

4º

N69-35512

Report No. TE4055-65-69

FINAL REPORT

DESIGN AND FABRICATION OF

ADVANCED-THERMIONIC CONVERTERS

Contract No 951263

November 1968

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100.

Prepared for

The Jet Propulsion Laboratory

Pasadena, California

This report contains information prepared by Thermo Electron Corporation under JPL subcontract. Its content is not necessarily endorsed by the Jet Propulsion Laboratory, California Institute of Technology, or the National Aeronautics and Space Administration.

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

.

ECTRON

E

CORPORATION

THER

MO

INTRODU	TION AND SUMMARY 1
TASK I	CONVERTER DEVELOPMENT 5
1.]	Design of Converters T-201 and T-202 5
1.2	Fabrication of Converter T-201 5
1.3	Testing of Converter T-201
2.]	Fabrication of Converter T-202 28
2.2	Testing of Converter T-202 : 34
3.]	Fabrication of Converters T-203 and T-203A . 43
3.2	Fabrication of Converter T-203B 46
4.]	Design of Converter T-204 47
4.2	Fabrication of Converter T-204 47
4.3	Testing of Converters T-203B and T-204 55
5.1	Design of Converter T-205 60
5.2	Fabrication of Converter T-205 60
5.3	_ Testing of Converter T-205 \ldots $\dot{\ldots}$ 63
6.1	Design of Converter T-206
6 2	Fabrication of the Collector-Radiator Model 66
6 3	Test of the Collector-Radiator Model 68
6.4	Discussion of Collector-Radiator Model Test Results
65	Fabrication of Converter T-206 75
6.6	Testing of Converter T-206, 82
	a. Electron Bombardment Structure 82
	b. Thermal Performance of Collector- Radiator Structure
	c. Converter Thermal Performance 93
	d. Relative Collector Work Function 100
	e Interelectrode Spacing

TABLE OF CONTENTS (continued)

CORPORATION

6.7	Required Collector-Radiator Modifications 102
6.8	Recommendations to JPL 108
7.1	Fabrication of Converter T-207 108
7.2	Test of Converter T-207 110
7.3	Interpretation of the T-207 Data 111
7.4	Heat Balance of Converter T-207 119
8.1	Design of Converter T-208 121
8.2	Fabrication of Converter T-208A 122
8.3	Fabrication of Converter T-208B 132
8.4	Fabrication of Converter T-208C 133
85	Fabrication of Converter T-208D 133
8.6	Test of Converter T-208
8.7	Interpretation of Converter T-208 Test Results
8.8	Heat Pipe Temperature Drop 144
9.1	Design of Converter T-209 147
9.2	Fabrication of Converter T-209 148
9.3	Test of Converter T-209 151
94	Interpretation of Converter T-209 ' Test Results
10.1	Fabrication of Converter T-210A 161
10.2	Fabrication of Converter T-210B 162
10.3	Testing of Converter T-210B 163
10.4	Interpretation of Converter T-210 Test Data 163

.

TABLE OF CONTENTS (continued)

CORPORATION

CTRON

THERM

TASK II	MUL	TICONVERTER GENERATOR DESIGN 171								
· 1.	Introduction 17									
2	Ther	mal Analysis								
	2.1	Cavity Geometry								
	2.2	Flux Distribution Analysis · · · · · · · · · 172								
	23	Computer Program								
	2.4	Concentrator Performance								
	2.5	Predicted Thermal Performance of Generator Cavity								
	2.6	Predicted Electrical Performance of Generator								
	27	•								
	4 (Sixteen-Converter Generator Design 195								
CONCLUSI	ONS									
TAS	SKI									
TAS	SK II .									

APPENDICES

- 1. ELECTROLYTIC PROCESSING OF Re EMITTERS
- 2. TEST DATA FROM CONVERTER T-201
- 3 COLLECTOR-RADIATOR TEMPERATURE DISTRIBUTION
- 4. COLLECTOR ETCHING PROCEDURE FOR CONVERTER T-202
- 5. TEST DATA FROM CONVERTER T-202
- 6. TEST DATA FROM CONVERTER T-203B
- 7. TEST DATA FROM CONVERTER T-204
- 8 TEST DATA FROM CONVERTER T-205

TABLE OF CONTENTS (continued)

APPENDICES (continued)

- 9. DATA FROM COLLECTOR-RADIATOR MODEL NO. 2
- 10. TEST DATA FROM CONVERTER T-206
- 11. TEST DATA FROM CONVERTER T-207
- 12. TEST DATA FROM CONVERTER T-208
- 13. DESIGN OF 100-MESH CAPILLARY
- 14. TEST DATA FROM CONVERTER T-209
- 15 TEST DATA FROM CONVERTER T-210
- 16. PYROMETER AND BELL JAR CALIBRATIONS
- 17. CAVITY GEOMETRY EQUATIONS
- 18. COMPUTER PROGRAM
- 19. CALCULATION OF MIRROR PERFORMANCE
- 20. COMPUTED CAVITY PERFORMANCE

INTRODUCTION AND SUMMARY

This document constitutes the Final Report of the work performed under Thermo Electron's contract No. 951263 with the Jet Propulsion Laboratory.

- I. To develop a converter of the design used under Task II of Contract No. 950671, capable of delivering a power output of 20 watts/cm² at 0.8 volt, and at a true hohlraum temperature of 1700°C.
- II. To design a multiconverter generator capable of operation in cislunar space with a concentrator 9.5 ft in diameter and which uses the converters developed under Task I.

Task I centered on the iterative construction of 10 engineering models of a solar energy thermionic converter, and Table I describes their main features. The first model was fabricated to duplicate partially the performance of the best converter developed under Task II of Contract No. 950671. The second and third incorporated a modification in the heat transfer path of the collector-radiator structure to improve heat transfer. The fourth and fifth had a convoluted emitter structure made entirely of rhenium. In the sixth and seventh converters the collector material was changed to rhenium and palladium, respectively. In the last three models, the collector-radiator structure of the previous models was replaced by a heat pipe. At the culmination of the effort of Task I, the converter with a heat pipe structure had achieved close to a 70% reduction in weight; however, its performance

was the same as that of typical converters with rhenium electrodes, and it did not reach the goal of 20 watts/cm² at 0.8 volt, 1700°C.

ELECTRON

Task II involved a generator flux analysis to determine the best number of converters to match the converter heat requirements to the available solar energy, the optimum cavity aperture size, the required adjustments of surface emissivity and absorptivity values to insure even flux distribution, and the effects of changes in emitter temperature and heat input on flux distribution within the generator.

Based on this analysis a 16-converter generator, using converters with heat pipe collector-radiators, was designed in detail.

TAB	LE	Ι
-----	----	---

Model Feature	201	202	203	204	205	206	207	208	209	210
– Emitter Material	Re	Re	Re	Re	Re	Re	Re	Re	Re	Re
Collector Material	Mo	Mo	Mo	Mo	Mo	Re	Pd	Re	Re	Re
Collector Area, cm ²	2.50	2.50	2.50	2.50	2.52	2.52	2.52	2.16	2.34	2.34
Nominal Spacing, mils	1.0	1.0	1.0	1.8	4.2	1.8	1.8	1.8	1.8	1.8
Emitter Fabrication (1)	В	в	в	Ņ	м	м	м	м	м	М
Emitter Preparation (2)	EP	EP	EP	EÈ	EE	EE	EE	EE	ĘE	EE
Emitter Support Material	Ta	Ta	Ta	Re	Re	Re	Re	Re	Re	Re
Collector Preparation (3)	۰L	С	С	С	G	G	L	L	L	L
Radiator Type – Area, cm ² (4)	F-113	F-113	F-113	F'-113	F-113	F-133	F-133	HP-38	HP-52	HP- 52

CORPORATION

4

SUMMARY OF DESIGN FEATURES

(1) B = pressure-bonded M = monolithic

(2) EP = electropolished EE = electroetched

(3) L = lapped \hat{C} = chemically etched G = ground

(4) F = conducting fins HP = heat pipe

Ωs,

THERMO ELECTROM

TASK I

CONVERTER DEVELOPMENT

1.1 Design of Converters T-201 and T-202

Figures 1 and 2 present four different designs numbered I to IV, which were evolved during the design phase of converters T-201 and T-202. The design selected for converter T-201 was the design I, ' which included most features and the collector structure in particular of the converter T-100 developed under the preceding contract No. 950671. The design of converter T-202 was the design II, which included a modified collector-radiator structure, with cylindrical braze interface instead of butt braze, and which minimized the effect of braze interfaces on collector temperature distribution.

1.2 Fabrication of Converter T-201

The converter assembly techniques used were the same as those used in the fabrication of converters under JPL contract 950671.

Figures 3, 4, and 5 illustrate some differences in the collector structure which resulted from the T-201 design effort. Figure 3 shows the parts for the collector structure of converter T-201 before assembly, and Figure 4 shows the same parts after brazing with palladium. In the first: fabrication attempt, two collector assemblies were brazed and both leaked due to excessive alloying of the braze with the niobium seal flange. Examination of the constitution diagram of the niobium palladium alloys showed that although palladium melts at 1552°C, a eutectic at atomic 50% palladium exists which has a melting point of 1560°C. It was therefore difficult to avoid producing this eutectic during brazing. To solve the problem, it was attempted to plate the palladium with enough copper to form a 10% by weight alloy of copper palladium. The melting point of this alloy would then have been 1454°C or practically 100°C lower than the melting point of palladium. When this was tried, it was found that the copper plating evaporated much too soon to leave any significant amount of copper at the presumed melting point of the copper palladium alloy. The collector of T-201 was finally brazed using pure palladium as a braze material but a tell-tale was used in order to provide a clear visual indication of the instant at which melting of the filler wire occurred. (The procedure could not be repeated successfully for the assembly of converter T-202: small perforations through the niobium sleeve were present as a result of overalloying, and they were closed using

copper as a braze filler).

Figures 6 to 11 show the sequence of steps involved in the fabrication of the emitter structure. In the case of converter T-201 a tight fit in the jigs caused a mechanical misalignment. It was found in inspection that the surface of the emitter was out of square with the axis of the support sleeve by a maximum of 4.4 mils. A similar check was made on the collector sleeve structure and it was found that the collector face was out of square by a maximum of 1.5 mils, thus leading to a maximum possible error of 5.9 mils prior to brazing of the seal in the compression jig. Since the compression jig produced a displacement which far exceeded the 5.9 mils, it was expected that the entire amount of the error would disappear during seal braze. Later cesium conduction tests on converter T-201 revealed that the design interelectrode spacing was not achieved, and it was concluded that a misalignment condition such as that encountered should result in rejection of the subassembly.

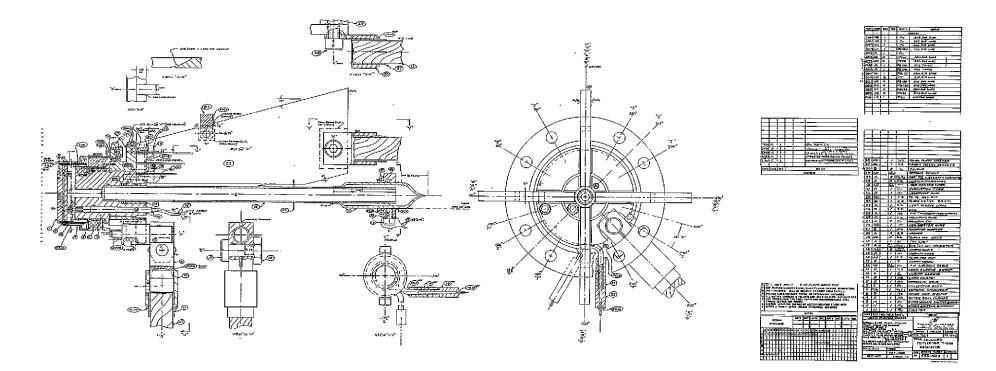


Figure 1.

7/8 - B

1/8 - A

NOT REPRODUCIBLE

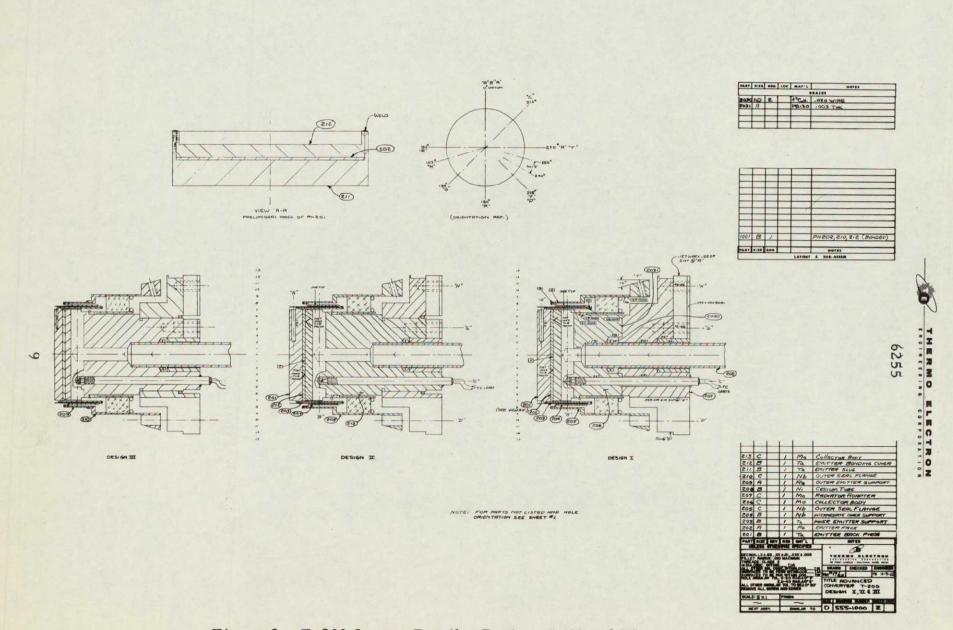


Figure 2. T-200 Layout Detail - Designs I, II and III.

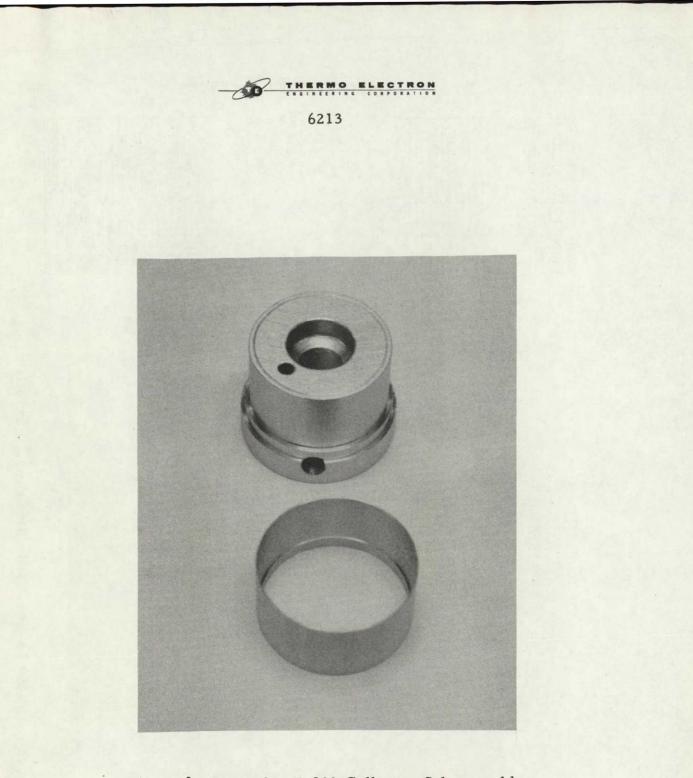
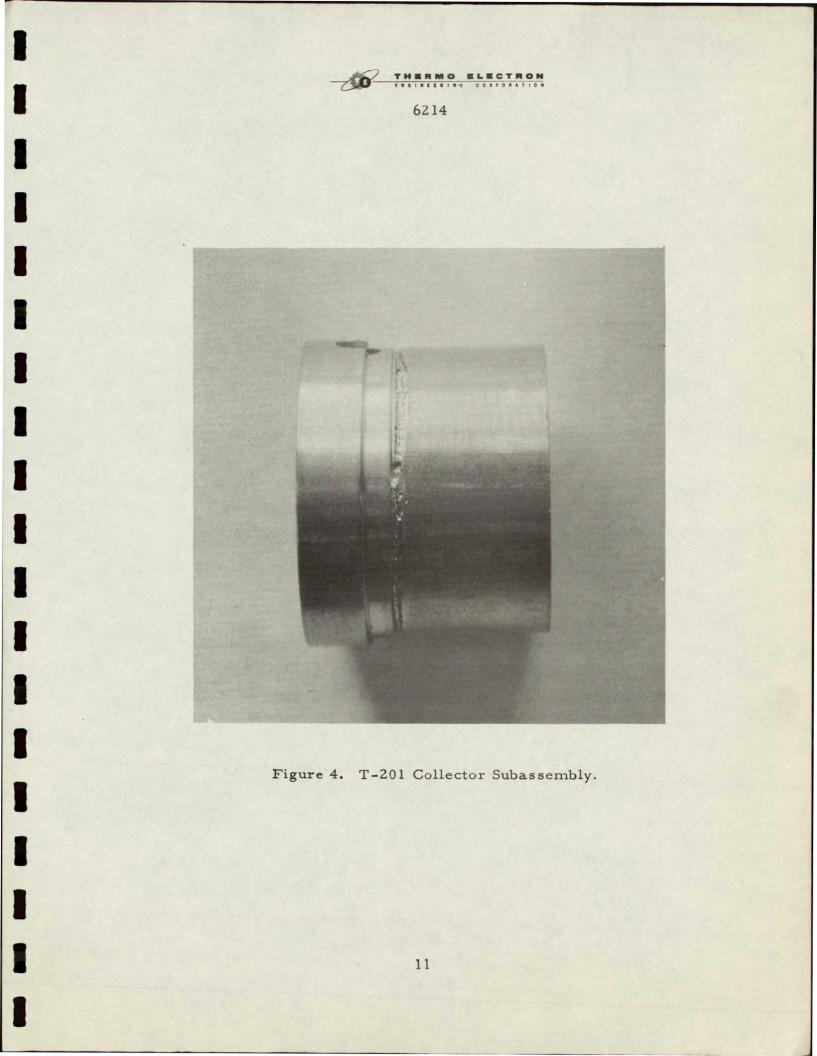
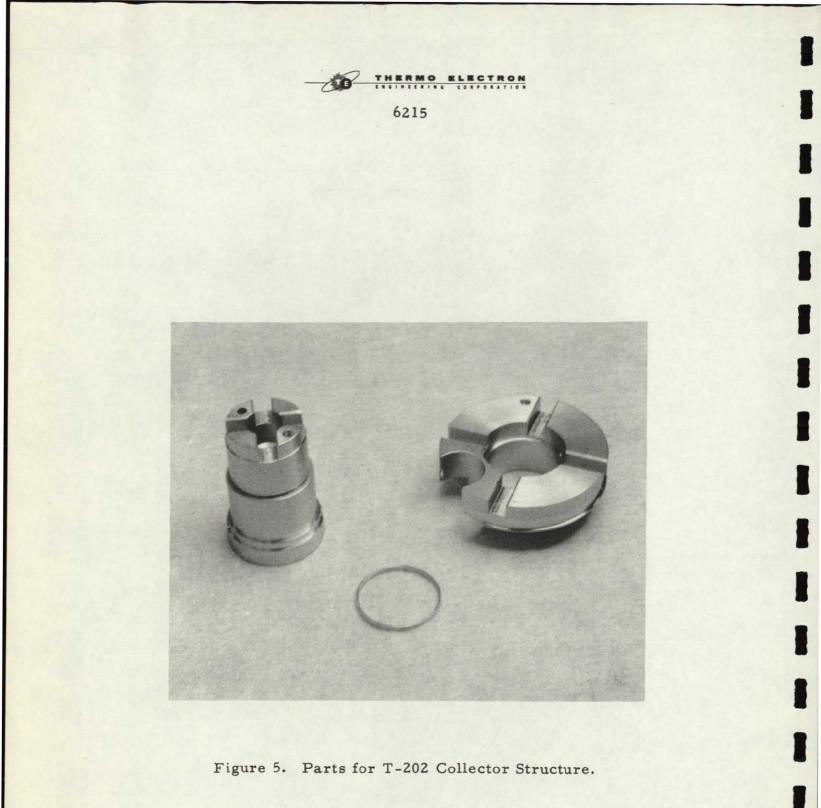
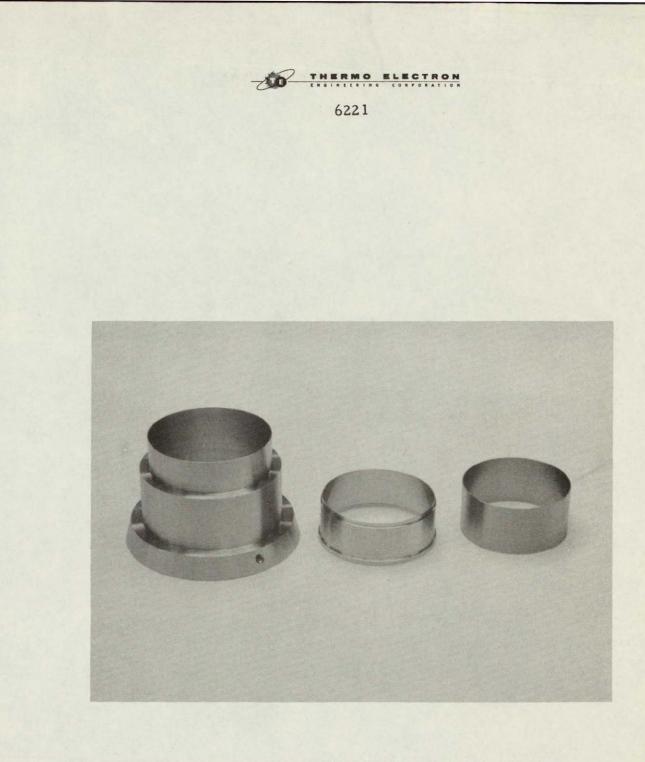





Figure 3. Parts for T-201 Collector Subassembly.

I

Figure 6. Parts for T-201 Emitter Support Structure.



Figure 7. First Weld of Emitter Support Structure.

I

Figure 8. Second Weld of Emitter Support Structure.

and the second

l

I

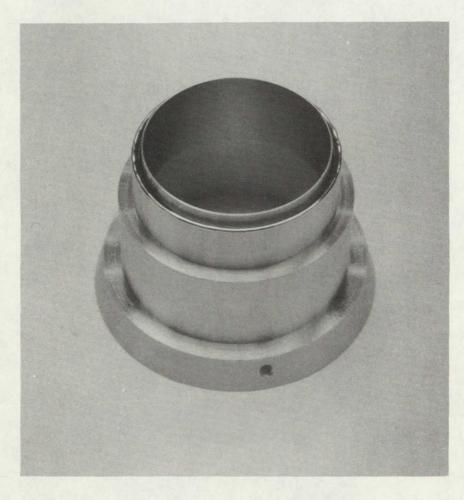
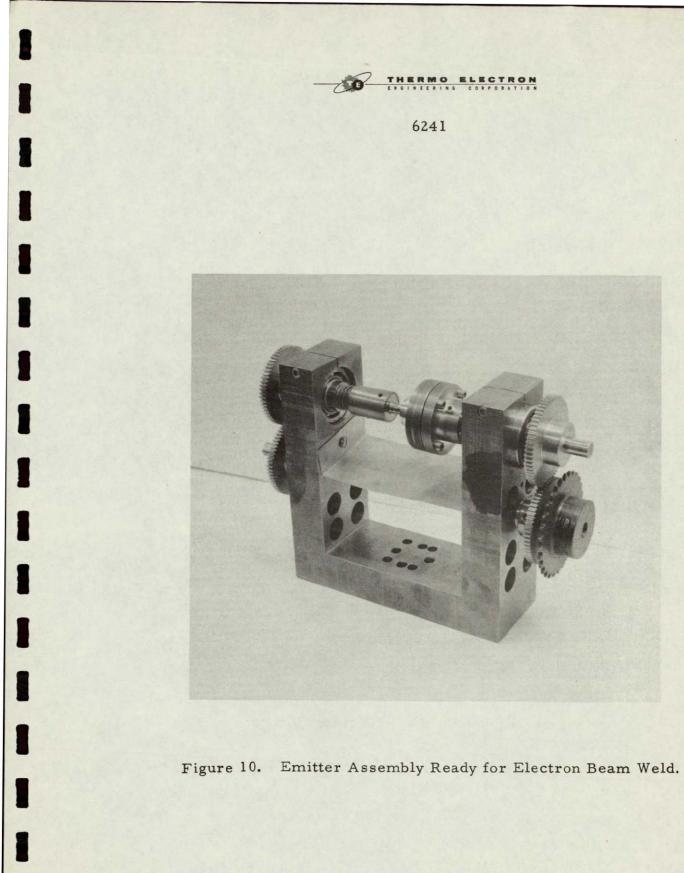



Figure 9. Finished Emitter Support Structure.

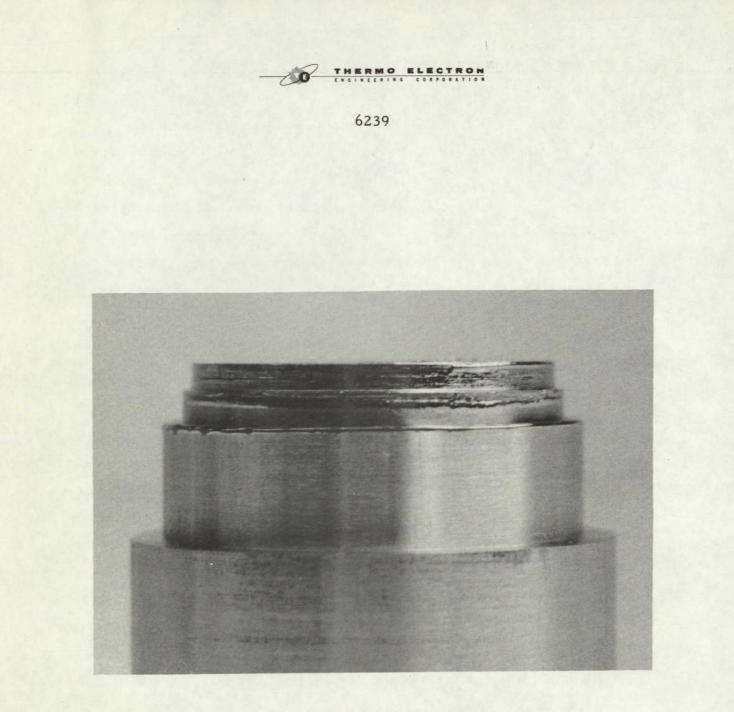


Figure 11. Weld Detail of Emitter Structure.

Figure 12 shows the parts for the seal braze assembled in the compression jig prior to brazing. Figure 13 shows the completed T-201 converter during cesium distillation. Cesium charging was achieved with a 250 mg glass capsule heated to approximately 270°C during converter outgassing, prior to breaking, and then heating the cesium from the broken capsule, by means of two automatically controlled heaters, to 200°C for 5 hours.

ECTRON

The emitter of converter T-201 was electroetched using the fixture shown in Figure 14. The fixture is a plastic structure which completely encloses the emitter piece and its attached current lead, except for the emitter surface which is made co-planar with the streamlined front-surface of the fixture. Thus, the fixture can be agitated in the electroetching solution without inducing cavitation or large scale turbulence which would otherwise interfere with uniform etching action. The time for electropolishing and electroetching was varied slightly to determine the duration that would cause a satisfactory action on the surface yet avoid excessive material removal and consequent departures from flatness. These tests showed that a 10-second electropolish and a 45- to 60-second electroetching should not be exceeded. The final procedure used is described in Appendix 1. The emitter structure was then thermally stabilized for one hour at 1800°C. Figure 15 shows the electroetched emitter, and Figure 16 shows a photomicrograph of the emitter surface after thermal stabilization.

1.3 Testing of Converter T-201

THERM

Converter T-201 was tested with a test apparatus essentially the same as that used in the performance of work under Contract 950671.

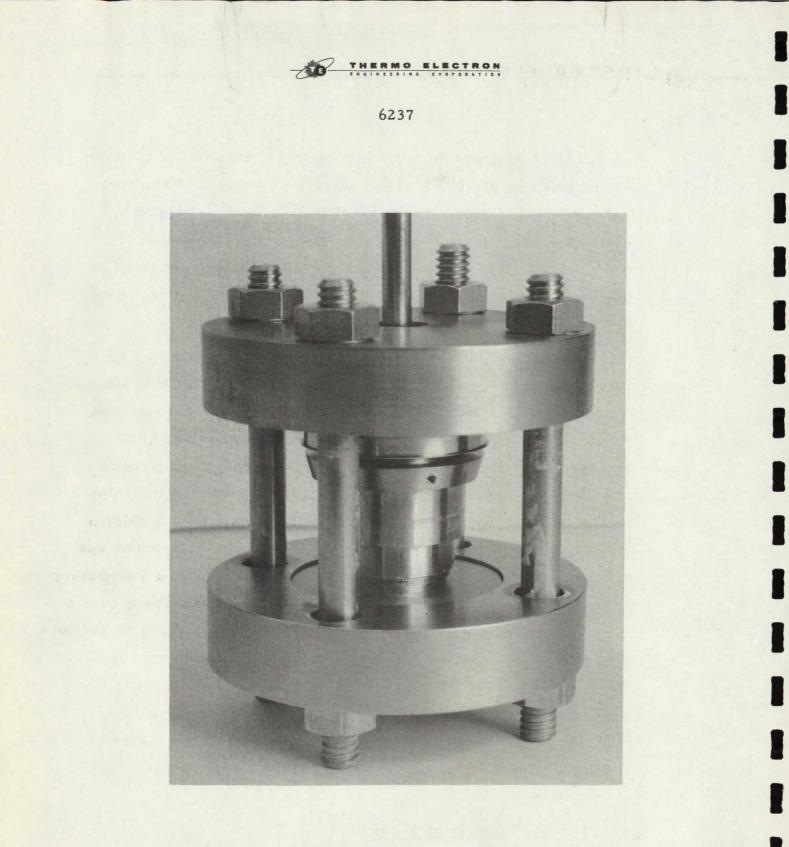
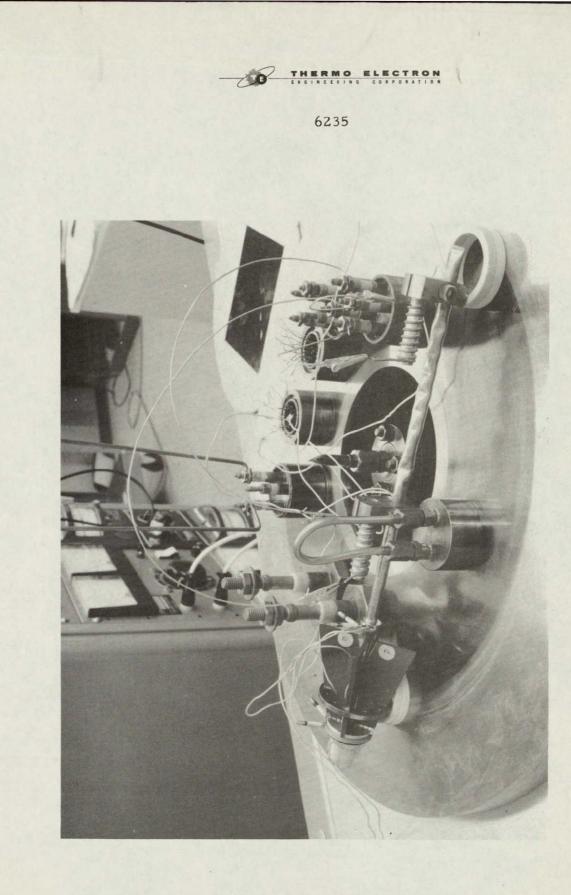



Figure 12. Parts for Seal Braze in Compression Jig.

1

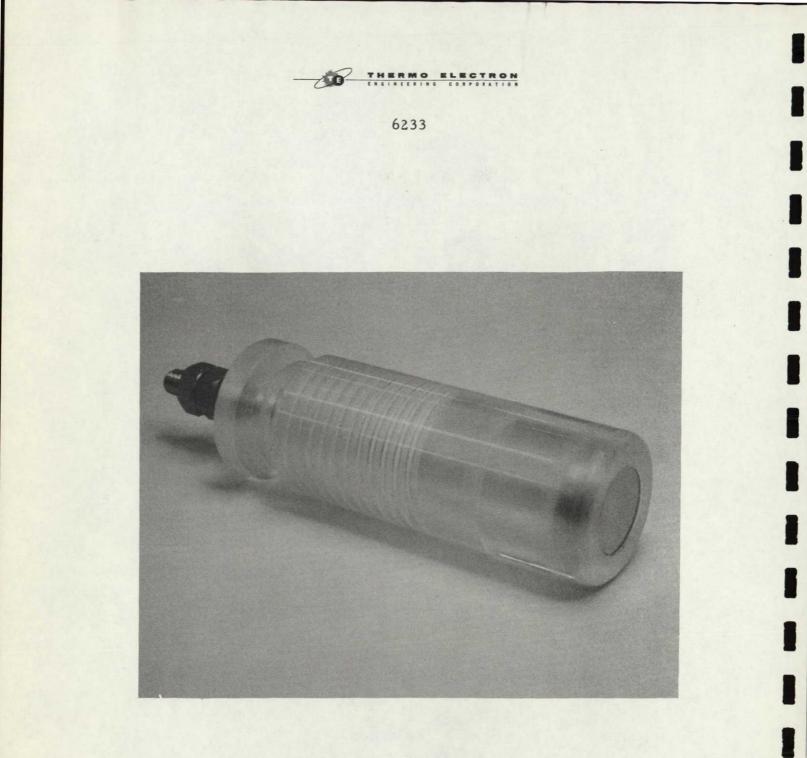


Figure 14. Emitter Electroetching Fixture.

I

6232

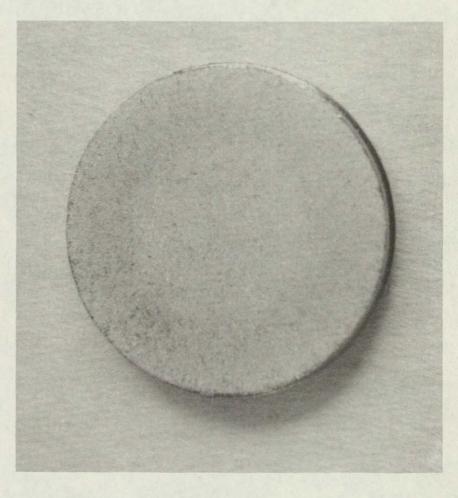


Figure 15. Visual Appearance of Electroetched Emitter.

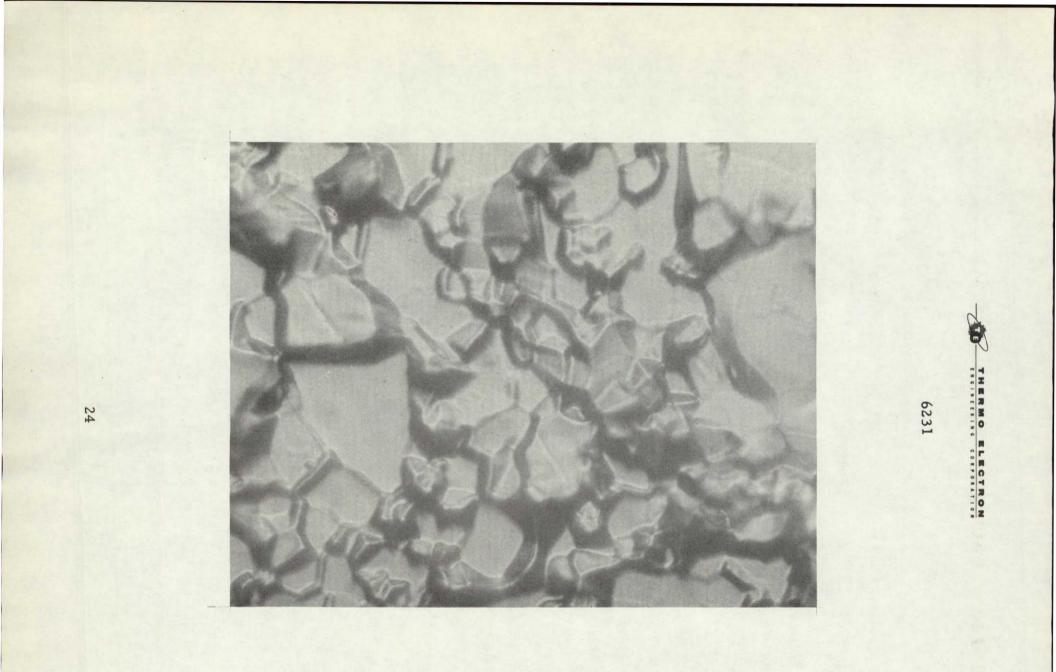


Figure 16. Photomicrograph of T-201 Emitter Surface (after 1800°C firing).

To broaden the range of temperature control of the cesium reservoir, a water cooled copper strap was clamped to it. The test procedure consisted of first making a relative collector work function measurement and sampling two I-V traces, then running under steady-state at a substantial output current for approximately 150 hours, making a new collector work function measurement, then proceeding to evaluate the other converter characteristics by I-V curve and cesium conduction measurements, and finally testing the converter under steady-state conditions.

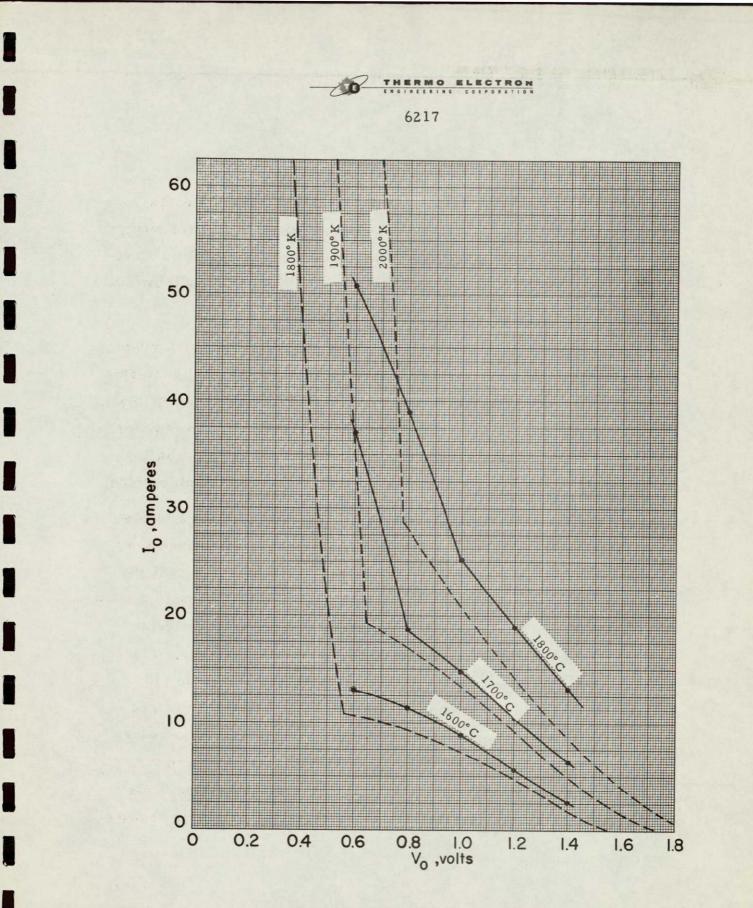
THE

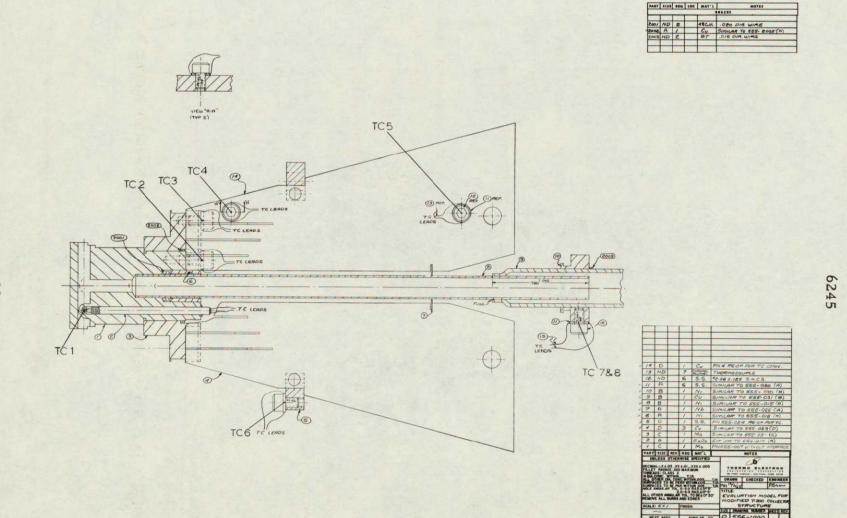
In the first four-hour operation period, it was not possible to obtain any output from T-201. The fact that the converter was able to deliver an open circuit voltage and not respond in any appreciable way to changes in reservoir temperature, indicated that the converter had no cesium in it. This was a surprising fact because the portion of the exhaust tubulation that had contained the fragments of the cesium capsule during distillation showed no cesium residues after distillation. The only way in which it appeared possible for the cesium to have escaped was to have dropped from the capsule into the converter exhaust pump right after cracking the capsule at the end of outgassing. This explanation was confirmed when the connections of the exhaust pump were disassembled and cesium residues were found in the pump manifold. Consequently, converter T-201 was opened, and it was further verified that the reservoir did not contain any cesium. The opening of the converter was effected at the pinch-off. The portion of the copper tube that corresponds to this pinch-off was removed to make room for connection of a new copper exhaust tube, and after replacement of the exhaust tube, the converter was outgassed and charged with cesium for a second time. During assembly of the new

exhaust tube, the cesium heater was damaged at one of the terminals. It was decided to short this terminal to the cesium reservoir body, and use one of the radiator fins as a substitute electrical terminal.

Appendix 2 gives the data obtained from converter T-201, and Figure 17 summarizes the I-V characteristics observed. The dashed lines represent the envelopes of dynamic measurements made at true emitter temperatures as indicated with optimized collector temperatures, and the solid lines give the steady-state outputs obtained at the true hohlraum temperatures indicated, with the collector allowed to reach its own equilibrium temperature, unaided by the electrical heater provided for collector temperature optimization. A comparison of these characteristics with those obtained from converter T-103 of the previous program shows that the current at large output voltage (above 0. 8 volts) has not been reproduced, and is smaller by approximately 30%. In fact, the converter T-201 performance resembles closely that of converter TE-104. This is probably accounted for by spacing variations, converter T-103 having probably had an unusually small spacing.

Cesium conduction experiments on converter T-201 later revealed that the interelectrode spacing was of the order of 1.4 mils as opposed to the 1.05 mils correlated by cesium conduction heat transfer measurements in the previous converters of this design. As mentioned in Section 1.2, it is likely that this deviation was mostly due to the mechanical misalignment which was observed after using tight-fitting jigs. The poor performance of converter T-201 may also be related to the fact that, due to exceptional circumstances, the converter had to be re-opened and recesiated.




Figure 17. T-201 I-V Characteristics.

2.1 Fabrication of Converter T-202

In order to evaluate the redesigned braze interface in the collector structure for converter T-202, an experimental collector-radiator structure was designed, fabricated and tested. This structure was instrumented to evaluate the heat load that the radiator could dispose of as a function of collector temperature.

Figure 18 is a drawing of the collector-radiator model fabricated. It reproduced the radiator structure of the TE-100 converter built under contract 950671, and it included a collector body with a cylindrical braze (2002) in the area of heat transfer to the radiator support. The completed collector-radiator model is shown in Figure 19, and its radiator fins were coated with chromium carbide.

The radiator-collector model was tested at heat input levels of 110, 210, and 310 watts. The temperature levels achieved are given in Appendix 3 and in Figures 20 and 21. Figure 20 gives the temperature rise produced when the only heat input is that of radiation from the electron bombardment of filament. Analysis of this data shows that the filament contribution is 10 watts. Figure 21 gives the temperature levels at total heat input values of 110, 210, and 310 watts. The only abnormal result from this run was the relatively high reservoir temperature. In an attempt to reduce this temperature, a shield was placed along the tubulation to isolate the cesium tube from radiation by the radiator fins. This resulted in a still higher temperature level at the reservoir because,

THERMO BLECTRON

Figure 18. Layout of Collector-Radiator Model.

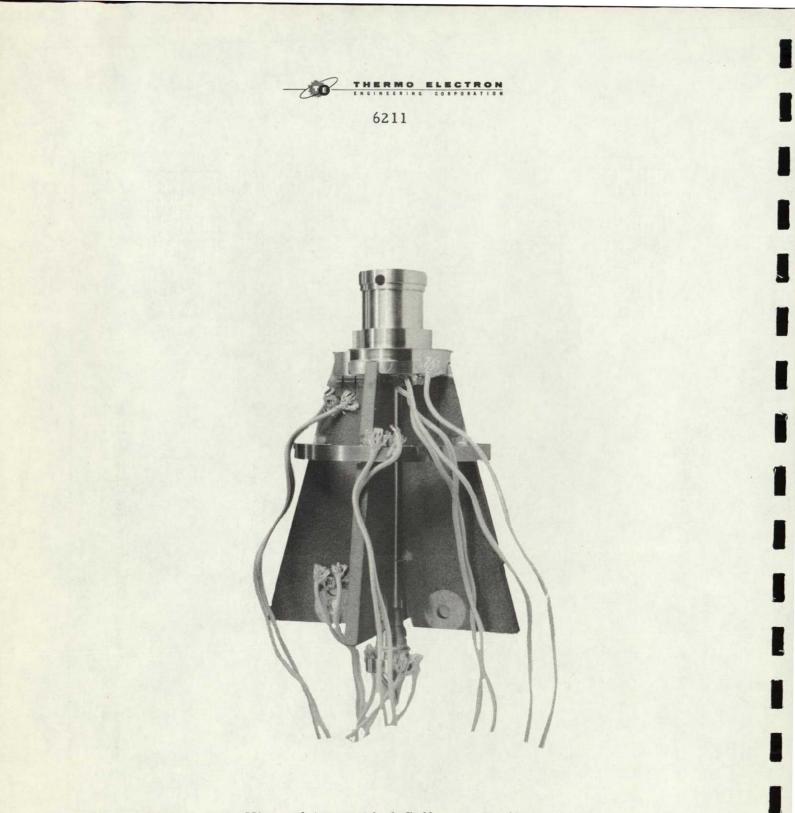
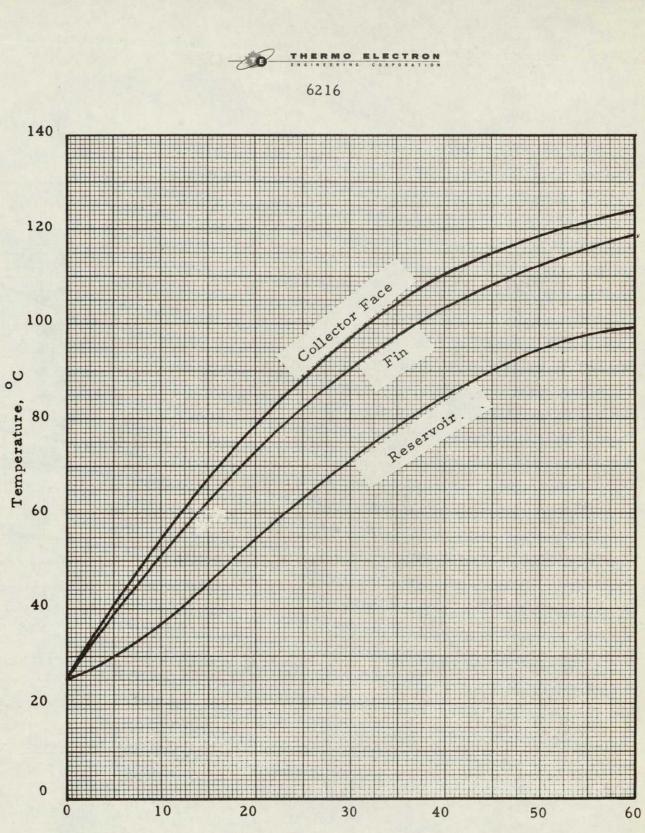



Figure 19. View of Assembled Collector-Radiator Model.

Time, minutes

Figure 20. Collector-Radiator Model - Run No. 1.

THERMO ELECTRON

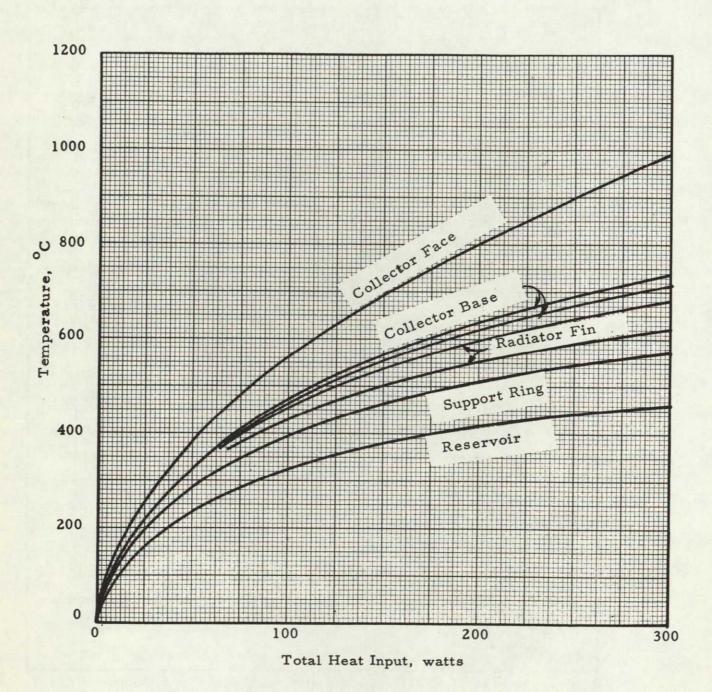
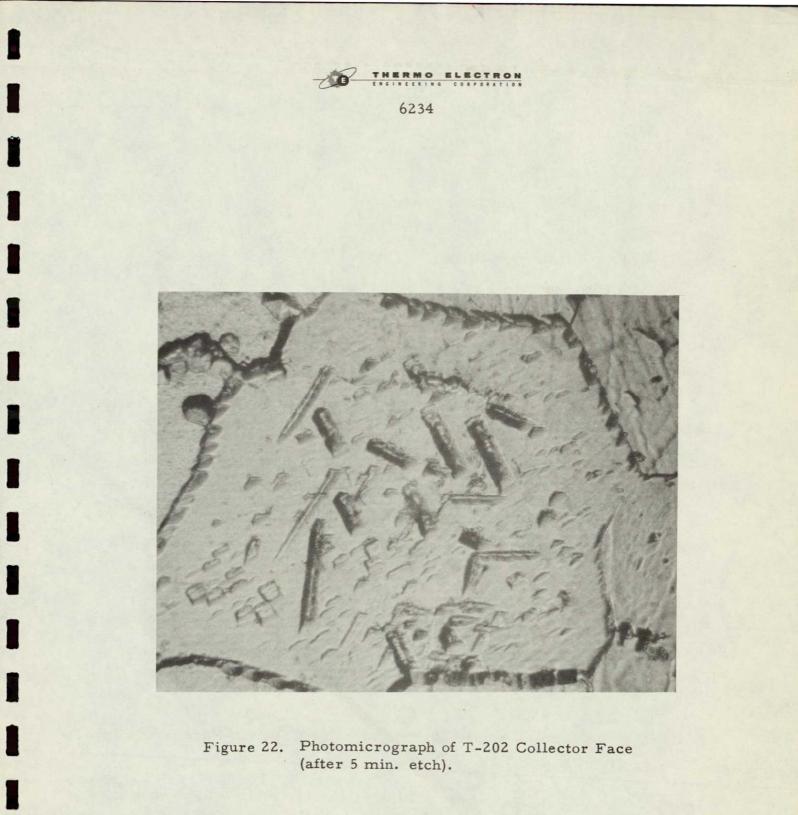
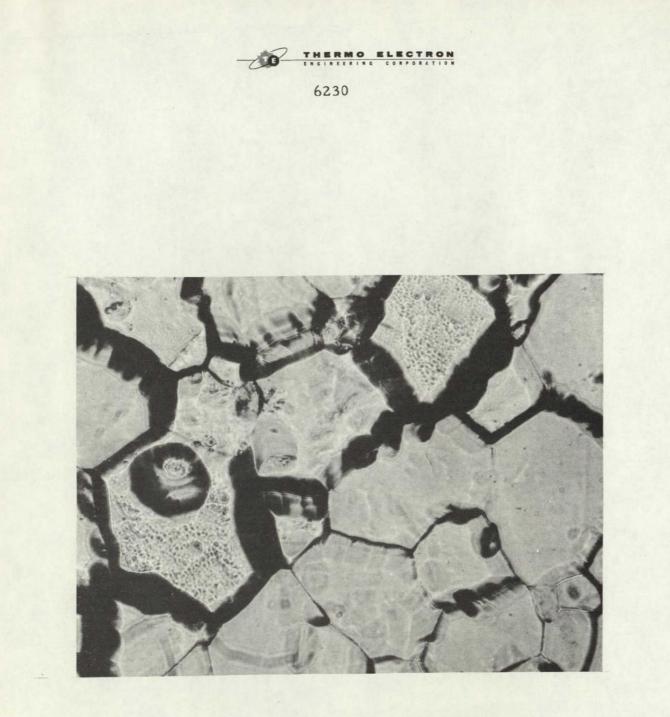


Figure 21. Collector-Radiator Model - Run No. 2.

as it became apparent, the cesium tube loses more heat by its own radiation than it receives from the radiator fins. In another attempt the shield was removed and the copper pinch-off of the reservoir was painted with a black silicone paint. This coating lowered the reservoir temperature by more than 100° C. Such a result indicated that any problem with overheating of the cesium reservoir should be easily overcome by the application of a coating to the reservoir, or by a reduction in the cross-section of the reservoir tubulation.

Figure 21 shows that a heat input of 158.5 watts (interelectrode radiation = 33.5 w, cesium conduction = 24.0 w, electron heating at 20 amp/cm² = 86 w, radiation from sleeve = 15 w, the conduction from the emitter support is assumed to be cancelled by radiation from the connecting leads) yielded a collector face temperature of 1013° K, which was in line with the previously observed optimum collector temperature for converter TE-103 of 1015° K at 1 volt. Since it appeared that the radiator size of the model tested was as close to that required for converter T-202 as a collector-radiator model test of the type performed could actually predict, converter T-202 was fabricated with a radiator of that size using the chromium carbide coating on the fins.


In other respects, the fabrication of converter T-202 followed mainly the procedure used for converter T-201. The collector face was chemically etched instead of ground, and the etching procedure used is given in Appendix 4. Figures 22 and 23 show the surface appearance after 5 and 15 minutes of etching time. The emitter was electroetched using the procedure outlined in Appendix 1. HERMO ELECTRON


Thermal stabilization was conducted at a substantially higher temperature than for T-201, and it was 2400°C for 1 hour. This treatment resulted in severe alteration of the emitter structure: Figure 24 shows that the tantalum substrate of the emitter developed large grain growth and partial separation along grain boundaries. Figure 25 is a photomicrograph of the heat treated emitter surface.

2.2 Testing of Converter T-202

Converter T-202 was tested according to the same procedure used for T-201. Appendix 5 gives the data obtained, and Figure 26 gives the I-V characteristics from converter T-202. The dashed lines represent the envelopes of dynamic measurements made at true emitter temperatures as indicated, with optimized collector temperatures, and the solid lines give the steady-state outputs obtained at the true hohlraum temperatures indicated, with the collector allowed to reach its own equilibrium temperature, unaided by the electrical heater provided for collector. temperature optimization. As may be seen, the spacing between the branches corresponding to ignited operation is not uniform; it is narrower between 1900 and 2000°K than it is between 1800 and 1900°K. This is because it had been initially assumed that optimum collector temperatures would be obtained at 1.75 times the reservoir temperature and the 2000°K curves were run making this assumption. Further testing showed that a ratio of 1.60 gave a nearer-to-optimum condition and this ratio was adopted for the 1900°K and 1800°K runs.

Of particular interest in Figure 26 is the point obtained in steady state, with no collector heat applied, at 1800°C and 0.8 volt output. The collector temperature achieved there was 1073°K at an output current

Ĩ

Figure 23. Photomicrograph of T-202 Collector Face (after 15 min. etch).

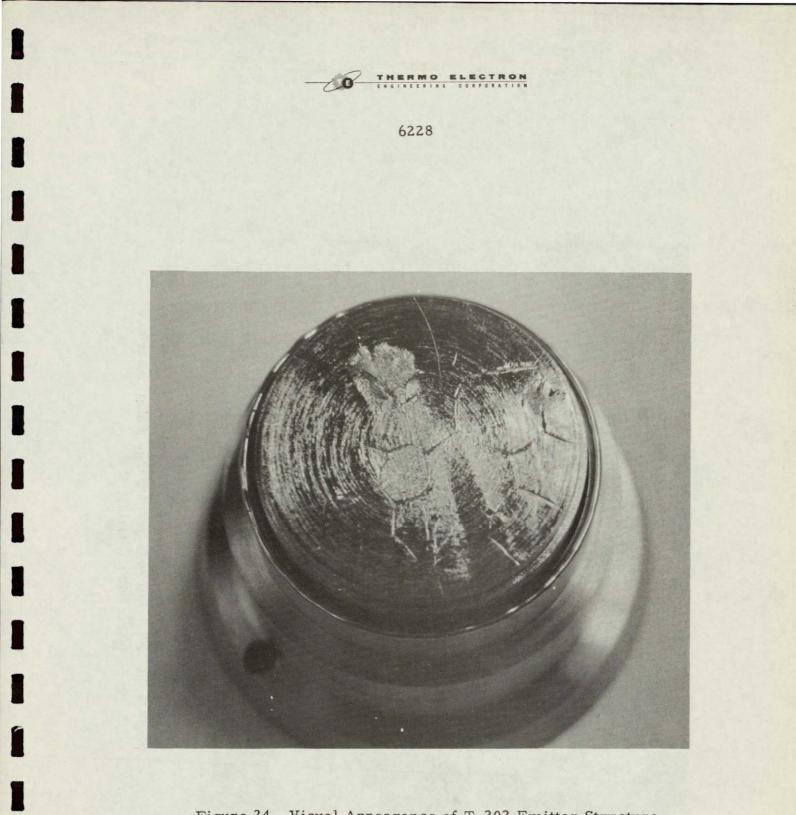


Figure 24. Visual Appearance of T-202 Emitter Structure.

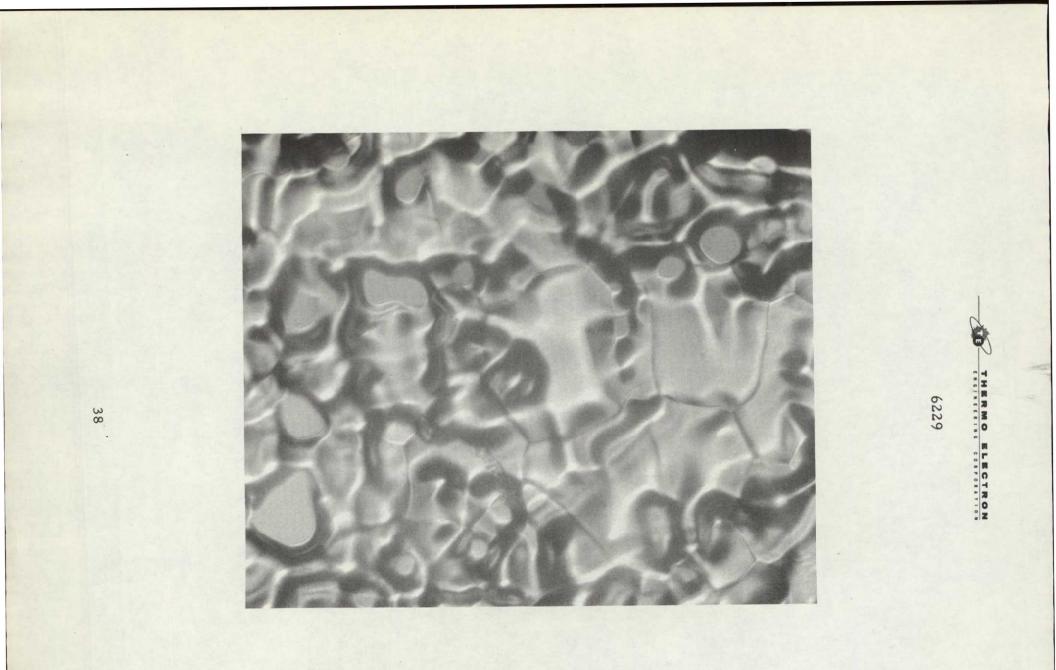


Figure 25. Photomicrograph of T-202 Emitter Surface (after 2400 °C firing).

THERMO ELECTRON

6256

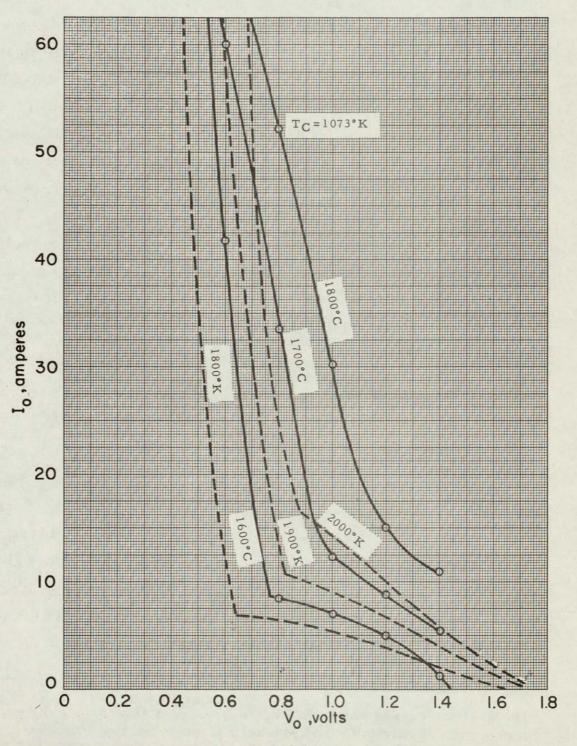


Figure 26. T-202 I-V Characteristics

of 52.3 amperes, and it compared favorably with the desired goal of 1015° K at 50.0 amperes.

Figure 27 compares the T-202 performance with that of converter T-201, and also gives T-103 results previously obtained. The figure reveals that, in the ignited mode, the performance of T-201 and T-202 is similar except that in steady-state, T-201 was not able to reach a sufficiently high collector temperature to attain the performance level predicted by the dynamic curve. In the unignited mode, the performance of T-201 is superior to that of T-202, and this result would indicate that the interelectrode spacing of T-202 was larger than that of T-201. This is not surprising, for T-202 was noticed to have a collector face convex by .0004" in addition to a convex emitter. The departure from flatness of the collector was the result of the 15-minute chemical etch on the face. Converter T-201 had a ground collector which was flat within .0001 inch.

Figure 28 gives the variation in heat transfer obtained as a function of reservoir temperature with T-201 and T-202,^{*} which tends to verify that T-202 must have had a larger average interelectrode spacing.

As a result of these findings, it was recommended to JPL that the etching time for the collector of converter T-203 be reduced to 5 minutes, and that the T-202 collector radiator geometry be preserved. Furthermore, it was recommended to reduce the side-emission area to 1 cm² from the 2 cm^2 used previously for T-201 and T-202. This area had had a value of 1.3 cm^2 in T-103 and 0.5 cm^2 in all other T-100 converters. It was increased in T-201 and T-202 to 2 cm² to enhance output contribution to the lateral area of the collector. Since there was a large discrepancy in the

^{*}The analytic curves shown in Figure 28 were obtained with the experimental correlation of Kitrilakis and Meeker, given in Section 6.6e.

0 G

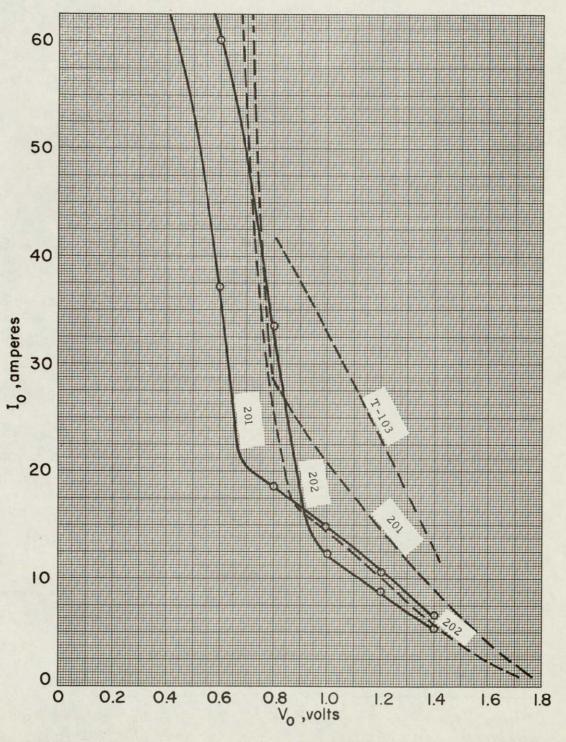


Figure 27. Comparison of T-201 and T-202 I-V Characteristics at 1700°C and 2000°K (-----).

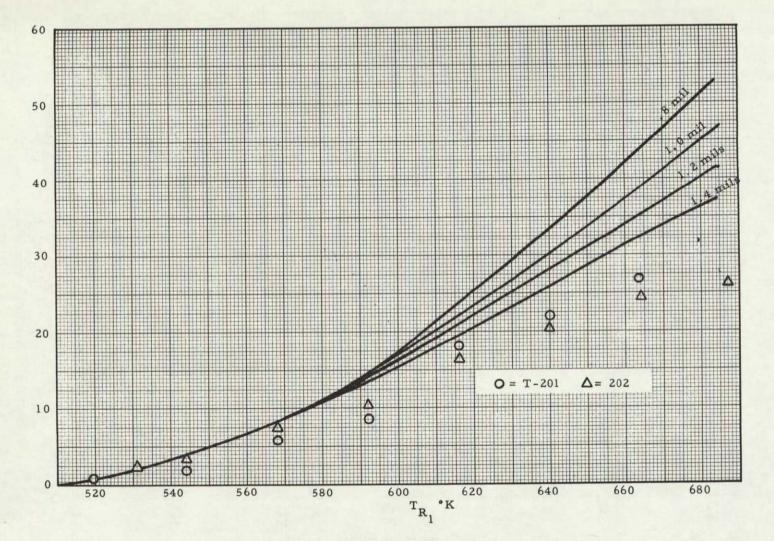


Figure 28. Cesium Conduction

THERMO ELECTRON

output of converters T-202 and T-103 in the extinguished mode, it was felt that some effort at exploring the influence of lateral collector area should be made.

To evaluate the design of the cesium reservoir of converter T-202, an additional test was performed, and the data is presented in sheet 7 of the data which is also plotted in Figure 29. This data shows the equilibrium reservoir temperatures achieved as a function of reservoir heater current, for a collector temperature of 854°K. As it may be seen, the reservoir had a tendency to overheat (when not connected to a water-cooled strap) even at the relatively low collector temperature of 854°K. A desirable equilibrium reservoir temperature is approximately 623°K for optimum output at 50 amperes. Further effort on improving the cesium reservoir design was made in subsequent T-200 models.

3.1 Fabrication of Converters T-203 and T-203A

CTRON

The fabrication of two converters, T-203 and T-203A, could not be completed successfully. These converters were fabricated following the T-201 procedures except for a change in the outgassing specification. Prior to T-203, the converters were outgassed with a collector temperature generally in the vicinity of 700°C. Although the performance characteristics had not revealed a need for a higher collector outgassing temperature, it was felt that it should be increased to 800°C because during testing the collector temperature often reached that level. Consequently, both T-203 and T-203A were outgassed maintaining the collector temperature at 800°C for a period of 64 hours for T-203, and 24 hours for T-203A. At the end of outgassing, converter T-203 showed immediate signs of having developed a leak; when 0 ELECTRON

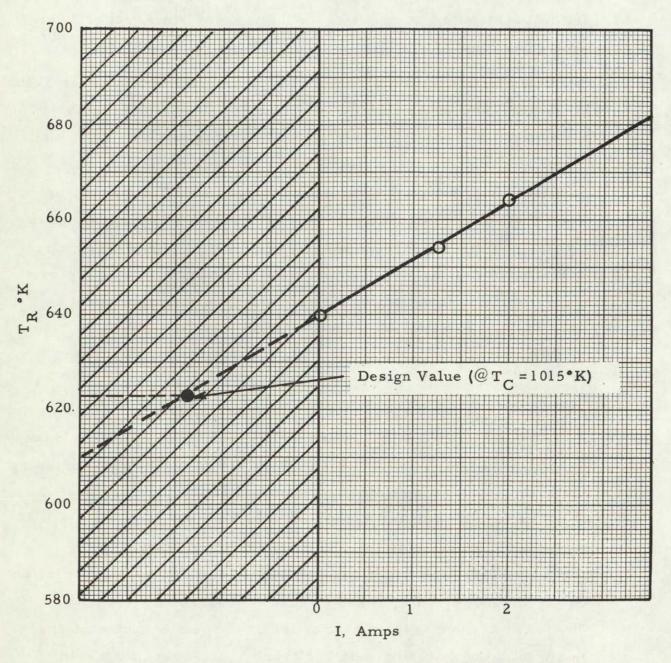


Figure 29. Thermal Characteristics of T-202 Reservoir (T_C = 854°K)

air was released in the external vacuum system, the exhaust vac-ion pumping system connected to the vacuum envelope of the converter showed a rapid rise in pressure. Subsequent leak checking indicated that the failure had occurred either at the palladium braze between the niobium seal flange and the collector stem, or at the ceramic seal. Since no such failure had been encountered before, it was assumed that its nature was accidental.

THERM

Converter T-203A did not show the signs of difficulty at the end of outgassing as did T-203, and it was charged with cesium and instrumented for test. However, it developed no output, and it was then decided to open the reservoir, and connect a new tubulation to leak check the unit. A leak was found in the general area of the seal, and to pinpoint its location, the converter was sectioned so that the seal area could be exposed without damaging it. A new tubulation was brazed to facilitate connection to the leak detector, and the leak was found at the palladium braze. The emitter structure was cut out to allow direct visual and mechanical inspection of the braze. This examination revealed that at some places the bond to the molybdenum had occurred over areas only 0.020" wide which were easily broken by the application of relatively low forces. The fracture observed was along intergranular surfaces in the molybdenum material adjacent to the braze.

The emitter of converter T-203A was obtained from a new pressure bonded assembly etched for 1 minute and thermally stabilized for 1 hour at 2100°C. The firing temperature corresponded to the average of the values used for the previous two emitters for converters T-201 and T-202. After firing, the flatness check showed that the emitter

was convex at the center by .0003" which was the minimum value that it had been found possible to achieve. Figure 30 shows a photomicrograph of an emitter treated according to the above procedure.

3.2 Fabrication of Converter T-203B

The emitter structure of T-203A, consisting of the pressurebonded electropolished and electro-etched rhenium sheet and its tantalum substrate, was salvaged, checked for flatness and used in the fabrication of T-203B. The collector was chemically etched with a room-temperature solution of 50 parts H2O, 20 parts HNO3 and 30 parts H_2SO_4 . The radiator fins were coated with chromium carbide. To avoid a repetition of the previous two failures, converter T-203B was assembled with a carefully selected collector subassembly with good braze flow, and its outgassing was performed with a collector temperature of 660°C instead of 800°C. The outgassing time was approximately 24 hours and the vac-ion reading at the end of outgassing was 8×10^{-7} torr, hot, and 1×10^{-7} torr, cold. After the converter was charged with cesium, initial tests showed that it had a leak located at the final pinch-off. The converter was then opened at the location of the leak and placed in a vacuum furnace for 2 hours at 500°C to remove any traces of possible cesium compounds. A new tubulation was attached for outgassing, and the final outgassing was performed for 16 hours with a collector temperature of 627 °C. The final pressure readings were 16 and 8×10^{-7} torr in the hot and cold conditions. The cesium distillation followed the usual schedule of 5 hours at 200°C.

4.1 Design of Converter T-204

THER

The design of converter T-204 included an all-rhenium emitter structure and a number of modifications aimed primarily at simplifying the converter structure and its assembly procedure; it is shown in Figure 31. One of the principal changes was a reversal of the inner seal flange so that the flange reached to the rear of the collector barrel rather than forward. This change allowed a much more favorable configuration for the palladium braze of the flange to the collector. It also resulted in a larger interelectrode spacing which was estimated as follows:

Expansion of the 0.220" Re emitter support structure to an average temperature of 1200°C:	1.85 mils
Add expansion of the 0.400" Nb seal structure to an average temperature of 700°C:	2.20 mils 4.05 mils
Subtract expansion of the 0.620" Mo collector structure to an average temperature of 640°C:	-2.30 mils 1.75 mils

Assuming zero spacing at room temperature, the operating spacing calculated was 1.75 mils. Other changes were the elimination of the thermocouples at the collector base, the omission of grooves in the collector barrel to fit the radiator fins, and a simplified cesium reservoir structure.

4.2 Fabrication of Converter T-204

The fabrication of converter T-204 started with the development of electron-beam welds for the all-rhenium emitter structure. The first weld attempts produced the structure shown in Figure 32. These ERMO ELECTRON

welds were difficult to make by electron-beam welding because of the extreme care required by the end-weld of concentric thin-walled rhenium tubes. To avoid this difficulty, it was decided to experiment with heliarc welding, and the next weld of the inner emitter support to the intermediate emitter support, on the same assemblies, was made by heliarc welding. The weld failed because of misalignment of parts due to improper dimensional specification of the parts. As can be seen in Figure 33, "scalloping" occurred, because the edge of one of the rhenium tubes was located higher than that of the other, and the edge of that tube had to be completely melted away before the weld to the other tube could take place. The localized collection of beads of molten metal was so pronounced that the molten rhenium made contact at several points with the niobium of the outer seal flange, and alloyed with it. Therefore, the final assemblies were unusable.

Consequently, new parts were made with modifications to avoid the above problems, and one assembly including an electropolished rhenium emitter was successfully completed. Figures 34 and 35 show the details of the various welds. As can be noted, a slight "scalloping" was still apparent on the weld of the inner to the intermediate emitter supports. The only defect of this assembly was a slight depression of 0.0002" in the center of the emitter caused by pressure from the jig used to retain this piece during electron-beam welding. The jig pressure was reduced later on and the defect was avoided.

The completed structure shown in Figure 33 was thermally cycled by raising the hohlraum quickly ten times to 1780°C. The niobium flange temperature was monitored with a chromel-alumel thermocouple, and it varied over the range from 500°C to 900°C in each cycle. The warm-up time was 1 minute 10 seconds, and the

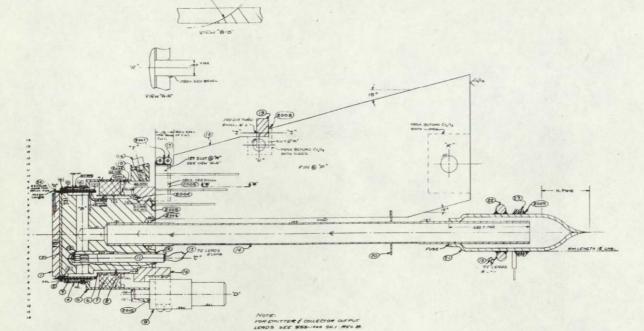
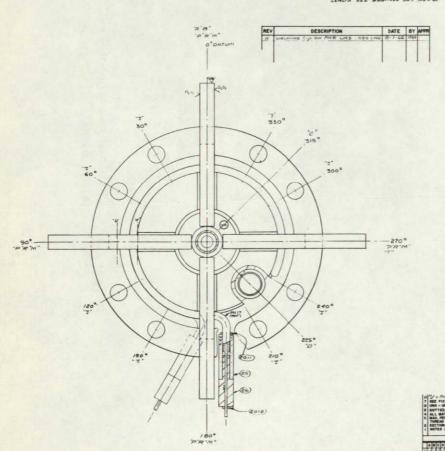
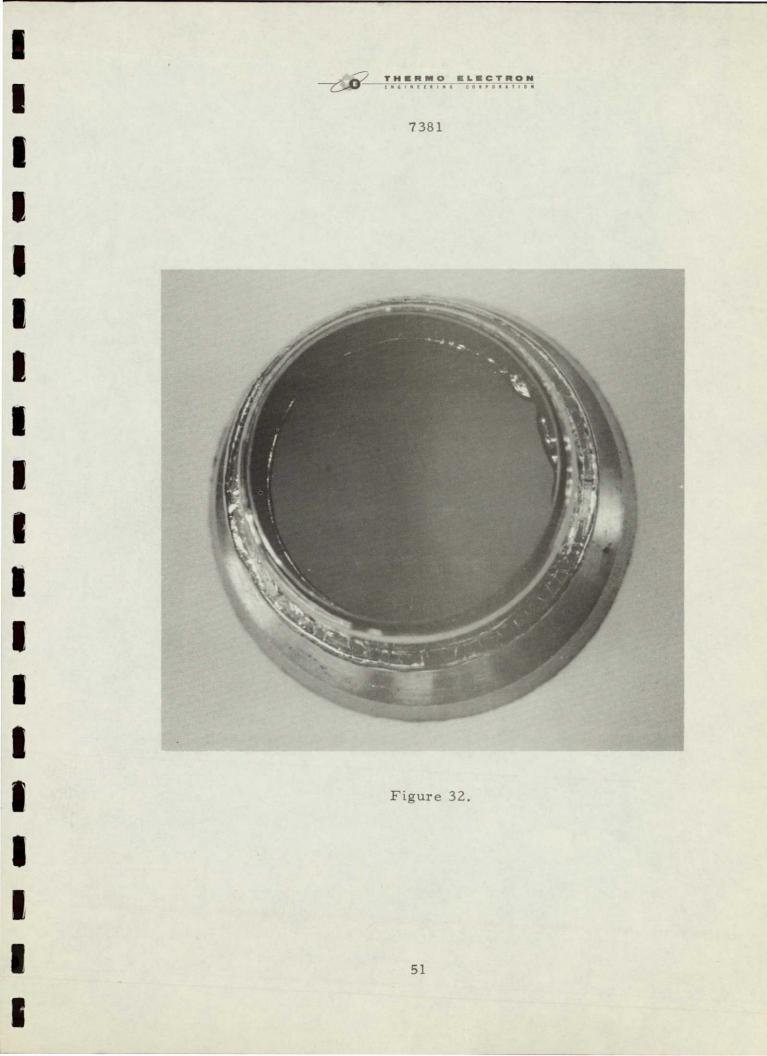
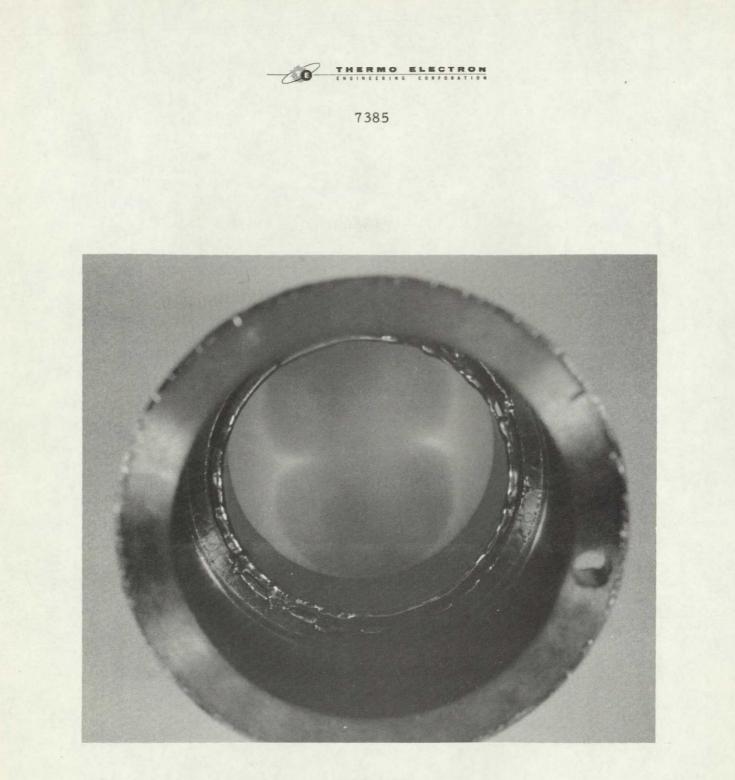




Figure 30. Photomicrograph of T-203 Emitter Surface (after 2100 °C firing).

-	ANT SIZE REG HOTES					
		-	2	FIXTURES		
3190	B	1	Nb	Philo To His Riddeets I Seven Pa		
-	-	-				
1	-			-		
	1					
-		_				
-	-	-				
-	-	-				
-	-	-		-		
- 1	-					
		1				
_		-				
-	-	-	_			
1				1		

OCATION AT EN


PART	1128	880	100	MAT'L	MOTES
1		-			HATH
l				1	
2001	ND	1		Cu	.030 DIA WIRE
2002	ND	1	-	Cu	, DOCENN. WIRE
2003		8		PB130	.OBODIA WIRE
2004		1		FJ	DEODIA WIRC
5002		1		Cu	.030 DIR WIRE
2006		S	0	4 C.N.	OZODIA WIRE
2007	ND	A3 613 D		PB/30	.030 DIA WIRE
200B		4	-	PE 130	OBOLIN WIRE
2009		A2.		PE130	.030 DIA. WIRE
2010	A	1		P8:30	.003 THK.
1103	ND	2		P8130	015019
2012	ND	S		PB130	101501A
			-		
				-	
-					


J

-

I

1

Figure 33.

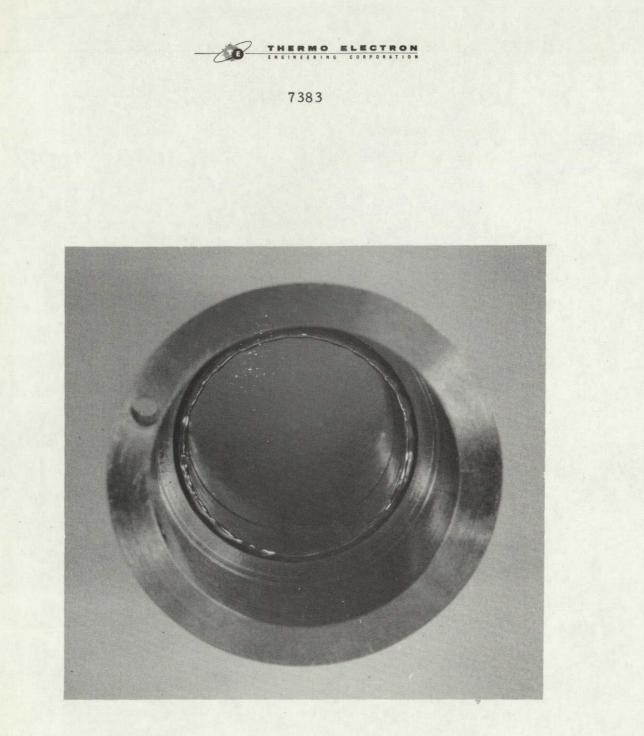
Î

1

Ì

Î

1


1

X

7380

Figure 34.

Î

Î

P

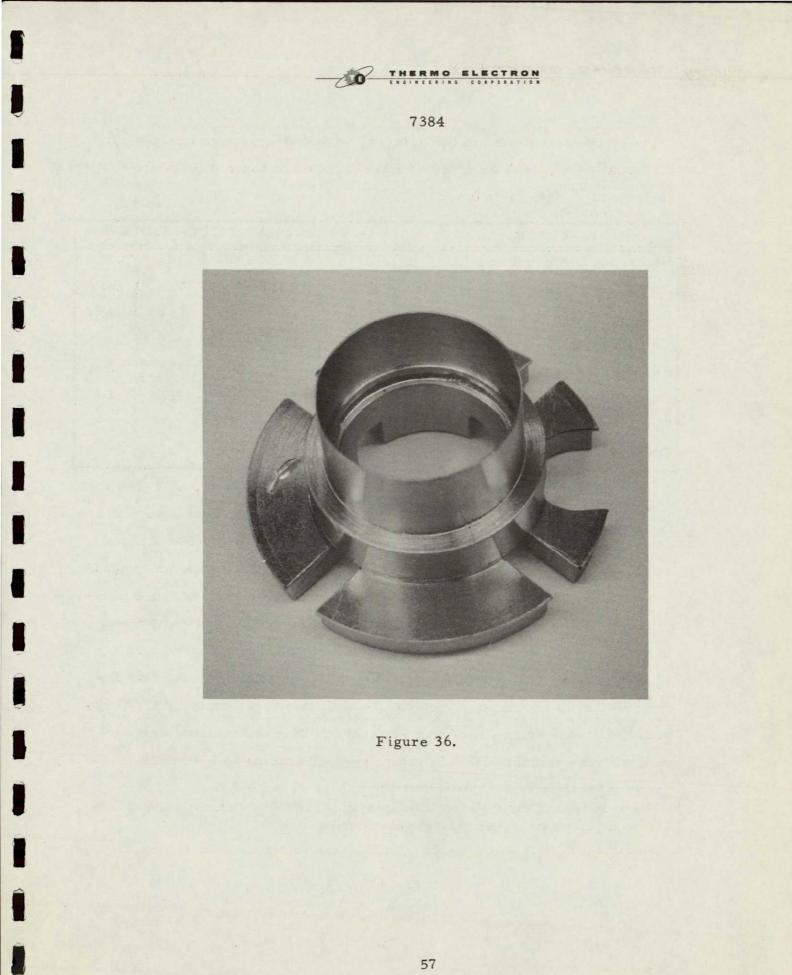
Figure 35.

cool-down time 3 minutes 30 seconds. After the thermal cycles were completed the structure was leak-tight and had maintained flatness with no visual evidence of deterioration.

A subassembly of the palladium niobium-to-molybdenum braze of the new configuration is shown in Figure 36. As can be seen, excellent braze flow was obtained, and three such subassemblies were made without any difficulty. The emitter of T-204 was electropolished for 10 seconds at an applied potential of 23 volts and a current of 3.5 amperes. It was then thermally stabilized at 2040°C observed hohlraum temperature for 2.2 hours in a vacuum of 2×10^{-6} torr. The collector was chemically etched using the same procedure as for T-203B. The coating used on the radiator fins was chromium carbide, and the cesium reservoir modifications of Figure 31 were not implemented. The converter was outgassed for 17 hours at an observed hohlraum temperature of 1750°C, and a collector temperature of 696°C. The final internal pressures were 1.0 and 0.6 x 10⁻⁶ torr in the hot and cold conditions.

4.3 Testing of Converters T-203B and T-204

THEF

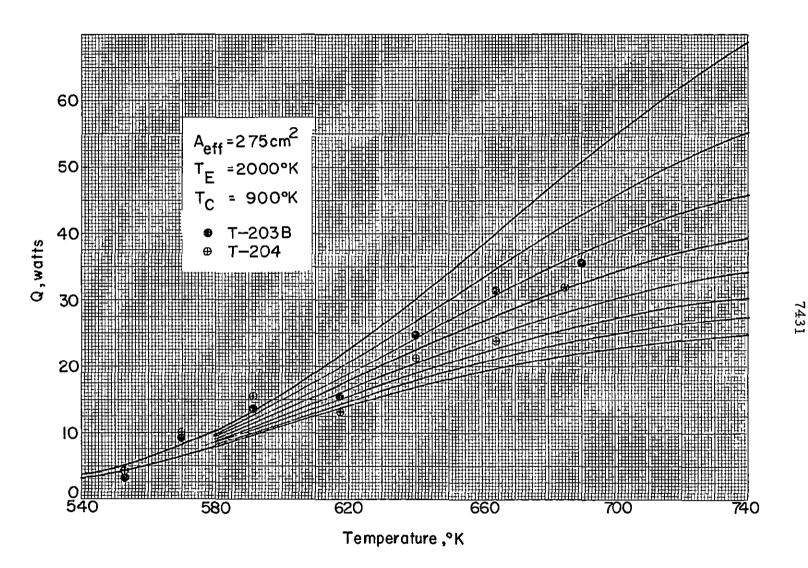

The data sheets for these two converters are presented in Appendices 6 and 7, respectively.

In the optimized 144-hour run, the performance observed for the first four converters was as follows: THERMO ELECTRON

	<u>T-201</u>	<u>T-202</u>	<u>T-203B</u>	<u>T-204</u>
Emitter Temperature, °K	2000	2000	2000	1974
Output Voltage, V	0.60	0.80	0.80	0.77
Output Current, amperes	38.0	43.4	39.3	41.4
Reservoir Temperature, °K	623	621	614	618
Collector Temperature, °K	1030	1006	979	1074
Power Input, watts	302	297	299	323
Collector temperature drop,°	C 223	213	177	260

As may be noted in the above table, the collector temperature of converter T-204 was considerably higher than previously achieved, and it was, in fact, not optimum. Part of the increase in collector temperature was due to the larger amount of heat received by the converter (which was partly the result of increased radiation heat transfer due to chemical etching of the collector surface), and part was due to a lack of direct heat transfer from the collector barrel to the radiator fins as a result of the design change of the collector barrel described in Section 4.1. Fully optimized performance was obtained in converter T-204 by connecting a water-cooled strap to one of the radiator fins. The fully optimized I-V curves at 2000°K showed the following differences in converter output current (amperes):

	<u>T-201</u>	<u>T-202</u>	<u>T-203B</u>	<u>T-204</u>
0.8 V	28.3	43.5	40.0	45.3
1.0 V	20.8	14.2	23.2	26.0
1.2 V	14.6	10.0	18.1	18.5


The steady-state performance achieved with the various prototypes at an output voltage of 1 volt, with no heat applied to control collector temperature, was as follows:

ECTRON

Prototype:	TE-103	T-201	T-202	T-203B	T-204
Hohlraum Temperature, °C	1723	1700	1700	1700	1724
Output Current, amperes	32.5	14.8	12.3	17.6	29.0
Reservoir Temperature, °K	614	602	592	614	614
Collector Temperature, °K	1015	886	852	865	1002
Radiator Temperature, °K	-	737	720	739	802
Collector Temperature Drop, °C	-	149	132	126	200
Power Input, watts	282	220	202	226	292
Overall Efficiency, %	11.5	6.7	6.1	7.8	9.9

The cesium conduction heat transfer of prototypes T-203B and T-204 was measured to infer interelectrode spacing. The measurements were made at varying cesium pressures, at an emitter temperature of 2000°K and a collector temperature of 900°K. Assuming an effective area for cesium conduction 10% in excess of the 2.50 cm² interelectrode area, * the computed variation of cesium conduction with cesium reservoir temperature is given in Figure 37 for various interelectrode spacings. The data plotted in this figure, obtained from the two converters, shows that the interelectrode spacing of converter T-203B was approximately 1.25 mils, and that of converter T-204 was 1.65 mils. This latter value agreed well with the calculated T-204 interelectrode spacing of 1.75 mils.

The assumed effective area attempts to correct for cesium conduction from components other than the electrodes.

CHOINEERING CORPORATION

Figure 37.

5.1 Design of Converter T-205

As explained in section 4.3, Converter T-204 had a collector temperature drop considerably higher than that previously achieved. Part of this increase in collector temperature was traced to the lack of direct heat transfer from the collector barrel to the radiator fins, and the collector barrel of Converter T-205 was designed to incorporate slotted sections with effective radiator fin contact.

Two other important design changes were effected in the structure of Converter T-205. The first change was to increase the interelectrode spacing of the converter by 2 to 3 mils to a value approximately equal to 4.25 mils. The increase was to be accomplished by machining the face of the collector so as to leave a raised edge around the collector face 12.5 mils wide and 2 to 3 mils high. The second change was a very slight increase in the collector face diameter, so that the spacing between the cylindrical edge of the collector and the sleeve supporting the emitter would be of approximately the same magnitude as the interelectrode spacing (that is, approximately 4 mils), and it would therefore be more nearly possible to optimize the operating conditions in the interelectrode spacing and at the collector periphery simultaneously.

5.2 Fabrication of Converter T-205

In order to preserve the dimensional tolerances of the raised edge on the collector face of Converter T-205, the collector surface was not chemically etched, as had been those of Converters T-203B and T-204. As in Converter T-204, the emitter of Converter T-205 was a slab of rhemum 0.060" thick, and it was found to be concave by 0.0007". The slightly larger deviation from flatness of the emitter was not serious, however, because of the much larger interelectrode spacing. The deviation from flatness may have resulted from the thermal relief of the grinding stresses locked in the relatively thin rhenium slab.

In all other respects, Converter T-205 was nearly identical to Converter T-204, and it included radiator fins coated with chromium carbide.

The first outgassing of Converter T-205 was applied for 65 hours. The converter was then cesiated according to normal procedures and set up for testing. When the converter was first warmed up for test, it became immediately apparent that there was an air leak, and testing was stopped. A leak check quickly showed that the converter had a leak at the pinch-off. Further investigation to determine the cause of this leak revealed that the copper tubing used for exhausting the converter had been polished with emery cloth in the machine shop as a final polishing operation. Normally, a copper tubing is not given this polishing but is used with the as-received finish of the outside surface. A microscopic examination of the copper material near the pinch-off showed that emery particles had remained embedded in the copper and very likely had interfered with the pinch-off operation. To clean the converter from whatever contamination may have resulted from the air leak, it was placed overnight in a furnace at 600° to 700°C after removal of the defective pinch-off. 'A new copper tubulation was brazed, and the converter was set up for a second outgassing. The outgassing was performed for a total outgassing time of 68 hours. It was then pinched off and cesiated. When attempts were made to test

the converter, it was again discovered that an air leak had developed. The leak was found at the same location, namely, at the pinch-off of the cesium reservoir. To diagnose the cause of this leak, an examination was made of the portion of copper tubing that had contained the cesium capsule from which cesium was distilled into the converter. The inside wall of this tubing was found to be completely blackened. A portion of the tubing was then cut and rf-heated in an open bucket in vacuum at gradually increasing temperatures to observe the behavior of this black coating with increasing temperature in vacuum. It was suspected that this coating was cupric oxide, and, indeed, at about 600°C it turned to the characteristic reddish color of cuprous oxide and pure copper. It was subsequently reasoned that this copper oxide had formed during the second outgassing, when more oxygen was released by the converter while the outgassing tubulation was relatively cold and in the temperature range which would readily cause oxidation. With an oxidized inside wall, it was then impossible to perform: a successful pinch-off. This then implied that the heating of the converter in vacuum in a furnace at 600 to 700°C overnight had not been sufficient to remove the oxygen within the converter. To improve upon this procedure the converter structure was then set up in its outgassing stand rather than the vacuum at typical outgassing conditions with the pinch-off removed, so that all oxygen could then be released from the surfaces heated at their normal operating conditions. After this treatment a new tubulation was brazed in place, the converter was given a further outgassing of one hour, and it was cesiated for two hours with the cesium ampoule at 200°C. Subsequent attempts to, test the converter showed that the repair had been successful.

The T-205 converter data is presented in Appendix 8. Converter T-205 had a tendency to operate at high collector temperature, and its radiator surface was increased by means of four additional fins mechanically fastened to the converter radiator. These additional fins were used when obtaining the I-V characteristics but were removed before the final steady-state run at 1.0 V.

The fully optimized I-V curves at 2000°K showed the following differences in converter output current (amperes):

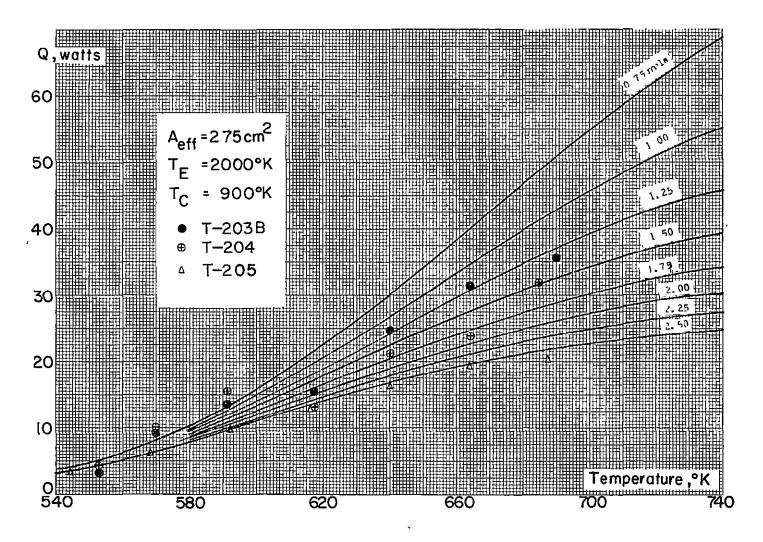
	<u>T-201</u>	<u>T-202</u>	<u>T-203B</u>	<u>T-204</u>	<u>T-205</u>
0. 8V	28.3*	43.5	40.0	. 45.3	41.0.
1. OV	20.8*	14.2*	23.2	26.0	22.1
1.2V	14.6*	10.0*	18.1	18.5	12.8

The steady-state performance achieved with the various prototypes at an output voltage of 1 volt, with no heat applied to control collector temperature, and with optimized reservoir temperature, were as follows:

Prototype:	<u>TE-103</u>	<u>T-201</u>	<u>T-202</u>	<u>T-203B</u>	<u>T-204</u>	<u>T-205</u>
Hohlraum temperature, °C	1723	1700	1700	1700	1724	1720 [.]
Output current, amperes	32.5	14.8	12.3	17.6	29.0	17.1
Reservoir temperature, °K	614	602	592	614	614	590
Collector temperature, °K	1015	886	852	865	1002	92.8
Radiator temperature, °K	-	737	720	_. 739	802	758
Collector temperature drop, °C	. –	149	132	126	200)	170
Power input, watts	282	220	202	226	292	2.57
Overall efficiency, %	11.5	6.7	6.1	7.8	9.9	6.6

The collector temperature of these runs was too high (1.75 times the reservoir temperature instead of 1.60).

Figure 38 shows the cesium conduction data obtained from prototype T-205, compared with that from prototypes T-203B and T-204. The data for T-205 was corrected so as to correspond to an effective heat transfer area of 3.50 sq cm. As can be seen, it indicates that the interelectrode spacing of *converter* T-205 was of the order of 2.60 mils, as compared with the design value of 4.20 mils. The reason for the difference between the measured and calculated values of spacing could be that the interelectrode spacing of converter T-205 was greater than 2.60 mils, somewhere between 2.60 and 4.20 mils, and therefore the effective area for cesium heat transfer may have been greater than 3.50 sq. cm.


The calculation of the temperature drop between the hohlraum and the emitter surface of the converter was calculated as follows: For the solid rhenium emitter, the distance from the hohlraum to the emitter face is approximately 0.045 in. or 0.114 cm. The converter heat transfer is approximately (34.6 + 1.09 I) watts/cm² in the vicinity of 2000°K emitter temperature. At 2000°K, the thermal conductivity of rhenium is ** 0.48 watt/cm-°K. The calculated emitter temperature drop for the solid rhenium emitter was then

$$\Delta T = \frac{q \ge 0.114}{0.48} = 10 + 0.25 I_{,} \circ C$$

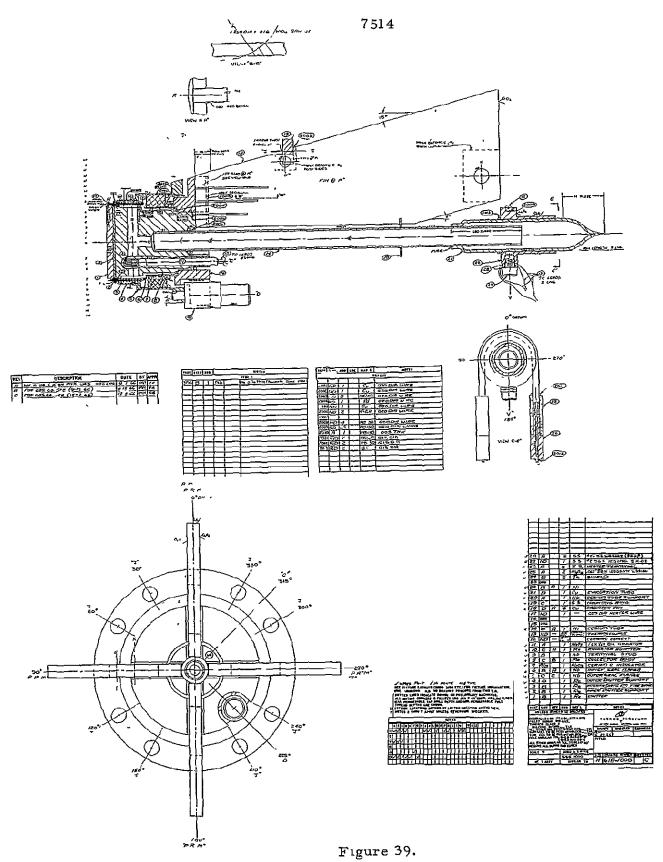
where I is the output current of the converter in amperes. The above expression gave just about the temperature drop previously observed in pressure bonded structures of tantalum and rhenium.

* $q = q_{radiation} + q_{cs} + q_{e} = 33.5 + 1.1 + (2.72/2.50) I$

^{**} "Thermal Conductivity of Ta, W, Re, Ta-10W, T-111, T-222, W-25 Re in the Temperature Range 1500°K - 2800°K," by C.K. Gun and M. Koch, University of Cincinnati, Cincinnati, Ohio.

THERMO ELECTRON

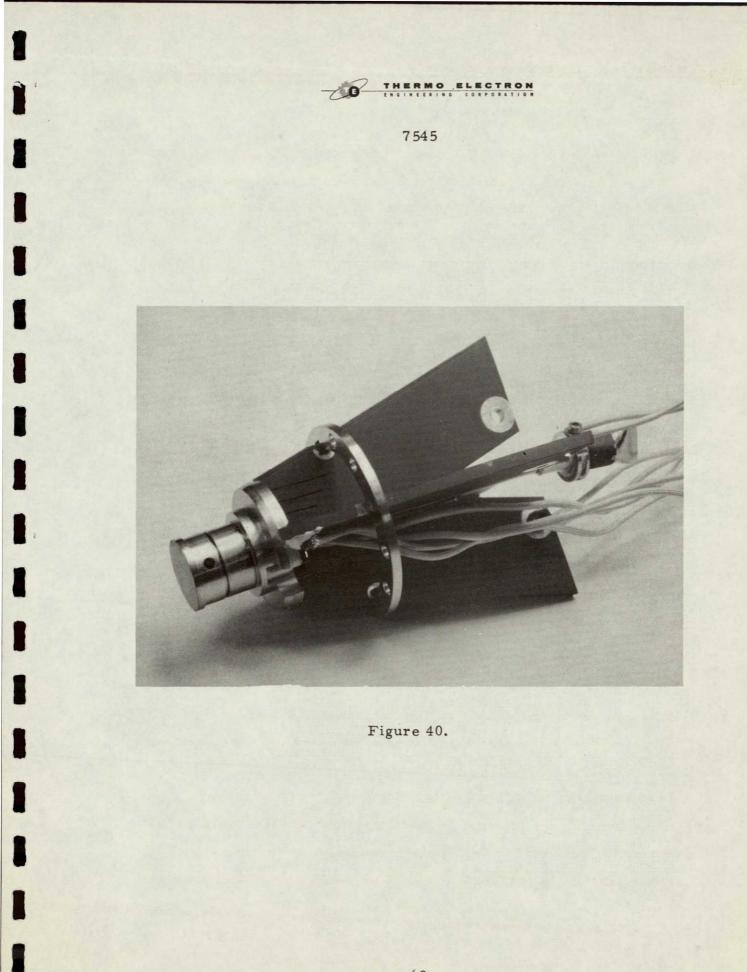
'6.1 Design of Converter T-206


The design of converter T-206, shown in Figure 39, involved several modifications to that of converter T-205, aimed at reducing the collector temperature. The collector barrel was shortened by 0.030 in., and the transition piece, part No. 10, joining the collector barrel to the radiator fins, was thickened by 0.070 in. To accommodate these two changes, part No. 5 was made shorter by 0 020 in Furthermore, the area of the radiator fins was increased by adding 0 3 in. to their length, which yielded a total radiator area of 133 sq cm, and the fins were coated with chromium oxide Finally, the design included a new cesium reservoir, partially coated with chromium oxide, capable of increased radiation heat loss and, therefore, lower operating temperatures Because of the capability of the reservoir to dissipate more heat, the cesium tube, part No. 14, was changed to stock dimensions and therefore no longer required thinning down of the wall over a portion of its length.

To demonstrate the ability of the design changes to effect a suitable reduction in collector temperature before proceeding with the fabrication of converter T-206, it was decided to fabricate and test a new collector-radiator structure that would reflect all the design features proposed for converter T-206

6.2 Fabrication of the Collector-Radiator Model

Figure 40 shows the assembled collector-radiator model. The unit was instrumented with a brazed thermocouple 0 080 in underneath the collector face, two thermocouples at the root of one fin, one thermocouple at the end of another fin, and one thermocouple on


THERMO BLECTRON A

the cesium reservoir . No heater was brazed to the cesium reservoir In order to ensure good contact between the radiator fins and the molybdenum base into which they were brazed, the fin braze was performed so that braze material could be added before the second braze operation. The resulting assembly showed one defect: The space between the inner seal flange, part No. 6, and the collector body, part No. 8, was partially filled with copper braze material that overflowed from the braze between the radiator adapter, part No. 10, and the collector body. Although the amount of braze was much too small to have caused any significant error in the heat transfer data, it could cause the failure of the ceramic seal in a fully assembled converter because it defeats the expansion isolation function of the seal flange. The possibility of this occurrence during converter fabrication can be minimized by reducing the amount of braze material used between the collector body and the radiator adapter.

6 3 Test of the Collector-Radiator Model

The Collector-Radiator #2 data is presented in Appendix 9. It gives the temperature measurements obtained on the collectorradiator model at various heat inputs, and the measurements are interpreted in Figure 41 The first step in the test procedure was to obtain the temperature distribution caused by filament heating alone, so that the magnitude of this heat input could be ascertained. The initial set of readings was obtained for a filament current of 17 5 amperes, which proved to be too low For that reason, this measurement was repeated at the end of testing for a filament current of 22 8 amperes. The remainder of the test consisted of measuring the temperature distribution achieved at these discrete

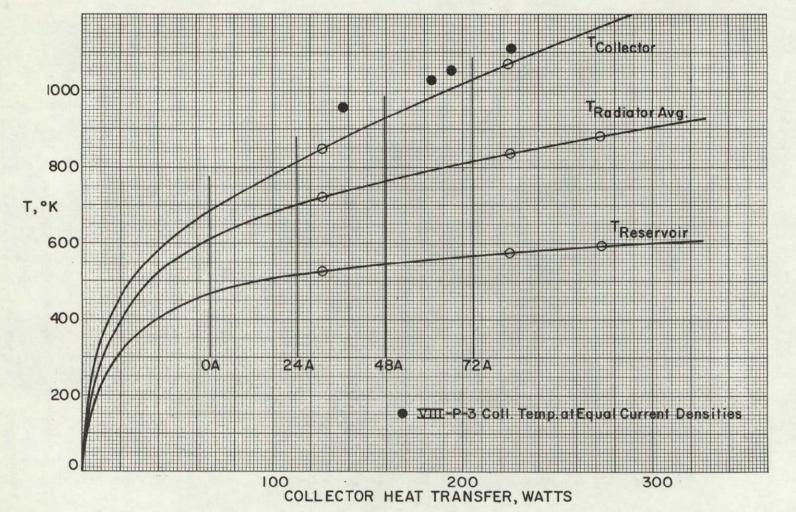


Figure 41.

THERMO ELECTRON

and carefully controlled values of electron-bombardment heat input. To avoid transient effects, the heat input was maintained constant at least 45 minutes before each reading of temperatures. The collector face was exposed to an electron-bombardment structure that operated at a temperature very closely equal to the collector temperature, so that the collector face was in radiation heat transfer equilibrium with the bombardment structure (excluding the filament), and its radiation heat losses could be neglected. From a comparison of the average radiator temperature achieved with filament heating alone with that achieved with filament heating plus electron bombardment, it is shown in Appendix 9 that at 22.8 amperes of filament current, the filament heat input was 29.2 watts. Assuming that this input was proportional to the product of filament voltage and current, the following tabulation summarizes the heat transfer conditions obtained:

THERI

Data Point No.	2	3	4
Collector temperature, °K	843	1073	-
$V_{F} \times I_{F}$, watts	104	113	119
Filament heat into collector, watts	25.5	27.8	29.2
Electron bombardment power, watts	100.7	197.0	244.0
Total power input, watts	126.2	224.8	273.2
Average radiator temperature, °C	446	560	604
°K	719	833	877
Reservoir temperature, °K	52 5	569	587

.

Figure 41 shows the plots of collector temperature, average radiator temperature and cesium reservoir temperature vs collector heat transfer. As can be seen, no data was recorded for collector temperature at the highest value of heat transfer. This is because the temperature reading at the thermocouple decreased abruptly as the heat input was raised between data points 3 and 4. Examination of the collectorradiator structure at the end of testing revealed that the collector thermocouple braze connection had melted and the thermocouple was no longer bonded to the place of measurement on the collector; therefore, its readings were inaccurate after loss of bond. The temperature at which loss of bond occurred, that is, above 800°C, was consistent with the softening point of the braze material used, T50, which is 779°C. High-melting-point braze materials were not used because they may dissolve the chromel alumel thermocouple material or alter its emf characteristics.

6.4 Discussion of Collector-Radiator Model Test Results

In order to interpret the collector-radiator model test results, it was necessary to calculate the output current values that correspond to various values of collector heat transfer. This was done using the following assumptions, which are documented in Appendix 9:

Cesium conduction loss	16.0 watts
Interelectrode radiation	34.4 watts
Additional internal radiation	2.0 watts

Furthermore, it was assumed that the emitter support radiates 15 watts to the collector body (out of its total loss of 58 watts, see Appendix III of the Task II Final Report, JPL 950671), and that this heat input all takes place at the collector face (a conservative assumption). Electron cooling losses were assumed to equal 2.72 watts/ampere, which, at output voltages of the order of 0.8 volt, corresponds to a collector electron heating of 1.92 watts/ampere. Adding these heat quantities, THERMO ELECTRON

Output current, amperes	Collector heat transfer, watts
0	67.4
24	113. 4
48	159.4
72	205.4

The additional heat input to the radiator by conduction through the seal was assumed to be exactly offset by the cooling effect of the output leads. The collector-radiator model incorporated neither a heatconducting seal nor output leads, and therefore its radiator heat transfer was expected to have simulated that of an operating converter quite closely.

Figure 41 includes lines which correspond to the heat transfer values at 0, 24, 48 and 72 amperes of output current. As can be seen, collector and reservoir temperatures of 1030°K and 565°K, respectively, corresponded to the highest output current value of 72 amperes. To ascertain that satisfactory converter operation could be achieved with these values of temperature, the temperatures were compared with those observed in converter VIII-P-3 of JPL 950671, Task I, which were believed to be representative of a well-optimized design. Since this converter had 20% less emitter area, the output current value corresponding to 72 amperes was 57.6 amperes. All available data showed that VIII-P-3 reached this output at an optimum reservoir temperature exceeding 317°C, i.e., 590°K. The observed reservoir temperature of 565°K in the collector-radiator model was therefore low enough to allow ample opportunity to optimize reservoir temperature with the electrical heater on the reservoir. The original data on converter VIII-P-3 also showed that at an output current of about 57.6 amperes

THERMO ELECTRON

Data Sheet	Data Point	I, amperes	T _{coll} , °C	T _o , °C	P _{eb} , watts
11	10	56.0	809	1677	385
14	3	62.0	838	1677	400
21	8	57.5	823	1700	42.0
23	8	68.5	861	1700	430

the collector temperature, without collector heating, stabilized to the following values:

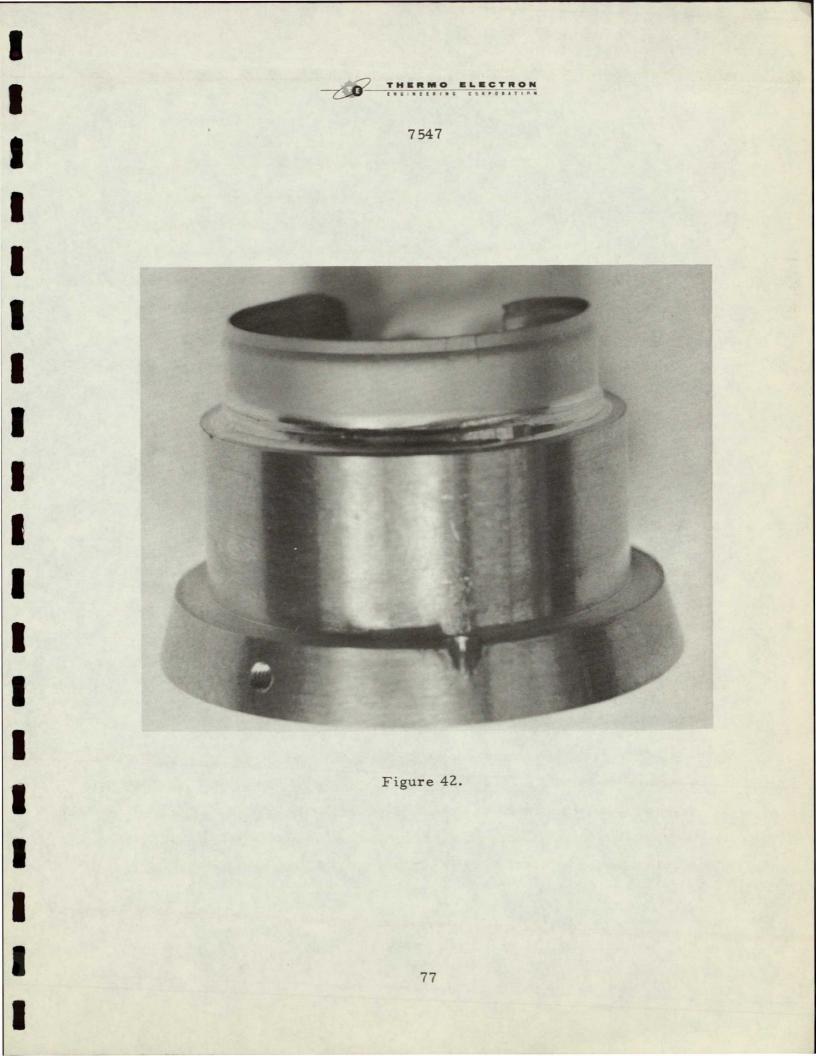
The converter was then handled to install thermocouples on the seal and the emitter output lead, and the following data was obtained:

Data Sheet	Data Point	I, amperes	T _{coll} , °C	т _о , °С	P _{eb} , watts
29	5	55.0	7 59	1700	410
30	7	55.5	767	1700	410

This last data shows that a substantial drop in collector temperature (of the order of 50°C) had occurred, and it was suspected that the bond of the collector thermocouple of VIII-P-3 must have failed in a manner similar to that of the collector-radiator model. This was likely because the same braze material was used in both devices. The test data at JPL offered further evidence of such a failure because the 1700°C data showed that, at an output of 54.0 amperes and with a power input of 350 watts, the observed collector temperature was only 700°C. Thus it seemed reasonable to conclude that the collector temperature of VIII-P-3 for the output of 57.6 amperes was in excess of 809°C or 1082°K. Then the collector temperature of 1030°K achieved by the collector-radiator model at the equivalent output current of 72 amperes was more than 50°C below the desired value, and consequently the design of the new collector-radiator structure was considered adequate for converter T-206.

6.5 Fabrication of Converter T-206:

THER


The fabrication of converter T-206 was preceded by three concurrent development efforts which were the improvement of the niobium rhenium joint in the rhenium emitter structure, the evaluation of brazing procedures for the radiator fins, and the fabrication of electron beam welded rhenium tubing.

One of the difficult joints to perform in the fabrication of T-200 converters was that of the re-entrant rhenium emitter structure to the niobium seal flange. This joint was achieved by a low-penetration electron-beam melting of the niobium around the rhenium. The joint was difficult to make because it is critically important to avoid melting the rhenium. Otherwise a brittle intermetallic results, and the structure will not be leaktight. To avoid these problems, the use of vanadium brazing was evaluated for the joint. Figure 42 shows the braze obtained with an 0.015"-dia wire. Tear tests on the joint showed that the joint is sound and that both the rhenium and the niobium remain ductile. This technique was therefore adapted for the fabrication of T-206.

Another weak area found in previous T-200 converters was the braze of the copper fins to the molybdenum radiator adaptor. The weakness lies in that quite often the amount of braze material used, a nickelgold eutectic alloy, is not sufficient to establish a metallurgical bond over the entire contact area available between the copper and molybdenum pieces. If more braze material is used, experience had shown that an overflow of braze alloy occurs at undesired locations without necessarily improving the copper-molybdenum bond obtained. Thus it appeared that the only method available to improve this bond was to subject the assembly THERMO ELECTRON

to a repeat braze with either the same or a different braze alloy. A different braze alloy offered the potential advantage that it might have a lower melting point, and therefore permit lowering the temperature to which the assembly had to be heated in the second braze operation, so that a more reliable fabrication could be achieved. It was necessary, however, for this second braze alloy to possess good flow characteristics; otherwise a good thermal bond would not be obtained in those areas where addition of braze material is attempted. Figure 43 shows the results of a test conducted to compare the strength of the bond obtained using the conventional nickel-gold eutectic with that obtained with an alloy containing 10% palladium, 58% silver, and 32% copper. This alloy was commercially available under the trade name Engaloy 491, and it has a solidus-liquidus temperature range of 825 to 852°C. In the test one pair of diametrically opposed fins were brazed with nickel-gold eutectic, and a second pair was brazed in a second braze with Engaloy 491. After the unit was completed it was visually inspected, and it appeared that the Engaloy 491 had not wetted the molybdenum as well as the nickel-gold eutectic. A subsequent mechanical-pull test showed, as shown on the left of Figure 43, that Engaloy does not adhere to molybdenum. One of the fins brazed with the nickel-gold eutectic was pulled, and the assembly broke right through the molybdenum bulk in preference to separating at the brazed interface as shown on the right in Figure 43.

Finally, an in-house effort for the fabrication of electron beam welded rhenium tubing was conducted because the supplier of rhenium tubing, the rhenium division of the Chase Brass Company, had relocated from Waterbury, Connecticut, to Solon, Ohio, and as a result of this relocation, the Chase Brass Company was no longer in a position to

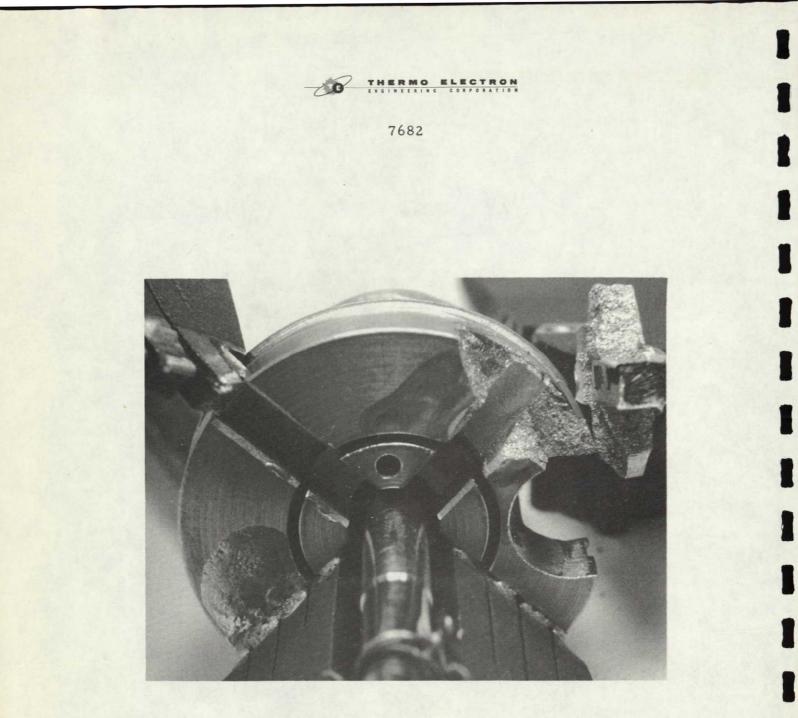


Figure 43.

fabricate rhenium tubing to custom dimensions. An insufficient amount of rhenium tubing was on hand to fabricate the last five prototypes under this program, and the in-house fabrication of rhenium tubing had to be pursued very actively. Also, the available rhenium tubing was often of marginal quality and in a few instances had developed leaks in the region of the seam weld. Figure 44 shows one such sleeve, where it may be observed that the arc-welded seam is not uniformly melted on both sides of the seam. The material on only one side has been melted, and then it has resolidified against the unmelted abutting edge at the seam. Although the resulting weld is leak-tight, work under other programs at Thermo Electron had shown that the weld can fail after a few thermal cycles to normal operating conditions.

THER

The effort to fabricate rhenium tubing consisted of ordering flat rhenium stock 0.020" thick, cutting it to the necessary dimensions, rolling it and electron-beam welding it. Both the rolling and electronbeam welding operations were performed by outside vendors. Figure 45 shows the three sizes required for prototype fabrication after the beam-welding operation. The tubes were then ground to final dimensions.

Converter T-206 was fabricated with great care to avoid previously encountered difficulties, namely, emitter out-of-flatness and repeated cesium charging due to leaking pinch-offs. The emitter was ground flat, lapped to a mirror-like finish, electroetched for 1 minute at 5 volts in the standard bath composition, and thermally stabilized after welding to the emitter support structure for 2 hours at 2100°C. Final flatness checks showed that the emitter face was flat within 50 millionths of an inch, and that it was square with the axis of symmetry of the support

TH 0

ľ

1

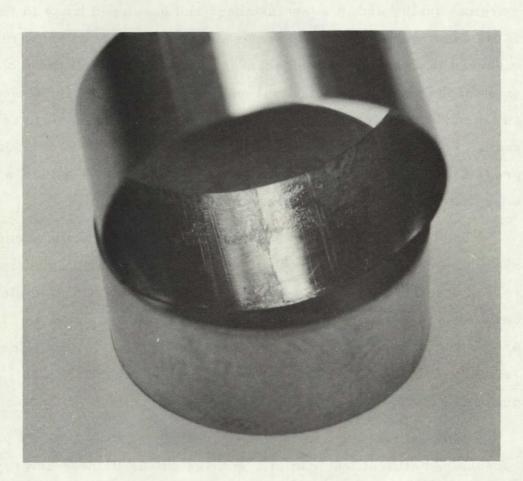
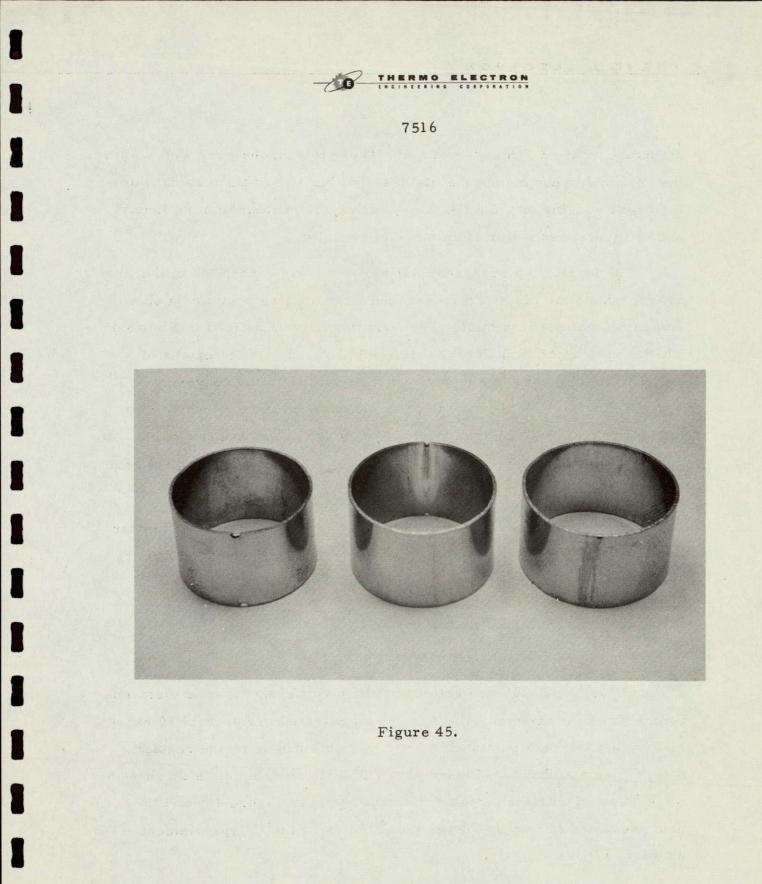



Figure 44.

HERMO ELECTRON

structure within 2.7 minutes of arc. These tolerances were well within the estimated requirements of flatness, within 10% of the nominal interelectrode spacing of 1.8 mils, i.e., within 180 millionths of an inch, and of squareness within 10 minutes of arc.

The fabrication proceeded normally, with the exception of the final braze, where the radiator fins reached their melting point and a small amount of material did melt. The condition may be noticed in Figure 46 which shows a photograph of the finished prototype. The regions of material melted away can be noticed in proximity to the converter support ring The melting of the fins also caused them to "sink" into the transition piece which supports the fins, and this caused a slight reduction of fin area and, at the same time, a better metallurgical bond of the fins to the collector structure.

The converter was outgassed for 44 hours at an observed emitter temperature of 1750°C. Cesium distillation was conducted for 8 hours at 200°C.

6.6 Testing of Converter T-206

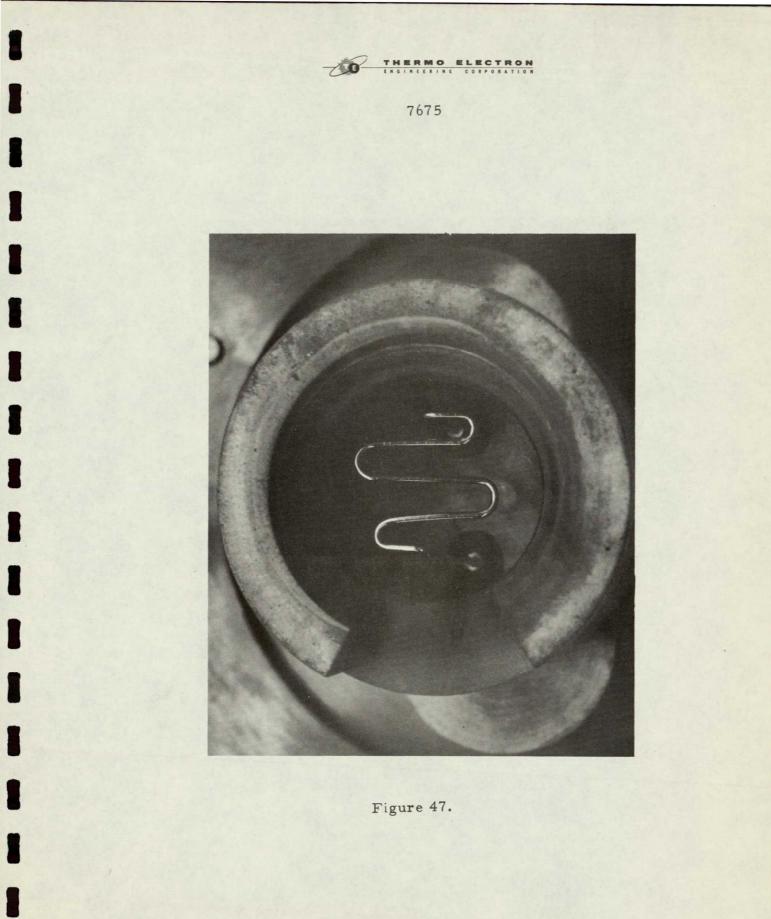
a. Electron Bombardment Structure:

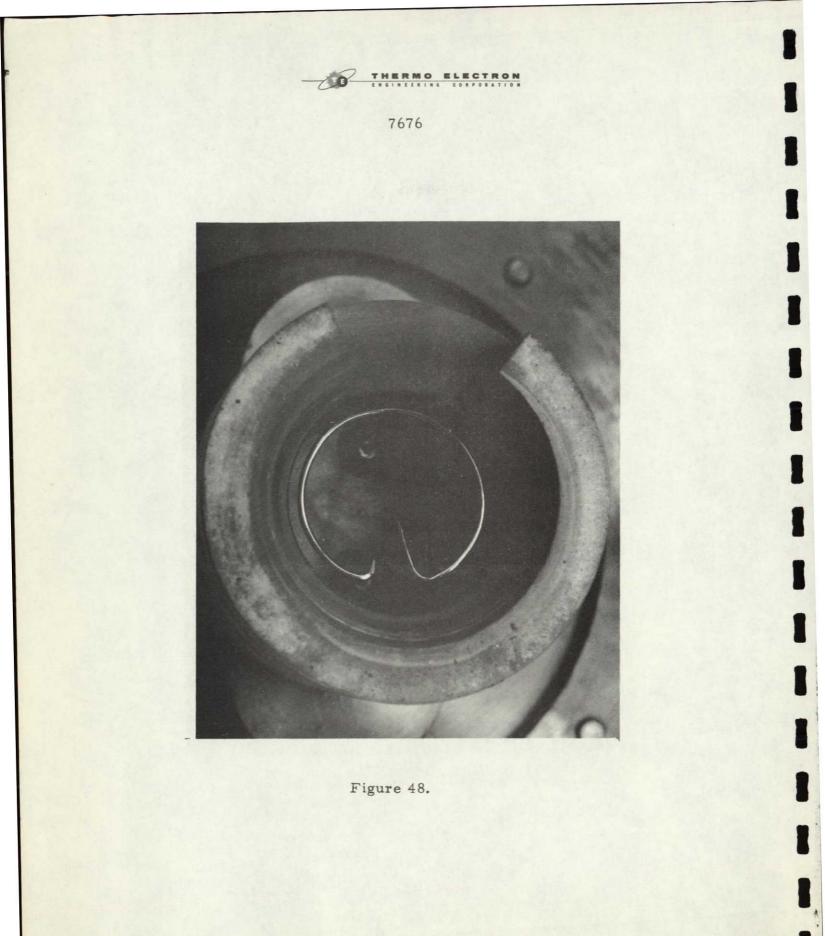
Converter T-206 was tested with three different types of electronbombardment filaments. All of the data presented in Appendix 10 except for the last two data points on sheet 5 was obtained using the regular S-type filament shown in Figure 47. The last two data points on sheet 5 were obtained with the circular filament shown in Figure 48, and the data presented in Run No. 8 was collected using the U-type filament shown in Figure 49.

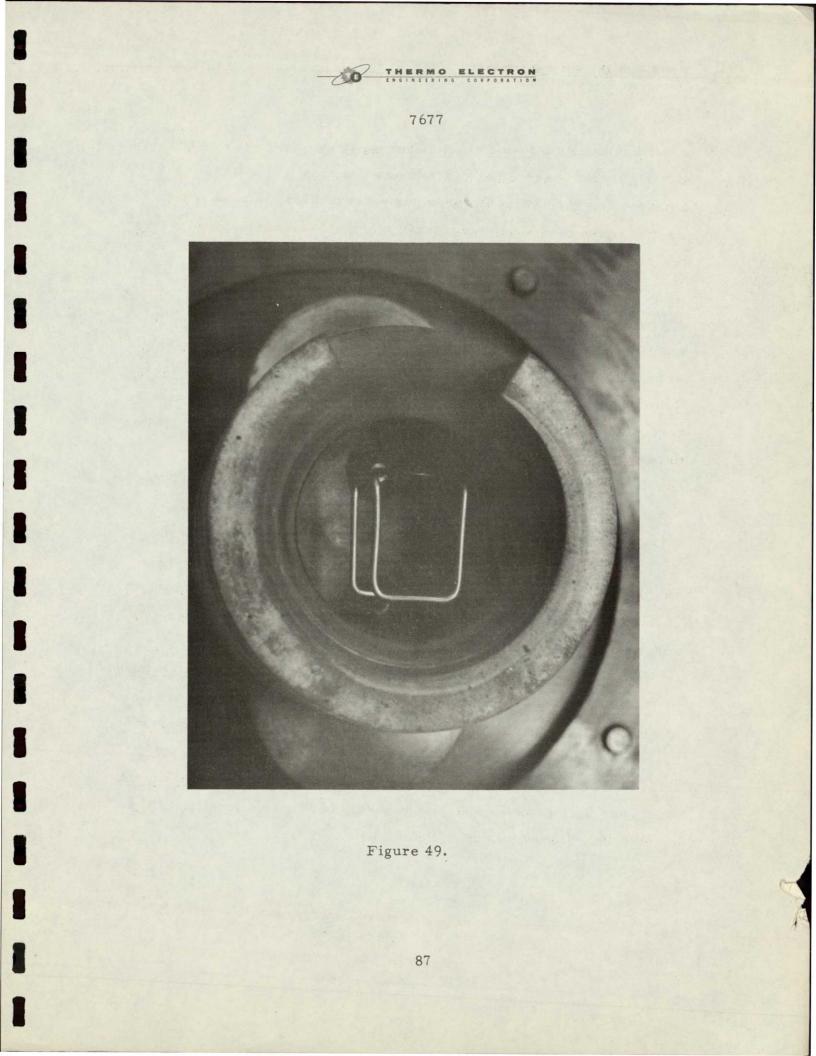
The reason for the use of these different heat sources is that one of the persistent difficulties in the T-200 experimental program had been the lack of agreement between the TECO and the JPL data. After considerable effort at checking the instrumentation, particularly the pyrometers used for emitter temperature measurement, it was suspected that the discrepancies might be due to the configuration of the device used for heating the converter. The JPL electronbombardment unit was different from that used at Thermo Electron in that it used a 1500-volt accelerating voltage instead of 1000, and a filament requiring nearly 50 amperes of heating current instead of 20. Although normally such differences would not have been expected to cause significant variations in the data, the T-200 converter design was thought to be more susceptible to performance discrepancies because of its thinner emitter structure. With a thin emitter structure, the actual temperature distribution over the emitter surface and the brightness of the hohlraum could depend to a greater extent on the energy and distribution of the bombarding electrons on the heated side.

THEP

The experiment performed with the three types of filaments confirmed that differences in performance can be observed with different electron-bombardment sources. The two data points with the circular filament, #9 and #10 given in sheet 5, were selected to attempt reproducing the data point #5 of sheet 4, obtained with the S-filament. In the first attempt the observed temperature of the emitter was the same, 1700° C, but the observed output at 0.8 volt was 32.1 amperes instead of 41.2 amperes, a decrease of 22%, and the required power input was 305.7 watts instead of 344.8, a decrease of 11.3%. In the


The reason for the use of these different heat sources is that one of the persistent difficulties in the T-200 experimental program had been the lack of agreement between the TEGO and the PL data. After constdarable effort at checking the instrumentation, particularly the pyrameters used for one suspected that the fact can be due to the configuration of the device used for heat in that it used a 1500of 20 Although nor expected to cause discrepancies are discrepancies are emitter structure a greater exten a greater exten the section to the the test on the the section. The SPL electron a filament requiring discrepancies are emitter structure the test on the test on the contract on the test on test on the test on the test on the


> firmled that detected cell in ber electron-bombardment sour filament. #9 and #10 given in producing the data point #5 of In the first attempt the observ


你能妈您吗て

same, 1700°C, but the observed output at 0.8 volt was 32.1 ampere instead of 41.2 amperes, a decrease of 22%, and the required powe **Figure 46.** In the second set 8, a decrease of 11.3%. In the

points with the circular

HERMO ELECTRON

second attempt the power input of 345 watts was reproduced, and the output current observed at 0.8 volt was practically the same: 40.9 amperes compared with the previous value of 41.2. The observed emitter temperature was considerably higher, however: 1742°C true hohlraum temperature instead of 1700°C.

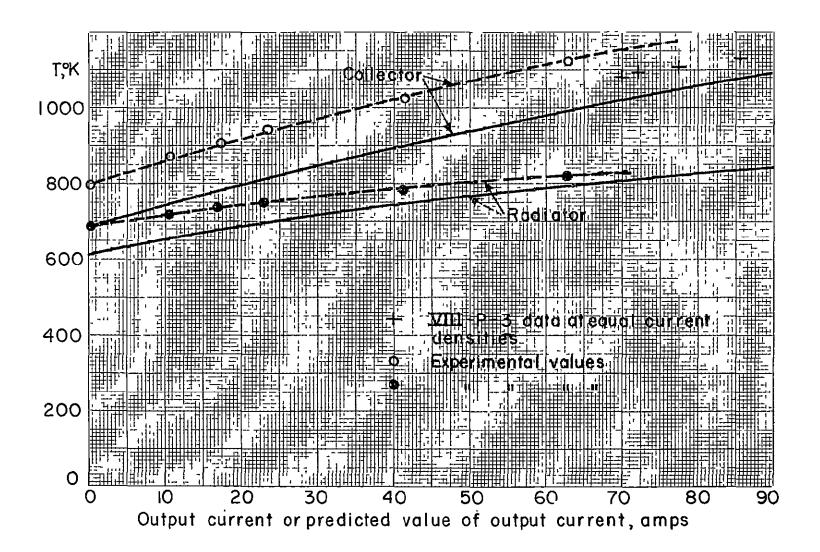
The U-type filament was designed to avoid electron bombardment of any portion of the emitter structure close to the hohlraum. The electron-bombardment filament projections onto the emitter structure were approximately 0.160 in. from the hohlraum. The data sheet for Run No. 8 shows the results obtained with the filament. The tests conducted with this filament were intended to reproduce two conditions in particular: The outputs at 1 volt and 0.8 volt with electronbombardment power inputs of 292.4 and 344.8 watts, respectively, observed with the S-filament. Sheet 4 of the data gives recorded output currents of 23.3 and 41.2 amperes, respectively. With the U-type filament, the values obtained were 21.6 and 40.9 amperes, and the observed emitter temperatures were 15°C higher. The higher emitter temperature readings obtained with the U-filament were surprising because avoiding bombardment of the hohlraum was expected to reduce hohlraum temperature. It was felt that the discrepancy of 7% observed at 1 volt could be due to experimental error because of the output sensitivity to power input in the 1-volt region, and that the results tended to confirm, in general, that the observed emitter temperature is affected by the type of electron-bombardment filament used, and that the converter output observed is a sole function of the electron-bombardment power input.

Since the results obtained with the S- and U-type filaments were in close agreement, and since an S-type filament had been used for all previous tests and was capable of more uniform heating of the emitter face, it was recommended to JPL that the use of the S-type filament be continued for all further converter tests.

b. Thermal Performance of Collector-Radiator Structure:

Another aspect of the T-206 converter test was the comparison of the thermal performance of its collector-radiator structure with that of the model described under paragraph 6.4.

Figure 41 gives the thermal performance observed in the collectorradiator model, and the vertical lines superimposed on the performance curves identify the collector heat transfer values that were predicted at the labeled values of converter output current. Thus the data of this figure can be tabulated as follows:


	Output Current, Amperes	Predicted T _c , °K	Predicted T °K
	0	684	612
-	24	814	702
	48	928	764
	72	1030	816

and solid-line curves for these values are plotted in Figure 50. All the static data points obtained for converter T-206 in the temperature range of 1700°C are shown on the figure along the dashed lines. As can be seen temperatures somewhat higher than predicted were actually achieved. The curves indicate a horizontal shift of 20 to 25 amperes, which corresponds to underestimating the heat transfer by approximately

40 watts. The value of the shift increases with current, because at higher currents the output voltage is lower and the corresponding value of electron heating per ampere is higher. The amount by which the collector heat transfer had been underestimated can also be calculated from the measured and predicted values of the temperature difference between the collector and the radiator at zero output current. The value of this difference predicted by the collectorradiator model was 684-612 = 72 °K at a heat transfer value of 67.4watts, according to the solid curves of Figure 41. The value which was actually measured in converter T-206 is given by data point 1 of sheet 4: 525-412 = 113°C. To a first approximation, then, the actual collector heat transfer at zero current was $67.4 \times 113/72 =$ 105.7 watts, or 38.3 watts more than expected. This value agreed well with the observed shift corresponding to approximately 40 watts. Furthermore, the heat transfer ratio 105.7/67.4 had to be approximately equal to the fourth power of the ratio of observed to predicted average radiator temperatures. These were 412 + 273 = 685°K for converter T-206, and 612°K for the collector-radiator model. The fourth power of the ratio 685/612 is 1.565, which compared very well with the value of 1.569 for the ratio 105.7/67.4.

In conclusion, then, it was demonstrated that the collector heat transfer in converter T-206 had been underestimated by 38.3 watts, resulting in collector temperatures higher by 120°C than predicted, and which were higher than the VIII-P-3 collector temperatures, shown in Figure 50, by approximately 65°C.

One of the causes for this discrepancy was the increase in interelectrode heat transfer due to the use of a rhenium instead of molybdenum collector. The previous calculation of interelectrode radiation

THERMO ELECTRON

had been based on the assumption of emitter and collector emissivities of 0.28 at corresponding temperatures of 2000°K and 1040°K, and had yielded a value of 34.4 watts. The collector emissivity value of 0.28 had been made deliberately large to compensate for the experimentally measured surface deterioration that is normally encountered in operation. The actual value of total emissivity for molybdenum at the effective temperature of $\sqrt{2000 \times 1040} = 1450$ °K is approximately 0.15 The ` assumed value allowed then for an addition of 0.13 to the theoretical value. Figure 51 gives the emittance data for rhenium measured by G.B. Gaines of Battelle Memorial Institute and C.T. Sims of General Electric Company in the Journal of Applied Physics, 34, 2922. It can be seen here that the emittance of the emitter at 2000°K is actually at least 0.30, and probably a value of 0.35 should be assumed to account for the effect of electroetching the surface. The emissivity of 1450°K is 0.244. If allowance for deterioration by the addition of 0 13 to the emittance is made, as in the case of molybdenum collectors, the collector emissivity assumed should be 0.374 for rhenium. Using these values, the interelectrode radiation calculated at emitter and collector temperatures of 2000°K and 1040°K was (90.86-6.64)/ $(1/0\ 35+1/0.374-1) = 18.6\ watts/cm^2$. For an emitter area of 2.5 cm², the loss is then 46.5 watts, which was 12.1 watts larger than the value previously assumed. The remainder of the difference in collector heat transfer could not be accounted for by simple additional corrections to the basic converter heat transfer model.

As far as the overall effect of the collector-radiator modifications was concerned, it was of interest to compare the steady-state performance of T-206 with that of T-205 The optimized conditions compared as follows:

9Ż

HERMO ELECTRON

O R P O R A T I O N

	<u> </u>	-205 ·	<u> </u>	206
Hohlraum Temperature, °C	17	20	17	00
Output Voltage, volts	08	1.0	0.8	1.2,
Output Current, amperes	34.2	17.1	41.2	16.9
Reservoir Temperature, °K	609	590	621	604
Collector Temperature, °K	1029	928	1027	910
Radiator Temperature, °K	802	7 58	786	739
Collector Temperature Drop, °C	227	170	241 [•]	171
Power Input, watts	308	2 57	345	281
Overall Efficiency, %	8.9	6.6	9.6	72

It was obvious from this table that, in spite of the higher interelectrode radiation losses due to the use of a rhenium collector, and in spite of the higher values of input power, converter T-206 achieved lower collector and radiator temperatures at higher or equal output currents. Thus an improvement in collector heat transfer was achieved, but the VIII-P-3 values plotted in Figure 50 showed that these improvements were insufficient.

c. Converter Thermal Performance:

Since doubts existed about the accuracy of the emitter temperature measurements, it was also of interest to compare the optimized characteristics of all the converters tested, based on optimized output current for prescribed values of output voltage and heat input, which is a direct measure of efficiency vs heat input. Figures 52 and 53 gave this information for the T-100 series of converters at 0.8 volt and 1.0 volt, respectively Figures 54 and 55 are corresponding figures for the T-200 series of converters It was seen, on the basis of these figures, that the best T-100 converter was converter T-103, and the best T-200

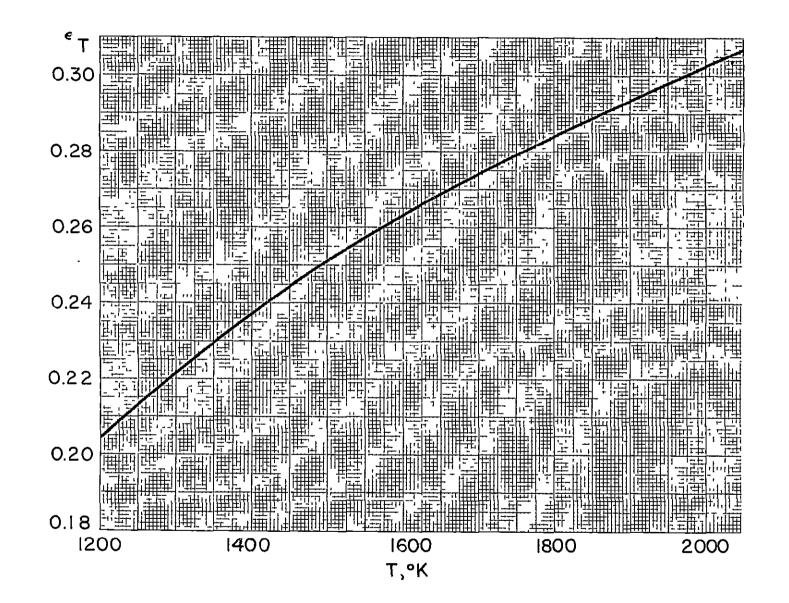


Figure 51.

THERMO ELECTRON

7685

.

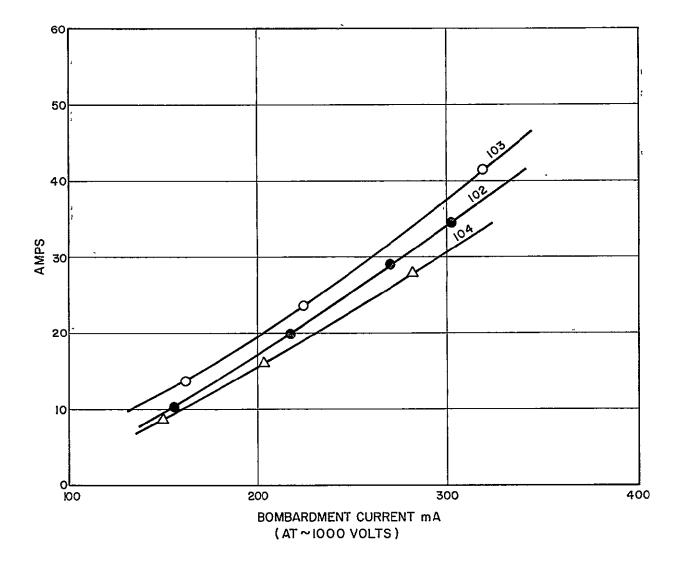


Figure 52.

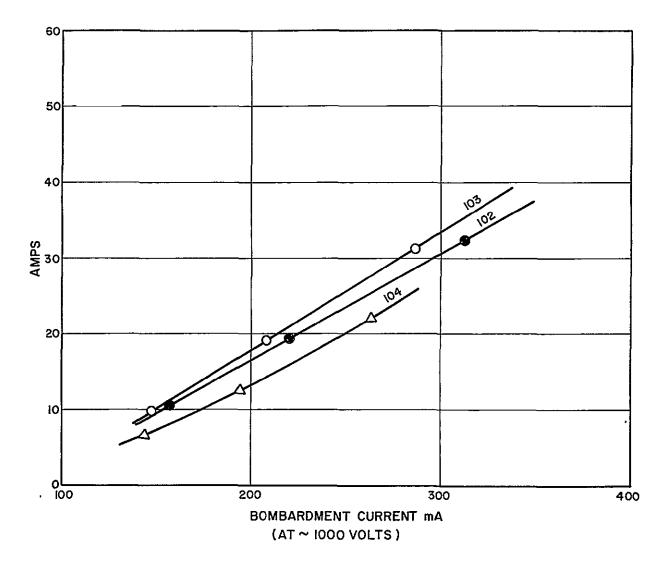
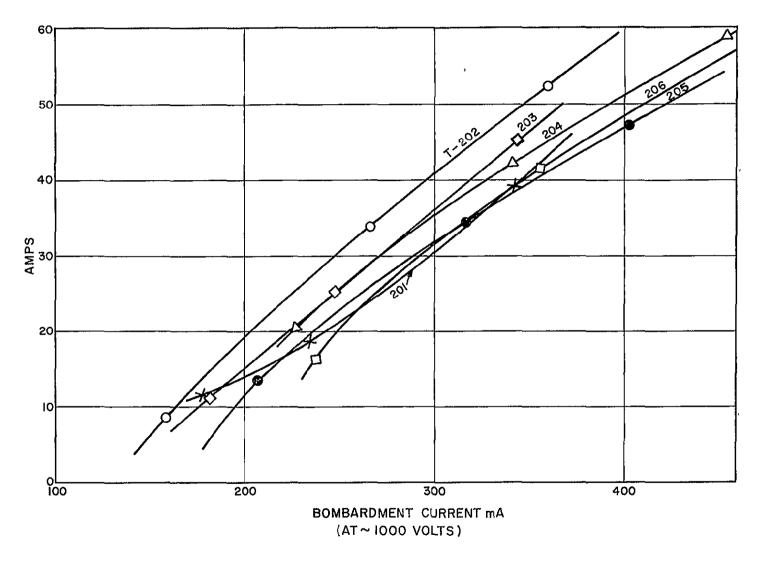
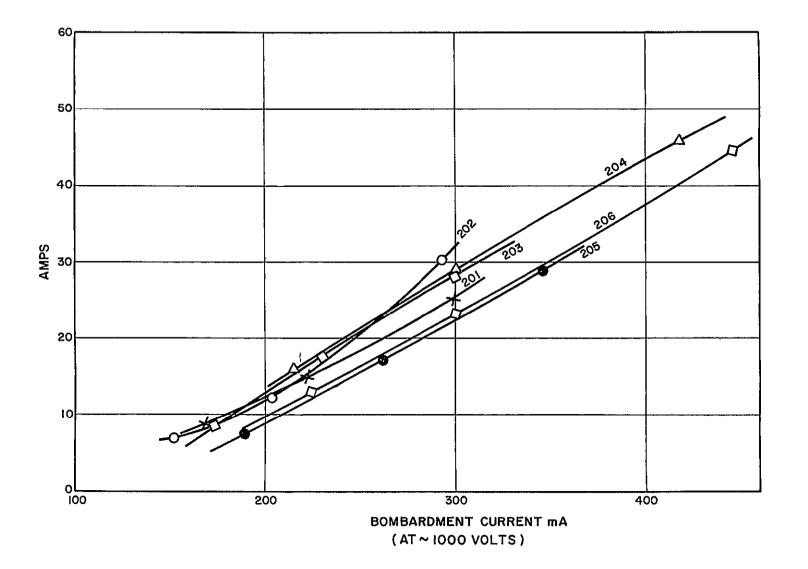




Figure 53.

THERMO ELECTRON

7689

THERMO ELECTRON

Figure 55.

converter was T-202 with the exception of the low temperature range. Converters T-205 and T-206 were among the poorest, T-205 because of its lower output, and T-206 because of its higher heat losses. It was reasonable to expect that T-202 should have the highest efficiency in the T-200 series because it closely reproduced converter T-103, except for the modified collector barrel which should not have affected the efficiency, and because it had the tantalum emitter support structure which has lower radiation and conduction losses. Since this emitter structure could not be used without the use of pressure-bonding, which was considered unreliable for long life, the best converter T-206 except that it had a molybdenum collector.

THE

In summary, then, the changes required to reduce the T-200 converter to a fully qualified item of hardware tended to reduce slightly the overall converter performance which had been obtained with the converters of the experimental Series VIII and T-100. These changes had been:

- (1) Increasing the T-100 spacing of 1 mil to 1.75 mils.
- (2) Use of an integral rhenium emitter.
- (3) Use of a heavy rhenium emitter support.

The increase in spacing to 1.75 mils had been made principally to ensure the achievement of long operating life, which would otherwise have been in doubt with spacings of 1 mil. This increase had made it necessary to use a longer emitter support and collector barrel, and as a result severe heat transfer problems were encountered in the collector, which prevented the achievement of optimum collector temperatures. A solution to this problem could probably only be found with the application of heat pipe structures to dissipate collector heat. The use of an integral rhenium emitter had been adopted to avoid pressure-bonding and its attendant problems due to diffusion at the bonded boundary: formation of brittle intermetallics and Kierkendall porosity. The disadvantage of the integral rhenium emitter was that it increased external radiation losses in proportion to the ratio of the emissivities of rhenium and tantalum at 2000°K: 0.302/0.234 = 1.29. The use of heavy rhenium emitter support could not be avoided because thin rhenium tubing of reliable quality was not available.

d. Relative Collector Work Function:

T H E D

Measurements to obtain relative collector work function could not be conducted readily with converter T-206 because of the absence of a collector heater. The best available measurement was that provided by comparing the optimum output voltage at which an output of 40 amperes was obtained during converter mapping at 2000°K, at the highest reservoir temperature of 645°K, and with a near optimum value of collector temperature which, at a reservoir temperature of 645° K, was nearly 1030°K. The higher this voltage, the lower the collector work function. This relative indication is dependent on emitter temperature at the rate of 1.5 mV/°C at a reservoir temperature of 645° K. The values recorded for all T-200 converters were:

	201	202	203	204	205	206
V _{40A} 645°K	0.76	0.67	0.67	0.79	0.76	0.91

These showed that the collector work function achieved with the rhenium collector of converter T-206 was at least a tenth of a volt lower than

that of the molybdenum collectors of the other converters. Converter T-206 was not able to demonstrate the benefits of the lower collector work function under static testing because of collector overheating, but the dynamic characteristics showed substantial improvement in performance. The optimum outputs obtained in dynamic testing at 0.8 and 1.0 volt and at 2000°K for the various converters were as follows:

	<u>201</u>	<u>202</u>	<u>203</u>	<u>204</u>	<u>205</u>	<u>206</u>
Output current at 0.8 Volt, A	28.8	26.0	35.5	45.0	41.0	63.0
Output current at 1.0 volt, A	21.0	14.0	22.7	26.0	22.0	34.7
Collector temperature, °K	1065	1052	973	1017	990	1002

The collector temperatures were optimum because testing experience had consistently indicated that the optimum collector temperature was closely equal to 1.6 times the corresponding reservoir temperature, and this was nearly the case for the above data.

e. Interelectrode Spacing:

The procedure used to find the T-206 interelectrode spacing was based on the formula for cesium conduction of Kitrilakis and Meeker.

$$Q = 0.0615 \text{ A} (T_{e} - T_{c}) / [2.5 \text{ d} + 0.015 (T_{e} + T_{c}) / p]$$

where A is the area in sq cm, d the spacing in mils, and p the cesium pressure in mm Hg The formula was differentiated implicitly with respect to pressure to yield:

$$\partial Q/\partial p = 0.00092 \text{ A} (T_{E}^{2} - T_{c}^{2})/[2.5 \text{ pd} + 0.015 (T_{E} + T_{c})]^{2}$$

and solved for spacing:

 $d = \{[0.0001475 A (T_{E}^{2} - T_{c}^{2})/\partial Q/\partial p]^{0.5} - 0.006 (T_{E} + T_{c})\}/p$

$$\partial Q/\partial p = 4.10 A(T_{E} - T_{C})/(T_{E} + T_{C})$$

and the effective heat transfer area can be calculated:

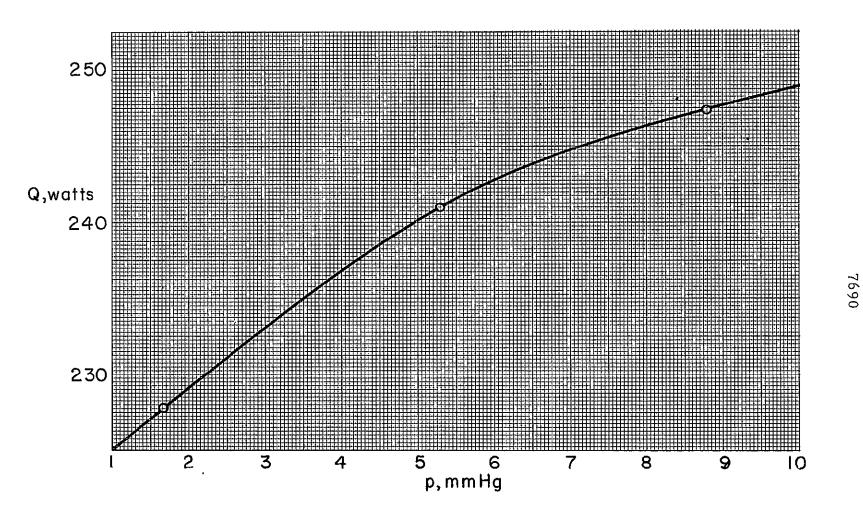

$$A = (\partial Q / \partial p)_{p \approx 0} (T_{E} + T_{c}) / 4.10 (T_{E} - T_{c})$$

Figure 56 gives the values of Q which were observed as a function of reservoir pressure. The slope of the curve at very small pressures is 4.35 watts/mm Hg, and for the values of $T_{E} = 1990$ °K and $T_{C} = 810$ °K, the effective heat transfer area calculated was 2.52 cm² Then, using the values at p = 13 mm Hg to calculate d, the spacing of converter T-206 correlated to about 2.5 mils.

6.7 Required Collector-Radiator Modifications

As mentioned in Section 6.6b, the model used to calculate the heat transfer in the collector-radiator structure of converter T-206 underestimated the heat transfer by 38.3 watts. To bring the predictions into agreement with the experimental observations, it was necessary to modify the calculations, presented in section 6.4, by the addition of the discrepancy of 38.3 watts. The resulting revised table of collector heat transfer values was¹

Output Current, Amperes	Collector Heat Transfer, Watts
0	105.7
24	151.7
48	197.7
72	243.7

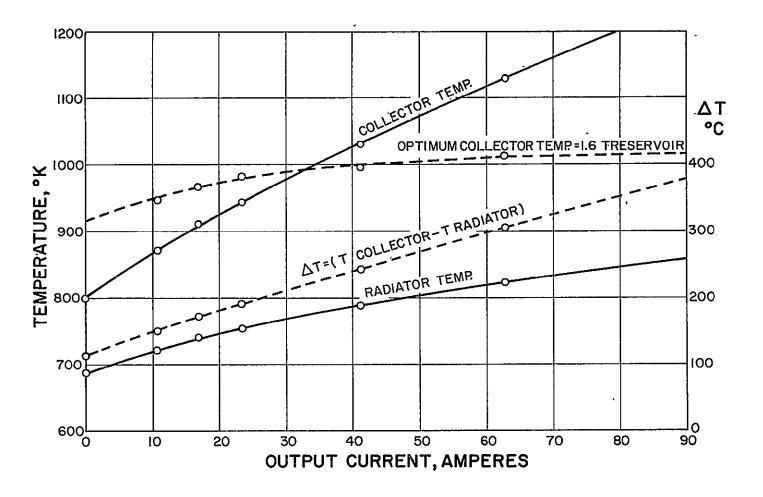
THERMO ELECTRON

Figure 56.

which could be expressed in terms of the linear equation

$$Q_{\text{collector}} = 105.7 + 1.92 I_{o}$$

where I is the output current in amperes.


The effect of the underestimation of collector heat transfer had been to continue to exceed optimum collector temperatures by a significant margin. Figure 57 shows the collector and radiator temperatures which were achieved in converter T-206, at a hohlraum temperature of 1700°C, versus output current. The figure also shows the expected optimum value of collector temperature according to the empirical equation:

Optimum
$$T_c = 1.6 \times Optimum T_8$$

which had been derived from the test experience with the T-200 converter design. As can be seen, the figure predicted that for any output above 33 amperes, the collector temperature would exceed its optimum value by an amount which increased rapidly with current.

Although Figure 50 showed, in the comparison of the T-206 collector temperature data with that for converter VIII-P-3, that at 70 amperes the collector of converter T-206 was overheated by about 70°C, Figure 57 shows that the actual amount of overheat above optimum collector temperature was nearly 144°C

The design changes required in the T-200 type of structure to further reduce collector temperature by as much as 100°C were so drastic that the resulting hardware would no longer be practical for use in a practical energy-conversion system. The requirement that the converter envelope be contained within a 30° envelope established a basic limit on the thermal conductance of the structure between the

THERMO ELECTRON

Figure 57.

collector and the radiator, and this limit had been approached very closely with the modifications incorporated in the structure of T-206. Thus, since the collector heat transfer could not be reduced, the collector-to-radiator temperature drop could not be reduced either The conclusion arrived at was that reductions in the collector temperature of the T-200 structure could be achieved only by reductions in radiator temperature. These reductions were very difficult to achieve because they implied large increases in radiator area. In the case of T-206 at 70 amperes, a reduction of only 100 °C to the radiator temperature of 832 °K given by Figure 57 would have required increasing the radiator area by a factor of $(832/732)^4$, or 1.67. The radiator length of 2.8 inches would have had to be increased to about 4 inches, and the converter would undoubtedly have become too bulky and heavy

A much more attractive way to modify the structure of the T-200 converter was to replace its collector-radiator structure by a heat pipe of the design used for the T-200 converter being developed under JPL Contract 951465. The heat pipe characteristics were presented in the Third Quarterly Report of that program, and are summarized here in Figure 58. This figure repeats the T-206 collector temperature data of Figure 57 and the optimum collector temperature curve, and it gives the collector temperature which was expected with a heat pipe collector-radiator structure. It can be seen that the overheating point was shifted from 33 amperes to 54 amperes with the heat pipe. Furthermore, the heat pipe could follow the optimum collectortemperature characteristic quite closely, and a comparison with Figure 50 showed that, even at an output current of 90 amperes, the collector temperature would be below that achieved by converter VIII-P-3 at an equivalent output current of 70 amperes.

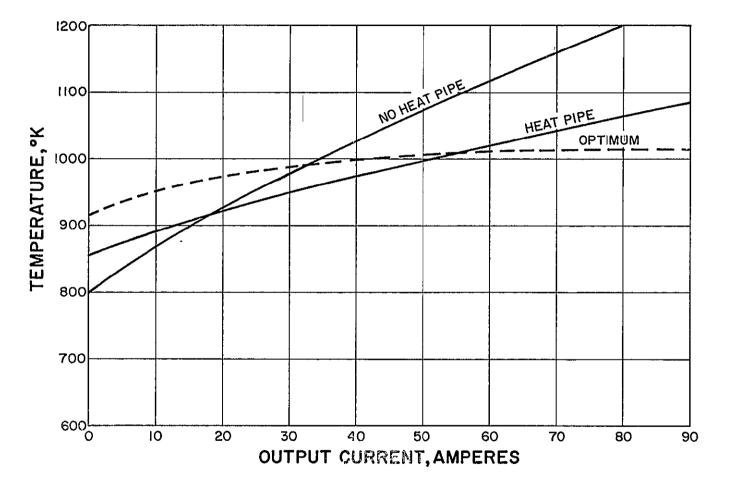


Figure 58.

107

THERMO ELECTRON

In view of the practical impossibility of avoiding excessive collector temperatures in the T-200 design, Thermo Electron made the recommendation to JPL that heat pipe technology be incorporated in the fabrication of prototypes T-208, T-209 and T-210. Since this technology could not be applied immediately, the next prototype, T-207, was fabricated using the T-206 design, and it incorporated a palladium collector.

7.1 Fabrication of Converter T-207

Converter T-207 was fabricated with care to produce a structure which, except for the collector material, would reproduce as accurately as possible that of converter T-206.

The emitter used for the fabrication of T-207 was prepared at the same time as that used for T-206. Both emitters were lapped to a mirror finish and electroetched at 5 volts, 1 ampere for 1 minute. Both emitters were thermally stabilized for 2 hours; the temperature for T-206 was 2100°C, and that for T-207 2000°C. The lower temperature for T-207 was due to space charge in the electron-bombardment heat source used for thermal treatment, which limited the maximum power input. According to the experience gained in this program, the effect of the lower heat-treating temperature should have been negligibly small. The space-charge limitation was due to excessive filament-totarget distance and the smaller filament area of the filament used for thermal stabilization of the T-207 emitter, which was of the U-type rather than the S-type. This change in filament may also have been responsible for some distortion of the T-207 emitter because of less symmetrical distribution of heat. Final flatness checks for T-206 and T-207 compared as follows, in inches:

	<u>T-206</u>	<u>T-207</u>
Emitter quadrant I	0 00005	0.0004
. II	0.00000	0.0000
III	0.00005	0.0004
IV	0.00000	0.0000
Emitter center	0.00000	0.0000
Seal flange quandrant I	0.0005	-0.0025
II	-0.0002	-0.0030
III	0.0000	0.0020
IV	0.0006	0 0014 .

As can be observed, the emitter of T-207 after thermal treatment had eight times more distortion than that of T-206. The actual amount of distortion of the T-207 emitter was about 20% of the interelectrode spacing and should not have produced a noticeable change in converter performance, although it exceeded the estimated flatness requirement of a maximum allowable distortion of 10% of the interelectrode spacing. Converter T-207 also had a greater deviation from squareness of the seal flange. The values given above correspond to a misalignment of 15 minutes of arc, which was reasonably close to the desired value of 10 minutes of arc.

Converter T-207 was fabricated using a pressure-bonded palladium collector, and the surface preparation of the collector consisted only of a surface grinding and polishing operation. The rest of the collector-radiator structure of converter T-207 was identical to that of T-206.

The final assembly of T-207 was defective in one respect: the stainless steel support ring, part No. 19 in Figure 39, was not brazed

to the copper fins. This defect was due to an excessive rate of warm-up of the assembly during final brazing; the support ring was considerably hotter than the radiator fins when the brazing material at the joint melted, and the braze flowed only on the support ring. The final assembly is shown in Figure 59.

Converter T-207 was outgassed for 65 hours at an observed emitter temperature of 1675°C. Cesium distillation was conducted for 5 hours at 200°C.

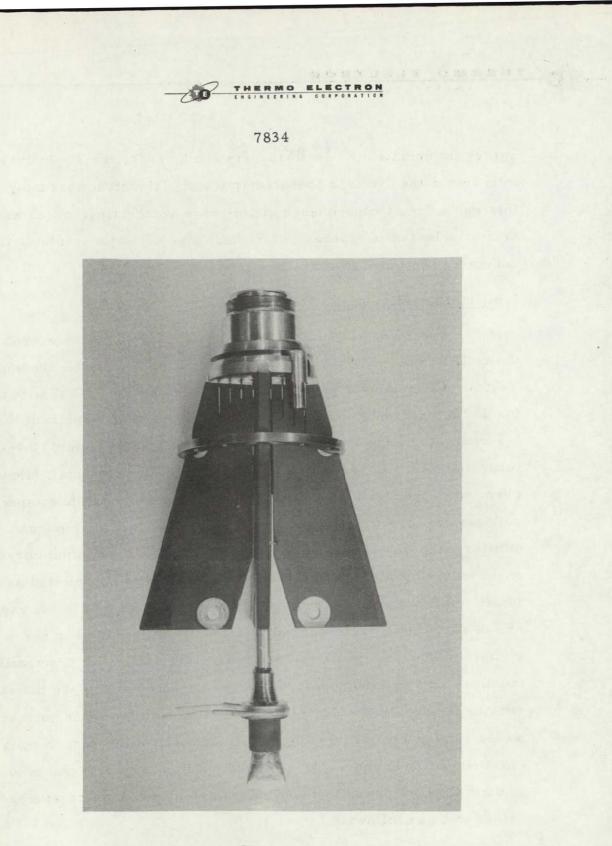
7.2 Test of Converter T-207

TRE

Converter T-207 was tested using the S-type filament as the electron-bombardment source, which was adopted as the standard source to be used in all converter tests under this program after tests with the S- and U-type filaments had shown little difference in the observed performance of converter T-206.

The converter test of T-207 duplicated that of converter T-206, so as to facilitate the comparison of experimental observations The tests included the dynamic measurement of I-V characteristics at 2000, 1900 and 1800°K, cesium conduction measurement, and static measurement of performance at hohlraum temperatures of 1700, 1600 and 1800°C. There was a thermal runaway while the equipment was being adjusted before the static measurement of performance, and as a result, the collector thermocouple became unbrazed. The collector temperature readings for these runs are therefore incorrect, as noted on pages 4 and 5 of the data presented in Appendix 11.

The envelopes of the dynamic characteristics, and the static I-V data, are plotted in Figure 60. The static I-V points correspond to an emitter temperature approximately 40°C above the adjacent dynamic


1 DØ

curves immediately below them. As can be seen, the static curves intersected the dynamic characteristics at high output currents, and this was a direct consequence of collector overheating, which was to be solved by the incorporation of a heat-pipe collector-radiator in the converter structure of subsequent converters.

7.3 Interpretation of the T-207 Data

THER

Converter T-207 was identical to converter T-206 except for the collector material, which was palladium in T-207 and rhenium in T-206. A comparison of the I-V characteristics for T-207 with those for T-206, presented in Appendix 10, showed a marked shift of the I-V characteristics along the voltage axis. The shift could be interpreted as a difference entirely due to collector material. However, when the static data was plotted in terms of current at specified voltages as a function of input power, it appeared that important emitter temperature errors existed in the data. The output current observed at 0.8 and 1.0 volt in the two converters was plotted as a function of bombardment power in Figure 61. The data in the range of 330 watts input corresponded to emitter temperatures in the vicinity of 2000°K. Since the two converters tested had practically identical emitter structures, they were expected to achieve the same emitter temperature when they were heated with the same bombardment power and made to deliver the same output current. Yet, in open circuit, converters T-206 and T-207 required substantially different amounts of bombardment power to reach the same observed temperatures. The values were as follows:

.

ļ

Figure 59

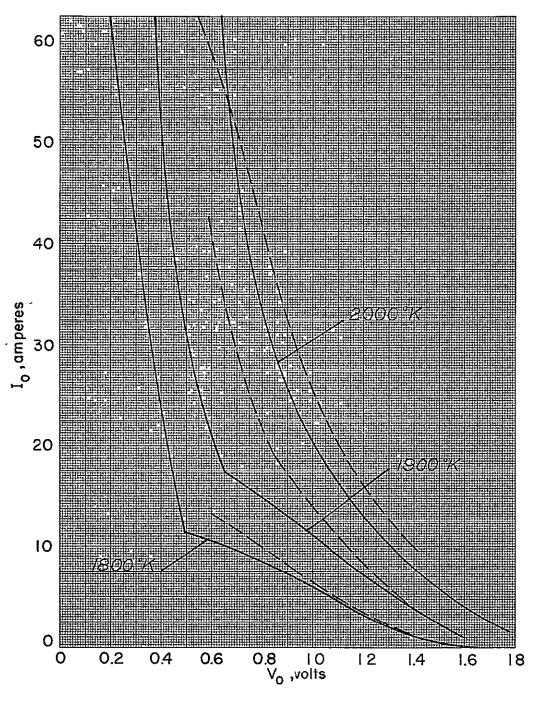
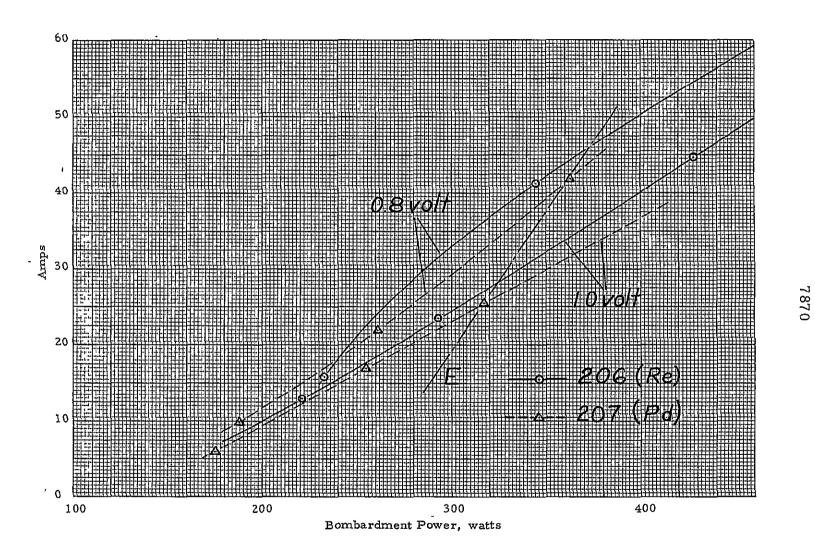



Figure 60.

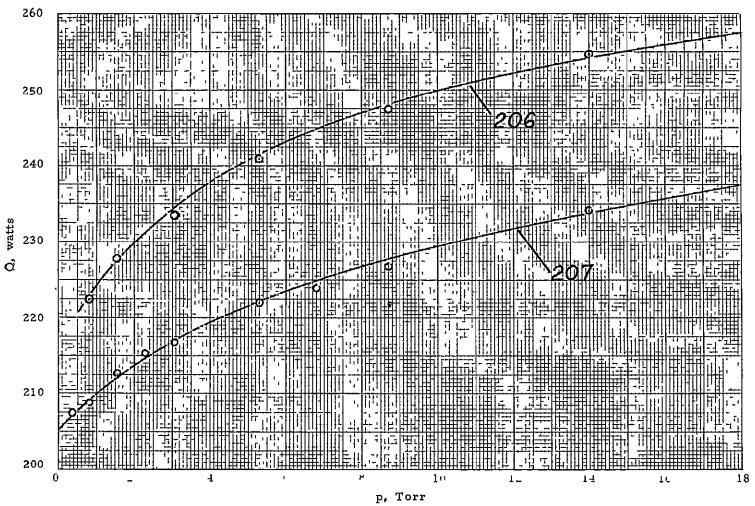

CORPORATION

Figure 61.

Q₂₀₆/Q₂₀₇ Q₂₀₆ Q₂₀₇ Emitter Temperature °K watts watts 1863 174.5 1'51.8 1.149 1963 211.8 1.103 191.9 1.156 227.4 2063 263.0

As may be noted, converter T-206 required from +10.3 to +15.6% more power than converter T-207. Based on the difference in emissivity between rhenium and palladium, interelectrode radiation could only account for a difference of +2.0% in bombardment power. The major source of the inconsistency was believed to be a temperature measurement error, because all other variables were measured with good accuracy on the same equipment each time. The emitters of both converters were manufactured simultaneously from the same strip of rhenium sheet, and electroetched with the same procedure. The emitter support structures had the same dimensions, and welding of the emitters to their emitter supports was performed by the same operator and equipment. Thus it was reasonable to expect a high degree of reproducibility in the thermal characteristics of the two converters.

The cesium conduction data for converters T-206 and T-207 is plotted in Figure 62. The electron-bombardment power required to maintain an emitter temperature of approximately 2000°K is shown as a function of cesium vapor pressure. As can be seen, the curves are very similar and may be taken to have the same slope at a pressure of 13 torr Using the calculation procedure outlined in section 6.6e, the corresponding value of interelectrode spacing for both converters was found to be 2.54 mils

116

Figure 62

CORPORATION

Although the pyrometer instrument used could reproduce readings within 2°C, and was carefully calibrated on an NBS lamp before each test, including the transmission losses through the observation area of the vacuum bell jar, an emitter temperature error could have resulted from variations in the configuration of the blackbody hole used for these measurements. The black-body hole was 0.015 in. in diameter and 0.120 in. long, and was machined by electrical discharge in the emitter. Because of the small thickness of the emitter, the black-body hole lay very close, and not necessarily parallel, to the heated surface of the converter The thickness of the material between the heater surface and the pyrometer hole could be expected to vary between 1 and 10 mils This lack of control was a direct result of the constraints imposed by the need for the emitter to be thin to minimize heat losses, temperature drop and weight When the black-body hole is positioned very close to the heated surface, the thin wall separating it from the heated surface can overheat and raise the apparent temperature of the emitter. No measurements had been made, however, to confirm that the resulting error could be as high as 80°C, which was the magnitude required to account for the observed thermal input discrepancies.

Assuming that the thermal conduction and external radiation characteristics of the emitter structure were identical for all three converters, it was possible to use the measured converter thermal data and estimate the difference in performance between the two collector materials. The calculation of the quantitative difference between these converter materials could only be as accurate as the assumption about identical thermal characteristics; therefore, the values given here are tentative

The interpretation of the thermal data was based on the further assumption that the electron cooling for these converters was 2.72 watts This value had been verified repeatedly, particularly at per ampere emitter temperatures near 2000°K. For instance, in Figure 61, an intersecting line labeled "E", has been drawn through a pair of data points. The data points were obtained on the same converter at the same observed emitter temperature, and the inverse slope of the "E" line is found to confirm the value of 2.72 watts per ampere. By using two "E" lines shifted by 4 watts, which was the difference in the interelectrode radiation losses between a converter with a rhenium collector and one with a palladium collector, it was possible to predict the amount by which the current outputs of the two converters would actually differ at any one emitter temperature and output voltage. Following this procedure, it was found that, at the same emitter temperature, converter T-207 produced 6.1 amperes less current at 0.8 volt, and 3.9 amperes less current at 1.0 volt, than converter T-206. The differences in output current at a fixed voltage could be translated into output voltage differences at a fixed current from a knowledge of the slopes of the I-V characteristics. Taking the output of T-206 as a guide, the slope of the I-V characteristic at 24 A/cm^2 is 80 A/cm²-volt, and that at 18 A/cm² is 36 A/cm²-volt. For the current differences of 6.1 and 3.9 amperes, the corresponding voltage shifts were 0.030 and 0.044 volt. Thus the I-V characteristics . of converter T-207 were shifted to a lower output voltage than those of converter T-206 by an average value of 0.037 volt. The tentative conclusion was then that the effect of using palladium in place of rhenium as a collector material is equivalent to a collector work function increase of 0.037 eV.

тне

Brosens, P.J., "Advanced Converter Development," Thermionic Specialist Conference, Palo Alto, 1967.

Since a substantial error in emitter temperature seemed to exist in some of the converter tests, it was of interest to calculate what the emitter temperature ought to be as a function of power input, and to determine, for instance, in which converter test the observed emitter temperatures were closest to the true values

Using the total hemispherical thermal emissivity values presented in Figure 51, the interelectrode radiation of a rheniumemitter, rhenium-collector converter with 2.50 cm² of electrode area is as follows:

Emitter Temperature	е Е	€ c	Q _r watts
1860	0.290	0.231	22.97
1960 `	0.298	0 236	32.27
2060	0.307	0.242	37.79

The external radiation area of the converter emitter structure was assumed to be that of an 0 725-11. diameter disc with a height of 0.060 in., which 1s 3.545 cm^2 . The corresponding values of external radiation were:

Emitter Temperature <u> </u>	е Е	Q _{r ext} , watts
1860	0.290	69.91,
1960	0.298	96.03
2060	0.307	111.33

The cesium conduction loss was taken to be that which occurs at a reservoir temperature of 560°K (cesium pressure of 1 torr), which, according to Figure 62, is 5 watts.

The lead conduction was estimated to equal 150% of that which would occur in the lead if the effects of thermal radiation on temperature gradient were absent. The developed length of the emitter support was 1.7 cm, and the average cross-sectional area of the lead was 0.109 cm^2 , with an average thermal conductivity of 0.55 watt/cm°C The calculated lead conduction was then as follows:

, <u>T</u> _e , °K	T _c , °K .	. <u>А</u> Т, °С 	$Q_{\ell}^{}$, watts
1860	7 50	1110	58.6
1960	800	1160	61.3
2060	850	1210	63.9

Finally, the total estimated heat input required to bring the emitter to temperature in the absence of output (open-circuit) could be tabulated by adding the above component losses, and the values could be compared with those experimentally observed in converter T-206. The result was:

Converter T-206

Τ _ε , °K	$\frac{Q}{calculated}$ watts	Q _{actual} , watts
1860	156.5	174.5
1960	194.6	211.8
2060	<u>,</u> 218.0	263.0

For converter T-207 the predicted heat input values were 4 watts lower, to account for the lower emissivity of palladium $(.193)^{*}$ as compared to 237 for rhenium, ^{**} at an effective temperature of 1400°K, see p. 89) and the corresponding tabulation was:

	T _e , °K	Q calculated' watts	Qactual, watts
	1860	152.5	151.8
:	1960	190.6	· 191.9
	2060	214.0	227.4

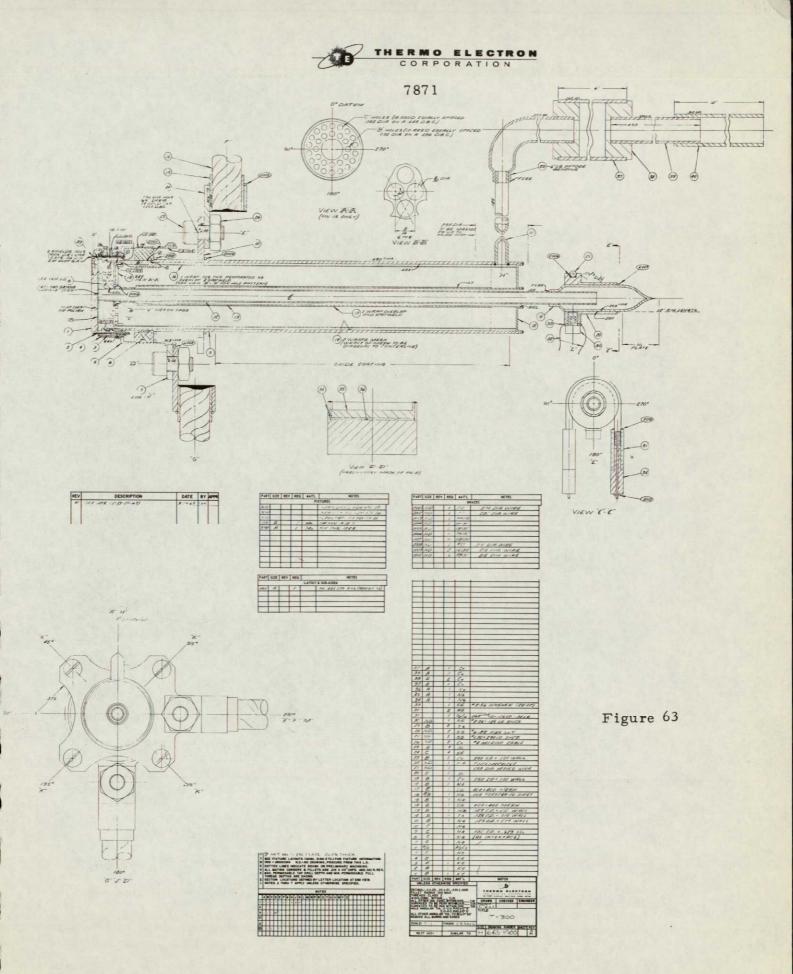
Converter T-207

As can be seen, the experimentally observed conditions were in much better agreement with the calculated conditions for converter T-207. It is difficult to conclude that the T-207 measurements were more accurate from this evidence, because accurate calorimeter measurements have not been made on the T-200 converter to verify the accuracy of the heat loss calculation.

8.1 Design of Converter T-208

The design of converter T-208 is presented in Figure 63. As can be seen, this converter rejects heat with the help of a heat pipe collector-radiator structure of the design developed under JPL Contract 951465. The sequence of converter assembly is:

- 1. Fabricate the heat pipe structure.
- 2. Braze the emitter and seal structures to the heat pipe.
- 3. Outgas and charge the heat pipe with sodium.
- 4. Connect the cesium reservoir, and outgas and charge the converter with cesium.


Handbook of Thermophysical Properties of Materials, Volume 1, Armour Research Foundation, Pergamon Press, 1960.

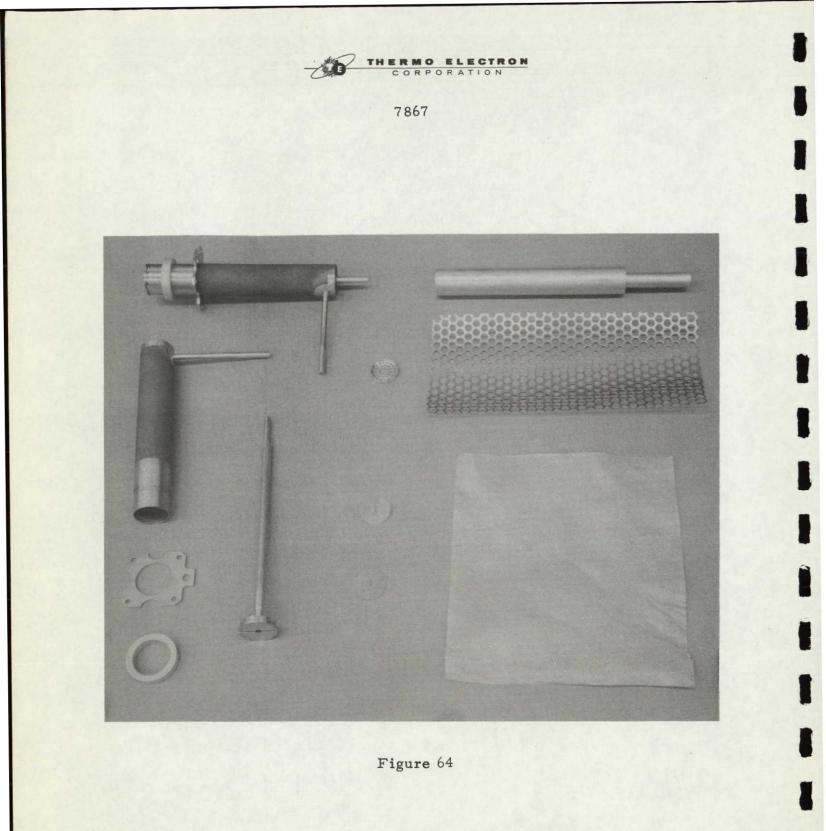
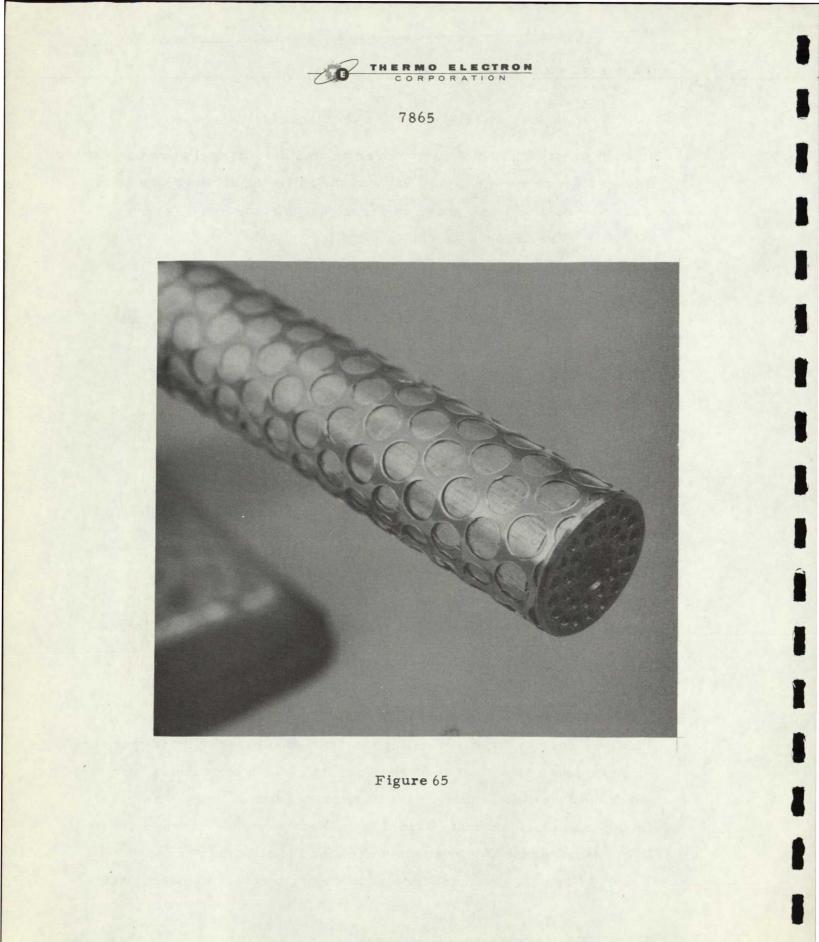
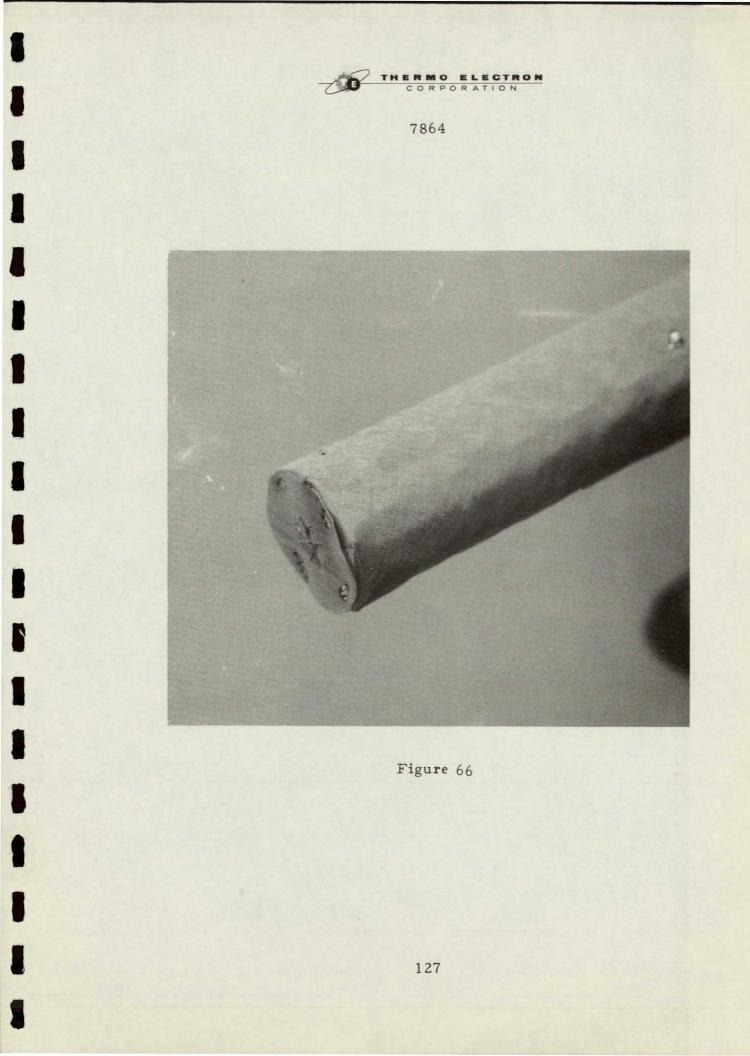

From Figure 51

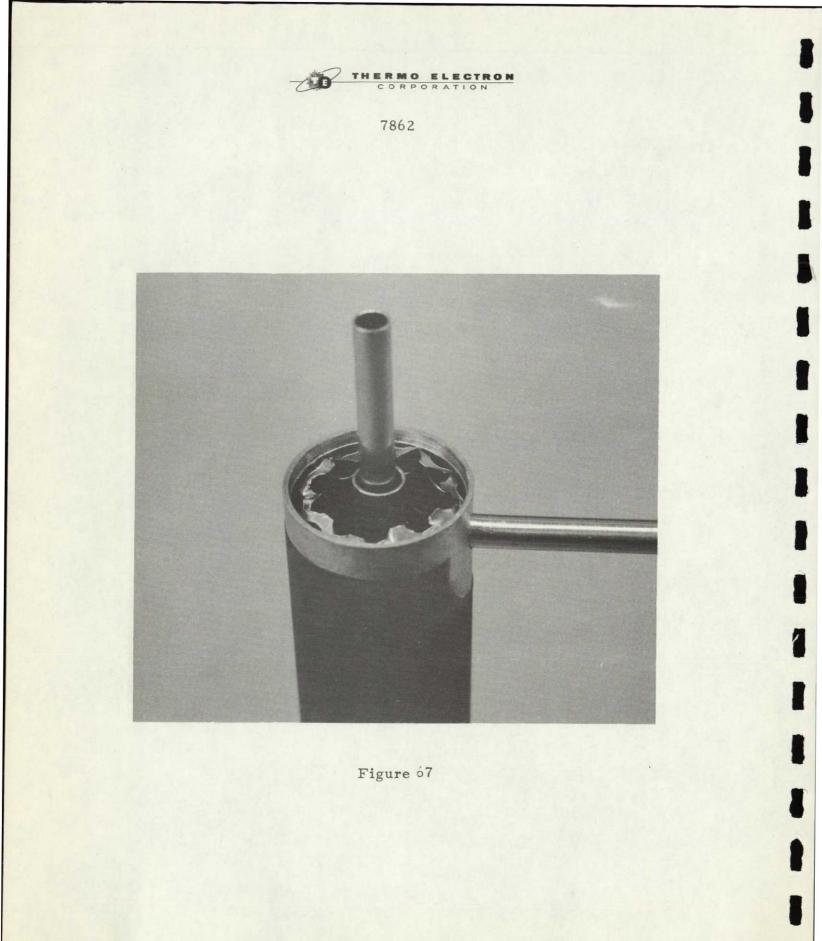
Figure 67 illustrates the components and various subassemblies of the heat pipe structure. The assembly of T-208A was begun by first welding the sodium fill tube to the heat-pipe radiator, as shown in the far left of Figure 64; the joint was made by inert-gas welding in argon. Then the collector subassembly was made by first welding the inner heat-pipe tube to the cesium tube, as shown in Figure 63, and then brazing the joined tubes to the collector. The tubes were welded together by melting the end of the outermost, which was made of niobium, onto the outside of the innermost, which was made of tantalum to avoid its melting during the welding operation. The collector face was made of a rhenium sheet bonded to the niobium collector base by vanadium brazing. Initially it had been sought to effect this bond by isostatic pressure-bonding, but the pressure-bonding facility which had been used previously was unavailable for a period of several months. The braze of the welded tubes to the collector was made with palladium, and a typical subassembly is shown at the left center of Figure 64.

The heat-pipe radiator and collector subassemblies were then joined together by first inserting the converter support and ceramic insulator on the collector end of the heat-pipe radiator, and then positioning the collector subassembly and welding it to the end of the heat-pipe radiator by electron-beam welding. The corresponding parts and final subassembly are shown at the left bottom and top corners, respectively, of Figure 64.

The heat-pipe structure assembly was then completed by inserting the capillary elements shown in the remainder of Figure 64, with the exception of the central capillary, part No. 17, which was omitted because work under Contract 951465 had shown that this part is not essential. To do this, the perforated-sheet capillary screen






support was wrapped and spot-welded around the mandrel shown at the top right corner of Figure 64, and the collector capillary support piece was positioned as shown in Figure 65; then the mesh screen elements were wrapped around the capillary support, and spot-welded at the end only, as shown in Figure 66. The end capillary consisted of one disc of mesh screen, the end folds of the cylindrical mesh screens, and one inner disc; therefore, the end consisted of essentially three layers of mesh screen, spot-welded together and supported by a perforated niobium plate. Two wraps of mesh screen were used around the cylindrical screen support.


The capillary assembly was slid into the heat pipe, and the mandrel was removed by pulling it out while retaining the capillary support. The exposed end of the capillary was trimmed and bent, as shown in Figure 67, so that it would rest against the end cover of the heat pipe, and so that it would not block the sodium fill tube. Finally, the end cover was arc-welded in argon, using a 5-mil tungsten wire coiled between the center tubes to maintain the concentricity of the cesium tube during welding of the inner lip of the end cover. This wire was left in place after welding, and the assembly after welding is shown in Figure 68.

The heat pipe structure was then ready for converter assembly. This was done by first fabricating the emitter subassembly; it consisted of three concentric sleeves of rhenium arc-welded together to form the convoluted emitter support, vanadium-brazed to a niobium outer seal flange, and electron-beam welded to an electro-etched rhenium emitter in the same manner as previously used for the assembly of converter T-207. Normally, the emitter was heated by electron bombardment

CORPORATION

7863

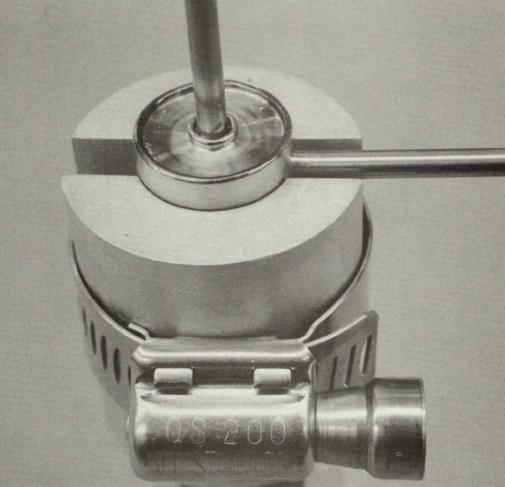


Figure 68

after it was welded to thermally stabilize its surface, but in the case of converter T-208A this step was omitted inadvertently. Converter assembly proceeded by inserting the emitter structure around the loose ceramic insulator, placing the emitter terminal piece in position around the outer seal flange, and brazing all parts with copper.

THE

The converter was outgassed and charged with sodium in the same manner as previous heat pipe models: A sodium ampoule manifold was fuse-brazed to the sodium fill tube, and connected to a Vac-Ion pump; the heat pipe was then heated to 500°C by a resistance heater wound around it, and the sodium ampoule manifold was heated to approximately 375°C for a period of 48 hours. The sodium ampoule was cracked, and the sodium was made to flow by gravity into the heat pipe; finally, the niobium fill tube was pinched and cut off by electron bombardment.

The converter was then ready for the assembly of the cesium reservoir tubulation. This was the final assembly operation prior to converter outgassing and cesium charging. The reservoir tubulation was to be fuse-brazed to the tantalum tube, part No. 12, in Figure 63. To facilitate wetting by the molten copper, and to strengthen the metallurgical bond between the copper and the tantalum, the tantalum tube was given a very thin nickel electroplate prior to fuse-brazing. In the first two attempts at fuse-brazing the tubulation on converter T-208A a leaktight bond could not be obtained; consequently, the fuse-brazed tubulation was removed, and the tantalum tube was given a new and thicker nickel electroplate. When a new reservoir tubulation was slipped over the tantalum tube for another fuse-braze attempt, the tantalum tube broke. It was found that the tube had embrittled, apparently during the second fuse-braze, when a high temperature was used, and when the nickel. electroplate alloyed with the tantalum. The embrittlement was severe, and it extended along the length of the tantalum tube all the way to the inner weld bead of the end cap of the heat pipe, part No. 18.

The tube could not be replaced without completely dismantling the converter; therefore, a repair was attempted, which consisted of brazing an extension piece to the broken end of the tantalum tube. The extension piece was made of tantalum, and brazed with palladium using an inert-gas arc as the heat source; it had a length of 3/4 in., 3/16 in. of which was machined to slide into the broken end of the converter tube, and it had an inside diameter of 0.065 in.

An attempt to repeat the fuse-braze on this extension failed, and it was concluded that the difficulty in making a successful fuse-braze was caused by the large difference in the diameters of the two tubes being joined; to avoid this difficulty, it was decided to use an intermediate tubular insert, made of niobium, with a diameter of 3/16 in. This insert was made and joined to the tantalum tube in the exact same manner as the inner heat-pipe tube, part No. 13, and its length was 7/8 in.

This intermediate piece was welded in place, and the first fusebraze attempt failed, in part because the niobium tube had not been plated, and in part because the wall thickness of the fuse and of the copper tube was not small enough. A new fuse-braze attempt was made, and it was successful. Upon leak-checking the assembly, however, it was found that the area of the tantalum cesium tube, which had been repaired by means of a palladium braze, had developed a leak. It was subsequently determined that during heliarc-welding of the niobium intermediate tube to the end of the tantalum cesium tube, the area of the tantalum tube which was palladuum-brazed overheated to the extent that an alloying reaction between palladium and tantalum occurred and formed a brittle intermetallic. During handling of the assembly to effect the fuse-braze this embrittled area developed a crack and leaked.

The failed assembly could still be repaired by using the internal heat pipe tube, part No. 13 in Figure 63, as the tube to transport the cesium vapor from the cesium reservoir. To accomplish this, the length of the normal cesium tube which protruded beyond the end of the heat pipe was cut off, and a niobium extension piece was copperbrazed to the end of the internal heat pipe tube, part No. 13. A leaktight assembly was obtained, and a copper tube was fuse-brazed to the niobium extension to serve as the cesium reservoir and outgassing tubulation. Model T-208A was then set up for outgassing, and at the end of a few hours it was evident that sodium was leaking from the heat pipe. Upon examination, it was found that the end cap, part No. 18, had developed a crack midway between the inner and outer welds. At this point further attempts to salvage the assembly 208A were abandoned because no technique was available for discharging the sodium from a leaking heat pipe, which is a prerequisite to any repair attempt on heat pipe envelopes.

8.3 Fabrication of Converter T-208B:

The fabrication of model T-208B proceeded without incident up to the point of cesium reservoir assembly. This reservoir was being constructed by welding an intermediate niobium piece to the end of the tantalum cesium tube, part No. 12, to facilitate fuse-brazing of the copper tubulation, part No. 19. Unfortunately, due to operator error, air was admitted into the welding chamber before the weld was performed,

and the joint was completely brittle. The brittle portion of this weld area was removed by cutting the tantalum tube, and an extension piece of tantalum was palladium-brazed to the tantalum tube to continue construction of model 208B. The model was then finally brazed to an emitter structure and prepared for outgassing prior to sodium charging. It was then found that the outer weld of the end cap, part No. 18, was cracked and leaked. Attempts to seal this area by re-welding were not successful, and it was decided to remove the end cap, part No. 18, by machining. Upon removal of the end cap, it was found that the capillary structure was oxidized, and the pattern of this oxidation suggested strongly that it had been caused by a seepage of the nickel electroplating solution which was used to plate the sodium fill tube prior to fuse-brazing it to the heat pipe outgassing and sodium charging tubulation.

8.4 Fabrication of Converter T-208C:

The assembly of a third model, designated T-208C, ran into complications during the electron-beam weld of the collector to the heat pipe radiator. To provide better positioning of the collector face with respect to the heat pipe radiator tube, part No. 9, during electronbeam welding of these two parts, a stainless steel tie rod was inserted through the center of the tantalum cesium tube, part No. 12. The heat developed during electron-beam welding was sufficient to cause melting, of the tie rod, however, and the molten metal alloyed with the collector, causing irreparable damage.

8.5 Fabrication of Converter T-208D:

The assembly of the fourth model, designated T-208D, was successful. It was accomplished with a new set of parts, and in

RMO ELECTRON

accordance with the layout of Figure 63, with the following exceptions: The cesium tube, part No. 12, was made of niobium, with an 0.025-in. wall thickness, to avoid using the relatively fragile 0.01.0-in wall tantalum tube used in the previous heat pipe converter models. As in previous models, the central capillary, part No. 17, was omitted. A thicker end cap, part No. 18, was used to avoid crack leaks due to possible exposure to embrittling atmospheres or processes. An extension of 3/16-in. -dia niobium tubing was used to connect the cesium tube, part No. 12, to the cesium reservoir tube, part No. 19, as described in the assembly of model T-208A, and for the purpose of reducing the dissimilarity in tube diameters that would occur at the joint of parts Nos. 12 and 19. The rhenium collector face was vanadium-brazed to the niobium substrate because of the unavailability of the pressure-bonding facility which would otherwise have been used. Nickel plating of the ends of both tubes, Nos. 12 and 11, was performed using a pair of small rubber plugs to avoid seepage of plating solution inside the tubes. A 3/16-in.-dia niobium tubing extension was used to connect the sodium fill tube, part No. 11, to the sodium reservoir discharge tube, part No. 23. Also, to avoid joining tubes which differ excessively in diameter, this extension was first fuse-brazed to the sodium discharge tube, and then it was electron-bombardment brazed to the sodium fill tube using two rings of nickel-plated 0.020-in.-dia copper.

The electroetched emitter was thermally stabilized at approximately 2050 °C for 2 hours, at a vacuum of 10^{-5} torr. The maximum deviation from flatness measured after thermal stabilization was 0.0004 in.

,1,3,4

The assembled model was then connected to a vacuum station to outgas the heat pipe portion of the envelope. The heat pipe was maintained at an average temperature of 490°C with resistance heaters for a period of 16 hours. ^{*} At the end of this time the sodium ampoule was broken by crushing the walls of the copper manifold where it was located, the argon of the ampoule was pumped out, and the assembly was pinched off. It was then placed in an oven at 150°C for 2 hours to melt the sodium, and the sodium was then transferred into the heat pipe. Following this operation the sodium manifold was pinched off, and the niobium fill tube was cut and sealed with an electron beam.

The next assembly operation consisted of connecting the cesium reservoir with a fuse-braze. That assembly was then connected to the same vacuum station to outgas the converter envelope and proceed with cesium charging. During outgassing of the converter envelope, a radiation shield was wrapped around the heat pipe radiator to help maintain high collector temperatures. The heat pipe was at 800°C, and the radiator temperature was uniform. Converter outgassing was performed for a period of 26 hours with the emitter at an observed temperature of 1700°C. The cesium was then distilled at 200°C for 4 hours.

8.6 Test of Converter T-208

The test of converter T-208 consisted of 7 runs as follows: Runs 1 to 3 to map the output under dynamic conditions at 2000, 1900 and 1800°K, Run 4 to measure interelectrode spacing via cesium conduction, and Runs 5 to 7 to map the output under static conditions at 1700, 1600 and 1800°C. Appendix 12 presents the data collected during test.

^{*}The outgassing temperature was limited to 490°C to avoid the reaction of the sodium with the glass ampoule, which otherwise occurs.

During these tests it was found that the cesium reservoir tended to run hotter than in previous heat pipe models owing to the heavier 0.025-in. wall of the cesium tube. Since the previous models had shown that there is no problem in achieving lower reservoir temperatures with an 0.010-in. -wall tube, it was clear that the cesium reservoir temperature could be lowered later with little difficulty.

Figure 69 presents a summary of the optimized I-V characteristics; the solid lines are the characteristics obtained by dynamic test, and the dashed ones were obtained statically.

Figure 70 presents the cesium conduction data.

8.7 Interpretation of Converter T-208 Test Results

Converter T-208 had rhenium electrodes, and it was therefore of interest to compare its performance with that of converter T-206, which also had rhenium electrodes. Converter T-207, fabricated in the interim, had a palladium collector.

Other differences in structure were as follows: Converter T-206 had a finned radiator and was assembled using well-developed procedures; in addition, it had a collector diameter of 0.705 in., corresponding to a collector electrode area of 2.52 cm². Converter T-208 used a heat pipe radiator structure for the first time in this program, which was assembled according to untried procedures; furthermore, its collector diameter had to be decreased to 0.680 in. because of reduced tolerance control in the heat pipe structure assembly. This diameter corresponded to an area of 2.34 cm², which was further reduced by the slot used for outgassing purposes, shown in Figure 63, and the reduction was 0.18 cm², leaving a net electrode area of 2.16 cm². The effective electrode area

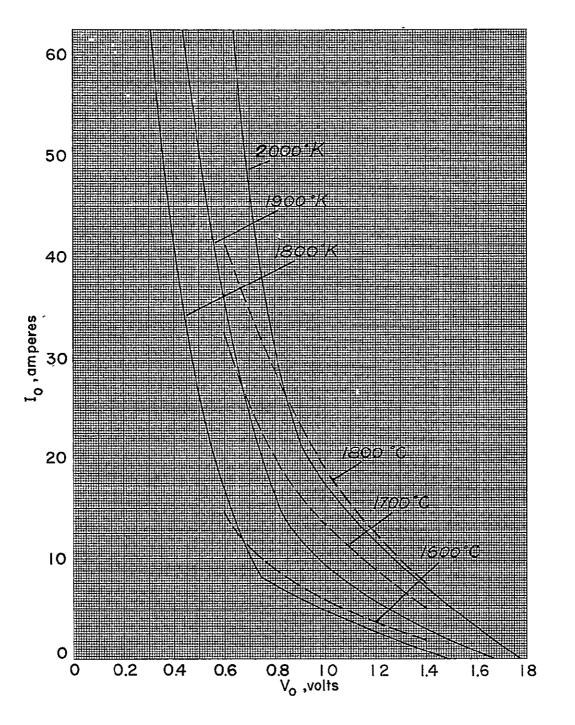
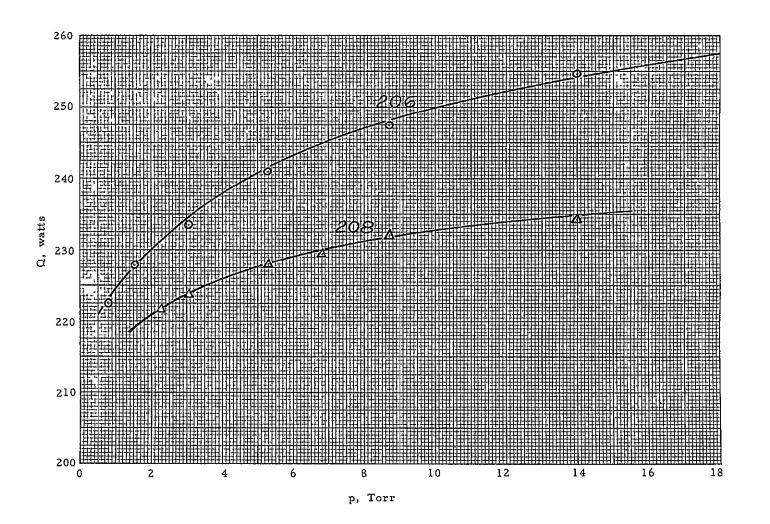



Figure 69

8268

Figure 70

of converter T-208 was then 2.16/2.52 = 0.86 times the electrode area of converter T-206

Figures 71, 72 and 73 give the comparison of the dynamic characteristics of converters T-206 and T-208, at emitter temperatures of 1800, 1900, and 2000°K, respectively. In order to subtract the effect of the 14% reduction in collector area of converter T-208, the figures show, in dashed lines, the effect of reducing the output current values of converter T-206 by 14%. As can be seen, converter T-206 was able to produce a consistently higher output voltage In the ignited mode, the increment in output voltage increased with emitter temperature; thus at 1800°K it was approximately 60 mV, at 1900°K it was approximately 120 mV, and at 2000°K it was approximately 160 mV.

The lower performance of T-208 was not the only problem observed in this converter: Figure 69 shows that the dynamic data could not be reproduced statically at high output currents. This was a typical indication of collector overheating Figure 74 shows a comparison of the electron-bombardment power required to develop a given output current at output voltages of 0.8 and 1.0 volt for both converters T-206 and T-208. At low currents (below 15 amperes) both converters are similar, but at higher input powers the additional input power in converter T-208 was used to overcome the high emitter temperatures that resulted from the inability to produce more output current This was additional evidence of collector overheating, which was traced to an excessive restriction in the vapor channel in the heat pipe, as is explained in the following section.

139,

CORPORATION

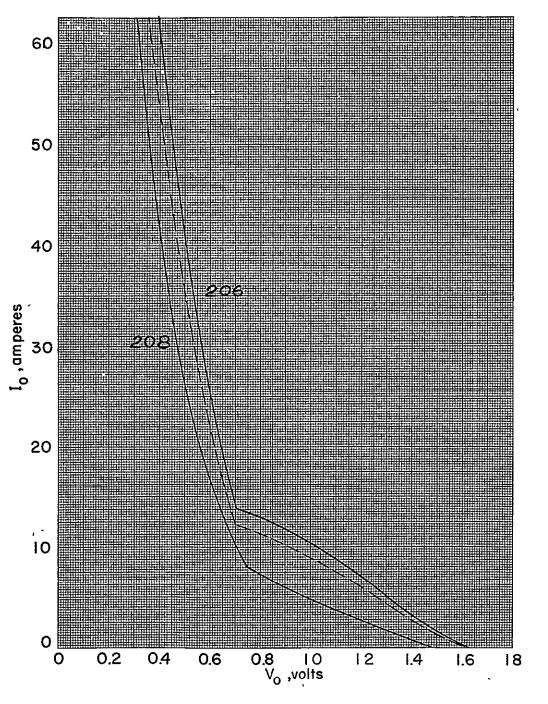


Figure 71

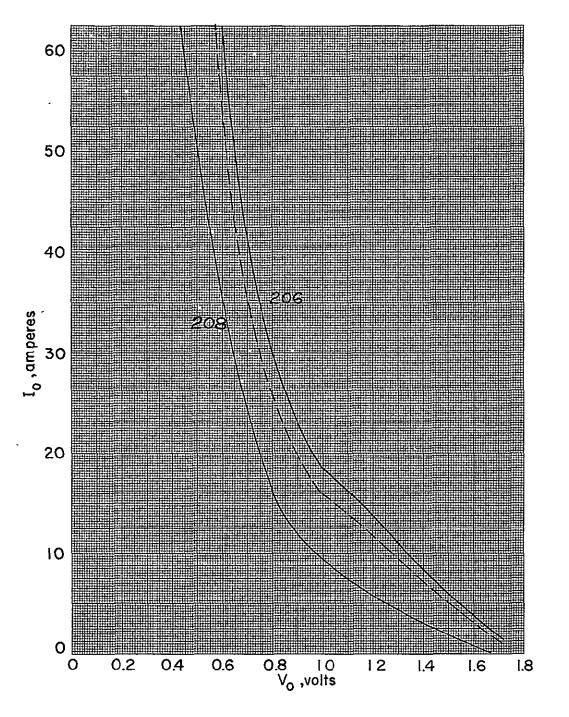


Figure 72

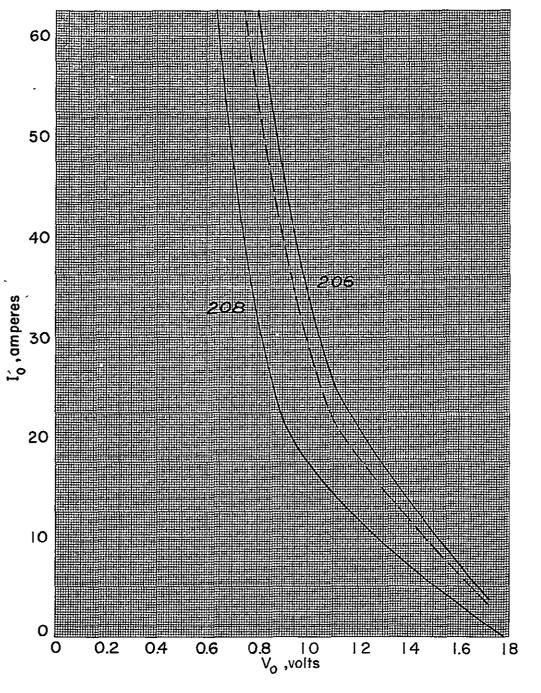
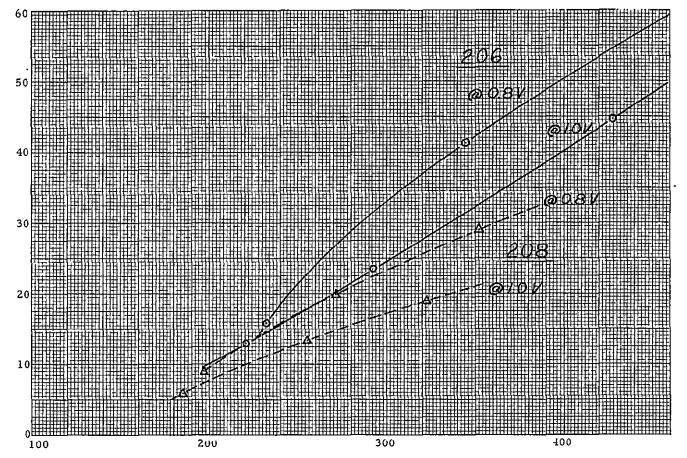



Figure 73

CORPORATION

Bombardment Power, watts

Figure 74

8.8 Heat Pipe Temperature Drop

THER

The particular area of the heat pipe which is of interest in this discussion is the capillary structure at the heat-receiving end. In most heat pipes the heat input is distributed over a cylindrical surface of relatively unobstructed construction; as a result the heat transfer flux densities are sufficiently small to justify the assumption that liquid evaporation occurs with no significant temperature drop. In the T-200 heat pipe design, the evaporating conditions were more severe, and as a result the temperature drop for evaporation reached a value of about 80°C, which raised the collector temperature excessively.

A temperature drop occurs at the liquid-vapor interface because evaporation at a finite rate can occur only when the atom rate of evaporation of the liquid exceeds the atom arrival rate from the vapor. From kinetic theory, the corresponding heat flux in the one-dimensional case (evaporation from a plane surface) is given by:

q (watts/cm²) = 7.66 x 10⁻⁴
$$\Delta H \left[\frac{p_1}{\sqrt{mT_1}} - \frac{p_2}{\sqrt{mT_2}} \right]$$

where	$\Delta \mathrm{H}$	is the heat of evaporation in cal/gm-mole
	^p 1, ^p 2	are the saturation processes in dynes/cm 2
	T ₁ , T ₂	are the corresponding temperatures in °K
	m	is the molecular weight in grams

This relationship is plotted in Figure 75, assuming $p_2 = 0$. The curve corresponds to the rate of evaporation when the surface is exposed to a vacuum. The dashed line represents the evaporation rate that would correspond to sonic vapor velocity at p_1 , T_1 .

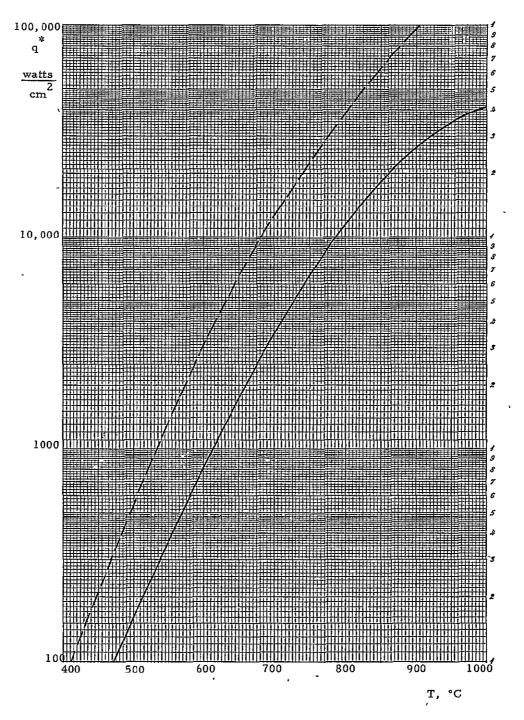


Figure 75

In converter T-208, the heat transfer rate was given in section 6.7 at an emitter temperature of 2000°K by the equation:

$$Q_{collector} = 105.7 + 1.92 I_{o}$$

At an output current of 83 amperes, the collector heat transfer would be 265.7 watts. The projected area of the heat pipe evaporator to handle this heat transfer was a circle approximately 0.590 in. in diameter, or 1.77 cm². The design heat transfer rate was then 265.7/1.77 = 150 watts/cm². Figure 75 shows that this rate, at a collector temperature (temperature of the liquid) of 700°C, would require a vapor temperature of 697°C, for then the heat transfer of 3500 W/cm² corresponding to liquid evaporation would exceed the rate of arrival of atoms from the vapor by the desired 150 W/cm^2 . In that case, the temperature drop across the liquid-vapor interface would be negligible. However, not all of the projected area of the heat pipe evaporator was used to develop a liquid-vapor interface in converter T-208. To begin with, the capillary screen had an open area of only approximately 25%, so that the evaporation rate from the liquid occurred at a heat transfer rate of 150/0.25 = 600 W/sq cm; furthermore, the perforated plate, part No. 15, which was placed against the back of the screen as a support, also obstructed a large portion of the available liquid-vapor interface. The holes in the plate represented an open area of 0.413 cm², which was 23.4% of the projected area. The actual heat-transfer flux at which the sodium would evaporate in the T-208 converter heat pipe was then $600/0.234 = 2560 \text{ w/cm}^2$. Figure 75 shows that, at a vapor saturation temperature of 700°C, the evaporating liquid would have to be at 785°C, or an increase of 85°C.

If the holes in part No. 15 are replaced by a webbed support with 90% open area, the heat flux need only be $600/0.9 = 666 \text{ W/cm}^2$, and the liquid temperature corresponding to a 700° C vapor saturation temperature would then be 725° C, a reduction of 60° C in the collector temperature of T-208.

These temperature drops were difficult to detect in models of the heat pipe because they occur between the collector face and the heat pipe, and thermocouple instruments could not be mounted readily on the heated face of the collector, which was exposed to electron bombardment during heating.

9.1 Design of Converter T-209

The design approved by JPL for the fabrication of converter T-209 is shown in Figure 76. The differences between this design and that of the previous model T-208, shown in Figure 63, were as follows:

- a. The heat pipe was longer by one inch, increasing the radiator area by 36%, from 38.3 to 52.0 sq cm. The reason for this increase was to augment the heat rejection capability of the heat pipe as much as possible without exceeding the capillary liquid column height where difficulty might be experienced when operating the device "against gravity."
- b. The outgassing groove on the collector face was eliminated, yielding a collector area of 2.34 sq cm.

- c. The capillary support at the back of the collector had a webbed design, shown in view A-A of Figure 76, instead of the perforated plate, shown in view A-A of Figure 63, which allowed a much larger flow cross section for the heat pipe vapor, and which was intended to avoid the large temperature drop at the liquid-vapor interface found in converter T-208 discussed in Section 8.8.
- d. The capillary mesh screen was made of niobium instead of stainless steel, and the mesh number was 100 instead of 400 because of the unavailability of niobium wire smaller than 0.0035 in in diameter. Both the T-208 and T-209 designs used 2 wraps of mesh material. • Appendix 13 presents the mesh design calculations for 100-mesh material.
- e. The rhenium collector face was attached to the mobium substrate by pressure-bonding instead of vanadium brazing.

It had also been suggested to JPL to fabricate T-209 with an 0.200-in. thick emitter structurerso as to explore the effect of emitter thickness on emitter temperature measurement accuracy, but JPL expressed a preference to retain the thin emitter configuration (0.060 in. thick) because it minimizes the temperature drop across the thickness of the emitter piece

9.2 Fabrication of Converter T-209

THERN

The fabrication of the converter encountered no significant difficulties. As in T-208D, the cesium tube was made of 0.025-in wall niobium instead of 0.010-in.-wall tantalum. It was found that the

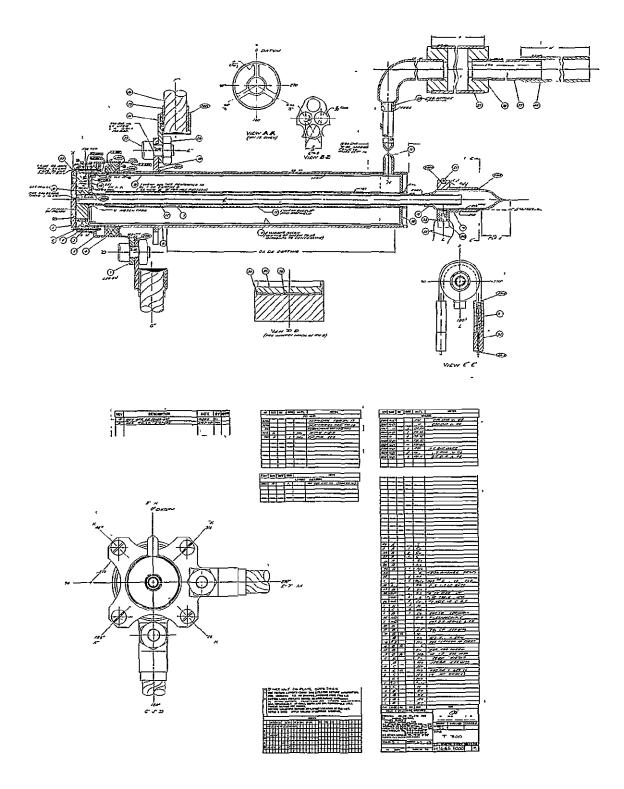


Figure 76

weld of the inner heat pipe tube to this tube required careful control; otherwise, the cesium tube could melt. The use of a thin (0.020-in. - dia) thoriated tungsten electrode was found to be particularly helpful

THE

Initial fabrication efforts included exploring the problems of electron-beam welding a thick (0.200-in.) emitter to the emitter support ' assembly, and it was found difficult to produce a leak-tight weld because of the dissimilarity in cross-section of the parts joined. Attempts to obtain a leak-tight weld were not pursued.

The standard emitter (0.060 in. thick) used for the fabrication of T-209 was electroetched with the same procedure used for T-208 (1 minute at 5 volts). It was then thermally stabilized for 2 hours at 1990°C observed (approximately 2020°C true temperature) The remitter flatness was checked after thermal stabilization and the maximum deviation measured was 0.0006 in.

The capillary structure insertion required an 0.006-in. reduction in the diameter of the capillary support mandrel in order to accommodate a double wrap of the thicker 100-mesh niobium capillary screen.

It was deemed prudent to insure that the collector would be in intimate contact with the emitter surface during the final braze operation of converter T-209, and this was accomplished with the use of a small molybdenum weight.

The heat pipe portion of the envelope was outgassed for 8 hours at an average temperature of 500°C. The remainder of the sodium-fill operation was performed in the same manner as used for T-208D.

Converter outgassing was performed with care so as not to expose the converter envelope to elevated temperature conditions before the internal gases were pumped out through the small interelectrode gap. Cesium distillation was carried out at 200°C for 4 hours.

The completed model is shown in Figure 77, and as indicated there, its weight was 110 grams.

9.3 Test of Converter T-209

Converter T-209 was tested with a special double-spiral electronbombardment filament shown in Figure 78. This filament shape was recommended by JPL to achieve a more uniform heating of the emitter piece.

The converter test consisted of 8 runs as follows: Runs 1 to 3 to map the output under dynamic conditions at 2000, 1900 and 1800°K; Run 4 to measure cesium conduction for interelectrode spacing determination; Runs 5 to 7 to map the output under static conditions at 1700, 1600 and 1800°C, and Run 8 to ascertain the magnitude of a suspected change in collector work function. Appendix 14 presents the data and I-V traces collected during test.

In converter T-208 it had been found that with the use of the heavier 0.025-in.-wall cesium tube, the cesium reservoir had a tendency to overheat. In T-209, it was found that the lengthening of the heat pipe had lowered the general level of temperatures in the converter, to the extent that the reservoir overheating problem was solved.

Figure 79 shows the optimized I-V characteristics; the solid lines were obtained under dynamic testing, and the dashed lines were obtained under static load.

CORPORATION TH

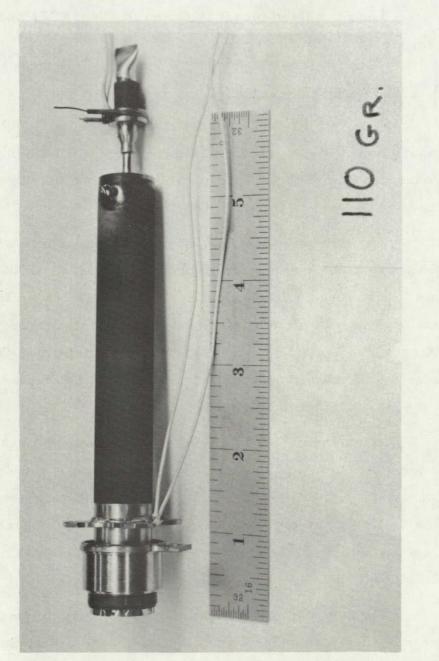
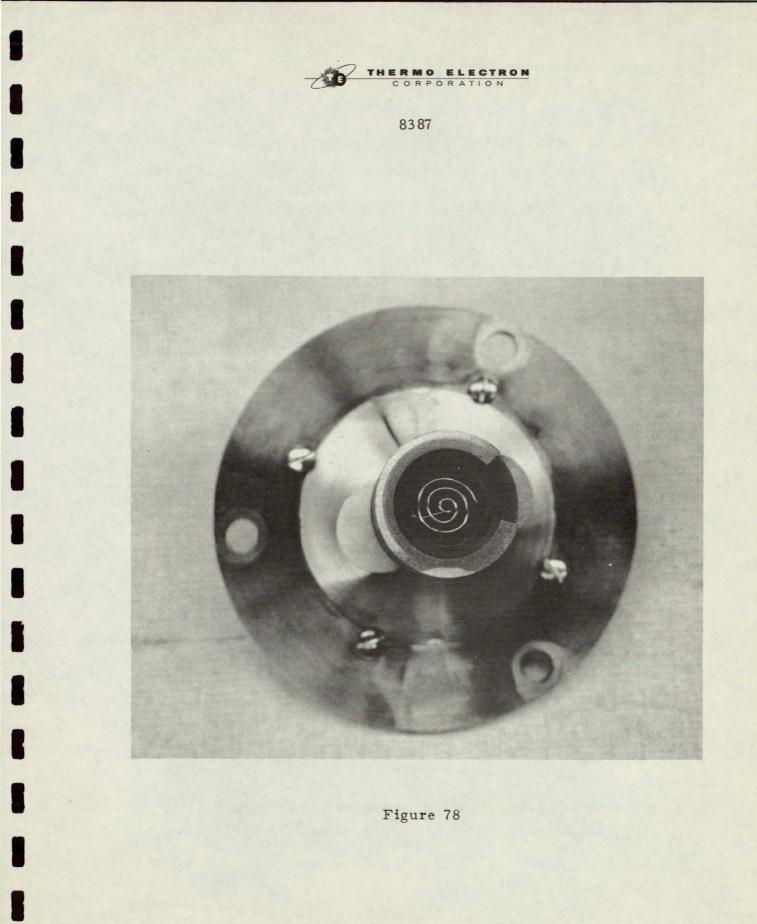



Figure 77

CORPORATION

8386

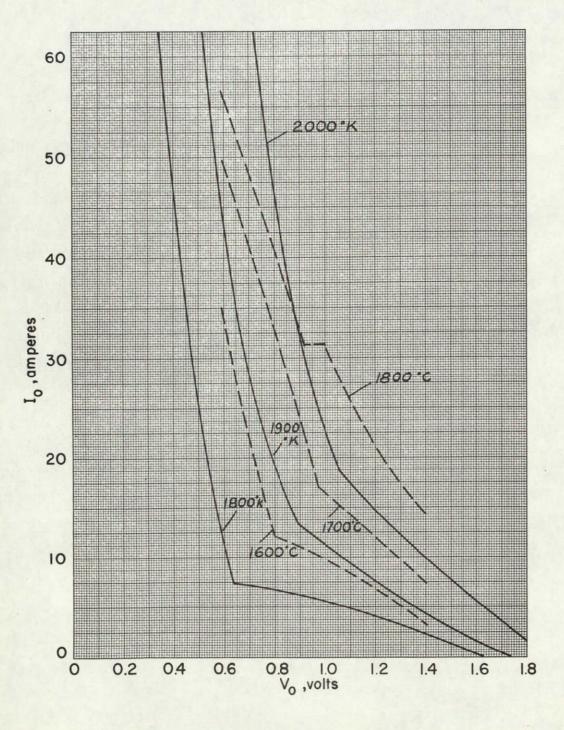
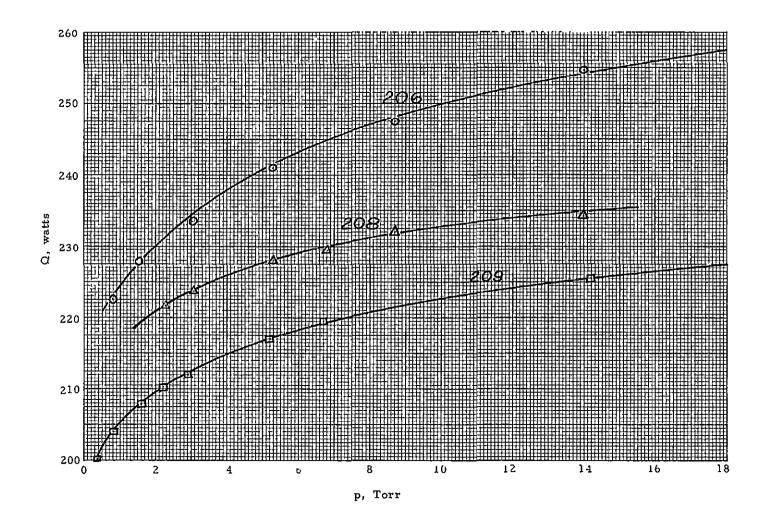
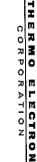


Figure 79

Figure 80 is a plot of the cesium conduction data, which is compared with that of T-206 and T-208

9.4 Interpretation of Converter T-209 Test Results


As in the case of converter T-208, it was of interest to compare the performance of T-209 with that of T-206, because both converters had rhenium electrodes. In making the comparison, however, the difference in collector areas of these two converters, which were 2.34 sq cm and 2.52 sq cm, respectively, was accounted for. Figure 81 gives the optimized I-V traces at 2000°K for T-206, T-208 and T-209, where both the T-208 and T-209 traces have been scaled up by the respective collector area ratios of 2.52/2.16 and 2.52/2.34. On the basis of this figure, converter T-206 appeared to have better performance than T-209. Since such comparisons had often been found to be misleading because they included unreliable emitter temperature measurements, performances were compared on a thermal input basis, and this was done with Figure 82. The comparison of T-208 with T-206 on this type of plot, shown in Figure 74, had proven that Converter T-208 had a definitely lower output than T-206. Figure 82 showed that this was not the case for T-209, which had the same output as, or slightly higher output than, converter T-206. Thus, within the current capability to measure converter performance, it appeared that converter T-209 was as good as converter T-206.


The cesium conduction data given in Figure 80 was analyzed with the slope method previously outlined in section 6.6e, and it was found that the interelectrode spacing of converter T-209 was essentially the same as that of T-208. The calculations were as follows:

Converter	208	209		
p, torr	8 12	8 12		
A, cm ²	2.16	2.34		
T _e , °K	2000°K	2000°K		
T _c , °K	880 885	800 800		
$\partial Q/\partial p, \frac{watts}{torr}$	0.090 0.50	1.13 0.58 ,		
d, mils	2.06 2.33	1.90 , 2.32		
Average d, mils	2.19	2.11 '		

As is evident in the data (sheet 5), in Figure 79 at 1800°C, 1.0 volt, and in Figure 82 at 366 watts, the output of converter T-209 was found to degrade during the high heat-transfer tests at 1800°C. This was the first instance of converter degradation experienced under this program To help diagnose the degradation, additional dynamic I-V characteristics were obtained for comparison with those recorded at the beginning of converter testing Figure 83 shows the curves which were obtained at a reservoir temperature of 623°K, with a power input of 308 watts, and after 3.5 and 30.6 hours of testing, respectively. The curves showed a shift along the voltage axis which was characteristic of an increase in collector work function. The amount of the shift was about 0.17 volt. There was no evidence to indicate that all degradation due to occur had in fact occurred at the end of the 30.6 hours.

Because the converter was still operative at the end of these tests, it was delivered to JPL rather than dismantled for detailed

Figúre 80

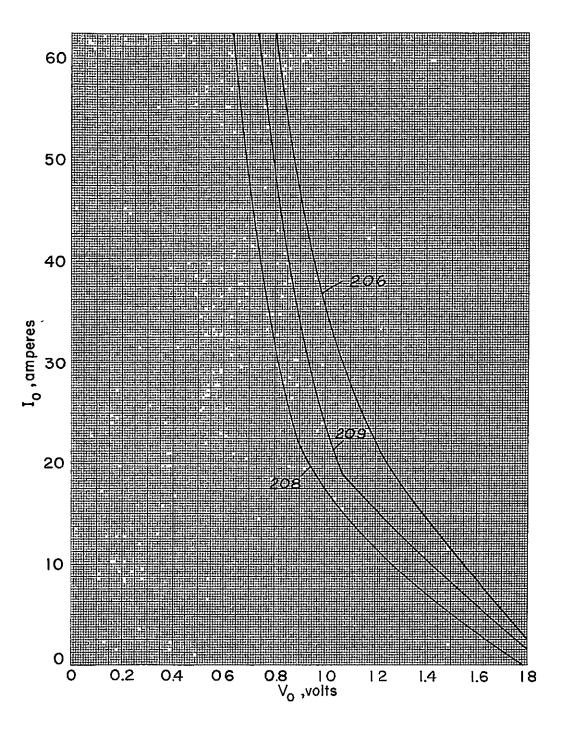
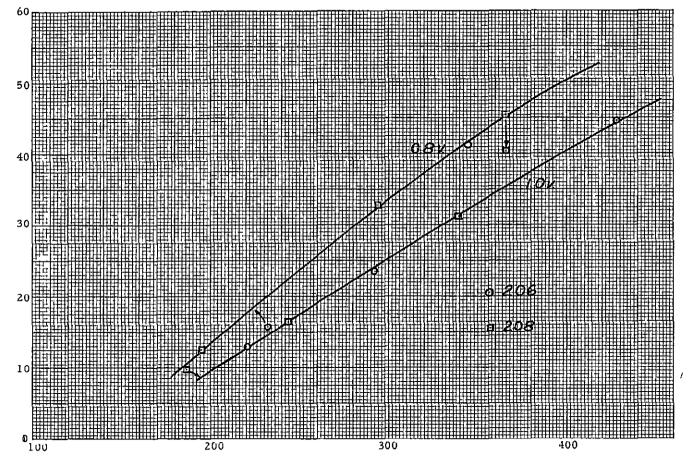



Figure 81

Bombardment Power, watts

CORPORATION

8382

Figure 82

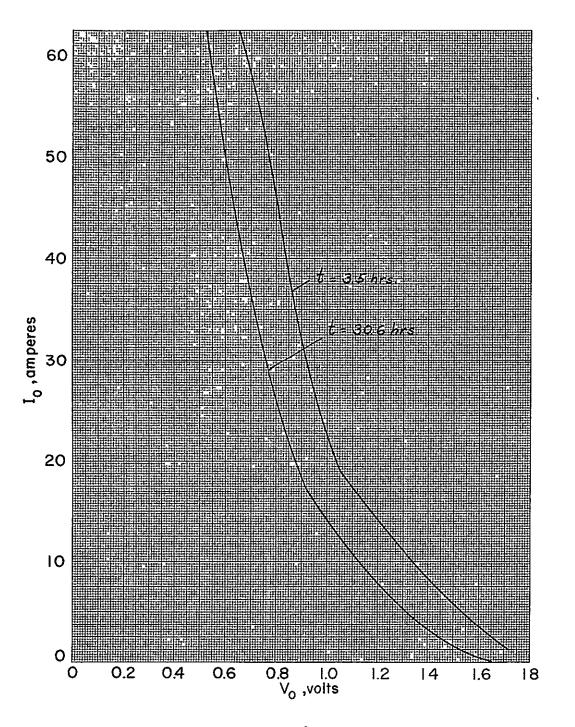


Figure 83

examination. It was judged extremely likely, however, that when such an examination would be conducted, it would reveal the presence of a sodium vapor leak from the heat pipe section into the converter envelope Sodium has a thermionic work function of approximately 2.28 eV as compared with a value of 1.81 eV for cesium. Thus the shift of 0.17 eV could easily have been the result of such a leak.

10 1 Fabrication of Converter T-210A

The design of the converter T-210 approved by JPL was identical to that of the T-209 converter. In particular, it included the longer collector heat pipe of T-209, which was selected to allow operation of the converter at high output currents without collector overheating.

The first T-210 fabrication effort was made using the emitter structure, including the re-entrant emitter support, of converter T-208B. This structure was vanadium-brazed to a new mobium seal flange and thermally stabilized for 1-3/4 hours at 2050,°C.

The collector heat pipe assembly proceeded without difficulty. The converter was final-brazed and set up for outgassing. At the conclusion of heat-pipe outgassing, the pressure at the pump used to maintain vacuum within the heat pipe increased drastically when the vacuum surrounding the heat pipe was released. This was a clear indication of the existence of a leak, which must have formed during outgassing, because the entire assembly was leak-checked on both the cesium and sodium sides just prior to outgassing. A new leak check showed that the leak was at or close to the joint of the cesium tube to the inner heat pipe tube; unfortunately, this location is inaccessible and a repair of the leak could not be attempted. As an THERMO ELECTRON

alternate remedy, the circular gap between these two tubes was closed at the end of the heat pipe by electron beam welding, but the closure was not leak-tight.

10.2 Fabrication of Converter T-210B

A review of the observations made during the assembly of T-210A inducated that the palladuum braze between parts No 12 and 18 could result in a joint which is considerably out of square, so as to make it necessary to bend the tubes to the proper position, thereby stressing the joint and its vicinity, in order to proceed with prototype assembly. Consequently, special care was used to support the parts in proper alignment during the assembly of converter T-210B

The emitter structure used for this prototype was salvaged from converter T-208A, including the re-entrant support. It was thermally stabilized for 2-3/4 hours at 2050°C., and flatness measurements made after thermal stabilization showed that the emitter was flat within 0.0008 inch.

Special care was used in the construction of the capillary assembly to insure that no gaps would be present at the collector end, which could lead to a collapse of capillary force, and which could have occurred in T-209, since that converter still exhibited a lack of consistency between static and dynamic tests

During the final braze operation, PB130 braze material was used instead of nickel-plated copper wire by error. Since the final braze operation is performed slightly above the melting point of copper (which exceeds substantially that of PB 130), considerable braze flow occurred over the neighboring areas of the converter structure; fortunately, no damage resulted. The heat pipe was outgassed at 500 °C, while keeping the sodium ampoule at 350 °C, for 7 hours The sodium was then melted by placing the heat pipe and reservoir in an oven at 150 °C for 2 hours; the ampoule was then broken, and the sodium caused forflow anto the heat pipe.

The converter outgassing was performed with a shield around the heat pipe radiator to insure that the collector could reach normal operating temperatures and to bring the emitter to temperature during outgassing despite the relatively low heat inputs applied. The emitter temperature was maintained at 1700°C, and the collector at 800°C, for 24 hours.

Cesium distillation was carried out at 200°C for 3 hours.

10.3 Testing of Converter T-210B

Converter T-210B was tested using the same procedure as for converter T-209, including the spiral filament. The data is presented in Appendix 15. Figure 84 shows the optimized I-V characteristics, the solid lines representing data obtained under dynamic loading, and the dashed ones corresponding to static loading. Figure 85 gives the cesium conduction data, and compares it with that obtained from converter T-209. During the testing of T-210, the converter showed no signs of a tendency to degrade in output as had been observed near the end of testing of converter T-209.

10.4 Interpretation of Converter T-210 Test Data:

Since converter T-210 was a duplicate of converter T-209, and since converter T-209 had in turn duplicated well the results obtained with the previous T-206 which had had rhenium electrodes, it was of particular interest to compare the performance of T-210 with that of T-209. Figure 86 compares the optimum envelopes of these two converters at 2000°K. As can be seen, they had nearly identical performance at low voltages and high currents; at voltages above 1.1 volt, however, converter T-209 produced more output, and it was concluded that this difference was due to a difference in interelectrode spacing: T-210 was found to have a larger spacing, as discussed below, and the output level obtained supported the general observation that, at spacings of the order of 2 mils and at 2000°K, spacing has a strong effect at the higher voltage end of the I-V characteristics, and practically none at the lower end.

From the point of view of thermal performance, Figure 87 shows that T-209 and T-210 were essentially identical.

The performance of converter T-210 was also compared with that of state-of-the-art converters tested by JPL. In particular, the JPL data indicated that a typical converter with a collector area of 1.88 cm² had the following output characteristics:

Hohlraum Temperature, °C	1735	1735
Output Voltage, volt	07	0.8
Output Current, A	50 7	[.] 35.6
Power Input, watts	376	339
Cesium Reservoir Temp , °K	612	602

In attempting to duplicate these points in converter T-210, a method was sought such that it would not require an accurate emitter temperaturé measurement; this was done to avoid the inconsistency problem which had been faced throughout the program of the T-200 emitter temperature measurements The method

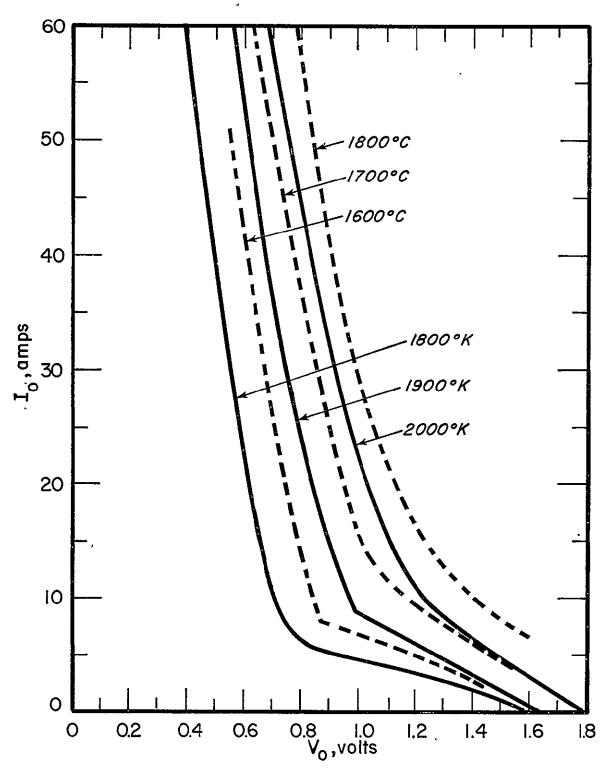
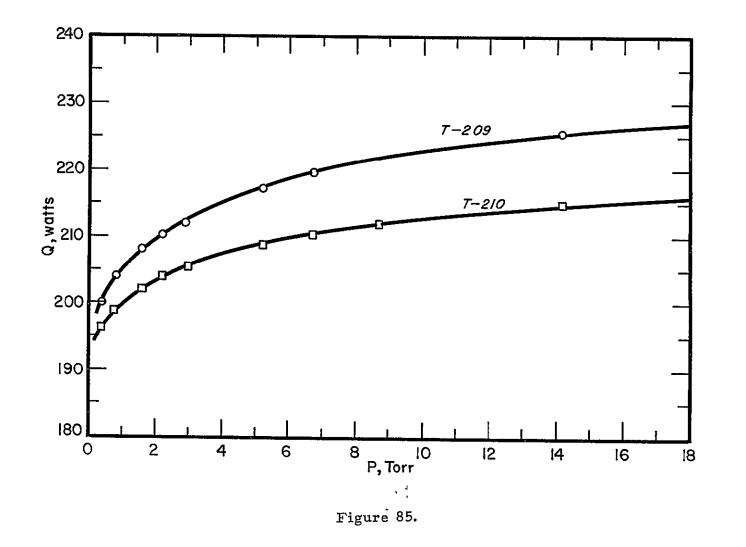



Figure 84.

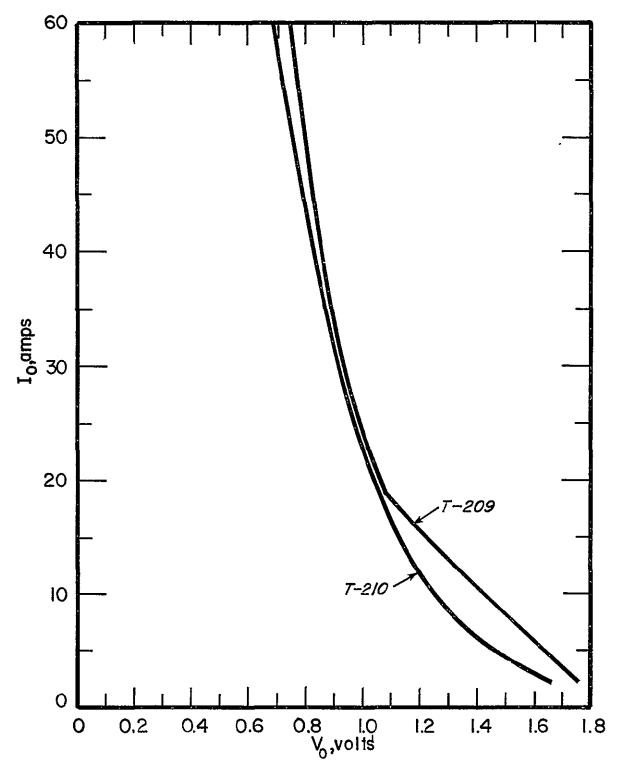
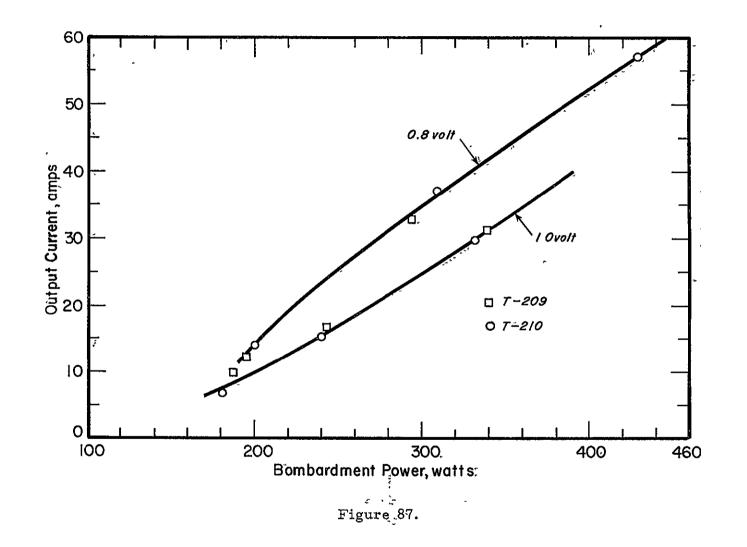



Figure 86.

adopted was based on defining an equivalent power input: If T-210 were to have the same output current density as the JPL converter, its output current would be larger because of its larger collector area of 2.34 cm²; then it would also require more input power in proportion to the additional output current, and the typical electron cooling power of 2.67 watts per ampere was used to compute this additional current. The predicted T-210 output was then:

Hohlraum Temperature,°C		1735		1735
Output Voltage, volt	I	07		0.8
Output Current, A	l.	63 1	•	44.3 ·
Power Input, Watts.		409		362 +
Cesium Reservoir Temp., °K	1 1	612		602

When the test conditions of T-210 were adjusted for output voltages of 0.7 and 0.8 volt at 409 and 376 power input, respectively, the actual values of the other variables were found to be (Sheet 5, data points 7 and 8):

Hohlraum Temperature, °C	1733	1738
Output Voltage, volt	0.7	0.8
Output Current, A	61.1	44.5
Power Input, Watts	-408	362
Cesium Reservoir Temp., °K	642	630

which, except for the reservoir temperatures, showed excellent agreement with the JPL data No attempt was made to resolve the 30°C discrepancy in reservoir temperatures, but it is known that instrumentation errors of this magnitude can easily occur when a thermocouple lead makes contact at a cooler point in the vicinity of the instrumented point.

TASK II

MULTICONVERTER GENERATOR DESIGN

1. Introduction

The design of the multiconverter generator was aimed at producing a generator configuration that would accommodate a large number of converters, so as to be able to generate a large amount of power from a single solar concentrator, and to allow the possibility of a moderate number of series-parallel connections for greater power network reliability.

This task consisted of a thermal analysis of the generator solar cavity, a calculation of net flux available to the converters and of the electrical power that could then be generated, and a design of the generator.

2 Thermal Analysis

2.1 Cavity Geometry

For the purpose of conducting a flux distribution analysis, the generator cavity geometry was simplified so that a moderate number of parameters could describe it. The simplified geometry is shown in Figure 88, and it approached closely the actual cavity configuration. The major differences were:

> 1. Cavity interstitial spaces were lumped with cavity areas and treated analytically as sharing common average absorptivity and emissivity properties. Thus, the values of emissivity and absorptivity which were specifically assumed for the various cavity surfaces had to take into account the fact that they included the properties of these interstitial spaces.

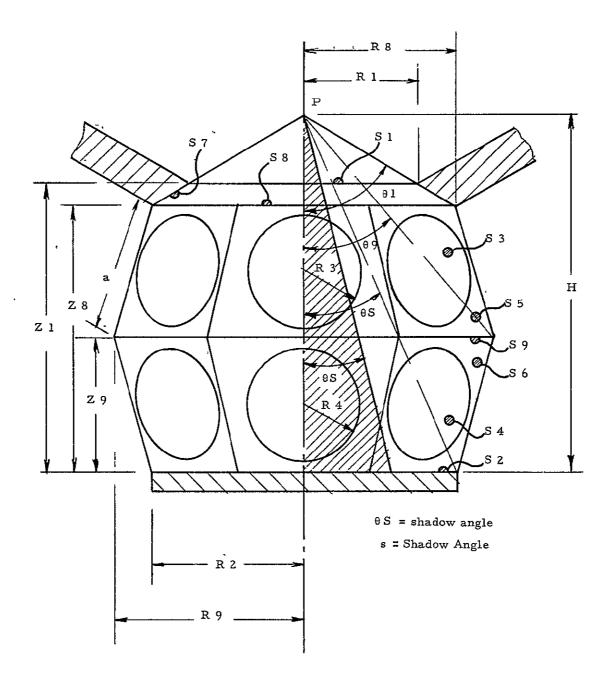


Figure 88 Cavity Nomenclature.

a shadow angle $\theta_{_{\mathbf{S}}}$ produced by the generator and its test chamber on

Although the intensity produced by an ideal paraboloid increased slightly with θ , the fact that profile errors also increased with θ in actual concentrators had led to the assumption in this analysis that the solar flux was spread spherically with uniform intensity between the angles θ_{s} and θ_{1} . In all cases, θ_{s} was assumed to equal 10°.

The reflection of both the solar flux and the cavity thermal radiation within the cavity was assumed to be diffuse The view factors Fij between all seven areas Si of the cavity were calculated for each combination of number of converters and cavity aperture. Defining Ei and Ai as the thermal emissivity and solar absorptivity of surface Si, respectively, each cavity surface i receives directly a solar input W1, the fraction Fi of the total solar input W:

and it thermally radiates a flux per unit area:

where: Pi = SIGMA * Ti ** 4

the solar concentrator.

Ti is the temperature of cavity surface 1 and: SIGMA = 5.679 E - 12 (E = exponentiation)

Denoting by V1 and Hi the total thermal and solar fluxes arriving at each area 1, the following matrix equations describe the cavity heat balance:

[Eij] * [Hi] = [Pii]] and [Aij] * [Vi] = [Wi] where [Pii] = [Fij] * [Ei * Pi * Si] Eij = -Fij * (1. -Ei) for i ≠ j Eij = 1 - (1. -Ei) * Fii for i = j

and Aij was obtained using the expressions for Eij and substituting Ai for Ei.

The net heat input at each surface was then:

$$Q_1 = Ei * (Hi - Si * Pi) + Ai * Vi$$

As it should be evident, the above calculations could be performed once the solar flux input was defined and the cavity temperatures were known. In all cases, the rear cavity surface temperature was assumed to equal the selected converter emitter temperature, and the cone piece temperature was arbitrarily assigned the value T7 = 1000°K. To describe the temperature distribution of the converter shoe pieces, these were assigned a single finite value of temperature which was found by computer iteration so that the temperature value would simultaneously satisfy the cavity flux distribution equations and the conduction heat transfer characteristics of the shoe piece.

2.3 Computer Program

Figure 89 shows the flow diagram of the computer program used to solve the flux distribution problem, and Appendix 18 gives the program listing. The program was arranged so that the input data consisted of the cavity aperture diameter, the solar flux input, the number of converters, the selected emitter temperature, and the emissivity and absorptivity of each surface element of the cavity The computer then calculated the heat reradiated by the cavity, the equivalent cavity emissivity, the heat absorbed by the rear cavity piece, the front cone piece and by each of the converters of each family, and the temperature reached by the shoe piece of each converter.

2.4 Concentrator Performance

As explained above, one of the required computer program inputs was the solar flux input corresponding to each value of cavity aperture. Two heat sources were considered: an 11.5 ft. dia. concentrator operated on Earth ground in conjunction with a protective pyrex window, and a 9.5 ft. dia. concentrator operated in cislunar space. In order to determine the net heat flux delivered to the cavity for these two cases, it was assumed that the relative flux intensity at the focal plane as a function of the ratio of position to theoretical solar image size would equal the values achieved in 5-foot concentrators. In addition, it was assumed that the concentrator reflectivity for the Earth case was 88%, and for the cislunar case, 89%; corresponding shadow losses assumed were 5% and 2%. A window loss of 11% was included in the Earth case. Appendix 19 presents the pertinent calculations, and the resulting curves of cavity input flux vs. cavity aperture diameter are given in Figure 90.

2 5 Predicted Thermal Performance of Generator Cavity

The flux distribution in the generator cavity was computed for 137 different conditions. Appendix 20 gives the computer outputs

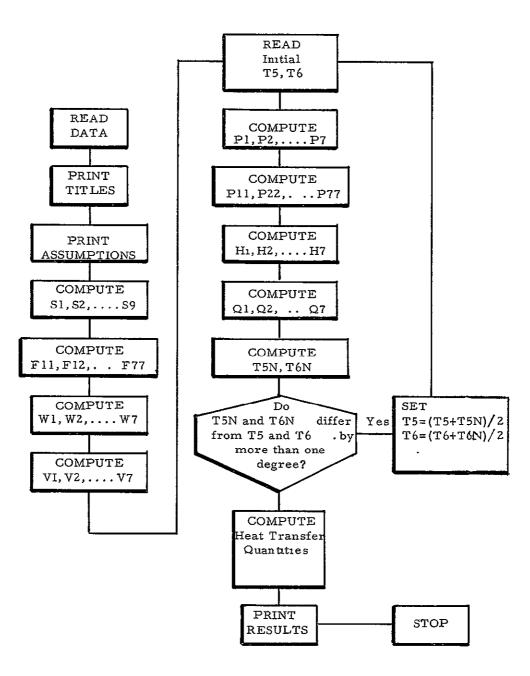


Figure 89 Computer Program Flow Chart.

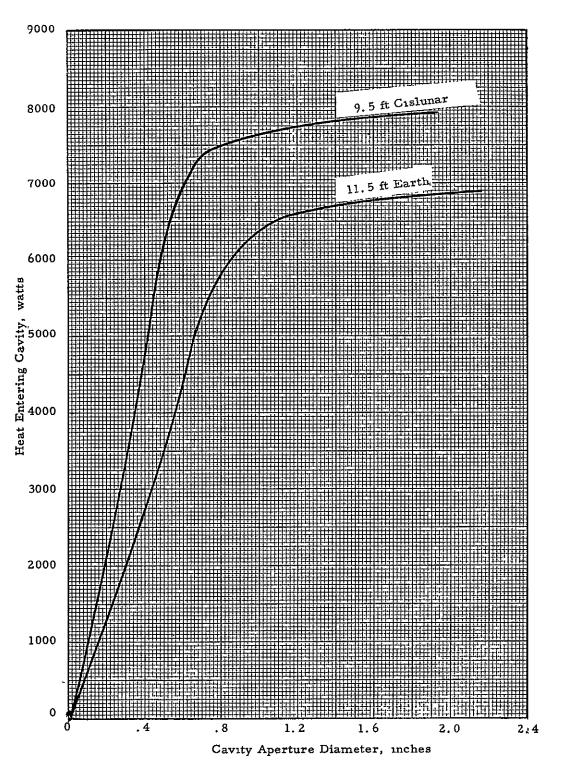


Figure 90

THERMO ELECTRON

obtained. In the first nine runs, the calculations performed aimed at evaluating the required emissivity on the heated faces of the converters to produce a balanced distribution of heat between the two families of converters. It was assumed that the emissivity of the heated face would be adjusted by grooving or etching the largest circle that could be inscribed on the heated face of each shoe piece, and that an increase in emissivity would be accompanied by a corresponding increase in solar absorptivity as predicted by the equations of radiation from v-grooves with diffuse surfaces. In the first nine runs, the chosen values of emissivity were 0.250, 0.400 and 0 563, and the corresponding values of solar absorptivity were 0.500, 0.750 and 0.875. All nine possible combinations of these three values were assigned to the two families of converters in a generator with 14 converters, a cavity aperture diameter of 1.400 inches, with the solar input corresponding to operation on Earth ground. The difference in the net heat transfer to the emitter structure of the converters of each family was then calculated, and it is plotted in Figure 91. The figure shows by extrapolation that, for the selected generator conditions, thermal balance was achieved for the values of E4 of 0.250, 0.400 and 0.563, provided the corresponding values of E3 were 0.145, 0.285 and 0.345 respectively Since polished rhenium had an emissivity of approximately 0.250, the lowest possible value of E3 was 0.250, and Figure 91 shows by interpolation that the corresponding value of E4 for thermal balance was 0.365 to which corresponded a value of A4 of 0.700. Conversely, it was assumed that the highest value of A4 that could be achieved was 0.875 (corresponding to three reflections within the hit surface at a base absorptivity of 0. 500) to which corresponded E4 = 0.563. The corresponding value of E3 at

thermal balance predicted by Figure 91 was E3 = 0.310, and the corresponding absorptivity was A3 = 0.605.

In the next 64 runs, these two extremes of emissivity combinations were used to compute the thermal performance of generators with 10, 12, 14 and 16 converters, operated at 2000 K on Earth and in cislunar space, at four different values of cavity apertures The results are plotted in Figures 92 to 95. It can be noticed in these figures that the large difference in emissivity conditions resulted in minor differences of thermal performance, and it was therefore possible to combider the use of the lower emissivity values which required the surface treatment of only one family of converters.

To determine the effect of changes in cavity temperature, 64 more runs were computed for 14 and 16 converter generators with the lower emissivity values (E3 = 0.250, E4 = 0.365, A3 = 0.500, A4 = 0.700), and operated both on Earth and in cislunar space with the converters at 1900, 2000, 2100 and 2200°K, at various cavity aperture diameters. The results of these runs are given in Figures 96 and 97. One of the most remarkable indications given by these two figures was that the 14-converter generator, which had been thermally balanced at Earth flux and for a-cavity aperture of 1.4 inch, remained thermally balanced at the cislunar flux, at all emitter temperatures, and even over a wide range of aperture diameter variations. Although the 16-converter generator was not as closely balanced for the emissivity values selected, it should be noted that in the case of greatest imbalance, the heat QC3-received by the front converters exceeded that received by the rear converters by less than 10%. CHEINEERIKE CORPORATION

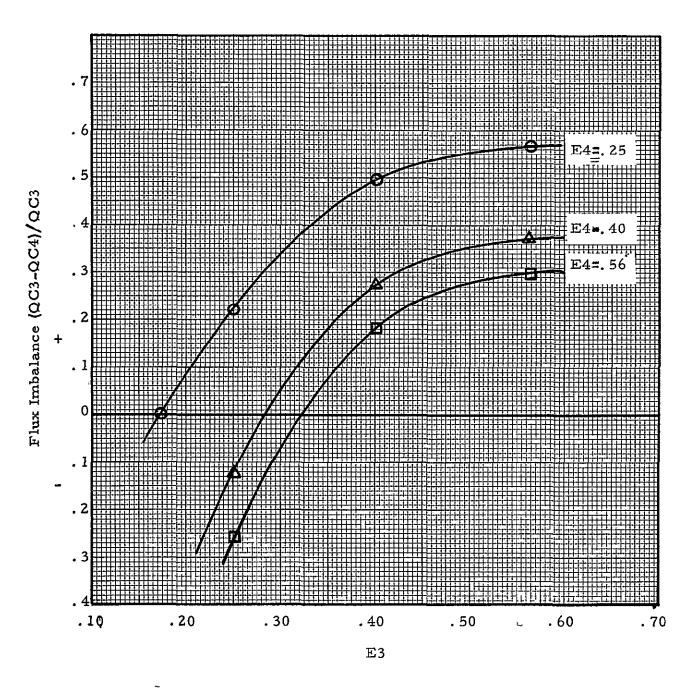


Figure 91 Effect of Surface Treatment on Flux Distribution.

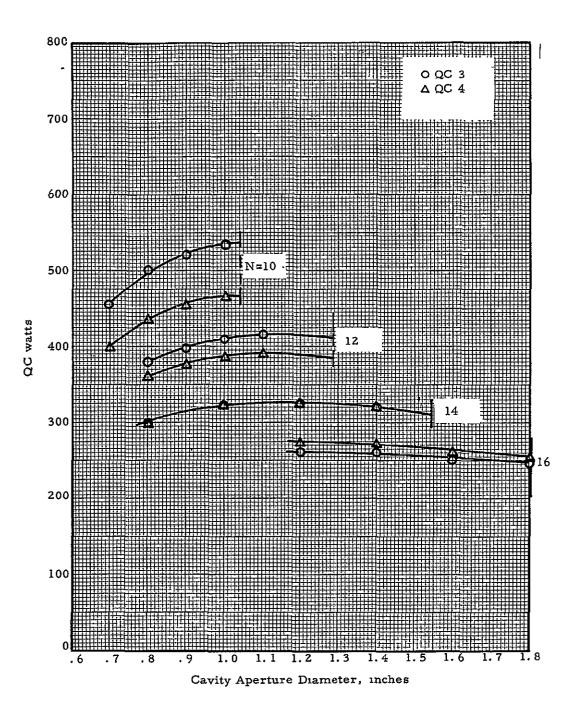
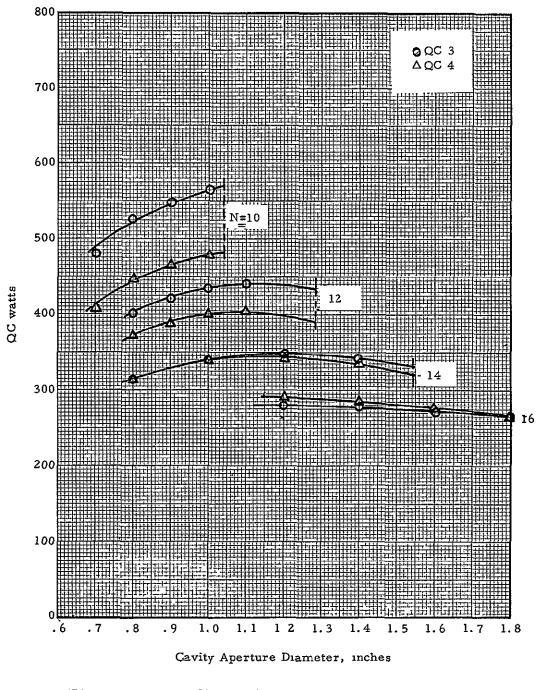
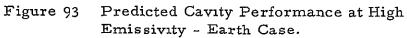




Figure 92

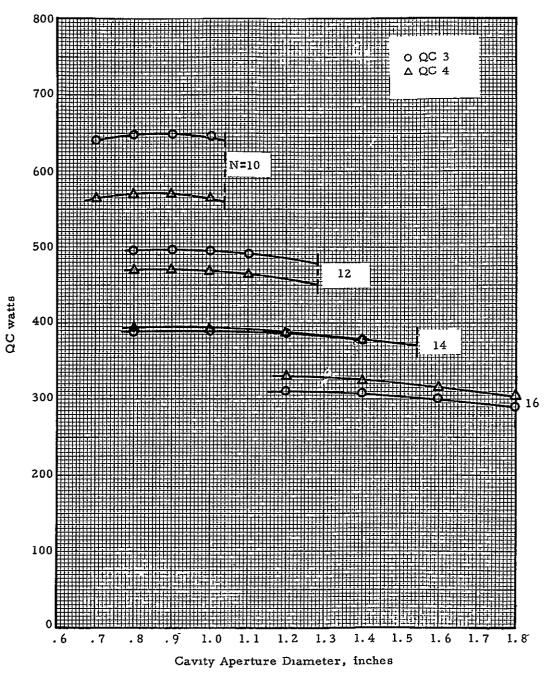
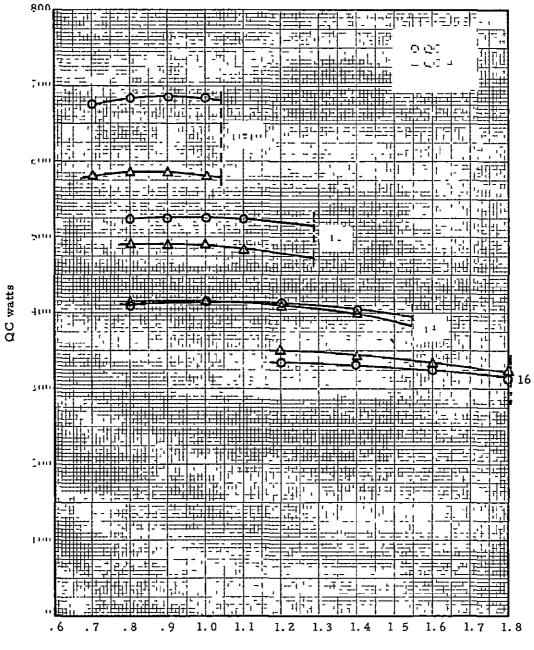



Figure 94 Predicted Cavity Performance at Low Emissivity - Cis lunar Case.

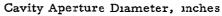


Figure 95 Predicted Cavity Performance at High Emissivity - Cis lunar Case.

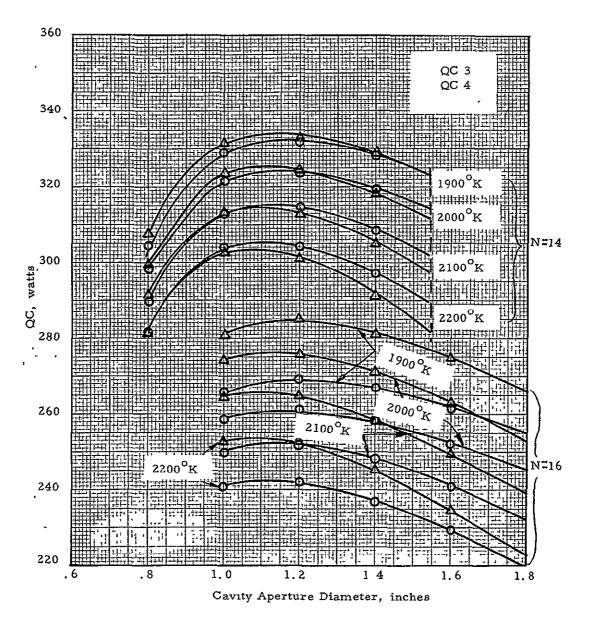


Figure 96 Effect of Cavity Temperature - Earth Case.

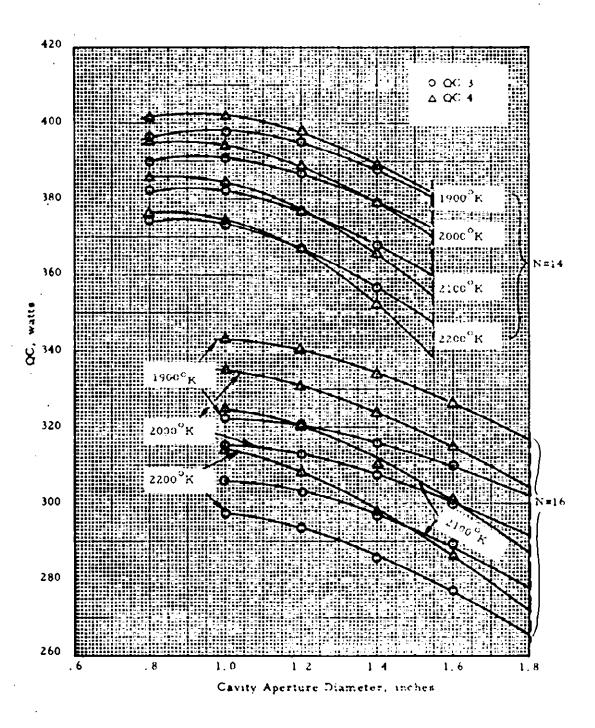


Figure 97 Effect of Cavity Temperature - Cislunar Case.

2.6 Predicted Electrical Performance of Generator

JPL recommended that the predicted output of converter T-210, 70 amperes at 0.80 volt, be used to predict the performance and power output of the generator, and that the generator be designed so as to be compatible with operation of the converters at an output current of 70 amperes. Figure 98 gives the optimized performance which was predicted for converter T-210, which will be referred to as the reference converter.

Figures 92 and 94 gave the net heat available to the two families of homologous converters in the generator as a function of cavity aperture diameter and the number of converters in the generator. The converters identified by the nomenclature QC3 were those which lay closest to the cavity aperture, and those labeled QC4 were those nearest the bottom of the cavity. The calculations for these figures included the determination of the thermal emissivity of the converter cavity surfaces required for thermal balance, and Figures 92 and 94 assumed one compatible set of values where the converters lying close to the cavity aperture had a cavity surface thermal emissivity of 0.25 and the others 0.365.

Experience with 5-ft-diameter concentrators had shown that, although these concentrators had an optimum cavity aperture of 0 5 inch, the aperture often had to be enlarged by as much as 40% in order to obtain optimum performance in actual solar tests of thermionic generators. As Figures 92 and 94 indicate, there was a maximum possible cavity aperture for each generator design, which was governed by the average cavity diameter, which in turn was a function of the number of converters clustered around the generator

-188

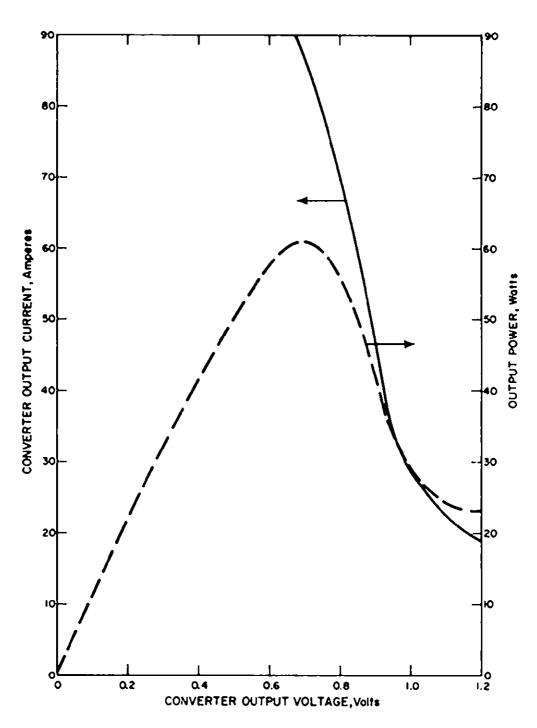


Figure 98

cavity. For design purposes it was assumed that the maximum practical cavity apertures corresponding to generators having 10, 12, 14, and 16 converters were 1 0, 1.25, 1.50 and 1.75 inches. To the 0.5-inch optimum cavity aperture diameter for a 5-ft. dia. concentrator there corresponded a 1.15-inch optimum aperture for an 11.5-ft. dia. concentrator and an 0.95-inch optimum for a 9.5-ft. dia. concentrator. When these latter cavity apertures were increased by 40%, it was found that a cavity aperture diameter of up to 1.61 inches might be desired. This figure could have been still larger if the geometrical accuracy of the large-diameter concentrators was substantially worse than that of 5-ft. concentrators. Thus it appeared that only 14-converter and 16-converter generators were large enough to operate with an 11.5-ft. concentrator, and that the 14-converter generator size was marginally satisfactory. For this reason, the generator with 16 converters was regarded as the optimum configuration.

Next, the maximum efficiency and maximum power that could be expected from the 16-converter generator when operated in ground test and in cislunar space with converters having the output characteristic given in Figure 98 were calculated. The assumed cavity apertures for the 11.5-ft. dia. and 9.5-ft. dia. concentrators were 1.61 and 1.33 inches, respectively. With these assumptions, Figures 92 and 94 showed that the net heat received by the converters was 255 watts in ground test, and 315 watts in cislunar operation. Converter output current at these values of power input and 2000°K could be easily estimated: The heat input had to equal the sum of the electrical output, the emitter support conduction, and the collector heat transfer. The electrical output was the current times

the voltage output, the emitter support conduction had been calculated to be 58 watts* (Final Report, Task II, Contract 950671, Table 7, page 105), the collector heat transfer had been measured from the calorimetric data of converter T-206 (see page 100), and the correlating equation was

$$Q_{collector} = 105.7 + 1.92 I_{o}$$

Thus the total converter heat transfer could be expressed as

THERM

ECTRON

$$Q_{in} = 105.7 + 58 + (1.92 + V_{o}) I_{o}$$
$$= 163.7 + (1.92 + V_{o}) I_{o}$$

This equation could then be used to determine what output currents could be sustained with the 255 and 315 watts of input available in ground test and in cislunar space, respectively; for this calculation, the output voltage was determined from the assumed reference converter characteristic presented in Figure 98. The required heat input so calculated for the reference converter is given in Figure 99. As can be seen, with power inputs of 255 and 315 watts, the converter output currents that could be achieved were 31.0 and 54.5 amperes, respectively; Figure 98 shows that these currents could be achieved at output voltages of 0.98 and 0.87 volt, and output powers of 30.3 and 47.5 watts, respectively. Thus the predicted output power of the generator in ground test was $30.3 \times 16 = 485$ watts, and in cislunar operation it was $47.5 \ge 16 = 760$ watts. The corresponding solar inputs for the assumed cavity apertures of 1.61 and 1.33 inches are given by Figure 90, and they were equal to 6,770 and 7,800 watts, respectively. Thus, the 16-converter generator performance could be summarized as follows:

Based on tantalum, with a thermal conductivity of 0.79 watts/cm°C at 1416°C. The value is conservative because the thermal conductivity of rhenium at the same temperature is 0.49 watts/cm-°C.

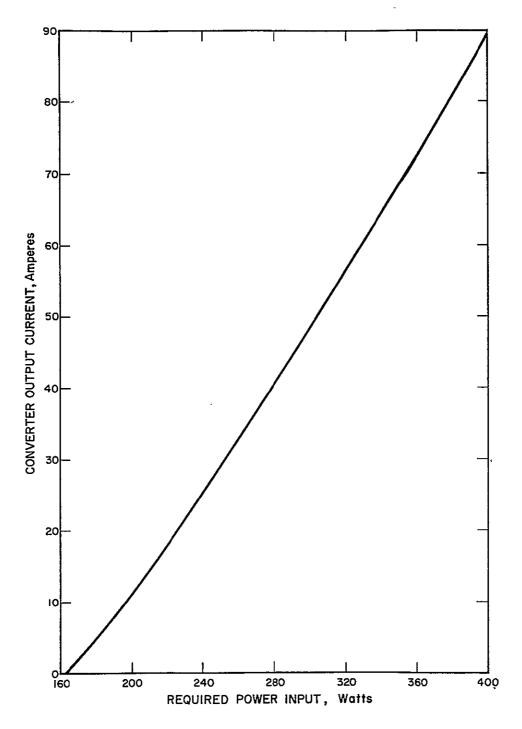


Figure 99

	Ground Test	<u>Cisl'unar</u> Performance
Cavity aperture dia., in.	1 61	1.33
Cavity input, watts	6770	7800
Available converter input, watts	255	315
Converter output current, amperes	31.0	54.5
Converter output voltage, volts	0.98	0.87
Converter output power, watts	30.3	47.5
Generator output power, watts	485	760
Absorber-generator efficiency, %	7.2	9.7

Generator Performance, Solar-Heated

Since the cavity heat losses were fixed by the fixed cavity temperature of 2000°K, the above represented both the maximum-power and maximumefficiency performance which could be obtained with solar heating.

The above calculation was repeated for the case of electric heating to determine the maximum power and efficiency which could be obtained in laboratory testing of the generator. Assuming a cavity aperture of 1.33 inches (cislunar case), and that the cavity losses were the same under solar and electric heating, the input power to drive the converters at maximum power was equal to 7,800 watts (see the table above) plus the additional converter heat input required to reach maximum output power from the 315-watt input condition for the cislunar case given above. At maximum power, the converter output was 61 watts at 87 amperes (Figure 98). The required heat input (Figure 99) was 394 watts, which represented an increase of 79 watts from the input for the cislunar case; for 16 converters, this totalled to an increase of 1270 watts. Thus the corresponding generator power input was 7800 + 1270 = 9070 watts, and the generator would produce an output of 61 x 16 = 975 watts at an efficiency of 10.7%.

ECTRON

The point of maximum generator efficiency could be found by repeating the above procedure for various converter power inputs. The results were:

<u>Converter Power</u> <u>Input, watts</u>	Generator Power Input, watts	<u>Generator Power</u> Output, watts	<u>Generator</u> Efficiency, %
390	9000	975	10 82
380	8840	960	10.85
, 370	8680	940	10.82
360	8520	919	10.78

It is clear that maximum efficiency was obtained in the vicinity of a converter power input of 380 watts. The results for electrical testing were then:

	Maxımum Power	Maximum <u>Efficrency</u>
Cavity aperture dia., 1n.	1.33	1.33
Cavity input, watts	9070	8680
Available converter input, watts	394	380
Converter output current, amperes	87.0	81.2
Converter output voltage, volts	0.70	0.74
Converter output power, watts	61.0	60.0
Generator output power, watts	- 975,	960
Generator efficiency, %	10.7	10.8

Generator Performance, Electrically Heated

2 7 Sixteen-Converter Generator Design

The layout of the generator design is shown in Figures P00 to 103. Figure 100 is a view in the direction of the solar rays entering the cavity; Figure 101 is a sectional view along a cutting plane which contains the optical axis; Figure 102 is a rear view; and Figure 103 gives the list of parts and materials.

The generator assembly consists of eight two-converter modules, having a front and a rear converter oriented at a common angle around the optical axis. These two converters are assembled by riveting or spot-welding them to a bent plate support, part No. 31, which electrically shorts their collector structures; thus, the converters in each module are wired in parallel. Each module is supported with electrically insulated attachments, so that the modules can be wired in series or in parallel at will. In the particular design presented, all modules are connected in series

One advantage of this generator design is that the gap between the emitter pieces of the converters of a module can be closed since contact will not cause electrical shorting of converter output. By not insulating every converter, a substantial amount of insulating hardware is avoided, and a simpler, more compact and stronger structure is obtained. The nominal spacing between the surfaces of the cavity at different electrical potentials is 0.020 inch.

The modules are supported by front and rear one-piece metal rings, so that the complete assembly of modules and support rings forms a rigid frame. The design also provides for the simple removal of a converter module without the necessity of disassembling the entire generator. The front ring supports an entrance cone for the cavity, which helps to guide the solar energy into the cavity. Part No. 32 is an extension of the entrance cone, and its function is to protect the converters from concentrated sunlight in the event of accidental misorientation The rear ring supports a cavity backpiece, made of tungsten, and shaped to reflect the sunlight striking it towards the heated faces of the converters. The rear ring is also attached to the generator support, which is a webbed conical structure, part No. 1.

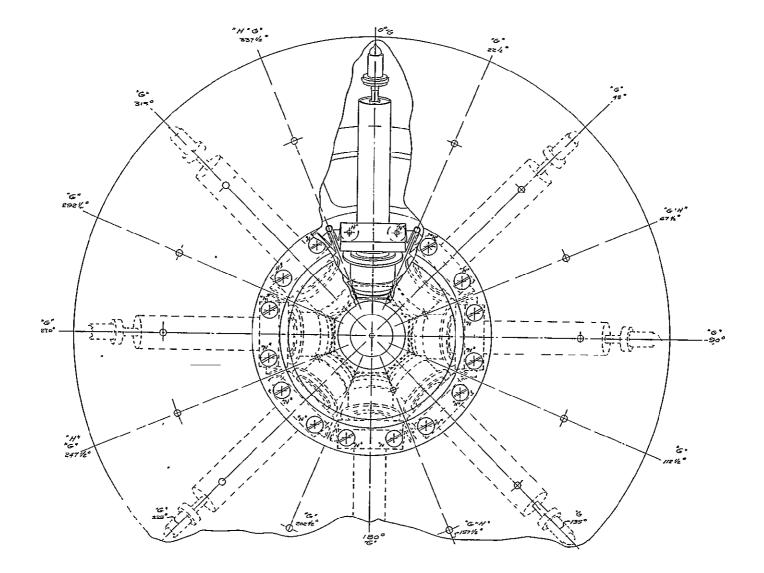


Figure 100

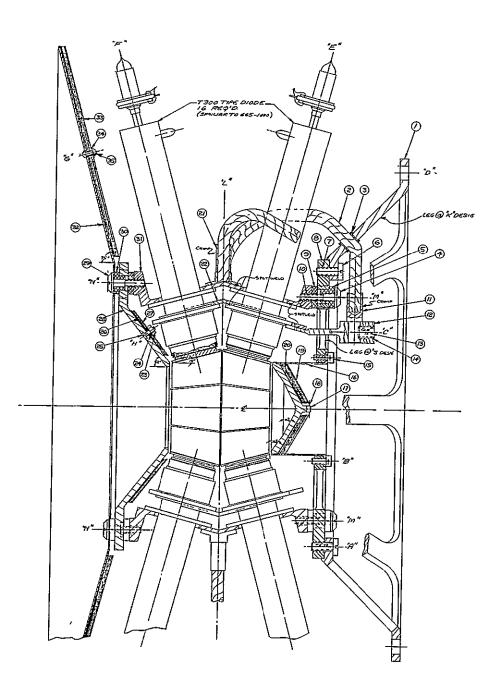


Figure 101

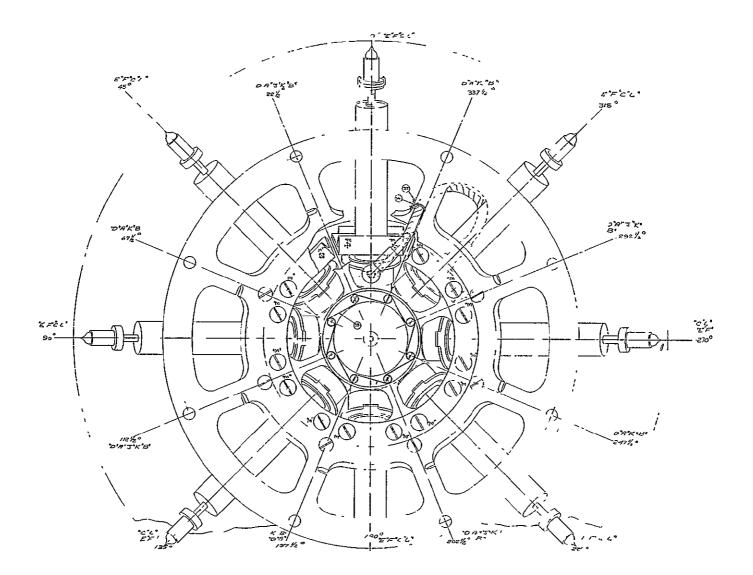


Figure 102

200

Figure 103

76543 21	U D A MT S	INF INF INF INF	(∓ (T) . N () () ()			NO INI IG IS: EP	Wh ES CO SAIR TH	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N DI NE AR	D CA RS TAP E D	= N TE 8 2 5 3 5 4 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	RI NE		LE D BY	#1) H TS EP	ic OR	, P P RE I AI	RO RE ND RI	LII NIS MI	RI KIN X IN CA	E F 141 40 78	RC XY S [®] C R1	TI AC FR SJ	HI: HI) IBL	5 L 113 113	. 0 16 70 70	R,	ON RES
F	-							_		-				N	101	T E S	5								_			
	A	B	ĺ¢.	D	E	F	G	н	J	K	L	M	N	Р	R	s	Ŧ	U	٧	w	Y	Z						
T		5	-	7	7	7	5	1	V.		,		7	-	-								h	t	F	Г	-	
2				-	-	ŀ	ŕ	h			Π		Ċ		Г	-	-						Г			Г	-	
v		Π							-							_						-	Г			Г		
11										Π										Γ						Г	-	
1				<u> </u>																			Г		Ľ			
Ы		Η				H											Π						 L			П		
					-													_					Г			П		

38	ND		752	20	030 DIA NIRC
37			16	35	40-80× 125 LNG SHCS.
36			ĉ	95	
35			16	a	
34	i		16	7a	
33			5	Ta	
132			17	73	
31			8	NB	
30			16	A1203	
29			16	Ta 10 W	·
28	<u> </u>		17	w	
27			17	Ta	
26	-		4	Ta	
25	 				· · · · · · · · · · · · · · · · · · ·
	<u> </u>		4	107N	
24				7a.	
23			4	Ta 16% 2	<u> </u>
22			8	Nb	
51			8	Nb_	
50			10	ω_{-}	
19				Ta_	
18			1	7a.	
17			1	W_	
16			17	W	
15			8	Ta 10,50	
14	ND		8	55	Here con liscer #3591-30N-0190
13	ND		3	59	\$10-32 × 250 9. H SETSER
12			8	Nb	
11			8	Nb	
10	ND		32	35	Hourson 4500 #3585-04CN-0168
ė			32	4403	
8			1	~16	
7	ND		8	55	4.54 COIL NSCRT -3585-06CN 28
6			8	Ta -10%.N	i
5	1 m 1		16	A1,03	
4			16	Ta lozw	
÷.			8	AlzOs	
2	NO		8	Cu	
F	<u> </u>		2	No	
PART	SIZE	RFV	REQ	MAT'L	NOTES
-				SPECIFIED	
H DIA.O	CES TO	A. COM BE PE BE PA	TL C.WITH RRWIT R WITH	KXX ± 005 R 10005 10005 10	THERMOLELECTRON IN THE CARL AND A LANGE AND A LANGE IN THE CARL AND A LANGE AND A LANGE IN THE CARL AND A LANGE AND A LANGE IN THE CARL AND A LANGE AND A LANG
SCALE				:C3RI	সহ
					SIZE DRAWING NUMBER SHEET REV
1 NE.	XT ASS	1	S	MILAR TO	

CONCLUSIONS

TASK I

This task attempted to improve both converter structure and converter performance. Converter structure was improved in many respects: An all-rhenium emitter structure was successfully developed, and it offered the advantages of greater high-temperature strength, elimination of emitter contamination by diffusion and migration of materials from the emitter support, and relative mertness to operation in environments with traces of oxygen, nitrogen and carbon. Vanadium brazing was shown to be an ideal technique for joining this structure to the cylindrical seal flange of the converter. Pressure bonding was applied as a technique for joining the collector to the collector support. Considerable know-how in the use of palladium as a braze material for niobium and molybdenum was generated Similarly, the relative advantages of inert gas welding and electron-beam welding were explored for application to small joints of rhenium and niobium The technology of sodium-filled niobium heat pipes was advanced with the use of low-flow-resistance evaporators and niobium as a capillary fabrication material; also, the application of this technology solved a major problem of collector heat transfer which had been caused by the excessive geometrical and heat transfer constraints imposed on the converter, and greatly reduced converter weight. The stability of the interelectrode spacing was enhanced by increasing the spacing from 1 mil to 2 mils, which produced greatér shock resistance, and decreased the probability of electrode shorting due to deformations induced by grain growth in the emitter

The improvement of performance proved to be an elusive goal. Both variations of emitter surface treatments and collector materials had negligibly small effects on the performance at the particular operating conditions of the T-200 converter: 2000°K emitter temperature, 2 mil spacing. The only other means known to improve converter performance (reduction of spacing and use of cessium additives) were not practicable, the first because the minimum spacing had been set to a value of 2 mils, which was the value used, and the second because it fell outside the scope of this program.

Converter T-210, the last converter built under this program, successfully embodied all the improvements made, and its performance nearly matched that of the best of the converters tested: T-206 and T-209.

TASK II

тне

The generator design effort developed the first known analytic technique for the calculation of heat transfer in solar cavities with converters having different sight angles to the cavity aperture. The analysis was simplified by approximating the radiant input intensity distribution with that of a point source in front of the cavity aperture; however, it arrived at solutions for the even distribution of cavity flux, and at important conclusions regarding thermal balance with changes in thermal flux, which are considered to have general application and validity.

A modular converter mounting technique was developed in the generator design, and this approach simplified considerably the assembly procedure; as a result, the fabrication of a 16-converter generator is not significantly more complicated than that of existing 4-converter generators.

APPENDIX 1

ELECTROLYTIC PROCESSING OF Re EMITTERS

APPENDIX 1

ELECTROLYTIC PROCESSING OF Re EMITTERS

Electrolyte:

350 ml. alcohol
175 ml. perchloric acid sp. gr. = 1.54, 60% conc.
50 ml. ethylene glycol monobutyl ether

Mix above solutions in glass with glass rod. Do not allow solution to come in contact with any metal other than S.S. beaker used in treatment of emitter. Place S.S. beaker with solution into ice bucket to bring the temperature of the both below 10°C. Stir electrolyte to keep temperature uniform

Treatment:

- a. Vacuum anneal Re for 1/2 hour at 1600 1700 °C.
- b. Electropolish: 20-25 volts, 5 A/cm^2 , 5-15 sec.
- c. Electroetch: 5 volts, voltage 15 important, 1 A/cm², 1 min.

APPENDIX 2

TEST DATA FROM CONVERTER T-201

E H C	INE	MO ERING	C 0 8	PORI	RON				of.		
onverter No <u>7-2</u>	>/			. Run No	_/			erver_/	B	Re	5
VARIABLE		I	2	3	4	5	6	7	8	9	10
Date 1966		1-20	1-20	1-20	1-20	1-20					
Time		9 15	9 50	10 32	13.05	13 10					
Elopsed Time, Hours		-	06	13	38	3,9					
T ₀ ,°C			1536	1644	1750	_					
T _O Corrected, °C			1544	1653	1760				Ì		
∆T _{Bell Jar,} °C			с II	12	5/						
T _H ,°C	• •		1555	1665	1775	—					
∆ ^T E, °C			-5	-5	-5						
[™] E,°K			1823	1933	2043	—					
V _o , volts	•		.499	1350	.004						
I _o , amps			0	0	0						
P _o ,watts			0	0	0						
I-V Trace No			_								
	mv		105	/3.0	15.3						
τ _R (II)	°C		258	319	374						
	°К		531	592	647						
· · · · · · · · · · · · · · · · · · ·	mv		/-8;",	2-060	2-172						<u> </u>
τ _c (-)	°C		437	200	576						
	٩К		710	803	869						1
T (11)	mv		16.1	19.5	21.9	_					
^T C base inner (14)	°C		393	473	529						1
T ()	m٧		16.0	19.5	21.9						
C base outer (13)	°C		391	473	529	-					
- \	rnv		15.1	18.0	200						
TRadiator (12)	°C		369	438	485	- -					
V _{eb} ,volts		0	1010	1002	991	0					
^I eb, ^{mA}	·	0	/21	155	192	0					
E _{Filament} ,volts		*	4.4	4.5	4.7	0					
^I Filament ¹ amps		*	215	22.0	22.5	0					
^I Coll Heater ^{, amps}		*	0	5	6	-			<u>├</u>		
ERes Heater amps		*	0	0	0					· ·	
Vacuum, 10 ⁻⁶ mm Hg		3.0	7.6	66	3.4				-	•	
Measured Efficiency, %	6				—	**			¦		
NOTES * APPLIED $\Delta T_{Bell, hv} = 12$ ** SHUT-OFF, I WITH $T_C =$ RESERVOR	ిం ని సంపెజి 350°C	1600°C FAILED , INTL	, 14°С то ог голас	@ 170 Елате Resis	00°C WITH TANCE	ATE 1007 V, MCAS	:=-(5+ 1518LE 1018CD	164 I) ⁵ ібл 9.51	of De K.Q. HE	AMAGE ATING	

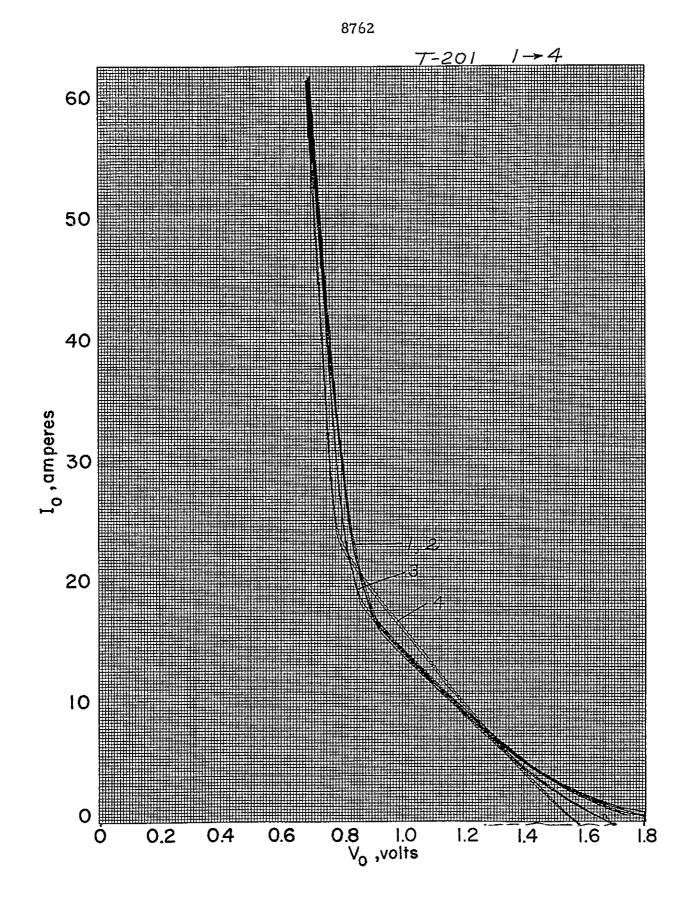
converter No $\underline{\mathcal{T}}$ -	20	<u>. </u>			. Run No	2 ¢	3	Obs	orver	PB	ξ R	5
VARIABLE	Ξ		1	2	3	4	5	6	7	8	9	10
Date	19	66	1-28	1-28	1-28	1-28	1-23	1-28		1-28	1-28	1-28
Тіте			1048	1330'	1450	1502	1513	1521		1551	1700	1733
Elapsed Time, H	ours	·—	0	2.6	39	4-1	4.3	4.5		5.0	61	6.7
T ₀ ,°C				1380	1710	1710	1710	1710		1713	1713	1713
T _O Corrected, °C				6388	1720	1720	1720	1720		/723	1723-	1723
∆T _{Bell Jar} , °C			—	10	14	14	14	14		14	14	14
т _н ,•с			1	/398	1734	1734	1734	1734		1737	1737	1737
∆t _e ,°c			-	-5	-7*	-7	-7	-7		-10	-10	-10
т _Е ,°К			-	1666	2000	1000	2000	2000		2000	2000	2000
V _o , volts				Ļ	-	-		1		-		-
I _o , amps								1		1/4 SCAT		-
P _o , watts				-	-							
I-V Trace No			-		1	2	3	4		**	5	6
		m٧	-	141	16.7	168	171	168		**	14.5	119
T _R		°C		345	407	409	417	409			355	292
	- 11	°K	-	628	680	682	690	682		-	628	565
		m٧		1-925	2-338	2-438	2-538	2-638		**	2-500	2-30
τ _c		¢C		463	669+	719	769	819			750	650
		٩ĸ		740	942	992	1042	1092			1023	923
<u>т</u>		mv	-	169	23.5	24.5	266	287			259	23.3
T _C base inner	14	°C	_	412	567	590	640	690			623	562
 т		m٧,		166	23 0	24.9	26.1	28 1			25.5	23.1
T _{C base outer}	13	°C		405	555	579	628	675		-	614	558
т.		mv		157	20.9	216	231	24 5			227	20.8
Radiator	12	°C		383	504	522	558	590			548	504
Veb, volts			1008	1009	985	984	985	985			989	995
I _{eb} ,mA			105	107	262	262	262	262			251	195
E _{Filament} ,volts			4	42	4.6	48	4.8	48	··		48	4.5
I Filament ^{, amps}			20	2.1	22	22	22	22			22	21
L Coll Heater, amps	•• ··		0	0	0	4	9	12	·	0	8	10
I _{Res Heater} ,amps	-		0	2	2	2	2	0.5		υ	0	0
Vacuum, 10 ⁻⁶ mm H	łg		3.8	16	2.0	2.2	2 B	3.4		2,0	1.5	/3
Measured Efficience		\$			-	_ [
NOTES #1 AVERA										393 Du		
** ALL ATTEMPTS EVEN WHEN DECIDED TO O ALL POWER 76	TH Le	с ЕМ Міт А	1756 - 1Ax C	7EMPEN VRPEN	.47URE T TO	WAS .	ALLONE	5 70	DROP	Tc	оvе кні 1400 °C	[A7)~6

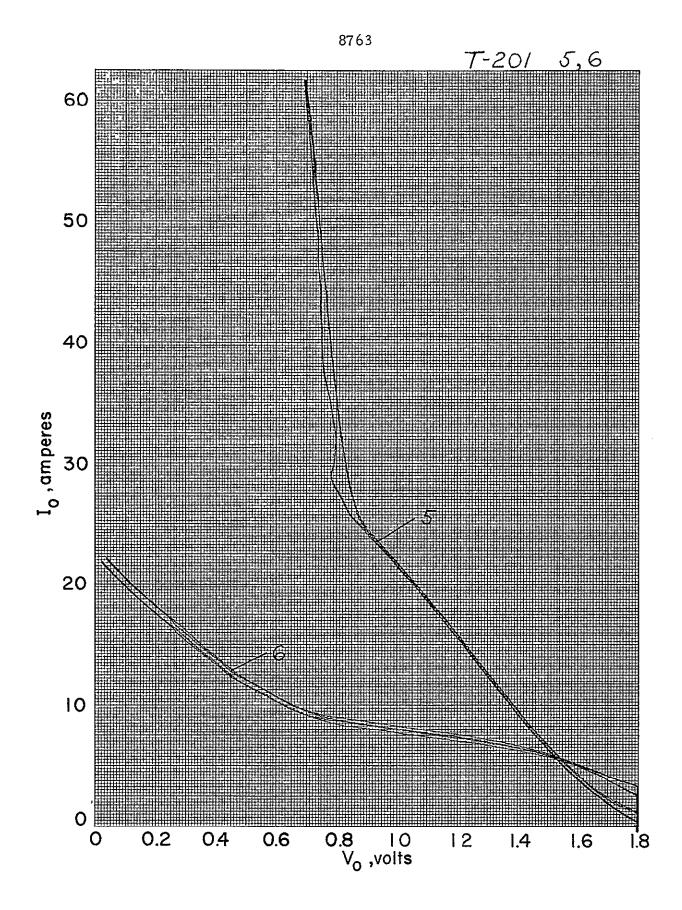
Converter No	-01			. Run No			0bs	erver	ses_	sede é	P.B
VARIABLE		1	2	3	4	5	6	, 7	8	9	10
Date	1966	2-1	2-1	2-1	2-1	2-1	2-1	2-2	2-2	2-2	2-2
Time		1000	1117	1220	1312	1622	1725	0957	1113	1135	120
Elapsed Time, Hou	rs				-	0	1.0	176	188	19.2	19 6
T _o ,⁰G		1676	1618	1676		17/3	1715	1708	16 74	7670	171
To Corrected, °C		1686	1688	1686		1723	1725	17/8	1684	1680	172
<u>∆</u> T _{Bell Jar,} °C		• /4	14	14		14	14	14	14	14	14
™ _H ,°C		1700	1702	1700		1737	1739	1732	1698	1694	174
∆ ^T E,°C		—	8	8	-	10	10	11	8	B	10
т _е ,•к			1967	1965	-	2000	2002	1994	1963	1959	200
V _o , volts			1003	.9022	—	.593	-592	.587	1.602	. 900	104
I _o , amps		-	15.1	16.7		35%	369	408	172	192	384
P _o , watts			1515	1507		212	21.9	23.9	17.2	17.3	23.7
I-V Trace No		-									—
	۳v		131	13.5	-	140	14.2	14.2	13.7	13.9	14.4
т _R	°C		322	331	-	343	348	348	336	341	353
	°K		595	604		616	621	621	609	614	626
	mv		2-224	2-270	-	2-50r	2-530	2-556	2-312	2-357	2-51
τ _c	°C		612	635	-	75.	765	778	656	678	759
	٩К		885	908		1023	10:8	1051	929	ł	932
	mv		213	21.8		24.9	252	25.6	229	23.5	25
^T C base inner	°C		515	52.7		600	+c7	616	553	567	60%
	mv	1	20,9	21.4		243	29-5	249	226	23.0	240
T _C base outer	°C		506	518	- 1	586	590	600	546	555	593
	mv		192	19.6		219	22.0	22.3	20.5	209	221
T _{Radiator}	°C		466	476		517	532	539	497		534
V _{eb} ,volts	L	<u> </u>		9902		982	981	977	989	989	981
I _{eb} ,mA			<u> </u>	2247		305	309	32.3	229	238	29
E _{Filament} ,voits		 	46	46		49	4.9	5.0	46	46	4.8
I Filoment, amps			215	2/5		22 5	22.5		215	215	22
^I Coll Heater ^{, amps}		<u> </u>				0	0	0	5.5	5.5	0
¹ Res Heater ^{amps}		 				2.5	2.5	25	4	4	5.5
Vacuum, 10 ⁻⁶ mm Hg	9	/3	.89	.86	.80	6	2	1	$\frac{1}{1}$	1	1
Measured Efficiency		*			**	7				t e	1-
NOTES & CONVER † START KESULTED IN	TER. ST OF STEP	idy sta	TE RUI	J. 4	Ə INCORRI	ECT INT				RESER	

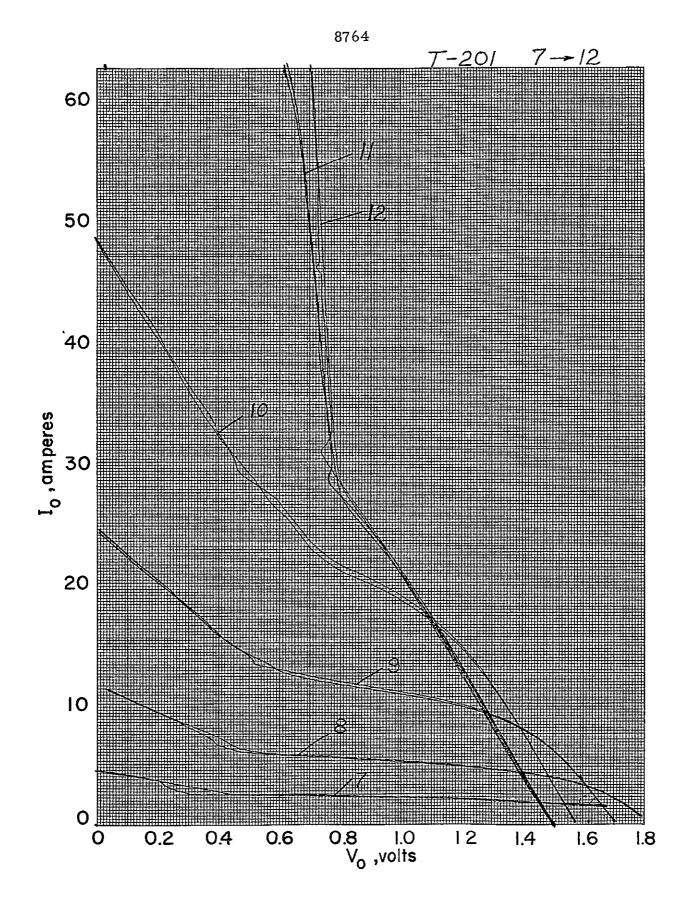
nverter No <u>7-</u> 2	01			. Run No			Obs		in a	nd R.	
VARIABLE		<u> </u>	2	3	4	5	6	.7	8	9	10
Date	1966	2-2	Z-3	2-4	2-4	2-4	2-6°	2-6	2-8	2-8	
Time		1732	1038	0850	1020	1642	1230	1300	0845	0945	
Elapsed Time, Hours	3 	251	42 2	58.4	599	66.3	108	1085	152.4	153.4	
т _о ,°С		8171	17/1		1713	1720		1715	1720	1720	
To Corrected, °C		1728	1721		1723	1730	-	1725	1730	1730	
∆T _{Bell Jar,} °C		14	14	-	<i>1</i> 4	14		/4_	- 14	14	
^т н ,°С		1744	1735		1737	1744	-	1739	1744	1744	
∆ ^т Е, •с			10		10	10	-	10	10	10	
^т Е,°К		2006	1998		2000	2007	-	2002	2007	2007	
V _o ,volts		.604	.600		.599	.598		.599	.598	.598	
I _o , amps		38.3	35.9		38.0	37.6		391	39.4	38.9	
P _o ,watts		23.2	216		22 8	22 5		23.4	23.6	23.3	
I-V Trace No		-	-		-	—		-		1	
	mv	14.5	14.2	ļ	/4.3	14.2		14.4	14.2	14.2	
T _R	°C	355	348	+	350	348	' <u> </u>	353	348	348	
	•к	628	621	-	623	621	í —	626	621	621	
· · · · · · · · · · · · · · · · · · ·	mv	2-534	2-514		2-514	2-514		2-520	2-540	2-540	
τ _c	°C	767	757		757	757	-	760	770	770	
	•к	1040	1030	-	1030	1030		1033	1043	1043	
<u>т</u>	mv	25.4	25.1	-	25.2	251		25.3	25.4	25.2	
T base inner	°C	612	604	1	607	604		607	612	607	
	mv	24.7	24.5		24.6	245		246	24.7	24.6	
TC base outer	°C	595	590		593	590		593	595	593	
	mν	22.2	22.1	-	221	22.0		22.1	22.1	22.1	•
T. Radiator	°C	537	534		534	532		534	534	534	
V _{eb} ,volts		979	980	989	981	978	983	981	971	978	
^I eb, ^{mA}		310	305	275	308	309	311	3/1	316	3/3	
Filament, volts		48	48		48	48	4.8	48	48	4.8	
I Filament, amps		22	22		22		220		22	22.	•
Coll Heater ^{, amps}		0	0	0	υ	0	0	0	0	0	
Res Heater amps		5.5	55	5.5	55	5.5	5.5	5.5	5.5	5.5	
Vacuum, 10 ⁻⁶ mm Hg		.84	.70	85.	60	.59	1	.64	• 46	.,46	
Measured Efficiency,	%		*	1			**	—— ——		,	
NOTES * POWER ** POWER † SHUT OFF	FAILUR FAILUR	E CAU	SED UN	עד די אד די אד די	5 HUT	r OFF r OFF	e 58	411Rs - P HRS,		3	

E H		ERINO		ECT I	T108				of.	- i k	2 Slave
Converter No VARIABLE		1	2	Run Nø	_ <u>5</u>	5	Obse 6	7	8	9	10
Date		2-14	2-14	2-14	2-14	2-15	2-15	2-15	2-15	2-15	2-15
Тіле		1709	1719	1735	1747	0943	0958	1047	1115	//28	1139
Elapsed Time, Hours		179.9		180 4	180 6	1965	1968	197.6	198.0	198.2	
Т _о ,•с		1710	1710	1710	1710	17/2	1712	1612	1612	1612	1612
To Corrected, °C		1720		1720	1720	1722	1722	1621	1621	1621	1621
Δ ^T Bell Jar, °C		14		14	- 14		14	12	12	12	12
T _H ,°C		1734	1734	1734	1734	1736	1734	1633	1633	1633	1633
Δ ^T _E , °c		7	7	7	7	9	9	6	6	6	6
Т _Е , °К		2000	2000	2000	2000	2000	2000	1900	1900	1900	1900
V _o , volts		<u> </u>			-					_	
I ₀ ,amps		-			181	22	22	3	6.5	13	21
P _o ,watts				_	_	-		-		_	-
I-V Trace No		7	8	9	10	11	12	13	14	15	16
·······	mv	110	11.8	126	/3.4	143	15.2	110	11.8	12.6	13.4
т _R	°C	271	290	310	329	350	372	271	290	310	329
	۰ĸ	544	563	583	602	623	645	544	563	583	602
	mv	2-356	2-424	2-474	2-538	2-584	2-628	2-356	2-408	2-478	2-558
т _с	°C	678	712	737	759	792	814	678	704	739	779
•	٩ĸ	951	985	1010	1032	1065	1087	951	977	1012	1052
	mv	24.2	25.6	264	274	28.0	28.7	25.1	26.1	26.9	27.B
T _C base inner	°C	583	616	635	659	673	690	604	628	647	668
	mv	240	25.4	262	27.1	27.6	28.3	25.1	260	26.6	27.5
T _C base outer	•c	579	612	630	652	663	680	604	626	640	661
	mv	21.5	22.5	23.0	23.9	23.9	24.5	22.2	ZZ 9	23,3	23.9
T _{Radiator}	°C	520	543	555	576	576	590	537	553	562	576
Veb, volts	1	1000	999	997	994	987	985	1003	1001	997	993
I _{eb} ,mA		184	193	209	229	258	-	153	156	180	203
E _{Filament} ,volts		44	4.4	44	46	4.8	4.8	4,4	44	4.5	4.5
I _{Filament} , amps		21	21	21	21	215	21.5	20.5	20,5	20.5	2/
I Coll Heater, amps		- //	115		115	12.0	12.0	12 3	13.0	13.0	13.0
I Res Heater tamps		3	4	4	5	5.5	55	2.5	3	3.5	4
Vacuum, 10 ⁻⁶ mm Hg		2.6	2.7	2.7	2,7	2,6	2.7	2.6	27	2.7	2.7
Measured Efficiency,	%	*									-
NOTES DELAY FROM * T _c / T _R † AVG I.	1 2-8 = 175	(SSK)	EPB :	SAN DIE	Go - Pris	ER)		FAILURE	-	ur	<u> </u>

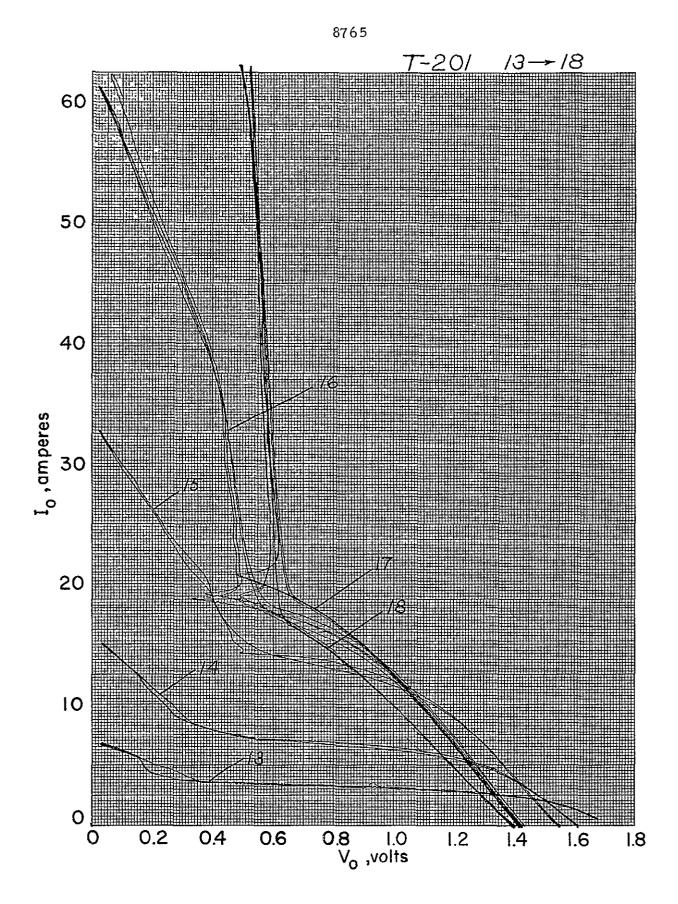
							01	et <u>6</u>	-6	9	
		ERINI		ECT RPOR	RON ATION		She	er		<u>/</u>	
Converter No	21			Run No	<u>5</u> ¢	6	Obs	erver(P Bri	sens	
VARIABLE		1	2	3	4	5	6	7	8	9	10
Date		2-15	2-15	2-15	12-15	2-15	2-15	2-15	2-15	2-16	2-16
Time		inss	1210	1639	1649	1655	1705	1734	1746	1532	1641
Elapsed Time, Hours	;	198.7	199.0	203,4	203.6	2037	2039	204.4	204.6	2263	227 5
™, ,°C		1612	1612	1514	1514	1514	1514	1514	1514	1710	1710
To Corrected, °C		1621	1621	1522	1522	1522	1522	1522	1522	1720	1720
∆T _{Bell Jar} , °C		12	12	10	10	10	10	10	10	14	14
T _H ,°C		1633	1633	1532	1532	1532	1532	1532	1532	1734	1734
∆ ^T E,°C		6	6	5	5	5	5	5	5	7	7
T _E ,°K		1900	1900	1800	1800	1800	1800	1800	1800	2000	2000
V _o , volts		—	-	-		-	-	-		-	-
I _o , amps		216	20.8	33	5.0	<i>S</i> .9	6.3	7	19.3	21.2	21.1
P _o , watts		-	-			—	_		-	_	-
I-V Trace No		17	18	19	20	2.1	22	23	24	25	26
	۳v	4.3	152	11.0	11.8	12.6	13.4	14.3	15.2	167	16.7
т _R	°C	350	372	271	290	310	329	350	372	407	407
	٩ĸ	623	645	544	563	583	602	623	645	680	680
	mv	2-594	2-594	2-356	2-364	2-378	2-400	2-400	2-534	2-388	2-58
т _с	°C	797	797	678	682	689	700	700	767	694	<i>1</i> 94
	٩К	1070	1070	951	955	962	973	973	1040	967	1067
т.	mν	28.4	28.5	25.2	25.6	Z5.8	26.1	26 4	27.6	23.4	27.6
^T C base inner	°C	682	685	607	616	621	628	635	663	564	663
r	mv	28.1	28.2	25.2	25.6	25.7	260	26.3	27.4	23.0	27.3
^T C base outer	°C	675	678	607	616	618	626	633	659	555	656
т	mν	24.3	24.4	22.3	22.6	22.7	22.9	231	23.9	20.9	239
T _{Radiator}	°C	586	588	539	5.46	548	553	558	576	506	576
Veb volts		992	993	1011	1009	1008	1007	1005	1001	987	988
I _{eb} ,mA		218	215	121	131	/35	142	145	178	270	262
E _{Filament} ,volts		4.6	4.7	4.3	4.3	4.4	4.4	4.4	4.4	4.8	4.8
IFilament, amps		21	21	20	20	20	20	20	20	21	21
^I Coll Heater ^{*amps}		13	13	13	13	/3	73	13	/3	0	11,
I _{Res Heater} , amps		5	5	25	3	4	4.5	5	55	65	6.5
Vacuum , 10 ⁻⁶ mm Hg		2.7	2.7	2.6	2.6	2.6	2.8	28	2.8	2.7	27
Measured Efficiency,	%	-			_	—	-			*	_
NOTES * SFART R	N Na	6 (co	LL@C*0	r d),	REPEAT	of <u>1</u> -	v's Nos	2 and	4.		
		-	· ·							<u> </u>	

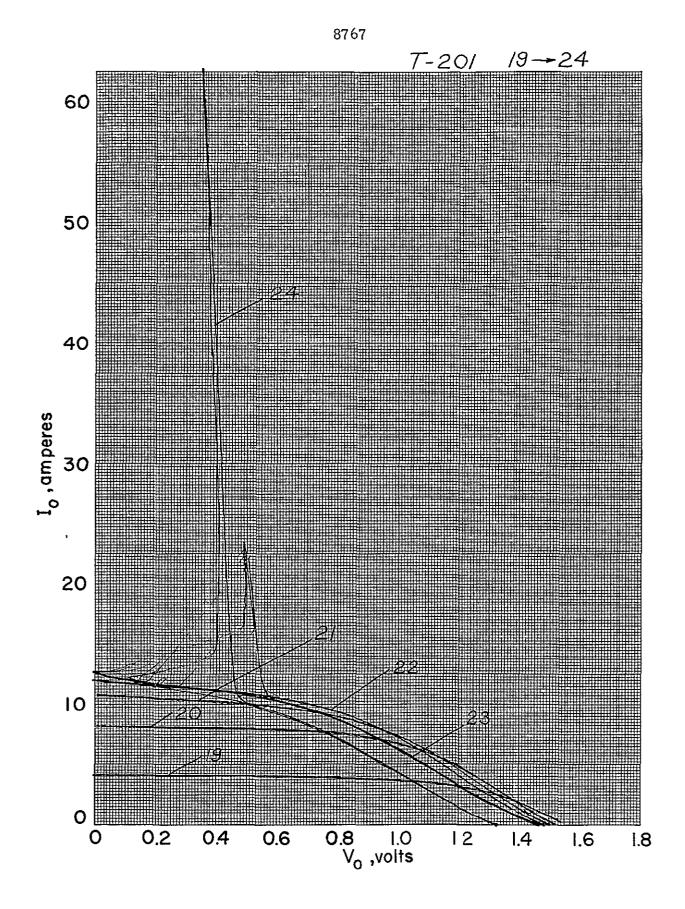

2-6

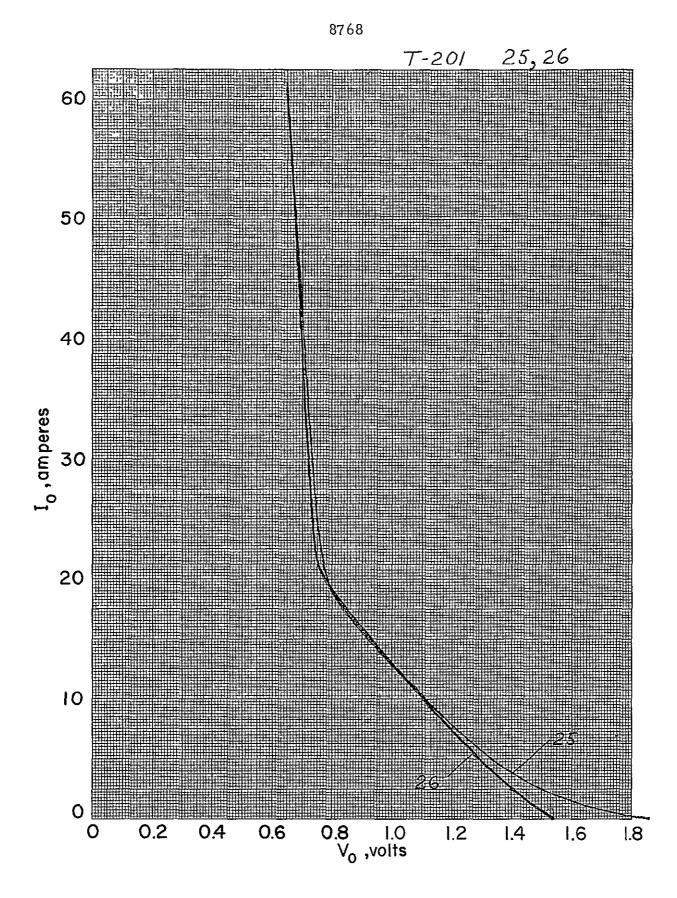

•


onverter No <u>T-20</u>	<u>.</u>			Run No	7 ((ء)	Obse	rver_/	Bro:	sem	
VARIABLE		Ι	2	3	4	5	6	7	8	9	10
Date 19	66	2-16									2-16
Тіте		17//									1805
Elapsed Time, Hours		228.0									228.9
T ₀ ,°C		1708									1708
To Corrected, °C		171B									1718
∆T _{Bell Jar} , °C		- 14									14
т _н ,ес		1732								-1	1732
∆t _e ,∘c		5								*	5
т _Е ,°К		2000			_					5 ,	2000
V _o ,volts											
I _o , amps		0									0
P _o ,watts		-									
I-V Trace No		-									-
	mv	70	8.0	90	100	11,0	12 0	/3.0	14 D	150	16.0
T _R	°C	172	197	222	246	271	295	319	343	367	391
	°К	445	470	495	519	544	568	592	616	640	664
	mv	2-254	2-254	2-254	8-254	2-254	2-254	2-254	2-254	2-254	2-254
T _C	°C	627	627	627	627	627	627	627	627	627	627
	°К	900	900	900	900	900	900	900	900	900	900
Τ	mν										
^T C base inner	°C	_									
T	m٧	-									
T _C base outer	°C	-									-
т	mv	-									-
T _{Radiator}	°C	—			_						
V _{eb} , volts		1001	1003	1004	1004	1004	1003	1003	1003	1001	1001
I _{eb} ,mA		170 0	169.0	17/4	/75.8	178.3	180.8	183.6	/933	198.8	203.8
E _{Filament} , volts		4.4									4,6
I _{Filament} , amps		20									21 .
^I Coll Heater ^{, amps}		10									70
I Res Heater *amps		0									7.0
Vacuum , 10 ⁻⁶ mm Hg		2.7									27
Measured Efficiency,	%	-								<u> </u>	
NOTES											

				866	67						
	IER	MO	ELE	CT			She	et_8			
Converter No $T-2$		ERINO		Run No	~		Oha	erver	Bio.	m	
VARIABLE		1	2	3	4	5	6	7	8	9	10
Date		2-17	2-17	2-17	2-17	2-17	2-17	2-17	2-17	2-17	2-17
Time		0955	1005	1015	1025	1035	1050	1102	1112	1122	1133
Elapsed Time, Hours		244.7	244.9	245.0	245-2	245.4	2456	2458	246.0	246.2	246.3
T _o ,°C		1579	1579	1579	1579	1579	1676	1676	1676	1676	1676
To Corrected, °C		1588	1588	1588	1588	1588	1686	1686	1686	1686	1686
∆T _{Bell} Jar, °C		12	12	12	n	12	14	14	14	14	14
т _н ,°С		1600	1600	1600	1600	1600	1700	1700	1700	1700	1700
∆T _E ,°C		7	7	6	6	5	11	8	7	7	6
т _Е , °К		1866	1866	1867	1867	1868	1962	1965	1966	1966	1967
V _o , volts		0.600	0.800	1.000	1.200	1400	0.600	0,800	1.000	1.200	1.400
I _c , amps		130	11.4	8.8	5.7	2.6	37.0	18.7	14.8	10.5	64
P _o , watts		7.8	91	8.8	6.8	3.6	22 B	15.0	148	12.6	8.9
I-V Trace No		1			-	-	-	-	-	۱	
	۳î۷	13.0	12-8	12-3	12.3	12.1	13.9	13.6	13:4	13.1	12,7
T _R	°C	319	314	302	302	297	341	333	329	321	312
	°К	592	587	575	575	570	614	606	602	594	282
	mv	2-148	2-120	2-074	2-030	2-000	2-450	2-278	2-226	2-168	2-120
тс	°C	574	560	537	515	500	725	639	613	584	560
	•к	847	133	810	788	773	998	912	886	857	833
T.	mv	19-9	19-6	19.0	18.3	17.8	23.9	215	20.9	20.1	195
T base inner	°C	483	476	461	445	433	576	520	506	487	473
T	mv	19.9	19.4	18.7	18.1	17-6	234	21.4	20.8	20.0	194
^T C base outer	°C	483	471	454	440	42.8	564	518	504	485	47/
 T	mv	18 3	18,0	.17 5	17.0	16.5	21.2	19.6	19.1	18.5	18.0
T _{Radiator}	°C	445	438	426	414	402	513	476	464	450	438
V _{eb} ,volts		998	1000	1000	1003	1005	985	991	993 [,]	995	998
1 _{eb} ,mA		183	178	168	160	150	286	234	222	208	194
E _{Filament} ,volts		4,5	4.5	45	45	4.4	48	4.7	4₹	4.7	4.6
I Filament ^{, amps}		21	21	21	2/	20	21.7	21	21	21	20.5
^I Coll Heater ^{, amps}		0	0	0	0	0	0	0	0	0	0
I _{Res Heater} , amps		5.5	55	5.0	5.0	5.0	60	6.0	55	5.5	5.5
Vocuum, 10 ⁻⁶ mm Hg		26	26	2.6	2.6	2.6	26	2.6	2.6	2-6	26
Measured Efficiency,	6	43	5.1	5.2	42	2.2	7.9	65	6.7	6.1	5.2
NOTES.	P.	183	178	168	160	151	282	232	222	208	194
	<i>4</i> 0	9	9	9	9	9	13	13	13	/3	13
	9cs ₽-9cs	174	169	159	וזו	142	269	219	209	195	181


				866	68						
т	IER	MO	<u>e</u> le	ECT	RON		She	et <u>9</u>) of	9	
E N		ERING	C 0 R						D Da	s ferrer	
Converter No		r .		Run No							
VARIABLE		1	2	3	4	5	6	7	8	9	10
Date		2-17	2-17	2-17	2-17	2-17				-	├
Time		1146	1158	1208	1416	1426	1430		<u> </u>		
Elapsed Time, Hours	s 		246.7	246,8	2491	2492	2493		<u> </u>		
T ₀ ,°C		1773	1173	1773	1773	1773	1773		<u> </u>		
To Corrected, °C		1784	1784		1784		1784		<u> </u>		<u> </u>
∆T _{Bell Jar} , °C		16	16	- 16	16	16	16				<u> </u>
T _H ,°C		1800	1800	1800	1800	1800	1800		<u> </u>	<u> </u>	<u> </u>
∆t _e , °c		/3		9	8	7	7		<u> </u>	<u> </u>	ļ
т _Е ,∘к		2060	2062	2064	2065	2066	2066				
V _o , volts		600	800	1000	1.200	1400	1.400				
I _o , amps		507	390	25.2	18.9	13.1	13.1			1	
P _o , watts		30.4	312	25.2	227	183	183				
I-V Trace No		— ⁻									
	۳v	14.7	144	14.2	141	140	14.0		1		<u> </u>
T _R	°C	360	353	348	345	343	343		1 -		
	•K	633	626	621	618	616	616				
······	mv	2-680	2-554	2-430	2-346	2-288	2-289		<u> </u>	İ —	<u> </u>
т _с	°C	840	777	715	673	644	644				<u>}</u> ——
-	<u></u> K	1113	1050	988	946	917	917		<u> </u>		<u>├──</u>
	mv,	27.0	253	23.6	22.6	21.9	21.8			1	
T C base inner	°C	649	609	569	546	529	527				-
	mv	26.2	247	233	22.4	21.7	216		┼──		
T _C base outer	·℃	630	595	562	541	525	522		<u>├</u>	1	<u> </u>
		23 2	22.2	212	204	19.9	19.9	· · · ·	+		
^T Radiator	•c	560	537	113	494	483	483		┼──		
V _{eb} , volts		976	980	985	986	989	989		1		¦
I _{eb} ,mA		376	342	299	282	261	263				
E volts		5.1	5.0	48	4.8	4.7	4.7	[<u>·</u> —
E _{Filament} , volts		22,3	22	22	<u>├──</u> ──	21	ļ				
I _{Filament} , amps			0	0	21.5	0	21		┼		<u> </u>
L Coll Heater, amps		0 55			0		0			<u> </u>	
Res Heater, amps		[5.5	5.5	·	55	55	 	╂	<u>+</u> -	├
Vocuum, 10 ⁻⁶ mm Hg	0/	26	26	2-6	26	2.6	2.6		╂	┼	<u> </u> _
Measured Efficiency,		83	93	84	8-1	71	*	l	<u> </u>	<u> </u>	<u> </u>
NOTES. * END	of T			÷ 294	278	258	1				
	1 ⁷ 5	367	1		Į	16					
	frs P-955	20	19	18	17	242					
	r-75	347	514	276	261	- / -	1				
		1	1		1						





2-12

APPENDIX 3

COLLECTOR-RADIATOR TEMPERATURE DISTRIBUTION

			APPEND	IX 1-1			
		ELECTRO	<u>N</u>		SI	neet _/_ of	_2_
بالمبتين		- ECTOR-RADIA		ידר איינורה ז	DISTRIBUTI	N	
R	un No/			Observer	-		
	un xio. <u>/_</u>			Observer			-
	· · · · · · · · · · · · · · · · · · ·	1	2	3	4	5	6
Date		1-11-66					>
Time		14 10	14.20	14 30	14 40	14 50	15.00
E _f , vo	olts	5.4	52	50	50	50	5.0
I, an	nps	16	16	16	16	16	16
E _b ,v	olts	0	0	0	0	0	0
L, m	A	0	0	0	0	0	. 0
Ť	mV	100	2 25	3 15	393	4.48	4.87
T ₁	· °C	25	55	77	96	110	118
m	mV	1.00	2 10	300	3.73	4.27	4 66
^т 2	°C	25	52	74	91	104	//3
	mV	100	2 10	3 00	3 71	425	4 64
т ₃	°C	25	52	74	91	103	//3
	mΫ	100	210	2.97	370	4 25	4 62
\mathtt{T}_4	°C	25	52	73	91	103	112
]	mV	1.00	2 05	295	368	420	4.58
^т 5	°C	25	51	72	90	102	112
	mV	. 100	1.90	2 72	3 46	4.00	4 41
т6	°C	25	47	67	. 85	98	107
	mV	100	1.50	2 20	2.92	3 45	3.87
^T 7	°C	25	37	54	71	84	94
	mV	100	1.50	220	292	3 45	387
^т 8	°C	25	37	54	71	84	94

3~1

		ECTOR-RADIA			\sim		
R	un No. <u>2, 3</u>	<u> </u>	R.2	Observer	P. Bros	en-	-
		1	2	3	<u>R3</u>	R4	<u> </u>
Date		1-11-66	}	\	1-12-66	5	6
Time	<u></u>	15 35	1-11-66	1-11-66 16·27	13 15	16 17	11:45
E, v	olts	4 25	475	4.90	4.77	500	410
<u> </u>	·····	/4.1	15 2	16 0	15.2	152	152
I_f, an E						1000	·
E _b , v		1000	1000	1000	1000		1000
I, m.		100	200	300	200	200	200
T ₁	mV	24 40	34.00	41.36	33 90	33 67	¹ 33 45
	°C	588	817	1002	815	809	827
m	mγ	2036	2685	31.05	26.75	26.55	26.00
^T 2	°C	494	646	746	643	638	648
	mγ	2004	26.16	30.06	26 04	25.85	1 25.69
T ₃	°C	486	629	722	627	622	641
-	mV	19.48	2507	2864	25.15	24.90	1 24 25
^T 4	°C	473	603	688	605	600	617
_	mγ	/8 47	2315	25.95	23 25	2302	T 22.25
^T 5	°C	449	559	625	561	555	561
	mγ	16 88	2130	24.05	2103	2090	† 21.80
^T 6	°C	412	516	580	509	506	550
, , ,	mγ	1375	1726	1926	17 42	12.89	*† 519
r7	°C	337	420	467	424	317	610
	mV	/3 72	1720	19.15	1735	1281	*** 5.95
	°C	336	419	465	423	314	693

APPENDIX 4

COLLECTOR ETCHING PROCEDURE FOR CONVERTER T-202

APPENDIX 4

COLLECTOR ETCHING PROCEDURE FOR CONVERTER T-202

Dip collector for 2-minute intervals adding up to 15 minutes max. in solution of:

100 vol saturated K₃Fe(CN)6
5 vol saturated KOH
95 vol H₂O

agitated at the 2-minute intervals. Planes developed are [110]. Ref. C.S. Barrett, Structure of Metals, McGraw-Hill, 1952, p. 194.

APPENDIX 5

TEST DATA FROM CONVERTER T-202 .

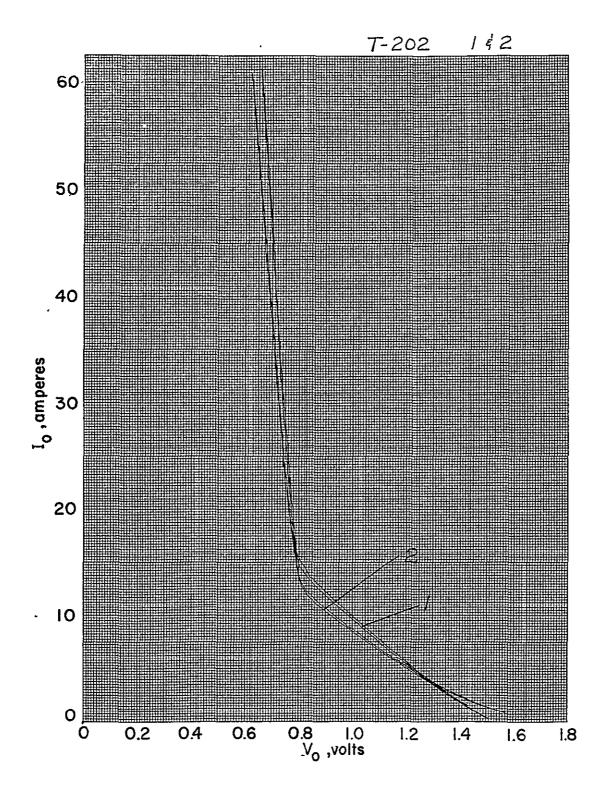
				866	9						
	ER	мо			RON	l	She	et <u> </u>	of .	_ 7	
Converter No <u>T-20</u>	; і н є 17 Л	ERING MCS_ <u>T</u>	; C 0 1		кті в А /	<u>بة ٢.</u>			P. G.	wher	
VARIABLE			2	Run No	4	<u>, </u>	Obs 6	erver/	8	9	10
Date		3-11-46		-		_			3-14-66		3-15-66
Time		1050		1350	1430	1540	1610	1640	1120		0900
Elapsed Time, Hours		<u> </u>	-						0		216
T _o ,°C		1708	1708	1708	1703	1714	1711	1704	1710		1708
To Corrected , °C		1718	8 17	17/8	1713	1724	121	1714	172.0	1723	1718
∆ ^T Bell Jar, °C		18	18	18	18	18	18	18	18	18	18
T _H ,°C		1736	1736	1736	1731	1742	1739	1732	1738	1741	1736
Δ ^T E, °C		8	8	8	7	15	17	8	12	12	12
Т _Е , °К		2001	2001	2001	1997	2000	2000	1997	1999	2002	1997
V _o ,voits						.60	081	1,00	.80	.80	.80
I _o , amps		23 av.	23 ~~	2854	1301	63.7	A0.0	17.9	41.1	407	42,0
P _o , watts			-			38.2	32,0	17.9	32.9	32.6	33.6
I-V Trace No		1	2	3	4		-				
	mv	16.7	16.7	14.3	11.8	15,4	14.0	13.2	14.4	14,4	14.3
T _R	°C	407	407	350	290	376	343	324	353	353	350
	°К	680	680		563	64.9	616	597	626		623
	٣v	1	2-376		2-332	2-682	2-460	2-225	2-466	1	2-466
тс	°C	769	688	766	666	841	730	613	733	733	733
	°К	1042	961	/039	939	1114		886	1006	1006	1006
Т	ش۷	27.2	23,7	26.8	24.2	27.5		21.6	25,0	r	24,9
T base inner	°C	654	572	644	583		· · · ·	522	602		600
	mv	27.0	232	26.5	24.3	27,0		21.2	24.5	24.4	24.4
TC base outer	°C	649	560	637	586	649	583	513	590	588	588
т	mv	23.2		22.9	21.1	23.2	21.3	19.1	1		21.5
T _{Radiator}	°C	560	501	553	511		516	464	522	520	
V _{eb} , volts		988	988	988	997	977	984	993	980	979	981
I _{eb} ,mA			258	260	189	364		230	302	302	303
E Filament , volts		4.9	4.9	4,8	4.6	52	5	4,8	5	5	5
I Filament, amps		21	21	21	20		21.5	21	21.5	21.5	215
^I Coll Heater ^{, amps}		9	0	9	9	0	0	0	0	0	0
I _{Res Heater} , amps		~2	~4	~2	~/	~4	~3	13	~3	1√3	v3
Vacuum, 10 ⁻⁶ mm Hg		6.6	6,4	5	4.6	4.4	4.2	4.2	4.0	3,8	3,4
Measured Efficiency, 9	6										
NOTES											

THERMO ELECTRON Sheel 2 9 CONVETER NO T-202 DCS.TE RUND 2 \$ 3 Observer: B: Gus.H.c. VARIABLE 1 2 3 4 5 6 7 8 9 10 Dote 3164(3-174(3-2146)					86	70						
Converter No $T = 202$, DES-TI Run No $2 \neq 3$ Observer B: 6 w. 4 w VARIABLE I 2 3 4 5 6 7 8 9 10 Date 375:46 3-16:46 3-77:47 32:4-(1 3-21-66	т	IER	MO	ĘLİ	ЕСТ	RON	l	She	et_2	of.	7	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				G C O	R P O R	ATION			5	r	н	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	F	Z De	· · · · · · · · · · · · · · · · · · ·		<u>, </u>		1		T			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				<u> </u>	_	<u> </u>				8	9	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1					1510	1520	1572	1517
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1 ·······					130Z	-		-	1557
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1	1	217	חורו	1710	1710	סובו	1708
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	11.00	1	1						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1	<u> </u>		1						(
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	∆ ^T E,°C		<u> </u>		1	1	· · · ·	<u>;</u>		<u> </u>		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	т _Е ,°К		<u>+ ·</u>				<u> </u>	·	<u>}</u>		1999	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V ₀ , volts		1 · · · · ·	+-·	1			_	-		· · · ·	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I _o , amps		1	1		1	24av	25av	28	18	13	6
$ T_{\rm R} \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P _o , watts		33,8	34.7		· · ·						-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I-V Trace No						5	6	7	8	9	10
*K 62.1 62.1 62.3 62.1 64.5 62.3 62.1 64.5 62.3 62.1 58.2 56.3 54.4 Tc *v 2.466 2.466 2.466 2.712 2.634 2.553 2.414 2.424 2.356 *c 73.3 73.3 73.3 73.3 856 81.7 77.9 74.7 71.2 67.8 *k 1006 1006 1006 1006 112.9 109.0 1052 102.0 78.5 951 Tc *k 1006 1006 1006 1006 112.9 109.0 1052 102.0 78.5 951 Tc *v 24.8 24.9 24.8 24.9 30.8 29.3 27.5 26.0 23.6 23.6 Tc *v 24.3 24.4 24.3 24.4 30.7 29.3 27.4 26.7 26.0 23.5 Tc *v 21.4 21.5 21.4		mν	14.2	14.2	14.3	14.2	15.2	14 3	13,4	12.6	11.8	11.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T _R	°C	348	348	350	348	372	350	329	309	290	271
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		°К	621	621	623	621	645	623	602	582	563	544
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		mv	2-466	2-466	2-466	2-466	2-712	2-634	2-553	2-494	2-424	2-356
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tc	°C	733	733	733	733	856	817	779	747	712	678
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		_°K	1006	1006	1006	1006	1129	1390	1052	1020	985	951
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T C base inner	mv	24.8	24.9	24,8	24.9	30,8	29,3	27,5	26.9	26.0	23.6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		°C	597	600	597	600	740	704	661	647,	626	569
$ \frac{10}{100} = \frac{100}{100} = \frac{1000}{100} = \frac{100}{100} = \frac{1000}{100} = \frac{100}{100} $	T C base outer		24.3	24.4	24.3	24,4	30.7	29,3	27,4	267	26,0	23,3
Radiator °C 518 520 518 520 614 593 567 555 543 508 V_{eb} , volts 982 981 983 980 988 988 993 994 998 I_{eb} , mA 302 303 301 302 251 250 249 212. 200 178 $E_{Filament}$, volts 5 5 5 4.9 4.9 4.8 4.7 4.6 I Filament, amps 21.5 21.5 20.5 20 20 19.5 19 19 I Coll Heater, amps $\sqrt{0}$ 0 0 14 12 11 14 42. 0* I Res Heater, amps $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{0}$		°C		588	586	<u>588</u>	737	704	659	<u> </u>	626	562
Veb, volts 982 981 983 980 988 988 993 994 998 Ieb, mA 302 303 301 302 251 250 249 212. 200 178 Erilament, volts 5 5 5 4.9 4.9 4.8 4.7 4.6 Irilament, amps 21.5 21.5 21.5 20.5 20 20 19.5 19 19 Icoll Heater, amps 21.5 21.5 21.5 20.5 20 20 20 19.5 19 19 I coll Heater, amps $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ $\sqrt{20}$ <td< td=""><td>TRadictor</td><td>mv -</td><td>21,4</td><td>21.5</td><td>21,4</td><td>21.5</td><td>25,5</td><td>2.4,6</td><td>23,5</td><td>23,0</td><td>2,2,5</td><td>21.0</td></td<>	TRadictor	mv -	21,4	21.5	21,4	21.5	25,5	2.4,6	23,5	23,0	2,2,5	21.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		°C	518									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						980	988	988	988	993	994	998
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								250			200	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							4.9	4,9			4,7	
IRes Heater, amps $N3$ $N3$ $V3$ $V3$ $v2$ $N20$ $N2$ $N0$ $N0$ Vacuum, 10 ⁻⁶ mm Hg 3,3 3,2 3,0 2.7 5.2 5.0 4.8 4.7 4.6 4.6 Measured Efficiency, %	¹ Filament ^{amps}			21.5		205			201	19,5		
Vacuum, 10 ⁻⁶ mm Hg 3,3 3,2 3,0 27 5,2 5,0 4,8 4,7 4,6 4,6 Measured Efficiency, % NOTES. * Collector heater failed during data point 10						0	14	12	1		12	0*
Measured Efficiency, % NOTES. * Collecor heater failed during data point 10												~0
NOTES. * Collecor heater failed during data point 10		,	33	3.2	3,0	27	5.2	5.0	4,8	2 ,7	4.6	416
NUIES. & Collector nearch fund ouring data point 10 Bell jar calibrated at end of										~		
	NOTES. * Collecor Bell Jar ca	- near 1, brat	ed at	end o	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	olata y	voint 1	0 1				
	·											

onverter No <u>T-20</u> VARIABLE	<u> </u>	<u>ىرە ت</u>		Run No	1		1	erver/=			<u> </u>
Date		1	2	3	4	5	6	7	8	9	01
Тіле		3-22-6		3-23-66		·	-		10 0-0		
Elapsed Time, Hours		1540	/552	1257	1307	1317	132.7	1337	/347	1440	1450
To ,°C		<u> </u>	1770	1000	سي را		-	14.12			
T _O Corrected, °C		1712	17/0		1615		1613 1622	1612		1518	
∆T _{Bell Jar} , °C		13	17 <u>2</u> 0 13	1624	162A 11	1563	1022	1621	1021	1526	1326
T _H ,°C		1735	/733	1635				· · · ·		<u> </u>	
Δ ^T _E , °C		1155	9	9	1635	/634 9	1627	<u>1632</u> 7		1535 9	9
T _E ,°K		1997	1997	1899		1898		/ 1898	6	1799	1799
V ₀₁ volts		.829	<u></u>	1877	10//	1016	1010	1010	1011	1117	////
I ₀ , amps		39.7	27	23	24	23	20	10	6	22	22
P _o ,watts	•	32.9	<u> </u>	<u>~</u>	24	~	.20	/0	0	66	64
I-V Trace No		-	11	12	13	14	15	16	17	18	19
	mv	14,3	14.3	152	14,3		12,6	11,8	11.0		14.3
т _R	°C	350	350			329	310	290	271	372	350
	°к	623	623	_			583	563	544	645	623
	mv			ř –	2-448						2-448
т _с	°C	724	724	759			660	627	597	759	724
	•к	997		1032	997		933	900	870		997
T	mv	24.6			25,8			22,9	22.1		26.0
^T C base inner	°C	593	612	654	621			553	534	661	626
*	m٧	24.1	25,4	27.0					2Z.1	27,2	26,0
^T C base outer	°C	581	612	649	616	593		553	534	654	626
*	mv	1	-					2.0,3		23.4	
^T Radiator	°C		532	562	562			492	478	564	546
V _{eb} ,volts		985	990	992	992			999	1002	996	996
I _{eb} ,mA		297					191	159		178	
E Filament, volts		5.1	5	4,8	4,8	4.8	4.8	4,6	4.6	4.6	4.6
I Filament [*] amps		20.5	20	19,5		19,5	19.5	19	19	19	19
^I Coll Heater ^{, amps}		0	7	11	η	1	7	7	7	13	12
IRes Heater, amps		~3	N3	~3	~]	~3	~2	NZ	v2.	13	~ <u>}</u>
Vacuum , 10 ⁻⁶ mm Hg		5.8	5,6	5	5	4,8	4.8	4.8	4,8	4.4	- 4.4
Measured Efficiency,	6						<u> </u>	<u> </u>			
NOTES.											

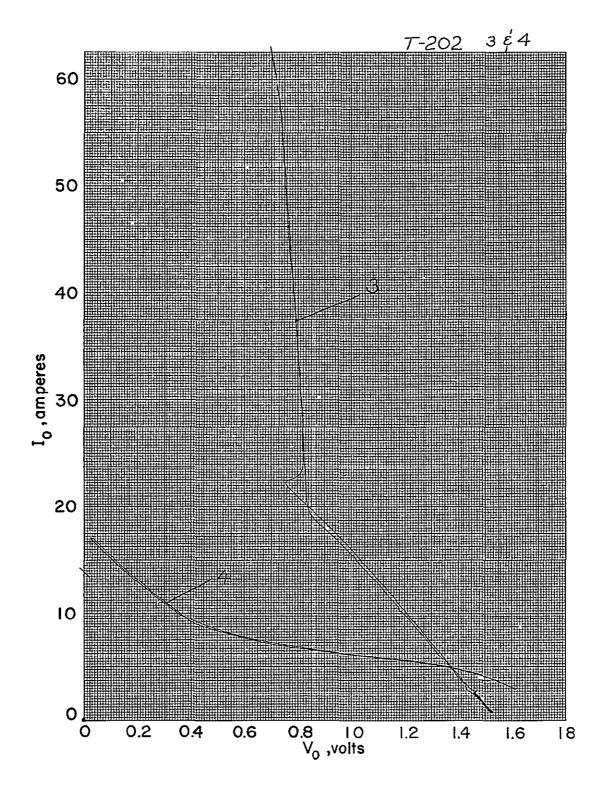
				86	72						
тн	ER			ст	RON		She	et <u>4</u>	of.	7	
Converter No <u>T20</u>		ERINO 12511	; ; ; ; ; ;	Run No	3.4	£ 5	0bs	erver	<u>3.6</u> m	ther	
VARIABLE		1	2	3	4	5	6	7	8	9	10
Date		3-23-66	-					3-24-6		-	-
Time		1	1510	1520	1530	1558	/630	0940	1002	1015	/02.8
Elapsed Time, Hours			-		-	-		-	-	-	
T _o ,°C		1518	1518	1517	1516	וודו	1171	1710	0171	017	1710
To Corrected, °C		1526	1526	1525	1524		1721	1720	1720	1720	1720
∆T _{Bell Jar} , °C		9	9	9	9	13	13	13	13	13	13
T _H ,°C		1535	1535	1534	1533	1734	1734	1733	1733	1733	1733
∆T _E , °C	1	9	9	7	6	9	9	5	5	5	5
™ _E ,°K		1799	1799	1800	1800	1998	1998	2001	2001	2001	2.001
V _o , volts	_					-		2,09	2.07	2,04	202
I _o , amps		22	23	12	6	23	22	0	0	0	0
P _o , watts		-			-			0	0	0	0
I-V Trace No		20	21	22	2.3	24	25	-			—
	mv	/3,4	12.6	11.8	11.0	16.7	16.7	17,0	16.0	15.0	14.0
TR	°C	329	309	290	27/	407	407	414	391	367	343
	°К	602	582	563	544	680	680	687	664	640	616
· · · · · · · · · · · · · · · · · · ·	mv	2-400	2-320	2-254	2-194	2-538		2-254	2-254	2-254	2:254
Тс	°C	700	660	627	597	769	688	627	627	627	627
	•к	973	933		870	1042	961	900	900	900	900
Ŧ	mv	25.2	23.7	23,0	22,6	27,0	23.6	22,9	22,9	22.9	23.1
C base inner	°C	607	572	555	546	649	569	553	553		558
	mv	<u> </u>	23,5	23,1	22.5	26,6	2311	22,6	226	22.5	22.9
^T C base outer	°C	602	567	558	543	640	558	546	546	543	553
7	mν	21.9	20,8		20,0	23,0	20.7	20,3	20,2	20.3	20,4
T _{Radiator}	°C	529	504	492	485	555	501	492	469	492	494
V _{eb} ,volts		997	999	1002		988	988	998	978	998	999
I _{eb} ,mA		176	/67	139	120	250	250	189	187	183	179
E _{Filament} , volts		4.8	4.8	416	4,6	4.9	4.9	4.6	4.6	4.6	4.6
I _{Filament} , amps		19	19	185	18.5	20	20	19	19	19	19
L Coll Heater ^{amps}		1)	9	11	10	9	N 2.	6	6	6	6
I _{Res Heater} ,amps		NZ.	NZ	v2	~1	4	5.5	2	2	2	2
Vacuum, 10 ⁻⁶ mm Hg		413	43	4,3	4.3	4,3	4,3	3.6	3,6	3.6	3,6
Measured Efficiency, 9	6						••		-/.V	~ 0	~1 -
NOTES.		L					·		1		
					<u></u>						

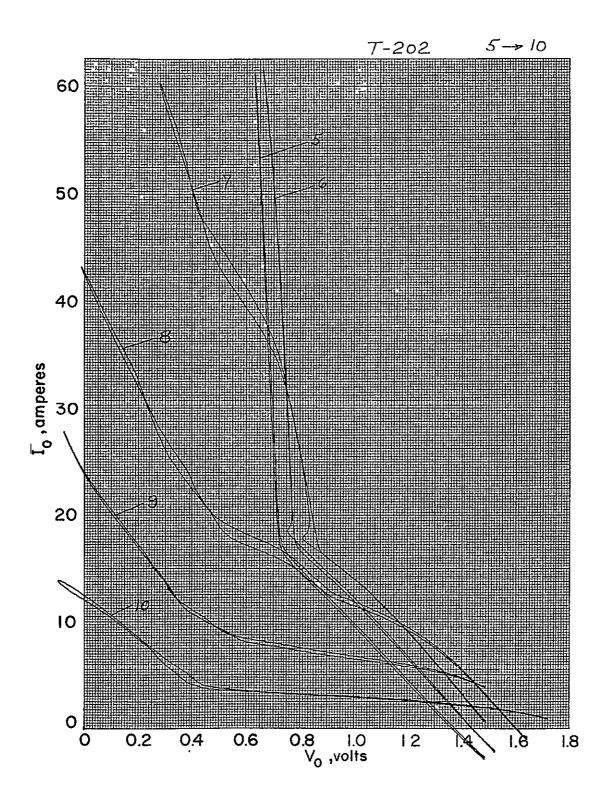
VARIABLE	>2_D		2	Run No	5	<u>¢6</u> 5	6	7	<u>, 6 un</u> 8	9	10
Date	+ •	324-6						0945			102
Time		1042	1055	1115	1137	3-25-66	1	1	1	1003	102
Elapsed Time, Hours		-	-	-	<u> </u>		-				
Т₀,°С		1710	1710	1710	1710	1580	1580	1580	1580	1580	<i>J</i> 67 (
T _O Corrected, °C	<u> </u>	1720	1720	<u> · · · · · · · · · · · · · · · · · · ·</u>	1720		1589	1589	1589	1589	168
∆T _{Bell Jar} , °C		/3	/3	13	13	11	11	11	$\frac{1}{11}$	- 11	1
^T H,°C		1733	1733	1733	1733	/600	1600	1600	1600	1600	169
Δ ^T _E ,°c		5	5	5	5	12	6	6	6	5	15
т _Е , °К		2001	2001	2001	2001	1861	1867	1867	1867	1868	1 · · ·
V _o , volts		2.02	1.97	1.95	1,95	.60	.80	1.00	1.20	1.40	60
I _o , amps		0	0	D	0	41.7	8,5	6.9	4.9	2,5	60,
P _o , watts		0	0	0	0	25.0	6,8	6.9	519	3,5	36,
I-V Trace No					-				-		-
	۳v	/3.0	12,0	11.0	10,5	13,9	12,3	12.2	11.8	11,6	14
T _R	°C	319	295	271	258	341	302	300	290	285	360
	°к	592	57.8	544	531	614	575	573	563	558	633
	mν	2-254	2-254	2-254	2-254	2-379	2-060	2-014	1-986	1-956	2-60
тс	°C	627	627	627	627	627	530	507	493	478	803
	٩K	900	900	900	900	900	803	786	766	751	107
Т.	mγ	23,0	234	23,4	23,4	23,5	19.1	18.6	18.0	17,4	26:
C base inner	°C	555	564	564	564	567	464	452	438	424	63
Τ	mv	23.0	23,5	23,4	23,2	23,0	19.0	18.3	7.7	17.2	250
^T C base outer	°C	555	567	564	560	555	461	445	431	419	623
Τ	۳v	20.4	20.7	20,7	20,6	20,4	17,4	16,9	1614	16,0	22,
TRadiator	°C	494	501	501	499	494	42.4	412	400	391	54
V _{eb} , volts		1000	1000	1001	1000	987	1000	/000	1003	1005	97
I _{eb} ,mA		173	170	166	165	252	158	152	146	141	33
E _{Filament} ,volts		4,6	4.6	4,6	4.6	570	4.6	4.6	4,6	4,6	5,2
I Filament ^{, amps}		19	19	19	19	20	18	18	19	19	20,
^I Coll Heater ^{, amps}		7	10	9	9	0	0	Ô	0	0	0
Coll Heater .		4	3	1	6	3	4	4	3	3	4-
^I Res Heater ^{, amps}		3,6	3,6	3,6	3,6	3.2	3,2	3,2	3.2	3,2	3,2
		17/3									


86	7	4

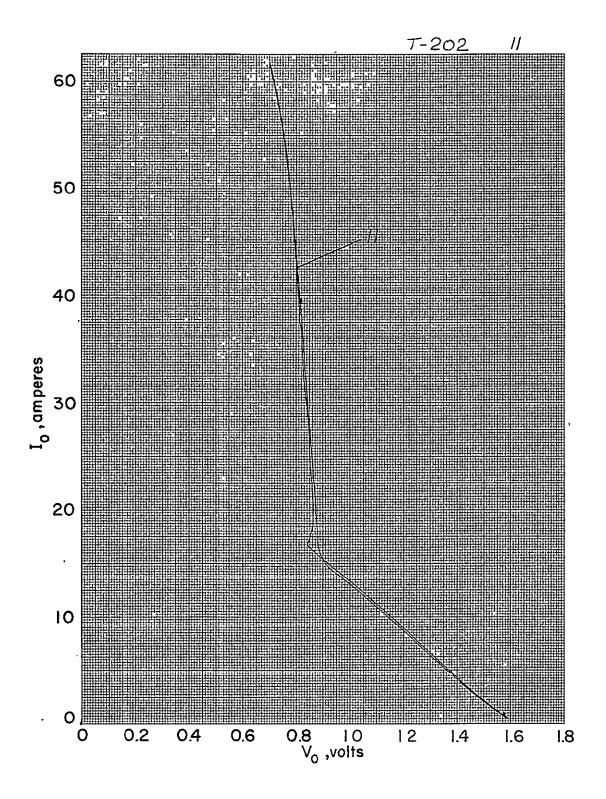
	ER	мо	ELF	86 5 с т 1	14 Ron		She	et (, of.		-
EX	GINE	ERINO			ATION C	·					
Converter No 720	2 0	<u>es II</u>		. Run No			Obs	erver <u>/</u> 3	1 640	rev	
VARIABLE		1	2	3	4	5	6	7	8	9	10
Date	<u> </u>	3-25-66			-	-		-			
Time		/030	1040	1050	1100	1120	1130	1140	1150	1200	
Elapsed Time, Hours											
T ₀ ,°C		1678	1676	1676	1676	1772	בודן	1772	1770	1774	
To Corrected, °C		1688	1686	1686	1686	1783	1783	1783	1781	1785	
∆T _{Bell Jar,} °C		13	13	13	13	15	15	15	15	15	
[⊤] H ,°¢		1701	1699	1699	1699	1798	1798	1798	1796	1800	
∆™ _E ,°C			7	6	6	17	14	10	7	7_	
τ _E ,°K		1963	1965	1965	1965	2054	2057	2061	2062	2066	
V _o , volts		, 80	1,00	1,20	1,40	160	,80	1.00	1.20	1.40	
I _o , amps	-	33,6	12.3	8.8	513	72.1	52.2	30,2	15.0	10,9	
P _o , watts		26.9	12.3	10,6	7.4	43,2	41,8	30,2	18.0	15.3	
I-V Trace No						-			-		
	mv	13.5	13.0	12,6	12,1	15.2	14.7	13.9	13,4	13.1	
т _R	°C	331	319	309	293	372	360	341	329	321	
	•к	604	592	582	566	645	633	614	602	594	
	mv	2-364	2-158		2-054	2-778	2-600	2-396	2-253	2-202	
Tc	°C	682	579	554	527	889	800	698	627	601	
	٩κ	955	852	827	800	1162	1073	971	896	874	
T	mγ	23.4		19,9	19,1	28.7	26.5	23.9	21,9	21,1	
T C base inner	°C	564	497	483	464	690	637	576	529	511	
7	mv	22.9	20.2	19.5	18,9	27,9	2519	23.2	21.4	20,7	
^T C base outer	°C		489	473	459	671	623	560	518	501	
	mv	20,4	/8.4	17,9	17.2	24,0	72.6	20,8	17,3	18,9	
T _{Radiator}	°Ċ	494		436	419	579	546	564		459	
Veb, volts		985	993	995	999	968	974	782		989	
I _{eb} ,mA		266	203	191	/// /73	411		<u> </u>		234	
E _{Filament} ,volts	·	5,0	4.8	9,8	4,6	5,4	5,2	510	9,8	4,0	
I Filament [*] amps		20	19	19	19	21,5	21	20	19,5	19,5	_
^I Coll Heater ^{amps}		0	0	0	0	0	0	0	0	0	
I Res Heater amps		4	3	3	3	3	3	3	3	3	····
Vacuum, 10 ⁻⁶ mm Hg		3.6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	<u>-</u> -
Measured Efficiency, 9	6	310	2.0	0.0	010	~	~/0	-10		10	
NOTES								L	ļ		
		. <u></u>									

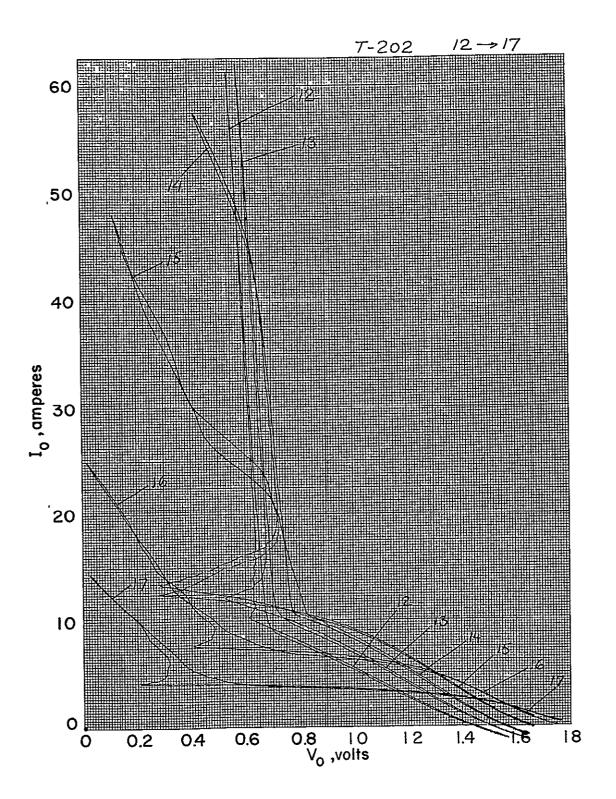
.

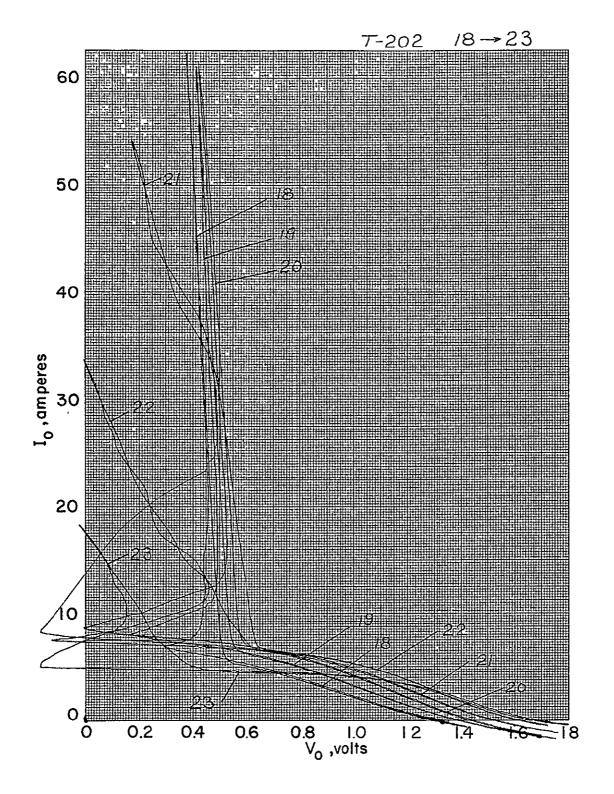

onverter No <u>7-</u> 2	06			Run No			Obse	erver	<u></u>	.nthe v	
VARIABLE		1	2	3	4	5	6	7	8	9	10
Date		3-28-66								ļ	
Time		1045	1105	1120	/300	1313			<u> </u>		
Elapsed Time, Hou	rs						198.3				<u> </u>
T ₀ , °C		1682	1700	-		-	-				
T _O Corrected , °C		1692	17/0		-						
<u>∆^TBell Jar, ^{°C}</u>		/3	13			-					
ĩ_H ,ºC		1705	1723		-	—					
Δτ _Ε , °c		7	5			-					
T _E ,°K		1971	1971	_		-					
V _o ,volts		1,00	2.25		-	-					
I ₀ , amps		9,4	0	_			~				
P _o , watts		9,4	0	-	_	_	-		T		
I-V Trace No											
	mv	14.9	15.2	15,9	16.0	15,6	15,0				
т _R	°C	364		388		381	367		T		1
	₽К	637			664		640				
	mv	2-162	2-162	2-162	2-162	2-162	2-162				
τ _c	°C	581	581	581		581	581				1
	°K	854	854	854	854	854	854		1		1
	mv	20.8	2/3	21.4		20,9	20,9				<u> </u>
C base inner	°C		516	51B		506	506		1		1
	mγ	2014	21.0	21.1	20,6	[····	20,5			1	
^T C base outer	°C	494	508	511	499	499	497				1
-	mv		19,1	(18,8	18:0	18.7				1
^T Radiator	°c	452			457	ř	454		†	1	
Veb, volts	k	991	999	_			-		1		1
I _{eb} ,mA		205	182	-		-					1
E _{Filament} , volts		4.8	4,6		-						
I Filament, amps	-	19	19				-			1	<u> </u>
^I Coll Heater ^{,amps}		0	5	1.5	4	4	4			- <u> </u>	1
I _{Res Heater} , amps	·	10	0	585V	1780		0				
Vacuum, 10 ⁻⁶ mm H	 n	3.4	314	<u>7.5-A</u> 3,4	2.0A 3,4	3,4				<u> </u>	†
Measured Efficiency			<u>- 1/ T</u>	<u>, , , , ,</u>		- J, 1	<u></u>		+		+
NOTES. No coo give T _R vs. h	ling st rater pr	rap 04 ower a	resev t cons	voir faut	during Te bas	e inne	7. v,	Duta	points	4,54	6

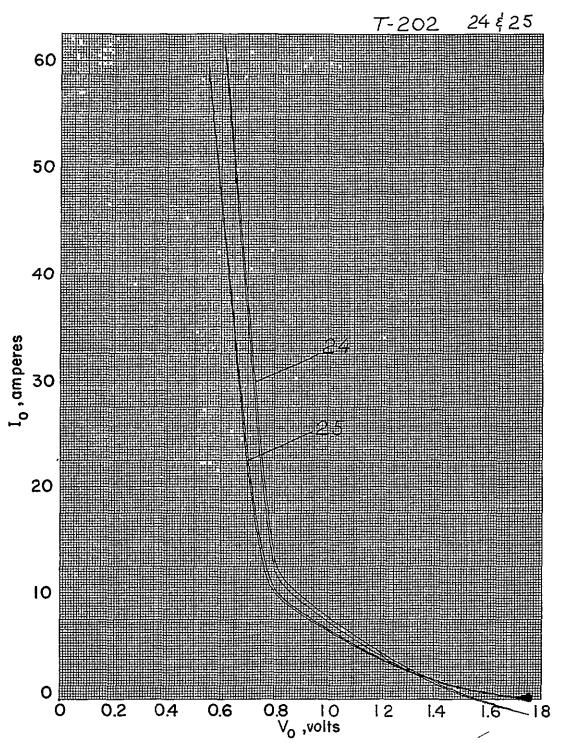


RRMO ELECTRON


7323







APPENDIX 6

TEST DATA FROM CONVERTER T-203B

	L,	E	6	>	т	F	2	0	1	N	
C	0	R	P	0	R	A	T	t	Ô	N	_

E h	GINE	ERIN	G C O 3	RPQR	A T 1 O 1	1		et/			_
onverter No <u>TE</u>	2035			Run No			Obs	erver_ <u>F</u>	<u>213,57</u>	<u>65 (</u>	
VARIABLE		1	2	З	4	5	6	7	8	9	10
Date		6/20		-	6/21	-	-		1		
Time		1105	1424	1700	1030	1047	1142	1206	1225	1240	
Elapsed Time, Hou	rs				_	1		-			
™_,°C		1680	1680	1680	1679	1679	1680	1679	1680	1680	
T _O Corrected, °C						1689					
∆T _{Bell Jar} , °C		14	14	14	14	14	14	14	14	14	
™ _H ,°C		1703	1703	1703	1702	1702	1703	1702	1703	1	•
∆T _E ,°C											
т _Е ,°К		1966	1970	1970	1930	1.970	1966	196.5	1966	1969	
V _o , volts		,8033								,8042	
I _o , amps		27.8	0	0	0		31.2				
P ₀ , watts		22,3	· · · · · · · · · · · · · · · · · · ·	-			25.2				
I-V Trace No											
	mv	132	59 ¹	702	73 ¹³	11	134	0-650	0-655 13.5		
T _R	°C	324	144	172	,	273			33/	_	
	•к	597	417	445		546		602		570	
тс	mv	5-272		·····						5-088	
	°C	636	430			413					
	۰к	909	703		709	746	923			817	
	mv	229	167	17.1	17.0		236		23.3		
^T C base inner	°C	553	407	417	414	440		558		494	
	mv	22.9	166	173		191	23.2				
^T C base outer	°C	553	H05	421	414		560			489	,
	mv	204	153	15.9			205		*		
T _{Radiator}	°C	494	374	388	388	405	497	494	49.9	447	
V _{eb} ,volts		978	996	995	995	991	977	978	978		
I _{eb} ,mA		248	149	150			268			985	
E _{Filament} ,volts		4.8		48	<u>151.6</u> H 7	4.7	5.0	257 4.9	257 4.8	<u> 90 </u> H.6	
I Filament, amps		19	19	18.5	185	185		19			
¹ Coll Heater ^{, amps}		0	0		0	0	0		19	182	
I Res Heater, amps		0	0	0		3	35	0 3.5	0 تىلى. 3		
Vacuum, 10 ⁻⁶ mm Hg		.74	68.	38	0				-	3016	
Measured Efficiency,		<i>40</i> ,	50	3,0	3.2	4.8	2.4	1.8	0.86		
		Coolin	19 FIN	<u>جر ا</u>	5 M -	in a	rades	22120	area		
NOTES / Res. 2. "	·/ ·/ ·/		у ти и	~ 1.2	25 14	m "		J	"	• •	
3 n	h i	• u		20.	6255%	m 1	1 4	't	•7		
4. Io fr 5. I. D	est cla	and r	mder	Time	conde	thone		<i>~</i> ,	- - 7	Jen	
5. IR N. 6. IR DO	receased	1 - 3	A app	- read	Inge N	where .	taken	20 6	egon h	a decient	ee.

THERMO ELECTRON Sheet $\frac{2}{8}$ of $\frac{8}{8}$												
	IER	NO			RON	<u> </u>	She	et_2	of.	8		
	203		G Ç O I	Run No			Obs	erver	RB	5100	ek	
VARIABLE		1	2	3	4	5	6	7	8	9	10	
Date		6/2/	1/22		- 14				6/23			
Time			1		1439	1522	1/22	1700	1042	1255		
Elapsed Time, Hours	;							-				
T ₀ ,°C		1690	1680	1680	1682	1690	1690	1690	1690	1690		
To Corrected, °C		1700			1692		1700		1700	1700		
∆T _{Bell Jor} , °C		14	14	14	14	14	14	14	14	14		
™ _H ,°C		1714	1703	1703	1706	17/4	1214	1714	1714	1714		
Δ ^T E,°C												
[™] E,°K		2002	1970	1966	1974	2002	2002	1976	1976	2002	•	
V _o ,volts		.7440		,8024		.7909		<u> </u>	\$089	_		
I _o , amps		0	.1	30.2		1.2		<u> </u>	315	1.7		
P _o , watts		0	0752	24.23	,152	, 949			25,58	1.355		
I-V Trace No		-										
	mv	0-402	0-1/20	0-654	0-420 90	0-495	10 6	0-654	0-662	10 6		
τ _R	°C	204	219	341	222		261	333	341	261		
	٩К	477	492		495		534	606		534		
	mv	0-900	0-884	5-280	0-870	0-934	0-944	5-314	5-299	0-961		
т _с	°C	450	442	640	435	467	472	657	649	480		
	°ĸ	723	715	913	708	740	745	930	922	753		
Т	mv	172	17.3	23.4	170	18.0	181	233		182		
T _C base inner	°C	419	421	564	414	438	440	562	569	443		
Т	mγ	17.2	172	25.2	17.0	17.9	181	233	23,5	18.2		
^T C base outer	°C	419	417	560	414	436	440	562		443		
Τ	mv	159	159	20.5	15.9	16.5	167	20.5	20.9	16.7		
T _{Radiator}	°C	388	388	497	388	402	407	497	506	407		
V _{eb} ,volts		994	995	978	994	991	990	975	978			
1 _{eb} ,mA		156	152	261	154	163	164	274	269	164		
E _{Filament} ,volts		4.6	46	5.0	4.7	4.6	4.6	4.9	4.8	4.5		
I Filament ^{, amps}		184	18.3	19.0	18.5		18	19	19	18		
I Coll Heater ^{, amps}		0	0	0	0	0	0	0	0	0		
I Res Heater ,amps		0	0	23	0	0.	05	1.2	1.3/2	0		
Vacuum, 10 ⁻⁶ mm Hg		32	5.0	3.8	8.0	2.0		1.4	0.46	.24		
Measured Efficiency,												
NOTES 1. Painted view. 2 to 1/3 of C. Runted 3 IR decreased to 0 ofter wachings in live taken. To beyon to dec. 4 The Point on view. 5. IR applied of the reachings where taken 6 Conclubration to 0 ofter wachings taken.												

Onverter No / # VARIABLE	-20		2	- Run No 3	4	<u>2~3</u> 5	6	erver_//	8	<u>/ose</u> . 9	T
Date		6/23	6/23	-		<u> </u>			1/27	6/27	1
 Time		1612		0942	1103	1051	1156	1755			+-
Elapsed Time, Hours		/ <u>/// –</u>				012		6.0	69.9	77.8	e
T _o ,°c		1710	1710	1710	1710		1715	1721	1720	1720	Г
To Corrected, °C		1720	1720	1720			1725	1731	1730	<u> </u>	
∆T _{Bell Jar} , °C		14	14	14	14	14	14	14	14	14	T
™ _H ,°C		1734	1734	1734		1744	1739	1745	1744	1744	1
∆ ^T E,°C											
[™] E,°K	1998	1998	1998	1998	1998	2000	2.005	2004	2004	ŀ	
V _o , volts	1034	1.344	1.341	1.342	.9019	.8009	.7999	.7990	.8059	ļ	
I _o , amps	_	21 4ar	26.5	24.0	26 Jav	388	39.1	40.2	37.9	38.3	
P _o , watts		2868	35,62	32,99	35,3	31.1	31.32	32.2	30,3	30.9.	k
I-V Trace No	.	1	2	3	4				<u></u>		
	mv	0-814 169	0-814	0-6421 119	13.3	139	0-666	0-614	13.9	0-666	ľ
T _R	°C	412	412	292	326	341	341	341	34.1	341	Ŀ
	•к		685	565		614		614	614	614	L
	mν	5-338	5-538	5-352	5-518	5-380	5-394	5-416	5-376	5-401	3
τ _c	°C	669	769	675	759	690	698	708	698	700.5	
	°К	942	104Z	948	1032	963	971	981	701	973,5	ľ
T _C base inner	mv	24.4	27.3	229	r	24.9	24.9	24.6	1	249	ŀ
	°C	588	656	553	633	600	600	592	588	600	1
T _C base outer	mv	24.3	27.9	22.9	26.3	249	24.9	24.9	242		ľ
	°C	586	671	553	635	600	600	600	583	600	ļ
T Radiator	mv	21.4	239	19.9	222	4	21.9	21.9	21.9	219	ŀ
	°C	518	576	483	537	529	529	529	529	529	k
V _{eb} , volts		979		984	782	976	975	974	974	924	ľ
I _{eb} ,mA		256,5	269	2.49.2	259	299	300	365		301.6	1
E _{Filament} , volts		48	4,8	4.8	4.8	5.0	5.0	5.0	4.9	5.0	ŀ
I _{Filament} , amps		19	19	18.9	189	19 1	19.1	194	19	19.1	ŀ
L Coll Heater, amps		3	9.5		10	0	0	0	0	0	
Res Heater, amps	2	1.0-	0	0	0	0	0	0	0	-	
Vacuum, 10 ⁻⁶ mm Hg		0.48	0.8	0.54	054	0.36	0.34	0.25	0.32	0.12	ŀ
Measured Efficiency,		L		<u> </u>				Ļ,	1		Γ
NOTES. J. flix ~		nweed	+ C5 L	mf	That.	1 miles	-9-e	,	A J R	CHE	

•

тн	ER	мо	ELE		RON		She	et. <u>4</u>	of.	8	r
Converter No TEJ	1 N E	ERIN	6 C O 1	RunNo	۱ T I O I ۲ ک	4	Obsi	erver. Z	?B.	51os	e/c
VARIABLE			2	3	4	5	6	7	8	9	10
Date		4/28	6/28	4/29	7/1						
Time		1.6.		·/	0852	11.45	11.54	1 1 173	17 13	1724	1770-
Elapsed Time, Hours		992	100.7	118.6		1/@/J			<u> </u>	// <u>~</u>	
T_, ,•C			1		1720	1223	1720	1720	1720	1730	17.10
To Corrected, °C	-		<u> </u>	1735	1730		1740		1730		1720
∆T _{Bell} jar, °C	14°	14	14	14	14	14	14	14	14	14	
т _н ,°с			1745		<u> </u>	[1754			1754	1734
Δ ^T _E , °C		<u> </u>	1.7.4	//00	<u>,,,,</u>		1/2/	11-1		17.0 7	1707
т _Е , °К		2015	2.005	2009	1998	1998	2022	2020	1998	2019	1999
V _o , volts	• • ••••	.8642	1	<u>í</u>	17669			_			
I _o , amps		33.2	1-°+	395	1	4 gar	795	14 94	2,90	22.00	24.900
P _o , watts		1	i		29.8			<u>/</u>	-		
I-V Trace No		-	<u> </u>			5	6	7	8	9	10
	m v	0-649	0-674	0.674	0-659 139	0-542	0-580		0-65	0-700	15.2
τ _R	°C	131 321	<u>13.9</u> 341	341		119_ 292	119 1292	12.9	13.4		372
n j	°K	594	614	614			1565		602		645
•	mv	5-350	5-413	5-419	•	5.194				5-448	
тс	°C	678	206	209	691	597	627		700	724	75-9
Ŭ	•к	951	· <u> </u>	982		870	;_	933	973	191	1032
_	my	239	24.7	24.9	24.9						27.9
T _C base inner	°C	576	595	600	600			249	•		671
	my					555			i i	628	
^T C base outer	°C	23.9		249 600	24,9 600		234		25.9		,
	mv	576	595			553	576	600	623		671
Radiator .	°C	20.9	21.9	2/.9	21.9	200	209			27.9	
V _{eb} ,volts		506	529	529	529	485	306	529		553	
I _{eb} ,mA				973	972 300		97/ 2000	986	782		982
			3075				200 9		259	259	260
E _{Filament} , volts		4.9	5.0	5.0	5,0	4.8	4,8	4.8	4,9	4.9	4,8
I Filament, amps		19	19	19.1	19,1	18.5_	16.8	18.9	19	19	19
L Coll Heater ¹ amps		0	6	0	0	9	9	9.5	95		10.0
I Res Heater amps		0.089	0 0.1	0 0,14	0	2	2	2	25		3.0
Vacuum, 10 ⁻⁶ mm Hg	Measured Efficiency, %				,062	<u>] ,0</u>	6,2	4.4	42	3.4	4.2
NOTES											

-

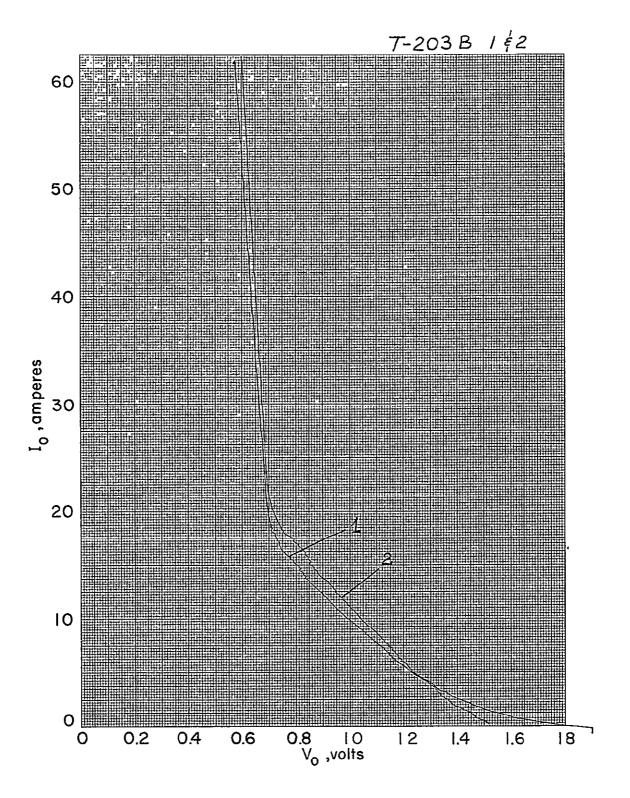
÷

т	ER	MO	ELE		RON		She	تک_t	- of.	8	
	ا ۲ الا الا ق ک ل	екти г <i>1</i> 2			<u>, , , , , , , , , , , , , , , , , , , </u>		0	Æ	ז זו	lose.	6
VARIABLE		2	Run No 3	4	5	0bse	rver <u>//</u>	8	9		
Date		7/5-	-			-		- [,			
Time		1038	1050	1/25	11.38	1150	1204	1322	1350		1-1-12
Elapsed Time, Hours		-				-	-	-			-
T _o ,°C		1610	1620	1650	1618	1620	1621	1500	1520	1500	1510
To Corrected, °C						1639					1519
∆T _{Bell Jar} , °C		12	12	12		12	12		12-	12	12
^т н ,°с		1632	\$1.42	1652		1652	1641	1518	1539	1518	1529
Δ ^T E, °C									·	· · · · ·	
т _Е ,°К		1897	1908	1918	1902	1918	1905	1786	1806	1786	1792
V _o ,volts				ì		-		1		۱	-
I _o , amps		12 am	18 4 Tur	15 30	2798	28.90	24 am	3.9a~	4.99~	20,000	27990
P _o , watts						-	-			-	-
I-V Trace No		11	12	13	14	15	16	17	18	19	20
	mν	11.2	0-580	0-620 12.9	0-658	1700 140	0-744	0-542	580	0-620	0658
T _R	°C	276		317	، کرتی	343	316	280	272	317	331
	°К	549	568	590			649	553	565	590	604
	mv	5-194	5-254	5-320	5-400					5 320	5-400
тс	°C	597	627	660	700	724	759	597	627	660	700
	°К	870	900	933	973		1032	870	900	933	973
Б. н	mv	23,0	23,8	24.9	25.9	26.0	27.9	231	24.0	24.9	76 V
T _C base inner	°C	555	574	600	623	626	671	558	579	600	676
Τ	mv	229	23,8	24.9	25.9	26.0	27.9	23.1	24.2	24.9	260
T C base outer	°C	553	574	600	623	626	671	558	583	600	626
Т	۳v	20.Z	20.9	21.6	22,5	230	23.9	70.4	21.2	21.8	22,5
T Radiator	°C	489	506	522	543	555	576	194	513	527	543
Veb, volts		990	786	786	980	779	780	999	995	888	982
I _{eb} ,mA		153	180	193	230	238	232.9	121.9	136,4	162.9	200
E _{Filament} volts		4.5	4.6	4,6	4.5	4.8	4.8	4.4	4.4	46	4.6
I Filament [*] amps		12.5	18.0	18	19.2	18.5	18.5	17.2	125	180	18,0
^I Coll Heater, amps		8.5	8,5	9	9.5	9,6	10.5	10	10,5	10.5	10.5
I _{Res Heater} , amps		1	1	1	1	<u>,</u>	2	1	2_	2	2
Vacuum, 10 ⁻⁶ mm Hg	·32	.32	,32	,44	.72	1.0	1.0	,70	, 24	.30	
Measured Efficiency,	%					_					
NOTES											

				86	81						
	ER	MO		ECT	RON	<u> </u>	She	et <u>- 6</u>	of .	8	
Converter No	- <u>zo</u> 3			- Run No		546	Obs	erver	RU.	5/05-	ek
VARIABLE		1	2	3	4	5	6	7	8	9	10
Date		7/5	-	7/6	-	-	-		-		-
Time		1532	1555	1035	1/00	1145	1200	1215	1255	1307	1420
Elapsed Time, Hours			-	~		-		-			-
T ₀ ,°C		1520	1570	1715	1718	1710	17/0	1712	8161	1710	1705
To Corrected, °C		1529		1725	1 0		1720	1772		1720	1715
∆T _{Bell Jar} , °C		12	12	14	14	14	14	14	14	14	14
T _H ,°C		1539	1529	1740	1742	1734	1734	1736	1742	1734	1729
∆t _e ,∘c								-			
т _Е ,°К		1802	1792	2000	2004	2002	2002	2004	2010	2002	1997
V _o ,volts				—		Ð	0	0	0	0	0
I _o , amps		26.29	27.24	27.14	27.20	0	0	0	0	0	0
P _o ,watts			<u> </u>	[<u> </u>			-	-	_	
I-V Trace No	1	21	22	23	24				_		-
	mv	14,9	0-744	2-5 0-814 169	0-817	10,3	11.4	12./	13.0	14.1	15
τ _R	°C	364	372	412	412	253	;	297	319	395	367
	°К	637	645		685			570	592	618	640
	mν	5-448	5-518	5-338	5-538	5-254	5-254	5-254	5-254	5-257	5=254
T _C	°C	724	759	669	769	627	627	627	627	627	627
	٩К	<u>997</u>	1032	<u>942</u>	1042	900	900	900	900	900	900
T C base inner	mν	265	269	23,9	279	24.3	24.1	24,0	24,4	24,0	23.6
	°C	637	647	576	671	586	581	579	5-88	579	569
T. C base outer	mv	26.9	270	23.9	27.9	24.3	24.2	242	24.4	マリ、こ	23,6
	°C	647	649	576	671	586	581	581	5-88	583	569
T Radiator	mν	23,0	23,2	20.9	23.9	21.2	21.3	21.3	21.2	21.2	20,9
	°C	555	560		576		576	_		513	576
V _{eb} ,volts		984	784	979			995.J			991,9	990
I _{eb} ,mA		193	<u>191 7</u>	279	276,7	165	168.9	175,4	1800	181 9	<u>19/</u>
E _{Filament} ,volts		4.6	4.6	4.8	4.8		4.5	4.5	4.55	4,55	4.6
I _{Filament} amps		18	18	18.8	18.8	17.6	17.6	17.8	17,9	17.9	18
^I Coll Heater ^{, amps}		10,5	10,5	0	9	_//	11	1/	_1/	_//	8.5
I Res Heater * amps		2	2_	5	4	0	_/	1		2,5	3
Vacuum, 10 ⁻⁶ mm Hg		.48	. 48			.20	. 68	,67	.68	120	,20
Measured Efficiency, %	•										100 -01
NOTES						166 16	16807	174.12	17836	18042	189 10

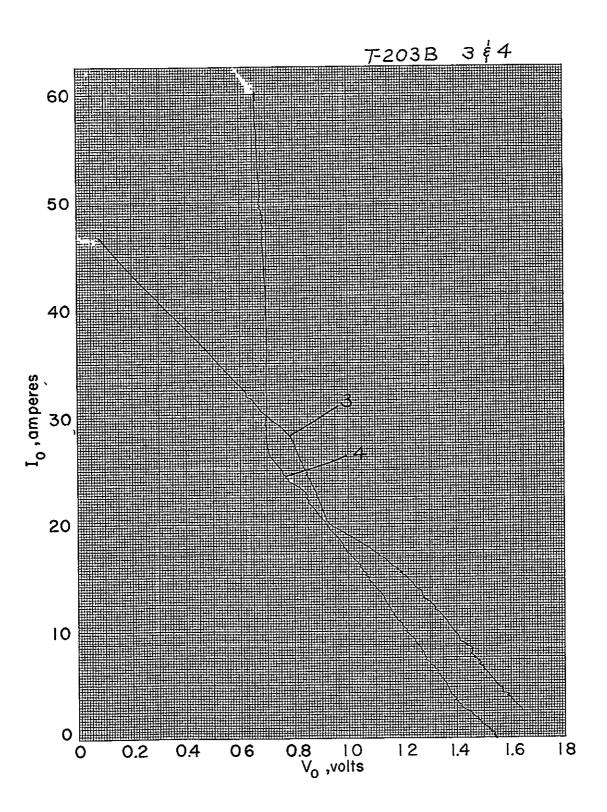
			,	86	82						
Жала тн	ER	MO	ELE	. C T I	RON		Shee	et _ 2	of_	8	
		M O ERING	C 0 .	PORA	TION						,
Converter NoE	-20	Jß		Run No	6+	7	Obse	rver	K. 15.	5%.	sek
VARIABLE		I	2	3	4	, 5	6	7	8	9	10
Date		76		7/2	-		-	1	—	1	-
Time		1430	1445		1329	1340	1355	1410	425	1440	1500
Elapsed Time, Hours		í		-	1	J.	ł	-		1	-
T ₀ ,°C		0171	1710	1580	15.80	1580	1585	1580	1675	1680	1675
To Corrected, °C		1720	1720			1589			1684		
∆T _{Bell Jar,} °C		14	14	12	12	12	12	12	14	14	14
Ĩ _H ,°¢		1734	1734	1600	1600	1600	1606	1600	1698	1704	1698
∆ ^T E, °C											
™ _E ,°K		2002	2002	1866	1866	1866	1872	1869	1940	1966	1963
V _o , volts		0	0		.8073		1.204			, 8022	
I _o , amps		0	0	16.0		8.4	4.5	2.0	49.8	25	17.6
P _o , watts		0	0	9.6	9.1	8.4	5.4	2.7	30,6	20,1	17.6
I-V Trace No		-				-	-	-	-	_	-
	mv	16	17.1	13.9	13,9	13.9	13.9	13.9	13.9	139	13.9
T _R	°C	391	417	341	341	341	341	341	341	341	341
	٩K	664	690	614	614	614	614	614	614	614	614
	Μ٧	5-254	5-257	5-108	5-070	5-023	5-000	5-00	5-4 <u>7 x</u>	5-254	5-185
^T C	°C	627	627	554	535	511.5	500	500	736	627	592
	٩K	900	900	127	808	784.5	723	773	1009	900	865
T	m٧	23.5	23.9	20,5	20,0	19.3	18,7	18.4	25,5	22,6	21,5
^T C base inner	۰C	567	576	497	485	468	454	447	614	546	5-20
т.	mv	23.9	23.9	20.3	19.7	19.2	18.9	18.3	25.4		21.3
^T C base outer	°C	516	576	492	478	466	459	445	612	546	576
<u>Т</u>	ŕnv	20.9		18.4	17.9	17.9	17.1	16.9	22.1	20.1	19.2
^T Radiator	°C	506	506	447	436	436	412	412	534	487	466
V _{eb} ,volts		989.5	971.9	985	988	990	992	999	971	979.5	783
^I eb,mA		197.9	202.4	191,5	181	173.2	1627	1551	3155	249.0	z. 29, 9
E _{Filament} ,volts		4,6	4.6	4.6	4.6	4.6		4.45	1 .	4.8	4.7
I _{Filament} , amps		18	18	18	18	18	17	17,8	19	18.5	
^I Coll Heater ^{, amps}		8,5	8.5	0	0	0	0	0	0	0	0
^I Res Heater ^{, amps}		4.5	1	2.1		2.0	2.0	2.0	2,0	2,0	Z, 0
Vacuum, 10 ⁻⁶ mm Hg		.20	.20	. 10	.10	.10		,10	12	,10	,10
Measured Efficiency,	6				179					243	
NOTES). Higher. 2. Lowert	r Vo Vo	Parek 11 195.82	blu, 200,15								
										·	

0005	86	8	3
------	----	---	---

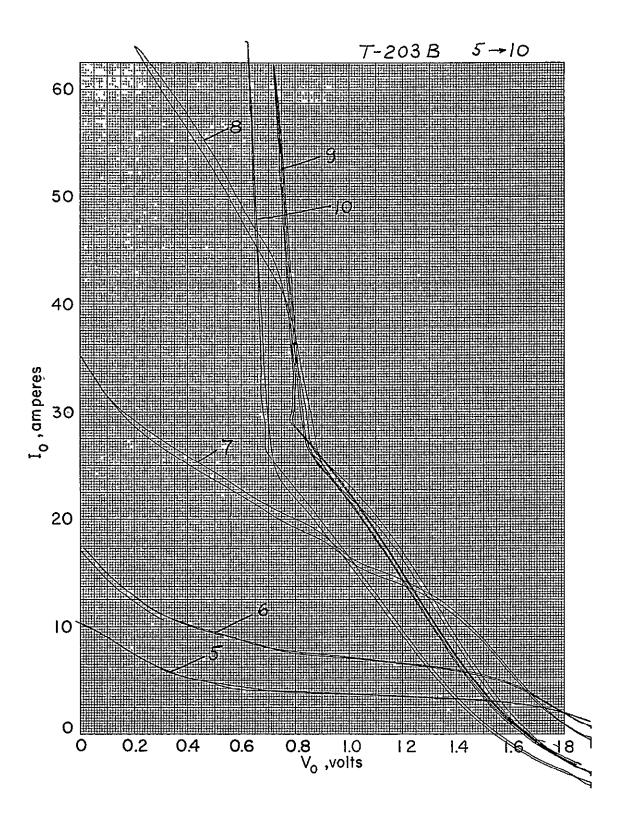

	ð	Ű.
-		

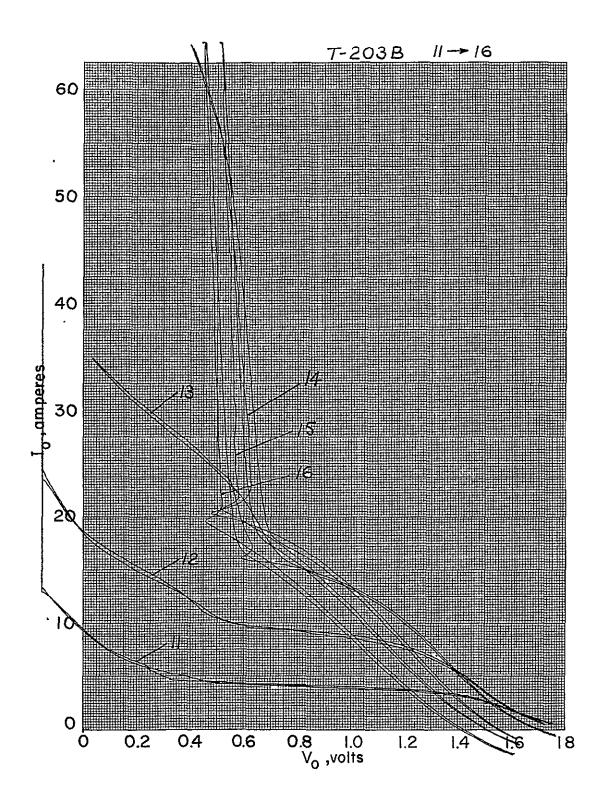
ł	E		R	ŝ	П	¢	>		Ξ.	L	E	¢		Т	F	5	O		N	_	
G	1	N	£	E	R	1	N	G	c	0	R	P	0	R	٨	T	1	0	N		

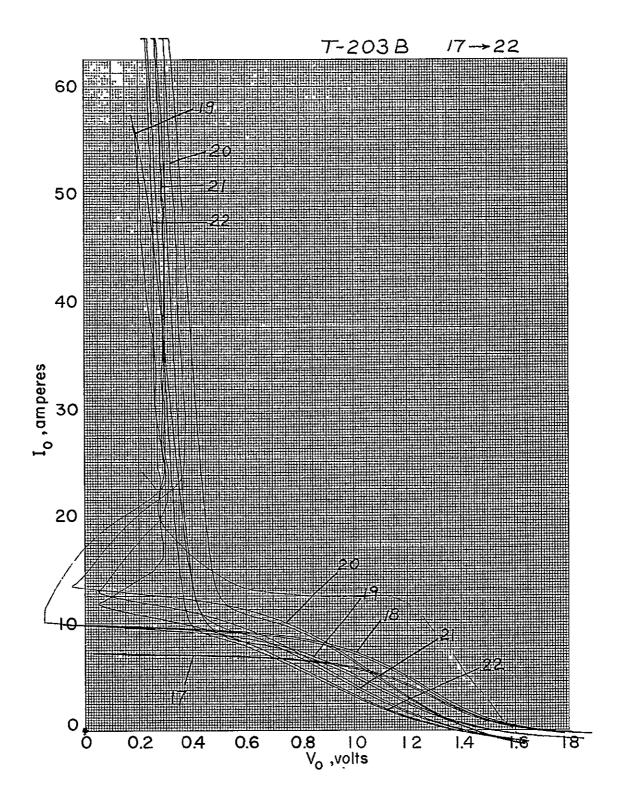
Converter No	<u>F-2</u>	23B		_ Run No	7	<u> </u>	Obs	<u>erver R</u>	<u>BS</u>	-/05e	<u>.</u> k
VARIABLE		1	2	3	4	5	6	7	8	9	10
Date		7/7	-	-	1/8			—			
Time		1537	1622	1700	0920	0945	1000	1035			
Elapsed Time, Hours		-									
т _о ,°С		1680	1680	1720	1770	1775	1775	1780			
To Corrected, °C					1780						
∆T _{Bell Jar} , °C		14	14	14	14	14	14	14			
T _H ,°C			1704		1796						<u> </u>
∆T _E , °C											
T _E ,°K		1969	1969	2053	2.955	2063	2063	2072			
V _o , volts		1,20			,8057						
I _o , amps			24	590	449	281	21.0	159		<u> </u>	
P _o , watts					36.2						
I-V Trace No		-		-	-	-	-				
	mv	13.9	17 9	14.8	14.0	129	170	13,9			┢
т _R	°C	341		F	343	4 *	P . I	•			
R	°К	614			616		614	614			
	mv		1		5-486						<u> </u>
т _с	°C				743	· · · · ·					
•	°ĸ	855			1016						
	mv			f	26.0						
T _C base inner	°C	501		· · ·	635		553				
	mv	20,9									
^T C bose outer	•c	1	6		25.9						
	mv	506			623						
T _{Radiator}	*C	18.9			243						
V _{eb} ,volts	Ŭ				-539						
^l eb, mA		985	797		968		978				
-	_			374			278				
E-Filament, volts		4.6		5.8	5.0		4.8	4.8			
I Filament, amps		18,0	180	19,5	19,0			18.5			
L coll Heater ³ amps		0	0	0	0	0	0	0			
Res Heater tamps		2,0		30	3,0	3,0	3.0	3.0			
Vacuum, 10 ⁻⁶ mm Hg	1.	010	.10	./0	1094	.094	.094	.094			
Measured Efficiency, ?	0				333						

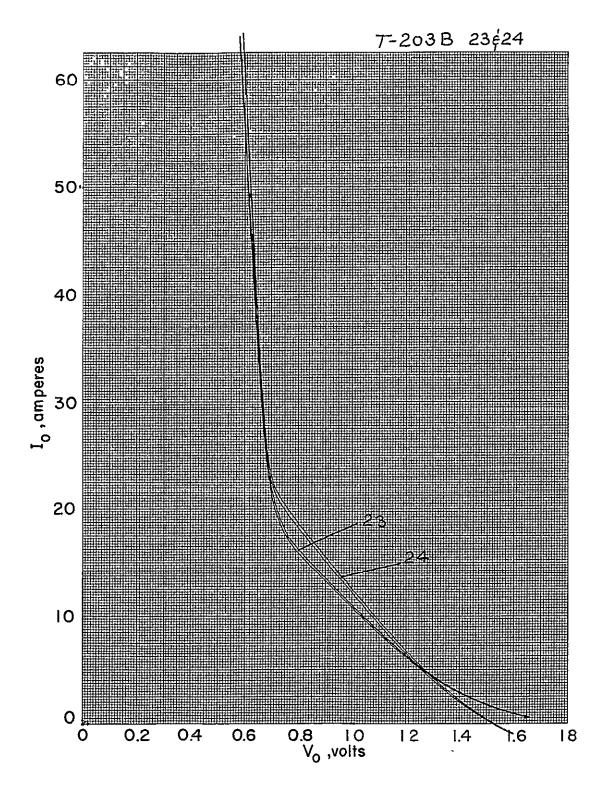


7364




7363





ELECTRON THERMO

7365

TEST DATA FROM CONVERTER T-204

EN P		ERLNO			RON TION		51161	- I#	of .	6	
Converter No	204			Run No	1,2	43	Obse	erver	RB	5/1	<u>, s</u>
VARIABLE		1	2	3	4	5	6	7	8	9	Γ
Date	_	8/22	-	-	-	~	-	8/23	—	8/24	-
Time		1300	1325	1400	1440	1535	1650		1610	** • • • • • • • • • • • • • • • • • •	10
Elapsed Time, Hours						02	1.2	17,1	24.5	41.0	4
T, ,°C		1710	1710	1720	1710	17/0	1720		1710		1
T _O Corrected, °C		1720			1720			1730		1720	—
∆T _{Bell Jar} , °C		14	14	14	14	14	14	14	14	14	
T _H ,°¢		1734	1734	1744	1734	1734	1144	1-744	1734	1739	1
Δ ^T E, °C			1								
Т _Е , «К		1976	1976	1992	1976	1920	1974	1974	1970	1970	1
V _o , volts		1.31	1.23			. 9023					<u> </u>
I _o , amps	<u> </u>	2200	<u> </u>		24at				38.1	38.9	4
P ₀ , watts		ľ –				36		30.7		30,5	3
I-V Trace No		1	2	3	4	_	-		-	-	
	m٧	0-514	16.5	0-570	14.2	14.2	0-900	0-700	0-700 140	0-700 14.0	0
т _R	°C	402	402	292	348	348	345	348	343	343	3
	°К	675	675	565	621	621	688	621	616	616	6
· · · · · · · · · · · · · · · · · · ·	mv	2-486		2-332	2-532	2-638	2-578	2-591	2-575	2-575	2-
т _с	°C	443		666	966	819	799	295	287	287	8
	°к	1016	1042	939	1039	1092	1072	1068	1060	1060	10
<u>т</u>	mv	-				-	-		-	-	Γ.
^T C base inner	°C					-	—	-	-	-	
т	тiv				-			-	-		
^T C bose outer	°C	-		-		-	-				Í-
т	mv	21.4	22,0	20.2	22,3	22.9	22,3	22,2	22,0	22.0	2
^T Radiator	°C	518	532	489	539	553	539	[532	í .	3
Veb, volts	•	977	977	985	978		971	969	967	970	9
I _{eb} ,mA					284		330	325	<u> </u>	325	3.
EFiloment, volts		4.8	4.8	4.6		5.0	4.9	4.9	4.9	4.9	4
I Filament ^{, amps}		18	18,2		18.1	19	19	18.9	18.5	18.7	1
^I Coll Heater ^{, amps}			2	6	6.5	0	0	0	0	-0	Γ
I _{Res Heater} , amps		4	4	2	2	2	2	2	2	2	-
Vacuum, 10 ⁻⁶ mm Hg		:54	.8	.26	.28	.3	,23	.14	.14	.14	
Measured Efficiency,											
NOTES 1. Low 2. Tem 3. ?	er 5	Temp et.	P.o.	carb	le						

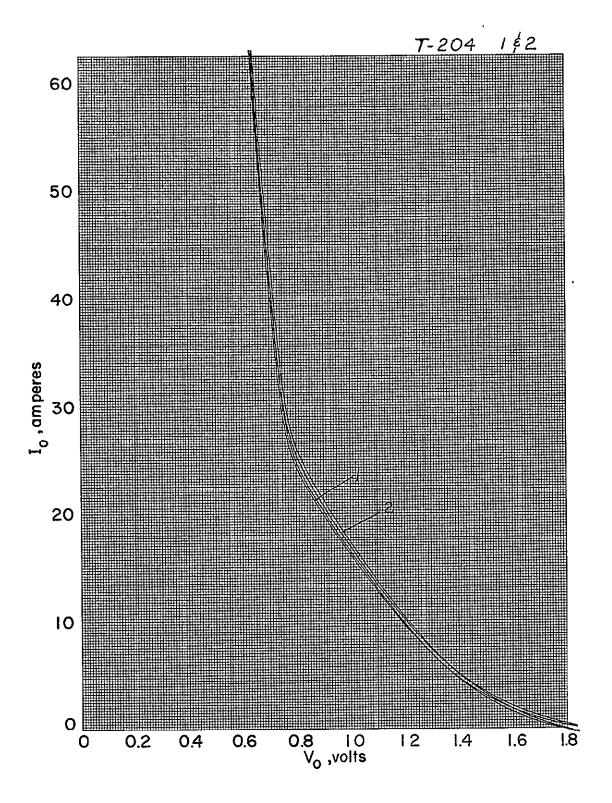
Converter No	- 20	4		. Run No	3	<u>+4</u>	Obs	erver	<u>R.G.</u>	21	joser
VARIABLE		1	2	3	4	5	6	7	8	9	10
Date		8/25	-	8/24	-	8/29		1	-	-	
Тіте		0850	1610	0952	1612	0920	1340	1420	1437	1450	1525
Elapsed Time, Hours		65.Z	72,5		96.5	161.6	162,5	163.2	163,5	163.7	164.2
™, °C		1710	1710	1710	1710	1710	1710	1710	1720	1715	1720
T _O Corrected, °C		1720	1720	1720	1720	1720	1720	1720	1730	1725	1730
∆T _{Bell Jar} , °C		14	14	14	14	14	14	14	14	14	14
т _н ,°с		1734	7734	1734	1734	1734	1734	1734	1744	1739	1744
∆t _{e,°C}											
т _Е , °К		1966	1966	1966	1966	1966	1984	1982	1990	1985	1990
V _o ,volts		,7691	7685	.7679	7765	.7783	1,263	1.155	1,109	1.175	1.314
I _o , amps		39./	39,9	39.9	38,3	38.3	6.6an	11.9en	20,10	24,5E,	22,90
P _o , watts		30	30,7	30,6	29.7	29.8		-			
I-V Trace No				-			5	6	2	8	9
•	mv	14.2	0700 14.1	14,2	0-700	14.1	0-5+2	6-580	0-620	0-658 13. 2	6-700 13,9
TR	°C	348	345	348	345	345	273	292	309	32.4	341
	•к	621	618	621	618	618	546	565	582	597	614
	mv	2-575	2-575	スーちな	2-575	2-575	2-194	2-254	2-320	2-400	2-498
T _C	°C	789	787	787	787	787	597	627	660	900	744
	°K	106	1860	1060	1868	1060	870	900	933	973	1817
Т	mν		-	-	-		—	-			-
C base inner	°C		-	-	-	-	-		-		-
τ	mν	-	l	1	~				-		-
^T C base outer	°C	-	+	}	~	1		-			
т	mv	22,3	223	28. Z	22.1	22,0	19.5	20,1	20.2	20.9	21.6
Radiator	°C	539	539	537	534	532	473	487	489	506	522
Veb, volts		969	969	968	969	969	989	985	981	978	977
I _{eb} ,mA			327	323	323	323	194	210	242	266	276
E _{Filament} ,volts		21.9	4,9	4,9	4.9	4.9	4.6	4.6	4,6	4.7	4.7
I Filament, amps		18.9	18.9	18.5	18.5	18.5	17.5	17.7	18	18	18
^I Coll Heater ^{, amps}		0	0	0	0	0	8	8	5	5	2
I Res Heater ,amps		2	2-	Z-	2	-2_	2	2	3	3	4
Vacuum , 10 ⁻⁶ mm Hg		.1	./	./	./	.095	2.4	1.2	1.1	1.0	1.0
Measured Efficiency,	/0										· · · · · · · · · · · · · · · · · · ·
NOTES. 1. Coolis	-g +	traf	. on	fin	, and	d be	2*.				

•

86	86
----	----

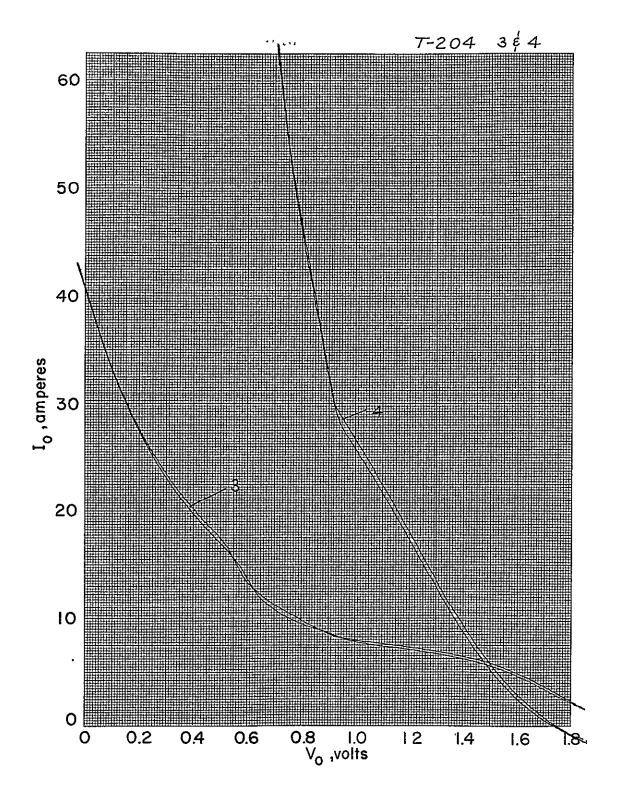
	-20	i • ·		Run No	1			ł		5/050	
VARIABLE			2	3	4	5	6	7	8	9	<u> '</u>
Date		8/29							5/30		<u> </u>
Time		1548								0935	
Elapsed Time, Hours							166.0				
T ₀ ,°C		1730			1.	1	1605			1525	
To Corrected, °C		1740	16/9	1624	1624	1629	1-	1619	1529	1534	
<u>∆</u> T _{Bell} Jar, °C		14	12	12	12	12	12	12	12	12	11
[™] H ,°C		1754	1631	1436	1636	1651	1625	1631	1539	15-44	15
Δ ^T E,°C		<u> </u>				ļ	ļ				ļ
т _Е ,°К									1	17 9 4	
V ₀ , volts		1.251	1.219	1.079	1.020	1,152	1129	1.049	1.049	1.039	.9
I _o , amps		23,74	6.99	12 94	2199	219au	21.92	22.94	2,9er	13990	21
Po,watts '						-					<u> </u>
I-V Trace No		10	11	12	13	14	15	16	17	18	1
•	mv	0-744	0-542	119	12,3	13,0	13.9	14.9	10.9	0-590 11.9	0- 17
T _R	°C	364	268	292	302	319	341	364	268	292	3
	⁰К	637	541	565	575	592	614	637	541	565	5
	mv	2-518	2-194	2-254	2-320	2-400	2-448	2-518	2194	2-254	2-
T _C	°C	759	597	627	660	300	724	759	577	627	61
•	٩K	1032	870	900	933	973	997	103 Z	870	900	93
т	mv			-			[]	-			
C base inner	°C										-
т	۳īv				-						
^T C bose outer	°C						-	-		_	-
÷	mv	22,1	199	19.9	20.4	21.1	219	22.9	199	19.9	20
T Radiator	°C	511	483	483	494	511	529	553	483		57
V _{eb} ,volts	1	976		988	984	783		1	995	· · · ·	98
I _{eb} ,mA		286	160	180		1		233		15-4	12
E _{Filament} ,volts		47	4.4	1	4.6	4.6	4.6	4.6	4.3	4.4	4.
L Filament ^{, amps}		18	17	17	17,5	12,8	17,8	19	17.	17	17
L Coll Heater, amps		7	9.5	9.0		8	9	10,5		10	1
I Res Heater, amps		4	2		2.5		4		1	2	2
Vacuum, 10 ⁻⁶ mm Hg		-84	.52	52	.44	2.5	,46	4.5		.14	
	<u></u>	• 87		52	1.77	. 77	176	154	./2		./
Measured Efficiency,		L		L	I	1	L	L	1	L	1

т		MO			RON		She	et _4	of.	6	,
		E R I N G	C 0 1		110 8			T	775	lose	4
	204	1		Run No		5-46				· · · · ·	
VARIABLE		 \$/	2	3	4	5	6 	7	8	9	10
Date		\$30				-					
Time		1015								1550	-
Elopsed Time, Hours		/83./	183.5	<u>184.1</u>	185.4	1857	186.1	1865	187.z.	1875	1878
T ₀ ,°C		1520	1525	1530			1715		1720		
To Corrected, °C		1529	1534	1537		1	1725	1730	1730	1730	1730
<u>∆</u> T _{Bell Jar} , °C		12	12	12	14	14	14	.19	14	14	14
^т н ,°С		1539	1544	1578	1734	1734	1739	1744	1744	1744	1744
∆ ^T E,°C									L		ļ
т _Е ,∘к		1782	17.86	1792	1976	1976		1997	1997	1997	1997
V ₀ , volts		1.000	.9769	.93//	1.514	1235		0	0	0	0
I _o , amps		21an	21.4a	21 an	21,24	2600		0	σ	0	0
P ₀ , watts			_		_	-		Ο	0	0	0
I-V Trace No		20	21	22	23	24			-		
	m٧	0-658	13,9	0-744 14.9	9-814 16:3	0-814	10,000	10	11	12	13
T _R	°C	324	341	364	398	400	2.46	246	7.71	2.95	319
	°К	597	614	637	671	673	519	619	544	568	592
<u></u>	mv	2-400	2-448	2-518	2-376	2-538	2254	2-254	2-254	2-254	2-25
τ _c	°C	300	524	959	688	769	627	627	627	627	627
	°K	973	997	10.32	961	1042	900	900	900	900	900
	mv			-						·	
^T C base inner	°C	-	-	-	-			-	-		
	mv			(1	
T _C base outer	°C		1				~	_			
······································	mv	21.9	119	23	199	222	20.1	20.3	20,3	20 Z	20.3
T _{Radiator}	°C	529	57.9	555		537	487	492	492	489	492
V _{eb} , volts	I	985	984	<u>9</u> 84	979	975	983	990	789	989	788
I _{eb} ,mA		186	191	196	276		1817	185	189	194	200
E _{Filament} ,volts		1	4.5	4.5	4.7	4.7	4.4	4.4	4.5	4.5	4.5
I Filoment ^{amps}		17.5		17.5	18.0		7.7	17	17.1	17.2	
L Coll Heater ¹ amps			10.5		0	7	4	9	9	9	<u>7.7</u> 9
I Res Heater amps		9,5 4	4			6	- <u>f</u> -	_//			
Vacuum, 10 ⁻⁶ mm Hg			.17	4	6		. 38	.32	/ 28	2	3.5 24
Measured Efficiency,	%	.16	.//	10	10	1.0	<u> </u>			.26	.24
NOTES / ?	· · · · · · · · · · · · · · · · · · ·	<u>ل</u>					<u> </u>	1021	1569	191.9	1974
HUILD I E						ł	કેર ફ		38	8.8	
								D	50	0 • 0	(1)

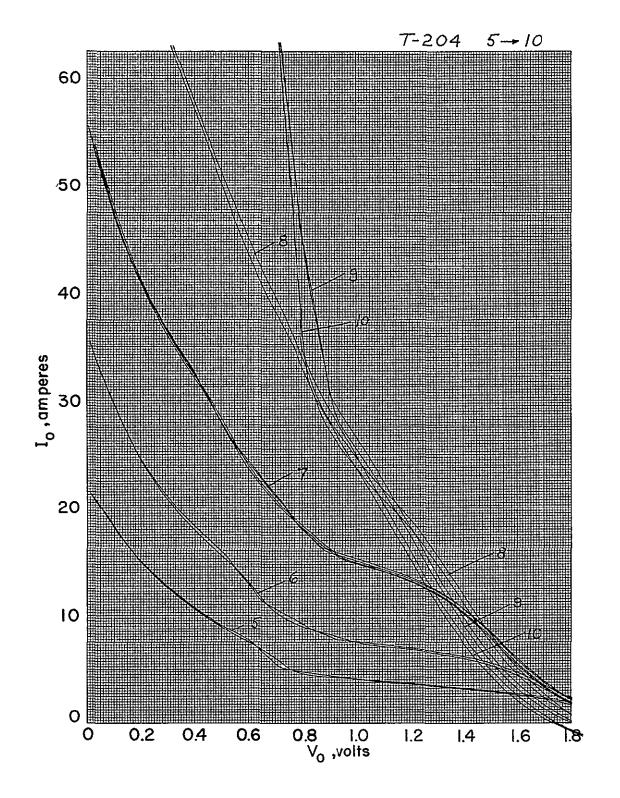

-

onverter No	-20	4		RunNo	67	-7	Obs	erver R	B	5/05	eE
VARIABLE		I	2	3	4	5	6	7	8	9	10
Date		7/30		31		9/1					9/2
Time		1640	1705		1055		11.20	1630	11.45	1658	0953
Elapsed Time, Hours	3	188.3		206		I				2294	T
τ ₀ ,•c		1	1710	1705	1	1290		18/0		1815	1
To Corrected, °C		1720	[1715	<u> </u>		1810	1820		-	
∆T _{Bell Jar} , °C		14	14	14	14	14	14	14	14	14	14
™ _H ,°C		1734	1734	1729	1734	1816	1826	1836	1836	1842	1724
∆T _E ,°c									_		
^т е, °К		1987	1987	1982	1987	2038	2050	2066	2074	2090	1946
V ₀ ,volts		0	0	0	0		.8014			1,353	
I _o , amps		0	0	0	0		58.7			26.5	
P ₀ , watts		0	0	a	6	45,2	1	46.3		35.9	33,8
I-V Trace No		- 1	—	-	-					-	
	m٧	14	15	16	16.9	15.9	155	14.9	14.9	14.4	14.9
T _R	°C	343	367	391		388	379	364		353	364
	°К	616	640	669-	t85	661	452	637	637	626	437
	m٧	2-254	2-254	2-254	2-254	2.916	2-895	2-748	2-631	2-544	2-775
TC	°C	627	627	627	627	988	247	874	815	772	887
	°К	900	900	900	900	1261	1220	1/47	1088	1045	1160
Τ	mv	-	-	-	· ·						
^T C base inner	°C	_	-	-	-	-	1	1	1	-	-
Τ	m٧	-	-	-	-	-		-	-	-	-
^T C base outer	°C	-	-				-		-	-	-
τ	mv	19.9	19.9	19.9	20,0	25.9	25.4	24.4	23,5	22.9	24.9
T _{Radiator}	°C	483	483	483	485	623	612	588			600
V _{eb} ,volts		988	988	785	985	958	960	964	967	970	961
I _{eb} ,mA		198	2.06	209	217		455			356	380
E _{Filament} ,volts		4,5	4.5	45	4.5	5.2	5.1	5	4.9	4.8	5-
I Filament, amps		17.5	775	15,5	17.5	19	19	18,5	18.2	18	18,5
^I Coll Heater ^{, amps}		8	8	6	6	0	0	0	0	0	0
I _{Res Heater} , amps		5	5.2	5	55	4	4	3.5	4	4	4
Vacuum , 10 ⁻⁶ mm Hg		2.2	2.2	./z	.12	4.6	26	1.6	1.2	1.0	.22
Measured Efficiency,	% W					455 1	4365	4028	372 5	<i>34</i> 5 4	365-1
NOTES.			20:5 20:4		215.7 30 6					3	65.0 60 115

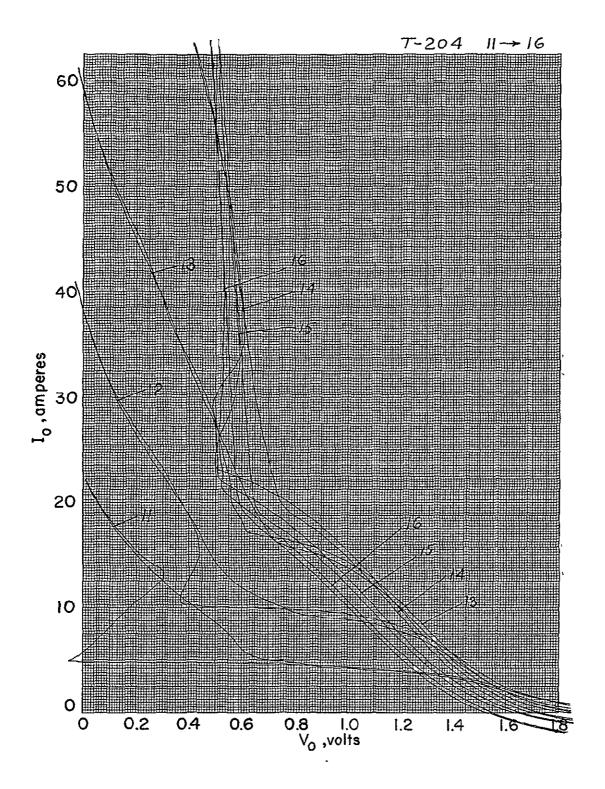
onverter No	T-	204	ERIN (Run No	ATION	7	Ohs	erver	R.B	5/0	se.
VARIAB	LE		1	2	3	4	5	6	7	8	9	10
Date			9/2_							-		
Time			10 11	1035	1100	1115	1/40	1215	13.55	1430	1545	
Elapsed Time,	Hours			247.1		247.7	· · · · ·				2523	
T ₀ ,°C			1700	1700	1706	1700	1600		· · · ·	1600	1600	· · · · · · · · · · · · · · · · · · ·
To Corrected, %	0		1710	1710	1710	1710		1609		<u> </u>	1609	
∆T _{Bell Jar} , °C			14	14	14	14	12-	12-	12	12	12	
T _H ,°C	17	25	1724	1724	1724	· · · · ·	1620	1620			1620	
Δ ^T _E , •c			1121	112-1	11-1	1121	1000	1020	1620	/0200		
<u>- 2; -</u> Т _Е , °К			1954	1961	1972	1970	1858	18/1	18/1	1870	1820	
V _o ,volts			8010			1356		1		1.2.00	1020	
I _o , amps											1.337	
P _o , watts) レ	33, 6	29.0	23.9	18.2	23.4	201	15,8 15,8	12.7	1.3 9,9	
1-V Trace No				21	2.0,7		23.7	1011	1010	1411	11/	
	33	mv	14 2					17		13.0	1- 11	
	3.7 317	°C	14.3		13.9		13.5	13,2	13	13:0	1.2.4	
'R	,	•к	350	341	341	329	331	324	321	3/9	304	
			623	614	614	602	604	577	594	072	5//	
т. 1	84	mv °C	2-612	<u>2-459</u>	2-353			2-280	2-223	2-154	2-093	
T _C 7	51		806	/27	676	635	250	690	6/1	377	546	
		°K	1077	1002	949	908	1023	913	884	850	819	
T _{C base inner}		mv		-								
		°C	-		. –	-						
T _{C base outer}		mv			-	-				_		
		°C	-		-			-				
T Radiator	չ " ዛ	mν	<u>234</u>	21.9	20.9	20,1	22,1	20.1	19.4	18,9	18.1	
/**		<u>°C</u>		529	506	487	534	487	471	459	440	
V _{eb} , volts		<u> うし</u>	966	971	975	978	972	978	981	985	986	
I _{eb} ,mA 351	2	.56			271	249	278_	227	215	199	188	
E _{Filament} ,volts	5		4.8		4.6	4.6	4.8	4.6	4.6	4,5	4,5	
I _{Filament} , amps	5	4	18	18	17.9	17,5	18	17.5	175	17.1	170	
^I Coll Heater' ^{dm}			0	0	6	6	0	0	0	0	0	
I _{Res Heater} , em			_ # _	4	4	4	4	4	4	4	4	
Vacuum, 10 ⁻⁶ mi		4	.16	12	.12	.10	.10	1	./	1	./	
Measured Efficie	ncy, 🤊	6 > 9 K	3298	2918	2642	2438	2702	222.0	211.0	1960	185.4	
NOTES.	_ <u>}</u>	564°(330 o 8 7	29:2 37°	264 K ai /st	244 t 0.6 : 0 8	e	27 	Colle 9 w/v 6 7 1	- بلامر ۲ سکری,6	~70 ~70	'C/


ERMO

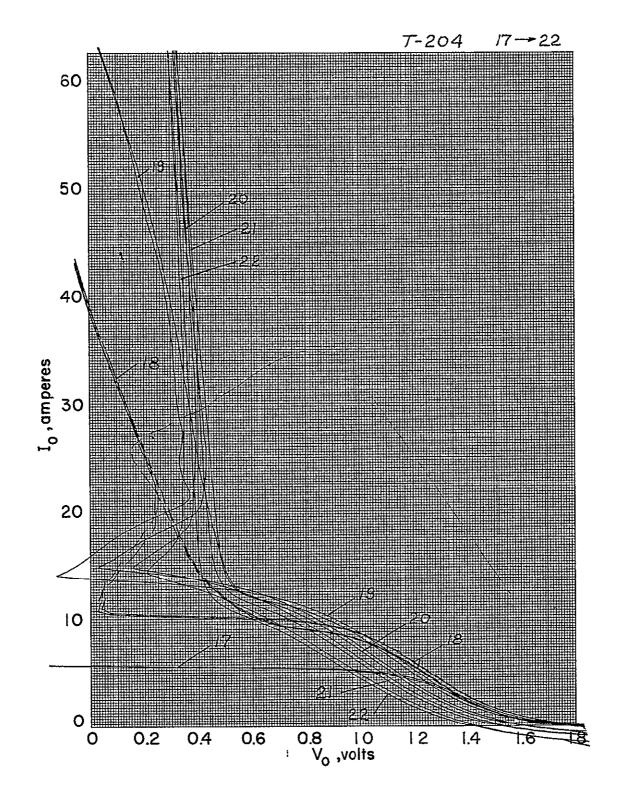
7434



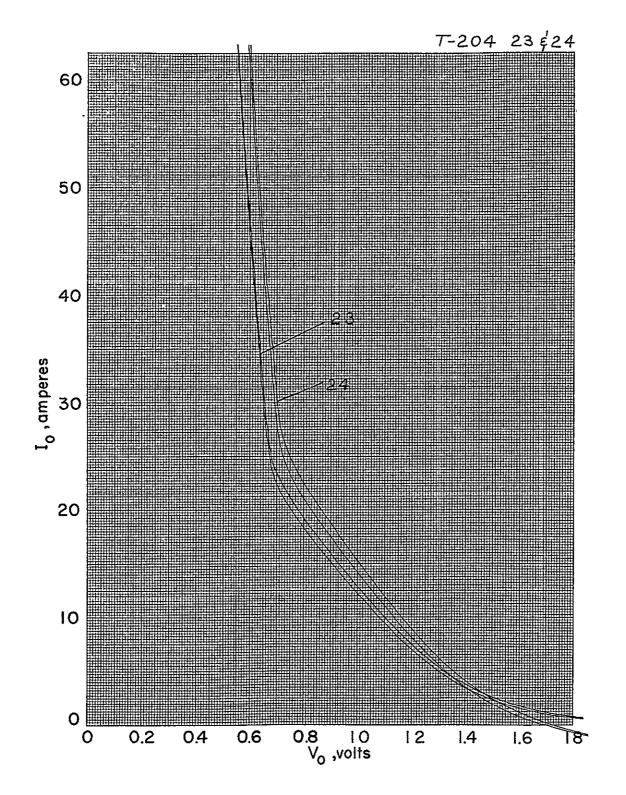
7435



7437


СКМО

7436



7432

7433

TEST DATA FROM CONVERTER T-205

$\frac{E + K + G + V}{Variable}$ Converter No <u>T</u> - 2 VARIABLE Date Time Elapsed Time, Hours T ₀ , °C T ₀ Corrected, °C ΔT_{Bell} Jar, °C T _H , °C ΔT_E , °C T _E , °C T _E , °C T _E , °K V ₀ , volts I ₀ , amps P ₀ , watts I-V Trace No T _R T _R T _C m T _C m T _C m T _C m T _C m T _C m T _R m C ₀ T _C base ouler m C ₀ T _R m C ₀ T _R m C ₀ T _R m C ₀ T _R m C ₀ T _R m C ₀ T _R m C ₀ T _R m C ₀ T _R m C ₀ T _R C ₀ T _R C ₀ T _R C ₀ T _R C ₀ T _R C ₀ T _R C ₀ T _R C ₀ T _R C ₀ T _R C ₀ T _R C ₀ T _R C ₀ T _R C ₀ T _R C ₀ T _R C ₀ T _R C ₀ C ₀ T _R C ₀ C ₀ T _R C ₀	 1 18 0 1731 1741 1741 1741 1741 1741 1741 1755 35 1793 898 292 	2 10-17 11.45 04 1710 1724 14 1738 31	Run No 3 10-17 13:33 2.2 1738 1748 1748 14 1762 35 2000 2 11.8 290 563	1+ 1762 35		Obse 6 10-17 17:24 61 1740 1750 14	7 7 10-13	of. P::	9 10-19 10-18 292 1752 1762 1762 14 1776 44 2005 716 47.5 716 47.5 139	
$\begin{array}{c c} \hline VARIABLE \\ \hline VARIABLE \\ \hline Date \\ \hline Time \\ \hline Elapsed Time, Hours \\ \hline T_0, °C \\ \hline T_0, °C \\ \hline T_0, °C \\ \hline T_0, °C \\ \hline T_0, °C \\ \hline T_0, °C \\ \hline T_0, °C \\ \hline T_1, °C \\ \hline \Delta T_E, °C \\ \hline T_E, °C \\ \hline T_E, °C \\ \hline T_E, °K \\ \hline V_0, volts \\ \hline I_0, amps \\ \hline P_0, watts \\ \hline I-V Trace No \\ \hline T_R \\ \hline T_R \\ \hline T_C \\ \hline T_C \\ \hline Dase onler \\ \hline T_C \\ \hline T_R adiator \\ \hline V_{eb}, volts \\ \hline V_{o,volts} \\ \hline T_{Radiator} \\ \hline T_{Rad$	- 0 5 1 1 10-17 11 18 0 1731 1741 1741 1741 1741 1755 1793 898 292 	2 10-17 11.45 04 1710 1724 14 1738 31 1738 31 1980 - 27 - 1 167 407	Run No 3 10-17 13:33 2.2 1738 1748 1748 14 1762 35 2000 2 11.8 290 563	1 2 4 10-17 13 46 2 4 1738 1748 1748 1748 14 1762 35 2000 	5 10-17 14:20 3.1 1738 1748 14 1762 35 2000 .920 309 29.4 - 13.1 321	6 10-17 17:24 61 1740 1750 14 1764 35 2002 902 30 9 12 9	7 10-18 14 55 98 1740 1750 14 1764 45 1992 772 493 13 9	8 19-18 17 13 12 1 1750 1763 1763 1763 1763 1763 1774 45 2002 759 49.0 13 9	9 10-19 10-18 292 1752 1762 14 1776 44 2005 716 47.5 716 47.5 139	
VARIABLE Date Time Elapsed Time, Hours To, °C To Corrected, °C Δ TBell Jar, °C TH, °C Δ TE, °C TE, °C TE, °C TE, °C Po, volts I-V Trace No TR °C TC °C TC bose inner °C TC bose ouler °C TRadiator °C Veb, volts	 1 18 0 1731 1741 1741 1741 1741 1741 1741 1755 35 1793 898 292 	10-17 11.45 04 1710 1724 14 1738 31 1738 31 1980 - 27 - 1 167 407	3 10-17 13:33 2.2 1738 1748 14 1762 35 2000 30 2 11.8 290 563	4 10-17 13 46 2 4 1738 1748 1748 1748 1748 14.3 3(5)	5 10-17 14:20 3.1 1738 1748 14 1762 2000 30 9 2000 30 9 29.4 - 13.1 321	6 10-17 17:24 61 1740 1750 14 1764 35 2002 902 30 9 12 9	7 10-18 14 55 98 1740 1750 14 1764 45 1992 772 493 13 9	8 19-18 17 13 12 1 1750 1763 1763 1763 1763 1763 1774 45 2002 759 49.0 13 9	9 10-19 10-18 292 1752 1762 14 1776 44 2005 716 47.5 716 47.5 139	
Date Time Elapsed Time, Hours To, °C To, °C To, °C To, °C To, °C Taell Jar, °C TH, °C ΔTE, °C TE, °K Vo, volts Io, amps Po, watts I-V Trace No TR °C TC Dote TC base inner °C TC base ouler °C TRadiator Veb, volts	/o-17 // 18 0 1731 1741 174 1745 35 1793 898 292 	10-17 11.45 04 1710 1724 14 1738 31 1738 31 1980 - 27 - 1 167 407	10-17 13:33 2.2 1738 1748 14 1762 35 2000 30 2 11.8 290 563	10-17 13 46 2 4 1738 1748 1748 1748 1762 35 2000 	10-17 14:20 3.1 1738 1748 14 1762 35 2000 309 29.4 - 13.1 321	10-17 17:24 61 1740 1750 14 1764 14 1764 35 2002 902 30 9 12 9	10-18 14 55 98 1740 1770 14 1760 14 1764 45 1992 772 493 493 	19-18 17 13 12 1 1750 1765 1765 1774 45 2002 759 49.0 	10-19 10-18 292 1752 1762 1762 14 1776 44 2005 716 47.5 716 47.5	
Time Elapsed Time, Hours To, °C To Corrected, °C Δ TBell Jar, °C TH, °C Δ TE, °C TE, °K Vo, volts Io, amps Po, watts I-V Trace No TR °C TC °C TC base inner °C TC base ouler °C TRadiator Veb, volts	II 18 0 1731 1741 14 1755 1793 898 292 573	11.45 04 1710 1724 14 1738 31 1738 31 1980 - 27 - 1 167 167 407	13:33 2.2 1738 1748 14 1762 35 2000 2 000 2 11.8 290 563	13 46 2 4 1738 1748 14 1762 31 2000 	14.20 3.1 1738 1748 14 1762 35 2000 .920 309 29.4 	17:24 61 1740 1750 14 1764 35 2002 902 309 129	14 55 98 1740 1750 14 1764 45 1992 772 493 	17 13 12 1 1750 1763 14 1774 45 2002 759 49.0 13 9	10-18 292 1752 1762 14 1776 44 2005 716 47.5 	
Elapsed Time, Hours T_0 , °C T_0 Corrected, °C $\Delta T_Bell Jar, °C$ T_H , °C ΔT_E , °C T_E , °K V_0 , volts I_0 , amps P_0 , watts $I-V$ Trace No T_R T_C T_C T_C base inner T_C base ouler T_R T_R T_C base ouler T_C base ouler T_R	0 1731 1741 174 1755 35 1793 898 292 122 300 573	04 1710 1724 1738 31 1738 31 1980 - 27 - 1 27 - 1 167 407	2.2 1738 1748 1748 1762 35 2000 30 2 11.8 290 563	2 4 1738 1748 1748 1748 1762 35 2000 	3.1 1738 1748 14 1762 35 2000 .920 309 29.4 - 13.1 321	61 1740 1750 14 1764 35 2002 902 309 129	98 1740 1750 14 1764 45 1992 772 493 139	12 1 1750 1763 174 45 2002 759 49.0 	292 1752 1762 14 1776 44 2005 716 47.5 	
T_0 , °C T_0 Corrected, °C ΔT_{Bell} Jar, °C T_H , °C ΔT_E , °C T_E , °K V_0 , volts I_0 , amps P_0 , watts I-V Trace No T_R T_C T_C T_C base inner T_C base ouler T_R T_R T_C base ouler T_R T_R dilator V_{eb} , volts	1731 1741 14 1755 35 1993 898 292 122 300 573	1710 1724 1738 31 1980 - 27 - 1 167 407	1738 1748 14 1762 35 2000 30 2 11.8 290 563	1738 1748 14 1762 35 2000 	1738 1748 14 1762 35 2000 309 29.4 	1740 1750 14 1764 35 2002 902 309 129	1740 1750 14 1764 45 1992 772 493 	1750 1763 14 1774 45 2002 759 49.0 	1752 1762 14 1776 44 2005 716 47.5 	
To Corrected, °C Δ TBell Jar, °C T _H , °C Δ T _E , °C T _E , °K V ₀ , volts Io, amps Po, watts I-V Trace No T _R °C T _C bose inner T _C T _R adiator T _R adiator	174/ 14 1755 35 1993 898 292 v 122 300 573	1724 14 1738 31 1980 - 27 - 1 167 407	1748 14 1762 35 2000 30 2 11.8 290 563	1748 14 1762 31 2000 	1748 14 1762 35 2000 .920 309 29.4 	1750 14 1764 35 2002 902 309 129	1750 14 1764 45 1992 772 493 13 9	1765 1+ 1774 45 2002 759 49.0 139	1762 14 1776 44 2005 716 47.5 	
$\begin{array}{c c} \Delta^{T} \text{Bell Jar, }^{\circ} \text{C} \\ \hline T_{H}, ^{\circ} \text{C} \\ \hline \Delta^{T}_{E}, ^{\circ} \text{C} \\ \hline T_{E}, ^{\circ} \text{K} \\ \hline V_{0}, \text{volts} \\ \hline I_{0}, \text{amps} \\ \hline P_{0}, \text{watts} \\ \hline I-V \text{ Trace No} \\ \hline I-V \text{ Trace No} \\ \hline T_{R} \\ \hline T_{R} \\ \hline T_{C} \\ \hline T_{C} \\ \hline D_{0} \text{ base inner} \\ \hline T_{C} \\ \hline D_{0} \text{ base ouler} \\ \hline T_{R} \\ \hline T_{R} \\ \hline T_{R} \\ \hline D_{0} \text{ base ouler} \\ \hline T_{R} \\ \hline D_{0} \text{ base ouler} \\ \hline T_{R} \\ \hline D_{0} \text{ base ouler} \\ \hline T_{R} \\ \hline D_{0} \text{ base ouler} \\ \hline T_{R} \\ \hline D_{0} \text{ base ouler} \\ \hline D_{0} \text{ base outer} \\ \hline D_{0} base ou$	4 755 35 793 898 292 	14 1738 31 1980 - 27 - 1 167 407	14 1762 35 2000 30 2 11.8 290 563	14 1762 31 2000 	14 1762 35 2000 .920 309 29.4 - 13.1 321	14 1764 35 2002 902 309 129	14 1764 45 1992 772 493 13 9	14 1774 45 2002 759 49.0 	14 1776 44 2005 716 47.5 	
$\begin{array}{c c} T_{H}, \circ C \\ & & \Delta T_{E}, \circ C \\ \hline T_{E}, \circ K \\ \hline V_{0}, volts \\ I_{0}, amps \\ P_{0}, watts \\ \hline I-V \ Trace \ No \\ \hline T_{R} \\ \hline T_{C} \\ \hline T_{R} \hline T_{R} \\ \hline T_{R} \\ \hline T_{R} \\ \hline T_{R} \\ \hline T_{R} \\ \hline T_{R} \\ \hline T_{R} \\ \hline T_{R} \\ \hline T_{R} \\ \hline T_{R} \\ \hline T_{$	1755 35 1993 898 292 v 122 300 573	1738 31 1980 - 27 - 1 167 407	1762 35 2000 30 2 11.8 290 563	1762 31 2000 	1762 35 2000 .920 309 29.4 	1764 35 2002 902 309 129	1764 45 1992 772 493 13 9	1774 45 2002 759 49.0 	1776 44 2005 716 47.5 	
$\begin{array}{c} \Delta T_{E}, \circ C \\ \hline T_{E}, \circ K \\ \hline V_{0}, volts \\ \hline I_{0}, amps \\ \hline P_{0}, watts \\ \hline I-V \ Trace \ No \\ \hline T_{R} \\ \hline T_{C} \\ \hline T_{C} \\ \hline D_{0} \\ \hline D_{0} \\ \hline T_{R} \\ \hline D_{0} \\ \hline D_{0} \\ \hline T_{R} \\ \hline D_{0} \hline D_{0} \\ \hline D_{0} \hline D_{0} \\ \hline D_{0} \hline D_{0} \\ \hline D_{0} \hline D_{0} \hline D_{0} \hline \hline D_{0} \hline D_{0$	35 1993 898 292 v 122 300 573	31 1980 - 27 - 1 167 407	35 2000 30 2 11.8 290 563	31 2000 	35 2000 .920 309 29.4 - 13.1 321	35 2002 902 309 129	45 1992 772 493 13 9	45 2002 759 49.0 13 9	44 2005 716 47.5 	
T _E , °K V ₀ , volts I ₀ , amps P ₀ , watts I-V Trace No T _R T _C T _C T _C T _C base unner T _C T _C base outer T _R T _C T _R T _C T _C T _C T _C T _C T _C T _R T _C T _C	1993 898 292 122 300 573	1980 27 1 167 407	2000 	2000 	2000 .920 309 29.4 	2002 902 309 129	1992 772 493 139	2002 759 49.0 13 9	2005 716 47.5 - 139	
Vo, volts Io, amps Po, watts I-V Trace No TR °(TR °(°f TC Dase inner °f TC base outer TR TR TC base outer °f TRadiator Veb, volts	898 292 v 122 300 573	- 27 - 1 167 407	 30 2 11.8 290 563		.920 309 29.4 	902 309 129	772 493 — 139	759 49.0 13.9	716 47.5 - 139	
I _o , amps P _o , watts I-V Trace No T _R T _C T _C T _C base inner T _C base outer T _C base outer T _R T _R	292 — V 122 300 573		- 2 11.8 290 563		309 29-4 13.1 32.1	309 129	493 139	49.0 	47.5 139	
Po, watts I-V Trace No TR TR TC TC TC base onler TC base onler TC TC TC tc tc tc tc tc tc tc tc tc tc tc tc tc	v 12 2 300 573		- 2 11.8 290 563		29-4 13.1 321	- - 12.9			 139	
I-V Trace No TR TR TC TC TC base outer TC base outer TC tC base outer TC tC base outer TC tC base outer TC tC base outer TC tC base outer TC tC tC tC tC tC tC tC tC tC tC tC tC tC	; <u>300</u> ; 573	16 7 407	11.8 290 563	14-3 350	 13.1 321	- 129				
T _R m T _R eq T _C m T _C m T _C base inner m T _C base outer m T _C base outer m T _R diator m V _{eb} , volts	; <u>300</u> ; 573	16 7 407	11.8 290 563	14-3 350	321					
T _R T _C	; <u>300</u> ; 573	407	290 563	350	321					
T _C m T _C m T _C base inner m T _C base outer m T _C base outer m T _R adiator m V _{eb} , volts	573	+	563	ł		517			341	
T _C m T _C even T _C base inner m T _C base outer m T _C base outer m T _R adiator m V _{eb} , volts	· · · · · · · · · · · · · · · · · · ·	- 1		662		590	614	614	614	
T _C T _C T _C base inner T _C base outer T _C base outer T _R adiator V _{eb} , volts					477		-			
TC base inner m TC base outer m TC base outer m TC base outer m TRadiator m Veb, volts	730	769	732	745	745	745	770	770	765	
TC base inner m *C TC base outer m TC base outer *C TRadiator m Veb, volts	700		1005	1018	1018	1018	1043		<u> </u>	
TC base inner		1042	1007	1010	1018	SHUT	1045	1043	1038	
T _C base outer T _{Radiator} V _{eb} , volts		╂────				0FF (1)		ļ	(3)	
TC base outer				ļ		19		1	(2)	
TRadiator (Veb,volts		+			Í					
Radiator °(V _{eb} ,volts		02.4				 	<u> </u>			
V _{eb} ,volts		22.6	21.6	216	21.6	716	20.1	200	20.1	
		546	522	522	522	522	487	485	487	
	973	972	970	970	968	968	901	96)	962	
I _{eb} ,mA	302	297	296	312	320	320	377	377	377	
E _{Filoment} , volts	52	52	5	5	5	5	52	5.2	5.2	
^I Filament, amps	- 18	18	175	175	17	17	18	18	18	
I Coll Heater ^{, amps}	0	4	0	ు 	0	0	0	0	0	
I Res Heater , amps	0	1	0	1	1	1	/	. /	1	
Vacuum, 10 ⁻⁶ mm Hg	12	10	4	4	3.6	3.0	4	3.6	2.8	
Measured Efficiency, %	1-	<u> </u>	<u> </u>	L	9-4	<u> </u>	<u> </u>			
NOTES (1) SHUT OF S ADDITIO Λ (2) SHUT OFF	ac Pins	D COL (ZrOL) ILEAN	_		3C115	ADDG	Ъ с <i>о</i>	ςµ \$T	<i>₹₁, +</i>	4

		ERIN (; c o I	PORI	RON IIOR				of		
Converter No <u> </u>	.05			Run No	<u> </u>		Obs	erver	<u> </u>	losin	<u> </u>
VARIABLE		1	2	3	4	5	6	7	8	9	10
Date		10-19	10-19		10-19	10-19	10-19	10-19	10-20	10-20	10-24
Time		14'28	14.35	14:50	15.05	15=15	15:25	15:58	9-05	9.36	10.56
Elapsed Time, Hours		31.0	312	31.4	31.7	318	32.0	32.5	49.7	502	50.5
T _o ,°C		1732	1731	1739	1741	1739	1739	1630	1635	1639	1639
To Corrected, °C		1742	1741	1749	1751	1749	1749	1639	1645	1649	1649
∆T _{Bell Jar,} °C		14	14	Ιų	14	14	14	12	12	12	12
^т _н ,•с		1756	1755	1763	1765	1763	1763	1651	1657	1661	1661
∆τ _ε ,•c		25	28	34	35	ઉપ	34	24	30	34	34
[™] E ,°K		2004	2000	2002	2003	2002	2002	1900	1900	1900	1900
V _o ,volts		1									
I _o , amps		ĪŌ	16	28	130	28	28	8	20	28	28
P _o , watts											
I-V Trace No		4	5	6	7	8	9	10	11	12	13
T _R	m٧	11.0	118	12.6	134	14.3	152	11.0	11.8	12.6	13.4
	°C	271	290	310	329	350	372	271	290	310	૩૫૧
	°К	544	563	583	602	623	645	544	563	583	602
	mν										
т _с	°C	597	627	660	700	724	759	597	627	660	700
	°К	870	900	933	973	997	1032	870	900	933	973
Chase mer	۳v										
	°C										
т.	۳v										
T _C base outer	°C										
т	mv										
^T Radiator	°C										
V _{eb} , volts		-	-		1	1	-	-	-		
I _{eb} ,mA		~	-	-	-	1	1	-	-	-	
E _{Filament} ,volts		-		-		-	1	1		-	-
I Filament ^{, amps}		-		-	1	-	1	1	-	١	
^I Coll Heater ^{, amps}			—	_		1		1	1	-	
I Res Heater ,amps		-			-		1			-	
Vacuum, IO ⁻⁶ mmHg		3.2	3.2	3.2	3.1	3-1	3.1	2.7	22	2.2	2.2
Measured Efficiency,	%										
NOTES .											
						,		<u></u>			

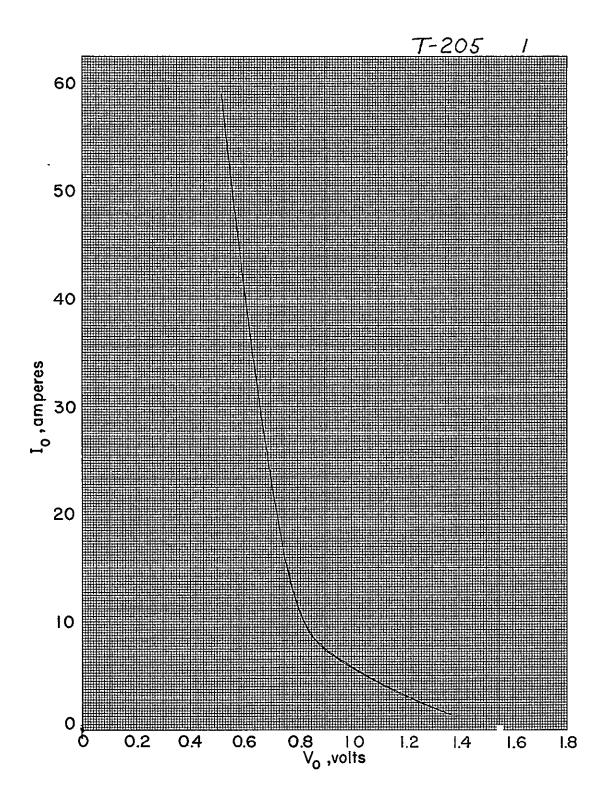
VARIABLE		1	2	3	<u>3</u> ‡	5	6	7	8	9	
Date		10-20	10-20	10-20	10-20	10-20	10-20	10-20	10-20	10-20	
Time		10.11	10 19	/3 00	13-12	13.21	13.28	14:10	14 40	15:00	
Elapsed Time, Hours		508	50,9	53.6	538	540	54.1	549	553	55.6	
T ₀ ,°C		1638	1638	1534	1538	1541	1543	1542	1542	1710	
TO Corrected, °C		1648	1648	1542	1546	1549	1551	1550	1550	1724	
∆T _{Bell Jor,} °C		12	12	10	10	10	10	10	10	/4	
^т н ,°с		1660	1660	1225	1556	1559	1567	1560	1560	1738	
∆⊤ _E ,∘c		33	33	25	29	32	34	33	33	31	
τ _Ε ,°κ		1900	1900	1800	1800	1800	1800	1800	1800	1980	ļ
V _o , volts						{	l	! 	[
I _o , amps		26	27	Īō	18	24	28	26	26	27	L
P _o , watts		[
I-V Trace No		14	15	16	17	18	19	20	21	22-	L
T _R	mv	14,3	152	11.0	118	126	134	14,3	15.2	16.7	
	°C	350	372	271	290	310	329	352	372	407	
	•к	623	645	544	563	183	602	623	645	22- 16.7 407 685 769 1042	
	mv					ļ	 	1	L	<u> </u>	
τ _c	°C	724	759	597	627	660	700	724	759		
	°κ	997	1032	870	900	933	973	997	1032	1042	
T _C base inner	mγ					<u> </u>	1 !	; !	<u> </u>	22- 16.7 685 769 769 1042 1042 1042 1042 1042 1042 1042 1042	
	°C	L			ļ			ļ	<u> </u>	!	
T _C base outer	mv					1		j	<u> </u>	55.6 1710 1724 14 1728 31 1980 127 1980 127 1080 127 1080 127 1080 127 1097 1007 1097 1007 1097 100	
	°C						<u> </u>	<u> </u>	<u> </u>	ļ 	[
T _{Radiator}	mν	L	ļ	[[ļ	ļ			<u> </u>	55.6 1710 1724 14 1724 14 1738 31 1980 127 16.7 407 1680 1042 105 105 105 105 105 105 105 105	L
	°C					Í		<u> </u>	L		
V _{eb} ,volts		L				<u> </u>	ļ	<u> </u>		L	
I _{eb} ,mA		<u> </u>			[1	<u> </u>	, }	<u> </u>		ļ
E _{Filament} , volts	.		<u> </u>			;	, , ,		<u> </u>	5	
r Filament ^{, amps}		<u> </u>					<u> </u>	1	<u> </u>		
^I Coll Heater ^{, amps}		ļ	ļ	ļ			ļ	<u> </u>	ļ	9	
I Res Heater, amps		<u> </u>			<u> </u>	[L	ļ	1	
Vacuum , 10 ⁻⁶ mm H Measured Efficiency		22	2,2	2.2	22	22	2.2	22	22	2.2	
	,%				1		1	1		l 1	

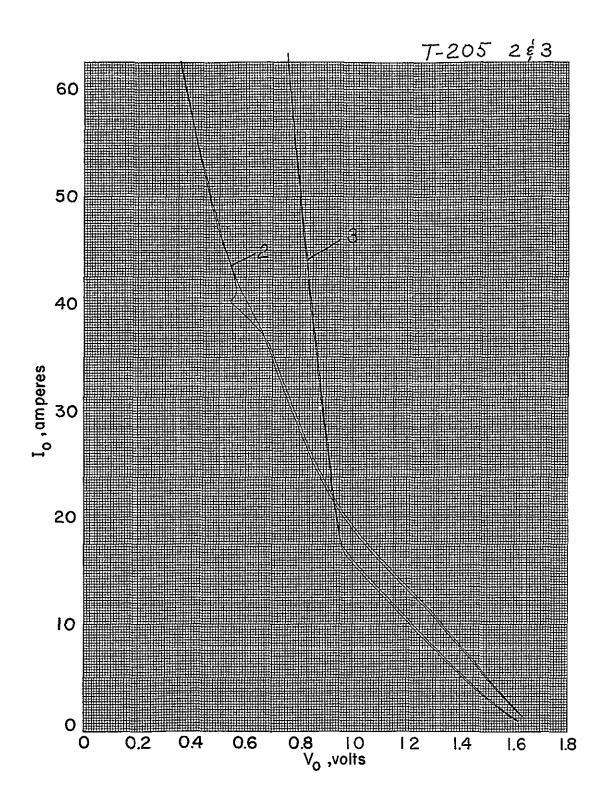
				8	690						
T P	ER	M O E R I N	ELI	ECT	RON	!	She	et4	of	6	
Converter No $-T-2$		2 K T A	G G U		<u> </u>	1	Obs	erver. (P.B.	2 Ser	
VARIABLE		1	2	3	• 4	5	6	7	8	9	10
Date		10-20	10-20	10-20	10-20	10.20	130	10 20			
Time		15:25	1	 						1	
Elapsed Time, Hours		562						<u> </u>		1	
T ₀ ,°C		/723		1						1	
To Corrected, °C		/733									
∆T _{Bell Jar} , °C		14		1						1	
т _н ,°с		1747							1		
∆T _E , °C		20					<u> </u>	<u>.</u>	[ļ ļ	<u> </u>
т _Е ,°К		2000				1				1	<u> </u>
V _o , volts										1	
I _o , amps		0	0	0	0	0	0	0		1	
P _o , watts										+	<u> </u>
I-V Trace No								<u> </u>	, I	1	<u> </u>
	mν	11,0	120	/3.0	14.0	15.0	16.0	17.0		1	
T _R	°C	2.71	295	319	343		L		[1	
ĸ	•к	544	568	592		640	1				<u> </u>
· · · · · · · · · · · · · · · · · · ·	mv	1077	300	072	0,0	640	601	6.07	l	<u>í</u> í	
T _C	°C	627	627	627	627	627	627	607			
·C	°K	900	900					<u> </u>	414		
		780	755	900	900	900	905				
T _C base inner	mv °C								1		
T _C base outer	mv a o							י 	 	<u> </u>	
	°C								i		
T Radiator	mv					-			į		
	°C	A 17 T	0.00						I	<u> </u>	
V _{eb} ,volts		987				985.2				l 	
I _{eb} ,mA			2171	2214	225.6	2300	233.7	235.5	 		
E _{Filament} ,volts		48									
I Filament ^{, amps}		16.0							ļ		:
^I Coll Heater ^{, amps} '		8									
Res Heater amps		0									
Vacuum, IO ⁻⁶ mm Hg		22	2.2		5.2		<i>2 2</i>				
-Measured Efficiency, 9						226.6					
NOTES SHUT O	=¢ /	* 4.2 ^E	83	of 12.4	201V 16.3	20.6	24.4	25.8 25.8	DDE D	Fins _	-
				-							

<i>r</i> .				86	91						
TF	IER	MO	ELE	ЕСТ	RON		She	et_ <u>5</u>	of .	6	
Converter No T-205 Run No Observer P. Brosure VARIABLE 1 2 3 4 5 6 7 8 9 10											
VARIABLE	1	2	3	4	5	6	7	8	9	10	
Date		10-21	10-21	1221	10-21	021	10-21	10-21	15 01	10 21	10-21
Time		11 42	13 20	· · · · · · · · · · · · · · · · · · ·	14 OZ	[14.55	14.59	15.28	16:00	16 11
Elapsed Time, Hours		594	610	61.2	617	62.3	62 6	627	632		63.9
T _o ,°c		1591				1591	1689	* 			
T _O Corrected, °C		1588	7				1686	t			
∆T _{Bell Jar} , °C		12	İ			12	14				
T _H ,°C		16004	<u> </u>	1620t-		1600	1700	<u>د </u>	- 17	20t-	
ΔT _E , °C		21	22	24	27	64	23	25	28	37	47
T _E ,°K		1872		1869		1853	1970	1068	1965		1946
V _o , volts		1.4	1.2	1.0	0.8	0.6	14	1.2	10	0,8	0.6
I _o , amps		27	5.2	7.4	13.3	39.1	62	96	17.1	34.Z	54.9
P _o , watts	-						i		[
I-V Trace No	I-V Trace No				*						
	mv	11.3	11.6	12.2	12.5	13.5	12 3	12.6	12.9	/3.7	14.3
T _R	°C	278	285	300	307	331	302	309	317	336	350
	٩κ	551	558	573	580	604	575	582	590	609	623
	mv										
тс	°C	508	529	551	590	740	590	615	655	752	855
	°ĸ	781	802	824	863	1013	863	883	928	1025	1128
T base inner	mv					10/10					-
	°C								 I	,	
	тiv										
T _C base outer	°C										
	mν	17.0	17.5	17.9	187	21.5	187	191	200	21.9	23.4
T. Radiator	°Ç	414	426	436	<i>asa</i>	520	454	464	485	529	564
V _{eb} ,volts	L	990	988	986	984	974	984	752	780	973	167
I _{eb} ,mA		170	180	189	207	283	<u> </u>	237	262		369
E _{Filament} ,volts		4.7				5		i ,			- •
I Filament ^{amps}		16				17					
I Coll Heater, amps		0				0	0		İ		
I Res Heater ,amps		2.5	155	1.79	1.79	177	1.64	180	1.79	1.75	176
		2.4	<u> </u>		- • 4	2.5		5			2.6
Measured Efficiency,	Win Win	168			2.4	(221	\downarrow		309	
NOTES. Pyrametor * CONVERT + NOTE ADD	rer a	1121-24 DUT/UT	INCR	EASED	obzev Steri	nise	AT C	0 8 √.	•	-31	י גר
AND SHO TEMPERA TE VALUES H	VLD BI TUCES	E - 1 AD - 2	693°C	0135 = 168 - 74	1710 + AN RE	rve . =c0 RDE	ATpyro D-CN F	= 17°C Pages	- ALL 0 5 4 6	EMITTE	r.

•

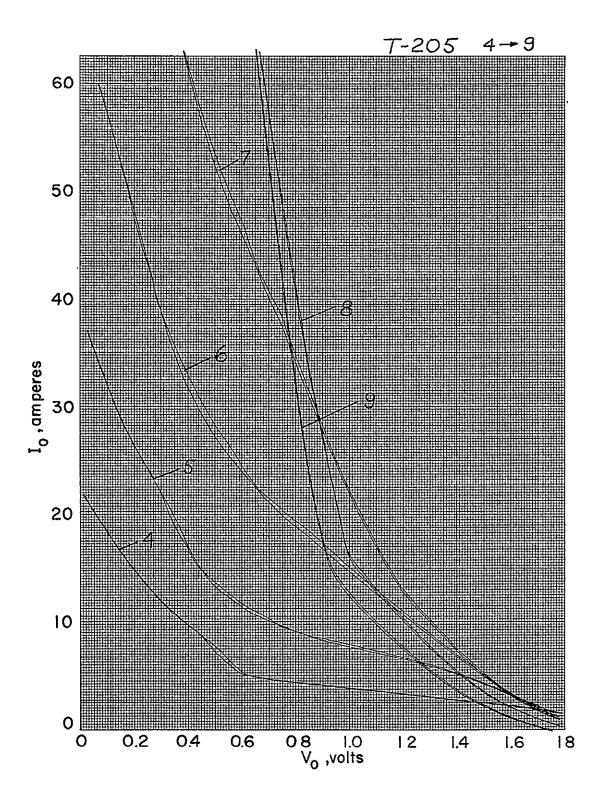
17 12 649 	6 4 12-21 17 12	5			of_ 8.1320 8	- Ker	
- Run No 3 10.21 1712 649 - 1820 - 34	6 4 12-21 17 12	5 10-21 17 40				1	
3 10.21 1712 649 	4 12-21 17 12	10-21 17 40					
10.21 1712 649 	12-21	10-21 17 40	0			9	10
17 12 649 1820* 34	17 22	17 40					
649 							
- 1820 [*] - 34		63.3					
34-		I I					
34-		┝──┼					
34-							
34-							
2059		53					
		2040					
1.0		0.6					
• • • • • • •		66.2					
28-9	37.6	39.7					
136	/4.3	150					
333	350	367					
606	623	640					
765	855	950					
1038	1128	1223					
							İ
21.9	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25.0					
		602	-				
	-	958					
	403	<u>}</u>					
		·		·			
					<u>}</u> −−−-†		
╁──╄							
1.71	115	1.59					
1	1-0-3						<u></u>
╉───┤	234						
1 1	-	<u> </u>			<u> </u>		
	1.71	319	319	319 319	315	315	319


-

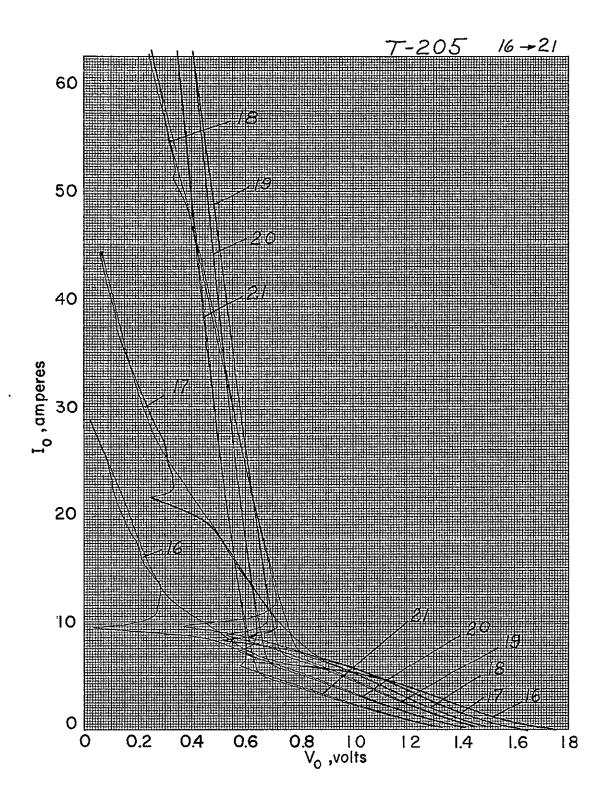

,

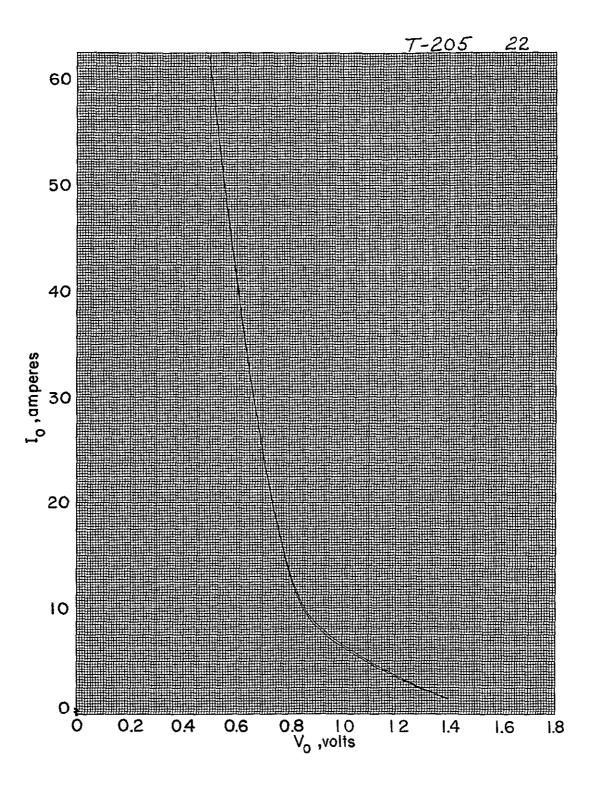
,

7476



.


7478



7480

,8-11

DATA FROM COLLECTOR-RADIATOR

MODEL NO. 2

CALCULATION OF FILAMENT HEATING CONTRIBUTION

AND

ESTIMATED COLLECTOR HEAT TRANSFER

CALCULATION OF FILAMENT HEATING CONTRIBUTION

Assuming that all of the heat input is radiated by the radiator,

$$q_{in} = \epsilon A \sigma T_{Rad}^4$$

where ϵ is the emissivity of the radiator surface

A is the effective radiator surface

T_{Rad} is the average radiator temperature.

For data point No. 5, the average radiator temperature is

$$T_{Rad} = (233 + 223)/2 = 228^{\circ}C$$

 q_{Fil} at 22.8 amps = $\epsilon A \sigma (228 + 273)^4$

For data point No. 4, the average radiator temperature is:

$$T_{Rad} = (656 + 548)/2 = 602 °C$$

 $q_{Fil} at 22.8 amps + q_{eb} = \epsilon A \sigma (602 + 273)^4$

where $q_{eb} = 244$ watts

CORPORATION

Taking the ratio of these two expressions, the term ϵ A σ drops out

$$\frac{q_{\text{Fil}} @ 22.8 \text{ A}}{q_{\text{Fil}} @ 22.8 \text{ A}} = \left(\frac{501}{875}\right)^4 = 0.107$$

and

$$q_{Fil} @ 22.8 A = \frac{244 \times 0.107}{1 - 0.107} = \frac{29.2 \text{ watts}}{29.2 \text{ watts}}$$

ESTIMATED COLLECTOR HEAT TRANSFER

Cesium Conduction Loss:

Obtained from Fig. 38, assuming an interelectrode spacing of 1.8 mils (see Table I, p. 2a, and p. 44), and an optimum reservoir temperature of 620°K at 2000°K (see Table on p. 55, and I-V trace No. 9 on p. 7-9 of Appendix 7). Value plotted is <u>16.0 watts</u>.

Interelectrode Radiation:

Using Fig. 51, it was assumed that both the emitter and the collector have an effective emissivity of 0.28:

$$Q_{r} = \frac{2.5 \sigma}{\frac{1}{0.28} + \frac{1}{0.28} - 1} \left[(2000)^{4} - (1040)^{4} \right]$$
$$= (90.86 - 6.64) \times 2.5/6.12 = 34.4 \text{ watts}$$

In the above, the emitter temperature was assumed to be 2000°K, and the collector temperature, 1040°K, which is the value at which VIII-P-3 operated when the equivalent output current was 72 amperes (see Fig. 41).

Additional Interelectrode Radiation.

This radiator term was assumed to correspond to radiation from the emitter area that extends beyond the edge of the collector. The amount of radial overhang was assumed to equal 6 mils. For a 0.706" emitter diameter, the corresponding area. 15:

$$\pi \ge (0.006 \ge 2.54) \ge (0.706 \ge 2.54) = 0.0865 \text{ cm}^2$$

~

The radiated power was estimated using an effective emissivity of

ELECTRON

PORATION

THERMO

0.28 for the emitter, and 1.0 for the gap opposite the radiating area

$$Q_{additional} = 0.28 \times 0 \ 0865 \ \sigma \left[(2000)^4 - (1040)^4 \right]$$
$$= 0.28 \times 0.0865 \ (90.86 - 6.64)$$
$$= 2.05 \ watts$$

THERMO ELECTRON ENGINEERING CORPORATION

Converter No <u>Co</u>			F	i		· · · · · · · · · · · · · · · · · · ·	_		erver/			
VARIAE			-	2	3	4	5	6	7	8	9_	10
Date		1961	1-12	1-12	1-12	1-12	1-13		<u> </u>			
			13 03	13 35	14 43	15.32	9 33					_
Elapsed Time,	Hours						-					
T ₀ ,•C	······						_					
To Corrected, °	с		-		-	-	ł					<u> </u>
∆T _{Bell Jar} , °C			<u>۰</u>		-							
^т н ,°С			-		-		1					
∆t _{e,°C}			-			-	-					
[™] E ,°K			-		-	-						
V _o , volts			-			~ ¹	1					
I ₀ , amps			-	-	-	-	-					
P _o , watts			-									
I-V Trace No				-	-	-	-					
		mv	3.69	1025	12 05	12.82	6 50		Ĩ			
τ _R		°C	91	252	296	314	159					
	15	°K	364	525	569	587	432					
•• •• •		mv	4.6	23 63	33 28	*	958		i			
т _с		°C	//2	570	800		236		<u> </u>	 		
-	14	°κ	385	843	1073		509		<u> </u>			[
-		mv	455	1950	25 21	2750			·			
^T C base inner	13	°C	111	473	607	661	233		i			
	13	mv	4.51	19 38		27 32						
^T C base outer	12	°C	110	47/	602	656	233		·	1		
		mv	4 45	1726		22 68			<u> </u>			
T _{Radiator}	1	۰c	103	420	517	548	223					
V _{eb} , volts	- 11	·	0	1003		974 5	0					
I _{eb} ,mA			0	100.4	200.6		0					
E Filament ^{volts}			3.6	4.8	50	5.2	5.2					
			17.5	216			22.8					
^I Filament, amps							<u></u> .					
^I Coll Heater ^{, an}						-			 			
I _{Res Heater} ,an Vacuum,10 ⁻⁶ m			34	68	6,3	55			 			
Measured Effici		6	3 T 	<u>ہ</u>	6,3	-	3.5		<u> </u>			
				1007	- 197	244			I]		
	Powe		0 mf dra				0 ge me	Ited				

TEST DATA FROM CONVERTER T-206

<u>T</u> H	ER	MO					She	et/	of.	_5	
Converter No $-T^{-2}$	<u>06</u>	r (i · l		. Run No			0bse	orver	J B	200 Ser	
VARIABLE	•	l .	2	3	4	5	6	7	8	9	10
Date	967	3-30	3-30	3-30	3-30	3-31	3-31	3-31	3-31	3-31	3-31
Time		11-51	15-45	1614	17:34	9:12	9:25	9:36	10 30	10.40	11-10
Elapsed Time, Hours		0	3.9	44	57	21.4	216	217	22-7	23.0	23,3
T ₀ ,°C	· · · · ·	1737	1720	1722	1730	1728	1728	1730	1624	<i>1</i> 624	1630
T ₀ Corrected, °C		1741	1730	1732	1740	1738	1738	1740	1633	1633	1639
∆T _{Bell Jar} , °C (I)		14	14	14	14	14	J4-	14	12	12	12
T _H ,*C		1755	1744	1746	1754	1752	1752	1754	1645	1645	1651
∆ ^T E,°C		29	20	16	25	25	25	25	15	/8	24
т _Е ,°К		1999	1997	2003	2002	2000	2000	2002	1903	1900	1900
V ₀ , volts (2)		.912		-				-		-	+
I _o , amps		377	20	ĪZ	30	31	30	29	Īo	ĪS	28
P _o , watts					-		-	1		1	1
I-V Trace No (3)			2	1	З	4	5	6	7	8	9
	۳v	145	118	11.0	12.6	13.4	143	152	11.0	11 8	12-6
т _R	°C	355	290	271	309	329	350	372	271	290	309
	°К	628	563	544	582	602	623	645	544	563	582
	mν	31.8	26.5	24.4	293	30.1	30.3	30.4	22.7	24.3	27.4
τ _c	°C	764	637	588	704	723	728	730	548	586	659
	٩К	1037	910	861	977	996	1001	1003	821	859	932
T _a hum	mv										
^T C base inner	°C	_		[
Т	mν										-
T _C base outer	°C										
Ť	۳v	21.4	191	182	20.2	20.7	20.8	20.8	17.4	18.1	195
TRadiator	°C	518	464	443	489	501	504	504	424	440	473
V _{eb} , volts		965	973	977	970	966	966	966	980	977	974
I _{eb} ,mA		375	281	253	322	342	348	349	213	233	271
E _{Filoment} ,volts		5	4.8	47	4,8	48	4.9	4.9	4.6	46	4.7
I _{Filament} , amps		21	20	20	20	21	21	21	20	20	20
I Coll Heater ^{, amps}		-		-	ł	—	-	-	- ,		-
I _{Res Heater} , amps"		1	1	0	1	1	J	1	0	/ (4)	1.77
Vacuum , 10 ⁻⁶ mm Hg		3.0	3.4	20	2.0	2.0	2.0	2.0	20	ZO	2.0
Neasured Efficiency, NOTES (1) p-12 F		362	273	247 AT=	312	330 25 T	336	337	209	228	264
(1) P-12 1 (2) VOLTA (3) *-Y REC (4) CONNE	се та. Эрэга	ר א ד אודד=S	емітте 165 ж	sr. LE 50 m	АД С v/Эiv v	LAMP		faiv VA	R_		
			<u> </u>								

variable		1	2	3	<u>Z } ;</u> 4	5	6	erver	<u>P Br</u>	9	10
 Date		3-31	3-31	3-31	3-31	3-31	3-31	3-31	3-3)	3-31	
Тіте	<u> </u>	11-20	11:30	11.40	14.23		14.42	14 48	14 55	15 15	
Elapsed Time, Hour	rs —	23.5	23.7	Z3.8	26.5	267	26 8	27.0	27.1	27.4	
T ₀ ,°C		1630	1630	1630	1521	1524	1531	1531	1532	1532	
To Corrected, °C		1639	1639	1639	1529	1532	1539	1539	1540	1540	
∆T _{Bell Jar} , °C		12	12	12	10	10	10	10	10	10	-
T _H ,°C		1651	1651	1651	1539	1542	1549	1549	1550	1550	
Δ ^T E, °C		25	23	23	12	17	22	23	53	23	
т _Е ,∘к		1899	1901	1901	1800	1798	1800	1799	1800	1800	
V _o , volts		<u> </u>									
I _o , amps		29	27	26	5	15	24	26	26	25	
P _o ,watts		-	المروم مع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع الم المراجع المراجع br>المراجع المراجع		-						
I-V Trace No		10	u	12	13	14	15	16	17	18	
	m٧	13.4	14.3	15.2	11.0	11.8	12.6	13.4	14.3	152	
T _R	°C	329	350	372	271	290	309	329	322	372	
	۰К	602	623	645	544	563	582	602	623	645	
	mv	28.8	281	284	201	22.3	256	26 Z	265	267	
τ _c	°C	692	675	682	487	539	616	630	637	642	
-	٩K	965	948	955	760	812	889	903	910	915	
	mv										
^T C base inner	°C										
<u> </u>	mv										
^T C base outer	۰c										
<u> </u>	mν	19.9	198	20.0	15.8	169	18.5	189	190	192	
T. Radiator	°c	483	480	485	386	412	450	459	461	466	·· ·
V _{eb} ,volts	_!	972	973	973	987	984	979	978	978	979	
I _{eb} , mA		291	286	287	171	190	229	239	239	235	
E Filament, volts		4.8	4.8	4.8	4.5	46	4.7	47	47	47	
I Filament ^{, amps}		20	20	20	20	20	20	20	20	20	· _
^I Coll Heater ^{, amps}		•-	1								
IRes Heater amps		2.28	2.96	3.42	1.75	222	212	2 68	3.42	3 49	
Vacuum, 10 ⁻⁶ mm Hg		2.0	2.0	2.0	1.8	18	18	18	18	18	
	% EB		278	279	169	/87	224	234	234	220	

-

Converter No $-7-2$		r ę i z G			1 \$ 2		Oha	orver	P B	20 Sen	
VARIABLE		1	2	3	4	, 5	0bse	7	8	9	10
	1967	3-30	3-30	3-30	3-30	3-31	3-31	3-31	3-3)	3-31	3-31
 Time	701	11-51	15-45	16 14	17.34	9.12	9:25	9:36	10 30	10.40	11-10
Elapsed Time, Hours	:	' 0	3.9	44	5.7	21.4	216	217	22-7	23.0	23.3
 ™,°C		1731	1720	1722	1730	1728	1728	1730	1624	1624	1630
To Corrected, °C		1741	1730	1732	1740	1738	1738	1740	1633	1633	1639
∆T _{Bell Jar} , °c (1)	-	14		14		14	14-	14	12	12	12
T _H ,°C		1755	1744	1746	1754	1752	1752	1754	1645	1645	1651
Δ ^T E, °C		29	20	16	25	25	25	25	15	/8	24
т _Е ,°К		1999	1997	2003		2000		2002	1903	1900	1900
V _o , volts (21		.912									
I _o , amps		377	20	ĪZ	30	31	30	29	Īõ	ĪŠ	28
Po, watts			-	<u>-</u>		<u> </u>					<u> </u>
1-V -Trace No (3)			2	1	3	4	5	6	7	8	9
······································	mv	145	118	110	12.6	13.4	143	152	11.0	11 8	12-6
TR	°C	355	290	271	309	329	350	372	271	290	309
	٩к	628	563	544	582	602	623	645	544	563	582
·	mv	31.8	26.5	24 4	293	30.1	30.3	30.4	22.7	24.3	274
τc	°C	764	637	588	704	723	728	730	548	586	659
-	°κ	1037	910	861	977	996	1001	1003	821	859	932
	mv										
^T C base inner	°C										
	mv										
^T C base outer	°C										
	mv	21.4	191	18.2	20.2	20.7	20.8	20.8	17.4	18.1	19.5
Radiator	°C	518	464	443	489	501	504	504	424	440	473
V _{eb} ,volts	1	965	973	977	970	966	966	966	980	977	974
I _{eb} , mA		375	281	253	322	342	348	349	213	233	271
E _{Filament} volts		5	4.8	47	4.8	4.8	4.9	4.9	4.6	46	4.7
I _{Filament} , amps		21	20	20	20	21	21	21	20	20	20
^I Coll Heater ^{, amps}		-			—			-	-		
I _{Res Heater} , amps	· · ·	1	1	0	1	1	1	1		1 (4)	1.77
Vacuum, 10 ⁻⁶ mm Hg		3.0	34	20	2.0	2.0	2.0	20	2.0	20	2.0
Measured Efficiency,	% EB	362	273	247	312	330	336	337	209	228	264
NOTES (1) p-12 f (2) VOLTA (3) x-Y REG (4) CONNE	OURTH CE TA	רא P SETTIN	<u>ем</u> ітте 165 ж	SO M	v/Div v	LAMP	' z v /	้อเข VA	R_		

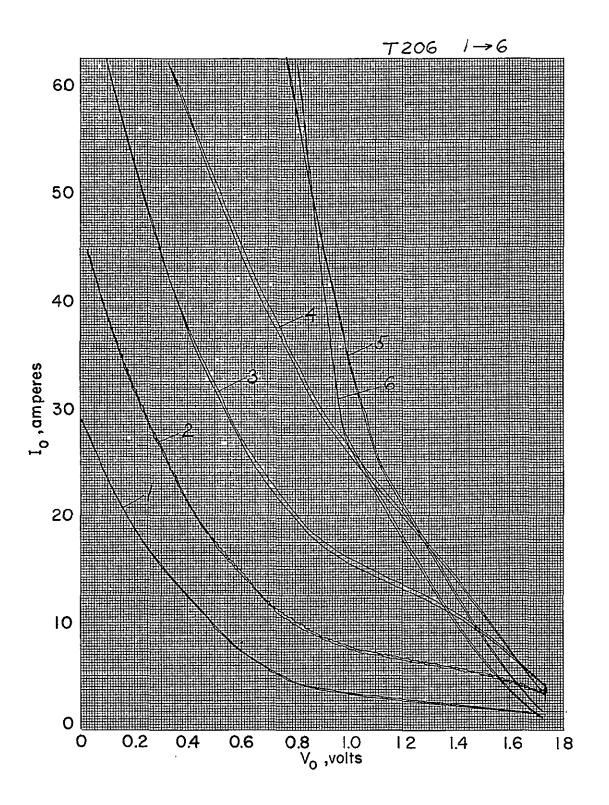
•

•

									PBL	-t	
converter No	-00	<u> </u>	1	1	2 2 3		E	erver_ <i>L</i>	T	1	
VARIABLE			2	3	4	5	6	7	8	9	10
Date _		3-31	3-31	3-3≀	3-31	3-31	3-31	3-31	3-31	3-31	
Time		11-20		11.40	14.23		14.42	14 48	14 55		
Elapsed Time, Hours	5	23.5	237	Z3.8	265	267	26 8	27.0	27.1	27 4	
T ₀ ,°C	<u> </u>	1630		1630	1521	1524	1531	1531	1532	1532	
To Corrected, °C		1639	1639	1639	1529	1532	1539	1539	1540	1540	
∆T _{Bell Jor} , °C		12	12	12	10	10	lo	10	10	10	
T _H ,°C		1651	1651	1651	1539	1542	1549	1549	1550	1550	
∆ ^T E, °C		25	23	23	12	17	22	23	23	23	
т _Е ,∘к		1899	1901	1901	1800	1798	1800	1799	1800	1800	
V _o , volts			<u> </u>			~			-		
I _o , amps		29	27	zG	5	ĪŚ	24	26	26	25	
P _o , watts		-							<u> </u>	<u> </u>	
I-V Trace No	1	10	<u>u</u>	12	13	14	15	16	17	18	
	mv	13.4	14.3	15.2	11.0	11 8	12.6	13.4	14.3	15.2	
т _R	°C	329	350	372	271	290	309	329	329	372	
	٩К	602	623	645	544	563	582	602	623	645	
	mv	28.8	281	284	20.1	22.3	25.6	26.Z	265	267	
τ _c	°C	692	675	682	487	539	616	630	637	642	
	٩К	965	948	955	760	812	889	903	910	915	
Т	mv										
T _C base inner	°C										
	mν										
^T C base outer	°C			,							
т	mv	19.9	19.8	20.0	15.8	169	185	18.9	190	19.2	
Radiator	°C	483	480	485	386	412	450	459	461	466	· · ·
V _{eb} , volts	-t	972	973	973	987	984	979	978	978	979	
I _{eb} ,mA		291	286	287	171	190	229	239	239	235	
E _{Filament} ,volts		4.8	4.8	48	4.5	46	4.7	47	47	47	
I Filament, amps		20	20	20	20	20	20	20	20	20	
^I Coll Heater ^{, amps}		-	~	~	~	_					
I Res Heater, amps		z 28	2.96	3.42	1.75	222	2.12	2.68	3.42	3 49	
Vacuum, 10 ⁻⁶ mm Hg		2.0	2.0	2.0	1.8	1.8	18	18	18	18	
Measured Efficiency,	% ËB Powér	283	278	279	169	/87	224	234	234	230	
NOTES.											

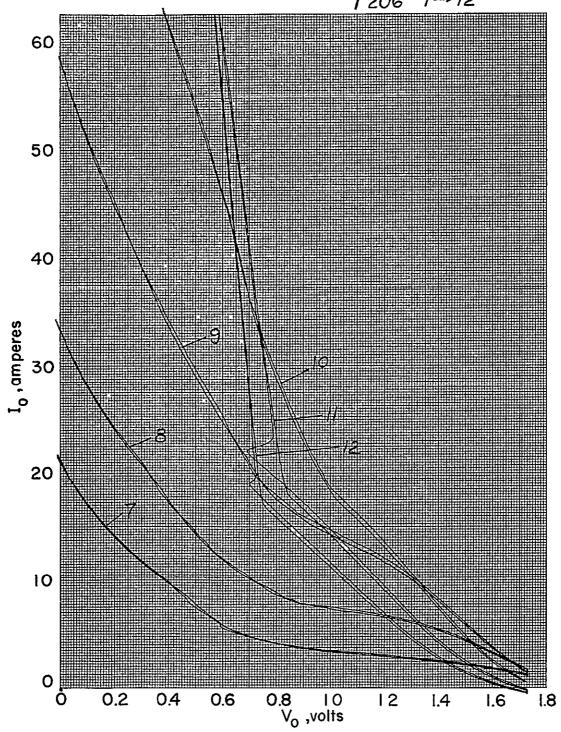
onverter No <u>T-2</u>	26			. Run No	4		Obs	erver_ 🗸	<u> </u>	osen	•
VARIABLE		1	2	3	4	5	6	7	8	9	10
Date		3-31			_		-	3.31			
Time		15:37		-		-	~	16 07			
Elapsed Time, Hours	5	27.8			-	-	-	28.3			
т _о ,•с	(1)	1703		-		-	-	1703			
To Corrected, °C		1713	-	_	-	-		1713			
∆Tgell Jar, °C		14	-	-		-	-	14			
™ _H ,°¢		1727	-	-	_	-	-	1727			
Δ ^T E, °C		10			_	-	-	lo			
т _е , •к	_	1990				-		1990			
V _o , volts		246	2.45	2 4 4	2.41	2 39	2 35	2.30			
I _o , amps		0	0	0	0	0	0	0			
Po , watts											-
I-V Trace No											
	mv	11.0	12.0	13.0	14.0	15.0	160	170		<u> </u>	
T _R	°C	271	295	319	343	367	391	414			
	٩К	544	568	592	616	640	664	687			
	mv	21.9	22.4	22.9	23 8	24.4	25.0	25.6			
Τ _C	°C	529	541	553	574	588	602	616			
-	٩ĸ	802	814	826	847	861	875	889			
	mv	<u> </u>			<u> </u>						
^T C base inner	°C										
	mv										
^T C base outer	°C								i	. <u> </u>	
	mv	169		-				18.8			
^T Radiator	°c	412				ļ		457		<u> </u>	
V _{eb} , volts		986	986	985	984	983	982	981			
I _{eb} , mA	<u> </u>	225.6		237.1	244.9		2594	264.4			
E _{Filament} ,volts		4.6		-			2371	47			
		20						20		·	
I Filament, amps							· · · · ·	-			
L amos		152	┝───	2.31	2.4	3.72	4 19	4.63		 	
I Res Heater, amps		20	2 32	2.31	3.14	3.12					
Vacuum, 10 ⁻⁶ mm Hg Measured Efficiency,	or EB				-	2 4 17 4		2.0			
NOTES (1) TEMPER		AUTOM	ATICAL	LY Co	いてたっと				truc c	IRCUIT	AND

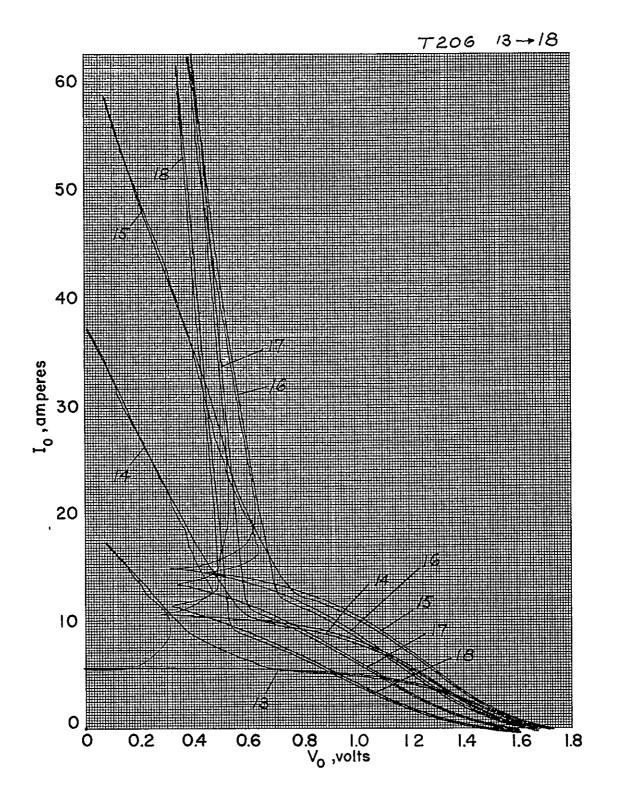
E Y		ERIN	6 6 0	8 7 0 8		N			D D		
Converter No <u> </u>	206	.		Run No		6	Obs	erver_l	<u>r ps</u>	20 Ser	~
VARIABLE			2	3	4	5	6	7	8	9	10
Date		3-31	3-31	3-31	4-3	4-3	4-3	4-3	4-3	4-3	4-3
Time		16:25	16.55	17 22	11:00	11.50	12 03	15 18	15:30	15-37	15-5
Elapsed Time, Hours	s	28.5	29.0	29.5	30.8	31.7	319	352	35.4	35.5	35.8
T _o ,°C		1676	1676	1676	1676	1676	1676	1579	1579	1574	1579
To Corrected, °C		1686	1686	1686	1686	1686	1686	1588	1588	1588	1588
∆T _{Bell Jar} , °C		14	14	14	14	14	14	12	12	12	12
τ _Η ,°C		1700	1700	1700	1700	1700	1700	1600	1600	1600	1600
Δ ^T E, °C		10	15	18	22	31	41	10	12	14	16
т _Е ,∘к		1963	1958	1955	1951	1942	1932	1863	1861	1859	185-
V _o , volts		2.42	1.4	1.2	1.0	08	0.6	2 17	1.4	1.2	1.0
I _o , amps		0	10.6	16.9	23.3	41.2	62.7	0	4.3	8.0	12.9
P _o , watts											
I-V Trace No		-	-	()			-	-	-		
	mv	11.0	13.0	13.5	/38	14.2	147	11.0	11.9	12.2	12.7
т _R	°C	271	319	331	338	348	360	271	292	300	312
	٩ĸ	544	592	604	611	621	633	544	565	573	585
	mv	21.7	24.8	26.5	27.8	31.4	35.4	19.6	20.9	219	23.4
т _с	°C	525	597	637	668	754	852	476	506	529	564
-	٩K	798	870	910	941	1027	1125	749	779	802	837
	mv		<u> </u>							<u>v</u>	
C base inner	°C	·	<u> </u>			<u> </u>					
	mv										
^T C base outer	°C										
	rnv -	16.9	18.4	192	19.7	212	22.7	158	164	169	177
T _{Radiator}	°C	412	447	466	478	513	548	386	400	412	43/
V _{eb} , volts	I	988	979	975	974	968	962	992	987	984	982
I _{eb} ,mA		214 4	262.4	288.0		356.2	420	1759	193.6	2082	224.
E Filament volts		4.6	47	48	48	50	5.1	4.5	4 6	46	4.6
^I Filament ^{amps}		20	20	20	20	21	21	19	20	20	20
^I Coll Heater ^{, amps}							-	_			
IRes Heater * amps		096	2,46	2.58	2.63	259	2.66	1.69	2.19	2.54	241
Vacuum, 10 ⁻⁶ mm Hg		2.0	2.0	2.0	2.0	2.0	2.0	1.8	1.8	1-8	1.8
Measured Efficiency,	% E8	211 8	2570	280.8	292.4			174.5		204.9	
NOTES (1) SHUT											
BEFORG							0				-


onverter No <u>T-2c</u>	IER SENEI				6 5		0bse	erver_[Bre	, sur	
VARIABLE		1	2	3	4	5	6	7	8	9	10
Date		4-3	4-3	4-3	4-3	4-3	4-3	4-4		4-4	4-
Time		16:11	16 23	16:34	16:49	17.13	17.39	11:27		16 46	17:5
Elapsed Time, Hours	;	36.0	36.2	36 4	36.7	371	37.5	40.1		422	43.
Т,,°С		1579	1579	1773	1773	1773	1773	1773	1773	1676	171
To Corrected, "C		1588	1588	1784	1784	1784	1784	1784	1784	1686	172
∆T _{Bell Jar} , °C		12.	12	16	16	16	16	16	16	14	1.
т _{н ,°} с		1600	1600	1800	1800	(800	1800	1800	1800	1700	174
Δ ^T E, °C	_	18	29	10	19	24	32	41		26	3
т _Е ,°К		1855	1844	2063	2054	2049	2041	2032		1947	198
V _o , volts		0,8	0.6	2.44	1.4	1.2	1.0	0.8	0.6	0.8	0.8
I _o , amps		16.0	37.9	0	18.1	29.3	44.6	62.7		32.1	40
P _o , watts											
I-V Trace No					~~			(1)	(2)	(3)	(4)
	mv	13.1	136	12 0	137	14.2	14.7	155		14.0	14.
T _R	°C	321	333	295	336	348	360	379		343	350
	°К	594	606	568	609	621	633	652		616	62.
<u> </u>	mν	24.5	28.7	24.0	28.1	30.7	33.7	37.7		29.2	31 :
τ _c	°C	590	690	579	675	737	810	908		702	74
-	•ĸ	863	963	852	948	1010	1083	1181		975	102
π	mv										
^T C base inner	°C		·								
	mv										
^T C base outer	°C								-		
	mv	183	20.1	18.2	19.9	21-0	222	23.8	-	20.5	21-
T _{Radiator}	°C	445	487	443	483	508	537	574		497	513
V _{eb} , volts		981	974	982	971	966	960	951	<u> </u>	972	96
I _{eb} ,mA		236 6			3484			557.8	† —	3145	∔
E _{Filament} ,volts		4.7	4.8	4.7	48	4.9	51	5.3	1		5.
I Filament ^{, amps}		20	20	20	20	21	21	22			22
I Coll Heater, amps											
I Res Heater, amps		2.57	2 46	1.47	2.54	2.63	2.63	2.64	<u> </u>	2.59	25
Kes Heater , Market Vacuum , 10 ⁻⁶ mm Hg		1.8	1.8	1.8	18	1.9	19	2.2	1	2.6	2.3
Measured Efficiency,	% EB				338.3					305.7	345
NOTES (1) SHUT (2) CONVER LIMIT	off f Rter of c f	KECGEI WAS NO OLLEET	DING N DT RU DT RU DR TE MENT T - SAM	N GHT N AT EMPER	O.G ATURE DFFERE SRVED	V FOI _ CONU	R FER NERTER SIZE - As S	5401 HEET 2	OFF	WILL	. 2ml

.

$\frac{TB}{E \times 10^{-2.4}}$		M O		ECT R F O R		1	-		of. D. Br		~
VARIABLE			2	3	4	5	6	7	8	9	10
Date		7-21	7-24	7-25	7-25	7-25	7-26		<u> </u>		┼──
Time		14:12	15.07		11.25	14.05					┼──
Elapsed Time, Hours	5	.00	44	22.8	246	272	47.1				┼──
T ₀ ,°C		1700	1697	1699	1698	1698	1700				
T _O Corrected, °C		1706		- <u> </u>	1704	1704	1706				┼──
∆T _{Bell} Jar, °C		11	11	1	H		11				
т _н ,°с		1717	17/4	1716	1715	1715	1717				┼──
ΔT _E , °c		23	23	23	23	31	31		<u> </u>		<u> </u>
Т _Е , °К		1967	1964	1966	1965		1959				<u> </u>
V _o , volts		982	.996	<u> </u>	1.003		.799				┼──
I _o ,amps		22.9	22.2	21.6	21.9		41.2				+
P _o , watts		<u> </u>		<u> </u>							┼──
I-V Trace No		<u> </u>	(2)		(3)	<u> </u>	(4)				┢──
· · · · · · · · · · · · · · · · · · ·	mv	13.1	13.6	13.3	13.2	13.9	14.0		<u> </u>		
T _R	°C	321	333	326	324	341	343				┼-──
i.	•к	594	606	599	597	614	616				<u> </u>
	mv	(1)	26.9	26.5	26.5	<u> </u>	30.2				┼──
т _с	°C		647	637	637	723	725				
-	°κ		920	910	910	996	1				
	mv			<u> / · · ·</u>		<u> · / ·</u>					<u> </u>
^T C base inner	°c						<u> </u>			-	<u> </u>
-	mv	<u>├</u> ───		<u> </u>		<u></u>	<u> </u>		<u></u>		┝
^T C base outer	°C	 					<u> </u>				┣──
	mv										┣──
Radiator	°C										
V _{eb} ,volts	<u> </u>	975	976	975	976	97.	967				
I _{eb} ,mA				300.4	302.9	356.3					
E Filament volts		4,8	4.9	4.8	4.8	4.9	4.9				
I Filament, amps		19.5	19.5		19	19.5	19.5				
^I Coll Heater ^{amps}									<u> </u>		
IRes Heater amps		~2	263	2.63	2.56	256	2.59		├───┤		
Vocuum, 10 ⁻⁶ mm Hg		3.0	3.6	2.2	22	2.2	2.1				
Measured Efficiency,	% EB	292 5		292.7			346.5				
NOTES (1) TC S	HORTE T WIRI To RU LOAD	NG- V ^U NG- N OVE To C	LTAGE	TAPS	rever	se Pa	L	_ 370	₁ ₽₽E₽ T	ESTING	




7693

T206 7-+12

ENGINEERING CORPORATION

7692

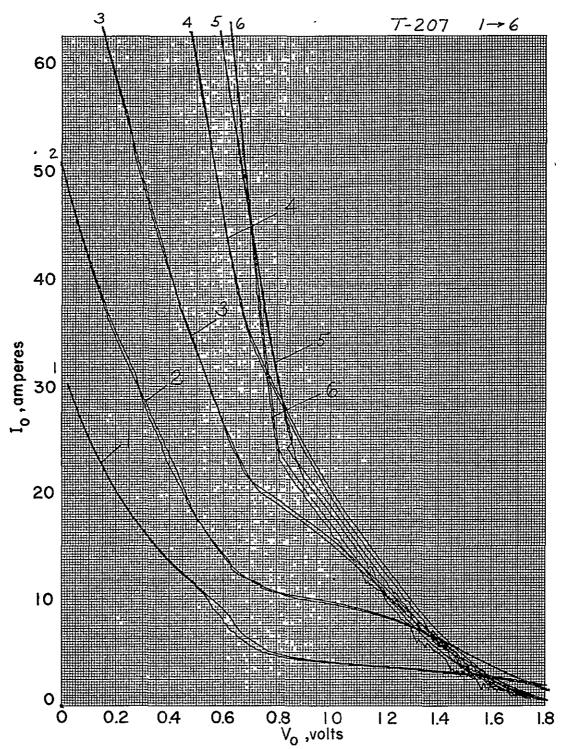
10-11

TEST DATA FROM CONVERTER T-207

				87	01					_	
тн	ER		ELS	ः ः र्।	RON		She	ət!	of.	5	
Converter No $\underline{T-2}$		ER ' G		RunNo	4	2.	0bse	erver	P BI	nosen	<u>~</u>
VARIABLE			2	3	4	5	6	7	8	9	10
Date		9-11-67	9-n	9.12	9-12	9.12	9-12	9-12	9-12	9-12	9-12
Time		17.10	940	10.23	10 47	11:00	11-11	11:20	15:52	16.02	16:07
Elapsed Time, Hours		58	22.3	23.0	23.4	23.6	238	23.9	285	28.7	28.8
T ₀ ,°C		1412	1724	1726	1729	1729	1728	1718	1628	1630	1630
To Corrected, °C	(1)	1412	1726	1728	1731	1731	1730	1730	1628	1630	1630
∆T _{Bell Jar,} °C		10	14	14	14	14	14	14	12	12	12
T _H ,°¢		1422	1740	1742	1745	1745	1744	1744	1640	1642	1642
ΔT _E , °C (2)			13	15	18	18	17	17	13	15	15
[™] E,°K			2000	2000	2000	2000	2000	2000	1900	1900	1900
V _o , volts		0.064	-		-			-		-	-
I _o , amps		3.0	12	20	30	30	28	28	ī2	20	22
P _o , watts		-				-	-	-		-	
I-V Trace No			1	2	3	4	5	6	7	B	9
	mv	10.4	11.0	.8	12.6	13.4	14.3	15.2	11.0	11.8	12.6
TR	°C	256	271	290	309	329	350	372	27/	290	309
	°К	529	544	563	582	602	623	645	544	563	582
	mν	163	23.0	25.6	27.9	28.7	28.5	29.2	22.0	24.0	25.7
тс	°C	398	555	616	671	690	685	702	532	579	618
	°К	671	828	889	quele	963	958	975	785	852	891
т	mν	<u> </u>									
^T C base inner	°C										
	mν										
^T C base outer	°C		-	-							
	mv										
Radiator	°C								[
V _{eb} , volts	L	991	974	971	969	968	968	967	982	978	975
I _{eb} ,mA		115	-		293.5				1960	225.3	249.6
E _{Filament} ,volts		4.2	4.8	4.8	4.8	J.0	4.9	4.9	4.6	4.7	48
I _{Filament} , amps		18	20	20	20	20	20	20	19	19	20
^I Coll Heater ^{, amps}	-			~			_	-		_	_
I Res Heater amps		1.96	120	153	2.04	2.56	296	3,47	159	1.92	2.23
Vacuum, 10 ⁻⁶ mm Hg	· .	26	3.0	3.0	3.0	3.0	3.0	3.0	22	2.2	22
Measured Efficiency,	%		-		-			-			
NOTES (I) РҮКОМЕ (2) ДТ _Е >					- Ε	/500°C 8 12)	+	2.5	a 1700	った	
L										·	

11-1

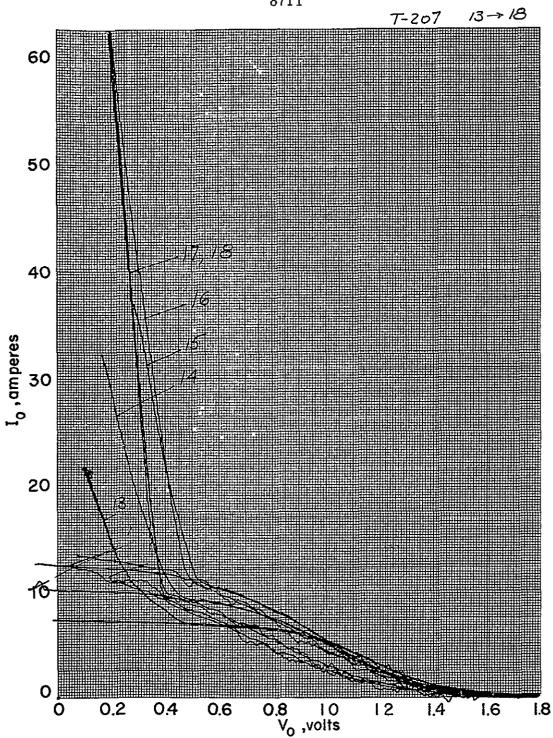
VARIABLE		1	2	3	4	5	6	7	8	9	10
Date		9-12	9-12	9-12	9-12	9-12	9-12	9-12	9-12	9-12	
Time		16:20	16:35	16:41	17:02	17:07	17:15	17:25	17:30	17:35	
Elapsed Time, Hou	rs	28.9	292	29.3	29.6	29.7	29.9	30.0	301	30.2	
T _o ,°C		1631	1631	1631	1529	1531	1531	1533	1534	1\$34	
To Corrected, °C		1631	1631	1631	1528	1530	1530	1532	1533	1533	-
∆T _{Bell} Jar, °C		12	12	12	10	10	lo	10	10	(0	
™ _H ,°C		1643	1643	1643	1538	1540	1540	1542	1543	1543	
∆T _E , °c		16	16	16		/3	13	21	16	16	
т _Е ,∘к		1900	1900	1900	1800	1800	1800	1800	1800	1800	
V _o , volts		-		-							
I ₀ , amps		26	26	26	5	īõ	Ī2	22	26	26	
P _o , watts			-	-				-	- 1	-	
I-V Trace No		10	11	12	13	14	15	16	17	18	
	mv	134	143	15.2	11.0	11.8	12.6	13.4	14.3	15.2	
T _R	°C	329	350	372	271	290	309	329	350	372	
	٩К	602	623	645	544	563	582	602	623	645	
	mv	26.7	27.4	27.5	19.9	20.4	21.5	24.9	25.4	25.7	
τ _c	°C	642	659	661	483	494	520	600	612	618	
	٩К	915	932	934	756	767	793	873	885	891	
т	mv										
T _C base inner	°C		1								
<u> </u>	mv										
^T C base outer	°C										
τ	mv										
T Radiator	°C										
Veb, volts	1	975	974	975	991	989	987	981	981	981	
I _{eb} ,mA		259.1	268.7		157.8		187-3	221.7	221.7	229.9	
E Filament, volts		4.8	4.8		4.6	4-6	4.6	4.7	4.8	48	
I _{Filament} , amps		20	20	Zo	19	19	19	19	20	20	
L Coll Heater ^{, amps}	<u> </u>		_	-		_	_		_		
I _{Res Heater} ,amps		260	3.17	340	2.14	2.59	264	2.81	3.44	3.52	
Vacuum , 10 ⁻⁶ mm Hg		2.2	2.2	2.2	z 2	2.1	2-1	2.1	2.1	2.1	
Measured Efficiency	%										
NOTES.						.					


Converter No \underline{T}	-207	<u> </u>		Run No	4		Obse	erverZ	isi	0 5000	_
VARIABLE		I	2	3	4	5	6	7	8	9	
Date		9-15	-	-	-	-	•		-	-	Ċ
Time		11:05	-	-		-	-	-	-	-	1
Elapsed Time, Hou	rs	32.0	-	-		-	-	1	-	-	1.1
T ₀ ,°C ((1)	1721	-	-	-	-	-	-		-	1
To Corrected, °C		1723		-	-	-	-	-	-	-	1
∆T _{Bell Jar} , °C		14	-	-	_	-	-	_	-	-	1
т _н ,•с		1737	-	-	~	-	-	1	-		1
ΔT _E ,°C		10	_			-	-	-	_		Γ
T _E ,°K		2000	-		-	-	-	-	-		1
V _o , volts					-		-	-	-	-	T
I _o , amps		0	0	0	0	0	0	0	0	0	T
P _o , watts		-	 	-	~		-	-	-		-
I-V Trace No		-	-	_	-	-		-			Γ
	٣v	10.0	11.0	12.0	12.5	130	140	14.5	150	16.0	Γ
T _R ,	°C	246	271	295	307	319	343	355	367	391	2
	٩К	519	544	568	580	592	616	628	640	664	6
	mv	20.4	20.9	21.0	21.4	21.9	22.3	22.9	22.9	23.6	
т _с	°C	494	506	508	518	529	539	553	553	569	İ.
-	°K	767	779	781	791	802	812	826	826	842	
	mv										T
^T C base inner	°C						-				T
	mv					<u> </u>					t
T _C base outer	°C									<u> </u>	┢
	- mv										╞
T _{Radiator}	°C	<u> </u>									
V _{eb} ,volts	_1	985	985	984	983	983	982	982	981	980	•
I _{eb} ,mA			212.0	-		220.5			231.1		2
E _{Filament} , volts		4.5			-	-	-			-	Ϊ.
I _{Filament} , amps		18.5				-	-	-	-	-	┢
I Coll Heater, amps		† <u> </u>	_		-		-		-	_	t
I _{Res Heater} , amps		0.99	2 22	2.47	2.94	2.94	3.38	3.73	3.73	4.16	1.
Vacuum 10 ⁻⁶ mm Ho		21			-	-	-				t
Measured Efficiency			208.82	212.8	215.2	216.7	221.9	223.9	226.7	234.1	2
NOTES (1) TE	MPELAT RCUIT	URE	<i>А</i> ЈТО М	ΑτιςΑ	127	CONT	ROLLE	ک ۳٤ ۵	г рнс	TOEL	<u> </u>

nverter No <u>1-2</u>	<u>07</u>		·	Run No		\$6	Obs	<u>erver_(</u>	<u>, Veri</u>	Setto,	<u> PBro</u>
VARIABLE		1	2	3	4	5	6	7	8	9	10
Date		9-18	9-18	9-18	9-18	9-18	9-18	9-18	9-18	9-18	9-18
Time		10.57	11-15	11:51	13:17	1351	14:12	14.41	15.40	16'00	16.40
Elapsed Time, Hours		37.2	37.5	381	39.6	40,1	40,5	410	419	42.3	43.0
т _о ,°С		1684	1684		1684	1684	1684	1288	1588	1588	1588
To Corrected, °C	_	1686	1686	1686	1686	1686	1686	1588	1588	1588	1588
∆T _{Bell Jar,} °C		14	14	14	14	14	14	12	12	12	12
т _{н,°} с		1700	1700	1700	1700	1700	1700	1600	1600	1600	1600
∆ ^T E,°C		10	11_	/2	/3	15	20	10	10	H	12
[™] E,°K		1963	1962	1961	1960	1958	1953	1863	1863	1862	1861
V _o ,volts		2.03	1.4	1.2	1.0	0.8	0.6	192	1.4	1.2	1-0
I _o , amps		0	3.9	8.4	14.2	22.0	41.	0	13	3.2	5,9
o,watts		0	5.5	10.1	14.2	17.6	24.7	0	1.8	3.8	5.9
I-V Trace No		-	-	_		-	-	_	_	-	-
τ _R	mv	12.0	12.0	12.5	12.7	13	13.9	110	10.7	114	11.9
	°C	295	295	307	312	321	341	271	263	280	292
	٩К	568	568	580	585	594	614	544	536	553	565
SEE NOTE (1)	mv	17.4	18.0	18.9	19.9	215	250	15.9	15,8	164	171
T _C	°C	424	438	459	483	520	602	388	386	400	417
	°K	697	7/1	732	756	793	875	661	659	673	690
	mv										
C base inner	°C										
	m٧		1								
C base outer	°C										
r	mv			-			-				
r Radiator	°C										
eb,volts		989	984	981	977	972	966	9910	9900	987.0	<i>0</i> 9/ ^
eb, mA		194.0	·				279 0	153	156.0	167 U	1770
Filament, volts		4.4	4.4	45	4.7	48	5.0	4:5	45	4.6	
Filament ^{amps}		18	18	19	19	20	20	19	19	19	4.6
Coll Heater, amps						~~			17	19	
Res Heater, amps D	2.27	2.11	2.37	2.29	231	255	170	1-71	1.99	224	
/acuum, 10 ⁻⁶ mm Hg	2	2	2	2		2.2	2	172		224	
Aeasured Efficiency, %					-	3178		<u>2</u> 154.5	2.	174.S	
VOTES (1) THERMOO									h		. /

variable		I	2	Run No 3	<u> </u>	5	6	7	8	9	<u>; </u>
Date		9-18	9-18	9-19	9-19	9-19	9-19	9-19	9-19		
Time					· · ·		11:21	13:20	13:42		
Elapsed Time, Hours		43.3					45.8		48.2		
т, ,°С		1588	1588		1780			1780	1780		
T _O Corrected, °C		1588	1588	1784			1784	1784	1784		
∆T _{Bell Jar} , °C		12	12	16	16	16	16	16	16		
т _н , °С		1600	1600	1800	1800	1800	1800	1800	1800		
∆ ^T E,°C		12	/3	10	12	14	16	20	35		
T _E ,°K		1861	1860	2063	2061	2059	2057	2053	2038		
V _o , volts		0.8	0.6	2.28	14	1.2	0-1	0.8	0.6		
I _o , amps		10.0	13.3	0	9,9	17,4	25.4	42.0	58.9		
P _o , watts		8.0	8.0	0	13.9	20.9	25.4	33.6	35.3		
I-V Trace No		<u> </u>		-	_	1	-	-	—		
T _R	mν	12.1	12.9	12.0	12.5	13.2	13.9	`/3.Z	13.7		
	°C	297	317	295	307	324	341	324	336:		
	°К	570	590	568	580	5.97	614	597	609	·	
T _C <u>SEE NOTE</u>	mν	18.0	19.0	18.8	20.6	22.1	237	26.2	290		
	°C	438	461	457	499	534	572	630	697		
	٩K	7//	734	730	772	807	845	903	970		
T _C base inner									(1)		
	°C		ļ								
T _C base outer	mv										
C base outer	۰c	<u> </u>									
T. Radiator	mv										
Radiator	°C										
V _{eb} ,volts		483.0	981.	985	976	972	968	961	956		
I _{eb} ,mA		190.0	2053	230.9	269.0	297.0	328_	377	432		
E _{Filament} , volts		4.6	4.7	46	4.8	48	48	5.0	5.0		
I Filament, amps		19.0	19	19	19	20	20	20	20		
I Coll Heater ^{, amps}		<u> </u>	<u> </u>		<u> </u>	_	-		-		
I Res Heater, amps		2.21	2.59	2.06	2.06	2 37	2.63	2 05	2.03		
Vacuum, 10 ⁻⁶ mm Hg 2			2	2	2	2.2	22	2.2			
Measured Efficiency,	%	186.8	201.4	227.4	262.5	288.7	317-5	362,3	413.0		
NOTES (1) END (of 1	test									

8705


8706 -<u>T-207</u> 7->12 60 50 -11 9 40 I₀ ,amperes SC O Hill 計用用 44 H. H. H. H. 20 10 0 0 Ū 0.8 10 V₀ ,volts 0.2 0.4 0.6 1.6 12 1.4 18

THERMO

ELECTRON

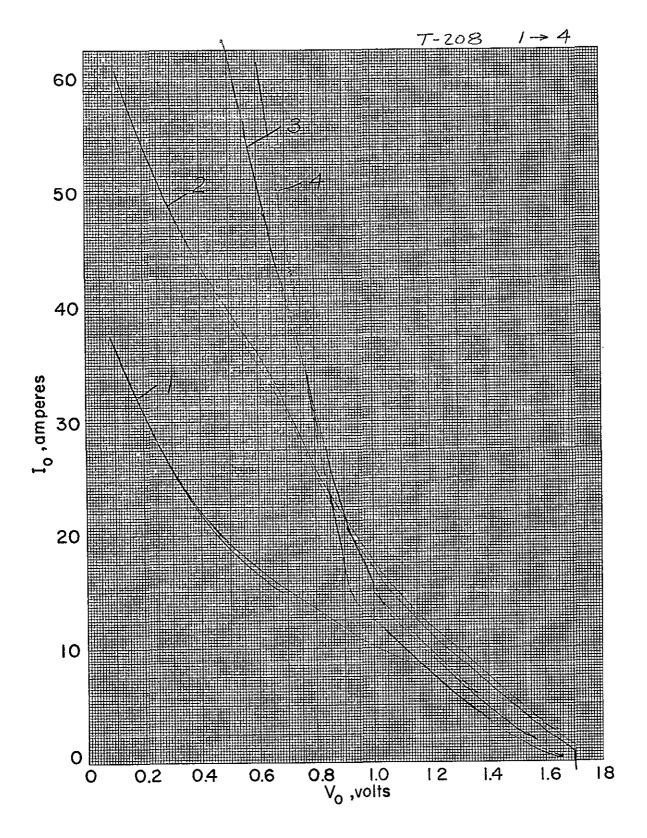
RPORATION

TEST DATA FROM CONVERTER T-208

Converter No <u>7-2</u>	58				1,2			erver_P		<u>osurr</u> 9	
VARIABLE		1	2	3	4	5	6	7	8	<u> </u>	10
Date	1968		2-26	2-26	2-26		2-26	2-26	2-26	2-26	-
		14.43	1454	15.01	15.06		15:30	15 37	15:44	16 15	í
Elapsed Time, Hours	· · · ·	14	16	1.7	1.8	21	22	23	25	3.0	3.1
T ₀ ,°C	(1)	1721	1725	1725	1725	1629	1629	1629	1629	1533	1533
To Corrected, °C	·	1726	1730	1730	1730		1631	1631	1631	1532	1532
ΔT _{Bell Jar} , °C		14	14	14	14	h li	11	- 1/	11		8
T _H ,¢C		1740	1744		1744		1642	1642	1642		1540
Δ ^T E, °C	(2)	/3	7	17		15	16	16	16	13	/3
т _Е , ек	·	2000	2000	2000	2000	1900	1900	1900	1900	1900	1800
V _o , volts		<u> </u>		-							
I _o , amps Po , watts		18	28	28	28	20	24	24	24	12	20
						<u> </u>		-	-		
I-V Trace No	<u> </u>	1	2	3	4	5	6	7	8	9	10
т	mv	12.4	13.4	143	15.2	12.5	,/3.4	14 3	15.2	12.7	13.4
т _R	°C	304	329	320	372	307	329	350	372	312	329
	٩K	577	602	623	645	580	602	623	645	585	602
-	mv	26.4	28.1	28.7	28.3	259	268	26.9	269	24,8	252
т _с	°C	635	675	690	680	621	644	647	647	597	607
u	°K	908	948	963	953	894	917	920	920	870	380
T _C base inner	mv .	<u> </u>					-				
	°C										
T _C base outer	mv 						-				
	°C		ļ	•							
Radiator	mv	-~- 			<u> </u>				-		
	°C	ļ	<u> </u>				_				
V _{eb} ,volts		975	971	969	969	978	976	975	975	981	981
¹ eb, ^{mA}		243.0	280.7	3017	300 0	221.2	238.8	248	248	1984	203.3
E Filament, volts	48	5.0	5.0	5.0	4.8	4.9	4.9	49	4.8	48	
^I Filament ^{, amps}	19	19	195	19.5	19,0	19.0	19.0	19.0	190	19,5	
^I Coll Heater ^{, amps}	<u> </u>				-					-	
I _{Res Heater} , amps	0	.45	1.50	1.80	0	1.45	158	218	130	1.63	
Vacuum , 10 ⁻⁶ mm Hg	18	18	18	18	16	_14	14	14	12	12	
Measured Efficiency,		236.9	272 8	292 3		2163				1946	
NOTES (1) PYRON BELL (2) ATE	JAR.	CoRRec	* 2 500 17							१ छ।७ ४९ छ। १	

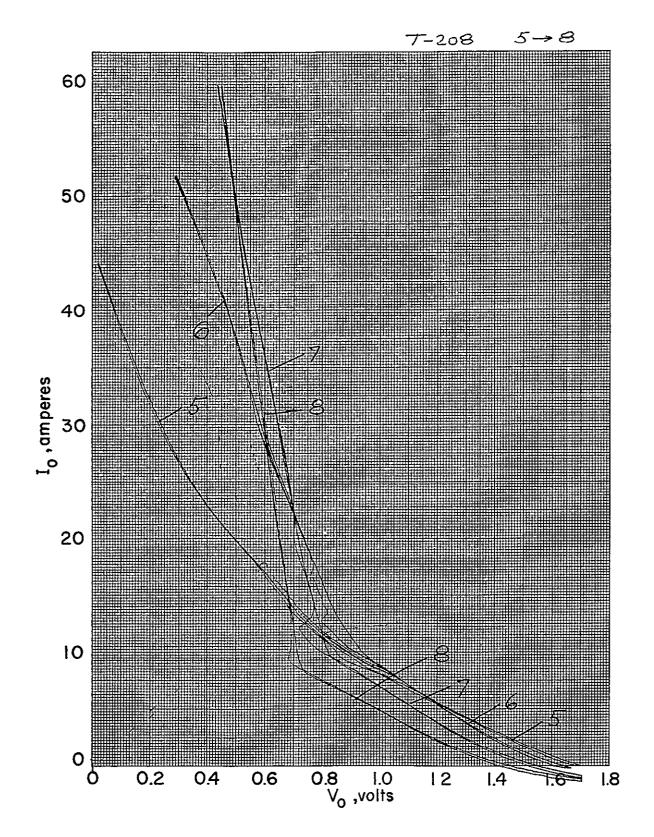
	-208			Run No	· · · · · · · · · · · · · · · · · · ·	· · · · ·	T		P Bro		T .
VARIABLE			2	3	4	5	6	7	8	9	
Date		2-26	2-26	2-26		<u> </u>					2-
Time		16 27	16:30	17 00			<u> </u>				17.
Elapsed Time, Ha	urs	3,2	3,3	3.7			<u> </u>				4
T ₀ ,°C		1535	1535	1718							17
To Corrected, °C		1534	1534	1723						<u> </u>	17
<u>∆^TBell Jar,</u> °C		8	8	14							1
™ _H ,°C	(1542	1542	1737							17
∆™ _E ,°C		ĸ	15	10							
τ _E ,°K		1800	1800	2000							20
V _o , volts		—	—	-	—	-		-		-	-
I _o , amps		12	20	0	0	0	0	0	0	0	
P _o , watts		-	-	-	_	-			-	—	
I-V Trace No		11	12	-	-	-	-		-		
	mv	143	152	11.7	12.5	13.0	140	14 5	150	16.0	17
[†] _R	°C	350	372	288	307	3 19	343	322	367	391	4
	°ĸ	623	645	561	580	592	616	628	640	664	6
τ _c	mv	25.6	25.7	24.2	244	24.6	24.9	25.0	25.2	254	25
	°C	616	618	583	588	593	600	602	607	612	61
	٩K	889	891	856	861	865	873	875	880	885	88
	mv		_	_							İ
^T C base inner	°C	-									<u> </u>
-	mv	-	-			-			~		
^T C base outer	°C										
	mv										<u> </u>
T _{Radiator}	°C										-
V _{eb} , volts		980	980	<i>99</i> 2 ח	9827	9829	982.2	981.7	9815	9811	7
^I eb, ^{mA}		207.3	206.9	2211	2255		232.0				- ۲
E _{Filament} ,volts		48	48	4.8		2-70	0,0,0	2350	2367	230.0	4
^I Filament ^{, amps}		·	190								
		190	170	19.0							19
^I Coll Heater ^{, amps}			2 60			1.01		2.1	-	286	2
IRes Heater ^{, amps} Vacuum , 10 ⁻⁶ mm H	2.30	2 58	0	1.12	1.54	2.01	2.16	2.45	2.89	3,2	
Measured Efficience	12	12 202.7	12	2010	202.2	2280	700 6	2.00 -	1 24	12	
		203.1		217.4,			L		·		
NOTES _{* No}	READING	3ec/	USE :	SERVO -	- OPTIC	s (<i>v2f</i>	RE Aco	IDEN I	ALLY	DISPLA	₹cE

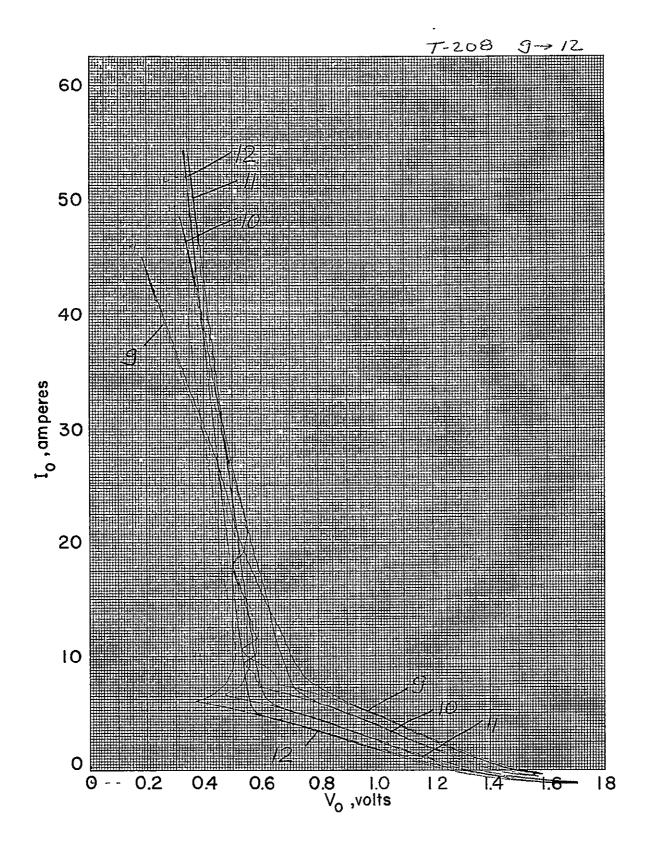
onverter No <u> </u>	403			Run No	<u> </u>	6	Obse	erver <u>.</u> Ø	Parosn	<u>~ { E.</u>	l'er
VARIABLE		<u> </u>	2	[,] 3	4	5	6	7	8	9	
Date		2-26	2-27	2-27	2-27	2-27	2-27	2-27	2-27	2.27	2-
Time		17:36	11:24	11:32	11.44	11,57	13 10	13.25	13 36	13:46	13
Elapsed Time, Hou	rs	43	22.1	223	22.5	22.7	23.9	242	244	245	24
™,,°C		1681	1681	1681	1681	1681	1587	1587	1587	1587	15
TO Corrected, °C		1686	1686	1686	1686	1686	1589	1589	1589	1589	15
∆T _{Bell Jar} , °C		14	14	14	14-	14	u	4	u	11	
τ _н ,°c		1700	1700	1700	1700	1700	1600	1600	1600	1600	16
Δ ^τ E, °C		11	12	/3	15	18	10	11	4	12	Γ
T _E , °K		1962	1961	1960	1958	1955	1863	1862	1862	1861	1
V _o ,volts		1.400	1.200	1.000	.800	. 600	1.400	1200	1.000	.800	- (
I _o , amps		51	9.0	13.4	20.1	32.2	2.0	31	5,8	9.0	1
P _o , watts		714	108	13.4	16.1	19.3	2.8	3.7	5.8	72	8
I-V Trace No			~	-	-			_			Γ
	mv	14.2	133	13.5	139	143	115	11.9	12,1	12.5	1
T _R	°C	348	326	331	341	320	283	292	297	307	3
	٩К	621	599	604	614	623	556	565	570	580	5
	٣v	24.8	253	26.0	27.0	28.7	22.7	16.6	17.0	24.0	2
τ _c	°C	597	609	626	649	690	548	(1)	m	579	6
-	°К	870	882	899	922	963	821	~		852	8
	mv		_	_	_	_	_				-
^T C base inner	°c									<u> </u>	┢
	mv			-					-		1 -
^T C base outer	•C										┢
	mv								-		╞╴
T _{Radiator}	°C										┢──
V _{eb} ,volts	_	981	975	973	970	965	984	984	982	980	9
¹ _{eb} ,mA		2198	1465	-	2799	315.8	181.2	183,4	188.9	2011	21
E _{Filament} ,volts		48	48	4.8	5.0	50	48	48	4.8	4.8	6
I Filament ^{, amps}		19.0	19.0	19.0	19.0	19.0	180	18.4	185	186	13
I Coll Heater, amps		- 1				_			-		
I Res Heater, amps		2.07	1.43	1.35	/41	145	0	10	126	125	1
Vocuum, 10 ⁻⁶ mm Hg	 !	12	10	10	10	10	10	10	10	10	
Measured-Efficiency		<u> </u>	2403	<u> </u>	2715	3047		180 5		197.1	2
NOTES (1) INCOA						L	L	J		1	<u> </u>


THERMO ELECTRON

<u>ar</u>

onverter No <u>ー T - 2</u> VARIABLE		1	2	Run No	4	5	6	7	8	<u>litto ž</u>	10
Date		2-27	2.27	2-27	2-27	2-27				<u> </u>	<u> </u>
Time		14,43	<u> </u>	·	15 03	15.16					
Elapsed Time, Hour	 S	254	255	25.6	25.8	26.0					
T ₀ ,°C		1775	1775		1775	<u>∤</u>					
To Corrected, °C	<u> </u>	1783	1783		1783	1783					
∆T _{Bell Jar} , °C		17	17	17	17	17					
T _H ,°C		1800	1800	1800	1800	1800					
Δ ^T E,°C	· · · ·	12	13	15	17	20		-			
т _Е , °К		2061	2060		2056			L			
V _o ,voits	<u> </u>	1400		1000							
I _o , amps			12.4			41.4					
P ₀ , watts		7.4 104	149	190	23,1	248					
I-V Trace No					-	-	-				
	mv	/37	13.9	140	147	150					-
^T R	°C	336	341	343	360	367					
	°ĸ	609	614	616	633	640					
	mv	26.6	27.2	28.1	29.3	31.0					
т _с	°C	640	654	675	704	744					
	°ĸ	913	927	948	977	1017	_				
Т	mν		_			—					
T _C base inner	°C										
т	mv	-		_		-					
^T C base outer	°C										
т	mν	-		_	-	-					
Radiator	°C					*					
V _{eb} ,volts		972	969	966	962	957					
I _{eb} ,mA		295 5	3108	333 9'	3664	408.3					
E _{Filament} ,volts .		4.9	5.0	50	5.0	5.1					
I _{Filament} , amps		19.0	190	19.0	190	192					
^I Coll Heater ^{, amps}		-	-	-	_	_					
I _{Res Heater} ,amps		148	136	1.42	138	140					
Vacuum, 10 ⁻⁶ mm Hg		lo	_ lo	10	ما	10					
Measured Efficiency,	%	2872	3012	322 5	3252	39-5.7					


.


8275

12-6

8276

DESIGN OF 100-MESH CAPILLARY '

DESIGN OF 100-MESH CAPILLARY

Heat Transfer from Emitter:

Electron cooling:

Output power = 50 watts at 0.6 volt

Output current = 50/0.6 = 83.3 A

Output current density = $83.3/2.55 \text{ cm}^2$ = 32.6 A/cm^2

Effective emitter work function, as given by Richardson's equation for 32.6 A/cm^2 at $2000^{\circ}\text{K} = 2.85 \text{ ev}$.

Electron cooling = 2.85 x 32.6 = $\underline{93.0 \text{ w/cm}}^2$

Radiation heat transfer, cesium conduction, lead loss:

Given on p. 7 of the Final Report, Heat Pipe Thermionic Converter Development, Contract No. 951465, December 1967, prepared for the Jet Propulsion Laboratory.

$$q_{r} = 11.9 \text{ w/cm}^{2}$$

 $q_{cs} = 4.1 \text{ w/cm}^{2}$
 $q_{g} = 6.2 \text{ w/cm}^{2}$

Total heat transfer, including electron cooling: 115.2 w/cm^2

Heat Transfer to Collector:

Allowing for an electrical output of 20 w/cm², the heat transfer to the collector is $115.2 - 20 = 95.2 \text{ w/cm}^2$. The total heat transfer to the collector is then

$$95.2 \ge 2.55 = 242$$
 watts

where 2.55 is the electrode area in cm^2 as calculated in the above reference.

The output leads serve to dissipate a portion of the heat load to the collector, and the corresponding heat transfer was estimated at 10 watts/lead.

The net heat transfer to the collector heat pipe is then

 $242 - 2 \ge 20 = 222$ watts

Heat Pipe Mass Flow Rate:

Assuming an operating temperature of 700°C, the latent heat of vaporization for niobium, given by Fig. 13-1, is 3900 joules/gram The heat pipe mass rate of flow required to transport 222 watts is then:

$$M = 222/3900 = 8.3 \times 10^{-2} \text{ gm/sec}$$

Heat Pipe Vapor Pressure Drop:

$$\Delta p_g = 8 v_g \dot{M} L / \pi R_v^4$$

where v_g is the kinematic viscosity of sodium vapor, given in Fig. 13-2, L is the length, and R is the radius of the vapor passage.

L for T-209 and T-210 = 4.8 in. = 12.2 cm

$$R_v = 0.29$$
 in. = 0.74 cm
 $v_g = 2.2 \text{ cm}^2/\text{sec}$
 $\Delta_{p_g} = 8 \times 2.2 \times 8.3 \times 10^{-2} \times 12.2/\pi \times (0.74)^4$
= 19.0 dynes/sq cm., which is negligibly small

7	4	5	6
	÷.	~	υ.

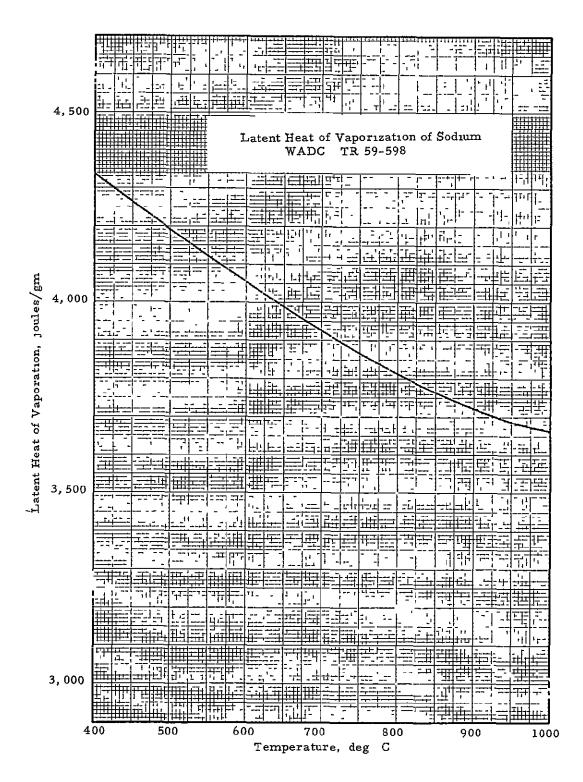


Figure 13.1

7459

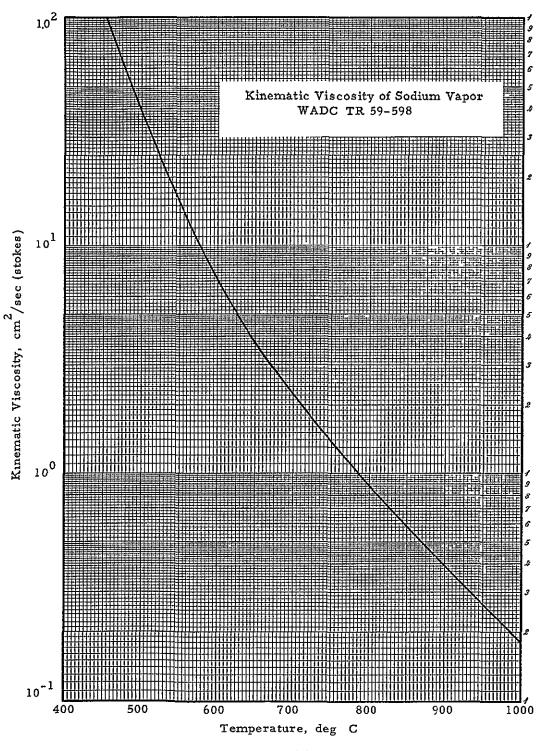


Figure 13-2

Pressure Drop Due to Gravity:

$$\Delta p_{h} = \rho g h$$

$$g = 981 \text{ cm/sec}^{2}$$

$$h = 12.2 \text{ cm}$$

$$\rho = \text{liquid density} = 0.776 \text{ gm/cc}$$

$$\Delta p_{h} = 0.776 \ge 981 \ge 12.2 = 9300 \text{ dynes/sq cm}$$

Pressure Drop in Capillary:

$$\Delta p_f = 8v_f \dot{M} L/\pi N r_c^4$$

where v_f is the kinematic viscosity of the liquid, given in Fig. 13-3, N is the number of capillary channels, and r_c is the effective capillary radius. For 100-mesh screen, made of 0.0035 in. dia. wire, the open space between consecutive wires will be 0.0065 in., which corresponds to an effective capillary diameter of at least 0.005 in., and a capillary radius of 0.0025 in. = 0.0063 cm

$$\Delta p_{f} \le 8 \ge 0.0024 \ge 8.3 \ge 10^{-2} \ge 12.2/\pi N (.0063)^{4}$$
$$\le 4 \ge 10^{6}/N \text{ dynes/sq cm}$$

Available Capillary Force:

$$\Delta p_{max} = 4 \sigma / e$$

where σ is the surface tension of the liquid, given in Fig. 13-4, and e is the spacing between wires of 0.0065 in. = 0.0166 cm

$$\Delta p_{max} = 4 \times 132/0 \ 0166 = 32,000 \ dynes/sq \ cm$$

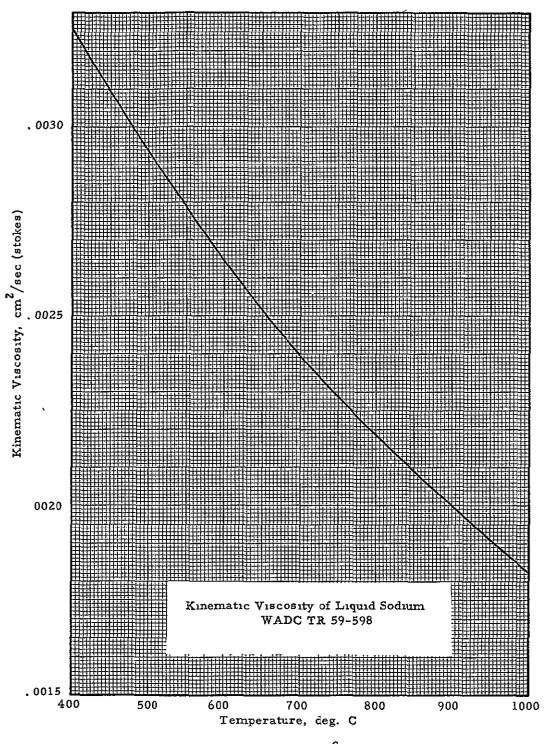


Figure 13-3

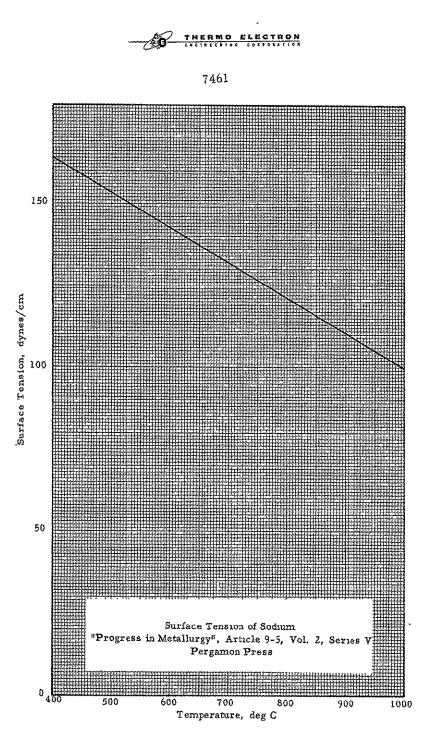


Figure 13-4

Capillary Mesh Equilibrium:

$$\Delta p_{max} \ge \Delta p_g + \Delta p_h + \Delta p_f$$

32,000 \ge 19 + 9300 + 4 x 10⁶/N

This equation can then be solved for the number of capillaries required:

$$N = 4 \times 10^{6} / (32000 - 9319)$$
$$N = 176 \text{ capillaries}$$

Therefore, the width of 100-mesh capillary screen required is

176/100 = 1.76 in Two wraps will provide

$$N = 2 \times \pi D \times 100$$

D = 0.6 in.
N = 375 capillaries

and is therefore a sufficient amount of capillary structure.

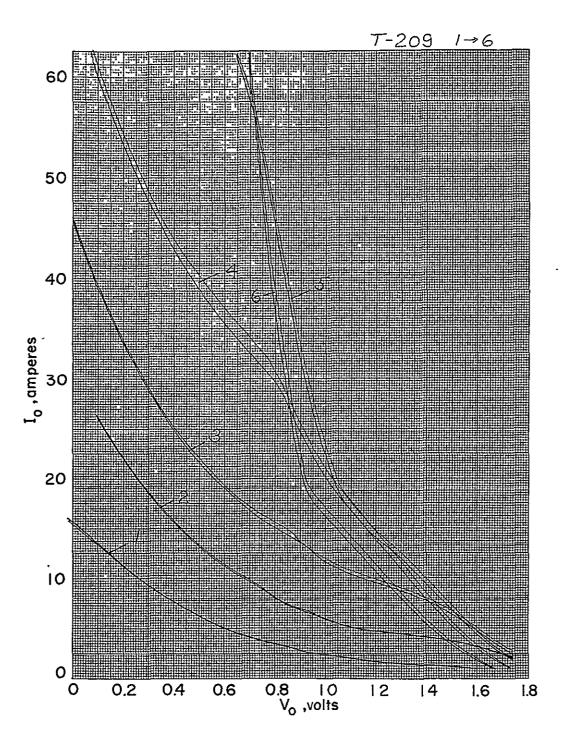
APPENDIX 14

TEST DATA FOR CONVERTER T-209

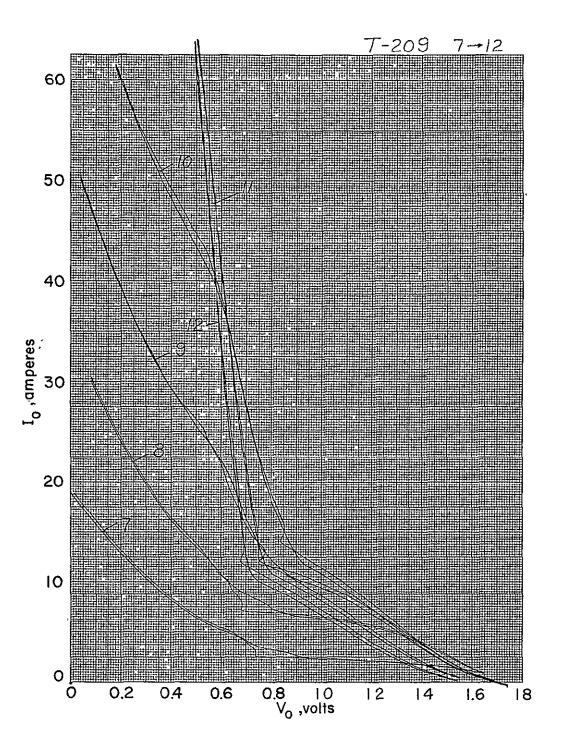
	6 1 N E 204	е к і н і 🖓	3 C O A		атіон / с	12	2 Observer PBrosen							
		1		RunNo			· · · · · · · · · · · · · · · · · · ·				L 10			
VARIABLE			2	3	4	5	6	7	8	9	10			
Date May	1968	20	20	20	20	20	20	20	20	20	20			
		11 33	13 25			13 57	14:05	14:17	14:24	14:39	14:43			
Elapsed Time, Hours		0.8	2.6	2.9	31	32	33	3,5	3.4	3.8	3.9			
T ₀ ,°C T ₀ Corrected, °C	(1)	1548	1497	1722	1724	1724	1727	1727	1727	1619 1620	1620			
Δ ^T Bell Jar, °C		/549 19	1498	1723 17	1725	1725	1728 17	1728		19	1601			
T _H ,°C		1568	1517		-	17 1742			17 1745		1640			
Δ ^T E, °C		13	15	1740		1742	1745	-1745 18	18	1639	13			
<u> </u>		1828		/3	15	· · ·	18			12				
			1775	2000	2000	2000	2000	2000	2000	1900	1900			
V ₀ , volts		0.322	0.522								12			
I _o , amps Po, watts		12 3	20 Z	12	~20	21	31	28	2.8	10	12			
				<u> </u>							-			
I-V Trace No				1	2	3	4	5	6	7	8			
т	mv	115	11.7	11.0	11.8	12.6	/34	14.3	15.2	11,0	11,8			
T _R	°C	283	288	271	290	306	329	356	372	271	290			
	°К	556	561	544	563	579	602	623	645	544	563			
7	mv	200	205	21.2	21.5	23.0	24.4	24.6	24.7	20.1	205			
τ _c	°C	485	497	513	520	555	588	593	595	487	497			
	<u>°К</u>	758	770	786	793	828	861	866	868	760	770			
T _C base inner	mv_													
	°C													
T _C base outer	mv 													
	°C													
T _{Radiator}	_mv										L			
	°C													
V _{eb} ,volts		985	985	975	975	971	967	967	967	983	981			
I _{eb} ,mA		160	160	221,1		2563	294.8	307.9	308.5	177	189			
E _{Filament} , volts		6.1	6.0	6.2	6.2	6.2	63	6.4	6.4	6.0	6.0			
I _{Filament} , amps		26.2	26	26	26	26	27	27	27	26	26			
I Coll Heater ^{, amps}									-	-	-			
I _{Res Heater} , amps		165	165	.65	1,65	1.66	201	227	264	~.65	1.79			
Vacuum , 10 ⁻⁶ mm Hg		16	10	10	10	10	10	<u>u</u>	10	9	9			
Measured Efficiency,		157.6	1576	2156		2489		•••	298 3	174.0	185.4			
NOTES Pyrometer Corrections +1.0°Cat all temp 1600°C & 1800°C Beck jar +19°C at 1600, +17 at 1700, +17at 1800 Unit tated with double spiral filament. ATE = 10 + 025 Iu														

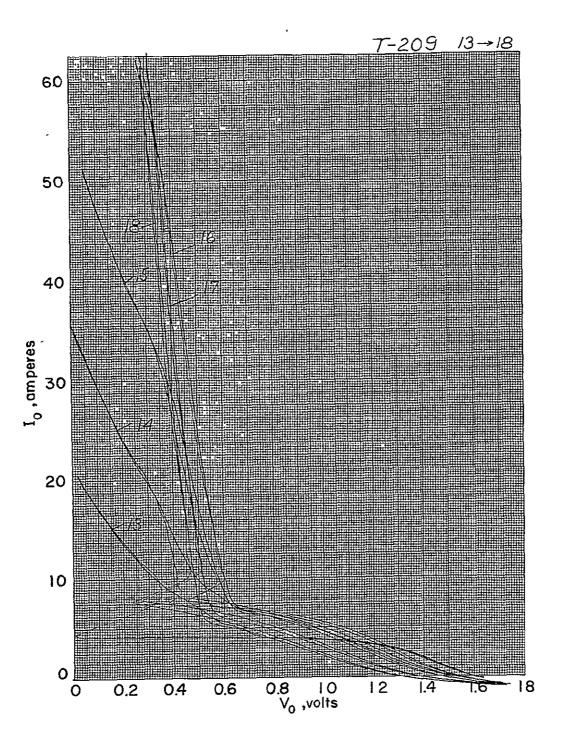
THERMO ELECTRON Sheet 2 of 5											
	IER GINE	E R 1 N	<u>EL</u>	ECT RPOR	RON	N	She	et			
Converter No	09			_ Run No	23	3	Obs	erver	8. B.	vour	
VARIABLE	_		2	3	4	5	6	7	8	9	10
Date May	1968	20	20	20	20	20	20	20	20	20	20
Time	_	14:55	15.07	15:16	15:21	15:35	15.41	15 48	15:53	16:00	16:04
Elapsed Time, Hours	-	4.1	4.3	4,5	4.6	4.8	49	5,0	51	5.2	5.3
T ₀ ,°C		1622	1624	1624	1624	1521	1522	1524	1524	1525	1525
To Corrected, °C	-	1623	1625	1625	1625	1522	1523	1525	1525	1526	1526
∆T _{Bell Jar,} °C		19	19	19	19	17	17	17	17	17	17
т _н ,°с	_	1642	1644	1644	1644	1539	1540	1542	1542	1543	1543
Δ ⁷ Ε, °C		15	17	17	17	12	13	15	15	16	16
[™] Е,°К		1900	1900	1900	1900	1800	1800	1800	1800	1800	1800
V _o ,volts		-	-		-		-	-	-	-	-
I _o , amps		22	28	28	27	18	ĪZ	20	22	24	24
P _o , watts		<u> </u>	-		-		-	-		-	-
I-V Troce No	<u></u>	9	10	11	12	13	14	15	16	17	18
:	mv	12.6	13.4	14.3	15.2	11.0	118	126	13.4	14,3	15.2
т _R	°C	306	329	320	372	271	290	306	329	350	372
	°К	579	602	623	645	544	563	579	662	623	645
	mv	22.1	23.6	235	24.0	18.9	19.7	21.2	22.2	223	22.5
т _с	°C	534	569	567	\$79	459	478	513	537	539	543
	°K	807	842	840	852	732	751	786	810	812	816
T C base inner	mv										
C buse miler	°C										
T C base outer	mv										
	°C										
T Radiator	mv										
	°C				_				i		
V _{eb} ,volts		977	973	973	972	990	985	982	979	979	977
I _{eb} ,mA		213.0	248.2	2544	259.1	741 1	161.1	1814	203.8	2038	2116
E _{Filament} , volts		6.1	6.2	6.2	6.2	5.9	6	6	6.1	61	6.1
I _{Filament} , amps		26	26	26	26	25	25	26	26	26	26
^I Coll Heater ^{, amps}					-	_	-	_	-	1	—
IRes Heater amps		194	2 07	2 62	3.06	1.78	192	2.26	259	280	3.2.1
Vacuum, 10 ⁻⁶ mm Hg		8	9	9	9	8	8	8	8	8	8
Measured Efficiency, %		208.1	2415	247.5	251.8	1397	158.7	178.1	1995	199,5	2067
NOTES											

.

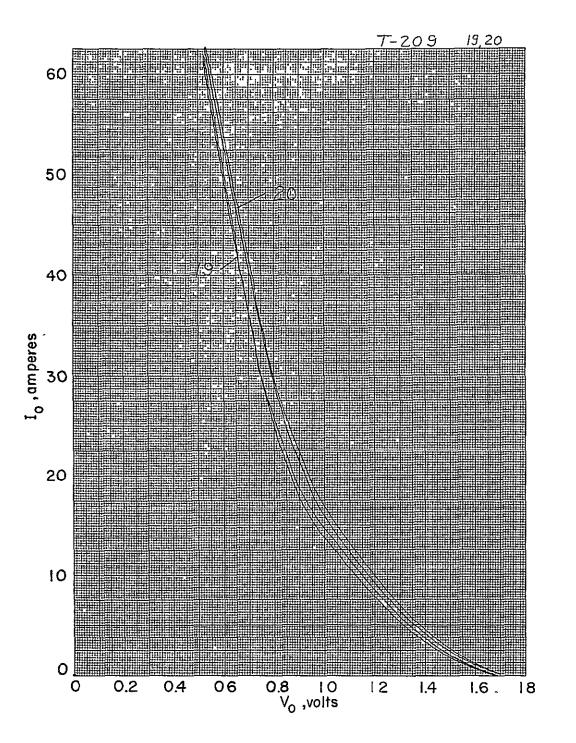

onverter No7	- 20 9	i		Run No	4		Obso	rver	Borg	serge	
VARIABLE		I	2	3	4	5	6	_7	8	9	10
Date May	1968	20				-	-	-	1	-	20
Time		16:26				-		-			16:5
Elapsed Time, Hour	'S	5.6		~	-		—		-		62
T _o ,°C		1719		-					I		1719
T _O Corrected, °C		1720	—	١	-	_				~	1720
∆T _{Bell Jar} , °C		17	—								17
™ _H ,°C		1737	1	-	—					-	1737
∆ [†] €,°C		10	-		ļ	-			-	-	14
τ _E ,°κ		2000	-1		-	—		-	-		200
V _o , volts		2 237	1	-	1			-	-		1.88
I _o , amps		ø	0	0	0	0	0	0	0	0	0,
P _o , watts			_	-			_		_		-
I-V Trace No			1				~	_		-	
	mν	10.c	11.0	12.0	12.5	/3 o	140	145	150	160	17.0
τ _R	°C	246	271	295	307	319	343	322	367	391	414
	٩K	519	544	568	580	592	616	628	640	664	687
	mv	20.0	20.3	20.7	209	20.9	21.1	21.3	219	219	22
τ _c	°C	485	492	501	506	506	511	516	529	529	532
-	٩к	758	765	774	779	779	784	789	802	802	805
····	mν	1									1
T _C base inner	°C										
	mv										
T _C base outer	°C				-		i				
	mv	<u> ·-</u>									
T Radiator	°C	<u> </u>									
V _{eb} ,volts		979	978	978	977	977	976	916	976	975	975
I _{eb} ,mA		2047			2152	· · · -		2248	I		234
E Filament, volts		6.0		_							61
I Filoment ^{, amps}		26	-		<u> </u>		1_				26
^I Coll Heater, amps		-					-		~		
Later, amps		0	136		2.03		271	2.97	3.14	3 59	4.00
Vacuum, 10 ⁻⁶ mm Hg		8	-	-			<u> </u>		-		8
Measured Efficiency		200,4		2019	210.2	212.1	217.1	219 4	2218	2255	228
NOTES		<u>. </u>	L	<u> </u>	F	L	1		<u></u>	<u> </u>	I

onverter No	209			Run No	<u>5 £</u>	6	Obso	erver	. Bro	in	
VARIABLE		1	2	3	4	5	6	7	8	9	10
Date May	1968	20	20	20	20	20	23	23	23	23	23
Time		17:11	17:19	17.37	17.45	17:51	12:45	12:57	13:06	13.15	13;z
Elapsed Time, Hours		6.4	6.5	68	6.9	70	10.5	10.7	108	11,0	// 2
T ₀ ,°C		1682	1682	1682	168Z	1682	1580	1580	1580	1580	158
To Corrected, °C		1683	1683	1683	1683	1683	1581	1581	1581	1581	158
∆T _{Bell Jar} , °C		17	17	17	17	17	19	19	19	19	19
T _H ,°C		1700	1700	1700	1700	1700	1600	1600	1633	1600	1600
∆ ^T E,°C		12	13	14	18	22	- 11	12	12	13	/
™ _E ,°K		1961	1960	1959	1955	1951	1862	1861	1861	1860	1853
V _o , volts		1,400	1.200	1.000	800	.600	1.400	1.200	1 000	800	-60
I _o , amps		74	11.9	16.5	32.7	490	32	69	98	12.1	34.
P _o , watts		10.4	14.3	165	262	294	4.5	8.3	9.8	9.7	20.4
I-V Trace No							_	—		1	ļ
	mv	124	13.1	135	14.2	141	11.3	12.1	12.7	13.2	13 9
T _R	°C	304	321	331	348	345	278	297	312	324	341
	°К	577	594	604	621	618	551	570	585	597	614
· · · · ·	mν	21.1	219	227	247	26.1	19.1	20.1	20.7	212	24.0
тс	°C	SII	529	548	595	628	464	487	501	513	574
	°κ	784	802	821	868	901	737	760	774	786	852
т [.]	mv										
C base inner	°C										
т.	mv										
^T C base outer	°C										
т	mv										
Radiator	°C										
Veb, volts	L	976	974	973	967	964	984	981	980	979	971
¹ eb, ^{mA}		218.7	234.1	2506	3035		161.2	1789	1904	199.6	261
E _{Filament} ,volts		6.1	61	6.2	63	64	5.9	6.0	6.0	6.0	6.2
^I Filament ^{, amps}		26	26	26	27	27	25	25.5		26	26 j
^I Coll Heater ^{, amps}		-	-	-		-		_			
IRes Heater, amps		1.98	2.19	2.36	2.42	1.72	1.64	1.89	219	2.28	2.1
Vacuum , 10 ⁻⁶ mm Hg		8	8	8	8	8	5	5	5	5	5
Measured Efficiency,	%	2134	228 0	2438	2935	320.9	1586	1755	1866	1954	233
NOTES	<u> </u>	1				L	·	L	ð		


	<u>T-209</u>	1 1		Run No	7_¢	8		erverØ			Т
Date VARIABLE		1 23	2 23	3	4	5		7 23	8 24	9 24	-
Time	y 1968	23 13:43		23 14:04	23 14:34	23 /4·44	· · · · · · · · · · · · · · · · · · ·	16:01	8.56	9:36	
Elapsed Time, Hou		11.5	13;55 11.7	11,8	12 3	12.5		13.1	299	30.6	
To ,°C	13	1782	1782	1782	1782	1782	· · · · · · · · · · · · · · · · · · ·	1682	1668	1706	
To Corrected, °C		1783		1783	1783	1783		1683	1669	1707	-
ΔT _{Bell Jar} , °C		1703	17	1703	1703	1705		17	?	?	
T _H ,°C		1800	1800		1800	1800		1700	;		_
Δ ^T E, °C		1000	1800	18		·		18			-
<u>т_е, «к</u>		2059	2058	╞────┦	20	24		}			_
	<u> </u>		1.200	2055 1.000		2049		1955			-
V _o ,volts	<u> </u>	1,400		┼╍╍╌┤				.650	<u> </u>		-
I _o , amps P _o , waits	<u> </u>	14.3	21`0	31.3	40.4	55.1		327	32.7	27	
		20.02	25.20	31 3	32.3	33 4		2125	19.6	19	
I-V Trace No	<u> </u>									<u> </u>	
т	mv	14.0	140	14.3	14.8	15.3		14.2	14,2	14.3	
т _R	0°C	343	343	320	362	374		348	348	350	
	<u>•к</u>	616	616	623	635	647		621	621	623	
Ŧ	mv	23.9	24.5	25.6	26.9	28.3		25.0		24.9	
т _с	°C	576	590	616	647	680		602	602	600	
	°K	849	863	889	920	953		875	875	873	
T _C base inner	mv	<u> </u>	ļ			(1)		(2)	(3)	 	
	°C							ļ	<u> </u>	ļ	
T _C base outer	mv	ļ						ļ	L	ļ	
	°C	_	<u> </u>				Ĺ	ļ	<u> </u>	ļ	
Radiator	mv					L	<u> </u>				-
	°C	ļ				 _		ļ	<u> </u>		-
Veb, volts		967	966	963	961	956		970	970	970	
^I eb, ^{mA}		300.2	320 8	322.5	381.2	425.7				3079	
E _{Filament} , volts		6.2	6.2	6.3	6.4	64	ļ <u> </u>	63	6.1	62	
I _{Filament} , amps		26	265	26.5	27	27		27	26	26	
^I Coll Heater ^{, amps}		<u> </u>		<u> </u>	<u> </u>	-		<u> </u>			
^I Res Heater ^{, amps}		221	2.12	2.04	2,12	2.08		2.41	2.27	234	
Vacuum, IO ⁻⁶ mmH	9	5	5	6	6	6		11	4	4	
Measured Efficiency				339.4	<u> </u>			293,9		29 8.7	
NOTES (1) OUTPUT SEEMED TO DEGRADE SLIGHTAY, COULD NOT REPRODUCE DATA PT OF P4 No.4 @ 1700 °C, 0.8 V_ DECIDED TO SHUT- OFF AND EXAMINE VOLTAGE ATAP CONNECTIONS VOLTAGE TAPS WERE FOUND FIRMLY ATTACHED - PUMPED SYSTEM BACK DOWN TO RUN AT THE CONDITIONS OF DATA PT. OF PA No 4, (2) LEFT TO RUN OVERNIGHT.											


8392

8391



8389

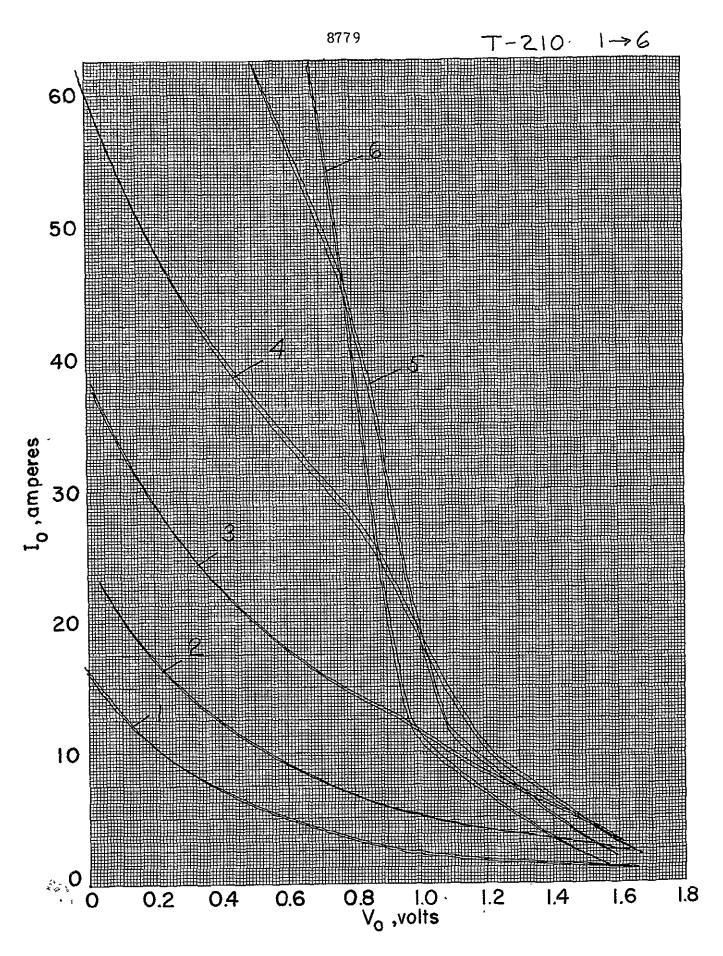
APPENDIX 15

TEST DATA FROM_CONVERTER T-210

87	1	3

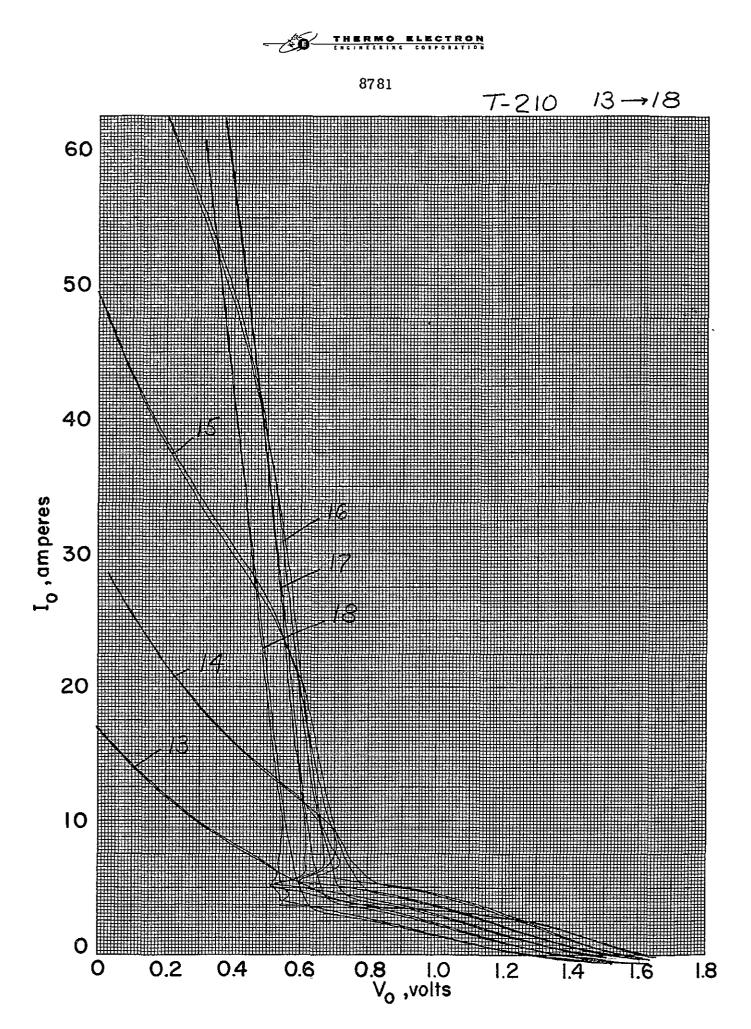
onverter No <u> </u>	-210	1		Run No	1 4	2	Obse	erver(P. Br	osen	
VARIABLE		1	2	3	4	5	6	7	8	9	10
Date		7-16-68	16	16	16	16	16	16	16	16	16
Time		11.50	13.02	13:11	13.22	13.30	13:34	13:48	13 52		14.07
Elapsed Time, Hour	\$	0.7	1.8	2.0	2,2	2.3	2.4	2,6	2.7	28	3.0
T _o ,°C		1712	1714	1714	1714	1716	1716	1620	1620	1623	1623
To Corrected, °C	(1)	1724	1726	1726	1726	1728	1728	1626	1626	1629	1629
∆T _{Bell Jar} , °C		16	16	16	16	16	16	13	/3	13	/3
™ _H ,°C		1740	1742	1742	1742	1744	1744	1639	1639	1642	1642
∆t _e , ∘c		13	15	15	15	17	17	12	12	2۱	15
т _Е ,°К		2000	2000	2000	2000	2000	2000	1900	1900	1900	1900
V _o , volts					,-		-	-		-	-
I ₀ , amps		12	N20	~20	~Z0	1 30 7	ربا م	~ 10	~ 10	~ 20	~20
P _o , watts			-		-	-	-			-	-
I-V Trace No		1	2	3	4	5	6	7	8	9	10
	mv	11.0	11.8	12.6	/3.4	14.3	15.2	110	118	12,6	13,4
т _R	°C	271	290	306	32.9	350	372	271	290	306	329
	٩К	544	563	579	602	623	645	544	223	579	602
	mv		21.9	23.0	24.7	24.8	25.0	19.9	204	22.0	23 6
т _с	°C	T	529	555	595	597	602	483	494	532	569
	°К		802	828	868	876	875	556	567	805	842
τ	mv	1									
T _C pase inner	°C	1									
т	mv										
^T C base outer	°C		L								
	mv		-								
T _{Radiator}	°C	1									
V _{eb} , volts		981	977	975	971	969	968	98Z	981	977	973
I _{eb} ,mA			226.1	246.9	2852	3049		176 o	1866	2150	249.0
E Filament, volts		6.0	6.0	60	60	6.0	6.0	5.6	5.7	5.8	6
I Filament ^{, amps}		25.0	25	25	26	26	26	25	25	25	25
^I Coll Heater ^{, amps}									_	-	
I Res Heater , amps		0	.90	1.50	1.58	2.03	2.54	0.69	1.49	1.72	1.54
Vacuum, 10 ⁻⁶ mm Hg		7.8	3.8	3.6	3.8	4.0	40	2,8	2.8	2,8	2.9
Measured Efficiency,	%				<u> </u>					<u> </u>	
NOTES. (IL PYKOM	ETER	CoRRE	CT/0/15	· /4	00 +	- 6 ° C	8624	JAR ·	+13	ا کر	
$(2) \Delta T_E =$	10 +0	0.25 I	(41H	17 18 QUARTE	00 + 00 + RCY (12°C 18°C		•	+16° +19	c	

.


Converter No VARIABLE			2	_ <u>Run No</u>	<u>2</u> 4	5	0bs	erver	P Bro		1
VARIABLE				+	┥──┷──	<u> </u>	16	16	8	9	10
71me		7-16-6		16	16	16	<u></u>	15:31	┦━━━━━━┤		
Elapsed Time, Hour		3.6	37	4	42	4.3	4.3	44	4.5		
To ,°C	<u> </u>	1625	1625	1529	<u> </u>	<u>{</u>	<u> </u>				<u> </u>
To Corrected, °C		1631	1623	+	1530 1530			1532	1532		
∆T _{Bell Jar} , °C		13	13	10	10 30	1036	10	10	1330		
T _H ,°C		1644	1644	<u> </u>	1540	1542		1542	1542		
Δ ^T _E , •c		17	17	12	/3	15	15	15	15	 .	<u> </u>
<u>Γ</u> ε, °K		1900	1900	1800	<u> </u>	1800	(800	1800	1800		<u>}</u>
V _o ,volts,							1000				
L _o , amps		28	2.8	13	12	20	20	20	- 20	<u> </u>	
P _o , watts		-									<u> </u>
I-V Trace No		11	12	13	14	15	16	17.	18		
······································	mv	14,3	15.2	11.0	11 8	12 6	13 4	14.3	15.2		
τ _R	°C	350	372	271	290	306	329	350	372		
N	⁰ĸ	623	645	544	563	579	602	623	645	·	
	mv	23.5	237	18.9	199	212	223	22.4	22.6		
Tc	°C	567	572		483	513	539	541	546		L
•	٩K	840	845	732		786	812	814	819		
	mv							,			
TC base inner	°c										
~ <u>~~</u>	mv	<u> </u>				· · · · · · · · · · · · · · · · · · ·					
T _C base outer	°C	<u> </u>							-		
	rnv 🛛								╞╌╍╼╌╎		
T Rodiator	°c	<u> </u>									
V _{eb} ,volts	l	975	975	990	987	983	980	979	979		
I _{eb} ,mA	·	·			1599						
E _{Filament} , volts		5.9	5.9	2,2				5.9	5.9		
I Filoment, amps		26	26	24	25	25	25	25	25		<u> </u>
^I Coll Heater ^{+amps}			~							{	
I Res Heater ^{, amps}		221	265	1.31	1.63	1.87	1.95	2.42	2.82		
Vacuum, 10 ⁻⁶ mm Hg		26	2.6	2,1	2.1	2.1	2,1	2.1	2.1		
Measured Efficiency,	%										
NOTES.									<u></u>		

ТН	ER		ELE	CT	RON	<u> </u>	She	et3	of		
	-210	L K I M G		Run No	4		0 ho	arver	P.B	rosin	
VARIABLE		1	2	3	4	5	6	7	8		10
Date		7-16-68		16		16	16	16	16	16	16
Time		15:56		-	-			_			16:22
Elapsed Time, Hours		4.8									5.2
T_,°C		1709									1709
T _O Corrected, °C		1721								! 	172)
∆T _{Bell Jar} , °C		16	-			-	_				. 16
T _H ,°C		1737									1737
∆T _E , °C		10		—		-	-	-	—	-	10
Т _Е , °К	1.	2000		-		—	-	~		-	2000
V _o , volts				_	_	-		-	-	; ; _	<u> </u>
I _o , amps		6	0	0	0	0	0	0	0	0	0
P _o , watts	-	-			_		<u> - </u>		-	-	1
I-V Trace No		<u> </u>			_	<u> </u>	-			—	
	mν	10.0	11.0	120	12.5	13 0	140	145	15.0	160	170
T _R	°C	246	271	295	307	319	343	322	367	391	414
	°K	519	544	568	580	592	616	628	640	664	687
	mv	19.9	20.1	20.4	20.6	20.9	21.1	21.0	21.1	213	214
т _с	°C	483	487	494	499	506	511	568	SII	516	518
	٩К	756	760	767	772	779	784	781	784	789	791
т	mv					-					
^T C base inner	°€										
τ	mv	1		į		İ	1				
T C base outer	°C										
т	mv					[
^T Radiator	°C										Ī
Veb, volts		9865	9862	985.7	985.4	985.1	9849	984.4	984,1	984.0	983.6
I _{eb} ,mA	-	199.0	201.6	2049	2069	208.4	212.1	213.8	215.3	218.1	219.5
E _{Filament} , volts		57	_	-	۱	-			-	-	57
I Filament, amps	-	25	1			-	-		-	-	25
^I Coll Heater ^{, amps}		-		—	-	Г —	—		—		-
I Res Heater, amps		0.12	1.08	1.60	1.76	1,98	2.56	2.76	292	3.37	382
Vacuum , 10 ⁻⁶ mm Hg		2.0				-	-		-	-	30
Measured Efficiency,	6	1963	198.8	202 0	203.9	205.3	2.89	2104	211.9	2146	215.9
NOTES											


	IER	ER L N G	ELE		RON	<u> </u>			of		
	-210	E K I A I					Ohe	orver (P. Br	osing	•
VARIABLE			2	3	4	5	6	7	8	9	10
Date		7-16-68	16	16	16	16	17	17	17	17	17
Time		16:38	16:45	1		17.10	9:10	9.19	9.27	9:37	9:52
Elapsed Time, Hours	6	55	5.6	5.7	5.9	6.1	22.0	22.1	22.3	22.4	227
Т₀,•с		1672	1672	1672	1672	1672	1581	1581	1581	1581	1581
To Corrected, °C		1684	1684	{	1684	1684	1587	1587	1587	1587	1587
∆T _{Bell Jar} , °C		16	16	16	16	16	/3	13	/3	13	13
T _H ,°C		1700	1700	1700	1700	1700	1600	1600	1600	1600	1600
∆t _e ,°c	- · · · -			<u> </u>				<u> </u>			
Т _Е , •К			[[
V _o , volts		1.400	1.200	1.000	.800	-600	1400	1.200	1000	,800	.600
I _o , amps		62	9.4	15.1	37.1	59.5	2.9	4.9	6.9	13.9	42.0
P _o , watts		8.7	11.3	15.1	29.6	357	4.1	5.9	6.9	11.1	25.2
I-V Trace No			-		-		-		-		
	mv	12.8	13.1	135	145	145	11.8	12.2	12.6	13.1	14.2
T _R	°C	314	321	331	355	355.	290	300	309	321	348
_	°K									ļ	
	mv	213	21.9	22.5	25,1	27.3	19.1	19.9	20.1	21,3	249
тс	°C	516	529	543	604	656	464	483	487	516	600
	٩К	789	802	816	877	929	737	756	760	789	873
т	mv	1									
^T C base inner	°C										
T	mv	<u> </u>									
^T C base outer	°C										
	mv										
^T Radiator	°C							<u></u>	 		
Veb , volts		98	979	977	969	963	987	984	983	980	970
I _{eb} ,mA		219.6	232.3	245.9					184.2	2044	
E _{Filament} ,volts		5.7	5.8	5.8	6	6.2	5.6	5.6	5.6	5.7	60
I _{Filament} , amps		25	25	25	26	26	24	24	24	25	26
^I Coll Heater, ^{amps}		-								-	_
I Res Heater , amps		1.86	1.90	2,12	2,29	1.76	1.77	1.83	1.85	204	1.97
Vocuum, 10 ⁻⁶ mm Hg		2.0	2.6	2.2	2.3	3.0	1.2	1.2	12	1.2	1.2
Measured Efficiency,	%	2154	2274	2402		362.5	162.0	1733	1810	200.3	278.3
NOTES											


	-210	1		Run No	······································				P Bro		
VARIABLE		1	2	3	4	5	6	7	8	9	10
Date		7-17-68		17	17	17		17	17		
Time			10:54			(1)		13.41			<u> </u>
Elapsed Time, Houi	'S	23.2	237		25.9			26 5	26.6		
т <mark>о ,°</mark> С		1763	1763		1763	/763		1705		-	ļ
T _O Corrected, °C		1781	1781		1781	1781		1717			ļ
∆T _{Bell Jor,} °C		19	19	19	19	19		16	16		
т _{н,°C}		1800	1800	1800	1800,	1800	·	1733	1738		
<u>∆</u> т _Е , °C		<u> </u>									<u> </u>
т _е , °К											
V _o , volts		1.400	1200	1,000	.800	.600		.700	-800		<u> </u>
I _o , amps		9.9	15.9	299	56.9			61.1	44.5		
P _o ,watts		13.9	19.1	29.9	45.5			42,8	35.6		}
I-V Trace No			-			-		—	;		
	mv	13.8	13.8	14.2	15.0			IS.I	14.6		
T _R	°C	338	338	348	367			369	357		
	°К							642	630		
	mv	22.9	23.9	25.2	28.1			28.0	26.5		
ſc	°C	553	576	607	675			673	637		<u> </u>
	٩K	826	849		948			946	910		
······································	mv	1		¦							
T C base inner	°C	1									
	mv										<u> </u>
r C base outer	°C									<u> </u>	
	rnv							ļ			
T Radiator	°C										
Veb, volts	<u> </u>	974	077	965	956			958	963		
									┞╾╍╍╍══╬		
^I eb, ^{mA}		2767			449.6			426	376		
E _{Filoment} , volts		58	5.9	60	6.2			62	60		·
Filament ^{, amps}		25	25	52	26			26	26		
^I Coll Heater ^{, amps}		-			<u> </u>			(2)	(7)		
Res Heater ,amps		1.91			184			1.76	1.97		ļ
Vacuum, IO ⁻⁶ mm Ha		1.3	1,4	1,4	1.6			1.7	1.4		ļ
Neasured Efficiency	,%	269.5	289.9	331.7	429 8			408	362		<u> </u>
NOTES (1) TH1 Pow (2) SPE	ER IN	PUT 1	RE QUI								

APPENDIX 16

PYROMETER AND BELL JAR CALIBRATION

THERMO ELECTRON ENGINEERING CORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

Instrument No <u>M 5217</u> NBS Lamp No <u>186 792</u> 9 Sheet _____ of _2____ Date J*annory* 18, 1966 Temp.Level,°C ____500

/	meter upright)		
C	*	OBSERVER I	OBSERVER 2
	(T-201) Name R Slosek	Name P Brosen
	Lamp Current, Amps.	887	887
	Lamp Brightness Temp.,°C	1500 ± 4	1500 ^{± 4}
NO	Bright to Dark Reading,°C	1492	1498
RATI	Dark to Bright Reading,°C	1490	1490
PYROMETER CALIBRATION	Dark to Bright Reading,°C	/492	1490
TER C	Bright to Dark Reading, °C	14 90	1492
ROME	Average Reading,°C	14 91.0	1492.5
ΡΥF	Correction to be Applied to Pyrometer , °C	+ 9.0	+ 7.5
NO	Bright to Dark Reading, °C		
CALIBRATION	Dark to Bright Reading,°C		
CALIE	Dark to Bright Reading,°C		
JAR 0	Bright to Dark Reading,°C		
BELL א	Average Reading,°C		
BE	Bell Jar Correction, °C		

Average of Pyrometer Corrections, Observers 182,°C___+8.3 Average of Bell Jar Corrections, Observers 182,°C_____

THERMOELECTRONENGINEERINGCORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

Instrument No. <u>M 5217</u>

NBS Lamp No. <u>186792</u>

Sheet _2_ of _2_ Date January 18,1966 Temp.Level,°C _1700

		(T-201)	OBSERVER I Name R Slosek	OBSERVER 2 Name P Brosens
	LampCurrent, Amps.		10.58	10.58
	Lamp Brightness Temp.,°C		1700	1700
NO	Bright to Dark Reading, °C		1692	1692
RATI	Dark to Bright Reading,°C		1689	1688
ALIB	Dark to Bright Reading,°C		1690	1688
PYROMETER CALIBRATION	Bright to Dark Reading, °C		1690	1689
SOME'	Average Reading, °C		1690.3	1689.2
ΡΥF	Correction to be Applied to Pyrometer, °C		+ 9.7	+ 10.8
NO	Bright to Dark Reading, °C			
CALIBRATION	Dark to Bright Reading,°C			
ALIB	Dark to Bright Reading,°C			
	Bright to Dark Reading,°C		•	
BELL JAR	Average Reading,°C			
BE	Bell Jar Correction,°C			

Average of Pyrometer Corrections, Observers 182,°C_____+ 10.2____ Average of Bell Jar Corrections, Observers 182,°C______ THERMO ELECTRON ENGENEERING CORPORATION

8726

PYROMETER AND BELL JAR CALIBRATION RECORD

Instrument No. <u>M 5217</u>

Sheet _____ of __2___ Date <u>January 19, 1966</u> Temp.Level,°C <u>_____</u>

	(T-201)	OBSERVER I Name R Slosch	OBSERVER 2 Name P Brosen
	Lamp Current, Amps.	9.69	9.69
	Lamp Brightness Temp.,°C	1600	1600
NO	Bright to Dark Reading,°C	1590	1592
RATI	Dark to Bright Reading,°C	1590	1590
PYROMETER CALIBRATION	Dark to Bright Reading,°C	1590	1590
TER C	Bright to Dark Reading, °C	1590	1593
ROME	Average Reading, °C	1590	159125
ΡΥF	Correction to be Applied to Pyrometer , °C	+100	+ 8 75
NO	Bright to Dark Reading, °C	1578	1579
IRATI	Dark to Bright Reading,°C	1579	1516
CALIBRATION	Dark to Bright Reading,°C	1578	1578
BELL JAR C	Bright to Dark Reading,°C	1579	1578
	Average Reading,°C	1578.50	157775
BE	Bell Jar Correction,°C	11.50	/3.50

Average of Pyrometer Corrections, Observers 182,°C_+9.37 Average of Bell Jar Corrections, Observers 182,°C_+12.50 THERMO ELECTRON ENGINEERING CORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

8728

Instrument No <u>M5217</u>

NBS Lamp No _______ 186792_____

Sheet <u>2</u> of <u>2</u> Date Journon 19, 1966 Temp.Level, °C <u>1700</u>

	(T-201)	OBSERVER 1 Name R Sewset	OBSERVER 2 Name P Brosure
	Lamp Current, Amps.	1058	10,58
	Lamp Brightness Temp.,°C	1700	1700
NO	Bright to Dark Reading, °C		
RATI	Dark to Bright Reading,°C		
ALIB	Dark to Bright Reading,°C		
PYROMETER CALIBRATION	Bright to Dark Reading, °C		
ROME	Average Reading,°C	1690.3*	/6892 [*]
ΡΥF	Correction to be Applied to Pyrometer , °C		
NO	Bright to Dark Reading, °C	1677	1678
RATI	Dark to Bright Reading,°C	1675	1675
CALIBRATION	Dark to Bright Reading,°C	1675	1676
JAR 0	Bright to Dark Reading,°C	1675	1676
פברר א	Average Reading,°C	167550	1676.25
BE	Bell Jar Correction, °C	14.8	130

* January 18 data

Average of Pyrometer Corrections, Observers 182,°C_____ Average of Bell Jar Corrections, Observers 182,°C_____139____
 THERMO
 ELECTRON

 ENGINEERING
 CORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

8734

Instrument No <u>M5217</u>

NBS Lamp No. 186792

Date <u>2-8-66</u>

Sheet _____ of _____

Temp.Level,°C <u>1600</u>

	(T-201 #2)	OBSERVER I Name R Slosin	OBSERVER 2
	(1-281 #2)	Name K Slosik	Name P Bross
	Lamp Current, Amps.	9,69	9.69
	Lamp Brightness Temp.,°C	1600	1600
NO	Bright to Dark Reading, °C		
RATI	Dark to Bright Reading,°C		
:ALIB	Dark to Bright Reading,°C		
PYROMETER CALIBRATION	Bright to Dark Reading,°C		
ROME	Average Reading, °C 7ww of 1-19-60	15906	1590.6
ΡΥF	Correction to be Applied to Pyrometer, °C Test of 1-19-66	+ 9.4	+9.4
NO	Bright to Dark Reading, °C	1579	1578
BRATI	Dark to Bright Reading,°C	1578	1576
CALIBRATION	Dark to Bright Reading,°C	1578	1573
JAR (Bright to Dark Reading,°C	1578	15.78
פברר א	Average Reading,°C	1578.25	1576.25
BE	Bell Jar Correction,°C	+ 12.35	+ 14.35

Average of Pyrometer Corrections, Observers 182,°C_____ Average of Bell Jar Corrections, Observers 182,°C______+13.35 THERMO ELECTRON ENGINEERING CORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

8735

Instrument No. M5217

7[.] G

Date <u>2-8-66</u>

Sheet _2___ of ____2

Temp.Level, °C 1700

		OBSERVER I	OBSERVER 2
	(T-201) #2	Name & Slosek	Name P. Broser
	Lamp Current, Amps.	10 58	10.58
	Lamp Brightness Temp.,°C	1700	1700
NO	Bright to Dark Reading, °C		
RATI	Dark to Bright Reading, °C		
CALIBRATION	Dark to Bright Reading,°C		
	Bright to Dark Reading, °C		
PYROMETER	Average Reading, °C Terry 1-18-66	1689.8	1689.8
РҮГ	Correction to be Applied to Pyrometer, °C Text-of 1-18-66	+10.2	+10 2
NO	Bright to Dark Reading, °C	1679	1679
BRATI	Dark to Bright Reading,°C	/678	1670
CALIBRATION	Dark to Bright Reading,°C	1676	1670
JAR (Bright to Dark Reading,°C	/677	1670 167 6
	Average Reading,°C	16775	1673.75
BE	Bell Jar Correction, °C	+12.3	+ 16,05

 Average of Pyrometer Corrections, Observers 182,°C

 Average of Bell Jar Corrections, Observers 182,°C

THERMO ELECTRON ENGINEERING CORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

Instrument No. M5217
NBS Lamp No. 186792

A

Sheet ______ of _____ Date _______3-9-66 Temp.Level,°C _____600

	(T-202)	OBSERVER Name B. Gurther	OBSERVER 2 Name J2 B Jloze K
	Lamp Current, Amps	9,69	9,69
	Lamp Brightness Temp., °C	1600	1600
z	Bright to Dark Reading, °C		
RATI	Dark to Bright Reading, °C	-	
ALIB	Dark to Bright Reading,°C		
PYROMETER CALIBRATION	Bright to Dark Reading, °C		
ROME	Average Reading,°C		-
ΡΥI	Correction to be Applied to Pyrometer, °C	9.37	9.37
NO	Bright to Dark Reading, °C	1577	1570
CALIBRATION	Dark to Bright Reading,°C	1577	1570
CALIE	Dark to Bright Reading,°C	1574	1575
JAR	Bright to Dark Reading,°C	1575	1570
ELL	Average Reading,°C	1575,8	1571,25
	Bell Jar Correction, °C	14.83	19,38

Average of Pyrometer Corrections Observers 182,°C_	9,37
Average of Bell Jar Corrections, Observers 1& 2, °C	

HERMO ELECTRON GINEERING CORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

Instrument No. <u>M5217</u> NBS Lamp No. <u>186792</u> Sheet 2 of 2 Date March 9, 1966

Temp.Level, °C 1706

	(T-202)	OBSERVER I	OBSERVER 2
	(1-202)	Name <u>BGunther</u>	Name <u>R, B, Slosck</u>
	Lamp Current, Amps.	10.58	10,58
	Lamp Brightness Temp.,°C	1700	1700
N	Bright to Dark Reading, °C		
RATI	Dark to Bright Reading,°C		
PYROMETER CALIBRATION	Dark to Bright Reading,°C		
TER C	Bright to Dark Reading, °C		
SOME	Average Reading, °C	From previou	calibuntion:
ΡΥF	Correction to be Applied to Pyrometer , °C	/0.2_	10.2
ON	Bright to Dark Reading, °C	1672	1672
RATI	Dark to Bright Reading,°C	1672	1672
CALIBRATION	Dark to Bright Reading,°C	1672	1672
ELL JAR (Bright to Dark Reading,°C	1672	1672
	Average Reading,°C	1672	1672
BE	Bell Jar Correction,°C	17.8	17.8

Average of Pyrometer Corrections, Observers 182, °C______ Average of Bell Jar Corrections, Observers 182, °C___________ 17.8

THERMO ELECTRON ENGINEERING CORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

Instrument No. <u>M 5217</u> NBS Lamp No. <u>186792</u> Sheet _/____ of _____ Date ______66

Temp.Level, °C /700

-

	(7 - 202) #2	OBSERVER I	OBSERVER 2
	(1-202) #2	Name <u>B. Guyther</u>	Name <u>RiB Slovek</u>
	Lamp Current, Amps.	10.58	/0,5%
	Lamp Brightness Temp.,°C	1700	1700
NO	Bright to Dark Reading, °C		
RATI	Dark to Bright Reading,°C		
CALIBRATION	Dark to Bright Reading,°C	ŧ	
	Bright to Dark Reading,°C		
PYROMETER	Average Reading, °C		
ΡYF	Correction to be Applied to Pyrometer, °C	10,2	10,2
NO	Bright to Dark Reading,°C	1678	16.80
CALIBRATION	Dark to Bright Reading,°C		1671
CALIE	Dark to Bright Reading,°C	1676 1675	1676
JAR (Bright to Dark Reading,°C	1679	1676
ברר א	Average Reading,ºC	1677	1675,75
BE	Bell Jar Correction, °C	12,8	14.05

Average of Pyrometer Corrections, Observers 182,°C /0,2 Average of Bell Jar Corrections, Observers 182,°C /3,43

PYROMETER AND BELL JAR CALIBRATION RECORD

Instrument No.	M5217
NBS Lamp No	

Sheet <u>2</u> of <u>2</u> Date <u>3-21-66</u> Temp.Level, °C <u>1600</u>

	(T-202) #2_	OBSERVER 1 Name B, Gunther	OBSERVER 2 Name R.B. Slosek
	Lamp Current, Amps.	9,69	9.69
	Lamp Brightness Temp.,°C	1600	1600
ZO	Bright to Dark Reading, °C		
RATI	Dark to Bright Reading, °C		
ALIB	Dark to Bright Reading,°C		
PYROMETER CALIBRATION	Bright to Dark Reading, °C		
ROME	Average Reading,°C		
ΡΥF	Correction to be Applied to Pyrometer , °C	9,37	9,37
NO	Bright to Dark Reading, °C	1581	1580
CALIBRATION	Dark to Bright Reading,°C	1579	1579
CALIE	Dark to Bright Reading,°C	1578	1579
JAR (Bright to Dark Reading,°C	1579	1580
BELL J	Average Reading,°C	1579,25	1579,50
BE	Bell Jar Correction, °C	/1.38	11.13

Average of Pyrometer Corrections, Observers 182,°C_____9,37 Average of Bell Jar Corrections, Observers 182,°C____/1,25_____ THERMO ELECTRON ENGINEERING CORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

8738

Instrument No. <u>M 5217</u> NBS Lamp No <u>186 792</u> Sheet _______ of _______ Date ___________ Temp.Level ,°C ______

		OBSERVER I	OBSERVER 2
_	(7-203 B)	Name <u>B Gunther</u>	Name <u>RB Short</u>
	'Lamp Current , Amps.	9.69	969
	Lamp Brightness Temp.,°C	16600	16.00°C
PYROMETER CALIBRATION	Bright to Dark Reading, °C	1591 1571	1514
	Dark to Bright Reading,°C	1592	1592
	Dark to Bright Reading,°C	1591	1512
	Bright to Dark Reading, °C	1540	1590
	Average Reading,°C	159100	1592.00
	Correction to be Applied to Pyrometer , °C	4, cc	5 60
NO	Bright to Dark Reading, °C	1572	1571.
BRATI	Dark to Bright Reading,°C	1572	1570
BELL JAR CALIBRATION	Dark to Bright Reading,°C	15-23	1575
	Bright to Dark Reading,°C	1574	1575
	Average Reading,°C	1572.75	157275
	Bell Jar Correction,°C	18.25	1925

Average of Pyrometer Corrections, Observers 182, °C <u>E 50°C</u> Average of Bell Jar Corrections, Observers 182, °C <u>(1075)</u> This four quations Volue of 12°C cons adopted for convertine (conservers).

INOT REPRODUCIBLE

PYROMETER AND BELL JAR CALIBRATION RECORD

8732

Instrument No. <u>M 5217</u>

Sheet <u>2</u> of <u>2</u> Date <u>5-23-66</u>

NBS Lamp No. 136792

Temp.Level, °C /700°C

		OBSERVER I	OBSERVER 2
	(T-203 B)	Name B. Gun ther	Name R. B. Slovek
	Lamp Current, Amps.	10,58	10,5%
	Lamp Brightness Temp.,°C	· 1700°C	1700°C
PYROMETER CALIBRATION	Bright to Dark Reading, °C	1691	1690
	Dark to Bright Reading,°C	1690	1690
	Dark to Bright Reading,°C	1691	1690
	Bright to Dark Reading, °C	1690	1690
	Average Reading, °C	1690.50	1690,00
	Correction to be Applied to Pyrometer , °C	9.50	10.00
NO	Bright to Dark Reading, °C	1673	1679
BRATI	Dark to Bright Reading,°C	1673	1679
CALIBRATION	Dark to Bright Reading,°C	1673	1677
JAR (Bright to Dark Reading,°C	1618	1678
שברר א	Average Reading,°C	1674.25	16 78.25
BE	Béll Jar Correction, °C	16.25	11.75

Average of Pyrometer Corrections, Observers 182,°C____9.75 Average of Bell Jar Corrections, Observers 182,°C____4,00

THERMO ELECTRON ENGINEERING CORPORATION PYROMETER AND BELL JAR CALIBRATION RECORD Sheet _____ of ____ 7/1/66 Instrument No. <u>M3217</u> Date ____ NBS Lamp No. _186992____ Temp.Level, °C 1600 **OBSERVER** I **OBSERVER 2** (T-203 B) #2 Name 🦌 🚬 Name F. Marina Sloset Lamp Current, Amps. 9.69 9.69 1600°C Lamp Brightness Temp., °C 16.00°C Bright to Dark Reading, °C PYROMETER CALIBRATION Dark to Bright Reading, °C Dark to Bright Reading, °C Bright to Dark Reading, °C Average Reading, °C 15-91.0 1592.0 Correction to be Applied to 90 8.0 Pyrometer, °C Bright to Dark Reading, °C BELL JAR CALIBRATION 1570 1570 Dark to Bright Reading, °C 1531 157Q Dark to Bright Reading,°C 1570 1573

8730

8.5 Average of Pyrometer Corrections Observers 182, °C_ 20.15 Average of Bell Jar Corrections, Observers 182, °C____

<u>15</u>73

1571.7

20.3

1574

1571

20

Bright to Dark Reading,°C

Average Reading,°C

Bell Jar Correction, °C

 THERMO
 ELECTRON

 ENGINEERING
 CORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

8739

Instrument No <u>M 5⁻217</u> NBS Lamp No. <u>186 792</u> Sheet <u>2</u> of <u>2</u> Date <u>2/1/4.6</u>

Temp.Level,°C_____

	(T-203 B) #2	OBSERVER I Nome F Marino	OBSERVER 2 Name R Stoset
	LampCurrent, Amps.	10.58	10.58
	Lamp Brightness Temp.,°C	1700°	1700*
ZO	Bright to Dark Reading, °C		
CALIBRATION	Dark to Bright Reading, °C		
ALIB	Dark to Bright Reading,°C		
	Bright to Dark Reading, °C		
PYROMETER	Average Reading,°C	1690.5	1690.0
РҮР	Correction to be Applied to Pyrometer , °C	9.50	10.0
NO	Bright to Dark Reading, °C	1678	1678
BRATI	Dark to Bright Reading,°C	, 1678	1679
CALIBRATION	Dark to Bright Reading,°C	1679	1679
BELL JAR (Bright to Dark Reading,°C	1679	16.78
	Average Reading,°C	1678.5	1678.5
	Bell Jar Correction, °C	12.0	11.5

Average of Pyrometer Corrections, Observers 182,°C_____9.75 Average of Bell Jar Corrections, Observers 182,°C_____/.25 THERMO ELECTRON ENGINEERING CORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

8740

Instrument No <u>M5217</u>

E.

7

Sheet _____ of ____ Date ________

Temp.Level,°C<u>1600</u>

	(T-205) after test	OBSERVER 1 Name R. Seoscie	OBSERVER 2_ Name P. Brosco
	Lamp Current, Amps	9.69	° 9.69
	Lamp Brightness Temp.,°C	1600	1600
NO	Bright to Dark Reading, °C	1590	1597
PYROMETER CALIBRATION	Dark to Bright Reading,°C	1593	1584
ALIB	Dark to Bright Reading,°C	1591	1590
TER C	Bright to Dark Reading, °C	1590	1589
SOME	Average Reading,°C	15910	1590.0
РҮБ	Correction to be Applied to Pyrometer , °C	+90	+ 10.0
NO	Bright to Dark Reading, °C	1575	1575
RATI	Dark to Bright Reading,°C	1578	1571
CALIBRATION	Dark to Bright Reading,°C	1579	1572
BELL JAR C	Bright to Dark Reading,°C	/573	1572
	Average Reading,°C	15762	15725
	Bell Jar Correction, °C	+14.8	+ 17.5

Average of Pyrometer Corrections, Observers 182,°C_____+ 9.5 Average of Bell Jar Corrections, Observers 182,°C_____+ 16.1

PYROMETER AND BELL JAR CALIBRATION RECORD

Instrument No. M5217

Temp.Level, °C ______

	(T-205) alkn hat	OBSERVER I Name_R Seosik	OBSERVER 2 Name P. Brosens
	Lamp Current, Amps	10.58	لاک ۵۷
	Lamp Brightness Temp.,°C	' <i>17</i> 00	1700
N	Bright to Dark Reading, °C	1689	1690
PYROMETER CALIBRATION	Dark to Bright Reading,°C	, 1689	1686
ALIB	Dark to Bright Reading,°C	1689	1688
TER C	Bright to Dark Reading,°C	/688	1686
SOME	Average Reading,°C	1688 75	1687.50
РҮБ	Correction to be Applied to Pyrometer , °C	+1125	+12 50
NO	Bright to Dark Reading,°C	1674	1671
BRATI	Dark to Bright Reading,°C	1670	1670
BELL JAR CALIBRATION	Dark to Bright Reading,°C	1671	1671
	Bright to Dark Reading,°C	1671	1670
	Average Reading,°C	167150	1670.50
	Bell Jar Correction, °C	+17.25	+1700

Average of Pyrometer Corrections, Observers 182,°C_____+ 11.9____ Average of Bell Jar Corrections, Observers 182,°C_____+ 17.1____ ENGINEERING CORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

8773

(Prior to 207)

Instrument No <u>M5217</u>

Sheet _/___ of _2____ Date _5-17-1967

Temp.Level, °C 1600

		OBSERVER 1 Name P Bross	OBSERVER 2 Name R. Slosek
	LampCurrent, Amps.	969	969
	Lamp Brightness Temp.,°C	1600	1600
NO	Bright to Dark Reading, °C	1507	1597
CALIBRATION	Dark to Bright Reading,°C	1593	1594
CALIB	Dark to Bright Reading,°C	1593	1597
TER (Bright toDark Reading, °C	1595	/593
PYROMETER	Average Reading, °C	159375	159575
ΡΥ	Correction to be Applied to Pyrometer , °C	+ 6.25	+ 4.25
NO	Bright to Dark Reading, °C		
BRATI	Dark to Bright Reading,°C		
ELL JAR CALIBRATION	Dark to Bright Reading,°C		
	Bright to Dark Reading,°C		
	Average Reading,°C		
B	Bell Jar Correction, °C		

Average of Pyrometer Corrections, Observers 182,°C____+ 5.25 Average of Bell Jar Corrections, Observers 182,°C_____

THERMO ELECTRON ENGINEERING CORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

Instrument No M5217

NBS Lamp No. _186792____

Sheet _____ of _____ Date <u>5-17-1967</u>

Temp.Level, °C 1700

		OBSERVER I Name P Brosson	OBSERVER 2 Name R Score
	LampCurrent, Amps.	10 58	10.58
	Lamp Brightness Temp.,°C	1700	1700
Z	Bright to Dark Reading, °C	1695	1693
PYROMETER CALIBRATION	Dark to Bright Reading,°C	1692	1695
ALIB	Dark to Bright Reading,°C	1694	1693
TER C	Bright to Dark Reading, °C	1695	1692
ROME	Average Reading, °C	1693.00	1693 25
ΡΥF	Correction to be Applied to Pyrometer, °C	+ 7.00	+6.75
NO	Bright to Dark Reading,°C		
CALIBRATION	Dark to Bright Reading,°C		
SALIB	Dark to Bright Reading,°C		
BELL JAR C	Bright to Dark Reading,°C		
	Average Reading,°C		
B	Bell Jar Correction, °C		

Average of Pyrometer Corrections, Observers 182,°C +6.87 Average of Bell Jar Corrections, Observers 182,°C_____

THERMO ELECTRON ENGINEERING CORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

Instrument No. <u>MS217</u>

Sheet _____ of ____ Date _____9-11-67

Temp.Level, °C ______

	(7 - 207)	OBSERVER I Name PBrosen	OBSERVER 2_ Name E. Peredetto
	Lamp Current, Amps	10 58	/0.58
	Lamp Brightness Temp.,°C	1700 0	1700.0
NO	Bright to Dark Reading, °C	1697	1693
RATI	Dark to Bright Reading, °C	1697	1700
CALIBRATION	Dark to Bright Reading,°C	1698	1702
TER C	Bright to Dark Reading, °C	1697	1702
PYROMETER	Average Reading,°C	169725	1699 25
РҮБ	Correction to be Applied to Pyrometer , °C	+ 275	+ .75
NO	Bright to Dark Reading, °C		
RATI	Dark to Bright Reading,°C		
CALIBRATION	Dark to Bright Reading,°C		
BELL JAR C	Bright to Dark Reading,°C		
	Average Reading,°C		
	Bell Jar Correction,°C		

Average of Pyrometer Corrections, Observers 182,°C_____+1.75°C____ Average of Bell Jar Corrections, Observers 182,°C______

THERMO ELECTRON ENGINEERING CORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

Instrument No. M5217

0

Sheet <u>2</u> of <u>2</u>

Date _ 9-11-67

Temp.Level, °C ______

		OBSERVER I Name P Brosur	OBSERVER 2
·	·····	Name & proser	Name E. Peruditto
	Lamp Current, Amps	8.87	8 87.
	Lamp Brightness Temp.,°C	1500 0	1500.0
N	Bright to Dark Reading, °C	1502	1506 o
PYROMETER CALIBRATION	Dark to Bright Reading,°C	Koo	/498
ALIB	Dark to Bright Reading,°C	1499	1500
TER C	Bright to Dark Reading, °C	1500	1502
ROME	Average Reading,°C	1500 25	15015
ΡΥF	Correction to be Applied to Pyrometer, °C	-0,25	- 1.50
NO	Bright to Dark Reading, °C		
BRATI	Dark to Bright Reading,°C		
BELL JAR CALIBRATION	Dark to Bright Reading,°C		
	Bright to Dark Reading,°C		
	Average Reading,°C		
	Bell Jar Correction, °C		

Average of Pyrometer Corrections, Observers 182,°C______O.9°C_____ Average of Bell Jar Corrections, Observers 182,°C______ **THERMO ELECTRON** ENGINEERING CORPORATION

8742

PYROMETER AND BELL JAR CALIBRATION RECORD

Instrument No <u>M-5217</u>

7

Sheet ______ of _____ Date ______ 5-17-68

Temp.Level,°C_1600

	(T-209)	OBSERVER I Name Peruslitto	OBSERVER 2 Name Brosens
	Lamp Current , Amps.	9.69	9.69
	Lamp Brightness Temp.,°C	1600	1600
NO	Bright to Dark Reading, °C	1598	1600
CALIBRATION	Dark to Bright Reading,°C	1600	1598
CALIB	Dark to Bright Reading,°C	1601	1598
TER 0	Bright to Dark Reading, °C	1600	1600
PYROMETER	Average Reading,°C	159975	1599 00
ΡΫ́Ρ	Correction to be Applied to Pyrometer , °C	+.25	+1.00
NO	Bright to Dark Reading, °C	1579	158
BRATI	Dark to Bright Reading,°C	1581	1579
CALIBRATION	Dark to Bright Reading,°C	1581	1580
JAR (Bright to Dark Reading,°C	1581	1580
BELL	Average Reading,°C	1580.50	1580.00
BE	Bell Jar Correction, °C	+ 19.25	+1900

Average of Pyrometer Corrections, Observers $182, \circ C_{+0.62}$ Average of Bell Jar Corrections, Observers $182, \circ C_{+19.12}$

 THERMO
 ELECTRON

 ENGINEERING
 CORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

Instrument No. M-5217 Sheet 2 of 2 Date ______68

Temp.Level, °C _ 1700

		OBSERVER I	OBSERVER 2
		Name Perudito	Name Brosun
	Lamp Current , Amps.	10.58	10.58
	Lamp Brightness Temp.,°C	1700	1700
NO	Bright to Dark Reading, °C	1698	1699
RATI	Dark to Bright Reading,°C	1699	1697
CALIBRATION	Dark to Bright Reading,°C	1700	1697
	Bright to Dark Reading, °C	1700	1698
PYROMETER	Average Reading, °C	1699.25	1697.75
ΡΥF	Correction to be Applied to Pyrometer, °C	+ 0.75	+2.25
NO	Bright to Dark Reading, °C	1684	1680
IRATI	Dark to Bright Reading,°C	1685	1680
CALIBRATION	Dark to Bright Reading,°C	1683	1680
BELL JAR (Bright to Dark Reading,°C	1683	1680
	Average Reading,°C	168375	1680.00
	Bell Jar Correction, °C	+ 15.50	+ 17.75

+1.50Average of Pyrometer Corrections, Observers 182, °C____ Average of Bell Jar Corrections, Observers 1&2, °C____+ 16.60

THERMO ELECTRON ENGINEERING CORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

Instrument No. M 5217

NBS Lamp No. 186792

Sheet _____ of ____ Date _____68

Temp.Level, °C 1600

	(7 - 210)	OBSERVER I Nome E, Peredito	OBSERVER 2 Name P Brow
	Lamp Current , Amps.	9.69	9.69
	Lamp Brightness Temp.,°C	1600	1600
N	Bright to Dark Reading, °C	1597	1593
PYROMETER CALIBRATION	Dark to Bright Reading,°C	1596	1592
ALIBI	Dark to Bright Reading,°C	1593	1594
TER C	Bright to Dark Reading, °C	1595	1588
OME	Average Reading, °C	1595.25	1591.75
РҮВ	Correction to be Applied to Pyrometer, °C	+ 4 75	+ 8.25
NO	Bright to Dark Reading, °C	1580	1583
RATI	Dark to Bright Reading,°C	1580	1582
BELL JAR CALIBRATION	Dark to Bright Reading,°C	1576	1582
	Bright to Dark Reading,°C	1580	1581
	Average Reading,°C	1579.00	1582.00
	Bell Jar Correction,°C	+16.25	+\$9.75

Average of Pyrometer Corrections, Observers 182,°C____+6.50 Average of Bell Jar Corrections, Observers 182, °C_____+1300

THERMOELECTRONENGINEERINGCORPORATION

PYROMETER AND BELL JAR CALIBRATION RECORD

Instrument No <u>M 5217</u>

Sheet. 2____ of _____

Date _____7-15-68

Temp.Level, °C /700

		OBSERVER I	OBSERVER 2
	· · · · · · · · · · · · · · · · · · ·	Name E. Perudites	Name P Brosm
	LampCurrent, Amps.	10.58	10 58
	Lamp Brightness Temp., °C	1700	1700
Z	Bright to Dark Reading, °C	1689	1690
CALIBRATION	Dark to Bright Reading,°C	/688	1686
ALIB	Dark to Bright Reading,°C	1687	1687
TER C	Bright to Dark Reading, °C	1688	1687
PYROMETER	Average Reading,°C	168800	168750
ΡΥF	Correction to be Applied to Pyrometer , °C	+12.00	+ 12.50
NO	Bright to Dark Reading, °C	1669	1676
CALIBRATION	Dark to Bright Reading,°C	1667	1675
CALIE	Dark to Bright Reading,°C	1673	1673
BELL JAR (Bright to Dark Reading,°C	1670	1675
	Average Reading,°C	1669,75	/674.75
	Bell Jar Correction, °C	+ 18.25	+1275

Average of Pyrometer Corrections, Observers 182,°C +12 25 Average of Bell Jar Corrections, Observers 182,°C +15.50

•

CAVITY GEOMETRY EQUATIONS

COMPUTER PROGRAM

CAVITY GEOMETRY EQUATIONS

Shoe Piece Geometry

ELEC

Trapezoid circumscribed to a circle whose diameter \underline{a} equals the collector diameter d plus 2u, a radial clearance factor:

a = d + 2u

The trapezoid sides are inclined by an angle α to the trapezoid centerline:

$$\tan \alpha = (c-b)/2a$$

where b and c are the bases of the trapezoid.

The value of α is determined by the number of converters N in the generator. Each ring of converters in the generator corresponds to a truncated pyramid with half apex angle of 15°, the tilt of the converters from the plane of symmetry. Analysis of the pyramid geometry gives:

 $\tan \alpha = \sin 15^\circ \tan \beta$ where $\beta = 360/N$

and:

 $b = a (1/\cos \alpha - \tan \alpha)$ $c = a (1/\cos \alpha + \tan \alpha)$

Cavity Geometry

Length of the cavity $Z8 = 2a \quad \cos 15^\circ$ Mean cavity diameter $D_c = (b + c)/2 \tan \beta$ Maximum possible cavity aperture dia $CA_{max} = b/\tan \beta$

	3200 FORTRAN (2.1)
	PROGRAM THERMO DIMENSION A(7),E(7),XN(4),CA(4),F(9,9),SIFR(9),W(7),T(7),H(7), IV(7),Q(7),DUM(7,7),EPS(7),S(9),PNN(7),WATT(2),P(7)
	REWIND 4
	READ 1.NN.NA.NC.NW
	READ 2,0053,0064,00 READ 2,(XN(I),1=),NN) READ 2,(CA(I),1=1,NC)
· · · · · · · · · · · · · · · · · · ·	READ 2. (WATT(I).I=1.NW) READ 2. (T(I).I=1.7)
	DO 3 I=1,NA READ 2, (A(J), J=1,7)
	READ 2+(E(J)+J=1+7) WRITE OUTPUT TAP <u>F 1+2+(A(J)+J=1+7)</u> WRITE OUTPUT TAPE 1+2+(E(J)+J=1+7)
	2 FURMAT(8E10.5) 3 CONTINUE
	REWIND 1 NNC=NN*NC SIGMA = 5.679E-12
2	RAD = 0.0745329 D = 1.778
8-1	U = .127 AA = D + 2.4U
<u>`</u>	Z8 = 2.*AA*.96593 Z85 = Z8 *_Z8 Z9 = Z8/2.
Þ	ZYS = Z9 * Z9 A1 = 52.5*HAD
	SINA1 = SINF(A1) COSA1 = COSF(A1) TANA1 = SINA1/COSA1
	PI = 3.1415927 AS = 10.48AD
	COSAS = COSF(AS) PI2, = 2.*PI
	D0 210 IN=1.NNREWIND 4 C53 = CC53*XN (IN)/2. C64 = CC64*XN (IN)/2.
	BET = 360./XN(IN).#RAD. SINBET = SINF(BET)
	COSBET = COSF(BET) TANBET = SINBET/COSBET ALF = AIANE(,25882*TANBET)
	COSALF = COSF(ALF) $SINALF = SINF(ALF)$
	TANALF = SINALF/COSALF B = AA * $(1./COSALF - TANALF)$
	C = AA* (1./COSALF + TANALF) DC = AA/(COSALF* [ANBET] R8 = B*(1.+COSBET)/(4.*SINBET)
	RMS = RB * RB R9 = C * (1.+COSBET)/(4.*SINBET)
	R9S = R9 * R9 DU 6 II=1.NC R1=CA(II)/2.*2.54
	R1S = R1*R1 R1S = (R8-R1)/TANA1
	Z185 = Z18 * Z18 Z1= Z8 * Z18 Z1= Z 7 * Z18
	Z1S = Z1 * Z1 Z19 = Z9 + Z18 Z19S = 219 + Z19
	H = ZB + RB / TANA1 $A2 = ATANF (R8/H)$
ß	COSA2 = COSF(A2) $A9 = ATANF(R9/(H-,5*Z8))$ $COSA9 = COSF(A9)$
	WRITE OUTPUT TAPE 4,4,4XN(IN),BET,ALF,AA,8,C,Z8,R8,R9,Z18 4 FORMAT(10F10,5)
	IF (R1-R8)44+44+33 33 PRINT 333 333 FURMAT (53H R1 IS GREATER THAN R8 PROGRAM CONTINUES TO NEXT CASE)
	PRINT 31,81,988
	GO 10 6 ·
• · ·	
2 <u>2</u>	
18-1	

A 1-81

```
44 CUNTINUE
                                                                              S(1) = PI* R1S
S(2) = PI*R85
                                                                               S(3) = PI/4.*COSALF*PI*(R8+R9)*AA
                                                                               S(4) = S(3)
                                                                               S(5) = PI * (R8+R9)*AA-S(3)
                                                                              S(6) = S(5)
S(7) = (S(2)-S(1))/SINA1
                                                                              S(8) = 5(2)
S(9) = PI*R9S
                                                                              S35 = S(3)/(S(3)+S(5))
S46 = S(4)/(S(4)+S(6))
S53 = S(5)/S(3)
                                                                              564 = S(6)/S(4)
                                                                              SA2S = PI2 *(COSAS-COSA2)
SA92 = PI2 *(COSA2 -COSA2)
SA19 = PI2 *(COSA2 -COSA3)
SA19 = PI2 *(COSA9-COSA1)
                                                                              SAIS = PI2*(COSAS-COSAI)
                         -s 1.
                    T
                                                                              SIFR(1) = 0.
                                                                             SIFR(2) = 5A25/SA15
SIFR(3) = 535 * SA19/SA15
                   ł
                                                                             SIFR(4) = 546 + SA42/SA1S
SIFR(5) = 553 * SIFR(3)
                    i*-
                                                                             S1FR(6) = 564 * SIFR(4)
                                                                             SIFR(7)= 0.
                                                       С
                                                                             CALCULATION OF VIEW FACTORS
                                                                            F(1,)) =0.
                                                                             Y12 =1.+215/R15 + R85/R15
                                                                             SQ = 2.*(R8/R1)/Y12
                                                                             SQS = SQ * SQ
                                                                            F(1.2) = .5*Y12*(1.-SQRTF(1.-SQS))
                                                                             Y18 = 1.+Z185/R15 + R85/R15
                        18-
                                                                            $Q = 2.*(R8/R1)/Y18
                                                                            SQS = SQ#SQ
                         23
                                                                           F(1,8) =.5*Y18*(1.-SQRTF(1.- SQS))
Y19 = 1.+Z195/R15 + R95/R15
SQ = 2.*(R9/R1)/Y19
                        A
                                                                            SQS = SQ * SQ
                                                                           F(1,9) = .5*Y19*(1,-SQRTF(1,-SQS))
F(1,3) = S35 * (F(1,6)-F(1,9))
F(1,4) = S46 * (F(1,6)-F(1,9))
F(1,6) = S53 * F(1,3)
F(1,6) = S64 * F(1,4)
F(1,6) = S64 * F(1,6)
                                                                           F(1,7) = 1 - F(1,8)
                                                                           F(2,1) = S(1)/S(2) *F(1,2)
F(2,2) = 0.
                                                                            Y29 = 1.+ Z9S/R85 + R9S/R85
                                                                            SQ = 2.*(R9/R8)/Y29
                                                                            SUS = SQ*SQ
                                                                           F(2+9) = .5*Y29*(].-SQRTF(1.-SQS))
Y28 = 2.+ Z85/R85
                                                                          \begin{array}{l} Y28 = 2 * + 285/885\\ S0 = 2 * /Y28\\ S05 = 50 * 50\\ F(2 * 8) = 5* Y28 * (1 * - S0RTF(1 * - S0S))\\ F(2 * 3) = 535 * (F(2 * 9) - F(2 * 8))\\ F(2 * 4) = 546 * (1 * - F(2 * 9))\\ F(2 * 5) = 553 * F(2 * 3)\\ F(2 * 5) = 553 * F(2 * 4)\\ F(2 * 5) = 564 * F(2 * 4)\\ F(2 * 7) = F(2 * 8) - F(2 * 1)\end{array}
                                                                           F(2,6) = 5(4 - 1)(2,7)

F(2,7) = F(2,8) - F(2,1)

F(3,1)' = S(1)/S(3) * F(1,3)

F(3,2) = S(2)/S(3) * F(2,3)
                                                                           f(8,9)= F(2,9)
                                                                          \begin{array}{l} F(0,7) = F(2,7) \\ F(3,3) = S(3) / S(9) > F(3,9) \\ F(9,8) = S(8) / S(9) > F(3,9) \\ F(3,3) = S(3) / S(3) > F(3,3) \\ F(3,9) = S(9) / S(3) > F(9,3) \\ F(3,9) = S(9) / S(3) > F(9,3) \\ F(3,9) = S(9) / S(3) > F(3,8) = F(3,8) \\ F(3,9) = S(9) / S(3) > F(3,8) \\ F(3,9) = S(9) / S(3) > F(3,8) \\ F(3,9) = S(9) / S(3) > F(3,8) \\ F(3,9) = S(9) / S(3) > F(3,8) \\ F(3,9) = S(9) / S(3) > F(3,8) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(3) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,9) = S(9) / S(9) \\ F(3,
                  .
                                  ł
                     ١Ę.
                                                                           F(3,4) = 546 *(F(3,9)-F(3,2))
                 F(3,5) = S53 * F(3,3)
                                                                           F(3,6) = S64 * F(3,4)
                                                                           F(3,7) = F(3,B) - F(3,1)
                                                                \begin{array}{l} \text{D0 11 } J=1,3 \\ 11 \ F(4,J) \ = \ S(J)/S(4) * F(J,4) \end{array}
                                                                                                                                                                                                                                    TOLDOUT FRAME
                                                                           F(4,4)= F(3,3)
                                                                           F(4,5) = F(3,6)
                                                                           F(4,6) = F(3,5)
                                                                           F(8,2) = S(2)/S(8)*F(2,8)
F(8,4) = S46 * (F(8,9) - F(8,2))
                         Ś
                                                                           F(4,8) = S(8)/S(4) *F(8,4)
                                                                           F(4,7) = F(4,8) - F(4,1)
                                                                           F(4,9) = F(3,9)
                                                                D0 10 J=1,4
10 F(5,J) = S(J)/S(5)*F(J,5)
籬-
                   3.74
                                                                          F(5,5) = F(3,3)*553
                                                                           F(5,6) = F(3,6)
                                                                           F(5,7)= F(3,7)
                                                                           00 9 J=1.5
      00
                                                                                                                                                                                                        NOLDOUT PRAME
      2
```

9 F(6,J) = S(J)/S(6)*F(J,6) F(5,8) = F(6,2)F(5,9) = 1 - F(5,8) - F(5,3) - F(5,5)F(6,6) = F(4,4) * S64F(6,7) = F(4,7)F(6,8) = F(5,2)F(6,9) = F(5,9)DO 8 J=1,6 F(7,J) = S(J)/S(7)*F(J,7)F(8,1) = S(1)/S(8) *F(1,8)F(8,7) = 1.- F(8.1) F(7,8) = S(8)/S(7)*F(8,7)F(7+7) = 1.- F(7.1)- F(7.8) F(7,9) = F(7,8) - F(7,3) - F(7,5)F(8,5) = S(5)/S(8) *F(5,8)F(B,6) = S(6)/S(8)*F(6,8)F(8,8) =0. 00 7 J=1,7 F(9+J) = S(J)/S(9)*F(J+9) F(9,9) =0. D0 5 IV=1,7 WRITE OUTPUT TAPE 4,2,(F(IV,J),J=1,7) 5 DU 6 III=1,NW DU 601111=1.NA READ INPUT TAPE 1,2, (A(J), J=),7) READ INPUT TAPE 1,2, (E(I),I=1,7) PRINT 100+CA(II) +WATT(III) +XN(IN) 100 FORMAT (1H1, 37X, 34HCOMPUTED GENERATOR JHERMAL BALANCE///, 38X, 24H 1CAVITY APERTURE (INCH) =>F8.3//, 383,27HTOTAL SOLAR INPUT (WATTS) 2=>F10.3//,388,22HNUMBER OF CONVERTERS =>F6.1,/) PRINT 101,T(3),T(4) 10] FORMAT(33H___CONVERTER_TEMPERATURES_(DEG_K)/,7H___T3.=+F10.2, 17H T4 =+F10.2/) PRINT 102; (SIFR(L);L=1;7) 102 FORMAT(33H SOLAR FLUX DISTRIBUTION RATIOS/;7H F1 =;F6.3; 17H F2 =;F6.3;7H F3 =;F6.3;7H F4 =;F6.3;7H F5 =;F6.3; 27H F6 =;F6.3;7H F7 =;F6.3;7) 30 P(1)≃0. _____ D0 112 I=2,7 TT=1. D0 111 J=1+4 111 TT=TT*T(1) 112 P(I)=SIGMA*TT D0 211 J=1.7 D0 211 I=1.7 211 DUM(J,I)=-(1.-A(L))*F(I.J) D0 212 K=1.7 DUM (K, K) =1.+DUM (K, K) EPS(K)=E(K)*P(K)*S(K) 212 W(K) = SIFR(K)*WAIT(III) N=NXNSOL (7,7,DUM,W) IF (N-1) 22,22,20 20 PRINT 21 21 FORMAT(16H NO ANSWER FOR V) . STOP 22 00 202 [=1,7 202 V(I)=W(I) DO 300 J=1,7 PNN (J) =0. DO 300 I=1,7 300 PNN(J)=PNN(J)+F(I,J)*EPS(I) DO 301 J=1,7 DO 301 I=1,7 301 DUM(J,I) = -(1,-E(I))*F(I,J)DD 302 K=1.7 302 DUM(K+K)=1.+DUM(K+K) N=NXNSOL (7.7.DUM, PNN) IF (N-1)26,26,24 24 PRINT 25 25 FORMAT(16H NO ANSWER FOR H) \$10P 26 DO 303 I=1.7 303 H(I)=PNN(I) DO 400 I=1,7

8-64 \mathcal{F}

| ----

. . . .

ð

÷ [

i

0

Ę

54

400 Q(I) = E(I)*(H(I)-(S(I)*P(I)))+A(I)*V(L) ECE = Q(1)/(S(1)*P(3)) $\left[QC3 = \left(Q(3) + C53 * (T(5) - T(3)) \right) * 2 / \times N(1N) \right]$ TN5=T(5) laca = (a(4) + c64 * (T(6) - T(4))) * 2./XN(IN).1 49 TN55=TN5*TN5*TN5 U5=C53*(TN5+T(3))+S(5)*BB*SIGMA*TN5*TN55-Q(5) DU5=C53+4.*S(5)*BB*SIGMA*TN55 TN5=[N5-(U5/DU5) AB5 = ABSF (U5/DU5)-1. IF (AB5) 50,49,49 50 TN6=T(6) 52 IN66=TN6*FN6*TN6 U6=C64*(IN6-T(4))+S(6)*BB*SIGMA*TN6*TN66-Q(6) DU6=C64+4.*S(6)*B8*SIGMA*TN66 1N6 = TN6 - (U6/DU6)AB6 = ABSF(U6/DU6) - 1. IF (AB6) 51,52,52 51 T(5)=.5*(TN5+T(5)) $T(6) = .5^{\circ} (TN6 + T(6))$ A15=ABSF(T(5)-TN5) AT6=ABSF(T(6)-TN6) IF(AT6-1.)57,30,30 57 IF(AT5-1.)58,30,30 58 ABQ=ABSF((Q(3)-Q(4))/Q(3)) PRINT 105, (V(J), J=1,7), (H(J), J=1,7) 105 FURMAT(7H V =,7E13.5/,7H H =,7E13.5//) PRINT 106,Q(1),ECE,Q(2),Q(7),Q(3),Q(4) FORMAT(32H HEAT RADIATED BY THE CAVITY =,F10.3// 106 FORMAT(32H X33H EQUIVALENT_CAVITY EMISSIVITY =, F8.5// 39H HEAT ABS 10RBED BY REAR CAVITY PIECE =, F10.3// 38H HEAT ABSORBED BY FRONT 2 CONE PIECE =, F10.3//, 42H NET HEAT RECEIVED BY FRONT CONVERTER 35 =,F10.3//41H NET HEAT RECEIVED BY REAR CONVERTERS =, F10.3//) PRINT 107; ABQ; T(5); T(6) 107 FURMAT(32H HEAT DISTRIBUTION IMBALANCE =, F8.5//, 33H FRONT SH IOE PIECE TEMPERATURE =+F10+3// 32H REAR SHOE PIECE TEMPERATURE 2=,F10.3) CONTINUE 60 REWIND 1 6 CONTINUE FOLDOU? FRAME REWIND 4 NPR=1 197 PRINT 108 108 FORMAT(1H1) NP = 1198 READ INPUT TAPE 4,4,XX ,BET,ALF,AA,B,C,Z8,R8,R9,Z18 PRINT 40,XX, BET,ALF,AA,B,C PRINT 41,DC,Z8,88,89,218 PRINT 42 40 FORMAT(/,4H N =,F10,5,8H <u>BEI =,F10,5,8H</u> <u>ALE =,F10,5,</u> 16H A =,F10,5,6H B =,F10,5,6H C =,F10,5,7) 41 FORMAT(7H D(C) =,F10,5,7H Z8 =,F10,5,7H R8 =,F10,5,... ALE_=_E10.5. 17H R9 = F10.5.8H Z18 =,F10.5,/) 42 FORMAT (40X, 18HVIEW FACTOR MATRIX, /) D0 199 1=1,7 _____ 55 FORMAT (9F13.5,/) 199 CONTINUE IF (NPR-NNC) 200, 210, 210 ----200 NPR=NPR+1 IF(NP-2)201,197,197 - pe an contentar and the many survey and the second se 201 NP=NP+1 GO TO 198 210 CONTINUE STOP END 3200 FORTRAN DIAGNOSTIC RESULTS - FOR THERMO and the second second second second second second second second second second second second second second second سب مسر ، د -----

NO ERRORS

CTO→ MOUNT SCRATCH TAPE ON LU 3 EQUIP,01=MTC0E0U02 EQUIP,04=MTC0E0U03 LOAD,56 RUN,10

SUBP							· · ·-			<u> </u>	
24521	Q8QERROR	24777	ABSF	25013	SQRTF	25124	ATANF	25265	SINCOS	25574	Q8QOUTT8.
25575	CONTROL	26333	TAPEHAND	26521	FORMAT	27062	8CDOUT	30613	BCDINP	31607	NXNSOL
32473	THERMO								-		
ENTR										1	
24777	XABSF	24777	IABS	24777	ABS	25013	SQRT	25124	ATAN	25265	cos
25276	SIN	25714	Q8QARRAY	25674	QBQIOTAB	25575	OBQENTRY	26422	QBQENEIL	. 26335.4	Q80BACKS
25574	Q8QOUT T B	26257	PWRTBL	Z7163	QBQLGOTC	27163	Q8QLG0TI	26521	QBQIFRMT	26552)	Q8QFORMT
25650	_Q80IOSET	25630	QBOSENSE		Q80EDIJS	24521	Q8QERROR	26255	PWBTELO	25752 j	Q8QIOERR
30712	Q8QLGINC	25624	Q8QEXITS	27632	Q8QENG0T	27170	QBQLGOTR	27062	QBQINGOT	30716	QBQLGINR
31265	QBQENGIN	30712	Q8QLGINI	30613	QBQINGIN	26432	Q8QREWND	24777	ABSF	32026)	NXNSOL .
25013	SORTF	25124	ATANF	25265	COSF	25276	SINF	34702	THERMO	02320	FDPBOXS
00745	SEL	02433	UST	02473	CST	00060	CIT	02544	RHT		AET
02705	RDCKSUM	02610	RDCKF1	00107	CI0	02756	START2	03242	LOADER	02564	ACCOUNTS
02606	MEMORY	05350	ABNORMAL								

COMM

NONE

DATA

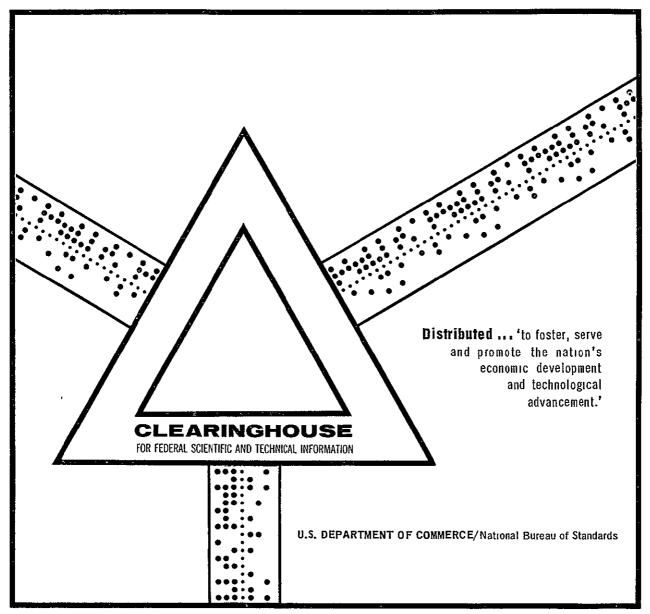
NONE

EXTA

NONE

18-5 B

.


18-5 A

N69-35512

DESIGN AND FABRICATION OF ADVANCED THERMIONIC CONVERTERS

imo L'actron Corporation

November 1968

This document has been approved for public release and sale.

1

CALCULATION OF MIRROR PERFORMANCE

THERMO ELECTRON

CALCULATION OF MIRROR PERFORMANCE

Mirror Diameter, ft	9.5	11.5
Projected Area, sq. ft.	70.88	103.86
Shadow Factor	. 02	.05
Projected Shadow Area, sq. ft.	1.42	5.19
Useful Projected Area, sq. ft.	69.46	98.67
Solar Constant, watts/sq. ft.	130	90
Incident Energy, watts	9040	8900
Reflectivity	. 89	.88
Reflected Energy, watts	8040	7830
Window Transmissivity	-	. 89
Window Loss, watts	-	860
Energy at Focal Plane, watts	8040	6970
Focal Plane Energy Distribution:		

JM-5 ft. M	irror	9.5	ft	11.5	ft.
Aperture Dıa. in.	Efficiency	Aperture	Q	Aperture	Q
0.10	0.18	0.19	1650	0.23	1430
0.20	0.40	0.38	3660	0.46	3170
0.30	0.66	0.57	6030	0.69	5220
0.40	0.78	0.76	7130	0.92	6170
0.50	0.83	0.95	7580	1.15	6570
0.70	0.85	1.33	7770	1.61	6730
0.90	0.865	1.71	7910	2.07	6850
ω	0.88	œ	8040	ω	6970

COMPUTED CAVITY PERFORMANCE

Nomenclature

- CA Cavity Aperture Diameter, inches
- EC Equivalent Cavity Emissivity

ECTRON

N Number of Converters

тнер

- Q1 Heat Radiated by the Cavity, watts
- Q2 Heat Absorbed by Rear Cavity Piece, watts
- Q3 Heat Absorbed by Front Converters, watts
- Q4 Heat Absorbed by Rear Converters, watts
- Q7 Heat Absorbed by Front Cone Piece, watts
- T Converter Temperature, °K
- T5 Shoe Piece Temperature, Front Converters
- T6 Shoe Piece Temperature, Rear Converters
- W Total Solar Input, watts

NOTE: All computed cases had the following common inputs.

$\mathbf{F1} = 0$	F2 = .118	F3 = .415
F4 = .272	F5 = .118	F6 = .077
$\mathbf{F7} = 0$		
A1 = 1.000	A2 = .500	A5 = .500
A6 = .500	A7 = .500	
E1 = 1.000	E2 = .250	E5 = 250
E6 = .250	E7 = .250	

CARPORATION

CA = 1.4 W = 6700CA = 1.4 W = 6700N = 14T = 2000T = 2000N = 14A3 = 0.50 A4 = 0.75A3 = 0.50A4 = 0.50E3 = 0.25 E4 = 0.40E3 = 0.25 E4 = 0.25EC = 1.466EC = . 1.615Q1 = 1323 Q1 = 1458Q2 = 615Q2 = 721ČQ3 = 313 ⋅ _ Q3 = 341Q4 = 263 Q4 = 328Q7 = 125Q7 = 145T5 = 2077T5 = 2084T6 = 2055T6 = 2063CA = 1.4 W = 6700 W = 6700CA = 1.4N = 14 T = 2000T = 2000N = 14A3 = 0.50 A4 = 0.875A3 = 0.75 A4 = 0.50E3 = 0.25 E4 = 0.563E3 = 0.40 E4 = 0.25EC = 1.423EC = 1.385 Q1 = 1284Q1 = 1250Q2 = 576Q2 = 607Q3 = 303Q3 = 427Q4 = 351Q4 = 227Q7 = 118Q7 = 115T5 = 2074T5 = 2075T6 = 2053T6 = 2053

CORPORATION

TRON

CA = 1.4 W = 6700 CA = 1.4 W = 6700 N = 14 T = 2000N = 14 T = 2000A3 = 0.75 A4 = 0.75A3 = 0.75 A4 = 0.875E3 = 0.40 E4 = 0.40E3 = 0.40 E4 = 0.563EC= 1.271 EC = 1.238Q1 = 1147Q1 = 1117Q2 = 523Q2 = 491Q3 = 387 Q3 = 398Q4 = 288Q4 = 309Q7 = 95 Q7 = 100T5 = 2068T5 = 2069T6 = 2049T6 = 2046CA = 1.4 W = 6700 CA = 1.4 W = 6700 N = 14 T = 2000N = 14 T = 2000 $A3 = 0.875 \quad A4 = 0.50$ A3 = 0.875 A4 = 0.75E3 = 0.563 E4 = 0.40E3 = 0.563 E4 = 0.25EC= 1.310 EC = 1.208Q1 = 1182Q1 = 1088Q2 = 564Q2 = 487Q3 = 429Q3 = 459Q4 = 214Q4 = 272Q7 = 104Q7 = 91 T5 = 2071T5 = 2087T6 = 2050T6 = 2045

.

CORPORATION

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CA = 1.4 $W = 6700$	CA = W =
E3 = 0.563 $E4 = 0.563$ $E3 = E4 =$ $EC = 1.174$ $Q1 = 1060$ $Q1 =$ $Q1 = 1060$ $Q2 =$ $Q1 =$ $Q2 = 457$ $Q2 =$ $Q1 =$ $Q3 = 418$ $Q3 =$ $Q4 =$ $Q4 = 292$ $Q4 =$ $Q7 =$ $Q7 = 86$ $Q7 =$ $T5 =$ $T5 = 2065$ $T5 =$ $T6 =$ $CA =$ $W =$ $N =$ $T =$ $N =$ $T =$ $N =$ $T =$ $A3 =$ $A4 =$ $A3 =$ $A4 =$ $E3 =$ $E4 =$ $E3 =$ $E4 =$ $Q2 =$ $Q2 =$ $Q2 =$ $Q2 =$ $Q2 =$ $Q2 =$ $Q2 =$ $Q2 =$ $Q2 =$ $Q2 =$ $Q2 =$ $Q2 =$ $Q2 =$ $Q2 =$ $Q2 =$ $Q2 =$ $Q3 =$ $Q3 =$ $Q3 =$ $Q3 =$	N = 14 $T = 2000$	N = T =
$EC = 1.174 \qquad EC = Q1 = 1060 \qquad Q1 = Q2 = 457 \qquad Q2 = Q3 = 418 \qquad Q3 = Q4 = 292 \qquad Q4 = Q7 = 86 \qquad Q7 = T5 = 2065 \qquad T5 = T6 = 2043 \qquad T6 = CA = W = N = T = N = T = A3 = A4 = E3 = E4 = EC = Q1 = Q2 = Q3 = Q3 = CA = W = CA = W = CA = W = CA = W = CA = W = CA = W = CA = W = CA = W = CA = W = CA = W = CA = W = CA = W = CA = W = CA = W = CA = W = CA = W = CA = W = CA = W = CA = W = CA = CA = W = CA = CA = W = CA = CA = CA = CA = CA = CA = CA = CA = $	A3 = 0.875 A4 = 0.875	A3 = A4 =
Q1 = 1060 $Q1 =$ $Q2 = 457$ $Q2 =$ $Q3 = 418$ $Q3 =$ $Q4 = 292$ $Q4 =$ $Q7 = 86$ $Q7 =$ $T5 = 2065$ $T5 =$ $T6 = 2043$ $T6 =$ $CA =$ $W =$ $N =$ $T =$ $A3 =$ $A4 =$ $P3 =$ $E4 =$ $P3 =$ $E4 =$ $P3 =$ $E4 =$ $P3 =$ $P4 =$ $Q2 =$ $Q2 =$ $Q3 =$ $Q2 =$	E3 = 0.563 E4 = 0.563	E3 = E4 =
Q2 = 457 $Q2 =$ $Q3 = 418$ $Q3 =$ $Q4 = 292$ $Q4 =$ $Q7 = 86$ $Q7 =$ $T5 = 2065$ $T5 =$ $T6 = 2043$ $T6 =$ $CA =$ $W =$ $N =$ $T =$ $A3 =$ $A4 =$ $B3 =$ $A4 =$ $E3 =$ $E4 =$ $EC =$ $Q1 =$ $Q1 =$ $Q2 =$ $Q3 =$ $Q3 =$	EC = 1.174	· EC≈
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q1 = 1060	Q1 =
Q4 = 292 $Q4 =$ $Q7 = 86$ $Q7 =$ $T5 = 2065$ $T5 =$ $T6 = 2043$ $T6 =$ $CA =$ $W =$ $N =$ $T =$ $N =$ $T =$ $A3 =$ $A4 =$ $E3 =$ $E4 =$ $E2 =$ $Q1 =$ $Q2 =$ $Q2 =$ $Q3 =$ $Q3 =$	Q2 = 457	Q2 =
Q7 = 86 T5 = 2065 T6 = 2043 CA = W = N = T = A3 = A4 = E3 = E4 = Q1 = Q2 = Q3 = Q7 = T5 = T6 = CA = W = N = T = N = T = A3 = A4 = E3 = E4 = Q1 = Q2 = Q3 = Q3 = Q7 = T5 = T6 = T7 = T6 = T7 = T6 = T6 = T6 = T6 = T6 = T6 = T6 = T6 = T7 = T6 = T7 = T6 = T7 = T6 = T7 = T6 = T7 = T7 = T6 = T7 = T6 = T7 = T6 = T7 = T7 = T7 = T7 = T7 = T6 = T7 =	Q3 = 418	Q3 =
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Q4 = 292	Q4 =
T6 = 2043 T6 = $CA =$ $W =$ $CA =$ $W =$ $N =$ $T =$ $N =$ $T =$ $A3 =$ $A4 =$ $A3 =$ $A4 =$ $E3 =$ $E4 =$ $E3 =$ $E4 =$ $EC =$ $Q1 =$ $Q1 =$ $Q2 =$ $Q2 =$ $Q3 =$ $Q3 =$ $Q3 =$	Q7 = 86	Q7 =
CA = W = CA = W = $N = T =$ $A3 = A4 =$ $E3 = E4 =$ $EC =$ $Q1 =$ $Q2 =$ $Q3 =$ $Q3 =$ $CA = W =$ $N = T =$ $A3 = A4 =$ $E3 = E4 =$ $EC =$ $Q1 =$ $Q2 =$ $Q3 =$	T5 ≈ 2065	T5 =
N = T = N = T = $A3 = A4 = A3 = A4 =$ $E3 = E4 =$ $EC = E1 = E4 =$ $Q1 = Q1 =$ $Q2 = Q2 =$ $Q3 =$ $Q3 =$	T6 ≈ 2043	T6 =
N = T = N = T = $A3 = A4 = A3 = A4 =$ $E3 = E4 =$ $EC = E1 = E4 =$ $Q1 = Q1 =$ $Q2 = Q2 =$ $Q3 =$ $Q3 =$	······································	· · · · · · · · · · · · · · · · · · ·
A3 = $A4 =$ $E3 =$ $E4 =$ $EC =$ $E3 =$ $Q1 =$ $Q1 =$ $Q2 =$ $Q2 =$ $Q3 =$ $Q3 =$	CA = W =	CA = W =
E3 = E4 = E3 = E4 = EC = EC = Q1 = Q1 = Q2 = Q2 = Q3 = Q3 =	N = T =	N = T =
EC = EC = Q1 = Q1 = Q2 = Q2 = Q3 = Q3 = Q3 = Q3 = Q3 = Q3	A3 = A4 =	A3 = A4 =
Q1 = Q1 = Q2 = Q2 = Q3 = Q3 = Q3 = Q3 = Q3 = Q3	E3 = E4 =	E3 = E4 =
Q2 = Q2 = Q3 = Q3 =	EC ≈	EC =
Q3 = Q3 =	Q1 ≈	Q1 =
	Q2 =	Q2 =
Q4 = Q4 =	Q3 =	Q3 =
	Q4 =	Q4 =
Q7 = Q7 =	Q7 =	Q7 =
T5 = T5 =	T5 =	T5 =
	T6 =	T6 =

 $CA = .7 \quad W = 5300$ $CA = .7 \quad W = 5300$ N = 10 T = 2000N = 10 T = 2000A3 = 0.605 A4 = 0.875A3 = 0.50A4 = 0.700 E3 = 0.25 E4 = 0.365E3 = 0.310 E4 = 0.563EC = 1.835EC = 1.581Q1 = 414Q1 = 356Q2 = .239Q2 = 304Q3 = 454Q3 = 478Q4 = 398Q4 = 408Q7 = 207Q7 = 166T5 = 2119T5 = 2106T6 = 2064T6 = 2076 $CA = .7 \quad W = 7350$ CA = ...'7 W = 7350 N = 10 T = 2000N = 10 T = 2000A3 = 0.50 A4 = 0.700E3 = 0.25 E4 = 0.365

THERI

CTRON

A3 = 0.605 A4 = 0.875E3 = 0.310 E4 = 0.563EC=, 2.229 EC = 1.861Q1 = 419Q1 = 502Q2 = 430Q2 = 338Q3 = 641Q3 = 674Q4 = 565Q4 = 579 Q7 = 265Q7 = 207T5 = 2171T5 = 2154T6 = 2094T6 = 2112

CORPORATION

CA= .8 W = 5850
N = 10 $T = 2000$
A3 = .605 A4 = .875
A4 = .310 A4 = .563
EC = 1.657
Q1 = 488
Q2 = 261
Q3 = 525
Q4 = 447
Q7 = 127
T5 = 2118
T6 = 2071
CA = .8 W = 7500
N = 10 $T = 2000$
A3 = .605 A4 = .875
E3 = .310 E4 = .563
EC = 1.885
Q1 = 555
Q2 = 341
Q2 = 341 Q3 = 682
Q3 = 682
Q3 = 682 Q4 = 585
Q3 = 682 Q4 = 585 Q7 = 152

CORPORATION

CA = .9 W = 6150W = 6150CA = .9T = 2000N = 10T = 2000N = 10A3 = .605 A4 = .875 A3 = .50A4 = .700E3 = .310 E4 = . 563 E4 = .365 E3 = .25EC = 1.696EC = .1.989Q1 = 632Q1 = 741Q2 = 270Q2 = 342Q3 = 547Q3 = 518Q4 = 465Q4 = 453Q7 = 75 Q7 = 94T5 = 2123T5 = 2137T6 = 2074T6 = 2088. CA = 0.9W = 7600 CA = .9W = 7600 N = 10T = 2000T = 2000N = 10A3 = .605 A4 = .875 A3 = .50A4 = .700 $E3 = .310 \quad E4 = .563$ E4 = .365 E3 = .25 EC = 1.898EC = 2.273 Q1 = .708Q1 = 847Q2 = 340Q2 = 430Q3 = 685Q3 = 649Q4 = 585 Q4 = 569Q7 = 87 Q7 = 111T5 = 2156T5 = 2174T6 = 2095T6 = 2113

ERMO ELECTRO

CA = 1.0 W = 6400CA = 1.0 W = 6400N = 10 T = 2000N = 10 T = 2000A3 = .50 A4 = .700A3 = .605 A4 = .875 E3 = .25 E4 = .365E3 = .310 E4 = .563EC = 1.724EC = 2.025 Q1 = 793 Q1 = 932Q2 = 276Q2 = 349Q3 = 564Q3 = 532Q4 = 477Q4 = 464Q7 = 14Q7 = 17 T5 = 2127T5 = 2141T6 = 2076T6 = 2091CA = 1.0 W = 7650CA = 1.0 W = 7650N = 10 T = 2000N = 10T = 2000A3 = .50 A4 = .700A3 = .605 A4 = .875 E3 = .310 E4 = .563E3 = .25 E4 = .365EC = 2.271 EC = 1.900 Q1 = 874Q1 = 1046Q2 = 424Q2 = 335Q3 = 682Q3 = 644Q4 = 564Q4 = 580Q7 = 15Q7 = 20T5 = 2172T5 = 2156T6 = 2095T6 = 2112

CORPORATION

11

CA = .8 W = 5850	CA = .8 $W = 5850$
N = 12 $T = 2000$	N = 12 $T = 2000$
A3 = .50 A4 = .700	A3 = .605 A4 = .875
E3 = .25 $E4 = .365$	E3 = .310 E4 = .563
EC = 1.641	EC= 1.441
Q1 = 483	Q1 = 424
Q2 = 477	Q2 = 391
Q3 = 379	Q3 = 400
Q4 = 359	Q4 = 372
Q7 = 334	Q7 = 272
T5 = 2096	T5 = 2086
TT(20//	T6 = 2056
T6 = 2066	_
16 = 2066	_
CA = .8 W = 7500	CA = .8 W = 7500
CA = .8 $W = 7500N = 12 T = 2000$	CA = .8 $W = 7500N = 12$ $T = 2000$
$CA = .8 \qquad W = 7500$ $N = 12 \qquad T = 2000$ $A3 = .50 \qquad A4 = .700$	CA = .8 $W = 7500N = 12$ $T = 2000A3 = .605$ $A4 = .875$
CA = .8 $W = 7500N = 12$ $T = 2000$	CA = .8 $W = 7500N = 12$ $T = 2000$
$CA = .8 \qquad W = 7500$ $N = 12 \qquad T = 2000$ $A3 = .50 \qquad A4 = .700$	$CA = .8 \qquad W = 7500$ $N = 12 \qquad T = 2000$ $A3 = .605 \qquad A4 = .875$
$CA = .8 \qquad W = 7500$ $N = 12 \qquad T = 2000$ $A3 = .50 \qquad A4 = .700$ $E3 = .25 \qquad E4 = .365$	$CA = .8 \qquad W = 7500$ $N = 12 \qquad T = 2000$ $A3 = .605 \qquad A4 = .875$ $E3 = .310 \qquad E4 = .563$
$CA = .8 \qquad W = 7500$ $N = 12 \qquad T = 2000$ $A3 = .50 \qquad A4 = .700$ $E3 = .25 \qquad E4 = .365$ $EC = 1.879$	$CA = .8 \qquad W = 7500$ $N = 12 \qquad T = 2000$ $A3 = .605 \qquad A4 = .875$ $E3 = .310 \qquad E4 = .563$ $EC = 1.610$
$CA = .8 \qquad W = 7500$ $N = 12 \qquad T = 2000$ $A3 = .50 \qquad A4 = .700$ $E3 = .25 \qquad E4 = .365$ $EC = 1.879$ $Q1 = 553$	$CA = .8 \qquad W = 7500$ $N = 12 \qquad T = 2000$ $A3 = .605 \qquad A4 = .875$ $E3 = .310 \qquad E4 = .563$ $EC = 1.610$ $Q1 = 474$
$CA = .8 \qquad W = 7500$ $N = 12 \qquad T = 2000$ $A3 = .50 \qquad A4 = .700$ $E3 = .25 \qquad E4 = .365$ $EC = 1.879$ $Q1 = 553$ $Q2 = 624$	$CA = .8 \qquad W = 7500$ $N = 12 \qquad T = 2000$ $A3 = .605 \qquad A4 = .875$ $E3 = .310 \qquad E4 = .563$ $EC = 1.610$ $Q1 = 474$ $Q2 = 511$
$CA = .8 \qquad W = 7500$ $N = 12 \qquad T = 2000$ $A3 = .50 \qquad A4 = .700$ $E3 = .25 \qquad E4 = .365$ $EC = 1.879$ $Q1 = 553$ $Q2 = 624$ $Q3 = 495$	$CA = .8 \qquad W = 7500$ $N = 12 \qquad T = 2000$ $A3 = .605 \qquad A4 = .875$ $E3 = .310 \qquad E4 = .563$ $EC = 1.610$ $Q1 = 474$ $Q2 = 511$ $Q3 = 522$
$CA = .8 \qquad W = 7500$ $N = 12 \qquad T = 2000$ $A3 = .50 \qquad A4 = .700$ $E3 = .25 \qquad E4 = .365$ $EC = 1.879$ $Q1 = 553$ $Q2 = 624$ $Q3 = 495$ $Q4 = 470$	$CA = .8 \qquad W = 7500$ $N = 12 \qquad T = 2000$ $A3 = .605 \qquad A4 = .875$ $E3 = .310 \qquad E4 = .563$ $EC = 1.610$ $Q1 = 474$ $Q2 = 511$ $Q3 = 522$ $Q4 = 489$
$CA = .8 \qquad W = 7500$ $N = 12 \qquad T = 2000$ $A3 = .50 \qquad A4 = .700$ $E3 = .25 \qquad E4 = .365$ $EC = 1.879$ $Q1 = 553$ $Q2 = 624$ $Q3 = 495$ $Q4 = 470$ $Q7 = 399$	$CA = .8 \qquad W = 7500$ $N = 12 \qquad T = 2000$ $A3 = .605 \qquad A4 = .875$ $E3 = .310 \qquad E4 = .563$ $EC = 1.610$ $Q1 = 474$ $Q2 = 511$ $Q3 = 522$ $Q4 = 489$ $Q7 = 319$

CORPORATION

έĒ

			-			
CA = .9	W = 6	150	CA =	• 9	. W = 6	150
N = 12	T = 2	000	N = 1,	2	T = 2	000
A3 = .50	A4 =	.700	A3 =	.605	A4 =	.875
E3 = .25	E4 =	.365	E3 =	.310	E4 =	• 563 [:]
EC=	1.600			EC=	1.470	
Q1 =	626			Q1 =	548	
Q2 =	496			Q2 =	407	
Q3 =	395			Q3 =	418	
Q4 =	373			Q4 =	388	
Q7 =	284			Q7 =	231	_
T5 = 2	100		1	T5 =	2090	:
T6 = 2	069			т6 =	2059	
CA = .9	W = 7	600	CA =	• 9	W = 7	600
N = 12	T = 2	000	N = 1	2	T = 2	000
A3 = .50	A4 =	.700	A3 =	.605	A4 =	.875
E3 = .25	E4 =	.365	E3 =	.310	E4 =	. 563
EC=	1.891			EC =	1.620	
Q1 =	709			Q1 =	684	
Q2 =	624			Q2 =	512	
Q3 =	497			Q3 =	525	
Q4 =	471			Q4 =	490	
Q7 =		Q7 =	265			
T5 = 2		T5 =	2115			
T6 = 2	090		, ,	T6 =	2077	

CORPORATION ,

CA = 1.0 $W = 6400$	CA = 1.0 W = 6400				
N = 12 $T = 2000$	N = 12 $T = 2000$				
A3 = .50 $A4 = .700$	A3 = .605 $A4 = .875$				
E3 = .25 $E4 = .365$	E3 = .310 $E4 = .563$				
L3 = .25 $L4 = .305$	$E_{3} = .510 E_{4} = .503$				
EC = 1.709	EC = 1.493				
Q1 = 785	Q1 = 687				
Q2 = 508	Q2 = 418				
Q3 = 407	Q3 = 432				
Q4 = 384	Q4 = 399				
Q7 = 223	Q7 = 182				
T5 = 2104	T5 = 2093				
T6 = 2072	T6 = 2061				
CA = 1.0 $W = 7650$	CA = 1.0 $W = 7650$				
N = 12 $T = 2000$	N = 12 $T = 2000$				
A3 = .50 $A4 = .700$	A3 = .605 A4 = .875				
E3 =25 $E4 =365$	E3 = .310 E4 = .563				
EC = 1.892	EC = 1.623				
Q1 = 871	Q1 = 747				
Q2 = 618	Q2 = 508				
Q3 = 494	Q3 = 523				
Q4 = 487	Q4 = 487				
Q7 = 255	Q7 = 204				
	T5 = 2115				
T5 = 2127	T5 = 2115				
T5 = 2127 T6 = 2089	T5 = 2115 $\dot{T}6 = 2076$				

.

W = 6550CA = 1.1 W = 6550CA = 1.1N = 12 N = 12 T = 2000T = 2000A3 = .50 A4 = .700 A3 = .605A4 = .875 E4 =E3 = .25 E4 = .365E3 = .310.563 EC = 1.502EC= 1.719 Q1 = 836Q1 = 958Q2 = 421Q2 = 511Q3 = 434Q3 = 412Q4 = 403Q4 = 347Q7 = 123Q7 = 152T5 = 2095T5 = 2105T6 = 2062T6 = 2072CA = 1.1W = 7700CA = 1.1W = 7700T = 2000N = 12 T = 2000N = 12A3 = .605 A4 = .875 A4 = .700 A3 = .50E3 = .310 E4 = .563 E3 = .25 E4 = .365 EC = 1.889 EC = 1.623Q1 = 904Q1 = 1052Q2 = 503Q2 = 611Q3 = 521Q3 = 491Q4 = 464Q4 = 483Q7 = 172Q7 = 137T5 = 2127T5 = 2114T6 = 2088T6 = 2076

CA =	. 8	W = 58	50	CA =	. 8	W = 58	50				
N = 1	14	T = 20	00	N = 14 $T = 2000$							
A3 =	.50	A4 =	.700	A3 =	.605	A4 =	.875				
E3 =	.25	E4 =	. 365	E3 =	.310	E4 =	. 563				
	EC =	1.449			EC=	1.304					
	Q1 = 4	27			Q1 = 3	84					
	Q2 = 6	09			Q2 = 5	512					
	Q3 = 2	97			Q3 = 3	315					
	Q4 = 2	99			Q4 = 3	814					
	Q7 = 4	.98			Q7 = 4	£17					
	T5 = 20	73			T5 = 20)66					
	т6 = 20	53		T6 = 2046							
CA =	.8	W = 75	500	CA = .8 W = 7500							
N =	14	T = 20	000	N = 1	14	T = 20	00				
A3 =	. 50	A4 =	.700	A3 =	.605	A4 =	.875				
E3 =	.25	E4 =	. 365	E3 =	.310	E4 =	.563				
	EC=	1.635			EC=	1.436					
- -	Q1 = 4	81			Q1 = 4	£23					
	Q2 = 7	'99			Q2 = 6	671					
	Q3 = 3	89			Q3 = 4	412					
	Q4 = 3	94			Q4 = 4	414					
	Q7 = 5	88			Q7 = 4	481.					
	T5 = 20	97			T5 = 20	88					
: :	T6 = 20)73			T6 = 20	063					
§1											

¥

W = 6400CA = 1.0₩ = 6400 CA = 1.0N = 14T = 2000N = 14T = 2000A3 = .605 A4 = .875A4 = .700 A3 = .50E4 = .365 E3 = .310 E4 = .563E3 = .25EC = 1.504EC = 1.345Q1 = 819Q1 = 892Q2 = 550Q2 = 652Q3 = 340Q3 = 321Q4 = 338Q4 = 322Q7 = 411Q7 = 341T5 = 2079T5 = 2070T6 = 2058T6 = 2050W = 7650 CA = 1.0 W = 7650CA = 1.0T = 2000N = 14T = 2000 N = 14 A3 = .605A3 = .50A4 = .700A4 = .875 E3 = .25E4 = .365 E3 = .310E4 = , 563 EC = 1.647EC = 1.447 Q1 = 666Q1 = 758Q2 = 795 Q2 = 669Q3 = 413Q3 = 398Q4 = 393Q4 = 413Q7 = 465Q7 = 380T5 = 2098T5 = 2088T6 = 2073T6 = 2063

CA = 1.2 $W = 6600$	CA = 1.2 $W = 6600$						
N = 14 $T = 2000$	N = 14 $T = 2000$						
A3 = .50 A4 = .700	A3 = .605 A4 = .875						
E3 = .25 $E4 = .365$	E3 = .310 E4 = .563						
EC = 1.509	EC= 1.351						
Q1 = 1000	Q1 = 895						
Q2 = 651	Q2 = 551						
Q3 = 323	Q3 = 344						
Q4 = 323	Q4 = 339						
Q7 = 280	Q7 = 233						
T5 = 2040	T5 = 2072						
T6 = 2058 \	T6 = 2050						
CA = 1.2 $W = 7750$	CA = 1.2 W = 7750						
N = 14 $T = 2000$	N = 14 $T = 2000$						
A3 = .50 A4 = .700	A3 = .605 A4 = .875						
E3 = .25 E4 = .365	E3 = .310 $E4 = .563$						
EC = 1.642	EC = 1.446						
Q1 = 1088	Q1 = 959						
Q2 = 780	Q2 = 659						
Q3 = 388	$\cdot Q3 = 411$						
Q4 = 388	Q4 = 408						
Q7 = 314	Q7 = 257						
T5 = 2097	T5 = 2087						
T6 = 2071	T6 = 2062						

	· · · · · · · · · · · · · · · · · · ·						
CA = 1.4 $W = 6700$	CA = 1.4 $W = 6700$						
N = 14 $T = 2000$	N = 14. $T = 2000$						
A3 = .50 $A4 = .700$	A3 = .605 A4 = .875						
E3 = .25 $E4 = .365$	E3 = .310 $E4 = .563$						
EC= 1.494	EC = 1.341						
Q1 = 1348	Q1 = 1210						
Q2 = 635	Q2 = 538						
Q3 = 319	Q3 = 340						
Q4 = 317	Q4 = 332						
Q7 = 125	Q7 = 104						
T5 = 2078	T5 = 2071						
т6 = 2057	T6 = 2050						
CA = 1.4 $W = 7800$	CA = 1.4 $W = 7800$						
N = 14 $T = 2000$	N = 14 $T = 2000$						
A3 = .50 A4 = .700	A3 = .605 A4 = .875						
E3 = .25 $E4 = .365$	E3 = .310 $E4 = .563$						
EC= 1,622	EC= 1.433						
Q1 = 1463	Q1 = 1293						
Q2 = 756	Q2 = 641						
Q3 = 378	Q3 = 403						
Q4 = 378	Q4 = 397						
Q7 = 140	Q7 = 114						
T5 = 2095	T5 = 2085						
T6 = 2069	T6 = 2060						

.

CA = 1.2 $W = 6600$	CA = 1.2 $W = 6600$							
N = 16 $T = 2000$	N = 16 · T = 2000							
A3 = .50 A4 = .700	A3 = .605 A4 = .875							
E3 = .25 $E4 = .365$	E3 = .310 E4 = .563							
EC= 1.367	EC = 1.249							
Q1 = 906	Q1 = 828							
Q2 = 782	Q2 = 673							
Q3 = 261	Q3 = 278							
Q4 = 275	Q4 = 290							
Q7 = 475	Q7 = 404							
T5 = 2063	T5 = 2057							
T6 = 2048	T6 = 2043							
$C_{A} = 1.2$ $W = 7770$								
CA = 1.2 $W = 7750$	CA = 1.2 $W = 7750$							
N = 16 $T = 2000$	N = 16 $T = 2000$							
A3 = .50 A4 = .700	A3 = .605 A4 = .875							
E3 = .25 $E4 = .365$	E3 = .310 E4 = .563							
EC= 1.475	EC= 1.327							
Q1 = 977	Q1 = 880							
Q2 = 939	Q2 = 807							
Q3 = 312	Q3 = 333							
Q4 = 330	Q4 = 350							
Q7 = 528	Q7 = 442							
T5 = 2076	T5 = 2069							
T5 = 2076 T6 = 2059	T5 = 2069 T6 = 2052							

CA = 1.4 $W = 6700$ $CA = 1.4$								
	CA = 1.4 W = 6700							
N = 16 $T = 2000$ $N = 16$	N = 16 $T = 2000$							
A3 = .50 A4 = .700 A3 = .605	A4 = .875	5						
E3 = .25 $E4 = .365$ $E3 = .310$	E4 = .563	3						
EC = 1.356 EC =	EC = 1.242							
Q1 = 1223 Q1 = 11	121							
Q2 = 766 $Q2 = 6$	660							
Q3 = 258 Q3 = 2	276							
Q4 = 270 $Q4 = 2$	285							
Q7 = 334 Q7 = 2	284							
T5 = 2062 T5 = 20	056							
T6 = 2047 T6 = 20	T6 = 2042							
								
CA = 1.4 W = 7800 CA = 1.4	CA = 1.4 $W = 7800$							
N = 16 $T = 2000$ $N = 14$	N = 14 $T = 2000$							
A3 = .50 A4 = .700 A3 = .605	A4 = .875	5						
E3 = .25 $E4 = .365$ $E3 = .310$	E4 = .563	3						
EC = 1.460 EC =	1.318							
Q1 = 1317 Q1 = 11	189							
Q2 = 914 Q2 = 7	788							
	Q3 = 328							
Q3 = 306 Q3 = 3	Q4 = 341							
-								
	341							
Q4 = 323 Q4 = 3	341 310							
Q4 = 323 $Q4 = 3Q7 = 370$ $Q7 = 3$	341 310 069							

GA = 1.6W = 6750CA = 1.6 W = 6750N = 16 T = 2000N = 16 T = 2000A3 = .605 A4 = .875 A3 = .50 A4 = .700 E4 = .365E3 = .25E3 = .310 E4 = .563 EC = 1.334 EC = 1,227 Q1 = 1572Q1 = 1446Q2 = 739Q2' = 639Q3 = 252Q3 = 270Q4 = 262Q4 = 276Q7 = 176Q7 = 150T5 = 2060T5 = 2055T6 = 2046T6 = 2040CA = 1.6W = 7850 CA = 1.6 W = 7850T = 2000N = 16 N = 16T = 2000A3 = .605A3 = .50 A4 = .700 A4 = .875 E3 = .310 E3 = .25E4 = .365 E4 = . 563 EC = 1.438 EC = 1.303Q1 = 1695 $\cdot Q1 = 1536$ Q2 = 885Q2 = 765Q3 = 300Q3 = 322Q4 = 314Q4 = 332Q7 = 195Q7 = 164T5 = 2073T5 = 2067T6 = 2056T6 = 2050

CA = 1.8 W = 6800	CA = 1.8 $W = 6800$						
N = 16 $T = 2000$.	N = 16 $T = 2000$						
A3 = .50 A4 = .700	A3 = .605 A4 = .875						
E3 = .25 E4 = .365	E3 = .310 $E4 = .563$						
EC = 1.307	EC = 1.207						
Q1 = 1950	Q1 = 1801						
Q2 = 709	Q2 = 616						
Q3 = 245	Q3 = 264						
Q4 = 253	Q4 = 266						
Q7 = 6	Q7 = 5						
T5 = 2059	T5 = 2054						
T6 = 2044	T6 = 2039						
CA = 1.8 $W = 7900$	CA = 1.8 $W = 7900$						
N = 16 $T = 2000$	N = 16 $T = 2000$						
A3 = .50 A4 = .700	A3 = .605 A4 = .875						
E3 = .25 $E4 = .365$	E3 = .310 E4 = .563						
EC = 1.412	EC = 1.284						
Q1 = 2106	Q1 = 1915						
Q2 = 853	Q2 = 740						
Q3 = 292	Q3 = 315						
Q4 = 304	Q4 = 321						
Q7 = 6	Q7 = 5						
T5 = 2071	$T5 = 20\hat{6}5$						
T6 = 2054	T5 = 2048						
10 - 2054	10 - 2040						

1										<u></u>	···
CA =	8	W	=	5850		CA	=	. 8	W	7 =	5850 .
N =	14	т	=	1900		Ν	=	14	Т	=	2000
A3 =	.50	A4	=		.700	A3	=	. 50	А	4 =	. 700
E3 =	.25	E4	=		.365	E3	=	.25	Ē	4 =	. 365
	EC	=	.1	. 599				EC	=	1.	450
	Q1	= 3						Q1	=		
	Q2	= 6						Q2	=		
		= 3							=		
	Q4	= 3				1			=		
	Q7							Q7	=		
,	Т5							Т5		2073	
	т6					v	,			2054	
}											
CA =	. 8	w	=	5850		CA	=	8	w	=	5850
CA = N =		W T	=	5850 2100		CA N	=	8	W T	•	5850 2200 ·
1	. 8	т		2100						- =	
N =	. 8 14	Т А4	=	2100		N	=	14	T A4	• =	2200.
N = A3 =	.8 14 .50 .25	Т А4 Е4		2100	.700	N A 3	=	14 .50 .25	Т А4 Е4	. = = =	2200 · .700 .365
N = A3 =	.8 14 .50 .25 EC	T A4 E4 =	= = 1.	2100	.700	N A 3	=	14 .50 .25 EC	T A4 E4 =	. = = = 1.	2200 · .700
N = A3 =	.8 14 .50 .25 EC Q1	T A4 E4 =	= = 1. 477	2100	.700	N A 3	=	14 .50 .25 EC Q1	T A4 E4 =	= = 1. 535	2200 · .700 .365
N = A3 =	.8 14 .50 .25 EC Q1 Q2	T A4 E4 = = 4 = 4	= = 1. 477 595	2100	.700	N A 3	=	14 .50 .25 EC Q1 Q2	T A4 E4 = =	= = 1. 535 580	2200 · .700 .365
N = A3 =	.8 14 .50 .25 EC Q1 Q2 Q3	T A4 E4 = 4 = 4 = 2	= = 1. 477 595 290	2100	.700	N A 3	=	14 .50 .25 EC Q1 Q2 Q3	T A4 E4 = =	= = 1. 535 580 282	2200 · .700 .365
N = A3 =	.8 14 .50 .25 EC Q1 Q2 Q3 Q4	T A4 = = 4 = 2 = 2	= = 1. \$777 595 290 291	2100	.700	N A 3	=	14 .50 .25 EC Q1 Q2 Q3 Q4	T A4 E4 = = =	= = 1. 535 580 282 282	2200 · .700 .365
N = A3 =	.8 14 .50 .25 EC Q1 Q2 Q3 Q4 Q7	T A4 = = 2 = 2 = 2 = 2 = 2	= = 1, 595 290 291 540	2100	.700	N A 3	=	14 .50 .25 EC Q1 Q2 Q3 Q4 Q7	T E4 = = = =	= = 1. 535 580 282 282 282 589	2200 · .700 .365
N = A3 =	.8 14 .50 .25 EC Q1 Q2 Q3 Q4	T A4 = = 4 = 2 = 2 = 2 = 2	= = 1, 595 290 291 540 168	2100	.700	N A 3	=	14 .50 .25 EC Q1 Q2 Q3 Q4	T A4 = = = = =	= = 1. 535 580 282 282	2200 · .700 .365

-

THERMO ELECTRON

¢	0	R	ρ	0	R	٨	т	L.	0	N	

-

ſ													
	CA	=	. 8	W	=	7500	CA	=	. 8	w	=	7500	
	Ν	=	14	т	=	1900	N	=	14	Т	=	2000	
	A3	=	. 50	A4	=	.700	A3	=	. 50	A4	- =	.7	00
	E3	=	.25	$\mathbf{E4}$	=	.365	E3	=	.25	Ė4	<u></u> ' =	. 30	65
			ËC	Ŗ	1	. 826			EC	=	1.	636	
			Q1	=	438	}			Q1	=	482		
			Q2	=	81 ()			Q2	=	799		
			Q3	=	396	>			Q3	=	390		
			Q4	=	402	2			Q4	=	395		
			Q7	=	552	2			Q7	=	588		
			Т5	= 2	003	3			Т5	=	2098		
			т6	=]	.978	3			т6	=	2074		
	CA	=	. 8	W	=	7500	CA	=	. 8	W	=	7500	
T	N	=	14	т	=	2100	N	=	14	т	=	2200	
	A3	=	[،] .50	A4	=	.700	A3	=	. 50	A4	ł =	. 7	00 `
	E3	=	.25	$\mathbf{E4}$	=	. 365	E3	=	.25	E4	ł =	. 3	65
			EC	=		1.487			EC	=	1.	370	
			Q1	=	5	32			Q1	=	591		
			Q2	=	7	86			Q2	=	770		
		3	Q3	=	3	82			Q3	=	374		
			Q4	=	3	86			Q4	=	377		
			Q7	=	6	31			Q7	=	679		
			Т5	=	21	93			Т5	=	2288		
			т6	=	21	69			Т6	=	2264		
- I.													

· · · · ·	· · · · · · · · · · · · · · · · · · ·		F			
CA =	1.0 W	= 6400	CA =	1.0	W	= 6400
N =	14 T	= 1900	N =	14	т	= 2000
A3 =	.50 A4	= .700	A3 =	.50	Α4	= .700
E3 =	25 E4	= .365	E3 =	25	E4	= .365
	EC =	1 669		EC	=	1.504
	Q1 =	826		Q1	=	692
	Q2 =	666		Q2	=	653
	Q3 =	328		Q3	=	321
	Q4 =	331		Q4	=	323
	Q7 =	383		Q7	=	411
	T5 =	1984		Т5	Ξ	2080
	т6 =	1963		т6	=	2059
						<u> </u>
CA =	1.0 W	= 6400	CA =	1.0	W	= 6400
N =	14 T	= 2100	N =	14	Т	= 2200
A3 =	.50 A4	= , 700	A3 =	. 50	A4	= .700
E3 =	.25 E4	= .365	E3 =	.25	E4	= .365
	EC =	1.375		EC	=	1.273
	Q1 =	769		Q1	=	858
	Q2 =	636		Q2	=	618
	Q3 =	312		Q3	=	303
	Q4 =	313		Q4	=	302
	Q7 =	443		Q7	=	480
	T5 =	2174		Т5	=	2269
	T6 ≠́	2154		т6	=	2249

THERMO ELECTRON

CORPORATION

CA = 1.0 W	= 7650 C4	A =	1.0	W	= 7650
$\dot{N} = 14$ T	= 1900 N	=	14	Т	= 2000
A3 = .50 A4	4 = 700 A3	3 =	. 50	A4	700
E3 = .25 E4	4= 365 E	3 =	.25	E4	= 365
EC = 1	. 844		EC	=	1.647
Q1 = 691			Q1	= 75	58
Q2 = 808	3		Q2	= 79	95
Q3 = 398	3		Q3	= 39	90
Q4 = 402			Q4	= 39	94
Q7 = 437	,		Q 7	= 46	ó5
T5 = 2003			Т5	= 209	98
Т6 = 1978			Т6	= 207	74
1 0 W		CA =	1.0	w	= 7650
- ···			14	T	= 2200
	ļ	<u> </u>	. 50		= .700
		C3 =	.25	$\mathbf{E4}$	= .365
	1 493		EC	-	1.372
Q1 = 83	5		Q1	= 92	25
	ļ		Q2	=` 76	4 1
$Q2 = 77^{\circ}$			$\mathcal{Q}^{\mathcal{L}}$	- 10	51
			Q2 Q3		73
Q3 = 382	2			= 37	
Q3 = 382	2 4		Q3	= 37	73 74
Q3 = 382 , Q4 = 384	2 4 7		.Q3 Q4	= 37 = 37	73 74 34

					((00 :			1 2	317		((00
CA	=	1.2	W		6600 .	CA		1.2	W		6600
N	=	14	Т	=	1900	N	=	14	-T,	=	2000
A3	=	. 50	A4	=	.700	A3	=	.50	Α4	=	.700
E3	=	.25	E4	=	.365	E3	=	.25	E4	=	. 365
		EC	=	1	.681			EC	=		1.509
		Q1	=	907				Q1	=	100	00
		Q2	=	667				Q2	=	65	51
		Q3	=	332				Q3	=	32	.4 ,
		Q4	=	333	i			Q4	z	32	24
		Q7	=	262				Q7	=	28	30
		Т5	=	1985	i			Т5	=	208	30
		т6	=	1963	ł			т6	=	205	59
		-									· · · ·
CA	=	1.2	w	=	6600	CA	=	1.2	W	=	6600
N	=	.14	т	=	2100	N	z	14	Т	=	2200
A3	=	. 50	A4	=	.700	A3	=	. 50	A4	=	.700
E3	=	.25	E4	Ξ	. 365	E3	=	.25	E4	=	. 365
		EC	=	1	.374			EC	=		1.268
		Q1	=	1108				Q1	=	123	31
		Q2	=	632				Q2	=	61	.0
1		Q3	=	3 14	ŀ			Q3	=	3()4
		Q4	=	313	5			Q4	=	3(00
		Q7	=	301				Q7	=	32	25
		Т5	=	2174	ł			Т5	=	226	59
		Т6	=	2154	£	•		т6	=	224	£8

-

, t₁

·____.

.

CA =	1.2		W =	7750	CA	=,	1.2	W = 7750
N =	14		T =	1900	N~	=	14	T = 2000
A3 =	. 50		A4=	.700	A3	=	. 50	A4 = .700
E3 =	. 25		E4 =	. 36 ⁵	E3	=	.25	E4 = .365
	EC	=	1.8	344			EC	= 1.642
	Q1	=	995				Q1	= 1089
	Q2	=	796				Q2	= ' 780
	Q3	=	395				Q3	= 387
	Q4	=	398				Q4	= 389
	Q7	=	296				Q7'	= 314
	Т5	=	2002				Т5	= 2097
	т6	=	1977				т6	= 2073
•					1			
·		<u> </u>					······································	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CA =	1.2		W =	7750	CA	=	1.2	W = 7750
CA = N =	1.2 14			7750 2100	CA N	=		W = 7750 T = 2200
							14	T = 2200
N =	14		T =	2100	N A3	Ξ	14	T = 2200 A4 = .700
N = A3 =	14 . 50		T = A4=	2100 .700 .365	N A3	=	14 . 50	T = 2200 A4 = .700 E4 = 365
N = A3 =	14 .50 .25 EC	=	T = A4= E4=	2100 .700 .365	N A3	=	14 .50 .25	T = 2200 A4 = .700 E4 = 365
N = A3 =	14 .50 .25 EC Q1		T = A4= E4= 1.4	2100 .700 .365	N A3	=	14 .50 .25 EC	T = 2200 A4 = .700 E4 = 365 = 1.360
N = A3 =	14 .50 .25 EC Q1 Q2	=	T = A4= E4= 1.4 1196	2100 .700 .365	N A3	=	14 .50 .25 EC Q1	T = 2200 A4 = .700 E4 = 365 = 1.360 = 1321
N = A3 =	14 .50 .25 EC Q1 Q2	= =	T = A4= E4 = 1.4 1196 762	2100 .700 .365	N A3	=	14 .50 .25 EC Q1 Q2	T = 2200 $A4 = .700$ $E4 = 365$ $= 1.360$ $= 1321$ $= 740$
N = A3 =	14 .50 .25 EC Q1 Q2 Q3	= = =	T = A4= E4 = 1.4 1196 762 377	2100 .700 .365	N A3	=	14 .50 .25 EC Q1 Q2 Q3	T = 2200 $A4 = .700$ $E4 = 365$ $= 1.360$ $= 1321$ $= 740$ $= 367$
N = A3 =	14 .50 .25 EC Q1 Q2 Q3 Q4 Q7	= = =	T = A4 = E4 = 1.4 1196 762 377 377	2100 .700 .365	N A3	=	14 .50 .25 EC Q1 Q2 Q3 Q4	T = 2200 $A4 = .700$ $E4 = 365$ $= 1.360$ $= 1321$ $= 740$ $= 367$ $= 365$

•

ſ		···			-				<u></u>			
	CA	=	1.4		W =	6700	CA	=	1.4	w	=	6700
	N	=	14		T =	1900	Ν	=	14	т	' =	2000
	A3	Ξ	. 50		A4=	.700	A3	=	. 50	A	£ =	.700
	E3	=	.25		E4 =	. 365	E3	=	.25	E4	ł =	.365
			EC	=	1.6	669			EC	=		.494
			Q1	=	1227		1		Q1	=	134	8
			Q2	=	654				Q2	=	63	5
			Q3	=	328				Q3	=	31	9
			Q4	=	328				Q4	=	31'	7
			Q7	=	117				Q7	=	12	5
			Τ5	H	1984				Т5	=	207	9
			т6	=	1962				т6	=	205	8
ľ								<u> </u>				
=	CA	=	1.4		W =	6700	CA	=	1.4	W	=	6700
	Ν	=	14		T =		Ν	=	14	Т	=	2200
	A3	=	. 50		A4=	.700	A3	=	.50	A4	l =	.700
	ЕŻ	Ξ	.25		E4 =	.365	E3	=	.25	E4	L =	:365
			EC	=	1.3	357 ~			EC	=		.249 *
			Q1	=	1488				Q1	=	1650	0
			Q2	=	612		}		Q2	=	58	,
			Q3	=	308				Q3	=	297	?
			Q4	=	305				Q4	=	29:	L
			Q7	=	134				Q7	E	144	1
			Т5	=	2173				Т5	=	2267	7
					2152		1		т6			

THERMO ELECTRON

CORPORATION

. CA = 1.4W = 7800 CA = 1.4 W = 7800T = 1900N = 14 T = 2000 N = 14A4 = .700 A3 = .50 A4 = .700A3 = . 50 E4 = .365 | E3 = .25 E4 = .365E3 = .25 EC = 1.622EC = 1.826'Q1 = 13421464 Q1 = Q2 = 775Q2 = 7 56 Q3 = 388 Q3 = 379 ÷ Q4 = 389Q4 = 379 Q7 = 132Q7 = 140T5 = 2000T5 = 2095T6 = 1975т6 = 2071 . . CA = 1.4 W = 7800|CA = 1.4 W = 7800N = 14 T = 2100 N = 14 T = 2200 A3 = .50 A4 = .700 | A3 = .50 | A4 = .700 | A3 = .50 | A4 = .700 | A3 = .50 | A4 = .E3 = .25 E4 = .365 E3 = .25 E4 = .365EC = 1.463 EC = 1.337Q1 = 1604 Q1 = 1767Q2 = 734 Q2 = 709 Q3 = 368Q3 = 357 Q4 = 366 Q4 = 352Q7 = 148Q7 = 159T5 = 2189T5 = 2284 T6 = 2165т6 = 2259

.1

(_		•	· · · · · ·			
CA	=	1.0	w =	640	0	CA	=	1.0	W	= 640	0
Ν	=	16	T =	1900	0	N	=	16	Т	= 200	0
A3	=	. 50	A4 =		.700	A3	=	. 50	A4	=	.700
E3	=	.25	E4 =		.365	E3	=	.25	E4	=	.365
		EC	=	1.49	7			EC	=	1.3	362
		Q1	= 50	51	I	:		Q1	=	627	
		Q2,	= 79	99	:			Q2	=	780	
		Q3	= 20	55				Q3	2	258	
		Q4	= 23	32				Q4	=	274	
		Q7	= 54	47				, Q7	=	592	
	,	Т5	= 19	56	•			Т5	=	2062	
		Т6	= 19	52				т6	=	2048	
CA	=	1.0	w =	640	0	CA	=	1.0	w	= 640	0
N	=	16	T =	210	0	N	Ξ	16	т	= 220	10
A3	=	. 50	A4 =		.700	A3	=	. 50	A4	=	.700
E3	=	.25	E4 =		. 365	E3	=	.25	E4	=,	.365
		EC	=	1.25				EC	=	1.17	73
		Q1	= 7	03				Q1	=	790	
		Q2	= 7	58				Q2	=	732	
		Q2 Q3		58 50				Q2 Q3	я ц	732 241	
			= 2								
		Q3	= 2	50 63				Q3	а я	241	
		Q3 Q4	= 2 = 2	50 63 44				Q3 Q4	н н	241 253	
		Q3 Q4 Q7	= 2 = 2 = 6	50 63 44 57				Q3 Q4 Q7		241 253 704	

THERMO ELECTRON

.

CA = 1.0 W = 7650CA = 1.0 W = 7650N = 16 T = 1900N = 16 T = 2000A3 = .50 A4 = .700A3 = .50 A4 = .700E3 = .25 E4 = .365E3 = .25 E4 = .265EC = 1.478EC = 1.639Q1 = 614 ' 680 Q1 = Q2 = 972 Q2 = 953 Q3 = 315Q3 = 322 Q4 = 343Q4 = 335 Q7 = 619Q7 = 664 T5 = 1982T5 = 2077 ד י T6 = 1965т6 = 2061 CA = 1.0 W = 7650CA = 1.0 W = 7650N = 16 T = 2100N = 16 T = 2200A3 = .50 A4 = .700A3 = .50 A4 = .700.25 E4 = .365 .25 E4 = .365E3 = E3 = EC = 1.352EC = 1.253Q1 = 756Q1 = 844, Q2 = 931 Q2 = 905 Q3 = 306Q3 = 297Q4 = 325Q4 = 314Q7 = 716Q7 = 776T5 = 2172T5 = 2267T6 = 2156T6 = 2251.

CA = 1.2 W = 6600CA = 1.2 W = 6600N = 16т = 2000 N = 16 T = 1900 .50 A4 = .700A3 = .50 A4 = .700 A3 = .25 E4 = .365 .25 E4 = .365 E3 = E3 = 1.507 EC = 1.367EC =Q1 = 906Q1 = 814782 Q2 = 804 Q2 = Q3 = 261 Q3 = 268 Q4 = 275 Q4 = 284Q7 = 440Q7 = 475T5 = 1967T5 = 2065Т6 = 1953 T6 = 2049 CA = 1.2 W = 6600CA = 1.2 W = 6600T = 2100N = 16 \mathbf{T} N = 16= 2200 ---.50 A4 = .700A3 = .50 A4 = .700A3 = E3 = .25 E4 = .365E3 = .25 E4 = .365EC = 1.257EC = 1.170Q1 = 1136Q1 = 1013Q2 = 756 Q2 = 726Q3 = 251Q3 = 242Q4 = 264Q4 = 252Q7 = 561Q7 = 515T5 = 2157T5 = 2252T6 = 2143T6 = 2238

O N

PORATIO

.

<u> </u>		1 2	747		775	Δ		CA		1.2		w	·	7750	
CA		1.2	W		775							т		2000	
		16			190			N	=						٠
A3	Ξ	.50						A3	=			A4			.700
E3	=	.25	E4	=		•	365	E3	=	. 2	5	E4	Ξ		. 365
		EC	=		1.64	0				E	С	=		1.475	5
		Q1	=	88	85					Q	1	=	· 97	8	
		Q2	=	96	1					Q	2	÷	93	9	
		Q3	=	32	0					Q	3	=	31	3	
		Q4	=	34	0					Q	4	=	33	1	
		Q7	=	49	4					Q	7	=	52	8	
		Т5	=	198	31					Т	5	=	207	7	
		т6	Ξ	196	4		-			Т	6	=	206	0	
CA	=	1.2	w	=	775	0	•	CA	=	1.2		w	=	7750	
N	II	16	Т	=	2 10	0		N	Ξ	16		т	=	2200	
A3	Π	.50	A4	=		•	700	A3	=	. 5	0	A4	=		.700
E3	Ξ,	.25	E4	=	,	•	365	E3	=	. 2	5	E4	=		.365
		ΕC	=		1.34	6				E	С	=		1.245	5
		Q1	=	108	5					Q	1	=	120	8	
		Q2	=	91	4					Q	2	=	88	34	
		Q3	=	30	3					Q	3	=	29	3	
		Q4	Ξ	32	0					Q	4	=	30	8	
					0					Q	7	=	61	5	
		Q7	=	56	9										
		Q7 T5								т	5	=	226	6 ·	

						<u> </u>	r						~
C C	A	=	1.4	w	=	[,] 67 00	· CA	=	1.4	w	=	6700	
N	I	=	16	T	E	1900	N	Ξ	16	ŗΤ	=	2000	
A	3	=	. 50	A4	=	.700	A3	=	5 0	Α4	=		700
E	3	=	.25	$\mathbb{E}4$	=	. 365	E3	Ξ	.25	E4	=		365
			EC	=	1	. 499			EC	=	1	.356	
			Q1	= 1	102				Q1	= 1	223		,
			Q2	=	791				Q2	=	766		
			Q3	=	266)			Q3	=	258		
			Q4	=	281	-			Q4	=	271		
			Q7	=	311				Q7	=	334		
			Т5	= 1	967	,			Т5	= 2	062		
*			т6	= 1	952	ł			т6	= 2	048		
	~ ^	~		117		(700	CA	_		117		(700	
	CA T		1.4			6700	CA		1.4	W		6700	
	1	=	16	т	=	2100	N	=	16	Т	=	2200	
			FO			700	1 1 2	_	50	A /	_		700
	13	=	. 50	A4	=	.700	A3	=	. 50		=		700 24 F
	23	=	.50 .25			.700 .365	A3 E3	11 11	. 50 . 25		=		700 365
			.25	E4	=				. 25	E4	=		365
			.25 EC	E4	=	. 365 . 243			. 25	E4 =	=	.155	365
			.25 EC Q1	E4 =	= 1 364	. 365 . 243			. 25 EC Q1	E4 =	= 1 526	.155	365
			.25 EC Q1	E4 = = 1 =	= 1 364	.365 .243			. 25 EC Q1	E4 = = 1	= 1 526	.155	365
			.25 EC Q1 Q2	E4 = = 1 =	= 1 364 736	. 365 . 243			. 25 EC Q1 Q2	E4 = = 1 =	= 1 526 702	.155	365
			.25 EC Q1 Q2 Q3	E4 = 1 = =	= 364 736 248	. 365 . 243			. 25 EC Q1 Q2 Q3	E4 = 1 = =	= 526 702 237	.155	365
			.25 EC Q1 Q2 Q3 Q4	E4 = 1 = =	= 364 736 248 258 361	. 365 . 243			. 25 EC Q1 Q2 Q3 Q4	E4 = 1 = = =	= 526 702 237 245	.155	365

٦

7													
	CA	=	1.4		W =	7800		CA	=	1.4	w	=,	7800
	N	=	16		T =	1900		N	=	16	Т	=	2000
ĺ	A3	=	.50		A4 =		700	A3	=	. 50	A4	=	.700
	E3	=	.25		E4 =		. 365	E3	=	.25	E4	=	.365
			EC	=	1.62	27				EC	=		1.460
			Q1	=	1196					Q1	=	131	7
			Q2	÷	940					Q2	=	91	4
			Q3	=	316					Q3	=	30	7
			Q4	=	334					Q4	=	32	4
			Q7	=	347					Q7	=	37	0
			Т5	=	1980					Т5	=	207	5
			т6	=	1963					т6	=	205	9
	CA	=	1.4		W =	7800		CA	=	1.4	w		7800
	N		16			2100		Ν	=	16	т	=	2200
	A3	=	. 50					A3					.700
•	E3		·.25		E4 =		. 365	E3					. 365
ľ				=	1.3								1.227
			Q1	=	1458		:			Q1,	=	162	1
			Q2	Ξ	885					Q2	=	85	1
			Q3	=	297					Q3	=	28	6
			Q4	Ξ	311					Q4	=	29	8
ľ			Q7	Ξ	398					Q7	=	42	9
	.		Т5	= ;	2169					Τ5	=	226	4
ł			ጥረ		2153					Т6	=	224	0

CA	=	1.6		W =	67 50	CA	=	1.6	w	= '	6750	
N	=	16		T =	1900	Ν	=	16	Т	= ;	2000	
A3	Ξ	. 50		A4 =	.700	A3	=	.50	Α4	=		700
E3	=	.25		E4 =	. 365	E3	Ξ	.25	$\mathbf{E4}$	=		365
		EC	Ξ	1.	479			EC	=	1	.334	
		,Q1	=	1420				Q1	=	1 57 2		
		Q2	=	768				Q2	=	739	1	
		Q3	=	261			, e	Q3	=	252		
		Q4	=	274				Q4	=	263	•	
		Q7	=	164				Q7	=	176)	
		Т5	=	1965				Т5	=	2060)	
		Т6	Ξ	1951				Т6	=	2048	} '	
										•		
CA	_	16		747	6750	CA	-	16	387	-	67 50	
					6750 <u>.</u>						6750	
Ν	Ξ	16		T =	2100	N	Ξ	16	Т	= ;	2200	700
					2100 .700	N A3	=	16 . 50	Т А4	= ;	2200	700 365
N A3	H	16 . 50		T = A4=	2100 .700 .365	N A3	=	16 . 50	Т А4 Е4	= ;	2200	365
N A3	H	16 .50 .25	=	T = A4= E4=	2100 .700 .365	N A3	=	16 .50 .25 EC	T A4 E4 =	= ;	2200 1.13	365
N A3	H	16 .50 .25 EC	=	T = A4= E4= 1.	2100 .700 .365	N A3	=	16 .50 .25 EC	T A4 E4 =	= ;	2200 1.13	365
N A3	H	16 .50 .25 EC Q1	=	T = A4 = E4 = 1.	2100 .700 .365	N A3	=	16 .50 .25 EC Ql	T A4 E4 =	= 195	2200 1.13 52 56	365
N A3	H	16 .50 .25 EC Q1 Q2		T = A4= E4= 1. 1748 705	2100 .700 .365	N A3	=	16 .50 .25 EC Q1 Q2	T A4 E4 = =	= = 195 66	2200 1.13 52 56 8	365
N A3	H	16 .50 .25 EC Q1 Q2 Q3		T = A4 = E4 = 1. 1748 705 240	2100 .700 .365	N A3	=	16 .50 .25 EC Q1 Q2 Q3	T A4 E4 = =	= = 195 66 22 23	2200 1.13 52 56 8	365
N A3	H	16 .50 .25 EC Q1 Q2 Q3 Q4		T = A4= E4= 1. 1748 705 240 249	2100 .700 .365	N A3	=	16 .50 .25 EC Q1 Q2 Q3 Q4	T A4 E4 = = =	= = 195 66 22 23	2200 1.13 2 6 8 4 96	365

CA = 1.6 W = 7850CA = 1.6 W = 7850N = 16 T = 1900N = 16 T = 2000A3 = .50 A4 = .700A3 = .50 A4 = .700E3 = .25 E4 = .365E3 = .25 E4 = .365EC = 1.439EC = .1.607Q1 = 1543Q1 = 1696Q2 = 914Q2 = 885Q3 = 300Q3 = 310Q4 = 326Q4 = 315Q7 = 183Q7 = 195 T5 = 1978T5 = 2073T6 = 1961T6 = 2057CA = 1.6 W = 7850CA = 1.6 W = 7850N = 16 T = 2100N = 16 T = 2200A3 = .50 A4 = .700A3 = .50 A4 = .700E3 = .25 E4 = .365 .25 E4 = .365 E3 = EC = 1.307EC = 1.203Q1 = 1872Q1 = 2076Q2 = 852Q2 = 813 Q3 = 289Q3 = 277Q4 = 301Q4 = 286Q7 = 209Q7 = 226T5 = 2167T5 = 22%1T6 = 2151T6 = 2245