NASACONTRACTOR REPORT

LOAN COPY: RETURN TO AFWL (WLIL-2)
KIRTLAND AFB, N MEX

RIGID ROTOR DYNAMICS

by Edgar J. Gunter, Jr., and P. De Cboudbury

Prepared by
UNIVERSITY OF VIRGINIA
Sharlottesville, Va.
for Lewis Research Center

RIGID ROTOR DYNAMICS

By Edgar J. Gunter, Jr., and P. De Choudhury

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Grant No. NGR 47-005-050 by Department of Mechanical Engineering UNIVERSITY OF VIRGINIA Charlottesville, Va.

for Lewis Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

ABSTRACT

This report analyzes the dynamic motion of an unbalanced rigid body rotor in general linearized bearings and the analysis is applicable to fluid film as well as rolling element bearings for small bearing displacements. The complete nonlinear dynamical equations of motion, including rotor acceleration, are derived by Lagrange's equations to include the influence of damped, flexibly mounted bearing supports. The dynamical equations of motion are linearized by assuming constant angular shaft velocity and shaft displacements, which are small in comparison to the rotor characteristic length. Computer programs to analyze the rotor steady state motion due to unbalance and the stability and complete transient response are presented. As an example, these computer programs are applied to evaluate the characteristics of a NASA experimental hybrid gas bearing rotor system.

FOREWORD

The research described herein, which was conducted at the University of Virginia, was performed under NASA Research Grant NGR 47-005-050 with Mr. William J. Anderson, Fluid System Components Division, NASA-Lewis Research Center, as Technical Manager.

Page
ABSTRACT ii
FOREWORD iii
CONTENTS v
LIST OF FIGURES vii
NOMENCLATURE ix
PART I - INTRODUCTIÓN 1
1.01 - Statement of the Problem 1
1.02 - Description of the Rotor Coordinate System 1
1.03 - Bearing Coordinate System 5
1.04 - Summary of the Generalized Coordinate System 6
PART II - ROTOR EQUATIONS OF MOTION 7
2.01 - System Kinetic Energy 7
2.02 - Potential Energy With N-Bearings 8
2.03 - Dissipation Energy With N-Bearings 10
2.04 - Nonlinear Equations of Motion 12
2.05 - Linearized Equations of Motion 16
PART III - STEADY STATE SOLUTION OF THE EQUATIONS OF MOTION FOUR DEGREES OF FREEDOM SYSTEM 20
3.01 - Derivation of Amplitudes of Motion 20
3.02 - Derivation of Phase Angles of Amplitudes of Motion 23
3.03 - Calculation of Force Transmitted to Bearings and of Phase Angles Between Transmitted Force and Excitation 25
PART IV - ROTOR DYNAMIC UNBALANCE ANALYSIS 28
4.01 - Computer Programs for Rotor Steady State Solution 28
4.02 - Computer Programs ROTOR4 and ROTOR4P 28
4.03 - Computer Program to Evaluate Maximum Rotor Amplitude and Forces for a Four Degree of Freedom System (ROTOR4M) 32
4.04-Application of Four Degree of Freedom Unbalance Response Computer Programs 36
PART V - STABILITY AND GENERAL TRANSIENT ANALYSIS 63
5.01 - Stability Analysis of the System 63
5.02 - Description of Computer Program ROTSTAB - Transient Solution of System 68
5.03 - Special Case - Symmetric Bearing and Rotor 68
5.04 - Computer Program to Find Stability of Symmetric System (STABIL4) 70
PART VI - CONCLUSIONS AND SCOPE 72
RE FERENCES 73
APPENDIXES
A - DERIVATION OF KINETIC ENERGY OF ROTATION OF ROTOR 74
B - LISTING AND SAMPLE OUTPUT OF COMPUTER PROGRAM ROTOR4P 79
C - LISTING AND SAMPLE OUTPUT OF COMPUTER PROGRAM ROTOR4M 110
D - LIṠTING AND SAMPLE OUTPUT OF COMPUTER PROGRAM ROTSTAB 123
E - LISTING AND SAMPLE OUTPUT OF COMPUTER PROGRAM STABIL4 156

LIST OF FIGURES

Page

1. Schematic side view of rotor system 2
2. Schematic axial view of rotor displacement at first bearing 3
3. Isometric view of rotor coordinate system 5
4. Isometric view of bearing coordinate system 6
5. Schematic diagram of four degree freedom system 19
6. Diagram of unbalance force and rotor response phase relation 23
7. Flow chart of procedure Findmax used in ROTOR4M 33
8. Bearing horizontal and vertical amplitude against frequency 40
9. Bearing horizontal and vertical phase angle against frequency 41
10. Angular amplitude against frequency 42
11. Angular amplitude phase angle against frequency 43
12. Force transmitted against frequency 44
13. Force transmitted phase angle against frequency 45
14. Amplitude at +15 -inch location from first bearing against frequency 46
15. Phase angle of amplitude at +15 -inch location from first bearing against frequency 47
16. Amplitude at -15 -inch location from first bearing against frequency 48
17. Phase angle of amplitude at -15 -inch location from first bearing against frequency 49
18. Steady state response for inertial excitation for a single degree freedom system 50
19. Variation of phase angle for inertial excitation for a single degree freedom system 51
20. Transmissibility for a single degree freedom system 52
21. Force transmitted against frequency ratio for a single degree freedom system 53
22. Bearing amplitude against frequency (four degree freedom system) at damping coefficient 15 pound-seconds per inch 54
23. Force transmitted against frequency (four degree freedom system) at damping coefficient 15 pound-seconds per inch 55
24. Bearing amplitude against frequency (four degree freedom system) at damping coefficient 30 pound-seconds per inch 56
25. Force transmitted against frequency (four degree freedom system) at damping coefficient 30 pound-seconds per inch 57
26. NASA gas bearing rotor critical speeds for various values of bearing stiffness 58
27. Cylindrical critical speed rotor amplification factor against bearing stiffness 59
28. Cylindrical critical speed amplification factor against damping coefficient 60
29. Rotor phase angle at cylindrical critical speed against bearing stiffness 61
30. Rotor phase angle at cylindrical critical speed against bearing damping 62
31. Rotor motion of hybrid gas bearing system 67
32. Fixed reference frame 74
33. Rotations from fixed reference frame 75
34. Location of rotor unbalance masses 76

NOMENCLATURE

A rotor amplification factor
$B_{i x}$ bearing housing horizontal damping
$B_{i y} \quad$ bearing housing vertical damping
$\mathbf{C}_{\mathbf{i x x}} \quad \mathbf{C}_{\mathbf{i x}}=$ bearing damping coefficient in x-direction for the $\mathrm{i}^{\text {th }}$ bearing
$C_{i x y} \quad D_{i y}=$ cross coupled bearing damping coefficient for force in x-direction from y-displacement
$C_{\text {iyx }}$
$C_{\text {iyy }}$
C_{z}
D total dissipation energy
$\mathrm{f}_{\mathrm{ix}} \quad$ bearing housing horizontal stiffness
$f_{i y}$ bearing housing vertical stiffness
G_{ix} bearing housing angular stiffness in the x -direction
$G_{i y}$ bearing housing angular stiffness in the y-direction
$h_{1}, h_{2} \quad$ axial location of unbalance masses from first bearing
I_{P}, I_{T}
$\mathrm{I}_{1,2}$
$\mathrm{K}_{\mathrm{ixx}}$
$\mathrm{K}_{\mathrm{ixy}}$
$K_{i y x}$
$K_{\text {iyy }}$
K_{z}
L rotor length between bearing spans
L_{1} distance from first bearing to mass center of rotor
L_{2} distance from second bearing to mass center of rotor
$\mathrm{M}_{\mathrm{ix}} \quad$ bearing angular stiffness in x -direction

M_{iy}	bearing angular stiffness in y-direction
$\mathrm{m}_{1}, \mathrm{~m}_{2}$	mass of bearing housing 1 and 2
$\mathrm{N}_{\mathrm{i} X}$	bearing angular damping in x -direction
$\mathrm{N}_{\text {iy }}$	bearing angular damping in y-direction
$\mathrm{P}_{\text {ix }}$	cross coupling angular damping coefficient in y-direction due to rotation in x -direction
$\mathrm{P}_{\text {iy }}$	cross coupling angular damping coefficient in x-direction due to rotation in y -direction
Q_{ix}	cross coupling angular stiffness producing moment in y-direction due to rotation in x -direction
$\mathrm{Q}_{\text {iy }}$	cross coupling angular stiffness producing moment in x -direction due to rotation in y-direction
$\mathrm{R}_{1}, \mathrm{R}_{2}$	radial distance of unbalance masses from rotor centerline
T	total kinetic energy of system
T_{R}	kinetic energy of rotation of balanced rotor
T_{T}	kinetic energy of translation
T_{U}	kinetic energy of unbalance masses
t	time
$\mathrm{u}_{1,2}$	foundation or bearing housing motion in horizontal direction
V	total potential energy of system
$\mathrm{v}_{1,2}$	foundation or bearing housing motion in vertical direction
$\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}, \mathrm{z}_{\mathrm{m}}$	displacement of rotor mass center
$\mathrm{x}_{1}, \mathrm{y}_{1}$	displacement of rotor at number 1 bearing location
$\mathrm{x}_{2}, \mathrm{y}_{2}$	displacement of rotor at number 2 bearing location
${ }_{1}$	shaft angular displacement in $x-z$ plane, $\left(x_{2}-x_{1}\right) / L$
α_{2}	shaft angular displacement in y-z plane, $\left(y_{2}-y_{1}\right) / L$
α_{3}	shaft angular displacement about spin axis
$\beta_{1,2}$	angular displacement of bearing housings in y-z plane
$\gamma_{1,2}$	angular displacement of bearing housings in $\mathrm{x}-\mathrm{z}$ plane
$\vec{\delta}_{\text {b1 }}$	position vector of first bearing center $0_{\text {b1 }}$

$\vec{\delta}_{\mathrm{j} 1} \quad$ position vector of first journal center $\mathrm{O}_{\mathrm{j}_{1}}$ relative to bearing center $\mathrm{O}_{\mathrm{b}_{1}}$ $\delta \mathrm{M}_{1}, \delta \mathrm{M}_{2}$ rotor unbalance masses; $\frac{\delta \mathrm{Mi}}{\mathrm{M}} \ll 1$
μ_{ix}
$\mu_{i y}$
ρ_{1}, ρ_{2}
Ф
Ω
ω
bearing housing angular damping in x -direction bearing housing angular damping in y-direction axial distance of unbalance masses from rotor mass center angular phase displacement between two unbalance masses angular velocity vector
rotor angular velocity

PART I

INT RODUCTION

1.01

Statement of the Problem

The purpose of this investigation has been to derive the equations of motion of a rigid body rotor with an exciting force caused by unbalance situated along different locations and different planes. The gyroscopic effects of the rotor on the system have also been taken into account. The derived equations of motion include the bearing and support characteristics.

Computer programs have been developed to investigate the steady state and transient behavior of the rotor-bearing system which enables a parametric study of the system to be made.

The dynamical equations presented may be applied to any arbitrary rigid body rotor system, regardless of the type of bearings used, whether it be fluid film or rolling element bearing.

1.02
 Description of Rotor Coordinate System

Figure 1 represents an arbitrary rotor system mounted in bearings on damped elastic supports. In order to express the dynamical equations of motion for the system, the total number of degrees of freedom must be determined. The required number of dynamical equations necessary will be determined by the degrees of freedom minus the equations of constraint. The constraint relations will be discussed in section 1.03.

The rigid body rotor has six degrees of freedom and requires six generalized coordinates to completely specify its motion. The proper choice of the coordinate system is important in order to express the dynamical equations in their simplest form. Two types of coordinate systems that may be employed are the Eulerian coordinate system and the Cartesian coordinate system. A detailed discussion of these coordinate systems and their equations of transformation are given in appendix A. Both coordinate systems consist of the Cartesian displacement of the rotor mass center and three angular displacements. The Eulerian coordinate system, which is commonly used to represent gyroscope systems, is given by

ψ	local spin angle
φ	precession angle
θ	nutation angle
$\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}, \mathrm{z}_{\mathrm{m}}$	Cartesian components of rotor mass center

In the Cartesian system, the generalized coordinates are given by
$\alpha_{1} \quad$ rotor angular displacement in $y-z$ plane
$\alpha_{2} \quad$ rotor angular displacement in $x-z$ plane
$\alpha_{3} \quad$ rotor spin angle
$\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}, \mathrm{z}_{\mathrm{m}} \quad$ Cartesian components of the rotor mass center
The equations of motion in either coordinate system are, in general, highly nonlinear. The Cartesian coordinate system has the advantage that if small rotor displacements and constant angular velocity are assumed, the dynamical equations become linearized. This

Figure 1. - Schematic side view of rotor system.
linearization process is not possible with the Eulerian representation. The Eulerian equations possess certain advantages in the investigation of asymptotic solutions for rotor precession rate and also are useful in the analysis of unstable forced backward rotor precession.

Figure 2 represents a schematic side view of the rotor system in the Cartesian $\mathrm{x}-\mathrm{z}$ plane. The angular displacements α_{1} and α_{2} are given by

$$
\begin{equation*}
\alpha_{1}=\frac{x_{2}-x_{1}}{L} \tag{1.1}
\end{equation*}
$$

Figure 2. - Schematic axial view of rotor displacement at first bearing.

$$
\begin{equation*}
\alpha_{2}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{~L}} \tag{1.2}
\end{equation*}
$$

where
$\mathrm{x}_{1}, \mathrm{y}_{1}$ absolute displacement at number 1 bearing $\mathrm{x}_{2}, \mathrm{y}_{2}$ absolute displacement at number 2 bearing

The rotor displacements may be represented as follows:

$$
\left.\begin{array}{l}
\mathrm{x}_{1}=\mathrm{x}_{2}-\alpha_{1} \mathrm{~L}=\mathrm{x}_{\mathrm{m}}-\alpha_{1} \mathrm{~L}_{1} \\
\mathrm{y}_{1}=\mathrm{y}_{2}-\alpha_{2} \mathrm{~L}=\mathrm{y}_{\mathrm{m}}-\alpha_{2} \mathrm{~L}_{1}
\end{array}\right\}
$$

Solving for the displacement at the rotor mass center

$$
\begin{align*}
& x_{m}=\frac{L_{1} x_{2}+L_{2} x_{1}}{L} \tag{1.5}\\
& y_{m}=\frac{L_{1} y_{2}+L_{2} y_{1}}{L} \tag{1.6}
\end{align*}
$$

Figure 3 represents a schematic axial view of the rotor displacements at the first bearing. The absolute displacements x_{1} and y_{1} of the first journal center (point $O_{j_{1}}$) are given by

$$
\begin{equation*}
\mathrm{x}_{1}, \mathrm{y}_{1}=\left(\vec{\delta}_{\mathrm{b}_{1}}+\vec{\delta}_{\mathrm{j}_{1}}\right) \cdot\left(\overrightarrow{\mathrm{n}}_{\mathrm{x}}, \overrightarrow{\mathrm{n}}_{\mathrm{y}}\right) \tag{1.7}
\end{equation*}
$$

where
$\delta_{\mathrm{b}_{1}}$ position vector of first bearing center $\mathrm{O}_{\mathrm{b}_{1}}$
$\delta_{j_{1}}$ position vector of first journal center $\mathrm{O}_{\mathrm{j}_{1}}$ relative to the bearing center $\mathrm{O}_{\mathrm{b}_{1}}$

Figure 3. - Isometric view of rotor coordinate system.

The final equations of motion will be expressed in terms of the coordinates $\mathrm{x}_{1}, \mathrm{y}_{1}$, $\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{\mathrm{m}}$, and $\omega \mathrm{t}$.

Bearing Coordinate System

Four degrees of freedom are required to represent the motion of each bearing housing since the bearing housing does not spin and axial bearing motion is assumed to be negligible. Therefore, the six degrees of freedom reduce to four.

The four coordinates used to represent the bearing motion are
u, v horizontal and vertical displacement of the midpoint of the bearing centerline O_{b} $\gamma \quad$ angular displacement of the bearing center in the $x-z$ plane $\beta \quad$ angular displacement of the bearing center in the $y-z$ plane

The number of degrees of freedom for two bearings is therefore eight. The total number of degrees of freedom for a rigid rotor is six. If, however, we assume that the rotor is moving with constant angular velocity, then the number of degrees of freedom for the system reduces to 13 . This assumption of constant angular velocity uncouples the equation of motion of the rotor in the axial direction from the rest of the system equations for small displacements. Hence, the axial motion can be investigated independently from the remaining equations of motion.

Summarizing, the twelve generalized coordinates are the horizontal and vertical displacements of the rotor axis at the first and second bearings along with rotor angular motions which can also be expressed in terms of the horizontal and vertical displacement of the rotor at the two bearings. The two bearing housings are assumed to be flexible and as such, have x and y displacements along with angular motion in $y-z$ and $\mathrm{x}-\mathrm{z}$ planes denoted by β and γ, respectively.

In addition to the bearing stiffness and damping coefficients acting in x - and y-directions, cross coupled bearing characteristics are assumed to be present. Bearing housings have, in addition to the horizontal and vertical stiffness and damping, the angular stiffness, damping, and cross coupled stiffness and damping.

The generalized rotor coordinates are shown in figure 3 and those of the bearing housing in figure 4.

Figure 4. - Isometric view of bearing coordinate system.

PART II

ROTOR EQUATIONS OF MOTION

2.01

System Kinetic Energy

The equations of motion are derived from Lagrange's equation, which states that

$$
\begin{equation*}
\frac{d}{d t}\left[\frac{\partial T}{\partial \dot{q}_{r}}\right]-\frac{\partial T}{\partial q_{r}}+\frac{\partial V}{\partial q_{r}}+\frac{\partial \mathrm{D}}{\partial \dot{q}_{\mathbf{r}}}=\mathrm{Fq}_{r} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{align*}
\mathrm{T} & =\text { Total kinetic energy of system } \\
& =\mathrm{T}_{\mathrm{T}}+\mathrm{T}_{\mathrm{R}}+\mathrm{T}_{\mathrm{U}} \tag{2.2}
\end{align*}
$$

where

$$
\begin{align*}
\mathrm{T}_{\mathrm{T}} & =\text { Kinetic energy of translation } \\
& =\frac{1}{2} \mathrm{M}_{\mathrm{i}} \overline{\mathrm{v}}_{\mathrm{i}} \cdot \overline{\mathrm{v}}_{\mathrm{i}} \tag{2.3}
\end{align*}
$$

$$
\begin{align*}
\mathrm{T}_{\mathrm{R}} & =\text { Kinetic energy of rotation of balanced rotor } \\
& =\frac{1}{2} \omega_{\mathrm{i}} \omega_{\mathrm{j}} \mathrm{I}_{\mathrm{ij}} \\
& =\frac{1}{2}\left[\omega_{1}^{2} \mathrm{I}_{11}+\omega_{2}^{2} \mathrm{I}_{22}+\omega_{3}^{2} \mathrm{I}_{33}+2 \omega_{1} \omega_{2} \mathrm{I}_{12}+2 \omega_{1} \omega_{3} \mathrm{I}_{13}+2 \omega_{2} \omega_{3} \mathrm{I}_{23}\right] \tag{2.4}
\end{align*}
$$

and

$$
\begin{align*}
\mathrm{T}_{\mathrm{U}} & =\text { Kinetic energy of the unbalance masses } \\
& =\frac{1}{2} \sum_{\mathrm{i}=1}^{2} \delta \mathrm{M}_{\mathrm{i}} \overrightarrow{\mathrm{v}}_{\mathrm{i}} \cdot \overrightarrow{\mathrm{v}}_{\mathrm{i}} \tag{2.5}
\end{align*}
$$

(See appendix A for the derivation of the kinetic energy expressions.) If the set of axes chosen are principal axes, the product of inertia terms are zero, and the kinetic energy of rotation reduces to:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{R}}=\frac{1}{2}\left[\omega_{1}^{2} \mathrm{I}_{11}+\omega_{2}^{2} \mathrm{I}_{22}+\omega_{3}^{2} \mathrm{I}_{33}\right] \tag{2.6}
\end{equation*}
$$

For a balanced axisymmetric rotor $I_{11}=I_{22}=I_{T}$, the rotor transverse moment of inertia; and $I_{33}=I_{p}$ the polar moment of inertia.

The total rotor kinetic energy of the assumed rotor-bearing system is given by:

$$
\begin{align*}
\mathrm{T}=\frac{1}{2} \mathrm{M}\left[\dot{\mathrm{x}}_{\mathrm{m}}^{2}+\dot{\mathrm{y}}_{\mathrm{m}}^{2}+\dot{\mathrm{z}}_{\mathrm{m}}^{2}\right] & +\frac{1}{2}\left[\left(\dot{\alpha}_{2}^{2}+\dot{\alpha}_{1}^{2} \cos ^{2} \alpha_{2}\right) \mathrm{I}_{\mathrm{T}}+\left(\dot{\alpha}_{3}+\dot{\alpha}_{1} \sin \alpha_{2}\right)^{2} \mathrm{I}_{\mathrm{p}}\right] \\
& +\frac{\delta \mathrm{M}_{1}}{2}\left\{\dot{\mathrm{x}}_{\mathrm{m}}+\rho_{1} \dot{\alpha}_{1}-\mathrm{R}_{1} \dot{\alpha}_{3} \sin \alpha_{3}\right)^{2}+\left(\dot{\mathrm{y}}_{\mathrm{m}}+\rho_{1} \dot{\alpha}_{2}+\mathrm{R}_{1} \dot{\alpha}_{3} \cos \alpha_{3}\right)^{2} \\
& \left.+\left[\dot{\mathrm{z}}_{\mathrm{m}}-\mathrm{R}_{1}\left(\dot{\alpha}_{2} \sin \alpha_{3}+\dot{\alpha}_{1} \cos \alpha_{3}\right)\right]^{2}\right\} \\
& +\frac{\delta \mathrm{M}_{2}}{2}\left(\left[\dot{\mathrm{x}}_{\mathrm{m}}+\rho_{2} \dot{\alpha}_{1}-\dot{\alpha}_{3} \mathrm{R}_{2} \sin \left(\alpha_{3}+\Phi\right)\right]^{2}\right. \\
& +\left[\dot{\mathrm{y}}_{\mathrm{m}}+\rho_{2} \dot{\alpha}_{2}+\mathrm{R}_{2} \dot{\alpha}_{3} \cos \left(\alpha_{3}+\Phi\right)\right]^{2} \\
& \left.+\left\{\dot{z}_{\mathrm{m}}-\mathrm{R}_{2}\left[\dot{\alpha}_{2} \sin \left(\alpha_{3}+\Phi\right)+\dot{\alpha}_{1} \cos \left(\alpha_{3}+\Phi\right)\right]\right\}^{2}\right) \tag{2.7}
\end{align*}
$$

The kinetic energy of translation and rotation of the bearing housing is given by:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{B}}=\frac{1}{2} \mathrm{~m}_{1}\left(\dot{\mathrm{u}}_{1}^{2}+\dot{\mathrm{u}}_{2}^{2}\right)+\frac{1}{2} \mathrm{~m}_{2}\left(\dot{\mathrm{v}}_{1}^{2}+\dot{\mathrm{v}}_{2}^{2}\right)+\frac{1}{2}\left[\mathrm{I}_{\mathrm{ix}} \dot{\beta}_{1}^{2}+\mathrm{I}_{2 \mathrm{x}} \dot{\beta}_{2}^{2}+\mathrm{I}_{\mathrm{iy}} \dot{\gamma}_{1}^{2}+\mathrm{I}_{2 \mathrm{y}} \dot{\gamma}_{2}^{2}\right] \tag{2.8}
\end{equation*}
$$

2.02 Potential Energy With N-Bearings

The potential energy with N -bearing locations due to the stiffness in the horizontal and vertical directions is given by:

$$
\begin{equation*}
V_{1}=\frac{1}{2} \sum_{i=1}^{N}\left(K_{i x} x_{i}^{2}+K_{i y} y_{i}^{2}\right) \tag{2.9}
\end{equation*}
$$

The potential energy of the bearing due to cross coupled damping terms is given by:

$$
\begin{equation*}
v_{2}=\sum_{i=1}^{N}\left(D_{i x} \dot{x}_{i} y_{i}+D_{i y} x_{i} \dot{y}_{i}\right) \tag{2.10}
\end{equation*}
$$

The potential energy of the bearing due to angular stiffness and cross coupled damping coefficients is given by:

$$
\begin{align*}
\mathrm{v}_{3}=\frac{1}{2} \sum_{\mathrm{i}=1}^{\mathrm{N}} \cdot\left[\left(\mathrm{M}_{\mathrm{ix}}\left(\alpha_{2}-\beta_{\mathrm{i}}\right)^{2}\right.\right. & \left.+\mathrm{M}_{\mathrm{iy}}\left(\alpha_{1}-\gamma_{\mathrm{i}}\right)^{2}\right] \\
& +\sum_{\mathrm{i}=1}^{\mathrm{N}}\left[\mathrm{P}_{\mathrm{ix}}\left(\dot{\beta}_{\mathrm{i}}-\dot{\alpha}_{2}\right)\left(\alpha_{1}-\gamma_{\mathrm{i}}\right)+\mathrm{P}_{\mathrm{iy}}\left(\dot{\alpha}_{1}-\dot{\gamma}_{\mathrm{i}}\right)\left(\beta_{2}-\alpha_{2}\right)\right] \tag{2.11}
\end{align*}
$$

The potential energy of the bearing housing due to the horizontal and vertical stiffness and the angular stiffness is given by:

$$
\begin{equation*}
v_{4}=\frac{1}{2} \sum_{i=1}^{N}\left(f_{i x} U_{i}^{2}+f_{i y} V_{i}^{2}+G_{i x} \beta_{i}^{2}+G_{i y} \gamma_{i}^{2}\right) \tag{2.12}
\end{equation*}
$$

and that due to thrust bearing is

$$
\mathrm{V}_{5}=\frac{1}{2} \mathrm{~K}_{\mathrm{z}} \mathrm{z}_{\mathrm{M}}^{2}
$$

The total potential energy is then

$$
\begin{align*}
V=V_{1} & +V_{2}+V_{3}+V_{4}+V_{5}=\frac{1}{2} \sum_{i=1}^{N}\left[K_{i x} x_{i}^{2}+K_{i y} y_{i}^{2}+2 D_{i x} \dot{x}_{i} y_{i}+2 D_{i y} x_{i} \dot{y}_{i}\right. \\
& +M_{i x}\left(\alpha_{2}-\beta_{i}\right)^{2}+M_{i y}\left(\alpha_{1}-\gamma_{i}\right)^{2}+2 P_{i x}\left(\dot{\beta}_{i}-\dot{\alpha}_{2}\right)\left(\alpha_{1}-\gamma_{i}\right) \\
& \left.+2 P_{i y}\left(\dot{\alpha}_{1}-\dot{\gamma}_{1}\right)\left(\beta_{2}-\alpha_{2}\right)+f_{i x} U_{i}^{2}+f_{i y} V_{i}^{2}+G_{i x} \beta_{i}^{2}+G_{i y} \gamma_{i}^{2}\right]+\frac{1}{2} K_{z} z_{m}^{2} \tag{2.13}
\end{align*}
$$

The coordinates x_{i} and y_{i} are related to the coordinates x_{m}, y_{m}, α_{1}, and α_{2} by the following relations:

$$
\begin{align*}
& \mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{m}}+\alpha_{1} \mathrm{~L}_{\mathrm{i}} \tag{2.14}\\
& \mathrm{y}_{\mathbf{i}}=\mathrm{y}_{\mathrm{m}}+\alpha_{\beta} \mathrm{L}_{\mathrm{i}} \tag{2.15}
\end{align*}
$$

where $L_{i}=$ distance from the rotor mass center to the centerline of the bearings.
If $N=2$, i.e., there are only two bearings, then in terms of the above generalized coordinates, expressions (2.14) and (2.15) reduce to

$$
\begin{align*}
V=\frac{1}{2}[& f_{1 x} U_{1}^{2}+f_{2 x} U_{2}^{2}+f_{1 y} V_{1}^{2}+f_{2 y} V_{2}^{2}+G_{1 x} \beta_{1}^{2}+G_{2 x} \beta_{2}^{2} \\
& +G_{1 y} \gamma_{1}^{2}+G_{2 y} \gamma_{2}^{2}+K_{1 x}\left(x_{m}-L_{1} \alpha_{1}-U_{1}\right)^{2}+K_{2 x}\left(x_{m}+L_{2} \alpha_{1}-U_{2}\right)^{2} \\
& +K_{1 y}\left(y_{m}-L_{1} \alpha_{2}-V_{1}\right)^{2}+K_{2 y}\left(y_{m}+L_{2} \alpha_{2}-V_{2}\right)^{2}+M_{1 x}\left(\alpha_{2}-\beta_{1}\right)^{2} \\
& \left.+M_{2 x}\left(\alpha_{2}-\beta_{2}\right)^{2}+M_{1 y}\left(\alpha_{1}-\gamma_{1}\right)^{2}+M_{2 y}\left(\alpha_{1}-\gamma_{2}\right)^{2}\right] \tag{2.16}\\
& +D_{1 y}\left(\dot{y}_{m}-L_{1} \dot{\alpha}_{2}-\dot{V}_{1}\right)\left(x_{m}-L_{1} \alpha_{1}-U_{1}\right)+D_{1 x}\left(\dot{x}_{m}-L_{1} \dot{\alpha}_{1}-\dot{U}_{1}\right)\left(y_{m}-L_{1} \alpha_{2}-V_{1}\right) \\
& +D_{2 y}\left(\dot{y}_{m}+L_{2} \dot{\alpha}_{2}-\dot{V}_{2}\right)\left(x_{m}+L_{2} \alpha_{1}-U_{2}\right)+D_{2 x}\left(\dot{x}_{m}+L_{2} \dot{\alpha}_{1}-\dot{U}_{2}\right)\left(y_{m}+L_{2} \alpha_{2}-V_{2}\right) \\
& +P_{1 x}\left(\dot{\beta}_{1}-\dot{\alpha}_{2}\right)\left(\alpha_{1}-\gamma_{1}\right)+P_{2 x}\left(\dot{\beta}_{2}-\dot{\alpha}_{2}\right)\left(\alpha_{1}-\gamma_{2}\right)+P_{1 y}\left(\beta_{1}-\alpha_{2}\right)\left(\dot{\alpha}_{1}-\dot{\gamma}_{1}\right) \\
& +P_{2 y}\left(\beta_{2}-\alpha_{2}\right)\left(\dot{\alpha}_{1}-\dot{\gamma}_{2}\right)+\frac{1}{2} K_{z} z_{m}^{2} \tag{2.17}
\end{align*}
$$

2.03 Dissipation Energy With N-Bearings

The dissipation energy with N-bearing locations due to damping in x - and y -directions is given by

$$
\begin{equation*}
\mathrm{D}_{1}=\frac{1}{2} \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{C}_{\mathrm{ix}} \dot{\mathrm{x}}_{\mathrm{i}}^{2}+\mathrm{C}_{\mathrm{iy}} \dot{\mathrm{y}}_{\mathrm{i}}^{2}\right) \tag{2.18}
\end{equation*}
$$

The dissipation energy due to cross coupled stiffness terms is

$$
\begin{equation*}
D_{2}=\sum_{i=1}^{N}\left(R_{i x} \dot{y}_{i} x_{i}+R_{i y} \dot{y}_{i} \dot{x}_{i}\right) \tag{2.19}
\end{equation*}
$$

The dissipation energy due to angular damping and cross coupled angular damping is given by

$$
\begin{align*}
\mathrm{D}_{3}=\frac{1}{2} \sum_{\mathrm{i}=1}^{\mathrm{N}}\left\{\mathrm{~N}_{\mathrm{ix}}\left(\dot{\alpha}_{2}-\dot{\beta}_{\mathrm{i}}\right)^{2}+\right. & \left.\mathrm{N}_{\mathrm{iy}}\left(\dot{\alpha}_{1}-\dot{\beta}_{\mathrm{i}}\right)^{2}\right\} \\
& +\sum_{\mathrm{i}=1}^{N}\left\{\mathrm{Q}_{\mathrm{ix}}\left(\dot{\alpha}_{1}-\dot{\gamma}_{\mathrm{i}}\right)\left(\beta_{\mathrm{i}}-\alpha_{2}\right)+\mathrm{Q}_{\mathrm{iy}}\left(\dot{\beta}_{\mathrm{i}}-\dot{\alpha}_{2}\right)\left(\alpha_{1}-\gamma_{\mathrm{i}}\right)\right\} \tag{2.20}
\end{align*}
$$

The dissipation energy of the bearing housing due to the horizontal and vertical damping and that due to angular damping is given by:

$$
\begin{equation*}
\mathrm{D}_{4}=\frac{1}{2} \sum\left(\mathrm{~B}_{\mathrm{ix}} \dot{\mathrm{U}}_{\mathrm{i}}^{2}+\mathrm{B}_{\mathrm{iy}} \dot{\mathrm{~V}}_{\mathrm{i}}^{2}+\mu_{\mathrm{ix}} \dot{\beta}_{\mathrm{i}}^{2}+\mu_{\mathrm{iy}} \dot{\gamma}_{\mathrm{i}}^{2}\right) \tag{2.21}
\end{equation*}
$$

and that due to the thrust bearing is

$$
\begin{equation*}
\mathrm{D}_{5}=\frac{1}{2} \mathrm{C}_{\mathrm{z}} \dot{\mathrm{z}}_{\mathrm{m}}^{2} \tag{2.22}
\end{equation*}
$$

The total dissipation energy is then given by:
$\mathrm{D}=\mathrm{D}_{1}+\mathrm{D}_{2}+\mathrm{D}_{3}+\mathrm{D}_{4}+\mathrm{D}_{5}$

$$
=\frac{1}{2} \sum_{i=1}^{N}\left\{C_{i x} \dot{x}_{i}^{2}+C_{i y} \dot{y}_{i}^{2}+2 R_{i x} x_{i} \dot{y}_{i}+2 R_{i y} \dot{x}_{i} y_{i}\right.
$$

$$
\begin{align*}
& +N_{i x}\left(\dot{\alpha}_{2}-\dot{\beta}_{i}\right)^{2}+N_{i y}\left(\dot{\alpha}_{1}-\dot{\beta}_{i}\right)^{2}+2 \mathrm{Q}_{\mathrm{ix}}\left(\dot{\alpha}_{1}-\dot{\gamma}_{1}\right)\left(\beta_{\mathrm{i}}-\alpha_{2}\right) \\
& \left.+2 \mathrm{Q}_{\mathrm{iy}}\left(\dot{\beta}_{\mathrm{i}}-\dot{\alpha}_{2}\right)\left(\alpha_{1}-\gamma_{\dot{i}}\right)+\mathrm{B}_{\mathrm{ix}} \dot{U}_{i}^{2}+\mathrm{B}_{\mathrm{iy}} \dot{\mathrm{~V}}_{\mathrm{i}}^{2}+\mu_{\mathrm{ix}} \dot{\beta}_{i}^{2}+\mu_{\mathrm{iy}} \dot{\gamma}_{\mathrm{i}}^{2}\right\}+\frac{1}{2} \mathrm{C}_{\mathrm{z}} \mathrm{z}_{\mathrm{m}}^{2} \tag{2.23}
\end{align*}
$$

Considering only two bearings and using equations (2.14) and (2.15), the expression for the total dissipation energy becomes:

$$
\begin{align*}
\mathrm{D}=\frac{1}{2}[& \mathrm{B}_{\mathrm{ix}} \dot{\mathrm{U}}_{\mathrm{i}}^{2}+\mathrm{B}_{2 \mathrm{x}} \dot{\mathrm{U}}_{2}^{2}+\mathrm{B}_{\mathrm{iy}} \dot{\mathrm{v}}_{1}^{2}+\mathrm{B}_{2 \mathrm{y}} \dot{\mathrm{~V}}_{2}^{2}+\mu_{\mathrm{ix}} \dot{\beta}_{1}^{2}+\mu_{2 \mathrm{x}} \beta_{2}^{2} \\
& +\mu_{1 \mathrm{y}} \dot{\gamma}_{1}^{2}+\mu_{2 \mathrm{y}} \dot{\gamma}_{2}^{2}+\mathrm{C}_{1 \mathrm{x}}\left(\dot{\mathrm{x}}_{\mathrm{m}}-\mathrm{L}_{1} \dot{\alpha}_{1}-\dot{\mathrm{U}}_{1}\right)^{2}+\mathrm{C}_{2 \mathrm{x}}\left(\dot{\mathrm{x}}_{\mathrm{m}}+\mathrm{L}_{2} \dot{\alpha}_{1}-\dot{\mathrm{U}}_{2}\right)^{2} \\
& +\mathrm{C}_{\mathrm{iy}}\left(\dot{\mathrm{y}}_{\mathrm{m}}-\mathrm{L}_{1} \dot{\alpha}_{2}-\dot{\mathrm{V}}_{1}\right)^{2}+\mathrm{C}_{2 \mathrm{y}}\left(\dot{\mathrm{y}}_{\mathrm{m}}+\mathrm{L}_{2} \dot{\alpha}_{2}-\dot{\mathrm{V}}_{2}\right)^{2}+\mathrm{N}_{\mathrm{ix}}\left(\dot{\alpha}_{2}-\dot{\beta}_{1}\right)^{2} \\
& \left.+\mathrm{N}_{2 \mathrm{x}}\left(\dot{\alpha}_{2}-\dot{\beta}_{2}\right)^{2}+\mathrm{N}_{1 \mathrm{y}}\left(\dot{\alpha}_{1}-\dot{\gamma}_{1}\right)^{2}+\mathrm{N}_{2 \mathrm{y}}\left(\dot{\alpha}_{1}-\dot{\gamma}_{2}\right)^{2}\right] \\
& +\mathrm{R}_{\mathrm{ix}}\left(\dot{\mathrm{y}}_{\mathrm{m}}-\mathrm{L}_{1} \dot{\alpha}_{2}-\dot{\mathrm{V}}_{1}\right)\left(\mathrm{x}_{\mathrm{m}}-\mathrm{L}_{1} \alpha_{1}-\mathrm{U}_{1}\right)+\mathrm{R}_{2 \mathrm{x}}\left(\dot{\mathrm{y}}_{\mathrm{m}}+\mathrm{L}_{2} \dot{\alpha}_{2}-\dot{\mathrm{V}}_{2}\right)\left(\mathrm{x}_{\mathrm{m}}+\mathrm{L}_{2} \alpha_{1}-\mathrm{U}_{2}\right) \\
& +\mathrm{R}_{\mathrm{iy}}\left(\dot{\mathrm{x}}_{\mathrm{m}}-\mathrm{L}_{1} \dot{\alpha}_{1}-\dot{\mathrm{U}}_{1}\right)\left(\mathrm{y}_{\mathrm{m}}-\mathrm{L}_{1} \alpha_{2}-\mathrm{V}_{1}\right)+\mathrm{R}_{2 \mathrm{y}}\left(\dot{x}_{\mathrm{m}}+\mathrm{L}_{2} \dot{\alpha}_{1}-\dot{\mathrm{U}}_{2}\right)\left(\mathrm{y}_{\mathrm{m}}+\mathrm{L}_{2} \alpha_{2}-\mathrm{V}_{2}\right) \\
& +\mathrm{Q}_{\mathrm{ix}}\left(\beta_{1}-\alpha_{2}\right)\left(\dot{\alpha}_{1}-\dot{\gamma}_{1}\right)+\mathrm{Q}_{2 \mathrm{x}}\left(\beta_{2}-\alpha_{2}\right)\left(\dot{\alpha}_{1}-\dot{\gamma}_{2}\right) \\
& +\mathrm{Q}_{\mathrm{iy}}\left(\alpha_{1}-\gamma_{1}\right)\left(\dot{\beta}_{1}-\dot{\alpha}_{2}\right)+\mathrm{Q}_{2 \mathrm{y}}\left(\alpha_{1}-\gamma_{2}\right)\left(\dot{\beta}_{2}-\dot{\alpha}_{2}\right)+\frac{1}{2} \mathrm{C}_{\mathrm{z}} \dot{\mathrm{z}}_{\mathrm{m}}^{2} \tag{2.24}
\end{align*}
$$

2.04 Nonlinear Equations of Motion

The equations of motion are obtained by applying Lagrange's equation (2.1) to the twelve generalized coordinates considered here.

These equations of motion are nonlinear and are as follows:

$$
\begin{align*}
\mathrm{U}_{1}: \mathrm{m}_{1} \ddot{U}_{1}+\mathrm{f}_{\mathrm{ix}} \mathrm{U}_{1}-K_{i x}\left(\mathrm{x}_{1}-\mathrm{U}_{1}\right)-R_{i y}\left(\mathrm{y}_{1}-\mathrm{V}_{1}\right) & -D_{i y}\left(\dot{\mathrm{y}}_{1}-\dot{\mathrm{V}}_{1}\right) \\
& +B_{i x} \dot{U}_{1}-C_{1 x}\left(\dot{\mathrm{x}}_{1}-\dot{\mathrm{U}}_{1}\right)=0 \tag{2.25}\\
\mathrm{~V}_{1}: \mathrm{m}_{1} \ddot{\mathrm{~V}}_{1}+\mathrm{f}_{\mathrm{iy}} \mathrm{~V}_{1}-\mathrm{K}_{\mathrm{iy}}\left(\mathrm{y}_{1}-\mathrm{V}_{1}\right)-R_{i x}\left(\mathrm{x}_{1}-\mathrm{U}_{1}\right)- & D_{i x}\left(\dot{x}_{1}-\dot{U}_{1}\right) \\
& +B_{i y} \dot{V}_{1}-C_{1 y}\left(\dot{\mathrm{y}}_{1}-\dot{\mathrm{V}}_{1}\right)=0 \tag{2.26}
\end{align*}
$$

$$
\mathrm{U}_{2}: \mathrm{m}_{2} \ddot{\mathrm{U}}_{2}+\mathrm{f}_{2 \mathrm{x}} \mathrm{U}_{2}-\mathrm{K}_{2 \mathrm{x}}\left(\mathrm{x}_{2}-\mathrm{U}_{2}\right)-\mathrm{R}_{2 \mathrm{y}}\left(\mathrm{y}_{2}-\mathrm{V}_{2}\right)-\mathrm{D}_{2 \mathrm{y}}\left(\dot{\mathrm{y}}_{2}-\dot{\mathrm{V}}_{2}\right)
$$

$$
\begin{equation*}
+\mathrm{B}_{2 \mathrm{x}} \dot{U}_{2}-\mathrm{C}_{2 \mathrm{x}}\left(\dot{\mathrm{x}}_{2}-\dot{\mathrm{U}}_{2}\right)=0 \tag{2.27}
\end{equation*}
$$

$$
\begin{align*}
\mathrm{V}_{2}: \mathrm{m}_{2} \ddot{\mathrm{v}}_{2}+\mathrm{f}_{2 \mathrm{y}} \mathrm{v}_{2}-\mathrm{K}_{2 \mathrm{y}}\left(\mathrm{y}_{2}-\mathrm{V}_{2}\right)-\mathrm{R}_{2 \mathrm{x}}\left(\mathrm{x}_{2}-\mathrm{U}_{2}\right) & -\mathrm{D}_{2 \mathrm{x}}\left(\dot{\mathrm{x}}_{2}-\dot{\mathrm{U}}_{2}\right) \\
& +\mathrm{B}_{2 \mathrm{y}} \dot{\mathrm{~V}}_{2}-\mathrm{C}_{2 \mathrm{y}}\left(\dot{\mathrm{y}}_{2}-\dot{\mathrm{V}}_{2}\right)=0 \\
\beta_{1}: \mathrm{I}_{1 \mathrm{x}} \ddot{\beta}_{1}+\mathrm{G}_{\mathrm{ix}} \beta_{1}+\mathrm{M}_{1 \mathrm{x}}\left(\beta_{1}-\alpha_{2}\right)+\mathrm{Q}_{1 \mathrm{y}}\left(\alpha_{1}-\gamma_{1}\right) & +\mathrm{P}_{1 \mathrm{y}}\left(\dot{\alpha}_{1}-\dot{\gamma}_{1}\right) \\
& +\mu_{\mathrm{ix}} \dot{\beta}_{1}+\mathrm{N}_{1 \mathrm{x}}\left(\dot{\beta}_{1}-\dot{\alpha}_{2}\right)=0 \tag{2.29}
\end{align*}
$$

$$
\begin{align*}
\gamma_{1}: \mathrm{I}_{1 \mathrm{y}} \ddot{\gamma}_{1}+\mathrm{G}_{1 \mathrm{y}} \gamma_{1}+\mathrm{M}_{1 \mathrm{y}}\left(\gamma_{1}-\alpha_{1}\right)+\mathrm{Q}_{1 \mathrm{x}}\left(\alpha_{2}-\beta_{1}\right) & +\mathrm{P}_{1 \mathrm{x}}\left(\dot{\alpha}_{2}-\dot{\beta}_{1}\right) \\
& +\mu_{1 \mathrm{y}} \dot{\gamma}_{1}+\mathrm{N}_{1 \mathrm{y}}\left(\dot{\gamma}_{1}-\dot{\alpha}_{1}\right)=0 \tag{2.30}
\end{align*}
$$

$$
\beta_{2}: \mathrm{I}_{2 \mathrm{x}} \ddot{\beta}_{2}+\mathrm{G}_{2 \mathrm{x}} \beta_{2}+\mathrm{M}_{2 \mathrm{x}}\left(\beta_{2}-\alpha_{2}\right)+\mathrm{Q}_{2 \mathrm{y}}\left(\alpha_{1}-\gamma_{2}\right)+\mathrm{P}_{2 \mathrm{y}}\left(\dot{\alpha}_{1}-\dot{\gamma}_{2}\right)
$$

$$
\begin{equation*}
+\mu_{2 \mathrm{x}} \dot{\beta}_{2}+\mathrm{N}_{2 \mathrm{x}}\left(\dot{\beta}_{2}-\dot{\alpha}_{2}\right)=0 \tag{2.31}
\end{equation*}
$$

$\gamma_{2}: \mathrm{I}_{2 \mathrm{y}} \ddot{\gamma}_{2}+\mathrm{G}_{2 \mathrm{y}} \gamma_{2}+\mathrm{M}_{2 \mathrm{y}}\left(\gamma_{2}-\alpha_{1}\right)+\mathrm{Q}_{2 \mathrm{x}}\left(\alpha_{2}-\beta_{2}\right)+\mathrm{P}_{2 \mathrm{x}}\left(\dot{\alpha}_{2}-\dot{\beta}_{2}\right)$

$$
\begin{equation*}
+\mu_{2 \mathrm{y}}{\dot{\gamma_{2}}}_{2}+\mathrm{N}_{2 \mathrm{y}}\left(\dot{\gamma}_{2}-\dot{\alpha}_{1}\right)=0 \tag{2.32}
\end{equation*}
$$

$\mathrm{X}_{\mathrm{M}}:\left(\mathrm{M}+\delta \mathrm{M}_{1}+\delta \mathrm{M}_{2}\right) \ddot{\mathrm{x}}_{\mathrm{m}}+\left(\delta \mathrm{M}_{1} \rho_{1}+\delta \mathrm{M}_{2} \rho \rho\right) \ddot{\alpha}_{1}-\left(\delta \mathrm{M}_{1} \mathrm{R}_{1} \sin \alpha_{3}+\delta \mathrm{M}_{2} \mathrm{R}_{2} \sin \left(\alpha_{3}+\Phi\right)\right) \ddot{\alpha}_{3}$ $-\left(\delta \mathrm{M}_{1} \mathrm{R}_{1} \sin \alpha_{3}+\delta \mathrm{M}_{2} \mathrm{R}_{2} \sin \left(\alpha_{3}+\Phi\right)\right) \ddot{\alpha}_{3}$

$$
+\mathrm{K}_{\mathrm{ix}}\left(\mathrm{x}_{\mathrm{m}}-\mathrm{L}_{1} \alpha_{1}-\mathrm{U}_{1}\right)+\mathrm{K}_{2 \mathrm{x}}\left(\mathrm{x}_{\mathrm{m}}+\mathrm{L}_{2} \alpha_{1}-\mathrm{U}_{2}\right)
$$

$$
+\mathrm{D}_{1 \mathrm{y}}\left(\dot{\mathrm{y}}_{\mathrm{m}}-\mathrm{L}_{1} \dot{\alpha}_{2}-\dot{\mathrm{v}}_{1}\right)+\mathrm{D}_{2 \mathrm{y}}\left(\dot{\mathrm{y}}_{\mathrm{m}}+\mathrm{L}_{2} \dot{\alpha}_{2}-\dot{\mathrm{v}}_{2}\right)
$$

$$
+C_{1 x}\left(\dot{x}_{m}-L_{1} \dot{\alpha}_{1}-\dot{U}_{1}\right)+C_{2 x}\left(\dot{x}_{m}+L_{2} \dot{\alpha}_{1}-\dot{U}_{2}\right)
$$

$$
+\mathrm{R}_{1 \mathrm{y}}\left(\mathrm{y}_{\mathrm{m}}-\mathrm{L}_{1} \alpha_{2}-\mathrm{V}_{1}\right)+\mathrm{R}_{2 \mathrm{y}}\left(\mathrm{y}_{\mathrm{m}}+\mathrm{L}_{2} \alpha_{2}-\mathrm{V}_{2}\right)
$$

$$
\begin{equation*}
=\left[\delta \mathrm{M}_{1} \mathrm{R}_{1} \cos \alpha_{3}+\delta \mathrm{M}_{2} \mathrm{R}_{2} \cos \left(\alpha_{3}+\Phi\right)\right] \dot{\alpha}_{3}^{2} \tag{2.33}
\end{equation*}
$$

$$
\begin{align*}
& Y_{m}:\left(M+\delta M_{1}+\delta M_{2}\right) \ddot{Y}_{m}+\left(\delta M_{1} \rho_{1}+\right.\left.\delta M_{2} \rho_{2}\right) \ddot{\alpha}_{2}+\left[\delta M_{1} R_{1} \cos \alpha_{3}+\delta M_{2} R_{2} \cos \left(\alpha_{3}+\Phi\right)\right] \ddot{\alpha}_{3} \\
&+K_{1 y}\left(y_{m}-L_{1} \alpha_{2}-V_{1}\right)+K_{2 y}\left(y_{m}+L_{2} \alpha_{2}-V_{2}\right) \\
&+D_{1 x}\left(\dot{x}_{m}-L_{1} \dot{\alpha}_{1}-\dot{U}_{1}\right)+D_{2 x}\left(\dot{x}_{m}+L_{2} \dot{\alpha}_{1}-\dot{U}_{2}\right) \\
&+C_{1 y}\left(\dot{y}_{m}-L_{1} \dot{\alpha}_{2}-\dot{V}_{1}\right)+C_{2 y}\left(\dot{y}_{m}+L_{2} \dot{\alpha}_{2}-\dot{V}_{2}\right) \\
&+R_{1 x}\left(x_{m}-L_{1} \alpha_{1}-U_{1}\right)+R_{2 x}\left(x_{m}+L_{2} \alpha_{1}-U_{2}\right) \\
&= {\left[\delta M_{1} R_{1} \sin \alpha_{3}+\delta M_{2} R_{2} \sin \left(\alpha_{3}+\Phi\right)\right] \dot{\alpha}_{3}^{2} } \tag{2.34}\\
& \mathrm{Z}_{m}:\left(M+\delta M_{1}+\delta M_{2}\right) \ddot{z}_{m}-\left[\delta M_{1} R_{1} \sin \alpha_{3}+\delta M_{2} R_{2} \sin \left(\alpha_{3}+\Phi\right)\right] \ddot{\alpha}_{2} \\
&-\left[\delta M_{1} R_{1} \cos \alpha_{3}+\delta M_{2} R_{2} \cos \left(\alpha_{3}+\Phi\right)\right] \ddot{\alpha}_{1}+K_{z} z_{m}+C_{z} \dot{z}_{m} \\
&= {\left[\delta M_{1} R_{1} \cos \alpha_{3}+\delta M_{2} R_{2} \cos \left(\alpha_{3}+\Phi\right)\right] \dot{\alpha}_{2} \dot{\alpha}_{3} } \\
&-\left[\delta M_{1} R_{1} \sin \alpha_{3}+\delta M_{2} R_{2} \sin \left(\alpha_{3}+\Phi\right)\right] \dot{\alpha}_{1} \dot{\alpha}_{3} \tag{2.35}
\end{align*}
$$

$\alpha_{1}: \mathrm{I}_{\mathrm{T}}\left[\ddot{\alpha}_{1} \cos ^{2} \alpha_{2}-\dot{\alpha}_{1} \dot{\alpha}_{2} \sin 2 \alpha_{2}\right]+\mathrm{I}_{\mathrm{p}}\left[\dot{\alpha}_{2} \dot{\alpha}_{3} \cos \alpha_{2}+\dot{\alpha}_{1} \dot{\alpha}_{2} \sin \alpha_{2}+\ddot{\alpha}_{3} \sin \alpha_{2}+\ddot{\alpha}_{1} \sin ^{2} \alpha_{2}+\dot{\alpha}_{1} \dot{\alpha}_{2} \sin \alpha_{2} \cos \alpha_{2}\right]$
$+\delta \mathrm{M}_{1} \rho_{1}\left[\ddot{\mathrm{X}}_{\mathrm{m}}+\rho_{1} \ddot{\alpha}_{1}-\ddot{\alpha}_{3} \mathrm{R}_{1} \sin \alpha_{3}-\dot{\alpha}_{3}^{2} \mathrm{R}_{1} \cos \alpha_{3}\right]$
$+\delta \mathrm{M}_{2} \rho_{2}\left[\ddot{\mathrm{x}}_{\mathrm{m}}+\rho_{2} \ddot{\ddot{\alpha}}_{1}-\ddot{\alpha}_{3} \mathrm{R}_{2} \sin \left(\alpha_{3}+\Phi\right)-\dot{\alpha}_{3}^{2} \mathrm{R}_{2} \cos \left(\alpha_{3}+\Phi\right)\right]$
$+\delta \mathrm{M}_{1} \mathrm{R}_{1} \sin \alpha_{3} \dot{\alpha}_{3}\left[\dot{\mathrm{z}}_{\mathrm{m}}-\mathrm{R}_{1}\left(\dot{\alpha}_{2} \sin \alpha_{3}+\dot{\alpha}_{1} \cos \alpha_{3}\right)\right]$
$-\delta \mathrm{M}_{1} \mathrm{R}_{1} \cos \alpha_{3}\left[\ddot{z}_{\mathrm{m}}-\mathrm{R}_{1} \ddot{\alpha}_{2} \sin \alpha_{3}-\mathrm{R}_{1} \dot{\alpha}_{2} \dot{\alpha}_{3} \cos \alpha_{3}-\mathrm{R}_{1} \ddot{\alpha}_{1} \cos \alpha_{3}+\mathrm{R}_{1} \dot{\alpha}_{1} \dot{\alpha}_{3} \sin \alpha_{3}\right]$
$+\delta \mathrm{M}_{2} \mathrm{R}_{2} \dot{\alpha}_{3} \sin \left(\alpha_{3}+\Phi\right)\left\{\dot{z}_{\mathrm{m}}-\mathrm{R}_{2}\left[\left(\dot{\alpha}_{2} \sin \left(\alpha_{3}+\Phi\right)-\dot{\alpha}_{1} \cos \left(\alpha_{2}+\Phi\right)\right]\right\}\right.$
$-\delta \mathrm{M}_{2} \mathrm{R}_{2} \cos \left(\alpha_{3}+\Phi\right)\left[\ddot{z}_{\mathrm{m}}-\mathrm{R}_{2} \ddot{\alpha}_{2} \sin \left(\alpha_{3}+\Phi\right)-\mathrm{R}_{2} \dot{\alpha}_{2} \dot{\alpha}_{3} \cos \left(\alpha_{3}+\Phi\right)-\mathrm{R}_{2} \ddot{\alpha}_{1} \cos \left(\alpha_{3}+\Phi\right)+\mathrm{R}_{2} \dot{\alpha}_{1} \dot{\alpha}_{3} \sin \left(\alpha_{3}+\Phi\right)\right]$
$-\mathrm{K}_{1 \mathrm{x}} \mathrm{L}_{1}\left(\mathrm{x}_{\mathrm{m}}-\mathrm{L}_{1} \alpha_{1}-\mathrm{U}_{1}\right)+\mathrm{K}_{2 \mathrm{x}} \mathrm{L}_{2}\left(\mathrm{x}_{\mathrm{m}}+\mathrm{L}_{2} \alpha_{1}-\mathrm{U}_{2}\right)-\mathrm{D}_{1 \mathrm{y}} \mathrm{L}_{1}\left(\dot{\mathrm{y}}_{\mathrm{m}}-\mathrm{L}_{1} \dot{\alpha}_{2}-\dot{\mathrm{V}}_{1}\right)$
$\left.+\mathrm{D}_{2 \mathrm{y}} \mathrm{L}_{2}\left(\dot{y}_{\mathrm{m}}+\mathrm{L}_{2} \dot{\alpha}_{2}-\dot{\mathrm{V}}_{2}\right)+\mathrm{M}_{1 \mathrm{y}}\left(\alpha_{1}-\gamma_{1}\right)+\mathrm{M}_{2 \mathrm{y}}\left(\alpha_{1}-\gamma_{2}\right)+\mathrm{P}_{1 \mathrm{x}} \dot{\beta}_{1}-\dot{\alpha}_{2}\right)+\mathrm{P}_{2 \mathrm{x}}\left(\dot{\beta}_{2}-\dot{\alpha}_{2}\right)$
$-\mathrm{C}_{1 \mathrm{x}} \mathrm{L}_{1}\left(\dot{\mathrm{x}}_{\mathrm{m}}-\mathrm{L}_{1} \dot{\alpha}_{1}-\dot{\mathrm{U}}_{1}\right)+\mathrm{C}_{2 \mathrm{x}} \mathrm{L}_{2}\left(\dot{\mathrm{x}}_{\mathrm{m}}+\mathrm{L}_{2} \dot{\alpha}_{1}-\dot{\mathrm{U}}_{2}\right)-\mathrm{R}_{1 \mathrm{y}} \mathrm{L}_{1}\left(\mathrm{y}_{\mathrm{m}}-\mathrm{L}_{1} \alpha_{2}-\mathrm{V}_{1}\right)+\mathrm{R}_{2 \mathrm{y}} \mathrm{L}_{2}\left(\mathrm{y}_{\mathrm{m}}+\mathrm{L}_{2} \alpha_{2}-\mathrm{V}_{2}\right)$
$+N_{1 \mathrm{y}}\left(\dot{\alpha}_{1}-\dot{\gamma}_{1}\right)+\mathrm{N}_{2 \mathrm{y}}\left(\dot{\alpha}_{1}-\dot{\gamma}_{2}\right)+\mathrm{Q}_{1 \mathrm{x}}\left(\beta_{1}-\alpha_{2}\right)+\mathrm{Q}_{2 \mathrm{x}}\left(\beta_{2}-\alpha_{2}\right)=0$

$$
\begin{align*}
\alpha_{2}: \mathrm{I}_{\mathrm{T}}\left(\ddot{\alpha}_{2}+\dot{\alpha}_{1}^{2} \sin \alpha_{2} \cos \right. & \left.\alpha_{2}\right)-\mathrm{I}_{\mathrm{p}} \dot{\alpha}_{1} \cos \alpha_{2}\left(\dot{\alpha}_{3}+\dot{\alpha}_{3} \sin \alpha_{2}\right) \\
& +\delta \mathrm{M}_{1} \rho_{1}\left[\ddot{\mathrm{Y}}_{\mathrm{m}}+\ddot{\alpha}_{2} \rho_{1}+\ddot{\alpha}_{3} \mathrm{R}_{1} \cos \alpha_{3}-\dot{\alpha}_{3}^{2} \mathrm{R}_{1} \sin \alpha_{3}\right] \\
& +\delta \mathrm{M}_{2} \rho_{2}\left[\ddot{\mathrm{Y}}_{\mathrm{m}}+\ddot{\alpha}_{2} \rho_{2}+\ddot{\alpha}_{3} \mathrm{R}_{2} \cos \left(\alpha_{3}+\Phi\right)-\dot{\alpha}_{3}^{2} \mathrm{R}_{2} \sin \left(\alpha_{3}+\Phi\right)\right] \\
& -\delta \mathrm{M}_{1} \mathrm{R}_{1} \cos \alpha_{3} \dot{\alpha}_{3}\left[\dot{\mathrm{z}}_{\mathrm{m}}-\mathrm{R}_{1}\left(\dot{\alpha}_{2} \sin \alpha_{3}+\dot{\alpha}_{1} \cos \alpha_{3}\right)\right] \\
& -\delta \mathrm{M}_{1} \mathrm{R}_{1} \sin \alpha_{3}\left[\ddot{\mathrm{z}}_{\mathrm{m}}-\mathrm{R}_{1}\left(\ddot{\alpha}_{2} \sin \alpha_{3}+\dot{\alpha}_{2} \dot{\alpha}_{3} \cos \alpha_{3}+\ddot{\alpha}_{1} \cos \alpha_{3}-\dot{\alpha}_{1} \dot{\alpha}_{3} \sin \alpha_{3}\right)\right] \\
& -\delta \mathrm{M}_{2} \mathrm{R}_{2} \dot{\alpha}_{3} \cos \left(\alpha_{3}+\Phi\right)\left\{\dot{z}_{\mathrm{m}}-\mathrm{R}_{2}\left[\dot{\alpha}_{2} \sin \left(\alpha_{3}+\Phi\right)+\dot{\alpha}_{1} \cos \left(\alpha_{3}+\Phi\right)\right]\right\} \\
& -\delta \mathrm{M}_{2} \mathrm{R}_{2} \sin \left(\alpha_{3}+\Phi\right)\left[\ddot{z}_{m}-\mathrm{R}_{2} \ddot{\alpha}_{2} \sin \left(\alpha_{3}+\Phi\right)-\mathrm{R}_{2} \dot{\alpha}_{2} \dot{\alpha}_{3} \cos \left(\alpha_{3}+\Phi\right)\right. \\
& \left.-\mathrm{R}_{2} \ddot{\alpha}_{1} \cos \left(\alpha_{3}+\Phi\right)+\mathrm{R}_{2} \dot{\alpha}_{1} \dot{\alpha}_{3} \sin \left(\alpha_{3}+\Phi\right)\right] \\
& -\mathrm{K}_{1 \mathrm{y}} \mathrm{~L}_{1}\left(\mathrm{y}_{\mathrm{m}}-\mathrm{L}_{1} \alpha_{2}-\mathrm{V}_{1}\right)+\mathrm{K}_{2 \mathrm{y}} \mathrm{~L}_{2}\left(\mathrm{y}_{\mathrm{m}}+\mathrm{L}_{2} \alpha_{2}-\mathrm{V}_{2}\right) \\
& -\mathrm{D}_{1 \mathrm{x}} \mathrm{~L}_{1}\left(\dot{\mathrm{x}}_{\mathrm{m}}-\mathrm{L}_{1} \dot{\alpha}_{1}-\dot{U}_{1}\right)+\mathrm{D}_{2 \mathrm{x}} \mathrm{~L}_{2}\left(\mathrm{x}_{\mathrm{m}}+\mathrm{L}_{2} \dot{\alpha}_{1}-\dot{\mathrm{U}}_{2}\right) \\
& +\mathrm{M}_{1 \mathrm{x}}\left(\alpha_{2}-\beta_{1}\right)+\mathrm{M}_{2 \mathrm{x}}\left(\alpha_{2}-\beta_{2}\right)+\mathrm{P}_{1 \mathrm{y}}\left(\dot{\gamma}-\dot{\alpha}_{1}\right)+\mathrm{P}_{2 \mathrm{y}}\left(\dot{\gamma}_{2}-\dot{\alpha}_{1}\right) \\
& -\mathrm{C}_{1 \mathrm{y}} \mathrm{~L}_{1}\left(\dot{\mathrm{y}}_{\mathrm{m}}-\mathrm{L}_{1} \dot{\alpha}_{2}-\dot{\mathrm{V}}_{1}\right)+\mathrm{C}_{2 \mathrm{y}} \mathrm{~L}_{2}\left(\dot{\mathrm{y}}_{\mathrm{m}}+\mathrm{L}_{2} \dot{\alpha}_{2}-\dot{\mathrm{V}}_{2}\right) \\
& +\mathrm{R}_{1 \mathrm{x}} \mathrm{~L}_{1}\left(\mathrm{x}_{\mathrm{m}}-\mathrm{L}_{1} \alpha_{1}-\mathrm{U}_{1}\right)+\mathrm{R}_{2 \mathrm{x}} \mathrm{~L}_{2}\left(\mathrm{x}_{\mathrm{m}}+\mathrm{L}_{2} \alpha_{1}-\mathrm{U}_{2}\right)+\mathrm{N}_{1 \mathrm{x}}\left(\dot{\alpha}_{2}-\dot{\beta}_{1}\right) \\
& +\mathrm{N}_{2 \mathrm{x}}\left(\dot{\alpha}_{2}-\dot{\beta}_{2}\right)+\mathrm{Q}_{1 \mathrm{y}}\left(\gamma_{1}-\alpha_{1}\right)+\mathbf{Q}_{2 \mathrm{y}}\left(\gamma_{2}-\alpha_{1}\right)=0 \tag{2.37}
\end{align*}
$$

$\alpha_{3}: I_{p} \frac{d}{d t}\left(\dot{\alpha}_{3}+\dot{\alpha}_{1} \sin \alpha_{2}\right)-\delta M_{1} R_{1} \frac{d}{d t}\left[\sin \alpha_{3}\left(\dot{x}_{m}+\rho_{1} \dot{\alpha}_{1}-R_{1} \dot{\alpha}_{3} \sin \alpha_{3}\right)\right]$

$$
\begin{align*}
& \left.+\delta \mathrm{M}_{1} \mathrm{R}_{1} \frac{\mathrm{~d}}{\mathrm{dt}}\left[\cos \alpha_{3} \dot{\mathrm{Y}}_{\mathrm{m}}+\rho_{1} \dot{\alpha}_{2}+\mathrm{R}_{1} \dot{\alpha}_{3} \cos \alpha_{3}\right)\right] \\
& -\delta \mathrm{M}_{2} \mathrm{R}_{2} \frac{\mathrm{~d}}{\mathrm{dt}}\left\{\sin \left(\alpha_{3}+\Phi\right)\left[\dot{\mathrm{x}}_{\mathrm{m}}+\rho_{2} \dot{\alpha}_{1}-\mathrm{R}_{2} \dot{\alpha}_{3} \sin \left(\alpha_{3}+\Phi\right)\right]\right\} \\
& -\delta \mathrm{M}_{2} \mathrm{R}_{2} \frac{\mathrm{~d}}{\mathrm{dt}}\left\{\cos \left(\alpha_{3}+\Phi\right)\left[\dot{\mathrm{y}}_{\mathrm{m}}+\rho_{2} \dot{\alpha}_{2}+\mathrm{R}_{2} \dot{\alpha}_{3} \cos \left(\alpha_{3}+\Phi\right)\right]\right\} \\
& -\delta \mathrm{M}_{1} \mathrm{R}_{1} \dot{\alpha}_{3} \cos \alpha_{3}\left[\left(\dot{\mathrm{x}}_{\mathrm{m}}+\rho_{1} \dot{\alpha}_{1}-\mathrm{R}_{1} \dot{\alpha}_{3} \sin \alpha_{3}\right)\right] \\
& -\delta \mathrm{M}_{1} \mathrm{R}_{1} \dot{\alpha}_{3} \sin \alpha_{3}\left[\dot{\mathrm{y}}_{\mathrm{m}}+\rho_{1} \dot{\alpha}_{2}+\mathrm{R}_{1} \dot{\alpha}_{3} \cos \alpha_{3}\right] \\
& -\delta \mathrm{M}_{2} \mathrm{R}_{2} \dot{\alpha}_{3} \sin \left(\alpha_{3}+\Phi\right)\left[\dot{\mathrm{x}}_{\mathrm{m}}+\rho_{2} \dot{\alpha}_{1}-\mathrm{R}_{2} \dot{\alpha}_{3} \sin \left(\alpha_{3}+\Phi\right)\right] \\
& -\delta \mathrm{M}_{2} \mathrm{R}_{2} \dot{\alpha}_{3} \sin \left(\alpha_{3}+\Phi\right)\left[\dot{\mathrm{y}}_{\mathrm{m}}+\rho_{2} \dot{\alpha}_{2}+\mathrm{R}_{2} \dot{\alpha}_{3} \cos \left(\alpha_{3}+\Phi\right)\right]=\mathrm{Q} \alpha_{3} \tag{2.38}
\end{align*}
$$

The general rotor equations of motion (2.25) to (2.38) including rotor acceleration are highly nonlinear and represent a difficult problem to solve. These equations may be simplified considerably if we assume constant rotor angular velocity and small bearing displacements.

Hence,

$$
\begin{gathered}
\stackrel{\circ}{\alpha}_{3}=\omega=\mathrm{constant}, \quad \alpha_{3}=\omega \mathrm{t} \\
\sin \alpha_{1} \approx \alpha_{1}=\frac{\mathrm{X}_{2}-\mathrm{X}_{1}}{\mathrm{~L}} \ll 1
\end{gathered}
$$

and

$$
\sin \alpha_{2} \approx \alpha_{2}=\frac{\mathrm{Y}_{2}-\mathrm{Y}_{1}}{\mathrm{~L}} \ll 1
$$

The unbalance masses are considered small in comparison to the rotor mass. Hence,

$$
\frac{\delta \mathrm{M}_{1}}{\mathrm{M}} \quad \text { or } \quad \frac{\delta \mathrm{M}_{2}}{\mathrm{M}} \ll 1
$$

If it is further assumed that the bearing housing is rigid, then equations (2.25) to (2.32) do not enter into the system equations. The resulting five linearized equations of motion are as follows:

$$
\begin{align*}
& x_{m}: \frac{M}{L}\left(L_{1} \ddot{x}_{2}+L_{2} \ddot{x}_{1}\right)+K_{1 x} x_{1}+K_{2 x} x_{2}+C_{1 x} \dot{x}_{1}+C_{2 x} \dot{x}_{2} \\
&+R_{1 y} y_{1}+R_{2 y} y_{2}+D_{1 y} \dot{y}_{1}+D_{2 y} \dot{y}_{1} \\
&= \delta M_{1} \omega^{2} R_{1} \cos \omega t+\delta M_{2} \omega^{2} R_{2} \cos (\omega t+\Phi) \tag{2.39}\\
& Y_{m}: \frac{M}{L}\left(L_{1} \ddot{y}_{2}+L_{2} \ddot{y}_{2}\right)+K_{1 y} y_{1}+K_{2 y} y_{2}+C_{1 y} \dot{y}_{1}+C_{2 y} \dot{y}_{2} \\
&+R_{1 x} x_{1}+R_{2 x} x_{2}+D_{1 x} \dot{x}_{1}+D_{2 x} \dot{x}_{2} \\
&= \delta M_{1} \omega{ }^{2} R_{1} \sin \omega t+\delta M_{2} \omega^{2} R_{2} \sin (\omega t+\Phi) \tag{2.40}\\
& Z_{m}: M \ddot{z}_{m}+C_{z} \dot{Z}_{m}+K_{z} Z_{m}=0 \tag{2.41}
\end{align*}
$$

$$
\begin{align*}
\alpha_{1}: I_{T} \frac{\left(\ddot{x}_{2}-\ddot{x}_{1}\right)}{L}+I_{p} \omega & \frac{\left(\dot{y}_{2}-\dot{y}_{1}\right)}{L}+D_{2 y} L_{2} \dot{y}_{2}-D_{1 y} L_{1} \dot{y}_{1} \\
& +C_{2 x} L_{2} \dot{x}_{2}-C_{1 x} L_{1} \dot{x}_{1}+K_{2 x} L_{2} x_{2}-K_{1 x} L_{1} x_{1}+R_{2 y} L_{2} y_{2}-R_{1 y} L_{1} y_{1} \\
& =\delta M_{1} \rho_{1} \omega^{2} R_{1} \cos \omega t+\delta M_{2} \rho_{2} \omega^{2} R_{2} \cos (\omega t+\Phi) \tag{2.42}
\end{align*}
$$

$$
\alpha_{2}: \mathrm{I}_{\mathrm{T}} \frac{\left(\ddot{\mathrm{y}}_{2}-\ddot{\mathrm{y}}_{1}\right)}{\mathrm{L}}-\mathrm{I}_{\mathrm{p}} \omega \frac{\left(\dot{\mathrm{x}}_{2}-\dot{\mathrm{x}}_{1}\right)}{\mathrm{L}}+\mathrm{D}_{2 \mathrm{x}} \mathrm{~L}_{2} \dot{\mathrm{x}}_{2}-\mathrm{D}_{1 \mathrm{x}} \mathrm{~L}_{1} \dot{\mathrm{x}}_{1}
$$

$$
\begin{aligned}
& +\mathrm{C}_{2 \mathrm{y}} \mathrm{~L}_{2} \dot{\mathrm{y}}_{2}-\mathrm{C}_{1 \mathrm{y}} \mathrm{~L}_{1} \dot{\mathrm{y}}_{1}+\mathrm{K}_{2 \mathrm{y}} \mathrm{~L}_{2} \mathrm{y}_{2}-\mathrm{K}_{1 \mathrm{y}} \mathrm{~L}_{1} \mathrm{y}_{1}+\mathrm{R}_{2 \mathrm{x}} \mathrm{~L}_{2} \mathrm{x}_{2}-\mathrm{R}_{1 \mathrm{x}} \mathrm{~L}_{1} \mathrm{x}_{1} \\
& \quad=\delta \mathrm{M}_{1} \rho_{1} \omega^{2} \mathrm{R}_{1} \sin \omega \mathrm{t}+\delta \mathrm{M}_{2} \rho_{2} \omega^{2} \mathrm{R}_{2} \sin (\omega t+\Phi)
\end{aligned}
$$

Due to the assumption of constant rotor angular velocity, equation (2.38) identically reduces to zero. It may be further observed that equation (2.41) is uncoupled from the rest of the system equations; hence, it may be solved independently.

If we now substitute

$$
\mathrm{I}_{\mathrm{T}}=\mathrm{MR}_{\mathrm{T}}^{2} \quad \mathrm{I}_{\mathrm{p}}=\mathrm{MR} \mathrm{p}_{\mathrm{p}}^{2}
$$

where R_{T} and R_{P} are the transverse and polar radii of gyration of the rotor respectively, and

$$
\begin{array}{lll}
& \frac{L_{1}}{L}=\ell_{1} & \frac{L_{2}}{L}=\ell_{2} \\
\frac{D_{1 y}}{M}=\bar{D}_{1 y} & \frac{D_{2 y}}{M}=\bar{D}_{2 y} & \frac{D_{1 x}}{M}=\bar{D}_{1 x} \\
\frac{R_{1 y}}{M}=\bar{R}_{1 y} & \frac{R_{2 y}}{M}=\bar{R}_{2 y} & \frac{D_{2 x}}{M}=\bar{D}_{2 x} \\
\frac{C_{1 y}}{M}=\bar{C}_{1 y} & \frac{C_{2 y}}{M}=\overline{\mathrm{C}}_{2 y} & \frac{C_{1 x}}{M}=\bar{C}_{1 x} \\
\frac{K_{1 y}}{M}=\bar{K}_{1 y} & \frac{K_{2 y}}{M}=\bar{K}_{2 y} & \frac{C_{2 x}}{M}=\bar{C}_{2 x} \\
M & =\bar{K}_{1 x} & \frac{K_{2 x}}{M}=\bar{K}_{2 x}
\end{array}
$$

$$
\left(\frac{R_{T}}{L}\right)^{2}=\bar{R}_{T} \quad\left(\frac{R_{p}}{M}\right)^{2}=\bar{R}_{p}
$$

The equations (2.39), (2.40), (2.42), and (2.43) reduce to

$$
\begin{align*}
& \mathrm{x}_{\mathrm{m}}: \ell_{1} \ddot{\mathrm{x}}_{2}+\ell_{2} \ddot{\mathrm{x}}_{1}+\overline{\mathrm{D}}_{1 \mathrm{y}} \dot{\mathrm{y}}_{1}+\overline{\mathrm{D}}_{2 \mathrm{y}} \dot{\mathrm{y}}_{2}+\overline{\mathrm{C}}_{1 \mathrm{x}} \dot{\mathrm{x}}_{1}+\overline{\mathrm{C}}_{2 \mathrm{x}} \dot{\mathrm{x}}_{2}+\overline{\mathrm{K}}_{1 \mathrm{x}} \mathrm{x}_{1}+\overline{\mathrm{K}}_{2 \mathrm{x}} \mathrm{x}_{2}+\overline{\mathrm{R}}_{1 \mathrm{y}} \mathrm{y}_{1}+\overline{\mathrm{R}}_{2 \mathrm{y}} \mathrm{y}_{2} \\
& =\frac{1}{\mathrm{M}}\left[\delta \mathrm{M}_{1} \omega^{2} \mathrm{R}_{1} \cos \omega \mathrm{t}+\delta \mathrm{M}_{2} \omega^{2} \mathrm{R}_{2} \cos (\omega \mathrm{t}+\Phi)\right] \\
& y_{m}: \ell_{1} \ddot{\mathrm{y}}_{2}+\ell_{2} \ddot{\mathrm{y}}_{1}+\overline{\mathrm{D}}_{1 \mathrm{x}} \dot{\mathrm{x}}_{1}+\overline{\mathrm{D}}_{2 \mathrm{x}} \dot{\mathrm{x}}_{2}+\overline{\mathrm{C}}_{1 \mathrm{y}} \dot{\mathrm{y}}_{1}+\overline{\mathrm{C}}_{2 \mathrm{y}} \dot{\mathrm{y}}_{2}+\overline{\mathrm{K}}_{1 \mathrm{y}} \mathrm{y}_{1}+\overline{\mathrm{K}}_{2 \mathrm{y}} \mathrm{y}_{2}+\overline{\mathrm{R}}_{1 \mathrm{x}} \mathrm{x}_{1}+\overline{\mathrm{R}}_{2 \mathrm{x}} \mathrm{x}_{2} \\
& =\frac{1}{\mathrm{M}}\left[\delta \mathrm{M}_{1} \omega^{2} \mathrm{R}_{1} \sin \omega \mathrm{t}+\delta \mathrm{M}_{2} \omega^{2} \mathrm{R}_{2} \sin (\omega \mathrm{t}+\Phi)\right] \tag{2.45}\\
& \alpha_{1}: \bar{R}_{T}\left(\ddot{\mathrm{x}}_{2}-\ddot{\mathrm{x}}_{1}\right)+\overline{\mathrm{R}}_{\mathrm{p}} \omega\left(\dot{\mathrm{y}}_{2}-\dot{\mathrm{y}}_{1}\right)+\overline{\mathrm{D}}_{2 \mathrm{y}}{ }_{2} \dot{\mathrm{y}}_{2}-\overline{\mathrm{D}}_{1 \mathrm{y}}{ }_{1} \dot{\mathrm{y}}_{1}+\overline{\mathrm{C}}_{2 \mathrm{x}}{ }^{\ell} \dot{\mathrm{x}}_{2}-\overline{\mathrm{C}}_{1 \mathrm{x}}{ }_{1} \dot{\mathrm{x}}_{1} \\
& +\overline{\mathrm{K}}_{2 \mathrm{x}} \mathrm{l}_{2} \mathrm{x}_{2}-\overline{\mathrm{K}}_{1 \mathrm{x}} \mathrm{l}_{1} \mathrm{x}_{1}+\overline{\mathrm{R}}_{2 \mathrm{y}}{ }^{\ell}{ }_{2} \mathrm{y}_{2}-\overline{\mathrm{R}}_{1 \mathrm{y}}{ }_{1}{ }_{1} \mathrm{y}_{1} \\
& =\frac{1}{\mathrm{ML}}\left[\delta \mathrm{M}_{1} \omega^{2} \mathrm{R}_{1} \rho_{1} \cos \omega \mathrm{t}+\delta \mathrm{M}_{2} \omega^{2} \rho_{2} \mathrm{R}_{2} \cos (\omega \mathrm{t}+\Phi)\right] \tag{2.46}\\
& \alpha_{2}: \bar{R}_{T}\left(\ddot{\mathrm{y}}_{2}-\ddot{\mathrm{y}}_{1}\right)-\overline{\mathrm{R}}_{\mathrm{p}} \omega\left(\dot{\mathrm{x}}_{2}-\dot{\mathrm{x}}_{1}\right)+\overline{\mathrm{D}}_{2 \mathrm{x}}{ }^{\mathrm{l}} \dot{\mathrm{x}}_{2}-\overline{\mathrm{D}}_{1 \mathrm{x}}{ }_{1} \dot{\mathrm{x}}_{1}+\overline{\mathrm{C}}_{2 \mathrm{y}}{ }_{2} \dot{\mathrm{y}}_{2}-\overline{\mathrm{C}}_{1 \mathrm{y}}{ }_{1} \dot{\mathrm{y}}_{1} \\
& +\overline{\mathrm{K}}_{2 \mathrm{y}} \mathrm{l}_{2} \mathrm{y}_{2}-\overline{\mathrm{K}}_{1 \mathrm{y}} \ell_{1} \mathrm{y}_{1}+\overline{\mathrm{R}}_{2 \mathrm{x}} \mathrm{l}_{2} \mathrm{x}_{2}-\overline{\mathrm{R}}_{1 \mathrm{x}} \mathrm{l}_{1} \mathrm{x}_{1} \\
& =\frac{1}{\mathrm{ML}}\left[\delta \mathrm{M}_{1} \omega^{2} \rho_{1} \mathrm{R}_{1} \sin \omega \mathrm{t}+\delta \mathrm{M}_{2} \omega^{2} \rho_{2} \mathrm{R}_{2} \sin (\omega \mathrm{t}+\Phi)\right] \tag{2.47}
\end{align*}
$$

PART III

STEADY STATE SOLUTION OF THE EQUATIONS OF MOTION -

FOUR DEGREES OF FREEDOM SYSTEM

3.01

The complete solution of the linearized equations of motion (2.44) to (2.47) will be the sum of the general solution of the homogeneous equation (i.e., the general solution of the equation with right-hand side zero) and the particular solution of the complete differential equations. This particular solution describes, on the other hand, the forced vibrations caused by the rotor unbalance.

Equations (2.44) to (2.47) will be satisfied if we assume a harmonic solution of the following form:

$$
\left.\begin{array}{l}
x_{1}=x[1] \cos \omega t+x[2] \sin \omega t \\
x_{2}=x[3] \cos \omega t+x[4] \sin \omega t \\
y_{1}=x[5] \cos \omega t+x[6] \sin \omega t \tag{3.1}\\
y_{2}=x[7] \cos \omega t+x[8] \sin \omega t
\end{array}\right\}
$$

Substituting these in equations (2.44) to (2.47) we obtain the resulting equations in the following matrix form after equating the coefficients of $\cos \omega t$ and $\sin \omega t$ in the four equations.

The solution of the above algebraic simultaneous equations will yield $x[1], x[2]$, $\cdots, x[8]$. The amplitudes of x_{1}, x_{2}, y_{1}, and y_{2} are

$$
\left.\begin{array}{l}
\left|x_{1}\right|=\sqrt{x[1]^{2}+x[2]^{2}} \\
\left|x_{2}\right|=\sqrt{x[3]^{2}+x[4]^{2}} \\
\left|y_{1}\right|=\sqrt{x[5]^{2}+x[6]^{2}} \tag{3.3}\\
\left|y_{2}\right|=\sqrt{x[7]^{2}+x[8]^{2}}
\end{array}\right\}
$$

The angular amplitudes can be obtained from

$$
\begin{align*}
\alpha_{1} & =\frac{\mathrm{x}_{2}-\mathrm{x}_{1}}{\mathrm{~L}} \\
& =\frac{1}{\mathrm{~L}}[(\mathrm{x}[3]-\mathrm{x}[1]) \cos \omega \mathrm{t}+(\mathrm{x}[4]-\mathrm{x}[2]) \sin \omega \mathrm{t}] \\
\therefore\left|\alpha_{1}\right| & =\frac{1}{\mathrm{~L}} \sqrt{(\mathrm{x}[3]-\mathrm{x}[2])^{2}+(\mathrm{x}[4]-\mathrm{x}[2])^{2}} \tag{3.4}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\left|\alpha_{2}\right|=\frac{1}{L} \sqrt{(x[7]-x[5])^{2}+(x[8]-x[6])^{2}} \tag{3.5}
\end{equation*}
$$

The steady state solution is therefore given by

$$
\left.\begin{array}{l}
x_{1}=\left|x_{1}\right| \cos \left(\omega t-\psi_{1}\right) \\
x_{2}=\left|x_{2}\right| \cos \left(\omega t-\psi_{2}\right) \\
y_{1}=\left|y_{1}\right| \sin \left(\omega t-\psi_{3}\right) \tag{3.6}\\
y_{2}=\left|y_{2}\right| \sin \left(\omega t-\psi_{4}\right)
\end{array}\right\}
$$

where,

$$
\left.\begin{array}{l}
\psi_{1}=\arctan \left[\frac{x[2]}{x[1]}\right] \\
\psi_{2}=\arctan \left[\frac{x[4]}{x[3]}\right] \\
\psi_{3}=\arctan \left[-\frac{x[5]}{x[6]}\right] \tag{3.7}\\
\psi_{4}=\arctan \left[-\frac{x[7]}{x[8]}\right]
\end{array}\right\}
$$

The resultant exciting force due to the two planes of unbalance can be resolved into two components.
x-component

$$
\begin{align*}
& =\delta M_{1} \omega^{2} R_{1} \cos \omega t+\delta M_{2} \omega^{2} R_{2} \cos (\omega t+\Phi) \\
& =\sqrt{\left(\delta M_{1} R_{1}\right)^{2}+\left(\delta M_{2} R_{2}\right)^{2}+2 \delta M_{1} R_{1} \delta M_{2} R_{2} \cos \Phi} \omega^{2} \cos (\omega t+\omega) \\
& =M e_{u} \omega^{2} \cos (\omega t+\psi) \tag{3.8}
\end{align*}
$$

where

$$
\begin{equation*}
\psi=\arctan \left[\frac{\delta \mathrm{M}_{2} \mathrm{R}_{2} \sin \Phi}{\delta \mathrm{M}_{1} \mathrm{R}_{1}+\delta \mathrm{M}_{2} \mathrm{R}_{2} \cos \Phi}\right] \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{u}=\frac{1}{M} \sqrt{\left(\delta M_{1} R_{1}\right)^{2}+\left(\delta M_{2} R_{2}\right)^{2}+2 \delta M_{1} R_{1} \delta M_{2} R_{2} \cos \Phi} \tag{3.10}
\end{equation*}
$$

Figure 6. - Diagram of unbalance force and rotor response phase relation.

Similarly,
y-component

$$
=M e_{u} \omega^{2} \sin (\omega t+\psi)
$$

From equation (3.6) it is observed that the response lags the angular velocity by an angle $\psi_{i}(i=1,2,3,4)$. If the response vector is superimposed on the excitation vectors as shown in figure 6, it can be observed that the response lags the resultant excitation due to unbalance by an angle $\left(\psi+\psi_{\mathbf{i}}\right)$. If, however, in computation, this angle turns out to be negative, then the response instead of lagging will lead the excitation.

The resultant phase angles of the cylindrical responses with respect to the unbalance is given by

$$
\left.\begin{array}{l}
\psi_{\mathrm{x} 1}=\psi+\psi_{1} \tag{3.11}\\
\psi_{\mathrm{x} 2}=\psi+\psi_{2} \\
\psi_{\mathrm{y} 1}=\psi+\psi_{3} \\
\psi_{\mathrm{y} 2}=\psi+\psi_{4}
\end{array}\right\}
$$

The resultant moment about the x and y axes due to rotor unbalance will have to be calculated in order to compute the phase difference between the conical response and the excitation moments.

The moment due to unbalance about y axis is given by

$$
\begin{align*}
M_{y} & =\delta M_{1} R_{1} \rho_{1} \omega^{2} \cos \omega t+\delta M_{2} R_{2} \rho \omega^{2} \omega^{2} \cos (\omega t+\Phi) \\
& =\sqrt{\left(\rho_{1} R_{1} \delta M_{1}\right)^{2}+\left(\rho_{2} R_{2} \delta M_{2}\right)^{2}+2 \rho_{1} \rho_{2} R_{1} R_{2} \delta M_{1} \delta M_{2} \cos \Phi \cdot \omega^{2} \cos \left(\omega t+\psi_{t}\right)} \tag{3.12}
\end{align*}
$$

and the moment due to unbalance about x axis is
$M_{x}=-\sqrt{\left(\rho_{1} R_{1} \delta M_{1}\right)^{2}+\left(\rho_{2} R_{2} \delta M_{2}\right)^{2}+2 \rho_{1} \rho_{2} R_{1} R_{2} \delta M_{1} \delta M_{2} \cos \Phi \cdot \omega^{2} \sin \left(\omega t+\psi_{t}\right)}$
where

$$
\begin{equation*}
\psi_{\mathrm{t}}=\arctan \left[\frac{\rho_{2} \mathrm{R}_{2} \delta \mathrm{M}_{2} \sin \Phi}{\rho_{1} \mathrm{R}_{1} \delta \mathrm{M}_{1}+\rho_{2} \mathrm{R}_{2} \delta \mathrm{M}_{2} \cos \Phi}\right] \tag{3.14}
\end{equation*}
$$

Now,
and

$$
\left.\begin{array}{l}
\alpha_{1}=|\alpha| \cos \left(\omega t-\psi_{5}\right) \tag{3.15}\\
\alpha_{2}=|\alpha| \sin \left(\omega t-\psi_{6}\right)
\end{array}\right\}
$$

Hence the phase lags between the conical responses α_{1} and α_{2}, with respect to the exciting moment, is given by

$$
\left.\begin{array}{l}
\psi_{\alpha 1}=\psi_{t}+\psi_{5} \tag{3.16}\\
\psi_{\alpha 2}=\psi_{t}+\psi_{6}
\end{array}\right\}
$$

3.03 Calculation of Force Transmitted to Bearings and of Phase Angles Between Transmitted Force and Excitation

Force transmitted in the first bearing in x -direction is given by

$$
\begin{aligned}
\mathrm{F}_{\mathrm{x} 1}= & \mathrm{C}_{1 \mathrm{x}} \dot{\mathrm{x}}_{1}+\mathrm{K}_{1 \mathrm{x}} \mathrm{x}_{1}+\mathrm{D}_{1 \mathrm{y}} \dot{\mathrm{y}}_{1}+\mathrm{R}_{1 \mathrm{y}} \mathrm{y}_{1} \\
= & \cos \omega \mathrm{t}\left[\mathrm{x}[2] \omega \mathrm{C}_{1 \mathrm{x}}+\mathrm{x}[1] \mathrm{K}_{1 \mathrm{x}}+\mathrm{x}[6] \omega \mathrm{D}_{1 \mathrm{y}}+\mathrm{x}[5] \mathrm{R}_{1 \mathrm{y}}\right] \\
& +\sin \omega \mathrm{t}\left[-\mathrm{x}[1] \omega \mathrm{C}_{1 \mathrm{x}}+\mathrm{x}[2] \mathrm{K}_{1 \mathrm{x}}-\mathrm{x}[5] \omega \mathrm{D}_{1 \mathrm{y}}+\mathrm{x}[6] \mathrm{R}_{1 \mathrm{y}}\right] \\
= & A_{\mathrm{x} 1} \cos \omega \mathrm{t}+\mathrm{B}_{\mathrm{x} 1} \sin \omega \mathrm{t}
\end{aligned}
$$

where

$$
\begin{gathered}
A_{x 1}=x[2] \omega C_{1 x}+x[1] K_{1 x}+x[6] \omega D_{1 y}+x[5] R_{1 y} \\
B_{x 1}=-x[1] \omega C_{1 x}+x[2] K_{1 x}-x[5] \omega D_{1 y}+x[6] R_{1 y} \\
\therefore\left|F_{x 1}\right|=\sqrt{A_{x 1}^{2}+B_{x 1}^{2}}
\end{gathered}
$$

and

$$
F_{x 1}=\left|F_{x 1}\right| \cos \left(\omega t-\psi_{7}\right)
$$

where

$$
\psi_{7}=\arctan \left[\frac{\mathrm{B}_{\mathrm{x} 1}}{\mathrm{~A}_{\mathrm{x} 1}}\right]
$$

Similar expressions for the force transmitted in x - and y-directions in the first and second bearings can be obtained from

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{y} 1}=\mathrm{C}_{1 \mathrm{y}} \dot{\mathrm{y}}_{1}+\mathrm{K}_{1 \mathrm{y}} \mathrm{y}_{1}+\mathrm{D}_{1 \mathrm{x}} \dot{\mathrm{x}}_{1}+\mathrm{R}_{1 \mathrm{x} 1} \mathrm{x}_{1}=\left|\mathrm{F}_{\mathrm{y} 1}\right| \sin \left(\omega \mathrm{t}+\psi_{8}\right) \\
& \mathrm{F}_{\mathrm{x} 2}=\mathrm{C}_{2 \mathrm{x}} \dot{\mathrm{x}}_{2}+\mathrm{K}_{2 \mathrm{x} 2} \mathrm{x}_{2}+\mathrm{D}_{2 \mathrm{y}} \dot{\mathrm{y}}_{2}+\mathrm{R}_{2 \mathrm{y}} \mathrm{y}_{2}=\left|\mathrm{F}_{\mathrm{s} 2}\right| \cos \left(\omega \mathrm{t}-\psi_{9}\right) \\
& \mathrm{F}_{\mathrm{y} 2}=\mathrm{C}_{2 \mathrm{y}} \dot{\mathrm{y}}_{2}+\mathrm{K}_{2 \mathrm{y}} \mathrm{y}_{2}+\mathrm{D}_{2 \mathrm{x}} \dot{\mathrm{x}}_{2}+\mathrm{R}_{2 \mathrm{x}} \mathrm{x}_{2}=\left|\mathrm{F}_{\mathrm{y} 2}\right| \sin \left(\omega \mathrm{t}+\psi_{10}\right)
\end{aligned}
$$

where

$$
\begin{gathered}
\left|F_{y 1}\right|=\sqrt{A_{y 1}^{2}+B_{y 1}^{2}} \\
\left|F_{x 2}\right|=\sqrt{A_{x}^{2}+B_{x}^{2}} \\
\left|F_{y 2}\right|=\sqrt{A_{y 2}^{2}+B_{y 2}^{2}} \\
A_{y 1}=x[6] \omega C_{1 y}+x[5] K_{1 y}+x[2] \omega D_{1 x}+x[1] R_{1 x} \\
B_{y 1}=-x[5] \omega C_{1 y}+x[6] K_{1 y}-x[1] \omega D_{1 x}+x[2] R_{1 x} \\
A_{x 2}=x[4] \omega C_{2 x}+x[3] K_{2 x}+x[8] \omega D_{2 y}+x[7] R_{2 y} \\
B_{x 2}=-x[3] \omega C_{2 x}+x[4] K_{2 x}-x[7] \omega D_{2 y}+x[8] R_{2 y} \\
A_{y 2}=x[8] \omega C_{2 y}+x[7] K_{2 y}+x[4] \omega D_{2 x}+x[3] R_{2 x} \\
B_{y 2}=-x[7] \omega C_{2 y}+x[8] K_{2 y}-x[3] \omega D_{2 x}+x[4] R_{2 x}
\end{gathered}
$$

and

$$
\begin{aligned}
& \psi_{8}=\arctan \left[\frac{A_{\mathrm{y} 1}}{\mathrm{~B}_{\mathrm{y} 1}}\right] \\
& \psi_{9}=\arctan \left[\frac{\mathrm{B}_{\mathrm{x} 2}}{\mathrm{~A}_{\mathrm{x} 2}}\right] \\
& \psi_{10}=\arctan \left[\frac{\mathrm{A}_{\mathrm{y} 2}}{\mathrm{~B}_{\mathrm{y} 2}}\right]
\end{aligned}
$$

PART IV

ROTOR D YNAMIC UNBALANCE ANALYSIS

Three versions of the steady state unbalance response computer programs were developed. These programs are ROTOR4, ROTOR4P, and ROTOR4M. The first version, ROTOR4, produces tables of the various bearing amplitudes, forces, and phase angles. The second version will plot any of these quantities as a function of speed. The third version prints out only the rotor maximum amplitude at any particular shaft location specified.

Detailed description of each of these programs is given in sections 4.02 and 4.03 .

4.02
 Computer Programs ROTOR4 and ROTOR4P

A computer program was written to obtain the rotor steady state behavior. The equations of motion (2.44) to (2.47) were solved for certain increments in speed. It is to be noted that the general rigid body system requires six degrees of freedom. However, with the assumption of constant angular velocity of the rotor and the rotor axial equation of motion being uncoupled from the rest of the system equations, reduces the system to one with four degrees of freedom. The equations considered are linearized, based on the assumption that the rotor amplitudes are small, and the terms such as $\delta M_{1} \ddot{x}_{m}, \delta M_{1} \ddot{y}_{m}$ are small in comparison to $M \ddot{x}_{m}, M \ddot{y}_{m}$, etc. This program evaluates the rotor behavior due to certain unbalance along different location and at different planes of the rotor.

In addition to computing the rotor amplitudes, their phase lag or lead with respect to the excitation and the amount of force transmitted, etc., this program also has provision for computing the amplitudes and their phase angles as functions of unbalance force at any arbitrary location along the rotor length.

The program requires the following to be read as input data:

Card 1

1. WO - Initial speed rps
2. DW - Increment in speed, rps
3. WM - Final speed, rps

Card 2

1. L - Length between the bearings, in.
2. L1-Distance from first bearing to mass center, in.
3. L2-Distance from second bearing to mass center, in.
4. W - Rotor weight, lb
5. IP - Polar moment of inertia of the rotor, lb-in. -sec ${ }^{2}$
6. IT - Transverse moment of inertia of the rotor about mass center, lb-in. -sec ${ }^{2}$ Card 3
7. WM1 - First unbalance weight, lb
8. WM2 - Second unbalance weight, lb
9. H1 - Distance from first bearing to first unbalance, in.
10. H2 - Distance from first bearing to second unbalance, in.
11. PHI - Phase angles between unbalance planes, deg
12. R1 - Radius of first unbalance location, in.
13. R2 - Radius of second unbalance location, in.

Card 4

1. N - Number of places other than the bearing locations where displacements are to be measured
2. LZ1 - Distance from first bearing to first probe, in.
3. LZ 2 - Distance from first bearing to second probe, in. Card 5
4. K1X - First bearing stiffness in x -direction, $\mathrm{lb} / \mathrm{in}$.
5. K2X - Second bearing stiffness in x -direction, $\mathrm{lb} / \mathrm{in}$.
6. K1Y - First bearing stiffness in y-direction, lb/in.
7. K2Y - Second bearing stiffness in y-direction, lb/in.

Card 6

1. C1X - First bearing damping coefficient in x-direction, $\mathrm{lb}-\mathrm{sec} / \mathrm{in}$.
2. C2X - Second bearing damping coefficient in x-direction, $\mathrm{lb}-\mathrm{sec} / \mathrm{in}$.
3. C1Y - First bearing damping coefficient in y-direction, lb-sec/in.
4. C2Y - Second bearing damping coefficient in y-direction, lb-sec/in.

Card 7

1. D1X - Cross coupling damping coefficient, lb-sec/in.
2. D2X - Cross coupling damping coefficient, $\mathrm{lb}-\mathrm{sec} / \mathrm{in}$.
3. D1Y - Cross coupling damping coefficient, lb-sec/in.
4. D2Y - Cross coupling damping coefficient, lb-sec/in.

Card 8

1. R1X - Cross coupling stiffness, lb/in.
2. R2X - Cross coupling stiffness, lb/in.
3. R1Y - Cross coupling stiffness, lb/in.
4. R2Y - Cross coupling stiffness, lb/in.

The data cards are in free field format. A comma should separate all data entries. A comma is needed after the last data entry.

The heading printouts of the input data are as follows:

Line

1	L, L1, L2, H1
2	H2, W, WM1, WM2
3	K1X, K2X, K1Y, K2Y
4	C1X, C2X, C1Y, C2Y
5	R1X, R2X, R1Y, R2Y
6	D1X, D2X, D1Y, D2Y
7	IP, IT, R1, R2
8	PHI

The output data are printed out as follows:

Column

1
2 Displacement at bearing 1 in x - or y-direction
3
4
5
6
7
8
9
10

11
Speed, rps

Displacement at bearing 2 in x - or y -direction
Phase angle of displacements at first bearing with respect to excitation Phase angle of displacements at second bearing with respect to excitation Angular displacements in $x-z$ or $y-z$ plane
Phase angles of angular displacements with respect to exciting moment Force transmitted to bearing 1 in x - or y-direction
Force transmitted to bearing 2 in x - or y -direction force

Phase angles of the force transmitted to bearing 1 with respect to exciting

Phase angles of the force transmitted to bearing 2 with respect to exciting force

The printout of the output at any arbitrary location is as follows:

Column

1 LZ - The probe location along the rotor from first bearing
$2 \quad \mathrm{XL}$ - Amplitude in the x -direction at arbitrary location
$3 \quad \mathrm{YL}$ - Amplitude in the y-direction at arbitrary location
4 PXL - Phase angle of the amplitude in x -direction at arbitrary location with respect to excitation

Column

5 PYL - Phase angle of the amplitude in the y-direction at arbitrary location with respect to excitation
6 SPEED, rps

In addition to the above tables to be printed out, a plotter procedure is included, which plots out the amplitudes, force transmitted, phase angles of the amplitudes, and transmitted forces at different rotor speeds.

The computer program ROTOR4P, which plots up the different variables with speed, must be provided with the following input cards in addition to the eight input data cards of ROTOR4:

Card 9

1. WP - Number of cards to be read to plot

Card 10

1. A - Case number
2. GK - Always to be set equal to 1

Card 11

1. B - Grid type (described in detail in table I)
2.
3.
4.

C, D, E, F
5.
6. YMIN - Minimum value of variable along y-axis
7. DY - Magnitude of variable along y-axis per inch of the total 6 inches along y-axis
8. QQ - If '0' (zero), then program scales according to first line drawn on graph; on the other hand, if this is ' 1 ', then the values of YMIN and DY must be provided
Card number 11 must be punched with proper input values and, as is obvious, can be more than one, depending on the number WP of card number 9.

A listing of the above computer program is given in appendix B along with sample output tables.

TABLE I. - EXPLANATION OF VARIABLES B, C, D, E, F
IN INPUT CARD 11 AND EXPLANATION OF SYMBOLS

If $B=$ (a)	1	2	3	4	5	6	7	Meaning of symbols
C	x_{1}	$\psi_{x 1}$	α_{1}	$\psi_{\alpha 1}$	$F_{x 1}$	PUB FXI	Arbitrary amplitudes x and y	Δ
D	y_{1}	$\psi_{\mathrm{y} 1}$	α_{2}	$\psi_{\alpha 2}$	$\mathrm{F}_{\mathrm{y} 1}$	PUB FY1	Phase angle of amplitude at arbitrary location	8
E	x_{2}	$\psi_{\mathrm{x} 2}$	--	-	$\mathrm{F}_{\mathrm{x} 2}$	PUBFX2		+
F	y_{2}	$\psi_{\mathrm{y} 2}$	--	----	$\mathrm{F}_{\mathrm{y} 2}$	PUBFY2		*

${ }^{\mathrm{a}} \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ should be either ' 1 ' or ' 0 ' of 1 ; the corresponding variables are to be plotted for particular value of B. On the other hand, if it is zero, no plot is made.
4.03

Computer Program to Evaluate Maximum Rotor Ámplitude and
Forces for a Four Degree of Freedom System (ROTOR4M)

This computer program evaluates design data for the four degree of freedom system that simulates a rigid body rotor on general anisotropic bearings. Two planes of unbalance are considered in this program and the response caused by this rotor unbalance is evaluated. The program uses an iterative procedure to find the maximum amplitudes and then the corresponding critical speeds, phase angles, etc. are determined. This program calculates the amplitudes at each increment of rotor speed. When a peak amplitude is found by the iterative process, the corresponding speed is recorded, and all other parameters are computed for this critical speed. A procedure is incorporated into the program to obtain the maximum amplitudes and other needed design parameters for arbitrary location along the rotor centerline.

The procedure which evaluates the maximum amplitude by iterative procedure is FINDMAX. A flow chart of this procedure is shown in figure 7. The program requires the following to be read as input data:

Card 1

1. SPEC - Allowable percent error on speed

Card 2

1. WO - Initial speed, rps
2. DW - Increment in speed, rps
3. WM - Final speed, rps

Figure 7. - Flow chart of procedure Findmax used in ROTOR4M.

Card 3

1. L - Length between bearings, in.
2. L1 - Distance from first bearing to mass center, in.
3. L2-Distance from second bearing to mass center, in.
4. W - Rotor weight, lb.
5. IP - Polar moment of inertia, lb-in. -sec ${ }^{2}$
6. IT - Transverse moment of inertia of rotor about mass center, lb-in. sec ${ }^{2}$ Card 4
7. WM1 - First unbalance weight, lb
8. WM2 - Second unbalance weight, lb
9. H1 - Distance from first bearing to first unbalance, in.
10. H2 - Distance from first bearing to second unbalance, in.
11. PHI - Phase angles between unbalance planes, deg
12. R1 - Radius of first unbalance location, in.
13. R2-Radius of second unbalance location, in.

Card 5

1. P - Number of places other than the bearing locations where displacements are to be measured
2. LZ1 - Distance from first bearing to first probe, in.
3. LZ2 - Distance from first bearing to second probe, in. Card 6
4. K1X - First bearing stiffness in X -direction, $\mathrm{lb} / \mathrm{in}$.
5. K2X - Second bearing stiffness in x -direction, $\mathrm{lb} / \mathrm{in}$.
6. K1Y - First bearing stiffness in y-direction, lb/in.
7. K2Y - Second bearing stiffness in y-direction, lb/in.

Card 7

1. C1X - First bearing damping coefficient in x -direction, $\mathrm{lb}-\mathrm{sec} / \mathrm{in}$.
2. C2X - Second bearing damping coefficient in X -direction, $\mathrm{lb}-\mathrm{sec} / \mathrm{in}$.
3. C1Y - First bearing damping coefficient in y-direction, lb-sec/in.
4. C2Y - Second bearing damping coefficient in y-direction, lb-sec/in.

Card 8

1. D1X - Cross coupling damping coefficient, lb-sec/in.
2. D2X - Cross coupling damping coefficient, lb-sec/in.
3. D1Y - Cross coupling damping coefficient, lb-sec/in.
4. D2Y - Cross coupling damping coefficient, lb-sec/in.

Card 9

1. R1X - Cross coupling stiffness, lb/in.
2. R2X - Cross coupling stiffness, lb/in.
3. R1Y - Cross coupling stiffness, lb/in.
4. R2Y - Cross coupling stiffness, lb/in.

Card 10

1. CONTROL - Identifier controlling the symmetry of bearings. If CONTROL $=0$, we are dealing with symmetric case

The data cards are in free field format. A comma should separate all data entries. A comma is needed after the last data entry.

The output data is as follows:
Column
1 Speed, rps
2 Coordinate (i.e., bearing 1 or 2 or any arbitrary location)
3 Amplitude, in.
4 Phase angle of the amplitude WRT unbalance
5 Major semi axis/amplitude of coordinate, DIM
6 Minor semi axis/amplitude of coordinate, DIM
$7 \quad$ Ellipse angle of major semi axis with x-axis
8 Bearing location of maximum force transmitted
9 Maximum force transmitted
10 Phase angle of maximum force WRT unbalance force
11

Percent cylindrical mode

Columns 5, 6, and 7 give quantities needed to plot the elliptical orbit motion at the specified location (i.e., bearing 1 or 2 or any arbitrary location). The following is an example of an orbit motion plot:

Column 11 indicates the percentage of the motion that is of a cylindrical mode type, as opposed to the conical mode.

A listing of the above computer program is given in appendix C along with sample output tables.

Response Computer Programs

As an example of the computer programs ROTOR4 and ROTOR4P, the following rotor is considered. The rotor and bearing characteristics are as follows:
$\mathrm{W}=$ Rotor weight, 110 lb
WM1 = WM2 = Rotor unbalance, 0.2 lb
$\mathrm{L}=$ Distance between bearing centerlines, 30 in .
L1 = Distance from first bearing to mass center, 15 in .
$\mathrm{L} 2=$ Distance from second bearing to mass center, 15 in .
H1 $=$ Distance from first bearing to first unbalance, 0
H2 = Distance from first bearing to second unbalan ce, 0
R1 $=$ Radius of first unbalance location, 2 in.
R2 $=$ Radius of second unbalance location, 2 in.
IP $=$ Polar moment of inertia, $0.57 \mathrm{lb}-\mathrm{in} .-\mathrm{sec}^{2}$
IT $=$ Transverse moment of inertia, $21.6 \mathrm{lb}-\mathrm{in} .-\mathrm{sec}^{2}$
PHI $=$ Phase angle between unbalance planes, 0
$K 1 X=20 \times 10^{4} \mathrm{lb} / \mathrm{in}$.
$K 2 X=1.5 \times 10^{4} \mathrm{lb} / \mathrm{in}$.
$\mathrm{K} 1 \mathrm{Y}=1.6 \times 10^{4} \mathrm{lb} / \mathrm{in}$.
$K 2 Y=1.2 \times 10^{4} \mathrm{lb} / \mathrm{in}$.
$R 1 X=0 \mathrm{lb} / \mathrm{in}$.
$R 2 X=0 \mathrm{lb} / \mathrm{in}$.
$R 1 Y=0 \mathrm{lb} / \mathrm{in}$.
R2Y $=0 \mathrm{lb} / \mathrm{in}$.
$\mathrm{C} 1 \mathrm{X}=7.0 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$.
$\mathrm{C} 2 \mathrm{X}=7.0 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$.
$\mathrm{C} 1 \mathrm{Y}=7.0 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$.
$\mathrm{C} 2 \mathrm{Y}=7.0 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$.
$\mathrm{D} 1 \mathrm{X}=0 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$.
$\mathrm{D} 2 \mathrm{X}=0 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$.
$\mathrm{D} 1 \mathrm{Y}=0 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$.
$\mathrm{D} 2 \mathrm{Y}=0 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$.

The rotor performance was calculated for a speed range of 40 to 138 rps . Table B-I (appendix B) represents the rotor input characteristics and the rotor x or horizontal response for both bearings. The definition of the various rotor amplitudes, phase angles, and forces transmitted is given in section 4.02. Table B-II represents the rotor response
in the y or vertical direction. Table B-III lists the rotor displacements and phase angles at arbitrary positions along the shaft corresponding to the number of places selected on input data card 4.

As an example of ROTOR4P the data presented in tables B-I and B-II (appendix B) were plotted up by use of the plotter routine. These plotting procedures are designed to automatically scale the figures in 6 - by 8 -inch graphs. There are eight basic graphs that may be obtained depending on the card input data. All or only several of these curves may be plotted as desired.

The first plot, figure 8, represents the horizontal and vertical motion at both bearings. Since the bearing stiffnesses in the s - and y-directions are all slightly different, we obtain 8 distinct peaks or critical speeds. For each generalized coordinate or displacement, we obtain two distinct peaks. The magnitudes of these peaks are directly influenced by the location and magnitude of the rotor unbalance and damping. For example, the first peak or critical speed in this particular example corresponds to a "cylindrical" resonance and the second corresponds to a "conical" resonance. The relative phase angle Φ and plane of the unbalances will determine the magnitude of excitation of each mode. For example, if the unbalances were situated at the rotor mass center of a symmetric rotor, the conical mode would not be excited.

Figure 9 represents the phase angles between the radial unbalance force and the displacement vector. Note that in the single degree of freedom model, the phase angle become 90° at the critical speed and goes to 180° above the critical. In the four degree of freedom rotor, the phase angle may vary from 0 to 360°. Figure 9 shows that at low speeds the two bearings are in phase and at higher speeds the two bearings are 180° out of phase. This also shows that the critical speeds need not occur with the response lagging the excitation by an angle of 90° and increasing thereafter continuously up to 180° with increase in speed. The phase lag may decrease after the first critical is reached, as can be noted in the response at bearing number 1, and then continuously increase with increase of speed.

Figure 10 shows the plot of angular amplitudes α_{1} and α_{2} with speed. On examining figure 8 along with figure 10 , it will be noticed that the higher criticals observed in the response plot of figure 8 are, in fact, the conical criticals. This conclusion can be deduced from the phase angle-speed plot also. As shown in figure 9, the relative phase difference between the rotor response at two bearings in 180° at higher speeds, hence, the occurrence of conical criticals at these speeds.

Figure 11 shows the phase lag of conical responses with moment excitation in $\mathrm{x}-\mathrm{z}$ and $y-z$ planes. The angular responses lag the momental excitation by about 180° at low speeds, and this phase lag continuously increases to 300° with increase in speed.

Figure 12 shows the force transmitted to the bearings in horizontal and vertical directions at different speeds with the specified bearing characteristics of the system.

The occurrence of the maximum force transmitted is at the critical speeds, as can be observed when compared with figure 8.

Figure 13 shows the phase lag of the transmitted forces with respect to the excitation force with increase of speed. It can be observed that at low speed the forces transmitted in the two bearings are in phase, but as the speed increases the relative phase lag between the forces transmitted in two bearings increases. At very high speed they are out of phase with respect to each other. The trend of these phase angles, in the four degree of freedom system will be compared with a single degree of freedom system later. This leads to a very interesting result.

Figures 14 and 16 are plots of the amplitudes of the rotor at ± 15 inches from the first bearing. Figures 15 and 17 show the corresponding phase angles.

Figure 18 shows the plot of amplitude ratio against frequency ratio for a single degree of freedom system. Figure 19 is a plot of the corresponding phase angle with respect to excitation. It is well known that for a single degree of freedom system the response lags the excitation by 90° at critical speeds, which increases rapidly at low damping coefficient and the response is out of phase with respect to excitation at high speeds. However, the same conclusions cannot be reached in case of rotor-bearing systems where there is more than one degree of freedom. Figure 9, which is a plot of the phase angles of response at bearings number 1 and 2 , shows that in the first bearing the phase angle gradually increases as the speed increases. At the critical speeds, the phase shift is not necessarily 90°, but may be more or less than 90°, nor does this continually increase and reach a value of 180° at very high speed, as is observed in a single degree of freedom system. In the particular case considered, the phase angle at bearing number 1 reaches a maximum value, then decreases with increase of speed, and finally approaches a constant value of 180° at high speed, whereas the phase angle at bearing number 2 continually increases with increase of speed, and at high speed is lagging the excitation by 360°. This is quite an interesting and unexpected result and was not observed in the single degree system mathematical model. In reference 3 a plot of the phase angles of a six degree of freedom rotor-bearing system shows that the response may lag the excitation by 540°. Figure 9 may further be utilized to obtain the relative phase angle between the responses at two bearings. One important conclusion that can be drawn from this is that at low speed the responses at the two bearings are in phase with each other, but they are out of phase at high speed.

Figure 20 shows the plot of transmissibility against frequency ratio for a single degree of freedom system. It can be observed that below a frequency ratio of 1.41 the transmissibility increases with decrease of damping ratio, whereas above 1.42 the transmissibility increases with increase of damping ratio. Hence, if the operating frequency ratio is below 1.41, it is advisable to have a higher damping, and for a frequency ratio greater than 1.41 , the damping ratio should be low in order that the transmissi-
bility remain at a low value. A damping ratio value of 4.00 keeps the transmissibility almost constant in the entire frequency ratio range.

Figure 21 is a plot of force transmitted/impressed force against frequency ratio for a single degree of freedom system. Here also, as in the case of transmissibility, the force transmitted increases with decrease of damping for frequency ratio below 1.41, and above this the force transmitted increases with increase of damping ratio. This plot provides a method for choosing a value of damping such that the force transmitted remains at an optimum value in the entire frequency range. Figures 22 and 23 show the effect of damping on the system. Compared with figures 8 and 12, these show that the amplitude and the force transmitted to the bearings are considerably reduced. Figures 24 and 25 show that with a damping of 30 pound-sec per inch, the amplitude and the force transmitted are reduced further and the response increases with an increase in angular velocity. The interesting feature of the addition of this extra amount of damping is that the resonance of the system does not occur any more at the two angular velocities observed previously.

Figures 26 through 30 show plots of the output obtained from the ROTOR4M computer program. The plots shown are for symmetrical bearings; i.e., the assumed stiffness in the x - and y -directions for both the bearings are identical.

Figure 26 shows the cylindrical and conical critical speeds of the NASA gas bearing rotor for various values of stiffness. Since the bearing characteristics are symmetric, one cylindrical and one conical critical are obtained at a given stiffness. This shows that the system is susceptible to instability at the lower critical due to the conical mode and at the higher critical due to the cylindrical mode.

Figure 27 shows the plot of rotor amplification factor ' A ' against bearing stiffness for different values of damping. For a particular damping value, the amplitifcation factor increases with increasing stiffness, and for a constant value of stiffness the amplification factor decreases with increasing damping.

Figure 28 is a cross plot of the amplification factor against damping coefficient for various values of stiffness. The same conclusions as observed in figure 24 apply in this case.

Figure 29 shows the plot of rotor phase angle at the cylindrical critical speeds for various values of bearing stiffness. For a particular value of damping coefficient the rotor phase angle decreases with increase of stiffness, and there is a decrease of phase angle with decrease of damping for a particular value of stiffness. This is shown in figure 30.

Figure 8. - Bearing horizontal and vertical amplitude against frequency.

Figure 9. - Bearing horizontal and vertical phase angle against frequency.

Figure 10. - Angular amplitude against frequency.

Figure 11. - Angular amplitude phase angle against frequency.

Figure 12. - Force transmitted against frequency.

Figure 13. - Force transmitted phase angle against frequency.

Figure 14. - Amplitude at +15 -inch location from first bearing against frequency.

Figure 15. - Phase angle of amplitude at +15 -inch location from first bearing against frequency.

Figure 16. - Amplitude at -15 -inch location from first bearing against frequency.

Figure 17. - Phase angle of amplitude at -15-inch location from first bearing against frequency.

Figure 18. - Steady state response for inertial excitation for a single degree freedom system.

Figure 19. - Variation of phase angle for inertial excitation for a single degree freedom system.

Figure 20. - Transmissibility for a single degree freedom system.

Figure 21. - Force transmitted against frequency ratio for a single degree freedom system.

Figure 22. - Bearing amplitude against frequency (four degree freedom system) at damping coefficient 15 pound-seconds per inch.

Figure 23. - Force transmitted against frequency (four degree freedom system) at damping coefficient 15 pound-seconds per inch.

Figure 24. - Bearing amplitude against frequency (four degree freedom system) at damping coefficient 30 pound-seconds per inch.

Figure 25. - Force transmitted against frequency (four degree freedom system) at damping coefficient 30 pound-seconds per inch.

Figure 26. - NASA gas bearing rotor critical speeds for various values of bearing stiffness.

Figure 27. - Cylindrical critical speed rotor amplification factor against bearing stiffness.

Figure 28. - Cylindrical critical speed amplification factor against damping coefficient.

Figure 29. - Rotor phase angle at cylindrical critical speed against bearing stiffness.

Figure 30. - Rotor phase angle at cylindrical critical speed against bearing damping.

PART V
 STABILITY AND GENERAL TRANSIENT ANALYSIS

5.01

Stability Analysis of the System

In part III of this report a method to obtain the steady state solution of the system was shown. This, however, is insufficient to predict completely operation of the system. The stability characteristics of the system must also be known.

The homogeneous equations of motion are solved to get the time dependent transient solution. The homogeneous equations of motion for the general four degree of freedom system are:

$$
\begin{equation*}
\ell_{1} \ddot{\mathrm{x}}_{2}+\ell_{2} \ddot{\mathrm{x}}_{1}+\overline{\mathrm{K}}_{1 \mathrm{x}} \mathrm{x}_{1}+\overline{\mathrm{K}}_{2 \mathrm{x}} \mathrm{x}_{2}+\overline{\mathrm{R}}_{1 \mathrm{y}} \mathrm{y}_{1}+\overline{\mathrm{R}}_{2 \mathrm{y}} \mathrm{y}_{2}+\overline{\mathrm{C}}_{1 \mathrm{x}} \dot{\mathrm{x}}_{1}+\overline{\mathrm{C}}_{2 \mathrm{x}} \dot{\mathrm{x}}_{2}+\overline{\mathrm{D}}_{1 \mathrm{y}} \dot{\mathrm{y}}_{1}+\overline{\mathrm{D}}_{2 \mathrm{y}} \dot{\mathrm{y}}_{2}=0 \tag{5.1}
\end{equation*}
$$

$$
\begin{equation*}
\ell_{1} \ddot{\mathrm{y}}_{2}+\ell_{2} \ddot{\mathrm{y}}_{1}+\overline{\mathrm{K}}_{1 \mathrm{y}} \mathrm{y}_{1}+\overline{\mathrm{K}}_{2 \mathrm{y}} \mathrm{y}_{2}+\overline{\mathrm{R}}_{1 \mathrm{x}} \mathrm{x}_{1}+\overline{\mathrm{R}}_{2 \mathrm{x}} \mathrm{x}_{2}+\overline{\mathrm{C}}_{1 \mathrm{y}} \dot{\mathrm{y}}_{1}+\overline{\mathrm{C}}_{2 \mathrm{y}} \dot{\mathrm{y}}_{2}+\overline{\mathrm{D}}_{1 \mathrm{x}} \dot{\mathrm{x}}_{1}+\overline{\mathrm{D}}_{2 \mathrm{x}} \dot{\mathrm{x}}_{2}=0 \tag{5.2}
\end{equation*}
$$

$$
\begin{align*}
& \overline{\mathrm{R}}_{\mathrm{T}}\left(\ddot{\mathrm{x}}_{2}-\ddot{\mathrm{x}}_{1}\right)+\overline{\mathrm{R}}_{\mathrm{p}} \omega\left(\dot{\mathrm{y}}_{2}-\dot{\mathrm{y}}_{1}\right)+\overline{\mathrm{K}}_{2 \mathrm{x}} \ell_{2} \mathrm{x}_{2}-\overline{\mathrm{K}}_{1 \mathrm{x} \ell_{1} \mathrm{x}_{1}}+\overline{\mathrm{R}}_{2 \mathrm{y}} \ell_{2} \mathrm{y}_{2} \\
&-\overline{\mathrm{R}}_{1 \mathrm{y}}{ }^{\ell}{ }_{1} \mathrm{y}_{1}+\overline{\mathrm{C}}_{2 \mathrm{x} \ell} \ell_{2} \dot{\mathrm{x}}_{2}-\overline{\mathrm{C}}_{1 \mathrm{x} \ell} \ell_{1} \dot{\mathrm{x}}_{1}+\overline{\mathrm{D}}_{2 \mathrm{y}}{ }_{2} \dot{\mathrm{y}}_{2}-\overline{\mathrm{D}}_{1 \mathrm{y}}{ }_{1} \dot{\mathrm{y}}_{1}=0 \tag{5.3}
\end{align*}
$$

$$
\overline{\mathrm{R}}_{\mathrm{T}}\left(\ddot{\mathrm{y}}_{2}-\ddot{\mathrm{y}}_{1}\right)-\overline{\mathrm{R}}_{\mathrm{p}} \omega\left(\dot{\mathrm{x}}_{2}-\dot{\mathrm{x}}_{1}\right)+\overline{\mathrm{K}}_{2 \mathrm{y}} \ell_{2} \mathrm{y}_{2}-\overline{\mathrm{K}}_{1 \mathrm{y}^{\ell}{ }_{1} \mathrm{y}_{1}+\overline{\mathrm{R}}_{2 \mathrm{x}_{2}{ }_{2} \mathrm{x}_{2}} .{ }^{2} .}
$$

$$
\begin{equation*}
-\overline{\mathrm{R}}_{1 \mathrm{x}^{\ell} 1} \mathrm{x}_{1}+\overline{\mathrm{C}}_{2 \mathrm{y} \ell} \dot{\mathrm{y}}_{2}-\overline{\mathrm{C}}_{1 \mathrm{y}^{\ell} 1} \dot{\mathrm{y}}_{1}+\overline{\mathrm{D}}_{2 \mathrm{x} \ell} \dot{\mathrm{x}}_{2}-\overline{\mathrm{D}}_{1 \mathrm{x} \ell} \dot{\mathrm{x}}_{1}=0 \tag{5.4}
\end{equation*}
$$

To obtain the characteristic equation, we assume a solution of the form:

$$
\begin{equation*}
x_{1}=A_{1} e^{\lambda t} \quad x_{2}=A_{2} e^{\lambda t} \quad y_{1}=A_{3} e^{\lambda t} \quad y_{2}=A_{4} e^{\lambda t} \tag{5.5}
\end{equation*}
$$

If the above solution (5.5) is substituted into equations (5.1) to (5.4), equations are obtained which can be written in the following matrix form:

In order to have a nontrivial solution the determinant of the coefficients A_{1}, A_{2}, A_{3}, and A_{4} must vanish. This will give us the characteristic equation, which is of the form

$$
\begin{equation*}
A_{0} \lambda^{8}+A_{1} \lambda^{7}+A_{2} \lambda^{6}+A_{3} \lambda^{5}+A_{4} \lambda^{4}+A_{5} \lambda^{3}+A_{6} \lambda^{2}+A_{7} \lambda+A_{8}=0 \tag{5.7}
\end{equation*}
$$

Knowing $A_{0}, A_{1}, \ldots, A_{8}$, the above equation can be solved to get the roots of the equation, $\lambda . \lambda$ is usually complex, and is of the form

$$
\lambda=P+i s
$$

Here, \mathbf{P} may be positive or negative or it may be zero. This, in fact, predicts the decay or growth rate of the motion of the system. If P is negative, then the system is stable, and the motion decays with time. If P is positive, then as is obvious, the
motion grows with time and never comes to a stable situation. On the other hand, if P is zero then the system is said to be on the threshold of stability. The values of the parameters controlling the system keep it stable. If the parameters are changed, the system either becomes permanently stable or unstable.

The expansion of the characteristic determinant, as shown in equation (5.6) into the form of (5.7) even for this four degree of freedom system, by the usual procedure to expand a determinant, is formidable. This is much easier to do numerically on a digital computer. This has been done in the computer program ROTSTAB to compute numerically $A_{0}, A_{1}, \ldots, A_{8}$, and has been used to find the roots of the characteristic determinant. The real part of the root, as has already been observed, gives the decay or growth rate and the imaginary parts, the natural frequencies.

The computer program ROTSTAB is described in detail in 5.02.
Besides the above method of determining the stability criterion, the Routh Hurwitz criteria can be used to determine the stability of a system.

If the characteristic equation is given in the form

$$
\begin{equation*}
\sum_{K=0}^{N} A_{N-K^{\lambda}}{ }^{K}=0 \tag{5.8}
\end{equation*}
$$

Then the Routh Hurwitz criterion is given by the following determinant:

The condition for stability is that the determinant D_{N} must be positive. Thus,

$$
\left.\begin{array}{c}
D_{0}=A_{1}>0 \\
D_{1}=A_{1} A_{2}-A_{0} A_{3}>0 \tag{5.10}\\
D_{2}=A_{3} D_{1}-A_{1}\left(A_{1} A_{4}-A_{0} A_{5}\right)>0 \\
D_{3}>0, \text { for stability }
\end{array}\right\}
$$

For systems larger than fourth order, the Routh-Hurwitz determinant method becomes cumbersome and unwieldy to use. It is often preferable in such cases to use the original Routh method as given below.

Consider the following array:
$\left.\begin{array}{ccccc}A_{0} & A_{2} & A_{4} & A_{6} & A_{8} \\ A_{1} & A_{3} & A_{5} & A_{7} & -- \\ C_{1} & C_{2} & C_{3} & C_{4} & -- \\ D_{1} & D_{2} & D_{3} & -- & -- \\ E_{1} & E_{2} & E_{3} & -- & -- \\ F_{1} & F_{2} & -- & -- & -- \\ G_{1} & G_{2} & -- & -- & -- \\ H_{1} & -- & -- & -- & --\end{array}\right\}$
where

$$
\left.\begin{array}{rl}
C_{1} & =A_{2}-A_{0} A_{3} / A_{1} \tag{5.12}\\
C_{2} & =A_{4}-A_{0} A_{5} / A_{1} \\
C_{3} & =A_{6}-A_{0} A_{7} / A_{1} \\
D_{1} & =A_{3}-A_{1} C_{2} / C_{1} \\
D_{2} & =A_{5}-A_{1} C_{3} / C_{1} \\
\cdot \\
\cdot \\
D_{2} & =A_{5}-A_{1} C_{3} / C_{1}
\end{array}\right\}
$$

The necessary and sufficient condition for stability is that all of the coefficients of the first column of the array (5.11) must be positive.

This criterion of stability determination has been included in the program ROTSTAB.

5.02 Description of Computer Program ROTSTAB - Transient Solution of System

Figure 31 shows the experimental plot of the rotor amplitude against the rotor revolutions per minute of the NASA Lewis rotor. It was observed that the system goes unstable at 26700 rpm . The stiffness values that have been indicated at the occurrence of the rotor critical speed have been obtained experimentally.

The numerical values of the stiffness and damping factors obtained experimentally are fed in as input data with different values of the cross coupling stiffness term in the ROTSTAB computer program to determine the attitude angle at which the rotor will become unstable. The output obtained at a running speed of 27000 rpm is shown in appendix D . The calculated critical speeds follow quite closely those given by experimental results. The system is found to become unstable at a cross coupling stiffness of 127000 pounds per inch. Hence the attitude angle will be given by

$$
\Phi=\tan ^{-1}\left(\frac{K}{R}\right)=\tan ^{-1}\left(\frac{220000}{127000}\right)=60^{\circ}
$$

The whirl ratio at the threshold of stability is 0.73511 , which corresponds closely with the experimental results.

As is obvious from the results obtained, this analysis provides the information required to change bearing characteristics to make an unstable system stable.
5.03

If we assume

$$
\begin{array}{ll}
\overline{\mathrm{K}}_{1 \mathrm{x}}=\overline{\mathrm{K}}_{2 \mathrm{x}}=\frac{\overline{\mathrm{K}}_{\mathrm{x}}}{2} & \overline{\mathrm{C}}_{1 \mathrm{x}}=\overline{\mathrm{C}}_{2 \mathrm{x}}=\frac{\overline{\mathrm{C}}_{\mathrm{x}}}{2} \\
\overline{\mathrm{~K}}_{1 \mathrm{y}}=\overline{\mathrm{K}}_{2 \mathrm{y}}=\frac{\overline{\mathrm{K}}_{\mathrm{y}}}{2} & \overline{\mathrm{C}}_{1 \mathrm{y}}=\overline{\mathrm{C}}_{2 \mathrm{y}}=\frac{\overline{\mathrm{C}}_{y}}{2} \\
\overline{\mathrm{R}}_{1 \mathrm{x}}=\overline{\mathrm{R}}_{2 \mathrm{x}}=\frac{\overline{\mathrm{R}}_{\mathrm{x}}}{2} & \overline{\mathrm{D}}_{1 \mathrm{x}}=\overline{\mathrm{D}}_{2 \mathrm{x}}=\frac{\overline{\mathrm{D}}_{\mathrm{x}}}{2} \\
\overline{\mathrm{R}}_{1 \mathrm{y}}=\overline{\mathrm{R}}_{2 \mathrm{y}}=\frac{\overline{\mathrm{R}}_{\mathrm{y}}}{2} & \overline{\mathrm{R}}_{1 \mathrm{y}}=\overline{\mathrm{R}}_{2 \mathrm{y}}=\frac{\overline{\mathrm{R}}_{\mathrm{y}}}{2}
\end{array}
$$

and

$$
\frac{\mathrm{L}_{1}}{\mathrm{~L}}=\frac{\mathrm{L}_{2}}{\mathrm{~L}}=\rho=0.5
$$

then the equations of motion are simplified considerably. From the above assumption of bearing symmetry we observe $\mathrm{x}_{1}=\mathrm{x}_{2}=\mathrm{x}$ and $\mathrm{y}_{1}=\mathrm{y}_{2}=\mathrm{y}$.

Equations (5.1) and (5.2) then reduce to:

$$
\begin{align*}
& \ddot{x}+\overline{\mathrm{K}}_{x} x+\bar{R}_{y} y+\overline{\mathrm{C}}_{\mathrm{x}} x+\bar{D}_{y} \dot{y}=0 \tag{5.13}\\
& \ddot{y}+\overline{\mathrm{K}}_{y} y+\bar{R}_{x} x+\bar{C}_{y} \dot{y}+\bar{D}_{x} \dot{x}=0 \tag{5.14}
\end{align*}
$$

Equations (2.42) and (2.43) reduce to:

$$
\begin{align*}
& \mathrm{I}_{\mathrm{T}} \ddot{\alpha}_{1}+\mathrm{I}_{\mathrm{p}} \omega \dot{\alpha}_{2}+\frac{\mathrm{K}_{\mathrm{x}}}{2} \mathrm{~L}^{2} \alpha_{1}+\frac{\mathrm{D}_{\mathrm{y}}}{2} \mathrm{~L}^{2} \dot{\alpha}_{2}+\frac{\mathrm{C}_{\mathrm{x}}}{2} \mathrm{~L}^{2} \dot{\alpha}_{1}+\frac{\mathrm{R}_{\mathrm{y}}}{2} \mathrm{~L}^{2} \alpha_{2}=0 \tag{5.15}\\
& \mathrm{I}_{\mathrm{T}} \ddot{\alpha}_{2}-\mathrm{I}_{\mathrm{p}} \omega \dot{\dot{\alpha}_{1}}+\frac{\mathrm{K}_{\mathrm{y}}}{2} \mathrm{~L}^{2} \alpha_{2}+\frac{\mathrm{D}_{\mathrm{x}}}{2} \mathrm{~L}^{2} \dot{\alpha}_{1}+\frac{\mathrm{C}_{\mathrm{y}}}{2} \mathrm{~L}^{2} \dot{\alpha}_{2}+\frac{R_{\mathrm{x}}}{2} \mathrm{~L}^{2} \alpha_{1}=0 \tag{5.16}
\end{align*}
$$

It is to be noted that the two pairs of equations (5.13), (5.14) and (5.15), (5.16) are uncoupled. The first pair represents only the cylindrical mode and the second pair, the conical mode in a given system.

We now assume solutions of the form:

$$
\begin{equation*}
\mathrm{x}=\mathrm{A}_{1} \mathrm{e}^{\lambda \mathrm{t}} \quad \mathrm{y}=\mathrm{A}_{2} \mathrm{e}^{\lambda t} \quad \alpha_{1}=\mathrm{A}_{3} \mathrm{e}^{\lambda t} \quad \alpha_{2}=\mathrm{A}_{4} \mathrm{e}^{\lambda t} \tag{5.17}
\end{equation*}
$$

Substituting (5.17) into equations (5.13) and (5.14), we obtain the characteristic equation for the cylindrical mode which is

$$
\begin{align*}
\lambda^{4}+\lambda^{3}\left[\vec{C}_{y}+C_{x}\right]+\lambda^{2} & {\left[K_{y}+K_{x}+C_{x} C_{y}-D_{x} D_{y}\right] } \\
& +\lambda\left[K_{y} C_{x}+K_{x} C_{y}-R_{y} D_{x}-R_{x} D_{y}\right]+\left[K_{x} K_{y}-R_{x} R_{y}\right]=0 \tag{5.18}
\end{align*}
$$

Substituting equation (5.17) in equations (5.15) and (5.16) and after some algebraic manipulations, the characteristic equation for conical mode is obtained:

$$
\begin{align*}
R_{T}^{2} \lambda^{4} & +R_{T}\left(C_{x}+C_{y}\right) \lambda^{3}+\lambda^{2}\left[R_{T}\left(K_{x}+K_{y}\right)+C_{x} C_{y}+\left(R_{P} \omega+D_{y}\right)\left(R_{P} \omega-D_{x}\right)\right] \\
& +\lambda\left[K_{x} C_{y}+K_{y} C_{x}+R_{y}\left(R_{P} \omega-D_{x}\right)-R_{x}\left(R_{P} \omega+D_{y}\right)\right]+\left(K_{x} K_{y}-R_{x} R_{y}\right)=0 \tag{5.19}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{T}}=\left(\frac{2 \mathrm{~K}_{\mathrm{T}}}{\mathrm{~L}}\right)^{2} \\
& \mathrm{R}_{\mathrm{P}}=\left(\frac{2 \mathrm{~K}_{\mathrm{P}}}{\mathrm{~L}}\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{T}}=\mathrm{MK}_{\mathrm{T}}^{2} \\
& \mathrm{I}_{\mathrm{P}}=\mathrm{MK}_{\mathrm{P}}^{2} \\
& \overline{\mathrm{~K}}_{\mathrm{X}}=\frac{2 \mathrm{~K}_{\mathrm{x}}}{\mathrm{M}} \\
& \overline{\mathrm{C}}_{\mathrm{X}}=\frac{2 \mathrm{C}_{\mathrm{x}}}{\mathrm{M}}
\end{aligned}
$$

etc.
5.04 Computer Program to Find Stability of Symmetric System (STABIL4)

This program uses equations (5.18) and (5.19) for the stability analysis of a symmetric bearing system. The cylindrical and conical modes are evaluated separately. The real part of the roots gives the damping or growth rate and the imaginary part, the natural frequency of the system. If the real part of the root is negative, then the system is stable; if positive, it is unstable, and if zero, the system is neutrally stable.

The input data to the program is as follows:
Card 1

1. N - Highest power of the polynomial (in this case, always 4)

Card 2

1. K_{x} - Stiffness in x -direction, $\mathrm{lb} / \mathrm{in}$.
2. K_{y} - Stiffness in y -direction, $\mathrm{lb} / \mathrm{in}$.

Card 3

1. C_{x} - Damping coefficient in x -direction, $\mathrm{lb}-\mathrm{sec} / \mathrm{in}$.
2. C_{y} - Damping coefficient in y-direction, lb-sec/in.

Card 4

1. R_{x} - Cross coupling stiffness in x-direction, $\mathrm{lb} / \mathrm{in}$.
2. R_{y} - Cross coupling stiffness in y -direction, $\mathrm{lb} / \mathrm{in}$.

Card 5

1. D_{x} - Cross coupling damping coefficient in x -direction, lb -sec/in.
2. D_{y} - Cross coupling damping coefficient in y -direction, $\mathrm{lb}-\mathrm{sec} / \mathrm{in}$.

Card 6

1. L-Length between bearings, in.

Card 7

1. W - Weight of the rotor, lb

Card 8

1. I_{P} - Polar moment of inertia of the rotor, $\mathrm{lb}-\mathrm{sec} / \mathrm{in}^{2}$
2. I_{T} - Transverse moment of inertia of the rotor, $\mathrm{lb}-\mathrm{sec} / \mathrm{in} .{ }^{2}$

Card 9

1. OMEGA - Angular speed of the rotor, rps

For the first case, card 1 should be included, and for each additional cases cards 2 though 9 must be punched with proper data.

The data cards are in free field format. A comma should separate all data entries. A comma is required after the last data entry.

The output data is as follows:
Cylindrical mode:

1. The coefficients of the polynomial in ascending power
2. Column 1 - Real part of the roots

Column 2 - Imaginary part of the roots (cylindrical natural frequencies)
Conical mode:

1. The coefficients of the polynomial in ascending power
2. Column 1 - Real part of the roots

Column 2 - Imaginary part of the roots (conical natural frequencies)
The heading printout is as follows:
Line $1-K_{x}, K_{y}, R_{x}, R_{y}$
Line $2-C_{x}, C_{y}, D_{x}, D_{y}$
Line $3-I_{P}, I_{T}, L, W$
Line 4 - Speed, rps

PART VI

CONCLUSIONS AND SCOPE

1. The equations of motion that have been presented here consider 13 degrees of freedom, taking into account the axial movement of the system and the eight degrees of freedom for the two bearing housings. Equations (2.25) to (2.38) represent the generalized system equations of motion. The steady state analysis in this report assumes a constant angular speed and rigid housing. For preliminary design analysis of a rigid body rotor bearing system, the curves shown in figures 23 to 30 (pp. 55 to 62) are useful in finding the critical speeds for certain bearing characteristics.

Figures 7 to 16 can then be used for investigating the amplitudes, phase angles, and force transmitted for the speed range in which the rotor is expected to operate.
2. The analysis does not consider any particular type of bearing, but the equations of motion can be applied to any type of rotor-bearing system. In order to investigate the steady state and transient behavior of the rotor, the Reynold's equation must be included and solved to obtain the pressure distribution and the radial and tangential forces in order to find the bearing characteristics. These can be utilized to solve the steady state and transient equations for the system.
3. The assumption of a rigid bearing housing can be discarded, retaining the assumptions of small amplitude and constant rotor speed. This results in twleve coupled linearized second order equations. The axial motion equation, being uncoupled from the rest of the system equation, can be solved independently. These twelve equations can be used to investigate the effect of the flexible housing on the entire system.
4. The twelve linearized equations of motion can be further investigated in order to find the threshold of stability by applying Routh's criteria. By varying the various bearing parameters, the threshold of stability can be obtained and the optimum bearing characteristics for stable operation of the system determined.
5. The nonlinear equations of motion can be further analyzed to obtain the timetransient solution by numerical integration. Being time consuming, this may be applied only in particular critical situations. This orbital analysis will further supplement the threshold of stability analysis as indicated previously. The possibility of obtaining time-transient solution by numerical integration may further be extended to observe the effects of shock loading on the system.
6. Figures 20 and 21 show the transmissibility and force transmitted against frequency ratio curves for a single degree of freedom system. These curves are useful
for finding the optimum damping values if the rotor is expected to operate over a wide speed range. These curves give an approximate idea of the rotor-bearing behavior if, by making simplifying assumptions, the system is reduced to a single degree freedom. In order to get more accurate data for the opimization of damping values, the program ROTOR4P could be extended to plot similar curves.
7. The plots of phase angle between response and excitation show that they may exceed 180°. This differs from the results of simplified analyses. These phase angle plots may be used to predict whether a system will go unstable in a cylindrical or conical mode.
8. The derived equations of motion can be utilized to investigate further the effect of gyroscopic forces on the system.
9. The analysis and design data presented in this report are applicable to a general RIGID-BODY rotor bearing system. However, they can be extended to a flexible rotorbearing system as indicated by Poritsky in his simplified analysis in reference 7.

RE FERENCES

1. Goldstein, Herbert: Classical Mechanics, Addison-Wesley Publishing Company, Inc., April 1965.
2. Gunter, Edgar J., Jr.: Dynamic Stability of Rotor-Bearing Systems. NASA SP-113, 1966.
3. Gunter, Edgar J., Jr., Choudhury, P. De; Kirk, R. G.: Dynamics of Rotors Supported on Tilting Pad Gas Bearings - System Resonance Frequencies. Proposed paper for ASLE Lubrication Conf., Houston, Texas, Oct. 1969.
4. Routh, E.J.: Advanced Rigid Dynamics, Macmillan and Co., 1892.
5. Tondl, A.: Some Problems of Rotor Dynamics, Chapman \& Hall, London, 1965.
6. Timoshenko, S.: Vibration Problems in Engineering, D. Van Nostrand Co., 1965.
7. Poritsky, H.: Rotor-Bearing Dynamics Design Technology. Part II - Rotor Stability Theory. Air Force Aeropropulsion Laboratory. TR-65-45, Part II, May 1965.

APPENDIX A

A-01 DERIVATION OF KINETIC ENERGY OF ROTATION OF ROTOR

Consider x, y and z the fixed reference frame. If we assume that the rotor undergoes small angular displacements α_{1} in the $x-z$ plane and α_{2} in the $y-z$ plane, then in order to arrive at the kinetic energy of rotation of the rigid rotor, it is necessary to express the resultant angular velocity fixed in the body. Let \vec{n}_{x}, \vec{n}_{y}, and \vec{n}_{z} be the unit vectors in the direction of the fixed reference frame as shown in figure 32 . In this figure the final configuration of the rotor is shown. To arrive at the expression for

Figure 32. - Fixed reference frame.
angular velocity vector with reference to the axes fixed in the body, consider three angular rotations, one at a time.

Figure 33(a) shows the first rotation α_{1} in the $x-z$ plane and figure 33(b) shows the second rotation α_{2} in the $y-z$ plane. Then the rotor is rotated about its axis by an angle α_{3}.

The angular velocity vector with respect to the body axes will have three components along $\vec{n}_{y}^{\prime \prime}, \vec{n}_{x}^{\prime \prime}$, and $\vec{n}_{z}^{\prime \prime}$. Now

$$
\begin{equation*}
\vec{\Omega}=-\dot{\alpha}_{2} \vec{n}_{x}^{\prime}+\dot{\alpha}_{1} \vec{n}_{y}+\dot{\alpha}_{3} \overrightarrow{n_{z}^{\prime \prime}} \tag{A-1}
\end{equation*}
$$

From figure 33(c)

$$
\begin{equation*}
\overrightarrow{\mathrm{n}}_{\mathrm{x}}^{\prime}+\overrightarrow{\mathrm{n}}_{\mathrm{x}}^{\prime \prime} \cos \alpha_{3}-\overrightarrow{\mathrm{n}}_{\mathrm{y}}^{\prime \prime} \sin \alpha_{3} \tag{A-2}
\end{equation*}
$$

From figure 33(b)

(a)

(b)

(c)

Figure 33. - Rotations from fixed reference frame.

$$
\begin{equation*}
\overrightarrow{\mathrm{n}}_{\mathrm{y}}=\overrightarrow{\mathrm{n}}_{\mathrm{y}}^{\prime} \cos \alpha_{2}+\overrightarrow{\mathrm{n}}_{\mathrm{z}}^{\prime \prime} \sin \alpha_{2} \tag{A-3}
\end{equation*}
$$

From fig. 33(c)

$$
\begin{equation*}
\vec{n}_{y}^{\prime}=\vec{n}_{\mathrm{y}}^{\prime \prime} \cos \alpha_{3}+\vec{n}_{x}^{\prime \prime} \sin \alpha_{3} \tag{A-4}
\end{equation*}
$$

Substituting equation (A-4) in (A-3) we obtain:

$$
\begin{equation*}
\vec{n}_{y}=\vec{n}_{x}^{\prime \prime} \sin \alpha_{3} \cos \alpha_{2}+\vec{n}_{y}^{\prime \prime} \cos \alpha_{2} \cos \alpha_{3}+\vec{n}_{z}^{\prime \prime} \sin \alpha_{2} \tag{A-5}
\end{equation*}
$$

Substituting (A-2) and (A-5) in equation (A-1) we obtain the angular velocity vector fixed with the body
$\Omega=\vec{n}_{x}^{\prime \prime}\left[-\dot{\alpha}_{2} \cos \alpha_{3}+\dot{\alpha}_{1} \sin \alpha_{3} \cos \alpha_{2}\right]+\vec{n}_{y}^{\prime \prime}\left[\dot{\alpha}_{2} \sin \alpha_{3}+\dot{\alpha}_{1} \cos \alpha_{3} \cos \alpha_{2}\right]$

$$
\begin{equation*}
+\vec{n}_{z}^{\prime \prime}\left[\dot{\alpha}_{1} \sin \alpha_{2} \cos \alpha_{2}+\dot{\alpha}_{3}\right] \tag{A-6}
\end{equation*}
$$

Since α_{1}, α_{2} and α_{3} are assumed small, equation (A-6) can be written as

$$
\begin{equation*}
\vec{\Omega}=-\dot{\alpha}_{2} \vec{n}_{x}^{\prime \prime}+\dot{\alpha}_{1} \cos \alpha_{2} \vec{n}_{y}^{\prime \prime}+\left(\dot{\alpha}_{1} \sin \alpha_{2}+\dot{\alpha}_{3}\right) \vec{n}_{z}^{\prime \prime} \tag{A-7}
\end{equation*}
$$

The kinetic energy of rotation of the rotor is given by:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{R}}=\frac{1}{2} \mathrm{I}_{\mathrm{x}}^{\prime \prime} \omega_{\mathrm{x}}^{\prime \prime 2}+\frac{1}{2} \mathrm{I}_{\mathrm{y}}^{\prime \prime} \omega_{\mathrm{y}}^{\prime \prime 2}+\frac{1}{2} I_{\mathrm{z}}^{\prime \prime} \omega_{\mathrm{z}}^{\prime \prime 2} \tag{A-8}
\end{equation*}
$$

From (A-7)

$$
\begin{gathered}
\omega_{\mathrm{x}}^{\prime \prime}=-\dot{\alpha}_{2} \\
\omega_{\mathrm{y}}^{\prime \prime}=\dot{\alpha}_{1} \cos \alpha_{2} \\
\omega_{\mathrm{z}}^{\prime \prime}=\dot{\alpha}_{1} \sin \alpha_{2}+\dot{\alpha}_{3}
\end{gathered}
$$

For a rotor

$$
\begin{gather*}
\mathrm{I}_{\mathrm{x}}^{\prime \prime}+\mathrm{I}_{\mathrm{y}}^{\prime \prime}=\mathrm{I}_{\mathrm{T}}=\text { Transverse moment of inertia } \\
\mathrm{I}_{\mathrm{z}}^{\prime \prime}=\mathrm{I}_{\mathrm{P}}=\text { Polar moment of inertia of the rotor } \\
\therefore \mathrm{T}_{\mathrm{R}}=\frac{1}{2} \mathrm{I}_{\mathrm{T}}\left(\omega_{\mathrm{x}}^{\prime \prime{ }^{2}}+{\omega_{\mathrm{y}}^{\prime \prime}}^{\prime 2}\right)+\frac{1}{2} \mathrm{I}_{\mathrm{P}}{\omega_{\mathrm{z}}^{\prime \prime}}^{2} \\
=\frac{1}{2} \mathrm{I}_{\mathrm{T}}\left(\dot{\alpha}_{2}^{2}+\dot{\alpha}_{1}^{2} \cos ^{2} \alpha_{2}\right)+\frac{1}{2} \mathrm{I}_{\mathrm{P}}\left(\dot{\alpha}_{1} \sin \alpha_{2}+\dot{\alpha}_{3}\right)^{2} \tag{A-9}
\end{gather*}
$$

A. 02
Derivation of Kinetic Energy of Unbalance Masses

Figure 34. - Location of rotor unbalance masses.

The position vector of the first unbalance mass is given by

$$
\begin{align*}
\overrightarrow{\mathbf{P}}^{\delta \mathrm{M}_{1} / 0} & =\rho_{1}{\overrightarrow{n_{z}^{\prime \prime}}}^{\prime \prime}+\mathrm{R}_{1} \overrightarrow{\mathrm{e}}_{1} \\
& =\rho_{1}{\overrightarrow{n_{z}^{\prime \prime}}}_{\mathrm{z}}^{\prime \prime}+\mathrm{R}_{1}\left(\cos \alpha_{3}{\overrightarrow{n_{x}^{\prime \prime}}}_{x}^{\prime \prime}+\sin \alpha_{3} \overrightarrow{\mathrm{n}}_{y}^{\prime \prime}\right) \tag{A-10}
\end{align*}
$$

The velocity of $\delta \mathrm{M}_{1}$ is given by

$$
\begin{equation*}
\mathrm{R}_{\overrightarrow{\mathrm{V}}} \delta \mathrm{M}_{1} / 0=\mathrm{R}^{\prime} \frac{\delta \overrightarrow{\mathrm{P}}}{\delta \mathrm{t}}+\mathrm{R}_{\omega} \mathrm{R}^{\prime} \times \overrightarrow{\mathrm{P}}^{\delta \mathrm{M}_{1} / 0} \tag{A-11}
\end{equation*}
$$

From equation (A-7)

$$
\begin{align*}
R_{\omega^{\prime}} R^{\prime} & =-\dot{\alpha}_{2} \vec{n}_{x}^{\prime \prime}+\dot{\alpha}_{1} \cos \alpha_{2} \vec{n}_{y}^{\prime \prime \prime}+\left(\dot{\alpha}_{1} \sin \alpha_{2}+\dot{\alpha}_{3}\right) \vec{n}_{z}^{\prime \prime} \\
& \simeq-\alpha_{2} \vec{n}_{x}^{\prime \prime}+\alpha_{1}{\overrightarrow{n_{y}^{\prime \prime}}}_{y}^{\prime \prime}+\alpha_{3} \vec{n}_{z}^{\prime \prime} \tag{A-12}
\end{align*}
$$

$\therefore R_{\omega} R_{x}^{\prime} \vec{P}=\left|\begin{array}{ccc}\overrightarrow{n_{x}^{\prime \prime}} & \vec{n}_{y}^{\prime \prime} & \vec{n}_{z}^{\prime \prime} \\ -\dot{\alpha}_{2} & \dot{\alpha}_{1} & \dot{\alpha}_{3} \\ R_{1} \cos \alpha_{3} & R_{1} \sin \alpha_{3} & \rho_{1}\end{array}\right|$

$$
\begin{align*}
=\overrightarrow{\mathrm{n}}_{\mathrm{x}}^{\prime \prime}\left(\dot{\alpha}_{1} \rho_{1}-\dot{\alpha}_{3} R_{1} \sin \alpha_{3}\right)+ & \overrightarrow{\mathrm{n}}_{\mathrm{y}}^{\prime \prime}\left(\dot{\alpha}_{2} \rho_{1}+\dot{\alpha}_{3} R_{1} \cos \alpha_{3}\right) \\
& +\overrightarrow{\mathrm{n}}_{z}^{\prime \prime}\left(-\alpha_{2} R_{1} \sin \alpha_{3}-\alpha_{1} R_{1} \cos \alpha_{3}\right) \tag{A-13}
\end{align*}
$$

The total velocity of $\delta \mathrm{M}_{1}$ is, therefore, from equation (A-11),

$$
\begin{align*}
\mathrm{R}_{\mathrm{V}} \overrightarrow{\delta M}_{1} / 0=\left(\dot{x}_{m}+\rho_{1} \dot{\alpha}_{1}-\dot{\alpha}_{3} R_{1} \sin \alpha_{3}\right) \vec{n}_{x}^{\prime \prime} & +\left(\dot{y}_{m}+\rho_{1} \dot{\alpha}_{2}+R_{1} \dot{\alpha}_{3} \cos \alpha_{3}\right) \vec{n}_{y}^{\prime \prime} \\
& +\left(\dot{z}_{m}-\dot{\alpha}_{2} R_{1} \sin \alpha_{3}-\dot{\alpha}_{1} R_{1} \cos \alpha_{3}\right) n_{z}^{\prime \prime} \tag{A-14}
\end{align*}
$$

Assuming that the second unbalance mass is displaced from the first by a phase angle Φ, then the velocity of the second unbalance mass is given by:

$$
\begin{gather*}
\mathrm{R}^{\delta \mathrm{V}_{2} / 0}=\left[\dot{\mathrm{x}}_{\mathrm{m}}+\rho_{2} \dot{\alpha}_{1}-\dot{\alpha}_{3} \mathrm{R}_{2} \sin \left(\alpha_{3}+\Phi\right)\right] \overrightarrow{\mathrm{n}}_{x}^{\prime \prime}+\left[\dot{\mathrm{y}}_{m}+\rho_{2} \dot{\alpha}_{2}+\dot{\alpha}_{3} \mathrm{R}_{2} \cos \left(\alpha_{3}+\Phi\right)\right] \overrightarrow{\mathrm{n}}_{\mathrm{y}}^{\prime \prime} \\
+\left\{\dot{z}_{m}-R_{2}\left[\dot{\alpha}_{2} \sin \left(\alpha_{3}+\Phi\right)+\dot{\alpha}_{1} \cos \left(\alpha_{3}+\Phi\right)\right]\right\} \overrightarrow{\mathrm{n}}_{z}^{\prime \prime} \tag{A-15}
\end{gather*}
$$

The kinetic energy of the unbalance masses is then given by:

$$
\begin{align*}
T_{\mathrm{U}}= & \frac{1}{2} \delta \mathrm{M}_{1} \overrightarrow{\mathrm{~V}}^{\delta \mathrm{M}_{1}} \cdot \overrightarrow{\mathrm{~V}}^{\delta \mathrm{M}_{1}}+\frac{1}{2} \delta \mathrm{M}_{2} \overrightarrow{\mathrm{~V}}^{\delta \mathrm{M}_{2}} \cdot \overrightarrow{\mathrm{~V}}^{\delta \mathrm{M}_{2}} \\
= & \frac{1}{2} \delta \mathrm{M}_{1}\left[\left(\dot{\mathrm{x}}_{\mathrm{m}}+\rho_{1} \dot{\alpha}_{1}-\alpha_{3} \mathrm{R}_{1} \sin \alpha_{3}\right)^{2}+\left(\dot{\mathrm{y}}_{\mathrm{m}}+\rho_{1} \dot{\alpha}_{2}+\mathrm{R}_{1} \dot{\alpha}_{3} \cos \alpha_{3}\right)^{2}\right. \\
& \left.+\left(\dot{z}_{m}-\dot{\alpha}_{2} \mathrm{R}_{1} \sin \alpha_{3}-\dot{\alpha}_{1} \mathrm{R}_{1} \cos \alpha_{3}\right)^{2}\right] \\
& +\frac{1}{2} \delta \mathrm{M}_{2}\left(\left[\dot{\mathrm{x}}_{\mathrm{m}}+\rho_{2} \dot{\alpha}_{1}-\dot{\alpha}_{3} \mathrm{R}_{2} \sin \left(\alpha_{3}+\Phi\right)\right]^{2}+\left[\dot{\mathrm{y}}_{\mathrm{m}}+\rho_{2} \dot{\alpha}_{2}+\alpha_{3} \mathrm{R}_{2} \cos \left(\alpha_{3}+\Phi\right)\right]^{2}\right. \\
& \left.+\left\{\dot{z}_{m}-\mathrm{R}_{2}\left[\dot{\alpha}_{2} \sin \left(\alpha_{3}+\Phi\right)+\dot{\alpha}_{1} \cos \left(\alpha_{3}+\Phi\right)\right]\right\}^{2}\right) \tag{A-16}
\end{align*}
$$

The kinetic energy of unbalance can be written in more general form with unbalance masses as:

$$
\begin{gather*}
\mathrm{T}_{\mathrm{U}}=\frac{1}{2} \sum_{\mathrm{i}=1}^{\mathrm{N}} \delta \mathrm{M}_{\mathrm{i}}\left\{\left[\dot{\mathrm{x}}_{\mathrm{m}}+\rho_{\mathrm{i}} \dot{\alpha}_{1}-\dot{\alpha}_{3} \mathrm{R}_{\mathrm{i}} \sin \left(\alpha_{3}+\Phi_{\mathrm{i}}\right)\right]^{2}+\left[\dot{\mathrm{Y}}_{\mathrm{m}}+\rho_{\mathrm{i}} \dot{\alpha}_{2}+\mathrm{R}_{\mathrm{i}} \dot{\alpha}_{3} \cos \left(\alpha_{3}+\Phi_{\mathrm{i}}\right)\right]^{2}\right\} \\
+ \tag{A-17}\\
+\left[\dot{\mathrm{z}}_{\mathrm{m}}-\dot{\alpha}_{2} \mathrm{R}_{\mathrm{i}} \sin \left(\alpha_{3}+\Phi_{\mathrm{i}}\right)-\dot{\alpha}_{1} \mathrm{R}_{\mathrm{i}} \cos \left(\alpha_{3}+\Phi\right)\right]^{2}
\end{gather*}
$$

The phase angles Φ_{i}^{\prime} 's are measured with respect to the first unbalance mass; hence, $\Phi_{1}=0$.

APPENDIX B

LISTING AND SAMPLE OUTPUT OF COMPUTER PROGRAM ROTOR4P

PLOT PACKAGE

```
COMMENT THE DRC CALCOMP PACKAGE HAS BEEN INSERTED AT THIS PMINT;
ALPHA FILE OUT PLOTTER ? ( 1, 376, SAVE 1 )'
FILE OUT SP! 11(1,10);
PROCEDURE SYMROL(XO, YO, HGT, HCD, THETA, NJ;
VALUE XO, YO, HGT, THETA, N;
INTEGER N; ALPHA ARRAY BCD[O];
REAL XO, YO, HGT, THE゙TA; FORWARD;
INTEGER ARRAY PLOTARREYA[0: 502],PLOTA'KREYA1, PLOTARREYAR[0:8];
INTEGER ARRAY SYMRULARREYA[0:112], SYMBOLARREYB[-15:63];
ALPHA ARRAY PLOTTERBCDEF[0:3];
PROCEDURE PLOT(X,Y,IC) ;
VALUE IC; BEGIN REAL X,Y ; INTEGER IC;
PROCEDURE TALK;
BEGIN
    ARFAY MESS[0:10]; INTEGER ILK;
        FILL MESS[*] WITH "ODERATOR, SET PLOTTER TAPE TO LOW DENSITY AND PU
RGE.
        WRITF(SPD.7,MESS[*]);
END;
DEFINE M = 498 * : CDMMENT M+2 MUST HE A MULTIPLF OF 4;
COMMENT UPPER BOUND FUP PLDTAKREYA MUST BE AT LEAST M+1;
CUMMENT BUFFEN SIZE MUST BE AT LEAST }3\times(M+2)/4+1
LABEL
    AUS, FINSH, UN, LI, FIRST;
    A = PLITARKEYA #,
    A1 = PLOTARKEYA1 *,
    A? = PLUTARKEYA? *;
DEFINE BLKNU = PLITTERBCDEE #;
        arRay a[0]; TNTEGER N;
        BEGIN
INTEGER I.J:
    BFGIN
    A[I&I+1] & A[J+1].[12:12] & A[J][1:13:35]:J&J+1;
    A[I&I+1] & ALJ+1].[12:24] & A[J][1:25:23]: J & J + 1;
    A[I<I+1]*A[J+1]&A[J][1:37:11]; J*J+?
    END
    END OF PACK:
OWN BOULEAN
    FIXED, NUTAPE, BOOL, PEN;
OWN INTEGER I, NPX, NPY, RA, T, BUF;
TWN REAL LENGTH, RECOKD;
INTEGER J,K,JJ,NX,NY,DX,OY,IX,IY,NR,NT,NC,III,IIP,NA,JJI ;
INTEGER SNPY, SNPX, ISEE;
DEFINE TAPECK =
    LENGTH & LENGTH + RECURD; NUTAPE & LENGTH > 900 *;
DEFINE
    NUBUFF =
    ZEGIN A[I] " "34* "; PACK (A. M+1);
    WRITE (PLOTTER, BUF, A[*]);
    TAPECK; STARTPLUT END * ;
DEFINE
    STARTPLOT =
    A[0] & "444444"; A[1] & "444433"; A[2] & "333332";
    I & # ;
    IF IC > 3 DR IC <-5 THEN GO TO AUS;
    ISEFF & IC;
```

```
    IFIC < -3 THEN IC & -3;
    IF NOT FIXED THEN
    BEGIN LABEL DUMMY;
FILL A1[*] WITH UCT50500000000,0CT50600000000,0CT50700000000
                                UCT605500000000,OCT60600000000,OCT60700000000
                                OCT70500000000,OCT70600000000,0CT707000000000;
FILL AC[*] WITH UCT50500,0CT50600,OCT50700,0CT60500,OCT60600,
                        OCT60700,DCT70500,OCT70600,OCT70700;
    NPX & NPY & O; BA & IF ISEE = -4 THEN O ELCE 1;
    LENGTH & 0; NUTAPE & FALSE; RECORD & (6x(M+1)/200+0.75)/1?;
                        BUF & 3 x (M+?) / 4 + 1; BOUL. & PEN & TRUE;
            FOJR I& 1 STEP 1 UNTIL 5 DO
        BEGIN
            WRITE (PLOTTER, BUF, A[*]);
            IF TIME(1) - T<.017 x BUF + 1 AND 1 > 2 THEN
        BEGIN
            CLDSE.(PLOTTEK,SAVE); I & 0;
TALK;
        END;
        T&TIME゙(1):
        END;
            G1) TO FINSH;
        END:
FIRST: FIXED & TRUE;
            IF IC = O THEN
        BEGIN
            X & NPX/100; Y & NPY/100; GO TIJ AUS
        ビNO;
            IF GUOL IHEN T& "006006";
            IF ARS(IC) = 2 THEN
        BEGIN
            IF NOT PEN THEN GO TO IN ;
            LF RUOL THENT& "000700&" ELSET & T + 1;
END
            ELSE IF AGS(IC) = 3 THEN
        BEGIN
            IF PEN THEN GU TO ON:
            IF ROOL THEN T& "OOSOOK" ELSE T & T - 1;
    END
        ELSE GO TU JN ;
        PEN & NOT PEN;
            A[I] * IF BOUL THENT + "G60060" ELSE T + "000660";
            HCIOL & TRUE;
            I +I + 1;
            J + IF AES(IC) = 2 IHEN 8 ELSE 2;
            FIJR K * 1'STEH 1 UNTIL JJ DO
        REGIN
            IF I > M THEN NUBUFF:
            A[I]*"666666"; I & I + 1;
            END ;
            T&"006005";
            I + 1-1;
            NX&100.0 XX; NY&100.0 X Y ;
            DX & NX - NDX ; DY & NY - NHY ;
            NPX & NX ; NPY & NY ;
            IF [DX \geq0 THEN
```

```
            IF [)X = O THEN IX & ELSE IX & ELSE IX & 0 ;
            IF DY \geq O THEN
            IF [iY = O THEN IY & IX + I ELSE IY & IX + 2 ELSE IY & IX;
            IF ARS(DX) \geq ABS(DY) THEN
        BEGIN
            NR & ABS(DY) ; NC*NT & ARS(DX) ;
            IX + IX + 1 ;
        END
            ELSE
        BEGIN
            NR & ARS(DX) ; NC & NT & ABS(DY) ;
        END ;
        NA & NT DIV ? ;
L.1:
    BFGIN
        NA & NA + NR ;
        IF NA\geq NT THEN
    REGIN
        IF FROUL THEV 1 & T + AI[IY]
        ELSE T + T + A?[IY] ;
        NA & NA - NT ;
    ENO
        ELSE
    BEGIN
        lf bOOL ThEV | * T + A{[IX]
    FLSS. T & T + A?「[X] ;
    END ;
    HUOL & NOT BMUL;
    IF POUL THEN
    BEGIN
    A[I]*T; : I & + 1 ;
    T*"006006";
    IF I > M THEN NUBUFF;
    END:
        NC & NC - 1 ;
    GU TO L1 ;
END:
    IF NUIAPE ANU ABS(IC) = 3 THEN
    BEGIN
        NUTAPE & FOLOE; LENGTH & O;
        SNPX & NPX; SNPY & NFY;
    PLIJT(0,0,-1);
            LICK (PLUTTEK, SAVE); BA & BA - 2;
            PLOT (0,0,-1); PLOT (SNPX/100, SNPY/100, 1);
    ENO;
            IF IC < O THFN
    BEGIN
            IF BOOL THEN 1 & I - I ELSE A[I] & T + "0OO660";
            1 + I + 1; NUBUFF;
            BUOL & TRUE ;
            NPX & NPY + 0;
            IFISEE> -5 THEN
        REGIN
```

FINSH:
$J J \in R A ; N A+D ;$

```
    FORK
    BEGIN
    J JJ MOD 10; JJ & JJ DIV 10;
    NA &NA+((4+JMOU 4) + (4 + JDIV 4) < 64) < 64 * K
    ENO;
    STARTPLOT; A[60] & A[2]; A[2] & A[2] = 9; A[3] & NA;
    A[4]&"133333"; A[5]&"334444"; A[59] & A[1];
    F\capR JJ & 6 STEP 1 UNTIL. SB DO A[JJ]& A[O];
    BA + BA + 1; I & 61; NUBUFF
    END;
    JF ISEE = - I ANO FIXED THEN
BEGIN
    BLKNU[O] & "START "; RLKNO[1] & "OF BLO";
    BLKNU[2] & "LK 000"; JJ & BA = 1;
    FORK & 0,1,? [0U
BEGIN
    J * JJ MOD 10; JJ * JJ DIV 10;
    GLKNO[2] & HLKNO[2] + J x 64 * K
END;
    SYMBOL (0.1,1.4,0.07. BLKNO. 270. 18);
    FLOT (1,0,-5)
ENO;
    IF NUT FIXED THEN GO TO FIRST;
    END;
AUS: END UF PLDT;
PKOCEDURE SYMEOL(XO, YO, HGT, GCD, THETA, N) ;
vALUF
INTEGER
REAL
    XO, YO, HGT, THETA,N:
    N;
    XO, YO, HGT, THFTA ;
ALPHA AKRAY bCO[O];
    BEGIN
INTEGER GINX, AC, W, OSC, AINX, I, MUVE;
REAL XA, YA, X, Y, XN, YN, ISTS;
OWN BOULEAN FIXEI); GOJLEAN L.P. MT;
DEFINE
    A = SYMBULARREYA #, B = SYMRULARREYE #;
LAHEL
    Y1, EL, EXIT, LDADB;
    IF NUT FIXED THEN
    FILL A[*] WITH OCT103044463717060, OCT1100000000000000,
    OCT103020271600000.0CT4000014454637170,OCT605000000000000.
    OCTO11030414334143,OCT445463717060000,OCTO70343333730204,
    OCTOOUODOOO2000000,OCTO11030414334040,OCT747000000000000,
    OCTO314344341301U0,UCT106173746000000.0CTO40747212000000,
    OCT344341301001031,OCT434454637170605,OCT1400000000000000,
    OCTO11030414637170,OCT604133344000000,OCT111514041412024,
    OCT232313534440400, OCT313313114144040, OCTO40000000000000,
    OCT0000000000UN000, DCT101121201070222, OCT 345463717060000,
    UCT111222?11170141,0CT525241400000000,OCTO24406000000000,
    OCTO141700644U2000,OCT212523034300000,0CT000343463717060,
    IOCT34340000 OOU0000,UCT040737464534040, OCTO304143344000000,
    OCT424130100106173.OCT746450000000000,0CTOOO737464130000.
    OCT470704340400400,0CT470704340400000,OCT433343413010010,
    DCT6173746450U9000,OCTOOO704444740000,OCT103070271737000,
    OCT102021111000000,OCT301017370000000,OCT362717060540314.
    OCT220100103140000,OCT301215370000000,OCT460442000000000.
```

DCT440415130400000, DCTO 4523054100000 , OCTO 11030414700000, OCT000703472540000, OCTOT0040000000000, OCTO00723474000000. OCTONOT404700U0000, OCT103041463770364,0CT770371706011000, ПCTOOO737464534040, OCT100106173746413, OCTO10702240000000, DCT000737464534043, UCT4434000U0000000,OCTO23243341405164, OCT626272003000000, OCT014523054123034, OCT323252100000000. OCTO34300000000000, UCT103235170000000, OCT102172121121702, ICT4251514240UDOOO, UCTO14170420446000,OCTOOOOO0000000000, OCTOO47000000U0000, OCTO11030414334140, OCT506173746000000, OCT20270747000 OOOO,OCT070110304147000,OCTO72047000000000, OCTOTOO24404700000, DCT004770074000000, OCTO72547252000000, OCTOT4724143424004,UCTOOOOOOOU0000000,OCT102122121121000, OCT004770160607171, UCT670413130404100, OCTO24635450535130, DCT343000000000000, OCTO24270044400000, OCT103037170000000, OCT141670363400000,DCTOO4044040004242,OCT200000000000000. ОСТ0044220440<2000, ОСТОО4000440444220, ОСТО04004440022000, OCT243443413019010,OCT314242200000000,OCT244220022422000. SCT2022442204<2000,OCT2?2422000000000,OCT240141242200000, OCT240242242022000, UCT443313041311001, OCT131403133220000. OCT1O3650046410702,OCT222000000000000,0CT024222202422000. UCTOO440440?2UNOOO, UCTON44?2?420?2044,OCTO2202422200n000 ;

IF NIST FIXED THEN

FILL B[*] WITH OCT30157,OCT12156,0CT14155,0CT22153, OCT 3? 151, OCT14150, OCT12147,OCTO6146,OCT14145,OCT14144,

 OCT12015.UCT40016, OCT 30021 , OCT34023,OCT22025.0CT32030, DCT25032.UCTO6034. OCT 14035, OCT12036, OCT24037,0CT30041, OCT?4043, UCT15045,OCT16046,OCT14047, OCT 30050 , OCT1405?, DCT14053,OCT12054, DCT10055,DCT 32.056 ,OCT10060,0CT06061,
 OCT10070,OCT34071,OCT16O73, חC 130074 , OCT24076, OCT26100, OCT26102, UCTO4104, OCT10175, OLT30106, OCT14110,OCT00111, OCTO4112, OCT3U113, OCT10115, OICT14116,OCT06117, OCT1212n,
 OCT12.132.0CT1U133,OCT1?.134;
Fixeif + TPUE;
$X A+(H G T / 7) \times$ CIS $(0.01745330754 \times$ THETA $) ;$
YA \& (HGi/7) \times SIN(U.O1745330754 \times THETA) ;
IF $\mathrm{N} \geq 0$ THEN
HEGTM
$X \in X_{0} ; \quad y * Y 0$
END ELSE.
BEGIN
IF N < -99 THEN
BEGIN
BINX $4-(N+1 \cup 0) ;$
$X \leftarrow X U-3 X X A+3.5 \times Y A ; Y$ \& YO - $3 \times X A$ - $3.5 \times Y A ;$

END
 ELSE

BEGIN
$X A \leftarrow 7 \times X A / 4 ; Y A+7 \times Y A / 4 ; \quad B I N X+N$;
$X+X U-2 X X A+2 X Y A ; \quad Y+Y O-2 X X A-2 X Y A ;$
END; PLOT (XU,YO,3); GO TO LOADB;
EvD;
FUR AC + 1 STEP 1 UNTIL N OO
BEGIN

IF $A C$ MOD $5=1$ THEN W $H B C D[(A C-1)$ DIV 6]. (12:36];
BINX \leftarrow W.[12: 6$] ; \quad W .[12: 30] \leqslant W .[18: 30] ;$
LP \& TRUE; M7 \& FALSE;

USC 4 B[EINX].[33:6]; AINX 4 B[BINX].[39:9]-1;
FOR $1 * 1$ STEP 1 UNTIL OSC VO BEGIN

IF I MDD $15=1$ THEN OSTS $\& A[A I N X \leftarrow A I N X+1] ;$
MOVE 4 USTS.[3:3]; USTS.[3:42] 4 OSTS.[6:42];
IF NOT BOOGEAN(I) THEN IF MT THEN GO TU EL ELSE GO TU YI;
$M 7+M O V E=7 ; \quad L P \leqslant L P$ OR M7:
$X N$ \& XA X MJVE; YN \& YA \times MOVE; GOTOEL;
Y1: $\quad X N \leftarrow X N=Y A X M O V E+X ; Y N \leftarrow Y N+X A X M \Pi V F+Y$;
PLDT(XN, YN, $2+\operatorname{REAL}(L P)) ; L P$ + FALSE;
EL:
END I LDMP;
IF $N<0$ THEN
BEGIN
PLIT (XO. YO. 3); GO TOEXIT
END:
$X \leftarrow X+6 \times X A ; Y \leftarrow Y+6 X Y A$
END ;
FXIT: END OF SYMBOL;

PROCEDURE	C(INVERT $(X, N$,	ALF1, ALF2);	
VALUE	$X, N ;$	INTEGER	$N ;$
ALPHA	ALF1, ALF2;	REAL	$X ;$

BEGIN
INTEGER A1, A2, INT, DF:
alpha stream procenure alt (p);
BEGIN
$D I * L D C A L F ; \quad S I * P ;$
US $\leftarrow 2$ LIT "OO"; $D S * 6 \mathrm{DLC}$
ENO:
$x+x+0.5 \times \operatorname{SIGN}(x) / 10 * N ;$
$\mathrm{A}_{1} \& I F \mathrm{X} \geq \dot{\mathrm{U}}$ THEN " $\mathrm{O}^{\prime \prime}$ ELSE " -0";
IF (INT \& ENTIER(ABS (X))) > 99999 THEN
BFGIN
ALF1 * "ILLEGA"; ALF' \leftarrow "LND."
END ELSE
HEGIN
$D F+A Z \leftarrow A L F(I N T) ;$
FOR DF + DF.[12:30] WHILE DF>0 DO A1.[12:30]+A1.[18:30];
DF \& ENTIER ((ABS (x) = INT) x (5);
$A L F 2+\cdots .00000 "+A L F(D F) ; A L F 1+A 2+A!$
E.NO

END DF CUNVERT;
PRIJCEDURE
value
REAL
DEFINE BCD = PLOTTEKRCDEE\#;
CONVERT (FLT, N, BCD[0], BCDL1]); IF $N<1$ THEN $N *-1$;
[F ACD[0] = "ILLEGA" THEN N $\leftarrow 4$;
SYMRUL (X, Y, HGT, BCD, THETA, $N+7$)
END OF NUMEER;

PROCEDURE AXIS (X,Y,BCD,NC,SIZE,THETA,YMIN,DY) ;
value
REAL

BEGIN

REAL
REAL INTEGER LAウEL
LADEL
$S G N, T H, C T H, S T H, X B, Y B, X A, Y A, X C, Y C, C H A R, A B S V, E X P P, A D Y, T N C ;$
XD. YD, DD; BIJDLEAN FINE, FLIP;
N, I, NT, NAC; ALPHA ARKAY ABCD[0:1];
L90, L91. L92, L503
SGN $\leftarrow I F N C=0$ THEN 1 ELSE SIGN(NC);
FINE \& SIZE < C; SIZE \& ABS(SIZE); NAC \& ABS(NC);
IF FLIP $~ B C U[0]<0$ THEN SGN $4-S G N$;
TH \& THETA $\times 0.017455 ; N+S I Z E ; \quad$ CTH $\& \operatorname{COS}(T H) ;$
$S T H \leftarrow S I N(T H) ; X B \leftarrow X ; Y B \leftarrow Y ;$
$X A \leftarrow X-0.1 \times \operatorname{SGN} \times S T H ; Y A \leftarrow Y+0.1 \times S G N \times C T H ;$
$1 \leqslant I F$ ABS(OY) <10 THEN ABS (UY)X@G ELSE ARS(DY);
FOR I \& I/10 WHILE I >10 DO;
DD \& IF I=8 UR I=4 THEN 4 ELSE 5;
PLOT (XA, YA, 3) ;
FUR I \& 1 STEP 1 UNTIL N DO
BEGIN
PLOT (XB, YB, ट) ; XC $+X B+C T H ; Y C * Y R+S T H ;$
IF FINE THEN FOR NT \leftarrow ? STEP 1 UNTIL UD DO
GEGIN
$X A \leftarrow X B+C T H / D D ; Y B \leftarrow Y R+S T H / D D ; \quad P L \Pi T(X R, Y R, 2):$
$X D \leftarrow X B-S G N \times S T H / 20 ; \quad Y D \leftarrow Y B+S G N \times C T H / 20 ;$
PLUT (XO, YD, Z); PLOT (XR, YB, 2)
ENO;
PL.OT (XC, YC, L) ; XA $\leftarrow X A+C T H ; Y A \& Y A+S T H ;$
PLOT $(X A, Y A, Z) ; X B \leftarrow X C ; Y B \leftarrow Y C$
ENO;
IF NC=0 THEN GO TO L50;
$A B S V \& A B S(D Y) ; E X P P \leftarrow 0 ;$
1F ABSV < 100.1 AND ARSV >0.00999
AND ARS (YMJN) < 10000 THEN GO TO L92;
L90: IF AbS (YMIN) < 10* (EXPP+3) AND ABSV < 0.9999 THEN
BEGIN
$A R S V * A 甘 S V \times 10 ; E X P P * E X P P-1 ; G D T \Pi L 90$
END;
L91: IF AESV > 10.0001 THEN
BEGIN
ARSV \& ABSV / 10; EXPP \& EXPP + 1; GO TO L91
END:
L92:
$X, Y, N C, S I Z E, T H E T A, Y \neq I N, D Y$;
REAL X, Y, SIZE, THETA, YMIN, DY; INTEGER NC;
ALPHA AKRAY BCD[D];
$A D Y * D Y \times 10 *(-E X P P) ;$
$A B S V+Y M I N \times 10 *(-E X P P)+N \times A O Y$;
$X C$ - (IF FLIP THEN =SGN/10 ELSE SGN/5) - 0.05;
$X A \bullet X S=X C \times S T H=0.53 \times C T H$;
$Y A \leftarrow Y E+X C \times C T H=0.53 \times S T H ; N+N+1$;
FOR I - 1 STEP 1 UNTIL N DO
BEGTN
NUMBFR(XA, YA, .1, ABSV, THETA, 3); ABSV $+A R S V=A D Y$;
$X A \& X A-C T H ; Y A \& Y A-S T H$
END ;
TNC $+N A C+7 ;$
$X C+S I Z E \times 0.5-0.06 \times$ TNC ;
$Y C \leftarrow(J F F$ GIP THEN SGN $\times 0.3$ ELSE $-S G N \times 0.4)+0.07 ;$

```
    XA & X + XC X CTH + YC X STH;
    YA & Y + XC X STH - YC X CTH;
    SYMROL(XA, YA, ,14, BCD, THETA, NAC) ;
    IF EXPP = O THEN GO TO L50;
    XC - (TNC - 5) x 0.12 ;
    XA & XA + XC XCTH;
    YA & YA + XC X STH ;
    ABCO[0] & "(10)";
    SYMBOL(XA, YA, .14, ABCD, THETA, 6);
    XA & XA + 0.18 × CTH - 0.07 × STH ;
    YA & YA + 0.18 × STH + 0.07 × CTH ;
    N|MEER (XA, YA, D.07, -EXPP,THETA, 0);
    XA & XA - 0.24 X CTH;
    YA & YA - 0.24 x STH;
    SYMEOL (XA, YA, 0.08, ABCO, THETA+45, -13);
L50: FND GF AXIS;
PROCEDURE LYNE(X, Y, N, K) ;
VALUE V, K ;
INTEGER iv:K ;
AKRAY X,Y[O] ;
    BEGTN
INTEGFR I, [3,NF,NL;
REAL PX, PY;
    I3*3;NF*NL&(N-1)XK+1;
    PLQT (PX,PY,0);
    IF (PX=X[.1])*2 + (PY-Y[1])*2 < (PX-X[NL])*2 +(PY-Y[NL])*2
                            THEN NF*1 FLSE
        AEGIN
            NL}\leftarrow1;K*-
        ENO;
                            FOR I & NF STEP K UNTIL NL DO
        REGIN
            PLOT (X[I], Y[I], I3); I3*2
        END
        ENU GIF LYNE;
PROCEOURE SCALFS (X,N,XMTN,DX,K) ;
VALUE N&XMIN,UX,K ;
REAL XMIN.UX ;
IMTEGER N.K ;
REAL. AKRAY X[0] ;
    REGIN
INTEGER [,NP ;
    NP & NXK;
    FOR I & 1 STEP k UNTIL NP DO
    X[I] * (X[I] -XMIN)/DX ;
    FND OF SCALES;
PRIICEDUKE חXDY(YMAX,YMIN,TDY) ;
VAIUE YMAX; REAL YMAX,YMIN.TDY;
    HEGIN
PEAL
inTEGEH
LABEL
    ;
    KFIN, CHUZ;
DEFINF
    BCD - PLOTTERRCDEE * ;
                            V & IF BCD[O] = TDY AND TDY # 0 THEN TDY ELSE 1;
```

```
    ADY & YMAX - YMIN ;
    K1 & 0; TDY & 1; IF ADY = U THEN
```

BEGIN
FILL ECD[*] WITH "DATA E", "RROR: ", "YMIN=Y", "MAX *;
SYMEOL (1, 2, 0.07, BCD, -90. 21); GITOFIN ;
FND;
IF YMIN $\neq 0$ TH:N
BEGIN
$K \in E N T I E R(2.0001-L N(A D Y / V) / L N(10)) ;$
$V \in 1+\operatorname{SIGN}(Y M I N) /$ a 4 ;

ADY \& YMAX - YIIN
END;
HHILE ADY < 1? OD
BEGIN
ADY \& $10 \times$ AUY; K1 $\& K 1-1$
END:
CHUZ: FAR TDY $410,15,20,25,40,50,80$ 00
IF AOY < $1.001 \times$ TUY THEN GO TO FIN;
ADY \& ADY / 10; K1 \& K1 + 1; GO TO CHUZ:
FIN:
$\begin{aligned} \text { POY } & \text { TDY } \times 10 * K 1\end{aligned}$
END OF DXDY;
PROCFOURE SCALE (X,N,S,YMIN:UY,K) ;
VALUE S,N,K ; IMTEGER N,K : REAL SOYMINoOY;
real arfay x[0];
REGIN
REAL YMAX ;
INTEGER I,NP ;
$\mathrm{NH}+\mathrm{Ni} \times \mathrm{K}$;
YMAX $\leftarrow X[1]$;
YMIN $\leftarrow X[1]$;
FUR I +2 STEF K UNTIL NP DO
REGIN
IF YMAX < X[I] T-EN
YMAX \& X[J] ,
[F X[I] < YYTiN TIEN
YMIN $\leftarrow X[I]$;
END ;
IF S = 0 THEN $\leq \leftarrow 1$;
PIOTTERECDEE[0] \leftarrow DY $\leftarrow 10 / \mathrm{S}$;
UXUY (DY X (YMA, - YMIN) + YMIN. YMIN, DY);
DY \& DY/10.0;
FOR I $\leftarrow 1$ STEP K UNTIL NP DO
$X[I] *(X[I]-Y * I N) / D Y$;
END OF SCALE;

PROCEDU	PRICEDURE DASHLINE $\left(X, Y, N 1,{ }^{\prime}\right)$;			
VALUE N	; INTEGER	N1, K	;	
REAL AR	$X, Y[0]$;			
BEGIN				
INTEGER	I, NP, M, ${ }^{\text {N }}$			
REAL	PEN, XN, YN, ADX,ADY, DX, DY, DLTX, OLTY			
LABELL1 ;				
	$M \in 20$;			

```
    NP + N1 x K;
    XN & X[1] ; YN&Y[1] ;
    PLOT(XN,YN,3) ;
    FOR I & 2 STEP K UNTIL NP DO
    BEGIN
        DX & X[I] - XN ;
        DY & Y[I] - YN :
        ADX & ABS(DX) ; ADY & ABS(חY) ;
        IF ADX > ADY THE:
        BEGIN
            DLTX&SIGN(OX) × 0.01;
            DLTY & 0.01 × DY/ADX;
            N & ADX X 100.0;
        ENU
            ELSE
        BEGIN
            DLTY & SIGN(DY) }\times0.01
            DLTX*0.01 x DX/AIJY;
            N & ADY x 100.0
        ENU ;
            IF M S N THEN
        BEGIN
            PLDT(XN & XV + M X DLTX,YN & YN + M X DLTY,PEN);
            N+N-M;
            IF PEN = 3 THEN
    BEGIN
            M&20;
    END
            ELSE
    BEGTN
        M&10;
            PEN & 3;
    END;
            GO TO L1;
    END
            ELSE
    BEGIN
        PL\capT(XN & XN + N X LLTX,YN & YN + N X OLTY,PEN);
        M&M - N ;
    EVD;
    END;
        PLOT(XN,YN,2) ;
    END UF DASHLJNE;
PKOCFDURE NAMELINE(X,Y,N,K,A,T,DASH) ;
VALUE N,K,T ; INTEGER N,K,T ;
RtAL ARRAY X.Y[0];
ALPHA AKRAY A[0] ;
ROOLEAN DASH;
                        BEGIN
INTEGER TI,NI,I,J,ND ;
REAL TH,XM,YM,MX,DX,DY,S,YI ;
REAL ARRAY XI,YI[0:N DIV ? + 2] ;
    N1&NDIV 2;
    N P \& N \times K ;
```

```
    1&(N1-1) < K + 1 ;
    IF DASH THEN
    DASHLINE(X,Y,I,K)
    ELSE
    LYNE(X,Y,I,K);
    DX + X[I + K] - X[I - K] ;
    DY & Y[I + K] - Y[I = K] ;
    IF DX = O THEN
    TH & 1.5707963
    ELSE
    TH + ARCTAN(DY/DX) ;
    IF T \geq D THEN
BEGIN
    T] &TDIV ? ; % + (DX X Y[I] = DY X X[I]
                        + X[I-K] X Y[I+K] - X[I+K] X Y[I-K]));
            S & LF S = 0 THEN 0.14 ELSF 0.05 + S x 0.09;
    XM & S NSIN(TH) = 0.0857 x T1 \times CUS(TH) + X[I] ;
    YM + -S 人 CDS(TH)=0.0857\timesT1 < SIN(TH) + Y[J];
    TH}\leftarrow57.2959125\timesTH ;
    SYMEOL(XM,YM,U.10,A,TH,T);
END
    ELSE
    SYMBOL(X[I],Y[I],0.10,A,TH,T);
    J * O ;
    FOR I & I STEP K UNTIL NP DO
REGIN
    J +J + 1 ;
    XI[J]*X[I]; YI[J]*Y[I];
END:
    IF DASH THEN
    0)ASHLINE(X1,Y1,J,K)
    ElSE
    LYNE(XI,Y1,J,K);
    END OF NAMELINE;
```

 THERE ARE 595 CARDS IN THE DECK
 E 10, 1968. TUTAL FLAFSED TIME IS 63 SECONDS.
 PROCESSOR TIME IS 10 SECONDS. I/0
    ```
KEAL WW, WO , OW,WM, L., LI, LC, W, IP , IT , WMJ, WM2, H1 ,
H2 , FH, Hi , K2, KqX, K2X, K1Y , K2Y, C1X, C2X, C1Y, C2Y,
    U1X, U2X, DYY , DPY , KIX, K\X, RIY, H2Y, G, PI, M, DM1 , DM2,
    HPR, KTT, KP, RT, LII, L2`, KOI, KO2 , PHI, FPS, RAD,
```



```
    K1YY, RZYY, DIXX , D2XX, DIYY , ח2YY , PN1, P01 , SI , PN?, PDZ,
    SIT, HR, CC, DO, EL, PXI, PX2, PYI, PY2, HAI, PA?, ,
    FFX , &FY, E ;
INILGER P,N, I , KL , J , K ;
KEAL AIRAY IJMEGA, S, SS, XX1, XX2, YYM, YYZ, SIX1, SIX2 ,RPM,
    SIY1, SJY2, SIAI, SIMP, ALFA1, ALFAZ, FX1, HX2, PFX2, FY1,
    FY'<, PFY?, PUKFX1, PIMFXP?, P!13FY1, PIJBFY?[0:?U0],LZ[0:4],
        XL,YL, PXL, RYILU:200,0:4], 4[0:8,0:8], C,X[0:8],
HFX1 , rFY1L0:2001 ;
LAutL LiUG, FIFIS , E1 , F.P , LIOU1 ;
GUULEAN KSW ;
KFAL XMIN,|X,YMIN,UY ; TNTEGER WP,T, E, U, F,OQ,RN,GK ;
ALPHA ARRAY ALPHA?, AIPHA4, \triangleLPHAS,ALPHAG,ALPHA7,ALG11,ALH13,ALB21.ALBP3,
```



```
[0:b];
PRULEDURF INTFRP(XI, XF,H,Y,X, BFTA,EHSTLON,M,INW,LLABEL) ;VALUE XO, XF, H, X,
```



``` [6J;LAKEI I LABEL;REGTA INTFGER N,I,J,K;REAL JT, J,TEMP;LABEL NFIR,LI,NBAK
```



``` \(F\) M>N THFN \(H \in N ; U 1 \leftarrow(X F+X U) / ? .0 ; K+1\); IF \(X<(H 1-5 X H)\) THEN GO TO NFOR EISE IF \((X\)
```



``` LAStL LLABEL, EXJ;
\(K \leftarrow 2:\) FOR J \(\leftarrow 1\) STEF \(\quad\) UNTILN-S UOREGIN \(K \leftarrow K=1\);
```



```
\(w \leftarrow(X[J+5]-X[J]) / 5 ;\)
FIK XL \(\in\) X「JT + H/GK STEP W/GK UNTIL X[J+5] DC FEG[N
```

```
INiERP(X[J],X[J+5], w -UY,Xl,FALSF,N-5,5,INW,L.LAREL);
RY[K] & INw ; RX[K] & X1; K & K+1; END; END; RN & K-1: GD TO EXO;
LLAGEL : NRITE(LP.<"(IUTSJDt KANGF">); EX[I: FND OF GETTUM;
PRUCFDIIRE ALINE (X,Y,N,YMTN,OY,K,O,QQ); VALUE N; TNTEGER N,K,Q,QO;
HEAL YMINI,IY: REAI. ARHAY X,Y[O];
BEIIN INTEGFRR I,J,RN ; REAL ARMAY R,KX,RY[0:40J];
ALPrA AFSRAY YCO[O:\];
IF UQ=1 THFN SCALES(Y,N,YMIN,DY,K) ELSE SCALE(Y,N,G,YMIN,DY,K);
IF \QK }\not=1\mathrm{ THEN HEGIN
FOR I + 1 STFP 1 UNTIL N DIJ R[I] & X[I] ; GETTMM(RY,RX ,RN,R,Y,N,GK);
IF UQ = 1 THEN FGR & 1 STEP 1 UNTLL RN DO RFGIN IF RY{I] > 6 THEN RY[I
J & ELSF [F RYTI] < O THEN KY[I] & 0 E END;LYNE(RX,RY,RN,K);
FGK I & STEP I |NTIL. 5 DO BEGIN J & ENTIEK(IX(RN/5))% IF RY[J] < 5.8
ANi) RY[J]> , T THEN SYMBML(KX[J],RY{J],.12,BCD,O,R); END;ENO ELSE HEGIN
IFGQ = 1 THF:N FOR I & STEP 1 UNTII. N [O HEGIN IF Y[I] > O THEN YPI
] & ELSF: IF Y[I] < 0 THE|V Y[1]& 0 ; END;LYNE( X, Y,N,K);
\becauseUR [ & &TEP 1 UNTTL 5 DO BEGIN J & ENTIFG(IX( N/5)); IF Y[J] < 5.8
ANU Y[J] > .? THEN SYMBUL(X[J],Y[J],.12,HCD,O,O); ENU;
&゙いい;
EN| IFF AIINL ;
PRUGE{HHF \GRID(NY,NT,F1,F?,F3,F4,ALAN{,ALHN3);
|Nftif!? NY,ivT ;
RCNLFT,F?,F3,F4;
ALPHA AKRAY Al.BN1,AI.HN3[O];
}匕|IN KFAL XIT;
AXIS(0,0,AI_3N1,NY,-K,Y!),YAIN,1)Y); AXIS(1),0,ALPPHP, - 15,-8,0,XMIN,DX);
```



```
PLUT(0.0.25.2);PLOT(.0.0.05.3);
```



```
XUT*4-(NTx.1)
If H=, THEM Etकित
```



```
ENS UF AGRTU :
PrUCEDUKE (iUFLITTTFK (Wm): REAI. ARKAY WN [0]:
BFGIN LAMEL GETUUT, GUAGIINOLRAWI,URAN?,URAWG,NRAWL,DRAWSODRAWG,
DrAN7 ; I.ITFGFF A.E,C ;
HEAU(C?,1,NP);[F WP=0 THE:i (G!! TO GETUU1; PLOT(?.0,-4);PLOT(2,1.5.-5)
; F[LL_ALPHA?[*] WITH "FRENUE","NCY [R","PM] "; FILL ALPHA4[*] NITH
"CAjEN","|. = ";
KEA!) (CH./.A,GK);
SCALE (WW,I,H,XN[N,OX,1): FIRRT & 1 STEP I UNTIL WP DO BEGIN
KE.4U (CH,/,A,C,D,F,F,YMIN,OY,QQ);
IF B=1 YHEN GD TO DKAWq. F.LSE IF H=2 THEN GO TO DRAW2 ELSE
IF B = 3 THENM GO TU ORAW3 ELSE IF H = 4 THEN GO TO DRAW4 ELSE
IF B = S THEN {\ IU ORAWS ELSE IF B = 6 THEN GO TO URAWG ELSE
IF S = 7 THEN GU TO DRAW7 ;
GRMN1 : HEGTN
    FIILL ALRIIT*J WITH "BEARIN","G AMPL","ITUDE ";
    FILL ALB1.3r*] WITH "BEARIN","G AMPL","ITIDEE",
" VS. ","FR&MUE", "NATr
    ";
IF C = i THE N MEGIN
    ALINE(WW,XX1, I, YMTN.DY:1,-9,0日); QQ&1: END;
```

```
IF 0 = 1 THEN BEGIN
    ALINE(WW,YY1, I, YMJN,DY,1,-11,00); QN&1 ; END:
IF E = I THEN BHGIN
    ALINE(WW,XX?; I, YMTN,UY,1,-13,QO); QQ & 1 ; ENO;
IF F = 1 THEN ALINE(Wh,YYZ, I,YMIN,DY,1,-15,QN);
A(GIID(17,33,A,U,0,0,ALH11,ALR13); PLOT(10,0,-4); FLUT(2,0,-5); ENL;
3ll líGUAGTN;
ifANC : REGTM
FILL ALB2I[*] NITH "मEAKIN","G PHAS","E ANGL","E ";
```



```
;
IF C = 1 THEN BEGIN
ALINE(WIN,SIXI,I,YMIN•LY,1,OY ,OQ):OQ& 1: END;
IF D = 1 THEN HEGIN
ALIVE(WW.SIY1,I,YMIN,UY,I,-11,OQ); 0Q&1; END;
    IFE=1. THEN BEGIN
ALINE(NW,SIX?,I,YMINOUY,1,-13,N(N): OQ&1 ; FND;
IF F = 1 1HF_N ALINE(WW,SIYR, I,YMIN,I)Y,1,-15,QQ);
AGKID(19,32,A,0,0,O,ALB21,ALBZ3); PI_OT(10,0,-4); PLOT(2,0,-5); ENO;
GU 10 GOAGIN;
UNAW3 : BEGIN
Fill alb31[*] WITH "ANGUI.A","R AMDL"."ItUUE ";
fILL ALb33r*] WITH "ANG|LA","H AMPI","ITUUE ","VS. FR","EQUENC","Y "
;
IF C = 1 THEN REGIN
    ALINE(WW,ALFA1, I, YMIN,DY,1,OQ ,OQY; NG&1 ; ENU:
IF U = 1 THEN ALINE(WW,ALFAZ, I,YMIN,DY-1,-11,QQ);
AGR1D(17,31,A,0,0,0,ALB31,ALB33); PLOT(10,0,-4); Pl_UT(2,0,-5); ENU;
ù TO GUAGIN: DFAW4: BEGIN
FItL ALE41「*] wITH "AivG. P","HASE A","NGLL ";
FILL ALG4S「*] NITH "ANG. P","HASE A","NGLE V","S. FKE","OUENCY";
IF C = 1 THEN BEGTN
    ALINE(WN,SIA1, I, YMIN,OY,1,-9 00U); QQ & 1 ; ENU;
IF U = 1 THEN ALINE(WW,SIAP, I,YMJN,NY,1,-11,OQ);
AGRID(10.39,A,0,0,0,\DeltaI_S41,ALB43); PLOT(10,0,-4); PLUT(2,0,-5): FNL;
g(TO rJAGIN ;
DRANS: REGIN
FILL ALB51[*] WITH "FORCE ","THANS.";
FILL ALB53[*] WITH "FURCE ","TRANS."," VS. F","RFQUtN","CY *;
IF C = 1 THEN HEGI|
    ALINE(WN,FX1,I,YMIN,DYP1,-G,QQ); QQ & 1 END;
IF I) = 1 THEV HEGIN
    ALINE(WN,FY1,I,YMIN,DY,1,-11,QO); WQ&1; END;
IF }=1\mathrm{ THEN BEGIN
    ALINE(WW,FX?,I,YMIN.DY,1,-13,DQ): WQ & 1 ; END;
IF F = = THEN ALINE(W:N,FY2. I,YMIN,DY,1-15,NQ);
AGR1O(12,26,A,0,0,1), AL_B\1,AL.353); PLOT(10,7,-4); PLUT(2,0, -5); END;
GO TO GIJAGIN;
DRAWO: BEGIN
FILL ALB51[*] WITH "FORCE ","TRANS."," PHASE"," ANGLE";
FILL ALBG3[*] WITH "FORCE ","TRANS."," PHASE"," ANGLE"," VS. F",
"RLQUEN","Cr " ;
IF C = 1 THEN HFGIN
ALINE( WW,PURFX1,I,YMIN,DY,1,-Y :QU); OQ& & ; EivD);
IF U = 1 THEN BEGIN
    ALINE( WW,PUBFY1,I,YMIN,DY,1,-11,0Q); QU&1; END;
```

IF $t=1$ THEN FEGIV
ALINE（NW．PURFX？，［，YMTN．DY：1．－13，DQ）：WQ \＆ 1 ；EivO；

$\triangle G R 1 D(24,34,4,0,0,0), 1 L B O 1, A L Q 63) ; \operatorname{PLDT}(10.0,-4) ;$ PLUT $(2,0,-5) ;$ END；
GU IJ GUAGIN；ORAV7：HEGIIN REAL DYRE；DYRE \leftarrow OY；
FILL ALPHAT［＊］NITH＂LEVBTH＂，＂F：ROM＂，＂1ST BE＂，＂ARING＂，＂＝＂；
IF $C=1$ THEN REGIV REAL AKRAY NXONY［O：100］：
FILL ALG71［＊］wITH＂amplit＂，＂une＂；
FILL AI＿B73［＊］WITH＂AMPLTT＂，＂UOE VS＂，＂．FKFR＂，＂UENCY＂；
Fijr $E \rightarrow 1$ STEP 1 JNTTU P DiJ REGIN

ALINE（NW，NX，I，YMIN，DY，1，－9 ，QQ）；
$\dot{Q}+1$ ；
AL．INE（NW，NY，I，YMIV，IY，1，－11，（Q＇）；

PLOT（12，0，－ל）；EVI）；PLIT（1，U，－4）：GחTO GOAGIN；END：
IF $U=1$ THEN 子EGIN YEAI ARRAY VPX，NPY［O：10N］；REAL DYRE；DYRE \＆IYY；
FILL ALdS1［＊］NITH＂כHASE＂，＂ANGLE＂；

FUR $E \leftarrow 1$ STEP 1 UNTTL P N门 BECIN

$\omega 3 \leftarrow 1$ ：

「LJT（12，0，－3）；ENO；دL！T（1，0，－4）；END；EVN；
gUAGIN：
ENU；
GETUNT：ENO IJF GJPLGTTER：
CПMMENT THJS PRUGRAA EVALUATES IESIGN DATA FUR A FDUR DEGREE
FREEODN SYSTEA THAT SLMULATES A QOTIR IV GENERAL ANISOTRUPIC BRGS．
THE EWUATIINS SIIVEG UAD JEEN LINEARIIED．NOG ASSUMPTIONS WERF
MADE OM THE RFARIAG CHAYACTERISTICS－THE CROSS COIPLING TERMS ARF
KEPT WITH PROPER SIJSCYIPTS AS USED IN THE DEQIVATIUN OF THE EQNS．
THE PKOGRAM KFJUIKES THE FDILUNIVI TD $3 F$ READ AS INPUT DATA：
CAR1） 1
1．WOR－TVITIAL SPFED（KPS）
2．गM－INCREMEVT IV SPEED（RPS）
3．NM－FINAL SPFED（2PS）
cart ？
i．L－LENGTH BETM BQGS（IVCH）
2．L1－UIST FROM 1ST RRG TI MASS CENTER（INCH）
3．L2－UIST FRGM 2ND BRG TO YASS CENTER（INCH）
4．N－RUTOH NEIGHT（LBS）
5．IP＝POLAR M．I．（LR－IN－SEC？）
6．IT－TRANSVERSE M．T．JF KGTITK ARMUT MASS CENTER（LB－IN－SEC2）
CAKU 3
1．WMI－FIRST UNBALANCE WETGHT（LRS）
2．WM？－SECONO JNFBALAVCE NFTGHT（LBS）
3．H1－OIST FROM IST BKG TU BST UNBALANCF（INCH）
4．H2－ПIST FROM 1ST AFG TO 2NU UNBALANCE（TNCH）
5．PHI－PHASE AVGEES RETN UNRALANCE PLANFS
6．R1－RAOIUS OF 1 ST UNBAI－ANCE LOCATIDN
7．R2－RAUIUS OF 2NI UNBALANCE ！OCATIDN
CARC 4

1．N－NO．OF PLACES OTHER THAN THE RRG LDCATIGNS WHERE
DISPLACEMENTS ARE TO BE MEASJFED
2．LZI－DIST FROM IST BKG TO IST PROAE（INCH）
3．LZ？－DIST FROM $1 S T$ BíG TO ？Ni）PROBE（INCH）
CAKO 5
1．KIX＝1ST RRG STIFFNESS IN X DIPECTION（LB／IN）
2．K2X－2NE RRG STIFFNESS IN X DIRECTION（LQ／IN）
3．K1Y－1ST BRG STIFFNESS IN Y DIRECTION（LQ／IN）
4．K2Y－2ND RRG STIFFNESS IN Y DIRECTIUN（IR／IV）
CARU 6
1．CIX－1ST BRG DAMPING COEFF IN X DIKECTIMN（LG．SEC／IN）
2．C2X＝2VO BRG OAMPING COEFF IN X OIRECTJON（LB．SEC／IN）
3．C1Y－1ST BRG ПAMPING CDEFF IN Y DIRECTION（LB．SEC／IN）
4．CZY－2N！BRG GAMPING CIEFF IV Y DIHECTION（LO．SEC／IN）
CARU 7
1．D1X－CQDSS CTUPLINS DAMPING COEFF（LR．SEC／IN）
2．D2X－CRUSS COUNLINA DAMRING COEFF（LR．SEC／IN）
3．DIY－CRUSS COUPLING DAMFING CLEFF（LR．SEC／IN）
4．D2Y－CRIJSS COUPLING DAMFING COEFF（LR．SEC／IN）
CARD 8
1．R1X－CRISS CTUPLING STIFFNESS（LG／IN）
2．R2X－CRISS CNUPLING STIFFNFSS（LB／IN）
3．R1Y－CROSS COUPLING STIFFNESS（LE／IN）
4．RZY－CROISS COUPLING STIFFNESS（LB／IN）
THE חUTPUT DATA AFE AS FDLLOWS：
CUL 1 WM－SPEES（FPS）
CUL＇̇ $\quad X_{1}$ OK Y1－DISF AT BRGI IN X OR Y DIRECTIDH
CULS $\quad X \supset$ OR YZ－EISP AT ERG？IN X OR Y DIRECTIDN
COLA SIXI OF SIYI－PHASE ANGLE OF XI DR YI WRT JNBALANCE
CULS SIXZ OK SIYフ－PHASE ANGLE OF XZ OR YZ NRT UNBALANCE
CULO AI＿FAI OR ALFA？－ANGULAR DISPLACEMENTS
COL 7 SIAI OR SIA？－PHASE ANGLE OF ALFAI OR ALFAL
CGL 8 FXI OR FYI－FURCE TKANSMITTED TO BRG I IN X OR Y DIRECTION
CUL 9 FXC OR FYZ－FORCE TRANSMITTED TJ PRGZ IN X UR Y DIRECTION
CUL 10 PIISFXI OR PUAFY1－PHASE ANGLE OF FXI OR FYI
CUL 11 FUBFX2 OR FUBFY2－PHASE $\triangle N G L E$ OF FX2 DR FYZ
THE HEADINC PKINT OUT UF THE INPUT DATA ARE AS FOLLOWS：
LINE 1 L，L1，L？，HI
LINE2 H？，N，WMI，NA？
LIvt 3 K1X，k2X，kiY，k2Y
LIve $4 \quad C 1 X, C 2 X, C 1 Y, C 2 Y$
Llev5 R1X，R2X，R1Y，R2Y
LINE 6 ［1X，02X，D1Y， $02 Y$
LINET JP，IT，F1，R2
LiNES PHI ；
FUKAAT HEAUS（大（2（50（＂＊＂）），／），
24（＂＊＂），x40，x31．23（＂＊＂），／，
24（＂夫＂），λ ．，＂！ESIGN DATA FOF A SIWGIE MASS F（ITOR NITH FLEXIRLE SUPPORT

Xb，＂I＿＝＂，E11．4，＂IMCH＂，X12，＂I．I＝＂，E11．4，＂INCH＂，X12，＂Lで＝＂，
E11．4，＂TNCH＂，X1？＂H1＝＂，F11．4，＂1NCH＂，， x4，＂H？＝＂E 11.4 ，＂INCH＂，X13，＂W＝＂，E19．4，＂LR＂，X13，＂WM1＝＂，
 Xj，＂K1X＝＂，F11．4，＂LP／IN＂，X10，＂K2X＝＂，F11．4，＂LE／IN＂，X10， ＂K1Y＝＂，F11．4，＂LR／IN＂，X10，＂KクY＝＂，E11．4，＂LB／IN＂，／，

```
    X3, "C{X=", E11.4, "LH0SEC/IN", X6, "CPX=", E11.4, "LB.SEC/IN",
    XO , "ClY=" , E11.4, "LH.SEC/IN", X6 , "C2Y=", E11.4,"LE.SEC/IN",/,
```



```
    "R1Y=", El1.4, "LB/IN", X10,"KCY=" , FII.4, "LB/IN", , 
    X3, "U{X=", F11.4, #Lb.SEC/IN", Xo, "O2X=", E11.4, "LB.SEC/IN",
    x0, "O1Y=", E11.4, "I_B.SEC/[N", XG, "L?Y=", E11.4, "LB.SEC/IN",/
```



```
    xS , "K1=" , E!1.4 , "INCH", x17 , "R2=", E11.4."INCH" ,/ ,
    x3j, "PHI=" , E11.4, "DEGREES" , / ,
                                    2(2(5y("*")),/));
```



```
    "S1\times2", <3,
    "ALFA1", X7, "SIAI", X4, "FXI", XY, "FXP", x6,"PUBFXI", x2,
    "PuBfx方", // ) ;
Fum,mAT JuT? X6, In , X1, E.11.4, X1, E11.4, X1, F6.1,
```



```
    Fo.1 , X1, FK.1 , ;
```



```
    "PUBFY1", X2 , "PUBFYZ",// ) ;
```



```
    "PrL" , X9 , "SPFE|" ,// ) ;
FüMAT TUTS (X5,F6.1, X13, F11.4, XO, E11.4, X10, F7.2, X{4,
    F7.? , X6, FT.? ) ;
REAL DUTCEUIJRE ANALR(NN,PU);
VALUE PN, PO : REAL PN: PD;
BEGIN
REAL 子, DI ;
LAJEL L1 * L`, 1.3. L4,
PI & 3.1415Y ;
if PN> O AVIO PD=0 THEN GIJ T'JLl;
IF PN<O AND PO=O THEN GOT TOL? ;
If PN=O AND PD=0 THEV GOO TO L3.;
H+AKC(AN(ARS(PN/PO));
1F PN<U \triangleNO PO>0 THEV B & 2× O1 - 3;
IF ON >0 ANG PD<0 THENR&PI - 3 ;
IF :JV<1) AVL Pリ<0 THFW Q& PI+H ;
G0 ro Li ;
L1: E&PI/つ:
(ili TU L4 ;
L2: H& (3\timesPI) /2 :
    GU TOLL ;
L3: 2+0);
L4: ANGLE*G ;
ENU IIF PRUCEDURE ;
PRUCEDUAE FORCE(C , K,1,R,C1,S1,C2,S2,MN,F,PFX,PFY);
VALUE C,K, D,Q,C1, S1, C2, S2, WiN;
RLAL C,K, D, R, C1, S1, C?, S2,WW,F, PFX, PFY ;
COMMENT THIS PROCETIRE CALCIJLATF'S THE FDRCE OR MOMENT
    PK|DUCEO BY THE REACTIONS WHFRE
C= UAMPING CIEFF r:= CMOSS CDUPLING OAUPING
K= STIFFNESS COEFF R= CROSS COUPLING STIFFNESS
THE FOKCE CALCHIATEU IS IN THE DIRECTIUN OF XI WHERE
XI= C1 COS(NWT) + S1 SIN(WWT) WHERE WW=RDTOR SPFED IN RAD/SEC
UIRECTILIN NORMAL TO XI IS X? WHERE
x2= C2 CHS (WWT) + S? SIN(NWT)
```

$F=F \cos (\underline{W} T-P H)=A \operatorname{COS}(W W T)+B \operatorname{SIN}(W W T)$
シビばN
REAL A, B ；
$A+C \times W W \times S 1+K \times C 1+0 \times W W \times S 2+R \times C ? ;$
$B \leftrightarrow W W \times C \times C 1+K \times S 1 \times W W \times D \times C 2+R \times 52$ ；
$F+S Q R 1(A X A+B \times E) ;$
PFX $\&$ ANGLE（ B ，A）；PFY 4 ANGLF（－A，Q ）；
END OF PROCEDURF FQRCF ；
PRUCEDLIE ARKITRAFYDISPLACEMENT（LZ，L，X，XI，YL，PXI，PYL ）； VALUE LZ ，L ；
REAL LZ，L ，XL，YL，PXL，PYI．；
NEAL AFRRAY X［O］；
BEiAN
CUMMENT THIS PROCEDURE CALCULATFS THE X AND Y DISPLACEME：NTS AT ANY PIINT MEASURED FKIM THE FIAST RKG ，XL IS SHAFT ARS＇JLUTE X ULSPLACEMENT AND PXL IS THE FHASE $4 N G L E$ ；
REAL AX，EXX，AY，BY，Z ；
$L \leqslant L Z / L$ ；
$A x+7 \times \times[3]+(1-2) \times \times[1] ;$
$B X \leftarrow Z x \times[4]+(1-Z) \times x[2] ;$
$A Y+7 \times X[7]+(1=2) \times X[5] ;$
$B Y+Z \times X[8]+(1-Z) \times X[6] ;$
$X L+S G R T(A X X A X+H X X R X) ;$
$Y L \leftarrow S Q K T(A Y \times A Y+R Y \times B Y):$
$P X L \leqslant A N G L E(B X, A X) ;$
PYL \＆ANGLE（－AY ，BY ）；
ENL OF PHUCEDURE ARHITRAKYDISPLACFMENT；
PRUGEUIFE SULVE（N，A，CORSN，E，K1，EPS，X，E1，E2）；VAIUE NORS＇V，E，KI，EPS；INTEGER N，K1；REAL E．EPS；RORLEAN RSW；REAL AKRAY A［O，O］，C，X［U］；LAKELET，FZ；REGIN
 ；HEAL ARRAY D［0：N］；OWN HEAL．ARRAY B［O：N．O：N］；LABEL S1．S2．S3，S4，S5，SG，REP ，S7．S8．SG．IT1，S10．S11，S12．S13，S14．S15，EXIT；S1：TF RSW THEN GOT？REP；FOR

IUNTIL N DU REGIM L\＆I－1；FOR J\＆I STED IUNTIL N DO RLGIN G\＆OBFUR K\＆ 1 STEP IUN］IL L OO $O \& R[J, K] \times B[K, I]+R ; B[J, I J \& B[J, I]=Q E N D: R I G \leftarrow 0: K 2+I ; S 3: F O K K \leftarrow I$

 P IUNTIL N UO BEGIN TEMP\＆A［K2，K］；A［K？，K］\＆A［I，K］；A［T，K］＋TEMP；TEMP\＆B［K？，K］ ；B［K2，K］\＆P［I，K］；R［I，K］\＆TEMP；ENO；O］AG\＆A［I，I］；SG：FOR J\＆I＋1STEP 1UNTIL N DO BEGIN $\mathcal{G} \leftarrow 0$ ；FOR $K+1 S T F F$ LUNTII L DN $\omega \in B[I, K] \times B[K, J]+\alpha ; B[I, J]+(B[I, J]-0) / D$

 IN $W \leftarrow 0 ; S 13: H O R K \leftarrow I+j S T E H$ IUNTIL N DU $G \leftarrow B[I, K] \times D[K]+W ; X[I] \leftarrow X I I]+I F I]-0$ EN U；S14：J1＋J1＋1；S15：IF NXEくNOKM THEN GO TO IT1：EXIT：FND；
READ（CH，$/$ ，HO，חW，WM）；
LUO：RLA［（CR，／，L，LI，L2，，，IP，IT ）［FINIS］；
REAL（CK，，WM1，WMC，H1，H2，PH，R1，R ，， H ，；
REAL（CF，$;$ ，P ，FOR J 1 STEP 1 UNTIL D Oä［LZ［Jj］）；
REAU（CK，／K1X，K2X，K1Y，K2Y ）；
Real（CF，，CiX，C2X，CiY，C \quad ，


```
G + 32.2 < 12;
PI + 3.14159265;
M*W/G; LM1 & WM1 / G ; [MEZ & WM2/G :
RPP + IF/M; RTT&IT/N Y;
KP & RPP/ (LXL ) ; KT & KTT / (LXL ) ;
L11 *LJ / L ; L22 * L己 /L ;
RO1 & H1 - L1; R!P + H2 = L1 ;
PHI & (PH\timesPl)/180 ;
```



```
KAL & 5%.29578 ;
K1XX & K1X/M ; K2XX + K2X /M ;
K1YY & K1Y/M ; K2.YY + K2Y/M ;
C1XX & C1X/M ; C2XX + C2X / M;
C1YY+CIY/M ; CJYY + CZY / M,
R1X\lambda & K1X/M ; KOXX + R2X/NM;
R1YY&K1Y/MM; ROYY&R2Y/NM;
D1XA & D1X / M ; D2XX & D2X/ M ;
UIYY & DIY / M ; DPYY + DZY / M ;
FM1 & INP? 人 R2 }\times\mathrm{ SIN: (FHI) ;
```



```
SI & ANGl_t (PN,1 , Pl)1 ) ;
PNC & R(I2 > RZ x IOM? x OIN (PHI) ;
```



```
SIf & ANGLE (PNZ, FDO2);
wrliE (lf[3]);
WHIIE (LP, HEAll1);
WKLIE (LP[PAr,E]) ;
WKLIE (LP, HEQLZ, L, LI, L?, H1, H2,W,WM1, WMZ, K1X, KEX,
```



```
01Y,0己Y, IP, IT, K1, Dif, FH, (
I+1, ;
FUK V:W &WH STEP i)W UNTTL WA. DU
BEudiv
I +1 + 1 ;
UMEGA[I] & vW ;
```



```
J[ & ] + 2 x PI x \IFGGA 「Y ] ;
bS [ J ] & S [.] ] x S l I j ;
DEG1W
REAL XXXX;
A[1,1] + K1xX-L2? x SS [I] ;
A[1,?] & C1XX < S[1];
A[1.3] & KวxX - L.11 x SS[IT] ;
A[1,4] & CPXX x S[I] ;
A[1,5] & R1YY ;
A[1,0] & [1YY X S[1];
A[1,7] & K2YY ;
A[1,8] & [PYY X S [I] ;
A[\ddot{<,1] + - CiXX 人 SrI] ;}
A[2,2] 4 K1XX - LZ% x SS[I] ;
A[c,3] & C?XX x S[I];
A[<,4] & KPXX - L11 x SS[I] ;
A[2,5]&-UIYY X S[I] ;
A[2,6] + F1YY;
```

```
A[2,7] & - DOYY x S[I] ;
A[2,8] & R2YY;
A[3,1] & R}XX ;
A[3.2] + [1XX x S[1] ;
A[3,3] + R2XX ;
A[3.4 ] & E2XX 人 S[T] ;
A[3,5] & K!YY - L2Z x SS[I];
A[j,6] & CIYY X S[I] ;
    A[j,7] & KCYY - L1] x SS[I];
A[5,8] & COYY × S[I] ;
A[4,1] & - IIXXX X S[I] ,
A[4,2] & R[xX ;
A[4,3] & - U2XX x S[I] ;
A[4,4] & R=XX;
A[4,5] & - (1YY x S[I] ;
A[4,6] & K1YY - L22 XSS[I] ;
A[4,7]*-C2YY x S[I] ;
A[4,8] & K_YY-L!1 x SS[I];
A[J,1] & FTT X SS[I] = K1XX X L11 ;
A[5,2] & C1XX x L11 x S[I];
A[5,3] + - KT < SS[.I] + K2XX * L2e ;
```



```
A[3.5] &-R1YY x L11.;
A[5,6] + - KP x SSLI] - L11 x S[I] x [1YY ;
A[5.7] & K2YY x L2? ;
A[5,8] + RP X SS[I] + DEYY x LP? x S[I] ;
A[0,1] & C1XX X L11 < S[I] ;
A[6,2] & FT x SS[1] - K1XX x L11;
A[0,3] - COXX x L2? x S[Ij;
A[6,4] & HT }\times\mathrm{ SS[J] + K2XX < L27;
A[0,5] + FD XSS[I] + DIYY x [111 x S[I] ;
A[t:g] * -RIYY < LI1;
A[0,7] + - FPP x SS[J] = D2YY x L2? x S[I];
A[0,8] & FӘYY 人 L?% ;
A[7,1] & = K1XX 人 LJ1 ;
A[7,2] & KF 人 SS[I] - DIXX x L1] x S[I];
A[7,3] & R2XX × L2? ;
A[7,4] + -KP x SS[I] + D2XX x L22 x S[1] ;
A[7,5] & FT X SS[I] = K1YY x L11;;
A[7,6] & - CiYY x [11 x S[I];
A[7,T] &-KT X SS[I] + KวYY X L22;;
A[7,0] & CYYY *L2Z x SLI];
A[8,1] + - KP x SS[I] + DIXX < {11 xS[I];
A[8,2] & -RIXX x L1].;
A[8,3] + RF x SS[J] - DexX x L2E x S[I] ;
A[\varepsilon,4] & F2XX < L2? ;
A[r,5] & C1YY x LI1 x S[I] ;
A[0,0] & RT X SS[I] * K1YY x LII;
A[8,7] + C2YY 人 L?Z x S[I] ;
A[B,8] & - KT }\times\mathrm{ SS[I] + K2YY }\times\mathrm{ L?? ;
C[1] & (DMG x SS[I] x F1 ) / N + (UM2 x SS[I] x R2 x COS(PHI))/M M
C[2] + - (DM? > SS[I] x R? x S]N (PHI)) / M ;
C[J] & (UM2 }\times\mathrm{ SSTT] x R2 }\times\mathrm{ SIN (PHI)) / M ;
C[4] + (DN1 x SS[I] x R1 ) / M + ( UM2 x SS[I] x R2 x CUS(PHI))/ M ;
```



```
    (Mx L ) ;
```



```
    (MX L ) ;
ENu ;
SULVE (N,A,A,C,RSH,E , K1, EPS,X,E1,E2 );
Bb & X[1] x X[1] + X[2]x X[c] ;
XXILI] + SORT (PR) ;
CC & X[3] XX[3] + X[4] X X[4] ;
XXCZI] + SORT ( CC ); ;
UD & X[b] x x[5] + x[6] x X[6] ;
YYI[I] & SGKT (DD) ;
EE & X[7] X X[7] + X「%] x X[8];
YY己[I] & SQRT (EE ) ;
COMi-m,t tre following calculates jhe phase angles between
UISHLACEMENT AMO UNEALANCE ;
PX1 & ANGL.E (X[`] , X[1] ) ; FX2 & ANGLF (X[4], X[3]) ;
PYi & AMGLF (-X[5], X[6]); PYZ & ANGLE (-X[7], X[8]);
SIX][1] & (SI + PXI) X FAD; SIX2 [I] & (ST + PX?) X RAD;
SIYI[I] & (SI + PY1) X FAD; SIYZ [I] & (SI + PYZ) X RAD ;
ClimENT THE FGLLGWING CALCULATES THE PHASE ANGLES OF ALFAL
    ALrA? AN[, uNHALAFICE mGMENT;
PAl&AngLE (x[4] - x[e] , x[3] - x[1]) ;
SIAI[I] &(SIT + PA1) X RAO;
PACL 4 armlf (X[5] - X[7] , X[5] - X[6] ) ;
SIAC[IT <(SIT + FA\)X KAO ;
ALFH1[I]*SORT (( X[3]-X[1])* ? + (X[4] - X[2] ) * 2 ) / L ;
ALFA?[Ij + SORT ( ( X[7]-x[5] ) * < + (x[8] - x[K] ) * 2 ) / L ;
IF P=0 THFN OO TO LOMi; ;
FEN J+1 STFP 1 UNTIL P OU
GEGIN
```



```
    FYI.[l.J] ) ;
ENO!
```



```
    +XI[I], FrXI[I] . PFY, ;
```



```
FXR[I], PFXP!T], PFY , ;
```



```
FYJ[I], PFX , PFYi[I], ;
```



```
    frg[1], PrX, PFYC「I], ;
CLHIENT THE FGLLOHTNG CAICULATES THE RELATIVE PHASE ANGLES
HETAEEN FXI , FYZ, FY1, FYZ, WR} THE UNRALANCE FORCE ;
PUSFX1[i] +(SI + PFX1[lj)X HAD:
PUBitX?[I] &(SI + PFX2[1])X KAD;
PUntY1[1] & (S[ + PFY1[11)X RAD);
PUBFYC[I] & (SI+ PFYZ [I])x KAD;
ENU ;
WHITE (LP , 万UITI ) ;
FGN J&1 STE.P q UNTIL I OO
BECiJN
WRITE ( LP , OUT? , MMFGA[J], XX{[J], XXZ[J], S[XI[J],
SIx<[J] , ALFA1[J],SIA1[J] ,FxI[J],Fx?[J],
PubrX1[J] , PUBF×2r.j] ;
ENO :
```

```
    WK\perpIE (LP[PAGE]) ;
    WRITE (LP , OUT3) ;
    FEK J +1 STFP i UNTIL. I OO
    BEGIN
    WRITE (LP, DUT?, {MEGA[J], YY{[Jj, YYZ[J], SJYi[J]
    SIYC[J], ALFAZ[J],SIAZ[J] ,FY1[J],FYZ[J],
    PU\sigmaFYi[J] , PlBFY2[.J] ;
    ENO ;
    WK[TE (LP [PAGE] ) ;
    IF"P=0 THFN GO TOT LOO EL.SE
    EEGLN
    WRITE (LP, OUT4) ;
    FUR JH1 STEP 1 |NTIL P U!)
    FUK K&1 SIEP 1 UNTIL I DO
    BEGIN
    WRITE (LF, DUT5 , L.Z[J], XL[K,J], YL[K,J] , PXL[K,J] x RAD,
    PYL[K,J] x KAD, OMEGA[^], ;
    END ;
    ENO ;
        GOPLOTTER(RPN);
    GU TO LDO ; WRITE (LP, < "ACCJKACY NOT MHTAINEU" > );
    GU TG LJO ;
    E1: WRITE (LP , < " SIVGULARITY OK}\mathrm{ ILL CONDITIMNED MATRIX" > );
    Gu TO LDT ;
    FINIS: END.
AKCTAN IS SEGMENT NUMEGFR SOG5,PRT ADERFSS IS 011血
CUS IS SEGMENT NUGBER OOSGPPRT ADIDRESS IS OUT4
EXP IS SEGMENT NUMBER OOST, PRT ADDRESS IS 0071
LN IS SEGMENT NUMBER DOÓS,PRT ADDRESS IS 0070
SIN IS SEGMENI NUMRER nO67,PRT ADDRESS IS 007S
SQRT IS SEGNENT NUMBER OOTO,DZRT ADDRESS IS 0445
OUTHUI(W) IS SEGMENT NUMRER OUTI.PRT ADDKESS IS 0363
BLUCK CIINTROIL IS SEGMENT &リMRER DOT?,PRT ADDRESS IS nU05
INPUT(W) IS SEGMENT NリMBEK OOT3,PRT AUNRESS IS O37O
X TO THE I IS SEGMENT NUMBER UOTA,PRT ADDRESS IS OOT?
GU TU SOLVER IS SEGMFNT NUMRER OOTF.PRT AOLRESS IS OUS4
ALGOL WRITE IS SEGVENT NJMJER OOTG,PRT ADURESS IS OU14
ALGOL READ IS SEGMENT NUMRER OOT7,FRT ADURESS IS OU15
ALGOL SELECT IS SEGMEVT NUMFER OO7R,PRT ADDRESS IS JUIG
COMPILATICNTIME = 13? SEGMNDS.
NUMEER DJF EKRIRS DETECTFD= OOO. LAST ERRMR TN CAKD #
NUMBER UF SEQUENCE ERRURS CUINTEO = !.
NUMÖER UF SLOW WARNINGS = n.
PRT SIZE= 330; TUTAL SEGMFNT SIZE= 3463 wחRDS.
DISk STUHAGE fEG.= 173 SEGS.; NU. SFGS.= 1G.
ESTIMATLU CURE STIRAGE REQUIREMENT = 6394 WIROS.
```

 本
 -
 -

\square

 \square

WITH FLEXIBLE SUPPORT AND DAMPING

$L 1=1.50008+011 \mathrm{NCH}$
$H=1.1000+02 \mathrm{LB}$
$k 2 x=1.50000+04 \mathrm{LB} / \mathrm{IN}$
C $2 X=7.00000+00 \mathrm{LB}$.SEC/IN
$\mathrm{R} 2 \mathrm{x}=0.0000 \mathrm{e}+00 \mathrm{LB} / \mathrm{IN}$
$02 x=0.00000+00 \mathrm{LB} \cdot \mathrm{SEC} / \mathrm{IN}$
$I T=2.16000+01 \mathrm{LB}-\mathrm{IN}-\mathrm{SEC} 2$
$\mathrm{PHI}=0.0000 \mathrm{a}+00 \mathrm{DEGREES}$
$L 2=1.50000+01 I N C H$ WM1 $=2.0000 \rho-01 \mathrm{LB}$ KIY $=1.60000+04 \mathrm{LE} /$ IN CIY=7.00000+00LB.SEC/IN R1Y $=0.00008+00 \mathrm{LB} / I \mathrm{~N}$ DIY $=0.00000+00 \mathrm{LB} . \mathrm{SEC}^{2} /$ IN $R I=2.00000+00 I N C H$
$\mathrm{H}_{1}=0.0000 \mathrm{e}+00 \mathrm{INCH}$ WM2 = 2.00000e-01LB $K 2 Y=1.2000 e+04 \mathrm{LB} / \mathrm{IN}$ C2Y $=7.0000$ e $+00 \mathrm{LB} \cdot$ SEC/IN R2Y $=0.0000 \mathrm{P}+00 \mathrm{LB} /$ IN D2Y $=0.0000 \mathrm{P}+00 \mathrm{LB}$.SEC/IN $R 2=2.00000+005 \mathrm{NCH}$

SPEED	$x 1$	$x 2$	SIX1	SIX2	ALFA1	SIA 1	FXI	F $\times 2$	PUBFX1	PUBFX 2
40	9.90430-03	3.2572f-03	8.5	19.5	2.24510-04	183.2	$1.98850+02$	$4.91930+01$	3.5	12.8
41	1.07460-02	3.83?00-03	9.2	20.8	2.34490-04	182.9	$2.15790+02$	$5.78940+01$	4.0	13.9
42	1.16770-02	4.51798-03	9.9	22.2	2.44220-04	182.4	$2.34540+02$	$6.82800+01$	4.6	15.2
43	1.27150-02	$5.34100-03$	10.8	23.8	2.53570-04	181.7	$2.55430+02$	$8.07500+01$	5.4	16.7
44	1.38788-02	6.33580-03	11.9	25.7	2.62430-04	180.8	$2.78850+02$	$9.58240+01$	6.3	18.3
45	1.51920-02	7.54720-03	13.1	27.8	2.70700-04	179.5	$3.05330+02$	$1.14190+02$	7.5	20.3
46	1.66880-02	9.03500-03	14.7	30.3	2.78360-04	177.7	$3.35478+02$	$1.36760+02$	8.9	22.6
47	1.84040-02	1.0882或02	16.6	33.3	2.85709-04	175.2	$3.7004 \mathrm{e}+02$	$1.64776+02$	10.7	25.4
48	2.03830-02	$1.31930-02$	19.0	36.8	2.93760-04	171.6	$4.0992{ }^{\text {P }}+02$	$1.99846+02$	12.9	28.8
49	2.26720-02	1.61030-02	22.0	41.3	3.05458-04	166.6	$4.56079+02$	2.44029+02	15.9	33.1
50	2.53060-02	1.9765 -02	26.0	46.8	3.26830-04	160.2	$5.09180+02$	$2.99650+02$	19.7	38.5
51	2.82660-02	2.432.30-02	31.2	53.9	3.67779-04	153.1	$5.68879+02$	$3.68910+02$	24.8	45.4
52	3.13880-02	2.98190-02	38.0	62.8	4.40050-04	147.1	$6.31840+02$	4.52450+02	31.5	54.1
53	3.42130-02	3.59710-02	46.8	73.9	5.51138-04	144.4	$6.88880+02$	$5.46058+02$	40.1	65.0
54	3.59100-02	4.19000-02	57.3	87.1	6.94470-04	146.0	$7.2324 \mathrm{e}+02$	$6.36330+02$	50.5	78.1
55	3.56050-02	4.6233^{0-02}	68.6	101.6	8.44790-04	151.4	$7.1729 P+02$	$7.02469+02$	61.7	92.4
56	3.31570-02	$4.8032 \theta-02$	79.1	115.7	9.71480-04	158.5	$6.6815 p+02$	$7.30130+02$	72.1	106.4
57	2.93670-02	4.75730002	87.4	128.3	1.06129-03	165.5	$5.92340+02$	$7.23490+02$	80.2	118.8
58	2.53480-02	4.58570.02	92.6	138.6	1.12060-03	171.4	$5.11060+02$	$6.97740+02$	85.3	128.9
59	2.17030-02	$4.37630-02$	94.8	146.8	$1.16268=03$	176.2	$4.37700+02$	$6.66200+02$	87.4	137.0
60	1.87130-02	4.17710-02	94.3	153.4	1.19730-03	179.9	$3.77500+02$	$6.36190+02$	86.8	143.4
61	1.64230-02	4.00700-02	91.5	158.6	1.23060-03	182.8	$3.31410+02$	$6.10599+02$	83.9	148.5
62	1.47990-02	3.87050-02	86.8	162.9	1.26570-03	185.2	$2.98720+02$	$5.90090+02$	79.1	152.6
63	1.37820-02	3.76598-02	80.8	166.5	1.30400-03	187.1	2.78279+02	$5.74458+02$	72.9	156.1
64	1.33010-02	$3.69000-02$	74.2	169.6	$1.34630-03$	188.7	$2.68640+02$	$5.63106+02$	06.2	159.0
65	1.32780-02	3.63920-02	67.6	172.3	1.39300-03	190.2	$2.68260+02$	5.5570e+02	59.4	161.5
66	1.36310-02	$3.61030-02$	61.5	174.7	1.44419-03	191.5	$2.75480+02$	$5.51590+02$	23.2	163.7
67	$1.42850-02$	3.60080-02	56.2	176.8	1.50000-03	192.7	$2.88790+02$	$5.50448+02$	47.8	165.7
68	1.51770-02	3.60868-02	51.7	178.8	1.56080-03	193.8	$3.06910+02$	$5.51948+02$	43.2	167.5
69	$1.62600-02$	3.63238-02	48.1	180.0	1.62670-03	194.8	$3.28920+02$	$5.55880+02$	39.5	169.2
70	1.75020 .02	3.67079-02	45.2	182.3	1.69800-03	195.8	$3.54170+02$	$5.62080+02$	36.5	170.7
71	$1.88840-02$	3.72300-02	43.0	184.0	1.77500-03	196.9	3.82268+02	$5.7043 f+02$	34.1	172.2
72	2.03950 .02	3.78000-02	41.2	185.6	$1.85820-03$	197.9	4.12980+02	5.80880+02	32.2	173.6
73	2.20310-02	3.86840-02	39.9	187.1	1.94790-03	198.9	$4.46260+02$	$5.93400+02$	30.8	175.0
74	2.3795-02	3.96139-02	38.9	188.0	2.04480-03	199.9	4.82160+02	$6.0802+02$	29.7	176.4
75	2.56940-02	$4.06820 \mathrm{O}-0$?	38.3	190.2	2.1497e-03	201.0	$5.20820+02$	$6.24810+02$	28.9	177.8
76	2.77390-02	4.18960-02	37.9	191.7	2.26330-03	202.1	$5.62478+02$	6.43860+02	28.4	179.1
77	2.99450-02	4.32650-02	37.8	193.3	2.38600-03	203.2	$6.0743 \rho+02$	$6.6532 \theta+02$	28.2	180.5
78	$3.2332^{\circ}-02$	4.48006-02	37.9	194.9	2.52090-03	204.5	$6.56090+02$	$6.8936{ }^{6}+02$	28.1	182.0
79	3.49230-02	4.65150-02	38.2	196.5	2.6674e-03	205.8	7.08929+02	7.16190+02	28.3	183.5

2	4.84230 .02	38	19	2.8275-03	207.2	$7.66440+02$	7.4607e+02	28.7	
4.08180002	5.0542 ${ }^{\text {P }} 02$	39.4	200	3.00280-03	208.8	8.29224+02	$7.79219+02$	29.3	
$4.4178{ }^{\text {4-02 }}$	5. $28830-02$	40.	202	3.19450-03	210.5	8.97800+02	$0.15860+02$	30.	
4.78430-02	5.54580-02	41.7		3.4039p-03	212.4	$9.72660+02$	4.56150+02	31.4	90
5.18290-02	5.82.67-02	43	206	3.63150-03	214.5	$1.05410+03$	$9.00120+02$	32.9	
5.61380-02	6.13030-02?	45.3	209	3.87710-03	217.0	$1.14220+03$	$9.47670+02$	34.7	
6.07590-02	6.4544-020	47.5	212.	4.13979-03	219.7	$1.23670+03$	$9.98479+02$	36.8	
6.5658e-02	6.79540-02	50	215	4.41700-03	222	$1.33700+03$	$1.05200+03$	39.	
7.07830-02	7.14800-02	53.2		4.70500-03	220.0	1.4419 +03	$1.10730+03$	42.2	
$7.60010-02$	7.50540-02	50	222	5.00070-03	229	$1.55010+03$	$1.16350+03$		
8.13940-02	7.85880-02	60		5.29640-03	233.7	$1.65956+03$	$1.21929+03$		
8.6664-02	8.198.30-0?	64	23	5.58530-03	23	$1.76760+03$	$1.27280+03$	53.0	
9.17320-02	$3.51240-02$	68.7	230.0	5.85910 .03	242.6	$1.87180+03$	$1.32259+03$	57.3	
9.64450-02	. $78890-02$	73.3	240.9	6.10860-03	247	$1.96884+03$	$1.36650+03$		
1.0065 -01	. 01606.02	78.1	246.0	6.3249-03	252.4	$2.05550+03$	$1.40280+03$	66.4	
1.04190-01	. $18368-02$	83.1	251	6.49950-03	257.6	2.12886+03	$1.43000+03$	71.3	
1.06960-01	1.28410-02	88.1	256.6	6.02030-03	262.8	$2.18649+03$	$1.44670+03$	76.2	
1.08890-01	7.31450-02	93.2	261.8	6.70189-03	267.9	$2 \cdot 22680+03$	$1.45260+03$	81.1	
$1.09950-01$	$9.27580-02$	98.1	267.	6.72579 .03	273.0	2.24960+03	$1.44770+03$	86.0	
$1.10190=01$	9.1737e-02	102.9	272.1	6.70100-03	278.0	$2.2555 e+03$	$1.4329 p+03$	90.7	
1.09690-01	9.01700-02	107.5	276.9	$6.63350=03$	282.7	$2.24620+03$	$1.40950+03$	95.1	
1.08560-01	8.81428-02	111.9	281.5	6.53030-03	267.2	$2.22400+03$	$1.37920+03$	99.4	
1.06910-01	8.58289-02	116.0	285.8	6.3994-03	291.4	2.1914 ¢ +03	$1.34388+03$	103.4	
1.04898-01	$8.32720-02$	119.8	289.8	$6.24830-03$	295.4	$2.15100+03$	$1.30480+03$	107.1	
1.02600-01	8.05890-02	123.4	293	6.08400-03	299.0	$2.10500+03$	$1.26380+03$	110.5	
$1.0014{ }^{\text {c-01 }}$	7.78550-02	126.6	296.9	5.9124P-03	302.4	$2.05560+03$	$1.22190+03$	113.6	
9.7598-02	7.51300-02	129.6	300	5.73810-03	305	$2.00430+03$	$1.18010+03$	116.5	
9.5027e-02	7.24580-02	132.3	303.0	5.56460-03	308.3	$1.9524 e+03$	$1.13919+03$	119.1	
9.2476002	6.98700-02	134.9	303	5.39450-03	310.9	$1.90100+03$	1.0994 +03	121	
8.99818-02	6.73870 .02	137.2	308.1	5.22960-03	313.3	$1.85060+03$	$1.06120+03$	123.7	290
8.75640-02	0.5020-02	139.3	310.4	5.07120-03	315.5	$1.80180+03$	$1.02480+03$	125.7	
8.52389-02	6.27750-02	141.2	312.5	4.91970-03	317.5	$1.75489+03$	$9.90249+02$	127.5	
8.30148-02	$6.0653 \rho-02$	143.0	314.4	4.7757e-03	319.4	$1.7099+03$	9.57590+02	129.2	
8.08959-02	5.8652e-02	144.6	316.2	4.63920-03	321.	$1.66719+03$	$9.26810+02$	130.7	
7.88820-02	5.67690-02	146.2	317.8	4.51000-03	322.7	$1.62650+03$	8.97850+02	132.1	
7.6972b-02	5.49980-02	147.6	319.3	4.38810-03	324.1	$1.58798+03$	$8.70610+02$	133.4	300
7.51659-02	5.33340-02	148.9	320.8	4.27290-03	325.5	$1.55140+03$	0.45020+02	134.5	
7.34540-02	5.17700-02	150.1	322.1	4.16440-03	326.8	$1.51690+03$	8.20980+02	135.6	
7.18366-02	$5.03010-02$	151.2	323.3	4.06200-03	327.5	$1.48430+03$	$7.98400+02$	136.6	
7.03060-02	4.89190-02	152.2		3.96540-03	329.0	$1.4535 F+03$	$7.7717 e+02$	137.5	
6.88590-02	4.76198 .02	153.2	325.b	3.87430-03	330.0	$1.42438+03$	$7.57210+02$	138.4	
6.74900-02	4.63960-02	154.1	326.5	3.78830-03	331.0	$1.39689+03$	7.3844e+02	139.2	
6.61940-02	4.52430-02		327	3.70700-03	331.9	$1.37070+03$	7.2075e+02	139.9	
6.4967e-02	4.41560-02	155.7	328	3.63020-03	332.7	$1.34600+03$	$7.0409 \rho+02$	140.6	
$6.38030-02$	4.31300-02	156.4		3.55760-03	333.5	$1.32270+03$	- $6.8838 \mathrm{e}+02$	141.2	
6.27000-02	4.21000-02	157.1	330.0	3.4888F-03	334.3	$1 \cdot 30050+03$	$6.73559+02$	141.8	
$6.16530-02$	4.12449-02	157.8	330.8	3.42370-03	335,0	$1.27950+03$	$6.59530+02$	142.3	310
6.06593-02	4.03778-02	158.4	331.5	$3.36190=03$	335.6	$1.25960+03$	$6.4628 p+02$	142.8	
5.97135-02	3.95550-02	159.0	332.1	3.30320-03	336.3	$1.24079+03$	$6.3374 P+02$	143.3	
5.88140-02	3.87760-02	159.6	332.8	3.24750-03	336.9	$1.22270+03$	0.21850+02	143.7	
5,79580-02	3.80368-02	160.1	333.4	3.19450-03	337.4	$1.20560+03$	$6.10580+02$	144.1	1
5.71420-02	1.73.330-02	160.6	334.0	3.1441e-03	338.0	$1.18930+03$	$5.99890+02$	144.5	31
5.6363P-02	1.66658-02	161.0	334.5	3.09610-03	338.5	$1.17380+03$	$5.8973 \%+02$	144.9	
5.56210-02	1.60290-02	161.5	335.0	3.0503e-03	339.0	$1.15900+03$	$5.8007 \theta+02$	145.2	313
5.49110-02	3.5423e-02	161.9	335.5	3.0067e-03	339.4	1.14490+03	$5.70880+02$	145.5	
5.42330-02	3.48450-02	162.3	336.0	2.9650 F-03	339.9	$1.13150+03$	-5.62130+02	145.8	
5.35850-02	3.42930-02	162.7	336.5	2.92510-03	340.3	$1.11869+03$	5.53790+02	146.1	
5.2964P-02	3.37679-02	163.1	336.9	2,88709-03	340.7	$1.10630+03$	$5.45840+02$	146.3	
5.23690-02	3.32630-02	163.4	337	2.85050-03	341.1	$1.09450+03$	5	146.6	

WITH FLEXIBLE SUPPORT AND DAMPING

$L=3.00000+01$ NCH $K 1 X=2.00000+04 \mathrm{LB} / \mathrm{IN}$ C $1 X=7.00000+00 \mathrm{LH} \cdot \mathrm{SEC} /$ IN $H I X=0.00000+00 L B / I N$
D1X $=0.00000+00 \mathrm{LB} \cdot \mathrm{SEC} / \mathrm{IN}$
$I P=5.7000 Q=01 \mathrm{LB}-\mathrm{IN}-$ SEC2
$L 1=1.50000+011 \mathrm{NCH}$
$W=1.10000+02 \mathrm{LB}$
$K 2 X=1.50000+04 L B / I N$
$c 2 X=7.0000$ +00LB.SEC/IN
$\mathrm{R} 2 \mathrm{X}=0.00000+00 \mathrm{LE} / \mathrm{IN}$
$\mathrm{D} 2 \mathrm{X}=0.0000 \mathrm{P}+00 \mathrm{LB}, \mathrm{SEC} / \overline{\mathrm{I}}$
$I T=2.16000+01 \mathrm{LB}-\mathrm{IN}-$ SEC2
$\mathrm{PHI}=0.0000 \mathrm{a}+00 \mathrm{DEGREES}$
$L 2=1.50000+01$ INCH NM1 $=2.00000-01 \mathrm{LB}$ $K 1 Y=1.60000+04 \mathrm{LB} / I N$ CIY $=7.0000$ +00LB.SEC/IN $R 1 Y=0.00000+00 \mathrm{LB} / I N$ DIY $=0.00000+00 \mathrm{LB}$. SEC/IN $R 1=2.00008+00 I N C H$
$\mathrm{HI}=0.00000+00 I \mathrm{NCH}$ WM2 $=2.00000-01 \mathrm{LB}$ $K 2 Y=1.20000+04 \mathrm{LB} / \mathrm{IN}$
$C 2 Y=7.00009+00 \mathrm{LB} . \mathrm{SEC} / \mathrm{IN}$ $R 2 Y=0.0000 \rho+00 \mathrm{LB} /$ IN D2Y $=0.0000 \mathrm{e}+00 \mathrm{LB} \cdot \mathrm{SEC/IN}$ R2 $=2.0000$ e +00 INCH

SPEED
$Y 2$
SIY1 SIY2 ALFAZ
SIA2
FY 1
FYZ
PUBFY1 PUBFYZ

40	1.46930-02	7.0564@-03
41	1.62660-02	8.58590-03
42	1.80790-02	1.0508e-02
43	2.01740-02	1.29360-02
44	2.25880-02	1.60140-02
45	2.53160-02	1.98920-02
46	2.82430-02	2.46590-02
47	3.10100-02	3.01690-02
48	3.29140 .02	3.57730-02
49	3.31100-02	4.02940-02
50	3.13010-02	4.27110-02
51	2.01209-02	4.30080-02
52	2.45670-02	4.19830-02
53	2.13440-02	4.04590-02
54	$1.87510-02$	3.89340-02
55	1.68400-02	3.76200002
56	1.55770-02	3.66040-02
57	1.49050-02	3.5869-02
58	1.47580-02	3.53990-02
59	$1.50590-02$	3.51670-02
60	1.57250-02	3.51460-02
61	1.66840 .02	3.53150-02
62	1.78790-02	3.56590-02
63	1.92720-02	3.61640-02
64	2.08400-02	3,68738-02
65	2.25670-02	3.76290-02
66	2.44480-02	3.85810-02
67	2.64830-02	3.96760-02
68	2.86750-02	4.09150-02
69	3.10310=02	4.22990-02
70	3.35590-02	4.38310-02
71	3.62670-02	4.55100-02
72	3.91630-02	4.73390-02
73	4. $22548-02$	4.93158-02
74	4.55430-02	5.1434e-02
75	4.90300-02	5.3687e-02
76	5.2704-02	5.60586-02
77	5.65450-02	$5.8521^{\rho-02}$
78	6.0520-02	6.1040×-02
79	6.45760-02	6.35670-02

6.86430-02 6. $60350-02$
$\begin{array}{ll}6.8643 \theta-02 & 6.6035 e=02 \\ 7.2628 \theta-02 & 6.8368 \theta-02 \\ 7.6424 \theta-02 & 7.0478 e-02\end{array}$
$\begin{array}{lll}4.44079-03 & 237.9 & 1.12450+03 \\ 4.65220-03 & 242.0 & 1.19050+03\end{array}$
$8.2578+02$
$\begin{array}{ll}7.64240-02 & 7.04780-02 \\ 7.99080-02 & 7.22730-02\end{array}$
8.29080-02 7.22730-02
8. $8.54910-02$ 7.36700-02
8.5491-02 7.4606p-02
8.7416P-02 7.5044e-02
8.87150-02 $7.49900-02$
$\begin{array}{ll}8.87150-02 & 7.49900-02 \\ 8.94000-02 & 7.44820-02\end{array}$
$\begin{array}{ll}8.9400 \theta-02 & 7.4482 \theta-02 \\ 8.9551 \theta-02 & 7.3591 \theta-02\end{array}$
$\begin{array}{ll}8.9551 \theta-02 & 7.3591 \theta-02 \\ 8.9241 \theta-02 & 7.2405 \theta-02\end{array}$
$\begin{array}{ll}8.92418-02 & 7.24050-02 \\ 8.85800-02 & 7.10160-02\end{array}$
8.85800-02 7.10160-02
8.7672P-02 6.9509e-02
8.6605e-02 6.7953e-02
8.5448e-02 6.6393e-02
8.42420-02 $6.48540-02$
8.3009p-02
8. $17548-02$
$\begin{array}{ll}8.17549-02 & 6.18608-02 \\ 8.04750-02 & 6.03918-02\end{array}$
$\begin{array}{ll}8.0475 \theta=02 & 6.0391 \theta-02 \\ 7.0165 日\end{array}$
7.9165e-02 $5.03918-02$
$\begin{array}{ll}7.91659-02 & 5.89790-02 \\ 7.78230-02 & 5.74700-02\end{array}$
7.7823-02
7.04520-02
7.50590-02
7. 36549-02
7.22490-02
$7.02499-02$
$7.08560-02$
6.94860-02
$6.81479-02$
$6.81479-02$
$6.68460-02$
$6.68460-02$
6.55890-02
$6.4378 \mathrm{P}-02$
6.32149-02
6.2099日-02
$6.10329=02$
6.00130-02
5.90400-02
$5.81110-02$
$5.71110-02$
$5.72250-02$
$5.72252=02$
$5.63800-02$
$5.63800-02$
$5.55730-02$
5.55730-02
$5.48048-02$
$5.40690-02$
5.40690-02
5.3367e-02
$5.3367 e=02$
$5.26979=02$
5.20569-02
5.14432-02
5.08560 .02
5.02942-02
$5.02940-02$
$4.97560-02$
$4.97562=02$
$4.92400-02$
4.92400-02
$4.87450-02$
4.8269e-02
4.78130-02
$4.73749-02$
$4.69539-02$
$4.65470=02$
$36 \quad 4.61579-02$
$\begin{array}{ll}66.2 & 229.3 \\ 69.9 & 233.5\end{array}$
$\begin{array}{ll}66.2 & 229.3 \\ 69.9 & 233.5\end{array}$
 4．8499e－03 5．02690－03 5．1765e－03 $5.3734 e=03$

- 5．4164e－03 5．4241e－03 5．42410－03 5．40090－03 $5.3528 \rho-03$
$5.28629-03$ 5．28629－03 5． 2074 － $0=03$ 5．1216e－03 5．0327e－03 4．94289－03 $4.85300-03$ 4．76320－03 $4.6731 \rho-03$ $4.6731 P=03$
$4.58220-03$ $4.5822 \rho-03$
$4.49020-03$ $4.49029-03$
$4.39730=03$ $4.39739=03$ 4．30390－03 $4.21050-03$ 4．11809－03 4．02688－03 3．93780－03

$$
3.85128-03
$$

$$
\begin{aligned}
& 3.85128=03 \\
& 3.76759-03
\end{aligned}
$$

$$
\begin{aligned}
& 3.76759=03 \\
& 3.68709=03
\end{aligned}
$$

$$
\begin{aligned}
& 3.68709=03 \\
& 3.60979=03
\end{aligned}
$$

$$
\begin{aligned}
& 3.60979-03 \\
& 3.5357 \rho=03
\end{aligned}
$$

$$
\begin{aligned}
& 3.53579-03 \\
& 3.46510=03
\end{aligned}
$$

$$
\begin{aligned}
& 3.46510-03 \\
& 3.39770-03
\end{aligned}
$$

$$
3.39779-03
$$

$$
3.33359-03
$$ 3．27239－03 3．2141月－03 $3.21410=03$

$3.15860-03$ $3.15802=03$
$3.10590-03$ 3．0556e－03 $3.05502=03$
$3.00770-03$ $3.00779-03$
$2.96219-03$ $2.96210-03$
$2.91860-03$ $2.9186 p-03$
$2.87710-03$ 2．87712－03 2．83749－03 2．79969－03 2．76342－03 2．72880－03 2．69570－03 $2.66400=03$
$2.63360-03$ $2.63360-03$
$2.60459-03$ 2．57669－03 2．5497日－03 $2.52400-03$
$2.49920-03$ $2.49920-03$
$2.47549-03$ $2.45240-03$ $2.43040=03$
$\begin{array}{ll}237.9 & 1.12456+03 \\ 242.0 & 1.19050+03 \\ 246.3 & 1.25350+03\end{array}$
 $1.2535 \mathrm{P}+03$ $.83109+02$
$9.0652 \rho+02$ $1.3624 \rho+03 \quad 9.0652 \rho+02$ $255.4 \quad 1.36240+03 \quad 9.2500 e+02$ $260.1 \quad 1.4047 e+03 \quad 9.37710+02$ $264.8 \quad 1.43720+03 \quad 9.44210+02$ 269.5
273.9 273.9
278.2 $\begin{array}{ll}278.2 & 1.47189+03\end{array}$ $\begin{array}{ll}278.2 & 1.4751 e+03 \\ 282.2 & 1.4709+03\end{array}$ 286.0 289.5
292.8 292.8
295.9 298.7 301.5 304.1
306.6 308.9
311.2 $.4751 e+03 \quad 9.3912 \theta+02$ $.4751 e+03 \quad 9.28892+02$ $1.47090+059.14910+02$ $.46100+03 \quad 8.9834 \rho+02$ $1.4469 \rho+03 \quad 8.8025 \rho+02$ $1.43030+03 \quad 8.61500+02$ $1.41219+038.4267 e+02$ $1.39319+03 \quad 8.2408 e+02$ $1.3736 e+03 \quad 8.0582 e+02$ $1.3538 \rho+03 \quad 7.8784 e+02$ $\begin{array}{ll}1.3538 \rho+03 & 7.8784 e+02 \\ 1.3335 \rho+03 & 7.7002 \rho+02\end{array}$ $311.2 \quad 1.31279+03 \quad 7.52268+02$ $\begin{array}{lll}311.2 & 1.2914 \theta+03 & 7.3450 \theta+02 \\ 313.4 & 1.2695 \theta+03 & 7.1676 \theta+02\end{array}$ 315.4
317.3 317.3
319.1 319.1
320.8 320.8
322.4 $1.2473 e+03$ $1.2248 \theta+03$ $1.2248++03$
$1.2023++03$ $322.41 .15800+03$ $\begin{array}{ll}323.9 & 1.13656+03 \\ 325.3 & 1.11579+03\end{array}$ $\begin{array}{ll}325.3 & 1.11579+03\end{array}$ $\begin{array}{ll}326.6 & 1.0955 e+03 \\ 327.8 & 1.07618+0.03\end{array}$ $\begin{array}{ll}327.8 & 1.07610+03 \\ 328.9 & 1.0575 e+03\end{array}$ $\begin{array}{ll}328.9 & 1.0575 \theta+03 \\ 329.9 & 1.03968+03\end{array}$ $330.9 \quad 1.03969+03$ $332.7 \quad 1.00630+03$ $333.5 \quad 9.75909+02$ $\begin{array}{ll}333.5 & 9.75900+02 \\ 334.2 & 9.61790+02\end{array}$ $\begin{array}{ll}334.2 & 9.61790+02 \\ 334.9 & 9.48359+02\end{array}$ $\begin{array}{ll}334.9 & 9.48350+02 \\ 335.6 & 9.35540+02\end{array}$ $336.2 \quad 9.2333 e+02$ $\begin{array}{ll}336.8 & 9.11709+02\end{array}$ $337.4 \quad 9.0061 日+02$ $337.9 \quad 8.90049+02$ $\begin{array}{ll}338,5 & 8.79958+02\end{array}$ $330.9 \quad 8.70328+02$ $339.4 \quad 8.6112 \mathrm{P}+02$ $339.9 \quad 8.52330+02$ $\begin{array}{ll}340.3 & 8.43330+02 \\ 340.7 & 8.3590+02\end{array}$ $\begin{array}{ll}340.3 & 8.4393 e+02 \\ 340.7 & 8.3590 e+02\end{array}$ $\begin{array}{ll}340.7 & 8.35908+02 \\ 341.1 & 8.28220+02\end{array}$ $\begin{array}{ll}341.4 & 8.20866+02\end{array}$ $\begin{array}{ll}341.4 & 8.20868+02 \\ 341.8 & 8.1381 e+02\end{array}$ $\begin{array}{ll}342.1 & 8.07069+02\end{array}$ $\begin{array}{ll}342.1 & 8.0706(2+02 \\ 342.4 & 8.00599+02\end{array}$ $\begin{array}{ll}342.4 & 8.00599+02 \\ 34.94389+02\end{array}$ $\begin{array}{ll}343.1 & 7.88430+02\end{array}$ $343.6 \quad 7.82719+02$
$6.9909 e^{6}+02$
$6.81600+02$
$6.6439 e+02$
$6.6439+02$
$6.4759+02$
$6.3128 e+02$
$6.1554 \mathrm{e}+02$
$6.1554 e+02$
$6.0041 \theta+02$
$6.0041 e+02$
$5.8592 e+02$
$5.85929+02$
$5.72090+02$
$5.5893 \rho+02$
$5.46419+02$
$5.34520+02$
$5.2324 \theta+02$
$5.2324 e+02$
$5.1254 e+02$
$5.0240 \rho+02$
$4.92789+02$
$4.92780+02$
$4.83660+02$
$4.83669+02$
$4.75000+02$
$4.66798+02$
$4.59009+02$
$4.51596+02$
$4.44568+02$
$4.37860+02$
4. 3150 +02
$4.25449+02$
$4.2544 e+02$
$4.1966 e+02$
$4.1966 f+02$
$4.14150+02$
$4.14150+02$
$4.08900+02$
$4.08909+02$
$4.03090+02$
$4.03090+02$
$3.99110+02$
$3.9453 \mathrm{e}+02$
$3.90169+02$
$3.85980+02$
$3.85980+02$
$3.81980+02$
$3.78150+02$
$3.74480+02$
$3.70969+02$

53.8	212.9
57.3	217.0
61.2	221.3
65.2	325.7
69.4	330.3
73.8	235.0
78.1	239.6
82.4	244.1
86.5	248.5
90.5	252.7
94.2	256.7
97.7	260.3
101.0	263.8
104.0	267.0
106.8	269.9
109.4	272.7
111.8	275.4
114.1	277.9
116.3	280.3
118.4	282.6
120.4	284.9
122.3	287.0
124.1	288.9
125.7	290.8
127.3	292.5
128.7	294.2
130.1	295.7
131.3	297.1
132.5	298.3
133.5	299.5
134.5	300.6
135.4	301.7
136.2	302.6
137.0	303.5
137.7	304.3
138.3	305.0
138.9	305.7
139.5	306.4
140.0	307.0
140.5	307.5
140.9	308.0
141.3	308.5
141.7	308.9
142.0	309.4
142.4	309.7
142.7	310.1
142.9	310.4
143.2	310.8
143.5	311.1
143.7	311.3
143.9	311.6
144.1	311.8
144.3	312.0
144.4	312.2
144.6	312.4
144.7	312.6
144.9	312.8
145.0	312.9
145.1	313.1

[Positions on shaft correspond to number of places selected on input data card 4.]
$L=3.00000+01[\mathrm{NCH}$
$\mathrm{H}_{2}=0.00000+00 I \mathrm{NCH}$
$K 1 x=2.0000 \mathrm{e}+04 \mathrm{LR} / \mathrm{IN}$
C $1 \times=7.0000$ A +00 LH .SEC/IN
$1 X=0.0000$ O+00LE/IN
$01 X=0.00000+00 \mathrm{LB} \cdot \mathrm{SEC} /$ IN
IP $=5.7000 \mathrm{~A}-01 \mathrm{LB}-\mathrm{IN}-\mathrm{SEC}$?

L2=	1.50000+01INCH
WM1 =	2.00000-01LB
$K 1 Y=$	$1.60000+04 \mathrm{LB} / \mathrm{IN}$
C $1 Y=$	7.0000 + 0 OLESEC/IN
RIY $=$	$0.00000+00 \mathrm{LB} / \mathrm{IN}$
$\cup 1 Y=$	$0.00000^{\text {a }}+00 \mathrm{LH}$. SEC/IN
R1=	$2.00000+00 \mathrm{INCH}$

$\mathrm{H}_{1}=0.00000+00 \mathrm{INCH}$ WMC= $2.00000-01 \mathrm{LB}$ HC= $2.00000-01 \mathrm{LB}$
$K 2 Y=1.20000+04 \mathrm{LB} / \mathrm{IN}$
$\begin{gathered}\text { C2Y }\end{gathered}=7.00000+00 \mathrm{~L}$-SEC/IN
$R 2 Y=0.0000+00 \mathrm{LB} /$ IN $02 Y=0.0000^{2}+00 \mathrm{LB} \cdot \mathrm{SEC} /$ IN
Rट= 2.000U $\mathrm{C}+00 \mathrm{INCH}$

LZ	XL
15.0	6.55820-03
15.0	7.25090-03
15.0	8.06010-03
15.0	8.97920-03
15.0	$1.00446-02$
15.0	1.12870-02
15.0	1.27538-02
15.0	1.44980-02
15.0	1.6593日-02
15.0	1.91730-02
15.0	2.21700-02
15.0	2.57850-02
15.0	2.98930-02
15.0	3.41160-02
15.0	3.7604e-02
15.0	3.92690-02
15.0	3.86120-02
15.0	-3.6194e-02
15.0	3.30180-02
15.0	2.98176-02
15.0	2.69750-02
15.0	2.44320-02
15.0	2.23180-02
15.0	2.05300-02
15.0	1.9011-02
15.0	$1.77138-02$
15.0	$1.65940-02$
15.0	1.56?10-02
15.0	1.47690-02
15.0	1.40160-02
15.0	1.33450-02
15.0	1.27450-02
15.0	1.2203e-02
15.0	1.1712@-02
15.0	1.12650-02
15.0	$1.08560-02$
15.0	$1.04800-02$
15.0	$1.01340-02$
15.0	9.81696-03
15.0	9.52690-03

YL
1.07790-02
1.22960-02
1.41130-02
1.6305p-02
1.89510-02
2.2112e-02
2.57550-02
2.96130-02
3.30080-02
3.49550-02
3.48390-02
3.2990e-02
3.02880-02
2.74570-02
2.48600-02
2.26030-02
2.06810-02
1.90480-02
1.76580-02
1.64680-02
$1.54440=02$
1.45570-02
1.37820-02
1.31010-02
1.25010-02
1.19690-02
1.14970-02
1.10780-02
1.07070-02
1.03820-02
1.01000-02
9.8616-03
9.6667e-03
9.5174e-03
9.41620-03
9.3663e-03
9.37080 .03
9.43250-03
9.55280-03
9.7311^{6-03}

PXL

11.21
12.20
13.34
14.65
16.18
17.99
20.15
22.76
25.98
30.01
35.13
41.68
50.08
60.66
73.35
87.29
100.92
112.86
122.56
130.15
136.02
140.58
144.15
146.98
149.23
151.03
152.48
153.65
154.56
155.28
155.81
156.19
156.41
156.50
156.45
156.26
155.94
155.47
154.84
154.04

PYL
SPEED

TABLE B-III. - Concluded. ROTOR DISPLACEMENTS AND PHASE ANGLES
[Positions on shaft correspond to number of places selected on input data card 4.]

$$
\begin{aligned}
L & =3.0000 e+01 I N C H \\
H 2 & =0.00009+00 I N C H \\
K 1 X & =2.00000+04 L B / I N \\
C 1 X & =7.00000+00 L H \cdot S E C / I N \\
K I X & =0.0000+00 L H / I N \\
D I X & =0.00000+00 L H \cdot S E C / I N \\
I P & =5.70000=01 L H-I N-S E C 2
\end{aligned}
$$

$$
\begin{aligned}
& L 1=1.50000+011 \mathrm{NCH} \\
& W=1.10000+02 \mathrm{LB} \\
& K 2 x=1.50000+04 \mathrm{LB} / \text { IN } \\
& \text { C } 2 \mathrm{X}=7.0000 \mathrm{C}+0 \text { LB.SEC/IN } \\
& \text { R? } \mathrm{X}=0.0000 \text { e } 0 \text { OULB/IN } \\
& 02 \mathrm{X}=0.00000+00 \mathrm{LB} \cdot \mathrm{SEC} / \mathrm{IN} \\
& I T=2.16008+01 \mathrm{LB}-\mathrm{IN}-\operatorname{SEC} 2
\end{aligned}
$$

PHI $=0.0000$ +00DEGREES

L2 $=1.50000+01$ INCH $W M 1=2.0000 \approx-01 \mathrm{LB}$ $K 1 Y=1.60000+04 \mathrm{LB} / 1 \mathrm{~N}$ CIY $=7.0000+00 \mathrm{LB} . \operatorname{SEC} /$ IN $R I Y=0.00000+00 \mathrm{LB} /$ IN $U T Y=0.00000+00 \mathrm{LB}$. SEC/IN $R 1=2.00009+00$ INCH
$\mathrm{H}_{1}=0.00000+00 I \mathrm{NCH}$ WMZ $=2.00000-01 \mathrm{LB}$ $K 2 Y=1.20003+04 \mathrm{LB} / \mathrm{IN}$ C $2 Y=7.0000$ @+00LB.SEC/IN R2Y $=0.0000 \mathrm{C}+00 \mathrm{LB} /$ IN D2Y $=0.0000^{2}+00 \mathrm{LB} \cdot \mathrm{SEC}^{2} /$ IN $R 2=2.00000+001 \mathrm{INCH}$

LZ	XL	YL	PXL	PYL	SPEEO
-15.0	1.32610-02	1.86800-02	7.16	11.04	40.00
-15.0	1.42470-02	2.03470-02	7.60	12.19	41.00
-15.0	1.53160-02	2.2212e-02	8.12	13.65	42.00
-15.0	1.64 1818 -02	2.43040-02	8.71	15.53	43.00
-15.0	1.77570-02	2.66380-02	9.42	18.00	44.00
-15.0	1.91626-02	2.91820-02	10.26	21.28	45.00
-15.0	2.07180-02	3.17970-02	11.30	25.65	46.00
- 15.0	2.24490-02	3.41200-02	12.58	31.28	47.00
- 15.0	2.43810-02	3.55110-02	14.21	38.02	48.00
-15.0	2.65400-02	3.53110-02	16.29	44.95	49.00
-15.0	2.89380-02	3.35000-02	19.02	50.47	50.00
-15.0	3.15270-02	3.09330-02	22.66	53.21	51.00
-15.0	3.41168-02	2.86540-02	27.49	52.95	52.00
-15.0	3.62460-02	2.72400-02	33.69	50.50	53.00
-15.0	3.71760-02	$2.67706=02$	41.00	47.05	54.00
-15.0	3.62570-02	2.70880-02	48.33	43.49	55.00
-15.0	3.3654e-02	2.8011e-02	53.96	40.28	56.00
-15.0	3.03979-02	2.94030-02	56.54	37.60	57.00
-15.0	2.75660-02	3.11630-02	55.85	35.49	58.00
-15.0	$2.57140-02$	3.32189-02	52.72	33.94	59.00
-15.0	2.49080-02	3.55180-02	46.38	32.86	60.00
- 15.0	2.49R08-02	3.80330-02	43.90	32.18	61.00
-15.0	2.57070-02	4.07510 .02	39.88	31.84	62.00
-15.0	2.69010-02	$4.36710=02$	36.56	31.78	63.00
- 15.0	2.84270 .02	4.67970-02	33.93	31.96	64.00
-15.0	3.02000-02	5.01390-02	31.92	32.35	65.00
-15.0	3.21680-02	5.37130-02	30.41	32.94	66.00
-15.0	3.43020-02	5.75330-02	29.31	33.71	67.00
- 15.0	3.65900-02	6.16190-02	28.54	34.66	68.00
-15.0	3.90280-02	6.59900-02	28.04	35.79	69.00
- 15.0	4.16980-02	7.06660-02	27.75	37.09	70.00
-15.0	4.4369日-02	7.56650-02	27.65	38.58	71.00
-15.0	4.72940-02	8.10050-02	27.70	40.26	72.00
-15.0	5.04080-02	8.66970-02	27.90	42.14	73.00
- 15.0	5.37320-02	9.27470-02	28.21	44.23	74.00
-15.0	5.72890-02	9.91510-02	28.65	46.56	75.00
-15.0	6.11080-02	1.05890-01	29.20	49.13	76.00
- 15.0	6.52220-02	1.12916-01	29.86	51.96	77.00
-15.0	$6.96710-02$	1.20170-01	30.64	55.06	78.00

$=15.0$
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
$=15.0$
-15.0
-15.0
-15.0
$=15.0$
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15.0
-15

. $97550=02$
8.5488®-02
9.1747e-02
9.85720-02
$1.05990-01$
1.14000-01
$1.22570-01$
$1.31630-01$
1.41090-01
1.50R0日-01
1,60570-01
$1.70180-01$
$1.79368-01$
1.87830-01
1.95280-01
2.01450-01
2.06130-01
2.09?00-01
2.10630-01
2.10510-01
$2.09010-01$
2.06340-01
2.02749-01
$1.98470-01$
1.93720-01
1.88700-01
$1.83550-01$
1.7838-01
$1.73298=01$
$1.68330-01$
1.63540-01
1.58950-01
1.54570-01
1.50410-01
1.46460-01
$1.42730-01$
1.39200-01
$1.35860=01$
$1.32710-01$
1.29749-01
$1.26030-01$
1.24270-01
1.21760-01
$1.19380-01$
$1.17130-01$
1.15000-01
1.12970-01
1.11050-01
1.09238-01
1.07500-01
1.05850-01
1,04280-01
$1.02780-01$
1,0135e-01
9.99970-02
9,86850-02
9.74390-02
9.62480-02
$9.51060-02$

58.44	79.00
62.09	80.00
66.01	81.00
70.16	82.00
74.52	83.00
79.03	84.00
83.63	85.00
88.23	86.00
92.76	87.00
97.16	88.00
101.37	89.00
105.33	90.00
109.05	91.00
112.50	92.00
115.72	93.00
118.72	94.00
121.54	95.00
124.20	96.00
126.73	97.00
129.15	98.00
131.46	99.00
133.66	100.00
135.75	101.00
137.73	102.00
139.60	103.00
141.36	104.00
143.00	105.00
144.53	106.00
145.96	107.00
147.29	108.00
148.53	109.00
149.69	110.00
150.77	111.00
151.77	112.00
152.71	113.00
153.59	114.00
154.41	115.00
155.18	116.00
155.91	117.00
156.59	118.00
157.23	119.00
157.84	120.00
158.42	121.00
158.96	122.00
159.47	123.00
159.96	124.00
160.42	125.00
160.87	126.00
161.29	127.00
161.69	128.00
162.07	129.00
162.43	130.00
162.78	131.00
163.12	132.00
163.44	133.00
163.75	134.00
164.04	135.00
164.33	136.00
164.60	137.00
164.86	138.00

APPENDIX C

LISTING AND SAMPLE OUTPUT OF COMPUTER PROGRAM ROTOR4M

BEGIN
COMMENT THIS PROGRAM EVALUATES DESIGN DATA FOR A FOUR DEGREE
FREEDOM SYSTEM THAT SIMULATES A ROTBR ON GENERAL ANISTTRQPIC RRGS． THE EQUATIUNS SOLVED HAD BEEN LINEARIZED ．NO ASSUMDTIONS WEKE
MAUE ON THF REARING CHAFACTERISTICS．THE CRISS COIPIING TERIMS ARE
KEPT WITH PROPER SURSCRIPTS AS USFD IN THE DERIVATIUN IFF THE EQNS．
THE PRGGRAM REQUIRES THE FGLLOWING Ti BF READ AS INPUT DATA：
CAN゙） 0
SPEC－ALLIJWARLF PERCENT ERKOR ON SPEEO
CAKO 1
1．WG－INITIAL SPEED（RPS）
2．DN－INCREMENT IN SPEEU（RPS）
3．HM－FINAL SPEFD（RPS）
CARL 2
1．L－LENGTH BETN BRGS（INCH）
2．L1－UIST FROM $1 S T$ BRG TO MASS CENTER（INCH）
3．L？－DIST FROM 2NO BRG TO MASS CENTER（INCH）
4．W－ROTOR WEIGHT（LBS）
5．IP－POLAR M．I．（LB－IN－SEC？）
6．IT－TRANSVEFSE M．I．DF ROTDK AROUT MASS CENTER（LB－IN－SEC2）
CARIJ 3
1．WMI－FIRST UNRALANCE WEIGHT（LBS）
2．WM2－SECONO UNBALANCE WEIGHT（LBS）
3．H1－DIST FRGM 15T BKG TG 151 UNBALANCE（INCH）
4．H2＂DIST FRTIM 1ST BRG TO 2NU UNAALANCE（INCiF）
5．PHI－PHASE ANGLES BETN UNBALANCE PLANES
6．R1－RADIUS DF IST INBALANCE LOCATIDN
7．R2－RADIIS JF 2IYD UVBAI＿ANCE LOCATION
CARO 4
1．P＝NO．GF PLACES OTHER THAN THE BRG LOCATIONS ：NHERE
DISPLACEMENTS ARE TI RE MEASIJRED
2．LZI－חIST FKIM 1 ST BKG TU 1ST PRIRE（INCH）
3．LZ2－DIST FRחM 1ST BRG TO 2ND PRDEE（INCH）
CAKU 5
1．KIX－1ST BRG STIFFNESS IN X DIRECTIDN（LR／IN）
2．K2Y－2ND BRG STIFFNESS IN X OIRECTIUN（LA／IN）
3．KIY－ $15 T$ ERG STIFFNESS Ji Y DIRECTION（LB／IN）
4．KZY＝2ND RRG STIFFNESS IN Y DIRECTIUN（LB／IV）
CAKD 6
1．CIX－1ST BRG DAMPING COEFF IN X IRECTIDN（LB．SEC／IN）
2．C $2 X-2 N D$ BRG DANPING CDEFF IN X DIRECTION（LB．SEC／IN）
3．CIY－1ST BPG DAMPING COEFF IN Y OIRECTICN（LR．SEC／IN）
4．C2Y～2N！BRG DAMPING COEFF IN Y DIRECTION（LQ．SEC／IN）
CARU 7
1．DIX－CROSS CMUPLING DAMPING COEFF（LR．SEC／IN）
2．D2X－CROSS GTUPLING DAMPING COEFF（LR．SEC／IN）
3．DIY－CRGSS CTUPLING DAMFING CCEFF（LR．SFC／IN）
4．リスY－CROSS CNUPLING DAMPING COEFF（LR．SEC／DN）
CARD
1．RIX－CRUSS COUPLING STIFYNESS（LB／IN）
2．R2X－CRESS CTUPLING STIFFNESS（LB／IN）
3．R1Y－CRISS CTUPLING STIFFNESS（LB／IN）
4．R2Y－CROSS COUPLING STIFFNESS（LF／IN）
THE．HEADING PRINT UUT UF THE JHPUT DATA ARE AS FDLLOWS：
CARD 9

CINTQUL－I OENTIFIEK CONTROL．LIAG THE SYMMFTRY AF BEARING
LliNE 1 L．L1，1．2，H
LINE2 H？PW：WM1；din？
LIVfe 3 KlX，K2X，K1Y，KटY
LINE 4 CIX，C2X，CIY，CZY
LIVL5 R1X，R2X，RIY，RZY
LINE $6 \quad D 1 X, D 2 X, D 1 Y \cdot D 2 Y$
LINE 7 IP，IT，R1，R2
LINEO PHI ；
COMMENT
THIS PRIJGRAM FINOS THE CRITICAL．SPEFD ANO THE CURRESPONDING
AMPLITIDES ALONG WITH THE．PHASE ANGLFS，FOKCE TRANSMITTED ETC．
IN ORDER TU GET SENSIBLE RESULTS WHICH MAY KEEP THE ALLGNABLE PERCENT ERZOR WITHIS 1 K IN THF CRITICAL SPEET THUS FOUND，THE DAMPTNG CHAMACTERISTICS OF THE KEARING SHOILD NOT RE TOO SMALL－

THE DUTPIIT DATA ARE AS FOLLOWS：
2OLI：SPEEU（RPS）
こOLZ：CODPOINATE
；OL3：AMPLITUDF（LV）
COL4：PHASE ANGLE TF THE AMPLITUDE WRT UNBALANCE
CULל：MAJIH SE゙ソI AXIS／AMPLITUNE IFF COIROINATE（DIM） CULG：MINIR SEMI AXIS／AMPI．ITUUE IIF COURDINATE（DIM） CUL：ELLTPSE ANGLE OF MAJJR＇SEMI AXIS WITH X AXIS COLE：BEARING LOCATION OF MAXIMUM FTRCF TRANSMITTEU COL 7 ：MAX FORCE THANSMITTED
CULIO：PHASF ANGIE IF MAX FURCE HRI UNAALANCE FORCE COLI：PFRCENT CILINDKICAL MIIDE

IF CUNTROL＝O THEN wE ANE DEALING WITH A SYMMETKIC BEARING CASE ；
NEAL T，IJTTME，PTINE ；
KEAL W：N，WD，IV，NM，L ，LI，LZ，W，IP，IT，WM1 ，WMZ，HI， H2，P4，R1，K2，K1K，K2X，K1Y，K2Y，C1X，C2X，C1Y，C2Y， DIX，GZX，חIY，DZY，RIX，RZX，RIY，RZY，R，PI，M，DM1，DM2，

 R1YY－RZYY，IIXY，IXXX，DIYY，DZYY，PN1，PDI ，SI ，PNZ，PD？－ SIT， 3 ，CC ，D！，EE，PX1，PXZ，PY1，PYZ，PA1，PA？， PFX，PFY，E，SPEC，AX，i3X，AY，HY，THETA，MA，MI，
PEKGENT；
INTEGER P，V，I，K1，J，K，IM，VDL，PD，CONTROL，I＿UN；
REGL ARRAY UREGA，$S, S S, X X 1, X X$ ，YY1，YYZ，
PFX2，PFYZ［0：500］，LZ［0：4］，
$X \mathrm{~L}, \mathrm{YL}, P X L, P Y L[0: 500,0: 4], 4[0: 8,0: 8], C, X[0: 8]$ ，
PFX1，PFY $1[0: \zeta 00]$ ，CV［U：12］，$A D[0: 12.0: 500]$ ，PA，FPA，ADX，ABX，
AAY，ARY，FA，CIOR［0：12］；
IANEL LDO ，FINIS，E1，E2 ，LDU1 ，OOITAGIN；
BUDLEAN RS：；
FORMAT HEAD1（6（2（כ9（＂＊＂））．1）．

24（＂＊＂），X1，＂DESIGN MATA FIJR A SINGIE MASS RṬTOR WITH FLEXIBLE SUPPORT AND DAMPING＂，X1． 23 （＂＊＂）．／．6（2（59（＂＊＂）），／））；
FOKAAT HEAU2（2（2（59（＂＊＂）），i），
X5，＂L＝＂，E11．4，＂INCH＂，X12，＂LI＝＂，E11．4，＂IMCH＂，X12，＂L2＝＂，

```
    E11.4, "INCH", X1?, "HI=", E11.4, "INCH", / ,
X4, "H2=", E11.4, "INCH", X13 , "W=", E11.4, "LB", X13 , "WM1=",
    E11.4, "LE", X13, "सM2=", t11.4,"LR", , ,
    X3, "K1X=", E11.4,""LB/IN", X10, "K2X=", E11.4,"LB/IN", X10,
    "K1Y=", E11.4, "LB/IN", X10, "K2Y=", E11.4, "LB/IN", / ,
    X3; "C1X=";E11.4," "B.SEC/IN", X6, "C2X=", E11.4, "LB.SFC/IN",
    X6, "CIY=", E11.4 , "LB.SEC/IN", X6 , "C2Y=", E11.4,"LB.SEC/IN",/,
    X3,"RIX=", E11.4 , "LR/IN", X10, "R2X=", E11.4, "LB/IN", X10,
    "R1Y=", E11.4, "LA/IN", X10,"R2Y=", E11.4, "LB/IN", /,
    X3;"DIXE"*,*E1.4," "LB.SEC/IN", X6 , "ח2X=", E11.4, "LB.SEC/IN",
    X0, "U1Y=", E11.4, "LB.SEC/IN", X6, "O2Y=", E11.4, "LB.SEC/IN",/
*X4;"IP=", E11.4; "LB=IN-SEC2", x6, "IT=", E11.4, "LB-IN-SEC2",
    X6, "R1=", E11.4 . "INCH", X12 "R2=", E11.4."INCH",/,
    X30, "PHI=", E11.4, "OEGREES" , / ,
                                    2(2(59("*"))./)) ;
FOKMAT UUTIC X1, "SNEED", X3 * "CÜNRDINATE", X2 , "AMPLITUDE", X?,
"PHASE", X2, "MAJOR SEMI", X2, "MINOR SEMI", XL, "ELLIPSE", X?, ,
                "BEARING", X3, "REAFING", X? , "FORCF PHASE", X4, "PERCENT",
    / , "REV/SEC", X16, "(IN)", X5, "ANGLE", XP,"AXIS (DIM)",XZ,"AXIS
(OIM)",
X3,"ANGLE", X3 , "LOCATION" , X 3,"FORCE", X6 , "ANGLE" , X5 ,
    HCYLINORICAL";);
FORMAT OUTZA (F7.1 , XO , "X", II, X5, E10.3, X1, F6.1, X4,
    F5.2, X7, F5.2, X5, F5.1, X6, I2, X4, E10.3, X? , F6.1, X7,
    F6.1 );
FORMAT OUTZH (F7.1, XO, "Y", II, X5, F10.3, X1, F6.1, X4,
    F5.2, X7, F5.2, X5,F6.1, X6, I2, X4,F10.3, X2, F6.1, X7,
    F5.1 ):
FURMAT GUT?C (F7.1, X3, "X(", F5.1, ")", XA, E10.3, X1,
    F6.1, X4,F5.?, X7, F5.2, X5, F6.1,X6, I?, X4, E10.3,
    XZ,F6.1, X7,F6.1 ) ;
FORMAT OUT2D (F7.1, X3 , "Y(", F5.1. ")", X2, E10.3, X1,
    FO.1, X4,F5.2, X7,F5.?, X5, F5.1, X6, I?, X4, E10.3,
    X2,F6.1, X7, Fi.1 , ;
```



```
PRUCEDURE FORCE(C, K.D.R,C1,S1,CP,S2,WW,F,PFX,PFY);
VALUE C,K, D,R,C1,S1,C?,S2,WW;
REAL C, <, D, R, C1, S1, C?, S2, WIN,F,PFX, PFY,
CUMMENT THIS PROCFOURE CAICULATES THF FORCE OR MOMENT
    PGUDUCED BY THE REACTIDIVS WHERE
C= UAMPING CIEFF i= CKOSS COUPLING OAMPING
n= STIFFNESS COEFF R= CROSS COUPLING STIFFNESS
THE FOKCE CALGULATED IS IN THE DIRECTIUN UF XI WHERE
XI=C1 COS(WWT)+ SI SIN(WIWT),WHFRE WW=ROTIR SPEED SN RAD/SEC
UIKECTIUN NORMAL TO XI IS X2 WHERE
X2= C2 CnS (WWT) + S2SIN(WWT)
F=F COS(WWT->PH)=A COS(WWT) + B SIN(NWT);
BEGIN
KEAL A, H;
```



```
F&SGRT (AXA + MXB ) ;
PFK&ANGLF ( 子 , &) ; PFY & ANGLE (-A , B ) ;
END OF PROCEDURE FDRCF;
PRIJCEDUKE ARBITRARYDISPLACEMENT (LL , L , X , XL, YL, PXL, PYL , ;
VALUE LZ , L ;
REAL LZ, L, XL, YI., PXL, PYL. ;
REAE AYRAY X[0] ;
GEなIV
CUMHENT THIS HROCFOURE CALCJLATES THE X AND Y OISPLACEMENTS AT
ANY PDINT MEHSIJREU FIGIM THE FIKST BKG . XL IS SHAFT ABSMLIJE
X USSPI_ACFMENT aND PXI. IS THE PHASt ANGLE ;
HENL : ;
L&LZ/L;
AX + Zx X[3] + (1-7 ) x x[1] ;
dx + Zx X[4] + (1 - Z. ) x x[2];
    Ar + 7 x x[7] + ( 1 - Z ) x x[5]:
    \DeltaY&7. X X[H] + (1-L ) x x[6] ;
    XL & S@RT (AXX AX + AXX RX ) ;
YL + SQRT ( AY X AY + BY X BYY) ;
PXL & ANGIE (AX , AX ) ;
PYL & AMGiLF ( - AY , EY ) ;
END {JF FRUCEDURE ARBITRARYDISPLACFNENT ;
PROIEDUFE PERCYL (A,R,C,D,PERCENT); .
    VALUE A,B,C,D;
    REAI A,R,C,D,PERCENT;
BEGIN
    REAL XX1,XX2,U ;
    XX1+ SinT (AXA+RXB);
    XX2&SORT(CXC+DXD) ;
    U&S(QRT}((A+C)*2+(B+1))*2)
        IF XX1>XX2 THEN
        PEFPCENT+U/(2\timesXXI)\times100
        ELSE
        PERCENT+U/(PXXX?)\times100;
END IF PROCEDURE PERCYI ;
PROCEDURE FILIPSE(A,R,C,D,MA,MI,THETA);
```

```
    VALUE A,B,C,C;
    REAL A,B,C,D,MA,MI,THETA;
BEGIN
    kEAL U;V,W;
    LAEEL FIN ;
    U
    V*4\times(A\timesD-B\timesC)*2:
    W & SORT(ABS(UxU-V)) /2 ;
    MA + SQRT(ABS(U/2+W)) ;
    MI & SQRT(ARS(U/2-W));
    IF (MA-MI)/NAS.O1 THEN
GEGIN
    THETA&0; GO TO FIN:
ENU
    ELSE
BEGIN
    U&2\times(AXC+B\timesD);
    V 
    THETA+ANGLE(U,V)\times9U/3.14159:
ENE:
FIiv; FMD fiF Procedure Ellipse ;
PRUCEDURE SULVE(N,A,C,RSW,E,KI,EPS,X,E1,E2);VALUE N,RSN,E,KI,EPS;INTEGEK N;M1;REAL E,EPS;BDOLEAN RSW:REAL AḦRAY A[O,O],C,X[O]:LABEL EI,E?;REGIN INIEGER I,J,K,JI,K2,L;REAL BIG,TEMP, DIAG.NORM,R;OWN INTEGER ARRAY F[O:N] ;REAL AFRAY D[.O:N];UWN REAL ARRAY E[O:V,0:N]:LAZEL S1, S2,S3,S4,55, S6,REP ,ST,SR,S9,IT1,S10,S11.S12,S13,S14.S15,EXIT;S1:TF RSW THEN G1] Ti] REP;FOR I + ISTEP IUNTIL N DO FOR J\&ISTEP IUNTIL N DO F[I,J]\&A[I,J];S?:FOR I ISTEP IUNTIL N DO REGIN L\&I-1;FDR J\&I STED IUVTIL N DO FEGIN Q\&O;FOR K\&ISTEP IUNTIL L DD \(Q \leftarrow E[J, K] \times B[K, I]+Q ; B[J, I] \leftarrow B[J, I]-Q E N D: R 1 G \leftarrow 0 ; K 2 \leftarrow I ; S 3: F O R K \& I\) STEF IUNTIL N DO BEGIN IF ABS(B[K,I])>HIG THEN BEGIN BIG\&ABS(B[K.I]):K? \& K END END:S4:IF BIGSEPS THEN GO TO EI;F[I]+K2:IF K2\#I THEN S5:FתR K 1 STE. P IUNTIL N UU REGIN TEMP\&A[K2,K];A[K?,K]\&A[I,K];A[I,K]\&TEMP;TEMP\&B[K2,K] ;B[K?,K]\&E[I,K]:A[I,K]+TEMP;END;DIAG\&BII,I];SK:FПR J\&I+1STEP IUNTIL N DO
```



``` IAG END END;REP:FOR I\&1STEP 1UNTIL N Di] BEGIN TEMP\&C[F[I]J;C[F[I]]\&C[I];
```



``` \(P\) IUNTIL L DD Q\&B[I,K]×D[K]+Q:D[I]\&(DCI]-Q)/B[I,I]END;SB:FQR I\&N STEP-1U
```



```
END;S9:IF E=OTHEN GIT TU EXIT;JI+O;1T1:IF JI ZKI THEN GO ID EZ:NORM\&O:FOR
I H ISTEF IUNTIL N DO HEGIN Q+O;L I-I:SID:FOR K+1STEP IUNTIL N DD Q\&A[I.K \(] \times X[K]+Q ; D[I]+C[I]-Q ; S 11: N O R M+A B S(D[I])+N O R M ; O+0 ; S I 2: F D R K+1 S T E P\) 1UNTIL \(L\) UU \(Q \leftarrow B[I, K] \times D[K]+N: D[I] \leftarrow(D[I] \sim Q) / B[I, I] E N[F F D R I * N S T E P-I U N T I L I D \cap B F G\) IN \(Q+0\) SSI3:FOR \(K \leftarrow I+15 T E P\) 1UNTIL N DO Q\&E[I,K]×D[K]+Q;X[I]\&X[I]+D[I]-Q EN U;S14:J1+J1+1;515:IF NXERNORM THEN G? TD ITI:EXIT:END;
PRUCEDURE ICALCULATE(I, OMEG,IM,CGT)
VALUE GMEG.I.IM.CGD;
REAL DMFG;
INTEGER I, IM,CGO;
BEGIN
COMMENT THIS PROCEDURE CALCULATES THE AMPLITJOES AT BRG. IOCATIONS UNTIL THE MAX ANPLITUOE IS REACHED AT CERTAIN SPFF! ;
OMEGA[I]\&OMEG;
\(S[1]+2 \times P I \times \operatorname{OMEGA}[I]:\)
```

```
BEGIN
REAL XXXX ;
A[1,1]+K1xX-L22 x SS [I] ;
A[1,2] + CixX < S[I];
A[1,3] + K2xX - L11 x SS[I] ;
A[1,4] & C2XX X S[I] ;
A[1,5] & R1YY;
A[1,6] & D1YY x S[IT;
A[1,7]&RZYY;
A[1,8] & D2YY x S [I];
A[2,1] & C CIXX x S[I] ;
A[2,2]*K1XX - L22 x SS[I] ;
A[2,3] & - C2XX * S[I];
A[2,4]*K2XX - L11 x S5[I] ;
A[2,5] + - DIYY x S[I] ;
A[2,6] & RIYY;
A[2,7] - UZYY x S[I] ;
A[2.8] & R2YY ;
A[3,1]}\leftarrow\textrm{F}1\timesX
A[3,2] & DIXX x S[I] ;
A[3.3] & RวXX;
A[3,4]+nZXX x S[I];
A[3.5] + K1YY-L22 x SS[I];
A[3,6] & CIYY X S[I];
    A[5,7] & K2YY - Lil X SS[I] ;
A[3,B] & CZYY X S[I]:
A[4,1]*-DIXX X S[I] ;
A[4,2]*R1XX;
A[4,3] &-UZXX x S[I] ;
A[4.4] & R2XX;
A[4,5] & CiYY x S[I] ;
A[4,6] & K1YY - L22 XSS[T];
A[4.7] < - CZYYY X S[T] ;
A[4,8] & K2YY - L11 x SS[I];
A[5.1] + RT x SS[I] - K1YX < L111;
A[5,2] & - C{XX * L!! < S[T] ;
A[b,3] & - KT x SS[[] + <2xx x L_22 ;
A[5,4] & C?XX x L2? < S[[] ;
A[O,5] &-41YY < L11; ;
A[5,6] & - RP x SS[1]-L11 x S[I] x M1YY;;
A[J.7] & R2YY x L22?;
A[5,B] & RO x SS[I] + M2YY x L22 x S[I];
A[S,1] & C!XX 人LL11 * S[I] ;
A[ó2] & RT x SS[I] - K1xx x L11;
A[0,3] & C?XX < L22 x S[I] ;
A[6,4] & - RT x SS[I] + K2XX x L2? ;
A[0.5] & RP 人 SS[I] + DIYY 人L11 X Srri;
A[6.6] &-R1YY x Li1;;
A[0,7] &-RP X SS[I] - OZYY }\times\mathrm{ LOP X S[I];
A[6,8] & R?YY x L2? ;
A[l,1] & - R1XX 人 L11 ;
```



```
A[7,3] + R2XX x L22;
A[7,4] + - KP x SS[I] + D2XX x L2Z x S[I] ;
A[l,5] & RT }\times\mathrm{ SS[I] = K1YY X L11;;
A[7,6] &-CIYY X L11 X S[IJ;
```

```
A[7,7] & -RT x SS[I] + K2YY x L2Z ;
A[7,8] & C2YY x L22 x S[I] ;
A[8,1] & - RP 人 SS[I] + D{XX x L11 xS[I];
A[8,2] + - &1XX x L11 ;
A[d,3] & HP x SS[I] = D2XX x L22 x S[I] ;
A[8,4] & R2XX x L22 ;
A[8,5] & C1YY X L1, x S[I] ;
A[8,6] 4 RT X SS[I] - K1YY x L111;
A[8,7] * - C2YY x L2? x S[J] ;
A[B,B] + - KT x SS[I] + K?YY x L2? ;
C[1] & (DM1 x SS[J] x R1 ) / M + (UN2 * SS[T] x R2 x COS(PHI))/ M ;
C[2] + - (DM2 x SS[I] x R2 x SIN (PHI)) / N ;
C[3] & (UM2 x SS[I] x R? x SIN (HHI)) / M ;
C[4] & (MM1 x SS[I] x R1 ) / M + ( UM2 x SS[I] x R2 x COS(PHI))/M ;
```



```
    (Mx L ) ;
```



```
C[7] & (DM2 < SS[I] x H!T2 < K2 x SiN (PHI )) / (Mx L) ;
```



```
    (Mx L ) ;
ENU ;
SOLVE (N, A, C, RSN, E, K1, EPS, X, E1, FZ, ;
```



```
xx1[I] & SQRT (HB) ;
CC*X[3] }\times\times[\mp@code{3] + X[4] X X[4];
XX2[I] + SOMT (CC) ;
DU & X[5] x X[5] + X[0] X X[6] ;
YYI[I] & SORT (DD ) ;
EE& X[7] x X[7] + X[8] x x[8];
YYZ[I] & SQRT (EE ) ;
    IF IM>4 THEN
FOR }J+1\mathrm{ STFP 1 UHTTL P DO
BEGIN
ARBITRARYDISPLACEMENT ( IZ[J] , L , X , XL[I,J], YL[J,J], PXL[J,J],
    PYL[I,J] ) ;
    AA[PxJ+3,I]+XL[I,J];
    AA[?XJ+4,I]&YL[I,J];
    IF CGO=1 THEN
BEGIN
    AAX[2\timesJ+3]+AAX[? [ J ] + | ] +AX;
    ARX[2XJ+3]&ABX[2XJ+4]&BX;
    AAY[2XJ+3]+AAY[2XJ+4]+AY;
    ABY[2\timesJ+3]+APY[? XJ + | ] +BY;
    PA[2\timesJ+3]+PXL[I,J]\timesRAD;
    PA[2\timesJ+4]+PYL[I,J]\timesRAD;
ENU;
END;
    AA[1,I]&XX1[I];
    AA[?,I]&YY1[1];
    AA[3,I]+XX?[J];
    AA[4,]]+YY2[I];
ENU DF PROCEDURE ICALCIJLATE;
PROCEDURE HELPME (H, Q ,IM, I );
    VALUE H,Q,INi, I;
    INTEGER H,Q, IM, I ;
```

```
BFG&N
    INTEGEK LOC , J ;
    IF H = 1 THEN
    PERCYL(X[1],X[2];X[3],X[4],PERCENT)
    FLSE
    PERCYL(X[5],X[6],X[7],X[8],PERCENT);
    IF IM=1 QR IN=2 THEN
        ELLIPSE (X[1], X[2], X[b], X[6], NA, MI , THETA )
    ELSE
    IF*IM=3 OR IM=4 THEN
        ELLJPSE( X[3], X[4], X[7], X[8], MA, MI, THETA )
    ELSE
        ELLIPSE (AAX[IM],ABX[IM],AAY[IM],ABY[IM],MA,MI,THETA`;
IF IM \leq 4 THEN
BEGIN
    LOC&COOR[IM];
CGMMENT FOLLOWING PRINTS THE RESULTS IN X DIRFCTION AT BEARING;
    IF H=1 THEN
    WRITE(LP, OUT\A, OMEGA[l], COUR[IM], AA[IM,I], PA[IM],MA/AA[IM
,I],MI/AA[[M,I],THETA,LUC,FA[IM],FDA[IM],PERCFNT)
            ELSE
CUMMENT FRLLOWING PRINTS THE RESULTS IN Y DIRFCTION AT BEARING;
    WRITEC LP, OUTOB, OMEGA[I], C[OR[IM] , AA[IM,I], PA[IM],MA/AA[IM
,I],MI/AA[IM,I],THETA.IGC,FA[IM],FPA[IM],PERCENT);
ENU
    ELSE
BtGIN
    IF FA[&]> FA[H] [HEN
BEGIN
    LOC+COUR[Q] ;
CUMMENT FOLLDWING PRTNTS THE RFSUITS IN X IIRECTION AT ARBITRARY LOC;
    IF H=1 THEN
        WRITE (LP , JUT2C , UMEGA[I] , COOR[[M] , AA[IM, I ] ,
    PA[IM],MA/AA[IM,[J,NI/AA[IM,I],THETA,LOC,FA[Q],FPA[Q1,PERCENT)
    ELSE
CGMMENT FOILGWING PRINTS THE RESULTS Tin Y DIRFCTION AT ARBITRARY LOC;
            WRITE (LP, GUTZD), MMEGA[I], COOR[IM] , AA[IM, I ],
    PA[IM] ,MA/AA[[M,I],MI/AA[IM,I ],THETA,LOC,FA[Q],FPA[Q],PERCENT);
END
    ELSE
BEÖ1N
    LOC*COOR{H];
COMMENT FOLLIWING PRINTS THE RESULTS IN X DIRECTION AT ARBITRARY LOC;
                IF H=1 THEN
        WRITE (LP , I]UT2C, OMEGA[I] , COIJR[TM] , AA[IM , I ] ,
    PA[IM],MA/AA[IM,I],MI/AA[TM,I],THETA,LDC,FA[H],FPA[H],PERCENT)
    FLSE
COMMENT FOLLOWING PRINTS THE RESUL.TS IN Y DIRECTITN AT ARBITRARY LDC ;
                HRITE (LP , OUT2D, OMEGA[I], COOR[IM], AA[IM, I ],
    PA[IM],MA/AA[IM,I],MI/AA[IM,I],THETA,LDC,FA[H],FPA[H],PERCENT);
ENU ;
ENU:
ENL OF PROCEDURE HELPPAE:
PROCEDIJE CALCULATE (I,UMEG,IM);
    VALUE I,OMEG,IM;
```

```
    REAL OMEG;
    INTEGER I,IM;
BEGIN
    ICALCULATE(I,TMMEG;IM,I);
PXI&ANGLE (X[2], X[1]); PX2 & ANGLF (X[4], X[3] ) ;
PY1 & ANGLE (- X[5], X[6] ); PY2 & ANGLE (-X[7], X[R]), 
    IF ENTIER(IM/2)=IM/? THEN
BEGIN
COMMENT THIS CALCULATES THE PHASE ANGLES AND FORCES AT CRITICAL
SPEED IN'Y DIRECTION ;
    PA[2]+(SI +PY1) XRAD;
    PA[4]+(SI+PY2) XRAD;
    FORCE(C1Y,K1Y,DIX,R1X,X[5],X[6],X[1],X[2],S[J],FA[2],PFX,PFY1[I]);
    FOKCE(C2Y,K2Y,D2X,K2X,X[7],X[8],X[3],X[4],S[1],FA[4],PFX,PFYZ[I]);
    FPA[2]+(SI + PFY1[I])\timesRAU;
    FPA[4]+(SI +PFYO[I]) XRAD;
    HELPMF(2,G,IM,I);
ENU ELSE
BEGIN
COMMENT THIS CALCULATES THE PHASF ANGLES AND FORCES AT CRITICAL
SPEED IN X DIFECTJON ;
    PA[1]+(SI+PX1)\timesRAD;
    PA[3]+(SI+PX2)\timesRAD;
    FGFCE(C1X,KIX,01Y,R1Y,X[1],X[?],X[5],X[6],S[I],FA[1],PFX1[I],DFY);
    FOFCE(C2X,K2X,D2Y,R2Y,X[3],X[4],X[7],X[8],S[I],FA[3],PFX?[I],PFY);
    FPA[1]+(SI+PFXI[I])\timesKAU;
    FPA[3]&(SI+PFX?[I])\timesRA[咅
    HELPME(1,3,IM,I);
ENI);
ENU OF ProceDlire calculate;
PRIGCEDUFE FINDMAX ;
BEGIN
    REAL IDW ;
    INTEGEK P, J,S ;
    I_ABEL ENDOFM, GETITGOOD, WRITEJT, GOGO, AGIN ;
    IF CONTROL=O THEN LDN&? ELSE LUN&1 ;
    FOR IM&1 STEP LON UNTIL NOL OO
BEGIN
    IF CV[IM] = 6 THEN GO TO EN[J\capFM;
    IF AA[IM,I] \geq AA[IM,I-1] AND CV[IM] # 3 THEN GU TO ENDOFM ;
    IF AA[IM,I]\leqAA[IM,I-1] AND CV[IM] = 3 THEN GU TO ENDOFM;
    IF AA[IM,I] < AA[IM,I-1] THEN GO TO GETJTGOחO:
    CV[IM] + CV[IM] + 1 ;
    GO TO ENDOFM ;
gETITGOIJO:
    CV[IM] & CV[IM] +1;
    IF (OMEGA[I] - DMEGA[I-1]) / OMEGA[I] \leq SPEC THEN
BEGIN
    P}& I
    CV[IM] & CV[IM] + 1;
    GO TO*WRITEIT ;
ENU;
    IDW & DW / 2; P & I;
GOGU :
    J 2; FOR S & 1, 3, 5 DD
```

BEGIN
OMEGA [S] + OMEGA [P-J];
$A A[I M, S] \leqslant A A[I M, P-J] ;$
$J+J-1$;

ENU;
$P \leftarrow Z \quad$ DMEGA [P] + DMEGA $[P-1]+$ TDW;
ICALCULATE (P, OMEGATPT,IM, C);

AGIN:
$P+P+1 ;$ IF $P=4$ THEN
BEGIN
DMEGA[P] + DMEGA[P-1] + IDW;
ICALCULATE (P, TMEGA[P], TM.0);
END:
IF AA[IM,P] < AA[IM,P-I] THEN
BEGIN
IF (GMEGA[P]- חMEGA[Pш1])/ OMEGA[P] \leq SPEC THEN
BEGIN
$C V[I M]+C V[I M]+1 ;$
GO TO WRITEIT ;
END:

Elvu;
GO TO AGIN:
WRITEIT :
CALCULATE (P-1, \quad MMEGA $[P-1]$, IM) ;
$P P \leftarrow 0$: FQR $5 \leftarrow 1$ STEP LON UNTTL NBL DO
IF CV[S]=0 THEN PP\&PP+LON:
IF PP \geq NOL THEN
BEGIN

```
            WRITE (LP[DBIJ,<//,"THE FGLLONING VALUES ARE AT THE MAX. SPEED =",
```

 F7.1, X1, "HPS"> , WM):
 FOR IM 4 1,2,3,4 DO CALCULATE (1, WM, IM) ;
 \(I M+\) NUL ;
 ENO ;
ENUUFM:
ENO:
ENW OF PROCEDURE FINDMAX;
IOTIME \& TIME (3) ;
PTIME + TIME(2) ;
$G \leftarrow 32.2 \times 12$:
WRITE (LP[3]);
WRITE (LP , HEAD1) ;
WKITE (LP[PÁGE]) ;
REAL (CR , / , SPEC) ;
READ (CR, / WO, DW, WM) ;
LDU: REAO (CR, / L , LI , L2, W, IP, IT) [FINIS];
READ (CR , / WM1, WMZ, H1, H2, PH, R1, R2, ;
REAU (CR, , P, FOR J\&1 STEP 1 UNT]LP DU [LZ[J]], ;
READ (CR, / K1Y; K2X, K1Y, K2Y) ;
REAU (CR, , C1X, C2X, CIY, C2Y, ;
READ (CR, , DIX, D2X , UIY , DRY, ;
READ (CK, , RIX, RZX, HIY, RZY, ;
READ (CR, , CONTROL) ;
$P I \leftarrow 3.14159265$;
$M \leftarrow W / G ; \quad D M 1 \leftarrow W M 1 / G ; D M 2 * W M 2 / G ;$


```
L11 * L1 / L ; L22 * L2 / L ;
RO1 + H1-L1; RO2 & H2 - L1;
PHI + (PHxPI ) / 180);
N*8; RSW&FALSE ; EPS*4.0 [-10 ;K1&2 ; E<1.0a-5 ;
RAO & 57.29578;
K1xx & K1X/M ; K2XX & K2X/M ;
K1YY & K1Y/M ; KOYY & KวY/M ;
C1XX&C1X/M; C2XX + C2X/M ;
C1YY&C1Y/M; CPYYY C COY,NM,
F1XX&KIX/M ; F2XX & ROX/M M
KIYY & KIY / M ; RZYY & ROY / A ;
DIXX & DIX / M ; DOXX * D2X / 4 ;
01rY& O1Y/M ; DOYY & חZY/M ;
PN1 & DM2 x R2 x SIM (PHI );
PUL & DM1 x R1 + DM2 x K? x COS (PHI ) ;
SI & ANGLE (PN1 , PDI ) ;
PNZ & RU2 x P? }\times\mathrm{ IMI? }\times\mathrm{ SIN (PHI ) ;
```



```
SIT + ANGLE (PNZ , PDZ ) ;
    PP&O;
WKIIE (LP, HEAD?, L, L1, LZ, H1, H2,N,WM1, NM2, K1X, K2X,
    K1Y, K2Y, C1X, C?X, C1Y, CZY , R1X, R2X, RIY, R2Y, DIX , D?X ,
DIY,DPY, IP, IT, KL, RZ, PH, ) ;
    WRITE (LPRDRI_]);
    WRITE ( L_P , DUTG ) ;
    WRITE (LP[DBL]);
    NOL + 4 + 2XP;
    I}\leftarrow5
    lomtGA[I] + 0;
    FOR IM & 1 STEP 1 UNTIL NOL. NO
BEGIN
    AA[IM.I] + 0;
    CV[IM] & 1;
ENU;
    COGR[1]}\leqslant\operatorname{COOR[?]}+1
    CODR[3] + COOR[4.] + 2 ;
    FMR J&1 STFP 1 UNTIL P DO
    COOR[2xJ+3] & COחR[2xJ+4] & LZ[J];
UUITAGIN:
    I * I + 1 ;
    \squareMEGA [T] + [IMEGA [I-I] + DW:
    ICALCHLATE (I, MmFGA[IJ, NOL, U);
    FINDMAX;
    IF PP \geq NOL THEN
BEGIN
        WRITE (lP[PAGE]);
        WRITE (IP.<"TIJTAL PROCESSINR TIME = ", F6.2.XI,"MINUTES">,
    (TIME(2) - PTIME) / 3600) ;
    WRITE (I_PIPAGE 1, <"TUTAL I- T TIME = ", F6.2, X1. "MINUTES" > ,
    (TIME(3)-IOTIME)/3600 );
    gO TO LDO ;
ENU;
    IF DMEGA[I] \geq iNIA THEN
BEGIN
```

```
    WRITE (LP[DRL],<//,"THE FOLLDNING VALUES ARE AT THE MAX. SPEFD =',
    F7.1 , X1, "RPS"> , &M);
    FOR IM& 1,2,3,4 OU CALCULATE (1,WM. IM);
    WRITE (LP[PAGE]):
    WRITE (LP.<"TOTAL HROCESSOR TIME = ", F6.?,X1."MINUTES">,
(TIMF(2) - PTIME) / 3600 ) ;
    WRITE (IP[PAGE ], <"TGTAL I=0 TIME = ", FG.2. X1, "MINUTES" > ,
    (TIME(3)-IOTIME)/3000) ;
    GO TO LDO ;
    ENO;
        gO TO DOITAGTN:
    E2: WRITE (LP, < "ACCIRACY NOT ORTATNED " > );
        GU TO LDO ;
        E1: WRITE (LP , < SINGULARITY OR ILL CDNOITIDINED MATRIX " > );
        GU TO LON ;
        FlNIS:
        ENU .
    ARCTAN IS SEGMENT NJMPER JO27,PRT ADDRESS IS 025?
    CUS IS SEGMENT NUMBEK OG2O,PRT ADDRESS IS 0255
    SIN IS SEGMENT NUNSER 9029,PRT ADDRESS IS 0266
    SQRT IS SEGMENT NUMBER OO3i),PKT ADDRESS IS 0254
    IUTPUI(W) IS SFGMENT NUMBLR OO31,PRT AODRESS IS 030?
    RLOCK COATROL IS SEGMENT NIMMAER DO3PPPRT ADURESS IS OUO5
    INPUT(W) IS SEGMENT NUMBER OO33,PRT ADDRESS IS 0321
    GU TU SDLVER IS SEGMENT NUMBER OO34,PRT ADDRESS IS 0271
    ALGOL NRITE IS SEGMENT NIJMAER DO 35,PRT ADORESS IS 0014
    ALGUL REAL IS SEGMENT NUMBER OO3G,PRT ADDRESS IS OU15
    ALGDL SELECT IS SEGMENT NUMRER OO37.HRT ADDRESS IS 0016
SON LATLUNTIML = 119 SECINDS.
VUMGER UF EKRORS DETFCTED = OOO. LAST EPKOF DN CAFD #
NUMDER UF SLQUENCE ERRORS CGUNTEN= 0.
NUMEER UF SLOW WARNINGS = D.
PRT SIZL= <S4; TUTAL SFGMENT SIZE= 19R4 WIRUS.
DISh STURAGE REN.= 91 SEGS.; NG. SEGS.= 36.
ESTIMATEU CIURE STURAGE REQUIREMENT = 50PQ WMFOS.
```

TABLE C-I

$L=3.00000+011 \mathrm{NCH}$	$\mathrm{LI}=2.50000+011 \mathrm{NCH}$	$L 2=1.50000+01$ INCH	$H 1=0.00000+001 N C H$
H2 $=0.00000+00$ INCH	$W=1.10000+02 \mathrm{LB}$	WM1 $=2.00000=01 \mathrm{LB}$	WM2 $=2.00000=01 \mathrm{LB}$
$k 1 x=2.00000+04 \mathrm{LE} \angle 1 \mathrm{IN}$	$K 2 X=1.50000+04 L B / I N$	$K 1 Y=1.6000{ }^{\circ}+04 \mathrm{LB} / \mathrm{IN}$	$K 2 Y=1.2000 \mathrm{C}+04 \mathrm{LB} / \mathrm{IN}$
$C 1 X=7.00000+00 L B \cdot S E C / I N$	C2X $=7.00000+00 \mathrm{LB}$.SEC/IN	CIY $=7.0000{ }^{\text {P }}+00 \mathrm{LB.SEC/IN}$	C2Y $=7.0000 \mathrm{e}+00 \mathrm{LB}$.SEC/IN
$R 1 \mathrm{X}=0,0000 \mathrm{O}+00 \mathrm{LB} / \mathrm{IN}$	$R 2 x=0.00008+00 L B / I N$	R1Y $=0.00009+00 L 8 / 1 N^{\prime}$	R2Y $=0.00009+00 \mathrm{LB} / \mathrm{IN}$
D1X $=0.00000+00 L B . S E C / I N$	D2X $=0.00000+00 \mathrm{LB}$. SEC/IN	D1Y $=0.00008+00 L B, S E C / I N$	D2Y $=0.0000{ }^{\circ}+00 \mathrm{LB}$. SEC/IN
$I P=5.70000-01 L B-I N-S E C 2$	$I T=2.16008+01 \mathrm{LB}-\mathrm{IN}-\mathrm{SEC} 2$	$R 1=2.00000+001 \mathrm{NCH}$	$R 2=2,0000 \theta+00 I N C H$

PHI $=0.0000 \rho+000$ EGREES

48.8	Y1	3,3256-02	61.7	1.11	0.45	. 28.5	1	$5.3686+02$	54.0	88.1
51.3	Y2	4,2840-02	130.4	1.16	0.14	120.4	2	$5.2318+02$	119.8	75.5
50.0	$Y(15,0)$	3.4840-02	97.8	1.16	0.25	121.1	2	$5.2119+02$	104.1	81.6
48.8	$Y(-15.0)$	3.5530-02	43.3	1.09	0.60	117.7	1	$5 \cdot 3680+02$	54.0	88.1
53.8	X_{1}	3.5650-02	54.5	1.06	0.42	159.5	1	$7.1790+02$	47.8	91.0
56.3	$\times 2$	4.8098-02	119.1	1.17	0.45	145.7	2	$7 \cdot 3129+02$	109.7	79.3
55.0	$x(15.0)$	3.927e-02	87.3	1.11	0.32	153.3	1	$7.1730+02$	61.7	84.9
53,8	$\underline{X(-15.0)}$	3.7100-02	39.1	1.01	0.71	167.5	1	7.1790+02	47.8	91.0
86.3	$Y 2$	7.5080-02	258.3	1.23	0.50	129.5	2	$9.4490+02$	240.7	13.6
88.8	Y 1	8.9560-02	103.2	1.22	0.46	128.1	1	$1,4758+03$	89.5	13.8
91.3	$Y(15,0)$	$1.2560=02$	151.6	1.06	0.71	116.2	1	$1,4580+03$	98.6	14.2
88.8	$Y(-15,0)$	1.7050-01	100. 3	1.24	0.47	129.7	1	$1.4750+03$	89.5	13.8
97.5	$\times 2$	9.3048-02	264,4	1.09	0.50	153.7	2	$1.4518+03$	248.5	11.7
100.0	$\times 1$	$1.0970-01$	107.5	1.08	0.58	153.2	1	$2.2469+03$	95.1	12.2
102.5	$x(15.0)$	$1.3570-02$	151.2	1.05	0.80	151.4	1	$2.1720+03$	105.3	12.8
97.5	$x(-15.0)$	2.1010-01	93.2	1.11	0.53	150.1	1	$2.2400+03$	83.6	11.7

HE FULLDWING VALUES ARE AT THE MAX. SPEED $=140.0$ RPS

140.0	$\times 1$	5.1250-02	164.1	1.00	0.87	172.1	1	-1.0736+03	147.0	8.9
140.0	Y_{1}	4.4730-02	166.3	1.15	1.00	172.1	1	$7.6690+02$	145.3	20.2
140.0	$\times 2$	3.2320-02	338.1	1.00	0.83	173.5	2	$5.2410+02$	315.8	18.9
140.0	Y2	2.7010-02	340.5	1,20	1.00	173.5	2	$3.6448+02$	313.4	20.2

APPENDIX D

LISTING AND SAMPLE OUTPUT OF COMPUTER PROGRAM ROTSTAB

ROTSTAB PROGRAM CALCULATES THE GENERAL TRANSIENT MOTION OF THE FOUR DEGREE OF FREEDUM RIGID BODY ROTOR. A TOTAL OF 8 CRDSS COUPLED STIFFNESS AND DAMPING COEFFICIENTS MAY BE PRESCRIBED FOR EACH BEARING. THE ROTOR CHARACTERISTIC EQUATION IS EXPANDED TO OBTAIN AN BTH ORDER POLYNOMIAL EQUATION WHICH IS SOLVED TO DETERMINE ALL REAL AND IMAGINARY ROOTS. THE IMAGINARY COMPONENT REPRESENTS THE ROTOR NATURAL FREQUENCY OR WHIRL SPEED AND THE REAL COMPONENT DETERMINES STABILITY. THE ROUTH CRITERION MAY BE USED TO DETERMINE THE PRESFNCE UF A REAL POSITIVE ROOT WITHOUT SOLVING THE COMPLETE CHARACTERISTIC EQUATION. IN THE CASE OF A SYMMETRIC ROTOK USE STABIL4 OR SET DRDER TO 6. CONVERGENCE PROBLEMS MAY OCCUR WITH DOUBLE REPEATED ROOTS.
BEGIN
COMMENT INPUT DATA TO THE PROGRAM, ROTSTAB, WILL BE SOUGHT IN THE FILE, "CR". ALL DATA TN THIS FILE MUST BE IN FREE FIELD FORMAT. THE LAYOUT OF THE FILE WILL BE GIVEN BELOW.

	ROTSTAB INPUT DATA
<OPTION CARDS>	THESE CARDS ARE OPTIONAL AND ANY OR ALL
	[JF THEM MAY BE OMITTED. IF MORE THAN ONE IS
	PRESENT THEN THEY MUST OCCUR IN THE RELATIVE
	ORDER !ESCRIBED BELOW.
<SIGFIG CARD>	IF THE STRING, "SIGFIG" IS THE FIRST
	FIELU ON AN OPTIDN CARD THEN THE CARD MUST ALSO
	CONTAIN A SECOND VALUE WHICH WILL BE USED AS
	THE NUMBER OF SIGNIFICANT FIGURES OF AGREEMENT
	REQUIRED IN THE CONVERGENCE TEST. IN THE
	ABSENCE DF THIS CARD, TEN SIGNIFICANT FIGURES
	WILL BE REQUIRED.
<URDER CARD>	IF THE STRING, "ORDER", IS THE FIRST
	FIELD ON A CARD THEN THE CARD MUST. ALSO
	CONTAIN A SECOND VALUE. THIS VALUE WILL BE
	USEU AS THE ORDER DF THE POLYNOMIAL AND ANY HIGHER UROER COEFICIENTS WILL BE SET TO ZERO.
<ROUTH CARD>	IF THE FIRST FIELD ON AN OPTION CARD IS
	THE STRING, "ROUTH", THEN THE ROUTH CRITERION
	WILL BE APPLIED IN ORDER TO DETERMINE THE
	STABILITY OF THE ROTOR AND THE PROBLEM WILL
	NOT BE SOLVED FURTHER.
<BASIC DATA CARD>	THERE WILL BE ONE <BASIC DATA CARD> FOR
	EACH RUN UF ROTSTAB. THE FIELDS OF THIS CARD
	WILL BE USED AS VALUES FOR THE FOLLOWING INPUT
	DATA AND IN THE SAME ORDER AS THEY ARE

```
                                    DESCRIBED BELOW.
1. L^ LENGTH BETN BRGS (INCH)
2.L1-DIST FROM 1ST BRG TU MASS CENTER (INCH)
3.L2= OIST FROM 2ND BRG TO MASS CENTER (INCH)
4.W= RUTOR WEIGHT (LBS)
5. IP= POLAR M.I. (LB-IN-SEC2)
6. IT-TRANSVERSE M.I. UF ROTOR ABOUT MASS CENTER (LB=IN-SEC2)
<DATA SET> THERE MAY BE AS MANY SETS OF DATA AS
                                DESIRED. THE LAYOUT OF A SET OF DATA WILL BE
                                DESCRIBED BELOW. WITH THE EXCEPTION OF THE
                                    FIRST SET, EACH NEW SET OF DATA SHOULD FOLLOW
                                    IMMEDIATELY AFTER THE LAST CARD OF THE
                                    PRECEDING SET.
```

CARD 1

1. WO- INITIAL SPEED (RPS)
2. DW- INCREMENT IN SPEED (RPS)
3. WM = FINAL SPEED (RPS)

CARD

1. KIX= 1ST BRG STIFFNESS IN X DIRECTION (LB/IN)
2. K2X-2ND BRG STIFFNESS IN X DIRECTION (LB/IN)
3. K1Y= 1ST BRG STIFFNESS IN Y OIRECTIUN (LB/IN)
4. K2Y-2ND BRG STIFFNESS IN Y DIRECTION(LB/IN)

CARD

1. CIX-1ST BRG DAMPING COEFF IN X UIRECTION(LB.SEC/IN)
2. C2X-2ND BRG DAMPING CDEFF IN X DIRECTIUN (LB.SEC/IN)
3.C1Y-1ST BRG DAMPING CUEFF IN Y DIRECTION (LB.SEC/IN)
3. C2Y-2ND BRG DAMPING CDEFF IN Y DIRECTION (LB.SEC/IN)

CARD

1. DIX- CROSS CUUPLING DAMPING COEFF (LB.SEC/IN)
2. D2X C CROSS COUPLING DAMPING CDEFF (LB.SEC/IN)
3. DIY- CROSS COUPLING DAMPING CDEFF (LB,SEC/IN)
4. D2Y- CRUSS COUPLING DAMPING COEFF (LB.SEC/IN)

CARD 5

1. RIX= CRUSS COUPLING STIFFNESS (LB/IN)
2. R2X= CROSS COUPLING STIFFNESS (LB/IN)
3. RIY- CROSS COUPLING STIFFNESS (LB/IN)
4. R2Y- CROSS COUPLING STIFFNESS (LB/IN)

POLY
THIS IS AN OPTION CARD AND MAY BE OMITTED. IF PRESENT, IT MUST CONTAIN THE STRING, "POLY", AS THE FIRST FIELD ON THE CARD. THIS WILL CAUSE THE COFFICIENTS OF THE DETERMINANT POLYNOMIAL TO BE PRINTEO.
MODE
THIS IS AN OPTION CARD AND MAY BE OMITTED. IF PRESENT THEN THE STRING, "MODE", SHOULD BE THE FIRST FIELD ON THE CARD. THIS WILL CAUSE THE MODE SHAPE VECTURS TO BE PRINTED.

THIS IS THE ENO ロF THE COMMENT TO ROTSTAB;
FILE SECNDKY $18{ }^{*}$ POLY " " MODE " (2, 15);
FILE PRIMARY 18 "PRIMARY" " DUTPUT" (2,15);
 FMTPOLY ("THE COEFFICIENTS OF THE DETERMINANT PQLYNOMIAL ", " (IN ASCENDING ORDER) ARE: "//9E13.5//),
FMTROOT ("THERE ARE ", II," CHARACTERISTIC ROOTS, WITH REAL",
"AND IMAGINARY PARTS AS FOLLOWS:"//
"REAL ", *E14.5/"IMAG *,*E14.5//),
FMTWHRL ("THE WHIRL RATIOS ARE:"/),
FMTFREQ ("THE NATURAL FREQUENCIES (INCPS) ARE:M// X8, 8E14.5//),
FMTMODE ("THE MODE SHAPE VECTORS ARE AS FULLOWS: *//),
 E13.5, CPS) $-=-=-m=-m=-n / /$

PLYECHO ("THE COEFFIEIENTS OF THE DETERMINANT POLYNOMIAL *. "WILL BE GIVEN."),
MODECHO ("THE MODE SHAPE VECTORS WILL BE GIVEN."), FMTODD ($\times 60$, "ODD ORDER POLYNOMIAL"//),
ERRFMT (GO("* ${ }^{\circ}$)/
"GETRANSIENTSOLUTION WAS UNSUCESSFUL IN DOING ITS ** "WURK. THE HANGUP UCCURED WHILE COMPUTING VECTOR ", "NUMBER ", I1,"。"//60(" *")),
 2(X16.A3,E11.4,"LB=IN-SEC2")//
X3, "K1X=", E11.4, "LB/IN", X10, "K2X=", E11.4, "LB/IN", X10, "K1Y=", E11.4, "LB/IN", X10, "K2Y=", E11.4, "LB/IN", /, X3, "C1X=", E11.4, "LB.SEC/IN", X6, "C2X=", E11.4, "LB.SEC/IN", X6, "C1Y=", E11.4, "LB.SEC/IN", X6, "C2Y=", E11.4, "LB.SEC/IN",/, $X 3$, "R1X=", E11.4, "LB/IN", X10, "R2X=", E11.4, "LB/IN", X10, "R1Y=", E11.4, "LB/IN", X10, "R2Y=", E11.4, "LB/IN", / X3, "DiX=", E11.4, "LB.SEC/IN", X6, "D2X=", E11.4, "LB.SEC/IN", X6, "DIY=", E11.4, "LB.SEC/IN", X6, "D2Y=", E11.4, "LB.SEC/IN",/ 2(2(59("**)), 1))
ALLWHRL (X8.8E14.5);
SWITCH FORMAT SWITFMT\&
($\times 60$, "UNSTABLE", X10,"RR $=\cdots, E 13.5, " \quad R O W=", I 2 / /$) , (X62,"STABLE", A1//);
REAL G,PI,W,M,DM1,WM1,DM2,WM2,RPP,IP,RTT,IT,L,L11,L1,L22,L2,WO, UW, WM,K1X,K2X,K1Y,K2Y,C1X,C2X,C1Y,C2Y,D1X,D2X,D1Y,D2Y,R1X, R $2 X, R 1 Y, R 2 Y, S T R I N G, R A D, K 1 X X, K 2 X X, K 1 Y Y, K 2 Y Y, C 1 X X, C 2 X X, R T, R P$, C1YY,C CYY,R1XX,R $2 X X, K 1 Y Y, R Z Y Y, D 1 X X, D 2 X X, D 1 Y Y, D Z Y Y, P I 2, R, S, E P S$;
INTEGER I,J,K,UUI,ROW; REAL RR;
ARRAY A,B,C,AR,AI,BR,BI[0:4,0:4],CMTX,ICMTX[0:8,0:B],
MUVEK, NUVEK[0:9],WHRARY[0:14], TO[1:3];
BOOLEAN EDFBOOL,MODE,POLY,WHRLBOL,ROUTH, ORDER;
LABEL ALAB, BLAB,PROCESS,EOF,EXIT,SLP;
LIST LSTALL (FOR I\&1 STEP 1 UNTIL M DO NUVEK[I]/S),
LSTMOUE (K,NUVEK[K]/PI2,"REAL",FDR I\&1 STEP 1 UNTIL 4 DO CMTX[K,I], "IMAG",FOR I+1 STEP 1 UNTIL 4 DO ICMTX[K,I]),
LSTFREQ (FUR I 1 STEP 1 UNTIL M DO NUVEK[I]/PI2),
LSTROUT (M,M,FOR I\&1 STEP 1 UNTIL M DO MUVEK[I], M,FOR I\&1 STEP 1 UNTIL M DU NUVEK[I]),
LSO (RR, ROW) L LSI (" "),
LSTECHD ("L = ", L, "L1=", L1, " L2=", L2, W, "IP=", IP, "IT=", IT, $K 1 X, K 2 X, K 1 Y, K 2 Y, C 1 X, C 2 X, C 1 Y, C 2 Y, R 1 X, R 2 X, R 1 Y, R 2 Y$, DIX,D2X,DIY,D2Y);
SWITCH LIST SWITLST $~ L S O$, LSI;
STREAM PROCEUURE BLANK(BASE,SKI);
VALUE SKI ;
BEGIN DI\&BASE; SKI (DI+DI+14); DS+14 LITN" " END;
PROCEDURE ROUTHH(R, N, A, RR, STABLE, ROW, ;

COMMENT N=ORDER OF THE POLYNOMIAL.
THE COEFFICIENTS OF THE POLYNOMIAL A[I] ARE READ IN DESCENDING POWERS OF LAMDA.
a[O] CORRESPONOS TO THE HIGHEST POWER OF LAMDA;
VALUE N :
REAL ARRAY A[O] $R[0,0]$;
PEAL RR :
INTEGER N , ROW ;
BOOLEAN STABLE ;
BEGIN
INTEGER I , J. K ;
LABEL FIN; $\quad A[N+1]+0 ;$
FOR K+O STEP 1 UNTII N DO
IF A[K]SO THEN
BEGIN
STABLE+FALSE ;
ROW + K ;
$R R+A[K] ;$
GD TO FIN:
END
ELSE
FOR I +0 - 1 DU
FDR J to STEP 1 UNTIL N/2 DO
$R[I, J]+A[2 x J+I] ;$
FOR $1+2$ STEP 1 UNTIL N-1 DO
FOR $J \not 0$ STEP 1 UNTIL N/2-1 DO
BEGIN
$R[I, J]+R[I-2, J+1]-R[I=2,0] \times R[I-1, J+1] / R[I-1,0] ;$
IF R[I.O]<O THEN
BEGIN
Stable + FALSE;
ROW+I ;
RR+R[I,O];
GO TO FIN;
END;
ENO;
STABLE+ TRUE;
FIN: END OF PROCEDURE ROUTH; PRDCEDURF TIMEANDATE(TZERD,FYLE, OPTION) 3 VALUE OPTION; REAL OPTION; INTEGER ARRAY TZEROL*J; FILE FYLE; COMMENT THIS IS A UTILITY PROCEDURE WRITTEN RY R. TOMLIN, RLES. THE ACTION OF THE PROCEDURE DEPENDS ON THE RIGHTMOST 39 BITS OF THE PARAMETER OPTION. FOR CONVENILNCE, THIS 39 BIT PACKAGE WILL BE IDENTIFIED WITH THE STRING "NFFFDDD". HERE N IS THE OCTAL.DIGI CONSISting of the 3 leftmost bits dF tín packăge, AND FFFDDD IS THE COLLECTION OF 6 CHARACTERS DEFINED By the remaining 36 BITS. N IS CALLED THE IDENT--IFICATION DIGIT, AND FFF, DDD, AND FFFDDD ARE CALLED THE FILE, DATE, AND COMPOSITE OPTIIONS, RESPECTIVELY:

INITIALLY, "FFFDDD" TS CDMPARED WITH THE STRING, "CENTER". If THEY ARE EQUAL, THEN A CHECK IS MADE ON the value of n. IF $N=0$, then fyle is assumed to be A Line printer file. the printer is double spaced and the date is written dut, Centered in the line, with CARRIAGE CONTROL [DBLJ. IF N DOES NOT EQUAL ZERD,

THEN FYLE IS TAKEN TO BE AN ALPHA TAPE FILE, AND THE RLESMPT EQUIVALENT OF DUUBLE-SPACE, CENTERED-UATE, DOUBLE SPACE IS WRITTEN ON TAPE. IN EITHER CASE, THE PROCEDURE IS THEN EXITED.

IF "FFFDDD" DDES NUT EQUAL "CENTER", THEN NFFF" IS COMPARED WITH WMPT", IF "FFF" AND "MPT" DO NOT AGREE, THE PROCEDURE ASSUMES THAT FYLE IS A LINE PRINTER FILE. FIRST THE PRINTER IS DOUBLE SPACED, AND THEN A LINE IS WRITTEN WHICH CDNTAINS THE DATE, PLACED NEAR THE LEFT MARGIN. THE CARRIAGE CONTROL FUR THIS LINE IS [NO], AND THE FIRST CHARACTER OF THE LINE IS DETERMINED BY N. IF N=0, THEN THE FIRST CHARACTER IS A BLANK, OTHERWISE IT IS THE DIGIT, N. NEXT, "ODD" IS COMPARED WITH "DAT". IF THEY AGREE, THE PRINTER IS DOUBLE SPACED AND THE PROCEDURE IS EXITED. IF "DDD" DIFFERS FROM "DAT", THEN IT IS ASSUMED THAT THE FIRST THREE ENTRIES OF TZERO HAVE BEEN INITIALIZED WITH READINGS FROM THE ELAPSED, PROCESSOR, AND I/O CLOCKS. THE REMAINDER OF THE LINE JUST WRITTEN IS THEN FILLED OUT (USING CARRIAGE CONTROL [DBL]) WITH THE AMOUNTS DF ELAPSED, PROCESSOR. AND I/O TIME WHICH HAVE PASSED SINCE THAT INITIALIZING. THE PROCEDURE IS
THEN EXITED.
IF "FFF"="MPT", THEN FYLE IS ASSUMED TU BE AN
ALPHA TAPE FILE. THE REMAINING ACTION IS IDENTICAL TO THAT ABUVE EXCEPT THAT RLESMPT RECORDS WILL BE WRITTEN ON TAPE, INSTEAD OF LINE IMAGES BEING WRITTEN ON THE LINE PRINTER;
BEGIN STREAM PROCEDURE SEPARATEYYDDD(YYDDD,YY,DDD); BEGIN DI\&YYDDD; DS*3 LIT"O19"; DI\&YY; SI\&YYDDD; SI+SI+1; DS\&4 DCT; DI\&DDD; DS+3 DCT END OF SEPARATEYYDDD PROCEDURE;
STREAM PRDCEDURE TRANSFER(VEKIN, VEKDUT); BEGIN SI\&VEKIN; DI\&VEKOUT; DS\&3 WDS END; ALPHA ALF;
INTEGER MNTHNMBR, DAYNMBR, EXCESS, TYMZERO, YEAR, UAYOFMNTH, TUMNO,K,J;
INTEGER ARRAY TNAUT, DELTA[1:3], DAYCOUNT[0:11], MNTHNAME [0:23];
FURMAT FMO (A1,A4,AS:I3,",", I5,*. "), FM1 ($0, A 1, A 4, A 5, I 3, ", ", 15, ", ~ ")$, FM2 ($\times 22$,"TOTAL ELAPSED TIME IS", I6," SECDNDS",
". PROCESSOR TIME IS", I6," SECONDS. ",
"I/O TIME IS", I6," SECONDS."),
FM3 (0, $\times 22$, "TOTAL ELAPSED TIME IS", I $6, "$ SECONDS", ". PROCESSOR TIME IS", I6," SECONDS. ", "I/O TIME IS", I6," SECONDS."),
FMCNTRE1 (X50,A5,A5,I3,",", I5,","),
FMCNTRE2 ($0, X 50, A 5, A 5, I 3, \cdots, N, I 5, *, ")$,
FMSTAR (D);
FILL

TRANSFER(TZERD, TNAUT); $K \leftarrow 0$;
FOR $J+31,28,31,30,31,30,31,31,30,31,30,31 \mathrm{DO}$

```
    BEGIN DAYCOUNT[K]&J; K&K+1 END;
    TYMZERO&TIME(O);
    SEPARATEYYDDO(TYMZERO, YEAR,DAYNMBR);
    IF YEAR MOD 4 =0 THEN DAYCOUNT[1]&29;
    EXCESS&DAYNMRR; MNTHNMBR+-1;
    FUR K&MNTHNMRR WHILE EXCESS>0 DO
    BEGIN EXCESS&EXCESS-DAYCUUNT[K+1];
        MNTHNMBR&MNTHNMBR+1
    END; TUMNO&2XMNTHNMBR;
    DAYOFMNTH&EXCESS+DAYCOUNT[MNTHNMBR];
    ALF+(IF OPTION.[9:3]=0 THEN * * ELSE OPTION.[9:3]);
    IF OPTIUN,[12:36]="CENTER" THEN
    BEGIN IF OPTION.[9:3]=0 THEN
        BEGIN WRITE(FYLE[DBL]);
            WRITE(FYLE[DBL],FMCNTRE1,MNTHNAME[TUMNO],
                        MNTHNAME[TUMNO+1],DAYOFMNTH,YEAR)
        END
            ELSE
        BEGIN WRITE(FYLE,FMSTAR,2);
            WRTTE(FYLE,FMCNTRE2,2,MNTHNAME[TUMNO],
                MNTHNAME[TUMND+1],DAYOFMNTH,YEAR)
        END
    END OF CENTER OPTIONS
        ELSE
    IF OPTION,[12:18]\not="MPT" THEN
    BEGIN WRITE(FYLE[DBL]);
    WRITE(FYLE[NO],FMO,ALF,MNTHNAME[TUMNO],
    MNTHNAMF[TUMNO+1],DAYOFMNTH,YEAR);
    IF OPTION.[30:18]="DAT" THEN WRITE(FYLE[DBL])
                ELSE
    BEGIN FOR J&1,2,3 DO DELTA[J]+(TIME(J)=TNAUT[J])/60;
                    WRTTE(FYLE[DBL],FM2,DELTA[1],DELTA[2],DELTA[3])
        END
    END OF PRINTER OPTIONS
        ELSE
    BEGIN WRITE(FYLE,FMSTAR,2);
        WRITE(FYLE,FM1,0),ALF,MNTHNAME[TUMNO],
            MNTHNAME[TUMNO+1],DAYOFMNTH,YEAR);
        IF OPTIMN.[30:18]="UAT" THEN WRITE(FYLE,FMSTAR,2)
            ELSE
        BEGIN F\capR J&1,2,3 DU DELTA[J]&(TIME(J)-TNAUT[J])/60!
            WRTTE(FYLE,FM3,2,DELTA[1],DELTA[2],DELTA[3])
        END
    END OF RLESMPT OPTIUNS
END OF TIMEANDATE PROCEDURE;
    PROCEDURE MLTPLYREALPOLY(M,N,A,B,C);
    VALUE M,N; INTEGER M,N; ARRAY A,B,C[0];
    BEGIN COMMENT THIS PROCEDURE ASSUMES THAT THE
                                    VECTORS A AND B CONTAIN THE COEFFICIENTS OF
                                    POLYNOMIALS OF DRDEH M AND ORDER N, RESPECTIVELY.
                                    SPECIFICALLY, THE CUEFFICIENTS OF THE KTH POWER
                                    OF THE POLYNOMIAL VARIABLE ARE STORED IN A[K]
                                    AND B[K], RESPECTIVELY.
                                    MLTPLYREALPOLY COMPUTES THE COEFFICIENTS
                                    OF THE POLYNOMIAL WHICH IS THE PRODUCT OF THE
                                    GIVEN TWO. AND STORES THEM INTO THE VECTOR. C.
```

```
    AS WITH A AND B, THE COEFFICIENT OF THE KTH
    POWER IS STORED INTO C[K].
            THE ARITHMETIC IS SO ARRANGED THAT IF A
        contains the cuefficients of the polynomial
        OF LESSER DEGREE, THEN THE MOST EFFICIENT
        CONFIGURATION HAS BEEN REALIZED;
    REAL AP; INTEGER K,P,Q; P&M+N;
    FOR K&0 STEP 1 UNTIL P DO C[K]*0;
    FQR P&O STEP 1 UNTIL M DO
    BEGIN AP+A[P];
        FOR Q+O STEP 1 UNTIL N DO
        C[K+(P+Q)]+B[Q]\timesAP+C[K]
    END OF THE LOUP ON P
ENO OF THE MLTPLYREALPOLY PROCEDURE;
PROCEDURE GETDETPOLY(N,A,B,C,D);
VALUE N; INTEGER N; ARRAY A,B,C[0,O],D[O];
BEGIN COMMENT CONSIDER THE NXN MATRIX, G, DEFINED BY
        G[T,J]=A[I,J]\timesT*2+B[I,J]*T+C[I,J]. IT IS CLEAR
        THAT THE DETERMINANT OF G IS A POLYNOMIAL OF
        DEGREE 2N IN THE PARAMETER,T.
            getdetpoly computes the coefficients of this
        PDLYNOMIAL AND STORES THEM INTO THE VECTOR, D.
        the coEfficient of the kth power Of t IS
        STIRED INTO D[K], THIS FOR K=0, 1,...., 2xN.
            THE ENTRIES OF A, B, AND C WHICH HAVE
    InDICES IN THE RANGE FROM DNE TO N ARE
    ASSUMED TD CONTAIN THE REQUIRED QUANTITIES.
    THOSE ENTRIES INVOLVING A ZERO INDEX ARE NOT
    REFERENCED BY GETDETPOLY;
    INTEGER TN,NM1,TNM1,KM1,K,P,Q,I,J; LABEL EXIT;
    ARRAY QUAD[0:2],DALT[0:2\timesN].
        UM[0:2\times(N-1)],AM,BM,CM[0:N-1,0:N-1];
        TN+2\timesN; TNM1+2\times(NM1+N-1);
    IF N=1 THEN
    BEGIN D[0]+C[1,1]; D[1]+B[1,1];
        D[?]&A[1,1]; GO TO EXIT
    END OF THE SPECIAL CASE WHEN N EQUALS ONE;
    FOR K+O STEP 1 UNTIL TN DO D[KJ+0;
    FOR K+1 STEP 1 UNTIL N DO
    IF A[K,1]\not=0 OR B[K,1]\not=0 OR C[K,1]\not=0 THEN
    BEGIN KM1+K-1;
        FOR I+1 STEP 1 UNTIL KM1 DO
        FOR J+2 STEP 1 UNTIL N DO
        BEGIN AM[I,Q+(J=1)]+A[I,J];
            BM[I,Q]+B[I,J]; CM[I,Q]+C[I,J]
    END OF THE LDOP ON J;
    FOR I+K+1 STEP 1 UNTIL N DO
    BEGIN P+I-1; FOR J+2 STEP 1 UNTIL N DO
            BEGIN AM[P,Q&(J-1)]+A[I,J];
                    BM[P,Q]&B[I,J]; CM[P,Q]&C[I,J]
            END OF THE LOOP ON J
    END DF THE LOOP ON I;
    DM[0]+CM[1,1]; DM[1]+BM[1,1]; DM[2]+AM[1,1];
    IF N>2 THEN GETDETPOLY(NM1,AM,BM,CM,DM);
    If BOOLEAN(K) THEN
    BEGIN QUAO[O]+C[K,1];
```

```
                            QUAD[1]&B[K,1]; QUAD[2]&A[K,1]
    END DF EVEN PARITY CASE
                            ELSE
    BEGIN QUAD[0]&-C[K,1];
                            QUAD[1]&-B[K,1]; QUAD[2]*-A[K,1]
    END OF QDD PARITY CASE;
    MLTPLYREALPOLY(2,TNM1,QUAD,DM,DALT);
    FORR I*O STEP 1 UNTIL TN DO D[I]&DALT[I]+O[I]
        END OF THE LOOP ON K;
    EXIT:
END OF THE GETDETPULY PRDCEDURE;
    REAL PROCEDURE INRPROD(N,A,B);
    VALUE N; INTEGER N; ARRAY A,B[O];
    BEGIN CDMMENT THIS PRDCEDURE COMPUTES THE
        INNER PRODUCT DF A AND B AND STORES IT
        INTO THE IDENTIFIER, INRPROD.
                                    A.AND B ARE ASSUMED TO HAVE INDICES
                                IN THE RANGE O TO N. A[O] AND B[O] ARE
                NOT REFERENCED BY THIS PROCEDURE;
            INTEGER K; REAL T; T&0;
            FOR K&1 STEP 1 UNTIL N DO T&A[K]×B[K]+T;
            INRPROD&T
    END OF THE INRPROD PROCEDURE;
REAL PRUCEDURE MODUFINRPROD(N,A,IA,B,IB);
VALUE N; INTEGER N; ARRAY A,IA,B,IB[O];
BEGIN COMMENT THE MODULUS OF THE INNER PRODUCT DF
                            THE COMPLEX VECTORS S AND T IS COMPUTED AND
                            STORED INTO MODOFINRPROD, FURTHER, THE REAL
            AND IMAGINARY PARTS DF <S,T>, ITSELF, ARE STORED
            INTO A[O] AND IA[O], RESPECTIVELY.
                S ANU T ARE ASSUMED TO HAVE N ENTRIES,
            BEGINNING AT INDEX VALUE DNE, THE REAL AND
            IMAGINARY PARTS DF S ARE, RESPECTIVELY, A AND
            IA. THOSE OF T ARE B AND lB, RESPECTIVELY;
    INTEGER K; REAL RE,IM; RE&IM&0;
    FOR K&1 STEP 1 UNTIL N DO
    BEGIN RE &A[K] 
            IM+IA[K]\timesB[K]-IB[K]\timesA[K]+IM
    END OF THE SUMMATION LOOP;
    MODOFINRPROD*SQRT((A[0]&RE)*2+(IA[0]&IM)*2)
END OF THE MODOFINRPROD PRDCEDURE;
REAL PROCEDURE MODSQOFINRPROD(N,A,IA,B,IB);
VALUE N; INTEGER N; ARRAY A,IA,B,IB[O];
BEGIN COMMENT THE MODULUS SQUARED OF THE INNER PRODUCT OF
    THE COMPLEX VECTORS S AND T IS COMPUTED AND
    STORED INTO MODSQOFINRPRDD. FURTHER. THE REAL
    AND IMAGINARY PARTS OF <S,T>, ITSELF, ARE STORED
    INTO A[O] AND IA[O], RESPECTIVELY.
        S ANU T ARE ASSUMED TO HAVE N ENTRIES,
    BEGINNIIGG AT INDEX VALUE ONE. THE REAL AND
    IMAGINARY PARTS DF S ARE, RESPECTIVELY, A AND
    IA. THOSE DF T ARE B AND IB, RESPECTIVELY;
    INTEGER K; REAL RE,IM; RE&IM+0;
    FOR K+1 STEP 1 UNTIL N DU
    BEGIN RE&A[K]\timesB[K]+IA[K]\timesIB[K]+RE;
    IM+IA[K]\timesB[K]=IB[K]\timesA[K]+IM
```

END OF THE SUMMATION LOOP;
MODSQOFINRPROD* (A[0]*RE)*2+(IA[O]*IM)*2
END OF THE MODSQDFINRPROD PROCEDURE;
REAL PROCEDURE CMPLXINVERSE(N,A,IA);
VALUE N; INTEGER N; ARRAY A. IA[O,O]; COMMENT THIS IS A MODIFICATION OF RODMANS PROCEDURE FOR INVERTING A COMPLEX MATRIX, S. THE MATRIX, S, IS ASSUMED TO BE DF DRDER N, AND TO HAVE IJ=TH ENTRIES WHOSE REAL AND IMAGINAKY PARTS ARE A[I,J] AND IA[I,J], RESPECTIVELY. THE PROCEUURE IS EXITED WITH THE MODULUS OF THE UETERMINANT UF S STOREU INTU CMPLXINVERSE;
COMMENT THIS PROCEDURF INVERTS A MATRIX OF COMPLEX ELEMENTS SEE CORRESPONDING TECHNICAL BULLETIN FOR DETAILS ON USE OF THE PROCEDURE.
R.D. RODMAN
(PROFESSIONAL SERVICES DIVISIONAL GROUP),
CARD SEQUENCE BEGGNS WITH CINVO001, FIRST RELEASE 4/1/63;

BEGIN

REAL
INTEGER
BEGIN

$Q \leftarrow I Q \leftarrow 0 ;$
FOR I \& 1 STEP 1 UNTIL N DO
REGIN
$Q+A[0, I] \times B[0, I] * A[1, I] \times B[1, I]+Q ;$
$I Q+A[1, I] \times B[0, I]+A[0, I] \times B[1, I]+I Q$
END;
$A[0,0] \leftarrow Q ; A[1,0] \leftarrow I Q$
END ;

```
    FOR I © I STEP 1 UNTIL N DO
BEGIN
    Z & I=1;
    FUR K&1 STEP 1 UNTIL Z DO
BEGIN
    Q1[0,K]+A[K,I]; Q1[1,K] & IA[K,I]
END;
    FOR K + I STEP 1 UNTIL N DO
```

BEGIN
FOR L \& 1 STEP 1 UNTIL Z DD
BEGIN
$Q 2[0, L]+A[K, L] ; Q 2[1, L]+I A[K, L]$
END ; CIP(Q1, A2, Z);
$A[K, I]+A[K, I]=Q 1[0,0] ; I A[K, I]+I A[K, I]=Q 1[1,0]$
END ;
BIG + 0 ; $k 2+1$;
FOR K \& I STEP 1 UNTIL N DO
BEGIN
T - $A[K, I] * 2+I A[K, I] * 2$;
IF T > BIG THEN
BEGIN
$B I G \leftarrow T ; K 2+K$
END
END ;
IF BIG=0 THEN BEGIN CMPLXINVERSE+0; GO TU EXIT END;
$F[I]+K 2$;
IF K2 \neq I THEN FOR K $~+1$ STEP 1 UNTIL N DO
BEGIN
TEMP \& A「I,K]; $A[I, K]+A[K 2, K] ; A[K 2, K]+T E M P$; TEMP \& IA[I,K]; IA[I,K] \&IA[K2,K]; IA[K2,K] \& TEMP
END ;
DIAG • 1/(A[I,I]*2 + IA[I,I]*2);
FUR K \& 1 Step 1 UNTIL Z DO
BEGIN
Q1[0,K] $4[I, K] ; Q 1[1, K]+I A[I, K]$
END ;
FOR $K+I+1$ STEP 1 UNTIL N DO
BEGIN
FUR L \& 1 STEP 1 UNTIL Z DO
BEGIN
$Q 2[0, L] \leftarrow A[L, K] ; Q 2[1, L] \bullet I A[L, K]$
END ;
CIP(Q1, Q2, Z);
$T+A[I, K]-Q 1[0,0] ; I T+I A[I, K]=Q 1[1,0] ;$
$A[I, K]+(T \times A[I, I]+I T \times I A[I, I]) \times D I A G ;$
IA[I,K] 4 (IXA[I,I] - TXIA[I,I]) x DIAG
ENO
END ;
T\& 1; FQR K +1 STEP 1 UNTIL N OD T\& (A[K,K]*2+IA[K,K]*2)×T; CMPLXIVVERSE $Q Q R T(T)$;

FUR I \& 1 STEP 1 UNTIL N DO
BEGIN
OIAG + $1 /(A[I, I] * 2+I A[I, I] * 2) ; \quad Z+I-1 ;$
FUR $J \leqslant 1$ STEP 1 UNTIL I DO
BEGIN
IF I $\neq J$ THEN

GEGIN

```
    FUR K * J STEP 1 UNTIL Z DO
BEGIN
    Q1[0,K=J+1]*A[K,J];Q1[1,K=J+1]*IA[K,J];
    Q2[0,K=J+1]*A[I,K];Q2[1,KmJ+1]*IA[I,K]
END ;
    CIP(Q1, Q2, I-J);
    A[I,J]*(-Q1[0,O]\timesA[I,I]-Q1[1,0]\timesIA[I,I]) x DIAG;
    IA[I,J]&(Q1[0,0]\timesIA[I,I]a QI[1,0]\timesA[I,IJ) }\timesDIAG
END
    ELSE
BEGIN
    A[I,I]*A[I,I] x DIAG;
    IA[I,I]*-IA[I,I] x DIAG
END
EN[)
END;
    V&N=1;
    FOR I & V STEP - 1 UNTIL 1 DO
BEGIN
    Z +I+1;
    FUR J &N STEP =1 UNTIL Z DO
BEGIN
    Y +J=1;
    FOR K & J+1 STEP 1 UNTIL Y DO
BEGIN
    Q1[0,W+K=I] & A[K,J]; Q1[1,N]*IA[K,J];
    Q2[0,W]*A[I,K];Q2[1,W]*IA[I,K]
END;
    CIP(Q1, (12, Y-I);
    A[I,J]*-A[I,J]=0i[0,0];
    IA[I,J]}\leftarrow-IA[I,J]=Q1[1,0
ENO
END;
    FIR I & 1 STEP 1 UNTIL V DO
BEGIN
    FOR J & STEP 1 UNTIL N DO
BEGIN
    IF I \geqJ THEN
BEGIN
    FUR K & I+1 STEP 1 UNTIL N DO
BEGIN
    Q1[0,K=I] & A[I,K];Q1[1,K-I] & IA[I,K];
    Q2[0,K-I]*A[K,J];Q2[1,K-I] & IA[K,J]
END ;
    CIP(Q1, Q2,N-I);
    A[I,J]&A[I,J]+Q1[0,0];
    [A[I,J] & IA[I,J]+01[1,0]
END
```

```
    ELSE
    BEGIN
    FOR K & J STEP 1.UNTIL N DO
    BEGIN
        Q1[0;W+K=J+1] & A[K,J]; Q1[1,W]*IA[K,J];
        Q2[0,W]*A[I,K];Q2[I,W]*IA[I,K]
ENO ;
            CIP(Q1, 02, N-J+1);
    A[I,J]*Q1[0,0]; IA[I,J]*Q1[1,0]
    END
    END
    END;
    FOR J & N STEP - 1 UNTIL 1 DD
    BEGIN
    IF F[J] f J THEN
    BEGIN
    K2 +F[J];
    FOR K & STEP 1 UNTIL N DO
BEGIN
    TEMP & A[K,K2]; A[K,K2] & A[K,J];A[K,J]*TEMP;
    TEMP & IA[K,K2];IA[K,K2]*IA[K,J];IA[K,J]*TEMP
    END
    END
    ELSE
    END:
EXIT:
    END;
        PROCEDURE FINDPOLYORDERANDNORMALIZE(N, AR, AI, P);
        VALUE N; INTEGER N,P; ARRAY AR,AI[O];
        BEGIN COMMENT A POLYNOMIAL OF DEGREE LESS THAN OR
                EQUAL TO N, WHOSE K=TH POWER COEFFICIENT HAS
            REAL AND IMAGINARY PARTS AR[K] AND AI[K], FOR
                        K = 0, .... N, WILL BE EXAMINED BY THIS PROCEDURE.
                THE COEFFICIENTS WILL BE ADJUSTED TO MAKE
                IT A MONIC POLYNOMIAL, I.E., THE COEFFICIENT
                OF THE HIGHEST POWER WILL BECOME A QUANTITY
                WITH MUDULUS UNITY, AND THE TRUE OROER (DEGREE)
                OF THE POLYNOMIAL WILL BE INSERTED INTO P;
            INTEGER K; REAL T;
            FOR P&N STEP - 1 WHILE (T*AR[P]*2+AI[P]*2) = 0 DO;
            T&SQRT(T);
            FOR K*O STEP I UNTIL P DO
            BEGIN AR[K]+AR[K]/T; AI[K]+AI[K]/T END
    ENO OF THE FINDPOLYOROERANDNORMALIZE PROCEDURE;
    PROCEOURE SCALECOEFFICIENTS(P, AR, AI, SCALE); VALUE P;
            INTEGER P; ARRAY AR, AI[O]; REAL SCALE;
        BEGIN CUMMENT GIVEN HERE IS A POLYNOMIAL IN THE VARIABLE
            Z WHOSE COEFFICIENT FOR THE K-TH POWER OF Z HAS REAL
            AND IMAGINARY PARTS AR[K] AND AI[K], FOR K= O, ..., P.
                THIS PROCEDURE SCALES THE COEFFICIENTS DF THE
            POLYNOMIAL, DEFINING IN THE PROCESS A NEW POLYNOMIAL
            IN THE VARIABLE ZPRIME, WHERE Z = SCALE }\times\mathrm{ ZPRIME,
            SUCH THAT THE COEFFICIENT OF THE LOWEST ORDER TERM
```

```
            IN THE POLYNOMIAL HAS MOUULUS UNITY;
            REAL A, R, I, T; INTEGER K,Q; LABEL L; K&O;
    L: A*AR[K]*2+AI[K]*2;
        IF A=0 THEN BEGIN K K K+1; GO TO L END;
        SCALE&T&A*(1/(.2*(P-K))); Q+K;
        FOR K&P-1 STEP =1 UNTIL Q DO
        BEGIN AR[K]&AR[K]/T; AI[K]&AI[K]/T;
            T&T\timesSCALE
    END
    END DF THE SCALECOEFFICIENTS PROCEDURE;
PROCEDURE GETPOLYZEROS(N, AR, AI, EPSILDN);
VALUE N, EPSILON; REAL EPSILON; INTEGER N; ARRAY AR, AI[O];
COMMENT THIS PROCEDURE FINDS ZEROS OF A POLYNOMIAL
    OF OROER N. THE COEFFICIENT OF THE HIGHEST POWER OF
    THE VARIABLE MUST BE UNITY. ON ENTRY, AR[K] AND
    AI[K] FOR K=0, 1, = =, N ARE THE REAL AND
    IMAGINARY PARTS OF THE COEFFICIENTS OF ASCENDING
    POWERS OF THE VARIABLE. ON EXIT, AR AND AI[1, ...,N]
    CONTAIN THE ZEROS. NEWTONS METHOD IS USED.
    ITERATION CONTINUES UNTIL THE SQUARE OF THE FRACTIONAL
    CHANGE IN THE ZERO DOES NDT EXCEED EPSILON, AFTER THE
    FIRST ZERO IS FOUND, THE ORDER OF THE POLYNOMIAL IS
    REDUCED BY DIVISION. ZEHOS OBTAINED FROM THE REDUCED
    POLYNUMIAL ARE IMPRUVED GY ITERATION WITH THE ORIGINAL
    POLYNOMIAL. THEN THE ORDER OF THE REDUCED PDLYNUMIAL
    IS FURTHER REDUCED. ;
BEGIN REAL X, Y, FR, FI, GR, GI, U, V, W; INTEGER K, P, Q;
    ARRAY BR, BI[0:N], CR, CI, RR, RI, MF[I:N]; REAL T;
    LABEL AGAIN, GUESSZERO, ITERATE, REITERATE, EXIT;
    BOOLEAN ONCE; INTEGER NDIV2; NDIV2+N DIV 2;
    FOR K&0 STEP 1 UNTIL NDIV2 DD
    BEGIN T&AR[K]; AR[K]&AR[N-K]; AR[N-K]&T;
            T&AI[K]; AI[K]&AI[N-K]; AI[N-K]&T
    END OF THE SWITCH AROUND LOOP ON THE INTEGER K;
    N&N+1; FOR N&N=1 WHILE AR[N]=0 AND AI[N]=0 DO;
    IF N=1 THEN REGIN AR[1]&-AR[1]; AI[1]&-AI[1]; GG TO EXIT END;
    BR[0]&1.0; BI[0]+0; ONCE&FALSE;
AGAIN: FUR K&1 STEP 1 UNTIL N DO
    BEGIN BR[K]&AR[K]; BI[K]&AI[K] END;
    P&N;
GUESSZERO: IF DNCE THEN BEGIN X&RR[P]; Y&RI[P] END
                                    ELSE BEGIN X&1-BR[1]; Y&1-BI[1];
                                    IF P=1 THEN
                                    BEGIN X+X-1; Y+Y-1; GO TO ITERATE
                                    END
                                    ENO;
    Q&P;
    FOR K&1 STEP 1 UNTIL Q DŨ
    BEGIN CR[K]+RR[K]; CI[K]&BI[K] END;
ITERATE: FR&1; FI*0;
    FOR K&1 STEP I UNTIL Q DO
    BEGIN U&X XFR=YXFI+CR[K];
        V&X\timesFI+Y\timesFR+CI[K];
    FR&U; FI&V
    END;
    GR\leftarrowQ; GI*O;
```

```
        FOR K&1 STEP 1 UNTIL Q*1 DO
        BEGIN U&X XGR=Y\timesGI+(Q-K) XCR[K];
        V+X\timesGI+Y\timesGR+(Q-K)\timesCI[K];
        GR+U; GI+V
        ENO;
        U&FR\timesGR+FI\timesGI; V&FI\timesGR=FR\timesGI; W&GR*2+GI*2;
        IF W=0 THEN W&1;
        U&U/W; V&V/W; W&UxU+V\timesV;
```



```
        X&U; Y&V;
        IF W>EPSILON THEN GO TO ITERATE;
    REITERATE: IF Q\not=N THEN
                                    BEGIN FOR K&1 STEP 1 UNTIL N DO
                                    BEGIN CR[K]&AR[K]; CI[K]&AI[K] END;
                                    Q&N; GO TO ITERATE
                    END;
        RR[P]*X; RI[P]*Y; MF[P]*FR*2+FI*2;
        IF P\not=1 THEN
        BEGIN P&P-1;
            FOR K&1 STEP 1 UNTIL P DO
            BEGIN BR[K]+BR[K]+XXBR[K=1]-Y BBI[K=1];
                        BI[K]&BI[K]+X\timesBI[K-1]+Y\timesBR[K=1]
            END;
                GO TO GUESSZERO
        END;
    IF NOT ONCE THEN
    BEGIN ONCE&TRUE;
        FOR K&1 STEP 1 UNTIL N DO
        BEGIN U&RR[K]; V&RI[K]; W&MF[K];
            FOR Q&K+1 STEP 1 UNTIL N DO
            IF MF[Q]>W THEN
            BEGIN RR[K]&RR[Q]; RI[K]&RI[Q]; MF[K]&MF[Q];
                RR[Q]&U; RI[Q]&V; MF[Q]&W;
                    U&RK[K]; V&RI[K]; W&MF[K]
            END
        END;
        GO TO AGAIN
    END;
    FOR K+1 STEP 1 UNTIL N DU
    BEGIN AR[K]+RR[K]; AI[K]&RI[K] END;
    EXIT:
END OF PROCEDURE POLYZEROS;
    PROCEUURE UNSCALETHEROOTS(P, AR, AI, SCALE); VALUE P;
        INTEGER P; ARRAY AR. AI[O]; REAL SCALE;
        BEGIN COMMENT THIS PROCEDURE IS USED IN CONJUNCTION
                        WITH THE SCALECUEFFICIENTS PROCEDURE. IT UNSCALES
                THE ROOTS OF THE POLYNOMIAL WHICH WAS SCALED;
                INTEGER K;
                FOR K&1 STEP 1 UNTIL P DO
                            BEGIN AR[K]&AR[K]\timesSCALE; AI[K]&AI[K]×SCALE END
    END OF THE UNSCALETHEROOTS PROCEDURE;
        PROCEDURE CMPLXLINTRAN(N,A,IA,X,IX,Y,IY);
        VALUE N: INTEGER N; ARRAY X,IX,Y,IY[O],A,IA[0,0];
        BEGIN COMMENT THE INDEX UPPER BOUNDS FOR A,
                        IA,X,IX,Y, AND IY ARE ASSUMED TO BE EQUAL
                                    TO N. THE ENTRIES OF THESE ARRAYS WHICH
```

```
    CORRESPIND TO A ZERD INDEX ARE NOT
    REFERENCEU BY THIS PROCEOURE.
        CUNSIDER THE CDMPLEX MATRIX, S, WHOSE
    IJTH ENTRY HAS REAL AND IMAGINARY PARTS
    A[I,J] AND IA[I,J], RESPECTIVELY, FOR I,J
    =1, .... N. FURTHER, LET T AND U DENOTE
    THE CUMPLEX VECTORS WHOSE KTH ENTRIES HAVE
    REAL AND IMAGINARY PARTS X[K], IX[K] AND
    Y[K], IY[K], RESPECTIVELY,FOR
                K=1, ...,N.
            WHERE S IS REGARDED AS A LINEAR
    TRANSFORMATION, THIS PROCEDURE COMPUTES
    THE IMAGE UF T UNDER S AND STORES IT
    INTO U, I.E., ST IS STORED INTO U;
    INTEGER K;
    PROCEDURE DOMULT(N,A,IA,B,IB);
    VALUE N; INTEGER N; ARRAY A,IA,B,IB[O];
    BEGIN COMMENT DOMULT IS DESIGNED TO DO
            THE ROW-COLUMN MULTIPLICATIONS WHICH
            ARE NEEDED IN CMPLXLINTRAN;
    INTEGER K; REAL RE,IM; RE&IM+O;
    FOR K+1 STEP 1 UNTIL N DO
    BEGIN KE&A[K]\timesB[K]=IA[K]\timesIB[K]+RE;
            IM+A[K]\timesIB[K]+B[K]\timesIA[K]+IM
    END; A[O]&RE; IA[0]+IM
    END OF THE DOMULT PROCEDURE;
    FOR K&1 STEP 1 UNTIL N DO
    BEGIN DOMULT(N,X,IX,A[K,*],IA[K,*]);
        Y[K]+X[O]; IY[K]+IX[0]
    END OF THE LOOP ON K
END OF THE CMPLXLINTRAN PROCEDURE;
INTEGER PROCEDURE MOSTLD(N,A);
VALUE N; INTEGER N; ARRAY A[0,0];
BEGIN COMMENT A IS ASSUMED TO HAVE INDEX UPPER
    ROUND EQUAL TO N, AND TO HAVE BEEN THE TARGET
    MATRIX IN A CALL OF COSQBUILDER OR CMPLX-
    COSQBUILDER. THUS, THERE EXISTS AN ORDERED
    COLLECTION OF N VECTORS WHOSE "COSINE*SQUARED"
    MATRIX CSEE THE COMMENTS IN COSQBUILDER
    AND CMPLXCOSQBUILDER ) IS A.
    THIS PROCEDURE INSERTS INTO THE
    IDENTIFIER, MOSTLD, THE NUMBER OF THE VECTOR
    WHICH IS MOST LINEARLY DEPENDENT UPDN ITS
    NEIGHBOURS. THIS VECTOR IS DETERMINED BY
    FIRST SCANNING THE ABOVE-DIAGONAL PORTION
    OF A TO FIND A PAIR, (I,J), SUCH THAT A[I,J]
    IS AS LARGE AS ANY ENTRY IN THIS PORTION.
    THE VALUE OF THIS A[I;J] IS THEN STORED INTO
    MAXAIJ.
            FOR EACH PAIR (P,Q) SUCH THAT A[P,Q]
    EQUALS MAXAIJ, THE NORMS DF ROW P AND ROW
    Q UF A ARE COMPARED, AND THE LARGER NORM,
    TOGETHER WITH ITS ASSOCIATED INDEX, IS
    DISTINGUISHED. IN THE CASE OF EQUAL NORMS.
    THE INDEX OISTINGUISHED WILL BE THE LARGER OF
    P AND Q. THIS BEING THE CASE, THE VECTOR
```

```
    WHICH IS "MOST LINEARLY DEPENDENT" UPON ITS
    NEIGHBOURS IS GOTTEN BY CONSIDERING THESE
    PAIRS OF DISTINGUISHED NORMS AND INDICES. THE
    VECTOF CORRESPONDING TO THE LARGEST SUCH
    NORM IS THE ONE CHOSEN, AND IN CASE OF A
    TIE, THE CANDIDATE HAVING THE LARGEST INDEX IS
    SELECTED. IT IS THIS INDEX, THEN, WHICH IS
    STORED INTO THE IDENTIFIER, MOSTLD;
    INTEGER I,J,K,KMAX,INX; REAL MAXAIJ,NORM,MAXNORM;
    INTEGER PROCEDURE MAXINX(A,I,J,N,NORM);
    VALUE I,J,N; INTEGER I,J,N; REAL NORM; ARRAY A[0,O];
    BEGIN COMMENT THIS PROCEDURE CONSIDERS THE
        SUMS OF THE ENTRIES IN ROWS I AND
        J OF THE MATRIX, A. THE
        LARGER SUM IS STORED INTO NORM, AND
        THE ASSOCIATED INDEX IS STORED INTO
        MAXINX.
            IN THE CASE OF A TIE, THE
        LARGER OF I AND J IS STORED INTO
        THE IDENTIFIER, MAXINX;
    INTEGER K; REAL NRMI,NRMJ;
    NRMI&NRMJ\leftarrow0;
    FOR K+1 STEP 1 UNTIL N DO
    BEGIN NRMI*A[I,K]+NRMI;
        NRMJ&A[J,K]+NRMJ
    END OF THE LOOP ON K; NORMGNRMJ;
    IF NRMI>NRMJ THEN
    BEGIN NORM&NRMI; MAXINX&I END
        ELSE
    IF NRMI=NRMJ THEN
    MAXINX&(IF I>J THEN I ELSE J)
        ELSE MAXINX+J
    END DF THE MAXINX PROCEDURE;
    MAXAIJ+MAXNORM+KMAX&O;
    FOR I&1 STEP 1 UNTIL N DO
    FOR J&I+1 STEP 1 UNTIL N DO
    IF MAXAIJSNORM&A[I,J] THEN MAXAIJ&NORM;
    FOR I&1 STEP 1 UNTIL N DO
    FOR J&I+1 STEP 1 UNTIL N DO
    IF A[I,J]=MAXAIJ THEN
    BEGIN INX&MAXINX(A,I,J,N,NQRM);
        IF NORM>MAXNORM THEN
        REGIN MAXNORM&NORM; KMAX&INX END
        ELSE
    IF NORM=MAXNORM AND INX>KMAX THEN
        KMAX+INX
    END OF THE MAIN SCANNING PROCESS;
    MOSTLD&KMAX
END OF THE MOSTLD PROCEDURE;
PROCEDURE CMPLXCOSQBUILDER(N,A,B,C,ROWCOL);
VALUE N,ROWCOL; INTEGER N; REAL ROWCOL; ARRAY A,B,C[0,0];
BEGIN COMMENT A, B, AND C ARE ASSUMED TO HAVE
    INDEX UPPER BOUND EQUAL TO N. IT IS
    OF INTEREST TO CDNSIDER THE COMPLEX
    MATRIX, S, WHOSE IJTH ENTRY HAS REAL
    AND IMAGINARY PARTS A[I,J] AND B[I,J],
```

RESPECTIVELY, FOR I, J=1: $\cdot \cdots$ N. S ISREGARDED AS INPUT TO THIS PROCEDURE.IF ROWCOL="ROWS", THEN EACH ROW OF SWILL BE REGARDED AS A COMPLEX VECTOR WITHN ENTRIES. QTHERWISE, THE COLUMNS OF SWILL BE SO REGARDED. IN EITHER CASE, ANORDERED SET OF N COMPLEX VECTORS HASBEEN DISTINGUISHED.
FOR I,J=1, N THE PROCEDURE STORES
INTO C[I,J] THE "COSINE" OF THE ANGLE
BETWEEN THE ITH AND JTH VECTORS IN THEDISTINGUISHED SET. HERE THE MODULUS OFTHE INNER PRODUCT OF TWO VECTORS IS TAKENTO BE EQUAL TO THE PRODUCT OF THE NORMSOF THE TWO TIMES THE COSINE OF THEANGLE JETHEEN THEM;
INTEGER I,J,IMI; BOOLEAN ANYMORE;
REAL T; LABEL TRANSPDSE,EXIT,DOIT;
IF (ANYMOKE\&ROWCOLF"ROWSH) THEN
TRANSPOSE: FUR I\&I STEP 1 UNTIL N DOBEGIN IM1\&I-1; FOR J\&1 STEP 1 UNTIL IM1 DO$B E G I N T \leftarrow A[I, J] ; A[I, J] \leftarrow A[J, I j ;$$A[J, I] \& T ; T+B[I, J] ;$$B[I, J]+B[J, I] ; B[J, I] \leftarrow T$
END DF THE LOOP ON J
END ELSE GO TD DOIT;
IF NOT ANYMORE THEN GO TO EXIT;
DOIT: FOR Iセ1 STEP 1 UNTIL N DO
BEGIN IM1\&I=1; FOR $J \leftarrow 1$ STEP 1 UNTIL IM1 DO$C[J, I] \leftarrow M O D S Q O F I N R P R O D$
($N, A[I, *], B[I, *], A[J, *], B[J, *]) ;$
$C[I, I]+M O D O F I N R P R O D$
($N, A[I, *], B[I, *], A[I, *], B[I, *])$
END OF THE LOOP ON I;
FOR I\&1 STEP 1 UNTIL N DO
FOR $J+I+1$ STEP 1 UNTIL N DO
$C[J, I] \leftarrow C[I, J] \leftarrow C[I, J] /(C[I, I] \times C[J, J]) ;$
FOR I\&1 STEP 1 UNTIL N DO C[I,I]\&1;
IF ANYMDRE THEN
BEGIN ANYMORE\&FALSE; GO TO TRANSPOSE END;
EXIT:
END OF THE CMPLXCOSQBUILDER PRQCEDURE;
PROCEDURE TRANSPOSE(N,A);
VALUE N; INTEGER N; ARRAY A[0,0];
BEGIN COMMENT A IS ASSUMED TO HAVE INDEX
UPPER BOUNDS EQUAL TO N. THIS PROCEDURE
TRANSPOSES THE ROWS AND COLUMNS OF A;
INTEGER I,J; REAL T;
FOR I $\leftarrow 0$ STEP 1 UNTIL N 00
FOR $J \leftarrow I+1$ STEP 1 UNTIL N DO
BEGIN $T \leftarrow A[I, J] ; A[I, J] \leftarrow A[J, I] ; A[J, I] \leftarrow T$ END
END OF THE TRANSPOSE PROCEDURE;
REAL PROCEDURE CMPLXHUMDSOLVER (N, A, IA,B,IB,X,IX);
VALUE N; INTEGER N; ARRAY $A, I A, B, I B[0, O], X, I X[0] ;$
BEGIN COMMENT ALTHOUGH THE ACTUAL INDEX LOWER BOUNDS
ARE ZERD, THIS PROCEDURE ONLY REFERENCES ENTRIES

```
    IN THE ARRAYS A, IA, B, IB, X, AND IX WHICH
    CORRESPQND TO INDICES IN THE RANGE FROM ONE TO
    N. THE MATRIX, B, IS USED FOR TEMPORARY STORAGE.
        CONSIDER THE COMPLEX MATRIX, U, SUCH THAT
    U[I,J] HAS REAL AND IMAGINARY PARTS, A[I,J]
    AND IA[I,J], RESPECTIVELY, FURTHER, LET T DENOTE
    THE COMPLEX VECTOR DEFINED BY SAYING THAT
    T[K] HAS REAL AND IMAGINARY PARTS, X[K] AND
    IX[K], RESPECTIVELY, ASSUMING THAT U IS
    SINGULAR AND UF RANK (N-1), CMPLXHOMOSOLVER
    ATTEMPTS TO FIND A NON=TRIVIAL SULUTION TO THE
    EQUATION, UT=O. SUCH A SOLUTION IS, OF COURSE,
    UNIQUE UP TO MULTIPLICATION BY A SCALAR.
        THE PROCEUURE BEGINS BY THROWING OUT THE ROW
    OF U WHICH.IS MOST LINEARLY DEPENDENT UPON ITS
    NEIGHBIOURS: THIS LEAVES A SET OF (N-1) EQUATIONS
    IN N UNKNOWNS UF THE FORM VT=O, WHERE V IS
    THF MATRIX GOTTEN BY THROWING OUT A ROW OF U.
        NEXT, THE COLUMNS OF V ARE EXAMINED, AND AN
    (N-1) BY (N-1) MATRIX, W, IS FORMED BY REMOVING
    THF COLUMN OF V WHICH IS MOST LINEARLY DEPENDENT
    UPON ITS NEIGHBOURS. LETTING THIS COLUMN BE
    DENOTED BY Y, THE PROCEDURE THEN SOLVES THE SYSTEM
    OF EQUATIDNS, WZ==Y, WHERE Z DENOTES THE VECTOR
    GOTTEN FRIOM T BY DELETING THE ENTRY WHICH CORRES=
    PONDS TO THE COLUMN, Y.
        FINALLY, THE VECTOR, T, IS FILLED WITH VALUES
        FROM Z, WHEHEVER POSSIBLE, AND THE ENTRY CORRES=
        PONDING TO THE COLUMN, Y, IS GIVEN THE VALUE
        ONE. THIS, THEN, IS THE SOLUTION TO THE
        EQUATION, UT=O.
            TD GIVE SOME INDICATION AS TO THE AMOUNT
        OF CANCELLATION INVOLVED IN COMPUTING THE DETERMI=
        NANT DF W, ABOVE, THE PROCEDURE COMPUTES THE PRODUCT
        GF THE MODULI OF THE NOPMS OF THE RUWS OF W,
        ANO TF THE COLUMNS OF W. THE AVERAGE OF THESE
        TWO PRIDUCTS IS THEN COMPUTED, AND THE DETERMINANT
        OF W, DIVIDED BY THIS AVERAGE, IS INSERTED
        INTO THE IDENTIFIER, CMPLXHOMOSOLVER.
        PROCEDURES REFERENCED BY CMPLXHDMOSDLVER
        ARE: MUDOFINRPROD, CMPLXCOSQBUILDER,
        MOSTLD, CMPLXLINTRAN, TRANSPOSE, AND CMPLXINVERSE;
        INTEGER I,J,K,LDROW,LDCOL,NM1;
        KEAL NRMR,NRMC,NORM,MODET;
        PROCEDURE MOVECTOR(N,A,B);
        VALUE N; INTEGER N; ARRAY A,B[0];
        BEGIN COMMENT A AND B ARE ASSUMED TO HAVE INDEX
                UPPER BOUNDS EQUAL TO N. THIS PROCEDURE
                COPIES A[K] INTO B[K] FOR K=0, ..., N;
        INTEGER K;
        FOR K+O STEP 1 UNTIL N DO B[K]&A[K]
END UF THE MOVECTOR PROCEDURE;
LABEL EXIT;
COMMENT HERE THE EXECUTABLE STATEMENTS BEGIN;
CMPLXHOMOSOLVER&1;
IF N = 1 THEN
```

```
BEGIN X[1]+I; IX[1]+0; GO TO EXIT END;
CMPLXCOSQBUILOER(N,A,IA,B,"ROWS"); LDROW&MOSTLD(N,B);
COMMENT LDROW NOW EQUALS THE NUMBER DF THE ROW
    IN THE MATRIX, U, WHICH IS MOST LINEARLY
    DEPENDENT UPIN ITS NEIGHBOURS;
MOVECTOR(N,A[LDROW,*],A[O,*]);
MOVECTOR(N,IA[LDROW,*],IA[O,* ]);
FOR K&LDROW+1 STEP 1 UNTIL N DO
BEGIN MOVECTOR(N,A[K,*],A[K-1,*]);
    MOVECTOR(N,IA[K,*],IA[K=1,*])
END OF THE K LOOP;
FOR K&1 STEP 1 UNTIL N DO A[N,K]&IA[N,K]&0;
COMMENT NOW THE LDROW=TH ROW OF U HAS BEEN
    COPIED INTO THE ZERO-TH ROW OF U. THE
    REMAINING ROWS HAVE BEEN SHUFFLED DOWN, AND
    THE N=TH ROW HAS BEEN FILLED WITH ZEROES;
CMPLXCOSQBUILDER(N,A,IA,B,"COLUMNS");
LDCOL&MOSTLD(N,B); NM1&N=1;
FQR I&1 STEP 1 UNTIL NM1 DO
BEGIN MOVECTOR(LDCOL,A[I**],B[I,*]);
    MOVECTOR(LDCOL,IA[I,*],IB[I,*]);
    FOR J&LDCOL+1 STEP I UNTIL N DO
    BEGIN B[I,J-1]+A[I,J];
            IB[I,J-1]&IA[I,J]
    END OF THE J LOOP
END OF THE I LOOP;
COMMENT NOW LOCOL IS THE NUMBER OF THE COLUMN
    UF THE MATRIX, U, WHICH IS MOST LINEARLY
    DEPENDENT UPON ITS NEIGHBOURS. CDLUMNS ONE
    THRU (LDCOL-1) OF U HAVE BEEN COPIED INTO
    THE CORRESPUNDING COLUMNS DF THE MATRIX
    WITH REAL AND IMAGINARY PARTS B AND IB,
    RESPECTIVELY. FURTHER, COLUMNS (LDCOL+1) THRU
    N OF U HAVE BEEN COPIED INTO COLUMNS
    LDCOL THRU (N-1) OF THE (B,IB) MATRIX;
NRMR&NRMC&1; TKANSPQSE(N,B); TRANSPQSE(N,IB);
FOR K&1 STEP 1 UNTIL NM1 DO
NRMC+NRMCXMODOFINRPROD
                            (NM1,B[K,*],IB[K,*],B[K,*],IB[K,*]);
NORM&(SQRT(NRMC)+SQRT(NRMR))/2;
COMMENT NOW THE PRODUCT DF THE SQUARES OF THE
    MOOULI OF THE NQRMS OF THE ROWS OF (B,IB)
    HAS BEEN STORED INTU NRMR. THE CORRESPUNDING
    PRODUCT FOR THE COLUMNS OF (B,IB) HAS BEEN
    STORED INTU NRMC.
            THE AVERAGE OF THE SQUARE ROOTS UF NRMR
        AND NRMC HAS BEEN STORED INTO NORM;
MODET&CMPLXINVERSE(NM1,B,IB);
FOR K&1 STEP 1 UNTIL NM1 DO
BEGIN B[O,K]&-A[K,LDCOL];
    IB[0,K]&=IA[K,LDCOL]
END OF COPYING GVER THE MOSTLD COLUMN;
CMPLXLINTRAN(NM1,B,IB,B[0,*],IB[0,*],X,IX);
FOR K&NM1 STEP - I UNTIL LDCOL DO
BEGIN X[K+1]&X[K]; IX[K+1]&IX[K] END;
X[LOCOL]*1; IX[LDCOL]&0;
```

```
            CMPLXHOMOSOLVER&MODET/NORM;
    COMMENT NOW THE SOLUTION TO UT=O HAS BEEN
                STORED INTO T, AND THE DETERMINANT-OVER-NORM
                QUANTITY HAS BEEN INSERTED INTO THE IDENTIFIER,
                CMPLXHOMOSOLVER. WHAT REMAINS TO BE DONE
                IS THE RESTURING OF ROWS ONE THRU N OF U;
    FOR K+NM1 STEP = I UNTIL LDROW DO
    BEGIN MOVECTOR(N,A[K,*],A[K+1,*]);
                MOVECTOR(N,IA[K,*],IA[K+1,*])
    END;
    MOVECTOR(N,A[O,*],A[LDROW,*]):
        MOVECTOR(N,IA[O,*],IA[LDROW,*]);
    EXIT:
END OF THE CMPLXHOMOSOLVER PROCEDURE;
INTEGER PROCFDURE GETRANSIENTSOLUTION
(M,N,MUVEK,NUVEK,ALFA,BETA,GAMMA,A,IA,B,IB,CMTX,ICMTX,
    POLY,MODE,EPSJ; VALUE N,POLY,MODE,EPS; BOOLEAN POLY,MODE;
        INTEGER M,N; ARKAY MUVEK,NUVEK[O],
ALFA, BETA,GAMMA,A,IA,B,IB,CMTX,ICMTX[0,O]; REAL EPS;
BEGIN COMMENT THE MATRICES, CMTX AND ICMTX, MUST
        HAVE 2N ROWS OF N ELEMENTS EACH, I.E., THEY
        MUST BE 2NXN MATRICES. THE DTHER MATRICES
        MUST BE NXN, AND THE VECTORS, MUVEK AND NUVEK,
        MUST HAVE UPPER BOUNDS EQUAL TO 2XN. THE
        MATRICES, A, IA, B, AND IB ARE USED FOR
        TEMPORARY STORAGE.
            WHERE G IS THE MATRIX OF DIFFERENTIAL
        OPERATORS DEFINED BY G[I,J]= ALFA[I,J] ND*2
        + RETA[I,J]\timesD + GAMMA[I,J],FGR I, J=1, ,..,N
        ( D DENOTES DIFFERENTIATION WITH RESPECT TO
        TIME ), THIS PROCEDURE FINDS THE M INDEPENDENT
        SOLUTIONS TU THE EQUATION GQ=<NULL VECTOR>.
        OF COURSE, M\leq2N; AND THE VALUE OF M IS
        ALWAYS STORED INTO THE PARAMETER, M, PRIOR
        TO EXIT.
            THE BASIC SOLUTIONS TO THE ABOVE EQUATION
        HAVE THE FOKM C }\times\mathrm{ EXP( LAMBDA }\times\mathrm{ TIME),
        WHERE C IS A VECTOR WITH N COMPLEX ENTRIES,
        AND LAMBOA IS A COMPLEX NUMBER WITH REAL AND
        IMAGINARY PARTS, MU AND NU, RESPECTIVELY. THE
        PROCEDURE CUMPUTES ALL SUCH VECTORS, C, AND
        STORES THEM AS ROWS ONE THRU M OF THE
        COMPLEX MATRIX WITH REAL AND IMAGINARY PARTS,
        CMTX AND ICMTX, RESPECTIVELY. IN EACH CASE,
        THE CORRESPONDING LAMBDA IS STORED INTO
        THE CORRESPONDING PDSITION OF THE COMPLEX
        VECTOR WHDSE REAL AND IMAGINARY PARTS ARE
        MUVEK AND NUVEK, RESPECTIVELY.
            IF THE PRUCEDURE IS SUCCESSFUL IN DOING
        ITS WORK, THEN A ZERO IS INSERTED INTO THE
        IDENTIFIER, GETRANSIENTSOLUTION, PRIDR TO
        EXIT. OTHERWISE, THE INDEX CORRESPONOING
        TO THE VECTOR, C, WHICH WAS BEING COMPUTED
        AT THE TIME DF THE HANGUP WILL BE INSERTED
        BEFORE EXITING.
            THIS PROCEDURE MAKES EXPLICIT CALLS ON
```

```
    GETDETPOLY, FINDPOLYORDERANDNORMALIZE,
    SCALECOEFFICIENTS, GETPOLYZEROS, UNSCALE-
    THEROOTS, AND CMPLXHOMDSOLVER;
    INTEGER I,J,K,P; REAL SCALE,REL,IML,AIJ,BIJ;
    LABEL EXIT,EOL; BOULEAN STABLE;
    COMMENT HERE BEGIN THE EXECUTABLE STATEMENTS;
    GETDETPOLY(N,ALFA,BETA,GAMMA,MUVEK);
    COMMENT NOW MUVEK CONTAINS THE COEFFICIENTS
        of the determinant POLynomial;
        P&R;
    FOR I+8 STEP -1 UNTIL O DO
    If MUVEK[I]=0 THEN P+I=1 ELSE GO TO EOL;
EOL: IF BOOLEAN(P) THEN
    BEGIN WRITE(PRIMARY,FMTODD);
        IF POLY OK MODE THEN WRITE(SECNDRY,FMTODD);
    END ELSE
    BEGIN FOR K+0 STEP 1 UNTIL P DO
    NUVEK[K]&MUVEK[P-K];
    If NUVEK[0] < O THEN
    FOR K+O STEP 1 UNTIL P DO
    BEGIN NUVEK[K]&-NUVEK[K]; MUVEK[K]&-MUVEK[K]; END;
    ROUTHH(CMTX,P,NUVEK,RR,STABLE,ROW);
        WRITE(PRIMARY,SWITFMT[I* REAL(STABLE)],SWITLST[I]);
        IF POLY OR MODE THEN
        WRITE(SECNDRY,SWITFMT[I],SWITLST[I]);
    END:
        IF ROUTH THEN GO TO EXIT;
        IF ORDER THEN
        FOR I+ODI+1 STEP 1 UNTIL 8 DO MUVEK[I]+0;
    IF POLY T.HEN WRITE(SECNDRY,FMTPGLY,
    FOR K+O STEP 1 UNTIL 8 DO MUVEK[K]);
    FOR K&O STEP I UNTIL 2×N DO NUVEK[K]+O;
    FINOPOLYORDERANDNORMALIZE (2XN,MUVEK,NUVEK,P);
    SCALECDEFFICIENTS(P,MUVEK,NUVEK,SCALE);
    GETPOLYTEROS(P,MUVEK,NUVEK,EPS );
    UNSCALETHEROOTS(P,MUVEK,NUVEK,SCALE);
    COMMENT NOW MUVEK AND NUVEK CONTAIN THE
    REAL AND IMAGINARY PARTS, RESPECTIVELY, OF
    THE ROOTS OF THE DETERMINANT POLYNOMIAL. THESE
    RONTS ARE, UF COURSE, THE LAMBDAS MENTIDNED
    IN the main comment, above.
            NEXT, ALL SUCH ROOTS WITH MODULUS ZERO
    WILL BE THRUWN OUT, AND THE M REmAINING
    ONES WILL BE SHUFFLED DOWN IN THE MUVEK=
    NUVEK PAIR; M&P;
    FOR K&P STEP -1 UNTIL 1 DO
    IF MUVEK[K]*2+NUVEK[K]*2=0 THEN
    BEGIN M&M-1;
        FOR J+K+1 STEP 1 UNTIL P DD
        BEGIN MUVEK[J=1]+MUVEK[J];
            NUVEK[J-1]&NUVEK[J]
        END OF THE SHUFFLEDOWN
    END OF ZERO MODULUS CASE;
    COMMENT NOW M IS PROPERLY SET UP, AND THE
        NON-ZERO KOOTS OF THE DETERMINANT POLYNOMIAL
```

```
                        ARE THE ONE THRU M-TH ENTRIES DF THE
                        MUVEK-NUVEK PAIR;
        IF NOT MODE THEN
        BEGIN GETRANSIENTSOLUTION&O; GO TO EXIT; END;
        FOR K+1 STEP 1 UNTIL M DO
        BEGIN CDMMENT EACH PASS THRU THIS lOOP CAUSES
            THE "C-VECTOR" CDRRESPONDING TO THE
            LAMBDA WITH REAL AND IMAGINARY PARTS,
            MUVEK[K] AND NUVEK[K], RESPECTIVELY,
            TO BE STORED AS THE K-TH ROW OF
            THE COMPLEX MATRIX WITH REAL AND IMAGINARY
            PARTS, CMTX ANO ICMTX, RESPECTIVELY;
            REL&MUVEK[K]; IML&NUVEK[K];
            FOR IH1 STEP 1 UNTIL N DO
            FOR J&1 STEP 1 UNTIL N DO
            BEGIN A[I,J]&(REL*2-IML*2)*(AIJ&ALFA[I,J])
                +(BIJ+BETA[I,J])\timesREL+GAMMA[I,J];
            IA[I,J]+(AIJXREL X2+BIJ) \IML
        ENN OF SETTING UP A AND IA;
        IF CMPLXHOMOSOLVER(N,A,IA,B,IB,
            CMTX[K,*],ICMTX[K,*]) \leq 1.00-11 THEN
            BEGIN GETRANSIENTSOLUTIONGK;
            GO TO EXIT
            END Of the hangup CASE
            END OF THE LOOP ON K;
            gETRANSIENTSULUTIUN&O;
        EXIT:
    END OF THE gETRANSIENTSOLUTIDN PROCEDURE;
    COMMENT ********** EXECUTABLE STATEMENTS ***********
    FOR I+1,2,3 DO TO[I]+TIME(1);
    EOFBOUL & FALSE; G*32.17 x12; PI2+(2\times(PI+ARCTAN(1)\times4));
    READ(CR[NO],/,STRING);
    IF STRING = "SIGFIG" THEN
    BEGIN READ(CR,/,STRING,EPS); EPS*10*(-2xEPS); END ELSE EPS+1.0@-21;
    READ(CR[NO],1,STRING);
    IF (OROER*STRING="ORDER")THEN READ(CR,/,STRING,ODI);
    READ(CR[NO],/,STRING):
    IF (ROUTH& STRING="ROUTH") THEN READ(CR);
    READ(CR,/:L,L1,L2,W,IP,IT); RAD + 18U/PI; POLY&MODE&FALSE;
    ALAB: READ(CR,/,WO,DW,WM); READ(CR,/,K1X,K2X,K1Y,K2Y);
    READ(CR,/,C1X,C2X,C1Y,C2Y); READ(CR,/,DIX,D2X,DIY,D2Y);
    READ(CR,/,R1X,R2X,R1Y,R2Y); POLY+MODE&FALSE;
BLAB: READ(CR[ND],/,STRING)[EOF];
    IF STRING="POLY" THEN BEGIN POLY&TRUE; READ(CR); GO TO BLAB; END;
    IF STRING="MODE" THEN BEGIN MODE&TRUE; READ(CR); GO TO BLAB; END;
    GO TO PROCESS;
EOF: EOFBOOL & TRUE;
                            PROCESS: WRITE(PRIMARY,FMTECHG,LSTECHO);
    IF ROUTH THEN POLY&MODE&FALSE;
    IF POLY OR MODE THEN
    BEGIN WRITE(SECNDRY,FMTECHO,LSTECHO);
        IF POLY THEN
        BEGIN WRITE(PRIMARY,PLYECHO); WRITE(SECNDRY,PLYECHO); END;
        IF MODE THEN
        BEGIN WRITE(PRIMARY,MODECHO); WRITE(SECNDRY,MODECHO); END;
        WRITE(SECNDRY[DBL]);
```

```
END OF THE POLY MODE ECHO;
WRITE(PRIMARY[DBLI);
    M&W/G; DM1 &WM1 /G ; DM2 + WM2/G ;
    RPP & IP / M ; RTT& IT / M ;
    RP - RPP/ (LX L ) ; RT + RTT / ( LX L ) ; ;
    L11 + L1 / L ; L22 + L2 / L ;
    K1XX + K1X / M ; K2XX & K2X /M ;
    K1YY & K1Y /M ; K2YY & K2Y/M ;
    C1XX + CIX / M ; C2XX + C2X / M ;
    C1YY & C1Y / M ; C2YY - C2Y / M ;
```



```
    RIYY + RIY / M ; R2YY + R2Y / M ;
    DIXX - DIX / M ; D2XX + D2X / M ;
    D1YY + D1Y / M ; D2YY + D2Y / M ;
FOR W & WO STEP DW UNTIL WM DO
BEGIN WRITE(PRIMARY[NO],FMTSPD,W); J& 0; I&1; WHRLBOL&FALSE;
    IF MODE OR POLY THEN WRITE(SECNDRY[NO],FMTSPD,W); S&WXPI2;
    FOR R+L22,L11,0,0,0,0,L22,L11,-RT,RT,0,0,0,0,-RT,RT DO
    BEGIN IF J=4 THEN BEGIN J& 0;I&I+1; END;
        A[I,J&J+1]&R;
    END OF THE A MATRIX SETUP; J& 0; I*1;
    FOR R+C1XX,C2XX,O1YY,OZYY,D1XX,D2XX,C1YY,C2YY,
        -C1XXXL11,C 2XXXL22,-(RPXS+D1YYXLL11),
        RP\timesS+DZYY\timesL22,RP\timesS-D IXXXL11,-(RP\timesS-D2XXXL22),
        -C1YYXL11, C2YYXL22 DO
    BEGIN IF J=4 THEN BEGIN J& 0;I&I+1; END;
            B[I;J&J+1]&R;
    END OF THE B MATRIX SETUP; J+ 0; I&1;
    FOR R+K1XX,K2XX,R1YY,R2YY,R1XX,R2XX,K1YY,K2YY,
        -K1XXXL11, K2XXXL22, -R1YYYXL11,R2YYXL22,
        -R1XXXL11,R2XXXLL22,-K1YYXL11,K2YYYKL22 DO
    BEGIN IF J=4 THEN BEGIN J+ O;I&I+1; END;
    C[I,J+J+1]+R;
    END DF THE C mATRIX SETUP;
    IF I* GETRANSIENTSOLUTION
        (M,4,MUVEK,NUVEK,A,B,C,AR,AI,BR,BI,CMTX,ICMTX,
                        POLY,MODE,EPS ) # O THEN
    BEGIN WRITE(PRIMARY,ERRFMT,I);
        WRITE(PRIMARY[PAGEJ);
        IF MODE OR POLY THEN
        BEGIN WRITE(SECNDRY,ERRFMT,I); WRITE(SECNDRY[PAGEJ); END;
        IF EOFBOOL THEN GO TO EXIT; GO TD ALAB;
    END DF THE ERROR QUIT;
    IF ROUTH THEN gO TO SLP;
    WRITE(PRIMARY,FMTROOT,LSTROOT);
    WKITE(WHRARYY*], ALLWHRL,LSTALL);
    WRITE(PRIMARY,FMTFREQ,LSTFREQ);
    FUR I+1 STEP 1 UNTIL M DO
    If MUVEK[I] \geq 0 THEN WHKLBDL + TRUE
                        ELSE
    BLANK(WHRARY[1],I-1);
    IF WHRLBOL THEN
    BEGIN WRITE(PRIMARY,FMTWHRL); WRITE(PRIMARY,15,WHRARY[*]) END;
    If mDDE OR PDLY THEN
```

```
                    BEGIN WRITE(SECNORY,FMTROOT,LSTROOT);
                        WRITE(SECNDRY,FMTFREQ,LSTFREQ);
                        IF WHRLBOL THEN
                        BEGIN WRITE(SECNORY,FMTWHRL);
                    WRITE(SECNDRY, 15,WHRARY[*]); WRITE(SECNDRY[DBL]);
                        END OF THE WHRIL SECONDARY WRITE;
                        IF MODE THEN
                    BEGIN WRITE(SECNDRY,FMTMODE);
                        FOR K&1 STEP 1 UNTIL M DO
                        WRITE(SECNDRY,FM2 ,LSTMODE); WRITE(SECNDRY[DBL]);
                    END;
                END OF THE PQLY MODE PRINT OUT; WRITE(PRIMARY[DBL]);
            SLP:
            END OF THE SPEED LDOP;
            IF NOT EOFBOOL THEN
            BEGIN WRITE(PRIMARY[PAGE]);
                IF POLY OR MODE THEN
            WRITE(SECNDRY[PAGE]);
            GO TO ALAB;
            END OF THE PROCESSING;
                EXIT: TIMEANDATE(TO.PRIMARY,"GIVTME");
            IF PDLY OR MODE THEN TIMEANDATE(TO,SECNDRY,"GIVTME");
            END OF THE ROTSTAB PROGRAM.
    ARCTAN IS SEGMENT NUMBER 003O.PRT ADURESS IS 0246
    EXP IS SEGMENT NUMBER O031,PRT ADDRESS IS 0227
    LN IS SEGMENT NUMBER 0032,PRT AODRESS IS 0226
    SQRT IS SEGMENT NUMBER OO33,PRT ADDRESS IS 0220
    UUTPUT(W) IS SEGMENT NUMRER 0034,PRT ADDRESS IS 0202
    BLUCK CONTROL IS SEGMENT NUMBER 0035.PRT ADDRESS IS 0005
    INPUT(W) IS SEGMENT NUMBER 0036,PRT ADDRESS IS 0250
    X TO THE I IS SEGMENT NUMBER 0037,PRT ADDRESS IS 0230
    GO TD SDLVER IS SEGMENT NUMBER 0038,PRT ADDRESS IS 0265
    ALGOL WRITE IS SEGMENT NUMBER 0039,PRT ADDRESS IS 0014
    ALGOL READ IS SEGMENT NUMBER 0040,PRT ADDRESS IS 0015
    ALGOL SELECT IS SEGMENT NUMBER 0041,PRT ADDRESS IS 0016
COMPILATION TIME = 296 SECONDS.
NUMBER OF ERRORS DETECTED = 000. LAST ERROR ON CARD #
NUMBER OF SEQUENCE ERRORS COUNTED = 0.
NUMBER OF SLOW WARNINGS = 0.
PRT SIZE= 189; TOTAL SEGMENT SIZE= 2783 WORDS.
DISK STORAGE REQ.= 119 SEGS.; NO. SEGS.= 42.
ESTIMATED CDRE STORAGE REQUIREMENT = 32000 WORDS.
```


TABLE D-I

THE COEFFIEIENTS OF THE OETERMINANT PULYNUMIAL NILL BE GIVEN. THE MODE SHAPE VECIUKS WILL BE GIVEN.

STABLE

THE COLFFICIENTS OF THE DETERMINANT PULYNOMIAL (IN ASCENDING ORDER) ARE:
$1.445046+26 \quad 3.648150+22 \quad 1.158880+20 \quad 2.133740+16 \quad 3.347490+13 \quad 4.058580+094118158.95352 \quad 250.33871 \quad 0.18217$

THERE ARE 8 CHARACTERISTIC ROOTS, WITH REAL AND IMAGINARY PARTS AS FOLLOWS:

REAL	-40.90499	-212.88812	-100.78335	-332.51083	- 100.78335	-212.88812	-332.51083	- 40.90499
IMAG	2049.99874	-1969.40004	-2621.84609	-2621.84606	2621.84609	1969.40064	2621.84608	-2049.99874
THE NATURAL	FREQUENCIES	(IN CPS) Ah				.		
	326.27	-313.44	-417.28	-417.28	417.28	313.44	417.28	-326. 27

THE NAIURAL FREQUENCIES (IN RPM) ARE:
THE MODE SHAPE VECTURS ARE AS FOLLOWS: 18578036.8

TABLE D-I. - Continued.

STABLE

THERE AKE \& CHAKACTERISTIC ROOTS, WITH REAL AND IMAGINARY PARTS AS FQLLOWS:

IMAG

$$
-819.86122
$$

$$
1951.15220 \quad 2555.95076 \quad-2031.75030
$$

$$
\begin{array}{r}
1276.32623 \\
2555.95076
\end{array}
$$

-1276.32523 2555.95076
-293.58024 2555.95076
-814.86122 -1951.15220
-99.67901 2031.75030

THE NATURAL FREQUENCIES (IN CPS.J ARE:
310.54
406.79.
-323.30
406.79
-406.79

THE NATURAL FREQUENCIES (IN RPM) ARE:

	8.0000 INCH		4.0000 INCH		L2:		4.0000INCH		
	$W=24.590$		0.0496LB-IN-SEC?			$I T=$	1.7400LB-IN-SEC?		
$k 1 x=$	220000.00LB/IN	$k 2 x=$	220000.00'8/IN	$K 1 Y=$	220000.00LB/IN		$\mathrm{K} 2 \mathrm{Y}=$	2200	000.00LB/IN
C $1 \times=$	50.00LB.SEC/IN	62x $=$	50.00L ${ }^{\text {50.SEC/IN }}$	C1Y $\mathrm{P}=$	50.00LB.SFC/IN		$\mathrm{C} 2 \mathrm{Y}=$		50.00LB.SEC/IN
K1 $\mathrm{X}=$	-102500.00LB/IN	$\mathrm{R} 2 \mathrm{X}=$	-102500.00L ${ }^{\text {c/ }}$ / IN	RIY $=$	102500.00LB/IN		$\mathrm{R} 2 \mathrm{Y}=$	1025	500,00LB/IN
ט1 $\mathrm{X}=$	0.0000LB.SEC/IN	D2x $=$	0.0000L8.SEC/IN	D1Y=	0.0000LB.SEC/IN		D2Y =		. 0000 LB.SEC/IN

- - SPEEU $=450 \mathrm{RPS} \ldots-\infty$

STABLE

THEKE AKE \quad CHAKACTERISTIC ROUTS, WITH REAL AND IMAGINARY PARTS AS FOLLOWS:

| REAL | -919.07018 | -162.31176 | -1407.59470 | -1407.59470 | -0.47005 | -919.07018 | -162.31176 | -2.47005 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| IMAG | 1971.45664 | -2584.39921 | 2584.39921 | -2584.39921 | 2052.05674 | -1971.45864 | 2584.39921 | -2052.05674 |

THE NATURAL FREQUENGIES (IN CFS) ARE:
313.77
-411.32
411.32
-411.32
326. 59
-313.77
411.32
-326.59

THE NATURAL FREQUENCIES (IN RPM) AYE:

```
18376.0
19595.7
24679.2
```


TABLE D-I. - Continued.

	$\mathrm{L}=8.0000 \mathrm{NCH}$		LI= 4.0000INCH		L2=	4.0000 INCH	
	$y=24.590$		$I P=0.0496 \mathrm{LB}-\mathrm{IN}-\mathrm{SEC} 2 \quad \mathrm{~T}=$			1.7400LB-IN-SEC?	
K1x $=$	220000.00Lゥ/IN	K2x $=$	$220000.00 \mathrm{Lb} / \mathrm{IN}$	K1Y=	220000.00LB/IN	$\mathrm{K} 2 \mathrm{Y}=$	$220000.00 \mathrm{LB} / \mathrm{IN}$
C1x $=$	50.0ULB.SEC/IN	C2 2 =	5n.0nLb.SEC/IN	CiY=	50.00LB.SFC/IN	$\mathrm{C} 2 \mathrm{Y}=$	50.00LB.SEC/IN
k1x $=$	-121000.001-h/İ	R2 $2 \times$	-127000.00LB/IN	RIY $=$	127000.00LB/IN	$\mathrm{R} 2 \mathrm{Y}=$	127000.00LB/IN
U1x=	U.0UnOLb.SEC/IN	$02 \mathrm{x}=$	0.n000Lb.SEC/IN	DIY=	0.0000LB.SFC/IN	D2Y =	0.0000 LB .SEC/IN

THEKE AKL O CHAKACTERISTIC ROLITS, WITH REAL AND IMAGINARY PARTS AS FOLLDWS:

REAL	-1545.02498	194.19955	1)4.10965	-24.28149	-1545.62498	-1073.64998	-1023.64988	-24.28149
IMAG	2621.07\%6?	-2078.47786	2070.47780	-96フ1.07962	-2621.07962	1997.87976	-1997.87970	2621.07962

THE NATURAL FHEQUENCIES (IN CPS) ARE:

$$
\begin{array}{lllllllllll}
417.16 & -330.80 & 330.80 & -417.16 & -417.16 & 317.97 & -317.97 & 417.16
\end{array}
$$

THE NATURAL FREQUENCIES (IN RPM) ARE:

19078

19048.0	25029.5
-0.73511	0.73511

	$\mathrm{L}=8.0000 \mathrm{INCH}$		4.0000INCH L2			4.0000 INCH	
	$N=24.5900 \mathrm{LS}$		$I H^{2}=0.0496 \mathrm{LB}-\mathrm{IN}-\mathrm{SEC} 2 \mathrm{l}$			1.7400LR-IN-SEC2	
$\mathrm{K} 1 \mathrm{X}=$	220000.00LB/IN	K2x=	$220000.00 \mathrm{Lb} / \mathrm{IN}$	$K 1 Y=$	220000.00LB/IN	$\mathrm{K} 2 \mathrm{Y}=$	220000.00LB/IN
$61 \times=$	50.00 LY -5EC/IV	C $3 \mathrm{X}=$	50.00L. ${ }^{\text {S SEC/1H }}$	CIY=	50.00LB.SEC/IN	$\mathrm{C} 2 \mathrm{Y}=$	50.00LB.SEC/IN
R1 $\mathrm{X}=$	-154000.00Lb/IN	K2x $=$	- $154000.00 \mathrm{Lb} / 1 \mathrm{~N}$	$R 1 Y=$	154000.00 L (IN	R2Y $=$	154000.00LB/IN
D $1 \mathrm{X}=$	0.0000L日.SEC/IN	102\% $=$	0.00UOLG.SEC/IN	$01 Y=$	0.0000 LB . SFC/IN	D2Y =	0.000OLB.SEC/IN

THERE AKE O CHAKACTERISTIC RDÖTS, NITH KEAL ANU IMAGINAFY PARTS AS FOLLRWS:

REAL	-1691.44354	121.53797	-1134.41357	214.87334	-1691.44354	214.87334	-1134.41357	
IMAG	2667.05110	-2667.05110	-2031.25945	2111.05795	-2667.05110	-7111.85795	2667.05110	2031.25985

THE NATURAL FREWUEMCIES (IN CPS) ARE:
424.47
-424.47
-323.29
336.11
-424.47
-336.11
424.47
323.29

THE NATURAL FREGIIFNCIES (IN RPM) ARE:
19397.1 20166.8 25468.6

THE WHIRL RATIOS ARE:

$$
-0.94320
$$

TABLE D-I. - Concluded.

THEKE AKE Y CHARACTERISTIC ROISS, WITH REAL AND IMAGINARY PARTS AS FOLLOWS:

REAL	-184R.15248	.33.4.20640	-1253.7496\%	334.20846	$=1848.15248$	-1253.74869	278,24602	278.24602
IMAG	2724.30349	2153.73570	-2073.1375\%	-2153.73570	-2724.30349	2073:13759	-2724.30349	2724.30349

THE NATURAL FREQUEMCIES (IN CPS , ARE:
$433.59 \quad 342.76$
342.78
-329.96
$-342.7 .8$
-433.59
329.95
-433.59
433.59

THE NATURAL FREUIJEINCIES (IN RPH) ARE:
$19797.0 \quad 29566.7 \quad 26015.2$
THE WHIHL KATIOS ARE:

	$L=3.00001 \mathrm{NCH}$		L1 =	4.0000 INCH	L2=	4.0000 INCH	
	$W=24.590$		$I P=0.0$	$R=I N=$	C2 IT =		OOOLB=IN-SEC?
$\kappa 1 x=$	220000.0ULB/IN	$k 2 x=$	2200LO.00Lb/IN	$K 1 Y=$	$220900.00 \mathrm{LB} / \mathrm{IN}$	$K 2 . Y=$	2?0000.00LB/IN
C1x $=$	100.00L®.SEC/IN	C2x=	1Un.00Lb.SEC/IN	CI $Y=$	$100.00 \mathrm{LH}, \mathrm{SFC/IN}$	$\mathrm{C} 2 \mathrm{Y}=$	100.00LB.SEC/IN
$\cdots 1 x=$	-220000.00L 2 /IN	R2 $x=$	-220000.00LB/IN	RIY $=$	$220000.00 \mathrm{LB/IN}$	$\mathrm{R} 2 \mathrm{Y}=$	220000.00LB/IN
U1 $x=$	0.0000LB.SEC/IN	1) $2 x=$	0.0000 LG. SEC/IN	DIY $\mathrm{Y}=$	0.0000LB.SEC/IN	D2Y $=$	0.0000LB.SEC/IN

THEKE AKE 8 CHARACTERISTIC ROOTS, WITH REAL AND IMAGINARY PARTS AS FOLLOWS:

REAL IMAG	-1894.16749 1997.33317	-2942.07436 -2515.55893	$\begin{array}{r} -2942.87430 \\ 2515.55893 \end{array}$	$\begin{aligned} & -196.93357 \\ & 2515.55893 \end{aligned}$	$\begin{array}{r} -196.93357 \\ -2515.55893 \end{array}$	$\begin{array}{r} 55.08703 \\ 2077.93128 \end{array}$	$\begin{aligned} & =1894.16749 \\ & =1997.33317 \end{aligned}$	$\begin{array}{r} 55.08703 \\ .2077 .93128 \end{array}$
THE	Fhequtncie	IN CPS, $4 R$						
	317.89	-40n. 30	400.36	400.36	-400.36	330,71	-317.89	-330.71

THE NATURAL FREQUENCIES (IN RHM) ARE:
THE WHIKL KAT $19073.1 \quad 19842.8 \quad 24021.8$

THE WHIRL KATIOS ARE:

APPENDIX E

LISTING AND SAMPLE OUTPUT OF COMPUTER PROGRAM STABIL4

```
BEGIN
COMMENT THIS PRIGRAM IS FOR THE STABILITY ANALYSIS OF 2 DEGREE FREEDOM
SYSTEM. THE REAL PART GIVES DAMPING RATE AND THE IMAGINARY PART, THE
NATURAL FREQ OF THE SYSTEM . IF REAL PAKT OF THE ROOT IS NEGATIVE THEN
THE SYSTEM IS STÁBLE - IF REAL PAITT IS ZERI THEN THE SYSTEM IS NEUTRAL -
IF THE REAL PART IS POSITIVE THEN THE SYSTEM IS UNSTABLE.
PROCEDURE FUNCTION IS A FUNCTIUN GENERATOR.
PROCEDURE COEFFICIENT CALCULATES THE COEFFICIENTS OF DIFFERENT POWERS
OF LAMBDA . THE HIGHEST ONE STARTING WITH C[O].
THE INPUT DATA ARE AS FOLLOWS
CARO1
1. N- HIGHEST POWER OF THE PULYNOMIAL
CARD2
1. W- MASS UF THE ROTOR (LBS)
CARD }
1. KX= STIFFNESS CDEFF IN X DIRECTION (LB/IN)
2.KY - STIFFNESS COEFF IN Y UIKECTIUN (LB/IN)
CARO5
1. CX= DAMPING COEFF IN X DIKLCTIUN (LB.SEC/IN)
1. CY- DAMPING COEFF IN Y DIKECTIUN (LB.SEC/IN)
CARO5
1. KX= CROSS CDUPLING STIFFNESS IN X DIRECTION (LB/IN)
2. RY- CROSS COUPLING STIFFNESS IN Y DIRECTION (LB/IN)
CARD6
1. DX= CROSS COUPLING DAMPING CUEFF IN X DIRECTION (LB.SEC/IN)
2. DY- CROSS COUPLING DAMPING CUEFF IN Y OIRECTION (LB.SEC/IN)
CARD 7
1.L-LENGTH UF SHAFT (IN.)
CARD }
1.IP- POLAR MOMENT OF INERTIA (LB-SEC-IN2)
2.IT-TRANSVERSE MOMENT OF INERTIA (LB-SEC-IN2)
CARD }
1.OMEGA-REV / SEC
COL1. REAL PART (DAMPING RATE)
COL? IMAGINARY PART ( NATURAL FREQ) ;
REAL KX, KY, CX , CY, RX, RY, DX, DY, KXX, KYY, CXX, CYY,
RXX , RYY, DXX, DYY, L ,W, M, G , TP1, TP2, TP3, TEP1, TEP2,
    KXA, KYA , CXA , CYA , RXA , KYA , DXA , DYA ,IP , IT , KTT , KPP ,
    RT , RP , UMEG , OMEGA ;
INTEGER I , A , TMXM, TNRTS ,N,S , CYC, REP ;
REAL ARRAY TRRT, TIRT, COEF[0:100];
BOOLEAN TSW1, TSW2, TSW3, TSWR ;
LABEL AGAIN, FINIS;
ARRAY TYME[1:3] ;
FORMAT HEADI(X35, "STABILITY ANALYSIS OF 4-DEGREE FREEDUM SYSTEM",/,
X35, 45("*") , // ) ;
FORMAT HEAUZ(1(2(59(***)),/),
X3," KX=", E11.4, "LB/IN", X10, "KY=", E11.4,"LB/IN", X10,
"RX=", E11.4, "LB/IN", X10, "RY=", E11.4, "LB/IN", ,
X3,"CX=", E11.4, "LB.SEC/IN", X6, " CY=", E11.4, "LB.SEC/IN",
X6, "DX=", E11.4, "LB.SEC/IN", X6, " DY=", E11.4,"LB.SEC/IN",/,
X3, "IP=", E11.4, "LB-SEC=IN2", XT, "IT=", E11.4, MLB=SEC=IN2";
X10, ML=", E11.4, "IN.", X13, "W=", E11.4, "LBS,", /, X50,
"SPEED=", E11.4, "RPS", /,
1(2(59("**)),/));
```


PROCEDURE CUEFFICIENT(KX, KY, CX, CY, RX, RY, DX, DY, L , COEF);
VALUE KX, KY, CX, CY, RX , RY, DX, DY, L ;
REAL KX, KY, CX, CY, RX, RY, DX, DY, L ;
REAL ARRAY COEF[0]
BEGIN
COEF [0]\& KY $\times K X=R X \times R Y$;
CDEF[1] $4 K X \times C Y+K Y \times C X-R X X D Y=R Y X D X ;$
$\operatorname{COEF}[2]+K X+K Y+C X \times C Y=D X \times U Y ;$
COEF[3] $+\mathrm{CX}+\mathrm{CY}$;
CDEF[4]4 1.0 ;
END OF PROCEDURE COEFFICIENT;
PROCEDURE FUNCTIUN (REALE, IMAG, REVAL, IEVAL) ;
VALUE REALE , IMAG;
REAL REALE, IMAG, REVAL, IEVAL;
BEGIN
REAL RTOT, ITUT ;
REAL ARRAY RE, IM [0:100];
RE[1] 4 REALE; IM[1] 1 IMAG;
FOR $S+2$ STEP 1 UNTIL N DO
BEGIN
$\operatorname{RE}[S]+\operatorname{RE}[S-1] \times \operatorname{RE}[1]-\operatorname{IM}[S-1] \times \operatorname{IM}[1] ;$
$\operatorname{IM}[S] \& \operatorname{RE}[S-1] \times \operatorname{IM}[1]+\operatorname{IM}[S-1] \times \operatorname{RE}[1] ;$
END;
RTOT \& COEF [O];
ITOT $\leftarrow 0.0$;
FOR S+I STEP 1 UNTIL N DU
BEGIN
RTOT $~ R T D T+R E[S] \times$ COEF [S];
ITOT* ITOT + IM[S] \times COEF [S];
END ;
REVAL + RTOT;
IEVAL $~$ ITOT;
END;
PROCEDURE MULLER (P1, P2,P3,MXM,NFTS,EP1,EP2,SW1,SW2, SW3,SWR,RRT,IRT, UT1);
VALUE P1,P2,P3,MXM,NRTS,EP1,EP2,SW1,SW2,SW3,SWR;INTEGER MXM,NRTS;BOOLEAN
SW1,SW2,SW3,SWR;REAL P1, P2,P3,EP1,EP2;KEAL ARRAY RRT, IRT[O];FILE OT1;BE
GIN BOOLEAN BOUL; INTEGFR C1,RTC,I, ITC;REAL RX1,RX2,RX3,IX1,IX2,IX3,RRODT , IROOT,RDNR, IDNH, T1, IT1,FRROUT,FIROUT,RFX1, RFX2,RFX3,IFX1,IFX2,IFX3,RH,I H, RLAM, ILAM,RDEL,IDEL,T2,IT2,T3,IT3,T4,IT4, KG,IG,RDEN,IUEN,RFUNC, IFUNC;L ABEL MO,M1, M2,M3,M4,M9,M8,M6, MT,FIN1,FIN2,FIN3,M10,M12,M11,EXIT;SWITCH J +M2,M3,M4,M7,M11;FORMAT OUT F2 (X46, "REAL", X12,"IMAGINARY"/X37,E18.11, X4, E18.11/X39,"THE FUNCTION EVALUATED AT THIS POINT IS"/X46,"REAL", X12,"IMA GINARY*/X37, E18.11, X4,F18.11/X35, "THE MUD" "IFIED FUNCTIUN EVALUATED AT T HIS POINT IS" / X46, "REAL", X12,"IMAGINARY"/X37,E18.11, X4, E18.11) ,F4 (///X29 , I 3," ITERATIINS HAVE REEN MADE. THE VALUE OF "MTHE ITERANT IS NOW"), F6 (//X37,"SUCCESSIVE ITERANTS MEET CUNVERGENCE CRITERION"/X39,"AFTER",I 3," ITERATIONS. THE ROOT FOUND IS"),F8(//X33,"THE FUNCTION VALUES OF THE L AST ITERANT ARE"" SUFFTCIENTLY"/X33, "NEAR ZERO. ", I 4 ," I ITERATIONS WERE M A"NDE. THE ROOT FOUND IS"),F10(//X35,I3," ITERATIONS COMPLETED AND SUCC ESSFUL CONVE"HRGENCE"/X41,"HAS NOT OCCURRED. THE LAST ITERANT IS"),F12(//X40, "THE PREVIOUS ROOT FOUND WAS COMPLEX. THE"/X40,MCONJUGATE OF THIS
VALUE IS ALSO A ROOT.");PROCEDURE COMPLEX(A,IA,B,IB,K,C,IC);VALUE A,IA, $B, I B, K ; I N T E G E R$ K;REAL $A, I A, B, I B, C, I C ; B E G I N$ REAL TEMP;LABEL MPY,DVD,SQT,E XIT;SWITCH JUNCTION\&MPY, DVD,SQT;GO TD JUNCTION[K];MPY:C\&AXB-IAXIB;IC\&AXI
$B+I A \times B ; G O$ TO EXIT;OVD:IF $B=O A N D I B=0 T H E N$ BEGIN C\&I;IC\&O;GO TO EXIT END;T $E M P+B \times B+I B \times I B ; C+(A \times B+I A \times I B) / T E M P ; I C+(I A \times B-A \times I B) / T E M P ; G O$ TO EXIT;SQT:IF(I $A=0) A N D(A<O) T H E N$ BEGIN $C \leftarrow O$; IC $+S Q R T(\sim A) E N D$ ELSE IF IA $=0$ THEN BEGIN C\&SQRT(A) ; IC \subset OEND ELSE BEGIN TEMP $S Q R T(A \times A+I A X I A) ; C+S Q R T((T E M P+A) / 2) ; I C+I F(T E M P$ -A) <OTHEN OELSE SQRT ($(T E M P-A) / 2) E N D$; IF ($(B+C) \times(B+C)+(I B+I C) \times(I B+I C))<(B-$ C) $\times(B-C)+(I B-I C) \times(I B=I C)) T H E N \quad B E G I N C+B-C ; I C+I B=I C E N D E L S E \quad B E G I N C+B+C$; IC\&IB+IC END;EXIT:END;FOR I\&1STEP IUNTIL NRTS DO RRT[I]\&IRT[I]\&O;RTC\&0;M $0: I X 1+I X 2 \leftarrow I X 3 \leftarrow C 1 \leftarrow I R O O T+I T C+0 ; R R O O T+P 1 ; B O O L+F A L S E ; M 1: C 1+C 1+1 ; R D N R+1 ; I D N R \leftarrow$ 0;FOR I\&ISTEP IUNTIL RTC DO BEGIN CDMPLEX(RDNR,IDNR,RRODT-RRT[I],IRODT-I RT[I], 1, T1, IT1);RDNR\&T1;IDNR\&IT1 END;FUNCTIQN(RROOT,IROOT,T1,IT1);COMPLE X(T1,ITI,RDINR,IDNR,2,FRROOT,FIROOT);GO TO J[CIJ; M2:RFX1+FRROOT;IFXI世FIRO BT;RROOT+P2;GO TO M1;M3:RFX2+FRRUOT;IFX2世FIROOT;RROOT\&P3;GD TD M1;M4:RFX
 RH, IH,RX2-RX1,IX2-IX1,2,RLAM,ILAM);RDEL4RLAM+1;IDEL+ILAM;M9:IF(RFX1=RFX2) AND (RFX2=RFX3)AND(IFXI=IFX2)AND(IFX2=IFX3)THEN BEGIN RLAM\&I;ILAM\&O;GD T O M 8 END;COMPLEX (RFX1, IFX1,RLAM,ILAM,1,T1,IT1);COMPLEX(RFX2,IFX2,RDEL,ID $E L, 1, T 2, I T 2) ; T 1+T 1-T 2+R F \times 3 ; I T 1+I T 1-1 T 2+I F \times 3 ; C O M P L E X(R D E L, I D E L, R L A M, I L A M$, 1, T2, IT2); CUMPLEX (T1, IT1, T2, IT2,1, T3, IT3); CDMPLEX(RFX3, IFX3, T3, IT 3, 1, T1,
 ; COMPLEX(RDELXRDEL-IDELXIDEL, 2×RDELXIDEL,RFX2,IFX2,1,T3,IT3);COMPLEX(RLA $M \times R L A M=I L A M \times I L A M, 2 \times R L A M \times I L A M, R F X 1, I F X 1,1, T 4, I T 4) ; R G \leftarrow T 4-T 3+T 2 ; I G 4 I T 4=I T 3+$
 $(R G \times R G=I G \times I G+T 1,2 \times R G \times I G+I T 1, R G, I G, 3, R D E N, I D E N) ; C D M P L E X(-2 \times R F \times 3,-2 \times I F \times 3, R$ DEL, IDEL,1,T1,IT1);COMPLEX(T1,IT1,KDEN,IDEN,2,RLAM,ILAM);M8:ITC+ITC+1;RX $1 \leftarrow R X 2 ; R \times 2 \leftarrow R \times 3 ; R F X 1+R F X 2 ; R F X 2 \leftarrow R F \times 3 ; I X 1+I X 2 ; I \times 2+I X 3 ; I F X 1 \leftarrow I F \times 2 ; I F X 2 \leftarrow I F X 3 ; C 0$ MPLEX (RLAM,ILAM,RH,IH,1,T1,IT1);RH+T1;IH\&IT1;M6:RDEL+RLAM+1;IDEL\&ILAM;RX
 $3 \leftarrow F I R O O T ; F U N C T I U N(R X 3$, IX3,RFUNC, IFUNC) ; COMPLEX (RFX3, IFX3,RFX2,IFX2,2,T1, IT1); IF (T1×T1+IT1×IT1)>100THEN BEGIN RLAM+RLAM/2;RH\&RH/2;ILAM\&ILAM/2;IH* IH/2;GO TO M6 END; IF SW1 THEN GEGIN WRITE(OT1,F4, ITC);WRITE(OT1,F2,RX3,I X3,RFUNC, IFUNC, HFX3, IFX3)END; T1 RRX3-RX2; IT14IX3-IX2;COMPLEX (T1, IT1,RX2,I X2,2,T2,IT2);IF SQRT(T2XT2+IT2XIT2)SEP1 THEN GO TD FIN1; IF (SQRT(RFUNCXRF $U N C+I F U N C \times I F U N C) \leq E P 2) A N D(S Q R Y(R F X 3 \times R F X 3+I F X 3 \times I F X 3) \leq E P 2) T H E N$ GO TO FIN2; I F ITC 2 MXM THEN GO TO FIN3 ELSE GO TO M9;FINI:IF (NOT SW2)THEN GO TO M12 E LSE WRITE (OT1,FG.ITC);GO TO M10;FIN2:IF (NOT SW2)THEN GO TO MI2 ELSE WRIT E(OTi,F8, ITC);GU TO M10;FIN3:BOOL +TRUE;IF (NOT SW2)THEN GO TO M12 ELSE WR ITE(OT1,F10,ITC);M10:WRITE(OT1,F2,RX3,IX3,RFUNC,IFUNC,RFX3,IFX3);M12:RTC $\leftarrow R T C+1$;RRT[RTC] $\leftarrow R \times 3$; IRT[RTC] $+I X 3$;IF RTC >EP1)AND(SW3)ANU(NOT BOOL)THEN BEGIN IX $3+\infty I X 3$;FUNCTIUN(RX3,IX3,RFUNC, IFU NC);RROOT\&RX3;IKOOT\&IX3;C1*4;GO TU M1;M11:IF SW2 THEN BEGIN WRITECOT1,F1 2); WRITE (OT1,F2,RX3,IX3,RFUNC, IFUNC,FRRUDT,FIROOT)END;RTC\&RTC+1;RRT[RTC] $\leftarrow R X 3$;IRT[RTC] $\&$ IX3 END ELSE GU TI MO; IF RTC<NRTS THEN GO TO MO;EXIT:END:
SWITCH FORMAT FMTYME \& ("UATE" , AZ1),
("TOTAL TIME", F15.2, " SECDNDS") ,
("PROCESSOR TIME" , Fil.2, " SECUNDS") ,
("I/D TIME", F17.2 , " SECONOS");
FOR A\&1 STEP 1 UNTIL 3 D TYME[A] $~+~ T I M E(A) ;$
WRITE (LP , HEAU1) ;
READ (CR , / , N) ;
AGAIN: READ (CR, /KX, KY) [FINIS];
KEAD ($C R$, $, C X, C Y$) ;
READ (CR , / , RX, RY) ;
READ ($C R$, $/$, $D X, D Y$) ;
READ (CR , $/$, L) ;
READ (CR , / W) ;
READ ($C R$, / , IP , IT) ;

READ(CR , / DMEG) ;
WRITE (LP , HEAD2, KX , KY , RX , RY , CX , CY, DX , DY • IP , IT, L, W, UMEG) ;
$\mathrm{G}+32.2 \times 12$;
$M \notin W / G ;$
$K X A \leftarrow(2 \times K X) / M ; K Y A+(2 X K Y) / M ; C X A+(2 X C X) / M ; C Y A+(2 \times C Y) / M ;$
$R X A+(2 \times R X) / M ; R Y A \leftarrow(2 \times R Y) / M ; D X A \leftarrow(2 X D X) / M ; D Y A+(2 \times D Y) / M ;$
COEFFICIENT (KXA, KYA, CXA, CYA , RXA, RYA, DXA, DYA,L, COEF) ; WRITE (LP * < XIO, "THE FOLLOWING GIVES THE CYLINDRICAL FREQ. :">);
WRITE(LP[DBL]);
WRITE (LP , < THE COEF OF THE POLYNOMIAL IN ASCENDING POWER ARE: ${ }^{*}>$) ;
WRITE (LP , < $5(X 2, ~ E 11.4)\rangle$, FOR I\&O STEP 1 UNTIL N DO COEF[I]);
WRITE(LP[DBL]);
WRITE (LP , HEAD3) ;
TNRTS 4 N;
FOR I $\leftarrow 0$ STEP 1 UNTIL 100 DO TRRT[I] + TIRT[I] $\leftarrow 0$;
MULLER $(-1,0,1.0,30, N, 1.00-12,1.00-12$, FALSE $, ~ F A L S E, ~ T R U E$,
FALSE, TRRT, TIRT, LP) ;
WRITE (LP , UUT1, FOR I 1 , STEP 1 UNTIL TNRTS DO [TRRT[I],
TIRT[I]J) ;
WRITE(LP[DBL]) ;
DMEGA 4 MMEG×6.28;
$K T T \leftarrow I T / M ; K P P+I P / M ; R T+(4 \times K T T) /(L \times L) ; R P \leftarrow(4 \times K P P) /(L \times L) ;$
IF $K T T=0$ AND $K P P=0$ THEN
BEGIN
$N+2$;
TNRTS $\leftarrow N$;
COEF[0] + KXAXKYA-RXAXRYA;
COEF[1] $4 K X A \times C Y A+K Y A \times C X A+R Y A \times(R P \times D M E G A-D X A)=R X A X$ (RP \times OMEGA + DYA) ;
COEF[2]\& FT $\times(K X A+K Y A)+C X A X C Y A+(R P \times D M E G A+D Y A) \times$
(RP \times OMEGA - DXA) ;
WRITE (LP, < X10, "THE FOLLOWING GIVES THE CONICAL FREQ.: " > ? ;
WRITE (LP[DBLJ);
WRITE (LP, < "THE CDEF OF THE POLYNOMIAL IN ASCENDING POWER ARE:M);
WRITE(LP[DBL]) ;
WRITE (LP, < $\zeta(X 2$, F11.4) >, FOR $1 \not 40$ STEP 1 UNTIL N DO COEF[I]); WRITE(LP[DBL]);
FOR I $\& 0$ STEP 1 UNTIL 100 DO TRRT[I] $\&$ TIRT[I] +0 ;
MULLER $(-1,0,1.0,30, N, 1.00-12,1.00-12$, FALSE, FALSE, TRUE, FALSE, TRRT, TIRT, LP);
WRITE (LP, HEAD 3) ; WRITE(LP[DBLJ);
WRITE (LP , UUT1, FOR I\& 1 STEP 1 UNTIL TNRTS DO [TRRT[I],
TIRT[IJ]) ; WRITE(LP[DBL]);
END
ELSE
BEGIN
COEF[0] $-K X A \times K Y A-R X A \times R Y A$;
COEF[1] 1 KXA \times CYA + KYA $\times C X A+R Y A \times(R P \times D M E G A-D X A)=R X A \times$ (RP \times OMEGA + DYA) ;
COEF[2] + RT $\times(K X A+K Y A)+C X A X C Y A+(R P \times D M E G A+D Y A) \times$
(RP \times UMEGA - DXA) ;
$\operatorname{CDEF}[3]+(C X A+C Y A) \times R T$;
CDEF $[4] \leftarrow R T \times R T$;

```
    WRITE (LP , < X10, "THE FOLLOWING GIVES THE CONICAL FREQ. ;" > );
    WRITE (LP[DBL]) ;
    WRITE (LP , < "THE COEF OF THE POLYNOMIAL IN ASCENDING POWER ARE:">);
    WRITE(LP[DBL]) ;
    WRITE (LP , < 5(X2, EI1.4)>, FOR I&0 STEP 1 UNTIL N DO COEF[I] );
    WRITE(LP[DBL]);
    FOR I&0 STEP 1 UNTIL 100 DO TRRT[I] & TIRT[I] & 0;
    MULLER (=1, 0, 1.0,30,N, 1.0@-12, 1.0@-12, FALSE, FALSE, TRUE,
    FALSE, TRRT, TIRT, LP );
WRITE(LP,HEAD3);
    WRITE(LP[DBL]);
WRITE (LP, DUT1, FOR 1& 1 STEP 1 UNTIL TNRTS DO [THRT[I],
    TIRT[I]]) ;
        WRITE(LP[DEL]);
    END;
    FOR A&1 STEP 1 UNTIL 3 DO
    WRITE (LF ,FMTYME[A] , (TIME(A) = TYME[A]) / 60) ;
    WRITE ( LP ,FMTYME[O], TIME(0)) ;
    WRITE (LP[PAGE]);
    GO TO AGAIN;
    FINIS: END.
    SQRT IS SEGMENT NUMBER OO21,PRT ADDRESS IS 0133
    OUTPUT(W) IS SEGMENT NUMRER 0022,PRT ADDRESS IS 0136
    BLOCK CONTROL IS SEGMENT NUMBER 0023,PRT ADDRESS IS 0005
    INPUT(W) IS SEGMENT NUMBFR OO24,PRT ADDRESS IS 0147
    GO TO SOLVER IS SEGMENT NUMBER 0025,PRT ADDRESSS IS 0152
    ALGOL WRITE IS SEGMENT NUMBER OU20,PRT ADDRESS IS 0014
    ALGOL READ IS SEGMENT NUMBEK 0027,PRT ADDRESS IS 0015
    ALGOL SELECT IS SEGNENT NUMBER 0028,PRT ADDRESS IS 0016
COMPILATION TIME = 69 SECONDS.
NUMBER OF ERRORS DETECTED = OOO. LAST ERRDR ON CARD#
NUMBER OF SEQUENCE ERRURS COUNTED = 0.
NUMBER OF SLOW WARNINGS = 0.
PRT SIZE= 132; TOTAL SEGMENT SIZE= 1288 WORDS.
DISK STORAGE REQ.= 65 SEGS.; NO. SEGS.= 29.
ESTIMATED CORE STORAGE REQUIREMENT = 2436 WORDS.
```


TABLE E-I. - STABILITY ANALYSIS OF FOUR DEGREE FREEDOM SYSTEM

$K X=4,0000 e+04 L B / I N$
 $C X=6.4000$ P +00 LB.SEC/IN
 $I P=6.00008-02 L B-S E C=I N ?$

$K Y=3.00000+04 \mathrm{LB} / I N$
$C Y=6.40000+00 \mathrm{LB}$. SEC/IN
IT=1.26000+00LB-SEC-IN'
SPEED $=6.22000+02 R P S$
$R Y=-6.25000+03 \mathrm{LB} / \mathrm{IN}$
$D Y=0.0000$ O +00 LB . SEC/IN
$H=1.8000$ O +01 LBS

THE FGLLOWING GIVES THE CYLINDRICAL FKEQ. :

REAL

$-2.033759007480+02$	$1.21989595846 \theta+03$
$-2.033759007480+12$	$=1.219895958460+03$
$-7.139743257100+01$	$1.219895958480+03$
$-7.139743257100+01$	$-1.219895958480+03$

THE FDLLOWING GIVES THE CONICAL FHEW.:

THE COEF OF THE POLYNOMIAL IN ASCENDING POWER ARE:
$2.28390+12 \quad 6.05370+08 \quad 6.88000+06 \quad 1.21340+03 \quad 4.87530+00$

REAL
 IMAGINARY

$9.464360451300+00 \quad 7.255623504700+02$
$9.464360451300+00$
-1.339088049006+02
-1.339088049006+02
$-7.255623504700+02$
$9.337044197400+02$ -9.337044197400+02

TOTAL TIME	12.45	SECONDS
PROCESSOR TIME	6.77	SECONDS
I/OTIME	12.37	SECONDS
DATE	067361	

