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THE MULTIPLE OUTER PLANET MISSION (GRAND TOUR)

SUMMARY

The Multiple Outer Planet Mission (Grand Tour) is
possible in the late 1970's because of an unusual alignment
of the outer planets. Such an alignment will not reoccur for
some one hundred seventy-nine years. From its initial con-
ception the mission appeared potentially rewarding, but many
unknowns were associated with it and there were many questions
which had not been answered. Accordingly, the Astro Sciences
Center of IIT Research Institute undertook a study of the
major problem areas associated with the Grand Tour mission in
order to further verify the mission concept and to proviée a
background for later Phase A study.

The specific aims of the study were:

1. To determine the guidance requirements to
perform the migsion,

2. To identify the scientific commonality between
the planets Jupiter, Saturn, Uranus, Neptune,

3. To define "minimm"” and "representative"
scientific payloads, and

4, To estimate the launch vehicle requirements to
perform the mission.
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Trajectory opportunities for the Grand Tour exist
from 1976 through 1980. The 1976 opportunity requires a high
risk penetration of the Jovian radiation belts, in order to
achieve adequate gravitational deflection, Since later
opportunities relax this constraint, the 1976 opportunity has
not been considered in detail. The 1977 and 1978 opportunit-
ies are the most acceptable in terms of planet miss distances,
characteristic velocity, and time of flight. These were
examined in detail and the results used as inputs to the
guidance and scientific experiment analyses. The 1979 and
1980 opportunities pass very far from Jupiter (greater than
30 radii) which reduces the significance of Jupiter in the
mission concept. These opportunities also have relatively
high launch energy requirements and were not considered in
further 'detail.

The most critical planetary intercept profile is at
Saturn, the miss distance being generally of the same order
as the radius of its rings. A cursory study of the possible
collision rates in the rings made it advisable not to permit
direct penetration of the rings by the spacecraft. At each
of the 1977 and 1978 opportunities, mission profiles that
pass entirely outside the rings (exterior) and that pass
between planet surface and the lower edge of the rings
(interior) have been considered. These are designated the

1977 E, and 1977 I, 1978 E, and 1978 I missions. Once a
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Saturn profile had been selected, the profiles at each of the

other gravity assist planets were essentially fixed. The

major trajectory parameters for the selected opportunities are

shown in Table S-1,

(~mig

Table S~-1

L=

TRAJECTORY PARAMETERS FOR GRAND TOUR

, 1977 E 1977 1 1978 E 1978 E
2 Launch Date Sept 1977 Sept 1977 Oct 1978 Oct 1978
%’ Ideal Velocity ft/sec
Center of Window 51,900 54,400 53,200 56,200
§~ 20 Day Launch Window 52,700 55,200 54,200 57,100
Time of Flight (yrs)

i Jupiter 1.87 1.40 1.60 1.28
N Saturn 3.98 2,98 3.36 2.53
Uranus 8.40 6.37 7.53 5.71

. Neptune 11.94 9.05 11.00 8.32

The guidance requirements were established for each

- of the selected trajectories. Guidance maneuvers were speci-

g? fied on both approach and departure at each swingby planet to
correct for three major errors:

i §

5
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a, the AV execution error from the previous
maneuver

b. orbit determination errors

¢. planet ephemeris errors
Because e¢ach swingby effectiwvely magnifies any error that
exists on approach to a planet the guidance velocity require-
ments are sensitive to the size of the error and to the planet
at which it occurs. The objectives of the guidance analysis
were to determine realistic estimates of spacecraft propulsion
LV requirements, the method and accuracy of orbit determination,
and the trajectory selection., Two tracking modes were consider-
ed, one using an on-board planet tracker, as originally con-
sidered for the Mariner '69, and an alternative using earth
based radar tracking as is current practice,

The guidance requirements for the Grand Tour mission
are much more severe than for current missions although they
are not beyond the current state of the art. The total velo-
city corrections are given in Table S-2 and it can be seen

that interior ring passage missions are by far the more

demanding,
Table S-2
TOTAL GUIDANCE VELOCITIES FOR GRAND TOUR
1977 E 1977 1 1978 E 1977 1
On-Board Tracking (m/sec) 190 430 200 370
Earth Radar Tracking (m/sec) 450 1710 340 1010
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The orbit determinatrion process must extend well
into the planetary approach phase at lUranus and Saturn. Thus
some approach maneuvers must be made relati.ely close to the
planet. However, from the standpoint of positional error,
either tracking mode will provide accuracies within the
tolerances of the scientific experiments at each target
planet,

The largest 4V contribution occurs at the Uranus
encounter, The importance of this result is that if a problem
of fuel depletion occurs, it would be significant only at
Uranus and hence only the Neptune encounter need be sacrificed.
In the interest of minimizing tne guidance .V requirement
a strong case is made for an on-board planet tracking
capability.,

The scientific objectives for the Grand Tour mission
have been developed from the goal of understanding the outer
planets of the solar system. A systematic and logical pro-
cedure was adopted to identify the parameters of interest
(measurables) that should be measured at each planet, and
their relative values., Potential experiments were identified
for each of the measurables and the extent to which each
experiment could fulfill the objectives, given the flyby
profiles, was evaluated, By combining these two sets of resuits
it was possible to identify the relative importance of a

wide range of experiments to the goal and objectives of
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exploring the outer planets, A final rating for the
experiments was expressed in terms of value per pound to aid
the selection of typical payloads. The major results of this
evaluation are presented graphically in Figure S-1, The order
in which the experiments have been plotted was determined by
their relative values,

The highest priority scientific objectives were
reiated to the atmospheres of the outer planets, but the
highest priority experiments were related to particles and
fields, This resulted directly from the universality of these
experiments throughout the mission and hence their high
integrated total value, The value of the planetary experi-
ment:s is approximately equal at each target for all weights.
This results from the fact that all the flyby profiles are
similar in terms of their viewing of the light and dark
bemispheres of the planets. The major differences between the
planetary profiles are in miss distance, Overall there is a
clear scientific commonality between the targets. Further-
more, this commonality can be retained for both 1977 and 1978
opportunities and for the interior and exterior ring passages,
although the detailed experiment design specifications will
be different in each case.

Typical scientific payloads have been derived on the
basis of the experiment value curves shown in Figure S-1
and are shown in Table S-3. The "minimum" payload for which

the mission is considered worthwhile utilizes the first four
IIT RESEARCH INSTITUTE
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WEIGHT VALUE/LB
EXPERIMENT 55 ARB. BNITS DATA
M1 CROMETEORO 1D DETECTOR 2 124 NOMINAL
MAGNETOMETER PACKAGE 10 76 | bps
COSMIC RAY DETECTOR 2.5 66 NOMINAL
PLASMA PROBE 6.5 48 3 bps
21 31y ~ 5 bps
TRAPPED PARTICLE DETECTOR 5 4] o4 bpp*
POLARIMETER - PHOTOMETER 5 4| 105
IR, WAVE RADIOMETER 10 20 1ot
RF DETECTOR 5 Iy ot
46 430 5 bps + 105bpp
LOW RES. TV 10 12 2 x 108 bpp
NARROW UV PHOTOMETERS i5 9 1ot
OCCULTATION (DUAL FREQU.) 20 6 104
ABSORPTION PHOTOMETERS 28 5 1ot
MASS SPECTROMETER 10 5 NOMINAL
AIRGLOW PHOTOMETERS 8 4 103
137 471 § bps + 2 x 108 bpp
HIGH RES. TV 30 3 2 x 108 bpp
RADAR (10 cm) 20 3 108
HIGH RES. IR RADIOMETER 20 | 106
207 478 5 bps + 4 x 108 bpp

* bpp = bits per planet

TABLE S.3
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particles and fields experiments., This weighs approximately
20 pounds and will acquire some 5 bits per second of data.,
A "small"” payload includes the first 8 experiments and is able
to include 4 planetary experiments with a relatively low data
requirement., The total weight is approximately 50 pounds,
The "medium’ payload includes television which adds some
2 x 108 bits to the data requirement. It was aiso possible
to include the next five experiments without adding markedly
to the power or data requirements. The payload weight is
approximately 140 pounds. Finally a "large" payload includes
all the experiments considered and weighs some 200 pounds.
These selected payloads are used to define a typical range
of total spacecraft weights and launch vehicle requirements.,
In terms of the total spacecraft weight there are
many Grand Tour mission options with diiferent mission
requirements, There are four selected trajectories, with

their quite distinct midcourse correction requirements,

depending on the tracking system used. There are four selected

payloads each with its own weight, power, and data bulk.
Rather than select a typical example, a matrix of spacecraft
w2ights is presented in Table S-4 which bound the variables
of the Grand Tour missions and launch vehicle capabilities.
These weight totd4ls are based on a brief analysis of the sub-

system requirements for communications, power guidance,

attitude control, sequencing and storage, thermal control, and

structure,
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From a total capability standpoint the exterior ring
passages are strongly recommended, and an on-board tracker is
the most effective tracking system. However for the exterior
passages, the differences are such that radar tracking could
be used as a back up, and only the Neptune intercept would be
lost if the on~board system failed, If it is important that
the same spacecraft design and launch vehicle be used at both
opportunities, the minimum vehicle would be a Titan III-D-
Centaur which has a capability for the exterior missions of
1900 1bs in 1977 and 1250 1bs in 1978, This will launch a
"medium"” payload with on-board tracking or a "small" payload
with radar tracking.

The recommended missions would utilize the 1977 and
1978 opportunities, use an on-board planet tracker, have a
payload in the 100 pound weight class, and require a total
spacecraft weight of some 1200 pounds. 1In the light of the
apparent tractability of all the subsystem requirements for
the Grand Tour mission, it is strongly recommended that con-
ceptual spacecraft designs be developed and that the complete
feasibility of the mission be verified.
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THE MULTIPLE QUTER PLANET MISSION (GRAND TOUR)

1. INTRODUCTION

In the late 1970's a unique opportunity to conduct a
grand tour of the outer planets will be possible utilizing
gravity-assisted swingbys of Jupiter, Saturn and Uranus to
achieve flyby missions of the planets and Neptune (Flandro
1966). A typical profile of this Grand Tour Mission is shown
in Figure 1.1. 1In concept the Grand Tour offers a very
significant exploration opportunity. For the investment of a
single launch to Jupiter, scientific experiments are potential-
ly possible at four outer planets., The most attractive opportun-
ities occur in 1977 and 1978 with total mission times on the
order of 9 to 12 years to Neptune. The opportunities offer a
saving in trip time over direct outer planet missions but are
rare in the sense that they will not reoccur until 2156 A.D.

In reality it is not obvious that the Grand Tour
is practical. It is quite possible that the flyby profiles
at each planet are so different as to demand different rather
than common experimental payloads. One of the most critical
aspects of executing the mission will be avoiding the rings
of Saturn. Both interior and exterior ring flybys of Saturn
have been considered (Silver 1967). It intuitively appears that
a heavy guidance and control capability may be necessary to

keep the spacecraft on course during the successive planet flybys.
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It was in the context of this potentially rewarding
mission concept, with many unknowns, that the Astro Sciences
Center of IIT Research Institute performed the '"Pre-Phase A"
Study reported here. The specific aims of the study were:

1, To determine the guidance requirements to
perform the mission.

2. To identify the scientific commonality between
the planets (Jupiter, Saturn, Uranus, Neptune).

3. To define "minimum" and "representative"
scientific payloads.

4. To estimate the launch vehicle requirements
to perform the mission.

The flow chart for the study is shown in Figure 1.2.
The trajectory selection exerts a strong influence on both the
guidance and the science raquirements in that it specifically
defines each flyby profile. The sensitivity of the trajectory
to guidance errors, and therefore the probability of completing
all swingby maneuvers, is also dependent on the particular
trajectory considered. Section II of this report presents
four specific trajectories and the rationale for their
selection. The four trajectories are designated exterior and
interior Saturn Ring passages in 1977 and 1978 (1977 E, 1977 I,
1978 E, and 1978 I). By way of example Figure 1.3 shows the
encounter profile at each of the planets for the 1977 E Grand

Tour Mission.
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Section 3 describes the orbit determination analysis
and the guidance requirements associated with each of the four
selected trajectories. 1In defining the guidance velocity
requirements both radar tracking from earth and on-board
planet tracking (such as was proposed for Mariner '69) were
evaluated,

Section 4 presents an evaluation of the scientific
objectives for exploration of the outer planets. A method
is presented which allows the relative priority of all the
relevant scientific objectives to be assessed at each of the
outer planets. These objectives are then considered in
Section 5 together with the actual flyby profiles, and with
available flyby measuring techniques, to select mission pay-
loads. The results for each potential experiment are expressed
in terms of value per pound at each target. A total of four
representative payloads have been selected on the basis of
this e 1luation,

Section 6 discusses the major mission requirements
which have resulted from the trajectory, guidance and payload
analyses. Sample spacecraft weight breakdowns are presented
as a guide to the identification of the launch vehicle re-

quirements.
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The study has provided a much better understanding
of the mission requirements for the Grand Tour Mission. In
particular guidance and experiment analyses had not been

performed to this level prior to this study.
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2, TRAJECTORY ANALYSIS AND SELECTION

The trajectory cf an interpianetary spacecraft can
be altered significantly 1f the spacecraft passes near a
planetary body. This perturbation effect, due to the planet's
gravitational field, is often referred to as a ''gravity
assist." When properly designed, a gravity assist can be used
to modify the heliocentric trajectory in a desired manner.
For example, the trajectory may be deflected to intercept
another target planet at a later time. The technique of
gravity-assisted or planetary-swingby trajectories has been
studied extensively during the past several years (Minovitch
1963) and (Niehoff 1965). A number of studies have shown

the advantage in reduced launch energy and trip time that

accrues when this technique is employed for multiple~target
missions in solar system exploration (Niehoff 1966) and
Sturms 1967). This report is concerned with the "Grand Tour"
mission, i.e., the successive swingbys of the Jovian or outer
planets -- Jupiter, Saturn, and Uranus, with Neptune being

the final target,

2.1 Principle of Planet Swingby

Viewed on a heliocentric scale, the result of a
gravity assist is to change the spacecraft's velocity vector
between the time that the spacecraft enters and leaves the
planet's sphere of influence (see Table 2.1). Since this

11T RESEARCH INSTITUTE




Table 2.1 PLANET SPHERE OF INFLUENCE*

Planet Radius Sphere of Influence
EARTH 6,378 knm 0.925 x 10° xnm
JUPLTER 71,375 48.1 x 10°
SATURN 60,500 54.6 x 10°
URANUS 24,850 51.7 x 10°
NEPTUNE 25,000 86.1 x 10°

‘*Sphere of influence is defined as that distance
from the planet where the perturbative forces
due to the Sun and the planet are equal:

R - [mass of planet 2/5 x [mean distance of
sphere mass of Sun planet from Sun

i HT RESEARCH INSTITUTE
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time is relatively short compared to the interplanetary travel
time, the planet's orbital velocity may be considered approxi-
mately constant. Furthermore, the spacecraft's motion with re-
spect to the planet approximates a hyperbola. Figure 2.1
illustrates the geometry of the hyperbolic flyby.

The spacecraft approaches the planet initially along
one asymptote of the hyperbola with velocity yhl' This
asymptotic approach velocity is defined as the vector difference
between the heliocentric velocity of the spacecraft and that

of the planet,

th = Y1 - Yp (2.1)

both of which are assumed determined at the nominal time of
encounter. The gravitational attraction causes the planeto-
centric trajectory to bend through a rotation ¥ which is the
turning angle between the approach and departure asymptotes.
The asymptotic departure velocity, Vip» is equal in magnitude
to Vy; but differs in direction. With reference to helio-

centric coordinates, the changed velocity is now given by

s o

the vector addition.

V, differs from ¥; in both magnitude and direction, the former
reflecting a change in the energy of the heliocentric trajectory.
In the case of successive swingbys of the outer planets, each
swingby trajectory takes place along the trailing edge of the

planet's motion, i.e., behind the planet as seen from the Sun.
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Hence, the heliocentric energy is increased by the gravity
assist. Conservation of energy is preserved, of course, since
the planet looses orhital energy in the gravitational exchange.
However, this point is strictly academic inasmuch as the
gravitational attraction of the massive planet by the spacecraft
is negligible,

For a given gravity assist planet, the asymptotic de-
parture velocity can be shown to depend on the approach veiocity
and the aim point parameters, The latter is expressed by the
asymptotic miss vector B which is referred to the STR coordinate
system of Figure 2.1. By definition, the target plane (T-R)
passes through the planet's center and is perpendicular to the

direction of the approach asymptote S (a unit vector).

Yhi

s = T ecliptic reference (2.3)
ahll
Sxk

T = (2.4)
S x_gl

R = S§xT (2.5)

with k being a unit vector perpendicular to the ecliptic

plane, T is defined as a unit vector perpendicular to S,

and also parallel to the ecliptic. The vector B, from the
planet center perpendicular to the approach asymptote, lies

in the target plane with components
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(B + I) = bcos 3§
(2.6)
(B * R) = bsiny
where b = "gl is the miss distance (here, miss distance is

a trajectory design parameter not to be confused with a
guidance error Ab).

Several important conic formulas relating the

swingby parameters are

Hyperbolic velocity: ‘-hll I h2| 2.7)

Periapse distance: r§ +,25 r = b2 (2.8)
V.
h

cos ¥ = —ZT—'-—Z (2.9)

Departure velocity vector:

Vy, sin ¥
Vipg = VY cos ¥ - r— B (2.10) N .

3 ,

where y is the planet's gravitational constant (195-2 which ;
sec 1

is proportional to the planet's mass. Several comments j

can be made about the general effects of the above equations.

s |

(1) The periapse (closest approach) distance
is always less than or equal to the g‘;
asymptotic miss-distance. The difference o

between these quantities will decrease as !

p decreases or as V, increases.
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(2) The turning angle can vary between 0°and
180”. Turning angle will increase as B
increases, or as b decreases, or as Vh

decreases.

2,2 Launch Opportunities

Practical launch opporturities for the Crand Tour
mission are dictated by the relative orientation of the outer
planets. The appropriate phase angle relationship reoccurs
approximately once every 179 years. This long period is
fixed largely by the synodic period c¢. the two outermost
planets considered in the combination, Uranus .nd Neptune
have a synodic period of about 171.4 years. Once the proper
phasing does occur, however, several consecutive launch years
are available because of the slow motion of the outer planets.,
The next opportunity occurs during the period from 1976 to
1980. Launch windows in each of these years are approximately
13 months apart.

Previous trajectory analyses of the Grand Tour
were helpful to the present study in that launch windows
and velocity requirements were fairly well delineated (Flandro
1966) and (Silver 1967). These results allowed one to readily
identify the best opportunities, and to minimize costly

trajectory search computations.
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The bar chart of Figure 2.2 shows the range of
ideal launch velocities* and trip times to Meptune for five
launch opportunities in the period 1976-1980. It is seen
that ideal velocity generaily increases with each successive
launch year, whereas the trip time tends to decrease. In
any given year, the faster trip times correspond to the

higher launch velocities. Overall, the potential Grand Tour

missions cover the range of velocities 51,400 to 60,700 ft/sec,

and the range of trip times 8.1 to 12.8 years,

Another important parameter of the Grand Tour
trajectories is the pericenter of closest approach distance
at each planet. 1In the case of Jupiter, which moves faster
than the other planets, the variation of pericenter distance
with the launch year is quite large. A spacecraft launched

in 1976 will pass very close to Jupiter (1.02 - 1.50 Jupiter

*Ideal velocity (in ft/sec) is that velocity required by

a launch vehicle to achieve a given hyperbolic excess
velocity (VHL) beyond Earth escape from a 100 n. mile
parking orbit, assuming gravitational and frictional

losses of 4000 ft/sec.

| 2 2 11/2
Vi = {(VHL) + (36,178) ] + 4000 ft/sec
]1/2

= 3280.8 [03 + 121.5964 |
j

where VHL is hyperbolic excess velocity in ft/sec

+ 4000 ft/sec

2
C3 is injection energy in (—kgl—— \

sec |
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radii). Later flights in 1979 and 1980 have very large
pericenter distances (30-70 Jupiter radii). Although close
flybys of Jupiter may be desirable from a science experiment
standpoint, several disadvantages of the 1976 opportunity are
worth noting. These are: (1) long trip times, (2) equipment
shielding penalty due to Jupiter's radiation belts, (3) high
guidance requirement, and (4) an earlier spacecraft develop-
ment and flight program. The disadvantages of the later
launch opportunities are clearly the high launch velocities
required and the large passing distances at Jupiter.

On the basis of the above preliminary results and
arguments, it was decided that the best launch opportunities
for the Grand Tour mission occur in 1977 and 1978. Accordingly,

this study was aimed at these two consecutive launch years.

2.3 Method of Trajectory Analysis

The various stages in the trajectory analysis are
described by the block diagram shown in Figure 2.3. A
computer program based on conic trajectory approximations was
employed to generate the large amount of data representing
potential Grand Tour trajectories throughout the launch
opportunities, Trajectory selections were then made from the
data map after imposing several conditions of constraint which
define the regions of practical trajectories. The final stage
in the analysis employs an N-BODY numerical integration
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targeting program to check the validity of the conic results,
and to generate the partial derivative (sensitivity) matrices

needed for the guidance analysis. casy

2.3.1 Conic Analysis

Trajectory data was obtained from the Space Research
Conic Program (SPARC) developed at JPL for investigations of
multiple planet missions (Joseph 1965). The inputs to this
program are speci.ied values of the Earth-launch date and in-
jection energy C3. Using a matched conic approach between the
successive heliocentric trajectory legs, a search is made to
find the appropriate Earth-Jupiter transfer which results in
subsequent planetary swingbys and finally Neptune encounter.
The matching process insures equal magnitude of the approach
and departure hyperbolic velocities at each swingby planet,
All heliocentric trajectory legs were restricted to Type I,
Class I transfers* in order to achieve th. ‘thortest possible
flight times. Mean orbital elements of the j;ianets were used
to obtain the planetary positions and velocities at the

encounter times.

x*
TZpe I trajectories have a heliocentric transfer angle less
than 130°, whereas Type 11 trajectories traverse more than
18G°. For either Type I or Type 1I, Class 1 trajectories have
a sTaller heliocentric transfer angle than Class II trajec-
tories.
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In operation, potential Grand Tour trajectories are
obtained over a range of launch dates and injection energy
(ideal velocity). For each trajectory, the computer program
printout includes defining parameters of the geocentric and
planetocentric hyperbolas, planet encounter dates, elements
of the heliocentric transfer legs, and orientation angles of
the Earth, Sun and Canopus as seen by the spacecraft at the
encounter times., Trajectory data is obtained over a sufficient-
ly fine grid of input variables to allow the use of cross-
plotting techniques in the trajectory selection stage of the

analysis,

2.3.2 NBCDY Targeting Analysis

The NBODY Targeting Program indicated in Figure 2.3
was developed at IITRI as a modification of the Lewis Research
Center NBODY code (Strack 1963). Becavse of the single
precision arithmetic of this program and the high trajectory
sensitivity of the Grand Tour, it was uot possible to target
a continuous trajectory from Earth to Neptune. In fact,
attempts to target two legs at a time (e.g., Earth-Jupiter-
Saturn) were not too satisfactory, although near convergence
was obtained. The method adopted in this study was to target
one leg at a time working backwards from the Uranus-Neptune
leg and successively matching the arrival and departure target
vector at each planet, This procedure is initialized with

the conic trajectory parameters obtained from the SPARC program.

JIT RESEARCH INSTITUTE




It should be made clear that the procedure of
targeting each individual leg separately does not yield a
continuous trajectory from Earth to Neptune. The discontin-
uity appears as a target plane velocity difference between
the approach and departure trajectories. This is due to the
fact that no attempt was made to converge on velocity but
only on the miss vector B and the time of encounter. Generally,
the conic and NBODY results are in excellent agreement for
any one trajectory leg. On the basis of this result, it is
expected that the conic trajectory data is sufficiently valid
for preliminary mission analysis. Some results of the NBODY
Targeting Program are described in the Appendix to this

section of the report.

2.3.3 Conditions of Constraint

Four constraints are imposed on the trajectory
selection process. Clearly, the "hard" constraint is that
the point of closest approach at each swingby planet must be
above the planet's surface. This applies initially to the
nominal trajectory conditions, but the question of guidance
accuracy must be factored in at a later stage in the analysis.
Guidance accuracy is the dominant factor in selecting the
nominal aim point at Neptune, which otherwise might be chosen
arbitrarily since Neptune is the final target.

11T RESEARCH INSTITUTE
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Another constraint is that the declination of the

geocentric departure asymptote be limited to about 34°, Lower

declinations provide launch azimuths within ETR range safety
limits, thus avoiding costly dog-leg maneuvers during ascent
to Earth orbit. Also, early orbit determination accuracy is
enhanced if the declination is not too large.

To avoid a communications problem caused by solar

activity interference, it is desirable that the planet not be

behind the sun at the time of encounter. That is, the earth-
Sun-planet angle at plamet encounter should be somewhat re-
moved from 180° (superior conjunction). A third constraint
on the trajectory selection process, then, is a set of
conjunction bands of + 10 days (+ 10°) for each planet en-
counter,

The fourth, and major, constraint is the apparent
necessity of avoiding passing through the Ring of Saturn.
Lying in Saturn's equatorial plane, the Rings extend from
about 11,500 km to 76,500 km above Saturn's surface. The
inclination of the spacecraft's swingby trajectory to the
Ring plane is about 30° for the Grand Tour mission. The
relative velocity between the spacecraft and Ring particles
is about 12 km/sec as an average, and the compoﬁent of the
spacecraft's velocity normal to the Ring plaﬁe is also about

12 km/sec.

11T RESEARCH INSTITUTE

23

R T P P
i e R . AR A
. [ .

= ""“ﬁ"‘"“‘fﬁm



IO A

There is great uncertainity in the present know-
ledge of the Ring density and thickness. An estimate of the
upper limit on density based on a gravitational stability
analysis is 0.06 g/cm3 (Cook 1965) but the actual
depsity may be more than an order of magnitude lower. Earlier
estimates of Ring thickness have an upper limit of about 10 km.
However, a more recent analysis of observations fitted to a
theoretical physical model indicates that the Rings may only
be 10 cm thick (Franklin 1965).

A parametric analysis was performed assuming the
average particle radius (rp) to range from 0.01 cm to i00 cm,
and the average particle density (pp) to range from 1 g/cm3
to 8 g/cm3. It can be shown that the number of collisions (C)
and the mass encountered (M) per unit spacecraft area are

given by the following equations:

v

Vn nrlz) m ‘ ,
v o=[B)[& ., )| x10! X5 (2.12)

vyl \ 3 PP m T ‘ ,5

where VR is the relative velocity between the spacecraft and
the Ring particles (~ 12 km/sec) and VN is the spacecraft's
velocity component normal to the Ring plane (~ 12 km/sec).
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The normalized optical thickness of the Rings, r, is
assumed to be unity which is the maximum experimentally

determined value. The following table lists several values

of C and M,
o T
p !
- 1 g/cm3 : 8 g/cm3
| p
]
,- ) c = 3.2 x 107 coll ¢ = 3.2 x 107 coll
' g m2 m2
0.01 cm
. M = 0.134 X8 M = 1.07 X8
m2 mz
| | c = 0.32 50l c - 0,329
i % m m
100 cm
M = 1340 X8 M = 10,700 X8
2 2
i

Since the mass that would be encountered by a spacecraft is
estimated to be in the range 0.1 kg/mz to 10,000 kg/mz, it
would appear that the Grand Tour trajectory should not pass |

through the Rings of Saturn.

14T RESEARCH INSTITUTE

25 :




[T

2.4 Descriptive Trajectory Data

Launch opportunities for the Grand Tour in 1977
occur over a two to three week period in August-September of
that year. A similar period 13 months later occurs during
September-October in 1978. 1In this sectiom of the report,
certain characteristic trajectory parameters obtained from
the SPARC computer runs are presented for these two launch
years., Consideration of constraint conditions is deferred
to the next section.

Figure 2.4 shows curves of ideal launch velocity
in 1977 plotted on a grid of Jupiter arrival date (Julian
Date) versus Earth launch date. Every point on the grid
represents a potential Grand Tour trajectory to Neptune with
swingbys at Jupiter, Saturn and Uranus. In selecting the
range of design trajectories throughout a launch window, it
is helpful to fix the Jupiter arrival date at some specified
value. Therefore, the Jupiter arrival data is a convenient
independent variable for representing other key trajectory
parameters., The velocity curves are actually closed contours
although this is not shown in the figure. In other words,
for a given launch date and velocity, there are two possible
Jupiter arrival dates. The later date corresponds to a Class
II trajectory which has a significantly longer flight time.
It is recalled that the Class II trajectories are not

IIT RESEARCH INSTITUTE
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considered in the study. The minimum energy trajectorwv

(Type 1) has a launch date of Sept. 5 1977 and a Jupiter arrival

date of Oct. 24 1979 (2444170). The corresponding minimum
ideal launch velocity is 51,500 ft/sec.

Figure 2.5 shows the declination of the geocentric
departure asymptote. This parameter is seen to be in the
range 23° - 36° for the 1977 Grand Tour, The higher declina-
tions are associated with lower values of launch velocity.

The minimum flight time to Jupiter is plotted as a
function of launch velocity in Figure 2.6. This curve is
obtained from the minimum points of the velocity contours of
Figure 2.4, Flight time to Jupiter varies from 460 to 669
days as the ideal launch velocity decreases from 56,00C to
52,000 ft/sec.

Three additional descriptive parameters of the
Grand Tour are the trip time, pericenter distance and hyper-
bolic approach velocity at each planet encounter. This
data is plotted against the Jupiter arrival date in
Figures 2.7 to 2.9. The curves shown are specifically for
the optimum launch date, i.e., the minimum launch velocity
for each value of Jupiter arrival date, Although there is a
variation of the parameters with launch date, this variation
is quite small for Grand Tour trajectories. Hence, when
plotted against Jupiter arrival date, this form of data

compression is quite representative of all trajectories

throughout the launch windows.
117 RESEARCH INSTITUTE
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FIGURE 26 MINIMUM FLIGHT TIME TO JUPITER, 1977 GRAND TOUR

700
I EARLIEST JUPITER
ARRIVAL DATE (J. D) 244 -
4060
650 4040
4020
4000
600 ,
3980
| 3960
550 3940
‘\\\&<3szo |
&oo o
500 -
3880 g
3860 'g
450 i}
400 15

IDEAL LAUNCH VELOCITY Avg , 103 FT/SEC

30

P

|

N )
t:
R L TP




NEPTUNE
//

”/’,,/”’ URANUS
8 /

12

N S

\

0
o
(3 /
I" /
> 6 "
<
-
[ 2
(o]
o
. L.
i " SATURN
. = 4 = ——
" _—
= /
i 2 JUPITER—
{
(4]
3850 3900 3950 4000 4050 4100

JUPITER ARRIVAL DATE (J.D.) 244~

FIGURE 2.7 PLANET ARRIVAL TIMES, 1977 GRAND TOUR

31

AR T
i . , PR .
- UEE W =T




.3

PERICENTER DISTANCE (RP), PLANET RADII

D e i s it g W™ S SN e e
4

| JUPITER

URAN/S

e

//

/

7

v

SATURN L

7

\

7
1

_—

/

—'./
i
oL
3850 3900 3950 4000 4060

4100

JUPITER ARRIVAL DATE (J.D) 244 -

32

RN TRREY WAy~
[T .

FIGURE 28 PLANET CLOSEST APPROACH DISTANCES,I977 GRAND TOUR

T A e

*" e

bt

e RS Lk
L]



—— (B [Ip——

= == e

f

ot

30
3]
]
\
25 —
g \
Iy
I
2 \\
>
§ TSN TN
i \ NEPTUNE
> \
e o
O
15
E \ T
<
—2‘ \\ \ATURN
(o] \
2 0 -
(17 ] \
g-_ w
x
5
3850 3900 3950 4000 4050

JUPITER ARRIVAL DATE (J.D.) 244 -

FIGURE 29 PLANET ARRIVAL VELOCITIES, 1977 GRAND TOUR

4100

o e - o e




It is seen that the closest approach distance is
largest at Jupiter and smallest at Saturn. Closest approach
at Neptune is not shown since it is arbitrary and will be
chosen by the selection process described later. Another
important characteristic is that the closest approach at each
swingby planet increases as the trip time increases (or, as the
launch velocity decreases). The largest variation sccurs for
Jupiter (3-12 Jupiter radii), and the smallest variation for
Saturn (1-2.7 Saturn radii).

Along a given trajectory, the approach velocity
is found to increase at each successive planet encounter. Also,
as the trip time increases, the approach velocity at each
planet decreases. The velocity variation over the range of
trajectories shown are 7.7-13.4 km/sec (Jupiter), 10.5-18.2
km/sec (Saturn), 14.5-22.8 km/sec (Uranus), and 16.3-25.3 km/sec
(Neptune).

The above results have described the 1977 Grand
Tour opportunity. Similar data is presented for the 1978
Grand Tour in Figure 2.10 to 2.14.

2.5 Trajectory Selections

The constraint conditions discussed previously
are first applied to select trajectories for the 1977 launch
opportunity. Figure 2,15 shows the constraint regions of
the surface and Rings of Saturn projected onto the basic

trajectory selection grid of Jupiter arrival date versus

1iT RESEARCH INSTITUTE
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Earth launch d2te, Also shown is the constraint region
corresponding to launch declinations greater than 34°,
Saturn's surface is the governing "hard" constraint of Grand
Tour trajectories in 1977 and 1978. That is, the surface con-
straint boundary of Jupiter and Uranus lies below that cf
Saturn. The Cassini Gap between Ring's A and B is about

4000 km wide and offers a potential, but somewhat daring,
trajectory selection. Some level of material density below
that of the Rings proper is likely to exist in the Cassini
Gap.

Figure 2.16 shows the constraint regions imposed
by the + 10 day Earth-planet conjunctionbands. In cases
where the conjunction bands of two planets overlap, only a
single constraint region is shown. For a given planet, the
real time difference between successive conjunctions is about
one year - approximately the synodic period between Earth
and the outer planets, Of course, when projected onto a grid
of Jupiter arrival date, this difference contracts for Saturn,
Uranus and Neptune. Also, on this grid, the frequency of
conjunction is highest for the outermsst planet.

Figure 2.17 combines the four constraint conditions
and again shows the launch velocity contours. A launch
window of about 20 days is thought to be a reasonable require-
ment for this mission. To minimize the launch velocity
spread throughout the window it is desirable that the center
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of the window lie near the optimum launch date. .learly, then,
the constraint regions leave little room for = .lecting trajec-
tories. Two types of trajectories are selected and designated

by their principal characteristics:

(1) Exterior Ring Passag~ - a trajectory passing through

the Saturn Ring plane at a distance above the

outer Ring bowvndary.

(2) Interior Ri-g Passage - a trajectory passing

through Iie Saturn Ring plane at a distance
betwe¢:. the surféce and the inner Ring
E.uadary.

A third trajectory selection passing through the
Cassini Gap in the Rings is also indicated on the graph.
He'rever, because of the unknown material density in the Gap
this trajectory could be risky. Since data for this
trajectory would be bounded by the other two trajectory types,
the Cassini Gap passage will not be considered further in
this report.

On the question of Ring density, there is certain
to be found some particulate matter outside of the visible
boundaries of the Rings. For this reason it is best to
choose an Exterior trajectory sufficiently above the visible
boundary of Ring A. The trajectory selection shown in Figure
2.17 passes about 20,000 km outside of this boundary.
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There remains the task of selecting the Neptune
encounter conditions. The selection is made on the basis of
the 3 o guidance error dispersion ellipse such that Earth
occultation is obtained but not Canopus occultation, From
the guidance analysis, it is estimated that 3 og.T X 3 OB«R
is 45,000 x 39,000 km for the Exterior Ring Passage and
38,000 x 36,000 km for the Interior Ring Passage. Figures 2,18
and 2.19 illustrate the nominal aim point selection for these
two trajectories. The selection graphs show the occultation
zones of the Earth, Sun and Canopus plotted in target plane
coordinates., The occultation boundary (from the exact
moment of occultation) has been specified as 0°, 5°, and 20°
respectively, for the Earth, Sun and Canopus.

Figures 2,20 to 2.24 illustrate the selecticn
process for the 1978 launch opportunity. Descriptive param-
eters of the four trajectory selections (1977-E, 1977-I,
1978-E, 1678-I) are listed in Table 2.2. Interior Ring
Passages are characterized by faster trip times and closer
flyby distances, but require higher launch velocities
than the Exterior Ring Passages and also have higher approach
velocities. Launches in 1978 allow somewhat shorter trips at
the expense of higher launch velocities, but pass Jupiter
at much greater distances than do trajectories in 1977. The
implication of these comparative characteristics will be
more fully discussed in the later sections on guidance,

scientific payload selection, and mission requirements.
1T RESEARCH INSTITUTE
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It is of interest to know the variation of trajectory
parameters throughout the 20 day lauanch window. Figures 2.25
and 2.26 show the launch window energy requirements for the
1977 and 1978 Grand Tour. It has been found that planet
encounter parameters vary iittle over the window. This 1s
shown, for example, by Tabie 2,3 which lists several key

parameters of the 1977-E trajectory.

2.6 Planet Encounter Profiles

Several fixed parameters of the planet encounter
trajectories have been given in Tabie 2.2. Since the Grand
Tour missic:. is planet oriented, the time history of certain
variables of motion during the encounter phase is of general
interest, and is also necessary to the proper selection of
scientific payloads. 1In this section, the dynamical profiles
of each planet encounter are illustrated for the 1977-E and
1977-1 trajectories.

Profile data was obtained from a computer program
(PROFYL) developed for this study. The PROFYL output is of
two kinds:

(1) A summary table of the occultations of the
Earth, Sun and Canopus, and the crossing of
the sub-satellite point over the Sun terminator
line. Associated with each of these points
is the time and radius of occurrence.
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(2)

Position dependent data of selected dynamic
variables such as time-to-periapse, altitude,
ground speed, etc. True anomaly is used as
the independent position variable because of
its relative uniformitv over different planet
encounters.

ORI < C I .- R )

ot

Graphical presentation of the profile data is given
in Figure 2.27 to 2.39 for the 1977-E mission, and in
Figures 2.40 to 2.52 for the 1977-1 mission. The type of

s B B e B e B s B S WS R

Iy
L s

information displayed is as follows:

(1) Pictorial trajectory in plane of motion
(2) Time-to-periapse versus true anomaly
(3) Altitude versus true anomaly
(4) Sun elevation versus true anomaly
(5) Scan rate versus true anomaly !
(6) Percent of "visible" hemispheric surface
versus true anomaly
(7) Ground trace (latitude, longitude) of sub-

Sun elevation refers to the angle of the Sun above the local
horizontal at the subsatellite point. Scan rate is the

ground speed of the spacecraft with respect to the planet's
surface, and hence, includes a component of the planet's
rotational velocity. The equator of the planet is the reference
plane for the ground trace plots. Here, longitude is a relative
coordinate since the zero longitude line is arbitrarily defined

3‘5' at initiation of the PROFYL data sequence. ‘

satellite point.
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3. GUIDANCE ANALYSIS AND REQUIREMENTS

The so-called "free" energy addition and velocity

deflection available from an unpowered planetary swingby is,

in reality, obtained at some expense to the spacecraft guidance

(propulsion) system, Intermittent velocity corrections are
required to compensate for a number of trajectory error
sources. Since the trajectory error sensitivity is quite
severe in the case of the multiple swingby Grand Tour, the
guidance considerations are of major importance to the mission
designer,

Error sensitivity of the aim points between succes-
sive target planets is shown in Table 3.1 for the two trajec-
tory selections in 1977, It is noted that the trajectory
passing inside of Saturn's Rings is about 3 to 4 times more
sensitive to errors than the trajectory passing outside of
the Rings. It may be expected, then, that the Interior Ring
Passage Mission will incur a higher guidance AV penalty. For
either trajectory, it is found that the Saturn~Uranus leg
and the Uranus-Neptune leg have nearly the same sensitivity,
but that the sensitivity of the Jupiter-Saturn leg is more
than an order of magnitude smaller. Accordingly, the AV
requirement at Jupiter encounter may be expected to have
a relatively small contribution to the total AV.

As an exémple of the "astronomical' error that
would result if no cnrrective guidance maneuvers were made,

consider the least sensitive of the two trajectories.
11T RESEARCH INSTITUTE

87

SRS s ]




\
TABLE 3.I
GRAND TOUR TRAJECTORY SENSITIVITY
AB = ERROR IN AIM POINT AT TARGET PLANE
1977-E 1977
AB
| Banm g e M
; BB yupiTER KM
! B8 upanus = 5600 - 17,000 M ‘
i BB SATURN KM )
| OB NEPTUNE = 4,500 - 20,000 )
§ 8B yranus KM |
1
1
; ]
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The error at Neptune may be estimated by multiplying together

the intermediate sensitivities. Thus,

AB
—_Neptune _ ,00 x 5600 x 4500

ABJupiter
~ 1010 km
km

To make matters even worse, the error at Jupiter will certain-
ly be several orders of magnitude greater than 1 km, Clearly,
multiple trajectory corrections earo.te will be requifed
to insure success of the Grand Tour Mission,

Guidance maneuvers will be specified on both the
approach and departure legs of the swingby trajectory at
each intermediate planet. Using the Saturn encounter as an
example, Figure 3.1 illustrates the guidance policy and the
factors of influence. The approach maneuver is necessary to
reduce the target errors due to (1) AV execution error at
the previous planet departure, (2) orbit determination errors
at that time, and (3) planet ephemeris errors. The departure

. maneuver is necessary to compensate for the magnification

effects of the gravitational swingby on the orbit determina-
tion error which exists .at the time of executing the final
approach maneuver. .

. Objectives of the guidance analysis are (1) to
obtain an understaﬁdihg of the guidance éroblem in terms of

" its factors of influence, (2) to determine realistic estimates

1IT RESEARCH INSTITUTE
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of the spacecraft propulsion system (AV) requirements, and

(3) to ascertain the tradeoffs available betwaen the AV

requirements, the method and accuracy of orbit determination,
and the trajectory selection. Standard methods of differential
trajectory correction and statistical covariance analysis are
employed in deriving the guidance results, A comparisoh is

made of two instrumentation systems for plamet approach

to .-_...."l. [—1 M

orbit determination, namely, Earth-based radar tracking and

on-board celestial tracking,

C

3.1 Orbit Determination Analysis

==

For a given trajectory selection, the guicdance

AV requirement is most deperdent upon the accuracy of orbit

".E 4

determination of the spacecraft relative to the swingby

=

planets. This is so because the departure maneuvers,

especially at Saturn and Uranus, are found to be the largest :

=

contributors to the total AV. A major ph~:e of the present

study was therefore concerned with obtaining reasonable

—_

estimaies of the orbit determination errors.

At planet approach (sphere of influence), the

gt

a priori uncertainty in the miss vector is due to the planet

Fusenrrony
[Ep— |

ephemeris error and the error remairing after tracking the

spacecraft throughout the previous midcourse phase.. Re--

i

duction of the a priori uncertainty can be accomplished

L |

by continued tracking during the approach phase. The

[
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degree of reduction attainable will depend upon the type
of tracking system employed and upon the instrumentation
errors. Two such systems are postulated for study. The first
is Earth-based radar tracking (e.g., DSIF) which is currently
the only system in actual use for deep space probes. It is
assumed that Earth-based tracking will be the primary or only
technique used during midcourse tracking of the Grand Tour.
The data type assumed is sampled doppler, or, equivalently,
range-rate measurements, Any improvement in orbit determina-
tion by continued radar tracking during planet approach must
rely ou the inherent trajectory kinematics, i. e., the effect
of gravitational bending as reflected in the doppler residuals.
Generally, this effect is not very significant at large range
from the planet.

The second tracking model assumes an on-board
celestial system, e.g., sun sensors, a Canopus tracker and a
planet tracker. It is likely that the sun sensors and Canopus
tracker will be on-board in any case for attitude control
purposes through the flight. The additional instrument then
is the planet tracker which would be operational only in the
planetocentric region., The celestial data types are the
directional angles of the planet as seen from the spacecraft.
In contrast to Earth-based tracking, the on-board system

need not rely on the gravitational bending effect since

IIT RESEARCH INSTITUTE
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direct reference is made to the planet. This offers the po-
tential for more accurate orbit determination earlier in the
approach phase.

With reference to Figure 3.2, two separate computer
programs were developed to evaluate the performance of each
tracking system. In each case, the trajectories are modeled
as hyperbolic conics, analytical partial derivatives are
derived from the conic formulas, and the motion and measure-
ment variables are referred to the planetocentric STR
coordinate frame. Since the various error sources are best
described in a statistical manner, the approach taken is to
compute the error covariance matrix associated with esti-
mating the target parameters. Optimal statistical filtering
of the tracking data is assumed for the analysis. Both the
Kalman filter and Weighted Least-Squares algorithms (for
covariance computation) are available as options to each
program. It was found that each algorithm gives approxi-
mately the same results, Generally, however, the Kalman
approach was used for celestial tracking, and the Least-
Squares approach was used for radar tracking. Further details
of the analytical basis for the two programs are given

elsewhere (Friedlander 1967) and (Gates 1964).
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3.2 Trajectory Correction Analysis

The NBODY Guidance Program illustrated in Figure 3.2

r— ] 2SS >0

is simply a set of subroutines of the Targeting Program which

compute the necessary partial derivative matrices along the

b

nominal trajectory legs, and also the covariance matrices

g of the guidance maneuvers. The mapping matrix between target
: planes of the form~a92/agl is constructed by finite difference
?1 quotients as part of the targeting scheme, All other mapping
- matrices are obtained by integrating the first-order-variation-

il

al equations of position and velocity.

The first guidance maneuver would take place

‘tv ————

several days after launch to compensate for the injection

==

errors in position and velocity. If Ao denotes the 6 x 6

covariance matrix of injection errors, then the error

covariance matrix mapped to the Jupiter target plane is ?”

; 2 e ) 3.1 |
10 [aﬁo] A"°L3§:J |

==

Then, for the first guidance maneuver,

1
=t
]
=
-

: Ay, = Pi-g— A Pi—? ) (3.2)
i 1|y ™10 | 3 v,]

g
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It should be noted that all guidance maneuvers correct the
inpact parameters AB * T, AB * R and the time of encounter
AT,. Hence, complete freedom in the magnitude and direction
of the velocity correction is assumed. At this point it will

, be expedient to consider the general case of the approach
and departure maneuvers at the k-th planet,

The effect of maneuver execution errors are con-
sidered important only for the planet departure maneuvers.
This is because the time available to propagate these errors
during planet approach is small in comparison to the mid-
course times. The execution model assumed is a spherically
distributed error proportional to the RMS magnitude of the :

maneuver. Thus, for the planet departure maneuver the

execution covariance is

k-1
J=1) 2 gD

ex 9ex 2Vdep I (3.3) :
k-1) 3
2( (k-1) 4
Evaep = Trace AAV,dep (3.4) )
3
where I is a 3 x 3 identity matrix. The effect of the execu- J
tion errors is mapped to the next planet by fq
T -
0 (k) I r k
(k) am | (k=1) | an() i
; A, ex &I | Ak T (3.5) !
. -
¢
ﬁ"‘
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The uncertainty in determining the spacecraft velocity just
prior to the departure maneuver contributes a target error
covariance Aé?%n which is found by mapping similar to

Eq. (3.5). Now, adding the ephemeris error of the target
planet, the total error to be corrected by the approach

maneuver is

k) _ (k) (k) (k)
A Am,ex‘+ Am,OD + Am,eph (3.6)
The approach maneuver is evaluated at a sequence

of ranges -{R{} from the planet beginning at about the sphere

of influence. The maneuver covariance is given by

T
2 () = |2 A0 = (3.7)
AV, app (k) m (k)

%Y app Vapp

For the same range sequence, the approach orbit determination
error covariance Pég) is mapped into target errors at the

next planet,

T
k+1 k+1
R ) [amCe+D)
a e

and the departure maneuver covariance is computed from

T
” agx(k"'l) -1 " at_n(k"'l) -1
AAV,dep = |~ Am - (3.9)

aYiiep agﬂep
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It is assumed that the departure maneuver is made at the
planet's sphere of influence.

Finally, an approximate optimization of the
maneuvers at each planet is accor~lished by finding that Ry
which results in a minimum sum of the approach and departure
velocity corrections (RMS values), The individual maneuver
RMS values are then taken corresponding to the optimal R;.

If two approach maneuvers are allowed, the first is made at
Ry which is about 50 x 106 km from the planet. Then, the
second maneuver must correct the approach orbit determination
error at that point i.e., Pég) (Rl)‘ Substituting this new
value for Aék) in Eq. (3.7), the second maneuver is evaluated
at the remaining points Ry» R3,... Ry e

The previous Eqs. (3.8) and (3.9) describe how
errors in the arrival conditions at one planet are propagated
to the next, and determine the planet departure maneuver
necessary to correct these errors. Since mere substitution
of numerical values for the partial derivative matrices
would contribute little to a basic understanding of the prob-
lem, it would be helpful to describe the error sensitivity
by analytical expressions. Such expressions may be derived
using the conic formulas of the hyperbolic encounter.

To simplify the problem, it is assumed that the
departure maneuver nulls the error in the departure hyperbolic

velocity vector. The encounter time error is neglected since
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its effect is small in comparison to errors in b and 6. From
Eqs. (2.3) to (2.10), the sensitivity of the departure

velocity may be expressed as

3
3V Vi (1-cosy)
—<hz _ _h [sin\y S + cosY cosp T
db p
(3.10)
+ cosY sing _1_{}
V. V. siny
ch2 _ _h [sinﬂ T - cossg 3] (3.11)
bas b
2

Since we have assumed Avdep A Ayhz ° AV ,,

2

3V. dV

2 Th2 Yh2 2

I\ R [——= . == (ab)
dep [ ab ab ]

2

aV. oV

+ |=hZ . =h2 | 092
bae basd

3 2 2
Vi, (1-cosy) V,. siny
- [ h ] (ab)2 + [——h ] (ban)>

B b
Using Eq. (2.6), the bracketed terms above are found to be
equal. Therefore, the departure mcneuver is equally sensi-
tive toin-plane and out-of-plane error components of B

(actually, the orbit determination errors)
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Y/ iny
AVdep - (-——13-:-—?—-) [(L\b)2 + (baa)z] 1/2 (3.12)

From Table (2,1), it is seen that the parenthetical sensitiv=-
ity factor in Eq. (3.12)is much larger for the Interior Ring
Passage trajectories. Also, this factor is generally smallest
for the Jupiter swingby and largest for the Uranus swingby.
Taking the 1977-1 mission as an example, the maneuver sensi-
tivity at Jupiter, Saturn and Uranus is, respectively, 16,

113 and 165 m/sec per 1000 km,

An approximate analytical expression for the
approach maneuver may be derived quite simply. Assume that
the approach maneuver is made at a range R >> b, and that
this maneuver nulls the two error components of B but neglects
the error in encounter time. Then, for a field-free space

approximation

Q

V
h 2 211/2
AVapp -R"— [(Ab) + (bAﬂ) ] (3. 13)

which shows the maneuver sensitivity to be inversely propor-
tional to range., Equations (3.12) and (3.13) are very use-
ful in checking and interpreting the numerical results
obtained from Eqs. (3.7) to (3.9).
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3.3 Results of Guidance Analysis

Table 3.2 lists the various error sources considered
in this study. Items 3, 4 and 5 contribute directly to tra-
jectory errors (perturbations), whereas the remaining terms
contribute to trajectory uncertainty via the orbit determina-
tion process. Midcourse disturbances due to solar pressure
uncertainties and attitude control gas leaks are forad to
have a relatively small effect for this mission. The
injection accuracy assumed is typical of a Cenvaur upper
stage launch vehicle. It is noted, however, that injection
errors have a small effect on the total AV requirements of
this mission. The maneuver execution error of 17 is perhaps
somewhat conservative for a post-1975 attitude control
system. Planet ephemeris errors of 0.2 sec arc in latitude
and longitude are representative of the best astroumetric
observations from Earth, The data noise and station location
errors assumed for radar tracking represent the projected
improvement in the DSIF accuracy (JPL Series, SPS Vol. III).
Optical sensor errors assumed for the on-board tracking mode ﬁ
are typical of such systems currently under development
(Barone 1967). The designation "a priori" in Table 3.2 means
initial values of error sources which are also being estinated
along with the miss vector. For example, the gravitational
constant uncertainty is greatly reduced during the radar track-
ing mode. Compensation for the data bias is also effective as K

on-board observations are accumulated. —
11T RESEARCH INSTITUTE b
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TABLE 3.2 ASSUMED ERROR SOURCES (RMS VALUES)

PLANET EPHEMERIS (A Priori)

Latitude, Longitude 0.2 sec arc

Radial Distance Rp (AU) x 200 km
"TANET GRAVITATIONAL CONSTANT (A P:iori)
0.1%
MIDCOURSE DISTURBANCES
Solar Pressure 5% Uncertainty Negligible
Gas Leaks 10710 n/gec? Effect
INJECTION ACCURACY
Position 10 km
Velocity 16 m/sec

MANEUVER EXECUTION ERROR
1% Spherically Distributed :
EARTH-BASED RADAR TRACKING

Data Samples 480 sec i
Data Noise 0.005 m/sec ) :
Station Location 3m Tﬁf
ON-BOAAD CELESTIAL TRACKING )
Data Samples 2 brs L%{
Data Noise 6 sec arc
Data Bias 200 sec arc (A Priori) Eg
Planet Center - -
Finder Bias 0.3% Planet Diameter (A Priori) Zﬁ
i
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3.3.1 Orbit Determination Errors

The error analysis was applied to each of the four
trajectory selections. On-board planet tracking was found to
be superior to Earth-based radar tracking in determining the
miss components at each planet. The only exception to this
is the Jupiter approach where the in-plane miss uncertainty,
ops 1s less in the case of radar tracking. A comparison of
the two tracking modes for the 1977-1 Grand Tour is shown in
Figures 3.3 to 3.8. The RMS uncertainties of the in-plane
and out-of-piane miss components are plotted as a function
of range to the planet beginning at the initial data acquisi-
tion range of 50 x 106 km. It is noted that celestial tracking
is effective in reducing the uncertainties in both miss
components, whereas radar tracking infocmation is rather
insensitive to the out-of-plane component.

Taking the Uranus encounter as a worst case
comparison, it is seen that radar tracking yields little or
no reduction of the initial uncertainty until the range
decreases to about 2 x 106 km., At this point the gravita-

tional bending effect becomes more pronounced. Even then,

the out-of-plane component remains poorly determined until
nearer closest approach. In contrast, celestial tracking
yields an early and continuing reduction of the miss

uncertainty. For example, at a range of 25 x 106 km, bqe-
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is 5600 km for radar tracking but only 440 km for celestial
tracking., At a range of 106 km, the respective uncertainties
are 2800 km and 160 km,

Earth-based radar tracking gives better results in
estimating the encounter time and the planet's gravitational
constant, This is shown for each of the planets in

Figures 3.9 and 3.10.

3.3.2 Scheduling of Guidance Maneuvers

As a result of the orbit determination character-
'istics, the AV cost of guidance for the Grand Tour can be
quite sensitive to the times at which the planet approach
maneuvers are made, The opportunity for minimizing the
total AV requirement by appropriately scheduling the
maneuvers cannot afford to be neglected. To illustrate this
point, consider the Uranus swingby on the 1977-1 mission,
Figure 3.11 shows the approach maneuver requirements as a
function of planet range. The celestial tracking mode
requires a smaller AV for a single correction because the
approach error is smaller. This simply reflects the better
showing of celestial tracking at Saturn; more accurate orbit
determinatiun implies a small departure maneuver which in turn
implies smaller execution errors. Figure 3.12 compares
the two tracking modes for the Uranus depature maneuver.
This result reflects the orbit determination accuracy of
Figures 3.7 and 3.8,
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Optimization of the Uranus encounter maneuvers is
illustrated in Figure 3.13. 1If only one approach maneuver were
allowed, the minimum mean sum AV at Uranus encounter is
1100 m/sec for radar tracking, but only 200 m/sec for celestial
tracking. Allowing two approach maneuvers reduces the require-
ment to 680 m/sec and 110 m/sec, respectively. For the latter
cade with radar tracking, the best range for the final approach
maneuver is about 106 km, resulting in RMS values for the
Uranus maneuvers of 98, 133 and 549 m/sec, For celestial
tracking, the optimal range is about 10 x 106 km, and the RMS
values of the maneuvers are 61, 14 and 47 m/sec.

It should be noted that the radar tracking results
may be somewhat optimistic since the final approach maneuver
is made only 14 hours before encounter (closest approach).

The round trip communication time to Uranus is about 5.5 hours.
If the maneuver computation and command were Earth-based, this t
time differential appears to be marginal at best. Even if |
this were tolerable, the second approach maneuver would
increase from 133 m/sec to about 220 m/sec due to the decreased
range over the 5.5 hour period. This fact might be kept in
mind when interpreting the summary results to be given since
these results assume an instantaneous correction capability.

In other words, the celestial tracking mode may be even

more favorable than is apparent.
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3.3.3 Sunmary of AV Requirements

Tables 3.3 and 3.4 list the RMS values of the
individual guidance maneuvers and the times at which they are
made for each of the four trajectory selections and the two
tracking modes. These results are obtained by the afore-
mentioned method of minimizing the sum of the approach and
departure maneuvers at each planet encounter. The smallest
AV 'S are associated with the Jupiter encounter and the
largest with the Uranus encounter., Total maneuver require-
ments are listed in terms of a mean +3 sigma value which
is based on a Rayleigh distribution matched to the individual
RMS values, The Rayleigh distribution has been found to be
an excellent approximation to the actual statistical distri-
bution of AV magnitude (Sturms 1966).

The effect of the trajectory selection and the
orbit determination tracking mode is summarized by the matrix
of total AV requirements shown in Table 3.5. 1In the case
of radar tracking, the total AV could be as small as 354 m/sec
for the 1978-E mission or as high as 1712 m/sec for the
1977-1 mission. The large AV difference between the
Interior Ring Passages of 1977 and 1978 is attributed to
larger orbit determination (radar) errors at Saturn and
Uranus for the 1977 mission. This is due to differences
in planet approach geometry as viewed from the Earth. A

comparison of the two tracking modes shows a very
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TABLE 3.3 GRAND TOUR AV REQUIREMENTS FOR EARTH-BASED RADAR TRACKING
AV (RMS), M/SEC

i GUIDANCE Grand Tour Trajectories
1
; MANEUVERS 1977-E 1977-1 1978-E 1978-1
!Post-—Earth Injection 13- 9 9 9
! (I+104)
|
l %
| Jupiter Approach 5 (E-664) 4 (E-374) 3 (E-524) 4 (E-324)
|
Jupiter Departure 10 (E+644) 29 (E+434) 7 (E+504) 19 (E+384)
1st Saturn Approach 11 (E-15d) 9 (E-34d) | 28 (E-5d) 5. (E-344d) e
2nd Saturn Approach —_— 44 (E-l4hr) —_— 25 (E-28hr)
Saturn Departure 69 (E+584) | 127 (E+37d) | 37 (E+55@) | 86 (E+37d) :
. iR
lst Uranus Approach 48 (E-394) 98 (E-274) 25 (E-384d) 63 (E-274) S
.
2nd Uranus Approach 48 (E-36hr) 133 (E-l4hr) 51 (E-36hr) | 131 (E-13hr) A
i
Uranus Departure 62 (E+404) 549 (E+28d) 56 (E+394d) 260 (E+284) ’_}
Uranus-Neptune | 7
Midcourse 10 20 10 : 10 ,f}
TOTALS : %]
(Mean + 3 Sigma)* 450 m/ge_c 1712 m/sec 354 m/sec 1010 m/sec '

*Based on Assumed Rayleigh Dist;"fibution for AV Maneuvers With Full Correlation 5}
Between Approach (k+1) Mapepy:er and Departure (k) Maneuver,

- ‘
’ is Time of Encounter.
e L 118 i
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TABLE 3.4 GRAND TOUR AV REQUIREMENTS FOR ON-BOARD CELESTIAL TRACKING

AV (RMS), M/SEC

Grand Tour Trajectories

GUIDANCE
MANEUVERS 1977-E 1977-I 1978-E 1978-I
Post-Earth Injection 13 9 9 9
(1+104)
Fk
Jupiter Approach 5 (E~664) 7 (E-214) 5 (E-234d) 6 (E~-19d)
Jupiter Departure 10 (E+644d) | 20 (E+434) 4 (E+504) | 11 (E+38d)
lst Saturn Approach 8 (E-20d) | 22 (E-104) 6 (E-134) | 14 (E-104)
2nd Saturn Approach
Saturn Departure 20 (E+58d) | 79 (E+37d) |27 (E+55d) | 70 (E+374)
1st Uranus Approach 30 (E-204) | 61 (E-27d) |37 (E-14d) | 51 (E-274)
2nd Uranus Approach 14 (E-54) 12 (E-54)
Uranus Departure 24 (E+404) | 47 (E428d) |23 (E+394) | 35 (E+284)
Uranus-Neptune Midcourse 5 5 5 5
TOTALS
(Mean + 3 Sigma)* 190 m/sec | 428 m/sec |203 m/sec | 372 m/sec

*Based on Assumed Rayleigh Distributibn for AV Maneuvers With Full Correlation

Between Approach (k+l) Maneuver and Departure .(k) Maneuver.

**E is Time of Encounter,
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TABLE 35
SUMMARY OF GUIDANCE AV REQUiREMENTS
FOR THE GRAND TOUR MISSION

AV TOTAL (MEAN + 3 SIGMA)*

ORBIT DETERMINATION TRACKING CONDITIONS .
TRAJECTORY .
SELECTION EARTH-BASED RADAR ON-BOARD CELESTIAL -
|| e — *
1977-E 450 M/SEC 190 M/SEC
1977-1 1712 428 .
1978-E 354 203 L
19781 1010 372 :

*BASED ON ASSUMED RAYLEIGH DISTRIBUTION FOR AV MANEUVERS WITH PERFECT RES
CORRELATION BETWEEN APPROACH (K+I) MANEUVER AND DEPARTURE (K).MANEUVER. o
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significant advantage to on-board celestial tracking. In
this case, the Interior Ring Passages would require about
400 m/sec, and the Exterior Ring Passages would require only
about 200 m/sec.

The AV's listed in Table 3.5 are indicative of the
total propellant loading of a spacecraft. For example,
assuming a propellant specific impulse of 235 seconds, the
propellant loading corresponding to 190 m/sec is 8% of the
spacecraft weight, The propellant loading corresponding
to 1712 m/sec is 53%.

3.3.4 Guidance Accuracy

On the question of guidance accuracy, either
tracking mode should provide adequate control of the flyby
trajectories at each planet for purposes of the scientific
experiments to be carried out. Approach guidance accuracy
data for the 1977-1 Grand Tour is listed in Table 3.6.
Figures 3.14 to 3,17 illustrate the miss dispersions before
and after the approach maneuvers. The most severe guidance
accuracy requirement of any of the Grand Tour Missions occurs
at Saturn on the Interior Ring Passage trajectory. Here,
the spacecraft must pass between the surface and the inner
Ring boundary. Figure 3.16 shows that the 3¢ miss dispersion

for either tracking mode meets the accuracy requirement.
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TABLE 3.6

GUIDANCE ACCURACY FOR 1977 ~ | GRAND TOUR

EARTH-BASED RADAR

ON-BOARD CELESTIAL

9y bog 9 bog
1
JUPITER 260 km 840 km 500 km 470 km
SATURN® 90 880 370 390
uranus? 750 2800 180 190
NEPTUNE 2 13,000 12,000 13,000 12,000
1. Corresponds to Errors at Final Approach Maneuver.

Assumes No Neptune Apgroach Maneuver.
error can be reduced
correction on the Uranus - Neptune trajectory leg.

cost should be under 10 m/sec.
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If necessary, this

y a factor of 2 or 3 by making a late
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3.3.5 Guidance Analysis Summary

From the results of the guidance analysis, the
following summary remarks may be made:

1. Although the guidance requirements of the Grand
Tour Mission are much more severe than current planetary
missions, they are not beyond the capability of the present
or projected state-of-the-art., Multiple guidance maneuvers
are necessary to meet the mission requirements. For each
planetary swingby, one or two approach maneuvers and one
departure maneuver will suffice. A total of 8-10 maneuvers
would be required.

2, The orbit determination process, whether Earth-
based radar or on-board celestial tracking, must extent well
into the planetary approach phase at Saturn and particularly
at Uranus, From the standpoint of guidance accuracy, either
tracking mode should be adequate for purposes of the scientific
experiments to be carried out,

3. "Interior Ring Passage'" missions have a signifi-
cantly higher guidance AV requirement than "Exterior Ring
Passage' missions.

4, The largest AV contribution occurs at the Uranus
encounter., The importance of this result is that if a problem
of fuel depletion occurs at this late stage in flight, only
the Neptune encounter need be sacrificed. In other words,

for a multiple target mission, it is desirable that the
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large AV corrections occur late rather than early in the
flight in order to eunhance the probability of mission
success for a fixed fuel load.

5. In the interest of minimizing the guidance
AV requirements, a strong case is made for having an on-board
planet tracking capability. This is particularly true for
the most sensitive Interior Ring Passage mission. With on-
board tracking the largest total AV requirement is about
400 m/sec. This is to be compa.ed with 1700 m/sec if Earth-
based tracking alone were employed. However, if the 1978
Exterior Ring Passage mission were selected, the advantage
of on-board tracking is reduced somewhat. 1In this case the
AV requirements are about 200 m/sec for on~board tracking -

and 350 m/sec for Earth-based tracking. =
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4, EVALUATION OF THE SCIENTIFIC OBJECTIVES

The detailed trajectory and guidance analyses of
Sections 3 and 4 have clearly illustrated the possibility of
a multiple outer planet mission which utilizes gravity assist
at each target. The ultimate worth or usefulness of such a
mission depends on the value of the scientific data that is
obtained from measurements. Since the opportunities for a
Grand Tour mission encountering all four Jovian planets are
rare, occurring approximately every 179 years, it is of the
utmost importance that the most effective use is made of the pay-
load capabilities. Therefore it is highly desirable that the
selection of scientific experiments for the mission payload be
based on a systematic and logical methodology.

The selelection methodology, to be useful, should re-
sult in a relative "value" being placed on different scientific
experiments so that they can be ranked according to their value
of importance. This allows experiments and experiment packages
to be selected on the basis of highest values. The worth or
value of any experiment depends upon its measurement data, and
the percentage contribution that these measurements make toward
fulfilling the total scientific goals and objectives of explora-
tion for the outer planets. Hence, a complete methodlogy for
mission payload selection must also include a scheme for
evaluation and ordering of both the basic scilence objecttvés,

and the measurables that are of interest.
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Section 4.1 below is devoted to the methodology
that has been developed by ASC/IITRI to determine the science
objectives and measurables that are relevant to the overall
scientific goal of Examination of the Jovian Planets and
Interplanetary Space, The evaluation scheme and logic used
to obtain relative values for the scientific objectives is
discussed in Section 4.2, The methodology used to determine
the value and priority order of actual spacecraft instrumenta-
tion (based on their capability to fulfill the scientific
objectives) is covered in Section 5, along with the selection

criteria used to obtain mission payloads.

4.1 Methodology for Science Selection

The first step in the science evaluation is to
obtain a complete listing of the scientific objectives for
which measurement data is desirable. To insure completeness,
the method of approach starts with a definition of the broad
overall Goal of Exploration, which is then further subdivided

into subgoals called Exploration Regimes. The Exploration

Regimes are more specific than the Goal and also define the
scope encompassed by the original goal. The scope of the
Exploration Regime subgoals are then further clarified by an
additional level of detail which are called Regime Categories.

The Regime Categories are then defined by a natural breakdown
into Category Objectives, which in turn are subdivided into

16T RESEARCH INSTITUTE
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Objective Measurables. The Objective Measurables represent

the final level of detail and they are directly related to
measurable quantities (an example of an Objective Measurable
would be "to measure the NHq4 abundance in a planetary
atmosphere').

Figure 4.1 illustrates the systematic breakdown
of a Goal into succcessive levels of detail. It should be
emphasized that each level of breakdown as a whole is entirely
equivalent to its previous level, It is felt that the
methodology adopted there is general in nature and its logical
framework is valuable in that it reduces to a minimum any
possibility of overlooking important mission science
requirements.

The present study is concerned with a mission to
the four outer planets, and thus the Goal of Exploration can
be taken quite generally as: Examination of the Jovian
Planets and the Interplanetary Medium, The detailed break-
down of this goal is shown in Figure 4.2. The first 3 levels

of breakdown into Exploration Regimes, Regime Categories
and Category Objectives are shown in the illustration, while

the results for detailed Objective Measurables are given in
the Figures of Section 4.2. The breakdown shown in the
block diagram of Figure 4.2 was strongly influenced by the
recommendations of the Space Science Board of the National

Academy of Sciences (SSB 1966), in that the emphasis is
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placed on those factors of scientific exploration which have
a bearing on the crigin and evolution of the solar system and

on life,.

4,2 Evaluation of Science Objectives

The format that was developed in the previous
section to establish the consecutive levels of detail for the
exploration goal can be utilized as a basis for numerical
evaluation and priority ordering of the science objectives.

As mentioned previously, spacecraft instrumentation can then

be evaluated and given a priority that is based on the ability

of the instrument to fulfill the scientific requirements.

Numerical evaluation is accomplished by assigning
an arbitrary value (such as unity or 1000) to the Goal of
Exploraticn, and then determining the appropriate percentage
of this value that is contributed by each Exploration Regime.
Similarly, the worth of each individual Exploration Regime
can be apportioned among its Regime Categories in terms of
relative percentages. Continuing in this fashion, the
fractional contributions of the Category Objectiveés to their
individual Regime Categories can be determined. A complete
rationale thus resulto in which each level of the science
breakdown is evaluated in terms of the percentage value that
it contributes toward fulfilling the next higher level from
which it was derived.
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The evaluation results corresponding to the first
three levels of Figure 4.2 are shown in Figure 4.3. The
percentage values shown were obtained through discussion and
judgement by a group of scientists and consultants. The
Exploration Regime of "Atmospheres of Jovian Planets' was
judged to encumpass 307 of the total science attributable to
the Goal of Exploration because of the nature of the Jovian
planets with their massive atmospheres and the fact that it is
not known whether a truly definable surface even exists
(Michaux, 1967). The science value of Particles and Fields
was estimated to be about 227 of the overall goal because of
its importance in the origin and present evoluticaary state
of the outer planets, The remaining percentage contribution
to the overall Goal was divided equally among the other three
Exploration Regimes as shown in Figure 4.3.

The same procedure was used to estimate the
percentage contribution that the Regime Categories make towards

fulfilling the science requirements of the particular Explora-

i sy e e

tion Regimes from which they were derived. For example, the
first three Regime Categories listed in Figure 4.3 were judged
to respectively contribute 427, 337%, and 25% of the value
attributable to the Regime of Atmospheres of Jovian Planets. |
The higher percentage value given to Atmospheric Composition
was chosen on the basis of the important role that elemental,

molecular and isotopic abundances play in theories relevant

L]
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to the origin and evolution of the solar system (e.g.,
Cameron 1962). Similarly, Atmospheric Dynamics and Active
| Processes were judged slightly more important than Atmo-
spheric Structure (33% versus 257) because of the importance
4 of atmospheric circulation and weather phenomena in under-
T standing the past and present evolutionary processes which
shape a planet's history.
The breakdown and evaluation of each Regime Category

of Figure 4.3 are shown in Figures 4.4 through 4.17., These

1B figures illustrate the detailed breakdown into Category
= Objectives, which in turn are elucidated by their Objective

Measurables as shown. The percentage contribution of each

g“ Regime Category to its Exploration Regime (see Figure 4.3)

[

is reiterated in the first title block of each figure. The

remainder of each block diagram is devoted to the science it

details leading to the Objective Measurables, which are then

[
t

followed by estimates for relative worth. The percentages

21

given in parenthesis under the "Relative Value" column
represent the judgement value or worth of each Category
Objective relative to its Regime Category. This relative

™ value has been divided among the four outer planets in propor-

= tion to their individual importance in relation to the
T science data p.ctaining to each Category Objective and the
associated Objective Measurables. This planetary portion

of the relative Category Objective Value is given in the last
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column of the figures., The reasoning used in the value
judgements is discussed on the title pages opposite to each
of Figures 4.4 through 4.17 at the end of this section.

While the numerical percentages that have been
assigned in Figures 4.4 through 4.17 are subjective, it is
felt that they are fairly representative of judgement values
within the scientific community at the present time. In
addition, the systematic approach used readily allows a
1ogica1 mechanism for re-evaluation if new data or priorities
are brought to light. It was for this reason, in order to
facilitate any re-evaluation necessary, that the worth value
at each level of the science breakdown was stated in terms of
the percentage contribution relative to the level immediately
preceding it, in contrast to having the percentage contribu-
tion at each level related directly to the original Goal
of Exploration,

The summary results for the science evaluation
of Figures 4.3 through 4.17 are given in Table 4.1. The table
shows the computed value for each level of science relative
to the overall Goal of Exploration. For convenience, the total
goal value was taken to be equal to 1000. The number values
given represent the portion of the 1000 value that is attribu-
table to each Exploration Regime, Regime Category, and Cate-
gory Objective. As an example, the total value relative to
the overall goal for the Category Objective of Cloud Structure
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is found from the relative percentage values of Figures 4.3
and 4.6 to be given by (.50) x (.25) x (.30) x (1000) = 38.
The portion of each of the total Category Objective values
that is attributable to the individual planets is also tabu-
lated in Table 4.1.
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5. PAYLOAD SELECTION

The selection of actual instrumentation and the
consequent payload to be used for the multiple outer planet
mission could be based on a variety of criteria. Some of the
relevant factors include: scientific worth of the measurements,
national prestige, weight and/or power requirements ¢ £ the
instrument packages, economic considerations, and so forth,
Factors such as national prestige are difficult to assess,
and as a consequence the present study will be limited to a
certain extent. This limitation is self-imposed in that the
purpose of this investigation is to develop a spacecraft
instrument selection methodology based principally on the
science requirements, in an attempt to formulate a logical
scheme that can be used as a guide in determining the final
payload.

Section 5.1 of this Section is devoted to the
methodology used for the selection of instruments for the
flyby mission to the Jovian planecs. The final selection
criteria is based on the capability of a particular instrument
to fulfill the science objectives discussed in the previous
chapter, but subject to various constraints such as: the
requirement to increase present knowledge by an order of
magnitude, compatability of instruments with flyby missions,

weight requirements, and trajectory profile restrictions.
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Section 5.2 is devoted to a discussion of the types of
instrumentation that are considered and their role in
fulfilling the~science requirements. The actual worth
evaluation of measurement techniques for a 1977 mission
passing exterior to the rings of Saturn is covered in
Section 5.3, Section 5.4 concludes the chapter with a

,'esentation of the selected payloads.

5.1 Methodology for Payload Selection

The basic thesis of the present study is to outline
a logical framework through which spacecraft instrumentation
can be selected on tl: basis of their contributions to science.
The chart of Figr~e 5.1 illustrates the general flow of ideas
that has been developed to evaluate spacecraft instrumentation.
.As a first step, values of scientific objectives and measur-
ables relative to the overall exploration goal were established
in the previous chapter. The evaluation scheme sought to
place the major emphasis on those scientific objectives that
contributed the most to our understanding of the origin and
evolution of the solar system through examination of the
Jovian planets. Using these results as the basic foundation,
the next step is to determine what measurement techniques
would, when operating remotely in a flyby mode, be capable
of obtaining useful scientific data relative to the science

requirements,
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The applicable flyby measurement techniques that
were selected are shown in Table 5.1, along with a summary
presentation of the Category Objectives that were developed
from the original Goal of Exploration. It should be noted
that the measurement techniques are those which were judged
to be most effective in obtaining data relative to the
Objective Measurables that were presented for each Category
Objective level in Figures 4.4 through 4.17. The designation
of "Not Applicable'" under the right-hand column for Measurement
Techniques in Table 5.1 indicates those objectives for which
present remote sensing techniques were deemed inadequate to
increare our present knowledge significantly. Also, it should
be noted that only those techniques that were considered most
appropriate for a flyby mission to the outer planets have been
considered. As an example, while spectrometery is an applicable
technique for the Category Objective of Atmospheric Elemental
and Molecular Abundance, it was omitted because narrow band
photometry provides a simpler means of measurement and can-
provide adequate data for the initial mission to the Jovian
planets under consideration. The next generation of missions
would undoubtedly require the more sophisticated techniques
of spectrometry measurements, The Occulation Data technique
for this same Category Objective pertains only to the deter-
mination of the mean molecular weight (See Objective Measurables

Column of Figure 4.4). Similar reasoning and judgement was
T RESEARCH INSTITUTE
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used to select the other measurement techniques given in
Table 5.1.

The general techniques of Table 5.1 are, of course,
directly associated with actual or contemplated spacecraft
instrumentation. An understanding of the capabilities of
these instruments is required in order to assess their ability
to fulfill, either completely or partially, the desired science
objectives. Thus, the measurement techniques, along with a
knowledge of the remote sensing potential of the associated
spacecraft instruments provide a means for evaluating the
worth of a particular instrument. This worth is directly
related to that portion of the Objective Measurables of a
particular Category Objective (see Section 4) for which the
instrument yields useful scientific data. Of course, if a
particular measurement contributes data that applies to more
than one Category Objective level, the overall worth of the
instrument in question is increased accordingly. The ultimate
value and priorty of any individual instrument will thus depend
both on the magnitude of the pure science value of an Category
Objective (see Table 4.1) for which it yields data and on the
total number of Category Objectives for which it is applicable.
This summation feature of the present evaluation scheme provides
a highly desirable and logical approach for assessing the full
worth of an instrument, and contributes greatly towards the

effective utilization of spacecraft capabilities.
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Although the general evaluation scheme appears to
be more or less straight forward, there are several constraints
which must be considered and accounted for. First of all,
there is the fact that a certain amount of scientific data,
particularly in the case of Jupiter, is presently available.
Thus, for a spacecraft measurement to have full value, it
should yield information which increases knci7ledge beyond its
present extent. As a result, an evaluation contraint was
adopted which states that: 'for a particular instrument to
have value it must provide scientific data that is an order
of magnitude better than the data which is presently available."
This constraint, of course, is planet dependent and was treated
as such in the evaluations. Perhaps the major evaluation
variable is the influence of the trajectory prof les at each
planet. For example, the data from an instrument such as TV
which depends on factors such as ground resolution and reflected
sunlight, depends critically on the spacecraft altitude during
encounter as well as on the amount of time spent over the

daylight hemisphere.

The methodology for the final instrument evaluation
scheme which evolved is illustrated by Figure 5.2. The first
step indicates the science evaluation performed in the previous
chapter, in which the relative value of each science objective.
was determined for each planet. The next step was to select

the applicable flyby measurement techniques that are best
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suited for obtaining scientific data relative. to the Category
Objectives and their Objective Measurables, the results of
which were shown inFigure 5.1. Using this information, along
with a knowledge of the capabilities of the related spacecraft
instruments that are discussed in the next section (5.2), it
will be possible in Section 5.3 to estimate the maximum science
value that the data of any particular instrument could yield.
This step in the evaluation scheme is indicated “»y the second
block of Figure 5.2, and indicates the percentage of the
Category Objective values that a particular instrument could
fulfill under ideal conditions (assuming an increase of present
knowledge by an order of magnitude and an optimum trajectory
profile).

The third step in the evaluation scheme is to assess
the influence of the various constraints due to non-optimum
fly-by profiles, illumination conditions, resolution requirements,
etc., for each planet., The assessment is accomplished by round-
table discussion and analysis by a qualified group of scientists
and engineers. This step then, represented by the third block
of Figure 5.2, effectively results in the determination of a
"degradation factor'" at each planet and for each trajectory
opportunity under consideration (see Sections 2 and 3). Tue
final result is a new relative value for each instrument that
is less than or equal to the previous optimum value for the

case of ideal conditions. The detailed evaluation results for
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the 1977 opportunity with an exterior passuge around Saturn's
outer-most ring (designaved as: 1977-E) are given in Section
5.3.

The final phase in the payload selection iavolves
priority ordering of the spacecraft instruments. This can be
accomplished by introducing the weight of the spacecraft
instruments as an additional factor to be used in the selection
criteria, Since the total payload weight for a given space
vehicle is limited due to fuel requirements, etc., it is logical
that, given two instruments with the same relative value, the
instrument having the least weight should have first priority
on the spacecraft since this allows for the possibility of
additional instruments and hence a higher total wvalue for the
final payload (for a given payload weight). Thus using the
instrument specifications of Section 5.2, the value per unit

weight of each individual instrument can be determined. These

i i
preve S

results along with the recommended mission payloads are presented

in Section 5.4.

3
e

5.2 Description of Instrumentation - }

The following section describes briefly the types

1

of instrume..ts which were tabulated in Table 5.1 as possib-

ilities for a Grand Tour Mission. Several are very similar

sy

to existing spacecraft instruments, but some are beyond the

present state-of-the-art of spacecraft technology. gt
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In each case the mode of operation and any critical
facts concerning the instrument's inclusion in a mission payload
have been outlined. Also, a summary of the important specifi-

cations is presented in Table 5.2,

5.2.1 Meteoroid Detector - This instrument is of

the dielectric/acoustic type similar to that flown on the
Mariner spacecraft. It consists of an aliminum acoustic plate
with a crystal microphone on one side, and overcoated on both
sides with an evaporated dielectric capacitance. The dielectric
capacitors provide directional information of impacts and in
addition have a detecting threshold at least one order of
magnitude below that of the microphone. A threshold detection
limit of momentum < 10"6 dynes -sec is desired for the dielectric
capacitor and assuming particle velocities x 10 kms/sec, this
gives a mass detection threshold < 10712 gns,

A momentum spectrum is produced by pulse height
analysis of the acoustic impact signals, the range being x 10'5
dyne-sec to ~ 10°3 dyne sec.

The instrument could be operated continuously
throughout the mission, the mean rate of data acquisition
would be nominal except during passage through the Asteroid
Belt and in the region of Saturn's rings. At these times the
data rate required is ~ 1 bit/sec. Data from the detecto:
consists of an accumulated count of the totzl number of

microphone impacts, and for each impact a pulse height
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analysis of the microphone impulse, a direction indication

f—

from the capacitance detectors, and the total number of

capacitance impacts between each microphone impact.

‘C«-——~i

]

5.2.2 Magnetometer Package - The range of the

magnetic field strength to be measured during the mission

extends from ~ 1 gamma in the interplanetary medium to ~ 5

[ ~vann
. 3

gauss (1 gauss = 10° gamma) in the vicinity of Jupiter. To

._.,

cover this range two types of magnetometer are included.
For measurements of the interplanetary field,
which is approximétely 3 gamma, with an accuracy ~ 0.05
gamma, a Rubidium vapor magnetometer could be used. By
subjecting the vapor cell to fields produced by a system
of Helmholtz coils, both the magnitude and the direction
& of the interplanetary field can be measured in the range
. 0.05 - 100 gammas. For planetary field measurements, in
the range 100 gamma - 5 gauss, a triaxial fluxgate magneto- é
meter could be used.

The vapor magnetometer shoulé operate throughout the

3

mission at a measurement rate ~ 1 per min., corresponding to

LRPA

a data rate ~ 0.2 bits/sec. During planet encounters both

X
1

| P

instruments may be in use simultaneously, giving a data rate

~ 1 bit/sec.

s =3
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5.2.3 Cosmic Ray Detector - In order to monitor

the flux and the approximate energy distribution of cosmic
rays a simple charged particle telescope of the type flown

on IMP-1 and Mariner IV is desirable. This consists of three
gold-silicon barrier layers, surface area 2 cmz, spaced by
aluminum and platinum absorbers, producing an angle of
acceptance of 45°, By a combination of coincidence counting
and pulse height analysis of the signals from each barrier
layer, discrimination between protons, alpha particles and
electrons is obtained and the energy range of each type can

be estimated. Incident protons are detected within the energy
ranges 0.8 - 15 Mev, 15 - 80 Mev, and 80 - 190 Mev; alpha
particles within energy ranges 3 - 60 Mew, 60 - 280 Mev and

> 280 Mev. In addition electrons with energy > 0.2 Mev are

detected by the first barrier layer only.

5.2.4 Plasma Probe - A Faraday Cup type probe

was selected to measure the flux density and energy spectrum
of the positive particles of the Solar plasma. The present
threshold sensitivity of this type of instrument is 10-13
amp/cm?, corresponding to fluxes 5.10° parts/cm?/sec. This
is approximately two orders of magnitude lower than the
average flux at 1 AU and therefore eqial to the expected
flux at distances 10 AU, Thus the present threshold
sensitivity must be reduced by at least an order of magnitude
or the collecting area increased by an order of magnitude, to

be effective at distance > 10 AU on the Grand Tour Mission.
T RESEARCH INSTITUTE
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The energy range of analysis available with this
type of instrument is 10 eV to 10 keV, divided into 10
energy ranges. Measurements should be made in three directions
as in the Mariner IV instrument, in order to find the vector
of the Solar plasma. Taking the three measurements at
approximately 20 sec, intervals, yields a mean data rate

3 bits/sec which is continuous throughout the mission.

5.2.5 Ionization and Trapped Particle Package -

Three types of particle detectors are “ncluded in this package
to measure the solar cosmic rays and energetic electrons in the
interplanetary medium and to determine the spatial distribu-
tion, energy spectra and particle types of any trapped radia-
tion belts which may exist at any of the outer planets.

A total-ionization chamber, consisting of a thin
wall aluminum sphere filled with argon gas and containing a
quartz fiber electrometer, provides an integrated value for
the total amount of ionizing radiation. The wall thickness
would be designed to allow gas ionization only by electrons
with energy > 1 Mev, protons with energy > 10 Mev and alpha
particles with energy > 40 Mev. Further energy and particle
type discrimination is achieved using Silicon diode type
detectors and Geiger-Muller tubes, both of which detect
individual particle impacts.

T RESEARCH INSTITUTE
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The silicon surface barrier diode is essentially
insensitive to electrons and by amplitude discrimination of
the output pulse, at least two levels of proton detection
can be obtained. The proton energy ranges monitored can
therefore be designed as Mev < E < 10 Mev and < E < 4 Mev
using a single detector.

The energy range of the Geiger-Muller tube is
determined largely by the thickness and material of the
entrance window. By suitable choice of e entrance windows
of G-M tubes, electron energies > 40 keV and proton energies
> 0.5 Mev can be divided into several regionms.

The ionization chamber is essentially an omni-
directional detector except where it is shielded by the
spacecraft, the angles of acceptance of G.-M. tubes and Si
diode, however, are determined by the metal shielding in
front of the window. Thus angular distribution information
can be obtained by orientating the detecting in different
directions with respect to the stabilized spacecraft. Since
the detectors are inherently event counters, and will operate
continuously throughout the mission, the data rate will vary
over several orders of magnitude, due to solar flare events

and passage through any planetary radiation zones.

5.2.6 Polarization and Photometry Package -~

This instrument operates only at planetary encounters,

viewing the solar illuminated disk., If pointed at the
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planet center, it can provide albedo and polarization data
for almost all phase angles from 0-180°. Ten wide-band
wavelength regions are desired in order to cover the entire
UV-IR range. In addition, the incorporation of two polaroid
filters is needed to determine the polarization,

As visualized, the instrument consists of a single
photo-multiplier and collecting optics giving a spatial
resolution of 1/00 of the planetary disk., Spectral and
polarization discrimination is provided by two rotating
filter wheels operated in series. One wheel carries ten
wide band-pass filters and the other, two polaroid windows
and an open aperture. Thus each measurement consists of
30 data points, using all combinations of filters and windows.
Measurements are required at least every 5 change in phase
angle, and in order to obtain maximum possible coverage, a

total of 300 measurements are required at each planet.

5.2.7 IR-Microwave Radiometer - A radiometer with

a number of pass-bands in the wavelength range 2u - 1 mm
can provide data on the thermal emission of the planets. The ’
instrument operates during plamet encounter, on both the light
and dark sides, with a spatial resolution of 1/00 of the
planets disk. Five detection bands in the region 2u - 1 mm
would be satisfactory, each sensitive to 1/10°K changes in

the planetary emission.
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Complete thermal mapping of each planet is possible
during a flyby with 300 measurements, i.e., 1500 data
points, taken over a period < 3 hours. The instrument should
be bore-sighted with the TV cameras for visual identification,
and a facility to preprogram examination of a particular

interesting area on a planet would be desirable.

5.2.8 R.F, Detector -~ A radio frequency noise

detector operating in the wavelength range 1 - 10 meters is
required to indicate the presence of electrical discharges
within the planetary atmospheres. Although lightning discharges
have a peak energy output at -2100 meters, other noise sources
could predominant at wavelengths other than 1 - 10 meters.

At Jupiter in particular, the decameter radio bursts and the

absorption of an ionosphere (if present) preclude noise

detection at » > 10 meters and since the energy spectrum of g .
lightning discharges decreases rapidly with decreasing ;
wavelength, the most useful wavelength range is 1 - 10 meters. -Bf
529 Low Resolution Television - The instrument E@
envisioned here is similar to that flown on Mariner IV, -
consisting of a small Cassegrain reflecting telescope and iﬁi
an electrostatic vidicon camera., The field of view required ﬁ
is 1.5 deg., the number of lines per frame = 1000, and a
small nunl:er of interchangeable wide band filters would add ﬁ
spectral information to the images. Assuming values of - :
closest approach corresponding to the 1977 Exterior Ring i

L]
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passage, this would give spatial resolutions ranging from

- 500 kms to /50 kms at Jupiter and from 50 kms to

~ 5 kms (at the terminator) at Saturn, Uranus and Neptune.
This is a satisfactory resolution at the latter planets for
a study of cloud structure and atmospheric motion. However,
at Jupiter, although it is almost an order of magnitude
better than present ground-based resolution, it is not
sufficient for the particular measurables of concern. The
instrument is therefore given a lower value at Jupiter than
at Saturn, Uranus and Neptune.

Operation of the instrument begins when the whole
planet occupies an appreciable fraction of the frame size,
and such pictures can be used to determine the geometric
shape. A minimum of 30 pictures per planet are desired,

giving a data total ~ 2,108 bits/planet.

5.2.10 Abundance Photometers - Approximately

seven photomultiplier tubes and narrow band-pass filters

are needed to measure exospheric mission lines in the UV~
visual and hence obtain the exospheric abundance ratios.

The required field of view for each detector is ~5°, in

the direction perpendicular to the Sun~spacecraft line.

The filter band-passes would each be set at an expected
emission line of H, He, O, N, A, or Ne, one further detector
at a spectral position of no emission is required to

differentiate between scattered and emitted radiation.
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The instrument operates at a distance of ~/ 10 planet radii

before and after, and during this time .~ 100 data points/channel

would be taken.

A further three detectors, two with very narrow
band-passes filters at the spectral location of the isotopes
of H and He and one as a monitor of scattered light, will
provide information on the isotopic ratios of hydrogen and

helium in the exosphere,.

5.2,11 Occulation - Transmission of data from
the spacecraft during occulation can provide a single fre-
quency determination of the atmospheric occulation profile,
However, experimental data transmitted ir this time would be
lost, at least in part. Hence the method of obtaining
atmospheric and ionospheric occulation profiles will be to
use a multi-channel radio receiver on the spacecraft tuned
to at least two frequencies in the S-band region. This will
receive and record transmissions from Earth which are then
partially processed and retransmitted to Earth after planet
encounter. Since the atmospheres of the outer planets are
very thick, large changes of frequency, phase and amplitude
of the radio signals may be expected, therefore operation in
a transponder mode by the spacecraft would create very complex

data without any increase in scientific value.
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5.2.12 Narrow Band Absorption Photometers -

Two photomultipliers each with a narrow band-pass filter, can

be used to measure the absorption band of a particular atmos-

phereic neutral gas component. One filter should be positioned

at the wavelength of an absorption band of the component to
be detected and the other positioned in the continum adjacent
to the band. Five such pairs of detectors operating in the
UV to IR spectrum are required to measure absorptions in the
reflected solar radiation from the planet arising from CH,,
NH2, HZO’ H, and He for example. A further two pairs can be
included to measure absorption arising from life-associated
molecules (assuming such absorptions have been identified).
The instrument should be planet-centered, with a
spatial resolution < 1/10 disk and operate at encounter,
viewing the illuminated disk. A total of ~ 30 measurements
are needed and the total data acquired would be ~ 3000 bits.

5.2.13 Mass Spectrometer - A neutral mass

spectrometer uses electrostatic and magnetic deflection
techniques to separate ions created by ionization (of the
neutral atoms) within the instrument. The desired instrument
is a simipler version of the type flown on Explorer 17 for
the same purpose, when neutral density measurements were
made of He, O, N, 0,, Ny, and H,0. The instrument should

operate throughout the entire mission, taking measurements
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at a maximum rate of 1/min. and thus the data rate is <

0.1 bits/sec.

5.2.14 Airglow Photometers - Four photomultiplier

tubes and narrow band-pass filters in the UV-visible region

can be used to measure atmospheric airglow and auroral emission
on the dark side of the planets. The instrument should be
planet-centered, with a field of view ~ 5° and should operate
only beyond the terminator. A minimum of 30 data points per
detector are required to scan the planets dark side, giving

at minimum 1000 bits per planet.

5.2.15 High Resolution Television - This

instrument utilizes the same :ype of electrostatic vidicon
camera as the low resolution system but will include a larger
telescope, (estimated diameter > 10 cms). The field of view
required is ~ 0.15 deg and the camera should be located within
the frame of the low resolution system. With 1000 lines/€rame,
this gives a resolution at Jupiter ranging from ~ 50 km to

~ 5 km (at the terminator). At Saturn, Uranus and Neptune,
however, the spatial resolution ranges from ~ 5 km to ~ 500 km,
This is too small for the study of cloud structure and at-
mospheric motion and hence the value of the instrrment is
reduced at these planets. A minimum of one high resolution
image for each low resolution image is required; the total
amount of data for this camera is then ~ 2 x 108 bits per
planet.
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5.2.16 Radar - An active radar system comprising
a transmitter and receiver on the spacecraft is required to
locate particulate matter in the planetary atmosphere or a
surface below the atmosphere. A minimum of two wavelengths
are desirable in the range of 10 cm to 1 meter. The instru-
ment can operate on both light and dark sides at a measure-
nment rate of ~ 1 pulse/min. The present state of knowledge
of the Outer Planets makes this very much a search mode
experiment since even the existence of planet surfaces is
not proven. At the present time there does not appear to
be an active radar system with reasonable power and weight

specificatiuns to perform this function.

5.2.17 High Resolution Radiometer - A high

resolution radiometer operating at several wavelengths in
the range 24 - 1 mm with a spatial resolution ~ 10 km is
judged to be capable of mapping local thermal cells in the
planetary atmospheres. With an angular resolution ~ 0.005
deg., the spatial resolution at Jupiter is > 100 kms and at
Saturn, Uranus and Neptune, > 10 kms. Thus the value of the
instrument, in achieving the required measurement, is low at
Jupiter and high at the other planets.

The instrument can be boresighted with the high
resolution television but it should also be capable of making
several spaced measurements per TV picture. Also, the radio-
meter will be operated on both light and dark sides of the

planet, a data total ~ 109 bits/planet.
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5.3 Evaluation of Measurement Techniques

The detailed worth evaluation of applicable flyby
instruments is presented in this section using the evaluation
m.:thodology that was outlined in Section 5.1 along with the
instrument specifications of Section 5.2. The relative worth
of any instrument depends principally on its ability to meet
measurement specifications at a given planet for a given
trajectory. In order to simplify the presentation, the
detailed results will be presented only for the 1977-E
opportunity discussed in Sections 2 and 3. The relevance to
the other mission opportunities will be briefly discussed
in the next section.

The results oi the evaluation are summarized in
Tables 5.3 through 5.8. The first two columms of the tables
reiterate the science evaluation of Section 4 for the relevant
Regime Categories and their Category Objectives. Those
Category Objectives for which no applicable flyby measurement
technique was indicated in Table 5.1 have been omitted from

further consideration. The third column titled "Applicable
Flyby Instrument' lists the instruments which were judged
most appropriate for an initial mission to the Jovian planets,
the selection of which was based on the discussions of the §

previous sections,
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In Tables 5.3 through 5.8, the column indicating the
Maximum Value (%) of Instrument Relative to Objective gives
the judgment as to what percentage of the total Category
Objective value that a particular instrument could possibly
fulfill assuming ideal conditions with an optimum trajectory
profile. It should be noted that in most cases the indicated
instrument is of such a nature that its scientific data
pertains only to some fraction or portion of the total number
of Objective Measurables which constitute the Category
Objective as listed in the second colummn, Thus in all cases,
no one particular instrument has been judged capable of
fulfilling 100% of the science requirement. Iu fact, in
most cases, even the use of several different instruments
for the purpose of obtaining data on the measurables of a
particular Category Objective was not judged as sufficient
to yield a 1007 relative value. The reason for this is that
compleéé fulfillment requires the use of probes and in situ
measurements in addition to remote sensing data.

The final columns in the tables give the adjusted
value for each instrument at each planetary target. This
adjusted value corresponds to the 1977-E trajectory profiles
that were presented in Section 2. For those cases in which
the compatability between the instrument and the trajectory
profile at a particular planet was judged to be sufficiently
close to an ideal situation, the relative value of the

instrument at this point was taken to b¢ equal to the maximum
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value of the instrument given in the fourth column. For
those cases in which the interrelation was uut judged to
be satisfactory, the instrument value was reduced accordingly
to a percentagé number somewhat less than the maximum
attainable value. .

There were many factors which entered into the value
judgments associated with the last four columns of Tables 5.3
through 5.8. The trajectory profile data given in Section 2
was perhaps the most critical (see Figures 2.27 through 2.39).
The encounter trajectories for the 1977-E opportunity are given
respectively for Jupiter, Saturn, Uranus and Neptune in
Figures 2.27 through 2.30. These profiles provide data on
the distance from the spacecraft to the planet, as well as
indicating the time differential (in hours) between periapse
and a given position on the trajectory path, Figure 2.31 is
a plot of the time differential to periapse as a function of :
true anomaly for each of the Jovian planets. This data was
used in assessing the degree of commonality of the various §
instruments in regards to the total data acquisition times i
available at each of the Jovian planets. A plot of altitude :
versus true anomaly is shown in Figure 2.32, and was used to
determine the surface resolutions attainable with individual
instruments. The sun elevation profiles of Figure 2.33 was
useful in assessing the¢ worth of TV systems and other instru-
ments requiring illumination. Similarly the ground speed
traces of the sub-satellite point (see Figure 2.34) were

IIT RESEARCH INSTITUTE
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requlired to determine whether or not those instruments,
sensitive to relative motion, could t: used at each of the
outer planets. The data of Figure 2,35 gives the illuminated
area that is visible, and hence the total coverage available
from spacecraft TV and related instruments, Finally, the
ground traces as a function of latitude and longitude (see
Figures 2,36 to 2.39) give the planetary coverage available
when data is obtained only at the sub-satellite point.

The profile data discussed above was used along
with other information, such as the planetary black-body
emission curves of Figure 5.3 and the curves for the incident
solar radiation to the upper atmosphere (from which the
reflected flux from the planet can be estimated by using
published values for the albedo) shown in Figure 5.4, to
determine the effectiveness of each instrument in relation
to its capability to detect the existing radiation levels,
providé adequate spatial resolution, etc.

As a further illustration, the criteria used for
judging whether an instrument was capable of providing adequate
spatial resolution was based on the fact that present Earth-
based telescopes can provide a resolution of about 0.1" of
arc in the UV and visual wavelength regions. This corresponds-
to a linear resolution of approximately 300 km on Jupiter,
620 kﬁ on Saturn, 1300 km on Uranus, and 2100 km on Neptune.
Thus for those instruments (operating in the UV and visual
range) dependent on spatial resolution, the maximum relative
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value was permissible only if the obtainable resolution was
increased by an order of magnitude (i.e., 30, 60, 130, and
210 km resolution respectively for Jupiter, Saturn, Uranus,
and Neptune). For the IR and p-wave regions, the desired
resolutions were taken to be about a factor of 10 greater
than the limits given above,

The reasoning used in the judgments for the planetary
value of the instruments is discussed briefly on the title
pages accompanying each of Tables 5.3 through 5.8. It should
be emphasized that the percentage value assigned to each
instrument is relative to the Category Objective value as

was apportioned to the individual planet in Table 4.1,

5.4 Instrument Values

The instrument evaluation results of the previous
sections are summarized in Table 5.9. The first column lists
the flyby instruments that were considered in Tables 5.3
through 5.8. These instruments are ordered according to
their "value per unit weight." The second and third columns
of Table 5.9 give respectively a brief description of each ;i
instrument and its weight. This data was drawn from Section

5.2 as well as from published literature concerning spacecraft

~ ingtrumentation,
1
= The "Values" columns of Table 5.9 represent the total {1
value (in arbitrary units) of each instrument at each planet ?
| 11T RESEARCH INSTITUTE ;
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relative to the overall joal of Examination of the Jovian
Planets and Interplanetary Space. The values given under
each planetary heading indicate the additive worth of each
particular instrument at that planet. In other words, the
worth values are obtained by summing the individual contri-
butions of an instrument over all of the Category Objectives
to which that particular instrument contributed scientific
data. Thus for example, at Jupiter, the meteocoid detector
had an estimated capability of fulfilling 10% of the total
worth attributable to the Category Objective of (planetary)
Particles (see Table 5.5), 75% of the worth attributable to
Meteoroids and 107 of the worth attributable to Asteroids
(see Table 5.8). From the basic science evaluation that
was summarized in Table 4.1, it is seen that :-hese Category
Objectives had values relative to the overall goal of 12,
7.3 dnd 19 respectively at Jupiter. The additive worth of

the meteoroid detector is thus given by

(.1)(12) + (.75)(7.3) + (.1)(19) ~ 8.6
which when multiplied by a factor of 10 (for convenience, all
worth values in Table 5.9 have been multiplied by a factor
of 10) corresponds to the tabulated result,

It might be noted that, since the original goal
was arbitrarily based on a value of 1000 and also the values
in Table 5.9 have been multiplied by the factor 10, the worth

values given in Table 5.9 are uniformly a factor of 100.
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greater than their actual numerical percentage contribution
toward the overall Goal of Exploration. The last "Value
column of Table 5.9 gives the total instrument value when
summed over all planets. Thus, for example, it is seen that
a meteoroid detector is capable of yielding scientific data
which contributes about 2.8% of the total knowledge that is
desired about the outer portions of the solar system. A
magnetometer package, on the other hand, could yield 7.6%
of all desired data if operative during the complete mission.
The corresponding percentages for the other instruments are
evident from Table 5.9,

As indicated in the previous sections, the economics
of spaceflight and the usual restrictions on the total per-
missible payload weight indicate that it is desirable to
include instrument weights as a factor in making payload
selections. For this reason, the value per unit weight of
each instrument type has been calculated using the '"total
value" and the "weight" indicated in the third column. These
results are given in the value/weight column of Table 5.9,
and the order of the instrument listing in the table have
been based on these ratios, The final column of Table 5.9
is a tabulation of the Category Objectives to which instru-
ments contributed scientific data (see also Tables 5.3
through 5.¢). An exception to the above should be noted,
in that the value contributions of the Absorption UV-IR
Photometer to the Zategory Objectives of Pre-Life Molecules
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and Life Associated Substances (see Table 5.7) have been
omitted from the computations leading to Table 5.9. The
reason for this omission was based on the fact that there

are no presently known absorption lines from which measur-
ables such as proteins, amino acids and other complex organic
molecules could definitely be identified. If future research
provides a means of interpretating these complex spectra when
superimposed with the other absorptiosn spectra of the atmos-
pheric contituents, the estimated worth of the absorption
photometer would have to be reevaluated.

The major results of the instrument evaluation can
be presented in graphical form as shown in Figure 5.5. This
graph represents the accumulative scientific value, that is
obtained by adding successive instruments to the overall
payload, as a function of payload weight. The order for
addiig each acditional instrument was based on the priority ;
selection in accordance with the highest value/weight as
given in Table 5.9. Since the slope of each segment of the

curve is equal to the value per unit weight of the indicated

o -

instruments, the greatest increase in the payload science
value occurs for those initial instruments of highest value
per unit weight. {
Also shown in Figure 5.5 are the payload values
for hypothetical missions which terminate first at Jupiter,
then Satu:n, and also the case for the first three Jovian
planets. These curves illustrate clearly the added science ;
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value between successive encounters is approximately equal.
This results from the 1igh degree of commonality between the
selected flyby instruments, i.e., the majority of the instru-
ments are of comparative importance at each target planet,

It is clear from Figure 5.5. that, given a fixed
payload weight, the instrument package can be readily selected
which yields the highest scientific value. Thus for example,
for an optimum 26 1lb payload would contain only particles and
fields experiments (i.e., meteoroid detector, magnetometer
package, cosmic'ray detector, plasma probe, and the ion and
trapped particle package). An optimum 60 1b payload would
permit inclusion of a low resolution TV system as a part of
its priority instruments. Further discussion associated with
payload selections will be covered in Section 6.

The results presented above pertain specifically
to the 1977-E mission opportunity to the Jovian planets. It
is appropriate at this stage to discuss the evaluation results
for the other opportunities that were analyzed in Section 2, é
Changes in the mission opportunities affect only the final |
stage of the evaluation scheme in which the influence of the
trajectory profiles at each planet was analyzed. Thus,
reevaluation for the 1977-1 (where "I" denotes passage
interior to Saturn's rings), 1978-1, and 1978-E opportunities :
involves only the planetary instrument percentage values in the L
last four columns of Tables 5.3 through 5.8. A re-asséssmenc f

of the instrument weights given in Table 5.9 is also required
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in some cases in order to compensate for such things as
telescopic lens that are necessary to meet the desired
constraints on spatial resolution.

A comparison of the 1977-I and 1978-1 trajectory
profiles showed that the major difference is that the miss
distances are almost uniformly greater at each planet for
the 1978 opportunity than they were for 1977. Thus the
relative instrument value judgements are approximately the
same for both cases, although the weights of some instruments
(such as TV) must be increased to obtain adequate resolution.
On the other hand, a comparison of the 1977-1 and 1977-E
opportunities showed that the approach distances to the
planets are less at each target for the case of the interior
ring passage. This change is not particularly significant,
except for the case of Saturn, as can be seen from Figures

5.6 and 5,7, 1t -should be noted that it is only on the night-

side of Saturn that a very close approach to the surface occurs.

Since most of the instruments (whose data and resolution are
dependent on spacecraft altitude) operate principally on the
sunlit side, the trajectory profiles for Saturn, Uranus, aind
Neptune in Figure 5.7 are approximately equivalent for the
purposes of instrument evaluation. Therefore the relative
changes in the spacecraft profiles, between the 1977-E and
1977-1 opportunities, are of the same order of magnitude for

all of the outer planets. Also the corresponding instrument
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weights are altered only by a small percentage factor between
the 1977-E and 1977-1 opportunities,

The net result is that the evaluation results
presented for the 1977-E opportunity are also essentially
valid for the 1977-1 passage. Although the instrument
evaluation numbers and the weights are altered slightly in
some cases, the general trends and priority orders that were
given in Table 5.3 and Figure 5.5 are still valid. The same
conclusions apply for a comparison between the 1978-E and
1978-1 opportunities. A comparison between a 1977 and 1978
opportunity results in higher weights for many of the
instruments in the 1978 mission. However, the general
priority trends remain relatively unchanged, in particular
the particles and fields instruments retain their highest
rank. The remaining possibility involves a trajectory passing
through the Cassini gap in Saturn's rings. The evaluation
results for this case were intermediate between those for the
interior and exterior ring passages. Hdwever, this particular
mission opportunity was not seriously considered bacause of
the uncertain density of particulates within the gap and their
éffect on spacecraft survival,

A capsule summary of the accomplishments and
conclusions obtained in Sections 4 and 5 can be stated as

follows:

1, An effective methodology was developed
which resulted in a logical evaluation
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scheme for both the pure science objectives
and the instrument payloads.

The evaluation of the science objectives
resulted in the highest priority values
being attributed to objectives associated
with the atmospheres of the Jovian planets.

In contrast, the worth evaluation of
applicable flyby instruments gave the
highest values to particles and fields
experiments. This copclusion was a direct
result of the commonality feature of these
instruments, in that they contribute
knowledge towarcs Planctary Particles &
Fields, as well as to Intexznlanetary
Medium objectives.

The scientific value of the instrument
payloads per planet are of approximately

.equal worth, 1In other words, the additional

increment of science value gained as each
target is encountered during the outer
planet mission is roughly the same for
each of the planets, This is true for all
payload weights,

The exterior and interior Saturn ring
passage opportunities for a given year
yield trajectory profiles that have

nearly equal payload values. Therefore,

a choice between the 1977-1 and 1977-E
opportunities will depend principally

on a tradeoff between guidance require-
ments and spacecraft survival probabilities.
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6. The relative instrument values are
approximately the same for 1978 oppor-
tunities as in 1977, although the instru-
ment weights tend to be slightly higher
in 1978. Thus the 1977 opportunities

- may be favored to those in 1978,
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6. Mission Requirements for the Grand Tour

The previous sections have dealt with the three
most important problem areas of the Grand Tour Mission,
namely trajectory selection, guidance, and experiment evalua-
tion. This section of the report will combine the results of
these analyses together with considerations of other, less
critical, subsystems, into an assessment of the overall
spacecraft weight and the launch vehicle requirements for

the mission.

6.1 Payload Selections

The evaluation of scientific experiments, and their
ordering in terms of value per pound, as disqpssed in Section
5, allows scientific payloads to be selected on the basis of
their contribution to the mission. It can be ncted from the
experimental value curves of Figure 5.5 (page 5 ) that the
scientific experiments fall into two major categories. There
are a group of particles and field experiments, with high value
per lb, which constitute the 'steep' part of the curve and
there is the "plateau" region of the curve where little value
is added per additional pound of experiments. It is the first
group of experiments which has been used to define the "minimum"
payload for the Grand Tour Mission.

Table 6.1 shows the division of the experiments into
four payloads., The term "minimum" is used in the sense that

it is felt that any h%sgﬁge}g%ﬁfﬁﬂﬁgs'%?.experimenté would

228




“MED IUM" “SMALL" "MINIMUM"

"LARGE"

WEIGHT POWER DATA
EXPER IMENT LBS WATTS BITS
MICROMETEOROID DETECTOR 2 0.4 NOMINAL
MAGNETOMETER PACKAGE i0 8 | bps (CONT.)
COSMIC RAY DETECTOR 2.5 0.6 NOMINAL
PLASMA PROBE 6.5 3.0 3 bps (CONT.)
21 12 ~5 bps N
TRAPPED PARTICLE DETECTOR 5 1.0 10,000 bpp*
POLARIMETER - PHOTOMETER 5 2 100,000
IR, s WAVE RADIOMETER 10 5 10, 000
RF DETECTOR 5 5 10,000
46 25 5 bps + 105 bpp
#
LOW RES. TV 10 10 2 x 108bpp
NARROW UV PHOTOMETERS 15 5 10,000
OCCULTATION (DUAL FREQU) 20 10 10, 000
ABSORPTION PHOTOMETERS 28 2 i, 000
MASS SPECTROMETER 10 5 NOMINAL
AIRGLOW PHOTOMETERS 8 5 10,000
137 57 5bps+ 2 x 108 bpp |
HIGH RES. TV 30 20 2 x 108 bpp -
R&DAR (10 cm) 20 20 1,000 -
HIGH RES. IR RADIOMETER 20 10 I x 108 R
207 112 5bps + 4 x 108 bpp -

*bpp = BITS PER PLANET

=)

TABLE 6. | SELECTED SCIENCE PAYLOADS (ACCUMULATIVE) ﬁ%
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render the mission not worthwhile. A nominal bit rate of five
bit per second will be adequate to transmit all the data from
these experiments. This payload derives much of its value
from the interplanetary phase of the mission. This is shown
in Figure 6.1 where there is only a small step increase in
value as each planet is intercepted. 1In truth, this minimum
payload would barely justify the complexity of the Grand Tour
Mission.

By the ac “tion of the next four experiments a
"small" payload is derived. These four experiments are all
planetary oriented and will provide much useful data on each
of the outer planets. The position at which to draw the line
between one payload and another is never quite clear and has
been guided here by consideration of the required data bit rate.
Without a TV system, the small payload achieves considerable
value’as seen in Figure 6.1 but its data requirement is still
relatively nominal, i.e., five bits per second throughout the

mission and a total of 10°

bits for the planetary intercepts.
The experiment next in importance is indeed the TV system and

it adds some 2 x 108 bics at each planetary encounter. However
it is also possible to include the next five experiments as
well, without adding markedly to the power requirements or bit
rate. Therefore the "medium'" payload contains the first
fourteen experiments and stops just short of the high zesolution
TV system. The "large" payload contains all the experiments

considered in this study. In power and data, it has
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approximately twice the requirements of the medium payload.
It is heavily planet oriented and frow Figure 6.1 it can be

seen to make a major scientific contribution at each target.

6.2 Typical Spacecraft Weights

On the basis of selected payloads and the overall
guidance requirements, an attempt has been made to estimate
the total spacecraft weight to perform the Grand Tour Mission.
This leads directly to an estimate of the launch vehicle
requirements for the mission. The weight estimates which
follow are not based on any specific spacecraft design,
conceptual or otherwise. They are extrapolations, on a
subsystem weight bgsis, from other more detailed engineering
studies (Goddard 1967, General Dynamics 1966, TRW 1966)
and using the Mariner '67 as the technclogy base.

There are a range of Grand Tour Mission which have
different requirements and hence different spacecraft weights.
There are four selected trajectories with their associated,
and quite distinct, midcourse velocity requirements depending
on whether a planet seeker or radar tracking is used. There ]
are four selected payloads each with its own power and data
requirements. Rather than select a typical example, a matrix %
of information is presented which will bound all the variablas i
of the Grand Tour Mission. Table 6.2 shows the way in which s
the spacecraft weight totals have been built up. This applies {
to the 1977 E opportunity and includes minimum and medium
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payloads with either a planet tracker or radar tracking for
guidance. The science payload weights are taken directly
from Table 6.1.

The communications requirements are calculated
somewhat as a compromise. In all cases it is necessary to
accommodate the minimum data rate from the furthest target
(Neptune) plus sufficient in excess to transmit the planetary
data after intercept within a reasonable time. For the "minimum"
payload, rates of 20, 24, 13, and 5 bits per second, at the
respective planets, are achieved by utilizing an 8 foot diameter
spacecraft antenna and a 10/20 watt transmitter. The system ;
uses 20 watts and the 85' DSIF combination out to Jupiter, 10
wafts and the 210' DSIF out to Saturn, and 20 wattg’and the
210' DSIF beyond Saturn. The excess capability at/Jupiter,
Uranus, and Saturn would make this same communication system
suitable for the ''small' payload as well. It would then only
take approximately 2 hours to transmit the 10° bits of planetary
data at Jupiter and Saturn, about four hours at Uranus, and
about eight hours at Neptune.

The "medium" payload requires a larger communications
capébility and uses a 20/50 watt transmitter with an 8 foot
diameter spacecraft antemna. The 210' DSIF dish and the full

50 watts of power will be required for the data at each

'1ptercept, yielding rates of 500, 125, 30, and 13 bits per

second, respectively., After intercept with Neptune, it would

take some two months to transmit all the data at the rate of

417 RESEARCH INSTITUTE
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13 bits per second. This is probably inadequate and consider-
ation should be given to increasing the spacecraft antenna
diameter beyond 8 feet or to increasing the spacecraft trans-
mitter power. For the interplanetary data the 20 watt transmit-
ter can be used with the 85' DSIF as far as 7 Au and the 50
watt transmitter can be used with the 85' DSIF as far as
Saturn. This same transmitting system can be used for the
large payload as well but will require about twice the time H
to transmit all the data after each planetary intercept. ~
The power cequirements for the spacecraft have been
assumed as 125 and 250 watts respectively in Table 6.1. These
should be adequate to supply all the experimental requirements,
the communications system, and the engineering functions of M
the spacecraft. Slightly larger powers will probably be -
required for the small and large payloads and values of 150
and 300 watts respectively have been used. 1In all cases a P
R.T.G. system was assumed as the sole power supply and specific
weights of one pound per watt were used to represent the total - ;
subsystem weight including shielding and power conditioning.
The guidance requirements are different for each
opportunity, for each payload weight, and for each tracking
system. Table 6.3 shows the total guidance subsystem weight

| Laege )

estimates for all mission options. 1In all cases the majority

of the weight is invested in the propulsion system. An Isp

Bz

of 235 seconds has been used in all the calculations and the

=)

propulsive mags fractions have been taken from Section IV-F-3
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of the Launch Vehicle Estimating Factors (1968). A tracking
subsystem weight of 30 pounds was assumed for the planet
tracker system and of 10 pounds for the earth based radar
tracking system and are included in the table. The overall
weight penalty with radar tracking particularly for the inner
ring passage missions, is clearly demonstrated in Table 6.3.

The attitude control system weights are a function
of the moment of inertia of the spacecraft and hence of its
mass and size. Table 6.4 shows the total attjtude control
subsystem weight estimates (including propellant) for each
of the mission options. They are all based on a mission
duration of 10 years using nitrogen cold gas in a hard limit
cycle, three axis system. The weigﬁt estimates are based on
the Mariner IV technology. No special contingency has been
allowed for passage through the asteroid belt.

The data storage and sequencer subsystem weights
are again based on Mariner technology. The subsystem weight
for the minimum payload has been estimated at 100 pounds.
This has been increased for the larger payloads because of
the increased storage requirement and because of the added
complexity of the experimental sequences. Weights of 120,
150, and 200 pounds have been. allowed for the 'small",
"medium" and "large' payloads respectively.

The thermal control subsystem has been assumed to
be largely passive. Since an RTG system is included, it is
assumed that it will be possible to pipe its excess heat
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output to most parts of the spacecraft. Nominal weight
allowances of 40, 50, 60, and 80 pounds have been allowed

for the thermal control subsystem weight for the four payloads
considered. These weights have been assumed not to vary with
the opportunity.

The spacecraft's structure has been assumed to
absorb 10% of the spacecraft weight. In addition 10% has
been added for miscellaneous contigencies which must include
redundancy to permit adequate reliability for the 10 year
mission duration.

The total spacecraft weight estimates are given in
Table 6.5 for all the mission options. They range from 605
1bs for a "minimum' payload mission using the 1977 E
opportunity with an onboard planet tracker, to 4900 1lbs for
the "large" payload mission using the 1977 I opportunity with
radar, tracking. Table 6.5 also shows the capabilities of
four launch vehicles for comparison with the estimated total
spaczcraft weights. The SLV3X-Center-TE364 can be used only
for the 1977 E mission and then its 750 1b capability will
only deliver the "minimum" and "small" payloads, with onboard
tracking. A 5 segment Titan III D-Centaur is not adequate
for the interior ring passage missions. It can be used for
all the 1977 exterior opportunities with onboard tracking,
and for "medium" payloads with radar tracking. For the 1978
exterior missions, only "medium" and ''small" payloads are

possible for onboard and radar tracking respectively. The
11T RESEARCH INSTITUTE
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addition of a burner II stage makes the Titan I1I D-Centaur-
Burner II launch vehicle adequate for all exterior ring
passages. It can also support interior missions in 1977
and 1978 with "small" payloads provided onboard tracking
is used., Finally for gomparison a seven segment Titan III F-
Centaur launch vehicle capability is included but it offers
little advantage over the Titan III D-Centaur-Burner II.

If it is contemplated that missions will be
attempted at both the 1977 and 1978 opportunities with a
common spacecraft design and launch vehicle, then the possiodle
options are quite restricted, These are shown in Table 6.6.
The smallesc acceptable launch vehicle is a Titan III-Centaur
and this will only launch a "medium" payload with onboard
tracking, or a "small" payload using radar. The Titan III-D
Centaur-Burner II will launch all exterior missions and '"small"
interior missions with onboard tracking. It should however
be ré;emphasized that these conclusions are based on weight
estimates that are indeed just estimates and have not been

derived from a specific spacecraft conceptual design study.
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7. CONCLUSIONS

In advance of a discussion of the conclusions of this
study, it is important to reiterate the purpose of the study,
which was to provide preliminary data on the major problem
areas associated with the Grand Tour Mission concept. The
study has therefore concentrated on two major problem areas,
guidance and scientific compatability. 1In both instances it
has been shown that the requirements are tractable and that
the mission warrants detailed definition and conceptual design
effort,

The recommended launch years for the Grand Tour
Mission are 1977 and 1978. The alignment of the planets will
make five launch years possible (1976 to 1980), and at each
opportunity it is possible to go inside or outside the rings
of Saturn. A brief analysis has shown a potentially high
collision rate if the spacecraft penetrates the rings of
Saturn. The 1976 opportunity has been rejected from detailed
consideration because it involves a close passage of Jupiter
with penetration of the radiation belts. The 1979 and 1980
opportunitieé have been rejected because of the high launch
energy and the exceedingly large miss distance at Jupiter. -

The guidance velocity requirements depend critically
on the spacecraft tracking system which is used, on the close-
ness of passing Saturn, and on the launch opportunity. The

exterior ring passages are less demanding than the interior
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passages by a factor of three for radar tracking and a factor
of two for on-board planet tracking. From a guidance stand-
point the 1977 and 1978 exterior missions are recommended.
Using an on-board tracker the total velocity requirements, for
the 8 midcourse corrections are 190 meters per second and 203
meters per second respectively.

The study has demonstrated the scientific compatabil-
ity of all four outer planets. There is a clear need for know-
ledge of all four targets. Payloads have been assembled, which
will contribute significant data on each of the target planets.
The minimum useful payload which ... been derived obtains its
value from particles and fields measurements mainly in inter-
planetary space but also to some extent at each target, Its
weight is about 20 pounds,. Three other typical payloads are
developed and all are able to contribute at Jupiter, éaturn,
Uranus and Neptune approximately equally, and each éan be
designed to retain their value and compatability for either
interior or exterior passages. The television system has
been found toact as a breakpoint in the payload selection.

Its very high data reqﬁirements mean that it essentially
controls the communications subsystem requirements and there~
fore to some extent al#o the power, guidance, and attitude
control subsystem weights., Its inclusion'in the payload means
that many; less demanding experiments can also be included
without a ;ignificant impact on the overall subsystem
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requirements, '"Medium" payload weights in the range of
60 to 130 pounds are recommended,

The total spacecraft weights required for all mission
options are in the range from 600 to 4000 lbs. The exterior
ring passages are strongly recommended and the appropriate
weight range for these is reduced to 600 to 2000 1lbs for
science payload weights between 20 and 200 lbs. An on-board
planet tracker is recommended as the most effective tracking
system, further reducing the upper limit of the weight range
to 1500 1bs. However, for the exterior passages the differences
are such that radar could be used as a backup and only the
Neptune intercept would be lost if the on-board system failed.

If it is important that the same spacecraft design
and launch vehicle be possible at both'opportunities; the
minimum vehicle is a TitanAIII-D-Centaur which has a capability
of 1900 1bs in 1977 and 1250 1bs in 1978 for the exterior ring
passages.

The recommended missions would utilize the 1977
and 1978 opportunities, use an on-board planet tracker, have
a payload in the region of 100 lbs weight, and require a total
spacecraft weight of some 1200 lbs. In the light of the
apparent tractability of all the suﬁsystem requirements for
the Grand Tour Mission, it is strongly recommended that
conceptual spacecraft designs be developed and that the com-
plete feasibility of the mission be verified.
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APPENDIX A

TARGETING OF INTEGRATED TRAJECTORIES
FOR THE MULTIPLE OUTER PLANET MISSION STUDY
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USING THE N-BODY CODE
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APPENDIX A
TARGETIN.: OF INTEGRATED TRAJECTORIES

FOR THE MULYTIPLE OUTER PLANET MISSION STUDY
USIHC THE N-BODY CODE

The purpose of this appendix is to expand upon the
description of the n-body targeting analysis presented in
the text of the report aad to present some of the results
of the n-body targeting progrem.

The n-body targeting code is used to generate integrated
trajectories between Earth and a specifiecd target planet. For
the multiple outer planet mission study the target planet was
Neptune with the trajectdry passing close to Jupiter, Saturn
and Uranus. An integrated trajectory serves two purposes,

1) to generate sensitivity matrices for the guidance analysis
and 2) to check the accuracy of conic approximations to the
trajectory. |

Targeting is basically the solution of a two point
boundary value problem, where desired final conditions and
approximate initial conditions are obtained from the computer
program SPARC which ﬁrovides conic interplanetary and planetary
flyby trajectories. The program used for the numerical
integrarion of the equations of motion was the Lewis'Research
Center's N-Body code, modified to do both the targeting and

the guidance analysis.
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The following preliminary material will be presented

before the actual method of targeting is discussed:

1. The coordinate systems used at Earth :ud at
the other planets.

2. The targeting variables used at Earth
and at the other planets,

3. The constraints placed upon the targeting

variables.

At Earth the reference plane and axis are the mean
équator and equinox of date. The center of the coordinate
system is at the Earth's center.

At the other planets, the RST coordinate system is
used. In this system, the center of the system is at the
center of the planet in question. Unit vectors R, S, T,
are defined as follows: Thé vector S is a vector parallel

to the incoming hyperbolic velocity vector. T is a vector

is determined such that the third vector R (R = S x T) in
the right-handed system points in the direction of the south
pole of the ecliptic. The R-T plane is called the target
plane.

In order to perform the integration, a starting time
E and initial values for the variables x, y, z, kX, ¥, and % are

needed. At Earth these quantities are computed from the
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magnitude (VHL) and the direction (#-declination, @-right

ascension) of the outgoing hyperbolic excess velocity vector

under the following constraints:

The day of launch is taken as the launch
date of the SPARC conic approximation to
the trajectory.

The declination of the launch site is
constant at 28.3106°, the declination
of Cape Kennedy.

The launch azimuth, EL’ satisfies the

following conditions:

a. I; = 90° when § < 28.3106°

b. Iy - 90° = minimum when & > 28,.3106°

Injection is at perigee at an altitude of
100 nautical miles.

The parking time, in a circular parking -
orbit, is the minimum allowable time greater

than 2 minutes.

The variables VHL, ¢ and ® are the variables used

for targeting at Earth.

Kl
*

At all other planets, the quantities x,”y, zZ, X, ¥, 2

and time are computed at the target plane from:
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VHP - magnitude of the incoming hyperbolic excess
velocity

$§ - declination of the incoming asymptote of the
rrival hyperbola

® - right ascension of the incoming asymptote
of the arrival ayperbola

B-T - the component of B along the T-axis where
B is the hyperbolic miss parameter, i.e.,
the vector in the target plane from the
center of the planet to the incoming asymptote
of the arrival hyperbola.

B:R - the component of B along the R-axis

t - the time at which the spacecraft pierces

the target plane.

The three variables used for targeting at all planets
except Earth are B.T, B.R, and t.

The basic procedure in the targeting of any one leg
of the trajectory is the determination of the sensitivity
of the target variables at any planet to changes in the
target variables at the preceeding planet. This is accom-
plished by computing a matrix of approximate partial deri-
vatives of each of the 3 target variables at the target
planet with respect to each of the 3 target variables at
the departure planet. The method used to obtain the matrix
is that of finite-difference. With the inverse of this
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matrix it is possible to predict corrections to the values
of the target variables at the departure planet which will
cancel (or decrease) the error in the values of the target
variables at the arrival planet.

It was not known initially how great these sensitivities
would be, and hence over how many legs it would be possible to
target a trajectory. It turned out that the sensitivities
were so great that it was possible to target only one leg at
a time. For example, in general to come within 100 km of
the aiming point in B:T, B-R in the target plane, it was
necessary to make changes in the departure conditions which
were in the tenths, hundreths or even thousandths of a kilc-
meter. However, in most cases, it was only necessary to
compute one sensitivity matrix to target one leg and it was
never necessary to compute more than two matrices. Even though
the actual integration is performed in double precision, the
targeting subroutines were written in single precision.
Because of this, in trying to target two legs at a time, after
the first few corrections, the changes in the departure
conditions became so small that they could not be handled
by the eight place accuracy of single precision arithmetic.
For this reason it was not possible to target more than one
leg at a time.

In targeting one leg at a time, targeting was started
on the Uranus-Neptune leg. An aiming point was selected at
Neptune, and the trajectory was integrated from Uranus to

1IT RESEARCH INSTITUTE
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to Neptune starting with the SPARC arrival conditions at
Uranus as initial conditions. The error in the arrival
conditions at Neptune was noted and a sensitivity matrix
computed by integrating the Uranus-Neptune leg of the
trajectory three more times. Then using the inverse of the
sensitivity matrix to predict corrections to the initial
conditions, the initial conditions were corrected on successive
integrations of the trajectory until convergence was obtained
at Neptune., The arrival conditioas at Neptune for the converged
trajectory were called the n-body converged conditions. The
Uranus departure conditions for the converged trajectory became
the aiming point at Uranus for the integration of the Saturn-
Uranus leg. These departure conditions were called the ‘'aiming
point from n-body convergence.' Targeting was continued in
this manner on successive legs until convergence was obtained
on the final (Earth-Jupiter) leg. At that time the entire
trajectory was considered to be converged.

Because targeting was done using only the three
variables, B-T, B-R, and time, there was not complete agreement
between the values of VHP, &, and ® for the converged trajectory
and the values of VHP, &, and ® at the aiming point. See the
last two columns of Tables 1 through 4 for the discrepancies
in these values.

Tables 1 through 4 give the convergence histories of
the four trajectories studied. On each of these tables are
given 1) the values from SPARC of all the pertinent parameters
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Table 1

CONVERGENCE HISTORY OF 1977 E TRAJECTORY

L Aiming Point from N-Body
Planet Parameter SPARC Conditions N-Body Convergence Converged Conditions
B-T (KM) 8.88 x 10% 8.8725776 x 10°
NEPTUNE B-R (KM) 0.0 -2.1122848 x 10}
TIME 24477%6.85759735 2447746.869920335
E.r.3 0.1018
B-T (KM) 1.581993 x 10° 1.5896784 x 10° 1.5891677 x 10°
B'R (KM) 4.09231 x 10% 4.1320698 x 10% 4.1369825 x 10%
VHP (KPS) 14.7435 14.7435 14721352
URANUS 9 (DEC) -1.5304 -1.5304 -1.5395862
8 (DEG) 271.1280 271.1280 271.143578
TIME 2446455.72521209 2446456, 33905181 2446456.338873088
E.P. 0.0712
B-T (KM) 3.572481 x 107 3.5841535 x 10° - 3,5873812 x 10°
B-R (KM) -1.7228 x 10% -1.7359508 x 10% -1.7746249 x 10%
VHP (KPS) 10.6937 10.6937 10.669641
SATURN ¢ (DEC) 2.7472 2.7472 2.7797137
@ (DEG) 195.3260 195, 3260 195.4885
TIVE 2444842 , 59416961 2444846, 6852323 2444846, 6846265613
E.P. 0.5057
B-T (KM) 1.9246066 x 10° 1.9287916 x 10° 1.9385371 x 10°
B-R (KM) 1.510661 x 10° 1.£292970 x 10° 1.5287049 x 10°
VHP (KPS) 7.8118 7.21180 7,2031271
JUPITER ¢ (DEG) -3.0377 -3,0377 -3.,6468103
o (DEG) 94.3800 9%,379999 92.817464
TIVE 2444070.0 2644090496979 2444090.496978998
E.P. 0.35348753
VHL (KPS) 9.5426 9.4:477468
EARTH ¢ (DEG) 30,5118 32,061232 _—
8 (DEG) 64.6384 63.501112 —_—
TIME 2443388.0 2443388,039231494 —

1, Starting conditions for first n-body convergence run on any leg.

2, Departure conditions corresponding to converged .l-body run on any leg.

"3, E.P. = [ (error in B-T (KH)) + ‘(érror in B-R (KM)) 2/1000 + error in time (days)/.5)
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Table 2

CONVERGENCE HISTORY OF 1977 I TRAJECTORY

Aiming Point from

N-Body

Planet Parameter SPARC COndit:lonsl N Body Convergence Converged meditions
B-T (KM) 8.88 x 10° 8.8728759 x 10%
NEPTUNE B-R (KM) 0.0 4.6033367 x 10!
TIME 2446702. 24283599 2446702. 252454042
g.p.3 0.86743
BT (KM) 5.54577 x 10% 5.568189 x 10 5.5598592 x 10%
B-R (KM) 8.9765 x 10° 9.0353971 x 103 9.0210702 x 103
VHP (KPS) 21.2169 21,2169 21.201689
URANUS ¢ (DEG) -1.1496 -1.1496 -1.1556599
® (DEG) 266.1723 266.1723 266.703849
TIME 2445717. 68746185 2445717. 93804669 2445717, 94891575
E.P. 0.634669172
BT (KM) 1.464489 x 10° 1.4674225 x 10° 1.4681419 x 10°
B-R (KM) -5.8615 x 10° -5.8921234 x 103 -5.9170313 x 10°
VHP (KPS) 16.6908 16.6908 16.693921
SATURN 9 (DEG) 2.3789 2,3789 2.3890921
® (DEG) 192.0425 192.0425 192.1512
TIME 2444477.21163177 2644478, 9283927 2444478, 950747013
E,P. 0.80600794
B-T (KM) 7.537491 x 10° 7.5512495 x 10° 7.5519466 x 10°
B-R (KM) 4.74979 x 10° 4.7697880 x 10° 4.7549485 x 10°
VHP (KPS) 12.1601 12.1601 11.683219
JUPITER 9 (DEG) -1.2147 -1,2147 -1.2812889
® (DEG) 99,1286 99,1286 98.958305
TIME 2443902.0 2443910, 3168511 2443910, 350936017
E.P. 26439020 2443910, 3168511 0.91673776
VHL (KPS) 10,6865 10.534982
EARTH # (DEG) 25,5477 25.614623 ——
e (DEG) 70,4962 69.29659% N
™e 2443391.0 2443391.037413678 —

1, Starting conditions for first n-body convergence run on any leg.

2. Departure conditions correspondins to converged n-body run on any leg.

3. E.P. = [ (error in B'T ®0)2 + (error in B.R (m)) /100 + error in time (days)/.S)
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Table 3

CONVERGENCE HISTORY OF 1978 E TRAJECTORY

Aiming Point from

Planet Parameter SPARC Conditionsl N-Body convergem:e2 COnveggggdgonditions
B-T (KM) 8.88 x 10% 8.8787349 x 10*
NEPTUNE B-R (KM) 0.0 — -.53713876
TIME 2447795.03485107 S—— 2647795, 046940632
E.p.] . .03684153
B-T (KM) 1.624708 x 10° 1.62 99 x 10° 1.6354962 x 10°
B'R (KM) 4.6898 x 10% 4.7365698 x 10% 4.7173301 x 10%
VHP (KPS) 15.0754 15.075400 15.052522
URANUS 9 (DEC) -1.6495 -1.6495 -1.6585%1
@ (DEG) 272.3912 272.3912 272.392575
TIME 2446535, 58604431 2446536.28276522 2646536, 299654782
E P. 0.371855%
B-T (KM) 3.277183 x 10° 3.2866481 x 10° 3.2933279 x 10°
B-R (KM) -1.54493 x 10% -1.5571016 x 10% -1.5028893 x 10%
VHP (KPS) 11.0191 11.0191 10.976001
SATURN ¢ (DEC) 3.4277 3.4277 3.4624565
8 (DEC) 193.0302 193.0302 193.14326
TIME 2645014.45593261 2445018, 1242855 2445018. 126545787
E.P. 0.86480821
B-T (KM) 2.5733328 x 10° 2.576358 x 10° 2.5767222 x 10°
B-R (KM) 3.072777 x 10° 3.0856215 x 109 3.0800495 x 107
VHP (KPS) 10.4459 10.4459 9.99934091
JUPITER ¢ (DEG) -1.0682 -1.0682 -1.1806979
8 (DEG) 131.3308 131.3308 130.92092
TIME 2444370.0 2444379.1380357 2644379.181606578
E.P.
VHL (KPS) 10,1703 10.051029 O
EARTH @ (DEG) 31.4611 31.803824 J—
8 (DEG) 102,5632 101,07521 —_—
e 2443788.0 2443788, 045681285 —

1. Starting conditions for first n-body convergence run on any leg.

2. Departure conditions corresponding to converged n-body run on any leg.

3, E.P. = [ (error in B'T (l(l‘l))2 + (error in BR (kM))2/100 + error in time (daya?/.sl
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Table 4

CONVERGENCE HISTORY OF 1978 I TRAJECTORY

Aiming Point from N-Body

Planet Parameter SPARC Cmditionsl N-Body Corwet‘gem:e:2 Converged Conditions

B:T (KM) 88,800.0 88,813.824
NEPTUNE B-R (KM) 0.0 7.2100276

TIME 2446869. 64882278 2446869.658390037

e.p.3 .17504714

B-T (KM) 62,403,537 62.399.409 62,381,158

B-R (KM) 12,092.542 12,078.476 12,066,347

VHP (KPS) 21,2430 21.2430 21.225333
URANUS ¢ (DEG) -1.3550 - -1,3550 -1.3611881

e (DEG) 268.8005 268.8005 268.821909

TIME 2445902.36242700 2445902,30991744 2445902, 3¢90082

E.P. .21916501

BT (KM) 149,578.26 149,880.85 149,842.04

B-R (KM) -6,561.51 -6,598.2403 -6,560,6399

VHP (KPS) 16.6754 16.6754 16.661244
SATURN ¢ (DEG) 3.1370 3.1370 3.1495592

© (DEG) 193.7356 193.7356 193.80042

TIME 2444729,30791854 2444730.7871652 2444730.80984527

E.P, .58567327

B.T (KM) 1,212,719.8 1,213,580.0 1,213,546.3

B°R (KM) 112,404.55 112,727.92 112,732.28

VHP (KPS) 14.2022 14,2022 13.860628
JUPITER ¢ (DEG) -.3391 -.3391 -.35889586

e (DEG) 132,5223 132,52230 132.45347

TIME 2444265, 50000000 2444270,2575305 2444270.29616476

E P.

VHL (KPS) 11.237559 11.243561 mr—
EARTH # (DEG) 28.186442 28.155887 S ——

8 (DEG) 108.03907 107,30312 ——

TIME 2443790, 50000000 2443790. 991008502 E—

1. Starting conditions for first n-body convergence run on any leg. -

2.

Departure conditions corresponding to converged n-body run on any leg.

3. E.P. = [ (error in B.T (kM))2 4 (error in B.R (KM))2/100-+ error in time (days)/.S)
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at all the blanets and 2) the initial (aiming point from
n-body convergence) and final (n-body converged con&itions)
conditions from each leg of the converged n-body trajectories.
On any one leg there is good agreement between the conic and
integrated trajectories with the exception of the -time of
flight. \

~Table 5 gives the complete convergence history of the
Jupiter-Saturn leg of the trajectory for the 1977 exterior
ring passage. The initial and final conditions, as well as
the corrections to the initial conditions, are given for each
successive integration of the trajectory. 1In this case only
one sensiﬁivity matrix was used to obtain convergence. Also,
for most of the other legs, fewer corrections were needed fd
obtain convergence. |

Tables 6 and 7 give the sensitivity matrices generated

during convergence for all legs of the trajectories corrés-
ponding to the 1977 exterior ring passage, and the 1977
interior~ring passage. A comparison of the sensitivity
matrices in Tables 6 and 7 shows that the sensitivities are i
greater for the interior ring passage (Table 7) than the %
exterior ring passage (Table 6). For the trajectory corres- |
ponding to the 1977 interior ring passage it was necessary - ;
to generate two sensitivity matrices for the Earth-Jupiter |
and Jupiter-Saéurn legs in order to obtain convergence. The

sensitivity matrices were retained upon convergence for the

e T et

midcourse guidance analysis..
11T RESEARCH INSTITUTE

260

" L
e e R et S S i i e




[$°/(skep) auya ul 20133 + 000T/,((WA) W& UF 30333) + ,((NA) 1.8 UF 30318) ] =
1eAjaaE 3O SWi3 UT 20219 =

‘d 3
a;1la

(¢
@

~A§ H-g Ul 20232 + «ag 1-8 Ul I0133) = SSINIG (1

289201° 1L L28LY ELT 1661°289% (93
€81052"° £809680° 1~ €LTE8 61 ae&oe LI
2€°209°0L 90°662° 142 9°0€S‘ZM‘Yy (100D SsTRIE |,
8188%0SEY 201%8%LL 89856258 €2€25819
*9u8YYYT *Ly8YYYT ‘92899 ‘9989992 aNIL m
99Z6%°S61 9LT8Y° 961 818%0°S61 092€°S61 (vdq) &
L11808L°2 900959, 2 9ELOEYL T UN°T (930) 9
€901£9°01 %8199 ‘01 LE1228°01 2€69°01 (s) dna
TS9°SSE‘6E~ ZL°1£0°912 7€ 09L°ELT~ 80S°6S€°L1- O3) u-g
26°92€°16¢ 6L°2EL°96Y 8°01€°866° % SE STY 8SE o) 3-8
O
sayary
&pog-N
476820€ 49219S 00000000 00000000
£6895v62 " 060994 €60Y8SZ 1~ *160%9%T 9219612 *0LOYYYT *0L0Y9Y2 FMI1L m
66LE° %6 66LE° Y6 66LE %6 66L€° %6 (930) ¢ w
LLE0°€- L0 €~ LLE0° €= LL€0°¢- (92q) 9
8178°¢ 8I18°L 8118°L 8T18°L (sd®) ana
Tt ee- 86°0%6°2ST €9°8%9 9€°T62 LSt 92°9221 01°990°1S1 01°990°1S1 ool) u-g
9°LLL 9°L12°856°1 9°988Z~ TTHOT I 9°L6%°91 9°909°%26°1 9°909°%26°1 o) 1-2
SuoT3ITPROY
SUOTIV110) uny SUOYIVALI0D uny 8U0T3 22309 uny 1e¥3ITUl aayaweaed
PaTIL puodag IsatTa 28vds

K¥OLOACVAL 3 LL6T ¥O4 OTT NIALVS-YILIINC 40 XMOISIH TONISYIANOD

§ 919wy

h
ezt

261

(]

o T S SR

LN Ao

e

0y

Mo ot e

=

. = : e



R e e

£950S" €SY1I16°¢€ €8Y9%29° 91 ‘33
£996000 ° - S96L10° - TTL690°- | (sdeq) I1ia
6€L°€0S 6 GL8E 8€0°S8%° %1 ‘1) sSINIg
19592489 61861£0L 8HS6%SL
*9%8YYYT *9484yH9T "9y8YYYT IIL
G88%°S61 9888%°S61 %188%°S61 (oza) e
LETL6LL T 61L86LL°C 994Z6LL° T (9320) ¢
149699 01 96%699 01 968899 °01 (saX) daHA
AL TTAVA & £66"Y0€ 61~ 16€°82L°6L- ) u-g
Z1°8€L°8S¢E 2S°€90°5S€ €Y LY%°69¢€ D) 11
augod
Sutuwty
Lpog-N
61,696 129911S ,
*060%7%%C 02479610 - *060%%%2 $108080° - £29L6S INIL
66L€" Y6 66L€° %6 66LE " %6 (92q) ®
LLEO €~ LLgO €~ LLEO €~ (o3a) ¢
8118°L 8118°L 8118°L (sdd) dHA
L°626°TST €0°6 - 9L°8€6°TST §°02 92°816°2S1 ) u-9
9 16L°8€6°1 1°91- 8°L08°8€6°1 %°L81- 2°666°8€6°1 o) 1-9
uny uny uny
YyixIs SUOT3 V31309 YIFTA SU0T3Id3aX09) Yyaanog a93dueaed

PR

AYOLOACVIL d LL6T ¥OJd OF1 NUNLVS-YIALILAL J0 XWOISIH IDNAIEIANOD

| peswas] = Aarracasl

(*3u0)) ¢ arqey

R e

£ [T [

- -]

. g7 —

262

b

e

e




Table 6

SENSITIVITY MATRICES
1977 E TRAJECTORY

%
B TF B RF TimeF
VHL 1.4526449x10'°] -1.7320846x1010| -257.02057
§g§{¥ﬁn 3 -1.3078390x10° | -8.0286081x10% | 6.8216719
® -4.6717345x10° 5.7670956x10% | 6.3153312
B TF B. RF T:I.meF
B-T.*| 241.85600 16.936000 -.38146972x10"’
JUPITER- 1 -8
R |B-R; 77.952000 -266.15400 -.76293944x10
Timey| -404685180 9432296.0 .94943237
B-Tp B-Rp, Timep
B-T 3963.5840 -435.8500 -.85649219x10"°
SATURN- 1 -6
ohANRs~  |B-R; | -736.0000 -3854.8930 .10681152x10
Time,| -85910912 -167873.00 .66708374
L B TF B RF T:I.meF
B-T 2814.7200 1540.5820 .76293944x10~7
vraNUS | T 0 2080 -2798.2185 30517578x10"’
NEPTUNE |B°Ry . . .
Time,| -916262.40 1309212.0 .91964722

*Ihe subscripts F and I refer to the target variables at the
arrival (final) and departure (initial) planets respectively.
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Table' 7

SENSITIVITY MATRICES
1977 I TRAJECTORY

B-TF B'RF TimeF
EARTH- VHL .39089154x1011 | -.44512973x1010 | -101.97067
JUPITER 3 -.11769157x1010 | -.21622508x1010| 1.5725325
MATRIX #1 © -.61185618x1010 | .41952192x107 | 4.1982886

B-TF B'RF TimeF
EARTH- VHL | .39388928x10'1 | -.49738721x1010| -98.93036
JUPTTER ¢ | -.12265990x1010 | -.20714486x1010| 1.1833571
MATRIX #2 © -.59155179x1010 | .4283892x10° 2.1417473

B-Tp B-Rp, Timeg
suprtER-  BTp | 834.91199 77.974000 -.38146972x10"’
SATURN B-R; | 113.28000 -745.13599 -.22888184x10"’

Time, -.20933776x10° .17943218x108 | .74314650

B-Tp B-Rp Tine,
SATURN- B-T, | 12732.416 -1328.379 -.19531250x10"°
URANUS B-R; | -676.16000 -11670.457 -.12207031x10"°
MATRIX #1 Time,| .99752256x10° .13437109v°08 | .70349120

1
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Table 7 (Cont,)

SENSITIVITY MATRICES
1977 1 TRAJECTORY

SATURN- B-T, | 12400.823 -1009.7776 .97961425x10">
URANUS B-R; |-1027.5015 -11470.189 .10467529x10~%
MATRIX #2 Timeg | .97545045x108 | -.13392877x108 [ 73211670

-7
URANUS- BfrI 13253.760 4£330.6870 .534057621:10”5
NEPTUNE B-R; 10267.904 8 -12880.946 . -.44403076x10
Time, | -.35868352x10 ~ .39646740x10 .90330505
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