 
23.73 
25.53 
29.21 
34.66 
42.38 
54.70 
75.19 
77.53 
77.28 
77.49 
77.59 
77.49 
77.44 
77*47 
77.41 
77.33 
77.47 
77.44 
77.20 

(.COOE CC 
-0.168 -06 
(.210E-06 
0.7580-06 
0.2028-05 
0.2558-05 
0.257E-05 
0.259E-05 
0.262E-05 
C.tl E-05 
0.O00E 00 

-0.1BE-C7 
0.163E-07 
0.812E-08 

-O.8 E-08 
-0.349E-08 

0.2310-C8 
-0.470E-08 
-0.700.-08 
0.115E-07 

-0.235E-08 
-0.198E-07 

212. 
425. 
577. 
713. 
842. 
S76. 

1112. 
1254. 
1403. 
1595. 
1654. 
2166. 
2518. 
2845. 
3122. 
3439. 
3741. 
4011. 
4313. 
46C5. 
4832. 
5114. 

0.0325 
0.00313 
0,00289 
C.00278 
0,00257 
0.00221 
0.00192 
0C.0170 
C.0149 
0.00120 
0.00180 
0.00214 
0.00201 
0.00196 
0.00191 
0.00107 
0.00182 
CC0151 
0.00175 
C.00175 
0.OC172 
0.00170 

89.4 
89.6 
89.2 
89.3 
89.5 
89.6 
89.6 
89.7 
90.0 
89.9 
89.6 
89.6 
89.5 
89.4 
89,6 
89.5 
89.5 
89.2 
89.5 
8q.4 
89.7 
89.6 

0.0000 
0.0000 
0.0000 
C.00000 
0.0000 
0.0000 
0.0000 
0,0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.00 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

C 0 

"- 'J 
0) C 
L( Lo 

1 I 
1S3j. 

II 

U 
0 

x 

CD 

II 

SUMPARY OF PROFILE RESULTS I 

RUN 101769-1 K=2.56X10-6 F=C.C 80 

PL x VEL K F 10 TINF 0EL CELh CD 

4 
6 
8 

1C 

13.81 
21.81 
29.81 
37.46 

23.20 
25.60 
34.20 
52.60 

0.2080-06 
0.200E-C5 
0.256E-05 
0.262E-05 

0.0000 
C.OOCO 
C.CO0 
0.0000 

89.4 
89.8 
81.5 
90.0 

64.8 
65.1 
64.8 
64.6 

1.139 
1.377 
0.746 
0.433 

0.652 
0.729 
0.673 
0.516 

PL X REh ST RE. 0F2 OELTA2 THETA 

4 
6 
E 

1C 

13.81 
21.81 
25.81 
21.46 

572. 
788. 
1038. 
1275. 

0.00291 
0.00253 
0.00197 
C.0C151 

1120. 
1220. 

625. 
627. 

0.00253 
C.00275 
0.00260 
0.002358 

0.0471 
0.0595 
0.0581 
0.0464 

0.0922 
0.0920 
0.0459 
0.0221 



RUN 0I6M-1 0.2.56X10-6 F.O.0 00 RUN101769-1 0.2.5AIO-6 P0.0 B 

7EP6. 0Lh EL. RU PLAlT A ST CF2 V06F 00A TO I ?EPP. PKU VEL. RUN3FL pL0 0 Cri2 Ulr, IoA$ to F 
141749-1 101069-U I 13.61 o.c2l9 0.00253 232 64.8 a9,. o.100o Ic0l6 -1 10o6069- B 29.01 B0.1 0,02. 34.2 64.8 09.9 0o.0o 
IH000AL YRC ETOAF EN4HALPY OEN1U 90, U 0O6HILHNTO9T NO. 
 2ATA 7 EFOAL 6yD00* NTkEAL? 011oT U IIALPI N0O.DAAU.L. . E.6.L. TPA. 0006 T0, 1 PK, NE. POINTS K 0.L. tK. B.L. TP. THAI, T0. R, 06. POINTS K
0.652 1.139 0.0470 0.0922 503. 1130. 39 4.2000-06 0.413 0.746 C0581 0,0459 1008. 025, 30 0.2560-05 

PLUS TPLI ULLS I 0AR 0ILMF 9/UL. rFLus 9P TFLS MIS MAR U/61p 0DEL 

0.0 0.0 0.0 0.0000 0.000 O00 . 00 0.0 0.0 0.0 C.000 0.00 .OO00 0.000 
1.5 2. 1.6 0.0025 0.144 0.011 0.002 A.2 2.9 2.1 ...0M ..IU, 0.0 ",I2.1 3.0 2.2 O°0.00 0.162 0,00 .003 3.1 4.C 3.0 0,0035 O.59 0.14 0.005 
12. 2.5 Z.. 0.0945 0.208 0.09 0.O4 3 A's 3.1 OOCRU 0.000 0.090 ¢03.C 
3.3 4.0 3.4 0.0055 0.335I C.170 0.005 1.9 5.3 4.7 0.0055 0.20 .. 32 0.007 
3.9 4.1 1.0 0.0065 0.65 0.201 0.006 6.7 6.6 6.4 0.0035 0.302 0.4 31 0 F0.316 0..4 .4 01 0 .015 0.33 4 0.000
50.1 5,2 5.2 0.00 5 0. 305 0.26 0,0 0 
6.4 U.7 7.0 .03 0.345 0.721 0.010 14.70 11.0 01.7 0.06 0.44 0.079 0.0C09.2 .0 8,2 0.05 0.470 0.405 0.004 17.6 02.7 12.6 000 0.405 0.036 0.026 C"0J 069.2 0 .6 4t.2 0 0 000 0.347 .300 0.0 09 1.0 9.6 0.3 0.003,5 0 .306 0.505 0.0 60

11.6 6.2 9.3 .015 0.8:0 0.45 6.06 20.0 13.1 13. 0.0235 0.52 0.676 0.05%
13.5 9' 00.2 0.0220 0.533 0.0 0.0L0 20.0 04.4 04.4 0.026% 0.731 0.207 0.16i6. 9.0 1. 0.0E7D 0 04 0. 02 28.2 10.105.3 0.0305 6.60 0.13 0.0210.5 00.5 10.0 0,0335 0,600 0.002 0.010 33.6 063 15.7 0.025 0.65 0.672 0.05924.4 11 02.0 0.070 0 0.665 020000 0.540 10,6 0,670 0.3D00S 0.06306 20 2 0 .1' 0,00S 2..2 00.2 00.03155 0.1 .009 

49. 1. 7 16 0.0605 0.614 0:685 0.056 12.5 0.3 19..70 0.0ss 0.679 0.000 0.030 to LO 
40.6 12.0 14.2 0.6405 0.E7 0.700 0.070 60.0 3.1 17. 0. 6.790 0.0 0190 
07.0 04, 05.50 0.0 .0 020. 0..5 16.1 0.0I40 0.850 0.904 O 0 

162. T.6 06.9 0. 275 0.930 0.a43 0,22 09:0 22.6 16. 0.3090 0.005 0.930 6.14309.1 16.3 7.5. 0 0.946 0.12,0 303 260.0 3 22 I0.9Is0*14 0.400 064 0 i00.0 04.0 .0, 0.735 0 .0903 1 0.9 07.0 0.0 2 2 0.09 6 0.0 54673.7 0 .0055 01 0 03 0.0040 
040.6 06 10.0 0.75 0,5 0.914 .001 42.2 24.0 09,0 0.4695 0.969 0.904 0.60 

1.6 0 09. 0.0405 0.000 0.9 0.00. 19.0 0,905 0.99B 0.6 .233B 
. 2 06. 0 . 07 2 1 0.2E 41 6. 5030£06.9 05. 2 E 0.T 5 0. k OU 0. 604 F 0 53TE. 8 21. 6 0. 0 . 066 0. 337 

5.13 25.0 0.4 0,490$ 0.000 0.94 0:21.2 

36 .6 16.6 0 0 ¢0445 0.90 4¢ 0.903 0.391 333. 24,0 0 9.0 0,3695 0.940 0 ,910 0 .496 

,:6 11 071t0 .600 0.0 0 60A5 06.0 069.0 .0539 0.61 00000.193 0.661 5.0 0 0 4055 0.980 10430. 13. 19.2 0.6955 6.908 5 7.4 09.0 *0. 0.797"
6125.55. 001 FAO 6 0MIA 110SF 70261 7.56 0. 997 0 .644 0, 30.3 2 07.7 0 ,7 695 0. 971 000SF 0I,000,9 6 0 I40. 1 . ' 09.5 0 .70 0. 909 6 5 .5 04115 0.'2 0. 969 
45 .79.0 6 09.60 3 0.9992 0.016 65,00 .767 69.0 0.0000 1069-0 20. 0o.i 0 09% 0,997 0 .993 0 .0 9917.0 0 .00 05 3006 066- 741.0 00 37.4 0 0 1 . 0 77 9.7 0 1 ,6 0.6415 O 50.303 52.6 6 . 00ZA,B 16.. H.2 C.4IIS ..169 0 .59 0.3113 


13.7 1-.8 117.1 0:365611 0.94 S1 49Gb
 
lhO 0.0261 1.0. .. 10 .571001
149 0. 66010 04IOL 5.9 6.00.070.095 0,07911 037 1.7OOOHALO0.96 0.005 0001 0.09 IS,110 C1OTO 0.5 .00.29 00001 N LU .39 2' 007,0.2 

0.749 0.09 70 2 ':63 0:,0 0.43 0,101 0.9 .98 00.'6 4OOT3 104 2 27 2 .262150 

0.0 1.0 0.0 0 0.09 0.00 0 0.0 0, ,. 200,0 I0,0 0.115 0,000 0.000 0.00
 
!3. 1 10, 1.7 0.0245 - 0.030 O.46 0.0310,02 4.3 1032,o 0.03515 00000 0,90.07 0.004
31.3 .6 01.II1 0.02 0. .01 0.741.5 0631 0.00 063 0.0373.0 3.0 3.03 0.0017 0.14 0.02 0.003 49.5 .6 2 0.02. 0.104 0.091 0.0 
2CM109 03. 0.00S 06.67 6S.01 LAMM 1 0 .46S0130 0.027 61.40.0D 31 0.3 .005 04.0070.90,307.005056 606534.9~ ~~~~~~~~ 04.0 032 ooo060072 0.0 ~~~~~.3 
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RLN 102469-1 8.2*50X10-6 F0.0-0.004 0c RUN 102469-2 K25XIO-6 F-C.C-OC04 BC
 

P x 

CATE 102469 RUN NC. I 
APB TEMP BASE TEMP GAS TEMP 
72.50 74.10 

VEt K REh 

COVER TEMP BARO PRES 
66.07 29.99 

ST REM CFZ 

REL HUN 

0.54 

TO F 

DATE 102R69 1 U2 NO. 2
AB 1EPP BASE TEMP GAS TEMP4RE69EL 

75.6272.47 74.7 65.62 

PL x VEL K 

COVER TEPP ARG 

66.87 29.99 

REM ST 1O 

HU 

0.55 

F 

2 
3 
4 
4 
-
6 
7 
e 
9 
10 
li 
12 
13 
04 
I5 
It 
17 
18 
19 
20 
21 
22 
23 

6 
10 
12.81 
14 
0e 
22 
26 
30 
2 4 
30 
42 
46 
50 
54 
58 
12 
66 
70 
14 
78 
E2 
06 
90 

23.58 
23.65 
23.60 
23.62 
23.89 
25.65 
29.20 
34.34 
42.07 
54.32 
74.64 
77.55 
77.48 
17.63 
77.54 
77.40 
77.53 
77.65 
17.61 
77.56 
77.68 
77.68 
77.54 

-0.29BE-06 
0.256E-06 
0.211E-0 
0.211E-06 
0.L936-06 
0.17I-05 
0.255E-05 
0.255E-05 
0.264E-05 
0.269 E-05 
0.1200-05 

-0.963E-06 
0.169E-07 
0.214E-C0 

-0.3761-00 
0.529E-00 
0.4668E-C8 
0.1658-08 

-0.9461-C8 
0.80E-CO 
0.545E-08 

-0.6729-08 
-0.112E-07 

34. C*.00347 
510. 0.00313 
05C. 0.00292 
656. 0.00296 
179. 0.00279 
922. 0.00251 
1053. 0.00223 
1186* 0.00192 
142. C.00086 
1937. 0.00112 
26c8. C.00091 
338C. C.Ccc93 
4122. C.00C81 
482. .C.C00069 
556C. 0.00070 
6318. C.00061 
718. 0.00058 
7154. 0.00057 
8465. 0.00056 
92C1. 0.C0054 
9901. 0.00054 
10635. 0.00052 
11312. 0.C0052 

796. 0.00246 

89.5 
89.3 
89.7 
89.4 
90.0 
89.8 
89.8 
89.9 
89.5 
90.1 
90.0 
89.9 
90.0 
90.1 
90.1 
90.0 
89.9 
85.6 
09.9 
89.8 
89.8 
89.8 
69.7 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0039 
0.0039 
0.0039 
0.0039 
0.0038 
0.0039 
0.0039 
0.CC39 
0.0039 
0.0038 
0.0039 
0.0038 
0.0039 
0.0039 
0.0038 

2 
3 
4 
5 
6 
7 
8 
9 
10 
EL 
12 
13 
14 
15 
16 
17 
18 
1 
20 
21 
22 
23 

6 
10 
14 
18 
22 
26 
30 
34 
38 
42 
46 
50 
54 
58 
62 
66 
70 
14 
18 
82 
86 
90 

23.59 
23.65 
23.62 
23.90 
25.65 
29.203 
4.35 

42.07 
54.33 
14.64 
71.55 
77.49 
17.63 
77.54 
17.49 
17.53 
77.65 
7.61 
17.51 
77.69 
17.68 
77.54 

-0.2900-06 
0.2581-C6 
0.211E-06 
0.694E-06 
0.171E-C5 
0.255E-05 
0.2558-05 
0.2645"-05 
0.2698-05 
0.120E-05 

-0.964E-CO 
0.1690-07 
0.274E-08 

-0.3761-C8 
0.529E-10 
0.,60E-C 
0.165E-08 
-0.947E-CE 
0.807E-CO 
0.545E-08 

-0.672E-C8 
-0.112E-07 

353. 
516. 
655. 
786* 
932. 

1064. 
1158. 
14e. 
1945. 
2619. 
3391. 
4146. 
4650. 
5603. 
6351. 
7133. 
786. 
$484* 
92C0. 
9962; 
10636. 
11404 

0.00348 
0.00312 
B.00292 
0.00279 
0.00252 
0.CC222 
0.00194 
C.00C86 
0.00115 
e.00095 
.00C54 

0.00080 
0.00069 
0.00071 
0.00061 
C.00059 
C.00057 
0.00055 
C.00055 
0.00057 
0.00052 
0.C0056 

09.4 0.0000 
89.3 0.0000 
89.6 0.0000 
89.9 0.0000 
89.6 0.0000 
8.7 0.0000 
89.7 0.0000 
89.5 0.0039 
90.1 0.0039 
90.0 0.0039 
89.9 0.0039 
89.9 0.0038 
90.1 0.0039 
89.9 0.0039 
09.9 0.0039 
89.6 0.0039 
89.6 0.0038 
89.8 0.0039 
89.8 0.0038 
89.6 0.0039 
89.7 0.0039 
89.6 0.0038 

C 
Ct' 

P.j-o
0 

P 
030) 
to ( 
| I 

-

II 

u-I 

RUN 102469-1 K2.SOXIO-6 F.0-0,004 8c 

I] 
TEMP. RUN 
1C245-2 

VEL. RUN 
102469-1 

PLATE 
4 

x 
13.81 

ST 
0.00292 

CF/2 
0.00246 

UWII 
23.6 

rOAS 
65.5 

TO 
89.7 

F 
0.0000 I 

TPEPHAL 
0.,L.1h. 

(.559 

YCRO. 
B.L. IhK. 
0.553 

ENTHALP 
TIPK. 
0.0533 

VPOTHETLM EhIHALPY 
THK. RE. 
0.0653 650. 

MCMENTLP 
RE. 
796. 

NC. UATA 
POINTS 

29 
K 

0.211E-06 

YPLUS TPLUS UPLLS v TBAR U/LINF YOELM 

0.0 
1.9 
2.1 
2.7 
3.3 
4.5 
5.6 
7.4 
9.2 
11.0 
13.5 
16.5 
20.1 
25.5 
31.5 
39.3 
45.4 
60.4 
78.5 
108.7 
138.9 
169.2 
199.4 
229.7 
290.3 
350.8 
411.3 
471.8 
532.2 

0.0 
2.1 
3.0 
3.2 
3.8 
4.6 
4.6 
6.2 
7.1 
8.0 
8.7 
9.4 
10.0 
10.9 
11.3 
11.9 
12.3 
12.9 
13.5 
14.2 
14.9 
15.A 
15.7 
16.1 
16.6 
16.9 
17.0 
17.0 
17.0 

0.C 
1.4 
2.0 
2.6 
3.1 
4.2 
5.2 
6.5 
7.9 
9.0 
10.0 
11.0 
11.8 
12.7 
13.3 
13.8 
14.2 
14.8 
15.4 
16.3 
'7.0 
17.7 
18.3 
18.8 
19.6 
20.0 
20.1 
20.2 
20.2 

COc 0 
0.0025 
0.0035 
0.OC45 
0.0055 
0.0075 
0.095 
0.0125 
0.0155 
0.0185 
0.0225 
0.0275 
0.0335 
0.0425 
0.C525 
0.0655 
0.0755 
0.1005 
0.1305 
0.1805 
0.2305 
0.2005 
C.3305 
0.3805 
0.4805 
C.5EC5 
0.6805 
0.7805 
0.805 

0.000 
0.127 
0.180 
0.194 
0.225 
0.273 
0.284 
0.373 
0.422 
0.475 
0.517 
0.560 
0.594 
0.645 
0.673 
0.706 
0.720 
0;764 
0.799 
0.842 
0.078 
0.906 
0.929 
0.949 
0.977 
0;994 
0.990 
0.999 
1.000 

0.000 
0.069 
0.097 
0.124 
0.152 
0.207 
0.254 
0.318 
0.308 
0.439 
0.492 
0.541 
0,582 
0.626 
0.654 
0,682 
0.699 
0.730 
0.760 
0.804 
0,042 
0.874 
0.906 
0.933 
0.73 
0.993 
0.998 
1.000 
1.CO0 

0.000 
0.005 
0.006 
0.008 
0.010 
0.014 
0.017 
0.023 
0.028 
0.033 
0.041 
0.050 
0.061 
0.077 
0.095 
0.118 
0.136 
0.182 
0.236 
0.326 
0.417 
0.507 
0.597 
0.6AP 
0.869 
1.049 
1.230 
1.411 
1.592 

0,00 

St 

0.00 
0 

0.0004,: 
xiC 

I 

a 

JQ3 

I 

Rell 

Ni 

: 

iii 

t3C3 

1Q4 

-n 
II 
0 

€
C)c1 

C 
CD 

0 



CATE 
RUN 111369-2 0.2 .5010-6 

111369 RUN NO. 2 
F=0.004-0.0 B 

0ATE 
RUN 111369-3 K-2.50XIC-6 

111369 RUN NO. 3 
FO.04-0.0 80 

AMB TEMP EASE TEMP GAS TEMP COVER TEMP BAR0 PRES REL HUN AND TEOP BASE TEP GAS TERF CCVER TEMP EARn PHIS REL HUM 
12.40 76.39 66.69 69.69 30.13 0.51 12.57 76.39 65.87 IC.46 30.13 0.51 

Pt X VEt K REP ST RON CF2 TO F PL x VEL K REM ST TO F C 
2 
3 10 

23.22 
23.18 

-0.150k-Cl 
0.2479-06 

47E. 
16e. 

O.GZI6 
0.C0179 

94.6 
94.8 

0.0042 
t.C042 

2 
3 

6 
10 

23.24 
23.21 

- * 150-07 
0.2470-06 

405, 
767. 

C.C220 
0.00185 

55.1 
95.3 

0.0042 
0.0041 

4 
4 

13.81 
14 

23.30 
23.29 

0.231E-06 
0.2310-06 

1020. 
1033. 

0.00156 
G.0G155 

1210. 0.00130 95.0 
95.2 

0,0042
Q.0042 

A4 A 
5 18 

23.31 
23.85 

C.2320-C6 
0.882E-06 

1031. 
1314. 

0.CC159 
0.0137 

95.7 
95.4 

0.0042 
0.a C41 P--t

5 
6 
7 

18 
22 
26 

23.82 
25.39 
20.99 

0.879E-06 
0.104E-05 
C.259E-05 

1317. 
1572. 
1040., 

0.00134 
0.00123 
0.C0117 

94.9 
95.3 
95.5 

0.0041 
0.0042 
0.0038 

6 
7 
8 

22 
26 
30 

25.42 
29.03 
34.30 

0.185E-05 
0.260E-05 
0.2626-05 

1570. 
L844. 
2194. 

0.0012a 
0.00119 
0.00107 

95. 
96.0 
95.7 

0.0042 
0.0038 
0.0030 

I- -
fl I-4 

VJ 
8 
9 

30 
34 

34.26 
41.98 

0.2610-05 
0.262E-05 

2206. 
2476. 

0.00106 
0.00170 

95.0 
94.7 

0.0038 
0.0000 

5 
10 

34 
38 

42.02 
53.90 

0.2620-05 
0.263E-05 

2470. 
2666. 

0.00174 
C.00149 

95.4 
95.1 

0.0000 
0.C00 

O 

10 30 53.84 0.242E-05 2669. 0.001 7 94.4 t.0000 11 AZ 72.60 0.106.-05 z792. 0.00125 95.7 0.0Q00 CC)( 
11 42 72.52 0.106E-05 2869. 0.00126 94.4 0.0000 12 46 74.21 -0.1470-07 3004. 0.00194 95.2 0.0000 I 
82 
13 

46 
50 

74.12 
73.97 

-0.1 60-07 
0.11S0-07 

303. 
3440. 

0.00191 
0.C0181 

94.6 
94.0 

0.0000 
0.0000 

13 
14 

5C 
14 

74.05 
74.21 

0.116E-07 
O.L36E-07 

3446. 
3796. 

0.C0184 
0.00174 

54.6 
94.1 

0.0000 
0.0000 

%A1t 

14 54 74.13 0.136E-07 3778. 0.00173 93.5 0.0000 15 58 74.21 -0.6510-8 4C42. 0.co175 94.2 0.0000 
15 
16 
17 

58 
62 
t6 

74.12 
73.9? 
73.57 

-0.609E-08 
-0.77&6 -08 

0.1gE-OS 

404C. 
430. 
4571. 

0.00172 
0.0160 
*0.0016a 

93.5 
53.5 
93.4 

0.0000 
0.0000 
0.OC0 

16 
87 
18 

62 
46 
70 

74.05 
74.06 
74.21 

-0.7788-00 
O.19E-C$ 
O.00E 00 

4'12. 
4557. 
4831. 

0.00171 
0.00170 
0.00166 

94.2 
94.z 
94.1 

0.0000 
0.0co0 
0.0000 

18 
19 

70 
14 

74.13 
74.0S 

O.00E 0C 
-0.724E-08 

4827. 
5099. 

0.00164 
0.00163 

93.4 
93.3 

0.0000 
0.000 

19 
20 

74 
10 

74.13 
74.10 

-0.726E-08 
0.690E-08 

5101. 
'5314. 

0.00166 
0.00163 

94.8 
94.2 

OC000 
0.CO00 

20 
21 

18 
82 

14.0 
74.21 

0.6888-08 
0.1410-07 

5336. 
5507. 

0.00162 
0.C0159 

93.3 0.0000 
5.3 0.0000 

21
22 

82
E6 

74.29
14.29 

0.1416-07
-0.7168-08 

5617.
5838, 

0.001620.00163 94.094.8 0.0000.000 
22 86 74.21 -0.716E-08 5839. 0.00160 53.2 0.00C0 23 50 74.13 -0.14kE-07 6104. 0.00159 94.0 0.0000 
23 C 7.05 -0.141E-07 6115. C.00157 93.1 0.0000 

UI 
0 

X 

RUN 111365-2 K-2.50X10-6 F-C.004-C.0 a0 

TEMP. RUN VEL. RUN PLATE X ST CF/2 UIhF TOAS TO F 
111369-1 111369-1 4 8.81 0.C0156 0.00130 23.3 67.7 95.0 0.0042 

TIERAL HYORO. ENTHALPV MOMENTUP 60THALPV MCMENTUM NO. CATA 
8.10 TPK. B.L. ThK. TMb. THK. RE. RE. POINTS K 

C.125 0.706 0.0854 0.1010 1020. 1210. 30 0.231E-06 

YPLUS TPLUS UPLkS V TBAR U/LINF Y/0ELP 

O. 0.0 0.0 0.0800 00000 .OCO 0.000 
1.1 1.6 1.2 C.C025 0.072 0.043 0.004 II 
1.5 
1.9 

2.3 
2.7 

1.7 
2.2 

0.0035 
0.0045 

0.102 
0.110 

0.C60 
0.C77 

0.0C5 
0.006 0.005 

0 

2.3 3.2 2.7 C.0055 0.143 0.094 0.008 0 
2.7 3.6 3.1 0.0065 0.160 0.11 0.009 
3.2 3.9 3.6 C.0075 0.174 0.128 0.011 0 
4.0 4.5 4.6 0.0095 0.199 0.162 0.013 9" 
4.9 5.1 5.2 0.0115 0.225 0.184 0.016 1 
6.1 8.1 6.5 0.0145 0.268 0.229 0.021 0 
7.9 T.6 8.1 C.OIE5 0.333 C.287 0.026 

10.0 
12.1 

8.5 
9.4 

9.7 
I0.9 

0.0235 
C.0285 

0.373 
0.412 

0.344 
0.386 

0.033 
0.040 C0 

14.3 10.1 11.7 0.0335 0.443 0.416 0.047 It 
16.4 10.3 12.4 0.0385 0.454 0.440 0.055 
20.7 11.5 13.5 .04e85 0,03 0,480 0.069 
27.1 
35.7 

12.5 
13.4 

14.6 
15.4 

0.0635 
0.0635 

0.549 
0.586 

0.521 
0.551 

0.090 
0.118 k 

46.4 14.4 16.5 0.105 0.629 0.590 0.154 
59.3 15.3 17.5 0.1385 0.667 0.626 0.196 
70.1 16.0 18.2 0.1635 0.697 0.651 0.232 0.001 a 0 
91.6 17.1 19.5 C.2135 0.74" 0.70t 0.3c2 
813.2 18.1 20.7 0.2635 0.787 0.744 0.373 Re 
134.8 15.0 21.6 C.3135 0.826 0.782 0.444 H 
167.3 20.1 23.4 0.3665 0.070 0.80 0.550 0.00071 J 
199.8 21.0 24.8 0.4635 0.910 0.892 0.656 2 3 4 
243.2 21.9 26.3 0.5035 0.950 0.947 0.798 2il0 10i 
286.0 2Z.6 27.2 0.6630 0.980 0.S01 0.940 
29.5 23.0 27.6 0.7635 0.9S6 0.995 1.081 
373.1 23.1 27,7 0.8635 1.000 0.999 1.223 



RUN 111665-1 K-0.0 X-6 F0. 0 FP RUN 11469-2 X('0O X 10-6 F0.0 FP 
CATE I1669 RUN NO. 1 
A4B TEMP BASE TEMP GAS TEMP 
70.42 76.53 67.E2 

CCVER TEMP 
T0.10 

OAHU PHIS 
30.c 

REL HUM 
0.5b 

DATE 111669 RUN NO. 2 
APB TEPP EASE TEPP GAS TEMP 
70.11 76.87 60.86 

COVER TEMP 
70.66 

HARD PROS 
30.08 

REL HUM 
0.48 

tp H,3 .3i,' 

Pt X NEL K PEE ST HEM CF2 TO P PL X VEL K RIM ST to F 

2 

4 
S 

7 
8 
9 

10 
11 
12 
52 
13 
1 
is 
16 
17 
18 
14 
20 
20 
21 
22 
23 

6 
1 
14 
18 
22 
26 
30 
?4 
38 
42 
46 

46.76 
!0 
54 
-8 
62 
66 
7c 
14 
78 
38.0 
82 
86 
90 

23.06 
23.05 
23.01 
23.01 
22.96 
23.01 
23.06 
23.06 
23.10 
23.10 
23.15 
23.10 
23.15 
23.15 
23.15 
23.15 
23.10 
23.10 
23.10 
23.15 
23.10 
23.18 
23.25 
23.25 

-O.0888E-07 
C.008 00 

C.000 cc 
-0.45LE-07 

0.0008 c 
0.447E-07 
0.448E-07 
C.0OOE 00 
0.439E-07 
0. 4E-0.7 
0.OC0E CC 
O.00E 00 
0.00E 0C 
0.00E 00 
C.OOOE 00 

-0.4388-07 
0.000E O0 
0.OOE 00 
C.0008 00 
0.7030-07 
0.703E-07 
C.1748-C? 
0.440E-07 
0.0008 00 

116. 
480 
420. 
759. 
891. 
1012. 
1138. 
124E. 
137C. 
1475. 
1593. 
1561. 
1696. 
116. 
1913. 
2023, 
2128. 
2229. 
2222. 
2R44. 
2259 
2!25. 
2623, 
2714, 

0.C0369 
0.00322 
0.CC297 
0.00276 
0C0269 
.00256 

0.00245 
C0241 
0.0236 
0.00227 
0.00236 
0.00232 
0.00230 
C.00218 
0.C0223 
O.00218 
0.00221 
0.00213 
0.CC213 
0.C0208 
0 .C0210 
C.00208 
0.00210 
0.00207 

1568. 

2286. 

0.0020E 

0.00189 

S7.1 
97.1 
97.5 
97.3 
97.2 
97.1 
47.0 
97.1 
96.9 
97.0 
96.9 
S7.3 
97.0 
47.2 
S6.9 
96.0 
96.8 
96.8 
96.8 
96.9 
97.7 
96.9 
96.9 
97.0 

0.0000 
0.0000 
0.0000 
0.C00 
0.0000 
0.000 
0.0000 
0.0000 
0.00CC 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.C00 
0.0000 
0.0000 
0.0000 
0.0000 
.CCCC 
O.COOO 
0.0000-
0.0000 
0.0000 

2 
3 
A 
5 
6 
7 
8 
9 
ic 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

6 
50 
14 
18 
22 
26 
20 
34 
30 
42 
46 
!o 
54 
58 
L2 
66 
70 
74 
78 
82 
86 
40 

23.C0 
23.02 
23.02 
23.02 
22.97 
23.02 
23.07 
23.07 
23.12 
23.12 
23.17 
23.17 
23.17 
23.17 
23.17 
23.12 
23.12 
23.12 
23.17 
23.20 
23.26 
23.26 

- C.890E-C7 
O.O00E 00 
0.000 00 

-0.452E-0 
0.000E 00 
0.4408-07 
0.4498-07 
C.00E 00 
0.4408-07 
0.45-07 
C.000E 00 
C.00E 00 
0.0008 00 
C.00E 00 

-0.439E-07 
O.0OOE 00 
0OO00E 00 
0.0008 00 
0.705E'07 
0.1748-07 
0.440E-07 
0.0000 00 

:13. 
476. 
618 . 
159. 
095. 
1021. 
1144. 
1249. 
1367. 
147. 
15S4. 
1104. 
1806. 
L927. 
2067. 
2142. 
2250. 
2254. 
2443. 
2534. 
2640. 
2746. 

0.(0372 
0.00324 
0.00300 
0.00281 
0.00271 
0.00259 
0.Co249 
0.00236 
0.C0237 
0.0220 
0.00236 
0.C0232 
0.C0222 
0.00226 
0.00226 
0.00223 
0.00216 
0.C0216 
0.00213 
0.00200 
0.CC210 
0.00210 

97.8 
97.9 
96.2 
98.0 
97.8 
97.8 
92.6 
97.9 
97.7 
97.7 
97.6 
97.6 
97.7 
97.4 
97.0 
97.4 
97.4 
97.3 
97.5 
97.6 
57.5 
97.4 

0.0000 
0.OECD 
0.0000 
0.0000 
0.0000 
0.0000 
C.C00 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
O.OGO0 
0.000 
0.0000 
0.0000 
0.0000 
0.0C00 
0.0000 
C.0000 
0.0000 

SUMMARY OF PRCFILJE RESULTS 

RUN 111669-1 KC.0 210-6 F-0.0 FP 

Pt I EL K P 10 TINF CELM COLE 

12 
2C 

46.76 
18.80 

23.10 
23.5C 

0.000E 00 
0.7031-t7 

0.0000 
0.0000 

S7.3 
97.7 

68.7 
65.6 

1.073 
1.051 

1. 15'0 
1.677 

FL x REF ST REM CF2 0ELTA2 8HETA 

12 
20 

46.76 
70.80 

1561. 
2259. 

0.00232 
0.00210 

2568. 
2286. 

0.00200 
0.00109 

0.1317 
0.1905 

0.1326 
0.1932 

0UN 111669-1 K-0.0 XIO-6 F'O.0 FP RLN 111669-1 1=0.0 X0-6 F0.00 FP 

TEMP. $UK 
111664-1 

VEL. RUN 
111869-1 

PLATE 
12 

x 
46.76 

ST 
0.00212 

CF/2 
0.00100 

UIF 
23.1 

TGAS 
68.7 

To 
97.3 

P 
0.0000 

TEMP. RUN 
111604-1 

VEL. AUK 

111869-1 
PLATE 

20 

X 

78.0 

ST 

0.00210 

CF/2 

0.00109 

UhF 

23.1 

TAS 

68.6 

TO 

97.7 

F 

0.0000 

THI,8AL 
B.L 305. 
1.10 

0RO. 
E.L. TIK. 
1.073 

ENTHALPN 
INK. 
0.1317 

MOMENTUM 
TE. 

0.1326 

ENTHALPY 
RE. 
1511. 

MCR 7L 
RE. 
1568. 

nO. DATA 
POINTS 

31 
K 

O.OOOE 00 

THEPAL 
6.L. 7NK. 

1.671 

"YDRC. 
I.L. INK. 

1.551, 

ENTIALPY 
INK. 

0.1905 

MCMENTUM 
INK. 
0.1932 

ENTHALPY 
RE. 

2259. 

MOMENTUM 
RE. 
2286. 

NO. DATA 
POINTS 

32 
x 

0.7038-07 

YPLUS TPLUS UPLLS V TBAR U/lUINF Y/DELM YPLLS TOLUS UPLLS Y 8AR U/UI/F Y/DEL 

0.0 
1.3 
1.0 
2.4 
2.9 
3.4 
4.0 
4.5 
6.1 
8.2 

10.3 
12.5 
15.2 
18.4 
22.1 
27.5 
32.8 
43.5 
56.9 
75.7 
97.2 
124.0 
164.4 
218.2 
280.7 
366.7 
447.9 
524.1 
637.3 
745.2 
653.1 

0.0 
2.0 
2.6 
3.2 
3.6 
4.1 
4.4 
4.9 
5.3 
7.1 
7.3 
0.4 
9.2 
9.9 
10.9 
11.3 
11.7 
12.6 
13.1 
13.8 
14.5 
14.9 
15.2 
L6.7 
17.6 
18.5 
19.2 
19.9 
20.3 
20.4 
20.4 

0.C 
1.5 
2.1 
2.2 
3.3 
3.9 
4.5 
5.0 
6.2 
7.9 
9.2 
10.0 
10.8 
11.6 
12.3 
12.9 
13.3 
14.1 
14.6 
15.1 
15.E 
6.4 
17.2 
1B.0 
19.0 
20.C 
20.9 
21.5 
21.9 
21.9 
21.9 

OOC0 
0.0025 
0.0035 
C.OC4 
0.0005 
C.0C6b 
O.C70 
0.000 
0.C115 
0.0155 
0.0195 
0.0235 
0.0205 
0.0345 
C.0415 
0.0515 
0.061b 
O.CEI 
0*1065 
0.1415 
0.1815 
0.2315 
0.3065 
0.4065 
0.5315 
0.6015 
0.8315 
0.9615 
8.1815 
1.3815 
1.5815 

0.000 
0.101 
0.135 
0.158 
0.180 
0.205 
0.224 
0.243 
0.290 
0.352 
0.387 
0.418 
0.457 
0.493 
0.530 
0.559 
0.581 
0.620 
0.650 
0.666 
0.712 
0.735 
0.777 
0,821 
0.866 
0.506 
0.942 
0.972 
0.993 
0.999 
1.000 

0.000 
0.C67 
0.C93 
0.120 
0.147 
0*173 
0.200 
0.223 
0.279 
0.353 
0.411 
0.449 
0.487 
0.523 
0.554 
0.584 
0.602 
0.636 
0.658 
0.604 
0.713 
0.741 
0.778 
O.0l 
0.864 
0.911 
0.950 
0.979 
0,996 
1.000 
1.000 

0.000 
0.002 
0.003 
0.004 
0.0C5 
0.006 
0.007 
0.000 
0.011 
0.014 
0.010 
0.022 
0.C27 
0.032 
0,039 
O0.04 
0.057 
0.076 
0.099 
0.132 
0.16S 
0.216 
0.26 
0.374 
0.496 
0.636 
0.775 
0.915 
1.102 
1.288 
1.474 

0.0 
1.3 
1.8 
2.3 
2.8 
3.3 
3.8 
4.e 
6.3 
7.8 
9.4 
11.4 
13.9 
17,5 
21.6 
26.7 
34.3 
44.5 
57.3 
75.1 
100.7 
139.1 
190.3 
254.A 
331.5 
434.4 
511.6 
614.8 
716.0 
821.2 
924.3 
1027.3 

0.0 
1.1 
2.0 
2.6 
3.2 
3.4 
3.9 
4.5 
5.7 
6.7 
7.4 
0.3 
9.2 
10.0 
10.6 
11.3 
11.9 
12.4 
13.0 
1.5 
14.3 
16.0 
15.7 
16.6 
17.4 
18.3 
18.0 
15.5 
20.2 
20.6 
20.8 
20.9 

0.0 
1.5 
2.0 
2.6 
3.2 
3.8 
4.3 
5.2 
6.4 
7.6 
e.5 
9.6 
10.3 
11.4 
12.2 
12.9 
13.6 
14.2 
14.6 
15.2 
15.8 
16.5 
17.4 
18.3 
19.2 
20.3 
21.0 
21.4 
22.5 
22.8 
23.C 
23.0 

C.0000 
0.0025 
0.0C35 
0,0045 
0.0055 
0.0065 
0.0075 
0.0095 
0.0125 
0.0155 
0.0185 
0.C225 
0.0275 
0.0345 
0.0425 
0.0525 
0.0675 
0.0875 
0.11Z5 
0.1415 
0.1975 
0.2725 
0.3725 
0.4975 
C.6475 
0.8475 
0.9975 
1.1975 
1.3975 
1.5975 
1.7975 
1.9975 

0.000 
0.056 
0.100 
0.129 
0.155 
0.166 
0.193 
0.221 
0.277 
0.325 
0.362 
0.402 
0.445 
0,483 
0.516 
0.549 
0.577 
0.600 
0,628 
0.652 
0.691 
0.725 
0.759 
0.797 
0.836 
0.877 
0.902 
0.937 
0.966 
0,986, 
0.996 
1.000 

0.00C 
0.062 
0.006 
0.111 
0.136 
0.160 
0.185 
0.223 
0.273 
0.323 
0.363 
0.409 
0.452 
0.490 
0.523 
0.-53 
0.53 
0.609 
0.629 
0.653 
0.682 
0,714 
0.7S3 
0.789 
0.830 
0.879 
0.912 
0.949 
0.977 

1 0.993 
.0C.998 

I.C0 

0.000 
0.002 
0.002 
0.003 
0.004 
0.004 
C.OC5 
0.006 
0.008 
0.ClO 
0.012 
0.015 
0.018 
0.022 
O.C27 
0.034 
0.044 
0.056 
0.073 
0.095 
0.127 
0.176 
0.240 
0.321 
0.417 
0.546 
0.643 
0.772 
0.901 

,.,1.030 T93 . 
, .1.159 . 

1.2888.k.,d 

46-Ju6 
,.i*9 . 

n 

0 
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Some ratios formed -from boundary layer integral parameters
 

Description Plate x A2/ A2/A 2 1i I/e ReM/ReM, ,ReCReH ii 


Run 070869 2 6 21.81 1.100 1.0 1.0 1.0 1.0
 
A2 ,i = 0.0700 7 25.86 1.360 0.982 o.8o 0.900 1.110
 

= 0.0635 8 29.81 1.720 0.958 0.613 0.814 1.265ei 
6 9 33-59 2.140 0.890 0.459 0.730 .410 

K2.55x1
 - 10 37.46 2.55 0.780 0.338 0.673 1.550
 

Run 071569 6 21.81 0.425 1.0 1.0 1.0 1.0 
A2 , 1 = 0.0262 8 29.81 0.990 1.420 o.61o 0.802 1.870 

= .0616 10 37.46 1.750 '1.380 0.335 0.662 2.740ei 

K=2.55x10- 6 ,F=O I I
 

Run 092469 15 58.94 1.30 1.0 1.0 1.0 1.0
 
A2,i = 0.1393 16 62.86 1.64 0.942 0.750 o.85o 1.070 

= 0.1065 17 66.76 1.46 0.838 0.522 0.685 1.100
 
0=2.106518 -, 70.69 2.74 0.733 0.352 0.558 1.160
 
K-2.5x0 6 ,F--0 19 74.58 3.40 o.61o 0.234 0.468 2.220
 

ei 


Run 100269 15 58.94 0.541 1.0 1.0 1.0 1.0
 
A2 ,1 
= 0.0565 17 66.76 1.080 1.020 0.518 0.672 1.325
 

= 0.1022 19 74.58 2.220 0.903 0.225 0.447 1.800
ei 


K=2.5 xlO-6 ,F=_O I I
 

Run 101769 6 21.81 0.648 1.0 1.0 1.0 1.0
 
A2,i = 0.0595 8 29.81 0.760 0.977 0.499 0.676 1.325
 
ei = 0.0920 10 37.46 2.100 0.780 0.240 0.512 1.670
 

K=2.56xI0-6,F=O
 

Run 091069 6 21.81 0.953 1.0 1.0 1.0 1.0 
A2 ,i = 0.0633 7 25.86 1.230 1.007 0.777 o.884 1.155 

8 29.81 1.620 0.972 0.568 0.755 1.300

009 33.59 2.020 0.929 0.436 0.677 1.493
 

K=l.99x1O 6,F O 10 37.46 2.520 0.837 0.315 0.634 1.695
 

Run 072769 6 21.81 1.100 1.0 i.0 1.0 1.0
 
A2 ,i = 0.0939 7 25.86 1.380 1.018 0.810 0.917 1.150
 
ei = o.o850 8 29.81 1.700 0.997 o.648 0.855 1.320

9 33.59 2.180 0.984 0.498 0.793 1.570
 

K=2.5 xl0-6 ,F= 10 37.46 2.600 0.892 0.380 0.761 1.795
 
0.002
 

Run 083069 6 21.81 1.100 1.0 1.0 1.0 1.0
 
A2 ,i = 0.1190 7 25.86 1.410 1.o45 o.813 o.918 1.18o
 

= 0.1080 8 29.81 1.84o 1.070 o.64o 0.843 i.41oe i 

9 33.59 2.180 1.020 0.513 0.820 1.630
 

K=2.6xO -6 , F= 10 37.46 2.650 0.948 0.394 0.788 1.905
 
o.oo4
 

Run 111669 4 13.81 0.767 1.0 1.0 1.0 1.0
 

= 0.0520 12 46.76 0.993 2.533 1.956 1.967 2.550 

ei = 0.0678 20 78.80 o.986 3.663 2.850 2.868 3.687 

A2 ,i 


K=O.O,F=0.0
 

1Length unit 
= inches 
2 Subscript "i" refers to first profile recorded in accelerated region
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SUPPLEMENT 3 

LISTINGS OF DATA REDUCTION PROGRAMS
 

STANTON PROGRAM: 	 reads raw heat transfer data in order to
 

compute surface heat transfer results and
 

associated uncertainty analysis.
 

PROFILE PROGRAM: 	 reads raw temperature profile data, and
 

calculated velocity profile results, in
 

order to compute temperature profile in

formation and integral parameters, plus
 

the associated uncertainties.
 

ENERGY PROGRAM: 	 reads final temperature integral results,
 

and surface heat transfer results, in
 

order to recalculate the plate enthalpy
 

thickness from the energy equation, and
 

to determine the boundary layer energy
 

balance at each profile.
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C ISTANTON PROGRAM
 

C
C
C 
C 
C
C 

C STANTON NUMBER AND RELATED PARAMETERS FOR PRESSURE GRADIENT RUNS ON
 
C HEAT AND MASS TRANSFER RIG
 
C
 
C
 
C PROGRAM REARRANGED AND UNCERTAINTY ANALYSIS ADDED BY DWKEARNEY
 
C LATEST COMPILATION 120169
 
C
 
C
 

REAL KCOND(24),KCONV(241,KFLOW(24),KFUOGE24I,KPROPKS(24),
 
I KV(483,KW,MA,MDOT(24),MV,NPWR,ISO(24),TERM(25),TERMCP(25), 
2 XINT(25),XINTCP(25 

C 
INTEGER CMFLAG,DATE,ENBLFG,RUN,TITLE(18)
 

C
 
COMMON /A/ AR,BETA,BIT1,B3T3,CMFLAG,COEF1,COEF23,CP,DATE,DEN,
 
I ENBLFGEIE2,EMISS,EPS,ER1,ER2,ER3,F12,F13,F22,I,INSTOT,J,KCOND,
 
2 KCONVKFLOW,KFUDGE,KPROP,KS,KV,KW,KLM,MA,MDOT,MV,NPWR,NPLATE,
 
3 NSTAT.P,PBAR,PROTA, DELP ,PVAP,QI,Q2,Q3,QHEAT,
 
4 QHEATA,QHTA,QLOSS,RA.RCFREPS,RHOA,RHOH,RiOL,RHOVRHOZRO,RUN,
 
5 RHI,RH2,RH3,RHUMRMT,TAMB,TBASE,TCOV,TGAS,TROT,
 
6 TROTA,T1,T2,T3,VAPH,VAPLVEPS,WCORR,WSCALE,WSTDI,
 
7 ISO,REENCP(24),ENTHCP24),ENTHZR,
 
8 AREA(24),BB(24),CFHT(24),CM(24),CONLATI24),DFLH(25),
 
9 DELTAT(24),DUDX(481,DUDXS(241,ECONV(24),ED(24),ENDEN(24),
 
I ENNET(24),EO(24),ENTH(24),ET(24),EU(24),F(24),GS(24),H(24),
 
2 HTFRAC(24),HTRANS(24),INSTK(48),MASSK(24),PK(48),
 
A PROT(24),PROTAB(24),PSAT(9hPSTAT(48),QCOND(24),
 
3 QRAD(24),REENTH(24),REENWC?51,RHOG481,
 
4 RHOSAT(9gST(24),STCP(24},TAVG(24),TEMP(9),TIME6048),
 
5 TO(24),TOEFF(24),TD(24),TITLE,TT(24),TU(24),V(48),
 
6 VISCG(48),VISCGS(24),UG(24),VZERO(24),WACT(24),WIND(24),
 
7 WNET(24),WSTD(24|,X(481,XS(24),XSTCP(24),XMDOT(24)
 
.COMMON /B/ DCMP,DDELP,DPAMB,DP5HI,DP5LO,DP97Hi,DP97LO,DQRADP,
 
I DTEMPA,DTEMPP,DTBASE DTTDTROT,DTGAS,DWIND,DXX,F2,F3,F4,
 
2 F6,F7,F8,DEL,DDUDXS(24),DISO(24),DENZRP,
 
3 DB(24),DBND(24),DCM(24),DDL2(24),DDLZND(24),DF(24),
 
4 DFND(24),DHTF(24),DMDOT(24),DMDOTN(24),DPSTAT(481,
 
5 DQRAD(24),DRE(24),DREND(24),DRHOG(24),DST(24),
 
6 DSTND(24),DUG(24),DUGND(24),DV(48),DDUDX(48),
 
7 CLR1(24),CLR2(24),CLR3(24),CLR4(24),CSRI(24),
 
a CSR2(24),CSR3(24),DVISCG(24),DEL2,DMUP,MNPLAT,
 
9 D97MIN,O97MAX,DSMIN,D5MAX,PTOTAL,NPORTMNPORT
 

READ AND WRITE INPUT DATA
 

C TRANSDUCER CALIBRATION CONSTANTS ARE READ FIRST. USED FOR K-RUN.
 
C
 

READ(5,1353) A91,B37,C97,D97,E97,A5,BC5,D5,E5
 
1353 FORMAT(5F1O.O/5F10.O)
 

C
 
C
 
C UNCERTAINTY INTERVALS
 
C
 

READI5,1354) DCMP,DDELP,DPAMBDP5LO,DPSHI,D5MIN,D5MAX,DP97LO,
 
I DP97HI,D97MINDS7MAXDQRADPDTEMPADTEMPPDWIND,
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2 DENZRP,DXX,DMUP
 
DP5LO=DPSLO/lO0.
 
DP5HI=DP5HI/10O.
 
DP97LO=DPSTLO/100.
 
DP97HI=DP97HI/-00.
 

1354 FORMAT( 8FI0.0)
 
C 

PSTAT(48)=O.O
 
C 
C IP-PUNCH COMMAND FOR ST-REENTH DATA AND PUNCHED OUTPUT: 0 FOR NO
 
C PUNCH, 1 FOR PUNCH
 
C NRUNS- NUMBER OF SETS OF DATA ENTERED
 
C
 

READ(5,36)NRUNS,IP
 
DO 500 IRUN=I,NRUNS
 

C
 
C ALL DATA READ AND PRINTED DURING THE NEXT OPERATION
 
C
 

WRITE(6,3)
 
777 FORMAT(IX,18A4,13X'THIS VERSION OF THE STANTON NUMBER DATA-)
 
1777 FORMAT(1X,18A4)
 
36 FORMAT(12,8X,I1)
 
I FORMAT(18A4)
 
3 FORMAT(IHI)
 

306 FORMATIlH 1
 
308 FORMAT(IHO)
 

4 FORMAT(E16,4XII9X,5FI0.216FO.O,I1)
 
300 FORMAT(2X47H DATE RUN TAMB TCOV TROT TBASE TGAS
 

I 37XIREDUCTION PROGRAM WAS COMPILED 120169.1)
 
400 FORMAT(65H PBAR RHUM El E2 DELP TIME6O INST
 

I PREAD )
 
301 FORMAT(2X22H CMFLAG ENBLFG NPLATE I
 
304 FORMAT(2XI6,2XIl,1X5F7.3)
 
404 FORMAT(4F8.2,F8.4,4XF4.O,5XI1,4XF7.4)
 

5 FORMAT(I1,9X,11,9X,12)
 
50 FORMAT(SXII.6X11,6XI2)
 

75 FORMAT(72H I EQ EU ED ET WIND CM P 
IROT MASSK 

302 FORMAT(62H I EO EU ED ET WIND CM P 
IROT 

-6 FORMAT(7FIO.3) 
307 FORMAT(IX,I2,4F8.3,2F8.2,FB.1) 

71 FORMAT(7F1O.3,1) 
73 FORMAT(lX,I2,7F8.3,5XI 1) 
52 FORMATtIX,12,4F8.3,2F8.2,FB.i,7XII) 
303 FORMAT(55H STATIC PRESSURES -FROM WALL PORTS,INCHES HaD GAGE) 
305 FORMAT(7FIO.5) 
814 FORMAT(2(2XtI15X*PD'6X'PREAD3X'TIME6O'2X'INSTI1OX))
 
815 FORMAT (2(5X,F8.0,3X,F3.0,ZX,I1,9X))
 
816 FORMAT('2(1X,12,2X,F7.4,IX,F9.3,3X,F4.0,4X,T1,12X))
 

C
 
2 READ(5,I) TITLE
 

WRITE(6,777) TITLE
 
WRITE(6,300)

READ(5,4) DATE,RUNTAMB,TCOV,TROTTBASE,TGAS,PBAR,RHUM,El,
 

I E2, DELP ,TIMEINSTOT
 
WRITE(6,304) DATE,RUN,TAMB,TCOV,TROT,TBASETGAS
 

C
 
C CALCULATION OF DELP
 
C 

PHOLD= DELP
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IF(TIME.GT.O.0) DELP = DELP *60./TIME
 
INS=INSTOT+1
 
GO TO (2125,2126,2127)INS
 

2126 DELP =PCAL1( DELP ,A97,B97,C97,D97,E97)
 
GO TO 2125
 

2127 OELP =PCAL2( DELP *ASB5,C5,05,E5)
 
2125 WRITE(6,400)
 

WRITE(6,404) PBARRHUEI,E2, DELP ,TIMEINSTOTPHOLD
 
C
 
C CMFLAG: I-SMALL ROTO 2-LARGE ROTO 3-MIXED ROTO, REQUIRES 1 OR 2
 
C COL 72 OF DATA FOR EACH PLATE
 
C ENBLFG: ENTER I FOR ENERGY BALANCE RUN, OTHERWISE LEAVE BLANK
 
C NPLATE: ENTER ONLY IF LESS THAN 24 ARE TO BE CALCULATED
 
C MASSK: I-SMALL ROTO 2-LARGE ROTO
 
C
 

READ(5,5) CMFLAG,ENBLFGNPLATE
 
WRITE(6,301)
 
WRITE(6,50) CMFLAGENBLFGNPLATE
 
WRITE(6,306)
 
IF(CMFLAG.NE.3)GO TO 74
 
WRITE(6,75)
 
GO TO 76
 

74 	WRITE(6,302)
 
76 	 IF(NPLATE.EQ.0) NPLATE=24
 

NPORT=2*NPLATE
 
MNPORT=NPORT-1
 
MNPLAT=NPLATE-I
 
DO 7 1=1,NPLATE
 
IF(CMFLAG.NE.3)GO TO 70
 
READ(5,71)EO(IIEU(I),ED(I),ET(1),WINO(I),CM(I),PROT(I)tMASSK(I)
 
WRITE(6,52)IEO(E),EUI) ,ED(I),ET(I)WIND(I)CM(1),PROT(I),
 

I MASSK(I)
 
GO TO 7
 

70 READ(5,6)EO(I),EU(I),ED(!)hET(I),WIND(I),CM(t),PROT(I)
 
WRITE(6,307) IEO(I),EU(I),ED(I)YET(I),WIND(1),CM(1),PROT(I)
 

7 CONTINUE
 
WRITE(6,306)
 
WRITE(6,814)
 
DO 817 J=1,NPORT
 
IF(J.GT.24) GO TO 818
 
L=J+24
 
READ5,8151 PK(.J),TIME60(J),INSTK(J),PK(L),TIME60(L),INSTK(L)
 
DO 2215 II=JL,24
 
PHOLD=PK(Iii
 
IF(TIME6O(II).GT.O.0) PHOLD=PHOLO*60./TIME60(I-}
 
INS=INSTK(II)+1
 
GO.TO (2202,2203,2283),INS
 

2203 PSTAT(II)=PCALI(PHOLD,A97,B97,C97,097,E97)
 
GO TO 2215
 

2283"PSTAT(II)=PCAL2(PHOLD,A5,B5,C5,D5,ES)
 
GO TO 2215
 

2202 PSTAT(I!)=PHOLD
 
2215 CONTINUE
 

WRITE(6,816(11,PSTAT(II),PK(II),TIME60(I),INSTK(II),I=J,L,24)
 
817 CONTINUE
 
818 WRITE(6.3)
 

C
 
C
 
C DATA REDUCTION BEGINS HERE
 
C
 

00 80 I1=,NPLATE
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C
 
C THE FOLLOWING BLOCK CONVERTS ANY TEMPERATURES READ IN MILLIVOLTS TO 0
 
C
 

IF(TAMB.LT.1O.I TAMB=TCALIB(TAMB)
 
IF(TCOV.LT.1O.) TCOV=TCALIB(TCOV)
 
IF(TROT.LT.1O.) TROT-TCALIB(TROT)
 
IF(TBASE.LT.IO.) TBASE=TCALIB(TBASE)
 
IF(TGAS.LT.10.) TGAS=TCALIB(TGAS)
 
IF(EU(I).EQ.O.O) EUCI =EO(I)
 
IF(ED(I).EQ.0.0) ED(I)=EO(I)
 
TO(I)=TCALIB(EO(I))
 
TUI'I)=TCALIB(EU(II))
 
TDCI)=TCALIB(ED(I))
 
TT(I)=TCALIB(ET(1))
 

80 CONTINUE
 
C
 
C MIXTURE COMPOSITION IS DETERMINED FROM RELATIVE HUMIDITY AND USED
 
C TO GET MIXTURE GAS CONSTANT RM VIA PERFECT GAS ASSUMPTION
 
C
 

P=PBAR*2116.0/29.96
 
DO 8 N=1,9
 
IF(TEMP(N).GT.TAMB) GO TO 9
 

8 CONTINUE
 
9 T=TEMP(N)
 

EPS=T-TAMB
 
VAPH=PSAT(N)
 
VAPL=PSAT(N-I)
 
VEPS=VAPH-VAPL
 
RHOH=RHOSAT(N)
 
RHOL RHOSAT(N-I)
 
REPS=RHOH-RHOL
 
RHOV=RHUL+(1O.O-EPS)"REPS/1O.O
 
RA=53.3
 
PVAP=RHUM*(VAPL+(1O.O-EPS)*VEPS/ID.O)
 
RHOA=((P-PVAP)/(RA*(TAMB+460.O))+RHUM*RHOV))
 
MV=RHUM*RHOVJRHOA
 
MA=I.0-MV
 
RM=1545.0*(MA/28.9+MV/18.0)
 

C
 
C SPECIFIC HEAT IS CORRECTED FOR HUMIDITY EFFECTS IN THE FOLLOWING EQUA
 
C
 

CP=O.240+0.205*MV
 
C
 
C TGAS IS CORRECTED TO STATIC TEMPERATURE
 
C
 

IFIENBLFG.EQ.1) GO TO f104
 
PTOTAL=DELP+PSTAT(3)
 
DO 1103 M=1,5
 
RHOG(3)=(P+5.2*PSTAT(3))/(RM*(TGAS+460.0))
 
VISCG(3)=(11.0+0.0175*TGAS)/(100000O.O*RHOG3)
 
V(3)=SQRT((64.34*IPTOTAL-PSTAT(3)*(62.4/RHOG(3))/12.0))
 
RCF=.j7**.333
 
TGAS=TGAS - RCF*V(3)*V(3)/(778.*64.34*CP)
 

1103 CONTINUE
 
C
 
C FREE STREAM DATA NOW PROCESSED
 
C
 
1104 	DO 101 J=1,NPORT
 

RHOG(J)=(P+5.2*PSTAT(J))/(RM*(TGAS460.0))
 
VISCG(J)=(11.O O.0175*TGAS)/(100000OO*RHOG(J))
 
V(J)=SQRT((64.34*(PTOTAL-PSTAT(J))*(62.4/RHOG(J))/12.0))
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101 	CONTINUE'>
 
DUDX(I)=(V(2)-V(1))/(X(2)-X(1))*12.
 
KV(I)=VISCG(I)*DUDX(I)/(V(1I*V(1))
 

C
 
DO 102 J=2MNPORT
 
DUDX(J)=12.0*(V(J+I)-V(J-1))/(X(J+t)-X(J-1))
 
KV(J3=VISCG(J)*DUDX(J)I/(V(J)*V(J))
 

102 CONTINUE
 
C
 
C FREE STREAM DATA FOR INDIVIDUAL PLATE IS RECORDED NOW
 
C
 

DO 88 I=INPLATE
 
NSTAT = 2*1 - I
 
UG(I)=V(NSTAT)
 
GS(I)=V(NSTAT)*RHOG(NSTAT)
 
XS(I)=(2.Q+(I-1)*4.0)/I2.0
 
KS(II=KV(NSTAT)
 
DUDXS(I)=DUDX(NSTAT)
 
VISCGS(I1=VISCG(NSTAT)
 

88 CONTINUE
 
C
 
C DATA IS REDUCED FOR EACH PLATE DURING THE NEXT OPERATION
 
C
 

DO 22 I=I,NPLATE
 
C
 

IF(CMFLAG.NE.3) MASSK(I)=O
 
NSTAT = 2*1 - I
 

C
 
C FOLLOWING BLOCK CORRECTS INDICATED POWER FOR VOLTAGE COIL LOSS AND
 
C FOR DEVIATION FROM ACTUAL PWR, PER SLAC TEST NO. 1149
 
C
 
C WIND=O USEDAS FLAG FOR NO-POWER RUNS
 
C
 

IF(WIND(I.LE.O.O) KW=1.0
 
IF(WIND(I).LE.O.O) BETA=1.O
 
IF(WIND(I).LE.O.0 GO TO 12
 

-10 	IF(WIND(I).GE.75.0) KW=O.995
 
IF(WIND(I).LT.75.0) KW=O.99
 
IF(WIND(I).GE.75.0) WSCALE=150.O
 
IF(WINDII).LT.75.0) WSCALE=75.0
 
NPWR=WIND(I)IWSCALE
 
WCORR=NPWR*(O.'0728*NPWR-0.0427*(NPWR*NPWR)-0.0292)
 
WNET(I)=KW*WIND{I)+WCORR*WSCALE
 
IF([.LE.121 RC=El/SQRT(75.0*WNET(I))
 
IF(I.GT.12) RC=E2/SQRT(75.O*WNET(I))
 
IF(WIND(I).LT.75.0) BETA=l.0+O.020*(I.0-I.0/RC}
 
IF(WIND(I).GE.75.0) BETA=I.O+O.010*(I.O-I.0/RC)
 

11 WNET(I)=BETA*WNET{I)
 
C
 
C NEXT CALCULATES ENERGY INPUT DENSITY BTU/SECFT2 CORRECTING FOR
 
C HEATER WI-RE WRAPPED ACROSS ENDS, 2.3 PERCENT
 
C
 

ENDEN(I)=WNET(II/(1055.0*O.50*1.023)
 
GO TO 13
 

12 ENDENII)=O.O
 
C
 
C NEXT CALCULATES HEAT LOSS BY RADIATION. SEE JULIFN 8/67 ENERGY
 
C BALANCE REPORT FOR DETAILS.
 
C
 

13 TAVG(I)=(TOI)*3.0+TU(I+TD(I))/5.0
 
ER1=0.35
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ER2=0,20
 
ER3=0o 35
 
F13=0.175
 
AR=O .25
 
KLM=l
 
RHZ=IO-ER2
 
RH3=,0-ER3
 
F12=1.0-FI3
 
F22=1.O-2.O*AR*FI2
 
RHI=IO-ERI
 
EMISS=O.17
 
IF(PROT(Ih)LE.-O.1.AND.ENBLFG.EQ.1) EMISS=0.30
 
T1=IAVG(I)+O.O22'WIND(I)+460.O
 
T3=TT(I)+460.0
 
IF(PROT(I).LE.-O.1) T2=TI
 
IF(PROTCII.GT.-O.1) TZ-TT(I)+460.0
 

14 	IF(KLM.EQ.1) GO TO 15
 
T1=TI+0.551*WINDI )-0.91l*(T1-T3)
 
ER1=0,90
 

RHI=O.10
 
15 DEN=I.O-RH2*F22-2.0*RHI*RH2*RH3*AR*FI2*FI2*FI3-RH*RH3*FI3*FI3*
 

(I.0-RH2*F22)--RH2*(RH3+RHI)*AR*Fl2*F12
 
QL=ERI*0.174E-O8*TI*TI*TI*T1
 
Q2=ER2*0*174E-08*T2*T2*T2*T2
 
Q3=ER3*0.174E-08*T3*T3*T3*T3
 
COEFI=I.O-RH2*F22-RH2*RH3*AR*FI2*FI2
 
COEF23=(RHI*RH3*FI2*F13 RHI*FI2)*Q2+(RH1*RH2*AR*FI2*FI2+RHI*(I.O
IRH2*FZ2)*FI3)*Q3
 
BITI=(COEFI*QI+COEF23 /DEN
 
B3T3=((RH3*(I.O+RH1*F13)*BLT1)+(RHI*Q3-RH3*QI )/(RHI*tI.0+RH3*F13)
 

1)
 
IF(PROT(I).LE.-O.1) QHEATA=(ERI/RHI)*((QI/ERI)-BITI)
 
IF(PROT(I).GT.-O.1) QHEATA=(ER3/RH3)*(83T3-(Q3/ER3))
 
IF(KLM.GE.2) GO TO 16
 
KLMZ2
 
QHTA=QHEATA
 
GO TO 14
 

16 QHEAT=fO.8q5*QHTA+O.1O5*QHEATA)/3600.O
 
253 QRAD(I=0.1714*EMISS*(((TAVG(I)+460.01/100.0)**4.O-((TCOV 460.0)/
 

1100.0)**4.0)13600.0+QHEAT
 
C
 
C NEXT CALCULATES WEIGHT FLOW FROM ROTAMETER DATA AND GETS M
 

MDOT(I)=O
 
VZERO{II = 0.0
 
RHOZRO = 0.0
 
TROTA=TROT+460.0
 
PROTA=PBAR+PROT([)/25.4

PROTAB(I)=2116.0*PROTA/29.96
 
IF(CMFLAG.NE.3)GO TO 77
 
IF(MASSK(Il)EQ.IIGO TO 17
 

77 IF(CMFLAG.EQ.1) GO TO 17
 
IF(CMII).LE.O.O) GO TO 19
 

C
 
C NEW FIT FOR FACTORY CALIBRATION, PLUS/MINUS 0.3 PERCENT
 
C
 

WSTDI=(0.60+0.752*CM(I)-0.50*SIN(CM(11*3.1417/25.0))*0.075/60.0
 
GO TO 18
 

17 IF(CM(I).LE.O.0 GO TO 19
 
WSTDI=(O175+O.13091*CM(I)-0.067*SIN((CM(I)-2.0)*3.1417/24.O)I*
 
10.075/60.0
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18 WSTDCI)=WSTDI
 
C
 
C ROTAMETER FLOW IS NEXT CORRECTED FOR DENSITY TO YIELD ACTUAL FLOW,
 
C THEN CORRECTED FOR PLATE POROSITY VARIATION
 
C
 

WACT(I)=WSTD(I)*SQRT(PROTAB(I)/(RM*TROTA*O.075))
 
KFUDGE(I)=O.O
 
WI=WACT(I)*00.
 
IF(CMFLAG.EQ.1) GO TO 118
 
IF(CMFLAG.EQ.3.AND.MASSK(I).EQ.1) GO TO 118
 

C
 
C CORRECTION CURVES TO FACTORY CALIBRATIONS(LARGE ROTOMETERS)
 
C
 

IF(WI.LT.2.) WI=2.
 
IF(WI.GT.15.J WI=15.
 
PER=CLRI(II + CLR2(1)*W + CLR3(I)*W1**2 + CLR4(I)*W1**3
 

GO TO 119
 
118 CONTINUE
 

C
 
C CORRECTION CURVES TO FACTORY CALIBRATIONS(SMALL ROTOMETERS)
 
C
 

IF(WI.LT.I.15) WI=1.15
 
IF(WI.GT.4.) WI=4.O
 
PER=CSR3(I)/(WI-CSRI(Il)+CSR2(I)
 

119 WACT(1)=WACT(I)*(I.-PER/100.)
 
IFLPROT(I).LE.-O.1) MDOTII)=WACT(I)*KFLOW(I)*2.01258
 
IF(PROT(I).GT.-O.1) MOT(I)=WACT(I)*(KFLOW(j)+KFUDGE(I))2.01258
 

C
 
C DENSITY OF FLOW AT PLATE SURFACE IS CALCULATED AND USED TO GET VZERO
 
C
 

RHO'ZRO=(P+( 5.20 )*PSTAT(NSTATM)/(RM*(TAVG(I+460.Of)
 
VZEROI)=MDOT(I)/RHOZRO
 

C
 
C NEXT CALCULATES HEAT LOSS BY CONDUCTION
 
C
 

19 CONTINUE
 
258 QCOND(II=KCOND(I)*(TAVG(1)-TBASE)/30.O
 

IF(MDOTII).LE.O.0044) QCOND(I)=QCOND(II+CONLAT(I)*((1.O-(MDT(I)/
 
10.0044)))*(TAVG(1)-TBASE)/30.O
 
IF(MDOT(I)oLE.O.0002) QCOND(I)=QCOND(I1)(0.Ol5/3600.O)*12.O*-


I(TAVG(I )-TBASE)
 
QLOSS=QRAD(I)+QCOND(1)
 
ENNET{I)=ENDEN(I)-QLOSS
 

C
 
C ENNET IS THE ENERGY DENSITY ON PLATE,AFTER SUBTRACTION OF HEAT LOSSES
 
C FROM ENERGY DELIVERED TO THE PLATE, ENNET=Q'+ M' (IO-IT)
 
C
 
C DISTRIBUTION OF ENERGY IS MADE NOW
 
C
 

iF(PROT(Il).GT.-O.1) GO TO 20
 
MDOT(II=O.0-MDOT(I)
 
TT(I)=TAVG(I)+O.O22*WIND(It
 
TOEFFII)=TAVG(I)-0.0044*WIND(I)
 
ECONV(I)=MDOT(I)*(TOEFF(1)-TT(I))*CP
 
IF(ENBLFG.EQ.1) ECONV(I)=MDOT(I)*(TGAS-TT(I))*CP
 
GO TO 21
 

20 ECONV(II=MDOT(I)*(TAVG(I)-TT(1l))*CP
 
C
 
C
 
C EFFECTIVE SURFACE TEMPERATURE IS NOW DEFINED BASED ON MEASURED BULK
 
C FLUID TEMPERATURES LEAVING THE O-STATE, THIS INCLUDES THE EFFECT ON
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C CONDUCTION ERROR,) ON THE PLATE TEMPERATURE MEASUREMENT, AND ALSO THE
 
C TEMPERATURE AND AREA WEIGHT FACTORS
 
C
 

ECONVtI)=(1.0+30.0*MDOTII)*KCONV(T)I*ECONV(I)
 
IF(MDOT(II.LE.O.0) TOEFFCI)=TAVG(I)
 
IF(MDOT(I).GT.O.0) TOEFF(I)=TT(I)+ECONV(I)/CP*MDOT(I))
 

21 CONTINUE
 
C
 
C HTRANS- CONVECTIVE HEAT TRANSFER TO BOUNDARY LAYER
 
C
 

HTRANS(I)=ENNET(I)-ECONVII)
 
HTFRAC(I)=HTRANSII)/ENNET-CI)*100.
 
DEL=.5*1./3.


C
 

C OUTPUT PARAMETERS CALCULATED NOW
 
C
 

DELTAT(I)=TOEFF(I)-TGAS
 
DELH(I) =CP*DELTAT(I) -UG(1)*UG(1)/(64.4*778.)
 
HfI)=HTRANSI) /DELH(I)
 
ST(I)=HCI)IGS(I)
 
F(I)=MDOT(I)/GS(II)
 
SrCPtI)=STII)*(((TOEFF(I)+460.)/(TGAS460.))**0.41
 

C
 
C SEE RJM THESIS P.71 FOR EXPONENT REFERENCE
 
C
 

BB(I)=MDOT(II)/GS(I)*ST(I))
 
DEL=I.13.
 
ISO(I)=CP*(TOEFF(I)-TGAS) - UG(I)*UG(I)/(64.4*778.)
 
CALL UNCERT
 

22 CONTINUE
 
C
 

IF(ENBLFG.EQ.1) GO TO 241
 

C 

C ENTHALPY THICKNESS AND ENTHALPY THICKNESS REYNOLDS NUMBER: 
C THE ENERGY EQUATION IS INTEGRATED ACROSS EACH PLATED, I.E., EDGE-TO-
C EDGE. THE VALUES AT THE CENTER ARE THEN OBTAINED BY INTERDOLATION. 
C 
C THE.FOLLOWING IS A CALCULATION OF INITIAL ENTHALPY THICKNESS THAT 
C EXISTS UNDER CONSTANT SURFACE TEMPERATURE AT X=O .THE CONSTANTS WERE 
C DETERMINED EXPERIMENTALLY FROM PROFILES TAKEN 082968-1 .ENTHALPY 
C THICKNESS AT X=-3.5 EQUALS 0.039 INCHES. AT X=-3.5 THE TEMPERATURE 
C DIFFERENCE IS 
C 

TRATIO= 0.47*(TGAS-TAMB +2.)/(TGAS-TOEFF(1)) 
ENTHZR = 0.039*TRATIO/12. 
IF(TGAS.GT.TOEFF(1))TRATIO=-O.3*(TGAS-TAMB 2.)/(TGAS-TOEFF(1)-2.5) 
IF(TGAS.GT.TOEFF(1))ENTHZR= 0.D22*TRATIO/I2. 

C 
START=ENTHZR*UG(I)*ISO( 1 
TERM(I)=START 
XINT(i1)=O.O 
NNN=NPLATE + I 
TERMCP(1)=START 
XINTCP(1)=O.O 
00 23 I=2,NNN 
XINT(I)=XINT(I-1) + 1./3.*(ST(I-1)*UG(I-I)*ISO(I-) + 

I FUI-1)*UG(I-1)*ISCtI-i)) 
TERMCI)= START + XINT(I) 
ENTH(I-1)=.5*(TERM(I-1)+TERM(I))/(UGCI-1)*ISO{I-I)) 
REENTH(I-1)=UG(I-1)*ENTH(I-I)/VISCGS(I-1I 
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C
 
C INTEGRATION FOR CONSTANT PROPERTY CASE
 
C
 

XINTCP(I)=XINTCP(I-1) + 1./3.*(STCP(I-I)*UG(I-1)*ISO(I-I) + 
1 F(I-I)*UG(I-1)*ISO({I-I)
 
TERMCP(I)= START + XINTCP(I)
 
ENTHCP(I-1)=.5*(TERMCP(1-1)+TERMCP(I)/(UG(I-1)*ISO(I-1))
 
REENCP(I-1)=UG(I-1)*ENTHCP(I-1)/VISCGS(I-I)
 

23 CONTINUE
 
CALL UNCER
 

C
 
C
 
C OUTPUT
 
C
 
C
 

241 CONTINUE
 
24 FORMAT(5H DATE,18,5X17HRUN NO.,1 4 )
 
25FORMAT(62H AMB TEMP BASE TEMP GAS TEMP COVER TEMP BARO PRES R
 

IEL HUM/1XF6.2,5XF6.2,4XF6.2,6XF6.2,6XF5.2, 6XF4.2)
 
26 FORMATI/I15H UNITS:P-ROT= MM HG; WIND= WATTS; VEL= FT/SEC; MOOT
 
I=LB/(SEC-FT2); HT-X, ECONV, ENNET, QCOND, QRAD= BTU/(SECFT2) )
 

310 FORMAT(41H UNITS: DELTA2= IN. ;- HTFRAC=PERCENT
 
27 FORMATC/5H PL l1X,THTCL-AVG,5X,2HTU,6X,2HTD,7X,2HTT,5X,5HTOEFF,5X
 

1,5HDEL-T,5X?2HCM,7X,4HWIND,6X,5HVEL-X/)
 
63 FORMAT( / IOIH PL B MOOT V-ZERO HT-X ECO
 

INV ENNET QCOND QRAD HTFRAC /)
 
28 FORMAT(13,3XF6.2,4XF6.2,2XF6.2,3XF6.2,3XF6.2,3XF6.2,2XF6.2,4X,
 

1F6.2,5XF6.2)
 
62 FORMAT(13,3XF6.3,2XFB.4,1XFS.4,5(2XEIO.3),2XF6.1)
 
103 FORMAT(68H RUN DELP TG TAMB PBAR 

I RHUM 
104 FORMAT(2X,16,IH-,I1,4X,FS.4.1X,4FI0.2//) 
105 FORMAT77H I X(I) PSTAT(I) V(I) DUDX(I) 

I KI) ,/) 
106 FORMATC2X12,4X,F8.3,FIO.4,2XFB.2,7XF6.2 ,5XEI1.3,3XE11.3)
 
30 FORMAT(/5H PL ,IX,6HTOEFF,4X,2HTT,7X,2HST,4X,6HREENTH,3XI
 

26HDECT'A ,6XtF* @6X,5HVEL-X,7X,lHK, IOX5HST-CP,6X9HREENTH-CP/)
 
31 FORMAT(13,3X,F6.2,2X,F6.2,2X,F7.5,IXF6.0,4XF6.4,
 

12XF8.4,3XF6.2,2X,EIO.3,5XF7.5,6XF6.0)
 
131 FORMAT(13,F6.2,F6.2,F7.5,.F6.O,F6.4,
 

IFB.4,F6.2,EIO.3,F7.5,F6.0)
 
81 FORMAT(13,3XF6.22XF6.2,2X,F7.5,2X,F7.5,IX,
 
IF6.O,2X,FB.5,2XF5.1,2XE1O.3)
 

240 FORMAT(1HI,35X,22H UNCERTAINTY INTERVALS //40X,16H ABSOLUTE VALUES
 
I 1)
 

225 FORMAT(3H PL.91X,6HHTFRAC)
 
230 FORMAT(13,91XF4.1)
 
245 FORMAT(3H PL,22X2HST,4X5HREENTH DELTA2,7X'F'6X'VEL-X')
 
250 FORMAT(I3,I9XF7.5,2XF5.O,4XF6.4, 3X F8.4,2XF6.2)
 
255 FORMAT( 1 4OX1IHPERCENTAGES /)
 
260 FORMAT(13,21XF4.1,4XF4.1,5XF4.1, 6XF4.1,5XF4.1)
 

C
 
C
 

NPRINT=l
 
DO 33 J=I,NPRINT
 
WRITE(6,1777) TITLE
 
WRITE(6,24) DATE, RUN
 
WRITE(6,26)
 
WRITE(6,310)
 
WRITE(6,27,)
 
DO 29 I=,NPLATE
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WRITE(6,28) I, TO(I),TU(I),TDII),TT(I),TOEFF(t),DELTAT(I),CM(I),
 
IWINDfI),UG(I)
 

29 CONTINUE
 
WRITE (6,63)
 
DO 61 i=1,NPLATF
 
IFCENBLFG.EQ.lI BB(I=O.O
 
WRITEL6,62) IBB(I),MDOT(I),VZERO(I),HTRANS(I),ECONV(I),ENNET(I),
 
1 QCONDCIIQRAD(I),HTFRAC(I)
 

61 	CONTINUE
 
IF(ENBLFG.NE.1I GO TO 265
 
WRITE{6,240)
 
WRITE(6,225)
 
DO 750 I=I,NPLATE
 
WRITE(6,230) I,DHTF(I)
 

750 CONTINUE
 
GO TO 33
 

265 CONTINUE
 
WRITE (6,3)
 
WRITE(6,103)
 
WRITE(6,104) OATERUN, DELP ,TGASTAMB,PBARRHUM
 
WRITE(6,105)
 
00 107 I=1,MNPORT
 
WRITE(6,106) I,X(I),PSTAT(I),V(I),DUDX(I),KV(I)
 

107 	CONTINUE
 
WRITE(6,3)
 
WRITE(6,1777) TITLE
 
IF(IP.EQ.1) WRITE(7,1777) TITLE
 
WRITE(6,24) OATERUN
 
IF(IP.EQ.1) WRITE(7,24) DATERUN
 
WRITE(6,25) TAMBTBASE,TGAS,TCOV,PBAR,RHUM
 
IF(IP.EQ.1) WRITE(7,25) TAMBTBASETGAS,TCOVPBARRHUM
 
WRITE{6,30)
 
M=4
 
DO 32 I=tNPLATE
 
ENTH(I)=ENTH(I)*12.
 
WRITE(6,31) ITOEFF(I),TT(I),ST(T),REENTH(1),
 

I ENTH(I),F(I),UG(I),KS(I),STCP(I),REENCP(I)
 
IF(IP.EQ.1) WRITE(7,1311 ITOEFF(I),TT(I),ST(I),REENTH(I),
 

I ENTH()F(I),UG(I),KS(I),STCP(I),REENCP(I)
 
IF(I.EQ.M) WRITE(6,306)
 
IF(I.EQ.M) M=M+4
 

32 	CONTINUE
 
WRITEC6,2401
 
WRITEC6,245)
 
DO 755 I=1,NPLATE
 
WRITE(6,250) IDST(I),DRE(I),DOL2(I),DF(I),DUG(I)
 

755 CONTINUE
 
WRITE(6,255)
 
WRITE(6,245)
 
DO 760 I=1,NPLATE
 
WRITE(6,260) IDSTND(I),DREND(),DDL2ND(I),DFND(I),DUGND(U)
 

760 CONTINUE
 
WRITE(6,3)
 

33 	CONTINUE
 
C
 
C THE FOLLOWING SECTION PRINTS OUT INFORMATION ON THE
 
C UNCERTAINTY INTERVALS USED IN THE UNCERTAINTY CALCULATIONS.
 
C 
C 
C 	 HEADING AND EXPLANATION
 

WRITE{6,900)
 

173
 

http:IF(ENBLFG.NE.1I
http:IFCENBLFG.EQ.lI


900 FORMAT(//,2OXSfPRIME UNCERTAINTY INTERVALS USED'
 
1.3XWAESTIMATED AT 20:1 ODDS)'//)
 
WRITE(6,901)
 

901 FORMAT(2XIVARIABLEi,5X,wVALUE ASSIGNEDt10X,IVARIABLE MEANING'
 
1,44X, UNITS//)
 
WRITE(6,902) DDELP
 

902 FORMAT(2X'DDELP*BX,F6.4,18XIMANOMETER READINGl,43XgIN.-H2O!/)
 
WRITE(6,9031 DXX
 

903 FORMAT(2XODXX,OX,F5.3,19X,ISTATIC TAP LOCATIONS'%40X,'INCHES'/
 
WRITE(6,905) DCMP
 

905 FORMAT(2XvDCMP %,XF6.3,19XI'ROTOMETER READING%,43X,1'%/)
 
WRITE(6,909) DTEMPA
 

909 FORMAT(2X,'DTEMPA',7XF5.3,19XRGAS TEMPERATURE',45XIDEG. F.1/)
 
WRITE(6,1909) OTEMPP
 

1909 FORtAT(2X,'DTEMPP',IXF5.3,IqX,'GAS TEMPERATURE',45X,'DEG. F.'/)
 
WRITE(6.910) DPAMB
 

910 FORMAT(2XIDPAMB ,8X,F5.2,19XtAMBIENT PRESSURE',44X,'LBF/FT2'/)
 
WRITE(6,911) DMUP
 

911 FORMAT(2X'DMUP',7XF5.1,21X,'ABSOLUTE VISCOSITY',42X,8%'/3
 
DP97LO=DP97LO*100.
 
DP9THI=DP97HI*100.
 
DP5LO=DP5LO*100.
 
DP5HI=DP5HI*100.
 
WRITE(6,912) DP97LO
 

912 FORMAT(2XODP97LO',TXF6.4,18X,'TRANSDUCER CALIBRATION-PM97,,
 
1'FOR P<.05 IN.-H2O',I5X,'stl)
 
WRITE(6,913) DPS7HI
 

913 FORMAT(2XrDP97HII,7XF6.4,18XOTRANSDUCER CALIBRATION-PM9T,',
 
IfFOR P>.05 IN.-H2Z',5X't'/)
 
WRITE(6,914) DP5LO
 

914 FORMAT(2XO*DP5LO',BX,F6.4,18XI'TRANSDUCER CALIBRATION-PM5,,%
 
16F0R P<1.0 IN.-HZO%,16X,'V1/)
 
WRITE(6,920)DP5H[
 

920 FORMAT(2X,'DP5HPI,8XF6.4,I8X,'TRANSDUCER CALIBRATION-PM5,',
 
P1FOR P>1.0 IN.-H20',16X,'t*/)
 
DPSTLO=DP9TLO/100.
 
DP97HI=DP9THI/100.
 
DP5LO=DP5LO/100.
 
0P5HI=DP5HI/100.
 
WRITE(6,916) D97MIN
 

916 FORMAT(2X,'D97MIN',7XF6.4,18XIMINIMUM PM97 UNCER. DUE TO ZERO'. 
1' SHIFT',23X,'IN.-H2O0/) 
WRITE(6,917)D5MIN 

917 FORMAT(2X,'D5MIN',8X.F6.4,18X,'MINIMUM PM5 UNCER. DUE TO ZERO , 
I' SHIFT',23X,1IN.-H20'/) 
WRITE(6,9183 D97MAX 

918 FORMAT(2XOD9IMAX',7XF6.4,18X,'MAXIMUM PM97 UNCER.', 
P4 DUE TO CALIBRATION CHECKt,16XIN.-H20'/) 
WRITE(6,919) D5MAX 

919 FORMAT(2X,'D5MAX'%BXF6.4,18X.'MAXIMUM PM5 UNCER.', 
P0 DUE TO CALIBRATION CHECKtT17X,'IN.-H20'f) 
WRITE(6,904) DQRADP 

904 FORMAT(2X,'DQRADP',6XF5.1,2OX,'RADIATION ENERGY TRANSFER#,35X, 
I *%'I) 
WRITE(6,9OT) DWIND 

907 FORMAT(2X.'DWIND',BXF4.2,2OX,'INDICATED WATTMETER READING1,33X, 
I 'WATTSI/) 
WRITE(6,9081 DENZRP 

908 FORMAT{2X, DENZRP%,6XF5.1 20X,"STARTING ENTHALPY THICKNESS ESTIMA 
ITEf, 24X,'Z'/) 
WRITE(6,'925) A97,B97,C97,D97,E97,A5,B5,.C5,05,E5 
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C 

C 

C
C
C 

C
C 

925 FORMAT(//125X'TRANSDUCER CONSTANTS4//17X'A'IIX'BIIX'CIX'O'l1X,
 
IVE/3X'PM97'3X,5(2XF07/3X'PMS'4X,5(2XFIO.7))
 
WRITE(6,3)
 

500 	 CONTINUE
 
STOP
 
END
 

FUNCTION TCALIB(TMV)
 
C
 
C THIS CONVERSION USES A CURVE FIT OF THE MV-F TABLES AND
 
C A CORRECTION DUE TO THE CALIBRATION BY WHITTEN. SEE FILES.
 
C
 

TMVV=-2220.703 + 781.25*SQRT(7.950782+O.256*TMV)

TCALIB=TMVV + 49.97 - 12.6E-04*TMVV - 32.OE-06*TMVV*TMVV 

RETURN 
END 

C
C
C
C 

FUNCTION PCALI(PMV,A97,B97,CS7,D97,E97)
 
CALIBRATION FOR PH-94
 
IF(PMV.LE.4.64) PCALI=A97*PMV
 
IF(PMV.GT.4.64.AND.PMV.LE.14.28) PCAL1=897 + C97*PMV
 
IF(PMV.GT.14.28) PCALI=D97 + E97*PMV
 
RETURN
 
END
 

C
C
C
C 

FUNCTION PCAL2(PMV,A5,B5,C5,D5,ES)
 
CALIBRATION FOR PM-5
 
IF(PMV.LT.I.211) PCAL2=A5*PMV
 
IF(PMV.GT.I.211.AND.PMV.LE.7.626) PCAL2= 85 + CS*PMV
 
IF(PMV.GT.7.626) PCAL2= D5 + E5*PMV
 
RETURN
 
END
 

C
C
C
C 

BLOCK DATA
 
C
 

REAL KCOND(24),KCONV(24),KFLOWIZA),KFUDGE(24),KPROP,KS(24),
 
I KV(48),KW,MAMOOT(24),MVNPWRISO24)
 

C
 
INTEGER CMFLAG,DATEENBLFG,RUN,TITLE(18)
 

C
 
COMMON /A/ AR,BETA,BlTI,B3T3,CMFLAG,COEFICOEF23,CP,DATE,DEN,
 
1 ENBLFG,E1,E2,EMISSEPSERIER2,ER3,FI2,FI3,F2Z, I,INSTOTJ,KCOND,
 
2 KCONVPKFLOW,KFUDGE,KPRP,KSKV,KN,KLM,MA,MDOT,MV,NPWR,NPLATE,
 
3 NSTATP,PBAR,PROTA, DELP ,PVAP,QI,Q2,Q3,QHEAT,
 
4 QHEATA,QHTA,QLOSS,RA,RCF,REPS,RHOA,RHOH,RHOL,RHOV,RHOZRO,RUN,
 
5 RHIRH2,RH3,RHUMRM,TTAMB,TBASE,TCOV,TGASTROT,
 
6 TROTA,TIT2,T3,VAPH,VAPL,VEPSWCORR,WSCALE,WSTDI.
 
7 ISO,REENCP(24),ENTHCP(24)ENTHZR,
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'8 AREA(24),BB(24),CFHT(24),CM(24),CONLAT24),DELH(25),
 
9 DELTAT(24),DUDX(48),DUDXS(24),ECONV(24),ED(24),ENDEN(24),
 
I ENNET(24),EO(241,ENTH(24),ET(24),EU(24),F(2Z4,GS(24),H(24),
 
2 HTFRAC(24),HTRANS(24),INSTK(48),MASSK(24],PK(48),
 
A PROT(24),PROTAB(24),PSAT(9),PSTAT(48),QCOND(24),
 
3 QRAD(24),REENTH(24),REENW(25),RHOG(48),
 
4 RHOSAT(9),ST(24),STCP(24),TAVG(24),TEMP(9.),TIME60(48),
 
5 TO(24hTOEFF{24),TD(24),TITLE,TT24),TU(24),V(48),
 
6 VISCG(48),VISCGS(24),UG(24),VZERO(24),WACT(24),WIND('24),
 
7 WNET(243,WSTD(24),X(48),.XS(24),XSTCP(24),XMDOT(24)
 
COMMON /B/ DCMP,DDELP,DPAMB,DP5HI,DP5LO,DP97HI,DP97LODQRADP,
 
1 DTEMPA,DTEMPP,DTBASE,DTTDTROT,DTGAS,DWIND,DXX,F2,F3,F4,
 
2 F6,F7,FB,DEL,DDUDXS(24),DISO(24),DENZRP,
 
3 DB(24),DBND24),DCM(24),DDL2(24),DDL2ND(24),DF(241,
 
4 DFND(24),DHTFI24),DMDOT(24),DMDOTN(241,DPSTAT(48),
 
5 DQRAD(24),DRE(24),DREND(24),DRHOG(24),DST(24),
 
6 DSTND(24},DUG(24),DUGND(24),DV(48),DDUDX(48),
 
7 CLRI(24),CLR2(24),CLR3(24),CLR4(24),CSRI{24), 
8 CSR2(24),CSR3(24),DVISCG(24),DEL2,DMUP,MNPLAT, 
9 / D97MIN,D97MAX,D5MIN,D5MAX,PTOTAL,NPORT,MNPORT 

C
 
C THE FOLLUWING ARE FIXED DATA FILLS:
 
C
 

DATA CONLAT/
 
40.0007,0.0003,0.0,0.001,0.0018,0.0018,0.0004,0.0021,0.0015,0.0014,
 
50.0016,0.0006,0.0006,0.0016,0.001,0.0008,0o.001,'0.00l°0.0,0.0007,
 
60.0011,0.0010,00,0.0/
 
DATA KCONV/
 

30.020,0.020,
 
40.025,0.020,0.018,0.035,0.040,0.026,0.024,0.035,0.032,0.039,0.032,
 
50.024,0.016,0.014,0.018,0.020,0.019,0.015,0.017,0.013,0.030,0.015/
 
DATA KCOND/
 

30.00688,0.00375,
 
40.00337,0.00328,0.00194,0.00194,0.00386,0.00202,0.00235,0.00264,
 
50.00267,0.00243,0.00298,0.00233,0.00206,0.00231,0.00168,0.00282,
 
60.00405,0.00298,0.00265,0.00168,0.00309,0.00338/
 
DATA KFUDGE/
 

4-0.010,0.024,0.0,-0.0025,0.0080,0.004,0.004,-0.008,0.008,0.0,0.008
 
5,0.008,0.0,0.012,0.006,0.016,0.010,0.016,0.016,0.005,0.016,0.010,
 
60.010,0.008/
 
DATA KFLOW/
 

C 31.0204,1.0101,
 
C 41.0309,1.0417,1.0309,l.0309,1.0183,1.0493,1.0?25, 1.0449,1.0331,
 
C 51.0428,1.0504,1.0373,1.0526,1.0152,1.0341,1.0331,1.0081,1.0471,
 
C 61.03'3,1.0428,1.0018,1.0331/
 

31.033,1.045,1.026,1.041,1.047,1.032,1.03,1.062,1.06,1.062,
 
41.05,1.058,1.059,1.07,1.062,1.035,1.057,1.052,1.04,1.061,
 
5 l.051,1.05,1.04,1.043/
 
DATA X/
 

41.969,3.953,5.953,7.961,9.969,11.953,13.937,
 
515.945,17.953,19.922,21.938,23.954,25.962,27.962,29.978,31.939,
 
633.955,35.955,37.971,39.987,41.963,43.963,45.963,47.979,49.979,
 
751.979,53.995,55.971,57.971,59.955,61.979,63.971,65.979,67.963,
 
869.971,71 979,73.963,75.939,77.947,79.939,81.931,83.962,85.931,
 
987.915,89.939,91.931,93.947,96.0f
 
DATA TEMP/
 

140.0,50.0,60.0,70.0,80.0,90.0,100.0,110.0,120.0/
 
DATA PSAT/
 

117.53,25.65,36.90,52.20,73.00,100.40,136.50,183.60
 
2,243.70/
 
DATA RHOSAT/
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10.000409,0.000587,0.000830,0.001153,
 
20.001580,0.002139,0.002853,0.003770,0.004920/
 
DATA F2,F3,F4,F6,F7,F8/O.752,-O.5,O.12567,0.13f9l,-0.067,O.14960/
 
DATA CLRI/
 
13.8823,4.3784,4.9672,5.3868,6.0977,7.2071,6.7488,1.224E01,4.9783,
 
26.4093,2.1603,2.6746,3.5441,4.6305,4.5954,5.4947,4.1666,6.2882,
 
32.6813,5.3851,2.391,1.0441,1.4687,3.3328/
 
DATA CLR2/
 

1-7.4872E-OI,-4.570IE-O1,-8.613E-O1,-1.6336,-1.6978,-1.9426,-1.4491
 
2,-2.4532,-6.7284E-O1,-1.2452,-1.9676E-O1,-4.5878E-Ol,-8.924E-01,
 
3-1.44,-9.2705E-01,-9.9417E-01,-6.879E-O1,1.5029,-3.6441E-1,
 
4-8.4925E-01,-1.7758E-01,-1.3509E-O1,-1.4061E-02,-8.1687E-O1/
 
DATA CLR3/
 
15.6479E-02,7.3789E-03,3.7527E-02,1.5384E-01,1.5879E-OI,1.8029E-0l
 
2,1.1898E-01,2.0284E-01,2.9397E-02,1.0067E-01,-6.4155E 03,3.7478E-0
 
32,9.0667E-O2,1.4625E-Ol,6.6932E-O2,6.2717E-02,2.7366E-02,1.3727E
401,1.1157E-02,4.1191E-02,-1.1368E-02,-7.5722E-03,-.1172E-02,
 
57.9734E-02/
 
DATA CLR4/
 
1-1.3375E-03,7.5566E-04,6.5083E-04,-4.3438E-03,-4.6469E-03,-5.3748E
 
2-03,-3.3093E-03,-5.5582E-03,-2.5595E-05,-2.7E-03,1.1122E-03,-8.737
 
35E-04,-2.741E-03,-4.4226E-03,-1.1244E-03,-8.9969E-04,1.8686E-04,
 
4-3.9184E-O3,3.5851E-04,-1.7090E-04,1.1929E-03,7.9497E-04,5.1672E-0
 
54,-2.2502E-03/
 
DATA CSRI/
 
11.0849,.8777,1.0304,.9367,.7106,.9667,.9716,.9882,.8258,1.0704,
 
21.0269,1.0342,.9988,1.1026,1.1040,1.0583,.9891,1.0849,1.1065,
 
31.1186,1.0742,1.0511,1.0978,1.1414/
 
'DATA CSR2I
 
1-1.0745,-.9978,-1.5909,-2.457,-1.0452,-1.4233,-2.5170,-1.2082,
 
2-1.1742,-2.2648,-1.7785,-.4761,-2.101,-.7692,-.1792,-.165,
 
3-.1087,-.766,.332,-2.1763,-.003711,-.6796,-1.8706,.007071/
 
,DATA CSR3/
 
1.5258,1.9055,.5729, 1.9745,4.1328,1.4707,1.2515,1.4248,2.553,.8969,.
 
21.536,1.329,1.6028,.5108,.3398,1.0971,1.6262,.701,.5076,.3316,
 
30.8914,.7397,.5148,.07979/
 

C 
END 

C 
C 

SUBROUTINE UNCERT
 
C
 
C UNCERTAINTY ANALYSIS FOR STANTON PROGRAM. FUNCTIONAL RELATIONSHIPS
 
C ARE DIFFERENT FOR THE VARIOUS OPERATING MODES.
 
C
 
C
 
C THE FOLLOWING PROCEDURE CALCULATES UNCERTAINTY INTERVALS BY THE
 
C PROCEDURE OF KLINE AND MCLINTOCK. THE UNCERTAINTY INTERVALS FOR
 
C THE MEASURED (INDEPENDENT) VARIABLES ARE:
 
C DCMP : % OF ROTOMETER READING 
C ODELP : MANOMETER (INCHES-H2O) 
C DPAMB : AMBIENT PRESSURE (PSF) 
C DP5LO :TRANSDUCER CALIBRATION-PM5 FOR P<1.O "H20 1%) 
C DP5HI :TRANSDUCER CALIBRATION-PM5 FOR P>1.O "H20 () 
C DP97LO :TRANSDUCER CALIBRATION-PM97 FOR P<0.05 "H20 (Z) 
C DP9THI :TRANSDUCER CALIBRATION-PM97 FOR P>O.05 "H20 {U 
C MINIMUM AND MAXIMUM LIMITS ARE ALSO SET ON THE 
C TRANSDUCER UNCERTAINTIES 
C DQRADP : % OF RADIATION ENERGY TRANSFER 
C DTEMPA : TEMPERATURE (F) - ACTIVE'RUNS 
C DTEMPP : TEMPERATURE (F) - PASSIVE RUNS 
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C DWIND : INDICATED WATTMETER READING (WATTS) 
C DXX : STATIC TAP LOCATIONS (INCHES) 
C DENZRP : ENTHALPY THICKNESS AT START OF PLATES(X=O) () 
C DMUP : ABSOLUTE VISCOSITY EQUATION (%) 
C 
c DXX AND DMUP ARE SET TO ZERO FOR NORMAL CALCULATIONS DESIGNED TO
 
C HIGHLIGHT EXPERIMENTAL PROBLEMS. TO RELATE TO THE 'REST OF THE
 

,
C WORLD* THESE INTERVALS ARE GIVEN FINITE VALUES. -

C 
REAL KCOND(24),KCONV(241,KFLOW(24),KFUDGE(24),KPROP,KS(24),
 

I KV(48).KWMA,MDOT(24),MV,NPWR,ISO(24)
 
REAL MIM2,M3,M4.N,NN
 

C
 
INTEGER CMFLAGDATE,ENBLFGtRUNTITLE(18)
 

C
 
COMMON /A/ ARBETA,BITI,83T3,CMFLAGCOEFICOEF23,CP,DATE,DEN,
 
I ENBLFG,EIE2.EMISS,EPS,ERI,ER2,ER3,FI2,FI3,F22, I,INSTOT,J,KCOND,
 
2 KCONV,KFLOWKFUDGE,KPROPKS,KVKW,KLMMAMDOTMV,NPWRNPLATE,
 
3 NSTAT,P,PBAR,PROTA, DELP ,PVAPQIQ2,Q3,QHEAT, 
4 QHEATAQHTA,QLOSS,RARCF,REPS,RHOA,RHOH,RHOL,RHOV,RHO RORUN, 
5 RHIRH2,RH3,RHUMRM,T,TAMBTBASE,TCOVTGAS,TROT 
6 TROTAT1,T2,T3,VAPH,VAPL,VEPS,WCORRWSCALE,WSTDI, 

- 7 ISOREENCP(24),iENTHCP(24),ENTHZR, 
8 AREA(24),BB(24),CFHT(24),CM(24),CONLAT(24),DELH(25), 
9 DELTAT(24).DUDX(48),DUDXS(24),ECONV(24),ED(Z4),ENDEN(24),
 
1 ENNET(24)tEO(24),ENTH(24),ET(24),EU(24),F(24),GS(24V.H(24).
 
2 HTFRAC(24),HTRANS(24)hINSTK(48),MASSK(24),PK(48),
 
A PROT('24),PROTAB(24),PSAT(9),PSTAT(48)QCOND(24),
 
3 QRAD(24),REENTH(24),REENW(25),RHOG(481,
 
4 RHOSAT(g),ST(24) 4 STCP(24),TAVG(24),TEMP(9),TIME60{48),
 
5 TO(24),TOEFF(24),TD(24),TITLE,TT(2Ab)TU(24),V(48),
 
6 VISCG(48),VISCGS(24),UG(24),VZERO(24),WACT(24),WIND(24),
 
7 WNET(24),WSTD(24),X(48),XS(24),XSTCP(24),XMDOT(24)
 
COMMON /B/ OCMP,DDELP,DPAMBDP5HI,DP5LO,DP97HIDP9YLO,DQRADP,
 
i DTEMPA,DTEMPP,DTBASE,DTT,OTROTtDTGASDWINDDXXF2,F3,F4,
 
2 F6,FT,F8,DEL,DDUDXS(24),DISO(24))DENZRP,
 
3 DB(24),OBND(24),DCM(24),DDL2(24),DDL2ND(24),DF(24),
 
4 DFND(24),DHTF(24),DMDOT(24),DMDOTN(24),DPSTAT(48),
 
5 DQRAD(24),DRE(24),DREND(24),DRHOG(24),DST(24),
 
6 DSTND(24)DUG(24),DUGND(24),DV(48),DDUDX(48),
 
7 CLRI(24),CLR2(24),CLR3(24),CLR4(24),CSRI(24),
 
8 CSR2(24),CSR3(24),DVISCG(24),DEL2,DMUPMNPLAT,
 
9 D97MIND97MAXD5MIN,D5MAXPTOTAL,NPORT,MNPORT
 

C
 
C CALCULATED UNCERTAINTY INTERVALS
 
C
 

DCM(I)=DCMP*CM(1)/100.
 
DQRAD(I)=DQRADP*QRAD(1)/IOO.
 
DPBAR=DPAMB*29.96/2116.
 

C
 
C VELOCITY HEAD (DELP) UNCERTAINTY INTERVAL
 
C
 

DPRES=DDELP
 
IF(INSTOT.NE.1) GO TO 5062
 
IF( DELP .LT.O.05) DPRES= DELP *DP97LO
 
IF( DELP .GE.O.05) DPRES= DELP *DP97HI
 

5062 	IF(INSTOT.NE.2) GO TO 5061
 
IFLDPRES.LT.D97MIN) DPRES=D97MIN
 
IF(DPRES.GT.D97MAX) DPRES=D97MAX
 
IF( DELP .LT.I.O) DPRES= DELP *DP5LO
 
IF( DELP *GE.1.O) DPRES= DELP *DP5HI
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IF(DPRES.LT.D5MIN) DPRES=D5MIN
 
IF(DPRES.GT.OSMAX) DPRES=C5MAX
 

C 
5061 	DO 305 J=I.NPORT 

C 
C STATIC PRESSURE UNCERTAINTY INTERVALS
 
C
 

DPSTAT(J)=DDELP
 
IF(INSTK(J)'.NE.1) GO TO 5060
 
IF(PSTAT(J).LT.O.05) DPSTAT(J)=PSTAT(J)*DPG7LO
 
EF(PSTAT(J).GE.O.05) DPSTAT(J)=PSTAT(J)*DPSTHI
 
IF(OPSTATCJ).LT.DSTMIN) DPSTAT(J)=D97MIN
 
IF(OPSTAT(J).GT.DSTMAX) DPSTAT(J)=D97MAX


5060 	IF(INSTK(J).NE.2) GO TO 305
 
IF(PSTAT(J).LT.I.0) DPSTAT4J)=PSTAT(J)*DP5LO
 
IF(PSTAT(JI.GE.1.O) DPSTAT(J)=PSTATJ)*DP5HI
 
IF(DPSTAT(J).LT.D5MIN) DPSTATCJ)=05MIN

IF(DPSTAT(J).GT.D5MAX) DPSTATCJ)=D5MAX
 

305 CONTINUE
 
C
 
C TOTAL PRESSURE UNCERTAINTY INTERVAL
 
C 

DPTOT=SQRT(DPRES#*2 + DPSTAT(2)**2) 
C
 
C TEMPERATURE UNCERTAINTIES - ACTIVE OR PASSIVE RUN
 
C
 

DTEMP=DTEMPA
 
OTBASE=DTEMPA
 
DTT=DTEMPA
 
DTROT=OTEMPA
 
DTGAS=DTEMPA
 
IFCWIND(I).NE.O.0) 

DTEMP=DTEMPP
 
DTBASE=DTEMPP
 
DTT=DTEMPP
 
DTROT=DTEMPP
 
DTGAS=DTEMPP
 

720 CONTINUE
 
C
 

GO TU 720
 

C GENERALLY USED CONSTANTS
 
C
 

XMDOT(I)=ABS(MDOT(I}) 
AI=KCOND(I)130.

IF(XMDOT(ILE.O.0044) AI=AI + CONLAT(I)*(l.-XMDOTI)/0.0044)
 
IF(XMOOT(I).LE.O.00021 AI=AI + 0.015*12./3600.
 
A2=0.O
 
IF(XMDOT(I).LE.O.00441 A2=-CONLAT(I)lO.0044
 
C1=1.+30.*XMDOT(I)*KCONV(Il
 
C2=1/(64.4*778.)
 
C3=2116/29.96
 
C5=BETA*KW/(1055.*.5*1.023)
 
DEL2=DEL/2.
 

C
 
C XMDOT(1) UNCERTAINTY
 
C
 

IF(CM(l).EQ.O.0) GO TO 150
 
IF(PROT(I).LE.-O.1) Ml=KFLOW(I)*2.01258
 
IF(PROT(I).GT.-O.1) M1=(KFLOW(I)+KFUDGE(I))*2.01258
 
M2=SQRT((PBAR+PROT(t)/25.4)*2116./29.96/(RM*TROTA*O.075))
 
M3=WSTD(I)
 
IF(CMFLAG.EQ.I) M4=.075/60.*(F6+F7*F8*COS(FB*(CM(IJ-2.)))
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IFCCMFIAG.EQ.2J M4=.075/60.*(F2+F3*F4*COS(F4*CM(I))i
 
IF(CMFLAG.EQ.3.AND.MASSK(I).EQ.1I M4=.075/60.*(F6+F7*F8*
 

I COS(FB*(CM(I)-2.)|)
 
IFCCMFLAG.EQ.3.AND.MASSK(I).EQ.2) M4=.075/60.*(F +F3*F4*
 
1 COS(F4*CM(I)))
 
XItDCM(I)*M1*M2*M4
 
C6 M1*M3*C3/(2*M2*O.075*RM*TROTA)
 
X2=DPBAR*C6
 
X3=-DTROT*C6*(PBAR+PROT '1/25.4)/TROTA
 

C
 
DMDOT(I)=SQRTIXI**2+X2**2+X3**2)
 
DMDOTN(I)=DMDOT(Ih)/XMDOT(I)*100.
 

C
 
150 IF (CM(I).EQ.0.0I DMDOT(i)=O.O
 

IF (CM(I).EQ.0.o) DMDCTN(I)=O.O
 
C
 

II=2*I-l 
C 
C 
C DTAVG UNCERTAINTY
 
C 

DTAVG=SQRT(11.*DTEMP**2)/5.
 
C
 

IF(ENBLFG.EQ.1) GO TO 105
 
IF(I.NE.1) GO'TO 215
 

C
 
C DUG AND DUDX UNCERTAINTY
 
C
 

DO 210 M=1,NPORT
 
C
 

C4 SQRT(64.4*5.2*RM)
 
N=C4*SQRTC(PTOTAL-PSTAT('M))*(TGAS+460.I)
 
D=SQRT(C3*PBAR+5.2*PSTAT{M))
 
UI=DPTOT*1/D*C4/2.*C4/N*(TGAS 460.)
 
U2=DTGAS*1/D*C4/2.*C4/N*(PTOTAL-PSTAT(M))
 
U3 -DPBAR*N/D**3*C3/2.
 
U4=-DPSTAT(M)*(I/D*C4/2.*C4/N*CTGASe460.)+N/D**3*5.2/2.)
 

C
 
DV(MI=SQRTCUI**2+U2**2+U3**2+U4**2)
 

210 CONTINUE
 
C
 

00 211 M=2,MNPORT
 
N=12.*(V(M+ I-V(M-Il)
 
D=X(M+I)-X(M-I)
 
DXI=DV(M+I)*12./D
 
OX2=-'DV-M-1)*12./D
 
DX3=DXX*12.*N/D**2
 

C
 
DDUDX(M)=SQRT(DXI**2DX2**2+2.cDX3**2)
 

C
 
211 CONTINUE
 

C
 
N=12.*(V(2)-V(1))
 
D=X(2)-X(1)
 
DXII=DV(2)*12./D
 
DX12=-DV(1)*12./D
 
DX13=DXX*12.*N/D**2
 

C
 
DDUDXSI1)=SQRT(DX11**2+DXI2**2+2.*DX13**2)
 

C
 
DUG{I)=DV(I)
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DUGND()l)=DUG(1)IUGCI)*100.
 
C
 

DO 212 M=2,NPLATE
 
.MM=2*M-1
 
DDUDXS(M)=DDUDXCMM)
 
DUG(M)=DV(MM)
 
DUGND(MJ=DUG(M)/UGCM),100.
 

212 CONTINUE
 
215 CONTINUE
 

C
 
C
 
C STANTON.OR HTFRAC UNCERTAINTY - FOLLOWING MODES ARE CALCULATED AT GIVE
 
C STATEMENT NUMBER: BLOW-tOO, SUCK-200, IMPERMEABLE-300, SUCK ENBAL-400,
 
C BLOW ENBAL-500
 
C
 

105 IFCCM(I).EQ.0.0) GO TO 300
 
IF(PROT(I).LE.-O.1) GO TO 200
 

C
 
100 IF(ENBLFG.EQ.1) GO TO 500
 

C
 
C STANTON NUMBER - BLOWING
 
C
 

N=ENDENIII-QRAD{)-A1*CTAVGCI)-TBASE)-XMDOTCI3*(TAVGCT)-TT(I))*
 
I CP*CI
 
D=CP*(TT(I)+TAVG(I)-TTII))*CI-TGAS)-C2*UG(I)**2)*
 

1 UGCI)*RHOG(II)
 
B5=DWIND*CS/U
 
82=-DQRAD(I)/D
 
B3=DTAVG*(-1/D*(AIfXMDOT(I)*CP*CI)+N/Dt*2*(UG(I)*RHOGIT)*CP*CI))
 
B4=DTBASE*AI/D
 
B5=DTT*(1/*XMDOTI)*CP*C1+N/D**2*CP*UG(I)*RHOG(IH)*30.*XMDOT(I)*
 
I KCONV(f)I 
B6=DTGAS*(N/D**2*(CP*UG(I)*RHOG(II)'+ D/(TGAS+460.))) 
B7=DMDOT(I)*(I/D*((TBASE-TAVG(1))*A2-ITAVG(I)-TT(I))*CP*(1.+ 

1 60.*XMDOT(I)*KCCNV(1)3I-N/D**2*CP*UG(I)*RHOG(I1)*30.*KCONV(I)*
 
2 tTAVG(I)-TT(T))
 
BB=DUG(CI *N/D**2*(2.*C2*UGCI)3*2*RHOG(II)-D/UGI)))
 
B9=DPBAR*(-N/D**2*C3*D/(RHOG(II)*RM*(TGAS+460.)))
 

C
 
DSTII)=SQRT(BI**2 B2**2+B3**2 B4**2+5**2+86**2+B7**2B8**2+
 

I B9**2)
 
DSTND(I)=DST(I)/ST(I)*100.
 

C
 
C UNCERTAINTY IN ISO
 
C
 

XII=DTT*CP*(I.-Cl)
 
XI2DTAVG*CP*C1
 
XI3=-DTGAS*CP
 
XI4=-DUG(I)*2.*C2*UG(1)
 
X15=DMOOT(I)*CP*(TAVG(I)-TTII))*30.*KCONV(I)
 

DISOCI)=SQRT(XIl**2+XI**242X13**2+XI4**2+XI5**2)
 
C
 

GO TO 600
 
C
 
C STANTON NUMBER - IMPERMEABLE
 
C
 

300 N=ENDEN(I)-QRAD(I)-Al*(TAVGCI)-TBASE)
 
D=(CP*(TAVG(I)-TGAS)-C2*UG(IJ*UG(I))*UG(I)*RHOG(II)
 
B1=DWIND*C5/D
 
B2=-DQRAD(I)/D
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B3=-DTAVG*(Al/D+N/D**2*CP*UG(I)*RHOG(II))
 
54=DTBASE*Al/D
 
B6=DTGAS*(N/D**2*(CP*UG(I)*RHOG(II) + D/(TGAS+460.)))
 
BB=DUG(I)*(N/D**2*(2.*C2*UG(I)**2*RHOG(II)-DIUG()))
 
B9=DPBAR*(-N/D**2*C3*D/(RHOG(II)*RM*(TGAS+460.))
 

C
 
DST(I)=SQRT(B1**2+B2**2+83**2+B4**2t56**2+B8**2+B9**2)
 
DSTND(I)=DST(I)/ST(I)*I00.
 

C
 
C UNCERTAINTY IN ISO
 
C
 

XI1=DTAVG*CP
 
XI2=-DTGAS*CP
 
XI3=-DUG(I)*2.*C2*UG(I)
 

DISO(I)=SQRT(XII**2+XI2**2+XI3**2)
 
C
 

GO TO 600
 
C
 
C STANTON NUMBER - SUCKING
 
C
 

200 	IF(ENBLFG.EQ.1 GO TO 400
 
N=ENDEN(1)-QRAD(I)-A1*(TAVG(I)-TBASE)-0.0264*XMDOT(I)*WIND(I)*CP
 
D=UG(I1)*RHOG II)*(CP*(TAVG(I)-O,0044*WINDI)-TGAS)-C2*UG(I)*UG(l))
 
BI=DWIND*(I/D*(C5-.O264*XMDOT(I)*CP)+N/D**2*CP*UGI)*RHOG(II)
 
1 *0.0044)
 
52=-DQRAD(I)ID
 
B3=-DTAVG*(l/D*AI N/0**2*CP*UG(I)*RHOG(II))
 
B4=DTBASE*AI/D
 
B6=DTGAS*(N/D**2*(CP*UG{CI|*RHOG(II) + D/(TGAS+460.)))
 
B7=QMDOT(II*(I/D*{(TBASE-TAVG(I))*A2-.0264*WIND(I)*CP)
 
B8=DUGCI)*(N/D**2*(2.*C2*UG(I)t*2*RHOGII)-D/UG()))
 
B9=DPBAR*(-N/D**2*C3*D/(RHOG(II)*RM*(TGAS 460.)))
 
DST(I)=SQRTCBl**2+B2**2+B3**2+B4**2 B6**2+B7**2+B8**2+B9**2I
 
DSTND(I)=DST(I)IST(I)*1O0.
 

C
 
C UNCERTAINTY IN ISO
 
C
 

XII=DTAVG*CP
 
X12=-DTGAS*CP
 
X13=-DUG(I)*2.*C2*UG(1)
 
XI4=-DWIND*CP*.0044
 

DISO(I)=SQRT(XII**2+XI2**2+XI3**2+XI4**2)
 
C 

GO TO 600
 
C 
C HTFRAC - SUCKING ENERGY BALANCE
 
C
 

400 	N=XMDOT(I)*CP*(TAVG(I)+.022*WIND(I)-TGAS)*fO0.
 
D=ENDEN(I)-QRAD(I)-AI*(TAVG(1)-TBASE) '
 
B1=DWIND*({I-N/D**2)*C5+.022*XMDOT(II*CP*0./D)
 
52=DQRAD(I)*NID**2
 
B3=DTAVG*(AI*N/D**2+XMDOT(.I)*CP*100./D)
 
B4=DTBASE*(-AI*N/D**2I
 
B7=DMDOT(I)*(N/(D*XMDOT(I))N/D**2*(TAVG(I)-TBASE)*A2)
 
B6 =-DTGAS*I./D*XMDOT(I)*CP*100.
 

C
 
DHTF(I)=SQRT(B1**2+B2**2tB3**2+B4**2+B6**2+B7**2)
 
GO TO 800
 

C
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C HTFRAC - BLOWING ENERGY BALANCE
 
C
 

500 	NN=XMDOT(I)*CP*CI*100.
 
N NN*(TT(I)-TAVG(I|)
 
D=ENDEN(I)-QRAD(I)-AI*CTAVGI)-TBASE)
 
BI=DWIND*(-N/D**2)C5
 
B2=DQRAD(I)*N/D*2
 
B3=DTAVG*( /D*(-NN)+N/D**2*Al)
 
B4=DTBASE*(-AI*N/D**2)
 
BO=DMDOT(I)*(I/D*(N/XMDOT(I)+XMDOT(I)*(TT(I)-TAVG(l))*CP30.
 
1 KCONV(If)+N/D**2*(TAVG( I)-TBASE)*A2)
 
BIO=DTT*(I/D*NN)
 

C
 
DHTF(I)=S0RT(B1**2+B2**2+B3**2+B4**2 B7**2+BIO**2)
 
GO TO 800
 

600 CONTINUE
 
C
 
C RHOG(II) UNCERTAINTY
 
C
 

N=C3*PBAR+5.2*PSTAT(II)
 
D-RM*(TGAS460.)
 
RI=DPBAR*C3*1/0
 
R2=DPSTAT(II1*5.2*1/D
 
RP3=-DTGAS*N/D**2*RM
 

C 
ORHOG(I)=SQRT(Rt**2*R2**2+R3**2)
 

C 
C B UNCERTAINTY
 
C 

IF(CM(I).EQ.O.O) GO TO 151
 
BB1=OMDOT(I)*/(UG(I)*RHOG(II)*ST(I)) 
BB2=-DUG(I)*BB(I)/UG(1)
 
BB3=-QRHOG(I)*BB(I)/RHOG(II)
 
BB4=-DST(II*BB(I)IST(I)
 

C 
DB(I)=SQRT(BBI**2+BBZ**2+BB3**2BB4**2)
 
DBND(I)=DB(I/BB(I)*100.
 

C
 
C
 
C F UNCERTAINTY
 
C 

FFI=DMDOT(I)l/(UG(I)*RHOG(III)
 
FF2=-DUG(I)*FII)/UG(I)
 
FF3=-DRHOG(I)*F(I)/RHOG(II)
 

C 
DF(I)=SQRT(FFI**2+FF2**2+FF3**2)
 
DFND(II=DF(II/ABS(F(I3)*lO0.
 

C 
151 	IF(CM(I).NE.O.O GO TO 152
 

DB(I)=O.O
 
OBNO(I)=O.O
 
DF(I)=O.O
 
DFND(I)=O.O
 

152 	CONTINUE
 
C 
C 
C VISCGS UNCERTAINTY
 
C
 

OMU=DMUP*VISCG(II)*RHOG11)/lO0.
 
N=l.*RM*TGAS + .0175*RM*TGAS**2
 
D=I.EO6*(C3*PBAR + 5.2*PSTAT(II)1
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V1=-DPBAR*N/D**2*C3*1°E06
 
V2=-DPSTAT(.I)*N/D**2*5.2*1.EO6
 
V3=DTGAS*1/D*C11.*RM .35*RM*TGAS)
 
V4=DMU*1/RHOG(IT) 

C 
OVISCG(I)=SQRT(V1**2 + V2**2 + V3**2 + V4**2) 

C
 
120 CONTINUE
 
800 RETURN
 

END
 
C
C
C
C 

SUBROUTINE UNCER
 
C
 
C
 

REAL KCOND(24),KCONV(24),KFLOW(24),KFUDGE(24),KPROP,KS(24),
 
1 KV(48),KW,MA,MDOT(24)tMV,NPWR,ISO(24)
 
REAL M1,M2,M3,M4,N.NN,SUM(24),DSUM(24)
 

C
 
INTEGER CMFLAGOATEENBLFGRUN,TITLE(18)
 

C
 
COMMON /A/ AR,BETABITI,B3T3,CMFLAG,COEFI,COEF23,CP,DATEDEN,
 
I ENBLFGEI,E2,EMISS,EPSERIER2.ER3,F12,F3,F2?,I,INSTOTJ,KCOND,
 
2 KCONV,KFLOW,KFUDGE,KPROP,KS,KV,KW,KLM,MA,MDOT,MVNPWR,NPLATE,
 
3 NSTAT.P,PBAR.PROTA, DELP ,PVAP,Q1,Q2,Q3,QHEAT,
 
4 QHEATA,QHTA,QLOSSRARCF,REPSRHOA,RHOH,RHOL,RHOV,RHOZRO,RUN,
 
5 RHIRH2,RH3,RHUMRM,T,TAMB,TBASE,TCOV,TGAS,TROT,
 
6 TROTA,T1,T2,T3,VAPH,VAPL,VEPS,WCORR,WSCALE,WSTDI,
 
7 ISOREENCP(24),ENTHCP(24),ENTHZR,
 
8 AREA{24),BB(24),CFHT(24),CM(24),CONLAT(24),DELH(25),
 
9 DELTAT(24),DUDX(48),DUDXS(24),ECONV(24),ED(24),ENDEN(24),
 
I ENNET(24),EO(24).ENTH(24),ET(24),EU24),F(24),GS(24bH(24),
 
2 HTFRAC(24),HTRANS(24),INSTK(48),MASSK(24),PK(48),
 
A PROT(241,PROTAB(24),PSAT(9).PSTAT(48),QCOND(24),
 
3 QRAD(24),REENTH(24),REENW(25),RHOG(48),
 
4 RHOSAT(q),ST(24),STCP(24),TAVG(24),TEMP(9),TIME60(48),
 
5 TO(24),TOEFF(24),TD(24),TITLETT(24),TU(24hV(48),
 
6 VISCG(48),VISCGS(24)tUG(24),VZERO(24),WACT(24),WIND(24),
 
7 WNET(24),WSTD(24),X(48),XS(24),XSTCP(24),XMDOT(24)
 
COMMON /B/ DCMP,DDELPDPAMB,DP5HI,DPSLO,DP97HI,DP97LODQRADP,
 
I DTEMPA.DTEMPPDTBASE,DTT,DTROT,DTGASDWIND,DXXF2,F3,F4,
 
2 F6,F7,F8,DELDOUDXS(24),DISO(24),DENZRP,
 
3 DB(24),DBND(24),DCM(24),DDL2(24),DDL2ND(24),DF(24),
 
4 DFND(24),DHTF(24),DMOOT(24),DMDOTN(24),DPSTAT(48)
 
5 DQRAO(24hDRE(24),DREND(24),,DRHfG(24),DST(24),
 
6 DSTND(24),DUG(24),DUGND(24),DV(48),DDUDX(48),
 
7 CLRI(24),CLR2(24),CLR3(24),CLR4(24),CSRI(24),
 
B CSR2(24),CSR3(24),DVISCG(24),DEL2,DMUP,MNPLAT,
 
9 D97MIN,D97MAXD5MIN,D5MAXPTOTAL,NPORT,MNPORT
 

C
 
DENZR=DENZRP*ENTHZR/100.
 

C
 
C UNCERTAINTY CALCULATION FOR ENTH AND REENTH
 
C
 
C
 
C SUM(l IS UNDEFINED, BY SET TO ZERO HERE FOR COMPUTATIONAL EASE.
 
C
 

SUM(I)=O.O
 
OSUM(I)=O.O
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START=ENTHZR*UG(1)*ISO(l)
 
OSTART=SQRT((DENZR*UG(I)*ISO(t))**2 + (DUG(1)*ENTHZR*ISO(I))**2
 
1 + (DISO(r)*ENTHZR*UG(l))**2)
 

C 
DO 100 1=2,NPLATE
 
SUM(I)=SUM(I-1) + I./3.*UG(I-I)*ISQ(1-1)*(ST(1-1).+F(I-1))
 
DSUM(I)=SQRT(DSUM(I-I)*DSUM(I-1) + I./9.*((DUG(1-1)*ISO(1-1)*
 
1 (ST(1-1)+F(I-1)))**2 + (DISO(1-1)*UG(1-1)*(ST(1-1)+F(I-1)))**2
 
2 + (ISO(I-11*UG(I-1))**2*(.DST(1-1)*DST(1-1)+DF(1-1)*DF(T-1))))
 

100 CONTINUE
 
C 

DI=DENZR
 
D5=DST(1)/6.
 
D6=DF(11/6.
 

C 
DDLZ(1)=SQRT(Dl*DI+D5*05+D6*D61
 
ODL2ND(I)=DDL2(1)/ENTll(I)*10O.
 

C 
Rl=DENZR*UG(I)/VISCGS(l)
 
R3=-DVISCG(I)/(VISCGS(I)*VISCGS(l))*I ENTHZR*UG(l) +
 
I I./6.*UG(I)*(ST(I)+Ffl)))
 
R4=DUG(1)*(I./6.*(ST(I)+F(l))/VISCGS(1)+ ENTHZR/VISCGS(l))
 
R6=DST(I)*UG(I)/(6.*VISCGS(l))
 
R7=DF(1)*UG(1)/(6.*VISCi3S(l))
 

C 
DRE(I)=SQRT(RI*RI+R3*R3+R4*R4+R6*R6+R7*R7)
 
DREND(I)=DRE(1)/REENTH(I)*100.
 

C 
DO 110 1 2,NPLATE
 
Dl=DSTART/(UG(I)*ISO([))
 
02=DSUM(I)/(UG(I)*ISO(I))
 
D3=-DUG(I)*(SUM(I)+START)/(UG(I)*UG(I)*ISO(I))
 
D4=-DISO(I)*(SUM(I)+START)/(UG(I)*ISO(I)*ISO(I))
 
D5=DST(I)/6.
 
D6=DF(I)/6.
 

C 
ODL2(1)=SQRT(Dl*Dl+D2*D2+D3*D3+D4*D4+D5*D5+06*D6)
 
DDL2ND(I)=DDL2(I)/ENTH(I)*I00.
 

c 
RI=DSTART/(VISCGS(I)*ISC(I))
 
RZ=DSUM(.I)/(VISCGS(I)v ISO(I))
 
R3=-DVISCG(I)I(VISCGS(I)*VISCGS(l))*((START+SUM(l))/ISO(I)
 
I I./6.*UG(I)*(ST(I)+F(i)))
 
R4=DUG(I)*l./6.*(ST(I)+F(l))/VISCGS(l)
 
R5=-DISO(I)/(VISCGS(I)*ISC(I)*ISO(I))*(START+SUM(l))
 
R6=DST(I)*UG(11/(6.*VISCGS(l))
 
R7=DF(I)*UG(I)/(6.*VISCGS(I))
 

C 
DREII)=SQRT(RI*RI+R2*R2+R3*R3+R4*R4+R5*R5+R6*R6+R7*R7)
 
DREND(I)=DRE(II/REENTH(l)*100.
 

C 
110 CONTINUE
 
800 RETURN
 

END
 
C 
C 
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C 

IPROFILE PROGRAM]
 

G
 
C 

C TEMPERATURE PROFILE PROGRAM - THE RAW TEMPERATURE PROFILE DATA ARE 
c UTIL.IZED TO CALCULATE TEMPERATURE VERSUS DISTANCE IN VARICUS DIMENS 
C AND NON-DIMENSICNAL COORDINATES. THESE PROFILES ARE INTEGRATEDALJ 
C iITH ThE VELOCITY RESULTS CALCULATED BY ANOTHER PROGRAM, TO 
C CeTAIN ENTHALPY THICKNESS AND THUS ENTHALPY THICKNESS REYNOLDS NO. 
C 
C TtE LATEST COMPILATION OF THIS PROGRAM WAS 120169. 
C 
C 

COMMON AREA(60),AREAUC60AREAM(60),CF2(10),DP(60),DDELTI(IO), 
I DDELT2(tIO),DELM(IO),DELMCM(IOJ,DELTA2(10j,DFV(1OJ,OKV1OJ, 
2 DHV(IOJ,DIMT(60),DIMYH(60),CIMYM(601,DISPL(60,DREMOM(IO), 
3 DUV-(IO,60),DUUG(1,60,H(IC),IS,KEYREF(1OJ,NT'PTS(IO),NVPTS(O), 
4 PBAR(10),PR(10),PSTAT(IO),REDEL(24),REENTHIO),REMOM(IO),RC(1O), 
5 RHUM(1OJ,ST(1O),'STN(241,T(6O),TAMB(10),TR(60),DREENT(IO), 
6 TSARO(60).TO(1O),TEMP(60) ,TGAST( 1O),T IME60(10,60) , 
7 TITLE(ISLTMVIO,60),T(1OJ,TPLATE(IOJ,TPLUS(60), 
8 TU(l0),TXC(O),U(601,UINFT(IO),UINFV(1OJ,UPLUS(60),UUG(-1O,60), 
9 LUGNEW(60J,UV(10,60),U2(60),VDELTI(IOhVDELT2(LO),VF(10, 
1 VH(10J,VK(IU),VMDOT(IOLVREMCM(1OhVREX(1OhVVZROIOJ,VX(1O), 
2 VYCEL(10,60),X(10),YPLUS(60),YRAWT(1O,6OhYTMP(60),YVEL(10,60) 
3 ,UTAU(601,DELH(10),IBAR,PERI(24),REI(245,CP(60),ENTH(24) 
COMMON /A/ DUUGNW(60j,DUVNW(60),RHOG(60J,VISCO(6OhDCFZ(i0), 
I DDIMT(oO),OYPLUS(601,DUPLUS(60,DTPLUS(60), 

2 


-
IDELH,DDELH(IO),Z(601,CZ(60),CI,RM,N,PSAT,RHOSATTEMPS
 

3 ,OST(10),DAREA(bO),ODIMYH(6ODYPLND(bO),DUPLND(60),
 
4 OTPLND(6O),DYNC(60),OUUGND(60),DTND(6OhDDELTA(IOJ,
 
5 DELYDTEMPA,DPAMB,DMUF,NNTPTS,DDELND(IOi,LREND(IO),
 
6 DTEMP(60),UVISCO(bO),DIMYHP(10,60),DIMTP(tO,60),
 
7 YPLUSP(10,60),TPLUSP(1O,60),ENTHNW(24J,DPRTMP
 

INTEGER VDATE(IOhVRUN(10j,TCATE(IO),TRUN(l0I,VTRAV(l0),PLATE(IOI,
 
1 PTITLE(4,6C),XLABEL(4,40O,YLABEL(4,40,R,XTYPE(4),YTYPE44),
 
2 XTEN(4),YTEN4),L2(13),LLZ(4,13),NI(bOrN5(40),Nb(40),N1IB(13)
 

REAL IS(60J,PSAT(9 ,RHGSAT(9),TEMPS(9),IBAR(bOIXLENGT(4,
 
I YLLNGT(42,XZERO(43,XEND(4),XI(4),YZ-ERO(4),YEND(4),YI(41,
 
2 XX(13,5O,YY(13,5O)


C
C
C
 
C 

I FORMAT(2F1O 0,F3O 
2 FORrAT(II,9X,I6,4X,1,9X,F1O.O,12,8X,3F1O.O)
 
3 FORMAT(18A4,2X,I1)
 
6 FCRMAT(FO;U,I1,Ix,Ii,tX,I )
 

16 FORMAT(8FIO.O)
 
530 FORMAT(16,11,I1,F6.3,EIO.4,FB.5,F7.3,F7.4,FB.5,E9.3,15X,12')
 
531 FCRFAT(3F8.6,FS.2,FE.6)
 
533 FORMAT(/4E9.3,EB.2,ES.3)
 
534 FORMAT(ZXF6.4,F8.4,F8.5,F8. 6,32X,2F8.5)
 
889 FORWAT(lH1)
 
505 FGRMAT(5X#PROBE THERMOCOUPLE REFERENCED TO FREE STREAM'/J
 
906 FCRMAT(5XPRObE ThERMUCOUPLE REFERENCED TO ICE'/J
 
900 FCRMAT(30X'INPUT SECTICK'40X '(THIS PROGRAM VAS COMPIL
 

IED ON 120165'///,IOX,18A4// 5X'THERMCCUUPLE PROBE HEIGHT=IF5.3,
 
21OX,'NUMBER OF TRAVERSES='I2///)
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901 FORMAT(//5XTRAVERSE ',RUON ,4X

I'POSITIUN $,IN. OF POINTS ,-UIN'4X'STANTUN NO.'3X
 
2 *ST.NO.UNCERTAINTY'/7XI2,
 
- 5X,16,'-',I1,4X,F7.2,7X,12,9XF5.1,6XF7.5,1OXF7.5)
 

902 FCRMAT(/4X,' TO TO TO TGAS TAMB '5X,'PSTAT',
 
1 aX' RHUM PBAR 'I/5XF5.3,IXF5.3,1XF5.3,2XF5.3,1XF7.3,IX,
 
2 5XF7.4,2XF5.2,2XF6.2//)
 

903 FCRMAT( 18XIINTEGRATED'/,
 
I 5XIMICROMETERI, l VOLTAGE(MV) COUNTER 1)
 

904 FORMAT(SXF5.3,7XF6.3,8XF5.U]
 
915 FORMAT(7(IX,3(F7.5,F6.0,F6.4,1X/),IX,3(F7.5,F6.0,F6.4,1XJ)
 
95G FORMAT(IHI///45XVELOCITY INPUT'DAIA'/
 
951 FORMAT(5X@TRAVERSE RUN POSITION NO. OF POINTS 13XCF/2#6X,
 

I 'UINF K ,
 
2' F -4X'MOOT VZERO REX'/TXI2,4X,16,'-',lZXF5.2,BX,12,
 
3 IIXFY.5,3X, F5.1,IXE1O.3,2XF6.3,2XF6.3,2XF5.2,2XE9.3//)
 

952 FORMAT(2X, 87H 0.99 DISPLACEMENT MOMENTUM H MOMENTUM
 
I -UNCERTAINTIES /
 
2 2X, 116h POINT THICKNESS THICKNESS RE
 

K F DISP.ThK. MOM.THK. H MOM.RE.
 
4 3X'CF/2'/
 
5 4XF5.3,3XF5.3,7XF5.3,4XF5.2,FB.2,4X,3(2XE9.3),IX3(2XE.33,3XF7.5,

6//)
 

953 FORMAT(5OXIUNCERTAINTIES /5X'Y'IOXIU*6X'Y/DELTA14X$U/uINFSBX
 
I .Lb/UINF'XlU') 

954 FORMAT(2XF6.4,3XF8.4,3XF8.5,3XF8.b,3X,2(3XF8.5) 
956 FORMAT(///30X#TEMPERATURE INPUT DATA'/) 
958 FORMAT(///5X CF/2 QUOTED ABOVE IS CALCULATED FROM STANTON NUMBER V 

IIA REYNOLDS ANALOGY'U
 
959 FERMAT (///5X'CF/2 QUOTED ABOVE IS BEST ESTIMATE FROM HYDRODYNAMIC
 

1ATAI)

C
 

C INPUTS HERE
 
C
 
C
 
C REAC UNCERTAINTY INTERVALS
 
C
 

READ(5,362CJ DTEMPA,DPRTMP,DPAMt,OMUP,DELY
 
3620 FCRMAT(6FIO.O)


C
 

WRITE(6,889)

C
 

C NRCNS - # OF COMPLETE TEST RUNS 
C NTRAV - # OF TRAVERSES PER TEST RUN 
C IPLtCH: 0 - NO PUNCH I - PUNCh 
C
 

REAC(5,6) TPRBHT,NRUNS,IPUNCH,NPL
 
IF(NPL.EQ.0) NPL=24
 

C
 
C
 

DC 550 LOCP=1,NRUNS
 
C
C 

C
C
C 

READ(5,3J TITLE,NTRAV
 
hRTTE(6,9001 TITLETPRBHT,NTRAV
 

C ALL TEMPERATURE DATA IS READ IN ThE 4000 LOOP
 

156 DO 4000 N=fNTRAV
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C 



LSE KEYREF =1 IF TMV IS REFERENCED TO TICE(32 F)
 
C USE KEYREF =0 IF TMV IS REFERENCED TO TGAS
 
C
 

READ(5,2J KEYREF(N),TDATE(N,TRUN(NJTX(N,NTPTS(NJ,UINFT(NJ,
 
I ST(NLDST(N)

IF(N.EQ.1) ViRITE(6,956)
 

IF(N.GT.1) WRITE(6,889)
 
WRITE(6,901) N,TDATE(N),TRUN(NJTX(NhNTPTSNJ,UINFT(NI,
 
I ST(N),DST(N)
 
READ(5,16) TO(NJ,TU(NJ,TD(N),TGAST(I\,TAMB(N, PSTAT(N),RHUM(N),
 
I PBAR(N)
 
,RHITE(6,9Q2)TC(N),TU(N),TE{NJ,TGAST(N),TAMB(N),PSTAT(N),RUM(N),
 

I PBAR(N)
 
NtTPTS=NTPTS(N)+1
 
IF{KEYREF(N).Ew.0) WRITE (b,905)
 
IF(KEYREF(N)°EQ.1) tNRITE (b,9C6)
 
kRITE (6,903)
 
CO 350 1=2,NNTPTS
 
HLAE(5,1) YRAwT(N,I3,TMV(N,I),TIME6C(N,I3
 
vRITE(6,904) YRAhT(N,I),TMV(,I),TIME6O(N,I)
 

35G CONTINUE
 
4000 CONTINUE
 

C
 
C ALL VELOCITY DATA IS READ IN 40CI LOOP
 
C 

ARI TE (6,950) 
CO 400,1 N=I,NTRAV 

C • 
C READ IN BLANK CARD HERE UNTIL FINAL CF/2 IS AVAILABLE
 
C FROM HYDRODYNAMIC RESULTS
 
C
 

REAU(5,16) CFZ(N),DCFZ(N)
 
CUMMY=CF2(N)
 
IF(CF2(N).EC.O.0) CF2(N)=ST(N)/1.16
 
IF(DCF2(N) .EQ.t.U) DCF2(NJ=0.I*CF2(N)
 

C
 
REAC(5,530) VEATE(N),VRUN(N),VTRAV(N),VX(N),VK(N),VF(.N},LINFV(N),
 

1 VMUDOT(N),VVZERO(N),VREX(\),NVPTS(N)
 
IF(N.GT.L) WRITE (6,889)
 
nRITE(6,95J) VTRAV(N),VDATE(N),VRUN(N),VX(N),NVPTS(N),CF2(N),
 
I UINFV(N),VK(N),VF(N),VMDOT(N),VVZERO(N),VREX(N)
 
REAC(5,531) VDELTI(N),VELT2(N),VH(N),VREMOM(N),OELM(N)
 

C
 
C UNCERTAINTY DATA CALCULATED BY VELCCITY PROGRAM
 
C
 

REAC(5,533) DKV (N),OFV(N),DCELTI(N),DCELT2(N),DHV(N),,
 
I DREMOM(N)


'
 wRITE(6,952 ) CEL.,'(N),VELTI(N,VDELT2(N),VH(NJ,VKEMOM(N),OKV(N),
 
I DFV(N),DOELTI(JpDELT2(NDHV(N,DEMOM(N),DCF2(N)
 

C
 
NNVPTS=NVPTS(N)l+
 
hRITE(o;953)
 
CO al0 J=2,NNVPTS
 

REAIJ(5,534) YVEL(N,J),UV(N,J),VYDEL(N,J),UUG(N,J,
 
I DUUG(NJhDUV(N,J)
 
WRITE(6,954) YVEL(N,J),UV(N,J),VYDEL(N,J),UUG(N,JJ ,OUUG(N,J),
 
lGLV(N,J)
 

BOC 	CONTINUE
 
IF(CUMWY.E(.O.O) WRITE(6,958)
 
IF(DUMMY.GT.C.O) WRITE(6,959)
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C
 
4CC1 CONTINUE
 

C
 
C EACF TRAVERSE IS CUMPUTED IN 15 LOOP
 
C
 

DO 75 N = LNTRAV
 
C
 
C
 

NNTPT'S=NTPISN) +1
 
NNVPTS=NVPTS(N)+1
 
PR(NI=0.7C5
 
RC(NJ = PR(N) .333 

1004 P'= PBAR(N)*2116./29.96+PSTAT(N)*5.2
 
C
 
C rILLIVOLT CONVERSION
 
C
 

IF(TAME(N}.LT.IC.) TAMB(N)=TCALIB(TAMNENHJ
 
IF(TU(N).EQ.0.0) TU(N)=TO(N)
 
IF(TC(f).E .O.O) T(N)=TU(N)
 
7MVWAL=3.*TO(N+TU(N)+TD(N))/5.
 
IPLATE{N)=TCALIB(TMVWAL)
 

46 	IlVGAS=TGASTIN)
 
TGAST(N)=TCALIB(TGAST(NK)
 

C
 
C TEMPERATURE DEPENDENT PROPERTY CORRECTIONS
 
C
 
1005 CC 44 NN=1,9 
44 IF(TEVPS(NN).GT.TAME(N)) GO TO 45 
45 N = NN-1 

NHOV = RHOSATIM) + (TAMB(NJ-TEMPS(M))4(RHOSAT(NN)-RHOSAT(M}/1O.0 
PVAP=RHUM(N)*(PSAT(M)+(TAMB(N)-IEMPS(P)J*(PSAT(NN)-PSAT(M) )/1O.O 
RHOA = (P-PVAP)/(53.3*(TAMB(N)+460.0) + (RHUM(NJ*RHOV) 
ZFV = RHUM(N)*RHV/RHOA
 
ZMA =-1.0 - ZMV
 
RM = 1545.0*(ZMA/28.9 + ZMV/1E.C)
 

C
 
C 

C SETTING INITIAL CONDITIONS 
C 

YTMP(1)=O.O 
T(1)=TPLATE(N) 
TIME6O(NI)=O.O 
YVEL(N,IJ = 0.0 

UUG(N,1) = 0.0 
OLUG(NI)=0.0 
DUV(N,)i=O.C 

C
 
C TIlE60=600 IS ECUIVALENT TO i0 SECONDS OF MV INTEGRATION
 
C
 
C T-E 1633 LOOP DETERMINES TI-ERMOCOUPLE READING AND Y POSITION
 
C AT EACH DATA POINT
 
C
 
1009 CO 1633 I=2,NNTPTS
 

IF(TIME60(N,IJ.LE.O.Q) GO TO 1011
 
CONST=60.
 
TPV(NI)=CONST/TIME60(NI)*TMV(NulI
 

IC11 KEY=KEYREF(NJ+1

C 

C GO 70 (TGAS, ICE) REFERENCE 
C 

GO 	TO (1001,IOO38,KEY
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C
 
C TMGAS IS ADDED ONTO TEMP DIFFERENCE REACING TO CONVERT TO EEGREES
 
C IN THE PROPER RANGE OF THE MV-F TABLES.
 
C
 
1001 TMV(NI)=TMV(NI)+TMVGAS
 

C
 
C T(I) IS THE TEMPERATURE It DEGREES RECORCED BY THE THERMOCOUPLE
 
C
 
103 T(I)=TCALIB(TMV(NI))
 

C
 
C THE Y POSI-IN IS CORRECTED FOR PROBE HEIGHT AND MICROMETER SETTING
 
C
 

IF(I.NE.1) YTMP(I) = YRAWT(N,I) - YRAWT(N,2) + O.5*IPRBHT
 
1633 CONTINUE
 

C
 
C LSING COLD WALL VELOCITY CATA
 
C
 
C
 

IF(UIrFT(N).EQ.0.OJ UINFT(N)=UINFV(N)
 
IF(TX(N).EQ.O.C) TX(N)=VX(N)
 

C
 
C
 

C THE FOLLOWING CCDE ENSURES THAI THE LAST VELOCITY Y IS
 
C GREATER ThAN THE LAST ThERMAL Y
 
C
 

IF(YTMP(NNTPTS.LT.YVEL(N,NNVPTS)J GO TO 1006
 
NNVPTS=NNVPTS+1
 
YVEL(N,NNVPTS)=1..*YTMP(NNTPTS)
 
UUG(N,NNVPTS)=UUG(NNNVPTS-1)
 
CUUG(NNNVPTS)=DUUG(NNNVPTS-1)
 
DLV(NNNVPTSJ=DUV(N tNVPTS-1'
 

C
 
C VELCITY INTERPCLATICN TO FIT. Y STATIONS WhERE TEMPERATURE DATA WAS
 
C TAKEN
 
C
 
ICC6 CC 40 1=1,NNTPTS
 

DO 37 J=INNVPTS
 
IF(YVEL(NJ)-YTMP(l)) 37,38,39
 

-
39 UUGNEW(I=UUG(NJ-I)+(YTMP(l)-YVEL(NJ 1)J/(YVEL(N,J)
 
I YVEL(N,J-I )*(UUG(NJJ-G(NJ-1)J
 

CUUGNW(I)=DUUG(NJ-I)+(YIMP(I-YVEL(NJ-1)J/(YVEL(NJ)-

I YVEL(N,J-Ij*(DUUG(NJ)-DUUG(NJ-1))
 

DUVNW(I)=DUV(N4,J-I)+(YTPP(IJ-YVEL(NJ-1))/(YVEL(NJJ-

I YVEL(NJ-I )*(DUV(N,J)-DUV(NJ-1)J
 

GC TO 36
 
3E 	 UUGNEW( I)=UUG(N,J)
 

DUUGNW(IJ=DUUG(N,J)
 
DUVNW(I)=DUV(NJJ
 
GO TO 36
 

37 CONTINUE
 
36 LZ(I)=UUGNE(Il)*UUGNEh(I)*UINFT(N)*UINFT(NJ


C
 

C THE ASSUMPTICN IN USING CCLD WALL VELOCITY PROFILES WITH HOT
 
C WALL TEMPERATURE PROFILES IS IHAT'U/UINF VERSUS Y/DELTA IS PRESERVED.
 
C SEE W.H.THIELBAI-R THESIS FOR DISCUSSION OF THIS POINT. WHEN COMPARING
 
C INTERPOLATEU VELCCITIES TO VELOCITY INPUT, RECALL THAT UINFITEMPJ IS
 
C NOT NECESSARILY EXACTLY EQUAL TO UINF(VEL).
 
C
 

CP(IJ=.24
 
CI=I./(2.*32.17*778.16
 
TEMP(I)=T(II-RC(N*CI/CP(I1)*U2(I)
 

190
 

http:CI=I./(2.*32.17*778.16
http:CP(IJ=.24
http:IF(UIrFT(N).EQ.0.OJ


RhOG(I)=P/(RM*(TkalP(I)+46C.J)
 
VISCO(I)=(11.O + O.0175*TEMP(Ij)/( 1000000.*RHOG([))
 

40 CONTINUE
 
C
 
C
 
C THE 450 LOEP FINDS STAGNATIEN ENThALPY REFERENCED TO FREE STREAM AFTER
 
C FIRST DETERMINING STATIC TEMPERATURE FRC THE THERMCCOUPLE READING
 
C VIA A RECOVERY FACTOR RELATIONSHIP. THE NEED EXISTS TO EXAMINE THE
 
C RECOVERY FACTOR USED HERE.
 
C
 
C IT IS VERY DIFFICULT TC MAINTAIN A CONSTANT FREE STREAM TEMPERATURE
 
C CONDITION DURING A TEST RUN. WhEN THE FROBE TEMPERATURE IS REFERENCED
 
C TC ICE, ANC TGAS HAS CHANGED SLIGHTLY, AN ERROR IS INTRGDUCED INTO
 
C THE STAGNATION ENTHALPY COPUTATICN BECAUSE A CONSTANT TGAS IS FED
 
C INTC THIS PROGRAM. AN ALTERNATIVE [ESTING TECHNIQUE IS TO REFERENCE
 
C TC TGAS AND WORK WITH THE MEASURED TEMPERATURE DIFFERENCE. IN THE
 
C PROFILE CALCULATIONS, THE LAST POINT IS TAKEN AS THE GAS TEMPERATURE.
 
C
 
C T(I)-THER'CCOUPLE TEMPERAIJRE
 
C TEMP(I)-STATIC TEMPEkATURE
 
C IS(1)- STAGNATION ENTHALPY REFERENCED TO FREE STREAM 
C TRAR- (T-TGAS)/(TWALL-TGAS3 
C DIM)- (TWALL-1)/(T.ALL-TGAS = I - TBAR 
C
 

DO 450 11,NNTPTS 
IS(I)=(CP(IJ*TEMP(I + L2(1*C) - (CP(NNTPTSJIFtMP(NNTPTS 

1 3 + U2(NNTPTS)CI) 
A50 CCNTINUE
 

C
 
C
 
C INTEGRAL PARAPETER CALCULATICNS
 
C
 
C
 
C AREA-ENTHALPY THICKNESS
 
C AREAN-MOMENTUM THICKNESS
 
C AREAE-U1SPLACEMENT THICKNESS
 
C 

AREA() = 0.0 
AREAM(1) = 0.0 
AREAD(1) = 0.0 
CO 70 1=lNNTPTS 
IEAR(1)zIS(1)/IS(l) 

TBAR(IJz(TEMP(I)-TEMP(NNTPTSN)/(TPLATE(N-TEMPNNTPTSI 
CINTIl)=I.-TBAR(I) 
CIMTP(N,I) = CIMT(I) 
TR(I)=(IEMP(NNTPTSJ+460.J/(TENP(IJ+460.J 
IF(I.EQ.1) GO TO 70 
AREA(Ij)O.5*(YTMP(I)-YTM!(I-lfl*(UUGNEW(I-I)*IBAR( I-LI 
]*R(I-1)+UUGNEW(I)*IBARII)*TR(IJI + AREA(I-Ii 
AREAM(I) = O.5*(YTMP(1)-YTMP(I-1))*(UbGNE (I-1*(1.0-UUGNEW 
lI-i))*TR(I-1)+UUGNEh(I)*(I.O-UUGNEW(I))*TR(I)) + AREAM(1-1) 
AREAD(I)=O.5*(YTMP(I3 - YTMP(I-I))*((I.-UUGNEWII-I)*TR(L-1)) 

14 (1. - UUGNEW(Ij*TR(II)) + AREAD(I-1I 
TC CONTINUE 

CELTA2(N)= AREA(NNTPTS) 
CELPCM(NI = AREAN(NNTPTS) 
DISPL(N) = AREAO(NNTPTSJ
 
REMOM(N) = UINFT(N)*OELqOM(N)/(VISCO(NNTPTSI*I2.0]
 
REENTH(N) = UIINFT(N)*DELTA2(N)/(VISCO(NNTPTS)*12;.OI
 
I(N) = DISPL(NI/DELMCM(N) 
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C Tf-EFAL BOUNDARY LAYER THICKNESS
 
C
 

CC 72 I=1O,NNTPTS
 
IF(DIMT(Il.GE.O.99) GO TO 173
 

72 CONTINUE
 
173 CELH(N)=YTMF(I-1) t(O.99-CIMT(I-1)}/(DIMT(I)-DIMT(I-l})*
 

I CYTMP(1)-VTMP(I-i))
 
ICELh= I
 

C
 
C TFERMAL AND HYDRODYNAMIC Y/B.L. THICKNESS
 
C
 
C
 

DO 210 I=I,NNTPTS
 
CIMYM(I)=YTMP(I)/OELM(N)
 
CIMYH(I) = YTMP(1)/DELH(N)
 

21C DIMYHP(N,IJ = DIMYH(h)
 
C
 
C CALCULATION OF + PARAMETEFS
 
C
 
C UTAU IS BASED ON LOCAL RHO IN ThIS PROGRAM
 
C
 

CO 651 =If,NNTPTS
 
UTAU(I)=SQRT(CFZ(N)*TR(I )*UINFT(NJ
 
IPLUS(1) =DIMT(I)*UTAU(I)/(ST(NI*UINFT(N)I
 
TPLUSP(N,I) = TPLUS(IJ
 
YPLUS(U) = YTMP(I)*UTAU(II/(VISCO(NNTPTS)*12.)
 
YPLLSP(N,I)=YPLLS(1)
 

C
 
669 U(I)=UUuNEW(I)*UINFT(N)
 

LPLLS(I) = U(I)/UTAU(*I)
 
651 CONTINUE
 

C
 
CALL UNCERT
 

C 
C 
C 
C OUTPUT SECTION
 
C
 

12 FORMAT(///3X,I8A4/!,
 
1 2X'TEMP. RUN VEL. RUN'3X'PLATE'4X'X98X'ST CF/2@6X'UINFI
 
1,6X'TGAS'6X=TWALL=/2X,I6,'-,ll,3X,16,-',I1,4X,I2,
 
2 4XF5.2,3XF7.5,4XF7.5,3XF5.1,5XF5.1,6XF5.1///3X
 
3 =THERMAL HYDRO. ENT-ALPY MOMENTUM ENTHALPY MGMENTU
 
4V NO. OATA'/2X'b.L. ThK. 8.L. THK. THK. THK. It 
5 ' RE. RE. POINTS', 
6 /4XF5.3t6XF5.3,6XFb.4,5XF6.4,4XFG.O,5XF6.O,8XI2/// 

812 FORMAT(1X18A4/IX,16,IX,I1,IX,16,IX,I1,1X,I2,IXF5.2,2(IXF7.5), 
I 3(IXF5.1)/2(lXF5.3),2(1I-F6.4),2(IXF6.0),IX,12) 

817 FORMAT(LXF6.I,2(IXF6.)1h4(IXFB.33,IXF6.4,2(1XF5. I)J 
81G FORMAT(1X,II,IA,12,1XF5.2,3(IXF5.1)2(IXF7.5),IXFS.3,IXF6.4,1XF5.0 

I)
 
821 FCRMAT(IX,I,IX,[2,4(IXI6.4),2(IXF6.0),2(IXF5.3))
 
Ei FORNAT(2(IX,I2,IXF7.5,2(IXF6.OOIXF5.1,1XF5.3fl
 
916 FORMAT(3OX'PROFILE OTPUT-//' YPLUS UPLUS TPLUS Y/DELH
 

1 U/bINF TSAR Y/DELM Y U TI/)
 
917 FORMAT(2XF6.1,2(3XF6.1),4XF5.3,4XF5.3,4XF5.3,2XF5.3,3XF6.4,
 

I 3XF5.1,3XF5.1)
 
918 FCRMAT(///,40X' SUMMARY '///,2X'Ni3XfPLATE'5X#X TPLATE *, 

1 'TGAS ULNF ST CF/2 F ENTH. THK.', 
2 5X-ENT. ThK. RE.'/) 

919 FORMAT(2X11,4X,I2,3X,2XF5.2,ZXF5.1,2XF5.l,2XF5.1,3XF7.5,4XFT.5, 
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I 4XF5.3,5XF6.4,12XF5.O)
 
92C FQRMAT(/96XJUNCERTAINTIESf/
 

12X'N'3X'PLATE'5X'OISPL. THK. MOMENTUM THK. MCMENTUM RE.
 
2 H'I8X'ENTH. THK.1IXIENTh. THK. RE.$,
 
3/I6X'VEL PROF VEL FROF VEL PROF VEL PROF'
 
41OXABSOLUTE'6X'%I8XABSOLUTE'6X'%f/)
 

921 FORMAT(2XI1,4XI2,7XF6. ,XF6.4, 3XF6.4,IXFL.4,3XF6.0,IXF6.0,4XFS.3,
 
12XFS.3,IOXF6.4,4XF5.l,8XF5.ubXF5.J
 

9bO FORMAT(//////30X'STANTON NUMcER,ADJLSTED ENTH. THK. REYNOLDS NO.,
 
JAKO 2-D CHECKt/
 
2//2(5X-PLATE-5X'ST15XREDELSXREEL5XI X 15X'DELTA2'5Xl/
 
3 2(22X' (ST)P6Xt(PROF)*3XIERROR'ISX)/J
 

961 FORIlAT(2(6X,I2,4XF7.5,2XF6.0,5XF5.0,3XF5.1,5XF5.3,6X))
 

1555 FORMAT(IHI,3OXI OUPUT SECTION )
 
155& FORMAT(/3X,lA4//)
 
1557 FCRMAT(3X,18A4
 
3070 FORMAT(IHl,/f//,45X'UNCERTAINTY INFERVALS'///18X'ABSOLUTE VALUES-,
 

I 46XIPERCENTAGE VALUES'3X,//' YPLUS UPLUS TPLUS Y/DELH
 
1 U/UINF TSAR- J1XIYPLUS UPLUS
 
2TPLS Y/CELH UIUINF TBAR'/)
 

3C71 FORMAT(2XF6.i, (3XF6.1),4XFS.3,4XF5.3,4XF5.3,9XF5.1,3XF5.1,
 
I 3XF5.1,SXFS. I,4XF5.I,2XF'.IJ
 

C
 
C
 
C PLATE NUMBER IS DETERMINED FROM THE X POSITION
 
C 

DC 133 KK=I,24 
XL=4KK 
IF(XL.GT.TX(N)) GO TO 134
 

133 CCNTINUE
 
134 PLATE(Ni=KK
 

C 
IF(N.E.1) kRITE(6,1555)
 
IF(N.GT.1J hRITE(6,689)
 

655 WRITE(6,12) TLTLE,TDATE(N),TRUN(N),VDATE(N),VRUN(N),PLATE(N),
 
I TX(NfST(N),CF2(N),UINFT(N),
 
2TEMP(NNTPTS),TPLATE(N),DELi(),ELt(N)'iDELTA2(N),DELMCM(NI)
 
3 REENTI(N),REMOM(N},NNTPTS
 
IF(IPUNCH.EC.1) WRITE(7,8121 TITLE,TDATE(NJ,TRUN(N),VDATE(N,
 
1 VRUN(N),PLATE(N),TX(N),ST(N),CFZ(N)t
 
2LINFT(NJ,TEMP(NNTPTS),TPLATE(N)IDELH(N,DELM(N),OELTA2(N),
 
DELMOM(N),REENTH(N),REMC I'),KNTPTS
 
WRITE(6,916)
 
0 517 I=I,NNTPTS
 
WRITE(6,917) YPLUS(I),UPLLS(IJ,TPLUS(I),DIMYH(II,UUGNEW(I),
 
ICIMT I),DIMYM(I),YT NP(I),U(I),TEMPII)
 
IF(IPUNCH.EQ.1J wRITE(7,817) YPLUSUIJ,UPLUS(I,TPLUS(II,
 
I DIMYH(I),UUGNEWIbDIMT(1J,DIMYM(I),YTMP(I)',U(I),TEMP(I)
 

517 CCNTINUE
 
C
 

WRITE(6,3070)
 
CG 3075 I=I,NNTPTS
 
WRITE(6,3071) DYPLUS(I),DLPLUS(Ih,DTPLUS(1),DDIMYH(I),DUUGNW(Li,
 
I DOIMT(IJ,DYPLND(I),DUPLND(I),DTPLND(I),OYND(I),DUUGND(I),DTND(I)
 

3075 CCNTINUE
 
C 

75 CONTINUE
 
C 
C 
C WRITE SUMMARY
 
C
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lICe KRITE(6 889 1
 
RITE(6,1556) TITLE
 
WRITE(6,918)
 
WRITE(t,91S) (N,PLATE(N),TX(N),TPLATE(N),TEMP(4TPTS(NJ+I),
 

I UINFT(N),ST(NJCF2(N)IVF(NJDELTA2(NJ,REENTH(N),N=lNTRAV)
 
WRITE(,92U)
 
WRITE(6,321) (NPLATE(N),VOELTI(N),OISPL(N),VDELT2(N),DELMOMIN,
 

I VREMOM(N),REMOM(N),VH(i),H(N),[DELTA(N),
 
2 DDELND(N),DREENT(NJDRENOLN),N=I,NTRAVI
 

C
 
IF(IPLNCH.EC.0) GO TO "1830
 
nRITE(7,15573 TITLE
 
CO 1819 N=I,NTRAV
 
hRITE(7,819) &,PLATE(N),TX(N),TPLATE(N),TEP(NTPTS(NJ+IJ,
 

i UINFT(N),ST(N),CF2(N),VF(NJ,DELTA2(N),REENTH(N)
 
1819 CCNTINUE
 

DO 1821 N=I1,TRAV
 
WRITE(7,821J N,PLATE(NhVLeLTI(N),DISPL(N),VUELT2(N),
 

I CELMCM(N),VREMOi (N)REMOM(N),VH(N IH(N)
 
1821 CONTINUE
 

C
 
183C CCNTIKL
 

C
 
C
 
C ThE FCLLOWING SECTIGN PRINTS OUT INFORMATION ON THE
 
C' UNCERTAINT'Y INTERVALS USED IN ThE UNCERTAINTY CALCULATIONS.
 
C
 
C
 
C FEADING AND EXPLANATICN
 

WRITE(6,190)
 
1900 FCRMAT(///////,2OX,IPRIrE UNCERTAINTY INTERVALS UStO'
 

1,3X,'(ESTIMATEO AT 20:1 ODS)'//)
 
WRITE(6,1'901)
 

190I FGRVAT,(2X,"VAR I ABLE' 5Xl VALUE ASSIGNED' ,IOX, VARIABLE MEANING'
 
l,1iX 'UNITS'/)
 
WRITE(6,909) UTEMPA
 

909 FORMAT(2X,CTEMPA'-,7A,F5.3,IX ,'T'EMPEkATURE',49A,OEG. F.1)
 
nRITE(6,908), DPRTMP
 

908 FCRtAT(2X'CPRTPl7XF-.3,I9X'PR0BE TEMPERATURE NEAR VALL(FIRST 15 P
 
ICINIS)'16X'DEG. F.1)
 
4RITE(b,910) CPAMB
 

SiC FORMAT(2X,UDPANB',8X,FS.2,L9XOAMBIENT PRESSURfr',4'X,-LBF/FT2')
 
'WRITE(6,911J OMUP
 

911 FCRMAT(2XODMUP',7X,FP.1,,1X,At3SOLUTE ViSCOSITY',42A','%')
 
%RITE(6,907) DELY
 

907 FORMAT(2X'DELY'9X,F.4,18),'PROBE PCSITIN REL. TO wALL',33X,
 
I 'INCHES')
 
%RITE(6,b89)
 

C
 
1550 CCNTINUL
 
550 CCNTINUL
 

STOP
 
END
 

C
C
C
C 

FUND1 ION TCALI6(T)
 
C THIS FUNCTION SUPPLIES TI-E THERMOCOUPLE CALI~kATICN
 

A=-222C.703
 
B=781.25
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c

C 

E=7.950782 
C=0 .256 
TCALIB=A+*SQRT(c+J*T)+ 5C. 
RETURN 
END 

c 
c 

NOT REPRODUCIB3LE 
C

C 

C
C 6LOCK DATA
 

CCMMON AREA( 60) AkEAD(b) AREAM(60) ,CF2(10) DP(60) DOELTI(10),
 
I UOELT2(1O),OtLM(10),UELNUM(10),DELTA2(I0),DFV(10) DKV(10),
 

DHV(Iu),DINT(bG),ClIMYh(t),DIMYM(6h),ISPL(oO),DREMOM(iO,
 
3 OUV(O,6C),JUUG( 10,60) H(IC),IKEYREF(10iNTPTS(10),NVPTS(IO),
 
4 PBAR(IO),PR(LO)1,PSTAI(IO),REDEL(24),REENTH(tO),RtMUM(IC),RC(1Q),
 
- RHuM(lU),SI(1d),STN(24),T(60),TA'6(lOh,TR(60,DREENT(10),
 
6 TBAR(60),TD(IO),TEMP(60),TGAST(l0),TIME60(1o,60),
 
7 TITLE(CB),T.IV(1O,60),TC(ilO),TPLATE(1O),TPLUS(60),
 
8 TU( 1I0TX(10J U(&O),UINFT(1oUIFV(10),UPLdS(60)UUG(10,60)
 
G UUGNEw(bO),UV(10,60),UZ(tC),VDELTI(IO),VDELT2(10),VF(1C),
 
I VH(10),VKLIO),VMOT(IO),VEMGM(1U),VREX(IO),/VZERO(IO),VXIUJ,
 
2 VYCEL(I0,td),X(10),YPLLS(60),YRAWT(10,60),YTMP(tO) ,YVEL(1O,60)
 
3 ,UTAU(60),CELH(IO),IBAR,PERI(24),REI(24),CP(60),ENTH(24I
 
COMMON /A/ i)UUhNW(60),DUVW(60),RHGG(oO},VISCO(60,DCF2(10),
 
I ODIMT(60),UYPLUS(6C),DUPLUS(60),DTPLUS(60), 
2 IOELF,DOtLI(l),L(60),CL(60),C1,RM,N,PSAT,RHUSAT,TEMPS 
- ,GSTIIO),DAREA(0o0) ,DIMYH(oO),DYPLNO(60),UUPLND(60), 

DTPLND(60),DYND(bO),CULGND(60JDTND(60L)OELTA(HO), 
5 DELY,DTEMPA,DPAFb,CMUF,NqTPTS,CDELND(1U),DREND(10), 
C DTENP(6O),LVISCU(bO),DIMYHP(10,oO),DIMTP(10,60) , 
7 YPLUSP(I0,60),TPLUSP(10,60,ENTHNw(24),DPRTMP 

INTEGER V0ATE(JO),VRUN(10),TDATE(10),TRUN(1O),VTRAV(l0),PLATE(IO),
 
I PTITLE(4,60),XLAbEL(4,40),YLABEL(4,40),RXTYPE(4),YTYPE(4),
 
2 >TEN(A),YTEN(4),L2(13), LL2(4,13),NI(602,N5(40),N6(401,NIB(13)
 

REAL IS(60),PSAT(9),RHCSAT(g),TEMPS(9),IBAR(60),XLENGT(4),
 
I YLENGT(4k,XZERO(4),XEND(A),XI(4),YZERO(4,YEN(4),YI[4),
 
2 XX(13,50),YY(13,50)
 

c
 
CATA TEMPS/
 
140.0,50.0,60.0,70.0,60.0,90.0,100.0,110.0,120.0/
 
DATA RSAT/
 
]17.53,25.t5,36.90,52.2C,73.CC,10O.40,136.50,183.b0
 
2,243.70/
 

C
 
CATA RHOSAT/
 

10.o0C0409,0.000587,0.000830,0.001153,
 
2C.001580,0. 00213S,0.CO2853,0.003770,C.004920/


C
 
C
 

END
 
C
C
C 
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C
C 
C 

SUBRGUTINE UNCERT
 
C
 
C UNCERTAINTY ANALYSIS FOR PkOFILE PROGRAM
 
C
 
C ThIS PROCEDURE CALCULATES UNCERTAINTY INTERVALS BY THE PROCEDURE OF
 
C KLINE AND NCLINTOCK. THE UNCERTAINTY INTERVALS FOR THE MEASURED
 
C VAIUABLES ANC/CR TEE UNCERTAINTIES CALCULATED BY THE VELOCITY PROGRAM
 
C ARE DEFINED AS:
 
C DTEMPA : TEMPERATURE (F)
 
C CPRTMP : TEMPERATURE OBTAINED WITH PROBE (F)
 
C DPAMB : AMBIENT PRESSURE (PSF)
 
C DMUP : ABSOLUTE VISCOSITY (%)
 
C DELY : PROBE PCSITION RELATIVE TO WALL (IN)
 
C
 
C CERTAIN UNCETAINTY INTERVALS, PREVIOUSLY CALCULATED, WHICH ARE USED
 
C IN THIS PROCEDURE ARE:
 
C CUUG : U/UINF (1)
 
C £UV : VELOCITY (FPSJ
 
C DCF2 : SKIN FRICTICN CCEFFICIENT (1)
 
C CST : STANTON NUMBER (I)
 
C
 

CCMMUN AREA(bO),AREAD(6U),AREAM(60),CF2(1O),,DP(oO),DDELTI(0),
 
I DDELT2(LU),DEL(1O),ELMLM(IO),DtLTA2(1O),DFV(.IO),DKV1O),
 
2 DHV(IOO,DIWT(60),OIMYH(60),DIMYM(6OJ,DISPL(6Ob,DREMOM(101,
 

DUV(1O,60)O8uUG(10,60),H(IC),IS,KEYREF(1O8,NTPTS(0),NVPTS(1IO',
 
4 P2ARLIO),PR(IO),PSTAT(IC),REDEL(24),REENTH(IO),REMOM(IO),RC(1OJ,
 
5 RHUM(1O),ST(LU,STN(24),T(6)hTAMB(1O),TR(60),DREENT(IO ,
 
e TBAR(6O),TD(IO),TEMP(6O),TGAST(tO),TIME6O(1O,60),
 
7 TITLE(ISTMV(1O,60TC(0)'TPLATE(1O)-,TPAUS(60),
 
E TU(IC),TX(lu),U(oO),UINFT(10),UINFV(10),UPLUS(60),.UUG(1O,6O),
 
q LUGNEW(60),UV(10,60),U2(60),VDELTI(IO),VDELT2(1O)',VF(1O),
 
I VH(IO),VK(IO),VMDOT(IO),VREMCM(IO),VREX(O),V.VZERO(IO),VX(IO),
 
2 VYDEL(1O,60),X([1W,YPLLS(6OJ,YRAWT(1O,60OYTMP({OhYVEL{IO(,60J
 
3 ,UTAU(bO),DELH(IO),IBAR,PERI(24),RE1(24),CP(60),ENTH(24)
 
CCMMCN /A/ DUUGNW(bO),DUVN(60,RHOC(60),VISCO(bU),DCF2(10),
 
I DOIMT(60) ,DYPLUS(60J,DLPLUS(60),DTPLUS(60J
 
2 IOEL-,OOLH(IO),Z(60),DZ(60),CIRM,N,PSAT,RHOSATTEMPS
 
- ,DST(IO),DAREA(bO),DDIMYH(60),CYPLND(6O,UUPLND(60J, 
4 OTPLNO(60),DYND(60),ODLUGND(6C),DTND(bO),DELTA(IO), 
5 DELY,DTEMPA,CPABCMU,NNTPTS,CDELNI(0),DREIND(IO), 
6OTEMP(6d),DVISCO(60J,DIMYHP(10,6O),DIMTP(I0,60J, 
7 YPLUSP(1O,60),TPLUSP(IO,60,ENTHNW(24),DPRTMP 

C
 
INTEGER VDATE(IO),VRUN(IO),TCATE(IO),TRUN(tOh,VTRAV(IOj,PLATE(10),
 

I PTITLE(4,60),XLABEL(4,40),YLABEL(4,4C),RXTYPE(4tYTYPE(4).,
 
Z XTEN(4),YTEN(4),L2(13),LL2(4,13),Nl(&0),N5(40),N6(4U)-,NI8(13
 

C
 
REAL IS(60),PSAT(S),RHCSAT(5) ,TEMPS(9),IBAR(60),-XLENGT(4),
 
I YLENGT(4),XZERO(4),XEND(4),XI(4),YZERO(4),YEND(4),YI(4)',
 
XX(13,50),YY(13,50)
 

C
 
C
 

REAL NN,NIV,N2VNIY,N2Y,NL,n4TNDH,NID,N2D,N30,NNI,NN2,NN3;DMU(bO),
 
I NN4,NN5
 

C
 
C CALCULATED UNCERTAINTY INTERVALS
 
C
 

DYTMP=DELY
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CTPLAT=SQRT(o1.*OTEMPA*t2)/5.

DPBAR=DPAMB82S.96/2116.
 
OTMP=DTPLAT
 
EAREA(I)=O.0
 

ILLC FGRMAT(/2XI1(IXE1D.J))
 
1.0[ FORMAT(///)
 

C PRINT 1000, DYTMPDTPLAT,CPBAR,L)TMP
 
C PRINT 1001
 
C
 

CC 90 1=1,KNTPTS
 
C
 
C TENP(1I

C
 

C BECALSE OF POSSIBLE THERMOCCUPLE ERRURS DUE TO RADIATION AND
 
C CCMJUCTION AND ALSO ERRORS DUE TO INHUMUGENEOUS WIRES IN A TEMP-

C ERAIURE GRADIENT, A HIGHER UNCERTAINTY IS,APPLIED HERE TO THE FIRST
 
C 15 POINTS ABOVE THE AALL(PKESIMING THAT MOST PROFILES HAVE 25 TO
 
C 30 PEINTS). IN THE OUTER REGION, THE SMALL GRADIENTS LEAD TC MORE
 
C CERTAIN READINGS.
 
C
 

IF(I.GT.1) CTlP=DPRTMP
 
IF(I.GT.16) DTMP=DTEMPA
 
1=CTMP
 
T2=-DUVNW(I)*2.*RC(N)*CI/CP(I)*U2(I)
 
DTEMP(I)=SWRT(T1**2 + T2**2)
 

C PRINT 100C, TITZDTEMP(I)
 
9C CCNTINUE
 

C PRINT 101
 
C
 

DO 100 I=1,NNTPTS
 
C
 

CMU(I)=DMUP*VISCO(I)*RF-C(1 )/100.
 
IF(I.GT.1) DUUGNC(I)=UUG(1)/UUGNEII)*IOD.
 
IFII.GT.1) UTMP=DTE,4PA
 
IF(I.GT.1) GC TO 88
 
DLLGND(I)=C.0
 
CTND(11=0.0
 
CYPLND(I=O.O
 
DUPLND(1I=O.U
 
CYNC(1)=O.O
 
£TPLND(II=O.O
 

8E CONTINUE
 
C
 
C CItT(1)
 
C
 

NN=TEMP(I) - TEMP(NNTPTS)
 
CD=TPLATE(NJ - TEMP(NNTPTS)
 
C1=-DTEMP(I)/DD)
 
D2=DTEMP(NNTPTS)(I1./DD - NN/DD**2)
 
£3=DTPLAT*NN/DD**2
 
DDIMT(IJ=SQRT(01U*2 ± D2**2 + D3**21
 
IF(I.GT.J) DTND(I)=DOIMT(II/DIMT(I)I00.
 

C PRINT O00, DNU(I),TEP(I),NNDDDID2,D3,UDIMT(I),OTND(I)
 
C
 
C
 
C VISCGSITY
 
C 

NIV=11. + O.0175*TEMP(I) 
N2V=RK*(TEMP(I] + 460.) 
CV=1.OE06*(PBAR(N)*2I16./29.S6 + PSTAT(N)*5.2) 
VI=DTEMP(I)*(O.0175*N2V/OV + RM:NlV/DV) 
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V2=-DPBAR*NIV*N2V/DV**2*1.OE06*2116./29.96

V3=[;MU(I)*N2V/DV
 
GVISCG(I)=SCRT(Vl#*2 + V2**2 + V3**21
 

c PRINT 1000, NIVN2VDVVl-,V2,V3,DVISCC(I)
 
c I
 
C YPLLS(l)
 
c 

NIY=YTPP(I)*UINFT(14)
 
N2Y=CF2(N)#(TElP(NNTPl5J + 460.) 
CIY=VISCO(I)*12.
 
C2Y=TEVP(lJ * 460.
 
V6=DEL'Y*UINFT(N)*SQRT(142Y)/(DIY*:SQRTtD2Y)I
 
Y2=-DTEMP(I), NIIY*SQRT(N2Y)/(SQRT(D2Y)*D2Y*DIY*2.J
 
3=L)TEP.P(NNTPTS)*NlY*CF2(1%)/trlY*SQRT(02Y*N2Y)*2,.)
 

Y'4=DUVNWiN.NTPTSJ*YTMP(I'J*SQPT(N2Y)/(DIY*SQRT(02Y)') 
Y5=-L;VISCU(I)*NIY*12.*SQRT(N2Y)/(SQRT(02Y)*DIY**Z)
 
z=DCF2(N)*NIY/(DIY*(SCRT(L)2Y*N2Y)*2.))*(,TEMP(NNTPTS4+460.)
 

CYPLUS(I)=SQRT(YB*Y8 + Y2**2 + Y3**2 + Y4**2 + Y5**2 + Y6*Y6)
 
IF(I.GT.1) CYPLNL)(I)=DYPLUS(I)/YPLUS(I)*100.
 

c PRINT IUOO, Ni ,N2Y,01YD2YY6,Y2,Y3,Y4,Y5,DYPLUS(I),DYPLND(I) 
c 
C UPLLSM 
c 

NU=U(I)*SQRT(TEMP(I)+46O-)
 
"=SQRT(CFZ(N)*(TEMP(NNT;TS)1460.))*UINFT(N)
 
LI=DL.\iNw(I)*SQRT(TEMP(I)+/,60.)/DU
 
U6=DTEMP(1)4U(I)/(2.*DU SQRT(TEMP(I)+460.1)
 
U3=-DUViNWtNt\TPTS)*IAU/(I)U*UINFT(N))
 
U4=-DTE:MP(NNTPTS)*,'qL/(2.*DU*CTEYP(NN-TPTS)+460.))
 
U5=-DEF2(N)*NU/(2.*DU*CF2(N))
 
DUPLUS(I)=SQRT,(UI**2 + Ub**2 + L)3*1 2 + U4**2 + U5**2)
 
IU(I.GT.1) [;UPLINL)11)=DUPLLS(I)/UPLUS(I)*100.
 

c PRINT 1000, NUDUULtU6,U3,U4,U5,DL)PLUSCIJDUPLNO(l)
 
c 
C TPLUSM
 
c 

NT=DIMT(I)*SQRT(CF2(i,)*(TEYF(I\NTPTS) 46L).)J
 
Cl=ST(N)*SQRr((TEMPlI)+ 6G.))
 
TPI=CDIMT(I)*SQRT(CF2(N)*(TEMP(NNTPTS)+460.))/L)T
 
TP2=uTEtIP(NNTPTS)*NT/(2.*DT*(TEMP(NNTPTSJ+460.)J
 
TP,3=-DST(N)*NT*SQRT(TEMP(l)+460.)/DT**2
 
IP4=-DTEMP(I)*NT*ST(N)/(Z.*DT *2*SQRT(TEMPCII+46U.))
 
TP5=DCF2(N)m DIMT(I)*SQkT(TEMP(NNTPTS)+460.)/(2.*DT*SQf\T(CF2(N)II
 
GTPLUS(I)=SCRT(TP1**2 + TP24*2 + TP3**2 + TP4**2 + TP5**2)
 
If-(I.GT.1) DTPLNDII)=DTPLLS(I)/TPLLiStll*10,j. 

c PRINT 1000, N7,DTTP1,TP2,TP3,TP4,TP5,DTPLUS(I)iL)TPLNU(I)
 
c 
C DELlA2(N) - 1BAk(l)*TR(l)
 
c 

AA=kC(N)*CI/CP(I)
 
NID=T(NNTPTS)-AA*U2(i'4NTPTSI+460.
 
DID=T(l)-AA*U2(I)+460.
 
N20=CP(I)*T([)+Cl*U2(1)*tl.-P (N))-LP(NNTPTS)*T(NNTPTS)-Cl*u2(NNTP
 

IISI*(I.-RC(NJJ
 
C2C=CP(I)*T(l)-CP(fNTPTS)*T(NNTPTS)-Cl*U2(i'4NTPTSI*(l.-RC'(N1J 
i\30=NIC*NZD
 
i:3D=DID*02D
 
Z(I)=N3D/030
 
X6=-L)TPLAT*t\31)*DIU/D3r* 2*CP(l) 
X2=DTPP*(NID*CP(I)/D30 - iq3D/D3D*#2 D2D)
 
X3=DTEMPA*((NZC-NID*CP(i'4rTPIS)I/D30+N3D/D3D**2*CP(NNTPTS)*i)ID)
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4=0UVN (IJ*(NID*2.*CI*( I.-RC(N))*U (I/D30+N3D/D30**2*DZ*2.*AA*

I U( I) 
N5=CUVN(NNTPTS)*((-N2C*2.*AA*U(NNTPTS)-NID*2.*CI*(I.-RC(N)]*U(NNT 
1PTSJ)/D3D - N30/D3D**2*LjID*(-2.*Cj*(I.-RC(NJU*U(NNTPTS I) 
CZ(I)=SQRT(X6**2 + X2**2 + X3**2 + X4"*2 + X5**2) 

C PRINT 1000,AA,NIO,DIO,r2D,D2C,N30,D3D,L(I
 
C PRINT 1000,X6,X2,X3,X4,X5,DZ(I)
 
C FRINT 1001
 
C
 
C TO EE CONTINUED
 
C
 
C
 

100 CUNIINUE
 
C
 

C TFERMAL 6L THICKNESS'
 
C
 
C IDELH IS THE VALUE OF THE INDEX I FOR ThE FIRST DIMT(1) > 0.99
 
C
 

NCH=O.99 - DIMT(IDELH-I)
 
£DH=DIMT(IDELH) - DIMT(IUELH-11
 
Dhl=DELY*(1.-NDHIDDH
 
EH2=DELY*NDH/DDH
 
Ch3=-DDIMT(IDELH)*NH/DDH*2(YTP(ICELH-YTMP(IDELH-1I)

DH4=DDIMT{IOELH-1)*(YTrP(IOELHJ-YTMP(IDELH-1)J*(NDH/DDH**2-1./OOH)
 
'CELH({)=SCRT(DH1**2 + OH2**2 + DH3**2 + DH4**2)


C
 

C
 
CC 115 I=INNTPTS
 

C
 
C YTMP/DELH
 
C
 

ODIMYH(I)=SCRI((OELY/OELH(NJ)**2 + (CCELH(N)*YTMP(11/DELH(Nj**2)
 

IF(I.GT.I) CYND(I)=DDCI4YH(I)/DIMVH(IJ100.
 
C PRINT 1000, NDriOOH,CHI,DI-.2,Ch3,H4,ODELH(N,OIMYH(I),DYND(I)
 
C
 

115 CCNTINUE
 
C PRINT 1001
 
C
 
C DELI2(N) CONTINUED
 
C
 

M.=DELY*.5*(UUGNEV(NNTPTS)*Z(NNTPTS)+UGNEr(NNTPTS-1)*Z(NNTPTS-1)I
 
A2=-DELY*.5*(UUGNEW(I)*Z(1)+UUGNEW(2)*Z(2))
 

C NN5=.5*(YTMP(2) - YTMP(1)J
 
C A3=DUUGNW(NNTPTS]*NN4*Z(NNTPTS) =0 SINCE Z(NNTPTS)=O
 
C A4=DUUGNW(I)*NN5*Z(I) =0 SINCE OUUGNW(l)=O
 
C A6=DZ(1)*NN5*UUGNE:W(l =0 SINCE UUGNEW(I)=O
 

tN4=.5*(YTMPiNNTPTS)-YTMP(NNTPTS-1))"
 
A5=DZ(NNTPTS)*NN4*UUGNEh( NTPTS)
 

C.
 
SUMI=O.O 
SUM2=O.0 
SUM3=0.0
 
AtN=NNT PTS-I
 
00 110 1=2,NN
 

NNI=.5*(UUGNEh(I-I]*Z(I-1) - UUGNEWII+1)*Z(1+1))
 
NN2=.5*(YT'P(1+1) - YTMP(I-IJ)*Z(I)
 
NN3=.5*{YTMP(I+I) - YTMP(I-I)*UUGhEW(IJ
 
SUMI=OELY*DELY*NNI*NN1 + SUMI1
 
SLM2=DUUGNW(I)*OUUGNW( I)*rN2*NN2 + SUM2
 
SUM3=DZ(I)*DZ(IJ*NNB*NN3 + SUM3
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C 	 PRINT 1O000UUGNEW(I),ZI),YTMP(I}hDELYDUUGNW(l),DZ()

C 	 PRINT LOOO, NN1,NN2,NN3,SUMISUM2,SUM3
 

110 CONTINUE
 
C
 
C 	 PRINT 1000, AI,A2,ASSLIM,SUI'Z,SUM3,Z(NNTPTSJNN4,UUGNEW(NNTPTS
 

DDELTA(N=SQRT(A1*AI+A2*A2+AS*A5+SUM1tSUM2+SUM3J
 
DDELND(NWQODELTA(NJ/DELTA2(N)*100.
 

C
 

C ENTFALPY THICKNESS REYNOLDS NO.
 
C 	 RI=DDELTA(NJ*UINFT(NJ/(,12.*VISCO(NNTPTS))
 

R2=CUVNW(NNTPTS)*DELTA2(N)/(12-*VISCOCNNTPTSV)
 
R3=-DVISCO(NNTPTS)*0ELTA2(N)*UINFT(N)/(12.*VISCO(N**2J
 
£REENT(N)=SQRT(R.**2 + R2**2 + R3**2)
 
£REND(NhDREENT(N)/REENTh(N)*100.
 

C 	 PRINT 1000, DDELTA(N),DDELND(NJ,R1,R2,R3,CREENTCN,DREND(NJ
 
C 	 PRINT 1001
 
C
 

RETURN
 
END
 

C 
C 
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IENERGY PROGRAM 

C
 
C
 
C THIS PROGRAM 'IS DESIGNED TO:
 
C 1. ADJUST THE ENTHALPY THICKNESSES, INTEGRATED FROM THE
 
C -STANTON DATA, ON THE BASIS OF A STARTING VALUE COMPUTED
 
C FROM THE PROFILE DATA.
 
C 2. COMPARE THE PROFILE ENTHALPY THICKNESS TO THAT FROM THE
 
C INTEGRATION OF THE ENERGY EQUATION,IE, CHECK THE ENERGY
 
C BALANCE.
 
C 3. PLOT STANTON NO. VS REDEL2 AND PUNCH ALL THE RESULTS.
 

- C ALL THE STANTON RUNS ASSOCIATI D WITH EACH PROFILE RUN CAN BE 
C ADJUSTED AT ONE TIME(ENTIRE ET IS HERE DEFINED TO BE A DATA RUN). 
C AS MANY DATA RUNS AS DESIRED CAN BE PLOTTED ON ONE PLOT. 
C IF A PLOT OF DEL2 VS X FOR THE PROFILE DATA AND FOR THE 
C VALUES FROM THE INTEGRATION IS DESIRED, IT CAN BE OBTAINED BY USING 
C THE PUNCHED OUTPUT WITH A PLOT PROGRAM. 
C 
C 
C COMPILED 11/2/69 
C 

INTEGER PLATE(1O),PTITLE(4,60),XLABEL(4,40),YLABEL(4,40),R,
 
I XTYPE(2),YTYPE(2),XTEN2),YTEN(2),OPTION,DATE,RUN
 
DIMENSION XLENGT(2),YLENGT(21,LL2(2,I3)
 

I ,XZEROZ),XEND(2),Xl(2),YZERO(2)tYEND(2),YI(2),
 
2DELTA2(IO)STNIl5,24),REDEL(24),ENTH24),REDELN(15,24),ENTHNW(24),
 
3 L2(15IXX(13,100),YY(13,1OO),N5(40),N6(40),NI(60),Q(24),FR(24)
4 NIB(13),TITLE(18),TOEFF(24),F(24),UG(24),XINT(25),X(25), 
5 XST(24),TERM(25),XPROFI1OI,ENTHCK(IO),VISCGS(24) 
REAL ISO(24) 

C
 
C
 
C
 
C INPUTS HERE
 
C
 
C
 
C PLOT INFORMATION
 
C
 
C
 
C THE PLOT SPECIFICATIONS WERE READ IN THIS SECTION. THE ACTUAL
 
C CARDS HAVE BEEN REMOVED, BUT ANY PLOTTING ROUTINE CAN BE UTILIZED.
 
C 
C 
C DEFINITIONS: SEVERAL STANTON RUNS WILL BE ADJUSTED BY THE RESULTS 
C OF A SINGLE PROFILE RUN. STANTON RUN= TO 24 PLATES OF STANTON 
C DATA. DATA RUN=ALL STANTON RUNS ASSOCIATED WITH ONE PROFILE RUN. 
C 
C 
C IPUNCH - O-NO PUNCH 1-PUNCH 
C IPLOT - O-NO PLOT 1-PLOT 
C NPLOTS'- NUMBER OF PLOTS TO BE PREPARED 
C NOATA - NUMBER OF DATA RUNS DESIRED ON EACH PLOT 
C NCURV - NUMBER OF STANTON RUNS PER DATA RUN 
C NTRAV - NUMBER OF TRAVERSES IN THE PROFILE RUN USED FOR 2-D CHECK 
C MTRAV - PLATE CORRESPONDING TO DELTA2 USED FOR ADJUSTMENT 
C OPTION - OPTION TO SELECT BASIS FOR STARTING VALUE IN ENERGY 
C EQUATION. I FOR AVERAGE BASED ON PROFILES, 2 FOR A 
C PARTICULAR PROFILE, 3 FOR A PRESELECTED STARTING VALUE 
C WH.ICH IS ENTERED AT "READ(5,9)"3 STATEMENT. 
C XOEL - X CORRESPONDING TO XDELTA USED FOR ADJUSTMENT WHEN OPTION=3 
C NCST - SET TO 1 FOR CONSTANT PROPERTY CORRECTION TO STANTON DATA 
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C NF - FIRST PLATE TO BE PLOTTED
 
C NL - LAST PLATE TO BE PLOTTED
 
C
 
C 

READ(5*6) NPLOTSIPUNCH,IPLOT
 
6 FORMAT(I2,1X,I1,1XI1)
 

61 FORMAT(IlXI1,lXI2,lXI2)
 
C
 
C
 

DO 1550 LOOP=1,NPLOTS
 
C
 
1605 NN=0
 

KD=l
 
READ(5#611 NDATANCSTNFtNL
 

C
 
1610 READ(5,9) NCURVNTRAVMTRAV,OPTION,XDELtXDELTA
 

XDEL=XDEL112.
 
XDELTA=XDELTA/12.
 
WRITE(6,889)
 
WRITE(6,3235)
 

3235 FORMAT(5XITEMPERATURE PROFILE DATAI//4X'PLATE5X'I0SXDELTA2'/)
 
3236 FORMAT(5X,I2.5XF5.2,2XF7.4)
 

C
 
C INSERT TITLE CARD THAT GOES WITH TEMP OUTPUT SUMMARY. IT WILL BE
 
C SKIPPED.
 
C 

DO 110 N=I,NTRAV
 
READ(5,10).PLATE(N),XPROF(N)iDELTA2IN)
 
IFIOPTION.NE.2) GO TO 3365
 
IFIPLATE(NI.EQ.MTRAV) XDEL=XPROF(N)/12.
 
IFdPLATE(N).EQ.MTRAV) XDELTA=DELTA2(N)/12.
 

3365 WRITE(6,3236) PLATE(N),XPROF(N),DELTA2(N)
 
110 CONTINUE
 

C
 
9 FORMATCI2.IX,12IXI2,IXI1,3X,2FO.O/)
 

10 FORMAT(3XI2,IXF5.2,41XF6.4)
 
C
 

o 200 NC=1,NCURV
 
C 

NNN=NC + NN
 
IFLNC.NE.1) ,WRITE16,889)
 

C
 
C INITIALIZE STANTON DATA
 
C
 

DO 588 I=1,24
 
STNtNNNID=0.0
 
REDEL(I)=O.O
 

588 ENTH(I=0.0
 
C 
C
 

READ(5,905) TITLEDATERUN
 
C
 

READ(5,132) TAMBvTGAS
 
00 135 1-1,24
 
READ(5.131) TOEFF(I),STN(NNN,I)REDEL{C),ENTH(II)F(I),UG(I)
 
IFINCST.EQ.1 STN(NNNI)=STN(NNNvI)*C((TOEFF(I)+460.j/
 

I (TGASt460. )**0.4,)
 
135 CONTINUE
 
131 FORMAT(3XF6.2,6XF7.5tF6.OF6.4,F8.4,F6.2)
 
132 FORMAT(/IXF6.2,15XF6.2)
 

WRITEE6&906) TITLEDATERUN
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WRITE(6,140)
 
WRITE(6,141) TAMBTGAS
 
WRITE(6,1916)
 
00 150 1=1,24
 
WRITE(6,1311 TOEFF(I),STN(NNN,I),REDEL(IhENTH(1),F(I),UG(I)
 

150 CONTINUE
 
C
 

140 FORMAT(///IOXOSTANTON PROGRAM REDUCED DATAI/)
 
141 FORMAT(5XTAMB= FS.1,1OXITGAS=1 F5.1/)
 

C
 
861 FORMAT(1XI2,IXFJ.5,IXF6.O,IXF6.4,1X,F3.0
 
889 FORMAT(1H11
 
905 FORMAT(lXlBA4I5X,18,2XI4) 
 -

906-FORMAT(IIIOX,18A4/25X,16,*-',Il)
 
907 FORMAT(2XI8A4)
 
960 FORMAT(//2(SXIPLATE5XfST'5X'REDEL4SX'ENTH')/)
 
961 FORMAT( (6X,12,4XF7.5,2XF6.0,4XF6.4))
 
1916 FORMAT(4X*TOEFF'8XIST4XREDEL1X'ENTHt5X'F*5X'UG'/)
 
1917 FORMAT(SX12,3XF7.5,IXF6.0.4XF6.4,9XI2,3XF.5,XF.0,4XF6.4}
 

C
 
CP=.24
 
DEL=I.13.
 
XST(1)=I./6.
 
DO 3200 1=1,24
 
IF(I.GT.1) XST(I)=XST(I-1) + 1.13.
 
ISO(I)=CP*(TOEFF(l)-TGASI - UG(I)*UG(I)/(64.4*778.)
 
VISCGS(IJ=ENTH(I)tUG(I)/(12.*REDEL(I)
 
Q(I)=STN(NNN,I)*UG(I)*ISO(I)
 
FR(I)=F(I)*UG(I)*ISO(I)
 

3200 CONTINUE
 
C-

C
 
C INTEGRAL IN ENERGY EQUATION IS EVALUATED HERE
 
C
 

XINT(l)=O.O
 
DO 3205 J=2,25 

3205 XINT(Jh=XIN(J-1) + l.13.*(Q(J-I)-FR(J-1I) 
C 
C STARTING CONSTANT IN ENERGY EQUATION IS EVALUATED HERE. METHOD 
C USED DEPENDS ON OPTION SPECIFIED IN INPUT. 
C 
C 
C X(1) - X AT EDGE OF EACH PLATE 
C START - UG*ISO*DELTA2 AT X=O 
C 

X(11=0.0
 
DO 3214 JJ=2,24
 

3214 X(JJ)=X(JJ-1) + 1./3.
 
C
 

SUMI=O.0
 
SUM2=0.0
 
SUM3=O.0
 

C
 
WRITE(6,2136)
 

2136 FORMAT(I)
 
C
 

MRM=1
 
IF(OPTION.EQ.1) MMM=NTRAV
 
DO 3215 MM=I,MMM
 
IF(OPTION.NE.11 GO TO 3318
 

XDEL=XPROF(MM)/12.
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XDELTA=DELTA2(MMI/12.
 
3318 CONTINUE
 

00 3210 J=2,24
 
IF(X(J).GE.XDEL) GO TO 3220
 

3210 CONTINUE
 
3220 XXINT=XINT(J-1I+(XDEL-X(J-1))*(XINT(J)-XINT(J-1))/IX(J)-X(J-1)J
 

DO 3211 J=2,24
 
3211 IF(XST(J).GE.XDEL) GO TO 3212
3212 	XISO=ISO(J-I)
 

IF(XDEL.GT.(XSTJ-1)I./6.)) XISO=ISO(J)
 
XUG=UGCJ-1,)+(XDEL-XSTiJ-1) )*(UG(J)-UG(J-1) I/(XST(JI-XSTCJ-1J)
 
START=XUG*XISO*XDELTA-XXINT
 

C
 
XSTART=12.*START/tUG(I)*IS(I))
 
XREDEL=XSTART*UG(I)/(VISCGS(1)*12.)
 
WRITE(6,2135) XSTARTXREDEL
 

2135 	FORMAT(3X'STARTING VALUE: ENTHALPY THICKNESS='F7.4,
 
I IOXIENTHALPY REYNOLDS NUMBER=IF6.0)
 
SUMI=SUM 1START
 
SUM2=SUM2+XSTART
 
SUM3=SUM3+XREDEL
 

3215 	CONTINUE
 
START=SUMI/MMM
 
SUM2=SUM2/MMM
 
SUM3=SUM3/MMM
 
WRITE(6,3216)
 
WRITE(6.2135) SUM2,SUM3
 

3216 	FORMAT(/7X@AVERAGEI )
 

C
 
C
 
C NOW THE ENERGY EQUATION CAN BE EVALUATED ALONG THE ENTIRE'TEST
 
C SECTION. "TERM" IS UG*ISO*ENTH AT THE EDGE OF EACH PLATE. "ENTHNW"
 
C AND NXST" ARE THE VALUES OF ENTHALPY THICKNESS AND X AT THE CENTER
 
C OF EACH PLATE.
 
C
 

TERM(I)=START
 
D 3230 1=2,25
 
TERM([I)=START + XINT(I)
 
ENTHNW(I-1) =(.5*(TERM(I-1I+TERMI))/,UG('I-13*ISOCI-1l)))l12.
 
REDELN(NNNI-1)=UG(I-1)*ENTHNW(I-1I/(VISCGS(!-11*12.)
 

3230 	CONTINUE
 
C
 
C TWO-DIMENSIONALITY CHECK: ENTHALPY THICKNESS CALCULATED FROM THE
 
C PROFILES IS COMPARED TO THAT PREDICTED BY THE ENERGY EQUATION
 
C
 
C
 
C
 

WRITE(6,889)
 
WRITE(6, 06) TITLE,DATE,RUN
 
WRITE(6,3325)
 
D 3300 M=INTRAV
 
DO 3305 J=I,24
 

3305 IF(XST(J).GE.(XPROFIMI/12.)) GO TO 3310
 
3310 ENTHCK(M)=ENTHNW(J-13+(XPROF(M)12.-XST(J-1))*(ENTHNW(J)-


I ENTHNW(J-l))/(XSTCJ)-XST(J-1))
 
VEL=UG(J-I)t(XPROF(M)/12.-XST(J-1))/CXSTCJ)-XST(J-1))*
 
I (UG(J)-UG(J-1))
 
XNU=VISCGS(J-1)
 
IF((XPROF(M)/12.).GT;(XSTCJ-1I)+./6.)) XNU=VISCGS(J)
 
REYN=VEL*ENTHCK(M)/CXNU*12.)
 
ER=(DELTA2(M)-ENTHCK(MIJ/DELTA2(M)*100.
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WRITE(6,3320) PLATE(M),XPROF(M),DELTA2(M),ENTHCK(M),ER,REYN
 
IF(IPUNCH.EQ.1) WRITE(7,3321) PLATE(M),XPROF(M),DELTA2(M),
 

I ENTHCK(M),ER,REYN
 
3300 CONTINUE
 
3325 FORMAT(///25X'TWO-DIMENSIONALITY CHECK'//IOX'PLATE'I0X'XI0X,
 

1 'DELTA2'IOX'DELTA2I10XIPERCENTIOXPROFILE/36X(PROF)'I1X,
 
2 1 (ST) 18X,' ERROR113X'RE.'/)
 

3320 FORMAT(12X,I2,SXFS.2,qXF6.4,1OXF6.4,OXF5..I,2XF6.O)
 
3321 FORMAT(12,IX,F5.2,IX,F6.4,1X,F6.4,IX,F5.1,1X,F6.0)
 

C
 
C THIS SECTION WRITES OUT THE CORRECTED ST-REDEL RESULTS
 
C
 

WRITE(6,3350)
 
3350 FORMAT(////2X,'ADJUSTED RESULTS OF STANTON NUMBER VS 'ENTHALPY THIC
 

IKNESS REYNOLDS NUMBER')
 
IF(NCST.EQ.1) WRITE(6,3351)
 

3351 FORMAT(20X'CORRECTED TO CONSTANT PROPERTIES')
 
WRITE(6.960)
 
DO 3140 JJ=1,12
 
JK=JJ412
 
WRITE(6,961) JJ,STN(NNN,JJ),REDELN(NNNJJ),ENTHNW(JJ),
 
1 JKSTN(NNNJK),REDELN(NNN,JK,ENTHNW(JK)
 

3140 CONTINUE
 
C
 

IF(IPUNCH.EQ.0) GO TO 3144
 
DO 3143 11=1,24
 
XJ=4*I1-2
 
WRITE(7,861) 1T,STN(NNN,1I).REDELN(NNN,IT).ENTHNW(It),XJ
 

3143 CONTINUE
 
3144 CONTINUE
 

C
 
200 CONTINUE
 

IF(KD.EQ.NDATA) GO TO 1620
 
C
 
C NOW A NEW DATA RUN WILL BE COMPUTED AND SET UP FOR PLOTTING.
 
C
 

,NN=NN + NCURV
 
KD=KD 1
 
GO TO 1610
 

C
 
C PLOTTING PREPARATION SECTION
 
C
 
1620 IF(IPLOT.EQ.O) GO TO 1540
 

C
 
C IN THIS SECTION THE PLOT ARRAYS WERE FILLED, AND THE PLOTTING
 
C SUBROUTINE WAS CALLED.
 
C
 
1540 CONTINUE
 
1550 CONTINUE
 

STOP
 
END
 

C 
C 
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