ATTITUDE-REFERENCED RADIOMETER STUDY Volume I ATTITUDE DETERMINATION SYSTEM DESIGN

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents

Prepared under Contract No. NAS I-8801 by
HONEYWELL INC.
Aerospace Division
Minneapolis, Minnesota
for

ATTITUDE-REFERENCED RADIOMETER STUDY
 VOLUME I
 ATTITUDE DETERMINATION SYSTEM DESIGN

> by
> N.W. Tidwell
> G.D. Nelson
> W.J. Lew is

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

August 1969
Prepared under Contract No. NAS 1-8801 by
Honeywell Inc.
Aerospace Division
Minneapolis, Minnesota
for
National Aeronautics and Space Administration

ATTITUDE-REFERENCED RADIOMETER STUDY VOLUME I
 ATTITUDE DETERMNATION SYSTEM DESIGN

by
N.W. Tidwell
G.D. Nelson
W.J. Lewis

Distribution of this report is provided in the interest of information exchange.
Responsibility for the contents resides in the author or organization that prepared it.

August 1969
Prepared under Contract No. NAS 1-8801 by
Honeywell Inc.
Aerospace Division
Minneapolis, Minnesota
for
National Aeronautics and Space Administration

FOREWORD

This report documents Part I of a two-part Attitude-Referenced Radiometer Study (ARRS) performed under National Aeronautics and Space Administration contract No. NAS 1-8801 for Langley Research Center.

A previous analytical and design study under contract No. NAS 1-6010 indicated the feasibility of the measurement package and identified critical design and development problems. Having previously established the feasibility of the radiometric measurement package, this study provided advancement of techniques for the design and fabrication of precision radiometric and attitude determination systems for use in an earth-orbiting spacecraft. The effort was devoted to solving the critical design and development problems in Part 1. Design requirements and conceptual design of the systems, based on analytical analyses, are established and reported within this study effort.

The contractual effort was divided into three major tasks;

1. Radiometric system design
2. Attitude-referenced radiometer system integration
3. Attitude determination system design

Honeywell Inc., Aerospace Division, performed this study program under the technical direction of Mr. J. C. Bates. The Part I effort was conducted from 1 Januaxy 1969 to 10 October 1969.

Gratitude is extended to NASA Langley Research Center for their technical guidance, under the program technical direction of Messrs. A. Jalink and J. A. Dodgen, with direct assistance from Messrs. D. Hesketh, D. Hinton, W. C. Hodge, and H. J. Curfman Jr., as well as the many people within their organization.

PECEDNG PAGE GLANK NOT ELLAED

CONTENTS

Page
FOREWORD iii
SUMMARX 1
Torque Modeling 2
Spacecraft Modeling 2
Attitude Determination Algorithm 3
Starmapper Parameters 3
Optical Transfer Function 4
Cathode Protection 5
Error Analysis 5
Celestial Sensor Logic 6
INTRODUCTION 7
STUDY REQUIREMENTS AND OBJECTIVES 9
ATTITUDE DETERMINATION ALGORETHM 12
Introduction and Objectives 12
ATTYTUDE-REFERENCED CELESTIAL SENSING SXSTEM 178
Requirements and Objectives 178
Ground Based Data Processing 255
Celestial Sensor Logic 261
CONCLUSIONS AND RECOMMENDATIONS 284
Torque Model 285
Spacecraft Modeling 285
Operational Algorithm 286
Starmapper Parameters 287
Optical Transfer Function 288
Cathode Protection 299
Error Analysis 289
Ground-Based Data Processing 289
Celestial Sensor Logic 290
Recommendations 290
APPENDICESAPPENDIX A - DEVELOPMENT OF A TORQUE MODEL DUE TOINDUCED EDDY CURRENTS IN A SPINNING HATCONFIGURATION SPACECRAET
APPENDIX B - AERODYNAMIC TORQUE
APPENDIX C - DERIVATION OF THE MAGNETIC AND GRAVITA-
TIONAL TORQUES IN TERMS OF THE STATE
VARIABLES
APPENDIX D - APPROXIMATE CLOSED-FORM SOLUTION FOR
THE ATTMRUE OF A WEAKLY TORQUED ASYM-
METRIC SPACEGRAET
APPENDIX E - ARRS PHOTONULTIPLIER SENSITIVITY AND
OVERLOAD PROTECTION
APPENDIX F - ANALYSIS OF CATHODE TEMPERATURES RE-
SULTING FROM EXPOSURE TO SOLAR RADI-
ATION
APPENDIX G - MAIN REFERENCE FRAME
REFERENCES

LIST OF ILILUSTRATIONS

Figure Page
1 Spacecraft Configuration 10
2 Schematic of Attitude Determination Algoxithm 13
Development and Analysis Report
3 Spacecraft Shadowing 20
4 Solar Panel Configuration 22
5 Spacecrafi in Unprimed Coordinate System 24
6 29
7 Shadows Intersecting Edge of Sunlit Area and End 29of Spacecraft
8
Shadows Intersecting Right Edge of Sunlit Region 30and End of Spacecraft
9
Both Shadows Intersecting Pight Edge of Sunlit Region 30
Each Shadow Intexsecting Nearest Edge of Sunlit Region 31
11
Both Shadows Intersecting End of Spacecraft 31
12
Logical Flow of Integration of Equations of Motion 38
13 39
Logical Flow within the System of Computer Programs1415
Example of Torque Difference Plots 40
Example of Euler Angle Difference Plots 41
16 Communication within the System of Programs and 42Input/ Output
17 Configuration of Spacecraft Orbit, Earth, and Inertial 44.Reference Frame
18
X_{B} and Z_{B} Axes 44
19 Torque on Spacecraft Due to Residual Magnetic Moments 47
20 Attitude Deviation of Spacecraft due to Residual 48
Magnetic Moment Torque Relative to an Untorqued Spacecraft
Figure
21 Torque on Spacecraft Due to Residual Magnetic 49 Moments
22. Attitude Deviation of Spacecraft due to Residual Magnetic 50 Moment Torque Relative to an Untorqued Spacecraft
23
ARRS Eddy Current Torque on Half Orbit 52
24
Attitude Deviation due to ARRS Eddy Current 53Torque Relative to an Untorqued Spacecraft
25
Comparison of "Hat" Configuration -- Eddy 54Current Mode to Spherical Eddy Current Model
26
Torque on a Spherical Spacecraft due to Eddy 55
Current Losses
27 Attitude Deviation in the Spherical Spacecraft due 57to Eddy Current Losses Relative to an UntorquedSpacecraft
28
Torque on Spacecraft due to Solar Pressure 58
29
Attitude Deviation due to Solar Pressure 59
30
Torque Resulting from Solar Pressure Effect on 60Spacecraft31 Attitude Deviation of the Spacecraft due to Solar61Pressure Effect Relative to an Untorqued Spacecraft
323334 Attitude Deviation of Spacecraft due to Aerodynamic65Pressure Relative to an Untorqued Spacecraft, One-Orbit Simulation
35 Torque on Spacecraft due to Aerodynamic Pressure 66
20 -Second Simulation
$36 \quad$ Attitude Deviation of Spacecraft due to Aerodynamic 67 Pressure Relative to an Untorqued Spacecraft, 20-Second Simulation
Figure Page
37 Torque due to Gravity Gradient Effect on Spacecraft 69
38 Attitude Deviation of Spacecraft due to Gravity 70Gradient Relative to an Untorqued Spacecraft
39 Torque on Spacecrat due to Gravity Gradient 71
40 Attitude Deviation of Spacecrafi Due to Gravity 72Gradient Relative to an Untorqued Spacecraft
Angular Momentum Axes System 82 4142Euler Angle Axes System82
43
Comparison of Momentum Direction Solutions for 94Exact and Averaged Equations
44 Comperison of Cone Angle, 有, Solutions 95
45
Comparison of Angular Momentum Solutions 96
46
Comparison of Spin Error, $\phi-\phi_{\mathrm{a}}$, and Precission 97
$\Psi-\Psi_{a}$, and their Sum, $\phi-\phi_{a}+\mathbb{Y}-\Psi_{a}$
Envelop of Error Sum using Initial Configuration ρ_{0} 98
$=20.61618074 \mathrm{ft}-\mathrm{lb} / \mathrm{sec}$
Compaxison of Momentum Axes Motion with 100Gravity Effects
49 Relationship of Slit Plane to the Experimental 105
Frame
50 Transit Geometry111
51 Block Diagram of Attitude Determination System 113
Simulation
52
CRT Display Format 114
53 Transit Data for Nominal Case 120
54 Nominal Case - Behavior of the Diagonal Elements 121 of the Covariance Matrix
55 Nominal Case - Convergence Over One Spin Period 123
56
Nominal Case - Convergence over 10 Split Periods 124
Figure Page
5 T Nominal Case - Attitude Errors after Convergence 126
58
Nominal Case - Attitude Errors after Convergence 126over Five Spin Periods59Nominal Case - Rate and Attitude Errors after127
Convergence over One Spin Period60 Nominal Case - Behavior of the Diagonal Elements129of the Covariance Matrix with Reduced Number ofSightings61 Nominal Case - Convergence ovex One Spin Period130with Reduced Number of Sightings
62
Nominal Case - Convergence over 10 Spin Periods 131with Reduced Number of Sightings
63 Nominal Case - Attitude Errors as a Function of 133Instrument Noise
64 Attitude Errors as a Function of Instrument 135Noise Uncertainty
65
Rate Errors as a Function of Instrument Noise 135
Uncertainty
86
Inertia Ratio and Pitch Error with Inertia Ratio 136Estimation Intiated at $t=0$
67
Rate and Attitude Errors with Inertia Ratio Estimation 137Initiated at $t=550 \sec \left(Q_{77}-Q_{88}=10^{-7} \Delta A=0.01\right)$
68
Inertia Ratio Error and Covariance Behavior and 138Inertia Ratio Estimation initiated at $t=550 \mathrm{sec}$$\left(Q_{77}=Q_{88}=10^{-7}, \Delta \mathrm{~A}=0.01\right)$
69 Rate and Attitude Errors with Inertia Ratio Estimation 139Initiated at $t=550 \sec \left(Q_{77}=Q_{88}=10^{-9}, \triangle A=0.01\right)$70 Inertia Ratio Error and Covariance Behavior withInertia Ratio Estimation Initiated at $t=550$ sec$\left(\mathrm{Q}_{77}=\mathrm{Q}_{88}=10^{-9}, \Delta \mathrm{~A}=0.01\right)$
71 Rate and Attitude Error with Inerta Ratio Estimation 142
Initiated at $t=550 \sec \left(Q_{77}=Q_{88}=10^{-9}\right.$($\Delta \mathrm{A}=0.025$)
Figure Page
72 Inertia Ratio Error and Covariance Behavior with 143Inertia Ratio Estimation Initiated at $t=550 \mathrm{sec}$$\left(Q_{77}=Q_{88}=10^{-9}, \Delta A=0.025\right)$
73 Attitude Errors as a Function of Eddy Current 144Coefficient74Vehicle Rate and Attitude Errors - 12 Variable146Estimation State
75 Inertia Ratio, Eddy Current Coefficient - 12 Variable 147 Estimation State
76 Magentic Moment Estimation - 12 Variable Estimation 148 State
77 Yaw Error as a Function of Integration Time Step 149
for Second, Third, and Fourth Order Runge-Kutta78Pitch Error as a Function of Integration Time Step149for Second, Third, and Fourth Order Runge-Kutta79Comparison of Xaw Errors for Different Torque151Models and Number of Sightings as a Function ofInstrument Noise
80 Comparison of Roll Errors for Different Torque 152
Models and Number of Sightings as a Function of Instrument Noise
81 Comparison of Pitch Errors for Different Torque 153 Models and Number of Sightings as a Function of Instrument Noise
82 Sensitivity of Yaw Errors to Additive Noise 154
83 Sensutivity of Roll Errors to Additive Noise 155
84
Sensitivity of Pitch Errors to Additive Noise 155
85 Comparison of Yaw Errors for Different Values 157of Additive Noise
86 Comparison of Roll Errors for Different Values 158
of Additive Noise
87 Comparison of Pitch Errors for Different Values 158 of Additive Noise

Figure		Page
88	Comparison of Yaw Errors for Real and Idealized Star Fields	159
89	Comparison of Roll Errors for Real and Idealized Star Fields	159
90	Comparison of Pitch Errors for Real and Idealized Star Fields	159
91	Attitude Errors as a Function of Instrument Noise for $\gamma=130^{\circ}$	160
92	Transit Data for $\gamma=130^{\circ}$	161
93	Yaw Error as a Function of Instrument Noise for $y=90^{\circ}$	162
94	Roll Exror as a Function of Instrument Noise for $\gamma=90^{\circ}$	163
95	Pitch Exror as a Function of Instrument Noise for $\gamma=90^{\circ}$	164
96	Transit Data for $\gamma=90^{\circ}$	165
97	Comparison of Yaw Errors using One and Two Star Sightings/Vehicle Rotation	167
98	Comparison of Roll Errors using One and Two Star Sightings/Vehicle Rotation	168
99	Comparison of Pitch Errors using One and Two Star Sightings/Vehicle Rotation	169
100	Estimation Results using One Star atter 600 sec	170
101	Convergence using Two Celestial Bodies	171
102	Yaw Errors as a Function of Instrument Noise for $\|\vec{\omega}\|=1 \mathrm{rpm}$	174
103	Roll Errors as a Function of Instrument Noise for $\|\bar{\omega}\|=1 \mathrm{rpm}$	174
104	Pitch Errors as a Function of Instrument Noise for	174
105	Seanning Geometry of Starmapper	180

Figure Page
106 Scanned Annulus Projected onto Celestial Sphere 181
107 Geometric Construction of Baffle Cone to Show 182
Depth of Penetration and Number of Bounces
108 Baffle Description 183
109 Normalized Light Baffe Volume versus Shield Angle 185
110
Exact Geometric Relationship Between Optical Axis, 188 Sun Line, and Earth Blocking Boundary on Celestial Sphere
111 Bounds on the Parameter Set $\{\gamma \beta\}$ 190
112 Daylight and Nighttime Vrewable Areas 191
113 Computer Program 192
114 Minimum Volume versus Daylight Limiting Magnitude 192
115 θ, β versus γ 194
$116 \quad{ }^{m} \mathrm{D}, \mathrm{m}_{\mathrm{N}}$, a versus γ 195
117
Baffle Dimension versus Cant Angle 196
118 Cumalative Distribution versus Star Magnitude - 198Baffle Volume Criterion -- Case I Parameter Set
119 Comulative Distribution versus Star Magnitude - 199 for Case IV Parameter Set
120 Cumulative Distribution versus Star Magnitude - 200
for Case II Parameter Set
121 Cumulative Distribution versus Star Magnitude - 201
for Case III Parameter Set
122 Starmapper Optical Design Using Refractive System 204
123
On-Axis Blur Spot Diagram - Refractive Optical 205System
124 Five-Degree Off-Axis Blur Spot Diagram - 206 Refractive Optical System
125 Ten-Degree Off-Axis Blur Spot Diagram - Refractive 207Optical System
Eigure Page
126 On-Axis Slit Scan - Refractive Optical Systern 208
127 Five-Degree Off-Axis Slit Scan - Refractive 209Optical System
128 Ten-Degree Off-Axis Slit Scan - Refractive 210Optical System
129 Maximum slit Scan Value - On-Axis Refractive 211
Sys tem
130 Naximum Slit Scan Value - Five Degree Off-Axis 212Refractive System
131 Maximum Slit Scan Value - Ten-Degree Off-Axis 213Refractive System
132 Variation of Transmission of 18-inch Focal Length 215 F/6 Lens due to Vignetting by Front Lens Element
133 Schematic Starmapper Baseline Optical System 216
134
Blur Spot Diagram - Concentric Optical System 217
185 Slit Scan Concentric Optical System 218
136
Maximum Slit Scan Value - Concentric System 219
137 Starmapper Performance 221
138 Instrument Response Parameters 224
139 Visual Response Parameters 225
140 Einear Cofficient of Thermal Expansion for Corrector 226(No. 7940) and Mirror (7971)
141
Experimental Data on the Change of Index of Refraction 226of Vitreous Silica with Temperature and Wavelength
142 Schematic Sun Sensor Baseline Optical System 228
143 Detector - Reticle Baseline Configuration 232
144 Focal Plane Shutter Mechanism 238
145 Solar Detector for Shutter Device 239
146 Photorelay Cixcuit for Shutter Device 239
Figure Page
$147 \quad$ System Response in Visual Magnitudes as a Function 242 of Colon Temperature
148 Number Distribution of Stars According to Spectral 247 Class
149 Number of Cathode Photoelectrons as a Function of 248 Color Temperature
150 Response of Standard Observer as a Function of 249Color Temperature
151 Relative System Response as a Function of Color 249 Temperature
152 Flow Chart of Initial Star Identification Program 259
153 Celestial Sensor Logic System 265
154 Schematic Diagram of Data-Gathering Subsystem 266
155 Schematic Diagram of Data-Measuring Subsystem 267
156 Schematic Diagram of Timing Subsystem 269
157 Triplet Selection Criterion 270
158 Schematic Diagram of Digital Filtering Subsystem 271
159 Schematic Diagram of Up/Down Counter Subsystem 272
160 Digital Filtering Subsystem 274
161 Scan Correlation Criterion 275
162 Schematic Diagram of Central Processing Unit 276 Serving as Digital Fillering Subsystem
163 Celestial Sensor Logic - CPU Intexface 280
164 Celestial Sensor Logic System 281
165 Memory Map Estimate for the Filtering Function 282

FikECEDING FAGE BLANK NOT HLAED

LIST OF TABLES
Table Page 73
2 Linearity Analysis Results for Delta Theta - $\Delta \phi$ 75
3 Linearity Analysis Results for Delta Psi - $\Delta \psi$ 77
4 Summary of $\Delta \theta$ Attitude Deviation due to each Torque 80and the Total Torque
5 Comparison of the Effect of Different Combinations 80 of Torque with the Total Torque Effect
6 Spin Rate, Cone Angle Results 175
7 Tabulation of Parameters -- Worst Case (100% of 193 Orbital) Condition - for Minimum Volume Baffle Criterion
8 Summary Tabulation of Starmapper Parameters 202
9 Refractive Index of Fused Silica Corning Code 7940 as a 223 Function of Temperature and Wavelength
10 Storage Limitation in Terms of Stars/Scan 263
11 CDC 449 CPU Gross Characteristics 277
12 Performance Ratio for Various On-Board Digital 278 Filtering Techniques
13 Matrix of Performance Criterion - On-Board 279 Data Processing

ATTITUDE-REFERENCED RADIOMETER STUDY

VOLUME I; ATTITUDE DETERMINATION SYSTEM DESIGN
by: N. W. Tidwell, G. D. Nelson, and W. J. Lewis, Honeywell Inc.

SUMMARY

This volume presents the atitude determination system design consisting of the conceptual design of the celestial sensor system and the development of an operational data-reduction program to provide for continuous spacecraft attitude knowledge to 30 arc sec in pitch and 150 arc sec in roll and yaw. The conceptual design of the sensing system used tradeoffs and computer analysis to define sensor parameters, to determine performance, and to define mechanization that could lead to a complete set of attitude determination hardware purchase specifications for the ARRS experiment. Development of an operational data-reduction program was concerned with constructing a computer program that operates on the celestial sensor output and a complete simulation of the attitude determination system to determine the data requarements and the performance of attitude estimation for several system parameter variations. Analysis and interpretations of the study results are presented.

The requirement for contmuous attitude knowledge is defined to be the attitude of the spacecraft experiment axes at any time in orbit. With the greater part of the orbit being spent in the daylight, baffling of the star sensor becomes important to permit detection of a sufficient number of targets. In general, the better that the baffe reduces stray light, the greater the probability of detection of dim stars. However, practical limitations in baffle design to reduce stray light led to the combined ARRS attitude determination approach of (1) designing a baffle within practical volume size and stray light rejection ability, (2) using the sun as a target for updating the spacecraft attitude, and (3) providing an accurate model of the spacecraft dynamics to permit greater time spans of attitude extrapolation to maintan attitude knowledge for sparse celestial observations. The ARRS attitude determination system concept consists of a starmapper, sun sensor, and on-boaxd digital electronics which transform sensor output into target transit times. An operational constraint of 60,000 bits per orbit of on-board storage for target transit times required digital processing to discriminate transit time from noise.

The discrammated celestial data are transmitted to ground for editing, celestial target identification, and subsequent attitude estimation data processing.
Based on a contimuous one-year mission, ground data processing required that data be processed sufficiently rapid to prevent backlogging of raw data. In pursuing the ARRS attitude determination concept, Part I concentrated on (1) the accurate modeling of the spacecraft dynamics which involves modeling of environmental torques and involves modeling such that efficient numerical propogation of spacecraft state is realized, (2) the development of an operational quasi-real-tame atitude determination program and the simulation of the attitude determination system to establish design parameters and celestial data requirements, (3) the design of the celestial sensor to determine the optical transfer function, minimum baffle volume for daylight operation in
relation to the sensor aperture size, field of view, and star magnitude, and the method of onboard data processing to minimize noise data stored.

TORQUE MODELING

Five torques were modeled and investigated for effect on spacecraft attitude propogation with time. The torques modeled are due to the spacecraft residual magnetic moments, induced eddy currents, aerodynamic pressure, solar pressure, and gravity gradient. Using the five torques as a basis for the total torque enviromment, results showed that solar pressure, eddy current, and residual magnetic moment torques were required in the extrapolation model for long-term prediction of 45 minutes. Gravity gradient can be significant, depending on the spacecraft inextia distribution relative to local vertical. Accurate attitude extrapolation for 3 minutes may be obtained by including just the torques due to the eddy currents and residual magnetic moment.

Simplification of the models was desired to reduce running time on the computer. Results of torque plots showed that cyclic torques were present that appeared to have zero mean value. A time average of the torque models over the spacecraft spin pexiod is suggested. Because the torque models are functions of parameters, the parameters must be estimated by the attitude determination programs. To reduce the number of parameters estimated is to reduce the running time of the estimation program. It is advantageous, then, to use only those torques and parameters within the torque models that have a significaut effect on the attitude propagation. The state propagation accuracy required during the daylight portion is predicated on the availability of celestial observations. The torque models used must be selected on this basis.

SPACECRAFT MODEIING

The modeling of the propogation equation fox the spacecraft state incorporating the residual magnetic moment, eddy current, and gravity gradient torques was accomplished to improve the numerical evaluation speed. The equations were written in an angular momentum frame with the knowledge that the angular momentum frame is slowly moving due to small torques. The averaging of the torques by means of perturbation techniques yielded a set of "simplified equations of motion" that are accurate to 1 arc sec in 800 sec of time. This set of equations is shown to be simple functions of time (constants ramps). The solutions accuracy becomes relatively independent of step size and suggests improvement in numerical propogation of state to desired time points.

ATTITUDE DETERMINATION ALGORITHM

An attitude determination data-reduction program was developed and exercised. The data-reduction program executed 10 to 20 times faster than real time on the CDC 6600 computer using the nonsimplified equations with a 0.5 sec time stop in the integration. This is an acceptable execution time; however, further improvement is obtained using the developed "simplified equation of motion ${ }^{\prime \prime}$

The performance analysis demonstrated that three celestial targets per revolution of the spacecraft are sufficient to obtain a 10 -arc-sec attitude estimate, and two observations per revolution are sufficient to maintain the estimate. These results were obtained with only the use of the residual magnetic moment and eddy current torque being used in the algorithm.

The inertia ratio and eddy current torque parameters were estimated correctly, but the residual magnetic moment's parameter appeared to be unobservable. The lack of observatility is due to the minor effect of the torque over one revolution of the vehicle. For operation in the daylight portion of the orbit, two observations per revolution are obtanable from the sun and one star. The baffle must be capable of detecting one star per revolution of the spacecraft or, depending on the vehicle dynamic model exactness, must occasionally detect one star. Additional investigation of the occasional star detection on attitude estimation is warranted.

STARMAPPER PARAMETERS

An analysis was conducted to determine the starmapper parameters required to detect one star and two stars per revolution on the daylight portion of the orbit. The second brightest star per spacecraft scan during the sunlit orbit. over the entire celestial sphere (to account for full seasonal usage of the starmapper) has a magnitude of 3.4 (visual). This is fainter than the limiting magnitude star required to detect six stars per scan over the nighttime portion of the orbit. This is princtpally accounted for by the reduction in the scanned area of sky, related in turn to the closest, permissible angular approach of the optical axis to either the sun or the sunlit earth.

A second major consideration which relates to the magnitudes of daylight detected stars is the physical dimensioning of the light baffle. Parameter studies were predicated on a minimum baffle volume criterion. A computerautomated program was subsequently designed to select an optimum set of starmapper parameters. These are

- Baffle diameter

10 in.

- Baffle height 14 in.
- FOV 15°
- Cant angle 100° (from positive-mspin axis)
- Closest approach to bright
46° object
- Limiting nighttime magnitude 3.2 (visual)
- Limiting daytume magnitude

3. 4 (visual)

- Clear aperture
2.2 in

Use of the starmapper over less than 100% of the daytime orbit permits detection of brighter stars. The clear aperture indicated can be realized with the baseline aperture diameter of 3.18 in . and a central obscuration of 2.3 in. The 15° fov is reduced over the 20° field considered as baseline. This will permit a physically smaller sensor package.

OPTICAL TRANSEER FUNCTION

The concentric catadioptric optical system was selected for the ARRS application over a candidate refractive system principally because of the optical system providing superior image quality (blur spot symmetry) for all filled angles. The availability of the EMR 531 N miniature photomultiplier tube made packaging of the detector on the optical exis a practical matter. The concentric system is less complex, has fewer elements, has no cemented interfaces, is physically smaller, and in every other aspect is superior to the refractive optical system.

Light-gathering properties of the concentric system are superior to those of the refractive system. This is evident from the fact that an AO star of magnitude 0.0 , detected by the concentric system, is an equivalent magnitude of 1.6 for the refractive system, on axis. In addition, loss of sensitivity equivalent to 0.7 magnitude results for 10° off-axis conditions.

The ARRS optical system produces star images for all field angles having blur spot diameters of 12 arc sec at the design wavelength of $0.405 \mu, 100 \%$ of the star energy is contained within a $60-\mathrm{arc}-\mathrm{sec}$ spot diameter. In addition, the spot configuration is extremely symmetrical and, therefore, contributes negligibly to the overall star transit time error.

The optical system was evaluated for performance at low operating temperature ($-75^{\circ} \mathrm{C}$) and in vacuum. The change in blur spot diameter due to both effects is less than 5 arc sec, and is, therefore, considered as no cause for concern.

The concentric optical system is ideally suited for the sun-sensor application. Two requirements - the wide for (40°) and accuracy (10 arc sec) - are difficult requirements for conventional sun sensors to meet. The ARRS sun sensor optical system requirements are met using a two-element optical system,
having a 1.37 -in. aperture size using two V-shaped deposited silicon "slit" detectors, each 60 arc sec projected width. Use of narrow-band filters and antireflection coatings deposited on the optical elements is utilized to attenuate the incoming solar energy to the level required by the detector.

CATHODE PROTECTION

Inadvertent scanming of the sun by the optical system will result in a temperature tise of the cathode. However, the rise will not reach a level sufficient to induce degrading or damaging effects to the cathode material. A wide factor of safety exists, due a large degree to the improved semitransparent bi-alkali (N) cathode used, which permits a maximum ambient cathode temperature of $150^{\circ} \mathrm{C}$.

Operation of the photomultiplier during an inadvertent scan of the sun or a scanning of the illuminated earth will cause excessive current flow from the detector beyond the maximum operational limits. To avoid this condition, the voltage between the cathode and second dynode will be switched in polarity (grounding the dynode), which reverses the normal acceleration of electrons from the cathode. This method has the advantage that relatively low voltage is switched.

Swatching of the photomultiplier voltage does not protect the cathode from bright source exposure. However, the resultant agitation within the cathode material for the ARRS application will not increase the dark current to a level which might cause detection difficulties. The rise in dark current resulting from an inoperative starmapper scan of the illuminated earth will permit detection of fourth magntude stars immediately following the bright source portion of the scan. This condition precludes the necessity of a shutter mechanism which would have to be actuated on each scan.

The recommended cathode protection method will use a fail-apen (fail-safe) mechanical shutter (to be actuated only in the event of prolonged focused solar radiation). In addition, the photomultiplier will be switched off whenever the radiation level exceeds a pre-set level such as that occurring when the bright earth or moon is scanned by the starmapper fov.

ERROR ANALYSIS

The ability to interpolate the threshold crossing of a pulse can be accomplished to within 1 part in 13 for pulse rise and 1 part in 18 for pulse fall. The resultent 1 sigma error in determining puise center (transit time) is, therefore, 3.2 arc sec. The encoding error is assumed to be 1 arc sec. No blur spot asymmetry is contributed. The total rms error expected is about 3.5 arc sec.

CELESTIAL SENSOR LOGIC

The triplet selection criterion in conyunction with a CPU (small onboard computer) appear's to represent not only the optimum approach to on-board data processing but perhaps the only practical method. It is apparent that the triplet selection criterion, due to its smaller window, will transmit fewer noise pulses to storage by a factor of 10 . Use of a CPU on-board makes possible the processing of at least six sequential transits before deciding on the legitimacy of a pulse. This would be prohibitively complex in practice if hardwired logic were used.

INTRODUCTION

With the advent of earth orbiting spacecraft, earth resources' detection, military surveillance, and meteorology research have brought into sharp focus the need for infrared measurement research and detection techniques. An essential part of infrared measurement experimentation and detection techniques is the determination of the experiment axes attitude and in turn the experiment's line of sight at the time of the experiment measurement. In the evolution of infrared research and implementation, the growing complexity of the missions has demanded greater precision attitude determination. Many missions are presently demanding a continuous time history of the experiment's pointing direction to 1 to 30 arc seconds for periods of one year or more. To meet these requirements, long life attitude measurement instrumentation and sophisticated and efficient data reduction techmiques are being developed.

A number of significant programs were conducted that required and led to greater precision attitude determination systems. These programs include the NASA D-61 program and the Air Force Infrared Atmospheric Transmission Evaluation Program (IRATE). NASA also conducted experments on the X-15 vehicle, and most recently the suborbital Scanner probe was successfully flown. All of the above experiments required attitude determination for experiment line-of-sight referencing. In particular, the Scanner probe used a passive star mapper that emitted a pulse(s) at time of star crossing and with least squares data reduction resulted in approximately 30 are seconds attitude accuracy. This concept provided minimum moving parts and high reliability. Another program that advanced the state of the art of attitude determination using star mappers to sense celestial targets was the NASA Applications Technology Satellite (ATS - III) experimental spacecraft which carried an attitude determination system experiment that demonstrated approximately 20 arc seconds accuracy.
Programs such as the Space Precision Attatude Reference Systems (SPARS) and the Horizon Definition Study that demand greater precision attitude determination are in analytical and development stages. Of particular interest is the Horizon Definition Study, contract NAS $1-6010$, which showed that a passive attitude determmation system to give 10 arc seconds attitude history for at least one year was required. Phase A, Part II of Contract NAS 1-6010 demonstrated analytical and conceptual design feasibility of a 10 are second attitude determination system using a single star mapper and a sun mapper for daylight operation on a spin-stabilized spacecraft and a least squares reduction of star mapper transit time data for attitude. In addition to the feasibility proof, several critical design and development areas were identified in the sensing system and the software for attitude estimation that must be solved to completely specify an operational 10 arc seconds attitude determination system.

The purpose of the study described herem is to advance the technique for the design and fabrication of a precision attitude determination system which
includes a celestial sensing system and an algorithm for the estimation of spacecraft attitude for an attitude-referenced radiometer. An analytical process was used to establish the conceptual design of the attitude determination system. This process consists of determining the types of celestial sightings required to meet the specified accuracy, the onboard detection and data processing logic to minimize the data storage requirement, the sensors' optical transfer function and light shielding and developing a quasi-real-time data reduction to prevent significant backlogging of collected data.

An attitude determination algorithm was developed and exercised to establish design parameters and celestial data requirements. A transit time generator simulated the sensor's output by using a real-world model of the spacecraft enviromment and the geometric constraint to derive the transit of the celestial target. In reality, the transit output must be processed to identify the celestial body that created the transit. The simulation included a star identification update that used the estimated attitude to identify the next transit. The identified transits are then processed by the Algorithm to update the spacecraft state based on each new transit. A parameter variation study was performed to establish the sensitivities to sensor pointing direction, spacecraft dynamics parameters, initial condition errors, and daylight attitude estimation using sun transit only.

The celestial sensor design was conducted which was concerned with the analytical process of determining the sensor optics transfer function, light baffing perameters for daylight stax mapping, and determining the method of onboard data processing for minimizing noise data storage.

A sensor conceptual design parameter analysis was conducted to determine the best pointing direction of the sensor to minimize the baffle volume and to detect stars in each revolution of the vehicle. In addition, other sensor parameters were determined such as field of view, aperture size, required magnitude to be detected for 1 and 2 stars detection per revolution of the spacecraft, cant angle, and baffle dimensions. Another analytical process determined the parameters and behavior of the sensor optics for various celestial body characteristics and environmental conditions on the sensor, including the detector response. An error analysis followed using the transfer function of the sensor to establish analytically the transit time error and signal-to-noise ratio.

Several methods of onboard digital selection of data for storage were identified and tradeoffs made to determine the best method. The significant factor in the selection of the best method was noise rejection ability. Another factor was the cost of implementing the various methods. The method selected was based significantly on these factors. Initial star identification is based on the selected method of onboard digital filtering. The method of initial star identification was derived from the selected concept. A simulation was conducted to determine the performance of the initial star identification with a controlled true transit-to-noise transit time ratio. An update star identification program which is presently incorporated in the attitude determination program was developed to continue the star identification once the estimate
of the spacecraft state is converged.
In conclusion, the results of the celestial sensor parameter design analysis and the attitude determination parameter sensitivity analysis are merged to establish the over-all conclusion and recommendation for the attitude determination system.

STUDY REQUIREMENTS AND OBJECTIVES

The attitude determination system study was guided by requirements imposed on the Attitude-Referenced Radiometer Study original statement of work and NASA instructions. The basic requirements are

- A goal of 30 arc seconds attitude determination accuracy as related to an earth-based reference frame for referencing radiometric observations made to $0.03 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~ms}$ accuracy in the 14 - to $16-1$ electromagnetic spectrum.
- The spacecraft orbital parameters, spacecraft configuration, and operational characteristics are imposed as a design guideline where variations of these parameters are permissible in the analysis. These design guidem lines are detailed as follows:

1. Orbital parameters:
a. Altitude - 500 Km
b. Eccentricity - zero (circular orbit)
c. Inclination -97.38° (near-polar sun synchronous)
d. Phasing $-3: 00 \cdot \mathrm{a} . \mathrm{m}$. or 3:00 p.m.
2. Spacecraft configuration:
a. Shape - see Figure 1
b. Inertia characteristics: $\begin{aligned} I_{y} & =65 \text { slug-ft }{ }^{2} \\ I_{x} & =I_{z}(\pm 2 \%)\end{aligned}$
$1.1 \leq \frac{I_{y}}{I_{x}} \leq 1.4$

Figure 1, Spacecratt Configuration
c. Magnetic characteristics: (Based on assumed spherical model)

Moment coefficients: $M_{x}=M_{y}=M_{z}$ $M_{X}=0\left(\pm 5 \times 10^{-6}\right) f t-1 b / G$ due to preflight compensation uncertainties ΔM_{X} due to difference in sunlight and dark conditions $\quad=5 \%$ of M_{X} Eddy current coefficients: $1 . \frac{4}{=} \times 10^{-5} \mathrm{f} / \mathrm{t} / 1 \mathrm{~b} / \mathrm{sec} / \mathrm{G}^{2}$
d. Radiometer optical axis: Lies in spin plane
3. Operational characteristics
a. Spin rate: 1 to 5 revolutions per minute
b. Attitude: Spin axis nomially perpendicular to orbit plane within $\pm 5^{\circ}$. No control applied during instrument measurement period.

The goal of 30 arc sec attitude determination accuracy in an earth coordinate includes the inaccuracies attributed to spacecraft position determination. However, the Part I goal of the attitude determination study was to estimate attitude relative to an inertial frame with an accuracy of ± 15 arc sec in the spin plane and ± 100 are sec in the two planes orthogonal to the spin plane.

Spacecraft parameters previously described above, are provided as a representative set used for earth-resource missions as indicated in Contract NAS $1-6010$ studies. The following documents of NAS 1-6010 were supplied as background and reference material:

- CR-66376 - Orbital Operations and Analysis for a 15-Micron Horizon Radiance Measurement Program
- CR-66429 - Feasibility Design of an Instrument System for Measurement of Horizon Radiance in the CO_{2} Absorption Band
- CR6日382 - Conceptual Mechanization Studies for a Horizon Definition Spacecraft Attitude Control. System
- CR66432 - Horizon Definition Study Summary

The attitude determination system design study was required to establish a conceptual design comprised of a celestial body sensing element on the spacecraft and ground data reduction to obtain a spacecraft axis time history of attitude in inertial coordinates. To accomplish the study of the attitude determination system, the following detailed tasks were required:

- Using the output of the celestial sensor, development of a ground quasi real-time data reduction program to estimate the celestial sensor point direction to the specified accuracy.
- Establishment of the data requirements (i.e., the number and type of celestial sensors) to meet the stated accuracy.
- Establishment of the celestial sensor parameters such as field of view, detectivity, resolution, aperture, and baffle geometry.
- Development of the celestial sensor(s) optical transfer function and onboard data processing to meet the overall attitude accuracy. A requirement of 60,000 bits of attitude data per orbit in the development of the onboard logie was imposed.
- Development of a ground data processing program to identify the celestial body sighted and to provide the output format suitable for the attitude determination data reduction program.

ATTITUDE DETERMINATION ALGORITHM

INTRODUCTION AND OBJECTIVES

The attitude determination algorithm study was concerned with the development of an operational, quasi-real-time data reduction program for ground reduction of attitude celestial sensor(s) output to give spacecraft axes time history of attitude. The attitude determination algorithm study plan is shown in Figure 2. This plan is composed of three tasks:

1. Torque Modeling. Models of five torques were derived, programmed, and analyzed to determine the effect on the spacecraft motion. These models were applied to the real-world model and the data-reduction model. Pemissible simplications of the models were discussed for the data-reduction model. Analyses were performed to determine which torques were most significant in terms of attitude deviation and to establish methods of simplifications of the models for the datareduction algorithm.

Figure 2. Schematic of Attitude Determination Algorithm Development and Analysis Report
2. Spacecraft Modeling, Spacecraft modeling was to develop an accurate and computationally efficient computer program to give continuous time history of spacecraft state given a state at time, $t=t_{k}$, where the state at time, t_{k}, is a best estimate. This model includes the effect due to significant environmental torques. This model was programmed and an analysis performed to establish the accuracy and efficienty of generating the spacecraft state.
3. Data-Reduction System Simulation. The data-reduction system simulation was to examine the performance of quasi-real-time estimation of spacecraft state from celestial sensor transit data. Performance requirements of the attitude estimation are specified in the previous section and are the goals of this study. Mission requirements dictate that at least real-time data processing be used to prevent significant backlogging of data over a one-year period. Results of Contract NAS 1-6010 Phase A, Part II showed that data-reduction time could be significant. The proposed solution is a sequential data-xeduction algorithm which was programmed using efficient programming and computational techniques, and simulated to verify its performance in terms of the specified requirements. The simulation consists of a real-world program that generates the celestial sensor(s) output for a spacecraft that experiences five environmental torques, a star identification program to identify the celestial target, and a data-reduction program consisting of the spacecraft state time history. The real-world programs produce the output of the sensor(s) as defined by a five envirommental torque rotational dynamies and sensor constraints. This provides an appropriate representation of the actual flight data. In the case of the data reduction program, simplification of the rotational dynamics are attempted to reduce running time of the data reduction program withont loss of state propagation accuracy. The effort centered on developing the simulation to an operational status, to evaluate the performance in terms of running time and accuracy, and to establish design parameter and system performance under a wide range of parameter.

In addition to the three tasks, celestial identification techniques were investigated to identify the star that was obsexyed at time, t_{k}. To evaluate the performance of the attitude estimation technique, a simulation of the sensor(s) was required and was developed with a real-world spacecraft model and a transit time generator. The additional tasks reported in the ensuing paragraphs of the attitude determination algorithm section are the real-world simulation and star identification simulation.

Torque Modeling

With the specified spacecraft configuxation and orbit parameter as a guide, five environmental torques were derived and analyzed. "The effect of the torques due to residual magnetic moments, eddy current loss, solar pressure, aerodynamic pressure, and gravity gradient on spacecraft attitude was determined and compared for relative significance. The combined effect of the five torques was evaluated to ascextain the additive property of torque effect on attitude.

Modeling.
Residual magnetic moment: The equation for residual magnet momes torque is well known and is represented vectorially by

$$
\overrightarrow{\mathrm{T}}=\overrightarrow{\mathrm{M}} \times \overrightarrow{\mathrm{B}}
$$

where
$\overrightarrow{\mathrm{M}}$ is the spacecraft magnetic moment vector
\vec{B} is the earth's magnetic field intensity vector
Eddy current loss: Eddy current losses in the spacecraft are very \hat{c} dent on spacecraft geometry, material conductivity, spacecraft state, ar earth's magnetic field intensity. The equation of the torque must reflect dependencies such that an accurate knowledge of spacecraft torque as a if tion of time be applied to the dynamics. The torque due to the eddy curr loss for a general configuration is given in gaussian units by

$$
\overrightarrow{\mathrm{T}}=\frac{1}{c} \iiint_{\text {volume }} \vec{r} \times(\overrightarrow{\mathrm{J}} \times \overrightarrow{\mathrm{F}}) d \mathrm{~V}
$$

where
$\vec{H}=\frac{B}{\mu}$ magnetic field intensity vector
\vec{J} is the volume eddy current density (ref. 1)
C is velocrty of light in vacumm
\vec{r} is from the spacecraft center of mass to the element of volume
$\mu \equiv 1$ for aluminum
The current density for eddy currents is represented vectorially by

$$
\vec{J}=\frac{1}{2} \sigma c^{-1}(\vec{\omega} \times \vec{H}) \times \vec{r}+\nabla \phi
$$

where
σ is the static electrical conductivity
$\vec{\omega}$ is the spacecraft spin vector
ϕ is a potential which must satisfy Laplace's equation $\nabla^{2} \phi=0$

The most studied spacecraft configuration is the sphere because ϕ is a constant which simplifies the derivation of the model. Applying the above equations, Vinti (ref. 2) developed the equation for the spheze:

$$
\begin{equation*}
\vec{T}=K(\vec{\omega} \times \vec{H}) \times \vec{H} \tag{4}
\end{equation*}
$$

where
K is the constant based on spacecraft dimensions and material conductivity

For the ARRS spacecraft configuration, the geometry requires a solution for the gradient of ϕ; therefore, a closed-formed solution for torque becomes more difficult. The detailed derivation of the torque is given in Appendx A, and the equation for the torque is

$$
\begin{align*}
& T_{x}=-P_{1}\left(\omega_{x} H_{y}^{2}-\omega_{y} H_{x} H_{y}\right)-P_{2}\left(\omega_{x} H_{z}^{2}-\omega_{z} H_{x} H_{z}\right) \\
& T_{y}=P_{3}\left[\omega_{y}\left(H_{x}^{2}+H_{z}^{2}\right)-\omega_{x} H_{x} H_{y}-\omega_{z} H_{y} H_{z}\right] \tag{5}\\
& T_{z}=-P_{1}\left[\left(\omega_{z} H_{y}^{2}-\omega_{y} H_{y} H_{z}\right)\right]-P_{2}\left(\omega_{z} H_{x}^{2}-\omega_{x} H_{x} H_{z}\right)
\end{align*}
$$

where the $P^{\mathbf{1}} \mathrm{s}$ are constants based on the spacecraft dimensions and material static conductivity. The equations for the P^{\prime} 's are

$$
\begin{aligned}
& -12 \alpha^{-2} r W^{2}\left(L_{1} L-\frac{L^{2}}{2}\right) \sum_{n=1}^{\infty}\left(\frac{1}{m \pi}\right)^{3}\left[\tanh \frac{m \pi}{2 W}+\left(\frac{L}{W}\right)^{2} \tanh \frac{m \pi W}{2 L}\right] \\
& \left.-2400^{-2}+w^{4} \sum_{m=1,3,5}^{\infty}, \ldots, 2 n-1\left(\frac{1}{m d}\right)^{5}\left[\tanh \frac{m \pi L}{2 w}+\left(\frac{L}{w}\right)^{4} \tan \frac{m \pi}{2 L}\right]\right) \\
& P_{2}=\left\{-3 \sigma c^{-2} \varepsilon a d h^{2}-\frac{9}{8} \sigma c^{-2} e d h^{3}-\frac{1}{8} \sigma c^{-2} \varepsilon d^{3} h\right. \\
& +240 c^{-2} \varepsilon d^{2}\left(a h+\frac{h^{2}}{2}\right), \sum_{n=1}^{\infty}\left(\frac{1}{m \pi}\right)^{3}\left[\tanh \frac{m m}{2 d}+\left(\frac{h}{d d^{2}}\right)^{2} \tan \frac{m \pi d}{2 h}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.-48 \sigma c^{-2} \varepsilon d^{4} \sum_{n=1}^{\infty}\left(\frac{1}{m \pi}\right)^{5}\left[\tanh \frac{m \pi h}{2 d}+\left(\frac{h}{d}\right)^{4} \tan \frac{m \pi d}{2 h}\right]\right\} \\
& P_{3}=\left\{-\frac{3}{8} \sigma c^{-2} \tau W^{3} L-\frac{3}{8} \sigma c^{-2} \tau W L^{3}-\frac{9}{4} \sigma c^{-2} \tau W L\left(L_{1} L_{1}-\frac{L^{2}}{2}\right)\right. \\
& +36 \sigma_{c}^{-2} T W^{2}\left(L_{1} I,-\frac{L^{2}}{2}\left[\left(\frac{1}{m \pi}\right)^{3}\left[\tanh \frac{m \pi L}{2 W}+\left(\frac{L}{W}\right)^{2} \tanh \frac{m \pi W}{2 L}\right]\right.\right. \\
& \left.+72 \sigma c^{-2} \tau W^{4} \sum_{n=1}^{\infty}\left(\frac{1}{m \pi}\right)^{5}\left[\tanh \frac{m m}{2 W}+\left(\frac{L}{W}\right)^{4} \tan \frac{m n W}{2 L}\right]\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& \sigma=\text { Static electrical conductivity } \\
& 7=\text { Thickness of cylinder panels } \\
& \varepsilon \quad=\text { Thickness of solar panels } \\
& W=\text { Width of cylinder panels } \\
& L=\text { Length of cylinder panels } \\
& h=\text { Length of solar panels } \\
& \mathrm{d}=\text { Width of solar panels } \\
& \mathrm{m}=2 \mathrm{n}-1 \text {, where } \mathrm{n}=1,2,3, \ldots \\
& a=\frac{\sqrt{3}}{2} W \\
& L_{1}=L-L_{2}=\frac{\text { Distance from center of mass to end of cylinder }}{\text { in negative body } y-d i r e c t i o n} \\
& \text { in negative body y-direction }
\end{aligned}
$$

The eddy current model developed for the ARPS configuration considered only the losses in the skin and solar panels. Losses due to internal devices of various geometry and composition do affect the amount of the loss and the form of the model. Two problems prohibit modeling internal devices. These
problems are (1) the geometry of the devices are not known and (2) that the composition of the devices cannot be defined precisely. The objective was to determine the form of the model required to represent the loss due to the skin and compare this model to the spherical model. Coefficients derived provide a tool and a guide to the design of the spacecraft geometry and composition to minimize the eddy current losses.

Aerodynamic torque: The torque produced consists of aerodynamic pressure torque due to the spacecraft's center of mass velocity and a dissim pative torque due to the spacecraft's angular rate (see Appendix B). The torque equation including these two effects is taken from Beletskil's work (ref. 3). The torque equation developed is valid when the spacecraft's angular velocity is large compared with the rotation of the atmosphere (earth's rate approximately); the linear surface velocities due to the spin of the satellite are small compared with the spacecraft's center of mass velocity; and the angle of attack of each surface encountered is less than $\frac{\pi}{2}$. The torque equation is then given by

$$
\begin{align*}
& \overrightarrow{\mathrm{T}}=\frac{1}{2} c \rho_{a} \mathrm{~V}_{o}^{2} \int\left(\overrightarrow{\mathrm{n}} \cdot \overrightarrow{\mathrm{e}}_{\mathrm{v}}\right)\left(\stackrel{\rightharpoonup}{e}_{\mathrm{v}} \times \stackrel{\rightharpoonup}{r}_{\mathrm{s}}\right) d \mathrm{~S} \\
& S\left(\stackrel{\rightharpoonup}{n} \cdot \vec{e}_{V}>0\right) \\
& +\frac{1}{2} \operatorname{cp}_{a} V_{o}\left[\left[\left(\vec{n} \cdot\left[\vec{\omega} \times \vec{r}_{S}\right]\right\} \mid \vec{e}_{v} x \vec{r}_{S}\right)+(\vec{n} \cdot \vec{e})\left[\vec{\omega} \times \vec{r}_{S}\right] \overrightarrow{x r} r_{S}\right] \mathrm{dS} \tag{6}\\
& S\left(\stackrel{\rightharpoonup}{n} \cdot \stackrel{\rightharpoonup}{e}_{v}>0\right)
\end{align*}
$$

where

$$
\begin{aligned}
& \vec{n}=\text { Unit vector in direction of normai to surface, } d S \\
& \vec{e}_{v}=\frac{\vec{V}_{o}}{\left|\vec{V}_{o}\right|}=\begin{array}{l}
\text { Unit vector in direction of translational velocity of } \\
\text { center of mass relative to incident stream }
\end{array} \\
& \vec{r}_{s}=\text { Radius vector joining surface element center and spacecraft } \\
& \text { center of mass }
\end{aligned}
$$

The finst term of Equation (6) represents torque due to misalignment of spacecraft center of mass and center of pressures. The second term represents dissipative torque due to spacecraft spin. On examining the coefficient of each term, the torque due to center of pressure misalignment is approximately a factor of V_{0} larger than the dissipative torque coefficient when
m<<Vo. For ARRS' spacecrantin at 270-nautical-mile orbit, Vo is 2.624 $x .10^{4}$ fit sec.
 efficient of the second integrali of Equation (6) is much less than the coeffi-
 tor $V_{0}=2.624 \times 10^{4}$ at $/ \mathrm{sec}$.
Consequently, dissipative torque is a factor of 2 出 100^{-5} less than pressure torque and is; sufficiently small that the second term of Equation (6) will be neglected: Then, the aerodynamic torque equation is given by

The domain of integration is indicated by $S\left(\vec{n} \cdot \vec{e}_{\boxed{W}}>0\right)^{2}$. This means that the angle of attack of each surface element is less than $\frac{17}{2}$. The ARRS spacecraft. surfaces consist of a hexagonaE cylinder and rectangular solar panels.

The direction or the stream is in the orbit plane, and for this reason the spacecraft will presenta different surface to the stream, deperiding on the attitude of the vehicle.

Figure 3 illustrates two orientations of the spacecraft that give two different domains: for Equation (7).

Aerodynamic torque will be represented by two equations because of the different surfaces presented to the stream as shown in Figure 3: In Figure 3(b) the force along the y-axis dive to the stream is positive. Figure 3(a) illustrates that: the force along the y-axis is negative

Twos equations are required for the aerodynamic pressure torque because of the different surfaces presented to the stream velocity (see Figure 3). The derived equations are:

Figure 3. Spacecraft Shadowing
where

$$
\begin{aligned}
& \vec{v}_{i}=\frac{\sqrt{3 W^{3}}}{2} L \cos \frac{\pi}{3}(i-1) \hat{i}+\frac{W}{2}\left|L_{2}^{2}-L_{1}^{2}\right| \hat{j}-\frac{3}{2} W^{3} \sin \frac{\pi}{3}(i-1) \hat{k} \\
& \vec{n}_{i}=\cos \frac{\pi}{3}(i-1) \hat{i}-\sin \frac{\pi}{3}(i-1) \hat{k} \quad \text { for } i=1, \ldots 6 \text {. } \\
& \stackrel{\rightharpoonup}{n}=-\hat{j} \\
& \vec{n}^{\prime}=\hat{j} \\
& V_{i}^{\prime}=\frac{3}{2} W^{3}\left(L_{1}+L_{2}^{\prime}\right) \cos \frac{\pi}{3}(i-1) \hat{i}+\frac{W}{2}\left|L_{2}^{2}-L_{1}^{2}\right| \hat{j}-\frac{3}{2} W^{3}\left(L_{1}+L_{2}^{\prime}\right) \sin \frac{\pi}{3}(i-1) \hat{k} \\
& L_{2}^{\prime}=L_{2}-\frac{\left(r_{4}-r_{3}\right)\left(e_{v} \cdot \hat{j}\right)}{\sqrt{1-\left(e_{v} \cdot \hat{J}\right)^{2}}} \\
& \ddot{v}^{\prime}=L_{2} \pi r_{4}^{2}-r_{3}^{2} \dot{j} \\
& V_{E}=L_{1} \pi r_{3}^{2} \hat{j} \\
& \stackrel{v}{v}=\left[\left(r_{3}\left(r_{4}^{2}-r_{3}^{2}\right) \sin \theta\right) \hat{i}\right. \\
& +\left(L_{2} \pi r_{4}^{2}-L_{2} \pi r_{3}^{2}-L_{2} r_{3}\left(r_{4}^{2}-r_{3}^{2}\right) 1 / 2-L_{2} r_{4}^{2} \sin ^{-1}\left(\frac{r_{3}}{r_{4}}\right)\right) \hat{j} \\
& -\left(r_{3}\left(r_{4}^{2}-r_{3}^{2}\right) \cos \theta \mid \hat{k}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \sin \theta=\frac{v_{x}}{\sqrt{1-v_{y}^{2}}} \\
& \cos \theta=\frac{v_{z}}{\sqrt{1-v_{y}^{2}}}
\end{aligned}
$$

and the symbol

$$
\sum_{\left(\stackrel{\rightharpoonup}{n}_{I} \cdot \stackrel{\rightharpoonup}{e}_{V}>0\right)}
$$

means sum over the surfaces whose angle of attack is positive.
The torque equation derived above is not an exact representation of the vehicle's aerodynamic torque. Frictional or dissipative torques are small compared with pressure torques; therefore, frictional torques were neglected.

In the dexivation of pressure torque, the solar panels were assumed to be a solid disk, where is actuality six rectangular panels are the solar panels (see Figure 4).

Figure 4. Solar Panel Configuration
Torque due to the solar panels is varying with a frequency six times the spin rates as opposed to the result obtained in this analysis. The result derived in this analysis is varying relative to the body axis only, but not the magnitude of the torque. In Figure 4 the shaded area covers only part of the two solar
panels, and as the spacecraft rotates varying amounts of solar panel areas are shaded. It is for this reason that the magnitude of the solar panel torques is varying approximately six times the spin rate. The disk-shaped panels give a larger magnitude of torque but remain constant in absolute value.

Solar pressure torque model: The effect of solar pressure on the ARRS spacecraft is modeled and discussed herein. The torque equations Equations (9), (10), and (11)] are found in reference 3, pages 24 and 25.

Equations. Torque on a body due to solar pressure 15 computed from the following three formulas:

$$
\begin{align*}
& \vec{m}^{+}=\hat{T} X \int_{S_{1}} \hat{r}_{s}(\hat{n} \cdot \hat{T}) d s \tag{9}\\
& \vec{m}^{-}=2 \int_{S_{1}} \hat{n} X \vec{r}_{s}(\hat{\mathrm{n}} \cdot \hat{\tau})^{2} d s \tag{10}\\
& \overrightarrow{\mathrm{~T}}=P\left[\left(1-\varepsilon_{o}\right) \vec{m}^{+}+\varepsilon_{o} \vec{m}^{-}\right] \tag{11}
\end{align*}
$$

where
$S=$ Region of body in sunlight; ds is an area differential
$\vec{r}_{\mathrm{S}}=$ Vector from body's C. M. to $\mathrm{d} s$
$\hat{t}=$ Unit vector directed from sun
$\hat{\mathrm{n}}=$ Unit outward normal to ds
$P=$ Pressure exerted locally by sunlight
$s_{o}=$ Body's reflection coefficient
The integrations described in Equations (9) and (10) are performed over two distinct surfaces -- the solar panels and end of the spacecraft (Figure 4) and the sides of the spacecraft (Figure 5). To simplify the model, three assumptions are made:

1. That the sun never shines on the end of the spacecraft opposite the solar panels
2. That the shadow of the tips of a solar panel never strikes any part of the spacecraft.
3. That the sides of the spacecraft (i.e., not the solar panels) constitute a circular cylinder rather than a hexagonal one

Figure 5. Spacecraft in Unprimed Coordinate System
The integrations of Equations (9) and (10) over the end and solar panels are quite simple. The integrations over the sides are considerably more complicated.

Sunlight passing between two solar panels may strıke the spacecraft. If so, the integration of Equations (9) and (10) must be performed over the sunit region. The limits of integration (1.e., the lines bounding this region) are described by Equations (12), (16), (17), and (18).

Solar Panels and End: Since \hat{n} and $\hat{\tau}$ are constants on the region of Figure 4, one needs to evaluate

$$
\int_{S_{1}} \overrightarrow{\mathbf{r}}_{\mathrm{S}} \mathrm{ds}
$$

where

$$
\vec{r}_{s}=\left[\begin{array}{c}
x \\
L_{2} \\
z
\end{array}\right]
$$

and

$$
\int_{S_{1}} r_{s} d s=\int_{S_{1}}\left[\begin{array}{c}
x \\
L_{2} \\
z
\end{array}\right] d x d z
$$

Because of the symmetry of s_{1} with respect to the ${ }^{\pi_{B}}$ and z_{B} axes, one has

$$
\int_{S_{1}} x d x d z=\int_{S_{1}} z d x d z=0
$$

Also.

$$
\int_{S_{1}} L_{2} d x d z=I_{2} s
$$

where s is the area of Figure 5 .
Let

$$
\hat{\tau}=\hat{T}_{B}=\left[\begin{array}{l}
a_{0} \\
b_{0}^{0} \\
c_{0}^{0}
\end{array}\right] \text { and } \hat{n}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

${ }^{\prime}$ Then

$$
\stackrel{+}{m}=\left[\begin{array}{c}
-c_{0} b_{0} L_{2} s \\
a_{0} b_{0}^{0_{0}} L_{2} s
\end{array}\right] \text { and } \quad \vec{m}=\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right]
$$

The end opposite the solar panels: No calculation was made for this end of the spacecraft, since the sun will never shine here.

The sides of the spacecraft: All computations in this section will be done in the unprimed coordinate system of the cylndrical coordinate system. The body of the spacecraft is approximated by a circular cylinder of length L. Figure 5 shows the configuration in the unprimed coordinate system.

Figure 5 also shows the unit vectors \hat{v}_{1}, \hat{v}_{2}, and \hat{t}. The unit vector, \uparrow, is directed from the sun. This vector has the same components as ${ }^{*} \mathrm{~B}$ in body coordinates:

$$
\hat{T}=\left[\begin{array}{l}
a \\
b_{o}^{0} \\
c_{0}^{o}
\end{array}\right]
$$

One defines \hat{v}_{1} and \hat{v}_{2} to be unit vectors along two adjacent solar panel edges. The sumight by these two edges will strike the spacecraft and alter its course if $c_{0} 0$.

The problem, then, will be to find the region of integration (i. $e_{\text {* }}$, the region on the cylunder where the sunlight falls). This area will be bounded by some combination of the following lines:

- Condition A-- the circles forming the top and botiom of the cylundex
- Condition B -- the shadows formed by the adjacent edges of two solar panels
- Condition C-- the lines which border the sunlit and dark sides of the cylunder

The lines under Condition C are most easily described in the cylindrical coordinate system. (See Appendix B for description of thas system.) They are described by $\hat{\tau} \cdot \hat{\hat{h}}=0$, or

$$
\begin{gather*}
\theta=-\tan ^{-1}\left(c_{0} / a_{0}\right) \tag{12}\\
\theta=\pi-\tan ^{-1}\left(c_{0} / a_{0}\right)
\end{gather*}
$$

To achieve the description of the lines under Condition B, one must consider the projection of $\hat{\mathrm{v}}_{1}$ and $\hat{\mathrm{v}}_{2}$ onto the cylnder. In the unprimed system,

$$
\hat{v}_{1}=\hat{i} \sin 30^{\circ}+\hat{k} \cos 30^{\circ}
$$

The projection of $\hat{\mathrm{v}}_{1}$ onto the cylinder Hes in the plane which is common to \hat{v}_{1} and \hat{T}_{4} Cail this plane $P_{1} ; P_{1}$ has a non-zero normal

$$
\begin{aligned}
\overrightarrow{\mathrm{N}} & =\hat{v}_{1} X \hat{\tau} \\
& =-\hat{i} b_{0} \cos 30^{\circ}+\hat{j}\left(a_{0} \cos 30^{\circ}-c_{0} \sin 30^{\circ}\right) \div \hat{k} b_{o} \sin 30^{\circ}
\end{aligned}
$$

A point known to be on the plane is ($0,0_{3} x_{3}$), where x_{3} is the radius of the cylinder. Knowing the normal to. P_{1} and a point on P_{1} is enough to determine the plane uniquely. The equation for P_{1} is found to be

$$
\begin{equation*}
-\frac{\sqrt{3}}{2} b_{0} x+\frac{1}{2}\left(\sqrt{3} a_{o}-c_{0}\right) y+\frac{b_{o} z}{2}=r_{3} \frac{b_{0}}{2} \tag{13}
\end{equation*}
$$

In a similar manner, P_{2}, the plane which is the sun's projection of \hat{v}_{2}, has equation

$$
\begin{equation*}
-\frac{\sqrt{3}}{2} b_{0} x+\frac{1}{2}\left(\sqrt{3} a_{o}+c_{0}\right) y-\frac{b_{0}}{2} z=-r_{3} \frac{b_{0}}{2} \tag{14}
\end{equation*}
$$

The cylinder has the equation

$$
\begin{equation*}
x^{2}+z^{2}=r_{3}^{2} \tag{15}
\end{equation*}
$$

If Equations (12) and (15) are solved simultaneously, the result is a line which describes the projection of $\hat{\mathbf{v}}_{1}$ on the cylinder (at least on the sunny side of the cylınder). A similar explanation holds for the simultaneous solution of Equations (9) and (15). These results are expressed in Equations (16) and (17) in the cylindrical coordinate system.

For \hat{v}_{1}

$$
\begin{equation*}
y=r_{3} b_{o} /\left(\sqrt{3} a_{o}-c_{o}\right)(\sqrt{3} \sin \theta-\cos \theta+1) \tag{16}
\end{equation*}
$$

For $\hat{\mathrm{v}}_{2}$

$$
\begin{equation*}
y=r_{3} b_{o} /\left(-\sqrt{3} a_{o}+c_{o}\right)(\sqrt{3} \sin \theta+\cos \theta-1) \tag{17}
\end{equation*}
$$

The lines under Condition A are described by

$$
\begin{align*}
& {[\mathrm{y}=0]} \tag{18}\\
& {[\mathrm{y}=-\mathrm{L}]}
\end{align*}
$$

Equations (12), (16), (17), and (18) describe the lines on the surface of the cylinder which are candidates for the integration limits in Equations (9) and (10). Depending on the direction from which the sun is shining, different integration limits exist. They fall into six distinct categories which are shown in Figures 6 through 11.

Case I is shown in Figure 8. Both shadows run off the left edge of the sunlit part of the cyllnder before they strike the lower end of the cylinder. If $\vec{f}(y, \theta)$ is allowed to represent etther integrand in Equation (7) or (8), then

$$
\begin{equation*}
\int_{s_{1}} \overrightarrow{\mathrm{f}}(\mathrm{y}, \theta) \mathrm{ds}=\mathrm{r}_{3} \int_{\Phi_{0}}^{0} \int_{\mathrm{K}_{1} \vec{F}(\theta)}^{\mathrm{K}_{2} \mathrm{G}(\theta)} \overrightarrow{\mathrm{f}}(7, \theta) \mathrm{dyd} \theta \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{K}_{1}=\mathrm{r}_{3} \mathrm{~b}_{0} /\left(\sqrt{3} \mathrm{a}_{0}-\mathrm{c}_{0}\right) \\
& \mathrm{K}_{2}=\mathrm{r}_{3} \mathrm{~b}_{0} /\left(\sqrt{3} \mathrm{a}_{0}+\mathrm{c}_{0}\right) \\
& \mathrm{F}(\theta)=\sqrt{3} \sin \theta-\cos \theta+1
\end{aligned}
$$

and

$$
G(\theta)=\sqrt{3} \sin \theta+\cos \theta-1
$$

The other five cases are shown in Figures 7 through 11. It is assumed that the reader is viewing along the line of $\hat{\mathrm{t}}$, so that the $\hat{\mathrm{n}} \cdot \hat{\mathrm{f}}=0$ lines are the right and left visible edges of the cylinder.

Equations corresponding to Equation (19) were calculated for each case. In the six cases, the possibility that the shadow due to the end of the solar panel may strike the spacecraft was ignored. This seems a reasonable assumption. If the solar panels are never shorter than the length of the cylinder, the angle between the y-axis and \hat{r} would have to exceed 45 degrees for this to occur. This is not expected.

To find some of the preceding integration limits, it will be necessary to invert Equations (16) and (17). Their inversions are Equations (20) and (21), respectively:

$$
\begin{align*}
& \theta=\sin ^{-1}\left[\sqrt{3}\left(y / K_{1}-1\right) / 4+\sqrt{\left(3-y / K_{1}\right)\left(1+y / K_{1}\right) / 4}\right] \tag{20}\\
& \theta=\sin ^{-1}\left[\sqrt{3}\left(y / K_{2}+1\right) / 4-\sqrt{\left(3+y / K_{2}\right)\left(1-y / K_{2}\right) / 4}\right] \tag{21}
\end{align*}
$$

Figure 6. Both Shadows Intersecting Left Edge of Sunlit Area

Figure 7. Shadows Intersecting Edge of Sunlit Area and End of Spacecraft.

Figure 8. Shadows Intersecting Right Edge of Sunlit Region and End of Spacecraft

Figure 9. Both Shadows Intersecting Right Edge of Sunlit Region

Figure 10. Each Shadow Intersecting Nearest Edge of Sunilit Region

Figure 11. Both Shadows Intersecting End of Spacecraft

One must check carefully to see that θ as yielded by Equations (20) or (21) lies on the sunny half of the spacecraft as defined by the two $n \cdot T=0$ lines. If not, the correct value will be $\theta_{i}=\pi-\theta$.

Any integral expressed as a solution to one of the six cases can be written as a linear combination of some integrals of the followng general form:

$$
\begin{equation*}
\mathbf{r}_{3} \int_{\frac{\Phi}{4}}^{\Phi_{1}} \int_{-I}^{K H(\theta)} \vec{f}(y, \theta) d y d \theta=I \tag{22}
\end{equation*}
$$

where

$$
H(\theta)=d \quad 3 \sin \theta-\cos \theta+1, \text { and d can take on the value of } \pm 1
$$

and

$$
K=\left[\begin{array}{l}
K_{1} \text { if } d=1 \\
-K_{2} \text { if } d=-1
\end{array}\right]
$$

The general evaluation of $1 / r_{3}$ [Equation (22)] was performed for both functions which $f(y, \theta)$ represents. The evaluation follows

$$
\left.\bar{m}^{+}=\int_{-L}^{\hat{K H(\theta)}} \vec{S} \hat{(n} \cdot \hat{T}\right) d y d \theta
$$

For the \hat{i} - component,
$K r_{3}\left\{\frac{-d \sqrt{3}}{3} a_{o} \cos \theta\left(\sin ^{2} \theta+2\right)+\left(d c_{0} \sqrt{3}-a_{0}\right) \frac{\sin ^{3} \theta}{3}+\frac{c_{0}}{3} \cos ^{3} 0\right\}+$
$+\left.r_{3}(K+L)\left\{\begin{array}{l}a_{0} \\ 2\end{array}(\theta-\sin \theta \cdot \cos \theta)+\frac{c_{0}}{2} \sin ^{2} \theta\right\}\right|_{\Phi_{1}} ^{\Phi_{2}}$

For the \hat{j} - component,

$$
\begin{aligned}
& K^{2}\left\{-\frac{a_{0}}{3} \cos \theta\left(\sin ^{2} \theta+2\right)+\left(c_{0}-d \sqrt{3} a_{0}\right) \frac{\sin ^{3} \theta}{3}+\frac{d \sqrt{3} c_{0}}{2} \cos ^{3} \theta\right\}+ \\
& +K\left(K+L_{2}\right)\left\{\frac{d / 3 a_{0}}{2}\{\theta-\sin \theta \cos \theta)+\left(d_{\sqrt{ }} 3 c_{0}-a_{0}\right) \frac{\sin ^{2} \theta}{2}-\frac{c_{0}}{2}(\theta+\sin \theta \cos \theta)+\right. \\
& \left.-a_{0} \cos \theta+c_{0} \sin \theta\right\}-\left.L\left(\frac{L}{2}-L_{2}\right)\left(-a_{0} \cos \theta+c_{0} \sin \theta\right)\right|_{\Phi_{1}} ^{\Phi_{2}=\theta}=\theta
\end{aligned}
$$

For the \hat{k} - component,

$$
\begin{aligned}
& K x_{3}\left\{\frac{d a_{o} \sqrt{3} \sin ^{3}}{3} \theta+\left(a_{o}-d \sqrt{3} c_{o}\right) \frac{\cos ^{3} \theta}{3}-\frac{\left.\operatorname{cog}^{3} \sin \theta\left(\cos ^{2} \theta+2\right)\right\}+}{}+\right. \\
& +r_{3}\left(K+\left.L\left\{\frac{a_{0}}{2} \sin \theta+\frac{c_{0}}{2}(\theta+\sin \theta \cos \theta)\right\}\right|_{\Phi_{1}} ^{\Phi}\right.
\end{aligned}
$$

The equation

$$
\stackrel{\rightharpoonup}{m}^{-}=\int_{\bar{\Phi}_{I}}^{\bar{q}_{2}} \int_{-L}^{K H(\theta)} \hat{n} X \vec{r}_{s}(\hat{m} \cdot \hat{T})^{2} \text { dyde: }
$$

is intregrated. Given in component form, this equation is

For the \hat{i} - component,
$-K^{2}\left\{\frac{a_{0}}{5} \sin ^{5} \theta+\left(2 a_{0} c_{0}-d \sqrt{3 a_{0}}\right)\left[\frac{1}{5} \sin ^{4} \theta \cos \theta-\frac{1}{15} \cos \theta\left(\sin ^{2} \theta+2\right)\right]+\right.$
$\left.+\left(c_{o}^{2}-2 d \sqrt{3} a_{o} c_{o}\right)\left(\frac{1}{5} \sin ^{3} \theta \cos ^{2} \theta+\frac{2}{15} \sin ^{3} \theta\right)+\frac{d / 3}{5} c_{o}^{2} \cos ^{5} \theta\right\}+$
$-K\left(K+L_{2}\right)\left\{\frac{d \sqrt{3}}{4} a_{o}^{2} \sin ^{4} \theta+\frac{1}{8}\left(2 d \sqrt{3} a_{0} c_{0}-a_{o}^{2}\right)\left(\theta-\frac{1}{4} \sin _{4} \theta\right)+\right.$
$-\frac{1}{4}\left(d \sqrt{3} c_{o}^{2}-2 a_{o} c_{o}\right) \cos ^{4} \theta-c_{o}^{2}\left[\frac{1}{4} \sin \theta \cos ^{3} \theta+\frac{3}{8}(\theta+\sin \theta \cos \theta)\right]+$
$\left.+\frac{a_{0}^{2}}{3} \sin ^{3} \theta-\frac{2}{3} a_{0} c_{0} \cos ^{3} \theta+\frac{c_{0}^{2}}{3} \sin \theta\left(\cos ^{2} \theta+2\right)\right\}+L\left(\frac{L}{2}-L_{2}\right)\left[\frac{a_{o}^{2}}{3} \sin ^{3} \theta+\right.$
$\left.-\frac{2}{3} a_{0} c_{0} \cos ^{3} \theta+\frac{c_{0}^{2}}{3} \sin \theta\left(\cos ^{2} \theta+2\right)\right] \prod_{1}^{\Phi_{2}}$
For the \hat{j} - component $=0$.
For the \hat{k} - component.

$$
\begin{aligned}
& K^{2}\left\{a_{0}^{2}\left[-\frac{1}{5} \sin ^{4} \theta \cos \theta-\frac{4}{15} \cos \theta\left(\sin ^{2} \theta+2\right)\right]+\frac{1}{5}\left(2 a_{o} c_{0}-d \sqrt{3} a_{0}^{2}\right) \sin ^{5} \theta+\right. \\
& +\left(c_{0}^{2}-2 d \sqrt{3} a_{0} c_{0}\right)\left[\frac{1}{5} \sin ^{4} \theta \cos \theta-\frac{1}{15} \cos \theta\left(\sin ^{2} \theta+2\right)\right]+
\end{aligned}
$$

$$
\left.-d \sqrt{3} c_{o}^{2}\left(\frac{1}{5} \sin ^{3} \theta \cos ^{2} \theta+\frac{2}{15} \sin ^{3} \theta\right)\right\}+K\left(K+L_{2}\right)\left\{d \sqrt { 3 } a _ { 0 } ^ { 2 } \left[\frac{1}{4} \sin ^{3} \theta \cos \theta+\right.\right.
$$

$$
\left.+\frac{3}{8}(\theta-\sin \theta \cos \theta)\right]+\frac{1}{4}\left(2 d \sqrt{3} a_{o} c_{o}-a_{o}^{2}\right) \sin ^{4} \theta+\frac{1}{8}\left(d \sqrt{3} c_{o}^{2}-2 a_{o} c_{0}\right.
$$

$$
\left(\theta-\frac{1}{4} \sin 4 \theta\right)+\frac{c_{o}^{2}}{4} \cos ^{4} \theta-\frac{1}{3} a_{0}^{2} \cos \theta\left(\sin ^{2} \theta+2\right)+\frac{2}{3} a_{0} c_{0} \sin ^{3} \theta+
$$

$$
-\frac{c_{0}^{2}}{3} \cos ^{3} \theta-\left.L\left(\frac{L}{2}-I_{2}\right)\left[-\frac{a_{0}^{2}}{3} \cos \theta\left(\sin ^{2} \theta+2\right)+\frac{2}{3} a_{0} c_{0} \sin ^{3} \theta-\frac{c_{0}^{2}}{3} \cos ^{3} \theta\right]\right|_{1} ^{\Phi_{1}}
$$

This solves the problem in the unprimed system. To solve the problem for the other five V-shaped areas, one must transform $\stackrel{\rightharpoonup}{\tau}$ into the primed coordinate system

$$
\left[\begin{array}{c}
a_{0}^{1} \\
b_{0}^{\prime} \\
c_{0}^{:}
\end{array}\right]=M^{T}(i)\left[\begin{array}{l}
a_{0} \\
b_{0} \\
c_{0}
\end{array}\right], i=2,3,4,5,6
$$

After finding \vec{T}^{\prime}, the torque in the primed system, one transforms it back to body coordunates

$$
\vec{T}_{B}=M(i) \vec{T}^{i}
$$

The one remaining problem is to devise a means for determinng \hat{T}_{B} as a function of time and body orientation. The negative of $\hat{T},-\hat{T}$, lies in the ecliptic at an angle, S, from the X_{e}-axis,

where S is a measure of the time of year. On the first day of spring $S=0$. In the ecliptic frame,

$$
\hat{\tau}_{\mathrm{e}}=\left[\begin{array}{c}
-\cos \mathrm{S} \\
-\sin \mathrm{S} \\
0
\end{array}\right]
$$

Hence, in body coordinates,

$$
\tilde{T}_{B}=\left[\begin{array}{l}
a_{0} \\
b_{0} \\
c_{0}
\end{array}\right]=E(\psi, \phi, \theta) \quad G^{T}(\epsilon) \hat{T}_{e}
$$

where $G(E)$ and M(I) are defined in Appendix G.

In the computer simulations of flights, real time seldom exceeds two or three hours, and it will be assumed that S is a constant.

A computer subprogram was written to calculate solar pressure torque. The computer program is called at each time step of the numerical integration of the equations of motion of the spacecraft, and the torque at that time and place is computed. It should be emphasized that the integrations of (7) and (8) are not performed numerically but are evaluated analytically at each time step.

Gravity Gradient: The equations for the gravity gradient torque are expressed in a body-fixed axes system (principal body axes).

The torque on a rigid body due to the gravity gradient (reference 3, page. 9) is

$$
\begin{equation*}
\stackrel{\rightharpoonup}{T}_{G}=\frac{3 \mu}{R^{3}} \hat{r} \times \bar{I} \cdot \hat{r} \tag{23}
\end{equation*}
$$

assuming that the earth is spherical.
Further,

$$
\begin{aligned}
\mu & =\text { Earth's gravitational constant } \\
& =1.4082 \times 10^{16} \mathrm{ft}^{3} / \mathrm{sec}^{2} \\
\hat{\mathrm{r}} & =\text { Unit vector in durection of earth's radius vector } \\
\mathrm{R} & =\text { Distance from earth's center to body's center of mass } \\
\overline{\bar{I}} & =\text { Moment of inertia dyadic of the body }
\end{aligned}
$$

To write the body-axis components of this gravity torque, three coordinate frames are required -- an inertial frame, a local vertical frame, and a bodyfixed (principal axes) frame.

In body coordinates the equation is

$$
\left[\begin{array}{c}
T_{G x} \tag{24}\\
{ }^{T_{G y}} \\
{ }^{T_{G y}} \\
\mathrm{~T}_{\mathrm{Gz}}
\end{array}\right]=\frac{3 \mu}{\mathbb{R}^{3}}\left[\begin{array}{l}
\left(I_{z}-I_{y}\right) r_{B y} r_{B z} \\
\left(I_{x}-I_{z}\right) r_{B z} r_{B x} \\
\left(I_{y}-I_{X}\right) r_{B x} r_{B y}
\end{array}\right]
$$

and

$$
\begin{aligned}
& \hat{r}_{B}=F(\psi, \phi, \theta) F(\Omega, i, v) \hat{r}_{L} \\
& \hat{r}_{L}=[+1,0,0]
\end{aligned}
$$

where $r_{B x} r_{B y}$ and $r_{B z}$ are the direction cosine of the unit vector from the earth's center of mass to the spacepraft's center of mass in body axes.

Analysis and results. .- The analysis of torqued body motion was conducted using a digital computer. Figure 12 is a diagram of the order in which the equations are applied to arrive at the integrated equations of motion.

Computer program: The overall objective of the system of programs is to integrate the equations of motion for different cases of spacecraft configuration and different types of torques applied to the spacecraft and to compare the results of two separate cases. This comparison is accomplished by ploting (CalComp) the differences in Euler angles and torques between two different cases. Figure 13 shows the general flow of logic. Any number of cases may be examined, but all differencing is done between the first case presented in the data deck and subpequent cases.
Often a plot of actual torques rather than torque differences is desired. This is accomplished simply by making the first case in the data deck the untorqued case. The differencing is done in such a way that the actual torques (and not their negatives) will be plotted. Accompanying such a set of torque plots will be Euler angle difference plots where the plots represent differences in attitude between the torqued and untorqued bases. Examples of these plots are shown in Figures 14 and 15. In this particular example, the first case was the untorqued case and some later case in the data deck requested that the magnetic moment torque be considered in the integration.

The system of programs: The task set forth in the previous section can be dividec into four subtasks:

1. Integration of the equations of motion
2. Position and attitude determination
3. Computation of torques
4. Input and output

A main program, DRIVER, and several subprograms were written to accomplish these subtasks. Figure 16 shows both the pattern of communication between these programs and input/output.
Listed below is the name of each program and a brief description of the function of each.

- DRIVER

Reads and initializes data and programs. Performs Runge - Kutta integration. Prints results.

- TORQUE Calculates called-for torques as a function of state.

Figure 12. Logical Flow of Integration of Equations of Motion

- UNTNGL
- DPLOT
- MATMUL

Calculates the three Euler angles from the E-matrix and the previous value of

Plots the differences between two arrays of numbers.

Multiplies two matrices.

Figure 13. Logical Flow Within the System of Computer Programs

Figure 14. Example of Torque Difference Plots

Figure 15. Example of Euler Angle Difference Plots

- EIELDG FIELD
- CROSS
- DOT
- EVALI

Calculates earth's magnetic field as a function of orbit position and aftitude.

Forms the cross product of two vectors.
Forms the dot product of two vectors.
Evaluates an integnal needed for the solar pressure calculation.

Equations of motion: Differential equations of motion are wrutten in terms of a set of Euler's symmetric parameters $\left\{\alpha_{1}, \alpha_{2}, \gamma_{1}, \gamma_{2}\right\}$,

$$
\begin{aligned}
& \dot{\omega}_{x}=\left[\omega_{y} \omega_{z}(1-C)+T_{x}\right] / A \\
& \dot{\omega}_{y}=\omega_{x} \omega_{z}(C-A)+T_{y} \\
& \dot{\omega}_{z}=\left[\omega_{x} \omega_{y}(A-1)+T_{z}\right] / C \\
& \dot{\alpha}_{1}=\frac{1}{2}\left(-\omega_{z} \alpha_{2}+\omega_{y} \gamma_{1}-\omega_{x} \gamma_{2}\right) \\
& \dot{\alpha}_{2}=\frac{1}{2}\left(\omega_{z} \alpha_{1}+\omega_{x} \gamma_{1}+\omega_{y} y_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{1}=\cos \frac{\psi}{2} \cos \frac{\theta}{2} \cos \frac{\phi}{2}-\sin \frac{\psi}{2} \sin \frac{\theta}{2} \sin \frac{\phi}{2} \\
& \alpha_{2}=\sin \frac{\psi}{2} \cos \frac{\theta}{2} \cos \frac{\phi}{2}+\cos \frac{\psi}{2} \sin \frac{\theta}{2} \sin \frac{\phi}{2} \\
& \gamma_{1}=\cos \frac{\psi}{2} \sin \frac{\theta}{2} \cos \frac{\phi}{2}-\sin \frac{\psi}{2} \cos \frac{\theta}{2} \sin \frac{\phi}{2} \\
& \gamma_{2}=\cos \frac{\psi}{2} \cos \frac{\theta}{2} \sin \frac{\psi}{2}-\sin \frac{\psi}{2} \sin \frac{\theta}{2} \cos \frac{\phi}{2} \\
& \dot{\gamma}_{1}=\frac{1}{2}\left(-\omega_{1} \alpha_{1}-\omega_{x} \alpha_{2}+\omega_{z} \gamma_{2}\right) \\
& \dot{\gamma}_{2}=\frac{1}{2}\left(\omega_{x} \alpha_{1}-\omega_{y} \alpha_{2}-\omega_{z} \gamma_{2}\right)
\end{aligned}
$$

In the previous equations,

$$
\begin{aligned}
& A=I_{x} / I_{y} \\
& C=I_{z} / I_{y}
\end{aligned}
$$

and T_{X}, T_{y}, and T_{z} are the torques davided by I_{y}.
Integration of the equations of motion: The task of integrating the equations of motion was accomplished through a Runge-Kutta fourth-order algor1thm. Briefly, for a differential equation of the form

$$
\frac{d y}{d x}=f(x, y)
$$

and integration step suze Δx, one forms at the $n^{\text {th }}$ step

$$
\begin{aligned}
& \mathrm{k}_{1}=\Delta x f\left(\mathrm{x}_{\mathrm{n}}, y_{\mathrm{n}}\right) \\
& \mathrm{k}_{2}=\Delta \mathrm{x} f\left(\mathrm{x}_{\mathrm{n}}+\Delta \mathrm{x} / 2, \mathrm{y}_{\mathrm{n}}+\mathrm{k}_{1} / 2\right. \\
& \mathrm{k}_{3}=\Delta x f\left(\mathrm{x}_{\mathrm{n}}+\Delta x / 2, \mathrm{y}_{\mathrm{n}}+\mathrm{k}_{2} / 2\right) \\
& \mathrm{k}_{4}=\Delta \mathrm{xf}\left(\mathrm{x}_{\mathrm{n}}+\Delta \mathrm{x}, \mathrm{y}_{\mathrm{n}}+\mathrm{k}_{3}\right)
\end{aligned}
$$

then set

$$
y_{n+1}=y_{n}+\frac{1}{6}\left[k_{1}+2\left(k_{3}+k_{3}\right)+k_{4}\right]
$$

Solving a system of differential equations, as thus problem presents, is simply a matter of keeping a system of these calculations going simultaneously. The step size used is 0.4 second for best accuracy results. See MAS-1-6010 Report No. CR-66376, for confirmation on integration accuracy.

Figure 17. Configuration of Spacecraft Orbit, Earth, and Inertial Reference Frame

Figure 18. X_{B} and Z_{B} Axes

Coordinate systerns: There are two major coordinate systems used in this system of computer programs -- the inertial coordinate system and the body fixed coordinate system. The inertial coordinate system has 1 ts origin at the center of the earth, the X_{I} axus directed toward the Vernal Equinox, the Z_{T} axis directed toward the north pole, and the X_{Y} axis forming a sighthanded coordinate system (Figure 17). The body-fixed coordinate system has its origin at the center of mass of the spacectraft. Its axes councide with the axes of the principal moments of inertia of the spacecraft. The $Y_{B}{ }^{\text {axis }}$ is drected along the spin axis toward the solar-panel end of the spacecraft. Figure 18 shows the omentahon of the X_{B} and Z_{B} axes with respect to the solar panels.

A vector \vec{V}_{I} in inertial coordinates is given in body-fixed coordinates by a transformation $E(\psi, \phi, \theta)$, where $E(\psi, \phi, \theta)$ is defined in Appendix G.

Orbit parameters: The orbit plane of the spacecraft can be descrubed by two parameters, Ω and i. The exact position of the spacecraft in the orbit plane requires two additional parameters, v and r. The relationship of these parameters to the inertial reference frame is pictured in Appendix G.

Given information about the mitial orbit parameters, the time of day of launch, the earthrs turning rate, and the spacecraft's orbit rate, latitude and longitude can be calculated as a function of time. These calculations are shown in Figure 12.

Euler's symmetric parameters (See Reference 5): Differential equation of motion are written in terms of $\alpha_{1}, \alpha_{2}, \gamma_{1}$, and γ_{2} instead of ψ, ϕ, and θ. The inverse of this operation is done by equating $\mathrm{E}(\Psi, \phi, \theta)$ to $\mathrm{E}\left(\alpha_{1}, \alpha_{2}, \gamma_{1}, \gamma_{2}\right)$. This yields nine relations in the three unknowns ψ, ϕ, and θ. The resultant system of equations fanls to bave a unique solution, However, in integrating the equations of motion, the solution at the previous time step is known. Given this information, the correct solution among the family of possible solutions may be uniquely chosen.

Results and discussion of results: The sequence of presentation of the torque model analysis resulis and discussion is residual magnetic moment, eddy current loss, solar pressure, aerodynamic pressure, and gravity gradient. The previous paragraphs detailed the computer program and the manner in which it was used for the analysis, In all cases of the analysis, the integration step size used was 0.4 second. The program output was limited to approximately 1000 data points per smulation run. Consequently, the output sampling period depended on the length of the run. For this reason, torque plots oceasionally possess gaps because peak points were mussed.

However, the magnituce of the torque is plotted which does not contain this effect.

A simulation of each torque is presented and discussed. In conclusion, several simulations were made to demonstrate the additive property of adding torque individually to the equation of motion.

Residual magnetic moment: The residual magnet moment torque model was programmed, and a short-term simulation of one spin period and a longterm simulation of one orbit was generated for the following values of the moments:

$$
M_{x}=M_{y}=M_{z}=5.170856 \times 10^{-6} \mathrm{ft}-1 \mathrm{~b} / \mathrm{G}
$$

This value of the moment is representative of moment values experienced on the Tiros spacecrafts. Figure 19 demonstrates the value of the $\mathrm{T}_{\mathrm{x}}, \mathrm{T}_{\mathrm{y}}$, and $|\vec{T}|$ as a function of time sampled once per 4.8 seconds. The peaks of the envelope in all three of the torque plots represent the South and North Pole of the earth, respectively. At these points the magnetic field vector is greatest in the orbit plane. The y-component of torque is cyche with a period of 20 seconds and mean value of zero. The y-component of torque is a function of B_{X}, M_{z}, M_{X}, and B_{z}, where M_{x} and M_{z} are constants and B_{x} and B_{z} are cyclic with a 20 -second period due to the spacecraft spin. The x-component is also cyclic, with a period of 20 seconds and with the mean varying somewhat with position in orbit. The mean of the T_{x} torque is nonzero because of the $\left(\mathbb{M}_{z} B_{y}\right)$ term. The cyclic portion is due to the $M_{y} B_{z}$ term. The peak of the total torque is $4.5 \times 10^{-6} \mathrm{ft}-\mathrm{ib}$. Intial condtions were chosen such that a cone angle of 0.61° was obtained and the prmenpal y-axis of the body was misaligned to the orbit normal by approximately 7.5°. The orbit parameters were chosen with the true anomaly at the equator and a south heading. The right ascension represents a $3 \mathrm{a} . \mathrm{m}$. or $3 \mathrm{p} . \mathrm{m}$. launch condition, and the inclination gives the sun synchronous retrograde orbit. A correlation of the attitude deviation with the torque can be made by observing both Figure 19 and 20. Notice that the cyclic nature of the torque does not create a cyclic variation in $\Delta \theta$. Although $\Delta \phi$ and $\Delta \psi$ have cyclic variation, the extent of the variation is insignificant over the full orbit -- approximately 1 are sec variation of $\Delta \phi$ at 5702.4 seconds. This suggests that short-term variation with a period of 20 seconds and mean of zero can be deleted from the torque model. Thus, the y-component is a candidate for deletion in the algorithm equations of motion.

Noting the general effect of the residual magnetic moment torque on the spacecraft attitude, the pitch, $\Delta \theta$, has deviated 87.5 arc sec at 5702.4 seconds in time and $\Delta \psi$ is completely oscillatory about a mean of 8.5 arc sec. Also, $\Delta \psi$ is oscillatory but on a ramp with average drift of 35 arc sec at 5702.4 seconds in time.

Figures 21 and 22 demonstrate the residual magnetic moment torque and attitude effect over the first spin cycle. The initial conditions are the same as the long simulation run.

Figure 19. Torque on Spacecraft Due to Residual Magnetic Moments

Figure 20. Attitude Deviation of Spacecraft due to Residual Magnetic Moment Torque Relative to an Untorqued Spaceeraft

Figure 21. Torque on Spacecraft Due to Residual
Magnetic Moments

Figure 22. Attitude Deviation of Spacecraft Due to Residual Magnetic Moment Torque Relative to an Untorqued Spacecraft

Figure 23. ARRS Eddy Current Torque on Half Orbit

Eddy current loss torque: The analysis of the eddy current loss effect consisted of comparison of the spherical model effect with the ARRS configuration model and effect of torque over one orbit period. Initially, the three coefficients for the ARRS model were evaluated using the baseline dimensions of the vehicle and static conductivity of aluminum at $20^{\circ} \mathrm{C}$. The quantities used are

$$
\begin{array}{rlrl}
\tau & =0.0254 \mathrm{~cm} & \mathrm{~h} & =111.8 \mathrm{~cm} \\
\varepsilon & =0.0254 \mathrm{~cm} & \mathrm{~d} & =55.9 \mathrm{~cm} \\
\mathrm{~W} & =55.9 \mathrm{~cm} & \mathrm{~L}_{2} & =43.1 \mathrm{~cm} \\
\mathrm{~L} & =101.1 \mathrm{~cm} & \sigma \mathrm{C}^{-2} & =2.83 \times 10^{-11} \frac{\mathrm{sec}^{2}}{\mathrm{ohm}-\mathrm{cm}^{3}}
\end{array}
$$

The results of the evaluation are

$$
\left.\begin{array}{l}
P_{1}=2.075 \times 10^{-6} \frac{\mathrm{ft}-\mathrm{lb}-\mathrm{sec}}{\mathrm{G}^{2}} \\
P_{2}=-7.20 \times 10^{-5} \frac{\mathrm{ft}-\mathrm{lb}-\mathrm{sec}}{\mathrm{G}^{2}} \\
P_{3}=-6.226 \times 10^{-6} \frac{\mathrm{ft}-\mathrm{lb}-\mathrm{sec}}{\mathrm{G}^{2}}
\end{array}\right\} \text { ARRS model coefficients }
$$

Figure 23 is a plot of the ARRS configuration eddy current torque using the evaluated coefficients for a one half orbit simulation. The y-component of the torque does not possess cyclic variation at the spin rate. However, the z-component does exhibit variation of torque at the spin frequency and the precession frequency. The spin vector precession frequency is present because the equation contains two coefficients that are different, mainly because P_{2} is greater than P_{1}. From Equation (5), the term $\left[-P_{2}\left(\omega_{z} H_{x}{ }^{2}-\omega_{x} H_{x} H_{z}\right)\right]$ modulates at the precession frequency and dominates the term $\left[-\mathrm{P}_{1}\left(\omega_{z} \mathrm{H}_{\mathrm{z}}{ }^{2}-\omega_{y} \mathrm{H}_{\mathrm{y}} \mathrm{H}_{\mathrm{z}}\right)\right]$, and H_{x} and H_{z} modulate at the spin frequency. Correlation of the effect of the torques on the attitude can be made by comparing Figures 24 and 25. The attitude deviation, $\Delta \theta$, doès not possess a cyclic variation, but $\Delta \psi$ and $\Delta \phi$ possess a cyclic variation at the spin frequency. Only at 2700 seconds does the precession frequency variation become perceptible. The deviation in θ at 2700 seconds is 3500 arc sec and $\Delta \Psi$ and $\Delta \phi$ have a peak-to-peak of 37.5 arc sec .

Comparison of the two eddy current models was made using the following coefficients:

$$
\mathrm{K}=0.25 \times 10^{-5} \frac{\mathrm{ft}-\mathrm{lb}-\mathrm{sec}}{\mathrm{G}^{2}}
$$

Figure 24. Attitude Deviation Due to ARRS Eddy Current
Torque Relative to an Untorqued Spacecraft

Figure 25. Comparison of "Hat" Configuration -- Eddy Current Model to Spherical Eddy Current

Figure 26. Torque on a Spherical Spacecraft Due to Eday Current Losses

$$
\begin{aligned}
& P_{1}=0.86 \times 10^{-6} \frac{\mathrm{ft}-1 \mathrm{~b}-\mathrm{sec}}{\mathrm{G}^{2}} \\
& \mathrm{P}_{2} \doteq-0.3 \times 10^{-4} \frac{\mathrm{ft}-1 \mathrm{~b}-\mathrm{sec}}{\mathrm{G}^{2}} \\
& \mathrm{P}_{3}=-0.25 \times 10^{-5} \frac{\mathrm{ft}-1 \mathrm{~b}-\mathrm{sec}}{\mathrm{G}^{2}}
\end{aligned}
$$

The coefficient for the y-component torque is made equal where P_{1} and P_{2} are scaled according to the ratios of the evaluated coefficients. Figure 25 is a plot of the Δ (Δ attitude) due to the different effect of the two models. The result for $\Delta(\Delta \theta)$ at 2700 seconds is 1.4 seconds, and $\Delta(\Delta \phi)$ and $\Delta(\Delta \psi)$ are about 0.4 second peak-to-peak at 2700 seconds. For the given values of the coefficients, the differences suggest that the spherical model is adequate for the data-reduction algorithm.

The simulation results for the spherical model over 4752 seconds are illustrated in Figures 26 and 27 . The loss constant used in the se results is

$$
0.25 \times 10^{-5} \frac{\mathrm{ft}-1 \mathrm{~b}-\mathrm{sec}}{\mathrm{G}^{2}}
$$

In conclusion, the ARRS model representation must be retained in the realworld simulation. The spherical model proves adequate for use in the datareduction algorithm.

Solar pressure torque: The analysis of the solar pressure torque consisted of a half-orbit simulation and a shorit-term simulation. As a result of these simulations, it was necessary to modify the solar pressure torque computer program to improve the running time. The results of the long-term and short-term simulation are presented in Figures 28, 29, 30, and 31. The torque plot in Figure 28 shows that T_{x} and T_{y} are cyclic and remain periodic throughout the 2700-second simulation. The constant total torque is expected because the sun direction relative to the spacecraft is approximately constant in direction over the one-half orbit simulation. Correlation of the effect on attitude with the torque is made by observing Figures 28 and 29 . The difference in $\Delta \theta$ relative to an untorqued vehicle at 2700 seconds is $+100 \mathrm{arc} \sec$. The torque and $\Delta \phi$ difference does not possess the cyclic nature of the torques but $\Delta \Psi$ exhibits a peak-to-peak of 1.25 arc sec at the spin frequency at 2700 seconds of time. The results show that the cyclic torque can essentially be replaced by the mean of the torque over the spin period.

Displaying the solar pressure torque and difference in attitude for 300 seconds reveals the details of the torque and attitude differences. The cyclic effect is seen now in all three of the attitude differences, but most promounced in $\Delta \Psi$. Time average of the torque over the spin period on further observation is possible. The magnitude of the solar pressure torque is essentially constant over the simulation time of both cases.

Figure 27. Attitude Deviation in the Spherical Spacecraft Due to Eddy Current Losses Relative to an Untorqued Spacecraft

Figure 28. Torque on Spacecraft Due to Solar Pressure

Figure 29. Attitude Deviation Due to Solar Pressure

Figure 30. Torque Resulting From Solar Pressure Effect on Spacecraft

Figure 31. Attitude Deviation of the Spacecraft Due to Solar Pressure Effect Relative to an Untonculled Snaceciraft

The computer program of the solar pressure torque was found to be very slow. This slowness of execution is due to integration over the spacecraft cylinder, to account for the shadowing, and is required for each integration step. Three approaches to remedy the execution time were considered; (1) remove the effect of cylinder torque and consider only torque due to solar panels; (2) compute and store torque due to the spacecraft cylinder for one or two spin periods; and (3) compute torque due to solay panels normally and add cylinder torque based on the store of torque data for all subsequent spin periods.

Approach 1 was tried unsuccessfully; approach 2 was successful, as shown in Figure 32.

Comparing the results in Figures 29 and 32 , the attitude difference for the modified solar pressure torque at 2700 seconds is

$$
\begin{aligned}
\Delta \theta=+97.2 \text { arc sec } \\
\Delta \theta=+74.0 \text { are sec } \\
\Delta \Psi=+10.0 \text { arc sec with a } 1.25 \\
\quad \text { arc sec variation }
\end{aligned}
$$

and the correct model gives

$$
\begin{aligned}
\Delta \theta & =+100 \text { arc sec } \\
\Delta \phi= & +67.5 \text { arc sec } \\
\Delta \psi & =+9.0 \text { arc sec with a } 1.25 \\
& \text { arc sec variation at } \\
& \text { the spin frequency }
\end{aligned}
$$

Based on these results, the modified solar pressure will be used in the realworld simulation.

Aerodynamic pressure torque: The analysis of the aerodynamic solar pressure consisted of a one-orbit and 20 -second simulation to determine the effect on the atitude relative to an untorqued vehiele. Figures 34 and 35 are the plots, of the results. In Figure 33 , the y-component, of torque is zero; the x-component is oyclic at spin frequency, and possesses two nulls in one orbit. The y-component torque is zero because the vehicle is symmetric about the spin axis, causing the center of pressure moment about y to be zero. Twe nulis occur because the vehicle is inertiany fixed and angle of attack of the body y axis passes. through zero twice due to the orbit motion. Figure 34 substantiates that the angle of attack changes direction relative tothe aerodynamic stream velocity, because the $\Delta \theta$ difference is initially retarded and then is aided. This demonstrates that the attitude deviation due to aerodynamic pressure whit remain bounded for a greater elapsed time than the deviation due to the other torques.

Figures 35 and 36 illustrate the results of the 20 -second simulation. Based on these results, it is recommended that this torcue be used in the real-world simulation, but not the datamreduetion. algorithm.

Figure 32. Attitude Deviation Resulting From Modified Solar Pressure

Figure 33. Torque on a Spacecraft Due to Aenodynamic Pressure Relative to an Untorqued Spacecraft, One-orbit Simulation

Figure 34. Attitude Deviation of Spacecraft Due to
Aerodynamic Pressure Relative to an
Untorqued Spacecraft, One-orbit Simulation

Figure 35. Torque on Spacecraft due to Aerodynamic Pressure, 20-Second Simulation

Figure 36. Attitude Deviation of Spacecraft Due to Aerodynamic Pressure Relative to an Untorqued Spacecraft, 20-Second Simulation

Gravity gradient torque: Two computer runs were made over an interval of about one third of an orbit (30 minutes). Of the two runs; two different sets of initial conditions were used. Since the torque, is very dependent on spacecraft attitude, a worst-case attitude orientation of the spin vector (5°), relative to the orbit normal was usedias initial conditions.

Figures 37 and 38 present the results of a run where spacecraft spin attitude: is about 0.5° from the orbit normal. The long-term effect of the torque despins the vehicle, causing three arc sec deviation in the angle, θ, at 1800 seconds time lapse. Theta is the angle generated by the spin of the spacecraft and is the major attitude error contributor to the tangent height error.
Figures 39 and 40 present the results of another third of an orbit time fun where the initial conditions place the spin axes of the spacecraft, about 5° from the orbit normal. At 1800 seconds time lapse, the at devation is 12. 5 . arc sec. The $\Delta \theta$ variation over a spin period is about 1.5 arc sec at 1900 seconds. Figure 40 also plots the torque for T_{x} and T_{z} (y -axis. is the spin axis) and $|\vec{T}|$. The torque is zero twice per orbit because the vehicle is inertially stabilized. This causes the angle between spaceeraft local vertical and the principal y-axis to pass through 90° twice due to motion in the orbit. Comparing the results, Figures 37 and 39 -show that the gravity gradient torque' is very sensitive to the initial conditions. The maximum value of the torque in Figure 40 is about twice that in Figure 37, with the initial condition differ: ence of about 5°.
For the given intial conditions, the results of the gravity gradient sumulation indicate that for long-term attitude prediction of half orbit the gravity gradient must be included. However, for shorter periods (20 to 50 seconds of prediction) the torque can be deleted from the data reduction algorithm. For the first set of initial conditions, attitude prediction can be accurate to 3 arc sec over 1800 seconds of time when the gravity gradient torque is deleted.

Correlation of Figures 37 and 40 show that the cyclic torque at the spin fre quency is attenuated significantly. At 3400 seconds the peak-to-peak variation is 2.5 arc sec in $\Delta \theta$, and 10 arc sec in $\Delta \phi$ and $\Delta \psi$. A time average of the torque over one spin period can be made to simplify the torque equation.

Torque model linearity analysis: An analysis was conducted to show that each of the five torques affects the spacecraft attitude lunearly. The analysis consisted of computing the attitude deviation due to the individual torques relative to an untorqued spacecraft, computing the attitude deviation due to the combined torques relative to an untorqued spacecraft, and summing the individual attitude deviations to compare with the combined attitude deviation. The results of the analysis are presented in Tables 1, 2, and 3. The initial. conditions used for the analysis are

$$
\begin{aligned}
\Omega & =0.79 \mathrm{rad} \\
i & =1.70 \mathrm{rad} \\
\nu & =3.2690 \mathrm{rad} \\
y & =0.87 \mathrm{rad} \\
\theta & =3.14 \mathrm{rad} \\
\phi & =3.27 \mathrm{rad}
\end{aligned}
$$

$$
\begin{aligned}
I_{x} & =I_{z}=56.68 \mathrm{slng}-\mathrm{ft}^{2} \\
I_{y} & =65.62 \mathrm{slug}-\mathrm{ft}^{2} \\
\omega_{x} & =0.003674 \mathrm{rad} / \mathrm{sec} \\
-\omega_{y} & =0.314159 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Figure 37. Torque due to Gravity Gradient Effect on Spacecraft

Figure 38. Attitude Deviation of Spacecraft Due to Gravity Gradient Relative to an Untorqued Spacecraft

Figure 39. Torque on Spacecraft Due to Gravity Gradient

Figure 40. Attitude Deviation of Spacecraft Due to Gravity Gradient Relative to an Untorqued Spacecratt

号								
\because								
1.8.						-		
2.0.	2menz 0	${ }_{\text {a }}^{\text {a }}$. 5 S600088-02	-.70068988 01	-	-3121908 01	
2.8	998 01		.4tosesis 00				-20035	
${ }^{3} \mathrm{3}, 5$	128					-9,911088 01	-	
4.0	-		.11285098		-12023588 ${ }^{\text {a }}$	- 10273	\cdots	
\%.0.	\cdots		.12388e			-192231380802	-1,	
5.8.	-.3012727 01		2.20812	-135321	-.23512988 ${ }^{\text {a }}$	${ }^{-29373288}$		
$\stackrel{0.8}{7.0}$	-.70117108 01	. 4 S53m	(2500393					
$\stackrel{7}{7.8}$	-							
8.0		.207072	-		${ }^{-5} 583$	-62100	-	
0.0		-18	.6520186	- 180438	\cdots	-	--Wescole 02	
0.8.8	-.0935098		. 583010	.2038	${ }_{\text {a }}$	-.2039308		
10.5	-100023858		.800409		-1107	-114	-1219388898	
11.5	$\bigcirc 11717378$, Sstaoze	.11841	-1138090	-15060	-1.143510	
122,	-1230228	-.,5szarat	. ${ }^{\text {a }}$	-1187	-.1307	\cdots	1738	
13,0	-1385s508	-	. 11037312		-12917	-1203n	-120988 ${ }^{\text {a }}$	
18.0.0	-14800980	-283	.12128	.13292	-22132	-22700	-2238	
cis. 12.5	-14125098	-8	. 1120258		${ }_{2}$	-28084	-28689	
28.5 18.0 1.0	-	-	. 11.12355	. 12072	-231	--22001	${ }^{-2021212803}$	
12.5	-1017sser	-350mam	.100s50	.130312	-.sas	- 31242		
27,	-1689	-2722	. 108	. 120	-	- 3	-.360	
	\%	-317noss	.12093	.13501			-4734388 03	
12.8	-177275	7388	.22113	14466	103529	-4583	-.4584s18 03	
${ }^{12.0}$	-,7estern	-3020200	${ }^{2} 22385080$.1280	- 417212	- 4.258	-. 32	
	-1.180738	-6asasos	.24685038	, 1.1583912	-.tasease	${ }^{-.50980}$		
22.0	-10202020	-323	${ }^{2} 2735850$. 103235858	-6,63535	-63208		
${ }_{22}^{22.0}$,r20	.2203s5ry	11282	-232	-.746		
			.314008					
${ }_{2}^{23.5}$	$\therefore 2$		\%s7					
cin 2.0	${ }_{-}^{-12235950}$	-25	, 3321	.1207		-2,29393	-0320	
25.0.	-293586e		.38023	${ }^{2} 2023$	-12005se	-2033	-20ess	
		$\therefore 8$ \%13501	4.138288	127		-1200	-100	
2n,	$\stackrel{-2,4293731}{ }$	\cdots		${ }_{\text {d }}^{12120}$	-.115	-119		
37.8.	-28	-252334						
22a.5	$\stackrel{-2}{ }$	-2350189	\%1800	.174	-1		-13	
${ }^{20.0} 20.5$		-5s		${ }_{\text {d }}^{12000}$	-14	-138	\cdots	
30.0	-2		. 5	.1203	-	-180e	-188	
3n.0	-.220570		.6822	-12es	${ }_{-1}^{1653}$	-1.185	- 1 ser	
32.0	2927	- -3.50202585	. 2072788	.120985	${ }_{-1}$	${ }^{-12898}$	-12098	
	-2020 28	, 1025558		.10848785		-1790508	-170098	
33.	$\stackrel{-304235585}{ }$	\%						
ar. 3.5	\%ome	229135		.188			-200637	
35.6	T 113		.76	.810	${ }^{-212453}$	- 21.10172888	-212090	
35.0	\%			. 1201		${ }^{-2212318}$	-223	
${ }_{3}^{33,0} 3$,	.1600038E	.erasess	.	-230	\%	-2340	
30.	-.381718		${ }^{\text {cessa }}$	\%372	${ }_{-2829}$		-2273	
38,		-230	,0014189		-203	-260	$\stackrel{-2813}{-2602}$	
33.3	- Scenorese			. 13380	-273	-	\%	
${ }^{20.0} 8$. 280717					-.2729	
			.101044				${ }^{-2} 2280$	
2i.e			.102	120			-3	
cis.	-.4003837	(1218687	.11	13211000	-.13125s5		- 312315972	
${ }_{4}^{48.5}$	- 41081858	(1290388	.11	.127				
			.11				-1332938	

						$\begin{aligned} & \text { 各各 } \\ & \text { or } \\ & \text { 品品 } \end{aligned}$		
． 0	． $0000000 \mathrm{E}-80$	．0000000E－s0	．00000002－80	．0000000E－	0000008－00	． $000000 \mathrm{E}-80$	．0000008－80	．000000E－80
． 5	－．4307795E 00	． 1571730 E 00	．4302730E－01	． $05804322-01$	－．2089010E－02	－． 245864 E 00	－ 146900 E 00	． $365211 \mathrm{E}-04$
1.0	－．76482202 00	．1878250E 00	．8968672E－01	． 1104070 E 00	－．4592325E－02	－．381495E 00	－．381035E 00	． $139619 \mathrm{E}-03$
1.5	－．1092383E 01	． 1351465800	． 3059074 E 00	． 22229209 E 00	1060644E－01	－．408602E 00	－． 108001 E 00	． $2992348-03$
2.0	－－1497020E 01	． 3415309 E 00	． 463418480^{00}	．65639512 00	$391801 \mathrm{E}-03$	－，359363E－01	－． $364650 \mathrm{E}-01$	． $529611 \mathrm{E}-03$
2.5	$-1876209 \mathrm{E} 01$	． 4961463800	． 47201160^{00}	．9188722E 00	－．S172437E－01	－．4096318－01	17443E－01	1672E－03
3.0	－．20982368 01	． 22222541800	． 5752846800	． 7732072 E 00	．2010902\％－01	－． 507381 E 00	S085262 00	145008－02
3.5	－． 2348150 E 01	． $6622458 \mathrm{E}-01$	．8202103E 00	．95727708 00	． 1067150 E 00	－．397732E 00	Y90238E 00.	50599E－02
4.0	$-.2714850 \mathrm{E} 01$	． 4505166800	． 9103870 E 00	． 1751041801	－． $6262790 \mathrm{E}-01$	$-.343468 \mathrm{E} 00$	341412E 00	．205560E－02
4.5	－． 2975121801	．4700367E 00	． 0123004 E 00	． 20037418018	－． 1428457800	． 272601800	TSE 00	． $262581 \mathrm{E}-02$
5．0	－．3049509E 01	－． 1155171800	－1075512E o1	． 1657590801	． 1473809 E 00	－．284632E 00	－．287844E 00	． $321123 \mathrm{E}-02$
5.5	－． 3223718 E 01	$-.1761912 \mathrm{E} 00$	． 1311925 E 01	． 2109052 E 01	．2017840E 00	．223433E 00	．219075E 00	． 3758578 －02
6.0	－． 3496130 E 01	． 3624137 E 00	． 1348631 E 01	． $3183762 E^{01}$	－，2436844E 00	． 1154998 E 01	． 115029 E or	－470189E－02
6.5	－． 3586321801	． $1170681 \mathrm{E}^{0} 0$	． 1308293 E 01	． 3244446 E 01	－． 2150961800	． 927780 E 00	． 922136 E 00	． 5643548 －02
7.0	－．3482746E 01	－． 7531609800	． 1583434 E 01	． 2718157801	．4425762E 00	． $5082598{ }^{\text {c }} 00$	． 3019350 00	． $632079 \mathrm{E}-02$
7.5	－．3580793E 01	－． 5415927 E 00	．1787529E 01	． 3601505801	．2245593E 00	． 149121801	． 143413801	． $708103 \mathrm{E}-02$
8.0	－． 3711034 E 01	．6750352E－01	． 17850935 01	． 4825229 E 01	－． 5747355800	．239206E 01	．233350E 01	．853743E－02
8.5	－．35017128 01	－．5510424E 00	－1837677E 01	． 4528612 ER 01	$-.1603723 \mathrm{E} 01$	．205326E 01	．2043372 01	． $989184 \mathrm{E}-02$
9.0	－．331583418 01	－．1493367E 01	． 20882578 E 01	． 40264908201	． $\mathrm{B336009E} 00$	． 213816 E 01	．2127708 ol	． $104523 \mathrm{E}-01$
9.5	－． 3322441801	－，9623151E 00	． 2250625 E 01	． 3338854 E or	． $6300892 \mathrm{E}-01$	． 3367798 ol	． 335637801	． $114158 \mathrm{E}-01$
10.0	-.3268244 E 01	－．3900800E 00	． 22225132 E 01	． 6526961801	－．1046073E 01	．4037208 01	． 402352 E or	－ $136728 \mathrm{E}-01$
10.5	－． 2019751801	\cdots－ 1485759 E 01	． 23170901201	． 5746471801	． 1372124800	． $381616 \mathrm{E}^{\text {of }}$	． 380073801	． 1543118 －01
11.0	-.2484973 E ot	－．2272483E 01	． 2584691801	． 5463982 E or	． 1280730 E 01	－457p958 01	．456043E 01	－15518sE－01
11.5	－． 23995658 ol	-.1375734 E o1	． 2700125 E o1	． 7202866 E o1	－ 4111260800	． 572257801	． 5705708 or	． $168664 \mathrm{E}^{-01}$
12.0	－．21873908 01	－，2000095E or	． 2671767801	．8132858E or	－．1594833E 01	． 608430 E 01	． 609307801	． $2032838-01$
12.5	－． 155888650^{01}	$-2489541 \mathrm{E} 01$	． $2014473 \mathrm{E}^{0} 01$	． 6874060 E 01	． 7855963880	．642573E 01	． 0403688 or	．220505E－01
13.0	$-.9906921 \mathrm{E} 00$	$\rightarrow 2975446 \mathrm{E} 01$	． 3072468 E 01	．69648818 01	． 1048359 E ． 01	． 7719558 01	． $769825 E$ or	．212965E－01
13.5	－．8181090E 00	－． 1729719 E 01	． 3159173 E 01	．9057629E 01	－． 1316124 E 01	．335285E 01	．832939E 01	． $2346518-01$
14.0	－．30555508 00	$\rightarrow .1719003 \mathrm{E} 01$	． 3125337 E o1	． 049139 EE 01	$-2027398 \mathrm{E} 01$	．856387E 01	．853516E 01	．287063E－01
${ }^{14.5}$	． $4432876 \mathrm{E}^{00}$	－． 3507100 E 01	． 3309556 E 01	． 7842308 E 01	． 1812041801	． 990010 E 01	． 9870658 01	． $295421 \mathrm{E}-01$
15.0	． 1110292 E of	－． 3502129 E or	． 35538809 E or	． 8486638 E 01	． 1726316801	． $113450 \mathrm{E}^{02}$	． 1131758802	． $275431 \mathrm{E}-01$
15.5	． 1358936 Em 01	$\rightarrow .1987069 \mathrm{E} 01$	． 3614054 E 01	． 1075945802	－． 2719185801	． 110262 E 02	． 109048 E 02	． $314132 \mathrm{E}-01$
16.0	． 2134285 E 01	$-.2596407 \mathrm{E} 01$	．3593306E 01	． 1035390 E 02	－． 1810246 E 01	． 116790 E 02	． 116414802	． $384810 \mathrm{E}-01$
${ }^{16.5}$	． 29839450 E 01	－．4401695E 01	． 3800158 E ol	．86119018 01	． 31731780 E 01	． $141670 \mathrm{E}^{02}$	． 141206 E 02	． $3737418-01$
17.	． $3700237 E$ ol	－，377 1235E 01	－40332342 01	． 2863665821	． 1245014801	． 150769802	．150428E 02	． $3408078-01$
17.5	． 4012043801	－． 21286488 E 01	．40732408 01	． 1216889 E 02	－．4688276E 01	－ 1353590 E 02	． 134047 E 02	． 4118288 －01
18.	or	－．3453664E 01	－10719638 of	1077969E 02	$-.0078937 \mathrm{E} 00$	02	4719E 02	． $496115 \mathrm{E}-01$
18.	． 5904074 E 01	－．5065765E 01	． 42858861201	．0162257E 01	．4703s40E 01	9003E 02	109433E 02	－449871E－01
19.0	． 6634361501	－．3728738E 01	． 4515570 E 01	． 1111004 E 02	－．85569158－01	． $184466 \mathrm{E}^{02}$	． 184057802	．408981E－01
19.5	．70152068 01	－． 2374132 E 01	． 4533934 E 01	． 1288348 E 02	－． 5897527201	． 161610802	． 161077802	． $5321198 \mathrm{E}-01$
20.0	． 8102710 E 01	－． 42123804801	．4541426E 01	． 1073657 E 02	．86800818 00	． 201199802	．200582E 02	$616740 \mathrm{E}-01$
20.5	．90025008 01	－．5400883E 01	． 4760196 E 01	．9492750E 01	． 6098733 E 01	．239533E	． 230018 E 02	．514832E－01
21.0	． 2691478 EE 01	－．33533068 01	． 5055830 E 01	．1212785E 02	$\rightarrow 2514160 \mathrm{E} 01$	．209577E 02	．209004E 02	－482830E－01
22.5	． 10128258802	$\sim .2520580 \mathrm{E} 01$	－49948418 01	． 1382782 E 02	－．0677714E 01	－ 189106 E 02	．188429E 02	．677 109E－01
22.0	． 1139044802	－． 4828930 E 01	． 5003147 E 01	． 1023320 E 02	，3505660E 01	．259934E	．253107E 02	．7377738－01
22.5	． 1205123 E 02	－． 5370259 E 01	． 5265184 E 01	．9021090E 01	． 6922400 E 01	． 2	．284235E 02	． $562481 \mathrm{E}-01$
23.0	S003E 02	$-.2799375 \mathrm{E} 01$	．5487552E 01	67377E 02	－． 5511807801	25110E 02	． 224521 E 02	588582E－01
23.	97E 02	－．2701560E 01	． 54501508801	58034E 02	－．04705262 01	．219584E 02	．218736E 02	－．847428E－01
24.	1082 02	－，5224701E 01	． 5455967 P 01	．0318054E ：1	．7108054E 01	． 311112 E 02	． 310271802	． $847202 \mathrm{E}-01$
24.3	98 02	－．491459IE 01	．5750927E 01	．0580608E 01	．60556868 01	．310048E 02	．318460E 02	588653E－01
25.0	130 E 02	－．2083813E 01	． 5074236 E 01	74575E 02	－．8872914E 01	31046E 03	．230319E 02	． $726760 \mathrm{E}-01$
25.5	． 1581954202	－．2805 193E 01	．5893387E 01	．1448775E 02	－．4876438E 01	． 255191802	． 254151802	－ $103962 \mathrm{E}-00$
26.0	－1700713E 02	－．6365524E 01	． 6901800 E 01	．80805188 01	． 1126097802	． 368938502	． 368008 E 02	．929923E－01
26.5	－ 1717230 E 02	\cdots－3025404E 01	．6257412E 01	．0553640E 01	－． 3085151801	． 330431802	． 329800 E 02	．6314598－01
${ }^{27.0}$	． 17593178202	\cdots－1290778E 01	． 0460684501	． 123099888	－． 13091588 E 02	．2298092 02	．2280018 02	．907473E－01
27.5	． 1806710802	－．2892125E 01	．6318350E 01	．0804098E 01	－． 1567274801	．298004E 02	－206760E 02	． 1253338800
28.0	． 1011519 E	－． 5225972 E 01	． 0340060 E 01	． 66357098 O1	． 15386754802	－422385E 02	． 421416 E 02	．969627E－01
38.5	． 1900658 E 02	－．2068294E 01	． 07921448801	．9335013E 01	－．24458018 00	．322218E 02	． 321529 E 02	．6884458－01
29.0	． 1935790 EL 02	－． $515 \mu 030 \mathrm{E} 00$	．6038006E 01.	． 1136141802	－．14527908 02	． 226152 E 02	．225012E 02	． 113996800
29.5	． 1982683 E 02	－．2982691E 01	．6721333E 01°	．7788471E 01	． 3591047 E 01	． 349458802	． 348016802	． 1442231800
30.0	． 2063560 E 02	－．44637128 01	．6827384E 01	． 5524204 ELE 01	． 1634682 E 02	．448653E 02	．4476868 02	．9670108－01
30.5	．2034178E 02	－． 1218966 E 01	．7324794E 01	． 3940643 E 01	－．58413108 01	． 295459 E 02	．2946818 02	． $778803 \mathrm{E}-01$
31.0	．2066379E 02	． 1402204 E 00	．7309300E 01	．99312108 01	－． $1549273{ }^{\text {2 }} 02$	． 220418802	． 224990 E 02	． 1427 279E 00
31.5	． 21113329 E 02	－． 3095880 E 01	． 7100346 E 01	．5358362E 01	． 1043543202	． 409725802	． 408112 E 02	．181397E 00
33.0	－2167405E 02	－． 3427407 E 01	． 73340268801	． 15052128 E 01	． 15355231802	． 454404 E 02	． 453472 E 02	． $031663 \mathrm{~B}-01$
32.5	． $2125025 E 02$	． 2591636 E 00	．7881088E 01	． 8385272801	－ 1235054802	． 254162 E 02	． 253236802	．9259938－01
33.0	${ }^{21590468}$	． 5749693 E 00	73306318＿a	－30802as5－01	－，．14341798－02	$\rightarrow 2373461$	－2969802－02	105872－00
33.5	．22041078．02	－．29877448 01	．7509594E 01	．3185975E 01	． 1046028 E 02	．462122E 02	．460447E 02	．16750IE 00
34.0	． 2231700 E 02	－．21773318 01	． 7874740 E 01	． 3670816 E 01	． 1200409 E 02	． 436943 E 02	． 4360700^{02}	． $8778808-01$
34.5	．2182001E 02	． 1634581501	． 3442496 E 01	． 7689927 E 01	\rightarrow－1013202E 02	． 204550 E 02	．203397E 02	． 115286800
35.0	． $22221675 \mathrm{E}^{02}$	．6997937E 00	－ 8222396 E 01	． $59996538{ }^{\text {a }} 01$	$-.1056520 \mathrm{E} 02$	． 2647333 E 02	． 262504 E 02	．213907E 00
35.5	． 2261136202	－，2795534E 01	． 7015425801	． 1170572 E 01	．2172287E 02	． 506247 E 02	．504687E 02	． 165959 E 00
36.0	． 22626884 E 02	－．8180299E 00	． 8458730801	． 3120034 E 01	． 01358889 E 01	． 395345 E 02	． 304405802	．829365E－01
36.5	． 2210436 E 02	． $2759335 \mathrm{E}^{01}{ }^{\text {．}}$	－6990343E 01	． 6975980 E 01	$-.2532813 \mathrm{E} 02$	． 154069802	． 152592 E 02	． 147733 E 00
337.0	． $22567835 \mathrm{E}^{02}$	． 3532747 E 00	．85718008 01	． 3404149 E 01	$-.2960272801$	． 310473 E 02	． 317068 E 02	． 240521 E 00
37.5	． 22382338 E 02	$\therefore .2537567801$	－B350563E 01	－4749055E 00	．25350388 02	．535497E 02	． 533037802.	． 156052 E 00
${ }^{38.0}$	．2260813E 02	．5476463E 00	．00790762 01	． 2891533 E 01	－，21476028 01	．3297898 02	． $328970 \mathrm{E}_{02}$	． $817808 \mathrm{E}-01$
38.5	．22096708 02	． 3490447 E 01	． 9526400 E 01	： 59640388 E 01	－．3002613E 02	．110524E 02	－ 103611802	．191267E 00
39	． 2262000 E 02	－．2611012E 00	．8802224E 01	：1016844E 01	．621629eE 01	． 384843 E 02	． 2822388 E 02	． 260427800
30.5	． 2271012802	$-.2235687 \mathrm{E} 01$	．8825291E 01	－16002808 01	．2658474E 02	． 542902 E 02	． 541521802	． 138113800
80.0	． 22213236 E 02	． 1780528801	． 9741561201	．30170998 01	－．1246863E 02	．242947E 02	． 242067 E 02	．8802838－01
40.5	． 2180346120	． $3283133 E 01$	．0943286E 01	．44654648 01	－．2790308E 02	． 115024 E 02	． 112629802	． 239471200
42.0	．2228086E 02	－， 1127051801	．9293613E 01	－1086248E 01	． 1623392 E 02	．4548118020	－452109E 02	．2703198 00
41，5	．2213272E 02	－．1914176E 01	．0355807E 01	－．2088744E 01	． 24723222 E 02	． 522088 E 02	－． 520951802	． 1137358800
12.0	． 2138462 E 02	． 2792867 F 01	．1043385E 02	． 3492601801	－，2417872E 02	． $139252 \mathrm{E}^{\text {02 }}$	． 138194802	． 105803800
${ }^{12.5}$	． 2110929502	． 2509952 E 01	．10300308 02	． 29622858 01	－．22， 267708 E 02	． 142147802	． 130248 E 02	．289927E 00
43.0	． $2146094 \mathrm{E}^{02}$	－．，2005557E 01	． 0401473 E 01	27415368 ol	． 2017245802	． $521778{ }^{\text {E }} 02$	． 519105 E 02	．257283E 00
43.5	．21057458 02	－．1598923E 01	． 9956204 E 01	－1866489E 01	－ 19238177802	－468444E 02	． 407501802	． $8528882 \mathrm{E}-01$
44.0	． 2016256 E 02	． 3042667 E of	． 1102097802	． 3784110801	－． 3208826802	．594106E 01	． 5791800 E 01	．1494598 00
44.5	． 2001631802	－1183280E 01	－10592418 02	． $1539370 \mathrm{E}^{0} 01$	－． 1402582808	． 193056 E 02	－189098E 02	． $335717 \mathrm{E}-00$
45.0	．2021892E 02	－．3361850E or	．9800263E 01	［． 3808740 E 01	． 3407015 E 02	． 578337 E 02	． 57897188	． 236678 E 00

．	．0000000E－80	． $000000008-80$	．00000008－80	．00000008－80	．00000008－60	．000000E－80	．000000E－80	．000000E－80
． 5	． $9402975 \mathrm{E}-01$	－． $1042553 \mathrm{E}-01$	．8039335E 00	． 8006104 E 00	． $2425723 \mathrm{E}-02$	． 178058201	． 1780578 or	． 108965804
1.0	．2313532E 00	． $5183824 \mathrm{E}-01$	．1628265E 01	．1548594E 01	－．，8704066E－02	． 3451358 or	． 345131 E 01	． $320007 \mathrm{E}-04$
1.5	．4802044E 00	－．6788504E－01	． 2387129 E 01	．2081792E 01	－．，4081747E－02	．487727E 01	87733E 01	．414305E－04
2.0	． 7792118 E 00	－．2057030E 00	．3304293E 01	．2712989E 01	． $3471533 \mathrm{E-01}$	． 6625 ŞiE 01	． 662542 E 01	．859743E－04
2.5	． $9901223 E 00$	．5638027E－02	． 4139415801	． $3700093{ }^{\text {en }} 01$	－． $7236007 \mathrm{E}-02$	．8837038 01	6998 01	82828－04
3.0	．1272573E 01	． 1297000 E 00	－4849238E or	．4454766E 01	－，7305301E－01	．106332E 02	318	．145127E－03
3.5	． 17123848 of	\cdots－21781388 00	S5458 01	S345E 01	66374E－01	579E 02	． 118573802	． $103036 \mathrm{E}-03$
4.0	． 2128537 E 01	-289820850	3307E 01	222E ol	3863E 00	466E	．138465E 02	． $117107 \mathrm{E}-03$
4.5	． 2434524 E 01		－ 7371127 E 01	8183E 01	－．9592801E－01	329E	．1038278 02	． $175000 \mathrm{E}-03$
5.0	． 2870759801	3463E 00	or	7082E 01	2164800	E	－1807a2E 02	${ }^{287878 \mathrm{E}-03}$
5.5	． $3464198 E$ 01	57E 00	or	990E 01	07E	E	． 1924835 E 02	${ }^{159496 E-03}$
6.0	． 395602 LE 01	－． 1515645800	32E 01	． 7694973 E 01	097SE	6722	． 215071802	． $732818 \mathrm{E}-04$
6.9	49E 0	91800	E	3 E	－．3212955E 00	2065E 02	20638	． $226311 \mathrm{E}-08$
7.0	． 4931236 E 01	．4504754E 00	24E 02	3312E 00	－． 2465621800	． 256707802	． 250703 E 02	． 3813778 －03
7.5	． 5612272 E 01	$-2013670 \mathrm{E} 00$	3a44E 02	．8843665E	O8408 00	98512 02	98518	－． $1197458 \mathrm{E}-05$
8.0	247 E ol	998	298E 02	． 9873314 E	． 1901817800	296023E 02	． 2960258	－． $251338 \mathrm{E}-03$
8.5	． 6553291801	708E 01	02E 02	． $11225288{ }^{\text {c }} 02$	－．71992558 00	． 320624802	． 320622 E 02	． $14488878-03$
9.0	．72a0699E 01	．7318930E 00	S50E 03	．1085871E 02	$-1435280 \mathrm{E} 00$	． 3333348 E 02	． 3333312	． $320428 \mathrm{E}-03$
9.5	． 7992238 E ol	． $14481780{ }^{\text {c }} 00$	348E 02	．10422808 02	．8883316E 00	． 349867802	．399872E 02	－．506747E－03
10.0	． 8487658 E 01	． 1067654 E or	．1636950E 02	．1179613E 02	－． $3844608 \mathrm{E}-01$	． 376826802	． $376835 \mathrm{E}^{02}$	－．940210E－03
10.5	． 89792138001	． 20071058 or	． 1705768 E 02	．1209996E 02	－． 1284881 E 01	． 307032 E 02	． 307081803	． $4693878-04$
11.0	． 9759541801	． 1170552 E o1	－ 1738582 E 02	． 1200328 E 02	．2285493E 00	． 410897802	．410497E 0	． $2215228 \mathrm{E}-04$ ．
11.5	－1041444E 02	． $3116060 \mathrm{E}^{2} 00$	．1881500E 02	． 1169126 E 01	． $1355391 E$ or	． $430878 \mathrm{E}^{02}$	． 430894	． 163268
12.0	． 1084551802	． 2206468801	．1961119E 02	． 1344054 E 02	－． 8277545800	．454760E 02	．454	－． 2131048 －02
12.	． $1130015 \mathrm{E}^{02}$	． 269448180	．2031034E 02	．1413075E 02	－． 1683504 E 01	． 469512 E 02	．480614E 02	－．200568E－03
13.	． 12	．1801968E 01	． 2116642 E 02	．1268320E 02	． 9726853800	． 487896202	A7904E	－． $790054 \mathrm{E}-03$
13	． 1268073 E 02	． 1839958 EL 01	． 2208231802	． 1270171802.	． 17337598 or	． 510385802	． 5108	－． $3607748-02$
14.	． 1301723202	． 3678172 E 01	．2285387E 03	． $1479486 \mathrm{E}^{02}$	－．1714327E 01	． 526298202	． 5263368	－．379365E－02
14.	． 1346047 E 02	．3905677e 01	．2357167E 02	． 1475746 E 02	－．1828212E 01	． 538671803	． 5386758	－． $439134 \mathrm{E}-03$
15.	．1428780E 02	．2650679E or	． 2444221 E 02	－1298280E 0	21433408 or	． 665063802	． 5650878	$-.242405 \mathrm{E}-02$
15.	． 2460100 E 02	． 3240715801	． $26343352 E 02$	． 1352392 E	． 1794268801	．585043E 02	． 585114 B	－．704978E－02
16.	． $14845538 \mathrm{E}^{02}$	． 52792588 or	． $2600970 \mathrm{E}^{02}$	． $1587470 \mathrm{E}^{02}$	－．2982259E 01	－589169E 02	． 589234 E	－． $550404 \mathrm{E}-02$
16	． 1523214802	． 6002959 E 01	． 26836338801	． 1489234 E 02	－．1473501E of	． $6048028 \mathrm{O}^{02}$	． 60490	－．713660E－03
17，	． 1596394802	． 3728703801	．277iotse 02	．1299882E 02	． 3702797801	． 641038 E 02	． 64109	－． $540645 \mathrm{E}-02$
12.0	． $1601431 \mathrm{E}^{0} 02$	．4993807E 01	． 28603348.02	． 1423801802	． 1237819 E 01	． 050880802	． 85099	－．119124E－01
18.	．1017182E 02	．6993673E 01	． 2035415802	－1018924E 02	－．4391696E o1	．643172E 02	． 643247802	－． $607387 \mathrm{E}-02$
18.	．1846788E 02	． 0144414 E 01	． $3000803 z^{\prime} 02$	－ $1462375 \mathrm{E}^{02}$	－．，3610886E 00	．069728E 02	．669739E 02	－．113874E－02
19.	． 1704742802	． 5034912 E or	．3097013E 02	．1287206E 02	． 54811618 or	． 714057802	． 714161502	－，104632E－01
19.5	． 1680559802	． 7053656 E 01	． 3166002 E 02	． 14922270 E	－． $3114463 E^{00}$	．7033058 02	． 703476803	$\sim .170975 \mathrm{E}-01$
20.0	． 1689111202	．8719628E 01	． 3261459202	． $1637250 \mathrm{E}^{0} 02$		． 889469 E 02	． $6893468 \mathrm{E}^{02}$	－． $7678198 \mathrm{E}-02$
20.5	． 1706040 E 02	． $7288575 \mathrm{E}^{\text {or }}$	． 3335069 E 03	． 1406653 EE 02	． 17214318 01	．7340672 02	． 7349898802	－． 313
21.0	． 1745534 E 02	． $0555218 \mathrm{E}^{0} 01$	． 3422520 E	．1275302E 02	． 71535168 01	． 781432 E 02	． 781616 E 02	01
21.	． 16928	． 9	， 35	555293E 02	－．2710256E 01	． 7414488802	02	$-.2245648-01$
22.	． 1	6B	． 3	628083E 02	54423E 01	． 731164802	． 7312348	－．7040488－02
22.5	． 1	01	768	3363812 02	4868591801	3023168 02	． 802360 B	$-.444923 \mathrm{E}-02$
23.0	．	01	8487E 0	OS780E	143099E 01	． 833030202	． 833314 E	$\sim, 283387 \mathrm{E}-01$
23.5	． 1640754 E 02	231E 02	0550E 02	282E	－．58462918 or	． 765019 E 02	． 78618 188	$-.269190 \mathrm{E}-01$
24，0	． 1642220 E 02	2057E 02	2927E 02	031 E	－．6030859E 01	． $773015 \mathrm{C}^{02}$	． 773063 E	$-.485181818-02$
24.5	． 1694320 E 02	． 94488873 E 01	1312	$267758{ }^{\text {che }}$	． 8991084801	． 872740202	． 8778333 E	－．927792E－02
25.0	17E 02	． $10530138{ }^{\text {c }} 02$	958	． $1363673 \mathrm{E}^{2}$	．5a28878E or	． 8890652 E 02	． 870056 E 02	－．404221E－01
25.5	． 1534855802	55E 02	39447E 02	．1682014E	$-9405963 \mathrm{E} 01$	． 779967802	． 780259502	－．291402E－01
26，0		838 0	724 B	－1559203E oa	－4220477E 01	． 320741802	－82075sE 03	－． $118377 \mathrm{E}-02$
26.	O4E 02	S9243E 02	6578E 02	． 1250832 E 02	． 1212972 E 02	． 935473802	． 936667 E 02	－．194005E－01
27.0	． $1483-12 \mathrm{E} 02$	62107E 02	．4404827E 02	． $1457035 \mathrm{E}^{02}$	． 2930935 E 01	． $3900078{ }^{\text {a }} 02$	． 890543 E 02	－． $5359288 \mathrm{E}-01$
22.	． 1391680 E 02	． 1539289 E 02	．4488814E 02	． 1752415802	－．1287938E 02	． 7893208 E 02	． 789603 E 02	－． 276578
28.	． 1400791802	7473 E 02	． 4558096 E	－1519172E 02	－．5664736E 02	． $8798888{ }^{\text {c }} 02$	．879857E 02	． 3
28.5	－ 13673488802	941408 02	628265E	－1278413E 02	． 1448501 E 02	－9916758 02	． 992018 EE 02	$-.342608 \mathrm{E}-01$
29.0	－ $1317078 \mathrm{C}^{02}$		．4796349E 02	－1590703E 02	－ 1638626 E 01	．894690E O1	－395353E 02	－． $6631508-01$
29.	－1220303E 02	－1688994E 02	－4827447E 02	－1830416E 02	－． $1560773 \mathrm{E}^{02}$	． $801374 \mathrm{E}^{2} 02$	．301587E 02	－． $21335595-01$
30.0	． 1245026802		． 48778028102	． 14979093 E 02	． 4738391801	－ 9522006802	． 9521948 E 02	．114319E－02
30.5	． 13011968	－1318462E 02	．4953475E 03	． $1362250 \mathrm{E}^{02}$	． 15408989 E 02	－103763E 03	－103817E 03	$-.541179 \mathrm{E}-01$ $-.783407 \mathrm{E}-01$
33.0	－1130808E	． 10555578 E 02	． 50704068 E 02	－1765946E 02	－．7695169E 01	－886191E 02	－8869568 02	－．763407E－01
31.5	． 10626608	． 1791111402	． 51550948 E 02	－${ }_{-19160178} 02$	－76836108 02			$-.943051 \mathrm{E}-02$ - 590790E－02
33.0	－ 10839942 E 02	－14563032 02	$\begin{array}{r}.51957092 \\ \hline 52813788 \\ \hline 02\end{array}$	－ 1512717 E 02	－1082833E 02 .1431160802	． 103316 E 03 .106939 E	$\begin{aligned} & \text { 103322E } 03 \\ & .107018 \mathrm{E} 03 \end{aligned}$	$\begin{aligned} & -.590790 \mathrm{E}-02 \\ & -, 783536 \mathrm{E}-01 \end{aligned}$
32.6	$\begin{array}{r}\text {－} 1029729808 \\ .96054738 \\ \hline\end{array}$	$\begin{array}{r}.14414172 \\ .18220818 \\ \hline\end{array}$	． 5281378802 $.5406715 E$ 02		.143116080208 $-.14831700^{0}$	－ 1069898 E .86846 E	． 869457 E 02	－．811359E－01
33.5	． 00383358 or	－1817593E 02	． 54765922 E 02	．19796108 02	$-\quad 13664278$	$\therefore 881120 \mathrm{E} 02$	． 881104 AE 02	1615908－02
34：0		． 14688105	－5512656E ${ }^{\circ} \mathrm{O}$	－157\％316E ${ }^{-02}$	． 1705818 E E 02	－111837E 03	－1118572 03	，
34.5	．8572046E 01	． 1562562 E 02	． 5613080 E 02	．1725645E02	． 1075534 E 02	． 106340 E 03	－1084462 03	$-105492 \mathrm{E} 00$
35.0	． 7837867801	． $19588056 E 02$	． 5744505802	． 2227507 E 02	－． 2238540 E 02	． 847540803	． 888321 E 02	－． $780506 \mathrm{E}-0$
35， 5	．7486378E of	． 1799540503	． 5794126 E 02	2059622E 02	－．8105704E 01	． 950136802	．9580158 02	． $1208398 \mathrm{E}-01$
36.0	． 76198378 or	． 1466981802	． 5828913 E 03	1609423 E 02	． 22563662 E 02	－120146E ${ }^{03}$	．.20188888808	－．427140E－01
36.5	． 6830763 E 01	． 1681687203	． 5949499 E 02	2006780E 02	． 4516281801	－107727E 03	． 107860803	－ 13
37.0	．6132448E ol		． 6076080 E 02	2449878E 02	－．2593496E 02	． 357329202	．857956E 02	－． 62
37.5	． 5051910801	－1743466E 02	． 6107391803	${ }^{2160733 E} 02$	－． 35683830 E 00	－1057118 03	3	． $1900138 \mathrm{E}-01$
33.0	． 5984177 E 01	－1465559E 02	．6149114E 02	1884207E 02	． 265536822 E 02	． 127510808		$-.7494388 \mathrm{E}-01$ -.157257 E 00
33,5	． 50684000 El	． $17987708^{\circ} 02$.62911178 .04040678 02	2346808E 02 .2676232 E	-4372105801 $-2688109 E$ 02	－105063E 03	． 105221203	$\begin{aligned} & -.157257 \mathrm{E} 00 \\ & -.398682 \mathrm{E}-01 \end{aligned}$
Oe．0．	－4465197E 01	． 20306856202	．04040678 02	．2676232E 02	－2688100E 02	－ $1172108{ }^{\text {d }}$		$--398602 \mathrm{E}-01$ $.192370 \mathrm{E}-01$
38.5	－44406508 01	－1650538E 02	．6416655E 02			－13326EE 03		\bigcirc
40.0	． $43419655 \mathrm{O}^{\text {of }}$	－1472772E 02	．64721218 02			－133226E ${ }^{\text {－}}$		－．1613608 00
40.5	． 33542532 E 01	－1807899E 02	． 6634089 E 02					－．100725E－01
41.0	． 28897492 E 01	． 2000766502	.67268438 .02 .8728048	2898312E 02 .2437066 E	$\begin{array}{r}-.24933042 \\ .1972493802 \\ \hline 02\end{array}$		． 129950 E 03	． $800078 \mathrm{E}-02$
41.5		$.1498622 \mathrm{~F} 02$	－6800s69E 02	2443365E 02	． 2650530 E 03	－1367208 03	． 136687 E 03	$\sim .166329 \mathrm{E} 00$
42.5	． 1813250 E ol	－19769928 02	． 6977694202	3093323E 02	－． 2345989802	． 9883348 E 02	． $989858 \mathrm{E}^{02}$	$-.152313 \mathrm{E} 00$
43.0	． 1568521 E 01	－19347790： 02	．7043046E 02	${ }^{31080018}$ 02	－．1960696E 02	．1028205 03	．102799E 03	． $211836 \mathrm{E}-01$
43.5	．1856263E 01	．1463111K 02	：7027367E 02	$2615374 \mathrm{E}^{02}$	． 3047332 E 02	． $1493888{ }^{03}$	． $1434038{ }^{03}$	－．152856E－01
44.0	． 1449247 E 01	．15818376 02	． 7142599802	2842850 E 02	800776E 02	308 03	． 135335 E 03	－． 205518 E 00
44.5	． 0407724 E 00	． 2035176800	． 2035176802	3464280E 02	1571388 02	\％ 02	－	－． 126315800
45.0	． 8717942 E 00	1842033E 02	． 2351728802	3293155802	．1077900E 02	1148118	．144758E	． $5294308-01$

$$
\begin{aligned}
& P_{1}=0.20754 \times 10^{-5} \frac{\mathrm{ft}-\mathrm{lb}-\mathrm{sec}}{\mathrm{G}^{2}} \\
& \mathrm{P}_{2}=-0.72022 \times 10^{-4} \frac{\mathrm{ft}-\mathrm{lb}-\mathrm{sec}}{\mathrm{G}^{2}} \\
& \mathrm{P}_{3}=-0.62263 \times 10^{-5} \frac{\mathrm{ft}-\mathrm{lb}-\mathrm{sec}}{\mathrm{G}^{2}} \\
& \mathrm{M}_{\mathrm{X}}=\mathrm{M}_{\mathrm{y}}=\mathrm{M}_{\mathrm{Z}}=5.17095 \times 10^{-6} \frac{\mathrm{If}-\mathrm{b}}{\mathrm{G}} \\
& \text { Solar pressure constant }=1 \times 10^{-7} \frac{\mathrm{ib}}{\mathrm{ft}^{2}} \\
& \text { Aerodynamic pressure constant }=2 \times 10^{-7} \frac{\mathrm{lb}}{\mathrm{ft}^{2}}
\end{aligned}
$$

In Tables 1, 2, and 3 the last column is the difference between the sum of the attitude deviations for each torque and the attitude deviation for the combined torques. The difference, $\Delta(\Delta \theta)$, is approximately 0.5 are sec after 45 minutes in orbit. This number could very well be aftrabuted to roundoff (10 th and 11 th decimal place). The results demonstrate the linear additivity of the torques on the spacecraft attitude.

Conclusions and recommendations: The results of the torque model analysis are summarized in Table 4. Table 4 condenses the result of Table 1,2 , and 3 for $\Delta \theta$ deviation due to each of the torques relative to an untorqued vehicle. Comparing these results for long-term prediction over 45 minutes shows that the residual magnetic moment, solar pressure, and eddy current torques must be included in the prediction model. On the other hand, shortterm prediction over 5 minutes can be accomplished with only the eddy current and resudual magnetic moment torque. Figure 40 indicates a sugnificant effect due to the gravity gradient. However, the alignment of the body y-axis to the orbit normal is greater than the prescribed control limits of the vehicle, whereas, the results presented in Table 2 for the gravity gradient represent an alignment of the body axis withn the control limits, which is the more realistic case. Attitude prediction using only the residual magnetic moment eddy and current torque is shown in Table 5. It 15 of interest to sumplify the torque models where possible to improve the speed of the attitude prediction and model integration. The results of the torque analysis demonstrate that the torque can be time averaged over the spin period of 20 seconds without detriment to the attitude prediction and can enhance the use of large step sizes in the numerical integration of the prediction model. The following paragraphs examine the time-average torque approach.

TABLE 4. - SUMMLARY OF $\triangle \theta$ ATTTTUDE DEVIATION DUE TO EACH TORQUE AND THE TOTAL TORQUE

	(1)	(2)	(3)	(4)	(5)	
Time, min	Residual magnetic moment, $\Delta \theta$ aressec	Bday current, $\Delta \theta$ are sec	Gravity gradient, A0 arc sec	Aerodynamic pressure, $\Delta \theta$ are sec	Solar pressure, $\Delta \theta$ aresec	Total, $\Delta 6$ are sec
5	-5.3	- 20.6	$+2.40$	-0.02	$+1.6$	- 24.2
10	-10.6	- 98.7	+0.97	-0.06	$+6.4$	- 102.0
15	-15.0	- 269.1	+1.40	-0.44	+14.2	- 268.8
20	-19.3	- 566.8	+1. 50	-0.69	$+24.4$	- 560.8
25	-23. 1	-1000.6	+2.00	-0. 24	± 38.6	-983.3
30	-27.5	-1536.4	${ }^{\circ} 1.20$	-0.56	+55.1	-1508. 1
35	-32.4	-2144. 5	+1.08	-0. 44	+74.1	-2101.8
40	-37.3	-2792. 8	+1.17	10.31	$+97.3$	-2730.7
45	-42.6	-3473. 9	+0.10	+0.52	± 122.6	-3394. 4

TABLE 5. - COMPARISON OF THE EFFECT OF DIFFERENT
COMBINATIONS OF TORQUE WITH
THE TOTAL TORQUE EFFECT

Time, Min	Sum, $(1)+(2)_{.}$ $\Delta \theta \operatorname{arcsec}$	Sum $(1)+(2)+(5)$	Suni $(1)+(2)+(3)+(4)+(5)$
5	-26.5	-24.3	-24.2
10	-109.3	-102.9	-102.0
15	-284.1	-269.9	-268.8
20	-586.1	-561.7	-560.8
25	-1023.7	-985.1	-983.3
30	-1563.9	-1508.8	-1508.1
35	-2176.9	-2102.8	-2101.8
40	-2830.2	-2732.2	-2730.7
45	-3516.5	-3393.9	-3394.4

$\begin{aligned}(1)+(2) & \text { Attitude deviation due to resudual magnetic } \\ & \text { moment and eddy current torques }\end{aligned}$
$(1)+(2) \div(5)=$ Attitude devation due to residual magnetic moment, eddy current, and solaf pressure torcures
$(1) \div(2) \div(3) \div(4) \div(5) \equiv$ Altitude deviation due to the five torques

Spacecraft Modeling

In the preceding section, extensive modeling of five environmental torques, was accomplished and their effect on spacecraft attitude evaluated. Two results are important in the modeling of the spacecraft rotational dynamics. First, the gravity gradient and magnetic torques were shown to have significant effect on spacecraft attitude. Secondly, two components of several torques were cyclic with mean near zero and a period of 20 seconds. Observations were made that the effect of the cyclic torque upon attitude have minor effect on spacecraft attitude. These results lead to the development of a set of simplified equations of motion which included the gravity and magnetic torques, to improve computational efficiency in the attitude determination data reduction program. Since the net effect of the cyclic term over a period is zero, time averaging successfully elimınates the cyclic terms, substantially reducing the equation complexity. This procedure was used by Beletskii (Reference 3) to analyze the resultant long-term motion of span-stabilized earth-orbital spacecraft. The analysis presented develops the equations of motion in differential form (suitable for computation) and demonstrates the equation accuracy for the attitude determination problem in the 1 to 10 are sec accuracy. Two methods of mechanizing the spacecraft equation of motion was attempted. First, a method developed a set called the simplified equations of motions. The second was called an approximate closed-form solution for torqued asymmetric spacecraft.

Simplified equations of motion. --
Axis frame and equations of motion: Axis frames selected for describing the equations of motion are shown in Figures 41 and 42. The angular momentum frame describes the direction of the angular momentum relative to inertial space and results in the set of differential equations presented in Equation (26).

$$
\begin{align*}
& \dot{\tau}=\frac{T_{\vec{x}}}{p} \\
& \dot{\bar{\xi}}=\frac{T_{\bar{y}}}{p \sin \bar{T}} \tag{25}\\
& \dot{p}=T_{\bar{z}}
\end{align*}
$$

where $T_{\bar{x}}, T_{\bar{y}}, T_{\tilde{z}}$ are the torques applied about the angular momenturn axes $\overline{\mathrm{x}}, \overline{\mathrm{y}}$, and $\overline{\mathrm{z}}$, respectively.
The body axis frame defines the motion of body-fixed principal axes with respect to the angular momentum axes. The Euler angles are consistent with the spinning-top system used in classical physics (reference 4) and result in a system of differential equations which are

Figure 41. Angular Momentum Axes System

Figure 42. Euler Angle Axes System

$$
\begin{align*}
& \dot{\theta}=p \cos \psi \sin \psi\left(\frac{1}{T_{x}}-\frac{1}{\mathrm{I}_{y}}\right)+\frac{\mathrm{T}_{\bar{x}} \sin \phi-\mathrm{T}_{\bar{y}} \cos \phi}{\mathrm{p}} \tag{26}\\
& \begin{aligned}
\dot{\phi}=p\left(\frac{\sin ^{2} \Psi}{\mathrm{I}_{X}}+\frac{\cos ^{2} \psi}{\mathrm{I}_{\mathrm{y}}}\right) & +\frac{\left(\mathrm{T}_{\bar{y}} \sin \phi+\mathrm{T}_{\bar{X}} \cos \phi\right) \cot \theta}{\mathrm{T}_{\overline{\mathrm{y}}} \cot \tau} \\
& +\frac{\mathrm{p}}{}
\end{aligned} \\
& \dot{Y}=p \cos \theta\left(\frac{1}{I_{z}}-\frac{\sin ^{2} \Psi}{I_{x}}-\frac{\cos ^{2} \bar{y}}{I_{y}}\right)-\frac{\left(\mathrm{T}_{\bar{y}} \sin \phi+T_{\bar{x}} \cos \phi\right) \cos \theta}{p}
\end{align*}
$$

Equations (25) and (26 form a complete description of the spin motion of the vehicle in a torqued environment. A singularity exists at the point $\theta=0$ in that ψ and ϕ are not defined uniquely and the torques become infinite.

Spacecraft torques: To develop the equations of motion explicitly, [(25) and (26)], it is necessary to derive the torques in terms of the spacecraft state variables and rates. The three torques for the ARRS (magnetic moment, eddy current, and gravity gradient) will be considered. However, the analytical procedure used is to develop the simplified equation that is not limited to these specific torques but is equally applicable to solar, aerodynamic, or other torques resulting from spacecraft motion.

Using the torque equations of the previous section, the three torques considered above can be written as

$$
\begin{align*}
& \bar{T}_{M}=\left[\begin{array}{c}
\left(\overline{\mathrm{E}}_{2} \cdot \overline{\mathrm{M}}\right) \mathrm{B}_{z}-\left(\overline{\mathrm{E}}_{3} \cdot \overline{\mathrm{M}}\right) \mathrm{B}_{\mathrm{y}} \\
\left(\overline{\mathrm{E}}_{3} \cdot \overline{\mathrm{M}}\right) \mathrm{B}_{\mathrm{x}}-\left(\overline{\mathrm{E}}_{1} \cdot \overline{\mathrm{M}}\right) \mathrm{B}_{\mathrm{z}} \\
\left(\overline{\mathrm{E}}_{1} \cdot \overline{\mathrm{M}}\right) \mathrm{B}_{\mathrm{y}}-\left(\overline{\mathrm{E}}_{2} \cdot{\overline{\mathrm{M}}) \mathrm{B}_{\mathrm{x}}}\right.
\end{array}\right] \tag{27}\\
& T_{E}=K\left\{\bar{B}_{A}\left(E^{-1} Q \bar{q} \cdot \bar{B}_{A}\right)-E^{-1} Q \bar{q}\left(\bar{B}_{A} \cdot \bar{B}_{A}\right)\right\} \\
& \bar{T}_{G}=\frac{3 \mu \hat{r} \times\left(\mathrm{E}^{-1} \overline{\hat{\mathrm{I}}} \boldsymbol{E}\right) \hat{\mathrm{r}}}{\mathrm{R}^{3}}
\end{align*}
$$

where

$$
\begin{aligned}
E & =\text { Euler angle transform }(\phi, \theta, w) \\
E_{i} & =i^{\text {th }} \text { column of } E
\end{aligned}
$$

$$
\begin{aligned}
& \bar{I}=\left[\begin{array}{lll}
I_{x} & 0 & 0 \\
0 & I_{y} & 0 \\
0 & 0 & I_{2}
\end{array}\right] \\
& \bar{B}_{A}=\left(\begin{array}{l}
B_{x} \\
B_{y} \\
B_{z}
\end{array}\right)=\underset{\text { Angular momentum components of the earth's }}{\text { magnetic field }} \\
& Q=\left(\begin{array}{ccc}
\cos \Psi & \sin \theta \sin \Psi & 0 \\
-\sin \Psi & \sin \theta \cos \Psi & 0 \\
0 & \cos \theta & 1
\end{array}\right) \\
& \vec{q}=\left(\begin{array}{c}
\dot{\theta} \\
\dot{\phi} \\
\dot{\psi}
\end{array}\right) \\
& \mu=\text { Gravitational constant } \\
& R=\text { Radius from spacecraft to earth's center } \\
& \bar{I}=\text { Inertia matrix }=\left(\begin{array}{ccc}
I & 0 & 0 \\
x & I & 0 \\
0 & y & I_{z}
\end{array}\right)
\end{aligned}
$$

The vector \hat{r} is the local vertical unit vector in angular momentum coordinate and is obtained by

$$
\hat{r}=D F^{-1}(\tilde{e})=\left(\begin{array}{l}
r_{1} \tag{28}\\
r_{2} \\
r_{3}
\end{array}\right)
$$

where F and D are the transforms from vertical to inertial to angular momentum, respectively (ref. Figure 4i).

Simplified Equations for Symmetric Body: Using Equation 27, the exact motion of the torqued spinning body can be obtained. An approximation to thas solution can be obtaimed by perturbation theory, assuming that the torque terms are small and hence can be neglected in the first approximation. If this asm sumption is made along with the assumption that $I_{X}=I_{y}=I_{\text {, }}$, then the firstm order approximation to the motion becomes

$$
\begin{align*}
\dot{\zeta}=\dot{T} & =\dot{\theta}=\dot{\mathrm{p}}=0 \\
\dot{\theta} & =\frac{p}{I} \tag{29}\\
\dot{\psi}= & \frac{k p}{I}
\end{align*}
$$

Note that four of the six state variables are constants and the other two have constant rates. Substituting the results of Equation (29) into Equation (27), it is possible to obtain the first-order estimate of the torques, which can then be sutstituted into the differential equations. These results are shown for T_{M}, T_{E} and T_{G} in Equations (1), (2), and (4) of Appendix C for the special case $I_{x}=I_{y^{*}}$ Note that the magnetic and gravity torques are functions of all state variables, the explicit relationships for the Euler angles ζ, ψ, and θ are indicated in Equation (1), (2) and (4) and implicitiy for τ and G in that $\stackrel{r}{r}$ and $\hat{\mathrm{B}}_{\mathrm{A}}$ are functions of these angles.
For the symmetric case, θ, ζ, and T are constant and $\cos \psi$, $\cos \theta$, etc., are periodic with period $\frac{2 \pi}{\mathrm{k} p / \mathrm{I}}$ and $\frac{2 \pi}{\mathrm{p} / \mathrm{I}}$, respectively. Assuming that the other states are constant over a period and since the pexiods are of a noninteger relationship, it is possible by time-averaging to eliminate all cyclic torque terms. For example

$$
\begin{equation*}
\mathrm{T}_{\mathrm{X} \text { au }}=\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{~T}(\mathrm{~T}, \zeta, \mathrm{p}, \theta, \psi, \varnothing) \tag{30}
\end{equation*}
$$

Time averaging the torque texms of Equations (25) and (26) results in the following differential equations to describe the torqued symmetric spacecraft motion:

$$
\begin{gathered}
\dot{\tau}=\frac{K B_{x} B_{y}(1+k \cos \theta)}{I}-\frac{B_{y} M_{z} \cos \theta}{p} \\
\div \frac{3 \mu I(1-a)\left(2-3 \sin ^{2} \theta\right) r_{2} r_{3}}{2 R^{3} p}
\end{gathered}
$$

$$
\begin{align*}
& \dot{\delta}=\frac{K B_{y} B_{z}(1+k \cos \theta)}{1 \sin T}+\frac{B_{x} M_{z} \cos \theta}{p \sin T} \\
& +\frac{3 \mu I(1-a)\left(2-3 \sin ^{2} \theta\right) r_{1} r_{3}}{2 R^{3} p \sin T} \\
& \dot{p}=\frac{-p K\left(B_{x}^{2}+B_{y}^{2}\right)(1+k \cos \theta)}{I} \\
& \dot{\theta} \frac{\mathrm{kK} \sin \theta\left(\mathrm{~B}_{\mathrm{x}}{ }^{2}+\mathrm{B}_{\mathrm{y}^{2}}+2 \mathrm{~B}_{3}{ }^{2}\right)}{2 I} \\
& \dot{\phi}=\frac{p}{1}+\frac{K B_{y} B_{z}(1+k \cos \theta) \cot \tau}{I}+\frac{B_{x} M_{z} \cos \theta \cot \tau}{p} \\
& -\frac{\mathrm{B}_{\mathrm{z}} \mathrm{M}_{\mathrm{z}} \cos \theta}{\mathrm{p}}+\frac{3 \mu I(1-a) \cot T\left(2-3 \sin ^{2} \theta\right) \mathrm{r}_{1} r_{3}}{2 R^{3} \mathrm{p}} \\
& +\frac{3 \mu I(1-a) \cos ^{2} \theta\left[\left(r_{1}{ }^{2}+r_{2}{ }^{2}\right)-2 r_{3}{ }^{2}\right]}{2 R^{3} p} \tag{31}\\
& \dot{\Psi}=\frac{\mathrm{Kp}_{2}}{I}-\frac{p \sin \theta\left(I-I_{z}\right)\left(\theta-\theta_{0}\right)}{I I_{z}}+\frac{B_{z} M_{z}}{p} \\
& =\frac{3 \mu I(1-a) \cos \theta\left[\left(r_{1}{ }^{2}+r_{2}{ }^{2}\right)-2 r_{3}{ }^{2}\right]}{2 R^{3} \mathrm{p}}
\end{align*}
$$

Note that Equation (31) is relatively simple and that there are no terms in ϕ and ψ on the right-hand side. Hence, no rapidly varying terms exist in Equation (31) and it is possible to carry out the numerical solution using relatively large time intervals.

Simplified equations for asymmetric body: In a manner similar to the previous calculations, it is possible to develop the torque terms for the asymmetric body. However, in this case the equations become more complex and, as will be evident, an explicit set of differential equations is not feasible.

The "angular rate" solution for an untorqued asymmetric spinning body (reference 5) is given by

$$
\stackrel{\rightharpoonup}{\omega}=\left[\begin{array}{c}
\sqrt{a_{1}} \operatorname{cn}\left(c_{1} t\right) \tag{32}\\
\frac{\operatorname{sn}\left(c_{1} t\right)}{b_{2}} \\
\sqrt{a_{3}} \operatorname{cn}\left(c_{1} t\right)
\end{array}\right]
$$

where $\mathrm{sn}, \mathrm{cn}, \mathrm{sn}$, and dn are Jacobian elluptic functions. Using the relationship between angular moment and Equation (32), the Euler angle functions become

$$
\begin{align*}
& \cos \theta=\frac{I_{z} \sqrt{a_{3}} d n\left(c_{1}\right)}{P} \tag{33}\\
& \sin \theta=\left[1-\frac{I_{z}{ }^{2} c_{3} \mathrm{dn}^{2}\left(\mathrm{c}_{1} t\right)}{\mathrm{p}^{2}}\right]^{1 / 2} \\
& \cos \Psi=\frac{I_{y} \operatorname{sn}\left(c_{1} t\right)}{b_{2} p\left[1-\frac{I_{z}^{2} a_{3} d n^{2}\left(c_{1} t\right)}{p^{2}}\right]^{1 / 2}} \\
& \sin Y=\frac{I_{X} \sqrt{a_{1}} \operatorname{cn}\left(c_{1} t\right)}{p\left[1-\frac{I_{z}{ }^{2} a_{3} \operatorname{dn}^{2}\left(c_{1} t\right)}{p^{2}}\right]^{1 / 2}} \tag{33}\\
& \dot{\theta}=\frac{\sqrt{a_{1}}\left(I_{x}-I_{y}\right) \operatorname{cn}\left(c_{1} t\right) \operatorname{sn}\left(c_{1} t\right)}{{p b_{2}}^{t}\left[1-\frac{I_{z}{ }^{2} a_{3} \operatorname{dn}^{2}\left(c_{1} t\right)}{p^{2}}\right]} \\
& \dot{\phi}=\frac{I_{x} a_{2} c^{2}\left(c_{1} t\right)+I_{y} \operatorname{sn}^{2}\left(c_{1} t\right)}{p b_{2}{ }^{2}\left[1-\frac{I_{z}{ }^{2} a_{3} d n^{2}\left(c_{1} t\right)}{p^{2}}\right]}
\end{align*}
$$

$$
\psi=I_{z} \sqrt{a_{3}} d n\left(c_{1} t\right)\left(1 / I_{z}-\dot{\phi}\right)
$$

where the constants $c, a_{1}, a_{2}, a_{3}, b_{2}$, etc. , are related to the normalization of the eliptic function solutions.
The functions of Equation (33) can be used to evaluate the torques given in Appendix C. They become for the eddy current damping and magnetic moment terms

$$
\begin{align*}
& T_{\overline{x_{a}}}=-M_{z} B_{y} I_{z} \sqrt{a_{3}} \overline{d n c_{1} t}+K B_{x} B_{z}\left\{I_{z} a_{3} \overline{\operatorname{dn}^{2}\left(c_{1} t\right)}\right. \\
& \left.+I_{x} a_{1} \overline{\operatorname{cn}^{2}}\left(c_{1} t\right)+\frac{I_{y}}{b_{2}^{2}} \overline{s^{2}\left(c_{1} t\right)}\right\} \\
& T_{\bar{y}_{a}}=M_{z} B_{x} I_{z} \sqrt{a_{3}} \overline{d n\left(c_{1} t\right)}+K B_{y} B_{z}\left\{I_{z} a_{3} \overline{d_{n}^{2}\left(c_{1} t\right)}\right. \tag{34}\\
& \left.\left.+I_{x} a_{1} \overline{c^{2}\left(c_{1} t\right.}\right)+\frac{I_{y}}{b_{2}^{2}} \overline{{s n^{2}}^{2}\left(c_{1} t\right)}\right\} \\
& T_{\tilde{z}_{a}}=-K\left(B_{x}{ }^{2}+B_{2}{ }^{2}\right)\left\{I_{z} a_{3} \overline{d n^{2}\left(c_{1} t\right)}+I_{x} a_{1} \overline{c^{2}\left(c_{1} t\right)}\right. \\
& \left.+\frac{I_{y}}{b_{2}^{2}} \overline{\operatorname{sn}^{2}\left(c_{1} t\right)}\right\}
\end{align*}
$$

where the subscript "and the bar "-7" over the term are used to denote the average over a cycle. It is evident in these equations that the effect of M_{x} and \mathbb{N}_{y} components of the magnetic moment, as in the symmetric body case, are eliminated by the averaging process.

The torque average of the gravity gradient term cannot be found explicitly because Equation (33) has no explicit solution of the Euler function ϕ. Hence, there are indicated in trigonometric form as

$$
\begin{align*}
\mathrm{T}_{\bar{X}_{G_{a}}}= & -I\left\{(1 - a) \left(1-\overline{\sin ^{2} \theta\left(1+\cos ^{2} \phi\right)}\right.\right. \\
& \left.+\varepsilon \overline{\sin ^{2} \theta \sin ^{2} \phi\left(\cos ^{2} \Psi-\sin ^{2} \varphi\right)}\right\} r_{2} r_{3} \tag{35}
\end{align*}
$$

$$
\begin{aligned}
\mathrm{T}_{\bar{y}_{G_{a}}}= & I\left\{(1 - a) \left(1-\overline{\sin ^{2} \theta\left(1+\sin ^{2} \theta\right)}\right.\right. \\
& \left.+\varepsilon \overline{\sin ^{2} \theta \cos ^{2} \phi\left(\cos ^{2} \Psi-\sin ^{2} \psi\right)}\right\} r_{1} r_{3}
\end{aligned}
$$

The torque effects on the Euler angles must be calculated by averaging the terms in Equation (36). Using Appendix C, the torque terms become

$$
\begin{align*}
\left(T_{\bar{X}} \cos \phi+T_{\bar{y}} \sin \phi\right)_{a}= & B_{z}\left(\mathbb{M}_{x} \overline{\cos \theta \sin \psi}+M_{y} \overline{\cos \theta \cos \Psi}\right. \tag{36}\\
& \left.-\mathbb{M}_{\mathrm{z}} \overline{\sin \theta}\right)
\end{align*}
$$

$$
+\mathrm{K}\left(\mathrm{~B}_{\mathrm{x}}^{2} \overline{\theta \cos ^{2} \phi}+\mathrm{B}_{\mathrm{y}}^{2} \overline{\theta \sin ^{2} \phi}-\mathrm{B}^{2} \bar{\theta}\right.
$$

$$
+I(1-a)\left[-\overline{\cos \theta \sin \theta} r_{3}{ }^{2}\right.
$$

$$
+\overline{\cos ^{2} \phi \cos \theta \sin \theta} r_{2}^{2}
$$

$$
\left.+\overline{\sin ^{2} \phi \cos \theta \sin \theta} r_{1}^{2}\right]
$$

$$
+\varepsilon I\left[\overline{\cos \theta \sin \theta\left(\cos ^{2} \psi-\sin ^{2} \psi\right) \sin ^{2} \phi} r_{1}^{2}\right.
$$

$$
-\overline{\left.\cos \theta \sin \theta\left(\cos ^{2} \psi-\sin ^{2} \psi\right) \cos ^{2} \phi r_{2}^{2}\right]}
$$

It should be noted that the equations developed for the asymmetric case do not lead to a format as useful as those of the symmetric case. First, the

$$
\begin{aligned}
& \left(T_{\bar{x}} \sin \phi-T_{\bar{y}} \cos \phi\right)_{a}=B_{z}\left(M_{x} \overline{\cos \bar{Y}}-M_{y} \overline{\sin \psi}\right)+k\left[-B^{2} \bar{\psi} \sin \theta\right. \\
& \left.+\mathrm{B}_{\mathrm{x}}{ }^{2} \overline{\sin ^{2} \phi \sin \theta \psi}+\mathrm{b}_{\mathrm{y}}{ }^{2} \overline{\cos ^{2} \phi \sin \theta \psi}\right] \\
& +I \varepsilon\left[2 \overline{\cos \frac{\sin }{\sin } \boldsymbol{\operatorname { s i n } \theta}} \mathrm{r}_{3}{ }^{2}\right. \\
& -\overline{\cos \theta \sin \theta\left(\cos ^{2} \psi-\sin ^{2} \psi\right)} \mathrm{r}_{1} r_{2} \\
& -2 \cos \psi \sin \psi \sin \theta \sin ^{2} \phi r_{2}{ }^{2} \\
& +2 \cos \psi \sin \psi \sin \theta \cos ^{2} \phi \mathrm{r}_{1}{ }^{2}
\end{aligned}
$$

torques are not explicitly functions of the system parameter. In addition, some of the torque terms of Equation (36) probably average to zero over a complete cycle and others for most usable spacecraft configurations might be negligible. Second, the differential equation form for the asymmetric equations would contain terms in $\cos \Psi, \sin \psi$ and $\cos \theta$. Hence, this equation does not have the property noted about Equation (31); that long integration interval sizes are readily avallable, Since only the first term in Equation (26) needs to be evaluated over short intervals, solution on a high-speed machine given the averaged coefficients would not be lengthy, or the closed-form solutions [Equation (33)] might be employed by evaluating the Jacobian elliptic functions.

Further effort is desirable to develop the best solution method of accurate and rapid computation of the differential equations using time-averaged perturbation torques for the asymmetric case.

Accuracy analysis of the time-averaged equations: In the preceding paragraphs a set of time-averaged perturbation equations was developed which describes the motion of a spin-stablized spacecraft in an earth-orbital environment. This set affords a marked simplification over the exact equations. In addition, since the torques are time-averaged, it should be feasible to employ integration step sizes substantially greater than those for the exact set. Hence, the time-averaged equations should possess distmet advantages when employed in the computer modeling of the motion of a spinning satellite. Therefore, an accuracy comparison between the time-averaged set and the exact equations is important.

For this comparison, both sets were programmed for digital computer solution on an IBM 7040 Computer. This section presents the comparative results. Since the computer used was limited in storage and since computational speed was reduced because the requirements for precision dictated that a large portion of the program be run in double precision, some simplifications were made. It was decided to program the symmetric body and include only the magnetic field effects since they predominate over the gravity effects and are nonconservative. Also, it was possible using data available from another Honeywell company study to compare certain of the gravity effects independently.

The true magnetic field experienced by a satellite is rather complex. However, an approximate field can be generated by assuming that the earth's field results from a dipole aligned with its spin axis. For a satellite in a circular orbit, the magnetic field in inertial coordinates becomes

$$
\begin{align*}
& \mathrm{B}_{\mathrm{X}}=\mathrm{K}_{1} \sin (2 \alpha) \cos (\gamma) \\
& \mathrm{B}_{\mathrm{Y}}=\mathrm{K}_{1} \sin (2 \alpha) \sin (\gamma) \tag{37}\\
& \mathrm{B}_{\mathrm{Z}}=\mathrm{K}_{1}\left[\mathrm{~K}_{2}-\cos (2 \alpha)\right]
\end{align*}
$$

where
$\alpha=$ angle of elevation from the $X-Y$ plane
$\gamma=$ angle between X axis and the projection of the orbital position on the $X-Y$ plane

The angles α and γ are given in terms of the orbital elements* as

$$
\begin{align*}
& \tan \gamma=\frac{\cos (i) \sin (v)}{\cos (v)} \\
& \sin \alpha=\sin (v) \sin (v) \tag{38}
\end{align*}
$$

In a circular orbit, $v=\nu_{o}+\omega t$.
When comparing the computer solutions between the exact and averaged sets, it is necessary to use the correct initial conditions for each set. It is especially true that the initial magnitude of the angular momentum for the averaged set is the average of the instantaneous angular momentum of the exact equations over a cycle. Otherwise, the average spin motion for both sets is not the same and errors will result.

The selection of the proper mitial condition was obtaned by a solution of the perturbation equations (not averaged) for $x(t)$ and then set $t=0$. To allustrate the procedure, the differential equation for p (t) for the magnetic torque terms only is

$$
\begin{align*}
& \dot{p}=\frac{p K}{I_{x}}\left(B_{z}^{2}-B^{2}\right)(1+\cos \theta)+\frac{p K}{I_{x}}\left(B_{z} \sin \theta\left(B_{x} \sin -B_{y} \operatorname{c\phi }\right)\right. \\
& +\left(M_{x} \mathrm{c} \Psi-M_{y} s \Psi\right)\left(B_{y} c \phi-B_{x} s \phi\right) \tag{39}\\
& +\left[M_{z} \sin \theta-\cos \theta\left(M_{x} s \Psi+M_{y} c \psi\right]\left(B_{y} s \phi+B_{x} c \phi\right)\right.
\end{align*}
$$

Assuming that p in the second term on the right-hand side canbe replaced by $p_{0^{*}}$ Equation (39) can be written as

$$
\begin{equation*}
\dot{p}=C_{1} p+C_{2} s \phi+C_{3} c \phi+C_{4} c \Psi c \phi+C_{5} s \Psi s \phi+C_{6} s \Psi c \phi+c_{7} s \Psi c \phi \tag{40}
\end{equation*}
$$

where

$$
\begin{aligned}
C_{2} & =\frac{\left(-K_{0} B_{z} B_{y}+M_{z} B_{x}\right) s \theta}{I_{x}} \\
C_{3} & =\frac{\left(-p_{0} K B_{z} B_{y}+M_{z} B_{x}\right) s \theta}{I_{X}}
\end{aligned}
$$

$$
\begin{aligned}
& C_{4}=M_{x} B_{y}-M_{y} B_{x} c \theta \\
& C_{5}=M_{y} B_{x}-M_{x} B_{y} c \theta \\
& C_{6}=-\left(M_{y} B_{y}-M_{x} B_{x} c \theta\right) \\
& C_{7}=-\left(M_{x} B_{x}-M_{y} B_{y} c \theta\right)
\end{aligned}
$$

Equation (40) can be integrated directly. If $C_{1} \ll p / I_{X}$, then for the initial
condition $\Psi=\phi=0$

$$
\begin{equation*}
P_{0}=p(0)-\left(-C_{1}-\frac{C_{6}+C_{7}}{2(1+k)}+\frac{C_{6}-C_{7}}{2(1-k)} \frac{I_{x}}{p(0)}\right. \tag{41}
\end{equation*}
$$

where p_{0} is the average initial condition when $p(0)$ is the initial condition for the exact set.

The spacecraft used in the comparision simulation was the conceptual mechanization of a horizon definition experiment by Honeywell Inc. for the NASA Langley Research Center (ref, 6). The parameters are

$$
\begin{aligned}
& I_{x}=I_{y}=56.68 \text { slug- } \mathrm{ft}^{2} \\
& I_{z}=65.62 \text { slug-ft } \\
& M_{x}=M_{y}=M_{z}=0.51052 \times 10^{-5} \mathrm{ft}-\mathrm{Mb} / \mathrm{G} \\
& \mathrm{~K}=0.141739 \times 10^{-4} \mathrm{ft}-\mathrm{lb} / \mathrm{G}^{2}
\end{aligned}
$$

The magnetic field constants are for a speaecraft in a 500 km orbit and are

$$
\begin{aligned}
\mathrm{K}_{1} & =0.375 \mathrm{G} \\
\mathrm{~K}_{2} & =0.333 \mathrm{G} \\
\omega & =0.064 \mathrm{deg} / \mathrm{sec}
\end{aligned}
$$

The remaining constants are

$$
\begin{aligned}
\tau & =97.38 \mathrm{deg} \\
v & =97.3 \mathrm{deg} \\
\psi & =\phi=0 \\
\omega_{\mathrm{x}} & =0 \\
\omega_{\mathrm{y}} & =0.00365471 \mathrm{rad} / \mathrm{sec} \\
\omega_{\mathrm{z}} & =0.31415926 \mathrm{rad} / \mathrm{sec} \\
\theta & =0.5757 \mathrm{deg}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{p}(\mathrm{o}) & =20.61617134 \\
\mathrm{~T} & =99.9995 \mathrm{deg} \\
\zeta & =314.4154 \mathrm{deg}
\end{aligned}
$$

Using the above conditions, the spacecraft equations [Equations (25) and (26)] and the approximate equations [Equation (31)] were solved using a fourth order Runge-Kutta integration routine with a fixed interval size of 0.1 second. Figure 43 compares the motions for the angles τ and 5 over a $40-\mathrm{second}$ time period. This short time is used to illustrate the effect of averaging (i.e., the exact solution has oscillations not present in the averages solution). The averaged solution, however, duplicates accurately the long-term motions of the exact set. Solutions over periods of 800 seconds indicate that the difference in magnitude is of the order of 0.0001 degree.

Figure 44 compares the cone angle, θ, for the exact and approximate solutions over a 400 -second interval. In this case the exact solution has approximately a 20 -second period, which makes the exact motion difficult to represent; hence, the envelope has been indicated. Again the angular difference is of the order of 0.0001 degree. Noting in Equation (26) that the condition $\theta=0$ leads to infinite torque terms, it is apparent that the initial condition selected here represents the worst practical case for comparing the exact and averaged solutions. Hence, the amplitude of oscillations are substantially reduced at larger θ.

Figure 45 compares the angular momentum for the exact and approximate solufions. Two initial conditions are used for the approximate cases, $p(0)$ and p_{o} as obtained from Equation (41). Again, the two approximate solutions represent the average change but do not have the oschllations. The latter, $p_{o^{*}}$ more closely approximates the mean of the exact solution.

Figure 46 shows the errors in the body angular positions, $\phi-\phi_{a}$ and $\Psi-\Psi_{a}$. Also included is the sum of these errors, $\phi-\phi_{a}$ and $\Psi-\Psi a$. The initial conditions for the angular momentum are $p(0)$. The individual errors $\phi-\phi_{\mathrm{a}}$ and Ψ - Ψ_{a} are quite large, approximately 0.01 degree, and are opposite in phase, The large amplitude error is a result of the infinte torques which result in the exact equations at $\theta=0$, but are not present in the averages equations of Equation (3). This mathematical problem is a manifestation of the physical fact that at $\theta=0$ the Euler angles Ψ and ϕ are not distinct. Howeyer, the sum and a difference factor, $\psi+\phi$ and $\Psi-\phi$, have a useful physical interpretation as $\theta \rightarrow 0$, the sum $\Psi+\phi$ being the actual displacement of the x-body axis and the x-reference axis. Then for small θ the error sum more nearly represents the angular position exror between the exact and the approximate equations. As shown in Figure 46, this error is of the order of 0.0004 degree over the 20 -second interval. It is apparent that there is a mean difference between the exact and approximately $\psi+\phi$ terms. This difference was found to be due to the initial condition selected for Figure 45. When the initial angular momentum was selected using Equation (41), this error was greatly reduced as shown in Figure 47, which plots the error using p_{o} over an 800-

Figure 43. Comparison of Momentam Direction Solutions for Exact and Averaged Equations

Figure 44, Compaxison of Cone Angle, θ, Solutions

Figure 45. Comparison of Angular Momentum Solutions

Figure 46. 'Comparison of Spin Error, $\phi-\phi$, and Precession Error; $\Psi-\Psi_{a}$ and Their Sum, $\phi-\phi_{a}+\Psi-\Psi_{a}$

Figure 47. Envelope of Error Sum Using Initial Conftion $p_{0}=20.61618074$ $\mathrm{ft}-\mathrm{l}$ / $/ \mathrm{sec}$
second interval. In this latter condition the error was less the 0.0002 degree at the end of 800 seconds.

The comparison indicates that for the typical spacecraft parameters selected the approximate equations provide solution accurate to less than 1 arc sec over periods of 500 to 1000 seconds. Since oscillatory motions are not present, the computation interval can be increased substantially.

Comparison of gravity gradient effects: As indicated previously, the effects of gravity terms were not included in the computer study. However, the results of a computer simulation with and without gravity terms were available from :another study of spacecraft torques.

The spacecraft parameters are similar to those above with the exception that $\Omega=45$ degrees. The solutions to the exact equations were obtained by integrating Euler's equations directly and then determining the angular momentum vector. The approximate equations were obtaned by a closed-form solution of terms in Equation (31), using graphical plots of the magnetic field and direct integration of the terms in the local vertical vector, r^{\prime}, from Equation (41).

Using the graphical plots of magnetic field and Simpson's Rule for integration, the solution for the terms T and ζ with and without gravity effects is shown in Figure 48. Since the angular errors are less than 0.002 degree after a time interval of 1000 seconds, it appears that the approximation procedure is adequate to represent the effects of gravity gradient torques on the spacecraft motion.

Conclusions: The procedure based on the nonlinear approximation technique of time averaging the first-order perturbation equations of motion can lead to significant simplification of the se equations for a spin-stabilized satellite. In the test case considered, the accuracies when comparing the exact and approximate solutions were within 1 arc sec for an interval of 800 seconds. The terms in the averaged equations are simpler and effects of infinite torques at $\theta=0^{\circ}$ are suppressed. In addition, because the cyclic torques are eliminated, the longer time intervals can be used in the numerical integration computer solution, further reducing the required computational problems.

Based on the previous paragraphs, it is concluded that an improvement in numerical integration speed was achieved. At the time of this writing, it was not possible to contrast the work above with the work presented in Appendix D, except to state the same general philosophy was used in both developments but with different starting points. Appendix D gives the development of the approximate closed-form solution technique for use in the data reduction program.

In summary, the computational techniques developed during this study whll greatly improve computer efficiency and are recommended for use in the data reduction program. However, the development of the data reduction algorithm, a parallel effort, proceeded by the using of rotational dynamics model that is

Figure 48. Comparison of Momentum Axes Motion with Gravity Effects
expressed in Reference 19 under the attitude determination section using Runge-Kutta fourth-ordered integration. Software modificatarns are remured to incorporate the mproved rotational dynamse model for purposes of improving efficiency. These modifications, if necessary, are planned during Part II of the study.

System Simulation

Objectives. - This portion of the ARRS attitude determination effort was directed toward the development of a total attitude determinaiion system simulation. This simulation, which exists as a single operational computer program, contains two major capabilities. The first major capability is a simulation of a passive star mapper and sun sensor instrument system fixed in the spacecraft. To represent the actual operational environment of the spacecraft, the external forques from eddy current, residual magnetic moment, gravity gradient, and solar and aerodynamic pressures are tncluded in the spacecraft equations of motion. Simulated stax mapper and sun sensor outputs are the main outputs of this portion of the simulation. The second major capability is the data processing of star mapper and sun sensor outputs to yield estimates of spacecraft atitude, rates, and parameters. The system simulation development was undertaken with three primary goals in mind:

- Since missions of one year or longer are contemplated, it was necessary to develop a data-reduction system providing spacecraft attitude estimates in significantly faster than real-time on present-day computers.
- Since the system was to be designed for a class of applications rather than for a specific mission, development of a simulation treating the selection of system parameters as variables for data reduction studies was desirable.
- Sufficient simulation studies must be performed to demonstrate the range of applicability and accuracy possible with the datareduction algorithm. Specifically, these studies must be performed to establish the data requirements to maintain an inertial attitude accuracy of 5 are seconds (one sigma) in pitch and 30 arc seconds in the orthogonal axis for a spin-stabilized, 3 rpm spacecraft.

In selection of the data-reduction technique, the first goal was a critical factor. The classical least squares approach was bypassed since during the NAS 1-6010 study it yielded an algorithm possessing suffecient accuracy but requiring real-time on the CDC 6500 computer (Ref. 19). The spacecraft coordinate system used in that study proved to be suitable for the attitude determination problem and consequently was chosen for the system simulation effort. The nonlinear Kalman filter (Ref. 22), mechanized to process transit data sequentially, was selected because of its simple, noniterative structure and because the measurement statistics enter directly into the data reduction equations. Further sequential processing of transit data, as opposed to
batch-type processing, provides a distinct advantage which is usually overlooked in the choice of a filter for an operational system. In such a system the identification of stars causing the transit must be solved before the data can be used for attitude estimation. However, after an initial period, the attitude estimates generated by the sequential estimation provide the necessary information to perform the star identification sequentially, rather than prior to the start of the estimation process. This mechanization is applicable to either ground-based data processing or on-board data processing.

Notation. --
t
$\omega_{x}, \omega_{y}, \omega_{z}$
ψ, θ, θ
I_{1}, I_{2}, I_{3}
A, C
\bar{M}^{1}
K^{\prime}
\bar{X}
$\mathrm{f}(\overline{\mathrm{X}})$
Ex
$\stackrel{\wedge}{x}$
P
()T
f_{x}
e
H

H
x
σ_{H}^{2}

Time, independent parameter

Spacecraft angular rates, principal body axes
Euler angles parameterizing the rotation from inertial to body coordinates, yaw, roll, and pitch, respectively

Spacecraft moments of inertia
Inertia ratios I_{1} / I_{2} and I_{3} / I_{2}, respectively
Spacecraft residual magnetio moment vector, divided by I_{2}

Spacecraft eddy current coefficient, divided by I_{2}
Variable dimension estimation state vector
Functional representation of $\dot{\bar{X}}$
Expected value operator
Estimate of \bar{x}
Covaxiance matrix, $\operatorname{Ex}\left[(\bar{X}-\bar{X})(\bar{X}-\bar{X})^{T}\right]$
Denotes matrix or vector transpose
Jacobian matrix,
Measurement erxor
Measurement model
$\left[\frac{\partial W_{H}}{\partial X_{1}}, \ldots, \frac{\partial H}{\partial X_{n}}\right]$
Measurement variance, Ex(H^{2})

¢ (k, k-1)	State $\mathrm{n} \times \mathrm{n}$ transition matrix relating linearized state from time t_{k-1} to time t_{k}
W	Square root of covariance $\mathrm{P}=\mathrm{WW}^{T}$
()$_{b^{\prime}}()_{a}$	Denotes quantity before and after application of corrections due to measurement errors
(${ }^{\wedge}$	Denotes unit vector
$\hat{0}$	Unit normal to slit plane
$\stackrel{\text { S }}{ }$	Stax (or sun) vector in inertial space
$\sigma_{\text {I }}^{2}$	Variance of instrument noise
()$_{B}$	Denotes vector in body coordinates
()$_{\text {I }}$	Denotes vector in inertial coordinates
$\hat{0}$	Optical axes of starmapper (sun sensor)
fov	Field of view of starmapper (sun sensor)
$\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$	Angles parameterizing the offset of the experimental w.r.t. the spacecraft axes
γ	Cant angle; with zero offset, the angle between the optical axis, and the y body axis
β	Rotation angle of slit plane about the opticalaxis
α, δ	Right ascension, declination of star (sun)

Coordinate transformations: All coordinate frames are referenced to an inertial coordinate system defined by the x-axis pointing toward the first point of Aries, the z axis along the earth's polar axis. The y-axis is chosen to make a right-handed coordinate frame.

The body axes frame is fixed in the spacecraft and centered at its center of mass. These axes are assumed to coincide with the axes of the principal moments of inertia. The relation between the spacecraft body axes and the inertial frame is given in Appendix G.

Since in practice the experimental frame, defined by the starmapper and sun sensor instruments, may differ from the desired body axes frame, small dis" placements of this frame from the body frame are treated.

A vector in body coordinates to the experimental frame is given by

$$
\begin{equation*}
\bar{X}_{E}=C\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right) \bar{X}_{B} \tag{42}
\end{equation*}
$$

where

$$
C\left(\varepsilon_{1}, \epsilon_{2}, \varepsilon_{3}\right) \text { is defined in Appendix } G .
$$

Orientation of each star mapper or sum sensor slit is specified with respect to the experimental coordinate frame by the cant angle γ and slit plane rotation angle β about the optical axis. Figure 49 illustrates the orientation of a given slit. The geometry shows that in the experimental frame the slit normal fi and and optical axis 0 are the first and second rows of the matrix, respectively,

$$
A=\left[\begin{array}{lll}
\cos \beta & \sin \beta \sin \gamma & -\sin \beta \cos \gamma \tag{43}\\
0 & \cos \gamma & \sin \gamma \\
\sin \beta & -\cos \beta \sin \gamma & \cos \beta \cos \gamma
\end{array}\right]
$$

whereas the third row is a unit vector lying in the slit plane and normal to $\hat{0}$.
Z Znith vector, \hat{Z}, from the center of the earth through the spacecraft, is specified by the usual orbital parameters - longitude of the ascending node Ω. inclination i, and true anomaly v. For the nominal case defined by the y body axis normal to the orbital plane, the Euler angles ψ and ϕ would equal Ω and i-90, respectively. The orbital geometry is developed in Appendix G.

Vehicle model: For this study the dynamical model for the spacecraft equations of motion was taken from the formulation used under NAS 1-6010. (ref. 19). In this formulation the vehicle motion and orientation were described by the angular rates about the princtpal body axes and Euler angles parameterizing the rotation from inertial to body coordinates. These varim ables satisfy the first-order, nonlinear differential equations.

$$
\begin{align*}
& \dot{\omega}_{x}=\left[\omega_{y} \omega_{z}(1-C)+T_{x}\right] / A \\
& \dot{\omega}_{y}=\left[\omega_{x} \omega_{z}(C-A)+\tau_{y}\right] \\
& \dot{\omega}_{z}=\left[\omega_{x} \omega_{y}(A-1)+\tau_{z}\right] / C \tag{44}
\end{align*}
$$

and

$$
\begin{aligned}
& \dot{\psi}=\left[-\omega_{\mathrm{x}} \cdot \sin \theta+\omega_{z} \cos \theta\right] / \cos \phi \\
& \dot{\phi}=\omega_{\mathrm{x}} \cos \theta+\omega_{\mathrm{z}} \sin \theta \\
& \dot{\theta}=\omega_{\mathrm{y}}-\dot{\psi} \sin \phi
\end{aligned}
$$

where $Y_{2} \bar{T}$ represents the external torque acting on the spacecraft, in body
coordinates.

Figure 49. Relationship of Slit Plane to the Experimental Frame

During the course of the study several other parameterizations of the rotation from inertial to body coordinates were considered with the objective of obtaining greater efficiency in the numerical integration of the differential equations of motion. Parameterizations such as the Euler symmetric parameters, used for the torque analysis, and direction cosines were rejected because their use introduces additional dimensionality-into the estimation problem. The Gibbs vector representation was initially selected for study since its use requires only algebraic computations. However, it was unsuitable because it possesses a near singularity which oceurs twice per spacecraft rotation.

Attitude Estimation Algorithm:

Nonlinear Kalman filter: Two formulations of the nonlinear Kalman filter were mechanized for stady in the ARRS Attitude Detexmination System - a conventional formulation and a square root formulation. Both state estimation techniques were implemented to process transit data sequentially in time and as such can be conveniently stated in two parts. Between transit measurements, the spacecraft rates and Euler angles and the covariance matrix are extrapolated by a numerical solution of the differential equations which describe their motion. At a measurement, both the extrapolated vehicle variables and covariance matrix are updated using one of the two Kalman estimation equations mechanizations. A variable time step, variable order (second, third, or fourth) Runge-Kutta (Ref. 24) is implemented for the numerical solution of the spacecraft differential equations of motion while the covariance matrix extrapolation is accomplished by a variable time step second-order Euler integration.

System variables and parameters which were included in the estimation state Xare

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
$$

Thus

$$
\dot{X}_{i}=0, \quad i \geq 7
$$

is assumed, The estimation algorithms were implemented so that fewer than 12 variable solutions can be obtained.

Algorithm torque model: In general distinct torque models are employed for transit time generation and the attitude determination data reduction. For the latter, the two most prominent torques, magnetic moment and eddy current (single coeffictent), were included in the model.

Conventional formulation: In the mechanization of the conventional formulation of the Kalman nonlinear filters the spacecraft rates and Euler angles and the covariance matrix are propagated from measurement to measurement by a numerical solution of the equations

$$
\begin{equation*}
\dot{\vec{X}}=\overline{\mathrm{I}}(\overline{\mathrm{X}}), \overline{\mathrm{X}}\left(\mathrm{t}_{\mathrm{o}}\right)=\bar{X}_{\mathrm{O}} \tag{45}
\end{equation*}
$$

and

$$
\dot{P}=P f_{x}^{T}+f_{x} P+Q, P\left(t_{o}\right)=P_{o}
$$

Where Q is an nan diagonal additive "noise" matrix determined empirically to prevent the covariance matrix from becoming negative definite and where the initial conditions, indicated by $(\cdot)_{0}$, are the values of the quantities at transit measurements after updates due to the measurement errors have been applied. At a transit measurement updating is accomplished with

$$
\begin{equation*}
\bar{X}_{a}=\bar{X}_{b}+\bar{K}_{e} \tag{46}
\end{equation*}
$$

and

$$
P_{a}=P_{b}-\bar{K} \bar{H}_{X} P_{b}
$$

where the gain vector \bar{K} is

$$
\overline{\mathrm{K}} \equiv \mathrm{P}_{\mathrm{b}} \overline{\mathrm{H}}_{\mathrm{x}}^{\mathrm{T}} /\left(\overline{\mathrm{H}}_{\mathrm{x}} \mathrm{P}_{\mathrm{b}} \overline{\mathrm{H}}_{\mathrm{x}}^{\mathrm{T}}+\sigma_{\mathrm{H}}^{2}\right)
$$

Square Root Formulation: The state covariance matrix will become negative definite due to computational inaccuracies if some form of additive noise is not used. Consequently, an alternate formulation of the Kalman filter was implemenied. This alternate formulation is the "square root" formulation in which all covariance matrix computations are performed with the square root of the covariance matrix rather than with the covariance matrix itself. While the conventional and square root formulations are analytically equivalent if additive noise is not considered, numerical errors do not cause the covariance matrix to become negative definite in the latter, thus carcumventing one formidable problem in the practical application of the Kalman filter.
For this formulation of the estimation algorithm, the extrapolation of covariance is accomplished by numerically solving the differential equation satisfied by the state transition matrix,

$$
\frac{\tilde{(})}{(k, k-1)}=f_{x}(k) \hat{q}(k, k-1)
$$

with the initial condition

$$
\Phi(0,0)=I
$$

A variable time step, second-order Euler integration is used. The square root of the covariance matrix is propagated from transit to transit by

$$
W_{b}(s)=\Phi(s, s-1) W_{a}(s-1)
$$

where $W_{a}(s-1)$ is the "after" update covariance from the previous transit and $W_{b}(s)$ is the "before" update for the current transit.

The estimation state vector and the square root of the covariance matrix are updated at a transit time t_{s} with

$$
\begin{align*}
& \bar{X}_{a}(s)=\bar{X}_{b}(s)+\bar{K} \varepsilon \\
& W_{a}(s)=W_{b}(s)-c \bar{K} \bar{g} \tag{47}
\end{align*}
$$

where

$$
\begin{aligned}
& \overline{\mathrm{g}}^{\mathrm{T}}=\mathrm{W}_{\mathrm{b}}^{\mathrm{T}}(\mathrm{~s}) \overline{\mathrm{H}}_{\mathrm{x}}^{\mathrm{T}} \\
& \overline{\mathrm{~K}}=\mathrm{W}_{\mathrm{b}}(\mathrm{~s}) \cdot \overline{\mathrm{g}}^{\mathrm{T}} /\left(\overline{\mathrm{gg}}^{\mathrm{T}}+\sigma_{\mathrm{H}}^{2}\right) \\
& \varepsilon=-\mathrm{H}\left(\overline{\mathrm{X}}_{\mathrm{b}}\right) \\
& \mathrm{c}=1+\sigma_{\mathrm{H}}\left(\sigma_{\mathrm{H}}^{2}+\overline{\mathrm{g}} \overline{\mathrm{~g}}^{\mathrm{T}}\right)^{-1 / 2}
\end{aligned}
$$

Following the updating, extrapolation is resumed by re-initializing

$$
\begin{aligned}
& \dot{\Phi}(s, s)=I \\
& \dot{\Phi}(s, s)=f_{X}\left(\bar{X}_{a}(s)\right)
\end{aligned}
$$

and at the first time point t_{m+1} after update,

$$
\Phi(m+1, s)=I+\left(t_{m+1}-t_{s}\right) f_{x}\left(\bar{x}_{a}(s)\right)
$$

and

$$
\Phi(m+1, s)=f_{x}(\bar{x}(m+1)) \Phi(m+1, s)
$$

Measurement model: Starmapper and sun sensor transit measurements provide the raw data from which spacecraft rates, attitude and parameters are estimated. The estimation, Equations (46) and (47), require that these measurements be modeled analytically to provide a measurement error ε at the time of transit. This error is computed as the difference between the observed measurement value and a predicted value based on the estimated vehicle rates, attitude, and parameters extrapolated from previous transits. Since at the instant of transit the line of sight to the star lies in a plane defined by the slit and optical axis of the instrument, a natural measurement model to use is the equation which states that the projection of the vector along the line of sight to the star on the vector normal to the slit plane vanishes analytically.

$$
0=\hat{\mathrm{U}} \cdot \hat{\mathrm{~S}}_{\mathrm{B}}
$$

where \hat{U} is the normal to the slit plane and \hat{S}_{j} is the star vector, both in body axes. In view of the coordinate transformations described in Equations (41), (42) and (43), it is seen that

$$
\hat{U}=A_{1} C
$$

and

$$
\hat{S}_{B}=E(t) \hat{S}
$$

Thus, the measurement model which follows is the scalar form

$$
\begin{equation*}
H(t)=A_{1} C E(t) \stackrel{\hat{S}}{ } \tag{48}
\end{equation*}
$$

This provides a measurement error at a transit time given by

$$
\varepsilon\left(t_{s}\right)=0-\hat{H}\left(t_{s}\right)
$$

where \hat{H} is the predicted, genexally nonzere, value of the measurement.
Alternately, the time at which a transit will occur can be predicted and the error term taken to be the difference of the predicted and measured time. The measurement error for this model is

$$
\begin{equation*}
\varepsilon\left(t_{s}\right)=t_{s}-\hat{t}_{s} \tag{49}
\end{equation*}
$$

where t_{s} is the predicted time of transit. As no closed, analytic form exists for ${ }_{s}$, Equation (49) must be evaluated from a Taylor's series expansion of Equation (48). Tofirst-órder

$$
e\left(t_{S}\right)=-H\left(t_{S}\right) / \dot{H}\left(t_{s}\right)
$$

Both models were implemented since the latter exhibits a nonzero sensitivity

$$
\frac{\partial H}{\partial \bar{X}} \neq 0
$$

to the rate variables, whereas the geometric model, Equation (48), does not.
Measurement variance values for the two models are

$$
\sigma_{\mathrm{H}}^{2}=\left(\sigma_{\mathrm{I}} /|\bar{\omega}|\right)^{2}
$$

and

$$
=\left(\sigma_{\mathrm{I}} /|\bar{\omega}|\right)^{2} \cdot\left(\overline{\mathrm{H}}_{\mathrm{x}} \frac{\dot{X})^{2}}{}\right.
$$

xespectively, where σ_{I} is an assumed instrument noise

Transit time model: The generation of simulated stamapper and sun sensor outputs requires a simulation of considerable complexity. Its outputs are a series of time values representing the times at which the images of various stars or the sun cross slits in the focal planes of the respective instruments as the instruments are scanned across the celestial sphere by the spacecraft's motion. Thus, each transit time is characterized by the following conditions. The line of sight to the celestial body causing the transit lies in a plane defined by the optical axis of the instrument and the slit; the celestial body must lie within the field of view of the instrument; and the celestial body must not be blocked by the earth. Mathematically, these conditions are given by

$$
\begin{align*}
& \hat{U}_{I} \cdot \hat{S}=0 \\
& - \text { fov } \leq 2 \cos ^{-1}\left(0_{I} \cdot \hat{S}\right) \leq \text { fov } \tag{50}\\
& \hat{S} \cdot \hat{Z} \geq \cos \Gamma
\end{align*}
$$

and
respectively. It is apparent that the first condition states that the normal to the sensor plane \hat{U}_{I} is perpendicular to the star (or sun) vector S at the
transit, while the second condition states that the angle subtended by the star vector and the optical axis $\hat{0}_{I}$ is less than half of the field of view (fov) of the instrument. The earth blocking condition is expressed in terms of the zenith vector Z through the spacecraft and the earth block angle Γ, which defines the visible region of the celestial sphere not obscured by the earth. Figure 50 illustrates the geometry at the instant of a transit.

Figure 50. Transit Geometry

Since the simulated sensor outputs produced by the simulation must represent the output of sensors under actual operating conditions, the external torques due to eddy current loss, residual magnetic moment, gravity gradient, and solar and aerodynamic pressure [Equations (2), (1), (23), (11), and (7), respectively], are normally included in the spaceeraft model, Equation (44). The resulting complexity precludes a closed-form solution of the first condition (50) and requires an iterative technique to determine the times of transit. Iteration is accomplished as follows: A reference solution of the spacecraft equations of motion is established at evenly spaced time increments by numerical integration. Once per spacecraft rotation crude estimates are made of all transit times which will occur in the next spin period. The crude estimate is determined by solving the equation of motion of the slit normal

$$
\begin{equation*}
\dot{\Pi}_{I}=\bar{\omega}_{I} \times{ }^{" T T_{I}} \tag{51}
\end{equation*}
$$

assuming a constant rate \bar{m}_{I}. This equation is integrated numerically by trapezoidal rule. The integration is terminated when the Newton-Raphson integration step

$$
\Delta t=\frac{\hat{S} \cdot \hat{U}_{I}}{-\hat{S} \cdot\left(\hat{\omega}_{I} \times \hat{\mathrm{U}}_{\mathrm{I}}\right)}
$$

becomes sufficiently small for a solution $\overline{\mathrm{U}}_{\mathrm{I}}$ at a time $\mathrm{t}_{\text {est. }}$. As the reference solution is generated, the crude time estimates are refined by the same procedure over shortened time spans. Spacecraft attitude is evaluated at each refined estimate and an estimate is accepted as a transit on the condition

$$
\left|\hat{U}_{\mathrm{I}} \cdot \hat{\mathrm{~S}}\right|<\varepsilon^{\prime}
$$

for an arbitrary tolerance ε^{1}, provided the second and third conditions (50) are satisfied. The value

$$
\varepsilon^{\prime}=0.5 \times 10^{-6}
$$

corresponding to an angular tolerance of approximately 0.1 aresecond has been used in the simulation program.

Computer program description. -- The approach taken in the design and programming of the attitude determination system simulation was to isolate and program as separate subprograms the various functions associated with the solution of the vehicle [Equations (44)] and the filter [Equations (45) through (4.7)]. This was done since such a structuring of the system facilitates modeling changes as the analysis effort progresses. Also, to realize maximum compatibility between the SDS Sigma V and CDC 6600, machine dependent features such as dise storage and cathode ray tube display were isolated into separate routines. Thus, the resulting program structure is highly segmented in subroutines defined by function and machine dependency. Some of the features of the system are the

- Option of using either the conventional Kalman filter or the square root Kalman filter for update of state at star transits
- Variable order, variable step Runge-Kutta for integration of vehicle equations of motion between star transits
- Variable step Euler integration of covariance differential equations for conventional Kalman filter or of the state transition matrix for the square root Kalman filter
- Option of using either one of two different scalar measurement models
- Option of changing state dimensions
- Capability of having any combination of five torques by changing the basic input data
- Transit time generation
- Star transit identification
- Dynamic on-line analysis

A block diagram of the system simulation is shown in Figure 51. The dashed lines represent the computational flow for the transit time generation mode of operation, and the solid lines depict the data-reduction mode. Some major outputs are $\bar{X}(t)$ and $E(t)$; the state, covariance, and the matrix relating iner${ }_{\hat{S}}^{\text {tial }}$ to body axes at time t; and the right ascension and declination of the star \hat{S} sighted at $t_{S^{\prime}} \alpha$, and δ, respectively.

Several computer program variables are used by the system to represent time. These are defined as follows:

Figure 51, Block Diagram of Attitude Determination System Simulation
t_{o} - Initial time for data reduction or transit time generation
$t_{\text {max }}$ - Maximum time for data reduction or transit time generation; for the purposes of analysis these two variables provide the capability to selectively read portions of the star transit tape for data reduction.
t - Time variable at which spacecraft state (rates, Euler angles, and parameters) is available. This variable assumes values contained within the interval $\left[0, t_{\text {max }}\right]$ at ever increments Δt_{o} and at stax or sun transits t_{S}.
t_{p} - Time variable at which the covariance matrix is available. This variable assumes values contained withirr the interval $\left[t_{o} t_{\text {max }}\right]$ at even increments $\Delta t_{p o}$ and at transits t_{s}.
$t_{s}-$ Star or sun transit time
$t^{r}, t_{p}^{\prime}-A s t$ and t_{p} are incremented during the simalation execuyion t^{\prime} and t_{p}^{\prime} are carried along to indicate the previous values of t and t_{p} respectively, occuring at even time increments Δt po and at transits $\Delta t_{\text {po }}{ }^{\circ}$
$\Delta t_{o} \Delta t_{p o}-$ F'ixed' time steps for the numerical integration of this -spacecraft equations of motion and of the matrix Riccati equation

$$
\left(\Delta t_{p o}=k \Delta t_{o} \text { for some integer } k \geq 1\right)^{\prime}
$$

$\Delta t, \Delta t_{p}-$ Variable time steps for the numerical integrations
The data-reduction mode of operation proceeds as follows. where the numbers correspond to the block numbers of Figurer 51.

1) Input data read in and all system varaables initialized.
2) The transit time data tape (generated via a previous transit time generation run) is read in to establish the next star (sun) observation time. Data on the tape includes star (sun) data, and "exact" state $\vec{X}_{\mathrm{F}}\left(t_{\mathrm{s}}\right)$ at the transit time for error calculation.
3) A determination is made of the value of integration time step $\Delta \dot{p}^{\prime}$: The value is computed from

$$
\Delta t_{p}=\operatorname{minimum}\left[E_{s}-t_{p} \cdot \Delta t_{p o}-\left(t_{p}-t_{p}^{\prime}\right)\right]
$$

1514
which forses $t_{p}+\Delta t_{p}$
to the nexi transit time t_{s} or to the next time value occuring at an even time increment $\Delta t{ }_{p o}$.
4) The value of the integration time step Δt is determined from

$$
\Delta t=\operatorname{minimum}\left[t_{s}-t, \Delta t_{o}-\left(t-t^{\prime}\right)\right]
$$

This guarantees that $t+\Delta t$ will equal either the next transit time or the next time value at the increment Δt_{0}.
5) A variable order Runge-Kutta numerical integration is used to solve Equation (44) over the interval

$$
[t, t+\Delta t] ; \bar{X}(t+\Delta t), \dot{\bar{X}}(t+\Delta t), \text { and } E(t+\Delta t) \text { are computed. }
$$

6) This block computes the external disturbance torques $\vec{\tau}$ for the data-reduction vehicle model.
7) A check is made if tume, t, is at a star (sun) transit or the end of a covariance matris integration interval.
8) The covariance matrix is extrapolated from t_{p} to $t_{p}+\Delta t$ by a variable step Eulex integration of the matrix Ricatti equation or the linearized state transition matrix, for the conventional Kalman filter, or the square root Kalman filter formulation, respectively. Also computed are

$$
P(t+\Delta t) \text { or } \dot{\Phi}(t \div \Delta t) \text { respectively. }
$$

9) If current time is at a star transit, the Kalman filtering of the measurement is initiated.
10) The star and slit causing the transit are identified.
11) The scalar measurement and partial derivatives of the measurement model with respect to stat a are computed from knowledge of propagated state, orientation of the identified star (sun) in inertial space, and the sensor slit causing the transit.
12) The estimation state and the covariance matrix are updated from the propagated "before" update values

$$
\vec{X}_{b}\left(t_{s}\right) \text { and } P_{b}\left(t_{s}\right) \text {, } H\left[\vec{X}_{b}\left(t_{s}\right)\right] \text {, and } \vec{H}_{x}\left[\vec{X}_{b}\left(t_{s}\right)\right]
$$

The "after" update quantities $\vec{X}_{a}\left(t_{s}\right), \dot{\vec{X}}_{a}\left(t_{s}\right), E_{a}\left(t_{s}\right), P_{a}\left(t_{s}\right)$, and $\dot{P}_{\mathrm{a}}\left(\mathrm{t}_{\mathrm{s}}\right)$ are the outputs of this block.

On-line analysis: To expedite studies with the simulation, an on-line analysis capability CRT display is used. This feature is mechanized so that all variables of interest are available for display during a simulation. Beside the basic display capability, considerable simulation control is exercised through the CRT by light pen.

Specific on-line control functions provided by the light pen are (1) the initiation of a simulation, (2) the capability to change variables for display by selection from a displayed directory of variable names with the light pen, (3) the capability to interrupt the simulation at any time during the course of a run whereupon all variables may be observed or parameter changes may be input into the simulation, and (4) a case-to-case display capability permitting the superposition of variables from different simulation cases. Figure 52 illustrates the display format, showing the display directory, plotted simulation variable, and light-pen control mechanization. Other features incorporated in the display are automatic scaling and variable display window length for modifying the resolution of displayed variables.

As implemented the display provides an extremely versatile and powerful on-line analysis tool, enabling rapid engineering decisions to be made on-line and allowing complete monitoring of the entire simulation.

Figure 52. CRT Display Format

Performance analysis: Experiments performed with the simulation were conducted to

- Establish the data requirements to maintain one-sigma aftitude accuracies of 5 arc seconds in the pitch angle θ and 30 arc seconds in the yaw and roll angles ψ and ϕ for a spin-stabilized, 3 rpm , low-altifude spaceeraft.
- Determine the sensutivity of the estimation accuxacyrto such parameters as spin rate, cone angle, inertia ràtio uncertainty, instrument noise
- Evaluate the operational status of the estimation algorithms

With regard to the latter, it is noted that on the CDC 6600 computer the data reduction portion of the simulation executes from 10 to 20 times fastar than real time, depending on the dimension (6 to 12) of the estimation state. Since execution time is directly proportional to the time step used for numerical integration of Equations (44), which in turn is inversely proportional to spin rate, the latter conclusion holds for spin rates up to 30 rpm .

The subsequent discussion describes results obtained with the simulation. These results were taken from simulation experiments conducted on the SDS Sigma V computer using a precision of 15 significant digits. In general, two types of results are presented - time varying and statistical. The former are taken directly from the CRT display, Figure 52 , and are intended primarily to illustrate several characteristics of the estimation process as a function of time. The statistical results are computed from errors in the estimation state at the transit tames and represent the steady state or converged behavior of the estimation process as the errors of the first 500 transits processed are not included in the statistical computations. For a given variable y s the statistics which are presented are the mean error

$$
\mu(\Delta y)=\frac{1}{N} \sum_{\mathrm{S}} \Delta \mathrm{y}_{\mathrm{S}}
$$

and the standard deviation of the error about the mean

$$
\sigma(\Delta y) \equiv \sqrt{\frac{1}{N} \sum_{S}\left[\Delta y_{s}-\mu(\Delta y)\right]^{2}}
$$

where \mathbb{N} transits are included in the statistics. Since the precise value of the estimation state is known from the transit time simulation at the true transit time t_{s} and not at the noise corrupted transit time $t_{s}+\Delta t_{s}$ which is processed by the estimation algorithm, the error is computed from

$$
\Delta y_{s}=y_{e}\left(t_{s}\right)-\left[\tilde{y}\left(t_{s}+\Delta t_{s}\right)-\Delta t_{s} \tilde{\tilde{y}}\left(t_{s}+\Delta t_{s}\right)\right]
$$

where (\sim) denotes the estimated value and () e denotes the true or exact value available from the transit simulation. Two sets of these statistics, computed before and after the update Equations (46) are applied, are available from the simulation.

Nominal transit data: To initiate the performance analysis effort, a nominal set of simulated transit time data was obtained using the following spacecraft initial conditions and parameter values:

$$
\begin{aligned}
\omega & =\left(0.2094^{\circ}, 18^{\circ}, 0^{\circ}\right) / \mathrm{sec} \\
\psi & =45^{\circ} \\
\phi & =190^{\circ} \\
\theta & =82^{\circ} \\
\bar{I}_{1} & =54.68 \text { slug- } \mathrm{ft}^{2} \\
I_{2} & =65.62 \mathrm{slug}-\mathrm{ft}^{2} \\
\mathrm{I}_{3} & =54.38 \mathrm{slug}-\mathrm{ft}^{2} \\
\mathrm{M} & =(0.516) 10^{-5}(\hat{i}, \hat{j}, \hat{\mathrm{k}})_{\mathrm{B}} \mathrm{ft}-\mathrm{Ib} / \mathrm{G} \\
\mathrm{~K} & =(0.143) 10^{-4} \mathrm{ft}-1 \mathrm{~b}-\mathrm{sec} / \mathrm{G}^{2} \\
\mathrm{P}_{1} & =(0.20754) 10^{-5} \mathrm{ft}-1 \mathrm{~b}-\mathrm{sec} / \mathrm{G}^{2} \\
\mathrm{P}_{2} & =-(0.7202) 10^{-4} \mathrm{ft}-1 \mathrm{~b}-\mathrm{sec} / \mathrm{G}^{2}
\end{aligned}
$$

All Rive torques were included in the model. Orbital parameters used for these simulations are

$$
\begin{aligned}
\Omega & =45^{\circ} \\
i & =97.38^{\circ} \\
\nu_{0} & =86^{\circ} \\
h & =500 \mathrm{~km} \\
\alpha_{\text {sun }} & =0 \\
\delta_{\text {sun }} & =0
\end{aligned}
$$

with a circular orbit assumed.
The starmapper is characterized by the cant angle

$$
\gamma_{\text {star }}=110^{\circ}
$$

and the slit plane rotations

$$
\gamma_{\text {sun }}=45^{\circ}, \alpha_{3}=-20^{\circ}, \text { and } \alpha_{5}=20^{\circ}
$$

A 20° fov is assumed for each instrument.
A star catelog consisting of the first one hundred brightest stars, down to a yisual magnitude of 2.74 , plus the sun was used. With an earth blocking angle $T=90^{\circ}$ assumed, the transit data depicted in Figure 53 were obtained. Shown in Figure 53 are the catalog number of the star, (Kef. 25), the visual
 the star transits (relative to the $20-\sec$ ond spin period), and the approximate separation of the transits from different slits, $\tilde{\Delta}_{\mathrm{t}}{ }_{s}$. To the right of the vertical time axis, *'s are used to indicate the relative position of the sighting time in the spin period. The particular stars which are sighted at any given time are indicated by the "star sighting windows" on the right-hand side of the axis. Each vertical bar applies for the period of time shown with it. For example, the fourth bar shows that for the time period 850 to 950 seconds, five stars (17518, 18133, 18643, and 18144) are sighted.

Initial data reduction: Initial data reduction experimeats were undertaken primarily to obtain a working value of the Q matrix appearing in Equation (45) for the estimation of spacecraft rates and the Euler angles. Initial condition errors for these variables were taken as

$$
\begin{align*}
& \Delta \omega=\left(0.2094^{\circ} *-0.1^{\circ},-0.1^{\circ}\right) / \mathrm{sec} \\
& \Delta \psi=0.5^{\circ} \tag{52}\\
& \Delta \psi=1^{\circ} \\
& \Delta \theta=1^{\circ}
\end{align*}
$$

with the other vehicle parameters fixed at

$$
\begin{aligned}
& \mathrm{M}=(0 ., 0 ., 0 .) \\
& \mathrm{K}=(0.2) 10^{-4} \mathrm{ft}-\mathrm{Ib}-\mathrm{sec} / \mathrm{G}^{2}
\end{aligned}
$$

and

$$
\Delta \mathrm{A}=\Delta \mathrm{C}=0.01 / \mathrm{I}_{2}
$$

An instrument noise value of 3 are seconds (one sigma) was assumed. Trial and error was used to determine values of Q which maintain steady state values of the diagonal elements of the covariance matrixs at levels which seem reasonable for the instrument being used. Valnes of Q were accepted when the covariance behavior exhibited in Figure 54 was achieved. Shown in Figure 54 are the values of the square root of the diagonal elements of the covariance matrix

Figure 53. Transit Data for Nominal Case

Figure 54. Nominal Case - Behavior of the Diagonal Elements of the Covariance Matrix

$$
\sqrt{\mathrm{p}_{\mathrm{i} i}}=\sqrt{\operatorname{Ex}\left(\Delta \mathrm{X}_{\mathrm{i}}^{2}\right)} \quad, \quad i=1,6
$$

labeled SIGWX, SIGWY, SIGWZ, SIGPHI, and ISGTHET, respectively. Steadystate values in the element corresponding to pitch, θ, (SIGTHET) are noted to be approximately 3 arc seconds with somewhat higher values in ψ and ϕ. The additive noise values used to attain this performance were

$$
\begin{equation*}
q=(0.005,0.02,0.25,5.0,5.0,5.0) 10^{-4} \tag{53}
\end{equation*}
$$

where

$$
q_{i i}=q_{i}^{2}
$$

with units of $(\mathrm{deg} / \mathrm{sec}) / \sqrt{\mathrm{sec}}$ associated with q_{i}, q_{2}, and q_{3} and units of $\mathrm{deg} / \sqrt{\mathrm{sec}}$ associated with q_{4}, q_{5}, and q_{6}. Values of q are quoted since they are the normal input data to the simulation. It is noticed that the value of q_{1} is considerably smaller than q_{3}, although these values correspond to ω_{x} and ω_{z} and could be expected to be symmetrical. However, these values were established by selectively increasing the value of q_{2} and q_{3} until the behavior of P_{22} and P_{23} as exhibited in Figure 54 was achieved. Since P_{11} P_{33}, q_{1} was not increased. Figures 55 through 59 illustrate the behavior of the estimation process with these values of additive noise.

The convergence of the estimation process from the initial condition errors, Equation (52), is shown in Figures 55 and 56 , where the convergence obtained over the first spin period and the convergence to steady-state errors over 10 spin periods are exhibited. The variables $\omega_{x}, \omega_{y^{\prime}} \omega_{z}, \psi, \phi, \Delta \omega_{x}, \Delta \omega_{y}$, $\Delta \omega_{z}, \Delta \psi, \Delta \phi$, and $\Delta \theta$ are shown and labeled WX, WX, WZ, PSI, PHI, DWX, DWY, etc., respectively. Note that the gross rate and attitude errors are eliminated by the processing of the first 20 transits during the first 10 seconds of the data reduction, while complete convergence is obtained by the end of the tenth spin period after processing 200 transits. Examination of the $\Delta \theta$ plot in Figure 55 reveals an error buildup from 0 to 200 are seconds in the pitch error over the 10 to 20 second time interval. This is extrapolation exrox due to the error in the estimate of \bar{w} over that period of time.

Figure 57. shows the steady-state attitude errors over the entire 2000-second simulation. The first 200 seconds are not plotted to permit a meaningful choice of scale. An increase in the attitude errons is apparent at approximately 900 seconds. Referxing to Figure 53 , it is seen that this error buildup is due to the loss of transits from stars No. 6427 and No. 4041 as . they disappear over the horizon.

Figure 55. Nominal Case - Convergence Over One Spin Period

Figure 56. Nominal Case - Convergence over 10 Spin Periods

Figure 56. Nominal Case-Convergence over 10 Spin Periods (Concluded)

Figure 57. Nominal Case - Attitude Errors After Convergence

Figure 58. Nominal Case - Attitude Errors After Convergence Over Five Spin Periods

Arc sec

Arc sec

Arc sec/sec

Arc sec $/ \mathrm{sec}$

Arc sec $/ \mathrm{sec}$

อxn.ธิไี

Converged attitude errors are shown on expanded time scales in Figure 58 and 59. From these it is seen that the pitch angle θ exhibits a much higher sensitivity to the measurement error than the other attitude angles. Also, it is noted that the period of the yaw and roll errors, $\Delta \psi$ and ϕ respectively have the period associated with ψ and $\phi_{\text {. }}$

Eigures 60 through 62 depict a second data reduction simulation identical to that discussed in the previous paragraphs, except that fewer star sightings are used. For this simulation stars down to a visual magaitade of 1.7 are used, effectively reducing the number of transits processed by approximately one half. No significant difference is noted in the behavior of the covariance matrix diagonal elements, Figures 54 compared with Figure 60.

The short-texm convergence over the first spin period, Figure 61, is less smooth with the reduced number of transits (12 as opposed to 20) as shown in Figure 55; however, gross attitude errors are eliminated. The longterm convergence, Figure 62, exhibits latger overshoot in the error estimates than shown in Figure 56 , but again convergence to steady-state values is achieved in 10 vehicle rotations.

Steady-state statistics for a series of data-reduction simulations (including the two previousiy described) based on the nominal transit case are presented in Figure 63. This figure presents the statistics of the attitude errors as a function of instrument noise $\sigma_{\text {I }}$ and for data reduction simulations using different numbers of star sightings characterized by starts down to a visual magnitude of 2.5 and 1.7. The values of additive noise, Equation (53), are used for all values of instrument noise. Each statistic is presented in the form of an error band which represents the spread between the before and after update values of the attitude errors at the transit times. With the exception of the mean error in pitch, $\mu(\Delta \theta)$, the larger error values represent the performance for the simulations using fewer star sightings characterized by a imiming visual magnitude of 1.7. Approximately 1000 transits are processed for this case, while approximately 2000 are processed for the 2. 5 case.

Pitch error is sigaificanntly smaller than the error in the other axes. This is due to higher sensitivity of the measurement to pitch as exhibited in Figure 58. The width of the error bands is relatively small and indicates that the attitude errors over that portion of the vehicle rotation when no measurements are available are not significantly different from those when measurements are available. This is substantiated by the continuous error curves shown in Figures 58 and 59.

Simulation results described in the following paragraphs are based, unless otherwise noted, on the nominal case just discussed.

Instrument noise uncertainty: Besides simplicity of implementation, the explicit appearance of the measurement statistics in the estimation, Equation (46), provides a strong motivation for the selection of the Kalman filter to solve the attitude determination problem. However under operational conditions the measurements stätistics of the starmapper may not be known

Figure 60. Nominal Case - Behavior of the Diagonal Elements of the Covariance Matrix with Reduced Number of Sightings

Figure 61. Nominal Case - Convergence Over One Spin Period With Reduced Number of Sightings

Figure 62. Nominal Case - Convergence Over 10 Spin Periods With Reduced Number of Sightings

Figure 62. Nominal Case - Convergence Ovex 10 Spin Periods With Reduced Number of Sightings (Concluded)

Figure 63. Nominal Case - Attitude Errors as a Function of Instrument Noise
precisely. Thus, the accuracy to which attitude can be estimated will be impaired by the use of an assumed value of instrument variance which does not represent the true variance.

Simulation results are presented in Figures 64 and 65 , which demonstrate the effect of instrument noise uncertainties. Attitude and rate errors are plotted as a function of the ratio $\sigma_{I}^{\prime} 7 \sigma_{I}$ where σ_{I}^{\prime} represents the assumed value of instrument variance. Erxors are plotted for two values of true instrument variance σ_{1}. For these simulations the exact transit times are corrupted by Gaussian noise of vaxiance $\sigma_{1} /|\bar{\omega}|$, while σ_{I}^{\prime} is used in the computation of measurement variance σ_{H} appearing in Equation (46). Generally, the errors at the point where $\sigma_{1}=\sigma_{1}^{\prime}$ are the minimum errors or very close to the minimum. Secondly, these results indicate that in an operational data-reduction system it is safer to underestimate rather than overestimate the quality of the starmapper.

Tnertia ratio determination: In an operational environment, initially at least, the spacecraft principal moments of inertia will not be known with sufficient precision to permit accurate extrapolation of the spacecraft equations of motion. Thus, estimation of the inertia ratios will have to be performed using the algorithms discussed. The following paragraphs describe simulation experiments andertaken specifically to obtain estimates of these parameters.

Results of a first cut at the estimation of the inertia ratios are shown in Figure 66 where the errors in A and θ for a data reduction simulation in which estimation of the inertia ratios, along with vehicle rates and attitude, was initiated at time $t=0$. Although the errors are converging at the termination of the simulation, these results are not satisfactory for the mission being simulated. For this mission the spacecraft is in the earth's shadow approximately 2000 seconds; consequently, it is desirable to obtain good convergence in this period of time. The poor performance exhibited by the filter in this simulation is due primarily to the relatively large updates experienced by the inertia ratios A and C at the first few transit measurements. As seen from Figure 66, the update is not only large but incorrect in sign. This is not surprising since the initial measurement error prim marity reflects the large initial uncertainties in attitude and not the uncertainty in inertias. Since the initial corrections are proportional to the initial assumed variance values, this problem can be controlled by suitably modifying the variances on A and C. However, such an approach is undesirable since it is initial condition dependent, and by reducing the initial variances on A and C the sensitivity of the tilter to uncertainties in the inertias may be lost.

Alternately, estimation of these parameters can be initiated at some time Later than the time at which estimation of the vehicle rates and attitude is intiated. With this approach, the objective is to obtain convergence to a measurement exror which is primarily due to the uncertainty in the inextia values. Results of implementing this approach are shown in Figures 67 and 68.

Figure 64. Attitude Errors as A Function of Instrument Noise Uncertainty

Figure 65. Rate Errors as a Function of Instrument Noise Uncertainty

Figure 66. Inertia Ratio and Pitch Error with Inertia Ratio Estimation Initiated at $t=0$

Figure 67. Rate and Attitude Errors with Inertia Ratio Estimation Initiated at $t=550 \sec \left\langle Q_{77}=Q_{88}=10^{-7}, \Delta A=0.01\right)$

Figure 68. Inertia Ratio Error and Covariance Behavior and Inertia Ratio Estimation Initiated at $t=550 \mathrm{sec}$ $\left(Q_{77}=Q_{88}=10^{-7}, \Delta A=0.01\right)$

Figure 69. Rate and Attitude Errors with Inertia Ratio Estimation Initiated at $t=550 \mathrm{sec}$
$\left(Q_{77}=Q_{88}=10^{-9}, \Delta A=0.01\right)$

Figure 70. Inertia Ratio Error and Covariance Behavior with Inertia Ratio Estimation Initiated at $\mathrm{t}=550 \mathrm{sec}\left(\mathrm{Q}_{77}=\mathrm{Q}_{88}=10^{-9}, \Delta \mathrm{~A}=0.01\right)$

These results are from a simulation identical to that described in the "Initial Data Reduction ${ }^{\text {th }}$ discussion except that inertia ratio values of

$$
I_{1}=I_{3}=54.5 \operatorname{slug}-\mathrm{ft}^{2}
$$

were assumed and estimation of A and C initiated at 550 seconds. Examinam tion of attitude errors in Figure 67 shows peak-to-peak, steady-state excursions of approximately ± 100 arc seconds in $\Delta \psi$ and $\Delta \phi$ and 120 arc seconds in θ in the time span up to 550 seconds. A very rapid convergence is obtained in all variables once the estimation of A and C is initiated. The errors in A and C, labeled $D A$ and $D C$, along with the square root of the P_{77} and P_{88} elements, Labeled SIGA and SIGC, are shown in Figure 68. The steady-state values of the se covariance elements are maintained by additive noise values $Q_{77}=Q_{88}=Q_{10^{-7}}$. Since these steady-state values are high and are observed to create rather large excursions in the estimates of A and C, an identical simulation was performed with $Q_{77}=Q_{88}=10^{-9}$. The results, presented in Figures 69 and 70 , show improved estimation accuracy in all variables and particulanly in A and C where improved accuracy by approximately an order of magnitude is evident.

Results of a third such simulation are shown in Figures 71 and 72. For this case fixed inertia values of

$$
I_{1}=I_{3}=53 \text { slug-ft }{ }^{2}
$$

were used over the first 550 seconds of the simulation steady-state, peak-tom peak attitude errors with these values are seen to be ± 400 arc seconds in ψ and $\phi \pm 60$ are seconds in θ. Again, rapid convergence to acceptable values is noted in all variables once the estimation of A and C is intiated.

These results demonstrate that the estimation of the spacecraft inertia ratios can be accurately estimated with the Kalman filter and that the most suitable approach is to initiate the estimation of these parameters at a point in time after convergence from initial attitude and rate errors has been achieved.

Parameter Estimation: Previously, the estimation of inertia ratios was discussed and results presented which indicate that these parameters are readily estimated (observable) with the estimation algorithm. Also, it was noted that the algorithms were programmed so that the spacecraft magnetic moment and eddy current coefficients, divided by I_{2}, could optionally be inm cluded in the estimation state. Generally, these parameters were not included for two reasons. First, initial data-reduction simulations indicated that acceptable results could be obtained by assuming an external torque model with no magnetic moment and an eddy current coffficient in error by 50%. Secondly, data-reduction simulations in which the eddy current coeffi--cient was treated as a variable indicated that errors in the value of the eddy current coefficient of this magnitude did not significantly degrade attitude estimation. This is shown in Figure 73 where the variance of the errors and

Figure 71. Rate and Attitude Errs with Inertia Ratio Estimation Initiafed at $t=550 \mathrm{sec}$
$\left(Q_{77}=Q_{88}=10^{-9},(\Delta A=0.025)\right.$

Figure 72. Inertia Ratio Error and Covariance Behavior with Inertia Ratio Estimation Initiated at $t=550 \mathrm{sec}$ $\left(Q_{77}=Q_{88}=10^{-9}, \Delta A=0.025\right)$

Figure: 73. Attitude Eincors asia Functions of" E'ddy Cunnent, Eoefficienti
the mean pitch error are ploted as a function of the assumed eddy current coefficient value. Note that the mean value of the pitch errors, $\mu(\Delta \theta)$, before and after update have a crossover point at approximately the true value of K . Specifically, for values of K larger than the true value, larger mean errors are experienced before the update and conversely for values of K less than the true value.

Results of a simulation in which 12 variables ($\omega, \psi, \phi, \theta, A, C, \bar{M}^{y}, K^{\prime}$) were estimated are presented in Figures 74 through 76. For this simulation vehicle rates and Euler angles were the only variables estimated until approximately 570 seconds, at which time 12 variable estimation was initiated. Figure 74 shows that no significant improvement in the estimation of the rate and attitude variables, except ω_{y}, takes place over the last 400 seconds of the simulation. The improvement in the estimate of ω_{y} is caused by the convergence of K^{\prime} to the correct value. This is evidenced in Figure 75, where $\Delta \mathrm{K}$ ', labeled DK, is shown. Improved estimates of K^{\prime} can be expected to improve the estimate of $\left.{ }^{6}\right)_{y}$ since for the symmetric vehicle $\dot{w}_{y \sim} H^{\prime}$. Also shown in Figare 75 are the inertia ratio errors for initial fixed errors of -0.001 . Convergence to errors of 0.001 in the ratios is the limit of the estimation process. The behavior of the square root of covariance diagonal element corresponding to K^{\prime},
$\sqrt{P_{12,12}}$, labeled SIGK, is controlled by an additive noise value $Q_{12,12}=10^{-15}$ Apparently a smaller value would be more suitable. Results of estimating Mr are shown in Figure 76. The errors, labeled DMX, etc., exhibit little or no tendency to converge. These results are inconclusive insofar as the estimation of M^{\prime} is concerned, but it is quite clear from F'igure 75 that K^{\prime} can be estimated accurately.

Numerical Integration: Two major factors in determining the computing time required for data reduction are the integration time step, Δt, and the order of the Runge-Kutta integration method used to extrapolate the vehicle equations of motion (44) from transit to transit. Time step is the most important parameter as the number of evaluations of the right-hand side of both the Riccati equation and vehicle equations of motion (45) depend linearily on it, whereas the integration order determines only the number of evaluations of the spacecraft equations of motion. Attitude accuracy as a function of integration step for second, third, and fourth order Runge-Kutta are presented in Figures 77 and 78. These results are based on the nominal 3 -rpm, $2000-$ second transit data. The most important point to note is that the fourth-order results are relatively insensitive to step size over the interval considered. Since the execution time quoted earlier is based on $\Delta t=0.5$ second, fourthorder Runge-Kutta simulations, it can be concluded that execution times considerably better than 10 to 20 times faster than real time can be realized on the CDC 6600 computer. Second-order results are slightly worse than the fourth order. The most starting result is the almost divergent behavior of the third-order method which one would intuitively expect to lie between the second and fourth order. This is due to the particular choice of third-order implementation that is used in the simulation where a form due to Huen (Ref. 26) rather than the more symmetrical form due to Kutta is used. Huen's equations

Figure 74. Vehicle Rate and Attitude Errors - 12 Variable Estimation State

Figure 75. Inertia Ratio, Eddy Current Coefficient 12 Variable Estimation State

Figure 76. Magnetic Moment Estimation-12 Variable Estimation State

Figure 77. Yaw Error as a Function of Integration Time Step for Second, Third, and Fourth Order Runge-Kutta

Figure 78. Pitch Error as a Function of Integration Time Step for Second, Third, and Fourth Order Runge-kutta

$$
X_{n+1}=X_{n}+1 / 4\left(K_{o}+3 K_{2}\right)
$$

where

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{o}}=\Delta \mathrm{tf}\left(\mathrm{t}_{\mathrm{n}^{\prime}} \mathrm{X}_{\mathrm{n}}\right) \\
& \mathrm{K}_{1}=\Delta \mathrm{tf}\left(\mathrm{t}_{\mathrm{n}}+\Delta \mathrm{t} / 3, \mathrm{X}_{\mathrm{n}}+\mathrm{K}_{\mathrm{o}} / 3\right) \\
& \mathrm{K}_{2}=\Delta \mathrm{t}\left(\mathrm{t}_{\mathrm{n}} \mathrm{X} 2 \Delta+/ 3, \mathrm{X}_{\mathrm{n}}+2 \mathrm{~K}_{1} / 3\right)
\end{aligned}
$$

were chosen since they are simpler than Kutta's. However, as the results indicate, the unsymmetric sampling used to integrate $f(t, x)$ over the interval $\left[t_{n} t_{n}+\Delta t\right]$ is inappropriate for the integration of Equation (44).

Fffect of unmodeled torques: In Figure 63 the errors in the attitude estimates do not go to zero with the instrument noise. That this is due primarily to the differences which exist between the external torque models used for the transit generation and the data reduction is shown in Figures 79 through 81. In these figures, comparable attitude errors are shown for identical datareduction simulations based on the nominal transit case where a complete torque model is used and on transit data derived for a torque model identical to that used in the estimation algorithms. As would be expected, the errors for the transit data derived from the simplified torque model are consistently smaller. Further, it is noted that both the mean and variances go to zero with the instrument variance for the former.

Additive Noise Considerations::One of the most critical problems which must be faced in the application of the filter equations (45) is the determination of the additive noise matrix Q. Trial and exrox was used to determine the values, Equation (53), used in the data reduction simulations discussed thus far. Apparently, Ref. 27 is the only method available for its determination. During the performance analysis effort these values were applied to several data reduction simulations characterized by variations in a number of different parameters such as spin rate, number of celestial sightings per spacecraft rotation, starmapper cant angle, and instrument noise. Generally, these parameters yielded satisfactory results. Thus, for a real mission where these parameters are well known, Q values established by simulation for a given configuration will be applicable to the actual data reduction. Also, beside a working set of values, simulation can be used to establish the sensitivity of the estimation process to variations in Q and to determine the best direction in optimizing the values used.

Figures 82 through 84 show the sensitivity of attitude errors to variations in the additive noise values q_{4}, q_{5}, and q_{6}. Each of the se values was individuall? varied about the nominal values given in Equation (53). Recalling that $Q_{i i}=q_{i}^{2}, i=1,6$, variations in Q of from three to four orders of magnitude can be tolerated and still produce acceptable results. The q_{6} curve shows quite clearly that considerable optimization can be performed with a given set

Figure 79. Comparison of Yaw Errors for Different Torque Models and and Number of Sightings as a Function of Instrument Noise

Figure 80. Comparison of Roll Errors for Different Torque Models and Number of Sightings as a Function of Instrument Noise

Wigure 81. Comparison of Pitch Errors for Different Torque Models and Number of Sightings as a Function of Instrument Noise

Figure 82. Sensitivity of Yaw Errors to Additive Noise

Figure 83. Sensitivity of Roll Errors to Additive Noise

Figure 84. Sensitivity of Pitch Exrors to Additive Noise
of additive noise values. In Figures 85 through 87 attitude errors as a function of instrument noise are compared for different values of additive noise. Errors are shown for the nominal addttive noise, Equation (53),

$$
q(\text { nominal })=(0.005,0.02,0.25,5 ., 5,5 .) 10^{-4}
$$

and for two modifications about the nominal characterized by

$$
\begin{equation*}
q_{1}=(0.025) 10^{-4}, q_{6}=(1 .) 10^{-4} \tag{54}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{1}=q_{3}=(0.25) 10^{-3}, q_{6}=(1 .) 10^{-4} \tag{55}
\end{equation*}
$$

The first modification is based on the results presented in Figures 83 through 85 and similar studies conducted by varying q_{1}. The second modified set was tested to determine the effect of high Q values in the rate variables. Considerable umprovement is noted from the nominal to the first modified set and for all values of instrument noise, although slightly higher mean errors are observed. Note that increased q values in the second set considerably degrade the attitude accuracy and in particular increase the mean attitude errors.

Real versus idealized star fields: Thas noted earlier that the loss of transits from stars as they dissapear over the horizon can cause considerable variations in the steady-state estimation error. To better quantify this effect, several data-reduction simulations were conducted using transit data derived from an idealized star catalog consisting of four real stars (5605, 4041, 17518, and 17262 from Figure 53) and by suppressing the earth blocking feature of the transit generating simulation. Figures 88 through 90 show the steady-state attitude errors achieved with the idealized star field as comm pared with a real star field. Considerably better attitude accuracy is achieved in all axes with the ideallzed star field, particularly in pitch where an improvement of approximately 50% is noted, although fewer transits were processed tor the idealized star field. The additive noise values, Equation (55), were used to reduce both sets of data.

Starmapper eant angle: With the exception of the attitude errors presented in Figures 91 through 96, all simulation results were obtained for a starmapper cant angle $y=110^{\circ}$. This value was used extensively since, as shall be shown in subsequent sections, it provides the most favorable conditions for daylight viewing, However, simulations based on cant angle values of $\gamma=130^{\circ}$ and $\gamma=90^{\circ}$ were conducted to determine the affect of cant angle variations on attitude estimation errors. Attitude errors for $\gamma=130^{\circ}$ are shown in Figure 91 and for $\gamma=90^{\circ}$ in Figures 93 through 95 , For the latter, results are presented for two difierent values at limiting. star magnitude. The transit data for these conditions are depicted in Figures 92 and 96 . Note that the $\gamma=130^{\circ}$ star field is much less favorable than the $y=90^{\circ}$ data; therefore, compaxis ons on the basis of attitude accuracies achieved are not meaningful.

Figure 85. Comparison of Yaw Errors for Different Values of Additive Noise

Figure 86. Comparison of Roll Errors for Different Values of Additive Noise

Figure 87. Comparison of Pitch Errors for Different Values of Additive Noise

Figure 88. Comparison of Yaw Errors for Real and Idealized Star Fields

Figure 89. Comparison of Roll Errors for Real and Idealized Star Fields

Figure 90. Comparison of Pitch Errors for Real and Idealized Star Fields

Figure 91. Attitude Errors as at Function of Instrument Noise for $\gamma^{\prime}=130^{\circ}$

Figure 92. Transit Data for $\gamma=130^{\circ}$

Figure 93. Yaw Error as a Function of Instrument Noise for $\gamma=90^{\circ}$

Figure 94. Roll Error as a Function of Instrument Noise for $\gamma=90^{\circ}$

Figure 95. Pitch Error as a Function of Instrument Noise for $\gamma=90^{\circ}$

Figure 96. Transmit Data for $\gamma=90^{\circ}$

However, two points are shown quite clearly when the exrors for the two cant angles are compared. First, it is noted that pitch angle θ is determined with less accuracy relative to yaw and roll for the $\gamma=130^{\circ}$ case. At $\sigma_{1}=$ 3 seconds, for example.

$$
\frac{\sigma(\Delta \theta)}{\sigma(\Delta \psi)}=0.75
$$

for $\gamma=130^{\circ}$, while for $\gamma=90^{\circ}$

$$
\frac{\sigma(\Delta \theta)}{\sigma(\Delta \psi)}=0.25
$$

Also, mean errors in pitch are seen to exceed the mean exrors in yaw and roll. Secondly, in spite of the larger pitch errors at $\gamma=90^{\circ}$. This is to be expected since at $\gamma=90^{\circ}$ the measurements are made in the pitch plane and yield more information about pitch, whereas at $\gamma=130^{\circ}$ sensitivity to roll and yaw is increased.

Reduced number of stars: Simulation results presented thus far have used sightings from three to seven celestial bodies per spacecraft rotation. Statistical results are presented in Figures 97 through 99 for one and two sightings per spacecraft rotation. These results were obtained from datareduction simulations identical to the nominal except that after 1000 seconds only one or two stars were used for the data reduction. The modified additive noise values, Equations (54), were used. Time-varying results from a similai single-star simulation are shown in Figure 100. As can be seen from the
behavior of the variable $\sqrt{P_{66}}$ (labeled SIGTHET), data reduction with a single star was initiated at 600 seconds. Star No. 17518 is used in the interval 600 to 2000 seconds. The results presented in Figure 100 are for an instrument variance, $\sigma_{I}=3$ arc seconds.

Steady-state results obtained with two stars are generally satisfactory, but when compared with the nominal, the se results are seen to degrade in pitch accuracy by approximately 1.5 arc seconds for all values of instrument noise. However, the single-star sighting results are not satisfactory and at best appear to be rather anomalous in that attitude errors do not increase monotonically with instrument noise. In particular, the results for large instrument noise are generally better than for smaller instrument noise. This suggests that for the single-star data reduction smaller values of additive noise would be more appropriate. An examination of the $\Delta \theta$, Figure 100 , over the interval from 1200 to 1220 seconds bears this out. Negligible corrections are seen to take place at the transit measurements at approximately 1207 seconds. Further, the steady-state values at $\sqrt{P_{66}}$ are considerably higher than the

The results presented in Figures 97 through 100 indicate that the use of sightings from two celestial bodies can maintain satisfactory filter.

Figure 97. Comparison of Yaw Errors using One and Two Star Sightings/Vehicle Rotation

Figure 98. Comparison of Roll Errors using One and Two Star Sightings/Vehicle Rotation

> Nominal
> ------ *17518+17262
> ——— *17518
> —_ _ * 18643

Figure 99. Comparison of Pitch Errors using One and Two Star Sightings/Vehicle Rotation

Figure 100. Estimation Results using One Star after 600 sec

Figure 101. Convergence using Two Celestial Bodies

Figure 101. Convergence using Two Celestial Bodies (concluded)
performance if convergence is obtained with sightings from more than two bodies. Further work is required to establish whether adequate convergence can be obtained with two bodies, although the results are from a data-reduction simulation using sightings from the sun and star No. 19242 (See Figure 53). It is seen that after processing of 48 transits convergence to pitch errors of approximately 50 arc seconds was obtained. Referring to Figure 56 where the convergence is shown for approximately 20 transits per vehicle rotation, it is seen that comparable errors in pitch exist after the processing of from 40 to 80 transits.

Spin rate, cone angle results: A nominal spacecraft configuration characterized by a $3-\mathrm{rpm}$ rate and a 0.5° cone angle was used to obtain simulation results presented thus far. Results for other configurations are shown in Figures 102 through 104 for a $1-\mathrm{rpm}, 0.5^{\circ}$ cone and in Table 6 for 3 to 9 rpm , 0 to 1° cone.

The attitude errors shown in Figures 102 through 104 are for 4500 -second, data-reduction simulations based on transit data derived using parameters identical to the nominal except for the $1-\mathrm{rpm}$ rate. Two sets of results using stars down to a limiting magnitude of 2.5 and' 1.7 are presented. Approximately 1100 and 620 transits were processed for the two cases. Thus, the two cases represent the processing of sightings from three and five stars per vehicle rotation, respectively. The nominal additive noise values, Equation (53), were used.

Referring to the attitude errors for the $3-4 \mathrm{pm}$ nominal (Figure 63), it is seen that the 1-rpm results compare quite favorably and are somewhat better in the yaw and roll axes. Thus, it appears that acceptable attitude estimation can be performed at spin rates down to 1 rpm if sightings from at least three celestial bodies per vehicle rotation are available. The data processing load is also conside rably lessened at slower spin rates, and at 1 rpm the estimation algorithms as mechanized execute from 30 to 60 times faster than real time on the CDC 6600.

Table 6 shows attitude errors, for several values of spin rate and cone angle. All results are from 1000-second simulations based on transit data derived from parameters identical to the nominal except for the rate and cone angle. The high additive noise values, Equation (55), were used and are seen to cause mean errors that are relatively large for all rates and cone angles. This effect was noted earlier from these noise values which were used on the nominal 3 rpm transit data, Figures 85 through 87.

While it is difficult to deduce parametric information from Table 6, the results indicate that the estimation of the pitch angle, θ, degrades by approximately 1 arc second as the cone angle increases from 0 to 1°. Also, since the high mean errors can be attributed to the choice of additive noise values, no significant relationship is apparent between spin rate and estimation accuracy.

Figure 102. Yaw Errors as a Function of Instrument Noise for $|\bar{\omega}|=1 \mathrm{rpm}$

Figure 103. Roll Errors as a Function of Instrument Noise for $|\bar{\omega}|=1 \mathrm{rpm}$

Figure 104. Pitch Errors as a Function of Instrument Noise for $|\bar{\omega}|=1 \mathrm{rpm}$

TABLE 6. - SPIN RATE, CONE ANGLE RESULTS

σ_{I}	Cone Angle	$\|\bar{w}\|$	Transits Processed	$\mu(\Delta \psi)$	$\sigma(\Delta \phi)$	$\mu(\Delta \phi)$	$\sigma(\Delta \phi)$	$\mu(\Delta \theta)$	$\sigma(\Delta \theta)$
arcsec	deg	rpm		are sec	are sec	are sec	are sec	arc sec	arc sec
3	0	3	840	-3.16	5.02	2. 19	4.97	1. 14	3. 36
		6	1680	-2.84	4.77	2.23	4.27	1.69	1.24
		θ	2460	-1.70	3.79	2.82	3.87	1.92	1.24
	1	3	840	-1.23	5.07	2. 30	5.82	1.03	1.95
		6	1680	-3. 82	4.92	4. 14	5.07	2.42	1.69
		9	2460	-2.82	5.27	3.20	5.13	2.71	1.40
10	0	3	840	-6.64	10.10	6.58	8.51	3. 74	3.10
		6	1680	-6. 55	9.67	7.20	7,36	5.86	2.67
		9	2460	-3.66	8.22	9.23	7.94	6.94	2.89
	1.	3	840	-1.83	9.04	7.23	11.33	3.55	4. 13
		6	1680	-7.74	9.58	11.09	9.87	6.57	3.30
		9	2460	-4.50	10.58	9.19	11,24	7.76	3.52

System simulation results and conclusions: An attitude determination system simulation has been described and data reduction simulation results presented which demonstrate the performance of the attitude estimation algorithms for a variety of operating conditions. The major results and conclusions of the system simulation effort are summarized in the following paragraphs.

For a nominal spacecraft configuration characterized by a 3 wrpm spin rate, the data reduction algorithms execute 10 to 20 times faster than real time on the CDC 6600 computer using a numerical integration step size of 0.5 second. Thus, from the standpoint of computer run time, the algorithms, as implemented, form the basis of an operational data-reduction system. This conclusion is strengthened by simulation results that indicate that satisfactory attitude estimation can be obtained with larger integration time steps and a consequent decrease in computer run time.

Simulation results obtained from the nominal configuration by treating instrument accuracy and number of celestial sightings per vehicle rotation as parameters indicate that convergence to steady state errors in pitch of 5 are sec can be achieved with sightings from three celestial bodies and maintained with two sightings for starmapper accuracies of 5 to 10 arc sec, Generally, pitch was determined with better accuracy than roll and yaw. However, in all cases for the number of sightings and instrument accuracies quoted, steady state errors well within 30 arc sec were achieved. In all cases, satisfactory results were obtained with an assumed external model grossly different than the torque model used to generate the simulated transit data.

The effect of instrument noise uncertainty was examined by using variance values in the estimation equations (59) which did not represent the variance of the noise used to corrupt the transit data. Results indicated that it is safer to underestimate, rather than overestimate, the accuracy of the star~ mapper. For the long-term application of the filter equations, it is apparent that if the measurement instrument degrades as a function of time, because of the results obtained with an overestimation of the instrument performance.

Data reduction simulations undertaken to obtain estimates of fixed spacecraft parameters showed that it was possible to obtain satisfactory estimates of fixed spacecraft parameters showed that it was possible to obtain satisfactory estimates of the inertia ratios and eddy current coefficient normalized to I_{2}, However, estimation of the spacecraft magnetic moment characteristics does not appear possible. The most satisfactory approach to the estimation of the inertia ratios was to initiate the estimation of the inertia ratios at a point in time after the estimation of the spacecraft rates and Euler angles was initiated.

Wstimation accuracy oan be considerably improved by using sightings from celestial bodies which are regularly spaced.

The majority of simulations conducted assumed a starmapper cant angle of 110°, orienting the optical axis of the starmapper 20° out of the spin plane. This angle was used because it provides the most favorable conditions for
daylight operation. Thas result is established in the celestrial sensing system design section. However, simulation results show that pitch can be most accurately estimated with the starmapper optical axis lying in the spin plane. Also, for the latter situation pitch was determined more accurately (by a factor of approximately two) than either yaw or roll, whereas for a cant angle of 130° yaw and roll were determined as accurately as pitch.

Simulations conducted at spin rates other than 3 rpm demonstrated that acceptable performance could be obtained for spin rates from 1 to 9 rpm . Further, acceptable performance can be performed outside of this range, although the higher spin rates will require proportionally more computer time to reduce the data.

Additive noise values were determined by trial and error for the nominal data-reduction simulation and applied successfully to a variety of others characterized by different system parameters. Results obtained by varying the values indicated that, for a set of values once established, variations as high as three to four orders of magnitude can be used and produce acceptable estimates of spacecraft attitude. Thus, additive noise values established and optimized through simulation for a given system could be used without difficulty for operational data reduction.

In view of the above results, the estimation algorithms, as mechanized, are applicable to the determination of the attitude of a spin-stabilized spacecraft. Further, at the nommal spin rate of 3 rpm , the data reduction is performed in significantly faster than real time.

ATTITUDE-REFERENCED CELESTIAL SENSING SYSTEM

REQUIREMENTS AND OBJECTIVES

The attitude determination system design has been concerned to this point with the ground-based data reduction of celestial transit data to obtain a time history of the ARRS spacecraft attitude. This section is concerned with the conceptual design of the attitude determination sensing system which consists of celestial sensors and the onboard electronics.

It was required to define a celestial sensing system capable of detecting a given number of stellar targets (presumed to be six for initial attitude determination and two for update purposes) per revolution of the spacecraft, for nearly* all pointing directions on the celestial sphere. In addition, the sensing system must be operative over the entire orbit which implies a capability to detect stars in daylight. Further, the on-b oard storage of stellar data cannot exceed 60000 bits per orbit requiring the use of suitable digital filtering techniques to minimize the number of noise pulses stored,

To operate the system over daylight portions of the orbit, it was required to define a light baffle configuration to permit stellar detection as close as possible to bright sources with a reasonable sized baffle. Consequently, an objective was assumed to detine a baffle predicted on a minimum-volume criterion.

The objective for the optical system design was to provide the most simple and most efficient concept capable of producing a one arc minute blur spot diameter over the full color spectrum of the system response. It was also required to provide solar detection with similar accuracy to that of stellar targets. Consequentiy, the sun sensor optical system was, in concept at least, comparable to that of the starmapper.

The major objective for the on-board data processing system was to conceptually implement certain techniques and methods used for ground-based data processing of star signals. Investigations were carried out to determine the optimum of several known criteria for digital filtering of legitimate star pulses from spatial and electronic noise.

Starmapper Sunshield, Aperture, and Limiting

- Star Magnitude

The major concern of this subsection will be to define a math model of the sun shield and to determine a reasonable criterion to evaluate this model. The parameters characterizing the shield are the output from this effort and are summarized near the end of this subsection.

[^0]An operating environment, as related to the sun, the illuminated earth, and the stellar background were defined and used to compute the sun shield parameters.

An investigation was made into the case in which the system was to be operational less than 100 percent of the time. The results of this study are presented as statistical nomographs.

Statement of problem. -- Capability of the starmapper to detect stars on the daylight side of the orbit is almost singly dependent on the light baffle, This baffle must be capable of attenuating the sun's radiation to at least a level equivalent to the faintest star which must be detected during sunlit operation. The light baffle must also be capable of shielding the starmapper from both the sun and the illuminated earth. Also, the physical dimensions of the baffle must be kept within bounds; this requirement serves as a constraint on the closest permissible approach of the optical axis to either the sun or the sunlit earth. Figures 105 and 106 are included as an aid in defining pertinent geometric relationships.

The immediate discussion relates to the problem of shielding the starmapper from the sun and the illuminated earth. It is assumed that the outer surfaces are specular reflectors, implying that the incident and reflected rays have identical angles with the surface normal. It is also assumed that the shield possesses the general form depicted in Figure 107 in which the upper surface is a perfect conical mirror having a cone angle, α, and having all incident rays, with angles greater than some nominal angle, β, reflect out of the shield. Details of the baffle interior are not shown."

Since the dimensions of the shield must be kept within bounds, a natural criterion is that the total volume be minimized. The total volume cannot be directly minimized unless the aperture size is specified; but the aperture size is a function of the limiting magnitude star required to provide a predetermined number of stellar targets. A further complication is due to the fact that the limiting magnitude depends on the amount of sky viewable by the starmapper.

An indirect approach to the solution of this problem is possible if one minimizes a normalized volume (which will be defined later) and determines limiting magnitude in a region of the sky in which the stars are sparse. The worst case appears to be near the South Galactic Pole on the celestial sphere. (RA $\approx 12^{\circ}:$ DEC. $\approx-27^{\circ}$)

A computer program was written to find the minimum volume over a space, determined by the following four variables which are defined explicitly in Figures 60, 61, and 62.
$\alpha=$ cone angle of reflector
$\beta=$ shield angle -- the closest permissible approach to the sun or sunlit earth
$\gamma=$ cant angle
$S=$ the area of sky swept out

Figure 105. Scanning Geometry of Starmapper

Figure 106.. Scanned Annulus Projected Onto Celestial Sphere

Conditions.

3. At least three bouncess ocsur prow to entering apetixe

Figure 107. Baflle Description

Figure 108. Geometric Construction of Bafle Cone to Show Depth of Penetration and Number of Bounces

Volume formula. -- The depth to which an incident ray penetrates a conical-shaped reflective surface can be determined geometrically, as shown in Figure 108. When the angle between the conical bisection and extended incident ray becomes greater than 90°, the reflected ray exits from the shield.

That is,

$$
\beta+2(\mathrm{~N}-1) \alpha \geq 90^{\circ}
$$

where

$$
N=\text { number of penetrating bounces }
$$

and

$$
0<\alpha<\beta<90^{\circ}
$$

Solving for N gives

$$
\mathrm{N}=\left[\frac{90^{\circ}-\beta}{2 \alpha}\right]+1
$$

but since \mathbb{N} must be an integer, only the integral part of the bracketed quantity is retained. When $\mathbb{N}=1$, the formula for the value is quite simple and is the case depicted in Figure 107. From Figure 107,

$$
\mathrm{h}^{\prime}=\frac{\mathrm{a} \cos \alpha \cos \frac{\theta}{2}}{\sin \left(\alpha-\frac{\theta}{2}\right)}
$$

and

$$
\mathrm{h}_{\mathrm{h}} \mathrm{~h}^{\prime}=\frac{\mathrm{a} \cos \alpha \cos \beta \sin \left|\alpha+\frac{\theta}{2}\right|}{\sin \left(\alpha-\frac{\theta}{2}\right) \sin (\beta-\alpha)}
$$

so that

$$
\mathrm{h}=\frac{\mathrm{a} \cos \alpha}{\sin \left(\alpha-\frac{\theta}{2}\right)}\left[\frac{\cos \beta \sin \left(\alpha+\frac{\theta}{2}\right)}{\sin (\beta-\alpha)}+\cos \frac{\theta}{2}\right]
$$

or finally

$$
\begin{equation*}
\mathrm{h}=\frac{\mathrm{a} \cos ^{2} \alpha \sin \left|\beta+\frac{\theta}{2}\right|}{\sin \left|\alpha-\frac{\theta}{2}\right| \sin (\beta-\alpha)} \tag{56}
\end{equation*}
$$

Also from Figure 107

$$
\begin{equation*}
\mathrm{d}=2 \mathrm{~h} \tan \alpha-\mathrm{a} \tag{57}
\end{equation*}
$$

The volume for the single bounce case is

$$
\begin{equation*}
v=\frac{\pi d^{2}}{4}=\frac{\pi}{4} a^{3} \frac{\sin \left(\beta+\frac{\theta}{2}\right)\left[\cos \alpha \sin (\beta+\alpha) \sin \left(\alpha+\frac{\theta}{2}\right)\right]^{2}}{\left[\sin \left(\alpha-\frac{\theta}{2}\right) \sin (\beta-\alpha)\right]^{3}} \tag{58}
\end{equation*}
$$

The denominator of Equation (58) implies that α is bounded by the following inequality:

$$
\begin{aligned}
& \theta \\
& 2
\end{aligned} \alpha<\beta
$$

If the function

$$
f(\alpha, \beta, \theta)=\frac{v}{\alpha^{3}}=\frac{\pi}{4} \frac{\sin \left(\beta+\frac{\theta}{2}\right)\left[\cos \alpha \sin (\beta+\alpha) \sin \left(\alpha+\frac{\theta}{2}\right)\right]^{2}}{\left[\sin \left(\alpha-\frac{\theta}{2}\right) \sin (\beta-\alpha)\right]^{3}}
$$

is plotted over the range given above for fixed θ and β, the characteristic curve given in Figure 109 is obtained.

The case for multiple penetrating bounces is slightly more coraplicated. Let

$$
N \geq 3
$$

and define

$$
\beta_{j}=\beta+2(N-j) \propto, j \geq 3
$$

with

$$
L_{j}=L_{j-1} \frac{\sin \left(\beta_{j-2^{+\alpha}}\right)}{\sin \left(\beta_{j-1}-\alpha\right)}, j \geq 3
$$

with

$$
L_{2}=\frac{\cos \alpha \sin \left(\alpha+\frac{\theta}{2}\right)}{\sin \left(\alpha-\frac{\theta}{2}\right) \cdot \sin \left(\beta_{1}-\alpha\right)}
$$

so that

$$
h_{j}=a L_{j} \cos \beta_{j-1}, j \geq 2
$$

The equation corresponding to Equation (56) is

$$
\begin{equation*}
\mathrm{h}=\frac{\operatorname{a\operatorname {cos}\alpha \operatorname {cos}\frac {\theta }{2}}}{\sin \left|\alpha-\frac{\theta}{2}\right|}+I_{2} \frac{2 \sin \left(\alpha+\frac{\theta}{2}\right)}{\sin \left(\beta_{1}-\alpha\right)}+\sum_{j=3}^{N} a L_{j} \cos \beta_{j-1} \tag{59}
\end{equation*}
$$

Figure 109. Normalized Light Baffle Volume versus Shield Angle

The characteristic curve for the multiple bounce case maintains the same form as that given in Figure 109 except that the minimum values are much larger.

Aperture and limiting magnitude star. -- A relationship exists between the aperture and the limiting magnitude of the form

$$
\begin{equation*}
\mathrm{a}=\mathrm{A} \cdot 10^{\mathrm{Bm}} \ell \tag{60}
\end{equation*}
$$

where
$m_{2}=$ limiting magnitude
$a=$ aperture
and
A and $B=$ constants that depend on the physical dimensions of the optics and the background noise.

The limiting magnitude calculation satisfies no formula of the above type, but is of the following form:

$$
\begin{equation*}
m_{l}=m_{\ell}(\theta, \beta, \gamma, n) \tag{61}
\end{equation*}
$$

where the term limiting magnitude used here refers to the magnitude of the faintest star required to be detected.
$\theta=$ fov
$\beta=$ shield angle
$\gamma=$ cant angle
$\mathrm{n}=$ number of stellar targets required
For a given fov, θ, and a given cant angle, γ, at a certain orientation in orbit, it is desired to determine the nth brightest star detectable in one revolution. The magnitude of this star is the faintest that must be observed to obtain n stars per revolution.

Constraint equations. -- Let
$\gamma=$ cant angle
$\hat{z}=$ unit vector in direction of zenith from earth's center
$I=$ earth blocking angle
$\hat{n}=$ unit vector along orbital normal
$\hat{s}_{i}=$ unit vector from earth's center toward ith star

Figure 110 shows that the starmapper sweeps out an annulus on the celestial sphere and, except for earth blocking and illuminance from the sun and earth, the stars within this annulus would transit the slits of the starmapper at some point throughout one revolution of the system. From Figure 110 it can be implied that those stars satisfying the following inequality would be candidates:

$$
\begin{equation*}
\cos \left(\gamma+\frac{\theta}{2}\right) \leq \hat{\mathrm{s}}_{\mathbf{i}} \cdot \hat{\mathrm{n}} \leq \cos \left(\gamma-\frac{\theta}{2}\right) \tag{62}
\end{equation*}
$$

Those transits that are blocked by the earth must be eliminated as candidates. They satisfy the inequality

$$
\begin{equation*}
\cos (\Gamma) \leq \hat{z} \cdot \hat{s}_{i} \tag{63}
\end{equation*}
$$

Of the candidates that are left, some may be eliminated on the basis that at the time of transit the angle between the optical axis and the sun or the optical axis and the sunlit earth does not satisfy the constraints imposed by the shield. Let

$$
\mathrm{t}_{\mathbf{i}}=\text { time of transit of ith star }
$$

then

$$
\begin{equation*}
\hat{0}\left(\mathrm{t}_{\mathrm{i}}\right) \cdot \hat{\mathrm{s}}_{\text {sun }}>\cos \beta \tag{64}
\end{equation*}
$$

where
$\hat{s}_{\text {sun }}=$ unit vector directed from earth's center toward sun
$\beta=$ shield angle (Figure 107)
From Figures 105, 106, and 110 the constrained relationship between the shield angle, β, and the cant angle, γ, is as follows:

$$
\begin{aligned}
& \theta<\alpha<\beta\left\{\begin{array}{l}
\leq \alpha-\pi / 5 \\
2
\end{array}<\pi / 2+\Gamma-\gamma\right.
\end{aligned}
$$

The inequality ($\theta / 2<\alpha<\beta$) merely keeps the shield volume finite by constraining the cone angle, α, to be bounded away from the half field of view, $\theta / 2$, and the shield angle, β. The inequality

$$
\beta \leq \alpha-\pi / 5
$$

ensures that the system is operative for the worst-case conditions of the sun, optical axis, and orbital position by-not permitting the sun's ray to penetrate the shield. The inequality

$$
\beta<\pi / 2+\Gamma-\gamma
$$

Figure 110. Exact Geometric Relationship Between Optical Axis, Sun Line, and Earth Blocking Boundary on Celestial Sphere
ensures that there is some viewable portion of the celestial sphere free from the sunlit earth. Figure 111 graphically shows the constraint relationship between the cant angle and shield angle. The shaded portion of Figure 111 contained within the constraint boundaries, contains all combinations of γ, β which must be examined for a minimum volume combination. However, it can be shown that the shield minimum volume results when γ, β lie along the line $\gamma=54^{\circ}+\beta$. For the orbital conditions chosen for launch, the minimum approval of sun to the orbit plane is 36° (Ref. 19). For closest approach angles, β greater than 36° (optical axis in orbit which is equivalent to $\gamma=90^{\circ}$ for a spin axis normal to the orbit plane), the cant angle permis sıble is greater than 90°, giving $\gamma=90^{\circ}-36^{\circ}+\beta$ for $\beta \geq 36^{\circ}$, which gives $\gamma \geq 54^{\circ}+\beta$. With these constraints on the system an explicit formula for the viewable area on the celestial sphere can be glven. Figure 112 gives the relationship of the daytime and nighttime viewable areas. From Figure 112 the daylight viewable area S_{D} is

$$
\begin{equation*}
\mathrm{S}_{\mathrm{D}}=4 \sin \gamma \sin \frac{\theta}{2} \cos ^{-1}\left(\frac{\cos (\Gamma-\beta)}{\sin \gamma}\right), \text { and } \tag{65}
\end{equation*}
$$

the nightime viewable area S_{N} is

$$
\begin{equation*}
\mathrm{S}_{\mathrm{N}}=2 \int_{\gamma-\theta / 2}^{\gamma+\theta / 2} \sin \phi \cos ^{-1}\left(\frac{\cos \Gamma}{\sin \varphi}\right) \mathrm{d} \phi \tag{66}
\end{equation*}
$$

Daylight and nighttime viewable (swept out) areas are shown in Figure 112. The baffle minimization program assumed a swept out area, performed the minimization for the set $\{\alpha, \beta, \theta, \gamma\}$, and then conducted a star search from which the limiting daylight and nightime limiting magnitudes are established. This was done for six stars per scan over the nighttime side of the orbit and both two and one star per scan over the daylight portion. The aperture was then computed, based on the fainter of the two conditions, and the baffle dimensions (h, d) determined from the normalized parameters

$$
\left(H=\frac{h}{a} \text { and } D=\frac{d}{a}\right)
$$

In essence the nighttime limiting magnitude m_{N} depends on the nighttime viewable area, S_{N}, and the daylight magnitude m_{D} on the daylight viewable area, S_{D}. The program steps are summarized in Figure 113. The daytime area is represented in the form $2 \pi(1-\cos \delta)$ where $\delta=f(\theta, \gamma)$.

Figure 111. Bounds on the Parameter Set $\{\gamma \beta\}$

Figure 112. Daylight and Nighttime Viewable Areas

Program

2. Loop on γ quer $90^{1} \mid s y \leq 115^{\circ}$

3 Determine f conexpanding to min
$\mathrm{V} / a^{3} \mathrm{~A}=\gamma-54^{*}$
4. Compute ef from

 $\frac{A}{2}<\alpha<\beta$
G. Compute V/a ${ }^{3}$, d/a, h/a

7 Conduct star séarth' 'or tid over' S_{D} for
(\cap, ν) for no brighest star and ($\%$, β
Condect stactitpotime ver s_{n} foe

carmpte aperture
'10. Coribute' V, d, n
'11. Plot min V vs,'mo

Figure 113. Computer Program

Frgure 114. Minimum Volume versus Daylight Limiting Magnitude

For the ranges of θ and γ, delta can range from $7.50 \geq \delta \geq 30^{\circ}$. The formula for area is now in terms of a single variable for used in the volume minimization program. The delta angle is the half cone angle that intersect the celestial sphere to give an area equivalent to the area swept in an annulus for a given θ and γ.

The results of the program are plotted in Figure 114. Each data point represents the minimum baffle volume for a preselected swept out daylight area which is equivalent to fixing the daylight limiting magnitude. Curves are plotied for one and two stars per scan. The curves illustrate the possible advantage in backing off from a minimum volume criterion to permit detection of a somewhat brighter star.

To show the variation in parameters within a given swept-out area, Figures 115, 116, and 117 are included. The parameters are plotted against the cant angle which is allowed to vary between 90 and 115°. A value of $\gamma=110^{\circ}$ represents the cant angle which corresponds to the minimum volume baffle for that particular swept-out area. A table of tentatively selected parameters is included as Table 7, based on obtaining at least two stars per scan over 100 percent of daylight orbita conditions. The results are based on a constant swept out area, S_{D}, to give at least two stars per scan. For the equivalent representation of area, δ is 17.5 (Figure 115) to give appropriate area for two stars per scan.

TABLE 7. - TABULATION OF PARAMETERS -- WORST CASE (100\% OF ORBITAL) CONDITION -- FOR MINIMUM VOLUME BAFFLE CRITERION

Parameter		Value
Cant angle	γ	110°
Field of view	θ	18°
Shield angle	β	56°
Limiting daytime magnitude	m_{D}	3.65
Limiting nighttime magnitude	m_{N}	3.08
Aperture (effective aperture)	a	$2.39 \mathrm{in}$.
Light baffle volume	V	$753 \mathrm{in}.{ }^{3}$
Baffle height	h	$11.0 \mathrm{in}$.
Baffle diameter	d	$9.6 \mathrm{in}$.

Figure 116 indicates that the nightime limiting magnitude m_{N} increases with increasing cant angle, whereas the daytime limiting magnitude curve is more or less constant throughout the operating range. The small oscillations of the daytıme and nighttime limiting magnitudes, m_{D} and m_{N}, are due primarily to the nonuniform distribution of the stars on the celestial sphere. The shield parameters - i.e., shield angle, fov, and aperture - were determined from
the condition that the viewable area in the daytime be constant for sill cant angles; however, the area swept out on the celestial sphere during nighttime observation is determined by the daytime parameters and would be larger than necessary. The tendency for min to grow with increasing cant angle, except for small oscillations, is due to the fact that the relationship between the cant angle and shield angle, i.e.,

$$
\beta=y-54^{\circ} \quad \text { (Figure 111) }
$$

tends to increase the nightime viewable area for increasing cant angle,
The set of parameters histed in Table 7 is based on a worst-case star search. A region near the South Galactic Pole which has a relatively sparse star population was selected. This worst-case analysis for 100% of operational

Figure 115. $0, \beta$ versus γ

Figure 116. $\mathrm{m}_{\mathrm{D}^{\prime}} \mathrm{m}_{\mathrm{N}^{\prime}}$ a versus γ
$\stackrel{\rightharpoonup}{\circ}$

Figure 117. Baffle Dimension versus Cant Angle
capability resulted from the nonuniform distribution of stars on the celestial sphere. Table 7 . also points out the condition that the daytime limiting magnitude star is fainter than the nighttime, and it, therefore, serves as the basis for computation of the aperture. Generally, of course, the fainter of the two conditions will govern the aperture size.

If the baffle parameters are fixed and a star search is made of the entire celestial sphere, it is possible to compute a number of statistics. Define the frequency function as

$$
f\left(m_{k}\right)=\frac{\text { frequency per unit interval }}{\text { total number of observations }}
$$

where

$$
m_{\ell}=m_{\ell}(k)=\text { magnitude of } k^{t h} \text { brightest viewable star }
$$

The distribution function is defined as

$$
\begin{aligned}
F\left(m_{\ell}\right)= & 100 \sum_{f(x)} f(x) \\
& x \leq m_{\ell}
\end{aligned}
$$

Figure 118 graphically represents, for the baffle parameters listed, the results of a complete search for both one and two stars per scan. As an example in interpieting these graphs, consider the following. If it is required that there be at least two stars in the fov 80% of the daylight observation time, the star sensor would be required to detect stars as dim as 3.2 magnitude. If only one star us required, 80% of the time the limiting magnitude star becomes 2.5 magnitude. This represents the optimal case for a minimum baffle volume criterion. However, if the baffle volume is permitted to increase, detection of brighter stars will be possible.

In Figure 119, graphs are shown which result from an increase in baffle volume to 2385 cubic inches. Again, for 80% of the cases and two stars per scan, the limiting magnitude becomes 2.2 magnitude. The tradeoffs for this increased capability do not only involve increased volume, but also result in increased fov and decreased shield angle (closest approach to bright object), as shown in the parameter set listing in Figure 119.

Both Figures 118 and 119 represent extreme conditions. Additional sets of parameters were also established which are contained within these extremes. Figures 120 and 121 represent additional plots for two selected volumed contained within the extreme conditions of Figures 118 and 119 . It is apparent that any set of parameters can be selected subsequent to a determination of that fractional part of the daylight orbit considered essential to meet system accuracy.

Table 8 contains a summary of the four conditions illustrated in Figures 118, 119,120 , and 121 for $100 \%, 80 \%$, and 50% of usable daylight orbit.

Figure 118, Cumulative Distribution versus Star Magnitude Minimum Baffle Volume Criterion - Case I Parameter Set

Figure 119. Cumulative Distribution versus Star Magnitude for Case TV Parameter Set

Figure 120. Cumulative Distribution versus Star Magnitude for Case II Parameter Set

Figure 121.. Cumulative Distribution versus Star Magnitude for Case III Parameter Set

Parameter	Case				
		I	II	III	IV
Volume	$V \text { in. }{ }^{3}$	753	1080	1378	2385
Baffle height	h in.	10	14	13	14
Baffle diameter	d in.	10	10	12	15
Clear aperture	a in.	2.39	2.20	2. 12	2.12
Field of view	$\theta \quad \operatorname{deg}$	18.2	14.7	22.5	27.7
Cant angle	$\gamma \mathrm{deg}$	110	100	105	105
Shield angle	$\beta \quad$ deg	56	46	51	51
Limiting nighttime magnitude	m_{N}	3.1	3.2	2.9	2.8
Limiting daytime magnitude*	m_{D}				
100\% of orbit		3.6	3.4	3.4	3.2
80\% of orbit		3.1	2.9	2.5	2.4
50\% of orbit		2.5	2.2	2.1	2.3
r 2 stars per scan (exclusive	sun) in	case	D $=2$	$\mathrm{n}_{\mathrm{N}}=$	

Summary and conclusions. -- A minimum volume sun shield having the desired properties can be constructed. Considerable latitude in the choice of the parameters of the system is available if the volume restrictions are relaxes or if the requirement that the system be operational 100% of the time be relaxes. Using both these ideas permits considerable latitude for the design of the sensing system. The limitations in both these, areas are spelled out clearly by recognizing how rapidly the volume increases as one moves away from the minimum point (Figure 109), and how the stax magnitude increases as the system becomes operational 100% of the time. Figures 118, 119, 120 , and 121 span the region containing the minimum volume of Figure 109.

> Optical Transfer Function - Starmapper

This subsection presents the performance evaluation of two optical designs for the starmapper celestial sensor. The purpose of the evaluation is to implement a decision as to the better design of the two systems based on a realistic
appraisal of sensor performance. Evidence is presented that the catadioptric concentric system will detect all spectral classes of stars better then the refractive system.

In addition, an analysis of the optical performance of the concentric system in two types of environmental perturbations is presented - at very low temperatures and in a high vacuum. The results of these analyses show that the system will indeed perform adequately under these conditions which more nearly approach contemplated operating conditions.

Evaluation of a refractive optical system. - - A stellar sensor using refractive elements is shown in Eigure 122 . This was the refractive system recommended for previous Eorizon Definition Measurement program. It is a balanced type of design having the power of the elements approximately balanced around the aperture. The first and the last two elements are of the same type of glass. The final design shown here is the result of dmensional modifications on the lens elements to minimize the image spot dimensions along the path of the scan of a radial slit. In contrast, the image spot size along the slit was not restricted. The dimensional modifications were performed in a computeroperated automatic lens design program whose image figure of merit was computed according to the instructions entered into the program by the designer. These computations were based on the tracing of certain rays chosen by the designer. The modification process was carried out in two steps. In the first step, the figure of merit was based on the minimization of all of the fifth-order aberrations which could contribute to the widening of the blux spot along the direction of the scan. This type of modification produced relatively large changes in the physical dimensions of the lens train. When an optimum figure of merit was obtained for this method, the lens dimensions were placed in the second step of the modification, which used the minimization of the third-order aberrations as the criterion by which the effect of the modifications was judged. The physical dimensions of the lens train were only slightly altered by this step.

The basic evaluation of the modified optical system was accomplished by means of a computer-operated ray trace and its associated program options.

Blurr spot diagrams in standard computer printout are shown in Figures 1.23, 124 , and 125 for field half angles of $0^{\circ}, 5^{\circ}$, and 10°. For each diagram 396 rays were traced. The dimensions shown on the right side of the plot are the spot dimensions in arc sec. These spot diagrams are computed for a design wavelength of 0.5876 micron.

The functional performance of the optical system in this sensor depends on the arnount of light passing through the slit as the star image passes across it. Graphs of the percentage of the total avallable rays that are within the area of the slit at a given slit position are shown in Figures 126, 127, and 128 for each of the three half-field angles for which the above blur spots were calculated. These plots were also made at 0.5875 micron wavelength.

The variation of the maximum value of the slit scan for each of 30 wavelengths is plotted in Figures 129,130 , and 131 for each of the three field half angles.

F'igure 122. Starmapper Optical Design Using Refractive System

OUSPLACEMENT $=0.0$. \square
Angular insplacement, radians

Figure 123. On-Axis Blur Spot Diagram - Refractive Optical System

Figure 124. Five-Degree Off-Axis Blur Spot Diagram Refractive Optical System

Angular displacement, radians
Figure 125. Ten-Degree Off-Axis Blur Spot Diagram Refractive Optical System

Figure 126. On-Axis Slit Scan - Refractive Optical System

Figure 127. Five-Degree Off-Axis Slit Scan - Refractive Optical System

Figure 128. Ten-Degree Off-Axis Slit Scan - Refractive Optical System
max Value of shit scan

```


Figure 129. Maximum Slit Scan Value - On-Axis Refractive System



The physical diameters of the lens train shown in Figure 122 are just sufficient to pass all of light for a 3,00-inch diameter effective aperture for light parallel to the axis. For any other half-field angle, the diameters of the lenses are inadequate to pass all of the light. The magnitude of the vignetting effect as a function of field angle is shown in Figure 132. The diameter of the entrance and exat lenses necessary to elimmate the vignetting is 6.520 inches.

Evaluation of a concentric optical system. -- Another basic sensor design concept is that of a concentric catadioptric optical system shown in Figure 133. The basic optical elements are an aperture; a primary mirror, and a corrector lens. All of the lens and mirror surfaces are spherical, as is the focal surface, or slit reticle located at the end of the PMT-fiber optics assembly.

The concentric system is made up of a spherical mirror whose axial aberration is spherical and a fused silica negative meniscus corrector whose spherical aberration is equal in magnitude and opposite in sign to the spherical aberration of the mirror. The other axial aberration, chromatic aberration, is zero for the mirror and kept to a minimum in the corrector by two design choices.
1) Choice of optical material. The material chosen -- fused silica -has the lowest dispersion (change of index of refraction with wavelength of light) of any common optical material.
2) Choice of thickness of corrector. The technique for optimizing the design requires that the closer the corrector is to the mirror the thicker it will be at optimum image size. The corrective spherical aberration occurs at the air-glass interfaces of the corrector; the glass between the interfaces contributes only chromatic aberration to the system. Hence, within certain limits, the thinner the corrector the smaller the chromatic aberration. In this design the corrector was intentionally placed between the image surface and the aperture to optimize the surfaces with a relatively thin corrector.

The most significant property of the concentric system is that any light ray entering the system from a distant source is parallel to a radius drawn to any of the spherical surfaces; hence, any ray entering the system is axial as long as the aperture is at the common center of the spherical surfaces of the system. This means that if the two axial aberrations, spherical and chromatic, are corrected, no other corrections will be needed for any field angle. The remaining aberrations - coma, astigmatism, and distortion - do not exist in this system because no off-axis rays enter.

The blur spot diagram, slit scan, and color analysis plots for the concentric system are shown in Figure 134, 135, and 136, respectively. Only one plot of each kind is needed, since the blur spot and the other associated parameters are unchanged as the field angle changes. The blur spot and slit scan were computed at the design wavelength of 0.4047 micron .

Optical transfer functions. -- A comparison of the performance of the two detector-optical systems in responding to stellar light sources was performed.


Figure 132. Variation of Transmission of 18 -inch Focal Length F/6 Lens Due to Vignetting by Front Lens Element


Figure 133. Schematic Starmapper Baseline Optical Sustem


Figure 134. Blur Spot Diagram - Concentric Optical System


Figure 135. Slit Scan Concentric Optical System


The basis of the evaluation was the properties of source and sensor for each waveIength of light in the operational wavelength range of the system. The three factors used in the computation of the instrument response were
1) Star color or spectral class. The spectral energy distribution of an ideal black body at a temperature of T \(\mathrm{T}^{\circ} \mathrm{K}\). Also called
\[
\int\left[\Sigma_{\lambda}\right]_{T}^{d \lambda}
\]
2) Photomuitiplier photocathode color response for the Electro Mechanical Research Corporation, EMR type N photocathode
\[
\int P(\lambda) d \lambda
\]
3) Color response of the optical system. This 1 s the maximum value of the slit scan for the wavelength range used.
\[
\int O(\lambda) d \lambda
\]

The instrument response for a given color temperature source is given by the expression
\[
\int\left[\Sigma_{\lambda}\right]_{T} P(\lambda) \circ(\lambda) d \lambda
\]

To provide a basis of comparison to the visual magnitude classification, the response of the standard photopic eye is used as a multiplier, giving
\[
\int[\Sigma \lambda]_{T} \cdot S(\lambda) d \lambda
\]

The ratio of these two quantities is the ratio of the instrument response to the visual response for a given color temperature or stellar spectral class. Since both integral quantities are proportional to inteasities,
\[
\frac{\text { Instrument Response }}{\text { Visual Response }}=2.5 \log _{10} \frac{\left.\int[\Sigma]_{T}\right]_{T} P(\lambda) O(\lambda) \mathrm{d} \lambda}{\int\left[\Sigma_{\lambda}\right]_{T} S(\lambda) \mathrm{d} \lambda}
\]
compares these intensity ratios in terms of stellar magnitudes. The ratio was computed for all color temperatures from \(2000^{\circ} \mathrm{K}\) to \(25000^{\circ} \mathrm{K}\). To obtain a convenient reference from which to establish a comparison, the ratio at the color temperature of \(11000^{\circ} \mathrm{K}\) - the nominal color temperature of the AO spectral class star - was used as a standard. A graph of the normalized function 15 shown in Figure 137 for the concentric optical system at \(f / 2\) and the refractive system at \(f / 6\) for three half-field angles shown. The intercepts for the AO star for the two optical systems can be interpreted
as follows.

If a fourth magnitude \(A O\) star can be reliably detected by the \(\mathrm{f} / 2\) concentric system, in order to be detected by the refractive system with the same reliability an AO star must have a visual magnitude of +2.49 if viewed on axis, +2.45 if viewed \(5^{\circ}\) off axis, and +2.31 if viewed \(10^{\circ}\) off axis.


Figure 137. Starmapper Performance

Figure 138 illustrates the derivation of the instrument response parameters; Figure 139 illustrates the visual response parameters. Derivation of the change in stellar magnitude for varying star color temperature (or class) is also shown in Figure 139. This serves as the basis for the optical transfer function plotted in Figure 137.

Sensor performance evaluation at low operating temperatures. -- Performance of the optical system at temperatures of the order of \(-75^{\circ} \mathrm{C}\) is dependent on both the physical dimension change calculated from the thermal coefficient of linear expansion and on the change in the index of refraction of the corrector lens as a function of temperature. The thermal coefficient of linear expansion is well documented both for the mirror material and the corrector lens material. A graphical presentation of the linear coefficient of thermal expansion for the two fused silica materials used in the sensor is shown in Figure 140 (refs. 7 and 8).

The index of refraction of the corrector lens, Corning Code 7940, was documented in the \(20^{\circ} \mathrm{C}\) range (ref. 9) but little information is available at lower ranges. Given W. Cleek of the National Bureau of Standards has provided data on the index of refraction of Corning Code 7940 in the temperature range from \(-192^{\circ} \mathrm{C}\) to \(+651^{\circ} \mathrm{C}\) for the wavelength of 0.5896 micron only.* A table of indices of refraction of vitreous silica in the temperature range of \(-160^{\circ} \mathrm{C}\) to \(+1000^{\circ}\) at wavelengths of \(0.4713,0.5016,0.5876\), and 0.6678 micron is pubIished in Sosman's comprehensive book on silica (ref. 10) from work of Martens and Rinne. A plot of the results is shown in Figure 141. Using these data, computer ray traces based both on change in physical dimensions due to thermal expansion and changes in index of refraction with temperature show that with a 0.007 inch movement of the focal surface the image size is still less than the width of the scanning slit at the wavelengths measured. Further, examination of Figure 141 shows that the refractive index curves for the four colors follow regular, approximately parallel paths. This tends to indicate that no serious anomalies exist in the indices whose wavelengths lie between those measured, and hence no large changes in blur spot size and shape which would adversely alter the performance of the sensor from the room temperature predicted performance. The National Bureau of Standards was requested to perform the low temperature index of refraction measurement during the course of the study. The results are presented in Table A: However, the use of these results were not possible for this study.

Table 9 shows the results of refractive index measurements on fused silica, Corning Code 7940. As shown, data were obtained at 10 different wavelengths over a temperature range of +20 to \(-200^{\circ} \mathrm{C}\). The data are reported at temperature intervals of \(10^{\circ} \mathrm{C}\) with additional values at \(-75^{\circ} \mathrm{C}\).

The National Bureau of Standards was unable to make measurements at a wavelength of 365.0 nonometers as originally requested. Furthermore, measurements were made at 404.7 and 471.3 nanometers, instead of 407.7 and 492.2 as was planned originally. These substitutions were made because of the greater intensity and resulting ease of measurement at 404.7 and 471.3 nonometers.
*Cleek, Given W.: Inorganic Glass. NBS, private communications.

\section*{TABLE 9.- REFRACTIVE INDEX OF TUSED SILICA CORNING CODE 7940 AS A FUNCTION OF TEMPERATURE AND WAVELENGTH}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \({ }^{T}{ }^{\circ} \mathrm{cmp}\). &  & \({ }_{\text {cis }}^{\text {ci }}\) 8 & \[
\begin{aligned}
& \text { 587. } 6 \\
& \mathrm{He}
\end{aligned}
\] & \[
\underset{\mathrm{Cd}}{508.6}
\] & \[
\begin{gathered}
\text { 501. } \\
\mathrm{He}
\end{gathered}
\] & \[
\begin{gathered}
480.0 \\
\mathrm{Cd}
\end{gathered}
\] & \[
\begin{gathered}
\text { \$71.3 } \\
\mathrm{He}
\end{gathered}
\] & \({ }_{\text {Cd }}^{487.6}\) & \[
\begin{gathered}
435.8 \\
\mathrm{Hg}
\end{gathered}
\] & \[
\begin{gathered}
404.7 \\
\mathrm{Hg}
\end{gathered}
\] \\
\hline +20 & 1.45607 & 1. 45870 & 1. 45846 &  & 1 46284 & ( 46350 & 1. 48406 & 1. 46423 & 146569 & 1. 46868 \\
\hline +10 & 1. 45599 & 1. 45663 & 1. 45838 & 1. 46177 & 1. 46215 & 1.46341 & 1. 46398 & 1. 46420 & 1.46661 & I. 46953 \\
\hline 0 & 1. 45590 & 1.45655 & 1. 45829 & 1. 46169 & 1.4620s & 1.46332 & 146380 & 1. 46412 & 1.46653 & L. 46944 \\
\hline -10 & 1.45\%动 & 1.4564? & 1.45821 & 1. 46161 & 2. 48193 & 1. 46323 & 2.46381 & 1.46403 & \% 46845 & 2. 46035 \\
\hline -20 & 1.45573 & 1.45639 & 1. 45813 & 1.46152 & 1.46189 & 1.46315 & 1.46372 & 1.46395 & 1. 46637 & 1.46926 \\
\hline -30 & 1. 25565 & 1.45631 & 1,45805 & 1. 46144 & 146185 & 1,46306 & 1.46364 & 1.96386 & 2. 46639 & 1. 66918 \\
\hline -40 & 1. 45557 & 1. 45623 & 1.4579? & 1. 46136 & 1.46173 & 2. 46288 & 1. 46356 & 146378 & 1.46620 & 1. 46909 \\
\hline -50 & 1.45550 & 1. 45615 & 1. 45789 & 1. 46128 & 1. 46165 & 1.46290 & 1.46347 & 1. 46370 & 1. 46612 & 1. 46901 \\
\hline -60 & 1. 455812 & 1.45607 & 1, 45781 & 2, 56120 & 1.46157 & 1.46252 & 1. 46340 & 1. 45368 & 1.4603d & 1. 463982 \\
\hline -70 & 1.45535 & 1.45600 & 1.45774 & 1.46112 & 1.46150 & 146275 & 1. 46332 & 1. 46354 & 1. 46597 & 1. 46884 \\
\hline -80 & 2. 45528 & 1.45592 & 1.4576? & 2. 46105 & 1. 46143 & 1.46267 & 1.46324 & 1. 36347 &  & 1.46876 \\
\hline -90 & 1. 4558 L & 1. 45505 & 1. 45760 & 1. 46093 & L. 46188 & 1.4626\% & 1. 463517 & 1.46349 & 1.46561 & 1. \(4885{ }^{\text {a }}\) \\
\hline -100 & 1.45514 & 1.45578 & 1. 45753 & 1.46091 & 1. 46129 & 1. 46254 & L. 46310 & 1. 46333 & 1. 46574 & 146862 \\
\hline - 110 & 1.45508 & 3. 45571 & 2.45747 & 1.46085 & 1. 48123 & L. 46247 & 2. 36304 & L. 26.325 & 2+36567 & 1. 86855 \\
\hline -120 & 1. 45503 & 1. 45565 & 1.45741 & 1.46079 & 1.46116 & 1. 46241 & 1.. 46297 & 1,46320 & 1,46561 & 1,46848 \\
\hline -130 & 1.45497 & 1.45560 & 1.45736 & 1. 46073 & 1. 46111 & 1. 46236 & 1.46291 & 1. 46314 & 1. 46555 & 146842 \\
\hline -149 & 1. 45492 & 1.25854 & L. 457315 & 1.46086a & 1. 96105 & 1. 46231 & L. 45286 & 1. 56509 & 1. 465.50 & 1. 46837 \\
\hline -150 & 1.45488 & 1.45550 & 1.45726 & 1. 46063 & 1.46100 & L. 46226 & 1. 96231 & 1.46304 & 2.46544 & 1.46832 \\
\hline -160 & 1, 454884 & 2.45546 & 1, 45722 & 1, 46059 & 1. 460095 & 1. 46222 & 1.46276 & 1. 46300 & 1.46539 & 1.46828 \\
\hline -170 & 1.45430 & 1.45543 & 1. 45719 & 1. 46055 & 5. 460.91 & 1.46218 & 1.46272 & 148897 & 1.46535 & 1. \(4608{ }^{4}\) \\
\hline \(-180\) & 1.45477 & 1. 45541 & 145716 & 1. 46052 & 1. 46087 & 1. 46215 & 1. 46269 & 1.46294 & 1. 46531 & 1. 46821 \\
\hline -150 & 1.45473 & 1.45540 & 4. 45713 & 1. 46014 & 1. 96084 & 1. 56212 & L. 46236 & 1. 56531 & 1. 46528 & 1. 46818 \\
\hline -200 & L. 45473 & 1. 45539 & 1.95711 & 1. 46047 & 1. 46081 & \(\mathrm{l}_{n} 46210\) & 1.46264 & 1. 46289 & 1.46525 & 1.4.6816 \\
\hline -35 & 1.45531 & 1.45593 & 1. 45770 & 1. 46109 & 1.46146 & 1.46271 & 1. 46328 & 1. 46350 & 1. 465993 & 1.46980 \\
\hline
\end{tabular}

\section*{\(\Sigma_{\lambda} T * K\)}

Relative spectral energy density for a perfect black body radiator
\[
P_{\lambda}
\]

Relative spectral sensitivity of detector-EMR, \(N\) type cathode response illustrated
\[
0_{\lambda}
\]

Relative spectral response of optical system scanned by a slit at the image surface. Response of a concentric system illustrated



Figure 138. Instrument Response Parameters

\section*{\(\left[{ }_{\lambda}\right] T^{\circ} K\)}

Relative spectral energy density for a perfect black body radiator



Wavelength in angstrom units
Change in stellar magnitude
\[
\begin{aligned}
& \Delta m=2.5 \log _{10}\left[\frac{\text { instrument response }}{\text { visual response }}\right] T_{T}-2.5 \log _{10}\left[\frac{\text { instrument response }}{\text { visual response }}\right] A_{0} \text { star } \\
& \Delta m=2.5 \log _{10}\left[\frac{\int \Sigma_{\lambda} P_{\lambda}}{\int \Sigma_{\lambda} S_{\lambda}} \frac{O_{\lambda}}{d_{\lambda}}-\cdots\right. \\
& \Delta T^{*} \mathrm{~K}
\end{aligned}-2.5 \log _{10}\left[\frac{\int \Sigma_{\lambda} P_{\lambda} O_{\lambda} d \lambda}{\int \Sigma_{\lambda} S_{\lambda} d \lambda}\right] 11_{1,000^{\circ} \mathrm{K}} \quad .
\]

Figure 139. Visual Response Parameters


Figure 140. Linear Coefficient of Thermal Expansion for Corrector (No. 7940) and Mirror (7971)


Figure 141. Experimental Data on the Change of Index of Refraction of Vitreous Silica with Temperature and Wavelength

All the reported values are referred to air at \(20^{\circ} \mathrm{C}\). The standard deviation of each refractive index determination is within \(2 \times 10^{-5}\).

Evaluation of optical system performance in vacuum. -- The indices of refraction used in the design of the corrector for the ARRS star sensor were based on measurements made in 76 cm barometric pressure dry air. Thus, using the velocity definition of index of refraction, the catalog values of the index of refraction can be expressed as
\[
\begin{equation*}
\text { N glass/air }=\frac{\text { velocity of light in air }}{\text { velocity of light in glass }} \tag{67}
\end{equation*}
\]

Similarly, the index of refraction of air itself can be expressed as
\[
\begin{equation*}
\text { N air/vacuum }=\frac{\text { velocity of light in a vacuum }}{\text { velocity of light in air }} \tag{68}
\end{equation*}
\]

Thus, the index of refraction of the glass used with respect to vacuum is
\[
\begin{equation*}
\mathrm{N} \text { glass/vacuum = } \mathrm{N} \text { glass/air } \times \mathrm{N} \text { air/vacuum } \tag{69}
\end{equation*}
\]

The values of the index of refraction of air were obtained from Table 413 of the Smithsonian Physical Tables, first reprint of the eighth revised edition, Washington, D. C., 1934.

The values of the index of refraction used in ray trace calculations are in the form of a dispersion equation
\[
\begin{equation*}
N^{2}=A_{0}+A_{1} \lambda^{2}+A_{2} \lambda^{-2}+A_{3} \lambda^{-4}+A_{4} \lambda^{-6}+A_{5} \lambda^{-8} \tag{70}
\end{equation*}
\]
where \(N\) is the index of refraction, \(\lambda\) is the wavelength of light, and the \(A^{\prime} s\) are constants for each glass. The values of the indices of refraction for air were used to evaluate the constant terms in the above equation. The indices for glass-vacuum interface were obtained from the product shown in Equation (69) for each wavelength used in the ray trace. A new dispersion equation of the form of Equation (70) was developed for the Corning Code 7940 fused silica used for the corrector. This dispersion equation was used to compute the required refractive indices for a ray trace and color analysis.

A comparison of the ray trace and color analysis results using the above values with the original design results shows that the changes in performance produced by operating the sensor in a vacuum, rather than in air, are imperceptible and will not require any changes in focal surface position.

\section*{Optical Transfer Function - Sun Sensor}

This subsection presents the design considerations and performance data to show that a modified catadioptric concentric optical system can detect the position of the sun's limb with sufficient accuracy to enable the position of the sun sensor in relation to the sun to be computed to an accuracy of 10 arc sec.

Optical s'ystem design considerations. -- Analyses indicate that the detection of the sun's position could be successfully accomplished using detection of the sun's limb at 0.5400 micron at a bandwidth of 0.0200 micron or less. The pointing requirements of the spacecraft orbit require a \(40^{\circ}\) fow for the sensor to keep the sun in the fov continuously throu ghout the year. The wide fov dictates the use of the symmetrical properties of a concentric optical system. In addition, the catadioptric system offers unique opportunities for reducing the light intensity reaching the focal surface.

The baseline optical system for the sun sensor is shown in Figure 142. The optical system design is quite similar to that of the star sensor, except for the special optical coatings used. The first coating that the sun's rays would strike would be the reflective interference-type filter coating on the entrance

Note：
\(\mathrm{a}=1.667 \mathrm{in}\) 。
\(b=1.298 \mathrm{in}\) 。
\(c=1.133 \mathrm{in}\) ．
\(d=3.542 \mathrm{in}\) 。


F／l． \(2240^{\circ}\) FOV
Focal length 1.667 in．
Fused silica corrector
Corning code 7940

Figure 142．Schematic Sun Sensor Baseline Optical System
face of the corrector. This coating would reflect \(99 \%\) of the light back out through the aperture and pass \(25 \%\) of the light in the pass band of the interference filter.

The detection accuracy requires that the detection threshold be set to trigger when the limb of the sun is one-sixth of the way across the slit opening. The slit then receives energy from only \(2.144 \times 10^{-4}\) of the total area of image. The thresfold is set at \(10^{-4} \mu 4\) signal level, using \(0.25 \frac{\mu \mathrm{~A}}{\lambda W}\) as the sensitivity of the silicon yields \(4 \times 10^{-4} \mu \mathrm{~W}\) needed in the slit to trigger the threshold. The total power in the image is the power in the slit divided by the fraction of the total image area in the slit, or
\[
\frac{4 \times 10^{-4} \mu W}{2.144 \times 10^{-4}}=1.866 \mu \mathrm{~W}
\]

The input to the sensor is the product of the power density and the area of clear aperture available. The power emerging from the corrector-filter combination is reduced from the input power by the effect of reduced pass band of the filter. For a filter centered on \(0.5400 \AA\) wavelength, Jensen (ref. 11) gives the solar spectral irradiance as
\[
1.9 \times 10^{-5} \frac{W}{\mathrm{~cm}^{2}-\AA}
\]

For a pass band \(1 \%\) of the center wavelength and a maximum transmission of \(25 \%\), the power available from the corrector is
\[
0.25 \times 10^{-2} \times 5.4 \times 10^{3} \AA \times 1.9 \times 10^{-5} \frac{\mathrm{~W}}{\mathrm{~cm}^{2}-\AA}=0.2565 \times 10^{-3} \frac{\mathrm{~W}}{\mathrm{~cm}^{2}}
\]

The reflector surface, when coated with an antireflecting coating*, will yield a reflection efficiency of \(2.5 \times 10^{-3}\). Thus, the power density at the image surface is \(0.2565 \times 10^{-3} \mathrm{~W} \times 2.5 \times 10^{-3}=0.641 \times 10^{-6} \frac{\mathrm{~W}}{\mathrm{~cm}^{2}}\) or
\[
0.641 \frac{\mu W}{\mathrm{~cm}^{2}}
\]

The collection area of the clear aperture is then
\[
\frac{\frac{1.866 \mu W}{0.641 \mu W}}{\mathrm{~cm}^{2}}=2.909 \mathrm{~cm}^{2}
\]
or \(0.45096 \mathrm{in}^{2}\) clear aperture area

\footnotetext{
*Applied by the Optical Coating Laboratories, Inc., Santa Rosa, Calif.
}

The effect of central obscuration of the focal surface on the maximum relative aperture ( \(f / \pi_{\text {max }}\) ) is given by
\[
f / H_{\max }=\frac{1}{2 \sin \frac{\theta}{2}}
\]
where \(\theta\) is the optical system fov. For a \(40^{\circ}\) fov,
\[
\mathrm{f} / \mathrm{max}_{\max }=\frac{1}{2 \sin 20^{\circ}}=\frac{1}{2 \times 0.34202}=1.462
\]

Therefore, for a reflective system having a \(40^{\circ}\) fov, unless the \(f / \#\) was less than \(\mathrm{f} / 1.462\), no light would reach the image surface. For a concentric system having a focal length of 1.667 in ., the radius of the central obscuration of the image surface is given by
\[
h_{0}=\frac{1.667}{2 \times 1.462}=0.570 \mathrm{in} .
\]

If the radius of the actual aperture is \(\beta_{0}\), the clear aperture area is given by
\[
A=\pi\left\langle\beta_{0}^{2}-h_{o}^{2}\right\rangle
\]
from this relationship
or
\[
\begin{aligned}
& \beta_{0}^{2}=\frac{A}{\pi}+h_{0}^{2} \\
& \beta_{0}=\sqrt{\frac{A}{\pi}+h_{0}^{2}} \\
& \beta_{0}=\sqrt{\frac{0.451}{\pi}}+(0.570)^{2} \\
& \beta_{0}=0.6845 \mathrm{in} .
\end{aligned}
\]
or an aperture diameter of 1.369 in .
Thus, the actual relative aperture is
\[
\frac{1.667 \mathrm{in} .}{1.369 \mathrm{in.}}=1.22
\]

The diffraction limit for 0.54 micron and a 60 -arc sec diffraction spot size is given by
\[
\theta \operatorname{arcsec}=\frac{2 \times 1.22 \lambda \times 2 \times 10^{5}}{D} \text { arc sec } / \mathrm{rad}=\frac{4.88 \times 10^{5} \lambda}{\mathrm{D}}
\]
where \(\lambda\) is the wavelength and \(D\) is the diameter of the aperture.
\[
F \text { or } \lambda=0.5400 \mu, D=0.1729 \mathrm{in} .
\]

Since the above calculations show that to obtain an airy disc diameter equal to the width of the slit, the aperture diameter should be at least 0.1729 in .; the fact that the actual diameter is greater shows that the diffraction image will be smaller than the slit. In the Phase A, Part II report for "An Analytical and Conceptual Design Study for an Earth Coverage Infrared Horizon Definition Study under NASA contract NAS1-6010, pages 418-437, it is shown that the regularity of the curvatures of the limb of the sun allows the prediction of the location of the center from the limb to be located at a far greater accuracy than necessary for this application. This places the burden of accuracy on the sun sensor; the sensor must be capable of detecting the limb in the slit to an accuracy of 10 arc sec in order that the position of the center of the sun can be located to the same accuracy. In this application the blur spot diameter criterion for optical system performance evaluation is now used only to indicate the "sharpness" of the image of the sun's limb. Using this criterion, the effect of a 60-are sec biur spot diameter will allow the location of the sun's limb to an accuracy of 10 arc sec using the same interpolation factor of 6 that was used in locating star images.

\section*{Cathode Protection}

Objectives and introduction. --. The objectives of the cathode protection study were to first determine the affects on the multiplier phototube if bright sources (sun, moon, or sunlit earth) were to enter the field of view of the starmapper and then to devise electronic and mechanical design features which will provide suitable protection for the multiplier phototube. To achieve this objective it was necessary to obtain pertinent information for the multiplier phototube being proposed. Radiation levels which the optical system sould cause to fall on the photocathode could be calculated and compared with performance characteristics of the multiplier phototube to determine the needs for protection. Then, knowing the requirements, suitable protection features could be devised.

As an introduction to the subject of cathode protection, it is desirable to look at the pertinent portions of the starmapper design. The starmapner reticle baseline configuration is illustrated in Figure 143. It also illustrates schematically the baseline optical system and is included as an aid in understanding the slit reticle configuration of the figure. From Figure 143, the value of sidt width shown was obtained from the equation


EMR 53in

(fiber optic bundles)

Figure 143. Detector - Reticle Baseline Configuration
\[
S W=(F L) \phi
\]
where
\(\mathrm{SW}=\) slit width
FL = focal length
\(\phi=\) angular image diameter in radians
Since 10 -arc sec accuracy is required and a 6 to 1 signal-to-noise ratio can be assumed*, an angular image (spot) diameter of 60 arc sec results. Then,
\[
\mathrm{SW}=(6.50)\left(3 \times 10^{-4}\right) \approx 0.002 \mathrm{in} .
\]

The base line configuration shows two multiplier phototubes arranged so that each accepts stellar radiation from one-balf the scanned field. The use of fiber optics makes it possible to use small phototubes and minimizes the dead zone at the center of the slit pattern. Detector redundancy exists in the sense that fajlure of one of the detectors would not cause total loss of detection capability. The second multiplier phototube would be usable and, therefore, reduced attitude and accuracy would result..

The waseline starmapper configuration uses a type 531N-01-14 multiplier phototube. Selection of this detector was based on its small size and its similarity to the 541 N tube. Similarity between the two models exists such that published results from work performed by Brown, et al., (ref. 12) under contract No. NAS 1-7648 is applicable to this study. The work performed by Brown, et al. evaluates the behavior of the EMR 541N-01-14 multiplier phototube in response to laboratory simulation of an orbital scanner mission.

The following three causes for degradation in multiplier phototube performance and the associated need for cathode protection were investigated:
1) Excessive dark current resulting from cathode exposure to high radiant energy levels with the high voltage switched off to prevent permanent damage
2) Excessive anode current resulting from exposure to high radiant energy levels which cause irreversible changes to the phototube
3) Cathode temperature rising above the allowable limit of \(150^{\circ} \mathrm{C}\) as a result of exposur e to direct solar radiation

\footnotetext{
*Signal-to-noise ratio was shown to be equivalent to slit center interpolation.
}

The first two situations are related and require a determination of the expected radiation levels resulting from exposure to moon and earth illuminance and a calculation of the associated anode currents. An analysis of multiplier phototube sensitivity and dark current requirements is presented in Appendix \(E\) along with a scheme for limating the anode current by appropriate switching of the cathode voltage. An analysis is presented below which shows that the anode current will exceed the one microampere maximum recommended for the EMR 531N-01-14 unless protecive measures are used.

Theoretical anode currents were calculated for the baseline optical geometry, using the Brown, et al, equations and irradiation levels used in reference 12. The equation for anode current is
\[
\begin{equation*}
I_{a}=p \times G \times q_{x} \times A \tag{71}
\end{equation*}
\]
where
\(I_{a}=\) anode current, amp
\(\mathrm{p}=\) energy density incident on PMT cathode \(\frac{\mathrm{W}}{\mathrm{cm}^{2}}\)
\(\mathrm{G}=\) gain
\(\sigma_{k}=\) cathode radiant sensitivity, \(\frac{a m p}{W}=0.054 \frac{\mathrm{amp}}{\mathrm{W}}\) for 531 N tube
\(\mathrm{A}=\) cathode area exposed to radiation, \(\mathrm{cm}^{2}\)

To obtain the enexgy density, prom the incident radiation, it is necessary to apply factors which account for the concentration of the energy by the opties (optical area ratio) and for losses in the optics (optical efficiency).

The optical area ratio is defined as
\[
\begin{equation*}
R_{\mathrm{OA}}=\left\lfloor\frac{a}{d}\right\rangle^{2} \tag{72}
\end{equation*}
\]
where
\(\mathrm{a}=\) aperture diameter \(=3.25 \mathrm{in}\).
\(\mathrm{d}=\) image diameter (equals focal surface diameter of 2.23 in . when light source completely fills the for
and an optical efficiency, \(\eta\), of 0.8 is assumed \(\psi\)
The irradiance of earth reflected sunlight (EI) according to Brown, et al., is \(0.0078 \mathrm{~W} / \mathrm{cm}^{2}\) using an earth albedo of 0.25 . The energy density, \(p\), is then
\[
\begin{align*}
\mathrm{p} & =H R_{\mathrm{OA}} \eta  \tag{73}\\
& =(0.0078)\left(\frac{3.25}{2.3}\right)^{2}(0.8) \\
& =0.0125 \mathrm{~W} / \mathrm{cm}^{2}
\end{align*}
\]

The cathode is exposed to this radiation only over an area defined by the outLines of the three slits. The slits are \(0.0167^{\circ}(1\) minute) wide and approximately \(10^{\circ}\) long. The equivalent linear dimensions for the \(f / 2,0,6.5\)-inch focal length opties are 0.0048 cm and 2.91 cm for a total slit area of \(0.0419 \mathrm{~cm}^{2}\).
Anode current for a PMMT gain of \(10^{4}\) which results when the fov scans the sunlit earth then becomes, from Equation (71):
\[
I_{a}=(0.0125)\left(10^{4}\right)(0.054)(0.0419)=0.282 \mathrm{amp}
\]

A justification for the use of a \(10^{4}\) dynode gain is presented in Appendix E.
Similar calculations can be performed for the condition occurring when the fov scans the moon. For a near polar orbit at an angle of \(45^{\circ}\) to the sun line (syn synchronous orbit), the moon is at the \(-34^{\circ}\) phase position when it is just entering the fov.
Brown, et al. give a value of \(2.45 \times 10^{-8} \mathrm{~W} / \mathrm{cm}^{2}\) for the Iunar irradiance at \(35^{\circ}\) phase position. The moon subtends an angle of 33 arc min so the energy entering the aperture is concentrated in a spot whose diameter is 33 arc min ( 0.559 as compared to a \(20^{\circ}\) diameter for the total focal surface ( 2.3 -inch diameter). The linear diameter of the moon's image is 0.063 inch (or 0.16 cm ). The energy density of the moon's irnage is calculated using Equation (73):
\[
\mathrm{p}=\left(2.45 \times 10^{-8}\right)\left(26.6 \times 10^{2}\right)(0.8)=5.21 \times 10^{-5} \frac{\mathrm{~W}}{\mathrm{~cm}^{2}}
\]

\footnotetext{
*The value used here was obtained from calculations performed on a similar concentric optical system and is considered typical.
}
where
\[
\mathrm{R}_{\mathrm{OA}}=\left[\frac{3.25}{0.063}\right]^{2}=26.6 \times 10^{2}
\]

If all three slits were irradiated, the cathode area exposed to the lunar radiation can be approximated by assuming that the irradiated length of each slit is equal to the diameter of the moon's image, or 0.16 cm . Since the slit width is 0.0048 cm , the exposed area for three slits becomes \(0.0023 \mathrm{~cm}^{2}\).
The anode current from lunar illumination for a gain of \(10^{4}\) can now be determined from Equation (57)
\[
I_{a}=\left(5.21 \times 10^{-5}\right)\left(10^{4}\right)(0.054)(0.0023)=6.48 \times 10^{-5} \mathrm{amp}
\]

It has been shown in the above discussion that the anode current will exceed the safe level of one microampere under conditions of irradiance which will be encountered in orbit. Specifically, these conditions occur when the starmapper fov scans the sunlit earth or the full moon when the photomultiplier is operative. The starmapper design must, therefore, include provisions for protection against the occurrence of excessive anode current. This can best be accomplished by appropriate switching of the cathode voltage (see Appendix E).

Preventing the cathode temperature from exceeding the allowable \(150^{\circ} \mathrm{C}\) maximum will be considered next, Even though a sun synchronous orbit does not place the sun within the fov of the starmapper, it is conceivable that this could occur during the initial orientation of the spacecraft in its orbit or during the mission because of unexpected vehicle motions. A thermal analysis study, which is included in Appendix \(F\), led to the conclusion that inadvertent scanning of the sun could be tolerated for scan rates as low as 1 rpm . However, to avoid the possibility of having the sun in the fov during a nonspinning condition (during the launch phase) the use of the shutter mechanism described below was considered.

Shutter mechanism. -- A suitable shutter must be a quick-acting, reliable device which requires a minimum of power and is light in weight. By placing the shutter in close proximity to the focal surface, the size of the shutter device can be minimized. A design concept for such a shutter device was studied and is described below.

Since radiation can reach the PMT only through the reticle slits, it is sufficient to shield only the slits when the tube is being protected by the shutter. This permits a design in which shutter motion is minimal. Under such conditions a small solenoid, or electromagnet, can be used to move the shutter.

Spring loading will ensure that the shutter returns to the openen position, which exposes the slits whenthe electromagnet is not energized.

A design concept for a shutter located at the focal surface is shown in Figure 144. The shutter contains a thin metal plate with a slit pattern which matches the slits in the reticle plate as shown in Figure 144. The slits in the shutter must be wider than the reticle slits to ensure that the latter are fully exposed over the entire fov.
The shutter is supported on two cantilever springs which are mounted at the sides of two PMT's, as shown in Figure 144. The solenoid is mounted at one side with the plunger attached to one cantilever to move the shield to the left when the solenoid is energized. The "slits open" position is controlled by the screw head in the end of the plunger contacting the bracket.

Power to operate the shutter device will be switched on by means of a small sun detector with a silicon solar cell as the active element. This cell is mounted in a housing which exposes the cell to direct solar radiation over a fov of approximately \(30^{\circ}\) (to provide a margin of safety of \(5^{\circ}\) over the starmapper half-field of viewfo. Two design concepts for the sun detector are shown in Figure 145. In Figure 145(a) the direct solar radiation enters through a small aperture. For sun angles greater than \(15^{\circ}\) the rays strike the wall of the housing where a large percentage of the energy is absorbed. When the sun is within the \(30^{\circ}\) fov, the rays strike the silicon cell and a step-increase in the cell voltage occurs. The voltage remains at this level until the sun passes out of the detector fov.

Hlumination of the cell can be increased by means of simple optics, as shown in Figure 145(b).

In other respects the second concept is the same as the first.
The cell output is not sufficient to operate the electromagnet of the shutter device directly, but will be used in a simple transistor photorelay circuit, such as shown in Figure 146.

\section*{Transit Time Error Analysis}

Signal due to star and background. -- To estimate the time error in determination of a star crossing time, it is first necessary to find the strength of the signal due to the star and that due to other sources of stray light:
*The \(5^{\circ}\) margin is equivalent to 0.28 second for a vehicle spin rate of 3 rpm . The response time for silicon cells is of the order of 10 microseconds, and the response time for the solenoid-shutter device is less than 100 milli.seconds. Thus, the \(5^{\circ}\) will provide adequate safety margin.


Figure 144. Focal Plane Shutter Mechanism

(a) Simple solar detector

(b) Solar detector with optics

Figure 145. Solar Detector for Shutter Device


Figure 146. Photorelay Circuit for Shutter Device
\begin{tabular}{|c|c|}
\hline \(B(\lambda T)\) & Planck emissivity \\
\hline \(\Sigma_{\lambda \text { max }}\). & = maximum value of emissivity function \\
\hline \(\dot{E}_{\dot{q}}(\lambda)\) & \(=\) photocathode quantum efficiency \\
\hline \(\varepsilon_{\text {cm }}\) & \(=\) maximum value of quantum efficiency \\
\hline \(O(\lambda)\) & = maximum value of slit scan from ray trace program \\
\hline \(\mathrm{O}_{\mathrm{m}}\) & \(=\) maximum value of trace program \\
\hline \(\lambda\) & \(=\) wavelength (optical) \\
\hline \(S_{e}(\lambda)\) & \(=\) spectral response of standard eye \\
\hline \(\mathrm{M}_{\mathrm{B}}\) & \(=\) limiting magnitude (blue) \\
\hline \(\varepsilon_{0}\) & \(=\) optical efficiency \\
\hline h & \(=\) Planck's constant \\
\hline c & \(=\) light velocíty \\
\hline \(\sigma\) & \(=\) Stefan-Boltzmann constant \\
\hline T & \(=\) temperature \({ }^{\circ} \mathrm{K}\) \\
\hline \(\rho\) & \[
=1.2864 \times 10^{-4} \frac{\mathrm{ergs}}{\mathrm{~cm}^{3}{ }^{\circ} \mathrm{K}^{5}}
\] \\
\hline \(\mathrm{F}_{\mathrm{o}}=\mathrm{F}_{\mathrm{o}}\) & \[
\begin{aligned}
(\lambda, \bar{T})= & \text { energy flux from } 0^{\mathrm{m}} .0 \text { star of color temperature } \mathrm{T} \\
& \text { at wavelength } \lambda, \text { per unit wavelength, per unit area } \\
& \text { aboṽe earth's atmosphere }
\end{aligned}
\] \\
\hline \(\dot{\mathrm{N}}_{\mathbf{s}}\) & \(=\) signal photoelectrons per star transit \\
\hline \(\mathrm{N}_{\mathrm{B}}\) & \(=\) photoelectrons per star transit due to faint star background \\
\hline \(\mathrm{N}_{0}\) & \(=\) faint star background in 10 m .0 stars per̀ squáre degree \\
\hline \(\mathrm{A}_{5}\) & \(=\) slit area on celestial sphere in square degrees \\
\hline \(\mathrm{A}_{\text {opt }}\) & \(=\) clear area of objective in \(\mathrm{cm}^{2}\) \\
\hline \(\mathrm{M}_{s}\) & \(=\) number of slits in focal plane over photomultiplier \\
\hline \(\dot{\alpha}\) & \(=\) slit width in degrees \\
\hline \(\omega\) & \(=\) vehicle spin rate in degrees per sécond \\
\hline
\end{tabular}
\[
\begin{align*}
\theta_{1}, \theta_{2} & =\text { angles denoting slit extent } \\
\alpha(T) & =\int \frac{B(\lambda T)}{B_{\lambda}} \frac{\varepsilon_{q a x}(\lambda)}{\epsilon_{q m}} 0(\lambda) \lambda d \lambda  \tag{74}\\
\beta(T) & =\frac{\int B(\lambda T) S_{e}(\lambda) d \lambda}{\int B(\lambda) d \lambda} \tag{75}
\end{align*}
\]

Thus, \(\alpha(T)\) gives the dependence of the number of cathode photoelectrons on the color temperature. \(\beta(T)\) is the fraction of the total energy accepted by the standard observer.

Figure 147 shows a plot of the function
\[
\begin{equation*}
M(T)=\frac{\int B(\lambda) E_{q}(\lambda) 0(\lambda) \lambda d \lambda}{\int B(\lambda T) S_{e}(\lambda) d \lambda} \tag{76}
\end{equation*}
\]

In Figure 147 the ordinate is expressed in magnitudes with the zero at \(11000^{\circ} \mathrm{K}\) (Type A0). The abscissa is the common logarithm of color temperature ( \(\lambda\) is in microns). \(11.000^{\circ} \mathrm{K}\) corresponds to magnitude 0.1966 . From Equations (74) to (76),
\[
\begin{equation*}
\alpha(T)=M(T) \beta(T) \frac{\int B(\lambda T) d \lambda}{B_{\lambda \text { mas }}} \tag{77a}
\end{equation*}
\]

If two stars with different temperatures \(\mathrm{T}_{1}, \mathrm{~T}_{2}\) are each of zero magnitude, then
\[
\begin{equation*}
F_{o}\left(T_{1}\right) \beta\left(T_{1}\right)=F_{o}\left(T_{2}\right) \beta\left(T_{2}\right)=C=\text { Constant } \tag{77b}
\end{equation*}
\]

In addition,
\[
\begin{equation*}
\int \mathrm{B}(\lambda \mathrm{~T}) \mathrm{d} \lambda=\sigma \mathrm{T}^{4} \text { (the Stefan-Boltzmann law) } \tag{77c}
\end{equation*}
\]
and
\[
\begin{equation*}
B_{\lambda_{\text {max }}}=\rho T^{5} \tag{77~d}
\end{equation*}
\]

Equations (72a) to '72d) lead to


Figure 147. System Response in Visual Magnitudes as a Function of Color Temperature
\[
\begin{equation*}
\frac{\mathrm{F}_{\mathrm{o}} \alpha(\mathrm{~T})}{\mathrm{hc}}=\frac{\mathrm{CM}(\mathrm{~T}) \sigma}{\rho \mathrm{hcT}}=\gamma(\mathrm{T}) \tag{78}
\end{equation*}
\]

Code (ref. 13) gives for the monochromatic flux from a star of visual magnitude zero and color ondex \(B-V=0\) a value
\[
\begin{equation*}
F_{0}=3.8 \times 10^{-9} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{sec} / \AA \tag{79}
\end{equation*}
\]
at \(5560 \AA\). This value was adopted.
The usual spectral responses of photomultipliers ( \(\mathrm{S}-4, \mathrm{~S}-11, \mathrm{~S}-9\), etc.) correspond roughly in bandpass and bandpass location to the Johnson " \(B\) "filter widely used to determine blue magnitudes. This induces the use of blue magnitudes in the calculations of star signals.

If blue magnitudes are used, the flux calibration needed is at \(4300 \AA\) (center of Johnson \(B\) filter). Code (ref. 13) gives a magnitude difference for Bega (Type \(A_{o}\) visual magnitude 0.00 and color index 0.00 ) between 5560 and \(4300 \AA\) of
\[
\begin{equation*}
\Delta \mathbb{M}\left(\frac{1}{\lambda}\right)=-0.20 \tag{80}
\end{equation*}
\]

It is preferred to work in terms of \(M(\lambda)\) the magnitude as a function of wavelength rather than reciprocal wavelength. The two are related by
\[
\begin{equation*}
\mathbb{M}(\lambda)=\mathbb{M}(1 / \lambda)+5 \log \left(\lambda / \lambda_{0}\right) \tag{81}
\end{equation*}
\]

From the definition of magnitude in terms of intensity,
\[
\begin{equation*}
\frac{F_{o}(0.4300 ; 11000)}{F_{o}(0.5560 ; 11000)}=\left(\frac{\lambda_{0}}{\lambda}\right)^{2} 10^{-0.4} \Delta \mathrm{M}(1 / \lambda) \tag{82}
\end{equation*}
\]

Using Equations (82) and (79), the monochromatic flux from a star of visual magnitude zero and color index zero at \(4300 \AA\) is
\[
\begin{align*}
\mathrm{f}_{4300 \AA} & =7.64 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~cm}^{2} \mu} \\
& =0.764 \frac{\mathrm{ergs}^{\mathrm{sec} \mathrm{~cm}}}{} \mathrm{~cm}^{3} \tag{83}
\end{align*}
\]

A numerical integration of Equation (75) for \(T=11000^{\circ} \mathrm{K}\) gives
\[
\begin{equation*}
\beta\left(11000^{\circ} \mathrm{K}\right)=9.523 \times 10^{-2} \tag{84}
\end{equation*}
\]
fixing the value of \(C\).

In Figure 147, the reference magnitude is 0,1970 . Thus,
\[
\begin{equation*}
M\left(11000^{\circ} \mathrm{K}\right)=1.2 \mu=1.20 \times 10^{-4} \mathrm{~cm} \tag{85}
\end{equation*}
\]

The quantity \(\gamma(T)\) can now be found as
\[
\begin{align*}
\gamma\left(11000^{\circ} \mathrm{K}\right)= & \frac{0.764 \times 9.523 \times 10^{-2} \times 1.20 \times 10^{-4} \times 5.67 \times 10^{-5}}{1.286 \times 10^{-4} \times 6.63 \times 10^{-27} \times 3 \times 10^{10} \times 1.1 \times 10^{4}} \\
& \frac{1}{\mathrm{sec}-\mathrm{cm}^{2}} \\
= & 1.760 \times 10^{6} / \mathrm{sec} \mathrm{~cm} \tag{86}
\end{align*}
\]

The physical significance of \(\gamma(11000 \AA 0)\) is that it is the number of photoelectrons per second produced by a Type A0, \(0^{\mathrm{m}} .0\) star in a sensor having ARRS design with a \(1-\mathrm{cm}^{2}\) aperture of perfect transmission and using an EMR Type \(N\) photocathode with a peak quantum effieicncy of unity.

The number of photoelectrons per transit at magnitude \(M_{B}\), aperture \(A_{\text {opt }}\), and optical efficiency \(\varepsilon_{0}\) can now be calculated
\[
\begin{equation*}
\mathrm{n}_{\mathrm{s}}=\lambda(\mathrm{T}) A_{\mathrm{opt}} \varepsilon_{\mathrm{o}} \varepsilon_{\mathrm{qm}} \frac{\alpha}{\omega} 10^{0.4 \mathrm{M}_{\mathrm{B}}} \tag{87}
\end{equation*}
\]
( \(\alpha / \omega=\) a star transit time).
The baseline starmapper utilizes a 3.25 -inch aperture with a central obscurration of 2.30 inches. There are two fused silica-vacuum interfaces and a single mirror surface. Therefore,
\[
\begin{equation*}
A_{\text {opt }}=\frac{\pi}{4} 2.54^{2}\left(3.25^{2}-2.30^{2}\right)=26.72 \mathrm{~cm}^{2} \tag{88}
\end{equation*}
\]

The refractive index, \(n\), for fused silica at \(4350 \AA\) is 1.467 . The reflection loss at each fused silica surface is approximately
\[
\begin{equation*}
R=\left(\frac{n-1}{n+1}\right)^{2}=0.036 \tag{89}
\end{equation*}
\]

Reflectivity of aluminum (on the mirror) is about 0.96 in the visible. If \(5 \%\) absorption occurs within the lenses, the optical efficiency will be
\[
\begin{equation*}
\varepsilon_{0}=0.964^{2} \times 0.96 \times 0.96=0.85 \tag{90}
\end{equation*}
\]

If, further, the slit width, \(\alpha\), is one minute of arc and the spacecraft spin velocity is \(3 \mathrm{rpm}\left(18^{\circ} / \mathrm{sec}\right)\) and the limiting magnitude is assumed as \(3^{\mathrm{m}} .50 \%\), \(n_{s}\) can be estimated as
\[
\begin{align*}
\mathfrak{n}_{\mathrm{S}} & =\frac{1.76 \times 10^{6} \times 26.72 \times 0.85 \times 0.215 * * \times 10^{-0.4 \times 3.5}}{60 \times 18} \\
& =316 \text { per star transit } \tag{91}
\end{align*}
\]

The number of photoelectrons due to the faint star background per star transsit will be
\[
\begin{align*}
& \mathrm{n}_{\mathrm{B}}=\gamma(\mathrm{T}) A_{\text {opt }} \varepsilon_{\mathrm{o}} \varepsilon_{\mathrm{qm}} \frac{\alpha}{\omega} \mathbb{N}_{\mathrm{o}} 10^{-4} \mathrm{~A}_{\mathrm{S}}  \tag{92}\\
& \left\langle\gamma \mathrm{~A}_{\mathrm{opt}} \varepsilon_{0} \varepsilon_{\mathrm{qm}} \frac{\alpha}{\omega}=1.351 \times 10^{4} / \mathrm{sec}\right.
\end{align*}
\]

If the slit extends from \(\theta_{1}\) to \(\theta_{2}\) as measured from spin axis,
\[
\begin{equation*}
A_{s}=n_{s} \frac{180 \alpha}{\pi}\left(\cos \theta_{1}-\cos \theta_{2}\right) \tag{93}
\end{equation*}
\]

The baseline fov is \(20^{\circ}\), and the slit array possesses a \(2^{\circ}\) central blocking angle. One set of slits extends from \(70^{\circ}\) of spin axis to \(79^{\circ}\). Another extends from \(81^{\circ}\) to \(90^{\circ}\) of axis. Thus, one set of slits has an area 0.433 square degree, the the other 0.448 square degree; the average is 0.440 square degree.

Principal sources of stray light will be scattered light from bright objects, zodiacal light, and faint stars of the Milky Way. It is not possible to estimate the scattered light from bright objects without knowledge of the configuration. Thus, ideal conditions will be assumed. Allen (ref. 14) gives the zodiacal light at elongation \(120^{\circ}\) as 170 tenth magnitude stars per square degree. Roach and Negill (ref, 15) give the integrated background of faint stars as a function of galactic coordinates. They find backgrounds as large as 320 tenth magnitude stars per square degree. The zodiac and the Milky Way are not scanned simultaneously. Thus, put \(N_{o}=320\).

Then,
\[
\begin{align*}
\mathrm{n}_{\mathrm{B}} & =1.351 \times 10^{4} \times 320 \times 10^{-4} \times 0.440  \tag{94}\\
& =101 \text { per star transit }
\end{align*}
\]

\footnotetext{
*A value of 3.65 (visual) was reported earlier as the faintest star required to be detected in a worst-case condition.
}
\(* *\) Quantum efficiency of \(21.5 \%\) corresponding to Type \(N\) photocathode.

If the star population is amanged according to spectral class and the number per spectral class is plotted as a function of spectral class, Figure 148 is obtained (ref. 16).

Peaks in population-density occur at Type A and Type M, explaining the use of A0 stars in the calculation and suggesting a similar one for Type M.

The temperature dependence of \(n_{\mathrm{S}}\) can be deduced from Equation (78) as
\[
\begin{equation*}
\mathrm{n}_{\mathrm{s} 2}=\mathrm{n}_{\mathrm{s} 1} \frac{\mathrm{~T}_{1} \mathrm{M}\left(\mathrm{~T}_{2}\right)}{\mathrm{T}_{2} \mathrm{M}\left(\mathrm{~T}_{1}\right)} \tag{95}
\end{equation*}
\]

Type M corresponds to about \(3800^{\circ} \mathrm{K}\), according to Allen (ref. 14). From Figure 102 at \(T=3800^{\circ} \mathrm{K}, \mathrm{M}\left(3800^{\circ} \mathrm{K}\right)=0.288\); thus, for \(3800^{\circ} \mathrm{K}\),
\[
\begin{equation*}
\mathfrak{n}_{\mathrm{s}}=316 \times \frac{11}{3.8} \times 0.288=263 \tag{96}
\end{equation*}
\]

This result is unexpected; intuitively, one expects many fewer.
Further examination of this result appears in order. In Figure 149, \(\alpha(T)\), the system response at constant peak value of the incident radiation, is displayed as a function of temperature. This varies over orders of magnitude and is as expected. However, to obtain the system response at constant magnitude (blue or visual), \(\alpha\) (T) must be divided by the response of the standard observer (Figure 150) as well as the effective black body temperature. The result of these operations is the curve of Figure 151. The variation of system response changes surprisingly little over \(2500^{\circ} \mathrm{K} \leq \mathrm{T} \leq 30000^{\circ} \mathrm{K}\), comprising spectral classes \(M_{5}\) to \(B_{5}\).

Signal-to-noise ratio; variance of crossing time estimate. -- Having found the signal from star and background, the signal-to-noise ratio and the factor, \(K\), by which the blur circle of the star or slit width may be interpolated can be estimated. The peak signal to rms noise is
\[
\begin{equation*}
\mathrm{S} / \mathrm{N}=\frac{\mathrm{M}_{\mathrm{S}}}{\sqrt{2\left(\mathrm{n}_{\mathrm{s}}+\mathrm{n}_{\mathrm{B}}+\mathrm{n}_{\mathrm{P}}\right.}} \tag{97}
\end{equation*}
\]
where
\[
\begin{equation*}
n_{P}=\gamma \frac{\alpha}{\omega} \tag{98}
\end{equation*}
\]
and is the total number of noise pulses per star transit due to the photomultiplier tube and \(\gamma\) is the number per second. EMR 541 N specifications indicate \(\gamma=1200\). This value is also assumed for the EMR 531 N photomultiplier.


Figure 148. Number Distribution of Stars According to Spectral Class


Figure 149. Number of Cathode Photoelectrons as a Function of Color Temperature


Figure 150. Response of Standard Observer as a Function of Color Temperature


Figure 151. Relative System Response as a. Function of Color Temperature
\[
n_{P}=\frac{1200}{18 \times 60}=1.11
\]
which is negligible. Then,
\[
\begin{aligned}
& (S / N) 3^{\mathrm{m}} \cdot 5 \mathrm{AO}=9.91 \\
& (\mathrm{~S} / \mathrm{N}) 3^{\mathrm{M}} \cdot 5 \mathrm{MO}=7.14
\end{aligned}
\]

A rule of thumb for estimating the interpolation factor is
\[
\begin{equation*}
\mathrm{K} \approx \sqrt{2(\mathrm{~S} / \mathrm{N})} \tag{99}
\end{equation*}
\]

Thus,
\[
\begin{aligned}
& K\left(3^{m} \cdot 5, A 0\right)=14.0 \\
& K\left(3^{m} \cdot 5, N 0\right)=10.1
\end{aligned}
\]

The expression (99) is derived as follows.
Let \(t_{s}\) be the measured time of transit, \(e_{o}\) be the output gignat, and \(T_{s}\) be the star transit time across the slit. Then,
\[
\begin{aligned}
& \overline{t_{s}^{2}}=\frac{\overline{e_{o}^{2}}}{2\left(\frac{d e_{o}}{d t}\right)^{2}}, \quad(S / N)^{2}=e_{o}^{2} / e_{0^{2}}^{2} \\
& \frac{d e_{o}}{d t} \approx \frac{e_{o}}{T_{s}} \cdot \overline{N_{s}^{2}} \approx \frac{T_{s}^{2}}{\mathbb{K}^{2}}
\end{aligned}
\]
whence \(K \approx \sqrt{2(S / N)}\).
These mumbers are based on 1 -sigma ermors, leading edge detections, ath stationary statistics. Since threshold detection at both leading and trailing edge will be used and the statistics are in fact nonistationariys a more rigonous trestment of crossing time exror follows.

The following theorem may be derived from Parzen (wef. 16 ) [see also \(\mathrm{E}_{\mathrm{i}}\). J, Farrel (ref. 17 )].

Let \(x(t)\) be a poisson process with wate \(v(t)\), of form
\[
\begin{equation*}
x(t)=\sum_{k=-\infty}^{\infty} a_{k} \int_{0}^{\infty} p\left(t-t_{k}-x\right) h(x) d x \tag{100}
\end{equation*}
\]
where \(h(t)=0, t \leq 0\), and \(a_{k}\) and \(t_{k}\) are random variables. Then the expectation value, variance, and covariance of \(x(t)\) are given by
\[
\begin{gather*}
E[x(t)]=\bar{a} \int_{-\infty}^{\infty} v(\tau) \int_{-\infty}^{\infty} p(t-T-x) h(x) d x d \tau  \tag{100}\\
\left.\operatorname{var} x(t)=\overline{a^{2}} \int_{-\infty}^{\infty} v(\tau) \int_{-\infty}^{\infty} p(t-\tau-x) h(x) d x\right\} d \tau  \tag{102}\\
\operatorname{coc}\left[x(t), x\left(t+t_{0}\right)\right]=a_{-\infty}^{2} \int_{-\infty}^{\infty} v(\tau) \int_{-\infty}^{\infty} p(t-T-x) h(x) d x \\
 \tag{103}\\
\int_{-\infty}^{\infty} p\left(t+t_{0}-\tau y\right) h(y) d z d \tau
\end{gather*}
\]

Considering threshold detection at leading and trafling edges of the star pulse, and assuming a constant slope in a neighbordhood of the threshold, Farrell (ref. 17) derives
\[
\begin{equation*}
\operatorname{var}\left(t_{s}\right)=\frac{\operatorname{var} x\left(t_{1}\right)-\operatorname{cov}\left[x\left(t_{1}\right) x\left(t_{2}\right)\right]}{2\left\{E\left[x^{1}\left(t_{1}\right)\right]\right\}^{2}} \tag{104}
\end{equation*}
\]
where \(t_{1}\) and \(t_{2}\) are times of threshold crossings.
E. J. Farrell (ref. 18) has shown that if the star "blur circle" is assumed to have the Gaussian form
\[
\begin{equation*}
I(x, y)=e^{-x^{2}+y^{2} / 20^{2}} \tag{105}
\end{equation*}
\]
then the detector output may be well approximated, except for a constant factor
\[
\begin{equation*}
g(t)=e^{-t^{2} / 2 \sigma_{1}^{2}} \tag{106}
\end{equation*}
\]
where
\[
\begin{equation*}
\sigma_{1}^{2}=\sigma^{2}\left[1+\frac{1}{3}\left[\frac{\mathrm{~T}}{2 \sigma}\right)^{2}\right], T_{s}=\frac{\alpha}{b} \tag{107}
\end{equation*}
\]
anc, where \(T_{s}\) is the time for a star to cross the slit.
The foundations for the application of Equations (100); (101), and (102) has now been laid. One takes t to be time, \(p(t)\) to be the detector output due to a single photo event, h(t) to be the impulse response of the filter following the detector, \(x(t)\) to be the filter output, \(a_{k}\) to be the size of signal at detector anode due to a single photo event, and \(v(t)\) as g(t). Since p(t) occurs in a fime much smaller than the filter delay, one puts \(p(t)=\delta(t)\), where \(\delta(t)\) is the Dirac delta function.

Then,
\[
\begin{gather*}
E[x(t)]=-\int_{-\infty}^{\infty} g(x) h(t-x) d x  \tag{106}\\
\operatorname{var} x(t)=\overline{a^{2}} \int_{-\infty}^{\infty} g(x) h^{2}(t-x) d x  \tag{109}\\
\operatorname{cov}[x(t), x(t+\pi)]=a^{2} \int_{-\infty}^{\infty} g(x) h(t-x) h(t+T-x) d x \tag{1.10}
\end{gather*}
\]
where \(\bar{a}\) and \(\overline{a^{2}}\) are the first sind second moments of \(a_{k}\)
To accounk for star plus background and darb current, one takes g(x) as
\[
\begin{equation*}
g(x)=\dot{I}_{0} e^{-\dot{x}^{2} / 2 \sigma_{1}^{2}}+I_{1} \tag{111}
\end{equation*}
\]
where \(I_{0}\) and \(I_{1}\) are photon rates \(\left(I_{0}=a_{S} / T_{S^{*}} I_{1}=n_{B} / T_{S}\right)_{H}\)
A lowpass filter is used. Thus, the impulse response will be of the form
\[
h(x)=2 \omega_{c} \sum_{i=1}^{N} e^{-\alpha_{i} \omega_{i} x}\left(a_{i} \cos \beta_{1} \omega_{c^{x}} x+b_{o} \sin \beta_{i} \omega_{c} x\right)
\]
where \(\alpha_{i}, \beta_{i}, a_{i}, b_{i}, \omega_{c}\) characterize the fitter.
The evaluation of Equation (110) is effected by use of Gauss-Hermite quadrature. One obtains, for example,
\[
\begin{align*}
\operatorname{cov}[\xi(t), x(t+\tau)]= & a^{2} I_{0} \sqrt{2} \sigma_{1} \sum_{j=1} W_{j} h\left(t-\sqrt{2} \sigma_{1} x_{j}\right) \\
& h\left(t+\tau-\sqrt{2} \sigma_{1} x_{j}\right) \\
& +a^{2} I_{1} \sqrt{2} \sigma_{1} \sum_{i=1} W_{j} h\left(t-\sqrt{2} \sigma_{p} x_{j}\right) \\
& a\left(t+\tau-\sqrt{2} \sigma_{1} x_{j}\right) \tag{113}
\end{align*}
\]
where \(W_{j}\) and \(x_{j}\) are the weights and roots for Gauss-Hermite quadrature and
\[
w_{j}=e^{x_{j}^{2}} W_{j}
\]

A threshold \(I_{t}\) is set; a filter delay \(t_{o}\) is calculated from the equation
\[
\begin{equation*}
0=x^{\prime}\left(t_{0}\right)=\frac{d}{d t} \quad E\left[x\left(t_{0}\right)\right] \tag{114}
\end{equation*}
\]
in the form
\[
\begin{equation*}
\sum_{i=1}^{N} w_{i} x_{i} h\left(t_{o}-\sqrt{2} \sigma_{1} s_{i}\right)=0 \tag{115}
\end{equation*}
\]

The threshold crossing times are then taken as
\[
\begin{equation*}
t_{1,2}=t_{0} \pm \sqrt{2 \sigma_{1}^{2} \ell_{n}\left(i_{0} / I_{t}\right)} \tag{116}
\end{equation*}
\]

In the present program, the delay for an equi-ripple approximation to linear phase filter, a Paynter filter is used to provide a first appproximation to the solution of \((102), t_{o}=\pi / \omega_{c}\).

The quantity \(\overline{a^{2}} / \bar{a}^{-2}\) which will appear in Equation (104) is taken as the degradation factor due to secondary emission multiplication noise in the photomultiplier.

A threshold \(n_{T}\) is found from the equation
\[
\begin{equation*}
\mathrm{p}\left(\mathrm{n} \geq \mathrm{n}_{\mathrm{T}} \mid \mathrm{N}\right)=\frac{1}{2} \operatorname{erfc} \frac{\mathrm{n}_{\mathrm{T}}-\mathrm{N}}{\sqrt{2 \mathrm{~N}}} \tag{117}
\end{equation*}
\]
i. e., if the mean number of the photoelectrons in a star transit time is \(N=n_{s}+n_{B}+n_{p}\), what is the probability that \(n_{T}\) is exceeded. Putting \(p=\) 0.95 for a Type \(A 0,3^{\mathrm{m}} .5\) star producing an average of 538 photons for star transit, \(\mathrm{n}_{\mathrm{T}}=589,(488+101)\). Calculation of the transit time error can now be performed.

A linear phase shift, sixth-order Paynter filter is assumed. This has the transfer function
\[
\begin{equation*}
T(s)=\frac{1}{\prod_{i=1}^{3}\left[a_{i}\left(\frac{s}{\omega_{c}}\right)^{2}+b_{i} \frac{s}{\omega_{c}}+1\right]} \tag{118}
\end{equation*}
\]
with
\[
\begin{array}{ll}
a_{1}=1.866, & b_{1}=2.3860 \\
a_{2}=0.6579, & b_{2}=0.6204 \\
a_{3}=0.2310, & b_{3}=0.1224
\end{array}
\]

Thus, the impulse response is
\[
\begin{equation*}
h(t)=\left\{2 a_{i} \omega_{c} e^{-\alpha_{i} \omega^{t} t} \cos \left(\beta_{i} \omega^{t}\right)+2 b_{i} \omega e^{-\alpha_{i} \omega^{t}} \sin \left(\beta_{i} \omega^{t} t\right)\right\} \tag{119}
\end{equation*}
\]
with
\[
\begin{array}{llll}
a_{1}=0.6393, & \beta_{1}=0.3566, & a_{1}=0.0441, & b_{1}=0.2691 \\
a_{2}=0.4715, & \beta_{2}=1.1391, & a_{2}=-0.555, & b_{2}=0.1067 \\
\alpha_{3}=0.2641, & \beta_{3}=2.0604, & a_{3}=0.0114, & b_{3}=0.0143
\end{array}
\]

A choice of \(\omega_{c}=0.7 / \sigma, \bar{a}^{2} / \bar{a}^{2}=1.5\), and \(n_{S}=316, n_{B}=192\) and \(n_{T}=471\) leads to a standard deviation for the leading edge of \(1.210 \times 10^{-4}\). second for the trailing edge of \(1.215 \times 10^{-4}\) second. The standard deviation of the pulse center \(\sigma_{S}\), is \(4.97 \times 10^{-5}\). Thus,
\[
K=\frac{T_{S}}{\sigma_{S}}=18.6
\]

The 1-sigma error for 1-arc-minute slits is 3.2 arc sec. A 3-sigma error is 9.6 arc sec.

For a color temperature of \(2400^{\circ} \mathrm{K}\) (Type M 9 ), the numbers are, \(\mathrm{n}_{\mathrm{S}}=200\), \(\mathrm{n}_{\mathrm{B}}=192, \mathrm{n}_{\mathrm{T}}=392\), and \(\sigma_{\mathrm{s}}=7.19 \times 10^{-5},(\mathrm{~S} / \mathrm{N})=7.14\) and \(\mathrm{K}=12.9\).

Effect of vehicle spin rate on signal to noise. -- From Equations (87) and (92), it may be seen that the number of signal and background photoelectrons varies inversely with \(\omega\), the spin rate. Thus, Equation (97) implies that the signal-to-noise will vary inversely as the square root of the spin rate or
\[
(S / N)_{1} / \sqrt{\omega_{1}}=(S / N)_{2} / \sqrt{\omega_{2}}
\]

Thus, a signal-to-noise of \(15: 1\) at \(3^{m} .50\) Type A0 becomes
\[
(\mathrm{S} / \mathrm{N})_{5 \mathrm{rpm}}=9.91 \sqrt{\frac{3}{5}}=7.68
\]
and
\[
(\mathrm{S} / \mathrm{N})_{1 \mathrm{rpm}}=9.91 \sqrt{3}=17.17
\]

\section*{GROUND BASED DATA PROCESSING}

To determine the attitude of the spacecraft, the attitude determination algorithm uses the transit times of identified stars. The initial star identification subroutine was developed to identify transits from an initial data set of perhaps 10 to 20 scan periods with only a rough estimate of the direction of the spin axis given. As many transits as possible are matched with the star and slit which produced this transit.

As estimation proceeds, each transit which is encountered must be identified as having been produced by a given star and a given slit. The update star identification subroutine was developed to accomplish this.

\section*{Initial Star Identification}

Initial star identification is accomplished through the following broad substeps. It is assumed that the transits are tagged, indicating from which of the two photomultipliers the pulse originated. It is further assumed that the on-board logic has transmitted transits only if they have been determined to
be acceptable triplet members. Data from 10 to 20 scan periods will be used.
1) Measured transits will be grouped into triplets; this will remove the effects of interleaving of triplets and will tenatively identify each transit as being produced by a specified slit.
2) . The scan, period' will be determined by forming a histogram of all the differ ences: of the center slit transit times which lie within specified limits.
3) Alif of the triplets are then reduced modulo this period. Only the center slits need be considered: -- along with the separation of the triplet members. These data are then histogrammed over a time span of one scan period. Triplets with different separations are handled: separately. This procedure performs a multiscan correlation of the triplets.
4). The separation: angles between the triplets as these angles are projected onto the celestial sphere are calculated. These separations, are calculated from a knowledge of the elevations and relative azimuths: of the triplets.

If \(w\) is the spin rate, define the azimuth to be \(s=\omega t_{3}\), where \(t_{3}\) is the transit time of the third' slit \({ }^{\prime}\) Also let \(x=\omega\left(t_{3}-t_{1}\right)\). Define \(\sigma\) to; be the cant angle (i. e.., the angle from the intersection of the slits to the spin axis).
Finaliy, let. \(\rho_{i}\) be the angle between the \(i^{\text {th }}\) slit and the great circle connecting the spin axis and the intersection of the slits. In the coordinate: system in which the z-axis is identical to the spin axis and the x-axis lies, in the plane defined by the spin axis and the position of the intersection of the slits at time \(t=0\), it can be shown that the direction cosines of the star producing the transits are given by
\[
\left(\begin{array}{l}
S_{11} \\
S_{2} \\
S_{3}
\end{array}\right)=\frac{1}{\sqrt{a^{2}+b^{2}}} \cdot R^{T}(s)\left(\begin{array}{l}
a \cdot \sin \sigma-b \cos \rho_{3} \cos \sigma \\
-b \cdot \sin \rho_{3} \\
a \cos \sigma+b \cos \rho_{3} \sin \sigma
\end{array}\right)
\]
where:
\[
\begin{aligned}
a_{1}= & \left(\cos \rho_{1} \sin \rho_{3}-\sin \rho_{1}^{\prime} \cos \rho_{3} \cos ^{2} \sigma\right), \cos ^{\prime} x \\
& -\cos \left(\rho_{1}-\rho_{3}\right) \cos \gamma \sin x-\sin \rho_{1} \cos ^{\prime} \rho_{3} \sin ^{2} \sigma \\
R^{\mathbb{F}^{\prime}}(\mathrm{s}) & =\left[\begin{array}{lll}
\cos s-\sin s & 0 \\
\sin s & \cos s & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
\]
and
\[
\begin{aligned}
\mathrm{b}= & -\sin \sigma \sin \rho_{1} \cos \sigma \cos x-\sin \sigma \cos \rho_{1} \sin \mathrm{x} \\
& +\sin \sigma \sin \rho_{1} \cos \sigma
\end{aligned}
\]

Then the separation angle \(\theta_{i j}\) between the projections of the \(i^{\text {th }}\) and \(j^{\text {th }}\) triplet on the celestial sphere can be calculated from the dot product between the two star vectors
\[
\cos \theta_{i j}=\hat{S}_{i} \cdot \hat{S}_{j}
\]
5) Initial identification is accomplished by examining various combinations of three triplets and then linking the separations of these triplets into a polygon. If this polygon corresponds to a polygon formed of the separations of known stars, the stars and triplets are regarded to be matched. The remaining separations are tested with other known stars to try to pick up additional matches.
6) The original transit data are examined and each transit which has been identified with a star is tagged with the matched star number and slit number.

If the reticle slits are characterized by an angle Pbetween the slits and an angle \(\sigma\) between the intersection of the slits and the intersection of the spin axis with the celestial sphere, the motion due to the precession of the spacecraft can be considered to be decomposed into an up-down motion of the intersection of the slits expressed as
\[
\sigma=\sigma+\gamma \sin \omega_{p} t
\]
and a rotation of the slits through an angle \(\varepsilon\) about the point of intersection of the slits expressed as
\[
\epsilon=\gamma \sin \omega_{\mathrm{p}} \mathrm{t}
\]
where \(\gamma\) is the precession angle and \(\omega_{p}\) is the precession rate. Since the precession angle is small, the rotary motion can be considered (for a given star) as a side-to-side motion of the slits.

The maximum difference in the positions of the observations of a given star by a given slit produced by the side-to-side motion will occur for the side slits. If \(\sigma=90^{\circ}, \Gamma=-20^{\circ}, \gamma=1^{\circ}\) and the fov is \(15^{\circ}\), this difference will be about \(\pm 0.3^{\circ}\). For the center slit, the difference will be about \(6 \%\) less. For the center slit, there will be no difference in the positions of a given star produced by the up-down motion. For the side slits, the maximum difference also will be about \(0.3^{\circ}\).

Since the time spent along the up-down and side-to-side axis can be described by a sine curve with the maximum and minimum corresponding to the extreme points of the motion, a histogram of a sample of measurements of a given star (moduled to one spin period) will be double peaked. Since both the side-to-side and up-down motions contribute to the variation in the side slits, while only the up-down motion contributes to the center slit, the width of the peaks from the side slits will be about 1.5 times that of the peak from the center slit. For the above parameters this will imply a total variation from a nominal position of observation (i.e., assuming no precession) for the side slits of \(\pm 0.45^{\circ}\). This complicates the initial star identification procedure since, without an accurate knowledge of the attitude of the spacecratt including the precession effects, only the average position of a star transit can be deduced from the multiscan correlation technique.

The entire program was tested using a tape of simulated ARRS transits. These transits were displaced in time according to a Gaussian distribution of half width equal to 10 are sec. In addition, triplets were randomly eliminated in inverse proportion to the brightness of the stars. Finally, triplets of noise were randomly introduced into the data. Of the 435 transits on the tape, 171 are noise transits. This simulation actually represents a condition of greater noise content than that expected for the real application,

Figure 152 shows the simulated transit times where each solid data point represents a star triplet and each open data point represents a noise triplet.

Using a value of 0.012 second for the tolerance for comparing the predicted with the meas ured transit times, 107 star transits were correctly identified and no star transit was incorrectly identified. Fifteen noise transits were incorrectly identified as being star transits. Since the maximum error in time for these incorrectly-identified transits is less than 0.012 second, the effect on the attitude determination should not be severe. It is obvious that the number of noise transits incorrectly identified as star transits will be reduced if the amount of noise in the raw data is less than the approximately \(40 \%\) of the total used in this simulation.

The required input for the initial star identification program is a star catalog, a list of stars in the fov, a list of transit times, the number of transit times in this list, and a corresponding list of tags indicating whether the transit originated from the upper or lower photomultiplier tube. The ou fput will be a list of identified transits and corresponding lists containing the matched star number, slit number, and tag.

\section*{Update Star Identification}

Star identification during the update portion of the operation will be accomplished by the subroutine UPSID. The routine will fateract with the attitude determination routine in a closed-loop manner. The attitude determination routine will calculate state vector, \(\vec{x}(t)\), and the rotation matrix, \(E(t)\), which transforms vectors from inertial space to the body reference frame. It will continue this calculation until the time, \(t_{s}\), of the next observed transit.


Figure 152. Flow Chart of Initial Star Identification Program

Then the routine UPSDD will be called to identify the star and slit which produced this transit. This information will then be used by the attitude determination routine as it updates the attitude parameters until the next transit time.

The normal, \(\hat{n}_{1}\), to the plane of slit \(i\) at the time \(t_{s}\) in the inertial reference system is given by
\[
\hat{n}_{i}=E\left(t_{s}\right) \hat{N}_{i}
\]
where \(\hat{N}_{i}\) is the previously-calculated normal to the plane of slit in the body reference frame.

Similarly, the optical axis at the time \(t_{s}\) in the inertial reference system is given by
\[
\hat{a}=E\left(t_{S}\right) \hat{A}
\]
where \(\hat{A}\) is the optical axis in the body reference system.
The stars are then cycled through and the angle \(\theta_{j}\) between the normal to each slit plane, \(i\), and the previously-calculated star vector, \(\hat{S}_{j}\), is given by
\[
\cos \theta_{j}=\hat{\mathrm{n}}_{\mathbf{i}} \cdot \hat{\mathrm{S}_{j}}
\]

If this cosine is greater in absolute value than that of the best previous starslit combination, this star-slit combination is eliminated from further consideration.

A check must now be made to see that the star lies in the fov. To do this, the angle \(\eta=\hat{a} \cdot S_{j}\). If \(\eta\) is less than the specified fov, the star \(j\) and slit \(i\) are identified with the transit \(t_{s}\).
INPUT
\(E\left(t_{s}\right)\) rotation matrix from inertial space to body reference frame at time \(t_{s}\)
\(\hat{N}_{i} \quad\) the normal to each slit, \(i\), in the body reference frame
\(\hat{A} \quad\) the optical axis in the body reference frame
\(\hat{S}_{j} \quad\) the unit vector in inertial space to each star, \(j\), in the fov
CFOV the fov
CT sine of angular tolerance between slit plane and acceptable star vector

\section*{OUTPUT}
a) right ascension and declination of star identified with \(t_{s}\)

S direction cosines of star identified with \(t_{s}\)
MSL slit number identified with \(t_{s}\)
MST star number identified with \(t_{s}\)
SNAAG magnitude of identified stax
SDOTU cosine of angle between normal to slit plane and identified star vector

Stars in fov. -- A Iist of stars in the fov of the star sensor is required by both the initial and update star identtication programs. The subroutine STARLST writes such a list without taking earth blocking into consideration.

INPUT
Star Catalog
RA \(\quad\) DE \(\}\) direction of \(\operatorname{spin}\) axis
SIGMA cant angle
FOVD field of view (deg)
THETA precession (cone) angle (deg)

\section*{OUTPUT}

LIST List of indices of stars in fov

\section*{CEITHSTAAL SENSOR LOGIC}

Memory banks on the spacecraft can store a maximum of 60000 bits of information from the star sensor per orbit. The celestial sensor logic system gathers the data from the photomultiplier tube (PMT), processes it, and places selected items into storage. The signal from the PMT is amplified and filtered to remove as much noise as possible. A threshold detection system and associated logic then determines in real time the position of the transit. Finally, the data-reduction system will separate noise pulses and star information by digital filtering techniques. Since as many as possible of the 60000 bits must contain good star transit information to solve the attitude determination problem, the aim of this system is to eliminate all noise pulses.

\section*{Data Compression}

Limited storage of 60000 bits per orbit is one of the major design constraints in the design of the on-board logic. It is assumed that the position of a star pulse must be resolved to 1 arc sec. The range of time measurement required is calculated as 46.4 microseconds for 1 rpm and 9.25 microseconds for 5 rpm . A \(100-\mathrm{KHz}\) clock would give 10 microseconds of resolution with a real-time count of \(600 \times 10^{6}\) within 30 bits. A \(25-\mathrm{KHz}\) clock would give 40 microseconds of resolution with a real-time count of \(150 \times 10^{6}\) within 28 bits.

If \(t\) bits are required for a real-time measurement of a star within the orbital period of 100 minutes and if the measurement period were cut in half, to 50 minutes, and the real-time register just recycled, there would be a reduction of 1 bit per data word per orbit. A simple recycling of real-time every 12.5 minutes allows the removal of three bits from each data word. Therefore, \(t-3\) is the resuitant number of bits needed to express real time. This technique effectively maps temporal star data into octants. Further data compression is realized by reformatting and marking the resultant 27 bits (or 25 bits for 5 rpm ). Consider the 1 -rpm spin rate, \(25-\mathrm{KHz}\) clock, then there are \(1.5 \times 10^{6}\) counts within 21 bits for one spin period. Considering the \(5-\mathrm{rpm}\) spin rate, \(100-\mathrm{KHz}\) clock, then there are \(1.2 \times 10^{6}\) counts within 21 bits (a 1 -minute marker would require five spins or \(6 \times 10^{6}\) counts within 23 bits). The result of this arithmetic implies that if properly organized the star data information could be effectively compressed without encoding loss.

Consider the increase in data handling for a system which utilizes a 1 -minute marker. In the \(1-r p m\) range, 21 bits are required for each mapping within the 1 -minute interval. Memory would be segmented into data streams at 22 bits where bit 22 is the marker bit as follows:
\begin{tabular}{lrrrr} 
Bit number & 22 & 21 & 20 & \(-\ldots-\ldots\) \\
Data word & 0 & x & x & \(\ldots \ldots\) \\
Marker word & 1 & 0 & - & \(\ldots\)
\end{tabular}

For 60000 bits, this implies that 2720 data words are available for encoding. The method requires 100 words used as marker words. The advantage of using 100 marker words is that the unused 21 bits per marker word could carry status information and additional information on the number of actual transits intercepted. Of course, the marker words could carry star information in the unused 21 bits. Since for 1 rpm 30 bits are normally required but due to formatting only 22 are actually required, there is a realizable data compression ratio of 1.36 .

The significance of the 60000 -bit storage capacity as a constraint on the data processing system can be observed from Table 10. The table indicates for the two possible extreme scan rates ( 1 and 5 rpm ) the maximum number of stars per scan that can be accommodated if every scan of data is stored.

TABLE 10.- STORAGE LIMITATION IN TERMS OF STARS/SCAN
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Item } & 5 rpm & 1 rpm \\
\hline Bit storage/orbit & 60,000 & 60000. \\
Scans/orbit & 500 & 100 \\
Scan period & 12 sec & 60 sec \\
Time resolution & \(10 \mu \mathrm{sec}\) & \(46 \mu \mathrm{sec}\). \\
Clock frequency & 100 KHz & 25 KHz \\
Bits without compression & 30 & 28 \\
Bits with compression & 24 & 22 \\
Words/orbit with compression & 2500 & 2620 \\
Words/scan with compression & 5. & 26 \\
Stars/scan with compression & 1 & 8 \\
\hline
\end{tabular}

However, during that portion of the scan when the opaque earth blocks the star field, no star storage is required. Then on the average two stars per scan could be stored (at 5 rpm ) rather than just one. Two observations are apparent:
1) Data cannot be stored for every scan. Therefore, some scans must be skipped, presumably in an ordered sequence.
2) Noise pulses should not be accepted since they will occupy valuable storage space.

Table 10 is established on the basis of a data compression scheme which replaces the higher-order bits with the 1 -minute marker concept discussed as a part of the section Digital Measurement Subsystem.

\section*{Celestial Sensor Logic System}

Logic for the ARRS Celestial Sensor Logic (on-board data processing) contains four basic subsystems:
1) The Data Gathering Subsystem (DGS) is, collectively, the PMT, its supply, ground command logic, and the analog processing and smoothing of star signals.
2) The Data Measurement Subsystem (DMS) is the real-time determination of the time position of any transit in orbit. In addition, the spin rate may be determined if required.
3) The Digital Filtering Subsystem (DFS) is the data reduction subsystem which will separate noise and star information by digital filtering through use of scan correlation or triplet selection criterion. This subsystem also accounts for the interface logic with the on-board storage.

This task may be accomplished by employing either hard-wired special-purpose logic or an on-board central processor unit (CPU).
4) The Timing Subsystem (TSS) accounts for the real-time, 100minute clock and logic timing for the preceding subsystems of the celestial sensor logic.

Figure 153 shows a simplified diagramatic sketch of a possible celestial sensor logic system.

Data gathering subsystem (DGS). -- The DGS, shown schematically in Figure 154.is a dual-channel concept using two photomultipliers and associated electronics. The use of two photomultipliers is the baseline approach for ARRS. Figure 154 incIudes, in addition to the photomultiplier and its power supply, a solid-state detector to sense high-intensity radiation (and thereby actuate photomultiplie reutoff) and protection switching logic (control logic). The information path for each channel includes a preamplifier analog filter and an adaptive threshold element. The two channels sum their inputs.

Also shown in the command control word which would receive the ground command instructions and act on therm. The TLU sets the desired threshold level on command. The flag logic will produce a flag bit according to channel.

Digital measurement subsystem (DMS). -- The DMS, shown schematically in Figure 155 , measures the center of a star (or noise) pulse in real time. The pulse enters the detection system and with ingress detection initiates a data transfer from a real-time register in the TSS. Once initiated, the logic counts at half clock speed until pulse egress. On egress the data word is transferred from the primary data hold register to the parallel-to-series converter where the data are strobed to the secondary data hold register in the DFS.

In addition, the TSS at each minute forces an interrupt in the DMS so that a minute word is inserted into the data field. The egress detected signal (ED) is transmitted to the DGS logic where the data are filtered to separate digital noise pulses from star data. At a spacecraft scan rate of one revolution per minute, ampulse data word encoded to one arc sec accuracy is 23 bits. At five revolutions per minute the word length is 21 bits.

Timing Subsystem (TSS). -- The TSS, shown schematically in Figure 156, provides timing for the entire on-board processing system. Clock frequency at 1 rpm is 100 KHz and at 5 prm is 25 KHz . The real-time register counts real time in octants and in 1 -minute intervals resolved to an accuracy of 11 arc sec.


To telemetry storage

Figure 153. Celestial Sensor Logic System


Figure 154. Schematic Diagram of Data-Gathering Subsystem


Figure 155. Schematic Diagram of Data-Measuring Subsystem

This system is the tracer for 1 -minute interrupts, counts, and strobes pulses for'serial data handifng in the DMS and DFS. Twenty-seven bits correspond to 1 rpm and 25 to 5 rpm .

Digital filterine subsystem (DFS). -- The purpose of the DFS is to reduce the amount of data resulting from star transits to fit into 60000 bits per orbit. The object is to retain as many of the star transits as possible while rejecting as many noise transits as possible.

Triplet selection: The matching of data pulses as possible members of a triplet produced by a star transiting the three slits is the basis for this filtering action. Mathematically, one may describe this criterion for any three data pulses, \(t_{n}, t_{n+i}, t_{n+i+j}\) as
\[
\frac{\Delta t_{I}}{2} \leq t_{n+i}-t_{n}=t_{n+i+j}-t_{n+i} \leq \frac{\Delta t_{U}}{2}
\]
where
\(\Delta t_{L}=\) minimum time window, or minimum allowable - three slit traversal time
\(\Delta t=\begin{aligned} & \text { maximum time windown, or maximum allowable - three } \\ & \text { slit traversal time }\end{aligned}\) slit traversal time

The information density within the maximum time window, \(\Delta t_{U}\), and the maximum nesting of triplets within this window are this eriterion's major considerations (see Figure 157).

This technique was studied for possible application to ARRS and is shown schematically in Figure 158 . The up/down counters (see Figure 159) are started to count up by signal \(P_{i}\) and back down by signal \(P_{i t j *}\) if a signal \(P_{i t h}\) is detected when any of the counters have counted back to zero, the appropriate transit times are sent to the telemetry storage.

Considering the egress detection signals \(P_{1}, P_{2}, P_{3}, P_{4}\), and \(P_{1}\), all possible triplets would be detected by this scheme. If a sixth \(P_{2}^{*}\) is added, all possible triplets among this group except \(P_{1}, P_{1}^{\prime}\), and \(P_{2}^{1}\) will be detected. If more than six noise or interleaved triplet pulses are expected within the maximum time window, more ranks of up/down counters must be added and the system very quickly becomes prohibitively complex. Indeed, the number of possible triplets (which corresponds to the complexity of the logic) is \(\binom{n}{3}\) where \(n\) is the number of transits in the set to be examined.

Scan correlation: Scan correlation filtering assumes that if a data pulse is stable (i.e., a data pulse has a consistent relative temporal placement


Figure 156. Schematic Diagram of Timing Subsystem
\(\stackrel{N}{0}\)

\[
t_{\text {max }}=t_{2}-t_{1}
\]
\({ }^{\prime} \min -\mathrm{I}_{2}{ }^{-\mathrm{T}_{1}}\)


Figure 157. Triplet Selection Criterion


Figure 158. Schematic Diagram of Digital Filtering Subsystem


Figure 159. Schematic Diagram of Jp/Down Counter Subsystem
for a fixed number of scan periods), the data pulse is assumed to be a star pulse. The scan information density (the number of measurable data pulses in a scan period) and the optimum number of scans for correlation are the major considerations in implementing this criterion. This technique is shown in Figure 160. In the scan correlation criterion shown in Figure 161, \(n_{t}\) transits form from \(n_{s}\) scans must fall within a window \(\varepsilon\) in order for the transits to be accepted.

On egress detection, a pulse is formed and transmitted from the DMS. The ID pulse is "painted" (i. e., strobed into a scan/shift register as a mapping pulse showing the relative occurrence in time to the \(\operatorname{SR}\) pulse). On scan \(I\) (the first of a \(3-\) scan sequence), the data are not strobed into the secondary data hold register. On interval \(\mathrm{F}+1\) (the next scan interval), the strobing of new pulse measurement is also blocked from the DMS to the secondary data hold of the DFS. The ID pulses are "painted" in the I+2 scan/shift register to map the data pulses relative to the s.pin rate marker as in interval I. On the third sean, 142, the data are not blocked but allowed to pass into the secondary data hold register. At the end of this interval, the data in \(1, I+1\), and \(\mathrm{H}+2\) allow a voting to oceur (i. e., if the pulse is present in all three registers at the same temporal placement relative to the system marker, SR) and the data are allowed to pass into telemetry storage. If the voting does not hold a majority, the data are not inserted into telemetry storage. The 1minute interval word is forced into telemetry storage as a function of its occurrence. Behavior of the logic on the next scan rate is optional, either the +1 and I+2 maps move back via recycle logic and the scan is allowed to run continuously from the star (i. \(\mathrm{e}_{\mathrm{*}}\), no intervals are skipped) or the logic must paint three new intervals and make a new decision at the end of every third scan.

On-board central processor unit (CPU): Use of a CPU greatly enhances the capability of the on-board logic to achieve highly versatile and complex decision and filtering functions. In the consideration of implementing the iriplet selection criterion in the DFS of the on-board logic, it was found that complex comparison and innex comparisons were not possible without a significantincrease in hardware. It can be shown that four ranks of three up/down counters would saturate without selecting correctly a triplet interleagued within another triplet in a low-noise environment. This, from a system viewpoint, is not ideal. If star data are to be lost, this should be done on a decision basis in the spacecraft logic, not from an inability of the logic to economically handle a higher information density. With this in mind, the CPU was selected as a data handler.

Figure 162 is a schematic diagram for one possible CPU applied as a digital filtering subsystem. This CPU is a candidate for the DFS since it offers low power and lightweight, and will accomplish the task required. The scratch pad would be DRO 25624 -bit words. This allows the tracking of digital pulses to a density of 85 stars per interval. The program for gathering the data, filtering, and transmitting selected star pulses to telemetry storage would reside within 1024 words of NDRO memory. It is recommended that the computer be placed on a 1 -minute interrupt and create the time marker word for


Figure 160. Digital Filtering Subsystem


Criterion for selection
is 4 out of 5 transits
fall within window

\footnotetext{
Figure 161. Scan Correlation Criterion
}


Figure 162. Schematic Diagram of Central Processing Unit Serving as Digital Filtering Subsystem
the compressed data for telemetry. The amplification to the total system subdivision is also rather wide spread. The DGS could be changed in that simple logic would no longer be required to determine the level of the Threshold Logic Unit (TLU), but an adaptive system could easily be created in which the CPU could handle all decision functions required.

The DMS could also be greatly reduced in size, complexity, and function over that required for hard-wired DFS. Its only function would be to measure the temporal placement of data pulses.

In Figure 163 the Celestial Sensor Logic-CPU interface is diagrammed to show the fundamental logic and analog functions required. Figure 164 shows the logical placement of the CPU within the sensor logic. In Figure 165 the memory map for the filtering function is shown to demonstrate the fundamental software packages and estimation of size required for the CPU to accomplish its task.

Table 11 shows the volume, weight, and power requirements for the CDC 449 CPU assuming different sources of primary power.

TABLE 11. - CDC 449 CPU GROSS CHARACTERISTICS
\begin{tabular}{|l|c|c|c|}
\hline Primary Power & Power (W) & Weight (lbs) & Volume \(\left(\mathrm{in}^{3}\right)\) \\
\hline\(+12 \mathrm{vdc},+6 \mathrm{vdc}\) & 4.5 & 4.6 & 125 \\
\(+4 \mathrm{vdc},-3 \mathrm{vdc}\) & & 8.0 & 216 \\
+28 vdc & 9 & 13 & 288 \\
\hline \(115 \mathrm{v} \mathrm{rms}, 400 \mathrm{~Hz}\) & 25 & \\
\hline
\end{tabular}

\section*{Comparison of Filtering Techniques}

The conceptual performance of the digital filtering techniques is shown in Table 12. Performance is defined here as being the ratio of the number of transmitted star transits to the number of possible star transits. Since the signal-to-noise ratio is designed to be at least 10 to 1 , a probability of \(90 \%\) for detecting a limiting magnitude star seems entirely reasonable.

The performance ratio for the hard-wired triplet selection technique is less than that for the triplet selection technique using the CPU because the hardwired scheme cannot handle the interleaving of triplets with each other and with noise as well as can the CPU. These same transits will be lost if the raw data have a large amount of noise.

Table 13 is a comprison matrix of the several criteria for processing star transits and discriminating against noise transists. The large window in the scan correlation techniques is necessary because of the spread in time of the

TABLE 12. PERFORMANCE RATIO FOR VARIOUS ON-BOARD DIGITAL FILTERING TECHNIQUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Probabuly of detecting limiting magnitude star} & \multicolumn{2}{|l|}{Triplet selection} & \multicolumn{8}{|c|}{Scan correlation} \\
\hline & \multirow[b]{2}{*}{CPU} & \multirow[b]{2}{*}{On-board logic} & \multicolumn{4}{|c|}{One transit transmitted} & \multicolumn{4}{|c|}{All transits transmitted} \\
\hline & & & 3/3 & \(2 / 3\) & 2/5 & 4/10 & 3/3 & \(2 / 3\) & \(2 / 5\) & \(4 / 10\) \\
\hline 0.95 & 0.857 & 0.686 & 0.286 & 0.357 & 0.270 & 0.105 & 0.857 & 0.993 & 0.999 & 0.999 \\
\hline 0.90 & 0.729 & 0.591 & 0.243 & 0.366 & 0.220 & 0. 111 & 0.729 & 0.972 & 0.989 & 0.999 \\
\hline 0.75 & 0.422 & 0.338 & 0.141 & 0.376 & 0.262 & 0.133 & 0.422 & 0.844 & 0.984 & 0.998 \\
\hline 0.50 & 0.125 & 0.100 & 0.042 & 0.334 & 0.393 & 0.166 & 0.125 & 0.500 & 0.812 & 0.828 \\
\hline
\end{tabular}

Performance \(=\frac{\text { number of transmitted star transits }}{\text { number of possible star transits }}\)

TABLE 13. MATRIX OF PERFORMANCE CRITERION ON-BOARD DATA PROCESSING
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Data compression & Window & Noise acceptance & \[
\begin{gathered}
\text { Scan } \\
\text { period } \\
\text { needed }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Triplets } \\
& \text { detection } \\
& \text { necessary }
\end{aligned}
\] & Performance \({ }^{\text {a }}\) & Design effort \\
\hline Triplet selection (bard-wired) & Yes & \[
\begin{gathered}
2 \\
\operatorname{arc} \mathrm{~mm}
\end{gathered}
\] & 1 & No & Yes & 0.591 & moderate \\
\hline Triplet selection (CPU) & Yes & \[
\begin{gathered}
2 \\
\text { arc } \min
\end{gathered}
\] & 1 & No & Yes & 0.729 & simple \\
\hline Scan correlation (hard-wured, one transit transmitted) & Yes & \[
\begin{gathered}
20 \\
\operatorname{arc} \mathrm{~min}
\end{gathered}
\] & 10 & Yes & No & 0.366 & moderate \\
\hline Scan correlation (hard-wired, all transits transmitted) & No & \[
\begin{gathered}
20 \\
\operatorname{arc} \min
\end{gathered}
\] & 10 & Yes & No & 0.972 & dıfficult \\
\hline Scan correlation (CPU) & Yes & \[
\stackrel{20}{\operatorname{arc} \mathrm{~min}}
\] & 10 & Yes & No & 0.972 & simple \\
\hline \multicolumn{8}{|l|}{\({ }^{\text {a }}\) Assuming 900 detection probability} \\
\hline
\end{tabular}


Figure 163. Celestial Sensor Logic - CPU Interface


Figure 164. Celestial Sensor Logic System


Figure 165. Memory Map Estimate for the Filtering Function
transits due to the coning effect. This large window -- implying the acceptance of more noise -- is a strong argument in favor of the triplet selection criterion.

Tables 12 and 13 refer to the use of a CPU or computer. The advantage of the triplet selection criterion using the CPU is apparent from a study of Figure 49. In particular, it is able to detect all possible triplets from a set of up to 80 transits, whereas the hard-wired scheme would miss at least one possible triplet from all sets containing more than five transits. If the raw data contained more noise transits than that assumed for the calculation of the performance ratios, the performance ratio for the hard-wired triplet selection technique would be considerably lower. The use of a CPU on-board the spacecraft has the further advantage over hard-wired logic in that the data processing algorithm can be written or revised at any point during the build or checkout phases of a programmed mission.

\section*{Summary and Conclusions}

The window within which transits are accepted is much larger for the scan correlation technique than for the triplet selection technique. The windows for the triplet selection criterion must be only large enough to allow for uncertainty in the measurement of the transit time. This will be between one and two slit widths, which is equivalent to 1 or 2 arc min. However, as discussed earlier, the spread in time of transits due to the coning effect of the spacecraft will be approximately
\[
\Delta t=27 / \omega
\]
where \(\omega\) is the spin rate in arc \(\mathrm{min} / \mathrm{sec}\) and a cone angle of \(1^{\circ}\) is assumed. Since the measurement uncertainty and the uncertainty in the scan period must be added to this, it is apparent that the window for the triplet selection technique can be 10 to 20 times smaller than that for the scan correlation technique. If noise pulses are detected uniformly in time, this implies that the scan correlation method will accept 10 to 20 times as many noise pulses as will the triplet selection criterion. Use of the triplet selection technique is therefore recommended.

Use of a CPU on-board will allow the triplet selection process to be extended to a much greater degree of complexity than if hard-wired logic were used. That is, the nesting of triplets within each other can be examined to a much higher level than would be practical with hard-wired logic. In addition, the use of the CPU would simplify the other on-board logic subsystems since it could handle such tasks as selecting the threshold, providing the 1 -minute interrupt for data compression, and assuming some of the DGS control functions.

Thus, the triplet selection criterion in conjunction with an on-board CPU appears to represent the optimum approach to the on-board data processing.

\section*{CONCLUSIONS AND RECOMMENDATIONS}

This volume documents the design of the ARRS attitude determination system. This portion of the ARRS study included the development of an operational data-reduction program and the conceptual design of the celestial sensors.

The operational data-reduction program development consisted of torque model derivation and analysis, spacecraft modeling, and the data-reduction algorithm development and performance analysis. Spacecraft modeling and torque modeling tasks provided for the development of a model which gives accurate and numerically efficient propogation of the spacecraft's state. The spacecraft and torque modeling tasks were conducted in parallel to the attitude determination data-reduction algorithm task, and results of the spacecraft and torque modeling tasks determined the software modifications desired in the evolving operational algorithm. Data-reduction algorithm tasks provided for the development of an operational attitude determination computer program to estimate spacecraft rotational state from celestial observations. In addition, these tasks included the development of a complete simulation of the attitude determination system for conducting the system performance analysis.

The discrete Kalman filter was used to update the spacecraft state by the celestial observations with propogation of the spacecraft state between observation by the nonlinear rotational dynamics model. Since the nonlinear rotational dynamics model does not represent the true behavior of the spacecraft in the orbital environment, the Kalman filter must be modified to prevent the divergence of the state estimate after initial convergence. The introduction of artificial covariance noise in the state covariance propogation differential equation was made.

The conceptual design of the celestial sensors included analysis to determine the conceptual design parameters, the optical transfer function description for a starmapper and sun sensor, the development of ground-based data processing, and the conceptual design, of the celestial sensor logic.
The conceptual design parameters are the starmapper parameters required for optimum performance in the day portion of the orbit-operation, field of view, mapper baffle dimensions, baffle cone angle, and cant angle of mapper. The optimum set of parameters is based on the minimum baffle volume for viewing one or two stars per scan.

The optical transfer function task consisted of the investigation of the optical performance characteristics for the starmapper and sun sensor. Two basic designs were investigated a concentric catadioptic system and an all-refractive system. An error analysis was performed to demonstrate the celestial sensor's target line-of-sight detection accuracy.

The conceptual design of the celestial sensor logic provided a tradeoff of two methods of selecting sensor output (star and sun transits selection from noise) for on-board storage. The logic was required to select celestial transit for maximum target-to-noise storage with a 60, 000-bit limitations.

The ground based data processing tasks provided a celestial target identification algorithm and program to process the celestial sensor data to obtain the coordinates of the target. The coordinates of the targets must be determined for use in the subsequent Kalman filter attitude estimation process.

Conclusions and recommendations in each of the tasks identified are presented in the following paragraphs.

\section*{TORQUE MODEL}

The torque modeling development and analysis have shown that long-term preduction without star update requires that
- The residual magnetic moment, eddy current, gravity gradient, and solar pressure torques be included in the prediction model
- Each of the five torques affects the spacecraft attitude in an additive manner for the level of torque experience by the ARRS spacecraft
- For short-term prediction of 100 to 200 sec only the inclusion of eddy current and residual magnetic moment torque effects is needed for the 10 arc-rec attitude accuracy requirement. Inclusion of at least the eddy current and residual magnetic moment torques in the algorithm is recommended, and the celestial sensor data simulation must include the five torques developed in this study.

\section*{SPACECRAFT MODELING}

The spacecraft modeling developed a set of "simplified equations of motion", and analysis showed that the speed of the data reduction can be improved by using these equations in the algorithm without significant detriment to the accurate propogation of the spacecraft attitude. This increase speed is realized by the increased step size allowable for accurate attitude propogation. The "simplified equations of motion" were developed in terms of state variables that are slowly varying functions of time. Some of the variables are constant, others are ramps. This allows the use of simple integration algorithms to propogate from some time point to the next desired point without intermediate integration step sizes.

In the parallel effort on the attitude determination algorithm development, the execution time, using the dynamics model of Reference 19, was demonstrated to be 10 to 20 times faster than real time on the CDC 6600 computer. This is considered reasonable for processing a full year of data collection. This spacecraft model does not create an execution time handicaps as originally contended. However, speed of execution can be improved by using the
"Simplified Equation's of Motions", because many intermediate integration step can be eliminated, rather than the model used in Reference 19.

\section*{OPERATIONAL ALGORITHM}

The attitude determination data-reduction program was developed and exercised. The data-reduction program executed 10 to 20 times faster than real time on the CDC 6600 computer using a step size of 0.5 sec , thus establishing the program as acceptable in terms of execution time. Further improvement can be obtained by the use of the "Simplified Equations of Motion".

The performance analysis demonstrated that
- Estimation of spacecraft attitude within 5 to 10 arc-sec is achieved using three celestial targets for initial convergence and two celestial targets to maintain convergence where only the magnetic torques are included in the algorithm model and five torques for the generation of the transit data.
- Performance of the attitude estimation is better when the quality of the sensor is underestimated; i.e., it is safer to assume that the instrument is more noisey than it actually is. In the event of a gradual degradation of sensor quality, the assumed process noise in the filter must be changed to improve attitude estimates.
- Estimation of the inertia ratios and eddy current coefficient is achievable for the levels of torque experienced by the vehicle. However, the residual magnetic moment components were not observable. The estimate of these moments did not agree with the actual values used.
- Estimation of spacecraft attitude is best when the celestial targets are regularly spaced in time.
- Using the optimum \(110^{\circ}\) cant angle and \(20^{\circ}\) for determined from the sensor conceptual design analysis, performance analysis of estimation of attitude versus cant angle shows that the accuracy of estimation is traded among the three Euler angle states. At cant angle of \(90^{\circ}\) the pitch attitude is better estimated than the roll and yaw, and at \(130^{\circ}\) each is equally estimated.
- Performance of attitude estimation does not change for spacecraft spin rates from 1 to 9 rpm .
- Performance for long-term estimation (at least 2000 sec ) requires the use of additive noise to the state covariance propogation matrix. These values must be determined by trial and error for best performance. Once established, variation up to 4 orders of magnitude are permissible.

In conclusion, the mechanized Kalman filter gives attitude estimates within 10 are-sec for the five-torque spacecraft environment using an estimate of only three parameters, two inertia ratios, and the eddy current coefficient for a period of at least 2000 sec . This performance is achieveable by imtially using three celestial targets to converge to \(10 \mathrm{arc}-\mathrm{sec}\) accuracy and continuing with the use of two celestrial targets to maintain the performance.

Additional work is recommended in the following areas:
- Sensor offset angles should be added to the estimation state vector and simulation experiments undertaken to determine the observability of these parameters.
- The presence of the arbitrary noise matrix \(Q\) in the estimation equations (59) is the least satisfactory aspect of the system. Consequently, an analytic effort should be undertaken to develop methods of determining \(Q\) from previously obtained measurement errors.
- Further simulation effort is required to obtain the estimation accuracies possible using transits from a single celestial body and to evaluate the degradation in the estimation due to relatively long periods of time without data.

\section*{STARMAPPER PARAMETERS}

A second major consideration which relates to the magnitudes of daylight detected stars is the physical dimensioning of the light baffle. Parameter studies were predicated on a minimum baffle volume criterion. A computerautomated program was subsequently designed to select an optimum set of starmapper parameters. These are listed below:

OPTIMIZED STARMAPPER PARAMETERS
\begin{tabular}{ll} 
Baffle diameter & 10 in. \\
Baffle height & 14 in. \\
Fov & \(15^{\circ}\) \\
Cant angle & \(100^{\circ}\) (from positive-- \\
& \multicolumn{1}{c}{ spin axis) } \\
Closest approach to bright object & \(36^{\circ}\) \\
Limiting nighttime magnitude & 3.2 (visual) \\
Limiting daytime magnitude & 3.4 (visual) \\
Clear aperture & 2.2 in.
\end{tabular}

\begin{abstract}
Use of the starmapper over less than 100 percent of the daytime orbit permits detection of brighter stars. For the set of parameters listed in Table 8, the daytime limiting magnitude for two stars per scan becomes 2.9 for usage over 80 percent of the orbit and 2.2 for 50 percent of the orbit. The clear aperture indicated can be realized with the baseline aperture diameter of 3.18 inches and a central obscuration of 2.3 inches. The \(15^{\circ}\) fov is reduced over the \(20^{\circ}\) field considered as baseline. This will permit a physically smaller sensor package.
\end{abstract}

\section*{OPTICAL TRANSFER FUNCTION}

The concentric catadioptric optical system was selected for the ARRS application over a candidate refractive system principally because the optical system provides superior image quality (blur spot symmetry) for all filled angles. The availability of the EMR 551 N miniature photomultiplier tube made packaging of the detector on the optical axis practical. The concentric system is less complex, has fewer elements, has no cemented interfaces, is physically smaller, and in every other aspect is superior to the refractive optical system.

Light-gathering properties of the concentric system are superior to those of the refractive system. This is evident from the fact that an AO star of magnitude 0.0 , detected by the concentric system, is an equivalent magnitude of 1. 6 for the refractive system, on axis. In addition, loss of sensitivity, equivalent to 0.7 magnitude, results for \(10^{\circ}\) off-axis conditions.

The ARRS optical system produces star images for all field angles having blur spot diameters of \(12 \mathrm{arc} \sec\) at the design wavelength of 0.405 micron. Between the wavelengths of 0.32 and 0.45 micron, \(100 \%\) of the star energy is contained within a 60-arc-sec spot diameter. In addition, the spot configuration is extremely symmetrical and, therefore, contributes negligibly to the overall star transit time error.

The optical system was evaluated for performance at low operating temperature \(\left(-75^{\circ} \mathrm{C}\right)\) and in vacuum. The change in blur spot diameter due to both effects is less than 5 arc sec and is, therefore, considered no cause for concern.

The concentric optical system is ideally suited for the sun-sensor application. Two requirements - the wide fov ( \(40^{\circ}\) ) and accuragy ( 10 arc sec) - are difficult requirements for conventional sun sensors to meet. The ARRS sun sensor optical system requirements are met using a two-element optical system, having a 1.37 -inch aperture size using two \(V\)-shaped deposited silicon "slit" detectors, each 60 arc sec projected width. Use of narrow-band filters and antireflection coatings deposited on the optical elements is utilized to attenuate the incoming solar energy to the level required by the detector.

\section*{CATHODE PROTECTION}

Inadvertent scanning of the sun by the optical system will result in a temperature rise of the cathode. However, the rise will not reach a level sufficient to induce degrading or damaging effects to the cathode matexial. A wide factor of safety exusts, due a large degree to the improved semitransparent bi-alkali (N) cathode used, which permits a maximum ambient cathode temperature of \(150^{\circ} \mathrm{C}\).

Operation of the photomultiplier during an inadvertent scan of the sun or a scanning of the illuminated earth will cause excessive current flow from the detector bevond the maximum operational limits. To avoid this condition, the voltage between the cathode and second dynode will be switched in polarity (grounding the dynode), which reverses the normal acceleration of electrons from the cathode. This method has the advantage that relatively low voltage 15 switched.

Switching of the photomultiplier voltage does not protect the cathode from bright source exposure. However, the resultant agitation within the cathode material for the ARRS application will not increase the dark current to a level which might cause detection difficulties. The rise in dark current resulting from an noperative starmapper scan of the illuminated earth will permit detection of fourth magnitude stars immediately following the bright source portion of the scan. This condition precludes the necessity of a shutter mechanism which would have to be actuated on each scan.

The recommended cathode protection method will use a fail-open (fail-safe) mechanical shutter (to be actuated only in the event of prolonged focused solar radiation). In addition, the photomultiplier will be switched off whenever the radiation level exceeds a pre-set level such as that occurring when the bright earth or moon is scanned by the starmapper fov.

\section*{ERROR ANALYSIS}

The ability to interpolate the threshold crossing of a pulse can be accomplished to within 1 part in 13 for pulse rise and 1 part in 18 for pulse fall. The resultent 1 sigma exror in determining pulse center (transit time) is, therefore. 3. 2 arc sec. The encoding error is assumed to be 1 are sec. No blur spot asymmetry is contributed. The total rms error expected is about 3.5 arc sec.

\section*{GROUND-BASED DATA PROCESSING}

Stax identification for the ARRS application will be performed as initial identification and update identification. The initial identification program makes use of triplets of pulses resulting from a star crossing of the three-slit pattern. The entire program was tested using a tape of simulated ARRS transits. The
transits were displaced in time according to a Gaussian distribution of half width equal to 10 are sec. In addition, triplets were randomly eliminated in inverse proportion to the brightness of the stars. Finally, triplets of noises were randomly introduced into the data. The results of the simulation indicated that less than \(9 \%\) of the total transits read-in were incorrectly identified and \(40 \%\) of the transits read-in were not identitied; no stars were incorxectly identified.

\section*{CELESTIAL SENSOR LOGIC}

The triplet selection criterion in conjunction with CPU (small, on-board computer) appears to represent not only the potimum approach to on-board data processing but pexhaps the only practical method. it is apparent that the triplet selection criterion, due to its smaller window, will transmit fewer noise pulses to storage by a factor of 10 . Use of CPU on-board makes possible the processing of at least six sequential transits before deciding on the ligitimacy of a pulse. This would be prohibitively complex in practice if hard-wired logic were used.

\section*{RECOMMENDATIONS}

Selection of the starmapper parameters was based, to a large extent, on staravailability searches using PM tube response and visual magnitudes. The sensor peak spectral response if 0.405 micron (design wavelength of the optical system). The availability of stellar targets must, therefore, be related to the instrument response characteristics. This can be done by adjusting the visual magnitudes to instrument magnitudes and then conducting further star availabtity researches. It is recommended that this be done to assure that sufficient bright stars are available in color magnitudes responsive to the instrument characteristics.

It is required, to detect a fourth magnitude star on the daylight side of the orbit, that the sun's radiation be attenuated by a factor \(10^{13}\) to assure a \(10: 1\) signal-to-noise ratio. The ARRS baffle configuration was derived by asm suming perfectly specular reflectances of 99.9 percent of the incident rays, and complete absorption by baffle interior surfaces of diffuse radiation. It is recommended that both specular and absorptive surfaces be fabricated and tested to establish the extent of the validity of these assumptions.

APPENDIX A
DEVELOPMENT OF A TORQUE MODEL DUE TO INDUCED EDDY CURRENTS IN A SPINNING HAT CONFIGURATION SPACECRAFT

\title{
FRECEDING PAGE BLANK NOT FILMEO
}

\section*{APPENDIX A}

DEVELOPMENT OF A TORQUE MODEL DUE TO INDUCED EDDY CURRENTS IN A SPINNING HAT CONFIGURATION SPACECRAFT

This appendix presents the derivation of a torque due to induced eddy currents in a "spinning hat" configuration spacecraft.
J. P. Vinti (ref. 2) solved the torque for a conducting sphere. In his paper he stated the general problem and continued by making several assumptions such that the electrodynamical and mechanical problem could be solved separately.

In addition to Vinti's paper, G. Louis Smith (ref. 1) conducted a study of torques due to eddy currents on spimning cylinders, thin-wall cones, cone frustums, and general bodies of revolution.

The torque on a sphere is represented quite simply as demonstrated by Vinti; however, for other geometries the solution becomes more complex because boundary conditions are not easily satisfied. Smith's paper demonstrates the complexity in solving for torque in bodies whose geometries are not a sphere.

The derivation of the torque for the spinning hat configuration will exhibit complexity not encountered in the spherical spacecraft. The complexity is not too great that it cannot be overcome. The result of the derivation will be a vector torque equation in body axes as a function of the body rate, earth's magnetic field, and material conductivity.

\section*{STATEMENT OF PROBLEM}

Eddy currents are generated in a conducting media as it moves through an external magnetic field. The generated current then interacts with the magnetic field to retard the motion of the moving media. For body motion about its center of mass, the retarding effect is called a torque. For a spinning body in an earth orbit, the media motion relative to the spacecraft's center of mass and the media motion of the center of mass in orbit generate currents. Also, due to the nonuniformity of the magnetic field around the earth, currents are generated in the spacecraft. The currents due to the nonuniformity of the field and center of mass motion will be neglected for the present problem.

A rigorous and exact solution for the retarding effect requires the following approach:
1) Set up electrodynamical equations for a moving body and solve them with the proper boundary conditions.
2) Using the distribution of the currents and magnetic field, find the force exerted on each element of volume and the moments of that force relative to the center of mass.
3) Integrate over the volume of the spacecraft for the total torque for a given mechanical configuration. Vinti specified the mechanical configuration by a given velocity and acceleration of the center of mass, the angular velocity vector, the rate of change of the angular velocity vector, and the principal moments of inertia.

\section*{4) Solve the electrodynamical and mechanical problem simultaneously.}

\begin{abstract}
Deviation to this approach will be used under the assumptions that the effect of the rate of change of the angular velocity and center of mass acceleration is negligible. One is then allowed to separate the electrodynamic and mechanical problems. Vinti discusses the separation of the two problems. The torque is then based on the instantaneous angular velocity of the spacecraft and can be applied to the mechanical dynamics to obtain the following of the spacecraft motion.
\end{abstract}

\section*{ARRS SPACECRAFT DESCRIPTION}

The geometry and body coordinate frame for the derivation of the torque is shown in Figure A1.


Figure A1. ARRS Spacecraft Geometry and Body Coordinate
Frame Definition

\section*{ASSUMPTIONS ON SPACECRAFT MEDIA}

Each solar panel and cylinder panel is assumed to be electrically isolated with a static electrical conductivity. The panels are assumed to be thin flat plates whose surface normals are aligned to the body coordinate frame. The conductivity external to spacecraft media is zero. The dielectric and permeability of the spacecraft media are 1 .

\section*{TORQUE ON ELEMENT VOLUNE OF MEDIA}

The torque is given by (in gaussian units)
\[
\begin{equation*}
d \stackrel{\rightharpoonup}{T}=c^{-1} \stackrel{\rightharpoonup}{r} \times(\vec{J} \times \vec{H}) d V \tag{A1}
\end{equation*}
\]
where
\(\vec{r}=\) Vector from spacecraft center of mass to element of volume
\(\vec{J}=\) Current density
\(\overrightarrow{\mathrm{H}}=\) Earth \(^{1}\) s magnetic field intensity

Current density, \(\vec{J}\), must be determined before total torque can be computed.

\section*{EDDY CURRENT DENSITY}

The eddy current density is solved for an instantaneous mechanical configuration. Then, Maxwell's equation becomes
\[
\begin{align*}
& \nabla \times \overrightarrow{\mathrm{H}}=4 \pi c^{-1} \overrightarrow{\mathrm{~J}} \\
& \nabla \times \overrightarrow{\mathrm{E}}=0  \tag{A2}\\
& \nabla \cdot \overrightarrow{\mathrm{~B}}=\nabla \cdot \overrightarrow{\mathrm{H}}=0 \\
& \nabla \cdot \overrightarrow{\mathrm{E}}=0
\end{align*}
\]
where
\(\vec{H}=\) Magnetic field intensity
\(\overrightarrow{\mathrm{E}}=\) Electric field
and the electric field and current density respectively are
\[
\begin{align*}
& \overrightarrow{\mathrm{E}}=\nabla \psi+\mathrm{c}^{-1}(\stackrel{\rightharpoonup}{\omega} \times \overrightarrow{\mathrm{r}}) \times \overrightarrow{\mathrm{H}}  \tag{A3}\\
& \vec{J}=\sigma \overrightarrow{\mathrm{E}}
\end{align*}
\]
where
\(\sigma=\) Static conductivity
\(c=\) Speed of light in vacuum
\(\psi=\) Potential function that satisfies \(\nabla^{2} \psi=0\) and the boundary conditions.

Then using Equations (A1)and (A3), the eddy current (ref. 18), in general, is
\[
\begin{equation*}
\vec{J}=\frac{1}{2} \sigma \mathrm{c}^{-1}(\vec{\omega} \times \overrightarrow{\mathrm{H}}) \times \vec{x}+\nabla \phi \tag{A4}
\end{equation*}
\]

The eddy current density is completely specified by Equation (A4) upon solution for \(\phi\)

METHOD OF SOLUTION FOR \(\varnothing\)

The potential, \(\phi\), must satisfy the boundary condition
\[
\begin{equation*}
\nabla \phi=-\frac{1}{2} \sigma c^{-1}(\vec{\omega} \times \vec{H}) \times \vec{r} \tag{A.5}
\end{equation*}
\]
when evaluated on the boundary and LaPlace's question,
\[
\nabla^{2} \phi=0
\]

The problem is a Neumann boundary value problem. In general, Neimann boundary value problems cannot be solved in closed form. However, reduction
of Neumann boundary value problems to Dirichlet boundary value problems (ref. 1) can be made for two-dimensional problems by using Cauchy-Riemann conditions and integrating the gradient along the boundary. Also, the integral
\[
\begin{equation*}
\phi \nabla \phi d s=0 \tag{A6}
\end{equation*}
\]
at the boundary must be satisfied.

The coastraint of Equation (A6) is satisfied for the present problem.

\section*{TOTAI TORQUE EQUATION}

Substituting Equation (A4)into Equation(A1) and integrating over the volume
\[
\begin{equation*}
\stackrel{\rightharpoonup}{T}=c^{-1} \iiint \vec{r} \times\left\{\left[\nabla \phi+\frac{1}{2} \sigma^{-1}(\stackrel{\rightharpoonup}{\omega} \times \vec{H}) \times \vec{x}\right] \times \vec{H}\right\} d V \tag{A7}
\end{equation*}
\]

The toraue separates into
\[
\begin{align*}
\overrightarrow{\mathrm{T}}=T_{1}+\mathrm{T}_{2}= & c^{-1} \iiint \overrightarrow{\mathrm{r}} \times(\nabla \varnothing \times \overrightarrow{\mathrm{W}}) \mathrm{dV}  \tag{A.8}\\
& +\frac{1}{2} \kappa^{-2} \iint \vec{r} \times[[(\vec{\omega} \times \overrightarrow{\mathrm{H}})+\times] \times \vec{H}] \mathrm{dV}
\end{align*}
\]

\section*{ORDER OF PRESENTATION OF MODEL DERIVATION}

The model derivation is developed by computing the torque on two of the panels of the cylinder (Figure A2 (. First, Torque \(\vec{T}_{1}\) is computed by solving for \(\psi\) (stream function) in one panel, and for two panels the sum is taken. Torque \(\overrightarrow{\mathrm{T}}_{2}\) is computed similarly. The total torque is then computed by coordinate rotation for three pairs of panels to a common frame in the body.


Figure A2. Relationship of the Two Cylinder Panels to the
\(x, y, z\) Frame

The total torque is computed by coordinate rotation to a common frame for all six polar panels.

\section*{DERIVATION OF TORQUE DUE TO ARRS SPACECRAET CYLINDER}

Torque due to the ARRS spacecraft cylinder is discussed under the following main headings:
- Solution of Neumann Boundary Value Problem for a Thin Rectangular Plate
- Derivation of \(\overrightarrow{\mathrm{T}}_{1}\) Torque for Two Cylincer Panels
- Derivation of \(\overrightarrow{\mathrm{T}}_{2}\) Torque for Two Cylinder Panels
- Torque Due to Cylinder

SOLUTION OF NEUMANN BOUNDARY VAIUE PROBLEM FOR A THIN RECTANGULAR PLATE

The Neumann Problem

To compute the eddy current torque, current density first must be determined. From Vinti, current density is givea by
\[
\begin{equation*}
\vec{J}=\frac{1}{2} \sigma c^{-1}(\vec{\omega} \times \vec{H}) \times \vec{r}+\nabla \phi \tag{A9}
\end{equation*}
\]

The geometry of the ARRS spacecraft is given in Figure A3.


Figure A3. Relationship of ARRS Cylinder Panel to Spacecraft
Center of Mass
From Equation (A2),
\[
\begin{aligned}
& \overrightarrow{\mathbf{r}}=\text { Vector to element volume of panel from center of mass } \\
& \vec{\omega}=\text { Spin vector } \\
& \overrightarrow{\mathrm{H}}=\text { Earth's magnetic intensity }
\end{aligned}
\]

The general solution for \(\vec{J}\) is given by Equation(A9). The solution for the currrent density in the panel of Figure A3is completed by knowing the potential, \(\phi\) that satis= fies \(\stackrel{\rightharpoonup}{\nabla}_{\boldsymbol{\gamma}}^{2}=0\) and the boundary conditions. The boundary conditions anre
\[
\begin{align*}
& J_{y}\left(y^{\prime}=L_{2}, x^{\prime}=a\right)=0 \\
& J_{y}\left(y^{\prime}=-L_{1}, x^{\prime}=a\right)=0  \tag{A10}\\
& J_{z}\left(x^{\prime}=a, z^{\prime}=-\frac{W}{2} ;=0\right. \\
& J_{z}\left(x^{\prime}=a, z^{\prime}=\frac{W}{2}\right)=0
\end{align*}
\]

The solution for \(\phi\) is aided by translating the panel to a new frame as shown in Figure A.4.


Figure A.4. Translation of Plate to a New Coordinate Frame \(x, y, z\)

Expanding Equation (A9), we get
\[
\begin{align*}
& J_{x}=\frac{1}{2} \sigma c^{-2}\left[\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right) z^{\prime}-\left(\omega_{x x} H_{y}-\omega_{y} H_{x}\right) y^{\prime}\right]+\frac{\partial \phi}{\partial x} \\
& J_{y}=\frac{1}{2} \sigma c^{-2}\left[\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right) x^{\prime}-\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)\right]+\frac{\partial \phi}{\partial y}  \tag{A11}\\
& J_{z}=\frac{1}{2} \sigma c^{-2}\left[\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) y^{\prime}-\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right) x^{\prime}\right]+\frac{\partial \phi}{\partial z}
\end{align*}
\]

From Figure A4 we have
\[
R+r=r^{\prime}
\]
and
\[
\begin{align*}
& R=0 \hat{i}+L \hat{j}+\frac{W}{2} \hat{R} \\
& r^{\prime}=a \hat{i}+y \hat{j}+z \hat{R} \tag{A12}
\end{align*}
\]
and
\[
r=a \hat{i}+\left(y-L_{1}\right) \hat{j}+\left(z-\frac{W}{2}\right) \hat{R}
\]

Therefore, substituting Equation(Al2into Equation(All) (Note: Because the plate is thin, \(J\) is automatically satisfied):
\[
\begin{align*}
& J_{y}=\frac{1}{2} \sigma c^{-2}\left[\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right) a-\left(\omega_{y} H_{z} \omega_{z} \omega_{y}\right)\left(z-\frac{W}{2}\right)\right]+\frac{\partial \phi}{\partial y}  \tag{A1,3}\\
& J_{z}=\frac{1}{2} \sigma c^{-2}\left[\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)\left(y-H_{1}\right)-\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right) a\right]+\frac{\partial \phi}{\partial z}
\end{align*}
\]

Using the boundary condition of Equation (Al0) and Equation (A13), the value of the gradient along the boundary of the plate is specified; hence, a Neumann boundary value problem. For two-dimensional Neumann problems, the Cauchy-Riemann conditions may be applied to reduce to a Dirichlet problem (ref. 1.8). In applying this method, Cauchy-Riemann condjtion
\[
\frac{\partial \phi_{1}}{\partial y}=\frac{\partial \psi}{\partial z}
\]
and
\[
\begin{equation*}
\frac{\partial \phi}{\partial Z}=-\frac{\partial \psi}{\partial Y} \tag{A14}
\end{equation*}
\]
are used.

Substituting into Equation (A13), and applying the boundary conditions, we get
\[
\begin{align*}
& J_{y}(y=0, x=a)=0=K_{1}+K_{2}\left(z-\frac{W}{2}\right)+\frac{\partial \psi}{\partial z} \\
& J_{y}(y=L, x=a)=0=K_{1}+K_{2}\left(z-\frac{W}{2}\right)+\frac{\partial \psi}{\partial z}  \tag{A15}\\
& J_{z}(z=0, x=a)=0=K_{3}-K_{2}\left(y-L_{1}\right)-\frac{\partial \psi}{\partial y} \\
& J_{z}(z=W, x=a)=0=K_{3}-K_{2}\left(y-L_{1}\right)-\frac{\partial \psi}{\partial y}
\end{align*}
\]

Now, the potential on the boundary using Cauchy-Riemann conditions is given by
\[
\begin{equation*}
\psi(y, z)-\psi(0,0)=\int_{00}^{y z} \frac{\partial \psi}{\partial s} d s \tag{A16}
\end{equation*}
\]

Figure As shows the panel in its new orientation


Figure A5. Panel Orientation to \(y-z\) Frame

The potential \(\psi_{1}\) is given by
\[
\psi_{1}=\int_{00}^{z 0} \frac{\partial \psi}{\partial z}(y=0) \quad d z=-\left[\left(K_{1}-\frac{K_{2} W}{2}\right) z+\frac{K_{2} z^{2}}{2}\right]
\]

The potential \(\psi_{2}\) is given by
\[
\begin{aligned}
\psi_{2} & =\int_{00}^{W 0} \frac{\partial \psi}{\partial z}(y=0) d z+\int_{W 0}^{W y} \frac{\partial \psi}{\partial y}(z=w) d y \\
& =-K_{1} w+\left(K_{3}+K_{2} L_{1}\right) y-\frac{K_{2} y^{2}}{2}
\end{aligned}
\]

The potential \(\psi_{3}\) is given by
\[
\begin{aligned}
\psi_{3} & =\int_{00}^{W 0} \frac{\partial \psi}{\partial z}(y=0) d z+\int_{W 0}^{W L} \frac{\partial \psi}{\partial y}(z=W) d y+\int_{W L}^{z L} \frac{\partial \psi}{\partial z}(y=L) d z \\
& =\left(K_{3} L+K_{2} L_{1} L-\frac{K_{2} L^{2}}{2}\right)+\left(\frac{K_{2} W}{2}-K_{1}\right) z-\frac{K_{2} z^{2}}{2}
\end{aligned}
\]

The potential \(\psi_{4}\) is given by
\[
\begin{aligned}
\psi_{4} & =\psi_{3}(z=W)+\int_{0 L}^{0 y} \frac{\partial \psi}{\partial y}(z=0) d z \\
& =\left(K_{3}+K_{2} L_{1}\right) y-\frac{K_{2} y^{2}}{2}
\end{aligned}
\]
where
\[
\begin{aligned}
& K_{1}=\frac{1}{2} \sigma c^{-1}\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right) a \\
& K_{2}=-\frac{1}{2} \sigma c^{-1}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) \\
& K_{3}=-\frac{1}{2} \sigma c^{-1}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) a
\end{aligned}
\]

Summarizing the \(\psi_{1}, \psi_{2}, \psi_{3}\), and \(\psi_{4}\) to give
\[
\begin{align*}
& \psi_{1}=f_{1} z+f_{2} z^{2} \\
& \psi_{2}=b_{1}+f_{3} y+f_{2} y^{2}  \tag{A17}\\
& \psi_{3}=b_{2}+f_{1} z+f_{2} z^{2} \\
& \psi_{4}=f_{3} y+f_{2} y^{2}
\end{align*}
\]
where
\[
\begin{aligned}
& \mathrm{f}_{1}=-\left\langle\mathrm{K}_{1}-\frac{\mathrm{K}_{2} \mathrm{~W}}{2}\right| \\
& \mathrm{f}_{2}=-\frac{\mathrm{K}_{2}}{2} \\
& \mathrm{f}_{3}=\left(\mathrm{K}_{3}+\mathrm{K}_{2} \mathrm{~L}_{1}\right) \\
& \mathrm{b}_{1}=-\mathrm{K}_{1} \mathrm{~W} \\
& \mathrm{~b}_{2}=\left(\mathrm{K}_{3} I+\mathrm{K}_{2} \mathrm{~L}_{1} \mathrm{I}-\frac{\mathrm{K}_{2} L^{2}}{2}\right)
\end{aligned}
\]

Solution for \(\psi\)

We now have a Dirichlet problem and can use the superposition theorem to separate the problem into four boundary value problems as shown in Figure As.

Solution for \(\psi_{1}\)
For \(\nabla^{2} \psi=0\), the general solution for \(\psi_{1}\) is
\[
\begin{equation*}
\psi_{1}=\left(A \cos \mu_{1} z+B \sin \mu_{1} z\right)\left(C \sinh \mu_{1} y+D \cosh \mu_{1} y\right) \tag{A18}
\end{equation*}
\]


Figure A6. Four Boundary Value Problems

Using boundary conditions of Figure Act, the solution for \(\psi_{1}\) (s:
(1) \(\psi_{1}(z=0, x=a)=0=A \cos \eta_{1} z+D \cosh { }_{1} y\) y which implies \(A=\dot{0}\)
(2) \(\psi_{1}(z=W)=0=B \sin \mu_{1} W\left(C \sin \psi_{1} y+D\right.\) cosh \(\left.\mu_{1} y\right)\) which implies \(H_{1}=\frac{n_{T H}}{W}\)
(3) \(\psi_{1}(y=L)=0=B \sin \mu_{1} z\left(C \sinh \mu_{1} L_{1}+D \cosh \mu_{1} I_{1}\right)\) which implies \(D=-C \tanh \mu_{1}{ }^{L}\)

These three conditions give
\[
\begin{aligned}
\psi_{1} & =B C \sin \mu_{1} z\left(\sinh \mu_{1} y-\tanh \mu_{1} L \cosh \mu_{1} y\right) \\
& =B C \sin \mu_{1} z \frac{\sinh \mu_{1} y \cosh \mu_{1} L-\sinh \mu_{1} I \cosh \mu_{1} y}{\cosh \mu_{1} L} \\
& =B C \sin \mu_{1} z \frac{\sinh \mu_{1}(y-L)}{\cosh \mu_{1} L}
\end{aligned}
\]
and
(4) \(\psi_{1}(y=0)=f_{1} z+f_{2} z^{2}=-B C \tanh \mu_{1} L \sin \mu_{1} z\)

Now, \(f_{1} z+\hat{f}_{2} z^{2}\) is expanded in a sin \(\mu_{1} z\) series.
\[
f(z)=f_{1} z+f_{2} z^{2}=\sum b_{n} \sin \mu_{1} z
\]
where
\[
\begin{aligned}
\mathrm{b}_{\mathrm{n}} & =\frac{2}{W} \int_{0}^{W}\left(f_{1} z+f_{2} z^{2}\right) \sin \mu_{1} z d z \\
& =\frac{2 f_{1}}{W} \int_{0}^{W} z \sin \mu_{1} z d z+\frac{2 f_{2}}{W} \int_{0}^{W} z^{2} \sin \mu_{1} z d z \\
& =\frac{2 f_{1}}{W}\left[-\frac{W^{2}}{n_{\pi}}(-1)^{n}\right]+\frac{2 f_{2}}{W}\left\{-\frac{W^{3}}{n_{\pi}}(-1)^{n}+\frac{2 W^{3}}{(n \pi)^{3}}\left[(-1)^{n}-1\right]\right\} \\
& =-\frac{2 f_{1} W}{n_{\pi}}(-1)^{n}-\frac{2 f_{2} W^{2}(-1)^{n}}{n_{\pi}}+\frac{4 \hat{I}_{2} W^{2}}{\left(n_{\pi}\right)^{3}}\left[(-1)^{n}-1\right]
\end{aligned}
\]

Therefore,
\[
\begin{equation*}
-B C \tanh \mu_{1} I=b_{n} \tag{A19}
\end{equation*}
\]

Then
\[
\begin{aligned}
B C & =-\frac{b_{n}}{\tanh \mu_{1} L} \\
& \left.=\frac{-\left\{\frac{-2 f_{1} W}{n_{\pi}}(-1)^{n}-\frac{2 f_{2} W^{2}(-1)^{n}}{n_{\pi}}+\frac{4 f_{2} W^{2}}{\left(n_{\pi}\right)^{3}}\left[(-1)^{n}-1\right]\right\}}{\tanh \mu_{1}^{L}}\right\}
\end{aligned}
\]

Then
\[
\psi_{1}=-\left\{-\frac{2(-1)^{n}}{n_{\pi}}\left(f_{1} \dot{W}+f_{2} \bar{W}^{2}\right)+\frac{4 f_{2} W^{2}}{\left(n_{\pi}\right)^{3}}\left[(-1)^{n}-1\right]\right\} \frac{\sinh \mu_{1}(y-L)}{\sinh \mu_{1} L} \sin \mu_{1} z
\]
and
\[
\psi_{1}=\sum B_{n} \sin \frac{n \pi}{W} z \sinh \frac{n_{\pi}}{W}\left(y^{\prime}-L\right)
\]
where
\[
B_{n}=-\left\{-\frac{2(-1)^{n}}{n_{\pi}}\left(f_{1} W+f_{2} \dot{W}^{2}\right)+\frac{4 \tilde{f}_{2} W^{3}}{\left(n_{\pi}\right)^{3}}\left[(-1)^{n}-1\right]\right\} \frac{1}{\sinh \mu_{1}{ }^{I}}
\]

\section*{Solution for \(1 / 2\)}

With boundary conditions given in Figure A6(b), the general solution for \(\psi_{2}\) is:
\[
\begin{equation*}
\psi_{2}=\left(A \sin \mu_{2} y+B \cos \mu_{2} y\right)\left(C \sinh \mu_{2} z+D \cosh \mu_{2} z\right) \tag{A20}
\end{equation*}
\]
where
(1) \(\psi_{2}(y=0)=0 \Rightarrow B=0\)
(2) \(\psi_{2}(y, z=0)=0 \Rightarrow D=0\)
(3) \(\psi_{2}(y=L, z) \equiv 0 \Rightarrow \mu_{2}=\frac{\mathfrak{n}_{n}}{L}\)

Now,
\[
\begin{equation*}
\psi_{2}=A C \sin \frac{n_{1+} y}{L} \sinh \frac{n_{\pi}}{L} z \tag{A21}
\end{equation*}
\]
and
\[
\text { (4) } \begin{aligned}
\psi_{2}\left(y_{1} z\right. & =W)=b_{1}+f_{3} y+f_{2} y^{2} \\
& =A C \sin \frac{n_{\pi y}}{L} \sinh \frac{n_{\pi} W}{L}
\end{aligned}
\]

Now, expanding \(b_{1}+f_{3} y+f_{2} y^{2}\) in a \(\sin \frac{n_{\pi y}}{L}\) series
\[
b_{1}+f_{3} y+f_{2} y^{2}=\sum b_{n} \sin \frac{n_{H} y}{L}
\]
where
\[
\begin{align*}
& b_{n}=\frac{2}{L} \int_{0}^{L}\left(b_{1}+f_{3} y+f_{2} y^{2}\right) \sin \frac{n m y}{L} d y  \tag{A22}\\
& =\frac{2 b_{1}}{L} \int_{0}^{L_{1}} \sin \frac{n \pi}{L} y d y+\frac{2 f_{3}}{L} \int_{0}^{L_{m}} y \sin \frac{n \pi y}{L} d y+\frac{2 f_{2}}{L} \int_{0}^{L} y^{2} \sin \frac{n_{\pi} y}{L} d y \\
& =\frac{2 b_{1}}{L}\left\{\frac{L}{n \pi}\left[1-(-1)^{n}\right]\right\}+\frac{2 \frac{1}{3}^{3}}{L}\left[-\frac{L^{2}}{n_{\pi}}(-1)^{n}\right]+\frac{2 f_{2}}{L}\left\{-\frac{L^{3}}{n_{\pi}}(-1)^{n}+\frac{2 L^{3}}{(n \pi)^{3}\left[(-1)^{n}-1\right]}\right\} \\
& =\frac{2 b_{1}}{n \pi}-\frac{2 b_{1}(-1)^{n}}{n_{\pi}}-\frac{2 f_{3} L}{n_{\pi}}(-1)^{n}-\frac{2 f_{2} L^{2}}{n_{\pi}}(-1)^{n}+\frac{4 f_{2} L^{2}}{\left(n_{\pi}\right)^{3}}\left[(-1)^{n}-1\right] \\
& =\frac{2 b_{1}}{n_{\pi}}-\frac{2(-1)^{n}}{n_{\pi}}\left(b_{1}+f_{3} L+f_{3} L^{2}\right)+\frac{4 f_{3} L^{2}}{\left(n_{\pi}\right)^{3}} \cdot\left[(-1)^{n}-1\right]
\end{align*}
\]

Therefore,
\[
\begin{equation*}
A C \sinh \frac{n_{\Pi} W}{L}=b_{n} \tag{A23}
\end{equation*}
\]
and
\[
A C=\left\{-\frac{2(-1)^{n}}{n_{\pi}}\left(b_{1}+f_{3} L+f_{2} L^{2}\right)+\frac{2 b_{1}}{n_{\pi}}+\frac{4 f_{2} L^{2}}{\left(n_{\pi}\right)^{3}}\left[(-1)^{n}-1\right]\right\} \sinh \frac{1}{\left(\frac{n \pi W}{L}\right)}
\]
and
\[
\begin{equation*}
\psi_{2}=\Sigma(A C)_{n} \sin \frac{n \pi y}{L} \sinh \frac{\dot{n} \pi}{L} \tilde{z} \tag{A24}
\end{equation*}
\]

Solution for \(\psi_{3}\)

Figure Afc gives the boundary conditions for \(\psi_{3}\) solution:
\[
\begin{equation*}
\psi_{3}=\left(A \sin \mu_{z}+B \cos \mu z\right)\left(C \sinh \mu_{y}+D \cosh \mu y\right) \tag{A.25}
\end{equation*}
\]
where
(1) \(\psi_{3}(y=0)=0 \Rightarrow D=0\)
(2) \(\psi_{3}(z=0)=0 \Rightarrow B=0\)
(3) \(\psi_{3}(\mathrm{z}=\omega)=0 \Rightarrow \mu_{\mathrm{z}}=\frac{\overline{\mathrm{a}} \mathrm{m}_{\mathrm{w}}}{\bar{W}}\)

These conditions reduce Equation (A⒈8) to
\[
\begin{equation*}
\psi_{3}=A C \sin \frac{n_{\pi}}{W} z \sinh \frac{n_{\pi}}{W} \hat{y} \tag{2}
\end{equation*}
\]
and
(4) \(\psi_{3}(y=L)=b_{2}+f_{1} z+f_{2} z^{2}\)
\[
=A C \sin \frac{n_{\pi}}{W} z \sinh \frac{n_{\pi} L}{W}
\]

Expanding \(b_{2}+f_{1} z+f_{2} z^{2}\) in \(\sin \frac{n_{\pi}}{W} z\) series to give
\[
b_{2}+f_{1} z+\hat{f}_{2} z^{2}=\Sigma b_{n} \sin \frac{n_{\pi}}{W} z
\]
where
\[
\begin{equation*}
b_{n}=\frac{2}{W} \int_{0}^{W}\left(b_{2}+f_{1} z+f_{2} z^{2}\right) \sin \frac{n_{m}}{W} z d_{z} \tag{A27}
\end{equation*}
\]
then
\[
\begin{aligned}
b_{n} & =\frac{2 b_{2}}{W} \int_{0}^{W} \sin \frac{n_{\pi}}{W} z d_{z}+\frac{2 f_{1}}{W} \int_{0}^{W} z \sin \frac{n \pi}{W} z d_{z}+\frac{2 f_{2}}{W} \int_{0}^{W} 2 \sin \frac{n \pi}{W} z d z \\
& =\frac{2 b_{2}}{W}\left\{\frac{W}{n_{\pi}}\left[1-(-1)^{n}\right]\right\}+\frac{2 f_{1}}{W}\left[-\frac{W^{2}}{n_{\pi}}(-1)^{n}\right]+\frac{2 f_{2}}{W}\left\{-\frac{W^{3}}{n_{\pi}}(-1)^{n}+\frac{2 W^{3}}{\left(n_{\pi}\right)^{3}}\left[(-1)^{n}-1\right]\right\} \\
& =\frac{2 b_{2}}{n_{\pi}}-\frac{2 b_{2}(-1)^{n}}{n \pi}-\frac{2 f_{1} W(-1)^{n}}{n}-\frac{2 f_{2} W^{2}(-1)^{n}}{n_{\pi}}+\frac{4 f_{2} W^{2}}{\left(n_{\pi}\right)^{3}}\left[(-1)^{n}-1\right] \\
& =\frac{2 b_{2}}{n_{\pi}}-\frac{2(-1)^{n}}{n_{\pi}}\left(b_{2}+f_{1} W+f_{2} W^{2}\right)+\frac{4 f_{2} W^{2}}{\left(n_{m}\right)^{3}}\left[(-1)^{n}-1\right]
\end{aligned}
\]

Therefore, by Equation (A26)
\[
A C \sinh \frac{n_{n} I}{W}=b_{n}
\]
and
\[
\begin{equation*}
A C=\left\{-\frac{2(-1)^{n}}{n_{\pi}}\left[\psi_{3}(L)\right]+\frac{2 b_{2}}{n_{\pi}}+\frac{4 f_{2} W^{2}}{\left(n_{\pi}\right)^{3}} \quad\left[(-1)^{n}-1\right]\right\} \frac{1}{\sinh \frac{n \pi L}{W}} \tag{A28}
\end{equation*}
\]
and
\[
\psi_{3}=\Sigma A C \sin \frac{n_{\pi}}{W} z \sin h \frac{n_{T}}{W} y
\]

\section*{Solution for \(\psi_{4}\)}

Figure Add gives the boundary conditions for \(\psi_{4^{*}}\). Using the three conditions \(\psi_{4}(y=0):=\psi_{1}\left(y=w_{2}\right)=\psi_{1 H}(z=W)=0\), the \(\psi_{4}\) solution reduces to
\[
\begin{equation*}
\tilde{\psi}_{4}=A C \sin \frac{n_{m}}{E} y \sinh \cdot \frac{n_{m}}{L}(z-W) \tag{A29}
\end{equation*}
\]

The fourth condition is
\[
\psi_{4}(z=0)=f_{3} y^{\prime}+f_{2} y^{2}=-A C \sinh \frac{n_{\Pi} W}{L} \sin \frac{n_{\pi}}{L} y
\]

Expanding \(f_{3}^{\prime} y^{\prime+}+f_{2} y^{2}\) inn a \(\sin \frac{n_{\pi}}{I}\) y series gives
\[
f_{3} y+f_{2} y^{2}=\sum b_{n} \sin \frac{n_{\pi}}{E^{\prime}} y
\]
where
\[
\begin{aligned}
b_{i n} & =\frac{2}{L} \int_{0}^{T}\left(f_{3} y^{2}+f_{2} y^{2}\right)_{; ~ s i n s}^{n} \frac{n \pi^{i}}{L} y d y \\
& =\frac{2 f_{3}^{*}}{L} \int_{0}^{L} y \cdot \sin \cdot \frac{n \pi}{I_{i}} y^{\prime} d y+\frac{2 f_{2}}{L} \int_{0}^{L} y^{2} \frac{n \pi}{L} y d y
\end{aligned}
\]
\[
\begin{aligned}
& =\frac{2 f_{3}}{L}\left[-\frac{L^{2}}{n \pi}(-1)^{n}\right]+\frac{2 f_{2}}{L}-\left\{\frac{L^{3}}{n_{\pi}}(-1)^{n}+\frac{2 L^{3}}{\left(n_{n}\right)^{3}}\left[(-1)^{n}\right]-1\right\} \\
& =-\frac{2 f_{3} I(-1)^{n}}{n \pi}-\frac{2 f_{2} L^{2}(-1)^{n}}{n^{n}}+\frac{4 L^{2} f_{2}}{\left(n_{\pi}\right)^{3}}\left[(-1)^{n}-1\right]
\end{aligned}
\]
and
\[
-A C \sinh \frac{n_{n} W}{L}=\left\{-\frac{2(-1)^{n}}{n_{\pi}}\left(f_{3} L+f_{2} L^{2}\right)+\frac{4 L^{3}}{\left(n_{H}\right)^{3}}\left[(-1)^{n}-1\right]\right\}
\]
where
\[
A C=-\left\{-\frac{2(-1)^{n}}{n_{n}}\left(f_{3} L+f_{2} L_{r}^{2}\right)+\frac{4 L^{2} f_{2}}{\left(n_{n}\right)^{3}}\left[(-1)^{n}-1\right]\right\} \frac{1}{\sinh \frac{n \pi V}{L}}
\]
and
\[
\psi_{4}=\Sigma A C \sin \frac{n}{L} y \sinh \frac{n \pi}{L}(z-W)
\]

Summary of Solution for \(\psi\)
\[
\psi_{\mathrm{T}}=\psi_{1}+\psi_{2}+\psi_{3}+\psi_{4}
\]
where
\[
\begin{align*}
\psi_{T}= & \sum_{n=1}^{\infty} A{ }_{n 1} \sin \frac{n_{\pi}}{W} z \sinh \frac{n_{\pi}}{W}(y-L) \\
& +\sum_{n=1}^{\infty} A_{n 2} \sin \frac{n_{\pi}}{L} y \sinh \frac{n_{T I}}{L} z  \tag{A30}\\
& +\sum_{n=1}^{\infty} A_{n 3} \sin \frac{n_{m}}{W} z \sinh \frac{n_{\pi}}{W} y \\
& +\sum_{n=1}^{\infty} A_{n 4} \sin \frac{n_{\pi}}{L} y \sinh \frac{n_{\pi}}{L}(z-W)
\end{align*}
\]
and
\[
\begin{align*}
& A_{n 1}=\left\{-\frac{2(-1)^{n}}{n_{\pi}} \psi_{1}(W)+\frac{4 f_{2} W^{2}}{\left(n_{\pi}\right)^{3}}\left[(-1)^{n}-1\right]\right\} \frac{1}{\sinh \frac{n_{\pi} L}{W}} \\
& A_{n 2} \equiv\left\{-\frac{2(-1)^{n}}{n_{\pi}} \psi_{2}(L)+\frac{2 b_{1}}{n_{\pi}}+\frac{4 f_{2} L^{2}}{(n \pi)^{3}}\left[(-1)^{n}-1\right]\right\} \frac{1}{\sinh \frac{n \pi W}{L}}  \tag{A31}\\
& A_{n 3}=\left\{-\frac{2(-1)^{n}}{n_{n}} \psi_{3}(W)+\frac{2 b_{2}}{n_{\pi}}+\frac{4 f_{2} W^{2}}{\left(n_{\pi}\right)^{3}}\left[(-1)^{n}-1\right]\right\} \frac{1}{\sinh \frac{n_{\pi} I}{W}} \\
& A_{n 4}=-\left\{-\frac{2(-1)^{n}}{n_{\pi}} \psi_{4}(L)+\frac{4 L^{2} f_{2}}{\left(n_{\pi}\right)^{3}}\left[(-1)^{n}-1\right]\right\} \frac{1}{\sinh \frac{n_{\pi} W}{L}}
\end{align*}
\]

DERIVATION OF \(\vec{T}_{1}\) TORQUE FOR TWO CYLINDER PANELS
\[
\begin{equation*}
\overrightarrow{\mathrm{T}}_{1}=c^{-1} \iiint \vec{x} \times\{\nabla \phi \overrightarrow{\mathrm{H}}\} \mathrm{dV} \tag{A32}
\end{equation*}
\]
where
\[
\begin{aligned}
& d V=T d y d z \\
& \vec{r}=a \hat{j}+\left(y-L_{1}\right) \hat{j}+\left(z-\frac{W}{2}\right) \hat{k}
\end{aligned}
\]

Expanding \(\vec{T}_{1}\), we get
\[
\begin{aligned}
\stackrel{\rightharpoonup}{T}_{1} \equiv & c^{-1} \iint\left\{\left[-\left(y-L_{1}\right) H_{x} \frac{\partial \phi}{\partial y}-\left(z-\frac{W}{2}\right) H_{x} \frac{\partial \phi}{\partial z}\right] \hat{i}\right. \\
& +\left[\left(z-\frac{W}{2}\right)\left(H_{z} \frac{\partial \phi}{\partial y}-\frac{\partial \phi}{\partial z} H_{y}\right)+a H_{x} \frac{\partial \phi}{\partial y}\right] \hat{j} \\
& \left.\left.+\left[a H_{x} \frac{\partial \phi}{\partial z}-\left(y-I_{y}\right) \left\lvert\, H_{z} \frac{\partial \phi}{\partial y}-\frac{\partial \phi}{\partial z} H_{y}\right.\right)\right] \hat{k}\right\} \tau d y d z
\end{aligned}
\]

Using the Cauchy-Riemann conditions
\[
\frac{\partial \phi}{\partial y}=\frac{\partial \psi}{\partial z}
\]
and
\[
\frac{\partial \phi}{\partial z}=-\frac{\partial \psi}{\partial y}
\]
then
\[
\begin{align*}
\overrightarrow{\mathrm{T}}= & \mathrm{c}^{-1} \iint\left\{\left[-\left(y-L_{1}\right) H_{x} \frac{\partial \psi}{\partial z}+\left(z-\frac{W}{2}\right) H_{x} \frac{\partial \psi}{\partial y}\right] \hat{i}\right. \\
& +\left[\left(z-\frac{W}{2}\right)\left|H_{z} \frac{\partial \psi}{\partial z}+\frac{\partial \psi}{\partial y} H_{y}\right\rangle+a H_{x} \frac{\partial \psi}{\partial z}\right] \hat{\jmath}  \tag{A33}\\
& \left.\left.+\left[-a H_{x} \frac{\partial \psi}{\partial y}-\left(y-L_{1}\right) \left\lvert\, H_{z} \frac{\partial \psi}{\partial z}+\frac{\partial \psi}{\partial y} H_{y}\right.\right)\right] \hat{k}\right\} \tau d y d z
\end{align*}
\]

Solution for x -Component of \(\overrightarrow{\mathrm{T}}_{1}\) Torque
\[
\begin{align*}
\left(\vec{T}_{1}\right)_{x}= & c^{-1} \iint\left[-\left(y-L_{1}\right) H_{x} \frac{\partial \psi}{\partial z}+\left(z-\frac{W}{2}\right) H_{x} \frac{\partial \psi}{\partial y}\right] \tau d y d z  \tag{A34}\\
= & -c^{-1} H_{x} \tau \iint y \frac{\partial \psi}{\partial z} d y d z+c^{-1} H_{x} \tau L_{1} \iint \frac{\partial \psi}{\partial z} d y d z \\
& +c^{-1} H_{x} \tau \iint z \frac{\partial \psi}{\partial y} d y d z-\frac{c^{-1} H_{x} \tau W}{2} \iint \frac{\partial \psi}{\partial y} d y d z
\end{align*}
\]

And integrating over the panel, we get
\[
\begin{aligned}
\left(\vec{T}_{1}\right)_{x}= & -c^{-1} H_{x} \tau\left[-\Sigma \frac{\left(A_{n 2}+A_{n 4}\right)(-1)^{n} L^{2}}{n_{\pi}} \sinh \frac{n_{\pi W}}{L}\right] \\
& +c^{-1} H_{x} \tau L_{1}\left\{\Sigma \frac{L}{n_{\pi}}\left[1-(-1)^{n_{1}}\right]\left\langle A_{n 2}+A_{n 4}\right) \sinh \frac{n_{n} W}{L}\right\}
\end{aligned}
\]
\[
\begin{aligned}
& +c^{-1} H_{x} T\left[-\Sigma\left(A_{n 1}+A_{n 3}\right) \frac{W^{2}}{n_{\pi}}(-1)^{n} \sinh \frac{n \pi L_{i}}{W}\right] \\
& -\frac{c^{-1} H_{X} T W}{2}\left\{\Sigma\left(A_{n 1}+A_{n 3}\right) \frac{W}{n \pi}\left[1-(-1)^{n}\right] \sinh \frac{n \pi L}{W}\right\}
\end{aligned}
\]

Substituting in the \(A_{n i}\) 's and reducing, we get
\[
\begin{aligned}
\left(\vec{T}_{I}\right)= & -c^{-1} H_{x} \tau\left\{-\Sigma \frac{2 b_{1}}{n_{\pi}}\left[1-(-1)^{n_{]}} \frac{(-1)^{n_{I}}}{n_{\pi}}\right\}\right. \\
& +c^{-1} H_{x} \tau L_{1}\left\{\Sigma \frac{L}{n_{\pi}}\left[1-(-1)^{n}\right] \frac{2 b_{1}}{n_{\pi}}\left[1-(-1)^{n_{]}}\right]\right\} \\
& +\frac{c^{-1} H_{x} \tau}{2}\left\{-\Sigma \frac{2 b_{2}}{n_{\pi}}\left[1-(-1)^{n_{1}} \frac{W^{2}}{n_{\pi}}(-1)^{n}\right\}\right. \\
& -\frac{c^{-1} H_{x} \tau W}{2}\left\{\frac { 2 b _ { 2 } } { n _ { \pi } } [ 1 - ( - 1 ) ^ { n _ { 1 } } ] \frac { W } { n _ { \pi } } \left[1-(-1)^{\left.\left.n_{n}\right]\right\}}\right.\right.
\end{aligned}
\]

For two panels
\[
x=a, x=-a
\]
it can be shown that
\[
\begin{equation*}
\left(\vec{T}_{1}\right)_{x}=0 \tag{A35}
\end{equation*}
\]

Solution for \(y\)-Component of \(\vec{T}_{1}\) Torque
\[
\begin{align*}
\left(\stackrel{\rightharpoonup}{T}_{1}\right)_{y} & \left.=c^{-1} \iint\left\{\left(z-\frac{W}{2}\right) \left\lvert\, H_{z} \frac{\partial \psi}{\partial z}+\frac{\partial \psi}{\partial Y} H_{y}\right.\right\}+a H_{x} \frac{\partial \psi}{\partial z}\right\} \tau d y d z  \tag{A36}\\
& =c^{-1} \tau H_{z} \iint z \frac{\partial \psi}{\partial z} d y d z-\frac{c^{-1}{ }_{\tau} H_{z} W}{2} \iint \frac{\partial \psi}{\partial z} d y d z
\end{align*}
\]
\[
\begin{aligned}
& +c^{-1} \tau_{\mathrm{H}} \mathrm{H}_{y} \iint z \frac{\partial \psi}{\partial y} d y d z-\frac{c^{-1} \tau H_{y} W}{2} \iint \frac{\partial \psi}{\partial y} d y d z \\
& +c^{-1}{ }_{\tau} H_{x} a \iint \frac{\partial \psi}{\partial z} d y d z
\end{aligned}
\]

Integrating, we get
\[
\begin{aligned}
& \left(\vec{T}_{1}\right)=e^{-1} \tau H_{z}\left\{\Sigma \frac{W}{n_{\pi}} A_{n 2}\left[1-(-I)^{n_{n}}\right] \sinh \frac{n_{\pi W} W}{L}\right. \\
& +\left(A_{n 1}-A_{n 3}\right)\left(\frac{W}{n_{\pi}}\right)^{2}\left[1-(-1)^{n}\right] \cdot\left(\cosh \frac{n_{\pi} L}{W}-1\right) \\
& \left.\left.\left.+\left(A_{n 4}-A_{n 2}\right)\left(\frac{L}{n_{\pi}}\right)^{2}\left[1-(-1)^{n_{7}}\right] \right\rvert\, \cosh \frac{n_{1} W}{L}-1\right)\right\} \\
& -\frac{c^{-1} \tau H_{z} W}{2}\left\{\left(\frac{L}{n_{\pi}}\right)\left[1-(-1)^{n_{n}}\right]\left(A_{n 2}+A_{n 4}\right) \sinh \frac{n_{\pi} W}{L}\right\} \\
& \left.+c^{-1} \tau H_{y}\left\{-\left(A_{n 1}+A_{n 3}\right)\left(\frac{W^{2}}{n_{\pi}}\right)(-1)^{n} \sinh \frac{n_{\pi} L}{W}\right\}\right\}=0 \text { because } \\
& \left.-\frac{c^{-1} \tau H_{y} W}{2}\left\{\left(A_{n 1}+A_{n 3}\right) \frac{W}{n_{\pi}}\left[1-(-1)^{n}\right] \sinh \frac{n_{\pi} \dot{L}}{W}\right\}\right\} \begin{array}{c}
0 \text { because } \\
n \text { is odd }
\end{array} \\
& +c^{-1}{ }_{\tau} H_{x} a\left\{\left(A_{n 2}+A_{n 4}\right) \frac{L}{n_{\pi}}\left[1-(-1)^{n}\right] \sinh \frac{n \pi W}{L}\right\}
\end{aligned}
\]

Substituting in the \(A_{n i}{ }^{\prime} s\) and reducing, we get
\[
\left(\vec{T}_{1}\right)=q_{1}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) H_{z}+q_{2}\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right) H_{x}
\]
where
\[
\begin{align*}
\mathrm{q}_{1}= & \left\{-\frac{1}{2} \sigma \mathrm{c}^{-2} \tau W L\left(L_{1} L-\frac{L^{2}}{2}\right)-\frac{1}{12} \sigma c^{-2} \tau W L^{3}\right.  \tag{A37}\\
& \left.\left.+8 \sigma c^{-2} \tau W^{2}\left|L_{1} L-\frac{L^{2}}{2}\right| \Sigma \right\rvert\, \frac{1}{m \pi}\right)^{3}\left[\tanh \frac{m \pi L}{2 W}+\left|\frac{L}{W}\right|^{2} \tanh \frac{m_{n} W}{2 L}\right] \\
& \left.+16 \sigma c^{-2} \tau W^{4} \Sigma\left|\frac{1}{m_{\pi}}\right|^{5}\left[\tanh \frac{m \pi L}{2 W}+\left|\frac{L}{W}\right|^{4} \tanh \frac{m_{\pi} W}{2 L}\right]\right\} \\
q_{2}= & -\frac{3}{4} \sigma c^{-2} \tau L W^{3} \\
m= & 2 n-1
\end{align*}
\]
\[
\begin{aligned}
& -\left(A_{n 3}-A_{n 1}\right)\left(\frac{W}{n \pi}\right)^{2}\left[1-(-1)^{n_{2}} \left\lvert\, \cosh \frac{n_{\pi} L}{W}-1\right.\right) \\
& \left.\left.-\left(A_{n 2}-A_{n 4}\right)\left(\frac{L}{n_{\pi}}\right)^{2}\left[1-(-1)^{n}\right]\left(\cosh \frac{n_{\pi} W}{L}-1\right)\right\}\right] \\
& +c^{-1}{ }_{\tau} L_{1} H_{z}\left\{\Sigma \frac{L}{n_{\pi}}\left[1-(-1)^{n_{1}}\right]\left(A_{n 2}+A_{n 4}\right) \sinh \frac{n_{\pi} W}{L}\right\} \\
& +c^{-1}{ }_{\tau} L_{1} H_{y}\left\{\Sigma \frac { W } { n _ { \pi } } \left[1-(-1)^{\left.\left.n_{n}\right]\left(A_{n 1}+A_{n 3}\right) \sinh \frac{n_{\pi} L}{W}\right\}}\right.\right.
\end{aligned}
\]

Subsituting in the \(A_{n i}\) 's and reducing, we get
\[
\left(\vec{T}_{1}\right)_{z}=q_{3} H_{x}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)+q_{4} H_{y}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)
\]
where
\[
\begin{equation*}
q_{3}=\frac{3}{4} \sigma c^{-2}+W^{3} \tag{A3B}
\end{equation*}
\]
and
\[
\begin{aligned}
q_{4}= & \left\{\frac{1}{2} \sigma c^{-2} \tau L W\left(L_{1} L-\frac{L^{2}}{2}\right)+\frac{1}{2} \sigma c^{-2} \tau L W\left(L_{1} L-\frac{L^{2}}{2}\right)+\frac{1}{12} \sigma c^{-2} \tau L_{1} W^{3}\right. \\
& \left.\left.-\sigma c^{-2} \tau L_{1} W\left(L_{1} L-\frac{L^{2}}{2}\right)-8 \sigma c^{-2} \tau W^{2} \right\rvert\, L_{1} L-\frac{L^{2}}{2}\right) \Sigma\left(\frac{1}{m \pi}\right)^{3}\left[\tanh \frac{m \| L}{2 W}\right. \\
& \left.\left.+\left(\frac{L}{W}\right)^{2} \tanh \frac{m_{\Pi} W}{2 L}\right]-16 \sigma c^{-2} \tau W^{4} \Sigma\left(\frac{1}{m_{\pi}}\right)^{5}\left[\tanh \frac{m \pi L}{2 W}+\left(\frac{L}{W}\right)^{4} \tanh \frac{m_{T} W}{2 L}\right]\right\}
\end{aligned}
\]
\(\xrightarrow{\text { Summary of } \vec{T}_{1} \text { Torque }}\)
(1) \(\left(\vec{T}_{1}\right)=0\)
\[
\begin{align*}
& \text { (2) }\left(\overrightarrow{\mathrm{T}}_{1}\right)_{y}=\mathrm{q}_{1}\left(\omega_{y} \mathrm{H}_{z}-\omega_{z} H_{y}\right) \mathrm{H}_{z}+\mathrm{q}_{2}\left(\omega_{x} \mathrm{H}_{y}-\omega_{y} \mathrm{H}_{x}\right) \mathrm{H}_{x}  \tag{A40}\\
& \text { (3) }\left(\stackrel{\rightharpoonup}{T}_{1}\right)_{z}=q_{3}\left(\omega_{y} \mathrm{H}_{z}-\omega_{z} H_{y}\right) H_{x}+q_{4}\left(\omega_{y} H_{z}-\omega_{z} \mathrm{H}_{y}\right) H_{y}
\end{align*}
\]
where
\[
\begin{aligned}
& q_{1}=\left\{-\frac{1}{2} \sigma c^{-2} \tau W L\left(L_{1} L-\frac{L^{2}}{2}\right)-\frac{1}{12} \sigma c^{-2} \tau W L^{3}\right. \\
& +8_{\sigma} c^{-2}{ }_{T} W^{2}\left(L_{1} L-\frac{L^{2}}{2} \left\lvert\, \Sigma\left(\left.\frac{1}{m_{\pi}}\right|^{3}\left[\tanh \frac{m_{W} L}{2 W}+\left|\frac{L}{W}\right|^{2} \tanh \frac{m_{\pi} W}{2 L}\right]\right.\right.\right. \\
& +16_{\sigma} c^{-2} \tau W^{4} \Sigma\left(\frac{1}{m_{\pi}}\right)^{5}\left[\tanh \frac{m_{\pi} L}{2 W}+\left|\frac{L}{W}\right|^{4} \tanh \frac{m_{\pi} W}{2 L}\right] \\
& \mathrm{q}_{2}=-\frac{3}{4} \sigma \mathrm{c}^{-2} \tau^{\mathrm{L}} \mathrm{~W}^{3} \\
& g_{3}=\frac{3}{4} \sigma c^{-2} \tau L W^{3} \\
& q_{4}=\left\{\sigma c^{-2} \tau L W\left(L_{1} L-\frac{L^{2}}{L}\right)+\frac{1}{12} \sigma c^{-2} \tau L W^{3}-\sigma c^{-2} \tau L_{1} W\left(L_{1} L_{-}-\frac{L^{2}}{2}\right)\right. \\
& -8 \sigma c^{-2} \pi W^{2}\left(L_{1} L-\frac{x^{2}}{2}\right) \Sigma\left(\frac{1}{m_{\pi}}\right)^{3}\left[\tanh \frac{m_{\pi} L}{2 W}+\left(\frac{L}{W}\right)^{2} \tanh \frac{m \pi W}{2 L}\right] \\
& \left.-16_{\sigma} c^{-2}{ }_{T} W^{4} \sum_{n=1}^{\infty}\left|\frac{1}{m \pi}\right|^{5}\left[\tanh \frac{m \pi L}{2 W}+\left|\frac{L}{W}\right|^{4} \tanh \frac{m \pi W}{2 I}\right]\right\} \\
& \mathrm{m}=2 \mathrm{n}-1
\end{aligned}
\]

\section*{DERIVATION OF \(\vec{T}_{2}\) TORQUE FOR TWO CYLINDER PANELS}

From Equation (A26)
where
\[
\begin{aligned}
& \vec{r}=\hat{a}+\left(y-L_{1}\right) \hat{j}+\left(z-\frac{W}{2}\right) \hat{k} \\
& d V=r d y d z
\end{aligned}
\]

From Equation (A35)s and expanding
\[
\begin{align*}
{[(\vec{\omega} \times \overrightarrow{\mathrm{H}}) \times r]=} & {\left.\left[\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right) a-\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) \left\lvert\, z-\frac{W}{2}\right.\right)\right] \hat{j} }  \tag{A42}\\
& +\left[\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)\left(y-L_{1}\right)-a\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right)\right] \hat{k}
\end{align*}
\]

The x-component is satisfied because the panel is thin in the \(x\)-direction.

Then expanding
\[
\begin{equation*}
[(\vec{\omega} \times \vec{H}) \times \overrightarrow{\mathrm{r}}] \times \overrightarrow{\mathrm{H}}=\left(\mathrm{J}_{y} \mathrm{H}_{z}-J_{z} \mathrm{H}_{y}\right) \hat{i}+\left(J_{z} \mathrm{H}_{x}\right) \hat{j}-\left(J_{y} \mathrm{H}_{x}\right) \hat{k} \tag{A43}
\end{equation*}
\]

Then expanding
\[
\begin{aligned}
\overrightarrow{\mathrm{r}} \times\{[(\vec{\omega} \times \overrightarrow{\mathrm{H}}) \times \overrightarrow{\mathrm{r}}] \times \overrightarrow{\mathrm{H}}\}= & {\left[-\left(y-\mathrm{I}_{1}\right) J_{y} \mathrm{H}_{x}-\left(z-\frac{W}{2}\right) J_{z} H_{x}\right] \hat{i} } \\
& +\left[\left(z-\frac{W}{2}\right)\left(J_{y} H_{z}-J_{z} H_{y}\right)+a J_{y} H_{x}\right] \hat{j} \\
& +\left[a J_{z} H_{x}-\left(y-L_{1}\right)\left(J_{y} H_{z}-J_{z} H_{y}\right)\right] \hat{k}
\end{aligned}
\]

Solution for \(x\)-Component of \(\vec{T}_{2}\) (Twro Panels)
\[
\begin{aligned}
\left(\stackrel{\rightharpoonup}{T}_{2}\right)_{x} & =\frac{2 \sigma c^{-3}}{2} T \iint\left[-\left(y-L_{1}\right) J_{y} H_{x}-\left(z-\frac{W}{2}\right) J_{z} H_{x}\right] d y d z \\
& =-\frac{2 \sigma c^{-2}}{2} \tau \iint\left(y-L_{1}\right)\left[a\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right)-\left(z-\frac{W}{2}\right)\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)\right] H_{x} d_{y} d_{z} \\
& =\frac{2 \sigma c^{-2}}{2} \tau \iint\left(z-\frac{W}{2}\right)\left[\left(y-I_{1}\right)\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)-a\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right] H_{x} d_{y} d_{z}\right.
\end{aligned}
\]

The terms involving "a" cancel out, and further reducing, we get
\[
\begin{aligned}
\left(\stackrel{\rightharpoonup}{T}_{2}\right)_{x}= & +\sigma c^{-2} \tau \iint\left(y-L_{1}\right)\left(z-\frac{W}{2}\right)\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) H_{x} d_{y} d_{z} \\
& -\sigma c^{-2} \tau \iint\left(y-L_{1}\right)\left(z-\frac{W}{2}\right)\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) H_{x} d_{y} d_{z}
\end{aligned}
\]

Therefore,
\[
\begin{equation*}
\left(\vec{T}_{2}\right)=0 \tag{A44}
\end{equation*}
\]

Solution for y -Component of \(\overrightarrow{\mathrm{T}}_{2}\) (Two Panels)
\[
\begin{aligned}
\left(\vec{T}_{2}\right)_{y}= & \sigma c^{-2} \tau \iint\left(z-\frac{W}{2}\right)\left\{\left[\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right) a-\left(z-\frac{W}{2}\right)\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)\right] H_{z}\right. \\
& \left.-\left[\left(y-\tilde{L}_{1}\right)\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)-a\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right)\right] H_{y}\right\} d_{y} d_{z} \\
& +\sigma c^{-2} \tau a \iint\left[\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right)-\left(z-\frac{W}{2}\right)\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)\right] H_{x} d_{y} d_{z}
\end{aligned}
\]

The terms containing first power of "a" cancel over thesum of the two panels, so that
\[
\begin{aligned}
& \left(\vec{T}_{2}\right)_{y}=-\sigma \cdot c^{-2} \tau H_{z}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) \iint\left(z-\frac{W}{2}\right)^{2} d_{y} d_{z} \\
& -\sigma c^{-2} \tau H_{y}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) \iint\left(z-\frac{W}{2}\right)\left(y-L_{1}\right) d_{y} d_{z} \\
& +\sigma e^{-2} \tau a^{2} H_{x}\left(\omega_{x} H_{y}-\omega_{y} H_{y}\right) \iint d_{y} d_{z} \\
& =-\left.\sigma c^{-2} \tau H_{z}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) \frac{\left|z-\frac{W}{2}\right|^{3}}{3} y\right|_{0} ^{W} \quad L \\
& -\left.\sigma c^{-2} \tau H_{y}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) \frac{\left(z-\frac{W}{2}\right)^{2}}{2} \frac{\left(y-L_{1}\right)^{2}}{2}\right|_{0} ^{W} \quad L \\
& +\left.\sigma c^{-2} \tau \frac{3 W^{2}}{4} H_{x}\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right) y z\right|_{0} ^{W} \quad L \\
& \left.=-\sigma c^{-2} \tau H_{z}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) \frac{1}{3}\left[\left.\frac{W}{2}\right|^{3}-\left\lvert\, \frac{W}{2}\right.\right)^{3}\right] \\
& +\frac{3}{4} \sigma c^{-2}{ }_{\tau} W^{3} L^{L} H_{x}\left(\omega_{x} F_{y}-\omega_{y} H_{x}\right) \\
& =-\frac{1}{12} c^{-2} \tau W^{3} L\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) H_{z}+\frac{3}{4} \sigma c^{-2} \tau W^{3} L\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right) H_{x}
\end{aligned}
\]
and
\[
\left(\vec{T}_{2}\right)_{y}=q_{5}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) H_{z}+q_{6}\left(\omega_{x} H_{y}-\omega_{x} H_{y}-\omega_{y} H_{x}\right) H_{x}
\]
where
\[
\begin{equation*}
q_{5}=-\frac{1}{12} c^{-2} \tau W^{3} L, q_{6}=3 / 4 \sigma c^{-2} \tau W^{3} L \tag{A45}
\end{equation*}
\]
\(\underline{\text { Solution for } 2 \text {-Component of } \vec{T}_{2} \text { (Two Panels) }}\)
\[
\begin{aligned}
\left(\vec{T}_{2}\right)_{z}= & \sigma c^{-2} \iint\left[a\left[\omega_{y} H_{z}-\omega_{z} H_{y}\right)\left(y-L_{1}\right)-a\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right)\right] H_{x} T d_{y} d_{z} \\
& -\sigma c^{-2} \iint\left(y-L_{1}\right)\left\{\left[a\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right)-\left(z-\frac{W}{2}\right)\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)\right] H_{z} T d_{y} d_{z}\right. \\
& +\sigma c^{-2} \iint\left(y-L_{1}\right)\left[\left[\left(y-L_{1}\right)\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)-a\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right)\right] H_{y}+d_{y} d_{z}\right.
\end{aligned}
\]

Terms containing first power of " a " axe zero because of the sum over \(\mathrm{x}=\mathrm{a}\) and \(\mathrm{x}=-\mathrm{a}\) for two panels:
\[
\begin{align*}
\left(\vec{T}_{2}\right)_{z}= & -\sigma c^{-2} \tau a^{2} H_{x}\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right) \iint d y d z \\
& +\sigma c^{-2} \tau\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) H_{z} \iint\left(y-L_{1}\right)\left(z-\frac{W}{2}\right) d_{y} d_{z} \\
& +\sigma e^{-2} \tau H_{y}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) \iint\left(y-L_{1}\right)^{2} d_{y} d_{z} \\
= & -\frac{3}{4} \sigma c^{-2} \tau W^{3} L_{\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right) H_{x}} \\
& +\left.\sigma c^{-2} \tau H_{y}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)\left(\frac{\left(y-I_{1}\right)^{3}}{3}\right)_{0}^{L}\right|_{0} ^{W} \\
= & +q_{7}\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right) H_{x}+q_{8}\left(Y_{y} H_{z}-\omega_{z} H_{y}\right) H_{y} \tag{A46}
\end{align*}
\]
where
\[
q_{7}=-\frac{3}{4} \sigma \mathrm{c}^{-2} \tau W^{3} \mathrm{~L}
\]
and
\[
q_{8}=+\frac{1}{3} \sigma c^{-2} \tau\left[\left(L-L_{1}\right)^{3}+L_{1}^{3}\right] W
\]

\section*{TORQUE DUE TO CYLINDER}

Sum of \(\vec{T}_{1}\) and \(\vec{T}_{2}\) due to Two Panels

From Equations (A34), (A35), (A38), and (A39), the total torque
\[
\vec{T}=\vec{T}_{1}+\vec{T}_{2}
\]
is
(1) \((\overrightarrow{\mathrm{T}})_{\mathrm{x}}=0\)
(2) \((\vec{T})_{y}=\left(q_{2}+q_{6}\right)\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right) H_{x}+\left(q_{1}+q_{5}\right)\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) H_{z}\)
\((3)(\stackrel{\rightharpoonup}{T})_{z}=\left(q_{3}+q_{7}\right)\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right) H_{x}+\left(q_{4}+q_{8}\right)\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) H_{y}\)
Let
\[
\begin{aligned}
\mathrm{K}_{\mathrm{yl}} & =q_{2}+q_{6} \\
& =-\frac{3}{4} \sigma c^{-2} \tau L W^{3}+{ }_{4}^{3} \sigma \mathrm{c}^{-2} \tau W^{3} \mathrm{~L} \\
& =0
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{K}_{\mathrm{i} 1}=\left(\mathrm{a}_{\mathrm{g}}+\mathrm{a}_{7}\right) \\
& =\frac{3}{4} \sigma \mathrm{c}^{42} \uparrow+\dot{\mathrm{L}} \mathrm{w}^{3}-\frac{3}{4} \sigma \mathrm{c}^{-2} \uparrow \ddot{\mathrm{w}}^{3} \mathrm{~L} \\
& \pm \delta \\
& \mathrm{K}_{\mathrm{z} 2}=\dot{q}_{4}+q_{8}
\end{aligned}
\]

Therefore;
\[
\begin{aligned}
& (\overrightarrow{\mathrm{T}})_{\mathrm{x}}=0 \\
& (\stackrel{\dot{\mathrm{~T}}}{\mathrm{y}} \\
& =\mathrm{K}_{\mathrm{y} 2}\left(\omega_{\mathrm{y}} \mathrm{H}_{\mathrm{z}}-\omega_{z} \dot{H}_{\dot{y}}\right) \dot{H}_{z} \\
& (\overrightarrow{\mathrm{~T}})_{z}=\dot{\mathrm{K}}_{z 2}\left(\omega_{\cdot} \cdot \mathrm{H}_{z}-\omega_{z} \mathrm{H}_{y}\right) \dot{H_{y}}
\end{aligned}
\]
(A47)
where
\[
\begin{aligned}
& \mathrm{K}_{\mathrm{y}^{2}}=\left\{-\frac{1}{12} \mathrm{c}^{-2}{ }_{\tau} \mathrm{W}^{3} \mathrm{~L}-\frac{1}{12} \sigma \mathrm{c}^{-2} \tau \mathrm{~W} \mathrm{~L}^{3}-\frac{1}{2} \sigma \mathrm{c}^{-2}{ }_{\mathrm{TWL}}\left(\mathrm{~L}_{1} \mathrm{~L}-\frac{\mathrm{L}^{2}}{2}\right)\right. \\
& +80 c^{-2} T^{2}\left(L_{1} L-\frac{L^{2}}{2}\right) \Sigma\left(\frac{1}{m_{\pi}}\right)^{3}\left[\tanh \frac{m \pi L}{2 W}+\left(\frac{L}{W}\right)^{2} \tanh \frac{m \pi W}{2 L}\right] \\
& +16 \sigma e^{-2} T^{W} W^{4} \Sigma\left(\frac{1}{m_{\Pi}}\right)^{5}\left[\tanh \frac{m_{\pi} L}{2 W}+\left(\left.\frac{L}{W}\right|^{4} \tanh \frac{m_{\pi} W}{2 L}\right]\right] \\
& K_{z 2}=\left\{\frac{1}{3} \sigma c^{-2} \tau W L^{3}+\frac{1}{12} \sigma c^{-2} \tau L W^{3}-\frac{1}{2} \sigma c^{-2} \tau I_{1} L^{2} W\right.
\end{aligned}
\]
\[
\begin{aligned}
& -16 \sigma c^{-2}{ }_{\tau} W^{4} \Sigma\left(\left.\frac{1}{m_{\pi}}\right|^{5}\left[\tanh \frac{m_{W} L}{2 W}+\left|\frac{L}{W}\right|^{4} \tanh \frac{m_{\pi} W}{2 L}\right]\right\}
\end{aligned}
\]

\section*{Solution of \(\overrightarrow{\mathrm{T}}\) for All Six Panels}

Figure A7shows the relationship of the ARRS spacecraft cylinder panels to each other. Equation (A47) represents the torque of two panels whose surfaces are normal to an \(x\)-axis.


Figure A7. Relationship of Cyinder Pänels to Onie Another

Therefore, the torque due to all panels in the unprimed franie is
\[
\begin{equation*}
\overrightarrow{\mathrm{T}}_{\mathrm{T}}=\overrightarrow{\mathrm{T}}+\mathrm{R}\left(\theta \theta^{\prime} \overrightarrow{\mathrm{T}}^{\prime}+\dot{\mathrm{R}}\left(\theta^{\prime \prime}\right) \overrightarrow{\mathrm{T}}^{\prime \prime}\right. \tag{A48}
\end{equation*}
\]

Dquation (A47) represents the torque of two panels in the unprimed, the primed, and double primed frame. Howèver, the torque is rotated into the unprimed frame and the \(\vec{\omega}^{r} s\) and \(\vec{H}\) are transformed to the unprimed frame:
\[
\begin{equation*}
T=R(\theta) T^{\prime} \tag{A49}
\end{equation*}
\]
where
\[
R(\dot{\theta})=\left[\begin{array}{ccc}
\cos \theta & 0 & \mathrm{~s} \hat{\theta} \\
0 & 1 & 0 \\
\operatorname{cs} \theta & 0 & \mathrm{c} \mathrm{\theta}
\end{array}\right]
\]
also
\[
\begin{aligned}
& \vec{\omega}=R(\theta) \vec{\omega} \\
& \vec{H}=R(\theta) \vec{H}
\end{aligned}
\]

Therefore
\[
\begin{equation*}
\vec{T}_{T}=\sum_{i=1}^{3} R[\theta(i)] T^{\prime}(j) \tag{A50}
\end{equation*}
\]
where
\[
\theta(1)=0^{\circ}, \theta(2)=60^{\circ}, \text { and } \theta(3)=120^{\circ}
\]
and
\[
\begin{align*}
& \left.\vec{T}_{T}(i)\right)_{X}=\left[T^{\prime}(i)_{X} \cos \theta+T^{\prime \prime}(i)_{z} \sin \theta\right] \\
& \vec{T}_{T}(i)_{y}=T^{\prime}(i)_{Y}  \tag{A.51}\\
& \vec{T}_{T}(i)_{z}=\left[-T^{\prime}(i)_{x} \sin \theta+T^{\prime}(i)_{z} \cos \theta\right]
\end{align*}
\]

From Equation (A47)
\[
T^{\prime}(i)_{x}=0
\]

Therefore
\[
\begin{aligned}
& \vec{T}_{T}(i)_{x}=T^{\prime}(i)_{z} \sin \theta \\
& \left.\vec{T}_{T}(i)_{y}=T^{\prime}(i)\right)_{y} \\
& \vec{T}_{T}(i)_{z}=T^{\prime}(i)_{z} \cos \theta
\end{aligned}
\]

Using Equation (A47), we get
\[
\begin{align*}
& \stackrel{\rightharpoonup}{T}_{T}(i)_{\bar{x}}=K_{z 2}\left(\omega_{y}^{\prime} H_{z}^{\prime}-\omega_{z}^{\prime} H_{y}^{\prime}\right) H_{y}^{\prime} \sin \theta(i) \\
& \left.\stackrel{T}{T}^{(i)}\right)_{y} \equiv \mathrm{~K}_{\mathrm{y} 2}\left(\omega_{y}^{\prime} \mathrm{H}_{z}^{\prime}-\omega_{z}^{\prime} \mathrm{H}_{\mathrm{y}}\right) \mathrm{H}_{\mathrm{z}}^{\prime}  \tag{A52}\\
& \stackrel{T}{T}_{T}(i){ }_{z}=K_{z 2}\left(\omega_{y}^{\prime} H_{z}^{\prime}-\omega_{z}^{\prime} H_{y}^{\prime}\right) H_{y}^{\prime} \cos \theta(i)
\end{align*}
\]

Using the following
\[
\begin{aligned}
& \overrightarrow{\omega^{\prime}}=\mathrm{R}^{\bar{T}}(\theta) \vec{\omega} \\
& \omega_{\mathrm{X}}^{\prime}=\omega_{\mathrm{x}} \cos \theta-\omega_{\mathrm{z}} \sin \theta \\
& \omega_{\mathrm{y}}^{\prime}=\omega_{\mathrm{y}} \\
& \omega_{\mathrm{z}}^{\prime}=+\omega_{\mathrm{x}} \sin \theta+\omega_{\mathrm{z}} \cos \theta
\end{aligned}
\]
and
\[
\begin{aligned}
& \vec{H}_{x}^{\prime}=\mathrm{H}_{\mathrm{x}} \cos \theta-\mathrm{H}_{\mathrm{z}} \sin \theta \\
& \mathrm{H}_{y}^{\prime}=\mathrm{H}_{\mathrm{y}} \\
& \mathrm{H}_{\mathrm{z}}^{\prime}=\mathrm{H}_{\mathrm{x}} \sin \theta+\mathrm{H}_{\mathrm{z}} \cos \theta
\end{aligned}
\]

From Equation (A.52)
\[
\begin{aligned}
& \vec{T}_{\mathrm{T}}(\mathrm{i})_{x}=\mathrm{K}_{\mathrm{z} 2}\left[\omega_{y}\left(\mathrm{H}_{x} \mathrm{~s} \theta+\mathrm{H}_{z} \mathrm{c} \theta\right)-\left(\omega_{x} \mathrm{~s} \theta+\omega_{z} \mathrm{c} \theta\right) \mathrm{H}_{\mathrm{y}}\right] \mathrm{H}_{\mathrm{y}} \sin \theta(\mathrm{i}) \\
& =K_{z 2}\left(\omega_{y} H_{x} H_{y} s^{2} \theta+\omega_{y} H_{y} H_{z} s \theta c \theta-\omega_{x} H_{y}^{2} s^{2} \theta-\omega_{z} N_{y}^{2} c \theta s \theta\right) \\
& =K_{z 2}\left[\omega_{y} H_{x} \mathrm{H}_{\mathrm{y}}\left(\mathrm{Z} \mathrm{~s}^{2} \theta\right)+\mathrm{K}_{\mathrm{z} 2} \omega_{y} \mathrm{H}_{\mathrm{y}} \mathrm{H}_{\mathrm{z}} \sum \mathrm{~s} \theta \mathrm{c} \theta\right. \\
& \left.-\mathrm{K}_{z 2} \omega_{x} \mathrm{H}_{\mathrm{y}}^{2} \Sigma \mathrm{~s}^{2} \theta-\mathrm{K}_{z 2^{\omega} \mathrm{H}_{\mathrm{y}}} \Sigma \mathrm{c} \theta \mathrm{~s} \theta\right]
\end{aligned}
\]
where
\[
\begin{aligned}
\Sigma s^{2} \theta & =s^{2} 0^{*}+s^{2} 60^{\circ}+s^{2} 120^{\circ} \\
& =0+\left(\frac{\sqrt{3}}{2}\right)^{2}+(\sqrt{3})^{2}=\frac{3}{4}+\frac{3}{4}=\frac{3}{2}
\end{aligned}
\]
and
\[
\begin{aligned}
\sum \sec \mathrm{c} \theta & =50^{\circ} \mathrm{c} 0^{\circ}+560^{\circ} \mathrm{c} 60^{\circ}+5120^{\circ} \mathrm{c} 120^{\circ} \\
& =\left(\frac{\sqrt{3}}{2} \left\lvert\, \frac{1}{2}+\left(\frac{\sqrt{3}}{2}\right)-\frac{1}{2}=0\right.\right.
\end{aligned}
\]
and
\[
\begin{aligned}
\left(\overrightarrow{\mathrm{T}}_{\mathrm{T}}\right)_{x} & =\frac{3}{2} \mathrm{~K}_{z 2} \omega_{y} \mathrm{H}_{x} \mathrm{H}_{y}-\frac{3}{2} \mathrm{~K}_{z 2} \omega_{x} \mathrm{H}_{y}^{2} \\
& =-\frac{3}{2} \mathrm{~K}_{z 2}\left(\omega_{x} H_{y}^{2}-\omega_{y} H_{x} H_{y}\right)
\end{aligned}
\]

From Equation (A52)
\[
\begin{aligned}
& \left(\vec{T}_{T}\right)_{y}=3 K_{y 2}\left(\omega_{y}{ }^{\prime} H_{z}^{\prime}-\omega_{z}{ }^{\prime} H_{y}{ }^{\prime}\right) H_{z_{z}} \prime \\
& =3 K_{y 2}\left[\omega_{y}\left(H_{x} s \theta+H_{x} c \theta\right)-\left(\omega_{x} s \theta+\omega_{z} c \theta\right) H_{y}\right]\left(H_{x} s \theta+H_{z}(\theta)\right. \\
& =3 K_{y 2} \sum_{\theta}[\omega_{y} H_{x}{ }^{2} s^{2} \theta+\omega_{y} H_{x} H_{z} \underbrace{s \theta c \theta}_{0}+\omega_{y} H_{x} H_{z} \underbrace{s \theta}_{0} \theta+\omega_{y} H_{z}{ }^{2} c^{2} \theta \\
& -\omega_{x} H_{x} H_{y} s^{2} \theta-\omega_{x} H_{y} H_{z} \underbrace{s \theta c \theta}_{0}=\omega_{z} H_{y} H_{x} \underbrace{s \theta}_{0} \underbrace{c \theta}_{0}-\omega_{z} H_{y} H_{z} c^{2} \theta
\end{aligned}
\]

Using the value of \(\Sigma \cos ^{2} \theta\) and \(\Sigma \sin ^{2} \theta\), we get
\[
=\frac{9}{2} \mathrm{~K}_{\mathrm{y} 2}\left[\omega_{\mathrm{y}}\left(\mathrm{H}_{\mathrm{x}}{ }^{2}+\mathrm{H}_{\mathrm{z}}{ }^{2}\right)=\omega_{\mathrm{x}} \mathrm{H}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}-\omega_{\mathrm{z}} \mathrm{H}_{\mathrm{y}} \mathrm{H}_{\mathrm{z}}\right]
\]

From Equation (A52)
\[
\overrightarrow{\mathbf{T}}_{T}(\mathrm{i})=\mathrm{K}_{z 2}\left[\omega_{y}\left(\mathrm{H}_{x} s \theta+\mathrm{H}_{z} \mathrm{c} \theta\right)=\left(\omega_{x} s \theta+\omega_{z} \mathrm{c} \theta\right) \mathrm{H}_{y}\right] \mathrm{H}_{\mathrm{y}} \cos \theta
\]
and
\[
\begin{aligned}
\left(\stackrel{\rightharpoonup}{T}_{T}\right)_{z} & =K_{z 2} \sum_{\theta}(\omega_{y} H_{x} H_{x} \underbrace{}_{0} \theta^{-c \theta}+\omega_{y} H_{y} H_{z} c^{2} \theta-\omega_{x} H_{y}^{2} \underbrace{s \theta}_{0}-\omega_{z} H_{y}^{2} c^{2} \theta) \\
& =-\frac{3}{2} K_{z 2}\left(\omega_{z} H_{y}^{2}-\omega_{y} H_{y} H_{z}\right)
\end{aligned}
\]

Summary of Torque Due to Spacecraft Cylinder
(1) \(\left(\overrightarrow{\mathrm{T}}_{\mathrm{T}}\right)_{\mathrm{x}}=-\frac{3}{2} \mathrm{~K}_{\mathrm{z} 2}\left(\omega_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}^{2}-\omega_{\mathrm{y}} \mathrm{H}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}\right.\)
(2) \(\left(\vec{T}_{T}\right)_{y}=\frac{9}{2} K_{y 2}\left[\omega_{y}\left(H_{x}^{2}+H_{z}^{2}\right)=\omega_{x} H_{x} H_{y}-\omega_{z} H_{y} H_{z}^{-}\right]\)
(3.) \(\left(\vec{T}_{T}\right)_{z}=-\frac{3}{2} K_{z 2}\left(\omega_{z} H_{y}^{2}-\omega_{y} H_{y} H_{z}\right)\)

\section*{Let}
\[
P_{1}=-\frac{3}{2} K_{z 2}
\]
and
\[
P_{2}=\frac{9}{2} \mathrm{~K}_{\mathrm{y} 2}
\]

Then
\[
\begin{aligned}
P_{1}= & \left\{-\frac{\sigma c^{-2}}{2} \tau W L^{3}-\frac{1}{8} \sigma c^{-2} \tau L W^{3}+\frac{3}{4} \sigma c^{-2} \tau L_{1} L^{2} W\right. \\
& -\frac{3}{2} \sigma c^{-2} \tau L W\left(L_{1} L-\frac{L^{2}}{2}\right) \\
& +12 \sigma c^{-2} \tau W^{2}\left(L_{1} I_{i}-\frac{L^{2}}{2}\right) \Sigma\left(\frac{1}{m_{T}}\right)^{3}\left[\tanh \frac{m_{T} L}{2 W}+\left(\frac{L}{W}\right)^{2} \tanh \frac{m_{T} W}{2 L}\right] \\
& \left.+24 \sigma c^{-2} \tau W^{4} \Sigma\left(\frac{1}{m_{\pi}}\right)^{5}\left[\tanh \frac{m \pi L}{2 W}+\left(\frac{L}{W}\right)^{4} \tanh \frac{m_{T W} W}{2 L}\right]\right\}
\end{aligned}
\]
and
\[
\begin{aligned}
P_{2}=\{ & \left\{-\frac{3}{8} c^{-2} \tau W^{3} L-\frac{3}{8} \sigma c^{-2} \tau W L^{3}-\frac{9}{4} \sigma c^{-2} r W L\left(L_{1} L-\frac{L^{2}}{2}\right)\right. \\
& +36 \sigma c^{-2} \tau W^{2}\left(L_{1} L-\frac{L^{2}}{2}\right) \Sigma\left(\frac{1}{m_{\pi}}\right)^{3}\left[\tanh \frac{m_{\tau} L}{2 W}+\left(\frac{L}{W}\right)^{2} \tanh \frac{m \pi W}{2 L}\right] \\
& \left.+72_{\sigma} c^{-2}{ }_{\tau} W^{4} \Sigma\left(\frac{1}{m \pi}\right)^{5}\left[\tanh \frac{m_{\pi} L}{2 W}+\left(\frac{L}{W}\right)^{4} \tanh \frac{m \pi W}{2 L}\right]\right\}
\end{aligned}
\]

\section*{DERIVATION OF' TORQUE' DUE TO SPACECRAFT SOLAR PANELS}

The torque i"s: again! given' by Equation(A8). The current density in the solar panel must first be derived. Then, the integral Equation(A\&) is' evaluated.

\section*{SOLAR PANETGEOMETRY}

Solar panel' geometry is' shown in Figure A8.


Figure:A8.. Solar: Panel Configuration:

\section*{METHOD OF TORQUE SOLUTION FOR SOLAR PANELS}

The current density for panel 1 will be derived (FigureA8). The torque for panel 1 is then derived. By rotating-the coordinate frame of Figure A8 60 degrees positively about \(y\), the torque due to panel 2 is then the same as panel i except the \(\vec{\omega}\) and \(\vec{H}\) vector components are different. Therefore, continuing in the same manner, the torque for all panels is known. To obtain the torque for all panels in a common frame, only a semes of coordinate transformations are required.

Solution of Neuraann Boundary Value Problem to Obtain \(\phi\) ( \(\psi\) stiream function)

The method used in this solution is identical to that discussed previously. Only, the boundary condition on the problem differs.

The boundary conditions for panel 1 are
\[
\begin{align*}
& J_{x}\left(y^{\prime}=L_{2}, x^{\prime}=a\right)=0 \\
& J_{x}\left(y^{\prime}=L_{2}, x^{\prime}=a+h\right)=0  \tag{A54}\\
& J_{z}\left(y^{\prime}=L_{2}, z=-d / 2\right)=0 \\
& J_{z}\left(y^{\prime}=L_{2}, z=d / 2\right)=0
\end{align*}
\]

The solution for \(\phi\) is enhanced by iranslating the solar panel to a new frame, shown in Figure \(A 9\).


Figure A9. Relationship of Spacecraft Center of Mass to Translated Frame

The new boundary conditions are now
\[
\begin{align*}
& J_{x}\left(y=L_{2}, x=0\right)=0 \\
& J_{x}\left(y=L_{2}, x=h\right)=0  \tag{A.55}\\
& J_{z}\left(y=L_{2}, z=0\right)=0 \\
& J_{z}\left(y=L_{2}, z=d\right)=0
\end{align*}
\]
where \(\overrightarrow{\mathbf{r}}\) in Equation ( \({ }^{\prime}\) '7) is
\[
\begin{equation*}
\vec{r}=(x+a) i X L_{2} \hat{j}+(z-d / 2) \hat{k} \tag{A56}
\end{equation*}
\]

Using Equation (A49) in Equation (A7), we get
\[
\begin{aligned}
& \left.J_{x}=\frac{1}{2} \sigma c^{-1}\left[\omega_{z} H_{x}-\omega_{x} H_{x}\right)(z-d / 2)-\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right) L_{z}\right]+\frac{\partial \phi}{\partial x} \\
& \left.J_{y}=\frac{1}{2} \sigma c^{-1}\left[\omega_{x} H_{z}-\omega_{y} H_{x}\right)(x+a)-\left(\omega_{y} H_{z} 0 \omega_{z} H_{y}\right)(z-c / 2)\right]+\frac{\partial \phi}{\partial y} \text { (A57) } \\
& \left.J_{z}=\frac{1}{2} \sigma c^{-1}\left[\omega_{y} H_{z}-\omega_{z} H_{y}\right) H_{2}-\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right)(x+a)\right]+\frac{\partial \phi}{\partial z}
\end{aligned}
\]

Since the solar panel is very thin in the \(y\)-derivation, \(J_{y}\) is neglected. Therefore, only \(J_{x}\) and \(J_{z}\) will be considered.

The Neumann problem can be reduced to a Dixichlet problem using the following Cauchy-Ruemann conditions:
\[
\frac{\partial \phi}{\partial x}=\frac{\partial \psi}{\partial z}
\]
and
\[
\begin{equation*}
\frac{\partial \omega}{\partial z}=-\frac{\partial \psi}{\partial y} \tag{A58}
\end{equation*}
\]

Applying the boundary conditions and Cauchy-litemann conditions, we get
\[
\begin{align*}
& J_{x}\left(y=L_{2}, x=0\right)=0=V_{1}+V_{2}(z-d / 2)+\frac{\partial \psi}{\partial z} \\
& J_{x}\left(y=L_{2}, x=h\right)=0=V_{1}+V_{2}(z-d / 2)+\frac{\partial \psi}{\partial z} \\
& J_{z}\left(x=L_{2}, z=0\right)=0=V_{3}+V_{4}(x+a)-\frac{\partial \psi}{\partial x}  \tag{A59}\\
& J_{z}\left(y=L_{2}, z=j\right)=0=V_{3}+V_{4}(x+a)-\frac{\partial \psi}{\partial x}
\end{align*}
\]
where
\[
\begin{align*}
& V_{1}=-1 / 2 \sigma c^{-1} L_{2}\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right) \\
& V_{2}=1 / 2 \sigma c^{-1}\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right) \tag{A60}
\end{align*}
\]
\[
\begin{align*}
& V_{3}=1 / 2 \sigma c^{-1}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) L_{2}  \tag{A60}\\
& V_{4}=-1 / 2 \sigma c^{-1}\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right)
\end{align*}
\]
(contd)

Equation (A 59) an now be integrated along the boundary of the solar panel to give the value of \(\psi\) along the boundary. Then, the solution \(\psi\) is determined in the interior of the boundary.

Figure Alo shows the new orientation of the solar panel to the \(x-z\) plane.


Figure Alo. Relationship of Translated Solar Panel to \(x-z\) Coordinate Axes

The potential \(\psi_{1}(z, x=0)\) is given by
\[
\begin{aligned}
\psi_{1}(z, x=0) & =\int_{0}^{z 0} \frac{\partial \psi}{\partial z} d z \\
& =\int_{0}^{z}-\left[V_{1}+V_{2}(z-d / 2)\right] d z
\end{aligned}
\]
\[
\begin{aligned}
& =\left.\left[-V_{1} z-\frac{V_{2}}{2}(z-d / 2)\right]^{2}\right|_{0} ^{z} \\
& =-V_{1} z-\frac{V_{2}}{2}(z-d / 2)^{2}+\frac{V_{2}}{2}(-d / 2)^{2} \\
& =-V_{1} z-\frac{V_{2}}{2} z^{2}+d / 2 V_{2} z \\
& =-\left(V_{1}-\frac{V_{2}}{2} d\right) z-\frac{V_{2}}{2} z^{2}
\end{aligned}
\]

The potential \(\Psi_{2}(x, z=d)\) is given by
\[
\begin{aligned}
\psi_{2}(x, z=d) & =\psi_{1}(z=d, x=0)+\int_{d o}^{d x}+\left[V_{3}+V_{4}(x+a)\right] d x \\
& =-V_{1} d+V_{3} x+V_{4}(x+a)^{2} /\left.2\right|_{0} ^{x}
\end{aligned}
\]
where
\[
\begin{aligned}
& \psi_{2}=-V_{1} d+V_{3} x+\frac{(x+a)^{2}}{2} V_{4}-(a / 2)^{2} V_{4} \\
& =-V_{1} d+V_{3} x+\left(\frac{x^{2}}{2}+a x\right) V_{4} \\
& =-V_{1} d+\left(V_{3}+a V_{4}\right) x+V_{4} \frac{x}{2}^{2}
\end{aligned}
\]

The potential \(\psi_{3}{ }^{\text {2s }}\) given by
\[
\psi_{3}(x=h, z)=\psi_{2}(z=d, x=h)+\int-\left[V_{1}+V_{2}(z-d / 2)\right] d z
\]
\[
\begin{aligned}
& =-V_{1} d+\left(V_{3}+a V_{4}\right) h+V_{4} \frac{h^{2}}{2}-\left[V_{1} z+\frac{V_{2}(z-d / 2)^{2}}{2}\right]_{d}^{z} \\
& =-V_{1} d+\left(V_{3}+a V_{4}\right) h+V_{4} \frac{h^{2}}{2}-\left(V_{1}-\frac{V_{2} d}{2}\right) z-\frac{V_{2} z^{2}}{2} \\
& =\left(V_{3} h+a V_{4}+V_{4} \frac{h^{2}}{2}\right)-\left(V_{1}-\frac{V_{2}}{2}\right) z-\frac{V_{2}}{2} z^{2}
\end{aligned}
\]

The potential \(\psi_{4}(z=0, x)\) is given by
\[
\begin{aligned}
\psi_{4}(\mathrm{z}=0, \mathrm{x}) & =\psi_{3}(\mathrm{x}=\mathrm{h}, \mathrm{z}=0)+\left[\mathrm{V}_{3}+V_{4}(\mathrm{x}+\mathrm{a})\right] \mathrm{dx} \\
& =\left[\mathrm{V}_{3} \mathrm{~h}+a \mathrm{~V}_{4} \mathrm{~h}+\mathrm{V}_{4} \frac{h^{2}}{2}+V_{3} x+V_{4} \frac{(x+a)^{2}}{2}\right]_{h}^{x} \\
& =V_{3} h+a V_{4} h+V_{4} \frac{h^{2}}{2} x V_{3} x+V_{4} \frac{(x+a)^{2}}{2}-V_{3} h-V_{4} \frac{(h+a)^{2}}{2} \\
& =\left(V_{3}+a V_{4}\right) x+\frac{V_{4} x^{2}}{2}
\end{aligned}
\]

Summarizing \(\psi_{1}, \psi_{2}, \psi_{3}\), and \(\psi_{4}\) gives
\[
\begin{align*}
& \psi_{1}=\bar{f}_{1} z+\bar{f}_{2} z^{2} \\
& \psi_{2}=b_{1}^{\prime}+\bar{f}_{3} x+\bar{f}_{2} x^{2} \\
& \psi_{3}=b_{2}^{\prime}+\bar{f}_{1} z+\bar{f}_{2} z^{2}  \tag{A.61}\\
& \psi_{4}=\bar{f}_{3} x+\bar{f}_{2} x^{2}
\end{align*}
\]
where
\[
\begin{aligned}
& {\overline{f_{1}}}=-\left(V_{1}-\frac{V_{2}}{2}\right) \\
& \bar{f}_{2}=-\frac{V_{2}}{2}
\end{aligned}
\]
\[
\begin{aligned}
& b_{1}^{\prime}=-V_{1} d \\
& {\tilde{f_{3}}}_{3}=\left(V_{3}-a V_{2}\right) \\
& b_{2}^{\prime}=\left[V_{3} h-\left(a h+\frac{h^{2}}{2}\right) V_{2}\right]
\end{aligned}
\]

Compare Equation (AS1) with Equation (A17).

The solution to the new panel can now be written using Equations (A30) and (A31):
\[
\begin{align*}
\psi_{T} & =\sum_{n=1}^{\infty} B_{n 1} \sin \frac{n \pi}{d} z \sinh \frac{n \pi}{d}(x-h) \\
& +\sum_{n=1}^{\infty} B_{n 2} \sin \frac{n \pi}{h} x \sinh \frac{n \pi}{n} z  \tag{A62}\\
& +\sum_{n=1}^{\infty} B_{n 3} \sin \frac{n \pi}{d} z \sinh \frac{n \pi}{d} x \\
& +\sum_{n=1}^{\infty} B_{n 4} \sin \frac{n \pi}{n} \sinh \frac{n \pi}{n}(z-d)
\end{align*}
\]
where
\[
\begin{align*}
& B_{n 1}=-\left\{-\frac{2(-1)^{n}}{n \pi} \psi_{1}(d)+\frac{4 \bar{f}_{2} d^{2}}{\left(n_{\pi}\right)^{3}}\left[(-1)^{n}-1\right]\right\} \frac{1}{\sinh \frac{n_{\pi}}{d} h} \\
& B_{n 2}=\left\{-\frac{2(-1)^{n}}{n_{\pi}} \psi_{2}(h)+\frac{2 b_{1}^{\prime}}{n \pi}+\frac{4 \bar{f}_{2} h^{2}\left[(-1)^{n}-1\right]}{(n \pi)^{3}}\right\} \frac{1}{\sinh \frac{n \pi d}{h}} \tag{A63}
\end{align*}
\]
\[
\begin{align*}
& B_{n 3}=\left\{-\frac{2(-1)^{n}}{n \pi} \psi_{3}(d)+\frac{2 b_{2}}{n \pi}+\frac{\overline{4 x}_{2} d^{2}}{(n n)^{3}}\left[(-1)^{n}-1\right]\right\} \frac{1}{\sinh \frac{n \pi n}{d}}  \tag{A63}\\
& B_{n 4}=-\left\{-\frac{2(-1)^{n}}{n \pi} \psi_{4}(h)+\frac{4 h^{2} \overline{f_{2}}\left[(-1)^{n}-1\right]}{(n \pi)^{3}}\right\} \frac{1}{\sinh \frac{n \pi d}{h}}
\end{align*}
\]

The above is the solution for \(\psi_{\mathrm{T}}\) for one solar panel. The following paragraphs will dexive torque \(\vec{T}_{1}\) for one solar panel.

\section*{Derivation of Torque \(\vec{T}_{1}\) for One Solar Panel}

Torque \(\vec{T}_{1}\) is aefined in Equation (A8):
\[
\overrightarrow{\mathrm{T}}_{1}=c^{-1} \iiint \vec{r} \times\{\nabla \phi \times \overrightarrow{\mathrm{H}}\} \mathrm{dV}
\]
where
\[
\begin{aligned}
& d v=c d x d z \\
& \vec{F}=(x+a) \hat{i}+L_{2} \hat{j}+(z-d / 2) \hat{k}
\end{aligned}
\]

Expanding \(\overrightarrow{\mathrm{T}}_{1}\), we get
\[
\begin{align*}
\overrightarrow{\mathrm{T}}_{L} & =c^{-1} \iint\left\{\left[\left\{L_{2} H_{y} \frac{\partial \phi}{\partial x}-\left[z-\frac{d}{2}\right]\right)\left(H_{x} \frac{\partial \phi}{\partial z}-H_{z} \frac{\partial \phi}{\partial x}\right)\right] \hat{i}\right. \\
& +\left[-(z-d / 2) H_{y} \frac{\partial \phi}{\partial z}-(x+a)\left\langle H_{y} \frac{\partial \phi}{\partial x}\right|\right] \hat{j}  \tag{A64}\\
& \left.+\left[(x+a)\left\langle\frac{\partial \phi}{\partial z} H_{x}-H_{z} \frac{\partial \phi}{\partial x}\right)+L_{2} H_{y} \frac{\partial \phi}{\partial z}\right] \hat{k}\right\} \in d x d z
\end{align*}
\]

Using the Cauchy-Riemann conditions:
\[
\frac{\partial \phi}{\partial x}=\frac{\partial \psi}{\partial z}
\]
and
\[
\frac{\partial \emptyset}{\partial z}=-\frac{\partial \psi}{\partial x}
\]
then,
\[
\begin{align*}
\stackrel{T}{1}_{1}= & c^{-1} \iint\left\{\left[L_{2} H_{y} \frac{\partial \psi}{\partial z}-\left[z-\frac{d}{2}\right]\right)\left(H_{x}\left[-\frac{\partial \psi}{\partial x}\right]-H_{z} \frac{\partial \psi}{\partial z}\right)\right] \hat{i} \\
& +\left[-(z-d / 2)_{y}\left(-\frac{\partial \psi}{\partial x}\right)-(x+a) H_{y} \frac{\partial \psi}{\partial z}\right] \hat{j} \\
& \left.+\left[(x+a)\left(-\frac{\partial \psi}{\partial x} H_{x}-H_{z} \frac{\partial \psi}{\partial z}\right)+L_{2} H_{y}\left(-\frac{\partial \psi}{\partial x}\right)\right] \hat{k}\right\} \in d x d z \\
\vec{T}_{1}= & c^{-1} \iint\left\{\left[I_{2} H_{y} \frac{\partial \psi}{\partial z}+(z-d / 2) \left\lvert\, H_{x} \frac{\partial \psi}{\partial x}+H_{z} \frac{\partial \psi}{\partial z}\right.\right]\right] \hat{i} \\
& +\left[+(z-d / 2) H_{y} \frac{\partial \psi}{\partial x}-(x+a) H_{y} \frac{\partial \psi}{\partial z}\right] \hat{j}  \tag{A65}\\
& \left.+\left[-(x+a)\left\langle H_{x} \frac{\partial \psi}{\partial x}+H_{z} \frac{\partial \psi}{\partial z}\right)-L_{2} H_{y} \frac{\partial \psi}{\partial x}\right] \hat{k}\right\} \in d x d z
\end{align*}
\]

Solution for the \(x\)-component of \(\vec{T}_{1}-\)
\[
\begin{align*}
\left(\stackrel{T}{T}_{1}\right)_{x} & \left.=c^{-1} \iint\left[L_{2} H_{y} \frac{\partial \psi}{\partial z}+(z-d / 2) \left\lvert\, H_{x} \frac{\partial \psi}{\partial x}+H_{z} \frac{\partial \psi}{\partial z}\right.\right)\right] \in d x d z  \tag{A66}\\
& =e^{-1} \varepsilon I_{2} H_{y} \iint \frac{\partial \psi}{\partial z} d x d z+c^{-1} \varepsilon H_{x} \iint z \frac{\partial \psi}{\partial x} d x d z
\end{align*}
\]
\[
\begin{aligned}
& \frac{e^{-1} \varepsilon d H_{z}}{2} \iint \frac{\partial \psi}{\partial z} d x d z+e^{-1} \varepsilon H_{z} \iint z \frac{\partial \psi}{\partial z} d x d z \\
& -\frac{e^{-1} \varepsilon d H_{x}}{2} \iint \frac{\partial \psi}{\partial x} d x d z
\end{aligned}
\]

Integrating over the volume of the panel, we get
\[
\begin{align*}
& \left(\vec{T}_{i}\right)_{X}=c^{-1} \in I_{2} H_{y}\left\{\sum\left(\frac{h}{n \pi}\right)\left[1-(-1)^{n}\right]\left(B_{n 2}+B_{n 4}\right) \sinh \frac{n \pi d}{h}\right\} \\
& +e^{-1} \in H_{x}\left\{\sum\left(B_{n 1}+B_{n 3}\right) \sinh : \frac{m h}{d}\left[-\frac{d^{2}}{n \pi}(-1)^{n}\right]\right\} \\
& -\frac{\mathrm{e}^{-1} \varepsilon \mathrm{~d} \mathrm{H}_{\mathrm{z}}}{2}\left\{\sum\left[\frac{\mathrm{~h}}{\mathrm{n} \pi} \left\lvert\,\left[1-(-1)^{\mathrm{n}}\right]\left(\mathrm{B}_{\mathrm{n} 2}+\mathrm{B}_{\mathrm{n} 4}\right) \sin \mathrm{h} \frac{\mathrm{n} \pi \mathrm{~d}}{\mathrm{~h}}\right.\right\}\right.  \tag{A67}\\
& +c^{-1} \varepsilon H_{z}\left[\left\{\frac{d h}{n \pi} B_{n 2}\left[1-(-1)^{n}\right] \sinh \frac{n \pi d}{h}-\left(B_{n 3}-B_{n 1}\right)\left(\frac{d}{n \pi}\right)^{2}\right.\right. \\
& \left(\left[I-(-1)^{n}\right] \quad \cosh \frac{n \pi h}{d}-1\right) \\
& \left.\left.-\left(B_{n 2}-B_{n 4}\right)\left(\frac{h}{n_{\pi}}\right)^{2}\left[1-(-1)^{n_{j}} \left\lvert\, \cos h\left(\frac{n \pi d}{h}\right)-1\right.\right)\right\}\right] \\
& -\frac{c^{-1} \varepsilon d H_{\dot{x}}}{2}\left\{\sum\left(B_{n 1}+B_{n_{3}}\right) \frac{d}{n_{\pi}}\left[1-(-1)^{n_{y}} \sinh \left\{\frac{n_{\pi} h}{d}\right]\right\}\right.
\end{align*}
\]

Substituting in for the \(B_{n i}{ }^{\prime}\) s
\[
\begin{aligned}
\left(\overrightarrow{\mathrm{T}}_{1}\right)_{x} & \left.=c^{-1} \varepsilon I_{2} H_{y}\left\{\sum\left(\frac{h}{m \pi}\right)(2)\left[\frac{2 b_{1}}{m_{\pi}}(2)\right]+c^{-1} \varepsilon H_{x} \sum\left[\left.\frac{2 b_{2}^{\prime}}{m_{\pi}}(2) \right\rvert\, \frac{d^{2}}{m_{\pi}}\right)\right]\right\} \\
& -\frac{c^{-1} \varepsilon d H_{2}}{2}\left[\sum\left|\frac{h}{m_{\pi}}\right|(2)\left|\frac{2 b_{1}}{m_{\pi}}\right|,(2)\right]
\end{aligned}
\]
\[
\begin{aligned}
& +c^{-1} \in H_{z}\left[\sum \left\{\frac{d h}{m m}(2)\left[\frac{2}{m \pi}\left(b_{1}{ }^{\prime}+\bar{f}_{3} h+\bar{f}_{2} h^{2}\right)+\frac{2 b_{1}^{\prime}}{m \pi}-\frac{8 \bar{f}_{2} h^{2}}{(m+1)^{3}}\right]\right.\right. \\
& +c^{-1} \varepsilon E_{z}\left\{\sum\left[-\frac{4}{m \pi}\left(b_{2}{ }^{\prime}+\vec{f}_{1} d+F_{2} d^{2}\right)+\frac{16 \hat{f}_{2} d^{2}}{\left(m_{n}\right)^{3}}\right]\left(\frac{d}{m n}\right)^{2}(2) \tanh \left(\frac{m m h}{2 d}\right)\right. \\
& +e^{-1} \mathrm{EH}_{z}\left\{\sum\left[-\frac{4}{m \pi}\left(b_{1}{ }^{\prime}+\bar{f}_{3} h+\bar{f}_{2^{2}} h^{2}\right)+\frac{16 f_{2} h^{2}}{(m n)^{3}}\right]\left\{\frac{h}{m n} \left\lvert\,(2) \tanh \left\langle\frac{m \pi d}{2 h}\right]\right.\right\}\right. \\
& -\frac{c^{-1} \varepsilon d H_{x}}{2}\left\{\sum\left[\frac{2 b_{2}^{\prime}}{m_{\pi}}(2)\left(\frac{d}{m_{\pi}}\right) \text { (2) }\right]\right\}
\end{aligned}
\]
and reducing further to
\[
\begin{align*}
& \left\langle\vec{T}_{1}\right)_{x}=\frac{1}{2} \sigma \mathrm{c}^{-2} \varepsilon \mathrm{~L}_{2}^{2} \mathrm{hd}\left(\omega_{x} \mathrm{H}_{y}-\omega_{y} \mathrm{H}_{x}\right) \mathrm{H}_{\mathrm{y}} \\
& +\left\{\frac{1}{4} \sigma c^{-2} e h d^{2} L_{2}-4 \sigma c^{-2} e L_{2} d^{3} \delta\left(\frac{1}{m \pi}\right)\left[\tanh \left(\frac{m_{\pi} h}{2 J}\right)+\left(\frac{h}{d}\right)^{2} \tanh \left(\frac{m_{\pi d}}{2 h}\right)\right]\right\} \\
& \left(\omega_{x} H_{y}-\omega_{y} H_{x}\right) H_{z} \\
& +\left\{\frac{1}{4} \sigma c^{-2} \varepsilon h^{2} L_{2} d-4 \sigma e^{-2} \varepsilon d^{3} L_{2} h \sum\left(\frac{1}{m_{\pi}}\right)^{3}\left[\tanh \frac{m \pi h}{2 d}+\left(\frac{h}{d}\right)^{2} \tanh \frac{m \pi d}{2 h}\right]\right\} \\
& \left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) H_{z} \\
& \left\{\left.-\frac{1}{4} \sigma c^{-2} e d h \right\rvert\, a h+\frac{h^{2}}{2}\right\}+\frac{1}{24} \sigma c^{-2} \varepsilon d h^{3} \tag{A69}
\end{align*}
\]
\[
\begin{gathered}
+4 \sigma c^{-2} e d^{2}\left(a h+\frac{h}{2}\right)^{2} \sum\left(\frac{1}{m \pi}\right)^{3}\left[\tanh \left(\frac{m \pi h}{2 d}\right)+\left(\frac{h}{d}\right)^{2} \tanh \left(\frac{m \pi d}{2 h}\right)\right] \\
\left.-8 \sigma c^{-2} e d^{4} \sum\left(\frac{1}{m \pi}\right)^{5}\left[\tanh \left(\frac{m m h}{2 d}\right)^{2}+\frac{h^{4}}{d} \tanh \left(\frac{m_{\pi} d}{2 h}\right)\right]\right\} \\
\cdot\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right) H_{z}
\end{gathered}
\]

Solution for the \(y\)-component of \(\vec{T}_{1}{ }^{-=}\)
\[
\left(\overrightarrow{\mathrm{T}}_{1}\right)_{y}=e^{-1} \iint\left[-(z-d / 2) H_{y} \frac{\partial \phi}{\partial z}-(x+a) H_{y} \frac{\partial \phi}{\partial x}\right] \varepsilon d x d z
\]

Using Cauchy-Riemannconditions, we get
\[
\begin{align*}
\dot{\vec{T}}_{1}^{\prime} y & =c^{-1} \iint\left[+(z-d / 2) E_{y} \frac{\partial \psi}{\partial x}-(x+a) E_{y} \frac{\partial \psi}{\partial z}\right] \varepsilon d x d z  \tag{A70}\\
& =e^{-1} \varepsilon H_{y} \iint z \frac{\partial \psi}{\partial x}-e^{-1} \varepsilon H_{y} \iint x \frac{\partial \psi}{\partial z} d x d z \\
& -e^{-1} \varepsilon H_{y} a \iint \frac{\partial \psi}{\partial z} d x d z-\frac{c^{-1} \varepsilon d}{2} H_{y} \iint \frac{\partial \psi}{\partial x} d x d z
\end{align*}
\]

Integrating: we get
\[
\begin{aligned}
\left(\vec{T}_{1}\right) & =c^{-1} \varepsilon H_{y}\left[-\sum\left(B_{n 1}+B_{n 3}\right) \frac{d^{2}}{n \pi}(-1)^{n} \sinh \left(\frac{n \pi h}{d}\right)\right] \\
& -c^{-1} \varepsilon H_{y}\left[-\sum\left(B_{n 2}+B_{n 4}\right)(-1)^{n} \frac{n^{2}}{n \pi} \sinh \left(\frac{n d}{h}\right)\right] \\
& \left.-e^{-1} \varepsilon d / 2 H_{y}\left\{\left.\sum\left(B_{n 1}+B_{n 3}\right) \frac{d}{n \pi}\left[1-(-1)^{n}\right] \sinh \right\rvert\, \frac{n \pi h}{d}\right)\right\} \\
& -e^{-1} \varepsilon H_{y} a\left\{\left(\frac{h}{n \pi}\right)\left[1-(-1)^{n}\right]\left(B_{n 2}+B_{n 4}\right) \sinh \left(\frac{n_{\pi d}}{h}\right)\right\}
\end{aligned}
\]

Substitutions in the \(B_{n i}\) 's and reducing to get
\[
\begin{equation*}
\left.\left(\vec{x}_{1}\right)_{y} \quad=-1 / 2 \sigma c^{-2} \varepsilon L_{2} d \left\lvert\, a h+\frac{h}{2}\right.\right)^{2}\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right) H_{y} \tag{A71}
\end{equation*}
\]
then
\[
\left(\stackrel{\rightharpoonup}{T}_{1}\right)_{y} \quad=S_{r}\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right) H_{y}
\]

Solution for the \(z\)-component of \(\vec{T}_{1}--\)
\[
\begin{aligned}
\left(\overrightarrow{\mathrm{T}}_{1}\right)_{z} \quad & \left.=c^{-1} \iint\left[-(x+a) \left\lvert\, H_{x} \frac{\partial \psi}{\partial x}+E_{z} \frac{\partial \psi}{\partial z}\right.\right)-L_{2} H_{y} \frac{\partial \psi}{\partial x}\right] \epsilon d x d z \\
& =c^{-1} \varepsilon E_{x} \iint x \frac{\partial \psi}{\partial x} d x d z-c^{-1} \varepsilon_{\varepsilon H_{z}} \iint x \frac{\partial \psi}{\partial z} d x d z \quad(A Z \\
& -c^{-1} \hat{a}_{\varepsilon} H_{x} \iint \frac{\partial \psi}{\partial x} d x d z-c^{-1} \varepsilon a H_{z} \iint \frac{\partial \psi}{\partial z} d x d z \\
& -c^{-1} L_{2} \in H_{y} \iint \frac{\partial \psi}{\partial x} d x d z
\end{aligned}
\]

Integrating, we get
\[
\begin{aligned}
\text { ing, we get } \\
\begin{aligned}
\left(\vec{T}_{1}\right)_{z} & =-c^{-1} \epsilon H_{x}\left[\sum \left\{B_{n 3} \frac{n d}{n \pi}\left[1-(-1)^{n}\right] \sinh \left(\frac{n \pi h}{d}\right)\right.\right. \\
& \left.\left.+\left(B_{n 1}-B_{n 3}\right)\left(\frac{d}{n \pi}\right)^{2}\left[1-(-1)^{n}\right] \right\rvert\, \cosh \left(\frac{n \pi h}{d}\right)-1\right) \\
& \left.\left.+\left(B_{n 4}-B_{n 2}\right)\left(\frac{h}{n \pi}\right)^{2}\left[1-(-1)^{n}\right] \right\rvert\, \cosh \left(\left.\frac{n \pi d}{h} \right\rvert\,-1\right)\right\} \\
& \left.-c^{-1} \varepsilon H_{z}\left[\left.-\sum\left(B_{n 2}+B_{n 4}\right)(-1)^{n} \frac{h^{2}}{n \pi} \quad \sinh \right\rvert\, \frac{n n d}{h}\right)\right]
\end{aligned}
\end{aligned}
\]
\[
\begin{aligned}
& -c^{-1} a_{\varepsilon} H_{x}\left\{\sum\left(B_{n 1}+B_{n 3}\right) \frac{d}{n \pi}\left[1-(-1)^{n}\right] \sinh \left(\frac{n \pi h}{d}\right)\right\} \\
& -c^{-1} \varepsilon a_{Z}\left\{\sum\left(\frac{h}{n \pi}\right)\left[1-(-1)^{n}\right]\left(B_{n 2}+B_{n 4}\right) \sinh \left(\frac{n \pi d}{h}\right)\right\} \\
& -c^{-1} L_{2} \varepsilon H_{y}\left\{\sum\left(B_{n 1}+B_{n 3}\right) \frac{d}{n \pi}\left[1-(-1)^{n}\right] \sinh \left(\frac{n \pi h}{d}\right)\right\}
\end{aligned}
\]

Zimplifying \(\left(T_{1}\right)_{z}\), we get
\[
\begin{aligned}
& \left(\vec{T}_{1}\right)_{z}=\left\{-\frac{1}{2} \sigma e^{-2} \varepsilon h^{2} L_{2} d-\frac{1}{2} \sigma c^{-2} \varepsilon d L_{2} a h+4 \sigma c^{-2} \varepsilon h L_{2} d^{2} \sum\left(\frac{1}{m \pi}\right)^{3}\right. \\
& \left.\left[\tanh \frac{m_{\pi h}}{2 d}+\left|\frac{h}{d}\right|^{2} \tanh \left|\frac{m_{\pi} d}{2 h}\right|\right]\right\}\left[\mathrm{H}_{x}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)\right. \\
& +\left\{\frac{1}{2} \sigma c^{-2} \varepsilon h d\left(a h+h^{2} / 2\right)+\frac{1}{2} \sigma c^{-2} a \varepsilon d\left(a h+h^{2} / 2\right)-\frac{1}{24} \sigma c^{-2} \varepsilon d^{3} h \quad\right. \text { (A73) } \\
& -4 \sigma c^{-2} \varepsilon d^{2}\left(a h+h^{2} / 2 \sum\left(\frac{1}{m \pi}\right)^{3}\left[\tanh \left(\frac{m \pi h}{2 d}\right)+\left(\frac{h}{d}\right)^{2} \tanh \left(\frac{m \pi h}{2 h}\right)\right]\right. \\
& +8 a c^{-2} \varepsilon d^{4} \sum\left(\frac{1}{m \pi}\right)^{5}\left[\tanh \left(\frac{m_{m h}}{2 d}\right)+\left(\frac{h}{d}\right)^{4} \tanh \left\{\frac{m_{n} d}{2 h}\right]\right\}\left[H_{x}\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right)\right] \\
& +\left\{-\frac{1}{4} \sigma c^{-2} \varepsilon L_{2} h d^{2}+4 \sigma c^{-2} \varepsilon h^{2} d L_{2} \sum\left(\frac{1}{m \pi}\right)^{3}\left[\tanh \left(\frac{m \pi d}{2 h}\right)+\left(\frac{d}{h}\right)^{2} \tanh \left(\frac{m \pi h}{2 d}\right)\right\}\right. \\
& \text { - } H_{x}\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right)
\end{aligned}
\]
\[
\begin{aligned}
& +\left(-\frac{1}{4} \sigma c^{-2} \varepsilon h^{2} L_{2} d-\frac{1}{2} \sigma c^{-2} \varepsilon a L_{2} h d\right) H_{z}\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right) \\
& +\left[-\frac{1}{2} \sigma c^{-2} \varepsilon L_{2}^{2} d h\right] H_{y}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)+\frac{1}{2} \sigma c^{-2} \varepsilon L_{2} d\left(a h+h^{2} / 2\right) \\
& \bullet H_{y}\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right)
\end{aligned}
\]

\section*{Derivation of Torque \(\vec{T}_{2}\) For One Solar Panel}

Torque \(\vec{T}_{2}\) is defined by equation
\[
\begin{equation*}
\overrightarrow{\mathrm{T}}_{2}=\frac{\sigma c^{-2}}{2} \iiint \vec{r} \times\{[(\vec{\omega} \times \vec{H}) \times \vec{r}] \times \vec{H}\} d V \tag{A74}
\end{equation*}
\]

Expanding for solar panels with \(y_{y}=0\), we get
\[
\begin{align*}
\vec{T}_{2}= & \frac{\sigma c^{-2}}{2} \iint\left\{\left[L_{2} H_{y} J_{x}-(z-d / 2)\left(H_{x}^{J} z_{z}-H_{z}^{J} J_{x}\right)\right] \hat{i}\right.  \tag{A75}\\
& +\left[-(z-d / 2) H_{y}^{J}-(x+2) E_{z}^{J} J_{x}\right] \hat{j} \\
& \left.+\left[(x+a)\left(H_{x} J_{z}-H_{z} J_{x}\right)+L_{2} J_{z} H y\right] \hat{k}\right\} \in d x d z
\end{align*}
\]

Solution for \(\left(\vec{T}_{2}\right) x\)-Component \(-\rightarrow\)
\[
\begin{aligned}
\left(\overrightarrow{\mathrm{T}}_{2}\right)_{x} & =\frac{\sigma e^{-2}}{2} \iint\left[L_{2} H_{y}(z-d / 2)\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right)-L_{2}^{2} H_{y}\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right)\right] \\
& -(z-d / 2)\left\{H_{x}\left[L_{2}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)-(x+a)\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right)\right](A 76)\right. \\
& \left.-H_{z}\left[(z-d / 2)\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right)-L_{2}\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right)\right]\right\} e d x d z
\end{aligned}
\]

Integrating, we get
\[
\begin{align*}
\left(\stackrel{\rightharpoonup}{\mathrm{T}}_{2}\right)_{x}= & -\frac{\sigma \mathrm{c}^{-2}}{2} \varepsilon L_{2}^{2} d h\left(\omega_{x}^{H} y-\omega_{y} H_{x}\right) H_{z}  \tag{A77}\\
& +\frac{\sigma c^{-2}}{24} \varepsilon h d^{3} H_{z}\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right)
\end{align*}
\]
\(\underline{\text { Solution for }\left(\vec{T}_{2}\right)_{y}--}\)
\[
\begin{aligned}
\left(\vec{T}_{2}\right)_{y}= & \frac{\sigma c^{-2}}{2} \int_{0}^{n d} \int_{0}^{n}\left\{-(z-d / 2) H_{y}\left[L_{2}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)-(x+a)\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right)\right]\right. \\
& \left.-(x+a) H_{y}\left[(z-d / 2)\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right)-L_{2}\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right)\right]\right\} \varepsilon d x d z
\end{aligned}
\]

Integrating, we get
\[
\begin{equation*}
\left(\vec{T}_{2}\right)_{y}=\frac{\sigma c^{-2}}{2} \varepsilon I_{2} d\left(\frac{h}{2}^{2}+a h\right) H_{y}\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right) \tag{A78}
\end{equation*}
\]
\(\underline{\text { Solution of }\left(\vec{T}_{2}\right)_{z}--}\)
\[
\begin{align*}
\left(\vec{T}_{2}\right)_{z} & =\frac{\sigma c^{-} 2}{2} \int_{0}^{d} \int_{0}^{h}\left[(x+a)\left\{H_{x}\left[L_{2}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)-\langle x+a)\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right)\right]\right]\right. \\
& \left.-H_{z}\left[(z-d / 2)\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right)-L_{2}\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right)\right]\right\}  \tag{A79}\\
& +L_{2} H_{y}\left[I_{2}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)-(x+a)\left(\omega_{z} H_{x}-\omega_{x} H_{y}\right]\right] \varepsilon d x d z
\end{align*}
\]

Integrating, we get
\[
\left(\vec{T}_{2}\right)_{z}=\frac{\sigma c^{-2}}{2} \in L_{2} d\left(a h+h^{2} / 2\right) H_{x}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right)
\]
\[
\begin{align*}
& -\frac{\sigma c^{-2}}{2} \varepsilon\left(\frac{d h^{3}}{3}+a d h^{2}+a^{2} h d\right) H_{x}\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right) \\
& +\frac{\sigma c^{-2}}{2} e L_{2} d\left(a h+h^{2} / 2\right) H_{z}\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right)  \tag{A80}\\
& +\frac{\sigma c^{-2}}{2} \in L_{2}{ }^{2} h d H_{y}\left(\omega_{y} H_{z}-\omega_{z} H_{y}\right) \\
& -\frac{\sigma c^{-2}}{2} e L_{2} d\left(a h+h^{2} / 2\right) H_{y}\left(\omega_{z} H_{x}-\omega_{x} H_{z}\right)
\end{align*}
\]

Total Torque for Six Panels

Sum of \(\vec{T}_{1}+\vec{T}_{2}\) for one Pane1--
Using Eqrations (A69) and (A77), then
\[
\begin{aligned}
& \left(\vec{T}_{1}\right)_{x}+\left(\vec{T}_{2}\right)_{x}=\left(\vec{T}_{T}\right)_{x} \\
& \left(\vec{T}_{T}\right)_{X}=\left\{\frac{1}{4} \sigma c^{-2} \epsilon \mu_{2} h d^{2}-4 \sigma c^{-2} \varepsilon I_{2} d^{3} \sum\left(\frac{1}{m \pi}\right)^{3}\left[\tanh \left(\frac{\operatorname{moh}}{2 d}\right)\right.\right. \\
& \left.+\left(\frac{h}{d}\right)^{2} \tanh \left[\left.\frac{m \pi d}{2 h} \right\rvert\,\right]\right\} H_{z}\left\{\omega_{x} H_{y}-\omega_{y} H_{x}\right\rangle \\
& +\left\{\frac{1}{4} \sigma c^{-2} \varepsilon L_{2} h^{2} d-4 \sigma e^{-2} \theta L_{2} d^{2} h \sum\left(\frac{1}{m \pi}\right)^{3}\left[\tanh \left\lvert\, \frac{m \pi h}{2 d}\right.\right\}\right. \\
& \left.\left.\left.+\left\lvert\, \frac{h}{d}\right.\right)^{2} \tanh \left[\frac{\operatorname{mad}}{2 h}\right]\right]\right\} \mathrm{H}_{z}\left(\omega_{y} \mathrm{H}_{z}-\omega_{z} H_{y}\right)
\end{aligned}
\]
\[
\begin{aligned}
& +\left\{-\frac{1}{4} \sigma c^{-2}{ }_{\varepsilon} \mathrm{dh}\left(a h+h^{2} / 2\right)+\frac{1}{12} \sigma c^{-2} e d h^{3}\right. \\
& +4 \sigma c^{-2} \varepsilon d^{2}\left(a h+h^{2} / 2\right) \sum\left(\frac{1}{m \pi}\right)^{3}\left[\tanh \left|\frac{m \pi h}{2 d}\right|+\left|\frac{h}{d}\right|^{2} \tanh \left(\left.\frac{m \pi d}{2 h} \right\rvert\,\right]\right. \\
& \left.-8 a c^{-2}{ }_{\varepsilon} \mathrm{d}^{4} \sum\left(\frac{1}{m \pi}\right)^{5}\left[\tanh \left(\frac{\mathrm{~m} n \mathrm{~h}}{2 \mathrm{~d}}\right)+\left(\frac{h}{d}\right)^{4} \tanh \left(\frac{\mathrm{~m} \pi \mathrm{~d}}{2 h}\right)\right]\right\} \\
& \text { - } H_{z}\left(\omega_{Z} H_{x}-\omega_{X} H_{Z}\right)
\end{aligned}
\]
and
\[
\begin{equation*}
\left(\overrightarrow{\vec{T}}_{\mathrm{T}}\right)_{\mathrm{y}}=0 \tag{AB1}
\end{equation*}
\]

Using Equations (A73) and (A80), then
\[
\begin{aligned}
&\left(\vec{T}_{1}\right)_{z}+\left(\vec{T}_{2}\right)_{z}=\left\{\left.-\frac{1}{4} \sigma c^{-2} \varepsilon L_{2} d h^{2}+4 \sigma c^{-2} \varepsilon h L_{2} d^{2} \sum \right\rvert\, \frac{1}{m n}\right)^{3} \tanh \left(\frac{m \pi h}{2 d}\right) \\
&\left.+\left(\frac{h}{d}\right)^{2} \tanh \left(\left.\frac{m \pi d}{2 h} \right\rvert\,\right]\right\} H_{x}\left(\omega_{y} H_{z}-\omega_{z} H y\right) \\
&+\left\{\sigma c^{-2} \varepsilon \frac{h^{3} d}{3}+\frac{3}{4} \sigma c^{-2} \varepsilon a d h^{2}\right. \\
&-\frac{1}{24} \sigma c^{-2} \varepsilon d^{3} h \\
&-4 \sigma c^{-2} \varepsilon d^{2}\left(a h+h^{2} / 2\right) \sum\left(\frac{1}{m} \pi\right)\left\{\tanh \left(\frac{m \pi h}{2 d}\right)+\left(\frac{h}{d}\right)^{2} \tanh \left(\frac{m \pi d}{2 h}\right)\right]
\end{aligned}
\]
\[
\begin{aligned}
& \left.+8 \sigma c^{-2} \varepsilon d^{4} \sum\left\{\frac{1}{m \pi}\right)^{5}\left[\tanh \left(\frac{m \pi h}{2 d}\right)+\left(\frac{h}{d}\right)^{4} \tanh \left(\frac{m \pi d}{2 h}\right)\right]\right\} \\
& \text { - } \mathrm{H}_{x}\left(\omega_{z} \mathrm{H}_{x}-\omega_{X} \mathrm{H}_{z}\right) \\
& +\left\{-\frac{1}{4} \sigma c^{-2} e \operatorname{Ln}_{2} h d^{2}+4 a e^{-2} \varepsilon h^{2} L_{2} d \sum\left[\frac{1}{m_{m}}\right)^{3}\right. \\
& \left.\left[\tanh \left(\frac{m \pi d}{2 h}\right) \div\left(\frac{h}{d}\right)^{2} \tanh \left(\frac{m_{\pi} d}{2 d}\right)\right]\right\} \mathrm{H}_{x}\left(\omega_{x} H_{y}-\omega_{y} H_{x}\right)
\end{aligned}
\]

SUMMARY OF \(\vec{T}\) DUE TO ONE SOLAR PANEL (IN PRIVED FRAME)
\[
\begin{align*}
& (\vec{T})_{x}^{\prime}=K_{x 1} H_{z}^{\prime}\left(\omega_{x}^{\prime} H_{y}^{\prime}-\omega_{y}^{\prime} H \prime X_{x}\right)+K_{x 2} H_{z}^{\prime}\left(\omega_{y}^{\prime} H_{z}^{\prime}-\omega_{z}^{\prime} H_{y}^{\prime}\right) \\
& +K_{X 3} H_{Z}^{\prime}\left(\omega_{Z}^{\prime} H_{X}^{\prime}-\omega_{X}^{\prime} H_{Z}^{\prime}\right)  \tag{A83}\\
& (\stackrel{T}{T})_{y}^{\prime}=0 \\
& (T)_{z}^{\prime}=K_{z 1} H_{x}^{\prime}\left(\omega_{y}^{\prime} H_{z}^{\prime}-\omega_{z}^{\prime} H_{y}^{\prime}\right)+K_{z 2} H_{x}^{\prime}\left(\omega_{z}^{\prime} H_{x}^{\prime}-\omega_{X}^{\prime} H_{z}^{\prime}\right) \\
& +\mathrm{K}_{\mathrm{z} 3} \mathrm{H}^{\prime}{ }_{x}{ }^{\left(\omega_{x}^{\prime} \mathrm{H}^{\prime}{ }_{y}-\omega_{y}^{\prime} \mathrm{H}^{\prime}{ }_{x}\right)}
\end{align*}
\]

Using the technique discussed under \({ }^{1 t}\) Torque Due to Cylinder \({ }^{4}\) the torque for six solar panels is derived in the following paragraphs.

The torque resolved in one frame is
\[
\begin{aligned}
& \vec{T}(i)_{x}=T^{\prime}(i)_{x} \cos \theta+T^{\prime}(1) z \sin \theta \\
& \vec{T}(i)_{y}=T^{\prime}(i)_{y} \\
& \vec{T}(i)_{z}=\left[-T^{\prime}(i)_{x} \sin \theta+T^{\prime}(i) \cos \theta\right]
\end{aligned}
\]
where the prime indicates the torque for \(i^{\text {th }}\) panel in the \(i^{\text {th }}\) frame, and where
\[
\begin{aligned}
& \mathrm{e}_{\mathrm{F}}^{\prime}=\mathrm{H}_{\mathrm{x}} \cos \theta-\mathrm{H}_{\mathrm{z}} \sin \theta \\
& \mathrm{H}_{\mathrm{y}}^{\prime}=\mathrm{H}_{\mathrm{y}} \\
& \mathrm{H}_{\mathrm{z}}^{\prime}=\mathrm{H}_{\mathrm{x}} \sin \theta+\mathrm{H}_{\mathrm{z}} \cos \theta
\end{aligned}
\]

The solution for \(\left(\vec{T}_{x}\right)\) (six panels) is
\[
\begin{align*}
& |\vec{T}(i)|_{\mathrm{x}}=\left[\mathrm{K}_{\mathrm{x} 1} \mathrm{H}_{\mathrm{z}}^{\prime}\left(\omega_{\mathrm{x}}^{\prime} \mathrm{H}_{\mathrm{y}}^{\prime}-\omega_{\mathrm{y}}^{\prime} \mathrm{H}_{\mathrm{x}}^{\prime}\right)+\mathrm{K}_{\mathrm{x} 2} \mathrm{H}_{\mathrm{z}}{ }^{\prime}\left(\omega_{\mathrm{y}}^{\prime} \mathrm{H}_{\mathrm{z}}^{\prime}-\omega_{\mathrm{z}}^{\prime} \mathrm{H}^{\prime}{ }_{\mathrm{y}}\right)\right. \\
& \left.\left.+\mathrm{K}_{\mathrm{X} 3} \mathrm{H}_{\mathrm{z}}{ }^{\left(\omega^{\prime}\right.} \mathrm{ZH}^{\prime}{ }_{\mathrm{x}}-\omega^{\prime} \mathrm{X}^{\mathrm{H}^{\prime}}{ }_{\mathrm{z}}\right)\right] \cos \theta(\mathrm{i}) \tag{A84}
\end{align*}
\]
\[
\begin{aligned}
& \sum_{i=1}^{6} T(i) x=(\vec{T})_{x}=-3 K_{x 3}\left(\omega_{x} H_{z}{ }^{2}-\omega_{z} H_{x} H_{z}\right)+3 K_{z 2}\left(\omega_{x} H_{z}{ }^{2}-\omega_{z} H_{x} H_{z}\right) \\
& =-3\left(\mathrm{~K}_{\mathrm{x} 3}-\mathrm{K}_{\mathrm{z} 2}\right) \omega_{\mathrm{x}} \mathrm{H}_{\mathrm{z}}{ }^{2}+3\left(-\mathrm{K}_{\mathrm{z} 2}+\mathrm{K}_{\mathrm{x} 3}\right) \omega_{z} \mathrm{H}_{\mathrm{x}} \mathrm{H}_{\mathrm{z}}
\end{aligned}
\]
\[
\begin{aligned}
& -\left\{\sigma c^{-2} \varepsilon \frac{h^{3} d}{3}+\frac{3}{4} \sigma c^{-2} \varepsilon a d h^{2}-\frac{1}{24} \sigma \mathrm{c}^{-2} \varepsilon d^{3} h\right. \\
& -4 \sigma c^{-2} \varepsilon d^{2}\left(a h+h^{2} / 2\right) \sum\left(\frac{1}{m \pi}\right)^{3}\left[\tanh \left(\frac{m \pi h}{2 d}\right)+\left(\frac{h}{d}\right)^{2} \tanh \left(\frac{m \pi d}{2 h}\right)\right] \\
& +8 \sigma c^{-2} \varepsilon d^{4} \sum\left(\frac{1}{m \pi}\right)^{5}\left[\tanh \left(\frac{m_{\pi} h}{2 d}\right)+\left(\frac{h}{d}\right)^{4} \tanh \left(\frac{m_{n} d}{2 h}\right]\right]
\end{aligned}
\]

Reducing further to
\[
\begin{aligned}
\left(K_{x 3}-K_{z 2}\right) & =\left\{-\sigma c^{-2} \varepsilon a d h^{2}-\frac{9}{24} \sigma c^{-2} \varepsilon d h^{3}-\frac{1}{24} \sigma c^{-2} \varepsilon d^{3} h\right. \\
& +8 \sigma c^{-2} \varepsilon d^{2}\left(a h+h^{2} / 2\right) \sum\left(\frac{1}{m n}\right)^{3}\left[\tanh \frac{m_{\pi} h}{2 d}+\left(\frac{h}{d}\right)^{2} \tanh \left(\frac{m_{\pi d}}{2 h}\right)\right] \\
& \left.-16 \sigma c^{-2} \varepsilon d^{4} \sum\left(\frac{1}{m \pi}\right)^{5}\left[\tanh \left(\frac{m n h}{2 d}\right)+\left(\frac{h}{d}\right)^{4} \tanh \left(\frac{m \pi d}{2 h}\right)\right]\right\}
\end{aligned}
\]
and the solution for \(\left(\overrightarrow{\mathrm{T}}_{1}\right)\) is
\[
(\vec{T})_{y}=0=\stackrel{Y}{\Sigma}[T(2)]_{y}
\]
and solution for \((\vec{T})_{z}\) is
\[
\begin{equation*}
\Sigma T(i){ }_{\mathrm{z}}=\overrightarrow{\mathrm{T}}_{\mathrm{z}}=3\left(\mathrm{~K}_{\mathrm{z} 2}-\mathrm{K}_{\mathrm{x} 3}\right)\left(\omega_{\mathrm{z}} \mathrm{H}_{\mathrm{x}}^{2}-\omega_{\mathrm{x}} \mathrm{H}_{\mathrm{x}} \mathrm{H}_{\mathrm{z}}\right) \tag{A85}
\end{equation*}
\]

SUIMMARY OF TORQUE DUE TO SOLAR PANEL
\[
\begin{align*}
& \vec{T}_{x}=-3\left(K_{x 3}-K_{z 3}^{1}\right)\left(\omega_{x} H_{z}^{2}-\omega_{z} H_{x} H_{z}\right) \\
& \vec{T}_{y}=0  \tag{A86}\\
& T_{z}=-3\left(K_{x 3}-K_{z 2}^{\prime}\right)\left(\omega_{z} H_{x}^{2}-\omega_{x} H_{x} H_{z}\right)
\end{align*}
\]
where ( \(\mathrm{K}_{\mathrm{v} 3}-\mathrm{K}_{\mathrm{z} 2}\) ) is given above.

\section*{SUM OF TORQUE DUE TO PANEL'S AND CYLINDER}

\section*{EQUATIONS}
where
\[
\begin{aligned}
P_{\mathrm{x} 1}= & 3 / 2 \mathrm{~K}_{z 2} \\
= & \left\{\frac{1}{2} \sigma c^{-2} \tau W L^{3}+\frac{1}{8} \sigma c^{-2} \tau L W^{3}-\frac{3}{4} \sigma c^{-2} \tau L_{1} L^{2} W\right. \\
+ & \frac{3}{2} \sigma c^{-2} \tau L W\left(L_{1} L-L^{2} / 2-12 \sigma c^{-2} \tau W^{2}\left(L_{1} L-L^{2} / 2\right)\right. \\
& \cdot \sum\left(\frac{1}{m \pi}\right)^{3}\left[\tanh \left(\frac{m \pi L}{2 W}\right)+\left(\frac{L}{W}\right)^{2} \tanh \left(\frac{m \pi W}{2 L}\right)\right] \\
& -24 \cdot \sigma c^{-2} \tau W^{4} \sum\left(\frac{1}{m \pi}\right)^{5}\left[\tanh \left(\frac{m \pi L}{2 W}\right)+\left(\frac{L}{W}\right)^{4} \tan h\left(\frac{m \pi W}{2 L}\right)\right]
\end{aligned}
\]
and
\[
\begin{align*}
& (\vec{T})_{x}=-\underbrace{3 / 2 K_{z 2}}_{P_{x 1}}\left(\omega_{x} H_{y}^{2}-\omega_{y} H_{x} H_{y}\right)-\underbrace{z 2}_{P_{x} 2\left(K_{x 3}-K\right.})\left(\omega_{x} H_{z}^{2}-\omega_{z} H_{x} H_{z}\right) \\
& -(\tilde{\mathrm{T}})_{\mathrm{y}}=\underbrace{9 / 2 \mathrm{~K}_{\mathrm{y} 2}}_{\mathrm{P}_{\mathrm{y}}}\left[\omega_{y}\left(\mathrm{H}_{\mathrm{x}}{ }^{2}+\mathrm{H}_{\mathrm{z}}{ }^{2}\right)-\omega_{x} \mathrm{H}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}-\omega_{\mathrm{z}} \mathrm{~F}_{\mathrm{y}} \mathrm{H}_{\mathrm{z}}\right]  \tag{A87}\\
& (\vec{T})_{z}=-\underbrace{-3 / 2 K_{z 2}}_{P_{x 1}}\left(\omega_{z} H_{y}^{2}-\omega_{y} H_{y} H_{z}\right)-\overbrace{3\left(\mathrm{~K}_{x} 3-\mathrm{K}_{z 2}\right.}^{P_{x 2}}\left(\omega_{z} H_{x}{ }^{2}-\omega_{x} H_{x} H_{z}\right)
\end{align*}
\]
\[
\begin{align*}
& P_{x 2}=P_{z 2}=3\left(\mathrm{~K}_{\mathrm{x} 3}-\mathrm{K}_{\mathrm{z} 2}\right) \\
& =\left\{-3 \sigma c^{-2} \varepsilon a d h^{2}-\frac{9}{8} \sigma c^{-2} \varepsilon a d h^{3}-\frac{1}{8} \sigma c^{-2}{ }_{\varepsilon} d^{3} h\right. \\
& \left.+24 \sigma c^{-2} \varepsilon d^{2}\left(a h+h^{2} / 2\right) \sum\left(\frac{1}{m \pi}\right)^{3}\left[\tanh \frac{m \pi h}{2 d}+\left\lvert\, \frac{h}{d}\right.\right)^{2} \tanh \left(\frac{m \pi d}{2 h}\right)\right]  \tag{A89}\\
& -48 \mathrm{cc}^{-2} \varepsilon \mathrm{~d}^{4} \sum\left(\frac{1}{m \pi}\right)^{5}\left[\tanh \left|\frac{m_{\pi h}}{2 d}\right|+\left(\left.\frac{h}{d}\right|^{4} \tanh \left|\frac{\mathrm{~m}_{\pi} d}{2 h}\right|\right]\right\} \\
& P_{y}=9 / 2 K_{y 2} \\
& =\left\{-\frac{3}{8} c^{-2} \sigma \tau W^{3} L-\frac{3}{8} \sigma c^{-2} \tau W L^{3}-\frac{9}{4} \sigma c^{-2} \tau W L\left(L_{1} L-L / 2^{2}\right)\right. \\
& +36 \sigma c^{-2}+W^{2}\left(L_{1} L-L^{2} / 2\right) \sum\left(\frac{1}{m \pi}\right)^{3}\left[\tanh \left(\frac{m \pi}{2 W}\right)+\left(\frac{L}{W}\right)^{2} \tanh \cdot\left(\frac{m m W}{2 L}\right)\right] \\
& +72 \sigma \mathrm{c}^{-2}+W^{4} \sum\left|\frac{1}{m \pi}\right|^{5}\left[\tanh \left\{\frac{\mathrm{mmL}}{2 W}\left|+\left|\frac{L}{W}\right|^{4} \tanh \left(\frac{m_{\pi} W}{2 L}\right)\right]\right\}\right.
\end{align*}
\]

\section*{DISCUSSION}

The solution given by Equations (A87), (A89), and (A90) represent the torque for the geometry described for the ARRS spacecraft. The coefficients are in terms of the spacecraft dimension and can be used to atd in the design of the spacecraft to minimize the eddy current losses. Three coefficients exist for the spinning hat configuration. Evaluation of the coefficient will establish the rel ative significance.

The solution for the potential, \(\phi\) presented initially a problem which was eventually overcome. First, aumerical techniques were considered to evaluate \(\phi\), but were quickly overruled because numerical solution would be needed every time the torque is evaluated ( 0.4 sec per HDMP Phase A, Part II).

Secondly, the two-dimensional Neumann problem can be be reduced to a Dirichlet boundary value problem and a solution for the stream function, \(\psi\), made. Two approaches were considered in the solution for \(\psi:\) (1) solution by application of Green's function, and (2) series of sine, cosine, and hyperbolic sine and cosine.

The second solution method had initial difficulty. The solution for the plate was a series of sines and hyperbolic sine for the strearn function, \(\psi\). Since \(\nabla \psi\) was required, it was clear \(\bar{\psi} \psi\) could not be obtained from \(\psi\). However, because the torque equation is a volume integral and by applying integration by parts, the gradient of \(\psi\) was not required. The soluthon for the torque was then good. Further effort to apply Greents function was suspended.

APPENDIX B
AERODYNAMIC TORQUE

\title{
preceding page blank not fllmed
}

\section*{APPENDIX B}

AERODYNAMIC TORQUE

The aerodynamic effect on the spacecraft is discussed in the following paragraphs. The torque produced consists of aerodynamic pressure torque due to the spacecraft's center of mass velocity and a dissipative torque due to the spacecraft's angular rate. The torque equation including these two effects is taken from Beletskii's work(ref 3 ). The torque equation including these two effects is craft's angular velocity is large compared with the rotation of the atmosphere (earth's rate approximately), the linear surface velocities due to the spin of the satellite is small compared with the spacecraft's center of mass velocity, and the angle of attack of each surface encountered is less than \(\frac{\pi}{2}\). The torque equation is then given by
\[
\begin{align*}
& \overrightarrow{\mathrm{T}}=\frac{1}{2} c \rho_{a} v_{o}^{2} \int\left(\vec{n} \cdot \vec{e}_{v}\right)\left(\vec{e}_{v} \times \vec{r}_{S}\right) d S \\
& S\left(\vec{n} \cdot \vec{e}_{v}>0\right)  \tag{BI}\\
& +\frac{1}{2} c \rho_{a} v_{o} \int\left[\left|\vec{n} \cdot\left[\vec{\omega} \times \vec{r}_{s}\right]\right|\left[\vec{e}_{v} \times \vec{r}_{s}\right]+(\vec{n} \cdot \vec{e})\left[\vec{\omega} x \vec{r}_{s}\right] \vec{x} r_{s}\right] d S \\
& S\left(n \cdot \vec{e}_{v}>0\right)
\end{align*}
\]
where
\(\vec{n}=\) Unit vector in direction of normal to surface, dS
\(\vec{e}_{\mathrm{v}}=\frac{\overrightarrow{\mathrm{V}}_{\mathrm{o}}}{\left|\vec{V}_{\mathrm{o}}\right|}=\begin{aligned} & \text { Unit vector in direction of translational velocity of center } \\ & \text { of mass relative to incident stream }\end{aligned}\)
\(\vec{r}_{\mathrm{s}}=\) Radius vector joining surface element center and spacecraft center of mass

The first term of Equation (BI-) represents torque due to misalignment of spacecraft center of mass and center of pressures. The second term represents dissipative torque due to spacecraft spin. Upon examining the coefficient of each term, the torque due to center of pressure misalignment is approximately a factor of \(V_{0}\) laxger than the dissipative torque coefficient when \(\omega r \ll V_{O^{\circ}}\) For ARRS spacecraft in a 270 -nautical-mile orbit; \(V_{o}\) is 2. \(624 \times 10^{4} \mathrm{ft} / \mathrm{sec}\),

Previous investigations estimated that \(\frac{1}{2} \mathrm{c} \rho_{\mathrm{a}} \mathrm{V}_{\mathrm{n}}^{2}\) is \(2 \times 10^{-7} \mathrm{lb} / \mathrm{ft}^{2}\). Then, dividing by \(V_{o}\), we get \(0.76 \times 10^{-11} \mathrm{lb}-\mathrm{sec} / \mathrm{ft}^{3}\). Multiplying by \(\omega \mathrm{r}^{2}=2 \mathrm{ft}\) for ARRS spacecraft, \(\frac{1}{2}\) c \(\zeta_{a} V_{o} \omega r \approx 10^{-12} \mathrm{ab} / \mathrm{ft}^{2}\).

Dissipative torque is a factor of \(10^{-4}\) less than pressure torque and is sufficiently small that the second term of Equation(Bi) will be neglected. Then, the aerodynamic torque equation is given by
\[
\begin{gather*}
\overrightarrow{\mathrm{T}}=\frac{1}{2} \operatorname{cog}_{a} V_{0}^{2} \int_{S\left(\vec{n} \cdot \vec{e}_{V}>0\right)}\left(\vec{n} \cdot \vec{e}_{v}\right)\left(\vec{e}_{V} \times \vec{r}_{s}\right) d S  \tag{B2}\\
\end{gather*}
\]

The domain of integration is indicated by \(S\left(\vec{n} \cdot \overrightarrow{e_{v}}>0\right)\). This means the angle of attack of each surface element is less than \(\frac{\pi}{2}\). The ARRS spacecrafi surfaces consist of a hexagonal cylinder and rectangular solar panels.

The direction of the stream is in the orbit plane, and for this reason the spacecraft will present a different surface to the stream, depending on the attitude of the vehicle.

Figure B1 illustrates two orientations of the spacecraft that give two different domains for Equation (B2).

The aerodynamic torque will be represented by two equations because of the different surfaces presented to the stream as shown in Figure Bi. In Figure 1b, the force along the \(y\)-axis due to the stream is positive, Figure Bla illustrates that the force along the \(y\)-axis is negative.

DERIVATION OF TORQUE FOR \(F_{y} \leq 0\)
The computation can be done on each surface and summed over the domain of integration. The spacecraft has two basically different geometries -- a hexagonal cylinder and solar panels. The hexagonal oylinder is comprised of six planes as shown in Figure B2. The body coordinates are also shown in Figure B2.

Torque on the cylinder is computed by integrating over each of the surfaces \((i=1, \ldots 6)\) and using only those torques on the surfaces which satisfy \(n_{i} \cdot \vec{e}_{v}>0\).

(a)


Fiğure B1. Spacecìaft Shiadowing


Note:
Surfaces, \(i=1,2, \ldots 6\) are indicated in the figure. The normal to each one of the six surface is given by \(n_{i^{*}}\). The origin of coordinate system is located at spacecraft's center of mass.

Figure B2. Spacecraft Hexagonal Cylinder Configuration

Surface \(i=1\) The outer normal of surface 1 is
\[
\begin{equation*}
n_{1}=\hat{i} \tag{B3}
\end{equation*}
\]

The radius vector, \(\vec{r}_{\mathrm{S} 1}\), is given by
\[
\begin{equation*}
\stackrel{\rightharpoonup}{r}_{s 1}=a \hat{i}+y \hat{j}+z \hat{k} \tag{B4}
\end{equation*}
\]

\section*{The integral from Equation(B2) becomes}
\[
\begin{equation*}
\overrightarrow{\mathrm{T}}_{\mathrm{e} 1}={\underset{q}{2}}\left(\vec{n}_{1} \cdot \vec{e}_{\mathrm{v}}^{+}\right) e_{\mathrm{v}} \mathrm{x} \int \mathrm{r}_{\mathrm{s} 1} \frac{d S_{1}}{} \tag{B5}
\end{equation*}
\]

The integral to be solyed is
\[
\begin{equation*}
\iint(a \hat{i}+y \hat{j}+z \hat{k}) d y d z \tag{B6}
\end{equation*}
\]

The limits of integration are
\[
\begin{align*}
& -L_{1} \leq y \leq L_{2},-\frac{W}{2} \leq z \leq \frac{W}{2} \\
& a=\frac{\sqrt{3 W}}{2} a \text { constant } \tag{B7}
\end{align*}
\]

Intarrating Equation (B6), one gets
\[
\begin{equation*}
\frac{\sqrt{3 W}^{2}}{2} \mathrm{I} \hat{i}+\frac{W}{2}\left(\mathrm{~L}_{2}^{2}-\mathrm{I}_{1}^{2}\right) \hat{j} \tag{B8}
\end{equation*}
\]

Therefore,
\[
\begin{equation*}
\overrightarrow{\mathrm{T}}_{\mathrm{e} 1}=q_{2}\left(\vec{n}_{1} \cdot \vec{e}_{v}\right) \vec{e}_{\mathrm{e}} \mathrm{x}\left[\frac{\sqrt{3} W^{2}}{2} \mathrm{~L} \hat{i}+\frac{W}{2}\left(\mathrm{~L}_{2}^{2}-L_{1}^{2}\right) j\right] \tag{B9}
\end{equation*}
\]

Surface \(i=2\) Notice that the integration of each surface can be done in a coordinate frame like the \(2=1\) surface. To represent the results in the coordinate frame shown in Figure B2, a coordinate transformation involving a single rotation about the \(y\)-axis will do. Figure B 3 illustrates the technique.


Figure B3. Relationship of Integration Coordinate Frame to Spacecraft Body Frame

A positive 60 -degree rotation about the \(y\)-axis places \(x^{\prime}\) along surface \(n_{2}\) normal. The integration in the prime system is identical to the unprimed on the \(n_{1}\) surface. Therefore, the integration of each surface can be carried out in the primed system and then transformed to the unprimed system by the following:
\[
\left[\begin{array}{l}
x  \tag{B10}\\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
\cos \frac{\pi}{3}(i-1) & 0 & \sin \frac{\pi}{3}(i-1) \\
0 & 1 & 0 \\
-\sin \frac{\pi}{3}(i-1) & 0 & \cos \frac{\pi}{3}(i-1)
\end{array}\right]\left[\begin{array}{c}
x^{(i-1)} \\
y^{(i-1)} \\
z^{(i-1)}
\end{array}\right]
\]
where
\[
\begin{equation*}
x^{(i-1)}=x=\frac{\sqrt{3}^{3}}{2} L \tag{B11}
\end{equation*}
\]
\[
\begin{aligned}
& y^{(i-1)} \doteq y=\frac{W}{2}\left(L_{2}^{2}-L_{1}^{2}\right) \\
& \left.z^{(i-1}\right)=z=0
\end{aligned}
\]

Therefore,
\[
\begin{align*}
\vec{T}_{c i} & =q_{2}\left(\vec{n}_{i} \cdot \vec{e}_{v}\right) \widetilde{e}_{v} x\left[\cos \frac{\pi}{3}(i-1) \frac{\sqrt{3} W^{3}}{2} L\right] \hat{i}+\frac{W}{2}\left(L_{2}^{2}-L_{1}^{2}\right) \hat{j}  \tag{B12}\\
& -\frac{\sqrt{3}}{2}^{3} L \sin \frac{\pi}{3}(i-1) \hat{k}
\end{align*}
\]
where
\[
n_{i}=\sin 90+\frac{\pi}{3}(i-1) \hat{i}+\cos 90+\frac{\pi}{3}(i-1) \hat{k}=\cos \frac{\pi}{3}(i-1) \hat{i}-\sin \frac{\pi}{3}(i-1) \hat{k}
\]

Equation (B12) represents the torque for each plane describing the hexagonal cylinder. To obtain the torque on the cylinder each surface must be tested for
\[
\begin{equation*}
\vec{n}_{i} \cdot \vec{e}_{v}>0 \tag{B13}
\end{equation*}
\]

For surfaces which satisfy \(\vec{n}_{i} \cdot \vec{e}_{\mathrm{y}}>0\), the torque is given Equation (B20). The sum is then taken over all surfaces that satisfy Equation (B13).

Torque due to the solar panels will now be computed in the same manner. Assume that the solar panels can be approximated by a disk as shown in Figure B4.

The torque equation for the disk when \(\mathrm{F}_{\mathrm{y}} \geq 0\) is given by
\[
\begin{gathered}
\overrightarrow{\mathrm{r}}=\frac{1}{2} c p_{a} v_{o}^{2} \int_{\mathrm{n}}\left(\vec{n}_{\mathrm{e}} \cdot \vec{e}_{v}\right)\left(\vec{e}_{v} x \vec{r}_{s}\right) d S \\
S\left(\vec{n} \cdot \vec{e}_{v}>0\right)
\end{gathered}
\]


Figure B4. Shadowing on Solar Panel due to Spacecraft Cylinder

For the disk the normal to the surface is
\[
\begin{equation*}
\mathrm{n}=-\hat{j} \tag{B14}
\end{equation*}
\]

Figure \(B 4\) shows the shadow when \(e_{v}\) is directed along the negative \(z\)-axis. The shadow moves around the disk as the spacecraft rotates. The integral
\[
\begin{equation*}
r_{s} d S \tag{B15}
\end{equation*}
\]
must be evaluated for each time because the domain of integration is changing with time. The approach will be to integrate over the domain shown in Figure \(\mathrm{B}^{4}\) and make a time-varying transformation about the body \(y\)-axis to give the integrated result as a function of time.

The integration will be performed over the shaded area of Figure B4, and the results subtracted from the integrated result over the entire disk defined between \(r_{3}\) and \(r_{4}\). The result will be good for \(\theta=0\) when \(\hat{e}_{V} \cdot k=-1\). The shaded area rotates negatively about the \(y\)-axis; therefore, the transformation
from the primed system (system in which the shaded area has the relation shown in Figure Bj to the unprimed (the body axis where the shade rotates about the body \(y\)-axis) will be made to give the result for all time.


Figure B5. Transformation of Rotating Shade Frame Relative to Body Fixed Axis

The transformation is
\[
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]
\]
(B16)

The integral is given by Equation(B15) and \(r_{s}\) is
\[
\begin{equation*}
x \hat{i}+I_{2} \hat{j}+z \hat{k} \tag{B17}
\end{equation*}
\]
and \(\mathrm{dS}=\mathrm{dxdz}\).

Therefore,
\[
\begin{equation*}
\int x d x d z \hat{i}+\int \mathrm{L}_{2} d x d z \hat{j}+\int z d x d z \hat{k} \tag{Bi18}
\end{equation*}
\]

The integration will first be conducted over the entire disk defined between \(r_{3}\) and \(r_{4}\). Call this surface \(S^{\prime}\). The integration over \(S^{\prime}\) is obtained by integrating over the large disk whose radius is \(r_{4}\) and subtracting the value obtained by integrating over the small disk whose radius is \(\mathrm{r}_{3}\).

Let \(S^{\prime \prime}\) be the large disk, and \(\mathrm{S}^{\prime \prime \prime}\) be the small disk. Therefore,
\[
\begin{equation*}
\int_{S^{\prime}} r d s=\int_{S^{\prime}} r d s-\int_{S}^{m} r d s \tag{B19}
\end{equation*}
\]

The limits of integration over \(S^{\prime \prime}\) are
\[
\begin{aligned}
& -r_{4} \leq x \leq r_{4} \\
& -\sqrt{r_{4}^{2}-x^{2}} \leq z \leq \sqrt{r_{4}^{2}-x^{2}}
\end{aligned}
\]

The integal then is
\[
\begin{equation*}
\int_{-r_{4}}^{r_{4}} \int_{\sqrt{r_{4}^{2}-x^{2}}}^{\sqrt{r_{4}^{2}-x^{2}}}\left(x d x d z \hat{i}+L_{2} d x d x \hat{j}+z \operatorname{cxd} d z \hat{k}\right) \tag{B20}
\end{equation*}
\]
and gives
\[
\begin{align*}
& \int_{-r_{4}}^{r_{4}}\left[2 x \sqrt{r_{4}^{2}-x^{2}} d x \hat{i}+2 L_{2} \sqrt{r_{4}^{2}-x^{2}} d x \hat{j}\right]  \tag{B21}\\
& \int_{S^{\prime \prime}} r d s=L_{2} \pi r_{4}^{2} \hat{j} \tag{B22}
\end{align*}
\]

Integrating over \(\mathrm{S}^{\prime \prime \prime}\) surface, a simimilar résuit is obtained
\[
\begin{equation*}
\int_{S^{\prime \prime}} \dot{r d s}=\dot{L}_{2} \pi r_{3}^{2} \hat{j} \tag{B23}
\end{equation*}
\]

Therefore,
\[
\begin{equation*}
\int_{S^{4}} r a s=\dot{E}_{2} \pi\left(r_{4}^{2}-r_{3}^{2}\right) \dot{\hat{j}} \tag{B24}
\end{equation*}
\]
 out. The limits of integration are given by
\[
\begin{aligned}
& -x_{3} \leq x \leq \ddot{r}_{3} \\
& \sqrt{r_{3}^{2}-x^{2}} \leq z \leq \sqrt{i_{4}^{2}-x^{2}}
\end{aligned}
\]

The integral is
\[
\begin{equation*}
\int_{-r_{3}}^{r_{3}} \int_{-\sqrt{\ddot{r}_{3}^{2}-x^{2}}}^{\sqrt{r_{4}^{2}-x^{2}}}\left(x d x d z \hat{i}+L_{2} d \check{x} d z \hat{j} \hat{j}+z d \dot{x} d z \dot{k}\right)=\int_{S^{*}}^{\dot{x}} \hat{x} d \dot{S} \tag{B2ं5}
\end{equation*}
\]
where \(S^{*}\) is the domain of integration or the shaded area:

Therefore,
\[
\begin{align*}
\int_{S^{*}} \mathrm{rdS} & =\left[\left[L_{2} r_{3}\left(\dot{r}_{4}^{2}-\mathrm{r}_{3}^{2}\right]^{\dot{I} / 2}+L_{2} \dot{r}_{4}^{2} \sin ^{-1}\left(\frac{\dot{r}_{3}}{r_{4}}\right) \frac{-\hat{\mathrm{A}}_{2} \dot{\pi} \dot{x}_{3}^{2}}{2}\right] \dot{j}\right.  \tag{2}\\
& \left.\div r_{3}\left(r_{4}^{2}-\dot{r}_{3}^{2}\right) \hat{k}\right]
\end{align*}
\]

The integral of the unshaded portion of the disk in Figure B4 is given by
\[
\begin{equation*}
\int_{S} r d S-\int_{S^{*} *} r d S \tag{B27}
\end{equation*}
\]

For Equation (B27) is true for all time \(t \geq t_{0}\) when Equation(B26)is modified by Equation (B16)to give
\[
\begin{align*}
& x=\sin \theta r_{3}\left|r_{4}^{2}-r_{3}^{2}\right\rangle  \tag{B28}\\
& y=L_{2} r_{3}\left|r_{4}^{2}-r_{3}^{2}\right|^{1 / 2}+L_{2} r_{4}^{2} \sin ^{-1}\left(\frac{r_{3}}{r_{4}}\right\rangle-\frac{\pi}{2} L_{2} r_{3}^{2} \\
& z=\cos \theta r_{3}\left|r_{4}^{2}-r_{3}^{2}\right\rangle
\end{align*}
\]

Then,
\[
\begin{aligned}
\int_{S^{\prime}} r d S & -\int_{S^{*}} r d S \\
& =\left[r_{3}\left|r_{4}^{2}-r_{3}^{2}\right| \sin \theta\right] \hat{\mathrm{i}} \\
& +\left[L_{2} \pi\left|r_{4}^{2}-r_{3}^{2}\right|-E_{2} r_{3}\left|r_{4}^{2}-r_{3}^{2}\right|^{1 / 2}-L_{2} x_{4}^{2} \sin ^{-1}\left|\frac{r_{3}}{r_{4}}\right|+\frac{\pi}{2} L_{2} r_{3}^{2}\right] \hat{\hat{j}} \\
& -\left[r_{3}\left|r_{4}^{2}-r_{3}^{2}\right| \cos \theta\right] \hat{k}
\end{aligned}
\]

The torque for the solar panels is
\[
\begin{align*}
& +\left[L_{2} \pi r_{4}^{2}-\frac{L_{2}}{2} \pi r_{3}^{2}-L_{2}{ }_{2}{ }_{3}\left|r_{4}^{2}-r_{3}^{2}\right|^{1 / 2}-I_{2}{ }_{2}^{2}{ }_{4}^{2} \sin ^{-1}\left|\frac{r_{3}}{r_{4}}\right|^{n}\right.  \tag{B30}\\
& \left.-r_{3}\left(\frac{r_{4}^{2}-r_{3}^{2}}{4}\right) \cos \theta \hat{k}\right]
\end{align*}
\]

Torque due to the cylinder and solar patiels is summarized below for the case where \(\vec{e}_{\mathrm{V}} \hat{\mathrm{j}} \leq 0\) or \(\dot{\underline{F}}_{\mathrm{y}} \geqslant 0\) :

Torque due to each plane surface of the cylinder is given by
\[
\begin{align*}
\vec{T}_{c i} & =q_{2}\left(\vec{n}_{i} \cdot \vec{e}_{V}\right) \vec{e}_{V} x\left[\left.\frac{\sqrt{B W}}{2}{ }^{3} L \cos \frac{\pi}{3}(i-1) \hat{i}+\frac{W}{2} \right\rvert\, L_{2}^{2}-L_{1}^{2}\right] \hat{j} \\
& \left.-\frac{\sqrt{3}}{2}^{3} L \sin \frac{\pi}{3}(i-1) \hat{k}\right] \tag{B31}
\end{align*}
\]
where
\[
\begin{align*}
q_{2} & =\frac{1}{2} c \rho_{a} v_{o}^{2} \\
n_{i} & =\cos \frac{\pi}{3}(i-1) \hat{i}-\sin \frac{\pi}{3}(i \sim 1) \hat{k} \\
\vec{T} & \left.=\frac{1}{2} c_{p_{a}} v_{o}^{2}\left(\vec{n}^{*} \vec{e}_{v}\right) \vec{e}_{v} x\left[\left|r_{3}\right| r_{4}^{2}-r_{3}^{2}\right\} \sin \theta \right\rvert\, \hat{i} \\
& \left.\left.+L_{2} \pi r_{4}^{2}-\frac{L_{2} \pi r_{3}^{2}}{2}=L_{2} x_{3}\left|r_{4}^{2}-r_{3}^{2}\right|^{1 / 2}-L_{2} x_{4}^{2} \sin ^{-1} \right\rvert\, \frac{r_{3}}{r_{4}}\right] \hat{j} \\
& -\left\{r_{3}\left\{r_{4}^{2}-r_{3}^{2}|\cos \theta| \hat{k}\right]\right. \tag{B32}
\end{align*}
\]
where \(n=-\hat{j}\). The torques expressed in Equations (B30) and (B31) are valid when \(\vec{e}_{\mathrm{V}} \cdot \mathrm{j} \leq 0\) or \(\mathrm{F}_{\mathrm{y}} \geq 0\).

The angle, \(\theta\), is given by
\[
\begin{aligned}
& \sin \theta=\mathrm{v}_{\mathrm{x}} / \sqrt{1-\mathrm{v}_{\mathrm{y}}{ }^{2}} \\
& \cos \theta=-\mathrm{v}_{\mathrm{z}} / \sqrt{1-\mathrm{v}_{\mathrm{y}}{ }^{2}}
\end{aligned}
\]
where \(v_{x}, v_{y}\), and \(v_{z}\) are the components of the \(\vec{e}_{v}\) vector in body axes.
The end of the cylinder (opposite solar panel end - see Figure B1b) contributes a torque when \(\hat{e}_{v} \cdot(-\hat{j})>0\).

The torque is given by
\[
\begin{aligned}
& \overrightarrow{\mathrm{T}}_{\mathrm{CE}}=q_{2}\left(\overrightarrow{\mathrm{~h}} \cdot \overrightarrow{\mathrm{e}}_{\mathrm{V}}\right) \overrightarrow{e_{V}} \mathrm{x} \int r_{\mathrm{SE}} d \mathrm{~S}_{E} \\
& r_{\mathrm{SE}}=x \hat{\mathrm{i}}-\mathrm{L}_{1} \hat{j}+z \hat{k}
\end{aligned}
\]

Integrating
\[
\begin{equation*}
\int \mathrm{r}_{\mathrm{SE}} \mathrm{dS}_{\mathrm{E}}=-\mathrm{L}_{1} \pi r_{3}^{2} \hat{j} \tag{B33}
\end{equation*}
\]

This assumes that the end is a disk of radius \(\mathrm{r}_{3}\) located at a \(-\mathrm{L}_{1}\) distance along the y -axis.

DERIVATION OF TORQUE FOR \(e_{v} . \hat{j}>0\) or \(F_{y} \leq 0\)
Torque due to aerodynamic pressure is different for \(\vec{e}_{v} \cdot \hat{j}>0\) because the surface presented to the stream density is diferent (Figure Bla.) The solar panels are not shadowed, but the cylinder is as shown in Figure B8. The shadow, however, on the cylinder will be limited due to the attitude control limits for ARRS.


Figure E6. Shadowing on Cylinder due to Solar Panels

The shadow on the cylinder will effect the limits of integration for the torque due to the cylinder.

In the derivation of the torque for the solax panels, we again assume a solid disk as before.

The torque on the cylinder for \(\vec{e}_{\mathbf{v}^{*}} \hat{j}>0\) is dexived the same as for \(\vec{e}_{\hat{y}^{*}} \hat{j} \leq 0\). Only the limit of integration for \(L_{2}\) is changed.

The limit of integration for \(L_{2}\) is a function of the spacecraft attitude relative to the stream. The new limit of integration is given by \(L_{2}^{\prime}\).

The inner product
\[
\vec{e}_{\mathrm{v}} \cdot \hat{j}=\cos \phi
\]
where \(\varnothing\) is the angle between the body \(\mathbf{j}\)-axis and the mass center velocity. In Figure B6 note that
\[
\begin{equation*}
\frac{r_{4}-r_{3}}{y_{0}}=\tan \phi \tag{B34}
\end{equation*}
\]

Therefore,
\[
\begin{equation*}
\mathrm{L}_{2}^{\prime}=\mathrm{L}_{2}-\mathrm{y}_{\mathrm{o}} \tag{B35}
\end{equation*}
\]
where \(y_{0}\) can be represented as
\[
\begin{equation*}
y_{o}=\left(r_{4}-r_{3}\right) \sqrt{\frac{\cos 2 \phi}{1-\cos ^{2} \phi}} \tag{B36}
\end{equation*}
\]
and reducing further,
\[
\begin{equation*}
y_{0}=\left(r_{4}-r_{3}\right) \frac{e_{v} \cdot j}{\sqrt{1-\left(e_{v} \cdot j\right)^{2}}} \tag{B37}
\end{equation*}
\]

Then the integration limit becomes
\[
\begin{equation*}
L_{2}^{\prime}=L_{2}-\frac{\left(r_{4}-r_{3}\right)(\stackrel{e}{v} \cdot \hat{j})}{\sqrt{1-\left(e_{v} \cdot \hat{j}\right)^{2}}} \tag{B38}
\end{equation*}
\]

The limits of integration are now
\[
\begin{aligned}
& -\mathrm{L}_{1} \leq \mathrm{y} \leq \mathrm{L}_{2}^{\prime} \\
& -\frac{\mathrm{w}}{2} \leq \mathrm{z} \leq \frac{\mathrm{w}}{2}
\end{aligned}
\]

Using the results of Equation (B12), we get
\[
\begin{aligned}
T_{c i} & =q_{2}\left(\vec{n}_{i} \cdot \vec{e}_{v}\right) x\left[\frac{\sqrt{3}}{2} W^{3}\left\{L_{1}+L_{2}^{\prime}\right\} \cos {\underset{3}{\pi}(i-1)+\underset{2}{W}\left\{L_{2}^{\prime 2}-L_{1}^{2}\right\} \hat{j}}-\frac{\sqrt{3}}{2} W^{3}\left(L_{1}+L_{2}\right) \sin \frac{\pi}{3}(i-1) \hat{k}\right]
\end{aligned}
\]
where
\[
n_{i}=\cos \cdot \frac{\pi}{3}(i-1) \hat{i}-\sin \frac{\pi}{3}(i-1) \hat{k}
\]

This torque is valid for \(e_{v} \cdot \hat{j}>0\) and zero for \(e_{v} \cdot j \leq 0\).
Equation(B39) represents the torque for each plane ( \(i=1,2,3,4,5\), and 6). A sum of the torques for each plane that meets the following conditions ( \(\vec{e}_{\mathrm{v}} \cdot \vec{n}_{\mathbf{i}} \geq 0\) ) must be performed to obtain the total torque due to the cylinder.

The torque due to the disk (see FigureB4) for \(\vec{e}_{v} \cdot \hat{j}^{j}>0\) is just the result shown by Equation (B24). Equation (B24) is substituted into Equation (B2) to give
\[
\begin{equation*}
\vec{T}_{s p}=q_{2}\left(\vec{e}_{v} \cdot \vec{n}^{\prime}\right)\left(\vec{e}_{v} x L_{2} \pi r_{4}^{2} \hat{j}\right) \tag{B40}
\end{equation*}
\]
where \(\vec{n}^{\prime}=\hat{j}\), and the torque is valid for \(\left(\vec{e}_{\mathrm{v}} \cdot \hat{\mathrm{j}}\right) \leq 0\).
\[
T_{a}= \begin{cases}q_{2} \vec{e}_{v} x\left(\sum_{i}\left(\vec{n}_{i} \cdot \vec{e}_{v}\right) \vec{v}_{i}+\left(\vec{n} \cdot \vec{e}_{v}\right)\left(\vec{v}+\vec{v}_{E}\right)\right.  \tag{B41}\\ \left(\vec{n}_{i} \cdot \vec{e}_{v}>0\right) & \text { for } \vec{e}_{v} \cdot \hat{j} \leqslant 0 \text { or } E_{y} \geq 0 \\ \left.q_{2} \vec{e}_{v} x\left(\sum_{i}\left(\vec{n}_{i} \cdot \vec{e}_{v}\right) \vec{v}_{i}+\left(\vec{n}^{\prime} \cdot \vec{e}_{v}\right) \vec{v}^{\prime}\right)\right) & \text { for } e_{v} \cdot \hat{j}>0 \text { or } F_{y}<0 \\ \left(n_{i} \cdot e_{v}>0\right)\end{cases}
\]
where
\[
\begin{aligned}
& \vec{v}_{i}=\frac{\sqrt{3} W^{3}}{2} L \cos \frac{\pi}{3}(i-1) \hat{i}+\frac{W}{2}\left|L_{2}^{2}-L_{1}^{2}\right| \hat{j}-\frac{3}{2} W^{3} \sin \frac{\pi}{3}(i-1) \hat{k} \\
& \vec{n}_{i}=\cos \frac{\pi}{3}(i-1) \hat{i}-\sin \frac{\pi}{3}(i-1) \hat{k} \quad \text { for } i=1, \ldots 6 . \\
& \vec{n}=-\hat{j} \\
& \vec{n}^{\prime}=\hat{j} \\
& \left.\left.v_{i}^{\prime}=\frac{3}{2} W^{3}\left\{L_{1}+L_{2}^{\prime}\right\} \cos \frac{\pi}{3}(i-1) \hat{i}+\frac{W}{2} \right\rvert\, L_{2}^{\prime 2}-L_{1}^{2}\right) \hat{j}-\frac{3}{2} W^{3}\left|L_{1}+L_{2}^{\prime}\right| \sin \frac{\pi}{3}(i-1) \hat{k} \\
& L_{2}^{\prime}=L_{2}-\frac{\left(r_{4}-r_{3}\right)\left(e_{v} \cdot \hat{j}\right)}{\sqrt{1-\left(\vec{e}_{v} \cdot \hat{j}\right)^{2}}} \\
& \vec{v}^{\prime}=L_{2} \pi r_{4}^{2}-r_{3}^{2} \hat{j} \\
& V_{E}=L_{1} \pi r_{3}^{2} \hat{j}
\end{aligned}
\]
\[
\begin{aligned}
\vec{v} & =\left[\left(r_{3}\left(r_{4}^{2}-r_{3}^{2}\right) \sin \theta\right) \hat{\mathrm{i}}\right. \\
& +\left(\mathrm{L}_{2} \pi r_{4}^{2}-\mathrm{I}_{2} \pi r_{3}^{2}-L_{2} \dot{r}_{3}\left(r_{4}^{2}-\dot{r}_{3}^{2}\right)\right)^{1 / 2}-L_{2} r_{4}^{2} \sin ^{-1}\left(\frac{x^{\prime}}{r_{4}}\right)^{\prime} \hat{j} \\
& \left.-\left(r_{3^{\prime}}\left(r_{4}^{2}-r_{3}^{2}\right) \cos \right) \theta \mathrm{k}\right]
\end{aligned}
\]
where
\[
\begin{aligned}
& \sin \theta=\frac{v_{x}}{\sqrt{1-v_{y}^{2}}} \\
& \cos \theta=\frac{v_{z}}{\sqrt{1-v_{y}^{2}}}
\end{aligned}
\]
and the symbol
\[
\sum_{i}
\]
means sum over the surfaces.whose angle of attack is positive.

The torque equation derived'above is not an:exact: representation of the vehicle's aerodynamic torque. Frictionalior dissipative torques are small compared with pressure torques; therefore, frictional torques were neglected.

In the derivation of pressure torque, the solar panels were assumed to be a solid disk, where in actuality, six rectangular panels are the solar panelis (see Figure B7).


Figure B7. Solar Panel Configuration

The torque due to the solar panels in reality is varying with a frequency six times the spin rates as opposed to the result obtained in this analysis. The result derived in this analysis is varying relative to the body axis only, but not the magnitude of the torque. In Figure B7, the shaded area covers only part of the two solar panels, and as the spacecraft rotates, varying amounts of solar panel area are shaded. It is for this reason the magnitude of the solar panel torques is varying approximately six times the spin rate. The disk-shaped panels give a larger magnitude of torque but remain constant in absolute value.

\section*{CENTER OF MASS VELOCITY IN BODY PRTNICPAL AXES}

The vector, \(\vec{e}_{y^{\prime}}\), used throughout the development represents the direction of the spacecraft center of mass travel. This vector is used because the stream velocity is assumed to lie in the orbit plane of the vehicle. The velocity of the stream due to earth's rate is amll in compaxison with the velocity of the spacecraft center of mass. Therefore, a transformation from local vertical coordinate to inertial, then to body principal coordinates is required (See Figure BB).


Figure B8. Relationship of Local Vertical Frame to Tnertial Frame

The transformations are
\[
\begin{equation*}
\bar{X}_{I}=F\left(\Omega, i_{,} \gamma\right)^{T} \overline{\mathrm{X}}_{\mathrm{L}} \tag{B42}
\end{equation*}
\]

\section*{PRECEDING PAGE BLANK NOT FLMED.}
where
\(\gamma=\omega_{0}\left(t-t_{0}^{\prime}\right)\)
\(\omega_{0}=\) onbit-rate.
\(t_{0}^{\prime}=\) initial time ofrspacecraftreference.point.

\section*{APPENDIX C}

DERIVATION OF THE MAGNETIC AND GRAVITATIONAL TORQUES IN TERMS OF THE STATE VARIABLES

\section*{PBECEDING PAGE BLANK NOT FILMED.}

\section*{APPENDIX C}

DERIVATION OR THE MAGNETIC AND GRAVITATIONAL TORQUES IN TERMS OF TEE STATE VARIABLES

Appendix \(C\) derives the magnetic and gravitational torques of Equation (27) un terms of the state variables and their rates. Equation (27) after substitution of the Euler matrix in vector form becomes
\[
\begin{align*}
& \left.-\mathrm{M}_{\mathrm{z}} \operatorname{s\theta c\phi }\right]-\mathrm{B}_{\mathrm{y}}\left[\mathrm{M}_{\mathrm{x}} \mathrm{~s} \psi \mathrm{~s} \theta+\mathrm{M}_{\mathrm{y}} \mathrm{c} \mathrm{\psi s} \theta+\mathrm{M}_{\mathrm{z}} c \theta\right] \\
& \hat{T}_{M_{y}}=B_{x}\left[M_{x} s \psi s \theta+M_{y} c \psi s \theta+M_{z} c \theta\right] \\
& -\mathrm{B}_{\mathrm{z}}\left[\mathrm{M}_{\mathrm{x}}(\mathrm{c} \psi \mathrm{c} \phi-\operatorname{c\theta s} \phi s \psi)-\mathrm{M}_{\mathrm{y}}(\mathrm{~s} \psi \mathrm{c} \phi+\operatorname{c\theta s} \psi \mathrm{s} \phi)\right.  \tag{C1}\\
& \left.+\mathrm{M}_{\mathrm{z}} \operatorname{s\theta s} \phi\right] \\
& T_{M_{z}}=B_{y}\left[M_{x} c \psi c \phi-c \theta s \psi s \phi\right]-M_{y}(s \psi c \phi+\operatorname{c\theta s\phi c\psi }] \\
& \left.\div M_{z} \operatorname{s\theta s} \phi\right]-B_{x}\left[M_{x} c \psi s \phi+c \theta c \phi s \psi\right) \\
& \left.+M_{y}(-s \psi s \phi+c \theta c \phi c \psi)-M_{z} s \theta c \psi\right]
\end{align*}
\]
(Note for the symmetric body case that since both \(\psi\) and \(\phi\) are each periodic with non-integer periods, the only net average nonzero term \(1 s\) the \(\mathrm{M}_{z} \cos \theta\) in the first two equations.)

After substitution
\[
\begin{align*}
& T_{E_{X}}=K\left[\left(B_{X}^{2}=B^{2}\right) c \phi+B_{X} B_{y} S \phi\right) \dot{\dot{\theta}}+\left[\left(B_{X}^{2}=B^{2}\right) s \phi s \theta\right. \\
& \left.\left.-B_{x} B_{y} c \phi s \theta+B_{x} B_{z} c \theta\right) \dot{\bar{\psi}}+B_{x} B_{z} \phi\right] \\
& T_{E_{Y}}=K\left[\left(B_{\underline{Y}}^{2}-\underline{B}^{2}\right) s \phi+B_{y} B_{X} C \phi\right) \dot{\theta}+1=\left(B_{Y}^{2}=B^{2}\right) c \phi s \theta \\
& \left.\left.\left.+B_{y} B_{x} s \phi s \theta+B_{y} \underline{B}_{z} \underline{\underline{c} \theta}\right\} \dot{\psi} \cdot \neq B_{y} \underline{B}_{z} \dot{\phi}\right)\right] \tag{Ce}
\end{align*}
\]
\[
\begin{aligned}
& \left.+\left(B_{z}^{2}-B^{2}\right)(\theta) \dot{\psi}+B_{z}^{2}-B^{2} \mid \dot{\phi}\right]
\end{aligned}
\]

The gravity gradient torques are somewhat more involved since they are related to the spacecraft symmetry, In order to include both symmetric and nonsymmetric inertia conditions, the inertia matrix is written as
\[
I=I\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & a
\end{array}\right)+\left(\begin{array}{rrr}
\varepsilon & 0 & 0 \\
0 & =\varepsilon & 0 \\
0 & 0 & 0
\end{array}\right)
\]
where
\[
\begin{aligned}
& a=I_{z} I I \\
& \epsilon=\frac{I y-I}{y_{x}} \\
& I=\frac{I_{y}+I_{x}}{2}
\end{aligned}
\]

From Equation (27), the term \(\mathrm{E}^{-1}\) IE is the only term containing the Euler angle terms, so the averaging of this matrix is sufficient. The product of \(\mathrm{E}^{-1}\) IE for the first term of Equation (C3) is the symmetric matrix
\[
H=\left[\begin{array}{cccc}
1-s^{2} \phi s^{2} \theta(1-a) & c \phi s \phi s^{2} \theta(1-a) & -s \phi c \theta s \theta(1-a)  \tag{C3}\\
- & 1-c^{2} \phi s^{2} \theta(1-a) & \operatorname{coc} \theta s \theta(1-a) \\
- & & & 1-c^{2} \theta(1-a)
\end{array}\right]
\]

The product of \(E^{-1}\) IE for the second term of Equation (C3) is the symmetrici: matrix \(C\) whose terms are
\[
\begin{aligned}
C_{11}= & \varepsilon\left(-\left(c^{2} \psi-s^{2} \psi\right)\left(c^{2} \phi-c^{2} \theta s^{2} \phi\right)+4 c \phi s \phi c \psi s \psi c \theta\right) \\
C_{12}= & -\varepsilon\left(f^{2} \psi-s^{2} \psi\right)\left(c \phi s \phi\left(1+c^{2} \theta\right)\right) \\
& \left.+2 c \psi s \psi c \theta\left(c^{2} \phi-s^{2} \phi\right)\right) \\
C_{13}= & -\varepsilon\left(c \theta s \theta s \phi\left(c^{2} \psi-s^{2} \psi\right)+2 c \psi s \psi c \phi s \theta\right) \\
C_{22}= & \left.\varepsilon\left(-\left(c^{2} \psi-s^{2} \psi\right) s^{2} \phi c^{2} \theta\right)+2 c \psi s \psi c \phi s \phi c \theta\right) \\
C_{23}= & \left.\left.-\varepsilon\left(c \theta s \theta c \phi c^{2} \psi\right)-s^{2} \psi\right)+2 c \psi s \psi s \phi s \theta\right) \\
C_{33}= & -\varepsilon\left(s^{2} \theta\left(c^{2} \psi-s^{2} \psi\right)\right)
\end{aligned}
\]

The torques can be written in terms of the matrix \(D=I I+C\) and the components of Equation (41) as
\[
\left.\begin{array}{l}
T_{G_{x}}=\left(\begin{array}{l}
\left.I\left[D_{33}-D_{22}\right) r_{2} r_{3}+D_{23}\left(r_{2}^{2}-r_{3}^{2}\right)+D_{13} r_{1} r_{2}-D_{12} r_{1} r_{3}\right] \\
\dot{T}_{G_{y}} \\
I\left[\left(D_{11}-D_{33}\right) r_{1} r_{3}+D_{13}\left(r_{3}^{2}-r_{1}^{2}\right)+D_{12} r_{2} r_{3}-D_{23} r_{1} r_{2}\right] \\
T_{G_{z}}=
\end{array}\right]\left(\left[D_{22}-D_{11}\right) r_{1} r_{2}+D_{12}\left(r_{1}^{2}-r_{2}^{2}\right)+D_{23} r_{1} r_{2}-D_{13} r_{2} r_{3}\right] \tag{C4}
\end{array}\right)
\]

\section*{APPENDIX D}

APPROXIMATE CLOSED-EORM SOLUTION FOR THE ATTITUDE OF A WEAKLY
TORQUED ASYMMETRIC SPACECRAFT

\title{
Fhesebing Page blank not \\ rluale
}

\author{
APPENDIX D \\ APPROXIMATE CLOSED-FORM SOLUTION \\ FOR THE ATTITUDE OF A WEATLY TORQUED ASYMIMETRIC SPACECRAFT
}

The cobjective was to develop efficient means of computing the spacecraft state over a time interval \(0 \geq t \geq \mathrm{T}\), with only knowledge of the principal moments of inertia, spacecraft attitude and angular velocity at time zero, and applied torque over the time interval of interest. This problem has been studied by a wide variety of people and indeed is somewhat "classical". Studies have concentrated on the problem as applied to the Attitude-Referenced Radiometer Study (ARRS) spacecraft which has a favorable inertia condition (i. e. . almost completely symmetric with \(\left(I_{y}-I_{z}\right) / I_{y} \sim 0.1\) and \(\left|I_{x}-I_{z}\right| / I_{x} \sim 0.01\) and with torques that, while not simple, are manageable.

Reference 19 provides a baseline for further study of the general ARRS attitude determination problem. The approach to the spacecraft modeling problem was that, of application of a fourth-order Runge-Kutta numerical antegration technique, first to the equation for the time rate of change of angular velocity in spacecraft (principal) axes and secondly to the equations relating Euler angle rates to body (spacecraft) rates (i.e., six integrations for \(\dot{\omega}_{\mathrm{X}}, \dot{\omega}_{\mathrm{Y}}, \dot{\omega}_{\mathrm{Z}}, \dot{\theta}, \dot{\varphi}, \dot{\psi}\) ). Results indicated good mumerical stability (and accuracy) could be achieved with an integration step size of 0.4 second for time durations as long as one full orbit ( 90 minutes). Thus, performance accuracy was excellent, but the efficiency of this calculation was thought to be poor ("efficiency" measured in terms of computer time to real time ratio). Hence, other means of medeling the spacecraft wexe sought.

This Appendix is divided into the following technical sections: Coordinate Frame and Angular Rates: Problem Separation; The Untorqued Case: The Torqued Case; Computer Mechanization: and Torque Averaging. Several
comments are made relative to this organization. The equation of motion is divided inot two parts, the first of which is the untorqued case and the second, of course, with torque. The untorqued case has a known general solution in terms of elliptic functions. The work of that section is obtain efficient and accurate means for implementing the solution. While these approximations can be analyzed analytically, it is much more practical to experimentally test them with a computer. The section on computer mechanization is not meant to be a computer program, but rather to indicate all of the required computation in a means that is easily programmable.

\section*{COORDINATE FRAMES AND ANGULAR RATES}

This section describes the kinematic relationship which forms the framework of the analysis to follow. Attachment I provides a derivation of these relationships.

Three coordinate frames will be used: inertial, angular momentum, and body principal axes. These are labeled respectively:
\[
\begin{aligned}
& \left(\hat{\mathrm{H}}_{\mathrm{i}}, \hat{J}_{i}, \hat{K}_{i}\right)=\text { Inertial frame } \\
& \left(\hat{\mathrm{I}}_{\mathrm{H}}, \hat{J}_{\mathrm{H}}, \hat{\mathrm{~K}}_{\mathrm{H}}\right)=\text { Anguiar momentum frame } \\
& \left(\hat{\mathrm{I}}_{\mathrm{B}}, \hat{J}_{\mathrm{B}}, \hat{\mathrm{~K}}_{\mathrm{B}}\right)=\text { Body principal axes frame }
\end{aligned}
\]

Relationships between these are described below.

> BODY-TO-SPACE TRANSFORMATION - THE "E" MATRIX

By definition, the body axes are related to inertial axes by the "E" matrix, viz:
and the Euler rates are
\[
\begin{align*}
\dot{\psi} \cos \varphi & =-\omega_{\mathrm{X}_{\mathrm{B}}} \sin \theta+\omega_{Z_{\mathrm{B}}} \cos \theta \\
\dot{\varphi} & =\omega_{\mathrm{X}_{\mathrm{B}}} c \theta+\omega_{Z_{\mathrm{B}}} s \theta \\
\dot{\theta} & =\omega_{\mathrm{Y}_{\mathrm{B}}}-\dot{\psi} \sin \varphi \tag{D2}
\end{align*}
\]
where ( \(\omega_{X_{B}},{ }^{\omega} Y_{B}, \omega_{Z_{B}}\) ) are the components of the angular rate of the body principal axis frame with respect to (WRT) inertial space expressed in body axes.

\section*{ANGULAR MOMENTUM FRAME}

The angular momentum frame is an intermediate frame between inertial and body axes and is defined as follows:
\[
\left.\begin{array}{l}
\left(\begin{array}{l}
\hat{I}_{H} \\
\hat{J}_{H} \\
\hat{K}_{H}
\end{array}\right)=(F(\mu, \nu, \sigma)
\end{array}\right)\left(\begin{array}{c}
\hat{I}_{i} \\
\hat{J}_{i} \\
\hat{K}_{i}
\end{array}\right)=\left[\begin{array}{cc}
(c \sigma c \mu-s \mu s v s \sigma)(s \mu c \sigma+c \mu s \nu s \sigma)(-s \sigma c \nu) \\
(-s \mu c \nu) & (c \mu c \nu) \\
(s \sigma c \mu+s \mu s v c \sigma)(s \sigma s \mu-c \mu s v c \sigma)(c \nu c \sigma)
\end{array}\right]\left(\begin{array}{c}
\hat{I}_{i} \\
\hat{J}_{i} \\
\hat{\mathrm{~K}}_{i}
\end{array}\right)
\]
(D4)
so that
\[
\begin{equation*}
E(\psi, \varphi, \theta)=A(\xi, \eta, \zeta) \cdot F(\mu, \underline{y}, \sigma) \tag{D5}
\end{equation*}
\]

The Euler rates are given by:
\[
\begin{align*}
\dot{\mu} c v & =-\mathrm{V}_{\mathrm{X}_{\mathrm{H}}} \mathrm{~s} \mathrm{\sigma}+\mathrm{V}_{\mathrm{Z}_{\mathrm{H}}} \mathrm{c} \mathrm{\sigma} \\
\dot{\nu} & =\mathrm{V}_{\mathrm{X}_{\mathrm{H}}} \mathrm{c} \mathrm{\sigma}+\mathrm{V}_{\mathrm{Z}_{\mathrm{H}}} \mathrm{~s} \mathrm{\sigma} \\
\dot{\sigma} & =\mathrm{V}_{\mathrm{Y}_{\mathrm{H}}}-\dot{H} \mathrm{sv} \tag{D6}
\end{align*}
\]
where ( \(V_{X_{H}}, V_{Y_{H}}, V_{Z_{H}}\) ) are the components of angular rate of the angular momentum frame WRT inertial space expressed in angular momentum coordinates.

Further
\[
\begin{align*}
\dot{\eta} & =U_{X_{B}} s \zeta+U_{Z_{B}} c \zeta \\
\dot{5} \mathrm{ch} & =U_{X_{B}} c \zeta-U_{Z_{B}} \mathrm{~B} \zeta \\
\dot{\zeta} & =U_{X_{B}}-\dot{\xi} s \eta \tag{D7}
\end{align*}
\]
where \(\left(\mathrm{U}_{\mathrm{X}}, \mathrm{UY}_{\mathrm{B}}, \mathrm{U}_{Z_{B}}\right)\) are the components of angular rate of the body axis frame WRT the angular momentum frame expressed in body axes.

Hence,
\[
\begin{aligned}
\vec{\omega}= & \vec{U}+\vec{V}=(\text { body rate WRT inertial space })=(\text { rate of angular momentum } \\
& \text { frame WRT inertial space })+(\text { rate of body axes WRT angular momen } \\
& \text { tum frame })
\end{aligned}
\]

Details of these relationships may be found in Attachment 1 . As will be seen in the work to follow, the transformation \(F(\mu, \nu, \sigma)\) is essentially an initial condition matrix. However, angles \(\mu\) and \(\nu\) will vary as the direction of the spacecraft's angular momentum vector varies due to the presence of torque. The matrix \(A(\xi, \eta, \zeta)\) varies as the attitude of an untorqued spacecraft varies.

\section*{PROBLEM SEPARATION}

The equations of motion for the spacecraft
\[
\begin{align*}
& A \dot{\omega}_{X_{B}}=(\dot{B}-C) \omega_{Y_{B}} \omega_{Z_{B}}={ }^{\top} X_{B} \\
& B_{B}^{*} \omega_{X_{B}}-(C-A) \omega_{Z_{B}}{ }^{\omega} X_{B}={ }^{\top} Y_{B} \\
& C \dot{\omega}_{Z_{B}}-(A-B) \omega_{X_{B}} \omega_{Y_{B}}={ }^{\top} Z_{B} \tag{D8}
\end{align*}
\]
where \(A, B\), and \(C\) are the inertia tensor components in diagonal representation and \(\tau X_{B}, T Y_{B}, \tau Z_{B}\) are the components of the total external torque expressed in body axes.

In vector notation, the equation of motion is
\[
I \cdot \dot{\vec{\omega}}+\overrightarrow{\omega_{2}} \times I \cdot \overrightarrow{\omega_{2}}=\vec{\tau}
\]
where
\[
I=\left\{\hat{\mathrm{I}}_{\mathrm{B}}, \hat{J}_{\mathrm{B}}, \hat{\mathrm{~K}}_{\mathrm{B}}\right\rangle\left(\begin{array}{ccc}
\mathrm{A} & 0 & 0 \\
0 & B & 0 \\
0 & 0 & C
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{I}}_{\mathrm{B}} \\
\mathrm{~J}_{\mathrm{B}} \\
\mathrm{~K}_{\mathrm{B}}
\end{array}\right)
\]
and the "dot" over the \(\vec{\omega}\) means WRT body axes. As given previously.
\[
\vec{\omega}=\overrightarrow{\mathrm{U}}+\overrightarrow{\mathrm{V}}
\]
and therefore
\[
I \cdot(\dot{\vec{U}}+\dot{\vec{V}})+(\overrightarrow{\mathrm{U}}+\overrightarrow{\mathrm{V}}) \times I \cdot(\overrightarrow{\mathrm{U}}+\overrightarrow{\mathrm{V}})=\overrightarrow{\mathrm{T}}
\]
or
\[
(\mathrm{I} \cdot \overrightarrow{\mathrm{U}}+\overrightarrow{\mathrm{U}} \times I \cdot \overrightarrow{\mathrm{U}})+(\dot{\mathrm{V}}+\overrightarrow{\mathrm{U}} \times I \cdot \overrightarrow{\mathrm{~V}}+\overrightarrow{\mathrm{V}} \dot{\times} \mathrm{I} \cdot \overrightarrow{\mathrm{U}}+\overrightarrow{\mathrm{V}} \times I \cdot \overrightarrow{\mathrm{~V}}-\vec{\tau})=\overrightarrow{0}
\]

The first term of Equation (D9) in form is precisely that of an untorqued vehicle, while the second term is all that remains. In component form, Equation (D9) may be expressed as:
\[
\begin{align*}
& A \dot{U}_{1}-(B-C) U_{2} U_{3}=0 \\
& B \dot{U}_{2}-(C-A) U_{3} U_{1}=0 \\
& C \dot{U}_{3}-(A-B) U_{1} U_{2}=0 \tag{D10}
\end{align*}
\]
and
\[
\begin{align*}
& A \dot{V}_{1}-(B-C)\left(U_{2} V_{3}+U_{3} V_{2}+V_{2} V_{3}\right)-T_{1}=0 \\
& B \dot{V}_{2}-(C-A)\left(U_{3} V_{1}+U_{1} V_{3}+V_{3} V_{1}\right)-T_{2}=0 \\
& C \dot{V}_{3}-(A-B)\left(U_{1} V_{2}+U_{2} V_{1}+V_{1} V_{2}\right)-\tau_{3}=0 \tag{D11}
\end{align*}
\]
where for brevity the indices 1,2 , and 3 replace " \(X_{B}, Y_{B}, Z_{B}\) " respectively.

Equation (D10) has a general solution, while Equation (D11) is, in general, not solvable explicitly. Essentially, however, for the purposes of spacecraft modeling, Equation (D10) may be used as a baseline solution, and Equation (D11) may be used as a perturbation.

\section*{THE UNTORQUED CASE}

This section deals with the general Euler equation solution for an untorqued spacecraft and then the specialized solution for the ARRS baseline configuration.

FUNDAMENTAL SOLUTION

The fundamental solution of Equation (D10) is given conditionally in 'Table D1. where the angle, \(\varphi\), is defined by:
\[
\begin{equation*}
p\left(t-t_{0}\right)=\int_{\varphi=\varphi\left(t_{0}\right)}^{\varphi=\varphi(t)} \frac{d \varphi}{\sqrt{1-k^{2} \sin ^{2} \varphi}} \tag{D12}
\end{equation*}
\]

Attachment II outlines this solution. Paragraphs to follow will develop how Equation (D12) may be implemented practically.
\(t=t(\varphi)\) RELATIONSHIP

The elliptic integral is defined by
\[
\begin{equation*}
\mathrm{pdt}=\left(1-\mathrm{k}^{2} \sin ^{2} \varphi\right)^{-1 / 2} \mathrm{~d} \varphi \tag{D13}
\end{equation*}
\]
where
\[
k^{2}= \begin{cases}\frac{(C-A)\left(2 B T-H^{2}\right)}{(B-C)\left(H^{2}-2 A T\right)} & \text { Case } 1 \text { with } B>C \geq A \\ \frac{(A-C)\left(2 B T-H^{2}\right)}{(B-A)\left(H^{2}-2 C T\right)} & \text { Case } 2 \text { with } B>A \geq C\end{cases}
\]

In either case, the magnitude of \(\mathrm{k}^{2}\) is given by
\[
\begin{aligned}
k^{2} & =\left\langle\frac { C - A } { B - C } \left[\left[\frac{A(B-A) U_{1}^{2}+C(B-C) U_{3}^{2}}{B(B-A) U_{2}^{2}+C(C-A) U_{3}^{2}}\right] \approx\left(\frac{C-A}{B-A}\right)\left(\frac{U_{1}^{2}+U_{3}^{2}}{U_{2}^{2}}\right)\right.\right. \\
& =\left(\frac{C-A}{B-A}\right) \tan ^{2} \text { (cone angle) }
\end{aligned}
\]

The " \(x\) " and " \(z^{n}\) body principal moments will be matched to 1.0 percent or better, while the difference between the "spin" inertia and the "x" or " \(z\) " inertias is approximately 10 percent. The baseline configuration further calls for the cone angle to be damped under five degrees or 0.1 radian. Hence:
\[
\mathrm{k}^{2} \lesssim \frac{(0.01)}{(0.1)}(0.1)^{2} \sim 10^{-3}
\]

Now, expand Equation (D13) in a Taylor's series and integrate term by term:
\[
\begin{aligned}
p \int d t & =\int\left(1-k^{2} \sin ^{2} \varphi\right)^{-1 / 2} d \varphi \\
& =\int\left(1+\frac{k^{2}}{2} 2 \varphi+\frac{3}{8} k^{4} s^{4} \varphi+\ldots\right) d \varphi
\end{aligned}
\]
so that
\[
\begin{aligned}
p t & =\varphi+\frac{\mathrm{k}^{2}}{2}\left(\frac{\varphi}{2}-\frac{\mathrm{S} \mathrm{\varphi C} \mathrm{\varphi}}{4}\right)+\frac{3 \mathrm{k}^{4}}{8}\left(-\frac{3 \varphi}{8}-\frac{3 \mathrm{~s} \varphi \mathrm{c} \mathrm{\varphi}}{8}-\frac{\mathrm{s}^{3} \varphi \propto \varphi}{4}\right)+0\left(\mathrm{k}^{6}\right) \\
& =\left(1+\frac{\mathrm{k}^{2}}{4}+\frac{9 \mathrm{k}^{4}}{64}+\ldots\right) \varphi-\frac{\mathrm{k}^{2}}{4} \mathrm{~s} \varphi \propto \varphi+\frac{3 \mathrm{k}^{4}}{8}\left(\frac{-3 \sec \varphi}{8}-\frac{s^{3} \varphi \propto \varphi}{4}\right)+0\left(\mathrm{k}^{6}\right)
\end{aligned}
\]
and
\[
\left.\left.\frac{p t}{\left(1+\frac{k^{2}}{4}+\frac{9 k^{4}}{64}+\ldots\right)}=\varphi-\frac{k^{2}}{4}\right\rceil 1-\frac{k^{2}}{4}\right) \operatorname{s\varphi c} \varphi-\frac{9 k^{4}}{64} \operatorname{s\varphi c} \varphi-\frac{3 k^{4}}{32} s^{3} \varphi \propto \varphi+0\left(k^{6}\right)
\]

Let
\[
\omega=\frac{p}{\left(1+\frac{k^{2}}{4}+\frac{9 k^{4}}{64}+\ldots\right)}
\]

Then
\[
\begin{equation*}
t=t(\varphi)=\frac{\varphi}{\omega}-\frac{\mathrm{k}^{2}}{4 \omega} \operatorname{s\varphi c\varphi }\left[\left(1-\frac{5 k^{2}}{16}\right)+\frac{3 \mathrm{k}^{2} \mathrm{~s}^{2} \varphi}{8}\right]+0\left(\mathrm{k}^{6}\right) \tag{D14}
\end{equation*}
\]

This is the desired relationship.
\(\varphi=\varphi(t)\) RELATIONSHIP

It is found convenient to invert the \(t=t(\varphi)\) relationship, Equation (D14). Thus, let
\[
\varphi=\omega t+\alpha+\Delta \varphi
\]
lInen
\[
\begin{aligned}
. t= & \frac{\omega t+\alpha+\Delta \alpha}{\omega}-\frac{\mathrm{k}^{2}}{4 \omega}[\sin \omega t \cos (\alpha+\Delta \alpha)+\cos \omega t \sin (\alpha+\Delta \alpha)] \\
& {\left.[\cos \omega t \cos (\alpha+\Delta \alpha)-\sin \omega t \sin (\alpha+\Delta \alpha)] \left\lvert\, 1-\frac{5 k^{2}}{16}+\frac{3 k^{2} s^{2} \varphi}{8}\right.\right)+0\left(k^{6}\right) }
\end{aligned}
\]
and therefore
\[
\begin{aligned}
\Delta \varphi= & \frac{\mathrm{k}^{2}}{4} s \omega t c \omega t\left(1+\frac{5 \mathrm{k}^{2}}{16}+\frac{3 \mathrm{k}^{2}}{8} \mathrm{~s}^{2} \omega t\right) \\
& -\alpha\left[1+\frac{\mathrm{k}^{2}}{4}\left(\mathrm{~s}^{2} \omega t-\mathrm{c}^{2} \omega t\right)\left(1+\frac{5 \mathrm{k}^{2}}{16}+\frac{3 k^{2}}{8} \mathrm{~s}^{2} \omega t\right)\right]+0\left(\mathrm{k}^{6}\right)
\end{aligned}
\]

Now choose \(\alpha\) such that \(\Delta \varphi=0\left(k^{6}\right)\). Hence,
\[
\begin{equation*}
\varphi=\omega t+\frac{k^{2}}{4} \operatorname{s\omega tc} \omega t\left[\left\{1+\frac{9 k^{2}}{16}\right)-\frac{k^{2}}{8} s \omega t\right]+0\left(k^{6}\right) \tag{D15}
\end{equation*}
\]

\section*{EULER ANGLES}

The angular momentum associated with the angular velocity, \(\overrightarrow{\mathrm{U}}\), is given by
\[
\overrightarrow{\mathrm{H}}=A \mathrm{U}_{1} \hat{\mathrm{I}}_{\mathrm{B}}+\mathrm{BU}_{2} \hat{\mathrm{~J}}_{\mathrm{B}}+\mathrm{CU}_{3} \hat{\mathrm{R}}_{\mathrm{B}}
\]

Now, from the coordinate frame definition of Section II, choose the angles \((5, \eta, \zeta)\) such that
\[
\vec{H}=H \hat{J}_{H}=H\left(\operatorname{sn} \hat{I}_{B}+c \zeta e n \hat{J}_{B}-\sin \hat{\mathrm{K}}_{B}\right)
\]
and therefore,
\[
\begin{aligned}
& \mathrm{AU}_{1}=\mathrm{Hs} \eta \\
& \mathrm{BU}_{2}=\mathrm{Hc} / \mathrm{c} n \\
& \mathrm{CU}_{3}=-\mathrm{Hssc}
\end{aligned}
\]

Hence.
\[
\begin{align*}
& \zeta=\tan ^{-1}\left|\frac{-\mathrm{CU}_{3}}{\mathrm{BU}_{2}}\right|,-\pi \leq \zeta \leq \pi  \tag{D16}\\
& \eta=\sin ^{-1}\left|\frac{A U_{1}}{H}\right|,-\pi \leq \eta \leq \pi \tag{D17}
\end{align*}
\]

The value of \(\xi\) may be obtained from Equation (D7), viz . :
\[
\begin{aligned}
\dot{\xi} \mathrm{c} \mathrm{\eta} & =\mathrm{U}_{2} \mathrm{c} \zeta-\mathrm{U}_{3} \mathrm{~s} \zeta \\
& =\mathrm{c}\left(\frac{\mathrm{Hc} \mathrm{\zeta c}}{\mathrm{~B}}\right)-\mathrm{s}_{\mathrm{G}}\left(\frac{-\mathrm{Hs} \zeta \mathrm{c} \eta}{\mathrm{C}}\right)
\end{aligned}
\]
so that
\[
\begin{equation*}
\xi=\frac{H}{B}\left[1+\left(\frac{B-C}{C}\right) \sin ^{2} \zeta\right] \tag{D18}
\end{equation*}
\]

But, from Equation (D16),
\[
\sin ^{2} \zeta=\frac{\mathrm{C}^{2} \mathrm{U}_{3}^{2}}{\mathrm{~B}^{2} \mathrm{U}_{2}^{2}+\mathrm{C}^{2} \mathrm{U}_{3}^{2}}
\]

The two inertia cases must now be considered.

Case 1: \(A>B \geq C\)

From Table D1,
\[
\sin ^{2} \zeta=\frac{C^{2} \beta^{2} \sin ^{2} \varphi}{B^{2} \alpha^{2}\left(1-k^{2} \sin ^{2} \varphi\right)+C^{2} \beta^{2} \sin ^{2} \varphi}=\frac{\left(C^{2} \beta^{2} / B^{2} \alpha^{2}\right) \sin ^{2} \varphi}{1-\left[k^{2}-(C \beta / B \alpha)^{2}\right] \sin ^{2} \varphi}
\]

But, using Table DI,
\[
\left(\frac{\mathrm{CB}}{\mathrm{~B} \alpha}\right)^{2}-\mathrm{k}^{2}=\frac{\mathrm{A}^{2} \gamma^{2}}{\mathrm{~B}^{2} \alpha^{2}}
\]
so that
\[
\begin{equation*}
\sin ^{2} \zeta=\frac{(C B / B \alpha)^{2} \sin ^{2} \varphi}{1+\left(\frac{A^{2} \gamma^{2}}{B^{2} \alpha^{2}}\right) \sin ^{2} \varphi} \tag{D19}
\end{equation*}
\]

Case 2: \(A>C \geq B\)

From Table D1,
\[
\sin ^{2} \zeta=\frac{C^{2} y^{2} \cos ^{2} \varphi}{B^{2} \alpha^{2}\left(1-k^{2} \sin ^{2} \varphi\right)+C^{2} \gamma^{2} \cos ^{2} \varphi}=\frac{\left[\frac{C^{2} \gamma^{2}}{B^{2} \alpha^{2}+C^{2} y^{2}}\right] \cos ^{2} \varphi}{1-\left[\frac{C^{2} \gamma^{2}+B^{2} \alpha^{2} k^{2}}{B^{2} \alpha^{2}+C^{2} \gamma^{2}}\right] \sin ^{2} \varphi}
\]

But, using the equations of Table D1, this expression may be reduced to
\[
\begin{equation*}
\sin ^{2} \zeta=\frac{(C \gamma / H)^{2} \cos ^{2} \varphi}{1-(A \beta / H)^{2} \sin ^{2} \varphi} \tag{ذ்20}
\end{equation*}
\]

For approximation purposes it is noted that
\[
\left(\left.\left.\frac{\mathrm{C} \beta}{\mathrm{~B} \alpha}\right|^{2} \sim \right\rvert\, \frac{\mathrm{A}}{\mathrm{~B} \alpha}\right)^{2} \sim\left(\frac{\mathrm{C}}{\mathrm{H}}\right)^{2} \sim\left|\frac{\mathrm{~A}}{\mathrm{H}}\right|^{2} \lesssim(\text { cone angle })^{2} \lesssim 0.01
\]

Since \(\varphi\) is a known function of time [Equation D16)]. Equation (D18) may be integrated directly. The angle, \(g\), is, roughly speaking, the spin coordinate. To place a numerical value on the precision to which \(\xi\) must be calculated, it will be assumed that an "open loop" integration to an accuracy of two arc seconds for one-thind of an orbit will be required. For a constant error rate, \(\Delta \omega\), then,
\[
\Delta \omega t \lesssim 10^{5}
\]
where
\[
t=\frac{1}{3}(90 \text { minutes })=1800 \text { seconds }
\]
to that
\[
\Delta \omega \leqslant 5 \times 10^{-9} \text { radians } / \text { second }
\]

Hence, \(\sin ^{2} \zeta\) must be expanded to an accuracy corresoonding to this precision. That is;
\[
\Delta\left(\sin ^{2} \sigma\right)\left[\frac{B-C}{B}\right] \frac{H}{B} \leq 5 \times 10^{-9}
\]
or
\[
\Delta\left(\sin ^{2} \zeta\right) \leq \frac{\left(5 \times 10^{-9}\right)}{\frac{B-C}{C} \frac{B \omega}{B}} \sim \frac{5 \times 10^{-8}}{(0.1) \frac{2 \pi}{20}} \sim 10^{-7}
\]

Now examine \(\varphi\) for accuracy, The perturbation term of Equation (O15) occurs approximately at \(\omega t=\pi / 4\), so that this term at maxamum value is
\[
\frac{k^{2}}{8}\left(1+\frac{9 k^{2}}{16}-\frac{k^{2}}{8} \sin ^{2} \omega t\right)
\]
but
\[
\frac{9 k^{4}}{(8)(16)} \leqslant \frac{10^{-6}}{16}
\]
which is negligible compared with \(10^{-6}\). The same is true of the sine squared term. Hence for an accuracy of \(10^{-6}\) for \(\sin ^{2} \varphi, \varphi\) may be approximated to
\[
\varphi=\omega t+\frac{k^{2}}{4} s \omega t c \omega t
\]

Further,
\[
\frac{k^{2}}{4} \text { swtewt } \leq \frac{10^{-6}}{8} \leq 10^{-4}
\]
so that \(\varphi=\omega t\) is sufficiently accurate for all powers of sin \(\varphi\) above two. Therefore,
\[
\begin{aligned}
& \sin ^{2} \varphi=[\sin (\omega t+\alpha)]^{2} \sim(\sin \omega t \cos \alpha+\cos \omega t \sin \alpha)^{2} \\
& \sim \sin ^{2} \varphi=\sin ^{2} \omega t+\frac{k^{2}}{2} \sin ^{2} \omega t \cos ^{2} \omega t \\
&=\left|1+\frac{k^{2}}{2}\right\rangle \sin ^{2} \omega t-\frac{k^{2}}{2} \sin ^{4} \omega t
\end{aligned}
\]

The expressions of Equations (DI9) and (D20) for sin \(^{2} \$\) may be expanded yielding
\[
\sin ^{2} \zeta= \begin{cases}\left|\frac{C \beta}{B \alpha}\right|^{2} \sin ^{2} \varphi\left[1-\varepsilon^{2} \sin ^{2} \varphi+\varepsilon^{4} \sin ^{4} \varphi-\varepsilon^{6} \sin ^{6} \varphi\right]  \tag{D21}\\ \text { for } \varepsilon^{2}=(A y / B \alpha)^{2} & (\text { Case } 1) \\ \left|\frac{C y}{H}\right|^{2}\left(1-\sin ^{2} \varphi\right)\left[1+\varepsilon^{2} \sin ^{2} \varphi+\varepsilon^{4} \sin ^{4} \varphi+\varepsilon^{6} \sin ^{6} \varphi\right] \\ \text { for } \varepsilon^{2}=(A \beta / H)^{2} & \text { (Case 2) }\end{cases}
\]

Which are accurate to \(10^{-8}\) if the spacecraft cone angle is kept under approximately six degrees (five in the specification). The angle, \(\varphi\), is expressed as a function of time by Equation ( \(D 15\) ) and is accurate to the order of \(k^{6}\), It was shown earlier in this section that \(\mathrm{k}^{2} \leqslant 10^{-3}\), so that \(\mathrm{k}^{6} \leqslant 10^{-9}\) and \(\mathrm{k}^{4} \leqslant 10^{-6}\). Table \(D^{2} 2\), then, expresses the required accuracy of \(\sin ^{2} \varphi\) as a function of \(k\) in order to achieve an accuracy of \(10^{-8}\) (over-designed) for \(\sin ^{2} g\) to an accuracy of better than \(10^{-6}\).

TABLE D2-ACCURACY REQUIREMENTS FOR SIN
\begin{tabular}{|c|c|c|}
\hline Function & \begin{tabular}{c} 
Required \\
Accuracy
\end{tabular} & Order of \(k\) \\
\hline \(\sin ^{2} \varphi\) & \(10^{-6}\) & \(0\left(\mathrm{k}^{4}\right)\) \\
\(\sin ^{4} \varphi\) & \(10^{-4}\) & \(0\left(\mathrm{k}^{4}\right)\) \\
\(\sin ^{6} \varphi\) & \(10^{-2}\) & \(0\left(\mathrm{k}^{2}\right)\) \\
\(\sin ^{8} \varphi\) & \(10^{0}\) & \(0\left(\mathrm{k}^{0}\right)\) \\
\hline
\end{tabular}

Substitution of these approximations into Equation (D21) yields:
\[
\sin ^{2} \zeta=\left\{\begin{array}{c}
\left(\frac{C \beta}{B \alpha}\right)^{2}\left[\left\{1+\frac{k^{2}}{2}\right) s^{2} \omega t-\left(\varepsilon^{2}+\frac{k^{2}}{2}\right) s^{4} \omega t+\varepsilon^{4} s^{6} \omega t-\varepsilon^{6} s^{8} \omega t\right] \\
\text { for } \varepsilon^{2}=(A y / B \alpha)^{2} \quad(\text { Case 1) }
\end{array}\right\} \begin{gathered}
\frac{C y^{2}}{H} \begin{array}{c}
{\left[1-\left[1-\varepsilon^{2}+\frac{k^{2}}{2}\right) s^{2} \omega t-\left(\varepsilon^{2}-\varepsilon^{4}-\frac{k^{2}}{2}\right) s^{4} \omega t-\left(\varepsilon^{4}-\varepsilon^{6}\right) s^{6} \omega t\right.} \\
\left.-\varepsilon s_{s} \delta_{\omega} t\right]
\end{array} \\
\text { for } \varepsilon^{2}=(A \beta / H)^{2} \quad \text { (Case 2) } \tag{D22}
\end{gathered}
\]

Finally, then, to a total accuracy of \(5 \times 10^{-9}\) radians per second
\[
\begin{equation*}
\frac{\#}{5}=\frac{H}{B}\left[C_{0}+C_{2} \sin ^{2} \omega t+C_{4} \sin ^{4} \omega t+C_{6} \sin ^{6} \omega t+C_{8} \sin ^{8} \omega t\right] \tag{D23}
\end{equation*}
\]
where the C coefficients are computed according to whether Case 1 or Case 2 applies by the formulas of Table D3.

TABLE D3. COEFFICIENTS FOR \(\dot{\xi}\) EXPANSION
\begin{tabular}{|l|l|l|}
\hline Coefficient & Value for Case 1 & Value for Case 2 \\
\hline \(\mathrm{d}_{1}\) & \((\mathrm{~B}-\mathrm{C} / \mathrm{C})(\mathrm{C} \beta / \mathrm{B} \alpha)^{2}\) & \((\mathrm{~B}-\mathrm{C} / \mathrm{C})(\mathrm{C} / \mathrm{H} /)^{2}\) \\
\(\mathrm{~d}_{2}\) & \((\mathrm{~A} / \mathrm{B} \alpha)^{2}\) & \((\mathrm{~A} \beta / \mathrm{H})^{2}\) \\
\(\mathrm{C}_{0}\) & 1.0 & \(1.0+\mathrm{d}_{1}\) \\
\(\mathrm{C}_{2}\) & \(\mathrm{~d}_{1}\left(1+\mathrm{k}^{2} / 2\right)\) & \(-\mathrm{d}_{1}\left(1-\mathrm{d}_{2}+\mathrm{k}^{2} / 2\right)\) \\
\(\mathrm{C}_{4}\) & \(-\mathrm{d}_{1}\left(\mathrm{~d}_{2}+\mathrm{k}^{2} / 2\right)\) & \(-\mathrm{d}_{1}\left(\mathrm{~d}_{2}-\mathrm{d}_{2}^{2}-\mathrm{k}^{2} / 2\right)\) \\
\(\mathrm{C}_{6}\) & \(\mathrm{~d}_{1} \mathrm{~d}_{2}^{2}\) & \(-\mathrm{d}_{1}\left(\mathrm{~d}_{2}^{2}-\mathrm{d}_{2}^{3}\right)\) \\
\(C_{8}\) & \(-\mathrm{d}_{1} \mathrm{~d}_{2}^{3}\) & \(-\mathrm{d}_{1} \mathrm{~d}_{2}^{3}\) \\
\hline
\end{tabular}

Attention is now turned toward the integration of \(\dot{\xi}\) to obtain the third Euler angle. Thus,
\[
\begin{aligned}
& \xi\left(t_{n+1}\right)= \xi\left(t_{n}\right)+\int_{t_{n}}^{t_{n+1}} \dot{\xi}(\tau) d \tau \\
&= \xi\left(t_{n}\right)+\int_{t_{n}}^{t_{n+1}} \frac{H}{B}\left(C_{0}+C_{2} \sin _{2} \omega t+C_{4} \sin ^{4} \omega T+C_{6} \sin ^{6} \omega \tau+C_{8} \sin ^{8} \omega \tau\right) d \tau \\
&=\xi\left(t_{n}\right)+d_{3}\left\{C_{0}\left[H_{0}\left(t_{n+1}\right)-H_{0}\left(t_{n}\right)\right]+C_{2}\left[H_{1}\left(t_{n+1}\right)-H_{1}\left(t_{n}\right)\right]\right. \\
&+C_{4}\left[H_{2}\left(t_{n+1}\right)-H_{2}\left(t_{n}\right)\right]+C_{8}\left[H_{3}\left(t_{n+1}\right)-H_{3}\left(t_{n}\right)\right] \\
&\left.+C_{8}\left[H_{4}\left(t_{n+1}\right)-H_{4}\left(t_{n}\right)\right]\right\}
\end{aligned}
\]
where
\[
\begin{aligned}
d_{3} & =H / B \omega \\
H_{0}(T) & =\omega T \\
G_{0}(\tau) & =\sin \omega \tau \cos \omega T \\
H_{m}(\tau) & =-\frac{G_{m-1}(\tau)}{2 m}+\left(\frac{2 m-1}{2 m}\right) H_{m-1}(\tau)
\end{aligned}
\]
and
\[
G_{m}(\tau)=\sin ^{2} \omega \tau G_{m-1}(\tau)
\]
so that
\[
\int_{t_{n}}^{t_{n+1}} \sin ^{2 m_{w \tau}} d(\omega \tau)=H_{m}\left(t_{n+1}\right)-H_{m}\left(t_{n}\right)
\]

The development of the integral recursion formula may be found in Attachment III.

\section*{SUMMARY}

Table \(D 4\) summarizes the computation required for the untorqued solution within the ground rules set forth herein. The following notes are applicable to Table D4.
1) Indices " B " and " A " denote "Before" and After".
2) The angle, \(\varphi_{\mathrm{B}}\), must be obtained in the correct quadrant initially. Signs and phase depend on the inequality conditions for Cases 1 and also that \(\mathrm{U}_{2}>0\).
3) \(\Delta t\) is the computing interval step size.
4) \(\zeta\) and \(\eta\) should be computed initially with \(U=U\left(\varphi_{B}\right)\), (i. e., at time \(t=0\) and U's used to compute \(\zeta\) and \(\eta\) should be initial values.
5) Arbitrarily set \(\xi=0\) at \(t=0\).

\section*{THE TORQUEDCASE}

This section develops the computational means to obtain change in spacecraft attitude due to the presence of a torque.

\section*{PROBLEM DEFINTTION}

From a previous section, the spacecraft modeling problem has been divided into two parts, the first of which was dealt with previously. This selection will deal with the solution of Equation (D11), which is repeated here for convenience:
\[
\begin{aligned}
& A V_{1}-(B-C)\left(U_{2} V_{3}+U_{3} V_{2}+V_{2} V_{3}\right)-\tau_{1}=0 \\
& B \dot{V}_{2}-(C-A)\left(U_{3} V_{1}+U_{1} V_{3}+V_{3} V_{1}\right)-\tau_{2}=0 \\
& C \dot{V}_{3}-(A-B)\left(U_{1} V_{2}+U_{2} V_{1}+V_{1} V_{2}\right)-\tau_{3}=0
\end{aligned}
\]

It is noted that the equation for \(\mathrm{V}_{2}\) accounts principally for the change in spin speed. Any change in speedis due solely to torque \(\mathrm{T}_{2}\) if there is a perfect inertia match (i.e., if \(A=C\) ). Further, the terms in parentheses are all small, so that on a first-approximation basis:
\[
\begin{equation*}
\nabla_{2} \approx \frac{T}{B} \tag{D25}
\end{equation*}
\]

Now, rearrange the first and third lines of Equation (11);
\[
\ddot{V}_{1}-\left\{\frac{B-C}{A}\right]\left(U_{2}+V_{2}\right) V_{3}=\frac{\tau}{A}+\left\{\frac{B-C}{A}\right) U_{3} V_{2}
\]
\[
\dot{V}_{3}-\left|\frac{A-B}{C}\right|\left(U_{2}+V_{2}\right) V_{1}=\frac{\tau_{3}}{C}+\left|\frac{A-B}{C}\right| U_{1} V_{2}
\]

Consider \(\mathrm{U}_{2}+\mathrm{V}_{2}=\omega_{2}\) to be a constant relative to variation of the \(\mathrm{V}^{\prime} \mathrm{s}\). Then
\[
\begin{aligned}
& \ddot{V}_{1}-\left(\frac{B-C}{A} \left\lvert\, \omega_{2} \dot{V}_{3} \approx \frac{\dot{T}_{1}}{A}\right.\right. \\
& \ddot{V}_{3}-\left(\frac{A-B}{C}\right) \omega_{2} \dot{V}_{1} \approx \frac{\dot{T}_{3}}{C}
\end{aligned}
\]
and, therefore,
\[
\begin{aligned}
& \ddot{V}_{1}+\left[\left(\frac{B-C}{A}\right)\left(\frac{B-A}{C}\right) \omega_{2}^{2}\right] V_{1}=\left[\left(\frac{B-C}{A}\right)\right] \omega_{2}\left(\frac{T}{C}\right) \\
& \ddot{V}_{3}+\left[\left(\frac{B-C}{A}\right)\left(\frac{B-A}{C}\right) \omega_{2}^{2}\right] V_{3}=-\left[\left(\frac{B-A}{C}\right)\right] \omega_{2}\left(\frac{T}{A}\right)
\end{aligned}
\]

Let
\[
\lambda^{2}=\left[\left(\frac{B-C}{A}\right)\left(\frac{B-A}{C}\right) \omega_{2}^{2}\right]
\]
so that approxmately
\[
\begin{array}{ll}
\ddot{V}_{1}+\lambda^{2} V_{1}=\frac{\lambda T_{3}}{C} ; & T_{3}=\sqrt{\left(\left.\frac{B-C}{B-A} \right\rvert\, \frac{C}{A}\right.} r_{3} \\
: \ddot{V}_{3}+\lambda^{2} V_{3}=\frac{-\lambda T_{1}}{C} ; & T_{1}=\sqrt{\left(\left.\frac{B-A}{B-C} \right\rvert\, \frac{C}{A}\right.} \tau_{1} \tag{D26}
\end{array}
\]

Fquation (D6) represents a pure undamped second-order system with a natural frequence of \(\lambda\) which is approximately equal to \((B-A / C) \omega_{2}\). The ARRS baseline system calls for an inertia mismatch of the order of 10 percent so that \(\lambda\) is of the order of 0.1 of the spin frequency. Hence, forcing functions (e.g.,
\(T_{3} \frac{\lambda}{\mathrm{C}}\) ) with harmonic content above, say, \(0.1 \omega_{2}\), is attenuated by \(\lambda / \omega\) where \(\omega\) is the angular frequency of the forcing function. Thus, in particular, forcing functions at the spin frequency are attenuated by roughly a factor of 10. It - may now be argued backwards that the approximations used to obtain Equation (D26) are indeed justified. In actual fact, however, the final justification for these approximations will be whether they indeed yield adequate solution accuracy. 'This approach leads to the conclusion that the only torques of consequence are those which are constants or whose average is a constant, since constants alone come through the filter unattenuated. Thus, in the work to follow, torques will be assumed constant over the region of interest.

\section*{RECURSION EQUATIONS}

Equation (D26) has the solution
\[
\begin{align*}
& V_{1}(t)=V_{1}(0) \cos \lambda t+\frac{\dot{V}_{1}(0)}{\lambda} \sin \lambda t+\frac{1}{C} \int_{0}^{t} T_{3}(x) \sin \lambda(t-x) d x \\
& V_{3}(t)=V_{3}(0) \cos \lambda t+\frac{\dot{V}_{3}(0)}{\lambda} \sin \lambda t-\frac{1}{C} \int_{0}^{t} T_{1}(x) \sin \lambda(t-x) d x \tag{D27}
\end{align*}
\]

Appendix D makes use of Equation (D27) to derive a recursion equation relating successive solutions of \(V\) at times \(t_{n}\) and \(t_{n+1}\), where \(t_{n+1}-t_{n}=\Delta t_{\text {. }}\)
\[
\left\{\begin{array}{c}
v_{1}\left(t_{n+1}\right) \\
\vdots \\
{\left[\dot{v}_{1}\left(t_{n+1}\right)\right.} \\
\frac{\lambda}{\lambda}
\end{array}\right\}=\left(\begin{array}{ll}
\cos \lambda \Delta t & \sin \lambda \Delta t \\
-\sin \lambda \Delta t & \cos \lambda \Delta t
\end{array}\right)=\left\{\begin{array}{c}
V_{1}\left(t_{n}\right) \\
{\left[\begin{array}{l}
\dot{v}_{1}\left(t_{n}\right) \\
\lambda
\end{array}\right]}
\end{array}\right\}+\left[\begin{array}{l}
\frac{1}{t_{n}} \int_{t_{n}} T_{3}(x) \sin \lambda\left(t_{n+1}-x\right) d x \\
\frac{1}{C_{n+1}} \int_{t_{n}}^{t_{3}}(x) \cos \lambda\left(t_{n+1}-x\right) d x
\end{array}\right]
\]

By virtue of the argument given earlier, assume that both \(T_{1}\) and \(T_{3}\) are constants over the interval from \(t_{n}\) to \(t_{n+1}\). Then
\[
\begin{align*}
& \left\{\begin{array}{l}
v_{1}\left(t_{n+1}\right) \\
{\left[\frac{V_{1}\left(t_{n+1}\right)}{\lambda}\right]}
\end{array}\right\}=\left\{\begin{array}{l}
\cos \lambda \Delta t \\
\sin \lambda \Delta t \\
-\sin \lambda \Delta t \\
\cos \lambda \Delta t
\end{array}\right)\left\{\begin{array}{l}
v_{1}\left(t_{n}\right) \\
\left.\frac{\tilde{v}_{1}\left(t_{n}\right)}{\lambda}\right)
\end{array}\right\}+\left[\begin{array}{l}
\frac{T_{3}\left(t_{n}\right)}{\lambda C}(1-\cos \lambda \Delta t) \\
\frac{T_{3}\left(t_{n}\right)}{\lambda C} \sin \lambda \Delta t
\end{array}\right]_{(D 28)} \\
& \left\{\begin{array}{c}
V_{3}\left(t_{n+1}\right) \\
{\left[\frac{\dot{V}_{3}\left(t_{n+1}\right)}{\lambda}\right]}
\end{array}\right\}=\left(\begin{array}{ll}
\cos \lambda \Delta t & \sin \lambda \Delta t \\
-\sin \lambda \Delta t & \cos \lambda \Delta t
\end{array}\right)\left\{\begin{array}{l}
V_{3}\left(t_{n}\right) \\
\\
{\left[\frac{\dot{V}_{3}\left(t_{n}\right)}{\lambda}\right]}
\end{array}\right\}-\left[\begin{array}{l}
\frac{T_{1}\left(t_{n}\right)}{\lambda C}(1-\cos \lambda \Delta t) \\
{\left[\frac{T_{1}\left(t_{n}\right)}{\lambda C} \sin \lambda \Delta t\right.}
\end{array}\right] \tag{D29}
\end{align*}
\]

\section*{EULER ANGLES}

Ultimately, it is desired to compute \(\mu, \nu\), and \(\sigma\) to complete the attitude determination. This may be done by considering Equation (D6), which is repeated here for convenience.
\[
\begin{aligned}
\mu \mathrm{c} v & =-\mathrm{V}_{\mathrm{X}_{\mathrm{H}}} \sin \dot{\theta}+\mathrm{V}_{\mathrm{Z}_{\mathrm{H}}} \cos \sigma \\
\dot{\psi} & =\mathrm{V}_{\mathrm{X}_{\mathrm{H}}} \cos \sigma+\mathrm{V}_{Z_{\mathrm{H}}} \sin \sigma \\
\dot{\sigma} & =\mathrm{V}_{\mathrm{Y}_{\mathrm{H}}}-\dot{\mu} \sin v \\
& =\mathrm{V}_{\mathrm{Y}_{\mathrm{H}}}-\tan \nu\left(-\mathrm{V}_{\mathrm{X}_{\mathrm{H}}} \sin \sigma+\mathrm{V}_{\mathrm{Z}_{\mathrm{H}}} \cos \sigma\right)
\end{aligned}
\]
where

From Equation (10), and it is remembered that
\[
\mathrm{V}_{1}=\mathrm{V}_{\mathrm{X}_{\mathrm{B}}}, \quad \mathrm{~V}_{2}=\mathrm{V}_{\mathrm{Y}_{\mathrm{B}}} \text {, and } \mathrm{V}_{3}=\mathrm{V}_{\mathrm{Z}_{\mathrm{B}}}
\]

Therefore
\[
\begin{align*}
& =\left[\begin{array}{c}
-\sin (\sigma+\xi) V_{1}+\cos (\sigma+\xi) V_{3} \\
\cos (\sigma+\xi) V_{1}+\sin (\sigma+\xi) V_{3} \\
\hat{V}_{2}-\dot{\mu} s v
\end{array}\right]+\left(\begin{array}{c}
\text { first order } \\
\text { misaligriment } \\
\text { terms nand } \zeta
\end{array}\right) \tag{D30}
\end{align*}
\]

Next consider the integration of Equatior (DBO). The most significant vaxiable on the right hand side is the angle \(\dot{\xi}\), and that portion of the \(V\) 's which vary with 5 . The rest of the variation is "slow" relative to \(\xi\). Therefore, let \(\nu\) and \(\sigma\) be considered constant over the sample period as far as \(\dot{\mu}\) and \(\dot{\nu}\) are concerned. Further, recal] that [Equation(DP 8 ] \(\bar{\xi} \approx \frac{H}{B}\). Then, let
\[
\begin{equation*}
p_{n}=\sigma\left(t_{n}\right)+g\left(t_{n}\right) \tag{D31}
\end{equation*}
\]
and let the variation of \(g\) be
\[
\omega_{H} T, \quad 0 \leq T \leq\left(t_{n+1}-t_{n}\right)
\]
where
\[
\omega_{\mathrm{H}}=\frac{\mathrm{H}}{\mathrm{~B}}
\]

Then
\[
\dot{\mu}\left(t_{n}+\tau\right)=\frac{1}{\cos \nu\left(t_{n}\right)}\left\{-\sin \left(\rho_{n}+\omega_{H} \tau\right) V_{1}\left(t_{n}+\tau\right) \div \cos \left(\rho_{n}+\omega_{H} \tau\right) V_{3}\left(t_{n}+\omega_{H} T\right)\right\}
\]
and
\[
\begin{equation*}
\nu\left(t_{n}+\tau\right)=\cos \left(p_{n}+\omega_{H} \tau\right) V_{1}\left(t_{n}+\omega_{H} \tau\right)+\sin \left(\rho_{n}+\omega_{H} T\right) V_{3}\left(t_{n}+\omega_{H} \tau\right) \tag{D33}
\end{equation*}
\]

Now substitute the values of \(V_{1}\) and \(V_{3}\) from Equations (De8) and (W0), with 1 replacing the parameter \(\Delta t\). The result is:
\[
\left.\begin{array}{rl}
\cos \nu\left(t_{n}\right) \dot{\mu}\left(t_{n}+\tau\right)= & -\sin \left(\rho_{n}+\omega_{H} \tau\right)\left\{V_{1}\left(t_{n}\right) \cos \lambda T+\left[\frac{\dot{V}_{1}\left(t_{n}\right)}{\lambda}\right] \sin \lambda \tau+\frac{T_{3}\left(t_{n}\right)}{\lambda C}\left(1-\cos \lambda_{T}\right)\right\} \\
& +\cos \left(\rho_{n}+\omega_{H} \tau\right)\left\{V_{3}\left(t_{n}\right) \cos \lambda T+\left[\frac{V_{3}\left(t_{n}\right)}{\lambda}\right] \sin \lambda T-\frac{T_{1}\left(t_{n}\right)}{\lambda C} \sin \lambda \tau\right.
\end{array}\right\}
\]
and
\[
\begin{aligned}
\dot{\nu}\left(t_{n}+\tau\right)= & \cos \left(\rho_{n}+\omega_{H} \tau\right)\left\{V_{1}\left(t_{n}\right) \cos \lambda \tau+\left[\frac{\dot{V}_{1}\left(t_{n}\right)}{\lambda}\right] \sin \lambda \tau+\frac{T_{3}\left(t_{n}\right)}{\lambda C}(1-\cos \lambda \tau)\right\} \\
& +\sin \left(\rho_{n}{ }^{+\omega} \omega_{H} \tau\right)\left\{V_{3}\left(t_{n}\right) \cos \lambda \tau+\left[\frac{\dot{V}_{3}\left(t_{n}\right)}{\lambda}\right] \sin \lambda \tau-\frac{T_{1}\left(t_{n}\right)}{\lambda C} \sin \lambda \tau\right\}
\end{aligned}
\]

Equations (D34) and (D35) are integrated over the interval from \(t_{n}\) to \(t_{n+1}\), which results in
\[
\begin{align*}
\mu\left(t_{n+1}\right)=\mu\left(t_{n}\right)+\frac{1}{\cos \nu_{0}} & \left\{-V_{1}\left(t_{n}\right) I_{1}\left(t_{n+1}\right) \frac{-\dot{V}_{1}\left(t_{n}\right)}{\lambda} I_{2}\left(t_{n+1}\right)-\frac{T_{3}\left(t_{n}\right)}{\lambda C}\left[I_{5}\left(t_{n+1}\right)-I_{1}\left(t_{n+1}\right)\right]\right. \\
& +V_{3}\left(t_{n}\right) I_{3}\left(t_{n+1}\right)+\dot{V}_{3}\left(t_{n} I_{4}\left(t_{n+1}\right)-\frac{T_{1}\left(t_{n}\right)}{\lambda C}\left[I_{6}\left(t_{n+1}\right)-I_{3}\left(t_{n+1}\right)\right]\right\} \tag{D36}
\end{align*}
\]
and
\[
\begin{aligned}
\nu\left(t_{n+1}\right)=\nu\left(t_{n}\right)+ & \left\{V_{1}\left(t_{n}\right) I_{3}\left(t_{n+1}\right)+\frac{\dot{V}_{1}\left(t_{n}\right)}{\lambda} I_{4}\left(t_{n+1}\right)+\frac{T_{3}\left(t_{n}\right)}{\lambda C}\left[I_{6}\left(t_{n+1}\right)-I_{3}\left(t_{n+1}\right)\right]\right. \\
& \left.+V_{3}\left(t_{n}\right) I_{1}\left(t_{n+1}\right)+\frac{\dot{V}_{3}\left(t_{n}\right)}{\lambda} I_{2}\left(t_{n}\right)-\frac{T_{1}\left(t_{n}\right)}{\lambda C}\left[I_{5}\left(t_{n+1}\right)-I_{1}\left(t_{n+1}\right)\right]\right\}
\end{aligned}
\]

Table D5lists the functions \(I_{1}, I_{2},---I_{6}\).

\section*{SUMMARY}

This section has developed the computation method for Euller angles \(\mu, \nu\), and \(\sigma\) using the torque components \(\tau_{1},{ }^{\top} 2\). amd \(\tau_{3}\) in body axes and assuming that they are constant over the computation interval. Table D5 lists the computation.

\section*{COMPUTER MECHANIZATION}

This section summarizes the computation to be carried out as developed in the previous three sections. While this does not represent a program in the normal sense, a program could be constructed easily from it. It is intended that the contents of this section bridge the gap that usually exists between analysis language and programming language. Table D6lists initial computation (computed only at time zero or on reinitialization), while Table D7 represents on-going computation.

The following notes are applicable to Tables D6 and D7:
1) \(A, B, C\) are spacecraft principal inertia values about the \(X_{B}, Y_{B}, Z_{B}\) axes respectively and are assumed available for this computation. Unless special precautions are taken (not delineated in this report), one of the two inequality conditions must be met for the formulas to be valid:

Case 1: \(\mathrm{B}>\mathrm{C} \geq \mathrm{A}\)
Case 2: \(B>A \geq C\)
\(\omega_{1}, \omega_{2}, \omega_{3}\) are spacecraft angular rate components in body axes about ( \(X_{B}, Y_{B}, Z_{B}\) ) axes respectively and are used here for initialization, They are also computed on-line (Table D7).
2) \(\theta, \varphi, \psi\) are spacecraft attitude angles relating the transformation between the inertial reference and spaceeraft principal axes and are assumed known at mitialization, Thereafter, they are computed on-line (Table D7).
3) Subscript "B"' denotes "before" a step \(\Delta t\) in time is taken, while subscript "A" denotes "after" the step is taken. It is assumed that \(\Delta t\) is supplied externally to the listed computation.
4) These may be made a constant on initialization for fixed \(\Delta t\).

\section*{TORQUE AVERAGING}

Previously, an approximation for the "perturbed" equation of motion [Equation (D1i)] was developed. This section develops a physical interpretation of the approximation and, secondly, torque approximations which may be used as trial solutions for computer experimentation.

\section*{EQUATION OF MOTION APPROXIMATION}

In vector form, the separated equation of motion, Equation (D9), is
\[
I \cdot \ddot{\vec{V}}+\overrightarrow{\mathrm{U}} \times I \cdot \overrightarrow{\mathrm{~V}}+\overrightarrow{\mathrm{V}} \times I \cdot \overrightarrow{\mathrm{U}}+\overrightarrow{\mathrm{V}} \times I \cdot \overrightarrow{\mathrm{~V}}=\vec{\tau}
\]

Let
\[
\Delta \overrightarrow{\mathrm{H}}=I \cdot \overrightarrow{\mathrm{~V}} \quad \text { and } \overrightarrow{\mathrm{H}}=I \cdot \overrightarrow{\mathrm{U}}
\]

Then
\[
\left|\frac{d \Delta \vec{H}}{d t}\right|_{\substack{\text { body } \\ \text { axes }}}+(\overrightarrow{\mathrm{U}}+\overrightarrow{\mathrm{V}}) \times \Delta \overrightarrow{\mathrm{H}}+\overrightarrow{\mathrm{V}} \times \overrightarrow{\mathrm{H}}=\vec{\tau}
\]
so that the separated equation of motion becomes
\(\left|\frac{d \Delta \overrightarrow{\mathrm{H}}}{\mathrm{dt}}\right|_{\substack{\text { inertial } \\ \text { space }}}=\vec{\tau}-\overrightarrow{\mathrm{V}} \times \overrightarrow{\mathrm{H}}\)

The term \(\vec{V} \times \vec{H}\) represents the interaction between the torqued portion of the solution and the untorqued portion. This result is of no particular significance except to keep the mathematics in perspective.

Now consider the approximations used to obtain Equation (D26). In vector form, these are noted as:


This amounts to approximating the spacecraft angular rate to be along the principal "Y" axis only, with the other components zero. Hence, for computational purposes, the drift of the spacecraft angular momentum vector is computed as-though the spacecraft spins solely about its own " Y " principal body axis.

\section*{TORQUE CONSIDERATIONS}

From the torque analysis performed, it appears that three torque sources are large enough to be modeled in the attitude determination process. These are gravity gradient, eddy curren, and residual magnetic moment. These torques are functionally indicated below as:
```

$\vec{\tau}_{\text {gravity gradient }}=\vec{\tau}_{\mathrm{GG}}(\theta, \varphi, \psi, \vec{R})$
$\vec{T}_{\text {magnetic moment }}=\vec{\tau}_{\mathrm{mm}}(\theta, \varphi, \psi, \vec{R})$
$\vec{T}_{\text {eddy current }}=\{\theta, \varphi, \phi, \vec{R}, \vec{\omega})$

```
where
\[
\begin{aligned}
& \vec{B}=\text { spacecraft position in orbit } \\
& \vec{\omega}=\text { spacecraft angular rate }
\end{aligned}
\]

If \(\theta, \varphi, \psi, \vec{R}\), and \(\vec{\omega}\) were known functions of time, the particular integral of the approximate solution given previouslv [e.g., Equation'(D27)] could be calculated analytically, Previously established was how the \({ }^{-}\)angles ( \(5, \eta, 6\) ) are computed as known functions of time and the untorqued angular rate \(\vec{U}=\overrightarrow{\mathrm{U}}(\mathrm{t})\) is known. For the purposes of calculating the torque, and ultimately the drift of the angular momentum axes, the variation in the angles ( \(\mu, \nu, \sigma\) ) may easily by neglected. Thus, to a high degree of approximation the Euler angles ( \(\theta, \varphi, \psi\) ) may be computed as known functions of time from the relationship of Equation (D5), That is, if
\[
\begin{equation*}
E(\theta, \varphi, \psi)=A(\xi, \eta, \zeta) \cdot F(\mu, \nu, \sigma) \tag{D39}
\end{equation*}
\]
and
\[
\begin{aligned}
& \xi=\zeta(t), \eta=\eta(t), \zeta=\zeta(t) \\
& \mu=\mu(0), \nu=\nu(0), \sigma=\sigma(0)
\end{aligned}
\]
then
\[
\begin{align*}
& \theta=\theta\left[\xi(t), \eta(t), \zeta(t), \mu_{0}, \quad \nu_{0}, \sigma_{0}\right] \\
& \varphi=\varphi\left[\xi(t), \eta(t), \zeta(t), \mu_{0}, \nu_{0}, \sigma_{0}\right] \\
& \psi=\psi\left[\zeta(t), \eta(t), \zeta(t), \mu_{0}, \nu_{0}, \sigma_{0}\right] \tag{D40}
\end{align*}
\]

Further,
\[
\vec{\omega}=\vec{U}(t)+\vec{v}(t) \approx \vec{U}(t)
\]

Hence, substitution of these relationships into the torque formulas would yield the torque as a function of time which could then be integrated directly. Equation(D40), however, is extremely complex insofar as these operations are concerned. An attempt has been made to redefine coordinates so that the initial conditions on \(\mu, \nu, \sigma\) are zero and \((\xi, \eta, \zeta)=(\theta, \phi, \psi)\). In this way, except for the variation of \(\mu, v, \sigma\), which is negligible, \((\theta, \varphi, \psi)\) would be directly known functions of time. The most obvious method to achieve this notion would be to redefine the angular momentum axes so that, analogously with Equation (D39),
\[
\mathrm{E}(\theta, \varphi, \psi)=\mathrm{E}(\zeta, \eta, \zeta) \cdot \mathrm{E}(\mu, \nu, \sigma)
\]
and
\[
\begin{aligned}
& (\theta, \varphi, \not \psi)_{t=0}=(5, \eta, \zeta)_{t=0} \\
& (\mu, \nu, \sigma)_{t=0}=0
\end{aligned}
\]

This redefinition will achieve the desired result, but, unfortunately no simple solution for the angles in terms of the rates have been found for this coordinate frame. Solution of the form or simplicity of Equations (D16), (D17), and (D18) have thus far eluded all efforts, A compromise solution is next outlined.

\section*{TORQUE APPROXIMATIONS}

A previous section argued that the effect of the torque (i.e., drift rate) would be attenu ated for all frequencies above approximately \(\lambda \approx(B-A / C) U_{2}\). In particular, then, the sinusoidal motion of the angle, \(\theta\) (i. e., the spin coordinate), in the torque should contribute little to the total drift. Thus, it is suggested that the torque be averaged over a spin period.

Thus, let
\[
\langle\vec{\tau}\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} \tau(\theta) d \theta
\]

Gravity Gradient Approximations

The gravity gradient torque is given in Ref. 3 as
\[
\vec{\tau}_{G G}=\frac{3 \mu}{R^{3}} \hat{r} \times \overrightarrow{\bar{I}} \cdot \hat{r}
\]
where
\(\mu=\) Earth's gravitational constant \(: 1.4082 \times 10^{16} \mathrm{ft}^{3} / \mathrm{sec}^{2}\)
\(\hat{r}=\) Unit vector in directional of radius vector to spacecraft from Earth's center
\(R=\) Distance from earth's center to spacecraft center of mass
\(\overline{\bar{I}}=\) Moment of inertia dyadic of spaceeraft.

In spacecraft body axes, the torque is
\[
\left[\begin{array}{c}
\left({ }^{( }{ }^{G G}\right)_{X_{B}} \\
\left({ }^{\tau} G_{G G}\right)_{Y_{B}} \\
\left(\tau_{G G}{ }_{Z} Z_{B}\right.
\end{array}\right]=\frac{3 \mu}{R^{3}}\left[\begin{array}{l}
(C-B) r_{Y_{B}} r_{B} \\
(A-C) r_{Z_{B}} r_{X_{B}} \\
(B-A) r_{X_{B}}{ }^{r} Y_{B}
\end{array}\right]
\]
where
\[
\left(\begin{array}{c}
r_{X_{B}} \\
r_{Y_{B}} \\
r_{Z_{B}}
\end{array}\right)=E(\theta, \varphi, \psi)\left(\begin{array}{c}
r_{X_{I}} \\
r_{Y_{I}} \\
r_{Z_{I}}
\end{array}\right)
\]

It is easily established that
\[
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} r_{Y_{B}}(\theta) r_{Z_{B}}(\theta) \mathrm{d} \theta=0 \\
& \frac{1}{2 \pi} \int_{0}^{2 \pi} r_{Z_{B}}(\theta) r_{X_{B}}(\theta) \mathrm{d} \theta=\frac{r_{I} Y_{I} Z_{I}}{2} \sin \varphi \\
& \frac{1}{2 \pi} \int_{0}^{2 \pi} r_{X_{B}}(\theta) r_{Y_{B}}(\theta) \mathrm{d} \theta=0
\end{aligned}
\]

But
\[
r_{Y_{I}}=c \nu s \cap+s \nu c i c h
\]
and
\[
r_{Z_{I}}=s \nu s i
\]

Thus
\[
\langle\mathrm{TGC}\rangle \doteq \frac{3 \mu}{\mathrm{R}^{3}} \frac{(\mathrm{~A}-\mathrm{C}) \sin \varphi}{2}(\operatorname{s\nu si})(\mathrm{c} \nu \operatorname{si} \Omega+\operatorname{sucic} \Omega) \hat{\mathrm{J}}_{\mathrm{B}}
\]

\section*{Magnetic Moment Approximations}

The magnetic moment torque is
\[
\vec{\tau}_{\mathrm{mm}} \equiv \overrightarrow{\mathrm{M}} \times \overrightarrow{\mathrm{B}}
\]
where the components of \(\vec{M}\) are fixed with respect to the spacecraft and the components of \(\vec{B}\) are earth-fixed. Thus
\[
\left(\begin{array}{c}
{ }^{B_{X_{B}}} \\
{ }^{B_{Y_{B}}} \\
B_{Z_{B}}
\end{array}\right)=\mathbb{E}(\theta, \varphi, \psi)\left(\begin{array}{c}
B_{X_{I}} \\
B_{Y_{I}} \\
B_{Z_{I}}
\end{array}\right)
\]

Further
\[
\begin{aligned}
\left\langle\vec{T}_{\mathrm{mm}}\right\rangle & =\frac{1}{2 \pi} \overrightarrow{\mathrm{M}}^{2 \pi} \int_{0}^{2 \pi} \overrightarrow{\mathrm{~B}}(\theta) \mathrm{d} \theta \\
& =\left|\begin{array}{ccc}
\hat{\mathrm{I}}_{\mathrm{B}} & \hat{J}_{\mathrm{B}} & \hat{\mathrm{~K}}_{\mathrm{B}} \\
\mathrm{M}_{\mathrm{X}_{\mathrm{B}}} & \mathrm{M}_{\mathrm{Y}_{\mathrm{B}}} & \mathrm{M}_{\mathrm{Z}_{\mathrm{B}}} \\
\left\langle\mathrm{~B}_{\mathrm{X}_{\mathrm{B}}}\right\rangle & \left\langle\mathrm{B}_{\mathrm{X}_{\mathrm{B}}}\right\rangle & \left\langle\mathrm{B}_{\mathrm{Z}_{\mathrm{B}}}\right\rangle
\end{array}\right|
\end{aligned}
\]

But
\[
\begin{aligned}
& \left\langle{ }^{\left.\mathrm{B}_{\mathrm{X}_{\mathrm{B}}}\right\rangle}=0\right. \\
& \left\langle{ }^{\left.\mathrm{B}_{\mathrm{Y}_{\mathrm{B}}}\right\rangle}=-\mathrm{s} \psi \mathrm{c} \mathrm{\varphi} \mathrm{~B}_{\mathrm{X}_{\mathrm{I}}}+\mathrm{c} \psi \operatorname{c\varphi } \mathrm{~B}_{\mathrm{Y}_{\mathrm{I}}}+\operatorname{s\varphi \mathrm {B}_{Z_{I}}}\right. \\
& \left\langle{ }^{\left.\mathrm{B}_{Z_{B}}\right\rangle}=0\right.
\end{aligned}
\]

Hence,
\[
\begin{aligned}
& \left\langle\vec{T}_{m m}\right\rangle=\hat{\mathrm{I}}_{\mathrm{B}}\left[-\mathrm{M}_{\mathrm{Z}_{\mathrm{B}}}\left(-\mathrm{s} \psi \omega \varphi \mathrm{~B}_{\mathrm{X}_{\mathrm{I}}}+\mathrm{c} \psi \mathrm{c} \mathrm{\varphi B}_{\mathrm{Y}_{\mathrm{I}}}+s \varphi \mathrm{~B}_{\mathrm{Z}_{\mathrm{I}}}\right]\right. \\
& +\mathrm{K}_{\mathrm{B}}\left[{ }^{+} \mathrm{M}_{\mathrm{X}_{\mathrm{B}}}{ }^{\left(-\mathrm{s} \psi \mathrm{c} \mathrm{\varphi} \mathrm{~B}_{\mathrm{X}_{\mathrm{I}}}+\mathrm{c} \psi \mathrm{c} \mathrm{\varphi B} \mathrm{X}_{\mathrm{I}}\right.}+{ }^{\left.\mathrm{s} \mathrm{\varphi} \mathrm{~B}_{\mathrm{Z}_{\mathrm{I}}}\right]}\right.
\end{aligned}
\]

\section*{Eddy Current Torque}

The eddy current torque has been averaged as the previous two torques and the result is found to be
\[
\begin{aligned}
& \left({ }^{T} \boldsymbol{E C}_{\mathbf{X}_{B}}\right)=0 \\
& \left({ }^{T}{ }^{\mathrm{EC}}\right)_{\mathrm{Y}_{\mathrm{B}}}=-K \omega_{Y_{B}}\left\{\frac{1}{2}\left(1-\cos ^{2} \varphi \sin ^{2} \psi\right) \mathrm{B}_{\mathrm{X}_{\mathrm{I}}}^{2}+\left(1-\cos ^{2} \varphi \cos ^{2} \psi\right) \mathrm{B}_{\mathrm{Y}_{\mathrm{i}}}^{2}\right. \\
& +\frac{1}{2}\left(1+\cos ^{2} \varphi \cos ^{2} \psi\right) \mathrm{B}_{Z_{I}}^{2}+\sin 2 \psi \cos ^{2} \varphi B_{X_{I}} B_{Y_{I}} \\
& \left.+\sin 2 \varphi \sin \psi \mathrm{~B}_{\mathrm{Y}_{\mathrm{I}}} \mathrm{~B}_{\mathrm{Z}_{\mathrm{I}}}-\sin 2 \varphi c \psi \mathrm{~B}_{\mathrm{Y}_{\mathrm{I}}} \mathrm{~B}_{\mathrm{Z}_{\mathrm{I}}}\right\} \\
& \left.{ }^{\left(T_{E C}\right.}\right)_{B}=0
\end{aligned}
\]
where
\[
K=2.86 \times 10^{-5} \mathrm{ft}-1 b-\mathrm{sec} / \mathrm{gauss}^{2}
\]

\section*{ATTACHMENT I \\ COORDTNATE FRAMES}

This appendix documents the details of the transformations and angular rates between three coordinate frames:
\(\left(\hat{I}_{i}, \hat{J}_{i}, \hat{K}_{i}\right)=\) Inertial frame
\(\hat{\mathrm{I}}_{\mathrm{H}}, \hat{\mathrm{J}}_{\mathrm{H}}, \hat{\mathrm{K}}_{\mathrm{H}}\) ) \(=\) Angular Momentum frame
\(\left(\hat{\mathrm{I}}_{\mathrm{B}}, \hat{\mathrm{J}}_{\mathrm{B}}, \hat{\mathrm{K}}_{\mathrm{B}}\right\}=\) Body principal axes frame

RELATIONSHIP BETWEEN BODY AXES AND INERTIAL SPACE

Figure I1 illustrates the three rotations ( \(\psi, \varphi, \theta\) ) from inertial to body axes respectively. The mathematical relationships are
\[
\begin{aligned}
\left(\begin{array}{c}
\hat{I}_{i} \\
\hat{J}_{i} \\
\hat{K}_{i}
\end{array}\right) & =\left(\begin{array}{ccc}
c \psi & -s \psi & 0 \\
s \psi & c \psi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{I}}_{i}^{\prime} \\
\hat{J}_{i}^{\prime} \\
\hat{\mathrm{K}}_{i}^{\prime}
\end{array}\right) \\
\left(\begin{array}{c}
\hat{I}_{i}^{\prime} \\
\hat{J}_{i}^{\prime} \\
\hat{\mathrm{K}}_{\mathrm{i}}^{\prime}
\end{array}\right) & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c \varphi & -s \varphi \\
0 & s \varphi & \infty \varphi
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{I}}_{i}^{\prime \prime} \\
\hat{J}_{i}^{\prime \prime} \\
\hat{\mathrm{K}}_{i}^{\prime \prime}
\end{array}\right)
\end{aligned}
\]
\[
\left(\begin{array}{c}
\hat{I}_{i}^{\prime \prime} \\
\hat{J}_{i}^{\prime \prime} \\
\hat{X}_{i}^{\prime \prime}
\end{array}\right)=\left(\begin{array}{ccc}
c \theta & 0 & \mathrm{~s} \theta \\
0 & 1 & 0 \\
-\mathrm{s} \theta & 0 & c \theta
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{I}}_{\mathrm{B}} \\
\hat{J}_{\mathrm{B}} \\
\hat{\mathrm{~K}}_{\mathrm{B}}
\end{array}\right)
\]
and
\[
\begin{aligned}
& \left(\begin{array}{l}
\hat{I}_{B} \\
\hat{J}_{B} \\
\hat{K}_{B}
\end{array}\right)=\left(\begin{array}{ccc}
c \theta & 0 & -s \theta \\
0 & 1 & 0 \\
s \theta & 0 & c \theta
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c \varphi & s \varphi \\
0 & -s \varphi & c \varphi
\end{array}\right)\left(\begin{array}{ccc}
c \psi & s \psi & 0 \\
-s \psi & c \psi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\hat{L}_{i} \\
\hat{J}_{i} \\
\hat{\mathrm{~K}}_{i}
\end{array}\right) \\
& =\left[\begin{array}{cc}
(c \theta c \psi-s \psi s \varphi s \theta)(s \psi c \theta+c \psi s \varphi s \theta)(-s \theta c \rho) \\
-s \psi c \varphi & c \psi c \varphi \\
(s \theta c \psi+s \psi s \varphi c \theta)(s \theta s \psi-c \psi s \varphi c \theta)(c \varphi c \theta)
\end{array}\right]\left(\begin{array}{c}
\hat{I}_{i} \\
\hat{J}_{1} \\
\hat{\mathrm{~K}}_{i}
\end{array}\right)=\mathrm{s}(\psi, \varphi, \theta)\left(\begin{array}{l}
\hat{L}_{i} \\
\hat{J}_{i} \\
\hat{\mathrm{~K}}_{i} \\
\hat{L}_{i}
\end{array}\right)
\end{aligned}
\]

The angular rate of the body axes WRT inertial space is
\[
\begin{aligned}
\vec{\omega} & =\dot{\psi} \hat{\mathrm{K}}_{i}^{\prime}+\dot{\varphi} \hat{\mathrm{I}}_{\mathrm{i}}+\dot{\theta} \hat{\mathrm{J}}_{\mathrm{B}}=\dot{\psi}\left(\mathrm{s} \varphi \hat{\mathrm{~J}}_{i}^{\prime \prime}+\varphi \varphi \hat{\mathrm{K}}_{i}^{\prime \prime}\right)+\dot{\varphi} \hat{\mathrm{I}}_{i}^{\prime \prime}+\dot{\theta} \hat{\mathrm{J}}_{\mathrm{B}} \\
& =(\dot{\varphi}, \dot{\psi} \mathrm{s} \varphi, \dot{\psi} \mathrm{c} \mathrm{\varphi})\left(\begin{array}{ccc}
\mathrm{c} \theta & 0 & +\mathrm{s} \theta \\
0 & 1 & 0 \\
-\mathrm{s} \theta & 0 & \mathrm{c} \theta
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{I}}_{\mathrm{B}} \\
\hat{\mathrm{~J}}_{\mathrm{B}} \\
\mathrm{~K}_{\mathrm{B}}
\end{array}\right)+\dot{\theta} \hat{\mathrm{J}}_{\mathrm{B}} \\
& =(\dot{\varphi} \mathrm{c} \theta-\dot{\psi} \varphi \mathrm{s} \theta) \hat{\mathrm{I}}_{\mathrm{B}}+(\theta+\dot{\psi} \varphi) \hat{\mathrm{J}}_{\mathrm{B}}+(\dot{+\varphi} \mathrm{s} \theta+\dot{\psi} \rho \rho \mathrm{c} \theta) \hat{\mathrm{K}}_{\mathrm{B}}
\end{aligned}
\]

Thus
\[
\begin{aligned}
& \omega_{\mathrm{X}_{\mathrm{B}}}=\dot{\varphi} \mathrm{c} \theta-\dot{\psi} \operatorname{c\varphi s} \theta \\
& \omega_{\mathrm{Y}_{\mathrm{B}}}=\dot{\theta}+\dot{\psi} s \varphi \\
& \omega_{Z_{B}}=\dot{\varphi} s \theta+\dot{\psi} \operatorname{c\rho p} \theta
\end{aligned}
\]
so that
\[
\begin{aligned}
\dot{\psi} c \varphi & =-s \theta \omega_{X_{B}}+c \theta \omega_{Z_{B}} \\
\dot{\varphi} & =c \theta \omega_{X_{B}}+s \theta \omega_{Z_{B}} \\
\dot{\theta} & =\omega_{Y_{B}}-\dot{\psi} s \varphi \rho
\end{aligned}
\]

\section*{RELATIONSHIP BETWEEN BODY AND ANGULAR MOMENTUM COORDINATES}

Figure 12 illustrates the successive rotations ( \(\xi, \eta, 6\) ) from the angular momenturn frame to the body axis frame. The mathematical relationships are:
\[
\begin{aligned}
& \left(\begin{array}{l}
\hat{\mathrm{I}}_{\mathrm{H}} \\
\hat{\mathrm{~J}}_{\mathrm{H}} \\
\hat{\mathrm{~K}}_{\mathrm{H}}
\end{array}\right)=\left(\begin{array}{ccc}
c \xi & 0 & \mathrm{~s} \xi \\
0 & 1 & 0 \\
-s \xi & 0 & c \xi
\end{array}\right)\left(\begin{array}{l}
\hat{\mathrm{I}}_{\mathrm{H}}^{\prime} \\
\hat{\mathrm{J}}_{\mathrm{H}}^{\prime} \\
\hat{\mathrm{K}}_{\mathrm{H}}^{\prime}
\end{array}\right) \\
& \left(\begin{array}{c}
\hat{\mathrm{I}}_{\mathrm{H}}^{\prime} \\
\hat{\mathrm{J}}_{\mathrm{H}}^{\prime} \\
\hat{\mathrm{K}}_{\mathrm{H}}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
c \eta & -\mathrm{s} \mathrm{\eta} & 0 \\
\mathrm{~s} \mathrm{\eta} & c \eta & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\hat{\mathrm{I}}_{\mathrm{H}}^{\prime \prime} \\
\hat{\mathrm{J}}_{\mathrm{H}}^{\prime \prime} \\
\hat{\mathrm{K}}_{\mathrm{H}}^{\prime \prime}
\end{array}\right) \\
& \left(\begin{array}{c}
\hat{\mathrm{I}}_{\mathrm{H}}^{\prime \prime} \\
\hat{\mathrm{J}}_{\mathrm{H}}^{\prime \prime} \\
\hat{\mathrm{K}}_{\mathrm{H}}^{\prime \prime}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c \zeta & -s \zeta \\
0 & s \zeta & c \zeta
\end{array}\right)\left(\begin{array}{l}
\hat{\mathrm{I}}_{\mathrm{B}} \\
\hat{\mathrm{~J}}_{\mathrm{B}} \\
\hat{\mathrm{~K}}_{\mathrm{B}}
\end{array}\right)
\end{aligned}
\]
and
\[
\begin{aligned}
& \left(\begin{array}{l}
\hat{I}_{B} \\
\hat{J}_{B} \\
\hat{K}_{\mathrm{B}}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c \zeta & \mathrm{~s} \zeta \\
0 & -s \zeta & c \zeta
\end{array}\right)\left(\begin{array}{ccc}
\mathrm{c} \mathrm{\eta} & \mathrm{~s} \mathrm{\eta} & 0 \\
-\mathrm{s} \mathrm{\eta} & \mathrm{c} \mathrm{\eta} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
c \xi & 0 & -s \xi \\
0 & 1 & 0 \\
s \xi & 0 & c \zeta
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{I}}_{\mathrm{H}} \\
\hat{\mathrm{~J}}_{\mathrm{H}} \\
\hat{\mathrm{~K}}_{\mathrm{H}}
\end{array}\right) \\
& =\left[\begin{array}{ccc}
c n c \xi & (s \eta) & (-c \eta s \xi) \\
(-c \zeta s \eta c \xi+s \zeta s \xi) & (c \zeta c \eta) & (c \zeta \operatorname{s\eta n} \xi+s \zeta c \xi) \\
(s \zeta \operatorname{snc} \xi+c \zeta s \xi & (-s \zeta c \eta) & (-s \zeta s \eta s \xi+c \zeta c \xi)
\end{array}\right]\left(\begin{array}{c}
\hat{1}_{H} \\
\hat{J}_{H} \\
\hat{R}_{H}
\end{array}\right)
\end{aligned}
\]

The angular rate of body axes WRT the angular momentum axes is
\[
\begin{aligned}
& \vec{\omega}=\dot{\bar{\xi}} \hat{J}_{\mathrm{H}}^{\prime}+\dot{\eta} \hat{\mathrm{K}}_{\mathrm{H}}^{\prime \prime}+\dot{\zeta} \hat{\mathrm{I}}_{\mathrm{B}} \\
& =\frac{\hat{\zeta}}{5}\left(\operatorname{sn} \hat{I}_{\mathrm{H}}^{\prime \prime}+\operatorname{cn} \hat{J}_{\mathrm{H}}^{\prime \prime}\right)+\hat{\eta}_{\mathrm{K}}^{\prime \prime} \hat{H}^{\prime \prime}+\hat{\mathrm{I}}_{\mathrm{B}} \\
& =(\dot{\xi} \mathrm{s} \mathrm{\eta}, \dot{\bar{j}} \mathrm{c} \mathrm{\eta}, \dot{\eta})\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c \zeta & -\mathrm{s} \zeta \\
0 & \mathrm{~s} \zeta & \mathrm{c} \zeta
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{I}}_{\mathrm{B}} \\
\hat{\mathrm{~J}}_{\mathrm{B}} \\
\hat{\mathrm{~K}}_{\mathrm{B}}
\end{array}\right)+\dot{\bar{\zeta}} \mathrm{I}_{\mathrm{B}} \\
& =\left(\dot{\xi} s \eta+\zeta \dot{)} \hat{\mathrm{L}}_{\mathrm{B}}+(\dot{\xi} \mathrm{c} \mathrm{\eta c} \zeta+\dot{\eta} s \zeta) \hat{\mathrm{J}}_{\mathrm{B}}+(-\dot{\bar{s}} \mathrm{c} \mathrm{\eta s} \mathrm{\zeta}+\dot{n} \mathrm{c}) \hat{\mathrm{K}}_{\mathrm{B}}\right.
\end{aligned}
\]

Thus
\[
\begin{aligned}
& \omega_{\mathrm{x}_{\mathrm{B}}}=\xi \sin +\dot{\zeta} \\
& \omega_{\mathrm{x}_{\mathrm{B}}}=\dot{\xi} \operatorname{c\eta c} \zeta+\dot{\eta} \mathrm{c} \zeta \\
& \omega_{\mathrm{Z}_{\mathrm{B}}}=\dot{\xi} \operatorname{c\eta s} \zeta+\dot{\eta} \mathrm{c} \zeta
\end{aligned}
\]
and
\[
\begin{aligned}
\dot{\eta} & =\omega_{\mathrm{Y}_{\mathrm{B}}} s \zeta+\omega_{Z_{B}} c \zeta \\
\dot{\bar{\xi}} \mathrm{c} \mathrm{\eta} & =\omega_{\mathrm{Y}_{\mathrm{R}}} c \zeta-\omega_{Z_{B}} s \zeta \\
\dot{\zeta} & =\omega_{\mathrm{X}_{\mathrm{B}}}-\dot{\xi} s \eta
\end{aligned}
\]

RELATIONSHIP BETWEEN ANGULAR MOMENTUM AXES AND INERTIAL SPACE

This transformation is defined exactly as the relationship between body axes and inertial space. Hence the following strict analogy holds:
\[
\begin{aligned}
& \mu \sim \psi \\
& \nu \sim \varphi \\
& \sigma \sim \theta
\end{aligned}
\]

Therefore, from those relationships it follows that
\[
\left(\begin{array}{c}
\hat{I}_{\mathrm{F}} \\
\hat{J}_{\mathrm{H}} \\
\hat{\mathrm{~K}}_{\mathrm{H}}
\end{array}\right)=\left[\begin{array}{ccc}
(c \sigma c \mu-s \mu s \nu s \sigma) & (\mathrm{s} \mu c \sigma+c \mu s \nu s \sigma) & (-s \sigma c \nu) \\
(-s \mu c \nu) & (c \mu c \nu) & (s \nu) \\
(s \sigma c \mu+s \mu s \nu c \sigma) & (s \sigma s \mu-c \mu s \nu c \sigma) & (c \nu c \sigma)
\end{array}\right]\left(\begin{array}{c}
\hat{\mathrm{I}}_{\mathrm{i}} \\
\hat{J}_{i} \\
\hat{\mathrm{~K}}_{\mathrm{i}}
\end{array}\right)=F(\mu, \nu, \sigma)\left(\begin{array}{c}
\hat{\mathrm{I}}_{\mathrm{i}} \\
\hat{J}_{\mathrm{i}} \\
\hat{\mathrm{~K}}_{\mathrm{i}}
\end{array}\right)
\]
while the Euler rates are given by
\[
\begin{aligned}
\dot{\mu} \mathrm{c} \nu & =-\mathrm{V}_{\mathrm{X}_{\mathrm{H}}} \mathrm{so}+\mathrm{V}_{\mathrm{Z}_{\mathrm{H}}} \cos \sigma \\
\dot{\nu} & =\mathrm{V}_{\mathrm{X}_{\mathrm{H}}} \mathrm{co}+\mathrm{V}_{\mathrm{Z}_{\mathrm{H}}}^{\mathrm{so}} \\
\dot{\mathrm{\sigma}} & =\mathrm{V}_{\mathrm{Y}_{\mathrm{H}}}-\dot{\mu} \mathrm{s} \nu
\end{aligned}
\]

\section*{ATTACHMENT II \\ THE BUNDAMENTAL SOLUTION}

This appendix deals with the solution to the equation set
\[
\begin{aligned}
& \mathrm{AU}_{1}-(\mathrm{B}-\mathrm{C}) \mathrm{U}_{2} U_{3}=0 \\
& B \mathrm{U}_{2}-(\mathrm{C}-\mathrm{A}) \mathrm{U}_{3} U_{1}=0 \\
& C U_{3}-(\mathrm{A}-\mathrm{B}) \mathrm{U}_{1} U_{2}=0
\end{aligned}
\]
where either one of two cases prevail:
\begin{tabular}{ll} 
Case 1 & \(B>C \geq A\) \\
Case 2 & \(B>A \geq C\)
\end{tabular}

By the physical laws of momentum and energy conservation, it is known that the following constants exist:
\[
\begin{aligned}
& 2 T=A U_{1}^{2}+B U_{2}^{2}+C U_{3}^{2}=\text { constant } \\
& H^{2}=A^{2} U_{1}^{2}+B^{2} U_{2}^{2}+C^{2} U_{3}^{2}=\text { constant }
\end{aligned}
\]

Now obtain a single differential equation, a function solely of a single-velocity component.

CASE 1

Choose \(\mathrm{U}_{3}\), then
\(2 A T-H^{2}=B(A-B) U_{2}^{2}+C(A-C) U_{3}^{2}\)
or
\[
\mathrm{U}_{2}^{2}=\frac{\left(2 \mathrm{BT}-\mathrm{H}^{2}-\mathrm{C}(\mathrm{~A}-\mathrm{C}) \mathrm{U}_{3}^{2}\right.}{\mathrm{B}(\mathrm{~A}-\mathrm{B})}
\]
and note that \(\left(H^{2}-2 A T\right)>0\) when \(U_{2}\) is sufficiently greater than \(U_{3}\) (the case at hand).

Further
\[
2 \mathrm{BT}-\mathrm{H}^{2}=\mathrm{A}(\mathrm{~B}-\mathrm{A}) \mathrm{U}_{1}^{2}+\mathrm{C}(\mathrm{~B}-\mathrm{C}) \mathrm{U}_{3}^{2}
\]
or
\[
\mathrm{U}_{1}^{2}=\frac{\left(2 \mathrm{BT}-\mathrm{H}^{2}\right)-\mathrm{C}(\mathrm{~B}-\mathrm{C}) \mathrm{U}_{3}^{2}}{\mathrm{~A}(\mathrm{~B}-\mathrm{A})}
\]
and note that \(\left(2 \mathrm{BT}-\mathrm{H}^{2}\right)>0\). Then
\[
\begin{aligned}
U_{3}^{2} & =\left\langle\frac{A-B)^{2}}{C}\left[\frac{\left(2 A T-H^{2}\right)-C(A-C) U_{3}^{2}}{B(A-B)}\right]\left[\frac{\left(2 B T-H^{2}\right)-C(B-C) U_{3}^{2}}{A(B-A)}\right]\right. \\
& =\left[\frac{\left(H^{2}-2 A T\right)\left(2 B T-H^{2}\right)}{C^{2} A B}\right]\left\{1-\left[\frac{C(C-A)}{H^{2}-2 A T}\right] U_{3}^{2}\right\}\left\{1-\left[\frac{C(B-C)}{2 B T-H^{2}}\right] U_{3}^{2}\right\}
\end{aligned}
\]

Let
\[
\frac{1}{\beta^{2}}=\frac{C(B-C)}{2 B T-H^{2}}
\]
and
\[
\frac{\mathrm{K}^{2}}{\beta^{2}}=\frac{\mathrm{C}(\mathrm{C}-\mathrm{A})}{\mathrm{H}^{2}-2 \mathrm{AT}}
\]
so that
\[
\beta^{2}=\frac{2 \mathrm{BT}-\mathrm{H}^{2}}{\mathrm{C}(\mathrm{~B}-\mathrm{C})}
\]
and
\[
k^{2}=\frac{(C-A)\left(2 B T-H^{2}\right)}{(B-C)\left(H^{2}-2 A T\right)}
\]

Let
\[
\xi=\mu_{3} / \beta
\]

Then
\[
\begin{aligned}
\frac{C^{2} \mathrm{AB}}{\left(\mathrm{H}^{2}-2 \mathrm{AT}\right)\left(2 \mathrm{BT}-\mathrm{H}^{2}\right)}\left|\frac{\mathrm{d} U_{3}}{\mathrm{dt}}\right|^{2} & =\left(1-5^{2}\right)\left(1-\mathrm{k}^{2} \xi^{2}\right) \\
& =\left\{\frac{\mathrm{C}^{2} \mathrm{AB}}{\left(\mathrm{H}^{2}-2 \mathrm{AT}\right)\left(2 \mathrm{BT}-\mathrm{H}^{2}\right)}\left[\frac{\mathrm{d}\left(\omega_{3} / \beta\right)}{\mathrm{d}(\mathrm{pt})}\right]^{2} \beta^{2} \mathrm{p}^{2}\right\}
\end{aligned}
\]

Then define \(p\) so that
\[
\begin{aligned}
\mathrm{p}^{2} & =\left[\frac{\left.\mathrm{H}^{2}-2 \mathrm{AT}\right)\left(2 \mathrm{BT}-\mathrm{H}^{2}\right)}{\mathrm{C}^{2} \mathrm{AB}}\right]\left[\frac{\mathrm{C}(\mathrm{~B}-\mathrm{C})}{2 \mathrm{BT}-\mathrm{H}^{2}}\right] \\
& =\frac{(\mathrm{B}-\mathrm{C})\left(\mathrm{H}^{2}-2 \mathrm{AT}\right)}{A B C}
\end{aligned}
\]

Thus
\[
\left(\frac{d 5}{d \tau}\right)^{2}=\left(1-\xi^{2}\right)\left(1-k^{2} \xi^{2}\right)
\]
where
\[
\xi=\mathrm{U}_{3} / \beta \text { and } \tau=\mathrm{pt}
\]

Following conventional notation,
\[
\mathrm{U}_{3}=\beta_{\mathrm{sn}}\left[\mathrm{p}\left(t-\mathrm{t}_{0}\right)\right]
\]

Hence,
\[
\begin{aligned}
U_{1}^{2} & =\frac{\left(2 B T-H^{2}\right)-C(B-C)\left[\frac{2 B T-H^{2}}{c(B-C)}\right] \operatorname{sn}^{2}\left[p\left(t-t_{0}\right)\right]}{A(B-A)} \\
& =\frac{\left(2 B T-H^{2}\right)}{A(B \cdots A)}\left[1-s^{2}\left[p\left(t-t_{0}\right)\right]\right]
\end{aligned}
\]

Let
\[
\gamma^{2}=\frac{2 B T-H^{2}}{A(B-A)}
\]

Further,
\[
\begin{aligned}
U_{2}^{2} & =\frac{\left(2 A T-H^{2}\right)-C(A-C)\left[\frac{2 B T-H^{2}}{C(B-C)}\right] \mathrm{sn}^{2}\left[p\left(t-t_{0}\right)\right]}{B(A-B)} \\
& \left.=\frac{H^{2}-2 A T}{B(B-A)}\left\{1-\left[\frac{(C-A)\left(2 B T-H^{2}\right)}{\left(H^{2}-2 A T\right)(B-C)}\right] \mathrm{sn}^{2}\left[p(t)-t_{0}\right)\right]\right\} \\
& =\alpha^{2}\left\{1-k^{2}, \operatorname{sn}^{2}\left[p\left(t-t_{0}\right)\right]\right\}
\end{aligned}
\]
where
\[
\alpha=\frac{H^{2}-2 A T}{B(B-A)}
\]
\[
=\cos \lambda \Delta t V\left(t_{n}\right)+\frac{\sin \lambda \Delta t}{\lambda^{2}} \quad V\left(t_{n}\right)+-\frac{1}{c} \int_{t_{n}}^{t_{n+1}} T(x) \sin \lambda\left(t_{n+1}-x\right) d x
\]

The same expansion technique may be carried out for the \(V\) equation, yielding
\[
\dot{V}\left(t_{n+1}\right)=\cos \lambda \Delta t V\left(t_{n}\right)=\lambda \sin \lambda \Delta t V\left(t_{n}\right)+\frac{\lambda}{c} \int_{t_{n}}^{t_{n+1}} T(x) \cos \lambda\left(t_{n+1}-x\right) d x
\]
which establishes the recursion equation.

Hence,
\[
\begin{aligned}
& \mathrm{U}_{1}=\gamma \cos \varphi \\
& \mathrm{U}_{2}=\alpha \sqrt{1-\mathrm{k}^{2} \sin ^{2} \varphi} \quad \text { where } \sin \varphi=\operatorname{sn}\left[\mathrm{p}\left(t-t_{0}\right)\right] \\
& \mathrm{U}_{3}=\beta \sin \varphi \\
& \alpha=\sqrt{\frac{\mathrm{B}^{2}-2 \mathrm{AT}}{\mathrm{~B}(\mathrm{~B}-\mathrm{A})}} \\
& \beta=\sqrt{\frac{2 B T-\mathrm{H}^{2}}{\mathrm{C(B-C)}}} \\
& \gamma=\sqrt{\frac{2 B T-\mathrm{H}^{2}}{\mathrm{~A}(\mathrm{~B}-\mathrm{A})}} \\
& k=\sqrt{\frac{\left(\mathrm{C-A)(2BT-H}^{2}\right)}{(B-C)\left(H^{2}-2 B T\right)}} \\
& \mathrm{p}=\sqrt{\frac{(B-C)\left(\mathrm{H}^{2}-2 A T\right)}{\mathrm{CAB}}}
\end{aligned}
\]

\section*{CASE 2}

Solve for \(\Psi_{1}\) above * Carrying out the method outlined in Case 1 yields:
\[
\begin{aligned}
& \mathrm{U}_{1}=\beta \sin \varphi \\
& \mathrm{U}_{2}=\alpha \sqrt{1-k^{2} \sin ^{2} \varphi} \\
& U_{3}=\gamma \cos \varphi
\end{aligned}
\]
where
\[
\begin{aligned}
& \alpha=\sqrt{\frac{H^{2}-2 C T}{B(B-C)}} \\
& \beta=\sqrt{\frac{2 B T-H^{2}}{A(B-A)}} \\
& \gamma=-\sqrt{\frac{2 B T-H^{2}}{C(B-C)}} \\
& k=\sqrt{\frac{(A-C)\left(2 B T-H^{2}\right)}{(B-A)\left(H^{2}-2 C T\right)}} \\
& p=\sqrt{\frac{\left(H^{2}-2 C T\right)(B-A)}{A B C}}
\end{aligned}
\]

\section*{ATTACHMENT III}

\section*{RECURSION EQUATION FOR \(\int \sin ^{2} \mathrm{n}_{\varphi \mathrm{d}} \varphi\)}

It is desired to recursively compute \(\int \sin ^{2} n_{\varphi d \varphi}\) for values of a running from 1 to at least 4. The derivation starts with the integral formula:
\[
\begin{aligned}
F_{n}(\varphi) & =\int \sin ^{2 n} \varphi d \varphi=-\frac{\sin ^{2 n-1} \varphi \cos \varphi}{2 n}+\left(\frac{2 n-1}{2 n}\right) \int \sin ^{2 n-2} \varphi d \varphi \\
& =-\left[\cos \varphi(\sin \varphi)^{2(n-1)-1}\right] \frac{\operatorname{snn}^{2} \varphi}{2 n}+\left(\frac{2 n-1}{2 n}\right) F_{n-1}(\varphi)
\end{aligned}
\]

Let
\[
G_{n}=\sin ^{2} \varphi G_{n-1}
\]

Then
\[
F_{n}(\varphi)=\left\langle\frac{2 n-1}{2 n}\right\rangle F_{n-1}(\varphi)-\frac{G_{n-1}(\varphi)}{2 n}
\]
and
\[
G_{n}(\varphi)=\sin ^{2} \varphi G_{n-1}(\varphi)
\]
for large \(n\) values.

For \(\mathrm{n}=0\),
\[
F_{0}=\int d \varphi=\varphi
\]
then let
\[
\mathrm{G}_{0}=\sin \varphi \cos \varphi
\]

Then,
\[
\begin{aligned}
F_{1} & =\int \sin ^{2} \varphi d \varphi \\
& =\frac{\varphi}{2}-\frac{\operatorname{s\varphi c} \varphi}{2} \\
& =\left[\frac{2(1)-1}{2(1)} \left\lvert\, F_{0}-\frac{G_{0}}{2(1)}\right.\right.
\end{aligned}
\]

It is easily verified that this relationship holds for \(n=2\), thus proving the relationship; hence, the mechanization shown in Figure III 1.


Figure III 1. Recursion for \(\int \sin ^{2 n} \phi d_{\phi}\)

\section*{ATTACHMENT IV}

RECURSION EQUATION EOR SUCCESSIVE TIME
SOLUTIONS OF DIFFERENTIAL EQUATION

The objective of this attachment is to derive a recursion equation relating successive time solutions of the duferential equation:
\[
\ddot{V}+\lambda^{2} V=\frac{\lambda T(t)}{c}
\]
which has the fundamental solution
\[
V(t)=V(0) \cos \lambda t+\frac{\dot{V}(0) \sin \lambda t}{\lambda}+\frac{\lambda}{c} \int_{0}^{t} T(x) \sin \lambda(t-x) d x
\]

First, it is noted that
\[
V(t)=-\lambda V(0) \sin \lambda t+V(0) \cos \lambda t+\frac{\lambda}{c} \int_{0}^{t} T(x) \cos \lambda(t-x) d x
\]

Then
\[
\begin{aligned}
V\left(t_{n+1}\right) & =V\left(t_{n}+\Delta t\right)=V(0) \cos \lambda\left(t_{n}+\Delta t\right)+\frac{\dot{V}(0)}{\lambda} \sin \lambda\left(t_{n}+\Delta t\right) \\
& +\frac{1}{c} \int_{0}^{t_{n}} T(x) \sin \lambda\left(c_{n}+\Delta t-x\right) d x+\frac{1}{c} \int_{0}^{t_{n+1}} T(x) \sin \lambda\left(t_{n} \Delta t-x\right) d x
\end{aligned}
\]

Now, expand the trigonometric functions and collect terms so that
\[
\begin{aligned}
V\left(t_{n+1}\right) & =\cos \lambda \Delta t\left\{V(0) \cos \lambda t_{n}+\frac{\dot{V}(0)}{\lambda} \sin \lambda t_{n}+\frac{1}{c} \int_{0}^{t_{n}} T(x) \sin \lambda\left(t_{n}-x\right) d x\right\} \\
& +\frac{\sin \lambda \Delta t}{\lambda}\left\{-\lambda V(0) \sin \lambda t_{n}+\frac{\dot{V}(0)}{\lambda} \cos \lambda t_{n}+\frac{1}{c} \int_{0}^{t_{n}} T(x) \cos \lambda\left(t_{n}-x\right) d x\right\} \\
& +\frac{1}{c} \int_{t_{n}}^{t_{n+1}} T(x) \sin \lambda\left(t_{n}-x\right) d x
\end{aligned}
\]

\section*{APPENDIX E}

ARRS PHOTOMULTIPLIER SENSITIVITY AND OVERLOAD PROTECTION

\title{
PNECEDING PAGE SLANK NOT FILIED:
}

\section*{APPENDIX E \\ ARRS PHOTOMULTIPLIER SENSITTVITY AND OVERLOAD PROTECTION}

The starmapper considered for the ARRS includes a photomultiplier cathode which is alternatively exposed to bright light sources, such as the moon or sun thuminated Earth, and the low light levels presented by a star field viewed under shaded conditions. Of particular interest are the effects of cathode exposure when the starmapper is in a \(500-\mathrm{km}\) orbit above the sunlit portion of the earth. One of the requirements for the ARRS is to determine the star magnitude which can be reliably detected for the shaded conditions on the sunlit side of the earth but with the increased photomultiplier dark current due to the periodic cathode exposures to the high intensity of the earth's albedo.

Limated data for the increased photomultiplier dark current are presented in reference 12 ; however, this report was primarily concerned with establishing permanent, long-term increases of photomultiplier dark current caused by extended exposure to simulated space radiation. As a consequence, most of the dark current data presented in this report were taken after the cathode was dark adapted for a four-hour period. (The data showed some degradation in quantum efficiency on long exposure to combined flux of electrons, protons, and Earth and Earth-Moon albedo.) However, the 35 KeV electrons used could not be expected to penetrate more than about 0.3 mil . Thus, any effects observed must have been due to luminescence of the photocathode substrate.

The data did show that cathode dark current recovered to the initial values before exposure. But, for the ARRS, it is necessary to know the dark current immediately after exposure since this parameter is a major factor determining the limiting star magnitude which may be detected during the portion of the scan period that the starmapper is shaded from the sun-illuminated Earth.

Figure 3. 5. 3-1, page 64, reference 12 , gives the only data currently published on the cathode current immediately after radiation exposure. These data were obtained from measurements of EMR 54 1N anode currents immediately after the simulated exposures during 400 orbits. For a multiplier gain of \(10^{6}\), the largest anode dark current was recorded as \(10^{-9}\) A for a tube exposed only to particle radiation. The anode dark currents for tubes exposed only to particle and visible electromagnetic radiation measured no more than
\(10^{-10}\) A. Based on these values of cathode dark current, an analysis of limiting detectable magnitude will be made for a wide range of dark current values which includes the values stated above.

To further the analysis, use the notation and results described in the main body. The peak signal-to-rms noise ratio at the output of a photomultiplier which is generating a star pulse from the radiation of a star image transmitting a slit mask is given by
\[
\begin{equation*}
\frac{\mathrm{S}}{\mathrm{~N}}=\frac{(0.597) \mathrm{I}_{\mathrm{S}}}{1.23\left[2 e\left(0.8 \mathrm{I}_{\mathrm{S}}+\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{D}}\right) \Delta \mathrm{f}\right]^{1 / 2}} \tag{E1}
\end{equation*}
\]
where
\(I_{s}=\) the average current produced by 100 percent of the star radiation striking the cathode
\(I_{B}=\) the average current produced by stellar background radiation striking the cathode
\(I_{D}=\) the average dark current of the cathode
\(\Delta f=\) the noise equivalent bandwidih of the electronic filter
Equation (E1) was derived assuming that 80 percent of the star image radiation passes through the slit when the star image is centered in the slit. The numerator factor accounts for decrease of pulse height caused by the filter. The factor 1.23 in the denominator accounts for noise introduced by the photomultiplier dynode chain.

To preserve star pulse symmetry for high-accuracy, threshold-crossing signal detection, it is required that the electronic filter exhibit a near linear phase shift versus frequency characteristic. A six-pole Paynter filter exhibits a suitable linear phase characteristic. The noise equivalent bandwidth for this filter can be shown to be
\[
\Delta f=1.020 \mathrm{f}_{\mathrm{c}}
\]
where \(f_{c}=\omega_{c} / 2 \pi\) is the filter frequency parameter. Moreover, for maximum signal to noise, the frequency parameter is
\[
\omega_{c} \approx 0.7 / \sigma
\]
for a slit width such that 80 percent of the star energy passes through the slit when the star is centered. For this case,
\[
T_{s}=2.56 \sigma
\]
where \(T_{s}=\alpha / \omega\) is the star crossing time. Then
\[
\begin{equation*}
\Delta f=\frac{1.020 \times 0.7 \times 2.56}{2 \pi \mathrm{~T}_{\mathrm{s}}}=314 \mathrm{~Hz} \tag{E2}
\end{equation*}
\]

The signal current at magnitude \(\mathrm{M}_{\mathrm{B}}\) and type \(A_{o}\) is
\[
\begin{align*}
I_{S} & =e \gamma\left(11,000^{\circ} \mathrm{K}\right) \epsilon_{\mathrm{op}} \epsilon_{\mathrm{qmax}}{ }^{\mathrm{A}} \mathrm{o} \\
& =1.602 \times 10^{-19} 1.76 \times 10^{6} \times 0.85 \times 0.215 \times 26.7210^{-0.4 \mathrm{M}_{\mathrm{B}}} \\
& =1.38 \times 10^{-12} \times 10^{-0.4 \mathrm{MB}_{\mathrm{B}} \mathrm{~A}} \tag{E3}
\end{align*}
\]

The signal due to faint star background is
\[
\begin{align*}
\mathrm{I}_{\mathrm{B}} & =\mathrm{en} / \mathrm{T}=\frac{1.602 \times 10^{-19} \times 192}{0.926 \times 10^{3}}  \tag{E4}\\
& =3.33 \times 10^{-14} \mathrm{~A}
\end{align*}
\]

A range of dark currents
\[
\begin{equation*}
{ }^{1} \mathrm{D}=10^{-17+\mathrm{k}}, \mathrm{k}=0,1, \ldots, 8 \tag{E5}
\end{equation*}
\]
is used in Equation (E1) together with Equations (E2) through (B5). Signal to noise is set equal to 10 and the result is solved for \(M_{B}\). One gets the plot of Figure Ei. Note that little deterioration in minimum magnitude at ( \(\mathrm{S} / \mathrm{N}\) ) \(=10\) occurs until the dark current becomes comparabie to the background, whereupon a rapid decay occurs. It is plain that bright objects in the field will make the sensor unoperative.

Other questions of interest related to the ARRS concern the protection of the photomultiplier from overload conditions. Two possible methods may be used to provide adequate protection and overioad safety margin. One method is to operate the multiplier chain at the lowest possible voltage so that the anode current level is kept to a minimum. This coud also include operating only the number of dynode stages to provide the minimum required maltiplier gain. The other method involves switching the cathode first dynode voltage when an overload condition does exist.

To establish the minimum required multipliex gain, it is necessary to consider the basic sources of noise in photocurreat detection. An always present noise factor is the shot noise of the cathode current. The other basic noise is the Johnson noise of the anode resistor. The refore, the mean square noise voltage at the photomultiplier anode is given by
\[
\overline{v_{n}^{2}}=R^{2} G^{2}\left(2 e I_{k} \Delta f\right)+4 k T R \Delta f=e R \Delta f\left(2 G^{2} R I_{k}+\frac{4 K T}{e}\right)
\]
\(\stackrel{H}{\mathrm{CN}}\)


Figure E1. Recovery of Input Signal from Output Signal
where
\(R=\) anode load resistor
\(\mathrm{G}=\) the multiplier gain
\(I_{k}=\) average cathode current
\(\Delta f=\) electrical bandwidth
\(4 \mathrm{kT}=1.62 \times 10^{-20}\) for \(\mathrm{T}=23^{\circ} \mathrm{C}=296^{\circ} \mathrm{K}\)
Here the multiplier gain is assumed to be noise-free. It is desirable to bave multiplier gain which is sufficiently large so that the shot noise dominates. This occurs when
\[
2 \mathrm{G}^{2} R \mathrm{I}_{\mathrm{k}} \gg \frac{4 \mathrm{kT}}{\mathrm{e}}
\]

Therefore, require that
\[
2 G^{2} R I_{k}=10\left(\frac{4 k T}{e}\right)=1
\]
where
\[
\frac{4 \mathrm{kT}}{e}=10^{-1} \text { for } \mathrm{T}=20^{\circ} \mathrm{C}
\]

Now the upper limit on \(R\) is determined by the maximum allowable \(R C_{s}\) time constant where \(\mathrm{C}_{\mathrm{S}}\) is the stray capacitance at the anode. This \(\mathrm{RC}_{\mathrm{S}}\) time constant should be less than the transit time of a point image to cross the slit. For ARRS the slit transit time is given by
\[
\mathrm{T}_{\mathrm{S}}=\alpha / \omega=1 / 18 \times 60=0.926 \times 10^{-3} \mathrm{sec}
\]

If one assumes that \(\mathrm{C}_{\mathrm{s}}=20 \times 10^{-12}\) farad and \(\mathrm{R}=10^{7}\) ohms, \(\mathrm{RC}_{\mathrm{s}}=0.2 \times\) \(10^{-3}\) second \(<\mathrm{T}_{\mathrm{s}^{2}}\) then
\[
G^{2}=\frac{1}{2 \times 10^{7} \cdot I_{k}}
\]

Next, assume that the smallest value for \(I_{k}\) when a star signal is present occurs for a fourth magnitude star. In this case for \(D=1\) inch
\[
I_{k}=\frac{2.35}{3^{2}} \times 10^{-12} \times 10^{-0.4 \times 4}=0.386 \times 10^{-14} \mathrm{~A}
\]

Hence, the multiplier gain need not exceed
\[
\mathrm{G}=\left(2 \times 10^{7} \times 0.386 \times 10^{-14}\right)^{-1 / 2}=3.60 . \times 10^{3}
\]

It is possible to estimate the number of dynodes required to provide the minimum value of dynode gain. For the EMR 531 N data sheet, the gain per dynode stage, g , is given by
\[
g^{14}=10^{4}
\]
for 1690 volts applied across the multiplier chain. This reduces to a per stage gain of
\[
g=1.93
\]

Now, let \(n\) such stages be required to provide an overall gain of \(2,75 \times 10^{3}\). Thus,
\[
(1.93)^{n}=3.60 \times 10^{3}
\]
or
\[
\mathrm{n}=12.45 \approx 12 \text { stages }
\]

This implies that the last two dynode stages of the EMR 531N need not be used.

If the maximum allowable current level of the last active dynode stage is one microampere, as is indicated for the 531 N , then the cathode current for this limiting condition is
\[
I_{k}=\frac{10^{-6}}{2.24 \times 10^{3}}=0.446 \times 10^{-9} \mathrm{~A}
\]

When the photomultiplier cathode is exposed to a high-intensity light source and the anode current level exceeds the maximum allowable ration, it is necessary to switch the photomultiplier bias voltage so that the overioad currents are reduced or interrupted. Figure E1 shows a schematic for switching the photomultiplier cathode voltage. The cathode is at ground potential and the anode is connected to positive high voitage through a load resistor, \(R_{L}\). The first dynode is connected to a positive bias voltage through a resistor \(R\) and a transistor switch. When the transistor switch is OFF, the positive voltage is applied to the first dynode and free electrons from the cathode are accelexated toward the first dynode. When the transistor switch is ON, the transistor shunts a small negative voltage to the first dynode. This small negative voltage will repel electrons back to the cathode, thus preventing cathode current from reaching the multiplier chain. Preventing cathode current from flowing to the dynode chain in this manner should prevent cathode and dynode degradation even when the cathode is exposed to high-intensity light sources.

After the photomultiplier cathode-first dynode voltage has been switched to cutoff the electron flow from the cathode, a signal must be available which indicates that no bright source is in the field of view in order to turn the cathode-first dynode voltage back to the operational condition. This signal can be generated by a solid-stage detector whose relatively wide optical field of view always scans at a fixed azimuth preceding the scan of the starmapper field of view.

\title{
PBECEDING PAGE BLANK NOE ELIMED.
}

APPENDIX F
ANALXSIS OF CATHODE TEMPERATURES RESULTING FROM EXPOSURE TO SOLAR RADIATION

\title{
Fheceding page blank not ellicos
}

\section*{APPENDTX \(F\) \\ ANALYSIS OF CATHODE TEMPERATURES RESULTING FROM EXPOSURE TO SOLAR RADIATION}

The " N " type cathode in the EMR \(531 \mathrm{~N}-01-14\) multiplier phototube has an upper temperature limit of \(150^{\circ} \mathrm{C}\). It is of interest to know whether or not this temperature is exceeded as a consequence of exposing the cathode to direct sunlight under the conditions attending the application of the 531N tube in the ARRS starmapper in a design which has no sun shutter.

Solar energy entering the starmapper aperture ( 3.25 inch for \(20^{\circ}\) field of view) is concentrated by the optics and focused as an image 33 arc min in diameter ( 0.063 inch for the 6.5 -inch focal length optics) at the focal surface. If the sun's image passes over one of the celestial viewing slits at the focal plane some of the solar energy will reach the cathode of the photomultiplier tube (PMT) via optical fibers between the slit and the PMT. However, not all of the solar energy reaching the cathode is absorbed -- some is transmitted. Unfortunately, data are lacking on the absorption of solar energy by the cathode. The information that is published relates to the quantum efficiency, or response, of the cathode. In a program conducted for NASA Langley, Brown, et al. (ref. 12) calculated the total irradiance of the sun in the range of the \(N\)-type cathode to be \(0.0312 \mathrm{~W} / \mathrm{cm}^{2}\). This value is less than the \(0.140 \mathrm{~W} / \mathrm{cm}^{2}\) solar constant. The use of the lower value for thermal calculations is justifiable if it is assumed that the optical design provides for a filter to remove radiation of wavelengths longer than the \(700-\mathrm{m} \mu\) cutoff point for the response of the 531 N tube. Such a filter would thus remove the infrared portion of the solar spectrum.
The irradiance of \(0.0312 \mathrm{~W} / \mathrm{cm}^{2}\) applies at the aperture of the starmapper. The intensity of the solar energy reaching the focal plane is obtained by multiplying the \(0.0312 \mathrm{~W} / \mathrm{cm}^{2}\) by the ratio of aperture area to image area and by an optical efficiency factor. Thus, the intensity at the focal plane is
\[
\mathrm{p}=0.0312 \times\left(\frac{3.25}{0.063}\right)^{2} \times 0.8=67 \mathrm{~W} / \mathrm{cm}^{2}
\]
where 0.8 is an assumed value of optical efficiency.
The fiber opties between the viewing slit and the PMT will attenuate the energy because the energy transmitted through any given fiber enters over a part of the end surface but leaves over the total surface of the opposite end, as shown in Figure Fi.

The energy will be attenuated in proportion to the ratio of slit area to total end surface area; i.e.,


Figure F1
\[
\begin{equation*}
p^{\prime}=p \times \frac{S w x \cdot d}{\frac{\pi}{d} d^{2}}=p x \frac{4 S w}{\pi d} \tag{F1}
\end{equation*}
\]

The slit width is 60 are sec or 0.002 inch for the 6.50 inch focal length system. Optical fibers of 0.010 -inch diameter will be assumed. Therefore;
\[
p^{\prime}=67 \times \frac{4 \times 0.002}{\pi \times 0.010}=17.1 \mathrm{~W} / \mathrm{cm}^{2}
\]

This energy will be absorbed by the cathode at the suxface of the PiMT window during the period of time during which the sun's image is over the viewing slit.
The time of exposure to the \(17,1 \mathrm{~W} / \mathrm{cm}^{2}\), energy input is dependent on the spin rate, \(N\), of the satellite. Since the sun subtends an angle of 33 arc min, the exposure time is
\[
\begin{equation*}
t=\frac{33}{\frac{N}{60} \times 360 \times 60}=\frac{0.092}{\frac{0}{N}} \tag{Fi2}
\end{equation*}
\]
where the units for \(t\) and \(N\) are seconds and revolutions per ininute, respectively.

To obtain an approximation of the temperature rise of the cathode layer re \(=\) sulting from exposure to \(17.1 \mathrm{~W} / \mathrm{cm}^{2}\), the heat transfer problem can be treated as an infinite body with a plane surface exposed to a permanent heat source at the surface. The heat source is the energy-absorbing cathode layer and the surface temperature is the cathode temperature of interest;

Ingersoll, Zobel, and Ingersoll (ref. 20) present the solution for the problem of a continuous heat source acting over a surface of an infinite body. The temperature at the surface is expressed by the equation
\[
\begin{equation*}
T=\frac{Q^{\prime} \sqrt{\alpha t}}{k \sqrt{\pi}} \tag{E3}
\end{equation*}
\]
where
\(T=\) surface temperature at any time, \(t_{s}\) for an initial temperatare, \(T_{0}=0^{\circ} \mathrm{C}\)
\(Q^{\prime}=\) continuous heat source at the surface
\(\alpha=\) thermal diffusivity of the body; \(\alpha=\frac{k}{c p}\)
where
\[
k=\text { thermal conductivity }
\]
\(c=\) specific heat
\(\rho=\) density
t = time
The actual cathode heating problem is one of a number of localized heat sources rather than a continuous heat source; therefore, Equation (F3) should yield a conservative temperature value. This is sufficient for obtaining an approximation of the cathode temperature rise.

Before substituting in Equation (F3), values must be expressed in consistent units. Thus, since \(1 \mathrm{~W}=0.239 \mathrm{cal} / \mathrm{sec}\),
\[
\mathrm{p}^{\prime}=\mathrm{Q}^{\prime}=17.1 \times 0.239=4.1 \mathrm{cal} / \mathrm{sec}-\mathrm{cm}^{2}
\]

Thermal properties of the particular glass used for the window in the PMY are not available, but using values for a typical glass with equilibrium temperature must be less than the \(150^{\circ} \mathrm{C}\) maximum by the amount of the temperature rise occurring in a single pass of the sun; i.e., \(120^{\circ} \mathrm{C}\) and \(138^{\circ} \mathrm{C}\) for 1 and 3 rpm , respectively.

Rather than attempting a solution of the complete heat transfer problem, the heat loss by conduction will be neglected and an approximate solution based on radiative exchange alone will be used to show that the cathode will not reach destructive temperatures.

The solution will be restricted to the events associated with a single optical fiber transmitting energy from a portion of a viewing slit to a spot on the PMT window or cathode as was done in calculating the temperature rise for a single pass of the sun. This spot will be losing heat by radiative
exchange with surrounding surfaces. The rate of heat transfer by radiation is given by the equation
\[
\begin{equation*}
\frac{q}{A}=F_{1} F_{2}{ }^{0}\left(T_{1}^{4}-T_{2}^{4}\right) \tag{F4}
\end{equation*}
\]
where
\(q=\) heat transfer per unit time
\(A=\) area
\(\mathrm{F}_{1}=\) geometric form factor
\(F_{2}=\) emissivity factor
\(\sigma=\) Stefan-Boltzmann constant
\(T_{1}=\) absolute temperature of warmex surface
\(\mathrm{T}_{2}=\) absolute temperature of cooler surface
For a surface which is small relative to enclosing surfaces, Kern (ref. 21) gives \(F_{1}=1\) and \(F_{2}=\varepsilon_{1}\), where \(\epsilon_{1}=\) emissivity of the small surface. For the glass window of the PMT, \(\epsilon_{1}=0.9\) (approximately).
Since the heat lost by radiative cooling must equal the heat gained by solar heating, the heat transfer rate, q/A, is obtained by multiplying the solar heating input rate, \(Q^{\prime}\), by the ratio of heating time to cooling time. Thus,
\[
\frac{q}{A}=Q^{\prime} x \frac{t}{\frac{60}{N}}
\]
or substituting from Equation (F2)
\[
\begin{equation*}
\frac{q}{A}=Q^{\prime} \times \frac{0.092}{\frac{N}{N}}=1.53 \times 10^{-3} Q^{\prime} \tag{F5}
\end{equation*}
\]

For \(Q^{\prime}=4.1 \mathrm{cal} /(\mathrm{sec})\left(\mathrm{cm}^{2}\right), \frac{\mathrm{q}}{A}=6.3 \times 10^{-3} \mathrm{cal} /(\mathrm{sec})\left(\mathrm{cm}^{2}\right)\). The StefanBoltzman constant
\[
\sigma=1.362 \times 10^{-12} \mathrm{cal} /(\mathrm{sec})\left(\mathrm{cm}^{2}\right)\left(\mathrm{oK}^{4}\right)
\]

The temperature of surrounding surfaces which the spot in question is radiating to will be taken as the \(200^{\circ} \mathrm{K}\) planned operating temperature; i. e., \(\mathrm{T}_{2}=\) \(200^{\circ} \mathrm{K}\).

Substituing appropriately in Equation (F4) and solving for \(\mathrm{T}_{1}\) gives
\[
\begin{gathered}
\mathrm{T}_{1}=\left[\frac{\mathrm{q} / \mathrm{A}}{\mathrm{~F}_{1} \mathrm{~F}_{2} \sigma}+\mathrm{T}_{2}^{4}\right]^{1 / 4} \\
T_{1}=\left[\frac{6.3 \times 10^{-3}}{1 \times 0.9 \times 1.362 \times 10^{-12}}+(200)^{4}\right]^{1 / 4}=2870 \mathrm{~K} \text { or } 14^{\circ} \mathrm{C}
\end{gathered}
\]

Thus, it has been shown that radiative cooling alone is adequate to remove the solar energy reaching any spot on the PMT cathode by transmission from the celestial viewing slit through the fiber optics to the cathode. The relatively low equilibrium temperature of \(14^{\circ} \mathrm{C}\) occurs because the period of cooling is significantly longer than the period of solar heating.

The temperature rise of \(20.8^{\circ} \mathrm{C}\) for a spot on the cathode which was calculated for a spin rate of 1 rpm for one pass of the sun is also relatively low. Thus, a substantial safety factor exists if the solar energy is attenuated by using a filter to remove wavelengths beyond the range of the 531N PMT. The fiber optics also act to attenuate the intensity of solar energy passing through the viewing slits and reaching the cathode.

\title{
Pieceding page blank not flimed.
}

APPENDIX C
MAIN REFERENCE FRAME

\title{
PrECEDING PAGE BLANK NOT HLHED:
}

\author{
APPENDIX G \\ MAIN REFERENCE FRAME
}

This Appendix defines the main reference frames used in the spacecraft dynamics modeling and the attitude determination data reduction simulation. The main reference frames are (1) the body frame, (2) the experiment frame, (3) the local vertical frame, and (4) the inertial frame.

The body frame refers to a body-fixed triad aligned to the spacecraft principal moment of inertial axes. The axes are denoted \(X_{B}, X_{B^{2}}\) and \(Z_{B}\).

The experiment frame refers to an instrument-fixed tried denoted by \(X_{E}\), \(Y_{E}\), and \(Z_{E}\).

The local vertical frame has its origin fixed to the spacecraft center of mass in orbit with \(X_{L}\) as directed along a radius vector from the earth's center. The \(X_{L}\) lies in the orbit plane in the direction of the spacecraft velocity vector.

The inertial frame has its origin fixed at the earth's center with the \(Z_{I}\) axis along the earth's polar axis, the \(X_{I}\) axis directed toward the vernal equinox, and the \(Y_{I}\) and \(X_{I}\) lying in the equatorial plane.

\section*{REFERENCE FRAME TRANSFORMATIONS}

The transformations used in this report are
1) Inertial to body axis
2) Body to experimental axes
3) Local vertical to inertial axes

\section*{Inertial to Body Axes}

The inertial axes are related to the spacecraft body axes by the sequence of Euler rotations
- \(\psi\) about the \(\mathrm{Z}_{\mathrm{I}}\) axis
- \(\phi\) about the first displaced X axis
- \(\theta\) about the second displaced \(y\) axis

A vector in inertial space is then given in body coordinates by
\[
\overrightarrow{\mathrm{X}}_{\mathrm{B}}=\mathrm{E}(\psi, \phi, \theta) \overrightarrow{\mathrm{X}}_{\mathrm{I}}
\]
where
\[
\mathrm{E}=\left[\begin{array}{cc}
(\cos \theta \cos \psi-\sin \theta \sin \phi \sin \psi) & (\cos \theta \sin \psi+\sin \theta \sin \phi \cos \psi)-\sin \theta \cos \theta \\
-\cos \phi \sin \psi & \cos \phi \cos \psi \\
(\sin \theta \cos \psi+\cos \theta \sin \phi \sin \phi) & (\sin \theta \sin 1-\cos \theta \sin \phi \cos \psi) \cos \theta \cos \phi
\end{array}\right]
\]

\section*{Body to Experimental Axes}

The body axes are related to the experimental by the sequence of Euler angle rotations
- \(\varepsilon_{1}\) about the \(Z\) body axis
- \(\varepsilon_{2}\) about the firat displaced \(X\) axis
- \(\epsilon_{3}\) about the second displaced \(y\) axis

A vector in body axes is given by experimental frame by
\[
\vec{X}_{\mathrm{E}}=C\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right) \overrightarrow{\mathrm{X}}_{\mathrm{B}}
\]
where


\section*{Local Vertical to Inertial Axes}

The local vertical axes are realted to the inertial axes by the sequence of Euler angle xotations
- \(\Omega\) about the \(Z_{I}\) axiss
- i. about the first displaced \(x\) axis
- \(v\) about the first displaced \(z\) axis
where
\(\Omega\) is the right ascension of the ascending node
i is the inclination of the orbit, and
\(v\) is the angle from the ascending node

The transformation matrix from inertial frame to local vertical frame is
\[
\stackrel{\rightharpoonup}{X}_{\mathrm{L}}=F(\Omega, i, v) \stackrel{\rightharpoonup}{X}_{\mathrm{I}}
\]
where
\[
F(\alpha, 1, y)=\left[\begin{array}{lll}
\cos v \cos \Omega-\sin v \cos x \sin \Omega & \cos v \sin \eta+\sin v \cos z \cos \Omega & \sin v \sin 1 \\
-\sin v \cos \Omega-\cos v \cos 2 \sin \Omega & -\sin v \sin \Omega+\cos v \cos 1 \cos \Omega & \cos v \sin 1 \\
\sin 1 \sin \Omega & -\sin 1 \cos \Omega & \cos 1
\end{array}\right]
\]

\section*{OTHER REFERENCE FRAME RELATIONSHIPS}

Equatorial inertial frame ( \(X_{1}, X_{1}, Z_{I}\) ) to ecliptic inertial reference frame transformation is given by a single rotation \(\varepsilon\) about the \(X_{I}\) axis, where \(\varepsilon\) is the obliquity of the ecliptic (mean value in 1960 is \(23^{\circ} 6^{\prime} 40.16^{\prime \prime}\) ).

A vector \(\vec{X}_{\mathrm{I}}\) in the equatorial frame is given by
\[
\vec{X}_{\varepsilon}=G(\varepsilon) \vec{X}_{I}
\]
in the ecliptic inertial reference frame where
\[
G(\varepsilon)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \cos \varepsilon & \sin \varepsilon \\
0 & -\sin \varepsilon & \cos \varepsilon
\end{array}\right]
\]

A primed reference frame is defined to relate spacecraft geometry to the fixed body frame. The spacecraft geometry relation to the body axis requires a single rotation from any \(i^{\text {th }}\) surface, primed frame, to the body frame. The primed frame is related to the body frame by
\[
\overrightarrow{\mathrm{X}}_{\mathrm{B}}=\mathrm{M}(\mathrm{i}) \overrightarrow{\mathrm{x}}^{1}
\]
where i denotes the reference and
\[
M(i)=\left[\begin{array}{ccc}
\cos \frac{\pi}{3}(i-1) & 0 & \sin \frac{\pi}{3}(i-1) \\
0 & 1 & 0 \\
-\sin \left(\frac{\pi}{3}\right)(i-1) & 0 & \cos \left(\frac{\pi}{3}\right)(i-1)
\end{array}\right] \quad i=1,2,3,4,5, \text { and } 6
\]

The angle, \(\frac{\pi}{3}\) is due to the spacecraft Hexagonal shape.

\section*{REFERENCES}
1. Smith, Louis G.: A Theoretical Study of the Torques Induced by a Magnetic Field on Rotating Cylinders and Spinning Thin-Wall Cones, Cone Frustums, and General Body of Revolution. NASA TR-R-129, 1962.
2. Vinti, John P.: Theory of the Spin of a Conducting Satellite in the Magnetic Field of the Earth. Report No. 1020, Ballistic Research Labs., Aberdeen Proving Ground, Md., July 1957.
3. Beletskii, V. V.: Motion of an Aruhicial Satellite About its Center of Mass. NASA TT F-429, 1966.
4. Hausner, C. W. ; and Hudson, D. E. : Applied Mechanics Dynamics. Second ed., D. Van Nostrand Co., 1959, Chapter 7.
5. Goldstefn, H. Classical Mechanics. Addison-Wesley Publishing Co. , Reading Mass., 1957, Chapter 5.
6. Tidwell, N. W. ; and others: Conceptual Mechanization Studies for a Horızon Defunition Spacecraft - Attitude Control Subsystem. NASA. CR-66382, May 1967.
7. Rathmann, C. L.; Mann, G. H. ; and Nordberg, M. E.: A New UltralowExpansion, Modified Fused-Silica Glass. Applied Optics, Vol. 7, No. 5, May 1968, pp. 819-823.
8. Plummer, W. A.; and Hagy, H. E. : Precision Thermal Expansion Measurements on Low Expansion Optical Materials. Applied Optics, Vol. 7, No. 5, May 1968, pp. 825-831.
9. Malitson, I. H.: Interspecimen Comparison of the Refractive Index of Fused Silica. J. of Optical Society, Vol. 55, No. 10, pp. 1205-1209.
10. Sosman, R. B.: The Properties of Silica. Chemical Catalog Company, Inc., N. Y. 1927 , p. 687, Table 34. 7.
11. Jensen, Niels: Optical and Photographic Reconnaissance Systems. Wiley and Sons, N. X., 1968, Table 6. 2, p. 59.
12. Brown, N. J. Pai, M. S.; and Park, S.: Degradation of Multiplier Phototubes Exposed to Spatial Radiations. EMR-Aerospace Sciences, College Pank, Md., October 1968.
13. Greenstein, ed. : Stellar Energy Distribution in Stars and Stellar Systems. T. of Chicago Press.
14. Allen: Astrophysical Quantities Second ed., Athelone Press.
15. Anon.: J. Astro Phys., Vo1. 133, No. 229, 1961.
16. Anon. : Special Techniques for Space Navigation Control Data Corp., 1964.
17. Farre1, E. J. and Others: A Theorectical Investigation of Information Limits Scanning Optical Systems. NASA CR-672, December 30, 1965.
18. Petrovsky, I. G.: Lectures on Partial Differential Equations. Interscience Publishers, 1954, pp. 192-196.
19. Vogelzang, W. F.; Baltes, J. J. ; and Sharmack, D. K.: Orbital Operations and Analysis for a 15 -micron Horizon Radiance Measurement Experiment. NASA CR-66376, May 1967.
20. Ingersoll; Zobel; and Ingersoll: Weat Conduction, McGraw-Hill, N. Y., 1948, p. 156.
21. Kern, D. Q.: Process Heat Transfer. McGraw-Hill, N. Y., 1950, p. 82.
22. Schmidt, S. F.: Compensation for Modeling Erros in Orbit Determina-. tion Problems. Analytical Mechanics Assoc., Inc., Interim Repont No 67-16, Contract NAS5-11048, November 1967.
23. Bellantoni, J. F.; and Dodge, K. N.: A Square Root Formulation of the Kalman-Schmidt Filter. AIAA Journal, Vol. 5, No 7, July 1967, pp. 1309-1314.
24. Hildebrand, F. B. : Introduction to Numerical Analysis. McGraw-Hill, N. Y., 1956.
25. Boss, B; et. al: Albany Star Catalog. Carnegie Institute of Washington, 1963.
26. Heun, K.: Neue Methode zur Approximativen Integration der Differentialgleichungen einer unabhangigen Variable, Z. angew. Math. v. Phys., 45;23-38 (1900)
27. Foudriat, E. C. : Analysis of Limited Memory Estimators and Their Application to Spacecraft Attitude Determination. Marquette University, NASA Grant NGR-50-001-009, September 1969.

\title{
HON E Y W E L L \\ 1 Nc.
}

17 March 1970
```

National Aeronautics \& Space Administration
EDM-3-009
Langley Research Genter
Langley Station M.S. 126
Hampton, Virginia 23365
Attention: Mr. Willis A. Simmons
Gontracting Officer
Subject: Contract NAS1-8801, Data Submittal Volume I of Final Report
Reference: Letter NASI-8801 (MFC) of 11/7/69

```

\section*{Gentlemen:}

Enclosed is a copy of "Attitude Referenced Radiometer Study Volume I - Attitude Determination System Design," CR-66852, required by NASA/LRC contract NAS1.-8801, Design Study of An Attitude-Referenced Radiometer, and the referenced letter. The report has been revised in compliance with the items of the referenced letter.

Mailing of the copies required by the distribution list included in the referenced Ietter is being done simultaneously with this information submission to you.

If there are any questions, please do not hesitate to contact the undersigned.

E. D. Maurer

Sr. Program Administrator
EDM:sdc
Enclosures
cc: Mr. M. F. Cavelli```


[^0]:    $*$ Portions of the sky around the North and South Celestial Poles are excluded.

