Technical Report 32-1382

The Motion of (48) Doris and the Mass of Jupiter
J. William Zielenbach

Technical Report 32-1382

The Motion of (48) Doris and the Mass of Jupiter

J. William Zielenbach

```
JET PROPULSION LABORATORY
CALIFORNIA INStItUTE OF TECHNOLOGY
    pasadena, california

Prepared Under Contract No. NAS 7-100
National Aeronautics and Space Administration

\section*{Preface}

The work described in this report was performed by the Mission Analysis Division of the Jet Propulsion Laboratory.

\section*{Acknowledgment}

The major portion of this work was completed while the author was a student in Washington, D.C. However, much of the final computation and critical analysis was performed in the Mission Analysis Division at JPL.

The author wishes to acknowledge the assistance of Raynor L. Duncombe of the United States Naval Observatory (USNO) and Douglas A. O'Handley of JPL, who directed the research. Paul M. Janiczek of the USNO and Jay H. Lieske and J. Derral Mulholland of JPL contributed much advice and constructive criticism. Paul Herget of the Cincinnati Observatory made available the observation files of the Minor Planet Center. Francis J. Heyden, S.J., provided the facilities of the Georgetown College Observatory. Computing support came from the staff members and facilities of Georgetown University, the USNO, and JPL.

Finally, the author appreciates the effort of those who responded to requests for positions remeasured from old plates: Th. Weimer, Algiers; G. v. Herk, Leiden; J. Dommanget, Uccle; A. Rohrmann, Heidelberg; R. Carrasco, Madrid; J. A. Bruwer, Johannesburg; H. Hirose, Tokyo; Y. Väisälä, Turku; C. Cristescu, Bucharest; L. Galkin, Crimean Astrophysical Observatory, H. J. M. Abraham, Mt. Stromlo; J. Fébrer, Barcelona; H. L. Giclas, Lowell; Betty Mintz, USNO; and the Goethe Link Observatory.

\section*{Contents}
I. Introduction ..... 1
II. Numerical Integration ..... 2
A. Equations To Be Integrated ..... 2
B. Method of Integration ..... 4
III. Numerical Infegration (Details of Application) ..... 6
IV. Least-Squares Differential Correction ..... 9
A. Conditional Equations ..... 9
B. Formation and Solution of Normal Equations ..... 9
V. Differential Correction Coefficients ..... 11
VI. Reduction of Observał̉ions ..... 14
A. Observed Angles ..... 14
B. Observation Time ..... 16
C. Observatory Location ..... 17
VII. Discussion of Observations ..... 17
A. Collection and Selection ..... 17
B. Distribution ..... 19
C. Weighting ..... 19
D. Residual Analysis ..... 19
E. Catalog Corrections ..... 24
VIII. Discussion of Final Results ..... 24
Appendix A. Modifications to Newcomb's Theory of the Sun ..... 30
Appendix B. Eckert-Brouwer Differential Correction Coefficients ..... 31
Appendix C. Observations and Residuals ..... 34
References ..... 48

\section*{Tables}
1. Physical constants ..... 9
2. Reciprocal solar masses ..... 9
3. Observatories ..... 18

\section*{Contents (contd)}
Tables (contd)
4. Analysis of residuals by observatory and type ..... 23
5. Comparison of published and rereduced observations ..... 24
6. Definitive elements for (48) Doris based on the system of masses in Table 1 ..... 27
7. Correlations in the solution for Keplerian elements ..... 29
8. Normal matrices for solutions with \(\partial \mathbf{r} / \partial \theta\) and variational equations, and with \(\partial \mathbf{r} / \partial m\) and Eckert-Brouwer set 3 ..... 29
A-1. Replacements in Newcomb's theory of the sun ..... 30
B-1. Eckert-Brouwer set 1 ..... 32
B-2. Eckert-Brouwer set 2 ..... 32
B-3. Eckert-Brouwer set 3 ..... 33

\section*{Figures}
1. Comparison of a predictor-only run with a predictor-corrector run, both of eighth order and 4-day stepsize ..... 7
2. Effect of stepsize-predictor-corrector run at 8 days, minus one at 4 days ..... 8
3. Right-ascension residuals for reference orbit ..... 20
4. Distribution of observations ..... 21
5. Equatorial \(x\) and \(y\) coordinates of earth and (48) Doris at observation times ..... 22
6. Numerically integrated partial derivatives \(\partial x / \partial x_{0}\) ..... 25
7. Finite difference \(\Delta x / \Delta x_{0}\) —numerically integrated \(\partial x / \partial x_{0}\). ..... 26
8. Declination residuals for reference orbit ..... 28

\begin{abstract}
A definitive orbit is obtained for (48) Doris based upon the provisional reciprocal mass of Jupiter. Numerically integrated variational equations for the coordinates of Doris with respect to its initial rectangular coordinates and velocities and the mass of Jupiter are used to differentially correct the orbit of Doris and the mass of Jupiter. The reciprocal mass obtained, using 617 observations over a 110 -yr time span, is \(1047.340 \pm 0.016\).
\end{abstract}

\title{
The Motion of (48) Doris and the Mass of Jupiter
}

\section*{I. Introduction}

Jupiter is the most massive planet in the solar system and has an important gravitational influence on the motion of all other bodies in the solar system. Since the gravitational effect is dependent upon the mass of Jupiter, this mass must be determined for accurate representation of planetary and interplanetary motions.

The mass of the planet itself is not easily determined from the motion of its satellites because the size and shape of the disk make it difficult to measure their positions with respect to the center of the planet. The interaction of the inner satellites is quite complicated, and relatively few observations have been made of the outer, less perturbed satellites. Consequently, investigators have tended to analyze the gravitational effect of the whole Jupiter system at interplanetary distances.

Newcomb (Ref. 1) pointed out that perhaps the best determination of the mass by classical astronomical methods would be that afforded by the motion of minor planets (asteroids) because their positions can be more precisely observed than can those of comets or major
planets. Moreover, the general location of the belt of asteroids between Mars and Jupiter makes the asteroids highly susceptible to Jovian perturbations. The paragraphs that follow indicate the reasons why certain asteroids are more suitable than others for determining the mass of Jupiter by classical astronomical methods.

From the theory of general perturbations (Ref. 2, p. 467), it is known that the disturbing function \(\mathscr{R}\) for any object perturbed by a body of mass \(m^{\prime}\) is given by
\[
\begin{aligned}
\mathscr{R}= & k^{2} \frac{m^{\prime}}{m_{\odot}+m^{\prime}} \sum_{j, k, m, j^{\prime}, k^{\prime}, m^{\prime}} F\left(a, a^{\prime}, e, e^{\prime}, i, i^{\prime}\right) \\
& \cos \left(j \Omega+k \omega+m M+j^{\prime} \Omega^{\prime}+k^{\prime} \omega^{\prime}+m^{\prime} M^{\prime}\right)
\end{aligned}
\]
where \(a, e, i, \Omega, \omega\), and \(M\) are the usual Keplerian elements for the perturbed body and the primed quantities are the elements of the perturbing planet. The analytical expressions for the time variations of the elements of the perturbed body are obtained by integration. Since the mean anomaly \(M\) can be written as
\[
M=n t+\sigma
\]
where \(n\) is the mean motion and \(t\) is the time elapsed since \(M\) equaled \(\sigma\), the trigonometric term can be written
\[
\cos \left[\left(j n+j^{\prime} n^{\prime}\right) t+\theta\left(j, j^{\prime}, k, k^{\prime}, m, m^{\prime}, \Omega, \Omega^{\prime}, \omega, \omega^{\prime}, \sigma, \sigma^{\prime}\right)\right]
\]
which, when integrated, will have a term involving ( \(j n+j^{\prime} n^{\prime}\) ) in the denominator. If there is a near commensurability of the mean motions \(n\) and \(n^{\prime}\) for indices \(j\) and \(j^{\prime}\), the resulting coefficient of the theory is large and the period of the trigonometric term is long.

In 1873, G. W. Hill (Ref. 3) drew attention to the fact that the Hecuba group of minor planets has nearly \(2: 1\) commensurabilities of mean motions with Jupiter. This gives rise to periodic perturbations of large amplitudes, whose periods are short enough to be observed within a reasonable length of time. He pointed out that, since proximity to Jupiter greatly affects the magnitude of the perturbations, asteroids with large semimajor axes, as well as highly elliptic orbits whose aphelia are near Jupiter, would be most desirable (as long as the mutual inclination of the two orbits is small). These criteria are fulfilled to a greater or lesser degree by the 13 minor planets he recommended for future observation and analysis.

Minor planet (48) Doris is one of this group. Its long period term is about 72 yr , and there has been ample opportunity to observe it since its discovery in 1857. The perturbation in longitude has an amplitude slightly under \(1.5^{\circ}\), making it the least affected of the 13 asteroids.

This report contains a study of the motion of (48) Doris and a numerical analysis of the effect of Jupiter upon this motion.

Variational equations with respect to the rectangular starting coordinates and the mass of Jupiter were obtained for the coordinates of the minor planet by numerical integration. A definitive reference orbit was obtained by differentially correcting numerically integrated orbits, using 617 observations. The resultant reciprocal mass for the Jupiter system, as determined by these observations, is \(1047.340 \pm 0.016\).

The sections that follow include descriptions of the reduction techniques for putting all of the observations on a common system, the numerical integration of the equations of motion and their partial derivatives, the method and statistics of the solution of the conditional equations, and the formation of the differential correction coefficients. The input observations and final
results are critically analyzed, and the various computational aspects of the problem are discussed with the benefit of hindsight and with an eye to future research.

\section*{II. Numerical Integration}

Numerical solution of differential equations has become common with the advent of electronic computers. This is especially true for cases of perturbed motion for which no complete analytical formulation is available. A typical example is the calculation of planetary orbits by the method of special perturbations. This section begins with a description of the basic differential equation of motion to be integrated, along with its partial derivatives with respect to various parameters. It concludes with a brief description of the techniques used in the integration and a presentation of general starting conditions.

The equation of motion and its derivatives have been expressed in a center-of-mass (c.m.) frame because the amount of computation required to evaluate \(\ddot{\mathbf{r}}\) for one object perturbed by \(n\) planets and the sun is roughly \((n+1) /(2 n+1)\) of that required in heliocentric coordinates. Transforming any quantity from barycentric to heliocentric merely involves subtracting the appropriate barycentric value for the sun. Depending upon the number of equations being integrated and the bodies to which they refer, it is sometimes more efficient, however, to integrate the heliocentric variational equations with respect to the starting coordinates because the orbits being corrected are traditionally heliocentric.

\section*{A. Equations To Be Integrated}

By considering the magnitude of the effects of general relativity and oblateness of perturbing bodies upon the orbit of (48) Doris, it can be seen that the motion of this minor planet is adequately described by a nonrelativistic point mass equation of motion. The resulting expression for a body with mass \(m_{i}\), acted upon by \(n\) other bodies of mass \(m_{j}\), is given in the c.m. system by
\[
\begin{equation*}
\frac{d^{2}}{d t^{2}} \mathbf{r}_{i}=\frac{d}{d t} \dot{\mathbf{r}}_{i}=\ddot{\mathbf{r}}_{i}=-k^{2} \sum_{j \neq i} m_{j} \frac{\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)}{\rho_{i j}^{\mathbf{3}}} \tag{1}
\end{equation*}
\]
where \(\mathbf{r}_{i}\) and \(\mathbf{r}_{j}\) are barycentric coordinate vectors of the bodies with mass \(m_{i}\) and \(m_{j}\), and \(\rho_{i j}=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\). The expression is just Newton's law of gravitation, where \(k\) is the Gaussian constant \(0.01720209895\left(\mathrm{AU}^{3} / \mathrm{day}^{2}\right.\) solar masses \()^{1 / 2}\).

The major effect of considering relativity was found to be a \(0^{\prime \prime} 2285 /\) century advance of the perihelion of (48) Doris. Because this value is negligible in comparison with the errors of observation, Eq. (1) was deemed suffcient for generating the orbit of (48) Doris. Relativistic effects are important for the earth, but, as will be seen below, are already included in the ephemerides of that body. The perturbative effect of oblate bodies was also considered. The objects most liable to affect (48) Doris in this regard are the sun and Jupiter. However, their influence can be neglected.

The conclusion that neither the sun nor Jupiter causes a significant oblateness perturbation is based upon the calculations that follow.

Define the oblateness \(\Delta\) of an object in terms of its equatorial and polar radii \(r_{e}\) and \(r_{p}\) by \(\Delta=\left(r_{e}-r_{p}\right) / r_{p}\). With Dicke's value (Ref. 4) of \(\Delta=5 \times 10^{-5}\) as an upper limit for the sun, the predicted centennial perihelion advance of (48) Doris is \(0 \% 0027\), whereas that of the earth is \(0: 1403\). The total effect upon the position of (48) Doris is far below the errors of observation. An upper limit for the effect of Jupiter is obtained by letting (48) Doris orbit that body at the distance of its closest
approach to the planet-roughly 2 astronomical units (AU). The resulting centennial advance caused by a Jovian oblateness of 0.062 is less than \(0^{\prime}, 00015\).

In view of the requirements of differential correction processes, it is desirable to consider the partial derivatives of the equation of motion with respect to parameters whose values might be improved. Since \(k\) is invariable by convention, Eq. (1) is explicitly a function only of masses and coordinates. Partial derivatives for each of these quantities are developed in the paragraphs that follow.

If an improved value for the mass of a planet \(m_{j}^{\prime}\) can be so written in terms of an existing mass \(m_{j}\) by means of a correction factor \(\left(1+\theta_{j}\right)\) that
\[
\begin{equation*}
m_{j}^{\prime}=\left(1+\theta_{j}\right) m_{j} \tag{2}
\end{equation*}
\]
then the partial derivative of Eq. (1) with respect to \(\theta_{j}\) is
\[
\begin{equation*}
\frac{d^{2}}{d t^{2}} \frac{\partial \mathbf{r}_{i}}{\partial \theta_{j}}=\frac{d}{d t} \frac{\partial \dot{\mathbf{r}}_{i}}{\partial \theta_{j}}=\frac{\partial \ddot{\mathbf{r}}_{i}}{\partial \theta_{j}}+\frac{\partial \ddot{\mathbf{r}}_{i}}{\partial \mathbf{r}_{i}} \frac{\partial \mathbf{r}_{i}}{\partial \theta_{j}}+\sum_{k \neq j, i} \frac{\partial \ddot{\mathbf{r}}_{i}}{\partial \mathbf{r}_{k}} \frac{\partial \mathbf{r}_{k}}{\partial \theta_{j}} \tag{3}
\end{equation*}
\]

The quantities \(\partial \ddot{\mathbf{r}}_{i} / \partial \mathbf{r}_{i}, \partial \mathbf{r}_{i} / \partial \mathbf{r}_{k}\), and \(\partial \ddot{\mathbf{r}} / \partial \theta_{j}\) are given in Eq. (4). (It should be noted that the derivative of a vector with respect to a vector is introduced as a notational convenience only.)
\[
\begin{align*}
& \Delta x=\mathbf{x}_{i}-\mathbf{x}_{j}, \quad \Delta y=\mathbf{y}_{i}-\mathbf{y}_{j}, \quad \Delta z=\mathbf{z}_{i}-\mathbf{z}_{j}  \tag{4a}\\
& \rho=\left(\Delta x^{2}+\Delta y^{2}+\Delta z^{2}\right)^{1 / 2}  \tag{4b}\\
& \frac{\partial \ddot{\mathbf{r}}_{i}}{\partial \mathbf{r}_{i}}=-k^{2}\left|\begin{array}{l}
\sum_{j} m_{j}\left(\frac{3 \Delta x^{2}}{\rho^{5}}-\frac{1}{\rho^{3}}\right) \quad 3 \sum_{j} m_{j} \frac{\Delta x \Delta y}{\rho^{5}} \\
3 \sum_{j} m_{j} \frac{\Delta y \Delta x}{\rho^{5}}
\end{array} \sum_{j} \sum_{j} m_{j}\left(\frac{3 \Delta y^{2}}{\rho^{5}}-\frac{1}{\rho^{5}}\right) \quad 3 \sum_{j} m_{j} \frac{\Delta y \Delta z}{\rho^{5}}\right|\left|\begin{array}{ll}
3 \sum_{j} m_{j} \frac{\Delta z \Delta x}{\rho^{5}} & 3 \sum_{j} m_{j} \frac{\Delta z \Delta y}{\rho^{5}} \quad \sum_{j} m_{j}\left(\frac{3 \Delta z^{2}}{\rho^{5}}-\frac{1}{\rho^{3}}\right)
\end{array}\right|  \tag{4c}\\
& \begin{array}{c}
\partial \neq i \\
\frac{\partial \mathbf{r}_{i}}{j}
\end{array}=+k^{2} m_{j}\left|\begin{array}{lcc}
\begin{array}{l}
\left.\frac{3 \Delta x^{2}}{\rho^{5}}-\frac{1}{\rho^{3}}\right) \\
\frac{3 \Delta y \Delta x}{\rho^{5}} \\
\rho^{5}
\end{array} & \frac{3 \Delta x \Delta z}{\rho^{5}} \\
\frac{3 \Delta z \Delta x}{\rho^{5}} & \left.\frac{3 \Delta y^{2}}{\rho^{5}}-\frac{1}{\rho^{3}}\right) & \frac{3 \Delta y \Delta z}{\rho^{5}} \\
& \left(\frac{3 \Delta z^{2}}{\rho^{5}}-\frac{1}{\rho^{3}}\right)
\end{array}\right|  \tag{4~d}\\
& \frac{\partial \ddot{\mathbf{r}}_{i}}{\partial \theta_{j}}=-k^{2} m_{j} \frac{\mathbf{r}_{i}-\mathbf{r}_{j}}{\rho^{3}} \tag{4e}
\end{align*}
\]

Partial derivatives with respect to the coordinates can also be written explicitly, but other considerations should be introduced to render them applicable for the differential correction of orbits.

Because the position and velocity of an object are obtained by integrating differential equations, their values at any time depend ultimately upon the integration constants which are related to the boundary conditions satisfied by the differential equations. It follows thatif the functional expression of, and independent variables in, the differential equations remain unchanged-the only means of generating a different orbit using the equations is to modify the starting constants. For orbit correction, then, it is desirable to have expressions showing the dependence of the position and velocity (at any time) upon the initial position and velocity. In general, because some of the independent variables (namely, the \(\mathbf{r}_{j}\) variables) depend upon their own starting conditions, it is conceivable to relate \(\mathbf{r}_{i}\) to the starting coordinates of any object \(m\), including itself. If \(\mathbf{u}_{m_{0}}=\left(\mathbf{r}_{m_{0}}, \dot{\mathbf{r}}_{m_{0}}\right)\), then, by differentiating Eq. (1) with respect to \(\mathbf{r}_{m}\) and applying the chain rule,
\[
\begin{align*}
\frac{d^{2}}{d t^{2}} \frac{\partial \mathbf{r}_{i}}{\partial \mathbf{u}_{m_{0}}} & =\frac{d^{2}}{d t^{2}} \frac{\partial \mathbf{r}_{i}}{\partial \mathbf{r}_{m}} \frac{\partial \mathbf{r}_{m}}{\partial \mathbf{u}_{m_{0}}} \\
& =\frac{d}{d t} \frac{\partial \mathbf{r}_{i}}{\partial \mathbf{u}_{m_{0}}}=\frac{d}{d t} \frac{\partial \mathbf{r}_{i}}{\partial \mathbf{r}_{n}} \frac{\partial \mathbf{r}_{m}}{\partial \mathbf{u}_{m_{0}}} \\
& =\frac{\partial \ddot{\mathbf{r}}_{i}}{\partial \mathbf{r}_{i}} \frac{\partial \mathbf{r}_{i}}{\partial \mathbf{r}_{m}} \frac{\partial \mathbf{r}_{m}}{\partial \mathbf{u}_{m_{0}}}+\sum_{k \neq m, i} \frac{\partial \mathbf{r}_{i}}{\partial \mathbf{r}_{k}} \frac{\partial \mathbf{r}_{k}}{\partial \mathbf{r}_{m}} \frac{\partial \mathbf{r}_{m}}{\partial \mathbf{u}_{m_{0}}} \\
& =\frac{\partial \ddot{\mathbf{r}}_{i}}{\partial \mathbf{r}_{i}} \frac{\partial \mathbf{r}_{i}}{\partial \mathbf{u}_{m_{0}}}+\sum_{k \neq m, i} \frac{\partial \ddot{\mathbf{r}}_{i}}{\partial \mathbf{r}_{k}} \frac{\partial \mathbf{r}_{k}}{\partial \mathbf{u}_{m_{0}}} \tag{5}
\end{align*}
\]

Eq. (4) contains mathematical definitions of the terms involved.

As no attempt was made to improve the orbit of any planet by means of perturbation effects upon (48) Doris, Eq. (5) was not used for \(m \neq i\). When \(m=i\), and \(i\) is considered massless, the cross terms become meaningless and may be neglected.

\section*{B. Method of Integration}

The numerical integration of these differential equations can be accomplished by a variety of techniques. In this report, a method derived from the Lagrangian interpolation polynomial was used to start the integrations,
whereas a modified backward difference approach was used for extrapolation. Both techniques can be used for single or double integration of the function \(f(t)\), whose tabular values are defined by
\[
\begin{equation*}
f\left(t_{i}\right)=\frac{d}{d t} g\left(t_{i}\right)=\frac{d^{2}}{d t^{2}} h\left(t_{i}\right) \tag{6}
\end{equation*}
\]

The Lagrangian interpolation formula (Ref. 5) expresses the value of a function \(f(t)\) at any point \(t=\tau\) to within some error \(R_{n}(\tau)\) by
\[
\begin{equation*}
f(\tau)=\sum_{-n / 2}^{+n / 2} i \ell_{i}(\tau) f\left(t_{i}\right)+R_{n}(\tau) \tag{7}
\end{equation*}
\]
where
\[
\begin{align*}
\ell_{i}(\tau) & =\frac{\Pi_{n}(\tau)}{\left(t-t_{i}\right) \Pi_{n}\left(t_{i}\right)} \\
& =\frac{\left(\tau-t_{0}\right) \cdots\left(\tau-t_{i-1}\right)\left(\tau-t_{i+1}\right) \cdots\left(\tau-t_{n}\right)}{\left(t_{i}-t_{0}\right) \cdots\left(t_{i}-t_{i-1}\right)\left(t_{i}-t_{i+1}\right) \cdots\left(t_{i}-t_{n}\right)} \tag{8}
\end{align*}
\]

Let \(F(\tau)\) represent the literal polynomial given by the summation term in Eq. (7), when \(\tau\) is indefinite. The first and second integrals of \(F(\tau)\), denoted \(F^{1}(\tau)\) and \(F^{2}(\tau)\), are defined by
\[
\begin{align*}
& F^{1}(\tau)=\sum_{i} L_{i}^{1}(\tau) f\left(t_{i}\right)+C^{1}  \tag{9}\\
& F^{2}(\tau)=\sum_{i} L_{i}^{2}(\tau) f\left(t_{i}\right)+C^{1} \tau+C^{2} \tag{10}
\end{align*}
\]
where \(L^{1}\) and \(L^{2}\) are the corresponding integrals of \(\ell\) in Eq. (7), and \(C^{1}\) and \(C^{2}\) are integration constants. The value of the desired integral \(F^{k}\) at any point \(\tau\) in terms of its value at any other point \(\tau^{\prime}\) is simply \(F^{k}(\tau)-F^{\prime k}\left(\tau^{\prime}\right)\). If it is assumed that \(g\left(t_{i}\right) \simeq F^{1}\left(t_{i}\right)\) and \(h\left(t_{i}\right) \simeq F^{2}\left(t_{i}\right)\), Eqs. (9) and (10) provide a means for integrating Eq. (6).

In practice, the initial conditions \(g\left(t_{0}\right)\) and \(h\left(t_{0}\right)\) define \(F^{1}\left(t_{0}\right)\) and \(F^{2}\left(t_{0}\right)\), and thereby define the integration constants. The source of the initial conditions for the various equations is discussed below. Because the nonrelativistic equation of motion was chosen, the expression for the acceleration does not involve the velocity. Also, none of
the other functional expressions for the second derivatives involves the first derivatives. This means that it is possible to use Eq. (10) iteratively to obtain converged values for each \(h\left(t_{i}\right)\), and then apply Eq. (9) once to determine each \(g\left(t_{i}\right)\).

Means will be mentioned below for computing approximate values \(h\left(t_{i}\right)\) from which \(f\left(t_{i}\right)\) is derived. The complete set of \(n+1\) points \(f\left(t_{i}\right)\) can be used in Eq. (10) to estimate some new \(h\left(t_{i}\right)\), which redefines \(f\left(t_{i}\right)\). The process is applied for \(n\) terms \(h\left(t_{k}\right)\) in the order \(k=+1\), \(-1,+2, \cdots+n / 2,-n / 2\), and iterated to an arbitrary criterion of convergence. Because \(h\left(t_{0}\right)\) is an epoch condition, it remains unaltered; it could never be changed by Eq. (10) since
\[
\begin{equation*}
\sum_{i} L_{i}^{2}\left(t_{0}\right) f\left(t_{i}\right)=\sum_{i} L_{i}^{1}\left(t_{0}\right) f\left(t_{i}\right)=0 \tag{11}
\end{equation*}
\]

The converged points \(h\left(t_{i}\right)\) imply converged values of \(f\left(t_{i}\right)\), from which each \(g\left(t_{i}\right)\) can be derived by Eq. (9).

The starting conditions for the equation of motion are the epoch position and velocity in the appropriate frame of reference. The initial partial derivatives of barycentric coordinates with respect to a mass factor \(\theta_{j}\) are obtained by differentiating the expression for the c.m. with respect to \(\theta_{j}\). In the c.m. system, if \(\mathbf{U}_{c}\) represents the coordinates or any of their time derivatives, then
\(\frac{\partial \mathbf{U}_{c}}{\partial \theta_{j}}=\frac{\partial}{\partial \theta_{j}} \frac{\sum\left(1+\theta_{i}\right) \mathbf{U}_{i} m_{i}}{\sum\left(1+\theta_{i}\right) m_{i}}=\frac{m_{j} \mathbf{U}_{j}}{\sum\left(1+\theta_{i}\right) m_{i}}\)
The change in initial barycentric \(\mathbf{U}_{i}\) of any object due to \(\theta_{j}\) is just the negative of \(\partial \mathbf{U}_{c} / \partial \theta_{j}\). In transforming to heliocentric, these quantities all become zero. The initial values for the variational equations with respect to coordinates and velocities are the same in any reference frame. By inspection of Eq. (5), for \(m=i\),
\(\frac{\partial \mathbf{r}_{i}}{\partial \mathbf{r}_{i_{0}}}=\mathbf{I}, \frac{\partial \mathbf{r}_{i}}{\partial \dot{\mathbf{r}}_{i_{0}}}=\boldsymbol{\phi}, \frac{\partial \dot{\mathbf{r}}_{i}}{\partial \mathbf{r}_{i_{0}}}=\boldsymbol{\phi}, \frac{\partial \dot{\mathbf{r}}_{i}}{\partial \dot{\mathbf{r}}_{i_{0}}}=\left.\mathbf{I}\right|_{t=t_{0}}\)
where \(I\) and \(\phi\) are the identity and null matrices, respectively. For \(m \neq i\), all of the above expressions are \(\phi\).

As approximate values for the starting table of the equations of motion, two-body orbits can be used, computed from the \(f\) and \(g\) series or from osculating Keplerian
elements. For the variational equations with respect to starting coordinates, the boundary conditions can be propagated throughout the table. An alternate approach is Goodyear's expressions (Ref. 6) for the two-body partial derivatives, in which the necessary position and velocity are obtained from the already converged perturbed orbit. The derivatives for the mass can be approximated sufficiently by the first term in Eq. (3).

The extrapolation procedures use backward difference techniques as follows: In the conventional difference operator notation, and by the use of the previous definition of \(f, g\), and \(h\), with integration stepsize \(t^{\prime}\),
\[
\begin{equation*}
\nabla g\left(t_{k}\right)=\int f(t) d t=t^{\prime}\left[\frac{-\nabla}{\ln (1-\nabla)}\right] f\left(t_{k}\right) \tag{14}
\end{equation*}
\]
and
\[
\begin{equation*}
\nabla^{2} h\left(t_{k}\right)=\iint f(t) d t=t^{\prime 2}\left[\frac{-\nabla}{\ln (1-\nabla)}\right]^{2} f\left(t_{k}\right) \tag{15}
\end{equation*}
\]

These are difference rather than sum forms of the classical corrector formulas for single and double integration. The predictor formulas are obtained by applying the shift operator \(E=(1-\nabla)^{-1}\) to the above:
\[
\begin{equation*}
E \nabla \mathrm{~g}\left(t_{k}\right)=\nabla \mathrm{g}\left(t_{k-1}\right)=(1-\nabla)^{-1} t^{\prime}\left[\frac{-\nabla}{\ln (1-\nabla)}\right] f\left(t_{k}\right) \tag{16}
\end{equation*}
\]
and
\(E \nabla^{2} h\left(t_{k}\right)=\nabla^{2} h\left(t_{k-1}\right)=(1-\nabla)^{-1} \boldsymbol{t}^{\prime 2}\left[\frac{-\nabla}{\ln (1-\nabla)}\right]^{2} f\left(t_{k}\right)\)

The backward differences can be expressed in terms of the tabular values of \(f\), using the binomial coefficients, so that the final equations involve coefficients only of \(f\).

The formulas actually used for Eqs. (14) through (17) are of the \(n\)th order for the predictor and \((n+1)^{\text {th }}\) for the corrector:
\[
\begin{align*}
& g\left(t_{k}\right)=g\left(t_{k-1}\right)+\sum_{i=-1}^{-(n+1)} P_{i} f\left(t_{k+i}\right)  \tag{18}\\
& h\left(t_{k}\right)=2 h\left(t_{k-1}\right)-h\left(t_{k-2}\right)+\sum_{i=-1}^{-(n+1)} Q_{i} f\left(t_{k+i}\right)  \tag{19}\\
& g\left(t_{k}\right)=g\left(t_{k-1}\right)+\sum_{i=0}^{-(n+1)} R_{i} f\left(t_{k+i}\right) \tag{20}
\end{align*}
\]
\[
\begin{equation*}
h\left(t_{k}\right)=2 h\left(t_{k-1}\right)-h\left(t_{k-2}\right)+\sum_{i=0}^{-(n+1)} S_{i} f\left(t_{k_{k+i}}\right) \tag{21}
\end{equation*}
\]

The coefficients \(P_{i}, Q_{i}, R_{i}\), and \(S_{i}\) are those just described.

\section*{III. Numerical Integration (Details of Application)}

The theory presented in Section II was implemented in an \(n\)-body program for numerical integration. Variational equations for any object, and derivatives of the coordinates of any object with respect to the mass of any other body, could be integrated simultaneously with the equations of motion. The option existed either to generate the ephemerides of the perturbing bodies or to assume them as input.

The integration of coordinates was checked by comparison with Refs. 7 and 8. The variational equations for the rectangular coordinates agreed satisfactorily with finite-difference partial derivatives (see Section VIII) and with the variational equations derived by other investigators. The form of the equations for these quantities was complete, involving no neglected terms other than the remainders always present in numerical integration.

The derivatives with respect to the mass of Jupiter were computed for (48) Doris and the earth, using the first two terms of Eq. (3). The cross terms have been assumed by other investigators to be negligible in view of the precision requirements of differential correction. It was hoped, at first, that these terms could be integrated and their behavior examined, but core storage limitations and the increased computer time were prohibitive. It may be possible that the accuracy resulting from inclusion of such second-order terms will never be necessary for analysis of visual observations.

The derivatives with respect to the mass, unlike the variational equations for the rectangular coordinates, are dependent upon the coordinate system. If the derivatives of the barycentric coordinates of the sun were being integrated, derivatives of the barycentric coordinates of (48) Doris and the earth could then be reduced to heliocentric, as mentioned in Section II; because this would require more computation than partial derivatives of the heliocentric coordinates, however, the latter approach was chosen. The technique was checked with that used by Lieske (Ref. 9).

The actual process of numerical integration could be of any arbitrary order. In view of core limitations, a
method using eighth differences of the second derivatives was selected. This scheme was found to be sufficiently accurate over 110 yr to allow a 4-day interval to be used in the integration. The integration could be run with a predictor-only, or with a predictor-corrector arrangement that iterated to absolute convergence. With the shorter stepsize, it was hoped that the predictor-only arrangement would be sufficiently accurate for the purposes at hand since, on the average, it consumed less time than the predictor-corrector arrangement at 8 days.

Figure 1 compares a predictor-only run with a predictor-corrector run (4-day stepsize). Since (48) Doris orbits the sun at a distance of about 3 AU , the maximum difference represents \(2 \times 10^{-6} \mathrm{rad}\) or about \(0 \% 5 /\) century in heliocentric longitude, amounting to \(0.75 /\) century at the earth. This discrepancy, although a source of systematic error, was considered as admissible as the difference due to neglecting relativity. The contribution to Fig. 1 made by roundoff is shown in Fig. 2. Because of the secular runoff, it was difficult to compare the results with the \(0.1184 n^{3 / 2}\) last-place accumulated error predicted by Brouwer (Ref. 10) for \(n\) integration steps.

Presumably, the effect of both of the errors mentioned above would be ameliorated by choosing an epoch around 1910 and integrating forward and backward from that point. This approach was rejected in favor of the continuous backward integration because it was very difficult to reverse one or the other of the integrated output tapes on the computer.

Neither the variational equations nor the derivatives with respect to mass were examined for this type of accuracy because it was felt that the differences would not noticeably affect the differential correction process. This was, in fact, the case. The differential improvement worked well even with theoretically approximate derivatives.

The \(n\)-body program was designed to enable computation of perturbation ephemerides that were dynamically consistent, as well as to permit simultaneous integration of numerous massless bodies with subsequent reduction of perturbation ephemeris input time. To integrate a dynamically consistent perturbation ephemeris required the choice of starting values for the major planets. Schubart and Stumpff (Ref. 11) have published a set of values for the planets Venus through Pluto, but it was


Fig. 1. Comparison of a predictor-only run with a predictor-corrector run, both of eighth order and 4-day stepsize
decided to incorporate Mercury in the work on (48) Doris. Lieske's Development Ephemeris 28 (see Ref. 8) is a Newtonian \(n\)-body integration fit to standard astronomical ephemerides of all nine planets; since it was available on tape, and had been used as a check for the integration described earlier, it was used as the actual input ephemeris.

In addition to the Newtonian ephemerides, Ref. 8 also contains differences between relativistic and Newtonian coordinates for all of the planets. It further includes the \(7: 700 /\) century effect of the acceleration of the moon on the earth-moon barycenter.

The tabular interval in Ref. 8 is 4 days. Because a predictor-only approach was used, this became the integration stepsize for (48) Doris. All integrated quantities were written at each step so that the input for the differential correction contained coordinates and partial derivatives at 4 -day intervals. These were interpolated, as described in Section V, using an eighth-order Lagrangian formula (see Eq. 7).

The International Astronomical Union (IAU) system of planetary masses was used in Ref. 8 and in the studies of (48) Doris. Physical constants used are listed in Table 1, and values for the reciprocal masses appear in Table 2.


Fig. 2. Effect of stepsize-predictor-corrector run at 8 days, minus one at 4 days

Table 1. Physical constants
\begin{tabular}{|c|c|c|}
\hline Constant & Symbol & Value \\
\hline Obliquity at 1950.0 & \(\epsilon 1950.0\) & \(23^{\circ} 26^{\prime} 44^{\prime \prime} .836\) \\
\hline Aberration constant & k & 20". 4958 \\
\hline Light time for 1 AU & \(1 / C_{A}\) & \(499.012=0.00577560185^{\text {d }}\) \\
\hline Equatorial radius of earth, km & a & 6378.160 \\
\hline Flattening factor & \(f\) & 298.25 \\
\hline Astronomical unit, km & AU & 149,600,000 \\
\hline Annual rate of lunisolar precession on fixed ecliptic of date & \(\psi^{\prime}\) & \(50.13708+0^{\prime \prime} .0050\) T \\
\hline Annual rate of planetary precession of date & \(\lambda^{\prime}\) & 0.1247-0.0188T \\
\hline Eccentricity of earth & e & \[
\begin{aligned}
0.01675104 & -0.00004180 \mathrm{~T} \\
& -0.000000126 \mathrm{~T}^{2}
\end{aligned}
\] \\
\hline Longitude of perihelion of earth & \(\bar{\omega}\) & \[
\begin{aligned}
281^{\circ} 13^{\prime} 15^{\prime \prime} .00 & +6189^{\prime \prime} .03 \mathrm{~T} \\
& +1.63 T^{2}+0.012 T^{3}
\end{aligned}
\] \\
\hline
\end{tabular}

Table 2. Reciprocal solar masses
\begin{tabular}{|l|c|}
\hline Body & Reciprocal solar mass \\
\hline Mercury & \(6,000,000\) \\
Venus & 408,000 \\
Earth-moon & 329,390 \\
Mars & \(3,093,500\) \\
Jupiter & 1047.355 \\
Saturn & 3501.6 \\
Uranus & 22,869 \\
Neptune & 19,314 \\
Pluto & \(3,600,000\) \\
\hline
\end{tabular}

\section*{IV. Least-Squares Differential Correction}

\section*{A. Conditional Equations}

The basic concept behind differential correction techniques is that the difference between an observed and a computed value can be represented by the derivative terms of a Taylor series in the parameters to be corrected, evaluated with approximate values of the parameters. For example: If a quantity \(F^{*}\) is represented by some function \(f\) of \(n\) parameters \(g_{k}\) for which approximate values \(g_{k}^{\prime}\) are known, and an additional \(m\) parameters \(h_{s}\) whose values are known exactly, \(F^{*}\) may be expressed as
\[
\begin{gather*}
F^{*}=f\left(g_{1}^{\prime}, \cdots g_{n}^{\prime}, h_{1}, \cdots h_{m}\right)+\left.\sum_{k} \frac{\partial f(g, h)}{\partial g_{k}}\right|_{g^{\prime}} \Delta g_{k} \\
+\left.\frac{1}{2} \sum_{i} \sum_{k} \frac{\partial^{2} f(g, h)}{\partial g_{k} \partial g_{i}}\right|_{g^{\prime}} \Delta g_{k} \Delta g_{i}+\cdots \tag{22}
\end{gather*}
\]
where \(\Delta g_{k}=g_{k}-g_{k}^{\prime}\). Because there is often reason to believe that the corrections \(\Delta g\) are small enough to warrant neglecting the higher-order terms, the series is usually truncated after the first order; the resulting linear expressions are then used to solve for \(n\) values \(\Delta g_{k}\). Actually, because of the truncation, the solution yields some \(\Delta g_{k}\). The first term on the right side of Eq. (22) gives some value \(F^{\prime}\), so that each member of the set of linear equations to be solved is of the form
\[
\begin{equation*}
F^{*}-F^{\prime}=\left.\sum_{k} \frac{\partial f(g, h)}{\partial g_{k}}\right|_{g^{\prime}} \Delta g_{k} \tag{23}
\end{equation*}
\]

For the hypothetical case in which there are \(n\) such equations, and the correct set of parameters \(g_{k}\) is known from independent means, it is often possible to iterate the procedure until it converges to these values (as long as the original estimate for each parameter \(g_{k}^{\prime}\) is sufficiently close to the correct value). The question of how close is sufficiently close depends upon the behavior of the partial derivatives \(\partial f /\left.\partial g_{k}\right|_{g^{\prime}}\) as \(g_{k}^{\prime}\) approaches \(g_{k}\).

The effect of approximations in the formulation of the derivatives \(\partial f / \partial g_{k}\) also depends upon the above mentioned behavior, as well as the degree to which the actual \(\partial f /\left.\partial g_{k}\right|_{g^{\prime}}\) is represented by the approximation. The functions \(f\) presented in Section V fortunately allow some well-known approximations, which are described there. In Section VIII, the results obtained with formally correct derivatives are compared to those obtained with approximations.

\section*{B. Formation and Solution of Normal Equations}

In reality, all physical quantities \(g_{k}\) are determined empirically; therefore, it is difficult (if not meaningless) to speak of correct, true, or absolute values for such parameters. Instead, one speaks of the most probable values for the set of parameters in view of the data being used. The data generally have some errors caused by a combination of factors, but the distribution of the errors is usually assumed to be the most probable one to be expected from the "correct" values of \(g_{k}\). What appears to be circular reasoning simply states that, if the error distribution on the data is the most probable one, then
theoretically the most probable values of the parameters determined from those data will be the "true" ones.

The procedure for determining the most probable value for a set of parameters is called maximum likelihood estimation, and is unbiased if the error distribution on the data is the most probable one. Gauss has shown that, if the distribution of errors on the data is normal, namely, of the form
\[
\begin{equation*}
\frac{h e^{-h x^{2} x^{2}}}{\pi^{1 / 2}} \tag{24}
\end{equation*}
\]
where \(h\) is a measure of precision of the observations, then for overdetermined systems, the most probable set of values for the parameters is that which minimizes the sum of squares of residuals between the observed and computed values. Gauss further extended the concept to include the possibility of weighting individual observations, in which case the most probable values of the parameters are those that minimize the sum of squares of the weighted residuals.

A normal error distribution was assumed for the data used in this report. Thus, for each observation time \(t\), there was some value of the function \(F_{t}^{*}\) based upon the most probable set of parameters \(g_{k}\) which was related to the observed value \(\tilde{f}_{t}\) and the intrinsic error of the observation \(e_{t}\) by
\[
\begin{equation*}
F_{t}^{*}=\tilde{f_{t}}-e_{t} \tag{25}
\end{equation*}
\]

This was represented by the conditional equation
\[
\begin{equation*}
w_{t}^{1 / 2}\left(\tilde{f_{t}}-e_{t}-F_{t}^{\prime}\right)=\left.w_{t}^{1 / 2} \sum_{i}^{n} \frac{\partial f(g, h)}{\partial g_{i}}\right|_{g_{i}^{\prime}} \underline{\Delta g_{i}} \tag{26}
\end{equation*}
\]
where the weight assigned to the observation is denoted by \(w_{t}^{1 / 2}\). This may be written in matrix form as
\[
w_{t}^{1 / 2}\left[\boldsymbol{q}_{t}\right]=w_{t}^{1 / 2}\left[a_{t, 1}, \cdots a_{t, n}\right]\left[\begin{array}{c}
\underline{\Delta} g_{1}  \tag{27}\\
\vdots \\
\Delta g_{n}
\end{array}\right]
\]

The set of \(m\) such expressions may be represented by the matrix equation
\[
\begin{equation*}
\mathbf{W}_{(m \times m)}^{1 / 2} \mathbf{Q}_{(m \times 1)}=\mathbf{W}_{(m \times m)}^{1 / 2} \mathbf{A}_{(m \times n)} \Delta \mathbf{G}_{(n \times 1)} \tag{28}
\end{equation*}
\]

When \(m>n\), the system may be overdetermined, and the most probable matrix (also called the \(n\)-dimensional solution vector) \(\boldsymbol{\Delta} \mathbf{G}\) is defined to be the one that minimizes the Euclidean length (sum of squares of the components) of the \(m\)-dimensional vector \(\mathbf{Q}\). This is equivalent to minimizing the value of \(\mathbf{Q}^{T} \mathbf{W} \mathbf{Q}\) where \(\mathbf{Q}^{T}\) denotes the transpose of matrix \(\mathbf{Q}\). The solution vector \(\Delta \mathbf{G}\) is known to satisfy
\[
\begin{equation*}
\mathbf{A}^{T} \mathbf{W} \mathbf{A} \underline{\mathbf{G}}=\mathbf{A}^{T} \mathbf{W} \mathbf{Q} \tag{29}
\end{equation*}
\]
from which
\[
\begin{equation*}
\underline{\Delta} \mathbf{G}=\left(\mathbf{A}^{T} \mathbf{W} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{W} \mathbf{Q} \tag{30}
\end{equation*}
\]
if the inverse ( \(\left.\mathbf{A}^{T} \mathbf{W A}\right)^{-1}\) exists. The matrix \(\mathbf{A}^{T} \mathbf{W A}\) is the weighted normal matrix; Eq. (29) represents the so-called normal equations.

If \(\boldsymbol{\varepsilon}\) represents the \(m\)-dimensional error vector of the observations, the error in \(\Delta \mathbf{G}\) due to \(\varepsilon\) is then
\[
\begin{equation*}
\delta \underline{\underline{\Delta}} \mathbf{G}=\left(\mathbf{A}^{T} \mathbf{W} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{W} \boldsymbol{\varepsilon} \tag{31}
\end{equation*}
\]

This must be distinguished from the error
\[
\begin{equation*}
\delta \Delta \mathbf{G}=\mathbf{G}-\mathbf{G}^{\prime}-\Delta \mathbf{G} \tag{32}
\end{equation*}
\]
resulting from the attempt to solve for the difference \(\Delta \mathbf{G}\) between the most probable ( \(\mathbf{G}\) ) and approximate ( \(\mathbf{G}^{\prime}\) ) values of the parameters using the truncated Taylor series. The quantity \(\delta \Delta \mathbf{G}\) is a measure of the worth of the solution vector \(\Delta \mathbf{G}\) as determined by the quality of the data used to solve for it. The covariance matrix \(\Gamma_{x}\) on the solution is defined by
\[
\begin{align*}
\Gamma_{x} & =(\delta \Delta \mathbf{G})(\delta \Delta \mathbf{G})^{T} \\
& =\left[\left(\mathbf{A}^{T} \mathbf{W A}\right)^{-1} \mathbf{A}^{T} \mathbf{W} \boldsymbol{\varepsilon}\right]\left[\left(\mathbf{A}^{T} \mathbf{W} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{W} \boldsymbol{\varepsilon}\right]^{T} \\
& =\left(\mathbf{A}^{T} \mathbf{W} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{W} \overline{\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{T}} \mathbf{W}^{T} \mathbf{A}\left(\mathbf{A}^{T} \mathbf{W} \mathbf{A}\right)^{-1} \tag{33}
\end{align*}
\]
where \(\overline{\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{T}}\) denotes the value obtained using the average (or most probable) \(\varepsilon\) chosen from the infinite set of possible error vectors \(\boldsymbol{\varepsilon}_{i}\). The quantity \(\overline{\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{T}}\) is the covariance matrix of the data \(\Gamma_{D}\), and is generally unknown. The common practice is to assume
\[
\begin{equation*}
\overline{\varepsilon \varepsilon^{T}}=\Gamma_{D} \simeq \mathbb{W}^{-1} \tag{34}
\end{equation*}
\]
where \(\mathbf{W}\) is a positive definite symmetric weighting matrix, in which case Eq. (33) reduces to
\[
\begin{align*}
\Gamma_{x} & =\left(\mathbf{A}^{T} \mathbf{W} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{W} \mathbf{W}^{-1} \mathbf{W} \mathbf{A}\left(\mathbf{A}^{T} \mathbf{W} \mathbf{A}\right)^{-1} \\
& =\left(\mathbf{A}^{T} \mathbf{W} \mathbf{A}\right)^{-1} \tag{35}
\end{align*}
\]

If the observations are all independent and equally weighted, with standard deviation \(\sigma\), then \(\mathbf{W}=\mathbf{I} / \sigma^{2}\), where \(\mathbf{I}\) is the identity matrix, and
\[
\begin{equation*}
\Gamma_{x}=\boldsymbol{\sigma}^{2}\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \tag{36}
\end{equation*}
\]

Correlation coefficients are found from \(\Gamma_{x}\) by dividing each row and column by the square root of its component on the major diagonal of \(\Gamma_{x}\).

The standard deviation \(\sigma_{u}\) of an observation of unit weight is usually approximated by
\[
\begin{equation*}
\sigma_{u}^{2} \simeq(\mathbf{Q}-\mathbf{A} \underline{\Delta} \mathbf{G})^{T} \frac{(\mathbf{Q}-\mathbf{A} \Delta \mathbf{G})}{m-n} \tag{37}
\end{equation*}
\]
from which the probable error \(\lambda_{u}\) of an observation of unit weight is expressed by
\[
\begin{equation*}
\lambda_{u}=0.6745 \sigma_{u} \tag{38}
\end{equation*}
\]

The probable error \(\lambda_{k}\) of the quantity \(\Delta g_{k}\) is given in terms of the probable error of an observation of unit weight by
\[
\begin{equation*}
\lambda_{k}=\lambda_{u} \Gamma_{x_{k k}}^{1 / 2} \tag{39}
\end{equation*}
\]

The value of \(\Delta \mathbf{G}\) obtained from Eq. (30) is used to correct the parameter vector \(\mathbf{G}^{\prime}\), which can then be employed to compute new values of the quantities \(F_{t}^{\prime}\). The process is repeated until the Euclidean length of \(\mathbf{Q}\) converges.

The actual observed quantities \(\tilde{f}_{t}\) are the angles \(\alpha\) and \(\delta\). Their functional expressions are given in Eqs. (40) and (41).

\section*{V. Differential Correction Coefficients}

The coefficients in the conditional equations used for differential correction are the partial derivatives of functions of the computed observable with respect to the parameters whose values are to be improved. In each
equation, the empirical term is related to the difference between the observed and computed values of a quantity. The formation of a conditional equation corresponding to a particular observation therefore involves two separate processes: (1) obtaining a computed value for the observable and (2) evaluating partial derivatives of that computed quantity with respect to the necessary parameters.

The right ascension and declination of a body are related to the rectangular coordinates \(\mathbf{r}_{*}\) of the observed object and \(\mathbf{r}_{\phi}\) of the observer by
\[
\begin{align*}
& \alpha_{c}=\arctan \frac{\rho_{y}}{\rho_{x}}  \tag{40}\\
& \delta_{c}=\arctan \frac{\rho_{z}}{\left(\rho_{x}^{2}+\rho_{y}^{2}\right)^{1 / 2}} \tag{41}
\end{align*}
\]
where
\[
\begin{equation*}
\mathbf{\rho}\left(t, t^{\prime}\right)=\mathbf{r}_{*}\left(t^{\prime}\right)-\mathbf{r}_{\phi}(t)=\left(\rho_{x} ; \rho_{y} ; \rho_{z}\right) \tag{42}
\end{equation*}
\]

The quantities \(t^{\prime}\) and \(t\) represent respectively the time at which light left the object and the instant at which the observer saw the light, namely, the time of the observation. The subscript \(c\) stresses that Eqs. (40) and (41) represent computed observables. It is assumed that ( \(\alpha, \delta\) ), \(\mathbf{r}_{*}\), and \(\mathbf{r}_{\phi}\) are referred to the same equator and equinox. For higher accuracy, when the arguments in Eqs. (40) and (41) are greater than unity, the angles should be calculated from the arc cotangent of the reciprocal arguments.

The use of \(t^{\prime}\) in Eq. (42) accounts for the portion of planetary aberration known as the correction for light time. The remaining component, stellar aberration (diurnal and annual), is discussed in Section VI.

The light time \(t-t^{\prime}\) in days satisfies the condition that
\[
\begin{equation*}
t-t^{\prime}=\frac{\left|\mathbf{p}\left(t, t^{\prime}\right)\right|}{\mathbf{C}_{A}} \tag{43}
\end{equation*}
\]
where \(\mathbf{C}_{A}\) is the speed of light in AU/day. The value of \(t^{\prime}\) is calculated to a precision of \(10^{-6}\) days by iterative solution of Eq. (43), starting with \(\mathbf{r}_{*}(t)\) and continuing thereafter with \(\mathbf{r}_{*}\left(t^{\prime}\right)\). It is essential to note that the positions, velocities, and partial derivatives of the observed object, for whatever use in differential correction, must be those for time \(t^{\prime}\), whereas the corresponding quantities for the observer refer to time \(t\).

The value of \(\mathbf{r}_{\phi}(t)\) is obtained from the position of the center of the earth \(\mathbf{r}_{1}(t)\), in the frame of reference being used, and the geocentric position of the observer \(\mathbf{r}_{2}(t)\) described in Eqs. (76) through (80) by
\[
\begin{equation*}
\mathbf{r}_{\phi}(t)=\mathbf{r}_{1}(t)+\mathbf{r}_{2}(t) \tag{44}
\end{equation*}
\]

The heliocentric coordinates of the earth can be obtained in a number of ways. The most common approach has been to interpolate from Ref. 12. An alternate method (and the one used here) is the evaluation of Newcomb's theory of the sun (see Ref. 32) for the instant of the observation. The modifications used in this work to bring the theory of the sun into closer coincidence with Ref. 12, which is based upon the Tables of the Sun, are presented in Appendix A. A more consistent approach would be to take the position of the earth from the perturbation ephemeris that is used for generating the orbit of the object being observed. If the ephemeris contained the earth-moon barycenter, the heliocentric position of the earth could be derived using a simplified lunar theory described by Lieske (see Ref. 9) or Fiala (Ref. 13).

The computation of partial derivatives can also be separated conceptually into two parts. Since \(\alpha\) and \(\delta\) may be defined in terms of the rectangular coordinates, it is possible first to express the derivatives of the angles with respect to these quantities, and then to combine the results with the derivatives of the rectangular coordinates with respect to the desired \(n\) parameters \(p_{i}\). Thus,
\[
\begin{align*}
{\left[\begin{array}{c}
\alpha_{0}-\alpha_{c} \\
\delta_{0}-\delta_{c}
\end{array}\right]=} & {\left[\frac{\partial(\alpha, \delta)_{c}}{\partial\left(p_{1}, \cdots p_{n}\right)}\right]\left[\begin{array}{c}
\Delta p_{1} \\
\vdots \\
\Delta p_{n}
\end{array}\right] } \\
= & {\left[\frac{\partial(\alpha, \delta)_{c}}{\partial(x, y, z)_{*}}\right]\left[\frac{\partial(x, y, z) *}{\partial\left(p_{1}, \cdots p_{n}\right)}\right] } \\
& +\left[\frac{\partial(\alpha, \delta)_{e}}{\partial(x, y, z)_{\phi}}\right]\left[\frac{\partial(x, y, z)_{\phi}}{\partial\left(p_{1}, \cdots p_{n}\right)}\right] \tag{45}
\end{align*}
\]
where \((\alpha, \delta)_{0}\) are the values observed at the time \(t\), for which Eqs. (40) and (41) yield ( \(\alpha, \delta)_{c}\).

The first quantity of each term in Eq. (45) is
\[
\begin{align*}
& {\left[\frac{\partial(\alpha, \delta)_{c}}{\partial(x, y, z)}\right]_{\phi}^{*}=} \\
& \quad+\left[\begin{array}{ccc}
\frac{-\rho_{y}}{\rho_{x}^{2}+\rho_{y}^{2}} & \frac{\rho_{x}}{\rho_{x}^{2}+\rho_{y}^{2}} & 0 \\
\frac{-\rho_{x} \rho_{z}}{\rho^{2}\left(\rho_{x}^{2}+\rho_{y}^{2}\right)^{1 / 2}} & \frac{-\rho_{y} \rho_{z}}{\rho^{2}\left(\rho_{x}^{2}+\rho_{y}^{2}\right)^{1 / 2}} & \frac{\left(\rho_{x}^{2}+\rho_{y}^{2}\right)^{1 / 2}}{\rho^{2}}
\end{array}\right] \\
& \quad= \pm \frac{1}{\rho}\left[\begin{array}{ccc}
\frac{-\sin \alpha}{\cos \delta} & \frac{\cos \alpha}{\cos \delta} & 0 \\
-\cos \alpha \sin \delta & -\sin \alpha \sin \delta & \cos \delta
\end{array}\right] \tag{46}
\end{align*}
\]

The unknown quantities to be obtained in this report are corrections to the orbital parameters of (48) Doris and a correction to the mass of Jupiter. The restriction to this set of quantities is covered in Section VIII. Partial derivatives for each of the unknowns are discussed in turn.

The orbit can be specified by numerous sets of parameters. This report makes use of two commonly used sets: (1) the epoch state vector of rectangular coordinates and velocities ( \(\mathbf{r}_{0}, \dot{\mathbf{r}}_{0}\) ) and (2) the elements of the ellipse osculating at epoch. As was seen earlier, the most direct and conceptually the simplest method of correcting an integrated orbit is to adjust the initial state vector. Correcting the ecliptic Keplerian elements \(a, e, i, \Omega, \omega\), and \(M_{0}\) has the advantage of facilitating a feeling for the magnitude and effect of orbital changes. Because either set of elements can be expressed in terms of the other, the correction techniques are theoretically equivalent, although they may not give identical results in practice. A discussion follows of some methods for obtaining partial derivatives of the instantaneous rectangular coordinates with respect to both of these sets of parameters.

From a theoretical point of view, the partial derivatives most valuable for correcting the initial state vector directly are the variational equations defined by Eq. (5). If these are integrated as written, their precision would be limited by the integration order and stepsize, and the computer word length and roundoff. This was the primary approach in the investigation, and the results are presented and compared with other methods in Section VIII.

A commonly employed substitute for this exact technique is that of finite-difference partial derivatives. The mean value theorem of calculus implies that the derivative of a function at some point can be approximated by
the slope of a chord connecting adjacent points on either side of the nominal value. The accuracy of the approximation depends upon the choice of adjacent points. If some parameter \(p_{i_{0}}\) upon which the functions \(x, y, z\) depend is perturbed by an arbitrary \(\Delta p_{i}\), then-from the above considerations and from the definition of a deriva-tive-it is seen that
\[
\begin{equation*}
\left.\frac{\partial(x, y, z)}{\partial p_{i}}\right|_{p_{i_{0}}} \simeq \frac{\Delta(x, y, z)}{2 \Delta p_{i}}=\frac{(x, y, z)_{p_{i_{0}}+\Delta p_{i}}-(x, y, z)_{p_{i_{0}}-\Delta p_{i}}}{2 \Delta p_{i}} \tag{47}
\end{equation*}
\]

Because the numerical integration of \(x, y, z\) requires a large amount of computation, often only one perturbed value is computed, and Eq. (47) is approximated by
\(\frac{\partial(x, y, z)}{\partial p_{i}} \simeq \frac{\Delta(x, y, z)}{\Delta p_{i}}=\frac{(x, y, z)_{p_{i_{0}}+\Delta p_{i}}-(x, y, z)_{p_{i_{0}}}}{\Delta p_{i}}\)
The degree to which Eq. (48) is satisfied depends on the size of \(\Delta p_{i}\). By the definition of the derivative, \(\Delta p_{i}\) should be very small, but since the two values of \(x, y, z\) will be very close to one another and the word length of any computer is finite, the difference between the values of \(x, y, z\) will be much less significant than the values of \(x, y, z\) themselves, and the derived quantities will represent the actual derivatives only to the number of digits in the difference. On the other hand, if \(\Delta p_{i}\) is large, and \(x, y, z\) change rapidly with \(p_{i}\), the derivative obtained from Eq. (48) has less chance of agreeing with the actual derivative than that derived from Eq. (47), since it is equivalent to the actual derivative at some point between \(p_{i_{0}}\) and \(p_{i_{0}}+\Delta p_{i}\). The results for the parameter improvements using this technique are presented in Section VIII.

A very economical approach to differential correction, applicable even to manual calculation, is the widely used method of Eckert and Brouwer (Ref. 14). For orbits that are not highly perturbed, the perturbed state vector at time \(t\) can be closely approximated by the state vector at that time on the ellipse osculating at epoch. Because the derivatives of the Keplerian state vector with respect to the osculating elements are easily evaluated, the initial state vector can be corrected through corrections to the elements. The quantities solved for, \(\Delta \xi\) (described in Appendix B), are six functions of the elements and the corrections to them. The analytical forms of the partial derivatives \(\mathbf{D}(t)\), where
\[
\begin{equation*}
\mathbf{D}(t)=\frac{\partial(\mathrm{x}, \mathrm{y}, \mathrm{z}, \dot{\mathrm{x}}, \dot{\mathrm{y}}, \dot{\mathrm{z}})}{\partial\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}, \xi_{5}, \xi_{6}\right)} \tag{49}
\end{equation*}
\]
are given in Appendix B. Corrections to the osculating elements can be obtained from the expressions for the quantities \(\Delta \xi_{i}\). The changes in the Keplerian state vector at any time \(t_{i}\) are derived in terms of the solution vector \(\Delta \xi\) by
\[
\left[\begin{array}{c}
\Delta \mathrm{x}  \tag{50}\\
\Delta \mathrm{y} \\
\vdots \\
\Delta \mathrm{z}
\end{array}\right]_{t_{i}}=\mathbf{D}\left(t_{i}\right)\left[\begin{array}{c}
\Delta \dot{\xi}_{1} \\
\Delta \xi_{2} \\
\vdots \\
\Delta \dot{\xi}_{6}
\end{array}\right]
\]

The corrections at \(t=t_{0}\), because of the definition of an osculating orbit, will represent corrections to the initial state vector for the perturbed orbit.

The three basic sets of unknowns proposed by Clemence and Brouwer in chapter 9 of Ref. 2, are attempts at economizing the labor involved in computing the derivatives when some forehand knowledge about the orbit itself is available. The most generalized form (set 3 ) is commonly used in differential correction computer programs. The probable errors arising from solutions using each set are discussed in Section VIII. Other individuals have published their own preferred sets of parameters, but the sets mentioned above are especially well known.

The implementation of these elliptic approximation schemes depends upon the understanding an individual has of the philosophy behind using the derivatives of Eq. (49) and the degree of his desire for economy of computation.

Let \(\partial \mathbf{U} / \partial \xi\) represent the matrix of analytical expressions for the partial derivatives of the state vector of rectangular coordinates and velocities \(\mathbf{U}\) with respect to the parameters \(\boldsymbol{\xi}\). When osculating elements \(\mathbf{E}_{i}\) and a state vector \(\mathbf{U}_{j}\) are used in these expressions, the matrix of evaluated derivatives is denoted \(\partial \mathbf{U} / \partial \xi\left(\mathbf{E}_{i}, \mathbf{U}_{j}\right)\). If the perturbed state vector and the Keplerian state vector at time \(t\) are represented by \(\mathbf{U}_{p}\) and \(\mathbf{U}_{k}\) respectively, and the elements of the ellipses osculating at \(t\) and epoch are represented by \(\mathbf{E}_{t}\) and \(\mathbf{E}_{0}\), then some common ways in which Eq. (49) has been interpreted are
\[
\begin{align*}
& \mathbf{D}_{1}(t)=\frac{\partial \mathbf{U}}{\partial \xi}\left(\mathbf{E}_{0}, \mathbf{U}_{k}\right)  \tag{51}\\
& \mathbf{D}_{2}(t)=\frac{\partial \mathbf{U}}{\partial \xi}\left(\mathbf{E}_{0}, \mathbf{U}_{p}\right)  \tag{52}\\
& \mathbf{D}_{3}(t)=\frac{\partial \mathbf{U}}{\partial \xi}\left(\mathbf{E}_{t}, \mathbf{U}_{p}\right) \frac{\partial \xi\left(\mathbf{E}_{t}\right)}{\partial \xi\left(\mathbf{E}_{0}\right)} \tag{53}
\end{align*}
\]

One way of choosing between these forms is to argue that, since the idea is to correct an elliptic approximation to the true orbit, only state vectors from that elliptic orbit should be used to compute \(\mathbf{D}(t)\) (Eq. 51). This involves computing \(\mathbf{U}_{k}\), however, which might be approximated by the \(\mathrm{U}_{p}\) already available from the integration, as Eckert and Brouwer (see Ref. 14) imply (Eq. 52). The use of Eq. (53) for differential correction involves no approximation if the second term is obtained from a variation-of-elements technique. The assumption is sometimes made, however, that this term can be represented adequately by the identity matrix, implying that
\[
\begin{equation*}
\frac{\partial \mathbf{U}}{\partial \xi}\left(\mathbf{E}_{t}, \mathbf{U}_{p}\right) \simeq \frac{\partial \mathbf{U}}{\partial \xi}\left(\mathbf{E}_{0}, \mathbf{U}_{p}\right) \tag{54}
\end{equation*}
\]

Cohen, Hubbard, and Oesterwinter (Ref. 15) experimented with this approach on the orbit of Pluto and realized very slow convergence to values far from those obtained using Eq. (51). They concluded that part of their problem was the assumption that \(\mathbf{G}=\partial \varepsilon\left(\mathbf{E}_{t}\right) /\) \(\partial \mathcal{\xi}_{( }\left(\mathbf{E}_{0}\right)=\mathbf{I}\). The results of using Eq. (51) in each of the three Eckert-Brouwer sets are described in Section VIII.

The coefficients for correction of the mass can take either of two forms, differing by a factor of \(m_{j}\) in the expression for the partial derivative \(\partial \ddot{\mathbf{r}}_{i} / \partial\) (mass) in Eq. (4). The correction to the mass may be viewed as an increment \(\Delta m\) or a multiplicative factor \(\theta\). The factor approach \(\left(\partial \mathbf{r}_{i} / \partial \theta_{j}\right)\) was chosen because it permits \(m_{j}\) to remain in the term mentioned above. This restricts the magnitude of the derivative itself, enhancing the accuracy of the integration. The choice of solving for the increment \(\Delta m\) using \(\partial \mathbf{r}_{i} / \partial m_{j}\) merely involves removing \(m_{j}\) from the expression in question.

\section*{VI. Reduction of Observations}

Classical astronomical observations consist of angular measurements of the position of an object, as well as the time at which the measurements are made. This section covers the reduction of both types of data to a common system so that they can be more readily used to compare with a computed orbit. Also, this section treats the effect of observatory location on the observation.

\section*{A. Observed Angles}

The published coordinates of an object are either mean or apparent places. A true mean place consists of right ascension \(\alpha\) and declination \(\delta\) with respect to some
mean equator and equinox. An apparent place consists of coordinates referred to the true equator and equinox of date and modified by annual aberration. The mean place referred to in this section, unless otherwise indicated, denotes the true mean place augmented by the elliptic terms of annual aberration at that \(\alpha\) and \(\delta\). Stellar catalogs by convention contain mean places of stars in this second sense. Consequently, the transformation procedures from true mean to apparent place have been modified to apply to catalog mean places, and it is these that are commonly found in astronomy today.

The investigator who wishes to compare observations with an orbit on some fixed equator and equinox can either compute apparent places from the orbit or reduce the observations to true mean positions. The second approach (the one taken herein) requires that apparent observations be reduced to mean places. All observations must then be transformed to true mean places on the fixed equator and equinox of the orbit.

Coordinate observations are of three basic types: photographic, visual-micrometric, and visual-transit. Each requires a different procedure for reduction to mean place.

Photographic positions are based upon differences between the plate coordinates of an object and three or more reference stars. The determination of the equatorial coordinates for the body involves the standard coordinates of the mean places of the reference stars at the instant of observation. These stellar positions should include proper motion, but few observatories document their published observations sufficiently to indicate whether or not this is the case. Because the star positions used are all mean places on some arbitrary equator and equinox (usually that of the beginning of some Besselian year), the derived positions will also be expressed in mean coordinates, on the same equator and equinox as the stars.

The various plate reduction techniques account for first-order differential refraction, aberration, precession, and nutation, which affect the apparent positions of objects on the plate. Second-order effects are usually negligible compared with the precision of measurement of the images.

Visual-micrometer observations consist of the apparent angular separation \(\Delta \alpha, \Delta \delta\) between an object and a reference star. The actual separation can be obtained by eliminating the differential effects mentioned above. It is then possible to obtain the position of the object
in terms of that of the reference star. The prevalent custom among visual-micrometer users is to express apparent positions for the objects they observe. To do so, they must compute an apparent place for the reference star from a catalog, add the observed \(\Delta \alpha, \Delta \delta\), and account for the differential refraction. A few observatories publish the \(\Delta \rho\) (refraction) and all of the raw data for computing the \(\Delta \alpha, \Delta \delta\), but what usually appears is just a mean place for the reference star, the \(\Delta \alpha, \Delta \delta\), and the deduced apparent place of the object.

To eliminate accidental errors and to systematize reductions, as well as to employ presumably betterknown modern positions and proper motions of reference stars, micrometric observations were rereduced whenever possible. This was done by computing an apparent place for the reference star at the time of observation using modern positions, proper motions, and transformation techniques; adding the \(\Delta \alpha\) and \(\Delta \delta\); and using the resultant apparent place as a corrected position. The merits of this approach are covered in Section VII.

The reference stars were located in the Geschichte des Fixsternhimmels (Ref. 16), and identified by Bonner Durchmusterung (BD) number. These numbers were used to search the Yale catalogs (Ref. 17) for relatively modern positions. Most of the northern stars not in the Yale catalogs were found in AGK2 (Ref. 18). When proper motions were available, they were applied from the epoch of observation of the star to the epoch of observation of (48) Doris. The corresponding position on the equator and equinox of 1950.0 was then precessed to the beginning of a solar year nearest to the date of observation for use in the apparent place reductions.

Meridian-transit observations are more direct measurements of position than the micrometric type in that a calibrated observing system is maintained for giving the apparent coordinates, basically in terms of the time and zenith distance of meridian transit.

The transformations from mean to apparent and vice versa involve the coordinates of the object and various constants (day numbers) related to the amounts of precession, nutation, and aberration affecting observations each day. The following is a discussion of the transformation methods and the derivations of the day numbers used in the reductions.

The fact that detailed expressions are available only for transformations from mean to apparent place, and that these formulas are not truly reversible, has led to the
introduction of a number of approximations to convert from apparent to mean. The most common approach is a single evaluation of the correction, apparent - mean, using the apparent place in lieu of the mean place in the equations. The computed correction is then applied, with the opposite sign, to the apparent place to derive an approximate mean place. This derived mean place can be substituted in the expressions for apparent - mean and the result compared with the original apparent place to differentially correct the mean place. The apparent mean corrections in this report involve the second-order expressions in Woolard and Clemence (Ref. 19, p. 319).

The experience of positional astronomers is that, when mean places are referred to the beginnings of Besselian solar years, the most accurate and efficient application of the Besselian day numbers is in computing apparent places from places referred to the nearest beginning of a solar year.

The day numbers were computed directly for the instant of observation. Evaluation of the nutation in longitude \(\Delta \psi\) and the nutation in obliquity \(\Delta \epsilon\) from Woolard's theory of nutation (Ref. 20) enables one to obtain \(A, B\), and \(E\) from
\[
\begin{align*}
& A=\left(\tau+\frac{\Delta \psi}{\psi^{\prime}}\right) \psi^{\prime} \sin \epsilon^{\prime}  \tag{55}\\
& B=-\Delta \epsilon  \tag{56}\\
& E=\lambda^{\prime} \frac{\Delta \psi}{\psi^{\prime}} \tag{57}
\end{align*}
\]

Here \(\tau\) denotes the fraction of a tropical year of 365.241988 mean solar days from the beginning of the nearest Besselian solar year to date; \(\psi^{\prime}\) is the annual rate of lunisolar precession on the fixed ecliptic of date; \(\lambda^{\prime}\) is the annual rate of planetary precession at date; \(\epsilon^{\prime}\) is the mean obliquity of date (differing from the true obliquity of date \(\epsilon\) by \(\Delta \epsilon\) ).

The aberrational day numbers for true mean to apparent reductions are obtained from the ecliptic solar system barycentric velocity \(x^{\prime}, y^{\prime}, z^{\prime}\) of the earth by the expressions
\[
\begin{align*}
C^{\prime} & =\frac{y^{\prime}}{c^{\prime}}  \tag{58}\\
D^{\prime} & =\frac{-x^{\prime}}{c^{\prime}} \tag{59}
\end{align*}
\]

If the velocities are in \(\mathrm{AU} /\) day, the denominator \(c^{\prime}\) is given by \(C_{A} \sin 1^{\prime \prime}\), where \(C_{A}\) is the velocity of light in AU/day. The velocities, if not otherwise available, can be computed by numerically differentiating positions. Barycentric positions of the earth can be obtained by combining heliocentric coordinates of the earth with barycentric coordinates of the sun, which can be derived to the required accuracy by c.m. considerations from elliptic orbits of Jupiter, Saturn, Uranus, and Neptune. The velocities are customarily referred to the equator and equinox of the nearest beginning of a Besselian year.

If the heliocentric position of the earth is derived from Newcomb's theory of the sun, modification of the terms expressing the lunar perturbations is advisable. This would account for the effects of the improved value of the earth-moon mass ratio upon the coordinates of the earth with respect to the barycenter.

The reduction from catalog mean place to apparent place differs from the reduction from true mean place by the elliptic portion of annual aberration. In terms of the eccentricity \(e\) and longitude of perihelion \(\bar{\omega}\) of the earth's orbit evaluated at the nearest beginning of a Besselian year and the aberrational constant \(k\), the catalog aberrational day numbers are expressed in terms of the true mean quantities of Eqs. (58) and (59) as
\[
\begin{align*}
& C=C^{\prime}+\Delta C=C^{\prime}-k e \cos \bar{\omega} \cos \epsilon^{\prime}  \tag{60}\\
& D=D^{\prime}+\Delta D=D^{\prime}-k e \sin \bar{\omega} \tag{61}
\end{align*}
\]

Diurnal aberration (apparent - mean) is computed by the expressions
\[
\begin{align*}
& \Delta \alpha=0^{\prime} 0213 \rho \cos \phi^{\prime} \cos H \sec \delta  \tag{62}\\
& \Delta \delta=0^{\prime} 3200 \rho \cos \phi^{\prime} \sin H \sec \delta \tag{63}
\end{align*}
\]
where \(\phi^{\prime}\) is the observer's latitude, and \(H\) and \(\rho\) are given by Eqs. (73)-(75) and (79).

The computer programs designed for computation of the day numbers and the reduction from mean to apparent place produce results agreeing to \(0^{\prime \prime} 001\) with programs currently used at the United States Naval Observatory (USNO).

To reduce a true mean place \(\alpha, \delta\) at one time \(t\) to \(\alpha_{0}, \delta_{0}\) at another time \(t_{0}\), the Newcomb precession constants
\[
\begin{equation*}
\xi_{0}=\left(2304^{\prime} \because 250+1^{\prime \prime} 396 T_{0}\right) T+0^{\prime \prime} 302 T^{2}+0^{\prime} \cdot 018 T^{3} \tag{64}
\end{equation*}
\]
\[
\begin{align*}
& z=\zeta_{0}+0^{\prime \prime} 791 T^{2}  \tag{65}\\
& \theta=\left(2004^{\prime \prime} 682-0 . \prime 853 T_{0}\right) T-0^{\prime \prime} 426 T^{2}-0^{\prime} .042 T^{3} \tag{66}
\end{align*}
\]
are used in the formulas
\[
\begin{align*}
\cos \delta \sin (\alpha-z)= & \cos \delta_{0} \sin \left(\alpha_{0}+\zeta_{0}\right)  \tag{67}\\
\cos \delta \cos (\alpha-z)= & \cos \theta \cos \delta_{0} \cos \left(\alpha_{0}+\zeta_{0}\right) \\
& -\sin \theta \sin \delta_{0}  \tag{68}\\
\sin \delta= & \cos \theta \sin \delta_{0} \\
& +\sin \theta \cos \delta_{0} \cos \left(\alpha_{0}+\zeta_{0}\right) \tag{69}
\end{align*}
\]

If \(t\) and \(t_{0}\) are Julian Ephemeris Dates (JED), then the \(T\) and \(T_{0}\) of Eqs. (64)-(66), given as tropical centuries, are defined in terms of the date of 1900.0 (JED 2415020.814) by
\[
\begin{gather*}
T_{0}=\left(t_{0}-2415020.814\right) / 36524.1988  \tag{70}\\
T=\left(t-t_{o}\right) / 36524.1988 \tag{71}
\end{gather*}
\]

The JED of the beginning of any Besselian year is given by
\[
\begin{equation*}
\mathrm{JED}=2415020.814+365.241988(\text { year }-1900) \tag{72}
\end{equation*}
\]

The reference equinox for the computed orbit was that of 1950.0 .

\section*{B. Observation Time}

Times of observation are given in five forms:
(1) The UT in hours, minutes, and seconds.
(2) The local mean time (differing from UT by the longitude of the observatory).
(3) The fraction of a mean solar day since \(0^{h} U T\).
(4) The local sidereal time of the observatory.
(5) The day of the observation (for some meridian circles).

The times are reduced to form 3 and added to the Julian date at \(0^{\mathrm{h}} \mathrm{UT}\). For forms 1 and 2, there is often some ambiguity as to whether an observation made before 1925 has been corrected by the necessary 0.5 day (Ref. 21). A helpful check is to examine the hour angle
\(H\), derived from the sidereal time S and the observed right ascension \(\alpha\), by the relation
\[
\begin{equation*}
H=S-\alpha \tag{73}
\end{equation*}
\]

For this purpose, it is immaterial whether the true or mean sidereal time is used. For subsequent use in determining the UT of an observation, however, the distinction must be made.

The true sidereal time \(S\) differs from the mean sidereal time \(S^{\prime}\) at the same instant by the equation of the equinoxes, with
\[
\begin{equation*}
S=S^{\prime}+\Delta \psi \cos \epsilon \tag{74}
\end{equation*}
\]
where \(\Delta \psi\) and \(\epsilon\) are as defined above. In terms of the longitude \(\lambda\) of the observatory, the fraction \(T_{u}\) of a Julian century of 36525 mean solar days from 1900 January 0.5 UT to the beginning of the day of observation, and the fraction \(\gamma\) of a mean solar day since \(0^{h} U T\),
\[
\begin{align*}
S^{\prime}= & 6^{\mathrm{h}} 38^{\mathrm{m}} 45 s 836+86401844^{\mathrm{s}} 542 T_{u}+0 \mathrm{~s} 0927 T_{u}^{2} \\
& +1.002737909265 \gamma-\lambda \tag{75}
\end{align*}
\]

Form 4 can be reduced to form 3 by use of Eq. (75). When no exact time is given (as in form 5), one assumes that the observed right ascension is the true sidereal time. To reduce from \(S\) to \(S^{\prime}\), the true sidereal time may be substituted in Eq. (75) to get a UT for computing the required \(\Delta \psi\) and \(\Delta \epsilon\). The procedure then follows that for form 4.

Because the observations are made in UT measured by a nonuniformly rotating earth, they must be referred to the uniform ephemeris time scale before the orbital position of the earth at the time of observation can be computed. The corrections \(\Delta T\) for the years 1820-1952 are found in Ref. 22. Values for more recent years appear in Ref. 23.

\section*{C. Observatory Location}

The location of the observer affects the apparent position of the object in the sky because of parallax. For comparison with actual observations, computed positions are derived by Eqs. (40) and (41). These involve the geocentric equatorial coordinates of the observer, given with respect to the instantaneous vernal equinox as positive \(x\)-axis by
\[
\begin{equation*}
x=\rho \cos \phi^{\prime} \cos S \tag{76}
\end{equation*}
\]
\[
\begin{align*}
& y=\rho \cos \phi^{\prime} \sin S  \tag{77}\\
& z=\left[\rho(1-e)^{2}+h\right] \sin \phi^{\prime} \tag{78}
\end{align*}
\]
where
\[
\begin{align*}
\rho & =a\left[1-\left(e \sin \phi^{\prime}\right)^{2}\right]^{-1 / 2}  \tag{79}\\
e^{2} & =f(2-f) \tag{80}
\end{align*}
\]

The true sidereal time \(S\) has already been defined. The latitude \(\phi^{\prime}\) and altitude \(h\) for each of the various observatories appear in Table 3; the equatorial radius of the earth \(a\) and the flattening factor \(f\) of the international ellipsoid are given in Table 1. These rectangular coordinates are referred to the true equinox of date, and must be reduced to 1950.0 .

\section*{VII. Discussion of Observations}

\section*{A. Collection and Selection}

Since the discovery of (48) Doris in 1857, at least 754 observations have been made at 62 different observatories. As originally published, only 599 of these observations appeared to have the necessary precision ( 0501 in \(\alpha\), \(0!1\) in \(\delta, 1^{\text {mi }}\) in time) for use in the differential correction, and even some of these were in a form that was quite difficult to use.

Five 1863 meridian-transit observations from Vienna were reduced from raw data according to the precepts in the Wien Annalen. The reduction procedure was checked by comparing computed positions for selected stars with positions actually published in the Annalen.

Only differential micrometer measurements \(\Delta \alpha, \Delta \delta\) were available for 31 observations. These were processed by computing an apparent place for the given reference star, adding the \(\Delta \alpha\) and \(\Delta \delta\), and continuing as described in Section VI. This procedure not only salvaged the 31 observations that were not otherwise reducible, but, when applied to other micrometer observations for which final positions were published, helped to detect transcription and typographical errors.

All of the 155 observations published with less than the required precision were photographic, and an attempt was made to obtain explanations for the imprecision. One reason given is that plate scales of some cameras are not sufficiently large to permit resolution to \(0!1\). In practice, 70 cm was found to be the focal length below

Table 3. Observatories
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(1 A U^{\text {a }}\) No. & \multirow[t]{2}{*}{Location} & Altitude h, m & \multicolumn{3}{|c|}{Longitude,} & \multicolumn{3}{|r|}{Latitude \(\phi^{\prime}\),} \\
\hline & & & h & m & s & & & " \\
\hline 793 & Albany & 70 & 04 & 55 & 07.12 & 42 & 39 & 12.8 \\
\hline 8 & Algiers & 345 & -00 & 12 & 08.53 & 36 & 48 & 04.8 \\
\hline 30 & Arcetri & 184 & -00 & 45 & 01.30 & 43 & 45 & 14.4 \\
\hline 6 & Barcelona & 415 & -00 & 08 & 30.20 & 41 & 24 & 59.3 \\
\hline 57 & Belgrade (after 1931) & 253 & -01 & 22 & 03.20 & 44 & 48 & 13.2 \\
\hline -1 & Berlin (1835-1913) & 47 & -00 & 53 & 34.80 & 52 & 30 & 16.7 \\
\hline 16 & Besancon & 312 & -00 & 23 & 57.42 & 47 & 14 & 59.8 \\
\hline 520 & Bonn & 62 & -00 & 28 & 23.18 & 50 & 43 & 45.0 \\
\hline 999 & Bordeaux & 73 & 00 & 02 & 06.60 & 44 & 50 & 07 \\
\hline 73 & Bucharest & 83 & 01 & 44 & 23.20 & 44 & 24 & 49.4 \\
\hline 802 & Cambridge, Harvard & 24 & 04 & 44 & 31.05 & 42 & 22 & 47.6 \\
\hline -2 & Collegio Romano & 51 & -00 & 49 & 55.12 & 41 & 53 & 53.6 \\
\hline 35 & Copenhagen & 14 & -00 & 50 & 18.69 & 55 & 41 & 12.6 \\
\hline 95 & Crimea & 550 & -02 & 16 & 04.00 & 44 & 43 & 42.0 \\
\hline -3 & Durham & 107 & 00 & 06 & 19.75 & 54 & 46 & 06.2 \\
\hline 136 & Engelhardt, Kazan & 121 & -03 & 15 & 15.74 & 55 & 50 & 20.2 \\
\hline 760 & Goethe Link Observatory & 300 & 05 & 45 & 34.86 & 39 & 32 & 57.7 \\
\hline 0 & Greenwich & 47 & 00 & 00 & 00.00 & 51 & 28 & 38.2 \\
\hline 29 & Hamburg-Bergedorf & 41 & -00 & 40 & 57.74 & 53 & 28 & 46.9 \\
\hline 24 & Heidelberg, Konigsfuhl & 567 & -00 & 34 & 53.13 & 49 & 23 & 55.2 \\
\hline 78 & Johannesburg & 1741 & -01 & 52 & 07.00 & -26 & 11 & 14.0 \\
\hline -4 & Josephstadt & 214 & -01 & 05 & 27.17 & 48 & 12 & 53.8 \\
\hline 58 & Konigsberg & 24 & -01 & 21 & 58.97 & 54 & 42 & 50.5 \\
\hline 13 & Leiden & 6 & -00 & 17 & 56.15 & 52 & 09 & 19.8 \\
\hline 534 & Leipzig & 119 & -00 & 49 & 33.92 & 51 & 20 & 05.9 \\
\hline 39 & Lund & 34 & -00 & 52 & 44.97 & 55 & 41 & 51.6 \\
\hline 990 & Madrid & 655 & 00 & 14 & 45.10 & 40 & 24 & 30.0 \\
\hline 14 & Marseilles (after 1864) & 75 & -00 & 21 & 34.55 & 43 & 18 & 16.3 \\
\hline 330 & Nanking, Purple Mountain & 367 & -07 & 55 & 17.02 & 32 & 03 & 59.9 \\
\hline 20 & Nice & 376 & -00 & 29 & 12.10 & 43 & 43 & 17.0 \\
\hline 7 & Paris & 67 & -00 & 09 & 20.91 & 48 & 50 & 11.0 \\
\hline 794 & Poughkeepsie, Vassar & 61 & 04 & 55 & 35.16 & 41 & 41 & 18.0 \\
\hline 84 & Pulkovo & 75 & -02 & 01 & 18.57 & 59 & 46 & 18.5 \\
\hline 983 & San Fernando & 30 & 00 & 24 & 49.30 & 36 & 27 & 42.0 \\
\hline 804 & Santiago & 580 & 04 & 42 & 45.09 & -33 & 33 & 44.2 \\
\hline 338 & Shanghai, Zo-Se & 100 & -08 & 04 & 44.75 & 31 & 05 & 47.6 \\
\hline 94 & Simeis & 346 & -02 & 15 & 59.38 & 44 & 24 & 11.6 \\
\hline 420 & Sydney & 44 & -10 & 04 & 49.19 & -35 & 41 & 41.1 \\
\hline 388 & Tokyo, Mitaka & 59 & -09 & 18 & 10.10 & 35 & 40 & 21.4 \\
\hline 4 & Toulouse & 195 & -00 & 05 & 51.00 & 43 & 36 & 44.1 \\
\hline 334 & Tsingtao & 78 & -08 & 01 & 16.71 & 36 & 04 & 11.3 \\
\hline 22 & Turin (Pino Torinese) & 618 & -00 & 31 & 05.95 & 45 & 02 & 16.3 \\
\hline 62 & Turku & 28 & -01 & 28 & 55.03 & 60 & 27 & 08.7 \\
\hline 12 & Uccle & 105 & -00 & 17 & 25.97 & 50 & 47 & 55.0 \\
\hline 786 & U.S. Naval Observatory & 86 & 05 & 08 & 15.78 & 38 & 55 & 14.0 \\
\hline 15 & Utrecht & 14 & -00 & 20 & 31.01 & 52 & 05 & 09.6 \\
\hline -5 & Vienna (before 1879) & 186 & -01 & 05 & 31.61 & 48 & 12 & 35.5 \\
\hline 45 & Vienna (after 1879) & 240 & -01 & 05 & 21.35 & 48 & 13 & 55.1 \\
\hline 558 & Warsaw & 121 & -01 & 24 & 07.26 & 52 & 13 & 04.6 \\
\hline -6 & Washington, National Observatory & 31 & 05 & 08 & 12.15 & 38 & 53 & 38.7 \\
\hline 28 & Würzburg & 200 & -00 & 39 & 44.71 & 49 & 47 & 27.6 \\
\hline 754 & Yerkes & 334 & 05 & 54 & 13.64 & 42 & 34 & 13.4 \\
\hline \({ }^{1} 1 \mathrm{AU}=\) Intern & nomical Union. (Negative numbers were ar & signed to observa & acked IA & ide & tification & & & \\
\hline
\end{tabular}
which precise positions could not be obtained. The aperture of the telescope is also a determining factor, since long exposures allow appreciable motion of the asteroid to distort the images. Under these circumstances it is impossible to obtain post-facto improved measurements.

Another explanation offered greater hope. Investigators who found (48) Doris on their plates while studying other objects, or who did not have the time to completely reduce the observations, often published approximate positions. Because accurate positions can still be obtained if the plates are available, 18 observatories were requested to remeasure positions. Nine observatories returned a total of 82 observations and most of the other institutions gave explanations for not sending positions or plates.

A total of 64 full precision observations were deleted: 5 with justification provided by the observers themselves, 17 because of apparent misidentification, and 42 upon the judgement of the author. One criterion for rejection was a residual ( \(O-C\) ) from the final reference orbit in \(\alpha\) and \(\delta\) that exceeded \(15^{\prime \prime}\) ' Often only one coordinate was erroneous, but no attempt was made to salvage the reasonable one. (The residuals given in one coordinate in the listings are from observations made in only one coordinate.)

All 13 photographic observations made at Algiers from 1915 to 1921, published with aberration corrections, were excluded because comparisons with the final orbit seemed to indicate that the published corrections were inconsistently applied to three of the observations. Because there was no initial indication as to whether any of the published positions already included the correction, the problem had to be resolved by inspecting the residuals. Some of the observations seemed to be corrected with the published \(\Delta \alpha, \Delta \delta\) and others did not; it was decided, therefore, to discard ail of the observations rather than to guess at any of them.

The final number of observations used was 617, including 274 photographic, 57 meridian-transit, 257 rereduced, and 29 nonrereducible micrometer positions.

\section*{B. Distribution}

The distribution of observations in time can be seen in Fig. 3. There is a pronounced gap of 30 yr from 1871 to 1901 during which only three observations were made. Another period of few observations, 1926-1940, was reinforced by the remeasured photographic positions mentioned above. Since the inequality in longitude for
(48) Doris has a 72 -yr period, it is impossible at present to cover one complete cycle of the perturbation regardless of the span of observations chosen.

Figure 4 shows the distribution of observations in \(\alpha\) and \(\delta\); Fig. 5 gives the equatorial \(x\) and \(y\) coordinates of earth and (48) Doris at the observation times. The discontinuities in \(\alpha\) and in the distribution of positions along the orbit of (48) Doris result from its synodic period of about 1.2226 yr , causing every tenth opposition to occur at roughly the same place in the orbit. From inspection of the graph, one should not expect any overall seasonal bias on the observations nor declination errors from restriction to a single catalog zone. It should be noted, however, that such an orbit would be prone to \(\Delta \alpha_{\alpha}\) catalog errors.

\section*{C. Weighting}

All 617 observations used were weighted equally, although a few other schemes were investigated. One suggestion was to base weighting factors on the standard deviations of each data type from the mean of residuals of all data types. However, because the observation types are quite segregated in time, and no one type exists over a sufficient interval to cover the long-period fluctuation in the residuals, such an approach might actually weaken the mass determination by decreasing the effects of the structure expected in the data. Deviations from means in a series of time blocks might ease the problem of finding suitable weights, but this method immediately raises the question of the size of intervals to be chosen.

Systematic errors or correlations certainly exist between observations made by the same observer and equipment, or using the same reference stars. The determination of these correlations-equivalently the assignment of nonzero values to off-diagonal elements in the data-weighting matrix \(\mathbf{W}\)-is an extremely arbitrary procedure because very few observatories publish probable errors for their measurements, and even fewer discuss interdependence of observations.

\section*{D. Residual Analysis}

An analysis of the residuals by observation type and observatory is presented in Table 4.

In Section VI, it was stated that visual (micrometer) observations were specially processed, for it seemed that a systematic reduction of as many micrometer observations as possible would serve to eliminate reduction errors intrinsic to each observatory, and would also take


Fig. 3. Right-ascension residuals for reference orbit


Fig. 4. Distribution of observations


Fig. 5. Equatorial \(x\) and \(y\) coordinates of earth and (48) Doris at observation times

Table 4. Analysis of residuals by observatory and type
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Observatory} & \multicolumn{12}{|c|}{Type of observation} & \multicolumn{3}{|c|}{\multirow{2}{*}{Toial}} \\
\hline & \multicolumn{3}{|c|}{Phofographic} & \multicolumn{3}{|c|}{Meridian} & \multicolumn{3}{|c|}{Visual} & \multicolumn{3}{|c|}{Rereduced} & & & \\
\hline & No. & \(\sigma_{a}\) & \(\sigma_{\delta}\) \\
\hline -6 & & & & 5 & 2.147 & 1.184 & & & & 8 & 2.525 & 2.469 & 13 & 2.385 & 2.239 \\
\hline -5 & & & & 8 & 3.027 & 2.839 & & & & 15 & 2.714 & 3.295 & 23 & 2.827 & 3.144 \\
\hline -4 & & & & & & & & & & 4 & 0.689 & 1.533 & 4 & 0.689 & 1.533 \\
\hline -3 & & & & & & & & & & 1 & 5.630 & 0.367 & 1 & 5.630 & 0.367 \\
\hline -2 & & & & & & & & & & 2 & 1.416 & 1.285 & 2 & 1.416 & 1.285 \\
\hline -1 & & & & & & & 1 & 0.107 & 1.587 & 34 & 2.561 & 1.757 & 35 & 2.524 & 1.752 \\
\hline 0 & & & & 24 & 3.249 & 4.197 & & & & & & & 24 & 3.249 & 4.197 \\
\hline 4 & 1 & 0.513 & 0.221 & & & & & & & & & & 1 & 0.513 & 0.221 \\
\hline 6 & 3 & 1.022 & 1.084 & & & & & & & & & & 3 & 1.022 & 1.084 \\
\hline 7 & & & & 6 & 2.883 & 4.885 & 2 & 3.327 & 0.653 & & & & 8 & 3.000 & 4.243 \\
\hline . 8 & 10 & 1.305 & 0.914 & & & & & & & 7 & 4.754 & 0.948 & 17 & 3.211 & 0.928 \\
\hline 12 & 5 & 1.537 & 1.671 & & & & & & & & & & 5 & 1.537 & 1.671 \\
\hline 13 & 22 & 0.722 & 0.611 & 12 & 1.988 & 1.470 & & & & & & & 34 & 1.334 & 1.002 \\
\hline 14 & & & & & & & 3 & 3.590 & 3.327 & 5 & 3.157 & 1.552 & 8 & 3.326 & 2.331 \\
\hline 15 & & & & & & & & & & 1 & 0.722 & 5.430 & 1 & 0.722 & 5.430 \\
\hline 16 & & & & & & & & & & 8 & 1.380 & 1.581 & 8 & 1.380 & 1.581 \\
\hline 20 & & & & & & & & & & 6 & 1.138 & 1.635 & 6 & 1.138 & 1.635 \\
\hline 22 & 6 & 2.877 & 1.671 & & & & & & & & & & 6 & 2.877 & 1.671 \\
\hline 24 & 31 & 2.557 & 2.597 & & & & & & & 1 & 0.088 & 2.763 & 32 & 2.517 & 2.602 \\
\hline 28 & 7 & 5.253 & 2.625 & & & & & & & & & & 7 & 5.253 & 2.625 \\
\hline 29 & & & & & & & & & & 3 & 2.587 & 2.942 & 3 & 2.587 & 2.942 \\
\hline 30 & & & & & & & 7 & 3.646 & 1.398 & 69 & 1.595 & 1.749 & 76 & 1.880 & 1.720 \\
\hline 35 & & & & & & & & & & 4 & 1.622 & 0.389 & 4 & 1.622 & 0.389 \\
\hline 39 & & & & & & & 1 & 0.479 & 2.362 & 9 & 3.588 & 1.040 & 10 & 3.407 & 1.237 \\
\hline 45 & 1 & 1.365 & 0.289 & & & & 9 & 2.612 & 1.809 & & & & 10 & 2.515 & 1.718 \\
\hline 57 & 2 & 0.536 & 0.651 & & & & & & & & & & 2 & 0.536 & 0.651 \\
\hline 58 & & & & & & & 1 & 1.082 & & 7 & 1.538 & 1.471 & 8 & 1.488 & 1.376 \\
\hline 62 & 5 & 4.077 & 1.053 & & & & & & & & & & 5 & 4.077 & 1.053 \\
\hline 73 & 10 & 1.282 & 0.756 & & & & & & & & & & 10 & 1.282 & 0.756 \\
\hline 78 & 6 & 1.415 & 0.782 & & & & & & & & & & 6 & 1.413 & 0.782 \\
\hline 84 & 1 & 1.466 & 1.312 & & & & 1 & 3.086 & 4.939 & 14 & 3.082 & 1.054 & 16 & 3.007 & 1.614 \\
\hline 94 & 1 & 3.700 & 1.161 & & & & & & & & & & 1 & 3.700 & 1.161 \\
\hline 95 & 8 & 1.995 & 4.037 & & & & & & & & & & 8 & 1.995 & 4.037 \\
\hline 136 & & & & & & & 1 & 0.466 & 1.024 & 14 & 1.973 & 1.705 & 15 & 1.910 & 1.668 \\
\hline 330 & 7 & 2.445 & 1.238 & & & & & & & & & & 7 & 2.445 & 1.238 \\
\hline 334 & 1 & 0.670 & 0.143 & & & & & & & & & & 1 & 0.670 & 0.143 \\
\hline 338 & 3 & 1.585 & 0.726 & & & & & & & & & & 3 & 1.585 & 0.726 \\
\hline 388 & 12 & 2.957 & 2.133 & & & & & & & & & & 12 & 2.957 & 2.133 \\
\hline 420 & 4 & 0.833 & 0.799 & & & & & & & & & & 4 & 0.833 & 0.799 \\
\hline 520 & & & & & & & & & & 4 & 5.047 & 2.551 & 4 & 5.047 & 2.551 \\
\hline 534 & & & & & & & 1 & 6.512 & 0.159 & 22 & 2.381 & 2.880 & 23 & 2.696 & 2.817 \\
\hline 558 & & & & & & & & & & 4 & 1.636 & 1.861 & 4 & 1.636 & 1.861 \\
\hline 754 & 1 & 0.664 & 0.679 & & & & & & & & & & 1 & 0.664 & 0.679 \\
\hline 760 & 8 & 2.186 & 1.750 & & & & & & & & & & 8 & 2.186 & 1.750 \\
\hline 786 & 81 & 1.019 & 0.760 & & & & & & & & & & 81 & 1.019 & 0.760 \\
\hline 793 & & & & 2 & 1.774 & 1.266 & & & & & & & 2 & 1.774 & 1.266 \\
\hline 794 & & & & & & & & & & 2 & 1.231 & 0.774 & 2 & 1.231 & 0.774 \\
\hline 802 & & & & & & & & & & 1 & 2.853 & 2.220 & 1 & 2.853 & 2.220 \\
\hline 804 & & & & & & & 11 & 3.013 & 2.114 & & & & 11 & 3.013 & 2.114 \\
\hline 983 & 4 & 1.042 & 0.761 & & & & & & & & & & 4 & 1.042 & 0.761 \\
\hline 990 & 34 & 2.717 & 1.967 & & & & & & & & & & 34 & 2.717 & 1.967 \\
\hline 999 & & & & & & & & & & 3 & 1.848 & 0.342 & 3 & 1.848 & 0.342 \\
\hline Total & 274 & 2.082 & 1.620 & 57 & 2.820 & 3.444 & 29 & 3.255 & 2.118 & 257 & 2.416 & 1.971 & 617 & 2.364 & 2.024 \\
\hline
\end{tabular}
advantage of modern reference star positions and proper motions. There was some question as to whether the uncertainties in modern proper motions, when propagated over as long a span as 100 yr , would be just as injurious as inaccurate reference star positions taken from old catalogs. A comparison of the residuals in \(\alpha\) and \(\delta\) for 230 micrometer observations appears in Table 5. These residuals were culled from the 257 observations that could be rereduced, and they exclude the aforementioned typographical errors.

Table 5. Comparison of published and rereduced observations
\begin{tabular}{|l|c|c|}
\hline Observations & \begin{tabular}{c} 
Standard deviation \\
\((0-\mathrm{C})_{\alpha}\)
\end{tabular} & \begin{tabular}{c} 
Standard deviation \\
\((0-\mathrm{C}) \delta\)
\end{tabular} \\
\hline Published & \(3^{\prime \prime} .703\) & \(2^{\prime \prime} .665\) \\
Rereduced & \(\mathbf{2 " .}^{\prime \prime} .279\) & 1.992 \\
\hline
\end{tabular}

It should be noted that the set of published observations gives a number of residuals over \(10^{\prime \prime}\) but less than \(15^{\prime \prime}\), which tended to make the improvement with rereduction appear as dramatic as it does.

\section*{E. Catalog Corrections}

To make the system of observations as homogeneous as possible, some 430 positions were reduced to the FK4 (Ref. 24). Zone corrections were used because there was only one FK4 reference star throughout the 617 observations. Almost all of the rereduced micrometer observations employed stars from the Yale catalog or AGK2. The photographic positions used stars from a number of catalogs, as many as possible of which were reduced to the GC (Ref. 25) and then to the FK4. Only positions were corrected because it was felt that the proper-motion system of the GC was too weak to use as an intermediate reference. The FK4 corrections could be optionally applied during the differential correction process. Since the reference orbit had been fit to uncorrected positions, the sums of squares of residuals ( \(O-C\) ) could increase when the FK4 increments were added. The actual amount of change and its subsequent effect upon the solution parameters are discussed in Section VIII.

\section*{VIII. Discussion of Final Results}

The determination of the mass of Jupiter from the motion of (48) Doris first required a definitive orbit for the minor planet, based upon the provisional reciprocal
mass of 1047.355 . Only then could a meaningful investigation of the observations be made for systematic errors before attempting to solve for the correction to the mass.

An orbit determined from Ref. 26 was integrated from its reference epoch (JED 2432200.5) to JED 2440000.5, where rectangular coordinates and osculating elements were extracted. These quantities were used thereafter to describe the orbit, and were differentially corrected using a backward integration over the span from JED 2440000.5 to JED 2399000.5 .

The first backward integration was used to compare finite difference and numerically integrated partial derivatives of the rectangular coordinates with respect to the initial rectangular state vector. To form the finite differences, seven bodies were integrated simultaneously under the influence of the sun and nine planets. The first object was (48) Doris, with the above-mentioned rectangular coordinates. Each of the remaining six bodies had either a coordinate perturbed by \(10^{-6} \mathrm{AU}\) or a velocity changed by \(10^{-8} \mathrm{AU} /\) day. Straightforward differencing and division gave the approximate partial derivatives, which agreed to four digits with the integrated values. Figure 6 displays the numerically integrated \(\partial x / \partial x_{0}\); Fig. 7 shows the difference \(\Delta x / \Delta x_{0}-\partial x / \partial x_{0}\).

The orbit was differentially corrected and reintegrated. An attempt was made to improve this orbit, but because the subsequent sum of squares of linearized residuals did not show a marked decrease, this integration was chosen as the reference for subsequent studies with the provisional reciprocal mass 1047.355 . Definitive elements for (48) Doris, based upon the reciprocal solar masses in Table 2, appear in Table 6.

The solution parameters were restricted to corrections to the mass of Jupiter and the orbit of (48) Doris. A solution for right-ascension bias, or effect of the equinox correction between FK4 and non-FK4 positions, would be of questionable physical use because all of the observations were not on the same non-FK4 system. Corrections to the orbit of the earth can be accomplished better by observations of other objects, and would only further weaken the solution for the mass. It is possible, without solving for them, to account for the effect of uncertainties in the elements of the orbit of the earth on the solution for the mass, increasing the probable error to a more realistic value. Why this approach was not used is explained below.


Fig. 6. Numerically infegrated partial derivatives \(\partial x / \partial x_{0}\)


Fig. 7. Finite difference \(\Delta x / \Delta x_{0}\)-numerically integrated \(\partial x / \partial x_{0}\)

Table 6. Definitive elements for (48) Doris based on the system of masses in Table \(1^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Value & Symbol & Value & Symbol & Value & Symbol & Value \\
\hline \multicolumn{4}{|r|}{Heliocentric ecliptic Keplerian elements (1950.0)} & \multicolumn{4}{|r|}{Equatorial rectangular coordinates (1950.0)} \\
\hline \(a\) & 3.1143222812 AU & \(\Omega\) & 255.5023183393 deg & * & 2.1991122948 & \(\dot{x}\) & -0.007115866686 \\
\hline e & 0.0599647307 & \(\omega\) & 183.7873456717 deg & \(y\) & 1.8931264938 & \(\boldsymbol{y}\) & 0.007057418010 \\
\hline 1 & 6.5476078929 deg & Mo & 326.7972322817 deg & \(z\) & 0.5929347223 & z & 0.002089848943 \\
\hline \multicolumn{8}{|l|}{aThe epoch for both sets of elements is JED 2440000.5, May 24, 1968.} \\
\hline
\end{tabular}

A series of differential corrections was performed for the desired parameters with various sets of unknowns, using the observations shown in Appendix C. The residuals were determined from comparison with this reference orbit, and do not contain any catalog corrections. Graphs of the residuals are shown in Figs. 3 and 8. The following is an analysis of some of these runs, all of which were designed to help indicate the set of parameters that would best determine the mass correction.

Orbit-correction methods were compared first. The three Eckert-Brouwer sets, which were used in solutions for the Keplerian elements, gave identical corrections and probable errors (to 10 significant digits).

The agreement among results using the different methods indicates that the eccentricity of (48) Doris is sufficiently large for the argument of perihelion and the mean anomaly to be well separated. The correlation matrix on the solution for the elements is shown in Table 7. Since it was immaterial which set was used, set 3 became the basis for comparison with the method using variational equations for the rectangular coordinates.

The variational equations reduced the sum of squares of residuals from 5934.0 to 5876.2 , whereas the elliptic solutions gave 5877.4. (The units for sums of squares will always be \({ }^{\prime 2}\).) The corrected rectangular coordinates agreed with those determined from the elliptic approximation to at least \(10^{-6} \mathrm{AU}\) in the coordinates and to \(10^{-8} \mathrm{AU} /\) day in the velocities. As is shown below, the normal matrix for the variational equations is not as well conditioned as that for set 3 ; therefore, it would be informative in the future to compare the probable errors of the corrections to the rectangular state vector obtained by both methods. Upon the basis of the studies reported herein, however, both approaches may be considered equally valid for the orbit correction.

The partial derivatives with respect to the mass of Jupiter were numerically integrated in terms of the correction factor \(\theta\), as mentioned in Section V. As is shown in Eq. (45), the formal expression for the derivatives of the observed coordinates with respect to the mass of Jupiter involves the derivatives for the earth and for (48) Doris. It was decided, therefore, to compare results obtained with and without the earth terms to justify the contention that they were negligible. Two solutions were made for the mass only, giving a reciprocal mass of \(1047.369 \pm 0.005\) in either case. This seemed to indicate beyond a doubt that the earth terms could be neglected.

The final solution for a correction to the mass of Jupiter had to be made simultaneously with an improvement of the orbit of (48) Doris because the orbit is dependent upon the mass. Using the derivatives \(\partial \mathbf{r} / \partial \theta\) and the variational equations, the reciprocal mass was determined to be \(1047.333 \pm 0.017\). The disparity of this result from those already obtained by O'Handley (Ref. 27), Klepczynski (Ref. 28), and Fiala (see Ref. 13) was initially thought to result from the ill-conditioned normal matrix used for the solution (Table 8). The derivatives \(\partial \mathbf{r} / \partial \theta\) were transformed to \(\partial \mathbf{r} / \partial m\) by multiplying by 1047.355 ; the equations were then solved for an increment to the mass of Jupiter, but the results remained unchanged. The elliptic partials were known to give a better-conditioned normal matrix than the variational equations, without arbitrary multiplication of columns and rows; therefore, set 3 was used with \(\partial \mathbf{r} / \partial m\), and gave a value of \(1047.340 \pm 0.0156\).

The effect of the larger residuals was examined to see whether the results were particularly sensitive to them. Excluding all 50 observations with residuals greater than \(5^{\prime \prime}\) (see Figs. 4 and 8 ) reduced the sum of squares before solution to 3405.2 , and gave \(1047.344 \pm 0.014\) with the variational equations and \(1047.348 \pm 0.013\) with set 3 . This proved that the basic solution was not disparate solely because of the few large residuals.


Fig. 8. Declination residuals for reference orbit

Table 7. Correlations in the solution for Keplerian elements
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(a\) & \(e\) & \(I\) & \(\Omega\) & \(\omega\) & \\
\hline\(a\) & 0.10000 D 01 & & & & \\
\(e\) & \(-0.61700 \mathrm{D}-01\) & 0.10000 D 01 & & & \\
1 & \(-0.13703 \mathrm{D}-01\) & \(0.20411 \mathrm{D}-01\) & 0.10000 D 01 & & \\
\(\Omega\) & \(0.18424 \mathrm{D}-01\) & \(-0.28187 \mathrm{D}-01\) & -0.58223 D 00 & 0.10000 D 01 & & \\
\(\omega\) & \(-0.12655 \mathrm{D}-01\) & \(0.20626 \mathrm{D}-01\) & 0.39350 D 00 & -0.90905 D 00 & 0.10000 D 01 & \\
\(M_{0}\) & -0.13118 D 00 & \(0.49360 \mathrm{D}-01\) & 0.66994 D 00 & -0.87921 D 00 & 0.60897 D 00 & 0.1000 D 01 \\
\hline
\end{tabular}

Table 8. Normal matrices for solutions with \(\partial \mathbf{r} / \partial \theta\) and variational equations, and with \(\partial \mathrm{r} / \partial \mathrm{m}\) and Eckert-Brouwer set \(3^{\mathrm{a}}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(\Delta \theta\) & \(\Delta x\) & \(\Delta y\) & \(\Delta z\) & \(\Delta \dot{x}\) & \(\Delta \dot{y}\) & \(\Delta \dot{\mathbf{z}}\) & \\
\hline & 0.44320 D 01 & -0.38118D 04 & -0.32911D 04 & -0.10283D 04 & 0.10776 D 07 & -0.10636D 07 & -0.31481D 06 & \(\Delta \theta\) \\
\hline & & 0.41529 D 07 & 0.35741 D 07 & 0.11174 D 07 & -0.11768D 10 & 0.11575 D 10 & 0.34253 D 09 & \(\Delta x\) \\
\hline \(\Delta m\) & 0.48617D 07 & & 0.30764D 07 & 0.96185 D 06 & -0.10127D 10 & 0.99634 D 09 & 0.29484D 09 & \(\Delta y\) \\
\hline \(\xi_{1}\) & -0.53450D 05 & 0.12584 D 04 & & 0.30080D 06 & -0.31664D 09 & 0.31151 D 09 & 0.92181 D 08 & \(\Delta z\) \\
\hline \(\xi_{2}\) & -0.70815D 04 & 0.12746 D 03 & 0.73465003 & & 0.33347 D 12 & -0.32800D 12 & -0.97063D 11 & \(\Delta \dot{x}\) \\
\hline \(\xi_{3}\) & 0.35723 D 04 & -0.10345D 03 & 0.25368 D 02 & 0.54679D 03 & & 0.32269 D 12 & 0.95490 D 11 & \(\Delta \dot{y}\) \\
\hline \(\xi_{4}\) & 0.18740 D 05 & -0.43235D 03 & -0.12296D 04 & 0.72790D 03 & 0.52654D 04 & & 0.28263 D 11 & \(\Delta \dot{\mathbf{z}}\) \\
\hline \(\xi_{5}\) & -0.76615D 07 & 0.11283 D 06 & 0.11446 D 05 & -0.92875D 04 & -0.40770D 05 & 0.15118 D 08 & & \\
\hline \(\xi_{6}\) & 0.41627 D 05 & -0.30287D 03 & -0.27033D 02 & 0.25662D 02 & 0.17051 D 03 & -0.19892D 05 & 0.28967D 04 & \\
\hline & \(\Delta m\) & \(\xi_{1}\) & \(\xi_{2}\) & \(\xi_{3}\) & \(\xi_{4}\) & \(\xi_{5}\) & \(\xi_{6}\) & \\
\hline
\end{tabular}

When FK4 corrections were applied, the sum of squares of residuals in \(\delta\) increased by 23.7 , whereas in \(\alpha\) it dropped enough to give an overall decrease of 10.1. The derived values for the mass correction and its probable error remained the same.

In view of the fact that the probable error was already so large as to limit the precision of the mass determination to five digits, the inclusion of the effect of uncertainties in the orbit of the earth became more a subject of academic
interest than one of basic physical importance, and was not undertaken.

As an independent check on the partial derivatives for the mass used in the simultaneous solution, three orbits were generated, using distinct values of the mass of Jupiter and the same basic set of elements. Each of these orbits was corrected, using set 3 partial derivatives; a parabola was passed through the sums of squares of residuals, and differentiated with respect to the mass. The minimum occurred at 1047.340.

\section*{Appendix A}

\section*{Modifications to Newcomb's Theory of the Sun}

In 1948, Clemence (Ref. 29) suggested that the tabular centennial motion of the earth's perihelion in Newcomb's theory of the sun be modified to include an improved value for precession and to replace an empirical term with a physical constant. Oort (Ref. 30) had derived a new value for the general precession in longitude referred to the FK3, and it differed by 1 1"83/century from that which Newcomb embodied in his theory. Moreover, to account for discrepancies between Newtonian theories of motion and observations of the inner planets, Newcomb incremented the secular motion of each perihelion by \(8.06 \times 10^{-8}\) times the centennial mean motion of the individual planet. This he explained as a consequence of a presumed small deviation from the \(1 / r^{2}\) law of gravitation. It is now known that the theory of general relativity predicts a 3 " \(84 /\) century perihelion advance; therefore, Clemence proposed changes of 1,83 for correction of the general precession, \(3^{\prime \prime} 84\) for the relativistic effect, and \(-10 " 45\) for the removal of Newcomb's empirical increment. These total -4 !'78.

To maintain the same mean longitude for the sun, so as not to affect the definition and determination of UT, he further suggested adding \(4: 78\) to the centennial increase in the mean anomaly of the earth. Herget's evaluation of the Tables of the Sun (see Ref. 12) incorporates this correction.
P. M. Janiczek of the United States Naval Observatory has shown that there are discordances between the theory as published (see Ref. 32) and that previously developed. His comparisons and the discussion by Clemence (Ref. 31) indicate that Newcomb not only neglected a number of terms with small coefficients in constructing his tables, but also included terms in the tables that were not in the theory presented in Ref. 32.

The replacements in the theory in Table A-1 will increase agreement with Ref. 12 in longitude and radius vector.

Table A-1. Replacements in Newcomb's theory of the sun
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathbf{g}_{\text {venus }}\) & \(\mathbf{g}_{\text {earth }}\) & \(\mathbf{g}_{\text {Mars }}\) & \(v_{c}\) & \(v_{s}\) & \(\rho_{e}\) & \(\rho_{s}\) \\
\hline -2 & 0 & & 0.000 & 0.000 & & \\
\hline -3 & 2 & & -0.013 & 0.000 & & \\
\hline -4 & 3 & & 0.000 & 0.000 & & \\
\hline -5 & 8 & & 0.154 & 0.000 & & \\
\hline -7 & 10 & & -0.002 & -0.002 & & \\
\hline -8 & 9 & & 0.002 & \(-0.003\) & & \\
\hline -8 & 12 & & -0.033 & -0.054 & & \\
\hline -8 & 14 & & 0.000 & 0.000 & & \\
\hline \(-10\) & 10 & & 0.000 & 0.000 & & \\
\hline & -1 & 2 & -1.659 & -0.017 & & \\
\hline & -4 & 4 & 0.011 & 0.032 & & \\
\hline & -7 & 11 & 0.000 & 0.000 & 17 & \(-10\) \\
\hline
\end{tabular}

Errata already published are the replacement of argument \(-2,2\) by \(-3,2\) (Ref. 32, p. 17) for the Venus perturbation in latitude, and the sign change to - ( \(1^{\prime \prime} 882-0^{\prime \prime} 016 T\) ) in the long-period inequalities.

To facilitate evaluation of the thus-amended theory, since the program was generalized for evaluating other planetary theories, the long-period perturbations were added to the mean anomaly after computation of the equation of center.

The difference between the longitude in Ref. 12 and that derived from the theory with only the perihelion correction has roughly a 1 -yr period and an amplitude of \(0 \prime 4\); therefore, the maximum expected discrepancy in the computed position of (48) Doris implementing only the perihelion term would be about \(0!2\). When all of the corrections are included, the agreement increases to about 0 " 10 .

\section*{Appendix B}

\section*{Eckert-Brouwer Differential Correction Coefficients}

The Eckert-Brouwer differential correction coefficients in Tables B-1 through B-3 are the partial derivatives of the elliptic coordinates and velocities with respect to three sets of six functions \(\xi_{i}\) of the equatorial Keplerian elements. In terms of the semimajor axis \(a\), the eccentricity \(e\), the inclination \(I\), the longitude of ascending node \(\Omega\), the argument of periapsis \(\omega\), and the mean anomaly \(M_{0}\),
\[
\begin{align*}
\Delta I & =\Delta p \cos \omega-\Delta q \sin \omega  \tag{B-1}\\
\sin I \Delta \Omega & =\Delta p \sin \omega+\Delta q \cos \omega  \tag{B-2}\\
\Delta \omega+\cos I \Delta \Omega & =\Delta r  \tag{B-3}\\
\Delta \psi_{1} & =\left|\mathbf{P}_{x} \Delta p+\mathbf{Q}_{x} \Delta q+\mathbf{R}_{x} \Delta r\right|  \tag{B-4}\\
\Delta \psi_{z} & =\left|\mathbf{P}_{y} \Delta p+\mathbf{Q}_{y} \Delta q+\mathbf{R}_{y} \Delta r\right|  \tag{B-5}\\
\Delta \psi_{3} & =\left|\mathbf{P}_{z} \Delta p+\mathbf{Q}_{z} \Delta q+\mathbf{R}_{z} \Delta r\right| \tag{B-6}
\end{align*}
\]
where \(\mathbf{P}, \mathbf{Q}\), and \(\mathbf{R}\) are the usual vectorial orbital constants.
In terms of the Keplerian radial distance \(r\) and velocity \(\dot{r}\),
\[
\begin{align*}
H & =\frac{r-a\left(1+e^{2}\right)}{a e\left(1-e^{2}\right)}  \tag{B-7}\\
K & =\frac{r \dot{r}}{a^{2} n^{2} e}\left[1+\frac{r}{a\left(1-e^{2}\right)}\right]  \tag{B-8}\\
H^{\prime} & =r \dot{r} \frac{r^{2}-a\left[r+a\left(1-e^{2}\right)\right]}{e r^{3} a\left(1-e^{2}\right)}  \tag{B-9}\\
K^{\prime} & =\frac{a-r}{e a\left(1-e^{2}\right)} \tag{B-10}
\end{align*}
\]

Section V contains a discussion of the choice of values for all of the quantities used to generate and evaluate the expressions.

Set 1 is the basic set of coefficients. Set 2 is a modification designed to increase the separability of \(\Delta \omega\) and \(M_{0}\) for orbits with low eccentricity. Set 3 requires more calculation than do the others, but has the advantage of yielding a determinate solution regardless of the values of eccentricity or inclination.

When the normal equations are solved, the corrections to the elements may be obtained by premultiplying the matrix of parameters \(\boldsymbol{\xi}\) by the matrix \(\mathbf{G}\) given below:
\[
\begin{align*}
& A=\begin{array}{c}
\Delta p \\
\Delta I \\
\Delta \Omega \\
\Delta \Omega \\
\Delta M_{0}
\end{array} \begin{array}{cccc}
\Delta q & \Delta r & \Delta M_{0} \\
\hline-\frac{\cos \omega}{\operatorname{cin} I} \sin \omega & -\frac{\cos I}{\sin I} \cos \omega & 0 & 0 \\
\frac{\sin \omega}{\sin I} & \frac{\cos \omega}{\sin I} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array} \tag{B-11}
\end{align*}
\]
\[
\begin{align*}
& B_{(2)}=\begin{array}{ccccc}
\Delta M_{0}+\Delta \psi_{3} & \Delta p & \Delta q & \Delta r & \Delta M_{0} \\
\cline { 3 - 5 } & \Delta \psi_{1} & \mathbf{P}_{z} & \mathbf{Q}_{z} & \mathbf{R}_{z} \\
\Delta \psi_{2} & 1 \\
& \mathbf{P}_{x} & \mathbf{Q}_{x} & \mathbf{R}_{x} & 0 \\
e \Delta \psi_{3} & \mathbf{P}_{y} & \mathbf{Q}_{y} & \mathbf{R}_{y} & 0 \\
e \mathbf{P}_{z} & e \mathbf{Q}_{z} & e \mathbf{R}_{z} & 0
\end{array} \tag{B-13}
\end{align*}
\]


Use of matrix techniques also facilitates the determination of probable errors for the corrections to the elements, as the covariance of the corrections \(\Gamma_{E}\) is given in terms of the covariance \(\Gamma_{\xi}\) of the solution parameters by
\[
\begin{equation*}
\Gamma_{E}=\mathbf{G} \Gamma_{\xi} \mathbf{G}^{T} \tag{B-16}
\end{equation*}
\]

Table B-1. Eckert-Brouwer set 1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\Delta \psi_{0}\) & \(\Delta \psi_{1}\) & \(\Delta \psi_{2}\) & \(\Delta \psi_{3}\) & \(\frac{\Delta a}{a}\) & \(\Delta\) e \\
\hline \(\Delta x\) & \(\frac{\dot{x}}{n}\) & 0 & \(z\) & -y & \[
x-\frac{3}{2} f \dot{x}
\] & \(H x+K \dot{x}\) \\
\hline \(\Delta y\) & \(\frac{\dot{y}}{n}\) & -z & 0 & x & \[
y-\frac{3}{2} t \dot{y}
\] & \(\underline{H y}+\mathrm{K} \dot{\boldsymbol{y}}\) \\
\hline \(\Delta x\) & \(\frac{\dot{z}}{n}\) & \(y\) & -x & 0 & \(z-\frac{3}{2} f \dot{z}\) & \(\mathrm{Hz}+\mathrm{K} \dot{\mathbf{z}}\) \\
\hline \(\Delta \dot{x}\) & \(\frac{\ddot{x}}{n}\) & 0 & \(\dot{z}\) & \(-\dot{y}\) & \(-\frac{1}{2}(\dot{x}+3 \dot{x})\) & \(\mathbf{H}^{\prime} \mathbf{x}+\mathbf{K}^{\prime} \dot{\mathbf{x}}\) \\
\hline \(\Delta \dot{y}\) & \(\frac{\ddot{y}}{n}\) & -i & 0 & \(\dot{x}\) & \(-\frac{1}{2}(\dot{y}+3 \dot{y})\) & \(H^{\prime} \boldsymbol{y}+\mathrm{K}^{\prime} \dot{\boldsymbol{y}}\) \\
\hline \(\Delta \dot{i}\) & \(\frac{\ddot{z}}{n}\) & \(\dot{\boldsymbol{y}}\) & \(-\dot{x}\) & 0 & \(-\frac{1}{2}(\dot{z}+3 \dot{z})\) & \(H^{\prime} \mathbf{z}+\mathbf{K}^{\prime} \mathbf{z}\) \\
\hline
\end{tabular}

Table B-2. Eckert-Brouwer set 2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\Delta M_{0}+\Delta \psi_{3}\) & \(\Delta \psi_{1}\) & \(\Delta \psi_{2}\) & e \(\Delta \psi_{3}\) & \(\frac{\Delta a^{-}}{a}\) & \(\Delta\) e \\
\hline \(\Delta x\) & \[
\frac{\dot{x}}{n}
\] & 0 & \(z\) & \[
-\frac{1}{e}\left(\frac{\dot{x}}{n}+y\right)
\] & \(x-\frac{3}{2}+\dot{x}\) & \(H x+K \dot{x}\) \\
\hline \(\Delta y\) & \(\frac{\dot{y}}{n}\) & \(z\) & 0 & \[
-\frac{1}{e}\left(\frac{\dot{y}}{n}-x\right)
\] & \[
y-\frac{3}{2}+\dot{y}
\] & \(\mathrm{Hy}+\mathrm{K} \dot{\boldsymbol{y}}\) \\
\hline \(\Delta z\) & \(\frac{\dot{z}}{\square}\) & \(\boldsymbol{\gamma}\) & -x & \[
-\frac{1}{e} \frac{\dot{z}}{n}
\] & \(z-\frac{3}{2}+\dot{z}\) & \(\mathrm{Hz}+\mathrm{K} \dot{\mathbf{z}}\) \\
\hline \(\Delta \dot{x}\) & \[
\frac{\ddot{x}}{n}
\] & 0 & i & \[
-\frac{1}{e}\left(\frac{\ddot{x}}{n}+\dot{y}\right)
\] & \[
-\frac{1}{2}(\dot{x}+3 \ddot{x})
\] & \(K^{\prime} \times{ }^{\prime} K^{\prime} \dot{x}\) \\
\hline \(\Delta \dot{y}\) & \(\underline{\ddot{y}}\) & -i & 0 & \[
-\frac{1}{e}\left(\frac{\ddot{y}}{n}-\dot{x}\right)
\] & \(-\frac{1}{2}(\dot{y}+3 \ddot{y})\) & \(H^{\prime} y+K^{\prime} \dot{y}\) \\
\hline \(\Delta \dot{z}\) & \[
\frac{\ddot{z}}{n}
\] & \(\dot{y}\) & \(-\dot{x}\) & \[
-\frac{1}{e} \frac{\ddot{z}}{n}
\] & \(-\frac{1}{2}(\dot{z}+3 \bar{z})\) & \(H^{\prime} z+K^{\prime} \dot{z}\) \\
\hline
\end{tabular}

Table B-3. Eckert-Brouwer sef 3
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\Delta M_{0}+\Delta r\) & \(\Delta p\) & \(\Delta q\) & e \(\Delta\) r & \(\frac{\Delta a}{a}\) & \(\Delta \mathrm{e}\) \\
\hline \(\Delta x\) & \(\frac{\dot{x}}{n}\) & \(\mathbf{P}_{y^{\mathbf{z}}}-\mathbf{P}_{z} \boldsymbol{y}\) & \(\mathbf{Q}_{y^{\mathbf{z}}}-\mathbf{Q}_{z} \mathbf{y}\) & \(\frac{1}{e}\left(R_{y} z-R_{z} y-\frac{x}{n}\right)\) & \(x-\frac{3}{2}+x\) & \(H_{x}+K \dot{x}\) \\
\hline \(\Delta y\) & \(\frac{\dot{y}}{n}\) & \(\mathbf{P}_{z^{\mathbf{x}}}-\mathbf{P}_{x^{\mathbf{z}}}\) & \(\mathbf{Q}_{z^{x}}-\mathbf{Q}_{x^{z}}\) & \(\frac{1}{e}\left(\mathbf{R}_{z} x-\mathbf{R}_{a^{z}}-\frac{y}{n}\right)\) & \(y-\frac{3}{2}+\dot{y}\) & \(\mathbf{H y}+\mathrm{K} \dot{\boldsymbol{y}}\) \\
\hline \(\Delta z\) & \(\frac{\dot{z}}{\text { i }}\) & \(\mathbf{P}_{x y} y-\mathbf{P}_{y^{x}}\) & \(\mathbf{Q}_{x} \boldsymbol{y}-\mathbf{Q}_{y^{x}}\) & \(\frac{1}{e}\left(R_{x} y-R_{y}{ }^{x}-\frac{z}{n}\right)\) & \(z-\frac{3}{2}+\dot{z}\) & \(\mathbf{H z}+\mathbf{K} \mathbf{z}\) \\
\hline \(\Delta \dot{x}\) & \(\frac{\ddot{x}}{n}\) & \(\mathbf{P}_{y} \dot{z}-\mathbf{P}_{z} \dot{y}\) & \(\mathbf{Q}_{y} \dot{z}-\mathbf{Q}_{z} \dot{y}\) & \(\frac{1}{\mathrm{e}}\left(\mathbf{R}_{y^{\prime}} \dot{z}-\mathbf{R}_{z} \dot{y} \dot{y}-\frac{\ddot{x}}{n}\right)\) & \(-\frac{1}{2}(\dot{x}+3 \ddot{x})\) & \(H^{\prime} \mathbf{x}+\mathrm{K}^{\prime} \dot{x}\) \\
\hline \(\Delta \dot{y}\) & \(\frac{\ddot{y}}{n}\) & \(\mathbf{P}_{z^{\mathbf{x}}} \dot{\mathbf{x}}-\mathbf{P}_{x^{\underline{z}}} \dot{\sim}\) & \(\mathbf{Q}_{z} \dot{\mathbf{x}}-\mathbf{Q}_{x} \dot{z}\) & \(\frac{1}{e}\left(\mathbf{R}_{z} \dot{x}-\mathbf{R}_{w^{\prime}} \dot{z}-\frac{\ddot{y}}{n}\right)\) & \(-\frac{1}{2}(\dot{y}+3 \dot{y})\) & \(H^{\prime} \boldsymbol{y}+\mathrm{K}^{\prime} \dot{y}\) \\
\hline \(\Delta \dot{z}\) & \(\frac{\ddot{z}}{n}\) & \(\mathbf{P}_{x} \dot{y}-\mathbf{P}_{y^{\prime}} \dot{x}\) & \(\mathbf{Q}_{a} \dot{y}-\mathbf{Q}_{y} \dot{x}\) & \(\frac{1}{e}\left(\mathbf{R}_{x} \dot{y}-\mathbf{R}_{y} \dot{x}-\frac{\ddot{z}}{n}\right)\) & \(-\frac{1}{2}(\dot{z}+3 \ddot{z})\) & \(H^{\prime} \mathbf{z}+\mathrm{K}^{\prime} \dot{z}\) \\
\hline
\end{tabular}

\section*{Appendix C}

\section*{Observations and Residuals}

This appendix lists the observations used in this report. The various columns in the printout contain the following information:
(1) International Astronomical Union observatory number. Negative numbers are used to identify observatories that have not been assigned an IAU number. (See Table 3 for the names and locations of the observatories.)
(2) Year, month, and day of the observations in ephemeris time.
(3) Reduced 1950.0 coordinates.
(4) Corrections (if any) to the FK4 system.
(5) Residuals from the reference orbit (before) and the linearized residuals after the solution, using \(\partial \mathbf{r} / \partial m\) and set 3.
(6) Type of observation: \(\mathrm{P}=\) photographic; \(\mathrm{V}=\) visual; \(\mathrm{R}=\) rereduced; \(\mathrm{M}=\) meridian.

R.A. DEC.
(D-C)
DEC.
TYPE

AFTER BEFDRE AFTER
 \(78619671030.07438 \quad 231748.440-0418 \quad 09.34\) \(\begin{array}{llllllllllllll}970 & 1767 & 10 & 06.84695 & 23 & 26 & 36.377 & -02 & 34 & 34.92\end{array}\) \(\begin{array}{lllllllllll}990 & 1967 & 10 & 05.89903 & 23 & 27 & 08.885 & -02 & 29 & 09.02\end{array}\) \(99019671005.87820232709 .196-022907.02\)
\begin{tabular}{ll}
0.033 & 0 \\
0.019 & 0. \\
0.019 & 0.
\end{tabular} \(\begin{array}{rrrrrrrrrrrrrrrrrr}786 & 1967 & 09 & 02.29243 & 23 & 49 & 20.495 & 01 & 00 & 17.62 & -0.000 & -0.00 & 0.218 & 0.218 & -0.09 & -0.09 & p \\ 786 & 1967 & 09 & 02.25980 & 23 & 49 & 21.698 & 01 & 00 & 29.13 & 0.003 & 0.31 & 0.009 & 0.009 & 0.56 & 0.56 & p \\ 786 & 1967 & 08 & 15.32785 & 23 & 57 & 46.756 & 02 & 20 & 41.63 & 0.003 & 0.31 & 0.129 & 0.128 & 1.22 & 1.22 & p \\ 786 & 1967 & 08 & 15.30563 & 23 & 57 & 47.256 & 02 & 20 & 44.43 & 0.003 & 0.31 & 0.812 & 0.812 & -0.34 & -0.34 & p \\ 75 & 1966 & 07 & 20.87677 & 18 & 24 & 55.903 & -14 & 09 & 41.28 & -0.000 & -0.00 & 1.476 & 1.477 & 1.21 & 1.21 & P \\ 95 & 1966 & 07 & 19.88064 & 18 & 25 & 36.113 & -14 & 07 & 46.98 & -0.000 & -0.00 & 1.753 & 1.755 & 5.13 & 5.13 & p \\ 95 & 1966 & 07 & 16.93348 & 18 & 27 & 37.003 & -14 & 02 & 49.08 & -0.000 & -0.00 & -1.639 & -1.638 & -8.95 & -8.95 & p \\ 786 & 1966 & 07 & 14.16743 & 18 & 29 & 39.937 & -13 & 58 & 06.94 & 0.004 & 0.04 & 0.907 & 0.908 & 1.44 & 1.44 & P \\ 786 & 1966 & 07 & 14.15216 & 18 & 29 & 40.606 & -13 & 58 & 05.85 & 0.004 & 0.04 & 0.485 & 0.486 & 1.08 & 1.08 & p\end{array}\) \(\begin{array}{llllllllllllllllllll}35 & 1966 & 07 & 12.89119 & 18 & 30 & 36.892 & -13 & 56 & 12.78 & -0.000 & -0.00 & -0.469 & -0.468 & -2.21 & -2.21 & P\end{array}\)
\(\begin{array}{llllllllllllll}95 & 1966 & 06 & 24.94449 & 18 & 44 & 39.412 & -13 & 37 & 48.27 & -0.000 & -0.00\end{array}\) \(\begin{array}{llllllllllllllllll}786 & 1966 & 06 & 23.21327 & 18 & 45 & 59.256 & -13 & 37 & 02.28 & 0.004 & 0.04 & 0.285 & 0.286 & 1.00 & 1.06 & \mathrm{P}\end{array}\) \(\begin{array}{llllllllllllllllll}75 & 1766 & 06 & 20.93487 & 18 & 47 & 42.886 & -13 & 36 & 20.33 & 0.004 & 0.04 & 2.793 & 2.794 & 1.43 & 1.43 & \mathrm{P}\end{array}\) \(\begin{array}{llllllllllllllllll}786 & 1966 & 06 & 16.25982 & 18 & 51 & 06.707 & -13 & 36 & 00.03 & 0.004 & 0.04 & 1.114 & 1.116 & 0.52 & 0.52 & p\end{array}\) \(\begin{array}{rrrrrrrrrrrrrrrrr}786 & 1966 & 06 & 16.23757 & 18 & 51 & 07.677 & -13 & 36 & 00.02 & 0.004 & 0.04 & 1.184 & 1.186 & 0.63 & 0.63 & \mathbf{P} \\ 95 & 1966 & 06 & 15.95867 & 18 & 51 & 19.233 & -13 & 36 & 01.47 & -0.000 & -0.00 & -0.939 & -0.938 & 0.95 & 0.95 & \mathrm{P}\end{array}\) \(\begin{array}{lllllllllllllllll}786 & 1965 & 05 & 27.19173 & 13 & 31 & 03.516 & -04 & 38 & 16.14 & -0.009 & 0.33 & 0.279 & 0.288 & 0.45 & 0.45 & \mathrm{P}\end{array}\) \(\begin{array}{lllllllllllllllllll}786 & 1965 & 05 & 27.17575 & 13 & 31 & 03.815 & -04 & 38 & 18.04 & -0.069 & 0.33 & 0.257 & 0.265 & 0.47 & 0.47 & \mathrm{P}\end{array}\) \(\begin{array}{lllllllllllllllllll}786 & 1965 & 05 & 27.13704 & 13 & 31 & 34.585 & -04 & 38 & 22.24 & -0.009 & 0.33 & 0.750 & 0.759 & 0.96 & 0.96 & P\end{array}\)
\(\begin{array}{llllllllllllllll}786 & 1965 & 05 & 27.12366 & 13 & 31 & 04.775 & -04 & 38 & 23.53 & -0.009 & 0.33 & -0.221 & -0.212 & 1.28 & 1.28\end{array} \mathbf{P}\) \(\begin{array}{llllllllllllllllllll}786 & 1965 & 05 & 18.14729 & 13 & 34 & 29.365 & -05 & 01 & 49.50 & -0.009 & 0.33 & 4.672 & 4.682 & -0.12 & -0.12 & p\end{array}\) \(\begin{array}{lllllllllllllllllll}786 & 1965 & 05 & 18.14729 & 13 & 34 & 29.365 & -05 & 01 & 49.32 & -0.009 & 0.33 & 4.672 & 4.682 & 0.06 & 0.06 & P\end{array}\) \(\begin{array}{lllllllllllllllllll}420 & 1965 & 05 & 03.55685 & 13 & 42 & 41.116 & -06 & 00 & 45.88 & -0.009 & 0.33 & 0.364 & 0.374 & 0.30 & 0.30 & \mathrm{P}\end{array}\)

\(\begin{array}{lllllllllllllllll}786 & 1965 & 05 & 01.19937 & 13 & 44 & 14.907 & -06 & 12 & 25.18 & -0.009 & 0.33 & 0.393 & 0.402 & 0.25 & 0.25 & \mathrm{P}\end{array}\) \(78619650501.17854134415 .757-0612 \quad 31.78-0.009 \quad 0.33 \quad 0.116 \quad 0.125-0.08-0.08 \mathrm{P}\) \(\begin{array}{llllllllllllllllllll}420 & 1965 & 04 & 13.61796 & 13 & 56 & 42.367 & -07 & 48 & 37.92 & -0.000 & -0.00 & 0.061 & 0.071 & 0.06 & 0.06 & p\end{array}\) \(\begin{array}{llllllllllllllllllllllll}388 & 1964 & 02 & 12.51152 & 08 & 26.618 & 11 & 19 & 08.76 & -0.000 & -0.00 & 3.664 & 3.688 & -0.32 & -0.32 & P\end{array}\) \(\begin{array}{lllllllllllllllllllll}388 & 1964 & 02 & 12.47194 & 08 & 27 & 00.188 & 11 & 18 & 57.36 & -0.000 & -0.00 & 1.161 & 1.185 & -0.45 & -0.45 & \mathrm{P}\end{array}\)
\(\begin{array}{lllllll}786 & 1964 & 02 & 09.17506 & 08 & 29 & 24.148\end{array}\)
\(6 \quad 19640201.8919808 \quad 35 \quad 03.239\) \(\begin{array}{llll}330 & 1964 & 01 & 19.82153\end{array} 08 \quad 45 \quad 25.709\) \(\begin{array}{llllllll}786 & 1964 & 01 & 16.34593 & 08 & 48 & 02.394\end{array}\) \(\begin{array}{lllllllll}786 & 1964 & \text { C1 } 16.30354 & 08 & 48 & 04.344\end{array}\)
\begin{tabular}{rrrrrrrrr}
11 & 03 & 28.24 & -0.050 & 0.17 & -1.180 & -1.156 & 0.20 & 0.26 \\
10 & 30 & 03.76 & -0.000 & -0.00 & -0.851 & -0.827 & -0.84 & -0.84 \\
09 & 37 & 28.86 & -0.000 & -0.00 & -1.191 & -1.167 & 2.34 & 2.34 \\
\hline
\end{tabular}
\[
\begin{array}{rrrrrrr}
13 & 1962 & 11 & 30.84322 & 02 & 07 & 37.509 \\
13 & 1962 & 11 & 30.83906 & 02 & 07 & 37.649 \\
13 & 1962 & 11 & 30.82867 & 02 & 07 & 37.919 \\
13 & 1962 & 11 & 30.82244 & 02 & 07 & 38.099 \\
336 & 1962 & 11 & 28.72274 & 62 & 08 & 33.552
\end{array}
\]
\begin{tabular}{rrrrrrrrr}
06 & 39 & 36.04 & -0.023 & -0.05 & -0.838 & -0.823 & -1.15 & -1.15 \\
06 & 39 & 36.63 & -0.023 & -0.05 & -0.380 & -0.364 & -1.15 & -1.15 \\
06 & 39 & 38.03 & -0.023 & -0.05 & -0.425 & -0.409 & -1.21 & -1.21 \\
\hline
\end{tabular}
\(\begin{array}{llllllll}334 & 1962 & 11 & 20.58446 & 02 & 12 & 55.791\end{array}\) \(\begin{array}{lllllll}388 & 1962 & 11 & 19.47402 & 02 & 13 & 36.811\end{array}\) \(336196210 \quad 25.69676 \quad 023132.380\)
\(\begin{array}{lllllll}13 & 1962 & 10 & 23.01237 & 02 & 33 & 30.240\end{array}\)
\(13196210 \quad 23.00891 \quad 02 \quad 33 \quad 32.359\)
 BEFORE AFTER BEFORE AFTER
\(\begin{array}{rrrrrrrrrrrrrrrrr}13 & 1962 & 10 & 22.99471 & 02 & 33 & 31.049 & 09 & 36 & 34.78 & -0.030 & 0.29 & 0.124 & 0.141 & 0.35 & 0.35 & P \\ 13 & 1962 & 10 & 22.99055 & 02 & 33 & 31.229 & 09 & 36 & 36.14 & -0.030 & 0.29 & 0.045 & 0.063 & 0.29 & 0.29 & P \\ 786 & 1961 & 09 & 16.09206 & 20 & 41 & 19.838 & -12 & 14 & 26.28 & 0.019 & -0.01 & 0.821 & 0.814 & 0.88 & 0.88 & p \\ 786 & 1961 & 09 & 16.02956 & 20 & 41 & 20.859 & -12 & 14 & 12.91 & 0.019 & -0.01 & 0.937 & 0.929 & 0.44 & 0.44 & p \\ 760 & 1961 & 09 & 03.26192 & 20 & 46 & 10.205 & -11 & 22 & 01.26 & 0.026 & -0.15 & 1.773 & 1.764 & 0.96 & 0.96 & p \\ 760 & 1961 & 09 & 03.21945 & 20 & 46 & 11.465 & -11 & 21 & 50.31 & 0.026 & -0.15 & 0.981 & 0.973 & 0.68 & 0.68 & P \\ 388 & 1961 & 08 & 16.52886 & 20 & 57 & 09.972 & -09 & 59 & 14.71 & 0.024 & 0.53 & 5.600 & 5.591 & 3.22 & 3.22 & p \\ 388 & 1961 & 08 & 16.51497 & 20 & 57 & 10.603 & -09 & 59 & 10.61 & 0.024 & 0.53 & 5.879 & 5.871 & 3.37 & 3.37 & p \\ 786 & 1960 & 06 & 28.13441 & 15 & 52 & 24.253 & -12 & 01 & 10.37 & -0.014 & -0.03 & -0.942 & -0.941 & 1.14 & 1.14 & p \\ 786 & 1960 & 66 & 28.09830 & 15 & 52 & 25.232 & -12 & 01 & 11.51 & -0.014 & -0.03 & -0.810 & -0.809 & 0.59 & 0.59 & p\end{array}\)
\(\begin{array}{llllllllllllllllllll}8 & 1960 & 06 & 20.86500 & 15 & 55 & 58.943 & -12 & 05 & 34.15 & -0.014 & -0.03 & 0.026 & 0.028 & 0.08 & 0.08 & P\end{array}\) \(42019600609.52443160309 .172-122143.35-0.014-0.03-1.561-1.559-0.83-0.83 \mathrm{P}\) \(\begin{array}{llllllllllllllllllllll}420 & 1960 & 05 & 09.65400 & 16 & 26 & 13.806 & -13 & 48 & 31.77 & -0.013 & -0.05 & -0.451 & -0.450 & -0.16 & -0.16 & p\end{array}\) \(\begin{array}{llllllllllllllllll}786 & 1959 & 04 & 07.12677 & 11 & 09 & 50.086 & 03 & 55 & 29.06 & -0.044 & 0.04 & -0.282 & -0.211 & 0.31 & 0.31 & P\end{array}\) \(\begin{array}{lllllllllllllllll}786 & 1959 & 04 & 07.09969 & 11 & 09 & 53.886 & 03 & 55 & 20.63 & -0.044 & 0.04 & -0.414 & -0.344 & 0.14 & 0.14 & P\end{array}\)
619590402.83355111201 .821 76019590401.18201111256 .971 \(\begin{array}{lllllll}760 & 1959 & 04 & 01.13097 & 11 & 12 & 58.446\end{array}\) \(\begin{array}{llllllll}786 & 1959 & 03 & 17.18163 & 11 & 22 & 39.149\end{array}\) \(\begin{array}{llllll}786 & 1959 & 03 & 17.14760 & 11 & 2240.649\end{array}\)
\(\begin{array}{lllr}03 & 32 & 40.25 & -0.000 \\ 03 & 23 & 22.21 & 0.000\end{array}\) \(\begin{array}{llll}03 & 23 & 07.96 & -0.044\end{array}\) \(015102.32-0.042\) \(015049.39-0.042\)
\(-0.00 \quad 1.240 \quad 1.311-0.85-0.85 P\)
\(\begin{array}{lllllll}24 & 1959 & 03 & 09.01663 & 11 & 28 & 27.572\end{array}\) \(\begin{array}{lllllll}786 & 1959 & 03 & 05.17191 & 11 & 31 & 09.833\end{array}\) \(\begin{array}{llllllll}786 & 1959 & 03 & 05.14413 & 11 & 31 & 11.012\end{array}\) \(\begin{array}{llllllll}330 & 1959 & 03 & 03.70581 & 11 & 32 & 10.603\end{array}\) \(\begin{array}{lllllll}786 & 1958 & 01 & 20.11635 & 05 & 14 & 29.727\end{array}\)
 \(0.00 \quad 4.898 \quad 4.970-4.13-4.13 \mathrm{P}\) \(0.04-0.001 \quad 0.071-0.98-0.98 \mathrm{P}\) \(0.13-0.520-0.446-0.02-0.02 p\) \(0.13-0.239-0.165 \quad 0.24 \quad 0.24 \mathrm{P}\)
\(\begin{array}{lllllll}786 & 1958 & 01 & 20.06844 & 05 & 14 & 30.867\end{array}\) \(\begin{array}{lllllll}786 & 1958 & 01 & 10.13371 & 05 & 19 & 18.257\end{array}\) \(\begin{array}{llllll}786 & 1958 & 01 & 10.09969 & 05 & 19 \\ 19.487\end{array}\) \(\begin{array}{lllllll}786 & 1957 & 12 & 16.18405 & 05 & 38 & 29.366\end{array}\) \(\begin{array}{lllllll}786 & 1957 & 12 & 16.16113 & 05 & 38 & 30.556\end{array}\)
\begin{tabular}{rrrrrrrrr}
13 & 57 & 07.50 & -0.001 & 0.20 & 0.129 & 0.237 & 0.79 & 0.79 \\
13 & 42 & 29.67 & -0.001 & 0.20 & -0.031 & 0.082 & 1.21 & 1.21 \\
\(\mathbf{p}\) \\
13 & 42 & 27.46 & -0.001 & 0.20 & -0.384 & -0.271 & 1.30 & 1.30 \\
\(\mathbf{p}\) \\
13 & 39 & 11.33 & -0.001 & 0.20 & -0.060 & 0.059 & 1.06 & 1.06 \\
13 & 39 & 12.38 & -0.001 & 0.20 & -0.463 & -0.344 & 0.96 & 0.96
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 996 & 1957 & 11 & 27.96148 & 05 & 53 & 04.216 & 14 & 06 & 27.41 & -0.001 & 0.20 & -1.889 & -1.774 & 2.49 & 2.49 & \\
\hline 990 & 1957 & 11 & 27.94065 & 05 & 53 & 05.315 & 14 & 06 & 27.13 & 0.038 & 0.32 & 1.301 & 1.417 & -0.30 & -0.30 & P \\
\hline 13 & 1956 & 10 & 15.87527 & 23 & 19 & 58.385 & -03 & 30 & 06.70 & 0.038 & 0.32 & 0.732 & 0.746 & -0.11 & -0.11 & P \\
\hline 13 & 1956 & 10 & 15.87109 & 23 & 19 & 58.536 & -03 & 30 & 05.12 & 0.038 & 0.32 & 1.381 & 1.395 & 0.29 & 0.29 & P \\
\hline 24 & 1956 & 10 & 10.91633 & 23 & 22 & 12.646 & -03 & 05 & 08.83 & 0.038 & 0.32 & -1.065 & -1.051 & 2.12 & 2.12 & P \\
\hline 786 & 1956 & 10 & 08. 12606 & 23 & 23 & 39.116 & -02 & 49 & 55.62 & 0.038 & 0.32 & 0.94 & 0.956 & 0 & 0.69 & P \\
\hline 786 & 1956 & 10 & 08.09759 & 23 & 23 & 40.095 & -02 & 49 & 45.63 & 0.038 & 0.32 & 1.306 & 1.321 & 1.09 & 1.09 & P \\
\hline 13 & 1956 & 10 & 07.85613 & 23 & 23 & 47.936 & -02 & 48 & 25.55 & . 038 & 0.32 & 1.775 & 1.790 & 0.43 & 0. & P \\
\hline 13 & 1956 & 10 & 07.85195 & 23 & 23 & 48.064 & -02 & 48 & 24.11 & 0.03 & 0.32 & 1.621 & 1.635 & 0.45 & 0.45 & P \\
\hline 24 & 1956 & 10 & 01.8982 & 23 & 27 & 15.234 & -02 & 13 & 17.84 & 0.03 & 0.32 & -0.386 & -0.371 & 1.58 & 1.58 & P \\
\hline 786 & 1956 & 10 & 01.15105 & 23 & 27 & 43.125 & -02 & 08 & 42.35 & 0.038 & 0.32 & 0.931 & 0.945 & 0.74 & 74 & P \\
\hline 786 & 1956 & 10 & 01.12884 & 23 & 27 & 43.995 & -02 & 08 & 34.15 & 0.038 & 0.32 & 1.046 & 1.061 & 0.70 & 0.70 & P \\
\hline 990 & 1956 & 09 & 28.93648 & 23 & 29 & 07.595 & -01 & 54 & 53.81 & 0.019 & 0.05 & 2.107 & 2.122 & -0.09 & -0.09 & P \\
\hline 990 & 1956 & 09 & 26.86704 & 23 & 30 & 28.465 & -01 & 41 & 46.11 & 0.019 & 0.05 & -3.294 & -3.279 & -1.31 & -1.31 & P \\
\hline 13 & 1956 & 09 & 24.85462 & 23 & 31 & 49.305 & -01 & 28 & 48.64 & 0.019 & 0.05 & -0.035 & -0.020 & -0.26 & -0.26 & \(p\) \\
\hline 13 & 1956 & 09 & 24.84767 & 23 & 31 & 49.575 & -01 & 28 & 46.02 & 0.019 & 0.05 & -0.296 & -0.281 & -0.34 & -0.34 & \(P\) \\
\hline 13 & 1956 & 09 & 17.01071 & 23 & 37 & 13.246 & -00 & 37 & 40.17 & 0.001 & 0.34 & -0.353 & -0.339 & -0.11 & -0.11 & \(P\) \\
\hline 13 & 1956 & 09 & 17.00446 & 23 & 37 & 13.507 & -00 & 37 & 37.66 & 0.001 & 0.34 & -0.470 & -0.455 & -0.04 & -0.04 & P \\
\hline 13 & 1956 & 09 & 14.99029 & 23 & 38 & 37.496 & -00 & 24 & 33.20 & 0.001 & 0.34 & -0.708 & -0.693 & -0.13 & -0.13 & P \\
\hline 13 & 1956 & 09 & 14.98334 & 23 & 38 & 37.817 & -00 & 24 & 30.41 & 0.001 & 0.34 & -0.355 & -0.340 & -0.04 & -0.04 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & \(M\) S & & & \(1 / 1\) & 5 & 11 & 11 & 11 & 11 & 11 & \\
\hline 24 & 1956 & 09 & 41 & 23 & 39 & 17.767 & -00 & 18 & 18.53 & 0.001 & 0.34 & 0.542 & 0.557 & \(-0.30\) & . 30 & \\
\hline 330 & 1956 & ¢9 & 1 C .762 & 23 & 41 & 32.075 & 00 & 02 & 29.63 & -0.000 & -0.00 & 2.332 & 2.347 & 0.79 & 0.79 & \\
\hline 24 & 1956 & 09 & 09.01277 & 23 & 42 & 42.967 & 0 & 13 & 25.47 & 0.001 & 0.34 & 0.665 & 0.680 & 1.52 & 52 & \\
\hline 13 & 1956 & c9 & 04.03036 & 23 & 45 & 57.725 & 00 & 43 & 23.16 & -0.000 & -0.00 & -0.870 & -0.855 & -0.24 & -0.24 & \\
\hline 13 & 1956 & 09 & 04.02341 & 23 & 45 & 58.015 & 00 & 43 & 25.84 & 0.001 & 0.34 & -0.561 & 546 & . 01 & 0.01 & \\
\hline 990 & 195 & 09 & 03.921 & 23 & 46 & 1. 906 & 00 & 44 & 02.56 & , & 0.34 & -2.006 & -1.991 & 0.72 & & \\
\hline 990 & 1956 & C8 & 28.8975 & 23 & 49 & 37.187 & 1 & 17 & 15.11 & . 003 & 0.29 & -2.975 & -2.961 & -0.80 & 0.80 & \\
\hline 990 & 1956 & 08 & 27.8948 & 23 & 50 & 17.268 & 01 & 22 & 22.81 & . 0.003 & 0.29 & -4.703 & -4.689 & -2.26 & 26 & \\
\hline 13 & 1956 & 08 & 22.00284 & 23 & 53 & 27.608 & 01 & 50 & 11.24 & 0.003 & 0.29 & -0.493 & -0.479 & -0.55 & 5 & \\
\hline 13 & 1956 & ¢8 & 21.99936 & 23 & 53 & 07.677 & 01 & 50 & 11.74 & . 003 & 0.29 & 0.913 & 89 & -0.95 & -0.95 & \\
\hline 786 & 195 & 07 & 22.1475 & 18 & 19 & 37.049 & -14 & 15 & & . 006 & . 20 & 1.57 & 1.549 & . 4 & 48 & \\
\hline 786 & 195 & 07 & 22.12259 & 18 & 19 & 37.95 & -14 & 14 & 59.41 & 0.006 & 0.20 & 0.349 & 0.326 & 0. & 0.97 & \\
\hline 990 & 1955 & 07 & 13.90244 & 18 & 25 & 18.989 & -14 & 01 & 15.68 & 0.006 & 0.20 & -3.746 & -3.769 & 3.20 & 3.20 & \\
\hline 990 & 1955 & 07 & 12.92884 & 18 & 26 & 02.399 & -13 & 59 & 53.94 & -0.044 & 0.04 & -1.280 & -1.303 & -0.09 & -0.09 & \\
\hline 990 & 1955 & 07 & 12.90801 & 18 & 26 & 03.176 & -13 & 59 & 52.63 & 0.004 & 0.05 & -3.951 & -3.974 & -0.6 & -0.60 & \\
\hline 86 & 1955 & 07 & 12.17744 & 18 & 26 & 36.197 & -13 & 58 & 49.16 & 0.004 & 0.05 & 0.663 & . 640 & 0.92 & 0.92 & \\
\hline 786 & 1955 & 07 & 12.13579 & 18 & 26 & 38.156 & -13 & 58 & 45.96 & 0.004 & 0.05 & 1.091 & 1.088 & 0.61 & 0.61 & \\
\hline 983 & 1955 & 07 & 11.97082 & 18 & 26 & 45.516 & -13 & 58 & 33.13 & 0.004 & 0.05 & 0.452 & 0.429 & -0.39 & -0.39 & \\
\hline 760 & 1955 & 06 & 22.33191 & 18 & 42 & 27.267 & -13 & 41 & 58.86 & 0.004 & 0.05 & 1.896 & 1.873 & 0.21 & 0.21 & \\
\hline 760 & 1955 & 06 & 22.292 & 18 & 42 & 09.167 & -13 & 42 & 00.5 & . 004 & . 05 & 2.411 & 2.388 & 2.07 & 2.07 & \\
\hline 786 & 1955 & c6 & 16.24550 & 18 & 46 & 37.786 & -13 & 41 & 37.01 & 0.004 & 0.05 & 0.714 & 0.691 & 0.32 & 0.32 & \\
\hline 786 & 1955 & 06 & 16.22329 & 18 & 46 & 38.746 & -13 & 41 & 36.82 & 0.004 & 0.05 & 0.453 & 0.430 & 0.68 & 0.68 & \\
\hline 786 & 1954 & 06 & 03.10140 & 13 & 28 & 54.405 & -04 & 31 & 28.82 & -0.009 & 0.33 & -0.524 & -0.495 & -0.20 & -0.20 & \\
\hline 786 & 1954 & 06 & 03.06390 & 13 & 28 & 54.835 & -04 & 31 & 30.71 & -0.009 & 0.33 & -0.524 & -0.494 & 0.43 & 0.43 & \\
\hline 786 & 195 & 05 & 11.14376 & 13 & 37 & 35.566 & -05 & 31 & & -0. & 0.33 & -0. & . 075 & 0.50 & 0.50 & \\
\hline 786 & 1954 & 05 & 11.10487 & 13 & 37 & 35.936 & -05 & 32 & 01.66 & -0.009 & 0.33 & -0.025 & 0.009 & -0.13 & -0.13 & \\
\hline 990 & 1954 & C5 & 05.89272 & 13 & 40 & 43.916 & -05 & 54 & 38.78 & -0.009 & 0.33 & -0.688 & -0.653 & -0.66 & -0.66 & \\
\hline 990 & 1954 & 05 & 04.88994 & 13 & 41 & 21.866 & -05 & 59 & 14.28 & -0.009 & 0.33 & -4.197 & -4.162 & 3.57 & 3.57 & \\
\hline 330 & 1954 & 54 & 27.54751 & 13 & 46 & 18.196 & -26 & 35 & 58.21 & -0.000 & -0.00 & 2.208 & -2.172 & 2.03 & 2.03 & \\
\hline & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 33. & 19 & 04 & 23.60376 & 13 & 49 & 05.986 & -06 & 57 & 12.21 & -0.000 & -0.00 & 4.194 & 4.229 & 0.20 & 0.20 \\
\hline 388 & 1954 & 04 & 23.53303 & 13 & 49 & 08.802 & -06 & 57 & 35.72 & -0.024 & 0.19 & 0.712 & 0.747 & 0.11 & 0.11 \\
\hline 388 & 1954 & 03 & 29.62883 & 14 & 05 & 57.259 & -09 & 15 & 32.73 & -0.028 & C. 29 & -0.747 & -0.713 & 0.82 & 0.82 \\
\hline 786 & 1954 & 03 & 29.26911 & 14 & 06 & 07.289 & -09 & 17 & 23.52 & -0.028 & 0.29 & -1.022 & -0.988 & 0.74 & 0.74 \\
\hline 86 & 1954 & 03 & 29.23786 & 14 & 06 & 10.390 & -09 & 17 & 32.51 & -0.028 & 0.29 & -0.785 & -0.752 & 1.31 & 1.31 \\
\hline 766 & 1953 & 03 & 07.18890 & 08 & 19 & 31.699 & 12 & 49 & 08.01 & -0.050 & 0.17 & 0.514 & 0.625 & 0.57 & 0.57 \\
\hline 760 & 1953 & C3 & 07.09655 & 08 & 19 & 33.288 & 12 & 48 & 45.10 & -0.050 & 0.17 & -0.676 & -0.565 & -0.67 & -0.67 \\
\hline 786 & 1953 & c2 & 19.15175 & 08 & 26 & 45.799 & 11 & 39 & 17.91 & -0.0.50 & 0.17 & -0.671 & -0.552 & 0.77 & 77 \\
\hline 86 & 1953 & 02 & 19.11980 & 08 & 26 & 46.988 & 11 & 39 & 08.56 & -0.050 & 0.17 & -1.017 & -0.898 & 0.43 & 0.43 \\
\hline 786 & 1953 & 02 & 14.18786 & 08 & 29 & 59.149 & 11 & 15 & 47.34 & -0.050 & 0.17 & -0.848 & 27 & 0.78 & 0.78 \\
\hline 726 & 1953 & c2 & 14.15592 & 08 & 30 & 00.499 & 11 & 15 & 38.04 & -0.050 & 0.17 & -1.025 & -0.905 & 0.61 & 0.61 \\
\hline 983 & 1953 & 02 & 07.98295 & 08 & 34 & 29.989 & 10 & 46 & 14.83 & -0.050 & 0.17 & -1.077 & -0.954 & -0.19 & -0. \\
\hline 6 & 1953 & 02 & 05.16668 & 08 & 36 & 38.919 & 10 & 33 & 03.57 & -0.050 & 0.17 & -0.643 & -0.517 & 0.74 & 0. \\
\hline 786 & 1753 & 02 & 05.14515 & 08 & 36 & 37.979 & 10 & 32 & 57.15 & -0.050 & 0.17 & -0.284 & -0.161 & 0.34 & 0.34 \\
\hline 73 & 1953 & 32 & 22.85306 & 08 & 38 & 28.099 & 10 & 22 & 24.73 & -0.050 & -0.03 & 1.490 & 1.613 & 1.51 & 1.51 \\
\hline 786 & 1953 & Cl & 17.27571 & 08 & 51 & 29.785 & 09 & 15 & 46.11 & -0.045 & 0.16 & -0.828 & -0.706 & 0.35 & 0.35 \\
\hline 786 & 1953 & C1 & 17.23821 & 08 & 51 & 31.495 & 09 & 15 & 38.84 & -0.045 & 0.16 & -0.986 & -0.864 & 0.51 & 0.51 \\
\hline 388 & 1951 & 11 & 27.48367 & 2 & 09 & 27.242 & 06 & 52 & 19.79 & -0.000 & -0.00 & 0.641 & 0.697 & 0.51 & 0.51 \\
\hline 2 & 1951 & 11 & 26.89704 & ¢2 & 09 & 44.651 & 06 & 54 & 03.99 & -0.000 & -0.00 & 2.282 & 2.338 & 1.61 & 1.61 \\
\hline & 1951 & & 26.89704 & & 09 & 4 & 06 & 54 & & & & 4.683 & 4.739 & 1.21 & \\
\hline
\end{tabular}

\begin{tabular}{rlllllll} 
& & & & \multicolumn{1}{c}{H} & M & S \\
22 & 1951 & 11 & 25.87184 & 02 & 10 & 15.682 \\
22 & 1951 & 11 & 25.87184 & 02 & 10 & 15.741 \\
22 & 1951 & 11 & 23.87364 & 02 & 11 & 20.171 \\
22 & 1951 & 11 & 23.87364 & 02 & 11 & 29.242 \\
983 & 1951 & 11 & 19.84504 & 02 & 13 & 41.775 \\
& & & & & & & \\
786 & 1951 & 11 & 19.13715 & 02 & 14 & 07.929 \\
786 & 1951 & 11 & 19.12395 & 02 & 14 & 08.449 \\
388 & 1951 & 11 & 08.63992 & 02 & 21 & 21.651 \\
388 & 1951 & 11 & 08.59548 & 02 & 21 & 23.610 \\
786 & 1951 & 11 & 04.18576 & 02 & 24 & 41.658
\end{tabular}
\begin{tabular}{rrrrrrrrrr}
0 & 1 & \(1 /\) & S & \(1 /\) & \(1 /\) & \(1 /\) & \(1 /\) & \(1 /\) \\
06 & 57 & 12.69 & -0.000 & -0.00 & -1.845 & -1.789 & 1.95 & 1.95 & p \\
06 & 57 & 13.29 & -0.000 & -0.00 & -0.946 & -0.890 & 2.55 & 2.55 & p \\
07 & 03 & 44.99 & -0.000 & -0.00 & 2.448 & 2.505 & 1.36 & 1.36 & p \\
07 & 03 & 44.39 & -0.000 & -0.00 & 3.503 & 3.557 & 0.76 & 0.76 & p \\
07 & 18 & 36.07 & -0.056 & -0.02 & -1.277 & -1.220 & -0.25 & -0.25 & P
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 786 & 1951 & 11 & 04.17326 & 02 & 24 & 42.268 & 08 & 33 & 29.08 & -0.022 & 0.11 & 0.027 & 0.087 & 0.70 & 0.70 \\
\hline 57 & 1951 & 10 & 31.87C55 & 02 & 27 & 12.844 & OB & 51 & 43.06 & -0.056 & -0.02 & -0.753 & -0.693 & 0.64 & 0.64 \\
\hline 57 & 1951 & 10 & 31.87055 & 02 & 27 & 12.900 & 08 & 51 & 43.08 & -0.000 & -0.00 & 0.085 & 0.144 & 0.66 & 0.66 \\
\hline 786 & 1951 & 10 & 26.20069 & 02 & 31 & 27.466 & 09 & 23 & 58.33 & -0.024 & 0.29 & 0.116 & 0.175 & 1.01 & 1.01 \\
\hline 786 & 1951 & 10 & 26.18680 & 02 & 31 & 30.105 & 09 & 24 & 02.67 & -0.024 & 0.29 & 0.123 & 0.182 & 0.58 & 0.58 \\
\hline 786 & 1951 & 10 & 10.27985 & 02 & 42 & 03.376 & 10 & 53 & 04.57 & -0.022 & 0.09 & 0.611 & 0.668 & 0.41 & 0.41 \\
\hline 786 & 1951 & 10 & 10.26249 & 02 & 42 & 23.951 & 10 & 53 & 10.00 & -0.028 & 0.09 & 0.183 & 0.240 & 0.36 & 0.36 \\
\hline 786 & 1950 & 09 & 15.10659 & 20 & 37 & 01.596 & -12 & 20 & 53.66 & 0.016 & -0.01 & 0.505 & 0.468 & 1.00 & 1.00 \\
\hline 786 & 1950 & 09 & 15.08576 & 20 & 37 & 01.946 & -12 & 20 & 49.09 & 0.016 & -0.01 & 0.594 & 0.557 & 0.98 & 0.98 \\
\hline 983 & 1750 & 08 & 08.93874 & 20 & 57 & 50.882 & -09 & 37 & 10.52 & 0.023 & 0.52 & 1.163 & 1.120 & 1.44 & 1.44 \\
\hline 388 & 1950 & 07 & 25.67569 & 21 & 08 & 13.627 & -08 & 40 & 25.14 & -0.000 & -0.00 & 0.995 & 0.956 & -2.74 & -2.74 \\
\hline 786 & 1949 & 05 & 24.23402 & 16 & 14 & 45.658 & -13 & 04 & 33.09 & -0.009 & 0.03 & -1.218 & -1.200 & 0.26 & 0.26 \\
\hline 786 & 1949 & 05 & 24.21873 & 16 & 14 & 46.460 & -13 & 04 & 35.29 & -0.009 & 0.03 & -0.167 & -0.149 & 0.77 & 0.77 \\
\hline 6 & 1949 & C5 & 20.91200 & 16 & 17 & 19.837 & -13 & 14 & 37.52 & -0.000 & -0.00 & -0.932 & -0.915 & -1.45 & -1.45 \\
\hline 388 & 1949 & 05 & 20.57603 & 16 & 17 & 35.568 & -13 & 15 & 39.32 & -0.000 & -0.00 & 3.776 & 3.794 & -0.98 & -0.98 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 786 & 8 & 04 & 23.16357 & 11 & 06 & 41.690 & 04 & 51 & 41.15 & -0.000 & -0.00 & 382 & -0.265 & 53 & 53 & \\
\hline 786 & 1948 & 04 & 23.12915 & 11 & 06 & 42.050 & 04 & 51 & 36.75 & -0.000 & -0.00 & -0.315 & -0.198 & 0.66 & 0.66 & P \\
\hline 786 & 1948 & 04 & 16.19755 & 11 & 08 & 21.120 & 04 & 27 & 39.85 & -0.000 & -0.00 & -0.914 & -0.793 & 0.14 & 0.14 & P \\
\hline 786 & 1948 & 04 & 16.15517 & 11 & OB & 21.961 & 04 & 27 & 30.05 & -0.000 & -0.00 & -0.736 & -0.614 & 0.30 & 0.3 & P \\
\hline 990 & 1948 & 03 & 09.96703 & 11 & 29 & 47.842 & 00 & 56 & 08.13 & -0.000 & -0.00 & 2.281 & 2.415 & 0.77 & 0.7 & P \\
\hline 990 & 1948 & 03 & 09.94616 & 11 & 29 & 48.642 & 00 & 56 & 01.73 & -0.000 & -0.00 & 0.532 & 0.666 & 0.85 & 0.85 & P \\
\hline 990 & 1948 & 03 & 08.92741 & 11 & 30 & 32.132 & 00 & 49 & 28.73 & -0.000 & -0.00 & -0.304 & -0.170 & -1.15 & -1.15 & P \\
\hline 990 & 1948 & 03 & 08.90658 & 11 & 30 & 32.802 & 00 & 49 & 20.93 & -0.000 & -0.00 & -3.902 & -3.768 & -0.97 & -0.97 & P \\
\hline 990 & 1948 & 03 & 06.93714 & 11 & 31 & 56.603 & 00 & 36 & 52.93 & -0.000 & -0.00 & -1.347 & -1.213 & 0.16 & 0.16 & P \\
\hline 990 & 1948 & 03 & 06.91630 & 11 & 31 & 57.482 & 00 & 36 & 46.13 & -0.000 & -0.00 & -1.684 & 1.550 & 1.24 & 24 & P \\
\hline 62 & 1948 & 03 & 03.01513 & 11 & 34 & 40.033 & 00 & 12 & 33.93 & -0.000 & -0.00 & 0.647 & 0.780 & -1.53 & 1.53 & P \\
\hline 12 & 19 & 02 & 18.19524 & 11 & 43 & 07.955 & -01 & 02 & 31.34 & -0.038 & 0.04 & -0.028 & 0.100 & 0.34 & 0.34 & P \\
\hline 754 & 1947 & 01 & 17.07190 & 05 & 13 & 01.604 & 13 & 49 & 37.59 & -0.054 & 0.19 & 0.664 & 0.771 & 0.68 & 0.68 & P \\
\hline 786 & 1946 & 12 & 14.21628 & 05 & 37 & 16.397 & 13 & 39 & 45.70 & -0.000 & -0.00 & 0.427 & 0.544 & 0.90 & 0.90 & P \\
\hline 786 & 1946 & 12 & 14.20066 & 05 & 37 & 17.208 & 13 & 39 & 47.70 & -0.000 & -0.00 & 0.152 & 0.269 & 1.91 & 1.91 & P \\
\hline 12 & 1945 & 10 & 04.88845 & 23 & 16 & 59.673 & -03 & 06 & 48.61 & -0.000 & -0.00 & 0.204 & 0.136 & 0.75 & 0.75 & P \\
\hline 62 & 1945 & 09 & 12.89351 & 23 & 31 & 25.307 & -00 & 47 & 49.47 & -0.000 & -0.00 & -2.755 & -2.824 & -0.07 & -0.07 & P \\
\hline 62 & 1945 & 09 & 11.90300 & 23 & 32 & 06.486 & -00 & 41 & 29.47 & -0.000 & -0.00 & -3.556 & -3.625 & -0.63 & -0.63 & P \\
\hline 2 & 1944 & 07 & 17.95065 & 18 & 16 & 36.793 & -14 & 14 & 40.76 & -0.000 & -0.00 & 4.685 & 4.622 & 2.45 & 2.45 & P \\
\hline 28 & 1943 & 04 & 05.96523 & 14 & 01 & 07.224 & -08 & 38 & 19.14 & -0.000 & -0.00 & 3.978 & 4.028 & -1.76 & -1.7 & P \\
\hline 28 & 1943 & 04 & 05.01593 & 14 & 01 & 43.914 & -08 & 43 & 29.35 & -0.000 & -0.00 & 1.097 & 1.147 & 0.99 & 0.99 & P \\
\hline 12 & 1943 & 04 & 04.94346 & 14 & 01 & 46.677 & -08 & 43 & 54.52 & -0.000 & \(-9.00\) & -0.688 & -0.638 & -0.41 & -0.41 & P \\
\hline 8.4 & 1942 & 02 & 12.06622 & 08 & 29 & 37.028 & 11 & 10 & 31.88 & -0.000 & -0.00 & 2.056 & 2.173 & 1.60 & 1.60 & V \\
\hline 8.4 & 1942 & 02 & 11.07753 & c8 & 29 & 49.578 & 11 & 05 & 48.93 & -0.000 & -0.00 & 2.210 & 2.327 & 0.75 & 0.75 & \(V\) \\
\hline \(8 \times 4\) & 194 & 02 & 10.09854 & D8 & 30 & 32.396 & 11 & 01 & 09.37 & -0.000 & -0.00 & 2.708 & 2.8 & 0.10 & 0 & V \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ues & & & ATE & & & R.A. & & DEC & C. & \[
\begin{aligned}
& \text { FK4 } \\
& \text { R.A. }
\end{aligned}
\] & \[
\mathrm{T}_{\mathrm{A}} \mathrm{DEC} .
\] & \[
\begin{aligned}
& (0-C) \\
& \text { R.A. }
\end{aligned}
\]
BEFORE & AFTER &  & AFTER & \\
\hline & & & & & & M & & , & 111 & S & \(1 /\) & , & // & & , & \\
\hline 824 & 1942 & 02 & 07.06328 & 08 & 32 & 48.988 & 10 & 46 & 51.31 & -0.000 & -0.00 & 2.852 & 2.971 & 2.00 & 2.00 & \(V\) \\
\hline 834 & 1942 & 02 & 05.07196 & CB & 34 & 21.305 & 10 & 37 & 35.89 & -0.000 & -0.00 & 5.045 & 5.164 & 3.98 & 3.98 & v \\
\hline 8 & 1942 & 02 & 04.89543 & 08 & 34 & 29.212 & 10 & 36 & 39.69 & -0.077 & 0.33 & 0.464 & 0.583 & 1.75 & 1.75 & \\
\hline 8.4 & 1942 & 02 & 04.14933 & 08 & 35 & 33.962 & 10 & 33 & 20.86 & -0.000 & -0.00 & -2.565 & -2.446 & 4.59 & 4.59 & V \\
\hline 8 C 4 & 1940 & 11 & 05.05306 & 02 & 11 & 57.895 & 07 & 46 & 07.87 & -0.000 & -0.00 & 4.480 & 4.419 & 0.27 & 0.27 & \(v\) \\
\hline 804 & 194 & 11 & 01.07198 & 02 & 14 & 55.491 & 08 & 08 & 03.01 & -0.000 & -0.00 & 2.676 & 2.615 & 0.92 & 92 & \(V\) \\
\hline 8.4 & 1940 & 10 & 31.09105 & 02 & 15 & 37.732 & c8 & 13 & 33.58 & -0.000 & -0.00 & 2.109 & 2.048 & -1.29 & -1.29 & \\
\hline 804 & 1940 & 10 & 30.08268 & 02 & 16 & 25.364 & 08 & 19 & 21.84 & -0.000 & -0.00 & 1.798 & 1.736 & 1.88 & 1.88 & \(v\) \\
\hline \(8: 4\) & 1940 & 10 & 29.39358 & 02 & 17 & 10.232 & 08 & 25 & 01.80 & -0.000 & -0.00 & 2.891 & 2.829 & 0.66 & 0.66 & V \\
\hline 52 & 1940 & 10 & 03.98428 & 02 & 33 & 48.719 & 10 & 47 & 48.97 & -0.000 & -0.00 & 3.127 & 3.187 & 0.14 & 0.14 & P \\
\hline 62 & 1940 & 10 & 03.03598 & 02 & 34 & 16.989 & 10 & 52 & 35.87 & -0.000 & -0.00 & 7.259 & 7.200 & 1.66 & -1.66 & \\
\hline 78 & 1939 & 08 & 18.88491 & 20 & 42 & 23.180 & -10 & 46 & 21.24 & -0.000 & -0.00 & -0.387 & -0.510 & 1.65 & 1.65 & P \\
\hline 28 & 1939 & 08 & 17.90513 & 20 & 43 & 03.318 & -10 & 41 & 57.53 & 0.033 & 0.37 & -3.590 & -3.714 & 3.38 & 3.38 & P \\
\hline 28 & 1939 & 08 & 15.84055 & 20 & 44 & 29.706 & -10 & 32 & 43.60 & -0.006 & 0.25 & -8.620 & -8.744 & -2.84 & -2.84 & P \\
\hline 28 & 1939 & 08 & 14.84588 & 20 & 45 & 12.245 & -10 & 28 & 11.59 & -0.006 & 0.05 & -7. 770 & 94 & 0.44 & 0.44 & P \\
\hline 12 & 1939 & 07 & 21.02395 & 21 & 03 & 15.124 & -08 & 51 & 02.80 & 0.025 & 0.44 & 1.671 & 1.549 & 0.91 & 0.91 & P \\
\hline 8 & 1938 & 06 & 16.95779 & 15 & 53 & 38.697 & -12 & 04 & 38.27 & -0.020 & -0.03 & -0.072 & -0.088 & -0.59 & -0.59 & \(p\) \\
\hline 8 & 1938 & 06 & 16.95225 & 15 & 53 & 38.907 & -12 & 04 & 39.43 & -0.020 & -0.03 & -0.024 & -0.040 & -1.30 & -1.30 & P \\
\hline 45 & 1938 & 06 & 08.91255 & 15 & 58 & 53.715 & -12 & 18 & 03.35 & -0.011 & 0.03 & -4.771 & -4.788 & 0.66 & 0.66 & \(R\) \\
\hline 45 & 1938 & 06 & 05.98255 & 16 & 00 & 59.353 & -12 & 24 & 13.81 & -0.011 & 0.03 & -2.979 & -2.996 & 1.55 & 1.55 & \(R\) \\
\hline 78 & 1938 & 06 & 01.84063 & 16 & 04 & 04.017 & -12 & 33 & 59.62 & -0.000 & -0.00 & -1.944 & -1.961 & 0.09 & 0.09 & P \\
\hline 45 & 1938 & 05 & 27.95841 & 16 & 07 & 48.601 & -12 & 47 & 03.17 & -0.008 & 0.02 & -1.689 & -1.706 & 1.43 & 1.43 & R \\
\hline 45 & 1938 & 05 & 15.94683 & 16 & 17 & 02.158 & -13 & 24 & 06.31 & -0.008 & 0.02 & -0.938 & -0.955 & 1.64 & 1.64 & R \\
\hline 45 & 1938 & 05 & 12.99621 & 16 & 19 & 11.914 & -13 & 33 & 56.94 & -0.008 & 0.02 & 0.462 & 0.445 & 1.79 & 1.79 & \(R\) \\
\hline 45 & 1938 & 05 & 06.02919 & 16 & 23 & 57.888 & -13 & 57 & 46.34 & -0.000 & 0.00 & 4.823 & 4.839 & 1.06 & 1.06 & \(R\) \\
\hline 28 & 1938 & 05 & 06.00718 & 16 & 23 & 59.272 & -13 & 57 & 56.28 & -0.000 & -0.00 & 2.572 & 2.555 & -4.29 & 4.29 & P \\
\hline 73 & 1937 & 03 & 35.80267 & 11 & 09 & 29.775 & 03 & 33 & 16.49 & -0.000 & -0.00 & -0.716 & -0.647 & 0.62 & 0.62 & P \\
\hline 73 & 1937 & 03 & 22.84780 & 11 & 14 & 22.711 & 02 & 45 & 31.61 & -0.000 & -0.00 & 2.202 & 2.273 & 0.41 & 0.41 & P \\
\hline 73 & 1937 & 03 & 18.84278 & 11 & 17 & 04.797 & 02 & 20 & 04.41 & -0.000 & -0.00 & 2.656 & 2.727 & -0.54 & -0.54 & P \\
\hline 73 & 1937 & 03 & 08.90957 & 11 & 24 & 07.295 & 01 & 15 & 43.52 & -0.000 & -0.00 & 0.618 & 0.690 & 1.06 & 1.06 & P \\
\hline 990 & 1935 & 11 & 28.98916 & 05 & 34 & 04.517 & 13 & 58 & 34.30 & -0.000 & -0.00 & 1.040 & 0.984 & -1.08 & -1.08 & P \\
\hline 990 & 1935 & 11 & 28.96138 & 05 & 34 & 4 05.588 & 13 & 58 & 37.80 & -0.000 & -0.00 & -2.334 & -2.390 & -1.32 & -1.32 & P \\
\hline 970 & 1935 & 11 & 28.91971 & 05 & 34 & 07.587 & 13 & 58 & 42.90 & -0.000 & -0.00 & -1.339 & -1.395 & -1.79 & -1.79 & P \\
\hline 338 & 1934 & 09 & 28.54449 & 23 & 08 & 18.920 & -03 & 22 & 25.07 & -0.000 & -0.00 & -1.380 & \(-1.584\) & -0.61 & -0.61 & P \\
\hline 73 & 1934 & 09 & 27.87208 & 23 & 08 & 43.538 & -03 & 18 & 21.05 & -0.000 & -0.00 & -0.530 & -0.735 & -0.22 & -0.22 & P \\
\hline & 1934 & 09 & 27.86827 & 23 & 08 & 83.669 & -03 & 18 & 20.25 & -0.000 & -0.00 & -0.755 & -0.960 & -0.81 & -0.81 & P \\
\hline 73 & 1934 & 09 & 27.86446 & 23 & 08 & 43.819 & -03 & 18 & 18.45 & -0.000 & -0.00 & -0.684 & -0.889 & -0.40 & -0.4 & P \\
\hline 35 & 1934 & C9 & 16.85576 & 23 & 16 & 03.323 & -02 & 08 & 50.41 & 0.038 & 0.31 & -1.806 & -2.014 & 0.34 & 0.34 & R \\
\hline 35 & 1934 & 09 & 16.85015 & 23 & 16 & 600.612 & -02 & 08 & 48.81 & 0.038 & 0.31 & -1.041 & -1.249 & -0.23 & -0.23 & R \\
\hline 990 & 1934 & 09 & 12.96902 & 23 & 18 & 42.638 & -01 & 43 & 350.86 & -0.000 & -0.00 & -5.578 & -5.786 & 0.90 & 0.90 & P \\
\hline 990 & 1934 & 09 & 12.94819 & 23 & 18 & 43.787 & -01 & 43 & 42.66 & -0.000 & -0.00 & -1.850 & -2.058 & 1.09 & 1.09 & P \\
\hline 990 & 1934 & 09 & 10.96902 & 23 & 20 & 26.947 & -01 & 31 & 06.96 & -0.000 & -0.00 & 0.453 & 0.246 & -0.29 & -0.29 & P \\
\hline 990 & 1934 & 19 & 10.94819 & 23 & 20 & 07.797 & -01 & 30 & 58.46 & -0.000 & -0.00 & -0.288 & -0.494 & 0.27 & 0.27 & P \\
\hline 73 & 1934 & 08 & 28.88715 & 23 & 28 & 50.447 & -00 & 12 & 256.57 & -0.000 & -0.00 & -0.075 & -0.279 & 0.71 & 0.71 & P \\
\hline 73 & 1934 & C8 & 28.88231 & 23 & 28 & 59.616 & -00 & 12 & 25.37 & -0.000 & -0.00 & -0.289 & -0.493 & 0.32 & 0.32 & P \\
\hline 990 & 1933 & 07 & 13.94682 & 18 & 12 & 45.384 & -14 & 12 & 203.82 & 0.011 & 0.06 & -0.786 & -0.913 & 0.12 & 0.12 & P \\
\hline 990 & 1933 & 07 & 13.92596 & 18 & 12 & 46.413 & -14 & 12 & 202.32 & 0.011 & 0.06 & 1.047 & 0.921 & -0.08 & -0.08 & \\
\hline 338 & 1933 & 07 & 13.57749 & 18 & 13 & 301.199 & -14 & 11 & 133.53 & 0.002 & 0.25 & 0.927 & 0.801 & 0.24 & 0.24 & P \\
\hline 990 & 1933 & 07 & 711.95096 & 18 & 14 & 11.134 & -14 & 09 & 27.22 & 0.011 & 0.06 & 0.102 & -0.025 & 0.48 & 0.48 & P \\
\hline 996 & 33 & 7 & 11.93013 & 18 & 14 & 12.073 & -14 & 09 & 27.12 & 0.011 & 0.06 & 0.215 & 0.088 & -1.00 & -1.00 & P \\
\hline
\end{tabular}


BEFORE AFTER BEFORE AFTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & S & & & \(1 /\) & S & 11 & // & \(1 /\) & \(1 /\) & \(1 /\) \\
\hline 990 & 1933 & 07 & 10.94125 & 18 & 14 & 55.604 & -14 & OB & 11.12 & 0.011 & 0.06 & 3.155 & 3.028 & 1.89 & 1.89 \\
\hline 990 & 1933 & 07 & 10.92041 & 18 & 14 & 56.354 & -14 & 08 & 10.92 & 0.011 & 0.06 & 0.237 & 0.110 & 0.56 & 0.56 \\
\hline 78 & 1933 & 06 & 24.84789 & 18 & 27 & 27.822 & -13 & 55 & 29.38 & -0.000 & -0.00 & 0.574 & 0.445 & -0.31 & -0.31 \\
\hline 8 & 1933 & 06 & 24.01567 & 18 & 28 & 07.120 & -13 & 55 & 17.60 & 0.002 & 0.19 & \(-0.743\) & -0.871 & -0.32 & -0.32 \\
\hline 78 & 1933 & 06 & 23.90049 & 18 & 28 & 12.832 & -13 & 55 & 11.98 & -0.000 & -0.00 & 2.100 & 1.972 & -0.39 & -0.39 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrrrrrrrrrrrrr}
16 & 1932 & 04 & 27.94789 & 13 & 38 & 55.081 & -06 & 07 & 36.97 & -0.026 & 0.17 & -0.536 & -0.545 & 0.12 & 0.12 & \(R\) \\
8 & 1931 & 01 & 28.93779 & 08 & 25 & 27.233 & 10 & 42 & 49.63 & -0.050 & -0.03 & 2.210 & 2.166 & 0.06 & 0.66 & P \\
338 & 1931 & 01 & 19.58189 & 08 & 33 & 01.036 & 10 & 06 & 28.73 & -0.034 & -0.11 & 2.185 & 2.142 & 1.07 & 1.07 & P \\
4 & 1929 & 11 & 27.92793 & 01 & 42 & 21.901 & 05 & 15 & 36.61 & -0.057 & -0.04 & -0.513 & -0.747 & 0.22 & 0.22 & P \\
24 & 1929 & 11 & 21.78129 & 01 & 44 & 48.826 & 05 & 32 & 36.32 & -0.018 & -0.08 & -1.989 & -2.231 & 0.08 & 0.08 & P
\end{tabular}
\(\begin{array}{lllllllllllllllllll}35 & 1929 & 11 & 06.78410 & 01 & 53 & 32.846 & 06 & 36 & 22.21 & -0.012 & -0.07 & -1.806 & -2.060 & 0.66 & 0.66 & R\end{array}\) \(\begin{array}{lllllllllllllllllllll}35 & 1929 & 11 & 06.77270 & 01 & 53 & 33.556 & 06 & 36 & 25.10 & -0.012 & -0.07 & 1.706 & 1.451 & 0.04 & 0.04 & R\end{array}\) \(34192910.07 .04455021518 .031093533 .23-0.020 \quad 0.10-1.651-1.9030 .32 \quad 0.32 R\) \(\begin{array}{llllllllllllllllllll}78 & 1928 & 08 & 19.97135 & 20 & 31 & 30.565 & -11 & 22 & 38.67 & -0.000 & -0.00 & -1.205 & -1.424 & 0.66 & 0.66 & P\end{array}\) \(\begin{array}{llllllllllllllllllllll}78 & 1928 & 08 & 19.92425 & 20 & 31 & 32.423 & -11 & 22 & 26.61 & -0.000 & -0.00 & -1.376 & -1.594 & 0.49 & 0.49 & P\end{array}\)
\(\begin{array}{llllllllllllllllllll}20 & 1927 & 05 & 23.91798 & 16 & 02 & 40.830 & -12 & 44 & 05.87 & -0.006 & 0.02 & 2.022 & 1.922 & 0.57 & 0.57 & \mathrm{R}\end{array}\)
 \(\begin{array}{llllllllllllllllll}34 & 1926 & 03 & 06.86893 & 11 & 12 & 30.221 & 01 & 58 & 13.18 & -0.000 & -0.00 & 3.086 & 3.013 & 4.94 & 4.94 & V\end{array}\) \(2019260304.89007111355 .310 \quad 014528.51-0.000-0.00 \quad 0.231 \quad 0.158-2.89-2.89 R\)

\(\begin{array}{llllllllll}592 & 1926 & 02 & 22.99546 & 11 & 2044.959 & 00 & 44 & 05.91 & -0.030\end{array}\)
\(\begin{array}{llllllllllllllll}136 & 1923 & 10 & 14.72185 & 22 & 50 & 10.939 & -05 & 29 & 32.88 & 0.035 & 0.38 & 0.446 & 0.154 & -2.26 & -2.26\end{array}\)
    \(\begin{array}{llllllllllllllllll}14 & 1923 & 10 & 11.89484 & 22 & 51 & 08.767 & -05 & 17 & 14.58 & 0.035 & 0.38 & 4.674 & 4.378 & -2.32 & -2.32 & R\end{array}\)
    \(\begin{array}{lllllllllllllllllll}16 & 1923 & 09 & 13.88858 & 23 & 07 & 06.171 & -02 & 36 & 45.06 & 0.004 & 0.32 & 0.953 & 0.635 & -0.17 & -0.17 & R\end{array}\)
    \(\begin{array}{lllllllllllllllllllllllllllll}164 & 1923 & 09 & 13.83926 & 23 & 07 & 08.000 & -02 & 36 & 26.84 & 0.004 & 0.32 & -1.957 & -2.275 & -0.21 & -0.21 & R\end{array}\)
    \(\begin{array}{rrrrrrrrrrrrrrrrr}64 & 1923 & 09 & 11.96367 & 23 & 08 & 27.050 & -02 & 24 & 33.90 & 0.004 & 0.32 & 6.182 & 5.863 & 0.01 & 0.01 & R \\ 136 & 1923 & 09 & 06.01055 & 23 & 12 & 36.207 & -01 & 47 & 23.28 & 0.020 & 0.11 & 1.694 & 1.376 & 2.48 & 2.48 & R \\ 136 & 1923 & 09 & 05.97275 & 23 & 12 & 37.457 & -01 & 47 & 10.57 & 0.020 & 0.11 & -3.539 & -3.857 & 1.33 & 1.33 & R \\ 136 & 1923 & 09 & 02.79535 & 23 & 14 & 48.339 & -01 & 28 & 07.03 & 0.020 & 0.11 & -2.670 & -2.987 & -4.49 & -4.49 & R\end{array}\)
    \(\begin{array}{llllllllllllllllllllll}84 & 1923 & 08 & 30.90176 & 23 & 16 & 44.227 & -01 & 11 & 12.96 & -0.000 & -0.00 & -2.264 & -2.579 & -1.94 & -1.94 & R\end{array}\)
    \(\begin{array}{lllllllllllllllll}84 & 1923 & 08 & 26.02679 & 23 & 19 & 50.190 & -00 & 44 & 23.37 & 0.001 & 0.34 & 0.070 & -0.242 & -1.81-1.81 & R\end{array}\)
    \(70192308 \quad 23.855992321 \quad 38.521-0033108.99 \quad 0.001 \quad 0.34 \quad 0.282-0.027-0.14-0.14 R\)
    \(\begin{array}{llllllllllllllllll}20 & 1923 & 08 & 22.83982 & 23 & 21 & 43.982 & -00 & 28 & 04.73 & 0.001 & 0.34 & 0.832 & 0.524 & 0.02 & 0.01 & R\end{array}\)
    \(\begin{array}{lllllllllllllllll}24 & 1923 & \text { CB } & 15.00789 & 23 & 25 & 48.716 & 00 & 06 & 45.09 & 0.001 & 0.34 & 1.829 & 1.529 & -5.09 & -5.09 & \mathrm{P}\end{array}\)
    \(\begin{array}{lllllllllllllllll}16 & 1922 & 08 & 16.89268 & 17 & 51 & 52.441 & -15 & 19 & 03.97 & 0.003 & 0.08 & 0.416 & 0.247 & -1.85 & -1.85 & R\end{array}\)
    \(\begin{array}{lllllllllllllllll}16 & 1922 & 07 & 28.91149 & 17 & 56 & 52.832 & -14 & 38 & 34.16 & 0.003 & 0.08 & 0.611 & 0.428 & -2.13 & -2.13 & R\end{array}\)
    \(\begin{array}{llllllllllllllllll}8 & 1922 & 07 & 26.90611 & 17 & 57 & 49.722 & -14 & 34 & 50.09 & -0.005 & 0.27 & 0.328 & 0.143 & -0.18 & -0.18 & p\end{array}\)
    \(\begin{array}{llllllllllllllllll}16 & 1922 & 07 & 26.90564 & 17 & 57 & 49.879 & -14 & 34 & 50.11 & 0.003 & 0.08 & 2.261 & 2.076 & -3.05 & -3.05 & R\end{array}\)
    \(\begin{array}{llllllllllllllllll}16 & 1922 & 07 & 21.89451 & 18 & 00 & 30.627 & -14 & 26 & 14.37 & 0.003 & 0.08 & -0.752 & -0.940 & 0.46 & 0.46 & R\end{array}\)
    \(\begin{array}{lllllllllllllllll}16 & 1922 & 07 & 20.89146 & 18 & 01 & 05.927 & -14 & 24 & 39.47 & 0.003 & 0.08 & 0.203 & 0.015 & -0.69 & -0.69 & R\end{array}\)
    \(\begin{array}{llllllllllllllllll}20 & 1922 & 06 & 30.89931 & 18 & 15 & 19.891 & -14 & 02 & 29.90 & 0.003 & 0.08 & 0.698 & 0.502 & 0.13 & 0.13 & R\end{array}\)
    \(24192206 \quad 29.97775181603 .692-1401 \quad 59.47 \quad 0.011 \quad 0.06 \quad 2.903 \quad 2.706-0.62-0.62 P\)
    \(\begin{array}{lllllllllllllllll}20 & 1922 & 06 & 29.87001 & 18 & 16 & 08.849 & -14 & 01 & 57.74 & 0.002 & 0.06 & 1.540 & 1.344 & -2.70 & -2.70 & R\end{array}\)
    \(\begin{array}{llllllllllllllll}16 & 1922 & 06 & 21.92498 & 18 & 22 & 27.731 & -13 & 59 & 25.92 & 0.002 & 0.06 & 2.788 & 2.591 & 1.42 & 1.42\end{array}\)
    \(\begin{array}{rllllllllllllllllllll}14 & 1921 & 06 & 02.86443 & 13 & 14 & 25.174-03 & 36 & 46.51 & -0.006 & 0.38 & -0.410 & -0.508 & -2.07 & -2.07 & R\end{array}\)
    \(\begin{array}{lllllllllll}84 & 1921 & 04 & 25.94919 & 13 & 30 & 15.004 & -05 & 39 & 10.16 & -0.009\end{array}\)
    \(8419210423.8465913 \quad 3141.528\)-05 \(5032.63-0.009\)
    \(2419210403.96193134542 .615-0745 \quad 29.00-0.021\)
    \(2419210402.9937913 \quad 46 \quad 21.225-075101.50-0.021\)
    \(2419210402.937181346 \quad 23.635-67 \quad 51 \quad 21.90-0.021\)
\begin{tabular}{rrrrrr}
0.32 & -3.975 & -4.090 & 2.35 & 2.35 & \(R\) \\
0.32 & -1.700 & -1.815 & 0.72 & 0.72 & \(R\) \\
0.22 & -1.696 & -1.810 & -0.77 & -0.77 & P \\
0.22 & -2.245 & -2.359 & 0.51 & 0.51 & P \\
0.22 & -0.651 & -0.765 & -0.48 & -0.48 & P
\end{tabular}

\(\begin{array}{cc}\text { FK4-CAT. } & (0-C) \\ \text { R.A. DEC. } & \text { R.A. }\end{array}\) BEFORE
( \(\mathrm{O}-\mathrm{C}\) )
tYPE DEC.
AFTER BEFORE AFTER
\begin{tabular}{llllll}
30 & 1913 & 12 & & & \\
\hline
\end{tabular} \(\begin{array}{llllllll}30 & 1913 & 12 & 25.82968 & 04 & 39 & 58.651\end{array}\) \(\begin{array}{llllllll}30 & 1913 & 12 & 22.83860 & 04 & 42 & 04.668\end{array}\) 3019131222.83860044204 .593 \(30 \quad 191312 \quad 21.82853044248 .999\)
\(30 \quad 191312 \quad 21.82853044248 .894\) \(\begin{array}{lllll}30 & 1913 & 12 & 20.92565 & 04 \\ 43 & 29.083\end{array}\) 2419131219.94949044413 .536 \(\begin{array}{lllll}30 & 1913 & 12 & 19.93911 & 04 \\ 44 & 14.016\end{array}\) \(\begin{array}{lllllll}30 & 1713 & 12 & 19.85237 & 04 & 44 & 18.098\end{array}\)
\begin{tabular}{cccccccc}
0 & \(/\) & \(/ 1\) & \(S\) & \(/ /\) & \(/ /\) & \(/ /\) & \(/ /\) \\
12 & 56 & 23.17 & -0.046 & 0.12 & 1.286 & 0.911 & 0.20 \\
12 & 56 & 22.82 & -0.046 & 0.12 & 1.807 & 1.433 & -0.15 \\
-0.15 & \(R\) \\
12 & 58 & 02.87 & -0.046 & 0.12 & 2.906 & 2.528 & -1.09 \\
\hline & -1.09 & \(R\) \\
12 & 58 & 02.42 & -0.046 & 0.12 & 1.776 & 1.397 & -1.53 \\
12 & 58 & 51.18 & -0.046 & 0.12 & 1.942 & 1.562 & 1.37 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrrr}
12 & 58 & 50.04 & -0.046 & 0.12 & 0.356 & -0.024 & 0.23 & 0.23 \\
12 & 59 & 36.93 & -0.046 & 0.12 & -0.797 & -1.178 & 1.04 & 1.04 \\
\(R\) \\
13 & 00 & 30.33 & -0.046 & 0.12 & -0.088 & -0.470 & -2.76 & -2.76 \\
\(R\) \\
13 & 00 & 32.81 & -0.046 & 0.12 & 0.372 & -0.010 & 1.40 & 1.4 C \\
13 & 00 & 36.81 & -0.046 & 0.12 & 0.115 & -0.267 & 0.32 & 0.32
\end{tabular}
\(4519131121.917860507 \quad 08.481 \quad 13 \quad 5914.54\)-0.037 \(\begin{array}{llllllllllll}30 & 1912 & 09 & 21.82771 & 22 & 55 & 30.926 & -03 & 55 & 55.84 & 0.037\end{array}\) \(\begin{array}{llllllllllll}30 & 1912 & 09 & 21.82771 & 22 & 55 & 30.949 & -03 & 55 & 55.48 & 0.037\end{array}\) \(\begin{array}{lllllllllll}30 & 1912 & 09 & 18.84233 & 22 & 57 & 26.673 & -03 & 37 & 37.19 & 0.037\end{array}\) \(\begin{array}{llllllllllllllllllllll}301912 & 09 & 17.91011 & 22 & 58 & 03.632-03 & 31 & 50.47 & 0.037 & 0.30-1.128 & -1.481 & -0.76 & -0.76 & R\end{array}\) \(\begin{array}{lllllllllllllllll}24 & 1911 & 05 & 26.98777 & 18 & 34 & 31.967 & -14 & 21 & 53.61 & 0.015 & 0.07 & -2.772 & -2.996 & -8.61 & -8.61 & p\end{array}\) \(\begin{array}{llllllllllllllll}45 & 1909 & 05 & 10.84170 & 08 & 18 & 26.082 & 15 & 17 & 00.47 & -0.054\end{array}\) \(2419090421.87376 \quad 075935.408 \quad 15 \quad 3415.06\)-0.049 \(2419090219.00796074244 .348 \quad 13 \quad 2218.03-0.039\) \(\begin{array}{lllllllllll}24 & 1909 & 02 & 18.97747 & 07 & 42 & 45.348 & 13 & 22 & 07.43 & -0.039\end{array}\) \(0.32-0.593-0.783-1.09-1.09 R\) \(0.30-1.597-1.808-0.40-0.40 \mathrm{P}\) \(0.18-1.539-1.848 \quad 3.81 \quad 3.81 \mathrm{P}\) \(\begin{array}{lllll}0.18 & 1.103 & 0.794 & 0.34 & 0.34\end{array}\)
\begin{tabular}{lllllllllllllll}
24 & 1909 & 02 & 18.94614 & 07 & 42 & 46.158 & 13 & 22 & 01.63 & -0.039 & 0.18 & 0.479 & 0.170 & 1.89 \\
\hline
\end{tabular} .89 P \(2419071105.87260013803 .755054437 .33-0.009-0.06-0.070-0.4471 .841 .84 \mathrm{P}\) \(\begin{array}{llllllllllllllllll}24 & 1907 & 11 & 05.80239 & 01 & 38 & 06.465 & 05 & 44 & 57.33 & -0.009 & -0.06 & -1.756 & -2.133 & 0.40 & 0.40 & P\end{array}\) \(\begin{array}{llllllllllllllllllll}30 & 1906 & 07 & 30.03393 & 20 & 37 & 08.271 & -10 & 22 & 41.86 & -0.001 & 0.31 & 1.084 & 0.802 & -0.20 & -0.20 & R\end{array}\)

\(\begin{array}{lllllllllll}136 & 1906 & 07 & 29.81450 & 20 & 37 & 18.263 & -10 & 21 & 52.59 & -0.001\end{array}\) \(13619060724.84288204101 .158-100418.18 \quad-0.001 \quad 0.31 \quad 0.329 \quad 0.048 \quad 1.15 \quad 1.15 \mathrm{R}\) \(\begin{array}{llllllllllllllllllll}136 & 1906 & 07 & 23.86711 & 20 & 41 & 44.095 & -10 & 01 & 04.38 & -0.001 & 0.31 & -1.783 & -2.064 & 0.13 & 0.13 & R\end{array}\) \(\begin{array}{lllllllllllllllll}136 & 190607 & 22.84903 & 20 & 42 & 28.969 & -09 & 57 & 44.38 & -0.001 & 0.31 & 1.546 & 1.266 & 1.49 & 1.49 & R\end{array}\) \(\begin{array}{llllllllllllllllllll}30 & 1906 & 07 & 22.01271 & 20 & 43 & 55.107 & -09 & 55 & 06.52 & -0.001 & 0.31 & -1.177 & -1.457 & -0.55 & -0.55 & R\end{array}\)
\(\begin{array}{lllllllllllllllllll}30 & 1906 & 07 & 20.98651 & 20 & 43 & 49.657 & -09 & 51 & 55.40 & -0.000 & -0.00 & 2.886 & 2.607 & -0.49 & -0.49 & \mathrm{~V}\end{array}\) \(\begin{array}{llllllllllllllllll}136 & 1906 & 07 & 20.85961 & 20 & 43 & 54.967 & -09 & 51 & 31.27 & -0.001 & 0.31 & 0.715 & 0.436 & 0.77 & 0.77 & R\end{array}\) \(\begin{array}{llllllllllllllllllll}30 & 1906 & 07 & 20.04931 & 20 & 44 & 35.105 & -09 & 49 & 03.64 & -0.000 & -0.00 & 4.923 & 4.644 & -0.22 & -0.22 & \mathrm{~V}\end{array}\) \(\begin{array}{llllllllllllllllllllll}136 & 1906 & 07 & 19.91950 & 20 & 44 & 34.955 & -09 & 48 & 43.31 & -0.000 & -0.00 & 0.466 & 0.187 & -1.02 & -1.02 & \mathrm{~V}\end{array}\) \(\begin{array}{llllllllllllllllll}136 & 1906 & 07 & 19.89506 & 20 & 44 & 35.990 & -09 & 48 & 37.82 & -0.001 & 0.31 & 0.088 & -0.191 & 0.11 & 0.11 & R\end{array}\)
\begin{tabular}{rrrrrrrrrrrrrrrrrrr}
30 & 1906 & 07 & 19.01757 & 20 & 45 & 13.159 & -09 & 46 & 04.26 & -0.000 & -0.00 & 3.112 & 2.834 & -0.95 & -0.95 & \(V\) \\
30 & 1906 & 07 & 19.01757 & 20 & 45 & 13.059 & -09 & 46 & 03.60 & -0.001 & 0.31 & 1.622 & 1.344 & -0.29 & -0.29 & \(R\) \\
30 & 1906 & 07 & 18.00481 & 20 & 45 & 55.452 & -09 & 43 & 11.50 & -0.000 & -0.00 & 4.585 & 4.307 & -1.09 & -1.09 & V \\
30 & 1906 & 07 & 18.00481 & 20 & 45 & 55.223 & -09 & 43 & 08.96 & -0.001 & 0.31 & 1.142 & 0.865 & 1.45 & 1.45 & \(R\) \\
30 & 1906 & 07 & 17.00789 & 20 & 46 & 36.119 & -09 & 40 & 28.70 & -0.001 & 0.31 & 0.420 & 0.143 & -3.01 & -3.01 & \(R\)
\end{tabular}
\(\begin{array}{lllllllllllllllll}24 & 1906 & 07 & 16.98299 & 20 & 46 & 36.814 & -09 & 40 & 21.45 & 0.025 & 0.49 & -4.862 & -5.139 & 0.39 & 0.39 & p\end{array}\) \(\begin{array}{llllllllllllllllll}24 & 1906 & 07 & 16.92567 & 20 & 46 & 38.933 & -09 & 40 & 11.45 & 0.025 & 0.49 & -8.929 & -9.205 & 1.02 & 1.02 & \mathrm{p}\end{array}\) \(\begin{array}{llllllllllllllllllllll}24 & 1905 & 06 & 22.93796 & 15 & 28 & 50.564-11 & 11 & 41.76 & -0.022 & -0.04 & -1.560 & -1.765 & -0.30 & -0.30 & P\end{array}\) \(\begin{array}{lllllllllllllllllll}24 & 1905 & 06 & 22.93790 & 15 & 28 & 50.782 & -11 & 11 & 38.86 & -0.022 & -0.04 & 1.711 & 1.506 & 2.60 & 2.60 & P\end{array}\)

\(3019050602.89504154013 .743-114347.29-0.022-0.01-3.224-3.444-1.72-1.72 R\) \(30190506 \quad 02.895041540 \quad 10.826-114346.97-0.022-0.01-1.972-2.192-1.40-1.40 . R\) \(3019050601.90793154052 .591-114619.28-0.022-0.01-1.058-1.278-2.42-2.42 R\) \(\begin{array}{lllllllllllllllllll}30 & 1905 & 06 & 01.90793 & 15 & 40 & 52.663 & -11 & 46 & 19.06 & -0.022 & -0.01 & 0.036 & -0.185 & -2.20 & -2.20 & R\end{array}\)

FK4-CAT.
R.A. DEC.
R.A)
(O-C) TYPE R.A. DEC. R.A. DEC. BEFORE AFTER BEFORE AFTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & S & & & 11 & S & \(1 /\) & \(1 /\) & 11 & \(1 /\) & \(1 /\) \\
\hline 30 & 1905 & 05 & 31.93091 & 15 & 41 & 34.413 & -11 & 48 & 52.05 & -0.022 & -0.01 & -0.612 & -0.833 & -0.88 & -0.88 \\
\hline 30 & 1905 & 05 & 30.93511 & 15 & 42 & 17.621 & -11 & 51 & 33.19 & -0.022 & -0.01 & 0.731 & 0.510 & 0.19 & 0.19 \\
\hline 30 & 1905 & 05 & 30.93511 & 15 & 42 & 17.584 & -11 & 51 & 33.97 & -0.022 & -0.01 & 0.178 & -0.043 & -0.97 & -0.97 \\
\hline 30 & 1905 & 05 & 29.91933 & 15 & 43 & 02.095 & -11 & 54 & 26.13 & -0.022 & -0.01 & 0.518 & 0.296 & -3.45 & -3.45 \\
\hline 30 & 1905 & 05 & 29.91933 & 15 & 43 & 02.059 & -11 & 54 & 26.11 & -0.022 & -0.01 & -0.035 & -0.256 & -3.44 & -3.44 \\
\hline
\end{tabular}
\(136190505 \quad 27.86448154433 .412-120018.63-0.011\) \(84190505 \quad 25.9013415 \quad 46 \quad 01.329-120617.32-0.011\) \(8419050519.9395015 \quad 50 \quad 35.438-12 \quad 2544.16-0.011\) \(\begin{array}{llllllllllll}136 & 1905 & 05 & 13.81899 & 15 & 55 & 16.362 & -12 & 47 & 29.53 & -0.011\end{array}\) \(13619050511.84157155645 .443-125447.40-0.011\)
\(\begin{array}{lllllllllll}136 & 1905 & 05 & 10.86674 & 15 & 57 & 28.702 & -12 & 58 & 25.51 & -0.011\end{array}\) \(2419050508.0740715 \quad 5930.817-130859.51-0.010\) \(2419050508.00913155933 .678-130911.11-0.010\) \(24190403 \quad 20.878851041 \quad 51.866 \quad 050005.43-0.042\) \(24190403 \quad 20.81982104153 .85604 \quad 5944.03-0.042\) \(\begin{array}{llllll}84 & 1904 & 03 & 05.95080 & 10 & 51 \\ 54.096\end{array}\) 8419040305.95080105154 .096 \(\begin{array}{lllllll}34 & 1904 & 03 & 05.93557 & 10 & 51 & 54.805\end{array}\) \(\begin{array}{lllllll}84 & 1904 & 03 & 05.93557 & 10 & 51 & 54.815\end{array}\) \(84 \quad 190402 \quad 25.9484410 \quad 58 \quad 23.543\)
\[
\begin{array}{rrrrrrr}
7 & 1902 & 12 & 02.95635 & 04 & 54 & 21.685 \\
7 & 1902 & 12 & 02.95354 & 04 & 54 & 21.875 \\
-0 & 1902 & 12 & 01.79759 & 04 & 55 & 20.009 \\
-0 & 1902 & 11 & 30.92141 & 04 & 56 & 04.100 \\
-0 & 1902 & 11 & 30.90358 & 04 & 56 & 04.785
\end{array}
\]
\(\begin{array}{lllll}15 & 190211 & 28.93222045743 .202\end{array}\) \(84 \quad 190211 \quad 26.97956 \quad 04 \quad 5918.895\) \(\begin{array}{llllll}30 & 190211 & 24.86859 & 050100.158\end{array}\) \(30190211 \quad 24.86859050100 .090\)
\(\begin{array}{llll}30190211 & 23.87439050146 .879\end{array}\)

\section*{\(032651.67-0.040\) \(032651.23-0.042\) \(032645.66-0.040\) \(032645.21-0.042\) \(023037.04-0.042\)}
\(0.04 \quad 2.143 \quad 1.921 \quad 1.26 \quad 1.26 \mathrm{R}\) \(0.04-7.357-7.580-0.37-0.37 R\) \(\begin{array}{lllll}0.04 & 1.457 & 1.233 & 1.04 & 1.04 R\end{array}\) \(0.04 \quad 3.098 \quad 2.875-0.59-0.59 R\) \(0.043 .237 \quad 3.014-0.61-0.61 R\)
\(0.04 \quad 0.871 \quad 0.649-0.62-0.62 R\) \(0.01 \quad 0.325 \quad 0.104-3.55-3.55 \mathrm{P}\) \(0.01 \quad 0.232 \quad 0.011-0.34-0.34 \mathrm{P}\) \(\begin{array}{lllll}0.18 & 0.618 & 0.358 & 1.05 & 1.05 \mathrm{P}\end{array}\) \(0.18-2.163-2.424 \quad 0.61 \quad 0.61 \mathrm{P}\)
\begin{tabular}{lllll}
0.04 & -1.647 & -1.914 & 0.70 & 0.70 \\
0.18 & -1.647 & -1.914 & 0.25 & 0.25 \\
\(R\) \\
0.04 & -1.082 & -1.350 & 0.51 & 0.51 \\
\(R\) \\
0.18 & -0.930 & -1.197 & 0.06 & 0.06 \\
\(R\) \\
0.18 & -0.840 & -1.106 & 0.52 & 0.52
\end{tabular}
\begin{tabular}{rrrrrrrrr}
13 & 28 & 19.57 & -0.000 & -0.00 & 2.980 & 2.595 & 0.29 & 0.29 V \\
13 & 28 & 20.55 & -0.000 & -0.00 & 3.641 & 3.256 & 0.88 & 0.88 \\
13 & 31 & 05.26 & -0.000 & -0.00 & -2.290 & -2.675 & -3.32 & -3.32 \\
13 & 33 & 23.53 & -0.000 & -0.00 & -0.401 & -0.786 & 2.74 & 2.74 \\
13 & 33 & 20.74 & -0.000 & -0.00 & -3.830 & -4.215 & -2.74 & -2.74
\end{tabular}
\(133825.13-0.000-0.00-0.722-1.106-5.43-5.43 R\) \(\begin{array}{lllllllll}13 & 43 & 48.47 & -0.000 & -0.00 & 1.466 & 1.084 & 1.31 & 1.31\end{array}\) \(134944.39-0.051 \quad 0.17 \quad 0.638 \quad 0.257 \quad 0.59 \quad 0.59 \mathrm{R}\) \(134944.19-0.051 \quad 0.17-0.376-0.757 \quad 0.38 \quad 0.38 \quad R\) \(\begin{array}{lllllllll}13 & 52 & 36.02 & -0.051 & 0.17 & 1.813 & 1.433 & 0.21 & 0.21\end{array}\)
\(30190211 \quad 23.87439050146 .816\)
\(\begin{array}{lllllll}30 & 190211 & 22.87439 & 05 & 02 & 33.067\end{array}\) 79419021121.11321050352 .401 79419021120.09963050437 .054 \(99919010929.92066 \quad 2250 \quad 07.277-044437.90 \quad 0.035\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 999 & 1901 & 09 & 28.87592 & 22 & 50 & 41.090 & -04 & 38 & 49.48 & 0.035 & 0.36 & 0.181 & -0.136 & -0.13 & -0.13 \\
\hline 8 & 1901 & 09 & 25.85183 & 22 & 52 & 24.775 & -04 & 21 & 28.66 & 0.035 & 0.36 & 10.159 & 9.838 & 1.17 & 1.17 \\
\hline 8 & 1901 & 09 & 24.87607 & 22 & 52 & 59.240 & -04 & 15 & 44.95 & 0.035 & 0.36 & 6.719 & 6.398 & 1.53 & 1.53 \\
\hline 8 & 1901 & 09 & 23.87489 & 22 & 53 & 35.184 & -04 & 09 & 49.42 & 0.035 & 0.36 & 0.889 & 0.567 & 1.04 & 1.04 \\
\hline 30 & 1901 & 09 & 20.88920 & 22 & 55 & 27.587 & -03 & 51 & 49.83 & 0.038 & 0.31 & 4.548 & 4.224 & 0.31 & 0.31 \\
\hline 30 & 1901 & 09 & 17.86609 & 22 & 57 & 26.148 & -03 & 33 & 10.96 & 0.038 & 0.31 & 2.245 & 1.919 & 0.17 & 0.17 \\
\hline 30 & 1901 & C9 & 17.86609 & 22 & 57 & 26.177 & -03 & 33 & 10.72 & 0.038 & 0.31 & 2.676 & 2.350 & 0.41 & 0.41 R \\
\hline 8 & 1901 & 09 & 14.90003 & 22 & 59 & 26.184 & -03 & 14 & 39.13 & 0.038 & 0.31 & -1.521 & -1.849 & -0.24 & -0 \\
\hline 8 & 1901 & 09 & 09.95647 & 23 & 02 & 51.792 & -02 & 43 & 38.70 & 0.038 & 0.31 & -2.141 & -2.470 & -1.13 & -1.13 \\
\hline 30 & 1901 & 09 & 09.90752 & 23 & 02 & 54.129 & -02 & 43 & 17.46 & 0.038 & 0.31 & 1.669 & 1.341 & 2.10 & 2.10 \\
\hline 30 & 1901 & 09 & 08.86233 & 23 & 03 & 37.878 & -02 & 36 & 47.83 & 0.038 & 0.31 & -1.277 & -1.605 & 0.17 & 0.17 \\
\hline 999 & 1901 & 09 & 07.94059 & 23 & 04 & 16.432 & -02 & 31 & 04.63 & 0.038 & 0.31 & -2.942 & -3.270 & -0.21 & -0.21 \\
\hline 45 & 1890 & 08 & 10.91943 & 23 & 21 & 40.667 & 00 & 02 & 05.72 & -0.015 & 0.27 & -1.336 & -1.600 & 3.60 & 3.60 \\
\hline 45 & 1890 & 08 & 09.93442 & 23 & 22 & 06.223 & 00 & 01 & 26.87 & -0.015 & 0.27 & -0.652 & -0.915 & 1.84 & 1.84 \\
\hline -1 & 1888 & 04 & 15.92417 & 13 & 18 & 51.881 & -05 & 25 & 23.26 & -0.010 & 0.31 & 1.680 & . 90 & 1. & 1.74 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline OBS & & \multicolumn{2}{|r|}{date} & \multicolumn{3}{|r|}{R.A.} & \multicolumn{3}{|c|}{DEC.} & FK4-C
R•A. & DEC. & \[
\begin{aligned}
& (0-E) \\
& R . A . \\
& \text { BEFORE }
\end{aligned}
\] & AFTER & (O-C
DEC
BEFORE &  & R \\
\hline & & & & H & H M & M & 0 & & /1/ & 5 & // & // & // & \(1 /\) & 11 & \\
\hline 534 & 1871 & 03 & 07.87783 & 10 & 51 & 14.036 & 03 & 28 & 39.07 & -0.000 & -0.00 & -6.275 & -6.420 & \(-1.66\) & -1.66 & \(R\) \\
\hline -1 & 1871 & 03 & 06.85245 & 10 & 51 & 58.117 & 03 & 22 & 11.14 & -0.039 & 0.06 & -5.121 & -5.266 & -0.08 & -0.08 & R \\
\hline 534 & 1871 & 03 & 04.87870 & 10 & 53 & 23.620 & 03 & 09 & 41.37 & -0.000 & -0.00 & -1.107 & -1.252 & -1.33 & -1.33 & R \\
\hline 534 & 1871 & 03 & 03.98965 & 10 & 54 & 22.006 & 03 & 04 & 03.90 & -0.000 & -0.00 & -2.246 & -2.391 & -2.64 & -2.64 & R \\
\hline 0 & 1971 & 03 & 03.00653 & 10 & 54 & 44.774 & 02 & 58 & 01.22 & -0.000 & -0.00 & -1.994 & -2.139 & 5.31 & 5.31 & M \\
\hline 34 & 1871 & 03 & 02.98660 & 10 & 54 & 45.855 & 02 & 57 & 55.44 & -0.000 & -0.00 & 1.453 & 1.308 & 7.02 & 7.02 & R \\
\hline 534 & 1871 & 03 & 02.90192 & 10 & 54 & 49.550 & 02 & 57 & 17.52 & -0.041 & 0.20 & 0.267 & 0.122 & 0.98 & 0.98 & R \\
\hline 534 & 1871 & 03 & 01.97709 & 10 & 55 & 29.794 & 02 & 51 & 19.50 & -0.041 & 0.20 & 1.653 & 1.508 & -9.96 & -9.96 & R \\
\hline -1 & 1871 & 03 & 01.95685 & 10 & 55 & 32.467 & 02 & 51 & 21.70 & -0.041 & 0.20 & -1.733 & -1.878 & -0.13 & -0.13 & R \\
\hline 39 & 1871 & 03 & 01.82730 & 10 & 55 & 36.164 & 02 & 50 & 31.99 & -0.041 & 0.20 & \(-2.422\) & -2.567 & -1.14 & -1.14 & R \\
\hline -1 & 1871 & 02 & 28.98980 & 10 & 56 & 12.559 & 02 & 45 & 22.22 & -0.041 & 0.20 & -0.637 & -0.782 & 1.53 & 1.53 & R \\
\hline 39 & 1871 & 02 & 28.96341 & 10 & 56 & 13.593 & 02 & 45 & 09.96 & -0.041 & 0.20 & -2.743 & -2.888 & -0.75 & -0.75 & \(R\) \\
\hline 39 & 1871 & 02 & 25.98563 & 10 & 58 & 22.917 & 02 & 26 & 54.21 & -0.041 & 0.20 & 3.478 & 3.334 & 0.59 & 0.59 & R \\
\hline 0 & 1869 & 12 & 15.95995 & 04 & 45 & 20.684 & 13 & 07 & 05.01 & -0.000 & -0.00 & 2.555 & 2.311 & 4.42 & 4.42 & M \\
\hline 558 & 1869 & 12 & 10.92893 & 04 & 49 & 26.233 & 13 & 14 & 29.37 & -0.038 & 0.14 & 2.658 & 2.413 & -1.36 & -1.36 & \(R\) \\
\hline 558 & 1869 & 12 & 09.91339 & 64 & 50 & 17.108 & 13 & 16 & 14.53 & -0.038 & 0.14 & 1.669 & 1.423 & -3.05 & -3.05 & R \\
\hline 534 & 1869 & 12 & 08.87086 & 04 & 51 & 09.628 & 13 & 18 & 13.10 & -0.038 & 0.14 & -0.558 & -0.804 & 0.53 & 0.53 & R \\
\hline 534 & 1869 & 12 & 07.98344 & 04 & 51 & 54.716 & 13 & 19 & 54.26 & -0.038 & 0.14 & 3.135 & 2.889 & -0.48 & -0.48 & R \\
\hline 534 & 1869 & 12 & 07.97894 & 04 & 51 & 55.176 & 13 & 19 & 55.11 & -0.000 & -0.00 & 6.512 & 6.266 & -0.16 & -0.16 & \(V\) \\
\hline 7 & 1868 & 09 & 12.96257 & 22 & 48 & 33.631 & -03 & 49 & 54.34 & -0.000 & -0.00 & -3.557 & -3.948 & 5.56 & 5.56 & M \\
\hline -3 & 1868 & 09 & 10.97694 & 22 & 49 & 55.440 & -03 & 37 & 36.71 & 0.021 & 0.15 & 5.630 & 5.238 & -0.37 & -0.37 & R \\
\hline 39 & 1868 & 09 & 10.85782 & 22 & 50 & 00.416 & -03 & 36 & 50.17 & 0.021 & 0.15 & 5.465 & 5.073 & 1.51 & 1.51 & R \\
\hline 7 & 1868 & 09 & 09.97219 & 22 & 50 & 35.272 & -03 & 31 & 12.89 & -0.000 & -0.00 & -4.930 & -5.322 & 6.30 & 6.30 & M \\
\hline 39 & 1868 & 09 & 09.92796 & 22 & 50 & 38.878 & -03 & 31 & 02.15 & 0.021 & 0.15 & 6.425 & 6.032 & 0.72 & 0.72 & R \\
\hline 39 & 1868 & 09 & 08.93837 & 22 & 51 & 19.438 & -03 & 24 & 52.83 & 0.021 & 0.15 & 2.457 & -2.850 & 1.09 & 1.09 & R \\
\hline 558 & 1868 & 09 & 08.91479 & 22 & 51 & 125.584 & -03 & 24 & 44.26 & 0.021 & 0.15 & -0.040 & -0.433 & -1.50 & -1.50 & R \\
\hline 7 & 1868 & 09 & 07.97863 & 22 & 51 & 59.540 & -03 & 18 & 46.13 & -0.000 & -0.00 & -2.298 & -2.691 & 5.78 & 5.78 & M \\
\hline 39 & 1868 & 09 & 07.93282 & 22 & 52 & 01.627 & -03 & 18 & 36.41 & 0.021 & 0.15 & -0.012 & -0.405 & -1.37 & -1.37 & R \\
\hline 558 & 1868 & 09 & 07.91565 & 22 & 52 & 22.404 & -03 & 18 & 29.14 & 0.021 & 0.15 & 0.924 & 0.531 & -0.67 & -0.67 & \(R\) \\
\hline 39 & 1868 & 09 & 06.88698 & 22 & 52 & 45.293 & -03 & 12 & 05.34 & 0.021 & 0.15 & -3.595 & -3.988 & -1.28 & -1.28 & R \\
\hline 39 & 1868 & 09 & 05.90296 & 22 & 53 & 26.857 & -03 & 05 & 57.46 & 0.021 & 0.15 & -0.516 & -0.909 & -0.17 & -0.17 & R \\
\hline 7 & 1868 & 09 & 04.98827 & 22 & 54 & 4 05.223 & -03 & 00 & 12.53 & -0.000 & -0.00 & -1.844 & -2.237 & 4.78 & 4.78 & M \\
\hline 7 & 1868 & 09 & 03.99149 & 22 & 54 & 4.47.458 & -02 & 54 & 04.93 & -0.000 & -0.00 & 2.026 & 1.633 & 3.82 & 3.82 & M \\
\hline 39 & 1868 & 08 & 29.95504 & 22 & 58 & 518.124 & -02 & 23 & 41.86 & -0.000 & -0.00 & -0.479 & -0.871 & 2.36 & 2.36 & \(V\) \\
\hline 13 & 1868 & 08 & 26.01441 & 23 & 00 & 59.156 & -02 & 00 & 58.96 & -0.000 & -0.00 & 1.588 & 1.199 & -0.95 & -0.95 & M \\
\hline 534 & 1867 & 07 & 04.96458 & 17 & 50 & 05.586 & -14 & 14 & 19.66 & 0.011 & 0.06 & 1.590 & 1.278 & 0.36 & 0.36 & R \\
\hline 13 & 1867 & 06 & 29.95906 & 17 & 53 & 535.901 & -14 & 11 & 58.73 & -0.000 & -0.00 & -1.164 & -1.479 & -1.33 & -1.33 & M \\
\hline 13 & 1867 & 06 & 28.96232 & 17 & 54 & 4 37.248 & -14 & 11 & 41.79 & -0.000 & -0.00 & 0.753 & 0.438 & -2.84 & -2.84 & M \\
\hline 13 & 1867 & 06 & 27.96560 & 17 & 55 & 523.731 & -14 & 11 & 24.14 & -0.000 & -0.00 & -0.325 & -0.640 & -0.29 & -0.29 & M \\
\hline -1 & 1867 & 06 & 26.98205 & 17 & 56 & 609.903 & -14 & 11 & 13.25 & 0.011 & 0.06 & -0.555 & -0.872 & \(-1.04\) & -1.04 & R \\
\hline 13 & 1867 & C6 & 25.97214 & 17 & 56 & 57.559 & -14 & 11 & 04.23 & -0.000 & -0.00 & -2.020 & -2.335 & -0.58 & -0.58 & M \\
\hline -1 & 1867 & 06 & 24.01633 & 17 & 58 & 30.597 & -14 & 10 & 58.87 & 0.011 & 0.06 & 0.083 & -0.233 & -2.03 & -2.03 & R \\
\hline 534 & 1867 & 06 & 21.96558 & 18 & 00 & 68.641 & -14 & 11 & C1.35 & 0.011 & 0.06 & 0.590 & 0.274 & 2.24 & 2.24 & R \\
\hline 534 & 1867 & 06 & 21.95696 & 18 & 00 & 28.997 & -14 & 11 & 02.80 & 0.011 & 0.06 & -0.382 & -0.698 & 0.84 & 0.84 & R \\
\hline 534 & 1867 & C6 & 20.96685 & 18 & 00 & 56.466 & -14 & 11 & 11.37 & 0.011 & 0.06 & 1.347 & 1.031 & 0.64 & 0.64 & R \\
\hline 534 & 1867 & 06 & 19.96819 & 18 & 01 & 144.055 & -14 & 11 & 24.54 & 0.011 & 0.06 & -1.084 & -1.400 & -0.75 & -0.75 & \(R\) \\
\hline -6 & 1867 & 66 & 14.23716 & 18 & 06 & 16.037 & -14 & 13 & 32.64 & -0.000 & -0.00 & 4.333 & 4.018 & -0.02 & -0.02 & M \\
\hline -6 & 1867 & 06 & 12.24369 & 18 & 07 & 748.404 & -14 & 14 & 45.38 & -0.000 & -0.00 & 1.287 & 0.973 & -1.17 & -1.17 & M \\
\hline -6 & 1867 & 06 & 11.24703 & 18 & C8 & 834.049 & -14 & 15 & 26.83 & -0.000 & -0.00 & -0.029 & -0.343 & -1.92 & -1.92 & M \\
\hline -6 & 1867 & 6 & 07.25994 & 18 & 11 & 132.487 & -14 & 18 & 41.23 & -0.000 & -0.00 & 1.515 & 1.203 & -1.35 & -1 & M \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & S & & & & S & \(1 /\) & // & // & // & & \\
\hline & 1863 & 10 & 09.91261 & 01 & 41 & 57.780 & 1 & 30 & 21.50 & -0.000 & \(-0.00\) & 1.368 & 0.916 & 4.89 & 4.89 & R \\
\hline -6 & 1863 & 10 & 09.14918 & 01 & 42 & 29.762 & 07 & 35 & 14.14 & -0.007 & 0.07 & -0.518 & -0.969 & -1.00 & -1.00 & \(R\) \\
\hline 534 & 1863 & 10 & 08.97434 & 01 & 42 & 36.714 & 07 & 36 & 21.65 & -0.007 & 0.07 & -4.241 & -4.692 & 1.35 & 1.35 & \(R\) \\
\hline 534 & 1863 & 10 & 07.92048 & 01 & 43 & 20.583 & 07 & 42 & 54.84 & -0.007 & 0.07 & -2.991 & -3.442 & 1.14 & -1.14 & R \\
\hline 534 & 1863 & 10 & 07.86121 & 01 & 43 & 23.131 & 07 & 43 & 16.51 & -0.007 & 0.07 & 261 & 712 & 58 & -1.58 & R \\
\hline 534 & 186 & 10 & 04.04 & , & 45 & 55.682 & 08 & 06 & & -0.007 & & & 9 & 04 & 4 & R \\
\hline 0 & 1963 & 09 & 30.04916 & 01 & 48 & 25.627 & 08 & 30 & 31.25 & -0.000 & -0.00 & 3.530 & 3.087 & 2.83 & 2.83 & M \\
\hline 0 & 1862 & 08 & 25.90143 & 19 & 58 & 21.556 & -13 & 01 & 57.52 & -0.000 & -0.00 & 2.154 & 1.750 & -2.96 & -2.96 & M \\
\hline 0 & 1862 & 08 & 19.91984 & 20 & 01 & 18.477 & -12 & 39 & 13.99 & -0.000 & -0.00 & 2.389 & 1.976 & 3.26 & 3.26 & M \\
\hline 0 & 1862 & 08 & 07.95783 & 20 & 08 & 49.822 & -11 & 52 & 59.11 & -0.000 & -0.00 & 2.702 & 2.277 & 0.52 & 0 & M \\
\hline 0 & , & 07 & 3 & 20 & 13 & & -11 & 26 & & 0.000 & 0.00 & & & 2.20 & & M \\
\hline 793 & 1862 & 07 & 31.18800 & 20 & 14 & 30.159 & -11 & 23 & 50.88 & -0.000 & -0.00 & 1.622 & . 192 & 1.50 & 1.50 & M \\
\hline -5 & 1862 & 07 & 28.94487 & 20 & 16 & 12.295 & -11 & 15 & 53.86 & -0.000 & -0.00 & 4.407 & 3.977 & -2.54 & -2.54 & M \\
\hline 793 & 1862 & 07 & 26.204 & 20 & 18 & 17.356 & -11 & 06 & 23.31 & -0.000 & -0.00 & -1.914 & -2.345 & -0.98 & 98 & M \\
\hline -1 & 1862 & 07 & 25 & 20 & 18 & 27 & & 05 & 39.93 & 0.031 & . 12 & -1.099 & -1. & 2.25 & 5 & R \\
\hline -5 & 1862 & 07 & 25.95468 & 20 & 18 & 29.004 & -11 & 05 & 36.12 & -0.000 & -0.00 & 1.109 & 0.678 & 4.2 & 4.2 & M \\
\hline -1 & 1862 & 07 & 25.01731 & 20 & 19 & 11.637 & -11 & 02 & 24.10 & 0.031 & -0.12 & -3.461 & -3.891 & 0.33 & . 33 & R \\
\hline -1 & 1862 & 07 & 23.01137 & 20 & 20 & 43.670 & -10 & 55 & 53.36 & 0.031 & -0.12 & -0.452 & -0.881 & 1.92 & 1.92 & R \\
\hline 0 & 1862 & 07 & 20.01955 & 20 & 22 & 59.662 & -10 & 46 & 31.09 & -0.000 & -0.00 & 1.188 & 0.760 & 4.26 & 4.26 & M \\
\hline -1 & 1861 & 06 & 13.97273 & 15 & 18 & 38.246 & & 54 & 37.98 & -0.018 & 0.36 & 6.015 & 5.740 & 0.32 & 0.32 & R \\
\hline 0 & 1860 & 04 & . 858 & 10 & 26 & 01.098 & 7 & 22 & 14.23 & -0.000 & -0.00 & . 885 & 2.682 & -3.23 & 3.23 & M \\
\hline 0 & 1860 & 04 & 07.88696 & 10 & 27 & 15.370 & a & 51 & 28.82 & -0.000 & -0.00 & 5.145 & 4.932 & 1.90 & 1.90 & M \\
\hline 0 & 1860 & 03 & 23.93181 & 10 & 32 & 51.038 & 5 & 42 & 26.38 & -0.000 & -0.00 & 1.755 & 1.525 & 2.19 & 2.19 & M \\
\hline 58 & 1860 & 03 & 21.81176 & 10 & 33 & 58.468 & 05 & 30 & 40.75 & -0.038 & 0.14 & 2.067 & 1.835 & -1.14 & -1.14 & R \\
\hline -5 & 1860 & 03 & 16.83730 & 10 & 36 & 52.418 & 05 & 01 & 48.44 & -0.039 & 0.13 & 2.532 & 2.296 & \(-2.03\) & -2.03 & R \\
\hline -5 & 1860 & 03 & 13.88291 & 10 & 38 & 44.946 & 04 & 43 & 57.59 & -0.039 & . 13 & 4.495 & 4.258 & . 64 & 0.64 & \\
\hline -5 & 1860 & 03 & 13.88291 & 10 & 38 & 44.916 & 04 & 43 & 58.80 & -0.039 & 0.13 & 4.042 & 3.804 & 1.86 & 1.86 & \\
\hline & 1860 & 03 & 13.86077 & 10 & 38 & 45.353 & 04 & 43 & 47.88 & -0.039 & . 13 & -2.742 & -2.980 & -0.91 & 0.91 & \\
\hline -5 & 1860 & 03 & 12.84114 & 10 & 39 & 25.817 & 04 & 37 & 29.52 & -0.039 & 0.13 & 0.755 & 0.517 & -2.34 & -2.34 & \\
\hline -5 & 1860 & 03 & 12.81611 & 10 & 39 & 26.804 & 04 & 37 & 20.58 & -0.039 & 0.13 & 0.904 & 0.666 & -2.36 & & \\
\hline -5 & 1860 & 03 & 11.97217 & 10 & 40 & 33.117 & 04 & 32 & 02.97 & -0.039 & 0.13 & -2.789 & -3.027 & -6.38 & -6.38 & R \\
\hline & 1860 & c3 & 11.97217 & 10 & 40 & 00.186 & 04 & 32 & 04.48 & -0.039 & 0.13 & -1.746 & -1.984 & -4.87 & -4.87 & \(R\) \\
\hline -5 & 1860 & ¢ 3 & 11.94527 & 10 & \(4{ }^{4}\) & 01.654 & 04 & 31 & 57.90 & -0.039 & 0.13 & 3.600 & 3.362 & -1.44 & -1.44 & R \\
\hline -5 & 1860 & 03 & 11.94527 & 10 & 40 & 01.564 & 04 & 31 & 56.22 & -0.039 & 0.13 & 2.237 & 1.998 & -3.12 & -3.12 & R \\
\hline 58 & 1860 & C3 & 09.85322 & 10 & 41 & 26.656 & 04 & 18 & 53.63 & -0.039 & 0.13 & -2.204 & -2.443 & -1.63 & -1.63 & \\
\hline
\end{tabular}
\[
\begin{array}{rcccccc}
0 & 1869 & 03 & 02.99849 & 10 & 46 & 18.699 \\
0 & 1860 & 03 & 01.00496 & 10 & 47 & 45.618 \\
-5 & 1860 & 02 & 29.87678 & 10 & 47 & 59.994 \\
802 & 1860 & 02 & 27.21373 & 10 & 49 & 47.312 \\
-5 & 1860 & 02 & 26.96945 & 10 & 49 & 58.275 \\
& & & & & & \\
-6 & 1860 & 02 & 25.97263 & 10 & 50 & 42.005 \\
58 & 1860 & 02 & 25.95802 & 10 & 50 & 42.183 \\
58 & 1860 & 02 & 25.93316 & 10 & 50 & 43.489 \\
0 & 1860 & 02 & 14.05641 & 10 & 58 & 57.353 \\
-1 & 1859 & 01 & 08.97546 & 04 & 15 & 13.036
\end{array}
\]
\begin{tabular}{rrrrrrrrrr}
03 & 35 & 42.87 & -0.000 & -0.00 & 3.230 & 2.990 & 4.66 & 4.66 & \(M\) \\
03 & 23 & 08.93 & -0.000 & -0.00 & 2.921 & 2.680 & 3.88 & 3.88 & \(M\) \\
03 & 22 & 16.62 & -0.039 & 0.11 & -1.887 & -2.128 & -0.32 & -0.32 & \(R\) \\
03 & 05 & 43.89 & -0.042 & 0.19 & -2.853 & -3.093 & 2.22 & 2.22 & \(R\) \\
03 & 04 & 11.02 & -0.000 & -0.00 & 1.445 & 1.205 & 0.21 & 0.21 & \(M\) \\
02 & 58 & 08.71 & -0.000 & -0.00 & 5.043 & 4.804 & 5.70 & 5.70 & M \\
02 & 57 & 58.17 & -0.042 & 0.19 & -1.881 & -2.121 & 0.85 & 0.85 & \(R\) \\
02 & 57 & 48.52 & -0.000 & -0.00 & 1.082 & 0.842 & -0.00 & -0.0 C & V \\
01 & 50 & 13.12 & -0.000 & -0.00 & 2.612 & 2.378 & 3.17 & 3.17 & M \\
12 & 41 & 04.57 & -0.001 & 0.20 & -4.206 & -4.610 & -2.82 & -2.82 & \(R\) \\
12 & 38 & 12.50 & -0.000 & -0.00 & 0.107 & -0.304 & 1.59 & 1.59 & V \\
12 & 40 & 38.00 & 0.000 & 0.34 & -2.495 & -2.943 & -1.03 & -1.03 & R \\
12 & 41 & 40.94 & -0.000 & -0.00 & -2.999 & -3.449 & 0.18 & 0.16 & R \\
17 & 08 & 12.92 & 0.009 & 0.22 & -0.616 & -0.952 & 0.85 & 0.85 & \(R\) \\
-00 & 33 & 51.35 & 0.001 & 0.34 & -0.083 & -0.369 & -0.30 & -0.30 & \(R\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{UBS}} & \multicolumn{2}{|r|}{\multirow[t]{3}{*}{Date}} & \multicolumn{3}{|r|}{\multirow[t]{3}{*}{R.A.}} & \multicolumn{3}{|r|}{\multirow[t]{3}{*}{DEC.}} & \multicolumn{2}{|l|}{FK 4-CAT.} & \multirow[t]{3}{*}{\begin{tabular}{l}
\[
\begin{gathered}
(0-C) \\
R . A .
\end{gathered}
\] \\
BEFORE
\end{tabular}} & \multicolumn{3}{|l|}{} & \multirow[t]{2}{*}{tYpe} \\
\hline & & & & & & & & & & R.A. & DEC. & & & DEC & & \\
\hline & & & & & & & & & & & & & AFTER & BEFO & FTER & \\
\hline & & & & & H & M S & & & 111 & s & 11 & \(1 /\) & \(1 /\) & 1 & , & \\
\hline -1 & 1858 & 02 & 07.74584 & 23 & 54 & 35.128 & -00 & 56 & 57.83 & 0.001 & 0.34 & -0.141 & -0.430 & 1.32 & 1.32 & R \\
\hline -1 & 1858 & 02 & 02.76487 & 23 & 47 & 58.052 & -01 & 34 & 40.58 & 0.019 & 0.05 & 0.437 & 0.146 & 0.41 & 0.41 & R \\
\hline -1 & 1857 & 12 & 12.83180 & 22 & 48 & 27.351 & -06 & 43 & 52.20 & 0.033 & 0.32 & 1.051 & 0.708 & -2.46 & -2.46 & R \\
\hline -1 & 1857 & 11 & 19.85525 & 22 & 31 & 04.725 & -07 & 47 & 52.37 & 0.033 & 0.32 & -1.698 & -2.079 & 0.36 & 0.36 & R \\
\hline -1 & 1857 & 11 & 15.81325 & 22 & 28 & 52.159 & -07 & 52 & . 58.61 & 0.033 & 0.32 & -1.192 & -1.581 & -2.09 & -2.09 & R \\
\hline -1 & 1857 & 11 & 02.86539 & 22 & 23 & 48.647 & -07 & 55 & 10.80 & 0.033 & 0.32 & -2.481 & -2.898 & 1.32 & 1.32 & R \\
\hline -1 & 1857 & 10 & 24.92070 & 22 & 22 & 15.408 & -07 & 43 & 53.09 & 0.033 & 0.32 & -5.326 & -5.763 & -2.09 & -2.09 & R \\
\hline -5 & 1857 & 10 & 21.81061 & 22 & 22 & 37.287 & -07 & 37 & 18.11 & 0.033 & 0.32 & 1.365 & 0.920 & 3.43 & 3.43 & R \\
\hline -5 & 1857 & 10 & 20.85332 & 22 & 22 & 07.312 & -07 & 35 & 202.82 & 0.033 & 0.32 & 4.741 & 4.294 & 2.98 & 2.98 & R \\
\hline -1 & 1857 & 10 & 18.87153 & 22 & 22 & 13.633 & -07 & 30 & 01.32 & 0.033 & 0.32 & 3.113 & 2.661 & 0.03 & 0.03 & R \\
\hline 520 & 1857 & 10 & 17.85326 & 22 & 22 & 14.595 & -07 & 27 & 714.41 & 0.033 & 0.32 & 6.033 & 5.579 & -1.91 & -1.91 & \(R\) \\
\hline 520 & 1857 & 10 & 15.84667 & 22 & 22 & 25.732 & -07 & 21 & 17.11 & 0.033 & 0.32 & 3.968 & 3.508 & -1.46 & -1.46 & R \\
\hline 520 & 1857 & 10 & 14.84986 & 22 & 22 & 33.436 & -07 & 18 & 809.59 & 0.033 & 0.32 & 6.851 & 6.389 & -3.02 & -3.02 & R \\
\hline -1 & 1857 & 10 & 13.81078 & 22 & 22 & 42.524 & -07 & 14 & 41.71 & 0.033 & 0.32 & 5.156 & 4.692 & -0.42 & -0.42 & R \\
\hline -1 & 1857 & 10 & 06.89990 & 22 & 24 & 17.368 & -06 & 48 & 29.55 & 0.033 & 0.32 & -0.224 & -0.704 & -0.21 & -0.21 & R \\
\hline -1 & 1857 & 10 & 04.98159 & 22 & 24 & 54.053 & -06 & 40 & 18.51 & 0.033 & 0.32 & 1.020 & 0.536 & -6.06 & -6.07 & \\
\hline -1 & 1857 & 09 & 29.93009 & 22 & 26 & 50.430 & -06 & 16 & . 26.96 & 0.033 & 0.32 & -3.253 & -3.748 & 1.86 & 1.86 & \\
\hline -1 & 1857 & 09 & 29.01391 & 22 & 27 & 14.488 & -06 & 11 & 155.68 & 0.033 & 0.32 & -3.446 & -3.943 & -2.02 & \(-2.02\) & \\
\hline 520 & 1857 & 09 & 28.01676 & 22 & 27 & 41.881 & -06 & 06 & 45.37 & 0.033 & 0.30 & -1.671 & -2.170 & 3.34 & 3.34 & R \\
\hline
\end{tabular}

\section*{References}
1. Newcomb, S., "On the Mass of Jupiter and the Orbit of Polyhymnia," Astron. Papers Am. Ephemeris (APAE), Vol. V, Part 5, 1895.
2. Brouwer, D., and Clemence, G. M., Methods of Celestial Mechanics, Academic Press, New York, 1961.
3. Hill, G. W., "On the Derivation of the Mass of Jupiter From the Motion of Certain Asteroids," Mem. Am. Acad. Arts Sci., Vol. IX, New Series, p. 417, 1873.
4. Dicke, C. H., "The Sun's Rotation and Relativity," Nature, Vol. 202, pp. 432435, May 2, 1964.
5. Handbook of Mathematical Functions, p. 878. Edited by M. Abramowitz and I. A. Stegun. United States Government Printing Office, Washington, D.C., 1964.
6. Goodyear, W. H., "Completely General Closed-Form Solution for Coordinates and Partial Derivatives of the Two-Body Problem," Astron J., Vol. 70, pp. 189-192, 1965.
7. Eckert, W. J., Brouwer, D., and Clemence, G. M., "Coordinates of the Five Outer Planets," Astron. Papers Am. Ephemeris (APAE), Vol. XII, 1951.
8. Lieske, J. H., Newtonian Planetary Ephemerides 1800-2000; Development Ephemeris Number 28, Technical Report 32-1206. Jet Propulsion Laboratory, Pasadena, Calif., Nov. 15, 1967.
9. Lieske, J. H., A Dynamical Determination of the Solar Parallax From the Motion of (433) Eros, Ph.D. dissertation, Yale University, New Haven, Conn., 1968.
10. Brouwer, D., "On the Accumulation of Errors in Numerical Integration," Astron. J., Vol. 46, pp. 149-153, 1937.
11. Schubart, J., and Stumpff, P., "On an N-Body Program of High Accuracy for the Computation of Ephemerides of Minor Planets and Comets," Veroff. Astron. Rechen-Inst. Heidelberg, No. 18, Verlag G. Braun, Karlsruhe, 1966.
12. Herget, P., "Solar Coordinates 1800-2000," Astron. Papers Am. Ephemeris (APAE), Vol. XIV, 1953.
13. Fiala, A. D., Determination of the Mass of Jupiter From a Study of the Motion of (57) Mnemosyne, Ph.D. dissertation. Yale University, New Haven, Conn., 1968.
14. Eckert, W. J., and Brouwer, D., "The Use of Rectangular Coordinates in the Differential Correction of Orbits," Astron. J., Vol. 46, pp. 125-132, 1937.
15. Cohen, C. J., Hubbard, E. C., and Oesterwinter, C., "New Orbit for Pluto and Analysis of Differential Corrections," Astron. J., Vol. 72, pp. 973-988, 1967.
16. Geschichte des Fixsternhimmels, Prussian Acad. Sci., Karlsruhe.
17. Transactions of the Astronomical Observatory of Yale University, 1939-1954, Vol. 23 and Zone Catalogs.

\section*{References (contd)}
18. Zweiter Katalog der Astronomischen Gesellschaft, Hamburg-Bergedorf, 19511954, Bonn, 1957-1958.
19. Woolard, E. W., and Clemence, G. M., Spherical Astronomy. Academic Press, New York, 1966.
20. Woolard, E. W., "Theory of the Rotation of the Earth Around its Center of Mass," Astron. Papers Am. Ephemeris (APAE), Vol. XV, Part 1, 1953.
21. Mulholland, J. D., A Theory of the Sixth Satellite of Jupiter, Ph.D. dissertation. University of Cincinnati, Cincinnati, Ohio, 1965.
22. Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac, p. 90. H. M. Stationery Office, London, 1961.
23. American Ephemeris and Nautical Almanac for the Year 1968. United States Government Printing Office, Washington, D.C., 1966.
24. Fourth Fundamental Catalogue (FK4) Veröffentlichungen des Astronomischen Rechen-Instituts, Heidelberg, No. 10.
25. Boss, B., General Catalogue of 33,342 Stars for the Epoch 1950: Volume 1. Carnegie Institute, Washington, D.C., 1937.
26. Zielenbach, J. W., An Improved Orbit for Minor Planet (48) Doris, M.A. thesis. Georgetown University, Washington, D.C., 1968.
27. O'Handley, D. A., "Determination of the Mass of Jupiter From the Motion of (65) Cybele," Astron. Papers Am. Ephemeris (APAE), Vol. XX, Part 3, 1968.
28. Klepczynski, W. J., "The Mass of Jupiter and the Motion of Four Minor Planets," Astron. J., Vol. 74, pp. 774-775, 1967.
29. Clemence, G. M., "On the System of Astronomical Constants," Astron. J., Vol. 58, pp. 169-179, 1948.
30. Oort, J. H., "The Constants of Precession and of Galactic Rotation," B.A.N., Vol. 9, pp. 424-427, 1943.
31. Clemence, G. M., "Venus Perturbations in Newcomb's Tables of the Sun," Astron. J., Vol. 50, pp. 127-128, 1943.
32. Newcomb, S., "Tables of the Four Inner Planets," Astron. Papers Am. Ephemeris (APAE), Vol. VI, 1895.```

