THE TURBULENT BOUNDARY LAYER: EXPERIMENTAL HEAT TRANSFER WITH STRONG FAVORABLE PRESSURE GRADIENTS AND BLOWING

By
D. W. Kearney, R. J. Moffat and W. M. Kays

Report No. HMT-12

Prepared Under Grant NASA NGL-05-020-134
for
The National Aeronautics and Space Administration

April 1970

THE TURBUTENT BOUNDARY LAYER: EXPERIMENTAL
HEAT TRANSFER WITH STRONG FAVORABLE
PRESSURE GRADIENTS AND BLOWING

By
D. W. Kearney, R. J. Moffat and W. M. Kays

Report No. HMT~12

Prepared Under Grant NASA NGE-05-020-134
for
The National Aeronautics and Space Administration

Thermosciences Division Department of Mechanical Engineering Stanford University Stanford,California

RREGEDING PAGE BLANK NOT FILMED. ACKNOWLeDGMENTS

This research was made possible through grants from the National Science Foundation, NSF GK 2201, and the National Aeronautics and Space Administration, NGL 0.5-020-134. The authors wish to express appreciation for the interest of Dr. Royal E. Rostenbach of NSF, and Dr. Robert W. Graham of NASA Lewis Laboratories.

The cooperation of R. J. Loyd throughout the experimental program was a necessary factor in its success. The assistance of B. Blackwell and P. Andersen in part of the testing is appreciated. Special credit is due Miss Jan Elliott for her timely and competent handling of the publication process.

ABSTRACT

Heat transfer experiments have been carried out in air on a turbulent boundary layer subjected to a strongly accelerated free-stream flow, with and without surface transpiration. Stanton number, mean temperature and mean velocity profiles, and turbulence intensity profiles were measured along the accelerated region. The tests were conducted with favorable pressure gradients denoted by values of the acceleration parameter $K\left(=\frac{v}{U_{\infty}} \frac{d U_{\infty}}{d x}\right)$ of 2.0×10^{-6} and 2.5×10^{-6}. The
blowing fraction, $F\left(=\rho_{0} V_{\delta} / \rho_{\infty} U_{\infty}\right)$, ranged from 0.0 to 0.004 . The flow was incompressible ($U_{\infty}, \max =86 \mathrm{fps}$) with a moderate temperature difference, 25 F , across the boundary layer.

One objective of the program was to obtain detailed heat transfer data in strong accelerations, to both increase understanding in this area and to provide a base for future prediction procedures. A second, and equally important, objective was to determine whether or not relaminarization of the boundary layer occurs at $K=2.5 \times 10^{-6}$.

The experimental results demonstrate that the Stanton number, as a function of enthalpy thickness Reynolds number, falls increasingly below the behavior observed in unaccelerated flows as K is increased, with or without blowing. The profile traverses show that, at the end of acceleration, the boundary layer is still fully turbulent.

Further heat transfer results are presented which illustrate the effects of various conditions at the start of acceleration (notably the thicknesses of the thermal and hydrodynamic layers); step-changes in blowing within the accelerated region; and an increase in the free-stream turbulence intensity.

The experimental results reported here, as well as data taken by other experimenters at lower values of K, have
been used to calculate the distribution of turbulent Prandtl number across the boundary layer. These calculations suggestthat a correlation of turbulent Prandtl number which is useful for flow over a flat plate is equally valid in accelerated flows.

Using a numerical solution of the appropriate boundary layer equations, the experimental results are predicted with reasonable accuracy, including the effects of various initial conditions and free-stream turbulence intensities.

TABLE OF CONTENTS

Page
Acknowledgments iii
Abstract iv
Table of Contents Vi
List of Figures viii
List of Tables xi
Nomenclature xii
Chapter One. INTRODUCTION 1
A. General background 1
B. Report organization 3
C. Laminarization 5
D. Constant-K boundary layers 7
Chapter Two. EXPERIMENTAL SURFACE HEAT TRANSFER TO STRONGIY ACCELERATED IURBULENT BOUNDARY LAYERS 11
A. Previous experimental findings 11
B. Objectives 14
C. Experimental program 15
C. 1 Test apparatus 15
C. 2 Test plan 16
D. Experimental results 17
D.I Effects of strong acceleration, with and without blowing 17
D. 2 Response to changes in initial conditions 21
D. 3 Response to changes in boundary conditions 23
E. Prediction of selected experimental results 24
F. Conclusions 28
Chapter Three. THE EFFECT OF FREE-STREAM TURBULENCE ON HEAT TRANSFER TO A STRONGLY ACCELERATED TURBULENT BOUNDARY LAYER 45
A. Introduction 45
B. Previous experimental work 46
C. Experimental program 46
D. Prediction of experimental results 49
Page
E. Conclusions 50
Chapter Four. AN EXPERIMENTAL STUDY OF TURBULENT PRANDTL NUMBER'FOR AIR IN ACCELERATED. TURBULENT BOUNDARY LAYERS 57
A. Introduction 57
B. Theoretical models and previous experimental results 58
C. Sources of experimental data 60
C.I Local shear stress and heat flux profiles 62
C. 2 Selection of experimental data 65
D. Turbulent Prandtl number distribution in ac- celerated flows, with and without blowing 66
E. Conclusions 68
References 79
Supplements:
I. EXPERIMENTAL APPARATUS AND TECHNIQUES 85
A. General description 85
B. Wind tunnel 86
C. Test plate 87
D. Transpiration system 88
E. Instrumentation 89
F. Qualification of the apparatus 92
F.l Transpiration energy balances 92
F. 2 Boundary layer energy balances 96
F. 3 Flat plate turbulent boundary layer 101
F. 4 Free-stream conditions 104
F. 5 Effect of pressure gradient 105
F. 6 Roughness 107
G. Data reduction 108
G.I Surface heat transfer 108
G. 2 Profile data 110
G. 3 Computer programs 111
G. 4 Uncertainty analysis 112
H. Test procedure 113
2. TABULATION OF EXPERIMENTAL DATA 127
A. Organization of tables and figures 127
B. Data 132
3. LISTINGS OF DATA REDUCTION PROGRAMS 163
Figure Page
2.1. Schematic diagram of the test apparatus 30
2.2 Traverse locations and typical velocity dis- tribution in the test apparatus for a strong acceleration 31
2.3 Experimental results of surface heat transfer in a turbulent boundary layer with a strongly accelerated free-stream flow. ——, Moffat and Kays [22] 32
2.4 Comparison of experimental boundary layer heat transfer in a favorable pressure gradient 33
2.5 Traverse data for the unblown turbulent boundary. layer with a nominal free-stream acceleration of $\mathrm{K}=2.5 \times 10-6$. Traverse symbols correspond to Fig. 2.2 34
2.6 Experimental results of surface heat transfer in a turbulent boundary layer, with and without blowing, at $K \approx 2.55 \times 10-6$. - , Moffat and Kays [22] 35
2.7 Experimental results of surface heat transfer at $\mathrm{K} \approx 2.55 \mathrm{x}$ 10-6 with various initial conditions at the start of acceleration. $\mathrm{St}=0.639 /$ $\left(\operatorname{Pr}^{R} e_{H}\right)$ is the similarity solution for laminar wedge flows with a very thick thermal boundary layer 36
2.8 Comparison of two runs of experimental heat transfer in a strong acceleration 37
2.9 Experimental heat transfer results in a strongly accelerated turbulent boundary layer with a step- increase in blowing 38
2.10 Experimental heat transfer results in a strongly accelerated turbulent boundary layer with a step- decrease in blowing 39
2.11 Correlation for the Van Driest parameter in accelerating flows with blowing 40

2.12 | Predictions of surface heat transfer in a |
| :--- |
| turbulent boundary layer with a strongly |
| accelerated free-stream flow 41 |

3.1 Experimental heat transfer for low and high initial free-stream turbulence intensities in a strongly accelerated flow. ——, Moffat and Kays [22] 52
3.2 Experimental turbulence intensity profiles in the constant U_{∞} region prior to acceleration. $\mathrm{Re}_{\mathrm{H}} \approx 600$ 52
3.3 Experimental turbulence intensity profiles near the end of the accelerated region. $R e_{\mathrm{H}} \approx 1430$. . 53
3.4 Experimental velocity profiles near the end of the accelerated region. $R e_{H} \approx 1430$ 53
3.5 Experimental temperature profiles for low and high initial free-stream turbulence 54
3.6 Comparison of predicted and experimental heat transfer results 55
3.7 Effect of initial free-stream turbulence level on the predicted heat transfer performance. ——, Moffat and Kays [22] 55
4.1 Experimental results for turbulent Prandtl number distribution in a turbulent boundary layer on a flat plate 70
4.2 Boundary layer profile results in a moderate acceleration with no transpiration 71
4.3 Boundary layer profile results in a moderate acceleration with blowing 72
4.4 Boundary layer profile results in a strong acceleration with no transpiration 73
4.5 Boundary layer profile results in a strong
acceleration with blowing 74
4.6 Turbulent Prandtl number in accelerated flows - inner region plot 75
4.7 Turbulent Prandtl number in accelerated flows - outer region plot 76
4.8 Turbulent Prandtl number in accelerated flows as a function of ϵ_{M} / v 77
4.9 Data of Simpson, et al. [27], for $F=0$ and $F=$ 0.004 , recomputed with present method. ■ - no shear correction applied to total pressure probe data. \times - shear correction applied 78
Sl.l Photograph of the test section entry region,showing the 4 :l contraction and approximately15 of the 24 test plates117
Sl.2. Closeup of plate surface (1 mm squares) 117
S1. 3 Cross-section view of a typical compartment 118
Sl. 4 Blowing and sucking energy balances 119
Sl. 5 Traverse temperature profiles in inner region coordinates 121
S1. 6 Surface heat transfer and temperature profile results for the turbulent boundary layer on a flat plate 122
Sl. 7 Free-stream energy spectra for low and highturbulence. Data recorded at $x=14$ inches, justprior to the region of acceleration 123
Sl. 8 Effect of pressure gradient on local transpira- tion rate in strong accelerations in present test apparatus 124
Sl. 9 Test duct configurations and profile locations 125
Table Page
I Instrumentation list 90
II Transpiration energy balance results: summary by plate 97
III Summary of representative boundary layer energy balances 100
IV Transverse momentum thickness and enthalpy thickness measurements 101
V Effect of experimental errors on the calculated enthalpy thickness at $x=78.8$ inches in run 111669 ($K=0.0, F=0.0$). 104
VI Prime uncertainty intervals (estimated at 20:1 odds) 114
VII Selected samples of experimental uncertainty calculations 115

NOMENCLATURE

Symbol	Description
A^{+}	Van Driest parameter (defined by Eqn. (2.11))
C_{f}	Surface shear stress coefficient ($=\tau \mathcal{J} /\left(\frac{1}{2} \rho_{\infty} U_{\infty}^{2}\right)$)
c_{p}	Specific heat at constant pressure
D	Dissipation term in the turbulent kinetic energy equation (defined by Eqn. (2.8))
D_{V}	Van Driest damping factor (defined by Eqn. (2.11))
F	Mass flux ratio ($=\rho_{0} V_{d} / \rho_{\infty} U_{\infty}$)
g_{c}	Gravitational constant ($=32.17$ lbm ft/lbf sec^{2})
h	height of test channel in y-direction
H	shape factor (δ_{1} / θ)
i	Enthalpy ($=c_{p} T$ for air)
i_{S}	Stagnation enthalpy referenced to free-stream $\left(=\left(i+U^{2} / 2 g_{c} J\right)-\left(i_{\infty}+U_{\infty}^{2} / 2 g_{c} J\right)\right)$
J	Dimensional constant ($=778 \mathrm{ft} \mathrm{lbf} / \mathrm{Btu}$)
K	Acceleration parameter $\left(=\frac{\nu}{U_{\infty} 2} \frac{d U_{\infty}}{d x}\right)$
$\ell_{\text {t }}$	Length scale (defined by Eqn. (2.10))
P	Pressure
P^{+}	Acceleration parameter $\left(=-K /\left(\mathrm{C}_{\mathrm{f}} / 2\right)^{3 / 2}\right)$
$\mathrm{P}_{\mathrm{e}}^{+}$	Effective P^{+}(defined by Eqn. (2.15))
Pr	Prandtl number ($=v / \alpha$)
Pr_{t}	Turbulent Prandtl number ($=\epsilon_{\mathrm{M}} / \epsilon_{\mathrm{H}}$)

Symbol
$\Delta \mathrm{P}_{\mathrm{dyn}}$
r_{c}
$R e_{H}$
Re_{M}
R_{t}
R_{x}
$q^{\prime \prime}$
q
Q^{+}

St

T
T_{T}
\bar{T}
T^{+}

U, V
U^{+}
U_{τ}
U_{∞}
$u^{\prime}, v^{\prime}, w^{\prime}$

Description

Dynamic pressure $\left(=\rho U^{2} / 2\right)$
Recovery factor

Enthalpy thickness Reynolds number $\left(=\Delta_{2} U_{o d} / v\right)$
Momentum thickness Reynolds number $\left(=\theta \mathrm{U}_{\infty} / v\right)$

Turbulent Reynolds number $=\frac{y \sqrt{\tau} t \rho}{\nu}$
x-Reynolds number $\left(=\int \frac{U_{\infty}}{v} d x\right)$
Heat flux
Turbulent kinetic energy $\left(=\frac{1}{2}\left(\overline{u^{12}}+\overline{v^{12}}+\overline{w^{12}}\right)\right)$

Heat flux ratio $\left(=\dot{q}^{11} /\left(\rho_{\infty} \mathrm{U}_{\infty} \mathrm{i}_{s}, o^{S t}\right)\right)$
Stanton number $\left(=h / c_{p} \rho_{\infty} \dot{U}_{\infty}\right)$
Temperature
T-state temperature in mass transfer
Normalized temperature $\left(=\left(T-T_{0}\right) /\left(T_{\infty}-T_{0}\right)\right)$
Normalized temperature in inner region coordinates $\left(=\vec{T} U_{\tau} /\left(S t U_{\infty}\right)\right)$

Mean velocity components in streamwise and normal directions

Normalized streamwise velocity ($=\mathrm{U} / \mathrm{U}_{\tau}$)
Shear velocity $(=\sqrt{\tau / \rho})$
Free-stream velocity in streamwise direction
Fluctuating velocity components in streamwise, normal, and transverse directions

Symbol
$\mathrm{V}_{\mathrm{O}}^{+}$
X
y
y^{+}
z
α
β
ϵ
Δ_{2}
δ
δ_{1}
κ
v
ρ
τ
τ^{+}
θ
$\frac{a^{12}}{}, \sqrt{a^{1^{2}}}$
1

Description

Mass flux parameter $\left(=\mathrm{V}_{0} / \mathrm{U}_{\tau}\right)$
Denotes streamwise direction
Denotes normal direction
Inner region normal coordinate $\left(=\mathrm{y}_{\tau} / \nu\right)$
Denotes spanwise direction
Molecular thermal diffusivity $\left(=\frac{k}{\rho c p}\right)$
Clauser equilibrium parameter $\left(=\frac{\delta 1}{\tau_{0}} \frac{d P}{d x}\right)$
Eddy diffusivity
Enthalpy thickness $\left(=\int_{0}^{\infty} \frac{U}{U_{\infty}}\left(\frac{t-t_{\infty}}{t_{W}-t_{\infty}}\right) d y\right)$
Boundary layer thickness, 0.99 - point in $\mathrm{U} / \mathrm{U}_{\infty}$ or $\overline{\mathrm{T}}$

Displacement thickness $\left(=\int_{0}^{\infty}\left(i-\frac{\rho U}{\rho_{\infty} U_{\infty}}\right) d y\right)$
Von Karman constant (≈ 0.44)
Kinematic viscosity
Density
Shear stress
Shear stress ratio ($=\tau / \tau_{0}$)
Momentum thickness $\left(=\int_{0}^{\infty} \frac{\rho U}{\rho_{\infty} U_{\infty}}\left(1-\frac{\rho U}{\rho_{\infty} U_{\infty}}\right) d y\right)$
Denotes mean-square and root-mean-square, respectively, of any fluctuating quantity a^{\prime} xiv

Subscripts
e
H
∞
M

○
q
t

Denotes turbulence
Denotes energy
Denotes free-stream
Denotes momentum
Denotes wall
Denotes turbulent kinetic energy
Denotes turbulence ,

A. General Background

The purpose of this research has been to gain insight, through experimentation, into the heat transfer behavior of turbulent boundary layers subjected to a strongly accelerated free-stream flow. Recent studies in this area have clearly indicated that the interactions between the hydrodynamic and thermal boundary layers under these conditions are not understood to the point where adequate predictions of the heat transfer are possible $[1,2]^{l}$. It has been demonstrated by numerous experimenters that when a turbulent boundary layer is subjected to a sufficiently large negative pressure gradient (free-stream acceleration), the layer will display laminar-like characteristics, apparently experiencing a retransition from a turbulent boundary layer to a laminar one. This phenomenon is accompanied by very substantial reductions in Stanton number and, for this reason, is of considerable technical significance.

It was originally thought that the abrupt decrease in the Stanton number, when a high acceleration is applied, was evidence of the retransition to a laminar boundary layer, and the term "laminarization", coined by Launder [3], has frequently been used in connection with such decreases in Stanton number. More recently it has been demonstrated [4] that even a relatively mild acceleration can cause a reduction in Stanton number, and that the degree of reduction increases continuously with the strength of the acceleration even though the layer remains turbulent. It is thus impos-

[^0]sible to determine from heat transfer data alone whether laminarization is taking place. Examination of mean velocity profiles, and the success of a theoretical model of the accelerated boundary layer, is used by Kays, et al. [4], as evidence that a turbulent equilibrium boundary layer can exist even though Stanton number is decreasing virtually as it would were the boundary layer entirely. laminar. It appears that acceleration causes a substantial increase in the thickness of the sublayer (an increase that ultimately will envelop the entire boundary layer at sufficiently strong accelerations), while at the same time the thermal boundary layer penetrates beyond the momentum boundary layer such that it encounters a region of very low or negligible eddy conductivity. The relative importance of these two different phenomena to the reduction in heat transfer is unknown, but it is expected that the growth of the sublayer is the dominating factor.

The ability to theoretically predict the effect of strong acceleration on the heat transfer in turbulent boundary layers, be it the result of relaminarization or a less dramatic phenomena, is a necessary prexequisite to design applications. Reasonable success in thịs regard has been achieved by Kays, et al. [4] for boundary layers subjected to accelerations up to a value of the acceleration parameter $K\left(=\frac{v}{U_{\infty}{ }^{2}} \frac{d U_{\infty}}{d x}\right)$ of 1.47×10^{-6} (relaminarization is thought to commence somewhere between $K=2.0 \times 10^{-6}$ and $K=3.5 \times 10^{-6}$). The most important factor in any prediction method for turbulent boundary layer behavior is how one chooses to model the turbulent transport terms. In flows approaching relaminarization, particularly in heat transfer where the free-stream turbulence level has promise of being an important parameter, the simultaneous solution of the turbulent kinetic energy equation in conjunction with the momentum and energy equations shows considerable promise as a prediction method
because the turbulence is invoked explicity. In this method, the turbulent'transport of heat and momentum can be related to the turbulent kinetic energy in several different ways. One technique, which has been pursued in this study, is to utilize the eddy diffusivity concept for momentum, and a turbulent Prandtl number to relate the eddy diffusivity for heat to that for momentum. In such a treatment, it is important to know the effect of external parameters, such as acceleration and transpiration, on the model for the turbulent Prandtl number.

Because a requirement for wall cooling often accompanies strong accelerations in current applications, positive transpiration, or blowing, at the wall is sometimes used to provide thermal protection at the surface. Thielbahr, et al. [6] conducted an extensive experimental investigation of the combined case of transpiration, both blowing and sucking, and moderate accelerations, up to $K=1.45 \times 10^{-6}$. The results of that study show some interesting interactions between blowing and acceleration. To pursue that aspect of heat transfer in accelerated flows, this study has been extended to cover the combined case of strong acceleration and blowing. It is recognized that practical problems often include variable-property, high velocity flows, whereas the experimental work reported here has been taken under conditions of constant properties and incompressible flow. Experience with current prediction methods, however, has repeatedly shown that the knowledge gained from this simpler case is generally applicable to more complicated flow conditions.

B. Report Organization

The present research covers three separately definable, but interrelated, topics.

First, the essential question of the relationship of the reduction in heat transfer to the possible occurrence of relaminarization has been investigated. Detailed measurements
have been obtained of both surface heat transfer, and boundary layer profiles of mean temperature, mean velocity, and streamwise fluctuation velocity, up to a value of the acceleration parameter, K, of 2.5×10^{-6}. The experimental data also include a series of tests which examine the response of the heat transfer in the accelerated turbulent boundary layer to changes in initial conditions and to steps in boundary conditions. The results of this test series provide some insight into the importance of the laminar-like outer region, where the thermal boundary layer has grown thicker than the hydrodynamic boundary layer.

Secondly, the effect of an inlet free-stream turbulence intensity of 3.9 percent on the reduction in heat transfer, at an acceleration of $K=2.5 \times 10^{-6}$, has been tested. The measured heat transfer provides additional information about the importance of the outer region. Because the theoretical model has been found to adequately predict these experimental results, the effect of a still higher initial free-stream turbulence. intensity of 10 percent is also theoretically predicted. The third topic treated here is an experimental evaluation of turbulent Prandtl number, for no transpiration and one case of strong blowing, over a full range of acceleration from the flat plate boundary layer ($K=0.0$) up to $K=2.5 \times 10^{-6}$. This information is necessary to provide a reasonable basis for the turbulent Prandtl number model used to calculate the turbulent transport of heat in the boundary layer.

This thesis has been organized into three major chapters, each treating one of the topics described above. All peripheral information, such as a description of the experimental apparatus and testing techniques, and tabulation of the experimental data, is presented in supplementary sections. While there will naturally be some overlap between the three topics, each chapter is essentially treated as a self-contained unit. In a given chapter are presented the experimental and
theoretical background pertinent to its subject, the objectives of the research, the presentation of results, and conclusions.

C. Laminarization

It was in the mid-fifties that the reduction of surface heat transfer in an accelerated turbulent boundary layer was first noted, leading Wilson [7] in 1957 to suggest that the turbulent boundary layer may revert to a laminar layer in accelerated flow. Since that time there have been numerous studies of this phenomenon, starting with detailed investigations of the hydrodynamic aspects by Launder [3] in 1964 and a basic heat transfer study by Moretti and Kays [8] in 1966.

One of the inherent difficulties in this subject arises because laminarization, the reversion of a turbulent boundary layer to a laminar boundary layer, is a vaguely defined occurrence. Like forward transition from laminar $\ddagger 0$ turbulent flow, there is a range in which the boundary layer is neither laminar nor turbulent, i.e., it is "in transition". Strong accelerations usually take place over short distances, and no experimenter has been able to maintain a laminarized boundary layer. Only laminar-like characteristics, both hydrodynamic and thermal, have been observed, with no distinct line of demarcation between turbulent and laminar conditions. It stands to reason that it is quite difficult to define the onset of the reversion process.

Experimental hydrodynamic studies [9,10,11] have concentrated on both the characteristics of laminarized boundary layers, and on criteria for the onset of laminarization. Noting the accumulated knowledge from several investigations, including their own, Badri and Ramjee [ll] tentatively noted three states in the decidedly gradual process ${ }^{l}$: (1) disappearance of the large eddy structure near the wall at a

[^1]critical value of the acceleration parameter K, (2) a departure from the inner law velocity profile at critical values of $\frac{\nu}{U_{\tau}^{3}} \frac{d P}{d x}$, i.e. P^{+}, or $\frac{\nu}{U_{\tau}^{3}} \frac{\partial \tau}{\partial y}$, and (3) a decay of turbulence intensity starting at a critical value of the momentum thickness Reynolds number. In regard to item (2), it has been observed that, in strong favorable pressure gradients, apparently approaching relaminarization, the shape factor H reaches a minimum value before increasing sharply [10], and the boundary layer becomes fully, but intermittently, turbulent [13]. Additionally, it has been shown by Julien [14] that departure from the inner velocity law occurs in moderate accelerations before any laminarization effects can be expected. One of the most pertinent observations remains that of Shraub and Kline [15], who noted, in a study of the turbulent structure in the sublayer, that the frequency of turbulent bursts, associated with the production of turbulence, decreases in accelerated flows. At a value of K of about 3.5×10^{-6} bursting ceases entirely, leaving only the normal dissipation processes.

Bradshaw [12] has recently formulated a model which displays significant promise, both in its proposed explanation of the underlying physics in laminarization, and its agreement with previous observations. Bradshaw argues that turbulent flow will become directly dependent on viscosity when the shear-stress-producing and dissipating ranges of eddysize overiap. Laminarization will occur when the region independent of viscosity has disappeared. He develops an eddy Reynolds number, $\sqrt{\tau_{\mathrm{t}} / \rho} \mathrm{L} / v$, which is a measure of the degree of overlap, where τ_{t} is the turbulent shear stress and L is a typical length scale of the shear-stress-producing eddies. Since the edge of the sublayer in a turbulent boundary layer is a region where viscous effects are just appreciable, the critical value of the eddy Reynolds number
can be evaluated there. Setting $L=k y$, Bradshaw deduces that when $\sqrt{\tau_{\mathrm{t}} / \rho} \mathrm{y} / \nu$ is below 30 throughout the layer, laminarization will occur. Launder and Jones [16], by incorporating the Van Driest hypothesis into the length scale L , find a critical value of about 15. Bradshaw shows genexal agreement between a maximum eddy Reynolds number and such earlier criteria as a minimum momentum thickness Reynolds number (320) or a critical value of $\frac{v}{U_{\tau}{ }^{3}} \frac{d \tau}{d y}$ (about -0.009 [10]).

It is very difficult to deduce the onset of relaminarization from observations of a reduction in the Stanton number, because even in moderate accelerations a reduction in Stanton number proportional to the magnitude of the acceleration is evident. The acceleration parameter, K, shows no distinctive promise as a criteria for leminarization, but it is closely related to that phenomenon and has a marked adventage in that can be externally controlled in experimentation. Particularly sharp reductions in the Stanton number are noted above values of $K=2.0 \times 10^{-6}$.

D. Constant-K Boundary Layers

The integral momentum and energy equations can be written in the form

$$
\begin{equation*}
\frac{d R e_{M}}{d R_{X}}=\frac{C_{f}}{2}-K(1+H) \operatorname{Re}_{M}+F \tag{I.I}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d \mathrm{Re}_{\mathrm{H}}}{\mathrm{dR}_{\mathrm{X}}}=\mathrm{St}+\mathrm{F} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
d R_{x} & \equiv \frac{U_{\infty} d x}{v} \\
F & \equiv \frac{\rho_{0} V_{0}}{\rho_{\infty} U_{\infty}}
\end{aligned}
$$

For the case where F and K are maintained constant, Eqn. (1.1) shows that an asymptotic condition can be reached where the momentum thickness Reynolds number will remain constant if the shape factor H does not change. This state is, in fact, attainable and in such a boundary layer Eqn. (1.1) provides a particularly simple means to determine the wall shear stress. Equation (1.2) is applicable only to the case of constant surface temperature. It implies that, for zero or positive F, the enthalpy thickness Reynolds number will continue to increase. In view of the asymptotic nature of the momentum boundary layer, one observes that the thermal boundary layer will grow outside of the hydrodynamic boundary layer under these conditions.

The state of the hydrodynamic boundary layer for constant K is more precisely defined by consideration of the differential equations of the boundary layer. Townsend [17] has shown that a "sink" flow, which is equivalent to a constant K , leads to a similarity solution of the continuity and momentum equations. Launder and Jones [18] have recently presented a solution to the resulting ordinary differential' equation by utilizing a Prandtl mixing length model for the turbulent Reynolds stress. The important point is that complete similarity can be expected for prolonged accelerations at constant K. Launder and Lockwood [19] have also demonstrated that a similarity solution for the energy equation is possible for the case where the surface temperature varies in a special way. For the case of constant surface temperature, however, the similarity solution is the trivial case, $\dot{S} t=0$ and $R e_{H}=\infty$.

It should be noted that the asymptotic boundary layer discussed-here is a particular case of the equilibrium boundary layer, which in general displays self-preserving outer-region defect-velocity profiles and is defined as a layer in which the equilibrium parameter, $\quad \beta=-\frac{\delta_{I}}{\tau_{W}} \frac{d P}{d x}$,
remains constant. By definition, $\beta=\frac{\mathrm{KRe}_{M}{ }^{H}}{\mathrm{C}_{\mathrm{f}} / \Sigma}$, so that β
is fixed in an asymptotic constant-K layer because each variable remains separately constant. In view of all these considerations, the parameters K and F were maintained constant for all the experimental tests conducted in this study, in an attempt to control the state of the hydrodynamic behavior of the turbulent boundary layer.

Precebing page blank not flemed.

CHAPTER TWO

EXPERIMENTAL SURFACE HEAT TRANSFER TO STRONGIY ACCELERATED TURBULENT BOUNDARY LAYERS

A. Previous Experimental Findings

It has been well established that the stanton number markedly decreases in strongly accelerated flows. The experimental evidence suggests that a fundamental change in structure, perhaps relaminarization of the turbulent boundary layer, occurs under these conditions. In 1965, Moretti and Kays [8] conducted the first detailed investigation of heat transfer in the turbulent boundary layer with strong favorable pressure gradients. They showed that the reduction of Stanton number was proportional to the magnitude of the acceleration parameter, K, which varied from 0.52×10^{-6} to 3.51×10^{-6} in their tests. At the strongest acceleration, however, the drop-off in stanton number was particularly steep in $S t-\mathrm{Re}_{\mathrm{H}}$ coordinates, suggesting that relaminarization of the boundary layer was taking place. This conclusion was substantiated by the hydrodynamic findings of Shraub and Kline [15], in which the turbulence generation near the wall was apparently completely inhibited in a boundary layer at about $K=3.5 \times 10^{-6}$. Profile data were not obtained by Moretti and Kays in conjunction with the surface heat transfer data, and it was difficult to speculate about the underlying mechanism for the reduction in Stanton number in their experiments.

More recently, experimental studies in rocket nozzles have also been concerned with understanding the heat transfer behavior. Boldman, et al. [20] report surface heat transfer data and mean profile data for average values of K up to 30×10^{-6} in the convergent section of a conical nozzle. Using the criterion that laminarization will occur when $R e_{M} \leq 360$, in conjunction with the momentum integral equation for an axisymmetric geometry, they derive a critical value for
the acceleration parameter K equal to 2.88×10^{-6}. The reduction in Stanton number in the nozzle, which is below the level normally associated with turbulent flow, consistently occurs at values of K above this critical value. It should be noted that the convergent portion of the nozzle measured 4.7 -inches along the axis, giving the boundary layer very little time to respond to the imposed acceleration. Short regions of acceleration, however, are to be expected with high levels of K, even in an apparatus designed solely for basic experimental studies of accelerating flows. ${ }^{1}$

Back, et al. [2] conducted a series of tests on a cooled, conical nozzle, also including surface heat transfer data, mean velocity profiles, and mean temperature profiles within the nozzle. Low rates of heat transfer were noted when K was above $2-3 \times 10^{-6}$, lying approximately 50 percent below turbulent correlations at the higher values of K. Average values of K in the nozzle, which measured 10 inches along the axis in the convergent portion, ranged from 1×10^{-6} to 8×10^{-6}. Both temperature and velocity profiles appeared to approach predicted laminar shapes near the wall at the highest levels of K . Theoretical predictions of the experimental results were not successful in either of the nozzle studies in cases where effects attributed to laminarization were observed.

Caldwell and Seban [1] discuss experimental and theoretical results dealing with boundary layer tests in a rectangular

[^2]$$
K=\frac{-v}{U_{\infty}, 1 A_{1}} \frac{d A}{d x}
$$
where I denotes the start of acceleration.
channel. Acceleration took place over a 5-inch section in which a blister was installed on one wall. Maximum values of K reported in the three tests ranged from 5×10^{-6} to 12×10^{-6}. Surface heat transfer data were accompanied by mean velocity profiles, mean temperature profiles, and streamwise fluctuating velocity profiles. The mean profiles showed the same trends reported by Back, et al. [2]. The profiles of $\sqrt{u^{\prime 2}} / U_{\infty}$ indicate a reduction in the peak through the region of acceleration in any given test. They found that the measured minimum value of the peak, i.e., near the end of acceleration, was approximately equal to 0.06 in all three tests. To predict the experimental results, Caldwell and Seban utilized a simultaneous solution of the momentum, energy, and turbulent kinetic energy equations. Their model, however, was not able to predict the measured decrease in Stanton number.

An extensive test program to study heat transfer in moderately accelerated boundary layers, over a wide range of transpiration, was reported by Thielbahr, et al. [6] in 1969. This program, conducted on the same apparatus as the present study, was carried out over a range of the acceleration parameter, K , from 0.57×10^{-6} to 1.45×10^{-6}, and a range of the transpiration parameter, F from -0.004 (sucking) to +0.006 (blowing). In conjunction with the parallel work of Julien [14], the data included mean velocity and mean temperature profiles in addition to surface heat transfer. The acceleration was imposed over distances from 2.5 to 5 feet, allowing the boundary layers to attain near-equilibrium conditions in many of the test runs. The significant feature of the no-blown results is that, for increasing K, the reduction in Stanton number, and the shape of the profiles, displayed a gradual progression towards the behavior normally associated with laminarization of the turbulent boundary layer. For example, the profile data show a substantial increase in the thickness of the sublayer in the accelerated
region, and a growth of the thermal boundary layer outside the hydrodynamic layer. The reduction in Stanton number is attributed to these two features, with the expectation that the sublayer growth is controling, and a theoretical model based on these observations successfully predicted the experimental results [4]. For moderate blowing, acceleration usually decreased the Stanton number, just as in the unblown case. At certain combinations of strong blowing and moderate acceleration, however, the Stanton number, at the inception of acceleration, increased over the unblown $S t-\mathrm{Re}_{\mathrm{H}}$ equilibrium relation for unaccelerated flow. However, by incorporating the experimental sublayer behavior into the theoretical model, the effect of interactions between moderate accelerations and transpiration on the surface heat transfer were also predicted.

B. Objectives

The present study was designed to investigate boundary layers in strongly accelerated flows at levels of K where relaminarization effects might be expected, but low enough so that the boundary layer would be reasonably close to an equilibrium state. The objectives can be enumerated as follows:

- To obtain surface heat transfer data in conjunction with mean temperature, mean velocity, and streamwise fluctuation velocity profile data for the turbulent boundary layer in the presence of a strongly accelerated free-stream flow, with and without blowing at the wall.
- To determine whether, at a value of the acceleration parameter $K\left(=v / U_{\infty}^{2} \frac{d U_{\infty}}{d x}\right)$ of 2.5×10^{-6}, the sudden reduction in Stanton number noted in preliminary experiments is a result of relaminarization of the boundary layer.
- To measure the response of the turbulent boundary layer in strongly accelerated flows to changes in initial
conditions and boundary conditions, particularly the initial ratio of thermal to hydrodynamic boundary layer integral parameters, the free-stream turbulence intensity, and steps in blowing at the wall.
- To investigate the use of the turbulent kinetic energy equation, in conjunction with the momentum and energy equations, in the prediction of boundary layer heat transfer in accelerated flows.

C. Experimental Program

C.I Test Apparatus (Figs. 2.1-2.2)

The boundary layer was formed on the lower surface of a rectangular channel having initial cross-section dimensions of six inches by twenty inches. The entire channel is eight feet in length. The region of acceleration, extending over a distance of 20 inches, begins 16 inches downstream of a $1 / 16$-inch high, $1 / 4$-inch wide flat boundary layer trip. The height of the upper wall of the duct can be varied to achieve the desired free-stream velocity; in the experiments described here a linear variation of the wall was utilized in order to achieve a constant value of the acceleration parameter K.

A schematic diagram of the experimental apparatus is shown in Fig. 2.1. To illustrate the experimental setup ánd the free-stream conditions for an acceleration of $K=2.5 \mathrm{x}$ 10-6, Fig. 2.2 presents a typical setting of the upper wall, and the variations of free-stream velocity and K through the region of acceleration.

The lower wall of the eight-foot channel is comprised of 24 segments of $1 / 4$-inch thick sintered bronze, allowing for tests with transpiration when desired. Surface temperature is measured by five thermocouples imbedded in the center six-inch span of each segment. The segments are heated by wires situated in grooves in the bottom surface, spaced close
enough together that the top surface temperature perturbation, due to wire spacing, is less than 0.04 F. The heat transfer between the surface and the boundary layer is deduced from an energy balance based on power and temperature measürements in each segment. Mean flow velocity profiles were obtained with a flattened pitot probe, while temperature profiles were measured with an iron-constantan thermocouple with the junction flattened. Turbulence profiles were taken with a 0:0002-inch constant temperature platinum hot wire and a linearized anemometer system. A detailed description of the apparatus and the data reduction method is contained in Supplement 1.

Prior to the experiments reported here, an extensive program was undertaken to qualify the test apparatus for use in strong favorable pressure gradients. The low entrance velocities made it necessary to prove the development of a uniform, two-dimensional boundary layer on the wall, and satisfactory energy balances in heat transfer. After some modification to the test rig, the uniformity of the main stream flow and spanwise variations in the boundary layer were found to be within acceptable iimits. Transpiration qualification tests, with no main stream flow, were conducted in which the net energy delivered to each plate agreed within about 4 percent with the measured energy transfer to the transpired air. Surface heat transfer results for the flat plate turbulent boundary layer agree with accepted correlations within 3 percent. Energy balances between the surface heat transfer data and profile measurements were typically within IO percent in the accelerated flows.

C. 2 Test Plan

The experiments can be conceptually divided into two categories: those tests, with and without blowing, in which the entering boundary layers are as close as possible to equilibrium conditions, and a series of experiments in
which both initial conditions and boundary conditions were perturbed in order to study certain characteristics associated with accelerated flows.

In the former category, tests without transpiration were conducted at free-stream accelerations corresponding to $K=2.0 \times 10^{-6}$ and 2.5×10^{-6}. At the stronger acceleration, two blowing runs were carried out at values of the blowing parameter, F , of 0.002 and 0.004 .

Five additional test runs comprise the second category. With no blowing, and at an acceleration of $K=2.5 \times 10^{-6}$, the state of the thermal boundary layer at the start of the accelerated region was controlled in three tests in order to study the effect of the initial condition on the surface heat transfer behavior in a strong acceleration. The controlled parameters were the thicknesses of the entering thermal and hydrodynamic boundary layers, and perhaps more important, their relative size. Two test runs were also conducted to investigate the response of the boundary layer to a stepwise change in blowing during acceleration.

D. Experimental Results

D. 1 Effects of Strong Acceleration, With and Without Blowing (Figs. 2.3-2.6)

The surface heat transfer data, for nominal values of the acceleration parameter K of 2.0×10^{-6} and 2.5 x 10^{-6}, with no transpiration, are presented in Fig. 2.3 in terms of Stanton number and the enthalpy thickness Reynolds number. Since each plate is 4 inches wide, each Stanton number represents an average over that distance. The enthalpy thickness Reynolds number is generally calculated by integration of the energy equation. An alternative method, also presented on that figure, is to evaluate the enthalpy thickness from profile measurements. The degree of agreement between these two independent methods is a measure of the
boundary layer energy balance. While the reduction in Stanton number at $K=2.55 \times 10^{-6}$ is quite pronounced, it appears to be consistent with a mechanism whose effect gradually increased with the strength of the acceleration. To illustrate this point, Fig. 2.4 compares results for five values of K with the unaccelerated case. No sudden change in the character of the response to acceleration is discernible in the surface heat transfer results,

Boundary layer traverses of mean temperature, mean velocity, and the streamwise fluctuating velocity are presented in Fig. 2.5. The hydrodynamic data shown there, as well as all the hydrodynamic results discussed in this report, are taken from the work of Loyd [23], who studied the fluid mechanics of strongly accelerated boundary layer flows in parallel with these heat transfer tests. A hydrodynamic similarity solution is possible for constant-K turbulent boundary layers, and the mean velocity profiles appear to approach such a similarity condition near the end of acceleration. As expected from the momentum equation, surface skin friction is nearly constant. The turbulence profiles indicate that the intensity of the turbulence near the wall and in the outer regions is decreasing through the accelerated zone. In the outer regions, the last two profiles in the accelerated zone show evidence of similarity. At the end of acceleration, the peak in the streamwise fluctuating velocity normalized by the free-stream velocity, $\sqrt{u^{12}} / U_{\infty}$, decreases to about 9 percent, compared to II percent prior to acceleration. For stronger accelerations, other experimenters have found the peak value to be reduced to 6 percent [I] and 2 percent [II]. With a constant wall temperature, a thermal equivalent of the hydrodynamic similarity solution does not exist. The continuous reduction in Stanton number through the region of acceleration is reflected in the growth of the temperature profiles in $T^{+}-y^{+}$ coordinates.

Bradshaw [12] has proposed that relaminarization takes place when the maximum value turbulent Reynolds number, tentatively defined as $R_{t}=\frac{y}{v} \sqrt{\tau_{t} / \rho}$, falls below 30. Applying an integral technique to the hydrodynamic data in Fig. 2.5, Loyd [23] has calculated the total shear stress distribution for the boundary layers in this study. Knowing τ and the local velocity gradient, the turbulent shear stress, τ_{t}, can be determined. Carrying out this procedure, the maximum values of R_{t} for the profiles shown in Fig. 2.5 are, respectively from the start of acceleration, 115, 128, 100, and 68, usually occurring at about $y^{+}=275$. The minimum R_{t} of 68 suggests that relaminarization is not taking place. On the other hand, Loyd [23] notes trends in the hydrodynamic data which suggest that, at $K=2.55 \times 10^{-6}$ and $F=0$, the final equilibrium state would indeed be a laminar one, though there is little doubt that the boundary layer shown in Fig. 2.5 is still turbulent. In Fig. 2.4 it can be noted that the slope of the Stanton number. curve shows no signs of diminishing within the accelerated region at $K=2.55 \times 10^{-6}$, whereas at lesser accelerations such a trend is apparent. This observation may be a sign of relaminarization, or simply a result of the fact that the boundary layer has not yet attained a near-equilibrium condition at $K=2.55 \times 10^{-6}$. Profile results demonstrate that, for $K=1.99 \times 10^{-6}$, an equilibrium state is nearly attained in the test shown in Fig. 2.4.

Through the accelerated region, the hydrodynamic layer thickness, δ_{M}, decreases much more rapidly than the thermal layer thickness, δ_{H}, resulting in a portion of the thermal layer lying outside of the momentum boundary layer. It is of interest to note the development of both the boundary layer thicknesses and the integral parameters through the accelerated region. At the start of the acceleration, the ratio δ_{H} / δ_{M} is 1.09 while Δ_{2} / θ equals 1.10 . Near the end of the
acceleration, the enthalpy thickness is 2.55 times greater than the momentum thickness, and the ratio δ_{H} / δ_{M} has risen to 1.37 . Since the outer region, hereafter called the "thermal superlayer", is characterized by laminar-like heat transfer mechanisms, it might be expected to substantially reduce the heat transfer rate. Evidence from the "recovery" region seems to deny this, however. In that region, where the imposed pressure gradient is removed, the stanton number in Fig. 2.3 reverts almost immediately to the flat plate correlation, even overshooting the expected equilibrium value, for both $K=2.0 \times 10^{-6}$ and 2.5×10^{-6}. This rapid response to the relaxation of the pressure gradient implies that the inner layers are controlling the heat transfer rate, not the thermal superlayer.

The combined effects of blowing and a strongly accelerated free-stream flow are shown in Fig. 2.6. Blowing affects heat transfer to the surface in two ways. First, and most important, the increase in the component of velocity normal to the wall convects energy away from the surface. Secondly, the structure of the sublayer is changed. Physically the thickness of the laminar-like region near the wall increases, but on an inner region scale, $\mathrm{y}^{\boldsymbol{+}}$, the sublayer becomes thinner. Since acceleration acts to thicken the sublayer, the ultimate size of the sublayer thickness depends on the strength of the blowing and acceleration. The local shear stress and heat flux distributions through the layers are also influenced in an opposing manner by blowing and acceleration.

The experimental results verify that the effect of acceleration is reduced with increased blowing. Additionally, the Stanton number falls away from the equilibrium correlation for the unaccelerated case when the imposed pressure gradient ceases. Interestingly, the reduction in Stanton number at high blowing is greater during the relaxation period after acceleration than it is during the acceleration itself.

Thielbahr, et al. [21] found similar behavior for accelerations up to $K=1.45 \times 10^{\prime}-6$. They also measured temperature profiles in the recovery region which indicated that the inner layers, at a level of K as high as 1.45×10^{-6}, immediately returned to an equilibrium state for no acceleration, even at high blowing. Assuming a rapid inner layer response, one possible explanation of the heat transfer behavior is that the outer region is quite important in the blown boundary layer, which is characterized by a thin sublayer, and the thermal superlayer becomes a substantial factor in the resistance to heat transfer. It is also true that, with blowing, the relative sizes of the thermal and hydrodynamic boundary layers will be maintained over a longer distance ${ }^{2}$ in the recovery region.

$$
\text { D. } 2 \frac{\text { Response to Changes in Initial Conditions }}{2.7-2.8)} \text { (Figs. }
$$

Figure 2.7, "presents the results of four test runs, nominally at $K=2.5 \times 10^{-6}$, which differ only in the thickness of the momentum and thermal boundary layers at the start of the accelerated region. Also shown for comparison is the similarity solution for laminar wedge flows, other than the constant-K flow, in which the thermal boundary layer has grown completely outside of the hydrodynamic layer. Run 070869 was previously presented in Fig. 2.3. In run 071569, the hydrodynamic conditions were identical, but no power was applied to the wall for the first 16 -inches, retarding the growth of the thermal layer. In run 092469,
${ }^{2}$ Deduced from the integral equations,

$$
\begin{aligned}
& \frac{d \theta}{d x}=C_{f} / 2+F \\
& \frac{d \Delta_{2}}{d x}=S t+F
\end{aligned}
$$

the unaccelerated boundary layer was allowed to develop over a longer distance before the acceleration was imposed. Run 100269 corresponds in hydrodynamic development to run 092469, but again the thermal boundary layer growth was delayed.

It is apparent that the heat transfer results présented in Fig. 2.7 are quite dependent on the initial conditions. In nozzle tests, Boldman, et al. [24] reported that different inlet boundary layer thicknesses produced no appreciable variation in the peak heat transfer coefficient, which roughly corresponds here to comparing the minimum Stanton number in the runs where $\Delta_{2} / \theta \approx 1$. In the present series of tests, it is possible that the significant inlet condition is the ratio of the boundary layer thicknesses. At the end of the acceleration region the values of the ratio Δ_{2} / θ are, for example, 1.75 and 3.4, respectively, for runs 071569 and 092469. If the thermal superlayer is important, then the Stanton number in the flat plate region after the acceleration should be lower for the case where the thermal boundary layer is relatively thicker. However, there is no substantial difference in the recovery performance (not shown in Fig. 2.7) of the four runs, suggesting that it is the inner layer structure which controls the heat transfer behavior throughout the accelerated region. The trends in the reduction in heat transfer give the impression that, were the acceleration to continue indefinitely, the Stanton number would asymptotically approach a single functional relationship with the enthalpy thickness Reynolds number. Consequently, it is possible that the different behaviors merely reflect the degree to which each boundary layer is initially out of an equilibrium state associated with the imposed acceleration.

Figure 2.7 demonstrates the danger of identifying relaminarization by the heat transfer behavior, since each test was carried out at, nominally, $K=2.5 \times 10^{-6}$. In fact, the steep slope of the Stanton number curve in run 092469 appears
very similar to the results of Caldwell obtained at a much stronger favorable pressure gradient (peak $K=5 \times 10^{-6}$), as illustrated in Fig. 2.8.

D. 3 Response to Changes in Boundary Conditions (Figs. 2.9-2.10)

Tani [25] summarizes the results of several hydrodynamic studies which investigated the response of the turbulent boundary layer to sudden perturbations. In general, the response was nearly instantaneous near the wall, but lagged in the outer regions. For example, a sudden change in pressure gradient immediately imposes a change in $\frac{\partial U}{\partial x}$, resulting in a change in $\frac{\partial U}{\partial y}$, and, consequently, the rate of production of the turbulent energy. A readjustment of the turbulence and shear stress follows. Tani suggests that, near the wall, the scale of turbulence is small enough 'so that the attainment of local equilibrium is rapid. In the outer regions, however, most of the turbulent energy resides in larger scale turbulence, which is associated with longer life-times and is responsible for the slower outer region adjustment. In all the acceleration studies reported here, a near stepwise change in pressure gradient is imposed and removed, respectively, at the start and end of the accelerated region. The behavior in the beginning of the accelerated region appears to show a substantial lag in the overall response of the boundary layer, while the recovery region, at the end of acceleration, indicates a considerably faster response, at least in the unblown case.

Some interesting results were obtained by introducing a step in blowing during acceleration. In Fig. 2.9, results are shown for the case where a stepwise change in blowing from no blowing to $F=0.004$ is introduced at an axial distance of 32 inches (see Fig. 2.2). The Stanton number immediately drops to an unusually low value, apparently due
to the convective effect of blowing and the thick. sublayer resulting from acceleration. It is conjectured that the blowing then acts to thin the sublayer and the behavior is thereafter similar to the results shown in Fig. 2.6. A similar quick response to a step in blowing is seen in Fig. 2.10, where the blowing is stopped at $x=32$ inches. With the sudden removal of substantial convection away from the wall, but the residual effect of a thin sublayer due to blowing, the Stanton number immediately rises to a high value, then decreases rapidly at a rate reminiscent of run 092469. shown in Fig. 2.7. The recovery region shows no effects which can be attributed to the wall blowing.
E. Prediction of Selected Experimental Results (Figs. 2.1l2.14)

The turbulent transport terms were modeled with a combination of a kinetic energy model of turbulence in the outer regions, and the Van Driest mixing-length model near the wall. The calculations were performed by a numerical solution ${ }^{3}$ of the following simultaneous set of equations:

$$
\begin{equation*}
\text { Continuity } \quad \frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}=0 \tag{2.3}
\end{equation*}
$$

Momentum

$$
\begin{equation*}
U \frac{\partial U}{\partial x}+V \frac{\partial U}{\partial y}=U_{\infty} \frac{d U_{\infty}}{\partial x}+\frac{\partial}{\partial y}\left[\left(\epsilon_{M}+\nu\right) \frac{\partial U}{\partial y}\right] \tag{2.4}
\end{equation*}
$$

Energy

$$
\begin{equation*}
U \frac{\partial T}{\partial x}+V \frac{\partial T}{\partial y}=\frac{\partial}{\partial y}\left[\left(\epsilon_{H}+\alpha\right) \frac{\partial T}{\partial y}\right] \tag{2.5}
\end{equation*}
$$

[^3]Turbulent Kinetic Energy

$$
\begin{equation*}
U \frac{\partial q}{\partial x}+V \frac{\partial q}{\partial x}=\epsilon_{M}\left(\frac{\partial U}{\partial y}\right)^{2}+\frac{\partial}{\partial y}\left[\left(v+\epsilon_{q}\right) \frac{\partial q}{\partial y}\right]-D \tag{2.6}
\end{equation*}
$$

To obtain closure, the following model of the turbulent structure was assumed in the outer region

$$
\begin{align*}
\epsilon_{M} & =0.22 l_{t} \sqrt{q} \tag{2.7}\\
D & =0.284 \mathrm{q}^{3 / 2 / l_{t}} \tag{2.8}\\
\epsilon_{M} \epsilon_{q} & =1.70 \tag{2.9}\\
l_{t} & =\kappa y D_{V} \tag{2.10}\\
D_{V} & =1-\exp \left(-y^{+} \sqrt{\tau^{+} / A^{+}}\right) \tag{2.11}\\
\epsilon_{H} & =\epsilon_{M} / \operatorname{Pr}_{t} \tag{2.12}\\
\operatorname{Pr}_{t} & =\operatorname{Pr}_{t}\left(\epsilon_{M} \nu\right) \tag{2.13}
\end{align*}
$$

Equations (2.7) through (2.9) have been suggested by the work of Spalding [26] and Wolfshtein [52].

The relationship for the turbulent Prandtl number as. a function of $\epsilon_{\mathbb{M}} v$ is based on the work of Simpson, et al. [27]. In the correlation used here, the values for Pr_{t} ranged from $1 / P r$ at the wall to 0.86 in the outer layers (this correlation is also presented in [4]). It will be shown that the effects of acceleration on the Van Driest parameter, A^{+}, can be adequately modeled in accelerated flows with blowing by the function $A^{+}\left(P_{e}^{+}, V_{o}^{+}\right)$shown in Fig. 2.11.

This model is based on experimental results which are fully discussed by Loyd [23].

In the computational scheme, the wall region is handled separately from the main finite-difference mesh in the outer regions, primarily to avoid the necessity of a very small mesh in the region of severe temperature and velocity gradients. The Couette flow forms ${ }^{4}$ of Eqns. (2.3) through (2.5) are utilized in the wall region, with the additional stipulation that

$$
\begin{equation*}
\epsilon_{M}=\ell_{t}^{2}\left|\frac{d U}{d y}\right| \tag{2.14}
\end{equation*}
$$

Equations (2.10) through (2.13) complete the mathematical set. This mixing-length model of the turbulent boundary layer, with a modification in the outer region, has been successfully used by Kays, et al. [4] to predict experimental results over a wide range of transpiration and favorable pressure gradients, up to $K=1.45 \times 10^{-6}$. Since the turbulent kinetic energy equation has been incorporated into the outer region solution in the current study, the boundary condition required at the inner edge of the finite-difference grid is obtained by solving Eqns. (2.7), (2.10), and (2.14) for q at that point, where D_{v} and y are known from the wall region solution.

Selected predictions of the present experimental results are presented in Figs. 2.12-2.14. With no blowing, the nearequilibrium predictions shown in Fig. 2.12 agree reasonably weli with the experimental data, both in the effects of acceleration on heat transfer and in the behavior in the recovery region. Figure 2.13 illustrates one case of strong blowing and strong acceleration. The influence of pressure gradient in the theoretical model tends to reduce the pre-

The streamwise derivatives $\frac{\partial U}{\partial x}$ and $\frac{\partial T}{\partial x}$ are neglected.
dicted Stanton number below the experimental data, while, in the recovery region, both prediction and experiment show a trend away from the equilibrium flat plate case. Predictions for three cases with different initial conditions at the start of acceleration, at $K=2.5 \times 10^{-6}$ and without blowing, are presented in Fig. 2.14. The trends of the experimental data are reproduced by the prediction, particularly in respect to the rate at which Stanton number decreases in the accelerated region. The recovery behavior, not shown, is similar in all three predictions.

It is important to recognize that the model for $\mathrm{A}^{+}\left(\mathrm{P}_{\mathrm{e}}^{+}, \mathrm{V}_{\mathrm{o}}^{+}\right)$presented in Fig. 2.11 is crucial to the success of the theoretical model. The parameter A^{+}is proportional to the thickness of the sublayer, so that, for example, the increase in A^{+}with increasingly higher accelerations models the observed growth of the sublayer. Since the boundary layer cannot respond instantaneously to an imposed pressure gradient, it is also necessary to include the influence of the upstream history in the boundary layer. In the predictions, shown here, a lag function

$$
\begin{equation*}
\frac{d P_{e}^{+}}{d x^{+}}=3000\left|P^{+}-P_{e}^{+}\right| \tag{2.15}
\end{equation*}
$$

has been introduced, where P^{+}is the equilibrium pressure gradient parameter for the known value of acceleration and skin-friction, while P_{e}^{+}is the calculating, or effective, value used in the model which determines A^{+}. The lag constant, 3000 , was selected by comparing prediction to experiment for various values of lag in run 070869-1 ($F=$ $0.0, \mathrm{~K}=2.5 \times 10^{-6}$). Currently, no lag is associated with changes in blowing, but one can argue that a lag is physically justifiable and should, in fact, be included.

> F.

Conclusions
To summarize the findings from the experimental study, the following conclusions are offered:
(a) For the acceleration parameter, K, as high as 2.5×10^{-6} the boundary layer displays fully turbulent characteristics, and the marked reduction in Stanton number is largely due to growth of the sublayer.
(b) For the acceleration parameter, K , through 2.5×10^{-6}, the amount of the reduction in Stanton number, at a given F, increases smoothly as the magnitude of the acceleration increases. The absence of any abrupt changes supports the contention that relaminarization, if it is even occurring, manifests itself in the growth of the sublayer.
(c) The region of the thermal boundary layer outside of the hydrodynamic boundary layer is not an important factor in the reduction of Stanton number in strongly accelerated flows without transpiration, but it may play a significant role in the blown boundary layer.
(d) The initial thermal condition of the boundary layer markedly influences the surface heat transfer characteristics during acceleration. In practical applications, the length of the acceleration region is almost never long enough to remove the effect of the upstream thermal history. The response of the strongly accelerated turbulent boundary layer to steps in blowing at the wall, on the other hand, is quite rapid, thus displaying the same characteristics as the turbulent boundary layer without acceleration.
(e) The surface heat transfer in boundary layers subjected to accelerations up to $K=2.5 \times 10^{-6}$ can be adequately predicted by a numerical solution of the momentum, energy, and turbulent kinetic energy equations, utilizing eddy-diffusivity models for the turbulence transport terms. The turbulence model, based on empirical equilibrium relationships, accounts for the behavior of the non-equilibrium flows measured in the present study, as long as the effects of upstream history are considered.

Fig: 2.1 Schematic diagram of the test apparatus

Fig. 2.2 Traverse locations and typical velocity distribution in the test apparatus for a strong acceleration

Fig. 2.3 Experimental results of surface heat transfer in ä turbulent boundary layer with a strongly accelerated free-stream flow. -, Moffat and Kays [22].

Fig. 2.4 Comparison of experimental boundary layer heat transfer in a favorable pressure gradient

Fig. 2.5 Traverse data for the unblown turbulent boundary layer with a nominal free-stream acceleration of $\mathrm{K}=2.5 \mathrm{x} 10^{-6}$. Traverse symbols correspond to Fig. 2.2.

Fig. 2.6 Experimental results of surface heat transfer in a turbulent boundary layer, with and without blowing, at $K \approx 2.55 \times 10-6$. , Moffat and Kays [22].

Fig. 2.7 Experimental results of surface heat transfer at $K \approx 2.55 \times 10^{-6}$
with various initial conditions at the start of acceleration.
$\mathrm{St}=0.63 .9 /\left(\mathrm{PrRe}_{\mathrm{H}}\right)$ is the similarity solution for laminar
wedge flows with ${ }^{\mathrm{H}}$ a very thick thermal boundary layer

Fig. 2.8 Comparison of two runs of experimental heat
transfer in a strong acceleration

Fig. 2.9 Experimental heat transfer results in a strongly accelerated turbulent boundary layer with a step-increase in blowing

Fig. 2.10 Experimental heat transfer results in a strongly accelerated turbulent boundary layer with a step-decrease in blowing

Fig. 2.11 Correlation for the Van Driest parameter in accelerating flows with blowing

Fig. 2.12 Predictions of surface heat transfer in a turbulent boundary layer with a strongly accelerated free-stream flow.

Fig. 2.13 Prediction of surface heat transfer in a turbulent boundary. layer with blowing and strong acceleration

Fig. 2.14
Predictions of the effect of various initial conditions at the start of acceleration on heat transfer behavior in the turbulent boundary layer

CHAPTER THREE
THE EFFECT OF FREE-STREAM TURBULENCE ON HEAT TRANSEER
TO A STRONGIY ACCETERATED TURBUTENT BOUNDARY LAYER

A. Introduction

One premise put forth to explain the reduction in stanton number in accelerated flows is that the portion of the thermal boundary layer which exists outside the hydrodynamic boundary layer, the thermal superlayer, substantially contributes to the resistance to heat transfer. An interesting question raised by this explanation is whether or not high free-stream turbulence has any substantial effect on the heat transfer performance of a strongly accelerated turbulent boundary layer. Most of the experiments have taken place in wind tunnels where turbulence level is very small, but many of the interesting technical applications (turbine blades, rocket nozzles, for example) involve highly turbulent free-stream environments. For non-accelerated boundary layers it seems that free-stream turbulence is not particularly significant [5], but this may not be the case when the outer part of the boundary layer is providing any substantial part of the overall heat transfer resistance, as it apparently does for proIonged highly accelerated flows. The answer to this question is important to the designer. For example, a rocket nozzle design, with wall cooling requirements based on the experimental data at low turbulence levels, would be inadequate if the presence of high free-stream turbulence significantly raised the heat transfer to the wall.

The experimental results in Chaptex Two suggest, indirectly, that the thermal superlayer is less important than the sublayer as a cause of the reduction in stanton number. More insight into this question can be achieved by increasing the free-stream turbulence level in the experimental apparatus. Another justification of this program derives from considering
the free-stream turbulence problem in its parametric sense: given a turbulent boundary layer in an accelerated flow field, what is the effect of free-stream turbulence on the Stantion number?

B. Previous Experimental Work

In 1966, Kestin [5] discussed in considerable detail the effect of free-stream turbulence on heat transfer in both laminar and turbulent boundary layers. He found that free-stream turbulence intensities up to 3.82 percent had no effect on local heat transfer rates in the flat plate laminar boundary layer, but intensities from 0 to 6.2 percent had increasingly noticeable effects, though modest, on the laminar boundary layer in an accelerated free-stream flow. No effect of turbulence intensities up to 4.5 percent were noted in a turbulent boundary layer in a mild favorable pressure gradient.

Two experimental investigations conducted with relatively high free-stream turbulence intensities are also of interest. Kline, et.al. [29] carried out hydrodynamic tests on a boundary layer on a flat plate with the free-stream turbulence intensity ranging from 0.5 to 20 percent. For free-stream turbulence intensities above 5 to 10 percent, they found increased boundary layer thicknesses, fuller velocity profiles, and higher values of wall shear. Boldman, et al. [5I] measured heat transfer in nozzle tests and observed no change in the heat transfer coefficient when the inlet turbulence intensity was raised from 2.8 percent to 10 percent. The level of K in the nozzle was low, generally less than 1×10^{-6}. Consequently, the thermal superlayer was probably thin, so that the effect of free-stream turbulence in that region would be minimized.

C. Experimental Program

The objective of this chapter is to describe the results of some experiments at relatively high acceleration
($K=2.5 \times 10^{-6}$) taken first under low turbulence conditions, and then with considerably higher free-stream turbulence artificially induced by a crossed-rod grid. The surface heat transfer measurements were accompanied by mean velocity and temperature traverses, but more importantly by hot-wire traverses of $\sqrt{\overline{u^{2}}}$. The experimental apparatus differs from the description in Chapter Two only in that, for the high free-stream turbulence runs, a crossed-rod grid was placed 13 inches upstream of the trip. The grid consisted of $1 / 4$-inch round wooden dowels formed into a square, interlocked mesh (i.e., all of the dowels were in the same plane) on l-inch centers.

Two experiments were conducted with free-stream turbulence intensities, $\sqrt{\mathrm{u}^{12}} / \mathrm{U}_{\infty}$, of 0.7 percent and 3.9 percent, respectively, at the start of acceleration. The free-stream turbulence intensity decayed to 0.4 percent and 0.9 percent, respectively, in the recovery region. The level of high free-stream turbulence employed is of the same order of magnitude as used by Kestin [5] in his investigation of the effects of free-stream turbulence on a boundary layex-subjected to a moderate acceleration. The free-stream energy spectra exhibited in both runs was that of normal turbulence. The grid design was based in part on the work of Uberoi and Wallis [28], in which, 29 inches downstream of a similar grid, the turbulence was found to be homogeneous with $\overline{u^{I 2}} \approx \overline{v^{12}}$. Both tests reported here were conducted with a free-stream velocity of about 23 fps .

In Fig. 3.1 is shown a plot of stanton number versus local enthalpy thickness Reynolds number for the two cases. The differences in the data sets on Fig. 3.1 are no greater than the estimated experimental uncertainty. It appears that in the accelerated region, where the abrupt decrease in Stanton number is taking place, there is negligible difference in performance. If anything the high turbulence case yields lower st, which does not seem physically plausible. In
the recovery region, where free-stream velocity is again constant, it appears that recovery is slightly more abrupt with high free-stream turbulence; and this would be consistent with the proposed model. Thus the conclusions that one can draw are that initial free-stream turbulence levels as high as 3.9 percent have very little effect on Stanton number for strongly accelerated flows, but this fact in itself is of significance.

Figs. 3.2 and 3.3 are plots of traverses of $\sqrt{\overline{u^{2}}} / U_{\infty}$ taken just before acceleration, and near the end of acceleration, for both the low free-stream turbulence case and the high free-stream turbulence case. Essentially they demonstrate that at this relatively high rate of acceleration the boundary layer is in fact still a turbulent one, but with a lowered turbulence intensity, especially in the wake. The results for the higher free-stream turbulence case are similar to those for low free-stream turbulence, with the differences confined primarily to the wake.

The global characteristics of the boundary layers entering the accelerated region for the two cases are quite different in nature; the test with high free-stream turbulence exhibits a very thick boundary layer with a 52 percent larger momentum thickness. It is not certain whether this effect is a direct result of the high turbulence on the growth of the layer, or whether the grid rod nearest the wall simply introduces a momentum decrement into the developing boundary layer. Nevertheless, the important point is that, in the accelerated regions, the outer layers are affected whereas the inner layers appear to display little, if any, effect of the freestream turbulence level. In Fig. 3.4, for example, are shown the velocity profiles, in inner coordinates, at the end of the accelerated region for both cases. The profiles deviate from the accepted law of the wall for a flat plate boundary layer, as is typical of highly accelerated boundary layers, but are quite similar to each other. The temperature
profiles, also in inner coordinates, are presented in Fig. 3.5. This figure illustrates the development throughout the entire region of acceleration, for both high and low turbulence. In general, the two layers display similar thermal behavior.

D. Prediction of Experimental Results

Figure 3.6 shows the results of theoretical calculations made under the conditions of the experiments, using the prediction method described in Chapter Two. Prior to the inclustion of the turbulent kinetic energy equation, a mixinglength model of the turbulent boundary layer, with a modification in the outer region, had been successfully used to predict experimental results over a wide range of conditions including transpiration and favorable pressure gradients [4]. It was hoped that the addition of the turbulent kinetic energy model, besides providing a potential improvement in the prediction method in general, would in particular permit a prediction of the influence of free-stream turbulence.

The theoretical calculations presented in Fig. 3.6 are. in reasonable agreement with the experimental findings. The deviation between the two theoretical curves is due to the fact that the boundary conditions for the variation of the free-stream velocity, i.e., the precise level and physical location of the imposed acceleration, are slightly different in the two cases. It will be shown next that, were the imposed experimental conditions identical, the theoretical model would predict nearly identical curves for the two cases.

A question naturally arises concerning the effect of still higher initial levels of free-stream turbulence under these same conditions of acceleration. To investigate the theoretical aspects of this point, three predictions were made utilizing the experimental boundary conditions and meanflow starting profiles of the 3.9 percent case.

The results are shown in Fig. 3.7 for, initial freestream turbulence levels of 0.7 percent, 3.9 percent, and 10 percent. The curves for the lower two intensities are indistinguishable on the plot, whereas the higher turbulence level clearly decreases the effect of acceleration on Stanton number, and significantly increases stanton number in the recovery region. Eventually, all three predictions converge on the accepted correlation for the flat-plate turbulent boundary layer.

Prior to acceleration, the free-stream turbulence for the 10 percent case is on the order of the self-generated turbulence within the boundary layer. It is not unreasonable that the heat transfer should be affected under these conditions. The study by Kline, et al. [29] substantiates the notion that a free-stream turbulence level of this magnitude has significant effects on the characteristics of the boundary layer. In the accelerated zone and thereafter, however, it is believed that the influence of the high turbulence would be manifested through a different mechanism. As the thermal layer grows outside of the momentum layer, the higher freestream turbulence acts to increase the apparent conductivity in this laminar-like outer region, resulting in higher stanton numbers. The modest increase in Stanton number, if it is in fact due to the effect of free-stream turbulence on the thermal superlayer, is consistent with the findings of Kestin on accelerated laminar boundary layers [5].
E. Conclusions

The following are the conclusions that may be drawn from this work:
(a) The decrease in Stanton number observed during strong acceleration is independent of initial free-stream turbulence levels up to at least 4 percent.
(b) Theoretical calculations for an initial freestream turbulence level of 10 percent suggest that if initial free-stream turbulence is of the same order of magnitude as the self-generated turbulence within the boundary layer, an increase in Stanton number will be obtained throughout the accelerated region. In view of the experimental results of Boldman, et al. [51], however, the validity of this prediction must be viewed with caution.

Fig. 3.1 Experimental heat transfer for low and high initial free-stream turbulence intensities in a strongly accelerated flow. , Moffat and Kays [22].

Fig. 3.2 Experimental turbulence intensity profiles in the constant U_{∞} region prior to acceleration. $\mathrm{Re}_{\mathrm{H}} \approx 600$.

Fig. 3.3 Experimental turbulence intensity profiles near the end of the accelerated region. $\mathrm{Re}_{\mathrm{H}} \approx 1430$.

Fig. 3.4 Experimental velocity profiles near the end of the accelerated region. $\mathrm{Re}_{\mathrm{H}} \approx 1430$.

Fig. 3.5 Experimental temperature profiles for low and high
initial free-stream turbulence.

Fig. 3.6 Comparison of predicted and experimental heat transfer results.

Fig. 3.7 Effect of initial free-stream turbulence level on the predicted heat transfer performance. -_, Moffat and Kays [22].

CHAPIER FOUR
AN EXPERIMENTAL STUDY OF TURBULENT PRANDTL NUMBER FOR
AIR IN ACCELERATED TURBULENT BOUNDARY LAYERS

A. Introduction

Many current prediction methods for heat transfer in the turbulent boundary layer utilize the turbulent Prandtl number to relate the eddy diffusivity for heat to that for momentum. While it is generally acknowledged that the eddy diffusivity concept is not an adequate model of the physical processes occurring in the boundary layer, it is also recognized that this method, having been proven in practice, will continue to be important until significant advances in turbulent boundary layer theory are made. If the turbulent. transport terms in the boundary layer equations for momentum and energy are expressed in the forms,

$$
\begin{equation*}
\frac{\tau_{t}}{\rho}=\epsilon_{M} \frac{\partial U}{\partial y} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\dot{q}_{t}^{\prime \prime}}{\rho c_{p}^{\prime}}=\epsilon_{H} \frac{\dot{\partial} T}{\partial y} \tag{4.2}
\end{equation*}
$$

the eddy diffusivity for heat can be expressed as

$$
\epsilon_{\mathrm{H}}=\epsilon_{\mathrm{M}} / \operatorname{Pr}_{\mathrm{t}},
$$

thus defining the turbulent Prandtl number. There is no physical reason to believe, a priori, that Pr_{t} is not a function of the molecular Prandtl number, the position in the flow field, and hydrodynamic parameters such as the Reynolds number. Nevertheless, it has proven adequate in many calculation procedures to assume a constant value for
turbulent Prandtl number across the boundary layer, often between 0.85 and $1[26,30,31]$. In other cases, however, it has been necessary, in order to achieve reasonable predictions in boundary layers, to assume a variation in the turbulent Prandtl number such that it is high near the wall (on the order of 1.5 in air) and less than unity in the outer region [4,32]. Even though the solution of the heat transfer problem requires knowledge of both the eddy diffusivity for momentum and the turbulent Prandtl number, relatively few experimental studies have been directed towards the latter. Simpson, Whitten, and Moffat [27] recently reported the variations of turbulent Prandtl number in the boundary layer on a flat plate, with and without transpiration. It is the purpose of this study to extend the experimental knowledge of the turbulent Prandtl number to the case of the accelerated boundary laye \bar{r}, with and without blowing. The range of acceleration in this study varies from mild ($K=0.55 \times 10^{-6}$) to that approaching relaminarization of the boundary layer ($\mathrm{K}=2.55 \times 10^{-6}$).
B. Theoretical Models and Previous Experimental Results

In this aspect of turbulent transport theory, it is difficult to substantiate proposed theoretical models because of the scarcity of reliable experimental results. In external boundary layers, as an example, the experimental data required to determine the local values of shear stress and heat flux are often not available. Since these quantities are more easily calculated in channel flow, most of the experimentation has been carried out in circular tubes, at both low and high molecular Prandtl numbers. In air, however, there is conflicting evidence in pipe flow on the variation of turbulent Prandtl number with distance from the wall. Kestin and Richardson [33] show the findings of several investigators in which the turbulent Prandtl number is always below unity in pipe flow, but does not consistently rise or fall
with distance from the wall. They conclude that results of Ludwieg [34] are most reliable, in which Pr_{t} decreases towards the center of a pipe. Azer [35], on the other hand, notes that Ludwieg's data was taken at high subsonic Mach numbers, and that the preponderance of evidence suggests that, in a pipe, $P r_{t}$ increases towards the center. There is general agreement, at least, that the turbulent Prandtl number is not constant across a tube. In the external boundary layer, Johnson [36] determined the turbulent Prandtl number from fluctuation measurements of both velocity and temperature on a flat plate downstream of a stepwise discontinuity in wall temperature, while Simpson, et al. [27] calculated Pr_{t} from mean profile data on a flat plate with and without transpiration. Both results are summarized in Fig. 4.l. Simpson found that the turbulent Prandtl number was greater than unity in the region close to the wall, and decreased to a value of approximately 0.7 in the outer edge of the boundary layer. No effect of transpiration, either.sucking or blowing, could be detected within the uncertainty of the results.

Theoretical models for the turbulent Prandṭl number have, on the whole, relied on mixing length arguments. By taking into account the molecular diffusion from or to an eddy in motion, the effect of the molecular Prandtl number on Pr_{t} can be modeled. Depending on the model, turbulent Prandtl number is also found to be a function of the eddy diffusivity for momentum or a hydrodynamic Reynolds number. The model of Azer and Chao [35] predicts $\operatorname{Pr}_{\mathrm{t}}$ increasing with distance from the wall. Jenkins [37], on the other hand, predicts turbulent Prandtl numbers close to the wall greater than unity, and decreasing with distance away from the wall. A new theory has been proposed by Tyldesley and Silver [38] which considers entities of fluid in motion in a turbulent field in pipe flow. In its present state, this promising approach does not provide for the variation of the turbulent Prandtl number across the boundary layer, but it does give results
as a function of molecular Prandtl number which agree with experiment. For $\operatorname{Pr}=0.7$, their theory predicts $\operatorname{Pr}_{\mathrm{t}}=$ I.O. Tyldesley [39] has extended the theory to the case of free turbulent flows, not unlike the outer region of the turbulent boundary layer. In this case, a value of about 0.74 is predicted for $\operatorname{Pr}=0.7$, generally agreeing with earlier theories and experimental results.

C. Sources of Experimental Data

The magnitude of the accelerations utilized in this study varied from moderate to that approaching relaminarization of the turbulent boundary layer. The range of variables in the tests were,

$$
\begin{aligned}
\mathrm{K} & : 0.57 \times 10^{-6} \text { to } 2.55 \times 10^{-6} \\
\mathrm{U}_{\infty} & : 23.5 \text { to } 123 \mathrm{fps} \\
\mathrm{~T}_{\infty} & : 60 \text { to } 95 \mathrm{~F} \\
T_{0}-\mathrm{T}_{\infty} & :-20 \text { to } 43 \mathrm{~F} \\
\mathrm{~F} & : 0,0.004
\end{aligned}
$$

The present data were obtained on the same apparatus used by Simpson, et al. [27]. The experimental data in the range, $K=0.57 \times 10^{-6}$ to 1.45×10^{-6}, were reported by Thielbahr [6] and Julien [14]. For $K \geq 1.99 \times 10^{-6}$, the data is that of this report and the work of Loyd [23]. The performance of the test apparatus has been consistent throughout the entire series of tests. Accepted flat plate correlations for heat transfer and hydrodynamic performance are reproduced within a few percent, including skin friction, surface heat transfer, and non-dimensional mean profiles. With acceleration or transpiration, agreement with other experimenters has been adequate where comparisons are possible. The tests were all conducted at constant values of
the parameters K and F, resulting in near-equilibrium boundary layers at moderate accelerations, or with transpiration. In the accelerated flows, the velocity profile data were taken isothermally, while the temperature profiles were generally obtained at the same free-stream conditions and with a heated wall. Exploratory tests and numerical analyses established that the ratio U / U_{∞}, measured in the isothermal layer, is approximately preserved in the heated layer.

Loyd [23] presents arguments to show that, in the hydrodynamic studies, the Young and Maas [40] shear correction is appropriate not only to his experimental data, but also to the data of Julien, et al. [14] and Simpson, et al. [27], which were obtained with similar total pressure probes. While some question exists concerning the justification for this correction, it has been uniformly applied to all the velocity profile data utilized in the present study of the turbulent Prandtl number. No probe corrections have been applied to the temperature data, though arguments could also be made for a displacement effect in a sevére temperature gradient. In general, application of the probe:correction to the velocity profile data lowers the calculated turbulent Prandtl numbers near the wall, compared to use of the uncorrected velocity data.

In the flat plate calculations of Simpson et al. [27], the experimental observation of similarity in the inner and outer regions was incorporated into the analysis of the turbulent Prandtl number. In moderate accelerations at constant K, the velocity and temperature profiles were also shown to be similar, as should be the case when the acceleration is well established. In general, similar conditions could not be achieved in accelerations above $K=1.45 \times 10^{-6}$. For this reason, the local shear and heat flux profiles were computed by a method which makes no assumptions about the similarity of the flow or temperature fields. For comparative
purposes, the data of Simpson, et al. for $K=O$, and $F=0$ and 0.004 , were also recalculated with the present computational method.

C.l Local Shear Stress and Heat Flux Profiles

In the course of this study, 40 pairs of velocity and temperature profiles in the accelerated turbulent boundary layer were considered. The cases of no transpiration and moderate blowing, $F=0.004$, were selected to investigate both the effect of acceleration alone, and the combined effect of blowing and acceleration, on the turbulent Prandtl number. Noting Eqns. (4.1) through (4.3), the local velocity and temperature gradients, and the local shear stress and heat flux, must be calculated from the mean profile data. The appropriate boundary layer equations

$$
\begin{gather*}
\frac{\partial(\rho U)}{\partial x}+\frac{\partial(\rho V)}{\partial y}=0 \tag{4.4}\\
\rho \tilde{U} \frac{\partial U}{\partial x}+\rho V \frac{\partial U}{\partial y}+\frac{\partial P}{\partial x}-\frac{\partial \tau}{\partial y}=0 \tag{4.5}\\
\rho U \frac{\partial}{\partial x}\left(i+\frac{U^{2}}{2}\right)+\rho V \frac{\partial}{\partial y}\left(i+\frac{U^{2}}{2}\right)+\frac{\partial \dot{q}^{\prime \prime}}{\partial y}-\frac{\partial}{\partial y}(\tau U)=0 \tag{4.6}
\end{gather*}
$$

are integrated with respect to y, rearranged, and nondimensionalized, resulting in the computing forms,

$$
\begin{gathered}
\tau^{+}=1+U^{+} V_{0}^{+}+P^{+} y^{+}\left[1-\frac{1}{y} \int_{0}^{y}\left(\frac{\rho U}{\rho_{\infty} U_{\infty}}\right)^{2} d y\right]+ \\
\frac{1}{U_{\infty} C_{f} / 2} \frac{d U_{\infty}}{d x}\left[\frac{\rho U}{\rho_{\infty} U_{\infty}} \int_{0}^{y} \frac{\rho U}{\rho_{\infty} U_{\infty}} d y-\int_{0}^{y}\left(\frac{\rho U}{\rho_{\infty} U_{\infty}}\right)^{2} d y\right]+ \\
\frac{1}{C_{f} / 2}\left[\frac{d}{d x} \int_{0}^{y}\left(\frac{\rho U}{\rho_{\infty} U_{\infty}}\right)^{2} d y-\frac{\rho U}{\rho_{\infty} U_{\infty}} \frac{d}{d x} \int_{0}^{y} \frac{\rho U}{\rho_{\infty} U_{\infty}} d y\right]
\end{gathered}
$$

and

$$
\begin{gathered}
Q^{+}=I+\frac{1}{S t}\left[F-\frac{d}{d x} \int_{0}^{y} \frac{\rho U}{\rho_{\infty} U_{\infty}} \frac{i_{S}}{i_{s, 0}} d y-\right. \\
\frac{1}{\rho_{\infty} U_{\infty} i_{S, O}} \cdot \int_{0}^{y} \frac{\rho U}{\rho_{\infty} U_{\infty}} \frac{i_{S}}{i_{s, 0}} d y \cdot \frac{d}{d x}\left(\rho_{\infty} U_{\infty} i_{S, 0}\right) \\
\left.-\frac{i_{s}}{i_{S, 0}}\left(F-\frac{d}{d x} \int_{0}^{y} \frac{\rho U}{\rho_{\infty} U_{\infty}} d y-\frac{U_{\infty} K}{v} \int_{0}^{y} \frac{\rho U}{\rho_{\infty} U} d y\right)+\frac{\tau U}{\rho_{\infty} U_{\infty} i_{s}, 0}\right]
\end{gathered}
$$

As $y \rightarrow \infty$, these equations assume the usual forms of the integral equations with transpiration and a pressure gradient,

$$
\begin{equation*}
\frac{C_{\dot{f}}}{2}+F=\frac{d \theta}{d \mathrm{x}}+\frac{\theta}{\mathrm{U}_{\infty}}(2,+H) \frac{d U_{\infty}}{d \mathrm{x}} \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
S t+F=\frac{1}{\rho_{\infty} U_{\infty} \underline{i}_{s, 0}} \frac{d}{d x}\left(\rho_{\infty} \tilde{U}_{\infty} \underline{i}_{s, 0}\right) \tag{4.10}
\end{equation*}
$$

The differentiations with respect to x were carried out at each data point in a given profile, using a central difference formulation and interpolated values in the adjoining profiles. As pointed out by Julien [14], in the ideal equilibrium boundary layer in a constant-K acceleration, theré is no dependence on x, so that any terms containing x derivatives were quite small in the moderate accelerations where equilibrium conditions were approached. The x-dependence was always evident in the flat plate boundary layers, and in strong accelerations where equilibrium was not attained.

Typical temperature and velocity profiles are presented in Figs. 4.2-4.5. In strong accelerations, above $\bar{K}=1.45 \dot{x}$ 10^{-6}, five profiles were obtained in the accelerated region, spaced every four inches. In the moderate accelerations, three profiles were taken, spaced either 8 or 12 inches apart. At $\vec{K}=0$, three profile locations were spaced at intervals of 24 inches; presenting a formidable test of the present computational procedure. It will be shown that the results for the flat plate turbulent boundary \dot{y} Iaỳry, cal= culated in this manner, agree well with the results, of Simpson, et al. [27], which relied in the same data but used: an independent method of computation which does ñet require an explicit cálculation of x-derivatives.
C. 2 Selection of Experimental Data

Since the temperature or velocity gradients are zero at the outer edge of the thermal and hydrodynamic boundary layers, respectively, Eqns. (4.7) and (4.8) should calculate zero heat flux and shear stress at those locations if the experimental data, and the computation techniques, are exact. Since neither of these conditions is satisfied, due to both uncertainty in the experimental data and to computation errors (particularly where the differentiated terms are important), limits of acceptability were set on the shear stress and heat flux profiles by stipulating a maximum value of $|0.3|$ at the outer edge of the boundary layer. Of the 40 profile pairs examined, 15 were rejected on this basis. Of the 25 remaining, 16 pairs consisted of heat flux and shear stress profiles which were individually below $|0.15|$ at the outer edge. In order to smooth the experimental results, and to establish a consistent calculation procedure, the selected pairs were recalculated in a manner which forced the local shear stress and heat flux to zero at the outer boundary. To accomplish this, the coefficients,

$$
\frac{I}{U_{\infty} \frac{C_{f}}{2}} \frac{d U_{\infty}}{d x} \quad \text { and } \quad \frac{d}{d x}\left(\rho_{\infty} U_{\infty} i_{s, o}\right)
$$

in Eqnṣ. (4.7) and (4.8) were evaluated at $y=\infty$ from the equations themselves. In this way, the local heat flux and shear stress equations, which exactly match the known boundary condition at wall, are forced to satisfy the known boundary conditions in the free stream. Selected shear stress and heat flux profiles are shown in Figs. 4:2-4.5,' along with mean temperature and velocity profile data and the calculated turbulent Prandtl numbers. These examples are representative of blown and unblown results at both moderate and strong accelerations. Also shown are sample values of the turbulent

Prandtl number which would have been computed had the outer boundary condition not been forced to zero. The only significant changes occur beyond y^{+}of 200, where the uncertainty in the results is also quite high due to normal experimental uncertainty.
D. Turbulent Prandtl Number. Distribution in Accelerated Flows, With and Without Blowing

The mean gradients required by Eqns. (4.1) and (4.2) were obtained by evaluating $\frac{d \bar{T}}{d y}$ and $\frac{d\left(U / U_{\infty}\right)}{d y}$ analytically. The determination of the temperature and velocity gradients at each point was accomplished by applying a least-squares quadratic curve fit through five data points, fitting either the normalized temperature or velocity as a function of log y, and analytically taking the derivative at the center point. This technique is thoroughly discussed by Simpson, et al. [27], and compared to results using various analytical approaches, in addition to graphical methods. It is concluded by Simpson that, for the flat plate turbulent boundary layer, the Pr_{t} distributions for various polynominal fits vary by no more than 2 percent, and agree within 5 percent with the Pr_{t} distribution obtained from graphical fits of
$\frac{d \bar{T}}{d y}$ and $\frac{d\left(U / U_{\infty}\right)}{d y}$.
The turbulent Prandtl numbers computed from the selected profiles in accelerated turbulent boundary layers are presented in Figs. 4.6-4.8 as functions of $\mathrm{y}^{+}, \mathrm{y} / \delta$, and ϵ_{M} / v. An approximate uncertainty band, based on the method of Kline and McClintock [41] is included on two of the figures, as well as a comparison to the data of S'impson, et all. f'or the flat plate. The scatter of the experimental. results, as one would expect, is greater than for the flat plate case'. In the thinner boundary layers encountered in acceleration,
the uncertainty in the temperature and velocity gradients is proportionally higher than in the thicker flat plate layers. Additionally, the computational difficulties inherent in the evaluation of the local shear stress and heat fluxes contribute to the uncertainty. The combination of these effects is reflected in the uncertainty band. In view of these considerations, the collapse of the experimental results is encouraging in the inner regions.

In Figs. 4.6 and 4.7 , it can be seen that the turbulent Prandtl number collapses on the inner region coordinate y^{+} in the range $20<\mathrm{y}^{+}<200$, but correlates less well in the outer regions on y / δ. In the regions very close to the wall, $\mathrm{y}^{+}<20$, and in the outer regions, $\mathrm{y} / \delta>0.3$, where one could reasonably expect correlation on one parameter and not the other, the uncertainty of the results precludes a comparison. The diffusivity ratio, ϵ_{M} / v, is the parameter of the turbulent Prandtl number in the Jenkins model [37], and is itself well correlated by the inner coordinate y^{+}in flat plate turbulent boundary layers [42]. It is shown in Fig. 4.8 that the present results do not correlate on this coordinate. The curves fold back because ϵ_{M} / ν rises to a maximum, and then decreases towards the edge of the boundary layer, i.e., as $y / \delta \rightarrow 1$.

In the intermediate range, the turbulent Prandtl number, in Fig. 7, is above unity near the wall, with a decreasing trend towards a value of about 0.8 at y^{+}of 200. The mean value is on the order of unity throughout this range. There is some indication that Pr_{t} is higher in strong accelerations without blowing, but the evidence is not conclusive. In general, it can be stated that no effects of blowing or acceleration are evident within the uncertainty band. The results agree reasonably well with the data of simpson, et al. [27] above y^{+}of 30 , when correlated with y^{+}. The results for the flat plate turbulent boundary layer correlate in the
outer region as well, whereas the present results in accelerated flow do not.

In Fig. 4.6, the trend of the turbulent Prandtl number very close to the wall, ignoring for a moment the uncertainty band, is substantially different than the results of Simpson, et al. Simpson's calculations showed a mean value of Pr_{t} continually rising towards the wall, whereas Fig. 4.6 indicates a mean value which drops off below y^{+}of 30 . The drop off in the present results is largely due to the use of the Young and Maas shear correction, which Simpson did not use. Conduction error in the temperature probe would also tend to reduce turbulent Prandtl number, but not to the extent noted here. Figure 4.9 shows the flat plate case, for $F=0$ and $F=0.004$, calculated with and without a probe correction applied to the data. The shift in Pr_{t} very near the wall is evident. The effect of the correction. decreases as y^{+}increases, until there is complete agreement above $\mathrm{y}^{+}=100$. It is concluded that no trends in Pr_{t} below $\mathrm{y}^{+}=30$ can be confirmed from this data or that of Simpson, et al. [27].

It is not too surprising, in view of these results and those of simpson that the assumption of a constant turrbulent Prandtl number on the order of 1.0 predicts heat transfer data reasonably well over a wide range of turbillent boundary layers. It can be stated with certainty, nevertheless, that the turbulent Prandtl number is not constant across the layer, and that the values presented here are not inconsistent with the concept of a high turbulent Prandtl number near the wall and a level approaching 0.7-0.8 in the wake. To formulate a model for the turbulent Prandtl number in a prediction method, the results suggest that, in the inner regions, a relationship in the form $\operatorname{Pr}_{t}\left(\mathrm{y}^{+}\right)$is most appropriate.

E. Conclusions

In summary, the conclusions of this work can be stated
(a) Experimental values of the turbulent Prandtl number have been computed from data covering a wide range of the acceleration parameter $\mathrm{K}, 0.55 \times 10^{-6}$ to 2.55×10^{-6}, both with and without blowing at the wall. The calculation method is discussed in detail and results using this method on data for the flat plate turbulent boundary layer are compared to the results of Simpson, et al. [27].
(b) The turbulent Prandti number for blown and unblown boundary layers, with free-stream acceleration up to $K=2.55 \times 10^{-6}$ is on the order unity. The experimental values are slightly higher than unity in the inner regions, decreasing to below unity in the outer regions. There is some evidence that, for strong accelerations, the turbulent Prandtl number remains above unity over a greater portion of the boundary layer.

Fig. 4.1 Experimental results for turbulent Prandtl number distribution in a turbulent boundary layer on a flat plate

Fig. 4.2 Boundary layer profile results in a moderate acceleration with no transpiration.

Fig. 4.3 Boundary layer profile results in a moderate acceleration with blowing.

Fig. 4.4 Boundary layer profile results in a strong acceleration with no transpiration.

Fig. 4.5 Boundary layer profile results in a strong acceleration with blowing.

Fig. 4.6 Turbulent Prandtl number in accelerated flowsinner region plot.

Fig. 4.7 Turbulent Prandtl number in accelerated flowsouter region plot.

Fig. 4.8 Turbulent Prandtl number in accelerated flows as a function of ϵ_{M} / v.

Fig. 4.9 Data of Simpson, et al. [27], for $F=0$ and $F=0.004$, recomputed with present method. - no shear correction applied to total pressure probe data.
\times - shear correction applied.

REFERENCES

1. Caldwell, G. I., and R. A. Seban. "Flow and Heat Transfer in a Laminarizing Turbulent Boundary Layer," paper presented at ASME-AIChE Heat Transfer Conference, Minneapolis, Minnesota, August, 1969, ASME Paper No. 69-HT-10.
2. Back, L. H., R. F. Cuffel, and P. F. Massier. "Laminarization of a Turbulent Boundary Layer in Nozzle Flow Boundary Layer and Heat Transfer Measurements with Wall Cooling, " paper presented at ASME-AIChE Heat Transfer Conference, Minneapolis, Minnesota, August, 1969, ASME Paper No. 69-HT-56.
3. Launder, B. E. Laminarization of the Turbulent Boundary Layer in a Severe Acceleration, Journal of Applied Mechanics, 1964, 31 (4), 707-708.
4. Kays, W. M., R. J. Moffat, and W. H. Thielbahr. "Heat Transfer to the Highly Accelerated Turbulent Boundary Layer with and without Mass Addition, " paper presented at ASME-AIChE Heat Transfer Conference, Minneapolis, Minnesota, August, 1969 (to be published in the Journal of Heat Transfer), ASME Paper No. 69-HT-53.
5. Kestin, J. The Effect of Free-Stream Turbulence on Heat Transfer Rates, Advances in Heat Transfer, 1966, 3, 1-32.
6. Thielbahr, W. H., W. M. Kays, and R. J. Moffat. The turbulent boundary: experimental heat transfer with blowing, suction, and favorable pressure gradient. Report HMT-5, Mechanical Engineering Department, Stanford University, Stanford, California, 1969.
7. Wilson, D. G. Equilibrium turbulent boundary layers in favorable pressure gradients. Division of Engineering and Applied Science, Harvard University, Cambridge, Mass., 1957.
8. Moretti, P. M., and W. M. Kays. Heat Transfer to a Turbulent Boundary Layer with Varying Free-Stream Velocity and Varying Surface Temperature - An Experimental Study, Int. Journal of Heat and Mass Transfer, 1966, 8 (9), 1187-1202.
9. Launder, B. E., and H. W. Stinchcombe. Non-normal similar turbulent boundary layers. Report TWF/TN/21, Mechanical Engineering Department, Imperial College of Science and Technology, London, 1967.
10. Patel, V. C., and M. R. Head. Reversion of Turbulent to Laminar Flow, J. F1. Mech., 1968, 34 (2), 371-392.
11. Badri Narayanan, M. A., and V. Ramjee. On the Criteria for Reverse Transition in a Two-dimensional Boundary Layer Flow, J. Fil. Mech., 1969, 35 (2), 225-241.
12. Bradshaw, P. A Note on Reverse Transition, J. Fl. Mech., 1969, 35 (2), 387-390.
13. Fiedlex, H., and M. R. Head. Intermittency Measurements in a Turbulent Boundary Layer, J. Fl. Mech., 1966, 25 (4), 719-735.
14. Julien, H. I., W. M. Kays, and R. J. Moffat. The turbulent boundary layer on a porous plate: experimental study of the effects of a favorable pressure gradient. Report HMT-4. Mechanical Engineering Department, Stanford University, Stanford, California, 1969.
15. Schraub, 'F. A., and S. J. Kline. A Study of the structure of the turbulent boundary layer with and without longitudinal pressure gradients. Report No. MD-12, Department of Mechanical Engineering, Stanford University, Stanford, California, 1965.
16. Launder, B. E., and W. P. Jones. "A Note on Bradshaw's Hypothesis for Laminarization, " paper presented at ASME-AIChE Heat Transfer Conference, Minneapolis, Minnesota, Aúgust, 1969, ASME Paper No. 69-HT-12.
17. Townsend, A. A. The Structure of Turbulent Shear Flow, Cambridge University Press, 1956.
18. Launder, B. E., and W. P. Jones. Sink Flow Turbulent Boundary Layers, J. FI. Mech., ig69, 38 (4), 817-831.
19. Launder, B. E., and F. C. Lockwood. "An Aspect of Heat Transfer in Accelerating Turbulent Boundary Layers," ASME Paper No. 68-WA/HT-13 (to be published in Journal of Heat Transfer).
20. Boldman, D. R., J. F. Schmidt, and A. K. Gallagher. Laminarization of a turbulent boundary layer as observed from heat-transfer and boundary layer measurements in conical nozzles. NASA TN D-4788. September, 1968.
21. Thielbahr, W. H., W. M. Kays, and R. J. Moffat. "The Turbulent Boundary Layer on a Porous Plate: Experimental Heat Transfer with Uniform Blowing and Suction, with Moderately Strong Acceleration," (to be submitted to the Journal of Heat Transfer).
22. Moffat, R. J., and W. M. Kays. The Turbulent Boundary Layer on a Porous Plate: Experimental Heat Transfer with Uniform Blowing and Suction, Int. J. Heat Mass Transfer, 1968, 11 (10), 1547-1566.
23. Loyd, R. J. The Turbulent boundary layer on a porous plate: an experimental study of the fluid dynamics with strong favorable pressure gradients and blowing. Ph.D. thesis. Mechanical Engineering Department, Ștanford University, Stanford, California, 1970.
24. Boldman, D. R., J. F. Schmidt, and R. C. Ehlers. The Effect of Uncooled Inlet Length and Nozzle Convergence Angle on the Turbulent Boundary Layer and Heat Transfer in Conical Nozzles Operating with Air, Journal of Heat Transfer, November, 1967, 89 (4), Series C, 341-350. Also ASME Paper No. 67-HT-28.
25. Tani, I. Review of Some Experimental Results on the Response of a Turbulent Boundary Layer to Sudden Perturbations, Proceedings - Computation of Turbulent Boundary Layers - 1968, AFOSR-IFP-Stanford Conference, Vol. l, Kline, S. J., M. Morkovin, G. Sovran, D. Cockrell, Department of Mechanical Engineering, Stanford University, Stanford, California, 483-494.
26. Spalding, D. B., and S. V. Patankar. Heat and Mass Transfer in Boundary Layers, 1967, Morgan-Grampian London.
27. Simpson, R. L., D. G. Whitten, and R. J. Moffat. An Experimental Study of the Turbulent Prandtl Number of Air with Injection and Suction (to be published in Int. J. Heat Mass Transfer).
28. Uberoi, M. S., and S. Wallis. Effect of Grid Geometry on Turbulence Decay, The Physics of Fluids, 1967, 10 (6), 1216-1224.
29. Kline, S. J., A. V. Lisin, and B. A. Waitman. Preliminary experimental investigation of effect of freestream turbulence on turbulent boundary-layer growth. NASA TN D-368. March, 1960.
30. Bradshaw, P., and D. H. Ferriss. Calculation of boundary layer development using the turbulent energy equation, IV: heat transfer with small temperature differences. N.P.I. Aero Report 1271, A.R.C. 30 300, 1968.
31. Jones, W. P., and B. E. Launder. "On the Prediction of Laminarescent Turbulent Boundary Layers," paper presented at ASME-AIChE Heat Transfer Conference, Minneapolis, Minnesota, August, 1969, ASME Paper No. 69-HT-13.
32. Lawn, C. J. Turbulent Heat Transfer at Low Reynolds Number, Journal of Heat Transfer, ASME Transactions, 91, Series C, No. 4, November 1969, 532-536.
33. Kestin, J., and P. D. Richardson, Heat transfer across turbulent, incompressible boundary layers, Int. J. Heat Mass Transfer, 1963, 6, 147-189.
34. Ludwieg, H. Bestimung des Verhaltnisses der Austauschkoeffizienten fur Warme and Impuls bei turbulenten Grenzschichten, Z. Flugwiss, 1965, 4, 73-81.
35. Azer, N. Z., and B. T. Chao. A Mechanism of Turbulent Heat Transfer in Liquid Metals, Int. J. Heat Mass Transfer, 1960, 1, 121-138
36. Johnson, D. S. Velocity and Temperature Fluctuation Measurements in a Turbulent Boundary Layer Downstream of a Stepwise Discontinuity in Wall Temperature, Journal of Applied Mechanics, 1959, 26, 325-366.
37. Jenkins, R. Variation of the Eddy Conductivity with Prandtl Modulus and Its Use in Prediction of Turbulent Heat Transfer Coefficients, Proceedings of Heat Transfer and Fluid Mechanics Inst., 1951, 147-158.
38. Tyldesley, J. R., and R. S. Silver. The Prediction of the Transport Properties of a Turbulent Fluid, Int. J. Heat Mass Transfer, 1968, 11, 1325-1340.
39. Tyldesley, J. R. Transport Phenomena in Free Turbulent Flows, Int. J. Heat Mass Transfer, 1969, 12, 489-496.
40. Young, A. D., and J. N. Maas. The behavior of a pitot tube in a transverse total-pressure gradient. A.R.C. Report and Memoranda No. 1770. September, 1936.

4I. Kline, S. J., and F. A. McClintock. "Describing Uncertainties in Single Sample Experiments," Mechanical Engineering, 1953.
42. Simpson, R. L. Characteristics of Turbulent Boundary Layers at Low Reynolds Numbers with and without Transpiration (submitted to J. FI. Mech.).
43. London, A. L. Oblique flow headers for heat exchangers the ideal geometries and the evaluation of losses, Mechanical Engineering Department, Tech. Rept. 63, Stanford University, Stanford, California, August, 1966.
44. Whitten, D. G. The turbulent boundary layer on a porous plate: experimental heat transfer with variable suction, blowing and surface temperature. Ph.D. thesis. Mechanical Engineering Department, Stanford University, Stanford, California, 1967.
45. Moffat, R. J. "Gas Temperature Measurement". in Temperature - Its Measurement and Control in Science and Industry, 3 (2), 553-571.
46. Bradshaw; P. The Effect of Wind-Tunnel Screens on Nominally Two-dimensional Boundary Layers, J. Fl. Mech., 1965, 22 (4), 679-687.
47. Baines, W. D., and E. G. Peterson. An Investigation of Flow Through Screens, Transactions of the ASME, July, 1951, 467-480.
48. de Bray, R. G. Some investigations into the spanwise nonuniformity of nominally two-dimensional incompressible boundary layers downstream of gauze screens. A.R.C. Report No. 29-271, July, 1967.
49. Reynolds, W. C., W. M. Kays, and S. J. Kline. Heat transfer in the turbulent incompressible boundary layer: I -Constant wall temperature. NASA MEMO 12-1-58W, 1958.
50. Kays, W. M. Convective Heat and Mass Transfer, McGrawHill Book Co., 1966 .
51. Boldman, D. R., J. F. Schmidt, and A. Fortini. Turbulence heat-transfer, and boundary layer measurements in a conical nozzle with a controlled inlet velocity profile. NASA TND-3221. March, 1966.
52. Wolfshtein, M. The Velocity and Temperature Distribution in One-dimensional Flow with Turbulence Augmentation and Pressure Gradient, Int. J. Heat Mass Transfer, 1969, 12, 301-318.

SUPPLEMENT I
EXPERIMENTAL APPARATUS AND TECHNIQUES

A. General Description

The test apparatus was designed for boundary layer experiments including transpiration, variable free-stream velocity, and variable surface temperature. The boundary layer is formed on the lower surface of a rectangular channel having cross-section dimensions of 6 inches high by 20 inches wide. The test channel is eight feet long, and the lower wall is made of 24 segments, or plates, each 4 inches long in the flow direction. The surface temperature and transpiration flow are each controlled individually in each plate, allowing a small-step approximation to a continuous wall boundary condition. The upper wall of the channel is adjusted to achieve the desired variation in free-stream velocity. Mean temperature, mean velocity, and streamwise fluctuation velocity profiles within the boundary layer on the lower surface are taken through access holes in the top wall. Substantial care has been taken to assure thermal and hydrodynamic uniformity in the free-stream flow throughout the channel. Heat transfer from the surface to the boundary layer, characterized by the stanton number, is obtained from an energy balance on each plate.

A maximum free-stream velocity of about 40 fps at the inlet of the channel is available with the present installation. Plate temperature can be varied between ambient and approximately 140 F , while free-stream temperature ranges from about 70 F , if cooled, to 95 F uncooled. Energy balances on each plate which were conducted with transpiration only, i.e., no free-stream flow, close within about 4 percent over a wide range of blowing and sucking. Results of qualification tests of the uniform free-stream velocity case with no transpiration agree within several percent of accepted cor-
relations of Stanton number. A more quantitative treatment of these qualifications will be presented shortly.

The fabrication of the apparatus and its original qualification are described in considerable detail by Moffat and Kays [22]. The discussion in the following paragraphs will briefly describe some of the features mentioned above, and document the changes made to the test rig in the course of this investigation.
B. Wind Tunnel

The wind tunnel is an open-circuit unit constructed on two levels to accommodate, in a convenient manner, both the transpiration system and the instrumentation connected with the 24-plate test section. A schematic diagram of the wind tunnel and a photograph of the test duct are presented in Figs. 2.I and SI.l respectively. The main air flow enters the blower via a felt-type filter and passes through, in order, a preliminary screen pack, a turning header, a countercrossflow water-cooled heat exchanger, a flow straightner and screen set, and finally a $4: 1$ contraction before entering the test section. The turning header prior to the heat exchanger was designed according to the guidelines set forth by London [43] to provide a uniform velocity at the inlet to the heat exchanger. The purpose of the heat exchanger is to maintain a temporally constant and spatially uniform freestream temperature despite variations in ambient temperature during a test run. Before entering the series of six screens, the flow passes through an aluminum honeycomb-type straightener which is $1 \frac{1}{2}$ inches thick with hexagonal cells on $\frac{3}{16}$-inch centers. The screens are 32×32 mesh, 63 percent open-area ratio, with a $3 \frac{5}{8}$-inch spacing between the last three. A clear plexiglas wall is located just upstream of the first screen to permit easy inspection of its condition and to guard against fouling by dirt.

The 4:l contraction extends over 26 inches, blending into an entrance section which joins the test channel. The boundary layer is tripped by a $\frac{1}{16}$-inch high, $\frac{1}{4}$-inch wide smooth phenolic strip located $\frac{1}{2}$-inch before the first test plate, and 36 inches downstream of the last screen.

The major modification to the test apparatus made during the period of this investigation was a redesign of the straightening-screen set, located prior to the contraction. The primary reason for this modification was to improve the two-dimensionality of the flow through the test channel; the resulting improvement will be described in a following section. One measure of the effectiveness of the entrance arrangement is the uniformity of the free-stream flow at the entrance to the tunnel. At a free-stream velocity of about 23 fps , used for the majority of the experiments described here, the velocity is uniform to within 0.05 fps and the free-stream temperature to within 0.2 F .

C. Test Plates

The 24 test plates are mounted on thermal isolators in an aluminum frame. They are separated from each other by a 0.025 -inch strip of balsa wood and plastic putty. The pertinent physical characteristics of the plates are:

Material - sintered porous bronze
Dimensions - $18.0 \times 3.975 \times 0.25$ inches
Particles - spherical: maximum diameter 0.0070 inches
minimum diameter 0.0023 inches
Porosity - Approximately 40%. Uniform within $+6 \%$ in the center six-inch span
Roughness - Maximum of 200 microinches (RMS) measured with a stylus of radius 0.0005 inches
Thermal conductivity - $6.5 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-\mathrm{F}$, minimum
Surface emissivity - 0.37 average

Surface temperatures are measured by five iron-constantan thermocouples located in the center six-inch span. The.surface thermocouples are epoxied into holes drilled from the bottom of the segment to within 0.040 inches of the surface. The plate is heated by nichrome wires located in groves in the lower surface, spaced such that the surface temperature variation, due to wire spacing, will be within 0.04 F under all conditions of surface heat transfer and transpiration. Separate power supplies, both stabilized, are available for plates $1-12$ and 13-24. Additionally, power to each plate is individually controlled by a rheostat. To illustrate the nature of the plate surface, a close-up photograph is presented in Fig. Sl. 2.

D. Transpiration System

The transpiration system is shown in Fig. 2.1. The components of the circuit are, in order, the air filter, blower, heat exchanger, header, flow control valves, flowmeters, plate underbody, and the plate itself.

The heat exchanger is used to cool the transpiration flow to near ambient temperature, minimizing the heat transfer in the lines leading to the flowmeters so that a single measurement in the distribution header will suffice to describe the temperature at every flowmeter. Parallel circuits of ball-type flow control valves and variable-area flowmeters provide two ranges of control and measurement. To assure accurate flow measurement, the system is periodically checked for leakage. The flowmeters were individually calibrated with an ASME standard orifice in preparation for the present study. Each plate underbody has been developed to 1) provide thermally and hydrodynamically uniform flow to the underside of the entire plate and 2) allow measurement of a single temperature in the transpiration fluid just beneath the plate to provide the information necessary for energy balances. Figure 51.3 shows a view in cross-section of a typical plate.

The developments leading to this design are fully discussed by Moffat and Kays [22]. The plates are arranged in sets of six into heavy aluminum castings, which are heated (or cooled, if desired) by an auxiliary water system to reduce thermal conduction between the plates and their supports during testing. Note in Fig. SI. 3 that the conduction path for heat losses to the plate support is largely limited to thin phenolic webs.

E. Instrumentation

Table I contains a listing of the instrumentation used in the experiments, plus the source of the calibration and the estimated accuracy, where appropriate.

The instrumentation which is used in the measurement of surface heat transfer is unchanged from previous investigations on the apparatus [22,44,6]. Profile measurement techniques, however, have been modified in several respects. A new temperature probe was fabricated of 0.004 -inch ironconstantan wire, replacing the previous 0.010 -inch wire, in order (l) to allow measurements close to the wall (the junction size was reduced from 0.009 inches to 0.005 inches in thickness) and (2) to reduce conduction losses from the junction. However, subsequent analysis of the probable conduction exror using the approach of Moffat [45] showed that functionally, at the same ratio of the exposed thermocouple junction length to junction diameter (ℓ / d), the conduction error in cross flow is proportional to $\exp \left(-\mathrm{d}^{1 / 3}\right)$. Additionally, small wires are more subject to material inhomogeneities which result in measurement errors in a temperature gradient. A larger wire, on the order of 0.007 inches is recommended for future testing.

A calibration of the thermocouple probe was conducted in a constant temperature oil bath using a precision mercury thermometer as the standard. Even when the junction was

TABLE I. INSTRUMENTATION LIST

Measurand	Instrument or Sensing Device	Source of Calibration (where appropriate)	Estimated Accuracy
Temperature	Probe: 0.004 -inch iron-constantan thermocouple wire with tip flattened to 0.005 -inches	See text	See text
	Other: 0.Ol0-inch iron-constantan thermocouple wire	Constant temperature oil bath at Stanford Linear Accelerator Standards Facility	0.25 F
Pressure	Probe: Total pressure probe with tip flattened to 0.0118 -inch by 0.0355 -inch		
	Static wall taps: 0.040 -inch sharp-edged holes Transducers: Statham PM-97 and PM-5 differential pressure transducers	Meriam Model 34FB2 20" Micromanometer	0.4-0.8\%
Thermocouple or transducer output	Hewlet Packard DYMEC Integrating Digital Voltmeter Model 2401C Beckman Electronic Counter Model 5010R-ll	Hewlett Packard	$\pm 2 \mu \mathrm{~V}$
Flowrate	Transpiration: Fisher-Porter Rotameters; Tube Model Nos. B6-27-10/27 and B4-27-10/27. Float Model Nos. SS BSVT-64-A and SS BSVT-45-A	ASME standard orifices	± 2 percent
Electrical Power	Sensitive Research Company, Reference Standard Wattmeter Model U-21020	$\begin{aligned} & \text { Stanford Lanear } \\ & \text { Accelerator Standards } \\ & \text { Facility } \end{aligned}$	1/4 percent
Fluctuating velocity	Probe:' Platinum hot-wire 0.0002-inch diameter, $1 / 16$-inch		
	Thermo-Systems Constant 'Temperature Anemometer Model 1010 Thermo-Systems Linearizer Model 1005B Thermo-Systems RMS Voltmeter Model 1060		
	Quan-Tech Wave Analyzer Model 304		
	Hewlett-Packard MOSELEY Model 7001A x-y recorder		

barely immersed, in an attempt to establish a sharp gradient in the region of the tip, the agreement was within 0.3 F . It is possible, however, that measurements very close to the wall in a boundary layer, where the temperature gradients are steep, could be in error by several degrees. For purposes of uncertainty calculations, it is assumed that the accuracy is $\pm 0.4 \mathrm{~F}$ for the first fifteen profile points and $\pm 0.25 \mathrm{~F}$ in the outer regions. Comparison of the temperature data below a y^{+}of 10 to the expected correlation in that region indicates that the temperature probe typically reads about 2.4 F low at $\mathrm{y}^{+}=2$, decreasing to 0.7 F at $\mathrm{y}^{+}=10$. Typically, the fifteenth point in the profile occurs at a y^{+}of about 50. It will be shown that the effect of this ${ }^{\text {. }}$ error on integral parameters of the boundary layer is negligible.

The probe is manually positioned with a micrometer traversing mechanism, accurate to the closest 0.001 -inch. The wall position of the thermocouple probe is established by electrical means.

Hydrodynamic measurements for this study are described by Loyd [23]. In essence, the innovations include the use of the pressure transducers in place of manometers, and the verification of pitot-tube mean velocity profiles with hotwire data. In both the temperature and velocity profile measurements, the signal at each point was integrated by the digital voltmeter over a period of at least ten seconds. The recorded data then included both the integrated signal and the time interval.

Standard hot-wire techniques were utilized to obtain profiles of the streamwise fluctuation velocity, $\sqrt{u^{\prime 2}}$, as well as mean velocity. The data was obtained with a 0.0002 inch constant temperature platinum hot wire and a linearized anemometer system. The calibration of the hot-wire was checked frequently during testing, with a maximum estimated drift of about 3 percent. The mean velocity and the mean-
square of the streamwise fluctuation velocity were both recorded by the integration method noted above.
-Free-stream velocity distribution was calculated with Bernoulli's equation for incompressible flow from a single total-pressure measurement at the entrance of the test section, and 47 wall static pressure measurements made l-inch above the plate along one wall of the channel. Tests conducted previously [6] indicated that the static pressures measured by the wall taps were at a given x-position, constant throughout the boundary layer in moderate pressure gradients. Additional tests were conducted during the present study in the region of the most severe axial pressure gradient. It was found that perpendicular to the wall the static pressure was also constant throughout the thin boundary layer under these conditions, and increased with increasing y in the potential core such that the variation in velocity was less than 0.8%. This point is discussed further in section F.5. Additionally, the readings were identical on both sides of the channel.

F. Qualification of the Apparatus

The test apparatus was qualified for operation in several ways. An extensive set of experiments was conducted to examine the closure of energy balances over a wide range of transpiration. . Secondly, tests were made to verify that an accepted correlation could be reproduced for a turbulent boundary layer with a constant free-stream velocity on an impermeable wall. Finally, țhe questions of surface roughness and three-dimensional flow conditions in the test section. were considered.

F. 1 Transpiration Energy Balances

With transpiration, the electrical energy supplied to the test segments can be accounted for as heat transferred to the boundary layer, to the transpired flow, and to the surroundings as "losses". In the first qualification of the
test rig by Moffat and Kays [22], a series of tests was conducted with no main-stream flow in order to establish correct models for the loss terms, and to achieve satisfactory energy balances for the simplified problem of transpiration only. Subsequently, these tests have been periodically conducted to confirm the repeatibility of the results, with continuing efforts expended on improvements in the model which purports to mathematically describe the performance of the apparatus. Building on the experience of the previous results, special care was taken in the current series of tests to examine some irregularities which have appeared to be associated with the rate of transpiration flow, particularly in the blowing mode. To appreciate the discussion of the modifications which have been made to the model, the modes and descriptions of the energy flows will briefly be outlined here.

The energy supplied to each plate, ENDEN^{1}, is distributed in the following manner,

$$
\begin{equation*}
\text { ENDEN }=\text { H'TRANS }+ \text { ECONV }+ \text { LOSSES } \tag{S1.1}
\end{equation*}
$$

where
HTRANS - heat transferred from the surface to the boundary layer

ECONV - heat transferred within the plate to the transpiration flow

LOSSES - heat transferred to the surroundings by radiation from the top and bottom surfaces, and by conduction to the support structure.

It is important to recognize that the energy balance control volume is restricted to the center six-inches of the

[^4]plate. The upper and lower limits of the control volume in the y-direction are somewhat different for blowing and suction. The term LOSSES accounts for several heat transfer mechanisms: top radiation from the plate to the channel walls, back radiation from the plate to the pre-plate and casting, conduction from the plate to the casting through the web supports, conduction to the casting and pre-plate through the' stagnant air which exists when no transpiration is present, and lateral conduction within the plate to or from the center six-inch control volume. The development of models for these terms are fully discussed in references [22,6].

During this study, adjustments based on experiments were made to the ECONV term, resulting in improved energy balances. The term is calculated from the equation

$$
\begin{equation*}
\text { ECONV }=\dot{m}^{\prime \prime} c_{p}\left[T_{o}-T_{T}\right]\left[I+I\left(\dot{m}^{\prime}, \text { KCONV }\right)\right] \tag{S1.2}
\end{equation*}
$$

where KCONV accounts for slight measured differences in the mixed-mean temperature of the transpiration fluid leaving the plate, and the indicated plate temperature. The mass flux is obtained by the equation

$$
\begin{equation*}
\dot{\mathrm{m}}^{\prime \prime}=\frac{\dot{\mathrm{m}}}{\mathrm{~A}}(\mathrm{KFLOW}+\mathrm{KFUDGE}) \tag{S1.3}
\end{equation*}
$$

where KFIOW accounts for porosity variations in the plate and KFUDGE is an arbitrary correction term on the order of 'l percent.

KFIOW is the ratio of the actual transpired mass flow, passing through the center six-inch section of the plate, to the flow which would pass through that section of a uniform plate. Moffat determined the value for each plate from 72 local flow measurements. KFUDGE was introduced into the model because consistent energy unbalances existed on a plate-wise basis which could best be explained by an error
in $\dot{m}^{\prime \prime}$. Rather than change KFIOW, which could not be justified experimentally, or change the rotameter calibration, which appeared acceptable when checked, the additive term KFUDGE was introduced into the model.

Since these two correction factors are closely interrelated, action was taken along several paths in the current qualification tests to investigate this problem. First, all the flowmeters were individually calibrated against standard ASME sharp-edged orifices (which were themselves satisfactorily checked in water with a weigh tank measurement system). Two orifices of different sizes were used to measure the same flowmeter flow wherever possible, with good agreement in the resulting calibrations. Both large and small flowmeters were consistently high by 3-5 percent at the low end of their scales. In mid-range and at high flows, the flowmeters were either slightly high or agreed with the orifice. The calibration for each rotameter was curve-fit and entered into the data reduction program. Secondly, measurements were made of the flow passing through the left, right, and center sixinch portions of each plate. To do this, a small plexiglas plenum was designed.which exactly covered the desired area, being sealed on the lower edges, and containing orifice holes in its upper surface. The measured pressure drop across the orifice holes allowed the calculation of the relative flow rate between each section, after suitable corrections were made for the effect of the measuring device on the flow being measured. From these measurements, values of KFLOW were recomputed. Generally, the new values are one to two percent higher than the previous values. Thirdly, the value of KFUDGE was set to zero for all plates.

With no main-stream flow, the term HTRANS in eqn. (Sl.1) is zero, and the energy unbalance can be expressed by the equation,

$$
\begin{equation*}
\text { HTFRAC }=1-\frac{\text { ECONV }}{\text { ENDEN-LOSSES }} \tag{S1.4}
\end{equation*}
$$

Tests were conducted at three rates of both blowing and sucking over the full range available. As an example of the magnitudes involved, at full blow the transpiration flow rate is about 13 CFM per plate and the velocity of the fluid leaving the plate 0.44 fps . The energy unbalances for these experiments are presented in Fig. Sl.4. The band of scatter is reduced over the previous results of Moffat [22] and Thielbahr [6], but no significant differences are noted. For each transpiration rate, the mean, standard deviation, and calculated uncertainty interval of the results for all plates are presented on the figure. In Table II, the mean and standard deviations for each plate and various combinations of transpiration rate are tabulated. In general, the standard deviations for all plates are within uncertainty ranges calculated for each transpiration rate. However, the results of several tests conducted under the same conditions were quite repeatable, indicating that the unbalance measurements might possibly be reasonable estimations of fixed errors, and that the true uncertainty bands are in reality not as wide as the uncertainty analysis predicts.

F. 2 Boundary Layer Energy Balances

Each experimental run consists of y-traverse data, including hydrodynamic and temperature profiles, in addition to the surface heat transfer measurements. Using this information, the energy transferred to the boundary layer from the wall, calculated from the surface heat transfer data, can be compared to the increase in energy in the boundary layer as determined from the measured profiles. A simple energy balance on a two-dimensional boundary layer gives the equation

	MEAN				STANDARD DEVIATION		
			$\begin{aligned} & v_{2} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$
	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\sim}{\mu} \end{aligned}$						
	1	-0.13	-3.27	3.00	3.29	0.73	1.21
	2	-0.85	-2.03	0.33	2.19	2.40	1.02
	3	-0.90	1.53	-3.33	2.65	0.26	1.46
	4	-1.30	-0.33	-2.27	1.82	0.39	2.15
	5	-0.67	-0.30	-1.03	0.66	0.67	0.41
	6	0.97	0.67	1.27	0.79	1.02	0.19
	7	-0.87	0.97	-2.70	1.91	0.66	0.36
	8	-0.58	-0.67	-0.50	0.42	0.53	0.24
$\underline{\omega}$	9	-2.05	-1.53	-2.57	0.76	0.69	0.39
\checkmark	10	-1.32	-1.03	-1.60	0.51	0.56	0.22
	11	-0.97	-0.67	-1.27	0.58	0.33	0.62
	12	0.67	0.17	1.17	0.79	0.62	0.61
	13	1.35	0.10	2.60	4.80	1.31	1.28
	14	0.10	-1.30	1.50	1.56	0.49	0.83
	15	0.08	1.03	-0.87	1.63	0.65	1.76
	16	1.82	2.40	1.23	0.88	0.71	0.61
	17	-0.17	0.47	-0.80	1.17	0.17	1.37
	18	1.93	0.83	3.03	2.59	0.95	3.18
	19	-2.15	-1.07	-3.23	1.87	0.84	1.98
	20	-0.42	0.77	-1.60	2.00	0.12	2.28
	21	0.87	1.97	-0.23	1.33	0.45	0.95
	22	-0.02	-0.10	0.07	1.23	0.99	1.43
	23	-1.22	-2.03	-0.40	1.23	1.07	0.65
	24	-0.98	-0.27	-1.70	1.03	0.95	0.45

$$
\begin{equation*}
\text { St }=\frac{1}{\rho_{\infty} U_{\infty}^{i}{ }_{s, 0}} \frac{d}{d x}\left(\Delta_{2} \rho_{\infty} U_{\infty} i_{s, 0}\right)-F, \tag{Sl.5}
\end{equation*}
$$

where the enthalpy thickness, Δ_{2}, is defined as

$$
\begin{equation*}
\Delta_{2}(x)=\int_{0}^{\infty} \frac{\rho U}{\rho_{\infty} U_{\infty}} \cdot \frac{i_{s}}{i_{s, 0}} d y \tag{S1.6}
\end{equation*}
$$

Operationally, Eqn. (Sl.5) has been utilized in the following integral form to calculate Δ_{2} at each plate,

$$
\begin{equation*}
\Delta_{2}(x)=\frac{1}{\left(\rho_{\infty} U_{\infty} i_{S, O}\right)_{x}}\left(\rho_{\infty} U_{\infty} i_{s, 0} \Delta_{2}\right)+\int_{x=0}^{x} \rho_{\infty} U_{\infty} i_{s, 0}(S t+F) d x \tag{Sl.7}
\end{equation*}
$$

Comparing the enthalpy thickness calculated in this manner to the value calculated from profile measurements provides a check on the performance of the apparatus. The starting value required in Eqn. (Sl.7) has been calculated in all test. runs by assuming that the profile measurement at the first profile station represents the actual state of the boundary layer, thereby forcing agreement between Eqns. (S1.6) and (S1.7) at that x-position (where Eqn. (Sl.6) is calculated using profile data). In all the runs with no transpiration, the enthalpy thickness calculated from profile measurements, Eqn. (Sl.6), is consistently lower than the enthalpy thickness calculated from Eqn. (Sl.7). The differences in the values of enthalpy thickness vary, in these runs, up to about 6 percent at the end of the accelerated region (no profile measurements were taken beyond this point). This difference represents a variation of approximately 10 percent between the heat transfer calculated from surface measurements and
that calculated from profile data. In runs with blowing and acceleration, the corresponding comparisons are 2 percent and 4 percent. In tèst lll 669, at constant free-stream velocity and no transpiration, the energy unbalance over five feet of the test section is about 11 percent. It is important to note, in regard to these values, that the uncertainty intervals calculated for the enthalpy thicknesses were on the order of ± 3 percent and ± 6 percent, respectively, for Eqns. (S1.7) and (S1.6). On one hand, the absolute differences between the results of Eqns. (S1.7) and (S1.6) are within the calculated uncertainty bands, but, on the other hand, there is recognizable consistency in the trend of the energy unbalance with increasing x. A summary of representative energy unbalances and uncertainty calculations is presented in Table III.

Several possible explanations for a consistent energy unbalance have been considered. Three-dimensional effects, for example, would render the use of Eqn. (Sl.7) invalid. In fact, the effects of acceleration on side wall boundary layers in the test channel would cause divergence of the main stream flow, inducing just the trends indicated by the differences noted above. However, the trend is unchanged for the constant free-stream velocity run, whereas growth of the side-wall boundary layers should, by this argument, induce convergence of the main stream under these conditions.

Three-dimensional effects could be caused by other phenomena, such as perturbations in the incoming flow or the vortices which exist in the corners of the rectangular channel. The redesign of the inlet screen pack was undertaken to forestall problems of the former type. The design of the screen pack was based on the wind tunnel work of Bradshaw [46] and others [47,48], and the results of this effort are evident in the uniformity of the free-stream conditions (to be discussed shortly) and the agreement of transverse profiles. Transverse measurements of both velocity and tempera-

$\begin{aligned} & \dot{0} \\ & \stackrel{0}{4} \\ & \stackrel{\text { g }}{\substack{2}} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{+} \\ & \underset{\sim}{0} \\ & \stackrel{\mu_{1}}{4} \end{aligned}$				
083069	4	0.0	0.0	3.4	2.7
$\mathrm{K}=2.5 \times 10^{-6}$	6	-9.1	-3.0	3.1	2.3
$\begin{aligned} & \mathrm{K}=2.5 \times 10 \\ & \mathrm{~F}=0.004 \end{aligned}$	7	-6.3	-2.8	2.7	2.1
	8	0.3	0.1	2.5	1.8
	9	-1.9	-1.1	2.6	1.6
	10	-2.3	-1.5	2.3	1.5
092469	12	0	0.1	3.3	2.5
$\mathrm{K}=2.5 \times 10^{-6}$	15	-16.3	-2.7	3.5	2.2
$\mathrm{F}=0.0$	16	-6.9	-1.4	3.5	2.0
High initial	17	-14.5	-3.7	3.5	1.8
$R e_{M}, R e_{H}$	18	-13.2	-3.9 -5.8	4.0 4.0	1.6
101769	4	0	0.1	7.7	2.8
$\mathrm{K}=2 \cdot 5 \times 10^{-6}$	6	-19.2	-6.2	7.0	2.3
$\mathrm{F}=0.0$	8	-13.8	-6.7	6.6	1.9
High FreeStream	10	-14.7	-8.7	6.9	1.7

All results are given in (\%).

TABLE III. SUMMARY OF REPRESENTATIVE BOUNDARY LAYER ENERGY BALANCES
ture taken in the region just prior to acceleration and near the end of the acceleration region, with no transpiration, are quite symmetric. Figure Sl. 5 shows both sets of profiles, and Table IV lists the integral parameters associated with these profiles. The transverse variations in momentum and enthalpy thickness correspond, approximately, to maximum variations from the mean of 2 percent and 4.5 percent, respectively, in the skin-friction coefficient and Stanton number at plate 12. In conclusion, no obvious causes have been detected which would account for the energy unbalance trends noted in the experiments.

F. 3 Flat Plate Turbulent Boundary Layer

A basic prerequisite to obtaining heat transfer data in a strong pressure gradient is a demonstration that the test rig can adequately reproduce accepted correlations for

TABLE IV

TRANSVERSE MOMENTUM THICKNESS AND ENTHALPY THICKNESS MEASUREMENTS

Quantity	x	$\underline{K x 10^{6}}$	$\begin{aligned} & z= \\ & +3 \mathrm{in} . \end{aligned}$	$\begin{aligned} & \text { Center- } \\ & \text { line } \end{aligned}$	$\begin{aligned} & z= \\ & -3 \mathrm{in} . \end{aligned}$
(in.)	(in.)				
θ	13.81	0	0.0690	0.0636	0.0674
Δ_{2}	13.81	0	0.0535	0.0534	0.0535
θ	33.59	2.5	0.0257	0.0229	0.0234
Δ_{2}	33.59	2.5	0.0636	0.0600	0.0605

the turbulent boundary layer with no transpiration and a constant free-stream velocity. Such a test was conducted with a free-stream velocity of 23 fps ; the experimental results are presented in Fig. Sl. 6 a and compared to the correlation obtained by Moffat and Kays [22] on the same apparatus in 1966 with a free-stream velocity of 43 fps . In Fig. Sl. 6b two temperature profiles from this test run are compared to another experiment. It can be seen that changes in the inlet section and the mathematical data reduction model have had a negligible effect on rig performance for this type of test run. When corrected for variable property effects by the ratio $\left(\mathrm{T}_{\mathrm{o}} / \mathrm{T}_{\infty}\right)^{0.4}$, the data is adequately fitted by the expression,

$$
\begin{equation*}
\mathrm{St}=0.0128 \mathrm{R}_{\mathrm{H}}^{-.25} \mathrm{Pr}^{-.5} \tag{S1.8}
\end{equation*}
$$

obtained earlier by Moffat, and within 2 percent of accepted correlations [49,50].

Temperature and velocity profiles were also obtained at three positions along the test section (14.8, 46.8, and 78.8 inches). As noted in section $F .2$ the measured plate heat transfer to the boundary layer was l0-1l percent higher than the increase in energy calculated from profiles.

Since other experimenters have substantiated the Stanton number correlations expected under these conditions, this test run presented an opportunity to compare actual results to expected results in an attempt to explain the small differences noted. However, careful scrutiny of both the surface heat transfer data and the profile data was again inconclusive. First, examination of the Stanton number results showed that they are not consistently high compared to the expected correlation. Next, several possible errors in the profile data, and its reduction to enthalpy thickness, were numerically investigated. A low temperature reading tends to lower the measured enthalpy thickness. To consider the magnitude of
effects due to thermocouple conduction error, the laminar Couette flow equation for no transpiration and zero pressure gradient,

$$
\begin{equation*}
\mathrm{t}^{+}=\operatorname{Pr} \mathrm{y}^{+}, \tag{S1.9}
\end{equation*}
$$

was used to predict the temperature for $y^{+} \leq 10$. The computed temperatures in the sublayer ranged from 2.4 F higher than the measured temperatures near the wall to 0.7 F higher at $\mathrm{y}^{+}=10$. The calculated enthalpy thickness at $\mathrm{x}=78.8$ inches, using these new values, only changed from 0.1905inch to 0.1907 -inch, whereas the enthalpy thickness computed by integration of the energy equation is 0.2079 -inch. Assuming a conduction.error extending into the turbulent core, where the contribution to the enthalpy thickness is greater, results in a new profile value on the order of 0.1970. . Another possibility is that an error exists in the y-position in either temperature or velocity profiles, particularly due to failure to locate the wall accurately. . The uncertainty analysis discussed in the previous section assumes a 0.0015 inch uncertainty in this measurement. If the y-position for all temperature profile points is arbitrarily shifted 0.0025 inches away from the wall in the case of the profile at $\mathrm{x}=78.8$ inches, the calculated enthalpy thickness becomes 0.1917 inches. Obviously the integral parameters of the boundary layer are not overly sensitive to any of the possible errors mentioned here, which is an indication of both their usefulness and insensitivity in experiments. The integral parameters are more sensitive to errors in the free-stream and plate temperatures, but both those measurements are much more certain than the probe temperature in a steep temperature gradient. The uncertainty analysis gives, at $x=78.8$ inches, an uncertainty of ± 0.006 for the profile measurement of enthalpy thickness and ± 0.003 for the value obtained by integrating the energy equation. For convenience, the effects of the errors just discussed are tabulated in Table V.

TABLE V

EFFECT OF EXPERIMENTAL ERRORS ON THE CALCULATED ENTHALPY THICKNESS AT $\mathrm{x}=78.8$ INCHES IN RUN 111669 ($K=0.0, ~ F=0.0$)

Enthalpy Thickness, Δ_{2}

Experimental result (Eqn. S2-6) 0.1905 ± 0.006
Integration of energy equation (Eqn. S2-7) 0.2079 ± 0.003
Effect of assumed exrors (evaluated by Eqn. S2-6)

1) Couette flow valid for $\mathrm{y}^{+}<10 \quad 0.1907$
2) Conduction error: Range 1 .

Linear from 2.5 F at $\mathrm{y}^{+}=0$ to
1.0 F at $y^{+}=10$. Range 2.

Linear from 1.0 F at $\mathrm{y}^{+}=10$ to
0 Fat $y^{+}=500$.
0.1970
3) y-shift of +0.0025-inch $\quad 0.1917$

Within the uncertainty bands, the measurements of stanton number and local enthalpy thickness indicate that a small percentage of the energy transferred from the wall is not accounted for by boundary layer profile measurements.

F. 4 Free-stream Conditions

, Uniformity of the free-stream flow was measured in both the streamwise and cross-sectional directions. All the experiments in the study were conducted with an inlet freestream velocity of 23 fps. At this velocity, the uniformity of the free-stream velocity in the inlet plane was found to be within 0.05 fps, while the free-stream temperature in the same plane was constant within 0.2 F. The free-stream total pressure showed a maximum streamwise variation of ± 0.001
inch $\mathrm{H}_{2} \mathrm{O}$ throughout the accelerated region under the condition of strongest acceleration, $K=2.5 \times 10^{-6}$. The free-stream stagnation enthalpy was not measured under these conditions, but the indicated thermocouple temperature was uniform in the axial direction within $\pm 0.2 \mathrm{~F}$ at a constant free-stream velocity.

The free-stream turbulence level was nominally 0.7 percent. One test series was conducted with a free-stream turbulence intensity of 3.9 percent at the start of acceleration in order to examine the effect of free-stream turbulence on heat transfer performance in strongly accelerated boundary layers. The free-stream turbulence intensity decayed to 0.4 percent and 0.9 percent, respectively, in the recovery region. In the high free-stream turbulence runs, a crossedrod grid was placed 13 inches upstream of the trip. The grid consisted of $1 / 4$-inch round wooden dowels formed into a square, interlocked mesh (i.e., all of the dowels were in the same plane) on l-inch centers. The grid design was based in part on the work of Uberoi and Wallis [28], in which, 29inches downstream of a similar grid, the turbulence was found to be homogeneous with $\overline{\mathrm{u}^{\prime 2}} \approx \overline{\mathrm{v}^{\prime 2}}$. The free-stream energy spectra exhibited in both runs was that of normal turbulence. The spectra were taken in the region just prior to acceleration and are presented in Fig. Sl.7.

F. 5 Effect of Pressure Gradient

Strong pressure gradients can effect the experimental velocity traverses in several ways. Streamline curvature can (1) cause a probe error due to the angle of the flow to the probe, and (2) result in a significant static pressure gradient normal to the flow streamlines, so that wall measurements of static pressure at a fixed y-position are not sufficient descriptors of the static pressure at the probe. With porous plates, there exists the additional problem in a favorable pressure gradient of a "natural" transpiration
into the upstream side of the plate (sucking) and out the downstream side (blowing), caused by the axial pressure gradient in the free-stream flow. The reversal of transpiration in a given plate occurs when forced transpiration is not present; with forced transpiration, the effect of the pressure gradient is to induce non-uniformity within the plate. Streamline curvature effects were examined by testing the magnitude of the static pressure gradient normal to the wall. Five wall static taps (0.032 inch diameter sharpedged holes), were drilled at distances from the wall of $0.75,1.0,1.5,2.0$, and 2.5 inches, at two stations in the region of the strongest pressure gradient. static pressure readings were taken at an acceleration of $K=2.5 \times 10^{-6}$. At the first station, where $\frac{d p}{d x}=-2.28\left(1 b_{f} / f t^{2}\right) / f t$, the velocity varied -0.2% up to 1.5 inches and -0.7% up to 2.5 inches, both normalized by the velocity at 0.75 inches. At the second station, where $\frac{d p}{d x}=-4.45\left(\mathrm{Ib}_{\mathrm{f}} / \mathrm{f} t^{2}\right) / \mathrm{f} t$ the measurements were essentially identical to those at the first station. The boundary layer thicknesses under these conditions were about 1.25 inch and 1.0 inch, respectively, at the two stations. By virtue of these results, streamline curvature effects were considered negligible within the boundary layer.

While the pressure-gradient-induced transpiration is undesirable in tests where no transpiration is desired, it is a desirable feature in the blowing tests conducted in this study. The usual objective was to achieve a boundary layer with a constant ratio of $\rho_{o} V_{O} / p_{\infty} U_{\infty}(\equiv F)$. Since U_{∞} increases in the x-direction in the accelerated region, it is desirable if, within a given plate, the local transpiration has the same trend. A parametric study of the expected transpiration behavior at various values of K and F was conducted prior to the start of the study. The behavior of the apparatus in this regard can be modeled by assuming that a potential flow model describes the main stream flow, that
the transpiration flow is governed by laminar mechanisms in the porous plates, and that the static pressure in the cavity beneath the plate is uniform. The first two assumptions were substantiated by simple tests. At the high blowing rate, about 13 CFM , the pressure drop across a plate is approxi-. mately 12 inches of water. It was decided to limit the deviation from the desired value of the induced transpiration to $F=+0.0003$, a value for which the effects of transpiration on heat transfer are known to be insignificant in constant velocity boundary layers. With this criteria in mind, a maximum limit of $K=2.5 \times 10^{-6}$ was set for strong accelerations with no transpiration. It is possible, with blowing, to go to considerably higher values of K and still satisfy the criteria on F. The expected distribution of transpiration for the conditions of this study are presented in Fig' Sl. 8.

F. 6 Roughness

The roughness criteria was one of the features of the porous plate , taken into consideration in the initial design of the apparatus. The maximum RMS roughness, 0.0002 inch, is well within the laminar sublayer for the experiments discussed in this thesis. While the boundary layer itself becomes thinner in strong accelerations, it is also true that the relative thickness of the laminar sublayer markedly increases. Near the end of the acceleration region, at $K=2.5 \times 10^{-6}$, with no transpiration, the sublayer thickness is about 0.008 inches. The maximum velocity in the test section was on the order of 80 fps . A study specifically directed at the effect of surface roughness in this apparatus on skin friction in a turbulent boundary layer, with constant free-stream velocity is reported by Thielbahr, et al. [6]. The conclusions were that, for velocities up to 86 fps , the experimental data shows no effect of plate roughness. The conditions encountered in the present study meet this criteria.

G. Data Reduction

The method of data reduction relies on a mathematical model of the test apparatus which links the raw experimental data to appropriate representations of the results. The measurement techniques are standard, so the point of interest becomes the interpretation of the measured quantities. The purpose of this section is to clearly explain the assumptions which were made in reducing the raw data to the form of the results presented in this thesis.

G. 1 Surface Heat Transfer

The surface heat flux, $\dot{q}_{0}{ }^{\prime \prime}$, is presented in the form of stanton number,

$$
\begin{equation*}
S t=\frac{\dot{q}_{O}^{\prime \prime}}{\rho_{\infty} U_{\infty}^{i}{ }_{S, O}} \tag{S1.10}
\end{equation*}
$$

where $i_{s, o}$ is the stagnation enthalpy referenced to freestream enthalpy. The determination of the surface heat flux has been discussed in section F.l. Equation (Sl.I) is rearranged to compute the term HTRANS, which is the heat flux, $\dot{\mathrm{q}}_{\mathrm{O}}{ }^{11}$. In an attempt to reduce experimental scatter in the Stanton number for the blowing runs, the transpiration energy balance results were incorporated into the computations in the following manner. A non-zero value of HTFRAC (Eqn. Sl.4) in the transpiration energy balances reflects an error in one of the terms, ENDEN, ECONV, or LOSSES. Because the measurements associated with the transpiration itself are most subject to uncertainty, the error was wholly attributed, arbitrarily, to the term ECONV. The transpiration energy balance results give HTFRAC at certain values of $\dot{m}^{\prime \prime}$ over the full range of transpiration in the apparatus. Knowing $\dot{m}^{\prime \prime}$ for a given plate, and assuming a linear variation between measured energy balance points, the value of HTFRAC can be determined. HTFRAC is thus dependent both on the
plate and mass flux. Note that Eqn. (Sl.4) can be written
HTFRAC = HTRANS/ENNET
where

$$
\begin{aligned}
& \text { ENNET = ENDEN }- \text { LOSSES } \\
& \text { HTRANS }=\text { ENNET }- \text { ECONV } .
\end{aligned}
$$

In boundary layer measurements, ENNET $\neq E C O N V$, whereas in the energy balances ENNET $\approx E C O N V$. The correction to HTRANS in boundary layer measurements due to the measured energy unbalance can be expressed, approximately, by

$$
\text { HTRANS }_{\text {new }}=\text { HTRANS }_{\text {old }}-(\text { HTFRAC })(\text { ECONV }) .
$$

Since 'StøHTRANS, the correct Stanton number is formed by writing

$$
S t_{\text {new }}=S t_{\text {old }} \cdot \text { HTRANS }_{\text {new }} / \text { HTRANS }_{\text {old }}
$$

or

$$
S t_{\text {new }}=S t_{o l d}\left[I-(\text { HTFRAC })(E C O N V) / \overline{H T R A N S}_{o l d}\right]
$$

The Stanton number calculations in all the blowing runs were handled in this manner. The final results show less scatter than would exist if the transpiration energy balance results were not utilized.

In the test channel, the free-stream gas temperature and total pressure are recorded 6-inches downstream of the trip, while side-wall static pressure measurements are read every 2-inches down the channel. Assuming constant freestream total pressure, the free-stream velocity is obtained from Bernoulli's equation for incompressible flow. The freestream stagnation enthalpy is also assumed constant throughout the channel. Both these assumptions were shown to be valid in the qualification tests. The energy equation is
integrated to obtain the enthalpy thickness at the center of each plate, assuming a starting value at the first plate. Subsequently, the enthalpy thickness at $\mathrm{x}=14$ inches, obtained from profile data, is used to establish the starting condition.

No adjustment to the measured plate Stanton number is applied to correct for variable property effects, since the usual correction may not be applicable to flows with blowing or strong acceleration. The surface heat transfer data is presented as a function of enthalpy thickness Reynolds number", because this dimensionless ratio has proven to be a useful and valid local descriptor of the heat transfer phenomena even with variable wall conditions (both transpiration and temperature) in a constant velocity turbulent boundary layer [44]. While this is not the case in strong acceleration, no better correlating variable has been observed.
G.2 Profile Data

Profile measurements of temperature, velocity', and streamwise velocity fluctuations were taken in the joint investigation represented by this thesis and that of Loyd [23]. A complete dịscussion of the hydrodynamic profile data is presented by Loyd.

The thermocouple probe measures a temperature somewhere between the static and stagnation temperatures of the flow. Since, the velocities in this study are low; the magnitude; of the difference between the two temperatures is, at the most, 0.5 F . It has been assumed that the thermocouple probe measures the adiabatic wall temperature; the recovery factor'. an unknown function of the probe geometry and flow conditionsi, is taken to be given by the expression, $r_{c}=\mathrm{Pr}^{I / 3}$. Consequently, the static temperature is computedi by the equation,

$$
\begin{equation*}
T=T_{\text {probe }}-r_{c} U^{2} / 2 g_{c} J \tag{S1,.11}
\end{equation*}
$$

No other corrections were applied to the measured thermocouple readings. The effect of errors due to an incorrect interpretation of the thermocouple reading or to thermocouple position are considered in the uncertainty analysis. The enthalpy thickness at each profile station is determined by Eqn. (S1.6),

$$
\Delta_{2}(x)=\int_{0}^{\infty} \frac{\rho U}{\rho_{\infty} U_{\infty}} \frac{i_{s}}{i_{s, 0}} d y
$$

All the hydrodynamic data were obtained under isothermal conditions by Loyd [23]. Since this data is required in the calculation of enthalpy and momentum thickness for the case of a heated wall, the form in which it should be combined with the temperature profile data must be considered. Thielbahr et al. [6] investigated, both experimentally and numerically by means of a computer solution of a boundary layer model, the possibility that one of the following quantities would be preserved: 1) U / U_{∞}, 2) $\rho U / \rho_{\infty} U_{\infty}$, or
3) $\frac{\Delta P_{d y n}}{\Delta P_{d y n, \infty}}$. He found that, under similar free-stream conditions, the minimum error in the integral parameters calculated by mixing isothermal and non-isothermal data was achieved by assuming the preservation of: $\mathrm{U} / \mathrm{U}_{\infty}$. The differences were less than 1 percent when $0.95 \leq T_{\infty}\left({ }^{0} R\right) / T_{0}\left({ }^{\circ} R\right) \leq$ 1.05. The same practice has been followed in this study. The temperature profile data are presented both in inner region coordinates, T^{+}and $\cdot \mathrm{y}^{+}$, and outer region coordinates, \bar{T} and y / δ_{H}.

G. 3 Computer Programs

The data reduction has been accomplished entirely on an IBM 360-67 computer. The programs were written in Fortran IV. Extensive use has been made of computer plotting
routines where possible. The listings of the three basic programs used in the reduction procedure are included in Supplement 3. In brief, the programs are:

STANTON - reads raw heat transfer run data in order to compute surface heat transfer results and associated uncertainty analysis.

PROFILE - reads raw temperature profile data, and calculated velocity profile results, in order to compute temperature profile information and integral parameters, plus the associated uncertainties.

ENERGY - reads final temperature integral results, and surface heat transfer results, in order to recalculate the plate enthalpy thickness from the energy equation, and to determine, the boundary layer energy balance at each profile.

G. 4 Uncertainty Analysis

Errors in measured variables, such as temperature or pressure, can be accidental, fixed, or simple mistakes. The uncertainty in the measurement is related to the possible value the error might have in a given measurement. In singlesample experiments, it is not possible to make a straightforward calculation of statistical measurements of error, such as the standard deviation. Instead, the method of Kline and McClintock [29] has been utilized to determine the uncertainty in the calculated results based on estimated uncertainties in the primary measurements. The base uncertainties in the primary measurements have been chosen, following [29], to be the range within which the mean value of the measurement probably lies, given $20: 1$ odds. For example, by experience it is estimated that the uncertainty interval associated with the measured gas temperature is 0.25 F . This statement says that the odds are 20:1 that the true value of the gas temperature is the recorded value, within
plus or minus 0.25 F . Consequently, the uncertainty intervals which have been selected for the primary measurements' are based on experience and the confidence that, at 20:I odds, the true value lies within the stated range. The intervals used throughout this study are tabulated in Table VI.

In general the reported Stanton number is certain to at least ± 0.00010 stanton units. The enthalpy thickness Reynolds numbers calculated from the profiles and from integration of the energy equation are, respectively, on the order of +6 percent and ± 3 percent uncertain. Selected samples of the uncertainty results are presented in Table VII. It should be noted that the results of the transpiration energy balances have not been incorporated into the reported uncertainties in Stanton number. To show the relation of the energy balances to the measurements, modified heat transfer results are presented, based on the convenient premise that the energy balance results associated with a given transpiration rate are completely certain and can be used to adjust the measured Stanton numbers.

H. Test Procedure

By combining the continuity equation and the definition of the acceleration parameter, K, one obtains

$$
\begin{equation*}
K=\frac{-v}{U_{\infty, 1} h_{l}} \frac{d h}{d x}, \tag{S1.12}
\end{equation*}
$$

where the subscript, I, denotes conditions at the start of acceleration. To achieve a constant value of K and to obtain as long an accelerated region as possible, it is apparent from Eqn. (Sl.12) that the slope of the top must be constant and the inlet velocity low. Shakedown experiments determined that 23 fps was the lowest inlet velocity, U_{∞}, l

TABLE VI. PRIME UNCERTAINTY INTERVALS USED (ESTIMATED AT 20:1 ODDS)

VARIABLE	VALUE ASSIGNED
SURFACE	HEAT TRANSFER
DDELP	0.0020
DXX	0.016
DCHP	2.000
DTEMPA	0.250
DTEMPP	0.150
DPAMB	10.00
DMUP	1.0
DPG7LO	0.8000
DP97HI	0.4000
DP5LO	0.8000
DP5HI	0.4000
D97MIN	0.0005
D5MIN	0.0005
DG7MAX	0.0030
D5MAX	0.0030
DQRADP	25.0
DWIND	0.25
DENZRP	25.0

DTEMPA	C.250
DPRTMP	0.400
DPAMB	10.00
DMUP	1.0
DELY	0.0015

Variable meaning	UNITS
manometer reading	
Static tap locations	INCHES
Rotometer reading	\%
ga's temperature	DEG. F.
gas temperature	DEG. F.
ambient pressure	LBF/FT2
absolute viscosity	\%
TRANS DUCER CALIBRAT ION-PM97,FOR P<.05 IN.-H20	8
TRANSDUCER CALIBRATION-PM97,FOR P>. 05 IN. - H 20	5
	\%
TRANSOUCER CALIBRAT ION-PM 5, FOR P>1.0 IN.-H2O	\%
MINIMUM PM97 UNCER. DUE TO ZERD SHIFT	IN. - H 2 O
MINIMUM PMS UNCER. DUE TO ZERU SHIFT	IN.-H2D
maximum pm97 uncer. due to calibration check	IN.-H2O
MAXIMUM PM5 UNCER. DUE TO CALIBRATION CHECK	IN. - H 2 O
RADIATION ENERGY TRANSFER	$\boldsymbol{*}$
INDICATED WATtMETER READING	WATTS
Starting enthalpy thickness estimate	\%

TEMPERATURE DEG. F.
PROBE TEMPERATURE NEAR WALL(FIRST 15 POINTS)
DEG. F. AMBIENT PRESSURE
ABSOLUTE VISCOS

TABIE VII
SELECTED SAMPLES OF EXPERIMENTAL
UNCERTAINTY CALCULATIONS

Run	Plate	x (in.)	Stx10 5	$\Delta S t x 10^{5}$	Re_{H}	$\Delta \mathrm{Re}_{\mathrm{H}}$
091069-1 -6	4	14	287	7	726	21
$\mathrm{K}=1.99 \times 10^{-6}$	6	22	246	7	1054	26
$F=0.0$	10	38	176	4	1781	37
	15	58	184	3	3352	63
$\begin{aligned} & 070869-1 \\ & \mathrm{~K}=2.55 \times 10^{-6} \\ & \mathrm{~F}=0.0 \end{aligned}$	4	14	290	8	631	15
	6	22	249	7	886	18
	10	38	157	4	1433	26
	15	58	191	3	2701	45
$\begin{aligned} & 072769-1 \\ & K=2.50 \times 10^{-6} \\ & F=0.002 \end{aligned}$	4	14	219	8	844	21
	6	22	181	8	1234	27
	10	38	139	5	2269	44
	15	58	114	5	4521	84
$\begin{aligned} & 083069-1 \\ & K=2.60 \times 10^{-6} \\ & F=0.004 \end{aligned}$	4	14	151	10	1078	27
	6	22	119	9	1599	35
	10	38	104	7	2959	52
	15	58	68	7	6248	104
$\begin{aligned} & 092469-1 \\ & K=2.50 \times 10^{-6} \\ & \mathrm{~F}=0.0 \end{aligned}$	4	14	289	8	621	16
	12	46	233	7	1557	30
	15	58	210	6	1866	35
	19	74	134	3	2368	43
$\begin{aligned} & 101769-1 \\ & K=2.56 \times 10^{-6} \\ & F=0.0 \end{aligned}$	4	14	286	7		18
	6	22	255	7	846	21
	10	38	150	3	1411	29
	15	58	198	3	2864	51
$\begin{aligned} & 111669-1 \\ & K=0.0 \\ & F=0.0 \end{aligned}$	4	14	297	7	620	13
	10	38	236	7	1370	24
	16	62	218	${ }^{6}$	2023	33
	22	86	210	6	2623	42

for which a turbulent boundary layer could be obtained at the start of the test section, i.e., plates 1 or 2. The inlet height of the test channel, h_{1}, is 6 inches. Consequently, $d h / d x$ is uniquely determined for a selected K. At $K=2.5 \times 10^{-6}$ about five plates, extending over 20 inches, were within the region of constant $d h / d x$. For most test runs, the acceleration started 18 -inches from the beginning of the test channel. In tests 092469 and 100269, where a thick boundary layer was desired at the start of the accelerated region, the first bend in the top was located 53 -inches'from the beginning of the test channel.

In a complete test run, the experimental data consisted of surface heat transfer measurements and profile traverses' with a pitot probe, hot-wire, and thermocouple probe. The configuration of the test duct and the profile locations are illustrated in Fig. Sl.9. The hydrodynamic data, both pitot probe and hot-wire, was taken under nearly isothermal conditions in the test channel, usually on separate days. To obtain the surface heat transfer data and the temperature profiles, care was taken to ensure that the apparatus had. been operating at a steady state condition for at least an hour prior to testing. The thermocouple probe was referenced: to the free-stream temperature. If the free-stream: temperature changed more than $I F^{r}$ during a profile, the datai was: discarded. Several tests with this referencing scheme showed that, for variations up to $I F$, the calculated enthalpy thickness was virtually unchanged. Surface he'at transfer runs were conducted both before and after the'temperature profiles were obtained, in order to confirm the achievement of steady state conditions.

Free-stream velocity and transpiration rate measurements were taken in conjunction with both the hydrodynamic and thermal tests.

Fig. Sl. 1 Photograph of the test section entry region, showing the $4: 1$ contraction and approximately 15 of the 24 test plates.

Fig. Sl. 2 Closeup of plate surface (1 mm squares).

1. Porous plate
2. Heater wires
3. Thermocouples
4. Support webs
5. Honeycomb
6. Thermocouple
7. Base casting
8. Pre-plate
9. Balsa insulation

IO. Delivery tube

Fig. Sl. 3 Cross-section view of a typical compartment.

Fig. Sl.4a Blowing energy balances

- Visual aid only

Fig. Sl. 4b Sucking energy balances

Fig. Sl. 5. Transverse temperature profiles in inner region coordinates.

Fig. Sl. $6 a$. Surface heat transfer results for the turbulent boundary layer on a flat plate.

Fig. Sl.6b. Temperature profile results for the turbulent boundary layer on a flat plate.

Fig. Sl.7. Free-stream energy spectra for low and high turbulence. Data recorded at $X=14-1 n c h e s$, just prior to the region of acceleration.

124

Fig. S1.8 Effect of pressure gradient on local transpiration rate in strong accelerations in present test apparatus

All runs except: 092469 and 100269

Profile Number	Plate	$x($ in.)	Symbol
1	4	13.81	\square
2	6	21.81	0
3	$7 \cdot$	25.86	Δ
4	8	29.81	+
5	9	33.59	\times
6	10.	.37 .46	\diamond

Runs 092469 and 100269

Profile Number	Plate	$x($ in. $)$	Symbol
1	12	46.76	\square
2	15	58.94	0
3	16	62.86	Δ
4	17	66.76	+
5	18	70.69	\times
6	19	74.58	\diamond.

Fig. SI. 9 Test duct configurations and profile locations

reegebing page blank not fllmed.

SUPPIEMENT 2

TABULATION OF EXPERIMENTAL DATA

A. Organization of Tables and Figures

General

The tabulation of experimental data consists of surface heat transfer data, temperature and velocity profiles, and plots. Each experiment, defined as a specified set of initial and boundary conditions, usually includes several surface heat transfer runs (repeated under the same conditions) and one set of profiles. The velocity profile data is taken from the work of Loyd [23]. The Stanton number quoted for each profile was obtained by interpolating from a smoothed curve of the stanton number results. Note that selected profile information is included in the tabulation of the first surface heat transfer run. It should be noted that a constant surface temperature was maintained in all the experiments.

All of the data for a given experiment are presented together. The arrangement of the experiments is discussed below. For each experiment, the following format is used:

- Surface heat transfer data
- Summary of profile results
- Profile data
- Plots:

$$
\begin{aligned}
& S t-R e_{H} \\
& T^{+}-\mathrm{y}^{+} \\
& \mathrm{T}-\mathrm{y} / \delta_{\mathrm{H}} \\
& \mathrm{Q}^{+}-\mathrm{y} / \delta_{\mathrm{M}}
\end{aligned}
$$

The non-dimensional local heat flux, Q^{+}, was computed in connection with the calculation of turbulent Prandtl
number. Each plot is not presented for each experiment, though the first three are shown for all but two cases.

Careful comparison of the tabulated velocity profile data to that of Loyd [23] will reveal that the data tabulated here are interpolated from Loyd's results for the y-positions at which the temperature data was taken. The procedure followed was to assume that $\left.U(y) / U_{\infty}\right)_{X=c o n s t}$ is similar in both the isothermal conditions of the hydrodynamic tests and the non-isothermal state in the heat transfer tests. The validity of this assumption is discussed in Supplement 1. One result of the temperature difference across the boundary layer is to slightly alter the momentum thickness Reynolds number, $R e_{M}$, compared to its isothermal value. In referring to the thesis of Loyd, a velocity run number listed here as, for example, Run 71669-1 will be listed there as Run 71669. Nomenclature of Tables

AMB
BARO PRES
BASE .

COVER

CF2 or $\mathrm{CF} / 2$
ambient
barometric pressure, in. Hg.
refers to cast substructure of test apparatus
refers to reflecting cover, facing test surface, in the rectangular channel
$C_{f} / 2$
DELH or THERMAL B.L. THICKNESS
DELM or HYDRO B.L. THICKNESS
DELTA2 or ENTHALPY THICKNESS F

GAS
K
δ_{H}, in.
$\delta_{M^{\prime}}$, in.
Δ_{2}, in.
F $\quad \dot{\mathrm{m}}^{\prime \prime} /\left(\rho_{\infty} \mathrm{U}_{\infty}\right)$
GAS refers to free-stream condition
K
$\frac{v}{U_{\infty}} \frac{d U_{\infty}}{d x}$

PL
Q^{+}

REH or ENTHALPY RE.
REL HUM

REM or MOMENTUM RE.

ST

TBAR

TEMP
TGAS or TINF

THETA or MOMENTUM THICKNESS
T0

TPLUS

U/UINF

UPLUS

VEL or UINF

X

Y
Y/DELM
YPLUS
plate number
heat flux ratio

$$
\left(=\dot{q}^{\prime \prime} /\left(p_{\infty} U_{\infty} i_{s, o} S t\right)\right)
$$

$R e_{\mathrm{H}}=\frac{\mathrm{U}_{\infty} \Delta_{2}}{v}$
relative humidity
$R e_{M}=\frac{U_{\infty} \theta}{v}$
st
$\bar{T}=\frac{T-T_{0}}{T_{\infty}-T_{O}}$
temperature, ${ }^{\circ} \mathrm{F}$
T_{∞}, free-stream temperature, ${ }^{\circ}{ }_{F}$
θ, in.
T_{o}, wall temperature, ${ }^{\circ} \mathrm{F}$
$\mathrm{T}^{+}=\frac{\bar{T} \mathrm{U}}{\overline{S t} \mathrm{U}_{\infty}}$
$\mathrm{U} / \mathrm{U}_{\infty}$
$\mathrm{U}^{+}=\mathrm{U} / \mathrm{U}_{\tau}$
$\mathrm{U}_{\infty}, f \mathrm{f} s$
x-distance from start of first plate, in.
y-distance normal to plate, in.
$\mathrm{y} / \delta_{\mathrm{M}}$
$\frac{\mathrm{yU}_{\tau}}{v}$

Symbols and Abbreviations
Stanton runs:

Order	Symbol
-1	\square
-2	X
-3	Δ

Profiles: See Fig. Sl. 9 for explanation. A symbol code is also shown on each plot.

Titles: The run number consists of the date and the order of the run. The acceleration parameter, K, and the blowing fraction, F, are given for each run. The letters following this information are one of four sets:

NE - near-equilibrium. The experimental conditions are such that the momentum thickness Reynolds number, $R e_{M}$, at the start of acceleration is as close as possible to the asymptotic value associated with the given K. The thermal and momentum layers are approximately of equal thickness, i.e., $\delta_{H} / \delta_{M} \approx 1$. See Chapters 1 and 2 for further details.

IC - initial condition. The initial conditions at the start of acceleration were varied, meaning either that Re_{M} is far away from the asymptotic value, or that $\delta_{H} / \delta_{M} \neq 1$.

BC - boundary condition. The boundary conditions were varied to examine a particular effect. The effects studies were a high free-stream turbulence level, and step-changes in blowing within the acceleration region.

FP - flat plate boundary layer

Purpose of Experiments

NE:
The near-equilibrium test series was conducted to examine the effect of acceleration, combined with blowing, on heat transfer in the turbulent boundary layer. The experiments in this series were:

Date	$\underline{K \times 10^{6}}$	F 091069
070869	2.99	0.0
072769	2.50	0.0
083069	2.60	0.002
		0.004

IC:
These tests were all conducted at nominal values of $K=2.5 \times 10^{-6}$ and $F=0$. For Run 071569, the first three plates in the test apparatus were unheated, with the same hydrodynamic conditions as Run 070869, so that $\delta_{H} / \delta_{M}<1 . \quad$ In Run 092469, the momentum thickness Reynolds number entering the region of acceleration is considerably higher than the asymptotic value. In Run 100269, the first ten plates were unheated, with the same hydrodynamic conditions as Run 092469, resulting in $\delta_{H} / \delta_{M}<1$.
$B C$:
This test series was conducted, at a nominal value of $K=2.5 \times 10^{-6}$. The free-stream turbulence level was increased, by means of a crossed-rod grid, in Run 101769 in order to study the effect. of the increased turbulence level.

In Run 102469, the blowing fraction, F, was stepped from 0 to 0.004 in the center of the acceleration region, while in Run $111369 F$ was stepped from 0.004 to 0 at the same location.

FP:
The flat plate turbulent boundary layer experiment was conducted in order to validate the performance of the apparatus.

B. Data

The experimental data is tabulated in the following order:

Date	$\underline{\mathrm{KxlO}}{ }^{-6}$	F	Designation
091069	1.99	0.0	NE
070869	2.55	0.0	, NE
072769	2.50	0.002	NE
083069	2.60	0.004	NE
071569	2.55	0.0	IC
092469	2.50	0.0	IC
100269	2.50	0.0	IC
101769	2.56	0.0	BC
102469	2.50	0.0	BC
111369	2.50	0.0	BC
111669	0.0	0.0	FP

Following these data, a table of some ratios formed from the boundary layer integral parameters is presented.

$\mathrm{P} \times$	vec	к	${ }_{\text {REH }}$	st	REx cf2	${ }^{10}$	
${ }^{6}$	29．66		3345	$\stackrel{\substack{0.00330 \\ 0.06304}}{ }$			
11818	边	coile			1036． 0.00231	26.7	cocos
${ }_{6}^{5}$	${ }_{81}{ }^{\text {E29．20 }} 3$	coin	cest		t064．0．00254	96.8	
${ }^{252} 8$	86 31： 3.50		1254：		v42． 0.00234	${ }_{\text {a }}^{\text {90，}}$	
${ }_{3}^{26}$	Ot ${ }_{\text {a }}^{30} 5$		1213：	\％：00627	904．0．00234	$\xrightarrow{96.5}$	
33．59	59		速	－：C0．145	747．0．coush		\％．c800
	${ }_{\text {al }}^{6}$	－ 0.2681 .05	建建：	\％：．c0178	0.8		0：0
		coize	170id：	oicoili	on． 0.0234	\％	coicoso
	cisis	coible	27390：	－0：00209		${ }^{68,5}$	
（1）	${ }_{60.32} 86$		${ }_{\text {3 }}^{3}$	${ }_{\text {a }}^{0}$		S6：4，	\％．cico
		－	${ }^{3}$	\％：c6iliz		980．6	
		${ }_{\text {a }}$		orceite		－	
21	${ }^{36.59}$		${ }_{\text {ctil }}$	¢			
${ }_{23}^{22}{ }_{\text {20 }}^{68}$	${ }_{60.65}^{60.55}$			：$¢ 001626$			

		$\begin{aligned} & \text { DATE } 70 \\ & \text { AMB TEMP } \\ & 73.40 \end{aligned}$		RUN 070869869 RUN BASE TEMP 83.58	$\begin{aligned} & 1 \quad \mathrm{~K}=2.55 \\ & \text { NC. } \quad 1 \\ & \text { GAS TEMP } \\ & 72.37 \end{aligned}$	$5 \times 10-6$ COVER TE 73.51	=0.0	NE PRES 90 R 90	$\begin{aligned} & \text { REL HUM } \\ & 0.56 \end{aligned}$	
	PL	X	VEL	K	reh	ST	REM	cF2	T	F
	2	6	23.31	0.103E-06	336.	0.00348			99.6	0.0000
	3	10	23.27	-0.235E-06	492.	0.00311			99.4	0.0000
	4	13.81	23.30	$0.208 \mathrm{E}-06$	624.	0.10290	754.	0.00250	98.7	0.0000
	4	14	23.20	$0.208 \mathrm{E}-06$	631.	0.00290			99.5	0.0000
	5	18	23.87	$0.774 \mathrm{E}-06$	763.	0.60269			99.5	0.0000
	6	21.81	25.00	$0.205 \mathrm{E}-05$	895.	0.00248	817.	0.00255	98.2	0.0000
	6	22	25.54	$0.205 \mathrm{E}-05$	886.	0.00249			99.7	0.0000
	7	25.86	28.40	$0.238 \mathrm{E}-05$	590.	$0 . c 0222$	738.	0.00260	97.0	0.0000
	7	26	28.73	0.238E-05	1012.	0.00223			49.7	0.0000
	8	25.81	33.cc	$0.252 \mathrm{E}-05$	1120.	0.102198	665.	0.00260	95.2	0,0000
	8	30	33.52	0.252E-05	1147.	0.00186			99.6	0.0000
	9	32.59	39.00	$0.254 \mathrm{E}-05$	1236.	0.00177	595.	0.00257	95.3	0.0000
	s	34	40.25	$0.254 \mathrm{E}-05$	$12 \varepsilon 7$.	0.60174			99.4	0.0000
	10	37.46	48.30	$0.253 \mathrm{E}-05$	1345.	0.00155	550.	0.00248	96.0	0.0000
	1 C	39	50.59	$0.253 \mathrm{E}-05$	1433.	0.00157			99.6	0.0000
	11	42	65.59	0.110E-05	1627.	0.00135			99.2	0.0000
	12	46	67.22	-0.312E-07	1878.	0.00198			58.9	0.0000
	13	50	67.15	$0.134 \mathrm{E}-07$	2144.	0.00210			98.9	0,0000
	14	54	67.32	$0.237 \mathrm{E}-07$	2425.	c.00153			98.8	0.0000
	15	58	67.47	$0.143 \mathrm{E}-07$	2701.	0.00191			58.7	0.0000
	16	$t 2$	67. 56	0.882E-08	2931.	0.00188			98.9	0.0000
	17	66	67.56	$0.387 \mathrm{E}-08$	3209.	0.00185			98.7	0.0000
	18	7 C	67.71	$0.350 \mathrm{E}-08$	3449.	0.00181			98.8	0.0000
	15	74	67.66	-0.173E-07	3719.	0.00178			98.6	0.0000
	20	78	67.57	$0.860 \mathrm{E}-08$	3957.	0.00173			58.6	0.0000
	21	82	67.68	$0.729 \mathrm{E}-08$	4164.	0.00171			98.7	0.0000
	22	86	67.72	$0.122 \mathrm{E}-08$	4382.	0. 00172			98.8	0.0000
\mapsto	23	50	67.68	-0.747E-08	4670.	0.00168			58.5	0.0000

		UN 071669	-1 $\mathrm{K}=2.55$	10-6	$F=0.0$	NE		
	EMP	ASE TEMP		ER			REL HUM	
		${ }_{85.76}$	74.18	COV.3		$\begin{aligned} & \text { PRE } \\ & 91 \end{aligned}$	0.52	
PL	x	VEL.	K	REH	51	то	F	20
2	6	23.25	0.412E-07	333.	0.00350	101.7	0.0000	z
3	1 C	23.33	0.138E-06	49 C.	0.00313	101.6	0.0000	$\boldsymbol{\sim}$
4	14	23.18	0.129E-06	t26.	0.00253	101.8	0.0000	
5	18	23.79	0.857E-06	762.	0.00273	101.7	0.0000	00
6	22	25.33	0.185E-05	\&92.	0.00252	101.6	0.0000	\checkmark
7	26	28.71	0.251E-05	1012.	0.00223	101.9	0.0000	
8	20	33.46	$0.253 \mathrm{E}-05$	1146.	0.00189	101.7	0.0000	∞
10	34 38 38	40.37	$0.256 \mathrm{E}-\mathrm{C5}$	1285.	0.00177	101.6	0.0000	${ }_{0}^{\infty} 0$
10	38	50.57	0.254E-05	1428.	0.00156	101.8	0.0000	10
11	42	65.55	$\mathrm{C} \cdot 110 \mathrm{E}-05$	1606.	0.00135	101.7	0.0000	
12	46	67.17	$0.336 \mathrm{E}-07$	1824.	0.00198	101.8	0.0000	11
13	50	67.07	$0.102 \mathrm{E}-07$	2101.	0.00212	101.8	0.0000	N1
14	54	67.22	0.220E-07	2378.	0.00194	101.7	0.0000	
15	58	67.36	0.152E-07	2667.	0.00192	101.4	0.0000	
16	62	67.46	0.910E-08	2940.	0.00191	101.2	0.0000	0
17	66	67.52	0.531E-08	3164.	0.00186	101.5	0.0000	
18	70	67.59	0.000 EO	3404.	0.00181	101.6	0.0000	
19	34	67.59	0.000 E 00	3653.	0.00178	102.5	0.0000	0
20	78	67.59	0.0000^{00}	3904.	$0 . C 0174$	101.4	0.0000	C
21	£2	67.59	0.000 E 00	4114.	0.00171	101.5	0.0000	0
22	$\varepsilon \epsilon$	67.59	C.000e 00	4372.	0.00172	101.4	0.0000	0
23	90	67.59	$0.000 E 00$	$46 \mathrm{C8}$.	0.00168	101.3	c. Occo	1

summary uf profile results

	RuN	070869	$1 \mathrm{~K}=2.55 \times 1 \mathrm{C}-6$		$F=0.0$	NE		
PL	x	VEL	K	F	то	TINF	UELM	DELH
4	13.81	23.30	C. 208E-06	c. ccco	sc. 7	71.1	0.540	0.556
6	21.81	25.00	0.205を-0b	c. 0000	98.2	70.6	0.574	0.628
7	25.86	28.4C	$0.238 \mathrm{E}-\mathrm{CS}$	c.00co	97.0	69.1	0.549	0.603
8	29.81	33.00	0.2528-C5	c. 0000	95.2	67.2	0.490	0.568
9	33.59	39.00	$0.254 \mathrm{E}-05$	0.0000	95.3	67.9	0.401	0.513
10	\#3.46	$4 \mathrm{B}$.	0.253E-05	0.0000	96.0	68.3	0.323	0.443
PL	x	REH	ST	REM	CF2	oeltaz	2 theta	
4	13.81	624.	0.00290	i54.	0.00250	0.0536	0.0646	
6	21.81	895.	0.00248	817.	0.00255	0.0760	0.063	
7	25.86	990.	0.00222	734.	0.00260	0.0689	0.050	
8	29.81	1120.	0.06158	665.	c. 00260	0.0670	0.0390	
9	33.59	1236.	0.00177	595.	0.00257	0.0622	0.025	
10	37,46	1345.	0.00159	550.	0.00248	0.0545	0.021	

		Run 07cegs－1		－ $\mathrm{x}=2 \cdot \mathrm{~L} 55 \times 10-6$		． 0 Ne		
Tfuct fictis	vele ${ }_{\text {net }}^{\text {RUN }}$	$\stackrel{\text { Plat }}{4}$	${ }_{12 \times 1}{ }^{\text {P }}$		${ }_{0.00250}^{\text {cF／}}$	$\begin{aligned} & \text { U1NF } \\ & 23.3 \end{aligned}$	TGAS	$\begin{array}{cc} \text { T0.7 } & \text { Fo } \\ 0.0000 \end{array}$
$\begin{gathered} \text { THEFFAL } \\ \text { B.L. THKK. } \\ 0.555 \end{gathered}$	$\begin{aligned} & \text { H.t. HORC. } \\ & \text { HishK. } \end{aligned}$			$\begin{gathered} \text { MCyENUM } \\ \text { H.HKU } \\ 0.046 \end{gathered}$	$\begin{aligned} & \text { Entualpy } \\ & \text { REL } \\ & \text { o2 } 24 . \end{aligned}$	ROHEN IUM $\begin{gathered} \substack{f S 4 . \\ 7 S 4 .} \\ \hline \end{gathered}$	$\underset{\substack{\text { Nut. DATA } \\ \text { PUNTS } \\ 32}}{\text { dit }}$	0.208500
	yputs	tplls	LPLTS	s	toas	unviar	r／utien	
	0.0	0.0	0．0	0.0000 0.0025	0.000 0.122	0.000 0.009	0．0ce	
	2.0	${ }_{2.4}$	2.1	1 c．0c3b	0.143	0.105	0.006	
	2，6	2．9	3，46	88，0045 0.0055	0．171	\％．135	c．0cc	
	3.7	3．9	4.6	c 0．0cos	－． 229	0.195	0.012	
	4.35	4.2	4.6	－ $\begin{aligned} & \text { 0．0675 } \\ & \text { c．0085 }\end{aligned}$	0.247 0.269	0．225	0.014 0.016	
	${ }_{5} 9$	5.4	5.8	${ }^{\circ} \mathrm{C}$ ¢．0105	c． 320	－ 2.238	C． 014	
	9．8．	70\％	6.7 8.6	6\％ 0.0125 0.155 0.025	－	${ }^{0.334}$	：0．029	
	10．8	7.7 8.5	9.0 10.0	¢ $\begin{aligned} & 0.0185 \\ & 0.0225\end{aligned}$	0.431 0.497	－ 0.4848	¢0．034	
	15．4	5．2	10.6		8.536	\bigcirc	0.049	
	17.8 20.7	\％9．8	［11．93	（ $\begin{aligned} & \text { 0．0303 } \\ & 0.6355\end{aligned}$	0．304	8.5695	c． 0.050	
	23．6	10.7 11.3	12，4	4c．0405 0.0495	－ 0.621	0.616 0.643 0.645	O．075 0.050 0.050	
	－	${ }_{11}^{11,3^{3}}$	12.9 13		\bigcirc	－0．643	0.0568 0.103	
	40．0		12．		－	c． 6178	0．127 0.155 0.1585	
	57，7	13．	14．2	－	－	－ 0127	\bigcirc	
	－ 64.4	13.5 14.0	15．0	${ }^{1} \begin{aligned} & 0.1185 \\ & c+1435 \\ & 0\end{aligned}$		c．749 0.773	0．129	
	98.8	14.4	15.9	$9 \quad$ c．1tes	－0．832	0.794	${ }_{0}^{0.312}$	
		15.1 19.6	${ }_{17}^{17.6}$	${ }^{6} \begin{aligned} & 0.2185 \\ & 0.2685\end{aligned}$	0.870 0.900	\％．883	－0．405	
	${ }^{202.0}$	16.3 16.7		11 0.3435 0.1185	${ }^{0.936}$	－	－0．436	
	305.3	12.2	19.5	5 c．518b	${ }_{0}^{0.986}$	0.986	0.460	
	364．2	17.3 17.4	19.8	8 8.6185 0.7185	－	0.598 1.000	1.145 1.330	

		RUN 07CHB9－1		－ $1 \mathrm{~K}=2.55 \times 10-6$		－0，0			
TEMF，mum		${ }_{6}{ }_{0}$		0.00248	${ }_{0.00255}^{\text {cf／} 2}$	${ }_{20}^{25.0}$	$\xrightarrow{\text { rgas }} 70.6$	${ }_{40}^{70}$	$\stackrel{r_{0}}{0.0000}$
	$\begin{gathered} \text { HYORO. } \\ \text { H.L.L. } \mathrm{CHK} . \\ \text { C.574. } \end{gathered}$			$\underset{\substack{\text { Meghlifich } \\ \text { J. HK } \\ \hline .0635}}{ }$	EATIALPY K95．	$\begin{gathered} \text { Mlventich } \\ \text { KEif. } \\ \text { jif. } \end{gathered}$	nu．data puints ${ }_{31}$	0.20	
	yelus	iflus	UPLLS	Y	tmak	u／ulif	yruely		
	0.0	c． 0	c． 6	0.0000	0.000	0.000	0.050		
	¢	2．0	${ }_{2}^{1.6}$	0．0023	0.102 0.124	－0．611	0.004 0.006		
	边䢒，	2．4		－ 0.00345	¢ 0.124	－	－0．006		
	3.4 4.9	3.3 3.8 3	${ }_{4.3}$	－0．0055	P． 0.1295 0.195	－ 0.177	－018		
	4.7	4.3	5.0	$0 . \mathrm{Cc} 75$	0.222	0.242	c． 013		
	${ }_{7.2}^{0.0}$	5．1	\％ 7.1	－0．0095	0.250 0.300	c．	0.017 0.020		
	${ }^{7}$	－ 6.9	5.7	－0145	－	－	－0．c25		
	11.0 12.8	8．0	4． 10	－0．0175	0.408 0.44 0.4	0．471	－0．036		
	15．4．4	${ }^{9.6}$	11．6		0.486 0.523	退	－ 0.643		
	17． 17	（10．3	12．2	－0．0285	0.523 0.555 0.554	－ 0.601	（e．050		
	24.9 28.6	（12．8	13.6 13.9	－0．0395	0，554	0．663	－0．065		
	36.4 36.4 40.8	${ }_{\text {12．8 }}^{12.8}$	14.4	c． 6545	－0，65c	－ 0.707	\bigcirc		
	40.8 50.3	13.3 13.9	14．8	－0．0649	0.672 0.703	6.728 0.749	0.156 0.138		
	¢ 62.0	15：12	15.6 16.1	（e．0955	－ $\begin{aligned} & \text { 0．726 } \\ & \text { 0．763 }\end{aligned}$	－	－0．173		
	＋104．3	15．8	10．	－1045	－	－	0.226 8.246		
	136.0 167.8	16：6	17.2 17.8	0．2145	0.833 0.805	－ 0.648	－0．3761		
	215.7 263.6 265	16.0	19.5	－． 3313	－	－ 912	${ }^{0} 0.591$		
	327.5	19．3	19.7	－0．4145	－ 0.9538	－8．976			
	341.2	19.8	20.1	－0．6145	－0．989	－0．944	1.070		
	¢istio	$\underline{20.0}$	${ }_{20.2}^{20.2}$	（e．714，	－	－0．595	－1．24．4		

		Run orcass－		－1 $\mathrm{K}=2.55 \times 10-6$		0．0 NE		${ }_{97.0}^{10} 0.0000$	$\underset{i \infty}{\infty}$
TEPf，pun	YEL，RUN	$\stackrel{\text { Plate }}{7}$	${ }_{25}{ }^{\text {x }}$ ． 06	${ }_{0.00222}^{51}$	${ }_{0.00200}^{\text {CF／2 }}$	$\begin{aligned} & \mathrm{Ulnf} \\ & 284 \end{aligned}$	$\max _{601}$		
				$\begin{gathered} \text { NCHENTUK } \\ \substack{\text { M.OSM } \\ \text { C.OSEE }} \end{gathered}$		mlemilli ${ }_{73 \text { ．}}{ }^{\mathrm{K}}$ ．		$0.2{ }^{\mathrm{K}} \mathrm{E} \mathrm{E}=05$	
	rples	tplus	upius	\checkmark	toak	ufulitr	r／oten		
	0.0	0.0	0．6	¢ c．ocee	0.006	0.000 0.090	0.060 $c .005$		00
	2	2.1	2.5	（ ${ }^{\text {coc35 }}$	8.095	${ }_{0}^{0.126}$	c．0c6		VV
	3.3	${ }^{2} \mathbf{2 . 9}$	${ }_{4}^{3} \cdot$	（ $\begin{aligned} & 0.0045 \\ & 0.0035 \\ & 0.053\end{aligned}$	0.132 0.156	－ 0.118	O．cce		00
	4.7	4.5	4.7	0．0065	0.182	－． 233	0.012		∞
	5.4	4.8	$5 \cdot 5$	0．0075	0.214	C． 265	0.014		
	${ }_{8.1}^{6.8}$	3.7	7．85	（ $\begin{aligned} & 0.0095 \\ & 0.014\end{aligned}$	8． 0.344 0.360	0.332 0.364	－		$\bigcirc 0$
	11．7	8.5	\％ 8.8	（ $\begin{aligned} & 0.0115 \\ & 0.0165 \\ & 0.053\end{aligned}$	－		0.025 0.036 0.036		1
	11．9	9.7	${ }_{11}$	$2{ }^{\text {c }}$	－ 0.430	8	${ }_{0}^{0.036}$		Nゅ
	17．0	10.6 10.6	12．4	（ ${ }^{0.0235}$	0．475	O．020	C．043		NH
	19.9 23.6	112．7	13.2 13.8	$\xrightarrow{\text { c．czi }}$	－0．519	－0．649	－		
		13，	${ }^{14.5}$	${ }^{0} 0.03345$	0.605	c． 723	0.078		
	${ }_{3}^{33.1}$	$\stackrel{14.2}{14.9}$	15：1	（c．0455 0.0555	${ }_{8}^{0.6 .643}$	0.753 0.775	－		0
	47.9	15.5	is，	－0．0655	0.690	${ }^{0.781}$	0.114		$\stackrel{\sim}{-}$
	¢8， 73	16.1 16.8	16．5		－${ }_{\text {0．7 }}^{0.716}$	c．809	－ 0.147		－
	－ 109.6	cin 17.1	16．8	－ $\begin{gathered}0.1253 \\ \text { c．iscs } \\ \\ \text { a }\end{gathered}$	－0．775	0.843 0.654	0.229 0.274		$\boldsymbol{\sigma}$
	146.6	10.9	17.6	0.2005	8.436	8.883	0． 365		0
	2 c 1.0 275.1	19.9 21.0	18．2	2 $\begin{aligned} & 0.2755 \\ & 0.3755\end{aligned}$	－ $\begin{aligned} & 0.6880 \\ & 0.927\end{aligned}$	0.015 0.952	－		i
		21.9 22.5	14．4	（ $\begin{aligned} & 0.4755 \\ & 0.5755 \\ & 0.755\end{aligned}$	－0．963	－			\mapsto
	495.9	${ }_{22.7}$	19.6	－ 0.5755	0.459	C．599	1.231		
	565.3	22.7	19.8	0.7155	1.000	1.000	1.414		

		RUN 07C609－1		－t $\mathrm{xaz} .58 \times 10-6 \quad F=0.0 \mathrm{NL}$				${ }_{49.2}^{10} 00.0000$	弪
	${ }^{\text {VEL }}$（160 KUN	Mat	$\underset{29.61}{ }{ }_{\text {¢ }}$	0.00150		$\begin{aligned} & \text { untr } \\ & 33 \end{aligned}$	16as		4
	hYL．THK， e．L． $\mathrm{C} .4 \mathrm{IAC}_{8}$				$\begin{aligned} & \text { EnfHALPY } \\ & \text { RH2. } \\ & \text { Ki2. } \end{aligned}$	$\begin{aligned} & \text { NLMEN LLN } \\ & \text { RE? } \\ & \text { OG.j. } \end{aligned}$	no．vaina 32	$0.252^{\mathrm{k}} \mathrm{E}-05$	17 \times
	yplis	TPLIS	uplis	r	тван	ucluyf	Y／OELK		
	0.0	0.0	$0 . c$	0.0 ccc	c． 000	0.000	0.000		
	3.15	2.5 3.0	3.10	0．0035	（1．120		${ }_{6}^{0.0055}$		
	3，4，	3．20		c．0．043			0.009		
	5.4	4.0	4．80	－0．0056	（ $\begin{aligned} & 0.128 \\ & 0.180 \\ & 0.180\end{aligned}$	0.237 0.273 0.273	－0．611		
	8.3	5.3 6.4	8.4	c．cch ${ }^{\text {c }}$	C．211	0．317	${ }^{0 . c 15}$		
	9．7	\％ 9.7	7．9	－	－$\quad 0.237$	－0．442	－0．014		
	11.4	8.5	10.2	0.0135	－0．341	C． 507	$\bigcirc 0.628$		
	13.5 16.5	9.7 10.9	${ }_{12.5}^{11.6}$	－0．0165	0.340 0.433	－0．577	C．C34		7
	19.1	11.9	13.4	0.0225	0．4．43	0．603	0．64b，		7
		（12．8	＋14．0．		$5 \begin{aligned} & 0.510 \\ & 0.535 \\ & 0.575\end{aligned}$	\％ 0.696	－0．052		0
	28．5	14．9	15． 15	－0．0335	5 退 $\begin{aligned} & 0.575 \\ & 0.598\end{aligned}$	－0．74y			
	41，3	（16．20．	（	－	（	，	－0．099		0
	\＄9．4	17．38	－	${ }_{0}$	（ $\begin{aligned} & 0.083 \\ & 0.704 \\ & 0.704\end{aligned}$	－0．824	0.819 0.140		
	${ }_{7}^{71.3} 8$	2e．5	17.1 17.5	c．0e3s 0.1035	3 $\begin{aligned} & 0.732 \\ & 0.762\end{aligned}$	－0：65\％	0.176		
	109．8	20．6	17.8	c．1285	［ 0.769	－8．890	－0．262		
	124.1	20．8	18．18	0.1685 0.2195	${ }^{\text {coser }}$	－ 0.509	0．3．44		
	230．0	22．6	18．7	－． 26 es	5 ${ }^{0.4685}$	－0．942	0．547		2
	${ }_{3}^{273.0}$	$\xrightarrow{23,2} 8$	19．3	－	－	－0．597	0．049		m
	380．6	24．5	19.5 19.7	－0．4435	（ $\begin{aligned} & 0.903 \\ & 0.904 \\ & 0.980\end{aligned}$	0，984	－0．934		
	531.2	25.3	16．\％	C． 6185	${ }^{0}$	c． 999	${ }_{1}$		
	617.3	25.4	19.8	0.7185	1．06c	1．000	6．465		

		$\stackrel{\text { PLęte }}{\text { che }}$	32.55	0.ccil ${ }_{\text {sf }}$	${ }_{0}^{\text {cff }}$ (20257	yis.t	8\%9.9	${ }_{95.3}^{10} 0.00000$
					Entralpy 	HCHENTUH $\stackrel{\text { RE }}{\mathrm{f} 55 .}$		c.254t-05
	yplus	rpus	Lpus	r	rame	u/ume	rut	
	0.0	0.0	0.6	c.0000	0.000	0.000	0.000	
	3. ${ }_{3}^{2.4}$	${ }_{3}^{2.5}$	${ }_{\text {2 }}^{2.4}$	c.0.0025	-0.092	\%.1138	0.006	
	\% 4.5	3.7	$5: 2$	\%.0045	colile	cere	0.011	
	9.4	${ }_{\text {che }}^{5.5}$	7:1	0.0.0675		-	0.010	
	11:3	8.98	-	0.0045	c. 0.328	-	\%.0.024	
		${ }_{10}^{10.1}$	12.5	0.0.0135	0.3is9		c.036	
	-	12.5	13:6	0.0.45	0.458	$0.67{ }^{0}$	6:049	
		,		${ }_{0}^{0.02255}$	${ }^{\text {d, }}$		-	
	30.4	155.5	10, 16	-	(0.5bi	(in	0.076	
	38.4	16.9	16.7	0.0345	${ }^{0} 0.615$	-1.615	-0.046	
	58.4	${ }_{18,0}^{18.1}$	${ }_{178}^{17,7}$	\%0.0445	-0.8599	0.8.843	(e.122	
	¢3,4	19,9,	818.0	coiole	-	0:002	0.183 0.233	
	${ }^{19,} 19.6$	21.a	${ }^{10} 5$	c.1125	-786	-.916	0.256	
	(itas:o	${ }_{\text {22 }}^{22.5}$	${ }_{1}^{19.0}$	C.	- 0.014	- ${ }^{\text {8,9939 }}$	0. 0.420	
	194.1	${ }^{212}$ 2,		0.1935	${ }^{0.8 .859}$	-.546	-	
	244.5	${ }_{25.4}^{24.4}$	${ }^{19.9}$	-0.2435	(0.517	-. 8.573	\%.7ce	
	${ }_{\substack{370.6 \\ 47.6}}$	${ }_{\substack{26.5 \\ 27.3}}$	${ }_{20,3}^{20,1}$	- 0.368858	-0.933	- 0.9598	-0,919	
	572.3	27.7	20.3	0.5695	0.947	1.000	:1418	
	\%73.7	${ }_{27}^{27.6}$	${ }_{20.3}^{20.3}$	- 0.7865	(.00c	1.000	1.96	

surary of profile resuls							
		un or2ies-1	1 kn2.5	c-t	F.c.		ne
		vel				the	
		ciele	越:2027-06	C620	94.21		
		cistio	cole	coictiol	Sticis		
		50.40					
					. 012150		
	,		(in	120.			
	[3: 3.56				cicoter		

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{2}{|r|}{} \& \multicolumn{5}{|l|}{} \& \multicolumn{2}{|l|}{} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
DATE \\
ANA 14 \\
7\＆． 26
\end{tabular}} \& \& \& cover
cuter
73 \& feo．004 \& \& \({ }_{\substack{\text { net } \\ 0.44}}^{\text {nem }}\) \\
\hline Ft \& \(x\) \& vEL \& k \& RCH \& 5 \& REN \& cf2 \& 10 \& ＋ \& PL \& \(x\) \& vet \& \& RES \& 51 \& 10 \& F \\
\hline \({ }_{3}^{2}\) \& \({ }_{10}{ }^{6}\) \& 23.34 \& \({ }_{-0}^{-C .250 E-c 6}\) \& \({ }^{6} 3812\) \& 0．00216 \& \& \& \({ }_{98.3}^{58.3}\) \& 0．ccto \& \& \({ }_{10}^{6}\) \& \({ }_{23}^{23.38}\) \& －0． 1496 －9t \& \({ }_{623} 82\) \& \({ }_{0}^{0 . c 0220}\) \& \({ }^{97} 97.8\) \& \\
\hline \& 13．61 \& 23.60 \& \(0.449 \mathrm{E}-\mathrm{Ob}\) \& \({ }^{1066}\) ． \& 0.60154 \& 1210. \& 0.60130 \& 56.7 \& 0．0641 \& \& 14 \& \& 0.446 ¢－6 6 \& \& 0.00155 \& \& －0．0042 \\
\hline 5 \& \({ }^{10}\) \& \& \begin{tabular}{l}
c． \(449 \mathrm{E}-0.5\) \\
0.706 E \\
\hline 0.06
\end{tabular} \& 1348． \& \& \& \& \({ }_{98.6}^{98.6}\) \& －．0011 \& 5 \& 18 \& 2418 \& C． \(7202 \mathrm{E}-06\) \& 1349 \& －0．00637 \& 97\％ \& －0．040 \\
\hline \& \(81{ }^{1}\) \& 25．70 \& \(\bigcirc\) \& cisse． \& － 0.00127 \& 1402. \& 0.00145 \& ceicl \& － 0.04640 \& \& \({ }^{26}\) \& 26.05
29.4 \& \& \({ }^{1867}\) \& C．cc124 \& 98.1
88.5 \& \\
\hline \({ }_{7}\) \& \({ }^{212} 8\) \& \({ }_{20.20}^{20,01}\) \& \& \({ }_{\text {lisctic }}\) \& － 0.00119 \& 1290. \& 0.00156 \& \({ }_{99}^{98.6}\) \& －0．0030 \& \& \({ }_{34}^{24}\) \& －\({ }_{4}\) \& － \& \({ }_{2}^{2555}\) \& \({ }_{\substack{\text { O．cot21 } \\ 0 . c c 12}}^{0}\) \& 98．0．0 \& －0．6037 \\
\hline ？ \& \({ }^{26}\) \& 永9．40 \& － \& 18169． \& \({ }^{0}+0.00122\) \& \& \& \({ }^{59} 9\) \& 0．00336
O．c337 \& 1 \& \({ }^{38}\) \& 5， 52.34 \& \& \& \({ }^{0.00102}\) \& S98．8 \& 0.0033
0.0034
0 \\
\hline d \& 2988 \& 34．35 \& － 2.2496 E－05 \& \({ }_{2178}^{2178 .}\) \& \({ }^{\text {c．ecteil }}\) \& 1185. \& 0.00154 \& Stis \& \({ }_{\text {－}}^{0} \mathrm{O} .60337\) \& 11 \& 4 \& corsid \& － \(\begin{aligned} \& 0.109 E-05 \\ \& 0.125 E-0,\end{aligned}\) \& \({ }^{35555} 4\) \& \({ }_{\text {c．eccs }} \mathrm{c}\) \& \({ }_{98.9}^{98.9}\) \& 0.0039
0.0039 \\
\hline 5 \& \({ }_{31}{ }^{2} 5\) \& ＋4．40 \& \& 247c． \& － 0.00108 \& 1155. \& 0.00158 \& 90．6 \& －．cce \& 13 \& \({ }_{4}^{\text {¢ }}\) \& 70．40 \& \& Scce： \& \& － 98. \& 0.03039
0.039
0.039 \\
\hline c \& \(3{ }^{3} / 46\) \& 50．00 \& \& citici \& \({ }^{\circ}\) \& 1109. \& 0．colss \& 58．7 \& \(\bigcirc\) \& \& 约 \& 70.29 \& \& \({ }_{6}^{5654}\) \& \({ }_{0}\) \& \& － \\
\hline \& \& 32．33 \& －． 2 25EC－C5 \& 2599： \& \({ }^{0.00104}\) \& \& \& 94．4 \& \({ }^{0} 0.0036\) \& ＋ \& \({ }^{\text {c }}\) \& 16.27 \& 0． \(21416=09\) \& 89330． \& 0.80057 \& 94． 2 \& 0.0033 \\
\hline \& \({ }_{\text {c }}^{4}\) \& \& －\({ }_{\text {a }}\) \& 334.

21250 \& \& \& \& 99，4 \& 0.0038
$0 . c c 39$ \& 17 \& ${ }_{7}^{68}$ \& ${ }_{70} 70.37$ \& c．icle－c9 \& ${ }^{\text {7232 }}$ \& c．coctss \& 98．3 \& c．c．co3y

\hline \& s \& 10．46 \& －．1096－07 \& 4925. \& －．c0075 \& \& \& 99.0 \& 0.0038 \& 19 \& 14 \& 70，32 \& －0．106E－07 \& ${ }_{8 ¢ 51}$ \& 0.00052 \& 97．8 \&

\hline \& ${ }^{3 / 4}$ \& 70.41 \& \& \& c．ectess \& \& \& 9e．9 \& －0．co39 \& 20 \& ${ }^{78}$ \& 70.29 \& －．7PSE－08 \& 94 \& cca \& 98.1 \& c．0038

\hline t \& 38 \& 70.29 \& （1416－68 \& cte \& \& \& \& ${ }^{98,8}$ \& －0．0039 \& 21 \& ${ }_{\text {e2 }}$ \& $\xrightarrow{70.37}$ \& \& tocti9 \& －．ccos ${ }^{\text {cost }}$ \& 94.1 \& －0．0035

\hline 17 \& 66 \& 10.30 \& \bigcirc \& 7457． \& c． cocas \& \& \& 99\％\％ \& －．cc3 \& ${ }_{23}^{23}$ \& 50 \& ${ }_{70.37}$ \& ${ }_{-0.724}$ \& 11210. \& c．cocso \& 98.3 \& 0.0039

\hline
\end{tabular}

$\begin{aligned} & \text { DATE } \\ & \text { AMB TEMP } \\ & \text { BC. } 47 \end{aligned}$		$\begin{array}{r} \text { RUN } 07156 \\ 71569 \end{array}$	$N_{N A C}-2=2.55 \times 16-6$		$F=0.0$	IC		
		base temp	P GAS temp	cover	temp earo	pres	REL HUN	
		82.55	70.95				0.39	入
PL.	x	VEL	k	REH	st	ro	F	2
2	6	23.19	-0.172 E-07	571.	0.00290	72.6	0.0000	
3	10	23.13	-0.631E-07	661.	0.00239	72.7	0.0000	00
4	14	23.18	C.908E-07	412.	0.60121	74.3	0.0000	\checkmark
5	18	23.56	$0.821 \mathrm{E}-06$	167.	0.00457	95.6	0.000 c	$\cdots \vdash$
6	22	25.51	C. 200E-05	344.	c. 10302	96.6	0.0000	\square
7	26	28.85	$0.248 \mathrm{E}-05$	496.	0.00256	96.6	c. 0000	σ O
8	30	33.60	$0.244 \mathrm{E}-05$	655.	0.00218	96.2	0.0000	\%o
0	34	40.41	0.253E-05	81 c .	0.00197	96.2	0.0000	0
10	38	50.71	$0.251 \mathrm{E}-05$	¢Es.	c. 60173	96.7	0.0000	
11	42	65.75	$0.109 \mathrm{E}-\mathrm{Cs}$	1158.	0.00149	96.7	0.0000	N
12	46	67.39	-0.317E-07	14 C .	0.00214	96.6	0.0000	
13	50	67.29	$0.102 \mathrm{E}-07$	1707.	0.00222	96.6	0.0000	
14	54	67.44	$0.228 \mathrm{E}-07$	1996.	0.00204	96.6	0.0000	
15	58	67.58	0.138E-C7	2297.	0.6020 C	96.4	c. 0000	
16	62	67.66	$0.875 \mathrm{E}-08$	2513.	0.00195	96:8	0.0000	
17	66	67.74	0.457E-Cy	2192 .	0.00152	96.7	0.0000	
18	70	67.84	0.349を-08	3044.	0.00188	96.8	0.0000	11
19	34	67.78	-0.184E-07	3299.	0.00183	96.8	0.0000	N
20	78	67.68	$0.546 \mathrm{E}-\mathrm{CB}$	3566.	0.00180	96.7	0.0000	N
21	82	67.72	-0.956E-08	3778.	0.60176	96.9	0.0000	
22	E6	67.94	0.380E-c7	3586.	0.00176	97.1	0.0000	G
23	50	67.90	-0.131E-c7	4282.	$0 . c 0170$	96.7	0.0000	\cdots

SUMMARY OF PROFILE RESULTS

PL	x	VEL	K	F	то	tinf	delm	DELH
ε	21.81	25.4 C	0.201E-05	0.0000	96.5	7 C .8	0.574	0.383
8	29.81	33.40	0.245E-05	c. 0000	96.5	71.4	0.490	0.424
16	37.46	49.30	0.252E-05	0.0000	96.7	70.4	0.323	0.363
fl	X	REH	ST	REM	CF 2	deltaz	the ta	
6	: 11.81	336.	$0.003 \mathrm{c8}$	796.	0.00255	0.0262	0.06	
8	25.81	628.	0.00226	639.	0.00260	0.0373	0.03	
1 C	37.46	899.	0.00173	528.	0.00248	0.0361	0.02	

147

1369-1 $\quad \mathrm{K}=2.55 \times 10-6$								
	${ }_{\text {VEL }}^{\text {gibos-1 }}$	Plate	${ }_{21}{ }^{\times}$. ${ }^{\text {a }}$	${ }_{0.00308}^{51}$		${ }_{\substack{\text { v1s.f. } \\ 25.4}}$	${ }_{70.4}^{\text {ricas }}$	
BEEFPAL	Brcicilick	$\xrightarrow{\text { Eertitu }}$ c.			EN IHALPY ${ }_{3}^{186}$	Mロ"entin $\underset{7 \%}{76}$		
	vplus	tplus	velus	r	tear	u, inf	Y/Jeta	
	0.0			c.oceec	-0.0cc	O. 0.60	0.000	
	2.06	2. 2.6	2. ${ }^{1.6}$	\%.00235		¢.:131	0.006	
	2.	年3:3		coi.cet	(e.ter	(e.	(o.cce	
	8	5.5	3:9.9	0.0075	-	0.202	0.013	
	? 7.4	8	\%:5	-0.015		-	\%.020	
	${ }_{1}^{11} \cdot 1$	8:	10.4	\%oiter	- 0.550	-	0.036	
	13,	10.5	${ }_{12} 12.8$	-	-	\%	\%0.04,	
	12.0.	10.7	12.4		¢0.701	-0.026	\%0.653	
		12:6	${ }_{13}^{13.4}$	0.045	-	-	-0.076	
	39.6	${ }^{13,5}$	${ }^{14.4}$	-0.0075		-	-	
	598:3	14.0	135	-0.CEE55	\%.3.839	\%.1735	\%.1469	
	${ }^{\text {Reb }}$	${ }_{15}^{15}$	1509	ctilizes	-	cole	¢,	
	-	cis.	1717:	citite	(eat		come	
		-	(17:	(tay		-	(emem	
	30, ${ }^{305}$		19:9	cismics	(1006	ciseme	cise	

sumpary cf profile results							
	kun	052665-1	-1	xtit	Hec. C	15	
p	\times	vet	k	F	to	ग14\%	achat oetr
12	cictic	73.50	C. $212 \mathrm{LE}=06$ $0.173 E-05$	c.cceos	99.6	72.9	$\begin{array}{lll}1,061 \\ 1,024 & 1.14 \\ 1: 127\end{array}$
16	,	20:ic	${ }_{0}^{0} .2465$	C:00000	99.5		0.003 1:029
118	${ }_{6}^{60.76}$	34.40 42.00	- 0.248 Cl	c.0cco	9¢9.0.7	${ }_{72}^{72.4}$	$\begin{array}{lll}0.143 \\ 0.500 & 0.355 \\ 0.725\end{array}$
15	74.50	52.26	0.255 c -cs	C.ccoo	96.4	72.4	0.4350 .649
$f 1$	*	REh	35	ftr	${ }_{6}{ }^{2}$	velaz	Tucta
12 15	${ }_{\text {cte }}^{46.76}$	${ }_{1843}^{157 \%}$	${ }^{0.00242}$	${ }_{13145}^{136} 0$	O. 00210	${ }^{0} 0.1354$	C. 11344
16	[2,66	1576.	0.00197	1162 .	-0.coza4	-0.1314	c.0800
17	cticis	${ }^{20159}$	-0.00170	f320:	- 0.00257	${ }^{\circ} \mathrm{O} \cdot 11026$	-0.05s7
19	74.58	z2e1:	0.00133	EfC_{6}.	c. 00217	0.0850	0.0249

 $\begin{array}{rrr}\text { YpLUS } & \text { TPLUS } & \text { UPLLS } \\ 0.0 & 0.0 & 0.0\end{array}$

						0,
$\begin{aligned} & 0.0 \\ & 2 \geqslant 0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 3.0 \\ & \hline .0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 203 \\ & 203 \end{aligned}$		$\begin{aligned} & 0.000 \\ & 0.109 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.116 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.004 \end{aligned}$
3.5	4.0	3.3	0.0035	0.141	0.163	0.0068
4.6	${ }_{5.8}^{5.3}$	5:1		0.1594	O. 209 0.255	0.006
6.6	S.6	S60	0.0065	-196	$0 \cdot 302$	0.011
8.7	${ }^{9.6}$	9.8	c.occes	0.242 0.304	0.391 0.455	0.015
14.8	11.5	11.5	0.0445	-.349	\bigcirc	0.025
129.0	13.4 15.5	13.6	c.0185 0.0235	-0.465	0.657	0.032
24.2.	$\xrightarrow{15.5}$	15.2\%	0.0295	-0.504	$\bigcirc \cdot 768$	0.049
34.4	18.3	15.8	0.0335	-0.530	0.798	0.039
39.6 47.5	19.3 20.4	10	-0.0365	-0.518	0.820	0.066
${ }_{58,3}$	21.6	17.1	0.0565	0.649	0.866	0.647
73.98	22.6	17.5	-0.0715	0.043	-0.885	0.123 0.158
120.4	24.6	18.0	0.1165	0.735	c. 515	0.2 Cl
1556.7 888.6	25.4 26.7	18.18 .2	0.1515 8.2015	8.762	-0.927	-
260.5	27.5	18.7	0.2515	0.823	0.550	0.434
336.5 42.6	28.7 30.1	${ }_{19,5}^{10.5}$	- 0.3285	-0.457	-0.462	0.563 0.736
548.6	31.3	19,3	-0.5265	0.932	-0.785	¢
${ }^{677} 9$	32.5 33.3	19.5	c.6515 0.1755	-	-	(1.134
5011.0 S015.5 1172.0	33.6 33.6 33.6	(19.5		0.499 0 0.499 1.090		1.512 1.684 1.643

summary of profile results

PL	X	VEL	K	F	то	tinf	OELM	Delh
12	46.76	23.50	C.200E-07	c. 0000	89.1	66.8	1.061	0.5
15	56.94	26.40	0.186 E - 5	c. 0000	89.3	67.2	1. 024	0.75 C
17	t 6.76	34.60	$0.254 \mathrm{E}-05$	0.0000	89.6	67.2	0.743	0.670
15	74.58	53.20	$0.253 \mathrm{E}-\mathrm{C} 5$	c. 0000	87.2	67.1	0.435	0.508
FL	X	reh	ST	rem	CF2	deltaz	heta	
12	46.76	363.	0.00310	1456.	0.00210	0.03 c 6	. 1	
15	5¢.94	757.	0.00243	1327.	0.00267	0.0565	0.102	
17	66.76	1015.	0.00155	855.	0.00257	0.0576	0.0530	
19	74.58	1372.	0.00151	595.	0.00217	0.0511	0.023	

sumnary of profile results
RUN 101769-1 $K=2.56 \times 10-6 \quad F=C . C \quad B C$

PL	\times	VEL	K	F	10	TINF	DELM	CELH
4	13.81	23.20	$0.208 \mathrm{E}-06$	0.0000	89.4	64.8	1.139	0.652
6	21.81	25.60	$0.200 \mathrm{E}-\mathrm{C5}$	C. 00co	89.8	65.1	1.377	0.729
8	25.81	34.20	$0.256 \mathrm{E}-05$	c.ccoo	89.5	64.8	0.746	0.673
1 C	37.46	52.60	0.262E-05	0.0000	90.0	64.6	0.433	0.516
PL	x	REF.	ST	rem ${ }^{\text {c }}$	CF 2	Deltaz	IHETA	
4	13.81	572.	0.00291	1120.	0.00253	0.0471	0.0922	
6	21.81	789.	0.00253	122c.	c.00275	0.0595	0.0920	
ε	25.81	103日.	0.00197	825.	0.00260	0.0581	0.045	
1 c	37.46	1275.	C. 0 c151	627.	0.00238	0.0464	0.0221	

		PLat	101769,					${ }^{80} 0.0 .5000$ $0.206 \mathrm{E}_{\mathrm{E}}^{\mathrm{K}}-0 \mathrm{~s}$
	yells	tplis	uflus	γ	tuan	u/vint	т\%eLa	
	0.0	0.0	0	c.occeo	0.0ce	0.c00	0.040	
	2:5	3,4	-	coide	(e.126		-0.002	
	3:8	3:48	3:9	-	-107	\%1150	(e.0.64,	
	5:	5:\%	5	-0.0065		(0.225	0.005	
	\%	5:\%	\%	: 0.0095		0.:374	0.0.0.0	
	12.0	\%. ${ }_{\text {a }}$	di. ${ }^{\text {a }}$	-	- 0.495		0.0 .013	
	14.10	90.9	${ }^{10}{ }^{10} 5$	c.c.cics	cti.fer	0.529	(e,	
	- 26.3	112:6	112	C.0.024,	-	(0.611	-	
	-	${ }_{12.1}^{12.4}$	${ }^{13} 13.3$	0,0.065	-0,631	coma	退	
	${ }^{112.8}$	14.7	13:2	80.06055	-	-	-	
	98.4	${ }_{\text {le }}^{16.1}$	15.1		coititic	-	-0.073	
	1217:3	17, 17.5	15:7	\%:1205		(eater	0, 0131	
	2486.5	19,4.4	${ }^{17} 17.4$		\%oter		,	
	380.1	20.2,	17.7	- 0.5555	-		0.403	
	999.0	2.2 .7	${ }_{18} 18$	0.0555	-	-.868	${ }_{0}^{0.622}$	
	764.0	${ }^{20} 20.7$	${ }_{18}^{18}$	0.8555	1:09\%	-0.974	(0.7864	

Z-69LIOT
T-69LIOT SNOY

		RUN 102469	-2 $2 \mathrm{~K}=2.50$	10-6	$\mathrm{FaC} . \mathrm{C}-0$		BC
		469 RU	A NO.				
Amb	ENP	base texp	gas temp	COver	mp earo	pres	hel hum
72		74.17	65.62				0.55
PL	x	veL	K	REH	ST	10	F
2	6	23.59	-0.298E-06	353.	0.00348	89.4	0.0000
3	10	23, 65	$0.258 \mathrm{E}-\mathrm{C} 6$	516.	0.00312	89.3	0.0000
4	14	23.62	0.211E-06	655.	c. 00292	89.6	0.0000
5	18	23.90	0.694E-06	786.	0.00279	89.9	0.0000
6	22	25.65	$0.1715-\mathrm{C} 5$	933.	0.00252	89.6	0.0000
7	26	29.20	$0.255 \mathrm{E}-05$	1064.	0.06222	89.7	0.0000
8	3 C	34.35	$0.255 \mathrm{E}-05$	1198.	0.00194	89.7	0.0000
9	34	42.07	0.264E-05	1487.	c.cocab	89.5	0.0039
10	38	54.33	$0.269 \mathrm{E}-05$	1s45.	0.00115	90.1	0.0039
11	42	74.64	$0.120 \mathrm{E}-05$	2619.	c. 00095	90.0	0.0039
12	46	77.55	-c.564E-Ca	3397.	c.cocs 4	89.9	0.0039
13	5 C	77.49	$0.169 \mathrm{E}-07$	4146.	0.00080	89.9	0.0034
14	54	77.63	$0.274 \mathrm{E}-\mathrm{CB}$	4850.	0.00669	90.1	0.0039
15	58	77.54	-0.376E-c8	5613.	0.00671	89.9	c. 0639
16	t2	77.49	0.529E-10	6351.	0.00061	89.9	0.0039
17	t6	77.53	$0.468 \mathrm{E}-\mathrm{C} \mathrm{\varepsilon}$	7133.	c. 00659	39.6	0.0039
18	70	77.65	$0.165 \mathrm{f}-0 \mathrm{f}$	7EE:	c.coc57	89.6	0.0038
15	74	77.61	-0.947E-C8	8484.	0.00055	89.8	0.0039
20	78	37.57	$0.807 \mathrm{E}-\mathrm{C} 8$	9 Ccc .	c. 00055	89.8	0.0038
21	82	77.69	$0.545 \mathrm{E}-08$	9962 .	0.00057	89.6	0.0039
22	$\varepsilon 6$	77.68	-0.672E-C8	10636.	0.00052	89.7	0.0039
23	90	77.54	-0.112E-07	11404.	$0 . \cos 6$	89.6	0.0038

sumpary of prifile mesults							
	fun	111669-1	- $\mathrm{K}=\mathrm{C}, 0$	$\times 10-6$	$F=0.0$	fe	
Pl	λ	vel	x	F	10	tinf	cela celr
${ }_{2}^{12}$	46.76	23.10 $23.1 \mathrm{c}$	$\begin{aligned} & 0.000 \mathrm{E} 00 \\ & 0.703 \mathrm{E}-\mathrm{ch} \end{aligned}$	$\begin{aligned} & 6.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 57.3 \\ & 97.7 \end{aligned}$	$\begin{aligned} & 66.7 \\ & 69.6 \end{aligned}$	$\begin{array}{ll} 1.073 \\ 1.551 & 1.1250 \\ 1.677 \end{array}$
PL	x	REF	ST	EM	CF2	oeltaz	theta
${ }_{20}^{12}$	46.76 78.80	${ }_{2259} 25$.	0.00232 0.00210	${ }_{2}^{19868 .}$	$\begin{aligned} & 0.00208 \\ & 0.00199 \end{aligned}$	$\begin{aligned} & 0.1317 \\ & 0.1905 \end{aligned}$	$\begin{array}{r} 0.1326 \\ 0.1932 \end{array}$

$0 \cdot 0=x \quad \begin{aligned} & \text { Z-699III } \\ & \text { L-699III SNOY }\end{aligned}$

Description	Plate	x^{1}	Δ_{2} / θ	$\Delta_{2} / \Delta_{2}, 1$	θ / θ_{i}	$\mathrm{Re}_{\mathrm{M}} / \mathrm{Re}_{\mathrm{M}, \mathrm{i}}$	$\mathrm{Re}_{\mathrm{H}} / \mathrm{Re}_{\mathrm{H}, \mathrm{i}}$
Run 070869	6	21.81	1.100	1.0	1.0	1.0	1.0
$\Delta_{2, i}=0.0700^{2}$	7	25.86	1.360	0.982	0.800	0.900	1.110
$\theta_{\mathrm{i}}=0.0635$	8	29.81	1.720 2	0.958	0.613	0.814	1.265
$\mathrm{K}=2.55 \times 10^{-6}, \mathrm{~F}=0$	10	33.59 37.46	1.740 2.55	0.890 0.780	0.459 0.338	0.730 0.673	1.410 1.550
Run 0715569	6	21.81	0.425	1.0	1.0	1.0	1.0
$\Delta_{2, i}=0.0262$		29.81	0.990	1.420	0.610	0.802	1.870
$\theta_{i}=0.0616$	10	37.46	1.750	'1.380	0.335	0.662	2.740
$\mathrm{K}=2.55 \times 10-6, F=0$							
Run 092469	15	58.94	1.30	1.0	1.0	1.0	1.0
$\Delta_{2, i}=0.1393$	16.	62.86	1. 64	0.942	0.750	0.850	1.070
$\theta_{\text {i }}=0.1065$	17	66.76 70.69	1. 46	0.838 0.733	0.522	0.685	1.100
$\mathrm{K}=2.5 \times 10^{-6}, \mathrm{~F}=0$	18	70.69 74.58	2.74 3.40	0.733 0.610	0.352 0.234	0.558 0.468	1.160 2.220
Run 100269	15	58.94	0.541	1.0	1.0	1.0	1.0
$\Delta_{2, i}=0.0565$	17	66.76	1.080	1.020	0.518	0.672	1.325
$\theta_{i}=0.1022$	19	74.58	2.220	0.903	0.225	0.447	1.800
$\mathrm{K}=2.5 \times 10-6, \mathrm{~F}=0$							
Run 101769	6	21.81	0.648	1.0	1.0	1.0	1.0
$\Delta 2, i=0.0595$	8	29.81	0.760	0.977	0.499	0.676	1.325
$\theta_{i}=0.0920$	10	37.46	2.100	0.780	0.240	0.512	1.670
$\mathrm{K}=2.56 \times 10-6, \mathrm{~F}=0$							
Run 091069	6	21.81	0.953	1.0	1.0	1.0	1.0
$\Delta_{2, i}=0.0633$	7	25.86	1.230	1.007	0.777	0.884	1.155
$\theta_{i}=0.0667$	8	29.81	1.620	0.972	0.568	0.755	1.300
Run 072769	6	21.81	1.100	1.0	1.0	1.0	1.0
$\Delta_{2, i}=0.0939$	7	25.86	1.380	1.018	0.810	0.917	1.150
$\theta_{\mathrm{i}}=0.0850$	8	29.81 33.59	1.700 2.180	0.997 0.984	0.648 0.498	0.855 0.793	1.320
$\mathrm{K}=2.5 \mathrm{xlO}_{0} \mathbf{0 . 6 0 2}, \mathrm{~F}=$ 10 37.46 2.600 0.892 0.380 0.761 1.795							
Run 083069	6	21.81	1.100	1.0	1.0	1.0	
$\Delta_{2, i}=0.1190$	7	25.86	1. 410	1.045	0.813	0.918	1.180
$\theta_{i}=0.1080$	8	29.81	1.840	1.070	0.640	0.843	1.410
$\mathrm{K}=2.6 \times 10^{-6}, \mathrm{~F}=$	10	33.59 37.46	2.180 2.650	1.020 0.948	0.513 0.394	0.820 0.788	1.630 1.905
Run 111669	4			1.0			
$\Delta_{2, i}=0.0520$	12	46.76 78.80	0.993	2.533	1.956	1.967	2.550
$\theta_{\mathbf{i}}=0.0678$	20	78.80	0.986	3.663	2.850	2.868	3.687
$\mathrm{K}=0.0, \mathrm{~F}=0.0$							

[^5]
SUPPLEMENT 3

LISTINGS OF DATA REDUCTION PROGRAMS

STANTON PROGRAM: reads raw heat transfer data in order to compute surface heat transfer results and associated uncertainty analysis.

PROFILE PROGRAM: reads raw temperature profile data, and calculated velocity profile results, in order to compute temperature profile information and integral parameters, plus the associated uncertainties.

ENERGY PROGRAM: reads final temperature integral results, and surface heat transfer results, in order to recalculate the plate enthalpy thickness from the energy equation, and to determine the boundary layer energy balance at each profile.

STANTON PROGRAM

```
STANTON NUMBER AND RELATED PARAMETERS FOR PRESSURE GRADIENT RUNS ON
HEAT AND MASS TRANSFER RIG
```

PROGRAM REARRANGED AND UNCERTAINTY ANALYSIS ADDED BY DWKEARNEY
LATEST COMPILATION 120169
REAL KCOND(24), KCONV (24), KFLOW (24), KFUOGE(24),KPROP,KS(24),
1 KV(48),KW,MA, MDOT(24), MV,NPWR, ISO(24), TERM(25), TERMCP(25), 2 XINT(25),XINTCP(25)

INTEGER CHFLAG,DATE,ENBLFG,RUN,TITLE(18)
COMMON /A/ AR,BETA,B1T1,B3T3,CMFLAG,COEF1,COEF23,CP,DATE,DEN,
ENBLFG,E1,E2,EMISS,EPS,ER1,ER2,ER3,F12,F13,F22,I,INSTOT, J,KCOND,
KCONV, KFLOW, KFUDGE, KPROP, KS , KV, KW, KLM, MA, MDOT, MV, NPWR , NPLATE,
NSTAT,P,PBAR, PROTA, DELP ,PVAP,Q1,Q2,Q3,QHEAT,
QHEATA, QHTA, QLOSS, RA, RCF, REPS,RHOA, RHOH, RHOL, RHOV, RHOZRO, RUN,
RH1, RH2,RH3,RHUM, RM, T, TAMB, TBASE, TCOV, TGAS, TROT,
TROTA,T1, T2,T3, VAPH, VAPL, VEPS, WCORR,WSCALE,HSTDI,
I SO,REENCP(24), ENTHCP(24), ENTHZR,
AREA(24), BB(24), C FHT(24), CM(24), CONLAT(24), DELH(25),
DELTAT(24), DUDX(48), DUDXS(24), ECONV(24), ED(24), ENDEN(24),
ENNET(24), ED(24), ENTH(24), ET(24), EU(24),F(24),GS(24), H(24),
HTFRAC(24), HTRANS (24), INSTK (48), MASSK (24), PK (48),
PROT (24), PROTAB(24), PSAT (9), PSTAT(48), QCOND (24),
QRAD(24), REENTH(24), REENW(251, RHOG(48),
RHOSAT (9), ST(24), STCP (24), TAVG(24), TEMP (9), TIMEGO(48),
TO(24), TOEFF(24), TD(24), TITLE,TT(24), TU(24),V(48),
VISCG(48), VISCGS(24), UG(24), VZERO(24), WACT(24),WIND(24),
WNET(24), HSTD(24), X(48), XS(24), XSTCP(24), XMDOT(24)
COMMON /B/ DCMP, DDELP, DPAMB, DP5H1, DP5LO, DP97HI, DP97LO, DQRADP,
DTEMPA, DTEMPP, DTBASE,DTT, DTROT, DTGAS, DWIND,DXX,F2,F3,F4,
F6,F7,F8, DEL, DDUDXS(24), DISO(24), DENZRP,
DB(24), DBND(24), DCM(24), DOL2(24), DDL2ND(24), DF (24),
DFND(24), DHTF(24), DMDOT(24), DMDOTN(24), DPSTAT (48),
DQRAD(24), DRE(24), DREND (24), DRHOG(24), DST(24),
DSTND (24), DUG(24), DUGND (24), DV(48), DDUDX(48),
CLR1(24), CLR2(24), CLR3(24), CLR4(24), CSR1(24),
CSR2(24), CSR3(24), DVISCG(24), DEL 2, DMUP, MNPLAT,
D97MIN, D97MAX,D5MIN, DSMAX, PTOTAL, NPORT, MNPORT
READ AND WRITE INPUT DATA
TRANSDUCER CALIBRATION CONSTANTS ARE READ FIRST. USED FOR K-RUN.
READ 5,1353) A97,B97,C97,D97,E97,A5,B5,C5,D5,E5
1353 FORMAT (5F10.0/5F10.0)
C
C
C UNCERTAINTY INTERVALS
c

READ(5,1354) DCMP,DDELP,DPAMB,DP5LO,DP5HI,D5MIN,D5MAX,DP97LO,

```
            2 DENZRP,DXX,DMUP
            DP 5LO=DP5LO/100.
            DP 5HI=DP5HI/100.
            DP97L0=DP97LO/100.
            DP97HI=DP97HI/100.
    1354 FDRMAT( 8F10.0)
C
                            PSTAT{48)=0.0
C
C IP-PUNCH COMMAND FOR ST-REENTH DATA AND PUNCHED OUTPUT: O FOR NO
C PUNCH, 1 FOR PUNCH
C NRUNS - NUMBER OF SETS OF DATA ENTERED
C
    READ(5,36)NRUNS,IP
            0O 500 IRUN=1,NRUNS
C
C ALL DATA REAO ANO PRINTED DURING THE NEXT OPERATION
C
    WRITE(6,3)
    777 FORMAT(1X,18A4,13':THIS VERSION OF THE STANTON NUMBER DATA')
1777 FORMAT(1X,18A4)
    36 FORMAT (I2,8X,11)
        l FORMAT(18A4)
        3 FORMAT(1H1)
    306 FORMAT(1H )
    308 FORMAT(1HO)
        4 FORMAT (I6,4X,I1,9X,5F10.2/6F10.0,I1)
    300 FORMAT(2X47H DATE RUN TAMB TCOV TROT TBASE TGAS ,
        1 37X'REDUCTION PROGRAM WAS COMPILED 120169.')
```



```
        1 PREAD )
    301 FORMAT( }2\times22H\mathrm{ CMFLAG ENBLFG NPLATE )
    304 FORMAT(2XI6,2XI1,1X5F7.3)
    404 FORMAT(4F8.2,F8.4,4XF4.0,5XI1,4XF7.4)
        5 FORMAT(11,9X,11,9X,12)
        50 FORMATE5XII,6XI1,6XI2)
    75 FORMAT(72H I EO EU ED ET WIND CM P
```



```
        IROT )
        6 FORMAT (7F10.3)
    307 FORMAT (1X,I2,4F8.3,2F8.2,F8.1)
71 FORMAT(7F10.3,I1)
73 FORMAT (1X,12,7F8.3,5X,I1)
52 FORMAT (1X,12,4F8,3,2F8.2,F8.1,7XI1)
    303 FORMAT(55H STATIC PRESSURES FROM WALL PORTS,INCHES H2O GAGE)
    305 FORMAT(7F10.5)
    814 FORMAT(2(2X'I*5X'PD*6X'PREAD'3X'TIME60'2X* INST'IOX))
    815 FORMAT (2(5X,F8.0,3X,F3.0,2X,I1,9X))
    816 FORMAT(211X,I2,2X,F7.4,1X,F9.3,3X,F4.0,4X,I1,12X))
C
    2 READ(5,1) TITLE
        WRITE(6,777) TITLE
        WRITE (6,300)
        READ(5,4) DATE,RUN,TAMB,TCOV,TROT,TBASE,TGAS,PBAR,RHUM,E1,
        1 E2, DELP ,TIME,INSTOT
            WRITE(6,304) DATE,RUN,TAMB,TCOV,TROT,TBASE,TGAS
C
C CALCULATION OF DELP
C
    PHOLD= DELP
```

```
        IF(TIME.GT.0.0) DELP = DELP *60./TIME
        INS=[NSTOT+1
    GO TO (2125,2126,2127),INS
    2126 DELP =PCALI( DELP ,A97,B97,C97,D97,E97)
    GO TO 2125
    2127 OELP =PCAL2( DELP ,AS,B5,C5,D5,E5)
    2125 WRITE(6,400)
    HRITE(6,404) PBAR,RHUM,E1,E2, DELP ,TIME,INSTOT,PHOLD
C
C CMFLAG: 1-SMALL ROTO 2-LARGE ROTO 3-MIXED ROTO, REQUIRES I OR 2
C COL }72\mathrm{ OF DATA FOR EACH PLATE
C ENBLFG: ENTER 1 FOR ENERGY BALANCE RUN, OTHERWISE LEAVE BLANK
C NPLATE: ENTER ONLY IF LESS THAN }24\mathrm{ ARE TO BE CALCULATED
C MASSK: 1-SMALL ROTO 2-LARGE ROTO
C
        READ(5,5) CMFLAG,ENBLFG,NPLATE
        WRITE (6,301)
        WRITE (6,50) CMFLAG, ENBLFG,NPLATE
        WRITE(6,306)
        IF(CMFLAG.NE.3)GO TO 74
        WRITE(6,75)
        GO TO 76
    74 GRITE (6,302)
    76 IF(NPLATE.EQ.0) NPLATE=24
    NPORT=2*NPLATE
        MNPORT=NPORT-1
        MNPLAT=NPLATE-1
        DO }7\textrm{I}=1,NPLATE
        IFICMFLAG.NE.3)GO TO 70
        READ(5,71)EO(I),EUY(I),ED(I),ET(I),WIND(I),CM(I),PROT(I),MASSK(I)
        WRITE(6,52)I, EO(I), EU(I), ED(I), ET(I),WIND(I), CM(I),PROT(I),
        1 MASSK(I)
        GO TO 7
    70 READ(5,6)EO(I),EU(I),ED(I),ET(I),WIND(I),CM(I),PROT(I)
        WRITE(6,307) I,EO(I),EU(I),ED(I),ET(I),WIND(I),CM(I),PROT(I)
        7 CONTINUE
        WRITE{6,306)
        WRITE(6,814)
        DO }817\textrm{J}=1,NPOR
        IF(J.GT.24) GO TO }81
        l=J+24
        READ(5,815) PK(J),TIME60(J),INSTK(J),PK{L),TIMEGO(L),INSTK(L)
        DO 2215 1I=J,1,24
        PHOLD=PK(II)
        IF(TIMEGO(II).GT.0.0) PHOLD=PHOLD*60./TIME6O(II)
        INS=INSTK(II)+1
        GO.TO (2202,2203,2283),INS
    2203 PSTAT(II)=PCAL1(PHOLD,A97,B97,C97,097,E97)
    GO TO 2215
2283. PSTAT(II)=PCAL2(PHDLD,A5,B5,C5,D5,E5)
    GO TO 2215
2202 PSTAT(II)=PHOLD
2215 CONTINUE
    WRITE(6,816)(II,PSTAT(II),PK(II),TIME60(II), INSTK(II),II=J,L,24)
    817 CONTINUE
    818 WRITE (6,3)
C
C
    DATA REDUCTION BEGINS HERE
        DO }80 I=1,NPLATE
```

```
C
C THE FOLLOWING BLOCK CONVERTS ANY TEMPERATURES READ IN MILLIVOLTS TO D
C
    IF(TAMB.LT.10.) TAMB=TCALIB(TAMB)
    IF(TCOV.LT.10.) TCOV=TCALIB(TCOV)
    IF(TROT.LT.10.) TROT=TCALIB(TROT)
    IF(TBASE.LT.10.) TBASE=TCALIB(TBASE)
    IF(TGAS.LT.10.) TGAS=TCALIB(TGAS)
    IF(EU(I).EQ.0.0) EU(I)=EO(I)
    IF(ED(I).EQ.0.0) ED(I)=EO(I)
    TO(I)=TCALIB(EO(I))
    TU{I)=TCALIB(EU(I))
        TD(I)=TCALIB(ED(II)
        TT(I)=TCALIB(ET(I))
        8 0 ~ C O N T I N U E ~
C
C MIXTURE COMPOSITION IS DETERMINED FROM RELATIVE HUMIDITY AND USED
C TO GET MIXTURE GAS CONSTANT RM VIA PERFECT GAS ASSUMPTION
C
    P=PBAR*2116.0/29.96
    DO 8 N=1.9
    IF(TEMP(N).GT.TAMB) GO TO 9
    8 CONTINUE
    9 T=TEMP(N)
    EPS=T-TAMB
    VAPH=PSAT(N)
    VAPL=PSAT(N-1)
    VEPS = VAPH-VAPL
    RHOH=RHOSAT (N)
    RHOL=RHOSAT(N-1)
    REPS=RHOH-RHOL
    RHOV=RHOL+(10.0-EPS)*REPS/10.0
    RA=53.3
    PVAP=RHUM*(VAPL+(10.0-EPS) %VEPS/10.0)
    RHOA=((P-PVAP)/(RA*(TAMB+460.0))+(RHUM*RHOV))
    MV=RHUM*RHOV/RHOA
    MA=1.0-MV
    RM=1545.0*(MA/28.9+MV/18.0)
C
C SPECIFIC HEAT IS CORRECTED FOR HUMIDITY EFFECTS IN THE FOLLOWING EQUA
    CP =0.240+0.205*MV
c
C TGAS IS CORRECTED TO STATIC TEMPERATURE
C
    IFIENBLFG.EQ.1) GO TO 1104
    PTOTAL=DELP+PSTAT(3)
    DO 1103 M=1,5
    RHOG(3)=(P+5.2*PSTAT(3))/(RM*{TGAS+460.0))
    VISCG(3)=(11.0*0.0175*TGAS)/(1000000.0*RHOG(31)
    V(3)=SQRT{(64.34*(PTOTAL-PSTAT(3))*(62.4/RHOG(3))/12.01)
    RCF=,7**.333
    TGAS=TGAS - RCF*V(3)*V(3)/(778.*64.34*CP)
    1103 CONTINUE
C
C freE STREAM data now procesSED
C
1104 DO 101 J=1,NPQRT
    RHOG(J)={P+5.2*PSTAT(J))/(RM*(TGAS+460.0))
    VISCG(J)=(11.0+0.0175*TGAS)/(1000000.0*RHOG(J))
    V(J)=SQRT((64.34*(PTOTAL-PSTAT(J))*(62.4/RHOG(J))/12.0))
```

```
    10: CONTINUE*
        DUDX(1)={V(2)-V(1))/(X(2)-x(1))*12.
        KV{1)=VISCG(1)#DUDX(1)/(V(1)*V(1))
C
    DO 102 }j=2,MNPOR
    DUDX(J)=12.0*{V(J+1)-V(J-1))/(X(J+1)-X(J-1))
    KV(J)=VISCG(J)*DUDX(J)/(V(J)*V(J))
    102 CONTINUE
C
C free stream data for individual plate is recorded now
    DO 88 I=1,NPLATE
    NSTAT = 2*I - l
    UG(I)=V(NSTAT)
    GS(I)=V(NSTAT)*RHOG(NSTAT)
    XS(I)=(2.0+(I-1)*4.0)/12.0
    KS(I)=KV(NSTAT)
    DUDXS(I)=DUDX(NSTAT)
        VISCGS(I)=VISCG(NSTAT)
    8 CONTINUE
C
C DATA IS REDUCED FOR EACH PLATE DURING THE NEXT OPERATION
    DO 22 I=1,NPLATE
C
    IF(CMFLAG.NE.3) MASSK(I)=0
    NSTAT = 2*I - 1
C
C FOLLOWING BLOCK CORRECTS INDICATED POWER FOR VOLTAGE COIL LOSS AND
C FOR DEVIATION FROM ACTUAL PWR, PER SLAC TEST NO. 1149
C
WIND=O USED:AS FLAG FOR NO-POWER RUNS
C
    IF(WIND(I).LE.O.0) KW=1.0
    IF(WIND(I).LE.0.0) BETA=1.0
    IF(WIND(I).LE.O.0) GO TO 12
    .10 IF(WIND(I).GE.75.0) KW=0.995
    IF(WIND(I).LT.75.0) KW=0.99
    IF(WIND(I).GE.75.0) WSCALE=150.0
    IF(WINDII).LT.75.0) WSCALE=75.0
    NPWR=WIND(I)/WSCALE
    WCORR =NPWR*(0.0728*NP WR-0.0427*(NPWR*NPWR)-0.0292)
    WNET(I)=KW*WIND(I)+WCORR*WSCALE
    IF(I.LE.12) RC=El/SQRT(75.0*WNET(I))
    IF(I.GT.12) RC=F2/SQRT(75.0*WNET(I))
    IF(WIND(I).LT.75.0) BETA=1.0+0.020*(1.0-1.0/RC)
    IF(WIND(I).GE.75.0) BETA=1.0+0.010*(1.0-1.0/RC)
    11 WNET(I)=BETA*WNET (.I)
C NEXT CALCULATES ENERGY INPUT DENSITY BTU/SECFT2 CORRECTING FOR
C HEATER WIRE HRAPPED ACROSS ENDS, 2.3 PERCENT
C
        ENDEN(I)=WNET(I)/(1055.0*0.50*1.023)
        GO TO 13
    12 ENDEN(I)=0.0
C
C NEXT CALCULATES HEAT LOSS bY RADIATION. SEE JULIFN 8/67 ENERGY
C BALANCE REPORT FOR DETAILS.
C
    13 TAVG(I)=(TO\I)*3.0+TU(I)+TD(I))/5.0
    ER l=0.35
```

C

```
            ER2=0.20
            ER 3=0.35
            F13=0.175
            AR=0.25
            KLM=1
            RH2=1.0-ER2
            RH3=1.0-ER3
            F12=1.0-F13
            F22=1.0-2.0*AR*F12
            RH1=1.0-ER1
            EMISS=0.17
            IF(PROT(I).LE.-0.1.AND.ENBLFG.EQ.1) EMISS=0.30
            rl=TAVG(I)+0.022*WIND(I)+460.0
            T3=TT {I }+460.0
            IF(PROT(1).LE.-0.1) T2=T1
            IF{PROT(I).GT.-0.1) T2=TT(I)+460.0
    14 IF(KLM.EQ.1) GO TO 15
            rl=T1+0.551*WIND(I)-0.0911*(T1-T3)
            ER1=0.90
            RHl=0.10
    15DEN=1.0-RH2*F22-2.0*RH1*RH2*RH3*AR*F12*F12*F13-RH1*RH3*F13*F13*
    1(1.0-RH2*F22)-RH2*(RH3+RHI)*AR*F12*F12
            QL=ER1*0.174E-08*T1*T1*T1*T1
            Q2=ER2*0.174E-08*T2*T2*T2*T2
            Q3=ER3*0.174E-08*T3*T3*T3*T3
            COEF1=1.0-RH2*F22-RH2*RH3*AR*F12*F12
            COEF23=(RH1*RH3*F12*F13+RH1*F12)*Q2+(RH1*RH2*AR*F12*F12+RH1*(1.0-
    1RH2*F22)*F13)*Q3
            B1T1={COEF1*Q1+COEF23|/DEN
            B3T3=((RH3*(1.0+RH1*F13)*B1T1)+(RHI*Q3-RH3*Q1))/(RH1*(1.0+RH3*F13)
    1)
            IF(PROT(1).LE.-0.1) QHEATA={ER1/RH1)*((Q1/ER1)-B1T1)
            IF(PROT(I).GT.-0.1) QHEATA=(ER3/RH3)*(B3T3-(Q3/ER3))
            IF(KLM.GE.2) GO TO 16
            KLM=2
            QHTA=QHEATA
            GO TO 14
    16 QHEAT = 0.0.895*QHTA+0.105*QHEATA)/3600.0
    253 QRAD(I)=0.1714*EMISS*((1TAVG(I)+460.0)/100.0)**4.0-((TCOV+460.0)/
    1100.01**4.0)/13600.0*QHEAT
C
C NEXT CALCULATES WEIGHT FLOW FROM ROTAMETER DATA AND GETS M*'
            MDOT(I)=0.0
            VZEROII) = 0.0
            RHOZRO = 0.0
            TROTA=TROT+460.0
            PROTA=PBAR+PROT(I)/25.4
            PROTAB(I)=2116.0#PROTA/29.96
            IF(CMFLAG.NE.3)GO TO }7
            IF(MASSK(I).EQ.1:GO TO 17
    77 IF(CMFLAG.EQ.1) GO TO 17
            IF(CMIL).LE.O.O) GO TO 19
C
C NEW FIT FOR FACTORY CALIERATION, PLUS/MINUS 0.3 PERCENT
C
            WSTDI = (0.60+0.752*CM(I) -0.50*SIN(CM(I)*3.1417/25.0))*0.075/60.0
            GO TO 18
17 IF(CM(I).LE.O.O) GO TO 19
WSTDI=(0.175+0.13091*CM(I)-0.067*SIN((CM(I)-2.0)*3.1417/2.1.0))*
    10.075/60.0
```

```
    1% WSTD(I)=WSTDI
C ROTAMETER FLOH IS NEXT CORRECTED FOR DENSITY TO YIELD ACTUAL FLOW,
THEN GORRECTED FOR PLATE POROSITY VARIATION
    WACT{I)=WSTD(I)*SQRT (PROT AB (I)/(RM*TROTA*0.075))
    KFUDGE(I)=0.0
    H1=WACT(I)*1000.
    IF(CMFLAG.EQ.I) GO TO 118
    IF(CMFLAG.EQ.3.AND.MASSK(I).EQ.1) GO TO 118
    CORRECTION CURVES TO FACTORY CALIBRATIONS(LARGE ROTOMETERS)
        IF(WI.LT.2.) HI=2.
        HFWL.GT.15.) WL=15.
```



```
    GO TO 119
    118 CONTINUE
    CORRECTION CURVES TO FACTORY CALIBRATIONS(SMALL ROTOMETERS)
    IF(Wl.LT.1.15) WI=1.15
    IF(W1.GT.4.) WI=4.0
    PER=CSR3(I)/(W1-CSRI(I))+CSR2(I)
    119 WACT(I)=WACT(I)*(1.-PER/100.)
        IF{PROT(I).LE.-0.I) MDOT(I)=WACT(I)*KFLOW(I)*2.01258
        IF{PROT(I).GT.-0.1} MDOT(I)=WACT(I)*(KFLOW(I)+KFUDGE(I))*2.01258
C
C DENSITY OF FLOW AT PLATE SURFACE IS CALCULATED AND USEO TO GET VZERO
    RHOZRO=(P+( 5.20 )*PSTAT(NSTAT))/(RM*(TAVG(I)+460.0))
    VZERO(I)=MDOT(I)/RHOZRO
    NEXT CALCULATES HEAT LOSS BY CONDUCTION
    19 CONTINUE
    258 QCOND{I)=KCOND(I)*{TAVG(I)-TBASE)/30.0
        IF(MDOT(I).LE.O.OO44) QCOND(I)=QCONO(I)+CONLAT(I)&((I.O-(MDNT(I)/
    10.0044)))*(TAVG(I)-TBASE)/30.0
        IF(MDOT(I).LE.0.0002) QCOND(IT}=QCOND(I)+{0.015/3600.0)*12.0**
        1(TAVG(I)-TBASE)
        QLOSS=QRAD{I}+QCOND{I }
        ENNET(I)=ENDEN{I}-QLOSS
C
C ENNET IS THE ENERGY DENSITY ON PLATE,AFTER SUBTRACTION OF HEAT LOSSES
    FROM ENERGY DELIVERED TO THE PLATE, ENNET=Q'*+ M*:(IO-ITI
    DISTRIBUTION OF ENERGY IS MADE NOW
    IF(PROT(I).GT.-0.1) GO TO 20
    MDOT(I)=0.0-MDOT(I)
    TT(I)=TAVG(I)+0.022*WIND(I)
    TOEFF(I)=TAVG(I)-0.0044*WIND(I)
    ECONV{I}=MOOT(I)*{TOEFF(I)-TT(I))*CP
    IF{ENB{FG.EQ.1) ECONV(I)=MDOT(I)*{TGAS-TT(I)}*C?
    GO TO 21
    20 ECONV(I)=MOOT(I)*{TAVG(I)-TT(I))&CP
C
C
C EFFECTIVE SURFACE TEMPERATURE IS NOW DEFINED BASEO ON MEASURED BULK
C FLUID TEMPERATURES LEAVING THE O-STATE, THIS INCLUDES THE EFFECT ON
```

C CONDUCTION ERROR, ON THE PLATE TEMPERATURE MEASUREMENT, AND ALSO THE C TEMPERATURE AND AREA WEIGHT FACTORS

```
    ECONV(I)=(1.0+30.0*MDOT (I)*KCONV(I))*ECONV(I)
    IF{MDOT(I),LE.0.0) TDEFF(I)=TAVG{I)
```



```
    21 CONTINUE
C HTRANS - CONVECTIVE HEAT TRANSFER TO BOUNDARY LAYER
```

C
C
C
C
C
C
C SEE RJM THESIS P. 71 FOR EXPONENT REFERENCE
C
$\mathrm{BB}(\mathrm{I})=\mathrm{MDOT}(\mathrm{I}) /(\mathrm{GS}(\mathrm{I}) * S T(\mathrm{I})\}$
$D E L=1 . / 3$.
ISO(I) = CP* (TOEFF(I)-TGAS) - UG(I) tUG (I)/(64.4*778.)
CALL UNCERT
22 CONT INUE
IF (ENBLFG.EQ. 2) GO TO 241
C
C
C ENTHALPY THICKNESS ANO ENTHALPY THICKNESS REYNOLDS NUMBER:
C THE ENERGY EQUATION IS INTEGRATED ACROSS EACH PLATED, I.E., EDGE-TO-
C EDGE. THE VALUES AT THE CENTER ARE THEN OBTAINED BY INTERDQLATION.
C
C THE FOLLOWING IS A CALCULATION OF INITIAL ENTHALPY THICKNESS THAT
C EXISTS UNDER CONSTANT SURFACE TEMPERATURE AT X=0 - THE CONSTANTS WERE
C DETERMINED EXPERIMENTALLY FROM PROFILES TAKEN 082968-1 .ENTHALPY
C THICKNESS AT $X=-3.5$ EQUALS 0.039 INCHES. AT $X=-3.5$ THE TEMPERATURE
C DIFFERENCE IS
C
TRATIO $=0.47 *(T G A S-T A M B+2.1 /(T G A S-T O E F F(1))$
ENTHZR $=0.039 *$ TRATIO/12.
IF (TGAS.GT. TOEFF (1))TRATIO=0.3* (TGAS-TAMB+2.)/(TGAS-TOEFF (1) +2.5$)$
IF(TGAS.GT.TOEFF(1))ENTHZR=0.022*TRATIO/12.
START=ENTHZR*UG(1) 1 ISO(1)
TERM(1)=START
$\operatorname{XINT}(1)=0.0$
NNN=NPLATE + 1
TERMCP $(1)=S T A R T$
XINTCP $(1)=0.0$
DO $23 \mathrm{I}=2$, NNN
$\operatorname{XINT}(I)=X I N T(I-1)+1.13 * *(S T(I-1) * U G(I-1) * I S O\{I-1)+$
1 F(I-1)*UG(I-1) ㅎ́ㄴ(I-1))
TERM\{I) $=$ START + XINT(I)
ENTH(I-I)=.5*(TERM(I-1)+TERM(I))/(UG(I-1)*ISO(I-1))
REENTH $(I-1)=$ UG $(I-1) * E N T H(I-1) / V I S C G S(I-1)$

```
C
C
INTEGRATION FOR CONSTANT PROPERTY CASE
XINTCP(I)=XINTCP(I-1)+1./3.*(STCP{I-1)*UG(I-1)*ISO(I-I) +
    1 F(I-1)#UG(I-1)*ISO(I-1))
            TERMCP(I)= START + XINTCP(I)
            ENTHCP(I-1)=\bullet5*(TERMCP(I-1)+TERMCP(I))/(UG{I-1)*ISO(I-1))
            REENCP(I-1}=UG(I-1)*ENTHCP(I-1)/VISCGS(I-1)
    23 CONTINUE
            CALL UNCER
C
C
C OUTPUT
C
    241 CONTINUE
    24.FORMAT(5H DATE,I8,5X,7HRUN NO., I4)
    25 FORMAT(62H AMB TEMP BASE TEMP GAS TEMP COVER TEMP BARO PRES R
        1EL HUM/1XF6.2,5XF6.2,4XF6.2,6XF6.2,6XF5.2,6XF4.2%
    26 FORMATI/115H UNITS:P-ROT= MM HG; WIND= WATTS; VEL= FT/SEC; MDDT
        1=LB/(SEC-FT2); HT-X, ECONV, ENNET, QCOND, QRAD= BTU/(SECFT2) )
    310 FORMAT(41H UNITS: DELTA2= IN. ; HTFRAC=PERCENT )
    27 FORMAT(/5H PL ,IX,7HTCL-AVG,5X,2HTU,6X,2HTD,7X,2HTT,5X,5HTOFFF,5X
        1.5HDEL-T,5X,2HCM,7X,4HWIND,6X,5HVEL - X/)
    63 FORMAT( / IOIH PL B MDOT V-ZERO ET-X ECO
        INV ENNET QCOND QRAD HTFRAC /1
    28 FORMATII 3,3XF6.2,4XF6.2,2XF6.2,3X,F6.2,3X,F6.2,3X,F6.2,2X,F6.2,4X,
        1F6.2,5X,F6.21
    62 FORMAT (I3,3XF6.3,2XF8.4,1XF8.4,5(2XE10.3),2XF6.1)
    103 FORMATI68H RUN DELP TG TAMB PBAR
        1 RHUM )
    104 FORMAT(2X,16,1H-,I1,4X,F9.4,1X,4F10.2//)
    105 FORMAT\77H I X(I) PSTAT(I) V(I) DUOX(I)
        I K{I\ ,/1
    106 FORMAT\2XI2,4X,F8.3,F10.4, \XXF8.2,7XF6.2,5XE11.3,3XE11.3)
    30 FORMAT\/5H PL ,IX,6HTO,EFF, 4X, 2HTT,7X, 2HST,4X,6HREENTH, 3X,
        26HDELT'A2,6X*F. 1,6X,5HVEL-X,7X,1HK,10X5HST-CP,6X9HREENTH-CP/)
    31 FORMAT {1 3, 3X,F6.2,2X,F6.2,2X,F7.5,1XF6.0,4XF6.4,
        12XF8.4,3X,F6.2,2X,E10.3,5XF7.5,6XF6.01
    131 FORMAT (I 3,F6.2,F6.2,F7.5,F6.0,F6.4,
        1F8.4,F6.2,E10.3,F7.5,F6.0)
        81 FORMAT II 3,3X,F6.2, 2X,F6.2, 2X,F7. 5, 2X,F7.5,1X,
        1F6.0,2X,F8.5,2X,F5.1,2X,E10.3)
    240 FORMAT (1H1,35X,22H UNCERTAINTY INTERVALS //40X,16H ABSOLUTE VALUES
        1 /)
    225 FORHAT(3H PL,91X,6HHTFRAC)
    230 FORMAT (I 3,91XF4.1)
    245 FORMAT (3H PL, 22X2HST, 4XI5HREENTH DELTA2,7X'F*6X'VEL-X*)
    250 FORMAT (I 3.19XF7.5,2XF5.0,4XF6.4, 3X F8.4,2XF6.2)
    255 FORMAT( / 40X11HPERCENTAGES /)
    260 FORMAT(13,21XF4.1,4XF4.1,5XF4.1, 6XF4.1,5XF4.1)
C
C
        NPRINT=1
        DO 33 J=1,NPRINT
        WRITE(6,1777) TITLE
        WRITE(6,24) DATE, RUN
        WRITE (6,26)
        WRITE (6,310)
        WRITE (6,27)
        DO 29 I=1,NPLATE
```

```
        WRITE(6,28) I, TO(I),TU(I),TD(I),TT(I),TOEFF(I),DELTAT(I),CM(I),
        IWIND{I},UG(I)
    29 CONTINUE
        WRITE (6,63)
        DO 61 I=1,NPLATF
        IF(ENBLFG.EQ.11 BB(I)=0.0
        WRITE{6,62} I, BB(I),MODT(I),VZERD(I),HTRANS(I),ECONV(I),ENNET(I),
        1 QCOND(I),QRAD(I),HTFRAC (I)
    61 CONTINUE
        IF{ENBLFG.NE.I| GO TO 265
        WRITE{6,240)
        WRITE(6,225)
        DO }750\quadI=1,NPLATE
        WRITE(6,230) I,DHTF(I)
    750 CQNTINUE
        GO TO 33
    265 CONTINUE
    WRITE (6,3)
    WRITE (6,103)
    WRITE(6,104) DATE,RUN, DELP ,TGAS,TAMB,PBAR;RHUM
    WRITE(6,105)
    DO 107 I=1;MNPORT
        WRITE(6,106) I,X(I),PSTAT(I),V(I),DUDX(I),KV{I}
    107 CONTINUE
    WRITE (6,3)
    WRITE(6,1777) TITLE
    IF(IP.EQ.1).WRITE{7,1777) TITLE
    HRITE(6,24) DATE,RUN
    IF{IP.EQ.1) WRITE{7,24} DATE,RUN
    WRITE(6,25) TAMB,TBASE,TGAS,TCOV,PBAR,RHUM
    IF{IP.EQ.1) HRITE(7,25) TAMB,TBASE,TGAS,TCOV,PBAR,RHUM
        WRITE (6,30)
        M=4
        DO 32 I=1,NPLATE
        ENTH(I)=ENTH(I)*12.
        HRITE(6,31)I,IOEFF(I),TT(I),ST{I),REENTH(I),
        1 ENTH(I),F(I),UG(I),KS(I),STCP(I),REENCP(I)
            IF(IP.EQ.1) WRITE(T,13I| I,TOEFF(I),TT(I),ST(I),REENTH(I),
        1 ENTH(I),F(I),UG(I),KS(I),STCP(I),REENCP(I)
            IF(I.EQ.M) WRITE(6,306)
            IF(I.EQ.M) M=M+4
    32 CONTINUE
        WRITE (6,240)
        WRITE(6,245)
        DO }755\quadI=1,NPLATE
        WRITE(6,250) I,DST(I),DRE(I),DDL2(I},DF{I},DUG{I)
    755 CONTINUE
    WRITE(6,255)
    WRITE(6,245)
    DO 760 I=1,NPLATE
    WRITE(6,260) I,DSTND(I),DREND(I),DDL2ND(I),DFND(I),DUGND(I)
    760 CONTINUE
        WRITE(6,3)
    33 CONTINUE
C
C THE FOLLOWING SECTION PRINTS OUT INFORMATION ON THE
C UNCERTAINTY INTERVALS USED IN THE UNCERTAINTY CALCULATIONS.
C
C
C HEADING AND EXPLANATION
    WRITE{6,900}
```

```
900 FORMAT(//,20X;'PPRIME UNCERTAINTY INTERVALS USED'
    1,3X,'(ESTIMATED AT 20:1 ODDS)'//)
        WRITE (6,901)
901 FORMAT(2x,'VARIABLE',5X,'VALUE ASSIGNED',10X,'VARIABLE MEANING*
    1,44X,'UNITS'//)
        WRITE(6,902) DDELP
902 FORMAT(2X'DDELP*8X,F6.4,18X,'MANOMETER READING',43X,'IN.-H2O!/)
    WRITE(6,903) DXX
903 FORMAT(2X,'DXX',10X,F5.3,19X,'STATIC TAP LOCATIONS',40X,'INCHES'/)
    WRITE(6,905) DCMP
905 FORMAT(2X,'DCMP ',7X,F6.3,19X,"ROTOMETER READING*,43X,"%*/)
    HRITE(6,909) DTEMPA
909 FORMAT (2X,'DTEMPA',7X,F5.3,19X,'GAS TEMPERATURE',45X,'DEG. F.'/)
    WRITE(6,1909) DTEMPP
1909 FORMAT(2X,'DTEMPP`,7X,F5.3,19X,'GAS TEMPERATURE',45X,'DEG. F.'/)
    WRITE(6,910) DPAMB
910 FORMAT(2X,'DPAMB',8X,F5.2,19X,'AMBIENT PRESSURE',44X,'LBF/FT2'/)
    WRITE(6,911) DMUP
911 FORMAT(2X*DMUP',7X,F5.1,21X,*ABSOLUTE VISCOSITY',42X,*%%/1
    DP97LO=DP97LO*100.
    DP97HI=DP97HI*100.
    DP5LO=DP5LO*100.
    DP5HI=DP5HI*100.
    WRITE(6,912) DP97LO
912 FORMAT{2X,'DP97LO',7X,F6.4,18X,'TRANSDUCER CALIBRATION-PMM9,',
    1.FOR P<.05 IN.-H20, 15X,*%*/)
        WRITE(6,913) DP97HI
913 FORMAT(2X,'DP97HI',7X,F6.4,18X,'TRRANSDUCER CALIBRATION-PM97,',
    1'FOR P>.05 'IN.-H2O',15X,'g'/)
        HRITE(6,914) DP5LO
914 FORMAT(2X,'DP5LO',8X,F6.4,18X,'TRANSDUCER CALIBRATION-PM5,',
    1'FOR P<1.0 IN.-H20',16X,'%'/)
        WRITE(6,920)DP5HI
920 FORMAT(2X,'DP5HI',8X,F6.4,18X,'TRANSDUCER CALIBRATION-PM5,',
    1'FOR P>1.0 IN.-H20.,16X,*%/1
        DP97LO=DP97LO/100.
        DP97HI =DP97HI/100.
        DP5LO=DP5LO/100.
        DP5HI=DP5HI/100.
        WRITE(6,916) D97MIN
916 FORMAT (2X,"D97MIN',7X,F6.4,18X,*MINIMUM PM97 UNCER. DUE TO ZERO*,
    1" SHIFT',23X;'IN.-H20'/1
        WRITE(6,917)D5MIN
917 FORMAT(2X,'D5MIN*,8X,F6.4,18X,'MINIMUM PM5 UNCER. DUE TO ZERO ',
    1* SHIFT',23X, IN.-H20'/1
        WRITE(6,918) D97MAX
918 FORMAT(2X,'D97MAX',7X,F6.4,18X,'MAXIMUM PM97 UNCER.',
    1' DUE TO CALIBRATION CHECK',I6X,'IN.-H20'/)
        WRITE (6,919) D5MAX
919 FORMAT(2X,'D5MAX',8X,F6.4,18X,'MAXIMUM PM5 UNCER.',
    1' DUE TO CALIBRATION CHECK', 17X,'IN.-H20:/)
        WRITE (6,904) DQRADP
904 FORMAT(2X,'DQRADP',6X,F5.1,20X,'RADIATION ENERGY TRANSFER',35X,
    1 %%/%
        WRITE(6,907) DWIND
907 FORMAT(2X,'DWIND', 8X,F4.2,20X,'INDICATED WATTMETER READING',33X,
    1 'WATTS*/1
        WRITE(6,908) DENZRP
908 FORMAT (2X,'DENZRP', 6X,F5.1, 20X,"STARTING ENTHALPY THICKNESS ESTIMA
    1TE*, 24X,*%*/)
        WRITE(6,925) A97,B97,C97,D97,E97,A5,B5,C5,D5,E5
```

```
    925 FORMAT:///25X'TRANSDUCER CONSTANTS'//17X'A'11X'B'11X'C'11X'O'11X,
        1'E'/3X'PM97'3X,5(2XF10.7!/3X'PM5'4X,5(2XF10.7))
        WRITE(6,3)
C
C
    500 CONTINUE
        STOP
        END
C
C
        FUNCTION TCALIB(TMV)
C
C THIS CONVERSION USES A CURVE FIT OF THE MV-F TABLES AND
C A CORRECTION DUE TO the CALIbration by whitten. SEE Files.
C
            TMVV =-2220.703 + 781.25*SQRT(7.950782*0.256*TMV)
            TCALIB=TMVV + 49.97-12.6E-04*TMVV - 32.0E-06*TMVV*TMVV
        RETURN
        END
C
C
C
C CALIBRATION FOR PM-94
    FUNCTION PCALI{PMV,A97,897,C 97,D97,E97)
    IF(PMV.LE.4.64) PCALI=A97*PMV
    IF(PMV.GT.4.64.AND.PMV.LE.14.28) PCAL1=897 + C97*PMV
    IF(PMV.GT.14.28) PCALI=D97 + E97#PMV
    RETURN
    ENO
C
C
C
C
    FUNCTION PCAL2(PMV,A5,B5,C5,05,E5)
C CALIBRATION FOR PM-5
    IF(PMV.LT.1.211) PCAL2=A5*PMV
    IF(PMV.GT.1.211.AND.PMV.LE.7.626) PCAL2= 85 + C5*PMV
    IF(PMV.GT.7.626) PCAL2= D5 + E5*PMV
    RETURN
    END
C
C
C
    BLOCK DATA
C
    REAL KCOND(24),KCONV(24),KFLOW(24),KFUDGE(24),KPROP,KS(24),
    1 KV(48),KW,MA,MDOT(24),MV,NPWR,ISO(24)
c
    INTEGER CMFLAG,DATE,ENBLFG,RUN,TITLE(18)
C
    COMMON /A/ AR,BETA,B1T1,B3T3,CMFLAG,COEF1,COEF23,CP,DATE,DEN,
    ENBLFG,E1,E2,EMISS,EPS,ER1,ER2,ER3,F12,F13,F22,I,INSTOT,J,KCOND,
        KCONV,KFLOW,KFUDGE,KPROP,KS,KV,KW,KLM,MA, MDOT, MV,NPWR,NPLATE,
        NSTAT,P,PBAR,PRQTA, OELP ,PVAP,Q1,Q2,Q3,QHEAT,
        QHEATA, QHTA,QLOSS,RA,RCF,REPS,RHOA,RHOH,RHOL,RHOV,RHOZRO,RUN,
        RH1,RH2,RH3,RHUM, RM,T,TAMB,TBASE,TCOV,TGAS,TROT,
        TROTA,T1,T2,T3,VAPH,VAPL,VEPS,WCORR,HSCALE,WSTDI,
    ISO,REENCP(24),ENTHCP(24),ENTHZR,
```

```
    AREA(24), BB(24),CFHT(24),CM(24), CONLAT(24), DELH(25),
    DELTAT(24), DUDX(48),DUDXS(24),ECONV(24),ED(24),ENDEN(24),
        ENNET(24),ED(24),ENTH(24),ET(24),EU(24),F(24),GS(24),H(24),
        HTFRAC(24),HTRANS(24), INSTK(48),MASSK(24),PK(48),
        PROT(24),PROTAB(24),PSAT (9),PSTAT(48), QCOND(24),
        QRAD(24),REENTH(24),REENW(25),RHOG(48),
        RHOSAT(9),ST(24), STCP(24),TAVG(24),TEMP(9),TIME60(48),
        TO(24),TOEFF(24),TD(24),TITLE,TT(24),TU(24),V(48),
        VISCG(48),VISCGS(24),UG(24),VZERR(24),WACT(24),WIND(24),
        WNET(24),WSTD(24),X(48),.XS(24),XSTCP(24), XMDOT(24)
COMMON /B/ DCMP,DDELP,DPAMB,DP5HI,DP5LO,DP97HI,DP97LO,DQRADP,
            DTEMPA,DTEMPP,DTBASE,DTT,DTROT,DTGAS,DWIND,DXX,F2,F3,F4,
            F6,F7,F8,DEL,DDUDXS(24),DISO(24),DENZRP,
            DB(24),DBND(24), DCM(24),DDL2(24),DDL2ND(24), DF(24),
            DFND(24),DHTF(24),DMDOT(24),DMDOTN(24),DPSTAT(48),
            DQRAD(24),DRE(24),DREND(24),DRHOG(24),DST(24),
            DSTND(24),DUG(24), DUGND(24),DV(48),DDUDX(48),
            CLR1(24),CLR2(24),CLR3(24),CLR4(24),CSR1(24),
                    CSR2(24),CSR3(24),DVISCG(24),DEL2,DMUP,MNPLAT,
                        D97MIN,D97MAX,D5MIN,D5MAX,PTOTAL,NPORT,MNPORT
```

the follóing are fixed bata fills:
dATA CONLAT/
40.0007,0.0003,0.0,0.001,0.0018,0.0018,0.0004,0.0021,0.0015,0.0014, $50.0016,0.0006,0.0006,0.0016,0.001,0.0008,0.001,0.001,0.0,0.0007$, $60.0011,0.0010,0.0,0.01$
DATA KCONV/
30.020,0.020,
$40.025,0.020,0.018,0.035,0.040,0.026,0.024,0.035,0.032,0.039,0.032$,
$50.024,0.016,0.014,0.018,0.020,0.019,0.015,0.017,0.013,0.030,0.015 /$ DATA KCOND/
30.00688,0.00375,
$40.00337,0.00328,0.00194,0.00194,0.00386,0.00202,0.00235,0.00264$, $50.00267,0.00243,0.00298,0.00233,0.00206,0.00231,0.00168,0.00282$, $60.00405,0.00298,0.00265,0.00168,0.00309,0.003381$
DATA KFUDGE/
$4-0.010,0.024,0.0,-0.0025,0.0080,0.004,0.004,-0.0 n 8,0.008,0.0,0.008$
$5,0.008,0.0,0.012,0.006,0.016,0.010,0.016,0.016,0.005,0.016,0.010$, 60.010,0.008/

DATA KFLOW/
31.0204,1.0101,
$41.0309,1.0417,1.0309,1.0309,1.0183,1.0493,1.0225,1.0449,1.0331$, 51.0428,1.0504,1.0373,1.0526,1.0152,1.0341,1.0331,1.0081,1.0471, $61.0363,1.0428,1.0018,1.0331 /$
$31.033,1.045,1.026,1.041,1.047,1.032,1.03,1.062,1.06,1.062$,
$41.05,1.058,1.059,1.07,1.062,1.035,1.057,1.052,1.04,1.061$,
$51.051,1.05,1.04,1.043 /$
DATA $\times 1$
$41.969,3.953,5.953,7.961,9.969,11.953,13.937$,
$515.945,17.953,19.922,21.938,23.954,25.962,27.962,29.978,31.939$,
$633.955,35.955,37.971,39.987,41.963,43.963,45.963,47.979,49.979$,
$751.979,53.995,55.971,57.971,59.955,61.979,63.971,65.979,67.963$,
869.971,71.979,73.963,75.939,77.947,79.939,81.931,83.962,85.931,
$987.915,89.939,91.931,93.947,96.0 /$
DATA TEMP/
$140.0,50.0,60.0,70.0,80.0,90.0,100.0,110.0,120.01$
DATA PSAT/
$117.53,25.65,36.90,52.20,73.00,100.40,136.50,183.60$
2.243.70/

DATA RHOSAT/

```
10.000409,0.000587,0.000830,0.001153,
\(20.001580,0.002139,0.002853,0.003770,0.0049201\)
    DATA F2,F3,F4,F6,F7,F8/0.752,-0.5,0.12567,0.13091,-0.067,0.14960/
    DATA CLR1/
\(13.8823,4.3784,4.9672,5.3868,6.0977,7.2071,6.7488,1.224 \mathrm{E} 01,4.9783\),
\(26.4093,2.1603,2.6746,3.5441,4.6305,4.5954,5.4947,4.1666,6.2882\),
32.6813,5.3851,2.391,1.0441,1.4687,3.3328/
    DATA CLR2/
\(1-7.4872 \mathrm{E}-01,-4.5701 \mathrm{E}-01,-8.613 \mathrm{E}-01,-1.6336,-1.6978,-1.9426,-1.4491\)
\(2,-2.4532,-6.7284 \mathrm{E}-01,-1.2452,-1.9676 \mathrm{E}-01,-4.5878 \mathrm{E}-01,-8.924 \mathrm{E}-01\),
3-1.44,-9.2705E-01,-9.9417E-01,-6.3879E-01,-1.5029,-3.6441E-D1,
\(4-8.4925 \mathrm{E}-01,-1.7758 \mathrm{E}-01,-1.3509 \mathrm{E}-01,-1.4061 \mathrm{E}-\mathrm{n} 2,-8.1687 \mathrm{E}-01 /\)
    DATA CLR3
\(15.6479 \mathrm{E}-02,7.3789 \mathrm{E}-03,3.7527 \mathrm{E}-02,1.5384 \mathrm{E}-01,1.5879 \mathrm{E}-01,1.8029 \mathrm{E}-01\)
\(2,1.1898 \mathrm{E}-01,2.0284 \mathrm{E}-01,2.9397 \mathrm{E}-02,1.0067 \mathrm{E}-01,-6.4155 \mathrm{E}=03,3.7478 \mathrm{E}-0\)
\(32,9.0667 \mathrm{E}-02,1.4625 \mathrm{E}-01,6.6932 \mathrm{E}-02,6.2717 \mathrm{E}-02,2.7366 \mathrm{E}-02,1.3727 \mathrm{E}-\)
401.1.1157E-02,4.1191E-02,-1.1368E-02,-7.5722E-03,-1.1172E-02,
57.9734E-02/
    DATA CER4/
\(1-1.3375 \mathrm{E}-03,7.5566 \mathrm{E}-04,6.5083 \mathrm{E}-04,-4.3438 \mathrm{E}-03,-4.6469 \mathrm{E}-03,-5.3748 \mathrm{E}\)
\(2-03,-3.3093 \mathrm{E}-03,-5.5582 \mathrm{E}-03,-2.5595 \mathrm{E}-05,-2.7 \mathrm{E}-03,1.1122 \mathrm{E}-03,-8.737\)
35E-04,-2.741E-03,-4.4226E-03,-1.1244E-03,-8.9969E-04, 1.8686E-04,
\(4-3.9184 \mathrm{E}-03,3.5851 \mathrm{E}-04,-1.7090 \mathrm{E}-04,1.1929 \mathrm{E}-03,7.9497 \mathrm{E}-04,5.1672 \mathrm{E}-0\)
54,-2.2502E-03/
    DATA GSR1/
    11.0849,. 8777,1.0304,.9367,.7106,.9667,.9716,.9882,.8258,1.0704,
    21.0269,1.0342,.9988,1.1026,1.1040,1.0583,.9891,1.0849,1.1065,
    31.1186,1.0742,1.0511,1.0978,1.1414/
    DATA CSR2/
    \(1-1.0745,-.9978,-1.5909,-2.457,-1.0452,-1.4233,-2.5170,-1.2082\),
    \(2-1.1742,-2.2648,-1.7785,-.4761,-2.101,-.7692,-.1792,-.165\),
    \(3-.1087,-.766, .332,-2.1763,-.003711,-.6796,-1.8706, .007071 /\)
    - DATA CSR3/
    \(1.5258,1.9055, .5729,1.9745,4,1328,1.4707,1.2515,1.4248,2.553, .8969\),
    21.536,1.329,1.6028,.5108,.3398,1.0971,1.6262,.701,.5076,.3316,
    30.8914,.7397,.5148,.07979/
c the folloning procedure calculates uncertainty intervals by the
C PROCEDURE OF KLINE AND MCLINTOCK. THE UNCERTAINTY INTERVALS FOR
C THE MEASURED (INDEPENDENT) VARIABLES ARE:
C DCMP : \% DF ROTOMETER READING
    DDELP : MANOMETER (INCHES-H2O)
    DPAMB : AMBIENT PRESSURE (PSF)
    OPSLO :TRANSDUCER CALIBRATION-PM5 FOR P \(<1.0\) "H20 (\%)
    OPSHI :TRANSDUCER CALIBRATION-PM5 FOR P>1.0 "H2O (\%)
    DP97LO :TRANSDUCER CALIBRATION-PM97 FOR P<0.05 "H20 (\%)
    DP97HI :TRANSDUCER CALIBRATION-PM97 FOR P>0.05 "H20 (\%)
        MINIMUM AND MAXIMUM LIMITS ARE ALSO SET ON THE
        TRANSDUCER UNCERTAINTIES
    DQRADP : \% OF RADIATION ENERGY IRANSFER
    DTEMPA : TEMPERATURE (F) - ACTIVE'RUNS
    DTEMPP : TEMPERATURE (F) - PASSIVE RUNS
```



```
    IF(DPRES.LT.DSMIN) DPRES= D5MIN
    IF(DPRES.GT.DSMAX) DPRES=D5MAX
C
    5061 DD 305 J=1,NPORT
C
C STATIC PRESSURE UNCERTAINTY INTERVALS
C
    DPSTAT(J)=DDELPP
    IF(INSTK(J).NE.1) GO TO 5060
    IF(PSTAT(J).LT.0.05) DPSTAT(J)=PSTAT(J)*DP97LO
    [F(PSTAT(J).GE.0.05) DPSTAT(J)=PSTAT(J)*DP97HI
    IF(DPSTAT(J).LT.097MIN) DPSTAT(J)=D97MIN
    IF(DPSTAT(J).GT.D97MAX) DPSTAT(J)=D97MAX
    5060 IF(INSTK(J).NE.2) GO TO 305
        IF(PSTAT(J).LT.l.0) DPSTAT(J)=PSTAT(J)*DP5LD
        IF(PSTAT(J).GE.1.0) DPSTAT(J)=PSTAT(J)*DP5HI
        IF(DPSTAT(J).LT.DSMIN) DPSTAT(J)=DSMIN
        IF(DPSTAT(J).GT.O5MAX) DPSTAT(J)=D5MAX
    305 CONTINUE
C
C TOTAL PRESSURE UNCERTAINTY INTERVAL
    DPTOT=SQRT(OPRES##2 + DPSTAT(2)*#2)
C
C TEMPERATURE UNCERTAINTIES - ACTIVE OR PASSIVE RUN
C
    DTEMP=DTEMPA
        DTBASE=DTEMPA
        DTT=DTEMPA
        OTROT=DTEMPA
        DTGAS=DTEMPA
        IF(WIND(I).NE.0.0) GD TU 720
        DTEMP=DTEMPP
        DTBASE=DTEMPP
        DTT=OTEMPP
        OTROT=DTEMPP
        DTGAS=DTEMPP
    720 CONTINUE
C
C GENERALLY USED CONSTANTS
C
    XMDOT(I)=ABS(MDOT(I)).
    AI=KCOND(I)/30.
    IF(XMDOT(I).LE.0.0044) Al=A1 + CONLAT(I)*(1.-XMDOT(I)/0.0044)
    IF(XMOOT(I).LE.0.0002) Al=Al + 0.015*12./3600.
    A2=0.0
    IF(XMDOT(I).LE.0.0044) A2=-CONLAT(I)/0.0044
    Cl=1.+30.*XMDOT(I)*KCONV(I)
    C2=1/(64.4*778.)
    C3=2116/29.96
    C5=BETA*KW/(1055.*.5*1.023)
    DEL2=DEL/2.
C
C XMDDT(I) UNCERTAINTY
C
IF(CM(I).EQ.O.0) GO TO 150
    IF(PRDT(I).LE*-0.1) MI=KFLDW(I)*2.01258
    IF(PROT(I).GT.-0.1) MI={KFLOW(I)+KFUDGE(I))*2.01258
    M2=SQRT((PBAR+PROT (I)/25.4)*2116.129.96/(RM*TROTA*0.075))
    M3=WSTD(I)
    IF(CMFLAG.EQ.1) M4=.075/60.*(F6+F7*F8*COS(F8*(CM(1)-2.1))
```

```
            IF(CMFLAG.EQ.2) M4=.075/60.*(F2+F3*F4*COS(F4*CM(1)))
            IF(CMFLAG.EQ.3.AND.MASSKII).EQ.1) M4=.075/60.*(FG+F7*F8*
    1 COS(F8*(CM(I)-2.))}
        IF(CMFLAG.EQ.3.AND.MASSK(I).EQ.2) M4=.075/60.*(F2+F3*F4*
    1 COS(F4*CM(I)))
        X1=DCM(1)音1 #M2#M4
    C6=M1*M3*C3/(2*M2*0.075*RM*TROTA)
    X2 =DPBAR#C6
    X3=-DTROT*C6*(PBAR+PROT(I)/25.4)/TROTA
C
    DMDOT (I)=SQRT(X1** 2+x 2**2+x3**2)
    DMDOTN(I)=DNDOT(I.}/XMDOT(I)*100.
C
    150 IF {CM(I).EQ.O.01 DMDOT(I)=0.0
    IF (CMII).EQ.O.0) DMDOTN(I)=0.0
C
    II=2*I-1
C
C
C DTAVG UNCERTAINTY
C
    DTAVG=SQRT(11.*DTEMP**2)/5.
C
    IF(ENBLFG.EQ.1) GO TO 105
    IF(I.NE.1) GO TO 215
C
C DUG AND DUDX UNCERTAINTY
C
C
    DO 210 M=1,NPORT
C
    210 CONTINUE
C
    00 211 M=2,MNPORT
    N=12.*(V(M+1)-V(M-1))
    D=X(M+1)-X(M-1)
    DXl=DV(M+1)*12./D
    D\times2=-DV(M-1)*12.10
    0x3=DXX*12.*N/D**2
C
    ODUDX(M)=SQRT(DX1**2+DX2**2*2.*DX3**2)
C
    211 CONTINUE
C
    N=12.*(V(2)-V(1))
    D=x(2)-X(1)
    DXIL=DV(2)*12.10
    DX12=-DV(1)*12.10
    DX13=0XX*12.*N/D**2
C
    DDUDXS(1)=SQRT(OX11**2+DX12**2+2**DX13**2)
C
    DUG(1)=DV(I)
```

```
C
    DO 212 M=2,NPLATE
    .MM=2*M-1
            DDUDXS (M)=ODUDX (MM)
            DUG(M)=DV(MM)
            DUGND(M)=DUG(M)/UG(M)*100.
    212 CONTINUE
    215 CONTINUE
C
C
C STANTON. OR HTFRAC UNCERTAINTY - FOLLOWING MODES ARE CALCULATEO AT GIVE
C STATEMENT NUMBER: BLOH-100, SUCK-200, IMPERMEABLE-300, SUCK ENBAL-400,
C BLOW ENBAL-500
C
    105 IF(CM(I).EQ.O.O) GO TO 300
        IF(PROT{I).LE.-0.1) GG TO 200
C
    100 IF(ENBLFG.EQ.I) GO TO 500
C
C STANTON NUMBER - BLOWING
C
    N=ENDEN(I)-QRAD(1)-A1*(TAVG(I)-TBASE)-XMDOT(I)*(TAVG(I)-TT(I))*
        1 CP*CI
            D={CP*(TT(I)+{TAVG(I)-TT(I))*CI-TGAS)-C2*UG(I)**2)*
            1 UG(I)*RHOG(II)
            BI=DWIND*C5/D
            B2=-DQRAD(I)/0
            B3=DTAVG*(-1/0*(A1+XMDOT(I)*CP*CI)+N/D**2*(UG(I)*RHOG(II)*CP*C1))
            B4=DTBASE*A1/0
            B5=DTT*(1/D*XMOOT(I)*CP*C1+N/D**2*CP*UG(I)*RHOG(II)*30.*XMDOT(I)*
            1 KCONV(II)
            B6=0TGAS*(N/D**2*(CP*UG(I)*RHOG(II) + D/(TGAS+460.)))
            B7=0MDOT(I)*(1/D*((TBASE-TAVG(I))*A2-(TAVG(I)-TT(I))*CP*(I.t
            1 60.*XMDOT(I)*KCCNV(I))|-N/D**2*CP*UG(I)*RHOG(II)*30.*KCONV(I)*
            2 (TAVG(I)-TT(I)))
            B8=DUG(I)*{N/D**2#{2.*C2*UG(I)**2*RHOG(II)-D/UG(I))}
            B9=DPBAR*(-N/D**2*C3*D/(RHOG(II)*RM*(TGAS+460.)))
C
        DST{I)=SQRT(B1**2+B2** 2+B3**2+B4**2+B5** 2+B6**2+B7**2+B8**2+
        1 B9**2)
        DSTND(I)=DST{I}/ST{I)*100.
C
C UNCERTAINTY IN ISO
C
    XI1=DTT*CP*(1.-CI)
    XI 2=DTAVG*CP*C 1
    XI3=-DTGAS*CP
    XI4=-DUG(I)*2.*C2*UG(I)
    XI5=DMDOT(I)*CP*(TAVG(I)-TT(I))*30.*KCONV(I)
```



```
C
    GOTO 600
C
C STANTON NUMBER - IMPERMEABLE
300N=ENDEN(I)-QRAD(I)-A1*(TAVG(I)-TBASE)
    O={CP*(TAVG(I)-TGAS)-C2*UG(I)*UG(I))*UG(I)*RHOG{II)
    B1=OWIND*C5/D
    B2=-DQRAD(I)/D
```

```
    B3=-DTAVG*(A1/D+N/D**2*CP*UG(I)*RHOG(II))
    B4=0T8ASE*A1/D
    B6=DTGAS*(N/D**2*(CP*UG(I)*RHOG(II) + D/{TGAS+460.)))
    88=DUG(I) ᄒ(N/0**2*(2.*C2*UG(I)**2*RHOG(II)-D/UG(I)])
    B9=DPBAR*(-N/D**2*C3*D/(RHOG(II)*RM*(TGAS+460.)))
C
    DST(I)=SQRT(B1**2+B2**2+B 3**2*B4**2+B6**2+B8**2+B9**2)
    DSTND(I)=DST(I)/ST(I)*100.
C
C UNCERTAINTY IN ISO
C
    XI1=DTAVG*CP
    XI2=-DTGAS*CP
    XI3*-DUG(I)*2.*C2*UG(I)
    DISO(I)=SQRT(XII**2+XI2**2*XI 3**2)
C
C
C
    200 IFIENBLFG.EQ.1) GO TO 400
        N=ENDEN(I)-QRAD(I)-AI*(TAVG(I)-TBASE)-0.0264*XMDOT(I)新IND(I)*CP
        D=UG(I)*RHOG{II}*{CP*{TAVG{I}-0.0044*WIND(I)-TGAS)-C2*UG(I)*UG(I))
        B1=DWIND*(1/D辛(C5*.0264*XMDOT(I)*CP)+N/D**2*CP*UG(I)*RHOG(II)
    1 *0.0044)
        B2=-DQRAD(I)/D
        B3=-DTAVG*(1/D*A1+N/D**2*CP*UG(I)*RHOG(II))
        B4=DTBASE*A1/D
        B6=DTGAS*(N/D**2*(CP*UG(I)*RHOG(II) + D/(TGGAS+460.)1)
        B7=DMDOT(I)*(1/D*((TBASE-TAVG(I))*A2-.0264*WIND(I)*CP))
        B8=DUG{I)*{N/D*市2*(2**C2*UG(I)**2*RHOG(II)-D/UG(I.)))
        B9=DPBAR*{-N/D**2*C3*D/(RHOG(II }*RM*{TGAS+460.) )
        DST(I)=SQRT(B1**2*B2**2+B3**2+B4**2+B6**2+B7**2+B8**2+89**2)
        DSTND(I)=DST(I)/ST(I)*100.
C
C UNCERTAINTY IN ISO
C
    XIl=DTAVG*CP
    XI 2=-DTGAS*CP
    XI 3=-DUG(I)*2.*C2*UG(I)
    XI4=-DWIND*CP*.0044
    DISO(I)=SQRT(XI 1*&2+XI2**2+XI3**2+XI4**2)
C
    GO TO 600
C
C HTFRAC - SUCKING ENERGY RALANCE
C
    400 N=XMDOT(I)*CP*(TAVG(I)*.022*WIND(I)-TGAS)*100.
    D=ENOEN(I)-QRAD(I)-A1*(TAVG(I)-TBASE)
    B1=DNIND*{(-N/D**2)*C5+.022*XMDOT(I)*CP*100./D)
    B2=DQRAD(I)*N/D**2
    B3=OTAVG* (A1*N/D**2+XMDOT(II)*CP*100./0)
    84=DTBASE*(-A1*N/D**2)
    B7=DMDOT(I)*{N/{D*XMDOT(I)}+N/D**2*(YAVG(I}-TBASE)*A2)
    B6 =-DTGAS*1./D*XMDOT(1)*CP*100.
C
    DHTF(I)=SQRT(B1**2*B2**2+B3**2+B4**2+B6**2+B7**2)
    GO TO 800
C
```

```
C HTFRAC - BLOHING ENERGY EALANCE
C
    500 NN=XMDOT(I)*CP*C1*100.
    N=NN*(TT(I)-TAVG(I))
    D=ENDEN(I)-QRAD(I)-A1*(TAVG{I)-TBASE).
    Bl=DWIND*(-N/D**2)*C5
    B2=DQRAD(I)*N/D**2
    B3=DTAVG*(1/D*(-NN)+N/D**2*A1)
    B4=DTBASE*(-AI*N/D**2)
    B7=DMDOT(I)*(1/0*(N/XMDOT(I)+XMDOT(1)*(TT(I)-TAVG(I))*CP*30.*
    1 KCONV(II)+N/D**2*(TAVG(I)-TBASE)*A2)
        B10=DTT*(1/D*NN)
C
    DHTF(I)=SQRT(B1##2+B2**2+B3*#2+B4*#2+B7**2+B10**2)
    GO TO 800
    600 CONT INUE
C
C RHOG(II) UNCERTAINTY
C
    N=C3*PBAR+5.2*PSTAT(II)
    D=RM* {TGAS +460.}
    R1=DPBAR*C3*1/D
    R2=DPSTAT(II)*5.2*1/0
    R3=-DTGAS*N/D**2*RM
C
    DRHOG(I)=SQRT(R1**2+R2**2+R3**2)
C
C B UNCERTAINTY
C
    IF(CM(I).EQ.0.0) GO TO 151
    BB1=OMDOT(I)*1/(UGG(I)*RHOG(II)*ST(I))
    BB2=-DUG(I)*BB(I)/UG(I)
    BB3=-ORHOG(I)*BB(I)/RHOG(II)
    BB4=-DST(I)*BB(I)/ST(I)
    DB(I)=SQRT(BB1**2+BB2**2+BB3**2+BB4**2)
    DBND(I)=DB(I)/BB(I)*100.
C
C
C F UNCERTAINTY
C
    FF1=DMDOT(I)*1/(UG(I)*RHOG(II))
    FF2=-DUG(I)*F(I)/UG(I)
    FF3=-DRHOG(I)*F(I)/RHOG(II)
C
    DF(I)=SQRT(FF1*#2+FF2**2+FF3**2)
    DFND(I)=0F(I)/ABS(F{I})*100.
C
    151 IF(CM(I).NE.0.0) GO TO 152
        DB(I)=0.0
        OBND(I)=0.0
        DF(I)=0.0
        DFND(I)=0.0
    152 CONTINUE
C
C
C VISCGS UNCERTAINTY
C
    DMU=DMUP*VISCG(II)*RHOG(III/100.
    N=11.*RM*TGAS + .0175*RM*TGAS**2
    D=1.E06*(C3*PBAR + 5.2*PSTAT(II))
```

```
    V1=-DPBAR*N/D**2*C3*1.E06
    V2=-DPSTAT(II)*N/D**2*5.2*1.EO6
    V3=DTGAS*1/0*{11.*RM* . 35*RM*TGAS}
    V4=DMU*1/RHOG(II)
C
C
    120 CONT INUE
    800 RETURN
    END
C
C
C
C
C
C
C
C
    1
    REAL MI,M2,M3,M4,N,NN,SUM(24),OSUM(24)
    INTEGER CMFLAG,OATE,ENBLFG,RUN,TITLE(IB)
    COMMON /A/ AR,BETA,B1T1,B3T3,CMFLAG,COEF1,COEF23,CP,DATE,DEN,
    ENBLFG;E1,E2,EMISS,EPS,ER1,ER2,ER3,F12,F13,F22,I,INSTOT,J,KCOND,
        KCONV,KFLOW,KFUDGE,KPROP,KS,KV,KW,KLM,MA,MDOT,MV,NPWR,NPLATE,
        NSTAT,P,PBAR,PROTA, DELP ,PVAP,Q1,Q2,Q3,QHEAT,
        QHEATA,QHTA,QLOSS,RA,RCF,REPS,RHOA,RHOH,RHOL,RHOV,RHOZRO,RUN,
        RH1, RH2,RH3,RHUM, RM,T,TAMB, TBASE,TCOV,TGAS,TROT,
        TROTA,T1,T2,T3,VAPH,VAPL,VEPS,WCORR,WSCALE,WSTDI,
    ISO,REENCP(24), ENTHCP(24), ENTHZR,
        AREA(24), BB(24),CFHT(24),CM(24),CONLAT(24),DELH(25),
        DELTAT(24), DUDX(48),DUDXS(24), ECONV (24), ED(24), ENDEN(24),
        ENNET(24),EO(24), ENTH(24),ET(24), EU(24),F(24),GS(24),H(24),
        HTFRAC(24), HTRANS (24), INSTK(48),MASSK(24),PK(48),
        PROT (24), PROTAB(24),PSAT (9),PSTAT(48),QCOND(24),
        QRAD(24),REENTH(24),REENW(25),RHOG(48),
        RHOSAT(9),ST(24),STCP(24),TAVG(24),TEMP(9),TIME60(48),
        TO(24), TOEFF(24), TD(24),TITLE,TT(24),TU(24),V(48),
        VISCG(48),VISCGS(24), UG(24),VZERO(24),WACT(24),WIND(24),
        WNET(24),WSTD(24),X(48),XS(24),XSTCP(24),XMDOT(24)
    COMMON /B/ DCMP,DDELP,DPAMB,DP5HI,DP5LO,DP97HI,DP97LO,DQRADP,
            DTEMPA,DTEMPP,DTBASE, DTT,DTROT,DTGAS,DWIND,DXX,F2,F3,F4,
                F6,F7,F8,DEL,ODUDXS(24),DISO(24),DENZRP,
                DB(24),DBND{24),DCM(24),DDL2(24),DDL2ND(24),DF(24),
                DFNO(24), DHTF(24),DMDOT(24), DMDOTN(24),DPSTAT(48),
                DQRAO(24), DRE(24),DREND(24),DRHOG(24),DST(24),
                DSTND(24), DUG(24), DUGND(24),DV(49),DDUDX(48),
                CLR1(24),CLR2(24),CLR3(24),CLR4(24),CSR1(24).
                CSR2(24), CSR3(24), DVISCG(24), DEL2,DMUP,MNPLAT,
                        D97MIN, D97MAX,D5MIN,D5MAX, PTOTAL,NPORT, MNPORT
    DENZR=DENZRP*ENTHZR/100.
C
C UNCERTAINTY CALCULATION FOR ENTH AND REENTH
C
C
C SUMIII IS UNDEFINED, BY SET TO ZERO HERE FOR COMPUTATIDNAL EASE.
    SUM(1)=0.0
    DSUM(1)=0.0
```

```
    START=ENTHZR*UG(1)*ISO(1)
    DSTART=SQRT((DENZR*UG(1)*ISO(1))**2 +(DUG(1)*ENTHZR*ISO(1))**2
    1 + (DISO(I)*ENTHZR*UG(1))**2)
```

C
DO $100 \quad \mathrm{I}=2$,NPLATE
$\operatorname{SUM}(\mathrm{I})=\operatorname{SUM}(\mathrm{I}-1)+1.13 . * \operatorname{UG}(\mathrm{I}-1) * \operatorname{ISD}(\mathrm{I}-1) *(\mathrm{ST}(\mathrm{I}-1)+\mathrm{F}(\mathrm{I}-1))$
$\operatorname{DSUM}(I)=\operatorname{SQRT}(D S U M(I-1) * \operatorname{DUM}(I-1)+1.19 *(\operatorname{DUG}(I-1) * I S O(I-1) *$
$1(S T(I-1)+F(I-1))) \neq * 2+10 I S O(I-1) * U G(I-1) *(S T(I-1)+F(I-1))) * \neq 2$
$2+\{\operatorname{ISO}(I-1) * U G(I-1)\} * 2 * 2 \cdot \operatorname{DST}(I-1) * D S T(I-1)+D F(I-1) * D F(I-1) 1)\}$

100 CONTINUE

C
D1=DENZR
D5=DST(1)/6.
D6=DF(1)/6.
C
c
DDL2(1)=SQRT(D1*D1+D5*D5+06*06)
DDL2ND $(1)=$ DDL2 $2(1) / E N T H(1) * 100$.
R1=DENZR*UG(1)/VISCGS(1)
R3=-DVISCG(1)/(VISCGS(1)*VISCGS(I))*(ENTHZR*UG(1) +
1 1./6.*UG(1)*(ST(1)+F(1))
R4=DUG(1)*(1.16.*(ST(1)+F(1))/VISCGS(1)+ENTHZR/VISCGS(1))
R6 $=$ DST(1) *UG(1)/(6.*VISCGS(1))
$R 7=D F(1) * U G(1) /(6 . * V I S C G S(1))$
C
DRE(1) $=$ SQRT (R1*R1+R3*R3*R4*R4+R6*R6+R7*R7)
DREND(1)=DRE(1)/REENTH(1)*100.
C
DO $110 \mathrm{I}=2$,NPLATE
Dl=DSTART/(UG(I)*ISO(t))
02=DSUM(I)/(UG(I)*ISO(I))
D3 $3=-\operatorname{DUG}(I) *(\operatorname{SUM}(I)+\operatorname{START}) /(\operatorname{UG}(I) * U G(I) * I S O(I))$
D4=-DISO(I)*(SUM(I)+START)/(UG(I)*ISO(I)*ISO(I))
D5=DST(I)/6.
D6=DF(I)/6.
C
DDL2(I)=SQRT(D1*D1+D2*D2+D3*D3+D4*D4+D5*D5+D6*D6)
DDL2ND(I)=DDL2(I)/ENTH(I)*100.
C
R1=DSTART/\{VISCGS(I)*ISO(I)
R2=OSUM(I)/(VISCGS(I)
R3=-DVISCG(I)/(VISCGS(I)*VISCGS(I))*((START+SUM(I))/ISO(I) +
(1.16.*UG(I)*(ST(I)+F\{I\}))

R4=DUG(I)*1./6.*(ST(I)+F(I))/VISCGS(I)
R5 $=-$ DISO(I)/(VISCGS(I)*ISOII)*ISO(I))*(START+SUM(I))
R6 $=$ DST(I) $*$ UG(I)/(6.*VISCGS(I))
$R 7=D F(I) * U G(I) /(6 . * V I S C G S(I))$
C
$D R E(I)=S Q R T(R 1 * R 1+R 2 * R 2+R 3 * R 3+R 4 * R 4+R 5 * R 5+R 6 * R 6+R 7 * R 7)$
DREND(I)=DRE(I)/REENTH(I)*100.
C
110 CONTINUE
800 RETURN
END
C
C
temperature profile progran : the raw temperature profile data are util.ized to calculate temperature versus distance in varicus dimens AND NGN-DI MEASICNAL COORGIAATES. ThESE PRGFILES ARE INTEGRATED,ALJ hith Tre VELOCITY RESULTS CALCLLATED BY ANCTHER PROGRAM, TO ¢ETAIN ENTHALPY THICKNESS ANC THUS ENTHALPY THICKNESS REYNOLDS NO. tre latest compilation of this program was 120169.

COMMON AREA(60), AREAD (60), AREAM(60),CF2(10), OP (60), DDELT1(10), DDELT2(10), DELN(10), DELMCM(10), DELTA2(10), DFV(10), UKV(20), DHV(10 , ,DIMT (60), DIMYH (60), $\operatorname{CIMYM}(60), \operatorname{DISPL}(60)$, DREMCM(10), DUV. $(10,60)$, $\operatorname{DUUG}(10,60), H(1 C)$, IS, $K E Y R E F(10), N T P T S(10), N V P T S(10)$, PBAR(10), PR(10), PSTAT(10), REDEL (24), REENTH(10), REMOM(10), RC(10), RHUM(10), ST(10), STN (24), T(60), TAMB(10), TR(60), DREENT (10), TEAR (60), TO (10), TEMP (60), TGAST(10), TIME60(10,60), TITLE(18), TMV(10,60), TC(10), TPLATE(10), TPLUS (60), TU(10), TX(10), U(60$), \operatorname{UINFT}(10), \operatorname{UINFV(10),~UPLUS~}(60), \operatorname{UUGG}(10,60)$, LUGNEW(60), UV $(10,60), \operatorname{U2}(60), \operatorname{VOELT1}(10), \operatorname{VDELT} 2(10), V F(10)$, $\operatorname{VH}(10), \operatorname{VK}(10), \operatorname{VMDOT}(10), \operatorname{VREMCM}(10), \operatorname{VREX}(10), \operatorname{VVZERO}(10), V X(10)$,
VYCEL $(10,60), X(10), Y P L U S(60), Y R A W T(10,60), Y T M P(60), Y V E L(10,60)$, UTAU(60), DELH(10), IBAR, PERI (24), RE1(24), CP (60), ENTH 24)
CGMMON /A/ DUUGNW(60), DUVNW(60), RHOG(60), VISCO(60), DCF2(10), CDIMT (60), DYPLUS (60), DUPLUS (60), DTPLUS (60), IDELH, DDELH(10), $\mathrm{Z}(60), \mathrm{CZ}(60), \mathrm{Cl}, \mathrm{RM}, \mathrm{N}, \mathrm{PS} A T$, RHOSAT, TEMPS , UST (20), DAREA (60), DDIMYH (60), DYPLND (60), DUPLND (60), UTPLND (60), DYNC (60), CUUGND (60), DTND (60), DDELTA(10), DELY, DTEMPA, DPANB, DMUF, NNTPTS,DDELND(10), LREND(10), DTEMP (60), UVISCO (6G), DIMYHP $(10,60), \operatorname{DIMTP}(10,60)$, YPLUSP(10,60),TPLUSP(10,60), ENTHNW(24), DPRTMP

INTEGER VDATE(10), VRUN(10), TCATE $\{10), \operatorname{TRUN}(10), V \operatorname{TRAV(10),PLATE(10),~}$
1 PTITLE ($4,6 \mathrm{G})$, XLABEL $(4,40)$, YLABEL $(4,40), R, X T Y P E(4), Y T Y P E(4)$,
2 XTEN(4),YTEN(4),L2(13),LL2(4,13),N1(60),N5(40), iNo(40),N18(13)
REAL IS (60), PSAT (9), RHCSAT(9), TEMPS (9), IBAR(60), XLENGT (4), 1 YLENGT (4), XZERO(4), XEND(4), X1(4), YZERO(4), YEND(4), Y1(4), : $X X(13,50), Y Y(13,50)$
C
C
C

1 FORMAT (2F10:0,F3.0)
2 FGRNAT (I $1,9 \mathrm{X}, \mathrm{I} 6,4 \mathrm{X}, \mathrm{I} 1,9 \mathrm{X}, \mathrm{FI} 0.0, \mathrm{I} 2,8 \mathrm{X}, 3 \mathrm{~F} 10.01$
3 FGRMAT (18A4,2X,I1)
6 FCRMAT (F10:U, I1, 1X, IL, IX, I2)
$1 \in$ FORMAT(8F10.0)
530 FORMAT(I6, I1, I1,F6. 3,E10.4,FZ. 5,F7.3,F7.4,F8.5,E9.3,15X,12)
531 FCRNAT (3F8.6,F8.2,F8.6)
532 FORMAT(/4E9.3,E8.2,E9.3)
534 FORMAT (2 XF6.4,F8.4,F8.5,F $8 . t, 32 X, 2 F 8.5$)
889 FERNAT(1H1)
S05 FGRMAT (5X'PROBE THERMCCOUFLE REFERENCED TU FREE STREAM:/)
906 FERMAT (5X'PROBE THERMUCOUPLE REFERENCED TO ICE / /)
900 FCRMAT ${ }^{\prime} 30 X^{\prime}$ INPUT SECTILN $40^{\circ} \mathrm{X}$
:ITHIS PROGRAM WAS COMPIL IED ON $12016 G / * / / /, 10 X, 18 A 4 / / 5 X^{\prime}$ THERMCCOUPLE PROBE HEIGHT $=$ F5. 3 , Z10X, 'NUMBER OF TRAVERSES=1I2///J


```
    2 'ST.NO.UNCERTAINTY:/7XI2,
    Z 5X,I6,'-1,I1,4X,F7.2,7X,I 2,9XF5.1,6XF7.5,10XF7.5)
    902 FCRMAT (/4X,' TO TU TO TGAS TAMB '5X,'PSTAT',
    1 2X' RHUM PBAR 1/5XF5.3,1XF5.3,1XF5.3,2XF5.3,1XF7.3,1X,
    < 5XF7.4,2XF5.2,2XF6.2//1
    903 FGRMAT( 18X'INTEGRATED'/,
    1 5X:MICRQMETER',' VULTAGE(MV) CCUNTER ')
    904 FORMAT (EXF5.3,7XF6.3,8XF5.0)
    SI5 FGRMAT(7(lX,3(F7.5,F6.0,F6.4,lX)/),1X,3(F7.5,F6.0,F6.4,1X))
    S5C FORMAT(1H1///45X'VELOCITY INPUT DAIA'//
    951 FORMAT(5X'TRAVERSE KUN POSITION NO. OF POINTS '3X'CF/2'6X,
    l !UINF K ',
    Z. F.4X'MOOT VZERO REX'/7X,I2,4X,I6,'-',I1,2XF5.2,8X,12,
    3 11XF7.5,3X, F5.1,1XE10.3,2XF6.3,2XF6.3,2XF5.2,2XE 9.3//1
    SE2 FORMAT(2X, 87H 0.99 DISPLACEMENT NOMENTUM H MOMENTUM
    \frac{1}{2} 2x, 116H POINT UNCERTAINTIES THICKNESS THICKN
        K F DISP.THK. MUM.THK. H MOM.RE. ,
        3X'CF/2'/
        5 4XF5.3,3XF5.3,7XF5.3,4XF5.2,F8.2,4X,3(2XE9.3), LX3(2XE9.3), 3XF7.5,
        \epsilon /1)
    953 FORMAT(50X'UNCERTAINTIES'/5X'Y'10X'U'6X'Y/DELTA'4X'U/UINF'8X
    1 (L/UINF&B'U')
    954 FORMAT( 2XF6.4,3XF 8.4,3 XF8.5,3XF8.6,3X,2(3XF8.5))
    S56 FORMAT(///30X'TEMPERATURE INPUT DATA'//
    G58 FGRMAT(///5X'CF/2 QUOTED ABOVE IS CALCULATED FRUM STANTUN NUMBER V
    IIA REYNOLDS ANALOGY'J
    959 FCRMAT (///5X'CF/2 QUOTED ABOVE IS BEST ESTIMATE FROM HYDRCDYMAMIC
    1CATA')
C INPUTS hERE
C
C
C REA[ UNCERTAINTY INTERVALS
    READ(5,362C) DTEMPA,DPRTMP,DPAMB,DMUP,DELY
    3620 FERMAT(6F10.0)
C
    WRITE(6,889)
C
C ARCNS - # OF CGMPLETE TEST RUNS
C NTRAV - # OF TRAVERSES PER TEST RUN
C IPlNCH: 0 - NO PUNCH 1 - PUNCH
C
    REAC(5,6) TPRBHT,NRUNS,IPUNCH,NPL
    IF(NPL.EQ.0) NPL=24
C
C
    OC 550 LOOP=1,NRUNS
C
C
    REAO(5,3) TITLE,NTRAV
    hRITE(6,900) TITLE,TPRBHT,NTRAV
c
C
C all temperature data is read in the 4000 loop
C
    156 DO 4000 N=IN,NTRAV
```

```
C LSE KEYREF = IF TMV IS REFERENCED TOTICE(32 F)
C USE KEYREF =0 IF TMY IS REFERENCED TO TGAS
    REAO(5,2) KEYREF(N),TDATE(N),TRUN(N),TX(N),NTPTS(N),UINFT(N),
        1 ST(N),DST(N)
            IF(N.EG.I) WRITE(6,956)
            IF(N.GT.1) WRITE(6,889)
            WRITE(6,901) N,TUATE(N),TRUN{N),TX(N),NTPTS(N),UINFT(N),
        1 ST(N),DST(N)
            READ(5,16) TO(N),TU(N),TO(N),TGAST(N),TAMB(N),PSTAT(N),RHUM(N),
        1 PEAR(N)
            hRITE(G,902)TC(N),TU(N),T[{N),TGAST(N),TAMB(N),PSTAT(N),RHUM(N),
        1 PBAR(N)
            MNTPTS=NTPTS(N)+1
            IF{KEYREF(N).EW.0) WRITE (0,905)
            IF(KEYREF(N).EQ.1) WRITE (E,GC6)
            HRITE (6,903)
            CO 350 I=2,NNTPTS
            REAC(5,1) YRAWT(N,I),TMV(N,I),TIMEGC(N,I)
            WRITE(6,904) YRAhT(N,I),TMV(N,I),TIMEGO(N,I)
    35G CONTINUE
    4000 CONTINUE
C
C ALL VELOCITY DATA IS REAO IN 40CI LUOP
C
    nRITE(6,950)
    LO 400,1 N=1,NTKAV
C
C REAO IN RLANK CARD HERE UNTIL FINAL CF/2 IS AVAILABLE
C
    FROM HYDRODYNAMIC RESULTS
    REAU(5,16) CF2(N),DCF2(N)
    CUMMY=CF2(N)
    IF(CF2(N).EG.0.0) CF2(N)=ST (N)/1.16
    IF(DCF2(N).EQ.U.U) DCF2(N)=0.1*CF2(N)
C
            REAC(5,530) VEATE(N),VRUN(N),VTRAV(N),VX(N),VK(N),VF(N),LINFV(N),
        1 VMDOT(N),VVZERO(N),VREX(N),NVPTS(N)
            IF(N.GT.L) WRITE (6,889)
            hRITE(6,951) VTRAV(N),VDATE(N),VRUN(N),VX(N),NVPTS(N),CF2(N),
        l UINFV(N),VK(N),VF(N),VMCOT(N),VVZERO(N),VREX(N)
            FEAC(5,53I) VDELTI(N),VLELT2(N),VH(N),VREMOM(N),OELM(N)
C
C
UNCERTAINTY DATA CALCULATED EY VELCCITY PROGRAM
    REAC(5,533) DKVI(N), OFV(N),DCELT1(N),DCELT2(N),DHV(N);
        1 DREMOM(N)
        NRITE(6, #52) EELM(N),VCELT1(N),VDELT2(N),VH(N),VREMOM(N),OKV(N),
        1 DFV(N),DDELT1(N),CDELT2(N),DHV(N),DKEMUM(N),DCF2(N)
C
    ANVPTS=NVPTS(N)+1
    hRITE(0;553)
    CO 300 J=2,NNVPTS
                REAU{5,534) YVEL{N,J),UV (N,J),VYDEL (N,J},UUG{N,J},
    1 OUUG(N,J),DUV(N,J)
        WRITE(6,954) YVEL(N,J),UV(N,J),VYDEL(N,J),UUG(N;J) ;DUUG(N;J),
    ICLV(N,J)
8OC CONTINUE
    IF(CUMNY.EG.0.0) WRITE(0.558)
    IF(DUMMY.GT.O.O) WRITE(0,959)
```

```
C
    CCCl CCNTINUE
C
C EACH traverse is Cumputed IN 75 loop
C
    DO 75 N = L,NTRAV
C
C
        NNTPTS=NTPTS(N) +1
        NMVPTS=NVPTS(N)+1
        PR(N)=0.7C5
        RC(N) = PR(N)**.333
    1004 Pr = PBAR(N)*2116./29.96 +PSTAT(N)*5.2
C
C NILLIVOLT CONVERSION
    IF(TAME(N).LT.IC.) TAMB(N)=TCALIB(TAME(N)]
    IF(TU(N).EQ.0.0) TU(N)=TO(N)
            IF(TC(N).EG.0.0) TC(N)=TU(N)
            TMVWAL=(3.*TO(N)+TU(N) +TD(N))/5.
            TPLATE(N)=TCALIB(TMVWAL)
        46 TNVGAS=TGAST(N)
            TGAST(N)=TCALIB(TGAST(N))
C
C
    1005 [C 44 NN=1,9
        44 IF(TENPS(NN).GT.TAME(N)) EC TO 45
        45 M = NN-1
            RHOV = RHOSAT(M) + (TAMB(N)-TEMPS(M))#(RHOSAT(NN)-RHGSAT(M))/10.0
            PVAP=RHUM(N)*(PSAT(M)+(TAMB (N)-1EMPS(N))*(PS AT (NIV)-PSAT (M))/10.01
            RHOA = (P-PVAP)/(53.3*(TAMB(N)+460.0)) + (RHUM(N)*RHOV)
            2NV = RHUN(N)*RHGV/RHOA
            ZMA = 1.0 - ZMV
            RM = 1545.0*(ZMA/28.9 + ZMV/18.0)
C
C
C SETTING INITIAL CONDITIGNS
C
    YTMP(1)=0.0
    T(1)=TPLATE(N)
            TIME6O(N,1)=0.0
            YVEL(N,1) = 0.0
            UUG(N,1) = 0.0
            OLUG(N,1)=0.0
            \operatorname{LUV}(N,1)=0.C
C
C TIMEGO=600 IS EGUIVALENT TO 10 SECCNOS OF MV INTEGRATION
C C TFE 1633 LOCP DETERMINES THERMOCQUPLE READING AND Y POSITICN
C AT EACH DATA PGINT
C
    1009 CO 1633 I=2,NNTPTS
            IF(TIME60(N,I).LE.O.0) GO TO 1011
            CONST=60.
            TNV(N,I)=CONST/TIME60(N,I)*TMV(N,I)
    1C11 KEY=KEYREF (N)+1
C
C GC TO (TGAS, ICE) REFERENCE
C
    GO TO (1001,1003),KEY
```

```
C
    TMVGAS IS ADOED CNTO TEMP DIFFERENCE REAEING TU CONVERT TO [EGREES
C IN THE PROPER RANGE OF THE MV-F TABLES.
C
    1001 TMV(N,I)=TMV(N,I)+TMVGAS
C C T(I) IS the tempegrature In degrees recordee by the thermocouple
C
    1003 T(I)=TCALIB(TMV(N,I))
C
C THE Y POSITIIGN LIS CORRECTED FER PROBE HEIGHT ANO MICROMETER SETTING
C
    IF(I,NE.1) YTMP(I) = YRAWT(N,I) - YRAWT (N,2) + 0.5*TPRBHT
    1633 CONJINUE
C
C LSING COLD WALL VELOCITY CATA
C
C
    IF(UINFT(N).EG.O.0) UINFT (N)=UINFV(N)
    IF(TX(N).EQ.O.C) TX(N)=VX(N)
c
C
C the following ccoe ensures that the last velocity y is
C GREATER THAN THE LAST ThERMAL Y
C
    IF(YTMP(NNTPTSI.LLT. YVEL(N,NNVPTS)) GO TO 1006
    NNVPTS=NNVPTS +1
    YVEL(N,ANVPTS)=1.1*YTMF (NNTPTS)
    UUG(N,NNVPTS)=UUG(N,NNVPTS-1)
    CUUG(A,NNVPTS)= DUUG(N,NNVPTS-1).
    DLV(N,NNVPTS)=DUV(N,NNVPTS-1)
C
C velecity interpclaticn to fit. y stations where temperature data has
C TAKEN
C
    LCC6 [C 40 I=1,NNTPTS
                DO 37 J=1,NNVPTS
                IF(YVEL(N,J)-YTMP([)) 37,38,39
        39 LUGNEW(I)=UUG(N,J-1)+(YTMP(I)-YVEL(N,J-1))/(YVEL(N,J)-
        1 YVEL(N,J-1))*(UUG(N,J)-LUG(N,J-1))
                CUUGNW (I)= UUUG (N,J-1) +(YTMP(I)-YVEL(N,J-1))/(YVEL(N,J)-
            1 YVEL(N;J-l))* (DUUG(N,J)-LUUG(N,J-1))
                DUVNW(I)=DUV(N.,J-1)+(YTNP(1)-YVEL(N,J-1))/(YVEL(N,J)-
            1 YVEL(N,J-1))*(DUV(N,J)-DUV(N,J-1))
                GC TO 36
                UUGNEW(I)=UUG(N,J)
                DUUGNW (I)=DUUG (N,J)
                DUVNW(l)=DUV(N,J)
                    GO TO 36
    37 CONTINUE
        36 L2(I)=LUGNEH(I)*UUGNEh(I)*UINFT(N)*UINFT(N)
C
C the asSUMPTICA IN USING CCLOD wALL VELOCITY PROFILES WITH HOT
C hall temperatuke profiles is that`u/uinf versus y/delta is preserved.
SEE W.H.THIELBAFR THESIS FUR EISCUSSION OF THIS POINT. WHEN CGMPARING
C INTERPOLATEU VELCCITIES TO VELOCITY INPUT, RECALL THAT UINF(TEMP) IS
C NOT NECESSARILY EXACTLY EQUAL TO UINF(VEL).
C
    CP(I)=.24
    C1=1./(2.*32.17*778.16)
    TEMP(I)=T(I)-RC(N)*C1/CP(I)*U2(II)
```

```
            RHOG(I)=P/(RM*(TEMP(I)+46C..))
            VISCO(I)=(11.0 + U.OL75*TEMP(I))/(100G000.*RHOG{I))
    4O CCNTINUE
C
C
C THE 450 LGCP FINDS STAGNATICN ENTHALPY REFERENCED TO FR̈LE STEEAM AFTER
FIRST DETERMINING STATIC TEMPERATURE FRCM THE THERMCCGUPLE READING
VIA A RECCVERY FACTUR RELATIONSHIP. THE NEED EXISTS TO EXAMINE THE
RECGVERY FACTUR USED HERE.
C
C IT IS VERY LIFFICULT TC MAINTAIA A CONSTANT FREE STREAM TEMPERATURE
C CGNDITION DURING A TEST RUN. WHEN THE FRGBE TEMPERATUKE IS REFERENCED
C TC ICE, ANC TGAS HAS CHANGEC SLIGHTLY, AN ERROR IS INTRGUUCED INTO
C THE STAGNATIUN ENTHALPY CGNPUTATICN BECAUSE A CONSTANT TGAS IS FED
C INTC THIS PROGRAM. AN ALTERNATIVE IESTING TECHNIQUE IS TO REFERENCE
C TC TGAS ANG WORK WITH THE MEASUREO TEMPERATURE DIFFERENCE. IN THE
C PROFILE CALCULATICNS, THE LAST PCINT IS TAKEN AS THE GAS TEMPERATURE.
C
C T(I)-THERNCCCUPLE TEMPERATJRE
C TEMP(I)-STATIC TEMPEKATURE
C IS(I)- STAGNATION ENTHALPY REFERENCED TO FREE STREAM
C TEAR- (T-TGAS)/(TWALL-TGAS)
C DINT- (TWALL-T)/(TWALL-TGAS) = 1 - TBAR
C
        00450 I=1,NNTPTS
        IS(I)=(CP(I)*TEMP(I) + L2(I)*CI) - (CP{NNTPTS)*TEMP(NATPTS
    1 ) + U2(NNTPTS)*C1)
    450 CCNTINUE
C
C
C
C
C AREA-ENTHALPY THICKNESS
C AREAM-MOMENTUM THICKNESS
C AREAL-DISPLACENENT THICKNESS
C
```

```
    AREA(1) = 0.0
```

 AREA(1) = 0.0
 AREAM(1) = 0.0
 AREAM(1) = 0.0
 AREAD(1) = C.0
 AREAD(1) = C.0
 CO 70 I=1,NNTPTS
 CO 70 I=1,NNTPTS
 IEAR(I)=IS(I)/IS(1)
 IEAR(I)=IS(I)/IS(1)
 TBAR(I)=(TEMP(I)-TEMP(NNTFTS))/(TPLATE(N)-TEMP(NNTPTS))
 TBAR(I)=(TEMP(I)-TEMP(NNTFTS))/(TPLATE(N)-TEMP(NNTPTS))
 CIMT(I)=1.-TBAR(I)
 CIMT(I)=1.-TBAR(I)
 CIMTP(N,I)= CIMT(I)
 CIMTP(N,I)= CIMT(I)
 TR(I)={TEMP{NNTPTS)+460.)/{TENP(I)+460.)
 TR(I)={TEMP{NNTPTS)+460.)/{TENP(I)+460.)
 IF(I.EQ.1) GO TO }7
 IF(I.EQ.1) GO TO }7
 AREA(I)=0.5*(YTMP(I)-YTMF(I-1))*(UUGNEW(I-1)*IBAR(I-1)
 AREA(I)=0.5*(YTMP(I)-YTMF(I-1))*(UUGNEW(I-1)*IBAR(I-1)
]*TR(I-1)+UUGNEW(I)*IBAR(I)*TR(I)) + AREA(I-1)
]*TR(I-1)+UUGNEW(I)*IBAR(I)*TR(I)) + AREA(I-1)
 AREAM(I) = 0.5*(YTMP(1)-YTMP{I-1))*(UUGNEh(I-1)*(1.0-UUGNEW(
 AREAM(I) = 0.5*(YTMP(1)-YTMP{I-1))*(UUGNEh(I-1)*(1.0-UUGNEW(
 II-1))*TR(I-I)+UUGNEM(I)*{i.0-UUGNEW(I))*TR(I)) + AREAM(II-I)
 II-1))*TR(I-I)+UUGNEM(I)*{i.0-UUGNEW(I))*TR(I)) + AREAM(II-I)
 AREAD(I)=0.E*(YTMP(I) - YTMP(I-I)) & ((1. -UUGNEW(I-I)*TR(I-1))
 AREAD(I)=0.E*(YTMP(I) - YTMP(I-I)) & ((1. -UUGNEW(I-I)*TR(I-1))
 I* (I. - UUGNEW(I)立TR(I))) + AREAD(I-1)
 I* (I. - UUGNEW(I)立TR(I))) + AREAD(I-1)
 7C CONTINUE
 7C CONTINUE
 CELTAZ(M)= AREA(NNTPTS)
 CELTAZ(M)= AREA(NNTPTS)
 CELNCM(N) = AREAM(NNTPTS)
 CELNCM(N) = AREAM(NNTPTS)
 DISPL(N) = AREAD(NNTPTS)
 DISPL(N) = AREAD(NNTPTS)
 RENOM(N) = UINFT(N)*DEL4OM(N)/{VI SCO(NNTPTS}*12.0)
 RENOM(N) = UINFT(N)*DEL4OM(N)/{VI SCO(NNTPTS}*12.0)
 REENTH(N) = UINFT(N)*OELT A2(N)/(VISCO(NNTPTS)*12:.0)
 REENTH(N) = UINFT(N)*OELT A2(N)/(VISCO(NNTPTS)*12:.0)
 F(N)= DISPL(N)/DELNCM(N)
    ```
    F(N)= DISPL(N)/DELNCM(N)
```

```
C TFERNAL BGUNDARY LAYER THICKNESS
    EC }72\textrm{I}=10,\mathrm{ NNTPTS
    IF(DIMT(I).GE.0.99) GO TO 173
    72 CONTINUE
    173 CELH(N)=YTMF(I-1)+(0.99-CIMT(I-1))/(CIMT(I)-DIMT(I-I))*
        1
    (YTMP(I)-YTMP(I-1))
        ICELH=I
C
C THERMAL AND HYORODYNAMIC Y/B.L. THICKNESS
C
C
    DO 210 I=1,NNTPTS
    CIMYM(I)=YTMP(I)/DELM(N)
    [IMYH(I) = YTMP(I)/DELH(N)
    ZIC DIMYHP(N,IJ = DIMYH(I)
    CALGULATICN GF + PARAMETEFS
    UTAU IS BASED GN LUCAL RHU IN THIS PRDGRAM
    CO ES1 I=1,NNTPTS
    UTAU(I)=SQRT(CF2(N)*TR(I))*UINFT(N)
    TPLLS(I) = DINT(I)就TAU(I)/(ST(N)*UINFT(N))
    TPLUSP(N,I) = TPLUS(I)
    YPLUS(I) = YTMP(I)*UTAU(II/(VISCO(NNTPTS)*12.)
    YPLLSP(N゙,I)=YPLLS(I)
C
    669 U(I)=UUGNEW(1)*UINFT(N)
    LPLLS(I) = U(I)/UTAU(I)
    651 CONTINUE
C
    CALL UNCERT
C
C
C
C
            OUTPUT SECETION
    1% FORMAT(///3X,18A4//,
    1 2X'TEMP. RUN VEL. RUN'3X'PLATE'4X'X'8X'ST CF/2'6X'UINF'
    1,6X'TGAS'6X'TWALL'/ 2X,I6,'-',I1,3X,I6,'-',11,4X,I2,
    4XF5.2,3XF7.5,4XF7.5,3XF5.1,5XF5.1,6XF5.1////3X
    3 THERMAL HYDRO. ENTFALPY MOMENTUM ENTHALPY MGMENTU
    4N NO. DATA:/2X'&.L. THK. Q.L.THK. THK. THK. N, %
    E RE. RE. PUINTS',
    \epsilon/4XF5.3,6XF5.3,6XF5.4,5XF6.4,4XF6.0,5XF6.0,8XI 2///)
    812 FORMAT(1X18A4/1X,16,1X,11,1X,16,1X,11,1X,I2,1XF5.2,2(1XF7.5),
    1 3(1XF5.1)/2(1XF5.3),2(1XF6.4),2(1XF6.0),1X,I2)
    817 FORMAT(1XFO.1,2(IXF6.1),4(1XF5.3),1XF6.4,2(1XF5.1))
    81G FORMAT(IX,II,1X,I2,1XF5.2,3(1XF5.1);2(1XF7.5),1XF5.3,1XF6.4,1XF5.0
    1)
    821 FCRMAT(IX,I1,1X,I2,4(1X+6.4),2(IXFG.0), 2(1XF5.3))
    \varepsilon\in1 FDRMAT(2(1X,I L,1XF7.5,2(1XF6.0),1XF5.1,1XF5.3))
    916 FORMAT(30X'PRGFILE OUTPUT'//' YPLUS UPLUS TPLUS Y/DELH
    l U/LINF T&AR Y/DELN Y U U N %
    917 FUKMAT(2XF6.1,2(3XF6.1),4XF5.3,4XF5.3,4XF5.3,2XF5.3,3XF6.4,
    1 3XF5.1,3XF5.1)
    G18 FCRNAT(///,40X' SLNMARY '////,2X*N'3X*PLATE*5X*X TPLATE *,
    1 TGAS UINF ST CF/2 FNTH. THK.',
    2 5X'ENTH. THK. RE.'/1
```



```
        l 4XF5.3,5XF6.4,12XF5.0)
    G2C FGRMAT(/96X!UNCERTAINTIES'/
        I2X'N'3X'PLATE'5X.UISPL. THK. MONENTUM THK. MCMENTUM RE.
        # H'18X'ENTH. THK.'11X'ENTH. THK. RE.',' PROF PROF VEL PROF VEL PROF'
        410X'ABSOLUTE'6X'名'8X'AB SOLUTE'6X'%'/)
    921 FCRMAT (2XI1,4XI2,7XF6.+,1XF6.4,3XF6.4,1XF6.4,3XF6.0,1XF6.0,4XF5.3,
    12XF5.3,10XFE.4,4XF5.1,8XF5.U,5XF5.11
    900 FORMAT(//////30X:STANTON NUMDER,ADJLSTED ENTH. THK. REYNGLDS NO.,
    1ANO 2-0 CHECK!/
    <//2(5X'PLATE'5X'ST'5X'REDEL'5X'REDEL'5X' % '5X'DELTA2'5X`/
    2 2(22x'(ST)'6X'(PROF)'3X'ERROR'15X)/)
    SEI FORNAT(2(6X,12,4XF7.5,2XF6.0,5XF5.0,3XF5.1,5XF5.3,6X))
    1555 FORMAT(IH1,30X' OUPUT SECTIGN')
    1556 FORMAT (/3X,18A4//)
    1557 FCRMAT(3X,18A4)
    3070 FORMAT(1HI,////,45X'UNCERTAINTY INTERVALS'///18X'ABSOLUTE VALUES',
        1 46X'PERCENTAGE VALUES'3X,//' YPLUS UPLUS TPLUS Y/OELH
        1 U/UINF TBAR' IIX'YPLUS UPLUS
    zTPLUS Y/EELH U/UINF TBAR'/I
    3C71 FORNAT(2XF6.1,2(3XF6.1),4XF5.3,4XF5.3,4XF5.3,9XF5.1,3XF5.1,
        1 3XF5.1,5XF5.1,4XF5.1,2XF5.1)
C
C.
C PLATE NUMBER IS DETERMINEU FRGM THE X POSITION
C
            DC 133 KK=1,24
            XL=4*KK
            IF(XL.GT.TX(N)) GO TO 134
    133 CCNTINUE
    134 PLATE(N)=KK
C
            IF(N.EG.1) hRITE(6,1555)
            IF(N.GT.1) WRITE(6,889)
    G55 hRITE(6,12) TITLE,TGATE(N),TRUN(N),VDATE(N),VRUN(N),PLATE(N),
        1 TX(N),ST(N),CFZ(N),UINFT(N),
        ¿TEIMP(NNTPTS),TPLATE(N),OELH(N),UELN(N);DELTA2(N),DELMCM(N),
        3 REENTH(N),REMOM(N),NNTPTS
            IF(IPUNCH.EG.I) WRITE(7,812) TITLE,TDATE(N),TRUN(N),VDATE(N),
        1 VRUN(N),PLATE(N),TX(N),ST(N),CF2(N),
        2LINFT(N),TEMP(NNTPTS),TPLATE(N),DELH(N),DELM(N),DELTAZ(N),
        Z DELMGM(N),REENTH(N),REMCN(N),NNTPTS
            WRITE(6,916)
            DG 517 I=1,NNTPTS
            hRITE(t,917) YPLUS(I),UPLLS(I),TPLUS(I),DIMYH(I),UUGNEW(I),
        LCIMT(I), CIMYM(I),YTMP(I),U(I),TEMP(I)
            IF(IPUNCH.EG.1) WRITE(7,817) YPLUS(I),UPLUS(I),TPLUS(I),
        1 DIMYH(I),UUGNEW(I),DIMT(I),DIMYM(I),YTMP(I),OU(I),TEMP(I)
    517 CCNTINUE
C
            WRITE(6,3070)
            CG 3075 I=1,NNTPTS
            HRITE(6,3071) DYPLUS(I),OLPLUS(I),DTPLUS(I),DOIMYH(I),DUUGNW(I),
            I DDIMT(I),DYPLND(I),DUPLND(I),OTPLND(I),DYND(I),DUUGND(I),DTND(I)
    3075 CCNTINUE
C
    75 CONTINUE
C
C
    WRİTE SUMMARY
```

```
    1ICE WRITE (6,889 GRTE{1556)
        HRITE(6;1556) TITLE
            WRITE (6,918)
            WRITE(e,91G) (N,PLATE(N),TX(N),TPLATE(N),TEMP(NTPTS(N)+1),
    1
        HRITE (0,920)
        WRITE(6,S2l) (N,PLATE(N),VCELTI(N),OISPL(N),VDELTZ (N),DELMOM(N),
    I VREMOM(N),REMOM(N),VH(N),H(N), DDELTA(N),
    2 DDELND(N),DREENT(N),DRENE(N),N=1,NTKAV)
C
        IF(IPLNCH.EG.O) GO TC 1830
        nRITE(7,1557) TITLE
        CG 1819 N=1,NTRAV
            hRITE(7,819) N,PLATE(N),TX(N),TPLATE(N),TEMP(NTPTS(N)+1),
        ! UINFT(N),ST(N),CF2(N),VF(N),DELTA2(N),REENTH(N)
    1519 CCNTINUE
        OO 1821 N=1,NTRAV
                WRITE(7,821) N,PLATE(N),VDLLTI(N),DISPL(N),VUELT2(N),
        1 CELMCM(N),VREMOM(N),REMUM(N),VH(N),H(N)
    1821 CONTINLE
C
    183C CCNTIMGE
C
C
C THE fCLLOWING SECTIGN PRINTS OUT INFGRMATION ON THE
C' UNCERTAINTY INTERVALS USED IN ThE UNCERTAINTY CALCULATIONS.
C
C .
c FEAOING aND EXPLANATICN
        WRITE(6,1900)
    1900 FGKMAT(///////,20X,'PRIME UNGERTAINTY INTERVALS UStU'
        1,3X,'(ESTIMATED AT 20:i EUDS'2//)
        hRITE(6,1901)
    1SCl FGRNAT, 2X, "VARIABLE',5X,"VALUE ASSIGNED', lOX, 'VARIABLE MEANING"
        1,44x,'UNITS'/i
        WRITE(6,909) LTEMPA
    SCS FORMAT(2X,'CTEMPA'.,7x,F5.3,1->X,'TEMPEHATURE',49X,'UEU. F.')
        WRITE(6,908). DPKTMP
    908 FCRNAT (2X'CPKTNP'7XFO.3,19XPPROBE TEMPERATURE NEAR WALLIFIRST 15 P
        ICINTS)'1Óx*DEG. F.')
        WRITE('0,910) CPAMB
    SIC FORNAT(2X,'UPAMB',BX,FS.2,1GX,'AMBIENT PRESSUKE',44X,'LBF/FT2')
        WRITE(6,911) DMUP
    911 FCRMAT(2X'OMUP',7X,FE.1, < LX,'ABSULUTE VISCOSITY',4(X','%')
        nRITE(6,907) DELY
    SO7 FORMAT(EX'DELY'9X,FG.4,18X,'PROBE PCSITION REL. TO WALL',33X,
        l 'INCHES')
        HRITE(E,089)
C
    1550 cCNTINUE
    550 CCNTINUE
        STOP
        END
C
C
C
        FUNClION TiALIB(T)
C THIS fUNCTION SUPPlies tre thermocouple calibkaticN
    A=-2220.703
    B=781.25
```

 \(E=7.950782\)
 \(\mathrm{C}=0.25 t\)

RETURN
ENO

NOT REPRODUCIBLE

dLUCK DATA

CCMMON AREA(60), AKEAU(60), AREAM(60),CF2(10), UP (60), DDELT1(10), DUELT2(1Ú), © ELM(10), UELHOM (10), 0LLTA2(10), OFV(10), DKV(10),
OHV (1U), DIMT($6 G$), CIMYH(EU), DIMYM(60), OISPL(OU), DREMUM (iO), OUV ($10,6 C$), $\operatorname{DUUG}(10,60), H(1 C)$, IS, $K E$ YREF (IU), NTPTS (10), NVPTS(10),
PEAR (10), FR(10), PSTAT (10), REDEL (24), REENTH(10), REMUM(1C), RC(10), KHUM(1U), ST(1U), STN(24), T(60), TAND(10), TK (60), DREENT (10), TEAR (60), TD(10), TEMP (60), TGAST (10), TIME 60(10,60), TITLE(18), TMV(10, 60), TC\{10\}, TPLATE(10), TPLUS(60), TU(10 , , TX(10), U(00), UlNFT(10), UINFV(10), UPLUS $(60), \operatorname{UUG}(10,60)$, UUGNEN (50), UV (10,60), U2(EC), VUELT1(10), VDELT $2(10), \operatorname{VF}(1 \mathrm{Cl}$, $\mathrm{VH}(10), \mathrm{VK}(10), \mathrm{VACOT}(10), \operatorname{VREMGA}(10), \mathrm{VREX}(10), V \mathrm{VZERO}(10), V X(10)$,
$\operatorname{VYCEL}(10,00), X(10), \operatorname{YPLLS}(60)$, YRAWT$(10,60), Y \operatorname{TMP}(00), \operatorname{YVEL}(10,60)$, UTAU(60), DELH(10), IBAR, PER1(24),RE1(24), CP(60), ENTH(24)
COMMON /A/ i)UUONG(60), OUVAW (60), RHGG(00), VISCO(60), DCF2(10), DDIMT (60), UYPLUS(6C), DUPLUS(60), DTPLUS(60), IUELF, ODELH (LU), $\angle(60), C L(60), C 1, R M, N, P S A T, R H U S A T, T E M P S$,DST(10), DAKEA(00), DOIMYH(00), DYPLINO (60), DUPLNU(60), DTPLND (60), DYND (60), DLLGNU(60), DTND (60), UUELTA(10), DELY, OTEMPA, DPANG, LMUF, NNTPTS, CDELND (1U), DKEND (10), DTEMP (60), UVI SCU(c0), DIMYHP (10,00), VIMTP(10,60). YPLUSP $(10,60), \operatorname{TPLUSP}(10,60), E N T H N W(24)$, DPRTMP

INTEGER VUATE(10), VRUN(10), TDATE (10), TRUN(10), VTRAV(10), fLATE(10), 1 PTITLE $(4,60), \times \operatorname{LABEL}(4,40), \mathrm{YLABEL}(4,40), R, \operatorname{XTYPE(4),YTYPE(4),}$
2 XTEN(4),YTEN(4),L2(13),LL2(4,13),N1(60),N5(40), N6(40),N18(13)
REAL IS(60), PSAT (9), RHLSAT(9), TEMPS (9), IBAR(60), XLENGT(4),
1 YLENGT(4),XLERO(4),XEND(4),X1(4),YZERO(4),YENL(4),Y1(4),
< $X X(13,50), Y Y(13,50)$
CATA TEMPS/
$140.0,50.0,60.0,70.0,80.0,90.0,100.0,110.0,120.01$
DATA PSAT/
$117.53,25.65,36.90,52.2 \mathrm{C}, 73 . \mathrm{CC}, 1 \mathrm{CO} .40,136.50,183.60$
2,243.70/
CATA RHOSAT/
10.0C0409,0.000587,0.000830,0.001153,
zC.001580,0.002139,0.002853,0.003770,0.004920/

END

```
C
C
C UNCERTAINTY ANALYSIS FOR PKUFILE PROGRAM
C
        INTECER VDATE(10),VRUN(10),TCATE(10),TRUN(10),VTRAV(10),PLATE(10d,
    1 PTITLE(4,60),XLABEL(4,40),YLABEL(4,4C),R;XTYPE(4),YYYPE(4).,
    2. XTEN(4),YTEN(4),L2(13),LL2(4,13),N1(60),N5(40),N6(401,N18(13)
        REAL 1S(60),PSAT(5),RHCSAT(5),TEMPS(9),IBAR(60),XLENGT(4),
        1 YLENGT(4),XZERO(4),XENC(4),X1(4),YZERO(4),YENO(4),Y1(4),
        Z XX(13,50),YY(13,50)
        REAL NN,NIV,NZV,N1Y,NZZY,NL,NT,NOH,N1D,N2D,N3D,NN1,NN2,NN3,OMU(OO),
        1 NN4,NN5
C
C CALCULATED UNCERTAINTY INTERVALS
    DYTMP=DELY
```

```
            CTPLAT=SQRT(11.*LTEMPA**2)/5.
            DPBAR=DPAMBF25:96/2115.
            DTMP=DTPLAT
            [AREA(1)=0.0
    1CLC FGRMAT(/2X1I(IX,E10.3))
    LCOL FORMAT(///)
C FRINT 1GOU, JYTIAP,OTPLAT,CPEAR,UTMP
C PRINT 1001
C
    CC 90 I=1,NMTPTS
C
C TENP(I)
C
C becalse of possible thekmoccufle erkurs cue tc radiation and
C CCNDUCTION AND ALSJ ERRORS UUE TU INHUMUGENEOUS WIRES IN A TEMP-
C ERATLRE GRADIENT, A HIGHER UNCERTAINTY IS, APPLIED HERE TU THE FIRST
C 15 PGINTS ABUVE THE hALLIPKESIMING THAT MGST PROFILES HAVE 25 TO
C 30 fCINTS). IN THE OUTER REGIUN, THE SMALL GRAUIENTS LEAO TC MGRE
C CERTAIN REAOINGS.
C
    IF(I.GT.I) CTNP=OPRTMP
    IF(I.GT.16) DTMP=DTEMPA
    T1=CTMP
    T2=-CUVN*(I)*2.*RC(N)*CI/CP(I)*U2(I)
    UTEMP(I)=SQKT(T1**2 + T2**2)
    PRINT 100C, TI,T2,OTEMP(I)
    gC centinue
    PRINT LCOI
C
C
            DC 100 I=1,NNTPTS
    CMU(I)=DMUP %VISCU(I)*RFEG(1)/100.
    IF(I.GT.1) DUUGNE(I)=CUUGNM(I)/UUGNEN(I)*100.
    IF(I.GT.1) UTMP=DTE,MPA
    IF(I.GT.1) GC TO 88
    DLLGND(I)=C.C
    ETND(1)=0.0
    EYPLND(1]=0.0
    CUPLND(1)=0.U
    CYNL(1)=0.0
    LTPLND(1)=0.0
    8& CONTINLE
C
c cIMT(I)
C
            NN=TEMP(I) - TEMP(NNTPTS)
            LC=TPLATE(N) - TEMP (NNTPTS)
            C1=-DTEMP(1)/DI)
            O2= DTEMP(NNTPTS)*(1./DO - NN/DD**2)
            C3=DTPLAT*AN/DD**2
            DDIMT(If=SQRT(01**2 + D2**2 + D3**2)
            IF(I.GT.1) DTND(I)= DCIMT(1)/DIMT(I)#1G0.
            PRINT 1000, DNU(I),DTENP(I),NA,DD,D1,D2,D3,DDIMT(I),DTND(I)
c
C
C
C VISCGSITY
C
    NIV=11. + 0.0175*TEMP(I)
            \2V=RN*(TEMF(1) + 46U.)
            LV=1.0E06*(PBAK(N)*211t./29.96 + PSTAT(N)*5.2)
            VL=ETEMP(I)*(0.0175*N2V/DV + RM*NIV/DV)
```

```
        V2=-DPBAR*N1V*N2V/DV**2*1.0E06*2116./29.96
        V3=[MU(I)*N2V/DV
        EVISCG(I)=SGRT(V1**2 + V2**2 + V3**2)
        PRINT 1000, N1V,N2V,DV,V1.gV2,V3,DVISCC(I)
C
C
```

TPLUS(I)

```
TPLUS(I)
    NT=OIMT(I)*SQRT(CF2(N)*(TENF(NNTPTS)+460.))
    CT=ST(N)*SQRT((TEMP(I)+460.))
    TPL=CDIMT(I)*SQRT(CF2(N)*(TEMP(NNTPTS)+460.))/DT
    TP2=UTEMP(NNTPTS)*NT/(2.*DT*(TEMP(NNTPTS)+460.))
    TP3=-DST(N)*NT*SQRT(TEMP(I) +460.)/0T*&2
    TP4=-DTENP(I)#NT*ST(N)/(2.*OT**2%SQRT(TEMP(I)+46U.))
    TP5=UCF2(N)*DIMT(1)*SQKT(TEMP(NNTPTS)+460.)/(2.*DT*SQRT (CF2(N)) )
    ETPLUS(I)=SGET(TP1%*2 + TP2**2 + TP3**2 + TP4**2 + TP5%*2)
    If(I.GT.I) ETFLND(I)=DTPLLS(I)/TPLUS(I)*10U.
    PKINT 1000, NT,UT,TPL,TP2,TP3,TP4,TP5,DTPLUS(I);DTPLND(I)
C
C DELTAZ(N) - IEAK(1)*TR(I)
    AA=KC(A)*Cl/CP(I)
    NID=T(NNTPTS)-AA*UL(NNTPTS)+400.
    BlD=T(I)-AA*U2(I)+460.
    N20=CP(I)*T(I)+C1和L(I)*(1.-RC(N))-CP(NNTPTS)*T(NNTPTS)-CI*UZ(NNTP
    1IS)*(1.-RC(N))
    [2C=CP(1)*T(1)-CP({NTPTS)*T(NNTPTS)-C1*U2(NNTPTS)*(L.-RC(N))
    N30=N1C*N2D
    L 3D=010*020
    Z(I)=N30/030
    X6=-טTPLAT*N3L*D1 D/ Dj D**2*CF(1)
    X人=DTMP*(N1D*CP(I)/D30-N3D/D30%%2%D2D)
    X3=0TEMPA* ({N2C-N1D*CP(NNTPTS))/D 30+N 30/D 30**2*CP(NNTPTS)*O1D)
```



```
        *5=CUVNW(NNTPTS)*((-N2C*2.*AA*U(NNTPTS)-N1E*2.*C1*(1.-RC(N))*U(NNT
        1PTS))/030-N3D/D3D**2*U10*(-2.*C1*(1.-RC(N) *U(NNTPTS))
        CZ(I)=SQRT(X6**2 + X2***2 + X3**2 + X4**2 + X5%*2)
        PRINT 1000,AA,N1D,D1D,N2D,D2C,N3D,D3D,L(I)
        PRINT 1000,X6,X2,X3,X4,X5,DZ(1)
        FRINT 1001
    to ee continued
C
100 CLNTINUE
C
C THERMAL BL THICKNESS
C IDELH IS THE VAlUE OF THE INDEX I FOR THE FIRST DImT(I) > 0.g9
c
    NCH=0.99 - DIMT(IDELH-1)
    [CH=DIMT(IDELH) - DIMT(IUELh-1)
    DH1=DELY*(1.-NDH/DOH)
    LH2= DELY*NDH/DDH
    CH3=-DOIMT(IDELH)*NUH/EOH**2*(YTMP(ILELH)-YTMP(IDELH-1))
    DH4=DO1MT(IDELLH-1)*(YTMP(IOLLH)-YTMF(IDELH-1))*(NDH/DDH**2-1./DDH)
    r.CELH(N)=SGRT(DH1**2 + CH2**2 + DH3**2 + DH4**2)
C
    LC 115 I=1,NNTPTS
    YTMP/DELH
        DDIMYH(I)=SGRT((UELY/DELH(N))**2 + (CLELH(N)*YTMP(I)/DELH(N)**2)
        1*%2)
            IF(I.GT.1) CYNL(I)=DCIMYH(I)/DIMYH(I)*100.
            PRINT 1000, NOH,DOH,OHI,DH2,CH3,DH4,DCELH(N1,DOIAYH(I),DYND(I)
C
    115 cCNT INUE
    PRINT 100I
C deltaz(n) contiaued
C
    Al= UELY*.5*{UUGNEW(NNTPTS)*Z(NNTPTS) +ULGNEN(NNTPTS-1)*Z(NNTPTS-1))
C A2=-DELY* 5 % (UUGNEW(1)*Z(1) +UUGNEW (2)*Z(2))
C NN 5=.5#(YTMP(2) - YTMP(1))
c A3=DUUGNW (NNTPTS)*NN4*Z(NNTPTS) =0 SINCE Z(NNTPTS) =0
C A4=DUUGNW(1)*\N5*Z(1) =0 SINCE DUUGNW(1)=0
C AG=DZ(1)*NNS*UUGNEW(I) =0 SINCE UUGNEW(1)=0
    AN4=.5*(YTMF(NNTPTS)-YTMP(NNTPTS -1)).
    A5=DZ(NNTPTS)*NN4*UUGNEh(NNTPTS)
C
    SUMI=0.0
    SUM 2=0.0
    SUM 3=0.0
    MNN=NNTPTS-1
    DO 110 I=2,NNN
        NN1=.5*(UUGNEW(I-1)*Z(I-1) - UUGNEW(I+1)*Z(I+1))
        NN2=.5*(YTNP(I+1) - YTMP(I-1))*Z(I)
        NN3=.5*(YTMP(I+1) - YTMP(I-1))*LUUGNEW(I)
        SUMI=DELY*DELY*NNI*NN1 + SUMI
        SLM2=DUUGNW(I)*UUUGNW(I)*NN2*NN2 + SUM2
        SUM3=DZ(1)*DL(I)*NN3*NN3 + SUM3
```

```
C PRINT 1000,UUGNEW(I),Z(I),YTMP(II),DELY,DUUGNW(I),DZ(I)
    110 CONTINUE
C
C PRINT 100U, A1,A2,A5,SUM1,SUR2,SUM3,OZ(NNTPTS),NN4,UUGNEW(NNTPTS)
        DDELTAA(N)=SQRT(A1*A 1+A 2*A 2+A5*A5+SUM1+SUM2+SUM3)
        DDELND(N)=0DELTA(N)/DELTA2(N)*100.
C
C ENTHALPY THICKNESS REYNOLDS NO.
C
    Rl=DDELTA(N)*UINFT(NJ/{12.*VISCO(NNTPTS))
    R2=CUVAW(NNTPTS)*DELTA2(N)/(12.*VISCO(NNTPTS))
    R3=-DVISCO(NNTPTS)*0ELTA2(N)*UINFT(N)/(12.*VISCO(N)**2)
    CREENT(N)=SQRT(Rl**2 +R2**2 + R3**2)
    [REND(N)= CREENT (N)/REENTh(N)*100.
C PRINT 1000, DDELTA(N),DDELND(N),R1,R2,R3,CREENT(N),DREND(N)
C PRINT 1001
C
    RETURN
    END
C
C
```


ENERGY PROGRAM

```
THIS PROGRAM IS UESIGNED TO:
        1. ADJUST THE ENTHALPY THICKNESSES, INTEGRATED FROM THE STANTON DATA, ON THE BASIS OF A STARTING VALUE COMPUTED FROM THE PROFILE DATA.
2. COMPARE THE PROFILE ENTHALPY THICKNESS TO THAT FROM THE INTEGRATIDN OF THE ENERGY EQUATION,IE, CHECK THE ENERGY BALANCE.
3. PLOT STANTON NO. VS REDEL2 AND PUNCH ALL THE RESULTS.
ALL THE STANTON RUNS ASSOCIATED WITH EACH PROFILE RUN CAN BE ADJUSTED AT ONE TIME (ENTIRE \(\dot{G} T\) IS HERE DEFINED TO BE A DATA RUN). AS MANY DATA RUNS AS DESIRED CAN BE PLOTTED ON ONE PLDT. IF A PLOT OF DEL2 VS \(X\) FOR THE PROFILE DATA AND FOR THE
VALUES FROM THE INTEGRATION IS DESIRED, IT CAN BE OBTAINED BY USING
THE PUNCHED OUTPUT HITH A PLOT PROGRAM.
COMPILED 11/2/69
INTEGER PLATE(10), PTITLE \((4,60)\), XLABEL \((4,40)\), YLABEL \((4,40)\), R,
1 XTYPE(2),YTYPE(2), XTEN 2 2), YTEN(2), OPTION,OATE,RUN DIMENSION XLENGT(2),YLENGT(2),LL2(2,13)
1 , XZERO(2), XEND(2),X1(2),YZERO(2),YEND(2),Y1(2), 2DELTA2(10), STN(15, 24), REDEL(24), ENTH(24), REDELN(15, 24), ENTHNW(24), \(3 \mathrm{~L} 2(15), X X(13,100), Y Y(13,100), N 5(40), N 6(40), N 1(60), Q(24), F R(24)\)
\(4, N 18(13)\), TITLE (18), TOEFF (24),F(24), UG(24), XINT(25), X(25),
5 XST(24), TERM(25), XPROF(10), ENTHCK(10), VISCGS(24)
REAL ISO(24)
```

INPUTS HERE

PLOT INFORMATION

THE PLOT SPECIFICATIONS HERE READ IN THIS SECTION. THE ACTUAL CARDS HAVE BEEN REMDVED, BUT ANY PLOTTING ROUTINE CAN BE UTILIZED.

DEFINITIONS: SEYERAL STANTON RUNS WILL BE ADJUSTED 8Y THE RESULTS OF A SINGLE PROFILE RUN. STANTON RUN=1 TO 24 PLATES OF STANTON DATA. DATA RUN=ALL STANTON RUNS ASSOCIATED WITH ONE PROFILE RUN.

I PUNCH - O-NO PUNCH 1-PUNCH
IPLOT - O-NO PLDT 1-PLOT
NPLOTS - NUMBER OF PLOTS TO BE PREPARED
NDATA - NUMBER OF DATA RUNS DESIRED ON EACH PLDT
NCURV - NUMBER OF STANTON RUNS PER DATA RUN
NTRAV - NUMBER OF TRAVERSES IN THE PROFILE RUN USED FOR 2-D CHECK
MTRAV - PLATE CORRESPONDING TO DELTA2 USED FOR ADJUSTMENT
OPTION - OPTION TO SELECT BASIS FOR STARTING VALUE IN ENERGY EQUATION. 1 FOR AVERAGE GASED ON PROFILES, 2 FOR A PARTICULAR PROFILE, 3 FOR A PRESELECTED STARTING VALUE HHICH IS ENTERED AT *READ(5,9)" STATEMENT.
XDEL - X CORRESPONDING TO XDELTA USED FOR ADJUSTMENT WHEN GPTION=3 NCST - SET TO 1 FOR CONSTANT PROPERTY CORRECTION TO STANTON DATA

```
C NF - FIRST plate to be plotted
    C Nl - last plate to be plotted
C
            READ(5;6) NPLOTS,IPUNCH,IPLOT
            6 FORMAT(12,1X,11,1x,11)
    61 FORMAT(I1,1X,I1,1X,I2,1X,12)
C
C
        OO 1550 LOOP=1,NPLOTS
C
    1605 NN=0
        KD=1
        READ(5,61) NDATA,NCST,NF,NL
C
    1610 READ(5,9) NCURV,NTRAV,MTRAV,OPTIDN,XDEL,XDELTA
        XDEL=XDEL/12.
        XDELTA=XDELTA/12.
        WRITE(6,889)
        WRITE(6,3235)
    3235 FORMAT(5X'TEMPERATURE PROFILE DATA://4X'PLATE'5X'I'5X'DELTA2'/)
    3236 FORHAT (5X,12,5XF5.2,2XF7.4)
C
C INSERT IITLE CARD THAT GOES WITH TEMP DUTPUT SUMMARY. IT WILL BE
C SKIPPED.
C
        DO 110 N=1,NTRAV
        READ(5,10).PLATE (N), XPROF(N);DELTAZ(N)
        IF(OPTION.NE.2) GO TO }336
        IF(PLATE(N).EQ.MTRAV) XDEL=XPROF(N)/12.
        IF(PLATE(N).EQ.MTRAV) XDELTA=DELTAZ(N)/12.
    3365 HRITE(6,3236) PLATE(N),XPROF(N),DELTA2(N)
    110 CONTINUE
C
        9 FORMAT(12,1X,12,1X,12,1X,11,3X,2F10.0/1
        10 FORMAT( }3\times,12,1\timesF5,2,41XF6.4
c
C
        DO 200 NC=1,NCURV
        NNN=NC + NN
        IF(NC.NE.1) WRITE{6,889)
C
C INITIALIZE STANTON DATA
C
        DO 588 I=1,24
                STN(NNN,I) =0.0
                REDEL(I)=0.0
    588 ENTH(I)=0.0
C
C
    READ(5,905) TITLE,DATE,RUN
C
    READ(5,132) TAMB,TGAS
        DO 135 I=1,24
        READ(5,131) TOEFF(1),STN(NNN,I);REDEL(I),ENTH(I),F(I),UG(I)
        IF(NCST.EQ.1) STN{NNN,I)=STN(NNN,I)*(((TOEFF(I)+460.1/
        1 (TGAS+460.1)**0.4.)
135 CONTINUE
131 FORMAT(3X,F6.2,6X,F7.5,F6.0,F6.4,F8.4,F6.2)
132 FORMAT(/1XF6.2,15XFG.2)
    HRITE(6,906) TITLE,DATE,RUN
```

```
            WRITE{6,140)
            WRITE(6,141) TAMB,TGAS
            WRITE{6,1916)
            DO 150 I=1,24
            WRITE(6,131) TOEFF(I),STN(NNN,I),REDEL(I),ENTH(I),F(I),UG(I)
    150 CONTINUE
C
    140 FORMAT(///10X'STANTON PROGRAM REDUCED DATA'//
    141 FORMAT(5X'TAMB=' F5.1,10X'TGAS=' F5.1/1
    C
    861 FORMAT (1X,I2,1XF7.5,1XF6.0,1XF6.4,1X,F3.01
    889 FORMAT(IH1)
    905 FORMAT (1X,18A4/5X,18,12X,14)
    906-FORMAT (//10X,18A4/25X,16,'-', I1)
    907 FORMAT(2X18A4)
    960 FORMAT(//2(5X*PLATE'5X'ST'5X'REDEL'5X'ENTH')//
    961 FORMAT (2(6X,12,4XF7.5,2XF6.0,4XF6.4))
    1916 FORMAT(4X'TOEFF'8X'ST'4X'REDEL'IX'ENTH'5X'F'5X'UG'/)
    1917 FORMAT (5XI2,3XF7.5,1XF6.0,4XF6.4,9X12,3XF7.5,1XF6.0,4XF6.4)
C
            CP=.24
            DEL=1./3.
            XST(1)=1./6.
            DO 3200 I=1,24
            IF(I.GT.1) XST(I)=XST(I-1)+1./3.
            ISO(I)=CP*(TOEFF(I)-TGAS) - UG(I)*UG(I)/(64.4*778.)
            VISCGS(I)=ENTH(I)*UG(1)/(12.*REDEL(I))
            Q(I)=STN(NNN,I)*UG(I) *ISO(I)
            FR(I)=F(I)*UG(I)*ISO(I)
    3200 CONTINUE
C
C
C INTEGRAL IN ENERGY EQUATION IS EVALUATED HERE
C
    XINT(1)=0.0
    DO 3205 J=2,25
    3205 XINT(J)=XINT(J-1) + 1.13.*{Q(J-1)+FR(J-1))
C
C STARTING CONSTANT IN ENERGY EQUATION IS EVALUATED HERE. METHOD
C USED DEPENDS ON DPTION SPECIFIED IN INPUT.
C
C
C X(I) - X AT EDGE DF EACH PLAT'E
C START - UG*ISO*DELTA2 AT X=0
C
    X(1)=0.0
    DO 3214 JJ=2,24
    3214 X(JJ)=x(JJ-1)+1./3.
C
    SUM1=0.0
    SuM2=0.0
    SUM3=0.0
c
    WRITE (6,2136)
    2136 FORMAT(///)
C
    MMM=1
    IFIOPTION.EQ.1) MMM=NTRAV
    OO 3215 MM=1,MMM
    IFIOPTION.NE.11 GO TO 3318
        XDEL=XPROF(MM)/12.
```

```
XDELTA=DELTA2(MM)/12.
```

3318 CONTINUE
DO $3210 \mathrm{~J}=2,24$
IF(X(J).GE.XDEL) GO TO 3220
3210 CONTINUE
3220 XXINT $=$ XINT(J-1) + (XDEL-X(J-1) $) \neq$ XINT(J)-XINT(J-1))/(X(J)-X(J-1))
D0 $32 \mathrm{II} \mathrm{J}=2,24$
3211 IF (XST(J).GE.XDEL) GO TO 3212.
3212 XISO=ISO(J-1)
IF(XDEL.GT. (XST(J-1)+1./6.)) XISO=ISO(J)
XUG=UG(J-1)+(XDEL-XST(J-1) *\{UG(J)-UG(J-1))/(XST(J)-XST(J-1))
START $=X U G * X I S O * X D E L T A-X X I N T$
C
XSTART=12.*START/IUG(I)*ISO(1))
XREDEL = XSTART*UG(1)/(VISCGS(1)*12.)
WRITE (6,2135) XSTART, XREDEL
2135 FORMAT (3X'STARTING VALUE: ENTHALPY THICKNESS= ${ }^{2}$ F7.4,
1 10X'ENTHALPY REYNOLOS NUMBER='F6.01
SUM $1=$ SUM1 + START
SUM $2=$ SUM $2+\times$ START
SUM $3=$ SUM $3+$ XREDEL
3215 CONT INUE
START $=$ SUM $1 /$ MMM
SUM2=SUM2/MMM
SUM3 $=$ SUM $3 /$ MMM
WRITE $(6,3216)$
WRITE(6,2135) SUM2,SUM3
3216 FORMAT(/7X'AVERAGE')
C
C
C NOW THE ENERGY EQUATION CAN BE EVALUATED ALONG THE ENTIRE TEST
C SECTION. "TERM" IS UG*ISO*ENTH AT THE EDGE OF EACH PLATE. "ENTHNW" C AND "XST" ARE THE VALUES OF ENTHALPY THICKNESS AND X AT THE CENTER C DF EACH Plate.
C
TERM(1)=START
DO $3230 \mathrm{I}=2,25$.
TERM(I)=START + XINT(I)
 REDELN(NNN, $1-1)=$ UG ($1-1$)*ENTHNW(I-1)/(VISCGS(I-1)*12.)
3230 CONTINUE
C
C THO-DIMENSIONALITY CHECK: ENTHALPY THICKNESS CALCULATED FROM THE C PROFILES IS COMPARED TO THAT PREDICTED BY THE ENERGY EQUATION
C
C
C
C
WRITE 6,889)
WRITE(6,906) TITLE,DATE,RUN WRITE(6,3325) DO $3300 \mathrm{M}=1$, NTRAV DO $3305 \mathrm{~J}=1,24$
3305 IF(XST(J).GE.(XPROF(M)/12.) GO TO 3310
$3310 \operatorname{ENTHCK}(M)=\operatorname{ENTHNH}(\mathrm{J}-1)+\operatorname{XPROF}(M) / 12 .-X S T(J-1)) *(E N T H N H(3)-$
1 ENTHNW(J-1))/\{XST(J)-XST(J-1))
VEL=UG $(J-1)+(\operatorname{XPROF}(M) / 12 .-X S T(J-1)) /(X S T(J)-X S T(J-1)\}$
1 (UG(J)-UG(J-1))
XNU=VISCGS(J-1)
IF($\operatorname{XPROF}(M) / 12$.$) .GT: (\operatorname{XST}(J-1)+1.16 .1) \quad \operatorname{XNU}=\operatorname{VIS} \operatorname{SGS}(J)$
REYN=VEL*ENTHCK (M)/(XNU*12.1
$E R=(D E L T A 2(M)-E N T H C K(M)) / D E L T A 2(M) * 100$.

```
            WRITE(6,3320) PLATE(M),XPROF(M),DELTA2(M), ENTHCK(M), ER,REYN
            IF(IPUNCH.EQ.I) WRITE(7,3321) PLATE(M), XPROF(M),DELTA2(M),
            1 ENTHCK(M),ER,REYN
3300 CONTINUE
3325 FORMAT\///25X*THO-DIMENSIONALITY CHECK*//LOX*PLATE'10X*X*10X,
            1 'DELTA2'10X'DELTA2'IOX'PERCENT'IOX'PROFILE'/36X'(PROF)'IOX,
            2 \ST\ '8X,' ERROR"13X'RE.'/\
    3320 FORMAT(12X,12,8XF5.2.9XF6.4,10XF6.4,10XF5.1,12XF6.0)
    3321 FORMAT(I2,1X,F5.2,1X,F6.4,1X,F6.4,1X,F5.1,1X,F6.0)
C
C THIS SECTION HRITES OUT THE CORRECTED ST-REDEL RESULTS
C
            WRITE(6,3350)
    3350 FORMAT (/////2X, ADJUSTED RESULTS OF STANTON NUMBER VS ENTHALPY THIC
    1KNESS REYNOLDS NUMBER*)
            IF(NCST.EQ.1) WRITE(6,3351)
    3351 FORMAT(2OX'CORRECTED TO CONSTANT PROPERTIES')
            WRITE (6,960)
            00 3140 JJ=1,12
            JK= JJ+12
            WRITE(6,961) JJ,STN(NNN,JJ),REDELN(NNN,JJ), ENTHNW(JJ),
            l JK,STN(NNN,JK), REDELN(NNN,JK), ENTHNW(JK)
    3140 CONTINUE
C
            IFIIPUNCH.EQ.O1 GO TO 3144
            DO 3143 II=1,24
            XJ=4*II - 2
            WRITE(7,861) II,STN(NNN,II),REDELN(NNN,IT),ENTHNW(II),XJ
    3143 CONTINUE
    3144 CONTINUE
C
    200 CONTINUE
                IF(KD.EQ.NDATA) GO TO 1620
C
C NOW A NEW DATA RUN WILL BE COMPUTED AND SET UP FOR PLOTTING.
    NN=NN + NCURV
    KD=KD+1
            G0 T0 1610
C
C PLOTTING PREPARATION SECTION
C
    1620 IF(IPLOT.EQ.0) GO TO 1540
C
C IN THIS SECTION THE PLOT ARRAYS WERE FILLED, AND THE PLOTTING
C SUBROUTINE WAS CALLED.
C
    1540 CONTINUE
    1550 CONTINUE
            STOP
            END
C
```


[^0]: $\overline{I_{\text {References }} \text { will }}$ be denoted by brackets throughout this report.

[^1]: $\bar{I}_{\text {Summarized }}$ in this form by Bradshaw [12].

[^2]: $I_{\text {This }}$ point is seen more readily by writing the definition of K, for incompressible flow, in the form

[^3]: $3_{\text {The }}$ numerical procedure employed is a modification of the Spalding/Patankar procedure [26].

[^4]: $\bar{I}_{\text {The }}$ terminology of the data reduction computer program STANTON (Supplement 3) will be used throughout this discussion.

[^5]: $I_{\text {Length }}$ unit $=$ inches
 ${ }^{2}$ Subscript "i" refers to first profile recorded in accelerated region

